
33rd European Conference on
Object-Oriented Programming

ECOOP 2019, July 15–19, 2019, London, United Kingdom

Edited by

Alastair F. Donaldson

LIPIcs – Vo l . 134 – ECOOP 2019 www.dagstuh l .de/ l ip i c s

Editors

Alastair F. Donaldson
Department of Computing,
Imperial College London, UK
alastair.donaldson@imperial.ac.uk

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-111-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-111-5.

Publication date
July, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2019.0

ISBN 978-3-95977-111-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:alastair.donaldson@imperial.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-111-5
https://www.dagstuhl.de/dagpub/978-3-95977-111-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-111-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Message from the Chairs
Alastair F. Donaldson and Laurence Tratt . 0:ix–0:xi

ECOOP: Looking Forward: a Message from the AITO President
Eric Jul . 0:xiii–0:xiv

Message from the Artifact Evaluation Chairs
Maria Christakis and Manuel Rigger . 0:xv

ECOOP 2019 Conference Organization
. 0:xvii–0:xix

External Reviewers
. 0:xxi

List of Authors
. 0:xxiii–0:xxv

Regular Papers

Lifestate: Event-Driven Protocols and Callback Control Flow
Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang . 1:1–1:29

Godot: All the Benefits of Implicit and Explicit Futures
Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen, and
Tobias Wrigstad . 2:1–2:28

Multitier Modules
Pascal Weisenburger and Guido Salvaneschi . 3:1–3:29

Scopes and Frames Improve Meta-Interpreter Specialization
Vlad Vergu, Andrew Tolmach, and Eelco Visser . 4:1–4:30

Transient Typechecks Are (Almost) Free
Richard Roberts, Stefan Marr, Michael Homer, and James Noble 5:1–5:28

A Typing Discipline for Hardware Interfaces
Jan de Muijnck-Hughes and Wim Vanderbauwhede . 6:1–6:27

On Satisfiability of Nominal Subtyping with Variance
Aleksandr Misonizhnik and Dmitry Mordvinov . 7:1–7:20

Static Analysis for Asynchronous JavaScript Programs
Thodoris Sotiropoulos and Benjamin Livshits . 8:1–8:29

A Program Logic for First-Order Encapsulated WebAssembly
Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and
Philippa Gardner . 9:1–9:30

Garbage-Free Abstract Interpretation Through Abstract Reference Counting
Noah Van Es, Quentin Stiévenart, and Coen De Roover . 10:1–10:33

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Eventually Sound Points-To Analysis with Specifications
Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken 11:1–11:28

How to Avoid Making a Billion-Dollar Mistake: Type-Safe Data Plane
Programming with SafeP4

Matthias Eichholz, Eric Campbell, Nate Foster, Guido Salvaneschi, and
Mira Mezini . 12:1–12:28

Fling – A Fluent API Generator
Yossi Gil and Ori Roth . 13:1–13:25

NumLin: Linear Types for Linear Algebra
Dhruv C. Makwana and Neelakantan R. Krishnaswami . 14:1–14:25

Deep Static Modeling of invokedynamic
George Fourtounis and Yannis Smaragdakis . 15:1–15:28

Reasoning About Foreign Function Interfaces Without Modelling the Foreign
Language

Alexi Turcotte, Ellen Arteca, and Gregor Richards . 16:1–16:32

DynaSOAr: A Parallel Memory Allocator for Object-Oriented Programming on
GPUs with Efficient Memory Access

Matthias Springer and Hidehiko Masuhara . 17:1–17:37

Reliable State Machines: A Framework for Programming Reliable Cloud Services
Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis,
Chandramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and
Raja Krishnaswamy . 18:1–18:29

Transferring Obligations Through Synchronizations
Jafar Hamin and Bart Jacobs . 19:1–19:58

Tool Insights Papers

Automated Large-Scale Multi-Language Dynamic Program Analysis in the Wild
Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele Bonetta,
Isabella Defilippis, Sergio Oporto, and Walter Binder . 20:1–20:27

MagpieBridge: A General Approach to Integrating Static Analyses into IDEs
and Editors

Linghui Luo, Julian Dolby, and Eric Bodden . 21:1–21:25

Experience Reports

Semantic Patches for Java Program Transformation
Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Lingxiao Jiang, and
David Lo . 22:1–22:27

Contents 0:vii

Pearls

Minimal Session Types
Alen Arslanagić, Jorge A. Pérez, and Erik Voogd . 23:1–23:28

Julia’s Efficient Algorithm for Subtyping Unions and Covariant Tuples
Benjamin Chung, Francesco Zappa Nardelli, and Jan Vitek . 24:1–24:15

Finally, a Polymorphic Linear Algebra Language
Amir Shaikhha and Lionel Parreaux . 25:1–25:29

Brave New Ideas

Towards Language-Parametric Semantic Editor Services Based on Declarative
Type System Specifications

Daniel A.A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser 26:1–26:18

Multiverse Debugging: Non-Deterministic Debugging for Non-Deterministic
Programs

Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix, and
Christophe Scholliers . 27:1–27:30

Motion Session Types for Robotic Interactions
Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey 28:1–28:27

ECOOP 2019

Message from the Chairs

We are delighted to welcome you to London for the 33rd European Conference on Object-
Oriented Programming (ECOOP 2019), to be held during July 15–19. ECOOP is the
European forum for bringing together researchers, practitioners, and students to share their
ideas and experiences on all topics related to programming languages, software development,
object-oriented technologies, systems and applications.

This year, ECOOP is once again co-located with the CurryOn conference, which is
focussed on the intersection of emerging languages and industrial challenges associated with
programming languages. As well as technical papers and keynotes, ECOOP 2019 features
several workshops, a doctoral symposium, a poster session, and a summer school.

Awards and keynotes

ECOOP usually features keynotes from the winners of the Senior and Junior Dahl-Nygaard
Prize winners. We are deeply saddened that the AITO Dahl-Nygaard Senior Prize winner,
Laurie Hendren (McGill University) died in May 2019. Laurie was a leading light in the
Programming Languages field, and her passing is a terrible loss to our community.

Winner of the 2019 AITO Dahl-Nygaard Junior Prize, Ilya Sergey (Yale-NUS College
and National University of Singapore) will present a keynote, and we are privileged to have
two further keynotes, from Azadeh Farzan (University of Toronto), and Simon Peyton Jones
(Microsoft Research). Our congratulations go to Yossi Gil and Ori Roth (Technion), whose
paper “Fling—A Fluent API Generator” was selected to receive an AITO Distinguished
Paper Award.

Paper selection process

Authors had two main routes open to them when submitting to ECOOP 2019. There was
a “Journal First” route, whereby authors could submit their papers to be considered for a
special issue of the Science of Computer Programming journal, presenting the associated
paper at ECOOP if accepted. There was also a standard route, whereby authors could
submit their papers directly to the conference to be considered for presentation and inclusion
in these Dagstuhl LIPIcs conference proceedings. In addition, and new for ECOOP 2019,
authors could submit papers to the conference in six distinct categories:

Research Papers. This was the most traditional paper category, for research papers
demonstrating advances in the Programming Languages (PL) field.
Tool Insights Papers. This category aimed to solicit articles focussing on the practical
details of the design and implementation of PL tools—details that are often omitted from
regular papers despite being fascinating and worthy of communication.
Reproduction Studies. Independently reconstructing prior experiments, to validate
or refute important results of earlier work, can be extremely valuable; this category
welcomed papers reporting on such studies.
Experience Reports. This category was for papers focussing on noteworthy applications
of existing PL techniques, tools and ideas in interesting domains, potentially in the context
of other communities.
Pearls. Originating in the Journal of Functional Programming, and common to confer-
ences such as ICFP and POPL, ECOOP 2019 welcomed so-called “pearl” articles that
explain a known idea in a new and elegant way, to the benefit of the PL community.

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Message from the Chairs

Brave New Ideas: This final new category solicited forward-looking articles on ideas
in the PL field that may take some time to fully substantiate, but for which early
communication to the community is likely to be of benefit.

In total, ECOOP 2019 received 82 submissions, of which the 28 papers appearing in these
proceedings were accepted (34.1% acceptance rate). The 82 total submissions comprised 60
Research Papers (19 accepted), 3 Tool Insights Papers (2 accepted), 5 Experience Reports (1
accepted), 4 Pearls (3 accepted), 5 Brave New Ideas (3 accepted), 5 Journal First Papers
(none accepted, so no ECOOP 2019 special issue of Science of Computer Programming), and
no Reproduction Studies.

The new paper categories and dual submission routes were largely successful in increasing
the number of papers submitted to ECOOP compared with the 2018 edition of the conference,
and we hope that next year’s Program Chair will take them forward.

Each submission was evaluated by at least three members of the Program Committee (PC),
External Review Committee (ERC) and selected additional reviewers. Papers for which a
PC member was a co-author were reviewed exclusively by non-PC members. Authors were
given a chance to respond to all reviews of their paper, except in a few cases where it was
deemed necessary to solicit additional reviews for borderline papers after the author response
period had closed.

The review process was double-blind until the point of review submission. On submitting
a review for a paper, the identities of authors of the paper were revealed to the reviewer. The
identities of reviewers remained hidden from authors, except that 8 papers were accepted
subject to a shepherding process. In these cases, one reviewer served as shepherd for the paper,
revealing to the authors that they had reviewed the paper (but not necessarily specifying for
which review they were responsible), and acting as an intermediary between the authors and
the other reviewers with the aim of helping the authors improve their paper based on key
suggestions from the reviewers. We were delighted that all relevant papers ultimately passed
the shepherding process and are included in these proceedings.

For environmental reasons, to ease pressure on PC members with family responsibilities,
and to make it easier for researchers across the world to commit to serving on the PC,
ECOOP 2019 did not feature an in-person PC meeting. Instead, rigorous discussion was
conducted online using the HotCRP tool, and a number of conference calls were held for
specific papers where it was proving hard to reach a decision asynchronously.

Authors of accepted papers were also invited to submit artifacts, which were evaluated
by a separate Artifact Evaluation Committee (AEC). As detailed further in the Message
from the Artifact Evaluation Chairs below, the committee received 16 artifacts and accepted
14 of them.

Acknowledgements

Putting ECOOP 2019 together has been a big team effort that would not have been possible
without help from a lot of people. We offer particular thanks to Annabel Satin, without
whose assistance and advice ECOOP could not have happened.

We are very grateful to the authors of all submitted papers (whether accepted or not)
for taking the time to send their work to ECOOP, and to our keynote speakers and authors
of accepted papers who will present at the event. We thank the 25 PC members, 15 ERC
members and 15 additional reviewers for their generally very thorough reviewing efforts. We
thank our Artifact Evaluation Chairs Maria Christakis and Manuel Rigger for coordinating
the evaluation process, and the Artifact Evaluation Committee for their efforts. We are

Message from the Chairs 0:xi

grateful to many other people for contributing to various aspects of the program: our
Workshop Chairs Julian Dolby and Sebastian Erdweg for putting together a comprehensive
schedule of workshops; Julia Belyakova and Goran Piskachev for chairing the Doctoral
Symposium; Sarah Mount for her work as Diversity Chair; James Noble and Jan Vitek for
co-organizing the Summer School; Jacob Hughes and Alisa Maas for their efforts as Student
Volunteer Co-Chairs; Stefan Marr for managing the ECOOP web site; Edd Barrett for his
tireless efforts as Publicity Chair; Heather Miller for serving as Sponsorship Chair; our poster
chair Lisa Nguyen; and our Video chair Benjamin Chung.

Michael Wagner (Dagstuhl) provided excellent support in the preparation of these
proceedings, the HotCRP tool was invaluable in facilitating the review process, and the
ECOOP 2019 website was powered by the conf.researchr.org service.

We gratefully acknowledge our sponsor AITO as well as our financial supporters—Google,
Huawei, Facebook, JetBrains, Oracle, IBM Research, Mozilla and Uber—for their generous
contributions.

Finally, we hope that if you are attending ECOOP 2019 that you have a fantastic time,
that you find the presentations thought-provoking and inspiring, and that you meet lots of
interesting people. Thank you for supporting the event!

Alastair F. Donaldson Laurence Tratt
ECOOP 2019 Program Chair ECOOP 2019 General Chair
Imperial College London King’s College London

ECOOP 2019

ECOOP: Looking Forward: a Message from the
AITO President

A warm welcome to all: I hope that you will enjoy London and the excellent scientific program.
Thanks to the organizers, headed up by Laurie Tratt, for working hard on arranging the
conference—if just half of their efforts pay off, it will be a great success. ECOOP continues
to have great student volunteers that help make things run smoothly—and who get to
experience the conference. Thanks to Alastair Donaldson for his dedicated work as PC Chair
and to the PC members, who collaborated in assembling a fine scientific program. One of
the strong features of ECOOP is the workshops held in connection with the main conference
that allows intense interaction between participants. Thanks to all workshop organizers. A
final thanks goes to Annabel Satin, the AITO coordinator, without her, things would be a
lot more difficult.

This year’s Dahl-Nygaard Senior award honours Laurie Hendren, for her continuous and
significant contributions for the past 30+ years to the field of object-oriented programming
languages and compilation. Sadly, Laurie passed away in May due to illness.

This year’s Dahl-Nygaard Junior award goes to Ilya Sergey, who has made a number
of significant contributions in the development and application of programming language
techniques to various problems across the programming spectrum, covering object-oriented ,
functional, distributed, and concurrent programming, as well as the blockchain and smart
contracts.

You are encouraged to submit a nomination for either or both awards for next year.
The world is changing and so is ECOOP. ECOOP 1998 had more than 700 attendees,

many workshops, a large tutorial program, and many exhibitors. Since then many things
have changed starting with the .com bust, which meant a reduction in participation from
industry and consequently also a reduction in tutorial attendance and exhibits. The past
two decades has also seen a number of more specialised conferences in the OO area focusing
on specific topic, e.g., aspects, Java, programming, tools, so it is perhaps natural that some
move on from ECOOP to such conferences on subtopics within OO, while ECOOP still
covers new, and less established OO ideas of the future.

These trends meant that we have evolved ECOOP and that there is lower attendance,
significantly reduced exhibits, and a change in tutorials from fully paid introductory tutorials
to an academic program of summer school tutorials. The introduction of Curry On has been
successful in maintaining the link between industry and academia.

A good workshop program, besides the strong papers in the main conference, has been
one of the hallmarks of ECOOP. A high quality workshop program is important to attract
strong academics who are not only trendsetters, but also active participants willing to have
lively discussions on their views. And for industry to absorb new trends and, conversely, pass
on best practices.

Naturally, AITO continually assess the focus and direction of each ECOOP. The AITO
General Assembly meeting, which traditionally is held in connection with the main conference
includes a discussion on the upcoming ECOOP conferences. We appreciate all input from
ECOOP attendees, so I will conclude by encouraging you to pass on your thoughts to any
AITO Member.

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv ECOOP: Looking Forward: a Message from the AITO President

We do hope that you will enjoy the conference and its associated events. We do ask that
everyone maintains a respectful attitude toward everyone else including avoiding behavior
that might be viewed as disrespectful or unwanted. At the previous ECOOP, we did have a
report of unwanted behaviour in connection with one of the social events; please be respectful
at all times – even if you have enjoyed some of the local pints. If you experience any kind of
behaviour that causes you discomfort, please contact one of the organisers, or an AITO Exec
Member—even if you want your concerns to be kept confidential.

That said, do not forget to enjoy the conference and have fun.
Looking forward, ECOOP 2020 will be in Berlin, we hope to see you there.

Eric Jul
AITO President
University of Oslo

Message from the Artifact Evaluation Chairs

The goals of the Artifact Evaluation (AE) are to foster the reproducibility of results by
providing authors the possibility to submit an artifact for accepted papers. Artifacts include,
but are not limited to, software artifacts, data sets, and proofs. An Artifact Evaluation
Committee (AEC) reviews these artifacts and decides upon their acceptance. The accepted
artifacts are archived in the Dagstuhl Artifacts Series (DARTS) published on the Dagstuhl
Research Online Publication Server (DROPS). Each artifact is assigned a Digital Object
Identifier (DOI) that can be used in future citations.

This year, the committee evaluated 16 artifacts, which correspond to 57% of all accepted
papers. 14 of the artifacts were accepted (a 88% acceptance rate). In total, 50% of the
research papers published at ECOOP 2018 have successfully passed the AE process, indicated
by an artifact-evaluation badge. This outcome is similar to the outcomes of previous ECOOP
editions; in 2018, 38% of the research papers, and in 2017, 59% of the research papers were
accompanied by accepted artifacts.

The AE process for 2019 was a continuation of the AE process of previous ECOOP
editions. In particular, the process was still based on the artifact evaluation guidelines by
Shriram Krishnamurthi, Matthias Hauswirth, Steve Blackburn, and Jan Vitek published on
the Artifact Evaluation site.1 The guidelines for artifacts that contain mechanized proofs
developed by the ECOOP 2018 AEC were also reused to help both reviewers and authors in
creating and reviewing such artifacts.

Each artifact was evaluated by three AEC members, which corresponded to a reviewer
load of two to three artifacts. The reviewing process consisted of two phases. In the “kick-
the-tires” phase, reviewers briefly verified the basic integrity of the artifacts to discover any
issues that could prevent the evaluation of the artifact (e.g., a corrupted virtual machine
image) and to assign a grade for the getting-started guide. In case of any issues, reviewers
could, as part of a response phase, indicate issues and ask clarifying questions to the authors.
Authors, in turn, could respond to the reviewers’ first feedback, and update their artifacts
to address any issues that were raised by the reviewers. In the second phase, each reviewer
had three weeks to do a comprehensive evaluation of each artifact. Reviewers were asked to
assess the consistency of the artifact with respect to the paper, the artifact’s completeness,
documentation, and reusability for future research and to decide on an overall grade. The
review phase was then followed by a discussion phase, in which artifacts were discussed to
converge on either the artifacts’ acceptance or rejection. Authors that received an acceptance
notification were given one week of time to incorporate reviewers’ feedback and submit the
camera-ready version of their artifacts.

We would like to thank the 19 members of this year’s AEC, who donated their valuable
time and effort to make the AE process possible. We would also like to thank Michael Wagner
for the publication of the artifacts volume, and the Program Chair Alastair Donaldson for
helping us coordinate the artifact evaluation with the paper review process.

Maria Christakis Manuel Rigger
ECOOP 2019 Artifact Evaluation co-chair ECOOP 2019 Artifact Evaluation co-chair
Max Planck Institute for Software Systems ETH Zurich

1 http://www.artifact-eval.org

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.artifact-eval.org
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

ECOOP 2019 Conference Organization

General Chair
Laurence Tratt (King’s College London, UK)

Program Chair
Alastair F. Donaldson (Imperial College London, UK)

Artifact Evaluation Co-Chairs
Maria Christakis (MPI-SWS, Germany)
Manuel Rigger (ETH Zurich, Switzerland)

Workshop Co-Chairs
Julian Dolby (IBM Research, USA)
Sebastian Erdweg (JGU Mainz, Germany)

Web Chair
Stefan Marr (University of Kent, UK)

Publicity Chair
Edd Barrett (King’s College London, UK)

Sponsorship Chair
Heather Miller (Carnegie Mellon University, UK)

Diversity Chair
Sarah Mount (Aston University, UK)

Indispensable Organisational Memory, AITO Liaison and Finance Chair
Annabel Satin

Posters Chair
Lisa Nguyen Quang Do (Paderborn University, Germany)

Summer School Co-Chairs
James Noble (Victoria University of Wellington, New Zealand)
Jan Vitek (Northeastern University, USA)

Doctoral Symposium Co-Chairs
Julia Belyakova (Northeastern University, USA)
Goran Piskachev (Fraunhofer IEM, Germany)

Student Volunteer Co-Chairs
Jacob Hughes (King’s College London, UK)
Alisa Joy Maas (University of Wisconsin-Madison, USA)

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii ECOOP 2019 Conference Organization

Video Chair
Benjamin Chung (Northeastern University, UK)

Program Committee
Robert Atkey (University of Strathclyde, UK)
Eva Darulova (MPI-SWS, Germany)
Mariangiola Dezani (Università di Torino Italy)
Dino Distefano (Facebook and Queen Mary University of London, UK)
Derek Dreyer (MPI-SWS, Germany)
Sophia Drossopoulou (Imperial College London, UK)
Cezara Drăgoi (INRIA, ENS, CNRS, France)
Alexey Gotsman (IMDEA Software Institute, Spain)
Christian Hammer (University of Potsdam, Germany)
Tim Harris (Amazon, UK)
Matthias Hauswirth (Università della Svizzera italiana, Switzerland)
Akash Lal (Microsoft Research, India)
Doug Lea (State University of New York Oswego, USA)
Heather Miller (Carnegie Mellon University, USA)
Bruno C. d. S. Oliveira (The University of Hong Kong, Hong Kong)
Corina S. Pasareanu (NASA and Carnegie Mellon University, USA)
David Pearce (Victoria University of Wellington, New Zealand)
Luís Pina (George Mason University, USA)
Alex Potanin (Victoria University of Wellington, New Zealand)
Azalea Raad (MPI-SWS, Germany)
Ajitha Rajan (University of Edinburgh, UK)
Ilya Sergey (Yale-NUS College and National University of Singapore, Singapore)
Manu Sridharan (University of California, Riverside, USA)
Emma Söderberg (Lund University, Sweden)
Tijs van der Storm (CWI and University of Groningen, Netherlands)

External Review Committee
Suparna Bhattacharya (Hewlett-Packard Enterprise, India)
Viviana Bono (University of Torino, Italy)
Junjie Chen (Peking University, China)
Mike Dodds (Galois, Inc., USA)
Susan Eisenbach (Imperial College London, UK)
Ganesh Gopalakrishnan (University of Utah, USA)
Bart Jacobs (KU Leuven, Belgium)
Jeroen Ketema (ESI (TNO), Netherlands)
Ana Milanova (Rensselaer Polytechnic Institute, USA)
Jessica Paquette (Apple Inc., USA)
Gregor Richards (University of Waterloo, Canada)
Philipp Ruemmer (Uppsala University, Sweden)
Alexander J. Summers (ETH Zurich, Switzerland)
Martin Vechev (ETH Zurich, Switzerland)
John Wickerson (Imperial College London, UK)

ECOOP 2019 Conference Organization 0:xix

Artifact Evaluation Committee
Sara Achour (MIT, USA)
Julia Belyakova (Northeastern University, USA)
Junjie Chen (Peking University, China)
Marco Eilers (ETH Zurich, Switzerland)
Juan Fumero (University of Manchester, UK)
Tianxiao Gu (Alibaba Group, USA)
Gowtham Kaki (Purdue University, USA)
Maria Kechagia (University College London, UK)
David Leopoldseder (Johannes Kepler University, Austria)
Yue Li (Aarhus University, Denmark)
Michael Marcozzi (Imperial College London, UK)
Darya Melicher (Carnegie Mellon University, USA)
Lisa Nguyen Quang Do (Paderborn University, Germany)
Khanh Nguyen (University of California, Los Angeles, USA)
Burcu Kulahcioglu Ozkan (MPI-SWS, Germany)
Christian Schilling (IST Austria, Austria)
Vanya Yaneva (University of Edinburgh, UK)

Doctoral Symposium Committee
Phi-Diep Bui (Uppsala University, Sweden)
Olivier Flückiger (Northeastern University, USA)
Remigius Meier (ETH Zurich, Switzerland)
Charith Mendis (MIT CSAIL, USA)
Lisa Nguyen Quang Do (Paderborn University, Germany)
Nathalie Oostvogels (Vrije Universiteit Brussel, Belgium)
Hila Peleg (Technion, Israel)
Michael Reif (TU Darmstadt, Germany)
Andreas Schuler (University of Applied Sciences Upper Austria, Austria)
Ilina Stoilkovska (Vienna University of Technology, Austria)
Kirshanthan Sundararajah (Purdue University, USA)
Yanlin Wang (University of Hong Kong, China)

Doctoral Symposium Academic Panel
Ben Hermann (University of Paderborn, Germany)
Neel Krishnaswami (University of Cambridge, UK)
Guido Salvaneschi (TU Darmstadt, Germany)
Eelco Visser (Delft University of Technology, Netherlands)

Posters Committee
David Darais (University of Vermont, USA)
Stefan Kruüger (University of Paderborn, Germany)
Michael Reif (TU Darmstadt, Germany)
Michael D. Shah (Northeastern University, USA)
Justin Smith (North Carolina State University, USA)

ECOOP 2019

External Reviewers

Samer Al-Kiswani
Michael Emmi
Bernd Finkbeiner
Colin Gordon
Xuejing Huang
Tiark Rompf
Anthony Sloane
Alexandros Tasos
Laurence Tratt
Louis Wasserman
Matthew Windsor
Ningning Xie
Hao Xu
Weixin Zhang
Jinxu Zhao

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Alex Aiken (11)
Stanford University, USA

Saswat Anand (11)
Stanford University, USA

Alen Arslanagić (23)
University of Groningen, The Netherlands

Ellen Arteca (16)
Northeastern University, Boston, MA, USA

Osbert Bastani (11)
University of Pennsylvania, Philadelphia, USA

Walter Binder (20)
Università della Svizzera italiana, Switzerland

Eric Bodden (21)
Heinz Nixdorf Institute, Paderborn University,
Paderborn, Germany; Fraunhofer IEM,
Paderborn, Germany

Daniele Bonetta (20)
Oracle Labs, United States

Eric Campbell (12)
Cornell University, Ithaca, NY, USA

Bor-Yuh Evan Chang (1)
University of Colorado Boulder, USA

Benjamin Chung (24)
Northeastern University, Boston, MA, USA

Lazaro Clapp (11)
Stanford University, USA

Dave Clarke (2)
Storytel, Stockholm, Sweden

Jan de Muijnck-Hughes (6)
University of Glasgow, UK

Coen De Roover (10)
Software Languages Lab, Vrije Universiteit
Brussel, Belgium

Isabella Defilippis (20)
Universidad Privada Boliviana, Bolivia

Pantazis Deligiannis (18)
Microsoft Research, Redmond, USA

Julian Dolby (21)
IBM Research, New York, USA

Matthias Eichholz (12)
Technische Universität Darmstadt, Germany

Kiko Fernandez-Reyes (2)
Uppsala University, Sweden

Nate Foster (12)
Cornell University, Ithaca, NY, USA

George Fourtounis (15)
University of Athens, Department of Informatics
and Telecommunications, Greece

Philippa Gardner (9)
Imperial College London, UK

Yossi Gil (13)
Technion I.I.T Computer Science Dept., Haifa,
Israel

Elisa Gonzalez Boix (27)
Vrije Universiteit Brussel, Belgium

Krishnan Govindraj (18)
Microsoft Research, Bangalore, India

Robbert Gurdeep Singh (27)
Universiteit Gent, Belgium

Jafar Hamin (19)
imec-DistriNet, Department of Computer
Science, KU Leuven, Belgium

Ludovic Henrio (2)
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP,
France

Michael Homer (5)
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Bart Jacobs (19)
imec-DistriNet, Department of Computer
Science, KU Leuven, Belgium

Lingxiao Jiang (22)
School of Information Systems, Singapore
Management University, Singapore

Einar Broch Johnsen (2)
University of Oslo, Norway

Hong Jin Kang (22)
School of Information Systems, Singapore
Management University, Singapore

Neelakantan R. Krishnaswami (9, 14)
Department of Computer Science and
Technology, University of Cambridge, United
Kingdom

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://orcid.org/0000-0002-0292-478X
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.16
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://orcid.org/0000-0002-1970-6607
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://orcid.org/0000-0003-2185-8543
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://orcid.org/0000-0001-7582-4520
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://orcid.org/0000-0001-8654-118X
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.15
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://orcid.org/0000-0003-4394-0011
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://orcid.org/0000-0002-5701-9111
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.19
https://orcid.org/0000-0001-7137-3523
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://orcid.org/0000-0003-0280-6748
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://orcid.org/0000-0002-3605-249X
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.19
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://orcid.org/0000-0001-5382-3949
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://orcid.org/0000-0003-2838-5865
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.14
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xxiv Authors

Raja Krishnaswamy (18)
Microsoft Azure, Redmond, USA

Akash Lal (18)
Microsoft Research, Bangalore, India

Julia Lawall (22)
Sorbonne Université/Inria/LIP6, France

Benjamin Livshits (8)
Imperial College London, UK; Brave Software,
London, UK

David Lo (22)
School of Information Systems, Singapore
Management University, Singapore

Linghui Luo (21)
Heinz Nixdorf Institute, Paderborn University,
Paderborn, Germany

Rupak Majumdar (28)
MPI-SWS, Saarbrücken, Germany

Petar Maksimović (9)
Imperial College London, UK; Mathematical
Institute SASA, Serbia

Dhruv C. Makwana (14)
Unaffiliated

Stefan Marr (5, 27)
School of Computing, University of Kent, UK

Hidehiko Masuhara (17)
Tokyo Institute of Technology, Japan

Shawn Meier (1)
University of Colorado Boulder, USA

Mira Mezini (12)
Technische Universität Darmstadt, Germany

Aleksandr Misonizhnik (7)
JetBrains Research, Saint Petersburg State
University, Russia

Dmitry Mordvinov (7)
JetBrains Research, Saint Petersburg State
University, Russia

Sergio Mover (1)
École Polytechnique, Institute Polytechnique de
Paris, Palaiseau, France

Suvam Mukherjee (18)
Microsoft Research, Bangalore, India

Gilles Muller (22)
Sorbonne Université/Inria/LIP6, France

James Noble (5)
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Sergio Oporto (20)
Universidad Privada Boliviana, Bolivia

Lionel Parreaux (25)
DATA Lab, EPFL, Lausanne, Switzerland

Daniel A. A. Pelsmaeker (26)
Delft University of Technology, Delft, The
Netherlands

Marcus Pirron (28)
MPI-SWS, Saarbrücken, Germany

Jorge A. Pérez (23)
University of Groningen, The Netherlands

Nitin John Raj (18)
International Institute of Information
Technology, Hyderabad, India

Aseem Rastogi (18)
Microsoft Research, Bangalore, India

Chandramouleswaran Ravichandran (18)
Microsoft Azure, Redmond, USA

Gregor Richards (16)
University of Waterloo, Waterloo, ON, Canada

Richard Roberts (5)
School of Engineering and Computer Science,
Victoria University of Wellington, New Zealand

Eduardo Rosales (20)
Università della Svizzera italiana, Switzerland

Andrea Rosà (20)
Università della Svizzera italiana, Switzerland

Ori Roth (13)
Technion I.I.T Computer Science Dept., Haifa,
Israel

Guido Salvaneschi (3, 12)
Technische Universität Darmstadt, Germany

Christophe Scholliers (27)
Universiteit Gent, Belgium

Amir Shaikhha (25)
Department of Computer Science, University of
Oxford, UK

Rahul Sharma (11)
Microsoft Research, Bangalore, India

Yannis Smaragdakis (15)
University of Athens, Department of Informatics
and Telecommunications, Greece

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.8
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://orcid.org/0000-0001-7220-4991
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.14
https://orcid.org/0000-0001-9059-5180
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.17
https://orcid.org/0000-0002-1349-4316
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.1
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.7
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.7
https://orcid.org/0000-0003-1029-9547
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.1
https://orcid.org/0000-0002-9040-0053
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://orcid.org/0000-0001-9036-5692
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.25
https://orcid.org/0000-0003-0196-0567
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://orcid.org/0000-0002-1452-6180
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.16
https://orcid.org/0000-0002-3462-8539
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://orcid.org/0000-0002-6404-3128
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.25
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.15

Authors 0:xxv

Thodoris Sotiropoulos (8)
Athens University of Economics and Business,
Greece

Matthias Springer (17)
Tokyo Institute of Technology, Japan

Quentin Stiévenart (10)
Software Languages Lab, Vrije Universiteit
Brussel, Belgium

Haiyang Sun (20)
Università della Svizzera italiana, Switzerland

Ferdian Thung (22)
School of Information Systems, Singapore
Management University, Singapore

Andrew Tolmach (4)
Portland State University, Portland, OR, USA

Carmen Torres Lopez (27)
Vrije Universiteit Brussel, Belgium

Alexi Turcotte (16)
Northeastern University, Boston, MA, USA

Hendrik van Antwerpen (26)
Delft University of Technology, Delft, The
Netherlands

Noah Van Es (10)
Software Languages Lab, Vrije Universiteit
Brussel, Belgium

Wim Vanderbauwhede (6)
University of Glasgow, UK

Vlad Vergu (4)
Delft University of Technology, Delft, The
Netherlands

Alex Villazón (20)
Universidad Privada Boliviana, Bolivia

Eelco Visser (4, 26)
Delft University of Technology, Delft, The
Netherlands

Jan Vitek (24)
Northeastern University, Boston, MA, USA;
Czech Technical University in Prague, Czech
Republic

Erik Voogd (23)
University of Groningen, The Netherlands

Conrad Watt (9)
University of Cambridge, UK

Pascal Weisenburger (3)
Technische Universität Darmstadt, Germany

Tobias Wrigstad (2)
Uppsala University, Sweden

Nobuko Yoshida (28)
Imperial College London, UK

Francesco Zappa Nardelli (24)
Inria of Paris, Paris, France

Damien Zufferey (28)
MPI-SWS, Saarbrücken, Germany

ECOOP 2019

https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.8
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.17
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://orcid.org/0000-0002-0748-2044
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://orcid.org/0000-0002-3125-0921
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.16
https://orcid.org/0000-0001-5117-0921
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://orcid.org/0000-0001-6768-0037
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://orcid.org/0000-0001-8428-3420
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://orcid.org/0000-0002-7384-3370
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.23
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://orcid.org/0000-0002-4269-5408
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://orcid.org/0000-0002-3925-8557
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://orcid.org/0000-0002-3197-8736
https://dx.doi.org/10.4230/LIPIcs.ECOOP.2019.28

Lifestate: Event-Driven Protocols and Callback
Control Flow
Shawn Meier
University of Colorado Boulder, USA
shawn.meier@colorado.edu

Sergio Mover
École Polytechnique, Institute Polytechnique de Paris, Palaiseau, France
sergio.mover@lix.polytechnique.fr

Bor-Yuh Evan Chang
University of Colorado Boulder, USA
evan.chang@colorado.edu

Abstract
Developing interactive applications (apps) against event-driven software frameworks such as Android
is notoriously difficult. To create apps that behave as expected, developers must follow complex and
often implicit asynchronous programming protocols. Such protocols intertwine the proper registering
of callbacks to receive control from the framework with appropriate application-programming
interface (API) calls that in turn affect the set of possible future callbacks. An app violates the
protocol when, for example, it calls a particular API method in a state of the framework where
such a call is invalid. What makes automated reasoning hard in this domain is largely what makes
programming apps against such frameworks hard: the specification of the protocol is unclear, and
the control flow is complex, asynchronous, and higher-order. In this paper, we tackle the problem of
specifying and modeling event-driven application-programming protocols. In particular, we formalize
a core meta-model that captures the dialogue between event-driven frameworks and application
callbacks. Based on this meta-model, we define a language called lifestate that permits precise and
formal descriptions of application-programming protocols and the callback control flow imposed
by the event-driven framework. Lifestate unifies modeling what app callbacks can expect of the
framework with specifying rules the app must respect when calling into the framework. In this
way, we effectively combine lifecycle constraints and typestate rules. To evaluate the effectiveness
of lifestate modeling, we provide a dynamic verification algorithm that takes as input a trace of
execution of an app and a lifestate protocol specification to either produce a trace witnessing a
protocol violation or a proof that no such trace is realizable.

2012 ACM Subject Classification Software and its engineering → Software verification

Keywords and phrases event-driven systems, application-programming protocols, application frame-
work interfaces, callbacks, sound framework modeling, predictive dynamic verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.1

Related Version An extended version of the paper is available at [33], https://arxiv.org/abs/
1906.04924.

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.13

Funding This material is based on research sponsored by DARPA under agreement number FA8750-
14-2-0263.

Acknowledgements Many thanks to Edmund S. L. Lam, Chance Roberts, and Chou Yi for help in
gathering traces, as well as Alberto Griggio for a convenient tool for running tests. We also thank
Aleksandar Chakarov, Maxwell Russek, the Fixr Team, and the University of Colorado Programming
Languages and Verification (CUPLV) Group for insightful discussions, as well as the anonymous
reviewers for their helpful comments.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 1; pp. 1:1–1:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1349-4316
mailto:shawn.meier@colorado.edu
https://orcid.org/0000-0003-1029-9547
mailto:sergio.mover@lix.polytechnique.fr
https://orcid.org/0000-0002-1954-0774
mailto:evan.chang@colorado.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2019.1
https://arxiv.org/abs/1906.04924
https://arxiv.org/abs/1906.04924
https://dx.doi.org/10.4230/DARTS.5.2.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Lifestate: Event-Driven Protocols and Callback Control Flow

try { progress.dismiss(); } catch (IllegalArgumentException ignored) {} // race condition?

Figure 1 A protocol “fix” [10]. The dismiss call throws an exception if called in an invalid state.

1 Introduction

We consider the essential problem of checking that an application (app) programmed against
an event-driven framework respects the required application-programming protocol. In such
frameworks, apps implement callback interfaces so that the app is notified when an event
managed by the framework occurs (e.g., a user-interface (UI) button is pressed). The app
may then delegate back to the framework through calls to the application programming
interface (API), which we term callin by analogy to callback. To develop working apps, the
programmer must reason about hidden callback control flow and often implicit asynchronous
programming protocols.

Couple difficult reasoning about the space of possible control flow between callbacks
with insufficient framework documentation, and it is unsurprising to find some questionable
“fixes” for protocol violations. In Figure 1, we show a snippet found on GitHub. The “race
condition?” comment is quoted directly from the app developer. The same asynchronous,
implicitly defined, control flow that make it difficult for the app developer to reason about
his app is also what makes verifying the absence of such protocol violations hard.

In this paper, we focus on the problems of specifying event-driven protocols (i.e., specifying
when the invocation of a callin in the app code causes a protocol violation) and modeling
the callback control flow (i.e., modeling the possible executions of callbacks).

Lifecycle Automata are Insufficient for Modeling Callback Control Flow. Lifecycle au-
tomata are a common representation used to model callback control flow that is both central
to Android documentation [1, 39] and prior Android analysis techniques – both static and
dynamic ones (e.g., [5, 32, 8]). In Figure 2, we show a lifecycle automaton for the Activity

class of the Android framework. The black, solid edges are the edges present in the Android
documentation [1] showing common callback control flow. These edges capture, for example,
that the app first receives the onStart callback before entering a cycle between the onResume
and the onPause callbacks. But this clean and simple class-based model quickly becomes
insufficient when we look deeper.

First, there are complex relationships between the callbacks on “related” objects. For

a.onCreate() a.onStart() a.onResume()

l.onClick(b)

a.onPause() a.onStop() a.onDestroy()

a.onRestart()

Figure 2 The Activity lifecycle automaton from the Android documentation [1] (shown with
solid, black edges). To capture callback control flow between “related” objects, such component
lifecycles are often instantiated and refined with additional callbacks from other objects, such as a
onClick callback from the OnClickListener interface (shown with dotted, blue edges). But there
are also less common callback control-flow paths that are often undocumented or easily missed, such
as the additional edges induced by an invocation in the app code of the finish callin (shown as
dashed, red edges).

S. Meier, S. Mover, and B.-Y. E. Chang 1:3

example, an OnClickListener object l with an onClick callback may be “registered” on a View

object v that is “attached” to an Activity object a. Because of these relationships, the callback
control flow we need to capture is somewhat described by modifying the lifecycle automaton
for Activity a with the additional blue, dotted edges to and from onClick (implicitly for
OnClickListener l) in Figure 2. This modified lifecycle encodes framework-specific knowledge
that the OnClickListener l’s onClick callback happens only in the “active” state of Activity

a between its onResume and onPause callbacks, which typically requires a combination of
static analysis on the app and hard-coded rules to connect callbacks on additional objects
such as OnClickListeners to component lifecycles such as Activity. We refer to such callback
control-flow models based on such refined lifecycle automatons as lifecycle++ models.

Second, there are less common framework-state changes that are difficult to capture
soundly and precisely. For example, an analysis that relies on a callback control-flow model
that does not consider the intertwined effect of a finish call may be unsound. The red,
dashed edges represent callback control flow that are not documented (and thus missing from
typical callback control flow models). Each one of these edges specifies different possible
callback control flow that the framework imposes depending on if and when the app invokes
the finish callin inside one of the Activity’s callbacks. Of course, the lifecycle automaton
can be extended to include these red edges. However, this lifecycle automaton is now quite
imprecise in the common case because it does not express precisely when certain callback
control-flow paths are spurious (i.e., depending on where finish is not called). Figure 2
illustrates why developing callback control flow models is error prone: the effect of calls to
finish are subtle and poorly understood.

It is simply too easy to miss possible callback control flow – an observation also made by
Wang et al. [52] about lifecycle models. While lifecycle automata are useful for conveying
the intuition of callback control flow, they are often insufficiently precise and easily unsound.

In this paper, we re-examine the process of modeling callback control flow. In prior
work, modeling callback control flow was almost always a secondary concern in service
to, and often built into, a specific program analysis where the analysis abstraction may
reasonably mask unsound callback control flow. Instead, we consider modeling callback
control flow independent of any analysis abstraction – we identify and formalize the key
aspects to effectively model event-driven application-programming protocols at the app-
framework interface, such as the effect of callin and callback invocations on the subsequent
callback control flow, This first-principles approach enables us to validate callback control-flow
soundness with real execution traces against the event-driven framework implementation. It
is through this validation step that we discovered the red, dashed edges in Figure 2.

Contributions. We make the following contributions:
We identify essential aspects of event-driven control flow and application-programming
protocols to formalize a core abstract machine model λlife (Section 3). This model
provides a formal basis for thinking about event-driven frameworks and their application-
programming protocols.
We define a language for simultaneously capturing event-driven application-programming
protocols and callback control flow called lifestates, which both model what callback
invocations an app can expect from the framework and specify rules the app must respect
when calling into the framework (Section 4). Intuitively, lifestates offer the ability to
specify traces of the event-driven program in terms of an abstraction of the observable
interface between the framework and the app. And thus, this definition leads to a
methodology for empirically validating lifestate models against actual interaction traces.

ECOOP 2019

1:4 Lifestate: Event-Driven Protocols and Callback Control Flow

We define lifestate validation and dynamic lifestate verification. And then, we encode
them as model checking problems (Section 5). Given an app-framework interaction
trace and a lifestate model, validation checks that the trace is in the abstraction of the
observable interface defined by the model. This validation can be done with corpora
of traces recorded from any set of apps interacting with the same framework because,
crucially, the lifestate model speaks only about the app-framework interface. Then, given
a trace, dynamic lifestate verification attempts to prove the absence of a rearrangement
of the recorded events that could cause a protocol violation. Rearranging the execution
trace of events corresponds to exploring a different sequence of external inputs and hence
discovering possible protocol violations not observed in the original trace.
We implement our model validation and trace verification approach in a tool called
Verivita and use it to empirically evaluate the soundness and precision of callback control
flow models of Android (Section 6). Our results provide evidence for the hypotheses
that lifecycle models, by themselves, are insufficiently precise to verify Android apps as
conforming to the specified protocols, that model validation on large corpora of traces
exposes surprising unsoundnesses, and that lifestates are indeed useful.

2 Overview: Specifying and Modeling Lifestates

Here, we illustrate the challenges in specifying and modeling event-driven application-
programming protocols. In particular, we motivate the need for lifestates that permit
specifying the intertwined effect of callin and callback invocations. We show that even
if an app is buggy, it can be difficult to witness the violation of the Android application
programming protocol. Then, more importantly, we show how an appropriate fix is both
subtle to reason about and requires modeling the complex callback control flow that depends
on the previous execution of not only the callbacks but also the callins.

Our running example (code shown in Figure 3) is inspired by actual issues in Antenna-
Pod [16], a podcast manager with 100,000+ installs, and the Facebook SDK for Android [27].
The essence of the issue is that a potentially time-consuming background task is started
by a user interaction and implemented using the AsyncTask framework class. Figure 3
shows buggy code that can potentially violate the application-programming protocol for

class RemoverActivity extends Activity {
FeedRemover remover;
void onCreate() {

1 Button button = . . .;
2 remover = new FeedRemover(this);
3 button.setOnClickListener(
4 new OnClickListener() {

void onClick(View view) {
5 remover.execute(); B

}
});

}
}

class FeedRemover extends AsyncTask {
RemoverActivity activity;
void doInBackground() {
. . . remove feed . . .

}
void onPostExecute() {
// return to previous activity

6 activity.finish();
}

}

Figure 3 An example app that violates the protocol specified by the interaction of the Android
framework components AsyncTask, Button, and OnClickListener. On line 5, remover.execute() (marked
with B) can throw an IllegalStateException if the remover task is already running.

S. Meier, S. Mover, and B.-Y. E. Chang 1:5

AsyncTask. The remover.execute() call (marked with B) throws an IllegalStateException
if the AsyncTask t instance, pointed-to by remover, is already running. So a protocol rule
for AsyncTask is that t.execute() cannot be called twice for the same AsyncTask t. The
IllegalStateException type is commonly used to signal a protocol violation and has been
shown to be a significant source of Android crashes [28].

In Figure 3, the RemoverActivity defines an app window that, on creation (via the
onCreate callback), registers a click listener (via the button.setOnClickListener(. . .) call on
line 3). This registration causes the framework to notify the app of a button click through
the onClick method. When that happens, the onClick callback starts the FeedRemover
asynchronous task (via the remover.execute() call on line 5). What to do asynchronously
is defined in the doInBackground callback, and when the FeedRemover task is done, the
framework delegates to the onPostExecute callback, which closes the RemoverActivity (via
the call to activity.finish()).

We diagram a common-case execution trace in Figure 4.a. Even though the app is buggy,
the trace does not witness the protocol violation. The exception does not manifest because
the user only clicks once (Click) before the FeedRemover task completes and generates
the post-execute event (PostExecute). And so the (t:AsyncTask).execute() callin on the
AsyncTask instance t is executed only once before the activity is closed (cf. the onClick and
onPostExecute callbacks in Figure 3).

If typically the Activity is quickly destroyed after the button click, then seeing a protocol
violation in a test is quite unlikely. However, it is possible to click a second time before the
AsyncTask completes, thereby witnessing a protocol violation. We show this error trace in
Figure 4.b: when the app invokes the callin (t:AsyncTask).execute() for the second time in
the second Click event, the framework is in a state that does not allow this transition. We
say that the callin invocation is disallowed at this point, and apps must only invoke allowed
callins. While the original trace Create;Click;PostExecute does not concretely witness the
protocol violation, it has sufficient information to predict the error trace Create;Click;Click.
It may, however, be difficult to reproduce this error trace: the button must be pressed twice
before the activity.finish() method is called by the PostExecute event destroying the
Activity. But how can we predict this error trace from the original one?

2.1 Predict Violations from Recorded Interactions
We define the dynamic lifestate verification problem as predicting an error trace that (possibly)
witnesses a protocol violation from a trace of interactions or proving that no such error trace
exists. Concretely, the input to dynamic lifestate verification is an interaction trace like the
one illustrated in Figure 4.a. These traces record the sequence of invocations and returns
of callbacks and callins between the framework and the app that result from an interaction
sequence. A recorded trace includes the concrete method arguments and return values (e.g.,
the instance t from the diagrams corresponds to a concrete memory address).

The main challenge, both for the app developer and dynamic lifestate verification, is that
the relevant sequence of events that leads to a state where a callin is disallowed is hidden
inside the framework. The developer must reason about the evolving internal state of the
framework by considering the possible callback and callin interactions between the app and
the framework to develop apps that both adhere to the protocol and behave intuitively. To
find a reasonable fix for the buggy app from Figure 3, let us consider again the error trace
shown in Figure 4.b. Here, the developer has to reason that the (t:AsyncTask).execute()
callin is allowed as soon as t is initialized by the call to (t:AsyncTask).<init>() in the Create
event and is disallowed just after the first call to (t:AsyncTask).execute() in the first Click

ECOOP 2019

1:6 Lifestate: Event-Driven Protocols and Callback Control Flow

Framework App

(a:Activity).onCreate()

(t:AsyncTask).<init>()
2

(b:Button).setOnClickListener(l:OnClickListener)
4

CreateCreate Create Activity a.

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

(t:AsyncTask) = (t:AsyncTask).execute()

(l:OnClickListener).onClick(b:Button)

ClickClick User clicks on Button b.

(t:AsyncTask).onPostExecute()

(a:Activity).finish()
6

PostExecutePostExecute Finish AsyncTask t.

calling a callback
returning from a callback
calling a callin
returning from a callin

(4.a) A trace that does not witness a protocol vio-
lation since the callin (t:AsyncTask).execute() on
t is executed only once.

Framework App

(a:Activity).onCreate()

(t:AsyncTask).<init>()
2

(b:Button).setOnClickListener(l:OnClickListener)
4

CreateCreate

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

ClickClick

(l:OnClickListener).onClick(b:Button)

(t:AsyncTask).execute()
5

ClickClick

The AsyncTask t is still running, so the
PostExecute event has not yet happened.

(4.b) The Create;Click;Click interaction se-
quences witnesses the no-execute-call-on-already-
executing-AsyncTask protocol violation.

Figure 4 We visualize the interface between an event-driven framework and an app as a dialog
between two components. With execution time flowing downwards as a sequence events, control
begins on the left with the framework receiving an event. Focusing on the highlighted Click event
in Figure 4.a, when a user clicks on the button corresponding to object b of type Button, the onClick
callback is invoked by the framework on the registered listener l. For clarity, we write method
invocations with type annotations (e.g., (l:OnClickListener).onClick(b:Button)), and variables b
and l stand for some concrete instances (rather than program or symbolic variables). The app
then delegates back to the framework by calling an API method to start an asynchronous task t
via (t:AsyncTask).execute(). To connect with the app source code, we label the callins originating
from the app timeline with the corresponding program point numbers in Figure 3. Here, we can see
clearly a callback as any app method that the framework can call (i.e., with an arrow to the right

), and a callin as any framework method that an app can call (i.e., with an arrow to the left
). We show returns with dashed arrows (but sometimes elide them when they are unimportant).

event. That is, the developer must reason about what sequence of events and callins determine
when a callin is allowed or disallowed. Since callins are invoked inside callback methods and
callback methods are in turn invoked by the framework to notify the app of an event, the
internal framework state determines what events can happen when and hence the callback
control flow. In particular, the internal framework state determines when the Create and
Click events are enabled (i.e., can happen) during the execution. Thus to properly fix this
app, the developer must ensure that Create happens before a Click and then only a single
Click happens before a PostExecute. How can the app developer constrain the external
interaction sequence to conform to this property?

In Figure 5.a, we show a fix based on the above insight that is particularly challenging to
verify. The fix adds line 5 that disables Button button to indicate when the task has already
been started. Thus, this modified version does not violate the no-execute-call-on-already-

S. Meier, S. Mover, and B.-Y. E. Chang 1:7

class RemoverActivity extends Activity {
FeedRemover remover;
void onCreate() {

1 Button button = . . .;
2 remover = new FeedRemover(this);
3 button.setOnClickListener(
4 new OnClickListener() {

void onClick(View view) {
5 + button.setEnabled(false);
6 remover.execute(); B

}
});

}
}

class FeedRemover extends AsyncTask {
RemoverActivity activity;
void doInBackground() {
. . . remove feed . . .

}
void onPostExecute() {
// return to previous activity

7 activity.finish();
}

}

(5.a) A button.setEnabled(false)
call prevents the user from clicking,
triggering the onClick callback.

Framework App

(a:Activity).onCreate()

enabled callbacks©X
disallowed callins B

a.onCreate()©X
(t:AsyncTask).<init>()

2
(b:Button).setOnClickListener(l:OnClickListener)

l.onClick(b)©X 4

CreateCreate

(l:OnClickListener).onClick(b:Button)
l.onClick(b)©X

(b:Button).setEnabled(false)
5

(t:AsyncTask).execute()t.onPostExecute()©X
t.execute()B

6

ClickClick

The Click is not enabled, so it cannot happen here.

(t:AsyncTask).onPostExecute()t.onPostExecute()©X
t.execute()B

(a:Activity).finish()
7

PostExecutePostExecute

(5.b) The enabled callbacks and disallowed callins are shown
along the Create;Click;PostExecute trace from the fixed
app in 5.a.

Figure 5 A fixed version of the app from Figure 3 that adheres to the application-programming
protocol. The annotations in 5.b show that after the call to (b:Button).setEnabled(false), the
l.onClick(b) callback is no longer enabled, and thus the app can assume that the framework will
not call l.onClick(b) at this point.

Create

Click
PostExecute

(6.a) False alarm on the trivially
sound, unconstrained, “top” ab-
straction.

Create
Click

PostExecute

Click

PostExecute

(6.b) False alarm on the Activity
lifecycle-refined abstraction.

Create
PostExecute

Click

PostExecute

(6.c) False alarm on the lifecycle
with the Click restricted to the
active Activity state (as shown in
Figure 2).

Create Click

PostExecute
(6.d) Verified safe when we consider the ef-
fect of Button.setEnabled(. . .).

Create Click

(6.e) This unsound abstraction is missing
the PostExecute edge.

Figure 6 In previous works, models are generated for an application restricting the possible
order of callbacks. In this figure, we show four sound abstractions with different levels of precision,
indicating whether they can verify our fixed application 5.a, as well as one unsound abstraction.

ECOOP 2019

1:8 Lifestate: Event-Driven Protocols and Callback Control Flow

executing-AsyncTask protocol on line 6. To reason precisely enough about this fix, we must
know that the button.setEnabled(false) call changes internal framework state that prevents
the onClick from happening again. Note that this need to reason about complex control
flow arises from the interactions between just two framework types Button and AsyncTask –
not to mention that these two are amongst the simplest framework types in Android. There
is a clear need here for better automated reasoning tools to support the app developer.

Verivita Approach. Our dynamic verification approach explores all the possible sequences
of interactions that can be obtained by replicating, removing, and reordering the events
in a trace. By rearranging event traces, the algorithm statically explores different input
sequences of events that a user interaction could generate. The algorithm applied to the
Create;Click;PostExecute trace in Figure 4.a from the buggy app version indeed yields the
error trace Create;Click;Click (shown in Figure 4.b). But more critically, our approach
also makes it possible to prove that the fixed app version does not have any traces that
violates the protocol (by rearranging Create;Click;PostExecute).

Central to our approach is capturing the essential, hidden framework state – tracking the
set of enabled callbacks and the set of disallowed callins. Figure 5.b illustrates this model
state along a trace from the fixed app. After the first Click, the application disables the
button to prevent a second Click via the call to (b:Button).setEnabled(false), which at that
point removes l.onClick(b) from the set of enabled callbacks the framework can trigger.

Verivita addresses the dynamic verification problem by reducing it to a model checking
problem. The model is a transition system with
(i) states abstracting the set of enabled callbacks and disallowed callins and
(ii) transitions capturing the possible replication, removing, and reordering of a given

interaction trace.
The safety property of interest is that the transition system never visits a disallowed callin.
How can we construct such a transition system that over-approximates concrete behavior
while being precise enough to make alarm triage feasible? As alluded to in Section 1, lifestate
specification is crucial here.

2.2 Specify Event-Driven Protocols and Model Callback Control Flow
In Figure 6, we illustrate the essence of callback control-flow modeling as finite-state automata
that over-approximate rearrangements of the Create;Click;PostExecute trace shown in
Figure 5.b. Automaton 6.a exhibits the trivially sound, unconstrained, “top” abstraction
that considers all replications, removals, and reorderings of the interaction trace. This
abstraction is the one that assumes all callbacks are always enabled. Since a possible trace
in this abstraction includes two Click events, a sound verifier must alarm. Meanwhile,
Automaton 6.b shows a refined abstraction encoding the Android-specific Activity lifecycle.
The abstraction is framework-specific but application-independent and captures that the
Create event cannot happen more than once. The abstraction shown by Automaton 6.b
is also insufficient to verify the trace from the fixed app because two Click events are
still possible.

Automaton 6.c shows a refined, lifecycle++ abstraction that considers the Activity lifecycle
with additional constraints on an “attached” Click event. This abstraction is representative
of the current practice in callback control-flow models (e.g., [5, 32, 8]). While Automaton 6.c
restricts the Click event to come only after the Create event, the abstraction is still too
over-approximate to verify that the trace from the fixed app is safe – two Click events are
still possible with this model. But worse is that this model is still, in essence, a lifecycle model

S. Meier, S. Mover, and B.-Y. E. Chang 1:9

that is constrained by Android-specific notions like View attachment, Listener registration,
and the “live” portion of lifecycles. In existing analysis tools, such constrained lifecycle
models are typically hard-coded into the analyzer.

We need a better way to capture how the application may affect callback control flow. In
this example, we need to capture the effect of the callin button.setEnabled(false) at line 5
in Figure 5.a, which is the only difference with the buggy version in Figure 3. The modeling
needs to be expressive to remove such infeasible traces and compositional to express state
changes independently. Thus, the role of lifestate specification is to describe how the internal
model state is updated by observing the history of intertwined callback and callin invocations.
For example, we write

(`b:Button).setEnabled(false) 9 (`l:OnClickListener).onClick(`b:Button) (for all `l, `b)

to model when (`b:Button).setEnabled(false) is invoked, the click callback is disabled on the
same button `b (on all listeners `l). Also, we similarly specify the safety property of interest

(`t:AsyncTask).execute() 9 (`t:AsyncTask).execute() (for all `t)

that when (`t:AsyncTask).execute() is called on a task `t, it disallows itself. And analogously,
lifestates include specification forms for enabling callbacks or allowing callins.

Lifestate uniformly models the callback control-flow and specifies event-driven application-
programming protocols. The rules that enable and disable callbacks model what callbacks
the framework can invoke at a specific point in the execution of the application, while the
rules that disallow and allow callins specify what callins the application must invoke to
respect the protocol. What makes lifestate unique compared to typestates [50] or lifecycle
automata is this unification of the intertwined effects of callins and callbacks on each other.

The complexity of the implicit callback control flow is what makes expressing and
writing correct models challenging. An issue whose importance is often under-estimated
when developing callback control-flow models is how much the model faithfully reflects the
framework semantics. How can we validate that a lifestate specification is a correct model of
the event-driven framework?

Validating Event-Driven Programming Protocols. As argued in Section 1, a key concern
when developing a framework model is that it must over-approximate the possible real
behavior of the application. The “top” model as shown in Automaton 6.a trivially satisfies
this property, and it may be reasonable to validate an application-independent lifecycle
model like Automaton 6.c. However, as we have seen, verifying correct usage of event-driven
protocols typically requires callback control-flow models with significantly more precision.

Automaton 6.d shows a correct lifestate-abstraction that contains an edge labeled
PostExecute. We express this edge with the rule shown below:

(`t:AsyncTask).execute() → (`t:AsyncTask).onPostExecute() (for all `t)

This rule states that when (`t:AsyncTask).execute() is called, its effect is to enable the callback
(`t:AsyncTask).onPostExecute() on the AsyncTask `t.

If we do not model this rule, we obtain the abstraction in Automaton 6.e. The lifestate
model is unsound since it misses the PostExecute edge.

The trace Create;Click;PostExecute shown in Figure 5.b is a witness of the unsound-
ness of the abstraction: Automaton 6.e accepts only proper prefixes of the trace (e.g.,
Create;Click), and hence the abstraction does not capture all the possible traces of the app.

ECOOP 2019

1:10 Lifestate: Event-Driven Protocols and Callback Control Flow

We can thus use interaction traces to validate lifestate rules: a set of lifestate rules is valid if
the abstraction accepts all the interaction traces. The validation applied to the abstraction
shown in Automaton 6.e demonstrates that the abstraction accepts Create;Click as the
longest prefix of the trace Create;Click;PostExecute. This information helps to localize
the cause for unsoundness since we know that after the sequence Create;Click, the callback
PostExecute is (erroneously) disabled.

The encoding of the abstraction from lifestate rules is a central step to perform model
validation and dynamic verification. At this point, we still cannot directly encode the
abstraction since the lifestate rules contain universally-quantified variables. How can we
encode the lifestate abstraction as a transition system amenable to check language inclusion
for validation, and to check safety properties for dynamic verification?

From Specification to Validation and Verification. Generalizing slightly, we use the term
message to refer to any observable interaction between the framework and the app. Messages
consist of invocations to and returns from callbacks and callins. The abstract state of the
transition system is then a pair consisting of the permitted-back messages from framework
to app and the prohibited-in messages from app to framework. And thus generalizing the
example rules shown above, a lifestate specification is a set of rules whose meaning is,

If the message history matches r, then the abstract state is updated according to
the specified effect on the set of permitted-back and prohibited-in messages.

There are many possible choices and tradeoffs for the matching language r. As is common,
we consider a regular expression-based (i.e., finite automata-based) matching language.

We exploit the structure of the validation and dynamic verification problem to encode
the lifestate abstraction. In both problems, the set of possible objects and parameters is
finite and determined by the messages recorded in the trace. We exploit this property to
obtain a set of ground rules (rules without variables). We can then encode each ground
rule in a transition system. Since the rule is ground, the encoding is standard: each regular
expression is converted to an automaton and then encoded in the transition system, changing
the permitted-prohibited state as soon as the transition system visits a trace accepted by
the regular expression, which implicitly yields a model like automata 6.d.

Lifestate offers a general and flexible way to specify the possible future messages in terms
of observing the past history of messages. It, however, essentially leaves the definition of
messages and what is observable abstract. What observables characterize the interactions
between an event-driven framework and an app that interfaces with it? And how do these
observables define event-driven application-programming protocols and callback control flow?

2.3 Event-Driven App-Framework Interfaces
Lifestate rules are agnostic to the kinds of messages they match and effects they capture on
the internal abstract state. To give meaning to lifestates, we formalize the essential aspects
of the app-framework interface in an abstract machine model called λlife in Section 3. This
abstract machine model formally characterizes what we consider an event-driven framework.
The λlife abstract machine crisply defines the messages that the app and the framework code
exchange and a formal correspondence between concrete executions of the program and the
app-framework interface. We use this formal correspondence to define the semantics of the
lifestate framework model, its validation problem, and protocol verification.

We do not intend for λlife to capture all aspects of something as complex as Android; rather,
the purpose of λlife is to define a “contract” by which to consider a concrete event-driven

S. Meier, S. Mover, and B.-Y. E. Chang 1:11

framework implementation. And thus, λlife also defines the dynamic-analysis instrumentation
we perform to record observable traces from Android applications that we then input to the
Verivita tool to either validate a specification or verify protocol violations.

Preview. We have given a top-down overview of our approach, motivating with the dynamic
protocol verification problem the need for having both a precise callback control-flow model
and an event-driven protocol specification. We also presented how the lifestate language
addresses this need capturing the intertwined effect of callins and callbacks. In the next
sections, we detail our approach in a bottom-up manner – beginning with formalizing the λlife
abstract machine model. We show that, assuming such a model of execution, it is possible
to provide a sound abstraction of the framework (i.e., no real behavior of the framework
is missed by the abstraction) expressed with a lifestate model. We then formalize how we
validate such models and how we use lifestates to verify the absence of protocol violations.

3 Defining Event-Driven Application-Programming Protocols

Following Section 2, we want to capture the essence of the app-framework interface with
respect to framework-imposed programming protocols. To do so, we first formalize a small-
step operational semantics for event-driven programs with an abstract machine model λlife.
The λlife abstract machine draws on standard techniques but explicitly highlights enabled
events and disallowed callins to precisely define event-driven protocols. We then instrument
this semantics to formalize the interface of the event-driven framework with an app, thereby
defining the traces of the observable app-framework interface of a λlife program.

This language is intentionally minimalistic to center on capturing just the interface
between event-driven frameworks and their client applications. By design, we leave out
many aspects of real-world event-driven framework implementations (e.g., Android, Swing,
or Node.js), such as typing, object-orientation, and module systems that are not needed for
formalizing the dialogue between frameworks and their apps (cf. Section 2). Our intent is to
illustrate, through examples, that event-driven frameworks could be implemented in λlife and
that λlife makes explicit the app-framework interface to define observable traces consisting of
back-messages and in-messages (Section 3.3).

3.1 Syntax: Enabling, Disabling, Allowing, and Disallowing
The syntax of λlife is shown at the top of Figure 7.a, which is a λ-calculus in a let-normal
form. The first two cases of expressions e split the standard call-by-value function application
into multiple steps (similar to call-by-push-value [30]). The bind λ v expression creates a
thunk κ = λ[v] by binding a function value λ with an argument value v. We abuse notation
slightly by using λ as the meta-variable for function values (rather than as a terminal symbol).
A thunk may be forced by direct invocation invoke κ – or indirectly via event dispatch.

I Example 1 (Applying a Function). Let t be bound to an AsyncTask and onPostExecute to
an app-defined callback (e.g., onPostExecute from Figure 5.a), then the direct invocation of
a callback from the framework can be modeled by the two steps of binding and then invoking:

let cb = bind onPostExecute t in invoke cb

Now in λlife, a thunk κ may or may not have the permission to be forced. Revoking
and re-granting the permission to force a thunk via direct invocation is captured by the
expressions disallow κ and allow κ, respectively. A protocol violation can thus be modeled
by an application invoking a disallowed thunk.

ECOOP 2019

1:12 Lifestate: Event-Driven Protocols and Callback Control Flow

expressions e ∈ Expr ::= bind v1 v2 | invoke v | disallow v | allow v thunks and calls
| enable v | disable v | force κ events and forcing
| v | let x = e1 in e2 | · · · other expressions

functions λ ::= x =>g e

packages g ::= app | fwk

values v ∈ Val ::= x | λ | κ | () | · · · | thk

variables x ∈ Var thunks κ ∈ Thunk ::= λ[v] thunk stores µ, ν ::= · | µ;κ
continuations k ::= • | k . x.e | κ | k�κ states σ ∈ State ::= 〈e, µ, ν, k〉 | bad

(7.a) The syntax and the semantic domains.
σ −→ σ′

Enable
〈enable κ, µ, ν, k〉 −→ 〈κ, µ;κ, ν, k〉

Disable
〈disable κ, µ;κ, ν, k〉 −→ 〈κ, µ, ν, k〉

Event
κ ∈ µ

〈v, µ, ν, •〉 −→ 〈force κ, µ, ν, κ〉

Disallow
〈disallow κ, µ, ν, k〉 −→ 〈κ, µ, ν;κ, k〉

Allow
〈allow κ, µ, ν;κ, k〉 −→ 〈κ, µ, ν, k〉

Invoke
κ /∈ ν

〈invoke κ, µ, ν, k〉 −→ 〈force κ, µ, ν, k〉

InvokeDisallowed
κ ∈ ν

〈invoke κ, µ, ν, k〉 −→ bad

Bind
〈bind λ v, µ, ν, k〉 −→ 〈λ[v], µ, ν, k〉

Force
(x′ =>g′ e′)[v′] = κ

〈force κ, µ, ν, k〉 −→ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

Return
〈v, µ, ν, k�κ〉 −→ 〈v, µ, ν, k〉

Finish
〈v, µ, ν, κ〉 −→ 〈v, µ, ν, •〉

Let
〈let x = e1 in e2, µ, ν, k〉 −→ 〈e1, µ, ν, k . x.e2〉

Continue
〈v, µ, ν, k . x.e2〉 −→ 〈[v/x]e2, µ, ν, k〉

(7.b) Semantics. Explicitly enable, disable, disallow, and allow thunks.

Figure 7 λlife, a core model of event-driven programs capturing enabledness of events and
disallowedness of invocations.

The direct invocation expressions are mirrored with expressions for event dispatch. An
enable κ expression enables a thunk κ for the external event-processing system (i.e., gives the
system permission to force the thunk κ), while the disable κ expression disables the thunk κ.

I Example 2 (Enabling an Event). Let t be bound to an AsyncTask and handlePostExecute
to an internal framework-defined function for handling a post-execute event, then enqueuing
such an event can be modeled by the two steps of binding then enabling:

let h = bind handlePostExecute t in enable h

By separating function application and event dispatch into binding to create a thunk
κ = λ[v] and then forcing it, we uniformly make thunks the value form that can be granted
permission to be invoked (via allow κ) or for event dispatch (via enable κ). The force κ

expression is then an intermediate that represents a thunk that is forcible (i.e., has been
permitted for forcing via allow κ or enable κ).

The remainder of the syntax is the standard part of the language: values v, variable
binding let x = e1 in e2, and whatever other operations of interest · · · (e.g., arithmetic,
tuples, control flow, heap manipulation). That is, we have made explicit the expressions to
expose the app-framework interface and can imagine whatever standard language features in
· · · in framework implementations. The values v of this expression language are variables x,

S. Meier, S. Mover, and B.-Y. E. Chang 1:13

function values λ, thunks κ, unit (), and whatever other base values of interest · · · . Two
exceptions are that (1) the currently active thunk is available via the thk identifier (see
Section 3.2) and (2) functions x =>g e are tagged with a package g (see Section 3.3).

3.2 Semantics: Protocol Violations
At the bottom of Figure 7.a, we consider an abstract machine model enriched with an
enabled-events store µ, and a disallowed-calls store ν. These are finite sets of thunks, which
we write as a list κ1; · · · ;κn. The enabled-events store µ saves thunks that are permitted
to be forced by the event loop, while the disallowed-calls store ν lists thunks that are not
permitted to be forced by invocation. These thunk stores make explicit the event-driven
application-programming protocol (that might otherwise be implicit in, for example, flag
fields and conditional guards).

A machine state σ : 〈e, µ, ν, k〉 consists of an expression e, enabled events µ, disallowed calls
ν, and a continuation k. A continuation k can be the top-level continuation • or a continuation
for returning to the body of a let expression, which are standard. Continuations are also used
to record the active thunk via κ and k�κ corresponding to the run-time stack of activation
records. These continuation forms record the active thunk and are for defining messages and
the app-framework interface in Section 3.3. Since events occur non-deterministically and
return to the main event loop, it is reasonable to assume that a state σ should also include a
heap, and the expression language should have heap-manipulating operations through which
events communicate. We do not, however, formalize heap operations since they are standard.

We define an operational semantics in terms of the judgment form σ −→ σ′ for a small-
step transition relation. In Figure 7.b, we show the inference rules defining the reduction steps
related to enabling-disabling, disallowing-allowing, invoking, creating, and finally forcing
thunks. The rules follow closely the informal semantics discussed in Section 3.1. Observe that
Enable and Allow both permit a thunk to be forced, and Disable and Disallow remove
the permission to be forced for a thunk. The difference between Enable and Disable versus
Allow and Disallow is that the former pair modifies the enabled events µ, while the latter
touches the disallowed calls ν.

The Event rule says that when the expression is a value v and the continuation is the
top-level continuation •, then a thunk is non-deterministically chosen from the enabled events
µ to force. Observe that an enabled event remains enabled after an Event reduction, hence
λlife can model both events that do not self-disable (e.g., the Click event from Section 2) and
those that are self-disabling (e.g., the Create event). The Invoke rule has a similar effect, but
it checks that the given thunk is not disallowed in ν before forcing. The InvokeDisallowed
rule states that a disallowed thunk terminates the program in the bad state. And the Bind
rule simply states that thunks are created by binding an actual argument to a function value.

The Force rule implements the “actual application” that reduces to the function body
e′ with the argument v′ substituted for the formal x′ and the thunk substituted for the
identifier thk, that is, [κ/thk][v′/x′]e′. To record the stack of activations, we push the forced
thunk κ on the continuation (via k�κ). The Return and Finish rules simply state that the
recorded thunk κ frames are popped on return from a Force and Event, respectively. The
Return rule returns to the caller via the continuation k, while the Finish rule returns to the
top-level event loop •. The last line with the Let and Continue rules describe, in a standard
way, evaluating let-binding.

A program e violates the event-driven protocol if it ends in the bad state from the initial
state 〈e, ·, ·, •〉.

ECOOP 2019

1:14 Lifestate: Event-Driven Protocols and Callback Control Flow

I Example 3 (Asserting a Protocol Property.). The no-execute-call-on-already-executing-
AsyncTask protocol can be captured by a disallow. We let execute be a framework function
(i.e., tagged with fwk) that takes an AsyncTask t.

let execute = (t =>fwk disallow thk; . . . let h = bind handlePostExecute t in enable h)

The execute function first disallows itself (via disallow thk) and does some work (via . . .)
before enabling the handlePostExecute event handler (writing e1; e2 as syntactic sugar for
sequencing). The disallow thk asserts that this thunk cannot be forced again – doing so
would result in a protocol violation (i.e., the bad state).

In contrast to an event-driven framework implementation, the state of a λlife program
does not have a queue. As we see here, a queue is an implementation detail not relevant for
capturing event-driven programming protocols. Instead, λlife models the external environment,
such as, user interactions, by the non-deterministic selection of an enabled event.

3.3 Messages, Observable Traces, and the App-Framework Interface
To minimally capture how a program is composed of separate framework and app code, we
add some simple syntactic restrictions to λlife programs. Function values λ tagged with the fwk

are framework code and the app tag labels app code. We express a framework implementation
〈Funfwk, λinit〉 with a finite set of framework functions Funfwk and an initialization function
λinit ∈ Funfwk. A program e uses the framework implementation if it first invokes the
function λinit, and all the functions labeled as fwk in e are from Funfwk.

In a typical, real-world framework implementation, the framework implicitly defines
the application-programming protocol with internal state to check for protocol violations.
The Enable, Disable, Allow, and Disallow transitions make explicit the event-driven
protocol specification in λlife. Thus, it is straightforward to capture that framework-defined
protocols by syntactically prohibiting the app from using enable κ, disable κ, allow κ, and
disallow κ. Again, the enabled-event store µ and the disallowed-call store ν in λlife can be
seen as making explicit the implicit internal state of event-driven frameworks that define
their application-programming protocols.

The app interacts with the framework only by “exchanging messages.” The app-framework
dialogue diagrams from Figures 4.a, 4.b, and 5.b depicts the notion of messages as arrows
back-and-forth between the framework and the app. The framework invokes callbacks and
returns from callins (the arrows from left to right), while the app invokes callins and returns
from callbacks (the arrows from right to left). To formalize this dialogue, we label the
observable transitions in the judgment form and define an observable trace – a trace formed
only by these observable messages. Being internal to the framework, the Enable, Disable,
Allow, and Disallow transitions are hidden, or unobservable, to the app.

In Figure 8, we define the judgment form σ
−→
m σ′, which instruments our small-step

transition relation σ −→ σ′ with message m. Recall from Section 2 that we define a callback
as an invocation that transitions from framework to app code and a callin as an invocation
from app to framework code. In λlife, this definition is captured crisply by the execution
context k in which a thunk is forced. In particular, we say that a thunk κ is a callback
invocation cb κ if the underlying callee function is an app function (package app), and it
is called from a framework function (package fwk) as in rule ForceCallback. The thk(·)
function inspects the continuation for the running, caller thunk. The pkg(·) function gets
the package of the running thunk.

Analogously, a thunk κ is a callin ci κ if the callee function is in the fwk package, and the
caller thunk is in the app package via rule ForceCallin.

S. Meier, S. Mover, and B.-Y. E. Chang 1:15

back-messages mbk ∈ Σbk ::= cb κ | v= ciret κ in-messages min ∈ Σin ::= ci κ | v= cbret κ
messages m ∈ Σ ::= mbk | min | dis min | ε observable traces ω ∈ Σ∗ ::= ε | ωm

σ
−→
m σ′

ForceCallback
(x′ =>app e

′)[v′] = κ fwk = pkg(k)

〈force κ, µ, ν, k〉
−→
cb κ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

ForceCallin
(x′ =>fwk e

′)[v′] = κ app = pkg(k)

〈force κ, µ, ν, k〉
−→
ci κ 〈[κ/thk][v′/x′]e′, µ, ν, k�κ〉

ReturnCallin
(x′ =>fwk e

′)[v′] = κ app = pkg(k)

〈v, µ, ν, k�κ〉
−→

v= ciret κ 〈v, µ, ν, k〉

ReturnCallback
(x′ =>app e

′)[v′] = κ fwk = pkg(k)

〈v, µ, ν, k�κ〉
−→

v= cbret κ 〈v, µ, ν, k〉

InvokeDisallowed
κ ∈ ν

〈invoke κ, µ, ν, k〉
−→

dis ci κ bad

thk(κ) def= thk(k�κ) def= κ thk(k . x.e) def= thk(k) pkg(k) def= g if (x =>g e)[v] = thk(k)

Figure 8 The instrumented transition relation σ −→m σ′ defines the app-framework interface and
observing the event-driven protocol.

I Example 4 (Observing a Callback). Letting handlePostExecute be a framework function
(i.e., in package fwk) and onPostExecute be an app function, the observable transition from
the framework to the app defines the forcing of cb as a callback:

let onPostExecute = (t =>app . . .) in

let handlePostExecute = (t =>fwk let cb = bind onPostExecute t in invoke cb) in

In the above, we focused on the transition back-and-forth between framework and app code
via calls. Returning from calls can also be seen as a “message exchange” with a return from a
callin as another kind of back-message going from framework code to app code (left-to-right
in the figures from Section 2). We write a callin-return back-message v= ciret κ indicating
the returning thunk κ with return value v. Likewise, a return from a callback is another kind
in-message going from app code to framework code (right-to-left). We instrument returns in
a similar way to forcings with the return back-message with ReturnCallin and the return
in-message with ReturnCallback.

Finally to make explicit protocol violations, we instrument the InvokeDisallowed rule to
record the disallowed-callin invocations. These rules replace the corresponding rules Force,
Return, and InvokeDisallowed from Figure 7.b. For replacing the Force and Return
rules, we elide two rules, one for each, where there is no switch in packages (i.e., g′ = pkg(k)
where g′ is the package of the callee message). These “uninteresting” rules and the remaining
rules defining the original transition relation σ −→ σ′ not discussed here are simply copied
over with an empty message label ε.

Observable Traces and Dynamic-Analysis Instrumentation. As described above, the app-
framework interface is defined by the possible messages that can exchanged where messages
consist of callback-callin invocations and their returns. A possible app-framework interaction
is thus a trace of such observable messages.

I Definition 5 (App-Framework Interactions as Observable Traces). Let paths(e) be the
path semantics of λlife expressions e that collects the finite sequences of alternating state-
transition-state σmσ′ triples according to the instrumented transition relation σ −→m σ′. Then,
an observable trace is a finite sequence of messages ω : m1 . . .mn obtained from a path by
dropping the intermediate states and keeping the non-ε messages. We write JeK for the set of
the observable traces obtained from the set of paths, paths(e), of an expression e.

ECOOP 2019

1:16 Lifestate: Event-Driven Protocols and Callback Control Flow

states σ̂ ::= 〈µ̂, ν̂, ω〉 | bad ω permitted-back µ̂ ::= · | µ̂;mbk prohibited-in ν̂ ::= · | ν̂;min

σ̂ −→ σ̂′

PermittedBack
mbk ∈ µ̂ ω′ = ωmbk

µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)
〈µ̂, ν̂, ω〉 −→ 〈µ̂′, ν̂′, ω′〉

ProhibitedIn
min ∈ ν̂

ω′ = ω(dis min)
〈µ̂, ν̂, ω〉 −→ bad ω′

PermittedIn
min /∈ ν̂ ω′ = ωmin

µ̂′ = updbk
S (ω′, µ̂) ν̂′ = updin

S (ω′, ν̂)
〈µ̂, ν̂, ω〉 −→ 〈µ̂′, ν̂′, ω′〉

Figure 9 This transition system defines an abstraction of the framework-internal state consistent
with an observable trace ω with respect to a framework abstraction S. The abstract state σ̂ contains
a store of permitted back-messages µ̂ and a store of prohibited in-messages ν̂, corresponding to
an abstraction of enabled events and disallowed calls, respectively. The meaning of the framework
abstraction S is captured by the store-update functions updbk

S and updin
S , which determine how an

abstract store changes on a new message.

An observable trace ω violates the event-driven application-programming protocol if ω
ends with a disallowed dis message.

These definitions yield a design for a dynamic-analysis instrumentation that observes
app-framework interactions. The trace recording in Verivita obtains observable traces ω like
the app-framework dialogue diagrams in Section 2 by following the instrumented semantics
σ
−→
m σ′. Verivita maintains a stack similar to the continuation k to emit the messages

corresponding to the forcings and returns of callbacks and callins, and it emits disallowed
dis κ messages by observing the exceptions thrown by the framework.

4 Specifying Protocols and Modeling Callback Control Flow

Using λlife as a concrete semantic foundation, we first formalize an abstraction of event-
driven programs composed of separate app and framework code with respect to what is
observable at the app-framework interface. This abstract transition system captures the
possible enabled-event and disallowed-call stores internal to the framework that are consistent
with observable traces, essentially defining a family of lifestate framework abstractions. Then,
we instantiate this definition for a specific lifestate language that both specifies event-driven
application-programming protocols and models callback control flow.

The main point in these definitions is that lifestate modeling of callback control flow
can only depend on what is observable at the app-framework interface. Furthermore, the
concrete semantic foundation given by λlife leads to a careful definition of soundness and
precision and a basis for model validation and predictive-trace verification (Section 5).

Abstracting Framework-Internal State by Observing Messages. In Figure 9, we define the
transition system that abstracts the framework-internal state consistent with an observable
trace ω. An abstract state 〈µ̂, ν̂, ω〉 contains a store of permitted back-messages µ̂ and a store
of prohibited in-messages ν̂. What the transition system captures are the possible traces
consistent with iteratively applying a framework abstraction S to the current abstract state:
it performs a transition with a back-message mbk only if mbk is permitted mbk ∈ µ̂, and a
transition with an in-message min only if min is not prohibited min 6∈ ν̂. The trace ω in an
abstract state saves the history of messages observed so far. In the most general setting for
modeling the event-driven framework, the transition system can update the stores µ̂ and ν̂
as a function of the history of the observed messages ω. These updates are formalized with

S. Meier, S. Mover, and B.-Y. E. Chang 1:17

parametrized messages m ::= cb λ[p] | p′= ciret λ[p] | ci λ[p] | p′= cbret λ[p]

lifestate rules s ::= r →m | r 9 m
lifestate abstractions S ::= · | sS
trace matchers: regular expressions of parametrized messages r

symbolic variables ` ∈ SVar parameters p ∈ SVar ∪Val binding maps θ ::= · | θ, ` 7→ v

(10.a) A lifestate abstraction is a set of rules that permits (→) or prohibits (9) parametrized messages m.

updbk
S (ω, µ̂) def=

{
mbk

∣∣ consistentS(ω) ∧
(
¬prohibitS(ω,mbk) ∧ (permitS(ω,mbk) ∨mbk ∈ µ̂)

) }
updin

S (ω, ν̂) def=
{
min

∣∣ consistentS(ω)→
(
¬permitS(ω,min) ∧ (prohibitS(ω,min) ∨min ∈ ν̂)

) }
permitS(ω,m) def= ∃r →m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m

prohibitS(ω,m) def= ∃r 9 m ∈ S,∃θ, (ω, θ |= r) ∧ θ(m) = m
consistentS(ω) def= ∀m ∈ Σ, (permitS(ω,m)↔ ¬ prohibitS(ω,m))

µ̂init
S

def= updbk
S (ε,Σbk) ν̂init

S
def= updin

S (ε, ∅)

(10.b) Semantics of a lifestate framework abstraction. The store-update functions updbk
S and updin

S
find rules from S that match the given trace ω and update the store according to a consistent binding θ
from symbolic variables to values.

Figure 10 Lifestate is a language for simultaneously specifying event-driven protocols and
modeling callback control flow in terms of the observable app-framework interface.

the store-update functions updbk
S (ω, µ̂) and updin

S (ω, ν̂) that define an abstraction S of the
event-driven framework describing both its application-programming protocol and its callback
control flow. A framework abstraction S also defines the initial abstract state 〈µ̂initS , ν̂initS , ε〉
that contains the initial (abstract) state of the stores of the permitted back-messages and
prohibited in-messages.

The semantics JSK of a framework abstraction S is the set of observable traces of the
transition system defined in Figure 9 instantiated with S. We get sequences of states from
the transition relation σ̂ −→ σ̂′, read the observable trace ω from the final state, and form a
set of all such observable traces.

I Definition 6 (Soundness of a Framework Abstraction).
(1) A framework abstraction S is a sound abstraction of a λlife program e if JeK ⊆ JSK;
(2) A framework abstraction S is a sound abstraction of a framework implementation
〈Funfwk, λinit〉 if and only if S is sound for every possible program e that uses the
framework implementation 〈Funfwk, λinit〉.

The possible observable traces of a framework abstraction S is slightly richer than
observable λlife traces in that callback-return messages (v= cbret κ) may also be prohibited
(in addition callin-invocations ci κ). Prohibiting callback-return messages corresponds to
specifying a protocol where the app yields an invalid return value. If we desire to capture
such violations at the concrete level, it is straightforward to extend λlife with “return-invalid”
transitions by analogy to InvokeDisallowed transitions.

Finally, if S1 and S2 are sound specifications, we say that S1 is at least as precise as S2
if JS1K ⊆ JS2K.

A Lifestate Abstraction. We arrive at lifestates by instantiating the framework abstraction
S in a direct way as shown in Figure 10. To describe rules independent of particular programs
or executions, we parametrize messages with symbolic variables ` ∈ SVar. The definition
of the parametrized messages m is parallel to the non-parameterized version but using

ECOOP 2019

1:18 Lifestate: Event-Driven Protocols and Callback Control Flow

parameters instead of simply concrete values v. We call a message m ground when it does
not have symbolic variables (from SVar), and we distinguish the ground and parameterized
messages by using normal m and bold m fonts, respectively. For example, the parametrized
callback-invocation message cb λ[`] specifies that a callback function λ is invoked with an
arbitrary value from Val. The variable ` can be used across several messages in a rule,
expressing that multiple messages are invoked with, or return, the same value.

A lifestate abstraction S is a set of rules, and a rule consists of trace matcher r that
when matched either permits (→ operator) or prohibits (9 operator) a parametrized message
m. As just one possible choice for the matcher r, we consider r to be a regular expression
where the symbols of the alphabet are parametrized messages m. In matching a trace ω to
a regular expression of parametrized messages, we obtain a binding θ that maps symbolic
variables from the parametrized messages to the concrete values from the trace. Given a
binding θ and a message m, we write θ(m) to denote the message m′ obtained by replacing
each symbolic variable ` in m with θ(`) if defined.

The semantics of lifestates is given by a choice of store-update functions updbk
S and

updin
S in Figure 10.b and the abstract transition relation σ̂ −→ σ̂′ defined previously in

Section 4. The store-update functions work intuitively by matching the given trace ω against
the matchers r amongst the rules in S and then updating the store according to the matching
rules {s1, . . . , sn} ⊆ S.

To describe the store-update functions in Figure 10.b, we write ω, θ |= r to express that
a trace ω and a binding θ satisfy a regular expression r. The definition of this semantic
relation is standard, except for parametrized messages m. Here, we explain this interesting
case for when the trace ω and the binding θ satisfy the regular expression m (i.e., ω, θ |= m):

ω, θ |= m iff ω = m and θ(m) = m for some ground message m

A necessary condition for ω, θ |= m is, for example, that θ must assign a value to all the
variables in m, to get a ground message, and the message must be equal to the trace ω. Note
that, if there is no such ground message for m with the binding θ, then ω, θ 6|= m. The full
semantics of matching parametrized regular expressions is given in the extended version [33].

Now, the function updbk
S (ω, µ̂) captures how the state of the permitted back-messages

store µ̂ changes according to the rules S. As a somewhat technical point, a back-message
can only be permitted if the rules S are consistent with respect to the given trace ω (i.e.,
consistentS(ω)). The consistentS(ω) predicate holds iff there are no rules that permits and
prohibitsm for the same messagem and trace ω. Then, if the predicate consistentS(ω) is true,
the back-message mbk must not be prohibited given the trace ω (i.e., ¬prohibitS(ω,mbk)).
Finally, if back-message mbk is not prohibited, either it is permitted by a specification for
this trace ω (i.e., permitS(ω,mbk)) or it was already permitted in the current store µ̂ (i.e.,
mbk ∈ µ̂). The function updin

S (ω, ν̂) is similar, but it is defined for the prohibited in-messages
store ν̂. An in-message min is prohibited first if the rules are not consistent. Then, if the
rules are consistent, the in-message min must not be permitted by this trace, and either it is
prohibited by a rule for this trace or the in-message was already prohibited in the current
store ν̂. The auxiliary predicates permitS(ω,m) and prohibitS(ω,m) formally capture these
conditions. The permitS(ω,m) predicate is true iff there is a rule r →m in the specification
S that permits a message m and a binding θ, such that the trace and the binding satisfy
the regular expression (ω, θ |= r), and the ground message permitted by the rule θ(m) is m.
The prohibitS(ω,m) predicate is analogous but for prohibit rules.

A key point is that the store-update functions updbk
S (ω, µ̂) and updin

S (ω, ν̂) are defined
only in terms of what is observable at the app-framework interface ω and stores of permitted
back-messages µ̂ and prohibited in-messages ν̂. Lifestate abstractions S do not depend on
framework or app expressions e, nor framework-internal state.

S. Meier, S. Mover, and B.-Y. E. Chang 1:19

5 Dynamic Reasoning with Lifestates

Lifestates are precise and detailed abstractions of event-driven frameworks that simultaneously
specify the protocol that the app should observe and the callback control-flow assumptions
that an app can assume about the framework. The formal development of lifestates in the
above offers a clear approach for model validation and predictive-trace verification. In this
section, we define the model validation and verification problem and provide an intuition of
their algorithms using the formal development in the previous sections. For completeness of
presentation, we provide further details in the extended version [33].

Validating Lifestate Specifications. As documentation in a real framework implementation
like Android is incomplete and ambiguous, it is critical that framework abstractions have
a mechanism to validate candidate rules – in a manner independent of, say, a downstream
static or dynamic analysis.

We say that a specification S is valid for an observable trace ω if ω ∈ JSK. If a specification
S is not valid for a trace ω from a program e, then S is not a sound abstraction of e.

We can then describe an algorithm that checks if S is a valid specification for a trace
ω with a reduction to a model checking problem. Lifestate rules specify the behavior of
an unbounded number of objects through the use of symbolic variables ` ∈ SVar that are
implicitly universally quantified in the language and hence describe an unbounded number of
messages. However, as an observable trace ω has a finite number of ground messages, the set
of messages that we can use to instantiate the quantifiers is also finite. Thus, the validation
algorithm first “removes” the universal quantifier with the grounding process that transforms
the lifestate abstraction S to a ground abstraction S containing only ground rules.

The language JSK of a ground specification S can be represented with a finite transition
system since the set of messages in S is finite, and lifestate rules are defined using regular
expressions. We then pose the validation problem as a model checking problem that we
solve using off-the-shelf symbolic model checking tools [12]. The transition system that we
check is the parallel composition (i.e., the intersection of the languages of transition systems)
of the transition system that accepts only the trace ω and the transition system σ̂ −→ σ̂′

parametrized by the grounded lifestate abstraction S. The lifestate abstraction S is valid if
and only if the composed transition system reaches the last state of the trace ω.

Dynamic Lifestate Verification. Because of the previous sections building up to lifestate
validation, the formulation of the dynamic verification is relatively straightforward and offers
a means to evaluate the expressiveness of lifestate specification.

We define the set of sub-traces of a trace ω = ω1 . . . ωl as Subω
def= {ω1, . . . , ωl}, where

ω′ ∈ Subω if ω′ is a substring of ω that represents the entire execution of a callback directly
invoked by an event handler. We consider the set J(ω1 + . . .+ωl)∗K of all the traces obtained
by repeating the elements in Subω zero-or-more times and Ωω,e

def= JeK∩ J(ω1 + . . .+ ωl)∗K its
intersection with the traces of the λlife program e.

Given an observable trace ω of the program e (i.e., ω ∈ JeK), the dynamic verification
problem consists of proving the absence of a trace ω′ ∈ Ωω,e that violates the application-
programming protocol. Since we cannot know the set of traces JeK for a λlife program e

(i.e., the set of traces for the app composed with the framework implementation), we cannot
solve the dynamic verification problem directly. Instead, we solve an abstract version of the
problem, where we use a lifestate specification S to abstract the framework implementation
〈Funfwk, λinit〉. Let Ωω,S

def= JSK ∩ J(ω1 + . . .+ ωl)∗K be the set of repetitions of the trace ω
that can be seen in the app-framework interface abstraction defined by S.

ECOOP 2019

1:20 Lifestate: Event-Driven Protocols and Callback Control Flow

Given a trace ω ∈ JeK and a sound specification S, the abstract dynamic verification
problem consists of proving the absence of a trace ω′ ∈ Ωω,S that violates the application-
programming protocol. If we do not find any protocol violation using a specification S,
then there are no violations in the possible repetitions of the concrete trace ω. Observe
that the key verification challenge is getting a precise enough framework abstraction S that
sufficiently restricts the possible repetitions of the concrete trace ω.

We reduce the abstract dynamic verification problem to a model checking problem in a
similar way to validation: we first generate the ground model S from the lifestate model S

and the trace ω. Then, we construct the transition system that only generates traces in the
set Ωω,S by composing the transition system obtained from the ground specification S and
the automaton accepting words in J(ω1 + . . .+ωl)∗K. This transition system satisfies a safety
property iff there is no trace ω ∈ Ωω,S that violates the protocol.

6 Empirical Evaluation

We implement our approach for Android in the Verivita tool that
(i) instruments an Android app to record observable traces,
(ii) validates a lifestate model for soundness against a corpus of traces, and
(iii) assesses the precision of a lifestate model with dynamic verification.
We use the following research questions to demonstrate that lifestate is an effective language
to model event-driven protocols, and validation is a crucial step to avoid unsoundness.

RQ1 Lifestate Precision. Is the lifestate language adequate to model the callback control
flow of Android? The paper hypothesizes that carefully capturing the app-framework
interface is necessary to obtain precise protocol verification results.

RQ2 Lifestate Generality. Do lifestate models generalize across apps? We want to see if a
lifestate model is still precise when used on a trace from a new, previously unseen app.

RQ3 Model Validation. Is validation of callback control-flow models with concrete traces
necessary to develop sound models? We expect to witness unsoundnesses in existing
(and not validated) callback control-flow models and that validation is a crucial tool to
get sound models.

Additionally, we considered the feasibility of continuous model validation. The bottom line
is that we could validate 96% of the traces within a 6 minute time budget; we discuss these
results further in the extended version [33].

RQ1 : Lifestate Precision. The bottom line of Table 1 is that lifestate modeling is essential
to improve the percentage of verified traces to 83% – compared to 57% for lifecycle++ and
27% for lifecycle modeling.

Methodology. We collect execution traces from Android apps and compare the precision
obtained verifying protocol violations with four different callback control-flow models. The
first three models are expressed using different subsets of the lifestate language. The top model
is the least precise (but clearly sound) model where any callback can happen at all times, like
in the Automaton 6.a in Section 2. The lifecycle model represents the most precise callback
control-flow model that we can express only using back-messages, like in Automaton 6.b.
The lifestate model uses the full lifestate language, and hence also in-messages like in the
Automaton 6.d, to change the currently permitted back-messages. It represents the most
precise model that we can represent with lifestate. To faithfully compare the precision of the
formalisms, we improved the precision of the lifecycle and lifestate models minimizing the

S. Meier, S. Mover, and B.-Y. E. Chang 1:21

false alarms from verification. And at the same time, we continuously run model validation to
avoid unsoundnesses, as we discuss below in RQ3 . As a result of this process, we modeled the
behavior of several commonly-used Android classes, including Activity, Fragment, AsyncTask,
CountdownTimer, View, PopupMenu, ListView, and Toolbar and their subclasses. Excluding similar
rules for subclasses, this process resulted in a total of 167 lifestate rules.

We further compare with an instance of a lifecycle++ model, which refines component
lifecycles with callbacks from other Android objects. Our model is a re-implementation of
the model used in FlowDroid [5] that considers the lifecycle for the UI components (i.e.,
Activity and Fragment) and bounds the execution of a pre-defined list of callback methods in
the active state of the Activity lifecycle, similarly to the example we show in Figure 2. We
made a best effort attempt to faithfully replicate the FlowDroid model (and discuss how we
did so in the extended version [33]).

To find error-prone protocols, we selected sensitive callins, shown in the first column of
Table 1, that frequently occur as issues on GitHub and StackOverflow [16, 41, 3, 36, 47, 46].
We then specify the lifestate rules to allow and disallow the sensitive callins.

To create a realistic trace corpus for RQ1 , we selected five apps by consulting Android
user groups to find those that extensively use Android UI objects, are not overly simple (e.g.,
student-developed or sample-projects apps), and use at least one of the sensitive callins. To
obtain realistic interaction traces, we recorded manual interactions from a non-author user
who had no prior knowledge of the internals of the app. The user used each app 10 times
for 5 minutes (on an x86 Android emulator running Android 6.0) – obtaining a set of 50
interaction traces. With this trace-gathering process, we exercise a wide range of behaviors
of Android UI objects that drives the callback control-flow modeling.

To evaluate the necessity and sufficiency of lifestate, we compare the verified rates (the
total number of verified traces over the total number of verifiable traces) obtained using each
callback control-flow model. We further measure the verification run time to evaluate the
trade-off between the expressiveness of the models and the feasibility of verification.

Table 1 Precision of callback control-flow models. The sensitive callin column lists protocol
properties by the callin that crashes the app when invoked in a bad state. We collect a total of 50
traces from 5 applications with no crashes. The sensitive column lists the number of traces where
the application invokes a sensitive callin. To provide a baseline for the precision of a model, we
count the number of traces without a manually-confirmed real bug in the verifiable column. There
are four columns labeled verified showing the number and percentage of verifiable traces proved
correct using different callback control-flow models. The lifestate columns capture our contribution.
The lifecycle++ columns capture the current practice for modeling the Android framework. The bad
column lists the number of missed buggy traces and is discussed further in RQ2 .

properties non-crashing traces callback control-flow models
top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad
callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)
AlertDialog
dismiss 16 6 0 0 0 0 6 100 6 100 0
show 43 34 17 50 17 50 28 82 24 71 0
AsyncTask
execute 4 4 0 0 4 100 4 100 0 0 0
Fragment
getResources 10 10 0 0 0 0 10 100 4 40 0
getString 10 10 0 0 0 0 2 20 0 0 0
setArguments 19 19 1 5 1 5 19 100 13 68 0
total 102 83 18 22 22 27 69 83 47 57 0

ECOOP 2019

1:22 Lifestate: Event-Driven Protocols and Callback Control Flow

Table 2 The table shows the precision results for the 1577 non-crashing traces that contained
a sensitive callins from a total of 2202 traces that we collected from 121 distinct open source app
repositories. We note that lifestate takes slightly longer than lifecycle; for this reason, lifestate
performs slightly worse than lifecycle for execute. The bad column is 0 for models other than
lifecycle++ because of continuous validation. Note that out of 64 total buggy traces, lifecycle++
missed 27 bugs (i.e., had a 42% false-negative rate).

properties non-crashing traces callback control-flow models
top lifecycle lifestate lifecycle++

sensitive sensitive verifiable verified verified verified verified bad
callin (n) (n) (n) (%) (n) (%) (n) (%) (n) (%) (n)
AlertDialog
dismiss 94 59 54 92 54 92 54 92 58 98 3
show 145 144 125 87 124 86 125 87 127 88 0
AsyncTask
execute 415 415 0 0 415 100 412 99 262 63 0
Fragment
getResources 156 155 89 57 89 57 128 83 116 75 0
getString 220 193 124 64 124 64 134 69 131 68 24
setArguments 456 456 59 13 108 24 437 96 435 95 0
startActivity 91 91 0 0 0 0 12 13 19 21 0
total 1577 1513 451 30 914 60 1302 86 1148 76 27

Discussion. In Table 1, we show the number of verified traces and the verified rates
broken down by sensitive callins and different callback control-flow models – aggregated over
all apps. As stated earlier, the precision improvement with lifestate is significant, essential to
get to 83% verified. We also notice that the lifecycle model is only slightly more precise than
the trivial top model (27% versus 22% verified rate). Even with unsoundnesses discussed
later, lifecycle++ is still worse than the lifestate model, with 57% of traces proven.

Lifestate is also expressive enough to prove most verifiable traces – making manual triage
of the remaining alarms feasible. We manually examined the 14 remaining alarms with the
lifestate model, and we identified two sources of imprecision:
(1) an insufficient modeling of the attachment of UI components (e.g., is a View in the View

tree attached to a particular Activity?), resulting in 13 alarms;
(2) a single detail on how Android options are set in the app’s XML, resulting in 1 alarm.
The former is not fundamental to lifestates but a modeling tradeoff where deeper attachment
modeling offers diminishing returns on the verified rate while increasing the complexity of
the model and verification times. The latter is an orthogonal detail for handling Android’s
XML processing (that allows the framework to invoke callbacks via reflection).

RQ2 : Lifestate Generality. The bottom line of Table 2 is that the lifestate model developed
for RQ1 as-is generalizes to provide precise results (with a verified rate of 86%) when used to
verify traces from 121 previously unseen apps. This result provides evidence that lifestates
capture general behaviors of the Android framework. While the lifecycle++ model verifies
76% of traces, it also misses 27 out of 64 buggy traces (i.e., has a 42% false-negative rate).

Methodology. To get a larger corpus, we cloned 121 distinct open source apps repositories
from GitHub that use at least one sensitive callin (the count combines forks and clones).
Then, we generated execution traces using the Android UI Exerciser Monkey [2] that interacts
with the app issuing random UI events (e.g., clicks, touches). We attempted to automatically
generate three traces for each app file obtained by building each app.

Discussion. From Table 2, we see that the lifestate verified rate of 86% in this larger
experiment is comparable with the verified rate obtained in RQ1 . Moreover, lifestate still
improves the verified rate with respect to lifecycle, which goes from 60% to 86%, showing
that the expressivity of lifestate is necessary.

S. Meier, S. Mover, and B.-Y. E. Chang 1:23

Critically, the lifecycle++ model does not alarm on 42% of the traces representing real
defects. That is, we saw unsoundnesses of the lifecycle++ model manifest in the protocol
verification client.

The verified rate for the lifecycle model is higher in this larger corpus (60%) compared
to the rate in RQ1 (27%), and the precision improvement from the top abstraction is more
substantial (60% to 30% versus 27% to 22%). This difference is perhaps to be expected
when using automatically-generated traces that may have reduced coverage of app code and
bias towards shallower, “less interesting” callbacks associated with application initialization
instead of user interaction. In these traces, it is possible that UI elements were not exercised
as frequently, which would result in more traces provable solely with the lifecycle specification.
Since coverage is a known issue for the Android UI Exerciser Monkey [4]), it was critical to
have some evidence on deep, manually-exercised traces as in RQ1 .

Bug Triage. We further manually triage every remaining alarm from both RQ1 and RQ2 .
Finding protocol usage bugs was not necessarily expected: for RQ1 , we selected seemingly
well-developed, well-tested apps to challenge verification, and for RQ2 , we did not expect
automatically generated traces to get very deep into the app (and thus deep in any protocol).

Yet from the RQ1 triage, we found 2 buggy apps out of 5 total. These apps were
Puzzles [10] and SwiftNotes [13]. Puzzles had two bugs, one related to AlertDialog.show and
one for AlertDialog.dismiss. Swiftnotes has a defect related to AlertDialog.show.

In the RQ2 corpus, we found 7 distinct repositories with a buggy app (out of 121 distinct
repositories) from 64 buggy traces (out of 2202). We were able to reproduce bugs in 4 of
the repositories and strongly suspect the other 3 to also be buggy. Three of the buggy apps
invoke a method on Fragment that requires the Fragment to be attached. This buggy invocation
happens within unsafe callbacks. Audiobug [51] invokes getResources. NextGisLogger [35]
and Kistenstapeln [14] invoke getString. We are able to reproduce the Kistenstapeln bug.

Interestingly, one of the apps that contain a bug is Yamba [20], a tutorial app from a
book on learning Android [21]. We note that the Yamba code appears as a part of three
repositories where the code was copied (we only count these as one bug). The tutorial app
calls AlertDialog.dismiss when an AsyncTask is finishing and hence potentially after the
Activity object used in the AlertDialog is not visible anymore. We found similar defects
in several actively maintained open source apps where callbacks in an AsyncTask object
were used either to invoke AlertDialog.show or AlertDialog.dismiss. These apps included
OSM Tracker [22] and Noveldroid [44]. Additionally, we found this bug in a binary library
connected with the PingPlusPlus android app [38]. By examining the output of our verifier,
we were able to create a test to concretely witness defects in 4 of these apps.

RQ3 : Model Validation. The plot in Figure 11 highlights the necessity of applying model
validation: lifecycle++ based on a widely used callback control-flow model does not validate
(i.e., an unsoundness is witnessed) on 58% of 2183 traces (and the validation ran out of
memory for 19 out of the total 2202 traces).

Methodology. We first evaluate the need for model validation by applying our approach
to lifecycle++ and quantifying its discrepancies with the real Android executions.

Our first experiment validates the lifecycle++ model on all the traces we collected
(bounding each validation check to 1 hour and 4 GB of memory). We quantify the necessity
of model validation collecting for each trace if the model was valid and the length of the
maximum prefix of the trace that the model validates. Since there are already some known
limitations in the lifecycle++ model (e.g., components interleaving), we triage the results to
understand if the real cause of failure is a new mistake discovered with the validation process.

ECOOP 2019

1:24 Lifestate: Event-Driven Protocols and Callback Control Flow

Figure 11 Results of the validation of the lifecycle++ model on all the traces. We plot the
cumulative traces grouped by (intervals of) the number of steps validated. The number of traces are
further divided into categories, either indicating that validation succeeded, “no errors,” or the cause
of failure of the validation process.

Our second experiment qualitatively evaluates the necessity of model validation to develop
sound lifestate specifications. To create a sound model, we started from the empty model
(without rules) and continuously applied validation to find and correct mistakes. In each
iteration: we model the callback control flow for a specific Android object; we validate the
current model on the entire corpus of traces (limiting each trace to one hour and 4 GB of
memory); and when the model is not valid for a trace, we inspect the validation result and
repair the specification. We stop when the model is valid for all the traces. We then collected
the mistakes we found with automatic validation while developing the lifestate model. We
describe such mistakes and discuss how we used validation to discover and fix them.

Discussion: lifecycle++ Validation. From the first bar of the plot in Figure 11, we see
that the lifecycle++ model validates only 42% of the total traces, while validation fails in
the remaining cases (58%). The bar shows the number of traces that we validated for at
least one step, grouping them by validation status and cause of validation failure. From our
manual triage, we identified 4 different broad causes for unsoundness:
i) outside the active lifecycle: the model prohibits the execution of a callback outside the

modeled active state of the Activity;
ii) wrong lifecycle automata: the model wrongly prohibits the execution of an Activity or

Fragment lifecycle callback;
iii) wrong start of the Fragment lifecycle: the model prohibits the start of the execution of

the Fragment lifecycle;
iv) no components interleaving: the model prohibits the interleaved execution of callbacks

from different Activity or Fragment objects.
The plot shows that the lifecycle++ model is not valid on 25% of the traces because it does
not model the interleaving of components (e.g., the execution of callbacks from different
Activity and Fragment objects cannot interleave) and the start of the Fragment lifecycle at
an arbitrary point in the enclosing Activity object. With FlowDroid, such limitations are
known and have been justified as practical choices to have feasible flow analyses [5]. But the
remaining traces, 33% of the total, cannot be validated due other reasons including modeling
mistakes. In particular, the FlowDroid model imprecisely captures the lifecycle automata
(for both Activity and Fragment) and erroneously confines the execution of some callbacks in
the active state of the lifecycle.

The other bars in the plot of Figure 11 show the number of traces we validated for more
than 25, 50, and 75 steps, respectively. In the plot, we report the total number of steps in the
execution traces that correspond to a callback or a callin that we either used in the lifestate

S. Meier, S. Mover, and B.-Y. E. Chang 1:25

or the lifecycle++ model, while we remove all the other messages. From such bars, we see
that we usually detect the unsoundness of the lifecycle++ model “early” in the trace (i.e., in
the first 25 steps). This result is not surprising since most of the modeling mistakes we found
are related to the interaction with the lifecycle automata and can be witnessed in the first
iteration of the lifecycle. We further discovered that the lifecycle++ model mostly validates
shorter execution traces, showing that having sound models for real execution traces is more
challenging, which we discuss further in the extended version [33].

Discussion: Catching Mistakes During Modeling. We were able to obtain a valid lifestate
specification for over 99.9% of the traces in our corpus. That is, we were able to understand
and model the objects we selected in all but two traces.

Surprisingly, we identified and fixed several mistakes in our modeling of the Activity

and Fragment lifecycle that are due to undocumented Android behaviors. An example of
such behavior is the effect of Activity.finish and Activity.startActivity on the callback
control flow for the onClick callback. It is unsound to restrict the enabling of onClick
callbacks to the active state of the Activity lifecycle (i.e., between the execution of the
onResume and onPause callbacks). This is the behavior represented with blue edges in
Figure 2, what is typically understood from the Android documentation, and captured in
the existing callback control-flow models used for static analysis.

We implemented a model where onClick could be invoked only when its Activity was
running and found this assumption to be invalid on several traces. We inferred that the
mistake was due to the wrong “bounding” of the onClick callbacks in the Activity lifecycle
since in all the traces:
i) the first callback that was erroneously disabled in the model was the onClick callback;

and
ii) the onClick callback was disabled in the model just after the execution of an onPause

callback that appeared before in the trace, without an onResume callback in between
(and hence, outside the active state of the Activity.)

It turns out that both finish and startActivity cause the Activity to pause without
preventing the pending onClick invocations from happening, as represented in the red edges
connected to onClick in Figure 2. We validated such behaviors by writing and executing a
test application and finding its description in several Stack Overflow posts [49, 48]. The fix
for this issue is to detect the finishing state of the Activity and to not disable the onClick
callback in this case.

7 Related Work

Several works [5, 8, 42, 45, 24, 40, 37, 43, 24] propose different callback control-flow models.
Many previous works, like FlowDroid [5] and Hopper [8], directly implement the lifecycle of
Android components. While the main intention of these tools is to implement the lifecycle
automata, in practice, they also encode some of the effects of callins invoked in the app code
in an ad-hoc manner. For example, FlowDroid determines if and where a callback (e.g.,
onClick) is registered using a pre-defined list of callin methods and an analysis of the app
call graph. Hopper implements the lifecycle callback control flow directly in a static analysis
algorithm that efficiently explores the interleaving of Android components. In contrast, our
work starts from the observation that reasoning about protocol violations requires capturing,
in a first-class manner, the effects that invoking a callin has on the future execution of
callbacks (and vice-versa).

ECOOP 2019

1:26 Lifestate: Event-Driven Protocols and Callback Control Flow

Callback control-flow graphs [53] are graphs of callbacks generated from an application
and a manually written model of the framework. Perez and Le [37] generate callback control-
flow graphs with constraints relating program variables to callback invocations analyzing the
Android framework. Such models can indirectly capture callin effects via the predicates on the
program state. With lifestate, we carefully focus on what is observable at the app-framework
interface so that lifestate specifications are agnostic to the internal implementation details of
the framework. DroidStar [40] automatically learns a callback typestate automaton for an
Android object from a developer-specified set of transition labels using both callbacks and
callins symbols. Such automata specifically represent the protocol for a single object and,
differently from lifestate, their labels are not parameterized messages. A callback typestate
is thus a coarser abstraction than lifestate since it cannot express the relationships between
different message occurrences that are required to describe multi-object protocols.

There exist other classes of framework models that represent different and complementary
aspects of the framework than the callback control flow captured by lifestate. For example,
Fuchs et al. [19] and Bastani et al. [6] represent the “heap properties” implicitly imposed
by the framework. EdgeMiner [11] and Scandal [29] model the registration of callbacks.
Droidel [9] also captures callback registration by modeling the reflection calls inside the
Android framework code. Similarly, Pasket [25] automatically learns implementations of
framework classes that behave according to particular design patterns.

While framework models have been extensively used to support static and dynamic
analysis, not much attention has been paid to validating that the models soundly capture the
semantics of the real framework. Wang et al. [52] recognized the problem of model unsoundness
– measuring unsoundnesses in three different Android framework models. Unsoundnesses
were found even using a much weaker notion of model validation than we do in this work. A
significant advantage of lifestates is that we can validate their correctness with respect to
any execution trace, obtained from arbitrary apps, because they speak generically about the
app-framework interface.

There exist several programming languages for asynchronous event-driven systems, such as
Tasks [18] and P [15]. In principle, such languages are general enough to develop event-driven
systems such as Android. The purpose of our formalization λlife is instead to provide a
formalization that captures the app-framework interface.

The protocol verification problem for event-driven applications is related to typestate
verification [34, 26, 17], but it is more complex since it requires reasoning about the asyn-
chronous interaction of both callbacks and callins. Dynamic protocol verification is similar
in spirit to dynamic event-race detection [32, 23, 7, 31], which predicts if there is an event
data-race from execution traces. However, a lifestate violation differs from, and is not directly
comparable to, an event data-race. A lifestate violation could manifest as a data race on a
framework-internal field, but more commonly it results from encountering an undesirable
run-time state within the framework.

8 Conclusion

We considered the problem of specifying event-driven application-programming protocols.
The key insight behind our approach is a careful distillation of what is observable at the
interface between the framework and the app. This distillation leads to the abstract notions
of permitted messages from the framework to the app (e.g., enabled callbacks) and prohibited
messages into the framework from the app (e.g., disallowed callins). Lifestate specification
then offers the ability to describe the event-driven application-programming protocol in

S. Meier, S. Mover, and B.-Y. E. Chang 1:27

terms of this interface – capturing both what the app can expect of the framework and
what the app must respect when calling into the framework. We evaluated our approach
by implementing a dynamic lifestate verifier called Verivita and showed that the richness
of lifestates are indeed necessary to verify real-world Android apps as conforming to actual
Android protocols.

References
1 Android Developers. The Activity Lifecycle. https://developer.android.com/guide/

components/activities/activity-lifecycle.html, 2018.
2 Android Developers. UI/Application exerciser monkey. https://developer.android.com/

studio/test/monkey.html, 2018.
3 Android Topeka. Crash if rotate device right after press floating action button #4 Topeka for

Android. https://github.com/googlesamples/android-topeka/issues/4, 2015.
4 Yauhen Leanidavich Arnatovich, Minh Ngoc Ngo, Hee Beng Kuan Tan, and Charlie Soh.

Achieving High Code Coverage in Android UI Testing via Automated Widget Exercising. In
Asia-Pacific Software Engineering Conference (APSEC), 2016. doi:10.1109/APSEC.2016.036.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Programming
Language Design and Implementation (PLDI), 2014. doi:10.1145/2594291.2594299.

6 Osbert Bastani, Saswat Anand, and Alex Aiken. Specification Inference Using Context-
Free Language Reachability. In Principles of Programming Languages (POPL), 2015. doi:
10.1145/2676726.2676977.

7 Pavol Bielik, Veselin Raychev, and Martin T. Vechev. Scalable race detection for Android ap-
plications. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
2015. doi:10.1145/2814270.2814303.

8 Sam Blackshear, Bor-Yuh Evan Chang, and Manu Sridharan. Selective control-flow abstrac-
tion via jumping. In Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA), 2015. doi:10.1145/2814270.2814293.

9 Sam Blackshear, Alexandra Gendreau, and Bor-Yuh Evan Chang. Droidel: A general approach
to Android framework modeling. In State of the Art in Program Analysis (SOAP), 2015.
doi:10.1145/2771284.2771288.

10 Chris Boyle. Simon Tatham’s Puzzles. https://github.com/chrisboyle/sgtpuzzles/blob/
658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/
sgtpuzzles/GamePlay.java#L183, 2014.

11 Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele, Christopher Kruegel, Giovanni
Vigna, and Yan Chen. EdgeMiner: Automatically detecting implicit control flow transitions
through the Android framework. In Network and Distributed System Security (NDSS), 2015.
URL: https://www.ndss-symposium.org/ndss2015/edgeminer-automatically-detecting-
implicit-control-flow-transitions-through-android-framework.

12 Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti,
Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv Symbolic Model
Checker. In Computer-Aided Verification (CAV), 2014. doi:10.1007/978-3-319-08867-9_22.

13 Adrian Chifor. Swiftnotes. https://f-droid.org/en/packages/com.moonpi.swiftnotes/,
2015.

14 D120. Kistenstapeln. https://github.com/d120/Kistenstapeln-Android, 2015.
15 Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and

Damien Zufferey. P: safe asynchronous event-driven programming. In Programming Language
Design and Implementation (PLDI), 2013. doi:10.1145/2491956.2462184.

16 Martin Fietz. FeedRemover: already running - issue #1304 - AntennaPod/AntennaPod.
https://github.com/AntennaPod/AntennaPod/issues/1304, 2015.

ECOOP 2019

https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/googlesamples/android-topeka/issues/4
http://dx.doi.org/10.1109/APSEC.2016.036
http://dx.doi.org/10.1145/2594291.2594299
http://dx.doi.org/10.1145/2676726.2676977
http://dx.doi.org/10.1145/2676726.2676977
http://dx.doi.org/10.1145/2814270.2814303
http://dx.doi.org/10.1145/2814270.2814293
http://dx.doi.org/10.1145/2771284.2771288
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://github.com/chrisboyle/sgtpuzzles/blob/658f00f19172bdbceb5329bc77376b40fe550fcb/app/src/main/java/name/boyle/chris/sgtpuzzles/GamePlay.java#L183
https://www.ndss-symposium.org/ndss2015/edgeminer-automatically-detecting-implicit-control-flow-transitions-through-android-framework
https://www.ndss-symposium.org/ndss2015/edgeminer-automatically-detecting-implicit-control-flow-transitions-through-android-framework
http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://f-droid.org/en/packages/com.moonpi.swiftnotes/
https://github.com/d120/Kistenstapeln-Android
http://dx.doi.org/10.1145/2491956.2462184
https://github.com/AntennaPod/AntennaPod/issues/1304

1:28 Lifestate: Event-Driven Protocols and Callback Control Flow

17 Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 17(2),
2008. doi:10.1145/1348250.1348255.

18 Jeffrey Fischer, Rupak Majumdar, and Todd D. Millstein. Tasks: language support for
event-driven programming. In Partial Evaluation and Program Manipulation (PEPM), 2007.
doi:10.1145/1244381.1244403.

19 Adam P. Fuchs, Avik Chaudhuri, and Jeffrey S. Foster. SCanDroid: Automated security
certification of Android applications. Technical Report CS-TR-4991, University of Maryland,
College Park, 2009.

20 Marko Gargenta. Yamba. https://github.com/learning-android/Yamba/blob/
429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/
StatusFragment.java, 2014.

21 Marko Gargenta and Masumi Nakamura. Learning Android. O’Reilly Media, 2014.
22 Nicolas Guillaumin. OSMTracker for Android. https://github.com/nguillaumin/

osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/
java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java, 2015.

23 Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish Narayanasamy, Peter M.
Chen, Ziyun Kong, and Jason Flinn. Race detection for event-driven mobile applications.
In Programming Language Design and Implementation (PLDI), 2014. doi:10.1145/2594291.
2594330.

24 Jinseong Jeon, Kristopher K. Micinski, and Jeffrey S. Foster. SymDroid: Symbolic execution for
Dalvik bytecode. Technical report, Department of Computer Science, University of Maryland,
College Park, 2012.

25 Jinseong Jeon, Xiaokang Qiu, Jonathan Fetter-Degges, Jeffrey S. Foster, and Armando Solar-
Lezama. Synthesizing framework models for symbolic execution. In International Conference
on Software Engineering (ICSE), 2016. doi:10.1145/2884781.2884856.

26 Pallavi Joshi and Koushik Sen. Predictive Typestate Checking of Multithreaded Java Programs.
In Automated Software Engineering (ASE), 2008. doi:10.1109/ASE.2008.39.

27 Vladislav Kaplun. Update RequestAsyncTask.java by kaplad - Pull Request #315 -
facebook/facebook-android-sdk. https://github.com/facebook/facebook-android-sdk/
pull/315, 2014.

28 Maria Kechagia and Diomidis Spinellis. Undocumented and unchecked: exceptions that spell
trouble. In Mining Software Repositories, (MSR), 2014. doi:10.1145/2597073.2597089.

29 Jinyung Kim, Yongho Yoon, Kwangkeun Yi, and Junbum Shin. SCANDAL: Static analyzer for
detecting privacy leaks in Android applications. IEEE Mobile Security Technologies (MoST).,
2017.

30 Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-
Order and Symbolic Computation, 19(4), 2006. doi:10.1007/s10990-006-0480-6.

31 Pallavi Maiya, Rahul Gupta, Aditya Kanade, and Rupak Majumdar. Partial Order Reduction
for Event-Driven Multi-threaded Programs. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2016. doi:10.1007/978-3-662-49674-9_44.

32 Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race detection for Android applications.
In Programming Language Design and Implementation (PLDI), 2014. doi:10.1145/2594291.
2594311.

33 Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang. Lifestate: Event-Driven Protocols and
Callback Control Flow (Extended Version). CoRR, abs/, 2019. arXiv:1906.04924.

34 Nomair A. Naeem and Ondrej Lhoták. Typestate-like analysis of multiple interacting objects.
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA). ACM,
2008. doi:10.1145/1449764.1449792.

35 NextGis. NextGisLogger. https://github.com/nextgis/nextgislogger, 2017.

http://dx.doi.org/10.1145/1348250.1348255
http://dx.doi.org/10.1145/1244381.1244403
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java
https://github.com/learning-android/Yamba/blob/429e37365f35ac4e5419884ef88b6fa378c023f8/src/com/marakana/android/yamba/StatusFragment.java
https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
https://github.com/nguillaumin/osmtracker-android/blob/d80dea16e456defe5ab62ed8b5bc35ede363415e/app/src/main/java/me/guillaumin/android/osmtracker/gpx/ExportTrackTask.java
http://dx.doi.org/10.1145/2594291.2594330
http://dx.doi.org/10.1145/2594291.2594330
http://dx.doi.org/10.1145/2884781.2884856
http://dx.doi.org/10.1109/ASE.2008.39
https://github.com/facebook/facebook-android-sdk/pull/315
https://github.com/facebook/facebook-android-sdk/pull/315
http://dx.doi.org/10.1145/2597073.2597089
http://dx.doi.org/10.1007/s10990-006-0480-6
http://dx.doi.org/10.1007/978-3-662-49674-9_44
http://dx.doi.org/10.1145/2594291.2594311
http://dx.doi.org/10.1145/2594291.2594311
http://arxiv.org/abs/1906.04924
http://dx.doi.org/10.1145/1449764.1449792
https://github.com/nextgis/nextgislogger

S. Meier, S. Mover, and B.-Y. E. Chang 1:29

36 OneBusAway. IllegalStateException: Fragment BaseMapFragment not attached to Activ-
ity #570 OneBusAway. https://github.com/OneBusAway/onebusaway-android/issues/570,
2016.

37 Danilo Dominguez Perez and Wei Le. Predicate callback summaries. In International
Conference on Software Engineering (ICSE), 2017. doi:10.1109/ICSE-C.2017.95.

38 PingPlusPlus. Ping Plus Plus. https://github.com/PingPlusPlus/pingpp-android, 2017.
39 Steve Pomeroy. The Complete Android Activity/Fragment Lifecycle v0.9.0. https://github.

com/xxv/android-lifecycle, 2014.
40 Arjun Radhakrishna, Nicholas V. Lewchenko, Shawn Meier, Sergio Mover, Krishna Chaitanya

Sripada, Damien Zufferey, Bor-Yuh Evan Chang, and Pavol Cerný. DroidStar: callback
typestates for Android classes. In International Conference on Software Engineering (ICSE),
2018. doi:10.1145/3180155.3180232.

41 Red Reader. Crash during commenting #467 RedReader. https://github.com/
QuantumBadger/RedReader/issues/467, 2017.

42 A. Rountev, D. Yan, S. Yang, H. Wu, Y. Wang, and H. Zhang. GATOR: Program analysis
toolkit for Android. http://web.cse.ohio-state.edu/presto/software/, 2017.

43 Atanas Rountev and Dacong Yan. Static Reference Analysis for GUI Objects in Android
Software. In Code Generation and Optimization (CGO), 2014. doi:10.1145/2544137.2544159.

44 sh1ro. NovelDroid. https://github.com/sh1r0/NovelDroid/blob/
f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/
noveldroid/SettingsFragment.java, 2016.

45 Eric Smith and Alessandro Coglio. Android platform modeling and Android app verification in
the ACL2 theorem prover. In Verified Software: Theories, Tools, and Experiments (VSTTE),
2015. doi:10.1007/978-3-319-29613-5_11.

46 StackOverflow Post. Got exception: fragment already active. https://stackoverflow.com/
questions/10364478/got-exception-fragment-already-active, 2012.

47 StackOverflow Post. Alertdialog creating exception in android. https://stackoverflow.com/
questions/15104677/alertdialog-creating-exception-in-android, 2013.

48 StackOverflow Post. OnClickListener fired after onPause? https://stackoverflow.com/
questions/31432014/onclicklistener-fired-after-onpause, 2015.

49 StackOverflow Post. Android: click event after Activity.onPause(). https://stackoverflow.
com/questions/38368391/android-click-event-after-activity-onpause, 2016.

50 Robert E. Strom and Shaula Yemini. Typestate: A Programming Language Concept for
Enhancing Software Reliability. IEEE Trans. Software Eng., 12(1), 1986.

51 Matthias Urhahn. AudioBug. https://github.com/d4rken/audiobug, 2017.
52 Yan Wang, Hailong Zhang, and Atanas Rountev. On the unsoundness of static analysis for

Android GUIs. In State of the Art in Program Analysis (SOAP), 2016. doi:10.1145/2931021.
2931026.

53 Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. Static Control-
Flow Analysis of User-Driven Callbacks in Android Applications. In International Conference
on Software Engineering (ICSE), 2015. doi:10.1109/ICSE.2015.31.

ECOOP 2019

https://github.com/OneBusAway/onebusaway-android/issues/570
http://dx.doi.org/10.1109/ICSE-C.2017.95
https://github.com/PingPlusPlus/pingpp-android
https://github.com/xxv/android-lifecycle
https://github.com/xxv/android-lifecycle
http://dx.doi.org/10.1145/3180155.3180232
https://github.com/QuantumBadger/RedReader/issues/467
https://github.com/QuantumBadger/RedReader/issues/467
http://web.cse.ohio-state.edu/presto/software/
http://dx.doi.org/10.1145/2544137.2544159
https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
https://github.com/sh1r0/NovelDroid/blob/f3245055d7a8bcc69a9bca278fbe890081dac58a/app/src/main/java/com/sh1r0/noveldroid/SettingsFragment.java
http://dx.doi.org/10.1007/978-3-319-29613-5_11
https://stackoverflow.com/questions/10364478/got-exception-fragment-already-active
https://stackoverflow.com/questions/10364478/got-exception-fragment-already-active
https://stackoverflow.com/questions/15104677/alertdialog-creating-exception-in-android
https://stackoverflow.com/questions/15104677/alertdialog-creating-exception-in-android
https://stackoverflow.com/questions/31432014/onclicklistener-fired-after-onpause
https://stackoverflow.com/questions/31432014/onclicklistener-fired-after-onpause
https://stackoverflow.com/questions/38368391/android-click-event-after-activity-onpause
https://stackoverflow.com/questions/38368391/android-click-event-after-activity-onpause
https://github.com/d4rken/audiobug
http://dx.doi.org/10.1145/2931021.2931026
http://dx.doi.org/10.1145/2931021.2931026
http://dx.doi.org/10.1109/ICSE.2015.31

Godot: All the Benefits of Implicit and Explicit
Futures
Kiko Fernandez-Reyes
Uppsala University, Sweden
kiko.fernandez@it.uu.se

Dave Clarke
Storytel, Stockholm, Sweden

Ludovic Henrio
Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP, France
ludovic.henrio@ens-lyon.fr

Einar Broch Johnsen
University of Oslo, Norway
einarj@ifi.uio.no

Tobias Wrigstad
Uppsala University, Sweden
tobias.wrigstad@it.uu.se

Abstract
Concurrent programs often make use of futures, handles to the results of asynchronous operations.
Futures provide means to communicate not yet computed results, and simplify the implementation
of operations that synchronise on the result of such asynchronous operations. Futures can be
characterised as implicit or explicit, depending on the typing discipline used to type them.

Current future implementations suffer from “future proliferation”, either at the type-level or at
run-time. The former adds future type wrappers, which hinders subtype polymorphism and exposes
the client to the internal asynchronous communication architecture. The latter increases latency, by
traversing nested future structures at run-time. Many languages suffer both kinds.

Previous work offer partial solutions to the future proliferation problems; in this paper we show
how these solutions can be integrated in an elegant and coherent way, which is more expressive than
either system in isolation. We describe our proposal formally, and state and prove its key properties,
in two related calculi, based on the two possible families of future constructs (data-flow futures and
control-flow futures). The former relies on static type information to avoid unwanted future creation,
and the latter uses an algebraic data type with dynamic checks. We also discuss how to implement
our new system efficiently.

2012 ACM Subject Classification Software and its engineering→ Concurrency control; Software and
its engineering → Concurrent programming languages; Software and its engineering → Concurrent
programming structures

Keywords and phrases Futures, Concurrency, Type Systems, Formal Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.2

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.1

Funding Part of this work was funded by the Swedish Research Council, Project 2014-05-545.

1 Introduction

Concurrent programs often make use of futures [4] and promises [27], which are handles to
possibly not-yet-computed values, that act like a one-off channel for communicating a result
from (often a single) producers to consumers. Futures and promises simplify concurrent
programming in several ways. Perhaps most importantly, they add elements of structured

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Kiko Fernandez-Reyes, Dave Clarke, Ludovic Henrio, Einar Broch Johnsen, and
Tobias Wrigstad;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 2; pp. 2:1–2:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8654-118X
mailto:kiko.fernandez@it.uu.se
https://orcid.org/0000-0002-1970-6607
https://orcid.org/0000-0001-7137-3523
mailto:ludovic.henrio@ens-lyon.fr
https://orcid.org/0000-0001-5382-3949
mailto:einarj@ifi.uio.no
https://orcid.org/0000-0002-4269-5408
mailto:tobias.wrigstad@it.uu.se
https://doi.org/10.4230/LIPIcs.ECOOP.2019.2
https://dx.doi.org/10.4230/DARTS.5.2.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Godot: All the Benefits of Implicit and Explicit Futures

def addition(x: Int, y: Int): Int
x + y

end

def addition(x: Fut[Int], y: Fut[Int]): Int
get(x) + get(y)

end

Figure 1 Left. Data-flow, implicitly typed future, i.e., any argument may be a future value, not
visible to the developer. Right. Control-flow, explicitly typed future, i.e., the function only accepts
future values; synchronisation constructs reduce the future nesting level, e.g., get.

programming to message passing, i.e., a message send immediately returns a future, which
mimics method calls with a single entry and single exit. This simplifies the control-flow logic,
avoids explicit call-backs, and allows a single result to be returned to multiple interested
parties – without the knowledge of the producer – through sharing of the future handle. A
future is fulfilled when a value is associated with it. Futures are further used as synchronisation
entities: computations can check if a future is fulfilled (poll), block on its fulfilment (get),
and register a piece of code to be executed on its fulfilment (future chaining – then), etc.
Promises are similar to (and often blurred with) futures. The main difference is that fulfilment
is done manually through a separate first-class handle created at the same time as the future.

Futures are often characterised as either implicit or explicit, depending on the typing
discipline used to type them. Implicit futures are transparent, i.e., it is not generally possible
to distinguish in a program’s source whether a variable holds a future value or a concrete
value. As a consequence, an operation x + y may block if either x or y are future values.
This is called wait-by-necessity because blocking operations are hidden from the programmer
and only performed when a concrete value is needed. With implicit futures, any function
that takes an integer can be used with a future integer, which makes code more flexible and
avoids duplication (Fig. 1, Left). Explicit futures, in contrast, use future types to distinguish
concrete values from future values, e.g., int from Fut[int], and rely on an explicit operation,
which we will call get, to extract the int from the Fut[int]. The types and the explicit
get make it clear in the code what operations may cause latency, or block forever. The types
also make harder to reuse code that mixes future and concrete values (Fig. 1, Right).

Because implicit futures allow future and concrete values to be used interchangeably, they
can delay blocking on a future until its value is needed for a computation to move forward.
Implementing the same semantics with explicit futures requires considerable effort to deal
with any possible combination of future and concrete values at any given juncture.

Programs built from cooperating concurrent processes, like actor programs, commonly
compute operations by multiple message sends across several actors, each returning a future.
This is implemented by nesting several futures, e.g., f1 ← f2 ← f3 such that f1 is fulfilled by
f2 which is fulfilled by f3. While implicit futures hide these structures by design, explicit
futures suffer from a blow-up in the number of get operations that must be applied to extract
the value, but also in the amount of wrappers that must be added to type the outermost
future value. Notably, this makes tail recursive message-passing methods impossible to type
as the number of type wrappers must mirror the depth of the recursion.

Futures are important for structuring and synchronising asynchronous activities and have
been adopted in mainstream languages like Java [32, 17], C++ [26], Scala [41], and JavaScript
[28]. In the actor world, futures reduce complexity considerably by enabling an actor to
internally join on the production of several values as part of an operation. Alternative
approaches either become visible in an actors interface and require manual “buffering” of
intermediate results as part of the actor’s state, or rely on a receive-like construct and the
ability to pass an actor any message, which loses the benefit of a clearly defined interface.
With the prevalent way of typing futures – as used for example in Java and Scala – a

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:3

programmer must choose between introducing blocking to remove future type wrappers [20],
or break away from typical structured programming idioms when translating a program into
an equivalent actor-based program.

This paper unifies and extends two recent bodies of work on explicit and implicit futures.
Henrio [20] observed that the literature directly ties data flow-driven and control flow-driven
futures to the implicit- and explicit-future dichotomy, respectively (e.g., Fig. 1). This work
explored the design space of data-flow/control-flow and implicit/explicit dichotomy to support
this argument, and developed a combination of data-flow and explicit futures, with a future
type that abstracts nesting, avoids the aforementioned explosion of future wrappers and get
calls for tail recursive methods or pipelines with multiple asynchronous stages, making the
chains of futures completely transparent. Fernandez-Reyes et al. [13] proposed an explicit
delegation operation precisely for handling long (possibly tail recursive) pipelines. Instead of
introducing a new future type that hides nesting, this work identifies common delegation
patterns in actor-based programs, and proposes a delegation operation that avoids creating
unwarranted nested futures. In this system the programmer can control exactly on which
stages in a pipeline should be possible to synchronise, reducing the number of created futures.

We distinguish two kinds of futures. We call control-flow futures the future constructs
that can be implemented by a parametric future type and where each synchronisation blocks
until exactly one asynchronous task finishes, the fact that a single fulfilment instruction
resolves the blocked state explains the control-flow name. We call data-flow futures the
future constructs where the synchronisation consists in blocking until a concrete usable value
is available, consequenty a single synchronisation might wait for the termination of several
asynchronous tasks. Data-flow futures are usually implemented by implicit futures.

Contributions. This paper shows how to integrate data-flow futures and control-flow futures,
and how to seamlessly combine them. We show how data-flow futures can be implemented
using control-flow futures and the converse. Our model provides future delegation, data-flow
futures, and control-flow futures at the same time, giving the programmer precise control
over future access, as well as automatic elision of unnecessary nested futures. More precisely:

We overview three inherent problems with both explicit and implicit futures that limit
their applicability or performance (Section 2).
We discuss existing mitigation strategies based on typically available future operations
or alternatives (Section 3.1) – as well as recent work on data-flow futures [20] and
delegation [13] that aim to address overlapping subsets of these problems – and show
that none addresses all of the problems (Sections 3.2 and 3.3).
We propose Godot (Section 4), the first system that seamlessly integrates data-flow
futures and control-flow futures in a single explicit system. In addition to addressing all
the problems in Section 2, the system improves on the data-flow explicit futures of [20] by
adding support for parametric polymorphism, and improves on the delegation in [13] by
allowing it to be applied automatically for data-flow explicit futures.
We provide two alternative formalisations of Godot (with a common foundation introduced
in Section 4.1). FlowFut shows how to extend a data-flow future language with control-
flow futures; it is mostly aimed at languages with no current future support (Section 4.2).
FutFlow shows how to extend a control-flow future language with data-flow futures; it is
aimed at languages with typical explicit future support (Section 4.3).
We prove progress and type preservation of FlowFut and FutFlow; and
We introduce a type-driven optimisation strategy for eliding the creation of nested
futures (Section 5) and a discussion on the implementation of our system.

In addition to the above, Section 6 discusses related work and Section 7 concludes.

ECOOP 2019

2:4 Godot: All the Benefits of Implicit and Explicit Futures

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

return (if precomputed(v) then table.lookup(v) else worker ! compute(v))

:: t :: Fut[t]

⊥
∨

⊥

⊥

Figure 2 Type Proliferation making code untypable; ⊥ denotes the absence of a type for a term.

2 Problems Inherent in Explicit and Implicit Futures

Both implicit and explicit futures have limitations. In this section, we overview the problems
that exist with exising futures. We use examples presented in pseudocode, where o ! m and
o.m denote an asynchronous and a synchronous call to a method m of an object o, respectively.

The Type Proliferation Problem. The way explicit futures are generally added to lan-
guages, they end up mirroring the communication structure of a program: the result of an
asynchronous operation is typed Fut[t], the result of an asynchronous operation that returns
the result of another asynchronous operation is Fut[Fut[t]], etc. This breaks abstraction
and makes code inflexible. For example, consider the following code example that returns
values from two different sources. If the answer is precomputed, it is fetched from a table,
otherwise the computation is delegated to some worker (see Figure 2 for details).

return if precomputed(v) then table.lookup(v) else worker ! compute(v)

As denoted by the ⊥ types, this is not well-typed as the branches have different types, without
any join: table.lookup(v) returns a value of type t, whereas worker ! compute(v) returns a
Fut[t]. Thus, such a common pattern will not work straightforwardly in a program. For
similar reasons, tail recursive asynchronous methods are not possible to type as the depth of
the recursion must be mirrored in the returned future type. Last, also an effect of the same
root cause, explicit futures complicate code reuse – forcing code duplication for operations
that should be possible to apply to values of both future and concrete type.

This problem has been previously identified in [16, 20], where the authors showed that
there was no direct encoding from implicit futures to explicit futures because an unbounded
number of control-flow synchronisations and an unbounded parametric type may be needed
to encode a single data-flow future. This is typically the case if one tries to write an
asynchronous tail recursive function. For this reason there is no simple encoding of data-flow
futures with control-flow futures; Section 4.3 will show how, with a boxing operator and a
few changes in the type system, we are able to encode data-flow futures using control-flow
futures and to overcome the type resolution problem.

We call this problem, which applies to explicit futures, the Type Proliferation Problem.

The Future Proliferation Problem. Implicit futures avoid the Type Proliferation Problem
by abstracting whether a variable has been computed or not. However, the way implicit
futures are generally added to languages, a similar problem appears at run-time. While

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:5

tail recursion is possible, running tail calls in constant space is not possible because each
recursive call gives rise to an additional future indirection.

The creation of nested futures f1 ← f2 ← f3 (etc.) introduces additional latency because
the fulfilment of a nest of futures of depth n adds n additional operations, which in worst-case
must be scheduled separately. Moreover, because a future can be fulfilled with an unfulfilled
future, in some implementations, an actor may be falsely deemed schedulable, only to take a
step to block on the unfulfilled nested future. For example, f1 will be “falsely fulfilled” by
the unfulfilled future f2; if the activity blocking on f1 is scheduled to run before f2 and f3
are fulfilled, the operation will block again on f2 or f3 (possibly both).

This problem, which applies to both implicit and explicit futures, was pointed out in [13].
We call it the Future Proliferation Problem.

The Fulfilment Observation Problem. The abstraction of implicit futures further loses
precision. Consider the following code snippet that could be part of a simple load balancer,
that farms out jobs to idle workers, and a call to the load balancer to perform some work.

def perform(job : Job) { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job)

A call to perform() results in a nested future: the outermost future captures whether the load
balancer has found an idle worker and successfully delegated the job; the innermost future
captures the result of do_work(). With explicit futures we can observe the state of the task:

get(f) −−block until do_work has been called
get(get(f)) −−block until do_work has finished

However, with implicit futures, it is not possible to make this distinction as any access will
block until the innermost value is returned. Thus, we cannot observe the current stage of
such an operation using futures. Concurrent and scheduling library developers need to access
the intermediate steps of computations, and this issue hinders the code that they can write.

Similarly, if an unfulfilled future is stored somewhere, say in a hash table implemented by
an actor, retrieving it is tricky without accidentally blocking on the production of the future
– an unknown operation – rather than the result of hash_table.lookup(). Since a hash table
may store both concrete and future values due to the nature of implicit futures, knowing
when to not call get on the result of a hash table lookup is not discernible by local reasoning.

This has been highlighted in [21, 20] as the major source of difference between existing
implicit and explicit futures. Because of this different behaviour, there is no simple encoding
of control-flow futures with data-flow futures. In Section 4.2 we will show such an encoding
that relies on a slight adaptation of the type system, and a boxing operator.

This problem applies to implicit futures, we call it the Fulfilment Observation Problem.
Following this problem overview, the next section presents existing partial solutions.

3 Current Solutions to Future Problems

This section surveys how existing techniques can be used to partially overcome the problems
outlined in Section 2. In particular, in Sections 3.2–3.3, we give an informal overview of prior
work that this paper amalgamates to address all of the problems in a coherent way.

ECOOP 2019

2:6 Godot: All the Benefits of Implicit and Explicit Futures

3.1 Standard Mitigation Strategies and Problem Avoidance
Manual Unpacking of Futures. Avoiding the Type Proliferation Problem is possible by
manually unpacking and returning the concrete value of each future using the aforementioned
get operation. In the case of the guarded return example, we could write the following:

return if precomputed(v) then table.lookup(v) else get(worker ! compute(v))

This causes the else branch to block its execution until the compute() method has finished
and is notified of the fulfilment of the current future. This has several problems:

Bottleneck. The enclosing actor is blocked from processing other requests while waiting
for worker ! compute(v) to finish. This causes subsequent messages to block, even if they
could be served from precomputed data. Thus, the blocking get introduces a bottleneck.
False Fulfilment. Delaying the return until the concrete value is produced avoids false
fulfilment but instead adds an additional step to the operation which adds and unnecessary
latency. The task of unpacking the innermost future and fulfilling the outermost must now
be scheduled before the client of the outermost future is unblocked. Notably, this changes
fulfilment from pull – clients blocking until the value is available, to push – propagating
fulfilment of a nested future inwards out. (We revisit this in Section 5.)

Some actor languages that use futures provide a cooperative scheduling construct “await”
that allows the current method to be suspended pending the fulfilment of a future without
blocking the currently executing actor. This avoids the bottleneck problem above, but at the
same time introduces race conditions due to the possible interleaving of suspended methods –
these race conditions only appear through side effects [8].

Explicit Spawning of a Task. The explicit creation of a task can be used to solve the
Type Proliferation Problem. In the case of the example, the then branch spawns a task for
something that needed not be asynchronous:

return if precomputed(v) then async(table.lookup(v)) else worker ! compute(v)

This causes the type checker to accept the program at the expense of performance. The
creation of a task involves memory allocation, scheduling of the task, and computation of
the task body, which is a simple asynchronous operation. This is feasible, but not optimal.

Future Chaining to Avoid Blocking and Nesting. Future chaining can be used to avoid
unnecessary blocking in some cases. Future chaining supports the construction of pipelines of
futures which are not nested, but still need to be represented at run-time. For example, here
is how we could add the result of worker ! compute(v) to the table of precomputed values
(so it effectively becomes a cache) without delaying the returning of the result to a client:

var result = worker ! compute(v)
result.then(fun r => this.table.add(v, r))
return result

The then method attaches a callback function that will be run upon the fulfilment of result,
with r bound to the value used to fulfil result. Although the callback registration happens
before the return, the execution of the registered function does not happen until after the
future is fulfilled, meaning it causes no delay.

While chaining can avoid some Type Proliferation, it does not enable tail recursive calls.

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:7

Changing the Program Structure: Replace Return with Message Send. An alternative
solution is to give up on structured programming ideals and instead of returning values back
up the call stack, instruct the producer of a value how to communicate the result to its
consumers. Here is an example of how that might look in the Type Proliferation Problem
example:

if precomputed(v) then client ! receive(table.lookup(v)) −−send result to client
else worker ! compute(v, client) −−pass client id to worker

With this design, a method that previously returned a value must be passed the identity of
the consumer of the result as an argument (possibly a list of consumers) to explicitly send
the result to the consumer(s) according to some agreed-upon protocol. Instead of id(s), it
can take as input some lambda function that know how to communicate the result back to
interested parties. A downside of this solution is that the consumers must be known at the
time of the call. This is in contrast to a caller sharing a returned future with whoever might
be interested in the result after the call is made.

This solution requires the existence of a specific method in the consumer for each operation
and causes an operation to be spread over multiple methods. Submitting multiple jobs for
execution requires manually handling the possibility of the results coming back in any order,
and possibly provide multiple different methods for getting the results.

Returning values differently from synchronous and asynchronous computations increases
complexity for functions and data structures that should be usable in both contexts. This
is typical in, e.g., Cilk [6] where a function can be “spawned” asynchronously or called
synchronously, and in many actor languages (e.g., Joelle [10], ABS [22] and Encore [7]) where
an actor’s interface is asynchronous externally but synchronous internally.

Changing the Program Structure: Use Promises Instead of Futures. Both the Type
Proliferation Problem and the Future Proliferation Problem can be overcome by resorting to
manually handled promises: instead of passing the identity of the recipient around, we pass
around a pointer to a shared space where the result can be stored. Promises are similar to
futures, but are less transparent and, because they are manipulated explicitly both on the
side of the producer and the consumer, lack many of the guarantees of futures: promises
are created and fulfilled manually and are thus not guaranteed to be fulfilled at all, may be
fulfilled more than once, possibly by several actors.1 With this design, workers are passed a
promise created by a client. Upon finishing the work, the worker fulfils the promise.

3.2 Data-flow Explicit Futures
Henrio [20] observed that the traditional dichotomy of implicit and explicit futures was
focusing mainly on typing and not on how futures are synchronised, and proposed an
alternative categorisation: control-flow futures and data-flow futures, depending on how the
synchronisation on futures works. With control-flow synchronisation, each nested future must
be explicitly unpacked using get to return another future or a concrete value. Data-flow
synchronisation is wait-by-necessity as usual for implicit futures: nesting is invisible, and
a get always returns a concrete value, even from a nested future. Separating typing from
synchronisation allows new combinations of future semantics, such as explicit data-flow
futures, which address the Type Proliferation Problem of Section 2.

1 Futures have static fulfilment guarantees, they are implicitly fulfilled, unless the fulfilling computation
gets stuck. Promises have no static fulfilment guarantees, even when the program is not stuck.

ECOOP 2019

2:8 Godot: All the Benefits of Implicit and Explicit Futures

The traditional way of typing explicit futures, by a parametric type, has always led to
control-flow synchronisation on futures while data-flow futures had no future type. Data-flow
synchronisation naturally leads to an alternative type system called DeF, such that the
run-time structure of futures is no longer mirrored by their type. Instead, a Fut[t] type
represents zero or more nested futures – the zero means that a concrete value may appear
as a future value. This allows future-typed code to be reused with concrete values but also
allows tail recursion and methods returning either a concrete value or a future. In the Type
Proliferation Problem, the branches would still have different types (t and Fut[t]), but t
can be lifted to Fut[t], collapsing the Fut[Fut[t]] returned by the entire asynchronous
expression into a Fut[t]. Let the keyword async denote the spawning of an asynchronous
task.

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

Data-flow explicit futures address the Type Proliferation Problem but it does not address the
Future Proliferation Problem or the Fulfilment Observation Problem.

A Formal Introduction to DeF. For simplicity and to align with upcoming sections, we
adapt Henrio’s DeF calculus to a concurrent, lambda-based calculus. We use an async
construct to spawn tasks and a get construct for data-flow synchronisation on a future. The
types are the basic types K, abstraction and futures.

Expressions e ::= v | e e | return e | async e | get e
Values v ::= c | x | f | λx.e
Types τ ::= K | τ → τ | Fut τ

Evaluation context E ::= • | E e | v E | return E | get E

The operational semantics use a small-step reduction semantics with reduction-based, con-
textual rules for evaluation within tasks. An evaluation context E contains a hole • that
denotes where the next reduction step happens. Configurations consist of tasks (taskf e),
unfulfilled futures (futf) and fulfilled futures (futf v). When a task finishes, i.e., reduces to a
value v, the corresponding future is fulfilled with v.

We show the most interesting reduction rules in Figure 3: Red-Async spawns a new
computation and puts a fresh future in place of the spawned expression. Red-Get-Val
applies get to a concrete value which reduces to the value itself. Red-Get-Fut applies get
on a future chain of length ≥ 1, reducing it future by future. A run-time test, isfut?(v), is
required to check whether v is a future value or a concrete value.

Figure 3 shows the most interesting type rules. We first have two sub-typing rules:
a concrete value can be typed as a future, and nested future types are unnecessary. By
T-Async, any well-typed expression of type τ can be spawned off in an asynchronous
task that returns a Fut τ . By T-Get, get can be applied to unpack a Fut τ , yielding a
value of type τ .

Summary. Data-flow futures allow the programmer to focus on expressing future-like
algorithms without explicitly manipulating every synchronisation point. A single future
and multiple nested futures are indistinguishable with respect to types and synchronisation.
Because the type system allows the implicit lifting of a concrete value to a (fulfilled) future
value, code that uses futures can be reused with concrete values.

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:9

Reduction rules: e→ e′

(Red-Async)
fresh f

(taskg E[async e]) −→ (futf) (taskf e) (taskg E[f])

(Red-Get-Val)
¬isfut?(v)

(taskf E[get v]) −→ (taskf E[v])

(Red-Get-Fut)
isfut?(g)

(taskf E[get g]) (futg v) −→ (taskf E[get v]) (futg v)

Subtyping:
τ <: Fut τ

Fut (Fut τ)<: Fut τ

Typing rules: Γ `ρ e : τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Figure 3 Reduction and typing rules for data-flow explicit futures.

3.3 Delegating Future Fulfilment
To avoid the Type Proliferation Problem and Future Proliferation Problem of Section 2,
Fernandez-Reyes et al. [13] proposed a delegation construct that delegates the fulfilment
of the current-in-call future to another task in the context of control-flow explicit futures.
This forward construct supports tail-recursive asynchronous methods and allows them to
run in constant space, because only a single future is needed.2 The Fulfilment Observation
Problem is avoided because of the control-flow synchronisation. Library code can distinguish
the futures it manipulates and the concrete values that client programs are interested in.

In contrast to DeF, delegation requires an explicit keyword. This can be seen in the Type
Proliferation Problem example by inserting return in the then-branch and forward in the
else-branch. In the then-branch, the concrete value is returned; in the else-branch, forward
delegates to a worker to fulfil the current future. In both cases, the return type is Fut[t].
This shows how a method’s return type no longer needs to (but may) mirror the internal
communication structure of a method in order to avoid the Fulfilment Observation Problem:

async (if precomputed(v) then return table.lookup(v)
else forward worker ! compute(v))

Delegation and explicit future types address the Future Proliferation Problem and Fulfilment
Observation Problem, but only in part the Type Proliferation Problem – reuse is still limited
by future types, causing code duplication or blocking to remove future types.

A Formal Introduction to Forward. We present the semantics of delegation similarly
through a concurrent, lambda-based calculus, adapted from Fernandez-Reyes’ work. The
syntax reuses the concepts from the previous section and adds the forward construct which
transfers the obligation to fulfil a future to another task and future chaining (then(e, e)),
which registers a piece of code to be executed on its fulfilment. While the latter is not strictly
necessary, its run-time semantics are necessary to express the semantics of forward, so expli-
cit support for future chaining adds very little complexity. The types are the same as in the
previous calculus except that there is no subtyping rule. The typing judgement has an extra
parameter, ρ, which prevents the use of forward under certain circumstances (explained later).

2 This cannot be observed in Fig. 3 because we have omitted the compilation optimisations [13]. This
optimisations follow the same logic as Section 5.

ECOOP 2019

2:10 Godot: All the Benefits of Implicit and Explicit Futures

e ::= . . . | then(e, e) | forward e E ::= . . . | then(E, e) | then(v,E) | forward E

We show the most interesting reduction rules in Figure 4: Red-Get captures blocking
synchronisation through get on a future f . Red-Chain-New attaches a callback e on a
future f to be executed (rule Red-Chain-Run) once f is fulfilled. Chaining on a future
immediately returns another future which will be fulfilled with the result of the callback.
Red-Forward captures delegation. Like return it immediately finishes the current task,
replacing it with a “chain task” that will fulfil the same future as the removed task. This
chain will be executed when the delegated task is finished, i.e., when the future h is fulfilled.

Reduction rules: e→ e′

(Red-Get)
(taskf E[get h]) (futh v)→ (taskf E[v]) (futh v)

(Red-Chain-Run)
(chaing f e) (futf v)→ (taskg (e v)) (futf v)

(Red-Chain-New)
fresh g

(taskf E[then(h, e)])→ (futg) (chaing h λx.e) (taskf E[g])

(Red-Forward)
(taskf E[forward h])→ (chainf h λx.x)

Typing rules: Γ `ρ e : τ

(T-Chain)
Γ `ρ e : Fut τ Γ, x : τ `• e′ : τ ′

Γ `ρ then(e, e′) : Fut τ ′

(T-Forward)
Γ `ρ e : Fut ρ ρ 6= •
Γ `ρ forward e : τ

Figure 4 Reduction and typing rules of forward calculus.

The most interesting type rules deal with future chaining and forward. By T-Forward,
fulfilment of the current future can be delegated to any expression returning a future. The
requirement ρ 6= • prevents the use of forward inside lambda expressions. Otherwise, a
lambda could be sent to another task and run in a context different from its defining context,
which could inadvertently modify the return type of a task, leading to unsoundness. By
T-Forward, any type can be used as the result type. Since forward halts the execution of
the current task, there is no traditional return value from forward, which makes this practice
sound. T-Chain types the chaining on the result of any expression returning a future.

Summary. Delegation allows the programmer to push the fulfilment of the current-in-call
future to another task, thereby avoiding future nesting both in types and at run-time. Here,
the result of get can be another future and a concrete value cannot be used when a future is
expected. While Future Proliferation is avoided, the programmer needs to explicitly insert
delegation points and there are restrictions on code reuse with and without future values.

4 Godot: Integrating Data- and Control-Flow Futures and Delegation

The core contribution of this paper is Godot [5], a system that seamlessly integrates data-flow
explicit futures and control-flow explicit futures, and extends them to increase expressiveness
while reducing the number of future values needed at run-time. The resulting system uses
forward-style implicitly on data-flow futures. For clarity, in the sequel, control-flow futures
will retain the Fut τ type, and data-flow futures will be denoted by Flow τ .

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:11

4.1 Design Space and Formal Semantics
Godot is formalised as two distinct versions of a core calculus using a concurrent, task-based,
modified version of System F: FlowFut that uses data-flow futures as primitives and uses
them to encode control-flow futures (Section 4.2); and FutFlow that uses control-flow futures
as primitives and uses them to encode data-flow futures (Section 4.3). The target audience
for FlowFut is language designers who wish to add Godot to a language without futures.
The target audience for FutFlow is language designers who wish to incorporate Godot in a
language that already supports control-flow futures.

The core calculus contains tasks, control-flow futures and data-flow futures, and operations
on them. For simplicity, we abstract from mutable state, as this would detract from the
main points. We use explicit futures, recall that control-flow futures are typed by Fut τ and
data-flow futures by Flow τ . Operations on data-flow futures are distinguished by a ?, e.g.,
get operates on Fut τ and get* operates on Flow τ , etc.

The calculus consists of two levels: configurations and expressions. Configurations
represent the run-time as a collection of concurrent tasks, futures, and asynchronous chained
operations. Expressions correspond to programs and what tasks evaluate to. A task represents
a unit of work and its result is placed in either a flow or future abstraction, depending on the
type system. A task represents any asynchronous computation, it can for example correspond
to a runnable task in Java, or a message treatment in actor and active object languages.

Chaining operations on either data-flow and control-flow futures attaches a closure to the
future that will be schedulable when the future is fulfilled. Abstracting from mutable state,
we cannot model the consequences of closures with side effects, but we can easily integrate
any pre-existing approach, e.g., [9]. With respect to the simple calculi in Section 3, we
add a return expression which immediately finishes a task with a given return value. This
expression has been added to show how we reduce the creation of futures upon returning
from a task with respect to data-flow futures. The return construct shares limitations with
the forward construct, which we explain in the coming subsections.

The remainder of Section 4.1 introduces parts of the language that are common to both
calculi: run-time configurations, types, and their static and run-time semantics. We delay
the presentation of expressions and values, their static and run-time semantics and the type
and term encodings of one future type in terms of the other to Sections 4.2 and 4.3.

Syntax. The calculus contain run-time configurations, expressions, and values.

config ::= ε | (flowf) | (flowf v) | (futf) | (futf v) | (taskf e) | (chainf f e) | config config

Configurations represent running programs. A global configuration config represents the
global state of the system, e.g., (taskf e) (flowf) represents a global configuration with a
single task running expression e, whose result will fulfil flow f . Partial configurations config
show a view of the state of the program, and are multisets of unfulfilled futures ((flowf) and
(futf)), fulfilled futures ((flowf v) and (futf v)), tasks (taskf e), and chains (chainf f e),
where the empty configuration is ε and multiset union is denoted by whitespace.

Note that flow and fut configurations do not co-exist. Depending on the calculus, a task
fulfils either a flow or a fut. This distinction is clarified in each respective calculus.

Static Semantics. The types, τ ::= K | τ → τ | X | ∀X.τ | Flow τ | Fut τ , are the
common basic types (K), abstraction (τ → τ), type variables (X), universal quantification
(∀X.τ), flow types (Flow τ) and future types (Fut τ). In the typing rules, we assume that

ECOOP 2019

2:12 Godot: All the Benefits of Implicit and Explicit Futures

(T-UFlow)
f ∈ dom(Γ)

Γ ` (flowf) ok

(T-TaskFlow)
f : Flow τ ∈ Γ Γ `τ e : τ

Γ ` (taskf e) ok

(T-FFlow)
f : Flow τ ∈ Γ Γ `• v : τ

Γ ` (flowf v) ok

(T-UFut)
f ∈ dom(Γ)
Γ ` (futf) ok

(T-TaskFut)
f : Fut τ ∈ Γ Γ `τ e : τ

Γ ` (taskf e) ok

(T-FFut)
f : Fut τ ∈ Γ Γ `• v : τ

Γ ` (futf v) ok

(T-ChainFlow)
f : Flow τ ∈ Γ g : Flow τ ′ ∈ Γ Γ `τ e : τ ′ → τ

Γ ` (chainf g e) ok

(T-ChainFut)
f : Fut τ ∈ Γ g : Fut τ ′ ∈ Γ Γ `τ e : τ ′ → τ

Γ ` (chainf g e) ok

(T-Empty)

Γ ` � ok

(T-Config)
Γ ` config1ok defs(config1) ∩ defs(config2) = ∅

Γ ` config2ok writers(config1) ∩ writers(config2) = ∅

Γ ` config1 config2 ok

(T-GConfig)
Γ ` config ok

dom(Γ) = defs(config)
Γ ` config

Figure 5 Well-formed configurations. The helper functions defs(config) and writers(config)
extract the set of futures (data-flow and control-flow) or writers of futures in a configuration.

the types of the premises are normalised. We denote the normalised type τ by ↓τ , i.e., the
type τ with flattened flow types, defined inductively:

↓K = K ↓X = X ↓∀X.τ = ∀ ↓X. ↓τ ↓(τ → τ ′) = ↓τ → ↓τ ′

↓Flow (Flow τ) = ↓Flow τ ↓Flow τ = Flow ↓τ if τ 6= Flow τ ′ ↓Fut τ = Fut ↓τ

Well-Formed Configurations. Type judgements Γ ` config ok express that configurations
are well-formed in an environment Γ that gives the types of futures (Figure 5). Unfulfilled
flow and future configurations are well-formed if their variable f exists in the environment
(T-UFlow, T-UFut). Tasks are well-formed if their body is well-typed with the type of the
future or flow they are fulfilling (T-TaskFlow, T-TaskFut).

The meaning of Γ `ρ e : τ is that e has type τ under Γ inside a task whose static return
type is ρ, where ρ ::= τ | •. Once the concrete syntax is introduced for the two calculi, this
notation is used to express that a return inside e must return a value of type ρ. The special
form • of ρ disallows the use of return. Thus, by (T-FFlow) and (T-FFut), values of fulfilled
flow configurations cannot be lambda expressions containing a return expression. Chained
configurations are well-formed if their bodies are well-typed. Note that the body must be a
lambda function (T-ChainFlow, T-ChainFut).

Configurations are well-formed if all sub configurations have disjoint futures and there
are not two tasks writing to the same future (T-Config, T-GConfig). (The definitions of
auxiliary functions defs() and writers() are straightforward.) These side conditions ensure
that there are no races on fulfilment.

Dynamic Semantics. Configurations consist of a multiset of tasks, data-flow futures and
chained configurations with an initial program configuration (flowfmain) (taskfmain e), where
fmain is fulfilled by the result of e at the end of execution. Configurations are commutative
monoids under configuration concatenation, with ε as unit (Figure 6). The configuration
evaluation rules (Figure 6) describe how configurations make progress, which is either by
some subconfiguration making progress, or by rewriting a configuration to one that will make
progress using the equations of multisets.

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:13

Equivalence relation

config ε ≡ ε config config config′ ≡ config′ config config (config′ config′′) ≡ (config config′) config′′

Configuration run-time

(R-FulfilFlowValue)
¬isflow?(v)

(taskf v) (flowf) −→ (flowf v)

(R-FulfilFlow)
isflow?(g)

(taskf g) −→ (chainf g λx.x)

(R-FutFulfilValue)
v 6= u v′

(taskf v) (futf) −→ (futf v)

(R-FlowCompression)
(taskf u g)→ (chainf g λx.x)

(R-ChainRunFlow)
(chaing f e) (flowf v) −→ (taskg (e v)) (flowf v)

(R-ChainRunFut)
(chaing f e) (futf v)→ (taskg (e v)) (futf v)

(R-Config)
config → config′′

config config′ → config′′ config′

(R-ConfigEquiv)
config ≡ config′ config′ → config′′ config′′ ≡ config′′′

config → config′′′

Figure 6 Configuration run-time and configuration equivalence rules modulo associativity and
commutativity. u v represents the encoding of a data-flow future in terms of a control-flow futures.

4.2 FlowFut: Primitive Data-Flow and Encoded Control-Flow Futures
This section presents FlowFut which instantiates the expression syntax of Godot presented
in the previous section. FlowFut has primitive support for data-flow futures and support
for control-flow futures as an extension, using an encoding in terms of data-flow futures.
We first describe a sublanguage that only has data-flow futures before extending it with
control-flow futures. FlowFut illustrates how to extend a language with data-flow future like
ProActive [3], JavaScript, or DeF [20] to support control-flow futures. Note that DeF is the
only language that has explicit data-flow futures but it has currently no implementation.

The FlowFut sublanguage contain expressions and values:

e ::= v | e e | e [τ] | return e | async* e | get* e | then*(e, e) | � e | unbox e
v ::= c | x | f | λx.e | λX.e | � v

Expressions are values (v), application (e e), type application (e [τ]), the return of expressions
(return e), spawning an asynchronous task returning a data-flow future (async* e), blocking
on the fulfilment of a data-flow future (get* e) and future chaining to attach a callback on
a future to be executed on the future’s fulfilment (then*(e, e)). To support the encoding
of control-flow futures, a lifting operation that we call boxing is introduced (� e) together
with a dual unboxing operation (unbox e). Values are constants, variables, data-flow futures,
abstraction, and type abstraction. Additionally, a value may be boxed (� v).

Static Semantics. The type system has the common types except the control-flow future
type (Fut τ). In its stead, we use a type encoded in terms of data-flow futures, � τ . We show
explicit flattening rules for the encodings of control-flow futures in terms of data-flow futures.

Types: τ :: = K | τ → τ | X | ∀X.τ | Flow τ | � τ
Previous flattening rules and: ↓� τ = � ↓τ

ECOOP 2019

2:14 Godot: All the Benefits of Implicit and Explicit Futures

(TF-Env)

` ε

(TF-EnvExpr)
x /∈ dom(Γ) Γ ` τ

` Γ, x : τ

(TF-EnvVar)
X /∈ dom(Γ) ` Γ

` Γ, X

(TF-K)
` Γ

Γ ` K

(TF-Flow)
Γ ` τ τ 6= Flow τ ′

Γ ` Flow τ

(TF-Arrow)
Γ ` τ Γ ` τ ′

Γ ` τ → τ ′

(TF-X)
X ∈ Γ ` Γ

Γ ` X

(TF-Forall)
Γ, X ` τ
Γ ` ∀X.τ

(Box)
Γ ` τ

Γ ` � τ

Figure 7 Type formation rules where Γ ::= ε | Γ, x : τ | Γ, X.

(T-Constant)
c has typeK Γ ` K

Γ `ρ c : K

(T-Variable)
x : τ ∈ Γ ` Γ

Γ `ρ x : τ

(T-Flow)
f : Flow τ ∈ Γ ` Γ

Γ `ρ f : ↓Flow τ

(T-ValFlow)
Γ `ρ e : τ

Γ `ρ e : ↓Flow τ

(T-Return)
Γ `τ e : τ τ 6= • Γ ` τ ′

Γ `τ return e : τ ′

(T-Abstraction)
Γ, x : τ `• e : τ ′

Γ `ρ λx.e : τ → τ ′

(T-Box)
Γ `ρ e : τ

Γ `ρ � e : � τ

(T-Unbox)
Γ `ρ e : � τ

Γ `ρ unbox e : τ

(T-Application)
Γ `ρ e1 : τ → τ ′ Γ `ρ e2 : τ

Γ `ρ e1 e2 : τ ′

(T-TypeAbstraction)
Γ, X `• e : τ

Γ `ρ λX.e : ↓∀X.τ

(T-TypeApplication)
Γ, X `ρ e : ∀X.τ ′

Γ `ρ e [τ] : ↓τ ′[τ/X]

(T-AsyncStar)
Γ `τ e : τ

Γ `ρ async* e : ↓Flow τ

(T-GetStar)
Γ `ρ e : Flow τ
Γ `ρ get* e : τ

(T-ThenStar)
Γ `ρ e1 : Flow τ ′ Γ `τ e2 : τ ′ → τ

Γ `ρ then*(e1, e2) : ↓Flow τ

Figure 8 Typing of expressions where futures are encoded as Fut τ =̂ �Flow τ .

Well-Typed Expressions. The type formation rules are given in Figure 7 and the typing
rules are given in Figure 8. In places where a return may appear, ρ is some τ , the return type
of the task, ρ, otherwise •, which makes return ill-typed. This (or something equivalent) is
necessary – otherwise passing a lambda that contains a return to another task might change
the return type of the task, not of the expression.

The type rules consist of the common System F typing rules: typing of a constant (T-
Constant), typing variables (T-Variable), the abstraction typing rule (T-Abstraction)
that sets the return type of the task to •, preventing return in lambdas, and application (T-
Application). Type abstraction and application are the common ones with the distinctive
flattening of the types (T-TypeAbstraction and T-TypeApplication). The rules
regarding Flow τ types state that an expression of type τ can be lifted to a Flow τ (T-
ValFlow), spawning a task returns a data-flow future type and the spawned task sets
its returned type to that of the expression running asynchronously (T-AsyncStar). The
constructs get* e returns the content of the data-flow future (T-GetStar). Chaining on a
data-flow future adds a callback to expression e1, returning immediately a new data-flow
future (T-ThenStar). Control-flow futures are encoded in terms of data-flow futures with
the � e operator with type � τ , where Fut τ =̂ � τ .

Dynamic Semantics. Configurations are as in the previous section, except using control-
flow futures. Thus, the initial program configuration is (futfmain) (taskfmain e), where fmain is
fulfilled by the result of e at the end of execution. The dynamic semantics are formulated

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:15

(R-β)
(taskf E[λx.e v]) −→ (taskf E[e[v/x]])

(R-TypeApplication)
(taskf E[(λX.e) [τ]])→ (taskf E[e[τ/X]])

(R-GetStar)
isflow?(g)

(taskf E[get* g]) (flowg v) −→ (taskf E[v]) (flowg v)

(R-GetVal)
¬isflow?(v)

(taskf E[get* v]) −→ (taskf E[v])

(R-AsyncStar)
fresh f

(taskg E[async* e]) −→ (flowf) (taskf e) (taskg E[f])

(R-Return)
(taskf E[return v])→ (taskf v)

(R-ChainRunFlow)
(chaing f e) (flowf v) −→ (taskg (e v)) (flowf v)

(R-FulfilFlowValue)
¬isflow?(v)

(taskf v) (flowf) −→ (flowf v)

(R-ChainVal)
¬isflow?(v) fresh g

(taskf E[then*(v, λx.e)]) −→ (flowg) (taskg (λx.e) v) (taskf E[g])

(R-FulfilFlow)
isflow?(g)

(taskf g) −→ (chainf g λx.x)

(R-ChainFlow)
isflow?(h) fresh g

(taskf E[then*(h, λx.e)]) −→ (flowg) (chaing h λx.e) (taskf E[g])

(R-Unbox)
(taskf E[unbox (� v)]) −→ (taskf E[v])

Figure 9 Run-time semantics.

as a small-step operational semantics with reduction-based, contextual rules for evaluation
within tasks. Evaluation contexts E contain a hole • that denotes the location of the next
reduction step [40].

E ::= • | E e | v E | return E | get* E | then*(E, e) | then*(v,E)
| �E | unboxE | E [τ]

The reduction rules (Figure 9) are the common β-reduction and type application from System
F. The blocking operation get* v performs a run-time check to test whether the value v is
a data-flow future or simply a value lifted to one. If it is a data-flow future, the value is
extracted (R-GetStar); in case of a value, it is left in place (R-GetVal). Spawning a task
creates a fresh data-flow future and task with a new task identifier, and the operation returns
immediately the created future (R-AsyncStar). Returning from a task just throws away
the execution context (R-Return), so that the task can fulfil its associated future in the
next step. This next step depends on whether the value that fulfils the task is a future or a
concrete value. If the task finishes with a data-flow future, the run-time chains the returned
future to the identity function. This causes the value from the returned future to propagate
to the current-in-call future (R-FulfilFlow). If the return value of a task is not a data-flow
future, then this simply fulfils the current-in-call future (R-FulfilFlowValue). A chained
configuration waits until the dependent data-flow future is fulfilled, then it executes the
callback associated with it (R-ChainRunFlow). Expression-level chaining on data-flow
futures checks at run-time whether target of the chain operation on is a data-flow future or a
lifted value. In the former case, it lifts the chaining from the expression to the configuration
level, returning immediately a new data-flow future (R-ChainFlow). In the latter case,
chaining creates a new task to apply the chained function (R-ChainVal). The reason for

ECOOP 2019

2:16 Godot: All the Benefits of Implicit and Explicit Futures

spawning a new task is to preserve consistent behaviour across chaining on fulfilled and
unfulfilled futures. If chaining on a fulfilled future executed immediately, and synchronously,
we would increase the latency of the current task, or – if FlowFut is implemented in a
language with mutable state – potentially introduce a race condition as it is unclear whether
a chained lambda function executes directly (and synchronously) or not. This design saves a
programmer from such potential hassles.

The unboxing operator unpacks the boxed value (R-Unbox). It is important for encoding
of control-flow futures in terms of data-flow futures, described in the upcoming section.
Boxed values will be introduced in conjunction with the encoding.

Extending FlowFut with Control-Flow Futures. In this section we show how to extend the
language with control-flow futures encoded in terms of data-flow futures. Operations on data-
flow futures transparently traverse any number of (invisible-from-the-typing) nested data-flow
futures until they reach a concrete value or a control-flow future. The inclusion of the
boxed values allow us to straightforwardly encode Fut τ thus: Fut τ =̂ � Flow τ . Using this
encoding, we extend FlowFut with equi-named operations on control-flow futures, dropping
the ? for clarity. It is straightforward to encode each operation using its corresponding
?-version combined together with � and unbox:

get e =̂ get* (unbox e) then(e, e′) =̂ � then*(unbox e, e′) async e =̂ � async* e

A control-flow future is always a boxed value, where the value can be anything including
another future (data-flow or control-flow), or a concrete value. To perform control-flow
future operations, one always needs to unpack the box and use its equivalent data-flow future
operator. When an operator returns a new control-flow future (chaining and spawning a
task), the return value needs to be boxed again.

Similarly, we extend FlowFut with type rules for these operations. These are the same
as their ?-versions except that they use control-flow future types. Chaining takes a control-
flow future and a function acting as callback and returns immediately a new control-flow
future (T-Then). Spawning a task returns immediately a control-flow future (T-Async).
Blocking access on a control-flow future returns the value inside the future (T-Get).

(T-Then)
Γ `ρ e1 : Fut τ ′ Γ `ρ e2 : τ ′ → τ

Γ `ρ then(e1, e2) : Fut τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Because data-flow futures do not allow observing completion of individual stages of an
operation returning a nested future, we design our system to always “forward-compress” the
return value of a flow, meaning we treat return of data-flow futures implicitly as a forward
from [13], which addresses the Future Proliferation Problem. This brings us to the final
extension of FlowFut with support for forward. Forwarding a control-flow future is just
unpacking it and returning it, whereas forwarding a data-flow future is equivalent to return:

forward e =̂ return (unbox e) forward* e =̂ return e

And the type rules are straightforward: (Note that τ ′ can be any well-formed type as the
expression will not have a usual return type, but instead finish the enclosing task.)

(T-Forward)
Γ ` τ ′ Γ `τ e : Fut τ

Γ `τ forward e : τ ′

(T-Forward-Star)
Γ ` τ ′ Γ `τ e : Flow τ

Γ `τ forward* e : τ ′

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:17

I Theorem (Progress for FlowFut). Given a global configuration config, if Γ ` config ok, then
config is a terminal configuration or there exists a config′ such that config → config′.

I Theorem (Preservation for FlowFut). Given a global configuration config, if Γ ` config ok
and config → config′, then there exists a Γ′ such that Γ′ ⊇ Γ and Γ′ ` config′ ok.

Proof. Both proofs are by induction on the derivation of the shape of config . J

We now move to FutFlow, which has control-flow futures as its primitive form of future.
Section 5 revisits FlowFut and FutFlow, and discusses optimisation and implementation issues.

4.3 FutFlow: Primitive Control-Flow and Encoded Data-Flow Futures

A large number of programming languages implement control-flow explicit futures, natively
(e.g., ABS [22], Encore [7], Joelle [10]) or through standard or third-party libraries (e.g.,
Java [32, 17], Akka [41]). In this section we explain, through the calculus FutFlow, how to
extend such a semantic model to also encompass control-flow futures and delegation. Thus,
in contrast to FlowFut, we now encode data-flow futures in terms of control-flow future types.

The calculus (omitting operations on data-flow futures) contains expressions and values:

e ::= v | e e | e [τ] | return e | async e | get e | then(e, e) | forward e
v ::= c | x | f | λx.e | λX.e

The key difference to FlowFut is the inclusion of forward as a primitive.

Static Semantics. The type system has the following types: the common basic types (K),
abstraction (τ → τ), type variables (X), universal quantification (∀X.τ), and control-flow
future types (Fut τ).

Types: τ ::= K | τ → τ | X | ∀X.τ | Fut τ

Well-Typed Expressions. The type formation rules are given in Figure 10 and expression
typing is shown in Figure 11 – similar to Section 4.2. Most rules should be straightforward
and have appeared before in similar form. Note lack of ? on operators to highlight the
control-flow nature.

(TF-Env)

` ε

(TF-EnvExpr)
x /∈ dom(Γ) Γ ` τ

` Γ, x : τ

(TF-EnvVar)
X /∈ dom(Γ) ` Γ

` Γ, X

(TF-K)
` Γ

Γ ` K

(TF-Fut)
Γ ` τ

Γ ` Fut τ

(TF-Arrow)
Γ ` τ Γ ` τ ′

Γ ` τ → τ ′

(TF-X)
X ∈ Γ ` Γ

Γ ` X

(TF-Forall)
Γ, X ` τ
Γ ` ∀X.τ

Figure 10 Type formation rules where Γ ::= ε | Γ, x : τ | Γ, X.

ECOOP 2019

2:18 Godot: All the Benefits of Implicit and Explicit Futures

(T-Constant)
c has typeK Γ ` K

Γ `ρ c : K

(T-Variable)
x : τ ∈ Γ ` Γ

Γ `ρ x : τ

(T-Fut)
f : Fut τ ∈ Γ ` Γ

Γ `ρ f : Fut τ

(T-Return)
Γ `τ e : τ τ 6= • Γ ` τ ′

Γ `τ return e : τ ′

(T-Abstraction)
Γ, x : τ `• e : τ ′

Γ `ρ λx.e : τ → τ ′

(T-Application)
Γ `ρ e1 : τ → τ ′ Γ `ρ e2 : τ

Γ `ρ e1 e2 : τ ′

(T-Forward)
Γ ` τ ′ τ 6= • Γ `τ e1 : Fut τ

Γ `τ forward e1 : τ ′

(T-TypeAbstraction)

Γ, X `• e : τ
Γ `ρ λX.e : ∀X.τ

(T-TypeApplication)

Γ, X `ρ e : ∀X.τ ′

Γ `ρ e [τ] : τ ′[τ/X]

(T-Then)
Γ `ρ e1 : Fut τ ′ Γ `τ e2 : τ ′ → τ

Γ `ρ then(e1, e2) : Fut τ

(T-Async)
Γ `τ e : τ

Γ `ρ async e : Fut τ

(T-Get)
Γ `ρ e : Fut τ
Γ `ρ get e : τ

Figure 11 Typing of expressions.

(R-β)
(taskf E[λx.e v]) −→ (taskf E[e[v/x]])

(R-Async)
fresh f

(taskg E[async e]) −→ (futf) (taskf e) (taskg E[f])

(R-ChainRunFut)
(chaing f e) (futf v) −→ (taskg (e v)) (futf v)

(R-Get)
(taskf E[get h]) (futh v) −→ (taskf E[v]) (futh v)

(R-FutFulfilValue)
(taskf v) (futf) −→ (futf v)

(R-TypeApplication)
(taskf E[(λX.e) [τ]])→ (taskf E[e[τ/X]])

(R-Forward)
(taskf E[forward h]) −→ (chainf h λx.x)

(R-Return)
(taskf E[return v]) (futf)→ (futf v)

(R-Then)
fresh g

(taskf E[then(h, λx.e)])→ (futg) (chaing h λx.e) (taskf E[g])

Figure 12 Run-time semantics.

Operational semantics. The operational semantics are similar to Section 4.2. Evaluation
contexts E contain a hole • that denotes where the next reduction step happens [40]:

E ::= • | E e | v E | then(E, e) | forward E | E [τ] | get E | return E

The reduction rules are similar to the FlowFut calculus, but work on control-flow futures (Fig-
ure 12). Beta reduction works in the traditional fashion. The async construct spawns a new
task to execute the given expression, and creates a new control-flow future to store its result
(R-Async). A chained configuration runs as soon as the dependent future is fulfilled and
passes the content of the fulfilled future to the callback expression, running the pending
computation on demand (R-ChainRunFut). Getting a value out of a future blocks the
execution until the future is fulfilled (R-Get). Tasks fulfil their implicit future implicitly,
when there are no more pending expressions to run, or explicitly via the return expression

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:19

(R-FutFulfilValue and R-Return). So far, most forward examples have avoided future
nesting by reusing the current-in-call future with a following asynchronous operation. This
avoids creation of an additional future, meaning nesting is not possible. It is also possible
to use forward to fulfil one existing future with the result of another without nesting or
blocking the current computation: forward h fulfils the current-in-call future with the value
in h by throwing away the remainder of the body of the current task and chaining the
identity function on h. This has the effect of copying the eventual result stored in h into the
current future (R-Forward). Chaining an expression on a future results immediately in a
new future that will eventually contain the result of evaluating the expression, and a chain
configuration storing the expression is connected with the original future (R-Then).

Extending FutFlow with Data-Flow Futures. In this section we show, first, the language
extensions necessary for encoding data-flow futures in terms of control-flow futures and,
second, the encodings.

We extend the calculus with the following expressions and values:

e ::= . . . | match(x : e, x : e, e) | u e v ::= . . . | u v

Expressions can now use a pattern matching operation, which is a common programming
construct [31, 24]. To encode data-flow futures, we define a boxing operation (u e) which uses
pattern matching for unboxing. To keep constructs simple, match and u are not intended as
source-level constructs, so u only works on data-flow futures in the formalism.

The type system has the previous common types with the addition of the u type – used
later for encoding data-flow futures in terms of control-flow futures. As in FlowFut, we show
explicit flattening rules for the encodings of data-flow futures:

Types: τ ::= . . . | u Fut τ

Previous flattening rules and: ↓u Fut (u Fut τ) = ↓u (Fut τ)
↓u Fut τ = u (↓Fut τ) τ 6= u Fut τ ′

Additional type rules for these constructs are found below. Notice how the introduction of
the explicit flattening rules require the update of two typing rules (T-TypeAbstraction
and T-TypeApplication). This is necessary to flatten u Fut τ types.

(Dia)

Γ ` τ
Γ ` u τ

(T-TypeAbstraction)

Γ, X `• e : τ
Γ `ρ λX.e : ↓∀X.τ

(T-TypeApplication)

Γ, X `ρ e : ↓∀X.τ ′

Γ `ρ e [τ] : ↓τ ′[τ/X]

(T-Match)
Γ, x : τ `ρ e1 : τ ′

Γ, x : Fut τ `ρ e2 : τ ′ Γ `ρ e3 : ↓u Fut τ
Γ `ρ match(x : e1, x : e2, e3) : τ ′

(T-ValFlow)

Γ `ρ e : τ
Γ `ρ e : ↓u Fut τ

(T-FlowFut)

Γ `ρ e : Fut τ
Γ `ρ u e : ↓u Fut τ

The match construct has two open terms as first and second arguments, the free variables
are captured at the declaration site; the third argument is a data-flow future type argument.
The first argument is applied if the data-flow future type is actually a value and the second
argument is applied to the value of the data-flow future type if the type was lifted from a
control-flow future. Essentially, match pattern matches on the form of the data-flow future
type. An expression of type τ can be lifted to u Fut τ (T-ValFlow and T-FlowFut).

ECOOP 2019

2:20 Godot: All the Benefits of Implicit and Explicit Futures

The dynamic semantics include now the pattern matching operation, which performs
beta reduction based on the form of the value v (R-Match-Val and R-Match-Fut).

The introduction of the boxing value – used to encode data-flow futures – requires special
care when fulfilling of a task. This is reflected in the updated rule R-FutFulfilValue
and on R-FlowCompression. If the value is not a data-flow future, i.e., v 6= u v′, then
the value fulfils the task’s future; if the value is a data-flow future, then it builds a chained
configuration to ultimately pull the value out, running the identity function.

(R-FutFulfilValue)
v 6= u v′

(taskf v) (futf) −→ (futf v)

(R-MatchVal)
(taskf E[match(x : e1, x : e2, v)]) −→ (taskf E[e1[v/x]])

(R-FlowCompression)
(taskf u g)→ (chainf g λx.x)

(R-MatchFut)
(taskf E[match(x : e1, x : e2,u g)]) −→ (taskf E[e2[g/x]])

With these new constructs, we can encode data-flow futures in terms of control-flow futures:
Flow τ =̂ u Fut τ . The term u e captures the lifting of a control-flow future value to Flow τ
(T-FlowFut). All operators on data-flow futures are encoded in terms of primitive operators:

async* e =̂ u async e
get* e =̂ match(x : x, x : get x, e)

then*(e, fn) =̂ match(x : fn x, f : u then(f, fn), e)
forward* e =̂ match(x : return x, f : forward f, e)

undiamond e =̂ get* e

The typing rules for operations on data-flow futures are expressed as an extension to the
typing rules of Figure 11. A data-flow future type can be “unlifted” so that we extract
its internal value (T-Undiamond). Any expression can be lifted from some τ or from a
control-flow future type to a data-flow future (rules T-Flow and T-FlowFut).

(T-Async-Star)
Γ `ρ e : τ

Γ `ρ async* e : ↓Flow τ

(T-Get-Star)
Γ `ρ e : ↓Flow τ
Γ `ρ get* e : τ

(T-Then-Star)
Γ `ρ e1 : ↓Flow τ ′ Γ `ρ e2 : τ ′ → τ

Γ `ρ then*(e1, e2) : ↓Flow τ

(T-Forward-Star)
Γ `τ e : ↓Flow τ

Γ `τ forward* e : τ ′

(T-Undiamond)
Γ `ρ e : ↓u Fut τ

Γ `ρ undiamond e : τ

This concludes the presentation of FutFlow. In the next section, we discuss optimisations
in FlowFut and FutFlow, and implementation issues.

I Theorem (Progress for FutFlow). Given a global configuration config, if Γ ` config ok, then
config is a terminal configuration or there exists a config′ such that config → config′.

I Theorem (Preservation for FutFlow). Given a global configuration config, if Γ ` config ok
and config → config′, then there exists a Γ′ such that Γ′ ⊇ Γ and Γ′ ` config′ ok.

Proof. Both proofs are by induction on the derivation of the shape of config . J

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:21

4.4 Godot’s Solutions to Future Problems
We now revisit the problems of Section 2 and show how Godot addresses them.

The Type Proliferation Problem. Because of the data-flow future component, the Type
Proliferation Problem is avoided. Like with DeF, the following statement is typeable (as is
tail-recursive functions) and returns a Flow[t] (the equivalent of Flow τ in code examples):

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

Because data-flow futures allow implicitly lifting a concrete value of type t to Flow[t], code
using data-flow futures can be trivially reused with concrete values. This addresses the Type
Proliferation Problem, allowing one data-flow future type to represent zero or many run-time
futures. (See Figure 13 for additional details.)

horisont
uppsala
 2009

Uppsala universitets årsmagasin

Spädbarns sociala
kompetens

Fler farmaceuter
i vården

Innovationer inom
life science

Professorn som
skapar blixtar

async (if precomputed(v) then table.lookup(v) else worker ! compute(v))

:: t

:: Flow[t]

:: Flow[Flow[t]] which collapses to Flow[t]

:: Flow[t]

:: Flow[t]
∨

Figure 13 Overcoming the Type Proliferation Problem. Compare with Figure 2.

The Future Proliferation Problem. Because of support for delegation, the Future Prolifer-
ation Problem is avoided – but in a way that improves on forward. Since data-flow futures
abstract nesting, we can implicitly turn a return into a forward based on the return type,
and not require the programmer to explicitly choose a forwarding solution. Thus, we can
avoid the quirky looking return in one branch and forward in another, and simply write:

if precomputed(v) then return table.lookup(v) else return worker ! compute(v)

This allows us to hoist the return to write the original statement that would not type with
explicit control-flow futures, while still avoiding creation of unnecessary futures:

return if precomputed(v) then table.lookup(v) else worker ! compute(v)

The Fulfilment Observation Problem. The integration of both kinds of futures in a single
system avoids the Fulfilment Observation Problem by allowing a programmer to opt-in
on control-flow futures where desirable, without imposing a one-size-fits-all solution. The
following function definition uses explicit control-flow futures to allow the observation of
both stages – finding an idle worker and dispatching work to it and completing the job:

def perform(job : Job[t]) : Fut[t] { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job) −−f is a control−flow future
get(f) −−block until do_work() has been called

ECOOP 2019

2:22 Godot: All the Benefits of Implicit and Explicit Futures

In contrast, this function definition uses data-flow futures and therefore will not allow the
distinction between the two stages, and its return will be treated as a forward:

def perform(job : Job[t]) : Flow[t] { return idle_worker() ! do_work(job) }
var f = load_balancer ! perform(my_job) −−f is a data−flow future
get(f) −−block until do_work() has finished

Notably, the integrated system also supports the nesting of different kinds of futures. For
example, Flow[Fut[Flow[t]]] denotes a value computed by a pipeline of zero or more
asynchronous operations whose individual completedness cannot be distinguished, followed
by a control-flow future corresponding to a single operation whose completedness can be
observed, followed by another pipeline of zero or more asynchronous operations.

Concluding Remarks. In addition to addressing all three problems of Section 2, Godot
overcomes a limitation in the initial DeF proposal for data-flow explicit futures in [20]
by adding support for parametric polymorphism. In fact, DeF did not study parametric
polymorphism and it is not trivial to add, as standard techniques [33] prevent the collapsing
of nested future types. For example, in DeF the following function problematic = (λX.λy :
X. async* y) has type ∀X.X → FlowX and, after type application problematic [FlowK] ::
Flow (FlowK), which forces a programmer to insert multiple get operations to obtain a
concrete value from a data-flow future, which breaks the DeF invariant that a single get is
always enough to access a concrete value. In Godot, the problematic function after type
application has type FlowK, because typing rules normalise flow types and get* guarantees
access to a concrete value.

Using Godot, a programmer can decide to abstract or expose details about how values are
produced through asynchronous operations, by freely choosing between control-flow futures
and data-flow futures or any combination thereof. And in the case of data-flow futures,
profit from how Godot automatically avoids creating unnecessary (unobservable) futures.
As the integration of control-flow futures, delegation, and data-flow futures improves the
individual components (e.g., the support for parametric polymorphism with data-flow futures
and type-driven automatic insertion of forward), Godot is greater than the sum of its parts.
Moreover, as the next sections will show, it is possible to encode either kind of future in the
other, which facilitates their implementation in a programming language. This realisation is
an important aspect of our contributions, which extends beyond “taking the union.”

This section has put in perspective Godot as solution to the Type Proliferation Problem,
Future Proliferation Problem, and Fulfilment Observation Problem through the integration
of control-flow futures and data-flow futures in an explicit system with support for implicit
delegation. The previous sections 4.1–4.3 explain Godot in detail.

5 Discussion

The preceding two sections showed how to encode data-flow futures in a language that only
provides control-flow futures, and the opposite; both approaches rely on small extensions
of the type system and encodings of operations for one type of futures into the other. We
review below the preceding results from an implementation and optimisation point of view.

5.1 Avoiding Future Nesting through Implicit Delegation
We revisit the example from the introduction to the Fulfilment Observation Problem (Sec-
tion 2). We imagine that this method runs in the context of an actor that “load-balances” by

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:23

farming out jobs to the worker returned from the idle_worker(). As discussed previously, this
is a case where control-flow explicit futures insert an additional, possibly unwanted, future
indirection due to the additional asynchronous call handing the work off to some worker.

def perform(job : Job[t]) : Flow[t] { return idle_worker() ! do_work(job) }

as the programmer declared the return type of perform() as Flow[t], the implementation
is less restricted (e.g., we can either delegate to a worker or return a cached result without
the typing problems of Figure 2). The programmer is not interested in any intermediate
stages of the computation, and we can compile the method body replacing return with
forward. This optimisation is crucial for making asynchronous tail-recursive calls run in
constant space.

We model this example and optimisation in FlowFut (or FutFlow) as if the body of
perform() executes inside a task, whose final expression is a return async* with the body of
do_work() inside it. We express this optimisation in FlowFut as follows (rule ReturnAsync):

(ReturnAsync)
fresh j

(taskif E[return async* e])→ (taskjf e)

(ReturnThen)
isflow?(g)

(taskif E[return then*(g, e)])→ (chainf g e)

For clarity, we add identifiers i and j to the tasks to highlight that there is no reuse of a
task (which models delegating work to another concurrent actor), but a reuse of a future
(the semantics of forward). We apply a similar optimisation (rule ReturnThen) when
returning the result of future chaining: task i delegates the fulfilment of f to the chain task,
and the delegating task finishes (and is removed in the calculus).

How Nesting Causes False Fulfilment. As exemplified in the previous section, implicit
delegation avoids the creation of nested futures. We now illustrate why false fulfilment can
happen if we do not avoid future nesting. Consider the implementation of get* and suppose
we had a non-optimised version of FlowFut that has nesting of futures. Formally, we would
have a reduction rule – (flowf) (taskf g)→ (flowf g) – that fulfils a data-flow future with
another data-flow future. As a consequence, get* must perform a run-time test, and branch
on whether a future is fulfilled by a concrete value or another future:

(R-GetStarFlow-Unopt)
isflow?(g)

(taskf E[get* g]) (flowg v)→ (taskf E[get* v]) (flowg v)

(R-GetStarVal-Unopt)
¬isflow?(g)

(taskf E[get* v′]) → (taskf E[v′])

The key rule above is R-GetStarFlow-Unopt which shows that a get* yielding a future
reduces to another get* , meaning we move to another possibly blocked state. This does not
happen in FlowFut. Indeed, if a task returns a data-flow future g in a way that delegation
could not elide, by R-FulfilFlowValue we use future chaining on g and tell g to fulfil f
on its fulfilment instead having f effectively polling g through the implementation of get* .

5.2 Notes on Implementing Godot
Let us first consider the encodings. Implementing the encoding rules, either as a compilation
phase or even as a library is pretty straightforward except from the following points.

1. Both encodings rely on the existence of a boxing construct. Such a construct can be
easily encoded with a datatype or an object type. However due to the simplicity of the
operations on boxes a native implementation could be more efficient.

ECOOP 2019

2:24 Godot: All the Benefits of Implicit and Explicit Futures

2. The encoding of data-flow futures from control-flow ones requires a pattern matching
operator (or equivalent) that can distinguish data-flow futures from other values, unless
lifting actually creates a fulfilled data-flow future. Standard compiler optimisations are
applicable here, such as synthesising different methods from a single specification, e.g.,
one applies only to values where future types are removed, one applies only to statically
verified actual data-flow futures, and one for all other cases, or combinations.

Second, consider the type system extensions. In both cases, the type system of the
language can be extended with the existing rules without major difficulty. Additionally,
without modifying the type system if the data-flow future language has parametric types it
seems possible to encode control-flow future typing rules: all typing rules necessary to extend
the data-flow future language can be expressed as typing of parametric types and functions.
In the other direction, it is slightly more involved as the type system of the control-flow
future language must implement a form of type collapse rule.

Overall, extending a language with data-flow (resp. control-flow) futures to also support
control-flow (resp. data-flow) futures raises no particular difficulty, and the encodings avoid
adding “native support” for both futures. The compiler and the type checker need a small
number of new, simple constructs. A data-flow future language may have to add chaining
on data-flow futures, or the control-flow future language should add pattern matching that
distinguishes data-flow futures. While all these extensions are minor, they will require some
modicum of language modifications. Consequently, the implementation of Godot as an
external library of a mainstream language is not straightforward: standard type systems
do not perform the implicit lifting required for data-flow futures, and the future chaining
required for data-flow futures rarely exist in control-flow futures. However, if a language with
data-flow futures already supports chaining, which is a common operation, implementing
control-flow futures in a non-intrusive manner – as an external library – seems to raise
no difficulty.

6 Related Work

Section 3 discusses the most closely related work on data-flow explicit futures (DeF) [20] and
future delegation [13] in detail. Earlier work on adapting a static analysis [16] from explicit
to implicit futures revealed the difference between the future accesses, and a translation
of control-flow synchronisation in ABS [22] to data-flow synchronisation in ProActive [21]
showed that control-flow synchronisation could not be simulated purely by implicit futures.

Futures are means for expressing concurrency while enabling synchronisation at the
latest possible time. They were first introduced by Baker and Hewitt in the 70’s [4], and
later rediscovered by Liskov and Shrira as Promises [27] and by Halstead in the context of
MultiLisp [25]. Flanagan and Felleisen did an early formalisation of futures [15] based on
MultiLisp’s futures with focus on the difference between explicit and implicit future access.
In a similar vein, λ(fut) [29] is a concurrent lambda calculus with futures with cells and
handles. Futures in λ(fut) are explicitly created, similarly to MultiLisp. We now consider
futures with respect to the dichotomy between implicit and explicit futures.

Implicit Futures. Implicit futures are indistinguishable from concrete values in source code.
Typically, data-flow synchronisation is based on implicit futures. In MultiLisp [25], the future
construct creates a thread and returns a future that can be manipulated by operations like
assignment, that do not need a real value, but the program would automatically block when
performing an operation requiring the value, i.e., futures are implicitly accessed but explicitly

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:25

created. Similar constructs can be found in Alice [35], Oz-Mozart [38], and ProActive [3].
The latter is a Java library for active objects in which futures are implicit like in MultiLisp;
futures are implemented with proxies that hide the future and provide a normal object
interface, but accessing a proxy leads to a synchronisation with the availability of the object,
i.e., the fulfilment of the future.

Explicit Futures. Explicit, typed futures appeared with ABCL/f [37] to represent the result
of an asynchronous method invocation, paving the way for active object languages [12].
Explicit futures typically have a parametric future type, and exist in, e.g., Concurrent
ML [34], C++ [26] and Java [39], often as libraries. Explicit futures open for different
ways of synchronising. Hybrid [30] is an early language with forwarding; in this paper,
Nierstrasz formulates a version of the Future Proliferation Problem of Section 2. Creol [23]
features non-blocking polling on futures that enables cooperative multi-threading based on
future availability. De Boer et al. [11] were probably among the first to offer a rich set of
future manipulation primitives for control flow, together with a compositional proof theory.
JCobox [36], ABS [22], and Encore have mostly reused these primitives [36, 22, 7]. Encore
additionally supports creation and manipulation of parallel tasks as sets of futures [14].

Akka [19, 41] is a scalable actor library implemented on top of Java and Scala, in which
futures are used either to allow actor messages to return a value or more automatically in
the messages of typed actors (akin to active objects). The Akka programmer is advised to
use asynchronous reaction on futures, i.e., register code to be executed when the future is
fulfilled. Akka’s map construct is similar to our then chaining construct. JavaScript promises
are data-flow synchronised futures with explicit asynchronous access and no typing. The
data-flow nature of the synchronisation distinguishes JavaScript from the other languages
with explicit futures and is probably related to the absence of future type. Because it is
untyped and promises are explicitly accessed and fulfilled, errors are frequently made when
manipulating these promises; Madsen et al. [28] provide a powerful tool to study these errors.

Futures in the Mainstream. Many modern, statically typed programming languages provide
control-flow futures through libraries to facilitate the creation and control of asynchronous,
concurrent computations. We highlight Completable Futures [32], Listenable Futures [17],
Scala Futures [18] and Akka Futures [1], and the Observable abstraction from the ReactiveX
library [2], where asynchronous computations may return (emit) more than one value.

Future libraries of mainstream languages have considerably richer interfaces than the
future abstractions in our core calculus, but, as far as we can tell, we provide all the necessary
operations to construct most, if not all, of these library interfaces.

Extending existing libraries with support for data-flow futures is an interesting direction
of future work. We take some preliminary steps in this direction in the companion artefact
of this paper which shows how to integrate data-flow futures with Scala futures.

There is an analogy between futures and the observable abstraction from the ReactiveX
library: both are control-flow constructs. Investigating whether the benefits of data-flow
futures can be carried over to observables is an interesting future direction of this work.

Finally, most future libraries establish futures as monads, such as Akka Futures or the
ReactiveX library. The control-flow futures from this paper are monadic, with async as its
unit and get as its join. Data-flow futures are monadic as well, although they work on a
smaller set of types, due to their implicit nature, i.e., they collapse Flow types.

ECOOP 2019

2:26 Godot: All the Benefits of Implicit and Explicit Futures

7 Conclusion

The distinction between implicit and explicit futures is well-known, but recent work highlights
that the relation between the typing and synchronisation discipline plays a more crucial aspect.

Following this observation, we identified three problems with existing future implementa-
tions: the Type Proliferation Problem restricts the expressiveness of control-flow futures; the
Fulfilment Observation Problem limits the synchronisation capacities of data-flow futures;
the Future Proliferation Problem makes both data-flow and control-flow futures inefficient.
This paper defines Godot, a system supporting both data-flow and control-flow futures
simultaneously, and in combination; our system is the first to do so, and also to solve
the three problems above coherently in a single programming model. Godot shows how
to add parametric polymorphism and automatic delegation for data-flow explicit futures,
and demonstrates how to encode each type of future in terms of the other. This facilitates
implementation of the full Godot system, or subsets, in existing programming languages, with
or without support for futures. We believe that our formalisms communicate the core ideas,
while not tying ourselves too closely to one particular kind of language or unit of concurrency.

While we developed two possible encodings, starting from a data-flow language seems a
bit more promising. Indeed, if data-flow futures are the default, the non-expert programmer
is only exposed to futures that do not suffer from Type Proliferation and where Future Prolif-
eration can be avoided automatically. Programs that need control on future synchronisation,
e.g., to implement load balancing or scheduling features, can use the encoding of control-flow
futures and avoid the Fulfilment Observation Problem.

References
1 Akka Futures. https://doc.akka.io/docs/akka/current/futures.html, 2019.
2 Rx Extensions. http://reactivex.io/, 2019.
3 Laurent Baduel, Francoise Baude, Denis Caromel, Arnaud Contes, Fabrice Huet, Matthieu

Morel, and Romain Quilici. Programming, Composing, Deploying for the Grid, pages 205–229.
Springer London, London, 2006.

4 Henry G. Baker and Carl E. Hewitt. The Incremental Garbage Collection of Processes. In
Proc. Symposium on Artificial Intelligence Programming Languages, number 12 in SIGPLAN
Notices, page 11, August 1977.

5 Samuel Beckett. Waiting for Godot. Samuel Beckett: The Complete Dramatic Works, pages
7–89, 1954.

6 Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H.
Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distrib.
Comput., 37(1):55–69, 1996. doi:10.1006/jpdc.1996.0107.

7 Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen,
Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. Parallel
Objects for Multicores: A Glimpse at the Parallel Language Encore. In Advanced Lectures on
Formal Methods for Multicore Programming - 15th Intl. School on Formal Methods for the
Design of Computer, Communication, and Software Systems (SFM 2015), volume 9104 of
Lecture Notes in Computer Science, pages 1–56. Springer, 2015.

8 Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous and deterministic
objects. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 123–134. ACM Press, 2004.

9 Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Tobias Wrigstad, and Albert Mingkun
Yang. Attached and Detached Closures in Actors. In Proc. 8th ACM SIGPLAN Intl. Workshop
on Programming Based on Actors, Agents, and Decentralized Control, AGERE 2018, pages
54–61. ACM, 2018. doi:10.1145/3281366.3281371.

https://doc.akka.io/docs/akka/current/futures.html
http://reactivex.io/
http://dx.doi.org/10.1006/jpdc.1996.0107
http://dx.doi.org/10.1145/3281366.3281371

K. Fernandez-Reyes, D. Clarke, L. Henrio, E. B. Johnsen, and T. Wrigstad 2:27

10 Dave Clarke, Tobias Wrigstad, Johan Östlund, and Einar Broch Johnsen. Minimal Ownership
for Active Objects. In G. Ramalingam, editor, Proc. 6th Asian Symposium on Programming
Languages and Systems (APLAS 2008), volume 5356 of Lecture Notes in Computer Science,
pages 139–154. Springer, 2008.

11 Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In
Proc. 16th European Symposium on Programming (ESOP’07), volume 4421 of Lecture Notes
in Computer Science, pages 316–330. Springer, 2007.

12 Frank S. de Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas, Crys-
tal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah, Kiko Fernandez-
Reyes, and Albert Mingkun Yang. A Survey of Active Object Languages. ACM Comput.
Surv., 50(5):76:1–76:39, 2017. doi:10.1145/3122848.

13 Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo. Forward to a
Promising Future. In Giovanna Di Marzo Serugendo and Michele Loreti, editors, Proc. 20th
IFIP WG 6.1 Intl. Conf. on Coordination Models and Languages (COORDINATION 2018),
volume 10852 of Lecture Notes in Computer Science, pages 162–180. Springer, 2018.

14 Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. ParT: An asynchronous paral-
lel abstraction for speculative pipeline computations. In Alberto Lluch-Lafuente and José
Proenca, editors, Proc. 18th IFIP WG 6.1 Intl. Conf. on Coordination Models and Languages
(COORDINATION 2016), volume 9686 of Lecture Notes in Computer Science, pages 101–120.
Springer, 2016. doi:10.1007/978-3-319-39519-7_7.

15 Cormac Flanagan and Matthias Felleisen. The Semantics of future and an application. Journal
of Functional Programming, 9(1):1–31, 1999.

16 Elena Giachino, Ludovic Henrio, Cosimo Laneve, and Vincenzo Mastandrea. Actors may
synchronize, safely! In PPDP 2016 18th International Symposium on Principles and Practice
of Declarative Programming , Edinburgh, United Kingdom, September 2016. URL: https:
//hal.inria.fr/hal-01345315.

17 Google. Listenable Future Explained. https://github.com/google/guava/wiki/
ListenableFutureExplained, January 2018.

18 Philipp Haller, Heather Miller, Aleksandar Prokopec, Viktor Klang, Roland Kuhn, and Vojin
Jovanovic. Futures and Promises. http://docs.scala-lang.org/overviews/core/futures.html,
2016.

19 Phillip Haller and Martin Odersky. Scala actors: Unifying thread-based and event-based
programming. Theoretical Computer Science, 410(2-3):202–220, 2009.

20 Ludovic Henrio. Data-flow Explicit Futures. Research report, I3S, Université Côte d’Azur,
April 2018. URL: https://hal.archives-ouvertes.fr/hal-01758734.

21 Ludovic Henrio and Justine Rochas. Multiactive objects and their applications. Logical Methods
in Computer Science, Volume 13, Issue 4, November 2017. doi:10.23638/LMCS-13(4:12)2017.

22 Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS:
A core language for abstract behavioral specification. In Bernhard Aichernig, Frank S. de Boer,
and Marcello M. Bonsangue, editors, Proc. 9th Intl. Symp. on Formal Methods for Components
and Objects (FMCO), volume 6957 of Lecture Notes in Computer Science, pages 142–164.
Springer Verlag, 2011.

23 Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-oriented
model for distributed concurrent systems. Theor. Comput. Sci., 365(1-2):23–66, 2006. doi:
10.1016/j.tcs.2006.07.031.

24 Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised Report. Cambridge
University Press, 2003.

25 Robert H. Halstead Jr. MultiLisp: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538, 1985. doi:10.1145/4472.4478.

26 R. Greg Lavender and Douglas C. Schmidt. Active Object: an Object Behavioral Pattern for
Concurrent Programming. Proc. Pattern Languages of Programs, 1995.

ECOOP 2019

http://dx.doi.org/10.1145/3122848
http://dx.doi.org/10.1007/978-3-319-39519-7_7
https://hal.inria.fr/hal-01345315
https://hal.inria.fr/hal-01345315
https://github.com/google/guava/wiki/ListenableFutureExplained
https://github.com/google/guava/wiki/ListenableFutureExplained
https://hal.archives-ouvertes.fr/hal-01758734
http://dx.doi.org/10.23638/LMCS-13(4:12)2017
http://dx.doi.org/10.1016/j.tcs.2006.07.031
http://dx.doi.org/10.1016/j.tcs.2006.07.031
http://dx.doi.org/10.1145/4472.4478

2:28 Godot: All the Benefits of Implicit and Explicit Futures

27 Barbara Liskov and Liuba Shrira. Promises: Linguistic Support for Efficient Asynchronous
Procedure Calls in Distributed Systems. In Richard L. Wexelblat, editor, Proceedings of
the ACM SIGPLAN’88 Conference on Programming Language Design and Implementation
(PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages 260–267. ACM, 1988. doi:10.1145/
53990.54016.

28 Magnus Madsen, Ondrej Lhoták, and Frank Tip. A model for reasoning about JavaScript
promises. PACMPL, 1(OOPSLA):86:1–86:24, 2017. doi:10.1145/3133910.

29 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A Concurrent Lambda Calculus
with Futures. Theoretical Computer Science, 364(3):338–356, November 2006.

30 Oscar Nierstrasz. Active Objects in Hybrid. In Norman K. Meyrowitz, editor, Proc. Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’87), pages
243–253. ACM, 1987.

31 Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc, 2008.
32 Oracle. JDK 10 for java.util.concurrent.Future. https://docs.oracle.com/javase/10/

docs/api/index.html?java/util/concurrent/Future.html, 2018.
33 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
34 John H. Reppy. Concurrent Programming in ML. Cambridge University Press, 1999.
35 Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus, and Gert Smolka.

Alice Through the Looking Glass, volume 5 of Trends in Functional Programming, pages 79–96.
Intellect Books, Bristol, UK, ISBN 1-84150144-1, Munich, Germany, February 2006.

36 Jan Schafer and Arnd Poetzsch-Heffter. JCoBox: Generalizing active objects to concurrent
components. ECOOP 2010–Object-Oriented Programming, pages 275–299, 2010.

37 Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. ABCL/f: A future-based poly-
morphic typed concurrent object-oriented language - its design and implementation. In
Proceedings of the DIMACS workshop on Specification of Parallel Algorithms, pages 275–292.
American Mathematical Society, 1994.

38 Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Programming.
MIT Press, March 2004.

39 Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for Java. In Proceedings
of the 20th annual ACM SIGPLAN conference on Object oriented programming, systems,
languages, and applications (OOPSLA’05), pages 439–453, New York, NY, USA, 2005. ACM
Press.

40 Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type Soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

41 Derek Wyatt. Akka Concurrency. Artima, 2013.

http://dx.doi.org/10.1145/53990.54016
http://dx.doi.org/10.1145/53990.54016
http://dx.doi.org/10.1145/3133910
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html
https://docs.oracle.com/javase/10/docs/api/index.html?java/util/concurrent/Future.html
http://dx.doi.org/10.1006/inco.1994.1093

Multitier Modules
Pascal Weisenburger
Technische Universität Darmstadt, Germany
weisenburger@cs.tu-darmstadt.de

Guido Salvaneschi
Technische Universität Darmstadt, Germany
salvaneschi@cs.tu-darmstadt.de

Abstract
Multitier programming languages address the complexity of developing distributed systems abstract-
ing over low level implementation details such as data representation, serialization and network
protocols. Since the functionalities of different peers can be defined in the same compilation unit,
multitier languages do not force developers to modularize software along network boundaries. Unfor-
tunately, combining the code for all tiers into the same compilation unit poses a scalability challenge
or forces developers to resort to traditional modularization abstractions that are agnostic to the
multitier nature of the language.

In this paper, we address this issue with a module system for multitier languages. Our module
system supports encapsulating each (cross-peer) functionality and defining it over abstract peer
types. As a result, we disentangle modularization and distribution and we enable the definition of a
distributed system as a composition of multitier modules, each representing a subsystem. Our case
studies on distributed algorithms, distributed data structures, as well as on the Apache Flink task
distribution system, show that multitier modules allow the definition of reusable (abstract) patterns
of interaction in distributed software and enable separating the modularization and distribution
concerns, properly separating functionalities in distributed systems.

2012 ACM Subject Classification Computing methodologies → Distributed programming languages;
Software and its engineering → Modules / packages

Keywords and phrases Distributed Programming, Multitier Programming, Abstract Peer Types,
Placement Types, Module Systems, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.3

Funding This work has been supported by the German Research Foundation (DFG) within the
Collaborative Research Center (CRC) 1053 MAKI and 1119 CROSSING, by the DFG projects
SA 2918/2-1 and SA 2918/3-1, by the Hessian LOEWE initiative within the Software-Factory 4.0
project, by the German Federal Ministry of Education and Research and by the Hessian Ministry of
Science and the Arts within CRISP, and by the AWS Cloud Credits for Research program.

Acknowledgements We would like to thank Philipp Schulz for the implementation of the first
prototype of this work and all reviewers of this paper for their comments and suggestions.

1 Introduction

Implementing distributed systems is notoriously hard because of a number of issues that
naturally arise in this setting, such as consistency, fault tolerance, concurrency, mismatch
among data formats, as well as mix of languages and execution platforms.

Multitier – or tierless – languages [36, 13, 26, 14, 41] address some of these problems.
In multitier languages, peers (e.g., the client and the server in a Web application) are
written in the same compilation unit. The compiler splits the code into a client unit and
a server unit, adds the necessary communication code, performs the necessary translations
(e.g., translating client code to JavaScript) and generates the deployable components. As

© Pascal Weisenburger and Guido Salvaneschi;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 3; pp. 3:1–3:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:weisenburger@cs.tu-darmstadt.de
mailto:salvaneschi@cs.tu-darmstadt.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Multitier Modules

a result, developers need to use a single language, are not forced to worry about network
communication, serialization, data formats and conversions and can focus on the application
logic without breaking it down along network boundaries.

Lack of Modularization Abstractions. Scaling multitier code to large applications, however,
is an open problem. Researchers have been focusing on small use cases that primarily aim
to demonstrate the design of their language rather than investigating the development of
complex applications that require sophisticated modularization and composition, or require
abstracting over program locations and architecture. In use cases of limited size, client code
and server code are nicely combined in a single compilation unit, but it is unclear what
happens when one compilation unit is not enough.

As an example of this issue, Figure 1 provides an overview of the task distribution system
in the Apache Flink stream processing framework [9]. It consists of the coordinator of the
Flink instance, the JobManager and one or more TaskManagers, which execute computational
tasks. Figure 1a shows the JobManager (light orange boxes, left), the TaskManager (dark
violet boxes, right) and their communication (arrows). Every box is a class or an actor
which is confined by network boundaries. Thus, cross-host data flow belonging to the
same (distributed) functionality is scattered over multiple modules. Figure 1b shows an
implementation of the same system in the ScalaLoci multitier language [48] (the figure is
adapted from the same work). The data flow in the system is much more regular, due to the
reorganization of the same code in a single unit, yet all the functionalities of the system are
concentrated in a single large compilation unit with ∼ 400 LOC.

Unfortunately, adopting the traditional modularization mechanism supported by the base
language (e.g., a Haskell module for a Haskell-based multitier language) is not sufficient
because such modularization mechanism is not aware of multitier code and it is unclear what
output code is produced after the compiler splits the code.

In summary, simplifying reasoning about distributed applications, abstracting over network
communication and format conversions, and providing a single language to implement
all components, multitier languages have the potential to significantly help programmers
developing distributed systems. However, enabling multitier programming to scale to
large code bases is still a research problem because of the lack of proper modularization
mechanisms. In its current state, multitier programming does effectively defeat the tyranny
of the dominant decomposition [45] for distributed systems, removing the need to modularize
applications according to tiers and network communication. Yet, it does not offer an
alternative modularization solution designed in synergy with multitier abstractions.

Contribution. In this paper, we propose LociMod, a novel multitier module system for
ScalaLoci. Multitier modules encapsulate the interaction between distributed components
of (sub)systems, allowing for (1) decoupling modularization from distribution and
(2) defining reusable patterns of interaction that model the functionality of a (dis-
tributed) subsystem and that can be composed to build larger distributed systems. LociMod
supports strong interfaces [22] to achieve encapsulation and information hiding, such that
implementations can be easily exchanged. The main contribution of the work is to make peer
types, which define the placement of a functionality in LociMod, abstract. This design choice
enables the definition of abstract modules, which capture a fragment of a distributed system,
can be further composed with other abstract modules, and can eventually be instantiated for
a concrete software architecture.

P. Weisenburger and G. Salvaneschi 3:3

class TaskManagerGateway {def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: ActorRef) = {mgr ! Disconnect(instanceId, cause)
}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: ActorRef) = {mgr ! StopCluster(applicationStatus, message)
}
def requestStackTrace(mgr: ActorRef) = {(mgr ? SendStackTrace).mapTo[StackTrace]
}
def submitTask(tdd: TaskDeploymentDescriptor, mgr: ActorRef) = {(mgr ? SubmitTask(tdd)).mapTo[Acknowledge]
}
def stopTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {(mgr ? StopTask(executionAttemptID)).mapTo[Acknowledge]
}
def cancelTask(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {(mgr ? CancelTask(executionAttemptID).mapTo[Acknowledge]
}
def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: Iterable[PartitionInfo], mgr: ActorRef) = {(mgr ? UpdateTaskMultiplePartitionInfos(executionAttemptID, partitionInfos))

.mapTo[Acknowledge]
}
def failPartition(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {mgr ! FailIntermediateResultPartitions(executionAttemptID)
}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: long, timestamp: long, mgr: ActorRef) = {mgr ! NotifyCheckpointComplete(jobId, executionAttemptID, checkpointId,

timestamp)}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: long, timestamp: long, checkpointOptions: CheckpointOptions,mgr: ActorRef) = {mgr ! TriggerCheckpoint(jobId, executionAttemptID, checkpointId, timestamp,

checkpointOptions)}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest, mgr: ActorRef) = {(mgr ? RequestTaskManagerLog(logTypeRequest)).mapTo[BlobKey]
}}

class JobManager extends Actor {def receive = {case ScheduleOrUpdateConsumers(jobId, partitionId) =>
currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)sender ! decorateMessage(Acknowledge.get())

} catch {case e: Exception => sender ! decorateMessage(Failure(
new Exception("Could not schedule or update consumers.", e)))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")sender ! decorateMessage(Failure(

new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers.")))}
case RequestPartitionProducerState(jobId, intermediateDataSetId, resultPartitionId) =>

currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)sender ! decorateMessage(execution.getState)
else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())sender ! decorateMessage(execution.getState)

else sender ! decorateMessage(Status.Failure(
new PartitionProducerDisposedException(resultPartitionId)))}else sender ! decorateMessage(Status.Failure(

new IllegalArgumentException("Intermediate data set " +s"with ID $intermediateDataSetId not found.")))}} catch {case e: Exception => sender ! decorateMessage(
Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => sender ! decorateMessage(

Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
case ackMessage: AcknowledgeCheckpoint =>

val jid = ackMessage.getJob()currentJobs.get(jid) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(ackMessage))log.info("Received message for non-existing checkpoint " +ackMessage.getCheckpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +s"while processing $ackMessage", t)}}(context.dispatcher)else {log.error(s"Received AcknowledgeCheckpoint message for job $jid with no " +s"CheckpointCoordinator")}case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jid")}
case declineMessage: DeclineCheckpoint =>

val jid = declineMessage.getJob()currentJobs.get(jid) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null) {future {try {checkpointCoordinator.receiveDeclineMessage(declineMessage)}catch {case t: Throwable =>log.error("Error in CheckpointCoordinator " +s"while processing $declineMessage", t)}}(context.dispatcher)}else {log.error("Received DeclineCheckpoint message " +s"for job $jid with no CheckpointCoordinator")}case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jid")}
case msg: NotifyKvStateRegistered =>

currentJobs.get(msg.getJobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job ${msg.getJobId} " +s"under name ${msg.getRegistrationName}.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName,msg.getKvStateId, msg.getKvStateServerAddress)} catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration $msg.")}case None =>log.error(s"Received $msg for unavailable job.")}
case msg: NotifyKvStateUnregistered =>

currentJobs.get(msg.getJobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(msg.getJobVertexId, msg.getKeyGroupRange, msg.getRegistrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration $msg.")}case None =>log.error(s"Received $msg for unavailable job.")}}}

JobManager
TaskManager
Remote Access

class TaskManager extends Actor {def receive = {case SendStackTrace => sendStackTrace() foreach { message =>
sender ! decorateMessage(message)

}
case Disconnect(instanceIdToDisconnect, cause) =>

if (instanceIdToDisconnect.equals(instanceID)) {handleJobManagerDisconnect("JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug("Received disconnect message for wrong instance id " +instanceIdToDisconnect)}
case StopCluster(applicationStatus, message) =>

log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()
case FatalError(message, cause) =>

killTaskManagerFatal(message, cause)
case RequestTaskManagerLog(requestType) =>

blobService match {case Some(_) =>handleRequestTaskManagerLog(requestType, currentJobManager.get) match {case Left(message) => sender() ! message
case Right(message) => sender() ! message

}case None =>sender() ! akka.actor.Status.Failure(new IOException(
"BlobService not available. Cannot upload TaskManager logs."))}

case UpdateTaskMultiplePartitionInfos(executionID, partitionInfos) =>
sender ! decorateMessage(updateTaskInputPartitions(executionID, partitionInfos))

case FailIntermediateResultPartitions(executionID) =>
log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}

case UpdateTaskExecutionState(taskExecutionState: TaskExecutionState) =>
currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification to " +"JobManager", t)))}(context.dispatcher)}

case TaskInFinalState(executionID) =>
unregisterTaskAndNotifyFinalState(executionID)

case SubmitTask(tdd) =>
sender ! decorateMessage(submitTask(tdd))

case StopTask(executionID) =>
val task = runningTasks.get(executionID)if (task != null) {try {task.stopExecution()sender ! decorateMessage(Acknowledge.get())

} catch {case t: Throwable =>sender ! decorateMessage(Status.Failure(t))
}} else {log.debug(s"Cannot find task to stop for execution $executionID)")sender ! decorateMessage(Acknowledge.get())}

case FailTask(executionID, cause) =>
val task = runningTasks.get(executionID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionID)")}

case CancelTask(executionID) =>
val task = runningTasks.get(executionID)if (task != null) {task.cancelExecution()sender ! decorateMessage(Acknowledge.get())
} else {log.debug(s"Cannot find task to cancel for execution $executionID)")sender ! decorateMessage(Acknowledge.get())
}

case TriggerCheckpoint(jobId, taskExecutionId, checkpointId, timestamp,
checkpointOptions) =>log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $taskExecutionId.")

val task = runningTasks.get(taskExecutionId)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $taskExecutionId.")}
case NotifyCheckpointComplete(jobId, taskExecutionId, checkpointId, timestamp) =>

log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $taskExecutionId.")
val task = runningTasks.get(taskExecutionId)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}}

class TaskManagerActionsGateway {def notifyFinalState(executionAttemptID: ExecutionAttemptID, mgr: ActorRef) = {mgr ! TaskInFinalState(executionAttemptID)
}
def notifyFatalError(message: String, cause: Throwable, mgr: ActorRef) = {mgr ! FatalError(message, cause)
}
def failTask(executionAttemptID: ExecutionAttemptID, cause: Throwable,mgr: ActorRef) = {mgr ! FailTask(executionAttemptID, cause)
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState,mgr: ActorRef) = {mgr ! UpdateTaskExecutionState(taskExecutionState)
}}

class PartitionProducerStateCheckerGateway {def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID, mgr: ActorRef) = {(mgr ? RequestPartitionProducerState(jobId, intermediateDataSetId,
resultPartitionId)).mapTo[ExecutionState]

}}

class ResultPartitionConsumableNotifierGateway {def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions, mgr: ActorRef) = {(mgr ? ScheduleOrUpdateConsumers(jobId, partitionId)).failed foreach { failure =>
LOG.error("Could not schedule or update consumers at the JobManager.", failure)taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}}}

class CheckpointResponderGateway {def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState, mgr: ActorRef) = {msg ! AcknowledgeCheckpoint(jobID, executionAttemptID, checkpointId,
checkpointMetrics, checkpointStateHandles)}

def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: long, reason: Throwable, mgr: ActorRef) = {msg ! DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason)
}}

class KvStateRegistryListenerGateway {def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID, mgr: ActorRef) = {msg ! NotifyKvStateRegistered(jobId, jobVertexId, keyGroupRange, registrationName,
kvStateId, kvStateServerAddress)}

def notifyKvStateUnregistered(jobId: JobID,jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String,mgr: ActorRef) = {msg ! NotifyKvStateUnregistered(jobId, jobVertexId, keyGroupRange, registrationName)
}}

(a) Original Flink.

@multitier trait TaskDistributionSystem {@peer type JobManager <: { type Tie <: Multiple[TaskManager] with Single[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(instanceId, cause) {if (instanceId.equals(instanceID)) {handleJobManagerDisconnect(s"JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug(s"Received disconnect message for wrong instance id " +instanceId)}}

}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()}
}
def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {sendStackTrace()
}.asLocal.map(_.left.get)}

def submitTask(tdd: TaskDeploymentDescriptor,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {submitTask(tdd)
}.asLocal.map(_.left.get)}

def stopTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {try {task.stopExecution()Left(Acknowledge.get())} catch {case t: Throwable =>Right(Status.Failure(t))}} else {log.debug(s"Cannot find task to stop for execution $executionAttemptID)")Left(Acknowledge.get())}
}.asLocal.map(_.left.get)}

def cancelTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.cancelExecution()Acknowledge.get()} else {log.debug(s"Cannot find task to cancel for execution $executionAttemptID")Acknowledge.get()}
}.asLocal}

def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: java.lang.Iterable[PartitionInfo],mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID, partitionInfos) {updateTaskInputPartitions(executionAttemptID, partitionInfos)
}.asLocal.map(_.left.get)}

def failPartition(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}}

}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: Long, timestamp: Long,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}

}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,checkpointOptions) {log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $executionAttemptID.")}}

}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {blobService match {case Some(_) =>handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)case None =>Right(akka.actor.Status.Failure(new IOException("BlobService not available. Cannot upload TaskManager logs.")))}
}.asLocal.map(_.left.get)}

def notifyFinalState(executionAttemptID: ExecutionAttemptID) =on[TaskManager] {
on[TaskManager].run.capture(executionAttemptID) {unregisterTaskAndNotifyFinalState(executionAttemptID)}

}
def notifyFatalError(message: String, cause: Throwable) = on[TaskManager]

on[TaskManager].run.capture(message, cause) {killTaskManagerFatal(message, cause)}
}
def failTask(executionAttemptID: ExecutionAttemptID,cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionAttemptID)")}}
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification " +"to JobManager", t)))}(context.dispatcher)}}
}
def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress) {currentJobs.get(jobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job $jobId " +s"under name $registrationName.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress)} catch {case t: Throwable => log.error("Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state registration for unavailable job.")}}
}
def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName) {currentJobs.get(jobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(jobVertexId, keyGroupRange, registrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state unregistration for unavailable job.")}}
}
def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions) = on[TaskManager] {

on[JobManager].run.capture(jobId, partitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)Acknowledge.get()} catch {case e: Exception => Failure(new Exception("Could not schedule or update consumers.", e)))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")Failure(new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers."))}
}.asLocal.failed foreach { failure =>LOG.error("Could not schedule or update consumers at the JobManager.", failure)

taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}
}def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId,checkpointMetrics, checkpointStateHandles) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(AcknowledgeCheckpoint(jobID, executionAttemptID,checkpointId,checkpointMetrics, checkpointStateHandles)))log.info("Received message for non-existing checkpoint " +checkpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing acknowledge message", t)}}(context.dispatcher)else log.error(s"Received AcknowledgeCheckpoint message for job $jobID with no " +"CheckpointCoordinator")case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")}}
}
def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId, reason) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null) {future {try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason))catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing decline message", t)}}(context.dispatcher)}else log.error("Received DeclineCheckpoint message " +s"for job $jobID with no CheckpointCoordinator")case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jobID")}}
}
def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(

on[JobManager].run.capture(jobId, intermediateDataSetId, resultPartitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)Left(execution.getState)else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())Left(execution.getState)elseRight(Status.Failure(new PartitionProducerDisposedException(resultPartitionId)))elseRight(Status.Failure(new IllegalArgumentException(s"Intermediate data set with ID $intermediateDataSetId not found.")))}} catch {case e: Exception => Right(Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => Right(Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
}.asLocal.mapTo[ExecutionState])}

}

(b) ScalaLoci reimplementation.

Figure 1 Flink task distribution system in ScalaLoci, adapted from [48].

Our case studies on distributed algorithms, distributed data structures, as well as on
the Apache Flink task distribution system, show that LociMod multitier modules allow the
definition of reusable (abstract) patterns of interaction in distributed software and enable
separating the modularization and distribution concerns, properly separating functionalities
in distributed systems. In summary, this paper makes the following contributions:

We present LociMod, a novel module system for multitier languages, featuring multitier
modules, which support strong interfaces and exchangeable implementations.
We show that, thanks to LociMod abstract peer types, the interaction between multitier
abstractions and modularization features results in a number of powerful abstractions
to define and compose distributed systems, including multitier mixin composition and
constrained modules.
We provide an implementation of LociMod as an extension to ScalaLoci, a multitier
language embedded into Scala. The implementation supports separate compilation and is
publicly available.1

We evaluate LociMod with case studies, including distributed algorithms, distributed
data structures and the Apache Flink Big Data processing framework, demonstrating
the composition properties of multitier modules and how they can capture (distributed)
functionalities in complex systems.

The paper is structured as follows. Section 2 provides an overview of ScalaLoci and the
important features of the Scala type system. Section 3 describes the design of multitier
modules. Section 4 discusses the implementation. Section 5 presents the evaluation. Section 6
discusses the related work. Section 7 concludes.

1 http://scala-loci.github.io/

ECOOP 2019

http://scala-loci.github.io/

3:4 Multitier Modules

2 Background

2.1 ScalaLoci

Since LociMod is an extension of ScalaLoci [48], we first provide an overview of ScalaLoci
to the reader. ScalaLoci is a general purpose multitier language for distributed systems –
unlike most multitier languages, which focus on the Web (i.e., client-server architecture) only.
To support generic distributed architectures, ScalaLoci provides language abstractions for
developers to freely define the different components – called peers – of the distributed system
and their architectural relation. Peers are defined as peer types, which allow for specifying the
placement of data and computations at the type level using placement types, enabling static
reasoning about placement. A placement type T on P2 represents a value of a traditional type
T which is placed on a peer of peer type P.

Placed Values. Placed values of type T on P are initialized with placed { e } expressions.
For example, the following string is placed on the Master peer:

val name: String on Master = placed { "the one and only master" }

The name value is accessible remotely from other peers. Accessing remote values requires the
asLocal marker, creating a local representation of the remote value by transmitting it over
the network:

val masterName: Future[String] on Worker = placed { name.asLocal }

Accessing name remotely from a Worker peer returns a value of type Future[String]. Futures
– which are part of Scala’s standard library – account for network latency and possible
communication failures by representing a value which may not be available immediately, but
will become available in the future or produce an error.

Remote accessibility of placed values can be regulated: Local placed values denoted by
the type Local[T] on P specify values that can only be accessed locally from the same peer
instance, i.e., remote access via asLocal is not possible:

val realName: Local[String] on Master = placed { "Rumpelstiltskin" }

For a value definition val v: T on P = placed { e }, the shorthand notation val v = on[P] { e }

can be used, inferring the placement type T on P.

Placed Computations. Like placed values, placed computations are declared to have a
placement type and defined using a placed expression:

def execute(task: Task[T]): T on Worker = placed { task.process() }

Invoking a remote computation is explicit using remote call. If the result of a remote
computation is of interest to the local peer instance, it can be made available locally using
asLocal (as described before):

val result: Future[T] on Master = placed { (remote call execute(new Task()).asLocal }

2 The Scala compiler treats T on P and on[T,P] equivalently.

P. Weisenburger and G. Salvaneschi 3:5

Architecture Specification. In LociMod, the architectural scheme of the distributed system
is expressed using ties, which specify the kind of relation among peers. Ties are encoded as
structural type refinements specifying the Tie type for peers. Ties to multiple peers are defined
by declaring a compound type (e.g., type Tie <: Single[Master] with Multiple[Worker]).
Remote access is only possible between tied peers.

For instance, an architecture with a single master that offloads computations to a single
worker is defined by a Master peer and a Worker peer (specified through the @peer annotation
on type members):

1 @peer type Master <: { type Tie <: Single[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Both peers have a single tie to each other, i.e., workers are always connected to a single
master instance and each corresponding master instance always manages a single worker.
A variant of the master–worker model, where a single master instance manages multiple
workers, is modeled by a single tie from worker to master and a multiple tie from master to
worker:

1 @peer type Master <: { type Tie <: Multiple[Worker] }
2 @peer type Worker <: { type Tie <: Single[Master] }

Section 5.1 presents a more systematic categorization of common distributed architectures
and their encoding using peers and ties.

2.2 Scala Abstract Data Types and Path-Dependent Types

The LociMod module system leverages Scala’s type system features, in particular abstract
types and path-dependent types, which we quickly revise. In Scala, traits, classes and objects
(i.e., singleton classes) define type members, which are either abstract (e.g., type SomeType)
or define concrete type aliases (e.g., type SomeType = Int). Abstract type members can define
lower and upper type bounds (e.g., type SomeType >: LowerBound <: UpperBound), which
refine the type while keeping it abstract. Inherited abstract type members can be overridden.
Such mechanism enables specializing the upper bound and generalizing the lower bound. In
Section 3.2, we define the peers of the distributed system as abstract type members. Refining
the upper bound enables specializing a peer as (a subtype of) another peer, enabling peer
composition by combining super peers into a sub peer.

Scala types can be dependent on an path (of objects). For example, in the following code
snippet, both objects a and b inherit the SomeType abstract type member defined in the
Module trait:

1 trait Module { type SomeType }
2 object a extends Module
3 object b extends Module

The path-dependent type a.SomeType refers to a’s SomeType and the path-dependent type
b.SomeType refers to b’s SomeType. The types depend on the objects a or b, respectively.
They are distinct since their paths differ.

For instance, the following example defines a module A with an abstract type member T.
Further, a module B defines an abstract type member U. The module C extends module B

inheriting its abstract type member U. The module C also references an instance a of module

ECOOP 2019

3:6 Multitier Modules

A. Module C’s U type is overridden and refined as a subtype of the T type defined in the a

instance by specifying that the upper bound of U is the path-dependent type a.T:
1 trait A { type T }
2
3 trait B { type U }
4
5 trait C extends B {
6 type U <: a.T
7 val a: A
8 }

In Section 3.2.1, we use this mechanism to declare references to other modules from within
a module and to refer to the peers (defined as abstract type members) in the referenced
modules via their path-dependent types.

3 LociMod Multitier Modules

In this section, we describe the LociMod module system. The goal of this section is twofold.
On the one hand, we present the design of multitier modules. On the other hand, we
demonstrate a number of examples for multitier modules and their composition mechanisms.

We first introduce (concrete) multitier modules and show how they can be composed into
larger applications, using module references – references to other multitier modules. Then
we introduce modules with abstract peer types and show their composition through module
references as well as another composition mechanism, multitier mixing. Next we show how
such composition mechanism enables defining constrained multitier modules.

3.1 Multitier Modules
We embed LociMod into Scala, following the same approach of ScalaLoci, which is a Scala
DSL. Scala traits represent modules – adopting Scala’s design that unifies object and module
systems [30]. Traits can contain abstract declarations and concrete definitions for both type
and value members – thus serve as both module definitions and implementations – and Scala
objects can be used to instantiate traits.

Module Definition. In LociMod, multitier modules are defined by a trait with the @multitier
annotation. Multitier modules can define (i) values placed on different peers and (ii) the
peers on which the values are placed – including constraints on the architectural relation
between peers. This approach enables modularization across peers (not necessarily along
peer boundaries) combining the benefits of multitier programming and modular development.
To illustrate, consider an application that allows a user to edit documents offline but also
offers the possibility to backup the data to an online storage:

1 @multitier trait Editor {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4
5 val backup: FileBackup
6 }

The Editor specifies a Client (Line 2) and a Server (Line 3). The client should be able to
backup/restore documents to/from the server, e.g., the client can invoke a backup.store

method to backup data. Thus, the module requires an instance of the FileBackup multitier
module (Line 5) providing the backup service. Section 3.2 shows how the Editor and the
FileBackup module can be composed.

P. Weisenburger and G. Salvaneschi 3:7

Encapsulation with Multitier Modules. LociMod’s multitier modules encapsulate dis-
tributed (sub)systems with a specified distributed architecture, enabling the creation of
larger distributed applications by composition. The following code shows a possible imple-
mentation for the backup service subsystem using the file system to store backups:

1 @multitier trait FileBackup {
2 @peer type Processor <: { type Tie <: Single[Storage] }
3 @peer type Storage <: { type Tie <: Single[Processor] }
4
5 def store(id: Long, data: Data): Unit on Processor = placed { remote call write(id, data) }
6 def load(id: Long): Future[Data] on Processor = placed { (remote call read(id)).asLocal }
7
8 private def write(id: Long, data: Data): Unit on Storage = placed {
9 writeToFile(data, s"/storage/$id") }

10 private def read(id: Long): Data on Storage = placed {
11 readFromFile[Data](s"/storage/$id") }
12 }

The multitier FileBackup module specifies a Processor to compress data (of type Data) and
a Storage peer to store and retrieve data associating them to an ID. The store (Line 5) and
load (Line 6) methods can be called on the Processor peer, invoking write (Line 8) and
read (Line 10) remotely on the Storage peer. The implementations of the write and read

methods operate on files.
LociMod multitier modules support standard access modifiers for placed values (e.g.,

private, protected etc.), which are used as a technique to encapsulate module functionality.
In the FileBackup module, the write and the read methods are declared private, so other
modules that use FileBackup cannot directly access them. Overall, the FileBackup module
encapsulates all the functionalities related to the backup service subsystem, including the
communication between Processor and Storage.

As the last example demonstrates, multitier modules enable separating modularization
and distribution concerns, allowing developers to organize applications based on logical
units instead of network boundaries. A multitier module abstracts over potentially multiple
components and the communication between them, specifying distribution by expressing the
placement of a computation on a peer in its type. Both axes are traditionally intertwined by
having to implement a component of the distributed system in a module (e.g., a class, an
actor, etc.) leading to cross-host functionality being scattered over multiple modules.

Multitier Modules as Interfaces and Implementations. To decouple the code that uses
a multitier module from the concrete implementation of such a module, LociMod supports
modules to be used as interfaces and implementations. Multitier modules can be abstract,
i.e., defining only abstract members, acting as module interfaces or they can define concrete
implementations. For example, applications that require a backup service can be developed
against the BackupService module interface, which declares a store and a load method:

1 @multitier trait BackupService {
2 @peer type Processor <: { type Tie <: Single[Storage] }
3 @peer type Storage <: { type Tie <: Single[Processor] }
4
5 def store(id: Long, data: Data): Unit on Processor
6 def load(id: Long): Future[Data] on Processor
7 }

LociMod adopts Scala’s inheritance mechanism to express the relation between the multitier
modules used as interfaces and their implementations. The FileBackup module presented

ECOOP 2019

3:8 Multitier Modules

before is a possible implementation for the BackupService module interface, i.e., we can
redefine FileBackup to let it implement BackupService:

1 @multitier trait FileBackup extends BackupService { ... }

The following example presents a different implementation for the BackupService module
interface using a database backend (instead of a file system) as storage:

1 @multitier trait DatabaseBackup extends BackupService {
2 def store(id: Long, data: Data): Unit on Processor = placed { remote call insert(id, data) }
3 def load(id: Long): Future[Data] on Processor = placed { (remote call query(id)).asLocal }
4
5 private val db: AsyncContext = ...
6
7 private def insert(id: Long, data: Data): Unit on Storage = placed {
8 db.run(query[(Long, Data)].insert(lift(id −> data))) }
9 private def query(id: Long): Future[Data] on Storage = placed {

10 db.run(query[(Long, Data)].filter { _._1 == lift(id) }) map { _.head._2 } }
11 }

The implementations of the store and of the load methods invoke insert (Line 7) and
query (Line 9) remotely, which insert the backup data into a database and retrieve the data
from a database, respectively.3

Combining Multitier Modules. Thanks to the separation between module interfaces and
module implementations, applications can be developed against the interface, remaining
agnostic to the implementation details of a subsystem encapsulated in a multitier module.
For example, the Editor presented before can be adapted to use a BackupService interface
instead of the concrete FileBackup implementation (Line 5):

1 @multitier trait Editor {
2 @peer type Client <: { type Tie <: Single[Server] }
3 @peer type Server <: { type Tie <: Single[Client] }
4
5 val backup: BackupService
6 }

Finally, a multitier module can be instantiated by instantiating concrete implementations of
the module interfaces it refers to. LociMod relies on the Scala approach of using an object

to instantiate a module, i.e., declaring an object that extends a trait – or mixes together
multiple traits – creates an instance of those traits. For example, the following code creates
an editor instance of the Editor module by providing a concrete DatabaseBackup instance
for the abstract backup value:

1 @multitier object editor extends Editor {
2 @multitier object backup extends DatabaseBackup
3 }

The multitier module instance of a @multitier object can be used to run different peers
from (non-multitier) standard Scala code (e.g., the Client and the Server peer), where
every peer instance only contains the values placed on the respective peer. Peer startup is
presented in Section 3.4.

3 The example uses the Quill http://getquill.io query language to access the database

http://getquill.io

P. Weisenburger and G. Salvaneschi 3:9

3.2 Abstract Peer Types
In the previous section, we have shown how to encapsulate a subsystem within a multitier
module and how to define a module interface such that multiple implementations are possible.
LociMod modules allow for going further, enabling abstraction over placement using abstract
peer types. Peer types are abstract type members of traits, i.e., they can be overridden in sub
traits, specializing their type. As a consequence, LociMod multitier modules are parametric
on peer types. For example, the BackupService module of the previous section defines an
abstract Processor peer, but the Processor peer does not necessarily need to refer to a
physical peer in the system. Instead, it denotes a logical place. When running the distributed
system, a Client peer, for example, may adopt the Processor role, by specializing the
Client peer to be a Processor peer.

Peer types are used to distinguish places only at the type level, i.e., the placement type
T on P represents a run time value of type T. The peer type P is used to keep track of the
value’s placement, but a value of type P is never constructed at run time. Hence, T on P is
essentially a “phantom type” [12] due to its parameter P.

The next two sections describe the interaction of abstract peer types with two composition
mechanisms for multitier modules. We already encountered the first mechanism, module
references. The other mechanism, multitier mixing, enables combining multitier modules
directly. In both cases, the peers defined in a module can be specialized with the role of
other modules’ peers.

3.2.1 Peer Type Specialization with Module References
Since peer types are abstract, they can be specialized by narrowing their upper type bound,
augmenting peers with different roles defined by other peers. Peers can subsume the roles
of other peers – similar to subtyping on classes – enabling polymorphic usage of peers.
Programmers can use this feature to augment peer types with roles defined by other peer
types by establishing a subtyping relation between both peers. This mechanism enables
developers to define reusable patterns of interaction among peers that can be specialized
later to any of the existing peers of an application.

For example, the editor application that requires the backup service (Section 3.1) needs
to specialize its Client peer to be a Processor peer and its Server peer to be a Storage

peer for clients to be able to perform backups on the server:
1 @multitier trait Editor {
2 @peer type Client <: backup.Processor { type Tie <: Single[Server] with Single[backup.Storage] }
3 @peer type Server <: backup.Storage { type Tie <: Single[Client] with Single[backup.Processor] }
4
5 val backup: BackupService
6 }

We specify the Client peer to be a (subtype of the) backup.Processor peer (Line 2) and the
Server peer to be a (subtype of the) backup.Storage peer (Line 3). Both backup.Processor

and backup.Storage refer to the peer types defined on the BackupService instance referenced
by backup. We can use such module references to refer to (path-dependent) peer types through
a reference to the multitier module.

Since the subtyping relation Server <: backup.Storage specifies that a server is a storage
peer, the backup functionality (i.e., all values and methods placed on the Storage peer) are
also placed on the Server peer. Super peer definitions are locally available on sub peers,

ECOOP 2019

3:10 Multitier Modules

making peers composable using subtyping. Abstract peer types specify such subtyping
relation by declaring an upper type bound. When augmenting the server with the storage
functionality using subtyping, the Tie type also has to be a subtype of the backup.Storage

peer’s Tie type. This type level encoding of the architectural relations among peers enables
the Scala compiler to check that the combined architecture of the system complies to the
architectural constraints of every subsystem.

Note that, for the current example, one may expect to unify the Server and the Storage
peer, so they refer to the same peer, specifying type equality instead of a subtyping relation:

1 @peer type Server = backup.Storage { type Tie <: Single[Client] }

Since peer types, however, are never instantiated (they are used only as phantom types to keep
track of placement at the type level) we can always keep peer types abstract, only specifying
an upper type bound. Hence, it is sufficient to specialize Server to be a backup.Storage,
keeping the Server peer abstract for potential further specialization.

3.2.2 Peer Type Specialization with Multitier Mixing

The previous section shows how peer types can be specialized when referring to modules
through module references. This section presents a different composition mechanism based
on composing traits – similar to mixin composition [4]. Since LociMod multitier modules can
encapsulate distributed subsystems (Section 3.1), mixing multitier modules enables including
the implementations of different subsystems into a single module.

LociMod separates modules from peers, i.e., mixing modules does not equate to unify the
peers they define. Hence we need a way to coalesce different peers. We use (i) subtyping and
(ii) overriding of abstract types as a mechanism to specify that a peer also comprises the
placed values of (i) the super peers and (ii) the overridden peers, i.e., a peer subsumes the
functionalities of its super peers (Section 3.2.1) and its overridden peers. Since peers are
abstract type members, they can be overridden in sub modules. To demonstrate mixing of
multitier modules we consider the case of two different functionalities.

First, we consider a computing scheme where a master offloads tasks to worker nodes:

1 @multitier trait MultipleMasterWorker[T] {
2 @peer type Master <: { type Tie <: Multiple[Worker] }
3 @peer type Worker <: { type Tie <: Single[Master] }
4
5 def run(task: Task[T]): Future[T] on Master = placed {
6 (remote(selectWorker()) call execute(task)).asLocal
7 }
8 private def execute(task: Task[T]): T on Worker = placed { task.process() }
9 }

The example defines a master that has a multiple tie to workers (Line 2) and a worker that has
a single tie to a master (Line 3). The run method has the placed type Future[T] on Master

(Line 5), placing run on the Master peer. Running a task remotely results in a Future [3] to
account for processing time and network delays. The remote call to execute – to be executed
on the worker – (Line 6) starts processing the task (Line 8). The remote result is transferred
back to the master as Future[T] using asLocal (Line 6). A single worker instance in a pool
of workers is selected for processing the task via the selectWorker method (Line 6, the
implementation of selectWorker is omitted, for simplicity).

P. Weisenburger and G. Salvaneschi 3:11

Second, we consider the case of monitoring, a functionality that is required in many
distributed applications to react to possible failures [23]. In LociMod, a heartbeat mechanism
can be defined across a Monitored and a Monitor peer in a multitier module:

1 @multitier trait Monitoring {
2 @peer type Monitor <: { type Tie <: Multiple[Monitored] }
3 @peer type Monitored <: { type Tie <: Single[Monitor] }
4
5 def monitoredTimedOut(monitored: Remote[Monitored]): Unit on Monitor
6
7 ...
8 }

The module defines the architecture with a single monitor and multiple monitored peers (Line 2
and 3). The monitoredTimedOut method (Line 5) is invoked by Monitoring implementations
whenever a heartbeat was not received from a monitored peer instance for some time. We
leave out the actual implementation of the monitoring logic for brevity.

To add monitoring to an application, such application has to be mixed with the Monitoring
module. Mixing composition brings the members declared in all mixed-in modules into
the local scope of the module that mixes in the other modules, i.e., all peer types of the
mixed-in modules are in scope. However, the peer types of different modules define separate
architectures, which can then be combined by specializing the peers of one module to the
peers of other modules. For example, to add monitoring to the the MultipleMasterWorker

functionality, MultipleMasterWorker needs to be mixed with Monitoring and the Master

and Worker peers need to be overridden to be (subtypes of) Monitor and Monitored peers:

1 @multitier trait MonitoredMasterWorker[T] extends MultipleMasterWorker[T] with Monitoring {
2 @peer type Master <: Monitor { type Tie <: Multiple[Worker] with Multiple[Monitored] }
3 @peer type Worker <: Monitored { type Tie <: Single[Master] with Single[Monitor] }
4 }

Specializing peers of mixed modules follows the same approach as specializing peers accessible
through module references (Section 3.2.1), i.e., Master <: Monitor specifies that a master is a
monitor peer, augmenting the master with the monitor functionality. Also, for specialization
using peers of mixed-in modules, the compiler checks that the combined architecture of the
system complies to the architectural constraints of every subsystem.

3.2.3 Properties of Abstract Peer Types

LociMod abstract peer types share commonalities with both parametric polymorphism –
considering type parameters as type members [29, 46] – like ML parameterized types [25] or
Java generics [5], as well as subtyping in object-oriented languages. Similar to parametric
polymorphism, abstract peer types allow parametric usage of peer types as shown for the
BackupService module defining a Storage peer parameter. Distinctive from parametric
polymorphism, however, with abstract peer types, peer parameters remain abstract, i.e.,
specializing peers does not unify peer types. Instead, similar to subtyping, specializing peers
establishes an is-a relation.

Placement types T on P support suptyping between peers by being covariant in the type of
the placed value and contravariant in the peer (i.e., the on type is defined as type on[+T, -P]),
which allows values to be used in a context where a value of a super type placed on a sub peer
is expected. This encoding is sound since a subtype can be used where a super type is expected
and values placed on super peers are available on all sub peers. For example, we can extend

ECOOP 2019

3:12 Multitier Modules

the Editor with a WebClient, which is a special kind of client (i.e., WebClient <: Client,
Line 5) with a Web user interface (Line 8), and a MobileClient (i.e., Line 6):

1 @multitier trait Editor {
2 @peer type Server <: { type Tie <: Multiple[Client] }
3 ...
4 @peer type Client <: { type Tie <: Single[Server] }
5 @peer type WebClient <: Client { type Tie <: Single[Server] }
6 @peer type MobileClient <: Client { type Tie <: Single[Server] }
7
8 val webUI: UI on WebClient
9 val ui: UI on Client = placed { webUI } // 7 Error: `Client̀ not a subtype of `WebClient̀

10 }

By using subtyping on peer types, not unifying the types, we are able to distinguish between
the general Client peer, which can have different specializations (e.g., WebClient and Mobile-

Client), i.e., every Web client is a client but not every client is a Web client. By keeping the
types distinguishable, the ui binding (Line 9) is rejected by the compiler since it defines a
value on the Client peer, i.e., the access to webUI inside the placed expression is computed on
the Client peer. However, webUI is not available on Client since it is placed on WebClient

and a client is not necessarily a Web client.

3.3 Constrained Multitier Modules
LociMod multitier modules not only allow abstraction over placement, but also the definition
of constrained multitier modules that refer to other modules. This feature enables expressing
constraints among the modules of a system, such as that one functionality is required to enable
another. In LociMod, Scala’s self-type annotations express such constraints, indicating which
other module is required during mixin composition. To improve decoupling, constraints are
often defined on module interfaces, such that multiple module implementations are possible.

Applications requiring constrained modules include distributed algorithms, discussed in
more detail in the evaluation (Section 5.1). For example, a global locking scheme ensuring
mutual exclusion for a shared resource can be implemented based on a central coordinator.
Choosing a coordinator among connected peers requires a leader election algorithm. The
MutualExclusion module declares a lock (Line 2) and unlock (Line 3) method for regulating
access to a shared resource. MutualExclusion is constrained over LeaderElection since our
locking scheme requires the leader election functionality:

1 @multitier trait MutualExclusion { this: LeaderElection =>
2 def lock(id: T): Boolean on Node
3 def unlock(id: Id): Unit on Node
4 }

Such requirement, expressed as a Scala self-type (Line 1), forces the developer to mix in a
LeaderElection implementation to create instances of the MutualExclusion module.

A leader election algorithm can be defined by the following module interface:

1 @multitier trait LeaderElection[T] {
2 @peer type Node
3
4 def electLeader(): Unit on Node
5 def electedAsLeader(): Unit on Node
6 }

The module defines an electLeader method (Line 4) to initiate the leader election. The
electedAsLeader method (Line 5) is called by LeaderElection module implementations on
the peer instance that has been elected to be the leader.

P. Weisenburger and G. Salvaneschi 3:13

All definitions of the LeaderElection module required by the self-type annotation are
available in the local scope of the MutualExclusion module, which includes peer types and
placed values. A self-type expresses a requirement but not a subtyping relation, i.e., we express
the requirement on LeaderElection in the example as self-type since the MutualExclusion

functionality requires leader election but is not a leader election module itself.
Multiple constraints can be expressed by using a compound type. For example, different

peer instances often need to have unique identifiers to distinguish among them. Assuming
an Id module provides such mechanism, a module which requires both the leader election
and the identification functionality can specify both required modules as compound self-type
this: LeaderElection with Id . Such requirement makes the definitions of both the Leader-
Election and the Id module available in the module’s local scope and forces the developer
to mix in implementations for both modules.

Mixin composition is guaranteed by the compiler to conform to the self-type (which is the
essence of the Scala cake pattern). Assuming a YoYo implementation of the LeaderElection

interface which implements the Yo-Yo algorithm [39] (Section 5.1 presents different leader
election implementations), the following code shows how a MutualExclusion instance can
be created by mixing together MutualExclusion and YoYo:

1 @multitier object mutualExclusion extends MutualExclusion with YoYo

The YoYo implementation of the LeaderElection interface satisfies the MutualExclusion

module’s self-type constraint on the LeaderElection interface. Since mixing together Mutual-
Exclusion and YoYo fulfills all constraints and leaves no values abstract, the module can be
instantiated.

3.4 Peer Startup
In the previous sections, we have shown how LociMod multitier modules are instantiated. To
start up a distributed system, however, we also need to start peers defined in the modules.
Different peer instances are typically started on different hosts and connect with each other
over a network according to the architecture specification. As a consequence, an additional
step is required to start the peers of (already instantiated) modules. For the master–worker
example, the master and the worker peers are started as follows:

1 @multitier object masterWorker extends MultipleMasterWorker[Int]
2
3 object Master extends App {
4 multitier start new Instance[masterWorker.Master](
5 listen[masterWorker.Worker] { TCP(1099) })
6 }
7
8 object Worker extends App {
9 multitier start new Instance[masterWorker.Worker](

10 connect[masterWorker.Master] { TCP("localhost", 1099) })
11 }

We follow the idiomatic way of defining an executable Scala application, where an object

extends App (Line 3 and 8). The object body is executed when the application starts. The
code executed when staring a Scala application is standard (non-multitier) Scala, which,
in our example, uses multitier start Instance[...] to start a peer of an instantiated
multitier module. Line 1 instantiates a MasterWorker module using the MultipleMaster-

Worker implementation. Line 4 starts a Master peer of the module, which uses TCP to
listen for connections from Worker peer instances. Line 9 starts a Worker peer of the module,
which uses TCP to connect to a running Master peer instance.

ECOOP 2019

3:14 Multitier Modules

4 Implementation

The implementation of LociMod required to modify ∼ 5K LOCs of the ScalaLoci codebase.
The ScalaLoci compilation process entails three main aspects [48]: (1) the type-level encoding
of placement types into the Scala type system, (2) the compile-time macro-driven code
separation of code belonging to different peers and (3) the injection of the communication
code. The implementation of LociMod requires plugging into the steps above to introduce
functionalities for module definition and composition as well as checks for architectural
conformance. Both are discussed hereafter.

We preserve Scala’s separate compilation because our implementation is based on Scala
macros, which expand locally and cannot transform any other code than the annotated trait,
class or object under expansion. Once modules are compiled, they are not recompiled unless
their code or interfaces on which they depend change.

Macro Expansion. To enable distributed functionalities bundled in a multitier module
(Section 3.1) to be executed on different machines (Section 3.4), our implementation separates
multitier modules into peer-specific parts and replaces remote accesses with calls to the
communication runtime, auto-generating the transmission boilerplate code. For the splitting,
we rely on Scala annotation macros [8] (traits and objects are annotated with @multitier),
transforming the type-checked abstract syntax tree4 of the module. Placement types,
specifying which values belong to which peer, have no direct semantic equivalent in plain
Scala. The implementation splits multitier code based on placement types, thereby effectively
erasing placement types from the generated code.

Listing 1 provides an intuition of how the macro expansion works, demonstrating module
and peer composition as well as remote access. The LociMod code (Listing 1a) defines a
module A with a peer Peer and a placed value value. Module B mixes in module A (Line 6),
defines a reference to an instance of module A (Line 9), and accesses a remote value through
the reference (Line 13).

In the expanded code (Listing 1b, simplified excerpt), placed values are annotated with
compileTimeOnly (Line 3), which instructs the Scala compiler to issue an error in case
such value is referenced in user code after macro expansion. The code generation creates
Marshallable instances (Line 4) for network transmission of placed values and runtime
identifiers for placed values (Line 5), modules (Line 16) and peers (Line 17) for dispatching
remote accesses. The splitting process generates a <placed values> trait, which contains all
placed values in the same order in which they appear in the multitier module to retain the
initialization order. Values, however, are nulled (Line 9) and only initialized for the peer on
which they are placed. Therefore, the splitting process generates an additional peer trait for
every peer (Line 10), thus splitting multitier code into peer-specific components. Peer traits
also handle local dispatching of remote requests, unmarshalling arguments and marshalling
the return value (Line 14).

The example illustrates our module composition mechanisms. Mixing module A into
module B results in the respective <placed values> and peer traits being mixed in (Line 25
and 34), using Scala mixin composition. For the module reference (Line 22, largely left out
for brevity), both the generated module identifier (Line 22) and the dispatching logic for
remote requests (Line 32) keep the path of the module reference ("module") into account, to

4 Annotation macros are expanded before type-checking but can explicitly invoke the type checker to
obtain typed abstract syntax trees

P. Weisenburger and G. Salvaneschi 3:15

Listing 1 Macro Expansion.

(a) LociMod user code.

1 @multitier trait A {
2 @peer type Peer
3 val value: Int on Peer
4 }
5
6 @multitier trait B extends A {
7 @peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }
8
9 @multitier object module extends A {

10 val value: Int on Peer = placed { 42 }
11 }
12
13 val localValue: Local[Future[Int]] on Peer = placed { module.value.asLocal }
14 }

(b) Scala code after LociMod expansion.

1 trait A {
2 @peer type Peer
3 @compileTimeOnly("Remote access must be explicit.") val value: Int on Peer
4 @MarshallableInfo final val $loci$marA0 = Marshallable[Int]
5 @PlacedValueInfo("value:scala.Int", null, $loci$marA0) final val $loci$valA0 =
6 new PlacedValue[Unit, Unit, Future[Unit], Int, Int, Future[Int]](
7 Value.Signature("value:scala.Int", $loci$sig.path), true, null, $loci$marA0)
8
9 trait `<placed values>` extends PlacedValues { val value: Int = null.asInstanceOf[Int] }

10 trait $loci$peer$Peer extends `<placed values>` {
11 def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
12 if (sig.path.isEmpty) sig.name match {
13 case $loci$valA0.sig.name =>
14 Try(value) map { response => $loci$marA0.marshal(response, ref) } ... } else ... }
15
16 lazy val $loci$sig = Module.Signature("A")
17 lazy val $loci$peersigPeer = Peer.Signature("Peer", collection.immutable.Nil, $loci$sig)
18 }
19
20 trait B extends A {
21 @peer type Peer <: module.Peer { type Tie <: Single[module.Peer] }
22 object module extends A { lazy val $loci$sig = Module.Signature("B#module", "module") ... }
23 @compileTimeOnly("...") val remoteValue = null.asInstanceOf[Local[Future[Int]] on Peer]
24
25 trait `<placed values>` extends PlacedValues with super[A].`<placed values>` {
26 final lazy val module: B.this.module.`<placed values>` = $loci$multitier$module()
27 val remoteValue: Future[Int] = $loci$exprB0()
28 protected[this] def $loci$exprB0(): Future[Int] = null.asInstanceOf[Future[Int]]
29
30 def $loci$dispatch(req: MessageBuffer, sig: Value.Signature, ref: Value.Reference) =
31 if (sig.path.isEmpty) ... else sig.path.head match {
32 case "module" => module.$loci$dispatch(req, sig.copy(sig.name, sig.path.tail), ref) ... } }
33
34 trait $loci$peer$Peer extends `<placed values>` with super[A].$loci$peer$Peer {
35 protected[this] def $loci$multitier$module() = new B.this.module.$loci$peer$Peer { ... }
36 protected[this] def $loci$exprB0(): Future[Int] = SingleIntAccessor(RemoteValue)(
37 new RemoteRequest[Int from B.this.module.Peer, Future[Int], Peer, Single, Unit](
38 (), B.this.module.$loci$valA0, B.this.module.$loci$peersigPeer, ...)).asLocal }
39 ... }

handle remote access to path-dependent modules. The module reference for the peer trait
generated for module B’s Peer (Line 34) is instantiated to the peer trait generated for module
A’s Peer (Line 35), so that values placed on module B’s Peer can access values placed on
module A’s Peer since module B defines Peer <: module.Peer. Since peer types are used to
guide the splitting and define the composition scheme of the synthesized peer traits, peer
types themselves are never instantiated. Hence, they can be abstract.

ECOOP 2019

3:16 Multitier Modules

Like value of module A, localValue of module B is nulled in the <placed values> trait
(Line 27 and 28) and initialized in the generated peer trait (Line 36). Since localValue is
defined local (i.e., not remotely accessible), no Marshallable instance or runtime identifier
is generated for localValue. The remote access module.value.asLocal is expanded into
a call to the communication backend with the remote value and remote peer identifiers as
arguments (Lines 36–38).

As illustrated by the example, the code generation solely replaces the code of the annotated
trait, class or object and only depends on the super traits and classes and the definitions
in the multitier modules’ body, thus retaining the same support for separate compilation
offered by standard Scala traits, classes and objects.

Correctness Checks. Abstract peer types can be specialized, introducing further constraints
on the architecture in which they are already involved. Our approach ensures that the
architecture of the specialized peers does not violate the architectural constraints of the more
general peers. Specifically, ties defined for a peer also need to be defined when specializing
the peer, i.e., the tie of a peer needs to be a subtype of the ties of all super and overridden
peers. It is, however, possible to refine a tie to make it more specific (i.e., a multiple tie is
the most general from, whereas an optional tie is more specific and a single tie is the most
specific form). For example, when specializing a Server peer with a Multiple[Client] tie
to a WebServer <: Server peer, the WebServer also needs to specify the tie to the Client.
It can specify the type as Multiple[Client] (like its super peer), but it can also specify a
more specific tie, e.g., Single[Client]. Refining ties is sound since, if code placed on a peer
is able to handle any number of connected remote instances (multiple tie), particularly, it
can also handle the case when at most one instance is connected (optional or single tie) –
but not the other way around.

5 Evaluation

The objective of the evaluation is to assess the design goals established in Section 3, answering
the following research questions:
RQ1 Do multitier modules enable defining reusable patterns of interaction in distributed software?
RQ2 Do multitier modules enable separating the modularization and distribution concerns?
For RQ1, we first consider distributed algorithms as a case study. Distributed algorithms
are a suitable case study because – as we explain soon – they depend on each other and on
the underlying architecture. Yet, one wants to keep each algorithm modularized in a way that
algorithms can be freely composed. Second, we show how distributed data structures can
be implemented in LociMod. This case study requires to hide the internal behavior of the data
structure from user code as well as to provide a design that does not depend on the specific
system architecture. For RQ2, we evaluate the applicability of LociMod to existing real-word
software. We reimplemented the task distribution system of the Apache Flink distributed
stream processing framework introduced in Section 1 using multitier modules.

5.1 Distributed Algorithms
We present a case study on a distributed algorithm for mutual exclusion through global
locking to access a shared resource. As global locking requires a leader election algorithm,
we implement different election algorithms as reusable multitier modules. Also, leader

P. Weisenburger and G. Salvaneschi 3:17

Listing 2 Mutual Exclusion.
1 @multitier trait MutualExclusion[T] { this: Architecture with LeaderElection[T] =>
2 private var locked: Option[T] localOn Node = placed { None }
3
4 def lock(id: T): Boolean on Node = placed {
5 if (state == Leader && locked.isEmpty) {
6 locked = Some(id)
7 true
8 }
9 else

10 false
11 }
12
13 def unlock(id: Id): Unit on Node = placed {
14 if(state == Leader && locked == Some(id))
15 locked = None
16 }
17 }

election algorithms assume different distributed architectures, which we represent as multitier
modules, too. The implemented mechanism relies on a central coordinator (Listing 2).
The MutualExclusion module is parameterized over the leader election algorithm using
constrained multitier mixing by specifying a requirement on the LeaderElection interface
(Line 1) abstracting over concrete leader election implementations. LeaderElection provides
the state method (Line 5 and 14) indicating whether the local node is the elected leader.
The MutualExclusion module defines the lock (Line 4) and the unlock (Line 13) methods,
to acquire and release the lock.

System Architectures. The MutualExclusion module (Listing 2) specifies a constraint on
Architecture (Line 1) requiring any distributed architecture for the system abstracting
over a concrete one. Architecture is the base trait for different distributed architectures
expressed as reusable modules. Listing 3 shows the definitions for different architectures
with their iconification on the right. The Architecture module defines the general Node
peer and the constraint that peers of type Node are connected to an arbitrary number of
other Node peers. The P2P module defines a Peer that can connect to arbitrary many other
peers. Thus, the P2P is essentially the general architecture since nodes connecting in a P2P
fashion do not impose any additional architectural constraints. The P2PRegistry module
adds a central registry, to which peers can connect. The MultiClientServer module defines
a client that is always connected to single server, while the server can handle multiple clients
simultaneously. The ClientServer module specifies a server that always handles a single
client instance. For the Ring module, we define a Prev and a Next peer. A RingNode itself is
both a predecessor and a successor. All Node peers have a single tie to their predecessor and
a single tie to their successor.

Leader Election. We present the LeaderElection interface for a generic leader election
algorithm in LociMod. Since leader election differs depending on the network architecture,
the interface defines a self-type constraint on Architecture, abstracting over the concrete
network architecture constraining multitier mixing:

1 @multitier trait LeaderElection[T] { this: Architecture with Id[T] =>
2 def state: State on Node
3 def electLeader(): Unit on Node
4 def electedAsLeader(): Unit on Node
5 }

ECOOP 2019

3:18 Multitier Modules

Listing 3 Distributed Architectures.
1 @multitier trait Architecture {
2 @peer type Node <: { type Tie <: Multiple[Node] }
3 }
4 @multitier trait P2P extends Architecture {
5 @peer type Peer <: Node { type Tie <: Multiple[Peer] }
6 }
7 @multitier trait P2PRegistry extends P2P {
8 @peer type Registry <: Node { type Tie <: Multiple[Peer] }
9 @peer type Peer <: Node { type Tie <: Optional[Registry] with Multiple[Peer] }

10 }
11 @multitier trait MultiClientServer extends Architecture {
12 @peer type Server <: Node { type Tie <: Multiple[Client] }
13 @peer type Client <: Node { type Tie <: Single[Server] with Single[Node] }
14 }
15 @multitier trait ClientServer extends MultiClientServer {
16 @peer type Server <: Node { type Tie <: Single[Client] }
17 @peer type Client <: Node { type Tie <: Single[Server] with Single[Node] }
18 }
19 @multitier trait Ring extends Architecture {
20 @peer type Node <: { type Tie <: Single[Prev] with Single[Next] }
21 @peer type Prev <: Node
22 @peer type Next <: Node
23 @peer type RingNode <: Prev with Next
24 }

Further, the interface abstracts over a mechanism for assigning IDs to nodes implemented by
the Id[T] module, where T is the type of the IDs. The Id module interface defines a local id
value on every node and requires an ordering relation for IDs:

1 @multitier abstract class Id[T: Ordering] { this: Architecture =>
2 val id: Local[T] on Node
3 }

The LeaderElection module defines a local variable state that captures the state of each
peer (e.g., Candidate, Leader or Follower). The electLeader method is kept abstract to
be implemented by a concrete implementation of the interface. After a peer instance has
been elected to be the leader, implementations of LeaderElection call electedAsLeader.
We consider three leader election algorithms:

Hirschberg-Sinclair Leader Election. The Hirschberg-Sinclair algorithm [21] implements
leader election for a ring topology. In every algorithm phase, each peer instance sends its
ID to both of its neighbors in the ring. IDs circulate and each node compares the ID with
its own. The peer with the greatest ID becomes the leader. The logic of the algorithm is
encapsulated into the HirschbergSinclair module, which extends LeaderElection:

1 @multitier trait HirschbergSinclair[T] extends LeaderElection[T] { this: Ring with Id[T] =>
2 def electLeader() = on[Node] { elect(0) }
3 private def elect(phase: Int) = on[Node] { /* ... */ }
4 private def propagate(remoteId: T, hops: Int, direction: Direction) = on[Node] { /* ... */ }
5 }

The module’s self-type encodes that the algorithm is designed for ring networks (Line 1).
When a new leader election is initiated by calling electLeader (Line 2), the elect method
is invoked (Line 3). The propagate method passes the IDs of peer instances along the
ring and compares them with the local ID.

Yo-Yo Leader Election. The Yo-Yo algorithm [39] is a universal leader election protocol,
i.e., it is independent of the network architecture. For this reason, the self-type constraint
of the YoYo implementation is simply Architecture with Id[T]. In the Yo-Yo algorithm,

P. Weisenburger and G. Salvaneschi 3:19

each node exchanges its ID with all neighbors, progressively pruning subgraphs where
there is no lower ID. The node with the lower ID becomes the leader.

Raft Leader Election. The Raft consensus algorithm [32] elects a leader by making use of
randomized timeouts. Once a leader is elected, it maintains its leadership by sending
heartbeat messages to all peer instances. If instances do not receive a heartbeat message
from the current leader for a certain amount of time, they initiate a new election.

Instantiating Global Locking. The following code instantiates a MutualExclusion module
using the Hirschberg-Sinclair leader election algorithm for a ring architecture:

1 @multitier object locking extends
2 MutualExclusion[Int] with HirschbergSinclair[Int] with Ring with RandomIntId

The example mixes in a module implementation for every module over which other modules
are parameterized, i.e., MutualExclusion is parameterized over LeaderElection, which is
instantiated to HirschbergSinclair. HirschbergSinclair requires a Ring architecture and
an Id implementation, which is instantiated to a RandomIntId module (whose implementation
is left out for brevity). The following code, instead, instantiates a MutualExclusion module
using the Yo-Yo leader election algorithm for a P2P architecture:

1 @multitier object locking extends
2 MutualExclusion[Int] with YoYo[Int] with P2P with RandomIntId

Summary. The case study demonstrates how module implementations for concrete archi-
tectures and leader election algorithms can be composed into a module providing global
locking and made reusable. Since modules encapsulate a functionality within a well-defined
interface, leader election algorithms can be easily exchanged. Our approach allows for simply
mixing different cross-peer functionality together without changing any multitier code that
is encapsulated into the modules (RQ1).

5.2 Distributed Data Structures
This section demonstrates how distributed data structures can be implemented in LociMod.
First, we reimplement non-multitier conflict-free replicated data types (CRDTs) as multitier
modules in LociMod. Second, we compare to an existing multitier cache originally implemented
in Eliom [36].

Conflict-Free Replicated Data Types. Conflict-free replicated data types (CRDT) [42, 43]
offer eventual consistency across replicated components for specific data structures, avoiding
conflicting updates by design. With CRDTs, updates to shared data are sent asynchronously
to the replicas and eventually affect all copies. Such eventually consistent model [47] provides
better performance (no synchronization is required) and higher availability (each replica has
a local copy which is ready to use). We reimplemented several CRDTs, publicly available in
Scala5, in LociMod (Table 1).

We discuss the representative case of the GSet. G-Sets (grow-only sets) are sets which
only support adding elements; elements cannot be removed. A merge operation computes
the union of two G-Sets. Listing 4a1 shows the G-Set in Scala. GSet defines a set content
(Line 3) and a method to check if an element is in the set (Line 5). Adding an element

5 http://github.com/lihaoyi/crdt

ECOOP 2019

http://github.com/lihaoyi/crdt

3:20 Multitier Modules

Table 1 Common Conflict-Free Replicated Data Types.

CRDT Description Lines of Code Remote
AccessesScala LociMod

local distrib.
G-Counter Grow-only counter. Only supports incrementing. 14 15 1
PN-Counter Positive-negative counter. Supports incrementing

and decrementing.
13 14 1

LWW-Register Last-write-wins register. Supports reading and
writing a single value.

10 11 1

MV-Register Multi-value register. Supports writing a single
value. Reading may return a set of multiple values
that were written concurrently.

12 13 1

G-Set Grow-only set. Only supports addition. 7 9 1
2P-Set Two-phase set. Supports addition and removal.

Removed elements cannot be added again.
13 17 2

LWW-Element-Set Last-write-wins set. Supports addition and re-
moval. Associates each added and removed ele-
ment to a time stamp.

15 19 2

PN-Set Positive-negative set. Supports addition and re-
moval. Associates a counter to each element, in-
crementing/decrementing the counter upon addi-
tion/removal.

12 16 2

OR-Set Observed-removed set. Supports addition and
removal. Associates a set of added and of removed
(unique) tags to each element. Adding inserts a
new tag to the added tags. Removing moves all
tags associated to an element to the set of removed
tags.

15 18 2

inserts it into the local content set (Line 7). Listing 4b presents a multitier module for a
multitier G-Set. The implementations are largely similar despite that the LociMod version is
distributed and the Scala version is not. The Scala CRDTs are only local. Distributed data
replication has to be implemented by the developer (Listing 4a2).

In the LociMod variant, the peer type of the interacting nodes is abstract, hence it is
valid for any distributed architecture. The LociMod multitier module can be instantiated by
applications for their architecture:

1 @multitier trait EventualConsistencyApp {
2 @peer type Server <: ints.Node with strings.Node {
3 type Tie <: Single[Client] with Single[ints.Node] with Single[strings.Node] }
4 @peer type Client <: ints.Node with strings.Node {
5 type Tie <: Single[Server] with Single[ints.Node] with Single[strings.Node] }
6
7 @multitier object ints extends GSet[Int]
8 @multitier object strings extends GSet[String]
9

10 on[Server] { ints.add(42) }
11 on[Client] { strings.add("forty−two") }
12 }

The example defines a GSet[Int] (Line 7) and a GSet[String] (Line 8) instance. The
Server and a Client peer are also ints.Node and strings.Node peers (Line 2 and 4) and
are tied to other ints.Node and strings.Node peers (Line 3 and 5). Thus, both the server
(Line 10) and the client (Line 11) can use the multitier module references ints and strings

to add elements to both sets, which (eventually) updates the sets on the connected nodes.
The plain Scala version, in contrast, does not offer abstraction over placement.

P. Weisenburger and G. Salvaneschi 3:21

Listing 4 Conflict-Free Replicated Grow-Only Set.

(a) Scala implementation.

(a1) Traditional G-Set implementation.

1 class GSet[T] {
2 val content =
3 mutable.Set.empty[T]
4 def contains(v: T) =
5 content.contains(v)
6 def add(v: T) =
7 content += v
8

9 def merge(other: GSet[T]) =
10 content ++= other.content
11 }

(a2) Example of user code for distribution.

1 trait Host[T] {
2 val set = new GSet[T]
3 def add(v: T) = {
4 set.add(v)
5 send(set.content) }
6 def receive(content: T) =
7 set.merge(content)
8 }

(b) LociMod implementation.

1 @multitier trait GSet[T] extends Architecture {
2 val content = on[Node] {
3 mutable.Set.empty[T] }
4 def contains(v: T) = on[Node] {
5 content.contains(v) }
6 def add(v: T) = on[Node] {
7 content += v
8 remote call merge(content.toSet) }
9 private def merge(content: Set[T]) = on[Node] {

10 this.content ++= content }
11 }

In addition to be more concise, the LociMod version exhibits a better design thanks to the
combination of multitier programming and modules. In plain Scala, the actual replication of
added elements by propagating them to remote nodes is mingled with the user code: The
Scala versions of all CRDTs transfer updated values explicitly to merge them on the replicas,
i.e., merge needs to be public to user code. The Remote Accesses column in Table 1 counts
the methods that mix replication logic and user code.

Listing 4a2 shows the user code adding an element to the local G-Set (Line 4), sending
the content to a remote host (Line 5), receiving the content remotely (Line 6) and merging
it into the remote G-Set (Line 7). In contrast, adding an element to the LociMod GSet

(Listing 4b) directly merges the updated set into all connected remote nodes (Line 8 and 10).
The multitier module implicitly performs remote communication between different peers
(Line 8), encapsulating the remote access to the replicas, i.e., merge is private.

Distributed Caching. We implement a cache that is shared between a client–server archi-
tecture. It is modeled after Eliom’s multitier cache holding the values already computed on
a server [36]. The following code presents the cache using LociMod multitier modules:

1 @multitier trait Cache[K, V] extends MultiClientServer {
2 private val table = on[Node] { mutable.Map.empty[K, V] }
3
4 on[Client] {
5 table.asLocal foreach { serverTable =>
6 table ++= serverTable } }
7
8 def add(key: K, value: V) = on[Node] { table += key −> value }
9 }

The Cache module is implemented for a client–server architecture (Line 1). The table map
(Line 2) is placed on every Node, i.e., on the client and the server peer. The add method
adds an entry to the map (Line 8). As soon as the client instance starts, the client populates
its local map with the content of the server’s map (Line 6).

ECOOP 2019

3:22 Multitier Modules

@multitier trait TaskDistributionSystem extends CheckpointResponder with KvStateRegistryListener with PartitionProducerStateChecker with ResultPartitionConsumableNotifier with TaskManagerGateway with TaskManagerActions

@multitier trait TaskManagerActions {@peer type TaskManager <: { type Tie <: Single[TaskManager] }def notifyFinalState(executionAttemptID: ExecutionAttemptID) =on[TaskManager] {
on[TaskManager].run.capture(executionAttemptID) {unregisterTaskAndNotifyFinalState(executionAttemptID)}

}
def notifyFatalError(message: String, cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(message, cause) {killTaskManagerFatal(message, cause)}
}
def failTask(executionAttemptID: ExecutionAttemptID,cause: Throwable) = on[TaskManager] {

on[TaskManager].run.capture(executionAttemptID, cause) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.failExternally(cause)} else {log.debug(s"Cannot find task to fail for execution $executionAttemptID)")}}
}
def updateTaskExecutionState(taskExecutionState: TaskExecutionState) = on[TaskManager] {

on[TaskManager].run.capture(taskExecutionState) {currentJobManager foreach { jobManager =>val futureResponse = (jobManager ?decorateMessage(UpdateTaskExecutionState(taskExecutionState)))(askTimeout)futureResponse.mapTo[Boolean].onComplete {case scala.util.Success(result) =>if (!result) {self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Task has been cancelled on the JobManager.")))}case scala.util.Failure(t) =>self ! decorateMessage(FailTask(taskExecutionState.getID,new Exception("Failed to send ExecutionStateChange notification " +"to JobManager", t)))}(context.dispatcher)}}
}

}

@multitier trait CheckpointResponder {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def acknowledgeCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, checkpointMetrics: CheckpointMetrics,checkpointStateHandles: SubtaskState) = on[TaskManager] {
on[JobManager].run.capture(jobID, executionAttemptID, checkpointId,checkpointMetrics, checkpointStateHandles) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try if (!checkpointCoordinator.receiveAcknowledgeMessage(AcknowledgeCheckpoint(jobID, executionAttemptID,checkpointId,checkpointMetrics, checkpointStateHandles)))log.info("Received message for non-existing checkpoint " +checkpointId)catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing acknowledge message", t)}}(context.dispatcher)else log.error(s"Received AcknowledgeCheckpoint message for job $jobID with no " +"CheckpointCoordinator")case None =>log.error(s"Received AcknowledgeCheckpoint for unavailable job $jobID")}}

}
def declineCheckpoint(jobID: JobID, executionAttemptID: ExecutionAttemptID,checkpointId: Long, reason: Throwable) = on[TaskManager] {

on[JobManager].run.capture(jobID, executionAttemptID, checkpointId, reason) {currentJobs.get(jobID) match {case Some((graph, _)) =>val checkpointCoordinator = graph.getCheckpointCoordinator()if (checkpointCoordinator != null)future {try checkpointCoordinator.receiveDeclineMessage(DeclineCheckpoint(jobID, executionAttemptID, checkpointId, reason))catch {case t: Throwable => log.error("Error in CheckpointCoordinator " +"while processing decline message", t)}}(context.dispatcher)else log.error("Received DeclineCheckpoint message " +s"for job $jobID with no CheckpointCoordinator")case None =>log.error(s"Received DeclineCheckpoint for unavailable job $jobID")}}
}

}

@multitier trait TaskManagerGateway {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def disconnectFromJobManager(instanceId: InstanceID, cause: Exception,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(instanceId, cause) {if (instanceId.equals(instanceID)) {handleJobManagerDisconnect(s"JobManager requested disconnect: " +cause.getMessage())triggerTaskManagerRegistration()} else {log.debug(s"Received disconnect message for wrong instance id " +instanceId)}}

}
def stopCluster(applicationStatus: ApplicationStatus, message: String,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(applicationStatus, message) {log.info(s"Stopping TaskManager with final application status " +s"$applicationStatus and diagnostics: $message")shutdown()}
}
def requestStackTrace(mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(tdd) {sendStackTrace()
}.asLocal.map(_.left.get)}

def submitTask(tdd: TaskDeploymentDescriptor,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(tdd) {submitTask(tdd)
}.asLocal.map(_.left.get)}

def stopTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {try {task.stopExecution()Left(Acknowledge.get())} catch {case t: Throwable =>Right(Status.Failure(t))}} else {log.debug(s"Cannot find task to stop for execution $executionAttemptID)")Left(Acknowledge.get())}
}.asLocal.map(_.left.get)}

def cancelTask(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {val task = runningTasks.get(executionAttemptID)if (task != null) {task.cancelExecution()Acknowledge.get()} else {log.debug(s"Cannot find task to cancel for execution $executionAttemptID")Acknowledge.get()}
}.asLocal}

def updatePartitions(executionAttemptID: ExecutionAttemptID,partitionInfos: java.lang.Iterable[PartitionInfo],mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID, partitionInfos) {updateTaskInputPartitions(executionAttemptID, partitionInfos)
}.asLocal.map(_.left.get)}

def failPartition(executionAttemptID: ExecutionAttemptID,mgr: Remote[TaskManager]) = on[JobManager] {
on(mgr).run.capture(executionAttemptID) {log.info(s"Discarding the results produced by task execution $executionID")try {network.getResultPartitionManager.releasePartitionsProducedBy(executionID)} catch {case t: Throwable => killTaskManagerFatal("Fatal leak: Unable to release intermediate result partition data", t)}}

}
def notifyCheckpointComplete(executionAttemptID: ExecutionAttemptID,jobId: JobID, checkpointId: Long, timestamp: Long,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp) {log.debug(s"Receiver ConfirmCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.notifyCheckpointComplete(checkpointId)} else {log.debug(s"TaskManager received a checkpoint confirmation " +s"for unknown task $taskExecutionId.")}}

}
def triggerCheckpoint(executionAttemptID: ExecutionAttemptID, jobId: JobID,checkpointId: Long, timestamp: Long, checkpointOptions: CheckpointOptions,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(executionAttemptID, jobId, checkpointId, timestamp,checkpointOptions) {log.debug(s"Receiver TriggerCheckpoint $checkpointId@$timestamp " +s"for $executionAttemptID.")
val task = runningTasks.get(executionAttemptID)if (task != null) {task.triggerCheckpointBarrier(checkpointId, timestamp, checkpointOptions)} else {log.debug(s"TaskManager received a checkpoint request " +s"for unknown task $executionAttemptID.")}}

}
def requestTaskManagerLog(logTypeRequest: LogTypeRequest,mgr: Remote[TaskManager]) = on[JobManager] {

on(mgr).run.capture(logTypeRequest) {blobService match {case Some(_) =>handleRequestTaskManagerLog(logTypeRequest, currentJobManager.get)case None =>Right(akka.actor.Status.Failure(new IOException("BlobService not available. Cannot upload TaskManager logs.")))}
}.asLocal.map(_.left.get)}

}

@multitier trait KvStateRegistryListener {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def notifyKvStateRegistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange, registrationName: String,kvStateId: KvStateID) = on[TaskManager] {
on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress) {currentJobs.get(jobId) match {case Some((graph, _)) =>try {log.debug(s"Key value state registered for job $jobId " +s"under name $registrationName.")graph.getKvStateLocationRegistry.notifyKvStateRegistered(jobVertexId, keyGroupRange, registrationName,kvStateId, kvStateServerAddress)} catch {case t: Throwable => log.error("Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state registration for unavailable job.")}}

}
def notifyKvStateUnregistered(jobId: JobID, jobVertexId: JobVertexID,keyGroupRange: KeyGroupRange,registrationName: String) = on[TaskManager] {

on[JobManager].run.capture(jobId, jobVertexId, keyGroupRange, registrationName) {currentJobs.get(jobId) match {case Some((graph, _)) =>try graph.getKvStateLocationRegistry.notifyKvStateUnregistered(jobVertexId, keyGroupRange, registrationName)catch {case t: Throwable => log.error(s"Failed to notify KvStateRegistry about registration.")}case None =>log.error("Received state unregistration for unavailable job.")}}
}

}

@multitier trait PartitionProducerStateChecker {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def requestPartitionProducerState(jobId: JobID,intermediateDataSetId: IntermediateDataSetID,resultPartitionId: ResultPartitionID) = on[TaskManager] { new FlinkFuture(
on[JobManager].run.capture(jobId, intermediateDataSetId, resultPartitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {val execution = executionGraph.getRegisteredExecutions.get(resultPartitionId.getProducerId)if (execution != null)Left(execution.getState)else {val intermediateResult = executionGraph.getAllIntermediateResults.get(intermediateDataSetId)if (intermediateResult != null) {val execution = intermediateResult.getPartitionById(resultPartitionId.getPartitionId).getProducer.getCurrentExecutionAttemptif (execution.getAttemptId() == resultPartitionId.getProducerId())Left(execution.getState)else Right(Status.Failure(new PartitionProducerDisposedException(resultPartitionId)))}else Status.Failure(new IllegalArgumentException(s"Intermediate data set with ID $intermediateDataSetId not found."))}} catch {case e: Exception => Right(Status.Failure(new RuntimeException("Failed to look up " +"execution state of producer with ID " +s"${resultPartitionId.getProducerId}.", e)))}case None => Right(Status.Failure(new IllegalArgumentException(s"Job with ID $jobId not found.")))}
}.asLocal.mapTo[ExecutionState])}

}

@multitier trait ResultPartitionConsumableNotifier {@peer type JobManager <: { type Tie <: Multiple[TaskManager] }@peer type TaskManager <: { type Tie <: Single[JobManager] }def notifyPartitionConsumable(jobId: JobID, partitionId: ResultPartitionID,taskActions: TaskActions) = on[TaskManager] {
on[JobManager].run.capture(jobId, partitionId) {currentJobs.get(jobId) match {case Some((executionGraph, _)) =>try {executionGraph.scheduleOrUpdateConsumers(partitionId)Acknowledge.get()} catch {case e: Exception => Failure(new Exception("Could not schedule or update consumers.", e))}case None =>log.error(s"Cannot find execution graph for job ID $jobId " +"to schedule or update consumers.")Failure(new IllegalStateException("Cannot find execution graph " +s"for job ID $jobId to schedule or update consumers."))}
}.asLocal.failed foreach { failure =>LOG.error("Could not schedule or update consumers at the JobManager.", failure)

taskActions.failExternally(new RuntimeException("Could not notify JobManager to schedule or update consumers",failure))}
}}

JobManager TaskManager Remote Access

Figure 2 Example communication in Flink using LociMod multitier modules.

LociMod’s multitier model is more expressive than Eliom’s as it allows the definition of
arbitrary peers through placement types. Placement types enable abstraction over placement,
as opposed to Eliom, which only supports two fixed predefined places (server and client).
LociMod supports Eliom’s client–server model (Line 1) as a special case. Thanks to LociMod’s
abstract peer types, the Cache module can also be used for other architectures. For example,
we can enhance the Peer and Registry peers of a P2P architecture with the roles of the
client and the server of the Cache module by mixing Cache and P2PRegistry and composing
both architectures:

1 @multitier trait P2PCache[K, V] extends Cache[K, V] with P2PRegistry {
2 @peer type Registry <: Server { type Tie <: Multiple[Peer] with Multiple[Client] }
3 @peer type Peer <: Client { type Tie <: Single[Registry] with Single[Server] with Multiple[Peer] }
4 }

Summary. The case studies demonstrate that, thanks to the multitier module system,
distributed data structures can be expressed as reusable modules that can be instantiated
for different architectures encapsulating all functionalities needed for the implementation of
the data structure (RQ1).

5.3 Apache Flink
The task distribution system of the Apache Flink stream processing framework [9], provides
Flink’s core task scheduling and deployment logic. It is based on Akka actors and consists of
six gateways (an API that encapsulates sending and receiving actor messages) amounting to
∼ 500 highly complex Scala LOC. Gateways wrap method arguments into messages, sending
the message and (potentially) receiving a different message carrying a result.

With the current Flink design, however, code fragments that are executed on different
distributed components (i.e., for sending and receiving a message), inevitably belong to
different actors. The functionalities that conceptually belong to a single gateway are scattered
over multiple files in the Flink implementation, breaking modularization. The messages
sent by the actors in every gateway are hard to follow for developers because matching
sending and receiving operations are completely separated in the code. 19 out of the 23 sent
messages are processed in a different compilation unit within another package, hindering the
correlation of messages with the remote computations they trigger.

We reimplemented the task distribution system using multitier modules, to cover the
complete cross-peer functionalities that belong to each gateway. The resulting modules

P. Weisenburger and G. Salvaneschi 3:23

Listing 5 Remote communication in Flink.

(a) Original Flink implementation.

(a1) Message definition.

1 package flink.runtime
2
3 case class SubmitTask(td: TaskDeployment)

(a2) Calling side.

1 package flink.runtime.job
2
3 case class SubmitTask(td: TaskDeployment)
4
5 class TaskManagerGateway {
6 def submitTask(
7 td: TaskDeployment,
8 mgr: ActorRef) =
9 (mgr ? SubmitTask(td))

10 .mapTo[Acknowledge]
11 }

(a3) Responding side.

1 package flink.runtime.task
2
3 class TaskManager extends Actor {
4 // standard Akka message loop
5 def receive = {
6 case SubmitTask(td) =>
7 val task = new Task(td)
8 task.start()
9 sender ! Acknowledge()

10 } }

(b) Refactored LociMod implementation.

1 package flink.runtime.multitier
2
3 @multitier object TaskManagerGateway {
4 @peer type JobManager <: {
5 type Tie <: Multiple[TaskManager] }
6 @peer type TaskManager <: {
7 type Tie <: Single[JobManager] }
8
9 def submitTask(

10 td: TaskDeployment, tm: Remote[TaskManager]) =
11 on[JobManager] {
12 (remote(tm) call startTask(td)).asLocal
13 }
14 def startTask(td: TaskDeployment) =
15 on[TaskManager] {
16 val task = new Task(td)
17 task.start()
18 Acknowledge()
19 }
20 }

are (1) the TaskManagerGateway to control task execution, (2) the TaskManagerActions

to notify of task state changes, (3) the CheckpointResponder to acknowledge checkpoints,
(4) the KvStateRegistryListener to notify key-value store changes, (5) the Partition-

ProducerStateChecker to check of the state of producers and of result partitions and (6) the
ResultPartitionConsumableNotifier to notify of available partitions. Since the different
cross-peer functionalities of the task distribution system are cleanly separated into different
modules, the complete TaskDistributionSystem application is simply the composition of
the modules 1–6 that implement each subsystem:

1 @multitier trait TaskDistributionSystem extends
2 CheckpointResponder with KvStateRegistryListener with PartitionProducerStateChecker with
3 ResultPartitionConsumableNotifier with TaskManagerGateway with TaskManagerActions {
4 @peer type JobManager <: { type Tie <: Multiple[TaskManager] }
5 @peer type TaskManager <: { type Tie <: Single[JobManager] with Single[TaskManager] }
6 }

We mix together the subsystem modules (Line 2 and 3) and specify the architecture of
the complete task distribution system (Line 4 and 5). As all subsystems share the same
architecture, it is not necessary to specify the architecture in the TaskDistributionSystem

module (as we did in the example code). Instead, it suffices to specify the architecture in the
mixed-in modules.

Compared to Figure 1b, which merges the functionalities of all subsystems into a single
compilation unit, the LociMod version using multitier modules encapsulates each functionality
into a separate module. Figure 2 shows the TaskDistributionSystem module (background),

ECOOP 2019

3:24 Multitier Modules

composed by mixing together the subsystem modules (foreground). The multitier modules
contain code for the JobManager and the TaskManager peer. Arrows represent cross-peer
data flow, which is encapsulated within modules and is not split over different modules.
Importantly, even modules that place all computations on the same peer (e.g., the module
containing only dark violet boxes) define remote accesses (arrows), i.e., different instances of
the same peer type (e.g., the dark violet peer) communicate with each other.

It is instructive to look into the details of one of the modules. Listing 5 shows an excerpt
of the – extensively simplified – TaskManagerGateway functionality for Flink (left) and its
reimplementation in LociMod (right) side-by-side, focusing only on a single remote access of a
single gateway. The example concerns the communication between the TaskManagerGateway

used by the JobManager and the TaskManager – specifically, the job manager’s submission
of tasks to task managers. In the actor-based version (Listing 5a), this functionality is
scattered over different modules hindering correlating sent messages (Listing 5a2, Line 9)
with the remote computations they trigger (Listing 5a3, Line 7–9) by pattern-matching
on the received message (Listing 5a3, Line 6). The LociMod version (Listing 5b) uses an
intra-module cross-peer remote call (Line 12), explicitly stating the method for the remote
computation (Line 16–18). Hence, in LociMod, there is no splitting over different actors
as in the Flink version, thus keeping related functionalities inside the same module. The
TaskManagerGateway multitier module contains a functionality that is executed on both the
JobManager and the TaskManager peer. Further, the message loop of the TaskManager actor
of Flink (Listing 5a3), does not only handle the messages belonging to the TaskManager-

Gateway (shown in the code excerpt). The loop also needs to handle messages belonging to
the other gateways – which execute parts of their functionality on the TaskManager – since
modularization is imposed by the remote communication boundaries of an actor.

Summary. In summary, in the case study, the multitier module system enables decoupling
of modularization and distribution as LociMod multitier modules capture cross-network
functionalities expressed by Flink gateways without being constrained to modularization
along network boundaries (RQ2).

6 Related Work

There is a long history of research concerned with proper software modularization mech-
anisms [33]. We organize related work as follows. First we discuss multitier languages.
Second, we present recent advances in module systems. Third, we discuss approaches that
partially combine the two solutions. Finally, we provide an overview of related research areas,
including languages for distributed systems and component-based software development.

Multitier Languages. Multitier languages emerge in the Web context to remove the sepa-
ration between client and server code, either by compiling the client side to JavaScript or
by adopting JavaScript for the server, too. Hop [40] and Hop.js [41] are dynamically typed
languages that follow a traditional client–server communication scheme with asynchronous
callbacks. They do not ensure static guarantees for the behavior of the distributed system.
In Links [14] and Opa [37], functions are annotated to specify either client- or server-side
execution. Both languages also follow the client–server model and feature a static type system.
Links’ server is stateless for scalability reasons – limiting the spectrum of the supported
domains. In StiP.js [34], annotations assign code fragments to the client or the server. Slicing
detects the dependencies between each fragment and the rest of the program. In contrast, in
LociMod, developers specify placement in types, enabling architectural reasoning.

P. Weisenburger and G. Salvaneschi 3:25

Ur/Web [13], a multitier language for the Web, supports the standard ML module system.
By requiring whole-program optimizations to slice the program into client and server parts,
Ur/Web modules do not support separate compilation. The Eliom module system [35, 36] is
also based on ML modules. It supports mixed modules – in Eliom terminology – which can
contain declarations for both the server and the client and are similar to LociMod multitier
modules that can also contain declarations for different peers (Section 3). Like LociMod
modules, Eliom modules feature separate compilation. Due to the restriction to client–server
applications, Eliom lacks language abstractions for architectural specifications and distributed
system with multiple peers. More interestingly, Eliom modules do not support abstract
peer types, hence it is not possible to specify the module functionalities over abstract peers
and use such module to specialize the peers in another application (Section 3.2). For the
same reason module composition does not support combining different architectures. All
approaches above focus on the Web, contrarily to our goal of supporting other architectures.
An exception is ML5 [26], a multitier language for generic software architectures: Possible
worlds, as known from modal logic, address the purpose of placing computations and, similar
to LociMod, are part of the type. ML5, however, does not support architecture specification,
i.e., it does not allow for expressing different architectures in the language and was anyway
applied only to the Web setting so far.

Module Systems. Rossberg and Dreyer design MixML, a module system that supports
higher-order modules and modules as first-class values and combines ML modules’ hierarchical
composition with mixin’s recursive linking of separately compiled components [38]. There
are some commonalities in the way LociMod uses Scala traits as module interfaces – similar
to ML signatures – and objects as module instances – similar to ML structures. Further,
traits also support separate compilation. MixML signatures, like standard ML signatures,
are structural types. In contrast, mixin composition in Scala operates on traits [15], which
are nominal. LociMod, being a Scala embedding, inherits the modularization approach of
using traits from Scala, but decouples it from distribution concerns.

Implicit resolution enables retroactive extensibility in the style of Hakell’s type classes
using the concept pattern [31]. The Genus programming language provides modularization
abstractions that support generic programming and retroactive extension in the OO setting
in a way similar to the concept pattern [49, 50]. Type classes do not support different
instances for the same type and the concept pattern’s encoding for type classes also requires
unambiguous instances (or requires manual disambiguation otherwise). In contrast to Haskell
type classes and similar to Genus, LociMod’s approach to modularization using Scala traits
as modules enables different implementations of the same trait.

Family polymorphism explores definition and composition of module hierarchies. The
J& language supports hierarchical composability for nested classes in a mixin fashion [27,
28]. Nested classes are also supported by Newspeak, a dynamically typed object-oriented
language [6]. Virtual classes [18] enable large-scale program composition through family
polymorphism. Dependent classes [20] generalize virtual classes to multiple dispatching (i.e.,
class constructors are dynamically dispatched and are multimethods). Mixin composition is
supported directly in Scala and it is used in LociMod as a way to compose multitier modules
(Section 3.2.2). Virtual classes can be encoded in Scala [30], opening an interesting research
direction that investigates multitier modules and family polymorphism.

Programming Languages and Calculi for Distributed Systems. Partitioned Global Ad-
dress Space languages (PGAS), such as X10 [17], support high-performance parallel execution.
These languages define a globally shared address space aiming to reduce boundaries among

ECOOP 2019

3:26 Multitier Modules

hosts, similar to multitier languages. In X10, dependent placed types [11] identify processing
locations ensuring that objects do not cross the boundaries of locations. Instead, our approach
abstracts over peer instances (of the same type), to refer uniformly to all similar peers.

Several formal calculi model distributed systems and abstract, to various degrees, over
placement and remote communication. The Ambient calculus [10] models concurrent systems
with both mobile devices and mobile computation. In Ambient, it is possible to define named,
bounded places where computations occur. Ambients can be moved to other places and are
nested to model administrative domains and their access control. The Join calculus [19]
defines processes that communicate by asynchronous message passing over channels in a
way that models an implementation without expensive global consensus. However, we are
not aware of higher level modularization abstractions built on top of the Join calculus.
CPL [7] is a core calculus for combining services in the cloud computing environment. CPL
is event-based and provides combinators that allow safe composition of cloud applications.
Similar to LociMod, such combinators are generic with respect to placement and can be
parameterized and constrained over other combinators. However, in CPL, there is no notion
of architectural specification that can be used to check that multitier module composition
adheres to the desired architecture.

Software Architectures and Component-based Software Development. ArchJava [1] uni-
fies architectural definition and implementation in one language. Multitier modules and ties
are similar to ArchJava components and connections. Also, similar to LociMod, ArchJava
supports connections over a network and gives additional type safety guarantees compared to
pure Java, e.g., that values sent over a network are serializable [2]. Different from LociMod
modules, which can be parametric and can be mixed in, ArchJava’s components can be only
composed through connections.

Architecture description languages (ADL) are DSLs designed to support architecture
evolution. ADLs define components, connectors, architectural invariants and a mapping
of architectural models to an implementation infrastructure [24]. Influenced by ADLs
and object-oriented design, component models [16] provide techniques and technologies
to build software systems starting from units of composition with contractually specified
interfaces and dependencies which can be deployed independently [44]. Component-based
development (CBD) aims at separating different concerns throughout the whole software
system, defining component interfaces for interaction with other components and mechanisms
for composing components, which is similar to LociMod’s approach of separating different
functionalities into modules providing strong interfaces to other modules. The encapsulated
functionalities in LociMod modules, however, can be distributed themselves, whereas CBD in
a distributed setting usually models the different components of the distributed system as
separate components, forcing developers to modularize along network boundaries.

7 Conclusion

Current multitier languages lack abstractions to properly modularize large code bases. In this
paper, we presented LociMod, a multitier module system for ScalaLoci that allows developers
to modularize multitier code, enabling encapsulation and code reuse. Thanks to abstract peer
types, LociMod multitier modules capture abstract patterns of interaction among components
in the system, enabling their composition and the definition of module constraints.

Our evaluation on distributed algorithms, distributed data structures, and the Apache
Flink big data processing framework, shows that the LociMod’s multitier module system is
effective in properly modularizing multitier code.

P. Weisenburger and G. Salvaneschi 3:27

References
1 Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting software

architecture to implementation. In Proceedings of the 24th International Conference on
Software Engineering, ICSE ’02, New York, NY, USA, 2002. ACM.

2 Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin. Language Support for
Connector Abstractions. In Proceedings of the 17th European Conference on Object-Oriented
Programming, ECOOP ’03, Berlin, Heidelberg, 2003. Springer.

3 Henry C. Baker, Jr. and Carl Hewitt. The Incremental Garbage Collection of Processes.
SIGPLAN Notices, 12(8), 1977.

4 Gilad Bracha and William Cook. Mixin-based Inheritance. In Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications / European Conference
on Object-Oriented Programming, OOPSLA/ECOOP ’90, New York, NY, USA, 1990. ACM.

5 Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the Future Safe
for the Past: Adding Genericity to the Java Programming Language. In Proceedings of the
13th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’98, New York, NY, USA, 1998. ACM.

6 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules As Objects in Newspeak. In Proceedings of the 24th European Conference
on Object-Oriented Programming, ECOOP ’10, Berlin, Heidelberg, 2010. Springer-Verlag.

7 Oliver Bračevac, Sebastian Erdweg, Guido Salvaneschi, and Mira Mezini. CPL: A core language
for cloud computing. In Proceedings of the 15th International Conference on Modularity,
MODULARITY ’16, New York, NY, USA, 2016. ACM.

8 Eugene Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax and Static
Types Work with Metaprogramming. In Proceedings of the 4th Workshop on Scala, SCALA
’13, New York, NY, USA, 2013. ACM.

9 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink: Stream and batch processing in a single engine. IEEE Data
Engineering Bulletin, 38, 2015.

10 Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1),
2000.

11 Satish Chandra, Vijay Saraswat, Vivek Sarkar, and Rastislav Bodik. Type Inference for
Locality Analysis of Distributed Data Structures. In Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’08, New York, NY,
USA, 2008. ACM.

12 James Cheney and Ralf Hinze. Phantom Types. Technical report, Cornell University, 2003.
13 Adam Chlipala. Ur/Web: A simple model for programming the web. In Proceedings of the

42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’15, New York, NY, USA, 2015. ACM.

14 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In Proceedings of the 5th International Conference on Formal Methods for
Components and Objects, FMCO ’06, Berlin, Heidelberg, 2007. Springer-Verlag.

15 Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky. A Core Calculus for
Scala Type Checking. In Proceedings of the 31st International Conference on Mathematical
Foundations of Computer Science, MFCS ’06, Berlin, Heidelberg, 2006. Springer-Verlag.

16 Ivica Crnkovic, Severine Sentilles, Vulgarakis Aneta, and Michel R. V. Chaudron. A Classifica-
tion Framework for Software Component Models. IEEE Transactions on Software Engineering,
37(5), September 2011.

17 Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter.
Partitioned Global Address Space Languages. ACM Computing Surveys, 47(4), May 2015.

18 Erik Ernst, Klaus Ostermann, and William R. Cook. A Virtual Class Calculus. In Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’06, New York, NY, USA, 2006. ACM.

ECOOP 2019

3:28 Multitier Modules

19 Cédric Fournet and Georges Gonthier. The Reflexive CHAM and the Join-calculus. In
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’96, New York, NY, USA, 1996. ACM.

20 Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. Dependent Classes. In Proceedings of the
22nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applications,
OOPSLA ’07, New York, NY, USA, 2007. ACM.

21 D. S. Hirschberg and J. B. Sinclair. Decentralized Extrema-finding in Circular Configurations
of Processors. Communications of the ACM, 23(11), 1980.

22 Barbara Liskov. Keynote Address – Data Abstraction and Hierarchy. In Addendum to the Pro-
ceedings on Object-Oriented Programming Systems, Languages and Applications (Addendum),
OOPSLA ’87, New York, NY, USA, 1987. ACM.

23 Matthew L. Massie, Brent N. Chun, and David E. Culler. The ganglia distributed monitoring
system: design, implementation, and experience. Parallel Computing, 30(7):817–840, 2004.

24 Nenad Medvidovic, David S. Rosenblum, and Richard N. Taylor. A Language and Environment
for Architecture-based Software Development and Evolution. In Proceedings of the 21st
International Conference on Software Engineering, ICSE ’99, New York, NY, USA, 1999.
ACM.

25 R. Milner, L. Morris, and M. Newey. A Logic for Computable Functions with Reflexive and
Polymorphic Types. In Proceedings of the Conference on Proving and Improving Programs,
Arc-et-Senans, 1975.

26 Tom Murphy, VII., Karl Crary, and Robert Harper. Type-safe Distributed Programming
with ML5. In Proceedings of the 3rd Conference on Trustworthy Global Computing, TGC ’07,
Berlin, Heidelberg, 2008. Springer-Verlag.

27 Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable Extensibility via Nested
Inheritance. In Proceedings of the 19th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, OOPSLA ’04, New York, NY, USA,
2004. ACM.

28 Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested Intersection for Scalable
Software Composition. In Proceedings of the 21st ACM SIGPLAN Conference on Object-
oriented Programming Systems, Languages, and Applications, OOPSLA ’06, New York, NY,
USA, 2006. ACM.

29 Martin Odersky, Guillaume Martres, and Dmitry Petrashko. Implementing Higher-kinded
Types in Dotty. In Proceedings of the 7th ACM SIGPLAN Symposium on Scala, SCALA ’16,
New York, NY, USA, 2016. ACM.

30 Martin Odersky and Matthias Zenger. Scalable Component Abstractions. In Proceedings of
the 20th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages,
and Applications, OOPSLA ’05, New York, NY, USA, 2005. ACM.

31 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes As Objects and
Implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, New York, NY, USA, 2010. ACM.

32 Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus Algorithm. In
Proceedings of the 2014 USENIX Annual Technical Conference, USENIX ATC ’14, Berkeley,
CA, USA, 2014. USENIX Association.

33 D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into Modules. Communi-
cations of the ACM, 15(12), December 1972.

34 Laure Philips, Coen De Roover, Tom Van Cutsem, and Wolfgang De Meuter. Towards Tierless
Web Development Without Tierless Languages. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software,
Onward! 2014, New York, NY, USA, 2014. ACM.

35 Gabriel Radanne and Jérôme Vouillon. Tierless Modules, 2017.

P. Weisenburger and G. Salvaneschi 3:29

36 Gabriel Radanne and Jérôme Vouillon. Tierless Web Programming in the Large. In Companion
Proceedings of the The Web Conference 2018, WWW ’18, Republic and Canton of Geneva,
Switzerland, 2018. International World Wide Web Conferences Steering Committee.

37 David Rajchenbach-Teller and Franois-Régis Sinot. Opa: Language support for a sane, safe
and secure web. In Proceedings of the OWASP AppSec Research, 2010.

38 Andreas Rossberg and Derek Dreyer. Mixin’ Up the ML Module System. ACM Transactions
on Programming Languages and Systems, 35(1), April 2013.

39 Nicola Santoro. Design and analysis of distributed algorithms, volume 56. John Wiley & Sons,
2006.

40 Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: A language for programming
the web 2.0. In Companion to the 21th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, Companion to OOPSLA ’06, New York,
NY, USA, 2006. ACM.

41 Manuel Serrano and Vincent Prunet. A Glimpse of Hopjs. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP ’16, New York, NY,
USA, 2016. ACM.

42 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of Convergent and Commutative Replicated Data Types. Research Report RR-7506, Inria –
Centre Paris-Rocquencourt; INRIA, January 2011.

43 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free Replicated
Data Types. In Proceedings of the 13th International Conference on Stabilization, Safety, and
Security of Distributed Systems, SSS ’11, Berlin, Heidelberg, 2011. Springer-Verlag.

44 Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

45 Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N Degrees of Separation:
Multi-dimensional Separation of Concerns. In Proceedings of the 21st International Conference
on Software Engineering, ICSE ’99, New York, NY, USA, 1999. ACM.

46 Kresten Krab Thorup. Genericity in Java with Virtual Types. In Proceedings of the 11th
European Conference on Object-oriented Programming, ECOOP ’97, Berlin, Heidelberg, 1997.
Springer-Verlag.

47 Werner Vogels. Eventually Consistent. Communications of the ACM, 52(1), January 2009.
48 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed System Development

with ScalaLoci. Proceedings of the ACM on Programming Languages, 2(OOPSLA ’18), 2018.
49 Yizhou Zhang, Matthew C. Loring, Guido Salvaneschi, Barbara Liskov, and Andrew C. Myers.

Lightweight, Flexible Object-oriented Generics. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’15, New York, NY,
USA, 2015. ACM.

50 Yizhou Zhang and Andrew C. Myers. Familia: Unifying Interfaces, Type Classes, and Family
Polymorphism. Proceedings of the ACM on Programming Languages, 1(OOPSLA), October
2017.

ECOOP 2019

Scopes and Frames Improve Meta-Interpreter
Specialization
Vlad Vergu
Delft University of Technology, Delft, The Netherlands
v.a.vergu@tudelft.nl

Andrew Tolmach
Portland State University, Portland, OR, USA
tolmach@pdx.edu

Eelco Visser
Delft University of Technology, Delft, The Netherlands
e.visser@tudelft.nl

Abstract
DynSem is a domain-specific language for concise specification of the dynamic semantics of program-
ming languages, aimed at rapid experimentation and evolution of language designs. To maintain a
short definition-to-execution cycle, DynSem specifications are meta-interpreted. Meta-interpretation
introduces runtime overhead that is difficult to remove by using interpreter optimization frameworks
such as the Truffle/Graal Java tools; previous work has shown order-of-magnitude improvements from
applying Truffle/Graal to a meta-interpreter, but this is still far slower than what can be achieved
with a language-specific interpreter. In this paper, we show how specifying the meta-interpreter
using scope graphs, which encapsulate static name binding and resolution information, produces
much better optimization results from Truffle/Graal. Furthermore, we identify that JIT compilation
is hindered by large numbers of calls between small polymorphic rules and we introduce rule cloning
to derive larger monomorphic rules at run time as a countermeasure. Our contributions improve
the performance of DynSem-derived interpreters to within an order of magnitude of a handwritten
language-specific interpreter.

2012 ACM Subject Classification Software and its engineering → Interpreters

Keywords and phrases Definitional interpreters, partial evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.4

Funding This research was partially funded by the NWO VICI Language Designer’s Workbench
project (639.023.206) and by a gift from the Oracle Corporation.

Acknowledgements We thank the anonymous reviewers for their feedback on previous versions of
this paper, and we thank Laurence Tratt for his guidance on obtaining reliable runtime measurements
and analyzing the resulting time series.

1 Introduction

A language workbench [9, 36] is a computing environment that aims to support the rapid
development of programming languages with a quick turnaround time for language design
experiments. Meeting that goal requires that (a) turning a language design idea into an
executable prototype is easy; (b) the delay between making a change to the language and
starting to execute programs in the revised prototype is short; and (c) the prototype runs
programs reasonably quickly. Moreover, once the language design has stabilized, we will
need a way to run programs at production speed, as defined for the particular language and
application domain.

© Vlad Vergu, Andrew Tolmach, and Eelco Visser;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 4; pp. 4:1–4:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:v.a.vergu@tudelft.nl
https://orcid.org/0000-0002-0748-2044
mailto:tolmach@pdx.edu
https://orcid.org/0000-0002-7384-3370
mailto:e.visser@tudelft.nl
https://doi.org/10.4230/LIPIcs.ECOOP.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Scopes and Frames Improve Meta-Interpreter Specialization

Semantics specification languages such as Redex [10], K [30], and DynSem [34] provide
abstractions for directly expressing the operational semantics rules of a language under
design. For example, DynSem supports concise specification based on the implicitly modular
operational semantics approach, which requires mentioning semantic components such as
environments and stores only in rules that actually interact with those components [23, 22].
Such high-level specification languages reduce the effort of defining an object language. But
how best to generate an executable prototype from such a definition?

Since we typically do not need the prototype to run especially fast, one natural approach
is to generate an interpreter for the object language. For example, the original DynSem
implementation [34] generates interpreters in Java. However, this approach requires a
sequence of steps – generating code from the operational semantics definition, compiling
that generated code, starting up a JVM, and running the generated interpreter on an object
language AST – that altogether take on the order of a minute, even for very small language
definitions. This delay inhibits workbench users from incorporating prototype generation
and testing into their design iteration loop.

The standard solution to making a translated language more agile is to interpret it instead.
An interpreter for an interpreter specification language is a meta-interpreter, resulting in
two layers of interpretation: the meta-interpreter reads the AST of a specification and the
AST of an object program, and interprets the rules from the specification, which in turn
interpret the object language AST. While this reduces the code-to-run cycle, it increases the
execution time of object programs by at least an order of magnitude, potentially limiting
the scalability of tests or experiments. So, it seems that we either get slow interpreter
generation or slow meta-interpreter execution. Can we get fast interpreter generation and
fast interpreter execution?

There is reason to hope that we can: trace-based optimization frameworks such as
RPython [4] and partial evaluation frameworks such as Truffle/Graal [38] have been successful
in bringing the benefits of JIT compilation to (suitably instrumented) interpreters. We have
been exploring whether such approaches will also work for meta-interpreters. In prior work [35]
we demonstrated that specializing a meta-interpreter for DynSem using the Truffle/Graal
framework can lead to an order of magnitude speed-up over a naive meta-interpeter. However,
we were curious about whether we could do better still. Can we get close to the performance
of a manual implementation of an object-language interpreter, or even of a production-quality
object-language compiler?

In this paper, we report progress towards this goal. We show that the combination of the
use of a uniform memory model and cloning semantics rules leads to a meta-interpreter for
DynSem with a performance that is within a geometric mean factor of 4.7 of a hand-written
object-language-specific interpreter for a small set of benchmarks on a simple object language.
Both interpreters are implemented using the Truffle AST interpreter framework [40] and run
with the Graal JIT compiler for the Java VM [38], which aggressively inlines stable method
calls into efficient machine code. This work makes the following contributions:

Memory representation using “scopes and frames” : The specifications of Vergu et al. [35]
use environments for the representation of memory (environment and store) as is common
in dynamic semantics specifications. However, this memory representation is language-
specific and has high performance overhead. In this paper we use the “scopes and
frames” approach [28], a uniform (language parametric) model for the representation of
memory in dynamic semantics specifications based on scope graphs [25, 32]. By mapping
frames onto Truffle’s Object Storage Model, we can piggy-back on the optimizations for
that representation.

V. Vergu, A. Tolmach, and E. Visser 4:3

Rule cloning: The units of execution in a DynSem specification are reduction rules for
language constructs. Since the same rule is used for all occurrences of a language construct
in a program, the specializer considers them as polymorphic, with limited specialization
as result. By cloning rules for each call site, rules become monomorphic, allowing Graal
to inline them.
Evaluation: We have evaluated the approach using the Tiger language [2]. We compare
the performance of three variants of DynSem specifications for Tiger and a Tiger-specific
interpreter implemented in Java, all running on the Graal VM. The variants compare
memory representation (environments vs scopes-and-frames) and inlining vs not inlining.
The results suggest that this is a viable approach, with performance of meta-interpretation
using inlining and scopes-and-frames within an order of magnitude of the language-
specific interpreter.

Outline. We proceed as follows. In the next section, we describe the DynSem specification
language and review the Truffle/Graal framework. In Section 3 we discuss the design of
the (hybrid) meta-interpreter. In Section 4 we review the “scopes-and-frames” approach,
demonstrate its application in DynSem specifications, and discuss the mapping of frames
to Truffle’s Object Storage Model. In Section 5 we discuss the design of rule cloning in the
meta-interpreter driven by a light-weight binding time analysis. In Section 6 we present the
set-up of the evaluation experiment and discuss the results. In Section 7 we discuss related
and future work.

2 Background

In this section we discuss the background on the DynSem specification language and the
Truffle and Graal framework.

2.1 DynSem
DynSem [34] is a meta-DSL for specifying the dynamic semantics of programming languages.
It is included in the Spoofax Language Workbench [17] and is a part of a larger effort to
derive programming environments from high-level specifications [36]. In DynSem, programs
are represented as terms and program execution is modeled as reduction of program terms
to value terms. We illustrate the key concepts of DynSem with the example in Figure 1.

Signatures. The structure of terms is defined by means of an algebraic signature, which
defines the sorts (types) of terms, term constructors, typed reduction arrows, and semantic
components. Figure 1a illustrates these concepts for a subset of the term signatures of
Tiger [2]. Tiger is a simple programming language originally invented for teaching about
compilers; it is a statically typed language and has let bindings, functions, records, control-flow
constructs and arrays. Figure 1a declares two sorts of terms: Exp for program expressions,
and Val for value terms. A constructor declaration defines the arity and types of terms that a
constructor can be applied to. For example, the Plus constructor is used to construct terms
of the form Plus(e1, e2) where the subterms e1 and e2 are terms of sort Exp. Note that
just like program expressions, value terms are represented by a sum type to represent different
kinds of values, unified in the Val sort. The example defines integer and closure values.

An arrow defines the source and target sort of a reduction. For example, the Exp −→ Val

arrow states that Exp terms can be reduced to Val terms using the −→ arrow. Semantic
components are used to represent the run-time state of programs. In the example, semantic
components for environments E (mapping identifiers to locations) and heaps (stores) H

(mapping locations to values) are defined.

ECOOP 2019

4:4 Scopes and Frames Improve Meta-Interpreter Specialization

signature
sorts Exp Val
constructors
Plus: Exp * Exp→ Exp
Call: Id * Exp→ Exp
IntV: Int→ Val
ClosureV: Id * Exp * E→ Val

arrows
Exp−→ Val

components
E : Map(Id, Int)
H : Map(Int, Val)

(a)

E ` e1 :: H1−→ IntV(i) :: H2;
E ` e2 :: H2−→ IntV(j) :: H3;
IntV(addI(i, j))⇒ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
E ` Plus(e1, e2) :: H1−→ v :: H3

(b)

e1−→ IntV(i); e2−→ IntV(j)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(e1, e2)−→ IntV(addI(i, j))

(c)

readVar(f)−→ ClosureV(arg, efun, E);
e−→ varg;
E {arg 7→ varg, E} ` e−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Call(f, e)−→ v

(d)

signature
arrows
readVar(String) −→ Val
lookup(String) −→ Int
read(Addr) −→ Val
write(Addr, Val)−→ Val
allocate(Val) −→ Int

(e)

readVar(x)−→ read(lookup(x))

E ` lookup(x)−→ E[x]

read(a) :: H−→ H[a]

write(a, v)::H−→ v :: H {a 7→ v,H}

fresh⇒ a; write(a, v)−→ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−
allocate(v)−→ a

(f)

Figure 1 (a) Algebraic term signatures in DynSem. (b) Fully elaborated rule for arithmetic
addition and (c) its concise equivalent with implicit propagation of semantic components. (d)
Semantics of a unary function call. (e) Signatures of auxiliary meta-functions for environment and
store operations and (f) their corresponding rules.

DynSem specifications are statically checked with respect to signatures. The checker
ensures that term patterns in rules are consistent with constructor declarations and that
arrow arguments are of the right sort.

Rules. Reduction rules define the dynamic semantics of programs by reduction of program
terms to value terms. A rule has the form
prem1; prem2; ...
−−−−−−−−−−−−−−−−−
lhs−→ rhs

where the conclusion is an arrow declared in the signature. It defines that a term matching lhs
is reduced to the instantiation of term rhs, provided that the premises prem1; prem2; ...

succeed. Premises are either recursive arrow applications or pattern matches. An arrow
application premise lhs −→ rhs instantiates the pattern lhs with the substitutions for
meta-variables from the left-hand side of the conclusion or from earlier premises, reduces
it with the arrow, and matches the result against the rhs pattern. A pattern matching
premise lhs ⇒ rhs instantiates the pattern lhs, which may possible involve application of
meta-functions (see below), and matches it to the pattern rhs. Arrows are usually defined
in a big-step style [16]. That is, a rule reduces a program term to a value term in one step,
using recursive invocation of arrows in the premises. This is illustrated in Figure 1c, which
defines the reduction of Plus(e1, e2) terms with the −→ arrow by completely reducing
the argument terms to value terms. The right-hand side of the conclusion constructs the
resulting value term by using the addI meta-function.

V. Vergu, A. Tolmach, and E. Visser 4:5

Semantic Components. The rule in Figure 1c does not account for the evaluation of an
expression in the context of an environment binding variables in scope and a heap storing
values with longer lifetimes. DynSem supports the propagation of such contextual information
by means of so called semantic components, which are distinguished in read-only components
and read-write components. A read-only component is mentioned to the left of the ` symbol,
and propagates downwards (environment semantics). A read-write component is mentioned
after the :: symbol and is threaded through the evaluation of the relation.

The rule in Figure 1b propagates semantic components E and H through the evaluation
of the sub-expressions of Plus. Semantic component E (representing a variable environment)
propagates as a read-only semantic component, while component H (representing a store) is
threaded through the computation and returned from the rule.

A rule only has to explicitly mention those semantic components that it modifies; other
components can be left implicit. The rule of Figure 1b modifies neither environment nor store
and both may therefore be left implicit, as shown in Figure 1c. A static analysis infers which
semantic components must be propagated and informs a source-to-source transformation
that makes all components explicit.

Meta-Functions. DynSem allows standalone units of semantics to be separately defined as
meta-functions. This supports reuse across rules and promotes concise rules. The semantics
of a unary function call given in Figure 1d illustrate the use of meta-functions in DynSem.

Meta-functions readVar, lookup, read, etc. with their signatures and semantics of
Figure 1e and Figure 1f, respectively, provide a library of memory operations. The operations
are used, for example, to lookup the heap address of a variable in the environment by its
name, and to read the value associated with this address from the heap. The readVar

combines these two operations in a single meta-function which is used, for example, in the
Call rule of Figure 1d to retrieve the function closure.

2.2 Truffle and Graal
We use Truffle [40] and Graal [38] as runtime frameworks for the execution of DynSem
specifications. For a definitive guide we refer the reader to the Truffle and Graal literature [40,
39, 14, 38]. Throughout this section it is useful to keep in mind that a runtime derived
from a DynSem specification is an interpreter of DynSem specifications that consumes an
object-language specification and a program to execute, as depicted in the architecture
overview Figure 6. We provide an overview of this in Section 3.

Truffle Interpreters. Truffle [40] is a Java framework for implementing high-performance
interpreters, in particular interpreters for dynamic languages. Truffle interpreters are AST
interpreters. In an AST interpreter the syntactic structure of the program determines the
organization of the interpreter. Each AST node implements the semantics of the language
construct it represents. In a typical Truffle interpreter the parser instantiates the AST of
the interpreter given a particular program. Execution in the interpreter flows downwards in
the tree and results flow upwards. Truffle provides the logistics for implementing interpreter
nodes and maintaining the AST.

Figure 2 shows the skeletons of the two base classes that provide the basis for implementing
language-specific nodes. A Node is the basic building block of a Truffle interpreter. The
language developer extends the Node class to give semantics to language constructs. The
Node class provides facilities for constructing and modifying trees of nodes and for traversing
the tree, downwards and upwards. For example, a node for binary addition has two children

ECOOP 2019

4:6 Scopes and Frames Improve Meta-Interpreter Specialization

abstract class Node ... {
Node parent;

Node getParent() {
return parent;

}

RootNode getRootNode() {
Node rootNode = this;
while (rootNode.getParent() != null) {
rootNode = rootNode.getParent();

}
return (RootNode) rootNode;

}

Node replace(Node newNode){ ... }

Node adopt(Node child) { ... }
}

abstract class RootNode ... {
abstract Object execute(VirtualFrame f);

}

Figure 2 Skeletons of Truffle Node and RootNode classes and logistics for traversing the AST
upwards.

nodes, one for each of its subexpressions, and provides an execution method that performs
the addition and returns the result. If the implemented language has variables, the execute
method is parameterized with an environment-like data structure, called a Frame, that
contains the variables in scope at that location of the program.

An interpreter node without a parent is a RootNode. Each tree of interpreter nodes has
a root, which is an entry point for execution and typically corresponds to a function in the
object program. Multiple interpreter trees exist at run time, typically one for each function
of a program. Each root node is parameterized by a frame descriptor defining the structure
of the Frame that is propagated downwards during evaluation. For example, if a root node
corresponds to a function, its frame descriptor defines the variables bound in the body of the
function. The Truffle runtime uses the frame descriptor to instantiate a frame to be used
when calling the function.

Specializing Truffle Interpreters. Truffle interpreters are particularly suited to dynamic
languages because the AST structure of the interpreter allows each node to self-optimize
based on runtime information. The core idea is that the interpreter AST evolves at run
time to a more efficient implementation based on runtime values. For example, the plus
operator of a dynamic language may embed semantics for both arithmetic addition and
string concatenation, and at runtime specialize itself to one of these two semantics based on
the (dynamic) values of its operands. A node may replace itself by a more specific variant by
using the replace method, which updates the node’s parent to point to the new variant.
Alternatively, a node may decide to replace one of its children by a more efficient one, or adopt
a new child altogether, by using the adopt method. Truffle provides a set of class and method
annotations, collectively known as the Truffle DSL [14], that reduce the implementation effort
(and boilerplate) of developing node specializations. The annotations drive a (compile-time)
code generator which emits highly-efficient implementations of behavior specialization and
inline caching.

V. Vergu, A. Tolmach, and E. Visser 4:7

The Graal JIT Compiler. Graal [38] is a high-performance JIT compiler for the Java VM
with powerful partial evaluation and component inlining phases. Graal aggressively inlines
stable method calls in order to generate efficient machine code. Runtime decisions about
what calls are inlined are based on the outcome of a cost-benefit analysis. Truffle and Graal
are designed to work together to obtain JIT-compiled Truffle interpreters with little effort.
Graal treats each Truffle AST root node as a single compilation unit, i.e. Graal compiles
root nodes individually. Once a Truffle interpreter tree stabilizes (i.e. node rewriting has
stopped) Graal inlines all method calls of the nodes which are under a common root and
emits machine code for that tree. A Frame that is never stored in a class field can remain
virtualized – VirtualFrame. Since all the execution methods are inlined, the virtual frame
can be eliminated, resulting in highly efficient machine code. If, after compilation, a node
has to be re-specialized, for example due to a specialization that is no longer valid, the
VM transfers execution of the entire executing tree back to interpreted code, disregards the
machine code, and the tree is recompiled to machine code once its structure has stabilized
again. The size of a tree therefore greatly affects the cost-benefit analysis of JIT compilation
for that subtree. As we discuss in Sections 5 and 6, small trees compile cheaply but with
little benefit, whereas JIT-compiling large trees delivers better peak performance but at an
increased risk of costly recompilation.

3 Meta-Interpreters

The DynSem runtime of Vergu et al. [35] is a meta-interpreter, i.e. it interprets dynamic
semantics specifications of a language. Figure 3 gives a macroscopic view of the components at
play in meta-interpretation. A DynSem specification undergoes lightweight source-to-source
transformations (syntactic desugaring, semantic component explication, factorization, etc.)
to make it amenable to interpretation. The meta-interpreter enacts the desugared DynSem
specification with respect to a program’s AST in order to evaluate the program. Each
rule of the specification is loaded in the meta-interpreter as a callable function. The body
of a function is made up of meta-interpreter nodes that implement the semantics of the
DynSem instructions used within the rule. This results in two layers of interpretation: the
meta-interpreter interprets the rules of the specification which in turn interpret the object
language AST.

While meta-interpretation reduces the code-to-run cycle, it increases the execution time
of object programs, potentially limiting the scalability of tests or experiments. So, it seems
that we either get slow interpreter generation or slow interpreter execution. Motivated by the
goal of having fast interpreter generation and fast interpreter execution, the DynSem meta-
interpreter is implemented as a Truffle [40] AST interpreter and executes on an Oracle Graal
VM [38]. Much of the original meta-interpretation research [35] is focused on determining an
interpreter morphology and providing runtime information to the Graal JIT such that it can
remove the meta-interpreter layer.

Hybrid Meta-interpretation. Because meta-interpretation is slowed down by interpretation
of generic term operations (pattern matching and construction), and because term operations
for an object language are specific to that language, the DynSem meta-interpreter replaces
generic term operations with statically generated language-specific term operations, which
are derived from the DynSem specification of the language. Vergu et al. named the
combination of specification meta-interpretation and generated term operations hybrid

ECOOP 2019

4:8 Scopes and Frames Improve Meta-Interpreter Specialization

DynSem
specification

Program

Desugared
specification

Program AST

Meta-
interpreter Result

Static Runtime

Figure 3 Overview of meta-interpretation.

meta-interpretation [35]. The original hybrid meta-interpreter starts up with generic term
operations that immediately specialize themselves to the language-specific operation at their
first execution, which is essentially a form of local JIT compilation.

Meta-interpreter Modifications. We apply the improvements presented in this paper to
the DynSem hybrid meta-interpreter with two small modifications. First, we replace the rule
dispatch mechanism by a simple rule call mechanism with an inline cache. The simplified
rule call mechanism looks up the callee rule in the registry of rules and invokes it. The
inline cache allows the call mechanism to remember callee rules so that the lookup is avoided
in future calls. We chose to make this simplifying refactoring to allow a redesign of the
rule call specialization mechanism, as we will show in Section 5. Second, we refactored the
meta-interpreter to directly use the generated term operations instead of lazily replacing
generic ones at run time. At best this leads to one less iteration required until warmup, but
it simplifies interpreter initialization. The change does not have an effect after warmup and
thus has no impact on the evaluation of the contributions of this paper.

Limitations of Name Resolution with Maps. In the original DynSem work [34], typical
language specifications model name binding, resolution and program memory using ab-
stractions for environments (mapping names to addresses) and stores (mapping addresses
to values). Thus, for example, every reference to an object program variable involves a
string-based lookup of the variable name in an environment data structure. Environments
and stores are themselves implemented using ordinary DynSem reduction rules on top of a
built-in type of persistent (i.e. functional) maps. The approach has previously been identified
as a DynSem performance bottleneck [35]. The performance penalty is due in the first
instance to the inherent cost of (hash-)map operations. But a more fundamental issue is
that the JIT compiler cannot see the algorithms of the underlying maps, which means it
cannot comprehend the operation of environments, and hence cannot comprehend name
resolution in object programs. Observing and optimizing name resolution is, however, an
essential ingredient in JIT compilation. Moreover, to write an environment-based DynSem
specification, a language developer must define name binding and resolution in the dynamic
semantics. Typically, they do this by writing higher-level DynSem meta-functions, such as
variable lookup, that abstract from the low-level details of environment manipulation and
encapsulate the object language’s name resolution policy (Section 2.1). Unfortunately, such
meta-functions are typically language-specific, making them difficult to reuse.

V. Vergu, A. Tolmach, and E. Visser 4:9

(a)
s0

s2y

P

s1

P

x

x

y

scope

declaration

reference

linkl

(b)

scope

slot val

link

frame

ref

l
s0

s1

x 1

P

s2

y 2

P

x y

(c)

Figure 4 (a) Program with nested let bindings. The labelled box surrounding a code fragment
indicates the scope the fragment resides in. Declarations and references for the same name are
shown in the same color. (b) The scope graph describing the name binding structure of the program.
Colors highlight name resolution paths from references to declarations. (c) Heap of frames at the
end of program evaluation.

4 Scopes and Frames

To address the performance issues of the use of maps for the representation of name binding,
we adopt the scopes-and-frames approach of Poulsen et al. [28]. In this section, we provide
an overview of the previous work on name resolution with scope graphs and frames to
represent scopes at run time. Then we discuss the extension of DynSem with support for
scopes-and-frames and its implementation in terms of Truffle’s Object Storage Model.

4.1 Name Resolution with Scope Graphs

Our approach is based on the theoretical framework of a resolved scope graph [25], which is a
distillation of a program’s name-binding structure that supports name resolution in a mostly
language-independent way. Consider the small program of Figure 4a and its corresponding
resolved scope graph in Figure 4b. Scopes are code regions that behave uniformly with
respect to name binding and resolution. They are marked in code with labelled boxes and
are shown in the scope graph as named circles. Scopes contain declarations, shown as named
boxes with an incoming arrow, and references, shown as named boxes with an outgoing arrow.
Visibility inclusion between scopes is shown as a labelled directed arrow between scopes. For
example, the fact that declarations of the outer let are visible in the inner let is indicated
by the arrow from scope s2 to s1. Arrow labels characterize visibility inclusion relationships.
In this case the P label indicates a lexical parent inclusion relationship. Resolving a name
involves determining a path in the graph from the scope containing the name reference to
the scope containing its declaration. The reference y resolves to the local declaration by the
red path in the scope graph, while reference x resolves to the declaration in the parent scope
by the blue path. The name resolution of a program is the set of paths which uniquely relate
each reference to a declaration.

ECOOP 2019

4:10 Scopes and Frames Improve Meta-Interpreter Specialization

(a)

s0

s2

f

Ps1

P

x

s3

P

f

n

nnn
x

associated
scope

f

(b)

s0

s1

x 1

P

s2

f Fn

P

s3

n 1

s3

n 0

P
P

xnnn

f

f xnnn
f

(c)

Figure 5 (a) Program with nested let bindings and a recursive function. (b) The scope graph
describing the name binding structure of the program. (c) Heap of frames at the end of the evaluation
of the program.

The example in Figure 5 shows how function scopes are modeled using scope graphs.
These examples demonstrate examples of lexical scope, in which declarations in inner scopes
shadow declarations in outer scopes. The Tiger language, which is used for the experiments
in this paper, also has records and recursive type definitions. However, scope graphs are
not limited to these patterns, but rather support the formalization of a wide range of
name binding patterns, including variations of let bindings (sequential, parallel, recursive),
modules with (recursive and transitive) imports, classes with inheritance, packages [25, 24],
type-dependent name resolution [32], and structural and generic types [33]. The framework
allows modeling a variety of visibility policies by configuring path specificity and path
well-formedness predicates [32].

Frames. Poulsen et al. [28] provide the theoretical foundation for using a resolved scope
graph to describe the layout of frames in a heap and the semantics of the base memory
operations: allocation, lookup, access, and update. Declarations and references of a scope
provide a recipe for constructing a memory frame at run time. A heap of frames, for example
that of Figure 4c, results from program evaluation. A new frame is created when evaluation
enters a new scope. The structure of the frame is determined by the declarations and
references in its describing scope, which become slots of the frame. Newly created frames are
linked to existing frames in accordance to their scope links. In the frame heap, references are
related to slots by the name resolution path from the scope graph. Resolving a reference to
a slot is performed by traversing frame links in accordance with the path. A new frame is
created each time evaluation enters a scope. We illustrate this in the program of Figure 5,
where the function body is evaluated in a fresh frame for each function call. Note that for a
recursive function like this, multiple frames for a single scope can exist simultaneously.

Architecture. In the rest of this section we describe how we incorporate scopes-and-frames
into DynSem. Figure 6 gives an architectural overview of the approach. The static semantics
of the object language is described in the constraint-based NaBL2 [32] language. Notably, it

V. Vergu, A. Tolmach, and E. Visser 4:11

this paper

Constraints
AST

Resolved
Scope Graphextract solve

Annotated
AST

+ eval

Heap

Frame

Frame
Frame

Frame

Constraint
generator

DynSem
specification

NaBL2
specification

Figure 6 Architecture of the approach: static analysis on a program’s AST via constraints
produces an AST with explicit name and type information, which is the input for interpretation in
accordance with a dynamic semantics specification.

uses scope graphs to represent the binding structure of the programs. The result of type
checking with an NaBL2 specification is an annotated AST and a resolved scope graph. The
DynSem specification for the object language uses frames based on scopes in the scope graph
to represent memory and paths in the scope graph to resolve names to declarations in the
frame heap.

4.2 Static Semantics with NaBL2

The scope graph for a program is constructed during type checking. The type checker derived
from an NaBL2 specification generates constraints for an object program, which are solved
by a language-independent constraint solver. We give a brief introduction to static semantics
specifications with NaBL2 [32] using the rules in the left column of Figure 8 for the subset
of the Tiger language used in the examples in Figure 4 and Figure 5. The signature of the
abstract syntax of this subset is defined in Figure 7. (For the sake of conciseness of the
presentation we have simplified the constructs in the subset to unary instead of n-ary let
bindings and function definitions and calls. Furthermore, we use type equality instead of
subtyping. For the experiments we have used the full Tiger language.)

An NaBL2 rule of the form Srt[[C(e1, e2, . . .) ^ (s) : t]]:= C. specifies that the
(abstract syntax of) language construct C(e1, e2, . . .) in the context of scope s has type t
provided that the constraint C is satisfied. The constraint in the body of a rule is typically
a conjunction of multiple simpler constraints. Constraints include recursive invocations
Srt[[C(e1, e2, . . .) ^ (s) : t]] of constraint rules on subterms, unification constraints
on constraint variables, and scope graph constraints, which support the introduction of a
new scope (new s), the definition of a scope edge (s P−→s’), the definition of a declaration
in a scope (o ← s), the definition of a reference in a scope (o → s), the association of a
type with an occurrence (o : t), and the resolution of a reference to a declaration (o 7→d).
Here o denotes an occurrence NS{x} consisting of a namespace NS and a concrete occurrence
of a name x in a program. The NaBL2 constraint @l.scopeOf := s’ attaches the newly
created scope s’ as a property on the program term to make it available to the runtime.

For example, the rule for Let introduces a new scope s_let, links it to the parent
scope, and passes it on as the binding scope for the declaration and as the scope of its
body expression. The rule for VarDec introduces the variable x as a bound variable in the
binding scope s’ and associates the type of the initializer expression with it. The rule for
Var declares x as a reference in the scope of the variable, resolves the name to a declaration
d, and retrieves the associated type ty. The rule for FunDec creates a new scope s_fun for
the body of the function and declares the formal parameter x as a declaration in that scope.

ECOOP 2019

4:12 Scopes and Frames Improve Meta-Interpreter Specialization

signature
sorts Id
sorts Dec constructors
VarDec : Id * Type * Exp→ Dec
FunDec : Id * Id * Type * Type * Exp→ Dec

sorts Exp constructors
Let : Dec * Exp→ Exp
Var : Id→ Exp
Call : Id * Exp→ Exp
Plus : Exp * Exp→ Exp
Minus : Exp * Exp→ Exp

Figure 7 Signature for an adapted subset of Tiger.

Exp[[l@Let(dec, e) ^ (s) : ty]] :=

new s_let, s_let
P−→ s,

@l.scopeOf := s_let,
Dec[[dec ^ (s_let, s)]],
Exp[[e ^ (s_let) : ty]].

newframe(scopeOfTerm(l))⇒ F’;
link(F’, L(P(), F)⇒ _;
Fs (F’, F) ` dec−→ _;
F’ ` e−→ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
F ` l@Let(dec, e)−→ v

Dec[[VarDec(x, t, e) ^ (s’, s)]]:=
Tp[[t ^ (s) : ty]],
Exp[[e ^ (s) : ty]],
Var{x}← s’, Var{x} : ty.

F ` e−→ v2;
set(F’, x, v2)⇒ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fs (F’, F) ` VarDec(x, _, e)−→ U()

Exp[[Var(x) ^ (s) : ty]] :=
Var{x}→ s, Var{x} 7→ d, d : ty.

F ` Var(x)−→ get(lookup(F, x))

Dec[[d@FunDec(f, x, t1, t2, e) ^ (s’, s)]]:=

new s_fun, s_fun
P−→ s’,

@d.scopeOf := s_fun,
Tp[[t1 ^ (s) : ty1]],
Tp[[t2 ^ (s) : ty2]],
Var{x}← s_fun, Var{x} : ty1,
Exp[[e ^ (s_fun) : ty2]],
Var{f}← s’, Var{f} : FUN(ty1, ty2).

FunV(F, scopeOfTerm(d), arg, e)⇒ clos;
set(F, f, clos)⇒ _
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Fs (F’, F) ` d@FunDec(f, arg, _, e)−→ U()

Exp[[Call(f, e) ^ (s) : ty2]]:=
Var{f}→ s, Var{f} 7→ d, d : FUN(ty1, ty2),
Exp[[e ^ (s) : ty1]].

get(lookup(F, f))⇒
FunV(Fp, s_fun, x, e_fun);

link(newframe(s_fun), L(P(), Fp))⇒ Fcall;
F ` e−→ varg;
set(Fcall, x, varg)⇒ _;
Fcall ` e_fun−→ v
−−
F ` Call(f, e)−→ v

Exp[[Plus(e1, e2) ^ (s) : INT()]]:=
Exp[[e1 ^ (s) : INT()]],
Exp[[e2 ^ (s): INT()]].

e1−→ IntV(i1); e2−→ IntV(i2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(e1, e2)−→ IntV(plusI(i1, i2))

Exp[[Minus(e1, e2) ^ (s) : INT()]]:=
Exp[[e1 ^ (s) : INT()]],
Exp[[e2 ^ (s): INT()]].

e1−→ IntV(i1); e2−→ IntV(i2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Minus(e1, e2)−→ IntV(subI(i1, i2))

Figure 8 Left: static semantics in NaBL2 for an adapted subset of Tiger. Right: corresponding
dynamic semantics in DynSem using scopes and frames.

Note that the rule for VarDec analyzes the initializer expression using scope s, which is
the outer scope of the corresponding Let. This entails that the variable declaration cannot
be recursive (refer to itself). On the other hand, the rule for FunDec makes the scope s’ in
which the function is added as declaration, a parent scope s_fun, the scope of the body of
the function. This entails that functions can be recursive.

V. Vergu, A. Tolmach, and E. Visser 4:13

sorts Val Frame Addr Occurrence

components
F : Frame

sorts Link constructors
L: Label * Frame→ Link

arrows
newframe(Scope)−→ Frame
link(Frame, Link)−→ Frame
lookup(Frame, Occurrence)−→ Addr
get(Addr)−→ Val
get(Frame, Occurrence)−→ Val
set(Addr, Val)−→ Val
set(Frame, Occurrence, Val)−→ Val

Figure 9 DynSem API for frame operations.

4.3 DynSem with Scopes-and-Frames
Frame-based DynSem specifications rely on primitive frame operations provided as a language-
independent library. Figure 9 declares the most important frame operations but elides their
implementation. We discuss their semantics here; a reference dynamic semantics is given by
Poulsen et al. [28].

The collection of linked frames is called the heap. The newframe operation instantiates a
new frame in the heap given a Scope, which is a reference to a scope in the scope graph.
This creates the required frame and frame slots for declarations and references but does not
link the new frame. The link operation adds a link to a given frame. All links are labelled
as in the scope graph. An Occurrence is a unique identification of the use of a name at
a specific location in the program. Static name analysis transforms the program AST to
replace each name occurrence, be it a declaration or a reference, with a unique identifier. Due
to its uniqueness each occurrence is in precisely one scope. Given a reference occurrence and
a frame, the lookup operation traverses the heap from the given frame to the frame holding
a slot for the declaration occurrence by using the statically computed name resolution path.
A lookup result is an Address specifically identifying a slot in a frame. Operations get and
set read and update slots, respectively. Both operations come in a basic form operating on
an address, and in a form directly operating on a frame and a slot.

Frame operations provide the building blocks for defining frame-based dynamic semantics
specifications. The right column of Figure 8 shows the dynamic semantics in DynSem for
the subset of Tiger discussed above. Each DynSem rule is listed next to the NaBL2 rule for
the same construct. The binding in the DynSem rules follows the static semantics. Where
the NaBL2 rule uses a scope, the DynSem rule uses a corresponding frame. Where the
NaBL2 predicate is indexed by a scope (or scopes), the DynSem arrow is indexed by a
corresponding frame (or frames). Thus, the language constructs are evaluated with the
Fs (Frame, Frame) `Dec −→ Unit and F `Exp −→ Val arrows.

Where the NaBL2 rule creates a new scope, the DynSem rule creates a corresponding
frame. There is some choice in the decision when to create a frame for a scope. For example,
in the case of a Let, the frame is created as soon as the construct is evaluated. (Note
that the scope is obtained from the NaBL2 scopeOf AST property, which is read using
scopeOfTerm operator.) However, the evaluation rule for a function declaration does not
create an instantiation of the scope of the function. Rather, a closure (FunV) is created that

ECOOP 2019

4:14 Scopes and Frames Improve Meta-Interpreter Specialization

records the scope and the parent frame (F) of the function declaration. Only evaluation of
the corresponding function call creates the function call frame and links it to the parent
frame from the closure.

Where the NaBL2 rule declares a name, a DynSem rule assigns a value to the corresponding
slot. For example, the VarDec rule assigns the value of the initializer expression to the slot
for the variable in the binding frame. In the case of a function, the assignment of the value
of the actual parameter is only done once the frame is created by the function call.

Where the NaBL2 rule resolves a name, the DynSem rule uses lookup to find the
corresponding slot, using the path obtained from resolving the name in the scope graph. For
example, the Var rule looks up the address of the slot for the variable and gets the value
stored there. Similarly, the Call rule looks up the address of the function name and gets the
closure stored there.

The systematic correspondence between static and dynamic name binding exhibited by
the rules in Figure 8 extends to all name binding patterns covered by scope graphs. The Tiger
language used for the evaluation of this paper has n-ary sequential let bindings, mutually
recursive function declarations, type declarations, (recursive) record types, and arrays. The
scope of a record describes the layout of its fields. A record instance is a frame derived from
record’s scope and holds field values. Record instantiation involves retrieving the scope of
the record and creating a new frame from it.

4.4 Native Library for Scopes-and-Frames
A resolved scope graph is the result of static name and type analysis; once created, the graph
and all the scopes it describes remain constant at run time. Thus, all frames created for a
given scope will have the same structure, and the edges between frames follow the pattern
fixed by scope graph edges. For example, a particular local variable reference in a program
will always have the same name resolution path and will always identify the same slot in its
declaration frame. This means that at run time we can partially evaluate a variable lookup
to a number of frame link traversals and an offset in a declaration frame, similar to the way
an optimizing compiler would optimize lookups statically.

The implementation strategy presented in this section is designed to allow the JIT
compiler of the hosting VM (an Oracle Graal VM) to observe that frame structure is constant
and to perform optimizations based on this observation. Our approach is to provide a Java
implementation of the scopes and frames API of Figure 9, to be used in DynSem specifications.
The library implements language-independent optimizations on frame operations which any
language with a frame-based DynSem specification can benefit from, out of the box.

Object Storage Model. Our implementation choice is to model scopes and frames using the
Truffle Object Storage Model (OSM) [37] and to implement scope and frame operations on
this model. The OSM was designed as a generic framework for modeling memory in languages
with dynamic name binding and typing. In particular the OSM provides a framework for
modeling objects in memory that undergo shape changes, similar to objects in prototype-
based languages such as Javascript. Truffle and Graal have special knowledge of the classes
that make up the OSM and can perform optimizations on memory allocation and operations.
Applying the OSM to a scope graph, which is by definition fixed at run time, is akin to
applying it to its ideal corner case: all shapes of all objects are constant. It is however
possible that the OSM introduces a certain amount of overhead that persists even in this
ideal situation. As an alternative implementation strategy, one could map a scope to a Truffle

V. Vergu, A. Tolmach, and E. Visser 4:15

resolution

references

declarations

ScopeGraph

scopes

imports

edges

references

ScopeEntry

declarations

Path

declaration

scope

D

label

scope

E

scope

label

occurrence

N

scope

associations

DeclEntry

RefEntry

scope Label

ScopeIdent

Occurence

Occurence

Occurence

ScopeIdent

ScopeIdent

Figure 10 Components of a scope graph.

FrameDescriptor and a heap frame to a VirtualFrame. However, this mapping is intricate
and would require all linked frames to be materialized in order to support frame linking. It
is our understanding that materialized frames are slower than frames on the OSM.

We give a brief overview of the mapping of scopes and frames to the OSM. The OSM
has three basic building blocks: objects, shapes and properties. A shape is a manifest of
the properties of a family of objects and how they are laid out, akin to a prototype for
an object or a class for an instance object. Shapes act as both descriptors for objects and
factories for objects. A shape can be used to check whether a given object conforms to it, to
retrieve properties of the object and to create new objects of that shape. A property uniquely
identifies a slot and provides additional metadata to the JIT, such as whether the slot is
mutable, nullable, and the type of values that it will store. The metadata informs the shape
as to how the storage area for an object is to be constructed. Additionally, a property of a
shape is the most efficient way to read or write the slot it identifies in an object of that shape.
A property can therefore be seen as both a slot descriptor and a slot offset into an object.

Scope Graphs on OSM. Figure 10 shows the components in the makeup of a scope graph.
We model them using the Truffle OSM. Declarations of layout interfaces inform the Truffle
DSL to generate their implementations. A scope graph consists of scopes, declarations and
references. A name resolution complements the scope graph with resolution paths from
references to declarations. Paths start at the reference scope and end at the declaration scope.
We use occurrences to uniquely identify declarations and references, and scope identifiers
to uniquely identify scopes. Scope identifiers and occurrences are the keys to associative
arrays maintained by the scope graph and are used to access detailed data. Note that we
store scope graph data in a flattened representation; it is more efficient to look up scopes,
declarations and references in flat associative maps than to search in graph-like structures. In
the implementation, the associative arrays are instances of DynamicObject from the Truffle
OSM. This allows Graal to optimize allocations and lookups, and gives us a set of tools
for efficient access. Occurrence and ScopeIdent are optimized to have efficient hash code
computation and fast equality checking.

At run time there exists precisely one scope graph. The meta-interpreter keeps a reference
to the scope graph in a global interpreter context which is accessible to any interpreter node.
This allows scope graph information to be accessed from anywhere in the meta-interpreter.

ECOOP 2019

4:16 Scopes and Frames Improve Meta-Interpreter Specialization

Storage
area

Scope

Frame

ScopeIdent

Occurrence

EdgeIdent

Value

Frame

Figure 11 Structure of natively implemented frames.

Frames on OSM. We map frames and their respective operations onto the three core
concepts of the OSM. Figure 11 describes the makeup of a frame. We implement a frame
as an OSM object. A frame is made up of a scope uniquely identified by a ScopeIdent

and an area for data storage. Each scope defines a unique frame shape. Each declaration
is identified by its Occurrence and derives a frame slot property. Each edge of a scope is
identified by an EdgeIdent – a pair of the edge label and the destination scope, and becomes
a shape property and a slot in a frame. A shape dictates the structure of the storage area of
a frame. Note that, by construction, all frames of a scope have the same shape. By checking
whether any two frames have the same shape we effectively check whether they are frames of
the same scope and vice versa.

Given a reference Occurrence and a starting frame, we look up the intended slot by
traversing frame links as dictated by the name resolution path from the resolved scope graph.
The result of the lookup is the address of the slot. The address is a pair of the frame and
declaration Occurrence of the slot. The Occurrence identifies a slot property in the shape
of the frame. This slot property can be used to efficiently access the slot in all frames of that
shape. By definition, the relationship between a code fragment at a particular location and
its surrounding scope is static. This means that code at that particular location will always
execute in the context of frames derived from the same scope. This allows slot properties to
be cached after their first lookup and later applied to access the slot efficiently, speeding up
memory operations considerably. Such caching is particularly efficient because it can be left
unguarded, since there is a static guarantee that the cached property will always be valid for
that particular code location.

An advantage of mapping scopes and frames onto the Truffle OSM is that it allows the
JIT compiler to observe memory operations. Since the JIT compiler can see through the
memory of a running interpreter, we expect that the improvement will not be limited to
just faster memory operations, but that the JIT will also optimize the running program
by optimizing memory allocations. An additional advantage of using native frames is that
garbage collection of frames is automatic and requires no effort from the language developer.

The native scopes and frames library makes the frame heap implicit and mutable, and
does not allow it to be captured or reset. On the other hand, the vanilla DynSem library
for scopes and frames uses explicit persistent data structures to model the heap. Although
the heap is normally hidden from view (as an implicitly threaded semantic component),
a language designer could intentionally define a semantics that observes it, captures or
resets it. However, we have not encountered a language for which this would be a desirable
implementation strategy. For example, even if a language needed transactional memory,
capturing and resetting the entire heap would not be a good implementation approach;
something finer-grained is needed. A more realistic approach would be to wrap the scopes
and frames library to provide transaction support. This would work for both the vanilla
DynSem and native scope and frames libraries.

V. Vergu, A. Tolmach, and E. Visser 4:17

5 Rule Inlining

The DynSem meta-interpreter [35] relies on Graal to optimize code within a rule and calls
across rules. A rule call in the meta-interpreter corresponds to a function call in a regular
interpreter. The JIT compiler will try to inline stable callees in order to reduce the number
of dispatches and to generate larger compilation units. We observe that the vast majority
of DynSem rules do not perform stable calls. The underlying cause is that most rules are
intermediate rules, i.e. they adapt the input program term and call other rules to further
reduce sub-terms. Consider, for example, the program of Figure 12a and the rule call tree of
Figure 12b corresponding to its evaluation. With the exception of FunDef, Var and Int, all
rules are intermediate. With the exception of meta-functions which are identified statically
by their name, a callee rule is identified at runtime by the sub-term to be reduced, which in
turn depends on the caller’s input term. In other words a callee rule is looked up by what
the JIT compiler sees as a runtime parameter to the caller. If it cannot determine that a
caller’s input term is constant, the JIT cannot decide to inline callees.

Not inlining of an intermediate callee rule leaves that rule exposed to calls from various
callers on various program terms. We call a rule polymorphic, if throughout its invocations it
reduces different terms. Conversely, a rule that always reduces the same term is monomorphic.
For example, the Call, Int and Var rules of Figure 12b are polymorphic. (In this simple
example, relatively many rules are monomorphic. In practice most rules in a specification
are polymorphic, because the corresponding language constructs are used more than once in
the program under evaluation.) Callees of polymorphic rules are not inlined, and not inlining
increases the number of polymorphic rules. In larger programs, the net result is many small
polymorphic rules which perform dynamic calls.

We distinguish two kinds of rule dispatch in a DynSem interpreter: dynamic dispatch,
which depends on runtime values of the object program, and structural dispatch, which
depends on the object program AST. In the call tree of Figure 12b all star-labeled arrows
represent structural dispatch. It is desirable, and plausible, that all structural dispatch be
eliminated by the JIT compiler; however, the issues outlined above prevent this. In this
section we address this problem by presenting improvements to the DynSem interpreter that
enable it to take explicit inlining decisions. In the ideal case the only remaining calls are
those corresponding to dynamic dispatches, as illustrated in Figure 12d. The improvements
consist of the following components:

A rule-level source-to-source transformation on DynSem specifications that explicitly
annotates structural rule dispatch.
A load-time fusion of overloaded rules.
A run-time rule-level signaling mechanism which allows any interpreter node to query
whether its surrounding rule is monomorphic.
A modified rule dispatch mechanism that can explicitly inline callee rules.

Binding-time Analysis. We introduce a lightweight source-to-source transformation of
DynSem specifications that analyzes rules and identifies structural dispatches by marking
meta-variables whose binding depends solely on the object program structure. Consider
the arithmetic addition rule of Figure 13a where meta-variables e1 and e2 are annotated
with const. The meaning of the const annotation on a meta-variable is twofold: (1) the
meta-variable is known to stem from the rule’s input without dependence on evaluation
context or rule calls, and (2) the meta-variable will be bound to a term that will be constant if
the surrounding rule is monomorphic. The const annotations of the meta-variables that are

ECOOP 2019

4:18 Scopes and Frames Improve Meta-Interpreter Specialization

let
function fac(n) =
if n = 0
then

1
else

n * fac(n−1)
in
fac(1)

end

(a)

17

13

2

Let
FunD
ef

IfElse Int

Call

Var

Mul

Sub

*

*

*

Eq

* *

**

*

*

*

*
*

1

3

4

*
5 7

*

*
6

8

9

10

11

12

14

*

15

16

18

(b)

13

1

2

3

5

7

6

8

9 10

11
12

14

15

16

17

18

Let
FunD
ef

IfElse

IntCall

Var

Mul

Sub

*

*

*

Eq*

*

**

*

*

*

*

*

4

*

*

*

*

Call

Var

Var

Int

Int

Int

(c)

Int Call

Let FunDef

Int IfElse Eq

Int

Var

Mul

Var Call

Sub

Var Int

(d)

Figure 12 (a) Tiger program, (b) Rule call tree of program evaluation, (c) Rule call tree with
cloned rules, (d) Rule call tree with rule inlining. Arrows marked with ∗ indicate calls on constant
terms. Rules with green circles are monomorphic, those with red circles are polymorphic. Arrow
numbers in figures (b) and (c) indicate execution order.

the inputs to the first two relation premises effectively mark the two rule calls as performing
structural rule dispatch. It is the propagation of the const annotation to rule call premises
that allows structural dispatch in Figure 12b to be identified and arrows labeled.

Consider the rule for a unary function call of Figure 13b. The meta-variable e bound to
the parameter expression is const annotated. This identifies the evaluation of the parameter
expression as requiring structural dispatch. At run time the evaluation of the parameter
expression can be inlined if the surrounding rule is monomorphic. The function body efun

retrieved from the closure is not const and its evaluation requires dynamic dispatch.

Fusion of Overloaded Rules. We call multiple DynSem rules that match the same pattern
overloaded rules. Consider the six eqV rules of Figure 14a as an example of overloaded rules.
The meta-interpreter loads overloaded rules as bundles. At rule call-time the rules in a
bundle are executed one by one until the first applicable one is found and the call site caches
the applicable rule at the call site. Subsequent executions of the call site first attempt the
cached rules. In the event of a cache miss the remaining bundled rules are tried and the
cache is grown with the newly applicable rule.

We observe that the success of a rule from the bundle is more likely to be determined by
the state of the object program rather than by its structure. Consider for example a bundle of
the two rules for an if-then-else statement. Indeed selecting one of the if-then-else rules
depends on the result of evaluating its guard condition. By this reasoning we cannot estimate

V. Vergu, A. Tolmach, and E. Visser 4:19

const e1−→ IntV(i1);
const e2−→ IntV(i2);
IntV(addI(i1, i2))⇒ v
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Plus(const e1, const e2)−→ v

(a)

get(lookup(F, const f))⇒
FunV(Fp, sfun, arg, efun);

link(newframe(sfun), L(P(), Fp))⇒ Fcall;
F ` const e−→ varg;
set(Fcall, arg, varg)⇒ _;
Fcall ` efun−→ v
−−−
F ` Call(const f, const e)−→ v

(b)

Figure 13 DynSem rules for (a) arithmetic addition and (b) unary function call with annotated
meta-variables after binding-time analysis.

the risk of a cache miss locally; and the price to pay for a cache miss is the decompilation of
the caller rule. The risk of a cache miss increases further if the call is a dynamic dispatch or
the caller is polymorphic.

We propose that a better strategy is to not force the caller to select a successful rule,
and instead to let the callee choose the applicable rule. We do this by introducing a rule
node that combines rules of a bundle into a single executable node, as shown in Figure 14b.
At rule load-time, the meta-variable environments of the fused rules are concatenated and
a FusedRule node is created for each rule bundle. The execution method of a FusedRule

iterates through the rules, returning the result of the first applicable rule. Since the number
of rules in a fused bundle is fixed at run time, the JIT compiler can completely unroll
the iteration, and additional profiling can be performed on the actual number of iterations
required. In addition to mitigating the risk of decompilation due to a callee cache miss,
fusing rules drastically simplifies call-site logic. In the remainder of this section we refer to a
rule obtained by fusion generically as a rule.

Signaling Monomorphic Rules. A structural dispatch call site (a call site which reduces
a term assigned to a const-annotated meta-variable) must be able to query whether the
surrounding caller is monomorphic or polymorphic and use this information to decide which
call site optimizations can be performed. In the terms of Figure 12b, this means that a
star-labelled outgoing arrow should be able to observe whether its source rule is green or red,
i.e. monomorphic or polymorphic. To achieve this we install a flag at the root of each rule,
as shown in the left panel of Figure 15. The flag is visible to all nodes within a rule, thus
also to the nodes that implement variable reading semantics and call sites. A rule starts
off as monomorphic and remains so as long as it is always invoked on the same program
term. A rule becomes polymorphic, and its flag is invalidated, if and when it is invoked on a
different program term. This is the case for the Call rule of Figure 15 which is invoked both
from the body of the let construct, and from within the function body. We implement flag
invalidation at the rule level, as shown in the left panel of Figure 15.

In the figure we describe the flag as a boolean, but in reality we implement the signal
using a Truffle Assumption. Graal ensures that checking whether Assumptions are valid from
JIT-ed code is very cheap, so using an assumption as a cache guard, or as a specialization
guard is very efficient. While guard checking with assumptions is very cheap, the cost of
decompilation and recompilation is still high.

Inlining Rules. In the call tree of Figure 12b, although dispatches to Call, Int and Var
are all structural, the rules themselves are polymorphic because their different callees pass
different input terms. However, we know that since a program is fixed, even a polymorphic

ECOOP 2019

4:20 Scopes and Frames Improve Meta-Interpreter Specialization

eqV(IntV(i), IntV(j))−→ eqI(i, j)

eqV(StringV(x), StringV(y))−→ eqS(x, y)

eqV(NilV(), NilV())−→ 1

eqV(NilV(), RecordV(_))−→ 0

eqV(RecordV(_), NilV())−→ 0

eqV(RecordV(F1), RecordV(F2))−→ eqFrames(F1, F2)

(a)

class FusedRule extends Rule {
final Rule[] rules;

FusedRule(Rule[] rules) {
this.rules = rules;

}
Result execute(VirtualFrame frame) {
for (int i = 0; i < rules.length; i++) {

try {
return rules[i].execute(frame);

} catch (RuleFailure e) {}
}
throw new ReductionFailure("No more rules to try");

}
}

(b)

Figure 14 (a) Overloaded equality rules. (b) Sketch implementation of the fused rule node.

rule has a finite set of behaviors. This set of behaviors is bound in the set of program terms
that match the rule’s pattern. We can create a specialized copy of the rule for each program
term in this set, thereby reducing a polymorphic rule to a set of monomorphic rules. The
specialized copies can be inlined to replace structural dispatches within other monomorphic
rules. Applying rule cloning to the call tree of Figure 12b results in the call tree of Figure 12c;
all rules in the tree are monomorphic. The dynamic dispatches that remain are those that
reduce computed terms, i.e. the two closure applications (arrows 4 and 14).

We modify the meta-interpreter to inline (at run time) callees into their call site if two
conditions are met: (1) the caller is monomorphic; and (2) the dispatch is structural. The
right panel of Figure 15 sketches the inlining mechanism. At call time, if the conditions
hold, the uninitclone() method copies the callee in an uninitialized state (i.e., in its
state prior to any invocation), and the copy is adopted into the caller, becoming a child
node. For subsequent calls, the inlined callee is executed directly as long as the rule stays
monomorphic. The inlined callee is discarded and replaced by dynamic dispatch if the
rule becomes polymorphic. Dynamic dispatch will attempt to cache callees locally to avoid
repeated lookups; Figure 15 omits caching details for conciseness. Note that a callee is inlined
without its root node, which allows calls to getRootNode() from within the callee to resolve
to the root node of the caller. This has the advantage of sharing a single monomorphic flag
for all inlined rules within a tree.

If we apply the cloning and inlining mechanism to the call tree of Figure 12b, the JIT
will compile a monomorphic caller together with its inlined callees in a single compilation
unit, thereby eliminating dispatches between rules altogether. This results in the call tree
of Figure 12d where the red arrows correspond to the only two dynamic dispatches that
remain. Inlining of structural dispatches creates rules which do more work locally and perform

V. Vergu, A. Tolmach, and E. Visser 4:21

class RuleRoot extends RootNode {
boolean monomorphic = true;
Rule rule;

Result execute(VirtualFrame f) {
return rule.execute(f);

}
}

class Rule extends Node {
Pattern patt;
Premise[] premises;
TermBuild output;
Term tInit;

Result execute(VirtualFrame f) {
Term t = getInputTerm(f);
patt.match(t);
if (tInit == null) {

tInit = t;
} else if (getRootNode().monomorphic

&& tInit != t) {
getRootNode().monomorphic = false;

}
for (Premise p : premises) {

p.execute(f);
}
return output.build(f);

}
}

class Premise extends Node { ... }

class RelationPremise extends Premise{
TermBuild input;
Pattern output;
Rule callee;

void execute(VirtualFrame f) {
Term t = input.build(f);
Result res;
if (getRootNode().monomorphic

&& input.isconst()) {
if (callee == null) {
callee = adopt(

ruleRegistry().lookup(t)
.rule.uninitclone()

);
}
res = callee.execute(...);

} else {
callee = null;
res = ruleRegistry().lookup(t)

.execute(...);
}
output.match(res);

}
}

Figure 15 Schematic implementation of rule calls with rule cloning.

fewer dynamic calls. In addition to reducing dynamic calls, this enables more intra-rule
optimizations. Disadvantages of this method are longer compilation times due to larger
compilation units and overhead during warmup due to rule cloning. Additionally, while
larger compilation units enable better partial evaluation, this partial evaluation possibly
takes longer, requiring more warmup rounds.

6 Evaluation

We evaluate our performance improvement techniques using DynSem specifications for Tiger,
a simple programming language originally invented for teaching about compilers [2]. Tiger is
a statically typed language with let bindings, functions, records and control-flow constructs.
Our evaluation compares execution times across different flavors of Tiger implementations.

6.1 Experiment Set-up

Subjects. We evaluate four different implementations of Tiger: three meta-interpreted
DynSem specifications and one hand-written Tiger interpreter. These are:

Meta-Env: an environment-based DynSem specification interpreted on the runtime de-
scribed in Section 3. This was the state-of-the-art DynSem runtime prior to the contribu-
tions of this paper.
Meta-SF: a DynSem specification using Scopes & Frames as described in Section 4.3,
interpreted on the runtime with native Scopes & Frames bindings of Section 4.4.
Meta-SF-Inline: specification and runtime identical to Meta-SF with runtime rule
inlining enabled.

ECOOP 2019

4:22 Scopes and Frames Improve Meta-Interpreter Specialization

Hand: a Truffle-based AST interpreter using Scopes & Frames and implementing common
Truffle optimization techniques (e.g. loop unrolling, polymorphic inline caches, branch
profiles).

Workloads. We adapted the set of Tiger benchmark programs of Vergu et al. [35], which
are translations of the Java programs of Marr et al. [19]. During earlier experimentation
we discovered that benchmark runtime was too short on the faster meta-interpreters for
a reliable time measurement. We addressed this by making the problems solved harder,
resulting in the following six programs:

queens: a solver for the 16-queens problem. The implementation uses let bindings, arrays,
recursive function calls, for loops and nested conditional constructs.
list: builds and traverses cons-nil lists. The program makes use of records, recursive
function calls, while loops and conditionals.
towers: a solver for the Towers of Hanoi game, primarily exercising records and recursive
function calls.
sieve: Sieve of Eratosthenes algorithm finding prime numbers smaller than 14,000. The
program primarily exercises variable declarations, variable access in nested lexical scopes,
and nested loops.
permute: generates permutations of an array of size 8.
bubblesort: performs bubble sort on a cons-nil list of 500 integers, initially in reverse
order. The lists are built using records.

Methodology. We modified the four Tiger runtimes to repeat the evaluation of a program
200 times in the same process and to record the duration of each repetition. The time
recorded is strictly program evaluation time, i.e. it excludes VM startup, program parsing,
static analysis and interpreter instantiation. Each sequence of 200 in-process repetitions
is repeated 30 times, as separate processes. We run the experiment on a Hewlett Packard
ProLiant MicroServer Gen 8 with an Intel Xeon CPU E3-1265L V2 running at 2.5Ghz.
The CPU has four cores; we disable one of the cores to ensure that heat dissipation is
sufficient, and we disable hyper-threading to improve predictability. The machine has 16
GB of DDR3 memory, divided in two sockets, operating at a maximum frequency of 1.6Ghz,
with ECC mode enabled. The operating system is a fresh minimal installation of Ubuntu
Server 18.04.2 running a Linux kernel version 4.15.0-48. All non-essential system daemons
and networking are disabled before running the experiment, and we connect to the machine
through out-of-band management facilities. All benchmark programs are run on the Oracle
Graal Enterprise Edition VM version 1.0.0-rc9.

We are interested in the steady state performance of each benchmark and VM combination.
We use warmup_stats, part of the Krun [3] benchmarking system, to process and analyze the
recorded timeseries. It performs statistical analyses to determine whether each combination of
benchmark and VM shows stable performance and to compute this steady state performance.

6.2 Results
Table 1 shows the steady state runtimes, in seconds, for each configuration of benchmark
and runtime. A missing measurement indicates that the configuration did not exhibit steady
performance according to warmup_stats. We first consider the performance difference between
traditional environment-based (Meta-Env) and scopes-and-frames (Meta-SF) specifications.
For the remainder of this section, when we describe average speedup, we are referring to the
geometric mean.

V. Vergu, A. Tolmach, and E. Visser 4:23

Table 1 Median steady state execution times, expressed in seconds, for combinations of bench-
marks and VMs. The 99% confidence interval is shown in small font. Execution times for combinations
which do not exhibit stable performance are excluded.

Meta-Env Meta-SF Meta-SF-Inline Hand
queens 1.7019 ±0.72583 0.0682 ±0.18626 0.0208 ±0.09366 0.0047 ±0.00085

list 0.2396 ±0.01789 0.0965 ±0.03700 0.0773 ±0.06191

towers 9.5841 ±0.49535 0.6647 ±0.05259 0.0508 ±0.00460 0.0107 ±0.00030

sieve 0.0041 ±0.01925 0.0025 ±0.00196 0.0003 ±0.00053

permute 12.7514 ±1.91232 0.3216 ±0.02547 0.1108 ±0.00241 0.0260 ±0.00050

bubblesort 2.3551 ±0.34690 0.1164 ±0.01155 0.0147 ±0.00502 0.0060 ±0.02275

Table 2 Median number of repetitions required to reach steady state performance, and in small
font the interquartile range. In parentheses (in normal font): the average duration, in seconds, of a
warmup iteration.

Meta-Env Meta-SF Meta-SF-Inline Hand

queens 1 10.5 (1.0, 75.4)

(1.78s)
51 (1.0, 77.1)

(0.49s)
20 (18.5, 40.0)

(0.25s)

list 98.5 (56.7, 121.5)

(0.51s)
38.5 (25.0, 125.3)

(0.49s)
81 (1.0, 106.5)

(0.18s)

towers 1 18 (18.0, 25.0)

(2.49s)
89.5 (75.3, 119.5)

(0.18s)
50.5 (42.4, 58.0)

(0.09s)

sieve 106 (73.4, 146.6)

(0.12s)
126 (5.5, 143.1)

(0.04s)
9 (8.0, 17.6)

(0.18s)

permute 1 68.5 (65.0, 84.5)

(0.60s)
44 (40.0, 52.0)

(0.28s)
30 (30.0, 43.5)

(0.09s)

bubblesort 1 49 (31.4, 89.1)

(1.42s)
67.5 (57.0, 85.5)

(0.13s) 1

The Meta-SF interpreter improves on Meta-Env performance by an average 15x, with the
highest gains for permute (39x) and smallest gains for list (2.5x). The runtimes on the two
VMs are strongly correlated (correlation coefficient of 0.75), suggesting that adopting scopes
and frames improves all benchmarks fairly uniformly. However, we also find a moderate
correlation (correlation coefficient of 0.64) between the runtimes of Meta-Env and speedup
gains exhibited by Meta-SF, suggesting that the longer the benchmark runtime on Meta-Env,
the higher the speedup offered by Meta-SF. This may be due either to Meta-SF optimizing
precisely the bottlenecks in Meta-Env, or simply to more complex programs benefiting more.

The Meta-SF-Inline VM improves on the performance of Meta-SF in 50% of the cases,
while in the other 50% of the cases they are statistically indistinguishable. Meta-SF-Inline
is always faster than Meta-Env by at least an order of magnitude and typically by two orders
of magnitude, with the exception of queens for which it is at least 8.5x faster. There is
strong correlation (0.79) between the runtime of benchmarks on Meta-SF and the speedup
on Meta-SF-Inline. Coupled with only a moderate correlation (0.42) of runtimes on the
two VMs, this suggests that, for the programs benchmarked, inlining addresses precisely
the bottlenecks in Meta-SF. We do note the overlap in confidence intervals of runtime on
Meta-SF and on Meta-SF-Inline for benchmarks queens, sieve and list which makes
them statistically indistinguishable.

The handwritten interpreter Hand is on average 4.7x faster than Meta-SF-Inline, but
not more than 30x faster. Some of these benchmarks have very short runtimes, but focusing
on the two benchmarks with longest runtimes on Hand, permute and towers, produces a
very similar overhead figure of 4.5x.

ECOOP 2019

4:24 Scopes and Frames Improve Meta-Interpreter Specialization

The number of iterations that are required until reaching steady state is an indication both
of how JIT-able a benchmark/VM combination is and of how much particular optimizations
compromise warmup time for maximum performance. Table 2 shows the median number
of warmup iterations required until steady state is reached and the median duration of an
iteration during warmup. With the exception of list, benchmarks on the environment-based
VM do not seem to warm up well: they reach steady state performance in one iteration and
never improve after that. It is noteworthy that list, the only benchmark that warms up on
Meta-Env, is also the one least improved on by Meta-SF. In contrast to Meta-Env, the JIT
compiler is able to optimize programs on the Meta-SF VM, but requires an average of 37
iterations to do so. We find a similar pattern for Meta-SF-Inline, typically requiring more
warmup iterations than Meta-SF but resulting in faster code. We observe that even when
the median warmup round on Meta-SF-Inline is slower than the steady-state performance
on Meta-SF, it is within an order of magnitude slower, and that the average median warmup
time on Meta-SF-Inline is shorter than on Meta-SF. From Table 1 we note that runtime
confidence intervals are wider for the Meta-SF and Meta-SF-Inline VMs than they are for
Hand; in particular for benchmark queens on Meta-SF, and for benchmarks queens and list
on Meta-SF-Inline. The wide confidence intervals appear correlated with benchmark-VM
combinations that have one or more non-warmup process executions (Table 2, combinations
for which the 25th quantile is 1.0). This suggests some non-determinism over which we have
little current understanding.

We find that replacing environments and stores by scopes and frames has a strictly
beneficial effect on the execution time, and that meta-interpreters derived from scopes-and-
frames specifications have better warm up characteristics. Adopting scopes and frames
“out of the box” allows the JIT compiler to optimize the executing code. The JIT can
see through memory operations and examine the memory layout of the program which
enables partial evaluation of memory operations. Since our experiment does not measure the
garbage collection activity, it is unclear to what degree the reported performance numbers
are affected, positively or negatively, by garbage collection activity. We proposed in Section 5
that the fine granularity of code that the JIT is optimizing in the meta-interpreter case is a
bottleneck in the optimizations that it can perform, and we introduced cloning and inlining of
monomorphic rule calls at run time to attempt to improve on this situation. The expectation
was that increasing the size of the rules, and thereby minimizing the number of calls across
rules, would make the program easier to optimize. This expectation is borne out: in 50% of
cases Meta-SF-Inline faster than Meta-SF, and in the other cases it is not slower. Inlining
of rules increases the size of compilation units, aligns the structure of the rule call tree with
the syntactic structure of the executing program, and the JIT can produce faster code.

Overall the combination of scopes and frames with inlining delivers a meta-interpreter
that is always faster than using environments and stores. The speedup is at least one and
typically two orders of magnitude. Moreover, the best meta-interpreter is within 10x slower
(approximately 4.7x) than our optimized handwritten interpreter.

7 Discussion; Related and Future Work

The work presented in this paper is a performance improvement on the state of the art
DynSem meta-interpreter. The improvement is achieved by (1) using scope and frames to
model memory in dynamic semantics and (2) applying inline expansion of DynSem rules
at run time.

V. Vergu, A. Tolmach, and E. Visser 4:25

Our work demonstrates a significant reduction in the execution time of meta-interpreted
specifications of dynamic semantics using two techniques. The first exploits the systematic
correspondence between static and run-time name binding exhibited by scopes and frames [28].
The second inlines reduction rules at run time to obtain coarser-grained rules that reflect
the structure of the interpreted program. Combining these two techniques results in meta-
interpreters that are at least one order of magnitude and generally two orders of magnitude
faster than the state of the art DynSem meta-interpreter; and within a factor 5 from an
optimized handwritten interpreter.

We remark that optimizations made to frame operations are in fact optimizations made
to the executing program, not to the meta-interpreter. A resolved scope graph and paths
in the scope graph representing the results of name resolution are program specific. Using
the scope graph to inform optimizations of frame operations results in optimizations that
are program specific. The JIT of the hosting VM, which hosts the meta-interpreter, is thus
traversing the meta-interpreter layer to operate on the top-level interpreter. In the end,
the program-specific optimizations performed by the JIT unlock further meta-interpreter
optimizations than those limited to syntax-driven optimizations. Another indication that
this is happening is, aside from the increased performance, the number of iterations required
for code to warm up.

Related Work. DynSem [34], as a dynamic semantics framework, is part of the family of
structural operational semantics (SOS) frameworks. This family contains big-step SOS (or
natural semantics [16]); small-step SOS as originally introduced by Plotkin [27]; and reduction
semantics with evaluation contexts (e.g. [11]), of which PLT Redex [10] is an instantiation.
MSOS [22] and its extension I-MSOS [23] improve on the modularity and conciseness of
traditional SOS by allowing semantic components such as environments and stores to be
propagated implicitly through rules that do not modify those components. DynSem borrows
the notion of implicit semantic propagation from I-MSOS and implements a systematic
transformation of specifications with implicit components into equivalent specifications with
explicit components. Typical DynSem specifications are in big-step style with implicit
propagation of semantic components.

Dynamic semantics specifications take one of two approaches to specifying name binding:
(a) eagerly substituting values for names or (b) propagating semantic components such as
environments or stores that associate values with names. Specifications in Redex [18] and
Ott [31] typically use substitution, while specifications in K [30] and funcons [7] typically
use semantic components. Prior to the developments presented in this paper, DynSem
specifications modeled name binding using semantic components that map identifiers to
addresses and addresses to values and embedded name resolution semantics in terms of
operations on these components. The DynSem extensions of Section 4 use scope graph [25]
information to automatically derive a memory layout in terms of frames [28] and provide
a set of primitives for operating on memory. The approach replaces environments, stores
and other custom semantic components with a generic representation of memory stored in
an implicitly propagated store. The only components passed in rules are frame references
into the store.

Given a dynamic semantics for an object language there are three conceptual approaches
to obtaining a execution engine for that language: (1) compile the semantics to an interpreter,
(2) compile the semantics to a compiler or (3) interpret the semantics. DynSem, Redex [18]
fall into the final category, i.e. a runtime is obtained by (meta-)interpreting a semantics. An
older runtime for K [30] generated an interpreter for object language, but more recently K

ECOOP 2019

4:26 Scopes and Frames Improve Meta-Interpreter Specialization

specifications can be directly interpreted. Significant amounts of research have gone into
generating compilers from semantics [21, 26, 8] with varying degrees of applicability and
usually with slow compilation or slow execution or both. For example, the SIS compiler
generator of Mosses [21] compiled denotational semantics to a code generator, demonstrating
that it was possible to compile code generators from declarative specifications. However,
both the generated compiler and its emitted code were quite slow.

Translating a dynamic semantics specification to an efficient (and optimizing) compiler
requires some form of offline partial evaluation [15]. The three approaches to make semantics
specification executable are conceptually related to partial evaluation [15] and the Futamura
projections [12, 13]. The first Futamura projection of a meta-interpreter and a semantics
specification yields an interpreter, and the first Futamura projection of that interpreter and
a program yields an executable. The second Futamura projection of a meta-interpreter
and a semantics yields a compiler derived from the semantics. Amin et al. [1] describe the
construction of a one-pass compiler that collapses all interpreter layers in a hierarchy-of-layers,
thus eliminating the overhead of stacked interpretation.

Our approach to make DynSem specifications executable is through meta-interpretation
with minimal pre-compilation. This raises the challenge of eliminating the overhead of
meta-interpretation. The problem is more complicated than just optimizing an interpreter at
runtime (as is done in just-in-time (JIT) compilation), because both the hosting and the
hosted interpreters must be optimized simultaneously. The hosting meta-interpreter cannot
effectively be partially evaluated without the hosted object interpreter, whose optimization
in turn requires the program input.

There are two mainstream directions for implementing efficient interpreters, both relying
on JIT compilation: meta-tracing and online partial evaluation. Meta-tracing, as provided
by RPython [4] and applied to PyPy [5, 6] traces the execution of an interpreter to obtain a
JIT compiler specific to that interpreter. The obtained JIT monitors the execution of the
interpreter and compiles frequently executed code (of the interpreter) into highly efficient
machine code. Only recently has online partial evaluation been shown as a practical meta-
compilation technique of AST interpreters. Würthinger et al. [40] have developed Truffle, a
framework for implementing interpreters. Truffle interpreters are AST interpreters, i.e. the
control-flow of the interpreter follows the syntactic structure of the executing program. The
Graal partial evaluator [39, 38] determines compilation units by resolving control-flow jumps
across parts of the AST. For a practical comparison and evaluation of both meta-tracing and
online partial evaluation of interpreters, we refer the reader to the research of Marr et al. [20].

To the best of our knowledge, neither meta-tracing nor online partial evaluation have
been applied to two stacked layers of interpretation. Conceptually, meta-interpretation of
a program with respect to a semantics specification involves a syntax-directed sequence of
rule applications. A fixed program informs a fixed arrangement of rule applications, i.e. the
rules of a specification are arranged such that they follow the AST of the program. This
observation has motivated the choice of Truffle as an implementation target for the DynSem
meta-interpreter. Conceptually, the Graal JIT has sufficient information to construct a tree
of rules that strictly mimics the program AST. Construction of such a tree requires inlining
of structural dispatch to rules, as discussed in Section 5. The inlining introduced in Section 5
is designed to aid the JIT in identifying control-flow jumps in the hosting meta-interpreter
that are known to be stable but that the JIT cannot observe as such due to the intermediate
interpreter layer.

V. Vergu, A. Tolmach, and E. Visser 4:27

Future Work. In the future we plan to investigate using Graal to perform optimizations with
respect to program values. To some limited extent this is happening already: checks on value
terms from within DynSem rules are observable by the JIT, and frame slot allocation takes into
consideration the type of the declaration. There also still are opportunities for optimization
with respect to rule inlining. Currently not all static bindings in rules are recognized as
monomorphic. For example, while for a particular object language a function call is known
to always resolve to a specific closure, the DynSem static analysis cannot currently determine
this. While we can allow the language developer to explicitly annotate const meta-variables,
we believe a better solution would be to uncover more static bindings automatically. We
expect that combining a program, its scope graph, and a DynSem specification provides
sufficient information to determine this. The scopes-and-frames approach may also apply to
dynamic languages. We plan to investigate if by building frame structures dynamically and
caching results of run-time name resolution we can obtain similar performance gains. Yet
another research avenue is to explore whether using DynSem to define intrinsically-typed
interpreters [29] for object languages provides further benefits for specialization.

References

1 Nada Amin and Tiark Rompf. Collapsing towers of interpreters. Proceedings of the ACM on
Programming Languages, 2(POPL), 2018. doi:10.1145/3158140.

2 Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge University Press,
1998.

3 Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt.
Virtual machine warmup blows hot and cold. Proceedings of the ACM on Programming
Languages, 1(OOPSLA), 2017. doi:10.1145/3133876.

4 Carl Friedrich Bolz. Meta-Tracing Just-in-Time Compilation for RPython. PhD thesis,
Heinrich Heine University Düsseldorf, 2014. URL: http://d-nb.info/1057957054.

5 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the meta-level:
PyPy’s tracing JIT compiler. In Ian Rogers, editor, Proceedings of the 4th workshop on the
Implementation, Compilation, Optimization of Object-Oriented Languages and Programming
Systems, ICOOOLPS 2009, Genova, Italy, July 6, 2009, pages 18–25. ACM, 2009. doi:
10.1145/1565824.1565827.

6 Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing on VM design and
implementation. Science of Computer Programming, 98:408–421, 2015. doi:10.1016/j.scico.
2013.02.001.

7 Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo Torrini. Reusable Components
of Semantic Specifications. Transactions on Aspect-Oriented Software Development, 12:132–179,
2015. doi:10.1007/978-3-662-46734-3_4.

8 Olivier Danvy and René Vestergaard. Semantics-Based Compiling: A Case Study in Type-
Directed Partial Evaluation. In Herbert Kuchen and S. Doaitse Swierstra, editors, Programming
Languages: Implementations, Logics, and Programs, 8th International Symposium, PLILP
96, Aachen, Germany, September 24-27, 1996, Proceedings, volume 1140 of Lecture Notes in
Computer Science, pages 182–197. Springer, 1996.

9 Sebastian Erdweg, Tijs van der Storm, Markus Völter, Laurence Tratt, Remi Bosman,
William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat,
Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler,
Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and
Jimi van der Woning. Evaluating and comparing language workbenches: Existing results
and benchmarks for the future. Computer Languages, Systems & Structures, 44:24–47, 2015.
doi:10.1016/j.cl.2015.08.007.

ECOOP 2019

http://dx.doi.org/10.1145/3158140
http://dx.doi.org/10.1145/3133876
http://d-nb.info/1057957054
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1016/j.scico.2013.02.001
http://dx.doi.org/10.1007/978-3-662-46734-3_4
http://dx.doi.org/10.1016/j.cl.2015.08.007

4:28 Scopes and Frames Improve Meta-Interpreter Specialization

10 Matthias Felleisen, Robby Findler, and Matthew Flatt. Semantics Engineering with PLT
Redex. MIT Press, 2009.

11 Matthias Felleisen and Robert Hieb. The Revised Report on the Syntactic Theories of
Sequential Control and State. Theoretical Computer Science, 103(2):235–271, 1992.

12 Yoshihiko Futamura. Partial Evaluation of Computation Process - An Approach to a Compiler-
Compiler. Higher-Order and Symbolic Computation, 12(4):381–391, 1999. URL: http://www.
springerlink.com/content/l46w6q3720n57607/.

13 Yoshihiko Futamura. Partial Evaluation of Computation Process, Revisited. Higher-Order
and Symbolic Computation, 12(4):377–380, 1999.

14 Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas Würthinger.
A domain-specific language for building self-optimizing AST interpreters. In Ulrik Pagh
Schultz and Matthew Flatt, editors, Generative Programming: Concepts and Experiences,
GPCE’14, Vasteras, Sweden, September 15-16, 2014, pages 123–132. ACM, 2014. doi:
10.1145/2658761.2658776.

15 Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial evaluation and automatic
program generation. Prentice Hall international series in computer science. Prentice Hall, 1993.

16 Gilles Kahn. Natural Semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin
Wirsing, editors, STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer
Science, Passau, Germany, February 19-21, 1987, Proceedings, volume 247 of Lecture Notes
in Computer Science, pages 22–39. Springer, 1987.

17 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

18 Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund, Matthias Felleisen, Matthew
Flatt, Jay A. McCarthy, Jon Rafkind, Sam Tobin-Hochstadt, and Robby Findler. Run
your research: on the effectiveness of lightweight mechanization. In John Field and Michael
Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 285–296. ACM, 2012. doi:10.1145/2103656.2103691.

19 Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. Cross-language compiler benchmark-
ing: are we fast yet? In Roberto Ierusalimschy, editor, Proceedings of the 12th Symposium
on Dynamic Languages, DLS 2016, Amsterdam, The Netherlands, November 1, 2016, pages
120–131. ACM, 2016. doi:10.1145/2989225.2989232.

20 Stefan Marr and Stéphane Ducasse. Tracing vs. partial evaluation: comparing meta-compilation
approaches for self-optimizing interpreters. In Jonathan Aldrich and Patrick Eugster, editors,
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh,
PA, USA, October 25-30, 2015, pages 821–839. ACM, 2015. doi:10.1145/2814270.2814275.

21 Peter D. Mosses. Compiler Generation Using Denotational Semantics. In Antoni W.
Mazurkiewicz, editor, Mathematical Foundations of Computer Science 1976, 5th Sympo-
sium, Gdansk, Poland, September 6-10, 1976, Proceedings, volume 45 of Lecture Notes in
Computer Science, pages 436–441. Springer, 1976.

22 Peter D. Mosses. Modular structural operational semantics. Journal of Logic and Algebraic
Programming, 60-61:195–228, 2004. doi:10.1016/j.jlap.2004.03.008.

23 Peter D. Mosses and Mark J. New. Implicit Propagation in Structural Operational Semantics.
Electronic Notes in Theoretical Computer Science, 229(4):49–66, 2009. doi:10.1016/j.entcs.
2009.07.073.

24 Pierre Neron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A Theory of
Name Resolution with extended Coverage and Proofs. Technical Report TUD-SERG-2015-001,

http://www.springerlink.com/content/l46w6q3720n57607/
http://www.springerlink.com/content/l46w6q3720n57607/
http://dx.doi.org/10.1145/2658761.2658776
http://dx.doi.org/10.1145/2658761.2658776
http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1145/2103656.2103691
http://dx.doi.org/10.1145/2989225.2989232
http://dx.doi.org/10.1145/2814270.2814275
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1016/j.entcs.2009.07.073
http://dx.doi.org/10.1016/j.entcs.2009.07.073

V. Vergu, A. Tolmach, and E. Visser 4:29

Software Engineering Research Group. Delft University of Technology, January 2015. Extended
version of ESOP 2015 paper "A Theory of Name Resolution".

25 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A Theory of Name
Resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

26 Lawrence C. Paulson. A Semantics-Directed Compiler Generator. In POPL, pages 224–233,
1982.

27 Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

28 Casper Bach Poulsen, Pierre Néron, Andrew P. Tolmach, and Eelco Visser. Scopes Describe
Frames: A Uniform Model for Memory Layout in Dynamic Semantics. In Shriram Krish-
namurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.20.

29 Casper Bach Poulsen, Arjen Rouvoet, Andrew P. Tolmach, Robbert Krebbers, and Eelco
Visser. Intrinsically-typed definitional interpreters for imperative languages. Proceedings of
the ACM on Programming Languages, 2(POPL), 2018. doi:10.1145/3158104.

30 Grigore Rosu and Traian-Florin Serbanuta. An overview of the K semantic framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.

31 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1):71–122, 2010. doi:10.1017/S0956796809990293.

32 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

33 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

34 Vlad A. Vergu, Pierre Néron, and Eelco Visser. DynSem: A DSL for Dynamic Semantics
Specification. In Maribel Fernández, editor, 26th International Conference on Rewriting
Techniques and Applications, RTA 2015, June 29 to July 1, 2015, Warsaw, Poland, volume 36
of LIPIcs, pages 365–378. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.RTA.2015.365.

35 Vlad A. Vergu and Eelco Visser. Specializing a meta-interpreter: JIT compilation of Dynsem
specifications on the Graal VM. In Eli Tilevich and Hanspeter Mössenböck, editors, Proceedings
of the 15th International Conference on Managed Languages & Runtimes, ManLang 2018,
Linz, Austria, September 12-14, 2018. ACM, 2018. doi:10.1145/3237009.3237018.

36 Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto
Passalaqua, and Gabriël Konat. A Language Designer’s Workbench: A One-Stop-Shop
for Implementation and Verification of Language Designs. In Andrew P. Black, Shriram
Krishnamurthi, Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings
of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, part of SPLASH ’14, Portland, OR, USA, October 20-24, 2014,
pages 95–111. ACM, 2014. doi:10.1145/2661136.2661149.

37 Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and
Hanspeter Mössenböck. An object storage model for the truffle language implementation
framework. In Joanna Kolodziej and Bruce R. Childers, editors, 2014 International Conference

ECOOP 2019

http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.20
http://dx.doi.org/10.1145/3158104
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1145/2847538.2847543
http://dx.doi.org/10.1145/3276484
http://dx.doi.org/10.1145/3276484
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.365
http://dx.doi.org/10.1145/3237009.3237018
http://dx.doi.org/10.1145/2661136.2661149

4:30 Scopes and Frames Improve Meta-Interpreter Specialization

on Principles and Practices of Programming on the Java Platform Virtual Machines, Languages
and Tools, PPPJ ’14, Cracow, Poland, September 23-26, 2014, pages 133–144. ACM, 2014.
doi:10.1145/2647508.2647517.

38 Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris
Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical partial evaluation for
high-performance dynamic language runtimes. In Albert Cohen 0001 and Martin T. Vechev,
editors, Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 662–676. ACM,
2017. doi:10.1145/3062341.3062381.

39 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule
them all. In Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM
Symposium on New Ideas in Programming and Reflections on Software, Onward! 2013, part
of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pages 187–204. ACM, 2013.
doi:10.1145/2509578.2509581.

40 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian
Wimmer. Self-optimizing AST interpreters. In Alessandro Warth, editor, Proceedings of the
8th Symposium on Dynamic Languages, DLS ’12, Tucson, AZ, USA, October 22, 2012, pages
73–82. ACM, 2012. doi:10.1145/2384577.2384587.

http://dx.doi.org/10.1145/2647508.2647517
http://dx.doi.org/10.1145/3062341.3062381
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2384577.2384587

Transient Typechecks Are (Almost) Free
Richard Roberts
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
richard.andrew.roberts@gmail.com

Stefan Marr
School of Computing, University of Kent, UK
s.marr@kent.ac.uk

Michael Homer
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
mwh@ecs.vuw.ac.nz

James Noble
School of Engineering and Computer Science, Victoria University of Wellington, New Zealand
kjx@ecs.vuw.ac.nz

Abstract
Transient gradual typing imposes run-time type tests that typically cause a linear slowdown. This
performance impact discourages the use of type annotations because adding types to a program
makes the program slower. A virtual machine can employ standard just-in-time optimizations to
reduce the overhead of transient checks to near zero. These optimizations can give gradually-typed
languages performance comparable to state-of-the-art dynamic languages, so programmers can add
types to their code without affecting their programs’ performance.

2012 ACM Subject Classification Software and its engineering → Just-in-time compilers; Software
and its engineering → Object oriented languages; Software and its engineering → Interpreters

Keywords and phrases dynamic type checking, gradual types, optional types, Grace, Moth, object-
oriented programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.5

Funding This work is supported by the Royal Society of New Zealand Marsden Fund.

1 Introduction

“It is a truth universally acknowledged, that a dynamic language in possession of a
good user base, must be in want of a type system.”

with apologies to Jane Austen.

Dynamic languages are increasingly prominent in the software industry. Building on the
pioneering work of Self [20], much work in academia and industry has gone into making
them more efficient [13, 14, 66, 24, 23, 25]. Just-in-time compilers have, for example,
turned JavaScript from a naïvely interpreted language barely suitable for browser scripting,
into a highly efficient ecosystem, eagerly adopted by professional programmers for a wide
range of tasks [44].

A key advantage of these dynamic languages is the flexibility offered by the lack of a
static type system. From the perspective of many computer scientists, software engineers,
and computational theologists, this flexibility has the disadvantage that programs without
types are more difficult to read, to understand, and to analyze than programs with types.
Gradual Typing aims to remedy this disadvantage, adding types to dynamic languages while
maintaining their flexibility [16, 48, 50].

© Richard Roberts, Stefan Marr, Michael Homer, and James Noble;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 5; pp. 5:1–5:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3462-8539
mailto:richard.andrew.roberts@gmail.com
https://orcid.org/0000-0001-9059-5180
mailto:s.marr@kent.ac.uk
https://orcid.org/0000-0003-0280-6748
mailto:mwh@ecs.vuw.ac.nz
https://orcid.org/0000-0001-9036-5692
mailto:kjx@ecs.vuw.ac.nz
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Transient Typechecks Are (Almost) Free

There is a spectrum of different approaches to gradual typing [22, 28]. At one end –
“pluggable types” as in Strongtalk [17] or “erasure semantics” as in TypeScript [8] – all types
are erased before the execution, limiting the benefit of types to the statically typed parts
of programs, and preventing programs from depending on type checks at run time. In the
middle, “transient” or “type-tag” checks as in Reticulated Python offer first-order semantics,
checking whether an object’s type constructor or supported methods match explicit type
declarations [49, 11, 46, 60, 29]. Reticulated Python also supports an alternative “monotonic”
semantics which mutates an object to narrow its concrete type when it is passed into a more
specific type context. At the other end of the spectrum, behavioral typechecks as in Typed
Racket [59, 57], Gradualtalk [3], and Reticulated Python’s proxies, support higher-order
semantics, retaining types until run time, performing the checks eagerly, and giving detailed
information about type violations as soon as possible via blame tracking [63, 2]. Finally,
Ductile typing dynamically interprets a static type system at runtime [7]. Unfortunately,
any gradual system with run-time semantics (i.e. everything more complex than erasure)
currently imposes a significant run-time performance overhead to provide those semantics
[56, 62, 42, 6, 45, 55, 29, 30].

The performance cost of run-time checks is problematic in itself, but also creates perverse
incentives. Rather than the ideal of gradually adding types in the process of hardening a
developing program, the programmer is incentivized to leave the program untyped or even
to remove existing types in search of speed. While the Gradual Guarantee [50] requires that
removing a type annotation does not affect the result of the program, the performance profile
can be drastically shifted by the overhead of ill-placed checks. For programs with crucial
performance constraints, for new programmers, and for gradual language designers, juggling
this overhead can lead to increased complexity, suboptimal software-engineering choices, and
code that is harder to maintain, debug, and analyze.

In this paper, we focus on the centre of the gradual typing spectrum: the transient,
first-order, type-tag checks as used in Reticulated Python and similar systems. Several
studies have found that these type checks have a negative impact on programs’ performance.
Chung, Li, Nardelli and Vitek, for example, found that “The transient approach checks types
at uses, so the act of adding types to a program introduces more casts and may slow the
program down (even in fully typed code).” and say “transient semantics. . . is a worst case
scenario. . . , there is a cast at almost every call” [22]. Greenman and Felleisen find that the
slowdown is predictable, as transient checking “imposes a run-time checking overhead that is
directly proportional to the number of [type annotations] in the program” [28], and Greenman
and Migeed found a “clear trend that adding type annotations adds performance overhead.
The increase is typically linear.” [29].

In contrast, we demonstrate that transient type checks can be “almost free”. In our
demonstration, we insert gradual checks naïvely for each gradual type annotation. Whenever
an annotated method is called or returns, or an annotated variable is accessed, we check types
dynamically, and terminate the program with a type error if the check fails. Despite this
simplistic approach, a just-in-time compiler can eliminate redundant checks – removing almost
all of the checking overhead – resulting in a performance profile aligned with untyped code.

We evaluate our approach by adding transient type checks to Moth, an implementation
of the Grace programming language built on top of Truffle and the Graal just-in-time
compiler [67, 66]. Inspired by Richards et al. [45] and Bauman et al. [6], our approach
conflates types with information about the dynamic object structure (maps [20] or object
shapes [65]), which allows the just-in-time compiler to reduce redundancy between checking
structure and checking types; consequently, most of the overhead that results from type
checking is eliminated.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:3

The contributions of this paper are:
demonstrating that VM optimizations enable transient gradual type checks with low
performance cost
an implementation approach that requires only small changes to existing abstract-syntax-
tree interpreters
an evaluation based on classic benchmarks and benchmarks from the literature on
gradual typing

2 Gradual Types in Grace

This section introduces Grace, and motivates supporting transient gradual typing in the
language.

2.1 The Grace Programming Language
Grace is an object-oriented, imperative, educational programming language, with a focus
on introductory programming courses, but is also intended for more advanced study and
research [9, 19]. While Grace’s syntax draws from the so-called “curly bracket” tradition of
C, Java, and JavaScript, the structure of the language is in many ways closer to Smalltalk:
all computation is performed via dynamically dispatched “method requests” where the object
receiving the request decides which code to run; returns within lambdas are “non-local”,
returning to the method activation in which the block is instantiated [27]. In other ways,
Grace is closer to JavaScript than Smalltalk: Grace objects can be created from object
literals, rather than by instantiating classes [10, 35] and objects and classes can be deeply
nested within each other [37].

Critically, Grace’s declarations and methods’ arguments and results can be annotated
with types, and those types can be checked either statically or dynamically. This means the
type system is intrinsically gradual: type annotations should not affect the semantics of a
correct program [50], and the type system includes a distinguished “Unknown” type which
matches any other type and is the implicit type for untyped program parts.

The static core of Grace’s type system is well described elsewhere [34]; here we explain
how these types can be understood dynamically, from the Grace programmer’s point of view.
Grace’s types are structural [9], that is, an object implements a type whenever it implements
all the methods required by that type, rather than requiring classes or objects to declare
types explicitly. Methods match when they have the same name and arity: argument and
return types are ignored. A type thus expresses the requests an object can respond to, for
example whether a particular accessor is available, rather than a nominal location in an
explicit inheritance hierarchy.

Grace then checks the types of values at run time:
the values of arguments are checked after a method is requested, but before the body of
the method is executed;
the value returned by a method is checked after its body is executed; and
the values of variables are checked whenever written or read by user code.1

In the spectrum of gradual typing, these semantics are closest to the transient typechecks of
Reticulated Python [60, 29]. Reticulated Python inserts transient checks only when a value
flows from untyped to typed code, while Grace inserts transient checks only at explicit type
annotations (but in principle checks every annotation every time).

1 Our rational for checking reads in addition to writes is described in Section 6.2.

ECOOP 2019

5:4 Transient Typechecks Are (Almost) Free

2.2 Why Gradual Typing?
Our primary motivation for this work is to provide a flexible system to check consistency
between an execution of a program and its type annotations. A key part of the design
philosophy of Grace is that the language should not force students to annotate programs
with types until they are ready, so that teachers can choose whether to introduce types early,
late, or even not at all.

A secondary goal is to have a design that can be implemented with only a small set of
changes to facilitate integration in existing systems.

Both of these goals are shared with much of the other work on gradual type systems, but
our context leads to some different choices. First, while checking Grace’s type annotations
statically may be optional, checking them dynamically should not be: any value that flows
into a variable, argument, or result annotated with a type must conform to that type
annotation. Second, adding type annotations should not degrade a program’s performance,
or rather, programmers should not be encouraged to improve performance by removing
type annotations. And third, we allow the programmer to execute a program even when
not statically type-correct. Allowing such execution is useful to students, where they can
see concrete examples of dynamic type errors. This is possible because Grace’s static type
checking is optional, which means that an implementation cannot depend on the correctness
or mutual compatibility of a program’s type annotations.

Existing gradual type implementations do not meet these goals, particularly regarding
performance; hence the ongoing debate about whether gradual typing is alive, dead, or some
state in between [56, 62, 42, 6, 45, 29, 30].

2.3 Using Grace’s Gradual Types
We now illustrate how the gradual type checks work in practice in the context of a simple
program to record information about vehicles. Suppose the programmer starts developing
this vehicle application by defining an object intended to represent a car (Listing 1, Line 1)
and writes a method that, given the car object, prints out its registration number (Line 5).

1 def car = object {
2 var registration is public := "JO3553"
3 }
4
5 method printRegistration(v) {
6 print "Registration: {v.registration}"
7 }

Listing 1 The start of a simple Grace program for tracking vehicle information.

Next, the programmer adds a check to ensure any object passed to the printRegis-
tration method will respond to the registration request; they define the structural
type Vehicle [58] naming just that method (Listing 2, Line 1), and annotate the print-
Registration method’s argument with that type (Listing 2, Line 5). The annotation
ensures that a type error will be thrown if an object, passed to the printRegistration
method, cannot respond to the registration message. Without the type check, the print
method would cause a run-time error when interpolating the string. However, since type
errors cause termination, the run-time error in the middle of the print implementation will
now be avoided.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:5

1 type Vehicle = interface {
2 registration
3 }
4
5 method printRegistration(v: Vehicle) {
6 print "Registration: {v.registration}"
7 }

Listing 2 Adding a type annotation to a method parameter.

In Listing 3, the programmer continues development and creates two car objects (Lines 9
and 18), that conform to an expanded Vehicle type (Line 1).

1 type Vehicle = interface {
2 registration
3 registerTo(_)
4 }
5
6 type Person = interface { name }
7 type Department = interface { code }
8
9 var personalCar : Vehicle :=

10 object {
11 var registration is public := "DLS018"
12 method registerTo(p: Person) {
13 ...
14 print "{self} is now registered to {p.name}"
15 }
16 }
17
18 var governmentCar : Vehicle :=
19 object {
20 var registration is public := "FKD218"
21 method registerTo(d: Department) {
22 print "{self} is now registered to {d.code}"
23 }
24 }
25
26 governmentCar.registerTo(
27 object {
28 var name is public := "Richard"
29 }
30)

Listing 3 A program in development with inconsistently typed registerTo methods.

Note that each version of the registerTo method declares a different type for its parameter
(Lines 12 and 21). When the programmer executes this program, both personalCar and
governmentCar pass the type check for Vehicle. Both objects respond to registeration
and registerTo. Notably, the type of the argument for registerTo is ignored. At Line 26
the developer attempts to register the government car to an object representing a person: only
when the method (Line 21) is invoked will the gradual type test on the argument fail (the
object passed in is not a Department because it lacks a code method).

ECOOP 2019

5:6 Transient Typechecks Are (Almost) Free

3 Graal, Truffle, Self-Optimization and Dynamic Adaptive
Compilation

This section gives a brief introduction into just-in-time compilation, and the main techniques
we rely on for our optimizations.

3.1 Self-Optimizing Interpreters

Self-optimizing abstract-syntax-tree (AST) interpreters [68] are the foundation for the work
presented here. Together with partial evaluation [66], self-optimization enables efficient
dynamic language implementations that reach the performance of custom state-of-the-art
virtual machines (cf. Section 5.2 and [41]). The framework for building such interpreters is
called Truffle.

The key idea is that an AST rewrites itself based on a program’s run-time values to
reflect the minimal set of operations needed to execute the program correctly.

As an example, consider the addition of two numbers in a dynamic language, possibly
written simply as: a + b. Because there are no static types known, the run-time values
for a and b could potentially be anything from an integer or a double, to a string or a
collection, or any arbitrary objects that have a “+” method. In an self-optimizing interpreter,
the expression may be represented by an add node, with two child nodes that each read a
variable. The first time the add node executes, it may find that both values to be added are
integers. It will then speculate that all future executions also see integers, and thus, rewrite
itself to an add-integer node. This add-integer node will simply confirm that both values
are integers, and then directly perform the integer addition. Compared to a general add
node, we do not have to cover the cases for doubles, strings, and other kinds of objects,
which results in much simpler code that can be more easily optimized. All other cases are
supported by rewriting the add node to more general versions. This happens, for instance,
when the values are not integers. However, in practice, programs tend be monomorphic and
so such speculation is highly beneficial.

What starts out as something close to a traditional AST, in the end, incorporates
additional knowledge about execution. As a consequence of this rewriting, such trees should
be referred to more correctly as execution trees rather than ASTs.

3.2 Polymorphic Inline Caches for Optimizing Dynamic Behavior

Polymorphic inline caches (PICs) [32] are a variation on the theme of caching run-time
values to improve performance. Originally, they focused on method invocation in dynamic
languages to avoid costly method lookups by caching the looked-up method for a specific
type. For dynamic languages, PICs can be generalized to not only consider the receiver
type, but instead the object shape (cf. Section 3.3), which enables the optimizations we
are aiming for.

In a language such as JavaScript, a PIC could be used for the following expression:
obj.toString(). The dot can be thought of as the lexical representation of the method
lookup. An implementation would keep a small cache for each such dot in the code. This
means, for each lexical lookup location, we have a separate cache. PICs benefit from the
relatively monomorphic behavior of programs. A specific lexical lookup is likely to see only
one kind of object in the obj variable, so the cache will usually have the correct method for
the object ready and can avoid a costly lookup.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:7

3.3 Object Shapes: Metadata for Dynamic Objects

Object shapes [65], which are also know as maps [20] or hidden classes, are in the most
general case a usage profile for groups of objects. In languages such as Self, JavaScript, and
Grace, we do not have classes that define the set of fields for an object. The set of fields
might even change over time. Furthermore, fields can theoretically store any possible value.
However, in practice, the behavior of programs is again relatively monomorphic and objects
created in a specific part of a program are likely to have always the same set of fields, which
each are used to store only a small number of different kinds of values. For example, an
object representing a counter would have a field count, which always stores integers, while
an object representing a person may have always a field name that stores a string, but never
an integer.

Object shapes represent this run-time information in a way that allows a just-in-time
compiler to represent objects in memory similarly to C structs, and then to generate highly
efficient code. Object shapes can be conflated with additional information, for instance to
represent knowledge about types [6, 45]. PICs identify groups of objects with the same
structure based on the shape. Consequently, objects with the same shape use the same entry
in the PIC. Similar to classes, shapes tend to be monomorphic in practice for a specific
lexical location.

3.4 Just-in-Time Compilation with Graal and Truffle

The Graal compiler is a just-in-time compiler for Java. For languages built on the Truffle
framework, Graal applies partial evaluation, which enables efficient native code generation
for Truffle interpreters [66]. As such, Graal is a metacompiler. This means that instead
of compiling a specific program, in our case a Grace program, Graal compiles our Grace
interpreter Moth for the execution of a specific Grace method.

For simplicity, partial evaluation can be thought of a highly aggressive inlining strategy. It
starts with the root node of a specific Grace method and inlines all interpreter code reachable
from it. This is possible, because it speculates that the execution tree is constant.

To enable further optimizations, Graal also inlines on the level of the Grace code,
i.e., across Grace methods. This is important as it exposes more opportunities to apply
optimization. Consequently, Graal is able to optimize Grace code similar to how a custom
Grace just-in-time compiler would work, and it applies, e.g., constant folding, common
subexpression elimination, and loop-invariant code motion.

Loop-invariant code motion and common subexpression elimination are especially import-
ant because Moth relies on self-optimizing nodes, PICs, and object shapes. These techniques
introduce various optimistic checks, i.e., guards. To generate efficient native code, a compiler
must move such checks out of loops and remove redundant checks altogether.

By combining all the techniques sketched in this section, Graal and Truffle are able to
execute dynamic languages as efficiently as virtual machines built for a specific language –
but with much less implementation effort.

4 Moth: Grace on Graal and Truffle

Implementing dynamic languages as state-of-the-art virtual machines can require enorm-
ous engineering efforts. Meta-compilation approaches [41] such as RPython [12, 14] and
GraalVM [67, 66] reduce the necessary work dramatically, because they allow language
implementers to leverage existing VMs and their support for just-in-time compilation and
garbage collection.

ECOOP 2019

5:8 Transient Typechecks Are (Almost) Free

Moth [47] adapts SOMns [38] to leverage this infrastructure for Grace. SOMns is
a Newspeak implementation [18] on top of the Truffle framework and the Graal just-in-
time compiler, which are part of the GraalVM project. One key optimization of SOMns
for this work is the use of object shapes [65], also known as maps [20] or hidden classes.
They represent the structure of an object and the types of its fields. In SOMns, shapes
correspond to the class of an object and augment it with run-time type information. With
Moth’s implementation, SOMns was changed to parse Grace code, adapting a few of the
self-optimizing abstract-syntax-tree nodes to conform to Grace’s semantics. Despite these
changes Moth preserves the peak performance of SOMns, which reaches that of Google’s V8
JavaScript implementation (cf. Section 5.2 and Marr et al. [40]).

4.1 Adding Gradual Type Checking

One of the goals for our approach to gradual typing was to keep the necessary changes to
an existing implementation small, while enabling optimization in highly efficient language
runtimes. In an AST interpreter, we can implement this approach by attaching the checks
to the relevant AST nodes: the expected types for the argument and return values can be
included with the node for requesting a method, and the expected type for a variable can
be attached to the nodes for reading from and writing to that variable. In practice, we
encapsulate the logic of the check within a new class of AST nodes that are specially design
to support gradual type checking. Moth’s front end was adapted to parse and record type
annotations and attach instances of this checking node as children of the existing method,
variable read, and variable write nodes.

The check node uses the internal representation of a Grace type (cf. Listing 4, Line 13)
to test whether an observed object conforms to that type. An object satisfies a type if all
members required by the type are provided by that object (Line 5). Note that here we use a
pseudo code syntax similar to Python for all code examples that represent the implementation
of Moth, even though Moth is implemented in Java. We chose this syntax to avoid any
confusion with our Grace examples.

1 class Type:
2 def init(members):
3 self._members = members
4
5 def is_satisfied_by(other: Type):
6 for m in self._members:
7 if m not in other._members:
8 return False
9 return True

10
11 def check(obj: Object):
12 t = obj.get_type()
13 return self.is_satisfied_by(t)

Listing 4 Sketch of a Type in our system and its check() semantics.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:9

1 global record: Matrix
2
3 class TypeCheckNode(Node):
4
5 expected: Type
6
7 @Spec(static_guard=`expected.check(obj)`)
8 def check(obj: Number):
9 pass

10
11 @Spec(static_guard=`expected.check(obj)`)
12 def check(obj: String):
13 pass
14
15 ...
16
17 @Spec(guard=`obj.shape==cached_shape`, static_guard=`expected.check(obj)`)
18 def check(obj: Object, @Cached(obj.shape) cached_shape: Shape):
19 pass
20
21 @Fallback
22 def check(obj: Any):
23 T = obj.get_type()
24
25 if record[T, expected] is unknown:
26 record[T, expected] = T.is_subtype_of(expected)
27
28 if not record[T, expected]:
29 raise TypeError(f"{obj} doesn't implement {expected}")

Listing 5 A sketch of the specializations in TypeCheckNode to minimize the run-time overhead of
type checking. A specialization is a minimal set of operations for one specific situation, e.g., that
the value to be checked is some type of number.

4.2 Optimization
There are two aspects to our implementation that are critical for a minimal-overhead solution:

specialized executions of the type checking node, along with guards to protect these
specialized versions, and
a matrix to cache sub-typing relationships to eliminate redundant exhaustive subtype
tests.

Optimized Type Check Node. The first performance-critical aspect to our implementation
is the optimization of the type checking node. We rely on Truffle and its TruffleDSL [31].
This means we provide a number of special cases, which are selected during execution based
on the observed concrete kinds of objects. A sketch of our type checking node using a
pseudo-code version of the DSL is given in Listing 5. A simple optimization is for well known
types such as numbers (Line 8) or strings (Line 12). The methods annotated with @Spec
(shorthand for @Specialization) correspond to possible states in a state machine that is
generated by the TruffleDSL. Thus, if a check node observes a number or a string, it will
check on the first execution only that the expected type, i.e., the one defined by some type
annotation, is satisfied by the object using a static_guard. If this is the case, the DSL
will activate this state. For just-in-time compilation, only the activated states and their
normal guards are considered. A static_guard is not included in the optimized code. If a
check fails, or no specialization matches, a fallback (i.e., check_generic in Line 22) will be
selected. This fallback will raise a type error when appropiate.

ECOOP 2019

5:10 Transient Typechecks Are (Almost) Free

1 class VariableReadNode(Node):
2 slot: FrameSlot
3 type_check: TypeCheckNode
4
5 @Spec
6 def do_read(frame: VirtualFrame):
7 value = frame.read(slot)
8 if type_check:
9 type_check.check(value)

10 return value

Listing 6 Sketch of a VariableReadNode using the TypeCheckNode to ensure Grace’s transient
semantics.

For generic objects we rely on the specialization of Line 18, which checks that the object
satisfies the expected type. If that is the case, it reads the shape of the object (cf. Section 4)
at specialization time and caches it for later comparisons. Thus, during normal execution,
we only need to read the shape of the object and then compare it to the cached shape with
a simple reference comparison. If the shapes are the same, we can assume the type check
passed successfully. Note that shapes are not equivalent to types, however, shapes imply
the set of members of an object, and thus, do imply whether an object fulfills one of our
structural types.

The TypeCheckNode is used in Moth in all places that need to check types, which includes
reading and writing variables as well as method requests and returns. Listing 6 shows a
sketch of an AST node that implements reading from a local variable, which is stored in a
frame object. A frame corresponds to a stack frame, sometimes also called an environment.

Line 8 first checks whether a type check needs to be performed. Since type annotations
are optional, it may not be necessary to check for a type. Note that type_check is a constant
for just-in-time compilation (cf. Section 3.4), which enables subsequent optimizations. Line 9
then calls the check() method on the TypeCheckNode, which may result in a type error. For
a variable that only contains numbers, the type_check object would activate the number
specialization in its state machine. For just-in-time compilation, this means only the code
for checking numbers needs to be compiled, but none of the other specializations.

In many cases, the specialization for objects would be activated in a TypeCheckNode,
which checks the shape of an object against a cache. This check is identical to the check
performed by a polymorphic inline cache (PIC, cf. Section 3.2). Since PICs are used for all
method calls, they are very common in most programs, and these additional checks can often
be removed easily via common subexpression elimination.

Subtype Cache Matrix. The other performance-critical aspect to our implementation is
the use of a matrix to cache sub-typing relationships. The matrix compares types against
types, featuring all known types along the columns and the same types again along the rows.
A cell in the table corresponds to a sub-typing relationship: does the type corresponding
to the row implement the type corresponding to the column? All cells in the matrix begin
as unknown and, as encountered in checks during execution, we populate the table. If a
particular relationship has been computed before we can skip the check and instead recall the
previously-computed value (Line 26 in Listing 5). Using this table we are able to eliminate
the redundancy of evaluating the same type to type relationships across different checks in
the program. To reduce redundancy further we also unify types in a similar way to Java’s

R. Roberts, S. Marr, M. Homer, and J. Noble 5:11

string interning; during the construction of a type we first check to see if the same set of
members is expressed by a previously-created type and, if so, we avoid creating the new
instance and provide the existing one instead.

Together the self-specializing type check node and the cache matrix ensure that our
implementation eliminates redundancy, and consequently, we are able to minimize the
run-time overhead of our system.

5 Evaluation

To evaluate our approach to gradual type checking, we first establish the baseline perform-
ance of Moth compared to Java and JavaScript and then assess the impact of the type
checks themselves.

5.1 Method and Setup
To account for the complex warmup behavior of modern systems [4] as well as the non-
determinism caused by e.g. garbage collection and cache effects, we run each benchmark for
1000 iterations in the same VM invocation.2 To improve the confidence in the results further,
we run all experiments with 30 invocations. Afterwards, we inspected the run-time plots
over the iterations and manually determined a cutoff of 350 iterations for warmup, i.e., we
discard iterations with signs of compilation. All reported averages use the geometric mean
since they aggregate ratios.

All experiments were executed on a machine running Ubuntu Linux 16.04.4, with Kernel
3.13. The machine has two Intel Xeon E5-2620 v3 2.40GHz, with 6 cores each, for a total
of 24 hyperthreads. We used ReBench 0.10.1 [39], Java 1.8.0_171, Graal 0.33 (a13b888),
Node.js 10.4, and Higgs from 9 May 2018 (aa95240). Benchmarks were executed one by
one to avoid interference between them. The analysis of the results was done with R 3.4.1,
and plots are generated with ggplot 2.2.1 and tikzDevice 0.11. Our experimental setup is
available online to enable reproductions.3

5.2 Are We Fast Yet?
To establish the performance of Moth, we compare it to Java and JavaScript. Moth is used in
its untyped version, i.e., without type checks. For JavaScript we chose two implementations,
Node.js with V8 as well as the Higgs VM. The Higgs VM is an interesting point of comparison,
because Richards et al. [45] used it in their study. The goal of this comparison is to determine
whether our approach could be applicable to industrial strength language implementations
without adverse effects on their performance.

We compare across languages based on the AreWeFastYet benchmarks [40], which are
designed to enable a comparison of the effectiveness of compilers across different languages.
To this end, they use only a common set of core language elements. While this reduces the
performance-relevant differences between languages, the set of core language elements covers
only common object-oriented language features with first-class functions. Consequently, these
benchmarks are not necessarily a predictor for application performance, but can give a good
indication for basic mechanisms such as type checking.

2 For the Higgs VM, we only use 100 iterations, because of its lower performance. This is sufficient since
Higgs’s compilation approach induces less variation and leads to more stable measurements.

3 https://github.com/gracelang/moth-benchmarks/releases/tag/papers/ecoop19

ECOOP 2019

https://github.com/gracelang/moth-benchmarks/releases/tag/papers/ecoop19

5:12 Transient Typechecks Are (Almost) Free

Higgs

Moth

Node.js (V8)

Java

0.
75

1.
00

2.
00

3.
00

4.
00

10
.0

0

50
.0

0

Run-time factor, normalized to Java
(lower is better)

VM

Figure 1 Comparison of Java 1.8, Node.js 10.4, Higgs VM, and Moth. The boxplot depicts
the peak-performance results for the AreWeFastYet benchmarks, each benchmark normalized
individually based on the result for Java, which means all results for Java are 1.0, and its box
appears as a line. The dots on the plot represent the geometric mean reported as averages. For
these benchmarks, Moth is within the performance range of JavaScript, as implemented by Node.js,
which makes Moth an acceptable platform for our experiments.

Figure 1 shows the results. We use Java as baseline since it is the fastest language
implementation in this experiment. Note that we perform a unit conversion on the results
separately for each benchmark, using the average of Java as 1 unit. While this conversion
does not change the distribution of the data, it allows us to show it neatly on one plot.

We see that Node.js (V8) is about 1.8x (min. 0.8x, max. 2.7x) slower than Java. Moth is
about 2.3x (min. 0.9x, max. 4.3x) slower than Java. As such, it is on average 31% (min.
−16%, max. 2.3x) slower than Node.js. Compared to the Higgs VM, which is on these
benchmarks 10.4x (min. 1.5x, max. 163x) slower than Java, Moth reaches the performance of
Node.js more closely. With these results, we argue that Moth is a suitable platform to assess
the impact of our approach to gradual type checking, because its performance is close enough
to state-of-the-art VMs, and run-time overhead is not hidden by slow baseline performance.

5.3 Performance of Transient Gradual Type Checks

The performance overhead of our transient gradual type checking system is assessed based
on the AreWeFastYet benchmarks as well as benchmarks from the gradual-typing literature.
The goal was to complement our benchmarks with additional ones that are used for similar
experiments and can be ported to Grace. To this end, we surveyed a number of papers [56,
62, 42, 6, 45, 55, 29] and selected benchmarks that have been used by multiple papers. Some
of these benchmarks overlapped with the AreWeFastYet suite, or were available in different
versions. While not always behaviorally equivalent, we chose the AreWeFastYet versions
since we already used them to establish the performance baseline. The selected benchmarks
as well as the papers in which they were used are shown in Table 1.

The benchmarks were modified to have complete type information. To ensure correctness
and completeness of these experiments, we added an additional check to Moth that reports
absent type information to ensure each benchmark is fully typed. To assess the performance
overhead of type checking, we compare the execution of Moth with all checks disabled, i.e.,
the baseline version from Section 5.2, against an execution that has all checks enabled. We
did not measure programs that mix typed and untyped code because with our implementation
technique a fully typed program is expected to have the largest overhead.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:13

Table 1 Benchmarks selected from literature.

Fannkuch [62, 29]
Float [62, 42, 29]
Go [62, 42, 29]
NBody [36, 62, 29] used [40]
Queens [62, 42, 29] used [40]
PyStone [62, 42, 29]
Sieve [56, 42, 6, 45, 30] used [40]
Snake [56, 42, 6, 45, 30]
SpectralNorm [62, 42, 29]

Peak Performance

Figure 2 depicts the overall results comparing Moth, with all optimizations, against the
untyped version. The run-time overhead, after discarding the warmup iterations, is on
average 5% (min. −13%, max. 79%).

Towers
Storage

SpectralNorm
Snake
Sieve

Richards
Queens

PyStone
Permute

NBody
Mandelbrot

List
Json

Havlak
GraphSearch

Go
Float

Fannkuch
DeltaBlue

CD
Bounce

0.
8

0.
9

1.
0

1.
1

1.
5

2.
0

Run-time factor, normalized to Moth (untyped)
(lower is better)

Figure 2 A boxplot comparing the performance of Moth with and without type checking. The
plot depicts the run-time overhead on peak performance over the untyped performance. On average,
transient type checking introduces an overhead of 5% (min. −13%, max. 79%). The average is
indicated as a line with long dashes. Note that the axis is logarithmic to avoid distorting the
proportions of relative speedups and slowdowns.

The benchmark with the highest overhead of 79% is List. The benchmark traverses a
linked list and has to check the list elements individually. Unfortunately, the structure of
this list introduces checks that do not coincide with shape checks on the relevant objects.
We consider this benchmark a pathological case and discuss it in detail in Section 6.1.

ECOOP 2019

5:14 Transient Typechecks Are (Almost) Free

Beside List, the highest overheads are on Richards (33%), CD (12%), Snake (14%), and
Towers (12%). Richards has one major component, also a linked list traversal, similar to
List. Snake and Towers primarily access arrays in a way that introduces checks that do not
coincide with behavior in the unchecked version.

In some benchmarks, however, the run time decreased; notably Permute (−13%), Graph-
Search (−3%), and Storage (−8%). Permute simply creates the permutations of an array.
GraphSearch implements a page rank algorithm and thus is primarily graph traversal. Storage
stresses the garbage collector by constructing a tree of arrays. For these benchmarks the
introduced checks seem to coincide with shape-check operations already performed in the
untyped version. The performance improvement is possibly caused by having checks earlier,
which enables the compiler to more aggressively move them out of loops. Another reason
could simply be that the extra checks shift the boundaries of compilation units. In such cases,
checks might not be eliminated completely, but the shifted boundary between compilation
units might mean that the generated native code interacts better with the instruction cache
of the processor.

Warmup Performance

To more precisely measure warmup, all experiments were executed 30 times. The resulting
Figure 3 shows the first 100 iterations for each benchmark. For each iteration n, we normalized
the measurements to the mean of iteration n of the untyped Moth implementation. Thus,
any increase indicates a slow down because of typing. The darker lines indicate the means,
while the lighter area indicates a 95% confidence interval.

Looking only at the first few iterations, where we assume that most code is executed in
the interpreter and might be affected by compilation activity, the overhead appears minimal.
Only the Mandelbrot and CD benchmarks shows a noticeable slowdown.

Mandelbrot with its distinctly slow first iteration can be explained by its code structure.
Since it is a computational kernel with many primitive operations, but no method calls,
optimized code is only reached after the first full benchmark iteration. The problem could
be alleviated with on-stack-replacement for loops, which is currently not done. Since other
benchmarks use methods, they reach compiled code earlier and do not exhibit the same
first-iteration slowdown.

PyStone however show various spikes. Since spikes appear in both directions (speedups
and slowdowns), we assume that they indicate a shift, for instance, of garbage collection
pauses, which may happen because of different heap configurations triggered by the additional
data structures for type information.

5.4 Effectiveness of Optimizations
To characterize the concrete impact of our two optimizations – i.e., the optimized type
checking node that replaces complex type tests with checks for object shapes and our matrix
to cache sub-typing information, – we look at the number of type checks performed by the
benchmarks as well as the impact on peak performance.

Impact on Performed Type Tests

Table 2 gives an overview of the number of type tests done by the benchmarks during execution.
We distinguish two operations check_generic and is_subtype_of, which correspond to
the operations in Line 22 and Line 5 of Listing 4. Thus, check_generic is the test called
whenever a full type check has to be performed, and is_subtype_of is the part of the check

R. Roberts, S. Marr, M. Homer, and J. Noble 5:15

SpectralNorm Storage Towers

Richards Sieve Snake

Permute PyStone Queens

List Mandelbrot NBody

GraphSearch Havlak Json

Fannkuch Float Go

Bounce CD DeltaBlue

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

Iterations in same VM

Ru
n-

tim
e

fa
ct

or
,n

or
m

al
ize

d
to

un
ty

pe
d

(lo
we

ri
s

be
tt

er
)

Moth (both) Moth (untyped)

Figure 3 Plot of the run time for the first 100 iterations. The lines indicate the mean at iteration
n normalized to the untyped result, the lighter area indicates a 95% confidence interval. The first
iteration, i.e., mostly interpreted, seems to be affected significantly only for Mandelbrot, though CD
shows slower behavior in early warmup, too.

that determines the relationship between two types. The second column of Table 2 indicates
which optimization is applied, and the following columns show the mean, minimum, and
maximum number of invocations of the tests over all benchmarks.

The baselines without optimizations are the rows with the results for neither of the
optimizations being enabled. Depending on the benchmark, we see that the type tests are
done tens of millions to hundreds of millions times for a single iteration of a benchmark.

Our optimizations reduce the number of type test invocations dramatically. As a result,
the full check for the subtyping relationship is done only once for a specific type and super
type. Similarly, the generic type check is replaced by a shape check and thus reduces the
number of expensive type checks to the number of lexical locations that verify types combined
with the number of shapes a specific lexical location sees at run time.

Impact on Performance

Figure 4 shows how our optimizations contribute to the peak performance. The figure depicts
Moth’s peak performance over all benchmarks, depending on the activated optimizations. As
for Figure 1, we do a per-benchmark unit conversion using Moth (untyped), preserving the

ECOOP 2019

5:16 Transient Typechecks Are (Almost) Free

Table 2 Type Test Statistics over all Benchmarks. This table shows how many of the type tests
can be avoided based on our two optimizations. As indicated by the numbers, the number of type
tests can vary significantly between benchmarks. Thus, the table shows the mean, minimum, and
maximum number of type tests across all benchmarks for a given configuration. With the use of
an optimized node that replaces type checks with simple object shape checks, check_generic is
invoked only for the first time that a lexical location sees a specific object shape, which eliminates
run-time type checks almost completely. Using our subtype matrix that caches type-check results,
invocations of is_subtype_of are further reduced by an order of magnitude.

Type Test Enabled Optimization mean #invocations min max
check_generic Neither 137,525,845 11,628,068 896,604,537

Subtype Cache 137,525,845 11,628,068 896,604,537
Optimized Node 292 68 1,012
Both 292 68 1,012

is_subtype_of Neither 134,125,215 11,628,067 896,604,534
Subtype Cache 16 10 29
Optimized Node 292 68 1,012
Both 16 10 29

distribution properties of the results, but enabling us to show the results on a single plot.
As seen before in Figure 2, the untyped version is faster by 5%. Moth with both

optimizations enabled as well as Moth with the optimized type-check node (cf. Listing 4)
reach the same performance. This indicates that the subtype cache matrix is not strictly
necessary for the peak performance. However, we can see that the subtype cache matrix
improves performance by an order of magnitude over the Moth version without any type
check optimizations. This shows that it is a relevant and useful optimization. Based on the
numbers of Table 2, we see that this optimization is relevant for the very first execution
of code. For code that has not executed before, having the global cache for the subtype
relations gives the most benefit. After the first execution, the lexical caches in form of the
type check nodes are primed with the same information, and the subtype cache matrix is
only rarely needed. An example for code that benefits from the subtype cache matrix is unit
test code, because most of the code is executed only once. While the performance of unit
tests is not always critical, it can have a major impact on developer productivity.

Impact on Memory Usage

In our implementation, the subtype cache matrix is the largest additional data structure. We
initialize it for up to 1000 types and use 1 byte per type combination. Java utilizes ca. 1MB
of memory for the matrix. Additional memory is used to represent the type-check nodes at
every lexical location. Since they behave like polymorphic inline caches (PIC) [32], their
memory usage depends on the specific program execution. For the benchmarks used in this
paper, the extra memory use can be up to 200KB.

In the context of Graal and Truffle, this additional memory usage is small, since the
metacompilation approach uses a lot of memory [41]. In a dedicated virtual machine, memory
use can be further optimized and be as efficient as for other kinds of PICs.

5.5 Transient Typechecks are (Almost) Free
As discussed in the introduction, in many existing gradually typed systems, one would
expect a linear increase of the performance overhead with respect to an increasing number of
type annotations.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:17

Moth (neither)

Moth (subtype cache)

Moth (optimized node)

Moth (both)

Moth (untyped)

0.
85

1.
00

2.
00

8.
00

30
.0

0

50
.0

0

10
0.

00

15
0.

00

Run-time factor, normalized to Moth (untyped)
(lower is better)

VM

Figure 4 Performance Impact of the Optimizations on the Peak Performance over all benchmarks.
The boxplot shows the performance of Moth normalized to the untyped version, i.e., without any
type checks. This means all results for Moth (untyped) are 1.0 and its box appears as a line. The
dots on the plot represent the geometric mean reported as averages. The performance of Moth
with both optimizations and Moth with only the node for optimized type checks are identical. The
subtype check cache improves performance over the unoptimized version, but does not contribute to
the peak performance.

In this section, we show that this is not necessarily the case on our system. For this
purpose we use two microbenchmarks, Check and Nest, which have at their core method
calls with 5 parameters. The Check benchmark calls the same method 10 times in a row, i.e.,
it has 10 call sites. The Nest benchmark has 10 methods with identical signatures, which
recurse from the first one to the last one. Thus, there are still 10 method calls, but they
are nested in each other. In both benchmarks, each method increments a counter, which
is checked at the end of the execution to verify that both do the same number of method
activations, and only the shape of the activation stack differs.

Each benchmark exists in six variants, each variant in a separate file, going from having
no type annotations over annotating only the first method parameter to annotating all 5
parameters. To demonstrate the impact of compilation, we present the results for the first
iteration as well as the hundredth iteration. The first iteration is executed at least partially
in the interpreter, while the hundredth iteration executes fully compiled.

Figure 5 shows that such a common scenario of methods being gradually annotated with
types does not incur an overhead on peak performance in our system. The plot shows the
mean of the run time for each benchmark configuration. Furthermore, it indicates a band
with the 95% confidence interval. The yellow line, Moth (neither), corresponds to our Moth
with type checking but without any optimizations. For this case, we see that the performance
overhead grows linearly with the number of type annotations.

For Moth (both) and Moth (untyped), we see for the first iteration that the band of
confidence intervals diverges, indicating that the additional type checks have an impact
on startup performance. In contrast the confidence intervals overlap for the hundredth
iteration, which shows that Moth does not suffer from a general linear overhead when
adding type checks. Instead, most type checks do not have an impact on peak performance.
However, as previously argued for the List benchmark, this is only the case for checks that
can be subsumed by shape checks (shape checks are performed whether or not type checks
are present).

ECOOP 2019

5:18 Transient Typechecks Are (Almost) Free

Check Nest

0 1 2 3 4 5 0 1 2 3 4 5

2000

2400

2800

3200

Number of Typed Method Arguments

Ru
n

tim
e

(m
s)

(lo
we

ri
s

be
tt

er
)

(a) Iteration 1.

Check Nest

0 1 2 3 4 5 0 1 2 3 4 5

200

400

600

800

Number of Typed Method Arguments

Ru
n

tim
e

(m
s)

(lo
we

ri
s

be
tt

er
)

Moth (both)

Moth (neither)

Moth (untyped)

(b) Iteration 100.

Figure 5 Transient Typechecks are (Almost) Free. Two microbenchmarks, each with six variants,
demonstrate the common scenario of adding type annotations over time, which in our system does
not have an impact on peak performance. The benchmark variants differ only in the increasing
number of method arguments that have type annotations. We show the result for the first benchmark
iteration (a) and the one hundredth (b). Moth (neither), i.e., Moth without our two optimizations
sees a linear increase in run time. For the first iteration, we see some difference between Moth (both)
and Moth (untyped). By the hundredth iteration, however, the compiler has eliminated the overhead
of the type checks and both Moth variants essentially have the same performance (independent of
the number of method arguments with type annotations).

5.6 Changes to Moth
Outlined earlier in Section 4, a secondary goal of our design was to enable the implementation
of our approach to be realized with few changes to the underlying interpreter. This helps to
ensure that each Grace implementation can provide type checking in a uniform way.

By examining the history of changes maintained by our version control, we estimate that
our implementation of Moth required 549 new lines and 59 changes to existing lines. The
changes correspond to the implementation of new modules for the type class (179 lines) and
the self-specializing type checking node (139 lines), modifications to the front end to extract
typing information (115 new lines, 14 lines changes) and finally the new fields and amended
constructors for AST nodes (116 new lines, 45 lines changes).

6 Discussion

6.1 The VM Could Not Already Know That
One of the key optimizations for our work and the work of others [6, 45] is the use of object
shapes to encode information about types (in our case), or type casts and assumptions (in
the case of gradually typed systems). The general idea is that a VM will already use object
shapes for method dispatches, field accesses, and other operations on objects. Thus any
further use to also imply type information can often be optimized away when the compiler
sees that the same checks are done, and therefore can be combined by optimizations such as
common subexpression elimination.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:19

1 type ListElement = interface {
2 next
3 }
4
5 var elem: ListElement := headOfList
6 while (...) do {
7 elem := elem.next
8 }

Listing 7 Example for dynamic type checks not corresponding to existing checks.

This assumption breaks, however, when checks are introduced that do not correspond
to those that exist already. As described in Section 4, our approach introduces checks for
reading from and writing to variables. Listing 7 gives an example of a pathological case. It
is a loop traversing a linked list. For this example our approach introduces a check, for the
ListElement type, when (1) assigning to and reading from elem and (2) when activating
the next method. The checks for reading from elem and activating the method can be
combined with the dispatch’s check on object shape. Unfortunately, the compiler cannot
remove the check when writing to elem, because it has no information about what value will
be returned from next, and so it needs to preserve the check to be able to trigger an error
on the assignment. For our List benchmark, this check induces an overhead of 79%.

Compiler optimizations such as inlining are also insufficient for this particular case,
because there are no guarantees about what elem does to implement next. The next method
of a specific kind of ListElement may even have a type annotation for a return value. The
best Graal can do in this example is to combine the check for the return value with the one
writing to elem.

Since the example shows a somewhat generic data structure, there is the question of
whether the issue applies to other data structures as well. Our benchmarks use a range of
data structures including hash maps, sets, and vectors, none of which show the issue, because
in more complex programs the chance of already having a check there is high, and cases were
there has not been one before seem to be rare – although one can always consider additional
optimizations to eliminate further checks. For generic data structures, storage strategies [13]
could be used to encode type information about elements. This would allow the VM to check
only once before a loop, and the loop could then rely on that check for guarantees about the
elements of the data structure.

6.2 Optimizations
Read and Write Checks. As a simplification, we currently check variable access on both
reads and writes. This approach simplifies the implementation, because we do not need to
adapt all built-ins, i.e., all primitive operations provided by the interpreter. One optimization
could be to avoid read checks. A type violation can normally only occur when writing to
a variable, but not when reading. However, to maintain the semantics, this would require
us to adapt many primitives. Examples for primitives are operations that activate blocks,
which need to check their arguments or return values as well as any primitives that write to
variables or fields. Given the number of primitives, this is error prone and incompleteness
would result in missing type checks.

By checking reads and writes in a few well defined locations, we get errors as soon as
user code accesses fields and variables. Moreover, only a small set of locations required

ECOOP 2019

5:20 Transient Typechecks Are (Almost) Free

changes to Moth’s code, which reduces implementation overhead. Given the good results
(cf. Sections 5.4 and 5.6), we decided to keep read checks, because it is a more uniform and
maintainable approach for an academic project.

Dynamic Type Propagation. Another optimization could be to use Truffle’s approach to
self-specialization [68] and propagate type information to avoid redundant checks. At the
moment, Truffle interpreters typically use self-specialization to specialize the AST to avoid
boxing of primitive types. This is done by speculating that some subtree always returns
the expected type. If this is not the case, the return value of the subtree is going to be
propagated via an exception, which is caught and triggers respecialization. This idea could
possibly be used to encode higher-level type information for return values, too. This could
be used to remove redundant checks in the interpreter by simply discovering at run time
that whole subexpressions conform to the type annotations.

Performance Impact of Types. As seen in Section 6.1, there are cases where adding types
may reduce performance, even so, in the best case this does not happen (cf. Section 5.5).

While the expectation is that adding more types may result in higher potential for
performance issues, in the context of dynamic and adaptive compilation as used for Moth,
this is not necessarily the case. Since compilers rely on various heuristics, for instance for
inlining, there may be situations where a fully typed program is faster than a program
with fewer types. Since the checks need to be compiled themselves, they also influence
such heuristics. This means it is possible that partially typed programs may show worse
performance than fully typed ones.

6.3 Threats to Validity
This work is subject to many of the threats to validity common to evaluations of experimental
language implementations. Our underlying implementation may contain undetected bugs that
affect the semantics or performance of the gradual typing checks, affecting construct validity –
we may not have implemented what we think we have. Given that our benchmarking harness
runs on the same implementation, it is also subject to the same risks and thus affecting
internal validity – we may not be measuring the implementation correctly. Moth is built on
the Truffle and Graal toolchain, so we expect external validity there at least – we expect the
results would transfer to other Graal VMs doing similar AST-based optimizations. We have
less external validity regarding other kinds of VMs (such as VMs specialized to particular
languages, or VMs built via meta-tracing rather than partial evaluation). Nevertheless, we
expect our results should be transferable as we rely on common techniques.

Generalizability. Finally, because we are working in Grace, it is less obvious that our
results generalize to other gradually typed-languages. We have worked to ensure that e.g.
our benchmarks do not depend on any features of Grace that are not common in other
gradually-typed object-oriented languages, but as Grace lacks a large corpus of programs the
benchmarks are necessarily artificial, and it is not clear how the results would transfer to the
kinds of programs actually written in practice. The advantage of Grace (and Moth) for this
research is that their relative simplicity means we have been able to build an implementation
that features competitive performance with significantly less effort than would be required
for larger and more complex languages. On the other hand, more effort on optimisations
could lead to even better performance.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:21

Another aspect which limits generalizability is the specific semantics of Grace. Reticulated
Python, Typed Racket, and Gradualtalk have semantics that need additional runtime support,
and thus, we cannot draw any conclusions without further research.

For languages such as Newspeak, Strongtalk, or TypeScript, where types do not have
run-time semantics, one could add termination based on type errors to these languages, or
simply avoid termination and report the errors after program completion as a debugging aid.
For either option, our approach should apply and we would expect similar results.

7 Related Work

Although syntaxes for type annotations in dynamic languages go back at least as far as
Lisp [54], the first attempts at adding a comprehensive static type system to a dynamically
typed language involved Smalltalk [33], with the first practical system being Bracha’s
Strongtalk [17]. Strongtalk (independently replicated for Ruby [26]) provided a powerful
and flexible static type system, where crucially, the system was optional (also known as
pluggable [16]). Programmers could run the static checker over their Smalltalk code (or not);
either way the type annotations had no impact whatsoever of the semantics of the underlying
Smalltalk program.

Siek and Taha [48] introduced the term “gradual typing” to describe the logical extension
of this scheme: a dynamic language with type annotations that could, if necessary, be checked
at runtime. Siek and Taha build on earlier complementary work extending fully statically
typed languages with a “DYNAMIC” type – Abadi et al. ’s 1991 TOPLAS paper [1] is an
important early attempt and also surveys previous work.

Revived practical adoption of dynamic languages generated revived research interest,
leading to the formulation of the gradual guarantee to characterize sound gradual type
systems: informally “removing type annotations always produces a program that is still well
typed” and also “evaluates to an equivalent value” [50], drawing on Boyland’s critical insight
that such a guarantee must by its nature exclude code that reflects on the presence or absence
of type declarations [15]. Moth ensures that the values passing through type annotations
cannot be incompatible with those annotations and that type annotations cannot change
program values; notably, the type tests consider only method names and not any further
type annotations. This means that removing type annotations cannot cause a program to fail
or change its behaviour, satisfying the informal statement of the gradual guarantee. Moth
does not meet the refined formal statement of the guarantee in Sieket al.’s [50]’s Theorem 5,
however, because Theorem 5 requires all intermediate values conform to their inferred static
types. Moth only checks at explicit type declarations, not inferred intermediate types.

Type errors in gradual, or other dynamically checked, type systems will be detected
at the type declarations, but often those declarations will not be at fault – indeed in a
correctly typed program in a sound gradually typed system, the declarations cannot be at
fault because they will have passed the static type checker. Rather, the underlying fault
must be somewhere within the barbarian dynamically typed code trans vallum. Blame
tracking [63, 52, 2] localizes these faults by identifying the point in the program where the
system makes an assumption about dynamically typed objects, so it can identify the root
cause should the assumption fail. Different semantics for blame detect these faults slightly
differently and incur differing implementation overheads [60, 51, 62].

The diversity of semantics and language designs incorporating gradual typing has been
captured recently via surveys incorporating formal models of different design options.
Chung et al. [22] present an object-oriented model covering optional semantics (eras-
ure), transient semantics, concrete semantics (from Thorn [11]), and behavioural semantics

ECOOP 2019

5:22 Transient Typechecks Are (Almost) Free

(from Typed Racket), and give a series of programs to clarify the semantics of a particular
language. Greenman et al. take a more functional approach, again modelling erasure,
transient (“first order”), and behavioural (“higher order”) semantics [28], and also present
performance information based on Typed Racket. Wilson et al. take a rather different
approach, employing questionnaires to investigate the semantics programmers expect of a
gradual typing system [64].

As with languages more generally, there seem to be two main implementation strategies for
languages mixing dynamic and static type checks: either adding static checks into a dynamic
language implementation, or adding support for dynamic types to an implementation that
depends on static types for efficiency. Typed Racket, for example, optimizes code with a
combination of type inference and type declarations – the Racket IDE “optimizer coach”
goes as far as to suggest to programmers type annotations that may improve their program’s
performance [53]. In these implementations, values flowing from dynamically to statically
typed code must be checked at the boundary. Fully statically typed code needs no dynamic
type checks, and so generally performs better than dynamically typed code. Adopting a
gradual type system such as Typed Racket [59] allows programmers to explicitly declare
types that can be checked statically, removing unnecessary overhead. Ortin et al.’s [43]
approach takes this to a logical extreme using a rule base to guide program specialisation at
compile time based on abstract interpretation.

On the other hand, systems such as Reticulated Python [60], SafeTypeScript [45], and
our work here take the opposite approach. These systems do not use information from
type declarations to optimize execution speed. Rather, the necessity to perform potentially
repeated dynamic type checks tends to slow programs down; instead, here, code with no
type annotations generally performs better than statically typed code or code with many
type annotations. In the limit, these kinds of systems may only ever check types dynamically
and may not involve a static type checker at all.

As gradual typing systems have come to wider attention, the question of their imple-
mentation overheads has become more prominent. Takikawa et al. [56] asked “is sound
gradual typing dead?” based on a systematic performance measurement on Typed Racket.
The key here is their evaluation method, where they constructed a number of different per-
mutations of typed and untyped code, and evaluated performance along the spectrum [30].
Bauman et al. [6] replied to Takikawa et al.’s study, in which they used Pycket [5] (a tracing
JIT for Racket) rather than the standard Racket VM, but maintained full gradually-typed
Racket semantics. Bauman et al. are able to demonstrate most benchmarks with a slowdown
of 2x on average over all configurations. Note that this is not directly comparable to our
system, since typed modules do not need to do any checks at run time. Typed Racket only
needs to perform checks at boundaries between typed and untyped modules, however, they
use the same essential optimization technique that we apply, using object shapes to encode
information about gradual types. Muehlboeck and Tate [42] also replied to Takikawa et al.,
using a similar benchmarking method applied to Nom, a language with features designed to
make gradual types easier to optimize, demonstrating speedups as more type information is
added to programs. Their approach enables such type-driven optimizations, but relies on a
static analysis which can utilize the type information, and the underlying types are nominal,
rather than structural.

Most recently, Kuhlenschmidt et al. [36] employ an ahead of time (i.e. traditional, static)
compiler for a custom language called Grift and demonstrate good performance for code
where more than half of the program is annotated with types, and reasonable performance
for code without type annotations.

R. Roberts, S. Marr, M. Homer, and J. Noble 5:23

Perhaps the closest to our approach are Vitousek et al. [60] (incl. [62, 29]) and Richards
et al. [45]. Vitousek et al. describe dynamically checking transient types for Reticulated
Python (termed “tag-type” soundness by Greenman and Migeed [29]). As with our work,
Vitousek et al.’s transient checks inspect only the “top-level” type of an object. Reticulated
Python undertakes these transient type checks at different places to Moth. Moth only
checks explicit type annotations, while Reticulated Python implicitly checks whenever values
flow from dynamic to static types. We refrain from a direct performance comparison since
Reticulated Python is an interpreter without just-in-time compilation and thus performance
tradeoffs are different. In recent experimental work, however, Vitousek et al. [61] have
evaluated Reticulated Python’s transient semantics running on top of an unmodified PyPy
JIT metacompiler. These results are broadly consistent with those presented here, finding
similarly small slowdowns using just the tracing JIT, and reducing those slowdowns even
further when some tests are elimited via static type inference.

Richards et al. [45] take a similar implementation approach to our work, demonstrating
that key mechanisms such as object shapes used by a VM to optimize dynamic languages can
be used to eliminate most of the overhead of dynamic type checks. Unlike our work, Richards
implement “monotonic” gradual typing with blame, rather than the simpler transient checks,
and do so on top of an adapted Higgs VM. The Higgs VM implements a baseline just-in-time
compiler based on basic-block versioning [21]. In contrast, our implementation of dynamic
checks is built on top of the Truffle framework for the Graal VM, and reaches performance
approaching that of V8 (cf. Section 5.2). The performance difference is of relevance here
since any small constant factors introduced into a VM with a lower baseline performance
can remain hidden, while they stand out more prominently on a faster baseline.

Overall, it is unclear whether our results confirm the ones reported by Richards et al. [45],
because our system is simpler. It does not introduce the polymorphism issues caused by
accumulating cast information on object shapes, which could be important for performance.
Considering that Richards et al. report ca. 4% overhead on the classic Richards benchmark,
while we see 33%, further work seems necessary to understand the performance implications
of their approach for a highly optimizing just-in-time compiler.

8 Conclusion

As gradually typed languages become more common, and both static and dynamically
typed languages are extended with gradual features, efficient techniques for gradual type
checking become more important. In this paper, we have demonstrated that optimizing
virtual machines enable transient gradual type checks with relatively little overhead, and
with only small modifications to an AST interpreter. We evaluated this approach with Moth,
an implementation of the Grace language on top of Truffle and Graal.

In our implementation, types are structural and shallow: a type specifies only the names
of members provided by objects, and not the types of their arguments and results. These
types are checked on access to variables, when assigning to method parameters, and also on
return values. The information on types is encoded as part of an object’s shape, which means
that shape checks already performed in an optimizing dynamic language implementation can
also be used to check types. Being able to tie checks to the shapes in this way is critical for
reducing the overhead of dynamic checking.

Using the AreWeFastYet benchmarks as well as a collection of benchmarks from the
gradual typing literature, we find that our approach to dynamic type checking introduces an
overhead of 5% (min. −13%, max. 79%) on peak performance. In addition to the results from

ECOOP 2019

5:24 Transient Typechecks Are (Almost) Free

further microbenchmarks, we take this as a strong indication that transient gradual types do
not need to imply a linear overhead compared to untyped programs. However, we also see
that interpreter and startup performance are impacted by the additional type annotations.

Since Moth reaches the performance of a highly optimized JavaScript VM such as V8, we
believe that these results are a good indication for the low peak-performance overhead of
our approach.

In specific cases, the overhead is still significant and requires further research to be
practical. Thus, future research should investigate how the number of gradual type checks
can be reduced without causing the type feedback to become too imprecise to be useful.
One approach might increase the necessary changes to a language implementation, but
avoid checking every variable read. Another approach might further leverage Truffle’s
self-specialization to propagate type requirements and avoid unnecessary checks.

Finally, we hope to apply our approach to other parts of the spectrum of gradual typing,
eventually reaching full structural types with blame that support the gradual guarantee.
This should let us verify that Richards et al. [45]’s results generalize to highly optimizing
virtual machines, or alternatively, show that other optimizations for precise blame need to
be investigated.

References
1 Martín Abadi, Luca Cardelli, Benjamin C. Pierce, and Gordon D. Plotkin. Dynamic Typing

in a Statically Typed Language. ACM Trans. Program. Lang. Syst., 13(2):237–268, 1991.
doi:10.1145/103135.103138.

2 Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler. Blame for all. In
Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, pages 201–214, 2011. doi:
10.1145/1926385.1926409.

3 Esteban Allende, Oscar Callaú, Johan Fabry, Éric Tanter, and Marcus Denker. Gradual typing
for Smalltalk. Sci. Comput. Program., 96:52–69, 2014. doi:10.1016/j.scico.2013.06.006.

4 Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt.
Virtual Machine Warmup Blows Hot and Cold. Proc. ACM Program. Lang., 1(OOPSLA):52:1–
52:27, October 2017.

5 Spenser Bauman, Carl Friedrich Bolz, Robert Hirschfeld, Vasily Kirilichev, Tobias Pape,
Jeremy G. Siek, and Sam Tobin-Hochstadt. Pycket: a tracing JIT for a functional language. In
Proceedings of the 20th ACM SIGPLAN International Conference on Functional Programming,
ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages 22–34, 2015. doi:10.1145/
2784731.2784740.

6 Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. Sound
Gradual Typing: Only Mostly Dead. Proc. ACM Program. Lang., 1(OOPSLA):54:1–54:24,
October 2017.

7 Michael Bayne, Richard Cook, and Michael D. Ernst. Always-available static and dynamic
feedback. In Proceedings of the 33rd International Conference on Software Engineering (ICSE),
pages 521–530, 2011.

8 Gavin M. Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In ECOOP
2014 - Object-Oriented Programming - 28th European Conference, Uppsala, Sweden, July 28 -
August 1, 2014. Proceedings, pages 257–281, 2014. doi:10.1007/978-3-662-44202-9_11.

9 Andrew P. Black, Kim B. Bruce, Michael Homer, and James Noble. Grace: the absence of
(inessential) difficulty. In Onward! ’12: Proceedings 12th SIGPLAN Symp. on New Ideas in
Programming and Reflections on Software, pages 85–98, New York, NY, 2012. ACM.

10 Andrew P. Black, Norman C. Hutchinson, Eric Jul, and Henry M. Levy. The development of
the Emerald programming language. In Proceedings of the Third ACM SIGPLAN History

http://dx.doi.org/10.1145/103135.103138
http://dx.doi.org/10.1145/1926385.1926409
http://dx.doi.org/10.1145/1926385.1926409
http://dx.doi.org/10.1016/j.scico.2013.06.006
http://dx.doi.org/10.1145/2784731.2784740
http://dx.doi.org/10.1145/2784731.2784740
http://dx.doi.org/10.1007/978-3-662-44202-9_11

R. Roberts, S. Marr, M. Homer, and J. Noble 5:25

of Programming Languages Conference (HOPL-III), San Diego, California, USA, 9-10 June
2007, pages 1–51, 2007. doi:10.1145/1238844.1238855.

11 Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strniša,
Jan Vitek, and Tobias Wrigstad. Thorn: Robust, Concurrent, Extensible Scripting on the JVM.
In Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 117–136, 2009.

12 Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing the Meta-level:
PyPy’s Tracing JIT Compiler. In Proceedings of the 4th Workshop on the Implementation, Com-
pilation, Optimization of Object-Oriented Languages and Programming Systems, ICOOOLPS
’09, pages 18–25. ACM, 2009.

13 Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Storage Strategies for Collections
in Dynamically Typed Languages. In Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA’13,
pages 167–182. ACM, 2013.

14 Carl Friedrich Bolz and Laurence Tratt. The Impact of Meta-Tracing on VM Design and
Implementation. Science of Computer Programming, 98:408–424, February 2013.

15 John Tang Boyland. The Problem of Structural Type Tests in a Gradual-Typed Language. In
FOOL, 2014.

16 Gilad Bracha. Pluggable Type Systems. OOPSLA Workshop on Revival of Dynamic Languages,
October 2004.

17 Gilad Bracha and David Griswold. Stongtalk: Typechecking Smalltalk in a Production
Environment. In OOPSLA, 1993.

18 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In European Conference on Object-Oriented
Programming (ECOOP), volume 6183 of Lecture Notes in Computer Science, pages 405–428.
Springer, 2010.

19 Kim Bruce, Andrew Black, Michael Homer, James Noble, Amy Ruskin, and Richard Yannow.
Seeking Grace: a new object-oriented language for novices. In Proceedings 44th SIGCSE
Technical Symposium on Computer Science Education, pages 129–134. ACM, 2013.

20 Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of SELF a
Dynamically-Typed Object-Oriented Language Based on Prototypes. In Proceedings on Object-
Oriented Programming Systems, Languages and Applications, OOPSLA’89, pages 49–70. ACM,
October 1989.

21 Maxime Chevalier-Boisvert and Marc Feeley. Interprocedural Type Specialization of JavaScript
Programs Without Type Analysis. In 30th European Conference on Object-Oriented Program-
ming (ECOOP 2016), volume 56 of LIPIcs, pages 7:1–7:24. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.7.

22 Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. KafKa: gradual typing
for objects. In 32nd European Conference on Object-Oriented Programming, ECOOP 2018,
July 16-21, 2018, Amsterdam, The Netherlands, pages 12:1–12:24, 2018. doi:10.4230/LIPIcs.
ECOOP.2018.12.

23 Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer. Memento Mori: Dynamic
Allocation-site-based Optimizations. In Proceedings of the 2015 International Symposium on
Memory Management, ISMM ’15, pages 105–117. ACM, 2015.

24 Benoit Daloze, Stefan Marr, Daniele Bonetta, and Hanspeter Mössenböck. Efficient and
Thread-Safe Objects for Dynamically-Typed Languages. In Proceedings of the 2016 ACM
International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA’16, pages 642–659. ACM, 2016.

25 Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and Hannes Payer. Idle Time
Garbage Collection Scheduling. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’16, pages 570–583. ACM, 2016.

ECOOP 2019

http://dx.doi.org/10.1145/1238844.1238855
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.7
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.12

5:26 Transient Typechecks Are (Almost) Free

26 M. Furr, J.-H. An, J. Foster, and M.J. Hicks. Static type inference for Ruby. In Symposium
on Applied Computation, pages 1859–1866, 2009.

27 Adele Goldberg and David Robson. Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

28 Ben Greenman and Matthias Felleisen. A spectrum of type soundness and performance.
PACMPL, 2(ICFP):71:1–71:32, 2018. doi:10.1145/3236766.

29 Ben Greenman and Zeina Migeed. On the Cost of Type-Tag Soundness. In Proceedings of
the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM’18,
pages 30–39. ACM, 2018.

30 Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan
Vitek, and Matthias Felleisen. How to evaluate the performance of gradual type systems.
Journal of Functional Programming, 29:45, 2019. doi:10.1017/S0956796818000217.

31 Christian Humer, Christian Wimmer, Christian Wirth, Andreas Wöß, and Thomas Würthinger.
A Domain-Specific Language for Building Self-Optimizing AST Interpreters. In Proceedings of
the 13th International Conference on Generative Programming: Concepts and Experiences,
GPCE ’14, pages 123–132. ACM, 2014. doi:10.1145/2658761.2658776.

32 Urs Hölzle, Craig Chambers, and David Ungar. Optimizing Dynamically-Typed Object-
Oriented Languages With Polymorphic Inline Caches. In ECOOP ’91: European Conference
on Object-Oriented Programming, volume 512 of LNCS, pages 21–38. Springer, 1991. doi:
10.1007/BFb0057013.

33 Ralph E. Johnson. Type-Checking Smalltalk. In Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’86), Portland, Oregon, USA, Proceedings.,
pages 315–321, 1986. doi:10.1145/28697.28728.

34 Timothy Jones. Classless Object Semantics. PhD thesis, Victoria University of Wellington,
2017.

35 Timothy Jones, Michael Homer, James Noble, and Kim Bruce. Object Inheritance Without
Classes. In 30th European Conference on Object-Oriented Programming (ECOOP 2016),
volume 56, pages 13:1–13:26, 2016.

36 Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. Efficient Gradual
Typing. CoRR, abs/1802.06375, 2018. arXiv:1802.06375.

37 Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

38 Stefan Marr. SOMns: a newspeak for concurrency research. https://github.com/smarr/-
SOMns, 2018.

39 Stefan Marr. ReBench: Execute and Document Benchmarks Reproducibly, June 2019. Version
1.0rc2. doi:10.5281/zenodo.3242039.

40 Stefan Marr, Benoit Daloze, and Hanspeter Mössenböck. Cross-Language Compiler
Benchmarking—Are We Fast Yet? In Proceedings of the 12th Symposium on Dynamic
Languages, DLS’16, pages 120–131. ACM, November 2016.

41 Stefan Marr and Stéphane Ducasse. Tracing vs. Partial Evaluation: Comparing Meta-
Compilation Approaches for Self-Optimizing Interpreters. In Proceedings of the 2015 ACM
International Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’15, pages 821–839. ACM, October 2015.

42 Fabian Muehlboeck and Ross Tate. Sound Gradual Typing is Nominally Alive and Well. Proc.
ACM Program. Lang., 1(OOPSLA):56:1–56:30, October 2017.

43 Francisco Ortin, Miguel Garcia, and Seán McSweeney. Rule-based program specialization
to optimize gradually typed code. Knowledge-Based Systems, 2019. doi:10.1016/j.knosys.
2019.05.013.

44 Aaron Pang, Craig Anslow, and James Noble. What Programming Languages Do Developers
Use? A Theory of Static vs Dynamic Language Choice. In 2018 IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC 2018, Lisbon, Portugal, October 1-4,
2018, pages 239–247, 2018. doi:10.1109/VLHCC.2018.8506534.

http://dx.doi.org/10.1145/3236766
http://dx.doi.org/10.1017/S0956796818000217
http://dx.doi.org/10.1145/2658761.2658776
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1007/BFb0057013
http://dx.doi.org/10.1145/28697.28728
http://arxiv.org/abs/1802.06375
http://dx.doi.org/10.5281/zenodo.3242039
http://dx.doi.org/10.1016/j.knosys.2019.05.013
http://dx.doi.org/10.1016/j.knosys.2019.05.013
http://dx.doi.org/10.1109/VLHCC.2018.8506534

R. Roberts, S. Marr, M. Homer, and J. Noble 5:27

45 Gregor Richards, Ellen Arteca, and Alexi Turcotte. The VM Already Knew That: Lever-
aging Compile-time Knowledge to Optimize Gradual Typing. Proc. ACM Program. Lang.,
1(OOPSLA):55:1–55:27, October 2017.

46 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete Types for TypeScript. In
29th European Conference on Object-Oriented Programming, ECOOP 2015, July 5-10, 2015,
Prague, Czech Republic, pages 76–100, 2015. doi:10.4230/LIPIcs.ECOOP.2015.76.

47 Richard Roberts, Stefan Marr, Michael Homer, and James Noble. Toward Virtual Machine
Adaption Rather than Reimplementation. In MoreVMs’17: 1st International Workshop on
Workshop on Modern Language Runtimes, Ecosystems, and VMs at <Programming> 2017,
2017. Presentation.

48 Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In Seventh Workshop
on Scheme and Functional Programming, volume Technical Report TR-2006-06, pages 81–92.
University of Chicago, September 2006.

49 Jeremy G. Siek and Walid Taha. Gradual Typing for Objects. In ECOOP 2007 - Object-
Oriented Programming, 21st European Conference, Berlin, Germany, July 30 - August 3, 2007,
Proceedings, pages 2–27, 2007. doi:10.1007/978-3-540-73589-2_2.

50 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
Criteria for Gradual Typing. In Thomas Ball, Rastislav Bodik, Shriram Krishnamurthi,
Benjamin S. Lerner, and Greg Morrisett, editors, 1st Summit on Advances in Programming
Languages (SNAPL 2015), volume 32 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 274–293. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015.

51 Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald
Garcia. Monotonic References for Efficient Gradual Typing. In European Symposium on
Programming (ESOP), pages 432–456, 2015. doi:10.1007/978-3-662-46669-8_18.

52 Jeremy G. Siek and Philip Wadler. Threesomes, with and without blame. In Proceedings
of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2010, Madrid, Spain, January 17-23, 2010, pages 365–376, 2010. doi:10.1145/1706299.
1706342.

53 Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Optimization coaching:
optimizers learn to communicate with programmers. In Proceedings of the 27th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages 163–178,
2012. doi:10.1145/2384616.2384629.

54 G.L. Steele. Common Lisp the Language. Digital Press, 1990.
55 Nataliia Stulova, José F. Morales, and Manuel V. Hermenegildo. Reducing the Overhead

of Assertion Run-time Checks via Static Analysis. In Proceedings of the 18th International
Symposium on Principles and Practice of Declarative Programming, PPDP’16, pages 90–103.
ACM, 2016.

56 Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias
Felleisen. Is Sound Gradual Typing Dead? In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL’16, pages 456–468.
ACM, 2016.

57 Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual typing for first-class classes. In Proceedings of the 27th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012,
pages 793–810, 2012. doi:10.1145/2384616.2384674.

58 The Clean. Vehicle. Flying Nun Records, FN147, 1990.
59 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of Typed

Scheme. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008,
pages 395–406, 2008. doi:10.1145/1328438.1328486.

ECOOP 2019

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.76
http://dx.doi.org/10.1007/978-3-540-73589-2_2
http://dx.doi.org/10.1007/978-3-662-46669-8_18
http://dx.doi.org/10.1145/1706299.1706342
http://dx.doi.org/10.1145/1706299.1706342
http://dx.doi.org/10.1145/2384616.2384629
http://dx.doi.org/10.1145/2384616.2384674
http://dx.doi.org/10.1145/1328438.1328486

5:28 Transient Typechecks Are (Almost) Free

60 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and evaluation
of gradual typing for Python. In DLS’14, Proceedings of the 10th ACM Symposium on Dynamic
Languages, part of SPLASH 2014, Portland, OR, USA, October 20-24, 2014, pages 45–56,
2014. doi:10.1145/2661088.2661101.

61 Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. Optimizing and Evaluating
Transient Gradual Typing. CoRR, abs/1902.07808, 2019. arXiv:1902.07808.

62 Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. Big Types in Little Runtime:
Open-world Soundness and Collaborative Blame for Gradual Type Systems. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL’17,
pages 762–774. ACM, 2017.

63 Philip Wadler and Robert Bruce Findler. Well-Typed Programs Can’t Be Blamed. In European
Symposium on Programming Languages and Systems (ESOP), pages 1–16, 2009.

64 Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. The
Behavior of Gradual Types: A User Study. In Dynamic Language Symposium (DLS), 2018.

65 Andreas Wöß, Christian Wirth, Daniele Bonetta, Chris Seaton, Christian Humer, and Hans-
peter Mössenböck. An Object Storage Model for the Truffle Language Implementation
Framework. In Proceedings of the 2014 International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ’14,
pages 133–144. ACM, 2014.

66 Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris
Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. Practical Partial Evaluation for
High-performance Dynamic Language Runtimes. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’17, pages 662–676.
ACM, 2017.

67 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule Them
All. In Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2013, pages 187–204. ACM, 2013.

68 Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Doug Simon, and Christian
Wimmer. Self-Optimizing AST Interpreters. In Proceedings of the 8th Dynamic Languages
Symposium, DLS’12, pages 73–82, October 2012. doi:10.1145/2384577.2384587.

http://dx.doi.org/10.1145/2661088.2661101
http://arxiv.org/abs/1902.07808
http://dx.doi.org/10.1145/2384577.2384587

A Typing Discipline for Hardware Interfaces
Jan de Muijnck-Hughes
University of Glasgow, UK
Jan.deMuijnck-Hughes@glasgow.ac.uk

Wim Vanderbauwhede
University of Glasgow, UK
Wim.Vanderbauwhede@glasgow.ac.uk

Abstract
Modern Systems-on-a-Chip (SoC) are constructed by composition of IP (Intellectual Property)
Cores with the communication between these IP Cores being governed by well described interaction
protocols. However, there is a disconnect between the machine readable specification of these
protocols and the verification of their implementation in known hardware description languages.
Although tools can be written to address such separation of concerns, the tooling is often hand written
and used to check hardware designs a posteriori. We have developed a dependent type-system and
proof-of-concept modelling language to reason about the physical structure of hardware interfaces
using user provided descriptions. Our type-system provides correct-by-construction guarantees that
the interfaces on an IP Core will be well-typed if they adhere to a specified standard.

2012 ACM Subject Classification Theory of computation → Type theory; Hardware → System on
a chip; Software and its engineering → System description languages

Keywords and phrases System-on-a-Chip, AXI, Dependent Types, Substructural Typing

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.6

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.14

Funding This work is part of Border Patrol: Improving Smart Device Security through Type-Aware
Systems Design (EP/N028201/1) and has been sponsored by an EPSRC funding call on Trust,
Identity, Privacy and Security in the Digital Economy.

Acknowledgements The authors would like to thank the anonymous reviewers for commenting on
the paper, and also various members of Scottish Programming Language Community (SPLS) for
their helpful comments on early versions of the work.

1 Introduction

Hardware Description Languages (HDLs) such as Verilog, SystemVerilog and VHDL are
designed to realise both the structure and behaviour of hardware systems. Hardware is
modelled as interconnected components (modules) that are connected through ports; ports
being individual wires or a collection of wires. Ports carry data, and the flow of data on
a port is directional. HDLs abstract over groupings of ports (port groups) as an interface,
and present values at higher levels of abstraction such as integers and strings. A component
can have multiple interfaces that each send multiple values, and can each be characterised
differently. An initiating interface (initiator) initiates communication, and the targeted
interface (target) is the recipient of the communication.

Modern hardware design is not just about digital circuits, it is also about describing
systems of systems. For instance, System-on-a-Chip (SoC) views hardware modules (IP
Cores) as boxes connected using well-known and bespoke interfaces. The structure, and
behaviour, of these interfaces are described in natural language documents [3, 41, 4]. Such
standards documents will present an abstract interface description which is a global view of

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jan de Muijnck-Hughes and Wim Vanderbauwhede;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 6; pp. 6:1–6:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2185-8543
mailto:Jan.deMuijnck-Hughes@glasgow.ac.uk
https://orcid.org/0000-0001-6768-0037
mailto:Wim.Vanderbauwhede@glasgow.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2019.6
https://dx.doi.org/10.4230/DARTS.5.2.14
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N028201/1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 A Typing Discipline for Hardware Interfaces

an interface agnostic to its endpoint usage, and will provide salient structural information
(using natural language) about each port in the interface required for realisation in a HDL.
Details provided include a port’s size, sensitivity, necessity, flow, and dependencies between
the details specified. Further, these documents describe behavioural characteristics of the
interfaces as a whole. For example, how ports are grouped to describe different channels.

While circuit-level designs are required to implement behaviour at a low-level, the designer
must also ensure that the components in a SoC design are correctly connected according
to the provided specification. Standardised machine readable formats such as IP-XACT
capture many of the structural information found within the standards document’s natural
language descriptions [23]. However, interface specifications written using IP-XACT cannot
be parameterised, nor can structural dependencies be specified between ports and over
interfaces. Further, not all the information contained within a natural language document
can be specified using IP-XACT. For instance, IP-XACT does not support the definition of
strobe, a signal carried on a separate port that is linked to an individual bit in multi-wire
data bus. The number of strobe is dependent on the size of the bus. Conversely, the machine
readable specification can present information more clearly than the specification document
itself. For example, port necessity for the APB specification is more clearly described in the
IP-XACT specification than in the standards document.

Generally speaking, there is a disconnect between the description of an interface’s structure
in a standards document, its representation in a standardised machine readable format,
and its enforcement in a HDL. When instantiating these interfaces in a HDL there are no
mechanisms to ensure that the characterised interfaces respect the specifications. As a result,
mismatches between the specifications and their implementations are common.

1.1 Contributions
The aim of our work is to improve the security and safety of SoC design by utilising state-of-the-
art concepts from programming language theory to provide greater correct-by-construction
guarantees over the structural and behavioural aspects of SoC designs.

Dependent type-systems present a rich and expressive setting that allows for precise
program properties to be stated and verified directly in the language’s type-system [28].
Such type-systems also support modelling of resource usage in the style of substructural
typing [40, 6]. By building upon existing work from hardware design we can use these
concepts to construct a type-based formal description of abstract interfaces, and formally
validate that concrete component interfaces adhere to these descriptions at design-time using
type checking.

Specifically, we make the following contributions:
1. We present a type-driven modelling framework (Cordial) for reasoning about interfaces

on components within a SoC design.
2. We show the use of Cordial for describing an exemplar protocol Mungo, and discuss

how Cordial can be used to model real-world protocol specifications: APB, LocalLink
and AXI [4, 3, 41].

3. We describe the formalisation of our framework in the dependently typed programming
language Idris [9] that also constitutes a proof-of-concept implementation.

Figure 1 summarises the core constructs that comprise Cordial and their relations.
Modelling information is taken from the IP-XACT standard [23] and existing work [30] to
construct a model (θAID) to represent abstract interface descriptions. Our model construction
language (λAID) is a simple extension to the Simply Typed Lambda Calculus (STLC) and

J. de Muijnck-Hughes and W. Vanderbauwhede 6:3

λAID λredux
AID λcont

AID θAID θ
proj
AID θCOMP

model construction type checking

Figure 1 Relationships between various languages, models, and intermediate representations.

models parameterised specifications as computable functions, and allows dependencies to
be made between signals. The type-system of λAID follows a substructural design [40, 5]
allowing correctness guarantees towards labelling of signals to be lifted into the type-system.
Model construction is from reduction of λAID instances to a reduced form (λredux

AID) which is
then evaluated to construct θAID instances using continuation passing. Concrete interfaces
are modelled using θCOMP to present components in a SoC with multiple interfaces.

Inspired by notions of global and local types from Session Types [22] abstract interface
specifications are treated as a global description that is characterised to a local description –
θ

proj
AID. By embedding the projected model (θproj

AID) into the type of the interface description
(θCOMP) the model’s type-system ensures that a local type is satisfied by its global type.
Further, the concept of thinnings [1, § 3] captures a specification’s optional ports, and allows
optional ports to be knowingly skipped.

Application of Cordial would see it embedded within existing SoC tooling and to enrich
existing HDLs with static design-time mechanisms that would make mismatches between
interface specification and implementation impossible and thus reduce errors, increase design
productivity and enhance safety and security of the SoC designs. The transformations of
specification instances, and model projections would be automatic and hidden from users.
Protocol designers would have a tool (based on λAID) to design interface specifications. During
the SoC design phase SoC designers use these specifications to annotate their components
(θCOMP) and ensure their port selections are correct.

1.2 Outline

Section 2 presents a running example that further motivates our work. Section 3 introduces
our model for abstract interface descriptions (θAID) and the specification language (λAID)
used to construct θAID model instances. Section 4 details our model (θCOMP) for describing
concrete components and how projected θAID instances are used to type-check interfaces.
Section 5 briefly describes the formalisation of Cordial in Idris, and Section 6 considers use
of the framework to model real-world interaction protocol specifications. Section 7 discusses
the efficacy of the framework, and considers related work. The paper concludes with a
discussion over future work in Section 8.

Notation. For simplicity the syntax for standard algebraic types are abstracted over. Similar
abstractions are used for dependent types. Single-field variant types are presented with a
constructor name as the label and the body being a n-ary tuple. Where possible simple
typing rules are embedded within the presentation of abstract syntax and types. Model types
are denoted using blackboard style letters. Types from construction languages are denoted
using uppercase Greek letters. Constructs subscripted with: d are from θAID; and p are
from θ

proj
AID.

ECOOP 2019

6:4 A Typing Discipline for Hardware Interfaces

2 The Mungo Protocol

Presentation of Cordial will be aided through consideration of an exemplar protocol
(Mungo) that captures salient physical properties common to many interaction protocols.

Table 1 Signal descriptions for Mungo.

Name Width Direction Necessity Source Sensitivity

SYS_CLK 1 Always System Optional System High
CTRL_R 1 To Initiator Required IP High
CTRL_W 1 To Initiator Required IP High
DATA 32/16 Bi-Directional Required IP High
ADDR 8/4 To Target Required IP High
ERR_MODE 2 To Initiator Target Optional IP High
ERR_INFO user defined To Initiator Target Optional IP High

Table 1 presents the signal descriptions (abstract interface description) for Mungo.
Behaviourally the protocol represents the reading and writing of data from the initiating
IP Core to the target1. Mungo provides unicast style communication, it does not support
broadcast communication through a shared bus. A system clock (SYS_CLK) can send signals
to both the target and initiator. The clock is optional as the clock source for the specified
component might not go through this interface. Reading and writing are dictated by the
initiator using control wires CTRL_R and CTRL_W. A data bus is bidirectional and data can
have a width of 32 or 16 bits. The address bus is eight or four bits in width. Error reporting
is optional where: ERR_MODE indicates the type of error; and ERR_INFO is the message itself.
The width of error messages are left to the implementer. All wires have high sensitivity.

interface Mungo #(AWIDTH = 8, DWIDTH = 32, EWIDTH) (input bit clk);

logic [AWIDTH-1:0] addr;
logic [DWIDTH-1:0] data;
logic [2:0] errType;
logic [EWIDTH-1:0] errInfo;
logic ctrlr, ctrlw;

modport initiator(input clk,
input errType, errInfo,
output addr, ctrlw, ctrlr,
inout data);

modport target(input clk,
output errType, errInfo,
input addr, ctrlw, ctrlr,
inout data);

endinterface

Figure 2 Realising Mungo using SystemVerilog.

1 Only the physical structure of the interface is considered. How the framework can be extended to
capture behaviour properties is discussed later.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:5

Figure 2 shows how Mungo can be realised in SystemVerilog. The interface is paramet-
erised, however, SystemVerilog only allows such interfaces to have a single default parameter.
Mungo has multiple default parameters. Two characterised interfaces for both an initiator
and target are presented as modports. Error related signals and clock information are
optional. Interfaces can take many other valid structural forms. SystemVerilog supports
unrestricted use of dangling ports, in which a receiving port is unconnected. In these cases
the value received is taken as the default value as dictated by the port’s type. A designer
can also deviate from the specification and make required ports optional. When connecting
two modules together that support Mungo the wrong interface might be left out. Further,
not all HDLs support the concept of dangling ports.

module System (output wire clock);
System

module Initiator (
input wire clock,
output wire write,
output wire read,
input [1:0] errorType,
input [7:0] errorInfo,
output [7:0] address,
inout [31:0] data

);

Initiator
module Target(

input wire clock,
input wire write,
input wire read,

input [7:0] address,
inout [31:0] data

);

Target

module Top ();
wire clock, write, read;
wire [7:0] address;
wire [31:0] data;

System s (.clock(clock));
Initiator i (.clock(clock), .write(write), .read(read), .errorType(), .errorInfo(),

.address(address), .data(data));
Target t (.clock(clock), .write(write), .read(read), .address(address), .data(data));

endmodule

Top

Figure 3 SystemVerilog module definitions adhering to Mungo, and signal flow indicators.

Figure 3 presents a second use of SystemVerilog to declare two components that support
Mungo, and connect them together. Within Figure 3 we present a visualisation of the
module interconnections. Within this example, the initiating component has two dangling
ports for optional error reporting, and we have deviated from the specification in using
different labels. SystemVerilog provides name and positional oriented connection of modules.
Ultimately, the programmer is responsible for ensuring that the ports are connected correctly,
and can wire or name ports freely. We need to ensure that the interfaces on a module are
valid against their respective specifications.

3 Abstract Interface Descriptions

This section presents a model (θAID) for reasoning about abstract interface descriptions,
together with a language (λAID) for model construction. How λAID instances are transformed
into θAID instances is also described.

Taking inspiration from IP-XACT [23], abstract interfaces are modelled as a named-tuple
of port descriptions and other metadata. This is a common approach as seen by existing
work [30, 19]. For each port a variety of emergent properties are also tracked. Dependent

ECOOP 2019

6:6 A Typing Discipline for Hardware Interfaces

types control invariants over model structure and property values. θAID model instances are
not parameterised, the construction language (λAID) facilitates creation of parameterised
specifications and ensures models created use unique labels using substructural typing.

3.1 Properties

Ghica et al. [19] modelled ports according to their size and signal direction. However, there
are other important properties as shown by McKechnie [30]. Ports are uniquely identified
using labels. Similar types of ports share similar behaviour. A port can: communicate
data; provide addressing information; provide clock ticks; trigger a reset; signal an interrupt;
indicate control; provide port-level behavioural information; or is used in a general sense.
Differentiating between these behaviours is important when connecting two (or multiple)
ports together. Not all ports in an interface are required, and how a port responds to changes
in signal (sensitivity) should also be captured.

For interfaces, salient properties concern the style of communication. Does the inter-
face expect to interact with a set number of other interfaces, or interact directly with
another interface?

3.2 Model Components

Metadata
i,n :N∗ F Natural numbers greater than zero.

r : L F User provided labels
s :SF High | Low | Rising | Falling | Insensitive Wire Sensitivity

h :HF System | IP Port Origin
ccstyle :Cstyle F Broadcast | Unicast Comm. Style

Ports
kp :KP F WIRE | ARRAY Kind

A : KP → Type Type
t :A (ARRAY)F Data | Address Values

t :A (WIRE)F Clock | Reset | Interrupt | Control
t :A (kp)F General | Info

Labels
kl :KL F NMD | IDX Kind

L : KL → Type→ Type Type
l :L(NMD, L)F Named(r) Values

l :L(IDX, L)F Indexed(r, i)

ec F n | r | s | h | cstyle | kp | t | l

Tc : TypeF L | N∗ | S | H | Cstyle | KL | L(kl, L) | KP | A (kp)

Figure 4 Common terms and their types.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:7

Figure 4 presents the shared terms and types used throughout the models and languages
presented. Numbers originate from the set of natural numbers greater than zero. Port
labels are specification dependent and assumed to be typed enumerations. Signals are either
sensitive or insensitive. Sensitive wires are level sensitive (high, or low) or edge sensitive –
rising or falling. Signals either originate from a system interface, or from another component
– IP Core. An interface’s communication style is either broadcast or unicast.

Of interest is how a port’s type and label are modelled. A “kind” provides type-level
disambiguation between different kinds of labels and ports. θAID & λAID support several
types of port, and different port types have different shapes. Data and address ports will
always be an array of ports. Clocking information, resets, interrupts, and control ports
will always use a single wire. General and information ports can have either shape. When
describing widths, the shape of the port will dictate possible values.

Ports must be labelled, however, they can also share a common name with a fixed set of
other ports – cf. strobes in APB and AXI. A label is either named and is used once, or indexed
and used i times. To prevent ambiguities between different label families, the type for labels
is indexed with the type associated with the underlying name used.

3.3 A Model for Abstract Interfaces
Figure 5 presents the core modelling constructs, and typing rules, for θAID model instances.
Within θAID, signal flow is directional. Signals flow from: initiator to target (); target to
initiator (f); bidirectional (!); always received (f); or always produced – (). Ports
can be completely optional (?), target optional (?t), initiator optional (?i), or are required
– (!). Wire ports have width (1d), and array ports have width (wd (n)) where n is greater
than one. Ports can be specified with an arbitrary width – (∞d). The type for port widths
is paramterised by a port kind. This enforces the relation that ports will have the correct
width for their kind i.e. a wire can only have length one.

A port description is a named tuple comprising of the port’s label (l), kind (kp), type (t),
flow (f), necessity (o), width (w), sensitivity (s), and origin – (h). The type for ports is a
type synonym for the following dependent function:

portp :L(L, kl) → (kp :KP) → A (kp) → F→ Od →Wd (kp) → S→ H→ Pd (L)

Dependently typed terms allow for an invariant to hold during term construction. The port
kind associated with a port type and width, must respect the specified port kind. Thus, if
the port has kind WIRE then its width and type must be suitable for a wire. Further, the
port type itself (Pd (L)) is indexed by the type associated with label.

Ports are grouped in a cons-style collection (ps :PGd (L)) whose type is also parameterised
by the type associated with labels. All ports in a group must have the same type of label.
An abstract interface is a named tuple containing the interface’s communication style, max
number of initiators and targets, and a collection of ports.

3.3.1 Example
Figure 6 presents a θAID instance for Mungo – Table 1. An enumerated type provides
labelling information. θAID instances are, however, not parameterised. Mungo is an interface
that can be instantiated with several address and data bus widths. The example instance for
Mungo in Figure 6 provides holes (�) in place of precise widths. Exact values for widths
must be presented. Further, there are no restrictions on label use, one can easily duplicate the
use of a name. The next section presents a language to present parameterised specifications
and ensure label uniqueness.

ECOOP 2019

6:8 A Typing Discipline for Hardware Interfaces

f :FF |f |!| f | Signal Flow
od :Od F ? | ?i | ?t | ! Necessity

w :Wd (kp)F 1d | wd (n) | ∞d Widths
pd :Pd (L)F portd(l, kp, t, f ,od,wd, s, h) Port

psd :PGd (L)F ∅d | pd ::d psd Portgroup
id : Id (L)F ifaced(cstyle,n,n, psd) Interface

eaidl F ec | f | od | wd | pd | psd | id Expressions
Taidl F T ∈ Tc | F | Od | Wd (kp) | Pd (L) | PGd (L) | Id (L) Types

(a) Terms and types.

DWU
kp :KP

∞d :Wd (kp)
DWO

1d :Wd (WIRE)
DWM

i :N∗, [i ≥ 2]
wd (i) :Wd (ARRAY)

PD

kp :KP

l :L(L, kl) ty :A (kp) f :F wd :Wd (kp) s :S od :Od h :H
portd(l, kp, ty, f ,od,wd, s, h) :Pd (L)

PGD-E
∅d :PGd (L)

PGD-C
p :Pd (L) ps :PGd (L)

p ::d ps :PGd (L)

ID
c :Cstyle maxI :N∗ maxT :N∗ ps :PGd (L)

ifaced(c,maxI,maxT, ps) : Id (L)

(b) Typing Rules.

Figure 5 Definition of θAID.

L F C | R | W | D | A | E | I

ifaced(Unicast,1,1,portd(Named(C),WIRE,Clock,f, ? ,1d,High,System)
::dportd(Named(R),WIRE,Control, , ! ,1d,High, IP)
::dportd(Named(W),WIRE,Control, , ! ,1d,High, IP)
::dportd(Named(D),ARRAY,Data,!, ! ,wd (�),High, IP)
::dportd(Named(A),ARRAY,Address, , ! ,wd (�),High, IP)
::dportd(Named(E),ARRAY, Info,f, ?t ,wd (2),High, IP)
::dportd(Named(I),ARRAY, Info,f, ?t ,∞d,High, IP)
::d∅d)

Figure 6 Mungo as a partial θAID instance.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:9

3.4 Specifying Interface Descriptions
Figure 5 presents a model instance that is dependently typed, however, the model design
itself has several limitations. First, labels are not required to be unique. Second, model
instances cannot be parameterised. We address these issues through creation of a description
language λAID. An extension of the STLC, λAID describes the construction of model instances.
Specifications are a sequencing of port descriptions, and other metadata. Function, and
application, in λAID provide parameterisation of specifications, and descriptions of structural
dependencies. Evaluation of λAID, using continuation passing, constructs instances of a θAID
model. A substructural type-system provides further correct-by-construction guarantees
that labels are unique. Construction semantics detail model instance construction from
λAID programs.

3.4.1 Counting Label Usage
Substructural type-system’s extend existing type-systems with extra information [40]. Labels
in θAID instances are required to be unique. The type-system for λAID is designed to ensure
that label usage is linear: A label can only be used once.

Inspired by the work of McBride [29] we utilise a “rig” to capture label usage. For our
bespoke use case a rig of the same style is not required. McBride’s rig is for computation
(addition and multiplication), and our rig is for usage accounting only. We define our rig as:

I Definition 1 (Rig o’ 2). Let R = {used, free} be a set, with an operation use(u) to change a
u ∈ R as follows:

use(u)F
{

free 7→ used
used 7→ used

3.4.2 Terms

e F i | n | r | f | kp | s | h | c Constants
| (add e e) | (sub e e) | (mul e e) | (div e e) Maths
| ?1 | ω Unit Values & Variables
| e; e | bec | let ω be e in e Statements
| (λ(i) · e) | e $ n | (λ(i; [i ∈ ps]) · e) | e $[i∈ps]i Function & Application
| label(n) Label Creation
| portDesc(ω, kp, ty, f ,o,w, s, h) | replicate(i, e) Port Specification
| stop Stopping

| setCommunication(c) | setMaxInitiators(n) Metadata
| setMaxTargets(n)

Figure 7 Terms for λAID.

Figure 7 presents the terms for λAID. Common structures from Figure 4 are included
except for the terms for labels. Terms can be sequenced, and bound to variables using
let-bindings. Pure values are indicated with bec. Combined the terms “Let”, “Seq”, “Unit”

ECOOP 2019

6:10 A Typing Discipline for Hardware Interfaces

and “Pure” form a monadic computation context in which the labels and their usage are the
computation in context. Although, sequencing is presented separately from “Let”-bindings,
sequencing can also be described as a “Let”-binding where ω is bound to ?1.

The term stop denotes the end of a specification such that all labels are used. Terms are
presented to represent functions, and function application. Predicated versions of functions
and application exist to restrict parameters of type N∗ to predefined sets of whole numbers.
Whole labels are created using a single term. Port declarations are similar to port construction
in Figure 5a, except that rather than a direct label, port descriptions must take a label
variable. There are terms for setting communication style, and max number of initiators and
targets. Within λAID, labels are not indexed. Ports with an indexable label are indicated
using replicate.

A simple arithmetic language with binary operators to operate on whole numbers is
embedded within λAID. Supported operations are addition, subtraction, multiplication, and
division. With this, user provided widths can be used to construct arithmetic dependencies
on the number of ports in a specification. This is described using replicate. Allowing for data
dependent port specifications (i.e. strobes) to be supported.

3.4.3 Type-System

T ∈ T F L | Tc ∈ Tc \ (L(kl, L)) | F | Od | Wd (kp) Types for Constants
| 1 | Λ (L,u) | Ψ (L) Types for Unit/Labels/Port

| T → T | (i :N∗)
[i∈ps]
−→ T Types for Functions

Γ F � | Γ + (e :T) | Γ ± (e :T) Context

Figure 8 Types & typing context for λAID.

Figure 8 presents the types for λAID. Here L is a placeholder to represent a user defined
set of labels. Several types are taken from existing constructs (Figures 4 and 5a) without the
type for labels, ports, port groups and interfaces. Three new types are introduced. First
is the unit type (1) to represent terms that do not represent computations. Second is the
type for label variables (Λ (L,u)), indexed by the type of the underlying label value and
parameterised with usage information from the “Rig o’ 2”. Function types follow the standard
definition, and predicated functions are restricted to acting on whole numbers.

Within λAIDwell-typed contexts (Γ) comprise of name type pairings. Contexts can be
extended using (+), and named terms updated using (±).

Section 3.4.3 presents the typing rules for λAID. For brevity the typing rules for maths
expressions are not provided. Like the syntax definition for λAID itself, the typing rules follow
that of the STLC, but with extensions for describing abstract interfaces. Rules Var,Lam,
App, Let, Pure, and Seq follow standard conventions with one noticeable difference that
follows from the work of Atkey [5]: Usage information associated with labels presents stateful
information. The monad form by “Let”, “Seq”, “Unit”, and “Pure” is a Hoare Monad that
allows state information for label usage to be threaded through the entire computation [8].
The notation Γold ` e a Γnew represents updating the context from Γold to Γnew . The context
will change only if the rules are well-typed. Where the notation is not used implies the
context does not change.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:11

Var
ω :T ∈ Γ

Γ ` ω :T
Let

Γ1 ` a :T1 a Γ2 Γ2 + (ω :T1) ` b :T2 a Γ3

Γ1 ` let ω be a in b :T2 a Γ3
Pure

x :T ∈ Γ

Γ ` bxc :T

Lam
Γ1 + (i :T1) ` e :T2 a Γ2

Γ1 ` (λ(i) · e) :T1 → T2 a Γ2
App

Γ1 ` f :T1 → T2 a Γ2 Γ1 ` i :T1

Γ1 ` f $ i :T2 a Γ2

PLam
Γ1 + (i :N∗) ` e :T2 a Γ2 ps = {i1, . . . , in} [i ∈ ps]

Γ1 ` (λ(i; [i ∈ ps]) · e) :N∗
[i∈ps]
−→ T2 a Γ2

PApp
Γ1 ` f : (i :N∗)

[i∈ps]
−→ T a Γ2 Γ1 ` i′ :N∗ ps = {i1, . . . , in} [i′ ∈ ps]

Γ1 ` f $[i∈ps]i′ :T a Γ2

Seq
Γ1 ` e1 :T1 a Γ2 Γ2 ` e2 :T2 a Γ3

Γ1 ` e1; e2 :T2 a Γ3
Unit

Γ ` ?1 : 1

LBL
Γ ` L : Type Γ ` n : L

Γ ` label(n) :Λ (L, free)
Stop

∀ω :Λ (L,u) ∈ Γ [u ≡ used]
Γ ` stop : 1 a �

Port

Γ ` l :Λ (L, free) Γ ` kp :KP

Γ ` ty :A (kp) Γ ` f :F Γ ` o :Od Γ ` w :Wd (kp) Γ ` s :S Γ ` h :H
Γ ` portDesc(l, kp, ty, f ,o,w, s, h) :Ψ (L) a Γ ± (l :Λ (L,used))

REP
Γ1 ` i :N∗ [i > 2] Γ1 ` e :Ψ (L) a Γ2

Γ1 ` replicate(i, e) : 1 a Γ2
Max-I

Γ ` n :N∗

Γ ` setMaxInitiators(n) : 1

Max-T
Γ ` n :N∗

Γ ` setMaxTargets(n) : 1
COM

Γ ` c :Cstyle

Γ ` setCommunication(c) : 1

Figure 9 Typing rules for λAID.

Predicated functions, and their application, mirror their plain counterparts but have a
side-condition that requires the predicate to hold true for type-checking to be successful.

The typing rules for labels and ports use the “Rig o’ 2” to instantiate and augment the
usage count for types for labels – Λ (L,u). These are the type-level computations that enforce
correct label usage. Rule LBL presents the typing rule for label creation, initialising the type
with usage free. Rule Stop describes the end conditions for λAID programs, and results in
erasure of the context. λAID programs will successfully type-check only if all label variables
have been used. Rule Port specifies a new port, and consumes labels. A label ω with type
Λ (L,u), and usage u can only be used if the usage is free. If the label is available to use the
type for ω in resulting computations will be Λ (L,used), and thus be unavailable.

Replication of a port description (Rule REP) details that a port will be replicated if the
number of replications is greater than two. The remaining rules detail the simple typing
rules for the remaining terms.

ECOOP 2019

6:12 A Typing Discipline for Hardware Interfaces

3.4.4 Example

� `Mungo : (x :N∗)
[x∈{32,16}]
−→ (y :N∗)

[y∈{8,4}]
−→ 1 a �

Mungo B (λ(x; [x ∈ {32,16}]) · (λ(y; [y ∈ {8,4}]) ·
setCommunication(Unicast); setMaxInitiators(1); setMaxTargets(1)

; let c be label(C) in
let r be label(R) in
let w be label(W) in
let d be label(D) in
let a be label(A) in
let e be label(E) in
let i be label(I) in

portDesc(c,WIRE,Clock,f, ? ,1d,High,System)
; portDesc(r,WIRE,Control, , ! ,1d,High, IP)
; portDesc(w,WIRE,Control, , ! ,1d,High, IP)
; portDesc(d,ARRAY,Data,!, ! ,wd (x),High, IP)
; portDesc(a,ARRAY,Address, , ! ,wd (y),High, IP)
; portDesc(e,ARRAY, Info,f, ?t ,wd (2),High, IP)
; portDesc(e,ARRAY, Info,f, ?t ,∞d,High, IP)
; stop))

Figure 10 Mungo specified using λAID.

Figure 10 demonstrates how Mungo is specified using λAID. The concrete set of labels
from Figure 6 are reused. The specification for Mungo is parameterised through function
specification. This is reflected in the specification’s type signature. The use of the specification
to create θAID instances is also restricted to values of x ∈ {32,16} and y ∈ {8,4}. A type
error will occur if values for x and y were chosen that were not in the provided sets. The
type signature also shows the initial and end contexts for the function; start with nothing,
end with nothing. Different specification instances are generated through application of the
function to different values.

3.5 Building Models from Specifications

In this section the set of transformations to construct θAID instances from λAID programs are
described. We first reduce λAID programs to core terms, and use continuations to represent
model construction as evaluation of a reduced λAID program.

Figure 11 presents the reduction rules for reducing λAID programs to core terms following
standard conventions. Reduction of N∗ values mirrors reduction of natural numbers but with
smallest value being one not zero. The reduced version of a λAID program is called λredux

AID ,
and the reduction of a λAID program l to its reduced form (l ′) by the operation l ⇓redux l ′.
Much like the STLC reduction of λAID programs will also be strongly normalising.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:13

Let
e1 ⇓

redux be′1c

let ω be e1 in e2 ⇓
redux e2[ω/e′1]

Lam
f ⇓redux (λ(x) · b) a ⇓redux ba′c

f $ a ⇓redux b[x/a′]

PLam
f ⇓redux (λ(x; [x ∈ ps]) · b) a ⇓redux a′ [a ∈ ps]

f $[x∈ps]a ⇓redux b[x/a′]
Add

e1 ⇓
redux i1 e2 ⇓

redux i2

(add e1 e2) ⇓
redux i1 + i2

Sub
e1 ⇓

redux i1 e2 ⇓
redux i2

(sub e1 e2) ⇓
redux i1 − i2

Mul
e1 ⇓

redux i1 e2 ⇓
redux i2

(mul e1 e2) ⇓
redux i1 × i2

Div
e1 ⇓

redux i1 e2 ⇓
redux i2

(div e1 e2) ⇓
redux i1 ÷ i2

Figure 11 Reduction rules for λAID.

To construct θAID model instances, the reduced form, λredux
AID , is first transformed into a

continuation (λcont
AID) in the style of Hatcliff and Danvy [21]. This transformation is denoted

using n l ocont, where l is an instance of λredux
AID . Using this approach we can make model

construction more easily checkable for termination, and model construction comes from
evaluation of λcont

AID instances. For brevity we do not provide the definitions of λcont
AID and

n l ocont, and remark that they follow standard contructions [21].
Evaluation of λcont

AID instances, which we denote using ⇓cont, transforms: label variables
into labels; port declarations into port descriptions; and repeated port declarations into port
groups. Each evaluation of the accessor functions for setting description values replaces the
previously see value, and a default set of values are supplied initially. When evaluated, the
continuation returns a tuple containing the final interface metadata and collated port groups.

The complete steps to construct a θAID from λAID are defined as:

I Definition 2 (Construction of θAID from λAID). Let m be a θAID model instance, and l be
a λAID program. The construction of m is defined as the reduction of l to an instance l ′ of
λredux

AID . This instance l ′, is then evaluated to an instance of λcont
AID that is then reduced using

⇓cont to produce m:

n l oAID
λ7→θ = n l ⇓redux l ′ ocont ⇓

cont m

4 Specifying IP Core Interfaces

Section 3 described the specification and construction of θAID instances, these are abstract
interface descriptions. This section looks at the specification of components in a SoC design
and how guarantees are made that the physical interfaces satisfy given θAID instances.

A model for reasoning about components (θCOMP) is introduced. Each component
comprises of a set of physical interface models whose interfaces are satisfied by a θAID
instance. Interface satisfaction is a two-step process: first a θAID instance is projected (�)
using the specified endpoint e, creating the projected model θproj

AID. Second, the projected
model is used in the type of an interface to provide a type-level invariant that the presented
interface satisfies the projected model. Dependently typed model terms ensures that if an
interface is well-typed then the interface satisfies the provided specification.

ECOOP 2019

6:14 A Typing Discipline for Hardware Interfaces

t :EF Initiator | Target Endpoint
dp :D (t, f)F + | − | ± Direction

op :O (t,od)F ? | ! Necessity
pp :Pp (L, t, pd)F portp(l, kp, t, dp,op,wd, s, h) Port

psp :PGp (L, t, psd)F ∅p | pp ::p psp Portgroup
ip : Ip (L, t, id)F ifacep(cstyle,n,n, psp) Interface

ep F ed | t | dp | op | pp | psp | ip Expressions
Tp F T ∈ Td | E | D (t, f) | O (t,od) Types
| Pp (L, t, pd) | PGp (L, t, pd) | Ip (L, t, id)

Figure 12 Terms and types for θproj
AID.

4.1 Projecting Abstract Interfaces
Figure 12 presents the terms, and salient types for a projected interface model instance.
A projected interface represents the local view of an abstract interface. The structure of
a projected interface mirrors that of an abstract interface, and values only differ w.r.t. a
port’s signal flow (direction), and necessity. The type’s for ports, port groups, and interfaces
are parameterised by the type of labels associated with ports, the endpoint that the term
was projected to, and the originating abstract interface. The types are indexed with the
originating term to allow for structural invariants, for example a port’s shape, to be specified.
– cf. Section 3.3.

A projected port is either unidirectional in receiving (+) or sending signals (−); or is
bidirectional – (±). A port is required (!) or optional (?). The types for directions and
necessity are both dependent, each containing the endpoint being projected and the original
projected value. These values are not free to choose.

(�d) ? ?i ?t !

Target ? ! ? !
Initiator ? ? ! !

(a) Necessity.

(�n) f ! f

Target − + ± + −

Initiator + − ± + −

(b) Direction.

Figure 13 Typing rules for flow and necessity projection.

Figure 13 presents the typing rules that constrain the values in the projected model to
predetermined pairings. Dependent types ensure the correctness of projection transformation.
The projection for port flow and necessity are defined as functions ((�d) and (�n)) that, given
a flow or optional description will compute the required direction – or necessity. Their type
signatures are:

(�d) : (do :Od) → (e :E) → O (e,od)
(�n) : (f :F) → (e :E) → D (e, f)

These projection functions will only type check if the given inputs match the allowed pairing
of values for the returned type.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:15

PP

l :L(L, kl)
kp :KP ty :A (kp) d :D (e, f) o :O (e,od) wd :Wd (kp) s :S h :H

portp(l, kp, ty, d,o,wd, s, h) :Pp (L, e,portd(l, kp, ty, f ,od,wd, s, h))

PGP-E
∅p :PGp (L, e,∅d)

PGP-C
pp :Pp (L, e, pd) psp :PGp (L, e, psd)

pp ::p psp :PGp (L, e, pd ::d psd)

IP
c :Cstyle maxI :N∗ maxT :N∗ psp :PGp (L, e, psd)

ifacep(c,maxI,maxT, psp) : Ip (L, e, ifaced(c,maxI,maxT, psd))

Figure 14 Typing rules for θproj
AID.

Figure 14 presents the remaining typing rules for projected interfaces, ports, and port
groups. Like the structural definition, the typing rules mirror those for their abstract
counterparts, and are indexed by the type associated with labels. However, the types
are further indexed by their abstract counterparts, and also by the endpoint the term is
being projected under. The θAID instance provides as a type-level meta-model from which
information is sourced. This approach allows for several invariants on the structure of the
projected interface to be established.

1. Non-projected values must match.
2. Values parameterising the type of projected values are sourced from the abstract descrip-

tion and must match.
3. The endpoint that terms are being projected under must match.
4. The structure of the projected interface must match the structure of the abstract interface.

θAID 7→ θ
proj
AID

portd(l, kp, t, dp,op,wd, s, h) �p e F portp(l, kp, t, (dp �d e), (op �n e),wd, s, h)

∅d �g e F ∅p
pd ::d psd �g e F (pd �p e) ::p (psd �g e)

ifaced(cstyle,a, b, psp) �i e F ifacep(cstyle,a, b, (psp �g e))

Figure 15 Projection semantics for θproj
AID.

Figure 15 presents the projection semantics for projecting θAID instances to θproj
AID instances.

The type signatures for each projection function are omitted for brevity, but they follow those
for (�d) and (�n). By design, projections and their invariants are well-typed. Malformed
projections will fail to type-check, for example if the widths or calculated directions are wrong.

4.1.1 Example
Figure 16 presents example projections for the θAID instance for Mungo, applied to para-
meters 32 and 8 using predicated function application. Figure 16a shows a projection for
an initiator interface, and Figure 16b shows a projection for a target interface. The set of

ECOOP 2019

6:16 A Typing Discipline for Hardware Interfaces

n (Mungo ${32,16}32 ${8,4}8) oAID
λ 7→θ �i Initiator

ifacep(Unicast,1,1,portp(Named(C),WIRE,Clock,+, ? ,1d,High,System)
::pportp(Named(R),WIRE,Control,−, ! ,1d,High, IP)
::pportp(Named(W),WIRE,Control,−, ! ,1d,High, IP)
::pportp(Named(D),ARRAY,Data,±, ! ,wd (32),High, IP)
::pportp(Named(A),ARRAY,Address,−, ! ,wd (8),High, IP)
::pportp(Named(E),ARRAY, Info,+, ! ,wd (2),High, IP)
::pportp(Named(I),ARRAY, Info,+, ! ,∞d,High, IP)
::p∅p)

(a) Mungo projected as an initiator interface.

n (Mungo ${32,16}32 ${8,4}8) oAID
λ 7→θ �i Target

ifacep(Unicast,1,1,portp(Named(C),WIRE,Clock,+, ? ,1d,High,System)
::pportp(Named(R),WIRE,Control,+, ! ,1d,High, IP)
::pportp(Named(W),WIRE,Control,+, ! ,1d,High, IP)
::pportp(Named(D),ARRAY,Data,+, ! ,wd (32),High, IP)
::pportp(Named(A),ARRAY,Address,+, ! ,wd (8),High, IP)
::pportp(Named(E),ARRAY, Info,−, ? ,wd (2),High, IP)
::pportp(Named(I),ARRAY, Info,−, ? ,∞d,High, IP)
::p∅p)

(b) Mungo projected as a target interface.

Figure 16 Mungo projected as θproj
AID instances.

directions for each port are mirror images of each other, aside from the constant direction for
the system clock and the bi-directional data port. Further, the definition of a port’s necessity
have been calculated to respect if the port is optional or not. The ports for returning error
information are optional if the interface’s endpoint is a target interface and required if the
endpoint is an initiator.

4.2 Specifying Physical Interfaces
Abstract interfaces, and their projections, represent descriptions of a component’s interface,
we must also model the component itself. Figure 17 presents the terms and types for θCOMP
model instances. Figure 18 presents the typing rules.

The structure of concrete interfaces mirrors that of the abstract interface and projection.
However, a concrete interface does not have optional ports, within our model dangling ports
are not allowed. To model skippable ports the concept of thinnings is used [1]. A thinning
allows for structures to be weakened using some decision procedure [13, 2]. We can use this
concept to weaken the specified ports in an interface’s portgroup w.r.t. a given specification.
Our decision procedure is simple: a port can be skipped if the projected port is optional. The

J. de Muijnck-Hughes and W. Vanderbauwhede 6:17

w :W (kp,wd)F u (i) | 1 | w (i) Widths
p :P (L, e, pp)F (l, kp, t, d,w, s, h) Ports

ps :PG (L, e, psp)F ∅ | p :: ps | tps | p ::≈ ps Port Groups
i : I (L, e, ip)F (ps) Interfaces

is : IG (isd, es)F ∅i | i ::i is Interface Group
c :C (xs)F comp(is) Components

eCSL F eaidl | w | p | ps | i | is | c Expressions
Tcsl F Taidl | W (kp,wd) | P (L, e, pp) Types

| PG (L, e, psp) | I (L, e, ip) | IG (isd, es) | C (xs)

Figure 17 Terms for concrete interfaces.

W-Z
i :N∗ shape :KP

u (i) :W (shape,∞d)
W-O

1 :W (WIRE,1d)
W-A

i :N∗

w (i) :W (ARRAY,wd (i))

Port

l :L(L, kl)
kp :KP ty :A (kp) w :W (kp,wd) s :S h :H d :D (e, f)

(l, kp, t, d,w, s, h) :P (L, e,portp(l, kp, ty, d,o,wd, s, h))

PGP-E
∅ :PGp (L, e,∅d)

PG-C
p :P (L, e, pp) ps :PG (L, e, psp)

p :: ps :PG (L, e, pp :: psp)

PG-S
ps :PG (L, e, psp)

tps :PG (L, e,portp(l, kp, t, dp, ? ,wd, s, h) :: psp)

PG-SC
p :P (L, e, pp) ps :PG (L, e, psp)

p ::≈ ps :PG (L, e, pp ::p portp(l, kp, t, dp, ? ,wd, s, h) ::p psp)

Interface
ps :PG (L, e, psp)

(ps) : I (L, e, ifacep(c,maxI,maxT, psp))
IG-E

∅i : IG (∅d,∅e)

IG-C
i : I (L, e, id �i e) is : IG (isd, es)

i ::i is : IG (id ::i isd, e ::e es)

Component
xs = {(id,0, e0), . . . , (id, j, ej)} is : IG (∪j

k=0id,k,∪
j
k=0ek)

comp(is) :C (xs)

Figure 18 Typing rules for concrete interfaces.

ECOOP 2019

6:18 A Typing Discipline for Hardware Interfaces

thinning decision procedure does not occur at the value level. Thus a concrete port group is
either: empty – ∅; extended by a port (::); skipped by an optional port (t); or an optional
port is skipped when extending the group with a port – (::≈). The operator (::≈) can be
defined as the combination of the (::) and (t) operators. That is p :: (tps) ≡ p ::≈ ps. The
typing rules (Figure 18) show how thinning works for interface specifications. The θproj

AID is a
type-level invariant, the specification of the necessity of the projected ports is what allows
the thinning to occur, or not.

A component is modelled as a collection of interfaces. The type for a component is indexed
by a collection (xs) of θAID-endpoint pairings. The type for a collection of interfaces is indexed
by the separated elements of each pair in xs. As a collection of interfaces is constructed, the
θAID instances are projected (at the type-level) by the endpoint type to construct the θproj

AID
instance indexing the collected interface. Use of projection at the type-level ensures that the
type for a concrete interface is sourced from the specified projection.

In θAID model instances, wires have width one, arrays have fixed width greater than
one, or are unrestricted. When projecting an abstract port, the width does not need to be
projected into a local value. However, the port width in a θCOMP instance needs to respect
the width in the θAID. Widths are modelled using a dependent data type that captures, and
reasons with, the width of an abstract port.

An instantiated port with an abstract port and an unrestricted width has no restrictions
on kind or width. A port with an abstract port of width one must also have a width of one.
Similarly, a port with an abstract port of fixed width must also have the same fixed width.

4.2.1 Example
Figure 19 presents two example interfaces that model Mungo. Figure 19b shows the interface
with a port to receive the clock, and Figure 19c without a clock port. Within Figure 19c
the skip term (t) allows for the clock to the be skipped. If other required ports were to be
skipped this will result in a type error. For both interfaces we have chosen the user defined
error message width to be of width 32 and 16. This will not cause a type error as the Mungo
allows the signal to have a user-defined width. Further, should other value level information
(e.g. port width and label) be incorrectly specified the example will also fail to type-check.

4.3 Type-Checking Interfaces
The type of interfaces in θCOMP are parameterised by projected interfaces from θ

proj
AID. A

satisfaction relation is defined to link programs written in λAID to interfaces from θCOMP.

I Definition 3 (Interface Satisfaction). Given a λAID specification (� ` ν : 1 a �), and
an interface ϑ : I (L, e, ϑp) then the interface ϑ satisfies ν, which is defined as ϑ |= ν, if
n ν o �i e 7→ ϑp.

Proof. By construction. The evaluation of ν (n ν o) produces a model (ϑd : Id (L ′)), for some
(L ′ : TypeL). The type of ϑ is I (L, e, ϑp). The projected interface ϑp has type Ip (L, e, ϑ′d). If
ϑd ≡ ϑ

′ and L ≡ L ′ then ϑd �i e ≡ ϑ′
d
�i e. If ϑd 6≡ ϑ′d or L 6≡ L ′ then ϑ would fail to type

check. J

5 Implementation

We have realised Cordial using Idris, a general purpose dependently typed programming
language [9]. This provides both a practical proof-of-concept implementation, and mechanised
formalisation that the framework’s type-system holds. The models representing interfaces,
port groups, and ports translate directly to standard dependently (and non-dependently)

J. de Muijnck-Hughes and W. Vanderbauwhede 6:19

I (L, Initiator,n (Mungo ${32,16}32 ${8,4}8) oAID
λ7→θ �i Initiator)

(a) Type for both Interfaces.

(Named(C),WIRE,Clock,+,1,High,System)
::i(Named(R),WIRE,Control,−,1,High, IP)
::i(Named(W),WIRE,Control,−,1,High, IP)
::i(Named(D),ARRAY,Data,±,w (32),High, IP)
::i(Named(A),ARRAY,Address,−,w (4),High, IP)
::i(Named(E),ARRAY, Info,+,w (2),High, IP)
::i(Named(I),ARRAY, Info,+,u (32),High, IP)
::i∅i

(b) With a clock port.

t(Named(R),WIRE,Control,−,1,High, IP)
::i(Named(W),WIRE,Control,−,1,High, IP)
::i(Named(D),ARRAY,Data,±,w (32),High, IP)
::i(Named(A),ARRAY,Address,−,w (4),High, IP)
::i(Named(E),ARRAY, Info,+,w (2),High, IP)
::i(Named(I),ARRAY, Info,+,u (16),High, IP)
::i ∅i

(c) Without a clock port.

Figure 19 Sample θCOMP instances that show port skipping.

typed algebraic data structures. λAID, and its substructural type-system, has been imple-
mented as an Embedded Domain Specific Language (EDSL) using standard techniques [12,
Chp. 14]. Predicated functions were realised using Idris’ support for auto implicits that
attempt to search for constructors that can satisfy the type of the implicit variable. The
“model construction” process (i.e. n l oAID

λ7→θ), again uses standard techniques for working with
EDSLs in dependently typed languages [10, 11, 7].

6 Case Studies

Using our implementation we have constructed models for several interaction protocols of
varying sizes. We describe the structural properties of the protocols and report on their
modeling in Cordial as λAID programs.

6.1 ARMs Advanced Peripheral Bus
The first protocol considered was ARMs Advanced Peripheral Bus (APB) [3]. The protocol
is a legacy protocol comprising of at least eleven signals, and can be connected to many
target IP Cores using an intermediary IP Core called an interconnect. This requires that we
construct two specifications one for target connections to the interconnect, and the other for

ECOOP 2019

6:20 A Typing Discipline for Hardware Interfaces

initiating connections. At least seven signals are required, and two were target optional. At
least seven signals have a known width. The data and address width can be up to 32 bits
in width. There are three interesting features of APB worth noting. First, the specification
is parameterised depending on the number of IP Cores that an initiator is connecting too.
When connecting to x targets, the signal PSelx will be replicated x times in an initiating
interface, which will only be seen once in a target interface. Second, the protocol has optional
signals for the clock and a signal to enable the clock. The dependency between the two clock
signals is not clear from the specification: Can one be skipped when the other is required?
Third, the specification requires a set of strobes that connects to every 8th bit on the data
bus. This restricts data widths to multiples of eight.

(λ(nrSlaves) · (λ(dwidth; {8,16,32}) · (λ(awidth; {8,16,32}) ·
let x be (div dwidth 8) in
let α be label(T) in let ω be label(S) in
. . .

; replicate(nrSlaves,portDesc(α,WIRE, Info, , ! ,1d,High, IP))
; portDesc(ω,ARRAY, Info,f, ? ,wd (x),High, IP)
; . . .)))

Figure 20 Partial presentation of the “Master Interface” for the APB specification.

We chose to implement the specifications using two predicated functions, and one normal
function. The two predicated functions was used to ensure that all bus widths are multiples
of eight and less than 32 i.e. 8, 16, and 32. The normal function was used to represent the
number of targets. Specification of labels and ports followed the known information taken
from the specification. The term replicate was used to ensure that the correct number of
PSelx signals were generated. For strobes, the maths operations were used to calculate the
number of strobes required, based of the size of the data bus. Figure 20 shows part of the
APB specification detailing the predicated functions, use of replicate, and strobe specifcation.

6.2 Xilinx’s LocalLink
The second protocol chosen was a legacy protocol from Xilinx called LocalLink [41]. The
LocalLink protocol requires seven signals and thirteen optional signals. As with the APB
protocol many of the signals were encoded without complications. However, and unlike APB,
LocalLink does not specify a set of bus widths and requires that the presented bus width is
a multiple of eight. Predicated functions require that the list of possible values are known a
priori. Thus, we modelled the specification as a predicated function on bus widths of 8, 16,
and 32, together with a normal function that takes the number of channels.

The LocalLink specification contains various size dependencies based on the data bus.
The size of the remainder bus is dependent on how they are implemented within the IP Core.
Specifically, if the remainder is encoded then the bus size will be dlog2

d
8 −1e. If the remainder

is masked then the size is d
8 − 1. Our framework is not expressive enough to encode these

differences mathematically, we support simple arithmetic operations and these operations are
not simple. Moreover, our framework does not support related specifications that overlap to
be collapsed into a single definition. The LocalLink specification is too value dependent.

Another interesting aspect of the LocalLink specification is that of channels. These
are a set of optional signals whose flow is dependent on the application context. The size
of channel related signals are too calculated using a floating point operation. These three

J. de Muijnck-Hughes and W. Vanderbauwhede 6:21

signals are directional, and whether they send data from target to initiator is dependent
on the application, and how the other two signals are specified. Although we can represent
these channels as being bidirectional our language is not expressive enough to capture these
application specific, and inter signal, dependencies.

6.3 ARMs Advanced eXtensible Interface
ARMs Advanced eXtensible Interface (AXI) is a widely used family of interaction protocols [4]
for transferring addressable data between IP Cores. There are several previous versions
of AXI each building upon previous versions. Each version differs by number of signals
and changes to specific signal properties. The AXI specification defines three protocols that
offer three different interaction styles: Full, Lite, and Stream. The protocol can be directly
connected to another interface, or it can be used to connect to multiple other IP Cores using
an interconnect. Version four of the protocol requires 47 signals comprising of: two global
signals for the clock and a reset; thirteen signals each for specifying writing and reading of
an address; seven signals for reading and writing data; and five signals for writing responses
from the target to the initiator. Of the 47 signals, 36 are required and eleven are either
optional, target optional, or initiator optional. Several signals have user defined widths. The
AXI protocol is parameterised such that the address and data busses can be: 8, 16, 32, 64,
128, 256, 512, or 1024 bits wide. Further, the protocol specification supports custom sets of
signals that are completely user definable. In fact the AXI standard explicitly warns against
their use due to potential interoperability issues if different modules present user-defined
signals that behave differently.

We report on describing version four of the AXI protocol for direct interfaces only.
For versions of the protocol that connect to an interconnect, the techniques presented in
Section 6.1, can be leveraged. The specification was modelled in λAID using two predicated
functions to control the width of the address and data busses. Each of the signals were
translated into the required port descriptions. Like the APB protocol, AXI has the concept of
strobes. The same technique as used in Section 6.1 was used.

We chose not to include user-defined signals in this study. Cordial requires that signal
details are known a priori. Ideally, designers would create parameterised specifications
(functions) that take as parameters the user-defined signals. However, functions in λAID
take pure values as parameters, port declarations modify the typing environment to update
label usage information and are thus not pure. This is a restriction from the substructural
type-system for λAID – see Section 7.3.

The protocol specification divides the signals among several channels. Such a grouping
is only required for the specification. At the module level these groupings do not exist.
Although, Cordial does not support this grouping incorporating this into the framework
would be a potential benefit for reasoning about subgroupings of an interface’s portgroup.

7 Discussion & Related Work

This section discusses the efficacy of the framework, and related work.

7.1 Discussion
Section 6 described three case studies that modelled three interaction protocols using λAID.
For each of the protocols we were able to encode most of the ports correctly Cordial is
suitable for capturing each port’s values. However, both LocalLink and APB illustrated the
limitations of λAID in capturing all of the specification’s dependencies.

ECOOP 2019

6:22 A Typing Discipline for Hardware Interfaces

While Cordial can capture limited value dependencies, for example strobes and number
of targets within APB, the framework prohibits the construction of concise descriptions based
on other value dependencies. Specifically, for ports whose direction is dependent on a mode
of operation (LocalLink), and how to version protocols – AXI versions 1–4. Although we
can write multiple different versions, a dependently typed construction should be able to
capture these properties concisely, and without resorting to copying and pasting protocol
specifications. We need to explore what other dependencies there are within a protocol
specification, how prevalent these dependencies are, and how we can capture and reason
about the relevant dependent properties.

The construction of λAID exposes the resource tracking of the type systems directly as
resources are associated with variables. This does leads to a more verbose language such
that for n signals there will be n variables, and n additional ports declared. This is not
optimal. An alternative approach would be to embedd the resource tracking directly in our
monad’s type to remove the need for variables–cf. Swiestra’s Hoare & Atkey’s parameterised
monads [37, 5]. However, our current formulation is more extensible allowing arbitrary new
states to be added by indexing the type of new variables.

The type-level resource tracking in λAID also prohibits the creation of higher-order
descriptions. The typing rule Lam requires a pure value, and sequencing using Let and Seq
require that the knowledge contained in the environment is passed from the previous construct
to the next. This is a limitation of the Hoare Monad used to sequencing expressions.

7.2 Modelling Hardware Interfaces
Many attempts at reasoning about hardware have centred on formalising hardware systems
as a collection of digital circuts and capturing the behaviour of signals through the specified
circuits. Ghica et al. exploited category theory to investigate connection of components [18,
17, 19]. EDSLs have been developed for Haskell such as Lava [20] and Cλash [35] that take
other mathematical approaches to reasoning about hardware behaviour. ΠWare utilises
dependent types to reason about hardware [15, 16]. Vijayaraghavan et al. [38] presents a
complete formalisation of the behaviour of SoC designs, however, their approach does not
look at the validation of interfaces against a specification, and concentrates on modelling
the behaviour of components as a distributed system. Our framework complements existing
work by providing guarantees about the physical structure of a component’s ports.

Tooling such as Vivado IP Integrator [39] and Kactus2 [24] can automatically construct,
and connect, components in a SoC architecture correctly. Such tooling is based on IP-XACT
and vendor extensions. Examination of the Vivado toolchain reveals handwritten TCL scripts
bespoke for the AXI family of protocols. Our work presents a specification agnostic framework
for type-checking hardware interfaces against a richer specification than seen with IP-XACT
solutions. We position our work as possible foundation for machine derivable code to develop
richer integration and construction checks to that seen with IP Integrator and Kactus2.

Click is an untyped SoC design language for describing the routing of data [25]. McK-
echnie [30] developed a type-system for typing the interconnections found within Click
specifications. Our work provides a natural extension to McKechnie’s work and provides a
means to type components in a Click design against external specifications.

7.3 Substructural Typing
The substructural type-system for λAID is based upon Hoare logic [5, 8]. Unfortunately,
Hoare logics do not support the frame rule, a means to divide and share invariants in a
composable manner. This results in λAID not being able to support higher-order descriptions.

J. de Muijnck-Hughes and W. Vanderbauwhede 6:23

Separation Logic is an advancement that does support the frame rule [34], and has been
used to construct substructural type-systems for EDSLs [26], However, it is not clear how
straightforward it would be to realise such a type-system for an EDSL within a dependently
typed language.

There are other formal models upon which one can realise substructural type-systems for
EDSLs, namely TypeStates [31], and Refinement Types from Hoare Types [8, 32]. All allow
for reasoning about type-level resource usage protocols, however, how straightforward these
models can be realised within a dependently typed language is not clear.

λAID was realised as an EDSL, perhaps realising it as a standalone Domain Specific
Language (DSL) written in Idris might allow for Idris’ rich type-system to better realise
the substructural typing for λAID. Future work will be to investigate how to realise, and
implement, the substructural typing for λAID.

7.4 Implementing Cordial
Cordial has been implemented within Idris. Any other dependently typed language
that supports full-spectrum dependent types, such as Agda [33], would also be suitable
host language.

Although Cordial uses dependent type theory and substructural typing, non-dependently
type languages can also realise the framework. The ideas are transferable, but the implement-
ation would not be as clean nor concise. Racket is a general purpose language that supports
EDSL creation through fine-grained control over the language’s type-system [14]. F? is a gen-
eral purpose language with value-dependent types [36]. Whereas Idris provides full-spectrum
dependent types, F? provides value-dependencies using refinement types. This provides a
novel, alternate, environment in which to construct “value-dependently-typed” programs.
How the approach behind Cordial is transferable to these languages is worth investigating.

8 Conclusion

We presented a framework (Cordial) to provide correct-by-construction guarantees over
interface specifications in SoC designs. We have demonstrated use of the framework to model
real world protocols, and noted limitations in the models expressiveness and future work to
enrich said expressiveness. There are other areas for future work:

Checking Existing Systems

Our approach lends itself well to the generation of designs from model instances. We can
easily extend our Idris implementation to generate stubbs for various HDLs. However, how do
we evaluate existing interfaces? To do so, not only do we need to be able to extract interface
model descriptions from existing HDL code, but also associate these model descriptions with
abstract interface model descriptions. That is, we need to be able to infer from a component
specification the concrete interfaces, and for those interfaces their abstract descriptions and
which characterisation corresponds to the found interface. The problem of model inference is
difficult as component interfaces are not always cleanly defined. Multiple interfaces for a
component can be presented as a flat port group, sending ports can send to multiple recipients,
and the ordering of ports does not necessarily reflect the ordering in the specification. Further,
the names given to ports may not match the labels described in the specification. Developers,
and code generation tools, have complete freedom in structuring their components interfaces.
Further work will be to explore how to infer models from such “messy” SoC descriptions.

ECOOP 2019

6:24 A Typing Discipline for Hardware Interfaces

Enriching existing HDL

We have formalised Cordial in an existing general purpose language. A more interesting
area for future work, and to increase adoption of the ideas mentioned, would be to develop
extensions for various HDL such as SystemVerilog with the presented framework. A similar
approach would be to extend existing design environments such as Vivado from Xilinx to
incorporate our tooling and ideas.

Checking Behaviour

Our solution reasons about the structural correctness of SoC architectures. These provided
guarantees are a design time check. Standards documents also describe a protocol’s behavioural
correctness. Our models do not capture a component’s behaviour, a correctly connected
component may show incorrect behaviour (as described in the specification) at run time. We
saw this when modelling the AXI family of protocols. Cordial borrows notions of global
and local projections from Session Types. We could also look to use Session Types to reason
about hardware behaviour. While there have been attempts at extending Session Types to
fit communication models similar to those found in hardware [27], none have been directly
applied to checking hardware. Future work will be to explore how we can extend our model
descriptions to capture the behaviour of a component’s interface.

Modelling complete SoC architectures

SoC designs are about connecting components. A natural extension to our work would
be to provide an orchestration language that uses θCOMP to model components and their
connections. Existing work has investigated verifying IP Core connections using static typing
to ensure substructural properties of a SoC design hold – Section 7.2. Integrating the work
of McKechnie [30] into the expressive type-system of our framework can serve as the basis
for a more complete solution to SoC design. We leave this aspect of future work as an
open problem.

References
1 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A

type and scope safe universe of syntaxes with binding: their semantics and proofs. PACMPL,
2(ICFP):90:1–90:30, 2018. doi:10.1145/3236785.

2 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical Reconstruction of
a Reduction Free Normalization Proof. In David H. Pitt, David E. Rydeheard, and Peter T.
Johnstone, editors, Category Theory and Computer Science, 6th International Conference,
CTCS ’95, Cambridge, UK, August 7-11, 1995, Proceedings, volume 953 of Lecture Notes in
Computer Science, pages 182–199. Springer, 1995. doi:10.1007/3-540-60164-3_27.

3 ARM Limited. AMBA APB Protocol, ARM IHI 0024C edition, 2010.
4 ARM Limited. AXI and ACE Protocol Specification, ARM IHI 0022F.b edition, 2017.
5 Robert Atkey. Parameterised notions of computation. J. Funct. Program., 19(3-4):335–376,

2009. doi:10.1017/S095679680900728X.
6 Robert Atkey. Syntax and Semantics of Quantitative Type Theory. In Anuj Dawar and

Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
doi:10.1145/3209108.3209189.

7 Lennart Augustsson and Magnus Carlsson. An Exercise in Dependent Types: A Well-Typed
Interpreter. In In Workshop on Dependent Types in Programming, Gothenburg, 1999.

http://dx.doi.org/10.1145/3236785
http://dx.doi.org/10.1007/3-540-60164-3_27
http://dx.doi.org/10.1017/S095679680900728X
http://dx.doi.org/10.1145/3209108.3209189

J. de Muijnck-Hughes and W. Vanderbauwhede 6:25

8 Johannes Borgström, Juan Chen, and Nikhil Swamy. Verifying stateful programs with substruc-
tural state and hoare types. In Ranjit Jhala and Wouter Swierstra, editors, Proceedings of the
5th ACM Workshop Programming Languages meets Program Verification, PLPV 2011, Austin,
TX, USA, January 29, 2011, pages 15–26. ACM, 2011. doi:10.1145/1929529.1929532.

9 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. J. Funct. Program., 23(5):552–593, 2013. doi:10.1017/S095679681300018X.

10 Edwin Brady. Programming and reasoning with algebraic effects and dependent types. In
Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages
133–144. ACM, 2013. doi:10.1145/2500365.2500581.

11 Edwin Brady. Resource-Dependent Algebraic Effects. In Jurriaan Hage and Jay McCarthy,
editors, Trends in Functional Programming - 15th International Symposium, TFP 2014,
Soesterberg, The Netherlands, May 26-28, 2014. Revised Selected Papers, volume 8843 of Lecture
Notes in Computer Science, pages 18–33. Springer, 2014. doi:10.1007/978-3-319-14675-1_2.

12 Edwin Brady. Type-Driven Development with Idris. Manning, 1st edition, 2016.
13 James Maitland Chapman. Type checking and normalisation. PhD thesis, School of Computer

Science, University of Nottingham, July 2009. URL: http://eprints.nottingham.ac.uk/
10824/.

14 Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi, Eli Barzilay,
Jay A. McCarthy, and Sam Tobin-Hochstadt. A programmable programming language.
Commun. ACM, 61(3):62–71, 2018. doi:10.1145/3127323.

15 J Pizani Flor. π-Ware: An Embedded Hardware Description Language using Dependent
Types. Masters, Department of Information and Computing Sciences, 2014. URL: https:
//dspace.library.uu.nl/bitstream/handle/1874/298576/.

16 João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. Pi-Ware: Hardware Description
and Verification in Agda. In Tarmo Uustalu, editor, 21st International Conference on Types
for Proofs and Programs, TYPES 2015, May 18-21, 2015, Tallinn, Estonia, volume 69 of
LIPIcs, pages 9:1–9:27. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.TYPES.2015.9.

17 Dan R. Ghica. The Geometry of Synthesis - How to Make Hardware Out of Software.
In Jeremy Gibbons and Pablo Nogueira, editors, Mathematics of Program Construction -
11th International Conference, MPC 2012, Madrid, Spain, June 25-27, 2012. Proceedings,
volume 7342 of Lecture Notes in Computer Science, pages 23–24. Springer, 2012. doi:
10.1007/978-3-642-31113-0_3.

18 Dan R. Ghica, Achim Jung, and Aliaume Lopez. Diagrammatic Semantics for Digital
Circuits. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference on
Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82 of
LIPIcs, pages 24:1–24:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.CSL.2017.24.

19 Dan R. Ghica, Alex I. Smith, and Satnam Singh. Geometry of synthesis iv: compiling affine
recursion into static hardware. In Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier
Danvy, editors, Proceeding of the 16th ACM SIGPLAN international conference on Functional
Programming, ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages 221–233. ACM, 2011.
doi:10.1145/2034773.2034805.

20 Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and Brett Werling. Introdu-
cing Kansas Lava. In Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and
Application of Functional Languages - 21st International Symposium, IFL 2009, South Orange,
NJ, USA, September 23-25, 2009, Revised Selected Papers, volume 6041 of Lecture Notes in
Computer Science, pages 18–35. Springer, 2009. doi:10.1007/978-3-642-16478-1_2.

21 John Hatcliff and Olivier Danvy. A Generic Account of Continuation-Passing Styles. In Hans-
Juergen Boehm, Bernard Lang, and Daniel M. Yellin, editors, Conference Record of POPL’94:
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland,

ECOOP 2019

http://dx.doi.org/10.1145/1929529.1929532
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1145/2500365.2500581
http://dx.doi.org/10.1007/978-3-319-14675-1_2
http://eprints.nottingham.ac.uk/10824/
http://eprints.nottingham.ac.uk/10824/
http://dx.doi.org/10.1145/3127323
https://dspace.library.uu.nl/bitstream/handle/1874/298576/
https://dspace.library.uu.nl/bitstream/handle/1874/298576/
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.9
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.9
http://dx.doi.org/10.1007/978-3-642-31113-0_3
http://dx.doi.org/10.1007/978-3-642-31113-0_3
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.24
http://dx.doi.org/10.4230/LIPIcs.CSL.2017.24
http://dx.doi.org/10.1145/2034773.2034805
http://dx.doi.org/10.1007/978-3-642-16478-1_2

6:26 A Typing Discipline for Hardware Interfaces

Oregon, USA, January 17-21, 1994, pages 458–471. ACM Press, 1994. doi:10.1145/174675.
178053.

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008, pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

23 IEEE. IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating, and
Reusing IP within Tool Flows, ieee std 1685-2014 edition, September 2014. doi:10.1109/
IEEESTD.2014.6898803.

24 Antti Kamppi, Lauri Matilainen, Joni-Matti Määttä, Erno Salminen, Timo D. Hämäläinen,
and Marko Hännikäinen. Kactus2: Environment for Embedded Product Development Using
IP-XACT and MCAPI. In 14th Euromicro Conference on Digital System Design, Architectures,
Methods and Tools, DSD 2011, August 31 - September 2, 2011, Oulu, Finland, pages 262–265.
IEEE Computer Society, 2011. doi:10.1109/DSD.2011.36.

25 Eddie Kohler, Robert Tappan Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 18(3):263–297, 2000. doi:10.1145/
354871.354874.

26 Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. Superfi-
cially substructural types. In Peter Thiemann and Robby Bruce Findler, editors, ACM
SIGPLAN International Conference on Functional Programming, ICFP’12, Copenhagen,
Denmark, September 9-15, 2012, pages 41–54. ACM, 2012. doi:10.1145/2364527.2364536.

27 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verification
framework for message passing in Go using behavioural types. In Michel Chaudron, Ivica
Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 1137–1148. ACM, 2018. doi:10.1145/3180155.3180157.

28 Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory. Bibliopolis, 1984.
29 Conor McBride. I Got Plenty o’ Nuttin’. In Sam Lindley, Conor McBride, Philip W. Trinder,

and Donald Sannella, editors, A List of Successes That Can Change the World - Essays
Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume 9600 of Lecture Notes
in Computer Science, pages 207–233. Springer, 2016. doi:10.1007/978-3-319-30936-1_12.

30 Paul Edward McKechnie. Validation and verification of the interconnection of hardware
intellectual property blocks for FPGA-based packet processing systems. PhD thesis, University
of Glasgow, 2010. URL: http://theses.gla.ac.uk/1879/.

31 Filipe Militão, Jonathan Aldrich, and Luís Caires. Substructural typestates. In Nils Anders
Danielsson and Bart Jacobs, editors, Proceedings of the 2014 ACM SIGPLAN Workshop
on Programming Languages meets Program Verification, PLPV 2014, January 21, 2014,
San Diego, California, USA, Co-located with POPL ’14, pages 15–26. ACM, 2014. doi:
10.1145/2541568.2541574.

32 Aleksandar Nanevski, J. Gregory Morrisett, and Lars Birkedal. Hoare type theory, poly-
morphism and separation. J. Funct. Program., 18(5-6):865–911, 2008. doi:10.1017/
S0956796808006953.

33 Ulf Norell. Dependently typed programming in Agda. In Andrew Kennedy and Amal Ahmed,
editors, Proceedings of TLDI’09: 2009 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, Savannah, GA, USA, January 24, 2009, pages 1–2.
ACM, 2009. doi:10.1145/1481861.1481862.

34 John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings, pages 55–74. IEEE Computer Society, 2002. doi:10.1109/LICS.2002.
1029817.

35 Gerard J. M. Smit, Jan Kuper, and Christiaan P. R. Baaij. A mathematical approach
towards hardware design. In Peter M. Athanas, Jürgen Becker, Jürgen Teich, and Ingrid

http://dx.doi.org/10.1145/174675.178053
http://dx.doi.org/10.1145/174675.178053
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1109/IEEESTD.2014.6898803
http://dx.doi.org/10.1109/IEEESTD.2014.6898803
http://dx.doi.org/10.1109/DSD.2011.36
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/2364527.2364536
http://dx.doi.org/10.1145/3180155.3180157
http://dx.doi.org/10.1007/978-3-319-30936-1_12
http://theses.gla.ac.uk/1879/
http://dx.doi.org/10.1145/2541568.2541574
http://dx.doi.org/10.1145/2541568.2541574
http://dx.doi.org/10.1017/S0956796808006953
http://dx.doi.org/10.1017/S0956796808006953
http://dx.doi.org/10.1145/1481861.1481862
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1109/LICS.2002.1029817

J. de Muijnck-Hughes and W. Vanderbauwhede 6:27

Verbauwhede, editors, Dynamically Reconfigurable Architectures, 11.07. - 16.07.2010, volume
10281 of Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
Germany, 2010. URL: http://drops.dagstuhl.de/opus/volltexte/2010/2840/.

36 Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and
Jean Yang. Secure distributed programming with value-dependent types. J. Funct. Program.,
23(4):402–451, 2013. doi:10.1017/S0956796813000142.

37 Wouter Swierstra. A Hoare Logic for the State Monad. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings,
volume 5674 of Lecture Notes in Computer Science, pages 440–451. Springer, 2009. doi:
10.1007/978-3-642-03359-9_30.

38 Muralidaran Vijayaraghavan, Adam Chlipala, Arvind, and Nirav Dave. Modular Deductive
Verification of Multiprocessor Hardware Designs. In Daniel Kroening and Corina S. Pasareanu,
editors, Computer Aided Verification - 27th International Conference, CAV 2015, San Fran-
cisco, CA, USA, July 18-24, 2015, Proceedings, Part II, volume 9207 of Lecture Notes in
Computer Science, pages 109–127. Springer, 2015. doi:10.1007/978-3-319-21668-3_7.

39 Product page for Vivado IP Integrator by Xilinx. Online, 2019. URL: https://www.xilinx.
com/products/design-tools/vivado/integration.html.

40 David Walker. Advanced Topic in Types and Programming Languages, chapter Substructural
Type Systems, pages 3–43. The MIT Press, 2004.

41 Xilinx. LocalLink Interface Specification, SP006 (v2.0) edition, 2005.

ECOOP 2019

http://drops.dagstuhl.de/opus/volltexte/2010/2840/
http://dx.doi.org/10.1017/S0956796813000142
http://dx.doi.org/10.1007/978-3-642-03359-9_30
http://dx.doi.org/10.1007/978-3-642-03359-9_30
http://dx.doi.org/10.1007/978-3-319-21668-3_7
https://www.xilinx.com/products/design-tools/vivado/integration.html
https://www.xilinx.com/products/design-tools/vivado/integration.html

On Satisfiability of Nominal Subtyping with
Variance
Aleksandr Misonizhnik
JetBrains Research, Saint Petersburg State University, Russia
misonijnik@gmail.com

Dmitry Mordvinov
JetBrains Research, Saint Petersburg State University, Russia
dmitry.mordvinov@jetbrains.com

Abstract
Nominal type systems with variance, the core of the subtyping relation in object-oriented pro-
gramming languages like Java, C# and Scala, have been extensively studied by Kennedy and
Pierce: they have shown the undecidability of the subtyping between ground types and proposed
the decidable fragments of such type systems. However, modular verification of object-oriented
code may require reasoning about the relations of open types. In this paper, we formalize and
investigate the satisfiability problem for nominal subtyping with variance. We define the problem in
the context of first-order logic. We show that although the non-expansive ground nominal subtyping
with variance is decidable, its satisfiability problem is undecidable. Our proof uses a remarkably
small fragment of the type system. In fact, we demonstrate that even for the non-expansive class
tables with only nullary and unary covariant and invariant type constructors, the satisfiability of
quantifier-free conjunctions of positive subtyping atoms is undecidable. We discuss this result in
detail, as well as show one decidable fragment and a scheme for obtaining other decidable fragments.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification; Software and its engineering → Object oriented languages; Software and its
engineering → Automated static analysis; Software and its engineering → Polymorphism; Software
and its engineering → Inheritance

Keywords and phrases nominal type systems, structural subtyping, first-order logic, decidability,
software verification

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.7

Acknowledgements We thank Sophia Drossopoulou, Dmitry Boulytchev and anonymous reviewers
for their insight and comments that significantly improved the manuscript.

1 Introduction

Although object-oriented languages like Java, C# or Scala are ubiquitous in modern pro-
gramming, the investigation of their type systems is still in progress. For example, Java type
checking has only recently been shown to be undecidable [7]. One important feature of such
languages is that types can appear at runtime and influence program execution (in contrast
to the ML programming language family, Haskell, etc., in which type information is erased
during compilation). For example, consider the following snippet:

1 IDictionary<TKey, TValue> MakeCache<TKey, TValue>()
2 {
3 if (typeof(TKey) == typeof(int))
4 return new SortedDictionary<TKey, TValue>();
5 if (typeof(TKey) == typeof(string))
6 return new Dictionary<TKey, TValue>();
7 throw new InvalidOperationException();
8 }

© Aleksandr Misonizhnik and Dmitry Mordvinov;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:misonijnik@gmail.com
mailto:dmitry.mordvinov@jetbrains.com
https://doi.org/10.4230/LIPIcs.ECOOP.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On Satisfiability of Nominal Subtyping with Variance

The runtime behaviour of MakeCache depends on the value of the formal type parameter
TKey: the method returns a fresh instance of SortedDictionary indexed by integer keys,
Dictionary for string keys, or throws an exception otherwise. But what if we would like
to statically check that MakeCache is used correctly, i.e. it does not throw an exception?
Unfortunately, the type parameter constraint system of .NET does not allow to specify this
restriction, as it does not implement disjunctive constraints.

Our study is motivated by the problem of verification of .NET programs. Modern deductive
software verifiers are capable of checking non-trivial properties of programs by proving that
under certain preconditions, executing a function guarantees certain postconditions. For
instance, for the example above, the correctness property could be specified as a logical
precondition for the method. In Spec#-style [1], this could be expressed as

1 IDictionary<TKey, TValue> MakeCache<TKey, TValue>()
2 requires typeof(TKey) == typeof(int) || typeof(TKey) == typeof(string)
3 {
4 ...
5 }

In more complex cases, arbitrary boolean combinations (including negation) of subtyping
constraints or even quantified specification can be useful. Unfortunately, neither compilers
nor modern verifiers (including Spec#) are capable of statically checking such properties
because their assertion language cannot express properties of types.

Consider another snippet:

1 interface ICloneable<out T> { T Clone(); }
2 class Base { }
3 sealed class Derived : Base, ICloneable<Derived>
4 {
5 public Derived Clone() { return new Derived(); }
6 }
7 void F<T>(Base arg1, Derived arg2)
8 {
9 if (arg2 is ICloneable<T> && arg1 is T)

10 {
11 var clone = ((Derived) arg1).Clone();
12 ...
13 }
14 }

Using our fictitious extension of Spec# specification language, the specification of the function
F would include the following clause:

requires Derived <: ICloneable<T> ∧ typeof(arg1) <: Base∧
typeof(arg1) <: T ∧ typeof(arg1) <: Derived

One might think that the last conjunct, ie typeof(arg1) <: Derived, can be omitted, and that
the type cast expression (line 11) never fails: as Derived is sealed, the actual type of arg2
can only be Derived. In contrast, the type of arg1 can be Base or a subtype of Base type;
as Derived implements only ICloneable<Derived>, T may only be Derived, therefore, if
line 11 is reachable, then arg1 is Derived. However, this reasoning is wrong: as ICloneable
is a covariant constructor and Base is a supertype of Derived, ICloneable<Base> is a
supertype of Derived, and line 11 can be reached with T = Base. Is it possible to determine
the satisfiability of such violations automatically?

A. Misonizhnik and D. Mordvinov 7:3

It would be legitimate to omit the last conjunct, ie typeof(arg1) <: Derived, and also
omit the cast on line 11, if we knew that

∀T, T’.Derived <: ICloneable<T> ∧ T’ <: Base ∧ T’ <: T⇒ T’ <: Derived

Or, equivalently, if we could prove the unsatisfiability of the following assertion:

φ
def= ∃T, T’.Derived <: ICloneable<T> ∧ T’ <: Base ∧ T’ <: T ∧ T’ ≮: Derived

In the particular case, φ is satisfiable. Namely, take T = Base = T′, and the optimizations
proposed above would be unsound.

Our examples have demonstrated the relevance of subtype satisfiability in program
specification as well as for code optimization. The next question is the design of decision
procedures for such questions. However, it turns out that this question in undecidable!

In section 2, we formalize nominal subtyping with variance following definitions and
propositions from [8]. We focus our attention on non-expansive inheritance fragment [19],
which was shown to be decidable [8] and has been adopted in the .NET Framework [4].

In section 3, we formalize and investigate the first-order satisfiability problem for nominal
subtyping with variance; to the best of our knowledge, this is the first attempt at its detailed
examination. Unlike the subtyping problem, which answers the question “Is one type a
subtype of another type?”, the satisfiability problem answers the question “Are there types
that meet the required constraints?”. In fact, satisfiability involves the subtyping problem, in
the case where the constraints do not contain type variables. This means that the decidability
of the subtyping problem does not imply the decidability of the satisfiability problem. We
present a number of quantifier-free first-order formulas, demonstrating that the satisfiability
problem is tricky even for non-expansive inheritance.

In section 4, we reinforce this by proving the undecidability of this problem, which is
the primary contribution of the paper. Our proof uses a remarkably small fragment of the
type system; in fact, we show that the subtyping satisfiability problem is undecidable for
non-expansive class tables (1) without contravariant constructors, (2) with only nullary and
unary constructors, (3) for quantifier-free conjunctions of subtyping atoms without negation.

Afterwards, in section 5, we demonstrate one practical decidable fragment which we call
semiground, and prove its decidability. Using the intuitions from the proof, we provide a
scheme to obtain other decidable fragments.

Our results may give rise to the construction of an effective decision procedure for the
quantifier-free case. We formulate the problem in terms of satisfiability modulo theory, aiming
at the implementation of its decision procedure in SMT-solvers [2, 3]. The support of SMT-
reasoning for nominal type theory is useful for software verification tools, static analysers
and generation techniques of automated tests, and exploits and patches for object-oriented
languages. The first-order theory of nominal types may be used for type specifications in
the assertion languages of deductive verifiers, while its decision procedure may be used for
solving path conditions of different program branches. It may also be useful in compilers: for
example, in improving dead code elimination techniques by proving the unsatisfiability of
the path condition for a certain code fragment.

ECOOP 2019

7:4 On Satisfiability of Nominal Subtyping with Variance

2 The type system1

In this section, we formalize nominal subtyping with variance. Types can either be type
variables, denoted by lowercase letters, or constructed types C<T>, where C is an n-ary
type constructor and T is a vector of arguments of length n. We omit angle brackets if
a type constructor is unary: for example, we write ABCx instead of A<B<C<x>>>. CrT

denotes the type C . . . CT , where C occurs r times. We refer to such types as chains of r
type constructors C ending with T . Ground types are types that contain no variables. Open
types are types that are not ground.

The subtyping relation of nominal type systems with variance is defined via an explicit
specification of the names of supertypes and variances of type parameters. Such specifications
are usually expressed as class tables.

I Definition 2.1. A class table is a finite set of entries of the form

C<vx> <:: T1, . . . , Tn

Each entry contains a unique declaration of a type constructor and a finite list of constructed
types, which are nominal supertypes for all types constructed by this type constructor. The
left-hand side of an entry contains the name for constructor C and its formal type parameters
xi with variances vi. vi may be either ◦ (invariant) or + (covariant) or − (contravariant).
The right-hand side contains a finite list of types Ti obtained from constructors declared in
other entries, constructor C, and parameters xi. To simplify the notation, we omit ◦ in class
table declarations.

System.Object <::
System.ValueType <:: System.Object

IEnumerable <:: System.Object

IEnumerable< + x> <:: IEnumerable

ICollection <:: IEnumerable

ICollection<x> <:: IEnumerable<x>

Pair<x, y> <:: System.ValueType

IDictionary <:: ICollection

IDictionary<x, y> <:: ICollection<Pair<x, y>>

Dictionary<x, y> <:: IDictionary<x, y>

IDictionary

interface IEnumerable {}
interface IEnumerable<out x>:

IEnumerable{}
interface ICollection:

IEnumerable {}
interface ICollection<x>:

IEnumerable<x> {}
struct Pair<x, y> {}
interface IDictionary:

ICollection {}
interface IDictionary<x, y>:

ICollection<Pair<x, y>> {}
class Dictionary<x, y>:

IDictionary<x, y>,
IDictionary {}

Listing 1 The declaration of the class Dictionary and its class table.

I Example 2.2. Listing 1 demonstrates a simplified fragment of the class table for the
Dictionary<x, y> standard container in .NET.

1 In this section, we follow definitions and propositions from [8].

A. Misonizhnik and D. Mordvinov 7:5

The i-th formal type parameter of a type constructor C and its variance are denoted
by C#i and var(C#i) correspondingly: C#i def= xi and var(C#i) def= vi. For example,
IEnumerable#1 = x and var(IEnumerable#1) = +.

I Definition 2.3. A substitution is a total mapping from type variables to types, which is
an identity everywhere except for a finite set of variables which are mapped into constructed
types. The domain of a substitution subst is a set of variables mapped to types, and the range
is the image of the domain. We write substitutions as

[x1 7→ T1; . . . , xn 7→ Tn] and [x 7→ T],

where x1, . . . , xn are type variables from the domain of substitution and T1, . . . , Tn are their
images. We write the application of substitution [x 7→ T] to type T as [x 7→ U]T . If the
domain of a substitution consists of one type variable x, we omit the brackets:

x 7→ T

We use <:: not only as a class table separator, but also to denote the binary relation of
nominal subtyping. If a class table has an entry C<x> <:: Ti, then C<U> <:: [x 7→ U]Ti.
We write the transitive closure of <:: as <::+.

We require class tables to define only acyclic <::+ relations and to be well-formed with
respect to the variance of formal type parameters, i.e. variant type parameters should appear
only in positions of the same polarity. Furthermore, we require that the supertypes do
not overlap: if C<x> <:: T and C<x> <:: U , then for all V if [x 7→ V]T = [x 7→ V]U ,
then T = U .

Finally, we can define the subtyping relation.

I Definition 2.4. The ground subtyping relation <: is defined by the set of the following rules:

T <: U
T <:+ U T <:◦ T

U <: T
T <:− U

(Var)
for each i Ti <:var(C#i) Ui

C<T> <: C<U>

(Super)
C<x> <:: V [x 7→ T]V <: D<U>

C<T> <: D<U>
C 6= D

Due to the multiple instantiation inheritance, the Super rule can be applied non-
deterministically.

I Example 2.5. The following sequence of rules should be applied to deduce that
Dictionary<T, U> is a subtype of IEnumerable<System.Object>:

Dictionary<T, U> <: IEnumerable<System.Object>
−→ IDictionary<T, U> <: IEnumerable<System.Object> by Super
−→ ICollection<Pair<T, U>> <: IEnumerable<System.Object> by Super
−→ IEnumerable<Pair<T, U>> <: IEnumerable<System.Object> by Super
−→ Pair<T, U> <: System.Object byVar
−→ System.ValueType <: System.Object by Super
−→ System.Object <: System.Object by Super
−→ byVar

ECOOP 2019

7:6 On Satisfiability of Nominal Subtyping with Variance

Dictionary#1 IDictionary#1 Pair#1

ICollection#1 IEnumerable#1

Dictionary#2 IDictionary#2 Pair#2

Figure 1 Type parameter dependency graph for Listing 1.

Ground subtyping is a partial order on a set of ground types. The ground subtyping
relation has been shown to be undecidable in [8]. In the following, we introduce a notion of
non-expansive inheritance.

I Definition 2.6. A type parameter dependency graph is a directed graph with vertices
that correspond to formal type parameters and two kinds of edges: for each class table entry
C<x> <:: T and for each subterm D<U> of T ,

if Uj = xi, then there is a non-expansive edge from C#i to D#j (depicted via a dotted
arrow);
if xi is a proper subterm of Uj, then there is an expansive edge from C#i to D#j
(depicted via a solid arrow).

For instance, in Example 2.2, IDictionary<x,y> <:: ICollection<Pair<x,y>> in-
troduces a non-expansive edge from IDictonary#1 to Pair#1 and an expansive edge to
ICollection#1. The complete type parameter dependency graph is shown in Figure 1.

I Definition 2.7. A class table is expansive if its type parameter dependency graph has a
cycle with at least one expansive edge.

I Example 2.8. The class table Listing 1 is non-expansive, as its type parameter dependency
graph Figure 1 does not contain cycles.

I Proposition 2.9. The non-expansive ground subtyping relation is decidable.

I Proposition 2.10. Ground subtyping is decidable if a class table has no contravariant
constructors.

Both results have been shown in [8].

3 The SUBTYPE-SAT problem

In this section, we formalize the subtype satisfiability problem and show some interesting
examples.

In what follows, fix a class table CT . Let C be a set of constructors in CT . Let
Σ = (C , {<: }) be a first-order signature with equality. Function symbols are identified with
constructors in CT . For convenience, the applications of a function symbol C to arguments
U are still written as C<U>, or just CU in the unary case. <: is a binary predicate symbol
written in infix style. For convenience, ¬(T <: U) and ¬(T = U) are written as T ≮: U
and T 6= U .

A. Misonizhnik and D. Mordvinov 7:7

Let I<: be a Σ-structure with the domain |I<:| of all ground types defined by CT ,
interpreting <: as the subtyping relation from Definition 2.4. Let T CT

<: be a complete
first-order Σ-theory of structure I<:, i.e. the set of all first-order Σ-sentences which are
satisfied by I<: (we assume a usual definition of satisfaction of φ by I, denoted I � φ). Given
a Σ-sentence φ, we say that φ is satisfiable modulo T CT

<: , iff I � φ.
Let V be a countable set of variables. An assignment of free variables is any mapping

v : V → |I<:| of variables to ground types. Note that free variable assignments are
substitutions with a ground range. A formula with free variables φ is called satisfiable (valid,
unsatisfiable) if I, v � φ for some (any, no) free variable assignment v. We abbreviate the
satisfiability in (I, v) and validity of φ with v �CT

<: φ and �CT
<: φ correspondingly.

I Problem 3.1 (SUBTYPE-SAT problem). Given a class table CT and a formula φ over Σ,
find such a free variable assignment v that v �CT

<: φ or prove its absence.

We aim to show that although the ground subtyping relation is decidable for both non-
expansive class tables and class tables without contravariant constructors, the SUBTYPE-SAT
problem is undecidable even with both restrictions. We begin with a number of examples
demonstrating the complexity of this problem.

I Example 3.2. Consider a class table

J< + x> <::
C <:: JC

and a formula

φ
def= C <: x ∧ C <: y ∧ x ≮: y ∧ y ≮: x

Is φ satisfiable? Let us consider various possible candidates for the assignment v. Let
v(x) = C and v(y) = C. In this case, the atom x ≮: y is falsified:

v(x) ≮: v(y) = C ≮: C ⇔ ⊥

Let v(x) = C and v(y) = Jy′ for some y′. Then

I(φ) = C <: C ∧ C <: Jy′ ∧ C ≮: Jy′ ∧ Jy′ ≮: C ⇔ ⊥

The case v(x) = Jx′ and v(y) = C is symmetrical. The last case is I(x) = Jx′ and I(y) = Jy′:

v(φ) = C <: Jx′ ∧ C <: Jy′ ∧ Jx′ ≮: Jy′ ∧ Jy′ ≮: Jx′ ⇔
JC <: Jx′ ∧ JC <: Jy′ ∧ Jx′ ≮: Jy′ ∧ Jy′ ≮: Jx′ ⇔
C <: x′ ∧ C <: y′ ∧ x′ ≮: y′ ∧ y′ ≮: x′

Note that v(φ) is exactly φ up to a renaming of variables. It means that every candidate
variable substitution either falsifies the formula, or results in a formula to which the same
reasoning applies. As an infinite chain of J is not a valid type, φ is unsatisfiable.

The unsatisfiability of φ can be intuitively explained in the following way. The satisfiability
of φ would mean that C has two incomparable supertypes. A set of supertypes of C is exactly
{JnC | n ≥ 0}. But for all n,m, JnC and JmC are comparable: n ≤ m iff JnC <: JmC.

ECOOP 2019

7:8 On Satisfiability of Nominal Subtyping with Variance

I Example 3.3. Consider another class table

E <::
J< + x> <::
A1 <:: Jn1A1, J

n1E

...
Am <:: JnmAm, J

nmE,

where m, ni ≥ 1, and the formula

φ
def=

∧
1≤i≤m

Ai <: x

This formula is satisfied only by v such that

v(x) = Jk·lcm(n1,...,nm)E,

where k ≥ 1 and lcm(n1, . . . , nm) is a least common multiple of n1, . . . , nm.

I Example 3.4. If we replace the class table entry for E in Example 3.3 with

E <:: Jn1·...·nmE

then the formula

φ′
def= φ ∧ E ≮: x

has a model if and only if the numbers n1, . . . , nm are not coprime.

I Example 3.5. Fix a class table CT and a finite partially ordered set (P,≤P). Consider
the formula

φ
def=

∧
x,y∈P,
x≤P y

x <: y ∧
∧

x,y∈P,
x�P y

x ≮: y

φ has a model if and only if there exists an order-embedding map from P to the set of ground
types defined by CT (partially ordered by ground subtyping relation).

I Proposition 3.6. SUBTYPE-SAT is semidecidable.

Proof. There is an algorithm that, given φ, enumerates all possible ground substitutions
v of variables of φ and checks v �CT

<: φ. Proposition 2.9 guarantees that if φ is satisfiable
modulo T CT

<: , then this algorithm eventually terminates. J

In the following section, we show that the set of ground substitution v such that v 2CT
<: φ

is not recursively enumerable.

A. Misonizhnik and D. Mordvinov 7:9

4 SUBTYPE-SAT is undecidable

A1< + x> <::
...

Am< + x> <::
R< + x> <::
S< + x> <::
R0 <:: RR0, E

S0 <:: SS0, E

E <::
U1< + x> <:: AU1x, W1x, Sx, Rx

...
Un< + x> <:: AUn

x, Wnx, Sx, Rx

V1< + y> <:: AV1y, W1y, Sy, Ry

...
Vn< + y> <:: AVn

y, Wny, Sy, Ry

W1< + x> <::
...

Wn< + x> <::
G <:: U1G, . . . , UnG, E

H <:: V1H, . . . , VnH, E

P <:: U1P, . . . , UnP, E

Q <:: V1Q, . . . , VnQ, E

W <:: W1W, . . . ,WnW, E

D <:: AU1D, . . . , AUn
D, E

Listing 2 Class table PCP-CT.

Ui#1

A1#1 · · · Am#1 Wi#1 R#1 S#1

Vi#1

Figure 2 Type parameter dependency graph for PCP-CT.

We prove the undecidability of SUBTYPE-SAT via a reduction from the Post Correspondence
Problem.

The Post Correspondence Problem

Let {(AU1 , AV1), . . . , (AUn , AVn)} be a set of pairs of non-empty words over a finite alphabet
{A1, . . . , Am }. The Post Correspondence Problem (PCP) is to determine whether or not
there exists a sequence of indices i1, . . . , ir such that AUi1

. . . AUir
= AVi1

. . . AVir
.

It is a well-known fact that PCP is undecidable [13].
We use a class table from Listing 2 in our reduction. Note that it is non-expansive as its

type parameter dependency graph (see Figure 2) has no cycles, and it has no contravariant
constructors.

ECOOP 2019

7:10 On Satisfiability of Nominal Subtyping with Variance

Consider the SUBTYPE-SAT problem for a formula ψ with type parameters x, y, z, q, p, t
and class table PCP-CT, where ψ is defined as follows:

φ0
def= R0 <: p ∧ S0 <: q ∧W <: z

φ1
def= G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z ∧ φ0

φ2
def= H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z ∧ φ0

ψ
def= D <: t ∧ x <: t ∧ y <: t ∧ t ≮: E ∧ φ1 ∧ φ2

The main idea of this reduction is to represent the words in {A1, . . . , Am }+ as chains of
covariant constructors terminating with E. For example, words AUi

and AVj
are encoded

as AUi
E and AVj

E. The enumeration of PCP solutions is encoded into the PCP-CT and ψ.
We demonstrate a non-deterministic process, consistently refining the type variables of ψ by
replacing them with a type constructor applied to fresh variables, and then simplifying the
new formula.

I Definition 4.1. A ground substitution is a substitution with only ground types in its range.
An elementary substitution is a substitution whose range contains only constructed types with
type variables as their arguments. A substitution is complete for a formula f , if its domain
is exactly all type variables of f .

Substitutions may be composed. The composition of u = [x1 7→ a1; . . . ;xn 7→ an] and v =
[y1 7→ b1; . . . ; ym 7→ bm] is obtained by removing from the substitution [x1 7→ va1; . . . ;xn 7→
van; y1 7→ b1; . . . ; ym 7→ bm] those pairs yi 7→ bi for which yi ∈ {x1, . . . , xk}. For instance,

x 7→ Cx′ � x′ 7→ Dx′′ = x 7→ CDx′′

We also define a composition of substitution sets:

{ substleft
1 ; . . . ; substleft

n } � { substright
1 ; . . . ; substright

k } def=
⋃

1≤i≤n
1≤j≤k

{ substleft
i � substright

j }

Note that as ψ is a conjunction of atoms, its satisfiability implies the satisfiability of its
arbitrary subformula. Now let us consider complete substitutions that do not falsify the
subformula φ0.

I Lemma 4.2. For the formula

φ0
def= R0 <: p ∧ S0 <: q ∧W <: z,

a substitution does not falsify φ0 iff it can be represented as a composition of substitutions

p 7→ Rp, p 7→ E, p 7→ R0, q 7→ Sq, q 7→ E, q 7→ S0, z 7→Wiz, z 7→ E, z 7→W

with 1 ≤ i ≤ n.

Proof. The type constructor R0 only has nominal supertypes with head constructors R0, R

and E. Hence, after an application of a substitution different from { p 7→ Rp; p 7→ E; p 7→
R0 } to φ0, the Var and Super rules cannot be applied to simplify the formula, therefore
φ0 becomes false. The application of both p 7→ E and p 7→ R0 satisfy an atom R0 <: p; an
application of p 7→ Rp turns this atom into itself. Therefore, only the compositions of these
substitutions do not falsify the formula.

A similar argument works for the q and z type variables. J

A. Misonizhnik and D. Mordvinov 7:11

I Lemma 4.3. For the formula

φ1
def= G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z ∧ φ0,

only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix]

[p 7→ E; q 7→ E; z 7→ E; x 7→ E]

with 1 ≤ i ≤ n do not falsify it.

Proof. The proof is by a case splitting into possible substitutions.
As φ0 is a subformula of φ1, Lemma 4.2 implies that the candidate substitutions to z

that do not falsify φ1 immediately are the ones from the set { z 7→Wiz; z 7→ E; z 7→W }.

[z 7→W]φ1 = G <: x ∧ x <: W ∧ . . .

By transitivity of subtyping, this entails the G <: W , which is false. Therefore, the
substitutions with z 7→W falsify φ1.

[z 7→Wiz]φ1 = G <: x ∧ P <: x ∧ x <: Wiz ∧ . . .

In order for this formula to be satisfiable, the substitution should map x to a common
supertype for G and P , and it should have a nominal supertype constructed with Wi.
The only such substitutions are {x 7→ Uix; x 7→Wix }.

[x 7→Wix]φ1 = R0 <: p ∧Wix <: p ∧ . . .

This formula has the atom Wix <: p, which is not falsified only if the substitution
p 7→ Wip is applied to the type variable p. But by Lemma 4.2, the candidate
substitutions into p are { p 7→ Rp; p 7→ E; p 7→ R0 }. Therefore, each substitution
containing [x 7→Wix; z 7→Wiz] falsifies φ1.

[x 7→ Uix]φ1 = R0 <: p ∧ Uix <: p ∧ S0 <: q ∧ Uix <: q ∧ Uix <: Wiz ∧ . . .

Common supertypes of R0 and Ui could have only one head constructor, namely
R; symmetrically, the common supertypes S0 and Ui could be constructed only by
S. Therefore, the substitutions p 7→ Rp and q 7→ Sq do not falsify the φ1, while
substitutions from the set

[z 7→Wiz; x 7→ Uix]� { p 7→ E; p 7→ R0 } � { q 7→ E; q 7→ S0 }

falsify φ1. Hence, in this case, only the substitution

[z 7→Wiz; x 7→ Uix; p 7→ Rp; q 7→ Sq]

does not falsify φ1.

[z 7→ E]φ1 = G <: x ∧ P <: x ∧ x <: E ∧ . . .

In order for this formula to be satisfiable, the substitution should map x to a common
supertype for G and P , which is a subtype of E. The only appropriate substitution is
x 7→ E. The application of the substitution [z 7→ E; x 7→ E] to φ1 gives

G <: E ∧ P <: E ∧ E <: p ∧ E <: q ∧ E <: E ∧R0 <: p ∧ S0 <: q ∧W <: E,

ECOOP 2019

7:12 On Satisfiability of Nominal Subtyping with Variance

which simplifies into

E <: p ∧ E <: q ∧R0 <: p ∧ S0 <: q.

In order for this formula to be satisfiable, the substitution should map p to a common
supertype of R0 and E, and q should be mapped into a common supertype of S0 and E.
The only appropriate substitution is [p 7→ E; q 7→ E]. Therefore the substitution

[z 7→ E; x 7→ E; p 7→ E; q 7→ E]

does not falsify φ1.
We have considered all possible cases, among which only the substitutions

[z 7→Wiz; x 7→ Uix; p 7→ Rp; q 7→ Sq]

[z 7→ E; x 7→ E; p 7→ E; q 7→ E]

with 1 ≤ i ≤ n do not falsify φ1. J

I Lemma 4.4. For the formula

φ2
def= H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z ∧ φ0,

only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; y 7→ Viy]

[p 7→ E; q 7→ E; z 7→ E; y 7→ E]

with 1 ≤ i ≤ n do not falsify it.

Proof. Similar to the proof of Lemma 4.3. J

Lemma 4.3 and Lemma 4.4 imply that only elementary complete substitutions

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

[p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

do not falsify φ1 ∧ φ2.
φ1 ∧ φ2 has a very important property: the application of the substitution

[p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

to it and the simplification of the resulting formula turn φ1 ∧ φ2 into itself:

G <: Uix ∧ P <: Uix ∧ Uix <: Rp ∧ Uix <: Sq ∧ Uix <: Wiz∧
H <: Viy ∧Q <: Viy ∧ Viy <: Rp ∧ Viy <: Sq ∧ Viy <: Wiz∧
R0 <: Rp ∧ S0 <: Sq ∧W <: Wiz

⇔
UiG <: Uix ∧ UiP <: Uix ∧Rx <: Rp ∧ Sx <: Sq ∧Wix <: Wiz∧
ViH <: Viy ∧ ViQ <: Viy ∧Ry <: Rp ∧ Sy <: Sq ∧Wiy <: Wiz∧
RR0 <: Rp ∧ SS0 <: Sq ∧WiW <: Wiz

⇔
G <: x ∧ P <: x ∧ x <: p ∧ x <: q ∧ x <: z∧
H <: y ∧Q <: y ∧ y <: p ∧ y <: q ∧ y <: z∧
R0 <: p ∧ S0 <: q ∧W <: z
= φ1 ∧ φ2

A. Misonizhnik and D. Mordvinov 7:13

Note also that application of the substitution

[p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

and simplification turn φ1 ∧ φ2 into a true.

Notation

Let N = { 1, . . . , n }. We denote the set of finite sequences in N by N<ω. For J ∈ N<ω, J =
j1 . . . jr, we denote by UJT a chain of type constructors Uj1 . . . UjrT ; we define VJT and
WJT similarly. Sometimes we write Jr to emphasize that the length of J is r.

I Theorem 4.5. The formula φ1∧φ2 has a set of models with the interpretations IJ such that

vJ(x) = UJE, vJ(y) = VJE, vJ(z) = WJE,

vJ(p) = RrE, vJ(q) = SrE

where J ∈ N<ω, and r is the length of J .

Proof. As we have shown, only the compositions of the following substitutions do not falsify
the formula φ1 ∧ φ2 immediately:

substi
def= [p 7→ Rp; q 7→ Sq; z 7→Wiz; x 7→ Uix; y 7→ Viy]

substend
def= [p 7→ E; q 7→ E; z 7→ E; x 7→ E; y 7→ E]

Note that as free variable substitutions are ground substitutions, we may compose them.
As substi does not change φ1 ∧ φ2 after simplification, and substend satisfies it, a satisfying
substitution for φ1 ∧ φ2 may only be a composition of the finite number of substi, ending
with the ground substitution substend, i.e. substj1 � . . .� substjr

� substend.
Thus the only satisfying ground substitutions of φ1 ∧ φ2 are:

vJ = substj1 � . . .� substjr
� substend =

= [p 7→ RrE; q 7→ SrE; z 7→WJE; x 7→ UJE; y 7→ VJE] J

I Lemma 4.6. Let L be a chain of “letter” constructors, i.e. constructors from {A1, . . . , Am},
Jr ∈ N<ω with r > 0. Then

UJE <: LE ∨ UJE <: LD

is satisfiable if and only if

AUj1
. . . AUjr

E = LE

Proof. We prove the claim by induction on r.
Base step: r = 1.

Uj1E <: LE ∨ Uj1E <: LD ⇔ AUj1
E <: LE ∨AUj1

E <: LD

As AUj1
E, LE and LD are constructed from covariant type constructors A1, . . . , Am without

the right hand side of the class table (i.e. without the strict nominal supertypes), we may
conclude that

AUj1
E <: LE ∨AUj1

E <: LD ⇔ AUj1
E = LE ∨AUj1

E = LD ⇔ AUj1
E = LE

ECOOP 2019

7:14 On Satisfiability of Nominal Subtyping with Variance

Induction step

Let r = k + 1, J = j1 · J ′, length of J ′ is k.

Uj1UJ′E <: LE ∨ Uj1UJ′E <: LD ⇔
⇔ AUj1

UJ′E <: LE ∨AUj1
UJ′E <: LD ⇔

As AUj1
E, LE and LD are constructed from covariant type constructors A1, . . . , Am, which

do not have strict nominal supertypes, we must require L = AUj1
L′.

⇔ AUj1
UJ′E <: AUj1

L′E ∨AUj1
UJ′E <: AUj1

L′D ⇔
⇔ UJ′E <: L′E ∨ UJ′E <: L′D ⇔ (I.H.)

⇔ AUj2
. . . AUjr

E = L′E ⇔ AUj1
AUj2

. . . AUjr
E = LE J

I Lemma 4.7. Let L be a chain of constructors from {A1, . . . , Am}, Jr ∈ N<ω with r > 0.
Then

VJE <: LE ∨ VJE <: LD

is satisfiable if and only if

AVj1
. . . AVjr

E = LE

Proof. Similar to the proof of Lemma 4.6. J

I Lemma 4.8. The formula

φJr
def= D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E

is satisfiable if and only if r > 0 and

φ′J
def= AVj1

. . . AVjr
E = AUj1

. . . AUjr
E

is valid.

Proof. Let J be an empty sequence. Then φJ becomes

D <: t ∧ E <: t ∧ t ≮: E.

D and E have only one common supertype E. But the substitution of E into t falsifies
the formula because of the atom t ≮: E. Hence if J is an empty sequence, φJ is unsatisfiable.

Let J be a non-empty sequence.
(⇒)
Let φJ be satisfiable. Then D and UJE should have a common supertype. It cannot be

E, as for all i, E is not a supertype for Ui. Consider all other supertypes of D. Those are
chains of constructors from {A1, . . . , Am }, terminated by either D or E. In other words, the
only candidate supertypes are LD and LE, where L are non-empty chains of constructors
from {A1, . . . , Am }.

By Lemma 4.6 and Lemma 4.7, if vJ �CT
<: φJ , then

vJ(t) = AUj1
. . . AUjr

E = AVj1
. . . AVjr

E

As φJ is satisfiable, φ′J is true.

A. Misonizhnik and D. Mordvinov 7:15

(⇐)
Let φ′J be valid, then the interpretation

vJ(t) = AUj1
. . . AUjr

E = AVj1
. . . AVjr

E,

satisfies φJ :

vJ(φJ) = D <: vJ(t) ∧ UJE <: vJ(t) ∧ VJE <: vJ(t) ∧ vJ(t) ≮: E =

D <: AUj1
. . . AUjr

E ∧ UJE <: AUj1
. . . AUjr

E∧

VJE <: AVj1
. . . AVjr

E ∧AUj1
. . . AUjr

E ≮: E ⇔

AUj1
. . . AUjr

E <: AUj1
. . . AUjr

E∧

AVj1
. . . AVjr

E <: AVj1
. . . AVjr

E∧

AUj1
. . . AUjr

E ≮: E ⇔ > J

I Theorem 4.9. The formula

φJ
def= D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E

is satisfiable if and only if J is a solution to PCP with the pairs of words

{(AU1 , AV1), . . . , (AUn , AVn)}

over the alphabet {A1, . . . , Am }, i.e.

AUj1
. . . AUjr

= AVj1
. . . AVjr

Proof. By Lemma 4.8, φJ is satisfiable if and only if r > 0 and

φ′J
def= AVj1

. . . AVjr
E = AUj1

. . . AUjr
E

is valid.
(⇒)
Let φ′J be valid. Then J is such a non-empty sequence of indices that the concatenation

of words AUj1
, . . . , AUjr

equals the concatenation of words AVj1
, . . . , AVjr

. Therefore J is
a solution to PCP. (⇐)

Let J be a solution to PCP. That means that the types AVj1
. . . AVjr

E and AUj1
. . . AUjr

E

are equal. Besides, as J solves PCP, it is non-empty. This implies the validity of φ′J . J

I Theorem 4.10. The formula

ψ
def= D <: t ∧ x <: t ∧ y <: t ∧ t ≮: E ∧ φ1 ∧ φ2

is satisfiable if and only if PCP with the pairs of words

{(AU1 , AV1), . . . , (AUn , AVn)}

over the alphabet {A1, . . . , Am } has a solution.

Proof. By Theorem 4.5, the formula φ1 ∧ φ2 has a set of solutions with the interpretations
vJ(I) such that:

vJ(x) = UJE, vJ(y) = VJE, vJ(z) = WJE,

vJ(p) = RrE, vJ(q) = SrE

ECOOP 2019

7:16 On Satisfiability of Nominal Subtyping with Variance

Hence the satisfiability of ψ is equivalent to the satisfiability of

ψ′
def=

∨
J∈N<ω

vJ(ψ) =
∨

J∈N<ω

D <: t ∧ UJE <: t ∧ VJE <: t ∧ t ≮: E =
∨

J∈N<ω

φJ

By Theorem 4.5, φJ is satisfiable if and only if J is a solution to PCP. Therefore ψ′ is
satisfiable if and only if there exists a sequence of indices J that solves PCP. J

I Corollary 4.11. SUBTYPE-SAT is undecidable.

I Corollary 4.12. SUBTYPE-SAT is undecidable even for non-expansive class tables without
contravariant constructors.

I Corollary 4.13. SUBTYPE-SAT is undecidable even for non-expansive class tables with only
constant and unary constructors.

I Corollary 4.14. SUBTYPE-SAT is undecidable even for quantifier-free conjunctions of literals.

I Corollary 4.15. SUBTYPE-SAT is undecidable even for quantifier-free conjunctions of positive
literals.

Proof. To show this, we simply need to exclude the trivial solution with all variables mapped
to E without using the atom t ≮: E in ψ.

This can be done, for instance, by adding a new entry

D0 <:: AU1D, . . . , AUnD

into PCP-CT and altering ψ to

ψ
def= D0 <: t ∧ x <: t ∧ y <: t ∧ φ1 ∧ φ2 J

5 Decidable fragments of SUBTYPE-SAT

In this section, we introduce several fragments of the SUBTYPE-SAT and prove their decidability.
Decidability could be achieved by restricting the class table or the formula. A semiground
fragment constrains the formula, allowing the class table to be arbitrary (but non-expansive).
Using the intuitions from the proof, we conjecture another decidable fragment that constraints
the shape of the class table, leaving the formula to be arbitrary.

I Definition 5.1. A semiground atom (literal) is an atom (literal) with at least one ground
argument. A normalized semiground atom (literal) is an atom (literal) with one ground
argument and one variable argument (note that the SUBTYPE-SAT language only has binary
predicate symbols <: and =).

A (normalized) semiground formula is a quantifier-free formula that contains only (nor-
malized) semiground atoms. A semiground fragment is a set of semiground formulas.

I Theorem 5.2. Each semiground atom is logically equivalent to some normalized semiground
formula.

Proof. The theorem obviously holds in case an atom is already normalized. If both arguments
of an atom are ground, it is equivalent to either > or ⊥. It remains to consider only the
atom T <: U with both T and U constructed. In this case we apply the subtyping rules:

A. Misonizhnik and D. Mordvinov 7:17

Let T = C<T> and U = C<U>. Then we simplify T <: U using (Var) rule:

C<T> <: C<U>⇔
∧

i

Ti <:var(C#i) Ui

As either C<T> or C<U> is ground, either every Ti, or every Ui is ground. This means
that every atom of the resulting formula is still semiground.
Let T = C<T> and U = D<U> with C 6= D. Then we apply the (Super) rule:

C<T> <: D<U>⇔
∨
j

D<Wj> <: D<U>,

where D<Wj> = [x 7→ T]Vj and C<x> <:: Vj . Obviously, all atoms in this formula are
still semiground.

As the non-deterministic application of subtyping rules with occurence checks is a decision
procedure for non-expansive inheritance [8], the process is either terminating, resulting in a
normalized formula, or eventually the chain of simplifications loops on some atom. In this
case, the atom is tautologically false. J

I Corollary 5.3. Each semiground formula is logically equivalent to some normalized semig-
round formula.

I Definition 5.4. Let Q def= A1 ∧ . . . ∧An be a conjunct. Maximal connected subconjuncts is
a set of conjuncts {Q1, . . . , Qm} such that
1. Q = Q1 ∧ . . . ∧Qm

2. Qi and Qj have distinct literals if i 6= j

3. If Ai and Aj have common variables then they occur in the same Qk

I Lemma 5.5. If SUBTYPE-SAT is decidable for the conjunction of normalized semiground
literals (with the only free variable x) of the form∧

i

Ti <: x ∧
∧
j

x <: Uj ∧
∧
k

Vk ≮: x ∧
∧

l

x ≮: Wl,

then SUBTYPE-SAT is decidable for the whole semiground fragment.

Proof. Let ψ be a semiground formula. By Corollary 5.3

ψ ∼CT
<:

∨
i

∧
j

ψi,j ,

where ψi,j is a normalized semiground literal. Each conjunct can be divided into maximal
connected subconjuncts in such a way that each one of them contains only one variable. The
algorithm then can check the satisfiability of each group separately. J

We define a set of substitutions

CtorSubsts = {x 7→ C<x> },

where C is a constructor from CT , and x is a vector of distinct variables.

I Lemma 5.6. Let ψ be a conjunction of normalized semiground literals with only one free
variable. Then ψ(x) is equisatisfiable with

ψsubst def=
∨

subst∈CtorSubsts

subst ψ(x)

ECOOP 2019

7:18 On Satisfiability of Nominal Subtyping with Variance

I Lemma 5.7. The SUBTYPE-SAT problem is decidable for conjunctions of normalized semig-
round literals with one free variable.

Proof. Let ψ0 be a conjunction of normalized semiground literals with one free variable.
Apply Lemma 5.6. ψsubst

0 is a semiground formula. If it is ground, we may check its
satisfiablity and terminate. Otherwise, we may act as in Lemma 5.5: apply Corollary 5.3
and convert the formula to DNF. ψsubst

0 is satisfiable iff one of the conjuncts is satisfiable.
Choose the conjunct non-deterministically and divide it into maximal connected subcon-

juncts. The algorithm then checks the satisfiability of each subconjunct φ1, i.e. we have
reduced the problem to itself. The described procedure enumerates the (possibly infinite)
sequence {ψi }i∈N.

Without loss of generality, we may conclude that all literals in ψi are distinct and that
all conjuncts have an identical free variable. Two conjuncts are equal if they are identical
as sets of literals. Note that if ψi = ψj for some i 6= j, then ψi is unsatisfiable, and we
may terminate.

For the conclusion of the proof, we refer to the notion of inheritance closure from [8]. It is
known that the inheritance closure of a finite set of types within a non-expansive class table
is finite [8]. Now, note that all ground types of ψi are obtained by application of subtyping
rules, thus they are elements of the inheritance closure for the set of ground types of ψ0.
That means that only a finite number of literals may occur in {ψi }i∈N. As every literal
occurs in each conjunct no more than once, eventually ψi = ψj for i < j. Therefore, our
procedure terminates. J

I Theorem 5.8. SUBTYPE-SAT is decidable for queries with a semiground fragment.

Proof. By Lemma 5.5 and Lemma 5.7. J

Formulas from Example 3.3 and Example 3.4 refer to the described fragment and their
satisfiability can be checked. And the formula from Theorem 4.10 goes beyond the fragment,
which is consistent with the undecidability of PCP.

The proof of Theorem 5.2 can be used to produce a generalized scheme for obtaining new
decidable fragments. We describe this scheme below.

I Definition 5.9. A normalized atom (literal) is an atom (literal) that does not have open
constructed types. In other words, a normalized atom is either a normalized semiground atom,
or x <: y, or x = y, where x and y are variables. A normalized formula is a quantifier-free
formula that only contains normalized atoms.

Consider a conjunct whose maximal connected subconjuncts consist of a single element.
Acting similarly to Lemma 5.6, we simplify the obtained formula, convert it to DNF, and
split it into maximal connected subconjuncts. If we can impose some restrictions on the class
table or the formula so that the number of different obtained subconjuncts is finite, then we
have a criterion for the termination of the procedure.

I Example 5.10. Let the class table be organized in such a way that for each pair of
constructors C and D, the literals C<x> <: D<y> and C<x> ≮: D<y> are transformed via
the application of Corollary 5.3 into such a disjunction of normalized conjuncts that each of
them may be partitioned into maximal connected subconjuncts, containing no more than
one variable from x and no more than one variable from y. Applying the scheme described
above to normalized conjuncts with n different free variables, we can only obtain normalized

A. Misonizhnik and D. Mordvinov 7:19

conjuncts which have no more than n free variables. Moreover, each quantifier-free formula
can be simplified into a normalized formula. As the number of distinct types in an inheritance
closure is bounded [8], the number of conjuncts is bounded, so the procedure will terminate.

This idea may be used to introduce some syntactic restrictions on the shape of the class
table. We leave it for the future work.

6 Related work

There is a long line of research on decidability of ground subtyping of nominal type systems
with variance. One of the latest studies has shown the Turing-completeness of Java sub-
typing [7]. C++ templates are also known to be Turing-complete [18]. Scala [12], OCaml
[10, 15] and Haskell type systems with extensions are undecidable as well. However, .NET
subtyping is decidable [5, 8]. These papers formalize and investigate type checking in certain
programming languages. In contrast, we investigate the subtyping in the presence of open
types, founded on the results on ground subtyping.

Constraint satisfiability

The most relevant recent work is [16]. Motivated by the same goals, it reduces the satisfiability
problem of type-based partially ordered sets to the first-order satisfiability problem and
proposes to use SMT-solvers to solve the constraints. Unlike our work, the type system
under consideration is a nominal fragment of Java type system without generics.

The satisfiability problem for subtyping constraints and its computational complexity for
more general (in comparison to [16]) fragments of type systems is explored in [14, 6, 9, 11].
These works explore constraints on finite and recursive types, structural and non-structural
subtyping and type constructors with covariant and contravariant type parameters; our work
studies a more general problem.

The paper [17] shows the undecidability of first-order subtyping constraints for non-
structural subtyping. This result entails the undecidability of SUBTYPE-SAT, but it uses a
significantly larger fragment of first-order logic (in particular, universally quantified formulas).
Our proof uses only quantifier-free conjunctions of positive atoms and those features of
nominal subtyping with variance which are not present in the non-structural case.

7 Conclusion

We have introduced the satisfiability problem of nominal subtyping with variance and
studied some of its properties. The undecidability of the problem has been proven using a
noticeably small fragment of the type system. We have also discussed a number of non-trivial
decidable fragments and a scheme to obtain other decidable fragments. Finding more extensive
decidable fragments is an open problem: for example, it could be done by introducing syntactic
restrictions on the shape of the class table. In addition, it would be interesting to compare
the decidable fragments with the fragment that is most widely used in practice. Another
area of future work is the construction of effective procedures for solving the SUBTYPE-SAT
problem. Subsequently, such decision procedures can be implemented in SMT-solvers, which
makes them easy to use in a variety of SMT-based program analysis approaches.

ECOOP 2019

7:20 On Satisfiability of Nominal Subtyping with Variance

References
1 Mike Barnett, K Rustan M Leino, and Wolfram Schulte. The Spec# programming system:

An overview. In International Workshop on Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, pages 49–69. Springer, 2004.

2 Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Handbook of Model
Checking, pages 305–343. Springer, 2018.

3 Leonardo Mendonça de Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction
and applications. Commun. ACM, 54(9):69–77, 2011.

4 ECMA ECMA. 335: Common language infrastructure (CLI), 2005.
5 Burak Emir, Andrew Kennedy, Claudio V. Russo, and Dachuan Yu. Variance and Generalized

Constraints for C# Generics. In ECOOP, volume 4067 of Lecture Notes in Computer Science,
pages 279–303. Springer, 2006.

6 Alexandre Frey. Satisfying Subtype Inequalities in Polynomial Space. In SAS, volume 1302 of
Lecture Notes in Computer Science, pages 265–277. Springer, 1997.

7 Radu Grigore. Java generics are Turing complete. In POPL, pages 73–85. ACM, 2017.
8 Andrew J Kennedy and Benjamin C Pierce. On decidability of nominal subtyping with

variance, 2007.
9 Viktor Kuncak and Martin C. Rinard. Structural Subtyping of Non-Recursive Types is

Decidable. In LICS, pages 96–107. IEEE Computer Society, 2003.
10 Mark Lillibridge. Translucent sums: A foundation for higher-order module systems. PhD

thesis, Carnegie Mellon University, 1997.
11 Joachim Niehren, Tim Priesnitz, and Zhendong Su. Complexity of Subtype Satisfiability over

Posets. In ESOP, volume 3444 of Lecture Notes in Computer Science, pages 357–373. Springer,
2005.

12 Martin Odersky. Scaling DOT to Scala–soundness, 2016.
13 Emil L Post. A variant of a recursively unsolvable problem. Bulletin of the American

Mathematical Society, 52(4):264–268, 1946.
14 Vaughan R. Pratt and Jerzy Tiuryn. Satisfiability of Inequalities in a Poset. Fundam. Inform.,

28(1-2):165–182, 1996.
15 Andreas Rossberg. Undecidability of OCaml type checking, 1999.
16 Elena Sherman, Brady J. Garvin, and Matthew B. Dwyer. Deciding Type-Based Partial-Order

Constraints for Path-Sensitive Analysis. ACM Trans. Softw. Eng. Methodol., 24(3):15:1–15:33,
2015.

17 Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen. The
first-order theory of subtyping constraints. In POPL, pages 203–216. ACM, 2002.

18 Todd L. Veldhuizen. C++ Templates are Turing complete, 2003.
19 Mirko Viroli. On the recursive generation of parametric types. Technical report, Technical

Report DEIS-LIA-00-002, Universita di Bologna, 2000.

Static Analysis for
Asynchronous JavaScript Programs
Thodoris Sotiropoulos1

Athens University of Economics and Business, Greece

Benjamin Livshits
Imperial College London, UK
Brave Software, London, UK

Abstract
Asynchrony has become an inherent element of JavaScript, as an effort to improve the scalability
and performance of modern web applications. To this end, JavaScript provides programmers with a
wide range of constructs and features for developing code that performs asynchronous computations,
including but not limited to timers, promises, and non-blocking I/O.

However, the data flow imposed by asynchrony is implicit, and not always well-understood by
the developers who introduce many asynchrony-related bugs to their programs. Worse, there are few
tools and techniques available for analyzing and reasoning about such asynchronous applications.
In this work, we address this issue by designing and implementing one of the first static analysis
schemes capable of dealing with almost all the asynchronous primitives of JavaScript up to the 7th
edition of the ECMAScript specification.

Specifically, we introduce the callback graph, a representation for capturing data flow between
asynchronous code. We exploit the callback graph for designing a more precise analysis that respects
the execution order between different asynchronous functions. We parameterize our analysis with
one novel context-sensitivity flavor, and we end up with multiple analysis variations for building
callback graph.

We performed a number of experiments on a set of hand-written and real-world JavaScript
programs. Our results show that our analysis can be applied to medium-sized programs achieving 79%
precision, on average. The findings further suggest that analysis sensitivity is beneficial for the vast
majority of the benchmarks. Specifically, it is able to improve precision by up to 28.5%, while it
achieves an 88% precision on average without highly sacrificing performance.

2012 ACM Subject Classification Theory of computation → Program analysis; Software and its
engineering → Semantics

Keywords and phrases static analysis, asynchrony, JavaScript

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.8

Related Version A full version of the paper is available at https://www.imperial.ac.uk/
media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/
SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf.

Funding The work described here was partially supported by the CROSSMINER Project, which
has received funding from the European Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 732223.

Acknowledgements We would like to thank the anonymous ECOOP reviewers, as well as Max
Schlueter and Dimitris Mitropoulos for their insightful comments and feedback.

1 The work of this author was mostly done while at Imperial College London.

© Thodoris Sotiropoulos and Benjamin Livshits;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 8; pp. 8:1–8:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.8
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1718-pg-projects/SotiropoulosT-Static-Analysis-for-Asynchronous-JavaScript-Programs.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Static Analysis for Asynchronous JavaScript Programs

1 Introduction

JavaScript is an integral part of web development. Since its initial release in 1995, it has
evolved from a simple scripting language – primarily used for interacting with web pages –
into a complex and general-purpose programming language used for developing both client-
and server-side applications. The emergence of Web 2.0 along with the dynamic features of
JavaScript, which facilitate a flexible and rapid development, have led to a dramatic increase
in its popularity. Indeed, according to the annual statistics provided by Github, which is the
leading platform for hosting open-source software, JavaScript is by far the most popular and
active programming language from 2014 to 2018 [14].

Although the dominance of JavaScript is impressive, the community has widely criticized
it because it poses many concerns as to the security or correctness of the programs [36].
JavaScript is a language with a lot of dynamic and metaprogramming features, including
but not limited to prototype-based inheritance, dynamic property lookups, implicit type
coercions, dynamic code loading, and more. Many developers often do not understand or
do not properly use these features. As a result, they introduce errors to their programs –
which are difficult to debug – or baleful security vulnerabilities. In this context, JavaScript
has attracted many engineers and researchers over the past decade to: (1) study and reason
about its peculiar characteristics, and (2) develop new tools and techniques – such as type
analyzers [19, 23, 21], IDE and refactoring tools [6, 7, 8, 11], or bug and vulnerability
detectors [28, 15, 34, 31, 5, 37] – to assist developers with the development and maintenance
of their applications. Program analysis, and especially static analysis, plays a crucial role in
the design of such tools [38].

Additionally, preserving the scalability of modern web applications has become more
critical than ever. As an effort to improve the throughput of web programs, JavaScript
has started to adopt an event-driven programming paradigm [4]. In this context, code is
executed asynchronously in response to certain events, e.g., user input, a response from a
server, data read from disk, etc. In the first years of JavaScript, someone could come across
that asynchrony mainly in a browser environment e.g., DOM events, AJAX calls, timers,
etc. However, in recent years, asynchrony has become a salient and intrinsic element of the
language, as newer versions of the language’s core specification (i.e., ECMAScript) have
introduced more and more asynchronous features. For example, ECMAScript 6 introduces
promises; an essential element of asynchronous programming that allows developers to track
the state of an asynchronous computation easily. Specifically, the state of a promise object
can be: (1) fulfilled when the associated operation is complete, and the promise object tracks
its resulting value, (2) rejected when the associated operation has failed, and (3) pending
when the associated operation has been neither completed nor failed.

Promises are particularly useful for asynchronous programming because they provide an
intuitive way for creating chains of asynchronous computation that facilitate the enforcement
of program’s execution order as well as error propagation [12, 11]. Depending on their state,
promises trigger the execution of certain functions (i.e., callbacks) asynchronously. To do so,
the API of promises provides the method x.then(f1, f2) for registering new callbacks (i.e.,
f1 and f2) on a promise object x. For example, we call the callback f1 when the promise is
fulfilled, while we trigger the callback f2 once the promise is rejected. The method x.then()
returns a new promise which the return value of the provided callbacks (i.e., f1, f2) fulfills.
Since their emergence, JavaScript developers have widely embraced promises. For example,
a study in 2015 showed that 75% of JavaScript frameworks use promises [12].

T. Sotiropoulos and B. Livshits 8:3

1 asyncRequest(url, options)
2 .then(function (response) {
3 honoka.response = response.clone();
4
5 switch (options.dataType.toLowerCase()) {
6 case "arraybuffer":
7 return honoka.response.arrayBuffer();
8 case "json":
9 return honoka.response.json();

10 ...
11 default:
12 return honoka.response.text();
13 }
14 })
15 .then(function (responseData) {
16 if (options.dataType === "" || options.dataType === "auto") {
17 const contentType = honoka.response.headers.get("Content-Type");
18 if (contentType && contentType.match("/application\/json/i")) {
19 responseData = JSON.parse(responseData);
20 }
21 }
22 ...
23 });

Figure 1 Real-world example that mixes promises with asynchronous I/O.

Building upon promises, newer versions of ECMAScript have added more language
features related to asynchrony. Specifically, in ECMAScript 8, we have the async/await
keywords. The async keyword declares a function as asynchronous that returns a promise
fulfilled with its return value, while await x defers the execution of an asynchronous function
until the promise object x is settled (i.e., it is either fulfilled or rejected). The latest edition
of ECMAScript (ECMAScript 9) adds asynchronous iterators and generators that allow
developers to iterate over asynchronous data sources.

Beyond promises, many JavaScript applications are written to perform non-blocking I/O
operations. Unlike traditional statements, when we perform a non-blocking I/O operation,
the execution is not interrupted until I/O terminates. By contrast, the I/O operation is done
asynchronously, which means that the execution proceeds to the next tasks while I/O takes
place. Programmers often mix asynchronous I/O with promises. For instance, consider the
real-world example of Figure 1. At line 1, the code performs an asynchronous request and
returns a promise object that is fulfilled asynchronously once the request succeeds. Then,
this promise object can be used for processing the response of the server asynchronously. For
instance, at lines 2–23, we create a promise chain. The first callback of this chain (lines 2–14)
clones the response of the request, and assigns it to the property response of the object
honoka (line 3). Then, it parses the body of the response, and finally, the return value of the
callback fulfills the promise object allocated by the first invocation of then() (lines 5–13).
The second callback (lines 15–23) retrieves the headers of the response – which the statement
at line 3 assigns to honoka.response – and if the content type is “application/json”, it
converts the data of the response into a JSON object (lines 17–19).

Like the other characteristics of JavaScript, programmers do not always clearly understand
asynchrony, as a large number of asynchrony-related questions issued in popular sites like
stackoverflow.com2 [27, 26], or the number of bugs reported in open-source repositories [39,
5] indicate. However, existing tools and techniques have limited (and in many cases no)

2 https://stackoverflow.com/

ECOOP 2019

https://stackoverflow.com/

8:4 Static Analysis for Asynchronous JavaScript Programs

support for asynchronous programs. Designing static analysis for asynchrony involves several
challenges not addressed by previous work. In particular, existing tools mainly focus on the
event system of client-side JavaScript applications [18, 33], and they lack the support of the
more recent features added to the language, such as promises. Also, many previous tools
conservatively consider that all the asynchronous callbacks processed by the event loop – the
program point that continuously waits for new events to come and is responsible for the
scheduling and execution of callbacks – can be called in any order [18, 33, 21]. However, such
an approach may lead to imprecision and false positives. Back to the example of Figure 1, it is
easy to see that an analysis that does not respect the execution order between the first and the
second callback will report a type error at line 17 (access of honoka.response.headers.get
(" Content - Type ")). Specifically, an imprecise analysis assumes that the callback defined
at lines 15–23 might be executed first; therefore, honoka.response, assigned at line 3, might
be uninitialized.

In this work, we tackle the issues above, by designing and implementing a static analysis
that deals with asynchronous JavaScript programs. To do so, we first propose a model for
understanding and expressing a wide range of asynchronous constructs found in JavaScript.
Based on this model, we design our static analysis. We propose a new representation,
which we call callback graph, that provides information about the execution order of the
asynchronous code. The callback graph proposed in this work tries to shed light on how data
flow between asynchronous code is propagated. Contrary to previous works, we leverage
the callback graph and devise a more precise analysis that respects the execution order of
asynchronous functions. Furthermore, we parameterize our analysis with one novel context-
sensitivity option designed for asynchronous code. Specifically, we distinguish data flow
between asynchronous callbacks based on the promise object that they belong to, or the next
computation that the execution proceeds to.

Contributions. Our work makes the following four contributions:
We propose a calculus, i.e., λq, for modeling asynchrony. Our calculus unifies differ-
ent asynchronous idioms into a single model. Thus, we can express promises, timers,
asynchronous I/O, and other asynchronous features found in the language (§2).
We design and implement a static analysis that is capable of handling asynchronous
JavaScript programs by exploiting the abstract version of λq. To the best of our knowledge,
our analysis is the first to deal with JavaScript promises (§3.1).
We propose the callback graph, a representation that illustrates the execution order
between asynchronous callbacks. Building on that, we propose a more precise analysis,
(i.e., callback-sensitive analysis) that internally consults the callback graph to retrieve
information about the temporal relations of asynchronous functions so that it propagates
data flow accordingly. Besides that, we parameterize our analysis with a novel context-
sensitivity option (i.e., QR-sensitivity) used for distinguishing asynchronous callbacks.
(§3.2, §3.3).
We evaluate the performance and the precision of our analysis on a set of micro benchmarks
and a set of real-world JavaScript modules. For the impatient reader, we find that our
prototype is able to analyze medium-sized asynchronous programs, and the analysis
sensitivity is beneficial for improving the analysis precision. The results showed that
our analysis is able to achieve a 79% precision for the callback graph, on average. The
analysis sensitivity (i.e. callback- and QR-sensitivity) can further improve callback graph
precision by up to 28.5% and reduce the total number of type errors by 13.9% as observed
in the real-world benchmarks (§4).

T. Sotiropoulos and B. Livshits 8:5

v ∈ V al ::= ... | ⊥
e ∈ Exp ::= ...

| newQ() | e.fulfill(e) | e.reject(e) | e.registerFul(e, e, . . .) | e.registerRej(e, e, . . .)
| append(e) | pop() | •

E ::= ...
| E.fullfill(e) | v.fulfill(E) | E.reject(e) | v.reject(E)
| E.registerFul(e, e, . . .) | v.registerFul(v, . . . , E, e, . . .)
| E.registerRej(e, e, . . .) | v.registerRej(v, . . . , E, e, . . .)
| append(E)

Figure 2 The syntax of λq.

2 Modeling Asynchrony

As a starting point, we need to define a model to express asynchrony. The goal of this model
is to provide us with the foundations for gaining a better understanding of the asynchronous
primitives and ease the design of a static analysis for asynchronous JavaScript programs.
This model is expressed through a calculus called λq; an extension of λjs which is the core
calculus for JavaScript developed by Guha et. al. [16]. Our calculus is inspired by previous
work [26, 25], however, it is designed to be flexible so that we can express promises, timers,
asynchronous I/O, and other sources of asynchrony found in the language up to ECMAScript
7, such as thenables. Also unlike previous work – as we will see later on – our calculus enables
us to model the effects of the exceptions trapped by the event loop. Additionally, we are
able to handle callbacks that are invoked with arguments passed during callback registration;
something that is not supported by the previous models. However, note that λq does not
handle the async/await keywords and the asynchronous iterators/generators introduced in
the recent editions of the language.

2.1 The λq calculus
The key component of our model is queue objects. Queue objects are closely related to
JavaScript promises. Specifically, a queue object – like a promise – tracks the state of an
asynchronous job, and it can be in one of the following states: (1) pending, (2) fulfilled or
(3) rejected. A queue object may trigger the execution of callbacks depending on its state.
Initially, a queue object is pending. A pending queue object can transition to a fulfilled or
a rejected queue object. A queue object is fulfilled or rejected with a value. This value is
later passed as an argument of the corresponding callbacks. Once a queue object is either
fulfilled or rejected, its state is final and cannot be changed. We keep the same terminology
as promises, so if a queue object is either fulfilled or rejected, we call it settled.

2.1.1 Syntax and Domains
Figure 2 illustrates the syntax of λq. For brevity, we present only the new constructs added
to the language. Specifically, we add eight new expressions:

newQ(): This expression creates a fresh queue object in a pending state. It has no callbacks
associated with it.
e1.fulfill(e2): This expression fulfills the receiver (i.e., the expression e1) with the value
of e2.

ECOOP 2019

8:6 Static Analysis for Asynchronous JavaScript Programs

a ∈ Addr = {li | i ∈ Z∗} ∪ {ltime, lio}
π ∈ Queue = Addr ↪→ QueueObject

q ∈ QueueObject = QueueState× Callback∗ × Callback∗ ×Addr∗

s ∈ QueueState = {pending} ∪ ({fulfilled, rejected} × V al)
clb ∈ Callback = Addr × F × V al∗

κ ∈ ScheduledCallbacks = Callback∗

κ ∈ ScheduledT imerIO = Callback∗

φ ∈ QueueChain = Addr∗

Figure 3 The concrete domains of λq.

e1.reject(e2): This expression rejects the receiver (i.e., the expression e1) with the value
of e2.
e1.registerFul(e2, e3, . . .): This expression registers the callback e2 to the receiver. This
callback is executed only when the receiver is fulfilled. This expression also expects
another queue object passed as the second argument, i.e., e3. This queue object will
be fulfilled with the return value of the callback e2. This allows us to model chains of
promises where a promise resolves with the return value of another promise’s callback.
This expression might receive optional parameters (i.e., expressed through “. . . ”) with
which e2 is called when the queue object is fulfilled with ⊥ value. We will justify the
intuition behind that later on.
e1.registerRej(e2, e3, . . .): The same as e.registerFul(. . .), but this time the given callback is
executed once the receiver is rejected.
append(e): This expression appends the queue object e to the top of the current queue
chain. As we will see later, the top element of a queue chain corresponds to the queue
object that is needed to be rejected when the execution encounters an uncaught exception.
pop(): This expression pops the top element of the current queue chain.
The last expression • stands for the event loop.

Observe that we use evaluation contexts [9, 16, 27, 25, 26] to express how the evaluation
of an expression proceeds. The symbol E denotes which sub-expression is currently being
evaluated. For instance, E.fulfill(e) describes that we evaluate the receiver of fulfill, whereas
v.fulfill(E) implies that the receiver has been evaluated to a value v, and the evaluation
now lies on the argument of fulfill. Beyond those expressions, the λq calculus introduces a
new value, that is, ⊥. This value differs from null and undefined because it expresses the
absence of value. Thus, it does not have correspondence with any JavaScript value.

Figure 3 presents the semantic domains of λq. In particular, a queue is a partial map
of addresses to queue objects. The symbol li – where i is a positive integer – indicates an
address. Notice that the set of the addresses also includes two special reserved addresses,
i.e., ltime, lio. We use these two addresses to store the queue objects responsible for keeping
the state of callbacks related to timers and asynchronous I/O respectively (Section 2.1.4
explains how we model those JavaScript features). A queue object is described by its state –
recall that a queue object is either pending or fulfilled and rejected with a value – a sequence
of callbacks executed on fulfillment, and a sequence of callbacks called on rejection. The
last element of a queue object is a sequence of addresses. These addresses correspond to

T. Sotiropoulos and B. Livshits 8:7

the queue objects that are dependent on the current. A queue object q1 depends on q2,
when q1 is settled whenever q2 is settled. This means that when the queue object q2 is
fulfilled (rejected), q1 is also fulfilled (rejected) with the same value as q2. We create such
dependencies when we settle a queue object with another queue object. In this case, the
receiver is dependent on the queue object used as an argument.

Moving to the domains of callbacks, we see that a callback consists of an address, a
function, and a list of values (i.e., arguments of the function). Note that the first component
denotes the address of the queue object that is fulfilled with the return value of the function.
In the list of callbacks κ ∈ ScheduledCallbacks, we keep the order in which callbacks are
scheduled. Note that we maintain one more list of callbacks (i.e., τ ∈ ScheduledT imerIO)
where we store the callbacks registered on the queue objects located at the addresses ltime, lio.
We defer the discussion about why we keep two separate lists until Section 2.1.3.

A queue chain φ ∈ QueueChain is a sequence of addresses. In a queue chain, we store the
queue object that we reject, when there is an uncaught exception in the current execution.
Specifically, when we encounter an uncaught exception, we inspect the top element of the
queue chain, and we reject it. If the queue chain is empty, we propagate the exception to the
call stack as usual.

2.1.2 Semantics
Equipped with the appropriate definitions of the syntax and domains, in Figure 4, we present
the small-step semantics of λq which is an adaptation of previous calculi [25, 26]. Note that
we demonstrate the most representative rules of our semantics; we omit some rules for brevity.
For what follows, the binary operation denoted by the symbol · means the addition of an
element to a list, the operation indicated by :: stands for list concatenation, while ↓i means
the projection of the ith element.

The rules of our semantics adopt the following form:

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

That form expresses that a given queue π, a queue chain φ, two sequences of callbacks κ and
τ , and an expression e in the evaluation context E lead to a new queue π′, a new queue chain
φ′, two new sequences of callbacks κ′ and τ ′, and a new expression e′ in the same evaluation
context E, assuming that the expression e is reduced to e′ (i.e., e ↪→ e′). The [e-context]
rule describes this behavior.

The [newQ] rule creates a new queue object and adds it to the queue using a fresh
address. This new queue object is pending, and it does not have any callbacks related to it.

The [fulfill-pending] rule demonstrates the case when we fulfill a pending queue
object with the value v, where v 6= ⊥, and v 6∈ dom(π) (i.e., it does not correspond to any
queue object). First, we change the state of the receiver object from “pending” to “fulfilled”.
Second, we update the already registered callbacks (if any) by setting the value v as the only
argument of them (forming the list t′). Third, we asynchronously fulfill any queue object
that depend on the current one (see the list d). To do so, we form the list of callbacks f .
Every element (α, λx.x, [v]) ∈ f contains the identity function λx.x that is invoked with the
value v. Upon exit, the identity function fulfills the queue object α, where α ∈ d. Then, we
add the updated callbacks t′ and the list of functions f to the list of scheduled callbacks κ.
Notice that the receiver must be neither ltime nor lio. Also, note that the callbacks of f are
scheduled before those included in t′ (i.e., κ′ = κ :: (f :: t′)). This means that we fulfill any
dependent queue objects before the execution of callbacks.

ECOOP 2019

8:8 Static Analysis for Asynchronous JavaScript Programs

e-context
e ↪→ e′

π, φ, κ, τ, E[e]→ π′, φ′, κ′, τ ′, E[e′]

newQ
freshα π′ = π[α 7→ (pending, [], [], [])]

π, φ, κ, τ, E[newQ()]→ π′, φ, κ, τ, E[α]

fulfill-pending
v 6= ⊥ (pending, t, k, d) = π(p) v 6∈ dom(π)

t′ = 〈(α, f, [v]) | (α, f, a) ∈ t〉 f = 〈(α, λx.x, [v]) | α ∈ d〉
κ′ = κ :: (f :: t′) χ = (fulfilled, v) π′ = π[p 7→ (χ, [], [], [])]

p 6= ltime ∧ p 6= lio

π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ′, τ, E[undef]

fulfill-pend-pend
π(p) ↓1= pending v ∈ dom(π)

(pending, t, k, d) = π(v) π′ = π[v 7→ (pending, t, k, d · p)]
π, φ, κ, τ, E[p.fulfill(v)]→ π′, φ, κ, τ, E[undef]

fulfill-pend-ful
π(p) ↓1= pending v ∈ dom(π) π(v) ↓1= (fulfilled, v′)

π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[p.fulfill(v′)]

fulfill-settled
π(p) ↓1 6= pending

π, φ, κ, τ, E[p.fulfill(v)]→ π, φ, κ, τ, E[undef]

registerFul-pending
(pending, t, k, d) = π(p) t′ = t · (p′, f, [n1, n2, . . . , nn])

π′ = π[p 7→ (pending, t′, k, d)]
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π′, φ, κ, τ, E[undef]

registerFul-fulfilled
p 6= ltime ∧ p 6= lio π(p) ↓1= (fulfilled, v)

v 6= ⊥ κ′ = κ · (p′, f, [v])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ′, τ, E[undef]

registerFul-fulfilled-⊥
p 6= ltime ∧ p 6= lio π(p) ↓1= (fulfilled,⊥)

κ′ = κ · (p′, f, [n1, n2, . . . , nn])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ′, τ, E[undef]

registerFul-timer-io-⊥
p = ltime ∨ p = lio π(p) ↓1= (fulfilled,⊥)

τ ′ = τ · (p′, f, [n1, n2, . . . , nn])
π, φ, κ, τ, E[p.registerFul(f, p′, n1, n2, . . . , nn)]→ π, φ, κ, τ ′, E[undef]

append
p ∈ dom(π) φ′ = p · φ

π, φ, κ, τ, E[append(p)]→ π, φ′, κ, τ, E[undef]

pop

π, p · φ, κ, τ, E[pop()]→ π, φ, κ, τ, E[undef]

error
φ = p · φ′

π, φ, κ, τ, E[err v]→ π, φ′, κ, τ, E[p.reject(v)]

Figure 4 The semantics of λq.

T. Sotiropoulos and B. Livshits 8:9

Remark. When we fulfill a queue object with a ⊥ value (i.e., v = ⊥), we do not update the
arguments of the callbacks registered on the queue object p. In other words, we follow all
the steps described in the [fulfill-pending] rule except for creating the list t′. We omit
the corresponding rule for brevity.

The [fulfill-pend-pend] describes the scenario of fulfilling a pending queue object
p with another pending queue object v. In this case, we do not fulfill the queue object p
synchronously. Instead, we make it dependent on the queue object v given as an argument.
To do so, we update the queue object v by adding p to its list of dependent queue objects
(i.e., d · p). Notice that both p and v remain pending.

The [fulfill-pend-ful] rule demonstrates the case when we try to fulfill a pending
queue object p with the fulfilled queue object v. Then, p resolves with the same value as the
queue object v. This is expressed by the resulting expression p.fulfill(v′).

The [fulfill-settled] rule illustrates the case when we try to fulfill a settled queue
object. This rule does not update the state.

The [registerFul-pending] rule adds the provided callback f to the list of callbacks
that we should execute once the queue object p is fulfilled. Note that this rule also associates
this callback with the queue object p′ given as the second argument. This means that p′
is fulfilled upon the termination of f . Also, this rule adds any extra arguments passed in
registerFul as the arguments of f .

The [registerFul-fulfilled] rule adds the given callback f to the list κ (assuming
that the receiver is neither ltime nor lio). We use the fulfilled value of the receiver as the
only argument of the given function. Like the previous rule, it relates the provided queue
object p′ with the execution of the callback. This time we do ignore any extra arguments
passed in registerFul, as we fulfill the queue object p with a value that is not ⊥.

The [registerFul-fulfilled-⊥] rule describes the case where we register a callback f
on a queue object fulfilled with a ⊥ value. Unlike the [registerFul-fulfilled] rule, this
rule does not neglect any extra arguments passed in registerFul. In particular, it makes them
parameters of the given callback. This distinction allows us to pass arguments explicitly to a
callback. Most notably, these arguments are not dependent on the value with which a queue
object is fulfilled or rejected. For example, this rules enables us to model extra arguments
passed in a timer- or asynchronous I/O-related callback (e.g., setTimeout(func, 10, arg1,
arg2), etc.).

The [registerFul-timer-io-⊥] rule is the same as the previous one, but this time we
deal with queue objects located either at ltime or lio. Thus, we add the given callback f to
the list τ instead of κ.

The [append] rule appends the element p to the front of the current queue chain. Note
that this rule requires the element p to be a queue object (i.e., p ∈ dom(π)). On the other
hand, the [pop] rule removes the top element of the queue chain.

The [error] rule demonstrates the case when we encounter an uncaught exception, and
the queue chain is not empty. In that case, we do not propagate the exception to the caller,
but we pop the queue chain and get the top element. In turn, we reject the queue object p
specified in that top element. In this way, we capture the actual behavior of the uncaught
exceptions triggered during the execution of an asynchronous callback.

2.1.3 Modeling the Event Loop
A reader might wonder why do we keep two separate lists, i.e., the list τ for holding callbacks
coming from the ltime or lio queue objects, and the list κ for callbacks stemming from any
other queue object. The intuition behind this design choice is that it is convenient for us to

ECOOP 2019

8:10 Static Analysis for Asynchronous JavaScript Programs

event-loop
κ = (q, f, a) · κ′ φ = [] φ′ = q · φ

π, φ, κ, τ, E[•]→ π, φ′, κ′, τ, q.fulfill(E[f(a)]); pop(); •

event-loop-timers-io
pick (q, f, a)from τ

τ ′ = 〈ρ | ∀ρ ∈ τ.ρ 6= (q, f, a)〉 φ = [] φ′ = q · φ
π, φ, [], E[•]→ π, φ′, [], τ ′, q.fulfill(E[f(a)]); pop(); •

Figure 5 The semantics of the event loop.

e ∈ Exp ::= ...
| addTimerCallback(e1, e2, e3, . . .) | addIOCallback(e1, e2, e3, . . .)

E ::= ...
| addTimerCallbackCallback(E, e, . . .) | addTimerCallback(v, . . . , E, e, . . .)
| addIOCallback(E, e, . . .) | addIOCallback(v, . . . , E, e, . . .)

Figure 6 Extending the syntax of λq to deal with timers and asynchronous I/O.

model the concrete semantics of the event loop correctly. In particular, the implementation
of the event loop assigns different priorities to the callbacks depending on their kind [25, 32].
For example, the event loop processes a callback of a promise object before any timer- or
asynchronous I/O-related callback regardless of their registration order.

In this context, Figure 5 demonstrates the semantics of the event loop. The [event-loop]
rule pops the first scheduled callback from the list κ. We get the queue object q included
in that callback, and we attach it to the front of the queue chain. Adding q to the top of
the queue chain allows us to reject that queue object, when there is an uncaught exception
during the execution of f . In this case, the evaluation of fulfill will not have any effect on the
already rejected queue object q (recall the [fullfill-settled] rule). Furthermore, observe
how the event loop is reduced, i.e., q.fulfill(f(a)); pop(); •. Specifically, once we execute the
callback f and fulfill the dependent queue object q with the return value of f , we evaluate
the pop() expression. This means that we pop the top element of the queue chain before
re-evaluating the event loop. This is an invariant of the semantics of the event loop: every
time we evaluate it, the queue chain is always empty.

The [event-loop-timers-io] rule handles the case when the list κ is empty. In other
words, the rule states that when there are not any callbacks that neither come from the
ltime nor the lio queue object, inspect the list τ , and pick non-deterministically one of those.
Selecting a callback non-deterministically allows us to over-approximate the actual behavior
of the event loop regarding its different execution phases [25]. Overall, the rule describes the
scheduling policy presented in the work of Loring et. al. [25], where initially we look for any
promise-related callback (if any). Otherwise, we choose any callback associated with timers
or asynchronous I/O at random.

2.1.4 Modeling Timers & Asynchronous I/O
To model timers and asynchronous I/O, we follow a similar approach to the work of Loring
et. al. [25]. Specifically, we start with an initial queue π that contains two queue objects: the
qtime, and qio that are located at ltime and lio respectively. Both qtime and qio are initialized
as ((fulfilled,⊥), [], [], []). We extend the syntax of λq by adding two more expressions. Figure 6

T. Sotiropoulos and B. Livshits 8:11

add-timer-callback
q = π(ltime)

π, φ, κ, τ, addTimerCallback(f, n1, . . .)→ π, φ, κ, q.registerFul(f, q, n1, . . .)

add-io-callback
q = π(lio)

π, φ, κ, τ, addIOCallback(f, n1, . . .)→ π, φ, κ, q.registerFul(f, q, n1, . . .)

Figure 7 Extending the semantics of λq to deal with timers and asynchronous I/O.

shows the extended syntax of λq to deal with timers and asynchronous I/O, while Figure 7
presents the rules related to those expressions.

The new expressions have high correspondence to each other. Specifically, the
addTimerCallback(. . .) construct adds the callback e1 to the queue object located at the
address ltime. The arguments of that callback are any optional parameters passed in
addTimerCallback, i.e., e2, e3, and so on. From Figure 7, we observe that the [add-timer-
callback] rule retrieves the queue object q corresponding to the address ltime. Recall again
that the ltime can be found in the initial queue. Then, the given expression is reduced to
q.registerFul(f, q, n1, . . .). In particular, we add the new callback f to the queue object
found at ltime. Observe that we pass the same queue object (i.e., q) as the second argument
of registerFul. Recall from Figure 4, according to the [fulfill-settled] rule, trying to
fulfill (and similarly to reject) a settled queue object does not have any effect on the state.
Beyond that, since q is fulfilled with ⊥, the extra arguments (i.e., n1,. . .) are also passed as
arguments in the invocation of f .

The semantics of the addIOCallback(. . .) primitive is the same with that of
addTimerCallback(. . .); however, this time, we use the queue object located at lio.

2.2 Expressing Promises in Terms of λq

The queue objects and their operations introduced in λq are very closely related to JavaScript
promises. Therefore, the translation of promises’ operations into λq is straightforward. We
model every property and method (except for Promise.all()) by faithfully following the
ECMAScript specification.

1 Promise.resolve = function(value) {
2 var promise = newQ();
3 if (typeof value.then === "function") {
4 var t = newQ();
5 t.fulfill(⊥);
6 t.registerFul(value.then, t, promise.fulfill, promise.reject);
7 } else
8 promise.fulfill(value);
9 return promise;

10 }

Figure 8 Expressing Promise.resolve in terms of λq.

ECOOP 2019

8:12 Static Analysis for Asynchronous JavaScript Programs

Example – Modeling Promise.resolve(). In Figure 8, we see how we model the
Promise.resolve() function in terms of λq

3. The JavaScript Promise.resolve() function
creates a new promise, and resolves it with the given value. According to ECMAScript, if
the given value is a thenable, (i.e., an object that has a property named “then” and that
property is a callable), the created promise resolves asynchronously. Specifically, we execute
the function value.then() asynchronously, and we pass the resolving functions (i.e., fulfill,
reject) as its arguments. Observe how the expressiveness of λq can model this source of
asynchrony (lines 4–6), which we cannot model through the previous work [26, 25]. First, we
create a fresh queue object t, and we fulfill it with ⊥ (lines 4, 5). Then, at line 6, we schedule
the execution of value.then() by registering it on the newly created queue object t. Notice
that we also pass promise.fulfill and promise.reject as extra arguments. This means
that those functions will be the actual arguments of value.then() because t is fulfilled
with ⊥. On the other hand, if value is not a thenable, we synchronously resolve the created
promise using the promise.fulfill construct at line 8.

3 The Core Analysis

The λq calculus presented in Section 2 is the touchstone of the static analysis proposed for
asynchronous JavaScript programs. The analysis is designed to be sound; thus, we devise
abstract domains and semantics that over-approximate the behavior of λq. Currently, there
are few implementations available for asynchronous JavaScript, and previous efforts mainly
focus on modeling the event system of client-side applications [18, 33]. To the best of our
knowledge, it is the first static analysis for ES6 promises. The rest of this section describes
the details of the analysis.

3.1 The Analysis Domains

l ∈ Âddr = {li | i is an allocation site} ∪ {ltime, lio}

π ∈ Q̂ueue = Âddr ↪→ P(̂QueueObject)

q ∈ ̂QueueObject = ̂QueueState× P(̂Callback)× P(̂Callback)× P(Âddr)

qs ∈ ̂QueueState = {pending} ∪ ({fulfilled, rejected} × V alue)

clb ∈ ̂Callback = Âddr × F × V alue∗

κ ∈ ̂ScheduledCallbacks = (P(̂Callback))∗

τ ∈ ̂ScheduledT imerIO = (P(̂Callback))∗

φ ∈ ̂QueueChain = (P(Âddr))∗

Figure 9 The abstract domains of λq.

3 For brevity, Figure 8 omits some steps described in the specification of the Promise.resolve() function.
For example, according to ECMAScript, if this value of the Promise.resolve() function is not an
object, then a TypeError is thrown. In the implementation, though, we follow all the steps that are
described in the specification.

T. Sotiropoulos and B. Livshits 8:13

Figure 9 presents the abstract domains of the λq calculus that underpin our static analysis.
Below we make a summary of our primary design choices.

Abstract Addresses: As a starting point, we employ allocation site abstraction for modeling
the space of addresses. It is the standard way used in literature for abstracting addresses
that keeps the domain finite [19, 27]. Notice that we still define two internal addresses, i.e.,
ltime, lio, corresponding to the addresses of the queue objects responsible for timers and
asynchronous I/O respectively.

Abstract Queue: We define an abstract queue as the partial map of abstract addresses to
an element of the power set of abstract queue objects. Therefore, an address might point to
multiple queue objects. This abstraction over-approximates the behavior of λq and allows us
to capture all possible program’s behaviors that might stem from the analysis imprecision.

Abstract Queue Objects: A tuple consisting of an abstract queue state – observe that the
domain of abstract queue states is the same as λq – two sets of abstract callbacks (executed
on fulfillment and rejection respectively), and a set of abstract addresses (used to store the
queue objects that are dependent on the current one) represents an abstract queue object.
Notice how this definition differs from that of λq. First, we do not keep the registration order
of callbacks; therefore, we convert the two lists into two sets. The programming pattern
related to promises supports our design decision. Specifically, developers often use promises
as a chain; registering two callbacks on the same promise object is quite uncommon. Madsen
et. al. [27] made similar observations for the event-driven programs.

This abstraction can negatively affect precision only when we register multiple callbacks
on a pending queue object. Recall from Figure 4, when we register a callback on a settled
queue object, we can precisely track its execution order since we directly add it to the list of
scheduled callbacks.

Finally, we define the last component of abstract queue objects as a set of addresses;
something that enables us to track all possible dependent queue objects soundly.

Abstract Callback: An abstract callback comprises one abstract address, one function,
and a list of values that stands for the arguments of the function. Recall that the abstract
address corresponds to the queue object that the return value of the function fulfills.

Abstract List of Scheduled Callbacks: We use a list of sets to abstract the domain that is re-
sponsible for maintaining the callbacks that are ready for execution (i.e., ̂ScheduledCallbacks

and ̂ScheduledT imerIO). In this context, the ith element of a list denotes the set of callbacks
that are executed after those placed at the (i− 1)th position and before the callbacks located
at the (i+ 1)th position of the lists. The execution of callbacks of the same set is not known
to the analysis; they can be called in any order. For example, consider the following sequence
[{x}, {y, z}, {w}], where x, y, z, w ∈ ̂Callback. We presume that the execution of elements
y, z succeeds that of x, and precedes that of w, but we cannot compare y with z, since they
are elements of the same set; thus, we might execute y before z and vice versa.

Note that a critical requirement of our domains’ definition is that they should be finite so
that the analysis is guaranteed to terminate. Keeping the lists of scheduled callbacks bound
is tricky because the event loop might process the same callback multiple times. Therefore,
we have to add it to the lists κ or τ more than one time. For that reason, those lists monitor
the execution order of callbacks up to a certain limit n. The execution order of the callbacks
scheduled after that limit is not preserved; thus, the analysis places them into the same set.

Abstract Queue Chain: The analysis uses the last component of our abstract domains to
capture the effects of uncaught exceptions during the execution of callbacks. We define it as a
sequence of sets of addresses. Based on the abstract translation of the semantics of λq, when

ECOOP 2019

8:14 Static Analysis for Asynchronous JavaScript Programs

the analysis reaches an uncaught exception, it inspects the top element of the abstract queue
chain and rejects all the queue objects found in that element. If the abstract queue chain is
empty, the analysis propagates the exception to the caller function as usual. Note that the
queue chain is guaranteed to be bound. In particular, during the execution of a callback,
the size of the abstract queue chain is always one because the event loop executes only one
callback at a time. The only case when the abstract queue chain contains multiple elements
is when we have nested promise executors. A promise executor is a function passed as an
argument in a promise constructor. However, since we cannot have an unbound number of
nested promise executors, the size of the abstract queue chain remains finite.

3.1.1 Tracking the Execution Order
Promises. Estimating the order in which the event loop executes promise-related callbacks
is straightforward because it is a direct translation of the corresponding semantics of λq. In
particular, there are two possible cases:

Settle a promise that has registered callbacks: When we settle (i.e., either fulfill or reject)
a promise object that has registered callbacks, we schedule those callbacks associated
with the next state of the promise by putting them on the tail of the list κ. For instance,
if we fulfill a promise, we append all the callbacks triggered on fulfillment on the list κ.
A reader might observe that when there are multiple callbacks registered on the same
promise object, we put them on the same set which is the element that we finally add to κ.
This is justified by the fact that an abstract queue object does not keep the registration
order of its callbacks.
Register a callback on an already settled promise: When we encounter a statement of the
form x.then(f1, f2), where x is a settled promise, we schedule either callback f1 or f2
(i.e., we add it to the list κ) depending on the state of that promise, i.e., we schedule the
callback f1 if x is fulfilled and f2 if x is rejected.

Timers & Asynchronous I/O. A static analysis is not able to reason about the external
environment. For instance, it cannot decide when an operation on a file system or a request
to a server is complete. Similarly, it is not able to deal with time. For that purpose, we adopt
a conservative approach for tracking the execution order between callbacks related to timers
and asynchronous I/O. In particular, we assume that the execution order between those
callbacks is unspecified; thus, the event loop might process them in any order. However, we
do keep track the execution order between nested callbacks.

3.2 Callback Graph
In this section, we introduce the concept of callback graph; a fundamental component of our
analysis that captures how data flow is propagated between different asynchronous callbacks.
A callback graph is defined as an element of the following power set:

cg ∈ CallbackGraph = P(Node×Node)

We define every node of a callback graph as n ∈ Node = C × F , where C is the domain
of contexts while F is the set of all the functions of the program. Every element of a
callback graph (c1, f1, c2, f2) ∈ cg, where cg ∈ CallbackGraph has the following meaning:
the function f2 in context c2 is executed after the function f1 in context c1. We can treat the
above statement as the following expression: f1(. . .); f2(. . .);

T. Sotiropoulos and B. Livshits 8:15

I Definition 1. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→cg on nodes of the callback graph n1, n2 ∈ Node as:

n1 →cg n2 ⇒ (n1, n2) ∈ cg

I Definition 2. Given a callback graph cg ∈ CallbackGraph, we define the binary relation
→+

cg on nodes of the callback graph n1, n2 ∈ Node as the transitive closure of →cg:

n1 →cg n2 ⇒ n1 →+
cg n2

n1 →+
cg n2 ∧ n2 →+

cg n3 ⇒ n1 →+
cg n3, where n3 ∈ Node

Definition 1 and Definition 2 introduce the concept of path between two nodes in a
callback graph cg ∈ CallbackGraph. In particular, the relation →cg denotes that there is
path of length one between two nodes n1, n2, i.e., (n1, n2) ∈ cg. On the other hand, the
relation →+

cg describes that there is a path of unknown length between two nodes. Relation
→+

cg is very important as it allows us to identify the happens-before relation between two
nodes n1, n2 even if n2 is executed long after n1, that is (n1, n2) 6∈ cg. A property of a
callback graph is that it does not have any cycles, i.e.,

∀n1, n2 ∈ Node. n1 →+
cg n2 ⇒ n2 6→+

cg n1

Notice that if n1 6→+
cg n2, and n2 6→+

cg n1 hold, the analysis cannot estimate the execution
order between n1 and n2. Therefore, we presume that n1 and n2 can be called in any order.

Callback graph is computed on the fly as the analysis progresses. Callback graph exploits
both the lists κ and τ , and constructs the →cg relations between callbacks by respecting
their execution order as specified in those lists.

Previous work has proposed similar program representations for asynchrony. Madsen
et. al. [27] introduce the event-based call graph that abstracts the data-flow of the event-
based JavaScript programs. However, it does not support promises. More recently, promise
graph [26, 1] has been used for debugging promise-related programs. Our callback graph
is distinguished from promise graph, as it also captures callbacks that stem from timers or
asynchronous I/O. Therefore, we can handle common programming patterns where we mix
promises with asynchronous I/O (Figure 1). Also, since the promise graph aims to detect
anti-patterns related to promise code (e.g., unsettled promises), it does not track the order
in which promises are settled. Therefore, it misses the happens-before relations between the
corresponding callbacks.

3.3 Analysis Sensitivity
Here, we introduce two methods for boosting the analysis precision of asynchronous code.

3.3.1 Callback Sensitivity
Knowing the temporal relations between asynchronous callbacks enables us to capture how
data flow is propagated precisely. Typically, a naive flow-sensitive analysis, which exploits
the control flow graph (CFG), represents the event loop as a single program point with only
one context corresponding to it. Therefore – unlike traditional function calls – the analysis
misses the happens-before relations between callbacks because they are triggered by the same
program location (i.e., the event loop).

To address those issues, we exploit the callback graph to devise a more precise analysis,
which we call callback-sensitive analysis. The callback-sensitive analysis propagates the state
with regards to the →cg and →+

cg relations found in a callback graph cg ∈ CallbackGraph.
Specifically, when the analysis needs to propagate the resulting state from the exit point of a

ECOOP 2019

8:16 Static Analysis for Asynchronous JavaScript Programs

1 function foo() { ... }
2
3 var x = Promise.resolve()
4 .then(foo)
5 .then(function ff1() { ... })
6 .then(foo)
7 .then(function ff2() { ... })
8 .then(foo)
9 .then(function ff3() { ... });

Figure 10 An example program where we create a promise chain. Notice that we register the
function foo multiple times across the chain.

foo

ff3

ff2ff1

(a) QR-insensitive analysis

ff3ff2ff1foo[c1] foo[c2] foo[c3]

(b) QR-sensitive analysis

Figure 11 Callback graph of program of Figure 10 produced by the QR-insensitive and QR-
sensitive analysis respectively.

callback x, instead of propagating that state to the caller (note that the caller of a callback
is the event loop), it propagates it to the entry points of the next callbacks, i.e., all callback
nodes y ∈ Node where x→cg y holds. In other words, the edges of a callback graph reflect
how the state is propagated from the exit point of a callback node x to the entry point of a
callback node y. Obviously, if there is not any path between two nodes in the graph, that is,
x 6→+

cg y, and y 6→+
cg x, we propagate the state coming from the exit point of x to the entry

point of y and vice versa.

Remark. Callback-sensitivity does not work with contexts to improve the precision of the
analysis. We still represent the event loop as a single program point. As a result, the state
produced by the last executed callbacks is propagated to the event loop, leading to the join
of this state with the initial one. The join of those states is then again propagated across
the nodes of the callback graph until convergence. Therefore, there is still some imprecision.
However, callback-sensitivity minimizes the number of those joins, as they are only caused
by the callbacks invoked last.

3.3.2 Context-Sensitivity
Recall from Section 3.2 that a callback graph is defined as P(Node × Node), where n ∈
Node = C × F . It is possible to increase the precision of a callback graph by distinguishing
callbacks based on the context in which they are invoked. Existing flavors of context-
sensitivity are not so useful in differentiating asynchronous functions from each other. For
instance, object-sensitivity [30, 24], which separates invocations based on the value of the
receiver – and has been proven to be particularly effective for the analysis of object-oriented
languages – is not fruitful in the context of asynchronous callbacks because in most cases the
receiver of callbacks corresponds to the global object. Similarly, previous work in the static
analysis of JavaScript [19, 21] creates a context with regards to the arguments of a function.
Such a strategy might not be effective in cases where a callback expects no arguments or the
arguments from two different calls are indistinguishable.

T. Sotiropoulos and B. Livshits 8:17

We introduce one novel context-sensitivity flavor – which we call QR-sensitivity – as an
effort to boost the analysis precision. QR-sensitivity separates callbacks according to: (1)
the queue object that they belong to (Q), and (2) the queue object their return value fulfills
(R). In this case, the domain of contexts is given by:

c ∈ C = Âddr × Âddr

In other words, every context is a pair (lq, lr) ∈ Âddr × Âddr, where lq stands for the
allocation site of callback’s queue object, and lr is the abstract address of the queue object
that the return value of the callback fulfills. Notice that this domain is finite, so the analysis
always terminates.

As a motivating example, consider the program of Figure 10. This program creates
a promise chain where we register different callbacks at every step of the asynchronous
computation. At line 1, we define the function foo(). We asynchronously call foo()
multiple times, i.e., at lines 4, 6, and 8. Recall that chains of promises enable us to enforce
a deterministic execution of the corresponding callbacks. Specifically, based on the actual
execution, the event loop invokes the callbacks in the following order: foo() → ff1() →
foo()→ ff2()→ foo()→ ff3(). Figure 11a presents the callback graph of the program
of our example produced by a QR-insensitive analysis. In this case, the analysis considers the
different invocations of foo() as identical. As a result, the analysis loses the temporal relation
between foo() and ff1(), ff2() – indicated by the fact that the respective nodes are not
connected to each other – because foo() is called both before and after ff1() and ff2().
On the contrary, a QR-sensitive analysis ends up with an entirely precise callback graph
as shown in Figure 11b. The QR-sensitive analysis distinguishes the different invocations
of foo() from each other because it creates three different contexts; one for every call of
foo(). Specifically, we have c1 = (l3, l4), c2 = (l5, l6), c3 = (l7, l8), where li stands for the
promise object allocated at line i. For example, the second invocation of foo() is related to
the promise object created by the call of then() at line 5, and its return value fulfills the
promise object allocated by the invocation of then() at line 6.

3.4 Implementation
Our prototype implementation4 extends TAJS [19, 20, 18]; a state-of-the-art static analyzer
for JavaScript. TAJS analysis is implemented as an instance of the abstract interpretation
framework [3], and it is designed to be sound. It uses a lattice specifically designed for
JavaScript that is capable of handling the vast majority of JavaScript’s complicated features
and semantics. TAJS analysis is both flow- and context-sensitive. The output of the analysis
is the set of all reachable states from an initial state along with a call graph. TAJS can detect
various type-related errors such as the use of a non-function variable in a call expression,
property access of null or undefined variables, inconsistencies caused by implicit type
conversions, and many others [19].

Prior to our extensions, TAJS consisted of approximately 83,500 lines of Java code. The
size of our additions is roughly 6,000 lines of Java code. Our implementation is straightforward
and is guided by the design of our analysis. Specifically, we first incorporate the domains
presented in Figure 9 into the definition of the abstract state of TAJS. Then, we provide
models for promises written in Java by faithfully following the ECMAScript specification.
Recall again that our models exploit the λq calculus presented in Section 2 and they produce

4 https://github.com/theosotr/async-tajs

ECOOP 2019

https://github.com/theosotr/async-tajs

8:18 Static Analysis for Asynchronous JavaScript Programs

1 function open(filename, flags, mode, callback) {
2 TAJS_makeContextSensitive(open, 3);
3 var err = TAJS_join(TAJS_make("Undef"), TAJS_makeGenericError());
4 var fd = TAJS_join(TAJS_make("Undef"), TAJS_make("AnyNum"));
5 TAJS_addAsyncIOCallback(callback, err, fd);
6 }
7
8 var fs = {
9 open: open

10 ...
11 }

Figure 12 A model for fs.open function. All functions starting with TAJS_ are special functions
whose body does not correspond to any node in the CFG. They are just hooks for producing
side-effects to the state or evaluating to some value, and their models are implemented in Java. For
instance, TAJS_make("AnyStr") evaluates to a value that can be any string.

side-effects that over-approximate the behavior of JavaScript promises. Beyond that, we
implement models for the special constructs of λq (i.e., addTimerCallback, addIOCallback) that
are used for adding callbacks to the timer- and asynchronous I/O-related queue objects
respectively. We implement the models for timers in Java; however, we write JavaScript
models for asynchronous I/O operations, when it is necessary.

For example, Figure 12 shows the JavaScript code that models the function open() of
the fs Node.js module. In particular, open() asynchronously opens a given file. When I/O
operation completes, the callback provided by the developer is called with two arguments:
(1) err that is not undefined when there is an error during I/O, (2) fd which is an integer
indicating the file descriptor of the opened file. Note that fd is undefined, when any error
occurs. Our model first makes open() parameter-sensitive on the third argument that
corresponds to the callback provided by the programmer. Then, at lines 3 and 4, it initializes
the arguments of the callback, (i.e., err and fd). Observe that we initialize those arguments
so that they capture all the possible execution scenarios, i.e., err might be undefined or
point to an error object, and fd might be undefined or any integer reflecting all possible file
descriptors. Finally, at line 5, we call the special function TAJS_addAsyncIOCallback() that
registers the given callback on the queue object responsible for I/O operations, implementing
the semantics of the addIOCallback primitive from our λq calculus.

3.5 Limitations
Although our analysis aims to support all the asynchronous features of JavaScript up to the
7th version of ECMAScript, it does not handle the Promise.all() function of the Promise
API. This function expects an iterable of promises, and it creates a new object that is fulfilled
whenever all promises included in that iterable are fulfilled. Statically capturing all program’s
behaviors that stem from Promise.all() is challenging because the analysis imprecision
might cause the number of behaviors to grow exponentially. However, Promise.all()
is less common than other functions of the Promise API such as Promise.resolve() or
Promise.reject().

Some of our design choices about analysis abstractions might lead to imprecision. For
example, we do not track the registration order of a pending promise’s callbacks. Therefore,
when we settle such a promise, the analysis assumes that all its registered callbacks can be
invoked in any order. However, as we mentioned in Section 3.1.1, that programming pattern
(i.e., adding multiple callbacks to the same pending object) is quite rare.

T. Sotiropoulos and B. Livshits 8:19

Table 1 List of the selected macro-benchmarks and their description. Each benchmark is de-
scribed by its lines of code (LOC), its lines of code including its dependencies (ELOC), number of
files, number of dependencies, number of promise-related statements (e.g., Promise.resolve(),
Promise.reject(), then(), etc.), and number of statements associated with timers (e.g.,
setTimeout(), setImmediate(), etc.) or asynchronous I/O (e.g., asynchronous file system or
network operations etc.).

Benchmark LOC ELOC Files Dependencies Promises Timers/Async I/O

controlled-promise 225 225 1 0 4 1
fetch 517 1,118 1 1 12 4
honoka 324 1,643 6 6 4 1
axios 1,733 1,733 26 0 13 2
pixiv-client 1,031 3,469 1 2 64 2
node-glob 1,519 6,131 3 6 0 5

The analysis sensitivity options introduced in Section 3.3.2 might not be so effective
when dealing with timers or asynchronous I/O. Since we follow a conservative approach for
modeling the execution order of timers and asynchronous I/O – regardless of the registration
order of their callbacks – keeping a more precise state does not necessarily lead to a more
precise callback graph.

4 Evaluation

In this section, we evaluate our static analysis on a set of hand-written micro-benchmarks and
a set of real-world JavaScript modules. Then, we experiment with different parameterizations
of the analysis, and report the precision and performance metrics.

4.1 Experimental Setup
To test that our technique behaves as expected we first wrote a number of micro-benchmarks.
Each of those programs consists of approximately 20–50 lines of code and examines certain
parts of the analysis. Beyond micro-benchmarks, we evaluate our analysis on 6 real-world
JavaScript modules. The most common macro-benchmarks for static analyses used in the
literature are those provided by JetStream5, and V8 engine6[19, 21, 22]. However, those
benchmarks are not suitable for our case because they are not asynchronous. To find
interesting benchmarks, we developed an automatic mechanism for collecting and analyzing
Github repositories. First, we collected a large number of Github repositories using two
different options. The first option extracted the Github repositories of the most depended-
upon npm packages7. The second option employed the Github API8 to find JavaScript
repositories that are related to promises. We then investigated the Github repositories that
we collected at the first phase by computing various metrics such as lines of code, number
of promise-, timer- and asynchronous IO-related statements. We manually selected the 6
JavaScript modules presented in Table 1. Most of them are libraries for performing HTTP
requests or file system operations.

5 https://browserbench.org/JetStream/
6 http://www.netchain.com/Tools/v8/
7 https://www.npmjs.com/browse/depended
8 https://developer.github.com/v3/

ECOOP 2019

https://github.com/vitalets/controlled-promise
https://github.com/github/fetch
https://github.com/kokororin/honoka
https://github.com/axios/axios
https://github.com/alphasp/pixiv-api-client
https://github.com/isaacs/node-glob
https://browserbench.org/JetStream/
http://www.netchain.com/Tools/v8/
https://www.npmjs.com/browse/depended
https://developer.github.com/v3/

8:20 Static Analysis for Asynchronous JavaScript Programs

Table 2 Precision on micro-benchmarks.

Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
micro01 5 5 4 4 0.8 0.8 1.0 1.0 2 2 0 0
micro02 3 3 3 3 1.0 1.0 1.0 1.0 1 1 0 0
micro03 2 2 2 2 1.0 1.0 1.0 1.0 1 1 0 0
micro04 4 4 4 4 0.5 0.5 0.5 0.5 1 1 1 1
micro05 8 8 7 7 0.96 0.96 1.0 1.0 3 3 0 0
micro06 11 11 11 11 1.0 1.0 1.0 1.0 3 3 1 1
micro07 14 14 13 13 0.86 0.87 1.0 1.0 1 1 0 0
micro08 5 5 5 5 0.8 0.8 0.8 0.8 1 1 0 0
micro09 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro10 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro11 4 4 4 4 0.83 0.83 0.83 0.83 5 5 5 5
micro12 5 5 5 5 0.9 0.9 1.0 1.0 2 2 0 0
micro13 4 4 3 3 0.83 0.83 1.0 1.0 1 1 0 0
micro14 6 6 5 5 0.8 0.8 1.0 1.0 2 2 0 0
micro15 6 6 6 6 0.8 0.8 1.0 1.0 0 0 0 0
micro16 6 6 6 6 1.0 1.0 1.0 1.0 1 1 0 0
micro17 3 3 3 3 0.67 0.67 0.67 0.67 2 2 2 2
micro18 4 3 4 3 0.83 1.0 0.83 1.0 1 0 1 0
micro19 14 7 14 7 0.73 0.93 0.74 1.0 0 0 0 0
micro20 6 6 6 6 0.93 0.93 1.0 1.0 0 0 0 0
micro21 5 5 4 4 0.9 0.9 1.0 1.0 1 1 0 0
micro22 6 6 5 5 0.87 0.87 0.9 0.9 1 1 0 0
micro23 6 6 5 5 0.87 0.87 1.0 1.0 3 3 1 1
micro24 3 3 3 3 1.0 1.0 1.0 1.0 2 2 1 1
micro25 8 8 8 8 0.79 0.79 0.79 0.79 1 1 0 0
micro26 9 9 7 7 0.89 0.89 1.0 1.0 3 3 1 1
micro27 3 3 3 3 1.0 1.0 1.0 1.0 1 1 1 1
micro28 7 7 7 7 0.81 0.81 0.81 0.81 1 1 1 1
micro29 4 4 4 4 0.5 1.0 0.5 1.0 0 0 0 0
Average 5.83 5.55 5.45 5.17 0.85 0.88 0.91 0.94 1.45 1.41 0.55 0.52

Total 169 161 158 150 42 41 16 15

We experiment with 4 different analyses: (1) an analysis that is neither callback- nor
QR-sensitive (NC-No), (2) a callback-insensitive but QR-sensitive analysis (NC-QR), (3)
a callback-sensitive but QR-insensitive analysis (C-No), and (4) a both callback- and QR-
sensitive analysis (C-QR). Note that recency abstraction [2] – which is a technique for
minimizing weak updates and is natively supported by TAJS – is enabled for every analysis.
For every analysis, we use object-sensitivity, while we enable parameter-sensitivity in certain
functions for further boosting the precision of top-level code. Finally, the lists κ and τ are
bounded by n = 30.

We evaluate the precision of each analysis in terms of the number of the analyzed callbacks,
the precision of the computed callback graph, and the number of reported type errors triggered
by the execution of asynchronous callbacks. We define the precision of a callback graph as
the quotient between the number of callback pairs whose execution order is determined and
the total number of callback pairs. Also, we embrace a client-based precision metric, i.e., the
number of reported type errors as in the work of Kashyap et. al. [21]. The fewer type errors
an analysis reports, the more precise it is. The same applies to the number of callbacks
inspected by the analysis. To compute the performance characteristics of every analysis, we
run every experiment ten times to get reliable measurements. All the experiments were run
on a machine with an Intel i7 2.4GHz quad-core processor and 8GB of RAM.

T. Sotiropoulos and B. Livshits 8:21

Table 3 Precision on macro-benchmarks.

Analyzed Callbacks Callback Graph Precision Type Errors

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 6 6 6 6 0.866 0.905 0.866 0.905 3 3 2 2
fetch 22 22 19 19 0.829 0.956 0.822 0.972 8 8 7 7
honoka 8 8 6 6 0.929 0.929 1.0 1.0 1 1 0 0
axios 15 15 14 14 0.678 0.83 0.686 0.871 2 2 1 1
pixiv-client 18 18 17 15 0.771 0.803 0.794 0.863 3 3 3 2
node-glob 3 3 3 3 0.667 0.667 0.667 0.667 19 19 19 19
Average 12 12 10.8 10.5 0.79 0.848 0.805 0.88 6 6 5.1 5

Total 72 72 65 63 36 36 32 31

4.2 Results
Micro-benchmarks. Table 2 shows how precise every analysis is on every micro-benchmark.
Starting with callback-insensitive analyses (see the NC-No and NC-QR columns), we observe
that in general QR-sensitivity improves the precision of the callback graph by 3.6%, on
average. That small boost of QR-sensitivity is explained by the fact that only 3 out of 29
micro-benchmarks invoke the same callback multiple times.

Recall from Section 3.3.2 that QR-sensitivity is used to distinguish different calls of
the same callback. Therefore, if one program does not use a specific callback multiple
times, QR-sensitivity does not make any difference. However, if we focus on the results of
the micro-benchmarks where we come across such behaviors, i.e. micro18, micro19, and
micro29, we get a significant divergence of the precision of callback graph. Specifically, QR-
sensitivity improves the precision by 20.5%, 27.4% and 100% in micro18, micro19 and micro29
respectively. Besides that, in micro19, there is a striking decrease in the number of the
analyzed callbacks: the QR-insensitive analyses inspect 14 callbacks, while the QR-sensitive
analyses examine only 7.

The results regarding the number of type errors are almost identical for every analysis: a
QR-insensitive analysis reports 42 type errors in total, whereas all the other QR-sensitive
analyses produce warnings for 41 cases.

Moving to callback-sensitive analyses, the results indicate clear differences. First, a
callback-sensitive but QR-insensitive analysis reports only 16 type errors in total (i.e., 61.9%
fewer type errors than callback-insensitive analyses), and amplifies the average precision of the
callback graph from 0.85 to 0.91. As before, the QR-sensitive analyses boost the precision of
the callback graph by 20.4%, 35.1%, and 100% in micro18, micro19, and micro29 respectively.
Finally, a callback-sensitive and QR-insensitive analysis decreases the total number of the
analyzed callbacks from 169 to 158. Notice that when callback- and QR-sensitivity are
combined, the total number of callbacks is reduced by 11.2%.

Macro-benchmarks. Table 3 reports the precision metrics of every analysis on the macro-
benchmarks. First, we make similar observations as those of micro-benchmarks. In general,
QR-sensitivity leads to a more precise callback graph for 4 out of 6 benchmarks. The
improvement ranges from 4.6% to 26.9%. On the other hand, callback-sensitive analyses
contribute to fewer type errors for 5 out of 6 benchmarks reporting 13.9% fewer type errors
in total. Additionally, when we combine QR- and callback-sensitivity, we can boost the
analysis precision for 5 out of 6 benchmarks. Specifically, the QR- and callback-sensitive
analysis improves the callback graph precision by up to 28.5% (see the axios benchmark),
and achieves a 88% callback graph precision, on average. On the other hand, the naive
analysis (neither QR- nor callback-sensitive) reports only a 79% precision for callback graph,
on average.

ECOOP 2019

8:22 Static Analysis for Asynchronous JavaScript Programs

Table 4 Times of different analyses in seconds.

Average Time Median

Benchmark NC-No NC-QR C-No C-QR NC-No NC-QR C-No C-QR
controlled-promise 2.3 2.22 2.27 2.28 2.29 2.26 2.25 2.31
fetch 8.53 7.97 7.07 6.98 8.52 8.26 7.46 7.22
honoka 4.14 4.05 3.86 3.94 4.12 4.0 3.61 3.81
axios 6.99 7.86 6.74 8.32 7.02 8.0 6.94 8.37
pixiv-client 22.11 24.92 24.77 28.89 22.19 25.16 24.65 29.2
node-glob 15.55 16.71 15.46 14.47 16.62 16.71 16.17 15.74

By examining the results for the node-glob benchmark, we see that every analysis
produces identical results. node-glob uses only timers and asynchronous I/O operations. As
we mentioned in Section 3.5, in such cases, neither callback- nor QR-sensitivity is effective as
we follow a conservative approach for modelling timers and asynchronous I/O. For example,
we assume that two callbacks x and y are executed in any order, even if x is scheduled before
y (and vice versa).

Table 4 gives the running times of every analysis on macro-benchmarks. We notice that in
some benchmarks (see fetch) a more precise analysis decreases the running times by 3%–18%.
This is justified by the fact that a more precise analysis might compress the state faster than
an imprecise analysis. For instance, in fetch, an imprecise analysis led to the analysis of 3
spurious callbacks, yielding to a higher analysis time. The results appear to be consistent
with those of the recent literature that suggest that precision might lead to a faster analysis in
some cases [33]. On the other hand, we observe a non-trivial fall in the analysis performance
in only one benchmark. Specifically, the analysis sensitivity increased the running times of
pixiv-client by 12%–30.6%. However, such an increase seems to be acceptable.

4.3 Case Studies
In this section, we describe some case studies coming from the macro-benchmarks.

fetch. Figure 13 shows a code fragment taken from fetch9. Note that we omit irrelevant
code for brevity. The function Body() defines a couple of methods (e.g., text(), formData())
for manipulating the body of a response. Observe that those methods are registered on the
prototype of Response using the function Function.prototype.call() at line 45. Note
that Body also contains a method (i.e., _initBody()) for initializing the body of a response
according to the type of the input. To this end, the Response constructor takes a body as
a parameter and initializes it through the invocation of _initBody() (lines 41, 43). The
function text() reads the body of a response in a text format (lines 20–34). When the body
of the response has been already read, text() returns a rejected promise (lines 3, 22–23).
Otherwise, it marks the property bodyUsed of the response object as true (line 5), and then
it returns a promise object depending on the type of the body of the given response (lines
25–33). The function formData() (lines 36–38) asynchronously reads the body of a response
in a text format, and then it parses it into a FormData object10 through the call of the
function decode(). The function fetch() (lines 47–56) makes a new asynchronous request.

9 https://github.com/github/fetch
10 https://developer.mozilla.org/en-US/docs/Web/API/FormData

https://github.com/github/fetch
https://developer.mozilla.org/en-US/docs/Web/API/FormData

T. Sotiropoulos and B. Livshits 8:23

1 function consumed(body) {
2 if (body.bodyUsed) {
3 return Promise.reject(new TypeError("

Already read"));
4 }
5 body.bodyUsed = true;
6 }
7 ...
8 function Body() {
9 ...

10 this.bodyUsed = false;
11 this._bodyInit = function() {
12 ...
13 if (typeof body === "string") {
14 this._bodyText = body;
15 } else if (Blob.prototype.isPrototypeOf(

body)) {
16 this._bodyBlob = body;
17 }
18 ...
19 }
20 this.text = function text() {
21 var rejected = consumed(this);
22 if (rejected) {
23 return rejected;
24 }
25 if (this._bodyBlob) {
26 return readBlobAsText(

this._bodyBlob);
27 } else if (this._bodyArrayBuffer) {
28 return Promise.resolve(

readArrayBufferAsText(
this._bodyArrayBuffer));

29 } else if (this._bodyFormData) {
30 throw new Error("could not read

FormData body as text");
31 } else {
32 return Promise.resolve(

this._bodyText);
33 }
34 };
35 ...
36 this.formData = function formData() {
37 return this.text().then(decode);
38 }
39 }
40 ...
41 function Response(body) {
42 ...
43 this._bodyInit(body);
44 }
45 Body.call(Response.prototype);
46 ...
47 function fetch(input, init) {
48 return new Promise(function (resolve, reject

) {
49 ...
50 var xhr = new XMLHttpRequest();
51 xhr.onload = function onLoad() {
52 ...
53 resolve(new Response(xhr.response));
54 }
55 });
56 }

Figure 13 Code fragment taken from fetch.

Listing 1 Case 1.
1 fetch("/helloWorld").then(function foo(

value) {
2 var formData = value.formData();
3 // Do something with form data.
4 })

Listing 2 Case 2.
1 var response = new Response("foo=bar");
2 var formData = response.formData();
3 var response2 = new Response(new Blob("foo=

bar"));
4 var formData2 = response2.formData();

Figure 14 Code fragments which use the fetch API.

When the request completes successfully, the callback onLoad() is executed asynchronously
(line 51). This callback finally fulfills the promise returned by fetch() with a response object
that contains the response of the server (line 53).

In Listing 1, we make an asynchronous request to the endpoint “/helloWorld” using the
fetch API. Upon success, we schedule the callback foo(). Recall that the parameter value
of foo() corresponds to the response object coming from line 53 (Figure 13). In foo(), we
convert the response of the server into a FormData object (line 2). A callback-insensitive
analysis, which considers that the event loop executes all callbacks in any order, merges all
the data flow stemming from those callbacks into a single point. As a result, the side effects
of onLoad() and foo() are directly propagated to the event loop. In turn, the event loop
propagates the resulting state again to those callbacks. This is repeated until convergence.
Specifically, the callback foo() calls value.formData() that updates the property bodyUsed
of the response object to true (Figure 13, line 5). The resulting state is propagated to the
event loop where is joined with the state that stems from the callback onLoad(). Notice
that the state of onLoad() indicates that bodyUsed is false because the callback onLoad()
creates a fresh response object (Figure 13, lines 10, 53). The join of those states changes the
abstract value of bodyUsed to >. That change is propagated again to foo().

ECOOP 2019

8:24 Static Analysis for Asynchronous JavaScript Programs

This imprecision makes the analysis to consider both the if and else branches at lines
2–5. Thus, the analysis allocates a rejected promise at line 3, as it mistakenly considers that
the body has been already consumed. This makes consumed() return a value that is either
undefined or a rejected promise at line 23. The value returned by consumed() is finally
propagated to formData() at line 37, where the analysis reports a false positive; a property
access of an undefined variable (access of the property “then”), because text() might
return an undefined variable due to the return statement at line 26. A callback-sensitive
analysis neither reports a type error at line 43 nor creates a rejected promise at line 4. It
respects the execution order of callbacks, that is, the callback foo() is executed after the
callback onLoad(). Therefore, the analysis propagates a more precise state to the entry of
foo(): the state resulted by the execution of onLoad(), where a new response object is
initialized with the field bodyUsed set to false.

In Listing 2, we initialize a response object with a body that has a string type (line
1). In turn, by calling the formData() method, we first read the body of the response in a
text format, and then we decode it into a FormData object by asynchronously calling the
decode() function (Figure 13, line 37). Since the body of the response is already in a text
format, text() returns a fulfilled promise (Figure 13, line 32). At the same time, at line 4 of
Listing 2, we allocate a fresh response object whose body is an instance of Blob11. Therefore,
calling formData() schedules function decode() again. However this time, the callback
decode() is registered on a different promise because the second call of text() returns a
promise created by the function readBlobAsText() (Figure 13, line 26). A QR-sensitive
analysis – which creates a context according to the queue object a callback belongs to – is
capable of separating the two invocations of decode() because the first call of decode() is
registered on the promise object that comes from line 32, whereas the second call of decode()
is added to the promise created by readBlobAsText() at line 26.

honoka. We return back to Figure 1. Recall that a callback-insensitive analysis reports a
spurious type error at line 17 when we try to access the property headers of honoka.response
because it considers the case where the callback defined at lines 15–23 is executed before
that defined at lines 2–14. Thus, honoka.response might be uninitialized (recall that
honoka.response is initialized during the execution of the first callback at line 3). On
the other hand, a callback-sensitive analysis consults the callback graph when it is time to
propagate the state from the exit point of a callback to the entry point of the next one. In
particular, when we analyze the exit node of the first callback, we propagate the current
state to the second callback. Therefore, the entry point of the second function has a state
that contains a precise value for honoka.response, that is, the object coming from the
assignment at line 3.

4.4 Threats to Validity

Below we pinpoint the main threats to the validity of our results:
Our analysis is an extension of TAJS. Therefore, the precision and performance of TAJS
play an important role on the results of our work.
Even though our analysis is designed to be sound, it models some native functions of the
JavaScript language unsoundly. For instance, we unsoundly model the native function

11 https://developer.mozilla.org/en-US/docs/Web/API/Blob

https://developer.mozilla.org/en-US/docs/Web/API/Blob

T. Sotiropoulos and B. Livshits 8:25

Object.freeze(), which is used to prevent an object from being updated. Specifically,
the model of Object.freeze() simply returns the object given as argument.
We provide manual models for some built-in Node.js modules like fs, http, etc. or
other APIs used in client-side applications such as XMLHttpRequest, Blob, etc. However,
manual modeling might neglect some of the side-effects that stem from the interaction
with those APIs, leading to unsoundness [15, 33].
Our macro-benchmarks consist of JavaScript libraries. Therefore, we need to write
some test cases that invoke the API functions of those benchmarks. We provided both
hand-written test cases and test cases or examples taken from their documentation, trying
to test the main APIs that exercise asynchrony in JavaScript.

5 Related Work

In this section, we briefly present previous work related to formalization and program analysis
for (asynchronous) JavaScript.

Semantics. Maffeis et al. [29] presented one of the first formalizations of JavaScript by
designing small-step operational semantics for a subset of the 3rd version of ECMAScript. In
subsequent work, Guha et al.[16] expressed the semantics of the 3rd edition of ECMAScript
through a different approach; they developed a lambda calculus called λJS, and provided a
desugaring mechanism for converting JavaScript code into λJS. We used λJS as a base for
modeling asynchronous JavaScript. Later, Gardner et al. [13] introduced a program logic
for reasoning about client-side JavaScript programs that support ECMAScript 3. They
presented big-step operational semantics on the basis of that proposed by Maffeis et. al. [29],
and they introduced inference rules for program reasoning which are highly inspired from
separation logic [35]. More recently, Madsen et al. [26] and Loring et al. [25] extended λJS

for modeling promises and asynchronous JavaScript respectively. Our model is a variation of
their work; our modifications enable us to model different asynchronous features. Some of
them are not handled by their models.

Static Analysis for JavaScript. Guarnieri et al. [15] proposed a pointer analysis for a subset
of JavaScript. They precluded the use of eval-family functions from their analysis as their
work focused on widgets where the use of eval is not common. It was one of the first
attempts that managed to model some of the most peculiar features of JavaScript, such
as prototype-based inheritance. TAJS [19, 20, 18] is a typer analyzer for JavaScript which
is implemented as a classical dataflow analysis. Our work is implemented as an extension
of TAJS. SAFE [23] is a static analysis framework that provides three different formal
representations of JavaScript programs: an abstract syntax tree (AST), an intermediate
language (IR) and a control-flow graph (CFG). SAFE implements a default analysis phase that
is plugged after the construction of CFG. This analysis adopts a similar approach with that
of TAJS, i.e., a flow- and context-sensitive analysis that operates on top of CFG. JSAI [21]
implements an analysis through the abstract interpretation framework [3]. Specifically, it
employs a different approach compared to other existing tools. Unlike TAJS and SAFE, JSAI
operates on top of AST rather than CFG; it is flow-sensitive though. To achieve this, the
abstract semantics is specified on a CESK abstract machine [10], which provides small-step
reduction rules and an explicit data structure (i.e., continuation) which describes the rest of
computation, unwinding the flow of the program in this way. The analysis is configurable
with different flavors of context-sensitivity which are plugged into the analysis through the
widening operator used in the fix-point calculation [17].

ECOOP 2019

8:26 Static Analysis for Asynchronous JavaScript Programs

Existing static analyses provide sufficient support for precisely modeling browser envir-
onment. Jensen et al. [18] modeled HTML DOM by creating a hierarchy of abstract states
that reflect the actual HTML object hierarchy. Before the analysis begins, an initial heap is
constructed that contains the set of the abstract objects corresponding to the HTML code
of the page. Park et al. [33] followed a similar approach for modeling HTML DOM. They
also provided a more precise model that respects the actual tree hierarchy of the DOM. For
example, their model distinguishes whether one DOM node is nested to another or not.

Program Analysis for Asynchronous JavaScript Programs. The majority of static analyses
for JavaScript treat asynchronous programs conservatively [19, 23, 21] – they assume that
the event loop processes all the asynchronous callbacks in any order – leading to the analysis
imprecision. Also, they focus on the client-side applications, where asynchrony mainly
appears in DOM events and AJAX calls.

Madsen et al. [27] proposed one of the first static analysis for server-side event-driven
programs. Although their approach is able to handle asynchronous I/O operations – unlike
our work – they do not provide support for ES6 promises. Additionally, their work introduced
a context-sensitivity strategy that tries to imitate the different iterations of the event loop.
However, it imposes a large overhead on the analysis; it is able to handle only small
programs (less than 400 lines of code). In our work, we propose callback-sensitivity that
improves precision without highly sacrificing performance. More recently, Alimadadi et
al. [1] presented a dynamic analysis technique for detecting promise-related errors and anti-
patterns in JavaScript programs. Specifically, their approach exploits the promise graph; a
representation designed for debugging promise-based programs. Beyond promises, our work
also handles a broad spectrum of asynchronous features.

Race detection. Zheng et al. [40] presented one of the first race detectors by employing a
static analysis for identifying concurrency issues in asynchronous AJAX calls. The aim of
their analysis was to detect data races between the code that pre-processes an AJAX request
and the callback invoked when the response of the server is received. A subsequent work [34]
adopted a dynamic analysis to detect data races in web applications. They first proposed a
happens-before relation model to capture the execution order between different operations
that are present in a client-side application, such as the loading of HTML elements, execution
of scripts, etc. Using this model, their analyses reports data races, by detecting memory
conflicts between unordered functions, However, their approach introduced a lot of false
positives because most data races did not lead to severe concurrency bugs. Mutlu et al. [31]
combined both dynamic and static analysis and primarily focused on detecting data races
that have pernicious consequences on the correctness of applications, such as those that
affect the browser storage. Initially, they collected the execution traces of an application, and
then, they applied a dataflow analysis on those traces to identify data races. Their approach
effectively managed to report a very small number of false positives.

6 Conclusions & Future Work

Building upon previous works, we presented the λq calculus for modeling asynchrony in
JavaScript. Our calculus λq is flexible enough so that we can express almost every asynchron-
ous primitive in the JavaScript language up to the 7th edition of the ECMAScript. We then
presented an abstract version of λq that over-approximates the semantics of our calculus.

T. Sotiropoulos and B. Livshits 8:27

By exploiting the abstract version of λq, we designed and implemented what is, to the best
of our knowledge, the first static analysis for dealing with a wide range of asynchrony-related
features. At the same time, we introduced the concept of callback graph; a directed acyclic
graph that represents the temporal relations between the execution of asynchronous callbacks,
and we proposed a more precise analysis, i.e., callback-sensitive analysis that respects the
execution order of callbacks. We parameterized our analysis with a new context-sensitivity
option that is specifically used for asynchronous callbacks.

We then experimented with different parameterizations of our analysis on a set of hand-
written and real-world programs. The results revealed that we can analyze medium-sized
JavaScript programs. The analysis sensitivity (i.e., both callback- and context-sensitivity) was
able to ameliorate the analysis precision without highly sacrificing performance. Specifically,
as observed in the real-world modules, our analysis achieved a 79% precision for the callback
graph, on average. When we combined callback- and QR-sensitivity, we could further
improve the callback graph precision by up to 28.5%, and reduce the total number of type
errors by 13.9%.

Our work constitutes a general technique that can be used as a base for further research.
Specifically, recent studies showed that concurrency bugs found in JavaScript programs may
sometimes be caused by asynchrony [39, 5]. We could leverage our work to design a client
analysis on top of it so that it statically detects data races in JavaScript programs. Our
callback graph might be an essential element for such an analysis because we could inspect it
to identify callbacks whose execution might be non-deterministic, i.e., unconnected nodes in
the callback graph.

References
1 Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding Broken Promises in

Asynchronous JavaScript Programs. Proc. ACM Program. Lang., 2(OOPSLA):162:1–162:26,
2018. doi:10.1145/3276532.

2 Gogul Balakrishnan and Thomas Reps. Recency-Abstraction for Heap-allocated Storage. In
Proceedings of the 13th International Conference on Static Analysis, SAS’06, pages 221–239,
2006. doi:10.1007/11823230_15.

3 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, pages 238–252, 1977. doi:10.1145/512950.512973.

4 Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Mazières, and Robert Morris. Event-
driven programming for robust software. In Proceedings of the 10th workshop on ACM SIGOPS
European workshop, pages 186–189. ACM, 2002.

5 James Davis, Arun Thekumparampil, and Dongyoon Lee. Node.Fz: Fuzzing the server-side
event-driven architecture. In Proceedings of the Twelfth European Conference on Computer
Systems, EuroSys ’17, pages 145–160, 2017. doi:10.1145/3064176.3064188.

6 Asger Feldthaus, Todd Millstein, Anders Møller, Max Schäfer, and Frank Tip. Tool-supported
Refactoring for JavaScript. In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’11, pages 119–138,
2011. doi:10.1145/2048066.2048078.

7 Asger Feldthaus and Anders Møller. Semi-automatic Rename Refactoring for JavaScript.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA ’13, pages 323–338, 2013.
doi:10.1145/2509136.2509520.

8 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
Construction of Approximate Call Graphs for JavaScript IDE Services. In Proceedings of

ECOOP 2019

http://dx.doi.org/10.1145/3276532
http://dx.doi.org/10.1007/11823230_15
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/3064176.3064188
http://dx.doi.org/10.1145/2048066.2048078
http://dx.doi.org/10.1145/2509136.2509520

8:28 Static Analysis for Asynchronous JavaScript Programs

the 2013 International Conference on Software Engineering, ICSE ’13, pages 752–761, 2013.
doi:10.1109/ICSE.2013.6606621.

9 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering with
PLT Redex. Mit Press, 2009.

10 Mattias Felleisen and D. P. Friedman. A Calculus for Assignments in Higher-order Languages.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, pages 314–, 1987. doi:10.1145/41625.41654.

11 K. Gallaba, Q. Hanam, A. Mesbah, and I. Beschastnikh. Refactoring Asynchrony in JavaScript.
In 2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 353–363, 2017. doi:10.1109/ICSME.2017.83.

12 K. Gallaba, A. Mesbah, and I. Beschastnikh. Don’t Call Us, We’ll Call You: Characterizing
Callbacks in Javascript. In 2015 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–10, 2015. doi:10.1109/ESEM.2015.7321196.

13 Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. Towards a Program Logic
for JavaScript. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 31–44, 2012. doi:10.1145/2103656.
2103663.

14 Github. GitHub Octoverse 2017 | Highlights from the last twelve months. https://octoverse.
github.com/, 2017. [Online; accessed 08-January-2019].

15 Salvatore Guarnieri and Benjamin Livshits. GATEKEEPER: Mostly static enforcement of
security and reliability policies for Javascript code. In Proceedings of the 18th Conference on
USENIX Security Symposium, SSYM’09, pages 151–168, 2009.

16 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The Essence of Javascript. In
Proceedings of the 24th European Conference on Object-oriented Programming, ECOOP’10,
pages 126–150, 2010.

17 Ben Hardekopf, Ben Wiedermann, Berkeley Churchill, and Vineeth Kashyap. Widening
for Control-Flow. In Kenneth L. McMillan and Xavier Rival, editors, Verification, Model
Checking, and Abstract Interpretation, pages 472–491. Springer Berlin Heidelberg, 2014. doi:
10.1007/978-3-642-54013-4_26.

18 Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML DOM and
Browser API in Static Analysis of JavaScript Web Applications. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 59–69, 2011. doi:10.1145/2025113.2025125.

19 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS ’09, pages 238–255,
2009. doi:10.1007/978-3-642-03237-0_17.

20 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Interprocedural Analysis with Lazy
Propagation. In Radhia Cousot and Matthieu Martel, editors, Static Analysis, pages 320–339.
Springer Berlin Heidelberg, 2010.

21 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John Sarra-
cino, Ben Wiedermann, and Ben Hardekopf. JSAI: A static analysis platform for JavaScript. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 121–132, 2014. doi:10.1145/2635868.2635904.

22 Y. Ko, H. Lee, J. Dolby, and S. Ryu. Practically Tunable Static Analysis Framework for
Large-Scale JavaScript Applications (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 541–551, 2015. doi:10.1109/ASE.2015.28.

23 Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. SAFE: Formal
specification and implementation of a scalable analysis framework for ECMAscript. In FOOL
2012: 19th International Workshop on Foundations of Object-Oriented Languages, page 96,
2012.

http://dx.doi.org/10.1109/ICSE.2013.6606621
http://dx.doi.org/10.1145/41625.41654
http://dx.doi.org/10.1109/ICSME.2017.83
http://dx.doi.org/10.1109/ESEM.2015.7321196
http://dx.doi.org/10.1145/2103656.2103663
http://dx.doi.org/10.1145/2103656.2103663
https://octoverse.github.com/
https://octoverse.github.com/
http://dx.doi.org/10.1007/978-3-642-54013-4_26
http://dx.doi.org/10.1007/978-3-642-54013-4_26
http://dx.doi.org/10.1145/2025113.2025125
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/2635868.2635904
http://dx.doi.org/10.1109/ASE.2015.28

T. Sotiropoulos and B. Livshits 8:29

24 Ondřej Lhoták and Laurie Hendren. Evaluating the Benefits of Context-sensitive Points-to
Analysis Using a BDD-based Implementation. ACM Trans. Softw. Eng. Methodol., 18(1):3:1–
3:53, 2008. doi:10.1145/1391984.1391987.

25 Matthew C. Loring, Mark Marron, and Daan Leijen. Semantics of Asynchronous JavaScript. In
Proceedings of the 13th ACM SIGPLAN International Symposium on on Dynamic Languages,
DLS 2017, pages 51–62, 2017. doi:10.1145/3133841.3133846.

26 Magnus Madsen, Ondřej Lhoták, and Frank Tip. A Model for Reasoning About JavaScript
Promises. Proc. ACM Program. Lang., 1(OOPSLA):86:1–86:24, 2017. doi:10.1145/3133910.

27 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static Analysis of Event-driven Node.Js
JavaScript Applications. In Proceedings of the 2015 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, pages
505–519, 2015. doi:10.1145/2814270.2814272.

28 S. Maffeis and A. Taly. Language-Based Isolation of Untrusted JavaScript. In 2009 22nd IEEE
Computer Security Foundations Symposium, pages 77–91, 2009. doi:10.1109/CSF.2009.11.

29 Sergio Maffeis, John C. Mitchell, and Ankur Taly. An Operational Semantics for JavaScript.
In Proceedings of the 6th Asian Symposium on Programming Languages and Systems, APLAS
’08, pages 307–325, 2008. doi:10.1007/978-3-540-89330-1_22.

30 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized Object Sensitivity
for Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41, 2005. doi:
10.1145/1044834.1044835.

31 Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. Detecting JavaScript Races That
Matter. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 381–392, 2015. doi:10.1145/2786805.2786820.

32 Node.js. The Node.js Event Loop, Timers, and process.nextTick(). https://nodejs.org/en/
docs/guides/event-loop-timers-and-nexttick/, 2018. [Online; accessed 04-June-2018].

33 C. Park, S. Won, J. Jin, and S. Ryu. Static Analysis of JavaScript Web Applications in the
Wild via Practical DOM Modeling (T). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 552–562, 2015. doi:10.1109/ASE.2015.27.

34 Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. Race Detection for Web
Applications. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 251–262, 2012. doi:10.1145/2254064.2254095.

35 J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 55–74, 2002. doi:
10.1109/LICS.2002.1029817.

36 Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An Analysis of the Dynamic
Behavior of JavaScript Programs. In Proceedings of the 31st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’10, pages 1–12, 2010. doi:
10.1145/1806596.1806598.

37 Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. SYNODE: understanding
and automatically preventing injection attacks on Node.Js. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018, 2018.

38 Kwangwon Sun and Sukyoung Ryu. Analysis of JavaScript Programs: Challenges and Research
Trends. ACM Comput. Surv., 50(4):59:1–59:34, 2017. doi:10.1145/3106741.

39 J. Wang, W. Dou, Y. Gao, C. Gao, F. Qin, K. Yin, and J. Wei. A comprehensive study on
real world concurrency bugs in Node.js. In 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 520–531, 2017. doi:10.1109/ASE.2017.
8115663.

40 Yunhui Zheng, Tao Bao, and Xiangyu Zhang. Statically Locating Web Application Bugs
Caused by Asynchronous Calls. In Proceedings of the 20th International Conference on World
Wide Web, WWW ’11, pages 805–814, 2011. doi:10.1145/1963405.1963517.

ECOOP 2019

http://dx.doi.org/10.1145/1391984.1391987
http://dx.doi.org/10.1145/3133841.3133846
http://dx.doi.org/10.1145/3133910
http://dx.doi.org/10.1145/2814270.2814272
http://dx.doi.org/10.1109/CSF.2009.11
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/1044834.1044835
http://dx.doi.org/10.1145/2786805.2786820
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
http://dx.doi.org/10.1109/ASE.2015.27
http://dx.doi.org/10.1145/2254064.2254095
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1109/LICS.2002.1029817
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/1806596.1806598
http://dx.doi.org/10.1145/3106741
http://dx.doi.org/10.1109/ASE.2017.8115663
http://dx.doi.org/10.1109/ASE.2017.8115663
http://dx.doi.org/10.1145/1963405.1963517

A Program Logic for First-Order Encapsulated
WebAssembly
Conrad Watt
University of Cambridge, UK
conrad.watt@cl.cam.ac.uk

Petar Maksimović
Imperial College London, UK
Mathematical Institute SASA, Serbia
p.maksimovic@imperial.ac.uk

Neelakantan R. Krishnaswami
University of Cambridge, UK
nk480@cl.cam.ac.uk

Philippa Gardner
Imperial College London, UK
p.gardner@imperial.ac.uk

Abstract
We introduce Wasm Logic, a sound program logic for first-order, encapsulated WebAssembly. We
design a novel assertion syntax, tailored to WebAssembly’s stack-based semantics and the strong
guarantees given by WebAssembly’s type system, and show how to adapt the standard separation
logic triple and proof rules in a principled way to capture WebAssembly’s uncommon structured
control flow. Using Wasm Logic, we specify and verify a simple WebAssembly B-tree library, giving
abstract specifications independent of the underlying implementation. We mechanise Wasm Logic
and its soundness proof in full in Isabelle/HOL. As part of the soundness proof, we formalise
and fully mechanise a novel, big-step semantics of WebAssembly, which we prove equivalent, up
to transitive closure, to the original WebAssembly small-step semantics. Wasm Logic is the first
program logic for WebAssembly, and represents a first step towards the creation of static analysis
tools for WebAssembly.

2012 ACM Subject Classification Theory of computation Ñ Separation logic

Keywords and phrases WebAssembly, program logic, separation logic, soundness, mechanisation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.9

Acknowledgements We would like to thank the reviewers, whose comments were valuable in im-
proving the paper. All authors were supported by the EPSRC Programme Grant “REMS: Rigorous
Engineering for Mainstream Systems” (EP/K008528/1). In addition: Watt was supported by
an EPSRC DTP award (EP/N509620/1); Maksimović was supported by the Serbian Ministry of
Education and Science through the Mathematical Institute SASA, projects ON174026 and III44006;
Krishnaswami was supported by the EPSRC Programme Grant “Semantic Foundations for Interact-
ive Programs” (EP/N02706X/2); and Gardner was supported by the EPSRC Fellowship “VeTSpec:
Verified Trustworthy Software Specification” (EP/R034567/1).

1 Introduction

WebAssembly [16] is a stack-based, statically typed bytecode language. It is the first new
language to be natively supported on the Web in nearly 25 years, following JavaScript (JS).
It was created to act as the safe, fast, portable low-level code of the Web, in answer to the
growing sophisticated, computationally intensive demands of the Internet of today, such
as 3D visualisation, audio/video processing, and games. For years, developers wishing to

© Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 9; pp. 9:1–9:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:conrad.watt@cl.cam.ac.uk
mailto:p.maksimovic@imperial.ac.uk
mailto:nk480@cl.cam.ac.uk
mailto:p.gardner@imperial.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Program Logic for First-Order Encapsulated WebAssembly

execute calculation-heavy programs written in C/C++ on the Web had to compile them to
asm.js [17], a subset of JS. In time, such code has become widespread [53, 25, 11], but the
fundamental limitations of JS as a compilation target have become too detrimental to ignore.
WebAssembly is designed from the ground up to be an efficient, Web-compatible compilation
target, obsoleting asm.js and other similar endeavours, such as Native Client [52]. All major
browser vendors, including Google, Microsoft, Apple, and Mozilla, have pledged to support
WebAssembly, and the past two years have seen a flurry of implementation activity [49].

These facts alone would be enough to motivate that WebAssembly will be an important
technology, and a worthy target for formal methods. The designers of WebAssembly have
anticipated this, and have specified WebAssembly using a precise formal small-step semantics,
combined with a sound type system. Moreover, WebAssembly’s semantics, type system, and
soundness have already been fully mechanised [46], and the WebAssembly Working Group
requires any further additions to WebAssembly to be formally specified.

The main use case for WebAssembly is to inter-operate with JS in creating content for the
Web. More precisely, WebAssembly functions can be grouped into modules, which provide
interfaces through which users can call WebAssembly code, and self-contained (encapsulated)
modules can be used as drop-in replacements for their existing JS counterparts and already
constitute a major design pattern in WebAssembly. We believe that having a formalism for
describing and reasoning about WebAssembly modules and their interfaces is essential, in
line with WebAssembly’s emphasis on formal methods. Thus far, very little work has been
done on static analysis for WebAssembly (cf. §6).

We present Wasm Logic, a sound program logic for reasoning about first-order, encapsu-
lated WebAssembly modules, such as data structure libraries. Enabled by the strong guar-
antees of WebAssembly’s type system, we design a novel assertion syntax, tailored to Web-
Assembly’s stack-based semantics. We further adapt the standard separation logic triple and
proof rules in a principled way to capture WebAssembly’s uncommon structured control flow.

Having a program logic for WebAssembly is valuable for several reasons. First, as
WebAssembly programs are distributed without their originating source code, any client-side
verification would have to rely on a WebAssembly-level logic. Similarly, verification techniques
such as proof-transforming compilation [31, 1, 26, 37] rely on the existence of a program logic
for the target language. Finally, some fundamental data structure libraries are expected to
be implemented directly in WebAssembly for efficiency reasons. For example, the structure
of B-trees strongly aligns with the way in which WebAssembly memory is managed (cf. §4.2).

To demonstrate the usability of Wasm Logic, we implement, specify, and verify a simple
WebAssembly B-tree library. In doing so, we discuss how the new and adapted Wasm Logic
proof rules can be used in practice. The specifications that we obtain are abstract, in that
they do not reveal any details about the underlying implementation.

We mechanise Wasm Logic and its soundness proof in full in Isabelle/HOL, building on a
previous WebAssembly mechanisation of Watt [46]. We prove Wasm Logic sound against
a novel, big-step semantics of WebAssembly, and also mechanise a proof of equivalence
between the transitive closure of the original small-step semantics and our big-step semantics.
Our mechanisation totals ~10,400 lines of non-comment, non-whitespace Isabelle code, not
counting code inherited from the existing mechanisation.

2 A Brief Overview of WebAssembly

We give the syntax and an informal description of the semantics of WebAssembly. A precise
account of its semantics is given through our program logic in §3 and also through our
big-step semantics, introduced in §5 and presented in full in [47].

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:3

2.1 WebAssembly Syntax
WebAssembly has a human-readable text format based on s-expressions, which we use
throughout. The abstract syntax of WebAssembly programs [16], is given in full in Figure 1.
As we consider first-order, encapsulated modules, we grey out the remaining, non-relevant
syntax. We describe the semantics of the instructions informally in §2.3, and additional
syntax as it arises in the paper. A full description of WebAssembly can be found in [16].

(constants) k ::“ . . .

(immediates) im ::“ i, a, o P nat
(packed types) pt ::“ i8 | i16 | i32
(value types) t ::“ i32 | i64 | f32 | f64
(function types) ft ::“ t˚ Ñ t˚

(global types) gt ::“ mut? t

unopiN ::“ clz | ctz | popcnt
unopfN ::“ neg | abs | ceil | floor | trunc | nearest | sqrt
binopiN ::“ add | sub | mul | div_sx | rem_sx | and |

or | xor | shl | shr_sx | rotl | rotr
binopfN ::“ add | sub | mul | div |

min | max | copysign
testopiN ::“ eqz
relopiN ::“ eq | ne | lt_sx | gt_sx |

le_sx | ge_sx
relopfN ::“ eq | ne | lt | gt | le | ge

cvtop ::“ convert | reinterpret
sx ::“ s | u

(instructions) e ::“ t.const k | drop | nop | select | unreachable |
t.unopt | t.binopt | t.testopt | t.relopt |
t.cvtopt_sx? | get_local im | set_local im |

tee_local im | get_global im |

set_global im | t.store pt? a o |

t.load ppt_sxq? a o | mem.size | mem.grow |
block ft e˚ end | loop ft e˚ end |
if ft e˚ else e˚ end |
br im | br_if im | br_table im` |
return | call im | call_indirect ft

(functions) func ::“ ex˚ func ft local t˚ e˚ | ex˚ func ft imp
(globals) glob ::“ ex˚ global gt e˚ | ex˚ global gt imp
(tables) tab ::“ ex˚ table n im˚ | ex˚ table n imp
(memories) mem ::“ ex˚ memory n | ex˚ memory n imp
(imports) imp ::“ import “name” “name”
(exports) ex ::“ export “name”
(modules) mod ::“ module func˚ glob˚ tab? mem?

Note: we denote lists with a ˚ superscript: for example, t˚ denotes a list of types.

Figure 1 WebAssembly Abstract Syntax of [16], with aspects not relevant to this work greyed out.

2.2 The WebAssembly Memory Model
Values. WebAssembly values, v, may have one of four value types, representing 32- and
64-bit IEEE-754 integers and floating-point numbers: i32, i64, f32, or f64. We denote values
using their type: for example, a 32-bit representation of the integer 42 is denoted 42i32. If
the type of a value is not given, it is assumed to be i32 by default.

Local and Global Variables. WebAssembly programs have access to statically declared
variables, which may be local or global. Local variables are declared per-function. They live
in local variable stores, which exist only in the body of their declaring function. They include
function arguments, followed by a number of “scratch” local variables initialised to zero when
the function is called. Global variables are declared by the enclosing module. They live
in a global variable store, are initialised to zero at the beginning of the execution, and are
accessible by all of the functions of the module.

In contrast to most standard programming languages, WebAssembly variables cannot
be referenced by name. Instead, both the global and local variable stores are designed as
mappings from natural numbers to WebAssembly values, and variables are referenced by
their index in the corresponding variable store, as shown in §2.3.

ECOOP 2019

9:4 A Program Logic for First-Order Encapsulated WebAssembly

Stack. WebAssembly computation is based on a stack machine: all instructions pop their
arguments from and push their results onto a stack of WebAssembly values. By convention,
stack concatenation is implicit and the top of the stack is written on the right-hand side:
for example, a stack with a 32-bit 0 at its top followed by m WebAssembly values would be
denoted as vm 0. Note that the type system of WebAssembly allows us to statically know
both the number of elements on the stack and their types at every point of program execution.

Memory. WebAssembly has a linear memory model. A WebAssembly memory is an array
of bytes, indexed by i32 values, which are interpreted as offsets. Memory is allocated in units
of pages, and each page is exactly 64k bytes in size.

2.3 WebAssembly Instructions
WebAssembly has a wide array of instructions, which we divide into: basic instructions,
variable management instructions, memory management instructions, function-related in-
structions, and control flow instructions, all of which we discuss below. Every instruction
consumes its arguments from the stack, carries out its operation, and pushes any resulting
value back onto the stack. Moreover, every instruction is typed, with its type describing the
types of its arguments and result. We illustrate how this works in Figure 2, which describes
WebAssembly addition of two 32-bit integers starting from an empty stack. In particular, the
i32.const command, whose type is rs Ñ ri32s, does not require any arguments and puts the
given value on the stack, whereas the i32.add instruction, whose type is ri32, i32s Ñ ri32s,
takes two arguments from the stack and returns their sum.

WebAssembly gives two official, equivalent, semantics: a semi-formal prose semantics
and an entirely formal small-step semantics [50]. In this paper, we introduce an additional,
equivalent, big-step semantics as part of the soundness proof of our logic. Most of our
diagrams and explanatory text throughout the paper follow the style of the prose semantics,
as its treatment of the value stack is most useful in explaining the behaviour of the logic. We
denote prose-style execution steps using , and introduce the other semantics as necessary.

Basic Instructions. WebAssembly values can be declared using the t.const command, typed
rs Ñ rts, in the style of pi32.const 2q of Figure 2. The (drop) command, typed rts Ñ rs,
pops and discards the top stack item, while (nop), typed rs Ñ rs has no effect. The (select)
instruction, typed rt, t, i32s Ñ rs, takes three values from the stack, v1, v2, and c. If c is
non-zero, v1 is pushed back onto the stack, and v2 otherwise. The (unreachable) instruction,
typed rs Ñ t˚, causes the program to halt with a runtime error, which is represented in
WebAssembly by a special Trap execution result (cf. §2.4).

WebAssembly also provides a variety of (type-annotated) unary and binary arithmetic
operations (Figure 1, unop and binop, respectively), unary and binary logical operations
(Figure 1, testop and relop, respectively), and casting operations (Figure 1, cvtop). Some
of these operations can cause a Trap: for example, if we attempt division by zero or try to
convert a floating-point number to an integer when the result is not representable. Their
meaning is detailed in [16], and we address them in this paper by need.

Variable Management Instructions. Local and global variables can be read from and
written to using the appropriate get and set instructions, and all variable accesses are
performed using static indexes. For example, pget_local iq, typed rs Ñ rts (where t is the
statically known type of the i-th local variable), will push the value of the i-th declared local
variable of the current function onto the stack, and pset_global iq, typed rts Ñ rs, will set

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:5

pi32.const 2q
pi32.const 3q
pi32.addq

2

pi32.const 3q
pi32.addq 3

2
pi32.addq

5
ε

Figure 2 Addition in WebAssembly.

the value of the i-th declared global variable to the value at the top of the stack, which is
consumed in the process. It is also possible to set a local variable without consuming this
value from the stack by using the tee_local instruction, typed rts Ñ rts.

Memory Management Instructions. Stack values may be serialised and copied into the
appropriate number of bytes in memory through the type-annotated store instruction. The
pt.storeq instruction, typed ri32, ts Ñ rs, interprets its i32 argument as an index into the
memory, while the second is serialised into the appropriate number of bytes to be stored
sequentially, starting from the indexed memory location.

Conversely, the type-annotated load instruction reads bytes from the memory and
produces the appropriate stack value. pt.loadq, typed ri32s Ñ rts, will consume a single
i32 value (the address), and then read the appropriate number of bytes starting from that
address, leaving the corresponding value of type t on the top of the stack. WebAssembly
specifies that every value can be serialised, and every byte sequence of the appropriate length
can be interpreted as a value; there are no trap representations for values.

The size of the memory can be inspected by executing the (mem.size) instruction, typed
rs Ñ ri32s, which returns an 32-bit integer denoting the current memory size in pages. The
WebAssembly memory may also be grown by executing the (mem.grow) instruction, typed
ri32s Ñ ri32s, which takes a single i32 value from the top of the stack and attempts to grow
the memory by that many pages, returning the previous size of the memory, in pages, as a
32-bit integer if successful. (mem.grow) is always allowed to fail non-deterministically, to
represent some memory limitation of the host environment. In this case, the memory is not
altered, and the value ´1i32 is returned.

Control Flow Instructions. Most WebAssembly features have many similarities to other
bytecodes, such as that of the Java Virtual Machine [24]. WebAssembly’s approach to control
flow, however, is uncommon. WebAssembly does not allow unstructured control flow in the
style of a goto instruction. Instead, it has three control constructs that implement structured
control flow: pblock ft e˚ endq, ploop ft e˚ endq, and pif ft e˚ else e˚ endq. Each of these
control constructs is annotated with a function type ft of the form tm Ñ tn, meaning that
its body, e˚, requires m elements from the stack and places back n elements onto the stack
on exit. The semantics guarantees that this type precisely describes the effect the construct
will have on the stack after it/its body terminates. For example, a ploop ptm Ñ tnq e˚ endq,
no matter the behaviour of its body, will always leave precisely n additional values on the
stack upon termination. Control constructs may be nested within each other in the intuitive
way. The execution of a control construct consists of executing its body to termination.

Within the body of a control construct, a break instruction, pbr iq, may be executed.
As control constructs can be nested, br is parameterised by a static index i, indicating the
control construct that it targets (indexing inner to outer). The behaviour of br depends on
the type of its target. When targeting a block or an if, br acts as a “break” statement of a
high-level language, which transfers control to the matching end opcode, jumping out of all
intervening constructs. When targeting a loop, the break instruction acts like a “continue”

ECOOP 2019

9:6 A Program Logic for First-Order Encapsulated WebAssembly

ploop tf
pif tf 1 pbr 0q else pbr 1q end)

end)

Figure 3 Example of WebAssembly control flow. Executing pbr 0q jumps to the end of the if,
while pbr 1q jumps to the start of the loop.

statement, transferring control back to the beginning of the loop. If the body of a loop
terminates without executing a br, the loop terminates with the result of the body. The br
instruction is, therefore, required for loop iteration. We illustrate this in Figure 3. The first
break, pbr 0q, targets its enclosing if instruction, meaning that control should be transferred
to the end of that if instruction. The second break, pbr 1q, targets the outer loop instruction,
meaning that control should be transferred to the beginning of that loop.

WebAssembly also has two instructions for conditional breaking: br_if and br_table.
The pbr_if iq instruction takes one i32 value off the stack and, if this value is not equal to
zero, behaves as pbr iq, and as (nop) otherwise. On the other hand, the (br_table i0 . . . in i)
instruction acts like a switch statement. It takes one i32 value v off the stack and then: if
0 ď v ď n, it behaves as pbr ivq; otherwise, it behaves as pbr iq.

Function-related Instructions. WebAssembly supports two types of functions. First, the
host environment wil supply import functions for use by the WebAssembly module. These
functions may be JavaScript host functions or may come from other WebAssembly modules.
Second, the module itself will define its own native WebAssembly functions.

Functions are called using the pcall iq instruction, which executes the i-th function,
indexing imports first, followed by module-native functions in order of declaration. As
WebAssembly functions are declared with a precise type annotation, pcall iq also takes the
type of the i-th function. WebAssembly also provides a mechanism for dynamic dispatch
through the call_indirect instruction.

Our core logic does not support imported functions, as well as the call_indirect dynamic
dispatch, as all of these features require JavaScript intervention for non-trivial use. Without
call_indirect, WebAssembly provides no mechanism for higher-order code – this is why we
characterise our logic as supporting “first-order, encapsulated WebAssembly”. We view these
features as part of further work on JavaScript/WebAssembly interoperability and discuss the
ramifications of providing support for them in §7.

Finally, the (return) instruction is analogous to br, except that it breaks out of all
enclosing constructs, concluding the execution of the function.

Modules. A WebAssembly program is represented as a module, which consists of: a list
of functions; a list of global variables; the (optional) call_indirect table; and the (optional)
linear memory. Formally, this is written as module func˚ glob˚ tab? mem?. Functions are
made of a function type ft, a series of typed local variable declarations t˚, and a function
body e˚. Globals are made up of a type declaration gt (including an optional immutable
flag for declaring constants) and an initializer expression e˚. Tables collect a list of function
indexes for use by the call_indirect instruction. Memories declare their initial size measured
in pages. Functions, globals, tables, and memories may be shared between modules through

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:7

a system of imports and exports, but we do not support this in our current logic, in large
part because WebAssembly modules cannot satisfy each other’s imports natively, but must
currently rely on JavaScript “glue code” to compose together.

2.4 WebAssembly Semantics
WebAssembly’s official specification [16] provides a formal small-step semantics, mechanised
in Isabelle/HOL by Watt [46]. As part of the soundness proof of our program logic, we
define and mechanise in Isabelle/HOL a WebAssembly big-step semantics that we formally
prove equivalent, up to transitive closure, to the mechanised small-step semantics of [46]. We
introduce a fine-grained semantics of the br and return instructions, which is independent of
the style of semantics chosen and streamlines formal reasoning.

Execution Results. WebAssembly executions terminate with one of the following results:
Normal v˚, representing standard termination with a list of values v˚ (in future, we often
elide the Normal constructor and consider it to be the default result type);
Trap, representing a runtime error (cf. §2.3 for examples of instructions that can trap);
Break n v˚, describing an in-progress br instruction;
Return v˚, describing an in-progress return instruction.

Whereas the first two types of results are introduced by Haas et al. in [16], the last two
are introduced by us in this paper. The reason for this is that the WebAssembly formal
semantics of [16] gives a very coarse-grained semantics to the br and return instructions. A
br instruction targetting a control construct is defined as breaking to it immediately in a
single step, discarding everything in between, including all other nested control constructs.

This complicates inductive proofs over the semantics, impairing formal reasoning [46]. In
fact, this semantics is too coarse-grained for our proof system and we need to introduce the
notions of “in-progress” br and return instructions as explicit execution results.

We illustrate the difference between the approach of Haas et al. [16] and our approach in
Figure 4. The top reduction follows the official semantics of [16]. There, pbr 1q breaks out of
two blocks in a single step, transferring exactly one value out of the block, in order to satisfy
the targeted block’s type signature. We make this semantics more granular by introducing
an auxiliary Break result type. Concretely, Break n v˚ denotes an in-progress br instruction,
with n remaining contexts to break out of, in the process of transferring v˚ values to the

pblock prs Ñ ri32sq
pblock
pi32.const 1q
pi32.const 3q
pbr 1q

end)
end)

3

ε
Note: by convention, blocks of type
prs Ñ rsq are written without an ex-
plicit signature.

pblock prs Ñ ri32sq
pblock
pi32.const 1q
pi32.const 3q
pbr 1q

end)
end)

pblock prs Ñ ri32sq
pblock

Break 1 [3]
end)

end)

 pblock prs Ñ ri32sq
Break 0 [3]

end)

3
ε

Figure 4 Granularity of br executions: Haas et al. [16] (top); our approach (bottom).

ECOOP 2019

9:8 A Program Logic for First-Order Encapsulated WebAssembly

target context, as shown in the bottom reduction of Figure 4. Similarly, Return v˚ represents
an in-progress return instruction, with the only difference being that Return does not require
a remaining context count, as it breaks out of all enclosing constructs.

Big-Step Semantic Judgement. The judgement of our big-step semantics is of the form

ps, loc˚, v˚e e˚q ólabs,ret
inst ps1, loc1˚, resq.

On the left-hand side of the judgement, we have configurations of the form ps, loc˚, v˚e e˚q,
where s is a store containing whole-program runtime information (e.g. global variables and
the memory), loc˚ is the list of current local variables, and v˚e is a value stack v˚ lifted to
const instructions, which is then directly concatenated with e˚, the list of instructions to
execute.1 Configuration execution yields an updated store s1, updated local variables loc1˚,
and a result res, which has one of the four above-mentioned result types.

Additionally, execution is defined with respect to a subscript inst. This is the run-time
instance, a record which keeps track of which elements of s have been allocated by the current
program. In the case of the encapsulated modules that we consider, its role in the formalism
is trivial, but its full role is described in the official specification [16], and we give a full
definition in [47], along with our big-step semantics.

Finally, execution is also defined with respect to a list of break label arities labs (a
nat list), and a return label arity ret (a single nat). As depicted in Fig. 4, Break and Return
results must transfer precisely the correct number of values to satisfy the type of the context
it is targeting. The labs and ret parameters keep track of the number of values required, so
that, for example, if res is of the form Break k vn, then labs!k “ n. Similarly, if res is of the
form Return vn, then ret “ n.

Equivalence Result. We recall the original formal small-step semantic judgement of [16],
which is of the form ps, loc˚, v˚e e˚q ãÑinst ps1, loc1˚, v1˚e e1˚q. This judgement does not include
our break or return labels.

We state our equivalence result in Theorem 1 and mechanise its proof in Isabelle/HOL.
We denote the transitive closure of the small-step semantics by ãÑ˚. Both ãÑ and ó are
subscripted by the instance inst, the big-step derivation starts with empty labs ([]) and empty
ret (ε) components, and v1˚ denotes the list of values obtained from v1˚e by removing their
leading consts.

I Theorem 1 (reduce_trans_equiv_reduce_to).

ps, loc˚, v˚e e˚q ãÑ˚
inst ps1, loc1˚, v1˚e q ðñps, loc˚, v˚e e˚q órs,εinst ps1, loc1˚,Normal v1˚q ^

ps, loc˚, v˚e e˚q ãÑ˚
inst ps1, loc1˚, rtrapsq ðñps, loc˚, v˚e e˚q órs,εinst ps1, loc1˚,Trapq

Theorem 1 relates terminal states (values e˚ or a trap result rtraps) in the small step
semantics with execution results in the big-step semantics. In particular, it shows that the
small- and big-step semantics give equivalent results for all terminating programs. The proof
also requires auxiliary lemmas about how the big-step Break and Return execution results
correspond to behaviours in the small-step semantics. These lemmas are not included here
for space, but can be found in the mechanisation.

1 This treatment of the value stack is a key difference between the official prose and formal semantics. In
the prose semantics, the stack is represented as a list of values v˚, together with an executing list of
instructions e˚, which modifies the stack. In the formal semantics, the value stack is represented as a list
of const instructions, and directly concatenated with the executing list of instructions to form a single
list. Reduction rules are defined between configurations, pattern-matching between const instructions
and other instructions, such as add, without ever explicitly manipulating a separate value stack.

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:9

3 Wasm Logic

We present Wasm Logic, a program logic for first-order, encapsulated WebAssembly modules.
We define a novel assertion syntax, with a highly structured stack assertion which takes
advantage of WebAssembly’s strict type system. Our proof rules for the WebAssembly br
and return instructions are inspired by a foundational proof rule for “structured goto” by
Clint and Hoare [7], and extend their work to the world of separation logic [35]. We fully
mechanise and prove soundness of Wasm Logic in Isabelle/HOL, as detailed in §5.

3.1 Assertion Language

Wasm Logic assertions encode information about WebAssembly runtime states. Their
semantic interpretation is formally described in §5, in the context of our soundness result.

In many programming languages, program state is made up of the values stored in
variables and the values stored in the heap. In this case, it is natural for assertions to
be expressed using a separation logic, which extends predicate logic with connectives for
reasoning about resource separation, and is useful for modular client reasoning [35].

WebAssembly, however, also allows values to be stored in the stack. Given how the
WebAssembly’s type system provides static knowledge of the stack size and of the types of
each of its elements at every program point, we believe that reasoning about the WebAssembly
stack should be simple: that is, it should not result in proofs more complicated than those
of traditional separation logic. We manage to achieve this thanks to our structured stack
assertion and the associated proof rules. While one’s first instinct could be to treat assertions
about stack values like assertions about local variables, such a system would require substantial
bookkeeping, since the stack changes shape during execution. Benton [3] uses this approach
for a language with a similar typed-value stack, but ends up describing the resulting proofs
as “fussily baroque” and “extremely tedious to construct by hand”.

constants c P Const ::“ ci32 ||| ci64 ||| cf32 ||| cf64
variables (logical/local/global) ν P Var ::“ x ||| li ||| gi,where i P N
terms τ P Term ::“ c ||| ν ||| fpτ1 . . . τnq

heap assertions H,H 1 P Aph ::“ K ||| H ||| H ^H 1 |||

Dx. H ||| ppτ1 . . . τnq |||

emp ||| H ˚H 1 |||
Æ

τ1ă x ăτ2

H |||

τ1 ÞÑ τ2 ||| sizepτq
stack assertions S P As ::“ rs ||| S :: τ
assertions P,Q P A ::“ pS | Hq ||| Dx. P

rDÝÑx . pS | Hqs bHf fi DÝÑx . pS | H ˚Hf q iff fvpHf q X
ÝÑx “ H

Figure 5 Syntax of Wasm Logic assertions.

The syntax of Wasm Logic assertions is defined in Fig. 5. Constants, c, can have one of
the four WebAssembly value types. Next we have logical, local, and global variables, with
local/global variables having dedicated variable names, li/gi, where i P N. Terms can either
be constants, or variables, or functions (for example, unary and binary operators).

ECOOP 2019

9:10 A Program Logic for First-Order Encapsulated WebAssembly

Heap assertions are mostly familiar from traditional separation logic [35]. First, we have
the pure assertions of predicate logic, including predicates ppτ1 . . . τnq over terms (for example,
term equality). We also have the standard spatial assertions: emp describes an empty heap,
H ˚H 1 is the separating conjunction (star), and the iterated star operator,

Æ

, aggregates
assertions composed by ˚ in the same way that

ř

aggregates arithmetic expressions composed
by `. Finally, we have two WebAssembly-specific spatial assertions: the cell assertion τ1 ÞÑ τ2
describes a single heap cell at address denoted by τ1 with contents denoted by τ2, and the
sizepτq assertion states that the number of pages currently allocated is denoted by τ .

A stack assertion, denoted by S, is a list of terms, each of which represents the value of
the corresponding stack position in the value stack. This is possible due to the size of the
WebAssembly stack always being precisely known statically. Were this not true, the stack
assertion would need to be able to represent that the stack may have multiple sizes, and
could not be represented purely as a single list of terms. The list appends on the right, to
match the conventions of the WebAssembly type system.

Finally, a Wasm Logic assertion is a two-part, possibly existentially quantified assertion
consisting of a stack assertion S, and a pure/heap assertion H. We define an operator, b,
for distributing heap frames through Wasm Logic assertions, which will be used later in §3.3
to define our frame rule. The notation DÝÑx is a shorthand for some set of outer existentially
quantified variables, while fvpHf q returns the set of free variables in the heap assertion Hf .

Notation. For clarity of presentation, we introduce the following notational conventions:
(Stack Length) We denote by Pn an assertion whose stack part is of length n.
(Type Annotations in Cell Assertions) The cell assertion τ1 ÞÑ τ2 encodes the value of a
single byte in memory. As WebAssembly values normally take up either four or eight
bytes, it is convenient for us to define the corresponding shorthand, which we do by
annotating the arrow with the appropriate type: τ1 ÞÑt τ2. For example, we have that
τ1 ÞÑi32 τ2 fi τ1 ÞÑ b0 ˚ pτ1 ` 1q ÞÑ b1 ˚ pτ1 ` 2q ÞÑ b2 ˚ pτ1 ` 3q ÞÑ b3, where bk denotes
the kth least significant byte of the 32-bit representation of τ2.
(Operator Domain) To avoid clutter, we overload all mathematical operators (e.g., `, ¨,
ď, . . .) instead of explicitly stating their domain (i32, i64, f32, f64, N, Z, or R) on each
use. When required, we state the domain either of a single operator (e.g., `i32, `i64, . . .)
or of a parenthesised expression (e.g., p3.14 ´ 2.71 ¨ xqf64)), in which case the domain
applies to all operators and operands of the expression. The default domain is i32.

3.2 Wasm Logic Triple
We define a program logic for first-order, encapsulated WebAssembly modules. We base our
encoding of program behaviour on Hoare triples [18]. Wasm Logic triples are of the form

Γ $ tP u e˚ tQu

where e˚ is the WebAssembly program to be executed, P is its pre-condition, Q is its
post-condition, and Γ represents the context in which the program is executed.

Before giving the interpretation of the Wasm Logic triple, we have to explain the context Γ
in detail. A context contains four fields: (1) the functions field, F , containing a list of all
function definitions of the module; (2) the assumptions field, A, containing a set of assertions
of the form tP u call i tQu, used by the [call] rule to correctly capture mutually recursive
functions; (3) the labels field, L, containing a list of assertions used to describe the behaviour
of the br instruction; and (4) the return field, R, containing an optional return assertion,

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:11

used to describe the behaviour of the return instruction. A context may be alternatively
presented as pF,A,L,Rq, and any of its fields may be referenced directly: for example, Γ.F
refers to the functions field of the context. We use P ; Γ as syntactic shorthand for Γ with P
appended to the head of its labels field, since this pattern occurs commonly.

Interpretation of Wasm Logic Triples. The meaning of the triple Γ $ tP u e˚ tQu is,
informally, as follows. Let e˚ be executed from a state satisfying P . Then: if e˚ terminates
normally, it will terminate in a state satisfying Q; if it terminates with a Return v˚ result, the
resulting state must satisfy Γ.R; and if it terminates with a Break i v˚ result, the resulting
state must satisfy the i-th assertion of Γ.L. A formal definition is given in §5.

3.3 Proof Rules
Basic Instructions. The proof rules for basic instructions are given in Figure 6. These rules
manipulate only the stack and pure logical assertions, and can be intuitively motivated by
their effects on the stack. In particular, the effect of the [select] rule is conditional on the
value of τ3: we know that it has placed exactly one value on the stack, but whether it is τ1
or τ2 depends on whether or not τ3 ‰ 0. These rules, despite manipulating the WebAssembly
stack, appear very standard: this is precisely due to our structured stack assertions.

Variable Management Instructions. We give the proof rules for variable management
instructions in Figure 7 (left). Just like the rules for basic instructions, these also require an
empty heap. By observing these rules, we can understand how the dedicated local/global
variable names are manipulated. For example, pget_local iq simply puts the variable li on

[const]
Γ $ trs | empu t.const c trcs | empu

[unreachable]
Γ $ trs | Ku unreachable tQu

[nop]
Γ $ trs | empu nop trs | empu

[drop]
Γ $ trτ s | empu drop trs | empu

[select]
Γ $ trτ1, τ2, τ3s | empu select tDx. rxs | emp^ pτ3 ‰ 0 Ñ x “ τ1q ^ pτ3 “ 0 Ñ x “ τ2qu

[unop]
Γ $ trτ s | empu t.unop trunoppτqs | empu

[testop]
Γ $ trτ s | empu t.testop trtestoppτqs | empu

[binop]
Γ $ trτ1, τ2s | definedpbinop, τ1, τ2q ^ empu t.binop trbinoppτ1, τ2qs | empu

[relop]
Γ $ trτ1, τ2s | empu t.relop trreloppτ1, τ2qs | empu

[cvtop]
Γ $ trτ s | definedpcvtop, τq ^ empu t.cvtop trcvtoppτqs | empu

Note: The definedpbinop, τ1, τ2q and definedpcvtop, τq predicates describe conditions sufficient for binary
and conversion operators to be non-trapping.

Figure 6 Proof Rules: Basic Instructions.

ECOOP 2019

9:12 A Program Logic for First-Order Encapsulated WebAssembly

isDeclaredLocal i
[get_local]

Γ $ trs | empu get_local i trlis | empu

isDeclaredLocal i
[set_local]

Γ $ trxs | empu set_local i trs | emp^ li “ xu

isDeclaredLocal i
[tee_local]

Γ $ trxs | empu tee_local i trxs | emp^ li “ xu

isDeclaredGlobal i
[get_global]

Γ $ trs | empu get_global i trgis | empu

isDeclaredGlobal i
[set_global]

Γ $ trxs | empu set_global i trs | emp^ gi “ xu

rs | l1 “ 2^ emp
(

pget_local 1q

rl1s | l1 “ 2^ emp
(

r2s | l1 “ 2^ emp
(

pi32.const 3q

r2, 3s | l1 “ 2^ emp
(

pi32.addq

r5s | l1 “ 2^ emp
(

Note: The pisDeclaredLocal iq and pisDeclaredGlobal iq predicates are an internal detail of the meta-
theory ensuring that li and gi do not refer to local/global variables that are not declared by the module.
They always hold for any well-typed WebAssembly program.

Figure 7 Proof Rules: Variable Management Instructions (left); Simple Proof Sketch (right).

the top of the stack. On the other hand, pset_global iq requires one value from the value
stack in the pre-condition, and in the post-condition has consumed it, and guarantees that
gi, the i-th global variable, holds this value.

In Figure 7 (right), we give a proof sketch of a simple WebAssembly program that uses
basic and variable management instructions, illustrating how stack assertions behave. We
start from the pre-condition

rs | l1 “ 2^ emp
(

, which tells us that the stack and the heap
are empty and that the first local variable, l1, equals 2. Executing pget_local 1q adds l1 to
the stack, which we can immediately replace with 2 due to our pure knowledge that l1 “ 2.
The second line of the program pushes the constant 3 onto the stack (the top of the stack is
on the right-hand side of the assertion). Finally, the two values are added together, and the
resulting stack holds a single value, 5.

Memory Management Instructions. Proof rules for instructions that interact with the
WebAssembly memory are given in Figure 8. The pt.loadq and pt.storeq proof rules are
similar to standard separation heap rules, except that they are annotated with the type of
the value in the heap, which determines the number of bytes that this value occupies, and
also a static offset, which is added to the given address.

As discussed, the pmem.sizeq and pmem.growq instructions allow WebAssembly to alter
the memory size. The “permission” to observe the memory size is encoded using the sizepτq
assertion, which states that the memory is currently τ pages long. This permission, however,
does not imply permission to access in-bounds locations; the logic still requires x ÞÑt n to be
held in order to access the location x, even if x is known to be in-bounds because size is
held. Growing the memory using the pmem.growq instruction confers ownership of all newly
created locations, and leaves the index of the first newly allocated location on the stack.

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:13

Control Flow Instructions. The proof rules for WebAssembly control constructs are given
in Figure 9. These rules illustrate how the labels (L) and return (R) fields of the context are
used in practice. In particular, L contains a list of assertions, and the i-th assertion describes
the state that has to hold if we break out of i enclosing contexts. Similarly, the R assertion
describes the state that has to hold if we execute a function return.

In line with this, the precondition of pbr iq in the [br] rule equals the i-th assertions
of L. On the other hand, its post-condition is arbitrary, which is justified by the fact that
any code following a br instruction in the same block of code cannot be reached due to
the structured control flow of WebAssembly. Analogously, the precondition of a (return)
statement in the [return] rule equals the return field of the context, and its post-condition is
arbitrary. Observe the clear analogy between the role of labs and ret in the semantics and
the role of L and R in the proof rules for br and return, respectively.

The main aspect of the [block] and [loop] rules is how they interact with the context.
Concretely, in the [block] rule, the labels field is extended with the post-condition of the
block, whereas in the [loop] rule, it is extended with its pre-condition. Bearing in mind the
[br] rule, this precisely captures the WebAssembly control flow: when we break to a block,
we exit the block, and when we break to a loop, we continue with the next iteration and the
pre-condition of the loop acts as its invariant.

This approach is inspired by the proof rule for “structured” goto statements of Clint
and Hoare [7], as WebAssembly’s block and br opcodes replicate the structural conditions
imposed by [7] on the use of goto. Note also that the explicit type annotations of [block]
and [loop], combined with the guarantees of the WebAssembly type system, allow the rules
to precisely fix the size of the stack in both the pre- and post-condition.

Next, the [if] rule branches depending on the value that is on the top of the stack. If
this value is non-zero, the then branch is taken, and the else branch otherwise. As is
commonplace, the post-conditions of the two if branches have to match.

The [br_if] rule is a conditional break. If the break is taken, the value on the top of the
stack is popped, and known to be non-zero, and the instruction functions identically to br.
The post-condition represents the case where the break is not taken: the value on the top of
the stack is popped, and known to be 0.

Finally, the br_table instruction acts like the switch statement of modern languages,
breaking to the appropriate label depending on the value on the top of the stack.

Structural Proof Rules. Structural proof rules, shown in Figure 10 and demonstrated in
practice throughout §4, are needed to compose proofs together. The [seq] rule for program
concatenation is inherited from standard separation logic, whereas the others are either new
or require adjustment for Wasm Logic.

[load]
Γ $ trτ1s | pτ1 ` offq ÞÑt τ2u t.load off trτ2s | pτ1 ` offq ÞÑt τ2u

[store]
Γ $ trτ1, τ2s | pτ1 ` offq ÞÑt ´u t.store off trs | pτ1 ` offq ÞÑt τ2u

[mem.size]
Γ $ trs | sizepτqu mem.size trτ s | sizepτqu

[mem.grow]

Γ $ trτ1s | sizepτ2qu mem.grow

$

’

’

&

’

’

%

Dv. rvs

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

¨

˝

Æ

τ2 ď i{64k ă pτ2`τ1q

i ÞÑ 0 ˚ sizepτ2 ` τ1q

^ v “ τ2 ^ ppτ2 ` τ1q ď 216
qN

˛

‚

_ psizepτ2q ^ v “ ´1q

,

/

/

.

/

/

-

Figure 8 Proof Rules: Memory Management Instructions.

ECOOP 2019

9:14 A Program Logic for First-Order Encapsulated WebAssembly

L!i “ P
[br]

F,A,L,R $ tP u br i tQu
[return]

F,A,L,R $ tRu return tQu

Qm ; Γ $ tPnu e˚ tQmu [block]
Γ $ tPnu block tn Ñ tm e˚ end tQmu

Pn ; Γ $ tPnu e˚ tQmu [loop]
Γ $ tPnu loop tn Ñ tm e˚ end tQmu

Γ $ tS | H ^ τ ‰ 0i32u block tf e˚1 end tQu
Γ $ tS | H ^ τ “ 0i32u block tf e˚2 end tQu

[if]
Γ $ tS :: τ | Hu if tf e˚1 else e˚2 end tQu

Γ $ tS | H ^ τ ‰ 0i32u br i tQu [br_if]
Γ $ tS :: τ | Hu br_if i tS | H ^ τ “ 0i32u

@k. 0 ď k ă llenpi˚q Ñ Γ $ tS | H ^ τ “ ki32u br pi˚!kq tQu
Γ $ tS | H ^ p0 ď τ ă llenpi˚qqi32u br i tQu [br_table]

Γ $ tS :: τ | Hu br_table i˚ i tQu

Figure 9 Proof Rules: Control Flow Instructions.

Γ $ tP u e˚1 tQu Γ $ tQu e˚2 tRu [seq]
Γ $ tP u e˚1 e˚2 tRu

F,A,L,R?
$ tP u e˚ tQu

[exists]
F,A, pmap pDx.q Lq, pDx. Rq? $ tDx. P u e˚ tDx. Qu

F,A,L,R?
$ tP u e˚ tQu fvpHq Xmvpe˚q “ H

[frame]
F,A, pmap pb Hq Lq, pR bHq? $ tP bHu e˚ tQbHu

F,A,L1, R1n1 $ tP
1
u e˚ tQ1u P ñ P 1 Q1 ñ Q llenpLq “ llenpL1q

@i ă llenpLq.DLn L1n1 . L!i “ Ln ^ L
1!i “ L1n1 ^ n

1
ď n^ L1n1 ñ Ln n1 ď n^R1n1 ñ Rn [consequence]

F,A,L,Rn $ tP u e
˚
tQu

Γ $ tDÝÑx . pSp | Hqu e˚ tDÝÑy . pSq | H 1qu fvpSkq X pmvpe˚q Y ÝÑx YÝÑy q “ H
[extension]

Γ $ tDÝÑx . pSk;Sp | Hqu e˚ tDÝÑy . pSk;Sq | H 1qu

F,A,L,R?
$ tP u e˚ tQu

[context]
F,A, pL;Lf q, R $ tP u e˚ tQu

Note: mvpe˚q denotes the set of local and global variables modified by the execution of e˚.

Figure 10 Proof Rules: Structural.

The existential elimination rule, [exists], has to eliminate the existential from all assertions
in L and also the R. If we were only to eliminate the existential from the pre- and post-
condition, as is standard, the rule would be unsound, as we could derive the following:

´,´, rprs | l0 “ kqs,´ $ trs | l0 “ ku pbr 0q tQu
[unsound exists]

´,´, rprs | l0 “ kqs,´ $ tDk1. rs | l0 “ k1u pbr 0q tDx. Qu

which does not correspond to the intended meaning of the context, as the pre-condition of
the break no longer implies its matching assertion in L. For similar reasons, the [frame] rule
must frame off from all assertions in L and also the R. As shown in §4, we can derive simpler
proof rules for straight-line code that do not require irrelevant manipulation of L and R.

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:15

func “ func tn Ñ tm local tk e˚ Sn “ rx0..xn´1s @i. li R fvpSnq Y fvpHq Y fvpQmq

pF,A, rQms, Qmq $ trs | H ^
Ź

0ďiănpli “ xiq ^
Ź

nďiăn`kpli “ 0qu e˚ tQmu
[function]

F,A,L,R $ tSn | Hu callcl func tQmu

tP u call i tQu P ApΓq i ă llenpF pΓqq
[call]

Γ $ tP u call i tQu

@ptP u e˚ tQuq P specs. Γ $ tP u e˚ tQu
[specsI]

Γ , specs
Γ , specs ptP u e˚ tQuq P specs

[specsE]
Γ $ tP u e˚ tQu

@spec P specs. spec “ t_u call _ t_u
F, specs, rs, rs , t tP u callcl pF !jq tQu | tP u call j tQu P specs u

[module]
F, rs, rs, rs , specs

Figure 11 Proof Rules: Function-Related Instructions, Modules.

In addition to the standard strengthening of the pre-condition and weakening of the
post-condition, the [consequence] rule allows us to weaken the assertions in L and also the R.
This weakening comes with a side condition that we are not allowed to increase the number
of elements on the corresponding stack, which comes from the intuition that breaking out
carrying n values does not necessarily imply that we can break out with n` 1 values. The
[consequence] rule uses the entailment relation of Wasm Logic, denoted by P ñ Q and
defined in the standard way in §5, Figure 16.

The two new rules introduced for Wasm Logic are [extension] and [context]. The
[extension] rule is the analog of [frame] for stacks, and it allows us to arbitrarily extend the
“bottom” of the stack. This, in turn, enables the proof rules of Figures 6, 7, and 8 to be
generalised to arbitrary stacks, with the rules modifying only the head. The [context] rule
allows us to remove unneeded assertions from L and also, potentially, R. This rule is sound
because the triple encodes that e˚, when executed, will only jump to targets in L, so it is
trivially correct for L to be further enlarged.

Function-Related Instructions, Modules. The proof rules for function-related instructions
and modules are given in Fig. 11. We give a unified semantics to function calls in WebAssembly
through the auxiliary callcl instruction and the corresponding [function] rule, which we now
explain in detail. First, when inside a function body, if we execute pbr 0q at top-level or
preturnq anywhere, the function terminates. For this reason, the context from which we start
proving a function body has the labels and the return field set to the post-condition of the
function Qm. Next, as previously described, the function arguments are taken from the stack.
Therefore, we require the length of the stack to match the number of function parameters, n,
given in the function definition. Next, the n arguments themselves are transferred into the
first n local variables (l0 through ln´1), whereas the remaining declared local variables (ln
through ln`k) are set to 0. Finally, as local variables are declared per-function, we forbid
function pre- and post-conditions from talking about local variables altogether in order
to avoid name clashes. Note that, as with [block] and [loop], the function’s explicit type
annotation allows us to precisely fix the stack size of both the pre- and post-condition.

At the top level, we have rules for proving specifications for sets of mutually recursive
functions. We follow the strategy described by Oheimb [33] and Nipkow [30]. There,
each individual function body is initially proven while assuming the specifications of all

ECOOP 2019

9:16 A Program Logic for First-Order Encapsulated WebAssembly

other functions (the [function] rule), recursive calls and calls to other functions only use the
assumptions (the [call] rule), and from this, it can be concluded that all function specifications
are correct without any assumptions (the [module] rule).

4 Using Wasm Logic: A Verified B-Tree Library

We demonstrate the applicability of Wasm Logic by specifying and verifying a simple
WebAssembly B-tree library. B-trees are one of the data structures that we expect to be
implemented directly in WebAssembly for efficiency reasons. In particular, a B-tree node
commonly occupies an entire page of secondary storage (for example, a hard drive) and
WebAssembly memory is allocated in pages. Our B-tree implementation is underpinned by
the ordered, bounded array data structure, which we use to demonstrate in detail how Wasm
Logic rules can be used in practice (§4.1). We focus on the two non-standard aspects of the
logic: stack manipulation and the interplay between structural rules (framing, existential
variable elimination, and consequence) and WebAssembly’s control flow. We further describe
the structure of the B-trees that we implement and present abstract specifications for some of
the main B-tree operations (§4.2). The full details of our B-tree implementation are available
in the accompanying technical report [47].

Additional Notation (Lists/Sets). We denote: the empty list by r s; the list resulting from
prepending an element a to a list α by a:α; concatenation of two lists α and β by α ¨ β; the
length of a list α by llenpαq; the n-th element of a list α by α!n; the sublist of a list α starting
from index k and containing n elements by SubListpα, k, nq; and the set corresponding to a
list α by ToSetpαq. We also denote the number of elements of a set X by cardpXq.

4.1 Ordered, Bounded Arrays in WebAssembly

An ordered, bounded array (OBA) is an array whose elements are ordered and which has a
fixed upper bound on the number of elements it can contain. We have found OBAs to be an
appropriate data structure for representing B-tree nodes, as discussed in detail in [47].

In separation logic, it is commonplace to describe data structures using abstract predicates
in order to abstract their implementation and simplify the textual representation of the
associated proofs.2 We define the abstract predicate for a 32-bit OBA at address x, with
maximum size n and contents α, written OBApx, n, αq. Informally, the layout of OBAs in
memory, illustrated below, is as follows: the first 32-bit cell holds the length of the list α;
the next llenpαq 32-bit cells hold the contents of the list α; and the remaining pn´ llenpαqq
32-bit cells constitute over-allocated space.

	llen(𝛼) 𝛼 −

𝑥 𝑥 + 4 𝑥 + 4 + 4 ⋅ llen 𝛼

(𝑥 + 4) + 4 ⋅ 𝑛

2 In some separation logics, abstract predicates are distinct formal entities, but in Wasm Logic they are
simply a syntactic shorthand for some particular assertion.

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:17

rx, ks | OBApx, n, αq ^ 0 ď k ă llenpαq
(

pfunc OBAGet ri32, i32s Ñ ri32s

rs | OBApx, n, αq ^ 0 ď k ă llenpαq ^ l0 “ x^ l1 “ k
(

fr
am

e

rs | emp
(

pget_local 0q

rl0s | emp
(

ex
te
ns
io
n

rs | emp
(

pget_local 1q

rl1s | emp
(

rl0, l1s | emp
(

pi32.const 4q

rl0, l1, 4s | emp
(

pi32.mulqpi32.addq

rl0 ` 4 ¨ l1s | emp
(

rl0 ` 4 ¨ l1s | OBApx, n, αq ^ 0 ď k ă llenpαq ^ l0 “ x^ l1 “ k
(

rx` 4 ¨ ks | OBApx, n, αq ^ 0 ď k ă llenpαq
(

(by consequence)
[[Unfold OBApx, n, αq]]
$

&

%

rx` 4 ¨ ks | px ÞÑi32 llenpαq ˚
Æ

0ďiăllenpαq

px` 4` 4 ¨ i ÞÑi32 α!iq ˚
Æ

llenpαqďiăn

px` 4` 4 ¨ i ÞÑi32 ´qq^

pOrderedpαq ^ llenpαq ď n ^ px` 4` 4 ¨ n ď INT32_MAXqNq ^ 0 ď k ă llenpαq

,

.

-

fr
am

e

rx` 4 ¨ ks | x` 4` 4 ¨ k ÞÑi32 α!k
(

pi32.load offset=4q

rα!ks | x` 4` 4 ¨ k ÞÑi32 α!k
(

$

&

%

rα!ks | px ÞÑi32 llenpαq ˚
Æ

0ďiăllenpαq

px` 4` 4 ¨ i ÞÑi32 α!iq ˚
Æ

llenpαqďiăn

px` 4` 4 ¨ i ÞÑi32 ´qq^

pOrderedpαq ^ llenpαq ď n ^ px` 4` 4 ¨ n ď INT32_MAXqNq ^ 0 ď k ă llenpαq

,

.

-

[[Fold OBApx, n, αq]]

rα!ks | OBApx, n, αq ^ 0 ď k ă llenpαq
(

end)

rα!ks | OBApx, n, αq ^ 0 ď k ă llenpαq
(

Figure 12 OBAGet: Specification and Verification.

Formally, the definition of the OBApx, n, αq predicate is:

OBApx, n, αq :“ px ÞÑi32 llenpαq ˚ Asegpx` 4, αq ˚
æ

llenpαqďiăn
px` 4` 4 ¨ i ÞÑi32 ´qq^

pOrderedpαq ^ llenpαq ď n^ px` 4` 4 ¨ nq ď INT32_MAXqNq,

where: the predicate Asegpx, αq describes the contents as an array segment:

Asegpx, αq :“
æ

0ďiăllenpαq
px` 4 ¨ i ÞÑi32 α!iq;

the predicate Orderedpαq denotes that α is ordered in ascending order:

Orderedpαq :“ @i. 0 ă i ă llenpαq ñ α!pi´ 1q ď α!i;

and INT32_MAX denotes the maximal positive integer of i32. Additionally, we require that
the length of the list be bounded pllenpαq ď nq. Finally, since we are working in i32, we have
to explicitly prevent overflow by stating that px` 4` 4 ¨ n ď INT32_MAXqN.

Straight-Line Code: OBAGet. We demonstrate the basics of proof sketches in Wasm Logic
using the example of the OBAGetpx, kq function, specified and verified in Figure 12. OBAGet
takes two parameters: x, denoting the memory address at which the OBA starts; and k,
denoting the (non-negative) index of the OBA element to be retrieved. Assuming that k
does not exceed the current OBA length, the function returns the k-th element of the OBA.

This example illustrates the following aspects of Wasm Logic: the interaction between
function parameters, the stack, and the local variables; basic stack and heap manipulation;
basic use of the frame, extension, and consequence rules; and predicate unfolding and folding.

ECOOP 2019

9:18 A Program Logic for First-Order Encapsulated WebAssembly

In Wasm, function inputs are taken from and function outputs are put onto the stack, as
specified in the pre- and post-conditions. When verifying the function body, the values of the
function parameters are introduced as local variables (here, l0 and l1), which are propagated
throughout the proof and are forgotten in the post-condition (cf. the [function] rule).

When the code being verified is straight-line, i.e. when the labels and the return fields
of the context are empty, the [frame] and [consequence] rules can be used as in standard
separation logic. On the other hand, the [extension] rule, which manipulates the stack
analogously to [frame] manipulating the heap, can always be applied independently of the
context (to limit clutter, in Figure 12, we show only one use of the [extension] rule and do
not show the context Γ, since it is not relevant for this particular proof).

Predicate unfolding and folding in Wasm Logic is standard. For example, in Figure 12,
we have to unfold the OBA predicate and frame off the excess resource in order to isolate the
k-th element of the OBA in the heap, perform the lookup according to the [load] rule, and
then frame the resource back on and fold the predicate.

Conditionals and Loops: OBAFind. We demonstrate how to reason about WebAssembly
conditionals and loops in Wasm Logic using the example of the OBAFindpx, eq function,
specified and verified in Figure 13. OBAFind takes two parameters: x, denoting the memory
address at which the OBA starts; and e, a 32-bit integer. The function returns the index i of
the first element of the OBA that is not smaller than e, or llenpαq if such an element does
not exist. The index i effectively tells us the position in the OBA at which either e appears
for the first time or would be inserted.

This example addresses, among other things, the following features of Wasm Logic:
interaction between conditionals, loops, and the break statement; advanced use of the frame,
existential elimination, and consequence rules; and function calls. To focus on these features,
we elide previously discussed details, such as predicate management, from the proof sketch.

First, observe how local variables are initialised. The function itself expects two paramet-
ers, as given by the type of the function (cf. the [function] rule). These form the first two
local variables. The explicitly declared local variables, starting from index 2, are initialised
to zero.

The body of the function is a loop that uses the local variable l2 to iterate over the OBA
and find its first element that is not smaller than e. First, the loop checks if l2 is smaller
than the length of the OBA. If it is, the loop terminates (by reaching the loop end), and
we know that all of the elements of the OBA are smaller than e. Otherwise, it checks if the
l2-nd element of the OBA is smaller than e. If it is, the loop terminates, and we know that
we have found an element not smaller than e in the OBA. Otherwise, l2 is incremented and
the loop restarts (by executing the break instruction).

For the loop construct, we establish the appropriate invariant, prs | Pinvq, using the
[consequence] rule in the standard way. This invariant essentially states that all of the
previously examined elements are smaller than e. Then, following the [loop] rule, we verify
the body of the loop while extending the labels field of the context with the invariant. We
explicitly state modifications to the context at the point at which they first occur.

As soon as the labels or the return field of the context is not empty, the use of the frame
and existential elimination becomes more involved. For example, when framing off, we have
to frame off not only from the current state, but also from all of the labels, as well as from
the return assertion. We illustrate this in Figure 13, using the first instruction of the loop
body, pget_local 2q, where we have to frame off Pinv both from the state and the labels of
the context in order to apply the [get_local] rule.

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:19

rx, es | OBApx, n, αq
(

pfunc OBAFind ri32, i32s Ñ ri32s
(locals i32)

rs | OBApx, n, αq ^ l0 “ x^ l1 “ e^ l2 “ 0
(

Pinv : OBApx, n, αq ^ l0 “ x^ l1 “ e^ 0 ď l2 ď llenpαq ^ p@j. 0 ď j ă l2 ñ α!j ă eq

rs | Pinv
(

(by consequence)
ploop
prs | Pinvq $

rs | Pinv
(

fr
am

e prs | empq $

rs | emp
(

pget_local 2q
prs | empq $

rl2s | emp
(

rl2s | Pinv
(

pget_local 0q pi32.loadq

rl2, llenpαqs | Pinv
(

pi32.ltq
C1 : pv “ 0 ñ l2 “ llenpαqq ^ pv ‰ 0 ñ l2 ă llenpαqq

Dv. rvs | Pinv ^ C1
(

pDv. rs | Pinvq $

Dv. rvs | Pinv ^ C1
(

(by consequence)

ex
is
ts

prs | Pinvq $

rvs | Pinv ^ C1
(

pif
prs | Pinv ^ C2q, prs | Pinvq $

rs | Pinv ^ l2 ă llenpαq
(

pget_local 0q pget_local 2q

rx, l2s | Pinv ^ l2 ă llenpαq
(

(S
2)

$

rx, l2s | OBApx, n, αq ^ 0 ď l2 ă llenpαq
(

pcallOBAGetq
$

rα!l2s | OBApx, n, αq ^ 0 ď l2 ă llenpαq
(

prs | Pinv ^ C2q, prs | Pinvq $

rα!l2s | Pinv ^ l2 ă llenpαq
(

pget_local 1q pi32.ltq

Dv. rvs | Pinv ^ l2 ă llenpαq ^ pv “ 0 ñ α!l2 ě eq ^ pv ‰ 0 ñ α!l2 ă eq
(

pif
C2 : ppl2 ă llenpαq ^ α!l2 ě eq _ l2 “ llenpαqq
prs | Pinv ^ C2q, prs | Pinv ^ C2q, prs | Pinvq $

rs | Pinv ^ l2 ă llenpαq ^ α!l2 ă e
(

pget_local 2q pi32.const 1q pi32.addq

rl2 ` 1s | Pinv ^ l2 ă llenpαq ^ α!l2 ă e
(

pset_local 2q
"

rs | OBApx, n, αq ^ l0 “ x^ l1 “ e^ l2´1 ă llenpαq ^
p@j. 0 ď j ă l2´1 ñ α!j ă eq ^ α!pl2´1q ă e

*

rs | OBApx, n, αq ^ l0 “ x^ l1 “ e^ p@j. 0 ď j ă l2 ñ α!j ă eq ^ l2 ď llenpαq
(

rs | Pinv
(

pbr 2q

rs | Pinv ^ C2
(

end)

rs | Pinv ^ C2
(

end)

rs | Pinv ^ C2
(

pDv. rs | Pinvq $

Dv. rs | Pinv ^ C2
(

prs | Pinvq $

rs | Pinv ^ C2
(

(by consequence)
end)

rs | Pinv ^ C2
(

pget_local 2q

rl2s | OBApx, n, αq ^ l0 “ x^ l1 “ e^ 0 ď l2 ď llenpαq ^ p@j. 0 ď j ă l2 ñ α!j ă eq ^ C2
(

"

Di. ris | OBApx, n, αq ^ l0 “ x^ l1 “ e^ l2 “ i^ 0 ď i ď llenpαq ^
p@j. 0 ď j ă iñ α!j ă eq ^ p@j. i ď j ă llenpαq ñ e ď α!jq

*

end)

Di. ris | OBApx, n, αq ^ 0 ď i ď llenpαq ^ p@j. 0 ď j ă iñ α!j ă eq ^ p@j. i ď j ă llenpαq ñ e ď α!jq
(

Figure 13 OBAFind: Specification and Verification.

ECOOP 2019

9:20 A Program Logic for First-Order Encapsulated WebAssembly

In the general case, however, the label assertions, the return assertion, and the state
need not match in resource, meaning that the [frame] rule may be unable to manipulate
the label/return context. In practice, we have identified two strategies for handling this
issue: (S1) specialising “falsey” labels/return via the [consequence] rule; or (S2) adjusting
the context via the [context] rule.

We illustrate the first strategy using the following derivation tree:
´,´, rpS1 | Kq, pS2,Kqs, pSR,Kq $

SP | P
(

e˚

SQ | Q
(

[frame]
´,´, rpS1 | K ˚ F q, pS2 | K ˚ F qs, pSR | K ˚ F q $

SP | P ˚ F
(

e˚

SQ | Q ˚ F
(

pS1 | K ˚ F q ñ pS1 | H1q
pS2 | K ˚ F q ñ pS2 | H2q
pSR | K ˚ F q ñ pSR | HRq

[cons]
´,´, rpS1 | H1q, pS2 | H2qs, pSR | HRq $

SP | P ˚ F
(

e˚

SQ | Q ˚ F
(

This strategy takes advantage of the fact that if e˚ never actually executes (for example)
pbr nq, then L!n can have a K component, allowing the manufacturing of any frame through
application of the [consequence] rule.

An example of the second strategy works as follows:

´,´, rs, None $

SP | P
(

e˚

SQ | Q
(

[frame]
´,´, rs, None $

SP | P ˚ F
(

e˚

SQ | Q ˚ F
(

[context]
´,´, rL1, L2s, R $

SP | P ˚ F
(

e˚

SQ | Q ˚ F
(

Here, we use the [context] rule to temporarily remove all of the labels and the return, allowing
us to frame off only from the state. This strategy be seen in action immediately before the
function call to OBAGet in Figure 13.

Both strategies can normally be applied before any non-break, non-return instruction,
although the second strategy is preferred. However, there are occasions where the first
strategy must be used. For example, if e˚ executes pbr 1q, then L!0 can no longer be removed
by [context]. However, it can still be falsified, allowing the first approach.

Existential elimination is another fundamental separation logic rule that needs to consider
the context in Wasm Logic and can only be applied if all of the labels, the return, and
the state have the same leading existential variable(s). This requirement can normally be
established via the [consequence] rule and can be used regardless of the context and the
position in the code. For example, consider the following part of the proof derivation for the
first if statement of OBAFind (cf. Figure 13 for more details):

´,´, rprs | Pinvqs, None $

rvs | Pinv ^ C1
(

pif . . . endq

rs | Pinv ^ C2
(

[exists]
´,´, rpDv. rs | Pinvqs, None $

Dv. rvs | Pinv ^ C1
(

pif . . . endq

Dv. rs | Pinv ^ C2
(

[cons]
´,´, rprs | Pinvqs, None $

Dv. rvs | Pinv ^ C1
(

pif . . . endq

rs | Pinv ^ C2
(

Here, we use [consequence] to add the existential v directly to the label (possible because
v is not featured in Pinv) and remove it from the obtained post-condition (possible because
v is not featured in R2). In cases where this direct approach would lead to variable capture,
we would have an additional first step of renaming the existentials appropriately.

In the first if statement of OBAFind, we also encounter a call to the OBAGet function.
In Wasm Logic, function calls are handled in the standard way, meaning that frame and
consequence are used first to isolate the appropriate pre-condition from the current state
and then to massage the obtained post-condition into a desired form. For simplicity, in the
code we call the functions by name, rather than by index.

Finally, we comment on the treatment of break statements, using the example of the
pbr 2q statement seen in OBAFind. Given the [br] rule, the pre-condition of that break
statement must match the loop invariant prs | Pinvq, which we establish. The post-condition,

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:21

rx, es | OBAndpx, n, αq ^ llenpαq ă n
(

(func OBAInsert ri32, i32s Ñ rs . . . end)
"

Dα1. rs | OBAndpx, n, α
1
q ^

ToSetpα1q “ ToSetpαq Y teu

*

rx, es | OBAndpx, n, αq
(

(func OBADelete ri32, i32s Ñ rs . . . end)
"

Dα1. rs | OBAndpx, n, α
1
q ^

ToSetpα1q “ ToSetpαqzteu

*

rts | sizep0q ^ 2 ď t ď 4095
(

(func BTreeCreate ri32s Ñ rs . . . end)

rs | BTreept,Hq ^ 2 ď t ď 4095
(

rks | BTreept, κq
(

(func BTreeSearch ri32s Ñ ri32s . . . end)
"

Db. rbs | BTreept, κq ^
pk P κñ b “ 1q ^ pk R κñ b “ 0q

*

rks | BTreept, κq
(

(func BTreeInsert ri32s Ñ ri32s . . . end)

rs | BTreept, κY tkuq
(

Figure 14 Specifications of: OBAInsert/OBADelete (left); B-Tree operations (right).

however, is left free in the [br] rule, and has to be chosen correctly so that the subsequent
derivation makes sense. Observe that, due to the design of WebAssembly, any code found
between a break statement and the end of the block of code in which it is found is dead
code. In our case, this means that we never reach the exit of that if branch – instead, we
unconditionally jump to the head of the main loop. The only way to reach the end of that if
statement is if the test of that if yields zero, in which case our state would be prs | Pinv^C2q.
Now, since the [if] rule requires the final states from both branches to be the same, we can
choose precisely prs | Pinv ^ C2q to be the post-condition of the break statement. More
generally, a safe option is to always choose the post-condition of a break statement to be
prs | Kq, and from there derive any required assertion using the [consequence] rule.

Additional OBA Functions. In order to support basic B-tree operations, we also need to
be able to insert/delete elements into/from an OBA. Moreover, as B-tree keys are unique
(cf. §4.2), we strengthen the OBA predicate to enforce non-duplication of elements:

OBAndpx, n, αq :“ OBApx, n, αq ^ llenpαq “ cardpToSetpαqq.

Note that the previously presented OBA functions, OBAGet and OBAFind, can also be used
with an OBAnd. We give the specifications of OBAInsert and OBADelete in Figure 14 (left).
Their corresponding proof sketches are available in [47].

4.2 B-Trees in WebAssembly
B-trees are self-balancing tree data structures that allow search, sequential access, insertion,
and deletion in logarithmic time. They generalise binary search trees in that a node of a
B-tree can have more than two children. B-trees are particularly well-suited for storage
systems that manipulate large blocks of data, such as hard drives, and are commonly used in
databases and file systems [8].

Every node x of a B-tree contains: an indicator denoting whether or not it is a leaf, λ;
the number of keys that it holds, n; and the n keys themselves, κ1, . . . κn. Additionally, each
non-leaf node contains n` 1 pointers to its children, π1, . . . , πn`1.

The number of keys that a B-tree node may have is bounded. These bounds are expressed
in terms of a fixed integer t ě 2, called the branching factor of the B-tree. In particular,
every node except the root must have at least t´ 1 keys, and every node must have at most
2t´ 1 keys. Moreover, if a B-tree is non-empty, the root must have at least one key. Finally,
all of the leaves of the B-tree have the same depth.

ECOOP 2019

9:22 A Program Logic for First-Order Encapsulated WebAssembly

The keys of a B-tree are ordered, in the sense that the keys of every node are ordered
(for us, in ascending order), and that every key of a non-leaf node is greater than all of the
keys of its left child and smaller than all of the keys of its right child.

As an illustrative example, in Figure 15 we show a B-tree with branching factor t “ 2
that contains all prime numbers between 1 and 100. It has 25 keys distributed over 12 nodes,
with every node having at least t´ 1 “ 1 and at most 2t´ 1 “ 3 keys.

2 3 5 11 13 17 23 29 31

7 19

41 47 53

43 59

61 67 73 79 89 97

83

37 71

Figure 15 Prime numbers from 1 to 100 in a B-tree of branching factor two, with the λ and n
parameters of the nodes elided.

Onward, we describe the layout of a B-tree in WebAssembly memory, define the associated
predicates, and show the specifications for B-tree creation, search, and insertion, implemented
based on the algorithms and auxiliary functions in [8]. The implementations are available,
together with their accompanying proof sketches, in full in [47].

B-Tree Metadata Page. The first page of memory is reserved for keeping track of informa-
tion about the state of the module. For example, one aspect of module state are the addresses
of “free” pages where nodes can be allocated, and another is the root node address.

We first define what it means to be a page in memory with (non-negative integer) index n:

Pagepnq :“
æ

n¨64kďiăpn`1q¨64k
pi ÞÑi32 ´q ^ 0 ď n^ ppn` 1q ¨ 64k ď INT32_MAXqN

Next, we define the predicate capturing the free pages, Freepϕq, which stores the list of free
pages, ϕ, in an OBAnd, and confers ownership of all of the pages in ϕ. The OBAnd length
p64k{4´ 3 “ 16381q is chosen to ensure that it can never overflow over the bounds of the
metadata page, taking into account the two first elements of the page as well as the length
of the array itself that is stored in the OBAnd.

Freepϕq :“ OBAndp8, 16381, ϕq
æ

0ďiăllenpϕq
pPagepϕ!iqq;

The full metadata predicate, Metapt, r, l, ϕq, describes the metadata page layout: t denotes
the branching factor of the B-tree; r denotes the address of its root; µ denotes the current
memory size in pages; and ϕ denotes the list of free pages.

Metapt, r, µ, ϕq :“ 0 ÞÑi32 t ˚ 4 ÞÑi32 r ˚ sizepµq ˚ Freepϕq.

B-Tree Nodes. We next show the definition of the abstract predicate Nodepx, λ, κ, πq, which
captures a B-tree node at page x, with leaf indicator λ, keys κ, and pointers π. A B-tree
node takes up an entire WebAssembly page in memory, which can hold 16384 32-bit integers.
The first 32-bit integer of the page is the leaf indicator (non-zero means non-leaf); the next
8191 32-bit integers hold information about the node keys; and the last 8192 32-bit integers

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:23

hold information about the node pointers. The associated predicates are defined as follows:

Keyspx, κq :“ OBAndpx ¨ 64k ` 4, 8090, κq;
Ptrspx, πq :“ BApx ¨ 64k ` 32k, 8091, πq;

Nodepx, λ, κ, πq :“ x ¨ 64k ÞÑi32 λ ˚ Keyspx, κq ˚ Ptrspx, πq.

Note that, since the pointers need not be ordered, we describe them using use a simpler
bounded array predicate, BApx, n, αq, whose definition is the same as that of the OBA
predicate given in §4.1, but without the ordering requirement. Recall also that the OBAs and
BAs come with a leading 32-bit integer capturing their length, meaning that the maximum
number of keys/pointers our B-tree node can hold is 8090/8091 and that the maximal
branching factor of our B-trees is 4095.

B-Tree Definition and Operations. Finally, we define an abstract predicate, BTreept, κq,
capturing a WebAssembly B-Tree with branching factor t and set of keys κ:

BTreept, κq fi Dr, µ, ϕ, λ, φ.Metapt, r, µ, ϕq ˚ BTreeRect,r,µpr, κ, λ, φq.

Due to lack of space, the full definition of the BTreeRec predicate is shown and explained
in detail in [47]. Informally, BTreeRect,r,µpr1, κ, λ, φq captures a subtree of a B-tree with
branching factor t, root r, in a memory of size µ. This subtree has root r1 and set of keys κ.
Additionally, the B-tree node at r1 is a leaf iff λ ‰ 0 and is full iff φ ‰ 0.

In Figure 14 (right), we give the specifications of WebAssembly functions for basic B-tree
operations: creation; search; and insertion. The specifications are abstract, in that they do
not reveal any detail of the underlying implementations.

5 Soundness

The semantic interpretation of our triple and the accompanying soundness proof are informed
by the approaches of de Bruin [9] and Oheimb [33]. The former gives us a semantics for goto
which we use as the foundation for WebAssembly’s br and return instructions. The latter
gives us a strategy for handling mutual recursion.

Interpretation is defined against an abstract variable store, ρ P Sto. Abstract variable
stores are finite partial mappings from variables to constants: Sto ” Var á Const.

Defining interpretation for terms and stack assertions is straightforward. On the other
hand, interpretation of heap assertions is more involved. In traditional separation logic [35],
ownership and existence of memory locations are conflated to simplify the soundness proof.
This, however, cannot be done for WebAssembly: in the concrete WebAssembly linear memory,
the existence of the addressable location x` 1 implies that the addressable location x also
exists. However, asserting ownership of location x` 1 should not imply ownership of x.

To address this, we define a two-stage interpretation of heap assertions. We first define
their interpretation into a set of abstract heaps, AHeap. An abstract heap, h P AHeap, is a
map from locations to bytes that additionally keeps track of the memory size, which may be
fixed by ownership of the size resource. The size resource can be thought of as tracking
the state of memory allocation, with ownership of size implying permission to perform
allocations through mem.grow, similarly to the “free set” resource of [34]. Each abstract
heap that is a member of the assertion interpretation represents a possible set of owned
locations. Our separation algebra is defined over abstract heaps, as shown in Figure 16.

ECOOP 2019

9:24 A Program Logic for First-Order Encapsulated WebAssembly

Interpretation of terms

J¨K :: Term ñ Sto ñ Const

JcKpρq fi c

JνKpρq fi ρpνq

Jfpτ1, . . . , τnqKpρq fi fpJτ1Kpρq, . . . , JτnKpρqq

Interpretation of stack assertions

J¨K :: Term listñ Sto ñ Const list

J rs Kpρq fi rs

J S :: τ Kpρq fi J S Kpρq :: JτKpρq

Abstract heaps

size ::“ ‚ ||| i32

AHeap ::“ pi32á byteq ˆ size
phm, ‚q ‚Z ph1m, ‚q fi phm Z h1m, ‚q
phm, ‚q ‚Z ph1m, nq fi phm Z h1m, nq
phm, nq ‚Z ph1m, ‚q fi phm Z h1m, nq

Note: the two last cases require that
@i P domphmq Z domph1mq. i ă n ˚ 64k

Interpretation of pure/heap assertions

J¨K :: Aph ñ Sto ñ AHeap set

JKKpρq fi H

Jτ1 “ τ2Kpρq fi t h | Jτ1Kpρq “ Jτ2Kpρq u
Jτ1 ÞÑ τ2Kpρq fi t pJτ1Kpρq ÞÑ Jτ2Kpρq, ‚q u
Jτ1 ^ τ2Kpρq fi Jτ1Kpρq X Jτ2Kpρq

J HKpρq fi pJHKpρqqc

JDx. HKpρq fi t h | Dc. h P JHKpρrx ÞÑ csq u

Jppτ1, . . . , τnqKpρq fi t h | pp Jτ1Kpρq, . . . , JτnKpρq q u
JH ˚H 1Kpρq fi t h1 ‚Z h2 | h1 P JHKpρq, h2 P JH 1Kpρq u
JsizepτqKpρq fi t pH, JτKpρqq u

Interpretation of assertions

J¨K :: A ñ Sto ñ pConst listˆAHeapq set
J S | H Kpρq fi tpv˚, hq | v˚ “ JSKpρq, h P JHKpρqu
J Dx. P Kpρq fi tpv˚, hq | Dx. pv˚, hq P JP Kpρrx ÞÑ csqu

Entailment

P ñ Q fi @ρ. JP Kpρq Ď JQKpρq

Figure 16 Interpretations of Terms and Assertions.

Before describing the second, reification stage, we recall the definition of instances and
WebAssembly stores as defined in the official WebAssembly specification [16] (the table fields
are elided as they are only used by call_indirect):

s ::“ t funcs: func list
mems: mem list
globs: glob list u

inst ::“ t faddrs: nat list
maddr: nat option
gaddrs: nat list u

locs ::“ Const list
labs ::“ nat list
ret ::“ nat option

The reification stage further relates abstract heaps to WebAssembly stores, giving the
concrete WebAssembly memories that are consistent with the size resource, such that all
owned locations exist. Store reification is defined between a WebAssembly store, instance,
abstract heap, abstract variable store, and function list, as follows:

@i. F !i “ funcspsq!ppfaddrspinstqq!iq
@pi, cq P fstphq. c “ pmemspsq!pmaddr instqq!i

sndphq ‰ ‚ ùñ pagesppmemspsq!pmaddr instqqq “ sndphq
@pgi, cq P ρ. c “ globspsq!ppgaddrspinstqq!iq

reistoreifiesstops, inst, h, ρ, Fq

We also define reification for local variables, labels, and returns:

@pli, vq P ρ. v “ locs!i
reilocreifieslocplocs, ρq

@i. pL!i “ Pnq ðñ plabs!i “ nq
reilabreifieslabplabs, Lq

pR “ Rnq ðñ pret “ nq
reiretreifiesretpret, Rq

Semantic Interpretation. We define the semantic interpretation of Wasm Logic triples in
Figure 17. We say that a triple ps, locs, v˚q satisfies an assertion P if its members can be
reified from a member of the interpretation of P . The judgement F,L,R (tP u e˚ tQumeans,

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:25

F,L,R (tP u e˚ tQu fi @s, locs, v˚, labs, labsf , vf˚, h, hf , ρ, ret, s1, locs1, res. pv˚, hq P JP Kpρq ^
reifiessps, inst, h ‚Z hf , ρ, F q ^ reifieslocplocs, ρq ^ reifieslabplabs, Lq ^ reifiesretpret, Rq ^
ps, locs, vf˚e v˚e e

˚
q ó

plabs;labsf q,ret
inst ps1, locs1, resq ùñ

res ‰ Trap ^
Dh1, ρ1. reifiessps1, inst, h1 ‚Z hf , ρ1, Fq ^ reifieslocplocs1, ρ1q ^
pres “ Normal v˚ ñ Dv1

˚
. v˚ “ vf˚v1

˚
^ pv1

˚
, h1q P JQKpρ1qq ^

pres “ Break i v˚ ñ pv˚, h1q P JL!iKpρ1qq ^
pres “ Return v˚ ñ pv˚, h1q P JRKpρ1qq

F,L,R specs fi p@ptP u e˚ tQuq P specs. F, L,R (tP u e˚ tQuq

F,A,L,R specs fi pF, rs, ε Añ F,L,R specsq

Figure 17 Semantic interpretation of the specification triple.

intuitively, that for all triples ps, locs, v˚e q that satisfy P , executing ps, locs, pvf˚e qpv˚e qe˚q to
completion will result in a triple ps1, locs1, resq with the following properties: if res is of
the form Normal v˚, then ps1, locs1, v˚q satisfies Q; if res is of the form Break i v˚, then
ps1, locs1, v˚q satisfies L!i; if res is of the form Return v˚, then ps1, locs1, v˚q satisfies R.

Note that framing is featured in three places in the definition: in the heap phf q; in the
stack pvf˚q; and in the labels plabsf q. The heap frame is treated in the standard way. The
stack frame remains in the case of a Normal result, but is discarded in case of the Break
and Return results automatically, by WebAssembly’s semantics. Finally, the labels frame
encodes that the full label context during reduction may be arbitrarily large, but that only
the initial labels labs will be targeted by the br instructions present in e˚.

Soundness. We now state our soundness result, fully mechanised in Isabelle/HOL.

I Theorem 2 (inference_rules_sound).

Γ , specs ùñ Γ specs

6 Related Work

WebAssembly’s official specification is given as a pen-and-paper formal semantics [16, 36], a
large core of which has been mechanised in Isabelle [46]. Our mechanised soundness results
build on this existing mechanisation. CT-Wasm [48] is a proposed cryptographic extension
to WebAssembly’s type system that protects against side-channel and information flow
leaks. Aside from this, research on WebAssembly has focussed mainly on dynamic analysis.
Wasabi [23] is a general purpose framework for dynamic analysis. Other work has focussed
on taint tracking and binary instrumentation [14, 41]; and the detection of unauthorised
WebAssembly-based cryptocurrency miners [45, 27].

Control Flow. Our proof rules for Wasm Logic’s break/continue-to-block-style semi-struc-
tured control flow take inspiration from the program logic for “structured goto” proposed by
Clint and Hoare [7] and first proven sound by de Bruin [9]. These works use a traditional
Hoare Logic based on first-order logic; we have adapted their approach to our Wasm Logic.
In doing so, we have observed that the existential elimination and consequence rules of Hoare
logic, and the frame rule of separation logic, require modification, as detailed in §3.2.

ECOOP 2019

9:26 A Program Logic for First-Order Encapsulated WebAssembly

Huisman and Jacobs [19] describe an early Hoare logic for Java, and their treatment of
Java’s break and continue statements in their operational semantics is similar to our use of
the Break and Return execution results. However, their specifications must explicitly track
in the post-condition that a statement terminates via break or continue, leading to unwieldy
proof rules for loops, since separate specifications must be proven for each possible kind of
termination of the loop body.

It is common for program logics which handle unstructured control flow, such as goto or
continuations, to include a context of target assumptions in the semantics of the triple [3,
9, 42, 38]. Separation logics for such languages require a “higher-order frame rule”, which
distributes the frame across all such assumptions [20, 5, 51, 32, 22]. Similarly, our adaptions
to the “structured goto” approach result in rules akin to a higher-order frame rule, despite
the first-order nature of our logic.

Stack-Based Logics. Two existing program logics are defined over languages which are
close to WebAssembly in their typed treatments of the stack: Benton [3], and Bannwart and
Müller [1]. However, unlike Wasm Logic, these works does not propose a structured assertion
syntax for the stack, instead using unstructured assertions about the values of individual stack
positions. This means that assertions must be re-written with a shift operation whenever the
shape of the stack changes due to the execution of an instruction, and irrelevant portions of
the assertions cannot be framed off during local proofs without keeping track of the necessary
resulting shift. Saabas and Uustalu [38] give a program logic for a low-level stack-based
language with no heap. Their stack assertion is related to ours in that it has a list structure,
but their proof rules rely on a global style of term substitution, and their discussion of
compositionality does not appear to extend to generalising existing specifications to larger
stacks. This means that one cannot conduct local proofs over just the portion of the stack
that is changing in the program fragment, which we permit thanks to our [extension] rule.
There has been other previous work on program logics for low-level, assembly-like languages,
often incorporating a stack [29, 4, 10, 28, 2, 20]. These languages do not have type system
restrictions on the stack that are as strong as WebAssembly’s, and must therefore find other,
less structured ways to represent the stack formally.

7 Conclusions and Future Work

We have presented Wasm Logic, a sound program logic for first-order, encapsulated Web-
Assembly, and proven the soundness result in Isabelle/HOL. Using Wasm Logic, we have
specified and verified a simple WebAssembly B-tree library, giving abstract specifications
independent of the underlying implementation.

In designing Wasm Logic, we have found the properties of WebAssembly’s type system
helpful for streamlining the assertions of Wasm Logic. The restrictions placed on the runtime
behaviour of the WebAssembly stack by the type system are mirrored in the structured
nature of our logic’s stack assertions. To account for WebAssembly’s uncommon control flow,
we have adapted the standard separation logic triple and proof rules, inspired by the early
approach of Clint and Hoare [7] for “structured goto”.

We plan to extend Wasm Logic to handle programs made up of multiple WebAssembly
modules composed together. To do this, we must extend Wasm Logic with the ability to
reason about multiple, disjoint memories. Moreover, we would need to account for the
JavaScript “glue code”, mandatory for module interoperability. This is part of our broader
goal of integrating JavaScript and WebAssembly reasoning. To achieve this, however, we

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:27

will need to support some higher-order reasoning, as WebAssembly modules and functions
are first-class entities in JavaScript. We also plan to extend Wasm Logic to be able to
reason about higher-order pure WebAssembly code and the call_indirect instruction. For
both of these goals, we will refer to existing work on higher-order separation logics [44, 21].
Although WebAssembly’s higher-order constructs are not entirely standard, we believe that
it is possible to map WebAssembly’s use of the table as a higher-order store to the more
traditional program states of other higher-order logics, and hence take direct inspiration
from their proof rules and soundness approaches. Again, we would also need to account for
the JavaScript component required to mutate the table.

Our long-term goal is to be able to reason, in a single formalism, about integrated
JavaScript/WebAssembly programs as they will appear on the Web. We ultimately hope to
integrate our work on Wasm Logic with existing work on program analysis for JavaScript [15,
12, 13] to provide a combined proof system, as well as a verification tool.

We expect WebAssembly to be extended with threads and concurrency primitives in
the near future [40]. Because there is no sharing of stacks in the WebAssembly threads
proposal, we believe that many of our proof rules will be fully transferrable to a hypothetical
concurrent separation logic for WebAssembly with threads, although proof rules for the (now
shared) heap will need revising, as will the semantic interpretation. For this, we will take
inspiration from various modern concurrent separation logics [6, 43, 39].

References
1 Fabian Bannwart and Peter Müller. A Program Logic for Bytecode. Electron. Notes Theor.

Comput. Sci., 141(1):255–273, December 2005. doi:10.1016/j.entcs.2005.02.026.
2 Björn Bartels and Nils Jähnig. Mechanized, Compositional Verification of Low-Level Code. In

Julia M. Badger and Kristin Yvonne Rozier, editors, NASA Formal Methods, pages 98–112,
Cham, 2014. Springer International Publishing.

3 Nick Benton. A Typed, Compositional Logic for a Stack-based Abstract Machine. In Proceedings
of the Third Asian Conference on Programming Languages and Systems, APLAS’05, pages
364–380, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11575467_24.

4 Lennart Beringer and Martin Hofmann. A Bytecode Logic for JML and Types. In Proceedings
of the 4th Asian Conference on Programming Languages and Systems, APLAS’06, pages
389–405, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11924661_24.

5 Lars Birkedal and Hongseok Yang. Relational Parametricity and Separation Logic. In
Proceedings of the 10th International Conference on Foundations of Software Science and
Computational Structures, FOSSACS’07, pages 93–107, Berlin, Heidelberg, 2007. Springer-
Verlag. URL: http://dl.acm.org/citation.cfm?id=1760037.1760047.

6 Stephen Brookes and Peter W. O’Hearn. Concurrent Separation Logic. ACM SIGLOG News,
3(3):47–65, August 2016. doi:10.1145/2984450.2984457.

7 M. Clint and C. A. R. Hoare. Program proving: Jumps and functions. Acta Informatica,
1(3):214–224, September 1972. doi:10.1007/BF00288686.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

9 Arie de Bruin. Goto statements: semantics and deduction systems. Acta Informatica,
15(4):385–424, August 1981. doi:10.1007/BF00264536.

10 Y. Dong, S. Wang, L. Zhang, and P. Yang. Modular Certification of Low-Level Intermediate
Representation Programs. In 2009 33rd Annual IEEE International Computer Software and
Applications Conference, volume 1, pages 563–570, July 2009. doi:10.1109/COMPSAC.2009.81.

11 Jonas Echterhoff. On the future of Web publishing in Unity, 2014. URL: https://blogs.
unity3d.com/2014/04/29/on-the-future-of-web-publishing-in-unity/.

ECOOP 2019

http://dx.doi.org/10.1016/j.entcs.2005.02.026
http://dx.doi.org/10.1007/11575467_24
http://dx.doi.org/10.1007/11924661_24
http://dl.acm.org/citation.cfm?id=1760037.1760047
http://dx.doi.org/10.1145/2984450.2984457
http://dx.doi.org/10.1007/BF00288686
http://dx.doi.org/10.1007/BF00264536
http://dx.doi.org/10.1109/COMPSAC.2009.81
https://blogs.unity3d.com/2014/04/29/on-the-future-of-web-publishing-in-unity/
https://blogs.unity3d.com/2014/04/29/on-the-future-of-web-publishing-in-unity/

9:28 A Program Logic for First-Order Encapsulated WebAssembly

12 José Fragoso Santos, Petar Maksimović, Daiva Naudžiūnienė, Thomas Wood, and Philippa
Gardner. JaVerT: JavaScript Verification Toolchain.Proc. ACM Program. Lang., 2(POPL):50:1–
50:33, December 2017. doi:10.1145/3158138.

13 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
Compositional Symbolic Execution for JavaScript. Proc. ACM Program. Lang., 3(POPL):66:1–
66:31, January 2019. doi:10.1145/3290379.

14 William Fu, Raymond Lin, and Daniel Inge. TaintAssembly: Taint-Based Information Flow
Control Tracking for WebAssembly, 2018. arXiv:arXiv:1802.01050.

15 Philippa Anne Gardner, Sergio Maffeis, and Gareth David Smith. Towards a Program Logic
for JavaScript. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’12, pages 31–44, New York, NY, USA, 2012.
ACM. doi:10.1145/2103656.2103663.

16 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the Web Up to Speed with
WebAssembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, pages 185–200, New York, NY, USA, 2017.
ACM. doi:10.1145/3062341.3062363.

17 David Herman, Luke Wagner, and Alon Zakai. asm.js, 2014. URL: http://asmjs.org/spec/
latest.

18 C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Commun. ACM, 12(10):576–
580, October 1969. doi:10.1145/363235.363259.

19 Marieke Huisman and Bart Jacobs. Java Program Verification via a Hoare Logic with Abrupt
Termination. In Tom Maibaum, editor, Fundamental Approaches to Software Engineering,
pages 284–303, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

20 Jonas B. Jensen, Nick Benton, and Andrew Kennedy. High-level Separation Logic for Low-level
Code. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, pages 301–314, New York, NY, USA, 2013. ACM.
doi:10.1145/2429069.2429105.

21 Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars
Birkedal. The Essence of Higher-Order Concurrent Separation Logic. In Proceedings of
the 26th European Symposium on Programming Languages and Systems - Volume 10201,
pages 696–723, New York, NY, USA, 2017. Springer-Verlag New York, Inc. doi:10.1007/
978-3-662-54434-1_26.

22 Neelakantan R. Krishnaswami. Verifying Higher-Order Imperative Programs with Higher-Order
Separation Logic. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA., July 2011.

23 Daniel Lehmann and Michael Pradel. Wasabi: A Framework for Dynamically Analyzing
WebAssembly. In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS ’19, pages 1045–1058,
New York, NY, USA, 2019. ACM. doi:10.1145/3297858.3304068.

24 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine
Specification, 2013. URL: https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf.

25 Mozilla. Mozilla and Epic Preview Unreal Engine 4 Running in
Firefox, 2014. URL: https://blog.mozilla.org/blog/2014/03/12/
mozilla-and-epic-preview-unreal-engine-4-running-in-firefox/.

26 Peter Müller and Martin Nordio. Proof-transforming Compilation of Programs with Ab-
rupt Termination. In Proceedings of the 2007 Conference on Specification and Verification
of Component-based Systems: 6th Joint Meeting of the European Conference on Software
Engineering and the ACM SIGSOFT Symposium on the Foundations of Software Engineering,
SAVCBS ’07, pages 39–46, New York, NY, USA, 2007. ACM. doi:10.1145/1292316.1292321.

27 Marius Musch, Christian Wressnegger, Martin Johns, and Konrad Rieck. Web-based Crypto-
jacking in the Wild, 2018. arXiv:arXiv:1808.09474.

http://dx.doi.org/10.1145/3158138
http://dx.doi.org/10.1145/3290379
http://arxiv.org/abs/arXiv:1802.01050
http://dx.doi.org/10.1145/2103656.2103663
http://dx.doi.org/10.1145/3062341.3062363
http://asmjs.org/spec/latest
http://asmjs.org/spec/latest
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1145/2429069.2429105
http://dx.doi.org/10.1007/978-3-662-54434-1_26
http://dx.doi.org/10.1007/978-3-662-54434-1_26
http://dx.doi.org/10.1145/3297858.3304068
https://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
https://blog.mozilla.org/blog/2014/03/12/mozilla-and-epic-preview-unreal-engine-4-running-in-firefox/
https://blog.mozilla.org/blog/2014/03/12/mozilla-and-epic-preview-unreal-engine-4-running-in-firefox/
http://dx.doi.org/10.1145/1292316.1292321
http://arxiv.org/abs/arXiv:1808.09474

C. Watt, P. Maksimović, N. R. Krishnaswami, and P. Gardner 9:29

28 Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. Hoare Logic for ARM
Machine Code. In Proceedings of the 2007 International Conference on Fundamentals of
Software Engineering, FSEN’07, pages 272–286, Berlin, Heidelberg, 2007. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1775223.1775241.

29 Magnus O. Myreen and Michael J. C. Gordon. Hoare Logic for Realistically Modelled Machine
Code. In Proceedings of the 13th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS’07, pages 568–582, Berlin, Heidelberg, 2007.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1763507.1763565.

30 Tobias Nipkow. Hoare Logics for Recursive Procedures and Unbounded Nondeterminism. In
Julian Bradfield, editor, Computer Science Logic, pages 103–119, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

31 Martin Nordio, Peter Müller, and Bertrand Meyer. Proof-Transforming Compilation of Eiffel
Programs. In Objects, Components, Models and Patterns, 46th International Conference,
TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July 4, 2008. Proceedings, pages
316–335, 2008. doi:10.1007/978-3-540-69824-1_18.

32 Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and Information
Hiding. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’04, pages 268–280, New York, NY, USA, 2004. ACM.
doi:10.1145/964001.964024.

33 David von Oheimb. Hoare Logic for Mutual Recursion and Local Variables. In Proceedings of
the 19th Conference on Foundations of Software Technology and Theoretical Computer Science,
pages 168–180, London, UK, UK, 1999. Springer-Verlag. URL: http://dl.acm.org/citation.
cfm?id=646837.708364.

34 Mohammad Raza and Philippa Gardner. Footprints in Local Reasoning. In Roberto Amadio,
editor, Foundations of Software Science and Computational Structures, pages 201–215, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

35 John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS ’02,
pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society. URL: http://dl.acm.
org/citation.cfm?id=645683.664578.

36 Andreas Rossberg, Ben L. Titzer, Andreas Haas, Derek L. Schuff, Dan Gohman, Luke Wagner,
Alon Zakai, J. F. Bastien, and Michael Holman. Bringing the Web Up to Speed with
WebAssembly. Commun. ACM, 61(12):107–115, November 2018. doi:10.1145/3282510.

37 Ando Saabas and Tarmo Uustalu. A Compositional Natural Semantics and Hoare Logic
for Low-Level Languages. Electron. Notes Theor. Comput. Sci., 156(1):151–168, May 2006.
doi:10.1016/j.entcs.2005.09.031.

38 Ando Saabas and Tarmo Uustalu. Compositional Type Systems for Stack-based Low-level
Languages. In Proceedings of the Twelfth Computing: The Australasian Theory Symposium
- Volume 51, CATS ’06, pages 27–39, Darlinghurst, Australia, Australia, 2006. Australian
Computer Society, Inc. URL: http://dl.acm.org/citation.cfm?id=2523791.2523798.

39 Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. A Separation
Logic for Fictional Sequential Consistency. In Programming Languages and Systems, ESOP
’15, pages 736–761, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

40 Ben Smith. Threading proposal for WebAssembly, 2018. URL: https://github.com/
WebAssembly/threads.

41 Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint Tracking for WebAssembly, 2018.
arXiv:arXiv:1807.08349.

42 Gang Tan and Andrew W. Appel. A Compositional Logic for Control Flow. In Proceedings of
the 7th International Conference on Verification, Model Checking, and Abstract Interpretation,
VMCAI’06, pages 80–94, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/11609773_6.

43 Viktor Vafeiadis and Chinmay Narayan. Relaxed Separation Logic: A Program Logic for C11
Concurrency. In Proceedings of the 2013 ACM SIGPLAN International Conference on Object

ECOOP 2019

http://dl.acm.org/citation.cfm?id=1775223.1775241
http://dl.acm.org/citation.cfm?id=1763507.1763565
http://dx.doi.org/10.1007/978-3-540-69824-1_18
http://dx.doi.org/10.1145/964001.964024
http://dl.acm.org/citation.cfm?id=646837.708364
http://dl.acm.org/citation.cfm?id=646837.708364
http://dl.acm.org/citation.cfm?id=645683.664578
http://dl.acm.org/citation.cfm?id=645683.664578
http://dx.doi.org/10.1145/3282510
http://dx.doi.org/10.1016/j.entcs.2005.09.031
http://dl.acm.org/citation.cfm?id=2523791.2523798
https://github.com/WebAssembly/threads
https://github.com/WebAssembly/threads
http://arxiv.org/abs/arXiv:1807.08349
http://dx.doi.org/10.1007/11609773_6

9:30 A Program Logic for First-Order Encapsulated WebAssembly

Oriented Programming Systems Languages & Applications, OOPSLA ’13, pages 867–884,
New York, NY, USA, 2013. ACM. doi:10.1145/2509136.2509532.

44 Carsten Varming and Lars Birkedal. Higher-Order Separation Logic in Isabelle/HOLCF.
Electron. Notes Theor. Comput. Sci., 218:371–389, October 2008. doi:10.1016/j.entcs.
2008.10.022.

45 Wenhao Wang, Benjamin Ferrell, Xiaoyang Xu, Kevin W. Hamlen, and Shuang Hao. SEISMIC:
SEcure In-lined Script Monitors for Interrupting Cryptojacks. In Javier Lopez, Jianying
Zhou, and Miguel Soriano, editors, Computer Security, pages 122–142, Cham, 2018. Springer
International Publishing.

46 Conrad Watt. Mechanising and Verifying the WebAssembly Specification. In Proceedings of
the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2018, pages 53–65, New York, NY, USA, 2018. ACM. doi:10.1145/3167082.

47 Conrad Watt, Petar Maksimović, Neelakantan R. Krishnaswami, and Philippa Gardner. A
Program Logic for First-Order Encapsulated WebAssembly, 2018. arXiv:1811.03479.

48 Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-wasm:
Type-driven Secure Cryptography for the Web Ecosystem. Proc. ACM Program. Lang.,
3(POPL):77:1–77:29, January 2019. doi:10.1145/3290390.

49 WebAssembly Community Group. Roadmap, 2018. URL: https://webassembly.org/
roadmap/.

50 WebAssembly Community Group. WebAssembly Specifications, 2018. URL: https://
webassembly.github.io/spec/.

51 Hongseok Yang. Semantics of Separation-Logic Typing and Higher-Order Frame Rules. In
Proceedings of the 20th Annual IEEE Symposium on Logic in Computer Science, LICS ’05, pages
260–269, Washington, DC, USA, 2005. IEEE Computer Society. doi:10.1109/LICS.2005.47.

52 Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native Client: A sandbox for portable,
untrusted x86 native code. In Proceedings of the IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2009.

53 Alon Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, OOPSLA ’11, pages 301–312, New York, NY, USA, 2011. ACM.
doi:10.1145/2048147.2048224.

http://dx.doi.org/10.1145/2509136.2509532
http://dx.doi.org/10.1016/j.entcs.2008.10.022
http://dx.doi.org/10.1016/j.entcs.2008.10.022
http://dx.doi.org/10.1145/3167082
http://arxiv.org/abs/1811.03479
http://dx.doi.org/10.1145/3290390
https://webassembly.org/roadmap/
https://webassembly.org/roadmap/
https://webassembly.github.io/spec/
https://webassembly.github.io/spec/
http://dx.doi.org/10.1109/LICS.2005.47
http://dx.doi.org/10.1145/2048147.2048224

Garbage-Free Abstract Interpretation Through
Abstract Reference Counting
Noah Van Es
Software Languages Lab, Vrije Universiteit Brussel, Belgium
noah.van.es@vub.be

Quentin Stiévenart
Software Languages Lab, Vrije Universiteit Brussel, Belgium
quentin.stievenart@vub.be

Coen De Roover
Software Languages Lab, Vrije Universiteit Brussel, Belgium
coen.de.roover@vub.be

Abstract
Abstract garbage collection is the application of garbage collection to an abstract interpreter. Existing
work has shown that abstract garbage collection can improve both the interpreter’s precision and
performance. Current approaches rely on heuristics to decide when to apply abstract garbage
collection. Garbage will build up and impact precision and performance when the collection is
applied infrequently, while too frequent applications will bring about their own performance overhead.
A balance between these tradeoffs is often difficult to strike.

We propose a new approach to cope with the buildup of garbage in the results of an abstract
interpreter. Our approach is able to eliminate all garbage, therefore obtaining the maximum precision
and performance benefits of abstract garbage collection. At the same time, our approach does not
require frequent heap traversals, and therefore adds little to the interpreters’s running time. The core
of our approach uses reference counting to detect and eliminate garbage as soon as it arises. However,
reference counting cannot deal with cycles, and we show that cycles are much more common in
an abstract interpreter than in its concrete counterpart. To alleviate this problem, our approach
detects cycles and employs reference counting at the level of strongly connected components. While
this technique in general works for any system that uses reference counting, we argue that it works
particularly well for an abstract interpreter. In fact, we show formally that for the continuation
store, where most of the cycles occur, the cycle detection technique only requires O(1) amortized
operations per continuation push.

We present our approach formally, and provide a proof-of-concept implementation in the Scala-AM
framework. We empirically show our approach achieves both the optimal precision and significantly
better performance compared to existing approaches to abstract garbage collection.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases abstract interpretation, abstract garbage collection, reference counting

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.10

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.7

Funding Noah Van Es: Funded by a PhD Fellowship of the Research Foundation – Flanders (FWO).

1 Introduction

Garbage collection (GC) is a well-known approach to automatic memory management that
reclaims resources by removing items from the heap that are no longer needed. In general,
there are two main approaches to garbage collection [2, 31]: tracing GC, such as the mark-
and-sweep and stop-and-copy algorithms, and reference counting. Implementers of language

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Noah Van Es, Quentin Stiévenart, and Coen De Roover;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 10; pp. 10:1–10:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noah.van.es@vub.be
mailto:quentin.stievenart@vub.be
mailto:coen.de.roover@vub.be
https://doi.org/10.4230/LIPIcs.ECOOP.2019.10
https://dx.doi.org/10.4230/DARTS.5.2.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

runtimes often deem tracing GC superior. Regular reference counting cannot deal with cyclic
structures in the heap, and may result in a greater overhead in terms of both memory usage
and performance [50].

An abstract interpreter [12, 40] soundly over-approximates the behaviour of a concrete
interpreter. The approximation has to be chosen such that the abstract interpreter terminates
on all programs, but still accounts for every behaviour the program may exhibit when
executed by a concrete interpreter. It is not straightforward to design an efficient abstract
interpreter [11, 27, 29]. Over-approximating too much renders its results less precise, while
over-approximating too little slows its convergence down. Next to their abstract value lattice,
abstract interpreters feature several configuration parameters to strike this balance, such as
context-sensitivity [51, 44], widening [13] and different control-flow abstractions [30, 21], the
interplay of which impacts performance and precision in less than predictable manners.

1.1 Motivating Abstract Garbage Collection
Garbage collection appears to be an exception to this rule. Incorporating garbage collection
in an abstract interpreter can greatly improve both its precision and performance [42, 43].
Garbage in the heap can disrupt the interpreter’s behaviour. Several means of guaranteeing
termination involve bounding the set of memory locations available to the interpreter. The
interpreter may therefore bring garbage “back to life” whenever its allocator returns an
already-occupied location. The resulting imprecision propagates to the abstract state space
explored by the interpreter, causing it to explore spurious states. Garbage collection can
keep the interpreter’s memory, and hence the state space it explores, free of garbage and
its negative effects. It has been shown to reduce the explored state space by orders of
magnitude [43, 47], resulting in equally large improvements in precision and performance.

Precision Loss Illustrated. The Scheme program in Listing 1 illustrates how surviving
garbage can cause an abstract interpreter to lose precision.

Listing 1 Motivating abstract garbage collection.
1 (let [(double (lambda (x) (+ x x)))
2 (square (lambda (y) (* y y)))
3 (apply-fn (lambda (f n) (f n)))]
4 (apply-fn double 3)
5 (apply-fn square 4))

Clearly, a concrete interpreter evaluates this program to 16. As mentioned above, an
abstract interpreter will sometimes reuse the same memory location for different allocations.
Monovariant allocation schemes such as 0CFA [51], for instance, reuse the same memory
location for all allocations of the same lexical variable [20]. Values that end up in the same
memory location are joined together, for instance by computing the union of all these values.

We denote the memory location used for a variable v by @v, and use the notation @v 7→ a
to indicate that the heap at memory location @v contains the abstract value a. After the first
function call on line 4, the interpreter’s memory will contain @f 7→ {double} and @n 7→ {3}.
The contents of @f and @n can be considered garbage after this function call, but is kept in
memory without abstract garbage collection. This means that the second call of apply-fn
on line 5 will have to join its argument values with the ones of the previous call that still
reside at locations @f and @n, resulting in @f 7→ {double,square} and @n 7→ {3,4}.

The garbage left at these locations is now “alive” again, and will cause further losses
in precision. Due to the imprecision at location @f, the abstract interpreter will consider
double as well as square as potential targets for the function call, causing spurious paths in

N. Van Es, Q. Stiévenart, and C. De Roover 10:3

the control flow that affect both precision and performance. For instance, the contents of @n
will propagate to both @x 7→ {3,4} and @y 7→ {3,4}. The abstract interpreter effectively
considers every possible combination of operator and operands, and evaluates this program
to {6,7,8,9,12,16}. This is a major, but sound, over-approximation of the actual result.

Now consider that abstract GC had been applied immediately after the call on line 4, but
just before the call on line 5. This application would have removed all garbage values from
memory locations @f, @n and @x, as these locations are out of scope at this program point.
The second function call would then have been explored under the precise mappings @f 7→
{square} and @n 7→ {4}, causing the abstract interpreter to evaluate this program to {16}.

1.2 Problem: Application Policies for Abstract Garbage Collection
The objective of abstract GC is not to reclaim memory space, but to prevent potential
precision loss due to the reuse of memory locations in the future that contain garbage values.
Abstract GC therefore ought to be applied preemptively. The question is only when.

In the example of Listing 1, it was crucial to apply abstract GC just between the function
calls on line 4 and 5 to avoid the precision loss. Of course, the abstract interpreter is not
privy to this knowledge when it arrives to that program point. Nevertheless, the precision
loss cannot be recovered at any later point through abstract GC.

Survey of Existing Policies. A simple, but surprisingly effective policy that is often used in
practice [43, 46, 49, 14, 16] is to apply abstract GC at every evaluation step of the abstract
interpreter. Doing so ensures that all garbage is eliminated immediately, rendering the
abstract interpreter effectively “garbage-free” [23]. A garbage-free interpreter only explores
states that do not contain any garbage, which implies that no precision is lost to garbage
values at all. However, realizing this property comes at a cost: frequent GC applications can
become performance-detrimental, in particular for programs with large heaps [34, 16].

Other policies apply GC less frequently to avoid this overhead, which does result in some
precision loss from non-collected garbage. For instance, the TAJS static analysis [26] applies
abstract GC upon every function exit. This policy requires fewer GC applications, and
function exits are good GC application candidates as garbage tends to be left behind when
exiting a function’s scope. The policy of ΓCFA [42] (and later, LFA [39]), which pioneered
the use of abstract GC, is to apply abstract GC when the address allocator returns a memory
location that is already in use. As such, it triggers abstract GC whenever values need to
be joined in the store, so that by design a value can never be joined with garbage. While
the ΓCFA policy avoids a common form of garbage-induced imprecision, it still applies GC
frequently. The explored state space can moreover not be considered “garbage-free” as some
of the states remain polluted and/or spurious. In fact, in a follow-up paper [43], the authors
changed their policy to an application of GC at every step for the sake of garbage-freeness.

Precision Impact of Policies. Figure 1 illustrates the impact of common abstract GC
policies on the state space explored by an abstract interpreter for a slightly more complicated
Scheme program, included in Appendix C. For this example, the abstract interpreter uses a
monovariant allocation policy and an abstract value lattice that approximates a value by the
set of all its possible types. Policies that apply GC more frequently reduce the state space to
be explored, which results in both higher precision and performance, but at the same time
also causes a performance overhead. Our evaluation in Section 5 shows that this overhead
significantly decreases the throughput of the abstract interpreter. In terms of performance,

ECOOP 2019

10:4 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

(a) without GC: 431 states.

(b) when using GC at every join operation in the store (as in ΓCFA [42]): 159 states.

(c) when using GC at every step (as in [43, 16, 49, 46, 14]): 60 states.

Figure 1 State space explored by the abstract interpreter for different GC policies.

policies that apply GC less frequently (e.g., the ΓCFA one) often prove more efficient in
terms of performance despite the larger state space to explore. In terms of precision, applying
GC at every step yields the optimal result.

1.3 Approach: Abstract Reference Counting
We aim to realize “garbage-free” abstract interpretation more efficiently, attaining optimal
precision without significant compromises to performance. We propose to collect garbage in
an abstract interpreter using reference counting, and argue that its evaluation with respect
to tracing GC needs to be reconsidered for abstract interpreters.

Reconsidering the Disadvantages of Reference Counting. The overhead of reference
counting in the concrete is less outspoken in the abstract. The reason is twofold. First,
abstract interpreters typically use fewer memory locations than their concrete counterparts.
As such, fewer reference counts need to be maintained. Second, abstract interpreters can
tolerate more memory management overhead than concrete interpreters. The fact that
reference counting cannot reclaim cyclic garbage, however, remains an issue in the abstract.
In fact, we have observed cyclic garbage to be more prevalent in the abstract. Section 4
addresses this problem separately as it directly impedes realizing the “garbage-free” property.

Reconsidering the Advantages of Reference Counting. The main advantage of reference
counting stems from its continuous nature. Garbage is collected under reference counting as
soon as it arises. As soon as the reference count of a memory location becomes zero, reference
counting immediately reclaims that location. Tracing GC approaches hold on to garbage
until the next GC application. Unless the application requires minimal GC pauses, this is
generally not an issue for concrete interpreters. For abstract interpreters, however, garbage
held on to impacts precision – requiring abstract tracing GCs to be applied frequently.

Simple bookkeeping suffices for abstract reference counting to immediately and efficiently
eliminate all garbage, precluding the need for GC application policies that seek to balance
the imprecision of long-lived garbage with the overhead of collection frequency. Abstract
reference counting collects garbage continuously before it can cause a precision loss.

N. Van Es, Q. Stiévenart, and C. De Roover 10:5

Finally, tracing GC needs to traverse the entire heap, which can get larger for more
complex programs. Such expensive traversals increase overhead when applied frequently.
The cost of reference counting is mostly insensitive to the size of the heap [2].

Contributions. The contributions of this work are as follows:
We introduce abstract reference counting as a more efficient approach to abstract garbage
collection that renders the explored state space garbage-free. We present this approach
formally and prove that in terms of abstract GC, it is not only sound (i.e., it only removes
garbage), but also complete (i.e., it removes all garbage).
We discern sources of garbage cycles during abstract interpretation, and present a novel
cycle detection algorithm for abstract reference counting based on these observations. We
show that per insertion to the abstract interpreter’s continuation store, from which most
cyclic garbage stems, the algorithm only requires amortized O(1) additional operations.
We provide a proof-of-concept implementation in the Scala-AM framework [54, 53] and
an empirical evaluation of our approach using the Gabriel benchmark suite for Scheme
programs [18]. The results show that our approach achieves optimal precision and is
significantly more performant compared to existing approaches to abstract GC.

We present our work in a minimal setting using the AAM approach [23, 40] to abstract
interpretation. Therefore, we elide common optimizations to AAM [27] and do not consider
any of its variations (e.g., AAC [30]), although our approach remains applicable in such
settings as well. An advantage of AAM is that it is a systematic method for the design of a
wide variety of analyses, which is applicable to programs with highly-dynamic behavior (e.g.,
higher-order programs with mutable state). The performance and precision improvements
brought by our work should therefore carry over to such analyses. Moreover, we argue
that the concepts behind abstract reference counting are sufficiently general to support its
incorporation in other existing analyses that already make use of abstract tracing GC.

Structure of the Paper. We introduce the necessary background in Section 2: an abstract
interpreter for ANF-style λ-calculus, into which we have incorporated an abstract tracing
GC. Section 3 replaces this abstract tracing GC by abstract reference counting, resulting
in a more efficient collection of garbage during abstract interpretation. Section 4 explains
why garbage cycles are more common in an abstract interpreter, and proposes a technique to
detect these cycles so that reference counting can reclaim all cyclic garbage. We apply this
technique to obtain an abstract interpreter that is completely garbage-free. Section 5 presents
our experimental results. We compare to existing approaches to abstract GC in terms of
precision and performance. We conclude with a discussion of related work in Section 6.

2 Background

Figure 2 defines the syntax of a higher-order language λANF, based on the λ-calculus in
A-Normal Form [17] (ANF). ANF is a syntactic form that restricts operators and operands
to atomic expressions ae which can be evaluated immediately without impacting the program
state. This simplification can be automated, is purely cosmetic, and without loss of generality.

We start with the formal definition of the small-step operational semantics for λANF (Sec-
tion 2.1). Following the Abstracting Abstract Machines (AAM) approach [23, 40], we derive
an abstract interpreter from these semantics, and discuss the impact of abstract tracing GC
on the state space explored by the interpreter (Section 2.2).

ECOOP 2019

10:6 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

e ∈ Exp ::= letx= e1 in e2 [Let]
| f ae [Call]
| ae [Return]

f, ae ∈ Atom ::= v | lam
lam ∈ Lam ::= λx.e

x, v ∈ Var (a set of identifiers)

Figure 2 Grammar of the minimalist higher-order language λANF.

2.1 Concrete Interpretation of λANF

The concrete interpreter for λANF is formulated as an abstract machine using small-step
operational semantics. We systematically describe the design of this abstract machine.

State Space. Figure 3 describes the state space Σ for the concrete interpreter. A state
ς consists of an expression e under evaluation, an environment ρ mapping variables to
addresses, a store σ mapping addresses to values (in case of λANF, the only values are
closures), a continuation store σk to model the “stack”, which maps continuation addresses to
continuations, and the current continuation address ak (pointing to “the top of the stack”). A
continuation κ consists of the variable address to which the resulting value should be bound
and the next expression, environment, and continuation address to continue the evaluation.
For a concrete interpreter, addresses come from an infinite set (e.g., Addr = KAddr = N).

ς ∈ Σ = Exp× Env× Store
× KStore× KAddr

ρ ∈ Env = Var ⇀ Addr
σ ∈ Store = Addr⇀ Clo

σk ∈ KStore = KAddr⇀ Kont

clo ∈ Clo = Lam× Env
κ ∈ Kont = Addr× Exp× Env× KAddr
l ∈ Loc = Addr ∪ KAddr

a ∈ Addr (an infinite set)
ak ∈ KAddr (an infinite set)

Figure 3 State space of the concrete interpreter for λANF.

For a state ς, we implicitly assume subscripted notations for its components so that
ς = 〈eς , ρς , σς , σkς , akς〉. For (partial) maps, [] denotes the empty map, while the notation
m[a 7→ b] extends the map m so that m[a 7→ b](a) = b and m[a 7→ b](x) = m(x) for x 6= a.

Evaluation Rules. Atomic expressions can be evaluated in a single step, without making
any modifications to the store. Therefore, we first introduce an auxiliary function A :
Atom× Env× Store→ Clo to evaluate atomic expressions:

A(v, ρ, σ) = σ(ρ(v)) A(lam, ρ, σ) = 〈lam, ρ〉

Figure 4 shows the small-step transition relation (→) for λANF. We assume that the value
allocation function alloc and the continuation allocation function allock always return a fresh
address so that alloc(x, ς) 6∈ dom(σς) and allock(e, ς) 6∈ dom(σkς).

We write ςa
n−→ ςb when ςa = ς0 → ς1 → . . . → ςn = ςb. Similarly, we define (∗−→) as the

symmetric, transitive closure of (→). Note that for a concrete interpreter, this transition
relation is deterministic, i.e. if ς0

n−→ ς1 and ς0
n−→ ς2 then ς1 = ς2.

Garbage Collection. We now add a tracing garbage collector to this concrete interpreter.
We use notation and definitions similar to those used by Might and Shivers [42]. First, we
define a family of auxiliary functions TX : X → P(Loc) that return all addresses that are
referenced directly by some state, environment, closure or continuation:

N. Van Es, Q. Stiévenart, and C. De Roover 10:7

a = alloc(x, ς) ak
′ = allock(e1, ς) ρ′ = ρ[x 7→ a]

〈letx= e1 in e2, ρ, σ, σk, ak〉︸ ︷︷ ︸
ς

→ 〈e1, ρ, σ, σk[ak′ 7→ 〈a, e2, ρ
′, ak〉], ak′〉

(E-Let)

A(f, ρ, σ) = 〈λx.e′, ρ′〉 A(ae, ρ, σ) = v a = alloc(x, ς)
〈f ae, ρ, σ, σk, ak〉︸ ︷︷ ︸

ς

→ 〈e′, ρ′[x 7→ a], σ[a 7→ v], σk, ak〉
(E-Call)

A(ae, ρ, σ) = v σk(ak) = 〈a′, e′, ρ′, ak′〉
〈ae, ρ, σ, σk, ak〉 → 〈e′, ρ′, σ[a′ 7→ v], σk, ak′〉

(E-Return)

Figure 4 Transition rules of the concrete interpreter for λANF.

TΣ(〈e, ρ, σ, σk, ak〉) = TEnv(ρ) ∪ {ak}
TClo(〈λx.e, ρ〉) = TEnv(ρ)

TEnv(ρ) = range(ρ)
TKont(〈a, e, ρ, ak〉) = TEnv(ρ) ∪ {a, ak}

Next, we introduce the adjacency relation between addresses, (ς) : Loc × Loc, where
intuitively l̂ ς l̂

′ means that there is a reference from address l̂ to address l̂′:

l ∈ TClo(σς(a))
a ς l

l ∈ TKont(σkς(ak))
ak ς l

and use the notation (∗ ς) for its reflexive transitive closure. The function R : Σ→ P(Loc),
which computes all reachable addresses of a state, is then defined as follows:

R(ς) = {l′ ∈ Loc | l ∈ TΣ(ς) ∧ l ∗ ς l
′}.

Finally, the function Γ : Σ→ Σ applies garbage collection to a state by restricting the domain
of the store and the continuation store to the addresses that are still reachable. The function
Γ can be seen as a tracing garbage collector, since it defines garbage directly in terms of
what is no longer reachable [2, 31]. Domain restriction is denoted by a vertical bar, so that
f |X(x) = f(x) for x ∈ X and f |X(x) is undefined for x 6∈ X.

Γ(ς) = 〈eς , ρς , σς |R(ς), σkς |R(ς), ak〉

To keep the abstract machine’s transition relation simple and deterministic, we incorporate
GC into the semantics by defining a new relation (→Γ) as the composition of (→) and Γ:

(→Γ) = Γ ◦ (→)

This means that (→Γ) first takes an evaluation step, followed by a garbage collection. This
“GC at every step” strategy makes the interpreter garbage-free: during evaluation, for every
state ς, we have that R(ς) = dom(σς) ∪ dom(σkς). However, for a concrete interpreter, this
property does not really have an impact on the result of the evaluation. Theorem 1 states
this formally: for a given state ς, taking n transition steps using (→Γ) leads to the same
state, modulo GC, as taking n transition steps using (→).

I Theorem 1. If ς0
n−→Γ ς1 and ς0

n−→ ς2, then ς1 = Γ(ς2).

Proof. This follows directly from Might and Shivers [42] and is detailed in Appendix A. J

ECOOP 2019

10:8 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

This confirms that concrete garbage collection does not affect the evaluation of a program.
For a practical implementation, however, concrete garbage collection can still be useful when
the size of the σ and σk components become too large to fit in computer memory.

Program Semantics. Using the transition relation (→Γ), we can define a function eval :
Exp→ P(Σ) which computes all the states reachable by the concrete interpreter, starting
from the initial state of the program:

eval(e) = {ς ∈ Σ | 〈e, [], [], [], ahalt〉
∗−→Γ ς}

where ahalt is a special address in the set KAddr. By computing eval(e), we obtain the
collecting semantics1 of the program e. Unfortunately, when e does not terminate, the
concrete interpreter may explore an infinite amount of states in Σ. Hence, for a concrete
interpreter, the set eval(e) is potentially infinite, and therefore not always computable.

2.2 Abstract Interpretation of λANF

We now systematically turn this concrete interpreter for λANF into an abstract interpreter,
highlighting the important changes that we need to make in gray .

State Space. The main issue with the concrete interpreter in Section 2.1 is that the state
space Σ is infinite, and hence the set eval(e) is not always computable for any program e. To
solve this issue, the AAM approach [23, 40] replaces the infinite sets Addr and KAddr with
finite sets Âddr and K̂Addr, respectively. One can easily verify that this suffices to keep the
state space finite. Figure 5 shows the abstract state space Σ̂.

ς̂ ∈ Σ̂ = Exp× Ênv× Ŝtore

× K̂Store× K̂Addr

ρ̂ ∈ Ênv = Var ⇀ Âddr

σ̂ ∈ Ŝtore = Âddr→ P(Ĉlo)

σ̂k ∈ K̂Store = K̂Addr→ P(K̂ont)

ĉlo ∈ Ĉlo = Lam× Ênv

κ̂ ∈ K̂ont = Âddr× Exp× Ênv× K̂Addr

l̂ ∈ L̂oc = Âddr ∪ K̂Addr

â ∈ Âddr (a finite set)

âk ∈ K̂Addr (a finite set)

Figure 5 State space of the abstract interpreter for λANF.

As the abstract interpreter can only use a finite number of addresses, it may need to
reuse the same address for multiple allocations. Values that end up at the same address need
to be joined together to obtain a sound, but finite approximation. Hence, both the store
and continuation store now map addresses to a set of closures and a set of continuations,
respectively. We introduce the join operator t defined as follows:

(σ̂1 t σ̂2)(â) = σ̂1(â)∪ σ̂2(â) (σ̂k1 t σ̂k2)(âk) = σ̂k1(âk)∪ σ̂k2(âk) ⊥
σ̂
=⊥

σ̂k
= λl̂. ∅

Evaluation Rules. The atomic evaluation function Â : Atom × Ênv × Ŝtore → P(Ĉlo) for
the abstract interpreter evaluates atomic expressions to a set of closures:

Â(v, ρ̂, σ̂) = σ̂(ρ̂(v)) Â(lam, ρ̂, σ̂) = { 〈lam, ρ̂〉 }

1 not to be confused with garbage collection

N. Van Es, Q. Stiévenart, and C. De Roover 10:9

We leave the choice of sets Âddr and K̂Addr, as well as the allocation functions âlloc and
âllock open as configuration parameters of the abstract interpreter (resulting in a particular
allocation policy). Any allocation policy yields a sound and decidable analysis [23] (as long
as the sets Âddr and K̂Addr are chosen to be finite). However, the choice is not arbitrary,
as the allocation policy decides how often (determined by the size of Âddr and K̂Addr) and
when (determined by âlloc and âllock) addresses need to be reused. This choice therefore
affects the precision and polyvariance [20] of the abstract interpreter2. For example, the
following allocation policy results in monovariant analysis [51] which reuses the same address
for all allocations of the same variable:

Âddr = Var K̂Addr = Exp âlloc(x, ς̂) = x âllock(e, ς̂) = e

Figure 6 shows the abstract transition relation (→̂) for λANF. Note that, unlike in the concrete
interpreter for λANF, the transition relation is no longer deterministic.

â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk〉︸ ︷︷ ︸
ς̂

→̂〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ { 〈â, e2, ρ̂
′, âk〉 }], â′k〉

(E-Let)

Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉 Â(ae, ρ̂, σ̂) = v̂ â = âlloc(x, ς̂)
〈f ae, ρ̂, σ̂, σ̂k, âk〉︸ ︷︷ ︸

ς̂

→̂〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â′, e′, ρ̂′, â′k〉
〈ae, ρ̂, σ̂, σ̂k, âk〉→̂〈e′, ρ̂′, σ̂ t [â′ 7→ v̂], σ̂k, â′k〉

(E-Return)

Figure 6 Transition rules of the abstract interpreter for λANF.

Garbage Collection. Just as in the concrete interpreter, we can perform garbage collection
in the abstract interpreter (known as abstract garbage collection) by removing all addresses
from σ̂ς̂ and σ̂kς̂ that are no longer reachable from ς̂. The definitions remain mostly unchanged:

T̂Σ̂(〈e, ρ̂, σ̂, σ̂k, âk〉) = T̂Ênv(ρ̂) ∪ {âk}

T̂Ĉlo(〈λx.e, ρ̂〉) = T̂Ênv(ρ̂)

T̂P(Ĉlo)(V̂) =
⋃
ĉlo∈V̂

T̂Ĉlo(ĉlo)

T̂Ênv(ρ̂) = range(ρ̂)

T̂K̂ont(〈a, e, ρ̂, âk〉) = T̂Ênv(ρ̂) ∪ {â, âk}

T̂P(K̂ont)(K̂) =
⋃
κ̂∈K̂

T̂K̂ont(κ̂)

Similarly, the adjacency relation (̂ς̂) : L̂oc× L̂oc is adapted for abstract addresses:

l̂ ∈ T̂P(Ĉlo) (σ̂ς̂(â))

â ̂ς̂ l̂

l̂ ∈ T̂P(K̂ont) (σ̂kς̂(âk))

âk ̂ς̂ l̂

2 For the sake of simplicity, our abstract interpreter does not include a timestamp component (as in [23]),
which could be used to express more complex allocation policies such as k-CFA with k ≥ 1.

ECOOP 2019

10:10 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

All reachable addresses can then be computed using R̂ : Σ̂→ P(L̂oc):

R̂(ς̂) = {l̂′ ∈ L̂oc | l̂ ∈ T̂Σ̂(ς̂) ∧ l̂
∗
 ̂ς̂ l̂

′}.

and the abstract garbage collection function Γ̂ : Σ̂→ Σ̂ is defined as follows:

Γ̂(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ |R̂(ς̂), σ̂kς̂ |R̂(ς̂), âkς̂〉

where f |X(x) = f(x) for x ∈ X and f |X(x) = ∅ for x 6∈ X. The new abstract transition
relation (→̂Γ̂) can again be defined as a composition of Γ̂ and (→̂):

(→̂Γ̂) = Γ̂ ◦ (→̂)

Applying garbage collection at every evaluation step ensures that we end up with a garbage-
free abstract interpreter. More precisely, if we define Ŝ : Σ̂→ P(L̂oc), so that Ŝ(ς̂) is the set
of addresses bound in the stores of ς̂, as:

Ŝ(ς̂) = {â ∈ Âddr | σ̂ς̂(â) 6= ∅} ∪ {âk ∈ K̂Addr | σ̂kς̂(âk) 6= ∅}

Then we define garbage-free as follows:

I Definition 2 (Garbage-free). A state ς̂ is garbage-free iff R̂(ς̂) = Ŝ(ς̂), or equivalently:
Γ̂(ς̂) = ς̂. A transition relation (→̂) is garbage-free iff it preserves garbage-freeness. That is,
(→̂) is garbage-free iff for every garbage-free state ς̂ where ς̂ →̂ ς̂ ′, ς̂ ′ is garbage-free.

I Theorem 3. (→̂Γ̂) is garbage-free

Proof. By definition, Γ̂(ς̂) is always a garbage-free state, and (→̂Γ̂) applies Γ̂ to the resulting
state. Therefore, every resulting state of (→̂Γ̂) is garbage-free, hence (→̂Γ̂) is garbage-free. J

By design, every state produced by ς̂ produced by (→̂Γ̂) is garbage-free (Theorem 3). Note
however, that applying garbage collection at every step, as in (→̂Γ̂), may not be practical,
since computing the set R̂(ς̂) at every evaluation step causes a significant performance
overhead. In a practical implementation, one may choose to apply abstract garbage collection
at less regular intervals; however, in doing so the abstract interpreter is no longer guaranteed
to be garbage-free (i.e., in general, R̂(ς̂) ⊆ Ŝ(ς̂)).

Theorem 1 previously showed that this garbage-free property does not really matter
for a concrete interpreter. This is no longer the case for the abstract interpreter: as a
counter-example, consider a monovariant analysis of the program presented in Listing 1.
If the abstract interpreter uses the transition relation (→̂), then after the function call on
line 4 we have that σ̂ς̂(f) = {ĉlodouble}, where ĉlodouble is the closure of the double function
that f was bound to. Note that at that program point, f 6∈ R̂(ς̂), but since (→̂) does not
perform abstract GC, the binding is not removed from σ̂. Therefore, at the function call of
line 5, when f needs to be bound to the closure ĉlosquare of the square function, the values
are joined together using t so that σ̂ς̂′(f) = {ĉlodouble, ĉlosquare}. Intuitively, this means
that the abstract interpreter does not know exactly which of these two closures f is bound
to, and to soundly over-approximate any possible execution behaviour, it needs to consider
both options. This imprecision therefore introduces spurious control flow into the abstract
interpreter, which implies that it will explore more states than necessary. Also note that at
that point, f ∈ R̂(ς̂ ′), so applying Γ̂ to collect garbage is no longer able to recover this loss of
precision in ς̂ ′. In contrast, if we keep the abstract interpreter garbage-free by using the (→̂Γ̂)

N. Van Es, Q. Stiévenart, and C. De Roover 10:11

transition relation, we can avoid this precision loss. After the function call at line 4, since
f 6∈ R̂(ς̂), and since all states produced by (→̂Γ̂) are garbage-free, we have that f 6∈ Ŝ(ς̂),
which implies that σ̂ς̂(f) = ∅. Therefore, for the next call to apply-fn, σ̂ς̂′(f) = {ĉlosquare},
so that the abstract interpreter knows precisely which closure is bound to f .

In general, an abstract interpreter loses precision whenever two non-empty sets are joined
in the store (or continuation store) using t (which happens when the abstract interpreter
reuses an address that is already allocated). As common wisdom puts it: “merging [i.e.,
join] is the enemy of precision” [29], and as such it should only be used sparingly. This is
exactly what abstract garbage collection achieves by emptying all sets at addresses that are
no longer reachable, so that these sets can no longer be merged with in the future.

Program Semantics. The abstract collecting semantics of a program can now be defined
using the function êval : Exp→ P(Σ̂) which computes all the states reachable by the abstract
interpreter, starting from the initial state of the program:

êval(e) = {ς̂ ∈ Σ̂ | 〈e, [],⊥
σ̂
,⊥

σ̂k
, âhalt〉

∗
→̂Γ̂ ς̂}

where âhalt is a special address in the set K̂Addr. As Σ̂ is finite, for any program e it is
guaranteed that êval(e) is finite and therefore computable. We can reason over the behaviour
of e by reasoning over êval(e) to obtain a sound and decidable program analysis.

The definition of êval reveals another benefit of abstract garbage collection. Garbage-free
abstract interpretation reduces the state space that needs to be explored (i.e., the size of
êval(e)), which improves both its precision and performance while still producing a sound
over-approximation of the program’s concrete semantics. That is, a garbage-free abstract
interpreter only explores a smaller subset of Σ̂ where Γ̂(ς̂) = ς̂. In contrast, an abstract
interpreter that is not garbage-free may explore equivalent states multiple times, i.e., it may
explore ς̂1, ς̂2, ..., ς̂k where ς̂1 6= ς̂2 6= ... 6= ς̂k, but Γ̂(ς̂1) = Γ̂(ς̂2) = ... = Γ̂(ς̂k). This can be
seen clearly in Figure 1, where performing a GC before every join as in ΓCFA [43] results in
159 states, while performing a GC for every state results in 60 states.

3 Abstract Reference Counting

Section 2.2 detailed the prototypical design of an abstract interpreter that is garbage-
free thanks to abstract GC [42]. The benefits of being garbage-free include substantial
improvements to both the precision and performance of the abstract interpreter. The cost of
realizing this property through abstract tracing GC is the need for an application policy that
collects garbage at every evaluation step, which results in its own performance overhead.

In this section, we develop a more efficient design for garbage-free abstract interpreters.
Instead of computing R̂(ς̂) at every step (as in tracing garbage collection), the main idea is
to keep track of all references to every address l̂ in ς̂ (as in reference counting), from which
it is possible to determine whether l̂ ∈ R̂(ς̂). When there are no more references to l̂, we
have that l̂ 6∈ R̂(ς̂), and the memory location can be reclaimed. If the abstract interpreter
consistently collects all addresses without references, and there are no cyclic references in
memory3, then for every address l̂ that still has references, we have that l̂ ∈ R̂(ς̂).

3 which means that ∀ l̂1, l̂2 ∈ L̂oc,¬(̂l1
∗
 ̂ l̂2 ∧ l̂2

∗
 ̂ l̂1).

ECOOP 2019

10:12 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

As the abstract interpreter performs abstract garbage collection through reference count-
ing, we refer to it as abstract reference counting. We augment the abstract interpreter of
Section 2.2 with abstract reference counting and show that, in the absence of cycles, it is
equivalent to a garbage-free abstract interpreter using abstract tracing GC with the transition
relation (→̂Γ̂). Section 4 discusses our solution to the problem of cyclic garbage.

3.1 Abstract Interpretation with Reference Counting using (→̂arc)

ς̂ ∈ Σ̂arc = Exp× Ênv× Ŝtore× K̂Store× K̂Addr ×R̂efs φ̂ ∈ R̂efs = L̂oc→ P(L̂oc)

Figure 7 State space of the abstract interpreter with reference counting for λANF. Other compon-
ents preserve their definition given in Figure 5.

Figure 7 shows the updated abstract state space. Every state ς̂ has been augmented with
an additional component φ̂ς̂ that keeps track of the references between addresses. Defined
deterministically in terms of ς̂’s original components, this addition does not increase the
complexity of the state space explored by the abstract interpreter:

φ̂ς̂(l̂) = {l̂′ ∈ L̂oc | l̂′ ̂ς̂ l̂}

That is, φ̂(l̂) contains all addresses that refer directly to l̂. The actual reference count of l̂ is
obtained as |φ̂(l̂)|. Mapping the addresses in φ̂ to a set of addresses (P(L̂oc)) rather than an
actual reference count (N)4 renders our formalization more concise as well as amenable to
the incorporation of cycle detection (cf. Section 4). We introduce the following definitions:

(φ̂1 t φ̂2)(l̂) = φ̂1(l̂) ∪ φ̂2(l̂) ⊥
φ̂
= λl̂. ∅

We introduce the new transition relation (→̂arc) as a composition of an auxiliary transition
relation (→̂0) and a function ĉollect. The auxiliary relation (→̂0) extends the transition
relation (→̂) of Figure 6 by updating the references of addresses (in φ̂) for every update to
the store (or continuation store). The function ĉollect is responsible for collecting garbage as
reference counts become zero (i.e. |φ̂(l̂)| = 0 for some l̂) after every transition step of (→̂0).

ς̂ →̂0 ς̂
′ ς̂ ′′ = ĉollect(ς̂ , ς̂ ′)

ς̂ →̂arc ς̂
′′

Figure 8 shows the definition of the auxiliary transition (→̂0). Whenever the updated
transition rules need to insert a value v̂ (or continuation κ̂) at address l̂, they now add l̂ to
the set of references φ̂(l̂′) for every address l̂′ that is directly reachable from the new value v̂
(or continuation κ̂) that l̂ is bound to. These addresses can be computed using T̂P(Ĉlo)(v̂)
(or T̂K̂ont(κ̂)), where T̂ was defined in Section 2.2. While (→̂0) maintains φ̂ as intended, it
does not yet collect any garbage. Indeed, none of the transition rules in (→̂0) remove any
references to or from addresses, and the components σ̂, σ̂k and φ̂ only grow monotonically.

4 Note that it is not necessary to maintain a finite approximation such as N̂ = {0, 1,∞} for this
reference count. The key insight is to count the “abstract” references to an abstract address, not the
concrete references to the corresponding concrete address(es) that are approximated by that abstract
address. That is, our approach performs abstract interpretation with reference counting, not an abstract
interpretation of reference counting.

N. Van Es, Q. Stiévenart, and C. De Roover 10:13

â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]

κ̂ = 〈â, e2, ρ̂
′, âk〉 φ̂′ = φ̂ t

⊔
l̂∈T̂̂Kont(κ̂)

[l̂ 7→ {â′k}]

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk, φ̂〉︸ ︷︷ ︸
ς̂

→̂0 〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ κ̂], â′k, φ̂′〉
(E-Let)

â = âlloc(x, ς̂) Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉

Â(ae, ρ̂, σ̂) = v̂ φ̂′ = φ̂ t
⊔

l̂∈T̂
P(Ĉlo)

(v̂)

[l̂ 7→ {â}]

〈f ae, ρ̂, σ̂, σ̂k, âk, φ̂〉︸ ︷︷ ︸
ς̂

→̂0 〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk, φ̂′〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â, e′, ρ̂′, â′k〉 φ̂′ = φ̂ t
⊔

l̂∈T̂
P(Ĉlo)

(v̂)

[l̂ 7→ {â}]

〈ae, ρ̂, σ̂, σ̂k, âk, φ̂〉 →̂0 〈e′, ρ̂′, σ̂ t [â 7→ v̂], σ̂k, â′k, φ̂′〉
(E-Return)

Figure 8 Auxiliary transition relation (→̂0) for abstract reference counting in λANF.

Recall that garbage is defined as all addresses that are not reachable, i.e., all addresses
that are not in R̂(ς̂) = {l̂′ ∈ L̂oc | l̂ ∈ T̂Σ̂(ς̂) ∧ l̂

∗
 ̂ς̂ l̂

′}. We refer to T̂Σ̂(ς̂) as the root set
of addresses for a given state ς̂. Whenever ς̂ transitions to ς̂ ′, the root set changes from
T̂Σ̂(ς̂) to T̂Σ̂(ς̂ ′), which creates garbage when an address l̂ that was in T̂Σ̂(ς̂) is no longer in
T̂Σ̂(ς̂ ′) and l̂ is not referenced from any other address (i.e., |φ̂ς̂′(l̂)| = 0). When this happens,
the abstract interpreter needs to garbage collect l̂ by removing it from the store. Garbage
collecting an address l̂ also removes l̂ from φ̂ς̂′(l̂′) for every l̂′ ∈ L̂oc where l̂ ̂ς̂′ l̂′. This is
akin to decrementing the reference count of all addresses l̂′ referenced by l̂. The update can
cause other addresses to be garbage collected because they no longer have any references.
Note that φ̂ only takes into account references coming from other addresses; we take care
of root references using the function ĉollect : Σ̂arc × Σ̂arc → Σ̂arc, which removes all garbage
from ς̂ ′ that is created due to a change in the root set (from T̂Σ̂(ς̂) to T̂Σ̂(ς̂ ′)) as ς̂ →̂0 ς̂

′.

ĉollect(ς̂ , ς̂ ′) = 〈eς̂′ , ρ̂ς̂′ , σ̂ς̂′ \ Ĝ, σ̂kς̂′ \ Ĝ, âkς̂′ , φ̂′〉where 〈φ̂′, Ĝ〉 = ĉheck*(T̂Σ̂(ς̂), ∅, φ̂ς̂′)

ĉheck*(Ĉ, Ĝ, φ̂) =
{
〈φ̂, Ĝ〉 if Ĉ = ∅
ĉheck(l̂, Ĉ \ {l̂}, Ĝ, φ̂) otherwise, for any l̂ ∈ Ĉ

ĉheck(l̂, Ĉ, Ĝ, φ̂) =
{
d̂ealloc(l̂, Ĉ, Ĝ, φ̂) if |φ̂(l̂)| = 0 ∧ l̂ 6∈ T̂Σ̂(ς̂ ′)
ĉheck*(Ĉ, Ĝ, φ̂) otherwise

d̂ealloc(l̂, Ĉ, Ĝ, φ̂) = ĉheck*(Ĉ ∪ Ŝ, Ĝ ∪ {l̂}, φ̂	
⊔
l̂′∈Ŝ

[l̂′ 7→ {l̂}]) where Ŝ = {l̂′ | l̂ ̂ς̂′ l̂′}

We use the notation for set removal to remove elements from a map m, so that (m\S)(x) = ∅
if x ∈ S and (m\S)(x) = m(x) if x /∈ S. We define (φ̂1	 φ̂2)(l̂) = φ̂1(l̂)\ φ̂2(l̂) to conveniently
update φ̂ when references are removed (due to addresses being garbage collected).

ECOOP 2019

10:14 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

The function ĉollect checks for every address l̂ ∈ T̂Σ̂(ς̂) whether it is still referenced by at
least one other address (|φ̂ς̂′(l̂)| > 0) or whether it is still part of the root set (l̂ ∈ T̂Σ̂(ς̂ ′)).
If this is not the case, then it should garbage collect l̂ and update φ̂ to remove l̂ from φ̂(l̂′)
for every l̂′ where l̂ ̂ς̂′ l̂′, and recursively apply the same check for every such l̂′. Finally,
ĉollect(ς̂ , ς̂ ′) returns a new state ς̂ ′′ by removing all garbage from σ̂ς̂′ and σ̂kς̂′ and by updating
φ̂ς̂′ to take into account the removed references.

One can verify from the definitions of (→̂0) and ĉollect that the φ̂-component is always
updated correctly. That is, for every state ς̂ ∈ Σ̂arc, (→̂arc), they maintain the invariant
φ̂ς̂(l̂) = {l̂′ | l̂′ ̂ς̂ l̂}, so that we can reason about φ̂(l̂) as the set of addresses that refer to l̂.

3.2 Properties of (→̂arc)
We now show that – in the absence of cycles – (→̂arc) is garbage-free, which means that
abstract reference counting results in a garbage-free abstract interpreter.

First, we show that the garbage collection is sound. In terms of abstract garbage collection,
soundness means that addresses that are reachable are not removed from the store [42]. Using
the definitions of Section 2.2, this means that for every state ς̂ it collects only unreachable
addresses l̂ /∈ R̂(ς̂), so that R̂(ς̂) ⊆ Ŝ(ς̂). Intuitively, this implies that the garbage collection
is safe, and never removes a binding that is still needed.

I Definition 4 (GC Soundness). A state ς̂ is sound iff R̂(ς̂) ⊆ Ŝ(ς̂). A transition relation
(→̂) is sound iff it preserves soundness, i.e., if ς̂ is sound and ς̂ →̂ ς̂ ′, then ς̂ ′ is sound.

I Lemma 5. (→̂arc) is sound.

Proof. The proof is detailed in Appendix A. J

We refer to the dual of sound garbage collection as complete garbage collection. In the
context of abstract GC, completeness means that all addresses that are in the store are still
reachable. For every state ς̂, a complete garbage collector collects all addresses l̂ /∈ R̂(ς̂),
so that Ŝ(ς̂) ⊆ R̂(ς̂). Intuitively, this implies that the garbage collection never misses any
garbage, only keeping non-garbage values in the store at all times. We show that (→̂arc) is
GC complete in the absence of cycles.

I Definition 6 (GC Completeness). A state ς̂ is complete iff Ŝ(ς̂) ⊆ R̂(ς̂). A relation (→̂) is
complete iff it preserves completeness, i.e. if ς̂ is complete and ς̂ →̂ ς̂ ′, then ς̂ ′ is complete.

I Lemma 7. In the absence of cycles, (→̂arc) is complete.

Proof. The proof is detailed in Appendix A. J

Note that combining GC soundness with GC completeness yields the garbage-free property.
That is, if a state ς̂ is both sound and complete, we have that R̂(ς̂) ⊆ Ŝ(ς̂) and Ŝ(ς̂) ⊆ R̂(ς̂),
hence R̂(ς̂) = Ŝ(ς̂) so that ς̂ by definition is garbage-free. An abstract interpreter that
applies abstract tracing GC (as in Section 2.2), but not at every step, is GC sound, but not
GC complete, and therefore not garbage-free. Similarly, abstract reference counting in the
presence of cycles is still GC sound (Lemma 5), but not GC complete, nor garbage-free.

I Theorem 8. In the absence of cycles, (→̂arc) is garbage-free.

Proof. Follows immediately from Lemma 5 and Lemma 7. J

N. Van Es, Q. Stiévenart, and C. De Roover 10:15

We have now shown that – in the absence of cycles – using (→̂arc) as a transition relation
results in a garbage-free abstract interpreter without the need to trigger a full tracing GC at
every step. Normally, we would still have to prove other properties of (→̂arc) (such as the
soundness of the abstract interpretation); instead, we prove an equivalence with the existing
transition relation (→̂Γ̂), for which such properties have already been established in related
work [23, 42]. First, we introduce a function r̂c : Σ̂→ Σ̂arc to map states from the abstract
interpreter in Section 2.2 to equivalent states in Σ̂arc with the following definition:

r̂c(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ , σ̂kς̂ , âk, φ̂〉 where φ̂(l̂) = {l̂′ ∈ L̂oc | l̂′ ̂ς̂ l̂}

I Theorem 9. In the absence of cycles, the transition relation (→̂arc) is equivalent to (→̂Γ̂)
in the sense that: ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂ ′ ⇐⇒ r̂c(ς̂) →̂arc r̂c(ς̂ ′).

Proof. The proof is detailed in Appendix A. J

As a consequence, we can design a garbage-free abstract interpreter using (→̂arc) by defining

êvalarc(e) = {ς̂ ∈ Σ̂arc | 〈e, [],⊥σ̂,⊥σ̂k
, âhalt,⊥φ̂〉

∗
→̂arc ς̂}

so that for every program e that, in the absence of cycles, êvalarc(e) =
{
r̂c(ς̂) | ς̂ ∈ êval(e)

}
.

4 Reclaiming Garbage Cycles

In the previous section, we showed that the (→̂arc) transition relation is garbage-free under the
premise that no states are encountered with cycles in their store or continuation store. The
underlying reason for this limitation is that pure reference counting cannot reclaim cycles [50].
However, it is clear that this premise does not hold in general. A concrete interpreter can
end up with cycles in the store σ when a program creates cyclic data structures. In this case,
abstract interpretation of this program will also result in a cyclic structure in σ̂, which will
never be reclaimed using (→̂arc). Hence, in general the transition relation (→̂arc) is only GC
sound, not GC complete and therefore also not garbage-free.

4.1 Artificial Cycles in (→̂arc)
To make matters worse, we can show that cycles are much more common in the abstract.
That is, for a given program e, an abstract interpreter may encounter states with cycles in
either σ̂ (or σ̂k) that would not occur in σ (or σk) in states explored by a concrete interpreter.
The underlying reason is that an abstract interpreter can only use a finite number of addresses,
and therefore is sometimes forced to reuse an address for different allocations.

From a theoretical perspective, this implies that an abstract address (∈ L̂oc) is used as
the abstraction for multiple concrete addresses (∈ Loc). We assume that abstraction function
α : Loc → L̂oc maps a concrete address l to the abstract address l̂, while concretization
function γ : L̂oc→ P(Loc) returns all concrete addresses that are abstracted to an abstract
address. It can be shown from the abstract semantics [23] that if l1 references l2 (l1 l2)
under concrete interpretation, then α(l1) references α(l2) under abstract interpretation too
(α(l1) ̂ α(l2)). Now consider the linear sequence of concrete references l0 l1 . . . lk
with l0 6= l1 6= . . . 6= lk. Its abstraction α(l0) ̂ α(l1) ̂ . . . ̂ α(lk) becomes cyclic as soon
as for some i 6= j, α(li) = α(lj). We refer to the cycles that lack a concrete counterpart and
stem from the interpreter’s abstraction as artificial cycles.

ECOOP 2019

10:16 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

In practice, it turns out that artificial cycles are mostly a problem in the continuation
store. Consider the E-Let transition rule. This transition rule “pushes” a continuation on
the continuation store, so that if ς → ς ′, we have that akς′ akς . As kalloc always returns a
fresh address under concrete interpretation, a sequence of transitions of this rule will give rise
to akn akn−1 . . . ak0 where akn 6= akn−1 6= . . . 6= ak0. Under abstract interpretation,
in contrast, the same sequence will result in α(akn) ̂ α(akn−1) ̂ . . . ̂ α(ak0). A cycle
will be created as soon as k̂alloc allocates the same address more than once in such a sequence
(i.e., once α(aki) = α(akj) for some 0 ≤ i < j ≤ n). This is usually the case when the
abstract interpreter visits the same program location multiple times due to, for instance,
looping behavior. When the resulting cycle becomes unreachable, none of its constituent
addresses will be reclaimed under (→̂arc) from the continuation store where they cause
imprecisions. While imprecision in the value store σ̂ may be tolerable, imprecision in the
continuation store σ̂k has a detrimental impact. The E-Return transition rule, for instance,
will generate spurious successor states if set σ̂k(âk) contains “garbage continuations” due to
such imprecision resulting in the exploration of infeasible control flow with an impact on
both precision and performance.

4.2 Abstract Reference Counting with Cycle Detection: (→̂arc++)
We extend (→̂arc) so that it remains GC complete in the presence of cycles. Existing
techniques for reference counting to reclaim cycles do not immediately help in this setting
(cf. Section 6). We therefore propose a domain-specific solution that is tailored towards the
artificial cycles that are artefacts of abstraction. First, we make a few observations:

As discussed above, cycles are the most prevalent in the continuation store. Not reclaiming
such cycles impacts precision and performance negatively. Our main priority is therefore
the continuation store. While realizing the garbage-free property requires cycle detection
in both stores, we show that its application to the continuation store does not have a
significant performance overhead (cf. Theorem 10).
An artificial cycle can only be created when an address is reused, and address reuse often
results in a cycle in practice. In a garbage-free abstract interpreter, reusing an address in
the continuation store is guaranteed to create a cycle.
The transition rules in (→̂0) only make the stores grow monotonically; elements are only
removed from the store when addresses are garbage collected. As a consequence, cycles
never “break up”, because if some address that is part of a cycle is collected as garbage,
then by the definition of garbage the entire cycle should be collected.

Hence, while it is not obvious how to detect when a cycle becomes a garbage cycle, it is
possible to predict the creation of a cycle efficiently. Therefore, our approach explicitly tracks
all cycles – or rather strongly connected components (SCC) – in Ŝ(ς̂). Such cycles can only
grow when two SCCs are merged together, or be removed in their entirety when collected as
garbage, enabling maintaining a disjoint-set of the SCCs in Ŝ(ς̂) efficiently. The idea is then
to maintain the reference count for every SCC, only counting “external” references coming
from other SCCs. When a SCC loses all of its external references, all addresses that are part
of that SCC can be garbage collected. As a cycle can by definition never occur between two
SCCs, applying reference counting at this level overcomes its main limitation.

Figure 9 depicts the updates to the state space Σ̂arc that incorporate cycle detection.
Newly-added component π̂ tracks the partitioning of Ŝ(ς̂) into its SCCs.

N. Van Es, Q. Stiévenart, and C. De Roover 10:17

ς̂ ∈ Σ̂arc+ = Exp× Ênv× Ŝtore

× K̂Store× K̂Addr

× R̂efs ×D̂S

ŝ, ŝcc ∈ ŜCC = P(L̂oc)

φ̂ ∈ R̂efs = ŜCC ⇀ P(L̂oc)

π̂ ∈ D̂S = P(ŜCC)

Figure 9 Updated state space of the abstract interpreter with reference counting to detect cycles.
Other components preserve the original definition from Figure 7.

The abstract interpreter needs to maintain disjoint-set π̂ so that
⋃
ŝcc∈π̂ ŝcc = L̂oc and

for any ŝ1, ŝ2 ∈ π̂ where ŝ1 6= ŝ2, ŝ1 ∩ ŝ2 = ∅. In what follows, we assume that functions
union and find (for which efficient implementations have been proposed [19]) exist, so that:

union(π̂, ŝ1, ŝ2) = (π̂ \ {ŝ1, ŝ2}) ∪ {ŝ1 ∪ ŝ2} find(π̂, l̂) = ŝcc where ŝcc ∈ π̂ ∧ l̂ ∈ ŝcc

The original definition of φ̂ from Section 3.1 also changes in that it now tracks all incoming
references for every strongly connected component from the other SCCs. Note again that the
state space does not increase in complexity, since both φ̂ς̂ and π̂ς̂ are defined deterministically
in terms of ς̂’s other components:

φ̂ς̂(ŝcc) = {l̂′ ∈ L̂oc | l̂′ 6∈ ŝcc ∧ ∃l̂ ∈ ŝcc, l̂′ ̂ς̂ l̂} for ŝcc ∈ π̂ς̂ ⊥
φ̂
= λŝcc. ∅

∀l̂1, l̂2 ∈ L̂oc, find(π̂ς̂ , l̂1) = find(π̂ς̂ , l̂2) ⇐⇒ (l̂1
∗
 ̂ς̂ l̂2∧ l̂2

∗
 ̂ς̂ l̂1) ⊥

π̂
= {{l̂} | l̂ ∈ L̂oc}

Transition relation (→̂0) of Figure 8 needs to be updated to maintain the π̂ and φ̂

components. Previously in (→̂0), whenever a reference from address l̂from to a set of
addresses Ŝ was added to the store, φ̂ was updated to φ̂ t

⊔
l̂to∈Ŝ

[l̂to 7→ {l̂from}]. For the
new auxiliary transition relation (→̂0), we replace this update with a call to the function
extend(l̂from,Ŝ,φ̂,π̂). The full definition of (→̂0++) can be found in Appendix B.

The extend function in Algorihm 1 checks if SCCs are merged together when either the
store or continuation store is extended. For every new reference from l̂from to l̂to that is
added to the store, it calls the function update to detect if a new cycle has been created
and to update φ̂ and π̂ accordingly. The update function initiates a backward search for
the SCC of l̂to, starting from the SCC of l̂from. All strongly connected components that can
be traversed in a path from l̂from to l̂to need to be merged together in π̂ (using union), since

such a path implies that a cycle is created as l̂to
∗
 ̂ l̂from and l̂from ̂ l̂to (due to the new

reference from l̂from to l̂to that was added to the store). During this traversal, update also
keeps track of all incoming references to this newly created SCC, so that it can immediately
update φ̂ as well. If no such path is found, l̂from and l̂to are not part of the same SCC, so
that π̂ remains unchanged and φ̂ is updated as in (→̂0). Note that the check ŝcc ∈ V is only
there to prevent redundant work when a SCC has already been visited through a different
path; its purpose is not to prevent an infinite looping of search, which can not happen as
there are no cyclic paths between SCCs.

Of course, performing cycle detection through a search comes at a cost, especially when
looking at the theoretical worst-case behaviour. In practice, however, the advantages of being
able to reclaim garbage cycles appear to outweigh this cost (cf. Section 5.2). Note that the
backward search is only initiated when an address is being reused, as for a fresh address l̂,
there are no incoming references to traverse (i.e., φ̂(find(π̂, l̂)) = ∅). As address reuse often
creates a cycle, incorporating cycle detection usually pays off. In fact, for the continuation
store, we can state this more formally in Theorem 10.

ECOOP 2019

10:18 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

Algorithm 1: Cycle detection in (→̂0++).
function update(l̂from ,̂lto,φ̂,π̂):

V ← ∅ ; I ← φ̂(find(π̂, l̂to))
function search(l̂):

ŝcc← find(π̂, l̂)
if ŝcc = find(π̂, l̂to) then return true
if ŝcc ∈ V then return false
V ← V ∪ {ŝcc}
reachable← false
incoming ← ∅
foreach l̂′ ∈ φ̂(ŝcc) do

if search(l̂′) then reachable← true
else incoming ← incoming ∪ {l̂′}

end
if reachable then

π̂ ← union(ŝcc, find(π̂, l̂to))
I ← I ∪ incoming

end
return reachable

if search(l̂from) then
return 〈φ̂|̂

π
t [find(π̂, l̂to) 7→ I], π̂〉

else
return 〈φ̂ t [find(π̂, l̂to) 7→ {l̂from}], π̂〉

function extend(l̂from,Ŝ,φ̂,π̂):
foreach l̂to ∈ Ŝ do

if l̂from /∈ φ̂(find(π̂, l̂to)) then
〈φ̂, π̂〉 ←update(l̂from ,̂lto,φ̂,π̂)

end
return 〈φ̂, π̂〉

I Theorem 10. In a garbage-free abstract interpreter, extending abstract reference counting
with cycle detection for the continuation store only requires amortized O(1) additional
operations per continuation that is added to the continuation store.

Proof. The proof is detailed in Appendix A. J

The intuition here is that every reference that is inserted into σ̂k can only be traversed
once during the backward search of the cycle detection: once traversed, we can show that it
is guaranteed to become part of a cycle (cf. proof of Theorem 10 in Appendix A). Since the
internal references of a cycle are not traversed by the backward search, it can no longer add
to the cost of a future traversal once the SCCs are merged. That is, when a backward search
is triggered in the continuation store, we are guaranteed that all traversed edges between
SCCs will become part of the same SCC after cycle detection, hence the path is shortened for
future traversals. In practical terms, Theorem 10 states that cycle detection can be applied
to the continuation store “for free”, i.e., without much of an additional cost in performance.

Finally, we can define (→̂arc++) as we did previously for (→̂arc):

ς̂ →̂0++ ς̂ ′ ς̂ ′′ = ĉollect(ς̂ , ς̂ ′)
ς̂ →̂arc++ ς̂ ′′

where ĉollect remains mostly unchanged, save for some trivial modifications to work at the
level of SCCs. We refer to Appendix B for the updated definition of ĉollect.

N. Van Es, Q. Stiévenart, and C. De Roover 10:19

Unlike (→̂arc), we can show that using the transition relation (→̂arc++) results in a garbage-
free abstract interpreter, even in the presence of cycles. This is stated by Theorem 11.

I Theorem 11. (→̂arc++) is garbage-free.

Proof. The proofs of Lemma 5 and 7 can be repeated for (→̂arc++), replacing addresses with
their strongly connected components where necessary. The premise of Lemma 7 that disallows
cycles can then be omitted, since cycles by definition do not occur between SCCs. J

Moreover, we can now claim full equivalence of (→̂Γ̂) and (→̂arc++). First, define r̂c as:

r̂c(ς̂) = 〈eς̂ , ρ̂ς̂ , σ̂ς̂ , σ̂kς̂ , âk, φ̂, π̂〉 where

φ̂(ŝcc) = {l̂′ ∈ L̂oc | l̂′ 6∈ ŝcc ∧ ∃l̂ ∈ ŝcc, l̂′ ̂ς̂ l̂} for ŝcc ∈ π̂

∀l̂1, l̂2 ∈ L̂oc, find(π̂, l̂1) = find(π̂, l̂2) ⇐⇒ (l̂1
∗
 ̂ς̂ l̂2 ∧ l̂2

∗
 ̂ς̂ l̂1)

I Theorem 12. (→̂arc) is equivalent to (→̂Γ̂) : ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂
′ ⇐⇒ r̂c(ς̂) →̂arc++ r̂c(ς̂ ′).

Proof. The proof is analogous to that of Theorem 9. J

5 Evaluation

We have already proven the GC soundness and GC completeness of our approach (Lemmas 5
and 7), as well as a theoretical efficiency claim of the cycle detection technique for the
continuation store (Theorem 10). We now present the empirical evaluation. Section 5.2
measures the impact of the cycle detection technique on abstract reference counting, while
Section 5.3 compares its precision and performance to existing approaches to abstract GC.

5.1 Experimental Setup
We ran all experiments using Scala version 2.12.3 on a server with a 3.5GHz Intel Xeon 2637
processor and 256GB of RAM. We use a similar setup throughout our evaluation.

Implementation. We implemented both abstract reference counting and the existing vari-
ants of abstract tracing GC (surveyed in Section 1.2) using the Scala-AM framework for
abstract interpretation of Scheme programs [54, 53]. This resulted in 5 abstract interpreters5,
each incorporating the Scheme equivalent of the λANF transition relations (→̂) and (→̂Γ̂)
(cf. Section 2), (→̂arc) (cf. Section 3) and (→̂arc++) (cf. Section 4), as well as the additional
(→̂ΓCFA) and (→̂arc+) relations defined below:

(→̂ΓCFA) adopts the GC policy of ΓCFA [42], which applies abstract GC whenever values
need to be joined in the store, so that values are by design never merged with garbage.
While this approach is not garbage-free (cf. Section 1.2), it is interesting to examine how
this common policy affects the precision and performance of the abstract interpreter.
(→̂arc+) adopts abstract reference counting, but only applies cycle detection to the
continuation store σ̂k. As garbage cycles will remain in value store σ̂, this relation is
not garbage-free. However, its empirical evaluation is motivated by our observation
that garbage cycles are mainly an issue in the continuation store, and by our proof for
Theorem 10 that cycle detection should have no major performance overhead there.

5 Publicly available at https://github.com/noahvanes/scala-am-abstractgc

ECOOP 2019

https://github.com/noahvanes/scala-am-abstractgc

10:20 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

Benchmarks. We evaluate the above implementations using a total of 16 Scheme programs;
11 from the Gabriel benchmark suite [18]6 and 5 from the built-in test suite of Scala-AM.
Table 1 lists the size of each Scheme program, with the Gabriel ones depicted in bold. For
each benchmark program, we configure each abstract interpreter with a monovariant allocator
(i.e., 0CFA), and a lattice that abstracts concrete values to the set of their possible types.

Table 1 Lines of code (LOC) for each benchmark. The Gabriel benchmarks are in bold.

Benchmark LOC Benchmark LOC Benchmark LOC Benchmark LOC

boyer 568 deriv 39 takl 18 gcipd 12
browse 78 destruc 37 puzzle 144 primtest 35
cpstak 19 diviter 8 triangl 40 rsa 41
dderiv 83 divrec 11 collatz 22 nqueens 34

Measurements. As the implementations differ only in their approach to abstract garbage
collection, we follow Earl et al. [16] in the use of the number of explored states as a measure
of precision. As garbage can cause an abstract interpreter to explore spurious states (cf.
Section 1.2), fewer states implies higher precision when all configuration parameters are kept
constant. For performance, we measure the total running time of the abstract interpreter.
Note that running time is impacted by two factors. First, the number of number states the
interpreter has to explore. Higher precision can often lead to higher performance. Second, the
rate at which the abstract interpreter is able to explore those states. This rate is influenced
by the overhead caused by abstract garbage collection, which we therefore also measure
per state. For the tracing GC approaches ((→̂Γ̂) and (→̂ΓCFA)), this measure corresponds
to the time spent in the function Γ̂. For approaches based on abstract reference counting
((→̂arc), (→̂arc+) and (→̂arc++)), this measure includes the time spent on updating the φ̂
and π̂ components (including cycle detection for (→̂arc+) and (→̂arc++)) and in the ĉollect
function. We ran every benchmark 30 times after a warm-up period of 2 minutes. For the
time-sensitive measurements, we report the mean of all runs.

5.2 Impact of Cycle Detection
Section 3 introduced transition relation (→̂arc) which performs abstract reference counting,
but cannot reclaim cycles. Section 4 extended this relation into (→̂arc++), which can reclaim
cyclic garbage by applying cycle detection to both stores. Transition relation (→̂arc+),
introduced above, is an in-between: it uses abstract reference counting, but only applies cycle
detection to the continuation store. Table 2 compares the corresponding abstract interpreters
to evaluate the impact of cycle detection on abstract reference counting.

Impact on precision. The results from Table 2 show that reclaiming garbage cycles from
the continuation store only, can already result in important precision improvements. For most
benchmarks, (→̂arc+) nearly achieves the same optimal precision as (→̂arc++). For instance,
all of the non-Gabriel benchmarks significantly improve precision with cycle detection for
the continuation store only, and adding cycle detection to the value store does not increase

6 We omitted the ctak benchmark program due to its use of call/cc, which is not yet supported by the
abstract interpretation framework.

N. Van Es, Q. Stiévenart, and C. De Roover 10:21

precision any further. In addition, for the triangl benchmark, not reclaiming garbage cycles
from the continuation store (using (→̂arc)) causes the state space to blow up. However, it is
clear that reclaiming them from the continuation store does not always suffice: benchmarks
destruc and puzzle both create cycles in the value store, which are not reclaimed by (→̂arc)
nor (→̂arc+). Programs that are written in CPS-style, such as cpstak, do not benefit from the
extra precision in the continuation store either, as their control flow is encoded in closures that
reside in the value store. The garbage-free transition relation (→̂arc++) improves precision
more consistently, due to its reclamation of all garbage cycles from both stores. These results
underline that cycles cannot be neglected in abstract reference counting, and that a technique
for their detection is required to realize the benefits of garbage-free abstract interpretation.

Table 2 Comparison of time taken in milliseconds (t; lower means better performance) and
number of states explored (#s; lower means better precision). A time of∞ means that the benchmark
exceeded the time limit of 30 minutes; in this case, we report the number of states explored when
the timeout was reached.

(→̂arc) (→̂arc+) (→̂arc++)
t #s t #s t #s

cpstak 1 94 1 94 1 88
diviter 13 163 14 163 14 162
divrec 15 153 14 146 16 145
destruc 1 208 61 021 1 160 61 021 304 17 344
triangl ∞ >2 186 761 2 044 2 639 1 613 2 639
puzzle 23 950 1 060 585 22 142 1 018 345 2 351 117 572
takl 14 375 862 833 3 581 188 552 2 791 188 549
browse ∞ >4 028 742 ∞ >2 586 788 ∞ >2 559 221
boyer ∞ >18 544 242 ∞ >12 690 008 ∞ >12 715 066
deriv ∞ >8 650 787 ∞ >28 905 027 ∞ >29 513 647
dderiv ∞ >11 561 462 ∞ >32 582 390 ∞ >32 803 534
collatz 1 60 1 60 1 60
gcipd 1 151 1 91 1 91
primtest 40 5 347 11 1 537 12 1 537
rsa 87 10 646 12 1 538 12 1 538
nqueens 1 207 112 579 319 31 883 338 31 857

Impact on performance. Figure 10 compares the time spent on GC per computed state
for the reference-counting transition relations. For most benchmarks, we observe that cycle
detection increases the GC overhead slightly. However, this overhead is negligible compared
to the corresponding improvements to precision. That is, the overheads in Figure 10 remain
comparable for different configurations on each benchmark, while the number of states
explored reported in Table 2 decreases significantly when using cycle detection. We observe
proportionally large improvements to performance, as the abstract interpreter has fewer states
to explore. Again, the garbage-free transition relation (→̂arc++) can most consistently improve
performance by completely avoiding any unnecessary computation, with only a negligible
increase in overhead. We conclude that the benefits of cycle detection outweigh its cost, as
(→̂arc++) is superior to both (→̂arc) and (→̂arc+) in terms of precision and performance.

ECOOP 2019

10:22 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

destr
uc

trian
gl

puzz
le takl brow

se boye
r deriv dderi

v
prim

testcolla
tz gcipd rsa nque

ens
1

5

10
O
ve
rh
ea
d
(µ
s/
st
at
e)

(→̂arc) (→̂arc+) (→̂arc++)

Figure 10 Comparison of overhead measured in time spent on GC per state (lower is better).
Error bars indicate the standard deviation of the mean of our measurements (for 30 runs). Note the
usage of a logarithmic scale on the y-axis.

Note that Table 2 also lists the number of states that were explored for the benchmarks
that did time out. This gives a rough estimate of the interpreters state exploration rate.
However, these rates should be interpreted with caution, as some paths in the state space
can be significantly cheaper to explore than others. One should therefore only compare the
rates of interpreters with the same precision, or look for a pattern of major discrepancies.
We do not discern such a pattern among the rates, and deem the differences in precision too
outspoken to warrant a direct rate comparison.

5.3 Comparison to Existing Policies for Abstract GC
Table 3 compares (→̂arc++) to other approaches to abstract garbage collection. On one end
of the spectrum, there is (→̂), which never applies abstract GC. On the other end, there is
(→̂Γ̂), which applies abstract GC on every evaluation step. An interesting tradeoff is made
by (→̂ΓCFA), which applies GC before every store join.

Table 3 Comparison of time taken in milliseconds (t; lower means better performance) and
number of states explored (#s; lower means better precision) by an abstract interpreter for different
approaches to abstract GC. A time of ∞ means that the benchmark exceeded the time limit of 30
minutes; in this case, we report the number of states explored when the timeout was reached.

(→̂) (→̂Γ̂) (→̂ΓCFA) (→̂arc++)

t #s t #s t #s t #s

cpstak 1 120 7 88 2 94 1 88
diviter 14 175 29 162 13 163 14 162
divrec 24 219 28 145 16 148 16 145
destruc 9 671 381 949 2 436 17 344 735 22 444 304 17 344
triangl ∞ >4 826 189 2 018 2 639 1 635 2 767 1 613 2 639
puzzle ∞ >104 243 260 24 704 117 572 14 732 293 167 2 351 117 572
takl 86 830 7 072 820 72 325 377 389 32 356 539 233 2 791 188 549
browse ∞ >6 608 260 ∞ >1 928 827 ∞ >2 706 491 ∞ >2 559 221
boyer ∞ >27 731 639 ∞ >232 889 ∞ >1 456 963 ∞ >12 715 066
deriv ∞ >107 328 548 ∞ >5 773 009 ∞ >13 262 924 ∞ >29 513 647
dderiv ∞ >90 849 930 ∞ >3 320 410 ∞ >12 954 310 ∞ >32 803 534
collatz 1 431 4 60 2 159 1 60
gcipd 3 1 098 8 91 2 147 1 91
primtest 2 249 334 944 166 1 537 75 3 622 12 1 537
rsa 1 840 247 915 176 1 538 63 2 375 12 1 538
nqueens 346 349 37 499 432 4 583 37 847 1 556 52 766 338 31 857

N. Van Es, Q. Stiévenart, and C. De Roover 10:23

Comparison of precision. Our results confirm the findings of previous work [42, 43, 16, 28]:
abstract GC reduces the state space to explore substantially. Looking at the number of
explored states in Table 3 reveals that the interpreter without abstract GC using (→̂) has
the lowest precision for every benchmark compared to all other approaches. The interpreter
using (→̂ΓCFA) sacrifices some precision by invoking abstract GC less frequently than (→̂Γ̂).
It explores more states than necessary because it is not garbage-free, which is the most
noticeable on more complex programs such as destruct, puzzle and takl.

Our approach, (→̂arc++), achieves the same optimal precision as (→̂Γ̂). As we have proven
that both transition relations are garbage-free and equivalent, they should explore the same
number of states. Note, however, that this is not the case for the takl benchmark – an
apparent contradiction of Theorem 12. The reason is that the implementation of (→̂arc++)
for Scheme is able to collect more garbage than its formalization for λANF in Sections 3 and 4.
The definition of garbage-free only requires the absence of garbage from the stores in between
transitions. However, more complex state transitions can create garbage and immediately
bring that garbage back to life within a single transition. Unlike our formalization for
λANF, some of the transition rules in our implementation for Scheme both lookup and insert
continuations at the same address âk in a single step. Abstract reference counting can
automatically deallocate âk (and addresses in the same SCC) if no references remain to âk
after the lookup, which possibly prevents a precision loss when âk (or another address in the
same SCC) is reallocated in the same step. Abstract reference counting can trivially reclaim
garbage within a single transition due to its continuous nature. Realizing the same effect
with abstract tracing GC (i.e., using (→̂Γ̂) and (→̂arc++)) would require a full GC application
both within and after such transitions – increasing its overhead further. We investigated
the applicability of this optimization on abstract reference counting for all benchmarks, and
found it limited to takl, browse, deriv, dderiv and nqueens. For the others, (→̂Γ̂) and (→̂arc++)
exhibit the same precision and explore the same state space.

destr
uc
trian

gl
puzz

le takl brow
se boye

r deriv dderi
v
prim

testcolla
tz gcipd rsa nque

ens

10

100

1000

1000010000

O
ve
rh
ea
d
(µ
s/
st
at
e)

(→̂Γ̂) (→̂ΓCFA) (→̂arc++)

Figure 11 Comparison of overhead measured in time spent on GC per state (lower is better).
Error bars indicate the standard deviation of the mean of our measurements (for 30 runs). Note the
usage of a logarithmic scale on the y-axis.

Comparison of performance. Figure 11 compares the overhead of abstract GC for (→̂Γ̂),
(→̂ΓCFA) and (→̂arc++). The (→̂) interpreter does not suffer such overhead. However, without
any abstract GC, its state space becomes polluted (leading to repeated exploration of
equivalent states) and explodes (due to infeasible paths). It exhibits the worst performance.

The overhead of abstract GC is an issue for (→̂Γ̂). It is clear that a tracing GC application
is generally more expensive than a single evaluation step. Applying tracing GC after every
step leads to the interpreter’s running time being dominated by that of the GC applications.
This is outspoken on complex benchmarks that require larger heaps such as boyer : since

ECOOP 2019

10:24 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

tracing GC needs to traverse the entire heap, the overhead grows with the size of the heap.
For the boyer benchmark, the interpreter using (→̂arc++), which explores the same state space
as (→̂Γ̂) for this benchmark, explores 12.7M states before timeout, whereas with the excessive
GC overhead of (→̂Γ̂), it can only explore 233K states with the same time limit. While the
garbage-freeness of (→̂Γ̂) significantly improves overall performance of (→̂) by reducing the
state space, it is not as fast as (→̂arc++) due to the higher overhead. In Figure 11, for all
benchmarks the overhead of (→̂Γ̂) differs to that of (→̂arc++) by orders of magnitude, which
results in significant performance improvements in Table 3 while exploring the same amount
of states. The transition relation (→̂ΓCFA) avoids this overhead of (→̂Γ̂) by applying abstract
GC less frequently. As such, its overhead is significantly lower than that of (→̂Γ̂). For all our
benchmarks, this results in a performance improvement over (→̂Γ̂), despite having to explore
a larger state space. Note that (→̂ΓCFA) is no longer garbage-free and explores more states
than necessary. For instance, on the puzzle benchmark it almost explores 3 times as many
states as (→̂arc++). In addition, Figure 11 reveals that the overhead remains considerably
higher than that of (→̂) and even (→̂arc++). This can also be seen in the benchmarks that
timeout, where the difference in states explored is significant compared to (→̂) and even
(→̂arc++). In particular, the boyer benchmark also shows that it still scales poorly towards
larger heap sizes, an inherent downside of tracing GC approaches. Since both overhead and
number of states explored are higher than for (→̂arc++), the overall performance is worse.

In general, when determining an application policy for abstract tracing GC, sacrificing
garbage-freeness for increased performance implies lower precision. Using abstract reference
counting with (→̂arc++) gives the best of both worlds. Its low overhead is not detrimental to
performance: although there is definitely some compared to (→̂), it is consistently lower than
all other approaches that actually apply abstract GC. Compared to the equivalent transition
relation (→̂Γ̂) with optimal precision, overhead is reduced by orders of magnitude. The
overall performance of the triangl benchmark is an exception to the rule: even though the
GC overhead is greatly reduced when using (→̂arc++), its running time is mostly dominated
by expensive evaluation steps, but even in this case none of the other interpreters outperform
(→̂arc++). Since (→̂arc++) achieves the optimal precision, so that overall performance is not
impacted by the exploration of spurious states. Hence, our experiments show that (→̂arc++)
is superior both in terms of precision and performance.

6 Related Work

The focus of our work is a more efficient approach to abstract garbage collection. It relates
to previous work on concrete GC, abstract GC, and abstract interpretation in general.

Reference Counting. Our approach is based on the original formulation of reference count-
ing [10], without any common optimizations [50] such as deferred [15] and coalesced [35]
reference counting or “lazy freeing” [8]. As these optimizations postpone the reclamation of
garbage, they cannot be used for garbage-free abstract interpretation.

We perform abstract reference counting at the level of SCCs, so that garbage cycles can
be reclaimed. For concrete reference counting, two major techniques have been proposed to
handle cycles: using a back-up tracing garbage collector [56] and trial deletion [9]. We deem
both too expensive for frequent applications during abstract interpretation, which is required
to guarantee garbage-freeness. Nevertheless, it could be interesting to investigate a variant
of abstract reference counting where abstract tracing GC is applied at the evaluation steps
that might render a cycle into a garbage cycle. In the concrete, this has been shown [37] to
occur when a memory location loses some, but not all of its incoming references. A cheap
pre-analysis as in [3] could identify the structures guaranteed to be acyclic beforehand.

N. Van Es, Q. Stiévenart, and C. De Roover 10:25

Confusingly, the term “abstract reference counting” has been used with different meanings.
Hudak [24] formalizes reference counting for a concrete interpreter. After abstraction, he
obtains a static analysis that approximates the concrete reference count, enabling program
optimizations [25, 45] and compile-time GC [32]. The analysis exemplifies static analysis
of reference counting, rather than static analysis analysis with reference counting for the
purpose of improving precision and performance. Finally, Jones et al. [31] use the term to
abstract over the low-level details concrete implementations differ on.

Tracing Garbage Collection. Our main issue with tracing GC is that it requires frequent
heap traversals to keep the abstract interpreter garbage-free. Various techniques exist
for concrete interpreters to avoid the correspondingly long GC pauses and to improve
their throughput. Incremental algorithms, such as Baker’s incremental stop-and-copy al-
gorithm [33], only remove garbage lazily, and can therefore not be used in our setting.
Moreover, they would need to be redesigned for abstract interpreters which do not always
allocate a fresh address. Generational algorithms [36] can increase throughput by limiting
heap traversals to the young generations only. However, as garbage also arises in older ones,
it does not suffice to keep the abstract interpreter garbage-free. A full GC would be required
to prevent precision loss for addresses that are re-allocated in the old generation.

Abstract Garbage Collection. The ΓCFA analysis [42, 43] pioneered the concept of abstract
garbage collection. The term “garbage-free” was later coined in [23] to describe an abstract
interpreter that applies abstract GC at every evaluation step, eliminating all garbage. ΓCFA
also incorporated abstract counting ––not to be confused with abstract reference counting –
to count how often an address has been allocated. Abstract counting combines well with
abstract GC, as collecting garbage results in more precise (i.e., lower) abstract counts. It
can be combined directly with abstract reference counting to the same effect.

We showed that garbage-free abstract interpretation prevents imprecision and improves
the interpreter’s performance by limiting exploration to garbage-free states. As such, it
improves what is known as localization [48]; unnecessary store bindings are removed so that
states with irrelevant store differences need not be explored multiple times. For similar
purposes, Oh et al. [47] eliminate store bindings in their analysis based on which addresses
can be used. The main difference with our and other approaches to abstract GC is the use
of a pre-analysis to conservatively approximate which bindings are never used and can safely
be removed as garbage. The technique can be combined with reachability-based approaches,
such as abstract reference counting, to further improve localization and precision. Might et
al. [41] proposed a similar extension to abstract GC, named conditional abstract GC, which
only keeps bindings in the store that are reachable and satisfy certain conditions. However,
it relies on a theorem prover and has to the best of our knowledge not yet been implemented.

In Knauel’s abstract interpretation framework [34], the overhead of tracing GC turned
proved performance-detrimental on complex programs. The proposed solution is a global
garbage collector which collects garbage for multiple states at once with a global root set. Of
course, this sacrifices many of the precision benefits of the GC. To our knowledge, no prior
work has employed abstract reference counting as a more efficient approach to garbage-free
abstract interpretation, despite reference counting being mentioned in the future work of [42].
Bergstrom et al. [6, 7] employ a primitive form of reference counting as a cheaper alternative
to full abstract GC. Their control-flow analysis (without explicit store component) tracks for
every variable if it has been captured by the lexical environment of another closure; if not,
this variable can safely be collected once it goes out of scope. Compared to our approach,

ECOOP 2019

10:26 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

this corresponds to abstract reference counting with reference counts from N̂ = {0, 1,∞}.
We have shown that such an approximation is unnecessary, as the precise reference count
can be maintained without having to increase the complexity of the state space.

Abstract Interpretation. Many abstract interpreters incorporate global store widening [23]
to terminate within reasonable time. Unfortunately, previous work [28] has shown that store
widening and abstract GC do not combine well: abstract GC can collect fewer addresses, as
it needs to account for reachability from multiple states, and store widening can no longer
guarantee fast convergence, as the GC violates the monotonicity of the global store. In fact,
an often overlooked consequence of abstract GC is that it no longer suffices for lattices to
conform to the ascending chain condition; as GC can “descend” into lattices, the analysis is
no longer monotonous, and the only way to guarantee termination is to use finite lattices.

Other work [16, 28] has been able to combine abstract GC successfully with pushdown
analysis, which substantially increases control-flow precision by properly matching call and
return sites. The combination yields “better-than-both-worlds” improvements, although
the techniques’ inherent incompatibilities need to be overcome. We leave an analogous
combination with abstract reference counting open for future work.

Finally, abstract counting can be exploited to enable strong updates [38, 4]. Replacing join
operations in the store with overwrites when possible increases precision. Note, however, that
such strong updates break the assumption in Section 4 that stores only grow monotonically
without GC. To support strong updates, our cycle detection technique therefore needs to be
adapted to take into account the possibility that a SCC can break up when a strong update
occurs within a single SCC (although this cannot happen in the continuation store).

Incremental Cycle Detection. To reclaim garbage cycles, our approach detects cycles as
references are added to the store. We implement such incremental cycle detection using
a simple backward search, which has suboptimal worst-case performance in theory. More
advanced algorithms have been proposed [22, 5] with better asymptotic performance. However,
empirical evidence suggests [52] that more complicated algorithms do not always perform
better in practice for some situations. Indeed, in Section 4.2 we argued that backward
searching usually works well for an abstract interpreter, and we verified this empirically in
Section 5.2. Nevertheless, it would be interesting for future work to explore whether other
incremental cycle detection algorithms can be more efficient for an abstract interpreter.

7 Conclusion

We have introduced abstract reference counting as a more efficient approach to abstract
garbage collection. Existing approaches are based on tracing GC, which is non-continuous in
nature, and therefore need to trade-off either precision or performance to strike the balance
between the benefits and overhead of abstract GC. Our approach based on reference counting,
in contrast, requires but minor bookkeeping yet is provably sound and complete in terms of
abstract GC. The result is a garbage-free abstract interpreter that is as precise as one that
applies tracing GC at every step – in the absence of cycles.

However, we showed that cycles are a major threat to the garbage-freeness of abstract
reference counting. Next to those arising under concrete interpretation, the address allocator
of an abstract interpreter can create many artificial cycles. We proposed cycle detection as a
solution, maintaining the reference counts at the level of the strongly connected components
in the stores. This enables the reclamation of garbage cycles, which is necessary to make
abstract reference counting garbage-free.

N. Van Es, Q. Stiévenart, and C. De Roover 10:27

In terms of precision, our empirical experiments confirm our claim on the garbage-freeness
of the abstract interpreter, showing that it achieves the optimal precision for abstract garbage
collection. In terms of performance, abstract reference counting – even with cycle detection –
greatly reduces overhead by avoiding frequent heap traversals. Without sacrificing precision,
it can therefore realize significant performance improvements in abstract interpretation.

References
1 Leif Andersen and Matthew Might. Multi-core Parallelization of Abstracted Abstract Machines.

In Proceedings of the 2013 Workshop on Scheme and Functional Programming, Washington,
DC. Citeseer, 2013.

2 David F. Bacon, Perry Cheng, and V. T. Rajan. A unified theory of garbage collection. In
Proceedings of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2004, October 24-28, 2004, Vancouver, BC,
Canada, pages 50–68, 2004. doi:10.1145/1028976.1028982.

3 David F. Bacon and V. T. Rajan. Concurrent Cycle Collection in Reference Counted Systems. In
ECOOP 2001 - Object-Oriented Programming, 15th European Conference, Budapest, Hungary,
June 18-22, 2001, Proceedings, pages 207–235, 2001. doi:10.1007/3-540-45337-7_12.

4 Gogul Balakrishnan and Thomas W. Reps. Recency-Abstraction for Heap-Allocated Storage.
In Static Analysis, 13th International Symposium, SAS 2006, Seoul, Korea, August 29-31,
2006, Proceedings, pages 221–239, 2006. doi:10.1007/11823230_15.

5 Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Robert E. Tarjan. A New Approach
to Incremental Cycle Detection and Related Problems. ACM Trans. Algorithms, 12(2):14:1–
14:22, 2016. doi:10.1145/2756553.

6 Lars Bergstrom. Arity raising and control-flow analysis in Manticore. Master’s thesis, University
of Chicago, 2009.

7 Lars Bergstrom, Matthew Fluet, Matthew Le, John H. Reppy, and Nora Sandler. Practical and
effective higher-order optimizations. In Proceedings of the 19th ACM SIGPLAN international
conference on Functional programming, Gothenburg, Sweden, September 1-3, 2014, pages
81–93, 2014. doi:10.1145/2628136.2628153.

8 Hans-Juergen Boehm. The space cost of lazy reference counting. In Proceedings of the 31st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, January 14-16, 2004, pages 210–219, 2004. doi:10.1145/964001.964019.

9 Thomas W. Christopher. Reference Count Garbage Collection. Softw., Pract. Exper., 14(6):503–
507, 1984. doi:10.1002/spe.4380140602.

10 George E. Collins. A method for overlapping and erasure of lists. Commun. ACM, 3(12):655–
657, 1960. doi:10.1145/367487.367501.

11 Patrick Cousot. The Verification Grand Challenge and Abstract Interpretation. In Verified
Software: Theories, Tools, Experiments, First IFIP TC 2/WG 2.3 Conference, VSTTE 2005,
Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers and Discussions, pages
189–201, 2005. doi:10.1007/978-3-540-69149-5_21.

12 Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In Conference
Record of the Fourth ACM Symposium on Principles of Programming Languages, Los Angeles,
California, USA, January 1977, pages 238–252, 1977. doi:10.1145/512950.512973.

13 Patrick Cousot and Radhia Cousot. Comparing the Galois Connection and Widening/Narrow-
ing Approaches to Abstract Interpretation. In Programming Language Implementation and
Logic Programming, 4th International Symposium, PLILP’92, Leuven, Belgium, August 26-28,
1992, Proceedings, pages 269–295, 1992. doi:10.1007/3-540-55844-6_142.

14 David Darais, Nicholas Labich, Phuc C. Nguyen, and David Van Horn. Abstracting definitional
interpreters (functional pearl). PACMPL, 1(ICFP):12:1–12:25, 2017. doi:10.1145/3110256.

ECOOP 2019

http://dx.doi.org/10.1145/1028976.1028982
http://dx.doi.org/10.1007/3-540-45337-7_12
http://dx.doi.org/10.1007/11823230_15
http://dx.doi.org/10.1145/2756553
http://dx.doi.org/10.1145/2628136.2628153
http://dx.doi.org/10.1145/964001.964019
http://dx.doi.org/10.1002/spe.4380140602
http://dx.doi.org/10.1145/367487.367501
http://dx.doi.org/10.1007/978-3-540-69149-5_21
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1007/3-540-55844-6_142
http://dx.doi.org/10.1145/3110256

10:28 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

15 L. Peter Deutsch and Daniel G. Bobrow. An Efficient, Incremental, Automatic Garbage
Collector. Commun. ACM, 19(9):522–526, 1976. doi:10.1145/360336.360345.

16 Christopher Earl, Ilya Sergey, Matthew Might, and David Van Horn. Introspective pushdown
analysis of higher-order programs. In ACM SIGPLAN International Conference on Functional
Programming, ICFP’12, Copenhagen, Denmark, September 9-15, 2012, pages 177–188, 2012.
doi:10.1145/2364527.2364576.

17 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The Essence of
Compiling with Continuations. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), Albuquerque, New Mexico, USA,
June 23-25, 1993, pages 237–247, 1993. doi:10.1145/155090.155113.

18 Richard P. Gabriel. Performance and evaluation of LISP systems, volume 263. MIT press
Cambridge, Mass., 1985.

19 Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint set union
problems. ACM Computing Surveys (CSUR), 23(3):319–344, 1991.

20 Thomas Gilray, Michael D. Adams, and Matthew Might. Allocation characterizes polyvariance:
a unified methodology for polyvariant control-flow analysis. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 407–420, 2016. doi:10.1145/2951913.2951936.

21 Thomas Gilray, Steven Lyde, Michael D. Adams, Matthew Might, and David Van Horn.
Pushdown control-flow analysis for free. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20 - 22, 2016, pages 691–704, 2016. doi:10.1145/2837614.2837631.

22 Bernhard Haeupler, Telikepalli Kavitha, Rogers Mathew, Siddhartha Sen, and Robert En-
dre Tarjan. Incremental Cycle Detection, Topological Ordering, and Strong Component
Maintenance. ACM Trans. Algorithms, 8(1):3:1–3:33, 2012. doi:10.1145/2071379.2071382.

23 David Van Horn and Matthew Might. Abstracting abstract machines. In Proceeding of the 15th
ACM SIGPLAN international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010, pages 51–62, 2010. doi:10.1145/1863543.1863553.

24 Paul Hudak. A semantic model of reference counting and its abstraction (detailed summary).
In Proceedings of the 1986 ACM conference on LISP and functional programming, pages
351–363. ACM, 1986.

25 Paul Hudak and Adrienne G. Bloss. The Aggregate Update Problem in Functional Program-
ming Systems. In Conference Record of the Twelfth Annual ACM Symposium on Principles of
Programming Languages, New Orleans, Louisiana, USA, January 1985, pages 300–314, 1985.
doi:10.1145/318593.318660.

26 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type Analysis for JavaScript. In
Static Analysis, 16th International Symposium, SAS 2009, Los Angeles, CA, USA, August
9-11, 2009. Proceedings, pages 238–255, 2009. doi:10.1007/978-3-642-03237-0_17.

27 J. Ian Johnson, Nicholas Labich, Matthew Might, and David Van Horn. Optimizing abstract
abstract machines. In ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 443–454, 2013. doi:10.1145/
2500365.2500604.

28 J. Ian Johnson, Ilya Sergey, Christopher Earl, Matthew Might, and David Van Horn. Pushdown
flow analysis with abstract garbage collection. J. Funct. Program., 24(2-3):218–283, 2014.

29 James Ian Johnson. Automating abstract interpretation of abstract machines. PhD thesis,
Northeastern University, 2015.

30 James Ian Johnson and David Van Horn. Abstracting abstract control. In DLS’14, Proceedings
of the 10th ACM Symposium on Dynamic Languages, part of SLASH 2014, Portland, OR,
USA, October 20-24, 2014, pages 11–22, 2014. doi:10.1145/2661088.2661098.

31 Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection handbook: the art of
automatic memory management. Chapman and Hall/CRC, 2016.

http://dx.doi.org/10.1145/360336.360345
http://dx.doi.org/10.1145/2364527.2364576
http://dx.doi.org/10.1145/155090.155113
http://dx.doi.org/10.1145/2951913.2951936
http://dx.doi.org/10.1145/2837614.2837631
http://dx.doi.org/10.1145/2071379.2071382
http://dx.doi.org/10.1145/1863543.1863553
http://dx.doi.org/10.1145/318593.318660
http://dx.doi.org/10.1007/978-3-642-03237-0_17
http://dx.doi.org/10.1145/2500365.2500604
http://dx.doi.org/10.1145/2500365.2500604
http://dx.doi.org/10.1145/2661088.2661098

N. Van Es, Q. Stiévenart, and C. De Roover 10:29

32 Simon B. Jones and Daniel Le Métayer. Compile-time garbage collection by sharing analysis.
In Proceedings of the fourth international conference on Functional programming languages
and computer architecture, pages 54–74. ACM, 1989.

33 Henry G. Baker Jr. List Processing in Real Time on a Serial Computer. Commun. ACM,
21(4):280–294, 1978. doi:10.1145/359460.359470.

34 Eric Jean Knauel. A flow analysis framework for realistic scheme programs. PhD thesis,
University of Tübingen, Germany, 2008. URL: http://tobias-lib.ub.uni-tuebingen.de/
volltexte/2008/3363/.

35 Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting garbage collector for java.
ACM Trans. Program. Lang. Syst., 28(1):1–69, 2006. doi:10.1145/1111596.1111597.

36 Henry Lieberman and Carl Hewitt. A Real-Time Garbage Collector Based on the Lifetimes of
Objects. Commun. ACM, 26(6):419–429, 1983. doi:10.1145/358141.358147.

37 Alejandro D. Martínez, Rosita Wachenchauzer, and Rafael D. Lins. Cyclic reference counting
with local mark-scan. Information Processing Letters, 34(1):31–35, 1990.

38 Matthew Might. Environment Analysis of Higher-Order Languages. PhD thesis, Georgia
Institute of Technology, Atlanta, GA, USA, 2007. URL: http://hdl.handle.net/1853/16289.

39 Matthew Might. Logic-flow analysis of higher-order programs. In Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007,
Nice, France, January 17-19, 2007, pages 185–198, 2007. doi:10.1145/1190216.1190247.

40 Matthew Might. Abstract Interpreters for Free. In Static Analysis - 17th International
Symposium, SAS 2010, Perpignan, France, September 14-16, 2010. Proceedings, pages 407–421,
2010. doi:10.1007/978-3-642-15769-1_25.

41 Matthew Might, Benjamin Chambers, and Olin Shivers. Model Checking Via GammaCFA.
In Verification, Model Checking, and Abstract Interpretation, 8th International Conference,
VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings, pages 59–73, 2007. doi:
10.1007/978-3-540-69738-1_4.

42 Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA: Abstract garbage
collection and counting. In Proceedings of the 11th ACM SIGPLAN International Conference
on Functional Programming, ICFP 2006, Portland, Oregon, USA, September 16-21, 2006,
pages 13–25, 2006. doi:10.1145/1159803.1159807.

43 Matthew Might and Olin Shivers. Exploiting reachability and cardinality in higher-order flow
analysis. J. Funct. Program., 18(5-6):821–864, 2008. doi:10.1017/S0956796808006941.

44 Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploiting the
k-CFA paradox: illuminating functional vs. object-oriented program analysis. In Proceedings of
the 2010 ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages 305–315, 2010. doi:10.1145/
1806596.1806631.

45 Alan Mycroft. Abstract interpretation and optimising transformations for applicative programs.
PhD thesis, University of Edinburgh, UK, 1982. URL: http://hdl.handle.net/1842/6602.

46 Jens Nicolay, Carlos Noguera, Coen De Roover, and Wolfgang De Meuter. Detecting function
purity in JavaScript. In 15th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2015, Bremen, Germany, September 27-28, 2015, pages 101–110,
2015. doi:10.1109/SCAM.2015.7335406.

47 Hakjoo Oh and Kwangkeun Yi. Access-based abstract memory localization in static analysis.
Sci. Comput. Program., 78(9):1701–1727, 2013. doi:10.1016/j.scico.2013.04.002.

48 Noam Rinetzky, Jörg Bauer, Thomas W. Reps, Shmuel Sagiv, and Reinhard Wilhelm. A
semantics for procedure local heaps and its abstractions. In Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005, Long
Beach, California, USA, January 12-14, 2005, pages 296–309, 2005. doi:10.1145/1040305.
1040330.

49 Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke,
and Frank Piessens. Monadic abstract interpreters. In ACM SIGPLAN Conference on

ECOOP 2019

http://dx.doi.org/10.1145/359460.359470
http://tobias-lib.ub.uni-tuebingen.de/volltexte/2008/3363/
http://tobias-lib.ub.uni-tuebingen.de/volltexte/2008/3363/
http://dx.doi.org/10.1145/1111596.1111597
http://dx.doi.org/10.1145/358141.358147
http://hdl.handle.net/1853/16289
http://dx.doi.org/10.1145/1190216.1190247
http://dx.doi.org/10.1007/978-3-642-15769-1_25
http://dx.doi.org/10.1007/978-3-540-69738-1_4
http://dx.doi.org/10.1007/978-3-540-69738-1_4
http://dx.doi.org/10.1145/1159803.1159807
http://dx.doi.org/10.1017/S0956796808006941
http://dx.doi.org/10.1145/1806596.1806631
http://dx.doi.org/10.1145/1806596.1806631
http://hdl.handle.net/1842/6602
http://dx.doi.org/10.1109/SCAM.2015.7335406
http://dx.doi.org/10.1016/j.scico.2013.04.002
http://dx.doi.org/10.1145/1040305.1040330
http://dx.doi.org/10.1145/1040305.1040330

10:30 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19,
2013, pages 399–410, 2013. doi:10.1145/2491956.2491979.

50 Rifat Shahriyar, Stephen M. Blackburn, and Daniel Frampton. Down for the count? Getting
reference counting back in the ring. In International Symposium on Memory Management,
ISMM ’12, Beijing, China, June 15-16, 2012, pages 73–84, 2012. doi:10.1145/2258996.
2259008.

51 Olin Shivers. Control-Flow Analysis in Scheme. In Proceedings of the ACM SIGPLAN’88
Conference on Programming Language Design and Implementation (PLDI), Atlanta, Georgia,
USA, June 22-24, 1988, pages 164–174, 1988. doi:10.1145/53990.54007.

52 Ragnar Lárus Sigurðsson. Practical performance of incremental topological sorting and cycle
detection algorithms. Master’s thesis, Chalmers University of Technology, 2016.

53 Quentin Stiévenart, Jens Nicolay, Wolfgang De Meuter, and Coen De Roover. Building a
modular static analysis framework in Scala (tool paper). In Proceedings of the 7th ACM
SIGPLAN Symposium on Scala, SCALA@SPLASH 2016, Amsterdam, Netherlands, October
30 - November 4, 2016, pages 105–109, 2016. doi:10.1145/2998392.3001579.

54 Quentin Stiévenart, Maarten Vandercammen, Wolfgang De Meuter, and Coen De Roover.
Scala-AM: A Modular Static Analysis Framework. In 16th IEEE International Working
Conference on Source Code Analysis and Manipulation, SCAM 2016, Raleigh, NC, USA,
October 2-3, 2016, pages 85–90, 2016. doi:10.1109/SCAM.2016.14.

55 Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Algebraic
Discrete Methods, 6(2):306–318, 1985.

56 Joseph Weizenbaum. Recovery of reentrant list structures in SLIP. Commun. ACM, 12(7):370–
372, 1969. doi:10.1145/363156.363159.

A Proofs

We detail here the proofs of Theorems 1, 9 and 10, as well as the proofs of Lemmas 5 and 7.

I Theorem 1. If ς0
n−→Γ ς1 and ς0

n−→ ς2, then ς1 = Γ(ς2).

Proof. This follows directly from theorems in [42]: both (→) and (→Γ) = (Γ ◦ (→)) are
subsets of the non-deterministic transition relation (V). Hence, by Theorem 6.10 of [42],
Γ(ς1) = Γ(ς2) and by Lemma 6.8 of [42] and the definition of (→Γ), Γ(ς1) = ς1, so that
ς1 = Γ(ς2). Both proofs of Theorem 6.10 and Lemma 6.8 in [42] are presented for a simple
CPS-language, but can be repeated mutatis mutandis for λANF. J

I Lemma 5. (→̂arc) is sound.

Proof. Assuming ς̂ is sound and ς̂ →̂arc ς̂
′, by inversion we have that ∃ς̂0 so that ς̂ →̂0 ς̂0

and ς̂ ′ = ĉollect(ς̂ , ς̂0). A trivial case analysis of (→̂0) shows that (→̂0), and therefore also ς̂0
are sound. We show that whenever ĉollect adds an address l̂ to Ĝ, we have that l̂ 6∈ R̂(ς̂0),
so that by induction ∀l̂ ∈ Ĝ : l̂ 6∈ R̂(ς̂0). It is clear that whenever we add l̂ to Ĝ, every
l̂′ ∈ φ̂ς̂0(l̂) must have already been deleted from φ̂ς̂0(l̂), which implies that l̂′ ∈ Ĝ. Hence, for
every predecessor l̂′ ∈ φ̂ς̂0(l̂) we have that l̂′ 6∈ R̂(ς̂0), and since l̂ can only deallocated when
l̂ 6∈ T̂Σ̂(ς̂0), it must be that l̂ 6∈ R̂(ς̂0). By the soundness of ς̂0, we have that R̂(ς̂0) ⊆ Ŝ(ς̂0).
Since we have just shown that ĉollect only removes addresses from ς̂0 that are not in R̂(ς̂0),
we get R̂(ς̂0) ⊆ Ŝ(ς̂ ′) and R̂(ς̂ ′) = R̂(ς̂0), so that R̂(ς̂ ′) ⊆ Ŝ(ς̂ ′), hence ς̂ ′ is sound. J

For convenience, we define φ̂∗ς̂ (l̂) = {l̂′ | l̂′
∗
 ̂ς̂ l̂} \ {l̂}, so that φ̂∗ς̂ (l̂) is the set of all

addresses that can directly or indirectly reach l̂ (excluding l̂ itself).

I Lemma 7. In the absence of cycles, (→̂arc) is complete.

http://dx.doi.org/10.1145/2491956.2491979
http://dx.doi.org/10.1145/2258996.2259008
http://dx.doi.org/10.1145/2258996.2259008
http://dx.doi.org/10.1145/53990.54007
http://dx.doi.org/10.1145/2998392.3001579
http://dx.doi.org/10.1109/SCAM.2016.14
http://dx.doi.org/10.1145/363156.363159

N. Van Es, Q. Stiévenart, and C. De Roover 10:31

Proof. Assume that ς̂ →̂arc ς̂
′, where ς̂ →̂0 ς̂0 and ς̂ ′ = ĉollect(ς̂ , ς̂0). We need to prove that

Ŝ(ς̂ ′) ⊆ R̂(ς̂ ′). Let l̂ be an address in Ŝ(ς̂ ′). If l̂ 6∈ Ŝ(ς̂), then l̂ was added to the store or
continuation store by one of the transition rules in (→̂0): it is clear that in any of those cases,
we also have that l̂ ∈ R̂(ς̂ ′). If l̂ ∈ Ŝ(ς̂), then by completeness of ς̂, we have that l̂ ∈ R̂(ς̂).
Proceed by induction on |φ̂∗ς̂′(l̂)|. For the case |φ̂∗ς̂′(l̂)| = 0, by definition of φ̂∗ and φ̂ we also
have that |φ̂ς̂′(l̂)| = 0. If |φ̂ς̂(l̂)| = 0, then l̂ was checked by ĉollect because it must have been
that l̂ ∈ T̂Σ̂(ς̂) (since l̂ ∈ R̂(ς̂)); if |φ̂ς̂(l̂)| > 0, then l̂ was also checked because every address
in φ̂ς̂(l̂) got removed, which caused l̂ to be added to Ĉ. Since in both cases l̂ was not removed
after the check (where φ̂(l̂) = ∅) it must have been that l̂ ∈ T̂Σ̂(ς̂ ′), and hence l̂ ∈ R̂(ς̂ ′). For
the case |φ̂∗ς̂′(l̂)| = k > 0, we have that |φ̂ς̂′(l̂)| > 0. Pick any predecessor l̂′ ∈ φ̂ς̂′(l̂); in the
absence of cycles, a predecessor always has fewer ancestors, i.e. |φ̂∗ς̂′(l̂′)| < k, so that by the
induction hypothesis we get that l̂′ ∈ R̂(ς̂ ′). Since l̂′ ∈ R̂(ς̂ ′) and l̂′ ̂ς̂′ l̂ (by definition of
φ̂ς̂′(l̂)), we have that l̂ ∈ R̂(ς̂ ′). Hence, Ŝ(ς̂ ′) ⊆ R̂(ς̂ ′), i.e. ς̂ ′ is complete. J

I Theorem 9. In the absence of cycles, the transition relation, (→̂arc) is equivalent to (→̂Γ̂)
in the sense that: ∀ς̂ , ς̂ ′ ∈ Σ̂, ς̂ →̂Γ̂ ς̂ ′ ⇐⇒ r̂c(ς̂) →̂arc r̂c(ς̂ ′).

Proof. It is clear that the transition rules of (→̂0) are isomorphic to those of (→̂), and
that equivalence holds between both transition relations in that ∀ς̂ , ς̂0 ∈ Σ̂, ς̂ →̂ ς̂0 ⇐⇒
r̂c(ς̂) →̂0 r̂c(ς̂0). Both (→̂arc) and (→̂Γ̂) then remove addresses from σ̂ and σ̂k, and since both
are garbage-free, they produce the same states (since Ŝ(ς̂) = R̂(ς̂) in both cases). J

Note that we can never have a reference from an address â ∈ Âddr to an address in
âk ∈ K̂Addr; This implies that is ∀âk ∈ K̂Addr, âk ∈ R̂(ς̂) ⇐⇒ âkς̂

∗
 ̂ς̂ âk. Moreover, it

implies that a SCC consists either exclusively of addresses in Âddr or addresses in K̂Addr.
We denote π̂k for the partitioning π̂ limited to K̂Addr, i.e. π̂k = π̂ \ P(Âddr).

I Theorem 10. In a garbage-free abstract interpreter, extending abstract reference counting
with cycle detection for the continuation store only requires amortized O(1) additional
operations per continuation that is added to the continuation store.

Proof. We use the potential method for amortized analysis [55]. Assume a state ς̂ which is
garbage-free, i.e. R̂(ς̂) = Ŝ(ς̂). We define its potential Φ as the amount of references between
SCCs in the continuation store σ̂k (, i.e. Φ(ς̂) =

∑
ŝcck∈π̂kς̂

|φ̂ς̂(ŝcck)|. Cycle detection is
only triggered for the continuation store on a transition ς̂ →̂0++ ς̂ ′ where we insert a new
continuation κ̂ into the continuation store σ̂kς̂ (in the case of λANF, this only happens in
the transition rule E-Let). Since it is clear that Φ(ς̂) ≥ 0, we can formulate the amortized
cost ĉ of such an insertion as c+ (Φ(ς̂ ′)− Φ(ς̂)), where c is the actual cost of the insertion
(including cycle detection, whose cost is proportional to the traversal of the backward search).
If the address âkς̂′ is fresh (i.e. âkς̂′ 6∈ Ŝ(ς̂)), then the cycle detection requires no traversal,
hence ĉ = 1 + (Φ(ς̂ ′)−Φ(ς̂)). We have that Φ(ς̂ ′) = Φ(ς̂) + 1, since the insertion adds âkς̂′ to
the set φ̂(find(π̂, âkς̂)), which results in ĉ = 2. If the address âkς̂′ is reused (i.e. âkς̂′ ∈ Ŝ(ς̂)),
then cycle detection will perform a backward search starting from âkς̂′ . The key insight is
that every address l̂ traversed by search will lead to âkς̂ , hence we are guaranteed to have

a cycle. For every such l̂, we have that l̂
∗
 ̂ς̂ âkς̂′ due to the backward search, and also that

âkς̂
∗
 ̂ς̂ l̂ due to the garbage-free property of ς̂ (since l̂ ∈ Ŝ(ς̂) implies l̂ ∈ R̂(ς̂), hence it

must be that âkς̂
∗
 ̂ς̂ l̂). As a result, all references that are traversed will become part of the

same SCC, and therefore be removed from φ̂. Hence, if cycle detection traverses k references,

ECOOP 2019

10:32 Garbage-Free Abstract Interpretation Through Abstract Reference Counting

we have that c = k + 1 (due to the traversal of k references) and Φ(ς̂ ′) = Φ(ς̂)− k (due to
the removal of k references), which results in ĉ = c+ (Φ(ς̂ ′)− Φ(ς̂)) = 1. In both cases, the
insertion only requires amortized O(1) operations. J

B Supplementary Definitions for (→̂arc++)

Figure 12 shows the updated auxiliary transition relation (→̂0++).

â = âlloc(x, ς̂) â′k = âllock(e1, ς̂) ρ̂′ = ρ̂[x 7→ â]
κ̂ = 〈â, e2, ρ̂

′, âk〉 〈φ̂′, π̂′〉 = extend(â′k, T̂K̂ont(κ̂), φ̂, π̂)

〈letx= e1 in e2, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉︸ ︷︷ ︸
ς̂

→̂0++ 〈e1, ρ̂, σ̂, σ̂k t [â′k 7→ κ̂], â′k, φ̂′, π̂′〉
(E-Let)

â = âlloc(x, ς̂) Â(f, ρ̂, σ̂) 3 〈λx.e′, ρ̂′〉
Â(ae, ρ̂, σ̂) = v̂ 〈φ̂′, π̂′〉 = extend(â, T̂P(Ĉlo)(v̂), φ̂, π̂)

〈f ae, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉︸ ︷︷ ︸
ς̂

→̂0++ 〈e′, ρ̂′[x 7→ â], σ̂ t [â 7→ v̂], σ̂k, âk, φ̂′, π̂′〉
(E-Call)

Â(ae, ρ̂, σ̂) = v̂ σ̂k(âk) 3 〈â, e′, ρ̂′, â′k〉
〈φ̂′, π̂′〉 = extend(â, T̂P(Ĉlo)(v̂), φ̂, π̂)

〈ae, ρ̂, σ̂, σ̂k, âk, φ̂, π̂〉 →̂0++ 〈e′, ρ̂′, σ̂ t [â 7→ v̂], σ̂k, â′k, φ̂′, π̂′〉
(E-Return)

Figure 12 Auxiliary transition relation using abstract reference counting with cycle detection.

The updated definition for ĉollect is given below. We slightly abuse notation for set
removal here: for a partitioning π̂, π̂ \ S really means (π̂ \ S) ∪

⋃
s∈S

⋃
e∈s{{e}}, while for a

store σ̂, σ̂ \ S means σ̂ \
⋃
s∈S s (and analogous for σ̂k).

ĉollect(ς̂ , ς̂ ′) = 〈eς̂′ , ρ̂ς̂′ , σ̂ς̂′ \ Ĝ, σ̂kς̂′ \ Ĝ, âkς̂′ , φ̂′, π̂ς̂′ \ Ĝ〉

where 〈φ̂′, Ĝ〉 = ĉheck*(Ĉ0 , ∅, φ̂ς̂′) Ĉ0 = {find(π̂ς̂′ , l̂) | l̂ ∈ T̂Σ̂(ς̂)}

ĉheck*(Ĉ, Ĝ, φ̂) =
{
〈φ̂, Ĝ〉 if Ĉ = ∅
ĉheck(ŝcc, Ĉ \ {ŝcc}, Ĝ, φ̂) otherwise, where ŝcc ∈ Ĉ

ĉheck(ŝcc, Ĉ, Ĝ, φ̂) =

d̂ealloc(ŝcc, Ĉ, Ĝ, φ̂) if |φ̂(ŝcc)| = 0 ∧ ŝcc 6∈ R̂

ĉheck*(Ĉ, Ĝ, φ̂) otherwise

where R̂ = {find(π̂ς̂′ , l̂) | l̂ ∈ T̂Σ̂(ς̂ ′)}

d̂ealloc(ŝcc, Ĉ, Ĝ, φ̂) = ĉheck*(Ĉ ∪ Ŝ, Ĝ ∪ {ŝcc}, φ̂	
⊔

ŝcc
′
∈Ŝ

[ŝcc′ 7→ ŝcc])

where Ŝ = {find(π̂ς̂′ , l̂′) | ∃l̂ ∈ ŝcc ∧ l̂ ̂ς̂′ l̂′ ∧ l̂′ /∈ ŝcc}

N. Van Es, Q. Stiévenart, and C. De Roover 10:33

C Supplementary Code Listings

The following code is used to generate Figure 1, and is taken from [1]. It is also used for the
collatz benchmark in Section 5.

1(define (div2* n s)
2(if (= (* 2 n) s)
3n
4(if (= (+ (* 2 n) 1) s)
5n
6(div2* (- n 1) s))))
7(define (div2 n)
8(div2* n n))
9(define (hailstone * n count)
10(if (= n 1)
11count
12(if (even? n)
13(hailstone * (div2 n) (+ count 1))
14(hailstone * (+ (* 3 n) 1) (+ count 1)))))
15(define (hailstone n)
16(hailstone * n 0))
17(hailstone 5)

ECOOP 2019

Eventually Sound Points-To Analysis with
Specifications
Osbert Bastani
University of Pennsylvania, Philadelphia, USA
obastani@seas.upenn.edu

Rahul Sharma
Microsoft Research, Bangalore, India
rahsha@microsoft.com

Lazaro Clapp
Stanford University, USA
lazaro@stanford.edu

Saswat Anand
Stanford University, USA
saswat@cs.stanford.edu

Alex Aiken
Stanford University, USA
aiken@cs.stanford.edu

Abstract
Static analyses make the increasingly tenuous assumption that all source code is available for analysis;
for example, large libraries often call into native code that cannot be analyzed. We propose a
points-to analysis that initially makes optimistic assumptions about missing code, and then inserts
runtime checks that report counterexamples to these assumptions that occur during execution. Our
approach guarantees eventual soundness, which combines two guarantees: (i) the runtime checks
are guaranteed to catch the first counterexample that occurs during any execution, in which case
execution can be terminated to prevent harm, and (ii) only finitely many counterexamples ever
occur, implying that the static analysis eventually becomes statically sound with respect to all
remaining executions. We implement Optix, an eventually sound points-to analysis for Android
apps, where the Android framework is missing. We show that the runtime checks added by Optix
incur low overhead on real programs, and demonstrate how Optix improves a client information
flow analysis for detecting Android malware.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases specification inference, static points-to analysis, runtime monitoring

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.11

Acknowledgements This work was supported by NSF grant CCF-1160904, and is also based on
research sponsored by the Air Force Research Laboratory, under agreement number FA8750-12-2-
0020. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.

1 Introduction

To guarantee soundness, static analyses often assume that all program source code can be
analyzed. This assumption has become tenuous as programs increasingly depend on large
libraries and frameworks that are prohibitively difficult to analyze [34]. For example, mobile
app stores can use static analysis to improve the quality of published apps by searching
for malicious behaviors [23, 21, 5, 25] or security vulnerabilities [20, 39, 17]. However,
Android apps depend extensively on the Android framework, which makes frequent use of

© Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 11; pp. 11:1–11:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:obastani@seas.upenn.edu
mailto:rahsha@microsoft.com
mailto:lazaro@stanford.edu
mailto:saswat@cs.stanford.edu
mailto:aiken@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Eventually Sound Points-To Analysis with Specifications

native code and reflection, both of which are practical barriers to static analysis and are
often ignored by the analysis [5, 21, 25]. Furthermore, the Android framework contains
deep call hierarchies, which can pose problems since static points-to analyses typically have
limited context sensitivity [9]. Thus, the Android framework is often omitted from the static
analysis [52, 8, 12]. We refer to such omitted code as missing. In any large software system,
there are inevitably parts that are missing and cannot be handled soundly [34].

Two possible approaches are to sacrifice either soundness (by making optimistic assump-
tions about missing code) or precision (by making pessimistic assumptions about missing
code). For many applications, pessimistic assumptions are so imprecise that they make the
static analysis results unusable; therefore, soundness is often sacrificed instead, but doing
so is a significant compromise [34]. For example, consider malware detection – a security
analyst must examine every app that is potentially malicious, making false positives costly,
yet unsoundness can be exploited by a knowledgeable attacker to avoid detection.

Broadly speaking, two alternative strategies have been proposed to handle missing code: (i)
using runtime instrumentation, and (ii) using handwritten specifications. The first approach
uses runtime instrumentation to enforce soundness – e.g., dynamic information flow control
can be used to prevent information leaks [6, 14, 18]. More recent systems have focused on
using dynamic analysis to fill gaps in a static analysis. These systems first statically analyze
the program, keeping track of any unsound assumptions made by the static analysis, and
then instrument the program to check if these assumptions are violated during runtime; if so,
then execution can be terminated or continued in a safe environment such as a sandbox. This
approach has been applied to type checking [22], reflective call targets [10], and determining
reachable code [7]; more general systems have also been proposed [11, 15]. However, the
runtime instrumentation used by these systems is typically limited – e.g., they check either
lightweight type-based properties, or program invariants that can be checked locally.

In the second approach, the human user writes specifications (also known as models,
annotations, or stubs) that summarize missing code [52, 8]. This approach is very flexible,
since specifications can be used to model arbitrary missing code – e.g., systems have
used specifications to model part [5, 25] or all [21] of the Android framework, including
production systems [19]. However, specifications are costly to write, since many thousands
of specifications may be needed [8]. In addition, handwritten specifications can be error
prone [28], and must be updated whenever the missing code changes. Approaches have been
proposed for inferring specifications [52, 8, 12, 28, 9], but the user must manually check each
inferred specification, including ones that turn out to be wrong or irrelevant.

In this paper, we study the problem of handling unsoundness in a static points-to analysis
for Android apps, where part or all of the Android framework is omitted from the analysis.
We focus on points-to analysis since it lies at the core of many static analyses, and we believe
that clients (e.g., static information flow analysis) can be designed around our analysis.

We propose a system that handles missing code by combining runtime monitoring and
specifications. Given a program (e.g., an Android app), our system first runs the static
points-to analysis that optimistically assumes missing code is empty. If no errors are found,
then our system instruments the program to detect counterexamples to the optimistic
assumptions – i.e., missing points-to edges that occur during an execution but are missing
from the (optimistic) static analysis. Points-to edges are a whole-program property, so
instrumenting programs to detect missing points-to edges is challenging. In particular:

Naïvely using a dynamic points-to analysis to detecting counterexamples can incur huge
overhead – e.g., as much as 20× [12] or even two orders of magnitude [38].
It is often impossible to insert runtime checks into missing code (e.g., native code). Thus,
we restrict our analysis to instrument only available code (in our case, the app code).

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:3

We describe how we address these challenges in more detail below. Next, the instrumented
program is published (e.g., on Google Play). If our instrumentation ever detects a coun-
terexample, then it is reported back to the publisher (e.g., Google), who can update their
specifications and re-run the static analysis. Finally, we show how detected counterexamples
can be used to infer specifications that summarize missing code – intuitively, these specifica-
tions transfer the knowledge gained from the counterexample to benefit the analysis of future
programs. While inferred specifications need to be validated by a human, our approach
focuses specification inference on addressing gaps in the static analysis that occur in actual
program executions. Importantly, adding new specifications (either handwritten or inferred)
can help reduce instrumentation overhead.

With an appropriate instrumentation scheme, our system satisfies two key properties:
Eventual soundness: As soon as a counterexample occurs during execution, it is
detected by the program instrumentation and reported to the static analysis. Furthermore,
only finitely many counterexamples are ever reported.
Precision: The analysis is at least as precise as having all specifications available.

The key property of interest is eventual soundness, which combines two guarantees. The first
guarantee is a dynamic soundness guarantee analogous to that provided by dynamic type
checking: at the cost of some runtime overhead, we guarantee that unsoundness is detected
at the point when it occurs, which allows us to prevent damage (e.g., leaking of sensitive
information) from occuring.

The second guarantee is that with every reported counterexample, the specifications
become progressively more complete – in particular, the specifications guarantee that the
static analysis is sound with respect to all executions observed so far. More precisely, suppose
that a counterexample is reported for an execution e. Based on this information, the static
analysis either discovers a bug (e.g., an information leak), in which case the program is repaired
or removed, or concludes that the program is safe even with the updated specifications.
In the latter case, for any subsequent execution identical to e, no counterexamples will be
reported since the static analysis is now sound with respect to all behaviors exhibited in e
and has concluded that all of these behaviors are safe.

Furthermore, note that we guarantee that only finitely many counterexamples are ever
reported (this observation is a simple consequence of the fact that even in the worst case,
there are only a finite number of potential counterexamples). Thus, the static analysis
eventually becomes statically sound with respect to all subsequent executions. Even though
we cannot detect when convergence is reached, it suggests that in practice, fewer and fewer
counterexamples are reported over time. Indeed, we empirically observe this trend in our
evaluation. Even if the static analysis itself never fully converges, the dynamic soundness
guarantee ensures that the overall system is sound.

As described above, our key contribution is an instrumentation scheme for detecting
counterexamples that ensures eventual soundness. To address the challenge of high runtime
overhead, we leverage the fact that to be eventually sound, we do not need the program
instrumentation to report every counterexample that occurs during an execution. Instead,
it is sufficient that for any execution, the instrumentation detects the first counterexample
to occur. For example, let x ↪→ o and y ↪→ o be two potentially missing points-to edges; if
we can guarantee that for any execution, x ↪→ o can only occur after y ↪→ o has already
occured (and we are furthermore guaranteed to detect that y ↪→ o has occured before
x ↪→ o can occur), then we only need to monitor whether y ↪→ o occurs. By leveraging this
property, we substantially reduce the amount of required instrumentation. For programs
where instrumentation in performance-critical parts is required, the overhead can be further
reduced by manually adding specifications summarizing the relevant missing code.

ECOOP 2019

11:4 Eventually Sound Points-To Analysis with Specifications

For the challenge of being unable to instrument missing code, note that because we use
specifications, we are already unable to discover relationships about the missing code. Indeed,
for many clients, only relationships between variables in the available code are of interest –
e.g., Android malware can be characterized by relationships between variables in the app
code alone [21]. However, these relationships typically depend on relationships between
variables in the missing code. For points-to analysis, we cannot observe when variables in
the app might be aliased because they both point to the same object allocated in missing
code. To address this issue, our analysis introduces proxy objects that correspond to concrete
objects allocated in missing code,1 which enable us to soundly and precisely compute client
relations that refer only to available code (e.g., aliasing and concrete types).

We implement our eventually sound points-to analysis in a tool called Optix2, which
analyzes Android apps treating the entire Android framework as missing. We show that our
instrumentation typically incurs low overhead – the median overhead is 4.6%, the overhead
is less than 20% for more than 90% of apps in our benchmark, and the highest is about
50%. The overhead of the outliers can be reduced as described above; in particular, only
a few manually provided specifications are needed to reduce the overhead of the outliers
to reasonable levels (see Section 8.1). Also, we show that the instrumentation can be used
to detect missing points-to specifications in the information flow client from [21], which
computes explicit information flows [42]. This tool uses specifications to model missing code
(i.e., the Android framework). We empirically show that we can detect missing specifications
that are relevant to the information flow client. In summary, our contributions are:

We propose an eventually sound points-to analysis for programs with calls to missing code
that is also precise and automatic (Section 3). In particular, our analysis adds runtime
instrumentation in the available code that detects and reports counterexamples, and can
guarantee that soundness is never compromised (i.e., malicious functionality never gets
executed) by terminating execution as soon as a counterexample is detected.
We minimize instrumentation to reduce runtime overhead (Section 3) and introduce proxy
objects to handle allocations in missing code (Section 4).
We implement Optix, a points-to analysis for Android apps that treats the entire Android
framework as missing.
We show that the instrumentation overhead is manageable (Section 8), and that Optix
can detect missing specifications relevant to the explicit information flow client from [21].
The largest app in our benchmark has over 300K lines of Jimple code.

2 Overview

Consider the program in Figure 1. Suppose that a security analyst asks whether the program
leaks the return value of mkStr to the Internet via a call to sendHttp, which requires knowing
that str and dataCopy may be aliased. We use points-to analysis to determine which variables
may be aliased. In particular, a points-to analysis computes points-to edge x ↪→ o if variable
x may point to a concrete object ō allocated at allocation statement o ∈ O (called an abstract
object) during execution. Two variables may be aliased if they may point to the same abstract
object. Our example program exhibits points-to edges such as list ↪→ olist, str ↪→ ostr, and
dataCopy ↪→ ostr, so the points-to analysis concludes that str and dataCopy may be aliased.

1 The term proxy object is ours, but the concept has occurred in prior work [8].
2 Optix stands for Optimistic Points-To Information from eXecutions.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:5

void main() { // program
String str = mkStr();
List list = new List(); // o_list
list.add(str);
Object data = list.get(0);
if(randBool()) {

Object dataCopy = data;
sendHttp(dataCopy); }}

String mkStr() { // library
String libStr = new String(); // o_str
return libStr; }

void sendHttp(String str) { ... } // library
class List { // library

Object f;
void add(Object ob) { f = ob; }
Object get(int i) { return f; } }

Figure 1 Program main (left) calls various library functions, for which the analyst provides
specifications (right). Abstract objects olist and ostr are labeled in comments.

Suppose that the library code is missing. For example, static analyses for Android apps
often have difficulty analyzing Android framework code. In particular, the framework code
makes substantial use of native code and reflection, which are too difficult to analyze, and
are thus unsoundly ignored by most state-of-the-art static analyses [52, 5, 8], and because
it uses deep call hierarchies, which can cause significant imprecision, since static points-to
analyses often have limited context sensitivity [9]. Thus, the Android framework is missing
from the perspective of the static analyses.

For many clients (including static information flow analysis), it suffices to compute
edges for visible variables x ∈ VP in the available code; however, these edges often depend
on relationships in the missing code. Pessimistically assuming that missing code can be
arbitrary is very imprecise, e.g., we may have data ↪→ olist in case the implementation of get
is return this. Alternatively, optimistically assuming that missing code is empty can be
unsound, for example, failing to compute data ↪→ ostr and dataCopy ↪→ ostr. Such dynamic
points-to edges that are not computed statically are missing.

A typical approach in practice is to provide specifications, which are code fragments that
overapproximate the points-to behaviors of library functions; see Figure 1 for examples. For
instance, because our static points-to analysis collapses arrays into a single field, we can
overapproximate the array of elements stored by the List class as a single field f.

Suppose that the analyst has provided specifications for frequently used library functions
such as mkStr and sendHttp, but a long tail of specifications remain missing, including those
for add and get. Therefore, the (optimistic) static information flow analysis incorrectly
concludes that dataCopy cannot point to str, and that mkStr therefore does not leak to the
Internet. Furthermore, dynamic information flow control cannot be applied since the missing
code cannot be instrumented without modifying every end user’s Android installation.

Our analysis instruments the Android app to detect whether counterexamples to the
optimistic assumption that every missing specification is empty; this instrumentation only
inserts runtime checks in the available code. The instrumented app is published on Google
Play. If the instrumentation observes that a counterexample occurs during an execution, then
the counterexample is reported back to Google Play, which recomputes the static analysis to
account for this new information. Our example program main is instrumented to record the
concrete objects pointed to by libStr and data. When the program is run: (i) libStr points
to concrete object ōstr, so our analysis concludes that ōstr is allocated at ostr, and (ii) data
points to ōstr, so our analysis concludes that data ↪→ ostr and reports this counterexample.
Upon receiving this report, we add data ↪→ ostr to the known counterexamples.

Given a new counterexample x ↪→ o, the static analysis at the very least learns that
x ↪→ o is a points-to edge that may occur. There are two ways in which the static analysis
can generalize from this fact. First, it can compute additional missing points-to edges that

ECOOP 2019

11:6 Eventually Sound Points-To Analysis with Specifications

are consequences of this fact according to the rules of the static analysis. For example, given
the counterexample data ↪→ ostr, our static analysis additionally computes its consequence
dataCopy ↪→ ostr, and determines that str and dataCopy may be aliased. Thus, the security
analyst learns that the return value of mkStr may leak to the Internet, and can report any
newly discovered bugs to the developer. In this case, the leak is discovered even if randBool
returns false and the data is not leaked in that specific execution.

Second, the static analysis can use specification inference to try to identify which missing
specification may have been the “cause” of the missing points-to edge. By doing so, the static
analysis generalizes the counterexample to eliminate unsoundness when analyzing future
apps. In Section 5, we show how our tool leverages specification inference to automatically
infer candidate specifications that “explain” the counterexample. For example, given coun-
terexample data ↪→ ostr, the specification inference algorithm would infer the specifications
for add and get shown in Figure 1. One caveat is that the inferred specifications must be
validated by a human, since it is impossible to guarantee that they are correct. We show
that in practice, the inference algorithm has high accuracy.

Next, we describe how our analysis instruments apps to detect missing points-to edges.
Naïvely, we could use a dynamic points-to analysis, which instruments every allocation,
assignment, load, and store operation in the program to determine all of the dynamic
points-to edges that occur during an execution. However, this approach requires far more
instrumentation than necessary. In particular, suppose that multiple counterexamples occur
during an execution; to be eventually sound, the instrumentation only has to detect the
first one that occurs during execution. Leveraging this property enables us to substantially
reduce the required instrumentation. For example, note that the missing points-to edge
dataCopy ↪→ ostr can only occur during execution where the missing points-to edge data ↪→ ostr
has already occured. Furthermore, once data ↪→ ostr has occured, it is added to the static
analysis, which computes dataCopy ↪→ ostr as a consequence. Therefore, we never need to
detect or report dataCopy ↪→ ostr.

Another challenge with the instrumentation is how to handle allocations in missing
code. For example, if the specification for mkStr were also missing, then our analysis cannot
instrument libStr to determine that ōstr was allocated at ostr. Nevertheless, we can reason
about such missing abstract objects based on observations in available code. In particular,
suppose we instrument str and list. During execution, this instrumentation detects that
str points to a concrete object ōstr. Since ōstr was not allocated at olist, it must have been
allocated in mkStr. We represent this fact by introducing a proxy object pmkStr pointed to by
the return value rmkStr of mkStr. We discuss proxy objects in Section 4.

Finally, we propose an eventually sound points-to analysis. Future work is needed to
design an eventually sound information flow analysis; we describe a candidate in Section 9,
but implementing and evaluating this analysis is beyond the scope of our work.

3 Eventually Sound Points-To Analysis

We describe our eventually sound points-to analysis, summarized in Figure 3.

3.1 Background and Assumptions
Consider a program P (whose code is available) containing calls to functions in a library
L (whose code is missing). There are five kinds of statements: allocations (x ← X(),
where X ∈ C is a class), assignments (x ← y, where x, y ∈ VP are program variables),
loads (x ← y.f , where f ∈ F is a field), stores (x.f ← y), and calls to library functions

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:7

1. (allocation)
x← X(), o = (x← X())

x ↪→ o ∈ Π

2. (assignment) x← y, y ↪→ o ∈ Π
x ↪→ o ∈ Π

3. store x.f ← y, x ↪→ o′ ∈ Π, y ↪→ o ∈ Π
o′.f ↪→ o ∈ ΠO

4. load x← y.f, y ↪→ o′ ∈ Π, o′.f ↪→ o ∈ ΠO

x ↪→ o ∈ Π

5. (missing) x ↪→ o ∈ Πmiss

x ↪→ o ∈ Π

Figure 2 Rules to compute sound points-to sets. Rules 1-4 are standard. Rule 5 adds reported
counterexamples to the analysis.

m ∈ M library (x ← m(y)). We omit control flow statements since our static analysis is
flow-insensitive. We let pm (resp., rm) denote the parameter (resp., return value) of library
function m. For convenience, we assume that each library function has exactly one argument,
and that there are no functions in P .

Our static may points-to analysis, shown in Figure 2, is a standard flow- and context-
insensitive analysis for computing points-to edges Π ⊆ VP ×O [3, 46, 8]; we describe how our
results can be extended to context- and object-sensitive analyses with on-the-fly callgraph
construction in Section 6.4. Rule 1 handles object allocations x← X(). In particular, recall
that an abstract object is an allocation statement o = (x← X()), representing all concrete
objects allocated at that statement. Then, the rule says that x may point to o. Rule 2
handles assignments x← y – i.e., if y may point to o, then x may point to o as well. Rules
3-4 handle program loads and stores. They introduce a new relationship ΠO ⊆ O ×F ×O,
which denotes points-to relationships between abstract objects. Intuitively, the relationship
o′.f ↪→ o ∈ ΠO (written o′.f may point to o) means that a field f of abstract object o′ may
reference an abstract object o. Rule 3 handles stores – given a statement x.f ← y, it says
that if y may point to o and x may point to o′, then o′.f may point to o. Rule 4 handles
loads – given a statement x← y.f , it says that if y may point to o′ and o′.f may point to o,
then x may point to o. Together, rules 3 and 4 are equivalent to the single rule

x← y.f, z.f ← w, y ↪→ o′ ∈ Π, z ↪→ o′ ∈ Π, w ↪→ o ∈ Π
x ↪→ o ∈ Π .

Rule 5 handles known counterexamples Πmiss ⊆ VP ×O. A function call x← m(y) is treated
as an assignment of y to the parameter pm and an assignment of the return value rm to x.

We initially make three simplifying assumptions. First, we assume library functions
do not contain allocations; we remove this assumption in Section 4. Second, we make the
disjoint fields assumption, which says that FL ∩ FP = ∅, where FL (resp., FP) are fields
accessed by load and store statements in the library (resp., program), i.e., there are no shared
fields f ∈ FL ∩ FP . 3 We discuss how to weaken this assumption in Section 6.1. Third, the
programs we consider do not have callbacks; we discuss how to handle callbacks in Section 6.2.
Finally, Optix assumes that library functions do not access global variables; we describe
how we could remove this assumption in Section 9.

3 In practice, a shared field is typically a public field in the library code that is accessed by the program.

ECOOP 2019

11:8 Eventually Sound Points-To Analysis with Specifications

3.2 Eventual Soundness
We first define soundness relative to an execution:

I Definition 1. Let Π be a points-to set. We say an execution e exhibits a counterexample
with respect to Π if during the execution, there is a dynamic points-to edge x ↪→ o 6∈ Π. We
say Π is sound with respect to e if e does not exhibit any counterexamples.

Consider a points-to analysis that for a sequence of instrumented executions e1, e2, . . .

computes a sequence of points-to sets Π1,Π2, . . ., both indexed by the natural numbers i ∈ N.
Here, Πi is computed as a function of the previous points-to set Πi−1 and the counterexamples
from ei (if any). Note that the instrumentation for ei+1 can be chosen adaptively based on
Πi and that Πi ⊆ Πj if i ≤ j.

I Definition 2. The points-to analysis is eventually sound if for any sequence e1, e2, . . .

of executions, (i) for any execution ei, the instrumentation detects and reports the first
counterexample (if any) that occurs during the execution, and (ii) there are only finitely
many i ∈ N such that the execution ei exhibits a counterexample with respect to the previous
points-to set Πi−1.

Intuitively, the first property says that counterexamples are detected as soon as they occur
(which ensures that any bugs or malicious behaviors are detected as soon as they occur).
The second property implies that the points-to sets eventually become sound with respect to
all subsequent executions – more precisely, there exists n ∈ N such that the points-to set Πn

is sound with respect to all executions ei such that n ≤ i <∞.4
We remark that we do not require that the different executions use the same inputs,

random seeds, or have the same execution time. We can also handle programs that run
continuously – we simply split the execution into intervals (e.g., 1st hour, 2nd hour, ...) and
treat each interval as a different execution. However, one of our optimizations may need to
be disabled, since it requires that the instrumentation be modified over time, which may not
be possible for a continuously running program.

I Definition 3. The points-to analysis is precise if for every i ∈ N, the points-to set Πi is a
subset of the points-to set computed by analyzing the implementation of the missing code.

Note that while progress towards static soundness is guaranteed, it is not possible to
report how many sources of static unsoundness remain at any point in time. Even if all
program paths are executed, there may be missing points-to edges – e.g., in the following,
suppose that foo is missing; then, if randInt never evaluates to 0, y ↪→ o remains missing:

void main() { // program
Object x = new Object(); // o
Object y = foo(x); }

Object foo(Object ob) { // library
Object[] arr = new Object[2];
arr[0] = ob;
return arr[randInt()]; }

Despite the inability to quantify progress, the property of eventual soundness is useful,
since (in addition to guaranteeing dynamic soundness) it guarantees that only a finite number
of counterexamples can possibly occur. In particular, this property implies that the number
of counterexamples reported must decrease over time (eventually to zero). For example,
suppose we try to construct an eventually sound interval analysis for a program x ← m()

4 Note the upper bound i <∞; this property only holds for executions indexed by the natural numbers N.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:9

with an integral variable x by abstracting a set of counterexamples with the smallest interval
that contains all the counterexamples. Such an analysis is not eventually sound. On the
other hand, an analysis that abstracts counterexamples with (−∞,∞) is sound and therefore
(vacuously) eventually sound. Finally, the former analysis is eventually sound (but not
precise) if after n counterexamples, the analysis outputs (−∞,∞).

Also, it is permissible for a counterexample to simply never occur in any execution – e.g.,
in the above code, if the call to randInt in foo always returns 1, then the counterexample
y ↪→ o does not occur in any execution. Eventual soundness is still satisfied, since it is defined
relative to the sequence of observed executions – if a counterexample exists but is never
observed, then the analysis is still statically sound for all observed executions.

3.3 Naïve Algorithm
We first describe a naïve eventually sound points-to analysis.

Optimistic analysis. We use the static analysis in Figure 2 to compute static points-to
edges Π, assuming that calls to library functions are no-ops – in particular, the set of
counterexamples is initially empty, i.e., Πmiss ← ∅.

Runtime checks. A monitor is instrumentation added to a statement x ← ∗ (where ∗
stands for any valid subexpression). After executing this statement, the monitor issues a
report (x ← ∗, ō) – i.e., it records the value of the concrete object ō pointed to by x after
executing x← ∗. Note that upon executing, a monitor only records a single integer – i.e., the
memory address pointed to by x; it does not traverse the heap more deeply. Thus, a monitor
is very lightweight instrumentation. A monitoring scheme M is a set of program statements
to be monitored. Our goal is to design monitoring schemes that satisfy the following:

I Definition 4. We say a monitoring scheme M is sound if for any execution, M reports
the first counterexamples that occurs (if any), and we say M is precise if it only reports
counterexamples, i.e., it does not report false positives.

Naïvely, it is sound and precise to monitor every variable x ∈ VP . Then, we can map
each concrete object ō to its allocation:

I Definition 5. An abstract object mapping for an execution is a mapping ō o, where ō is
a concrete object allocated at abstract object o.

For every report (x ← X(), ō), we add ō o to the abstract object mapping, where
o = (x ← X()). Then, for every report (x ← ∗, ō) and ō o, we conclude that x ↪→ o

occurred dynamically; if missing, we report it as a counterexample. In our example, we
monitor libStr, detect that ōstr ostr, and report counterexample data ↪→ ōstr.

Updating the static analysis. We add every reported counterexample to Πmiss. Our static
analysis in Figure 2 adds Πmiss to Π and computes the consequences of these added edges.
Continuing our example, our static analysis adds data ↪→ ostr to Π (rule 5), and computes
its consequence dataCopy ↪→ ostr (rule 2).

Guarantees. Let Π∗ be the points-to edges computed in the case that Πmiss = Π∗miss holds,
where Π∗miss is the set of all missing points-to edges. Then, our analysis is:

ECOOP 2019

11:10 Eventually Sound Points-To Analysis with Specifications

Data Structure Rules for Construction

monitors (allocation) Malloc = OP (function call) x← m(y)
(x← m(y)) ∈Mcall

↓

reports (allocation) x← X(), x ↪→ ō

(x← X(), ō) ∈ Ralloc
(function call) x← m(y), x ↪→ ō

(x← m(y), ō) ∈ Rcall

↓

abstract object
mapping

(program abstract objects) (x← X(), ō) ∈ Ralloc

ō o = (x← X())

(proxy objects) (∗, ō) 6∈ Ralloc, ∀i ∈ {1, ..., k} (xi ← mi(yi), ō) ∈ Rcall

ō p = {m1, ..., mk}

↓
missing

points-to edges
(x← m(y), ō) ∈ Rcall, ō o, x ↪→ o 6∈ Π

x ↪→ o ∈ Πmiss

↓
optimistic static
points-to edges Π = (apply Figure 2 with the constructed Πmiss)

Figure 3 Given a program P , Optix adds monitors to P . It uses reports issued by these monitors
during executions to compute the counterexamples Πmiss, which the static analysis in Figure 2 uses
to compute optimistic points-to edges Π ⊆ VP × (OP ∪ P).

Eventually sound: Since we monitor every variable and abstract object, we are guar-
anteed to detect any counterexample, including the first to occur during execution.
Furthermore, since Π∗miss is finite, only finitely many counterexamples are ever reported.
Thus, there exists some execution i0 ∈ N of the program during which the last counterex-
ample is reported. Then, the points-to set Πi computed by our algorithm after the ith
execution is sound for all executions i ≥ i0.
Precise: Any sound set of points-to edges Π′ must contain the missing points-to edges
Π∗miss. Therefore, Πmiss ⊆ Π∗miss ⊆ Π′. Since computing a transitive closure is monotone,
it follows that Π ⊆ Π∗ ⊆ Π′.
Automatic: Our static analysis requires no human input.

In our example, the static points-to set Π is sound after the counterexample data ↪→ ostr
is reported, since the static analysis then computes the remaining missing points-to edge
dataCopy ↪→ ostr.

3.4 Optimized Monitoring
We now describe how to reduce monitoring.

Restricting to function calls. Recall that monitoring dataCopy is unnecessary – the missing
edge dataCopy ↪→ ostr is computed by the static analysis once data ↪→ ostr is reported, so it
suffices to monitor data. In general, it suffices to monitor function calls and allocations:

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:11

I Proposition 6. The monitoring scheme Mmin = Malloc ∪Mcall is sound and precise, where
Malloc = O and Mcall = {x← m(y) | m ∈M}.

We give a proof in Appendix A.1. Figure 3 shows our algorithm using Mmin.

Restricting to leaked abstract objects. We can further reduce the size of Malloc – library
functions can only access abstract objects reachable from the parameter y of a call x← m(y),
which implies that the return value rm can only point to such an abstract object o, so it
suffices to restrict Malloc to include abstract objects that may leak into missing code. It is
even sound to use the monitoring scheme M̃alloc, which monitors allocations o such that o
may be explicitly passed to the library via a function call x← m(y), where y ↪→ o:

M̃alloc = {o ∈ O | y ↪→ o ∈ Π where x← m(y)}.

This monitoring scheme is subtler than the schemes described previously, since the monitors
M̃alloc depend on the current points-to edges Π. Therefore, the instrumentation may need to
be updated when counterexamples are reported and Π is updated. In particular, if y ↪→ o is
newly added to Π, where x← m(y), then o is added to M̃alloc so the instrumentation must
be updated. We can soundly use M̃min = M̃alloc ∪Mcall:

I Proposition 7. The monitoring scheme M̃min constructed using the current points-to
edges Π is sound and precise.

We give a proof in Appendix A.2. Since the number of possible counterexamples is still finite,
at some point no further counterexamples are reported. By Proposition 7, no counterexamples
occur in any subsequent executions, i.e., Π is sound for all subsequent executions.

Minimality. Our monitoring scheme is minimal in the following sense:

I Proposition 8. Assume that the rules used to compute M̃alloc do not generate any false
positives, i.e., for every allocation o ∈ M̃alloc, there exists an execution during which a
concrete object allocated at o is passed as an argument to a library function. Then, for any
strict subset M (M̃min, there exist implementations of the library and program executions
such that M fails to report a counterexample, i.e., using M is not eventually sound.

In other words, our monitoring scheme is minimal except for potential imprecision when
computing M̃alloc. We give a proof in Appendix A.3.

4 Abstract Objects in the Library

We now remove the assumption that no allocations occur inside missing code.

4.1 Proxy Objects
Suppose that allocations can occur inside library code. Let O = OP ∪ OL, where abstract
objects in OP are in available code and abstract objects in OL are in missing code. Then,
our analysis cannot compute points-to edges x ↪→ o, where o ∈ OL. As described previously,
we assume that the static analysis only needs to compute relations involving program values.
However, points-to edges x ↪→ o ∈ VP ×OL (i.e., x is in the program but o is not) are often
needed to compute relations between program variables, e.g., aliasing and concrete types.

ECOOP 2019

11:12 Eventually Sound Points-To Analysis with Specifications

For example, in Figure 1, if mkStr is missing, then ostr is missing, so our static analysis
cannot compute str ↪→ ostr (among others). Furthermore, we do not assume the ability to
instrument missing code, so we cannot dynamically detect these points-to edges. However,
this points-to edge is needed to determine that str may have type String, and that str and
data may be aliased.

We handle allocations in library code by constructing the following:

I Definition 9. A proxy object mapping φ maps ō p, where ō is a concrete object allocated
in missing code, and p = φ(ō) ∈ P is a fresh abstract object called a proxy object; here, P is
the set of all proxy objects.

In other words, φ is the abstract object mapping for concrete objects allocated in missing
code. We describe how to construct φ and P below.

Given φ, our analysis proceeds as before. It makes optimistic assumptions, initializes
Πmiss ← ∅, and instruments the program using the monitoring scheme M̃min defined in
Proposition 6. For any report (x ← ∗, ō), if ō is not allocated at a visible allocation, our
analysis concludes that ō must have been allocated in missing code, so it adds ō p = φ(ō)
to the abstract object mapping. Now, if a detected dynamic points-to edge x ↪→ p is missing,
it is reported as a counterexample and added to Πmiss ⊆ VP × (OP ∪P), and Π is recomputed
using the static analysis in Figure 2. As long as P is finite, then this approach is eventually
sound, since there can only be a finite number of counterexamples x ↪→ p.

In our example, str is monitored since mkStr is missing. Upon execution, our instru-
mentation detects str ↪→ ōstr, and determines that ōstr (allocated at ostr) is allocated in
missing code. Supposing that pstr = φ(ōstr) ∈ P , our analysis adds ōstr pstr to the abstract
object mapping. Thus, our instrumentation reports the counterexample str ↪→ pstr. Assum-
ing execution continues, then our instrumentation additionally reports the counterexample
data ↪→ pstr. Both counterexamples are added to Πmiss, from which our static analysis
computes dataCopy ↪→ pstr ∈ Π.

We now discuss how to construct φ and P. The relevant information characterizing a
concrete object is the following:

I Definition 10. The dynamic footprint of a concrete object ō is the set of all visible variables
that ever point to ō during an execution.

The concrete type of ō may also be available to the static analysis, which we discuss in
Section 6.3. Aside from concrete types, the dynamic footprint contains all information about
ō available to the static analysis, namely, the visible variables that point to ō.

Then, the proxy object mapping φ should map each concrete object ō to a proxy object p
so that the corresponding static footprint {x ∈ VP | x ↪→ p ∈ Π∗} soundly overapproximates
the dynamic footprint of ō as precisely as possible. This way, clients of the points-to analysis
can be eventually soundly and precisely computed (as long as they only depend on available
information), e.g., it ensures that aliasing for program variables is eventually soundly and
precisely computed (concrete types are eventually soundly and precisely computed using a
simple extension; see Section 6.3).

On the other hand, φ should also avoid introducing unnecessary proxy objects, or else
more executions may be required for the analysis to become sound. Two extremes highlight
these opposing desirable properties:

Unbounded P: Map each concrete object to a fresh proxy object φ(ō) = pō.
Singleton P: Map each concrete object to a single proxy object φ(ō) = p.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:13

On the one hand, if we use a fresh proxy object for every concrete object, then there would
be an unbounded number of proxy objects, which would mean our algorithm is no longer
eventually sound (since there may be an unbounded number of missing points-to edges).
Alternatively, using a single proxy object can be very imprecise; for example, for any pair of
calls x← m(y) and x′ ← m′(y′), our analysis concludes that x and x′ may be aliased.

We first describe an ideal proxy object mapping, which constructs P as the set of possible
dynamic footprints, and constructs φ to map ō to its dynamic footprint. Points-to sets
computed using any static analysis together with the ideal proxy object mapping satisfy
the above property, i.e., that the static footprints soundly overapproximate the dynamic
footprints as precisely as possible.

Because the static analysis is flow-insensitive, the ideal proxy mapping is actually more
precise than necessary. Therefore, our analysis uses a coarser proxy object mapping computed
by our analysis, which essentially restricts the dynamic footprint to function return values.
Finally, we show that this coarser proxy object mapping is as precise as the ideal proxy
object mapping for our points-to analysis described in Figure 2.

4.2 Ideal Proxy Object Mapping
Our “ideal” construction of proxy objects exactly captures dynamic footprints:

I Definition 11. An ideal proxy object p̃ ∈ P̃ = 2VP is a set of visible variables. The ideal
proxy object mapping φ̃(ō) ∈ P̃ is the dynamic footprint of ō.

For a concrete object ō allocated in missing code, we can compute φ̃(ō) by monitoring all
visible variables and identifying all visible variables that ever point to ō. In our example,
suppose that we continue executing main even if a counterexample is detected and reported.
Furthermore, suppose that the concrete object ōstr is allocated at missing abstract object
ostr in an execution where randBool returns false. Then, φ̃ maps ōstr to ideal proxy object
p̃str = {str, data}. The reported counterexamples

Π̃miss = {str ↪→ p̃str, data ↪→ p̃str}

are added to our static analysis, which additionally computes dataCopy ↪→ p̃str.
Let Π̃∗miss ⊆ VP × (OP ∪P̃) be the missing points to edges when using ideal proxy objects,

and let Π̃∗ ⊆ VP × (OP ∪ P̃) be the points-to edges computed using Πmiss = Π̃∗miss. Then:

I Proposition 12. If x ↪→ ō occurs during execution and ō is allocated at abstract object o,
then x ↪→ o ∈ Π̃∗ (if o ∈ OP) or x ↪→ p̃ ∈ Π̃∗ (where p̃ = φ̃(ō)).

In other words, clients of the points-to analysis that only refer to program variables are
eventually sound. For example, if two program variables x and y may be aliased, then there
must be some execution in which they both point to a concrete object ō. Then, our analysis
finds points-to edges x ↪→ p̃ and y ↪→ p̃, where p̃ = φ̃(ō), so the alias analysis determines that
x and y may be aliased. Also:

I Proposition 13. Let Π ⊆ VP × (OP ∪ OL) be the points-to set computed using the static
analysis in Figure 2 with all code available (and Πmiss = ∅). For o ∈ OP , if x ↪→ o ∈ Π̃∗, then
x ↪→ o ∈ Π. For p̃ = φ̃(ō) ∈ P̃, if x ↪→ õ ∈ Π∗, then x ↪→ o ∈ Π, where o is the statement
where ō was allocated.

In other words, Π̃∗ is at least as precise as the points-to edges Π computed with all code
available. We prove these two propositions in Appendix B.1 & B.2. In our example, with all
code available, we compute str ↪→ ostr, data ↪→ ostr, and dataCopy ↪→ ostr, which is equivalent
to Π̃∗ (replacing p̃str with ostr).

ECOOP 2019

11:14 Eventually Sound Points-To Analysis with Specifications

4.3 Proxy Object Mapping
The ideal proxy object mapping is more precise than necessary. Continuing our exam-
ple (where we assume execution continues even after counterexamples are detected and
reported), consider a second execution where randBool returns true. Then, the concrete
object ō′str allocated at missing abstract object ostr is mapped to the ideal proxy object
p̃′str = {str, data, dataCopy}. However, the static footprint of p̃′ equals that of p̃ (from the
first execution, where randBool returns false), even though p̃ 6= p̃′ – i.e., ōstr and ō′str map to
different ideal proxy objects, but their relevant points-to behaviors appear identical to the
(flow-insensitive) static analysis. In fact, all information about a concrete object available to
the static analysis can be summarized by the following:

I Definition 14. The dynamic function footprint of a concrete object ō is the set of library
functions m ∈M such that rm ↪→ ō during execution.

Now, we use the following proxy object mapping:

I Definition 15. A proxy object p ∈ P = 2M is a set of library functions. The proxy object
mapping φ(ō) ∈ P is the dynamic function footprint of ō.

To compute φ, it suffices to monitor calls x ← m(y) to missing functions. Continuing
our example, φ maps the concrete object ōstr allocated at missing abstract object ostr to
pstr = {mkStr, get} regardless of the return value of randBool. If randBool returns true, then
the reported counterexamples are

Πmiss = {str ↪→ pstr, data ↪→ pstr, data ↪→ pstr},

in which case our static points-to analysis does not compute any additional edges. If randBool
returns false, then the reported counterexamples are

Πmiss = {str ↪→ pstr, data ↪→ pstr},

from which our static analysis also computes dataCopy ↪→ pstr. The static footprint of pstr is
the same either way, and also equals those of p̃str and p̃′str.

Let Π∗miss ⊆ VP × (OP ∪ P) be the set of all missing points-to edges using proxy objects,
and let Π∗ ⊆ VP × (OP ∪ P) be the points-to edges computed using Πmiss = Π∗miss. Then:

I Proposition 16. For any abstract object o ∈ OP , x ↪→ o ∈ Π̃∗ ⇔ x ↪→ o ∈ Π∗. Further-
more, for any concrete object ō allocated in missing code, letting p̃ = φ̃(ō) and p = φ(ō), we
have x ↪→ p̃ ∈ Π̃∗ ⇔ x ↪→ p ∈ Π∗.

In other words, the points-to edges computed using our proxy object mapping is as sound
and precise as using the ideal proxy object mapping. Therefore, using proxy objects is also
sound and precise in the sense of Propositions 12 and 13. We prove this proposition in
Appendix B.3. Finally, the following result says that the monitoring scheme described in
Section 3.4 is still sound (it follows since we can compute φ using only Mcall):

I Proposition 17. The monitoring scheme M̃min is sound and precise.

5 Specification Inference

Rather than simply adding reported missing points-to edges to Πmiss, we can use them to
infer specifications summarizing missing code, which transfers information learned from
the counterexample to other calls to the same library function. We use the specification
inference algorithm in [8]. Given a reported missing points-to edge x ↪→ o, this algorithm
infers specifications in two steps:

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:15

Object m_gen(Object ob) {
while(true) {

ob = new Object();
ob.f = ob;
ob = ob.f; }

return ob; }

Object m_res(Object ob) {
Object r;
this.f = ob;
r = ob;
r = this;
r = this.f;
return r; }

Figure 4 Pessimistic functions used for specification inference; mgen (left) is fully general (assuming
functions do not access global state), whereas mres (right) is restricted in various ways. For simplicity,
we omit the receiver in mgen.

Pessimistic assumptions: Take m̂ = mpess for every missing function m ∈ M, for
some function mpess (see below), and run the static analysis using m̂ in place of m.
Minimal statements: Compute a minimal subset of pessimistic statements (i.e., state-
ments in the functions mpess) that are needed to compute x ↪→ o statically; these
statements are the inferred specifications.

The second step involves computing the static analysis using a shortest-path style algorithm,
where pessimistic statements are assigned weight 1 and all other statements are assigned
weight 0. When computing the transitive closure according to the rules in Figure 2, a priority
queue is used in place of a worklist, where the priority of each points-to edge in the queue
is the number of pessimistic statements needed to derive it. In particular, the priority of
the derived points-to edge is the sum of the weights of the statements in the premise as well
as the priorities of points-to edges in the premise. Thus, if a computed points-to edge has
positive weight, we know that it can only be derived using a statement in mpess.

Pessimistic function. A key design choice is the pessimistic function mpess to use. The
choice in [8], which we term the general function mgen, is shown in Figure 4 (left). The
code shown in this figure is compilable Java code, except we have added a new field f to the
Object class. In particular, this code can be analyzed by our static analysis. As described
above, during specification inference, we run our static analysis using either mgen or mres in
place of m for every missing function m ∈M.

Using mgen is sound, assuming library functions do not access global fields; see [8] for
a formal proof. Intuitively, the argument ob of mgen can be assigned to its return value
rmgen ; furthermore, the while loop ensures that arbitrary fields in the argument ob can be
stored into fields in the return value rmgen or into other fields of ob. In principle, we could
even modify mgen to handle library functions that access global fields by adding statements
x = X.g and X.g = x, for every global field X.g. However, none of the specifications we
have written so far access global fields, so this restriction improves running time without
unsoundness in practice.

Unfortunately, even with this restriction, using mgen results in a huge search space of
candidate specifications. As a consequence, when using mgen, the specification inference
algorithm infers many incorrect specifications – in particular, there may be many specifications
that yield a missing points-to edge, so the algorithm may infer the wrong ones.

Instead, we use pessimistic assumptions that restrict the search space to only consider
candidate specifications that are common in practice, thus reducing the possibility of inferring
an incorrect specification (at the cost of being unable to infer more complex specifications).
In particular, we only consider candidate specifications that (i) do not accesses deep field
paths, (ii) only access receiver fields, and (iii) does not allocate objects. These constraints
lead to the restricted function mres shown in Figure 4 (right).

ECOOP 2019

11:16 Eventually Sound Points-To Analysis with Specifications

Proxy object specifications. One of the restrictions on mres is to assume that the candidate
specifications do not allocate objects. To alleviate the consequences of this restriction, we
separately infer specifications that allocate objects. In particular, we infer proxy object
specifications of the form (X, {m}), where X ∈ C and m ∈ M is a library function. This
specification says that a new object of type X is allocated onto the return value of a function.
We infer a proxy object specification for any proxy object p ∈ P we observe dynamically
such that the function footprint of p consists of a single function m.

6 Extensions

6.1 Shared Fields
In Section 3.1, we made the assumption that no shared fields f ∈ FP ∩FL exist. Our analysis
handles a shared field f by converting stores x.f ← y and loads x← y.f in the program into
calls to setter and getter functions, respectively. To do so, we have to know which fields may
be accessed by the library. We make the weaker assumption that the library does not access
fields defined in the program – then, our analysis performs this conversion for every field f
defined in the library that is accessed by the program.

6.2 Callbacks
Android apps can register callbacks to be invoked by Android when certain events occur, e.g.,
the program can implement the callback onLocationChanged, which is invoked when the user
location changes. If callbacks are not specified, then the static analysis may unsoundly mark
them as unreachable. We use the approach in [7] to eventually soundly compute reachable
program functions. In particular, a potential callback, is a program function that overrides
a framework function. Intuitively, potential callbacks are the functions “known” to the
framework. For each potential callbackm that is marked as unreachable by the static analysis,
we instrument m to record whether m is ever reached. This algorithm is eventually sound
since there are only finitely many potential callbacks. Also, the instrumentation eventually
incurs no overhead – once no more counterexamples are reported, the instrumentation is
never triggered.

In addition, some callbacks are passed parameters from the Android framework. For
example, consider the code on the left:

void onLocationChanged(Location loc) {
Location copy = loc; }

void onLocationChanged() {
Location loc = Location.getLocation();
Location copy = loc; }

Here, loc points to an abstract object oloc. In this case, oloc is allocated in the framework,
but it may also be allocated in program code. We must specify the abstract objects that
loc may point to, or else our points-to analysis is unsound. The code on the right replaces
the parameter with a call that retrieves loc from the framework, which is semantically
equivalent to the code on the left. Thus, we can think of loc as a “return value” passed to
onLocationChanged; by Proposition 6, it suffices to monitor all callback parameters.

6.3 Concrete Types
Some client analyses additionally need the concrete type X ∈ C of abstract objects o = (x←
X()), for example, virtual call resolution. To compute concrete types for proxy objects, each
monitor x← ∗ additionally records the concrete type of the concrete object pointed to by x

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:17

after executing the statement. Then, the proxy objects are extended to P = C × 2M, and
the proxy object mapping φ maps ō p = (X,F), where F ⊆ 2M is the dynamic function
footprint of ō, and X ∈ C is the recorded concrete type of ō.

6.4 Context- and Object-Sensitivity
Our analysis extends to k-context-sensitive points-to analyses with two changes. First, the
abstract objects considered are typically pairs o = (c, h), where c is a calling context and h
is an allocation statement, so monitors on allocation statements x← X() also record the top
k elements of the current callstack. Second, the points-to edge typically keeps track of the
calling context d in which a variable v may point to abstract object o. Therefore, monitors on
calls to missing functions x← m(y) also record the top k elements of the current callstack.

In particular, our analysis may (i) detect that (d, v) ↪→ ō (i.e., d is the callstack when v
pointed to ō), and (ii) ō (c, h) (i.e., ō was allocated at statement h, and c is the callstack
when ō was allocated). Then, our analysis reports missing points-to edge (d, v) ↪→ (c, h). We
use a 1-CFA points-to analysis in our evaluation; in this case, the calling context is simply
the function in which the allocation or call to a missing function occurs. Our approach can
be extended to handle object-sensitive analyses, by including instrumentation that records
the calling context (which now includes the value of the receiver).

Finally, we can also handle on-the-fly callgraph construction – if a missing points-to
edge x ↪→ o is reported, and there is a virtual function call x.m() in the program, then
the possible targets of x.m() are updated to take into account the concrete type of o. The
instrumentation may need to be updated based on this new information. Assuming the
number of possible call targets is finite, this approach is eventually sound and precise.

7 Implementation

We have implemented our eventually sound points-to analysis, including all extensions
described in Section 6 (using a 1-CFA points-to analysis), for Android apps in a tool
called Optix. The missing code consists of Android framework methods, which we assume
cannot be statically analyzed (since the Android framework heavily uses native code and
reflection) or instrumented (which requires a custom Android installation). The static
analysis framework we use predates Optix, and uses hand-written specifications to model
missing code. Specifications have only been written for methods deemed relevant to a static
information flow client – of the more than 4,000 Android framework classes, only 175 classes
have specifications. Framework methods without specifications appear as missing code to
our static analysis.

Optix instruments Android apps using our optimized monitoring scheme M̃min. It
computes eventually sound points-to sets and infers specifications based on reported missing
points-to edges. We instrument apps using the Smali assembler and disassembler [26].
To monitor a statement x=..., we record (i) the value System.identityHashCode(x), which
identifies the concrete object pointed to by x, (ii) the concrete type x.getClass() of x, and (iii)
the method containing the statement and the offset of that statement in the method. 5 This
data is uploaded to a server in batches (by default, once every 500ms), which post-processes

5 Even though System.identityHashCode is not guaranteed to return a unique hash, it is a sound
overapproximation.

ECOOP 2019

11:18 Eventually Sound Points-To Analysis with Specifications

0

50000

100000

150000

200000

250000

300000

Ji
m

pl
e

LO
C

Figure 5 Sizes of the 73 apps in our benchmark in terms of Jimple list of code (LOC).

it to compute missing points-to edges and infer specifications. To obtain traces, we execute
apps in the Android emulator and use Monkey [24] to inject touch events. We measure
overhead using the Android profiler.

We have implemented the points-to analysis, the monitoring optimization, and the
specification inference algorithm in a version of the Chord program analysis framework [40]
modified to use Soot as a front end [48]. The specification inference algorithm is based on
shortest-path context-free reachability, described in [8]. We use a 1-CFA points-to analysis.
As we discuss Section 6.4, using our more precise points-to analysis is eventually sound.

We use the information flow client from [21], which uses specifications to model missing
code. It performs a static explicit information flow analysis [42] based on a static points-to
analysis. The information flow analysis is standard – it looks for paths from annotated
sources (e.g., location, contacts, etc.) to annotated sinks (e.g., SMS messages, Internet, etc.)
in the Android framework [23, 5]. All analyses are computed using BDDBDDB [49].

8 Evaluation

We evaluate Optix on a benchmark of 73 Android apps, including battery monitors, games,
wallpaper apps, and contact managers. The benchmarks are from two sources: the majority
(40) are provided by a major security corporation (the “industry benchmark”), and the
remaining (33) are provided as part of the DARPA APAC project on Android malware
(the “DARPA benchmark”). The industry benchmark includes apps collected from the
Google Play Store; the apps are primarily malware that leak sensitive information such as
location, contacts, SMS messages, etc. The DARPA apps were challenging malware instances
developed by a third party contractor as part of the program. Examples of apps from the
industry benchmark include an app for monitoring your battery consumption, side scrolling
action game, an implementation of the game of Mahjong, a maze game, and apps that let
you set animated wallpapers. Examples of apps from the DARPA benchmark include a note
taking app, an app that lets you use SMS messages to command your phone to perform
various tasks, an app that keeps track of your jogging routes, a news collator, an app for
organizing your podcasts, and an app for sharing your location. We provide the industry
benchmark; 6 we cannot release the DARPA benchmark, but provide brief descriptions of

6 https://drive.google.com/open?id=1LzRhwtPisWWwKTd7lnHy7CE5Gf9iRkH4

https://drive.google.com/open?id=1LzRhwtPisWWwKTd7lnHy7CE5Gf9iRkH4

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:19

Rank Recording Overhead (%) Data (MB/hr)
initial updated # specs worst initial worst

1 52.0 (0.38) 31.0 15 90.8 (0.02) 0.80 (0.59) 1.59 (0.16)
2 50.0 (0.02) 17.6 10 77.6 (0.01) 0.39 (0.01) 0.57 (0.39)
3 38.7 (0.10) 6.7 5 72.4 (0.04) 0.29 (0.38) 0.46 (0.30)
4 33.5 (0.65) 6.9 1 70.6 (0.15) 0.24 (0.15) 0.33 (0.78)
5 31.7 (0.10) 19.7 5 61.6 (0.23) 0.24 (0.55) 0.33 (0.64)
6 26.7 (0.25) – – 52.5 (0.03) 0.23 (0.80) 0.25 (0.04)

median 4.6 (0.10) – – 8.3 (0.10) 0.01 (0.35) 0.02 (0.30)

Figure 6 The runtime overhead from recording data and the (compressed) size of the data
generated in one hour. Each is divided into initial and worst-case. The “updated” overhead is
obtained by adding specifications to reduce monitoring, and “# specs” is the number of specifications
added to do so. For each column, the table shows the largest six values and the median value across
our benchmark. The coefficient of variation (across three runs) is shown in parentheses.

the apps in this benchmark in Appendix C. Finally, in Figure 5, we show a plot of the sizes
of the apps in Jimple lines of code (LOC). We omit 11 apps that fail to run on the standard
Android emulator, leaving 62 apps. First, we use Optix to instrument each Android app
and study the instrumentation overhead. Second, we show how Optix computes points-to
edges over time, and show that the number of computed edges does not explode. Third, we
show how our analysis can be used to improve an information flow client.

8.1 Instrumentation Overhead
We evaluate the runtime overhead of our monitoring scheme M̃min described in Section 3.4.
Recall from Section 3.4 that our optimized instrumentation scheme may add instrumentation
over time. We consider two settings:

Initial: This configuration represents the instrumentation overhead for a new app using
the current program analysis. In particular, we use the initial instrumentation scheme
where M̃alloc is constructed with no known counterexamples (i.e., Πmiss = ∅). Also, we
use all existing handwritten points-to specifications, representing the realistic scenario
where some manually provided information is used in addition to automatic inference.
Worst: This configuration represents the absolute upper bound on the overhead. In
particular, we monitor apps using the worst-case instrumentation scheme where M̃alloc
contains all abstract objects that may leak into missing code. Furthermore, we remove
all handwritten points-to specifications.

We executed instrumented apps in a standard emulator using Monkey for one hour, and
measure instrumentation overhead in each setting, on a 3.30GHz Intel Xeon E5-2667 CPU
with 256 GB of memory. The server for collecting and analyzing reports was run concurrently
on a different CPU core of the same machine. Our results are averaged over three runs.

Results. We show the highest runtime overheads in Figure 6, including the runtime overhead
from recording data and the amount of data generated in an hour, for both the initial setting
and the worst-case setting.7 Columns “updated” and “# specs” are discussed below. We
plot the runtime overhead of our recording instrumentation in Figure 7 (a), where the apps
along the x-axis are sorted according to the overhead in the worst-case setting.

7 We ran a small subset of apps on a real device and consistently measured smaller overhead; the emulator
gives a coarser measure of execution time that we round up.

ECOOP 2019

11:20 Eventually Sound Points-To Analysis with Specifications

Discussion. The overhead incurred by recording data is less than 5% for more than half
of the apps, showing that in most cases the automatically instrumented programs have
acceptable performance. Even in the worst case, more than half the apps have less than
10% overhead. Still, there are outliers, with 5 apps incurring more than 20% overhead with
initial instrumentation, and in the worst-case, 9 apps incurred more than 20% overhead.
Unsurprisingly, the high-overhead outliers have instrumentation in inner loops of the app; in
such cases the overhead can be reduced (see below). Finally, the amount of data generated
is very small. Even in the worst case, for all but one of the apps, less than 1.0 MB of
(compressed) data was generated in one hour. The median amount of data generated is
about 2.0 KB, which is negligible. Data can therefore be stored and transmitted when the
app is idle, so the overhead due to uploading data does not affect the user experience.

Reducing runtime overhead. Any program where instrumentation is required in a tight
inner loop is particularly challenging for dynamic analysis. Standard sampling techniques
can be used to reduce overhead in these cases [33], though eventual soundness may no longer
hold. Alternatively, both M̃alloc and Mcall decrease in size as specifications are added and
reach zero when there are no missing specifications. For a given program, we can test the
program to determine which monitors are frequently triggered, and compute which missing
functions require specifications for these monitors to be removed. Providing or inferring
specifications for these functions would allow us to remove the expensive monitors. We do so
for the five apps with initial overhead greater than 20%. In Figure 6 (left), we show both
the number of specifications we added for that app (“# spec”) and the resulting overhead
(“updated”). For all but the top app, we were able to reduce the overhead below 20% by
adding specifications for at most 10 Android framework methods; again, the overhead can be
reduced to any desired level by adding more specifications.

8.2 Reported Counterexamples
Next, we evaluate how the computed points-to edges vary over time. We use our algorithm
to compute points-to sets based on the reported counterexamples from Section 8.1. We show
that the number of reported counterexamples does not explode over time – otherwise, the
number of counterexamples discovered in production may be unacceptably high. Furthermore,
we show that a tail of reported counterexamples continues to occur for some apps, which
shows that running instrumented apps in production is necessary.

This experiment uses the worst-case setting where all handwritten specifications have
been removed. Note that the worst-case instrumentation detects all counterexamples since it
never needs to be updated, so this approach is sound. It may actually overapproximate the
number of counterexamples – e.g., if a points-to edge x ↪→ o can be computed from another
counterexample y ↪→ o that was already detected, our worst-case instrumentation reports
x ↪→ o even though it is no longer a counterexample.

Counterexamples over time. Figure 7 (b) shows the cumulative number of reported missing
points-to edges as execution progresses. More precisely, for each point in the execution trace
(x-axis), it shows what fraction of reported missing points-to edges were discovered before
that point. The values are averaged over all apps. By definition, at the end of the trace
(x = 1.0), the fraction of reported missing points-to edges also goes to y = 1.0.

As can be seen, a large fraction of reports are made early on, with about 65% of reports
made within 20% of the execution trace. We expect the number of reported counterexamples
to continue to converge over time, and should not grow substantially larger. However, the

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:21

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
in

st
ru

m
en

ta
tio

n o
ve

rh
ea

d

programs

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

fra
ct

io
n

of
 re

po
rte

d
co

un
te

r-e
xa

m
pl

es

fraction of execution trace

(a) (b)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n o

f a
pp

s

fraction of execution trace

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8 9 >10

pr
ox

y
ob

je
ct

s
proxy object size

(c) (d)

Figure 7 (a) Runtime overhead of our recording instrumentation in the worst-case setting (black)
and the initial setting (red). The overheads are sorted by the overhead for the worst-case setting.
(b) The x-axis is a fraction of the execution trace, and the curve shows the fraction of discovered
missing points-to edges that discovered up to that point in the execution trace (averaged over all
apps). (c) The x-axis is again a fraction of the execution trace, and the curve shows the number
of apps for which no further missing points-to edges are reported after that point in the execution
trace. (c) The distribution of the sizes of the proxy objects (i.e., the size of its dynamic function
footprint), omitting footprints of size one.

curve is not yet flat at the end of the execution trace, which indicates that more missing
points-to edges are still being reported. Therefore, it is important to continue monitoring
these apps in production to detect additional counterexamples.8

Last discovered counterexample. Figure 7 (c) shows the point in the execution during
which the final reported missing points-to edge occurs. More precisely, for each point in
the execution trace (x-axis), it shows the fraction of the apps for which the final reported
missing points-to edge was reported before that point. This curve goes to y = 1.0 at x = 1.0,
but we cut off apps that have reported missing points-to edges in the last 1% of execution.

A large fraction of apps (about 45%) report no counterexamples. About 10% of apps
report no further counterexamples after the first 5% of the trace. At the opposite end of the
trace, about 20% of apps have the final reported counterexample in the last 1% to 10% of
the trace, and 20% have the final reported counterexample in the final 1% of the trace, so
more counterexamples likely remain. Again, this shows that we must continue to monitor
apps in production.

8 Since this curve is an overapproximation of the number of counterexamples, the true curve may actually
be decreasing faster than this one. Nevertheless, we believe these results emphasize the importance of
continued monitoring, since there are inevitably previously untested code paths that may contain bugs.

ECOOP 2019

11:22 Eventually Sound Points-To Analysis with Specifications

Existing Inferred Correct Accuracy
mres 299 58 49 0.84
mgen 299 159 33 0.22

proxy object 330 422 383 0.91

Figure 8 The number of specifications inferred using each mres and mgen, and the number of
proxy object specifications inferred.

App Jimple LOC Time (min.)
0C2B78 322K 3.38
b9ac05 268K 1.06
highrail 247K 1.49
game 174K 0.08

androng 170K 0.48
median 19K 0.08

Figure 9 Statistics for the five largest apps used in our evaluation, including the number of
Jimple lines of code (i.e., the intermediate representation used by Soot), and the running time of the
specification inference algorithm.

Proxy object sizes. Since there are an exponential number of possible proxy objects (in the
number of missing functions), we could hypothetically continue to discover many new proxy
objects over time. In Figure 7 (d), we show the sizes of the dynamic function footprints of
the reported proxy objects. More precisely, we show the number of reported proxy objects
(y-axis) for different dynamic function footprint sizes. As can be seen, the vast majority (85%)
of reported proxy objects have four or fewer functions in their dynamic function footprint.
While there is a long tail of proxy objects with large function footprint sizes, there is no
exponential blowup in the number of proxy objects discovered, ensuring that the analysis
does not diverge due to proxy objects.

8.3 Specification Inference and a Static Information Flow Client

Finally, we evaluate whether Optix benefits an information flow client. We first infer
specifications using the algorithm in Section 5, and then run the information flow client on
various sets of specifications. The information flow analysis is standard – we look for paths
from a set of annotated sources (e.g., location) to a set of annotated sinks (e.g., Internet) in
the Android framework [23, 5, 21, 8]. We demonstrate that the inferred specifications enable
clients to discover more information flows. However, many of the information flows remain
undiscovered because the dynamic analysis is an underapproximation, which again motivates
the need to run instrumented apps in production.

Specification inference. We remove all points-to specifications from Optix, and then infer
specifications from reported counterexamples. Figure 8 summarizes the inferred specifications
– a specification is correct if it exactly equals the existing specification (or the one we would
have written). Using mres is substantially more accurate than using mgen, which does not
infer a single additional specification. Compared to existing specifications, we inferred 174
new points-to specifications, of which 160 were proxy object specifications.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:23

Empty Inf. Base Base ∪ Inf. Ex. \ Inf. Ex. Ex. ∪ Inf.
specs. 0 432 189 621 371 629 803
flows 0 4 3 39 34 125 125

malware 0 2 3 22 12 49 49

Figure 10 Comparison of different sets of specifications: “Base” includes the most frequently
used specifications, “Inf.” includes the inferred specifications, and “Ex.” includes all handwritten
specifications. For each set of specifications, we show the number of specifications in that set
(“specs.”), the number of information flows computed using those specifications (“flows”), and the
number of malicious apps identified, i.e., some malicious information flow was discovered (“malware”).

In Figure 9, we show statistics for the five largest apps in our benchmark along with the
running time of the inference algorithm (the information flow analysis runs much faster than
the inference algorithm). As can be seen, inference scales even to very large apps.

Static information flow client. In Figure 10, we report the number of information flows
and the number of malicious apps detected with varying sets of specifications (one malicious
app can exhibit multiple flows). If we assume that all points-to specifications are missing
(“Empty”), then the information flow client does not identify any information flows, whereas
using inferred specifications (“Inf.”) computes a small number of flows.

A more representative use case is where the analysis has an incomplete baseline consisting
of the most commonly used specifications (“Base”). Our baseline contains specifications
for the essential Android framework classes Bundle and Intent, for the commonly used data
serialization classes JSONArray, JSONObject, and BasicNameValuePair, and for a few methods
in java.util. As can be seen from Figure 10, when using the baseline in conjunction with
the inferred specifications, the analysis computes a considerable number of additional flows
compared to using the baseline alone (39 vs. 3). The reason the inferred specifications
are more beneficial in this setting is that an information flow usually depends on multiple
specifications – if a single one of these specifications is missing, then the flow is missing.

Compared to the existing, handwritten specifications (“Ex.”), using inferred specifications
(together with the baseline specifications) identifies almost a third of the information flows.
However, random testing cannot reveal all malicious behavior, since malware developers often
try to hide malicious behaviors by triggering them only in response to very specific events,
for example, at a certain time [37]. Therefore, our instrumentation is necessary to ensure
that we identify additional malicious behaviors as soon as or before they occur, thereby
limiting potential damage. Note that we do not recover any new flows when combining
inferred specifications with existing specifications – prior to our evaluation, we have already
identified all specifications needed to recover flows in these apps.

Finally, as an alternative way to evaluate the value of the inferred specifications, we
consider omitting the inferred specifications from the set of inferred specifications. Doing
so limits the information flow client to identify only 34 flows, which demonstrates that the
inferred specifications are crucial for finding many of the information flows in these apps.

9 Discussion

Global variables. We have assumed that library code does not access global variables; so
far, none of the specifications we have written so far access global variables. We can extend
our framework to handle global variables by instrumenting every load and store to global
variables in the library, at the cost of additional runtime overhead. With this modification,

ECOOP 2019

11:24 Eventually Sound Points-To Analysis with Specifications

our theoretical results continue to hold using the same proofs – in particular, we can think
of loads and stores to global variables in the library as calls to setter and getter functions in
the library that load and store data from those variables.

Dynamically loaded code. Our approach can be used for dynamically loaded code – the
dynamically loaded code is taken to be the missing code, and the code that loads the
dynamically loaded code is the available code. We guarantee eventual soundness for points-to
edges in the available code. If points-to edges for dynamically loaded code must be computed,
then the loaded code can be reported to the static analysis, but the analysis is no longer
eventually sound – infinitely many reports may be issued since infinitely many different code
fragments may be loaded.

Eventual soundness for clients. Our approach is automatically eventually sound for client
analyses that depend only on aliasing information and concrete types for visible program
variables (e.g., callgraph resolution). In general, missing code can introduce unsoundness into
the static information flow analysis beyond missing points-to edges. For example, consider

void main() { // program
int val = source();
int valDup = add(val, 1);
sink(valDup); }

int add(int x, int y) { // library
return x+y; }

which calls the missing function add. Even with a sound points-to analysis, the static analysis
would not recover the taint flow from source to sink. Sources and sinks in missing code must
be specified, since there is no way to detect whether calling missing code leaks information
out of the system or introduces sensitive information into the system.

In general, we can perform eventually sound analysis for clients that are abstract interpre-
tations with finite abstract domain (at least, satisfying the ascending chain condition) [13],
if the abstraction function α can be computed for values in the available code based on
observations in the available code alone. In particular, for a call y ← m(x), the concrete
values of x and y are recorded. Then, we can construct a transfer function fm to be analyzed
in place of m. Initially, ⊥ = fm(α(x)) for all x; whenever a previously unobserved relation
α(y) = fm(α(x)) is detected during execution, a report is issued and fm updated. Since the
abstract domain is finite, only finitely many reports can be issued. Thus, the analysis is
eventually sound. Finally, we use our points-to analysis to handle aliasing.

The challenge with information flow is that the abstraction function cannot be computed
from observations in the available code alone, since information flow is a property of the
computation, not just the input-output values. It may be possible to use techniques such as
multi-execution [16], which keep a pair of values 〈xprivate, xpublic〉 for each (visible) program
variable x, where xprivate may depend on sensitive data whereas xpublic does not. For example,
the value for program variable val may be 〈14, 0〉, where 14 is a sensitive value and 0 is a
public value. Then, we can execute add using both x = 14 and x = 0, and obtain return value
radd = 〈15, 1〉. Since these two values differ, we conclude that radd depends on the sensitive
input 14, and report that add transfers information from its argument x to its return value
radd. Essentially, this approach transforms the program so the abstraction function becomes
computable. Alternatively, existing techniques for specification inference such as [8] may be
used to infer specifications describing how information flows through missing code.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:25

10 Related Work

Program monitoring. There has been work using runtime checks to complement static
analysis. For instance, [10] proposes to use dynamic information to resolve reflective call
targets, and then instruments the program to report additional counterexamples. Similarly, [7]
proposes to compute reachable code by inserting runtime checks to report counterexamples
to optimistic assumptions, and [22] uses a combination of static type checking and runtime
checks to enforce type safety. General systems using dynamic analysis to detect gaps in the
static analysis, typically local invariants assumed true by the static analysis, have also been
proposed [11, 15]. Our setting is far more challenging, because (i) naïve dynamic points-to
analyses incur unreasonable overhead [38, 12], and (ii) we cannot instrument missing code.

Additionally, [29] uses dynamic information to complement static points-to analysis.
However, their analysis is unreasonably imprecise for programs that make substantial use of
native code, since they pessimistically assume returns from native code can point to arbitrary
abstract objects. For demanding, whole-program clients such as static taint analysis, such
imprecision generates a huge number of false positives, since every abstract object that leaks
into missing code becomes aliased with every return value from missing code. Even with such
coarse assumptions, their runtime overhead can be higher than 300%, which is not suitable
for use in production code. In contrast, our analysis is both completely precise and incurs
reasonable overhead.

There has also been work identifying bugs [30, 31, 33] and information leaks [6, 16, 18] by
monitoring production executions. Our work similarly monitors production code to identify
unsoundness that can be used to find bugs, information flows, and so forth, but our approach
differs in that we aim to use the reported counterexamples to compute static points-to sets
that are eventually sound; these points-to sets can be used with any client. Finally, there has
been work on sound gradual typing [44, 41], which uses runtime monitoring to enforce given
type specifications. The key difference between our approach and sound gradual typing is
that the results of our static analysis improve as more counterexamples are detected.

Specification inference. There has been work on inferring specifications, e.g., purely static
approaches that interact with a human analyst [52, 8, 1], and ones that rely on dynamic
traces [12, 28, 4, 9]. Purely static approaches can give certain soundness guarantees, but
suffer from imprecision and rely heavily on interaction. In contrast, dynamic approaches are
fully automatic, but necessarily incomplete since dynamic analysis is an underapproximation.
Our goal is to develop a fully automatic approach where runtime checks are used to detect
when specifications are missing. Furthermore, [2] enables sound callgraph analysis using only
information available in the library interface by using the separate compilation assumption,
which says that the library can be compiled separately from the program. This assumption
is similar to our disjoint fields assumption (with extensions to shared fields and callbacks) –
we assume that the only information about the program “known” to the library are fields
and methods that appear in the library interface. While the callgraph can be computed with
reasonable precision using pessimistic assumptions, the same is not true of points-to edges.

Program synthesis has been used to infer specifications from dynamic traces [28]. This ap-
proach requires fine-grained instrumentation (specifically, leveraging features of the Javascript
language to obtain alias traces), but they recover all method functionality. Their algorithm
for doing so uses MCMC on a restricted space of potential specifications. Our approach
requires significantly less instrumentation, but our goal is only to recover aliasing behaviors,
and our specifications are furthermore flow insensitive. There have been other approaches to
synthesizing programs from traces [32, 27]. See [28] for a detailed discussion.

ECOOP 2019

11:26 Eventually Sound Points-To Analysis with Specifications

Static analysis with specifications. A large number of static analyses rely on specifications
to model missing code, including a number specifically designed to detect Android malware
using information flow analysis [21, 12, 25], as well as production systems designed to find
bugs in Android apps [19]. In all of these systems, specifications are implemented as needed
for the most frequently used library functions; thus, specifications relevant to the client may
be missing. Thus, Optix can be used in conjunction with these tools to detect potential
unsoundness due to missing specifications.

Static points-to analysis. There is a large literature on static points-to analysis [43, 3, 50,
36, 49, 45]. Our focus is on the new problem of automatic inference of precise points-to
information when some of the code is missing.

Static information flow analysis. Static information flow analysis has been used to verify of
security policies [35, 51, 23, 47, 5, 21, 25]. These approaches all depend on alias analysis, and
many use specifications to improve precision and scalability. Our techniques for automatically
synthesizing points-to specifications can make implementing any static analysis for large
software systems, including information flow analysis, more practical.

11 Conclusion

We have described an approach to points-to analysis when code is missing. Our approach
is completely precise and fully automatic, and while it forgoes ahead-of-time soundness, it
achieves eventual soundness by using runtime checks in production code. In particular, our
approach is dynamically sound in the sense that unsoundness (if any) is detected at the point
when it occurs, thus enabling the user to terminate execution to prevent any damage from
happening. We implement our approach in a tool called Optix to compute points-to sets
for Android apps, where the Android framework is missing. For efficiency, Optix assumes
that library functions do not access global variables; we have empirically found that this
assumption holds. With this assumption, Optix achieves low runtime overhead and data
usage on almost all apps in a large benchmark suite.

References
1 Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification synthesis. In POPL,

2016.
2 Karim Ali and Ondřej Lhoták. Averroes: Whole-program analysis without the whole program.

In ECOOP, 2013.
3 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.
4 Steven Arzt and Eric Bodden. StubDroid: automatic inference of precise data-flow sum-

maries for the android framework. In Software Engineering (ICSE), 2016 IEEE/ACM 38th
International Conference on, pages 725–735. IEEE, 2016.

5 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. PLDI, 2014.

6 Thomas H Austin and Cormac Flanagan. Multiple facets for dynamic information flow. In
POPL, 2012.

7 Osbert Bastani, Saswat Anand, and Alex Aiken. Interactively verifying absence of explicit
information flows in Android apps. OOPSLA, 2015.

O. Bastani, R. Sharma, L. Clapp, S. Anand, and A. Aiken 11:27

8 Osbert Bastani, Saswat Anand, and Alex Aiken. Specification inference using context-free
language reachability. In POPL, 2015.

9 Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Active Learning of Points-To
Specifications. In PLDI, 2018.

10 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In ICSE, 2011.

11 Maria Christakis, Peter Müller, and Valentin Wüstholz. Collaborative verification and testing
with explicit assumptions. In International Symposium on Formal Methods, pages 132–146.
Springer, 2012.

12 Lazaro Clapp, Saswat Anand, and Alex Aiken. Modelgen: mining explicit information flow
specifications from concrete executions. In ISSTA, 2015.

13 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

14 Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. FlowFox: a web
browser with flexible and precise information flow control. In CCS, 2012.

15 David Devecsery, Peter M Chen, Jason Flinn, and Satish Narayanasamy. Optimistic Hybrid
Analysis: Accelerating Dynamic Analysis through Predicated Static Analysis. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 348–362. ACM, 2018.

16 Dominique Devriese and Frank Piessens. Noninterference through Secure Multi-execution. In
IEEE Symposium on Security and Privacy, 2010.

17 Manuel Egele, David Brumley, Yanick Fratantonio, and Christopher Kruegel. An empirical
study of cryptographic misuse in android applications. In CCS, 2013.

18 William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. TOCS, 2014.

19 Facebook. Adding models, 2017. URL: http://fbinfer.com/docs/adding-models.html.
20 Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd Freisleben, and

Matthew Smith. Why Eve and Mallory love Android: An analysis of Android SSL (in) security.
In CCS, 2012.

21 Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. Apposcopy: Semantics-based detection
of android malware through static analysis. In FSE, 2014.

22 Cormac Flanagan. Hybrid type checking. In POPL, 2006.
23 Adam P Fuchs, Avik Chaudhuri, and Jeffrey S Foster. Scandroid: Automated security

certification of android, 2009.
24 Google. UI/Application Exerciser Monkey, 2016. URL: https://developer.android.com/

studio/test/monkey.html.
25 Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and

Martin C Rinard. Information Flow Analysis of Android Applications in DroidSafe. In NDSS.
Citeseer, 2015.

26 Ben Gruver. Smali project homepage, 2016. URL: https://github.com/JesusFreke/smali.
27 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.

In POPL, 2011.
28 Stefan Heule, Manu Sridharan, and Satish Chandra. Mimic: Computing models for opaque

code. In FSE, 2015.
29 Martin Hirzel, Daniel Von Dincklage, Amer Diwan, and Michael Hind. Fast online pointer

analysis. TOPLAS, 2007.
30 Wei Jin and Alessandro Orso. BugRedux: reproducing field failures for in-house debugging.

In ICSE, 2012.
31 Wei Jin and Alessandro Orso. F3: fault localization for field failures. In Proceedings of the

2013 International Symposium on Software Testing and Analysis, pages 213–223. ACM, 2013.

ECOOP 2019

http://fbinfer.com/docs/adding-models.html
https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://github.com/JesusFreke/smali

11:28 Eventually Sound Points-To Analysis with Specifications

32 Tessa Lau, Pedro Domingos, and Daniel S Weld. Learning programs from traces using version
space algebra. In International Conference on Knowledge Capture, 2003.

33 Ben Liblit, Alex Aiken, Alice X Zheng, and Michael I Jordan. Bug isolation via remote
program sampling. In PLDI, 2003.

34 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Amaral,
Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. In Defense of Soundiness: A Manifesto. CACM, 2015.

35 V Benjamin Livshits and Monica S Lam. Finding Security Vulnerabilities in Java Applications
with Static Analysis. In Usenix Security, 2005.

36 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to and side-effect analyses for Java. In Software Engineering Notes, 2002.

37 Bimal Kumar Mishra and Navnit Jha. Fixed period of temporary immunity after run of
anti-malicious software on computer nodes. Applied Mathematics and Computation, 2007.

38 Markus Mock, Manuvir Das, Craig Chambers, and Susan J Eggers. Dynamic points-to sets:
A comparison with static analyses and potential applications in program understanding and
optimization. In PASTE, 2001.

39 Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John C. Mitchell. Target Fragmentation
in Android Apps. In IEEE Security and Privacy Workshops, 2016.

40 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. ACM,
2006.

41 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe &
efficient gradual typing for TypeScript. In POPL, volume 50, pages 167–180, 2015.

42 Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. IEEE
Journal on selected areas in communications, 2003.

43 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Carnegie Mellon
University, 1991.

44 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, volume 6, pages 81–92, 2006.

45 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis
for Java. In PLDI, 2006.

46 Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven points-to
analysis for Java. In ACM SIGPLAN Notices, volume 40 (10), pages 59–76. ACM, 2005.

47 Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman. TAJ:
effective taint analysis of web applications. In PLDI, 2009.

48 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot-a Java bytecode optimization framework. In Conference of the Centre for
Advanced Studies on Collaborative Research, 1999.

49 John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In PLDI, 2004.

50 Robert P Wilson and Monica S Lam. Efficient context-sensitive pointer analysis for C programs.
In PLDI, 1995.

51 Yichen Xie and Alex Aiken. Static Detection of Security Vulnerabilities in Scripting Languages.
In USENIX Security, 2006.

52 Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated inference of library specifications for
source-sink property verification. In APLAS, 2013.

How to Avoid Making a Billion-Dollar Mistake:
Type-Safe Data Plane Programming with SafeP4
Matthias Eichholz
Technische Universität Darmstadt, Germany

Eric Campbell
Cornell University, Ithaca, NY, USA

Nate Foster
Cornell University, Ithaca, NY, USA

Guido Salvaneschi
Technische Universität Darmstadt, Germany

Mira Mezini
Technische Universität Darmstadt, Germany

Abstract
The P4 programming language offers high-level, declarative abstractions that bring the flexibility of
software to the domain of networking. Unfortunately, the main abstraction used to represent packet
data in P4, namely header types, lacks basic safety guarantees. Over the last few years, experience
with an increasing number of programs has shown the risks of the unsafe approach, which often
leads to subtle software bugs.

This paper proposes SafeP4, a domain-specific language for programmable data planes in
which all packet data is guaranteed to have a well-defined meaning and satisfy essential safety
guarantees. We equip SafeP4 with a formal semantics and a static type system that statically
guarantees header validity – a common source of safety bugs according to our analysis of real-world
P4 programs. Statically ensuring header validity is challenging because the set of valid headers can
be modified at runtime, making it a dynamic program property. Our type system achieves static
safety by using a form of path-sensitive reasoning that tracks dynamic information from conditional
statements, routing tables, and the control plane. Our evaluation shows that SafeP4’s type system
can effectively eliminate common failures in many real-world programs.

2012 ACM Subject Classification Software and its engineering → Formal language definitions;
Networks → Programming interfaces

Keywords and phrases P4, data plane programming, type systems

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.12

Related Version https://arxiv.org/abs/1906.07223

Funding This work has been co-funded by the German Research Foundation (DFG) as part of the
Collaborative Research Center (CRC) 1053 MAKI and 1119 CROSSING, by the DFG projects
SA 2918/2-1 and SA 2918/3-1, by the Hessian LOEWE initiative within the Software-Factory 4.0
project, by the German Federal Ministry of Education and Research and by the Hessian Ministry of
Science and the Arts within CRISP, by the National Science Foundation under grants CNS-1413972
and CCF-1637532, and by gifts from InfoSys and Keysight.

© Matthias Eichholz, Eric Campbell, Nate Foster, Guido Salvaneschi, and Mira Mezini;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 12; pp. 12:1–12:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.12
https://arxiv.org/abs/1906.07223
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Type-Safe Data Plane Programming with SafeP4

1 Introduction

I couldn’t resist the temptation to put in a null reference [...] This has led to
innumerable errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.

– Tony Hoare

Modern languages offer features such as type systems, structured control flow, objects,
modules, etc. that make it possible to express rich computations in terms of high-level
abstractions rather than machine-level code. Increasingly, many languages also offer funda-
mental safety guarantees – e.g., well-typed programs do not go wrong [23] – that make entire
categories of programming errors simply impossible.

Unfortunately, although computer networks are critical infrastructure, providing the
communication fabric that underpins nearly all modern systems, most networks are still
programmed using low-level languages that lack basic safety guarantees. Unsurprisingly,
networks are unreliable and remarkably insecure – e.g., the first step in a cyberattack often
involves compromising a router or other network device [26, 19].

Over the past decade, there has been a shift to more flexible platforms in which the
functionality of the network is specified in software. Early efforts related to software-defined
networking (SDN) [21, 6], focused on the control plane software that computes routes,
balances load, and enforces security policies, and modeled the data plane as a simple pipeline
operating on a fixed set of packet formats. However, there has been recent interest in allowing
the functionality of the data plane itself to be specified as a program – e.g., to implement
new protocols, make more efficient use of hardware resources, or even relocate application-
level functionality into the network [15, 14]. In particular, the P4 language [4] enables the
functionality of a data plane to be programmed in terms of declarative abstractions such
as header types, packet parsers, match-action tables, and structured control flow that a
compiler maps down to an underlying target device.

Unfortunately, while a number of P4’s features were clearly inspired by designs found
in modern languages, the central abstraction for representing packet data – header types –
lacks basic safety guarantees. To a first approximation, a P4 header type can be thought of
as a record with a field for each component of the header. For example, the header type for
an IPv4 packet, would have a 4-bit version field, an 8-bit time-to-live field, two 32-bit fields
for the source and destination addresses, and so on.

According to the P4 language specification, an instance of a header type may either be
valid or invalid: if the instance is valid, then all operations produces a defined value, but if it
is invalid, then reading or writing a field yields an undefined result. In practice, programs
that manipulate invalid headers can exhibit a variety of faults including dropping the packet
when it should be forwarded, or even leaking information from one packet to the next. In
addition, such programs are also not portable, since their behavior can vary when executed
on different targets.

The choice to model the semantics of header types in an unsafe way was intended to make
the language easier to implement on high-speed routers, which often have limited amounts of
memory. A typical P4 program might specify behavior for several dozen different protocols,
but any particular packet is likely to contain only a small handful of headers. It follows
that if the compiler only needs to represent the valid headers at run-time, then memory
requirements can be reduced. However, while it may have benefits for language implementers,
the design is a disaster for programmers – it repeats Hoare’s “mistake,” and bakes an unsafe
feature deep into the design of a language that has the potential to become the de-facto
standard in a multi-billion-dollar industry.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:3

This paper investigates the design of a domain-specific language for programmable data
planes in which all packet data is guaranteed to have a well-defined meaning and satisfy basic
safety guarantees. In particular, we present SafeP4, a language with a precise semantics
and a static type system that can be used to obtain guarantees about the validity of all
headers read or written by the program. Although the type system is mostly based on
standard features, there are several aspects of its design that stand out. First, to facilitate
tracking dependencies between headers – e.g. if the TCP header is valid, then the IPv4 will
also be valid – SafeP4 has an expressive algebra of types that tracks validity information
at a fine level of granularity. Second, to accommodate the growing collection of extant P4
programs with only modest modifications, SafeP4 uses a path-sensitive type system that
incorporates information from conditional statements, forwarding tables, and the control
plane to precisely track validity.

To evaluate our design for SafeP4, we formalized the language and its type system in a
core calculus and proved the usual progress and preservation theorems. We also implemented
the SafeP4 type system in an OCaml prototype, P4Check, and applied it to a suite
of open-source programs found on GitHub such as switch.p4, a large P4 program that
implements the features found in modern data center switches (specifically, it includes over
four dozen different switching, routing, and tunneling protocols, as well as multicast, access
control lists, among other features). We categorize common failures and, for programs that
fail to type-check, identify the root causes and apply repairs to make them well-typed. We
find that most programs can be repaired with low effort from programmers, typically by
applying a modest number of simple repairs.

Overall, the main contributions of this paper are as follows:
We propose SafeP4, a type-safe enhancement of the P4 language that eliminates all
errors related to header validity.
We formalize the syntax and semantics of SafeP4 in a core calculus and prove that the
type system is sound.
We implement our type checker in an OCaml prototype, P4Check.
We evaluate our type system empirically on over a dozen real-world P4 programs and
identify common errors and repairs.

The rest of this paper is organized as follows. Section 2 provides a more detailed
introduction to P4 and elaborates on the problems this work addresses. Section 3 presents
the design, operational semantics and type system of SafeP4 and reports our type safety
result. The results of evaluating SafeP4 in the wild are presented in Section 4. Section 5
surveys related work and Section 6 summaries the paper and outlines topics for future work.

2 Background and Problem Statement

This section introduces the main features of P4 and highlights the problems caused by the
unsafe semantics for header types.

2.1 P4 Language
P4 is a domain-specific language designed for processing packets – i.e., arbitrary sequences of
bits that can be divided into (i) a set of pre-determined headers that determine how the packet
will be forwarded through the network, and (ii) a payload that encodes application-level
data. P4 is designed to be protocol-independent, which means it handles both packets with
standard header formats (e.g., Ethernet, IP, TCP, etc.) as well as packets with custom
header formats defined by the programmer. Accordingly, a P4 program first parses the
headers in the input packet into a typed representation. Next, it uses a match-action pipeline

ECOOP 2019

12:4 Type-Safe Data Plane Programming with SafeP4

Parser Deparser
Match
Action

Figure 1 Abstract forwarding model.

to compute a transformation on those headers – e.g., modifying fields, adding headers, or
removing them. Finally, a deparser serializes the headers back into into a packet, which
can be output to the next device. A depiction of this abstract forwarding model is shown
in Figure 1.

The match-action pipeline relies on a data structure called a match-action table, which
encodes conditional processing. More specifically, the table first looks up the values being
tested against a list of possible entries, and then executes a further snippet of code depending
on which entry (if any) matched. However, unlike standard conditionals, the entries in a
match-action table are not known at compile-time. Rather, they are inserted and removed
at run-time by the control plane, which may be logically centralized (as in a software-defined
network), or it may operate as a distributed protocol (as in a conventional network).

The rest of this section describes P4’s typed representation, how the parsers, and deparsers
convert between packets and this typed representation, and how control flows through the
match-action pipeline.

Header Types and Instances. Header types specify the internal representation of packet
data within a P4 program. For example, the first few lines of the following snippet of code:

header_type ethernet_t {
fields {

dstAddr : 48;
srcAddr : 48;
etherType : 16;

}
}
header ethernet_t ethernet ;
header ethernet_t inner_ethernet ;

declare a type (ethernet_t) for the Ethernet header with fields dstAddr, srcAddr, and
etherType. The integer literals indicate the bit width of each field. The next two lines
declare two ethernet_t instances (ethernet and inner_ethernet) with global scope.

Parsers. A P4 parser specifies the order in which headers are extracted from the input
packet using a simple abstraction based on finite state machines. Extracting into an header
instance populates its fields with the requisite bits of the input packet and marks the instance
as valid. Figure 2 depicts a visual representation of a parse graph for three common headers:
Ethernet, VLAN, and IPv4. The instance ethernet is extracted first, optionally followed by
a vlan instance, or an ipv4 instance, or both.

Tables and Actions. The bulk of the processing for each packet in a P4 program is performed
using match-action tables that are populated by the control plane. A table (such as the one
in Figure 3) is defined in terms of (i) the data it reads to determine a matching entry (if
any), (ii) the actions it may execute, and (iii) an optional default_action it executes if
no matching entry is found.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:5

eth

vlan

ipv4

ethernet vlan ipv40x8100 0x0800

ethernet vlan0x8100 *

ethernet ipv40x0800

ethernet *

Packet Header Formats

Parse Graph

parser start {
return parse_eth ;

}
parser parse_eth {

extract (ethernet);
return select (latest . etherType){

0x8100 : parse_vlan ;
0x0800 : parse_ipv4 ;
default : ingress ;

}
}
parser parse_vlan {

extract vlan {
return select (latest . etherType){

0x0800: parse_ipv4 ;
default : ingress ;

}
}
parser parse_ipv4 {

extract (ipv4);
return ingress ;

}

Figure 2 (Left) Header formats and parse graph that extracts an Ethernet header optionally
followed by VLAN and/or IPv4 headers. (Right) P4 code implementing the same parser.

table forward {
reads {

ipv4 : valid;
vlan : valid;
ipv4. dstAddr : ternary ;

}
actions = {

nop;
next_hop ;
remove ;

}
default_action : nop ();

}

Runtime Contents of forward

Pattern Action
ipv4 vlan ipv4.dstAddr Name Data
1 0 10.0.0.* next_hop s, d

0 1 * remove

Figure 3 P4 tables. forward reads the validity of the ipv4 and vlan header instances and the
dstAddr field of the ipv4 header instance, and calls one of its actions: nop, next_hop, or remove.

The behavior of a table depends on the entries installed at run-time by the control-plane.
Each table entry contains a match pattern, an action, and action data. Intuitively, the match
pattern specifies the bits that should be used to match values, the action is the name of a
pre-defined function (such as the ones in Figure 4), and the action data are the arguments to
that function. Operationally, to process a packet, a table first scans its entries to locate the
first matching entry. If such a matching entry is found, the packet is said to “hit” in the table,
and the associated action is executed. Otherwise, if no matching entry is found, the packet
is said to “miss” in the table, and the default_action (which is a no-op if unspecified)
is executed.

A table also specifies the match-kind that describes how each header field should match
with the patterns provided by the control plane. In this paper, we focus our attention on
exact, ternary, and valid matches. An exact match requires the bits in the packet be
exactly equivalent to the bits in the controller-installed pattern. A ternary match allows
wildcards in arbitrary positions, so the controller-installed pattern 0* would match bit
sequences 00 and 01. A valid match can only be applied to a header instance and simply
checks the validity bit of that instance.

ECOOP 2019

12:6 Type-Safe Data Plane Programming with SafeP4

action next_hop (src , dst) {
modify_field (ethernet .srcAddr , src);
modify_field (ethernet .dstAddr , dst);
subtract_from_field (ipv4.ttl , 1);

}

action remove () {
modify_field (

ethernet .etherType ,
vlan. etherType);

remove_header (vlan);
}

Figure 4 P4 actions.

For example, in Figure 3, the forward table is shown populated with two rules. The first
rule tests whether ipv4 is valid, vlan is invalid, and the first 24 bits of ipv4.srcAddr equal
10.0.0, and then applies next_hop with arguments s and d (which stand for source and
destination addresses). The second rule checks that ipv4 is invalid, then that vlan is valid,
and skips evaluating the value of ipv4.dstAddr (since it is wildcarded), to finally apply the
remove action.

Actions are functions containing sequences of primitive commands that perform operations
such as adding and removing headers, assigning a value to a field, adding one field to another,
etc. For example, Figure 4 depicts two actions: the next_hop action updates the Ethernet
source and destination addresses with action data from the controller; and the remove action
copies EtherType field from the vlan header instance to the ethernet header instance and
invalidates the vlan header.

Control. A P4 control block can use standard control-flow constructs to execute a pipeline
of match-action tables in sequence. They manage the order and conditions under which
each table is executed. The ingress control block begins to execute as soon as the parser
completes. The apply command executes a table and conditionals branch on a boolean
expression such as the validity of a header instance.

control ingress {
if(valid(ipv4) or valid(vlan)) {

apply(forward);
}

}

The above code applies the forward table if one of ipv4 or vlan is valid.

Deparser. The deparser reassembles the final output packet, after all processing has been
done by serializing each valid header instance in some order. In P414, the version of P4 we
consider in this paper, the compiler automatically generates the deparser from the parser
– i.e., for our example program, the deparser produces a packet with Ethernet, VLAN (if
valid), and IPv4 (if valid), in that order.

2.2 Common Bugs in P4 Programs
Having introduced the basic features of P4, we now present five categories of bugs found
in open-source programs that arise due to reading and writing invalid headers – the main
problem that SafeP4 addresses. There is one category for each of the following syntactic
constructs: (1) parsers, (2) controls, (3) table reads, (4) table actions, and (5) default actions.

To identify the bugs we surveyed a benchmark suite of 15 research and industrial P4
programs that are publicly available on GitHub and compile to the BMv2 [25] backend.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:7

/* UNSAFE */
parser_exception unsupported {

parser_drop ;
}
parser parse_ethernet {

extract (ethernet);
return select (ethernet . etherType)

{
0x0800 : parse_ipv4 ;
default : ingress ;

}
}
parser parse_ipv4 {

extract (ipv4);
return select (ipv4. protocol) {

6 : parse_tcp ;
default : ingress ;

}
}

/* SAFE */
parser_exception unsupported {

parser_drop ;
}
parser parse_ethernet {

extract (ethernet);
return select (ethernet . etherType)

{
0x0800 : parse_ipv4 ;
default :

parser_error unsupported ;
}

}
parser parse_ipv4 {

extract (ipv4);
return select (ipv4. protocol) {
6 : parse_tcp ;
default : parser_error

unsupported ;
}

}

parser parse_tcp {
extract (tcp);
return ingress ;

}

control ingress {
if(tcp.syn == 1 and ...) {...}

}

Figure 5 Left: unsafe code in NetHCF; Right: our type-safe fix; Bottom: common code.

Later, in Section 4, we will report the number of occurrences of each of these categories in
our benchmark suite detected by our approach.1

2.2.1 Parser Bugs

The first class of errors is due to the parser being too conservative about dropping malformed
packets, which increases the set of headers that may be invalid in the control pipeline.
In most programs, the parser chooses which headers to extract based on the fields of
previously-extracted headers using P4’s version of a switch statement, select. Programmers
often fail to handle packets fall through to the default case of these select statements.

An example from the NetHCF [34, 2] codebase illustrates this bug. NetHCF is a
research tool designed to combat TCP spoofing. As shown in Figure 5, the parser handles TCP
packets in parse_ipv4 and redirects all other packets to the ingress control. Unfortunately,
the ingress control (bottom right) does not check whether tcp is valid before accessing
tcp.syn to check whether it is equal to 1. This is unsafe since tcp is not guaranteed to be
valid even though it is required to be valid in the ingress control.

To fix this bug, we can define a parser exception, unsupported, with an handler that
drops packets, thereby protecting the ingress from having to handle unexpected packets.
Note however, that this fix might not be the best solution, since it alters the original behavior
of the program. However, without knowing the programmer’s intention, it is generally not
possible to automatically repair a program with undefined behavior.

1 We focus on P414 programs in this paper, but the issues we address also persist in the latest version of
the language, P416. We did not consider P416 in this paper due to the smaller number of programs
currently available.

ECOOP 2019

12:8 Type-Safe Data Plane Programming with SafeP4

/* UNSAFE */
control ingress {

process_cache ();
process_value ();

apply(ipv4_route);
}

/* SAFE */
control ingress {

if(valid(nc_hdr)) {
process_cache ();
process_value ();

}
apply(ipv4_route);

}

control process_cache {
apply(check_cache_exist);
...

}

table check_cache_exist {
reads { nc_hdr .key }
actions { ... }

}

Figure 6 Left: unsafe code in NetCache; Right: our type-safe fix; Bottom: Common code.

2.2.2 Control Bugs
Another common bug occurs when a table is executed in a context in which the instances
referenced by that table are not guaranteed to be valid. This bug can be seen in the open-
source code for NetCache [13, 15], a system that uses P4 to implement a load-balancing
cache. The parser for NetCache reserves a specific port (8888) to handle its special-purpose
traffic, a condition that is built into the parser, which extracts nc_hdr (i.e., the NetCache-
specific header) only when UDP traffic arrives from port 8888. Otherwise, it performs
standard L2 and L3 routing. Unfortunately, the ingress control node (Figure 6) tries to
access nc_hdr before checking that it is valid. Specifically, the reads declaration for the
check_cache_exists table, which is executed first in the ingress pipeline, presupposes that
nc_hdr is valid. The invocation of the process_value table (not shown) contains another
instance of the same bug.

To fix these bugs, we can wrap the calls to process_cache and process_value in an
conditional that checks the validity of the header nc_hdr. This ensures that nc_hdr is valid
when process_cache refers to it.

2.2.3 Table Reads Bugs
A similar bug arises in programs that contain tables that first match on the validity of certain
header instances before matching on the fields of those instances. The advantage of this
approach is that multiple types of packets can be processed in a single table, which saves
memory. However, if implemented incorrectly, this programming pattern can lead to a bug,
in which the reads declaration matches on bits from a header that may not be valid!

The switch.p4 program exhibits an exemplar of this bug; it is a “realistic production
switch” developed by Barefoot Networks, meant to be used “as-is, or as a starting point for
more advanced switches” [18].

An archetypal example of table reads bugs is the port_vlan_mapping table of switch.p4
(Figure 7). This table is invoked in a context where it is not known which of the VLAN tags
is valid, despite containing references to both vlan_tag_[0] and vlan_tag_[1] in the reads
declaration. Adroitly, the programmer has guarded the references to vlan_tag_[i].vid
with keys that test the validity of vlan_tag_[i], for i = 1, 2. Unfortunately, as written,
it is impossible for the control plane to install a rule that will always avoid reading the
value of an invalid header. The first match will check whether the vlan_tag_[0] instance
is invalid, which is safe. However, the very next match will try to read the value of the
vlan_tag_[0].vid field, even when the instance is invalid! This attempt to access an invalid
header results in undefined behavior, and is therefore a bug.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:9

/* UNSAFE */
table port_vlan_mapping {

reads {
vlan_tag_ [0] : valid;
vlan_tag_ [0]. vid : exact;
vlan_tag_ [1] : valid;
vlan_tag_ [1]. vid : exact;

} ...
}

/* SAFE */
table port_vlan_mapping {

reads {
vlan_tag_ [0] : valid;
vlan_tag_ [0]. vid : ternary ;
vlan_tag_ [1] : valid;
vlan_tag_ [1]. vid : ternary ;

} ...
}

Figure 7 Left: a table in switch.p4 with unprotected conditional reads; Right: our type-safe fix.

It is worthy to note that this code is not actually buggy on some targets – in particular, on
targets where invalid headers are initialized with 0. However, 0-initialization is not prescribed
by the language specification, and therefore this code is not portable across other targets.

The naive solution to fix this bug is to refactor the table into four different tables (one
for each combination of validity bits) and then check the validity of each header before the
tables are invoked. While this fix is perfectly safe, it can result in a combinatorial blowup in
the number of tables, which is clearly undesirable both for efficiency reasons and because it
requires modifying the control plane.

Fortunately, rather than factoring the table into four tables, we can replace the exact
match-kinds with ternary match-kinds, which permit matching with wildcards. In particular,
the control plane can install rules that match invalid instances using an all-wildcard patterns,
which is safe.

In order for this solution to typecheck, we need to assume that the control plane is
well-behaved – i.e. that it will install wildcards for the ternary matches whenever the
header is invalid. In our implementation, we print a warning whenever we make this kind of
assumption so that the programmer can confirm that the control plane is well-behaved.

2.2.4 Table Action Bugs
Another prevalent bug, in our experience, arises when distinct actions in a table require
different (and possible mutually exclusive) headers to be valid. This can lead to two problems:
(i) the control plane can populate the table with unsafe match-action rules, and (ii) there
may be no validity checks that we can add to the control to make all of the actions typecheck.

The fabric_ingress_dst_lkp table (Figure 8) in switch.p4 provides an example of this
misbehavior. The fabric_ingress_dst_lkp table reads the value of fabric_hdr.dstDevice
and then invokes one of several actions: term_cpu_packet, term_fabric_unicast_packet,
or term_fabric_multicast_packet. Respectively, these actions require the fabric_hdr_cpu,
fabric_hdr_unicast, and fabric_hdr_multicast (respectively) headers to be valid. Un-
fortunately the validity of these headers is mutually exclusive.2

Since fabric_hdr_cpu, fabric_hdr_unicast, and fabric_hdr_multicast are mutually
exclusive, there is no single context that makes this table safe. The only facility the table
provides to determine which action should be called is fabric_hdr.dstDevice. However,
the P4 program doesn’t establish a relationship between the value of fabric_hdr.dstDevice
and the validity of any of these three header instances. So, the behavior of this table is only
well-defined when the input packets are well-formed, an unreasonable expectation for real
switches, which may receive any sequence of bits “on the wire.”

2 There are other actions in the real fabric_ingress_dst_lkp, but these three actions demonstrate the
core of the problem.

ECOOP 2019

12:10 Type-Safe Data Plane Programming with SafeP4

/* UNSAFE */
table fabric_ingress_dst_lkp {

reads {
fabric_hdr . dstDevice : exact;

}

actions {
term_cpu_packet ;
term_fabric_unicast_packet ;
term_fabric_multicast_packet ;

}
}

/* SAFE */
table fabric_ingress_dst_lkp {

reads {
fabric_hdr . dstDevice : exact;
fabric_hdr_cpu : valid;
fabric_hdr_unicast : valid;
fabric_hdr_multicast : valid;

}
actions {

term_cpu_packet ;
term_fabric_unicast_packet ;
term_fabric_multicast_packet ;

}
}

Figure 8 Left: unsafe code in switch.p4; Right: our type-safe fix.

We fix this bug by including validity matches in the reads declaration, as shown in
Figure 8. As in Section 2.2.3, this solution avoids combinatorial blowup and extensive control
plane refactoring.

In order to type-check this solution, we need to make an assumption about the way the
control plane will populate the table. Concretely, if an action a only typechecks if a header h
is valid, and h is not necessarily valid when the table is applied, we assume that the control
plane will only call a if h is matched as valid. For example, fabric_hdr_cpu is not known to
be valid when (the fixed version of) fabric_ingress_dst_lkp is applied, so we assume that
the control plane will only call action term_cpu_packet when fabric_hdr_cpu is matched
as valid. Again, our implementation prints these assumptions as warnings to the programmer,
so they can confirm that the control plane will satisfy these assumptions.

2.2.5 Default Action Bugs

Finally, the default action bugs occur when the programmer incorrectly assumes that a
table performs some action when a packet misses. The NetCache program (described in
Section 2.2.2) exhibits an example of this bug, too. The bug is shown in Figure 9, where the
table add_value_header_1 is expected to make the nc_value_1 header valid, which is done
in the add_value_header_1_act action. The control plane may refuse to add any rules to
the table, which would cause all packets to miss, meaning that the add_value_header_1_act
action would never be called and nc_value_1 may not be valid. To fix this error, we simply
set the default action for the table to add_value_header_1_act, which will force the table
to remove the header no matter what rules the controller installs.

/* UNSAFE */
table add_value_header_1 {

actions {
add_value_header_1_act ;

}

}

/* SAFE */
table add_value_header_1 {

actions {
add_value_header_1_act ;

}
default_action :

add_value_header_1_act ();
}

Figure 9 Left: unsafe code in NetCache; Right: our type-safe fix.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:11

if(ethernet . etherType == 0x0800) {
apply(ipv4_table);

} else if(ethernet . etherType == 0 x086DD) {
apply(ipv6_table);

}

if(valid(ipv4)) {
apply(ipv4_table);

} else if(valid(ipv6)) {
apply(ipv6_table);

}

Figure 10 Left: data-dependent header validation; Right: syntactic header validation.

2.3 A Typing Discipline to Eliminate Invalid References
In this paper, we propose a type system to increase the safety of P4 programs by detecting
and preventing the classes of bugs defined in Section 2.2. These classes of bugs all manifest
when a program attempts to access an invalid header – differentiating themselves only in
their syntactic provenance. The type system that we present in the next section uses a
path-sensitive analysis, coupled with occurrence typing [32], to keep track of which headers
are guaranteed to be available at any program point – rejecting programs that reference
headers that might be uninitialized – thus, preventing all references to invalid headers.

Of course, in general, the problem of deciding header-validity can depend on arbitrary
data, so a simple type system cannot hope to fully determine all scenarios when an instance
will be valid. Indeed, programmers often use a variety of data-dependent checks to ensure
safety. For instance, the control snippet shown on the left-hand side of Figure 10 will not
produce undefined behavior, given a parser that chooses between parsing an ipv4 header
when ethernet.etherType is 0x0800, an ipv6 header when ethernet.etherType is 0x86DD,
and throws a parser error otherwise.

While this code is safe in this very specific context, it quickly becomes unsafe when ported
to other contexts. For example in switch.p4, which performs tunneling, the egress control
node copies the inner_ethernet header into the ethernet; however the inner_ethernet
header may not be valid at the program point where the copy is performed. This behavior is
left undefined [7], a target is free to read arbitrary bits, in which case it could decide to call
the ipv4_table despite ipv4 being invalid.

To improve the maintainability and portability of the code, we can replace the data-
dependent checks with validity checks, as illustrated by the control snippet shown on the
right-hand side of Figure 10. The validity checks assert precisely the preconditions for calling
each table, so that no matter what context this code snippet is called in, it is impossible for
the ipv4_table to be called when the ipv4 header is invalid.

In the next section, we develop a core calculus for SafeP4 with a type system that
eliminates references to invalid headers, encouraging programers to replace data-dependent
checks with header-validity checks.

3 SafeP4

This section discusses our design goals for SafeP4 and the choices we made to accommodate
them, and formalizes the language’s syntax, small-step semantics, and type system.

3.1 Design
Our primary design goal for SafeP4 is to develop a core calculus that models the main
features of P414 and P416, while guaranteeing that all data from packet headers is manipulated
in a safe and well-defined manner. We draw inspiration from Featherweight Java [12] – i.e.,
we model the essential features of P4, but prune away unnecessary complexity. The result

ECOOP 2019

12:12 Type-Safe Data Plane Programming with SafeP4

is a minimal calculus that is easy to reason about, but can still express a large number
of real-world data plane programs. For instance, P4 and SafeP4 both achieve protocol
independence by allowing the programmer to specify the types of packet headers and their
order in the bit stream. Similarly, SafeP4 mimics P4’s use of tables to interface with the
control-plane and decide which actions to execute at run-time.

So what features does SafeP4 prune away? We omit a number of constructs that are sec-
ondary to how packets are processed – e.g., field_list_calculations, parser_exceptions,
counters, meters, action profiles, etc. It would be relatively straightforward to add
these to the calculus – indeed, most are already handled in our prototype – at the cost of
making it more complicated. We also modify or distill several aspects of P4. For instance, P4
separates the parsing phase and the control phase. Rather than unnecessarily complicating
the syntax of SafeP4, we allow the syntactic objects that represent parsers and controls to be
freely mixed. We make a similar simplification in actions, informally enforcing which primitive
commands can be invoked within actions (e.g., field modification, but not conditionals).

Another challenge arises in trying to model core behaviors of both P414 and P416, in that
they each have different type systems and behaviors for evaluating expressions. Our calculus
abstracts away expression typing and syntax variants by assuming that we are given a set of
constants k that can represent values like 0 or True, or operators such as && and ?:. We
also assume that these operators are assigned appropriate (i.e., sound) types. With these
features in hand, one can instantiate our type system over arbitrary constants.

Another departure from P4 is related to the add command, which presents a complication
for our expression types. The analogous add_header action in P414 simply modifies the
validity bit, without initializing any of the fields. This means that accessing any of the
header fields before they have been manually initialized reads a non-deterministic value.
Our calculus neatly sidesteps this issue by defining the semantics of the add(h) primitive
to initialize each of the fields of h to a default value. We assume that along with our type
constants there is a function init that accepts a header type η and produces a header instance
of type η with all fields set to their default value. Note that we could have instead modified
our type system to keep track of the definedness of header fields as well as their validity.
However, for simplicity we choose to focus on header validity in this paper.

The portion of our type system that analyzes header validity, requires some way of keeping
track of which headers are valid. Naively, we can keep track of a set of which headers are
guaranteed to be valid on all program paths, and reject programs that reference headers
not in this set. However, this coarse-grained approach would lead to a large number of false
positives. For instance, the parser shown in Figure 2 parses an ethernet header and then
either boots to ingress or parses an ipv4 header and then either proceeds to the ingress
or parses an vlan header. Hence, at the ingress node, the only header that is guaranteed to
be valid is the ethernet header. However, it is certainly safe to write an ingress program
that references the vlan header after checking it was valid. To reflect this in the type system
we introduce a special construct called valid(h) c1 else c2 , which executes c1 if h is valid
and c2 otherwise. When we type check this command, following previous work on occurrence
typing [32], we check c1 with the additional fact that h is valid, and we check c2 with the
additional fact that h is not valid.

Even with this enhancement, this type system would still be overly restrictive. To see
why, let us augment the parser from Figure 2 with the ability to parse TCP and UDP
packets: after parsing the ipv4 header, the parser can optionally extract the vlan, tcp,
or udp header and then boot control flow to ingress. Now suppose that we have a table
tcp_table that refers to both ipv4 and tcp in its reads declaration, and that tcp_table

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:13

is (unsafely) applied immediately in the ingress. Because the validity of tcp implies the
validity of ipv4, it should be safe to check the validity of tcp and then apply tcp_table.
However, using the representation of valid headers as a set, we would need to ascertain the
validity of ipv4 and of tcp.

To solve this problem, we enrich our type representation to keep track of dependencies
between headers. More specifically, rather than representing all headers guaranteed to be
valid in a set, we use a finer-grained representation – a set of sets of headers that might be
valid at the current program point. For a given header reference to be safe, it must to be
a member of all possible sets of headers – i.e., it must be valid on all paths through the
program that reach the reference.

Overall, the combination of an expressive language of types and a simple version of
occurrence typing allows us to capture dependencies between headers and perform useful
static analysis of the dynamic property of header validity.

The final challenge with formally modelling P4 lies in its interface with the control-plane,
which populates the tables and provides arguments to the actions. While the control-plane’s
only methodology for managing switch behavior is to populate the match-action tables with
forwarding entries, it is perfectly capable of producing undefined behavior. However, if we
assume that the controller is well-intentioned, we can prove the safety of more programs.

In our formalization, to streamline the presentation, we model the control plane as a
function CA(t,H) = (ai, v̄) that takes in a table t and the current headers H and produces
the action to call ai and the (possibly empty) action data arguments v̄. We also use a function
CV(t) = S̄ that analyzes a table t and produces a list of sets of valid headers S̄, one set for
each action, that can be safely assumed valid when the entries are populated by the control
plane. From the table declaration and the header instances that can be assumed valid, based
on the match-kinds, we can derive a list of match key expressions ē that must be evaluated
when the table is invoked. Together, these functions model the run-time interface between
the switch and the controller. In order to prove progress and preservation, we assume that
CV and CA satisfy three simple correctness properties: (1) the control plane can safely install
table entries that never read invalid headers, (2) the action data provided by the control
plane has the types expected by the action, and (3) the control plane will only assume valid
headers for an action that are valid for a given packet. See technical report for details.

3.2 Syntax
The syntax of SafeP4 is shown in Figure 11. To lighten the notation, we write x̄ as
shorthand for a (possibly empty) sequence x1, ..., xn.

A SafeP4 program consists of a sequence of declarations d̄ and a command c. The set
of declarations includes header types, header instances, and tables. Header type declarations
describe the format of individual headers and are defined in terms of a name and a sequence
of field declarations. The notation “f : τ” indicates that field f has type τ . We let η range
over header types. A header instance declaration assigns a name h to a header type η. The
map HT encodes the (global) mapping between header instances and header types. Table
declarations t(h, (e,m), a), are defined in terms of a sequence of valid-match header instances
h, a sequence of match-key expressions (e,m) read in the table, where e is an expression
and m is the match-kind used to match this expression, and a sequence of actions ā. The
notation t.valids denotes the valid-match instances, t.reads denotes the expressions, and
t.actions denotes the actions.

Actions are written as (uncurried) λ-abstractions. An action λx̄. c declares a (possibly
empty) sequence of parameters, drawn from a fresh set of names, which are in scope for the
command c. The run-time arguments for actions (action data) are provided by the control

ECOOP 2019

12:14 Type-Safe Data Plane Programming with SafeP4

Commands
c ::=
| extract(h) extraction
| emit(h) deparsing
| c1 ; c2 sequence∗
| if (e) c1 else c2 conditional
| valid(h) c1 else c2 validity
| t.apply() application
| skip skip
| add(h) addition∗
| remove(h) removal∗
| h.f = e modification∗

Actions
a ::= λx̄.c action

Expressions
e ::=
| v values
| h.f header field
| x variable
| kn constant

Declarations
d ::=

| t(h, (e,m), a) table
| η {f : τ} header type
| h 7→ η instantiation

Match Kinds Constants
m ∈ {exact, ternary} k ∈ K

Program Values
P ::= (d̄, c) v ∈ V

Header Types
Θ ::=

| 0 contradiction
| 1 empty
| h instance
| Θ1 ·Θ2 concatenation
| Θ1 + Θ2 choice

Action Types Expression Types
α ::= τ̄ → Θ τ ::= Bool

| τ̄ → τ

| · · ·

Figure 11 Syntax of SafeP4.

plane. Note that we artificially restrict the commands that can be called in the body of the
action to addition, removal, modification and sequence; these actions are identified with an
asterisk in Figure 11.

The calculus provides commands for extracting (extract), creating (add), removing
(remove), and modifying (h.f = e) header instances. The emit command is used in the
deparser and serializes a header instance back into a bit sequence (emit). The if -statement
conditionally executes one of two commands based on the value of a boolean condition.
Similarly, the valid-statement branches on the validity of h. Table application commands
(t.apply()) are used to invoke a table t in the current state. The skip command is a no-op.

The only built-in expressions in SafeP4 are variables x and header fields, written h.f .
We let v range over values and assume a collection of n-ary constant operators kn ∈ K.

For simplicity, we assume that every header referenced in an expression has a corresponding
instance declaration. We also assume that header instance names h, header type names η,
variable names x, and table names t are drawn from disjoint sets of names h,e,v, and t
respectively and that each name is declared only once.

3.3 Type System

SafeP4 provides two main kinds of types, basic types τ and header types Θ as shown in
Figure 11. We assume that the set of basic types includes booleans (for conditionals) as well
as tuples and function types (for actions).

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:15

JΘK ⊆ P(Header)
J0K = {}
J1K = {{}}
JhK = {{h}}

JΘ1 ·Θ2K = JΘ1K • JΘ2K

JΘ1 + Θ2K = JΘ1K ∪ JΘ2K

F(h, fi) = τi Field lookup
A(a) = λx̄ : τ̄ . c Action lookup

CA(t,H) = (ai, v̄) Control-plane actions
CV(t) = S̄ Control-plane validity
H(e) = h̄ Referenced Header instances

maskable(t, e, exact) , false
maskable(t, e, ternary) , H(e) ⊆ t.valids

Figure 12 Semantics of header types (left) and auxiliary functions (right).

A header type Θ represents a set of possible co-valid header instances. The type 0 denotes
the empty set. This type arises when there are unsatisfiable assumptions about which headers
are valid. The type 1 denotes the singleton denoting the empty set of headers. It describes
the type of the initial state of the program. The type h denotes a singleton set, {{h}} – i.e.,
states where only h is valid. The type Θ1 ·Θ1 denotes the set obtained by combining headers
from Θ1 and Θ2 – i.e., a product or concatenation. Finally, the type Θ1 + Θ2 denotes the
union of Θ1 or Θ2, which intuitively represents an alternative.

The semantics of header types, JΘK, is defined by the equations in Figure 12. Intuitively,
each subset represents one alternative set of headers that may be valid. For example, the
header type eth · (ipv4 + 1) denotes the set {{eth, ipv4}, {eth}}.

To formulate the typing rules for SafeP4, we also define a set of operations on header types:
Restrict, NegRestrict, Includes, Remove, and Empty. The restrict operator Restrict Θ h

recursively traverses Θ and keeps only those choices in which h is contained, mapping all
others to 0. Semantically this has the effect of throwing out the subsets of JΘK that do not
contain h. Dually NegRestrict Θ h produces only those choices/subsets where h is invalid.
Includes Θ h traverses Θ and checks that h is always valid. Semantically this says that h is
a member of every element of JΘK. Remove Θ h removes h from every path, which means,
semantically that it removes h from ever element of JΘK. Finally, Empty Θ checks whether
Θ denotes the empty set. We can lift these operators to operate on sets of headers in the
obvious way. An in-depth treatment of these operators can be found in the accompanying
technical report.

3.3.1 Typing Judgement
The typing judgement has the form Γ ` c :Θ Z⇒ Θ′, which means that in variable context Γ, if
c is executed in the header context Θ, then a header instance type Θ′ is assigned. Intuitively,
Θ encodes the sets of headers that may be valid when type checking a command. Γ is a
standard type environment which maps variables x to type τ . If there exists Θ′ such that
Γ ` c :Θ Z⇒ Θ′, we say that c is well-typed in Θ.

The typing rules rely on several auxiliary definitions shown in Figure 12. The field type
lookup function F(h, fi) returns the type assigned to a field fi in header h by looking it up
from the global header type declarations via the header instance declarations. The action
lookup function A(a) returns the action definition λx̄ : τ̄ . c for action a. Finally, the function
CA(t,H) computes the run-time actions for table t, while CV(t) computes t’s assumptions
about validity. Both of these are assumed to be instantiated by the control plane in a way
that satisfies basic correctness properties – see technical report.

ECOOP 2019

12:16 Type-Safe Data Plane Programming with SafeP4

T-Zero
Empty Θ1

Γ ` c :Θ1 Z⇒ Θ2

T-Skip

Γ ` skip :Θ Z⇒ Θ

T-Seq
Γ ` c1 :Θ Z⇒ Θ1 Γ ` c2 :Θ1 Z⇒ Θ2

Γ ` c1; c2 :Θ Z⇒ Θ2

T-If
Γ; Θ ` e : Bool

Γ ` c1 :Θ Z⇒ Θ1 Γ ` c2 :Θ Z⇒ Θ2

Γ ` if (e) c1 else c2 :Θ Z⇒ Θ1 + Θ2

T-IfValid
Γ ` c1 :Restrict Θ h Z⇒ Θ1

Γ ` c2 :NegRestrict Θ h Z⇒ Θ2

Γ ` valid(h) c1 else c2 :Θ Z⇒ Θ1 + Θ2

T-Mod
Includes Θ h

F(h, f) = τi Γ; Θ ` e : τi
Γ ` h.f = e :Θ Z⇒ Θ

T-Extr

Γ ` extract(h) :Θ Z⇒ Θ · h

T-Emit

Γ ` emit(h) :Θ Z⇒ Θ

T-Add

Γ ` add(h) :Θ Z⇒ Θ · h

T-Rem

Γ ` remove(h) :Θ Z⇒ Remove Θ h

T-Apply
CV(t) = S̄ t.actions = ā t.reads = r̄

ē = {ej | (ej ,mj) ∈ r̄ ∧ ¬maskable(t, ej ,mj)}
·; Θ ` ej : τj for ej ∈ ē

Restrict Θ Si ` ai : τ̄i → Θ′i for ai ∈ ā

Γ ` t.apply() :Θ Z⇒

(∑
ai∈ā

Θ′i

)

Figure 13 Command typing rules for SafeP4.

The typing rules for commands are presented in Figure 13. The rule T-Zero gives
a command an arbitrary output type if the input type is empty. It is needed to prove
preservation. The rules T-Skip and T-Seq are standard. The rule T-If a path-sensitive
union type between the type computed for each branch. The rule T-IfValid is similar,
but leverages knowledge about the validity of h. So the true branch c1 is checked in the
context Restrict Θ h, and the false branch c2 is checked in the context NegRestrict Θ h.
The top-level output type is the union of the resulting output types for c1 and c2. The rule
T-Mod checks that h is guaranteed to be valid using the Includes operator, and uses the
auxiliary function F to obtain the type assigned to h.f . Note that the set of valid headers
does not change when evaluating an assignment, so the output and input types are identical.
The rules T-Extr and T-Add assign header extractions and header additions the type
Θ · h, reflecting the fact that h is valid after the command executes. Emitting packet headers
does not change the set of valid headers, which is captured by rule T-Emit. The typing
rule T-Rem uses the Remove operator to remove h from the input type Θ. Finally, the rule
T-Apply checks table applications. To understand how it works, let us first consider a
simpler, but less precise, typing rule:

t.reads = ē ·; Θ ` ei : τi for ei ∈ ē
t.actions = ā ·; Θ ` ai : τ̄i → Θ′i for ai ∈ ā

· ` t.apply() :Θ Z⇒
(∑

Θ′i
)

Intuitively, this rule says that to type check a table application, we check each expression it
reads and each of its actions. The final header type is the union of the types computed for

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:17

Γ, x̄ : τ̄ ` c :Θ Z⇒ Θ′

Γ; Θ ` λ x̄ : τ̄ .c : τ̄ → Θ′
(T-Action)

Figure 14 Action typing rule for SafeP4.

T-Const
typeof(k) = τ̄ → τ ′ Γ; Θ ` ei : τi

Γ; Θ ` k(ē) : τ ′

T-Var
x : τ ∈ Γ

Γ; Θ ` x : τ

T-Field
Includes Θ h F(h, f) = τ

Γ; Θ ` h.f : τ

Figure 15 Expression typing rules for SafeP4.

the actions. To put it another way, it models table application as a non-deterministic choice
between its actions. However, while this rule is sound, it is overly conservative. In particular,
it does not model the fact that the control plane often uses header validity bits to control
which actions are executed.

Hence, the actual typing rule, T-Apply, is parameterized on a function CV(t) that models
the choices made by the control plane, returning for each action ai, a set of headers Si
that can be assumed valid when type checking ai. From the reads declarations of the table
declaration, we can derive a subset of the expressions read by the table – e.g., excluding
expressions that can be wildcarded when certain validity bits are false. This is captured
by the function maskable(t, e,m) (defined in Figure 12) , which determines whether a reads
expression e with match-kind m in table t can be masked using a wild-card. The maskable
function is defined using H(e), which returns the set of header instances referenced by an
expression e.

In the example from Section 2.2.3, if an action aj is matched by the rule (0, ∗, 0, ∗), both
Sj and ej are empty.

The typing judgement for actions (Figure 14) is of the form Γ; Θ ` a : τ̄ → Θ, meaning
that a has type τ̄ → Θ in variable context Γ and header context Θ. Given a variable context
Γ and header type Θ, an action λx̄. c encodes a function of type τ̄ → Θ′, so long as the body
c is well-typed in the context where Γ is extended with xi : τi for every i.

The typing rules for expressions are shown in Figure 15. Constants are typechecked
according to rule T-Constant, as long as each expression that is passed as an argument to
the constant k has the type required by the typeof function. The rule T-Var is standard.

3.4 Operational Semantics
We now present the small-step operational semantics of SafeP4. We define the operational
semantics for commands in terms of four-tuples 〈I,O,H, c〉, where I is the input bit stream
(which is assumed to be infinite for simplicity), O is the output bit stream, H is a map that
associates each valid header instance with a records containing the values of each field, and c
is the command to be evaluated. The reduction rules are presented in Figure 16.

The command extract(h) evaluates via the rule E-Extr, which looks up the header type
in HT and then invokes corresponding deserialization function. The deserialized header
value v is added to to the map of valid header instances, H. For example, assuming the
header type η = {f : bit〈3 〉; g : bit〈2 〉; } has two fields f and g and I = 11000B where B is
the rest of the bit stream following, then deserializeη(I) = ({f = 110 ; g = 00 ; },B).

ECOOP 2019

12:18 Type-Safe Data Plane Programming with SafeP4

E-Extr
HT (h) = η deserializeη(I) = (v, I ′)

〈I,O,H, extract(h)〉 → 〈I ′, O,H[h 7→ v], skip〉

E-Emit
HT (h) = η serializeη(H(h)) = B̄

〈I,O,H, emit(h)〉 → 〈I,O.B̄,H, skip〉

E-EmitInvalid
h 6∈ dom(H)

〈I,O,H, emit(h)〉 → 〈I,O,H, skip〉

E-IfValidTrue
h ∈ dom(H)

〈I,O,H, valid(h) c1 else c2 〉 → 〈I,O,H, c1〉

E-IfValidFalse
h 6∈ dom(H)

〈I,O,H, valid(h) c1 else c2 〉 → 〈I,O,H, c2〉

E-Mod
H(h) = r r′ = {r with f = v}

〈I,O,H, h.f = v〉 → 〈I,O,H[h 7→ r′], skip〉

E-Apply
CA(t,H) = (ai, v̄) A(ai) = λx̄.ci

〈I,O,H, t.apply()〉 → 〈I,O,H, ci[v̄/x̄]〉

E-Add
HT (h) = η initη = v

〈I,O,H, add(h)〉 → 〈I,O,H[h 7→ v], skip〉

E-AddValid
h ∈ dom(H)

〈I,O,H, add(h)〉 → 〈I,O,H, skip〉

E-Rem

〈I,O,H, remove(h)〉 → 〈I,O,H \ h, skip〉

Figure 16 Selected rules of the operational semantics of SafeP4; the elided rules are standard
and can be found in the technical report.

E-Const
JkK(v1, ..., vn) = v

〈H, k(v1, ..., vn)〉 → v

E-Field
H(h) = {f1 : n1, ..., fk : nk}

〈H,h.fi〉 → ni

Figure 17 Selected rules of the operational semantics for expressions.

The rule E-Emit serializes a header instance h back into a bit stream. It first looks up
the corresponding header type and header value in the header table HT and the map of valid
headers respectively. The header value is then passed to the serialization function for the
header type to produce a bit sequence that is appended to the output bit stream. Similarly,
we assume that a serialization function is defined for every header type, which takes the bit
values of the fields of a header value and concatenates them to produce a single bit sequence.
We adopt the semantics of P4 with respect to emitting invalid headers. Emitting an invalid
header instance – i.e., a header instance which has not been added or extracted – has no
effect on the output bit stream (rule E-EmitInvalid). Notice also that the header remains
unchanged in H.

Sequential composition reduces left to right, i.e., the left command needs to be reduced to
skip before the right command can be reduced (rule E-Seq). The evaluation of conditionals
(rules E-If, E-IfTrue, E-IfFalse) is standard. Both E-Seq, E-If, E-IfTrue and E-
IfFalse are relegated to the technical report for brevity. The rules for validity checks
(E-IfValidTrue, E-IfValidFalse) step to the true branch if h ∈ dom(H) and to the false
branch otherwise.

Table application commands are evaluated according to rule E-Tapply. We first invoke
the control plane function CA(t,H) to determine an action ai and action data v. Then we

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:19

Ent-Empty

· |= 1

Ent-Inst
dom(H) = {h}

H |= h

Ent-Seq
H1 |= Θ1
H2 |= Θ2

H1 ∪H2 |= Θ1 ·Θ2

Ent-ChoiceL
H |= Θ1

H |= Θ1 + Θ2

Ent-ChoiceR
H |= Θ2

H |= Θ1 + Θ2

Figure 18 The Entailment relation between header instances and header instance types.

use A to lookup the definition of ai, yielding λx̄ : τ̄ . ci and step to ci[v̄/x̄]. Note that for
simplicity, we model the evaluation of expressions read by the table using the control-plane
function CA.

The rule E-Add evaluates addition commands add(h). Similar to header extraction, the
initη() function produces a header instance v of type η with all fields set to a default value
and extends the map H with h 7→ v. Note that according to E-Add-Exist, if the header
instance is already valid, add(h) does nothing. Finally, the rule E-Rem removes the header
from the map H. Again, if a header h is already invalid, removing it has no effect.

The semantics for expressions is defined in Figure 17, using tuples 〈H, e〉, where H is the
same map used in the semantics of commands and e is the expression to evaluate. The rule
E-Field reduces header field expressions to the value stored in the heap H for the respective
field. To evaluate constants via the rule E-Const (omitting the obvious congruence rule),
we assume that there is an evaluation function for constants JkK(v̄) = v that is well-behaved
– i.e., if typeof(k) = τ̄ → τ ′ and v : τ , then .; . ` JkK(v̄) : τ ′. We use these facts to prove
progress and preservation.

3.5 Safety of SafeP4
We prove safety in terms of progress and preservation. Both theorems make use of the
relation H |= Θ which intuitively holds if H is described by Θ. The formal definition, as
given in Figure 18, satisfies H |= Θ if and only if dom(H) ∈ JΘK.

We prove type safety via progress and preservation theorems. The respective proofs are
mostly straightforward for our system – we highlight the unusual and nontrivial cases below
an relegate the full proofs to the technical report.

I Theorem 1 (Progress). If · ` c :Θ Z⇒ Θ′ and H |= Θ, then either,
c = skip, or
∃〈I ′, O′, H ′, c′〉. 〈I,O,H, c〉 → 〈I ′, O′, H ′, c′〉.

Intuitively, progress says that a well-typed command is fully reduced or can take a step.

I Theorem 2 (Preservation). If Γ ` c : Θ1 Z⇒ Θ2 and 〈I,O,H, c〉 → 〈I ′, O′, H ′, c′〉, where
H |= Θ1, then ∃Θ′1,Θ′2. Γ ` c :Θ′1 Z⇒ Θ′2 where H ′ |= Θ′1 and Θ′2 < Θ2.

More interestingly, preservation says that if a command c is well-typed with input type
Θ1 and output type Θ2, and c evaluates to c′ in a single step, then there exists an input
type Θ′1 and an output type Θ′2 that make c′ well-typed. To make the inductive proof
go through, we also need to prove that Θ′1 describes the same maps of header instance
H as Θ1, and Θ′2 is semantically contained in Θ2. We define syntactic containment to be
Θ1 < Θ2 , JΘ1K ⊆ JΘ2K. (These conditions are somewhat reminiscent of conditions found in
languages with subtyping.)

ECOOP 2019

12:20 Type-Safe Data Plane Programming with SafeP4

Proof. By induction on a derivation of Γ ` c :Θ1 Z⇒ Θ2, with a case analysis on the last rule
used. We focus on two of the most interesting cases. See technical report for the full proof.

Case T-IfValid: c = valid(h) c1 else c2 and Γ ` c1 : Restrict Θ1 h Z⇒ Θ12 and Γ ` c2 :
NegRestrict Θ1 h Z⇒ Θ22 and Θ2 = Θ12 + Θ22.

There are two evaluation rules that apply to c, E-IfValidTrue and E-IfValidFalse
Subcase E-IfValidTrue: c′ = c1 and h ∈ dom(H) and H ′ = H.

Let Θ′1 = Restrict Θ1 h and Θ′2 = Θ12. We have Γ ` c′ :Θ′1 Z⇒ Θ′2 by assumption, we
have H |= Θ′1 by a lemma formalizing the relationship between Restrict and (|=)
(see tech report), and we have Θ′2 < Θ2 by the definition of < and the semantics of
union.

Subcase E-IfValidFalse: c′ = c2 and h 6∈ dom(H) and H ′ = H.

Symmetric to the previous case.
Case T-Apply: c = t.apply() and CV(t) = (S̄, ē) and t.actions = ā and ·; Θ ` ej : τj for

ej ∈ ē and Restrict Θ1 Si ` ai : τ̄i → Θ′i for ai ∈ ā and Θ2 =
∑

(Θ′i)

Only one evaluation rule applies to c, E-Apply. It follows that CA(t,H) = (ai, v̄), and
c′ = ci[v̄/x̄] where A(ai) = λx̄. ci. By inverting T-Action, we have Γ, x̄ : τ̄i;` ci :
Restrict Θ Si Z⇒ Θ′i. By control plane assumption (2), we have ·; · ` v̄ : τ̄i. By the
substitution lemma, we have Γ ` ci[v̄/x̄] :Restrict Θ Si Z⇒ Θ′i. Let Θ′1 = Restrict Θ Si
and Θ′2 = Θ′i. We have shown that Γ ` c′ :Θ′1 Z⇒ Θ′2, we have that H ′ |= Θ′1 by control
plane assumption (3), and we have Θ′2 < Θ2 by the definition of < and the semantics of
union types. J

4 Experience (Evaluation)

We implemented our type system in a tool called P4Check that automatically checks P4
programs and reports violations of the type system presented in Figure 13. P4Check uses
the front-end of p4v [20] and handles the full P414 language.3 Our key findings, which are
reported in detail below, show (i) that our type system finds bugs “in the wild” and (ii) that
the programmer effort needed to repair programs to pass our type checker is modest.

4.1 Overview of Bugs in the Wild
We ran P4Check on 15 open source P414 programs4 of varying sizes and complexity, ranging
from 143 to 9060 lines of code. Our criteria for selecting programs was: (1) each program
had to be open source, (2) available on GitHub, and (3) compile without errors, (4) and be
written either by industrial teams developing production code or by researchers implementing
standard or novel network functionality in P4 – i.e., we excluded programs primarily used for
teaching. Out of the 15 subject programs only 4 passed our type checker, all of which were
simple implementations of routers or DDoS mitigation that accepted only a small number
of packet types and were relatively small (188–635 lines of code). For the remaining 11
programs (industrial and research) our checker found 418 type checking violations overall.

3 We also have an open-source prototype implementation for P416 that handles the most common features
of P416 (https://github.com/cornell-netlab/p4check).

4 We chose to check P414 instead of P416, since there are currently more P414 programs available on
GitHub.

https://github.com/cornell-netlab/p4check

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:21

sw
itc

h

ne
tca

che
-p4

PP
Po

E u
sin

g_P
4

Hap
py

Flo
wFri

en
ds

clic
kp

4

ne
tch

ain
-p4

Fle
xM

esh

NetH
CF1

 ca
che

NetH
CF2

 ha
sh

Cach
eP

4-T
est

::n
at

NetG
ua

rd
0%

25%

50%

75%

100%
Parser Table Reads Table Actions Default Action Control

1

2 2 2 2

2

3

1 222

1

5

4

3 2

3

Figure 19 Proportional frequencies of each bug type per-program. The raw number of bugs for
each program and category is reported at the top of each stacked bar.

0 5 10 15 20
Frequency

Default Action

Table Reads

Parser

Control

Table Actions

1

8

9

17

22

Figure 20 Frequency of each bug across all programs. The raw number of bugs in each category
is reported to the right of the bar.

Frequently, multiple violations produced by P4Check have the same root cause. For
example, if a single action rewrite_ipv4 that rewrites fields srcAddr and dstAddr for an
ipv4 header is called in a context that cannot prove that ipv4 is valid, then both references
to ipv4.srcAddr and ipv4.dstAddr will be reported as violations, even though they are
due to the same control bug (Section 2.2.2) – namely that rewrite_ipv4 was not called in
a context that could prove the validity of ipv4. To address this issue, we applied another
metric to quantify the number of bugs (inspired by the method proposed by others [17]): we
equate the number of bugs in each program with the number of bug fixes required to make
the program in question pass our type checker. Using this metric, we counted 58 bugs.

We classified the bugs according to the classes described in Section 2.2. Figure 19 depicts
the per-program breakdown of the frequency of each bug class, and Figure 20 depicts the
overall frequency of each bug. Notice that even though table action bugs were the most
frequent bug (with 22 occurrences), they were only found in a single program (switch.p4).
These bugs are especially prevalent in this program because of its heavy reliance on correct
control-plane configuration. Conversely, there were 9 occurrences across 5 programs for both
parser bugs and table reads bugs.

Readers familiar with previous work on p4v [20], a recent P4 verification tool, may notice
that we detected no default action bugs for the switch.p4 program, while p4v reported many!
The reasons for this are two-fold. First, p4v allows programmers to verify complex properties,
which means that it can express fine-grained conditions on tables and relationships between
them. In contrast, we make heuristic assumptions about P4 programs that automatically
eliminate many bugs, including some default action bugs. Second, our repairs are often

ECOOP 2019

12:22 Type-Safe Data Plane Programming with SafeP4

./h.p4 , line 350, cols 12 -21: error tcp not guaranteed to be valid

./h.p4 , line 118, cols 8 -16: error ipv4 not guaranteed to be valid

./h.p4 , line 101, cols 42 -50: error ipv4 not guaranteed to be valid

./h.p4 , line 320, cols 8 -15: error tcp not guaranteed to be valid

./h.p4 , line 362, cols 12 -19: error tcp not guaranteed to be valid

./h.p4 , line 362, cols 29 -36: error tcp not guaranteed to be valid

./h.p4 , line 295, cols 60 -69: error tcp not guaranteed to be valid

./h.p4 , line 107, cols 8 -16: error ipv4 not guaranteed to be valid

./h.p4 , line 101, cols 42 -50: error ipv4 not guaranteed to be valid

./h.p4 , line 163, cols 8 -16: error ipv4 not guaranteed to be valid

./h.p4 , line 101, cols 42 -50: error ipv4 not guaranteed to be valid

./h.p4 , line 350, cols 12 -21: error tcp not guaranteed to be valid

./h.p4 , line 320, cols 8 -15: error tcp not guaranteed to be valid

./h.p4 , line 362, cols 12 -19: error tcp not guaranteed to be valid

./h.p4 , line 362, cols 29 -36: error tcp not guaranteed to be valid

./h.p4 , line 295, cols 60 -69: error tcp not guaranteed to be valid

Figure 21 Curated output from P4Check for the parser bug in NetHCF before (above) and
after (below) modifying parse_ethernet.

coarse-grained and may enforce a stronger guarantee on the program than may be necessary;
using first-order logic annotations, p4v programmers manually specify the weakest (and
hence more complex) assumptions.

We make no claims about the completeness of our taxonomy. For example, we found
one instance, in the HappyFlowFriends program, where the programmer had mistakenly
instantiated metadata m as a header, and consequently did not parse m (since metadata is
always valid) causing m to (ironically) always be invalid.

4.2 P4Check in Action

We reprise the canonical examples of each class of bugs from Section 2.2, describing how
P4Check detects them and discussing ways to fix them.

4.2.1 Parser Bugfixes

Recall Figure 5, which exhibits the parser bug. The bug occurs because the parser, which
extracts IPv4-TCP packets, boots unexpected packets (such as IPv6 or UDP packets) directly
to ingress, which then assumes that both the ipv4 and tcp headers are valid, even though
the parser does not guarantee this fact.

In terms of our type system, the parser produces packets of type ethernet · (1 + ipv4 ·
(1 + tcp)); however the control only handles packets of type ethernet · ipv4 · tcp. Hence,
when typecheck this example, P4Check reports every reference to tcp and ipv4 in the
whole program as a violation of the type system. As shown in the top half of Figure 21, we
get an error message at every reference to ipv4 or tcp. The ubiquity of the reports intimates
a mismatch between the parsing and the control types, which gives the programer a hint as
how to fix the problem.

When we modify the default clause in parse_ethernet, as in Figure 5, and run our
tool again, all of the ipv4 violations are removed from the output, as shown in the bottom
half of Figure 21. Then fixing the parse_ipv4 parser, as in Figure 5, causes our tool to
output no violations. In particular, the type upon entering the ingress control function is
ethernet · ipv4 · tcp, so all subsequent references to ipv4 and tcp are safe.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:23

port.p4 , line 248, cols 8 -24: warning : assuming either vlan_tag_ [0]
matched as valid or vlan_tag_ [0]. vid wildcarded

port.p4 , line 250, cols 8 -24: warning : assuming either vlan_tag_ [1]
matched as valid or vlan_tag_ [1]. vid wildcarded

fabric .p4 line 42, cols 41 -67: warning : assuming fabric_header_cpu
matched as valid for rules with action terminate_cpu_packet

fabric .p4 , line 57, cols 17 -54: warning : assuming fabric_header_unicast
matched as valid for rules with action

terminate_fabric_unicast_packet

fabric .p4 , line 81, cols 17 -56: warning : assuming
fabric_header_multicast matched as valid for rules with action
terminate_fabric_multicast_packet

Figure 22Warnings printed after fixing switch.p4’s reads bug (top), and its actions bug (bottom).

4.2.2 Control Bugfixes
Recall that a control bug occurs when the incoming type presents a choice between two
instances that are not handled by subsequent code. The program shown in Figure 6 uses a
parser that produces the type Θ = ethernet·(1+ipv4·(1+udp·(1+nc_hdr·τ)+tcp)), where
τ is a type for caching operations. Note that Includes Θ nc_hdr does not hold. However,
process_cache and process_value only type check in contexts where Includes Θ nc_hdr
is true. P4Check reports type violations at every reference to nc_hdr. Fixing this error is
simply a matter of wrapping the process_cache() call in a validity check as demonstrated
in Figure 6. As NetCache handles TCP and UDP packets as well as its special-purpose
packets, we simply apply the IPv4 routing table if the validity check for nc_hdr fails.5

4.2.3 Table Reads Bugfixes
Table reads errors, as shown in Figure 7, occur when a header h is included in the reads
declaration of a table t with match kind k, and h is not guaranteed to be valid at the call
site of t, and if h 6∈ valid_reads(t) or the match-kind of k 6= ternary.

In the case of the port_vlan_mapping table in Figure 7, there is a valid bit for both
vlan_tag_[0] and vlan_tag_[1], both of which are followed by exact matches. To solve
this problem, we need to use the ternary match-kind instead, which allows the use of
wildcard matching. When a field is matched with a wildcard, the table does not attempt to
compute the value of the reads expression.

This fix assumes that the controller is well behaved and fills the vlan_tag_[0].vid with
a wildcard whenever vlan_tag_[0] is matched as invalid (and similarly for vlan_tag_[1]).
This also what the SafeP4 type system does, with its maskable checks in the T-Apply
rule P4Check prints warnings describing these assumptions to the programmer (top of
Figure 22), giving them properties against which to check their control plane implementation.

4.2.4 Table Action Bugfixes
Table actions bugs occur when at least one action cannot be safely executed in all scenarios.
For example, the table fabric_ingress_dst_lkp shown in Figure 8 has a table action
bug, which can be fixed by modifying the table’s reads declaration. Recall that the

5 Astute readers may detect a parser bug in this example. Hint, the ipv4_route table requires
Includes Θ ipv4 where Θ is type where it is applied.

ECOOP 2019

12:24 Type-Safe Data Plane Programming with SafeP4

parser will parse exactly one of the headers fabric_hdr_cpu, fabric_hdr_unicast and
fabric_hdr_multicast, which means that when the table is applied at type Θ, exactly one
of Includes Θ fabric_hdr_i for i ∈ {cpu, unicast, multicast} will hold. Now, the action
term_cpu_packet typechecks only with the (nonempty) type Restrict Θ fabric_hdr_cpu,
and the actions term_fabric_i_packet only typecheck with the (nonempty) types
Restrict Θ term_fabric_i_packet for i = unicast, multicast. P4Check suggests that
this is the cause of the bug since it reports type violations for all of the references to these three
headers in the control paths following from the application of fabric_ingress_dst_lkp.

The optimal6 fix here is to augment the reads declaration to include a validity check for
each contentious header. We then assume that the controller is well-behaved enough to only
call actions when their required headers are valid, allowing us to typecheck each action in
the appropriate type restriction. P4Check alerts the programmer whenever it makes such
an assumption. We show these warnings for the fixed version of fabric_ingress_dst_lkp
below the line in Figure 22.

4.2.5 Default Action Bugfix
Default action bugs occur when a programmer creates a wrapper table for an action that
modifies the type, and forgets to force the table to call that action when the packet misses.
The add_value_header_1 table from Figure 9 wraps the action add_value_header_1_act,
which calls the single line add_header(nc_value_1).

The default action, when left unspecified, is nop, which means that if the pre-application
type was Θ, then the post-application type is Θ + Θ · nc_value_1, which does not include
nc_value_1. Hence, P4Check reports every subsequent reference (on this code path) to
nc_header_1 to be a type violation.

To fix this bug, we need to set the default action to add_value_1 – this makes the
post-application type Θ · nc_value_1 + Θ · nc_value_1 = Θ · nc_value_1, which includes
nc_value_1, thus allowing the subsequent code to typecheck.

4.3 Overhead
It is important to evaluate two kinds of overhead when considering a static type system:
overhead on programmers and on the underlying implementation.

Typically, adding a static type system to a dynamic type system requires more work for
the programmer – the field of gradual typing is devoted breaking the gargantuan task into
smaller commit-sized chunks [5]. Surprisingly, in our experience, migrating real-world P4
code to pass the SafeP4 type system only required modest programmer effort.

To qualitatively evaluate the effort required to change an unsafe program into a safe one
using our type system, we manually fixed all of the detected bugs. The programs that had
bugs required us to edit between 0.10% and 1.4% of the lines of code. The one exception
was PPPoE_using_P4, which was a 143 line program that required 6 line-edits (4%), all
of which were validity checks. Conversely, switch.p4 required 34 line edits, the greatest
observed number, but this only accounted for 0.37% of the total lines of code in the program.

Each class of bugs has a simple one-to-two line fix, as described in Section 4.2: adding
a validity check, adding a default action, or slightly modifying the parser. Each of these
changes was straightforward to identify and simple to make.

6 Another fix would be to refactor the single into multiple tables, each guarded by a separate validity
check. However, combining this kind of logic in a single table helps conserve memory, so in striving to
change the behavior of the program as little as possible, we propose modifying the table reads.

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:25

Another possible concern is that that extending tables with extra read expressions, or
adding run-time validity checks to controls, might impose a heavy cost on implementations,
especially on hardware. Although we have not yet performed an extensive study of the
impact on compiled code, based on the size and complexity of the annotations we added, we
believe the additional cost should be quite low. We were able to compile our fixed version
of the switch.p4 program to the Tofino architecture [24] with only a modest increase in
resource usage. Overall, given the large number of potential bugs located by P4Check, we
believe the assurance one gains about safety properties by using a static type system makes
the costs well worth it.

5 Related Work

Probably the most closely related work to SafeP4 is p4v [20]. Unlike SafeP4, which is
based on a static type system, p4v uses Dijkstra’s approach to program verification based
on predicate transformer semantics. To model the behavior of the control plane, p4v uses
first-order annotations. SafeP4’s typing rule for table application is inspired by this idea,
but adopts simple heuristics – e.g., we only assume that the control plane is well-behaved –
rather than requiring logical annotations.

Both p4v and P4Check can be used to verify safety properties of data planes modelled in
P4 – e.g., that no read or write operations are possible on an invalid header. As it is often the
case when comparing approaches based on types to those based on program verification, p4v
can check more complex properties, including architectural invariants and program-specific
properties – e.g., that the IPv4 time-to-live field is correctly decremented on every packet.
However, in general, it requires annotating the program with formal specifications both for
the correctness property itself and to model the behavior of the control plane.

McKeown et al. developed an operational semantics for P4 [22], which is translated
to Datalog to verify safety properties and to check program equivalence. An operational
semantics for P4 was also developed in the K framework [27], yielding a symbolic model
checker and deductive verification tool [16]. Vera [30] models the semantics of P4 by
translation to SymNet [31], and develops a symbolic execution engine for verifying a variety
of properties, including header validity.

Compared to SafeP4, these approaches do not use their formalization of P4 as a
foundation for defining a type system that addresses common bugs. To the best of our
knowledge, SafeP4 is the first formal calculus for a P4-like packet processing language that
provides correct-by-construction guarantees of header safety properties.

Other languages have used type systems to rule our safety problems due to null refer-
ences. For example, NullAway [29] analyzes all Java programs annotated with @Nullable
annotations, making path-sensitive deductions about which references may be null. Similar
to the validity checks in SafeP4, NullAway analyses conditionals for null checks of the form
var != null using data flow analysis.

Looking further afield, PacLang [9] is a concurrent packet-processing language that uses
a linear type system to allow multiple references to a given packet within a single thread.
PacLang and SafeP4 share the use of a type system for verifying safety properties but
they differ in the kind of properties they address and, hence, the kind of type system they
employ for this purpose. In addition, the primary focus in PacLang is on efficient compilation
whereas SafeP4 is concerned with ensuring safety of header data.

Domino [28] is a domain-specific language for data plane algorithms supporting packet
transactions – i.e., blocks of code that are guaranteed to be atomic and isolated from other
transactions. In Domino, the programmer defines the operations needed for each packet

ECOOP 2019

12:26 Type-Safe Data Plane Programming with SafeP4

without worrying about other in-flight packets. If it succeeds, the compiler guarantees
performance at the line rate supported on programmable switches. Overall, Domino focuses
on transactional guarantees and concurrency rather than header safety properties.

BPF+ [3] and eEBPF [8] are packet-processing frameworks that can be used to extend
the kernel networking stack with custom functionality. The modern eBPF framework is
based on machine-level programming model, but it uses a virtual machine and code verifier
to ensure a variety of basic safety properties. Much of the recent work on eBPF focuses on
techniques such as just-in-time compilation to achieve good performance.

SNAP [1] is a language for stateful packet processing based on P4. It offers a programming
model with global state registers that are distributed across many physical switches while
optimizing for various criteria, such as minimizing congestion. More specifically, the compiler
analyses read/write dependencies to automatically optimize the placement of state and the
routing of traffic across the underlying physical topology.

While our approach to track validity is network-specific, it is similar to taint analysis [33,
10, 11], which attempts to identify secure program parts that can be safely accessed.

Of course, there is a long tradition of formal calculi that aim to capture some aspect of
computation and make it amenable for mathematical reasoning. The design of SafeP4 is
directly inspired by Featherweight Java [12], which stands out for its elegant formalization of
a real-world language in an extensible core calculus.

6 Conclusion

P4 provides a powerful programming model for network devices based on high-level and
declarative abstractions. Unfortunately, P4 lacks basic safety guarantees, which often lead
to a variety of bugs in practice. This paper proposes SafeP4, a domain-specific language
for programmable data planes that comes equipped with a formal semantics and a static
type system which ensures that every read or write to a header at run-time will be safe.
Under the hood, SafeP4 uses a rich set of types that tracks dependencies beween headers,
as well as a path-sensitive analysis and domain-specific heuristics that model common idioms
for programming control planes and minimize false positives. Our experiments using an
OCaml prototype and a suite of open-source programs found on GitHub show that most P4
applications can be made safe with minimal programming effort. We hope that our work can
help lay the foundation for future enhancements to P4 as well as the next generation of data
plane languages. In the future, we plan to explore enriching SafeP4’s type system to track
additional properties, investigate correct-by-construction techniques for writing control-plane
code, and develop a compiler for the language.

References
1 Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer Rexford, and David

Walker. SNAP: Stateful Network-Wide Abstractions for Packet Processing. In Proceedings of
the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 29–43, New York, NY, USA,
2016. ACM. doi:10.1145/2934872.2934892.

2 Jiasong Bai, Jun Bi, Menghao Zhang, and Guanyu Li. Filtering Spoofed IP Traffic Using
Switching ASICs. In Proceedings of the ACM SIGCOMM 2018 Conference on Posters and
Demos, pages 51–53. ACM, 2018.

3 Andrew Begel, Steven McCanne, and Susan L. Graham. BPF+: Exploiting Global Data-flow
Optimization in a Generalized Packet Filter Architecture. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for Computer Communication,
SIGCOMM ’99, pages 123–134, New York, NY, USA, 1999. ACM. doi:10.1145/316188.
316214.

http://dx.doi.org/10.1145/2934872.2934892
http://dx.doi.org/10.1145/316188.316214
http://dx.doi.org/10.1145/316188.316214

M. Eichholz, E. Campbell, N. Foster, G. Salvaneschi, and M. Mezini 12:27

4 Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4: Pro-
gramming Protocol-independent Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87–95, July 2014. doi:10.1145/2656877.2656890.

5 John Peter Campora, Sheng Chen, Martin Erwig, and Eric Walkingshaw. Migrating gradual
types. Proceedings of the ACM on Programming Languages, 2(POPL):15, 2017.

6 Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and
Scott Shenker. Ethane: Taking control of the enterprise. In ACM SIGCOMM Computer
Communication Review, volume 37 (4), pages 1–12. ACM, 2007.

7 P4 Language Consortium. P4 Language Specification, Version 1.0.4. Technical report, Available
at https://p4.org/specs/, 2017.

8 Jonathan Corbet. BPF: the universal in-kernel virtual machine, May 2014. Available at
https://lwn.net/Articles/599755/,.

9 Robert Ennals, Richard Sharp, and Alan Mycroft. Linear Types for Packet Processing. In David
Schmidt, editor, Programming Languages and Systems, pages 204–218, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

10 William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using Positive Tainting
and Syntax-aware Evaluation to Counter SQL Injection Attacks. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT
’06/FSE-14, pages 175–185, New York, NY, USA, 2006. ACM. doi:10.1145/1181775.1181797.

11 Wei Huang, Yao Dong, and Ana Milanova. Type-Based Taint Analysis for Java Web Appli-
cations. In Proceedings of the 17th International Conference on Fundamental Approaches to
Software Engineering - Volume 8411, pages 140–154, New York, NY, USA, 2014. Springer-
Verlag New York, Inc. doi:10.1007/978-3-642-54804-8_10.

12 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A Minimal
Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

13 Xin Jin. netcache-p4, March 2018. URL: https://github.com/netx-repo/netcache-p4.
14 Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé, Changhoon

Kim, and Ion Stoica. NetChain: Scale-free sub-rtt coordination. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI), April 2018. Best paper award.

15 Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster, Changhoon
Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast in-network caching. In
Proceedings of the 26th Symposium on Operating Systems Principles, pages 121–136. ACM,
2017.

16 Ali Kheradmand and Grigore Roşu. P4K: A formal semantics of P4 and applications. Technical
Report https://arxiv.org/abs/1804.01468, University of Illinois at Urbana-Champaign, April
2018.

17 George T. Klees, Andrew Ruef, Benjamin Cooper, Shiyi Wei, and Michael Hicks. Evaluating
Fuzz Testing. In Proceedings of the ACM Conference on Computer and Communications
Security (CCS), October 2018.

18 Chaitanya Kodeboyina. An open-source P4 switch with SAI support, June 2015. URL:
https://p4.org/p4/an-open-source-p4-switch-with-sai-support.html.

19 Rahul Kumar and BB Gupta. Stepping stone detection techniques: Classification and state-
of-the-art. In Proceedings of the international conference on recent cognizance in wireless
communication & image processing, pages 523–533. Springer, 2016.

20 Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert Soulé,
Han Wang, Călin Caşcaval, Nick McKeown, and Nate Foster. P4V: Practical Verification
for Programmable Data Planes. In Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’18, pages 490–503, New York, NY, USA,
2018. ACM. doi:10.1145/3230543.3230582.

ECOOP 2019

http://dx.doi.org/10.1145/2656877.2656890
https://lwn.net/Articles/599755/
http://dx.doi.org/10.1145/1181775.1181797
http://dx.doi.org/10.1007/978-3-642-54804-8_10
http://dx.doi.org/10.1145/503502.503505
https://github.com/netx-repo/netcache-p4
https://p4.org/p4/an-open-source-p4-switch-with-sai-support.html
http://dx.doi.org/10.1145/3230543.3230582

12:28 Type-Safe Data Plane Programming with SafeP4

21 Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation in Campus
Networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008. doi:10.1145/
1355734.1355746.

22 Nick McKeown, Dan Talayco, George Varghese, Nuno Lopes, Nikolaj Bjorner, and An-
drey Rybalchenko. Automatically verifying reachability and well-formedness in P4 Net-
works, September 2016. URL: https://www.microsoft.com/en-us/research/publication/
automatically-verifying-reachability-well-formedness-p4-networks/.

23 Robin Milner. A Theory of Type Polymorphism in Programming. Journal of Computer and
System Sciences, 17(3):348–375, December 1978.

24 Barefoot Networks. Tofino 2. URL: https://www.barefootnetworks.com/products/
brief-tofino-2/.

25 Barefoot Networks. Behavioral Model, December 2018. URL: https://github.com/p4lang/
behavioral-model.

26 TJ OConnor, William Enck, W Michael Petullo, and Akash Verma. Pivotwall: SDN-based
information flow control. In Proceedings of the Symposium on SDN Research, page 3. ACM,
2018.

27 Grigore Roşu and Traian Florin Şerbănuţă. An Overview of the K Semantic Framework. Journal
of Logic and Algebraic Programming, 79(6):397–434, 2010. doi:10.1016/j.jlap.2010.03.012.

28 Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet Transactions:
High-Level Programming for Line-Rate Switches. In Proceedings of the 2016 ACM SIGCOMM
Conference, SIGCOMM ’16, pages 15–28, New York, NY, USA, 2016. ACM. doi:10.1145/
2934872.2934900.

29 Manu Sridharan. Engineering NullAway, Uber’s Open Source Tool for Detecting NullPoint-
erExceptions on Android, December 2018. URL: https://eng.uber.com/nullaway/.

30 Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.
Debugging P4 Programs with Vera. In ACM SIGCOMM, pages 518–532, New York, NY, USA,
2018. ACM. doi:10.1145/3230543.3230548.

31 Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu. SymNet: Scalable
symbolic execution for modern networks. In ACM SIGCOMM, pages 314–327, New York, NY,
USA, 2016. ACM. doi:10.1145/2934872.2934881.

32 Sam Tobin-Hochstadt and Matthias Felleisen. Logical Types for Untyped Languages. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’10, pages 117–128, New York, NY, USA, 2010. ACM. doi:10.1145/1863543.1863561.

33 Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A Sound Type System for Secure
Flow Analysis. J. Comput. Secur., 4(2-3):167–187, January 1996. URL: http://dl.acm.org/
citation.cfm?id=353629.353648.

34 Menghao Zhang. Anti-spoof, November 2018. URL: https://github.com/zhangmenghao/
Anti-spoof.

http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/1355734.1355746
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://www.microsoft.com/en-us/research/publication/automatically-verifying-reachability-well-formedness-p4-networks/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://www.barefootnetworks.com/products/brief-tofino-2/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1145/2934872.2934900
http://dx.doi.org/10.1145/2934872.2934900
https://eng.uber.com/nullaway/
http://dx.doi.org/10.1145/3230543.3230548
http://dx.doi.org/10.1145/2934872.2934881
http://dx.doi.org/10.1145/1863543.1863561
http://dl.acm.org/citation.cfm?id=353629.353648
http://dl.acm.org/citation.cfm?id=353629.353648
https://github.com/zhangmenghao/Anti-spoof
https://github.com/zhangmenghao/Anti-spoof

Fling – A Fluent API Generator
Yossi Gil
Technion I.I.T Computer Science Dept., Haifa, Israel
yogi@cs.technion.ac.il

Ori Roth
Technion I.I.T Computer Science Dept., Haifa, Israel
ori.rothh@gmail.com

Abstract
We present the first general and practical solution of the fluent API problem – an algorithm, that
given a deterministic language (equivalently, LR(k), k ≥ 0 language) encodes it in an unbounded
parametric polymorphism type system employing only a polynomial number of types. The theoretical
result is accompanied by an actual tool Fling– a fluent API compiler-compiler in the venue of
YACC, tailored for embedding DSLs in Java.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Software and its engineering → Domain specific languages

Keywords and phrases fluent API, type system, compilation, code generation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.13

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.12

Funding Yossi Gil: Technion I.I.T
Ori Roth: Technion I.I.T

1 Introduction

Given a formal language ` over some finite alphabet Σ, i.e., ` ⊆ Σ∗ and a host programming
language, e.g., Java [1], the fluent API problem is to generate E = E(`), a set of definitions
in the host language that encode ` such that membership in ` is equivalent to type-checking
against E: Concretely, for a word w = σ1σ2 · · ·σn, σi ∈ Σ, i = 1, . . . , n, the chain of method
calls

σ0.σ1().σ2(). · · · .σn().σ$() (1)

type checks (in the host language) against E(`) if and only if w ∈ `. (Here variable σ0 and
method σ$ are specified by E.) The fluent API problem is parameterized by `’s ranking in
the Chomsky hierarchy and the capabilities of the host language.

Attention was drawn to the problem since fluent APIs are a valuable software engineering
technique, useful, e.g., when ` specifies an object protocol, or for embedding a domain specific
language (DSL) in the host language. (See, e.g., [5] for motivation and applications.)

A straightforward solution for the limited set of regular languages has been known and
used for years; yet, interesting DSLs and protocols are often not regular.

Previous theoretical advances at the problem remain unpractical due to algorithm com-
plexity, size of E(`), or, inherent time complexity of the type checking. Prior attempts to
make these theoretical results practical remain ad hoc, with no clear specification of the class
of formal languages that can be processed.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Yossi Gil and Ori Roth;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 13; pp. 13:1–13:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yogi@cs.technion.ac.il
mailto:ori.rothh@gmail.com
https://doi.org/10.4230/LIPIcs.ECOOP.2019.13
https://dx.doi.org/10.4230/DARTS.5.2.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Fling – A Fluent API Generator

1.1 Contribution
This work presents the first general and practical solution of the fluent API problem. To this
end, we prove that any Deterministic Context Free Language (DCFL) can be encoded in a
type system that supports unbounded parametric polymorphism, while employing only a
polynomial (in the size of the language specification) number of types.

Recall that DCFL is the class of formal languages that are recognizable by a Deterministic
PushDown Automaton (DPDA). Our proof is supported by an automata compiler which
converts a DPDA into Java definitions so that (1) holds.

The generality of the result is in two respects:
Most programming languages, and hence most DSLs, are designed with practical parsing
in mind. The DCFL class includes all languages for which an LL or LR grammar exists.
The requirements from the type system of the host language are minimal. In particular,
we assume the type parameterization:

does not allow the generic invoke functions found in the in its type parameter, nor
expose any other property of this type
does not allow generic class make any assumption, nor place constraints on its type
parameter, inherit from it, or supply a default value for it.
does not support partial specialization of generic classes (with the help of these, it is
possible emulate a two-stack machine, and henceforth a Turing machine [9]),

In fact, the generics we assume are as weak as found in ML. The only thing a generic
can do with its parameter is to pass it as a parameter to another generic.

Conversely, the practicality of the result is in two respects:
The time to type checking an expression such as (1) is linear in its size.
The length of E(`) is polynomial in the size of the DPDA that defines `.

We further demonstrate the theoretical result in an actual tool Fling– a fluent API
compiler-compiler in the style of YACC, tailored for embedding DSLs in Java. Given
an LL(1) grammar G, Fling generates appropriate Java definitions of modest size by which
(1) type-checks, if and only if G derives w.

Fling’s restriction to LL(1) is not inherent – extending Fling to support LR(1) languages
(and hence all deterministic languages) is technical (though laborious). Further, Fling
generates Java class definitions of the abstract syntax tree (AST) implicit by G. Even
further, Fling generates bodies for methods σi that generate the AST: When executed, the
sequence (1) returns an instance of this AST that describes w, to be used by clients for
further processing.

To demonstrate, we use Fling to define a fluent API language for writing regular
expressions. In this API the regular expression (ab?)∗ | (0− 9)+ is written as:
re.noneOrMore(exactly("a").and().option(exactly("b"))).or().oneOrMore(anyDigit()).$()

Composing the API begins with a grammar for the language `R of regular expressions:
〈Expression〉 ::=re 〈RE〉

〈RE〉 ::=exactly 〈Tail〉
| option 〈Tail〉
| noneOrMore 〈Tail〉
| oneOrMore 〈Tail〉
| either 〈Tail〉
| anyChar 〈Tail〉
| anyDigit 〈Tail〉

〈Tail〉 ::=and 〈RE〉 | or 〈RE〉 | ε.

(2)

This grammar is then supplied into Fling; incidentally, the grammar specification for Fling
uses the fluent API style:

Y. Gil and O. Roth 13:3

Listing 1 Fling fluent API specifying the regex grammar depicted in (2).

1 start(Expression). // 〈Expression〉 is the start symbol
2 derive(Expression).to(re, RE). // 〈Expression〉 ::= re〈RE〉
3 derive(RE).to(exactly.with(String.class), Tail) // 〈RE〉 ::= exactly〈Tail〉
4 or(option.with(RE), Tail). // | option〈Tail〉
5 or(noneOrMore.with(RE), Tail). // | noneOrMore〈Tail〉
6 or(oneOrMore.with(RE), Tail). // | oneOrMore〈Tail〉
7 or(either.with(RE, RE), Tail). // | either〈Tail〉
8 or(anyChar, Tail). // | anyChar〈Tail〉
9 or(anyDigit, Tail). // | anyDigit〈Tail〉

10 derive(Tail).to(and, RE).or(or, RE).orNone(); // 〈Tail〉 ::= and〈RE〉| or〈RE〉| ε

The above chain of method calls produces, at run time, a Fling object of type BNF. This
object can then be requested to emit the Java (indeed, also C++ [19]) code that implements
the fluent API. To use this API, one must compile and link again this emitted code.

One may disregard the regular-expression example and others as being singular, asking
whether it would be better to manually compose a fluent API for regular expressions and
other examples, rather than developing a general purpose machinery. An answer would be
in considering the problem of embedding XML literals and expressions as fluent code, by
writing, e.g.,

XMLData t = data().th().td("Customer").td("Number").th(end).tr().td("A").td(3).tr(end).data(end);

to create an XML data object. To maintain correctness of the generated object, the fluent
API that begins with data() must support the DTD (XML schema) of an XMLData object.
Alas, this schema could be very different in different applications. A tool such as Fling
is handy in creating a fluent API to support different XML schemas and their evolution
through the software’s lifetime.

It is interesting that previous efforts to introduce XML literals and expressions into
programming languages fail to do the DTD specific type checking. Such is the case with
XJ [10], an XML extension to Java in which all XML instances belong to the same type.
Similarly, XML literals of Visual Basic do not distinguish between various DTDs. Also,
attempts to introduce XML into C# [11] [16, 15] ignored the issue of static type checking of
distinct XML objects. To our knowledge, the only language supporting typed XML objects
is Haskell [20]. With the current contribution, XML objects with DTD static typing
can be easily introduced into Java, C# and C++, for all DTDs that can be written as a
deterministic language. (Note however that a DTD requirement that all rows in the table
have the same number of columns, is not context free, for the same reason that the language
anbncn is not context free.)

A concern often raised against fluent API carry is that the syntactic baggage of parenthesis
and a ‘.’ dot operator in each call obscures the syntax of the implemented language. This is
true for Java in the implementation we offer. We believe it might be possible to tune the
implementation to use fields rather than methods whereby minimizing the baggage to the ‘.’
dot operator. The same is possible in languages such as Eiffel [12], in which it possible to
omit the empty parenthesis in calls to methods that do not take parameters. A workaround
to omit the parentheses is possible in C# with getter methods.

We further note that one of the most successful examples of embedding a DSL in a host
language, namely of SQL in C# with LINQ, relies on a fluent API. SQL code excerpts found
in C# are free of any syntactic baggage and use the SQL syntax. An SQL excerpt is converted
in a technical iteratively process (which involves little parsing if any) into a fluent API call
chain. The definitions beyond this fluent API were handcrafted for the particular syntax.
We believe it should be possible to extend this mechanism to support user defined DSLs.

ECOOP 2019

13:4 Fling – A Fluent API Generator

1.2 Previous work
Gil and Levy [5] described the first non-trivial solution of the fluent API problem, recognizing
the same class of languages as we do here, and making the same requirements from the type
system of the host language as we do. However, in their construction E(`) is exponential in
the specification of `. Moreover, since their result relies on on a very complex theoretical
construction [3], no implementation is provided nor one does seem feasible.

Grigore [8] noticed that bounded below parametric polymorphism, e.g., Java’s super
constraints on generics, makes it possible to coerce the type checker into non-constant
computation, going up and down the inheritance tree. With this observation, he was able
to show that Java generics are Turing-complete and solve the fluent API problem for any
recursive language `. For a context free grammar language `, his construction produces a
polyomially sized E(`). However type checking an expression of size n requires O(n9) time.
In Grigore’s words,

“. . . the degree of the polynomial is not exactly encouraging. There is room for improvement,
and work to be done to achieve a practical parser generator for fluent interfaces.”

Indeed, practical parser generators for fluent APIs restrict themselves to using unbounded
parametric polymorphism as we do here.

Fajita [14] is a tool for generating a fluent API definition from a given grammar specification.
The class of grammars accepted by Fajita is contained in LL(1), but otherwise unspecified.
Also, unlike Fling which generates an AST, Fajita can only be used for language recognition
but not for language processing.

In contrast, Silverchain by Nakamaru et al. [18] is a real compiler-compiler. However,
the class of languages it can process has not been defined. Unlike Fling, Silverchain fails
on the many common languages that require an unbounded number of ε-transitions (see
below Sect. 2).

Another related contribution is by Xu’s [22] compiler-compiler for LL(1) languages
provided they are given in Greibach Normal Form.

Outline. Sect. 2 defines deterministic pushdown automata, establishes vocabulary and
gives some intuition on the difficulty posed by ε-transitions. With these, we proceed in
Sect. 3 to describe how deterministic pushdown automata can be emulated by a realtime
device that uses tree encoding data structure, rather than a stack. Sect. 4 demonstrates
(using Java) how the emulation can be compiled to any unbounded parametric type. The
Fling tool and its implementation are the subject of Sect. 5. Sect. 6 concludes, mentioning
directions for further research.

2 Pushdown Automata

Intuitively, a pushdown automaton (PDA) is a finite state automaton (FSA) additionally
equipped with a stack whose values are drawn from some finite set of stack symbols. A PDA
has two kinds of transitions:
1. In a consuming transition, the PDA consumes an input letter and pops a symbol from

the top of stack. Then, depending on the popped symbol, the input letter, and its current
state, the PDA moves into another state, and pushes onto the stack a (possibly empty)
sequence of stack symbols.

2. An ε-transition is similar to a consuming transition, except that no input letter is
consumed: The selection of the next state and the symbols to push in the transition
therefore depends solely on the stack’s top and the current state of the automaton.

Y. Gil and O. Roth 13:5

The PDA process the input letter by letter: For each letter, the automaton carries out a
single consuming transition, followed by zero or more ε-transitions. There is no upper bound
on the number of ε-transitions carried out for a single input letter. As our next example
shows, this number may be linear in the input size.

2.1 Example
Consider a simple (balanced) parentheses language defined by the grammar of Fig. 1. In this
language each opening parenthesis, ‘(’, must be balanced with a closing ‘)’, except that a
closing square bracket, ‘]’, closes all previous opening parentheses.

〈Word〉 ::= 〈Word〉 〈Word〉
| 〈Balanced〉
| 〈Squared〉
| ε

〈Balanced〉 ::= 〈Balanced〉 〈Balanced〉
| (〈Balanced〉)

| ε

〈Squared〉 ::=(+ 〈Balanced〉]

Figure 1 Grammar for a parentheses language in which ‘(’ and ‘)’ are balanced except that ‘]’
closes all currently open parentheses.

To recognize this language a PDA should maintain a stack to count all unclosed opening
parentheses. The stack should be cleared when a ‘]’ is encountered. One such PDA is
depicted in Fig. 2.

q2

q0start q1

(, γ0 → γ0γ1

(, γ1 → γ1γ1

), γ1 → ε
ε, γ0 → γ0

], γ1 → ε

ε, γ1 → ε

ε, γ0 → γ0

Figure 2 A deterministic pushdown automaton recognizing the balanced parentheses language of
Fig. 1.

The figure uses the usual representation of automata as a multi-graph whose nodes are the
states of the inner FSA of the PDA, while multi-edges emanating from a node describe the
transitions taken by the PDA when being in this state. Edge labels describe the dependency
of the transition on both the current input letter and the top stack, and the sequence of
stack symbols to be pushed in response to these. The figure also employs the convention
that consuming transitions are depicted as thicker edges than ε-transitions.

The automaton in the figure can be in one of three inner states: q0, q1, and, q2. It uses
of stack symbols, γ0, marking the bottom of the stack, and γ1. The number of occurrences
of γ1 on the stack is count of the yet unmatched opening parentheses.

Focus on the self edge of q1 and the two labels that annotate it.

ECOOP 2019

13:6 Fling – A Fluent API Generator

The first label (, γ1 → γ1γ1 means that if the automaton is in this state, and if the
current input letter is ‘(’, and if the stack’s top is γ1, then the automaton carries out a
consuming transition, in which the stack top is replaced by γ1γ1, hence maintaining the
unary representation of n.

The second label), γ1 → ε over this edge means that if the current input letter is ‘)’ then
a γ1 at the top of the stack is popped without being replaced.

Notice that if after popping, the symbol at the top of the stack is also γ1, then no further
processing of this input letter occurs. If however after popping, γ0 is revealed, then the
transition consuming ‘)’ is followed by precisely one ε-transition, in which the automaton
traverses the edge from q1 to q0. The label ε, γ0 → γ0 on this edge demonstrates the notation
for ε-transition: in this ε-transition the popped γ0 is pushed back to the stack.

Any number of ε-transitions may occur if the input letter is ‘]’: state q1 is the only inner
state in which this letter is legal, and the stack top must be γ1: if this is not the case, the
automaton aborts; Otherwise, it moves to inner state q2, and then follows the self edge of this
state in a sequence of n ε-transitions, popping all occurrences of γ1 from the stack. Finally,
the automaton follows another ε-transition which brings the automaton back into its initial
internal state q0.

2.2 Deterministic pushdown automata
We distinguish between deterministic and non-deterministic PDAs: At each point during
its computation a non-deterministic PDA (NDPDA) may have several legal transitions (be
they consuming or ε). For example, the automaton depicted in Fig. 2 is deterministic. An
NDPDA chooses among these in the usual non-deterministic fashion: It accepts when there
is a non-deterministic run which leads to an accepting state.

I Definition 1 (DPDA). A deterministic pushdown automaton (DPDA)M is a septupleM =
〈Σ, Q, q0, F,Γ, γ0, δ〉 where Q is a finite set of automaton states, q0 ∈ Q is the initial
state, F ⊆ Q is the set of accepting states, Γ is a finite set of stack symbols, γ0 ∈ Γ is a
designated symbol marking the initial bottom of the stack, and δ is the (partial) transition
function:

δ : Q× (Σ ∪ {ε})× Γ→ Q× Γ∗; (3)

A configuration of a DPDA is a pair 〈q, s〉 ∈ Q× Γ∗ where q is M ’s inner FSA state and s
is the stack contents.

A DPDA gives an operational definition of a some (typically infinite) language ` ⊆ Σ∗:
Given a word w ∈ Σ∗, a DPDA M starts consuming input, left to right, at the configur-
ation 〈q0, γ0〉. For each input letter it encounters, automaton M carries out a consuming
transition and followed by a (possibly empty) sequence of ε-transitions. AutomatonM aborts,
rejecting the input and announcing w 6∈ `, if it either (i) tries to consume a letter when the
stack is empty, or if (ii) the transition function is undefined for the current combination of
input letter and top of stack symbol.

Suppose that M is in configuration 〈q, s〉 and that the stack top is symbol γ ∈ Γ,
i.e., s = γs′ where s′ ∈ Γ∗. Then, if δ(q, σ, γ) = 〈q′, α〉 the automaton moves through a
consuming transition to configuration 〈q′, αs′〉. Alternatively, the automaton also moves to
configuration 〈q′, αs′〉 in through an ε-transition, if δ(q, ε, γ) = 〈q′, α〉.

A configuration is called consuming ifM is about to consume an input letter. Intermediate
configurations are the configurations in which M attempts to carry out an ε transition. Thus,
a consuming configuration is one in which the automaton cannot make any ε transitions; an
intermediate configuration is one in which such transitions are possible.

Y. Gil and O. Roth 13:7

It follows from the determinism requirement that we can assume the initial configura-
tion 〈q0, γ0〉 is consuming: If this is not the case, then initially the automaton must choose
between a possible ε-transition and a consuming transition.

The automaton accepts, announcing w ∈ `, and terminates if after w is consumed in full,
it reaches a consuming configuration 〈q, s〉, where q ∈ F .

Notice that it is technically possible for a DPDA to loop indefinitely via pushing ε-
transition, e.g., by repeatedly pushing symbols into the stack, or, by repeatedly replacing
the stack’s top. This singularity is easy to detect and can be ignored. We tacitly assume
that a DPDA always halts.

2.3 Deterministic languages
Unlike FSAs, the expressive power of PDAs depends on whether they are deterministic or not:
The set of languages accepted by NDPDAs is exactly the set of languages that can be specified
by a context free grammar (CFG). In contrast, the set of languages accepted by DPDAs,
also called the set of deterministic languages, is exactly the set of languages recognizable by
an LR(1) parser [13]. Another important property of deterministic languages is that they
are guaranteed to have an unambiguous grammar. (In contrast, some non-deterministic
languages are inherently ambiguous, i.e., all CFGs for such a language are ambiguous.)

Parsing algorithms used in practice, e.g., LL(k) and LR(k) employ a deterministic
automaton. In fact, the computation in all of the classical LL(1)-, SLR-, LALR-, and LR(1)-
parsers is essentially that of a DPDA.

Deterministic languages are all context free, but not all context free languages are
deterministic. For example, the language specified by the condition

{ wwr | w ∈ Σ+ ∧ wr is w in reverse order }, (4)

or, equivalently, the context free grammar

〈S〉 ::= a 〈S〉 a
| b 〈S〉 b
| ε,

(5)

requires a PDA to “guess” when w ends and wr begins. If the guess is correct, then the
automaton must pop symbols of the stack. If it is not, more symbols must be pushed. A
non-deterministic automaton can explore both options for each letter in the input. Such
guessing cannot be done in a deterministic fashion.

2.4 Simplification of DPDAs
A real-time automaton is an automaton that carries out precisely one transition for each input
symbol. The challenge in producing a real-time pushdown automaton is in the consolidation
of an unbounded number of (ε-) transitions into one. Next we do the first step towards this
consolidation:

We say that the transition is popping if α is empty, and that it is pushing otherwise.
We show how a given DPDA can be transformed into an equivalent one, in which pushing
transitions are never followed by ε-transitions.

I Lemma 2. For every DPDA M , there is a DPDA M ′ recognizing the same language as M ,
such that every pushing transition of M ′ leads to a consuming configuration, in which no
further ε-transitions are possible.

ECOOP 2019

13:8 Fling – A Fluent API Generator

Proof. Consider any particular pushing transition. If no ε-transition follows it, we are done.
Otherwise, we consolidate the transition with the subsequent one. We need to consider four
cases, as depicted in Fig. 3.

qi qj qk

σ, γi → γjα ε, γj → β

σ, γi → βα

(i) consuming push, ε-push.

qi qj qk

ε, γi → γjα ε, γj → β

ε, γi → βα

(ii) ε-push, ε-push.

qi qj qk

σ, γi → γjα ε, γj → ε

σ, γi → α

(iii) consuming push, ε-pop.

qi qj qk

ε, γi → γjα ε, γj → ε

ε, γi → α

(iv) ε-push, ε-pop.

Figure 3 Four cases of consolidating a pushing transition with a subsequent ε-transition.

The top left of the figure shows case (i), in which the first transition is consuming push
and the second transition is an ε-push: A DPDA at state qi and top stack symbol γi consumes
letter σ removes γi, pushes back a sequence γjα, and moves to state qj . In this state, it
carries out an ε-push in which γj is removed and replaced with a sequence β of stack symbols,
and moves to state qk.

The cumulative effect of the two transitions is then: consuming σ, moving from qi to qk
and pushing the sequence βα. As shown in the figure, the automaton can be transformed
without perturbing its semantics, by replacing the edge 〈qi, qj〉 labeled σ, γi → γjα (rendered
in black in the figure) with an edge 〈qj , qk) with labeled σ, γi → βα (rendered in red).

Notice that edge 〈qj , qk〉 with label ε, γj → β is not eliminated in the transformation: In
the case that there are other edges leading to qj , elimination of the edge would change the
semantics of the automaton.

Case (ii) is similar, except that the first transition is not consuming. In this case,
the transformation replaces edge 〈qi, qj〉 with label ε, γi → γjα with a 〈qj , qk〉 edge with
label ε, γi → βα.

These two cases assume that the second transition pushes a non-empty sequence β of
stack symbols. In both cases, the consolidating transition is a pushing consuming transition,
which could be consolidated further.

Cases (iii) and (iv) in Fig. 3 pertain to the situation in which the sequence β is empty,
i.e., the second transition is an ε-pop. As shown in the figure, the transformations correspond
respectively to cases (i) and (ii), with the assumption |β| = 0. In these cases, the consolidated
transition pushes α, which may, or may not be empty. If α is non-empty, then the consolidated
transition is a push, which may be consolidated further with a succeeding ε-transition
(if present).

We repeatedly apply the transformations depicted in Fig. 3 as long as they are applicable:
If 〈qi, qk〉 is an edge that the transformation yields (marked in red in the figure) is pushing,
then it must be further consolidated with any ε-edge outgoing from qk.

Clearly, the process must stop, and when it does, no ε-transitions can follow a pushing
transition. J

What impact does the transformation described in Lemma 2 have on the size of the
automaton? Each step of the transformation consolidates two edges into one. Revisiting

Y. Gil and O. Roth 13:9

Fig. 3 we see it is not always safe to remove edge 〈qj , qk〉: There might be yet another
state qi′ (not depicted in the figure) with an edge 〈qi′ , qj〉. If 〈qj , qk〉 is eliminated then the
four case analysis of qi, qj and qk and the edges that connect them cannot be repeated for
states qi′ , qj and qk and their edges.

The number of edges in the automaton may sometimes be reduced in the course of the
transformation. However, the encoding of the automaton typically increases in size. In cases
(i) and (ii) edge 〈qi, qj〉 with string α is replaced by edge 〈qi, qk〉 with string αβ. If |β| > 1,
the length of the label increases. We argue that this increase is polynomial in the size of the
specification of the automaton: The assumption that the automaton halts is tantamount to
the claim that no ε-transition can occur twice in the processing of a single input letter, and
hence can add |β| symbols to each other edge at most once.

3 Realtime emulation of DPDAs with tree encoding

There are three steps in our algorithm for converting a given DPDA M into to a fluent API
encoding of L(M), the language recognized by M : First we convert M to an equivalent
automaton where no pushing transition can be followed by an ε-transition, relying on
Lemma 2 from the previous section (Sect. 2). Second, in this section we show how M can be
encoded in a tree data structure that makes it possible to process an input letter in constant
time. Effectively, we emulate the computation of M using this data structure. Finally, the
following section (Sect. 4) will hows how this data structure and the constant time processing
can be compiled to Java’s type system, using only unbounded parametric polymorphism.

3.1 Encoding configurations as trees

Let M = 〈Σ, Q, q0, F,Γ, γ0, δ〉 be implicit henceforth, and suppose that Q = {q0, . . . , qh} for
some h ≥ 0. Recall that configurations of M are pairs 〈q, s〉 ∈ Q × Γ∗, storing the inner
state q and a string s ∈ Γ∗ that represents the entire contents of the stack.

For an intermediate configuration c define cε, the ε-closure of c, as the consuming
configuration obtained from c after carrying out all possible ε-transitions. If c is consuming
then cε = c. Observe that cε depends only on c, and not on the input.

The encoding of a configuration c = 〈q, s〉, written e = e(c), is a complete tree of degree h+
1: The root node of e carries labels q and α, where α is a prefix of s, i.e., s = αr, r ∈ Γ∗, and
where |α| > 0 is bounded by some constant that depends on M , but not on the stack’s depth.

More generally, any non-leaf sub-tree e′ of e (including e itself) is an encoding of some
configuration c′ = 〈q′, s′〉, where s′ is a suffix of r, and has two labels associated with it:

1. a state label, which is the state q′,

2. a stack prefix label α′, a non-empty string of stack symbols whose length does not depend
on the input.

We will use the field notation e.q for the state label; e.α for the stack prefix label.
Consider, for example, the DPDA of Fig. 2 recognizing the parentheses language specified

by Fig. 1. The configuration 〈q1, γ1γ1γ1γ0〉 of this automaton (obtained, e.g., after reading
the input prefix “(((”) is encoded by our algorithm as depicted in Fig. 4.

ECOOP 2019

13:10 Fling – A Fluent API Generator

q1, γ1γ1

q1, γ1

q0, γ0

ø$ ø

q1

q0 q2
q0, γ0

ø$ ø

q1

q0 q2
q0, γ0

ø$ ø

q1

q0 q2

q1

q0 q2
q0, γ1

q0, γ0

ø$ ø

q1

q0 q2
q0, γ0

ø$ ø

q1

q0 q2
q0, γ0

ø$ ø

q1

q0 q2

q1

q0 q2
q0, γ0

ø$ ø

q1

q0 q2

q1

q0 q2

Figure 4 The tree encoding of configuration 〈q1, γ1γ1γ1γ0〉 of the automaton of Fig. 2.

(We are oblivious to the question of whether encoding, as defined above, of a configura-
tion is unique; incidentally, our algorithm always creates the same encoding for the same
configuration.)

Since the automaton has three inner states q0, q1, and, q2, the tree is, as can be seen
in the figure, of degree 3. Examine now the path that starts at the root, and choose the
edge labeled q0 until a leaf is encountered. Collecting the stack prefix labels along this
path, yields first the γ1γ1, then γ1 and then γ0, whereby reconstructing the full stack of the
configuration 〈q1, γ1γ1γ1γ0〉. Following the q2 edge will only yield fragments of this stack
contents. However, this curious property is not true for all encodings – the consolidation of
pushing transitions may make changes to the stack contents, so that s′ is not necessarily a
suffix of s, even if e′ occurs in e.

Notice that the same sub-trees occur several times in the figure. We will see below that
even though tree encoding may be exponential in size, it has an efficient, linearly sized,
representation in memory.

The emulation does not examine s′ directly: Instead, it stores in the ith child of e, written
either as e[i] or e[qi], the encoding of configuration 〈qi, s′〉ε. Intuitively, the emulation does
not know to which state qi automaton M will move when α is removed from the stack, so it
stores the result of the computation for all possible values of qi. More precisely, we have the
recursive encoding property

I Property 1 (Recursive encoding property). If e is the encoding of configuration c = 〈q, s〉
and e.α = α, then e[i] is the encoding of the ε-closure of the configuration of 〈qi, s′〉, i.e.,

∀i = 0, . . . , h • e[i] = e (〈qi, s′〉ε) . (6)

In general, configuration 〈qi, s′〉ε depends on the stack contents s′ and therefore computing
its encoding may require an unbounded time. The emulation however these said values
incrementally: whenever an encoding of a new configuration is generated, the values of
its h + 1 children are computed from the encoding of the previous configuration and its
immediate children, as explained below in Sect. 3.5.

Also notice that the length of the encoded stack decreases as one goes down the tree.
Leaves thus encode configurations in which the stack is empty. We allow two kinds of leaves:
the special node ⊥, denoting the (pseudo) configuration of M rejecting the input, and, >,
denoting the (pseudo) configuration of accepting it. It will become evident that these special
nodes represent acceptance or rejection even in the case that the stack is not emptied.

3.2 Emulating a DPDA with tree encoding
There is only one valid encoding of the initial configuration 〈q0, γ0〉, since there is only one
way of selecting α. All children of this configuration are leaves. Leaf i is > if qi ∈ F and ⊥
otherwise. The emulation of M iterates from this initial encoding following Alg. 1.

Y. Gil and O. Roth 13:11

Algorithm 1 Function emulate(w) – emulate the computation of DPDA M on w ∈ Σ∗; returns >
if M accepts w, and ⊥ otherwise.

1: Function emulate(w):
2: Let e ← newNode(q0, γ0) // encoding of initial configuration 〈q0, γ0〉
3: For i← 0, . . . , h do //fill in the ith child of e
4: If qi ∈ F then //M accepting the input
5: e[i]← > // an accepting leaf
6: else //M rejecting it
7: e[i]← ⊥ // a rejecting leaf
8: For σ ∈ w do // iterate on input letters, left to right
9: e← next(e, σ) // encoding of next consuming configuration

10: If e = ⊥ then //M was unable to proceed
11: Return ⊥ // halt emulation rejecting the input
12: If e.q ∈ F then //M terminates in an accepting state
13: Return > // accept the input
14: Return ⊥ // else, M terminated in a non-accepting state, reject the input

The emulation in the algorithm has three parts: In lines 2–7 the encoding of the initial
configuration is computed. Input processing is in lines 8–11 – for each input letter, the
emulator calls function next to compute the encoding of the next consuming configuration.
If it is determined during the iteration that M does not have a valid transition, then the
emulator aborts, rejecting the input. Finally, in lines 12–14, the emulator decides on accepting
or rejecting the input, depending on whether M ended in an accepting state.

3.3 Computing the next encoding
The gist of the emulation is in function next(e, σ) (Alg. 2): given e, an encoding of a
consuming configuration, and input letter σ, next(e, σ) returns the encoding of the consuming
configuration obtained after consuming the input letter σ. This function computes the
cumulative effect on the stack and the inner state of the consuming transition from e on σ
and all ε-transitions that might follow.

Algorithm 2 Function next(e, σ) – given e, an encoding of a consuming configuration, and input
letter σ, returns the encoding of the consuming configuration obtained after consuming σ.

1: Function next(e, σ):
2: Let q, α ← label of e // e is encoding of 〈q, s〉, s = αs′, s′ is unknown
3: Let γ ← first(α) //Pop is possible since α ∈ Γ+

4: Let β ← rest(α) // e is encoding of 〈q, s〉, s = γβs′, s′ is unknown
5: If δ(q, σ, γ) is undefined then //σ-consuming transition is undefined
6: Return ⊥ //The automaton rejects the input
7: Let q′, α′ ← δ(q, σ, γ) //Compute the consuming transition
8: continue as in Alg. 4

We see that next first (lines 2–4) determines that e is encoding of a configuration 〈q, γβs′〉,
where γ ∈ Γ is the head of the stack, β ∈ Γ∗ is the known stack prefix under it, and s′ ∈ Γ∗

ECOOP 2019

13:12 Fling – A Fluent API Generator

is the unknown remainder of the stack. In principle, next can examine the values of e[i] to
determine s′, but doing so would lead to a computation that depends on the stack size, and
hence on the input, which we would like to avoid.

In lines 5–7, next examines the consuming transition of M . If this transition is undefined,
then the input is rejected. Otherwise, next determines that M moves to state q′ and
replaces γ with the string α in the consuming transition, i.e., M moves to intermediate
configuration c = 〈q′, α′βs′〉.

Function next uses an auxiliary recursive function, consolidate(e) (Alg. 3), which recursively
computes the effect on the stack and the inner state of all ε-transitions that might follow:
given e, an encoding of an intermediate configuration c, the function returns the encoding of cε.

Algorithm 3 Recursive function consolidate(e) – given e, an encoding of an intermediate config-
uration, returns the encoding of the consuming configuration obtained from e after all ε-transitions
were carried out.

1: Function consolidate(e):
2: Let q, α ← label of e // e encodes 〈q, s〉, s = αs′, s′ is unknown
3: Let γ ← first(α) //Pop is possible since α ∈ Γ+

4: Let β ← rest(α) // e encodes 〈q, s〉, s = γβs′, s′ is unknown
5: If δ(q, ε, γ) is undefined then //No further ε-transitions are possible
6: Return e //Automaton is ready to consume
7: Let (q′, α′) ← δ(q, ε, γ) //Compute the ε transition
8: continue as in Alg. 4

We see that function consolidate is quite similar to next: It starts (lines 2–4) by determining
that e is an encoding of a configuration 〈q, γβs′〉, γ ∈ Γ, β ∈ Γ∗ and unknown remainder
of the stack s′ ∈ Γ∗. In lines 5–7, consolidate examines the forthcoming ε-transition of M .
However, if this transition is undefined, it is determined no more ε-transitions are possible,
and that e is in fact an encoding of a consuming transition. Function consolidate then simply
returns e.

The similarity of next and consolidate goes further: after initial processing, they proceed
identically: The common part of these two functions is described in Alg. 4, which, given e,
an encoding of a configuration 〈q, γβs′〉, and a transition from this configuration to new
configuration 〈q′, α′βs′〉, returns the encoding of 〈q′, α′βs′〉ε.

3.4 Correctness of the emulation
I Lemma 3. If e is the encoding of an intermediate configuration c, then consolidate(e)
returns the encoding of cε

Proof. Let c = 〈q, αs′〉, where e.q = q and e.α = α. Recall that |α| ≥ 1 and the de-
composition α = γβ, γ ∈ Γ. By the lemma’s assumption e[i] is the encoding of 〈qi, s′〉ε
for i = 0, . . . , h.

First notice that if δ(q, ε, γ) is undefined, then there is no ε-transition from c, c is a
consuming configuration, and c = cε. In this case no further processing is required and
consolidate returns e (line 6 in Alg. 3).

Otherwise the function focuses on the ε-transition leading from q to q′ with label ε, γ → α′.
In this transition M moves from c to configuration c′ = 〈q′, α′βs′〉.

Y. Gil and O. Roth 13:13

Algorithm 4 Common code of functions next (Alg. 2) and consolidate (Alg. 3) – given e, an
encoding of an intermediate configuration c = 〈q, γβs′〉, a state q′ ∈ Q, and stack prefix α′, the
code considers an ε-transition from c to configuration c′ = 〈q′, α′βs′〉, and returns e′, the encoding
of (c′)ε, the ε-closure of c′.

1: If |β| = 0 then // |α| = 1
2: If |α′| = 0 then //This is a popping transition. We encode 〈q′, s′〉ε

3: Return e[q′] //Configuration 〈q′, s′〉ε is encoded by e[q′] by (6)
4: else // |β| = 0, pushing ε-transition: encode 〈q′, α′s′〉
5: Let e′ ← newNode(q′, α′) // e′ is encoding of consuming configuration 〈q′, α′s′〉
6: For i← 0, . . . , h do //Copy the ith child of e′ from e

7: Let e′[i] ← e[i] //By definition, configuration 〈qi, s
′〉ε is encoded by e[i] (= e[qi])

8: Return e′ //Encoding of consuming configuration
9: else // |β| > 0, |α| > 1

10: If |α′| = 0 then //This is a popping transition. We encode 〈q′, βs′〉ε

11: Let e′ ← newNode(q′, β) // e′ is encoding of intermediate configuration 〈q′, βs′〉
12: For i← 0, . . . , h do //Create the ith child of e′

13: Let e′[i] ← e[i] //Other than label e′ is the same as e
14: Return consolidate(e′) //Then, continue recursively to yield 〈q′, βs′〉ε

15: else // |β| > 0, pushing ε-transition: encode 〈q′, α′βs′〉
16: Let e′ ← newNode(q′, α′) // e′ is encoding of consuming configuration 〈q′, α′βs′〉
17: For i← 0, . . . , h do //Create the ith child of e′. We encode 〈qi, βs

′〉ε

18: Let e′[i] ← newNode(qi, β) //Temporarily store the encoding of 〈qi, βs
′〉 in e′[i]

19: For j ← 0, . . . , h do //Create the jth child of e′[i]. We encode 〈qj , s
′〉ε

20: Let e′[i][j] ← e[j] //Encoding of 〈qj , s
′〉ε is e[j] by (6)

21: Let e′[i] ← consolidate(e′[i]) //Recursive call to compute encoding of 〈qi, βs
′〉ε

22: Return e′ //Return consuming configuration 〈q′, α′βs′〉

Function consolidate then carries on in Alg. 4 to compute and return c′ε. If the transition
is popping, consolidate calls itself recursively, to compute the effect of further ε-transitions.
In the case it is pushing, no recursion is required thanks to the transformation of Lemma 2.

We complete the proof by induction on the length of α.

Inductive base. The case |α| = 1, i.e., |β| = 0 is managed in lines 1–8 of Alg. 4. There are
two sub-cases to consider:
Popping transition. If α′ is empty, (line 2) then the transition is popping and c′ = 〈q′, s′〉.

By Property 1 the encoding of c′ε is stored in e[q′] which consolidate returns (line 3).
Pushing transition. If α′ is not empty (line 4) the transition is pushing, c′ = 〈q′, α′s′〉

is consuming and cannot be followed by ε-transitions, i.e., c′ε = c′ (Lemma 2). In
choosing the prefix α′ for the encoding e′ of c′, we have that the stack remainder of e
and e′ are the same, i.e., s = s′. Encoding e′ is therefore created with label q′, α′
(line 5) and reusing the children of e (lines 6–7). It is then returned by the function
without any further processing (line 8).

Inductive step. If |α| > 1 then string β, which is one character shorter than α, is not empty.
Function consolidate then proceeds in line 15 with the same two sub-cases:
Popping transition. If α′ is empty (line 10), then this is a popping ε transition and c′ =
〈q′, βs′〉. Function consolidate then defines a new encoding e′ (line 11) with the non-
empty prefix β. With this selection of stack prefix, the stack remainder of e′ is the
same as that of e, and e′ reuses the children of e (lines 12–13).
The recursive call (line 14) then deals with the subsequent ε-transitions. It returns the
correct result by the inductive hypothesis (recall that |β| = |α| − 1).

ECOOP 2019

13:14 Fling – A Fluent API Generator

Pushing transition. If α′ is not empty (line 15), then the ε-transition under consideration
is pushing. The automaton reaches configuration c′ = 〈q′, α′βs′〉, and since no ε-
transitions follow a pushing transition, we know that c′ is consuming and c′ = c′ε.
Function consolidate then generates a new encoding e′ with labels q′ and α′ (line 16).
The remainder that follows the stack prefix α′ in this case is not s′, but rather βs′.
The stack remainder s′ is obtained with the aid of an extra level in the tree.
Indeed, the children of e′ are labeled with β as a stack prefix (line 18). The stack
remainder of each of these h children is s′. We can therefore reuse the children of e in
populating the h2 grandchildren of e′ (lines 19–20).
Revisiting line 18, we see that we set the ith child of e′ to the encoding of config-
uration 〈qi, βs′〉. However, by Property 1, the ith child of e′ should contain not the
encoding of this configuration, but of its ε-closure.
The recursive call to consolidate in line 21 fixes the children of e′: After this call, each
of its children stores, as required by Property 1, the encoding of 〈qi, βs′〉ε.
As before, the correctness of the recursive call on the children is guaranteed by the
inductive hypothesis and the fact that β, the stack prefix of each of these children, is
one character short of α. J

I Lemma 4. Suppose consuming configuration c is encoded by the tree e, and c yields the
intermediate configuration c′ upon consuming the input letter σ. Then configuration c′ε is
encoded by next(e, σ).

Proof. If δ(q, σ, γ) is undefined, then there is no suitable σ-consuming transition from c,
hence c = ⊥. In this case next returns ⊥ (line 6 in Alg. 2).

Otherwise there is a σ-consuming transition leading to state q′ and replacing γ with α′.
This case is managed in Alg. 4: Observe that this algorithm does not use the input letter σ.
The rest of the proof is identical to the inductive part in the proof of Lemma 3. J

I Lemma 5. Suppose configuration c = 〈q, s〉 is encoded by e with label q, α. Then the
computation time of consolidate(e) is bounded by O(|Q|1+|α|) and does not depend on |s|, the
stack’s depth.

Proof. Let us examine the body of function consolidate: It calls itself recursively in lines 14
and 21. In the first case the function calls itself once, and in the second it calls itself |Q| times.

In both cases the function is called on a configuration with label containing the string β
which is shorter than α, |β| = |α| − 1. Therefore the depth of the call tree is α, and at the
worst case |Q| recursive calls are made in each non-leaf invocation. The number of recursive
calls is at most |Q||α|.

The proof is completed by noticing that the amount of work in the body of the function
is O(|Q|). J

3.5 Use of memory
An encoding is represented by a tree data structure. Functions next and consolidate receive
such a tree, and return another tree of this sort. The depth of these trees is linear in the
stack size, and since their degree is h+ 1, their total size may be exponential in the length of
the input.

Examining the body of Alg. 4, we see that this exponential blowup is not an issue:
The code receives as parameters references to children e[0], . . . , e[h] of encoding e: these
references are copied in lines 7, 13, and 20, but never de-referenced.

Y. Gil and O. Roth 13:15

The body of next creates new tree nodes in lines 5, 11, 16, and 18 of Alg. 4.
Examining these lines, we see that the number of these nodes is maximized if the algorithm
executes lines 16, and 18. In this case, precisely |Q|+1 nodes are created before a recursive
call is made. In total, next creates O(|Q||α|) nodes.

We therefore represent encoding trees in memory as a compact DAG. As illustrated in
Fig. 5, this encoding is natural: instead of copying children and grandchildren in creating a
new encoding, one stores references to these.

q1, γ1γ1

q1, γ1

q0, γ1 e[2]

e[1]e[0] e[2]

e[1]e[0] e[2]

q1

q0 q2

q1

q0 q2

q1

q0 q2

(a) as a tree.

q1, γ1γ1

q0, γ1

q1, γ1

e[1]e[0] e[2]

q1

q1

q2

q0

q0

q0

q2

q2

q1

(b) as a DAG.

Figure 5 Representation of a certain encoding as a tree (5a) and as a DAG (5b).

Since the number of primary calls to next is |w|, the number of letters in the input
(Alg. 1), we have that the memory required for emulating the working of M is linear |w|.
Fig. 6, showing the compact DAG encoding of in Fig. 4, demonstrates.

q0, γ0

ø$ ø
q1

q0 q2

q0, γ1 q1, γ1
q0

q1

q2 q2

q1

q0

q1, γ1γ1
q0

q1

q2

Figure 6 A DAG representation of tree encoding (Fig. 4) of configuration 〈q1, γ1γ1γ1γ0〉 of the
automaton of Fig. 2.

Comparing the figure to the DAG representation of the same configuration (Fig. 4 above),
we see that only the nodes explicitly created by the algorithm are present in the DAG. Indeed,
each of these nodes has three children, but as made clear by the figure, the sharing of children
makes a significant saving in the size of the representation.

ECOOP 2019

13:16 Fling – A Fluent API Generator

4 Compiling a Tree Encoding to Java

This section shows how to construct a Java fluent API definitions E(`) for the lan-
guage ` = `(M) recognized by a given DPDA M . These definitions should be such that the
predicate w ∈ ` is equivalent to type checking the fluent API call chain expression x = x(w)
(see (1) above). Java is used for the sake of exposition: In essence, we show how to compile
a DPDA specification into an abstract declaration in an unbounded parametric polymorph-
ism type system (UPPTS): Correctness of compilation means that every run of the input
specification (some programming language in the general compilation process, but DPDAs
here), has an equivalent run in the output specification (written as machine code instructions
in general, but as type declaration here), and vice versa.

An implementation of the construction is offered as part of the contribution1 in the form
of an automata compiler which translates a given DPDA to Java definitions. For example,
to generate a fluent API for the balanced parentheses language of Fig. 1, a specification
of the automaton (Fig. 2) that recognizes it is supplied to the compiler. The specification
begins with three enum definitions, describing the finite sets of symbols Q, Σ and Γ2:
enum Q { q0, q1, q2 }
enum Σ { c, c, C}
enum Γ { γ0, γ1 }

Observe the use of letter ‘c’ instead of ‘(’ (which is not a valid method name in Java).
Also, letter c(inverted lower case ‘c’) replaces ‘)’ and ‘ C’ replace ‘]’. With these definitions,
a Java model of the DPDA is constructed using the Builder design pattern (List. 2).

Listing 2 Supplying to the automata compiler the specification of the DPDA of Fig. 2.

1 DPDA<Q, Σ, Γ> M = new DPDA.Builder<>(Q.class, Σ.class, Γ.class).
2 q0(q0). // Starting in state q0
3 F(q0). // q0 is an accepting state
4 γ0(γ0). // γ0 is the bottom of stack marker
5 δ(q0, c, γ0, q1, γ0, γ1). // pushing consuming transition δ(q0, γ0, c) = 〈q1, γ1γ0〉
6 δ(q1, c, γ1, q1, γ1, γ1). // pushing consuming transition δ(q1, γ1, c) = 〈q1, γ1γ1〉
7 δ(q1, c, γ1, q1). // popping consuming transition δ(q1, γ1, c) = 〈q1, ε〉
8 δ(q1, null, γ0, q0, γ0). // pushing ε−transition δ(q1, γ0, ε) = 〈q0, γ0〉
9 δ(q1, C, γ1, q2). // popping consuming transition δ(q1, γ0, C) = 〈q2, ε〉

10 δ(q2, null, γ1, q2). // popping ε−transition δ(q2, γ1, ε) = 〈q2, ε〉
11 δ(q2, null, γ0, q0, γ0). // pushing ε−transition δ(q2, γ0, ε) = 〈q0, γ0〉
12 go(); // having accumulated the specification of M , build its model

The code in the listing builds in a fluent API fashion: the first three calls in the chain
define the initial state, the accepting state, and the initial stack symbol. Then follows
a series of calls to the Java function δ(. . .). These are a piecemeal specification of the
transition function of the modeled automaton: the call δ(q0,c,γ0,q1,γ0,γ1) is to say that
the automaton in state q0 and γ0 at the stack top, moves to state q1 and pushes back onto
the stack γ0 and then γ1.

The final call in the above chain to go() concludes the construction, and the above code
stores the DPDA model in variable M of generic class DPDA.

We stress that the Java code produced by the automata compiler is not meant to be
run: the definitions in JL(M) are incomplete, and even if completed, evaluation of the fluent
API expression does not produce any useful value, and will probably fail with run-time error.
The generated code is used solely for type checking. Sect. 5 describes a more practical tool
in which the evaluation of x(w) returns the AST of word w.

1 https://github.com/OriRoth/jdpda
2 This, just as other code excerpts in the paper, is drawn from the implementation. Note that Java

supports UTF characters

https://github.com/OriRoth/jdpda

Y. Gil and O. Roth 13:17

q1, γ1γ1

e[1]

e[0] e[2]

q0

q1

q2

q1

q0 q2

q1

q0 q2

q1

q0 q2

⇒
(

q1, γ1γ1

q0, γ1

q1, γ1

e[1]e[0] e[2]

q1

q1

q2

q0

q0

q0

q2

q2

q1

q1

q0 q2

q1

q0 q2

q1

q0 q2

Figure 7 Partial evaluation of next(e(〈q1, γ1γ1s
′〉),‘(’) presented as a DAG whose leaves are the

implicit parameters (sub-trees) e[0], e[1] and e[2].

4.1 Intuition

Compilation is based on the emulation algorithm described in the previous section. The
main idea is partial evaluation: Instead of compiling to the type system the many details in
Alg. 2, Alg. 3, and Alg. 4, the compiler relies on partial evaluation and caching. The Java
type system is only used on the partially evaluation form.

Let q ∈ Q, α ∈ Γ+ and σ be fixed, and let e be defined by q and α and some stack
remainder s′. Examining the three algorithms that make function next(e, σ) we see that for
any such fixture the function constructs the same tree from the sub-trees e[0], . . . , e[h].

Consider for example the language of Fig. 1 and its DPDA (Fig. 2.) Suppose that M is
in the consuming configuration 〈q1, γ1γ1s

′〉, where s′ ∈ {γ0γ1}∗ and that e is an encoding of
this configuration with stack prefix α = γ1, γ1. Indeed, trees e[0], e[1], and e[2] depend on
the actual contents of s, but next never inspects the contents of these trees.

For these values of q, α and for σ =‘(’, the call next(e, c) involves a call to consolidate,
which may even call itself recursively. Working out the details, one finds that next(e, c) is in
effect the transformation depicted in Fig. 7.

As shown in the figure, the net effect of next(e(〈q1, γ1γ1s
′〉),‘(’ is to transform the

tree encoding on the left to the tree encoding in the right. This transformation does
not examine nodes e[0], e[1], and e[2] (marked in red in the figure). Partial evaluation
of next(e(〈q1, γ1γ1s

′〉),‘(’) is therefore an oblivious function of e[0], e[1] and e[2].
More generally, we have that for every q, α and σ the partial evaluation of next has a

simple DAG structure that represents an oblivious function of e[0], . . . , e[h]. Our DPDA
to Java compiler computes and caches these DAGs for each combination of q, α, and σ it
encounters.

Let D(q, α, σ) denote the DAG defined by q, α, and σ. Note that function D(q, α, σ) may
also assume the special value ⊥ in the case that δ(q, γ, σ) (γ being the first symbol in α) is
undefined.

We argue that D has a finite representation: q and σ are drawn from finite sets. To see
that the number of distinct stack prefixes α is finite, examine again lines 5, 11, 16, and 18
of Alg. 4 in which newNode is invoked: In all of these the stack prefix label attached to
the newly created node is either a label α′ of a certain transition of M , or β, a suffix of an
existing label.

ECOOP 2019

13:18 Fling – A Fluent API Generator

4.2 Structure of the encoding
The Java code emitted by the compiler contains these definitions:

1. A designated type that represents the (leaf) encoding ⊥ – the encoding of a rejecting
automaton.
interface ø { }

Notice that this designated type is not parametric.
2. A designated type that represents the (leaf) encoding > – the encoding of an accepting

automaton.
interface $ { }

Again, this designated type is not parametric.
3. Parametric state types, each designating an encoding label 〈q, α〉, q ∈ Q and α ∈ Γ+, and

each taking |Q| unbounded type parameters. As a matter of convention, the name of this
type is the string of symbols qα separated by underscores: For example, for the encoding
label 〈q1, γ1γ1〉 (described in Fig. 7) the compiler generates the parametric type
interface q1_γ1_γ1<e0, e1, e2> {...}

4. A start variable (named __ in the implementation), from which fluent API chains start.
This variable is one of the generated parametric state types: specifically, the state type
that bears the label of the initial configuration 〈q0, γ0〉.
The values of the parameters are either the rejection or the accepting designated types,
depending on whether the state corresponding to the parameter is accepting or not (as in
Alg. 1). In our example,
q0_γ0<$, ø, ø>__= ...;

With these we have a representation of the tree encodings of configurations of M as a
type obtained from the instantiation of of an appropriate Java generics: An encoding e with
state label q, state prefix label α = γ1γ2 · · · γk and children e[0], . . . , e[h] is represented by
the following instantiation of the parametric state type
q_γ1_γ2 · · · _γk<τ0, τ1, ..., τh>

with actual type parameters τ0, τ1, . . . , τh being the type representation of child encod-
ings e[0], . . . , e[h].

Alg. 1, the emulation of M with tree encoding is done step by step by the fluent API call
chain: If M is in a configuration c after reading the input σ1σ2 · · ·σi, and e is the encoding
of c. Then, the type of the fluent API call chain

__.σ1().σ2().· · · .σi() (7)

is precisely the type representation of e: A call to a method named σ() in the chain represents
the consumption of input letter σ; the type that the method returns is the type encoding
of the subsequent consuming configuration. It is the chief duty of the compiler to correctly
generate this type. For each generic class t with certain q and α, the compiler examines
every σ ∈ Σ:

If D(q, α, σ) 6= ⊥, the compiler generates a method σ() in t, and uses D(q, α, σ) to specify
the return type of σ in terms of the type parameters of t. In the example of Fig. 7, the
compiler generates in q1_γ1_γ1<e0, e1, e2> a method c() whose return type is the
Java representation of the DAG in Fig. 7:
q1_γ1_γ1<q0_γ1<e0, e1, e2>, q1_γ1<e0, e1, e2>, e2> c();

Examine, e.g., the first type argument of the return type of c(): The value of this type
argument is q0_γ1<e0, e1, e2> which is exactly the q0 child of the root of the DAG of
the figure.

Y. Gil and O. Roth 13:19

Conversely, if D(q, α, σ) = ⊥, the compiler sets the return type of σ() to the rejection
type ø.

After constructing the variable M in List. 2 the call M.compile() returns a text including
Java definitions for the fluent API of M. The code is shown in List. 3.

Listing 3 Output of the automata compiler for the DPDA of Fig. 2.

1 interface ø { } // designated type denoting rejection
2 interface $ { } // designated type denoting acceptance
3
4 q0_γ0<$, ø, ø> __ = null; // Initial configuration
5
6 interface q0_γ0<e0, e1, e2> { // (1) configurations 〈q0, γ0s

′〉
7 q1_γ1_γ0<e0, e1, e2> c(); // ‘c’ is the only input letter allowed in this state
8 $ $(); // Input may end in this configuration
9 }

10 interface q1_γ1_γ0<e0, e1, e2> { // (2) configurations 〈q1, γ1γ1s
′〉

11 q1_γ1_γ1<q0_γ0<e0, e1, e2>, q0_γ0<e0, e1, e2>, q0_γ0<e0, e1, e2>> c();
12 q0_γ0<e0, e1, e2> c();
13 q0_γ0<e0, e1, e2> C();
14 }
15 interface q1_γ1_γ1<e0, e1, e2> { // (3) configurations 〈q1, γ1γ1s

′〉
16 q1_γ1_γ1<q0_γ1<e0, e1, e2>, q1_γ1<e0, e1, e2>, e2> c();
17 q1_γ1<e0, e1, e2> c();
18 e2 C();
19 }
20 interface q0_γ1<e0, e1, e2> extends $ { // (4) Configurations 〈q0, γ1s

′〉
21 $ $(); // Input may end in this configuration
22 // No other input letter is legal here
23 }
24 interface q1_γ1<e0, e1, e2> { // (5) configurations 〈q1, γ1s

′〉
25 q1_γ1_γ1<e0, e1, e2> c();
26 e1 c();
27 e2 C();
28 }

Observe in the code the two designated types for acceptance and rejection, and the
start variable whose type is the initial configuration; then follow five parametric state types
(interface q0_γ<e0, e1, e2> through q1_γ1<e0, e1, e2>). Also notice that classes of
configurations with state q0 ∈ F offer a function $() returning the special type $.

4.3 Correctness
With this construction we can argue

I Lemma 6. The Java expression __.σ1().σ2().· · · .σi()
1. does not compile, producing a missing method error message, if M aborts on σ1σ2 · · ·σj,

1 <= j <= i, or,
2. is of a type that represents the encoding of the configuration ofM after reading σ1σ2 · · ·σ)i,

including the special type interface ø denoting rejection.

Proof. Mundane, by induction on i: The type of __ represents the encoding of the initial
configuration. The return type of the call to method σi is, by construction, the type
representation of the encoding of M . J

In addition, if q ∈ F , the code generator adds to type t a method $() whose return type
is interface $, the special type denoting acceptance. This method marks the end of input
in the emulation.

With this addition, we have that the fluent API chain

__.σ1().σ2(). · · ·σn().$()

type checks, if and only if, word σ1σ2 · · ·σn ∈ L(M).

ECOOP 2019

13:20 Fling – A Fluent API Generator

5 Fluent-API Generation in Fling

The contributions of tree encoding (Sect. 3) and automata compilation strategy (Sect. 4)
made it possible to develop Fling– a compiler-compiler in the vein of e.g., YACC and
ANTLR: Fling receives its input in a form suitable for clients – an EBNF grammar rather
than DPDA specification. It converts the grammar into an automaton, and generates the
fluent API type definitions for the language specified by the grammar.

Fling improves on the automata type compiler: Having recognized the fluent API chain
as a valid word, Fling also generates code to construct, at runtime, the AST of the chain,
and provides clients with means for traversing this tree.

Fling is more limited than the automata compiler, since it can only process LL(1)
grammars. The class of languages that can be expressed by such grammars is strictly
contained in the class of deterministic languages, which can all be recognized by the automata
compiler. However, the restriction to LL(1) grammars is not inherent – extending Fling
to support LR(1) grammars (and hence all deterministic languages) is technical (though
laborious): One needs to re-implement the classical LR(1) parser generator to produce its
output in the format expected by a DPDA compiler. The compiler-compiler features of
Fling that we describe here are applicable regardless of the parsing engine.

5.1 Embedding Datalog in Java using Fling
Our open source implementation of Fling3 includes examples of a dozen or so (small)
languages. Here we describe in brief the embedding of Datalog [2] in Java.

Recall that Datalog is a simpler version of Prolog [4] in that predicates cannot be
nested. List. 4 is a reminder of the syntax of Datalog, depicting a simple program to
manage the ancestral relation, including two facts, three rules, and one query.

Listing 4 A Datalog program managing an ancestral relation.

1 parent(john,bob).
2 parent(bob,donald).
3 ancestor(adam,X).
4 ancestor(A,B) :- parent(A,B).
5 ancestor(A,B) :- parent(A,C), ancestor(C,B).
6 ancestor(john,X)?

List. 5 is the Java fluent API equivalent of the Datalog program in List. 4. Code
comment show the Datalog equivalent of fragments of the call chain.

Listing 5 A fluent API specification of the Datalog program of List. 4.

1 Datalog program = datalog.
2 fact("parent").of("john", "bob"). // fluent API of parent(john,bob).
3 fact("parent").of("bob", "donald"). // fluent API of parent(bob,donald).
4 always("ancestor").of(l("adam"), v("X")). // fluent API of ancestor(adam,X)
5 infer("ancestor").of(v("A"), v("B")). // fluent API of ancestor(A,B)
6 when("parent").of(v("A"), v("B")). // fluent API of :- parent(A,B).
7 infer("ancestor").of(v("A"), v("B")). // fluent API of ancestor(A,B)
8 when("parent").of(v("A"), v("C")). // fluent API of :- parent(A,C)
9 and("ancestor").of(v("C"), v("B")). // fluent API of , ancestor(C,B).

10 query("ancestor").of(l("john"), v("X")); // fluent API of ancestor(john,X)?

To create the fluent API demonstrated in List. 5, we start with the names of the methods
involved in the chain. These are precisely the terminals (tokens) of the grammar that

3 https://github.com/OriRoth/fling

https://github.com/OriRoth/fling

Y. Gil and O. Roth 13:21

generated the fluent API. We therefore write an enum definition that enumerates all these
methods:
enum Terminals implements Fling.Terminals { infer, fact, query, of, and, when, always, v, l }

Notice that the methods in fluent API for writing embedded Datalog code take para-
meters, infer("ancestor") and of("bob", "donald"). To understand why, recall that
grammars of programming languages such as Pascal [21] and C++ use two kinds of
non-terminals:

Keywords such as begin, var, punctuation such as ‘(’, ‘;’, ‘:’, and operators such as ‘;’
can appear in only one form in the program code. We call these vacuous tokens. Vacuous
tokens can appear in programs in only one way; they serve as parsing aide in the concrete
grammar, but are omitted from the abstract syntax tree.
In contrast, tokens such as StringLiteral and Identifier carry additional information: A
string literal token carries its content, and an identifier literal token carries its name. We
call tokens of this sort informational tokens.

Grammars of fluent APIs tend to use informational tokens more than vacuous tokens.
Compiler compilers such as YACC use a distinct lexical analyzer to specify the many shapes
any informational token may take. Fling has no accompanying lexical analyzer. However,
since terminals of fluent API are method names, the contents of an informational token is
supplied as argument to the method. For example, an identifier token in a fluent API is
typically written as id("fubar").

Fig. 8 is the EBNF grammar of the fluent API used for embedding Datalog in Java (e.g.,
List. 5). The grammar makes frequent use of informational tokens: writing l("thingy") is
to say that the string parameter is a literal, while v("thingy") is to say that it is a literal.
Also, the 〈Fact〉 symbol is composed of two informational tokens: method fact in which
the Datalog predicate name is supplied as argument, and method of in which the literal
parameters are supplied.

〈Program〉 ::=〈Statement〉+

〈Statement〉 ::=〈Fact〉 | 〈Query〉 | 〈Rule〉

〈Fact〉 ::=fact(〈String〉) of(〈Literal〉∗)

〈Query〉 ::=query(〈String〉) of(〈Term〉∗)
〈Rule〉 ::=〈Bodyless〉 | 〈WithBody〉

〈Bodyless〉 ::=always(〈String〉) of(〈Term〉∗)

〈WithBody〉 ::=〈RuleHead〉 〈RuleBody〉

〈RuleHead〉 ::=infer(〈String〉) of(〈Term〉∗)

〈RuleBody〉 ::=〈FirstClause〉 〈AdditionalClause〉∗

〈FirstClause〉 ::=when(〈String〉) of(〈Term〉∗)

〈AdditionalClause〉 ::=and(〈String〉) of(〈Term〉∗)
〈Term〉 ::=v(〈String〉) | l(〈String〉)

Figure 8 EBNF grammar of embedding Datalog in Java.

Observe that the same token may take different arguments in different contexts, e.g.,
token of any number of plain strings when it is part of a 〈Fact〉 , and any number of 〈Term〉
values when it appears as part of a 〈Rulehead〉 . Notice that symbol 〈Term〉 is also defined
by the grammar in Fig. 8: In general, the information that accompanies a token is not limited
to lexical values, and may be defined by its own grammar.

The specification of the grammar of Fig. 8 requires an enum definition of the list of
symbols
enum Symbols implements Fling.Symbols {

Program, Statement, Rule, Query, Fact, Bodyless, WithBody,
RuleHead, RuleBody, FirstClause, AdditionalClause, Term }

List. 6 uses enum Tokens and enum Symbols in a fluent API chain of methods used to
describe to Fling the grammar in the Fig. 8.

ECOOP 2019

13:22 Fling – A Fluent API Generator

Listing 6 A fluent API specifying the Datalog grammar of Fig. 8.

1 BNF bnf = bnf(Terminals.class, Symbols.class). // Create a BNF with these terminals and symbols
2 start(Program). // 〈Program〉 is the start symbol
3 derive(Program).to(oneOrMore(Statement)). // 〈Program〉 ::= 〈Statement〉+
4 specialize(Statement).into(Fact, Query, Rule). // 〈Statement〉 ::= 〈Fact〉 | 〈Query〉 | 〈Rule〉
5 derive(Fact).to(fact.with(String)).and(of.many(String)).
6 // 〈Fact〉 ::= fact(〈String〉) of(〈Literal〉∗)
7 derive(Query).to(query.with(String)).and(of.many(Term)).
8 // 〈Query〉 ::= query(〈String〉)of(〈Term〉∗)
9 specialize(Rule).into(Bodyless, WithBody). // 〈Rule〉 ::= 〈Bodyless〉 | 〈WithBody〉

10 derive(Bodyless).to(always.with(String)).and(of.many(Term)).
11 // 〈Bodyless〉 ::= always(〈String〉) of(〈Term〉∗)
12 derive(WithBody).to(RuleHead).and(RuleBody).
13 // 〈WithBody〉 ::= 〈RuleHead〉 〈RuleBody〉
14 derive(RuleHead).to(infer.with(String)).and(of.many(Term)).
15 // 〈RuleHead〉 ::= infer(〈String〉) of(〈Term〉∗)
16 derive(RuleBody).to(FirstClause).and(oneOrMore(AdditionalClause)).
17 // 〈RuleBody〉 ::= 〈FirstClause〉 〈AdditionalClause〉∗
18 derive(FirstClause).to(when.with(String)).and(of.many(Term)).
19 // 〈FirstClause〉 ::= when(〈String〉) of(〈Term〉∗)
20 derive(AdditionalClause).to(and.with(String)).and(of.many(Term)).
21 // 〈AdditionalClause〉 ::= and(〈String〉) of(〈Term〉∗)
22 derive(Term).to(and.with(String)).and(of.many(Term));
23 // 〈Term〉 ::= l(〈String〉)| v(〈String〉)

Fling offers its own DSL, written in fluent API style, for grammar specification. The
following notes, along with code comments in the listing should make this language clear:
Token derive in Fling’s DSL denotes a grammar derivation; the information it carries is the
left hand side of a derivation rule. Information attached to token to (that follows derives)
is the first element in the right hand side of the rule. In writing to(infer.with(String))
we use informational token to to specify that the grammar admits an infer token with
information of type String. Similarly, writing and(of.many(Term) we use informational
token and to specify that the grammar admits an of token with information that consists of
any number of occurrences of symbol Term.

5.2 Code generation

Having created a BNF description of Datalog as in List. 6, the execution of bnf.generate()
will make Fling generate all the definitions required for the code in List. 5 to compile correctly.

Moreover, Fling will generate definitions that make it possible to analyze Datalog
programs produced by the fluent API. Variable program of type Datalog produced in List. 5
is an abstract syntax tree (AST) of the program.

As part of the code generation process, similarly to JAMOOS [7] and SOOP [6] Fling
implements an AST class for every symbol in the grammar specification. These classes
uses lists for repetitions, omit vacuous tokens, and may stand in inheritance relation: The
sub-expression

specialize(Statement).into(Fact, Query, Rule)

in List. 6 specifies not only grammatical alternation but also inheritance, i.e., class Fact
inherits from abstract class Statement.

Along with these AST classes, Fling generates a template of an AST visitor that clients
may use for processing a DSL program supplied in fluent API form. List. 7 demonstrates the
use of this visitor to actually run from within Java the Datalog program of List. 4.

Y. Gil and O. Roth 13:23

Listing 7 ASTVisitor running Datalog programs created via fluent API using Jatalog.

1 ASTVisitor runner() {
2 Jatalog j = new Jatalog();
3 return new ASTVisitor(DatalogAST.class) {
4 public boolean visit(Fact f) throws DatalogException {
5 j.fact(f.fact, f.of);
6 print(f);
7 return true;
8 }
9 public boolean visit(Bodyless r) throws DatalogException {

10 j.rule(Expr.expr(r.always, r.of1));
11 print(r);
12 return true;
13 }
14 public boolean visit(WithBody r) throws DatalogException {
15 j.rule(Expr.expr(r.infer, r.of1), getExprRightHandSide(r));
16 print(r);
17 return true;
18 }
19 public boolean visit(Query q) throws DatalogException {
20 print(q);
21 print(j.query(Expr.expr(q.query, q.of)));
22 return true;
23 }
24 };
25 }

Our demonstration of Datalog employs Jatalog4, an open source Datalog engine
to make the Datalog embedding complete. The first three methods in the visitor object
returned by List. 7 store (and print) facts and rules in the Jatalog engine. The last method
asks the engine to compute the query, and then prints the result.

When this visitor is applied to variable program we obtain the output of shown in List. 8.
Listing 8 Output of List. 7 when run on the embedded Datalog program produced by the fluent

API of List. 5.

1 Jatalog:Fling$ parent(john,bob).
2 Jatalog:Fling$ parent(bob,donald).
3 Jatalog:Fling$ ancestor(A,B) :- parent(A,B).
4 Jatalog:Fling$ ancestor(A,B) :- parent(A,C), ancestor(C,B).
5 Jatalog:Fling$ ancestor(john,X)?
6 ---[{X=bob}, {X=donald}]

6 Discussion and Further Work

We showed that any deterministic pushdown automaton can be emulated by a realtime
device using the tree encoding data structure. The tree encoding is exponential in the input
size, but has a compact DAG representation. An interesting topic in theory of automata is
investigation of this data structure, comparing its computational power with that of a stack.
For example, one can ask whether PDAs, deterministic or not, can recognize more languages
if the pushdown structure is replaced with that of a tree or a DAG.

A crucial observation in our construction is that the tree data structure can be written
as a multi-level instantiation of a generic datatype, and that the kind of tree transformations
applied in the emulator can also be written as the return type of methods in this data type.
This observation was demonstrated in the automata compiler, which in turn made possible
the theoretical result of encoding DCFLs in an unbounded polymorphic type system.

The automata compiler was employed in Fling– the first general and practical compiler-
compiler of fluent APIs. Fling can be easily extended to support other programming
languages, including ML [17], C#, and C++ . With some engineering effort Fling can be
extended to LR(1) grammars as supported by YACC does.

4 https://github.com/wernsey/Jatalog

ECOOP 2019

https://github.com/wernsey/Jatalog

13:24 Fling – A Fluent API Generator

Fling is weaker in its expressive power than the DPDA compiler, supporting only LL(1)
grammars. However, we observed the construction in Fling is slightly more useful, in that
auto-completion is more accurate. The fluent API problem, as defined here, does not concern
itself with auto completion. It would be interesting to study a version of the in which an
auto completion feature is required.

In a case study, we showed how Fling is used for embedding Datalog in Java, and
how such programs can be written and run from within Java.

Our description of the embedding, Fling itself, and of the automata compiler also
demonstrate the usability of fluent API and the specific syntax flavor they induce. See
listings 1, 2, 5 and 6. In the context of this style, we coined the term “ informational tokens”.
Unlike traditional lexical analyzers, in Fling information that these tokens carry is not
restricted to plain literals and may be defined by their own grammar. In this respect, Fling
supports nested and even recursive grammars: The information that a token carries may be
defined by the grammar in which the token participates.

We believe that the theoretical result may be also useful in designing extensible languages
and languages whose syntax may be extended by their programs. Designers of such languages
may choose to use the type system instead of a dedicated parsing engine for the unknown
portion of their grammar.

In our implementation we encountered a weakness of the implementation of the to the
discussion type system in the javac compiler. As noticed previously by Gil and Levy [5], this
compiler represents instantiated generics by value, and admits no sharing.

Consider for example the test program in List. 9.
Listing 9 Fluent interfaces exponential type complexity test case.

1 public class BinaryTreeTypeTest {
2 interface Binary<Left,Right> {
3 Binary<Binary<Left,Right>,Binary<Left,Right>> b();
4 }
5 public static void main(String[] args) {
6 System.out.println(((Binary<?,?>)null).b().b().b(). . . .b()); // Use chain of length n
7 }
8 }

Type interace Binary is a generic type. Method b() in this type is such that in a given
instantiation Binary, it returns an instantiation of this type which is twice the size. Thus, a
sequence of n fluent calls to b(), as in function main in the figure, will return an instantiation
of Binary of size 2n.

Fig. 9 shows the compile time of List. 9 as a function n on various compilers. Measurements
were conducted on Java 1.8.0_131, ECJ 3.11.1 and GCJ 6.3.0.

(a) javac compiler (Oracle). (b) Eclipse Java compiler (ECJ). (c) Gnu Java compiler GCJ.

Figure 9 Compilation time in seconds of BinaryTreeTypeTest List. 9 vs. length of fluent API
call chain on various compilers.

As can bee seen in the figure, compilation time grows exponentially on javac. With ECJ
and GCJ, these remain constant. Perhaps this work would encourage the makers of javac to
use the compact DAG representation of types demonstrated above in Fig. 5.

Y. Gil and O. Roth 13:25

References
1 Ken Arnold and James Gosling. The Java Programming Language. Addison Wesley, 1996.
2 Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic programming and databases. SVNY,

1990.
3 Bruno Courcelle. On jump-deterministic pushdown automata. Theory of Computing Systems,

11(1):87–109, 1977.
4 Pierre Deransart, Laurent Cervoni, and AbdelAli Ed-Dbali. Prolog: The Standard: reference

manual. Springer-Verlag, 1996.
5 Yossi Gil and Tomer Levy. Formal language recognition with the Java type checker. In 30th

European Conference on Object-Oriented Programming (ECOOP 2016). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2016.

6 Yossi Gil and David H Lorenz. SOOP – A Synthesizer of an Object-Oriented Parser. TOOLS’95
Europe, pages 81–96, 1995.

7 Yossi Gil and Yuri Tsoglin. JAMOOS - A Domain-Specific Language for Language Processing.
Journal of Computing and Information Technology, 9(4):305–321, 2001.

8 Radu Grigore. Java generics are Turing complete. In Andrew D. Gordon, editor, (POPL’17),
pages 73–85, 2017.

9 Zvi Gutterman. Symbolic Pre-computation for Numerical Applications. Master’s thesis,
Technion, 2004.

10 Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael G Burke, Rajesh Bordawekar,
Igor Pechtchanski, and Vivek Sarkar. XJ: facilitating XML processing in Java. In Proceedings
of the 14th international conference on World Wide Web, pages 278–287. ACM, 2005.

11 Anders Hejlsberg, Scott Wiltamuth, Peter Golde, and Mads Torgersenby. The C# Programming
Language. Addison-Wesley Publishing Company, 2nd edition, 2003-10.

12 ISE. ISE EIFFEL The Language Reference. ISE, 1997.
13 Donald E Knuth. On the translation of languages from left to right. Information and control,

8(6):607–639, 1965.
14 Tomer Levy. A Fluent API for Automatic Generation of Fluent APIs in Java. Master’s thesis,

Technion, 2016.
15 Erik Meijer and Brian Beckman. Xlinq: Xml programming refactored (the return of the

monoids). In Proceedings of XML, volume 5, 2005.
16 Erik Meijer, Wolfram Schulte, and Gavin Bierman. Unifying tables, objects, and documents.

In Workshop on Declarative Programming in the Context of Object-Oriented Languages, pages
145–166. Citeseer, 2003.

17 R. Milner and M. TofteD. MacQueen. The Definition of Standard ML (Revised). MIT Press,
1997.

18 Tomoki Nakamaru, Kazuhiro Ichikawa, Tetsuro Yamazaki, and Shigeru Chiba. Silverchain:
a fluent API generator. Proceedings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences - GPCE 2017, pages 199–211, 2017.
URL: http://dl.acm.org/citation.cfm?doid=3136040.3136041.

19 Bjarne Stroustrup. The C++ programming language. Pearson Education India, 2000.
20 Peter Thiemann. A typed representation for HTML and XML documents in Haskell. Journal

of functional programming, 12(4-5):435–468, 2002.
21 N. Wirth. The programming language Pascal. Acta informatica, 1:35–63, 1971.
22 Hao Xu. EriLex: an embedded domain specific language generator. In International Conference

on Modelling Techniques and Tools for Computer Performance Evaluation, pages 192–212.
Springer, 2010.

ECOOP 2019

http://dl.acm.org/citation.cfm?doid=3136040.3136041

NumLin: Linear Types for Linear Algebra
Dhruv C. Makwana
Unaffiliated
https://dhruvmakwana.com
dcm41@cam.ac.uk

Neelakantan R. Krishnaswami
Department of Computer Science and Technology, University of Cambridge, United Kingdom
https://www.cl.cam.ac.uk/~nk480/
nk480@cl.cam.ac.uk

Abstract
We present NumLin, a functional programming language whose type system is designed to enforce
the safe usage of the APIs of low-level linear algebra libraries (such as BLAS/LAPACK). We do
so through a brief description of its key features and several illustrative examples. We show that
NumLin’s type system is sound and that its implementation improves upon naïve implementations
of linear algebra programs, almost towards C-levels of performance. By doing so, we demonstrate (a)
that linear types are well-suited to expressing the APIs of low-level linear algebra libraries accurately
and concisely and (b) that, despite the complexity of prior work on it, fractional permissions can
actually be implemented using simple, well-known techniques and be used practically in real programs.

2012 ACM Subject Classification Theory of computation → Program specifications

Keywords and phrases numerical, linear, algebra, types, permissions, OCaml

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.14

Related Version A full version of the paper is available at https://github.com/dc-mak/NumLin/
blob/master/write-up/paper.pdf.

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.3
https://github.com/dc-mak/NumLin

Acknowledgements We would like to thank Stephen Dolan for his advice and support with the
implementation and evaluation of NumLin. We would also like to thank the (anonymous) reviewers
for their feedback and suggestions.

1 Introduction

Programmers writing numerical software often find themselves caught on the horns of a
dilemma. The foundational, low-level linear algebra libraries such as BLAS and LAPACK
offer programmers very precise control over the memory lifetime and usage of vector and
matrix values. However, this power comes paired with the responsibility to manually manage
the memory associated with each array object, and in addition to bringing in the familiar
difficulties of reasoning about lifetimes, aliasing and sharing that plague low-level systems
programming; this also moves the APIs away from the linear-algebraic, mathematical style
of thinking that numerical programmers want to use.

As a result, programmers often turn to higher-level languages such as Matlab, R and
NumPy, which offer very high-level array abstractions that can be viewed as ordinary
mathematical values. This makes programming safer, as well as making prototyping and
verification much easier, since it lets programmers write programs which bear a closer
resemblance to the formulas that the mathematicians and statisticians designing these
algorithms prefer to work with, and ensures that program bugs will reflect incorrectly-
computed values rather than heap corruption.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Dhruv C. Makwana and Neelakantan R. Krishnaswami;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 14; pp. 14:1–14:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7220-4991
https://dhruvmakwana.com
mailto:dcm41@cam.ac.uk
https://orcid.org/0000-0003-2838-5865
https://www.cl.cam.ac.uk/~nk480/
mailto:nk480@cl.cam.ac.uk
https://doi.org/10.4230/LIPIcs.ECOOP.2019.14
https://github.com/dc-mak/NumLin/blob/master/write-up/paper.pdf
https://github.com/dc-mak/NumLin/blob/master/write-up/paper.pdf
https://dx.doi.org/10.4230/DARTS.5.2.3
https://github.com/dc-mak/NumLin
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 NumLin: Linear Types for Linear Algebra

The intention is that these languages can use libraries BLAS and LAPACK, without
having to expose programmers to explicit memory management. However, this benefit comes
at a price: because user programs do not worry about aliasing, the language implementations
cannot in general exploit the underlying features of the low-level libraries that let them
explicitly manage and reuse memory. As a result, programs written in high-level statistical
languages can be much less memory-efficient than programs that make full use of the powers
the low-level APIs offer.

So in practice, programmers face a trade-off: they can eschew safety and exploit the full
power of the underlying linear algebra libraries, or they can obtain safety at the price of
unneeded copies and worse memory efficiency. In this work, we show that this trade-off is
not a fundamental one.

NumLin is a functional programming language whose type system is designed to enforce
the safe usage of the APIs of low-level linear algebra libraries (such as BLAS/LAPACK). It
does so by combining linear types, fractional permissions, runtime errors and recursion into
a small, easily understandable, yet expressive set of core constructs.

NumLin allows a novice to understand and work with complicated linear algebra library
APIs, as well as point out subtle aliasing bugs and reduce memory usage in existing programs.
In fact, we were able to use NumLin to find linearity and aliasing bugs in a linear algebra
algorithm that was generated by another program specifically designed to translate matrix
expressions into an efficient sequence of calls to linear algebra routines. We were also able to
reduce the number of temporaries used by the same algorithm, using NumLin’s type system
to guide us.

NumLin’s implementation supports several syntactic conveniences as well as a usable
integration with real OCaml libraries.

1.1 Contributions
Our contribution is the idea applying of linear types with fractional permissions to enforce
the correct usage (as opposed to implementation) of linear algebra libraries. We explain
the idea in detail and provide evidence for its efficacy. Prior type systems for fractional
permissions [11, 9, 8] are quite complex. This is because these type systems typically encode
a sophisticated analysis to automatically infer how fractional permissions should be split
and rejoined.

In contrast, in NumLin, we made sharing and merging explicit. As a result, we were able
to drastically simplify the type system. Thefore, our formal system is very close to standard
presentations of linear logic, and the implementation complexity is no worse than that for
parametric polymorphism.

In this paper
we describe NumLin, a linearly typed language for linear algebra programs
we illustrate that NumLin’s design and features are well-suited to its intended domain
with progressively sophisticated examples
we prove NumLin’s soundness, using a step-indexed logical relation
we describe a very simple, unification based type-inference algorithm for polymorphic
fractional permissions (similar to ones used for parametric polymorphism), demonstrating
an alternative approach to dataflow analysis [9]
we describe an implementation that is compatible with and usable from existing code
we show an example of how using NumLin helped highlight linearity and aliasing bugs,
and reduce the memory usage of a generated linear algebra program

D.C. Makwana and N. R. Krishnaswami 14:3

we show that using NumLin, we can achieve parity with C for linear algebra routines,
whilst having much better static guarantees about the linearity and aliasing behaviour of
our programs.

2 NumLin Overview and Examples

2.1 Type System and Other Features
The core type theory of NumLin is a nearly off-the-shelf linear type theory [3], supporting
familiar features such as linear function spaces A (B and tensor products A ⊗ B. We
adopt linearity – the restriction that each program variable be used exactly once – since it
allows us to express purely functional APIs for numerical library routines that mutate arrays
and matrices [20]. Due to linearity, values cannot alias and are only used once, which means
that linearly-typed updates result in no observable mutation.

As a result, programmers can reason about NumLin expressions as if they were ordinary
mathematical expressions – as indeed they are! We are merely adopting a stricter type
discipline than usual to make managing memory safe.

2.1.1 Intuitionism: ! and Many
However, linearity by itself is not sufficient to produce an expressive enough programming
language. For values such as booleans, integers, floating-point numbers as well as pure
functions, we need to be able to use them intuitionistically, that is, more than once or not at
all. For this reason, we have the ! constructor at the type level and its corresponding Many
constructor and let Many <id> = .. in .. eliminator at the term level. Because we want
to restrict how a programmer can alias pointers and prevent a programmer from ignoring
them (a memory leak), NumLin enforces simple syntactic restrictions on which values can
be wrapped up in a Many constructor (details in Section 3).

2.1.2 Fractional Permissions
There are also valid cases in which we would want to alias pointers to a matrix. The most
common is exemplified by the BLAS routine gemm, which (rather tersely) stands for GEneric
Matrix Multiplication. A simplified definition of gemm(α, A, B, β, C) is C := αAB + βC.
In this case, A and B may alias each other but neither may alias C, because it is being written
to. Related to mutating arrays and matrices is freeing them. Here, we would also wish to
restrict aliasing so that we do not free one alias and then attempt to use another. Although
linearity on its own suffices to prevent use-after-free errors when values are not aliased (a
freed value is out of scope for the rest of the expression), we still need another simple, yet
powerful concept to provide us with the extra expressivity of aliasing without losing any of
the benefits of linearity.

Fractional permissions provide exactly this. Concretely, types of (pointers to) arrays
and matrices are parameterised by a fraction. A fraction is either 1 (20) or exactly half of
another fraction (2−k, for natural k). The former represents complete ownership of that
value: the programmer may mutate or free that value as they choose; the latter represents
read-only access or a borrow: the programmer may read from the value but not write to or
free it. Creating an array/matrix gives you ownership of it, so too does having one (with a
fractional permission of 20) passed in as an argument.

In NumLin, we can produce two aliases of a single array/matrix, by sharing it. If the
original alias had a fractional permission of 2−k then the two new aliases of it will have a
fractional permission of 2−(k+1) each. Thanks to linearity, the original array/matrix with a

ECOOP 2019

14:4 NumLin: Linear Types for Linear Algebra

fractional permission of 2−k will be out of scope after the sharing. When an array/matrix is
shared as such, we can prevent the programmer from freeing or mutating it by making the
types of free and set (for mutation) require a whole (20) permission.

If we have two aliases to the same matrix with identical fractional permissions (2−(k+1)),
we can recombine or unshare them back into a single one, with a larger 2−k permission. As
before, thanks to linearity, the original two aliases will be out of scope after unsharing.

2.1.3 Runtime Errors

Aside from out-of-bounds indexing, matrix unsharing is one of only two operations that
can fail at runtime (the other being dimension checks, such as for gemm). The check being
performed is a simple sanity check that the two aliasing pointers passed to unshare point to
the same array/matrix. Section 5 contains an overview of how we could remove the need for
this by tracking pointer identities statically by augmenting the type system further.

2.1.4 Recursion

The final feature of NumLin which makes it sufficiently expressive is recursion (and of
course, conditional branches to ensure termination). Conditional branches are implemented
by ensuring that both branches use the same set of linear values. A function can be recursive
if it captures no linear values from its environment. Like with Many, this is enforced via
simple syntactic restrictions on the definition of recursive functions.

2.2 Syntax

NumLin’s concrete syntax is inspired by that of OCaml. It desugars (Figure 2) into a smaller,
core type and expression grammar (Figure 1).

As described in Section 2.1.2, fractional permissions f are either variables ′fc, z (20) or
f s (2−(f+1)).

Types are either simple (unit, bool, int, elt), indexed by fractional permission (f arr,
f mat) or compound (! constructor for intuitionism, universally-quantifying over a fractional-
permission ′fc in t for fraction-polymorphic types, pairs, linear functions).

Expressions are standard with the exception of ′fc. t introduction (fractional permission
abstraction) and elimination (fractional permission specialisation) forms.

The ! annotation on variables is a syntactic convenience for declaring the variable to used
intuitionistically; why it desugars the way it does is explained in Section 3.1.

Array/matrix indexing and duplication (non-destructive and destructive) also have
special syntax to lessen the syntactic overhead of re-binding identifiers. Furthermore, to
aid readability, there is support for using BLAS methods via conventional-looking matrix
expressions.

In particular, the syntax let y <- new (m,n) [| alpha * x1 * x2 |] is syntactic
sugar for first creating a new m × n matrix (let y = matrix m n) and then storing the
result of the multiplication in it (let ((x1, x2), y) = .. in ..).

Note that, the pattern let y <- [| x^T * x + beta * y |] translates to (syrk true
1. x beta y), which uses x once only.

D.C. Makwana and N. R. Krishnaswami 14:5

f ::= ′fc | z | f s

t ::= unit | bool | int | elt | f arr | f mat | !t | ′fc. t | t⊗ t′ | t(t′

e ::= p (primitives) | x (variable) | let x = e in e′ | () | let () = e in e′ | true | false
if e then e1 else e2 | k (integer) | l (heap location) | el (array element)
Many v | let Many x = e in e′ | fun ′fc→ e (frac. perm. abstraction)
e [f] (frac. perm. specialisation) | (e, e′) | let (a, b) = e in e′

fun x : t→ e | e e′ | fix (g, x : t, e : t′)

Figure 1 Core fraction f , type t and expression e grammar of NumLin. Values v are a subset of
the expressions, their full definition and a list of all primitives p is in the Appendix.

x[e] ⇒ get _ x (e) (similarly for matrices)
x[e1] := e2 ⇒ set x (e1) (e2) (similarly for matrices)

pat ::= () | x | !x |Many pat | (pat, pat)
let !x = e1 in e2 ⇒ let Many x = e1 in

let Many x = Many (Many x) in e2

let Many 〈patx〉 = e1 in e2 ⇒ let Many x = x in
let 〈patx〉 = x in e2

let (〈pata〉, 〈patb〉) = e1 in e2 ⇒ let (a, b) = a_b in let 〈pata〉 = a in
let 〈patb〉 = b in e2

fun (〈patx〉 : t)→ e ⇒ fun (x : t)→ let 〈patx〉 = x in e

arg ::= (〈pat〉 : t) | (′x) (fractional permission variable)
fun 〈arg1..n〉 → e ⇒ fun 〈arg1〉 → .. fun 〈argn〉 → e

let f 〈arg1..n〉 = e1 in e2 ⇒ let f = fun 〈arg1..n〉 → e1 in e2

let !f 〈arg1..n〉 = e1 in e2 ⇒ let Many f = Many (fun 〈arg1..n〉 → e1) in e2

fixpoint ≡ fix (f, x : t, fun 〈arg0..n〉 → e1 : t′)
let rec f (x : t) 〈arg0..n〉 : t′ = e1 in e2 ⇒ let f = fixpoint in e2

let rec !f (x : t) 〈arg0..n〉 : t′ = e1 in e2 ⇒ let Many f = Many fixpoint in e2

Figure 2 Desugaring NumLin.

ECOOP 2019

14:6 NumLin: Linear Types for Linear Algebra

let v ← x[e] in e′ ⇒ let (x, !v) = x[e] in e′ (similarly for matrices)
let x2 ← new [| x1 |] in e ⇒ let (x1, x2) = copyM _ x1 in e

let x2 ← [| x1 |] in e ⇒ let (x1, x2) = copyM_to _ x1 x2 in e

M ::= X | XT | sym(X)

let Y ← new (n, k) [| αM1M2 |] in e⇒
let Y = matrix n k in let Y ← [| αM1M2 + 0Y |] in e

let Y ← [| αXXT + βY |] in e⇒
let (X,Y) = syrk false α _ X β Y in e

let Y ← [| αXTX + βY |] in e⇒
let (X,Y) = syrk true α _ X β Y in e

let Y ← [| α sym(X1)X2 + βY |] in e⇒
let ((X1, X2), Y) = symm false α _ X1_ X2 β Y in e

let Y ← [| αX2 sym(X1) + βY |] in e⇒
let ((X1, X2), Y) = symm true α _ X1_ X2 β Y in e

let Y ← [| αXT?
1 XT?

2 + βY |] in e⇒
let ((X1, X2), Y) = gemm α _ (X1, true

false) _ (X2, true
false) β Y in e

Figure 3 Purely syntactic pattern-matching translations of matrix expressions.

2.3 Examples

2.3.1 Factorial

Although a factorial function (Figure 4) may seem like an aggressively pedestrian first
example, in a linearly typed language such as NumLin it represents the culmination of
many features.

To simplify the design and implementation of NumLin’s type system, recursive functions
must have full type annotations (non-recursive functions need only their argument types
annotated). The body of the factorial function is a closed expression (with respect to the
function’s arguments), so it type-checks (since it does not capture any linear values from its
environment).

The only argument is !x : !int. As explained before (Section 2.2), this declares x to be
used intuitionistically.

The condition for an if may or may not use linear values (here, with x < 0 || x = 0, it
does not). Any linear values used by the condition would not be in scope in either branch of
the if-expression. Both branches use x differently: one ignores it completely and the other
uses it twice.

All numeric and boolean literals are implicitly wrapped in a Many and all primitives
involving them return a !int, !bool or !elt (types of elements of arrays/matrices, typically
64-bit floating-point numbers). The short-circuiting || behaves in exactly the same way as a
boolean-valued if-expression.

D.C. Makwana and N. R. Krishnaswami 14:7

let rec factorial (!x : !int) : !int =
if x < 0 || x = 0 then

1
else

x * factorial (x - 1) in
factorial ;;

Figure 4 Factorial function in NumLin.

let rec sum_array (!i : !int) (!n : !int) (!x0 : !elt)
('x) (row : 'x arr) : 'x arr * !elt =

if i = n then
(row, x0)

else
let (row, !x1) = row[i] in
sum_array (i + 1) n (x0 +. x1) 'x row in

sum_array ;;

Figure 5 Summing over an array in NumLin.

2.3.2 Summing over an Array

Now we can add fractional permissions to the mix: Figure 5 shows a simple, tail-recursive
implementation of summing all the elements in an array. There are many new features; first
among them is !x0 : !elt, the type of array/matrix elements (64-bit floating point).

Second is ('x) (row: 'x arr) which is an array with a universally-quantified fractional
permission. In particular, this means the body of the function cannot mutate or free the
input array, only read from it. If the programmer did try to mutate or free row, then they
would get a helpful error message (Figure 6).

Alongside taking a row: 'x arr, the function also returns an array with exactly the
same fractional permission as the row (which can only be row). This is necessary because of
linearity: for the caller, the original array passed in as an argument would be out of scope
for the rest of the expression, so it needs to be returned and then rebound to be used for the
rest of the function.

An example of this consuming and re-binding is in let (row, !x1) = row[i]. Index-
ing is implemented as a primitive get : ′x. ′x arr (!int (′x arr ⊗ !elt. Although
fractional permissions can be passed around explicitly (as done in the recursive call), they
can also be automatically inferred at call sites: row[i] ⇒ get _ row i takes advantage of
this convenience.

2.3.3 One-dimensional Convolution

Figure 7 extends the set of features demonstrated by the previous examples by mutating one
of the input arrays. A one-dimensional convolution involves two arrays: a read-only kernel
(array of weights) and an input vector. It modifies the input vector in-place by replacing
each write[i] with a weighted (as per the values in the kernel) sum of it and its neighbours;
intuitively, sliding a dot-product with the kernel across the vector.

ECOOP 2019

14:8 NumLin: Linear Types for Linear Algebra

let row = row[i] := x1 in (* or *) let () = free row in
(* Could not show equality: *)
(* z arr *)
(* with *)
(* 'x arr *)
(* *)
(* Var 'x is universally quantified *)
(* Are you trying to write to/free/unshare an array you don't own? *)
(* In examples/sum_array.lt, at line: 7 and column: 19 *)

Figure 6 Attempting to write to or free a read only array in NumLin.

let rec simp_oned_conv
(!i : !int) (!n : !int) (!x0 : !elt)
(write : z arr) ('x) (weights : 'x arr)
: 'x arr * z arr =

if n = i then (weights, write) else
let !w0 <- weights[0] in
let !w1 <- weights[1] in
let !w2 <- weights[2] in
let !x1 <- write[i] in
let !x2 <- write[i + 1] in
let written = write[i] := w0 *. x0 +. (w1 *. x1 +. w2 *. x2) in
simp_oned_conv (i + 1) n x1 written _ weights in

simp_oned_conv ;;

Figure 7 Simplified one-dimensional convolution.

What’s implemented in Figure 7 is a simplified version of this idea, so as to not distract
from the features of NumLin. The simplifications are:

the kernel has a length 3, so only the value of write[i-1] (prior to modification in the
previous iteration) needs to be carried forward using x0
write is assumed to have length n+1
i’s initial value is assumed to be 1
x0’s initial value is assumed to be write[0]
the first and last values of write are ignored.

Mutating an array is implemented similarly to indexing one – a primitive set : z arr (
!int (!elt (z arr. It consumes the original array and returns a new array with the
updated value.

Since write: z arr (where z stands for k = 0, representing a fractional permission
of 2−k = 2−0 = 1), we may mutate it, but since we only need to read from weights, its
fractional permission index can be universally-quantified. In the recursive call, we see _ being
used explicitly to tell the compiler to infer the correct fractional permission based on the
given arguments.

2.3.4 Digression: Types of Primitives
The most pertinent aspect of NumLin is the types of its primitives (Figure 8). While the types
of operations such as get and set might be borderline obvious, the types of BLAS/LAPACK
routines become an incredibly useful, automated check for using the API correctly.

We determine the types for these routines by consulting their documentation. Each
routine has a record of the expected aliasing behaviour and whether or not it modifies or

D.C. Makwana and N. R. Krishnaswami 14:9

symm : !bool (!elt (′x. ′x mat (′y. ′y mat (!elt (z mat (

(′x mat⊗ ′y mat)⊗ z mat
gemm : !elt (′x. ′x mat⊗ !bool (′y. ′y mat⊗ !bool (!elt (

z mat ((′x mat⊗ ′y mat)⊗ z mat
gesv : z mat (z mat (z mat⊗ z mat
posv : z mat (z mat (z mat⊗ z mat
potrs : ′x. ′x mat (z mat (′x mat⊗ z mat
syrk : !bool (!elt (′x. ′x mat (!elt (z mat (′x mat⊗ z mat

Figure 8 Types of some NumLin primitives.

let !square ('x) (x : 'x mat) =
let (x, (!m, !n)) = sizeM _ x in
let (x1, x2) = shareM _ x in
let answer <- new (m, n) [| x1 * x2 |] in
let x = unshareM _ x1 x2 in
(x, answer) in

square ;;

Figure 9 Squaring a matrix.

consumes its argument in any way. We use that to derive the types in Figure 8. Since
most of these low-level routines are very careful not to do any allocation themselves, it is
generally very easy to give each a NumLin type – every argument that can modify/consume
its argument needs a full permission, and all others can be fraction-polymorphic. Taking
Fortran as an example, it has a notion of in, out and inout parameters. The latter two
would need full z permissions; the first would be fraction-polymorphic.

2.3.5 Squaring a Matrix
Figure 9 shows how a linearly-typed matrix squaring function may be written in NumLin.
It is a non-recursive function declaration (the return type is inferred). Since we would like
to be able to use a function like square more than once, it is marked with a ! annotation
(which also ensures it captures no linear values from the surrounding environment).

To square a matrix, first, we extract the dimensions of the argument x. Then, because
we need to use x twice (so that we can multiply it by itself) but linearity only allows one
use, we use shareM : ′x. ′x mat (′x s mat⊗ ′x s mat to split the permission ’x (which
represents 2−x) into two halves (’x s, which represents 2−(x+1)).

Even if x had type z mat, sharing it now enforces the assumption of all BLAS/LAPACK
routines that any matrix which is written to (which, in NumLin, is always of type z mat)
does not alias any other matrix in scope. So if we did try to use one of the aliases in mutating
way, the expression would not type check, and we would get an error similar to the one
in Figure 6.

By using some simple pattern-matching and syntactic sugar (Figure 3), we can:
write normal-looking, apparently non-linear code
use matrix expressions directly and have a call to an efficient call to a BLAS/LAPACK
routine inserted with appropriate re-bindings

ECOOP 2019

14:10 NumLin: Linear Types for Linear Algebra

let !lin_reg ('x) (x : 'x mat)
('y) (y : 'y mat) =

let (x, (!_n, !m)) = sizeM _ x in
let xy <- new (m, 1) [| x^T * y |] in
let x_T_x <- new (m, m) [| x^T * x |] in
let (to_del, answer) = posv x_T_x xy in
let () = freeM to_del in
((x, y), answer) in

lin_reg ;;

Figure 10 Linear regression (OLS): β̂ = (XTX)−1XTy.

retain the safety of linear types with fractional permissions by having the compiler
statically enforce the aliasing and read/write rules implicitly assumed by BLAS/LAPACK
routines.

2.3.6 Linear Regression

In Figure 10, we wish to compute β̂ = (XTX)−1XTy. To do that, first, we extract the
dimensions of matrix x. Then, we say we would like xy to be a new matrix, of dimension
m× 1, which contains the result of XTy (using syntactic sugar for matrix and gemm calls
similar to that used in Figure 9, with a ^T annotation on x to set x’s “transpose indices”-flag
to true).

Note that x can appear twice in the pattern without any calls to share because the
pattern is matched to a BLAS call to syrk true 1. x 0. x_T_x, which uses x once only.

After computing x_T_x, we need to invert it and then multiply it by xy. The BLAS
routine posv : z mat (z mat (z mat ⊗ z mat does exactly that: assuming the first
argument is symmetric, posv mutates its second argument to contain the desired value. Its
first argument is also mutated to contain the (upper triangular) Cholesky decomposition
factor of the original matrix. Since we do not need that matrix (or its memory) again, we
free it. If we forgot to, we would get a Variable to_del not used error. Lastly, we return
the answer alongside the untouched input matrices (x,y).

2.3.7 L1-norm Minimisation on Manifolds

L1-norm minimisation is often used in optimisation problems, as a regularisation term for
reducing the influence of outliers. Although the below formulation [12] is intended to be
used with sparse computations, NumLin’s current implementation only implements dense
ones. However, it still serves as a useful example of explaining NumLin’s features.

Primitives like transpose : ′x. ′x mat (′x mat ⊗ z mat and eye : !int (z mat
allocate new matrices; transpose returns the transpose of a given matrix and eye k evaluates
to a k × k identity matrix.

We also see our first example of re-using memory for different matrices: like with to_del
and posv in the previous example, we do not need the value stored in tmp_n_n after the call
to gesv (a primitive similar to posv but for a non-symmetric first argument). However, we
can re-use its memory much later to store answer with let answer <- [| 0. * tmp_n_n
+ q_inv_u * inv_u_T |]. Again, thanks to linearity, the identifiers q and tmp_n_n are out
of scope by the time answer is bound. Although during execution, all three refer to the same
piece of memory, logically they represent different values throughout the computation.

D.C. Makwana and N. R. Krishnaswami 14:11

let !l1_norm_min (q : z mat) (u : z mat) =
let (u, (!_n, !k)) = sizeM _ u in
let (u, u_T) = transpose _ u in
let (tmp_n_n , q_inv_u) = gesv q u in
let i = eye k in
let to_inv <- [| i + u_T * q_inv_u |] in
let (tmp_k_k, inv_u_T) = gesv to_inv u_T in
let () = freeM tmp_k_k in
let answer <- [| 0. * tmp_n_n + q_inv_u * inv_u_T |] in
let () = freeM q_inv_u in
let () = freeM inv_u_T in
answer in

l1_norm_min ;;

Figure 11 L1-norm minimisation on manifolds: Q−1U(I + UTQ−1U)−1UT.

2.3.8 Kalman Filter
A Kalman Filter [16] is an algorithm for combining prior knowledge of a state, a statistical
model and measurements from (noisy) sensors to produce an estimate a more reliable
estimated of the current state. It has various applications (navigation, signal-processing,
econometrics) and is relevant here because it is usually presented as a series of complex
matrix equations.

Figure 12 shows a NumLin implementation of a Kalman filter (equations in Figure 13).
A few new features and techniques are used in this implementation:

sym annotations in matrix expressions: when this is used, a call to symm (the equivalent
of gemm but for symmetric matrices so that only half the operations are performed) is
inserted
copyM_to is used to re-use memory by overwriting the contents of its second argument
to that of its first (erroring if dimensions do not match)
posvFlip is like posv except for solving XA = B

a lot of memory re-use; the following sets of identifiers alias each other:
r_1, r_2 and k_by_k
data_1 and data_2
mu and new_mu
sigma_hT and x.

The NumLin implementation is much longer than the mathematical equations for two
reasons. First, the NumLin implementation is a let-normalised form of the Kalman equations:
since there a large number of unary/binary (and occasionally ternary) sub-expressions in
the equations, naming each one line at a time makes the implementation much longer.
Second, NumLin has the additional task of handling explicit allocations, aliasing and frees
of matrices. However, it is exactly this which makes it possible (and often, easy) to spot
additional opportunities for memory re-use. Furthermore, a programmer can explore those
opportunities easily because NumLin’s type system statically enforces correct memory
management and the aliasing assumptions of BLAS/LAPACK routines.

3 Formal System

3.1 Core Type Theory
The full typing rules are in the Appendix, but the key ideas are as follow.

A typing judgement consists of Θ; ∆; Γ ` e : t.

ECOOP 2019

14:12 NumLin: Linear Types for Linear Algebra

let !kalman
('s) (sigma : 's mat) (* n,n *)
('h) (h : 'h mat) (* k,n *)
(mu : z mat) (* n,1 *)
(r_1 : z mat) (* k,k *)
(data_1 : z mat) (* k,1 *) =
let (h, (!k, !n)) = sizeM _ h in
(* could use [| sym(sigma) * hT |] but would

need a (n,k) temporary hT = tranpose _ h *)
let sigma_hT <- new (n, k) [| sigma * h^T |] in
let r_2 <- [| r_1 + h * sigma_hT |] in
let (k_by_k, x) = posvFlip r_2 sigma_hT in
let data_2 <- [| h * mu - data_1 |] in
let new_mu <- [| mu + x * data_2 |] in
let x_h <- new (n,n) [| x * h |] in
let () = freeM (* n,k *) x in
let sigma2 <- new [| sigma |] in
let new_sigma <- [| sigma2 - x_h * sym(sigma) |] in
let () = freeM (* n,n *) x_h in
((sigma, h), (new_sigma, (new_mu, (k_by_k, data_2)))) in

kalman ;;

Figure 12 Kalman filter: see Figure 13 for the equations this code implements and the Appendix
for an equivalent Cblas/Lapacke implementation.

µ′ = µ+ ΣHT (R+HΣHT)−1(Hµ− data)
Σ′ = Σ(I −HT (R+HΣHT)−1HΣ)

Figure 13 Kalman filter equations (credit: matthewrocklin.com).

Θ is the environment that tracks which fractional permission variables in scope. Fractional
permissions (the Perm judgement) and types (the Type judgement) are well-formed if all
of their free fractional variables are in Θ.
∆ is the environment storing non-linearly or inuitionistically typed variables.
Γ is the environment storing linearly typed variables.

Note that rules for typing (), booleans, integers and elements are typed with respect to
an empty linear environment: this means no linear values are needed to produce a value of
those types.

Θ; ∆; · ` () : unit Ty_Unit_Intro

Conversely, whenever two or more subexpressions need to be typed, they must consume
a disjoint set of linear values (pairs, let-expressions). In the case of if-expressions, both
branches must consume the same set of linear values (disjoint to the ones used to evaluate
the condition).

Θ; ∆; Γ ` e : !bool
Θ; ∆; Γ′ ` e1 : t′

Θ; ∆; Γ′ ` e2 : t′

Θ; ∆; Γ,Γ′ ` if e then e1 else e2 : t
Ty_Bool_Elim

The Many introduction and elimination rules are very important. Producing !-type values
may only be done if the expression inside is a syntactic value which is not a location. This

http://matthewrocklin.com/blog/work/2012/11/24/Kalman-Filter

D.C. Makwana and N. R. Krishnaswami 14:13

allows all safely duplicable resources, including functions which capture non-linear resources
from their environments, but prevents producing aliases of (pointers to) arrays and matrices.
This is exactly the same as value-restriction from the world of parametric polymorphism;
without it, the expression let Many x = Many (array 5) in let () = free x in x[0] would
type-check but error at runtime.

Θ; ∆; · ` v : t
v 6= l

Θ; ∆; · `Many v : !t
Ty_Bang_Intro

Consuming a variable that refers to a !-type value moves it from the linear environment
Γ and into the intuitionistic environment ∆.

Θ; ∆; Γ ` e : !t
Θ; ∆, x : t; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` let Many x = e in e′ : t′
Ty_Bang_Elim

Using this, we can explain how the ! annotation on variables – first introduced in the
factorial example in 2.3.1 – works. That is, we can explain why the meaning of let !x = e in e′

can be expressed using only the rules presented thus far, as let Many x = e in let Many x =
Many (Many x) in e′.1 The reader is invited to quickly convince themselves that the
following meta-rule is provable using Ty_Bang_Intro (twice), Ty_Bang_Elim (twice)
and weakening the intuitionistic environment ∆ (once).

Θ; ∆; Γ ` e : !t
Θ; ∆, x : !t; Γ′ ` e′ : t′

Θ; ∆; Γ,Γ′ ` let !x = e in e′ : t′
Meta_Ty_Let_Bang

Rules Ty_Gen and Ty_Spc are for fractional permission generalisation and specialisa-
tion respectively. They allow the definition and use of functions that are polymorphic in the
fractional permission index of their results and one or more of their arguments.

Θ, fc; ∆; Γ ` e : t
Θ; ∆; Γ ` fun ′fc → e : ′fc.t

Ty_Gen
Θ ` f Perm
Θ; ∆; Γ ` e : ′fc.t

Θ; ∆; Γ ` e[f] : t[f /fc]
Ty_Spc

Rule Ty_Fix shows how recursive functions are typed. Even though recursive functions
are fully annotated, type checking them is interesting for two reasons: to type check the
body of the fixpoint, the type of the recusive function is in the intuitionistic environment ∆
(without this, you would not be able to write a base case) whilst the argument and its type
are the only things in the linear environment Γ. The latter means that recursive functions
can be type checked in an empty environment (thus be wrapped in Many and used zero or
multiple times).

Θ; ∆, g : t (t′; ·, x : t ` e : t′

Θ; ∆; · ` fix (g, x : t, e : t′) : t (t′
Ty_Fix

Lastly, types of almost all NumLin primitives, as embedded in OCaml’s type system, are
shown in the Appendix, with some similar ones (like those for binary arithmetic operators)

1 Why we have this at all is for the sake of ergonomics when using binary arithmetic operations (e.g.
of type !int (!int (!int): a programmer should be able to write let x = 5 + 5 in x - x, which,
although non-linear in x, is morally right because integers and operations on them rarely need to be
linear. Though it should be possible to handle this using a LNL-style presentation of linear types [5]
(using adjoint modalities to distinguish between intrinsically linear and intrinsically intuitionistic types)
that is a pretty big digression from the stated goals of this paper.

ECOOP 2019

14:14 NumLin: Linear Types for Linear Algebra

omitted for brevity. The main difference between the OCaml type of a primitive like gemm
and its NumLin counterpart (Figure 8) is the inclusion of explicit universal-quantification of
fractional permission variables in the latter.

3.2 Dynamic Semantics
The full, small-step transition relation is in the Appendix, but the key ideas are as follow.

Heaps σ are multisets containing triples of an abstract location l, a fractional permission
f and sized matrices mn,k. The notation l 7→f mk1,k2 should be read as “location l represents
f ownership over matrix m (of size k1 × k2)”. Each heap-and-expression either steps to
another heap-and-expression or a runtime error err. In the full grammar definition we see a
definition of values and contexts in the language.

We draw the reader’s attention to the definitions relating to fractional permissions.
Specifically, unlike a lambda, the body of a fun ′fc → v must be a syntactic value. The
context fun ′fc → [−] means expressions can be reduced inside a fractional permission
generalisation. This is to emphasize that fractions are merely compile-time constructs and
do not affect runtime behaviour. Correct usage of fractions is enforced by the type system,
so programs do not get stuck. Fractional permissions are specialised using substitution over
both the heap and an expression (Op_Frac_Perm).

〈σ, (fun ′fc → v)[f]〉 → 〈σ[f /fc], v[f /fc]〉
Op_Frac_Perm

Like with the static semantics, the interesting rules in the dynamic semantics are those
relating to primitives. Creating a matrix (matrix k1 k2) successfully (Op_Matrix) requires
non-negative dimensions and returns a (fresh) location of a matrix of those dimensions,
extending the heap to reflect that l represents a complete ownership over the new matrix.

0 ≤ k1, k2

l fresh
〈σ,matrix k1 k2〉 → 〈σ + {l 7→1 Mk1,k2}, l〉

Op_Matrix

Dually, Op_Free, requires a location represent complete ownership before removing it
and the matrix it points to from the heap.

〈σ + {l 7→1 mk1,k2}, free l〉 → 〈σ, ()〉
Op_Free

Choosing a multiset representation as opposed to a set allows for two convenient invariants:
multiplicity of a triple l 7→f mk1,k2 in the heap corresponds to the number of aliases of l in the
expression with type f mat and the sum of all the fractions for l will always be 1 (for a closed,
well-typed expression). With this in mind, the rules Op_Share and Op_Unshare_Eq
are fairly natural.

〈σ + {l 7→f mk1,k2}, share[f] l〉 → 〈σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}, (l, l)〉
Op_Share

σ′ ≡ σ + {l 7→ 1
2 f mk1,k2}+ {l 7→ 1

2 f mk1,k2}
〈σ′,unshare[f] l l〉 → 〈σ + {l 7→f mk1,k2}, l〉

Op_Unshare_Eq

Combining all of these features, we see that Op_Gemm_Match requires that the
location being updated (l3) has complete ownership of over matrix m3 and can thus change
what value it stores to m1m2 +m3. In particular, this places no restriction on l2 and l3: they

D.C. Makwana and N. R. Krishnaswami 14:15

could be shared aliases of the same matrix. Transition rules for other primitives (omitted)
follow the same structure: 7→1 for any locations that are written to and 7→fc for anything else.

σ′ ≡ σ + {l1 7→fc1 m1k1,k2}+ {l2 7→fc2 m2k2,k3}
σ1 ≡ σ′ + {l3 7→1 m3k1,k3}
σ2 ≡ σ′ + {l3 7→1 (m1 m2 + m3)k1,k3}
〈σ1,gemm[fc1] l1[fc2] l2 l3〉 → 〈σ2, ((l1, l2), l3)〉

Op_Gemm_Match

3.3 Logical Relation
First, we define an interpretation of heaps with fractional permissions in the style of Bornat
et. al [10] (interpreting the multiset as a partial map from locations to the sum of all its
associated fractions and a matrix) as well as the n-fold iteration of →.

H[[σ]] = F(l,f,m)∈σ[l 7→f m]

where

(ς1 ? ς2)(l) ≡

ς1(l) if l ∈ dom(ς1) ∧ l /∈ dom(ς2)
ς2(l) if l ∈ dom(ς2) ∧ l /∈ dom(ς1)
(f1 + f2,m) if (f1,m) = ς1(l) ∧ (f2,m) = ς2(l) ∧ f1 + f2 ≤ 1
undefined otherwise

We then define a step-indexed logical relation in the style of Ahmed et. al [2]. (ς, v) ∈ Vk[[t]]
means it takes a heap with exactly ς resources to produce a value v of type t in at most k
steps. So, something like a unit or a !t need no resources, whereas a f mat needs exactly f
ownership of a some matrix and a pair needs a ? combination of the heaps required for each
component.

Vk[[unit]] = {(∅, ∗)}
Vk[[f mat]] = {({l 7→2−f _}, l)}

Vk[[!t]] = {(∅,Many v) | (∅, v) ∈ Vk[[t]]}
Vk[[t1 ⊗ t2]] = {(ς1 ? ς2, (v1, v2)) | (ς1, v1) ∈ Vk[[t1]] ∧ (ς2, v2) ∈ Vk[[t2]]}

The definition of Vk[[′fc. t]] says a value and heap must be the same regardless of what
fraction is substituted into both; the k − 1 is to take into account fraction specialisation
takes one step (Op_Spc).

Vk[[′fc. t]] = {(ς, fun ′fc→ v) | ∀f. (ς[f/fc], v[f/fc]) ∈ Vk−1[[t[f/fc]]]}

To understand the definition of Vk[[t′ (t]], we must first look at Ck[[t]], the computational
interpretation of types. Intuitively, it is a combination of a frame rule on heaps (no
interference), type-preservation and termination (in j < k steps) to either an error or a
heap-and-expression. For the case of termination to a heap-and-expression, there is a further
condition: if the expression is a value syntactically then it is also one semantically.

Ck[[t]] = {(ςs, es) | ∀ j < k, σr. ςs ? ςr defined ⇒ 〈σs + σr, es〉 →j err ∨ ∃σf , ef .
〈σs + σr, es〉 →j 〈σf + σr, ef 〉 ∧ (ef is a value ⇒ (ςf ? ςr, ef) ∈ Vk−j [[t]])}

ECOOP 2019

14:16 NumLin: Linear Types for Linear Algebra

In this light, Vk[[t′ (t]] simply says that v is a function and that evaluating the application
of it to any argument (of the correct type, requiring its own set of resources, bounded by k
steps) satisfies all the aforementioned properties.

Vk[[t′ (t]] = {(ςv, v) | (v ≡ fun x : t′ → e ∨ v ≡ fix(g, x : t′, e : t))∧
∀j ≤ k, (ςv′ , v′) ∈ Vj [[t′]]. ςv ? ς ′v defined ⇒ (ςv ? ς ′v, v v′) ∈ Cj [[t]]}

The interpretation of typing environments ∆ and Γ are with respect to an arbitrary
substitution of fractional permissions θ. Note that only the interpretation of Γ involves a
(potentially) non-empty heap.

Ik[[∆, x : t]]θ = {δ[x 7→ vx] | δ ∈ Ik[[∆]]θ ∧ (∅, vx) ∈ Vk[[θ(t)]]}
Lk[[Γ, x : t]]θ = {(ς ? ςx, γ[x 7→ vx]) | (ς, γ) ∈ Lk[[Γ]]θ ∧ (ςx, vx) ∈ Vk[[θ(t)]]}

And so the final semantic interpretation of a typing judgement simply quantifies over
all possible fractional permission substitutions θ, linear value substitutions γ, intuitionistic
value substitutions δ and heaps σ. Note that, ς ≡ H[[θ(σ)]].

k[[Θ; ∆; Γ ` e : t]] = ∀θ, δ, γ, σ. Θ = dom(θ) ∧ (ς, γ) ∈ Lk[[Γ]]θ ∧ δ ∈ Ik[[∆]]θ ⇒
(ς, θ(δ(γ(e)))) ∈ Ck[[θ(t)]]

3.4 Soundness Theorem
I Theorem 1. (The Fundamental Lemma of Logical Relations)

∀Θ,∆,Γ, e, t. Θ; ∆; Γ ` e : t⇒ ∀k. k[[Θ; ∆; Γ ` e : t]]

3.4.1 Explanation
If an expression e is syntactically type-checked (against a type t), then

for an arbitrary number of steps k,
under any substitution of

free fractional permission variables θ,
linear variables with a suitable heap (γ, ς) and
intuitionistic variables δ,

the aforementioned suitable heap and expression (ς, θ(δ(γ(e))))
are in the computational interpretation Ck[[θ(t)]] of the type t.

The computational interpretation is as defined before (Section 3.3); it identifies executions
that do no un- or ill-defined behaviours (e.g. adding a boolean and an integer). Since our
operational semantics explicitly models deallocation, we now know no well-typed program
will ever try to access deallocated memory, establishing the correctness of our memory
management checking.

3.4.2 Proof Sketch
To prove the above theorem, we need several lemmas; the interesting ones are: the moral
equivalent of the frame rule, monotonicity for the step-index, splitting up environments
corresponds to splitting up heaps and heap-and-expressions take the same steps of evaluation
under any substitution of their free fractional permissions; all of these (and more) are stated
formally and proved in the Appendix.

D.C. Makwana and N. R. Krishnaswami 14:17

The proof proceeds by induction on the typing judgement. The case for Ty_Fix is the
reason we quantify over the step-index k in the conclusion of the soundness theorem. It
allows us to then induct over the step-index and assume exactly the thing we need to prove
at a smaller index.

The case for Ty_Gen follows a similar pattern, but has the extra complication of
reducing an expression with an arbitrary fractional permission variable in it, and then
instantiating it at the last moment to conclude, which is where one of the lemmas (heap-and-
expressions take the same steps of evaluation under any substitution of their free fractional
permissions) is used.

The rest of the cases are either very simple base cases (variables, unit, boolean, integer
or element literals) or follow very similar patterns; for these, only Ty_Let is presented in
full and other similar cases simply highlight exactly what would be different. The general
idea is to split up the linear substitution and heap along the same split of Γ/Γ′, then (by
induction) use Ck[[−]] and one “half” of the linear substitution and heap to conclude the
“first” sub-expression either takes j < k steps to err or another heap-and-expression.

In the first case, you use Op_Context_Err to conclude the whole let-expression does
the same. Similarly we use Op_Context j times in the second case. However, a small
book-keeping wrinkle needs to be taken care of in the case that the heap-and-expression
turns into a value in i ≤ j steps: Op_Context is not functorial for the n-fold iteration of
→. Basically, the following is not quite true:

〈σ, e〉 →j 〈σ′, e′〉
〈σ,C [e]〉 →j 〈σ′,C [e′]〉

Op_Context

because after the i steps, we need to invoke Op_Let_Var to proceed evalution for any
remaining j − i steps. After that, it suffices to use the induction hypothesis on the second
sub-expression to finish the proof. To do so, we need to construct a valid linear substitution
and heap (one in Lk[[Γ′, x : t]]θ). We take the other “half” of the linear substitution and
heap (from the inital split at the start) and extend it with [x 7→ v], (where x is the variable
bound in the let-expression and v is the value we assume the first sub-expression evaluated
to in i steps).

4 Implementation

4.1 Implementation Strategy
NumLin transpiles to OCaml and its implementation follows the structure of a typical
domain-specific language (DSL) compiler. Although NumLin’s current implementation is
not as an embedded DSL, its the general design is simple enough to adapt to being so and
also to target other languages.

Alongside the transpiler, a “Read-Check-Translate” loop, benchmarking program and a
test suite are included in the artifacts accompanying this paper.

1. Parsing. A generated, LR(1) parser parses a text file into a syntax tree. In general, this
part will vary for different languages and can also be dealt with using combinators or
syntax-extensions (the EDSL approach) if the host language offers such support.

2. Desugaring. The syntax tree is then desugared into a smaller, more concise, abstract
syntax tree. This allows for the type checker to be simpler to specify and easier to
implement.

ECOOP 2019

14:18 NumLin: Linear Types for Linear Algebra

3. Matrix Expressions are also desugared into the abstract syntax tree through pattern-
matching.

4. Type checking. The abstract syntax tree is explicitly typed, with some inference to
make writing typical programs more convenient.

5. Code Generation. The abstract syntax tree is translated into OCaml, with a few
“optimisations” to produce more readable code. This process is type-preserving: NumLin’s
type system is embedded into OCaml’s (Figure 14), so the OCaml type checker acts as a
sanity check on the generated code.

A very pleasant way to use NumLin is to have the build system generate code at
compile-time and then have the generated code be used by other modules like normal OCaml
functions. This makes it possible and even easy to use NumLin alongside existing OCaml
libraries; in fact, this is exactly how the benchmarking program and test-suite use code
written in NumLin.

4.1.1 Desugaring, Matrix Expressions and Type Checking
As seen earlier (Figure 2), desugaring is conventional. Matrix expressions are translated into
BLAS/LAPACK calls via purely syntactic pattern-matching (also seen earlier in Figure 3).

4.1.2 Type checking
Type checking is mostly standard for a linearly typed language, with the exception of
fractional permission inference. By restricting fractions to be non-positive integer powers
of two, we only need to keep track of the logarithm of the fractions used. Explicit sharing
and unsharing removes the need for performing dataflow analysis. As a result, all fractional
arithmetic can be solved with unification, and in doing so, fractions become directly usable
in NumLin’s type-system as opposed to a convenient theoretical tool.

Because all functions must have their argument types explicitly annotated, inferring the
correct fraction at a call-site is simply a matter of unification. We believe full-inference
of fractional permissions is similarly just matter of unification (thanks to an experimental
implementation of just this feature), even though the formal system we present here is for an
explicitly-typed language.

There are a few differences between the type system as presented in 3.2 and how we
implemented it: the environment changes as a result of type checking an expression (the
standard transformation to avoid a non-deterministic split of the environment for checking
pairs); variables are marked as used rather than removed for better error messages; variables
are tagged as linear or intuitionistic in one environment as opposed to being stored in two
separate ones (this allows scoping/variable look-up to be handled uniformly).

4.1.3 Code Generation
Code generation is a straightforward mapping from NumLin’s core constructs to high-level
OCaml ones. We embed NumLin’s type- and term- constructors into OCaml as a sanity
check on the output (Figure 14).

This is also useful when using NumLin from within OCaml; for example, we can use
existing tools to inspect the type of the function we are using (Figure 15). It is worth
reiterating that only the type- and term- constructors are translated into OCaml, NumLin’s
precise control over linearity and aliasing are not brought over.

We actually use this fact to our advantage to clean up the output OCaml by removing
what would otherwise be redundant re-bindings (Figure 16). Combined with a code-formatter,

D.C. Makwana and N. R. Krishnaswami 14:19

f ::=
| ’fc
| z
| f s

t ::=
| unit
| bool
| int
| elt
| f arr
| f mat
| ! t
| ’fc. t
| t ⊗ t′

| t (t′

module Arr =
Owl.Dense.Ndarray.D

type z = Z
type 'a s = Succ

type 'a arr =
A of Arr.arr
[@@unboxed]

type 'a mat =
M of Arr.arr
[@@unboxed]

type 'a bang =
Many of 'a
[@@unboxed]

[[′fc]] = ’fc

[[z]] = z

[[f s]] = [[f]] s

[[unit]] = unit

[[bool]] = bool

[[int]] = int

[[elt]] = float

[[f arr]] = [[f]] arr

[[f mat]] = [[f]] mat

[[! t]] = [[t]] bang

[[′fc. t]] = [[t]]
[[t⊗ t′]] = [[t]]*[[t′]]

[[t(t′]] = [[t]]→ [[t′]]

Figure 14 NumLin’s type grammar (left) and its embedding into OCaml (right).

Figure 15 Using NumLin functions from OCaml.

the resulting code is not obviously correct and exactly what an expert would intend to write
by hand, but now with the guarantees and safety of NumLin behind it. A small example is
shown in Figure 17, a larger one in the Appendix.

4.2 Performance Metrics
We think that using NumLin has two primary benefits: safety and performance. We discuss
safety in 5.1, where we describe how we used NumLin to find linearity and aliasing bugs in a
linear algebra algorithm that was generated by another program.

4.2.1 Setup
For performance, we measured the execution times of four equivalent implementations of a
Kalman filter: in C (using Cblas), NumLin (using Owl’s low-level Cblas bindings), OCaml
(using Owl’s intended, safe/copying-by-default interface), and Python (using NumPy, with
the interpreter started and functions interpreted). We measured execution time in micro-

ECOOP 2019

14:20 NumLin: Linear Types for Linear Algebra

let Many x = x in
let Many x = Many (Many x) in <exp> ⇒ <exp>

(* fixp = fix (f, x:t, <exp> : t') *)
(*1*) let Many f = Many fixp in <body>
(*2*) let f = fixp in <body>

⇒ let rec f x = <exp> in <body>

(*1*) let Many x = <exp> in
(*-*) let Many x = Many (Many x) in <body>
(*2*) let Many x = Many <exp> in <body>
(*3*) (fun x : t -> <body>) <exp>

⇒ let x = <exp> in <body>

Figure 16 Removing redundant re-bindings during translation to OCaml.

let rec sum_array i n x0 row =
if Prim.extract @@ Prim.eqI i n then (row, x0)
else

let row, x1 = Prim.get row i in
sum_array (Prim.addI i (Many 1)) n (Prim.addE x0 x1) row

in
sum_array

Figure 17 Recursive OCaml function for a summing over an array, generated (at compile time)
from the code in Figure 5, passed through ocamlformat for presentation.

seconds, against an exponentially (powers of 5) increasing scaling factor for matrix size
parameters n = 5 and k = 3.

For large scaling factors (n = 54, 55), we triggered a full garbage-collection before
measuring the execution time of a single call of a function. However, due to the limitations
of the micro-benchmarking library we used, for smaller scaling factors (n = 51, 52, 53), we
measured the execution time of multiple calls to a function in a loop, thus including potential
garbage-collection effects.

We also measured the execution times of L1-norm minimisation and the “linear-regression”
((XTX)−1XTy) similary, but without a C implementation.

4.2.2 Hypothesis
We expected the C implementation to be faster than the NumLin one because the latter has
the additional (but relatively low) overhead of dimension checks and crossing the OCaml/C
FFI for each call to a Cblas routine, even though the calls and their order are exactly the
same. We expected the OCaml and Python implementations to be slower because they
allocate more temporaries (so possibly less cache-friendly) and carry out more floating-point
operations – the Cblas and NumLin implementations use ternary kernels (coalescing steps),
a Cholesky decomposition (of a symmetric matrix, which is more efficient than the LU
decomposition used for inverting a matrix in Owl and NumPy) and symm (symmetric matrix
multiplication, halving the number of floating-point multiplications required).

4.2.3 Results
The results in Figures 18 are as we expected: C is the fastest, followed by NumLin, with
OCaml and Python last. Differences in timings are quite pronounced at small matrix sizes,
but are still significant at larger ones. Specifically for the Kalman filter, for n = 625, Cblas

D.C. Makwana and N. R. Krishnaswami 14:21

took 112 ± 35ms, NumLin took 105 ± 25ms, Owl took 124 ± 38ms and NumPy took
112± 12ms; for n = 3125, Cblas took 10.8± 0.7 s, NumLin took 12.0± 1.2 s, Owl took
13.3± 0.2 s and NumPy took 12.7± 0.6 s.

Worth highlighting here is the other major advantage of using NumLin is reduced
memory usage. Whilst the Owl and NumPy use 11 temporary matrices for the Kalman
filter, (excluding the 2 matrices which store the results), using n+n2 + 4nk+ 3k2 + 2k ≈ 4n2

(for k = 3n/5) words of memory, Cblas and NumLin use only 2 temporary matrices
(excluding the one matrix which stores one of the results), using only n2 + nk ≤ 2n2 words
of memory.

4.2.4 Analysis

As matrix sizes increase, assuming sufficient memory, the difference in the number of floating-
point operations (O(n3)) dominates execution times. However for small matrix sizes, since
n is small and the measurements were over multiple calls to a function in a loop, the large
number of temporaries show the adverse effect of not re-using memory at even quite small
matrix sizes: creating pressure on the garbage collector.

5 Discussion and Related Work

5.1 Finding Bugs in SymPy’s Output

Prior to this project, we had little experience with linear algebra libraries or the problem
of matrix expression compilation. As such, we based our initial NumLin implementation
of a Kalman filter using BLAS and LAPACK, on a popular GitHub gist of a Fortran
implementation, one that was automatically generated from SymPy’s matrix expression
compiler [18].

Once we translated the implementation from Fortran to NumLin, we attempted to compile
it and found that (to our surprise) it did not type-check. This was because the original
implementation contained incorrect aliasing, unused variables and unnecessary temporaries,
and did not adhere to Fortran’s read/write permissions (with respect to intent annotations
in, out and inout) all of which were now highlighted by NumLin’s type system.

The original implementation used 6 temporaries, one of which was immediately spotted
as never being used due to linearity. It also contained two variables which were marked as
intent(in) but would have been written over by calls to “gemm”, spotted by the fractional
permissions feature. Furthermore, it used a matrix twice in a call to “symm”, once with
a read permission but once with a write permission. Fortran assumes that any parameter
being written to is not aliased and so this call was not only incorrect, but illegal according
to the standard, both aspects of which were captured by linearity and fractional permissions.

Lastly, it contained another unnecessary temporary, however one that was not obvious
without linear types. To spot it, we first performed live-range splitting (checked by linearity)
by hoisting calls to freeM and then annotated the freed matrices with their dimensions.
After doing so and spotting two disjoint live-ranges of the same size, we replaced a call to
freeM followed by allocating call to copy with one, in-place call to copyM_to. We believe
the ability to boldly refactor code which manages memory is good evidence of the usefulness
of linearity as a tool for programming.

ECOOP 2019

14:22 NumLin: Linear Types for Linear Algebra

51 52 53 54 55

101

102

103

104

105

106

107

Matrix size n (for a Kalman filter, with k = 3n/5)

Ex
ec
ut
io
n
tim

e
of

on
e
ca
ll
to

K
al
m
an

fil
te
r
(µ
s)

Cblas NumLin Owl NumPy

51 52 53 54 55

102

103

104

105

106

107

Matrix size n

Ex
ec
ut
io
n
tim

e
of

on
e
ca
ll
to

L1
-n
or
m

m
in
im

isa
tio

n
(µ
s)

NumLin Owl NumPy

51 52 53 54 55

101

102

103

104

105

106

107

Matrix size n

Ex
ec
ut
io
n
tim

e
of

on
e
ca
ll
to

(X
T

X
)−

1
X

T
y
(µ
s)

NumLin Owl NumPy

Figure 18 Comparison of execution times (error bars are present but quite small). Small
matrices and timings n ≤ 53 were micro-benchmarked with the Core_bench library. Larger ones
used Unix’s getrusage functionality, sandwiched between calls to Gc.full_major for the OCaml
implementations.

D.C. Makwana and N. R. Krishnaswami 14:23

5.2 Related Work
5.2.1 Linear types for implementing linear algebra routines
Using linear types for BLAS routines is a particularly good domain fit (given the implicit
restrictions on aliasing arguments), and as a result the idea of using substructural types
to express array computations is not a particularly new one [19, 14, 7]. However, many
of these designs have been focused on building languages to implement the kernel linear
algebra functions, and as a result, they tend to add additional limitations on the language
design. Both Futhark [14] and Single Assignment C [19] omit higher-order functions to
facilitate compilation to GPUs. The work of [7] forbids term-level recursion, in order to
ensure that all higher-order computations can be statically normalized away and thereby
maximize opportunities for array fusion.

5.2.2 Our contribution: linear types for enforcing correct usage of
linear algebra routines

In contrast, our approach is to begin with the assumption that we can take existing efficient
BLAS-like libraries, and then enforce their correct usage using a linear type discipline with
fractional permissions.

5.2.3 Traditionally complex approaches to sharing
Our approach is similar to the one taken in linear algebra libraries for Rust – these libraries
typically take advantage of the distinction that Rust’s type system offers between mutable
views/references to arrays. The work of [21] and [15] suggest that Rust’s borrow-checker
can be expressed in simpler terms using fractional permissions, though to our knowledge the
programmer-visible lifetime analysis in Rust has never been formalized.

Working explicitly with fractional permissions has two main benefits. First, our type
system demonstrates that type systems for fractional permissions can be dramatically simpler
than existing state-of-the-art approaches, including both industrial languages like Rust, as
well as academic (such as those developed by [9]). Bierhoff et al’s type system, much like
Rust’s, builds a complex dataflow analysis into the typing rules to infer when variables can
be shared or not. This allows for more natural-looking user programs, but can create the
impression that using fractional permissions requires a heavy theoretical and engineering
effort going well beyond that needed for supporting basic linear types.

5.2.4 Our contribution: a simpler approach to sharing
Instead, our approach, of requiring sharing to be made explicit, lets us demonstrate that the
existing unification machinery already in place for ordinary ML-style type inference can be
reused to support fractions. Basically, we can view sharing a value as dividing a fraction
by two, and after taking logarithms all fractions are Peano numbers, whose equality can be
established with ordinary unification.

5.2.5 Implications
This fact is important because there are major upcoming implementations of linear types
such as Linear Haskell [6], which do not have built-in support for fractional permissions.
Instead, Linear Haskell takes a slightly different definition of linearity, one based on arrows as
opposed to kinds: for f : a(b, if fu is used exactly once then u is used exactly once. Whilst

ECOOP 2019

14:24 NumLin: Linear Types for Linear Algebra

this has the advantage of being backwards-compatible, it also means that the type system
has no built-in support for the concurrent reader, exclusive writer pattern that fractional
permissions enable.

However, since our type system shows unification is “all one needs” for fractions, it should
be possible to encode NumLin’s approach to fractional permissions in Linear Haskell by
adding a GADT-style natural number index to array types tracking the fraction, which
should enable supporting high-performance BLAS bindings in Linear Haskell. Actually
implementing this is something we leave for future work, as there remains one issue which
we do not see a good encoding for. Namely, only having support for linear functions makes
it a bit inconvenient to manipulate linear values directly – programs end up taking on a
CPS-like structure. This seems to remain an advantage of a direct implementation of linear
types over the Linear Haskell style.

5.3 Simplicity and Further Work
We are pleasantly surprised at how simple the overall design and implementation of NumLin
is, given its expressive power and usability. So simple in fact, that fractions, a convenient
theoretical abstraction until this point, could be implemented by restricting division and
multiplication to be by 2 only [11], thus turning any required arithmetic into unification.

Indeed, the focus on getting a working prototype early on (so that we could test it with
real BLAS/LAPACK routines as soon as possible) meant that we only added features to
the type system when it was clear that they were absolutely necessary: these features were
!-types and value-restriction for the Many constructor.

Going forwards, one may wish to eliminate even more runtime errors from NumLin, by
extending its type system. For example, we could have used existential types to statically
track pointer identities [2], or parametric polymorphism.

We could also attempt to catch mismatched dimensions at compile time as well. While
this could be done with generative phantom types [1], using dependent types may offer more
flexibility in partitioning regions [17] or statically enforcing dimensions related constraints of
the arguments at compile-time. ATS [13] is an example of a language which combines linear
types with a sophisticated proof layer. But although it provides BLAS bindings, it does not
aim to provide aliasing restrictions as demonstrated in this paper.

Taking this idea one step even further, since matrix dimensions are typically fixed at
runtime, we could stage NumLin programs and compile matrix expressions using more soph-
isticated algorithms [4]. However, it is worth noting that without care, such algorithms [18],
usually based on graph-based, ad-hoc dataflow analysis, can produce erroneous output which
would not get past a linear type system with fractions.

We also think that this concept (and the general design of its implementation) need not
be limited to linear algebra: we could conceivably “backport” this idea to other contexts that
need linearity (concurrency, single-use continuations, zero-copy buffer, streaming I/O) or
combine it with dependent types to achieve even more expressive power to split up a single
block of memory into multiple regions in an arbitrary manner [17].

D.C. Makwana and N. R. Krishnaswami 14:25

References
1 Akinori Abe and Eijiro Sumii. A simple and practical linear algebra library interface with

static size checking. arXiv preprint, 2015. arXiv:1512.01898.
2 Amal Ahmed, Matthew Fluet, and Greg Morrisett. Lˆ 3: a linear language with locations.

Fundamenta Informaticae, 77(4):397–449, 2007.
3 Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. University of Edinburgh,

Department of Computer Science, Laboratory for . . . , 1996.
4 Henrik Barthels, Marcin Copik, and Paolo Bientinesi. The generalized matrix chain algorithm.

arXiv preprint, 2018. arXiv:1804.04021.
5 P Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Computer

Science Logic, pages 121–135. Springer, 1995.
6 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R Newton, Simon Peyton Jones, and

Arnaud Spiwack. Linear Haskell: practical linearity in a higher-order polymorphic language.
Procedings of the ACM on Programming Languages, 2(POPL):5, 2017.

7 Jean-Philippe Bernardy, Vıctor López Juan, and Josef Svenningsson. Composable efficient
array computations using linear types. Unpublished Draft, 2016.

8 Kevin Bierhoff and Jonathan Aldrich. PLURAL: checking protocol compliance under aliasing.
In Companion of the 30th international conference on Software engineering, pages 971–972.
ACM, 2008.

9 Kevin Bierhoff, Nels E Beckman, and Jonathan Aldrich. Fraction Polymorphic Permission
Inference.

10 Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission
accounting in separation logic. In ACM SIGPLAN Notices, volume 40 (1), pages 259–270.
ACM, 2005.

11 John Boyland. Checking interference with fractional permissions. In International Static
Analysis Symposium, pages 55–72. Springer, 2003.

12 Alex Bronstein, Yoni Choukroun, Ron Kimmel, and Matan Sela. Consistent discretization and
minimization of the l1 norm on manifolds. In 3D Vision (3DV), 2016 Fourth International
Conference on, pages 435–440. IEEE, 2016.

13 Sa Cui, Kevin Donnelly, and Hongwei Xi. Ats: A language that combines programming
with theorem proving. In International Workshop on Frontiers of Combining Systems, pages
310–320. Springer, 2005.

14 Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cosmin E Oancea.
Futhark: purely functional GPU-programming with nested parallelism and in-place array
updates. ACM SIGPLAN Notices, 52(6):556–571, 2017.

15 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: securing
the foundations of the rust programming language. PACMPL, 2(POPL):66:1–66:34, 2018.
doi:10.1145/3158154.

16 Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1):35–45, 1960.

17 Conor McBride. Code Mesh London 2016, Keynote: SpaceMonads. https://www.youtube.
com/watch?v=QojLQY5H0RI. Accessed: 08/05/2018.

18 Matthew Rocklin. Mathematically informed linear algebra codes through term rewriting, 2013.
19 Sven-Bodo Scholz. Single Assignment C: efficient support for high-level array operations in a

functional setting. Journal of functional programming, 13(6):1005–1059, 2003.
20 Philip Wadler. Linear Types Can Change the World. In M. Broy and C. B. Jones, editors,

IFIP TC 2 Working Conference on Programming Concepts and Methods, pages 561–581, Sea
of Gallilee, Israel, April 1990. North-Holland.

21 Aaron Weiss, Daniel Patterson, and Amal Ahmed. Rust Distilled: An Expressive Tower of
Languages. arXiv preprint, 2018. arXiv:1806.02693.

ECOOP 2019

http://arxiv.org/abs/1512.01898
http://arxiv.org/abs/1804.04021
http://dx.doi.org/10.1145/3158154
https://www.youtube.com/watch?v=QojLQY5H0RI
https://www.youtube.com/watch?v=QojLQY5H0RI
http://arxiv.org/abs/1806.02693

Deep Static Modeling of invokedynamic
George Fourtounis
University of Athens, Department of Informatics and Telecommunications, Greece
gfour@di.uoa.gr

Yannis Smaragdakis
University of Athens, Department of Informatics and Telecommunications, Greece
smaragd@di.uoa.gr

Abstract
Java 7 introduced programmable dynamic linking in the form of the invokedynamic framework.
Static analysis of code containing programmable dynamic linking has often been cited as a significant
source of unsoundness in the analysis of Java programs. For example, Java lambdas, introduced
in Java 8, are a very popular feature, which is, however, resistant to static analysis, since it
mixes invokedynamic with dynamic code generation. These techniques invalidate static analysis
assumptions: programmable linking breaks reasoning about method resolution while dynamically
generated code is, by definition, not available statically. In this paper, we show that a static analysis
can predictively model uses of invokedynamic while also cooperating with extra rules to handle
the runtime code generation of lambdas. Our approach plugs into an existing static analysis and
helps eliminate all unsoundness in the handling of lambdas (including associated features such as
method references) and generic invokedynamic uses. We evaluate our technique on a benchmark
suite of our own and on third-party benchmarks, uncovering all code previously unreachable due to
unsoundness, highly efficiently.

2012 ACM Subject Classification Software and its engineering→ Compilers; Theory of computation
→ Program analysis; Software and its engineering → General programming languages

Keywords and phrases static analysis, invokedynamic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.15

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.6

Funding We gratefully acknowledge funding by the European Research Council, grants 307334
(SPADE) and 790340 (PARSE), a Facebook Research and Academic Relations award, and an Oracle
Labs collaborative research grant.

1 Introduction

Object-oriented and functional programming have combined in recent years to produce hybrid
programming languages. Some of these, such as Scala [45], are new languages, designed from
the ground up to incorporate features of both programming paradigms. Others, for instance
Java [23] and C# [25], have adapted to the demand for functional features by carefully
adding them in an existing language design; examples of this evolution are lambdas [49]
and the streams API [74] in the Java platform and the Language Integrated Query (LINQ)
facility in the .NET ecosystem [36].

On another axis, programming languages occupy different places in the spectrum between
static and dynamic typing. At the extremes, programming languages either have to supply
static (“type”) information for every entity in the program, or do away with all such types,
in a completely dynamic coding style. In practice, most programming languages are closer
to the middle, having a fundamental static or dynamic design, while mixing elements from

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© George Fourtounis and Yannis Smaragdakis;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 15; pp. 15:1–15:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gfour@di.uoa.gr
mailto:smaragd@di.uoa.gr
https://doi.org/10.4230/LIPIcs.ECOOP.2019.15
https://dx.doi.org/10.4230/DARTS.5.2.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Deep Static Modeling of invokedynamic

the opposite approach. For example, the Java Virtual Machine (JVM), the best-established
language runtime system, supports dynamic facilities, such as reflection and dynamic class
loading, that offer significant flexibility, outside the control of the static type system.

A recent dynamic facility added to the JVM, in order to combine flexibility with highly
optimized performance, is that of programmable method resolution and dynamic linking,
in the form of the invokedynamic instruction [62]. The invokedynamic instruction and
its accompanying java.lang.invoke framework permit the expression of fully dynamic
behavior, in much the same way as traditional Java reflection. However, whereas reflection
can be thought of as dynamically interpreting dispatch logic, programmable linking can
be thought of as dynamically compiling dispatch logic, transforming call sites at load time
with decisions possibly cached and subsequently executed at full speed. This facility enables
the JVM to support dynamic language patterns with great efficiency. As a result, the
framework has also been used to implement Java lambdas – the newly-added functional
feature of the language.1

Dynamic features are welcome by many programmers as they offer a needed flexibility.
However, they come at a cost: static reasoning is greatly hindered. For instance, static
analysis tools for Java are largely ineffective when faced with invokedynamic code, although
static analysis has long dealt with (statically-typed) dynamic dispatch (a.k.a. virtual dispatch)
facilities. Virtual method resolution in statically-typed bytecode is much easier to analyze,
compared to purely dynamic code that lacks explicit method signatures. (Virtual dispatch
in standard object-oriented languages performs a dynamic lookup of the function, based
on its name, signature, and the type hierarchy. This is still significantly friendlier to static
reasoning than completely dynamic calls, of functions with possibly statically-unknown
names or types.)

These problems of static reasoning for the dynamic features of the JVM (and, by extension,
its functional lambdas) have been well identified. In recent work, Reif et al. [60] and Sui et
al. [68] describe the unsoundness in the construction of call graphs for Java, caused by features
such as lambdas and invokedynamic. These features are not going away: in a recent study,
Mazinanian et al. [35] “found an increasing trend in the adoption rate of lambdas.” Also,
Holzinger et al. found method handles, a core part of the invokedynamic framework, to pose
“a risk to the secure implementation of the Java platform” [26]. This is a design problem: to
control performance overhead, method handles are less secure by design, compared to the
core reflection API [65].

In this paper, we propose a static analysis that can successfully analyze both the
invokedynamic framework and its particular combination with generated code in Java
lambdas. Our analysis cooperates with an existing points-to analysis and an existing re-
flection analysis (when needed), in mutually recursive fashion. The analysis also simulates
parts of the Java API that either do dynamic code generation or call native code, to main-
tain soundness. Finally, we supply a special static analysis extension that can analyze
lambdas and method references, without any reflection support. This last feature permits
the static analysis of large Java code bases without paying the performance overhead of
reflection reasoning.

1 We emphasize again that the concepts of lambdas (a functional language feature) and programmable
linking (a dynamic language implementation technique) are orthogonal. Lambdas could be implemented
via front-end class generation, dynamic code generation plus traditional virtual dispatch, or other similar
techniques. They are implemented using programmable linking in Oracle’s JDK only as a matter of
choice, since the mechanism is flexible, powerful, and efficient.

G. Fourtounis and Y. Smaragdakis 15:3

In more detail, our work makes the following contributions:
We offer the first static analysis that handles general-purpose invokedynamic – the
basis of modern dynamic features of Java. The static analysis operates at a deep level:
it includes full modeling of the underlying java.lang.invoke framework: a DSL-like
facility for capturing and manipulating methods as values.
We present a static modeling of Java lambdas – the main functional feature of Java.
Although lambdas and invokedynamic are conceptually orthogonal, in practice lambdas
are implemented using invokedynamic, making the analyses of the two features closely
interrelated. Still, the analysis of lambdas is not a mere client of the general-purpose
invokedynamic analysis, since it both needs extra modeling (for generated code) and
admits more efficient implementation, due to its specialized use of invokedynamic,
eschewing the need for complex reflection reasoning.
The analysis is accompanied by a micro-benchmarking suite covering many patterns
found in realistic uses of lambdas and invokedynamic. The suite is independently usable
for validation of static support of these features.
The analysis is evaluated on the third-party suite of Sui et al. [68], which was designed
for showcasing the unsoundness of call-graph construction under dynamic and functional
Java features. Our analysis models all general-purpose uses of invokedynamic and fully
models uses of lambdas.

This paper is structured as follows: we first present a set of examples that explain how
the dynamic and functional features of Java work (Section 2) and proceed to give a more
technical background of these features (Section 3). We then present our technique for the
static analysis of these features, in a declarative analysis framework (Section 4). We evaluate
our model (Section 5), connect with related work (Section 6), and conclude (Section 7).

2 Motivation and Illustration

This section introduces invokedynamic and Java lambdas with the help of examples.

2.1 Motivating Example 1: Late Linking
A common use of dynamic linking is for breaking dependencies between pieces of code so that
they do not have to be compiled together. An example of Java code using invokedynamic
to break a compile-time dependency is shown in Figure 1. Since Java does not permit
invokedynamic-equivalent expressions at the source level,2 we use in the example an IN-
VOKEDYNAMIC pseudo-intrinsic that contains the following information:

a dynamic name (print),
a method type ((A)V),
a list of arguments (just this.obj here),
a bootstrap method signature (here: <A: CallSite bootstrap(MethodHandles.Lookup,
String, MethodType)>), and
a list of bootstrap arguments (empty in this example).

While the code without invokedynamic has to explicitly state which version to call
(and thus store an immutable signature in an invokestatic in the bytecode), the code
using invokedynamic looks up the method programmatically, via a “bootstrap” method,
which initializes the call site. (This lookup could be arbitrarily complex, although in this

2 A proposal is underway to allow such expressions via intrinsics [21].

ECOOP 2019

15:4 Deep Static Modeling of invokedynamic

example the outcome is always the same.) Here we note that the programmer could also
use classic Java reflection to do a similar lookup-and-invoke (retrieving a Method metaobject
and calling an invoke method on it), but that would be inefficient, since standard Java
reflection contains an interpretive layer of introspection. In contrast, invokedynamic can be
compiled away: the bootstrap method is executed at load time, not run time (i.e., not when
method run is invoked, but when it is loaded). The bootstrap method effectively acts as
a load-time macro, accepting as arguments load-time constants (e.g., string constants) or
fragments of uninterpreted expression syntax. This bootstrap method returns a “constant
call site”, which the JVM can inline in place of the invokedynamic call as needed, similar to
having the invokestatic call that is missing from the bytecode.

2.2 Motivating Example 2: Lambdas
For a simple program that creates and uses a lambda, we can take the following example
(adapted from the dynamic benchmark of Sui et al. [68]):
import java.util. function . Consumer ;
public class LambdaConsumer {

public void source () {
Consumer <String > c = (input) -> target (input);
c. accept ("input");

}

public void target (String input) { }

}

Here, method source() creates a lambda that consumes a string value. The lambda takes an
input parameter and calls method target() in its body, passing the parameter to the callee.

The arrow syntax declares a lambda function, which is rather a mismatch for object
orientation: it looks like a bare method, without an instance or declaring type. However, that
syntax behind the scenes constructs an object of type Consumer, as shown by the static type
of variable c. This type is one of the “functional interfaces” [16] provided by Java, which are
interface types that have a functional flavor, i.e., declare a single method. Generic typing
helps with annotating uses of such instances (as with the type parameter of Consumer here).

Indeed, the Consumer type declares a single accept method that takes a String. Calling
that method on a lambda should then evaluate the body of the lambda with the appropriate
parameter passed to it. If we were to inline the code in the body of source() to eliminate
the lambda, it would read:
public void source () {

target ("input");
}

However, such inlining cannot happen in the general case: lambdas are often passed to
code or returned by it, to be applied in a location remote to their origin. Reasoning about
the code above is thus based on non-local (possibly whole-program) reasoning about the
“functional object” that was created and assigned to variable c.

In Figure 2, we see the bytecode generated for the two statements in the body of source in
our example. For presentation purposes, instead of stack-based bytecode, we use the friendlier

G. Fourtounis and Y. Smaragdakis 15:5

Code without invokedynamic

class C implements Runnable {
A obj;

C(A obj) {
this.obj = obj;

}

void run () {
A.print(this.obj); // Direct call

}
}

class A {
public static void print(A a) { }

}

(new C(new A())). run ();

Code using invokedynamic

class C implements Runnable {
A obj;

C(A obj) {
this.obj = obj;

}

void run () {
INVOKEDYNAMIC "print" "(A)V" [this.obj]

<A: CallSite bootstrap (MethodHandles .Lookup ,String , MethodType)>
[]

}
}

class A {
public static void print(A a) { }
public static CallSite bootstrap (MethodHandles . Lookup caller ,

String name , MethodType type) {
MethodType mt = MethodType . methodType (Void.TYPE , A. class);
MethodHandles . Lookup lookup = MethodHandles . lookup ();
MethodHandle handle = lookup . findStatic (A.class , name , mt);
return new ConstantCallSite (handle);

}
}

(new C(new A())). run ();

Figure 1 Example: using invokedynamic to postpone linking of a method call.

ECOOP 2019

15:6 Deep Static Modeling of invokedynamic

l0 := @this: LambdaConsumer;

l1 = dynamicinvoke "accept" <java.util.function.Consumer (LambdaConsumer)>(l0)
<invoke.LambdaMetafactory: invoke.CallSite metafactory(

invoke.MethodHandles$Lookup,String,invoke.MethodType,
invoke.MethodType,invoke.MethodHandle,invoke.MethodType)>

(class "(Ljava/lang/Object;)V",
handle: <LambdaConsumer: void lambda$source$0(String)>,
class "(Ljava/lang/String;)V");

interfaceinvoke l1.<java.util.function.Consumer: void accept(Object)>("input");

Figure 2 The invokedynamic behind a lambda creation (Jimple syntax for example in Section 2.2).
The package prefix “java.lang” has been removed from all types – e.g., invoke.MethodType is
java.lang.invoke.MethodType.

3-address Jimple intermediate language [75]. (In the Jimple syntax, the invokedynamic
JVM instruction is denoted dynamicinvoke.) We observe that the call that generates the
lambda does the following:

It invokes as a bootstrap method (i.e., the method to execute at load-time over the site
of invokedynamic) a special “lambda metafactory” method. Again, this is a method
executing at load time (i.e., akin to a macro). It processes the call site directly and
returns a CallSite value, not the Consumer value of the user code.
It passes to the lambda metafactory enough information to specify what kind of lambda
needs to be generated: one with an “accept” method, implementing interface Consumer
and capturing from its environment parameter l0. The l0 capture means that the current
value of this escapes to the new code that will construct the lambda. This is to be
expected, as the lambda body needs a receiver to resolve the call to target.
A method handle pointing to a compiler-generated method lambda$source$0 is also
passed as an argument. This method encodes the body of the lambda expression.

Note that invokedynamic is used at the site of lambda generation, not lambda invocation.
The latter (in the final line of Figure 2) is a regular interface call.

From the perspective of a static analysis, the only method call that can be resolved in
the invokedynamic instruction is the call to the metafactory but analysis of that cannot
complete: the metafactory does load-time code generation. The compiler-metafactory
synergy (of generating methods at compile time, yet leaving other code generation and
call-site transformation to load time) is a design that cannot be penetrated by a conventional
static analysis. When, in the next instruction, the static analysis tries to analyze the interface
call on the object returned in the invokedynamic instruction, it cannot resolve the target
method and analysis of this call fails.

2.3 Motivating Example 3: Method References
Java 8 introduced lambdas due to popular demand for the feature but also because they were
needed for scaling stream processing over multicore hardware [17]. Streams were another
new functional feature added to Java, that supported combinator functions over series of
data (“streams”), enabling function composition and higher-order programming idioms. An
example of streams and lambdas is the following snippet from Urma’s streams tutorial [74]:

G. Fourtounis and Y. Smaragdakis 15:7

List <Integer > transactionsIds = transactions
. stream ()
. filter (t -> t. getType () == Transaction . GROCERY)
. sorted (comparing (Transaction :: getValue). reversed ())
.map(Transaction :: getId)
. collect (toList ());

Here, we see that function filter takes a lambda using the arrow syntax. We
also see another higher-order feature added in Java 8: method references, such as
Transaction::getValue and Transaction::getId. These pass regular methods as function
parameters to combinator functions comparing and map.

While the syntax of method references is different compared to lambdas, these expressions
are also implemented by the lambda metafactory in a similar way. Method references may be
a simplified version of lambdas but they still have semantic complexities as they can capture
a value from the environment for their receiver.

2.4 Motivating Example 4: SAM Conversion

The use of lambdas (and, by extension, invokedynamic) in Java is not limited to pure
functional programming patterns. Lambdas are backwards compatible with pre-Java-8 code.
In the following example, we see two Runnable objects being constructed, both with the
same functionality:

public class Main {
public static void main(String [] args) {

// Use anonymous class.
Runnable a = new Runnable () {

public void run () {
System .out. println ("Hello.");

}
};

a.run ();

// Use a lambda .
Runnable b = (() -> System .out. println ("Hello."));
b.run ();

}
}

The Runnable interface is a standard type of the Java platform that happens to have a single
method. It is, thus, a “single abstract method” (“SAM”) type3 and the lambda syntax can
be used to generate an instance of it, which can be passed to code compiled with older Java
versions. This approach makes pre-Java-8 code “forward-compatible to lambdas” [17] by
viewing all existing single-method interfaces as lambdas (“SAM conversion” [14, 49]). In
practice, this ease of constructing many types as lambdas means that, even in a simple “hello
world” Java program, several invokedynamic calls to the lambda metafactory take place.

3 Or a “functional interface” [19].

ECOOP 2019

15:8 Deep Static Modeling of invokedynamic

This has caused a regression in the power of static analysis tools on bytecode: unless
it supports lambdas, an analysis may find fewer facts for the same program under Java 8,
compared to Java 7. Java has become more dynamic and functional under the hood.

3 Technical Background

This section gives a basic background on the technology behind method handles, the
invokedynamic framework, lambdas, and method references. We show as much as needed
for the needs of the model of the static analysis that will follow.

3.1 Method Handles and Method Types
Two important kinds of values that are used in the rest of this section are method handles
and method types.

Method handles are the equivalent of type-safe function pointers [64] and a lightweight
alternative to standard reflective method objects [41]. They represent targets for invocation
that can point to methods, constructors, fields, or other parts of an object [64]. There are
three basic kinds of method handles: direct method handles are very similar to pointers;
bound method handles are partial applications of methods [46, 63], and adapter method
handles perform various adjustments of method parameters (e.g., from a flat list of arguments
to a single argument array) [63].

Method types are type descriptors that help method handle invocations guarantee run-time
type safety. A method type describes the parameter types and the return type that a method
handle can accept. Method types can be modified to produce new method types: for example,
their return type can be changed and types can be dropped, changed, or appended [54].

A method handle can be invoked via two methods called on it:
invokeExact() calls the method handle directly, matching its types against the handle
method type.
invoke() is more permissive: it permits conversions of arguments and return type during
the method handle invocation. Such conversions must be compatible with appropriate
conversions of its method type [52].

The general java.lang.invoke API [47], offers ways to compose method handles, convert,
fill in, or rearrange their arguments, perform conditional logic on them, or manipulate them
in other ways. In practice, the method handles API is an embedded domain-specific language
(DSL), which has the flavor of a combinatorial language over functional types. This DSL
does deep embedding [69], i.e. the API creates an intermediate representation that reflects
the semantics of the intended method handle.

The method handles are translated to an intermediate representation called lambda
forms [48, 27]. (Not to be confused with the synonymous “lambda” high-level functional
language feature of the language that we discuss extensively in this paper.) The lambda
form representations can be cached and reused, interpreted, or compiled (using Just-in-Time
technology). This aspect of method handles argues for a static analysis to model them as
primitive concepts: since they eventually do dynamic code generation, their semantics are
impenetrable to a conventional static analysis.

The compilation of lambda forms creates dynamically-generated bytecode of a special
form, called anonymous classes [61]. This is bytecode that is not even visible to the runtime
system class dictionary and is used for fast lightweight code generation [41]. Not only are
these classes hidden; they also violate the read-only invariant of loaded classes in the VM, as
they can patch other classes on the fly.

G. Fourtounis and Y. Smaragdakis 15:9

This design introduces a complete embedded mini-language on top of bytecode, together
with a small implementation (intermediate representation, interpreter, and compilation
back-end). For static analysis tools to reason about custom dynamic behavior, they must,
thus, reason about this small language, from its front-end API embedding, through the
implementation, to the generated bytecode.

3.2 The invokedynamic Instruction
The JVM was initially used to implement only the Java language. As the virtual machine
became a state-of-the art optimizing Just-in-Time (JIT) compiler and the underlying platform
grew, other statically-typed object-oriented languages (such as Scala [45] and Fortress [1])
chose to reuse it by having a compiler front-end from their syntax to bytecode. At the same
time, the rise of dynamic languages, combined with the desire of their implementers to reuse
the Java platform, led to a proliferation of dynamic languages implemented on top of the
JVM, both existing ones such as Ruby (JRuby [44]), Python (Jython [56]), and JavaScript
(Rhino/Nashorn [5]), and new ones such as Groovy and BeanShell. In the meantime,
functional features entered the mainstream, influencing the object-oriented programming
paradigm; functional languages gained enough traction to warrant implementations on top of
the JVM. Examples of functional languages on the JVM are Clojure [24], the Haskell-inspired
Eta [73] and Frege [76], and the Erjang version of Erlang [72]. Finally, Java itself had to
evolve and incorporate functional features (we describe them in detail in Section 3.3).

To become multi-lingual in an efficient way, the JVM design had to gain two new powers:
the capability to implement diverse dynamic behaviors; and native support for the basic
building block of functional programming, lambdas. In this subsection, we give an overview
of invokedynamic, while on the next subsection, we will see how the functional features are
supported under the hood as an instance of dynamic behavior (Section 3.3).

A classic characteristic of dynamically-typed languages is their reliance on runtime opti-
mization for performance, since there are no statically-available types to use for optimization.
Naive implementations of dynamically-typed languages are slow, since they are usually
interpreters that constantly query metadata to discover the runtime types of objects in order
to perform safe operations on them. Runtime optimization systems come to the rescue:
modern high-performance dynamic languages profile the running program and optimize it,
often generating good code at runtime, when more information is known about the behavior
of the program (the “Just-in-Time” or “JIT” approach).

JIT optimization has a long history, for instance one of its techniques to speed up method
calls, “inline caching”, appears in the classic implementation of the Smalltalk object-oriented
dynamic language [8]. Today, the JIT approach forms the basic technology behind successful
implementations as diverse as the cutting-edge Java Virtual Machine [33] or the browser
runtimes of JavaScript that enabled the Web 2.0 wave of applications.

As dynamic languages on the JVM were pushing for more performance on the JVM, Java
7 introduced a new bytecode opcode, invokedynamic [62], together with an API around it,
that could offer the programmer the capability to completely customize dynamic program
behavior. The program could now implement its own method dispatch semantics, for example
perform linking, unlinking, and relinking of code on the fly, add or remove fields and methods
in objects, or implement inline caching using plain Java code. The crucial advantages of this
approach, compared to writing adapter code by hand, are not only in saving engineering effort
through a friendly API, but also in informing the JIT optimizer so that better optimizations
(such as inlining) can happen across dynamic dispatch borders.

Oracle offers this as motivation: “The invokedynamic instruction simplifies and potentially
improves implementations of compilers and runtime systems for dynamic languages on the

ECOOP 2019

15:10 Deep Static Modeling of invokedynamic

JVM. The invokedynamic instruction does this by allowing the language implementer to define
custom linkage behavior. This contrasts with other JVM instructions such as invokevirtual,
in which linkage behavior specific to Java classes and interfaces is hard-wired by the JVM.”4

Dynamic languages on the JVM were naturally the first users of this new functional-
ity (JRuby [40, 77], Jython [3], the Nashorn JavaScript engine [31], Groovy [71], Redline
Smalltalk [43], and a significant subset of PHP [12]), as they could improve their perfor-
mance [55]. The invokedynamic instruction even inspired the creation of at least one new
JVM-based language [58]. Moreover, this new capability was used for other applications, such
as live code modification [59], aspect-oriented programming [39], context-oriented program-
ming [2, 34], multiple dispatch/multi-methods (a generalization of object-oriented dynamic
dispatch to take more than one method arguments into consideration when choosing the
target method of an invocation) [42], lazy computations [42, 15], generics specialization [20],
implementation of actors [38], and dynamically adaptable binary compatibility via cross-
component dynamic linking [28]. This new low-level functionality also became available for
programmable high-level dynamic linking and metaobject protocol implementation via the
Dynalink library [70].

Informally, invokedynamic can be seen as configurable initialization (and possible recon-
figuration) of invocations in Java bytecode. When the JVM loads a class, it resolves every
invokedynamic instruction in it. For every invokedynamic instruction:
1. A special bootstrap method is called. The method reads information either embedded in

the instruction or coming from the constant pool of the class.
2. The bootstrap method returns a call site object. That object belongs to the instruction

location in the bytecode and contains a method handle.
3. Since the call site contains a method handle, the invocation is resolved now and the call

site has been linked. The method handle can be thus invoked (see Section 3.1).
4. The call site is a Java object, so the program can access it and can later mutate its

method handle so that the invocation is effectively re-linked to resolve to another method.
This is essential for modeling fully dynamic behavior (e.g., making an object support an
extra method during run time).

The model above means that the program can now control the linking of method calls.
Moreover, this framework makes dynamically-linked invocations efficient. Since the JVM
internally supports invokedynamic, it can optimize such invocations. For example, if the call
site is a constant call site,5 the invocation can be inlined. The efficiency of invokedynamic
invocations has been confirmed by Kaewkasi [29] and Ortin et al. [55].

3.3 Method References and Lambdas
As seen in the examples of Section 2, method references and lambdas are functional program-
ming features added to Java for more expressive power. Eventually, Java 8 implemented
these two features with invokedynamic [15]. A crucial motivation for this implementation
choice has been compatibility, i.e., to avoiding a commitment to a single bytecode-visible
implementation of lambdas (e.g., as classes). Describing the implementation of lambdas in
terms of invokedynamic gives the Java compiler developers the freedom to later change the

4 https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.
html#invokedynamic

5 https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/ConstantCallSite.html

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html#invokedynamic
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/ConstantCallSite.html

G. Fourtounis and Y. Smaragdakis 15:11

underlying implementation, without breaking binary compatibility [15, 17]. The only trace of
the translation of lambdas inside the bytecode is an invokedynamic call to a specific lambda
metafactory, but the code emitted by that may later change.

Both lambdas and method references use the same implementation technique:
invokedynamic sites that use special bootstrap methods, the lambda metafactories [50]. A
lambda metafactory initializes a call site so that it contains a lambda factory, i.e., it can
generate functional objects. The Java 8 lambda metafactory generates an inner class that
implements the functional interface.6 The functional objects created can either be stateless
or access values from their enclosing environment [18]. The implementation of lambdas is a
thin layer of code that only uses small pieces of dynamically-generated code as glue.

In practice, the Java compiler creates appropriate methods for the bodies of lambdas
(implementing methods) and registers method handles of them in the constant pool. These
method handles are then used in invokedynamic invocations to the lambda metafactories,
together with any values captured from the environment. The lambda metafactories can
then create new anonymous classes that can be used to instantiate the functional objects
and forward method calls to the implementing methods.

4 Static Analysis

We next present our model for handling the java.lang.invoke API (i.e., method handles),
the invokedynamic instruction (in general), as well as Java lambdas. We offer a declarative
set of inference rules that appeal to relations defined and used by an underlying value-
flow/points-to static analysis. Our implementation is on the declarative Doop framework [6],
so it is to a great extent isomorphic to the analysis model presented.

The essence of our analysis approach is threefold:

Our baseline model gives semantics to method handles. (This is also the main novelty of
our approach: the deep modeling of the java.lang.invoke API at its most fundamental
level.) This requires appealing to an existing value flow analysis, since method handles
have no hard-coded signatures in the bytecode: they offer invoke operations that are
“signature-polymorphic”. Therefore, any resolution of method handles requires a static
model of all possible signature arguments to invoke instructions. Modeling the semantics
of method handles is necessary since their implementation is un-analyzable, relying on
run-time code generation (via the aforementioned “lambda forms”). Furthermore, this
model requires static analysis of Java reflection, since method handles can also be looked
up via reflection operations (e.g., by method types generated via reflective class values,
or by “unreflecting” method objects into method handles).

Based on the modeling of method handles, we straightforwardly model invokedynamic
as an invocation of a method handle computed by a bootstrap method.

Reasoning about lambdas appeals to a part of the invokedynamic reasoning. However,
modeling lambdas both requires extra reasoning (because of dynamic code generation) and
can avoid the need for expensive reflection analysis, since the method handles computed
for lambdas do not employ reflection.

6 https://bugs.openjdk.java.net/browse/JDK-8000806

ECOOP 2019

https://bugs.openjdk.java.net/browse/JDK-8000806

15:12 Deep Static Modeling of invokedynamic

4.1 Model Basics
We assume the following domains and (meta)variables, also listing some simple convenience
predicates along the way:

s ∈ S are strings.
n, k ∈ N are numbers.
The symbol ∗ denotes arguments that can be ignored.
v ∈ V are variables, val ∈ Val are values, λ ∈ Val are functional objects.
t ∈ T are types while ti ∈ T I ⊂ T are interface types. Constructor mockc(t, i) creates a
mock object of type t that corresponds to an instruction i. The Class metaobject of a
type t is given by ReifiedC(t) and is a value.
m ∈M are methods. The formal of m at position n is represented as Fmn . The special
“this” variable of an instance methodm is represented asm/this. The Method metaobject
of a method m is given by ReifiedC(m) and is a value. We use the following predicates:

Constr(m): m is a constructor method.
Static(m): m is a static method.
m ∈ t: m is declared in type t.
The return variable v of m is represented as RetVar(v,m).

mt = {t, [t0, . . . , tn−1]} ∈MT , n ≥ 0 are method types, which are pairs of a return type t
and a (possibly empty) list of parameter types. Predicate AsType(m1

t ,m
2
t) holds when

method type m2
t has the same arity as m1

t , and for every pair t, t′ of m1
t and m2

t (at the
same position), it holds that the two types are compatible: t � t′. (t � t′ is one of the
analysis’s main input predicates from Figure 3.) This type compatibility represents the
asType rules of the specification [52]. Function MethodMT (m) maps a method m to its
method type.
i ∈ I are invocation instructions. Predicate i ∈ m means that instruction i belongs to
methodm. The actual parameter that is passed at invocation i in position n is represented
as Ain. For invokedynamic instructions, these are the non-bootstrap parameters of the
bytecode instruction. If instruction i returns a value, Ret(i) is the variable that will hold
the returned value.
h ∈ MH are method handles. A method handle h has the form 〈m,mt〉, which is a pair
of a method m and a method type mt. We also assume predicate DMHLookup(t, s,mt),
which returns the direct method handle that corresponds to a method with name s,
declared in type t, with method type mt. Constructor mockh(t, h) creates a mock object
of type t that corresponds to method handle h.
c ∈ C are call site identifiers. (These are different from mere instructions: because of the
dynamic nature of calls, the same instruction can play the role of distinct call sites.)
We assume lookup objects Lt, one for each type t. These are opaque objects in the
java.lang.invoke API that are used as intermediate values in a lookup: to retrieve,
e.g., a method handle, first one retrieves a lookup object over a type, and subsequently
uses it with method-identifying information.7

The table in Figure 3 lists the main relations that will be used in the analysis rules (i.e.,
all relations other than convenience predicates described earlier). We annotate each relation
with IN if it is consumed by our rules and OUT if our rules inform it. Relation v 7→ val

7 Maintaining a distinct lookup object for each type also shows that our technique can potentially
track access restrictions per type, as mandated by the specification of method lookup objects: https:
//docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html.

https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.Lookup.html

G. Fourtounis and Y. Smaragdakis 15:13

Relation Description Use
v 7→ val Variable v points to val. IN, OUT
f 7→ val Field f points to val. IN
v[∗] 7→ val Variable v is an array and v[i] points to val for some i. OUT
i
h−→ m Instruction i calls method m using method handle h. OUT

i
λ−→ m Instruction i calls method m using functional object λ. OUT

t � t′ Types t and t′ are either subtypes of each other or can IN
be converted to each other via boxing or unboxing.

CSite(c, i, t) Instruction i creates call site c with INTER
dynamic return type t.

CSiteC(c, h,m) Call site c contains meth. handle h pointing to INTER
method m.

MetafactoryInvo(i, s, ti) Lambda metafactory invocation at instruction i, with INTER
dynamic method name s and functional interface ti.

Lambda(λ,m, s, i) Functional object λ with implementing method m, INTER
dynamic method name s and invokedynamic
source instruction i.

Capture(i, n, val) Instruction i captures environment value val at INTER
position n.

InstanceImpl(i,m, λ) Functional object λ, generated at instruction i, uses INTER
non-static method m as implementing method.

Figure 3 Analysis relations.

is both IN and OUT, since our analysis is mutually recursive with the existing points-to
analysis. Relations annotated with INTER are intermediate relations used in the analysis,
that may not be externalized.

4.2 Model: Method Types and Method Handles
We show how the analysis can understand the APIs of method types and method handles.
This includes handling the polymorphic signatures of Java bytecode.

A fundamental problem in the static analysis of method handles is that they contain
native code, for example their “invoke” methods that must be used to do the method call
are native.

The basic relation in this model is i h−→ m which is a call-graph edge from instruction i to
method m annotated with a method handle h. This relation is both created by rules (that
discover method handle invocations) and consumed by rules (that handle argument passing
and value returns).

The method handle invocation rules are shown in Figure 4 while Figure 5 shows the rules
that simulate part of the method handles API. For clarity, we omit packages from qualified
types (e.g., we write MethodHandle instead of java.lang.invoke.MethodHandle).

The rules of Figure 4 are relatively straightforward, capturing regular calling semantics
for method handle invocations, once a method handle value has been determined. Interesting
elements include the mutual recursion with an existing points-to analysis, as well as the
construction of new (mock) objects, per the API specification, when a method handle that
corresponds to a constructor is invoked.

ECOOP 2019

15:14 Deep Static Modeling of invokedynamic

mt = MethodMT(m)
〈m,mt〉

MHMethod

i = v.<MethodHandle.invokeExact>(. . .) v 7→ h h = 〈m, ∗〉

i
h−→ m

MHCGE

i
h−→ m Ain 7→ val

Fmk 7→ val MHArgs
i
h−→ m RetVar(v,m) v 7→ val Ret(i) = v′

v′ 7→ val RetH

i
h−→ m Constr(m) val = mockh(t, h) Ret(i) = v

m/this 7→ val v 7→ val MHConstr

Figure 4 Rules for handling method handle invocations.

Rule MHMethod. This rule creates a method handle h and a method type mt for every
method found in the program.

Rule MHCGE. This rule informs the method handles call graph relation that an invocation
i calls method m using method handle h (notation: i h−→ m).

Rules RetH and MHArgs. These rules pass arguments and return parameters.
Rule MHConstr. For method handles that correspond to constructors, a mock value is

constructed and both the this variable in it and the return value of the invocation point
to this value.

The rules of Figure 5 are a bit more demanding, since they capture precisely the semantics
of the java.lang.invoke API, including lookup objects, using reflection to retrieve method
handles, and more.

Rule AsType. This rule models the asType() method of the MethodHandle API using
predicate AsType(m1

t ,m
2
t).

Rule MHLookup. This rule models the per-type lookup object needed to find method
handles. The lookup() method modeled in this rule is caller-sensitive [53], thus the caller
type t characterizes the returned lookup object and is available for future uses of the
object.

Rule MHLookupC. This rule models the connection between a lookup object and its type
(e.g., to be used in the code for accessibility checks).

Rule Unreflect. This rule models the API methods that bridge the Reflection API with the
java.lang.invoke API. These methods convert reified methods/constructors to method
handles.

Rule Find. This rule models the API methods that look up a virtual or static method via a
lookup object, returning a method handle.

Rule MType. This rule models the two-argument method methodType() of class
MethodHandle. The other overloaded versions of methodType() are modeled similarly.
The rule needs access to reflection support, since it takes advantage of points-to informa-
tion that points to reified Class objects.

Reflection Support. A useful subset of these rules does not need reflection support in the
analysis. For some programs, method types and method handles may come from the constant

G. Fourtounis and Y. Smaragdakis 15:15

i = v.<MethodHandle.asType>(v′) v 7→ 〈m,m1
t 〉

v′ 7→ m2
t AsType(m1

t ,m
2
t) Ret(i) = v′′

v′′ 7→ 〈m,m2
t 〉

AsType

i = <MethodHandles.lookup>() i ∈ m m ∈ t Ret(i) = v

v 7→ Lt MHLookup

i = v.<MethodHandles.Lookup.lookupClass>() v 7→ Lt Ret(i) = v′

v′ 7→ ReifiedC(t) MHLookupC

Ret(i) = v′ MethodMT(m) = mt i = <MethodHandles.Lookup.s>(v)
v 7→ ReifiedM (m) s ∈ {unreflect, unreflectSpecial, unreflectConstructor}

v′ 7→ 〈m,mt〉
Unreflect

i = v.<MethodHandles.Lookup.s>(v0, v1, v2) s ∈ {findVirtual, findStatic} v 7→ Lt
Ret(i) = v′ v0 7→ ReifiedC(t′) v1 7→ s v2 7→ mt DMHLookup(t′, s,mt) = h

v′ 7→ h
Find

i = v.<MethodType.methodType>(v0, v1)
v0 7→ ReifiedC(t0) v1 7→ ReifiedC(t1) Ret(i) = v

v 7→ {t0, [t1]} MType

Figure 5 Rules for handling part of the method handles API.

pool instead of being looked up by the java.lang.invoke API; for such code, our rules do
not require reflection support.

invoke() vs. invokeExact(). As mentioned in Section 3.1, the method handle API offers
two different ways to invoke a method handle. The most fundamental is invokeExact(),
which assumes the arguments and the return value have types that exactly match the method
type of the method handle. In contrast, invoke() permits conversions in arguments and
return values, as if the method handle could successfully change its method type via the
asType() method. For presentation purposes, we only show the rules for invokeExact
in Figure 4 and the rules for asType() in Figure 5. The handling of invoke() follows
directly from these rules, accounting for autoboxing in the case of primitive conversions. The
handling of invokedynamic (shown in Section 4.3) is not affected, since that only needs the
functionality of invocations via invokeExact [33].

Generalized method handles. Method handles are also able to represent fields; we don’t
model this behavior here since it is not important for the invokedynamic analysis (that
follows in the next section) but it is a simple extension of our model.

4.3 Generic Handling of invokedynamic

We next discuss the static modeling of invokedynamic instructions. The model effects the
dynamic linking that eventually computes a method handle and invokes it. The key concept
employed is call sites (c ∈ C). These are the return objects of invokedynamic bootstrap
methods (as determined by regular points-to analysis) and internally use method handles to
determine the calling behavior.

ECOOP 2019

15:16 Deep Static Modeling of invokedynamic

Our rules model the invokedynamic framework in order to discover the method handles
contained in each call site. When a method handle h that maps to a method m is discovered
to be contained in the call site of instruction i, a new call-graph edge i h−→ m is created
and the rules of the previous section analyze the method handle invocation. The rules for
handling invokedynamic invocations are shown in Figure 6. Evaluation-wise, these rules
precede the earlier rules that give semantics to method handles: The purpose of the rules in
Figure 6 is to express what an invokedynamic does in terms of method handles, so that the
earlier reasoning can take over.

We extend the earlier domains and predicates with:

Id ⊂ I are invokedynamic instructions. Predicate i 99Kb m holds when an
invokedynamic instruction i calls bootstrap method m.8 We also assume the following
invokedynamic projections:

Boot : Id →M returns the bootstrap method.
Bp : Id → n→ V returns the bootstrap parameter at position n.
Dyn : Id → (S ×MT) returns the dynamic method name / method type pair.

The rules are explained below:

Rules Bargs, Bargs0, and BargsV. The first rule passes arguments to the boot method,
shifted by three positions, since the first three arguments are filled in by the JVM (and
handled by rule Bargs0). Boot methods such as the alt metafactory may also take
varargs that require special handling by the JVM, thus we also have rule BargsV. Note
the introduction of an artificial (mock) array object to maintain the vararg values.

Rule RetB. This is the standard rule that returns value from a method call. It is adapted
here for completeness, for the case of bootstrap method invocations.

Rule CSite. This rule stores information about a call site object computed at an
invokedynamic instruction.

Rules CSite1 and CSite2. These two rules relate a call site object with its method handle
and the method it points to.

Rule MHCGEDyn. This rule relates the invokedynamic call site and its method handle to
create call-graph edges with method handle semantics. From this point on, the rules in
the previous section take over and complete the method handle invocation.

Reflection Support. The rules presented in the subsection do not require reflection. For
example, a program which contains an invokedynamic instruction that passes a method
handle constant (read from the class constant pool) to its bootstrap method, can be analyzed
without reflection support. In practice, however, bootstrap methods often employ reflective
reasoning to compute the method handle that will be returned in the call site return value,
and thus reflection support should be provided.

4.4 Model: Method References and Lambdas
Both method reference expression and lambdas are implemented by the same machinery,
a “lambda metafactory” [50]. At a very high level, the metafactory takes two arguments,

8 We assume that all invokedynamic instructions call their bootstrap methods when their containing
type is loaded.

G. Fourtounis and Y. Smaragdakis 15:17

i 99Kb m Dyn(i) = 〈s,mt〉
Fm0 7→ Lt Fm1 7→ s Fm2 7→ mt

Bargs0
i 99Kb m Bp(i, n) 7→ val

Fmn+3 7→ val Bargs

i 99Kb m val ′ = mockc(java.lang.Object[], i) Bp(i, n) 7→ val n > 2
Fm3 7→ a val ′[∗] 7→ val BargsV

i 99Kb m RetVar(v,m) v 7→ val Ret(i) = v′

v′ 7→ val RetB

Dyn(i) = 〈∗,mt〉 mt = {t, ∗} Boot(i) = m RetVar(v,m) v 7→ c

CSite(c, i, t) CSite

CSite(c, ∗, t) c.target 7→ h h = 〈m, {t, ∗}〉
CSiteC(c, h,m) CSite1

CSite(c, ∗, t) c.target 7→ h h = 〈m, ∗〉 Constr(m) m ∈ t
CSiteC(c, h,m) CSite2

CSite(c, i, t) CSiteC(c, h,m) h = 〈∗, {t, ∗}〉

i
h−→ m

MHCGEDyn

Figure 6 Rules for generic handling of invokedynamic.

(1) a method handle pointing to a method m and (2) a SAM type t, and returns a functional
object implementing t whose (single) method calls m.

The functional object may be an instance of a new dynamically-generated class, thus
a naive points-to analysis cannot penetrate the object to analyze calls on it. Our analysis
understands the semantics of the functional objects created by the dynamic linking and
method resolution of the metafactory, and creates a mock value in place of the functional
object. That value can be propagated in the program as usual by the underlying points-to
analysis. Appropriate metadata on the value help the analysis compute intended semantics
such as the invocation target or the captured values of the environment.

The Three Phases of invokedynamic for Lambdas. When used for lambdas, functional
object creation by the lambda metafactory works in three phases [50]:
1. Linkage. The bootstrap method is called and a call site object is returned, at the location

of the invokedynamic instruction. The bootstrap method being the “metafactory”, the
call site is then a “lambda factory”, which must be invoked to produce a functional object.

2. Capture. The method handle in the call site object is invoked, possibly with some
arguments. This permits different behavior for different contexts by capturing values of
the enclosing environment. The result is the functional object.

3. Invocation. The functional object can then be passed around in the code and the
method of its functional interface can be eventually called.

The rules that enable analysis of method references are shown in Figure 7. The basic
idea is to create mock values in the analysis for functional objects and simulate all three
phases so that calls are correctly resolved. We assume the following domains, (meta)variables,
and predicates:

The Lλ constant stands for the lambda metafactory [50] of the OpenJDK.

ECOOP 2019

15:18 Deep Static Modeling of invokedynamic

λ ∈ Val ranges over functional objects.
#i returns the arity of instruction i (the number of actual parameters passed to the
functional object).

The rules are explained below:

Rule Metafactory. This rule marks an invokedynamic invocation as a lambda metafactory
invocation.

Rule Lambda. This rule creates the mock functional object λ that will propagate in the
program and behave (in the analysis) as if it was an object created by the metafactory.
The object keeps related metadata in relation Lambda(λ,m, s, i): its implementing method
m (found in a constant method handle argument of the metafactory), the name of the
functional interface method it implements, and the invokedynamic instruction i that
created the functional object.

Rule Capture. This rule records possibly captured values from the enclosing environment.
(All arguments are eagerly recorded as possible captured values and the appropriate
capture arguments are recognized in later rules CaptArgsand LambdaThis.)

Rule CGEL. This rule creates call-graph edges to the actual implementing method of the
functional object. Following these edges bypasses the dynamically-generated classes and
lets the static analysis discover the code of method references and lambdas.

Rule RetL. This is the standard rule for return values from methods.
Rule InstImpl. This rule records that a functional object is implemented by a non-static

method. This means that further rules should discover the receiver and pass it to the
method.

Rules Shift1, Shift2, and Shift3. These rules populate relation Shift(λ,m, n, k), which
records if the arguments passed to the functional object must be shifted to make room for
a receiver. This is because instance methods may implicitly consume one of the actual
arguments of the invokedynamic or of the functional interface invocation, to use as the
receiver. Static methods take all invokedynamic-actual arguments before the ones passed
to the functional object during method invocation.

Rule LArgs. This passes arguments to the implementing method, from the method invocation
on the functional object. The shifting of parameters addresses a number of patterns that
the metafactory follows to capture and pass values from the environment.

Rule CaptArgs. This rule passes captured arguments to the implementing method.
Rule LambdaThis. This rule handles the pattern of captured receiver parameters.
Rule MRefThis. This rule handles the pattern where a method reference to an instance

method has not captured a receiver, but will receive it during invocation as an extra
argument.

Rule CCall. This handles the special case where a method reference points to a constructor
(is thus a “constructor reference”). Since constructor methods are void and assume an
already constructed (but not initialized) object, this rule creates such an object and binds
it both to the ’this’ variable of the constructor and the return variable of the invocation.

Additional Features. The JDK also has a second metafactory, the “alt metafactory”: a
generalization of the lambda metafactory that provides additional features, such as bridging,
support for multiple interfaces, and serializability. We do not model such extra properties of
its lambdas here, but these features are type-based so they are amenabe to handling in a
similar way to the rules we already present.

G. Fourtounis and Y. Smaragdakis 15:19

Reflection Support. The method handles passed to the metafactory are statically known:
either the programmer provided them as method references or the compiler generated them
for lambdas. Thus our rules for handling lambdas and method references do not need
reflection support; the only method handles used come from the constant pool. This means
that our approach can integrate with the baseline configuration of a points-to analysis, in
order to analyze programs without overhead due to reflection support.

Context sensitivity. The analysis, as presented, has a context-insensitive formulation, to
avoid unnecessary complication of the rules. Careful (but conceptually standard) addition of
context elements to predicates (as shown, e.g., in reference [66]) produces a context-sensitive
version. Our implementation is fully context sensitive.

5 Evaluation

We evaluate our analysis on two test suites: a microbenchmark suite of our own (Section 5.1)
and the test suite of Sui et al. [68] (Section 5.2).

Our analysis is implemented in the declarative static analysis framework Doop [6]. All
analyses are run on a 64-bit machine with an Intel Xeon CPU E5-2667 v2 3.30GHz with 256
GB of RAM. We use the Soufflé compiler (v.1.4.0), which compiles Datalog specifications
into binaries via C++ and run the resulting binaries in parallel mode using four jobs.
Doop uses the Java 8 platform as implemented in Oracle JDK v1.8.0_121. All running
times and precision numbers are for Doop’s default context-insensitive analysis. (Context
sensitivity adds no precision to the high-level metrics shown.) For benchmarks of generalized
invokedynamic features (i.e., not lambdas and method references), we enable reflection
support in Doop.

5.1 Microbenchmark Suite
To evaluate our technique, we have built our own suite of microbenchmarks. These bench-
marks capture a large number of idioms found in realistic uses of method references (Sec-
tion 5.1.1), lambdas (Section 5.1.2), and method handles combined with invokedynamic
(Section 5.1.3), including most of the patterns shown in the examples of Section 2. (Other
patterns are captured in the Sui et al. suite, discussed later.) The suite is freely available.

Analysis times for the three component benchmarks are shown in Figure 8. As can
be seen, enabling reflection analysis, for fully general handling of invokedynamic, incurs
higher cost.

Our static analysis fully models all behavior in the microbenchmark suite. Although the
suite was developed in tandem with the analysis, it still provides partial validation of analysis
completeness, given the effort to encode many variations of operations, as detailed next.

5.1.1 Microbenchmark: Method References
This benchmark includes Oracle’s tutorial code MethodReferencesTest [51]. We capture
the behavior of all four kinds of methods references (found in the tutorial table): to static
methods, to instance methods of a particular object, to instance methods of an arbitrary
object of a particular type, and to constructors.

The microbenchmark also contains code that showcases the following features:
1. Construction of functional objects directly from method references.
2. Use of functional objects together with Java 8 stream API methods.

ECOOP 2019

15:20 Deep Static Modeling of invokedynamic

LINKAGE

i 99Kb m m ∈ Lλ Dyn(i) = 〈s,mt〉 mt = {ti, ∗}
MetafactoryInvo(i, s, ti)

Metafactory

MetafactoryInvo(i, s, ti) Bp(i, 1) 7→ 〈m, ∗〉 Ret(i) = v λ = mockc(ti, i)
v 7→ λ Lambda(λ,m, s, i) Lambda

CAPTURE

MetafactoryInvo(i, ∗, ∗) Ain 7→ val
Capture(i, n, val) Capture

INVOCATION

Lambda(λ,m, s, ∗) v 7→ λ i = v.<s>(. . .)

i
λ−→ m

CGEL

i
λ−→ m Rmn = v v 7→ val Ret(i) = v′

v′ 7→ val
RetL

∗ λ−→ m ¬Static(m) Lambda(λ, ∗, ∗, i)
InstanceImpl(i,m, λ) InstImpl

Lambda(λ,m, ∗, ∗) Static(m)
Shift(λ,m, 0, 0) Shift1

InstanceImpl(i,m, λ) #i = 0
Shift(λ,m, 0, 1) Shift2

InstanceImpl(i,m, λ) #i > 0
Shift(λ,m, 1, 0) Shift3

i
λ−→ m Shift(λ,m, k, n) Lambda(λ,m, ∗, i)

Ain′ = v′ Fmn′′ = v n′′ = #i− (k + n) + n′ v′ 7→ val
v 7→ val LArgs

∗ λ−→ m Shift(λ,m, k, ∗) Lambda(λ,m, ∗, i) Capture(i, n, val) k + n ≤ #i
Fmn−k 7→ val CaptArgs

Shift(λ,m, 1, 0) InstanceImpl(i,m, λ) Capture(i, 0, val)
m/this 7→ val LambdaThis

i
λ−→ m Shift(λ,m, 0, 1) Ai0 7→ val

m/this 7→ val MRefThis

i
λ−→ m Constr(m) m ∈ t Ret(i) = v val = mockc(t, i)

v 7→ val m/this 7→ val CCall

Figure 7 Rules for handling method references and lambdas.

G. Fourtounis and Y. Smaragdakis 15:21

Benchmark Time (sec)
Method References 27
Lambdas 23
Method Handles and invokedynamic 378

Figure 8 Microbenchmark times.

3. Auto-boxing conversions.

5.1.2 Microbenchmark: Lambdas
This benchmark shows the handling of the following features:
1. Creating lambdas with arrow notation. This includes nested lambdas.
2. Creating lambdas that can access values of the outside environment (forming closures).

5.1.3 Microbenchmark: Method Handles and invokedynamic

Java currently does not support the direct representation of invokedynamic in source code,
although such a feature is considered for inclusion in future versions of the language [21]. For
this reason, this benchmark uses the ASM bytecode manipulation library9 to dynamically
generate and load a class with invokedynamic invocations.

The benchmark captures the following patterns:
1. Lookup of a MethodHandles.Lookup object via MethodHandles.lookup().
2. Construction of method type values via MethodType.methodType() methods.
3. Look-up of virtual and static methods via MethodHandles.Lookup.findVirtual() and

MethodHandles.Lookup.findStatic().
4. Calling method handles with MethodHandle.invokeExact().
5. Passing a receiver for non-static methods (thus handling places where the signature of the

target method differs from the signature of the MethodHandle.invokeExact() signature
found in the bytecode).

6. Bootstrapping calls to another class in a manner similar to the motivating example in
Section 2.1.

5.2 Sui et al. Test Suite
We also evaluate our technique using the dynamic features test suite of Sui et al. [68]. This is a
test suite that examines the soundness of call-graph construction and is written to specifically
test the static analysis of features such as lambdas and invokedynamic, by authors with
extensive experience in systematic Java benchmarking efforts (e.g., XCorpus [9]).

The benchmark suite contains three benchmarks for lambdas, plus a benchmark for
invokedynamic in general (Dynamo). Dynamo is a realistic software artifact [28] that has
been configured in the benchmark suite to specifically evaluate the analysis of invokedynamic.
The Dynamo library exercises all features of dynamic invocation sites (static vs. non-
static, constructors, signature adaptation, interaction with plain Java reflection). It injects
invokedynamic calls in unsuspecting code to address cross-component linking errors. Thus,
if these invokedynamic sites are not analyzed, then the static analysis cannot find calls from
code to a library.

The Dynamo test program in the suite contains two invokedynamic sites:

9 https://asm.ow2.io/

ECOOP 2019

https://asm.ow2.io/

15:22 Deep Static Modeling of invokedynamic

Benchmark Reachable Unreachable Time (sec)
expected analysis expected analysis

LambdaConsumer 1 � 1 � 21
LambdaFunction 1 � 2 � 21
LambdaSupplier 1 � 1 � 22
Dynamo 1 � 1 – 242

Figure 9 Dynamic benchmark results.

1. A site that looks up a constructor method and creates an object. Since it is a constructor
method handle, the analysis also recognizes that an object must also be allocated for this
invocation.

2. A site that looks up an instance method and calls it. The original signature of the method
accepts an object and is adapted to also accept the receiver.

In both cases, Dynamo retrieves the method via reflection and then proceeds to “unreflect”
it. The test program does not test lookup of static methods.

For every benchmark, the following ground truth is provided: one or more methods are
expected to be found reachable, while one or more different methods are expected to be
found unreachable. The results of applying our analysis to these benchmarks are shown in
Figure 9.

Notably:
All lambda benchmarks are analyzed precisely: the expected methods are found reachable
or unreachable.
For Dynamo, our analysis over-approximates reachability. Dynamo uses invokedynamic
as a layer between components to ensure binary compatibility with evolving code. As
seen in Figure 9, our analysis over-approximates reachability: it discovers the expected
method as reachable but also discovers the expected unreachable method. This problem
is not fundamental to the technique that we present, but is caused by the lack of flow
sensitivity in the underlying points-to analysis, provided by the Doop framework. Dynamo
code creates method handles by gathering reflectively all members of classes and then
selectively filtering out the ones that do not match; Doop’s flow insensitivity causes it to
ignore this filtering. Coupled with flow sensitivity, our technique should be able to ignore
the expected unreachable method.
The efficiency of a lambda-specialized analysis vs. a general-purpose invokedynamic
analysis that requires reflection support is again demonstrated in the running times.

6 Related work

Static Analysis of Java Lambdas and Dynamic Calls. Some recent work has attempted
to treat lambdas and their static analysis, mostly in isolation, as another high-level feature
for practical tools. Cifuentes et al. [7] perform a pattern-based vulnerability analysis (i.e.,
not a full low-level analysis of value flow) and recognize code patterns containing lambdas.
There has also been work on dynamic analyses that understand Java-style lambdas [11].

Reflection and programmable dynamic calls are subtle features that should be formalized
in order to be addressed. However, the bibliography is lacking: we only know of the work
of Landman et al. [30], who give a syntax of the DSL behind the standard Java Reflection
API. They do not treat its semantics, as they did not need to (their work was on mining big
codebases for the existence of specific patterns).

G. Fourtounis and Y. Smaragdakis 15:23

To the best of our knowledge, no formal semantic model of invokedynamic and its
API exists. Other Java APIs that cannot be easily analyzed statically have also been
candidates for static semantic modeling. Smaragdakis et al. model the reflection API [67] and
Fourtounis et al. model dynamic proxies [13]. Our approach differs in two aspects: (a) we
do not necessarily incur performance overheads (our handling of functional objects does not
require expensive reflection support) and (b) we model the lower-level java.lang.invoke
API, which requires handling of JVM features such as signature polymorphism, caller
sensitivity, and reasoning about code running at class-loading time.

The IBM WALA static analysis framework [10] has limited support for invokedynamic,
specifically for call-graph edges over lambdas by generating synthetic classes.10 WALA also
lacks full support for constructor method references [60].

Transforming Away invokedynamic. Lambdas are not easy to work with; Soot, a popular
Java manipulation and analysis framework, even considers statically transforming them
away [4], since invokedynamic has been too difficult to analyze: “Soot does not fully support
dynamic invokes ... could not find an easy workaround and instead decided that it would
be best to change Schaapi such that dynamic invokes (and thus lambdas) are ignored
completely.”11

Along the same lines, but more completely, the OPAL bytecode rectifier12 removes
instances of invokedynamic as used in Java lambdas. This is a general alternative static
treatment of lambdas, but not of other instances of invokedynamic. Similar removal
of stylized uses of invokedynamic, without handling the general case, are performed by
RetroLambda13 and Google’s D8.14 These tools cannot, e.g., make the Dynamo benchmark
analyzable by analyses that do not understand invokedynamic.

Other Platforms. Apart from the popular OpenJDK and its VM, used on servers or desk-
tops, the other mainstream Java platform is Android. The implementation of invokedynamic
on Android posed some complications because dynamic code generation is restricted on
Android due to resource constraints [57, 64]. invokedynamic was prototyped for Android [64]
and, eventually, became officially supported when the latest “Android N” switched to Java
8. Our work is, thus, applicable to Android as well. Android is a platform that commands
special attention due to its popularity. invokedynamic enables new optimizations and analy-
ses [78, 79, 80]. However, the instruction is also a security threat, since it is so powerful that
it can, for example, hide method calls and make malware undetectable (as demonstrated
by the DexProtector tool [32] or the survey of Gorenc and Spelman [22]) and provides less
security by-design compared to classic reflection [65].

The .NET platform also has functionality similar to method handles and anonymous
classes, called “dynamic methods” [37]. We, thus, expect that our approach can be ported to
other runtimes and to their implementation of dynamic features.

7 Conclusion

We presented a static analysis modeling of programmable dynamic linking in Java, i.e., the
invokedynamic instruction and accompanying framework. The approach addresses the most

10 https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I,
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.
core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42

11 https://github.com/cafejojo/schaapi/pull/295
12 http://www.opal-project.de/DeveloperTools.html
13 https://github.com/luontola/retrolambda
14 https://jakewharton.com/androids-java-8-support/

ECOOP 2019

https://groups.google.com/forum/#!topic/wala-sourceforge-net/omsGtp_ow7I
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42
https://github.com/wala/WALA/blob/f2b1e9fec0627e221427404cb7ba194c4a89cd9e/com.ibm.wala.core/src/com/ibm/wala/ipa/summaries/LambdaSummaryClass.java#L42
https://github.com/cafejojo/schaapi/pull/295
http://www.opal-project.de/DeveloperTools.html
https://github.com/luontola/retrolambda
https://jakewharton.com/androids-java-8-support/

15:24 Deep Static Modeling of invokedynamic

fundamental level of the language feature, fully modeling method handles, while at the same
time it maintains high efficiency and completeness for common uses of invokedynamic in
Java lambdas. This is the first thorough handling of the invokedynamic feature, which had
so far resisted static analysis.

References
1 Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,

Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, et al. The Fortress language
specification. Sun Microsystems, 139:140, 2005.

2 Malte Appeltauer, Michael Haupt, and Robert Hirschfeld. Layered Method Dispatch with
INVOKEDYNAMIC: An Implementation Study. In Proceedings of the 2nd International
Workshop on Context-Oriented Programming, COP ’10, pages 4:1–4:6, New York, NY, USA,
2010. ACM. doi:10.1145/1930021.1930025.

3 Shashank Bharadwaj. Optimizing Jython using invokedynamic and Gradual Typing. Master’s
thesis, University of Colorado at Boulder, 2012.

4 Eric Bodden. Develop transformer that gets rid of indy calls for lambda capture #226, 2014.
URL: https://github.com/Sable/soot/issues/226.

5 Norris Boyd et al. Rhino: Javascript for Java. Mozilla Foundation, 2007.
6 Martin Bravenboer and Yannis Smaragdakis. Strictly Declarative Specification of Sophisticated

Points-to Analyses. In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object
Oriented Programming, Systems, Languages, and Applications, OOPSLA ’09, New York, NY,
USA, 2009. ACM.

7 Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding Caller-sensitive Method
Vulnerabilities: A Class of Access Control Vulnerabilities in the Java Platform. In Proceedings
of the 4th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis,
SOAP 2015, pages 7–12, New York, NY, USA, 2015. ACM. doi:10.1145/2771284.2771286.

8 L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80
System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, POPL ’84, pages 297–302, New York, NY, USA, 1984. ACM.
doi:10.1145/800017.800542.

9 Jens Dietrich, Henrik Schole, Li Sui, and Ewan D. Tempero. XCorpus - an executable corpus
of Java programs. Journal of Object Technology, 16(4):1:1–24, 2017. doi:10.5381/jot.2017.
16.4.a1.

10 Julian Dolby, Stephen J. Fink, and Manu Sridharan. T.J. Watson libraries for analysis
(WALA). http://wala.sourceforge.net.

11 Sebastian Erdweg, Vlad Vergu, Mira Mezini, and Eelco Visser. Finding Bugs in Program
Generators by Dynamic Analysis of Syntactic Language Constraints. In Proceedings of the
Companion Publication of the 13th International Conference on Modularity, MODULARITY
’14, pages 17–20, New York, NY, USA, 2014. ACM. doi:10.1145/2584469.2584474.

12 Rémi Forax. JSR 292 / PHP.reboot. https://www.lrde.epita.fr/dload/seminar/2010-12-
08/forax.pdf, 2010.

13 George Fourtounis, George Kastrinis, and Yannis Smaragdakis. Static Analysis of Java
Dynamic Proxies. In Proceedings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2018, pages 209–220, New York, NY, USA, 2018. ACM.
doi:10.1145/3213846.3213864.

14 Brian Goetz. One VM, Many Languages. https://gotocon.com/dl/jaoo-aarhus-2010/
slides/BrianGoetz_OneVMManyLanguages.pdf, 2010. GOTO Aarhus 2010 Conference.

15 Brian Goetz. From lambdas to bytecode. http://wiki.jvmlangsummit.com/images/1/1e/
2011_Goetz_Lambda.pdf, 2011. JVM Language Summit.

16 Brian Goetz. Implementing lambda expressions in Java. http://wiki.jvmlangsummit.com/
images/7/7b/Goetz-jvmls-lambda.pdf, 2012. JVM Language Summit.

http://dx.doi.org/10.1145/1930021.1930025
https://github.com/Sable/soot/issues/226
http://dx.doi.org/10.1145/2771284.2771286
http://dx.doi.org/10.1145/800017.800542
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://dx.doi.org/10.5381/jot.2017.16.4.a1
http://wala.sourceforge.net
http://dx.doi.org/10.1145/2584469.2584474
https://www.lrde.epita.fr/dload/seminar/2010-12-08/forax.pdf
https://www.lrde.epita.fr/dload/seminar/2010-12-08/forax.pdf
http://dx.doi.org/10.1145/3213846.3213864
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
https://gotocon.com/dl/jaoo-aarhus-2010/slides/BrianGoetz_OneVMManyLanguages.pdf
http://wiki.jvmlangsummit.com/images/1/1e/2011_Goetz_Lambda.pdf
http://wiki.jvmlangsummit.com/images/1/1e/2011_Goetz_Lambda.pdf
http://wiki.jvmlangsummit.com/images/7/7b/Goetz-jvmls-lambda.pdf
http://wiki.jvmlangsummit.com/images/7/7b/Goetz-jvmls-lambda.pdf

G. Fourtounis and Y. Smaragdakis 15:25

17 Brian Goetz. Lambda: A peek under the hood. https://www.slideshare.net/
jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz, 2012. JAX London 2012.

18 Brian Goetz. Translation of Lambda Expressions, April 2012. Accessed: June 11, 2019. URL:
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html.

19 Brian Goetz. State of the Lambda, September 2013. Accessed: June 11, 2019. URL:
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html.

20 Brian Goetz. Project Valhalla Update. https://www.oracle.com/technetwork/java/
jvmls2016-goetz-3126134.pdf, 2016. JVM Language Summit.

21 Brian Goetz. JEP 303: Intrinsics for the LDC and INVOKEDYNAMIC Instructions, 2018.
URL: https://openjdk.java.net/jeps/303.

22 Brian Gorenc and Jasiel Spelman. Java Every-Days – Exploiting Software Running on 3
Billion Devices. https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-
Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf. HP Security Research Zero
Day Initiative.

23 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, and Alex Buckley. The Java Language
Specification, Java SE 8 Edition (Java Series), 2014.

24 Stuart Halloway. Programming Clojure. Pragmatic Bookshelf, 1st edition, 2009.
25 Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
26 Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An In-Depth Study

of More Than Ten Years of Java Exploitation. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 779–790, New York,
NY, USA, 2016. ACM. doi:10.1145/2976749.2978361.

27 Vladimir Ivanov. Invokedynamic: Deep Dive. http://cr.openjdk.java.net/~vlivanov/
talks/2015-Indy_Deep_Dive.pdf. Accessed: June 11, 2019.

28 Kamil Jezek and Jens Dietrich. Magic with Dynamo – Flexible Cross-Component Linking for
Java with Invokedynamic. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming (ECOOP 2016), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 12:1–12:25, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.12.

29 Chanwit Kaewkasi. Towards Performance Measurements for the Java Virtual Machine’s
Invokedynamic. In Virtual Machines and Intermediate Languages, VMIL ’10, pages 3:1–3:6,
New York, NY, USA, 2010. ACM. doi:10.1145/1941054.1941057.

30 Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. Challenges for Static Analysis
of Java Reflection – Literature Review and Empirical Study. In Proceedings of the 39th
International Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May
20-28, 2017, 2017.

31 Jim Laskey. Adventures in JSR-292 or How To Be A Duck Without Really Trying. http:
//wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf, 2011. JVM Language Summit.

32 Licel. DexProtector. URL: https://dexprotector.com/docs.
33 Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual Machine

Specification, Java SE 8 Edition. Addison-Wesley Professional, 1st edition, 2014.
34 Baptiste Maingret, Frédéric Le Mouël, Julien Ponge, Nicolas Stouls, Jian Cao, and Yannick

Loiseau. Towards a Decoupled Context-Oriented Programming Language for the Internet of
Things. In Proceedings of the 7th International Workshop on Context-Oriented Programming,
COP’15, pages 7:1–7:6, New York, NY, USA, 2015. ACM. doi:10.1145/2786545.2786552.

35 Davood Mazinanian, Ameya Ketkar, Nikolaos Tsantalis, and Danny Dig. Understanding the
Use of Lambda Expressions in Java. Proceedings of the ACM on Programming Languages,
1(OOPSLA):85:1–85:31, October 2017. doi:10.1145/3133909.

36 Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: Reconciling object, relations and
XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD International

ECOOP 2019

https://www.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
https://www.slideshare.net/jaxlondon2012/lambda-a-peek-under-the-hood-brian-goetz
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-translation.html
http://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
https://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf
https://www.oracle.com/technetwork/java/jvmls2016-goetz-3126134.pdf
https://openjdk.java.net/jeps/303
https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf
https://media.blackhat.com/us-13/US-13-Gorenc-Java-Every-Days-Exploiting-Software-Running-on-3-Billion-Devices-WP.pdf
http://dx.doi.org/10.1145/2976749.2978361
http://cr.openjdk.java.net/~vlivanov/talks/2015-Indy_Deep_Dive.pdf
http://cr.openjdk.java.net/~vlivanov/talks/2015-Indy_Deep_Dive.pdf
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.12
http://dx.doi.org/10.1145/1941054.1941057
http://wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf
http://wiki.jvmlangsummit.com/images/c/ce/Nashorn.pdf
https://dexprotector.com/docs
http://dx.doi.org/10.1145/2786545.2786552
http://dx.doi.org/10.1145/3133909

15:26 Deep Static Modeling of invokedynamic

Conference on Management of Data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006.
ACM. doi:10.1145/1142473.1142552.

37 Microsoft. DynamicMethod Class. URL: https://msdn.microsoft.com/en-us/library/
system.reflection.emit.dynamicmethod(v=vs.110).aspx.

38 Behrooz Nobakht and Frank S. de Boer. Programming with Actors in Java 8. In Tiziana Mar-
garia and Bernhard Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation. Specialized Techniques and Applications: 6th International Symposium, ISoLA
2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings, Part II, pages 37–53. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014. doi:10.1007/978-3-662-45231-8_4.

39 S. Nopnipa and C. Kaewkasi. Aspect-aware bytecode combinators for a dynamic AOP system
with invokedynamic. In The 2013 10th International Joint Conference on Computer Science and
Software Engineering (JCSSE), pages 246–251, May 2013. doi:10.1109/JCSSE.2013.6567353.

40 Charles Nutter. A First Taste of InvokeDynamic. URL: http://blog.headius.com/2008/09/
first-taste-of-invokedynamic.html.

41 Charles Nutter. The Power of the JVM. URL: http://blog.headius.com/2008/05/
power-of-jvm.html.

42 Charles Nutter. invokedynamic: You Ain’t Seen Nothing Yet, 2012. Proceedings
of the JAX Conference (JAX 12). URL: https://www.slideshare.net/CharlesNutter/
jax-2012-invoke-dynamic-keynote.

43 Charles Nutter. GOTO Night with Charles Nutter Slides, 2014. GOTO 2014. URL:
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-
nutter-slides.

44 Charles O. Nutter, Thomas Enebo, Nick Sieger, Ola Bini, and Ian Dees. Using JRuby: Bringing
Ruby to Java. Pragmatic Bookshelf, 1st edition, 2011.

45 Martin Odersky and Tiark Rompf. Unifying Functional and Object-oriented Programming
with Scala. Communications of the ACM, 57(4):76–86, April 2014. doi:10.1145/2591013.

46 OpenJDK Compiler Team. Bound method handles - HotSpot - OpenJDK Wiki. URL:
https://wiki.openjdk.java.net/display/HotSpot/Bound+method+handles.

47 Oracle. java.lang.invoke (Java Platform SE 7). URL: https://docs.oracle.com/javase/7/
docs/api/java/lang/invoke/package-summary.html.

48 Oracle. JEP 160: Lambda-form representation for method handles. URL: http://openjdk.
java.net/jeps/160.

49 Oracle. JSR 335: Lambda Expressions for the Java™ Programming Language. URL: https:
//jcp.org/en/jsr/detail?id=335.

50 Oracle. LambdaMetafactory (Java Platform SE 8). URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/LambdaMetafactory.html.

51 Oracle. Method References (The Java™ Tutorials > Learning the Java Language >
Classes and Objects), 2017. URL: https://docs.oracle.com/javase/tutorial/java/
javaOO/methodreferences.html.

52 Oracle. MethodHandle (Java Platform SE 8), 2018. URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/MethodHandle.html.

53 Oracle. MethodHandles (Java Platform SE 8), 2018. URL: https://docs.oracle.com/
javase/8/docs/api/java/lang/invoke/MethodHandles.html.

54 Oracle. MethodType (Java Platform SE 8), 2018. URL: https://docs.oracle.com/javase/
8/docs/api/java/lang/invoke/MethodType.html.

55 F. Ortin, P. Conde, D. Fernandez-Lanvin, and R. Izquierdo. The Runtime Performance of
invokedynamic: An Evaluation with a Java Library. IEEE Software, 31(4):82–90, July 2014.
doi:10.1109/MS.2013.46.

56 Samuele Pedroni and Noel Rappin. Jython Essentials: Rapid Scripting in Java. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1 edition, 2002.

57 Jerome Pilliet, Remi Forax, and Gilles Roussel. DualStack: Improvement of invokedynamic
implementation on Android. In Proceedings of the 13th International Workshop on Java

http://dx.doi.org/10.1145/1142473.1142552
https://msdn.microsoft.com/en-us/library/system.reflection.emit.dynamicmethod(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.emit.dynamicmethod(v=vs.110).aspx
http://dx.doi.org/10.1007/978-3-662-45231-8_4
http://dx.doi.org/10.1109/JCSSE.2013.6567353
http://blog.headius.com/2008/09/first-taste-of-invokedynamic.html
http://blog.headius.com/2008/09/first-taste-of-invokedynamic.html
http://blog.headius.com/2008/05/power-of-jvm.html
http://blog.headius.com/2008/05/power-of-jvm.html
https://www.slideshare.net/CharlesNutter/jax-2012-invoke-dynamic-keynote
https://www.slideshare.net/CharlesNutter/jax-2012-invoke-dynamic-keynote
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-nutter-slides
https://www.slideshare.net/AlexandraMasterson/goto-night-with-charles-nutter-slides
http://dx.doi.org/10.1145/2591013
https://wiki.openjdk.java.net/display/HotSpot/Bound+method+handles
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/package-summary.html
https://docs.oracle.com/javase/7/docs/api/java/lang/invoke/package-summary.html
http://openjdk.java.net/jeps/160
http://openjdk.java.net/jeps/160
https://jcp.org/en/jsr/detail?id=335
https://jcp.org/en/jsr/detail?id=335
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/LambdaMetafactory.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandle.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodHandles.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodType.html
https://docs.oracle.com/javase/8/docs/api/java/lang/invoke/MethodType.html
http://dx.doi.org/10.1109/MS.2013.46

G. Fourtounis and Y. Smaragdakis 15:27

Technologies for Real-time and Embedded Systems, JTRES ’15, pages 4:1–4:8, New York, NY,
USA, 2015. ACM. doi:10.1145/2822304.2822310.

58 Julien Ponge, Frédéric Le Mouël, and Nicolas Stouls. Golo, a Dynamic, Light and Efficient
Language for Post-invokedynamic JVM. In Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools, PPPJ ’13, pages 153–158, New York, NY, USA, 2013. ACM. doi:10.1145/2500828.
2500844.

59 Julien Ponge and Frédéric Le Mouël. JooFlux: Hijacking Java 7 invokedynamic to support
live code modifications. CoRR, abs/1210.1039, 2012. arXiv:1210.1039.

60 M. Reif, F. Kübler, M. Eichberg, and M. Mezini. Systematic evaluation of the unsoundness of
call graph construction algorithms for Java. In Proceedings of SOAP 2018. ACM, 2018.

61 John R. Rose. Anonymous classes in the VM, January 2008. URL: https://blogs.oracle.
com/jrose/entry/anonymous_classes_in_the_vm.

62 John R. Rose. Bytecodes Meet Combinators: Invokedynamic on the JVM. In Proceedings
of the Third Workshop on Virtual Machines and Intermediate Languages, VMIL ’09, pages
2:1–2:11, New York, NY, USA, 2009. ACM. doi:10.1145/1711506.1711508.

63 John R. Rose. Method Handles and Beyond... Some basis vectors. http://wiki.
jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf, 2011. JVM Summit.

64 Gilles Roussel, Remi Forax, and Jerome Pilliet. Android 292: Implementing Invokedynamic
in Android. In Proceedings of the 12th International Workshop on Java Technologies for
Real-time and Embedded Systems, JTRES ’14, pages 76:76–76:86, New York, NY, USA, 2014.
ACM. doi:10.1145/2661020.2661032.

65 Security Explorations. Security Vulnerabilities in Java SE. http://www.
security-explorations.com/materials/se-2012-01-report.pdf. Technical Report.

66 Yannis Smaragdakis and George Balatsouras. Pointer Analysis. Foundations and Trends in
Programming Languages, 2(1):1–69, 2015. doi:10.1561/2500000014.

67 Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More
Sound Static Handling of Java Reflection. In Proceedings of the Asian Symposium on Pro-
gramming Languages and Systems, APLAS ’15. Springer, 2015.

68 L. Sui, J. Dietrich, M. Emery, S. Rasheed, and A. Tahir. On the Soundness of Call
Graph Construction in the Presence of Dynamic Language Features - A Benchmark
and Tool Evaluation. https://sites.google.com/site/jensdietrich/publications/
preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%
20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1. Accepted
for APLAS’18.

69 Josef Svenningsson and Emil Axelsson. Combining Deep and Shallow Embedding of Domain-
specific Languages. Computer Languages, Systems and Structures, 44(PB):143–165, December
2015. doi:10.1016/j.cl.2015.07.003.

70 Attila Szegedi. Dynalink - Dynamic Linker Framework for JVM Languages. http:
//medianetwork.oracle.com/video/player/1113272541001, July 2011. JVM Language Sum-
mit.

71 The Apache Groovy Project. Invoke dynamic support. URL: http://groovy-lang.org/indy.
html.

72 Trifork. erjang. URL: https://github.com/trifork/erjang/wiki.
73 TypeLead. The Eta Programming Language. URL: http://eta-lang.org/.
74 Raoul-Gabriel Urma. Processing Data with Java SE 8 Streams, Part 1.

Java Magazine, 2014. URL: http://www.oracle.com/technetwork/articles/java/
ma14-java-se-8-streams-2177646.html.

75 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a Java Bytecode Optimization Framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research, CASCON ’99, pages
13–. IBM Press, 1999. URL: http://dl.acm.org/citation.cfm?id=781995.782008.

ECOOP 2019

http://dx.doi.org/10.1145/2822304.2822310
http://dx.doi.org/10.1145/2500828.2500844
http://dx.doi.org/10.1145/2500828.2500844
http://arxiv.org/abs/1210.1039
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
https://blogs.oracle.com/jrose/entry/anonymous_classes_in_the_vm
http://dx.doi.org/10.1145/1711506.1711508
http://wiki.jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf
http://wiki.jvmlangsummit.com/images/8/88/Rose-2011-FutureDirections.pdf
http://dx.doi.org/10.1145/2661020.2661032
http://www.security-explorations.com/materials/se-2012-01-report.pdf
http://www.security-explorations.com/materials/se-2012-01-report.pdf
http://dx.doi.org/10.1561/2500000014
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
https://sites.google.com/site/jensdietrich/publications/preprints/On%20the%20Soundness%20of%20Call%20Graph%20Construction%20in%20the%20Presence%20of%20Dynamic%20Language%20Features.pdf?attredirects=0&d=1
http://dx.doi.org/10.1016/j.cl.2015.07.003
http://medianetwork.oracle.com/video/player/1113272541001
http://medianetwork.oracle.com/video/player/1113272541001
http://groovy-lang.org/indy.html
http://groovy-lang.org/indy.html
https://github.com/trifork/erjang/wiki
http://eta-lang.org/
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.html
http://dl.acm.org/citation.cfm?id=781995.782008

15:28 Deep Static Modeling of invokedynamic

76 Ingo Wechsung. The Frege Programming Language (Draft). http://www.frege-lang.org/
doc/Language.pdf, 2014.

77 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to Rule Them
All. In Proceedings of the 2013 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2013, pages 187–204, New York, NY,
USA, 2013. ACM. doi:10.1145/2509578.2509581.

78 Shijie Xu, David Bremner, and Daniel Heidinga. Mining Method Handle Graphs for Efficient
Dynamic JVM Languages. In Proceedings of the Principles and Practices of Programming
on The Java Platform, PPPJ ’15, pages 159–169, New York, NY, USA, 2015. ACM. doi:
10.1145/2807426.2807440.

79 Shijie Xu, David Bremner, and Daniel Heidinga. MHDeS: Deduplicating method handle graphs
for efficient dynamic JVM language implementations. In Proceedings of the 11th Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and
Systems, ICOOOLPS ’16, pages 4:1–4:10, New York, NY, USA, 2016. ACM. doi:10.1145/
3012408.3012412.

80 Shijie Xu, David Bremner, and Daniel Heidinga. Fusing Method Handle Graphs for Efficient
Dynamic JVM Language Implementations. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Workshop on Virtual Machines and Intermediate Languages, VMIL 2017, pages 18–27,
New York, NY, USA, 2017. ACM. doi:10.1145/3141871.3141874.

http://www.frege-lang.org/doc/Language.pdf
http://www.frege-lang.org/doc/Language.pdf
http://dx.doi.org/10.1145/2509578.2509581
http://dx.doi.org/10.1145/2807426.2807440
http://dx.doi.org/10.1145/2807426.2807440
http://dx.doi.org/10.1145/3012408.3012412
http://dx.doi.org/10.1145/3012408.3012412
http://dx.doi.org/10.1145/3141871.3141874

Reasoning About Foreign Function Interfaces
Without Modelling the Foreign Language
Alexi Turcotte
Northeastern University, Boston, MA, USA

Ellen Arteca
Northeastern University, Boston, MA, USA

Gregor Richards
University of Waterloo, Waterloo, ON, Canada

Abstract
Foreign function interfaces (FFIs) allow programs written in one language (called the host language)
to call functions written in another language (called the guest language), and are widespread
throughout modern programming languages, with C FFIs being the most prevalent. Unfortunately,
reasoning about C FFIs can be very challenging, particularly when using traditional methods which
necessitate a full model of the guest language in order to guarantee anything about the whole
language. To address this, we propose a framework for defining whole language semantics of FFIs
without needing to model the guest language, which makes reasoning about C FFIs feasible. We
show that with such a semantics, one can guarantee some form of soundness of the overall language,
as well as attribute errors in well-typed host language programs to the guest language. We also
present an implementation of this scheme, Poseidon Lua, which shows a speedup over a traditional
Lua C FFI.

2012 ACM Subject Classification Software and its engineering → Interoperability; Software and its
engineering → Semantics

Keywords and phrases Formal Semantics, Language Interoperation, Lua, C, Foreign Function
Interfaces

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.16

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.9

Acknowledgements The authors would like to thank Rafi Turas for writing the implementation of
these techniques in Poseidon Lua. We’d also like to thank Hugo Musso Gualandi for his valuable
discussions/feedback. This work was partially funded by NSERC.

1 Introduction

Often, programming languages are designed with a specific purpose or task in mind. For
example, domain specific languages (DSLs) exist for a variety of domains (e.g., querying
databases), and a programmer will often choose a DSL when solving a problem that falls in
its domain. But, when a programmer wants to write code which touches on several domains,
they turn to more general-purpose languages (e.g., Java) to give them the tools they need
to do everything they need to do, even though the language might be worse at any one
given task as compared to a DSL written specifically for it. With so many programming
languages to choose from, not only is picking the right language non-trivial, picking the
“wrong” language may come back to haunt you.

To make choosing a language easier, many programming languages are equipped to
interoperate with other languages, and one of the most common forms of interoperation is
the foreign function interface (FFI). FFIs allow code written in one language (called the

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alexi Turcotte, Ellen Arteca, and Gregor Richards;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 16; pp. 16:1–16:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.16
https://dx.doi.org/10.4230/DARTS.5.2.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Reasoning About Foreign Function Interfaces

host language) to call functions written in another language (called the guest language),
and also interface with data from the guest language, typically accomplished with wrapper
code surrounding guest language values and regulating access to them. By and large the
most common form of language interoperation is the C FFI, since C is so fast; C FFI’s are
available for Python, Lua and many other dynamic languages.

Semantically, interfacing with C exposes one to all of C’s foibles and irregularities: Memory
accesses can fail, return values of an incorrect type, or cause system-specific undefined behavior.
As such, FFI’s are usually avoided in language semantics, and assumed to be either benign
or absent. Unfortunately, proving properties of the behavior of a C FFI using conventional
techniques is challenging:

Of the existing body of work on formal specification of language interoperation, some are
designed with a very specific use case in mind [6][1], and others propose general frameworks [16]
which are difficult to use when reasoning about interoperation with C; these general approaches
rely on fully defined semantics for all interoperating languages, which is usually infeasible
when one of those languages is C.

In this paper, we aim to describe what behavioral guarantees remain true in the presence
of an FFI, how a language hosting an FFI can guarantee its own type correctness at the
interface, and how that can motivate the implementation of an FFI. We propose a framework
which allows typed languages with a C FFI to be formalized and easily reasoned about without
a full model of C. Our approach relies on a merger of the guest and host language’s type
systems, which allows us reason statically about the whole language and the host language’s
use of the FFI. Additionally, without a model of C, our semantics is nondeterministic – as
there’s no telling what an arbitrary C function might do – and we develop a novel method to
reason about these nondeterministic semantics. In principle, this approach works well for
interoperation with other languages too, though our model of C’s memory and C’s types in
the host language make languages with similar memory behavior to C’s most suitable.

As an example of our framework in action, we also present both the semantics and
implementation of Poseidon Lua, a Typed Lua C FFI. In Poseidon Lua, Typed Lua interfaces
with C by holding direct pointers to C data, and is equipped to dereference these pointers,
cast them, allocate C data directly, as well as call arbitrary C functions. We prove conditional
soundness of Poseidon Lua, and prove that if anything “goes wrong” in well-typed Poseidon
Lua programs, C code is at fault for the error. Interestingly, merging the type systems of the
constituent languages eliminates the need for wrapper code around guest language values,
which contributes to improved overall performance.

The main contributions of this paper are:
a framework for merging type systems of guest and host language to allow interoperation
that can be easily reasoned about;
a semantics for Poseidon Lua, a Typed Lua C FFI, implemented with our framework;
an implementation, Poseidon Lua;
improved performance results over the previously existing Lua C FFI.

2 Background

In this section, we will provide requisite background for understanding our proposed frame-
work, as well as our prototype implementation, Poseidon Lua. We will begin with an overview
of foreign function interfaces, as we are describing a framework for reasoning about them.

A. Turcotte, E. Arteca, and G. Richards 16:3

We will also discuss taint analysis, since the concept of taint features prominently in our
semantics. We will then discuss Lua, Typed Lua, and Featherweight Lua, as all are crucial
to understanding our language Poseidon Lua. We end the section with a quick highlight of
some related work.

2.1 Foreign Function Interfaces
A foreign function interface (FFI) is a framework in which code written in one language (called
the host language) may call code written in another language (called the guest language) as
well as interface with data from that guest language. In an FFI, the guest language typically
exports an API of available functions to the host language, and the host language calls
said functions through the function interface. In addition to this function interface, a data
interface is required to manage the use of one language’s data in the other language.

FFIs are prevalent in modern programming. They date back to Common Lisp [11], which
first introduced the concept of calling functions written in another language. Many dynamic
languages, such as Python [23] and Perl [19], have easy-to-use C FFIs, allowing programmers
to quickly and easily call functions written in C, a language known for its speed. In fact,
C FFIs are very common, particularly in systems where performance is critical: Scientific
computing environments, such as MATLAB [15] and Julia [9], carry out intensive numeric
computations and simulations, and often programmers turn to external C functions available
through an FFI to speed up the running time of their computationally intensive programs.
This provides the user with an easy-to-use scripting language front end which may not be
very performant, but with the ability to call fast functions when speed becomes an issue.

Most C FFIs interface with C in environments where C has access to all memory, including
that of the host language, but there are exceptions where C is an embedded language with
restricted access. One popular such system is Emscripten [29]. Emscripten is a source-to-
source compiler from LLVM to JavaScript; its goal is to provide a way to run code on the
web which can be compiled with LLVM but not natively run in browsers. Since JavaScript
can run in essentially any web setting, compiling a language such as C to JavaScript would
enable it to run reliably on a browser. With Emscripten, this can be done by first compiling
the original source code down to LLVM, and then translating this to JavaScript. In terms of
semantics, C is isolated to its own heap, and cannot interfere with JavaScript’s; we use this
style of isolation in our own semantics.

Idiomatic FFI usage is to minimize the data interface between the languages to the point
where only primitive, scalar values are passed between the languages, as sharing actual
structured data has unfortunate behavior: Often, if the FFI even has the capability to allow
the host language to store pointers to guest structures, they are mediated through a wrapper.
This wrapper problem is insidious: Consider, for example a list. With each access to the
next element of a list, a new wrapper must be allocated, and the old wrapper discarded, so a
series of simple accesses instead becomes a series of allocations. If the FFI has no capability
to access structured guest data, as in Lua’s built-in C FFI, the programmer has to write a
C accessor for every member they want to access. While the definition of these accessors
can be automated, they still incur the FFI to actually access the data, as the accessors are
written in C.

Even in systems which generate the data interface statically, such as JNI [20] and
SWIG [26], you still need wrappers. Imagine that we are using JNI or SWIG to interface with
C. The problem there is that because no type system resembling C’s is actually integrated
into the host’s type system, some layer is needed to make a working data interface, and that
layer works exactly the same as in a fully-dynamic FFI. (Note that SWIG can be a partial

ECOOP 2019

16:4 Reasoning About Foreign Function Interfaces

exception depending on the host language: If the host language lets you hold raw pointers, it
just generates a bunch of wrapper functions, instead of wrapper objects.) Our scheme, on
the other hand, avoids using wrappers at all, with our strategy of integrating the guest type
system into that of the host; this is discussed in more detail Section 3.

There has been some previous work on formally specifying FFIs, and language in general.
One example is early work by M. Abadi and coauthors [1], which explores dynamic typing in
a statically typed language, a mixing of two very different language paradigms. Other work
by K. Gray [6] tackles the problem of multi-language object extension, and presents a sound
calculus modelling the language interoperability and the semantics of objects written in one
language being extended in another. Additional work by J. Matthews and R. B. Findler [16]
realizes whole language semantics by defining full semantics for host and guest languages, and
uses boundaries to explicitly regulate value conversions. For our purposes, these approaches
are either too specific [1][6], or do not generalize to reasoning about languages with a C
FFI [16]. One particular work has a similar motivation to ours and has a fairly generalizable
approach: linking types presented by Patterson and Ahmed [22]. This is discussed below in
Section 2.4.

2.2 Dynamic Taint Analysis
Introduced by Newsome and Song in their paper [18], dynamic taint analysis is a technique
initially developed for tracing potential error propagation through a system, in order to
detect exploits on commodity software. The idea is that some data sources are considered
untrusted, and data which originates from these sources is labelled with taint. This allows for
the tracking of potential errors, and also can be used to restrict what the tainted data can
be used for. In addition, if there is an error in the program that involves some of the tainted
data, information on what potentially caused the error is all available as taint information.

The idea of dynamic taint analysis can be generalized to the tracking or propagation
of any tagged (tainted) data in a program. In this work, we adapt the concept of taint to
reasoning about a C FFI without modelling C: when a C call occurs, we cannot say what
will happen, but we can reason about what could happen. We can model arbitrary C calls
by tagging any data which could have been modified by the call with taint information
identifying it, and should an error occur involving any of this data, the taint can point to
the call which tampered with the data. Note that this is a property of the semantics for the
purpose of proofs; we do not demand that an implementation track dynamic taint. This is
explained in detail in Sections 3.2 and 4.

2.3 The Base for Poseidon Lua
Later in this work, we will be presenting Poseidon Lua, a Typed Lua C FFI. In this section,
we present variants of Lua, the host language in Poseidon Lua. First we discuss the Lua
language itself, before turning our attention to its variants and extensions.

2.3.1 Lua
Lua is a lightweight dynamic imperative scripting language with lexical scoping and first class
functions. Lua is extensible, and offers many metaprogramming mechanisms to facilitate
adaptation of the language. Its main data structure is an associative array known as the
table, which can stand in for most common data structures, such as arrays, records, and
objects. The functionality of tables can be further augmented through metamethods, which

A. Turcotte, E. Arteca, and G. Richards 16:5

are essentially hooks for the Lua compiler. Classic object-oriented programming patterns,
such as methods and constructors, can be easily encoded in Lua with these table extensions.
A C FFI was developed for Lua by Facebook [3]: called luaffifb, it is a standard C FFI
which wraps C data for use by Lua. Note that we did not implement Poseidon Lua on top of
LuaJIT [21], as the implementation merely serves as a demonstration of our semantics, and
JIT compilers are less amenable to such modifications. Also, LuaJIT offers the same sort of
data interface that we do, but without types and with boxed references to C structures – our
techniques would thus apply to it for better performance.

Our approach to reasoning about FFIs involves embedding the type system of the guest
into the host language, but Lua has no type system to embed into! For this reason, Lua is not
the host language in Poseidon Lua – as we need a type system, we chose Typed Lua as a base.

2.3.2 Typed Lua
Lua is a dynamic language, and as is often the case with these languages (see TypeScript [17]
and Typed Racket [27]), there have been a few attempts at adding types in some form. One
such example with Lua specifically is Tidal Lock [12], a static analyzer relying on simple
type annotations. Another is Typed Lua, an optional type system for Lua [14].

In their design of Typed Lua, Maidl et al. performed an automated analysis of existing
Lua programs to obtain a clear picture of how programmers use the language; they paid
close attention to idiomatic Lua code to ensure that their design aligned with conventional
language use. Typed Lua is optionally typed, which means that the type annotations are
removed when code is compiled. Typed Lua accounts for a large subset of Lua, but a few
parts are omitted, namely polymorphic functions and table types, and certain uses of the
setmetatable function. The type system of Poseidon Lua largely matches Typed Lua’s, and
a full discussion will appear in Section 4.1.

Like other optionally and gradually typed languages, a program written in Typed Lua has
an initial stage of type compilation. First, the Typed Lua code gets translated (i.e., compiled)
to its corresponding Lua program, and it’s during this first phase of compilation that the
type information is used. At “type compile” time, typed code can be checked statically for
type errors before being translated. The type information has no effect on the generated Lua
code; Typed Lua programs are type checked by the compiler, and if they are well-typed, the
compiler simply erases the types, generating plain Lua. Then, this Lua code is compiled to
bytecode and run on the Lua virtual machine.

This multistage process means that there are two distinct versions of Lua involved in
running a Typed Lua program. For clarity, in our discussion of Poseidon Lua we will use
the following terminology: Typed Lua will be referred to as the typed language or the user
language, since this is the language in which the programmer will be writing programs. Then,
the untyped language or the run-time language refers to the subset of Lua resulting from the
compilation of user language programs and additional expressions needed to deal with C.
Both of these languages’ grammar and operational semantics are given in Section 4.

In giving a prototype using our framework we needed to develop a formal representation
of Poseidon Lua. Poseidon Lua is formalized using a core calculus based on Featherweight
Lua (FWLua) [10], itself a core calculus of Lua (discussed next).

2.3.3 Featherweight Lua
There have been a few formal specifications of Lua. First, a semantics was developed by
M. Soldevila and coauthors [25] to gain a deeper understanding of Lua programs; it was
mechanized in PLT Redex [4] using reduction semantics with evaluation contexts. Another

ECOOP 2019

16:6 Reasoning About Foreign Function Interfaces

semantics, not unlike Featherweight Java [8] and LambdaJS [7], proposes a core calculus for
Lua. Called Featherweight Lua (FWLua) [10], this semantics focuses on formalizing what
authors deem to be the essential features of Lua: first-class functions, tables, and metatables.
Remaining Lua features, including expression sequencing and control structures, are shown to
reduce into FWLua through an extensive desugaring process. The FWLua specification [10]
also provides a reference interpreter written in Haskell.

The principle goal of FWLua is to capture core Lua idioms, and a crucial aspect of the
Lua language is its table construct. Under the hood, Lua handles table access and table
write with rawsget and rawset functions, respectively; these are not typically written by the
programmer, but are part of how Lua drives table functionality. In their design of FWLua,
the authors modelled table access and table write wholly with these rawget and rawset
operations, and together with other basic semantic constructs (e.g., functions and binary
operations) propose functions which mimic the semantics of full-fledged Lua. For example,
to capture Lua’s scoping rules, FWLua reserves certain tables to be so-called “scope tables”:
the _local table is one such example and is always accessible, and changes whenever a new
scope is entered while keeping a reference to its outer scope in its _outer member. This way,
variable access (say, of x) is desugared into a function which first searches through _local,
and if x is not present in _local, then it searches recursively through _local._outer, and
so on until x is located, producing nil if x is not found. This proved challenging to reason
about, so we chose to promote variables to first-class language members.

To contrast Lua and FWLua, consider the following, which illustrates table construction
in Lua:

local t = {}
t.x -- nil , uninitialized table members are nil
t.x = 42 -- t.x is now 42
t[0] = "hello" -- tables may be indexed like arrays
t["hi"] = 3.14 -- equivalent to t.hi

As you can see, tables can be accessed in a variety of ways in Lua, and have syntax
which specifically supports different access styles, be it array-style or record-style. Tables
are incrementally constructed, and can be extended at any time, much like dynamic object
extension in JavaScript or other dynamic languages. In FWLua, the above translates (with
a line-by-line correspondence) to:

rawset (_local , "t", {})
rawget (rawget (_local , "t"), "x")
rawset (rawget (_local , "t"), "x", 42)
rawset (rawget (_local , "t"), 0, "hello")
rawset (rawget (_local , "t"), "hi", "hello")

Here we see the rawset and rawget functions are used to write and read from a table,
respectively. As we mentioned earlier, FWLua desugars variables into special table members:
The table _local deals with local variables, and the table _ENV deals with global variables.

2.4 Related Work: Linking Types
Linking types, presented by Patterson and Ahmed [22], consider a different approach to
reasoning about language interoperation. This work considers the languages working together
as components within a larger language, which itself encompasses behavior of one language as
well as the added behavior of making calls to the other language. Linking types themselves

A. Turcotte, E. Arteca, and G. Richards 16:7

are designed to allow programmers to express and reason about one language’s features in
another (possibly) less expressive language which has no concept of those features. With
linking types, the programmer can annotate a program to indicate where it interfaces with
more expressive code in the linked language. Then, with these types, reasoning about the
behavior of the whole program becomes possible.

Although both their work and ours are motivated by the same essential problem, they
require modelling of both languages and focus more on the language of types than on
semantics or proofs. In our work, we take a notably different approach in deciding not to
model the behavior of the guest language, and instead work with the semantics of the point
of intersection (i.e. the boundary between host and guest), using nondeterminism to consider
the potential outcomes of the guest language calls. We believe that our types could be
expressed in terms of linking types with no meaningful change to our semantics or proofs,
but have not investigated this.

3 The Problem

FFIs are ubiquitous in programming, and C FFIs are by far the most common, but they
are usually excluded from formal treatments of programming languages. Unfortunately,
traditional methods of reasoning about FFIs necessitate a full semantic model of the guest
language to show anything about the overall system: Defining a formal semantics for C is
very involved, and, any such semantics will be compiler-dependent. For example, while the
CompCert [2] project was groundbreaking in their implementation of a formally verified C
compiler, their guarantees are limited to C programs compiled with this compiler, and do
not hold for C programs compiled on other compilers (such as gcc).

Hypothetically, if we had a whole language semantics for a system with a C FFI, what
might we be interested to show? One result of interest would be some form of type soundness
for the host language, to ensure that the inclusion of the FFI in the semantics didn’t cause any
strange issues. Additionally, we might like to show that if any failures occur in a well-typed
program calling a C FFI, then C is in some way at fault for the failure. In this work, we
show that we can get these results even without a full model of C!

To achieve this, we will need to be able to reason statically about use of the FFI (i.e., the
host’s interface with the guest). The function interface of an FFI exports function handles, so
we can at least check that functions are being called and used correctly, even if we don’t know
exactly what they do. However, the data interface of FFIs is typically built up dynamically,
and cannot be reasoned about statically. Indeed, in a conventional FFI, wrappers are built
up at run-time as values flow from one language to another, and dynamically regulate access
to underlying data.

In order to fully guarantee that the host language’s use of the C FFI is correct, we need
the data interface to be static, and we can achieve this by embedding C’s type system into
the type system of the host language. This way, the host language can express C types and
statically check its own use of C data instead of relying on run-time wrapper code like in
traditional approaches. As it happens, with this scheme wrappers are no longer necessary,
and their removal results in improved performance; this is discussed further in Section 5.

It’s not enough to have a system in place to statically reason about the host language’s
use of the C FFI, as we still need to consider how we can model calls to C when we have no
model of the C code, and how we can reason about the resulting semantics.

ECOOP 2019

16:8 Reasoning About Foreign Function Interfaces

3.1 Taint and Nondeterminism
With no model of foreign C code, a well-typed call to a C function exhibits nondedeterminism.
Without analyzing the C code we cannot reason statically about what exactly the function
does (e.g., a C function could dereference a null pointer or otherwise crash the program).
To account for this, at least two semantic rules for guest language calls are required: one
modelling a successful call where the function didn’t crash and returned something to the
host language execution, and another modelling failure, where the function failed to do so
(or, more generally, failed to successfully pass execution back to the host). Note that the
rule for failure must have strictly more permissive preconditions that any rule modelling a
successful call, as failure must always be an option.

Unfortunately, this simple model of nondeterministic success and failure of a particular
call does not fully account for all effects that C can have. For instance, executing a C
function could free some memory that the host program has access to while still terminating
and returning successfully, and the next dereference of a pointer to that memory would
fail or return unexpected values. To fully account for this case where a successful C call
has detrimental side effects, we need some additional mechanism to indicate to subsequent
reductions that the function may have tampered with some data.

To model the fact that black-box C code may arbitrarily modify data, we use the concept
of taint as described in 2.2; here, even successful calls to C functions will taint the memory
locations which may have been modified (i.e. all the memory C has access to). The presence
of taint at a memory location indicates that use of the location is nondeterministic: the next
use of the location could either succeed, indicating that no fatal modification was made, or
it could fail, indicating that the location was fatally modified by the call which placed the
taint. Note that success in accessing a tainted location does not mean that the value at
that location is the value that was there before it became tainted, it just means that the
access did not crash; C could still have changed the value in a way that was not fatal to the
program. Crucially, successfully using a tainted location will clean or remove the taint, as
from that moment until the next C call we are sure that the location is not somehow broken,
and that its value will not change (unless overwritten by Lua).

In summary, nondeterminism and taint together enable us to express the effects that
C may have on the host language program without modelling C. Note that since we use a
nondeterministic semantics for C and thus avoid modelling its behavior, in principle this
approach works well with other languages. However, our model of C’s memory and C’s types
in the host language make languages with similar memory behavior to C’s most suitable.

To demonstrate this framework, we will present the semantics of Poseidon Lua, a Typed
Lua C FFI. A high-level description of Poseidon Lua will be given in the next section.

3.2 Overview of Poseidon Lua
Essentially, Poseidon Lua is Typed Lua with a C FFI. It is fine-grained relative to standard
FFIs: Unlike traditional FFIs, in Poseidon Lua the type systems of Lua and C are merged
through a Lua pointer type, and the language has syntax with which the Lua programmer
can allocate and manipulate these pointers. Specifically, Poseidon Lua allows you to: allocate
and use C data, cast said pointers, and call C functions. The formal semantics are discussed
fully in Section 4.

In our semantics of Poseidon Lua, Lua directly holds C values through a pointer to some
location in a C store, which is separate from Lua’s store. Structs are laid out in the C
store as they would be in C, taking up space proportional to the number of struct members;

A. Turcotte, E. Arteca, and G. Richards 16:9

these members can then be accessed with an offset equal to its position in the list of struct
members (like accessing elements in an array). As explained, with no model of C, C function
calls are nondeterministic, with successful calls taint everything in the C store – for this
reason, our formalization includes optional taint information in the C store. Access to clean
(i.e., taint-free) locations in the C store are deterministic, while accesses to tainted locations
are not, and in the event of successful access to a tainted location the taint can be removed
and future accesses to that same location become deterministic (at least, until the next call
to a C function).

Another interesting application of taint is in modeling C’s undefined behaviour, of which
one classic example is casting pointers. In Poseidon Lua, as in C, pointers to C values
may be downcast. To model this in our formal semantics, we include types in the C
store, alongside taint and the values themselves – the C store is thus a list of triples of
(value, type, optional taint). This way, we can model the cast of a Lua pointer (to a C value)
to some type T by changing the type held at the pointer’s location in the C store to T . But
that’s not quite enough, as casting pointers is undefined behavior in C, and we can use taint
to cleanly capture this: Once cast, the location becomes tainted, and the next access to that
location is nondeterministic. In this scenario, taint indicates the cast location’s potential for
undefined behavior when it is accessed.

Another use of taint in Poseidon Lua is in our modelling of allocation of C pointers. In
C, the calloc function initializes the allocated memory with 0s, so in allocating a pointer to
a pointer, one is actually allocating a pointer to a 0 (which is to be treated as a pointer)!
Indeed, if one were to dereference the second pointer, one would be dereferencing 0 which
leads to a segmentation fault in most circumstances (0, of course, is NULL in C). To achieve
this in our semantics, we taint the allocated memory location when a (Lua pointer to a) C
pointer is being allocated, to indicate the potential failure of the next access to this location.

Even though we don’t model C, we do make some assumptions about C’s behavior: For
one, we assume that C does not touch Lua’s memory, and that its effects are contained to an
explicitly defined C store: in other words, the shared memory has clearly defined bounds.
This mirrors reality in most other FFIs, where guest code and data is not aware of host code
and data. However, it is technically possible for C code to violate this assumption. We also
make a simplifying assumption that all allocation and access is by word, which reduces the
complexity of C data accesses without loss of generality. We require that C doesn’t write new
or mutate existing Lua code, otherwise we would have to scrutinize existing expressions that
have yet to be reduced and would be unable to prove anything. We additionally make no
explicit mention of the stack pointer, which would needlessly complicate function calls and
returns for no real benefit. Further, C functions cannot call Lua functions in our formalization,
so as to package all of C’s effects into one black box; this is possible through callbacks, but
would again be very complex without meaningfully improving the semantics. Finally, we
disregard threads, which avoids needing to reason about the effects of concurrency on top of
the effect of C, a layer of complexity which is outside of the scope of this project.

4 Semantics

Poseidon Lua is our proof-of-concept for the ideas discussed in Section 3. Having highlighted
some of the stranger corners of our formal specification of Poseidon Lua in Section 3.2, we
will now discuss the C FFI in its entirety.

In Poseidon Lua, Lua primarily interacts with C by calling C functions, and our merger of
the two languages necessitates that C values be a part of the broader language. To represent
these C values, Typed Lua has a concept of a Lua pointer to a C value, which is Lua’s

ECOOP 2019

16:10 Reasoning About Foreign Function Interfaces

T ::= nil nil type
| value top type
| ref T reference type
| T1 ∪ T2 union type
| L literal type
| B base type
| T1 →L T2 function type
| {f1, ..., fn} table type
| ptrL TC Lua pointer type

TC ::= int C integer type
| T 1

C →C T 2
C C function type

| ptrC TC C pointer type
| {s1 : T 1

C , ..., sn : Tn
C} C struct type

f ::= s : T field
| const s : T const field

L ::= b boolean literal
| n numberliteral

| s stringliteral

B ::= boolean base types
| number
| string

Figure 1 The Poseidon Lua type system.

window to accessing C data. This means that Lua never deals directly with C values per se,
and instead deals with pointers to these values. As mentioned previously, we implement the
additional functionality of allocating C data as well as downcasting C pointers, both directly
from Lua code without needing to call C.

We start by describing the type system in detail, and follow with a presentation of a core
calculus which models the language. Then, we discuss the typing and reduction relations
before concluding with a discussion of soundness and other interesting proven results.

4.1 Type Systems
Poseidon Lua’s type system is a combination of Typed Lua’s [14] and C’s type systems. For
illustrative purposes, we chose a subset of C’s type system which highlights some of C’s
interesting features without getting bogged down in the low-level details; we only formalized
integers, pointers, structs, and functions. These are not limitations of the concept, merely
simplifications made to the formalization. The story is similar with Typed Lua’s type system;
our function type only has a single argument type, and multivariate functions are curried to
repeated application of single variable functions, by which a single argument function type
suffices. In fleshing out this type system for our core calculus, we found no need for Typed
Lua’s type variables, recursive types, and projection types, and were able to greatly simplify
their table type. Further, to simplify reasoning about Lua, we only allow string indexing in
tables. Again, these are not limitations of the language, and are only simplifications for the
purposes of formalization.

Our types are given in Figure 1, and explained in detail throughout this section. Type
ordering is as follows:

value is a supertype of all types;
nil is the type of Lua’s nil value, and is a subtype of all base types;
union types are supertypes of their members;
literal types are the types of literals (e.g. the literal type of 5 is 5), and base types are
the more general typical types of these literals (e.g. the base type of 5 is number) – that
said, literal types are subtypes of their corresponding base types;
function types are contravariant in their argument types, and covariant in their re-
turn types;
table types have width subtyping: A table type T is a supertype of a table type T ′
which has a superset of all of the fields of T (in other words, adding extra fields preserves
the subtyping relationship);

A. Turcotte, E. Arteca, and G. Richards 16:11

table types have depth subtyping only on const fields: If a table type T has a const
field x with type Tx, and a table type T ′ has all the same fields as T except that field
x has type T ′x, where T ′x <: Tx, then T ′ <: T (in other words, const field types may be
specialized while preserving the subtyping relationship)

C’s types are included in the Typed Lua type system (and made accessible to the user)
via the “Lua pointer” C type ptrL TC ; here, ptrL denotes a Lua pointer type, and TC is the
C type being pointed to (e.g., ptrL int is a Lua pointer to a C integer). As explained above,
Lua only ever deals with pointers to C values, and not C values themselves: the only access
to C values is through this pointer. C’s type system is consequently entirely self contained,
and is a strict subset of Lua’s with no ability to reference Lua types. In some sense, C is
“plugged” in to Lua through the ptrL TC type.

While we don’t formally model C, we do need some information on C functions in order
to ensure that everything shakes out properly at run-time. For example, in our semantics we
model C functions as black boxes with no function body, and we ask for parameter and return
types for these functions to ensure that they are called with correctly-typed arguments, even
though the function bodies themselves are not modeled. What this means is that we can
make sure that the functions are called correctly, but are not responsible for their internal
behavior. Indeed, FFIs typically export function types as part of their API and may not
always export their code – this is the situation modeled by our semantics. This is also
analogous to a user calling a library for which the source code is not provided, even when
the library is written in the same language as the “library host” language.

4.2 The Language
In this section, we present a core calculus modelling Poseidon Lua, akin to FWLua [10]. We
will discuss the language of expressions, both typed and untyped, before moving on to the
typing judgment and reduction relation.

We present two languages (in the same manner as Typed Lua, recall from Section 2.3.2):
The language of untyped expressions E, also known as the language of run-time expressions,
is the language that will actually reduce at run-time, and the language of typed expressions
TE is the language that programmers will interface with and program in, with a few minor
caveats which will be discussed in time. Roughly, the typed language corresponds to Typed
Lua with our added C FFI, and the untyped language corresponds to a subset of Lua with
additional expressions for C interoperation. We begin with the typed language TE .

4.2.1 Typed Language
Figure 2 presents the language of typed expressions, representing the language that the
programmer will be interfacing with, with some notable exceptions. The Lua dereference
and location update expressions, and the Lua location value are not explicitly written by the
programmer; they are artifacts of our typing judgment which will be presented in Section 4.3.
We sometimes refer to the aforementioned expressions as intermediate expressions; the typed
language without these is the user language.

These expressions largely describe a core calculus of Typed Lua, with the exception of
the following C expressions:

C downcast denotes the cast of expression te to C type TC ;
C allocation allocates a C pointer to a value of C type TC ;
C deref is used to dereference the C pointer expression te;

ECOOP 2019

16:12 Reasoning About Foreign Function Interfaces

te ::= vt value
| {s1 = v1, ..., sn = vn} table
| letx : T := te1 in te2 let binding
| x := te variable update
| locn := te location update
| deref te Lua dereference
| te1 op te2 binary operation
| te1(te2) function call
| x variable
| te1.te2 dot access
| te1.te2 := te3 dot update
| cast te TC C downcast
| callocTC C allocation
| derefC te C deref
| te1; te2 sequence

vt ::= nil nil value
| r register
| c constant
| locn Lua location
| λx : T.te Lua function
| cfun TC C function
| ptrnTC C pointer

r ::= regn table store loc

c ::= n number
| b boolean
| s string

op ::= +,−, ∗, / arithmetic
| ≤, <,≥, > order
| ∧,∨ boolean
| .. concatenation
| == equality

Figure 2 The language of typed expressions.

C function describes a C function with type signature TC . The type TC is required by
the type transformation to type these functions, as it cannot leverage the function body
(as is the case with traditional functions);
C pointer is a pointer to location n in the C store, with expected C type TC ;
Access to C structs is done through the dot access and dot update expressions (so long as
te1 is a C struct), and calling C functions is done through the function call expression
(so long as te1 is a C function).

Besides the C expressions, the typed language is standard or otherwise directly analogous to
some untyped expression, which we will discuss in more detail shortly.

Typed expressions will all compile into equivalent run-time expressions where the types
have been erased. We explore this run-time language next.

4.2.2 Untyped Language
The untyped language describes the expressions which will reduce/evaluate at run-time.
Generally speaking, they are analogous to some equivalent typed expression where the types
have been erased. This language essentially describes a core calculus of Lua, based on
FWLua (described in Section 2.3.3), though we added sequencing, let bindings, variables,
table literals, and of course C interoperability. The full language can be found in Figure 3.

FWLua is a core calculus of Lua, and a number of minor modifications were required
when adapting FWLua to describe Typed Lua, particularly with tables. Recall that tables
are the principle data structure in Lua; as discussed previously, FWLua desugars all of
Lua’s table manipulation into the dual rawget and rawset constructs. For the purposes of
formalization, we needed to relax FWLua’s extreme desugaring; one example of this being
the table literal (table) expression. FWLua handles table construction incrementally: an
empty table is first created and stored, and then it is populated with the values at the
programmer’s discretion. Unfortunately, this scheme fails in typed languages, as the empty
table is not a subtype of any non-empty tables, so we include a table literal to allow the
expression of a full table when needed for assignments.

A. Turcotte, E. Arteca, and G. Richards 16:13

e ::= v value
| {s1 = v1, ..., sn = vn} table
| rawget e1 e2 table select
| rawset e1 e2 e3 table update
| e1 op e2 binary operation
| e1(e2) Lua fun. appl.
| x variable
| x := e var. assignment
| locn := e location update
| deref e Lua dereference
| letx := e1 in e2 let binding
| cget e nTC C store access
| cset e1 n e2 TC C store update
| ccall e1 e2 TC β C function call
| calloc TC β C allocation
| cast e TC β C downcast
| e1; e2 sequence
| errβ error expression

v ::= nilL nil value
| r register
| c constant
| locn Lua store loc.
| ptrL nTC C store pointer
| λx.e Lua function
| cfun C function

vC ::= ptrC n C store pointer
| n C number literal

Figure 3 The language of untyped, run-time expressions.

Our function expression is unchanged from FWLua, though we must include a new C
function expression to allow FFI calls. Unlike the Lua function, which is a traditional lambda
expression, the C function has far less information in it – indeed, it has no function body!
Most of the information needed for a C call is stored in the C function call expression itself.

For accesses into C structs, we have the cget and cset expressions, analogous to rawget
and rawset. cget and cset are also used for accessing and writing to C pointers, which will
be discussed in more detail in Section 4.4. In cget e nTC , e is a pointer into the C store, n
is the offset of the access, and TC is the type that the cget is expecting to read. Similarly
in cset e1 n e2 TC , e1 is a pointer into the C store, n is an offset, e2 is the value to write,
and TC is the type that the cset is expecting the store to contain at the referenced pointer
(recall that we store type information for each pointer in the C store).

To call functions, programmers may write a standard function application as te1(te2) in
the typed language of Figure 2. The type transformation can, depending on the type of te1,
transform the application into either a Lua function application or a C call. The Lua function
call expression e1(e2) is straightforward, so let us focus on the C call: In ccall e1 e2 TC β, e1
is the C function being called, e2 is the argument to that function, TC is the function’s type,
and β is an identifier associated with the call (its line of code). The type is necessary since
C calls exhibit nondeterministic behavior, and we can leverage TC to reason about the value
that is returned from the function. The line of code information β is related to taint, which
we will describe fully when giving the semantics of the calls.

There are also a few expressions for functionality unique to C. As one might expect,
calloc TC β allocates something of C type TC , and β is the identifier uniquely associated with
the allocation, which allows a trace-back if a run-time error occurs. cast e TC β downcasts
the pointer e to type TC , and again β is a unique identifier associated with the cast.

4.3 Typing Judgment
Making a distinction between typed and untyped languages (or user and run-time languages)
makes sense in many optionally or gradually typed languages, where a typed language is
compiled into an untyped language which will be the one executing at run-time (recall the

ECOOP 2019

16:14 Reasoning About Foreign Function Interfaces

two stage compilation process described in the context of Typed Lua in Section 2.3.2). In
these settings the typing judgment often needs to be modified to connect the languages
together. We define a type transformation relation, a modification of the standard typing
judgment relation, which transforms/compiles a typed expression into its corresponding
untyped expression:

Γ,K ` te : T e (1)

Here, Γ is the typing environment, which assigns types to variables, and K is the typing
context, containing information about the various store typings. Our run-time environment
contains three stores: a table store for Lua tables, a C store for C values, and a variable
store for variables. K can thus be broken up into three store typings: ΣT describing the
table store, ΣC for the C store, and ΣV for the variable store. Roughly speaking, the type
transformation takes a typed expression te and “compiles” it into an untyped expression e,
assigning to it type T in the context of Γ and K.

In the following typing rules, some auxiliary functions will appear in the preconditions to
simplify the notation. They are as follows:

goodLayout (n, TC ,ΣC) checks to see if location n in the C store typing ΣC represents
type TC . If TC is a primitive type or a pointer type, this succeeds if ΣC(n) = TC . As for
structs, recall that they are laid out contiguously in the store: If TC is a struct type (for
example, {s1 : T 1

C , ..., sn : Tn
C}), then each of the fields must be present in ΣC with the

correct type, i.e. for all fields si we must have ΣC(n+ i) = T i
C .

offsetForType (s, TC) computes the offset of member s in structure type TC . Our formal-
ization of the C store lays out structs according to their type, and this function relates
their type (TC) to their layout in the store.

As we mentioned, in Poseidon Lua, Lua can interact with C in the following ways:
allocation and access of C data, C function calls, and casting of C pointers. In this section
we will focus on the typing rules for the expressions describing this FFI. The full typing rules
are given in Appendix A.1.

We will first consider the rule for allocation of C data.

validType(TC) β unused
Γ,K ` calloc TC : ptrL TC calloc TC β

(TT_CAlloc)

In Poseidon Lua, programmers can allocate Lua pointers to C data types (here, TC),
provided that the type is valid for allocation. For this to be the case, TC must either be
a primitive type, pointer type, or struct (itself recursively made up of valid types). This
prevents programmers from making nonsensical statements, such as allocating C functions in
Lua. The β here is needed when allocating C pointers: In C, allocating a pointer to a pointer
can cause issues if the innermost pointer is not properly initialized, due to the default values
that C inserts (pointer values are often initialized to 0, which is an invalid memory address
for C to access). This semantics will be dealt with in due course, and the inclusion of β
in the calloc expression is crucial to achieving the desired behavior – this will be further
discussed in Section 4.4.

Having seen C allocation, we turn our attention to typing (Lua pointers to) C values:

n < length(ΣC)
goodLayout(n, TC ,ΣC)

Γ, (ΣT ,ΣC ,ΣV) ` ptrL nTC : ptrL TC ptrL nTC

(TT_Lua_Ptr)

A. Turcotte, E. Arteca, and G. Richards 16:15

C values are always “hidden behind” a Lua pointer in Poseidon Lua, and so from Lua’s
point of view all C values have some ptrL type. In the expression ptrL nTC , n is the location
referenced by the pointer, and TC specifies the type that the location is intended to have.
The type information is required since structures do not directly inhabit the C store, and
so accessing a structure would be impossible with a simpler rule, since ΣC(n) will never
have a struct type; the type information allows us to check to see if location n does in fact
correspond to TC using the goodLayout auxiliary function, and only allow the pointer to
type if it does. The typing rule for dereferencing these pointers follows.

Γ,K ` te : ptrL TC e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL cget e 0 TC

(TT_Var_C_Deref)

Here, beyond ensuring that te is in fact a Lua pointer, we need to ensure that it is a
pointer to a type that we can dereference. The C store is made up entirely of primitives
and pointers, so we disallow dereferencing of things of another type (for example, we cannot
dereference a C function pointer). Because our type transformation deals with Lua types
only, we need to coerce TC into a Lua type to type this expression: Indeed, at run-time
the dereference will coerce the value it obtains from the C store, and the coercion at this
level allows such an expression to type. Note also the untyped expression corresponding to
the dereference: cget can play the part of either simple dereferencing and also struct field
access, depending on the value of its offset parameter (here, 0). An offset of 0 indicates
that we are either getting the first member in a struct, or simply dereferencing a pointer to
non-struct data.

We consider C functions next.

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Here, note that the C function expression contains the whole type of the function, and
without a body the function trivially types. Type information is necessary because we don’t
model C’s semantics: In typical typing rules for functions, the return type can be determined
thanks to the function body, and we have no such body to rely on here. In some sense, this
is in line with what one would expect when dealing with FFIs, since part of their API is the
full type of the exported functions.

Let us consider how one calls these functions:

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T e2 β unused

Γ,K ` te1(te2) : T ′ ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

In rule TT_C_Fun_Appl, we type the function application according to its return type.
Note the T ′ in the compiled (on the right of the) C call: The untyped call requires the
return type for reduction to be possible, and we will discuss this in more detail in Section 4.4.
Since C calls are sources of taint, we include β as an identifier uniquely associated with the
call, which corresponds to the line of code occupied by the call. In the event of a failure, we
can determine which call (and, thus, which function handle) is to blame.

We will now consider reading from and writing to C structs. First, reading:

Γ,K ` te1 : ptrL T1 e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)

ECOOP 2019

16:16 Reasoning About Foreign Function Interfaces

Here, if te1 types to ptrL T1, T1 is a struct type, and te2 types to a string literal s which
is a field name in struct T1, then the C struct member access types. Note that te1 must
be a Lua pointer to a C struct, as C structs themselves are not allowed in Poseidon Lua
unless they are behind a Lua pointer. Also, the resulting cget is given the offset of field s in
T1 (determined with the offsetForType auxiliary function), since the C store lays out struct
members linearly in an array form.

Second, C struct member update:

Γ,K ` te1 : ptrL T1 e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

As before, if te1 is a Lua pointer to a C struct type T1, and te2 is a string s which is a
member of that struct, and te3 is appropriately typed, we can type the C struct update. We
again emit an offset (in place of te2), which the cset will use when writing to the C store.

Finally, Poseidon Lua allows C values to be downcast, and they type as follows:

Γ,K ` te : ptrL T
′
C e β unused

Γ,K ` ccast te TC : TC ccast e TC β
(TT_C_Cast)

Here, we notice that casting must be done through the Lua pointer, and so long as TC is a
C type we allow the cast to go through. There is no mention of TC and T ′C being compatible
types, as C freely allows casting of pointers, and the cast merely changes the way that the
bits referred to by the pointer are read. As with previous mentions of β, it features here to
allow errors caused by the cast to be easily traced back to the cast.

At this point, we have explored each of the typing rules associated with Poseidon Lua’s
C FFI. In many cases, such as in TT_C_Fun_Appl, these rules transferred some type
information to their analogous run-time expressions in order to drive the run-time functionality
of the system. We discuss reduction of run-time expressions next.

4.4 Operational Semantics
The reduction relation on untyped expressions, describing the execution of programs, is:

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V (2)

Here, e and e′ are expressions in the untyped language, σT and σ′T are table stores, σC

and σ′C are C stores, σV and σ′V are variable stores. At a high level, the table store σT is
a list of Lua tables, the variable store σV is a list of values, and finally the C store σC is
a list of (v, TC , β?) triples, where v is a C value, TC is its type, and β? is optional taint
information (∅ represents no taint, or a clean location). As we mentioned in Section 3.2, the
unusual inclusion of type information in the run-time C store is required to properly model
C downcast semantics.

To simplify notation, we sometimes write the reduction relation as:

e /S → e′ /S ′ (3)

We refer to S and S ′ above as the run-time environment; the set of all the stores making
up the state/context of the reduction.

It will be necessary to differentiate between C stores based on whether or not they are
tainted; for this purpose, we say that a C store is clean if none of the elements of the store are

A. Turcotte, E. Arteca, and G. Richards 16:17

themselves tainted. To simplify discussion of tainted environments, we say that a run-time
environment is clean if its C store is also clean.

At the very highest level, we are formalizing a system wherein Lua code can interface
with C in the following manner: allocating C data, reading from and writing to some shared
memory with C, downcasting C values, and calling C functions.

Our formalization of Lua is based on FWLua [10], and we adapted their big-step semantics
to a more standard small-step equivalent. For our discussion of FWLua, see Section 2.3.3.
In order to mechanize our formalization, some simplifying modifications to FWLua were
required, namely the promotion of variables from syntactic sugar to full-fledged language
members. Of course, Lua allows you to declare and use variables, but FWLua desugars
variables into access to a special store carried around at run-time. Poseidon Lua requires
that FFI calls be made only from well-typed code, and so we adapted the type system of
Typed Lua [14], with some modifications made possible by our simplified semantics for Lua.

Notable in Poseidon Lua is the merger of Typed Lua’s and C’s type systems through the
Lua pointer type, and consequently the intermixing of values from both Lua and C. Lua
makes reference to C values through the Lua pointer expression, and can both access and
change the data contained in these pointers, as well as cast them to some C type. Lua may
also allocate Lua pointers to C values through the calloc expression, without needing to
make a ccall.

We will now turn our attention to the operational semantics of Poseidon Lua, with a
focus on the C FFI, mirroring discussion of the typing judgment in Section 4.3. The full
reduction rules are given in Appendix A.2. We start with the semantics of allocating C data.
Consider:

n = length (σC)
σ′C = σC + layoutTypeAndTaint (TC , β)

callocTC β / σT / σC / σV → ptrnTC / σT / σ
′
C / σV

(R_CAlloc)

The callocTC β expression allocates enough memory in the C store σC to accommodate
a value of type TC . The function layoutTypeAndTaint lays out type TC and taints pointer
members (as per our earlier discussion in Section 3.2). If TC either is or contains a C pointer
type, then we taint that location (with taint information β) to indicate to our system that
its behavior is undefined until it is successfully accessed or written to. If TC is a primitive
or pointer type, then we simply produce a triplet containing a default value (this is 0 for
pointers), the type TC , and taint if TC is a pointer type, and if TC is a struct, we lay out
each of its members in a similar fashion. Following allocation, a C pointer with the location
of the beginning of the newly allocated memory is produced.

Compared with C allocation, C calls have intricate semantics as we do not attempt to
model the bodies of arbitrary C functions. Instead, we treat the C functions like black boxes,
and consequently C function calls exhibit nondeterministic semantics, as any well-typed C
call can either succeed or fail if the function body is made up of arbitrary C code (recall that
we consider a call successful if it returns to executing the host language with some value
of the expected type). In the event of successful execution, we concern ourselves with the
return value and the call’s potential effects on the rest of the C data. Recall our discussion
that even if a call is successful, the function code might have altered the C store in a variety
of ways (such as freeing some existing memory), and we must account for this possibility.

ECOOP 2019

16:18 Reasoning About Foreign Function Interfaces

We will first consider the reduction rule for a successful C call.

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

Here, ccall cfun v2 ct2 β calls a C function cfun with argument v2. In this case, the call
succeeds, and makeValueOfType (ct2) gives us v, something of type ct2. Of course, since it’s
possible that the call tampered with the C store, we taint the store with taint information
β, corresponding to the line of code of this function call. This notifies subsequent accesses
to these memory locations of potential tampering, which modifies the semantics of those
accesses. C function calls can also fail:

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

To capture that both success and failure are possible outcomes, we ensure that the
premises of both rules are simultaneously satisfied: When all of R_CCall_Worked’s
preconditions are met, so are R_CCall_Failed’s (and vice-versa). The err β expression
is the result of the failing call, and indicates through taint information β which call is to
blame for the failure.

Having seen the intricacies of C calls, we will turn our attention to the semantics of
casting C pointers, another source of taint. For brevity, we only present the rule for casting
a clean location (the other rule is not notably different). Consider:

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

Here, the location n in σC is updated with the new type T ′C and taint information
associated with the cast (thanks to the update auxiliary function – update(s,l,v) reads as
“update s at location l with value v”). In C, casting a pointer merely changes how the bits
being pointed to are read, and the cast may even cause an error; we achieve similar semantics
with taint. When attempting to read location n in σC after it was cast, taint indicates that
the access should be nondeterministic. To keep our system as general as possible, we don’t
attempt to model the cast per se, and the next read will replace v with a new value of type
T ′C if successful, or fail with an error. We discuss the semantics of accesses next.

Thus far, we focused on the introduction of taint and fairly direct sources of nondetermin-
ism, and we will turn our attention to taint’s effect on the semantics of our system, as well as
how it can be removed from the run-time environment. As an example, recall our semantics
for C casts: When casting a location to some type TC , the location becomes tainted. Now,
imagine that the next use of the location is to store something of type TC in it; if this write
succeeds, from then on we are sure about the value present at the location. Such an operation
is said to clean the taint from the location; in our formalization, taint represents uncertainty
about a C value, and once we become certain of it (e.g., we have accessed the value and no
errors have occurred) we can safely remove the taint.

In more formal terms, the presence of taint at a location in σC indicates that accessing
that location yields nondeterministic results. To capture this, we ensure that a read or
write to a tainted location can reduce to more than one expression under the same premises;
namely, said read or write can succeed or fail.

A. Turcotte, E. Arteca, and G. Richards 16:19

Consider the following semantics for accessing a clean location in σC :

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)

Here, the expression cget (ptrL nT
′
C) o TC accesses σC at location n with offset o, and

is expecting something of type TC . In this reduction rule, location n + o in σC is clean,
and so the (well-typed) store access cannot fail. The access steps to vout, which is the Lua
equivalent of the C value contained in σC , determined through the coerceToLua auxiliary
function. Note that the pointer’s type (T ′C) does not necessarily need to match the expected
type of the access (TC); this is because cgets can be used for struct member access, where
T ′C would be a struct type and TC would be the type of the member.

coerceToLua (vC) is a function which takes a C value v and coerces it to a Lua value. If
vC is a C integer, then it is coerced to a Lua constant with the same numeric value. If vC

is a C pointer ptrC m ct, then it is coerced into a Lua pointer ptrLua m ct (to the same
location). Otherwise, the coercion fails.

Note the presence of a type TC in the cget expression. A condition of reading (and
writing) from σC is that the type specified for the read must match the type held in σC .
This allows us to enforce the correct use of downcast locations, as the cast changes the type
in σC , and future reads (and writes) must specify the new type.

We will now consider accesses to tainted locations, which can either fail or succeed. First,
consider a successful access:

σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅)) vout = coerceToLua(v′)

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

Here, we access σC at location n with offset o, and are expecting something of type TC

as before. However, σC(n+ o) is tainted, resulting in nondeterminism (i.e. we do not know
whether an access to this value will fail or succeed). In this reduction rule, we deal with
the case of a successful access to tainted locations. Here, a successful access returns some
value of the appropriate type (thanks to the makeValueOfType auxiliary function). The C
store at n + o is cleaned and updated with the new value; from this moment on, use of
this location is deterministic. Note that the value was observed to be something of type
TC , though not necessarily the same value that was in that location before the C call which
initially necessitated the addition of the taint.

The following reduction rule deals with failing access:

σC(n+ o) = (v, TC , β)
cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)

Here, the access fails, reporting the taint information identifying the call which tampered
with this data. Note that satisfaction of rule R_CGet_Taint_Works’s preconditions
implies satisfaction of this rule’s preconditions – this ensures that access to tainted locations
can fail in any situation that it can succeed.

Similar to cget, cset has nondeterministic semantics when dealing with tainted locations.
First, consider writes to clean locations:

σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)

ECOOP 2019

16:20 Reasoning About Foreign Function Interfaces

In the expression cset (ptrL nT
′
C) o v2 TC , we write v2 to location n with offset o in σC ,

and we expect the location to have type TC . Since location n+ o in σC is clean, the store
update cannot fail.

Note that we must first coerce v2 to a C value vput to store it in σC . coerceToC (v2) is
similar to the coerceToLua function, though it coerces Lua values to C instead. For example,
if v2 is a numeric constant, the function produces a C integer with the same numeric value,
and if v2 is a Lua pointer ptrL m ct, an equivalent C pointer ptrC m ct is produced.

The rule for csets on tainted locations is given below:

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

Here, we again coerce v2 to a C value vput to location n with offset o in σC , and we
expect the location to have type TC . However, σC(n + o) is tainted, and so we are in a
state of nondeterminism. In rule R_CSet_Taint_Works, the write succeeds: We update
σC(n+ o) with the new value vput and clean the taint. Of course, failure is always an option:

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

In this parallel case to T_CSet_Taint_Works, the write fails, and reports the taint
information stored at σC(n+ o).

By now, we have explored each of the reduction relations related to Poseidon Lua’s C
FFI. In Section 3, we claimed that even without a model of C, as is the case in our system,
the merger of the type systems of C and Typed Lua allows us to prove meaningful and
interesting results about the language as a whole. The next section presents the results which
we have proved, and sketches the proofs.

4.5 Proofs
There are two major results that we would like to prove about our semantics of Poseidon
Lua. First, we would like to show some form of soundness, though clearly we can’t have
traditional type safety due to interoperation with C. Even so, we designed our semantics in
such a way as to track C’s effect on the overall system, and we can leverage that to show
(conditional) soundness of the host language. Note that our proofs are mechanized in Coq,
and this code in included in the artifact; a brief sketch of each proof is given here, but for
the full details refer to the code.

We start with a sketch of preservation.

I Theorem 1 (Preservation). For all K, te, T , e, S, and S′ such that {},K ` te : T e,
e / S → e′ / S′, S is well-typed with respect to K, and both environments S and S′ are clean,
then there exists store typing K ′, typed expression te′, and type T ′ such that {},K ′ ` te′ :
T ′ e′ with T ′ <: T , S′ is well-typed with respect to K ′, and K ′ extends K.

Proof sketch. Standard proof by induction on the typing derivation {},K ` te : T e.
Any case where the error expression is reached is in violation of the run-time environments
S and S′ being clean, as taint is required in order to get an error. J

A. Turcotte, E. Arteca, and G. Richards 16:21

Essentially, the statement of preservation for Poseidon Lua differs from traditional
statements of preservation in the stipulation that the run-time environments S and S′ be
clean. Clean environments ensure that the C error expression cannot be reached, and that
the semantics are deterministic, as it’s the presence of taint which begets nondeterminism.

We can similarly show progress.

I Theorem 2 (Progress). For all K, te, T , e, and S such that {},K ` te : T e, S is
well-typed with respect to K, and S is clean, then either e is a value, or there exists clean
environment S′, and expression e′ such that e / S → e′ / S′.

Proof sketch. Another standard proof by induction on the typing derivation {},K ` te :
T e. As with preservation, any case where the error expression is reached is in violation
of the run-time environments S and S′ being clean. J

As was the case in preservation, the statement of progress here is distinguished by the
requirement that run-time environment S be clean. With a clean S′, progress connects
cleanly with preservation, allowing us to show soundness of Poseidon Lua contingent on clean
environments. A sketch of soundness follows.

I Theorem 3 (Soundness). For all K, te, T , e, and S such that {},K ` te : T e, either
e diverges, or there exists clean environment S′, and value v such that e / S →∗ v / S′ and
all intermediate environments are clean.

Proof sketch. A standard proof, which basically amounts to applications of progress and
preservation, and the intermediate environment of each step in the chain of reductions is
guaranteed to be clean by construction (in a sense, progress generates clean environments). J

Roughly speaking, Theorem 3 states that Poseidon Lua programs in clean environments
do not get stuck. The restriction to clean environments is due to the guest language, C,
potentially interfering with the host language: C calls taint the environment, and accessing
tainted values can lead to a stuck state even in well-typed programs. This isn’t to say
that you can’t use C at all, as allocating simple pointers and structs does not taint the
environment, and it is equally valid if some taint was once present and had been cleaned by
successful accesses or writes.

So, what is the purpose of a soundness result such as the one presented here? What we
have shown is that programs cannot go wrong if we don’t venture into the C world, and
proving this is a baseline and sanity check of sorts: It is difficult to discuss the semantics of
the whole system if we do not at least know that one component of it is sound. Knowing
that a taint-free system allows sound execution allows, for instance, the argument that one
can recover sound execution by cleaning all tainted values out of the heap.

Unfortunately, our statement of soundness doesn’t say much for the realistic use case
of Poseidon Lua (and C FFIs in general), as these systems are designed to call C code.
That said, we are not without options: as before, our inclusion of taint allows us to reason
about C’s effects on the overall language. Crucially, failing C reductions result in the error
expression err β, and the taint information β can be used to identify the true culprit for the
crash, even if that culprit was some earlier, seemingly unrelated expression. In short, we can
show that C is to blame for failures in well-typed Poseidon Lua programs.

I Theorem 4 (Always Blame C). If the error expression err β is reached, then there exists
some C expression which is to blame.

ECOOP 2019

16:22 Reasoning About Foreign Function Interfaces

1 p = calloc Point
2 cCall1 (p)
3 cCall2 (p)
4 cCall3 (p)
5 print (p.x)
6
7

p = calloc Point
cCall1 (p)
print (p.x)
cCall2 (p)
print (p.x)
cCall3 (p)
print (p.x)

Figure 4 Illustrative example.

Proof sketch. Effectively, this can be shown by construction of our semantics. err β can
only be reached through reduction from a C expression, and the only way that such a
reduction can occur is if there was some taint in the run-time environment. In err β, β
is taint information which identifies some C call, cast, or allocation (as those are the only
expressions which can taint), and it’s the identified expression that will be blamed. J

At a high level, Theorem 4 indicates that run-time errors in well-typed Poseidon Lua
are attributable to C. This signifies that our interoperation scheme does not allow for any
additional errors which are the fault of the host language, and any errors introduced by the
C FFI can be traced back to C.

Taken together, Theorems 3 and 4 are analogous to soundness of static code and the
gradual guarantee in gradually typed languages [28][24], though the context is otherwise quite
different. This similarity betrays a certain connection between gradual typing and language
interoperation, a connection equally noted by aforementioned work on linking types [22].

As we know, program execution in a tainted environment is nondeterministic. In this
state, many executions are possible, and they can be categorized as follows: the program
either terminates successfully, terminates unsuccessfully, or it executes until the environment
is cleaned of taint. Interestingly, executions which clean the taint actually reclaim soundness,
and are deterministic at least until the next C call.

We can show one other interesting result about Poseidon Lua programs which call C.
First, recall that only clean locations gain taint when a C call occurred; this ensures proper
error tracking in the event of multiple C calls possibly tainting the same data. For an
illustrative example, consider the code in Figure 4.

Assume the leftmost program fails at the access to p.x, blaming cCall1 and identifying it
as the start of our search; here, we cannot say for sure which of cCall1, cCall2, or cCall3
mucked with p.x. However, we can generate a modified program which can isolate the
faulty C call. Consider the snippet on the right. If cCall1 was the culprit of the failure,
then the access immediately following it will fail. If not, and cCall2 was at fault, then the
access immediately after cCall2 will fail. If neither of these are true, then cCall3 is at fault,
causing the final access to p.x to fail. This amounts to fault localization: When we are
uncertain about which of a number of unsafe operations are at fault for a run-time failure,
we can generate a new program which isolates the faulty operation.

A. Turcotte, E. Arteca, and G. Richards 16:23

5 Poseidon Lua: Implementation

As a demonstration of the practicality of these semantics, they have been implemented as
modifications to Lua 5.3.3 [13] and Typed Lua [14]. Lua is extended to provide low-level
interfaces, and Typed Lua is extended to make use of them with C types. The extensions to
Lua have no guarantees of safety or correctness on their own, and are treated as an internal
implementation language for the modifications of Typed Lua. Typed Lua is extended with
C types, through the addition of a C pointer in Lua which refers to C data (as explained
in Section 4.1).

Typed Lua’s grammar is extended as follows:

T ::= (all existing Typed Lua types) | PtrType
PtrType ::= ptr ptr* PtrTargetType
PtrTargetType ::= CVoidType | CPrimitiveType | Name
CType ::= CPrimitiveType | PtrType
CVoidType ::= void
CPrimitiveType ::= char | int | double
Statement ::= (all existing Typed Lua statements) | StructDeclaration
StructDeclaration ::= struct Name StructIdDecList end
StructIdDecList ::= StructIdDec StructIdDec*
StructIdDec ::= Id : CType
Expression ::= (all existing Typed Lua expressions) | CallocExpr
CallocExpr ::= calloc (PtrTargetType)

T, in particular, is the existing Typed Lua non-terminal for types. As a consequence, any
variable, parameter or field in Poseidon Lua may contain a pointer to a C value, but may not
contain a C value directly. All other types are unmodified, and behave as they do in Typed
Lua. As in C, the Poseidon Lua compiler assures that every type named in a C pointer type
has a corresponding struct declaration, and that no name corresponds to multiple structure
declarations, and as in C, the struct declaration defines the memory layout of objects of that
type. Unlike in C, declarations are not required to precede uses of the type they declare. A
simple wrapper for calloc is provided to assure that allocations are always of the correct
size. For this prototype, we implemented only chars, ints and doubles, but there is no
conceptual limitation on implementing any other primitive type. For convenience, Poseidon
Lua also provides syntax and semantics for C arrays, but they are not discussed in this work.

This modified Typed Lua compiles to Lua, extended with intrinsics to manipulate memory
directly. Typed Lua code which doesn’t use C features is unchanged: That is, if C ptrs
are not used, calloc is not used, and the code passes type checking, then it compiles into
identical Lua code without type annotations or declarations (i.e. the types are erased).
Lua already provides a datatype, “light user data”, intended for storing pointers to C data,
and this datatype is used for all ptr-typed variables and fields. This is why Lua was used
for this prototype. However, Lua’s light user data is completely opaque to Lua code: In
order to use it, one must implement a C interface, from which the underlying pointers are
exposed. Our principle extensions to Lua are low-level operators to directly manipulate
memory through these pointers: CS_loadChar, CS_storeChar, and similar for ints, doubles
and pointers. In addition, CS_calloc and CS_free are provided to give direct access to
C’s calloc and free, a literal CS_NULL corresponding to C’s NULL is provided to check for
errors, and CS_loadString and CS_storeString are provided to convert between C strings

ECOOP 2019

16:24 Reasoning About Foreign Function Interfaces

struct House
num_rooms : int

end
local house_1 : ptr House = calloc (House)
house_1.num_rooms = 6

Figure 5 Simple Poseidon Lua code example.

local house_1 = CS_calloc (4)
CS_storeInt (house_1 , 0, 6)

Figure 6 Simple Lua code example compiled from Poseidon Lua.

(0-terminated char arrays) and Lua strings. “CS” in this context is an abbreviation of
“C Semantics”.

Each of these low-level operators converts data between Lua’s native data types and C’s,
given a C pointer stored in a Lua light user data, and an offset. The conversions themselves
are trivial. None of these operators are intended for direct use by end users. Instead, Poseidon
Lua’s Typed Lua implementation compiles code which uses C types – that is, code which
accesses members of ptr-typed variables or fields – to Lua which uses the correct operators.
Internally, each low-level operator is compiled to its own opcode in Lua’s bytecode.

As a simple example, the Poseidon Lua in Figure 5 compiles to the Lua in Figure 6.
As the changes in our semantics are concerned principally with C data, rather than C

functions, we use a modified luaffifb for the function component of the interface. Poseidon
Lua’s modified luaffifb is changed only by replacing their wrapper objects with Lua’s light
user data, which can then be handled by Typed Lua types. The jump between C and
Lua code incurs much less overhead than wrapping C data for use in Lua, so no further
modifications are necessary.

5.1 Performance
Poseidon Lua code which doesn’t use C types is just regular Typed Lua: when compiled into
Lua code this will be identical to the equivalent Typed Lua program being compiled into Lua,
and so will not display any performance difference. Thus, to compare the performance of
Poseidon Lua against luaffifb, we need benchmarks which particularly measure the access to
structured data. Unfortunately, we know of no benchmark suite intended specifically for this
purpose, so instead we ported four benchmarks from the Computer Language Benchmarks
Game [5]. The subset of benchmarks from CLBG were selected because they had Lua versions
which used structured data types. In each case, they were rewritten so that every structured
datatype used a C struct, the shape of which was taken from the C version of each benchmark.
In Poseidon Lua, these structs were represented as struct declarations, and in luaffifb, as
their dynamic declarations. In both cases, no actual C calls are made: The data is stored in
C-compatible structures, and accessed through them, but the benchmark code is entirely
Lua. We compare the performance of luaffifb, which uses wrappers, to Poseidon Lua, which
does not. We also include the original Lua benchmark, which does not use C structured data,
for reference, although we expect no significant performance difference with respect to it.
The results and standard deviations are shown in Table 1. As expected, Poseidon Lua shows
a substantial speedup over luaffifb, due to the absence of allocated wrappers at run-time.

A. Turcotte, E. Arteca, and G. Richards 16:25

Table 1 Comparison of performance results over various benchmarks.

Poseidon Lua luaffifb Lua
Benchmark Time (s) Std. Dev. Time (s) Std. Dev. Time (s) Std. Dev.

binary-trees 18.8 0.447 202.4 2.97 22.0 0.707
n-body 4.0 0 40.6 1.14 4.0 0.707
spectral-norm 108.2 0 270.8 2.59 105.6 0.894
fannkuch-redux 66.8 2.95 528.8 9.68 55.0 0

Our performance is close to original Lua, though in some benchmarks the cost of converting
between C’s primitive types and Lua’s overwhelms other benefits.

The benchmarks were performed on Lua 5.3.3 as well as our modified version thereof, on
a quad-core 1.8GHz 64-bit Intel desktop PC running Ubuntu 14.04.3LTS.

6 Conclusions

In this paper, we presented a framework for reasoning about C FFIs without fully modelling
the guest language. This framework relies on making the data interface of the FFI static by
combining the type systems of the host and guest languages, and doesn’t require a model of
the guest language beyond its direct interactions with the host. We also saw how making the
data interface static eliminates the need for burdensome wrappers in FFI implementations,
as the host language can statically check its own use of the FFI instead of needing to rely on
the dynamic checks in the wrappers.

To showcase our framework, we presented Poseidon Lua, a Typed Lua C FFI. We gave the
formal semantics of the C FFI in Poseidon Lua, and even without modelling C were able to
guarantee some level of soundness of the host language, as well as prove that well-typed host
language code is not to blame for errors that occur. We also presented an implementation of
Poseidon Lua, and confirmed that making the data interface static does indeed improve the
performance of the FFI.

While we focus on a C FFI, in principle our approach also works for other choices of guest
language, as we deliberately avoid modelling C. That said, our model of C’s memory and
C’s types in the host language make languages with similar memory behavior to C’s most
suitable, though one could plug in any type system and model memory differently if they are
so inclined. We focused on a C FFI because they are very common, and prove particularly
challenging to reason about with traditional methods.

References
1 M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Statically-typed

Language. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’89, pages 213–227, New York, NY, USA, 1989. ACM.
doi:10.1145/75277.75296.

2 CompCert. CompCert Main Page. http://compcert.inria.fr. Accessed: 2018-07-23.
3 Facebook. luaffifb. https://github.com/facebookarchive/luaffifb. Accessed: 2019-01-10.
4 Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics engineering with

PLT Redex. Mit Press, 2009.
5 Isaac Gouy. The Computer Language Benchmarks Game. https://benchmarksgame-team.

pages.debian.net/benchmarksgame/. Accessed: 2019-01-10.
6 Kathryn E Gray. Safe cross-language inheritance. In European Conference on Object-Oriented

Programming, pages 52–75. Springer, 2008.

ECOOP 2019

http://dx.doi.org/10.1145/75277.75296
http://compcert.inria.fr
https://github.com/facebookarchive/luaffifb
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

16:26 Reasoning About Foreign Function Interfaces

7 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In
European Conference on Object-Oriented Programming, pages 126–150. Springer, 2010.

8 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

9 Julia. Calling C and Fortran Code. https://docs.julialang.org/en/stable/manual/
calling-c-and-fortran-code/index.html. Accessed: 2018-07-14.

10 Hanshu Lin. Operational semantics for Featherweight Lua. Master’s Projects, page 387, 2015.
11 Lisp. CFFI The Common Foreign Function Interface. https://common-lisp.net/project/

cffi/. Accessed: 2018-07-25.
12 Tidal Lock. Tidal Lock Gradual Static Typing for Lua. https://github.com/fab13n/

metalua/tree/tilo/src/tilo. Accessed: 2018-06-20.
13 Lua. Lua 5.3 Documentation. https://www.lua.org/manual/5.3/. Accessed: 2018-06-20.
14 André Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. Typed Lua: An

optional type system for Lua. In Proceedings of the Workshop on Dynamic Languages and
Applications, pages 1–10. ACM, 2014.

15 MathWorks. Matlab Calling C Shared Libraries. https://www.mathworks.com/help/matlab/
using-c-shared-library-functions-in-matlab-.html. Accessed: 2018-07-04.

16 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 31(3):12, 2009.

17 Microsoft. TypeScript – Language Specification Version 1.8. Technical report, Microsoft,
January 2016.

18 James Newsome and Dawn Xiaodong Song. Dynamic Taint Analysis for Automatic Detection,
Analysis, and Signature Generation of Exploits on Commodity Software. In NDSS, volume 5,
pages 3–4. Citeseer, 2005.

19 Graham Ollis. Perl Perl Foreign Function Interface based on GNU ffcall. https://metacpan.
org/pod/FFI. Accessed: 2018-07-06.

20 Oracle. JNI specification. https://docs.oracle.com/javase/8/docs/technotes/guides/
jni/spec/jniTOC.html. Accessed: 2019-06-10.

21 Mike Pall. The LuaJIT Project. Web site: http://luajit. org, 2008.
22 Daniel Patterson and Amal Ahmed. Linking Types for Multi-Language Software: Have Your

Cake and Eat It Too. In 2nd Summit on Advances in Programming Languages (SNAPL 2017),
volume 71 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:15,
2017. doi:10.4230/LIPIcs.SNAPL.2017.12.

23 Python. CFFI Documentation. https://cffi.readthedocs.io/en/latest/. Accessed: 2018-
07-06.

24 Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. Refined criteria
for gradual typing. In LIPIcs-Leibniz International Proceedings in Informatics, volume 32.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

25 Mallku Soldevila, Beta Ziliani, Bruno Silvestre, Daniel Fridlender, and Fabio Mascarenhas.
Decoding Lua: Formal Semantics for the Developer and the Semanticist. In Proceedings of
the 13th ACM SIGPLAN International Symposium on Dynamic Languages, DLS 2017, pages
75–86, New York, NY, USA, 2017. ACM. doi:10.1145/3133841.3133848.

26 SWIG Team. SWIG. swig.org. Accessed: 2019-06-10.
27 Sam Tobin-Hochstadt, Vincent St-Amour, Eric Dobson, and Asumu Takikawa. Typed Racket

Documentation. https://docs.racket-lang.org/ts-guide/. Accessed: 2018-08-01.
28 Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In European

Symposium on Programming, pages 1–16. Springer, 2009.
29 Alon Zakai. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings of the ACM

international conference companion on Object oriented programming systems languages and
applications companion, pages 301–312. ACM, 2011.

https://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/index.html
https://docs.julialang.org/en/stable/manual/calling-c-and-fortran-code/index.html
https://common-lisp.net/project/cffi/
https://common-lisp.net/project/cffi/
https://github.com/fab13n/metalua/tree/tilo/src/tilo
https://github.com/fab13n/metalua/tree/tilo/src/tilo
https://www.lua.org/manual/5.3/
https://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
https://www.mathworks.com/help/matlab/using-c-shared-library-functions-in-matlab-.html
https://metacpan.org/pod/FFI
https://metacpan.org/pod/FFI
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.12
https://cffi.readthedocs.io/en/latest/
http://dx.doi.org/10.1145/3133841.3133848
swig.org
https://docs.racket-lang.org/ts-guide/

A. Turcotte, E. Arteca, and G. Richards 16:27

A Appendix

A.1 Full Typing Rules
validType(TC) β unused

Γ,K ` calloc TC : ptrL TC calloc TC β
(TT_CAlloc)

n < length(ΣC)
goodLayout(n, T,ΣC)

Γ, (ΣT ,ΣC ,ΣV) ` ptrL nTC : ptrL TC ptrL nTC

(TT_Lua_Ptr)

Γ,K ` te : ptrL TC e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL cget e 0 TC

(TT_Var_C_Deref)

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T e2 β unused

Γ,K ` te1(te2) : T ′ ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

Γ,K ` te1 : ptrL T1 e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)

Γ,K ` te1 : ptrL T1 e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

Γ,K ` te : ptrL T
′
C e β unused

Γ,K ` ccast te TC : TC ccast e TC β
(TT_C_Cast)

∀ i, fi = si : Ti ∨ fi = const si : Ti ∀ i, Γ,K ` tvi : Ti vi

Γ,K ` {s1 = tv1, ..., sn = tvn} : {f1, ..., fn} {s1 = v1, ..., sn = vn}
(TT_Table)

Γ,K ` te1 : T e1
Γ + {x 7→ T},K ` te2 : T ′ e2

Γ,K ` letx : T := te1 in te2 : T ′ letx := e1 in e2
(TT_Let)

x ∈ Γ
Γ,K ` x : Γ(x) x

(TT_Var)

ECOOP 2019

16:28 Reasoning About Foreign Function Interfaces

n < length(ΣT)
Γ, (ΣT ,ΣC ,ΣV) ` regn : ΣT (n) regn

(TT_Reg)

Γ,K ` te : ref T e

Γ,K ` deref te : T deref e
(TT_Var_Deref)

x ∈ Γ
Γ,K ` te : Γ(x) e

Γ,K ` x := te : T x := e
(TT_Var_Assign)

Γ, (ΣT ,ΣC ,ΣV) ` te : ΣV (n) e

Γ, (ΣT ,ΣC ,ΣV) ` locn := te : T locn := e
(TT_Loc_Update)

Γ + {x 7→ T},K ` te : T ′ e

Γ,K ` λx : T.te : (T →L T ′) λx.e
(TT_Function)

Γ,K ` te1 : (T →L T ′) e1
Γ,K ` te2 : T e2

Γ,K ` te1(te2) : T ′ e1(e2)
(TT_Lua_Fun_Appl)

Γ,K ` te1 : T1 e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te1.te2 : T1(s) rawget e1 e2
(TT_Dot_Access)

Γ,K ` te1 : T1 e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te3 : T1(s) e3

Γ,K ` te1.te2 := te3 : value rawset e1 e2 e3
(TT_Dot_Update)

Γ,K ` te : T e T <: T ′

Γ,K ` te : T ′ e
(TT_Subsumption)

c constant
Γ,K ` c : c c

(TT_Const)

Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {+,−, ∗, /}

Γ,K ` te1 op te2 : number e1 op e2
(TT_Binop_Arith)

A. Turcotte, E. Arteca, and G. Richards 16:29

Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {<,≤, >,≥}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Order)

Γ,K ` te1 : boolean e1 Γ,K ` te2 : boolean e2
op ∈ {∧,∨}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Bools)

Γ,K ` te1 : string e1
Γ,K ` te2 : T2 e2

T2 ∈ {string,number}
Γ,K ` te1 .. te2 : string e1 .. e2

(TT_Binop_String)

Γ,K ` te1 : T1 e1
Γ,K ` te2 : T2 e2

Γ,K ` te1 == te2 : boolean e1 == e2
(TT_Binop_Eq)

Γ,K ` te1 : T1 e1
Γ,K ` te2 : T2 e2

Γ,K ` te1; te2 : T2 e1; e2
(TT_Sequence)

A.2 Full Reduction Rules
n = length (σC)

σ′C = σC + layoutTypeAndTaint (TC , β)
callocTC β / σT / σC / σV → ptrnTC / σT / σ

′
C / σV

(R_CAlloc)

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)

ECOOP 2019

16:30 Reasoning About Foreign Function Interfaces

σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅) vout = coerceToLua(v′))

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

σC(n+ o) = (v, TC , β)

cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)

σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

n = length (σT) tn = buildTable({s1 = v1, ..., sn = vn})
{s1 = v1, ..., sn = vn} / σT / σC / σV → (reg n) / σT + tn / σC / σV

(R_Table)

value (e1) l = length(σV)
letx := e1 in e2 / σT / σC / σV → [x← l] e2 / σT / σC / σV + e1

(R_Let)

value (e2) l = length(σV)
(λx.e)(e2) / σT / σC / σV → [x← l] e / σT / σC / σV + e2

(R_Fun_App)

σV (l) = v value(v)
deref (loc l) / σT / σC / σV → v / σT / σC / σV

(R_Loc_Deref)

value (e) σ′V = update (σV , l, e)
loc l := e / σT / σC / σV → e / σT / σC / σ

′
V

(R_Loc_Update)

A. Turcotte, E. Arteca, and G. Richards 16:31

σT (n) = T T (s) = v

rawget (regn) s / σT / σC / σV → v / σT / σC / σV

(R_Rawget)

value (e3) σT (n) = T s ∈ T
T ′ = update (T, s, e3) σ′T = update (σT , n, T

′)
rawset (regn) s e3 / σT / σC / σV → regn /σ′T / σC / σV

(R_Rawset)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

x := e / σT / σC / σV → x := e′ / σ′T / σ
′
C / σ

′
V

(R_Var_Assign_Step_1)

e / σT / σC / σV /→ e′ / σ′T / σ
′
C / σ

′
V

loc l := e / σT / σC / σV → loc l := e′ / σ′T / σ
′
C / σ

′
V

(R_Loc_Update_Step_1)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

letx := e1 in e2 / σT / σC / σV → letx := e′1 in e2 / σ
′
T / σ

′
C / σ

′
V

(R_Let_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e′1 e2 / σ
′
T / σ

′
C / σ

′
V

(R_Rawget_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e1 e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Rawget_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e′1 e2 e3 / σ
′
T / σ

′
C / σ

′
V

(R_Rawset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e
′
2 e3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_2)

value (e1) value (e2)
e3 / σT / σC / σV → e′3 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e2 e
′
3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_3)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e′1(e2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e1(e′2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_2)

ECOOP 2019

16:32 Reasoning About Foreign Function Interfaces

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e′1 op e2 / σ
′
T / σ

′
C / σ

′
V

(R_Binop_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e1 op e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Binop_Step_2)

value (e1) value (e2)
validL (e1) validR (e2)

e1 op e2 / σT / σC / σV → evalOp (e1, e2, op) / σT / σC / σV

(R_Binop)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

cget e o T / σT / σC / σV → cget e′ o T / σ′T / σ′C / σ′V
(R_Cget_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e′1 o e2 T /σ
′
T / σ

′
C / σ

′
V

(R_Cset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e1 o e
′
2 T /σ

′
T / σ

′
C / σ

′
V

(R_Cset_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1; e2 / σT / σC / σV → e′1; e2 / σ
′
T / σ

′
C / σ

′
V

(R_Seq_Step_1)

value (e1)
e1; e2 / σT / σC / σV → e2 / σT / σC / σV

(R_Seq_Step_Through)

DynaSOAr: A Parallel Memory Allocator for
Object-Oriented Programming on GPUs with
Efficient Memory Access
Matthias Springer
Tokyo Institute of Technology, Japan
matthias.springer@acm.org

Hidehiko Masuhara
Tokyo Institute of Technology, Japan
masuhara@acm.org

Abstract
Object-oriented programming has long been regarded as too inefficient for SIMD high-performance
computing, despite the fact that many important HPC applications have an inherent object structure.
On SIMD accelerators, including GPUs, this is mainly due to performance problems with memory
allocation and memory access: There are a few libraries that support parallel memory allocation
directly on accelerator devices, but all of them suffer from uncoalesed memory accesses.

We discovered a broad class of object-oriented programs with many important real-world
applications that can be implemented efficiently on massively parallel SIMD accelerators. We call
this class Single-Method Multiple-Objects (SMMO), because parallelism is expressed by running a
method on all objects of a type.

To make fast GPU programming available to domain experts who are less experienced in GPU
programming, we developed DynaSOAr, a CUDA framework for SMMO applications. DynaSOAr
consists of (1) a fully-parallel, lock-free, dynamic memory allocator, (2) a data layout DSL and (3)
an efficient, parallel do-all operation. DynaSOAr achieves performance superior to state-of-the-art
GPU memory allocators by controlling both memory allocation and memory access.

DynaSOAr improves the usage of allocated memory with a Structure of Arrays (SOA) data
layout and achieves low memory fragmentation through efficient management of free and allocated
memory blocks with lock-free, hierarchical bitmaps. Contrary to other allocators, our design is
heavily based on atomic operations, trading raw (de)allocation performance for better overall
application performance. In our benchmarks, DynaSOAr achieves a speedup of application code
of up to 3x over state-of-the-art allocators. Moreover, DynaSOAr manages heap memory more
efficiently than other allocators, allowing programmers to run up to 2x larger problem sizes with the
same amount of memory.

2012 ACM Subject Classification Software and its engineering→ Allocation / deallocation strategies;
Software and its engineering → Object oriented languages; Computer systems organization → Single
instruction, multiple data

Keywords and phrases CUDA, Data Layout, Dynamic Memory Allocation, GPUs, Object-oriented
Programming, SIMD, Single-Instruction Multiple-Objects, Structure of Arrays

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.17

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.2
Source code: https://github.com/prg-titech/dynasoar

Acknowledgements This work was supported by a JSPS Research Fellowship for Young Scientists
(KAKENHI Grant Number 18J14726). We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the TITAN Xp GPU used for this research. We would also like to thank
Hoang NT, Jonathon D. Tanks and the anonymous reviewers for their comments and suggestions on
earlier versions of this paper.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Matthias Springer and Hidehiko Masuhara;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 17; pp. 17:1–17:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthias.springer@acm.org
mailto:masuhara@acm.org
https://doi.org/10.4230/LIPIcs.ECOOP.2019.17
https://dx.doi.org/10.4230/DARTS.5.2.2
https://github.com/prg-titech/dynasoar
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 DynaSOAr

force

merge void Body::
compute_force() void Body::move() void Body::merge()

Our implementation
splits this into 4
do-all operations.

1 2 3

i i

Figure 1 N-body Simulation with Collisions. The simulation consists of multiple do-all operations
that are run in a loop for a fixed number of iterations (time steps)1. Every do-all operation runs in
parallel and is a synchronization point: The next one can start only if the previous one has finished.

1 Introduction

General-purpose GPU computing has long been a tedious job, requiring programmers to
write hand-optimized, low-level programs. In an attempt to make GPU computing available
to a broader range of developers, our efforts are centered around bringing fast object-oriented
programming (OOP) to low-level languages such as CUDA.

OOP has a wide range of applications in high-performance computing [9, 39, 6, 21,
17] but is often avoided due to bad performance [52]. Dynamic memory management
and the ability/flexibility of creating/deleting objects at any time is one of the corner
stones of OOP. Due to the massive parallelism and data-parallel execution of GPUs, the
number of simultaneous (de)allocations is significantly higher than on other parallel hardware
architectures. In recent years, fast, dynamic memory allocators have been developed for
GPUs [60, 37, 69, 66, 7, 58, 25, 31] and demanded by application developers [70, 61, 45, 54,
55, 43, 44], showing a growing interest in better programming models and abstractions that
have long been available on other platforms. However, while these allocators often provide
good (de)allocation performance, they miss key optimizations for structured data, leading to
poor data locality and memory bandwidth utilization when accessing allocated memory.

Single-Method Multiple-Objects (SMMO)

We identified a class of high-performance computing applications that can be expressed as
object-oriented programs and implemented efficiently on SIMD architectures such as GPUs.
We call this class Single-Method Multiple-Objects (SMMO). The most fundamental operation
of SMMO is parallel do-all: Running one method in parallel on all existing objects of a
type (object set). Such operations fit perfectly with the data-parallel SIMD execution model
of GPUs and can be implemented very efficiently. The main challenge lies is the fact that
the object set is dynamic: Objects can be created and deleted in GPU code. The main
contribution of our work is the design and implementation of a dynamic memory allocator
that works well with SMMO applications and runs entirely on the GPU.

SMMO is a broad class of problems with many real-world applications, such as social
simulations [27], evacuation simulations [44], predicting wildfire spreading [57], (adaptive [30])
finite element methods [28] or particle systems, to name just a few. As an example, consider
the n-body simulation with collisions in Fig. 1. Such simulations are used by astronomers to
simulate the collision of galaxies or the formation of planets [4]. Every body is an object in
SMMO and the simulation is a sequence of multiple do-all operations.

1 We implement merging behavior with multiple do-all operations to avoid race conditions.

M. Springer and H. Masuhara 17:3

Body bodies[32000];

float Body_pos_x[32000];
float Body_pos_y[32000];
float Body_vel_x[32000];
float Body_vel_y[32000];
float Body_force_x[32000];
float Body_force_y[32000];
float Body_mass[32000];

(b) Structure of Arrays (SOA)(a) Array of Structures (AOS)

po
s_

x 1
po

s_
y 1

ve
l_x

1

ve
l_y

1

for
ce

_x
1

for
ce

_y
1

ma
ss

1

po
s_

x 2
po

s_
y 2

ve
l_x

2

ve
l_y

2

...

struct Body {
 float pos_x, pos_y;
 float vel_x, vel_y;
 float force_x, force_y;
 float mass;
};

po
s_

x 1
po

s_
x 2

po
s_

x 3
po

s_
x 4

... po
s_

y 1
po

s_
y 2

po
s_

y 3
po

s_
y 4

... ...

strided memory access (slow) vector load possible (fast)

__device__ void move(int id) {
 /* Compute force, vel ... */

 pos_x[id] += Δt * vel_x[id];

 pos_y[id] += Δt * vel_y[id];
}

SIMD: All threads (in a warp) perform this load in parallel.
Current NVIDIA GPU coalesce these loads into as few
128-byte vector loads as possible. In SOA, fewer vector
loads are required to cover all pos_x values than in AOS.

...

(c) SOA Code Example

Figure 2 Data Layout of N-body Simulation in AOS and SOA. In SOA, multiple values of a field
(e.g., pos_x1 and pos_x2) can be loaded into a vector register with a single vector load instruction.
In AOS, a less efficient, strided memory load or multiple smaller memory loads are necessary, because
accessed data is not contiguous.

Structure of Arrays Data Layout

Structure of Arrays (SOA) and Array of Structures (AOS) describe memory layouts for an
object set [12] (Fig. 2). In AOS, the standard layout of most platforms, objects are stored as
contiguous blocks of memory. In SOA, all values of a field are stored together. This allows
for better cache utilization if not all fields are used in a computation. Moreover, it allows
for efficient vector loads/stores on SIMD architectures. This is important, because SIMD
architectures achieve parallelism by executing the same processor instruction on a vector
register. Previous work has reported speedups over AOS by multiple factors (e.g., [36]).

Choosing the best data layout for an application is challenging and depends on the data
access patterns of the application. Previous work has shown that a mixture of AOS and SOA
can sometimes achieve the best performance [29, 40, 68]. How to find good data layouts has
been studied before [40, 1] and is out of the scope of this paper. We are focusing on SOA in
this work, but DynaSOAr could easily be extended to support other layouts in the future.
Unfortunately, custom memory layouts come with a number of disadvantages:

Missing OOP Abstractions. In a hand-written SOA layout, programmers refer to an object
with an integer index into SOA arrays (Fig. 2c). However, OOP language abstractions
(e.g., encapsulation, member access, method calls, type checking, inheritance) only work on
object pointers/classes in mainstream languages. To overcome such issues, new languages
(e.g., Shapes [29]) and language dialects (e.g., ispc [53]) with built-in support for custom
data layouts, as well as data layout libraries/DSLs for existing languages [63, 47, 59] have
been developed.

Dynamic Object Set Size. SOA and AOS are not suitable for applications in which the
number of objects changes over time, because programmers must specify a maximum
object set size per type (e.g., 32,000 in Fig. 2) ahead of time. Dynamic memory allocation
solves this problem. As one of our contributions, we show how to allocate memory
dynamically while preserving the performance characteristics of SOA.

Subclassing/Inheritance. Inherited methods are shared between superclasses and subclasses.
To allow a superclass method implementation to be used for a subclass, the subclass must
use the same SOA arrays (and indices) as its superclass. In Columnar Objects, inherited
SOA arrays are shared among all objects of all subclasses and newly introduced SOA
arrays have a null value for objects of a super class [47]. This approach works, but it
can waste a considerable amount of memory.

ECOOP 2019

17:4 DynaSOAr

DynaSOAr: A Dynamic Allocator and C++/CUDA DSL for SOA Layout

In this work, we present DynaSOAr, a CUDA framework for SMMO applications. Dyna-
SOAr is a parallel, lock-free, dynamic memory allocator, combined with an efficient do-all
operation and an embedded C++/CUDA DSL to enable OOP abstractions with custom
object layouts.

We are focusing on DynaSOAr’s dynamic memory allocator and do-all operation in
this work. DynaSOAr controls the data layout through its memory allocator and data
access through its do-all operation. In SMMO applications, DynaSOAr achieves superior
performance compared to state-of-the-art allocators due to three main optimizations.

Objects are stored in a Structure of Arrays (SOA) data layout, a best practice for
structured data in SIMD programs, making usage of allocated memory more efficient
when used in conjunction with DynaSOAr’s do-all operation.
Memory fragmentation caused by dynamic object (de)allocation is minimized with hierar-
chical bitmaps. This is important because fragmentation diminishes the benefit of the
SOA layout through less efficient vectorized access (more vector transactions are need to
access fragmented data) and adversely affects cache performance [32].
Object allocation and deallocation performance is optimized with a number of low-level
techniques. For example, DynaSOAr combines allocation requests within SIMD thread
groups (warps) to reduce the number of memory accesses during allocations [37] and
takes advantage of efficient bit operations/intrinsics.

Contributions and Outline

This paper makes the following contributions.

The concept of Single-Method Multiple-Objects (SMMO) applications. We show that a
variety of important HPC problems are SMMO applications.
The design and implementation of DynaSOAr, a dynamic object allocator for CUDA;
with fast (de)allocation and a do-all operation. To the best of our knowledge, DynaSOAr
is the first dynamic allocator that stores objects in an SOA data layout.
An extension of the SOA data layout to dynamic object sets and subclassing.
A concurrent, lock-free, hierarchical bitmap, based on atomic operations and retry loops.
A comparison and evaluation of existing GPU memory allocators on SMMO applications.

The remainder of this paper is organized as follows. Sec. 2 gives an overview of the design
goals of DynaSOAr, focusing on memory access considerations of GPUs. Sec. 3 describes
the high-level architecture of DynaSOAr and Sec. 4 explains important optimizations such
as hierarchical bitmaps. Sec. 5 compares the design of DynaSOAr with other allocators
and Sec. 6 evaluates application performance and fragmentation using microbenchmarks and
multiple SMMO applications. Finally, Sec. 7 concludes the paper. Additionally, we provide a
systematic correctness analysis in the appendix.

2 Design Goals

DynaSOAr is a CUDA framework for SMMO applications and consists of three parts.

Memory Allocator. We developed a dynamic memory allocator that provides new/delete
operations in GPU code and stores objects in an SOA data layout. The main task of the
allocator is to decide where to store each field value of each object on the heap.

M. Springer and H. Masuhara 17:5

Data Layout DSL. We developed an embedded C++ DSL to support OOP abstractions
while storing objects in a custom layout. We could alternatively implement DynaSOAr
in a language that allows programmers to specify custom data layouts (e.g., Shapes [29, 64]
or ispc [53]), but such languages have limited GPU support.

Parallel Do-All. We developed an object enumeration strategy for SMMO applications that
achieves efficient access of allocated memory on SIMD architectures. By controlling
memory allocation and memory access, applications can achive better performance with
DynaSOAr than with other state-of-the-art allocators, which are only concerned with
memory allocation.

DynaSOAr’s DSL builds on top of Ikra-Cpp, an embedded C++ DSL for object-oriented
programming with SOA layout [59]. Its purpose is to make DynaSOAr easier to use for
programmers. This paper is mainly about the memory allocator and the do-all operation.

2.1 Programming Interface
In contrast to general memory allocators, DynaSOAr is an object allocator. The types
(classes/structs) that can be allocated must be specified at compile time. DynaSOAr
provides five basic operations. All operations except for parallel_do and parallel_new
are device functions that can only be called from GPU code.

HAllocatorHandle::parallel_do<T, &T::func>(args...): Launches a GPU kernel
that runs a member function T::func for all objects of type T and subtypes2 existing
at launch time (parallel do-all). T::func may allocate new objects, but those are not
enumerated by the same parallel do-all operation. T::func may deallocate any object of
different type U 6= T , but the object it is bound to (this) is the only object of type T it
may deallocate (delete itself). This is to avoid race conditions.
HAllocatorHandle::parallel_new<T>(n, args...): Launches a GPU kernel that in-
stantiates n objects of type T . In addition to args..., the constructor receives an ID i

between 0 and n− 1 (for the ith object) as the first argument.
new(d_allocator) T(args...): Allocates a new object of type T and returns a pointer
to the object. The placement new notation [10] is a common C++ pattern for arena
allocation and d_allocator is the allocator/arena in which the object is allocated.
destroy(d_allocator, ptr): Deletes an object that was allocated with d_allocator3.
DAllocatorHandle::device_do<T, &T::func>(args...): Runs a member function
T::func for all objects of type T in the current GPU thread. Can only be used in-
side of a parallel_do or a manually launched GPU kernel. This is a sequential for-each
loop. It is typically used for processing all pairs of objects (e.g., in n-body simulations).

Listing 1 shows parts of the n-body simulation of Fig. 1 to illustrate DynaSOAr’s API
and DSL.

2.2 Memory Access Performance
The main insight of our work is that optimizing only for fast (de)allocations is not enough.
Optimizing the access of allocated memory can result in much higher speedups, because
device (global) memory access is the biggest bottleneck of memory-bound GPU applications:

2 To avoid branch divergence, we launch a separate kernel for every type.
3 There is no placement delete syntax, so it is a common pattern to provide a separate destroy function [62].

ECOOP 2019

17:6 DynaSOAr

1 # include " dynasoar .h"
2
3 class Body; // Pre - declare all classes . This simple example has only one class .
4 using AllocatorT = SoaAllocator </* max_num_obj =*/ 16777216 , /*T...= */ Body >;
5 __device__ DAllocatorHandle < AllocatorT > d_allocator ;
6
7 class Body : public AllocatorT :: Base { // Can subclass other user - defined class .
8 public :
9 // Pre - declare all field types . DynaSOAr uses these to compute the size of blocks .

10 declare_field_types (Body , float /* pos_x_ */ , float /* pos_y_ */ ,
11 /* ... */ , bool /* was_merged_ */)
12
13 private :
14 // Declare fields with proxy types but use like normal C++ fields (as in Ikra -Cpp).
15 Field <Body , 0> pos_x_ ; // Position X
16 Field <Body , 1> pos_y_ ; // Position Y
17 /* other fields omitted ... */
18 Field <Body , 9> was_merged_ ; // Was this body merged into another one?
19
20 public :
21 __device__ Body(float pos_x , float pos_y , float vel_x , float vel_y , float mass)
22 : pos_x_ (pos_x), pos_y_ (pos_y), vel_x_ (vel_x), vel_y_ (vel_y), mass_ (mass) {}
23
24 // This constructor is invoked by parallel_new .
25 __device__ Body(int idx)
26 : Body(/* pos_x =*/ random_float (-kMaxPos , kMaxPos),
27 /* pos_x =*/ random_float (-kMaxPos , kMaxPos), /* ... */) {}
28
29 __device__ void apply_force (Body* other) {
30 if (other != this) {
31 float dx = pos_x_ - other -> pos_x_ ; float dy = pos_y_ - other -> pos_y_ ;
32 float dist = sqrt(dx*dx + dy*dy);
33 float F = kGravityConstant * mass_ * other -> mass_ / (dist * dist);
34 other -> force_x_ += F * dx / dist; other -> force_y_ += F * dy / dist;
35 }
36 }
37
38 __device__ void step_1_compute_force () {
39 force_x_ = force_y_ = 0.0f;
40 d_allocator ->device_do <Body , &Body :: apply_force >(this);
41 }
42
43 __device__ void step_2_move (float dt) {
44 vel_x_ += force_x_ * dt / mass_ ; vel_y_ += force_y_ * dt / mass_ ;
45 pos_x_ += dt * vel_x_ ; pos_y_ += dt * vel_y_ ;
46 }
47
48 __device__ void step_6_delete_merged () {
49 if (was_merged_) { destroy (d_allocator , this); }
50 }
51 };
52
53 int main () {
54 // Create new allocator . This will allocate a large buffer (" heap ") on the GPU.
55 auto * h_allocator = new HAllocatorHandle < AllocatorT >();
56 // Copy device handle to d_allocator handle .
57 cudaMemcpyToSymbol (d_allocator , h_allocator -> device_handle () ,
58 cudaMemcpyHostToDevice); // a bit simplified ...
59
60 // Create 65536 random body objects . We do not use the new keyword in this example .
61 // Alternatively , we could run this in a kernel : new(d_allocator) Body (...)
62 h_allocator -> parallel_new <Body >(65536) ;
63
64 for (int i = 0; i < kIterations ; ++i) {
65 h_allocator -> parallel_do <Body , &Body :: step_1_compute_force >();
66 h_allocator -> parallel_do <Body , &Body :: step_2_move >(/* dt=*/ 0.5);
67 /* some steps omitted ... */
68 h_allocator -> parallel_do <Body , &Body :: step_6_delete_merged >();
69 }
70
71 delete h_allocator ; // Deallocate buffer and all allocations within .
72 return 0;
73 }

Listing 1 DynaSOAr API Example: Excerpt from an n-body simulation with collisions.

M. Springer and H. Masuhara 17:7

po
s_

x 1
po

s_
x 2

po
s_

x 3

0x001000 0x008000

po
s_

x 4
po

s_
x 5

po
s_

x 6
po

s_
x 7

po
s_

x 8

...

po
s_

x 1
3

po
s_

x 1
4

po
s_

x 1
5

po
s_

x 1
6

...
For illustration purposes, we assume:
• Warp size: 4 threads (instead of 32 threads)
• Vector length: 32 bytes (instead of 128 bytes)

(b) Clustered Layout with Structure Split: 6 memory transactions required

po
s_

x 1
7

po
s_

x 1
8

po
s_

x 1
9

po
s_

x 2
0

po
s_

x 2
1

po
s_

x 2
2

po
s_

x 2
3

po
s_

x 2
4

...

po
s_

x 1
po

s_
x 2

po
s_

x 3
po

s_
x 4

po
s_

x 5
po

s_
x 6

po
s_

x 7
po

s_
x 8

po
s_

x 9
po

s_
x 1

0

po
s_

x 1
1

po
s_

x 1
2

po
s_

x 1
3

po
s_

x 1
4

po
s_

x 1
5

po
s_

x 1
6

...

(a) SOA Layout (Static Structure Split): 6 memory transactions required

po
s_

x 1
7

po
s_

x 1
8

po
s_

x 1
9

po
s_

x 2
0

po
s_

x 2
1

po
s_

x 2
2

po
s_

x 2
3

po
s_

x 2
4

...

0x001000

po
s_

x 9
po

s_
x 1

0

po
s_

x 1
1

po
s_

x 1
2

... ...

0x00A400 0x0FD800

means coalesced (vector) access:

Requires only 1 transaction if simultaneously accessed
by threads from the same warp, i.e.:
threads { ti, ti+1, ti+2, ti+3 | i mod 4 = 0 }

Figure 3 Data Layouts: Number of required memory transactions to read 24 floats simultaneously.

Latency. Global memory access instructions have a very high latency at around 400–800
clock cycles, compared to arithmetic instructions at around 6–24 cycles. Programmers
can hide latency with high occupancy [67] (i.e., running many threads).

Memory Bandwidth. The global memory bandwidth is a limiting factor. Peak memory
transfer rates can be achieved only with memory coalescing: When the threads in a
GPU application simultaneously access different memory addresses, the GPU coalesces
accesses from the same SIMD thread group (warp in CUDA, every 32 consecutive threads)
into one physical transaction if the addresses are on the same 128-byte cache line [38].
However, if threads access data on multiple cache lines (e.g., non-contiguous, spread-out
addresses), more transactions are needed4, which reduces transfer rates significantly. The
CUDA Best Practices Guide puts a high priority note on coalesced memory accesses [19].

Caches. Hits in the L1/L2 cache are served much faster (less latency, memory bandwidth
pressure) than global memory loads. Field reordering and structure splitting are common
techniques for increasing the number of hot fields in cache [18].

DynaSOAr achieves good memory access performance with a SOA-style data layout:
First, SOA increases memory coalescing because values of the same field, which are accessed
simultaneously in SIMD, are stored together. Second, SOA is an extreme form of structure
splitting and can improve cache utilization because fields that are not accessed do not occupy
cache lines.

2.3 High Density Memory Allocation
A SOA data layout (Fig. 3a) achieves good memory performance but is not suitable for
dynamic allocation: The size of SOA arrays is fixed and new allocations cannot be accommo-
dated once all array slots are occupied.

DynaSOAr’s design is based on the insight that a clustered layout with SOA-style
structure splitting (Fig. 3b) has the same cache/vector performance characteristics as a SOA
layout, if scalar values are stored in dense clusters of at least 128 bytes (vector and cache
line size) and clusters are aligned to 128 bytes, regardless of where the clusters are located.
This gives DynaSOAr more freedom in the placement of allocations and is exploited by its
allocation policy.

2.4 Parallel Object Enumeration Strategy
Current GPUs follow the Single-Instruction Multiple-Threads (SIMT) execution model.
Intuitively, every SIMD lane corresponds to a thread and every group of consecutive 32
threads forms a warp which executes the same instruction on a vector register.

4 This is similar to vectorized loads/stores, but coalescing is performed by the hardware.

ECOOP 2019

17:8 DynaSOAr

Spring Node PullNode (free) (free) Node...

heap: array of M blocks

...

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

object allocation bitmap

0x01 type id + padding

data segment
(SOA arrays)
incl. inherited fields

all blocks have same size (bytes)

bit for object slot

0x03

Node (free)

Spring*[3][46] NodeBase::springs
float[46] NodeBase::pos_x
float[46] NodeBase::pos_y
float[46] Node::vel_x
float[46] Node::vel_y
float[46] Node::mass

always 64-bit bitmaps ...

... but smaller arrays

...
free

...
allocated[Node]

...
active[Node]

...
allocated[PullNode]

...
active[PullNode]

...
allocated[Spring]

...
active[Spring]

block (multi)state bitmaps:
(2 per type + 1 global, M bits per bitmap)

(no bitmaps for abstract class NodeBase)

...

...

...object iteration bitmap

slot just allocated

This block is active
(i.e., not entirely full)

This block is inactive
(i.e., entirely full)

Figure 4 Example: Heap layout for a FEM simulation of a crack in a composite material. The
heap is divided into M blocks of equal size. Every block has the same structure: an allocation
bitmap, an iteration bitmap, and a type identifier, followed by a data segment storing objects in
SOA layout.

To benefit from memory coalescing, the threads of a warp must access addresses on
the same 128-byte L1 cache line. In a SOA data layout, this is achieved when the threads
of a warp read/write the same fields of objects with contiguous indices at the same time.
Intuitively, threads in a warp should process neighboring (spatially local) objects.

In DynaSOAr, programmers invoke GPU kernels with parallel do-all operations. These
operations must (a) spawn enough GPU threads to hide latency, but not too many to avoid
inefficiencies, and (b) assign objects to threads in such a way that memory access is optimized.

2.5 Scalability
Memory allocations require some sort of synchronization between threads to prevent collisions,
i.e., two threads allocating the same memory location. To avoid collisions, some allocators
such as Cilk [14] utilize private heaps, but such designs can lead to high memory consumption
(blowup) [11] and are in feasible on massively parallel architectures with thousands of threads.

State-of-the-art GPU allocators such as ScatterAlloc [60] and Halloc [3] reduce collisions
with hashing, which scatters allocations almost randomly on the heap. This would render a
SOA layout useless and defeat one of DynaSOAr’s main optimizations.

With such design restrictions, DynaSOAr is bound to have less efficient allocations than
other allocators. However, as we show throughout this paper, DynaSOAr can more than
make up for slow allocations with more efficient memory access.

Previous CPU memory allocator designs emphasize mechanisms for reducing false sharing,
which can degrade performance [11]. This is not an issue on GPUs, because L1 caches are
not coherent. Programmers must use the volatile keyword or atomic operations to enfore
a read/write to the shared L2 cache or global memory.

3 Architecture Overview

DynaSOAr manages a single, large heap in global memory on device. The heap is divided
into M blocks of equal number of bytes. M is determined at compile time based on the
block size. Multiple objects of the same type (C++ class/struct) are stored in a block in a
Structure of Arrays (SOA) data layout (Fig. 4). Once a block is initialized (allocated) for a
certain type, only objects of that type can be stored in that block until the block (and all its
objects) is deallocated again and reinitialized to a different type.

M. Springer and H. Masuhara 17:9

free
(uniniti-
alized)

allocated[T]
+ active[T] free

(invali-
dated)

allocated[T]

init block

dealloc,now empty

init block

dealloc

alloc,
now full

dealloc
alloc

Figure 5 Block State Transitions. At first, blocks are in an uninitialized state. As part of
allocation, new active blocks may be initialized (allocated). Active blocks become inactive when they
are full. Inactive blocks become active again an object is deallocated. Active blocks are invalidated
when their last object is deallocated. Invalidated blocks can be reinitialized (to any type) and are
handled similar to uninitialized blocks.

The maximum number of objects in a block depends on its type, because different
structs/classes may have different sizes. To improve clustering, DynaSOAr allocates new
objects in already existing, non-full blocks (fast path). We call such blocks active, because
they participate in allocations (Fig. 5). Only if no active block could be found, a new block
is allocated and becomes active (slow path).

3.1 Block Structure
Every block has two 64-bit object bitmaps: An object allocation bitmap and an object iteration
bitmap. The allocation bitmap tracks allocated slots in the block. The iteration bitmap is
used for object enumeration and overwritten with the allocation bitmap before every parallel
do-all operation. Its purpose is to ensure that objects that were created during a do-all
operation are not enumerated by the same do-all operation; that would a race condition.

The type identifier is a unique ID for the type T of a block. The remainder of the block
is occupied by padding and the data segment, storing 1 ≤ NT ≤ 64 objects in SOA layout.
The data segment begins with SOA arrays for inherited fields and ends with SOA arrays of
newly introduced fields.

Slots are marked as (de)allocated with atomic AND/OR operations that change a single
bit of the object allocation bitmap. Based on their return value5, we know ...

... if an allocation was successful or another thread was faster allocating the same slot.

... if a particular allocation filled up a block (i.e., allocated the last slot).

... if a particular deallocation emptied a block (i.e., deallocated the last slot).

If a thread filled up a block or emptied a block, it is that thread’s responsibility to update
the other internal data structures. This is a common pattern in lock-free designs [49]. Note
that every block has the same byte size and structure; e.g., the bitmaps are always at the
same offset. This is an important property for the correctness of our lock-free (de)allocation
algorithms and simplifies safe memory reclamation.

3.2 Block Capacity
The capacity of a block (maximum number of objects) depends on the size (bytes) of the
type of objects in the block. If DynaSOAr manages objects of types T1, T2, ..., Tn and

5 An atomic operation returns the value in memory before modification.

ECOOP 2019

17:10 DynaSOAr

...

Spring*[3][?] NodeBase::springs
float[?] NodeBase::pos_x
float[?] NodeBase::pos_y

?

offsetNodeBase::pos_y = sizeof(Spring*[3]) + sizeof(float) = 28

(maybe additional SOA arrays of subclasses)

...

...

float dist(NodeBase* p1, NodeBase* p2) {
 float dx = p1->pos_x - p2->pos_x;
 float dy = p1->pos_y - p2->pos_y;
 return sqrt(dx*dx + dy*dy);
}

Object slot ID (bits 0-5): 8
Block address (bits 6-49): 0xb01fc0000
Block capacity (bits 50-55): 46
Type ID (bits 56-63): 3

Block capacity

Physical address?

...

heap

...?

sizeof(Block)

NodeBase
or subclass

Field<NodeBase, 2>0x03b8000b01fc0008

Figure 6 Object Pointer Example. The static type of p2 is NodeBase*. The corresponding block
has SOA arrays for NodeBase fields and for the additional fields of the runtime type of p2. The size
of those arrays is not statically known and depends on the runtime type of p2.

s = argmini∈1...n size(Ti) is the index of the smallest type, then the capacity NT of a block
of type T is determined as follows.

NT =
⌊

64 · size(Ts)
size(T)

⌋
(block capacity)

A block of the smallest type Ts has capacity 64. Given a fixed heap size, the size of Ts

determines the block size in bytes and thus the number of blocks M .
As soon as a type T is more than twice as big as Ts, the benefit of the SOA layout starts

fading away for T , because NT < 32. The maximum amount of memory coalescing can
only be achieved with vector loads (cluster sizes) of 32 values (assuming 32-bit scalar types).
Furthermore, DynaSOAr cannot handle cases in which a type is more than 64 times bigger
than the smallest type. In reality, these limitations proved to be insignificant. None of our
benchmarks experienced a slowdown due to unfavorable block sizes.

3.3 C++ Data Layout DSL and Object Pointers
Field access is simple in most object-oriented systems: Given an object pointer, which is a
memory location, a field value is stored at a fixed offset from the object pointer.

In DynaSOAr, an object pointer is not a memory location, but a combination of various
components (fake pointer [59]), similar to global references in Shapes [29]. Upon field access,
the DynaSOAr DSL transparently converts object pointers to memory locations, without
breaking C++’s OOP abstractions. We follow the implementation strategy of Ikra-Cpp,
where fields are declared with proxy types Field<B, N>, which are implicitly converted to
T& values [35], where T is the N-th predeclared field type of B [59]. This conversion is defined
by our DSL and computes the actual, physical memory location within a data segment.

A DynaSOAr object pointer (Fig. 6) is based on the address of the block in which the
object is located. All blocks are aligned to 64 bytes, so we can store the object slot ID in the
6 least significant bits. Since recent GPU architectures have at most 24 GB of memory and
no virtual memory, only the 35 least significant bits are used in memory addresses and the
remaining 29 bits are always zero6. We store additional information in these bits: The 8
most significant bits store the type identifier for fast instance-of checks. The next 6 bits store
the capacity of the block. Note that, while C++ stores runtime types with a vtable pointer
at the beginning of an object, we store runtime type information in unused pointer bits.

6 We experimentally verified this on NVIDIA Maxwell and NVIDIA Pascal.

M. Springer and H. Masuhara 17:11

While in most object-oriented systems, runtime type information is only required for
virtual function calls, DynaSOAr needs the block capacity (a property of the runtime type)
also for field accesses, because SOA array offsets within the data segment depend on it.

For example, p2 in Fig. 6 is statically known to be of type NodeBase*, but the block
capacity (size of SOA arrays) depends on the runtime type, which can be any subclass of
NodeBase. Those subclasses can have different block capacities. The size of SOA arrays and
the object slot ID are required to compute the physical location of p2->pos_y, so we encode
both inside object pointers.

This computation, along with bit-shifting and bit-AND operations for extracting all
components from an object pointer, is performed on every field read/write (Sec. B). This
overhead may seem large, but arithmetic operations are much faster than memory access,
even in case of an L2 cache hit. Overall, the performance benefit of SOA is much larger than
the address computation overhead.

3.4 Block Bitmaps
To find blocks or free memory quickly during object enumeration or object allocation,
DynaSOAr maintains three bitmaps of size M , where M is the maximum number of blocks
on the heap.

The free block bitmap indexes block locations that are not yet allocated. This bitmap is
used to determine where new blocks are allocated. Bit i is 1 iff block i is free (uninitialized
or invalidated). Initially, every bit is 1.
There is one block allocation bitmap for every type T . That bitmap indexes blocks of
type T and is used for enumeration of all objects. Blocks of subclasses are not included
in bitmaps of the superclass. Initially, every bit is 0.
There is one active block bitmap for every type T , indexing allocated, non-full blocks. If
a bit is 1, then the same bit in the block allocation bitmap must also be 1. This bitmap
is used to find a block in which a new object can be allocated. Initially, every bit is 0.

Due to concurrent (de)allocations, block bitmaps cannot be kept consistent with the
actual block states all the time, as indicated by object allocation bitmaps and type identifiers
of blocks. However, we designed our algorithms in such a way that they can handle such
inconsistencies and keep block states and block bitmaps eventually consistent.

3.5 Object Slot Allocation
When a new object is created, DynaSOAr allocates memory and runs the constructor on
the object pointer. Alg. 1 shows how memory is allocated. This algorithm runs entirely on
the GPU and is completely lock-free.

DynaSOAr tries to allocate memory in an already existing, active block. If no block
could be found, it first initializes a new block at a location that is known to be free (slow
path). The state of the new block is allocated and active, so that the new block can also be
found by other threads.

Once a block was selected, an object slot is reserved by atomically finding and flipping a
bit from 0 to 1 in the object allocation bitmap (details in Alg. 6). Based on the return value
of the atomic operation, we know if this operation just allocated the last slot. In that case,
the block is marked as inactive in the active block bitmap (Line 12).

ECOOP 2019

17:12 DynaSOAr

Algorithm 1: DAllocatorHandle::allocate<T>() : T*. GPU
1 repeat . Infinite loop if OOM
2 bid ← active[T].try_find_set(); . Find and return the position of any set bit.
3 if bid = FAIL then . Slow path
4 bid ← free.clear(); . Find and clear a set bit atomically, return position.
5 initialize_block<T>(bid); . Set type ID, initialize object bitmaps.
6 allocated[T].set(bid);
7 active[T].set(bid);
8 alloc ← heap[bid].reserve(); . Reserve an object slot. See Alg. 6.
9 if alloc 6= FAIL then

10 ptr ← make_pointer(bid, alloc.slot);
11 t ← heap[bid].type; . Volatile read
12 if alloc.state = FULL then active[t].clear(bid) ;
13 if t = T then return ptr ;
14 deallocate<t>(ptr); . Type of block has changed. Rollback.

15 until false;

Algorithm 2: DAllocatorHandle::deallocate<T>(T* ptr) : void. GPU

1 bid ← extract_block(ptr);
2 slot ← extract_slot(ptr);
3 state ← heap[bid].deallocate(slot);
4 if state = FIRST then
5 active[T].set(bid)

6 else if state = EMPTY then
7 if invalidate(bid) then
8 t ← heap[bid].type;
9 active[t].clear(bid);

10 allocated[t].clear(bid);
11 free.set(bid);

Since the allocator is used concurrently by many threads, we may select a block (Line 2)
that is full or no longer exists when attempting to reserve an object slot (Line 8). If the
block is full, object reservation fails and we retry by selecting a new active block. If the block
no longer exists, we have to consider three cases7.

1. There is currently no block at this location. In this case, object reserveration fails, because
all slots are marked as allocated in the object allocation bitmap when a block is deleted.
We call this process block invalidation.

2. The block was deleted and a new block of the same type was allocated at the same
location. Such ABA problems are harmless and allocation will succeed.

3. The block was deleted and there is now a block of different type at the same location. At
this point, the constructor has not run yet, so no data in the data segment was corrupted.
This is because all blocks have the same structure, i.e., the object allocation bitmap
is always at the same location. We can safely rollback the allocation by running the
deallocation routine.

7 We give a more systematic correctness argument in the appendix.

M. Springer and H. Masuhara 17:13

......

NodeBase*[64] Spring::n1
NodeBase*[64] Spring::n2
float[64] Spring::initial_length
float[64] Spring::stiffness
float[64] Spring::max_force
int[64] Spring::bfs_distance

0x01
...

...
object iteration
bitmap

NSpring = 64

t64 t65 t66 t67 t68 t69 t70 t71 t127

...

0.
10

7
0.

72
8

0.
32

5
0.

92
7

1.
18

4
0.

96
4

1.
31

9
3.

79
1

2.
15

5

...

__device__ void Spring::compute_force() {
 float disp = max(0, dist(n1, n2) - initial_length;
 float force = stiffness * disp;
 if (force > max_force) destroy(d_allocator, this); }

thread
mask

coalesced access

d_allocator->parallel_do<
 Spring, &Spring::compute_force>()

Figure 7 Thread Assignment Example. 64 threads with consecutive IDs (2 warps) are assigned
to every allocated block of type Spring. Since not all object slots are in use, as indicated by the
block iteration bitmap, some threads have no work to do. All other threads can benefit from memory
coalescing when reading/writing fields of the object that they are assigned to.

3.6 Object Deallocation
When an object is deleted, DynaSOAr extracts its runtime type T from the object pointer.
Then, DynaSOAr runs the C++ destructor and deallocates the memory (Alg. 2) as follows.

We first extract block and object slot IDs from the object pointer and free the object slot
by atomically flipping its bit in the object allocation bitmap from 1 to 0. Based on the return
value of the atomic operation we know the fill level of the block right before the deallocation.

If this deallocation freed the first object slot (block previously full), we mark the block as
active (Line 5), so that other threads can find it and allocate objects in it. If this deallocation
freed the last object slot (block now empty), we attempt to delete the block (Lines 7–11).
Safe memory reclamation is known to be difficult in lock-free algorithms [48]. The main
problem is that one or more contending threads, in the course of their lock-free operations,
may have selected the block that we are about to delete for new allocations.

To avoid the block from being modified by other threads, we invalidate it. Block
invalidation attempts to atomically flipping all bits in the object allocation bitmap from 0 to
1. If this atomic operation failed to flip at least one bit from 0 to 1 (because it was already 1),
another thread must have reserved an object slot in the meantime. In this case, we rollback
the changes to the object allocation bitmap and abort block invalidation and deletion.

If invalidation was successful, the block is guaranteed to be empty and cannot be modified
by other threads anymore because all bits in the object allocation bitmap are 1. The type of
the block may have changed in the meantime (Line 8), but it is now safe to mark this block
location as free, so that a new block can be initialized at this location.

3.7 Parallel Object Enumeration: parallel_do

Parallel do-all is the foundation of SMMO applications. It launches a GPU kernel that runs
a method T::func on all objects of a type T . That method may read and write fields of the
object that it is bound to (this). The goal of parallel do-all is to assign objects to GPU
threads in such a way that memory coalescing is maximized for those field accesses.

Memory coalescing is maximized when all threads of a warp access consecutive memory
addresses at the same time. In this case, all those memory accesses can be serviced by efficient
vector loads/writes. In CUDA, threads are identified by thread IDs. Each warp consists of
a consecutive range of threads. E.g., warp 0 consists of threads t0, t1, . . . t31. Assuming a
block capacity of NT , DynaSOAr assigns NT consecutive threads to the objects in a block
(Fig. 7). This leads to good memory coalescing on average. Perfect memory coalescing can
be achieved if the following two conditions apply.

ECOOP 2019

17:14 DynaSOAr

...

...0 n/
a

n/
a

n/
a 4 5 n/
a 7 n/
a

n/
a

n/
a

n/
a 12 n/
a 14 n/
a

n/
a

n/
a

block allocation bitmap : uint64_t[M/64]

indices : int[M]

0 4 5 7 12 14

t0
...

R : int[r]

t63

...

t192

t255

...

t0
t63

...

t64

t127

... thread assignment:
strided by #threads "n"

consecutive
threads

per block

...1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0

bitmap_as_int : int[M]

...0 1 1 1 1 2 3 3 3 3 3 3 3 4 4 5 5 5

prefix_sum : int[M]

co
nv

er
t t

o
in

t a
rr.

ex
cl

us
ive

pr
ef

xi
x

su
m

for i = 0 to M - 1 in parallel do
 if bitmap[i] then
 R[prefix_sum[i]] = i
 end
end

stream
compaction

result

(concept. same as compacting this arr.)

idO(tid) = tid % NT (assigned obj. slot idx.)

idB(tid) =
(
R

[
tid + k · n

NT

]
| k ∈ [0; numB(tid))

)
(assigned block indices)

numB(tid) =
⌈

r ·NT − tid
n

⌉
(number of assigned blocks)

Figure 8 Example: Compacting block allocation bitmap indices and assigning n = 256 threads
to 6 allocated blocks with NT = 64. This prefix sum-based implementation retains the order of
indices (i.e., R is sorted), but this is not necessary for correctness.

NT is a multiple of the warp size 32. If this is not the case, then there are warps whose
threads process elements in two or more different blocks at the same time.
Objects have good clustering, i.e., every block except for at most one is entirely full. Due
to the way objects are allocated (only in active blocks), we expect a high fill level.

DynaSOAr uses the block allocation bitmap to find blocks to which threads should be
assigned. Assigning only one object to a thread is too inefficient if the number of objects is
large. Therefore, a thread ttid may have to process an object slot in multiple blocks. Our
scheduling strategy always assigns the same object slot position idO(tid), but in multiple
blocks idB(tid) (strided by the number of threads [34]), to a thread. In those formulas, R

is an array of indices of all allocated blocks of type T , i.e., all blocks containing objects of
type T . The total number of threads n can be hand-tuned by the programmer. With those
formulas, every thread can by itself determine the objects that it should process.

The array R is required because every thread must by itself find the tid
NT

-th, tid+n
NT

-th,
etc. allocated block of type T quickly, without scanning the entire block allocation bitmap.
DynaSOAr precomputes R before every parallel-do operation (Fig. 8). Conceptually, this is
an application of stream compaction [8] and usually implemented with a prefix sum [56, 13]:
Given a bitmap of size M , generate an indices array of size M containing i at position i if the
i-th bit is set. Otherwise, store an invalid marker. Now filter/compact the array to retain
only valid values, resulting in an array R of size r. Note that we do not care if the original
ordering of indices is retained. Sec. 4.1 describes how this algorithm is further optimized
with hierarchical bitmaps to avoid scanning empty bitmap parts.

4 Optimizations

This section describes performance optimizations that DynaSOAr applies in addition to
the SOA data layout to achieve good (de)allocation performance.

4.1 Hierarchical Bitmaps
DynaSOAr uses bitmaps for finding blocks or free space for blocks. Since, with growing
heap sizes, bitmaps can reach several megabytes in size, we use a hierarchy of bitmaps, such
that set bits (ones) can be found with a logarithmic order of memory accesses.

M. Springer and H. Masuhara 17:15

(1) clear

(2) clear

(3) clear

L0

L1

L2

b0
0

b1
3

Notation:

b0
1 ... b0

31C0
2 C0

3
(containers)(bits)

levelb index bit
Clevel

index container

... ...

Figure 9 Example: Hierarchical bitmap of size 32 with container size 4 (instead of 64). This
example illustrates how (1) a clear(18) operation triggers (2) a clear(4) operation in the nested
bitmap, which triggers (3) a clear(1) operation in the next nested bitmap.

Our hierarchical bitmaps are structurally recursive (i.e., bitmaps nested in each other)
and hide their hierarchy as an implementation detail from their interface. Such bitmaps
are used in database systems [50] and garbage collectors [65], but we do not know of any
hierarchical bitmaps that support concurrent modifications.

4.1.1 Data Structure
A hierarchical bitmap of size N bits consists of two parts: an array of size dN/64e of 64-bit
containers (uint64_t), and a nested bitmap of size dN/64e if N > 64. A container Cl

i consists
of bits bl

64·i, ..., bl
64·i+63 and is represented by one bit bl+1

i in the nested (higher-level) bitmap
(Fig. 9). That bit is set if at least one bit is set in the container.

bl+1
i =

63∨
k=0

bl
64·i+k (container consistency)

We chose a container size of 64 bits because C++ has a 64-bit integer type and CUDA
(and most other architectures) provide atomic operations for modifying 64-bit values. Bits
in a container are changed with atomic operations. Higher-level bits (and thus bitmaps)
are eventually consistent with their containers. Keeping both consistent all the time is
impossible without locking, because two different memory locations cannot be changed
together atomically. However, due to the design of the bitmap operations, the bitmap
is guaranteed to be in a consistent state when all bitmap operations (of all threads) are
completed, at the end of a GPU kernel. Bitmap operations retry or give up (FAIL) to handle
temporary inconsistencies. This is a key difference compared to other lock-free hierarchical
data structures such as SNZI [26], which have stronger runtime consistency guarantees and
require more complex algorithms.

4.1.2 Operations
All bitmap operations except for indices() are device functions that run entirely on the
GPU. All operations that modify memory are thread-safe and their semantics are atomic.
Internally, they are all implemented with atomic memory operations.

try_clear(pos) atomically sets the bit at position pos to 0. Returns true if the bit was
1 before and false otherwise.
clear(pos) switches the bit at position pos from 1 to 0. Retries until the bit was actually
changed by the current thread. This is identical to while (!try_clear(pos)) {}.
set(pos) switches the bit at position pos from 0 to 1. Retries until the bit was changed.

ECOOP 2019

17:16 DynaSOAr

Algorithm 3: Bitmap::try_clear(pos) : void. GPU

1 cid ← pos / 64;
2 offset ← pos % 64;
3 mask ← 1 << offset;
4 prev ← atomicAnd(&container[cid], ∼mask);

5 success ← (prev & mask) 6= 0;
6 if success ∧ has_nested ∧ popc(prev)=1 then
7 nested.clear(cid);
8

population cnt.:
number of set bitsreturn success;

Algorithm 4: Bitmap::try_find_set() : int. GPU

1 if has_nested then
2 cid ← nested.try_find_set();
3 if cid = FAIL then return FAIL ;
4 else
5 cid ← 0;

6 offset ← ffs (container[cid]);
7 if offset = NONE then
8 return FAIL
9 else

10

find first set: idx.
of 1st set bit

return 64*cid + offset;

try_find_set() returns the position of an arbitrary bit that is set to 1 or FAIL if none
was found. Must be used with caution, because the returned bit position might already
have changed when using the result.
clear() atomically clears and returns the position of an arbitrary set bit. This is identical
to while ((i = try_find_set()) != FAIL && try_clear(i)) {}; return i;.
get(pos) returns the value of the bit at position pos.
indices() returns an array of indices of all set bits. This is a host function and cannot
be used in a GPU kernel.

4.1.3 Set and Clear with Atomic Operations

As many other lock-free algorithms, our hierarchical bitmaps are based on a combination of
atomic operations and retries [20]. The return value of an atomic operation indicates if a
bit was actually changed and if it is this thread’s responsibility to update the higher-level
bitmap (Fig. 9).

As an example, Alg. 3 shows how to clear the bit at position pos. In Line 4, the respective
container is bit-ANDed with a mask containing ones everywhere except for that position.
This will clear the bit at position pos but leave all other bits unchanged. The current thread
actually changed the bit if it is set in prev (Line 5). If this operation cleared the last bit
(Line 6), then the bit in the higher-level bitmap must be cleared.

Note that higher-level bits are always changed with clear(pos)/set(pos) and not with their
respective try_ versions, because other concurrently running bitmap operations that are still
in process may not have updated all higher-level bitmaps yet, leaving the data structure
in a temporarily inconsistent state. If we were to use try_ versions, a mandatory update
of the higher-level bitmap could be accidentally dropped due to a bitmap inconsistency.
clear(pos)/set(pos) ensure that the update is performed eventually by retrying (and spin-
blocking the thread) until the update was successful.

M. Springer and H. Masuhara 17:17

Algorithm 5: Bitmap::indices() : int[N]. CPU

1 if has_nested then
2 selected ← nested.indices()
3 else
4 selected ← [0]
5 R ← array(N);
6 r ← 0;

7 for cid ∈ selected in parallel do . GPU
8 c ← container[cid];
9 s ← atomicAdd(&r, popc(c));

10 for i← 0 to popc(c)) do
11 R[s + i] ← 64*cid + nth_bit (c, i);

12 idx. of ith

set bit in c
return R.subarray(0, r);

4.1.4 Finding an Arbitrary Set Bit
Instead of scanning the entire L0 bitmap, set bits can be found faster with a top-down
traversal of the bitmap hierarchy, as shown in Alg. 4. A request is first delegated to the
higher-level bitmap (Line 2) to select a container. When that call returns, a set bit is chosen
in the selected container (Line 6).

Even if the bitmap has set bits, this operation can fail if it reads an inconsistent combina-
tion of containers from different hierarchy levels. For example, consider that a container with
exactly one set bit is chosen by the recursive call. However, before reaching Line 6, another
thread clears that bit as part of a concurrent bitmap operation. In that case, try_find_set
fails even though there may be set bits in other containers.

DynaSOAr’s performance is affected by such bitmap inconsistencies when searching
for active blocks (Alg. 1, Line 2). While bitmap inconsistencies do not affect correctness,
they lead to higher fragmentation because DynaSOAr will initialize additional blocks even
though objects could be accommodated in already existing blocks. We analyze the effect of
such bitmap inconsistencies in our benchmarks (Sec. 6.3).

4.1.5 Enumerating Set Bit Indices
Before launching a parallel do-all kernel, DynaSOAr uses the indices operation to generate
a compact array of allocated block indices (R in Fig. 8). No GPU code is running at this
time, so the bitmap is guaranteed to be in a consistent state. To ensure good scaling with
increasing heap sizes, and thus increasing block bitmap sizes, DynaSOAr utilizes the bitmap
hierarchy to quickly skip containers without any set bits (Alg. 5).

First, an index array is generated for the higher-level bitmap (Line 2). This array is then
processed in parallel; the for loop in Line 7 is a GPU kernel and every thread processes one
or multiple containers selected by the recursive call. If a container Cl

i does not have any set
bits, then its corresponding bit bl+1

i is in a cleared state in the higher-level bitmap and not
included in selected. Every thread reserves space in the result array R by increasing an
atomic counter and fills its portion of the array with bit indices. This algorithm proved to
be faster and requires less memory than a prefix sum algorithm, which needs multiple array
copies/buffers per bitmap. Note that, in contrast to the prefix sum-based implementation of
Sec. 3.7, this algorithm does not retain the order of indices and R and is not sorted.

4.2 Reducing Thread Contention
In Alg. 4 and 6, threads are competing with each other for bits: Only one thread can reserve
any given object slot and only a limited number of threads can succeed with allocations in a
block. To guarantee correctness, our design is heavily based on atomic operations. These

ECOOP 2019

17:18 DynaSOAr

Algorithm 6: Block::reserve() : (int, state). GPU

1 repeat
2 pos ← ffs(∼bitmap);
3 if pos = NONE then return FAIL ;
4 mask ← 1 << pos;
5 before ← atomicOr(&bitmap, mask);
6 success ← (before & mask)) = 0;
7 block_full ← before = 0xFF...F;

8 until success ∨ block_full;
9 if success then

10 if popc(before) = 63 then
11 return (pos, FULL)
12 else
13 return (pos, REGULAR)

14 return FAIL;

operations became considerably faster with recent GPU architectures [22, 2], but performance
can still suffer when too many threads choose the same bit, because threads have to retry if
allocation fails. DynaSOAr employs two techniques to reduce such thread contention.

Allocation Request Coalescing. Originally proposed by XMalloc [37], DynaSOAr com-
bines memory allocation requests of the same type within a warp. One leader thread
reserves all object slots in a single block on behalf of all participating threads (optimized
version of Alg. 6). If the selected active block does not have enough free object slots,
DynaSOAr reserves as many slots as possible and then chooses another active block
for the remaining allocation requests. This reduces atomic memory operations, because
multiple bits in an object allocation bitmap are set in one operation. Furthermore, the
constructor for newly allocated objects can run more efficiently, because field accesses
are coalesced.

Bitmap Rotation. Instead of a plain find first set (ffs) in Alg. 4 and 6, bitmaps are first
rotating-shifted by a value depending on the warp ID and a seed that is changed with
every retry. This increases the probability of threads choosing different active blocks for
allocation and reduces the probability of threads trying to reserve the same object slots
in a block. This is a key optimization technique that improved performance by an order
of magnitude.

While bitmap traversals are relatively cheap, block initializations are expensive because in
addition to initializing object bitmaps, bits in three different bitmaps (plus hierarachy) must be
changed (slow path of Alg. 6). To avoid unnecessary block initializations, it proved beneficial
to retry the search for active blocks (Line 2) a constant number of times before entering the
slow path. This optimization resulted in lower fragmentation and improved performance.

4.3 Efficient Bit Operations
DynaSOAr is taking advantage of efficient bitwise operations such as ffs (“find first set”) and
popc (“population count”). Modern CPU and GPU architectures have dedicated instructions
for such operations. As an example, Alg. 6 shows how a single object slot is reserved. Instead
of checking all bits in a loop, ffs in Line 2 is used to find a free slot (index of a cleared bit) in
the object allocation bitmap and popc in Line 10 counts the number of previously allocated
slots (number of set bits) to decide if this request filled up the block.

As another example, due to allocation request coalescing, every thread must now extract
its reserved object slot from a set of allocations performed by a leader thread on behalf of
the entire warp. This boils down to finding the i-th set bit in a 64-bit bitmap b of newly
reserved object slots, where i is the rank of a thread among all allocating threads in the
warp. Instead of checking every bit in b one-by-one (loop with 64 iterations in the worst case)

M. Springer and H. Masuhara 17:19

and keeping track of the number of set bits seen so far, we apply b ← b & (b - 1) in a loop
i− 1 times (to clear the first i− 1 bits) and then calculate ffs(b). We omit the details of this
optimization here, as it is only one example for a variety of similar low-level optimizations.

5 Related Work

CUDA provides an on-device dynamic memory allocator, but it is unoptimized and slow.
To solve this issue, multiple custom allocators have been developed over the last years.
These allocators achieve good performance by exploiting an allocation pattern that many
applications on massively parallel SIMD architectures exhibit: Most allocations are small in
size and due to mostly regular control flow, many allocations have the same byte size.

Halloc [3] is one of these allocators. It is a slab allocator and can allocate only a few dozen
predetermined byte sizes between 16 bytes and 3 KB. This is fast but can lead to internal
fragmentation. DynaSOAr can avoid such internal fragmentation because allocation sizes
are determined from compile-time type information of the application. A slab in Halloc
contains same-size allocations and tracks allocations with a bitmap. To avoid scanning large
bitmaps, a hash function determines which bits to check during allocations. Only one slab
can be active per allocation size and if the active slab becomes too full, it is replaced with a
new one. In contrast, more than one block per type can be active in DynaSOAr and blocks
are filled up entirely.

XMalloc [37] is the first allocator with allocation request coalescing, which was adopted by
many other allocators, including DynaSOAr. Coalesced requests are served from basicblocks,
which are organized in one of multiple lock-free free lists depending on their size.

FDGMalloc maintains a private heap for every warp [69], similar to Hoard [11]. It does
not have a general free operation and can only deallocate entire heaps, so it is not suitable
for SMMO applications.

CircularMalloc (CMalloc) [66] allocates memory in a ring buffer. Every allocation has
a pointer to the next allocation or free chunk, wrapping around at the end of the buffer.
CMalloc traverses the linked list for free chunks during allocations. To reduce allocation
contention, every multiprocessor starts its traversal at a different location. This is similar to
DynaSOAr’s bitmap rotation optimization.

ScatterAlloc [60] hashes allocation requests to memory pages depending on their allocation
size and the multiprocessor ID. Pages hold allocations of the same size, but slightly smaller
requests can be accommodated, leading to internal fragmentation. While DynaSOAr uses
hierarchical bitmaps, ScatterAlloc uses hashing with linear probing for finding pages during
allocations. For benchmarks, we use mallocMC [24], a reimplementation of ScatterAlloc that
is still maintained.

Both Halloc and ScatterAlloc maintain fill levels to quickly skip congested memory
areas that are above a certain threshold, because the performance of any hashing technique
degrades with an increasing number of collisions. In DynaSOAr, temporary inconsistencies
in bitmap hierarchies increase with the number of concurrent allocations, but DynaSOAr
can dynamically adapt to such cases by initializing additional blocks.

6 Benchmarks

We evaluated DynaSOAr with multiple real-world SMMO applications that exhibit different
memory allocation patterns (Table 1). We ran all benchmarks on a computer with an Intel
Core i7-5960X CPU, 32 GB main memory and an NVIDIA TITAN Xp GPU (12 GB device
memory), and compiled them with nvcc (-O3) from the CUDA Toolkit 9.1 on Ubuntu 16.04.4.

ECOOP 2019

17:20 DynaSOAr

Table 1 Description of Benchmark Applications.

Benchmark Description #
pa

r.
do

-a
ll

#
cl

as
se

s

al
lo

c.
/d

ea
llo

c.

sm
al

le
st

cl
as

s

la
rg

es
t

cl
as

s

Game of Life: A cellular automaton due to J. H. Conway.
This version has a time complexity of O(#alive cells) instead
of the standard O(#cells) algorithm. Cells can be dead, alive
or alive-candidates. Alive-candidates are dead cells that may
become active in the next iteration. Only alive-candidates
and alive cells are processed with parallel do-all operations. 4

/
ite

ra
tio

n

4
(2

dy
n.
)

3
/

3

5B
,2

fie
ld
s

8B
,1

fie
ld

N-Body: Simulates the movement of particles according to
gravitational forces. A device_do operation is required to
calculate (and then sum up) the gravitational force between
every pair of particles. All objects are allocated upfront. This
benchmark has no dynamic object (de)allocation.

2
/
ite

ra
tio

n

1
(0

dy
n.
)

7
/

7

28
B
,7

fie
ld
s

(s
am

e)

Barnes-Hut: An extension of N-Body in which bodies are
stored in a quad tree [16] (2D), to evaluate DynaSOAr with
dynamic tree data structures. The running time is dominated
by the construction/maintenance (i.e., frequent node insert-
s/removals) of the quad tree via parallel top-down/bottom-up
tree traversals. Tree nodes are dynamically (de)allocated. 10

/
ite

ra
tio

n

3
(1

dy
n.
)

3
/

3

68
B
,9

fie
ld
s

10
2B

,1
2
fie

ld
s

+

=

merge Particle Collisions: Similar to N-Body, but particles are
merged according to perfectly inelastic collision when they
are getting too close. The number of particles decreases
gradually. This benchmark has dynamic object deallocation
but no dynamic object allocation.

6
/
ite

ra
tio

n

1
(1

dy
n.
)

7
/

3

38
B
,1

0
fie

ld
s

(s
am

e)
pull

Structure: Simulates a fracture in a composite material,
modeled as a FEM. Intuitively, the mesh is a graph and edges
between nodes are springs. When pulling the mesh on one side,
the material starts to break eventually. Isolated nodes are
detected with a BFS [33] and removed. Literature describes
extensions that would benefit from dynamic allocation [46]. 3

/
ite

ra
tio

n

5
(4

dy
n.
)

7
/

3

32
B
,6

fie
ld
s

46
B
,7

fie
ld
s

Sugarscape: An agent-based social simulation [27]. Agents
inhabit a 2D grid and can move to neighboring cells. Cells
contain sugar which is consumed by agents. Sugarscape can
simulate a variety social dynamics (e.g., trade, war, envi-
ronmental pollution). Our simulation is quite simple. We
simulate resource consumption, ageing and mating. 12

/
ite

ra
tio

n

4
(2

dy
n.
)

3
/

3

52
B
,7

fie
ld
s

74
B
,1

1
fie

ld
s

Wa-Tor: An agent-based predator-prey simulation [23].
Fish/sharks occupy a 2D grid of cells and can move to neigh-
boring cells. Fish and sharks reproduce after some iterations.
Fish die when they are eaten and sharks starve to death when
they run out of food.

8
/
ite

ra
tio

n

4
(2

dy
n.
)

3
/

3

60
B
,4

fie
ld
s

64
B
,5

fie
ld
s

max_vel = 3
max_vel = 5

max_vel = 3

Nagel-Schreckenberg: A traffic flow simulation on a street
network [51]. This simulation can reproduce traffic jams and
other real-world traffic phenomena. Streets are modeled as
a network of cells, with at most one vehicle per cell. New
vehicles are continuously added to the simulation and existing
vehicles are removed at their final destination. 3

/
ite

ra
tio

n

4
(1

dy
n.
)

3
/

3

97
B
,1

0
fie

ld
s

12
4B

,6
fie

ld
s

Linux Scalability: Not an SMMO application. This mi-
crobenchmark allocates, then deallocates a fixed number of
same-size objects in each thread, without ever accessing the
memory [42].

n/
a

1
(1

dy
n.
)

3
/

3

4B
,1

fie
ld

(s
am

e)

M. Springer and H. Masuhara 17:21

We compare the running time with different allocators. If possible, we also measured the
running time of baseline implementations that do not use any dynamic memory management.

Benchmark Applications

We describe all benchmarks and their implementation in detail (incl. their SMMO structure)
on GitHub8. Our benchmarks are from different domains and fall into four categories.

1. Objects allocated up front, no deallocation: nbody
2. Objects allocated up front, then only deallocation: collision, structure
3. Cellular automaton (CA) with static cells network: sugarscape, traffic, wa-tor
4. Other: barnes-hut, game-of-life

Baselines (SOA/AOS) are application variants without any dynamic memory allocation.
Baselines of category (1) are trivial to implement with static allocation. In category (2),
every object has a boolean active flag to prevent deleted objects from being enumerated in
the future. In category (3), classes are merged with the underlying static cell data structure,
which wastes memory in case of empty cells (Sec. 6.2). Category (4) applications cannot be
implemented with static allocation, unless the application is changed fundamentally.

Parallel do-all in Custom Allocators

Other allocators do not provide do-all operations, which are required for SMMO applications.
To compare DynaSOAr with other allocators, we developed standalone parallel_do and
device_do implementations that can be used with any allocator.

These components maintain arrays for allocated and deleted objects of each type. Pointers
are inserted into these arrays with atomic operations. At the end of a parallel do-all operation,
deleted pointers are removed from the array of allocated pointers. Then, the array of allocated
pointers is compacted with a prefix sum operation (same as Fig. 8).

Depending on the number of (de)allocations, this mechanism may take a long time. A
better allocator-specific mechanism could likely be developed with some reverse engineering.
For that reason, we show the amount of time spent on parallel enumeration. This time should
not be taken into account when comparing the performance of different allocators.

BitmapAlloc

To analyze the performance of pure bitmap-based object allocation without SOA layout,
blocks and fake pointers, we developed a second allocator BitmapAlloc. This allocator treats
the entire heap as one large object array, whose slots are managed by hierarchical bitmaps,
similarly to DynaSOAr: one allocation bitmap per type and one free slot bitmap. Allocation
bitmaps are also used for parallel_do and device_do.

The main downside of BitmapAlloc is its inefficient memory usage. It supports only a
single allocation size, potentially leading to high internal fragmentation.

8 https://github.com/prg-titech/dynasoar/wiki/Benchmark-Applications (also see artifact)

ECOOP 2019

https://github.com/prg-titech/dynasoar/wiki/Benchmark-Applications

17:22 DynaSOAr

Table 2 Comparison of Allocators. Coal. means Allocation Request Coalescing.

Allocator Coal. SOA Container Finding Free Memory
DynaSOAr 3 3 Block Hierarchical Bitmap
DynaSOAr-NoCoal 7 3 Block Hierarchical Bitmap
BitmapAlloc 7 7 7 Hierarchical Bitmap
CircularMalloc 7 7 7 Linked List, Ring Buffer
Default CUDA Allocator 7 7 (Unknown) (Unknown)
FDGMalloc 3 7 Priv. Heap, Superblock Linked List
Halloc 7 7 Slab Bitmap, Hashing
mallocMC (ScatterAlloc) 3 7 Superblock, Region, Page Hashing
XMalloc 3 7 (4 block hierarchies) Lock-free Free Lists

6.1 Performance Overview
Fig. 10 shows the running time of all benchmarked SMMO applications. DynaSOAr achieves
superior performance over other allocators due to the SOA layout, a dense object allocation
policy and an efficient parallel do-all operation.

All applications except for structure see a speedup by switching from AOS to SOA
(compare baselines). In structure, most fields are used together, so SOA does not pay off.

Despite having no dynamic (de)allocation during the benchmark, nbody can see a slight
speedup with dynamic memory allocation. This is likely due to fewer cache associativity
collisions compared to a denser allocation in array [41].

In collision, DynaSOAr/BitmapAlloc enumerate objects with a bitmap scan of the object
allocation bitmap (device_do; 1 bit/object), more efficently than other allocators. Other
allocators read objects pointers from an array (8 bytes/object). The baseline versions read
an active flag (1 byte/object) from every object, including deleted ones.

game-of-life and wa-tor are applications that (de)allocate a large number of objects, so
enumeration takes a long time. DynaSOAr and BitmapAlloc have much more efficient
parallel-do operations than other allocators.

sugarscape and wa-tor exhibit a 2D grid structure of cells. Baseline versions take advantage
of this geometric structure, leading to more coalesced memory access, while programmers
have no control over where objects are placed in memory by dynamic allocators. For this
reason, the baseline versions are faster than the versions with dynamic memory management.

In general, in applications with dynamic memory management, objects are referred
to with 64-bit object pointers, while all baseline versions use 32-bit integer indices. This
penalizes especially benchmarks with small objects; their object sizes grow considerably just
by switching from 32-bit integers indices to 64-bit pointers.

6.2 Space Efficiency
To evaluate how efficiently allocators manage memory, we gave them the same heap size and
experimentally determined the max. problem size before running out of memory (Fig. 11).

For category (1) and (2) applications that allocate all memory during startup (collision,
nbody, structure), the baseline versions are more space-efficient. The exact number of objects
per type is known ahead of time, so placing objects in memory is trivial. However, even though
category (2) applications delete objects throughout their runtime, the memory consumption
of the baseline versions does not decrease over time. This is a problem even for DynaSOAr
because blocks can only be deleted when they are entirely empty, which can take some time.

M. Springer and H. Masuhara 17:23

Figure 10 Running Time of SMMO Application Benchmarks. We gave every allocator some
extra memory to avoid memory scarcity slowdowns: The heap size is 8 GiB, at least 4 times bigger
than the maximum amount of all allocated memory at any point throughout the program execution.

Figure 11 Space Efficiency. We measured the max. problem size of every allocator with the same
heap size. Does not take into account enumeration arrays. Results are relative to DynaSOAr.

iterations

(a) Comparison with other allocators.

problem size

(b) Fixed heap size, increasing problem size.

iterations

(c) Isolating single DynaSOAr optimizations.

iterations

(d) Number of (de)allocations and fragmentation.

Figure 12 Detailed Analysis of wa-tor. Does not include enumeration time, unless indicated.

ECOOP 2019

17:24 DynaSOAr

Category (3) applications (sugarscape, traffic, wa-tor) exhibit a fixed grid/network structure
of cells, upon which a dynamic set of agents is moving. The baseline versions allocate the
fields of agents directly inside cells. Classes for agents are combined with the cell class and
some fields have null values (or garbage) if they are not used. This wastes memory because
not all cells are occupied by agents all the time. Here, DynaSOAr is not as fast as optimized
SOA baseline implementations, but it can handle significantly larger problem sizes.

Out of all allocators, DynaSOAr is most space-efficient. MallocMC and Halloc are based
on a hashing approach. With rising heap fill levels, it becomes increasingly difficult to find
free memory for allocations, so they fail to use the entire heap memory. DynaSOAr and
BitmapAlloc can avoid this problem with bitmaps, which act as an index for free memory.

Albeit negligible in these benchmarks, DynaSOAr and Baseline (SOA) also benefit from
slightly smaller object sizes: Only SOA arrays must be aligned and not every object.

6.3 Detailed Analysis of wa-tor
wa-tor is a particularly interesting benchmark. It exhibits a massive number of (de)allocations
in waves, until an equilibrium between fish and sharks is reached. This allows us to measure
performance at a massive and at a lower number of concurrent (de)allocations. For a fair
comparison of allocators, we do not include time spent on enumeration in this section.

Fig. 12a shows that DynaSOAr always provides superior performance compared to other
allocators; during (de)allocation spikes (around iteration 50), as well as if fewer concurrent
(de)allocations take place. The performance of mallocMC degrades after a few iterations and
does not recover, possibly due to a fragmented heap.

In (b), all allocators were given a heap size of 1 GB and the problem size increases
gradually on the x-axis. mallocMC performs well at first, but its performance drops rapidly
as soon as the heap starts filling up. DynaSOAr can handle much larger problem sizes,
given the same amount of heap memory. The running time grows linearly with the problem
size, showing that recent GPU architectures can handle atomic operations quite well.

Fragmentation in DynaSOAr is different from other allocators: DynaSOAr does not
have internal or external fragmentation by design, but memory within allocated blocks is
only available for a certain type. This sort of fragmentation decreases with better clustering.
In DynaSOAr, fragmentation F is the relative number of unused objects slots among all
allocated blocks Blocks (gray area in (b) and (d)).

F =
∑

b∈Blocks(Ntype(b) − used(b))∑
b∈Blocks Ntype(b)

≈ 1
#blocks

∑
b∈Blocks

#free slots(b)
#slots(b) (fragmentation)

At iterations 60–80 in (d), DynaSOAr has high fragmentation because many fish
objects were deallocated. However, a block can only be deallocated when all of its objects
are deallocated. The fragmentation level decreases gradually because new allocations are
performed in existing (active) blocks. Therefore, new blocks are rarely allocated and there is
a chance that an active block will eventually run empty. As can be seen in (b), fragmentation
is independent of the problem size and constant at around 18% after 500 Wa-Tor iterations.

We implemented multiple DynaSOAr variants to pinpoint the source of DynaSOAr’s
speedup over other allocators (Fig. 12c. The most important optimization is the rotation-
shifting of bitmaps. Without shifting (*-NoShift), performance degrades severely due to
thread contention. Allocation request coalescing is another optimization that reduces thread
contention significantly (compare DynaSOAr-NoCoal-NoShift and DynaSOAr-NoShift), but
it cannot improve performance much further if we are already rotation-shifting bitmaps
(compare DynaSOAr and DynaSOAr-NoCoal).

M. Springer and H. Masuhara 17:25

iterations

Figure 13 Memory fragmentation (wa-tor) by #active block lookup attemps r (Alg. 6, Line 2).
With only 1 retry (r = 2), frag. is reduced by 50%. DynaSOAr uses r = 5 by default, which
is close to the lowest achievable frag. level (i.e., without thread contention). Due to unfortunate
alloc.-delloc. patterns, a frag. rate of 0% is not achievable without manually relocating objects or
predicting future (de)allocations.

#alloc. per thread0
%

 h
ea

p
 u

til
iz

at
io

n

1
0

0
%

 h
ea

p
 u

til
iz

at
io

n

(a) Linux Scalability: Increasing #allocations.

heap size (GB)

(b) Scaling study: Heap size (wa-tor).

Figure 14 Scaling Study: Number of Allocations and Heap Size.

In Fig. 13, we experiment with the number of active block lookup attempts before entering
the slow path, which strongly affects fragmentation.

6.4 Raw Allocation Performance
The Linux Scalability microbenchmark [42] measures the raw (de)allocation time of allocators.
We set the heap size to 1 GiB and one CUDA kernel allocates n 64-byte objects in each of
the 16,384 threads. A second CUDA kernel deallocates all objects. Allocated memory is
never accessed. In Fig. 14a, the x-axis denotes the number of allocations per thread n and
the y-axis shows the total benchmark running time divided by n.

We chose the size of the heap such that it can hold exactly 16384 × n objects with
n = 1024 (100% heap utilization). No allocator can reach perfect utilization because some
memory is used for internal data structures such as bitmaps.

Halloc is the fastest allocator. Both Halloc and mallocMC fail to allocate more than 510
objects (49.8% utilization). This is better than in some other benchmarks, likely because
only objects of one size are allocated. DynaSOAr (96.9% utilization), BitmapAlloc (98.4%
utilization) and Halloc scale almost perfectly with the number of allocations.

6.5 Parallel Object Enumeration
The overhead of object enumeration (parallel do-all) is negible in most benchmarks (Fig. 10,
Fig. 12b). In Fig. 14b, the problem size is fixed but the heap size increases on the x-axis.
DynaSOAr’s performance (and that of object enumeration) is independent of the size of
the heap, if enough memory is available for the application. This shows that our hierarchical
bitmaps work well with various heap sizes.

ECOOP 2019

17:26 DynaSOAr

7 Conclusion

We presented DynaSOAr, a new dynamic object allocator for SIMD architectures. The main
insight of our work is that memory allocators should not only aim for good raw (de)allocation
performance, but also optimize the usage of allocated memory. DynaSOAr was designed
for GPUs, but its basic ideas are applicable to other architectures and systems with good or
guaranteed vectorization such as the Intel SPMD compiler [53].

DynaSOAr achieves good memory access performance by controlling (a) memory alloca-
tion and (b) memory access with a parallel do-all operation. DynaSOAr’s main speedup over
other allocators is due to an SOA-style object layout, which can benefit memory bandwidth
utilization (through coalesced memory access) and cache utilization. To allow for dynamic
(de)allocation of objects, DynaSOAr allocates objects in blocks instead of a plain SOA
layout. DynaSOAr utilizes hierarchical bitmaps for fast and compact allocations with
low fragmentation.

Our benchchmarks show that DynaSOAr can achieve significant speedups over state-of-
the-art allocators of more than 3x in application code with structured data, due to better
memory access performance. DynaSOAr also has a significantly lower memory footprint
than other allocators, mainly because DynaSOAr has no internal fragmentation by design
and is not based on hashing. Our work also shows how an SOA layout can support class
inheritance without wasting memory: by allocating objects in blocks and encoding block
sizes in object pointers.

In the future, we will investigate how DynaSOAr can be extended to support virtual
functions and other custom object layouts.

References
1 James Abel, Kumar Balasubramanian, Mike Bargeron, Tom Craver, and Mike Phlipot.

Applications Tuning for Streaming SIMD Extensions. Intel Technology Journal, Q2:13, May
1999.

2 Andy Adinets. CUDA pro tip: Optimized filtering with warp-aggregated atomics.
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp- aggregated
-atomics/, 2017.

3 Andrew V. Adinetz and Dirk Pleiter. Halloc: A High-Throughput Dynamic Memory Allocator
for GPGPU Architectures. In GPU Technology Conference 2014, 2014.

4 Stephen G. Alexander and Craig B. Agnor. N-Body Simulations of Late Stage Planetary
Formation with a Simple Fragmentation Model. Icarus, 132(1):113–124, 1998. doi:10.1006/
icar.1998.5905.

5 Jade Alglave, Mark Batty, Alastair F. Donaldson, Ganesh Gopalakrishnan, Jeroen Ketema,
Daniel Poetzl, Tyler Sorensen, and John Wickerson. GPU concurrency: Weak behaviours
and programming assumptions. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15, pages
577–591, New York, NY, USA, 2015. ACM. doi:10.1145/2694344.2694391.

6 Robert J. Allan. Survey of Agent Based Modelling and Simulation Tools. Technical Report
DL-TR-2010-007, Science and Technology Facilities Council, Warrington, United Kingdom,
October 2010.

7 Saman Ashkiani, Martin Farach-Colton, and John D. Owens. A Dynamic Hash Table for the
GPU. CoRR, abs/1710.11246, 2017. arXiv:1710.11246.

8 Darius Bakunas-Milanowski, Vernon Rego, Janche Sang, and Chansu Yu. Efficient Algorithms
for Stream Compaction on GPUs. International Journal of Networking and Computing,
7(2):208–226, 2017. doi:10.15803/ijnc.7.2_208.

https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
https://devblogs.nvidia.com/cuda-pro-tip-optimized-filtering-warp-aggregated-atomics/
http://dx.doi.org/10.1006/icar.1998.5905
http://dx.doi.org/10.1006/icar.1998.5905
http://dx.doi.org/10.1145/2694344.2694391
http://arxiv.org/abs/1710.11246
http://dx.doi.org/10.15803/ijnc.7.2_208

M. Springer and H. Masuhara 17:27

9 Stefania Bandini, Sara Manzoni, and Giuseppe Vizzari. Agent Based Modeling and Simulation:
An Informatics Perspective. Journal of Artificial Societies and Social Simulation, 12(4):4,
2009.

10 Eli Bendersky. The many faces of operator new in C++. https://eli.thegreenplace.net/
2011/02/17/the-many-faces-of-operator-new-in-c, 2011.

11 Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
A Scalable Memory Allocator for Multithreaded Applications. In Proceedings of the Ninth
International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS IX, pages 117–128, New York, NY, USA, 2000. ACM. doi:10.1145/378993.
379232.

12 Paul Besl. A case study comparing AoS (Arrays of Structures) and SoA (Structures of Arrays)
data layouts for a compute-intensive loop run on Intel Xeon processors and Intel Xeon Phi
product family coprocessors. Technical report, Intel Corporation, 2013.

13 Markus Billeter, Ola Olsson, and Ulf Assarsson. Efficient Stream Compaction on Wide SIMD
Many-core Architectures. In Proceedings of the Conference on High Performance Graphics 2009,
HPG ’09, pages 159–166, New York, NY, USA, 2009. ACM. doi:10.1145/1572769.1572795.

14 Robert D. Blumofe and Charles E. Leiserson. Scheduling Multithreaded Computations by
Work Stealing. J. ACM, 46(5):720–748, September 1999. doi:10.1145/324133.324234.

15 Trevor Alexander Brown. Reclaiming Memory for Lock-Free Data Structures: There Has to
Be a Better Way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, PODC ’15, pages 261–270, New York, NY, USA, 2015. ACM. doi:10.1145/
2767386.2767436.

16 Martin Burtscher and Keshav Pingali. Chapter 6 – An Efficient CUDA Implementation of the
Tree-Based Barnes Hut n-Body Algorithm. In Wen mei W. Hwu, editor, GPU Computing Gems
Emerald Edition, Applications of GPU Computing Series, pages 75–92. Morgan Kaufmann,
Boston, 2011. doi:10.1016/B978-0-12-384988-5.00006-1.

17 John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V.W. Reynders, and Paul J.
Hinker. Comparison of C++ and Fortran 90 for object-oriented scientific programming. Com-
puter Physics Communications, 105(1):20–36, 1997. doi:10.1016/S0010-4655(97)00043-X.

18 Trishul M. Chilimbi, Bob Davidson, and James R. Larus. Cache-conscious Structure Definition.
In Proceedings of the ACM SIGPLAN 1999 Conference on Programming Language Design
and Implementation, PLDI ’99, pages 13–24, New York, NY, USA, 1999. ACM. doi:10.1145/
301618.301635.

19 NVIDIA Corporation. CUDA C best practices guide. https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory, 2018.

20 Cederman Daniel, Gidenstam Anders, Ha Phuong, Sundell Hkan, Papatriantafilou Marina,
and Tsigas Philippas. Lock-Free Concurrent Data Structures, chapter 3, pages 59–79. Wiley-
Blackwell, 2017. doi:10.1002/9781119332015.ch3.

21 Kei Davis and Jörg Striegnitz. Parallel Object-Oriented Scientific Computing Today. In
Frank Buschmann, Alejandro P. Buchmann, and Mariano A. Cilia, editors, Object-Oriented
Technology. ECOOP 2003 Workshop Reader, pages 11–16, Berlin, Heidelberg, 2004. Springer-
Verlag. doi:10.1007/978-3-540-25934-3_2.

22 Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Hammond, Onur Mutlu,
and Wen-mei Hwu. Automatic Generation of Warp-level Primitives and Atomic Instructions
for Fast and Portable Parallel Reduction on GPUs. In Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization, CGO 2019, pages 73–84,
Piscataway, NJ, USA, February 2019. IEEE Press. doi:10.1109/CGO.2019.8661187.

23 Alexander K. Dewdney. Computer Creations: Sharks and fish wage an ecological war on the
toroidal planet Wa-Tor. Scientific American, 251(6):14–26, December 1984.

24 Carlchristian H. J. Eckert. Enhancements of the massively parallel memory allocator Scat-
terAlloc and its adaption to the general interface mallocMC, October 2014. Junior thesis.
Technische Universität Dresden. doi:10.5281/zenodo.34461.

ECOOP 2019

https://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c
https://eli.thegreenplace.net/2011/02/17/the-many-faces-of-operator-new-in-c
http://dx.doi.org/10.1145/378993.379232
http://dx.doi.org/10.1145/378993.379232
http://dx.doi.org/10.1145/1572769.1572795
http://dx.doi.org/10.1145/324133.324234
http://dx.doi.org/10.1145/2767386.2767436
http://dx.doi.org/10.1145/2767386.2767436
http://dx.doi.org/10.1016/B978-0-12-384988-5.00006-1
http://dx.doi.org/10.1016/S0010-4655(97)00043-X
http://dx.doi.org/10.1145/301618.301635
http://dx.doi.org/10.1145/301618.301635
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#coalesced-access-to-global-memory
http://dx.doi.org/10.1002/9781119332015.ch3
http://dx.doi.org/10.1007/978-3-540-25934-3_2
http://dx.doi.org/10.1109/CGO.2019.8661187
http://dx.doi.org/10.5281/zenodo.34461

17:28 DynaSOAr

25 Harold C. Edwards and Daniel A. Ibanez. Kokkos’ Task DAG Capabilities. Technical Report
SAND2017-10464, Sandia National Laboratories, Albuquerque, New Mexico, USA, September
2017. doi:10.2172/1398234.

26 Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. SNZI: Scalable nonzero indicators.
In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’07, pages 13–22, New York, NY, USA, 2007. ACM. doi:10.1145/1281100.
1281106.

27 Joshua M. Epstein and Robert Axtell. Growing Artificial Societies: Social Science from the
Bottom Up, volume 1. The MIT Press, 1 edition, 1996.

28 Bruce W.R. Forde, Ricardo O. Foschi, and Siegfried F. Stiemer. Object-oriented finite element
analysis. Computers & Structures, 34(3):355–374, 1990. doi:10.1016/0045-7949(90)90261-Y.

29 Juliana Franco, Martin Hagelin, Tobias Wrigstad, Sophia Drossopoulou, and Susan Eisenbach.
You Can Have It All: Abstraction and Good Cache Performance. In Proceedings of the 2017
ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2017, pages 148–167, New York, NY, USA, 2017. ACM.
doi:10.1145/3133850.3133861.

30 Dietma Gallistl. The adaptive finite element method. Snapshots of modern mathematics from
Oberwolfach, 13, 2016. doi:10.14760/SNAP-2016-013-EN.

31 Isaac Gelado and Michael Garland. Throughput-oriented GPU Memory Allocation. In
Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19, pages 27–37, New York, NY, USA, 2019. ACM. doi:10.1145/3293883.3295727.

32 Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the Cache Locality of
Memory Allocation. In Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, PLDI ’93, pages 177–186, New York, NY, USA, 1993.
ACM. doi:10.1145/155090.155107.

33 Pawan Harish and P. J. Narayanan. Accelerating Large Graph Algorithms on the GPU
Using CUDA. In Proceedings of the 14th International Conference on High Performance
Computing, HiPC’07, pages 197–208, Berlin, Heidelberg, 2007. Springer-Verlag. doi:10.1007/
978-3-540-77220-0_21.

34 Mark Harris. CUDA pro tip: Write flexible kernels with grid-stride loops.
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride
-loops/, 2013.

35 Kevlin Henney. Valued Conversions. C++ Report, 12:37–40, July 2000.
36 Holger Homann and Francois Laenen. SoAx: A generic C++ structure of arrays for handling

particles in HPC codes. Computer Physics Communications, 224:325–332, 2018. doi:10.1016/
j.cpc.2017.11.015.

37 Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck, and Wen-Mei Hwu.
XMalloc: A Scalable Lock-free Dynamic Memory Allocator for Many-core Machines. In
2010 10th IEEE International Conference on Computer and Information Technology, pages
1134–1139, June 2010. doi:10.1109/CIT.2010.206.

38 Byunghyun Jang, Dana Schaa, Perhaad Mistry, and David Kaeli. Exploiting Memory Access
Patterns to Improve Memory Performance in Data-Parallel Architectures. IEEE Transactions
on Parallel and Distributed Systems, 22(1):105–118, January 2011. doi:10.1109/TPDS.2010.
107.

39 Laxmikant V. Kale and Sanjeev Krishnan. CHARM++: A portable concurrent object oriented
system based on C++. In Proceedings of the Eighth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA ’93, pages 91–108, New York,
NY, USA, 1993. ACM. doi:10.1145/165854.165874.

40 Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic Data Layout Optimizations
for GPUs. In Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci, editors, Euro-
Par 2015: Parallel Processing, pages 263–274, Berlin, Heidelberg, 2015. Springer-Verlag.
doi:10.1007/978-3-662-48096-0_21.

http://dx.doi.org/10.2172/1398234
http://dx.doi.org/10.1145/1281100.1281106
http://dx.doi.org/10.1145/1281100.1281106
http://dx.doi.org/10.1016/0045-7949(90)90261-Y
http://dx.doi.org/10.1145/3133850.3133861
http://dx.doi.org/10.14760/SNAP-2016-013-EN
http://dx.doi.org/10.1145/3293883.3295727
http://dx.doi.org/10.1145/155090.155107
http://dx.doi.org/10.1007/978-3-540-77220-0_21
http://dx.doi.org/10.1007/978-3-540-77220-0_21
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://devblogs.nvidia.com/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
http://dx.doi.org/10.1016/j.cpc.2017.11.015
http://dx.doi.org/10.1016/j.cpc.2017.11.015
http://dx.doi.org/10.1109/CIT.2010.206
http://dx.doi.org/10.1109/TPDS.2010.107
http://dx.doi.org/10.1109/TPDS.2010.107
http://dx.doi.org/10.1145/165854.165874
http://dx.doi.org/10.1007/978-3-662-48096-0_21

M. Springer and H. Masuhara 17:29

41 Florian Lemaitre and Lionel Lacassagne. Batched Cholesky factorization for tiny matrices.
In 2016 Conference on Design and Architectures for Signal and Image Processing (DASIP),
pages 130–137, October 2016. doi:10.1109/DASIP.2016.7853809.

42 Chuck Lever and David Boreham. Malloc() Performance in a Multithreaded Linux Environment.
In Proceedings of the Annual Conference on USENIX Annual Technical Conference, ATEC
’00, Berkeley, CA, USA, 2000. USENIX Association.

43 Xiaosong Li, Wentong Cai, and Stephen J. Turner. Efficient Neighbor Searching for Agent-
Based Simulation on GPU. In Proceedings of the 2014 IEEE/ACM 18th International Sym-
posium on Distributed Simulation and Real Time Applications, DS-RT ’14, pages 87–96,
Washington, DC, USA, 2014. IEEE Computer Society. doi:10.1109/DS-RT.2014.19.

44 Xiaosong Li, Wentong Cai, and Stephen J. Turner. Cloning Agent-based Simulation on
GPU. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, SIGSIM PADS ’15, pages 173–182, New York, NY, USA, 2015. ACM. doi:
10.1145/2769458.2769470.

45 Xiaosong Li, Wentong Cai, and Stephen J. Turner. Supporting efficient execution of continuous
space agent-based simulation on GPU. Concurrency and Computation: Practice and Experience,
28(12):3313–3332, 2016. doi:10.1002/cpe.3808.

46 X. Lu, B.Y. Chen, V.B.C. Tan, and T.E. Tay. Adaptive floating node method for modelling
cohesive fracture of composite materials. Engineering Fracture Mechanics, 194:240–261, 2018.
doi:10.1016/j.engfracmech.2018.03.011.

47 Toni Mattis, Johannes Henning, Patrick Rein, Robert Hirschfeld, and Malte Appeltauer.
Columnar Objects: Improving the Performance of Analytical Applications. In 2015 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (Onward!), Onward! 2015, pages 197–210, New York, NY, USA, 2015. ACM.
doi:10.1145/2814228.2814230.

48 Maged M. Michael. Safe Memory Reclamation for Dynamic Lock-free Objects Using Atomic
Reads and Writes. In Proceedings of the Twenty-first Annual Symposium on Principles of
Distributed Computing, PODC ’02, pages 21–30, New York, NY, USA, 2002. ACM. doi:
10.1145/571825.571829.

49 Maged M. Michael. Scalable Lock-free Dynamic Memory Allocation. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation,
PLDI ’04, pages 35–46, New York, NY, USA, 2004. ACM. doi:10.1145/996841.996848.

50 Mikołaj Morzy, Tadeusz Morzy, Alexandros Nanopoulos, and Yannis Manolopoulos. Hierarchi-
cal Bitmap Index: An Efficient and Scalable Indexing Technique for Set-Valued Attributes.
In Leonid Kalinichenko, Rainer Manthey, Bernhard Thalheim, and Uwe Wloka, editors,
Advances in Databases and Information Systems, pages 236–252, Berlin, Heidelberg, 2003.
Springer-Verlag. doi:10.1007/978-3-540-39403-7_19.

51 Kai Nagel and Michael Schreckenberg. A cellular automaton model for freeway traffic. J. Phys.
I France, 2(12):2221–2229, September 1992. doi:10.1051/jp1:1992277.

52 Parag Patel. Object Oriented Programming for Scientific Computing. Master’s thesis, The
University of Edinburgh, 2006.

53 Matt Pharr and William R. Mark. ispc: A SPMD compiler for High-Performance CPU
Programming. In 2012 Innovative Parallel Computing (InPar), pages 1–13. IEEE Computer
Society, May 2012. doi:10.1109/InPar.2012.6339601.

54 Max Plauth, Frank Feinbube, Frank Schlegel, and Andreas Polze. A Performance Evaluation
of Dynamic Parallelism for Fine-Grained, Irregular Workloads. International Journal of
Networking and Computing, 6(2):212–229, 2016. doi:10.15803/ijnc.6.2_212.

55 Henry Schäfer, Benjamin Keinert, and Marc Stamminger. Real-time Local Displacement Using
Dynamic GPU Memory Management. In Proceedings of the 5th High-Performance Graphics
Conference, HPG ’13, pages 63–72, New York, NY, USA, 2013. ACM. doi:10.1145/2492045.
2492052.

ECOOP 2019

http://dx.doi.org/10.1109/DASIP.2016.7853809
http://dx.doi.org/10.1109/DS-RT.2014.19
http://dx.doi.org/10.1145/2769458.2769470
http://dx.doi.org/10.1145/2769458.2769470
http://dx.doi.org/10.1002/cpe.3808
http://dx.doi.org/10.1016/j.engfracmech.2018.03.011
http://dx.doi.org/10.1145/2814228.2814230
http://dx.doi.org/10.1145/571825.571829
http://dx.doi.org/10.1145/571825.571829
http://dx.doi.org/10.1145/996841.996848
http://dx.doi.org/10.1007/978-3-540-39403-7_19
http://dx.doi.org/10.1051/jp1:1992277
http://dx.doi.org/10.1109/InPar.2012.6339601
http://dx.doi.org/10.15803/ijnc.6.2_212
http://dx.doi.org/10.1145/2492045.2492052
http://dx.doi.org/10.1145/2492045.2492052

17:30 DynaSOAr

56 Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A Work-Efficient Step-Efficient
Prefix Sum Algorithm. In Workshop on Edge Computing Using New Commodity Architectures,
2006.

57 Hark-Soo Song and Sang-Hee Lee. Effects of wind and tree density on forest fire patterns in
a mixed-tree species forest. Forest Science and Technology, 13(1):9–16, 2017. doi:10.1080/
21580103.2016.1262793.

58 Roy Spliet, Lee Howes, Benedict R. Gaster, and Ana Lucia Varbanescu. KMA: A dynamic
memory manager for OpenCL. In Proceedings of Workshop on General Purpose Processing
Using GPUs, GPGPU-7, pages 9:9–9:18, New York, NY, USA, 2014. ACM. doi:10.1145/
2576779.2576781.

59 Matthias Springer and Hidehiko Masuhara. Ikra-Cpp: A C++/CUDA DSL for object-oriented
programming with structure-of-arrays layout. In Proceedings of the 2018 4th Workshop on
Programming Models for SIMD/Vector Processing, WPMVP’18, pages 6:1–6:9, New York, NY,
USA, 2018. ACM. doi:10.1145/3178433.3178439.

60 Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter Schmalstieg. ScatterAlloc:
Massively parallel dynamic memory allocation for the GPU. In 2012 Innovative Parallel
Computing (InPar), pages 1–10. IEEE Computer Society, May 2012. doi:10.1109/InPar.
2012.6339604.

61 Radek Stibora. Building of SBVH on Graphical Hardware. Master’s thesis, Faculty of
Informatics, Masaryk University, 2016.

62 Bjarne Stroustrup. Bjarne Stroustrup’s C++ style and technique FAQ. is there a “placement
delete”? http://www.stroustrup.com/bs_faq2.html#placement-delete, 2017.

63 Robert Strzodka. Chapter 31 - Abstraction for AoS and SoA Layout in C++. In Wen
mei W. Hwu, editor, GPU Computing Gems Jade Edition, Applications of GPU Computing
Series, pages 429–441. Morgan Kaufmann, Boston, 2012. doi:10.1016/B978-0-12-385963-1.
00031-9.

64 Alexandros Tasos, Juliana Franco, Tobias Wrigstad, Sophia Drossopoulou, and Susan Eisenbach.
Extending SHAPES for SIMD Architectures: An Approach to Native Support for Struct of
Arrays in Languages. In Proceedings of the 13th Workshop on Implementation, Compilation,
Optimization of Object-Oriented Languages, Programs and Systems, ICOOOLPS ’18, pages
23–29, New York, NY, USA, 2018. ACM. doi:10.1145/3242947.3242951.

65 Katsuhiro Ueno, Atsushi Ohori, and Toshiaki Otomo. An Efficient Non-moving Garbage
Collector for Functional Languages. In Proceedings of the 16th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’11, pages 196–208, New York, NY, USA, 2011.
ACM. doi:10.1145/2034773.2034802.

66 Marek Vinkler and Vlastimil Havran. Register Efficient Dynamic Memory Allocator for GPUs.
Comput. Graph. Forum, 34(8):143–154, December 2015. doi:10.1111/cgf.12666.

67 Vasily Volkov. Understanding Latency Hiding on GPUs. PhD thesis, EECS Department,
University of California, Berkeley, August 2016. URL: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/2016/EECS-2016-143.html.

68 Nicolas Weber and Michael Goesele. MATOG: Array layout auto-tuning for CUDA. ACM
Trans. Archit. Code Optim., 14(3):28:1–28:26, August 2017. doi:10.1145/3106341.

69 Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele. Fast Dynamic Memory
Allocator for Massively Parallel Architectures. In Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units, GPGPU-6, pages 120–126, New York,
NY, USA, 2013. ACM. doi:10.1145/2458523.2458535.

70 Xiangyuan Zhu, Kenli Li, Ahmad Salah, Lin Shi, and Keqin Li. Parallel Implementation of
MAFFT on CUDA-enabled Graphics Hardware. IEEE/ACM Trans. Comput. Biol. Bioinfor-
matics, 12(1):205–218, January 2015. doi:10.1109/TCBB.2014.2351801.

http://dx.doi.org/10.1080/21580103.2016.1262793
http://dx.doi.org/10.1080/21580103.2016.1262793
http://dx.doi.org/10.1145/2576779.2576781
http://dx.doi.org/10.1145/2576779.2576781
http://dx.doi.org/10.1145/3178433.3178439
http://dx.doi.org/10.1109/InPar.2012.6339604
http://dx.doi.org/10.1109/InPar.2012.6339604
http://www.stroustrup.com/bs_faq2.html#placement-delete
http://dx.doi.org/10.1016/B978-0-12-385963-1.00031-9
http://dx.doi.org/10.1016/B978-0-12-385963-1.00031-9
http://dx.doi.org/10.1145/3242947.3242951
http://dx.doi.org/10.1145/2034773.2034802
http://dx.doi.org/10.1111/cgf.12666
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-143.html
http://dx.doi.org/10.1145/3106341
http://dx.doi.org/10.1145/2458523.2458535
http://dx.doi.org/10.1109/TCBB.2014.2351801

M. Springer and H. Masuhara 17:31

Algorithm 7: Block::deallocate(pos) : state . Assuming block size 64. GPU

1 mask ← 1 << pos;
2 before ← atomicAnd(&bitmap, ∼mask);
3 success ← (before & mask)) 6= 0;
4 assert(success); . Precondition.
5 if popc(before) = 1 then
6 return EMPTY ;

7 else if popc(before) = 64 then
8 return FIRST ;
9 else

10 return REGULAR;

A Concurrency and Correctness

CUDA has a weak consistency model for global memory access [5]. Writes to memory
performed by one thread are not guaranteed to become visible to other threads in the same
order. However, atomic writes have that property (sequential consistency). Furthermore,
thread fences can be used between two memory writes to enforce sequential consistency,
if necessary.

Moreover, global memory reads/writes may be buffered in registers/caches, without a
global memory load/store. Thus, memory writes by one thread may not become visible to
other threads until the next GPU kernel, unless reads/writes are volatile or performed
with atomic operations.

All bitmap operations are sequentially consistent and do not suffer from load/store
buffering because they are based on atomic memory operations.

A.1 Object Slot Reservation/Freeing

Inside a block, object allocations are tracked with the object allocation bitmap. Every object
allocation bitmap has 64 bits, regardless of the block capacity. If a block’s capacity is smaller
than 64, then the last 64−N bits are set to 1 during block initialization to prevent threads
from reserving these slots during object allocation.

Object slots are reserved/freed with atomic operations. These bypass the incoherent L1
caches and are thread-safe: E.g., based on their return value, we know if the current thread
reserved a slot or if a contending thread was faster (Alg. 6, Line 5). Based on their return
value, we also know if the current thread reserved the last slot (Line 11), in which case the
block should be marked as inactive by the allocation algorithm.

A.1.1 Slot Reservation

Block::reserve() (Alg. 6) reserves a single object slot in the block. Our actual implemen-
tation may reserve multiple slots at once due to allocation request coalescing.

1. Preconditions: Block was initialized at least once. (Calling this method on invalidated
blocks or full blocks is OK. This function will simply return FAIL.)

2. Postconditions: If the result is different from FAIL, the resulting slot at position is
reserved for this thread (and no other thread).

3. Return Value: Success indicator, atomically reserved slot position, block state.
4. Linearization Point: Atomic OR operation (Line 5).

ECOOP 2019

17:32 DynaSOAr

Algorithm 8: DAllocatorHandle::initialize_block<T>(int bid) : void. GPU
1 heap[bid].type ← T; . Volatile write.
2 __threadfence();
3 heap[bid].bitmap ← 0; . Volatile write, assuming block capacity 64.

A.1.2 Slot Freeing

Block::deallocate(pos) (Alg. 7) frees a single object slot in the block. To support
allocation request coalescing, we have a modified version of this function that can rollback
multiple slots at once.

1. Preconditions: Bit pos is set to 1 in the object allocation bitmap. (Deleting an object
multiple times or trying to delete an arbitrary pointer is illegal.)

2. Postconditions: Bit pos is set to 0 in the object allocation bitmap.

3. Return Value: Block state.

4. Linearization Point: Atomic AND operation (Line 2).

A.2 Safe Memory Reclamation with Block Invalidation

Safe memory reclamation (SMR) in lock-free algorithms is notoriously difficult. An SMR
problem arises in DynaSOAr when deleting blocks. A block should be deleted as soon as its
last object has been deleted. This by itself is easy to detect with atomic operations (Alg. 7,
Line 6). However, a contending thread may already have selected the now empty block in
the course of its own concurrent allocate operation, before the block is actually deleted. Now
it is no longer safe to delete the block, but the deleting thread is not aware of that.

Elaborate techniques for SMR such as hazard pointers and epoch-based reclamation have
been proposed in previous work [15, 48]. DynaSOAr is able to exploit a key characteristic
of its data structure to solve this SMR problem in a simple way: Since all blocks have the
same size and structure, object allocation bitmaps are always located at the same position.
Therefore, we can optimistically proceed with bitmap modifications and rollback changes
if necessary.

Our solution to SMR is block invalidation. Before deleting a block, a thread tries to
invalidate (atomically set to 1) all bits in the object allocation bitmap. Bits that were
already 1 are not considered invalidated because those object slots are in use. After successful
invaldation, bits remain invalidated until a new block is initialized in the same location.
Other threads may still be able to find the block in the active block bitmap for a while, but
object slot reservations can no longer succeed.

Allocating threads can detect changes in the block type. Before a previously invalidated
block becomes available for allocations again (by initializing its object allocation bitmap),
we update the block type. We put a thread fence between both writes to ensure that threads
see the new block type before they see free slots in the bitmap (Alg. 8). Threads allocate
objects optimistically and rollback changes should they detect a different block type (Alg. 1,
Line 14; also see Sec. A.3).

M. Springer and H. Masuhara 17:33

Algorithm 9: DAllocatorHandle::invalidate(int bid) : bool. GPU
1 bitmap_ptr ← &heap[bid].bitmap;
2 before ← atomicOr(bitmap_ptr, 0xFF...F); . Invalidate (set) all obj. allocation bitmap bits.
3 if before 6= 0xFF...F then . ≥ 1 bit was invalidated.
4 t ← heap[bid].type;
5 if before = 0 then . All 64 bits invalidated by this atomicOr.
6 return true;
7 else . Not all bits invalidated. Rollback.
8 before_rollback ← atomicAnd(bitmap_ptr, before);
9 if before_rollback 6= 0xFF...F then . Other thread cleared a bit.

10 active[t].clear(bid); . Other thread expects an inactive block.
11 if (before_rollback & before) = 0 then . Empty again. Retry invalidation.
12 return invalidate(bid);

13 return false;

Details

Block invalidation9 (Alg. 9) fails if a thread is unable to invalidate at least one bit. In that
case, if at least one bit was changed through invalidation, this change must be rolled back
(Line 8): In before exactly those bits are zero that were invalidated by the thread.

While a thread is running an invalidation operation, other threads may continue to
concurrently reserve/free object slots in the same block, unaware of the fact that a thread is
trying to invalidate the block. Those threads will update block bitmaps based on the object
allocation bitmap state that they are seeing. Therefore, block invalidation must update block
bitmaps, as every invalidated bit appears to be an allocated object slot to other threads.

Since block invalidation fills up a block, the block’s active[t] state should be removed
after Line 7, because, if we enter this else branch, the thread just filled up the block by
reserving the remaining object slots (however, not all 64 slots, otherwise, we would be in
the then branch of Line 5). However, we defer this step, as an invalidation rollback would
likely have to mark the same block as active[t] again. Unless, another thread concurrently
freed an object slot in-between invalidation and invalidation rollback. For such a thread it
will seem as if its deallocation just freed the first slot, causing it activate the block (Alg. 2,
Line 5). However, since we defered block deactivation, this set(bid) operation will spin until
we deactivate the block (Alg. 9, Line 10). If invalidation rollback empties the block again,
we try to invalidate the block one more time10.

Note that block invalidation is independent of the type of a block. After invalidating
at least one bit, the block type is fixed until invalidation rollback or block initialization,
since other threads do not change invalidated bits. As such, the block cannot be deleted
or reinitialized to another type by another thread. Other threads can, however, delete and
initialize a block with different type after invalidation rollback. It is, nevertheless, safe to
assume a block type of t in Line 10, since this is merely an execution of a defered operation
that should have happened earlier when the block type was known to be t.

9 For presentation reasons, we assume a block capacity of 64 in all algorithms in this paper.
10Our actual implementation is iterative instead of recursive.

ECOOP 2019

17:34 DynaSOAr

A.3 Object Allocation
The critical parts during allocations (Alg. 1) are block selection (Line 2) and object slot
reservation (Line 8). Both operations by themselves are atomic, but not together. Block
selection returns the index of an active block of type T , so we expect that after Line 8, we
reserved an object slot in a block of type T . However, due to concurrent operations of other
threads, some of these assumptions may be violated.

Block Full. An active block was selected by try_find_set but the block filled up before
making an allocation (i.e., the block is no longer active). In this case, object slot
reservation will fail. Whenever allocation fails, it will restart from the beginning.

Block Deallocated. A block was selected by try_find_set but deallocated before reserving
a slot. In this case, slot reservation will fail because the block is now in an invalidated
state.

Block Replaced (ABA). A block was selected by try_find_set but deallocated and reini-
tialized to a block of same type T . This is harmless: We do not care about block
identity.

Block Replaced (Different Type). A block was selected by try_find_set but deallocated
and reinitialized to another type11 t 6= T . In this case, the allocation must be rolled
back (Line 14). All blocks have the same basic structure, so no data can be overwritten
accidentally during bitmap updates. Note that the rollback may trigger additional block
bitmap updates.

Active Block Not Selected. A block becomes active shortly after try_find_set fails. Or,
due to bitmap hierarchy inconsistencies, try_find_set fails to find an active block even
though active blocks exist. This is harmless: No assumption is violated. A new block
will be initialized, which merely increases fragmentation.

Note that a block cannot be deallocated after an object slot was already reserved, because
block invalidation would fail. Thus, the type of a block can also no longer change.

A.4 Object Deallocation
The critical part during deallocations (Alg. 2) is consistency between object slot deallocation
(Line 3) and block state updates. If the current thread deallocated the first object (i.e., the
block was full), then the block bit must be set to active. If the current thread deleted the
last object (i.e., the block is empty), then the block must be deleted. The problem is that
object slot deallocation and the corresponding block state update together are not atomic.

Allocate After Delete-First. A thread t1 deleted the first object of a block. However, before
marking the block active (Line 6), another thread t2 allocated this slot again; the block
should be inactive. In this case, t2 reserved the last slot, so it will mark the block as
inactive (Alg. 1, Line 12). This operation expects the bit to be in a set state and it will
retry until t1 sets the bit.

Block Deleted after Delete-First. A thread t1 deleted the first object of a block. However,
before marking the block active, other threads deallocated all other objects and a thread
t2 deleted the block. This is not possible because t2 expects the block to be active (Line 9),
i.e., bit set to 1, and blocks until then.

11Block initialization (Alg. 8) has a thread fence between setting the block type and resetting the object
allocation bitmap, so threads are guaranteed to read the correct type t after an allocation succeeded.

M. Springer and H. Masuhara 17:35

Block Replaced after Delete-First. A thread t1 deleted the first object of a block. However,
before marking the block active, the block was reinitialized to another type. This is not
possible because only deleted blocks can be reinitialized (see previous point).

Allocate after Delete-Last A thread t1 deleted the last object of a block. However, before
deleting the block, another thread t2 allocated an object again, so it is unsafe to delete
the block now. This case in handled by block invalidation.

Block Deleted after Delete-Last. A thread t1 deleted the last object of a block. However,
before deleting the block, another thread t2 allocated an object and yet another thread
t3 deleted that object, rendering the block empty again and deleting it. Now the block is
already deleted when t1 is trying to delete the block. In this case, block invalidation of
t1 will fail because the block is still in an invalidated state and t1 fails to invalidate all
object slot bits.

Block Replaced after Delete-Last. Same as before, but yet another thread t4 reininitializes
the block to a different type. Now t1 will invalidate and delete a new block whose type is
different. This is OK. Block invalidation will succeed only if the block is empty. Both
block invalidation and block deletion are independent of the block type.

A.5 Correctness of Hierarchical Bitmap Operations
A container Cl

i consists of bits bl
64·i, ..., bl

64·i+63 and is represented by one bit bl+1
i in the

nested (higher-level) bitmap. That bit is set if and only if at least one bit is set in the
container.

I Definition 1 (Consistency). A bit in level bl+1
i is consistent with its corresponding

container Cl
i in the lower-level bitmap if and only if:

bl+1
i =

63∨
k=0

bl
64·i+k = 1

(∑
Cl
bi/64c > 0

)
We say that the Ll+1 bitmap is in a consistent state with the Ll bitmap if all bits bl+1

i in
the Ll+1 bitmap satisfy the consistency criterion. The bitmap data structure as a whole is
in a consistent state if all bitmap levels Li satisfy the consistency criterion.

I Definition 2 (Semantics of Bitmap Operations). Every bitmap Ll provides operations for
setting and clearing bits (Sec. 4.1.2). These operations may update bits in the higher-level
bitmap Ll+1 if they set the first bit (SF l

bi/64c) or clear the last bit (CLl
bi/64c) of a container

Cl
i , respectively:

set(bl
i) and 1

(∑
Cl
bi/64c = 0

)
︸ ︷︷ ︸

set-first: SFl
bi/64c

then set(bl+1
bi/64c) ∀i ∈ [0; 64)

clear(bl
i) and 1

(∑
Cl
bi/64c = 1

)
︸ ︷︷ ︸

clear-last: CLl
bi/64c

then clear(bl+1
bi/64c) ∀i ∈ [0; 64)

We would like to show that, assuming that a bitmap data structure is initially in a
consistent state and given a multiset of bitmap operations O0 on the L0 bitmap, the entire
bitmap data structure is in a consistent state after executing all operations.

I Definition 3 (Legal Bitmap Operations). Let #set(bl
i) and #clear(bl

i) be the number of
set and clear operations of bl

i in a multiset of bitmap operations Ol. We call S(bl
i) =

#set(bl
i)−#clear(bl

i) the set-surplus of bl
i. Ol is legal if it satifies the following conditions.

ECOOP 2019

17:36 DynaSOAr

1. Overall bit operation is clear, remain or set: S(bl
i) ∈ {−1, 0, 1}.

2. Bit is in a cleared or set state afterwards: bl
i + S(bl

i) ∈ {0, 1}.

E.g., setting a cleared bit twice and clearing it once (S = 2 − 1 = 1 and 0 + 1 = 1) is
OK, but setting the bit three times and clearing it once (S = 3− 1 = 2) would be an illegal
usage of the bitmap data structure. Note that illegal bitmap operations deadlock in our
implementation because set and clear spin-block and retry until they acutally changed the
bit. If a legal bitmap operations multiset is executed fully concurrent (i.e., one thread per
operation), then there is always a thread/operation that can make progress.

I Induction Hypothesis 4. Let us assume that a multiset of bitmap operations Ol on the Ll

bitmap is legal according to Definition 3 for an arbitrary l and that Ll is initially consistent
with Ll+1.

I Lemma 5. Under the induction hypothesis, the bitmap operations multiset Ol+1 that is
generated by the operations in Ol according to Definition 2 is also legal. Furthermore, after
executing Ol, Ll is still consistent with Ll+1.

Proof. Let us first consider the bitmap operations of a single container Cl
i . Let #SF l

i be
the number of times a first bit is set in the container and #CLl

i be the number of times a
last bit is cleared in the container. Then, according to Definition 2, bl+1

bi/64c is set #SF l
i times

and cleared #CLl
i times. We have to prove that the set-surplus S(bl+1

bi/64c) = #SF l
i −#CLl

i

satisfies the legality criteria of Definition 3.
Without loss of generality, let us assume that all set-first and clear-last operate on the

same bit bl
k. Then, S(bl+1

bi/64c) = S(bl
k) ∈ {−1, 0, 1}. Hence, the generated bitmap operations

Ol+1 for any bit on the Ll+1 bitmap satisfy the first legality condition of Definition 3.
Now we have to show that also the second legality condition holds and that bl+1

bi/64c is
consistent with Cl

i after executing Ol. We consider two cases.

1. bl+1
bi/64c = 0. Therefore, due to initial consistency,

∑
Cl
bi/64c = 0. Therefore, #SF l

i −
#CLl

i ∈ {0, 1}, otherwise, Ol would not be legal. Therefore, bl+1
bi/64c + S(bl+1

bi/64c) ∈ {0, 1}.
a. If #SF l

i −#CLl
i = 0, then ∨63

k=0bl
64·i+k = 0 after Ol. At the same time, S(bl+1

bi/64c) = 0,
so bl+1

bi/64c = 0 after Ol, which is consistent with the state of Cl
i after Ol.

b. If #SF l
i −#CLl

i = 1, then ∨63
k=0bl

64·i+k = 1 after Ol. At the same time, S(bl+1
bi/64c) = 1,

so bl+1
bi/64c = 1 after Ol, which is consistent with the state of Cl

i after Ol.
2. bl+1

bi/64c = 1. Therefore, due to initial consistency,
∑

Cl
bi/64c > 0. Therefore, #SF l

i −
#CLl

i ∈ {−1, 0}, otherwise, Ol would not be legal. Therefore, bl+1
bi/64c+ S(bl+1

bi/64c) ∈ {0, 1}.
a. If #SF l

i −#CLl
i = −1, then ∨63

k=0bl
64·i+k = 0 after Ol. At the same time, S(bl+1

bi/64c) =
−1, so bl+1

bi/64c = 0 after Ol, which is consistent with the state of Cl
i after Ol.

b. If #SF l
i −#CLl

i = 0, then ∨63
k=0bl

64·i+k = 1 after Ol. At the same time, S(bl+1
bi/64c) = 0,

so bl+1
bi/64c = 1 after Ol, which is consistent with the state of Cl

i after Ol.

If all containers in Ll are consistent with their respective bits in Ll+1, then the entire Ll

bitmap is consistent with the Ll+1 bitmap. Futhermore, all generated bitmap operations
Ol+1 are legal because they satisfy both legality criteria. J

I Base Case 6. The bitmap data structure is initially in a consistent state. Furthermore,
O0 is legal. Otherwise, programmers use the bitmap data structure incorrectly.

M. Springer and H. Masuhara 17:37

B Field Address Computation

This section describes a key implementation technique of the DynaSOAr DSL, that was
taken from Ikra-Cpp [59]: Proxy Types. This technique allows us to implement custom data
layouts in C++ 11 without breaking OOP abstractions or modifying the compiler.

Even though fields are declared with type Field<B, N>, they can be used almost like
normal C++ types. There are certain limitations with respect to automatic type deduction
(auto keyword). Internally, this is implemented with operator overloading, e.g.:

1. Implicit Conversion Operator: Field<B, N> values can be implicitly converted to
the N-th predeclared type in B, without an explicit type cast. We call B the base type.

2. Member of Object/Pointer Operators: It is possible to call non-virtual member
functions if the base type is (pointer to) a class or struct.

3. Subscript Operator: It is possible to use array access syntax ([]) for array base types.
4. Indirection/Address-of Operators: It is possible to dereference a value of pointer

base type and to take the address of a field value.

Listing 2 shows the implementation of the implicit conversion operator. This code first
extracts all components that are required for address computation from an object pointer.
Then it returns a reference to an object of the base type at the computed memory location.

1 // Implicit conversion operator : E.g., convert Field <NodeBase , 2> to float & in Figure 6.
2 template < typename B, int N>
3 Field <B, N >:: operator typename B:: predeclared_type <N >&() {
4 int offset = ...; // Computed with template metaprogramming . offsetB::fieldname in Figure 6.
5 auto obj_ptr = reinterpret_cast <uint64_t >(this) - 2; // p2 in Figure 6.
6 // Bits 0 -49 and clear 6 least significant bits.
7 auto * block_address = reinterpret_cast < char *>(obj_ptr & 0 x3FFFFFFFFFFC0);
8 int obj_slot_id = obj_ptr & 0x3F; // Bits 0-5
9 int block_capacity = (obj_ptr & 0 xFC000000000000) >> 50; // Bits 50 -55

10 auto * soa_array = reinterpret_cast < typename B:: predeclared_type <N >* >(
11 block_address + field_offset * block_capacity);
12 return soa_array [obj_slot_id];
13 }

Listing 2 Address Computation in Proxy Field Types.

ECOOP 2019

Reliable State Machines: A Framework for
Programming Reliable Cloud Services
Suvam Mukherjee
Microsoft Research, Bangalore, India
t-sumukh@microsoft.com

Nitin John Raj
International Institute of Information Technology, Hyderabad, India
nitinjohnraj@gmail.com

Krishnan Govindraj
Microsoft Research, Bangalore, India
t-krgov@microsoft.com

Pantazis Deligiannis
Microsoft Research, Redmond, USA
pdeligia@microsoft.com

Chandramouleswaran Ravichandran
Microsoft Azure, Redmond, USA
chanravi@microsoft.com

Akash Lal
Microsoft Research, Bangalore, India
akashl@microsoft.com

Aseem Rastogi
Microsoft Research, Bangalore, India
aseemr@microsoft.com

Raja Krishnaswamy
Microsoft Azure, Redmond, USA
rajak@microsoft.com

Abstract
Building reliable applications for the cloud is challenging because of unpredictable failures during a
program’s execution. This paper presents a programming framework, called Reliable State Machines
(RSMs), that offers fault-tolerance by construction. In our framework, an application comprises
several (possibly distributed) RSMs that communicate with each other via messages, much in the
style of actor-based programming. Each RSM is fault-tolerant by design, thereby offering the illusion
of being “always-alive”. An RSM is guaranteed to process each input request exactly once, as one
would expect in a failure-free environment. The RSM runtime automatically takes care of persisting
state and rehydrating it on a failover. We present the core syntax and semantics of RSMs, along with
a formal proof of failure-transparency. We provide a .NET implementation of the RSM framework
for deploying services to Microsoft Azure. We carry out an extensive performance evaluation on
micro-benchmarks to show that one can build high-throughput applications with RSMs. We also
present a case study where we rewrite a significant part of a production cloud service using RSMs.
The resulting service has simpler code and exhibits production-grade performance.
2012 ACM Subject Classification Software and its engineering → Software reliability; Software and
its engineering → Cloud computing; Software and its engineering → Software fault tolerance
Keywords and phrases Fault tolerance, Cloud computing, Actor framework
Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.18
Related Version A full version of the paper is available at https://arxiv.org/abs/1902.09502.
Acknowledgements We thank the anonymous reviewers for suggesting several ways to improve our
work. Nitin John Raj’s work was done, in part, during an internship at Microsoft Research, India.

© Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis,
Chandramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and Raja Krishnaswamy;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 18; pp. 18:1–18:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9040-0053
mailto:t-sumukh@microsoft.com
mailto:nitinjohnraj@gmail.com
mailto:t-krgov@microsoft.com
https://orcid.org/0000-0001-7582-4520
mailto:pdeligia@microsoft.com
mailto:chanravi@microsoft.com
mailto:akashl@microsoft.com
mailto:aseemr@microsoft.com
mailto:rajak@microsoft.com
https://doi.org/10.4230/LIPIcs.ECOOP.2019.18
https://arxiv.org/abs/1902.09502
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Reliable State Machines

1 Introduction

The industry trend in Cloud Computing is increasingly moving towards companies building
and renting cloud services to provide software solutions to their customers [19]. A cloud
service in this context refers to a software application that runs on multiple machines in the
cloud, making use of the available resources – both compute and storage – to offer a scalable
service to its customers. In this paper, we consider the problem of programming reliable,
fault-tolerant cloud services.

Cloud services are essentially distributed systems consisting of concurrently running,
communicating processes or agents1. Agents typically maintain state, and process user
requests as they arrive, which may cause their state to get updated. Consider a word-
counting application: the application receives a stream of words (or strings) as input and
continuously produces output in the form of the highest frequency word that it has received
so far. Programming such an application for the single-machine scenario is easy – the
application maintains a map from words to their frequencies seen so far. For each new word,
it updates the map and outputs the word if it is the new highest frequency word.

However, to design a more scalable application, this map can be split across multiple
distributed agents. More specifically, the distributed word count application can be designed
as follows. A main agent receives input words from clients, and sends each word to one
of the several counting agents (based on some criteria, such as the hash of a word) for
processing. Every counting agent maintains its own word-frequency map and the local
maximum; whenever the local maximum changes, it sends a message to the max agent.
The max agent collates the local maxima from all the counting agents and outputs the
global maximum.

A reliable cloud service must be resilient to hardware and software failures that can cause
the agents to crash, and to network failures that can cause message duplications, reorderings,
and drops. To handle crashes in the word-counting service, the programmer needs to use
some form of persistent storage for the input stream and the word-frequency maps, and write
boilerplate code to read and write this state, while carefully orchestrating it with the rest
of the computation. The programmer must also handle network message drops (to avoid
missing a word) and duplications (to avoid counting the same occurrence of a word twice).
While some existing programming frameworks and languages for distributed systems, such
as Orleans [12], Kafka [25], Akka [1], Azure Service Fabric [35], among others, provide the
necessary building blocks of persistent storage, transactions, etc., the programmer still has
to carefully put them all together. Thus, an application that is quite simple to program in
the single-machine scenario, quickly becomes a non-trivial task in the distributed setting.

In this paper, we present a novel programming framework, called Reliable State Machines
(RSMs), to program reliable, fault-tolerant cloud services. The RSM framework enables the
programmer to focus only on the application-specific logic, while providing resilience against
failures – both machines and network – through language design and runtime.

At a high-level, RSMs are based on the actor style of programming, where the unit of
concurrency is a communicating state machine. The programmer defines the types of events
that the RSM can receive, and handlers for each event type. Optionally, the programmer
can declare some RSM-local state to be persistent. The event handlers can manipulate state,
send messages to other RSMs, and create new RSMs. Issues of orchestrating reads and
writes of the persistent state with event handlers, handling network failures, etc., are left to

1 We use the term agents in this paper as a programming construct to distinguish from Systems constructs
like processes or physical/virtual machines.

S. Mukherjee et al. 18:3

the RSM runtime. The runtime ensures that the effects of an event handler are committed
atomically in an all-or-nothing fashion, making it appear that an RSM processes an input
message exactly once. In addition, the runtime provides a networking module for exact
once delivery of messages. RSMs are built on top of the P# framework [15], which provides
convenient .NET syntax for programming state machines [31] and enables programmers to
systematically test their applications against functional specifications [16]. Section 2 provides
an overview of the RSM framework and the word-counting application written using RSMs.

We formalize the syntax and semantics of RSMs and prove a failure transparency theorem.
The theorem states that the semantics of RSMs that includes runtime failures is a refinement
of the failure-free semantics in terms of the observable behavior of an RSM. As a result,
programmers can program and test their applications assuming failure-free semantics, while
the failure transparency theorem guarantees the same behavior even in the presence of
runtime failures. Section 3 contains details of our formalization.

We have developed two different implementations of our framework – one using the Azure
Service Fabric platform [4] and the other using Apache Kafka [2, 25] – demonstrating that
the basic concepts behind RSMs are general and can be implemented on different platforms
(Section 4). Our evaluation (Section 6) shows that performance-wise RSMs are competitive
with other production cloud programming frameworks, even with the additional guarantees
of failure transparency, and it is possible to build high-throughput applications using RSMs.
To evaluate the programming and testing experience, we present a case study where we
re-implement an existing production-scale backend service of Microsoft Azure. We show
that the RSM implementation of the service is simple, easier to reason about, amenable to
systematic testing via the P# framework, and meets its scalability requirements (Section 5).

2 Overview

This section presents an overview of the RSM framework. We show how to program the
word-count application with RSMs, followed by the details of the RSM runtime and failure
transparency. In the rest of the paper, we use events and messages interchangeably.

2.1 Programming and testing the word-count application
As mentioned in Section 1, we design the distributed word-count application using three
types of RSMs: (a) a main RSM that sets up other RSMs, receives words from the client,
and forwards them to the word-count RSMs, (b) word-count RSMs that maintain the highest
frequency word they have individually seen so far, and (c) a max RSM that aggregates local
maxima from the word-count RSMs, and outputs the global maximum.

Listing 1 shows the source code for the main RSM using an abbreviated C#-like syntax.
RSMs are programmed as state machines. The programmer first declares the three event
types to use in the program: WordEvent, WordFreqEvent, and InitEvent, each carrying the
mentioned payloads. Values of type rsmId (e.g., used in the payload of InitEvent) are RSM
instance ids. We will explain the use of these events as we go along.

The main RSM has two states: Init is the start state, and Receive is the state in which it
receives the input words. The machine declares two persistent fields: a WordCountMachines
dictionary to maintain the rsmId of each word count RSM, and a MaxMachineId for the
rsmId of the max machine. Fields declared with the “Persistent” types denote persistent
local state of the RSM. In the Init state, the main RSM creates an instance of max RSM and
N instances of word-count RSMs (using the create API), and sends the rsmId of the max
RSM instance to every word count RSM as payload in the InitEvent event (using the send

ECOOP 2019

18:4 Reliable State Machines

event WordEvent: (word: string); // Event types with their payloads
event WordFreqEvent: (word: string, freq: int);
event InitEvent: (target: rsmId);

machine MainMachine {
PersistentDictionary<rsmId, int> WordCountMachines; // Set of word count machines
PersistentRegister<rsmId> MaxMachineId; // The rsmId of the aggregator machine

start state Init { do Initialize }
state Receive { on WordEvent do ForwardWord }

void Initialize () {
var max_id = create (MaxMachine); // First create the max machine
store (MaxMachineId, max_id); // Store its rsmId
for (var i = 0; i < N; ++i) { // Create the word count machines

var id = create (WordCountMachine); store (WordCountMachine[id], 1);
send (id, new InitEvent (max_id)); // Send max−machine’s rsmId to each word count machine

}
jump (Receive); // Begin receiving words

}

rsmId GetTargetMachine (string s) { return load (WordCountMachines[hash(s) mod N]); }

void ForwardWord (WordEvent e) { send (GetTargetMachine (e.word), e); } // Forward the event
}

Listing 1 Main RSM for the word count example.

API). The persistent fields are also updated (using store). The machine then transitions to
the Receive state (using the jump API). In the Receive state, when the machine receives a
WordEvent from the environment, which contains the next word, it forwards the word to the
appropriate max count machine. Since the Receive state specifies no transitions, the RSM
remains in the Receive state, ready to receive the next word.

Listing 2 shows the code for a word-count RSM. It maintains, in its persistent state, a
running map of word frequencies (WordFreq) and the highest frequency (HighFreq) that it
has seen so far. Whenever the highest frequency changes, it forwards the corresponding word
to the max machine, using the rsmId stored in the TargetMachine field. This RSM also
shows the use of volatile state in the form of the field WordsSeenSinceLastCrash; this field
is reset every time the RSM fails. Such variables can be used for gathering information such
as program statistics that are not required to survive failures. Note that the execution of
each handler (its call stack, all local variables, etc.) is also carried out on volatile memory.

A word count machine has two states: Init and DoCount. In the Init state, it waits for
the InitEvent (from the main machine). The rest of the code is straightforward.

The max RSM, shown in Listing 3, simply takes a maximum over the frequencies that it
receives, and forwards the maximum one to an external service (which may print to console
or write to an output file).

Implementation. The RSM programming framework is embedded in C#, and uses the P#
state machine programming model. Each RSM is defined as a C# class, with local-state as
class fields, and event handlers as class methods. Using RSMs does not require the user to
learn a new programming language. We provide more implementation details in Section 4.

Testing the application. Having written the application in our framework, the programmer
can also test it by supplying a specification and asking the P# tester to validate it. In the
word count application, for example, a functional correctness specification – eventually the
word with the highest frequency is output by the MaxMachine RSM – can be tested. The
P# tester uses state-of-the-art algorithms to search over the space of possible executions of
an RSM program [18, 16] and can help catch many bugs. For instance, changing any of the

S. Mukherjee et al. 18:5

machine WordCountMachine {
PersistentDictionary<string, int> WordFreq; // Local map for words to their frequencies
PersistentRegister<int> HighFreq; // The highest frequency seen so far
PersistentRegister<rsmId> TargetMachine; // The max machine rsmId, forwarded by the main machine
int WordsSeenSinceLastCrash; // A volatile variable to count words seen since last crash

start state Init { on InitEvent do Initialize }
state DoCount { on WordEvent do Count }

void Initialize (InitEvent e) { // Wait for the init event from the main machine
store (TargetMachine, e.target);
jump (DoCount);

}

void Count (WordEvent e) { // Receive the word from the main machine
WordsSeenSinceLastCrash++;
var f = load (WordFreq[e.word]) + 1; // Increment the frequency of the word by 1
store (WordFreq[e.word], f); // And store it back
if (f > load (HighFreq)) { // Update the highest frequency, if required

store (HighFreq, f) ;
send (load (TargetMachine), new WordFreqEvent (e.word, f)); // And send it to the max machine

}
}

}

Listing 2 Word count RSM for the word count example.

machine MaxMachine {
PersistentRegister<int> HighFreq; // Highest frequency seen so far

state DoCount { on WordFreqEvent do CheckMax }

void CheckMax (WordFreqEvent e) { // Update the current highest frequency if needed
if (e. freq > load (HighFreq)) {

store (HighFreq, e.freq) ;
send (env, e);

}
}

}

Listing 3 max RSM for the word count example.

persistent variables of the RSMs to volatile will render the program incorrect; indeed if the
MaxMachines don’t persist their word frequency maps, upon restart, their output may not be
correct. If the MainMachine does not use the same hash function inside GetTargetMachine
for all input words, then too the specification fails to hold (because it may forward two
different occurrences of the same word to two different RSMs), etc. We confirmed that the
P# tester is able to find all these errors very quickly.

Summary. Our framework frees the programmer from the burden of designing and program-
ming for failures. In the word count application, as we can see above, the source code only
contains the application-specific logic, and no boilerplate code for handling failures, restarts,
etc. There is still concurrency in the program that may be hard to reason about, which
is why we provide P# testing. The next section describes the RSM runtime that provides
resilience from machine and network failures.

2.2 RSM runtime
Figure 1a shows the runtime architecture of a single RSM. The runtime ensures that each
RSM has a unique rsmId. An RSM is associated with its own inbox of input events, an outbox
of output events (the events that it sends out), and local state that consists of both persistent
and volatile (in-memory) components. The inbox, outbox, persistent fields, and the current
state of the RSM state machine (e.g. Init or Receive in Listing 1) are backed by a persistent
store (e.g. a replicated storage system). Each RSM also has a local networking module that

ECOOP 2019

18:6 Reliable State Machines

(a) Internals of an RSM. (b) Flow of operations for an RSM.

Figure 1 Internals and flow of operations for an RSM.

is responsible for communicating with other RSMs or to clients or external services. The
inbox and outbox are queues, following the standard FIFO enqueue and dequeue semantics.

The execution of an RSM consists of three operations.
Input. The networking module receives messages over the network and enqueues them
to the inbox.
Processing. The processing inside an RSM is single-threaded. It iteratively dequeues
an event from the inbox and processes it by executing its corresponding event handler.
The handler can create other RSMs or send events to the existing ones. Each of these
requests are enqueued to the outbox. The handler can also mutate the persistent and
volatile local state of the RSM.
Output. The networking module dequeues messages from the outbox and sends them
over the network to their destination.

These operations can execute in any order. In our implementation of RSMs (Section 4),
we run them in parallel using background tasks; we ensure that the enqueue and dequeue
operations on the queues (inbox and outbox) are linearizable [22], and thus, safe to execute
concurrently.

Exact-once processing. The RSM runtime ensures that the effects of an event handler are
committed to the persistent storage atomically. In particular, the dequeue of an event e from
the inbox, and the result of processing e (including all updates made to persistent fields
as well as all enqueues to the outbox) are committed to the persistent storage in a single
transaction. Thus, if the RSM fails before committing, then on restarting the RSM, e would
still be at the head of the inbox, and none of its effects would have been propagated to the
rest of the system. If the RSM fails after committing, then the event e has been processed
and will not appear in the inbox on restart. The RSM only sends out those events that have
been committed successfully to the outbox.

Networking module. The networking modules work with each other to ensure exact-once
delivery of events between RSMs, i.e., an event is dequeued from the outbox of an RSM and
enqueued to the inbox of the target RSM atomically. While exact-once delivery is default,
the programmer can choose more relaxed delivery semantics. All our examples (Section 4)
use the stricter exact-once implementation. To communicate with external non-RSM services,
the RSM framework has the notion of an environment that acts as an interface to the outside
world. The environment can supply input by enqueueing to the inbox of an RSM. The RSMs
can in turn send events to a special rsmId called env, which references the environment. Such
events still get enqueued to the outbox of the RSM. When committed, they are forwarded to
their intended destination through plug-ins to the networking module supplied by the user.

S. Mukherjee et al. 18:7

Non-determinism. We allow RSM handlers to be non-deterministic, i.e., two executions
of an event handler on the same event and starting from the same local state may produce
different output. For instance, consider an extension to the word-count example where each
input word is associated with a timestamp and the main-RSM forwards only those words with
a timestamp not older than 24 hours. This requires main-RSM to look up the current time
of day and make the decision of forwarding the word or not. This action is non-deterministic
because it may not replay exactly on failover. Non-determinism does not change the RSM
guarantees in any way: all state changes made by an event handler are first committed
locally. This ensures that all non-deterministic choices are resolved and recorded before they
are propagated outside the RSM.

Progress. The RSM runtime ensure global progress under the assumptions that: (i) each
handler terminates in the absence of failures, (ii) for each handler, the system eventually
recovers from failures in order to complete its execution, and (iii) a message that is repeatedly
sent over the network is eventually delivered to its destination.

Using P# for testing. We chose P# for two reasons. First, it provides various programming
conveniences for writing state machines and is already in use for writing production code
[31, 17]. Second, P# offers means of writing end-to-end specifications of a collection of
communicating state machines. The specifications (both safety and liveness) can then be
validated using powerful systematic search over the space of all interleavings of the program.
This method has been shown to be very effective at finding concurrency bugs [18, 15, 16, 28].
In our work, we provide an automatic way of lowering an RSM program to a P# program. A
programmer can write the specification of an RSM program, then validate the specification
using P# systematic testing. We provide more details in Section 6.2.

Failure transparency. Using the exact-once processing and exact-once delivery, the RSM
framework provides a failure transparency property. The property essentially says that the
observable behavior of an RSM is independent of the failures of host machines and the
network. This enables the programmers to focus only on the application-specific logic when
programming RSMs, and to test only for the failure-free executions. The property relies on
the non-interference of the persistent storage from the volatile class fields. Intuitively, the
volatile class fields are reset on failures, and so, if they leak into event payloads, for example,
the crashes can be observed.

3 Formalization of RSMs

In this section, we formalize a core of the RSM programming model, denoted as RSM , and its
operational semantics. We state and prove the failure transparency theorem in Section 3.2.

3.1 Syntax and semantics
Figure 2 shows the RSM syntax. For simplicity, we present the syntax in A-normal form [33],
where most of the sub-expressions are values. An RSM C in RSM is declared as a class
definition D, consisting of persistent and volatile fields, and an event handler statement
{x := n; s}, with local variables x and statement s (handlers for specific event types can
be encoded in RSM using if statements in s). All the variables and fields in RSM are
integer-typed.

Statements in the language include local variable assignment (x := e), assignment to
volatile fields (f := e), persistent field updates (store f v), conditional statements

ECOOP 2019

18:8 Reliable State Machines

Field f Class name C Integer n, r

Value v ::= n | x | f
Expression e ::= v | load f | v1 ⊕ v2 | ?
Statement s ::= x := e | f := e | store f v | if v s1 s2 | s1; s2 | create x C | send v1 v2 v3

Class defn. D ::= class C {persistent f := n; volatile f := n; {x := n; s}}

Figure 2 RSM syntax.

Field map F ::= · | f 7→ n, F

Local environment L ::= · | x 7→ n, L

Event list E ::= · | (nr, ne, np), E

Figure 3 Runtime configuration syntax for local evaluation.

(if v s1 s2) and sequencing (s1; s2). While the volatile fields can be operated upon directly
(e.g. adding two of them), to work on the persistent fields, they first need to be loaded
into local variables, and then stored back. The form create x C creates a new RSM C and
binds its RSM id to the variable x (the ids are also integer-valued). Finally the statement
form send v1 v2 v3 is used to send an event of event type v2 (an integer) with payload v3
to the destination machine with RSM id v1. Expressions e in the language include values
v, reading a persistent field (load f), and binary operations v1 ⊕ v2. We also model
non-determinism in the language – the expression form ? evaluates to a random integer
at runtime.

3.1.1 Local evaluation judgment
Operational semantics of RSM consists of two judgments, a local evaluation judgment for
reducing the event handler statement to process an event, and a global judgment where the
configuration consists of all the RSMs executing concurrently. We first present the local
evaluation judgment.

Local evaluation judgments are of the form E; F ; L; s→ E1; F1; L1; s1, where the syntax

F ; L ` e ⇓ n E; F ; L; s→ E1; F1; L1; s1

E-var
F ; L ` x ⇓ L[x]

E-volatile
F ; L ` f ⇓ F [f]

E-persistent
F ; L ` load f ⇓ F [f]

E-binop
F ; L ` vi ⇓ ni

n = n1 ⊕ n2

F ; L ` v1 ⊕ v2 ⇓ n

E-star
F ; L ` ? ⇓ n

L-store
F ; L ` e ⇓ n

E; F ; L; store f e→ E; F [f 7→ n]; L; skip

L-if
F ; L ` v ⇓ n (n 6= 0⇒ s = s1) ∧ (n = 0⇒ s = s2)

E; F ; L; if v s1 s2 → E; F ; L; s

L-create
fresh nr E1 = (nr, nC , 0), E

E; F ; L; create x C → E1; F ; L[x 7→ nr]; skip

L-send
F ; L ` vi ⇓ ni E1 = (n1, n2, n3), E

E; F ; L; send v1 v2 v3 → E1; F ; L; skip

Figure 4 RSM local semantics.

S. Mukherjee et al. 18:9

for E, F , and L is shown in Figure 3. F and L are field map and local environment, mapping
fields and local variables to values. L contains three special variables xs, xe, and xp that map
to the source RSM, event type, and the payload of the current event that is being processed;
these fields are initialized in the global judgment.

E is a list of output events. An event is a triple of the form (r, ne, np), where r is the
destination RSM id, ne is the event type, and np is the event payload. Notably F , L, and
E are all non-persistent. Their interaction with the persistent state happens in the global
judgment. Statement reduction uses an auxiliary expression evaluation judgment of the
form F ; L ` e ⇓ n. Statements at runtime include an additional skip form to denote the
terminal statement.

Figure 4 shows the selected rules for statement reduction and expression evaluation. The
expression rules are all standard, notably rule E-star non-deterministically evaluates the
? expression to some integer n. Most of the statement reduction rules are also standard.
For example, rule L-store uses the expression evaluation form to evaluate e, and stores
the result in the field map F . Rule L-if branches based on the evaluated value of v. Rule
L-create simply records the creation request in the output events list with a special event
type nC . Finally, rule L-send evaluates each of the send arguments, and updates the output
event list E.

3.1.2 Global evaluation judgment
Global evaluation judgment has the form S ` M ; Π −→ M1; Π1. M and Π are maps with
RSM ids as domains. The map M maps the RSM ids to local configurations E; F ; L; s; b,
where E, F , L, and s come from the local judgment, and b is a (volatile) bit that is 1 if the
machine is currently processing an event or 0 otherwise. We will also write Fp and Fv to
denote the F map components for persistent and volatile fields respectively. The map
Π maps each RSM id to its class C and persistent storage, i.e. C; I; O; P ; T , where I is the
inbox persisting the incoming events, O is the outbox persisting the outgoing events, P is
the persistent fields map, and T is the trace of the RSM that records its observable behavior;
the trace T is ghost and is only used to state and prove the failure transparency theorem.
The grammar for I, O, and T is same as that of the event list E, while persistent field map
P is a field map like F . Finally, S is the signature that maps class C to its definition.

As shown in Figure 1b, each RSM (a) reads an event from its input queue, (b) processes it
using its handler statement, (c) commits the events generated and the persistent field map in
its persistent store, (d) empties the outbox in the persistent store, and starts from (a) again.
At each of these steps, the machine can crash and recover, where all of its non-persistent
data (including the local state E, F , L) is lost. The global semantics essentially implements
this state machine for each RSM, while executing the RSMs concurrently with each other.

Figure 5 shows the global semantics judgment. In all the rules, one of the machines r

takes the step. Using the Rule G-start, a machine r enters the event handler for processing
the head event in the input event queue. The local state of the machine currently is at rest,
i.e. M(r).s = skip and M(r).b = 0, as well as the outbox Π(r).O is empty. The rule creates
the local environment L (using the initL auxiliary function, shown in the same figure), by
initializing the local variables as per the RSM definition S(C), and also adding the mappings
for event source, event type and event payload (xs, xe and xp). The local state of the machine
is changed to process the handler statement s and the bit b is set to 1. The persistent store
Π is left unchanged.

Rule G-local shows the local evaluation rule, where a machine r takes a local step by
executing the event handler. The rule uses the local semantics judgment in the premise, and
updates M(r) accordingly.

ECOOP 2019

18:10 Reliable State Machines

G-start
M(r) = ·; F ;_; skip; 0 Π(r) = C;_, (ns, ne, np); ·; P ; ·

F = Fp ∪ Fv Fp = P

L = initL(C, ns, ne, np) s = handler(C)
S `M ; Π −→M [r 7→ ·; F ; L; s; 1]; Π

G-local
M(r) = E; F ; L; s; 1 Π(r).O = ·

E; F ; L; s→ E1; F1; L1; s1

M1 = M [r 7→ E1; F1; L1; s1; 1]
S `M ; Π −→M1; Π

G-commit
M(r) = E; Fp ∪ Fv; L; skip; 1 Π(r) = C; I,_; ·;_; T

M1 = M [r 7→ ·; Fp ∪ Fv; L; skip; 0]
S `M ; Π −→M1; Π[r 7→ C; I; E; Fp; T]

G-create
M(r) = _;_;_; skip; 0
Π(r).O = _, (r1, nC ,_)

S `M ; Π −→M ; create(r, r1, C, Π)

G-send
M(r) = _;_;_; skip; 0 Π(r).O = _, (r1, ne, np)

S `M ; Π −→M ; send(r, r1, ne, np, Π)

G-reset
Π(r) = C;_;_; P ;_

M1 = M [r 7→ ·; resetF(C, P); ·; skip; 0]
S `M ; Π −→M1; Π

initL(C, ns, ne, np) = let S(C) = class C {_;_; {x := n;_}} in
(x 7→ n, xS 7→ ns, xe 7→ ne, xp 7→ np)

handler(C) = let S(C) = class C {_;_; {_; s}} in s

create(r, r1, C, Π) = let S(C) = class C {persistent f := n;_;_} in
let Π(r) = Cr; I; O; P ; T in
let Π1 = Π[r 7→ Cr; I; tail O; P ; (r1, nC , 0), T] in
Π1[r1 7→ C; ·; ·; f 7→ n; ·]

send(r, r1, ne, np, Π) = let Π(r) = C; I; O; P ; T in let Π(r1) = C1; I1; O1; P1; T1 in
let Π1 = Π[r 7→ C; I; tail O; P ; (r1, ne, np), T] in
Π1[r1 7→ C1; (r, ne, np), I1; O1; P1; T1]

resetF(C, P) = let S(C) = class C {_; volatile f := n;_} in P, f 7→ n

Figure 5 RSM global semantics.

Once a machine r has finished executing the event handler for the head input event, it
uses the rule G-commit to commit the persistent state. In the rule, the local state of the
machine has reached the end of handler execution (M(r).s = skip and M(r).b = 1). M(r)
is changed by setting the bit b to 0 and the local event list is reset to empty. The changes to
Π(r) are: (a) the head event is removed from Π(r).I, (b) the output event list E from the
local state is committed to the outbox Π(r).O, and (c) the new values of the persistent
variables from the local state are committed to Π(r).P . The (ghost) trace of the machine
Π(r).T remains unchanged; the machine next proceeds to send the events out of the outbox,
and append the trace accordingly.

Rule G-create handles the create event (rule L-create, Figure 4). The auxiliary
function create updates the persistent store Π. For the creator machine r, it removes the
create event from the outbox Π(r).O, and adds it to the ghost trace Π(r).T . For the new
machine r1, it initializes the persistent store by reading off the initial persistent variables
map from the signature S(C). Rule G-send sends an event from machine r to r1. The
auxiliary function send removes the event from the outbox of r, and adds it to the ghost
trace, as well as to the inbox of r1. The rule models the exact-once delivery network module.

Finally, a machine r can fail at any point in the execution. The rule G-reset models
the machine reset. As expected, upon reset, the local volatile state, including the event
list E, volatile variables, environment L, are all lost. The fields map in the local state is

S. Mukherjee et al. 18:11

re-initialized (using resetF) by reading off the persistent variables from Π(r) and volatile
variables from the signature S(C). The bit b is also set to 0. We next present our main
theorem of failure transparency.

3.2 Failure transparency
To state the theorem, we first define a notion of equivalence for local states M(r). Below, r

is an RSM id.

I Definition 3.1 (Equivalence of local states). Two local states, M1(r) and M2(r) are
equivalent, written as M1(r) ∼= M2(r), if they are equal in all components, except for the
volatile class fields in their field maps, i.e. M1(r).E = M2(r).E, M1(r).Fp = M2(r).Fp,
M1(r).L = M2(r).L, M1(r).s = M2(r).s, and M1(r).b = M2(r).b.

Our failure transparency theorm relies on non-interference of persistent state from
volatile fields. We formally state the property below (we use −→r to denote the machine r

taking a step):

I Property 3.2 (Non-interference). Let M ; Π −→∗r M1; Π be a run, s.t. each step in the run
is a G-local step taken by machine r, and M1 is terminal (i.e. M1(r).s = skip). Then,
∀M ′. M ′(r) ∼= M(r), there exists M ′

1 s.t. M ′; Π −→∗r M ′
1; Π where M ′

1(r) ∼= M1(r) and each
step is a G-local step.

In [29], we present an information-flow type system for RSM that provides this non-
interference property for well-typed programs. Note that non-determinism in our language
does not raise any complications, since to get this property, we can essentially replay the
non-deterministic choices from the run in the premise to the run in the conclusion.

Given Property 3.2, we are now ready to state the failure transparency theorem. We
consider a run of a machine that processes an event end-to-end. We prove that, given any
such run that includes failures (i.e. the rule G-reset), we can construct a run without
failures, but with same observable traces T .

I Theorem 3.3 (Failure transparency). Let M ; Π −→∗r Mp; Πp −→r Mc; Πc −→∗r M1; Π1,
where M ; Π is ready for a machine r (i.e. it satisfies the premises of the G-start rule), and

1. all steps in M ; Π −→∗r Mp; Πp are either G-start, G-local, or G-reset,
2. Mp; Πp −→r Mc; Πc is a G-commit step, and
3. all steps in Mc; Πc −→∗r M1; Π1 are either G-create, G-send, or G-reset

Then, ∀M ′.M ′(r) ∼= M(r), there exists M ′
1 s.t.

(a) M ′; Π −→∗r M ′
1; Π1,

(b) none of the steps in (a) are G-reset, and
(c) M ′

1(r) ∼= M1(r)

Crucially, Π1, and hence the trace of machine r remains same in the conclusion of the
theorem. Thus, we prove that the machine run with failures is a refinement of the machine
run without failures with respect to its observable behavior.

ECOOP 2019

18:12 Reliable State Machines

Figure 6 The Reliable State Machines implementation.

4 Implementation

This section describes an instantiation of RSMs as a .NET object-oriented programming
framework. The framework is split into two logical parts: the frontend and the backend. The
frontend implements the programmer-facing APIs while the backend is responsible for the
distributed-system aspects, including state persistence and inter-machine communication.
An illustration of the RSM architecture is shown in Figure 6.

The frontend exposes an RSM.ReliableMachine base class. An RSM is programmed as
a class that derives from ReliableMachine. An RSM instance is an object of such a class
and event handlers are implemented as methods of the class. The base class implements the
functionality to drive a state machine. The state machine structure is based on P#, similar
to the word-count code shown in Section 2. We focus the discussion here on the reliability
aspects of RSMs. The frontend also provides a runtime, RSM.ReliableMachineRuntime,
that implements the APIs for creating RSMs and sending messages between them. Each
RSM carries a reference to the runtime in order to invoke these APIs. The runtime is also
responsible for rsmId management, ensuring that each RSM is associated with a unique id
throughout its lifetime.

The frontend provides two generic types for declaring local persistent state of an
RSM: RSM.PersistentRegister<T> and RSM.PersistentDictionary<TKey,TValue>. The
former implements a Get-Put interface for getting access to the underlying T object, similar to
the load and store semantics of our formal language. The object is automatically serialized
(on Put) and deserialized (on Get) in the background.2 The PersistentDictionary type is
similar, although it additionally allows access to individual keys. This has the advantage that
if an RSM handler only accesses a few keys, then only those keys (and their corresponding
values) are serialized and stored, without having to serialize the entire dictionary.

The programmer can declare fields inside an RSM class with these Persistent types to
get access to the persistent local state. Any other fields in the class are treated with volatile
semantics. The current state of the state machine is maintained in a PersistentRegister
so that the RSM resumes operation from the correct state on failover.

2 We use the protobuf-net serializer in RSMs, although other mechanisms are possible.

https://www.nuget.org/packages/protobuf-net

S. Mukherjee et al. 18:13

RSMs, once created, continually listen to incoming messages, until they are explicitly
halted. ReliableMachine exposes an option of halting the RSM. The runtime reclaims all
resources associated with an RSM when it halts.

The runtime works against RSM.IReliableStateManager and RSM.INetworkProvider
interfaces, each of which are implemented by the backend. The IReliableStateManager
interface is responsible for creating the inbox and outbox queues, as well as to back the
persistent fields of an RSM. The INetworkProvider interface allows communication between
RSMs. We provide two backend implementations: one using Azure Service Fabric (Sections 4.1
and 4.2) and the other one using Apache Kafka (Section 4.3). We additionally provide a
P#-based backend for the purpose of high-coverage systematic testing (Section 4.4).

4.1 Azure Service Fabric backend
Background. Azure Service Fabric (SF) [4] provides infrastructure for designing and
deploying distributed services on Azure. A user begins by setting up an SF cluster on
a required number of Azure VMs. SF sets up a replicated on-disk storage system on the
cluster. An application deployed to an SF cluster benefits from having access to co-located
storage, instead of having to access a remote storage system. The store uses primary-
secondary-based replication. The user can choose a replication factor (say R) in which case
each update to the store is applied to R replicas, with each replica located on a different
machine. Updates are only allowed on the primary, after which they are propagated to
the secondaries.

SF provides various means of programming a service for deployment to an SF cluster. The
most relevant to our discussion is a stateful application called reliable services [8]. Such an
application consists of multiple partitions [6]; each partition roughly resembles an individual
process constituting the failure domain for the application. Each partition is associated
with its own primary and R − 1 secondaries. The partition’s process is co-located with
the primary. (Thus, an application with N partitions will have a total of N primaries and
RN − N secondaries, distributed evenly across the SF cluster.) From the programmer’s
perspective, each partition gets its own StateManager [9] object that provides access to its
store. When a machine carrying a primary fails, one of its secondaries is promoted to become
a primary and the corresponding partition is re-started on the new primary. A new secondary
is elected and brought up to date in the background. Thus, a machine failure results in
restarting of any partition located on it, but all data written to their StateManager is still
available on restart.

The SF StateManager provides APIs for transactional access to storage [7]. A user can
create a transaction, use it to perform reads and writes to the store, and then commit it.
SF transactions have the database ACID semantics [21], i.e., they are atomic, consistent,
isolated, and durable with respect to other transactions. As a form of convenience, the user
can access the store via a dictionary interface (IReliableDictionary) and a queue interface
(IReliableQueue). These interfaces are shown in Listing 4. (We qualify the SF interfaces
with SF and the RSM types with RSM to avoid any confusion.) The SF.IReliableQueue
interface, for example, supports enqueue and dequeue operations, each of which require
the associated transaction. (These are awaitable C# methods [3], hence the return type
Task.) These operations appear to take place (with respect to other transactions) only when
their associated transaction is committed. A transaction can span multiple of these reliable
collections. The method DictionaryToQueueAtomicTransfer in Listing 4 illustrates an
atomic transfer of a value from a dictionary to a queue: it reads from a dictionary and writes
to the queue in the same transaction.

ECOOP 2019

18:14 Reliable State Machines

interface SF.IReliableDictionary<TKey, TValue> {
Task SetAsync(SF.ITransaction, TKey, TValue);
Task<ConditionalValue<TValue>> TryGetValueAsync(SF.ITransaction, TKey);

}

interface SF.IReliableQueue<T> {
Task EnqueueAsync(SF.ITransaction, T);
Task<ConditionalValue<T>> TryDequeueAsync(SF.ITransaction);

}

async void DictionaryToQueueAtomicTransfer(SF.IReliableDictionary<int, int> D,
SF.IReliableQueue<int> Q)
{

int key = ...
using (var tx = StateManager.CreateTransaction())
{

var v = await D.TryGetValueAsync(tx, key);
if (v.HasValue) {
await Q.EnqueueAsync(tx, v.Value);

}
await tx.CommitAsync();

}
}

Listing 4 Reliable collection interfaces of service fabric (shown partially) with sample usage.

RSM backend. We can now describe a vanilla implementation of RSMs using SF. Various
optimizations are described in Section 4.2. An RSM program deploys as a stateful service on an
SF cluster. A single partition contains exactly one instance of RSM.ReliableMachineRuntime
that may host any number of RSM instances. RSM.IReliableStateManager is implemented
as a wrapper of the SF StateManager and RSM.INetworkProvider is implemented using
the SF remoting library for RPC communication [5].

The runtime remembers all hosted RSM instances in a persistent dictionary of the type
SF.IReliableDictionary<rsmId, bool>. When a partition comes up (or fails over), it
creates a new runtime, which then immediately reads this dictionary to identify the set of
RSMs that it had hosted before failure (if any). It then re-creates the RSMs with the same
ids. All persistent state associated with an RSM is attached to its id so that an RSM can
rehydrate its state on failover as long as it retains its id.

The types RSM.PersistentDictionary and RSM.PersistentRegister are implemented
as wrappers of SF.IReliableDictionary. The RSM types hide SF transactions from the
programmer. The inbox and outbox are just SF reliable queues (SF.IReliableQueue). An
RSM executes as an event-handling loop. Each iteration of the loop constructs an SF
transaction (say, Tx) and performs a dequeue on the inbox using the transaction. If it finds
that the queue is empty, the loop terminates and is woken up later only when a message
arrives to the RSM. (This ensures that the RSM takes no compute resources when it has no
work to perform.) If a message is found in the inbox, then the RSM goes on to execute the
corresponding handler. Any access made by the handler to a persistent field gets attached
with the same transaction Tx. Sending a message m to an RSM r is performed as an enqueue
of the pair (m, r) to the outbox queue, also on the same transaction Tx. When the handler
finishes execution, the RSM commits Tx and repeats the loop to process other messages in
the inbox. Using the same transaction throughout the lifetime of a handler ensures that all
effects of processing a message happen atomically with the dequeue of that message.

Networking and exact-once delivery. RSMs have two additional background tasks: the
first one is responsible for emptying the outbox, and the other one listens on the network for
incoming messages to add them to the inbox. These tasks are spawned on-demand as work
arrives in order to avoid unnecessary polling. These tasks co-operate to ensure exact-once
delivery between RSMs, even under network failures or delays (as long as the connection is
eventually established).

S. Mukherjee et al. 18:15

do:
create transaction tx1
(m, r2) = Outbox.Dequeue(tx1);
c = SendCounter[r2].Get(tx1);
SendCounter[r2].Put(c + 1, tx1);
do:

send (m, c, r1) to r2
repeat until an ack is received within

timeout
commit tx1

repeat forever

Listing 5 Outbox draining task for RSM
r1.

On receiving (m, c, r1) :
create transaction tx2
d = ReceiveCounter[r1].Get(tx2);
if d == c then:

ReceiveCounter[r1].Put(d+1, tx2);
inbox.Enqueue(m, tx2);

send ack back to r1;
commit tx2

Listing 6 Input ingestion procedure for
RSM r2.

The runtime maintains two reliable dictionaries called SendCounter and ReceiveCounter
that map rsmId to int. Pseudo-code for the outbox-draining task of an RSM with id r1
is shown in Listing 5. It creates a transaction tx1 and performs a dequeue on the outbox
to obtain the pair (m, r2) of message and destination, respectively. It then sends the tuple
(r1, SendCounter[r2], m) over the network to r2 and waits for an acknowledgement. If it gets
the acknowledgement within a certain timeout period, it increments SendCounter[r2] and
commits tx1 to complete the message transfer. If it times-out waiting for an acknowledgement
from r2, it retries by sending the message again.

The automatic retry implies that the receiver might get duplicate messages; however,
each such duplicate will be attached with the same counter value, which the receiver can use
for de-duplication. This is achieved in the input-ingestion procedure shown in Listing 6. The
receiver r2, when it gets the tuple (m, c, r1), first checks if c equals ReceiveCounter[r1].
If so, it increments ReceiveCounter[r1] and enqueues m to its inbox. If not, it drops the
message because its a duplicate. Regardless, it always sends an acknowledgement back to r1.

Note that each of the tasks including input-ingestion, outbox-draining, and the event-
handling, use their own transactions that are different from each other. This enables the RSM
to run these tasks completely independently and in parallel to each other. SF transactions
provide ACID semantics, so concurrent enqueue and dequeue operations on queues are safe.

RSM creation. When an RSM r1 wishes to instantiate a new RSM of class C, it first creates
a globally unique rsmId r. This creation can be done in several ways. Our implementation
uses inter-partition communication to first decide the partition that will host the newly
created RSM. It then grabs a unique counter value from that partition. The pair of partition
name and unique counter value on that partition makes the rsmId globally unique. Once this
value r is obtained, r1 enqueues the pair (r, C) to its outbox. No RSM is actually created
until the pair is committed to the outbox. If r1 fails before committing, then the value r is
lost forever. When r1 is restarted, it will construct a new (but still globally unique) id.

The outbox-draining task of r1, when it picks up a tuple (r, C), will send a message
to the partition on which r is located. Like before, this message is sent repeatedly until
acknowledged. On the receipt of this message, the RSM runtime instantiates a new RSM
of type C only if it does not already have an RSM associated with r. If it does have such
an RSM, then it drops the message because it must be a duplicate request, one that it has
carried out already. The recipient sends back an acknowledgement to the sender regardless.

4.2 Optimizing the SF backend
The following lists some of the most important performance optimizations that we found
useful for the SF backend.

ECOOP 2019

18:16 Reliable State Machines

Shared inbox and outbox. Creating a separate reliable queue for the inbox and outbox of
each RSM does not scale well unfortunately, especially when the application creates a large
number of RSMs. Each creation incurs an I/O operation. To optimize the RSM creation time,
we instead use a single data structure that is shared across all RSMs in the same partition:
one for all inboxes and one for all outboxes. These shared structures are implemented as an
SF.IReliableDictionary whose key is a tuple of rsmId and an index (long). Each RSM
maintains its own head and tail indices, denoting the contiguous index range that contains
its inbox or outbox contents. An RSM r1, for instance, can enqueue m to its outbox by
writing it to the key (r1, tail) and incrementing tail. For efficiency, the head and tail values
are only kept in-memory. On failover, the RSM runtime reads through the shared dictionary
to identify the per-RSM head and tail values, before it instantiates the RSMs with these
values. Additional care is required to ensure proper synchronized access to head and tail
values by the various tasks associated with an RSM. Using these shared structures allowed
us to significantly reduce machine creation time (Section 6.1).

Batching. We use batching in various forms to optimize overall throughput (Section 6.1).
First, the event-handling loop of an RSM can dequeue multiple messages from its inbox
in the same transaction and process all of them (sequentially, one after the other) before
committing all of their effects together. The commit is a high-latency operation because SF
must replicate all updates to the secondaries and wait for a quorum to acknowledge. This
form of inbox-batching helps hide some of this latency. Second, the outbox-draining task can
dequeue multiple messages from the outbox in the same transaction, and as long as they are
intended for the same destination partition, send them over the network as a batch.

Non-persistent inbox. Sending a message m from RSM r1 to r2 requires several I/O
operations: r1 first commits m to its outbox, next it sends m over the network to r2, and
finally r2 commits m to its inbox. Interestingly, we can do away with a persistent inbox
and only keep it in memory without sacrificing any of the RSM framework guarantees. Our
optimization works as follows. The input-ingestion task of r2 simply enqueues m to an
in-memory inbox but it does not immediately send an acknowledgement back to r1. Instead,
r2 waits until it is done processing m. After r2 commits the effects of processing m to its
own outbox, it sends the acknowledgement back to r1, after which r1 will remove m from
its outbox. This is safe since the message sits in the (persistent) outbox of r1 until r2 is
done processing it.

4.3 Kafka backend
Apache Kafka [2, 25] is a popular distributed messaging platform that has been used in
large production systems by companies such as Netflix and Spotify [23]. Kafka supports
fault-tolerant named sequence of messages called topics. A producer appends messages to the
tail of a topic. A message is retained in the topic for a predefined period of time, after which
it is deleted automatically. In order to read a message, a consumer subscribes to the topic
and maintains a per-topic index, referred to as the consumer’s offset. The read cycle involves
the consumer reading the message at its offset, incrementing the offset, and then storing
the new offset value in a topic of its own called the offset-topic. Kafka supports different
consumers to read from different offsets of a topic concurrently. Starting in version v0.11.0,
Kafka introduced the notion of cross-topic transactions. These allow a producer to write to
multiple topics transactionally. Consumers cannot observe the writes made in a transaction
until the transaction commits. A Kafka stream is a combination of a Kafka producer and

S. Mukherjee et al. 18:17

consumer: it consumes messages from an input topic and publishes messages to one or
more output topics. Kafka supports building stateful applications on top of streams via a
key-value state store and convenient Java/Scala APIs. Exact-once processing of messages
can be achieved by transactionally writing the offset, state and published messages to their
respective topics.

Kafka-based RSMs. A Kafka RSM (K-RSM) has an associated inbox topic, and a state
topic for its persistent local state. The RSM also maintains its read offset into the inbox as
part of its persistent local state. An RSM executes as follows: it reads a message m from the
inbox at its read offset and starts a Kafka transaction Tx. It then runs the handler code for
m. Any changes to the persistent local state are written to the state topic under Tx.

Any message sends are written directly to the inbox topics of the receiver K-RSMs, also
under Tx. Finally, the incremented offset is written to the state topic and the transaction Tx
is committed. Note that there was no need to have an outbox: Kafka transactions ensure
that the effects of processing a message by one RSM are not observed by other RSMs until
its transaction commits. (SF transactions, on the other hand, cannot span across reliable
collections in different partitions, which is why we needed an outbox for the SF backend.)
Restart of an RSM simply involves recovering its state from the state topic that additionally
provides it the read offset of the last un-processed message.

A user begins by starting a Kafka cluster, configured to their own requirements. The
K-RSM backend then attaches to the cluster to execute the RSM program. Unlike SF reliable
collections, Kafka topics must be preallocated to a fixed number, which would typically be
much smaller than the number of RSM instances that a program may create. The K-RSM
backend shares a single topic across multiple RSM instances, which works because each RSM
maintains its own offset value. The assignment of RSMs to topics is currently done in a
simple round-robin fashion but more sophisticated policies are possible as well. Similar to
the SF backend, messaging in Kafka benefits greatly from batching: both when writing to a
destination topic and when reading from the inbox topic.

4.4 P# backend
We additionally designed a backend for the purpose of testing RSM programs. The backend
does not support distribution; it simulates the entire program execution in a single process.
The backend essentially translates an RSM program to a P# program for systematic testing
against a specification. We first briefly summarize P# capabilities [15].

P# provides an in-memory framework for implementing concurrent programs; it does not
provide any support for distribution or persistence. A P# program consists of multiple state
machines that communicate via messages. The PSharpTester tool takes a P# program as
input and repeatedly executes it multiple times. It takes over the scheduling of the program
so that it can search over the space of all possible interleavings. PSharpTester employs a
state-of-the-art portfolio of search strategies that has proven to be effective in finding bugs
quickly [18, 16]. A user can write a specification in the form of a monitor that is checked by
the PSharpTester in each execution of the program. Both safety and liveness specifications
[28] are supported.

The P# backend for RSMs allows one to write specification monitors in the same way as
P# and test their correctness using PSharpTester. It is worth noting that the backend is
designed with the intention of testing the user logic as opposed to the RSM runtime itself.
For this, the backend ensures that only the concurrency (and complexity) in the user program
is exposed to the PSharpTester; the concurrency inside the runtime (which is useful for
gaining performance) is disabled.

ECOOP 2019

18:18 Reliable State Machines

(a) Overview of the microservice. (b) Architecture of the RSM based implementation.

Figure 7 Achitecture of the ResourceGroupServer service.

An RSM translates almost directly to a P# machine, with the following modifications.
First, the backend provides mock implementations for all persistent types (simulated in-
memory for efficiency). Second, the three tasks associated with an RSM (i.e., input-ingestion,
event-handling and outbox-draining) are run sequentially, one after the other. Third, the
exact-once network delivery algorithm is assumed correct, so the outbox-to-inbox transfer is
done atomically (and in-memory).

An important aspect of the backend is simulating failures in the RSM program. The
failure-transparency property of RSMs from Theorem 3.3 crucially helps here: as long as the
programmer correctly uses the volatile state as per Property 3.2, failures have no effect at all
on the observable behavior of an RSM. Thus, the backend only needs to test for Property 3.2
on the program. This is done as follows. The backend, at the time it is about to commit a
transaction in the event-handling loop of an RSM, non-deterministically chooses to carry out
the following steps: (1) record the persistent state of the RSM (both local state and outbox),
(2) reset the volatile state of the RSM, (3) abort the transaction, thus requiring the RSM to
re-process the input message, and (4) when the RSM reaches the commit point again, assert
that the persistent state equals the recorded state. If a failure of this assertion is reported by
the PSharpTester, the programmer is informed of the incorrect usage of volatile state.

5 Case-Study: ResourceGroupServer

We used the RSM framework to redesign the core functionality of an in-production service
on Microsoft Azure, which we refer to as ResourceGroupServer. This section describes
the operations supported by the service (Section 5.1) and its implementation using RSMs
(Section 5.2), highlighting the gains in programmability and testing of the service. We
demonstrate scalability of the RSM code in Section 6.2.

5.1 Service description
The ResourceGroupServer (RGS) is a generic resource management service. A cloud platform
will typically provide various kinds of compute and storage resources, for instance, virtual
machines, that can be used in conjunction by a user to implement certain functionality. RGS
is designed to offer a convenient abstraction over a low-level resource provider to maintain a
collection of resources. A user can request the RGS for a set of n resources (called a group).
The RGS then calls into the resource provider to allocate these resources.

S. Mukherjee et al. 18:19

Figure 8 The group manager and resource manager RSM state machines.

Fig. 7a shows a high-level view of RGS. Each group has a designated owner and supervises
a number of resources. Individual resources can turn unhealthy (e.g., a VM becomes
unresponsive), in which case, it is the responsibility of RGS to explicitly delete that resource
and allocate a new one to ensure that each group eventually reaches its desired size. Also,
there should be no garbage resources: one that is allocated by the resource provider but is
not associated with any group.

A client C can fire a group creation request to RGS, with the desired number of resources
n as a parameter. In response, RGS creates a fresh group, owned by C, with n resources in
it. The client can query the health, resize or delete any existing group that it owns.

RGS must be responsive and scalable. It must be able to handle creation requests from
multiple clients at the same time. Further, the creation of a group itself should not add
much overhead over the actual allocation of the resources. RGS should also tolerate failures:
if it crashes, it should not lose information about the groups that it had already created, or
was in the middle of creating. For instance, if a requested group of size 10 had reached size 3
when the RGS crashed, it must resume and allocate only the remaining 7.

5.2 RSM-based ResourceGroupServer
We implemented RGS using RSMs. We denote this implementation as RsmRgs. It supports
the core functionality that was described in the previous section. In comparison, the real
production service (denoted ProdRgs) offers a richer API to its clients, but the additional
features are unrelated to matters of reliability or concurrency. Fig. 7b shows the high-level
architecture of RsmRgs. There are two RSM types: one called the resource manager (RM)
that is responsible for the lifetime of a single resource, and another called group manager
(GM) that is responsible for the lifetime of a single group. This division ensures that the
complexities of dealing with the external resource provider are limited to the RM. Future
changes to the resource provider APIs will likely not impact the GM.

A client can issue requests such as CreateRG, GetRG, ResizeRG or DeleteRG to RsmRgs.
These requests are translated to messages that are directed to the GM that owns the
corresponding group. The state machine structures of RM and GM are shown pictorially
in Figure 8. We explain the functioning of these RSMs by tracing through the CreateRG
operation.

ECOOP 2019

18:20 Reliable State Machines

void ScaleUp(RsmId gmId, int toCreate)
{

for (int i = 0; i < toCreate; i++) {
// Start off an RM to allocate a fresh resource.
var id = create(ResourceManager);
send (id, eCreateResource(gmId, ResourceGoalState.Create));
// Record the creation in the resource table , and we’re done.
store (ResourceTable[id], ResourceState.Creating);
store (CreatingCount, (load CreatingCount) + 1);

}
}

Listing 7 ScaleUp operation to create resources in a group.

In response to a client’s creation request, RsmRgs creates a new GM instance. Each
such instance maintains three counters: CreatingCount, CreatedCount and DeletingCount
which are, respectively, the number of resources that are under creation, already created,
and under deletion. The GM additionally maintains a GoalConfig that specifies the desired
number of resources in the group (Count), and the intended State of the group (either
Create or Delete). Finally, GM also maintains a dictionary ResourceTable containing the
rsmIds of all the RM instances that it owns.

A GM instance starts off in the Creating state with an empty ResourceTable and each
counter set to 0. Its GoalConfig will get initialized to the group size that was requested by
the client (on receiving the creation request) and the RSM will transition to its Resizing
state realizing that it does not have enough resources created. In the resizing state, the RSM
looks at the difference between GoalState.Count and CreatingCount + CreatedCount, say
m, and fires off the operation ScaleUp(gmId, m) whose code is shown in Listing 7, where
gmId is the rsmId of the current GM instance. We note that this entire operation is devoid
of any failover or retry logic: the GM does not have to worry about failures of the machine
hosting it, or about the failures of the RM instances that it creates. The runtime ensures
that the exact number of instances requested will be created eventually (and no more).

An RM instance reliably persists the handle (GroupManagerMachineId) to the GM
instance that created it, the goal state (GoalState) that is either Create or Delete, and
the resource identifier (ResourceId) returned by the resource provider. An RM starts
off in the Creating state, fires off a request to the resource provider, which if successful
(CreationSuccess) causes a transition to the Created state. It then informs the GM about
successful creation of the resource. The GM waits in its Resizing state until it gets enough
success responses from its RM instances, i.e., until GoalConfig.Count == CreatedCount.

If a resource ever goes unhealthy, the corresponding RM instance transitions to the
Deleting state and asks the resource provider to de-allocate the resource. On successful
deallocation, the RM transitions to the Deleted state, and informs the GM, upon which the
GM will issue the ScaleUp operation to allocate a new resource. Pool deletion is similar and
implemented via a corresponding ScaleDown operation. Both RMs and GMs halt themselves
after transitioning to the Deleted state.

Correctness. We use the P#-testing backend to check the conformance of RsmRgs to the
following specifications. The testing helped weed out several bugs while implementing
the RSM program. These properties were tested against a model of the resource provider
where the allocation of a resource can non-deterministically fail (but eventually allocation is
successful on repeated attempts) and the resource can go unhealthy at any time.

I Property 5.1. Immediately following a ScaleUp or ScaleDown operation, the number of
resources under creation, or already created, equals the desired number of resources.

S. Mukherjee et al. 18:21

I Property 5.2. If a client issues the sequence of requests CreateRG(n1), ResizeRG(n2), . . .,
ResizeRG(nk), then RsmRgs will eventually create a group with exactly nk resources.

I Property 5.3. On issuing a DeleteRG, eventually all resources of the group are disposed.

A comparison of RsmRgs with ProdRgs. The resource and group managers lend themselves
naturally to a state machine encoding. The state machines manage the life-cycle of a resource
or a group, respectively. ProdRgs had a similar design, however, communication was not
through message passing but rather via shared tables, maintained as SF reliable collections.
One agent would update a table and other agents would continuously poll these tables to get
the updates. Polling increased CPU utilization: RsmRgs uses roughly 10× less CPU than
ProdRgs. Implicit communication also made the code harder to reason for correctness.

A direct comparison between the code size of ProdRgs and RsmRgs is not possible
because the former implements more features. However, RsmRgs implements all of the core
functionality in approximately 2000 lines of code, several times smaller than the corresponding
functionality in ProdRgs. The designers of ProdRgs attest to the benefits listed here.

To contain code complexity, ProdRgs was not designed to be responsive during resize
operations: it would wait to finish one resize operation before looking at subsequent resize
requests. RsmRgs, on the other hand, is fully responsive in such scenarios. The GM state
machine can handle new resize requests while it is in the Resize state: it simply updates
its GoalConfig and issues either ScaleUp and ScaleDown until the group reaches its goal
state. Importantly, the P#-based testing infrastructure of RSMs provides strong confidence
in exploring a more responsive (and more complex) state-machine design.

6 Evaluation

This section reports on a performance evaluation of our RSM implementation. Section 6.1
measures common performance metrics on micro-benchmarks. Section 6.2 evaluates the
performance of our ResourceGroupServer implementation. We draw comparisons with the
Reliable Actors programming model of Service Fabric [35] (denoted sfActor). Reliable actors
are an implementation of the “virtual actors” paradigm [12]. It serves as a useful baseline for
experimentation because it builds on SF much like our SF backend implementation. Further,
reliable actors do not provide failure transparency guarantees, although the programmer is
given access to a persistent key-value store. This allows us to measure the relative overheads
with providing a by-construction fault-tolerant runtime. In the rest of this section, we use
the generic term agents to denote both sfActors and RSMs.

6.1 Microbenchmarks
Our microbenchmarks evaluate the following three scenarios: (i) creation: where we measure
the creation time for agents, (ii) messaging latency between two agents and (iii) processing
throughput, where we measure the time taken to process a sequence of messages by an
agent. In the subsequent discussion, we use sfRSM and bRSM to denote the SF-based RSM
implementation, with and without optimizations mentioned in Section 4.2, respectively. We
use kRSM to denote the Kafka-based RSM implementation.

Cluster Setup. The sfActor, bRSM and sfRSM services were deployed on a 5-node Service
Fabric cluster on Microsoft Azure, where each node had a D4_v2 configuration (8 CPU cores,
28GB RAM, and a 400GB local solid-state drive). The Kafka experiments were run on an

ECOOP 2019

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction

18:22 Reliable State Machines

Figure 9 sfActor and sfRSM creation times.

Table 1 Messaging latencies.

Framework 0.5 0.9 0.99 Mean

sfActor 4.5 8 9.8 4.5
sfActor-
Persist 12.5 23 23.5 11.9

sfRSM 23 31.5 70.6 22.8
kRSM 8.8 10 13.5 9.1

Azure HDInsight cluster with the following configuration: (i) 2 head nodes of type D4_v2
executing the RSM runtime and application (ii) 3 worker nodes hosting the Kafka topics,
with a total of 24 cores and 84GB RAM, and a total of 6 premium disks of size 1TB each (iii)
3 nodes for running Apache Zookeeper, with a total of 12 cores and 21GB RAM. (Zookeeper
serves as a coordinator for Kafka nodes and manages cluster metadata.) Because of the
different cluster setup, sfRSM and kRSM are not directly comparable.

Creation. It is important to keep overheads with creation low in order to provide most
flexibility in programming RSM applications. In this experiment, we measure the time taken
by a client to sequentially create n agents. Both the client and the created agents reside on
the same partition, which allows us to eliminate any networking overheads from the creation
times. Fig. 9 summarizes the results. The average creation time for sfRSM is 5.1ms, nearly
14X faster than sfActor (71.4ms), whereas the average creation time of bRSM (22.2ms) is
4.4X that of sfRSM. The speedup in creation time for sfRSM primarily stems from the shared
inbox-outbox optimization.

The creation times for both sfActor and sfRSM scale linearly with the number n of
agents created. For sfRSM, the bulk of the creation time is expended in committing a single
SF transaction, which persists the initial local state of the machine and its rsmId to the
runtime. Creations in kRSM are measured differently. We create the Kafka topics ahead of
time because (i) creating topics on-the-fly is much slower than pre-creating them in bulk,
and more importantly (ii) there is a limit to the number of topics that can be supported on
each worker node. A kRSM creation now simply involves assigning two existing topics from
the pool, along with persisting the id and initial state. We run two experiments, kRSM-1 and
kRSM-100, where we multiplex the n RSMs onto a single topic and 100 topics, respectively.
Note that all the writes during creation for kRSM-1 are batched into a single transaction,
while the writes for kRSM-100 involve 100 transactions. As Fig. 9 shows, both kRSM-1 and
kRSM-100 creations are fairly lightweight, with average creation times of 2.4ms and 2.6ms
respectively (but discounting the topic pre-creation time).

In a separate experiment, we measured the creation throughput, by firing 1000 creation
requests in parallel. sfActor and bRSM could achieve a maximum throughput of 287 and 67
creations per second, respectively, while sfRSM could hit a maximum of 1189 creations per
second. The faster creations for sfRSM stems from its optimizations, which result in frugal
CPU and IO requirements. kRSM creation throughput was 6661 creations per second.

S. Mukherjee et al. 18:23

Figure 10 Throughput measurements with RSMs, SF and Kafka.

Messaging. This experiment measures the cost of exact-once messaging. The experiment
comprises of two agents that repeatedly send a single message (50 bytes) back-and-forth and
we measure messaging latencies. Messaging in sfActor is unreliable (best-effort, and lost on
failures). We optionally make the agents in sfActor persist their incoming message.

Table 1 shows the latency measurements at different quantiles. Unsurprisingly, sfActor
exhibits the lowest latencies. When we persist the messages in sfActor, which introduces
one write per message transfer, it increases the latency significantly. sfRSM requires two
write operations per message, making it nearly twice as expensive as sfActor with message
persistence. Kafka, being a messaging system, is optimized for low-latency operations, even
with exact-once guarantees. kRSM has better latency than sfActor with message persistence.

Throughput. In this experiment, a producer and a consumer agent are located on different
partitions. The producer keeps sending messages (with a varying payload size) to the
consumer. The consumer simply keeps a running count of the number of bytes received. We
measure the time taken to process all the requests, and report the throughput in MB/s.

Fig. 10 summarizes the results. sfRSM automatically batches messages to increase
throughput. sfActor has no default batching mechanism, although increasing message sizes
decreases benefits to be gained from batching. At large message sizes, sfActor was able to
achieve a maximum throughput of 86.6MB/s. In comparison, the maximum throughput for
sfRSM (across all message sizes) was 48.4MB/s. To account for this difference, we precisely
timed all micro-operations involved in the sfRSM runtime.

Sending a message from the producer to the consumer involves writing to the outbox and
then sending the message over the network. We separately measured the best throughput
of writing to an SF reliable collection (sfWrite) and sending data over the network as fast
as possible via (unreliable) RPC (sfNetwork). Clearly, the throughput of sfRSM will be
bounded by the smaller of these two values. As Fig. 10 shows, the writes constitute the
limiting factor, and sfRSM incurs very little overhead over the sfWrite throughput, especially
for large message sizes. Smaller message sizes implies a larger number of messages per batch,
which increases the serialization overhead, and the number of times the consumer executes
its handler. This effect, consequently, widens the gap between the sfRSM and sfWrite
throughputs for smaller message sizes. This result shows that any improvements in the write
throughput of reliable collections will directly speed up RSMs. The gap between sfRSM and
sfNetwork is the cost of reliable messaging. Nonetheless, even at the small message size of
100bytes, sfRSM are able to do roughly 150K message transfers per second; enough for many

ECOOP 2019

18:24 Reliable State Machines

Figure 11 RsmRgs resource creation.

realistic applications. kRSM throughput peaks at 56.2MB/s. With Kafka, the persistence
and message transfer happen together as a topic write. The upper bound for kRSM is to
use non-transactional writes (kafka-NoTx). Fig. 10 shows that kRSM have little overhead
compared to the throughput of kafka-NoTx.

6.2 RsmRgs Case Study
Performance. We measure the time taken to create a given number of resources in a single
partition, assuming that the resource provider calls are instantaneous. Fig. 11 summarizes
the results.

In the first experiment, denoted as 1-Group, we create a single group with progressively
increasing number of resources. The more realistic scenario, which arises in production, is to
have multiple groups of small sizes in a single partition. In the N-Groups experiment, we
create multiple groups (each of size 100) in parallel such that the total number of resources
matches the X-axis. We make two observations: (i) the creation times for both 1-Group
and N-Groups increase linearly with the number of resources (ii) for the same number of
resources, the increased parallelism in N-Groups results in the creation times being an order
of magnitude faster than 1-Group. We would like to emphasize that the workloads here are
realistic, and are based on requirements provided by the developers of the in-production
ProdRgs service. The aforementioned results were reviewed by the developers, who confirmed
that RsmRgs comfortably scales to production workloads.

To evaluate the responsiveness of RsmRgs, we issue CreateRG(y), followed immediately by
ResizeRG(x), where x = y/100. The requirement is to ensure that the total time stays close
to CreateRG(x). The Create+Resize line in Fig. 11 summarizes the result (with the value x

on the X-axis). We see that as we increase x, the Create+Resize curve lies very close to
1-Group, which is testament to the service’s responsiveness. For small x, the gap is wider
because almost all of the y allocations kick-in by the time the resize request is processed.

Testing. For testing, we create mocks of both the client and the Resource Provider services,
since they are external to RsmRgs. Our mocks are vanilla P# machines. The testing exercise
was done on a laptop with a dual-core i7 processor, with 8GB RAM. The tester performed 100
iterations, with a scheduling strategy chosen from a predefined portfolio, with each exploration
having a depth of 10, 000 steps. Note that the test for Property 5.1 is a safety-check, while
the tests for Properties 5.2 and 5.3 are liveness-checks. The client issued a CreateRG(100)
request. We deliberately injected a bug in the ScaleUp operation by removing the updates

S. Mukherjee et al. 18:25

to CreatingCount. The resulting violation of Property 5.1 was detecting in 0.75s, generating
an error witness of around 64 steps. We fixed the error, and issued CreateRG(100), followed
by ResizeRG(5), and Property 5.2 was verified in 147.9s. To verify Property 5.3, we issue
CreateRG(50) followed by a deletion and the tester verified the property in 119.1s. We
further injected a bug by converting the CreatedCount to be volatile. (This means that if
the machine was in the middle of a creation operation when it failed, it would lose track
of all the resources it had created, and therefore the group would never reach the Created
state.) The tester is able to quickly find a violation of property 5.2, in 5.5s.

Other applications. We have evaluated the applicability of the RSM language and runtime
by encoding several other real-world applications. One example is a Banking application,
comprising account and broker RSMs, with the latter being tasked with transferring money
from one account to the other, without incurring any financial losses on failures. This
specification can be encoded as a liveness property. Another example is a Survey application
[32, 37], where subscribers can create surveys, which users can respond to. Each survey
is managed by an RSM, and an overall coordinator RSM creates surveys, reports survey
status, deletes surveys, etc. From a user perspective, responsiveness is a key metric. The
application also needs to ensure specifications like a user vote is counted exactly once. The
RSM framework allowed us to design these responsive applications, with all the specifications
thoroughly tested.

7 Related Work

Actor frameworks. In actor-based programming [24], a natural fit for cloud services, an
application comprises concurrent entities (called actors), each maintaining its local state,
which is not shared among other actors. Communication and co-ordination between actors
happens via message passing. Some popular instances of actor-based frameworks and
languages include Akka [1], Erlang [20], and Orleans [12]. Fault-tolerance in these frameworks
is achieved by checkpointing state to a persistent store, which is automatically restored
upon actor rehydration. The responsibilities of checkpointing the state, ensuring consistency
with the rest of the system, managing messaging retries and de-duplication, all rests with
the programmer. More specifically, unlike RSMs, these frameworks do not provide failure
transparency by-construction. Orleans introduced the concept of “virtual actors”: these
actors need not be explicitly created. They are instantiated on demand when they receive a
message. Further, they are location independent, allowing the Orleans runtime to dynamically
load-balance the placement of actors across a cluster, even putting frequently-communicating
actors together [30]. RSM instances must be explicitly created, but they are location
independent. Our implementation, however, currently does not attempt to move an RSM
after it has been created. The initial placement of a fresh RSM can be controlled by the
programmer, after which the instance is permanently tied to that location. Service Fabric
Reliable Actors [35] are also an implementation of the virtual actors paradigm. We provide
an empirical comparison of RSMs with Reliable Actors in Section 6.

Reactive programming. Reactive frameworks [10] are used in the development of event-
driven and interactive applications. These frameworks provide a programmatic way of
setting up a dataflow graph that marks functional dependencies between variables. As the
value of certain variables change over time, the rest of the dependent variables are updated
automatically. Recent work [27] describes an extension to REScala [34] in order to provide

ECOOP 2019

18:26 Reliable State Machines

fault-tolerance support in distributed reactive programming. The framework relies on taking
snapshots of critical data and then uses replay to construct the entire program state on
failure. This requires deterministic execution. Further, the input signals are not captured as
part of the snapshots, causing them to differ on re-execution or even get duplicated. These
issues require programmer support. On the other hand, RSMs can support non-deterministic
handlers and guarantees exact-once processing because input (i.e. inbox) is part of the
reliable state that RSMs maintain. The REScala extension provides eventual consistency
for updates to shared data, making use of state-based conflict-free replicated data types
(CRDTs) [36]. RSMs do not have shared state; maintaining common state between two
RSMs can be done by creating (and communicating with) another RSM that owns the state.
RSM messaging is reliable: this provides strong consistency between RSMs, however, it is
less resilient to network outages than CRDTs because the latter allows for progress even in a
disconnected state.

Big-data analytics. Big-data processing systems such as SPARK [38] and SCOPE [13] are
popular frameworks for data analytics. They provide a SQL-like programming interface that
gets compiled to map-reduce stages for distributed execution on a fault-tolerant runtime.
These systems, however, are meant for data-parallel batch processing. They execute on
immutable input that is known ahead of time.

Other frameworks. Ramalingam et al. [32] provide a monadic framework that makes
functional computation idempotent. Their transformation records the sequence of steps
that have already been executed. On re-execution, such steps are skipped. Idempotent
computation enables fault-tolerance: simply keep re-executing until completion. Their work
focuses on state updates made by a single sequential agent. They assume determinism of
the computation and do not handle communication. RSM programs, on the other hand,
support multiple concurrent agents with possible non-deterministic execution. RSMs ensure
idempotence by atomically committing the effects of processing of a message along with
the dequeue of the message from the inbox. Another class of languages for distributed
systems, including Orca [11] and X10 [14], rely on distributed shared memory. They enable
applications that span multiple machines while allowing the freedom to access memory across
machine boundaries. They mostly focus on in-memory computation, without support for
state persistence or fault tolerance.

The setting of Replicated State Machines [26] concerns a single deterministic state
machine, replicated for fault tolerance. All replicas agree on a global ordering of submitted
operations. This is the foundational concept in the domain of distributed consensus. In
contrast, RSMs are at a higher level of abstraction, allowing a programmer to string together
concurrent interacting state machines to encode fail-free business logic. RSMs delegate
consensus to the storage layer.

References
1 Akka. https://akka.io/. [Online; accessed 10-January-2019].
2 Apache Kafka. https://kafka.apache.org/. [Online; accessed 1-January-2019].
3 Asynchronous programming with async and await in C#. https://docs.microsoft.com/

en-us/dotnet/csharp/programming-guide/concepts/async/.
4 Azure Service Fabric. https://azure.microsoft.com/services/service-fabric/.
5 Azure Service Fabric Communication. https://docs.microsoft.com/en-us/azure/

service-fabric/service-fabric-reliable-services-communication-remoting.

https://akka.io/
https://kafka.apache.org/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://azure.microsoft.com/services/service-fabric/
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication-remoting
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication-remoting

S. Mukherjee et al. 18:27

6 Azure Service Fabric Partitioning. https://docs.microsoft.com/en-us/azure/
service-fabric/service-fabric-concepts-partitioning.

7 Azure Service Fabric Reliable Collections. https://docs.microsoft.com/en-us/azure/
service-fabric/service-fabric-reliable-services-reliable-collections.

8 Azure Service Fabric Reliable Services. https://docs.microsoft.com/en-us/azure/
service-fabric/service-fabric-reliable-services-introduction.

9 Azure Service Fabric Reliable State Manager. https://docs.microsoft.com/en-us/dotnet/
api/microsoft.servicefabric.data.ireliablestatemanager?view=azure-dotnet.

10 Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn Mostinckx, and
Wolfgang De Meuter. A survey on reactive programming. ACM Comput. Surv., 45(4):52:1–
52:34, 2013. doi:10.1145/2501654.2501666.

11 Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A Language For
Parallel Programming of Distributed Systems. IEEE Trans. Software Eng., 18(3):190–205,
1992. doi:10.1109/32.126768.

12 Philip A Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. Orleans:
Distributed virtual actors for programmability and scalability. MSR-TR-2014–41, 2014.

13 Eric Boutin, Jaliya Ekanayake, Wei Lin, Bing Shi, Jingren Zhou, Zhengping Qian, Ming Wu,
and Lidong Zhou. Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing.
In Jason Flinn and Hank Levy, editors, 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8, 2014., pages
285–300. USENIX Association, 2014. URL: https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/boutin.

14 Philippe Charles, Christian Grothoff, Vijay A. Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented approach
to non-uniform cluster computing. In Ralph E. Johnson and Richard P. Gabriel, editors,
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA,
USA, pages 519–538. ACM, 2005. doi:10.1145/1094811.1094852.

15 Pantazis Deligiannis, Alastair F. Donaldson, Jeroen Ketema, Akash Lal, and Paul Thomson.
Asynchronous programming, analysis and testing with state machines. In David Grove and
Steve Blackburn, editors, Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pages 154–164.
ACM, 2015. doi:10.1145/2737924.2737996.

16 Pantazis Deligiannis, Matt McCutchen, Paul Thomson, Shuo Chen, Alastair F. Donaldson,
John Erickson, Cheng Huang, Akash Lal, Rashmi Mudduluru, Shaz Qadeer, and Wolfram
Schulte. Uncovering Bugs in Distributed Storage Systems during Testing (Not in Production!).
In Angela Demke Brown and Florentina I. Popovici, editors, 14th USENIX Conference on File
and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22-25, 2016., pages
249–262. USENIX Association, 2016. URL: https://www.usenix.org/conference/fast16/
technical-sessions/presentation/deligiannis.

17 Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and
Damien Zufferey. P: safe asynchronous event-driven programming. In Hans-Juergen Boehm
and Cormac Flanagan, editors, ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 321–332. ACM,
2013. doi:10.1145/2491956.2462184.

18 Ankush Desai, Shaz Qadeer, and Sanjit A. Seshia. Systematic testing of asynchronous reactive
systems. In Elisabetta Di Nitto, Mark Harman, and Patrick Heymans, editors, Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
Bergamo, Italy, August 30 - September 4, 2015, pages 73–83. ACM, 2015. doi:10.1145/
2786805.2786861.

19 Enterprise workloads in the cloud. https://www.forbes.com/sites/louiscolumbus/2018/
01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#636ee7856261.

ECOOP 2019

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-partitioning
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-concepts-partitioning
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-reliable-collections
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-introduction
https://docs.microsoft.com/en-us/dotnet/api/microsoft.servicefabric.data.ireliablestatemanager?view=azure-dotnet
https://docs.microsoft.com/en-us/dotnet/api/microsoft.servicefabric.data.ireliablestatemanager?view=azure-dotnet
http://dx.doi.org/10.1145/2501654.2501666
http://dx.doi.org/10.1109/32.126768
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/boutin
http://dx.doi.org/10.1145/1094811.1094852
http://dx.doi.org/10.1145/2737924.2737996
https://www.usenix.org/conference/fast16/technical-sessions/presentation/deligiannis
https://www.usenix.org/conference/fast16/technical-sessions/presentation/deligiannis
http://dx.doi.org/10.1145/2491956.2462184
http://dx.doi.org/10.1145/2786805.2786861
http://dx.doi.org/10.1145/2786805.2786861
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#636ee7856261
https://www.forbes.com/sites/louiscolumbus/2018/01/07/83-of-enterprise-workloads-will-be-in-the-cloud-by-2020/#636ee7856261

18:28 Reliable State Machines

20 Erlang. https://www.erlang.org/. [Online; accessed 10-January-2019].
21 Jim Gray. The Transaction Concept: Virtues and Limitations (Invited Paper). In Very Large

Data Bases, 7th International Conference, September 9-11, 1981, Cannes, France, Proceedings,
pages 144–154. IEEE Computer Society, 1981.

22 Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi:10.1145/
78969.78972.

23 Kafka Powered By. https://kafka.apache.org/powered-by. [Online; accessed 1-January-
2019].

24 Rajesh K. Karmani and Gul Agha. Actors. In David A. Padua, editor, Encyclopedia of Parallel
Computing, pages 1–11. Springer, 2011. doi:10.1007/978-0-387-09766-4_125.

25 Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: a Distributed Messaging System for Log
Processing. In 6th International Workshop on Networking Meets Databases (NetDB), 2011.

26 Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

27 Ragnar Mogk, Lars Baumgärtner, Guido Salvaneschi, Bernd Freisleben, and Mira Mezini.
Fault-tolerant Distributed Reactive Programming. In Todd D. Millstein, editor, 32nd European
Conference on Object-Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam,
The Netherlands, volume 109 of LIPIcs, pages 1:1–1:26. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.1.

28 Rashmi Mudduluru, Pantazis Deligiannis, Ankush Desai, Akash Lal, and Shaz Qadeer. Lasso
detection using partial-state caching. In Daryl Stewart and Georg Weissenbacher, editors,
2017 Formal Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October
2-6, 2017, pages 84–91. IEEE, 2017. doi:10.23919/FMCAD.2017.8102245.

29 Suvam Mukherjee, Nitin John Raj, Krishnan Govindraj, Pantazis Deligiannis,
Chandramouleswaran Ravichandran, Akash Lal, Aseem Rastogi, and Raja Krishnaswamy.
Reliable State Machines: A Framework for Programming Reliable Cloud Services. CoRR,
abs/1902.09502, 2019. arXiv:1902.09502.

30 Andrew Newell, Gabriel Kliot, Ishai Menache, Aditya Gopalan, Soramichi Akiyama, and
Mark Silberstein. Optimizing distributed actor systems for dynamic interactive services. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys 2016, London,
United Kingdom, April 18-21, 2016, pages 38:1–38:15, 2016. doi:10.1145/2901318.2901343.

31 P#. P#: Safe Asynchronous Event-Driven Programming. https://github.com/p-org/
PSharp. [Online; accessed 1-January-2019].

32 Ganesan Ramalingam and Kapil Vaswani. Fault tolerance via idempotence. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013,
pages 249–262. ACM, 2013. doi:10.1145/2429069.2429100.

33 Amr Sabry and Matthias Felleisen. Reasoning about Programs in Continuation-Passing Style.
Lisp and Symbolic Computation, 6(3-4):289–360, 1993.

34 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. REScala: bridging between object-
oriented and functional style in reactive applications. In Walter Binder, Erik Ernst, Achille
Peternier, and Robert Hirschfeld, editors, 13th International Conference on Modularity,
MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 25–36. ACM, 2014.
doi:10.1145/2577080.2577083.

35 Service Fabric Reliable Actors. https://docs.microsoft.com/en-us/azure/
service-fabric/service-fabric-reliable-actors-introduction.

36 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A comprehensive study
of Convergent and Commutative Replicated Data Types. JHAL-Inria, page 50, 2011. URL:
https://hal.inria.fr/inria-00555588.

37 The TailSpin Scenario. https://docs.microsoft.com/en-us/azure/architecture/
multitenant-identity/tailspin. Accessed: 2019-1-10.

https://www.erlang.org/
http://dx.doi.org/10.1145/78969.78972
http://dx.doi.org/10.1145/78969.78972
https://kafka.apache.org/powered-by
http://dx.doi.org/10.1007/978-0-387-09766-4_125
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.1
http://dx.doi.org/10.23919/FMCAD.2017.8102245
http://arxiv.org/abs/1902.09502
http://dx.doi.org/10.1145/2901318.2901343
https://github.com/p-org/PSharp
https://github.com/p-org/PSharp
http://dx.doi.org/10.1145/2429069.2429100
http://dx.doi.org/10.1145/2577080.2577083
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://hal.inria.fr/inria-00555588
https://docs.microsoft.com/en-us/azure/architecture/multitenant-identity/tailspin
https://docs.microsoft.com/en-us/azure/architecture/multitenant-identity/tailspin

S. Mukherjee et al. 18:29

38 Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Steven D. Gribble and
Dina Katabi, editors, Proceedings of the 9th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2012, San Jose, CA, USA, April 25-27, 2012, pages
15–28. USENIX Association, 2012. URL: https://www.usenix.org/conference/nsdi12/
technical-sessions/presentation/zaharia.

ECOOP 2019

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

Transferring Obligations Through
Synchronizations
Jafar Hamin
imec-DistriNet, Department of Computer Science, KU Leuven, Belgium
jafar.hamin@cs.kuleuven.be

Bart Jacobs
imec-DistriNet, Department of Computer Science, KU Leuven, Belgium
bart.jacobs@cs.kuleuven.be

Abstract
One common approach for verifying safety properties of multithreaded programs is assigning
appropriate permissions, such as ownership of a heap location, and obligations, such as an obligation
to send a message on a channel, to each thread and making sure that each thread only performs
the actions for which it has permissions and it also fulfills all of its obligations before it terminates.
Although permissions can be transferred through synchronizations from a sender thread, where
for example a message is sent or a condition variable is notified, to a receiver thread, where that
message or that notification is received, in existing approaches obligations can only be transferred
when a thread is forked. In this paper we introduce two mechanisms, one for channels and the other
for condition variables, that allow obligations, along with permissions, to be transferred from the
sender to the receiver, while ensuring that there is no state where the transferred obligations are
lost, i.e. where they are discharged from the sender thread but not loaded onto the receiver thread
yet. We show how these mechanisms can be used to modularly verify deadlock-freedom of a number
of interesting programs, such as some variations of client-server programs, fair readers-writers locks,
and dining philosophers, which cannot be modularly verified without such transfer. We also encoded
the proposed separation logic-based proof rules in the VeriFast program verifier and succeeded in
verifying the mentioned programs.

2012 ACM Subject Classification Theory of computation → Separation logic; Software and its
engineering → Deadlocks; Software and its engineering → Process synchronization; Software and its
engineering → Formal software verification; Theory of computation → Hoare logic

Keywords and phrases Hoare logic, separation logic, modular program verification, synchronization,
transferring obligations, deadlock-freedom

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.19

Funding This research received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 731453 (project VESSEDIA), as well as Flemish
Research Fund project grant G.0962.17N.

Acknowledgements We thank three anonymous reviewers for their careful reading of our manuscript
and their many insighful comments and suggestions, and also Amin Timany for his guidance on Coq.

1 Introduction

One common approach for verifying safety properties of multithreaded programs, such as
absence of data races and deadlock, is assigning appropriate permissions [3, 37] and obligations
[29, 33, 1] to each thread and making sure that each thread only performs the actions for
which it has permissions and it also fulfills all of its obligations before it terminates. In
a separation logic-based approach [42], for example, the ownership of a heap location is
a permission for accessing that location, which is assigned to the thread allocating that
location. Since there is only one instance of such permission, only one thread, the one having

© Jafar Hamin and Bart Jacobs;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 19; pp. 19:1–19:58

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5701-9111
mailto:jafar.hamin@cs.kuleuven.be
https://orcid.org/0000-0002-3605-249X
mailto:bart.jacobs@cs.kuleuven.be
https://doi.org/10.4230/LIPIcs.ECOOP.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Transferring Obligations Through Synchronizations

such permission, can access that location, which ensures absence of data races. Absence of
deadlock, as another example, can be verified by making sure that for any waitable object
o, such as a lock, a channel, or a condition variable, for which a thread is waiting there is
a thread obliged to fulfill an obligation for that object (which only waits for objects whose
levels, some arbitrary numbers1 associated with waitable objects, are lower than the level of
o) [33, 2, 24, 15]. In this setting a thread can discharge an obligation for a lock, a channel, or
a condition variable by releasing that lock, sending a message on that channel, or notifying
that condition variable (under some conditions), respectively.

Permissions can be transferred through synchronizations [33, 34] by consuming them in
the sender thread, where for example a message is sent or a condition variable is notified,
and producing them in the receiver thread, where that message or that condition variable is
received. However, this technique cannot be used for transferring obligations because the
transferred obligations are lost if no thread receives them. Additionally, even in the presence
of a receiver there might be a state where these obligations are discharged from the sender
but not received by the receiver yet. If the obligations are transferred through channels,
for example, if the receive is not scheduled to be executed immediately after the send then
there would be a state where no thread holds the transferred obligations, which makes the
approach unsound. Note that in the case that the send operation is synchronous [29], i.e.
the sender thread is suspended until a thread receives the sent message, sending obligations
through channels is perfectly fine because these obligation are never lost.

In this paper we introduce two mechanisms allowing threads to transfer their obligations
through synchronizations while ensuring that there is no state where these obligations are lost,
i.e. where they are discharged from the sender thread but not loaded onto the receiver thread
yet. The main idea behind the first mechanism is that when the transferred obligations are
discharged from the sender thread the levels of these obligations have been already loaded
onto a (receiver) thread. These levels are discharged from the receiver thread when it receives
the transferred obligations. In the second mechanism, which is specifically for condition
variables, the obligations are discharged from a notifying thread only if there is a waiting
thread which is notified and receives these obligations. We show that using these mechanisms
in some modular approaches, verifying finite blocking [2] and deadlock-freedom of channels
and locks [33, 24], semaphores [21], and monitors [15], enables them to verify a wider range
of interesting programs, such as some variations of client-server programs, fair mutexes,
fair readers-writers locks, and dining philosophers. We encoded the proposed proof rules in
the VeriFast program verifier [25, 26, 22] and succeeded in verifying the programs above2.
Additionally, we proved the soundness of both mechanisms (see Appendixes C and D): the
soundness proof of the second mechanism is machine-checked with Coq3.

In the rest of this paper Sections 2 and 3 introduce two mechanisms for transferring
obligations through channels and notifications, Section 4 discusses related work, and Section
5 draws a conclusion.

1 In this paper, for simplicity we use numbers as levels, but any partially ordered set can be used as the
set of levels.

2 The proof of these programs, verified by the VeriFast program verifier, can be found in [17].
3 The soundness proof of the second mechanism, machine-checked in Coq, can be found in [17].

J. Hamin and B. Jacobs 19:3

2 Transferring Obligations Through Channels

In this section we first review an approach, introduced by Leino et al. [33], which modularly
verifies deadlock-freedom of channels. Then we extend this approach such that it also allows
obligations to be transferred from the thread sending on a channel to the thread receiving
from that channel. Lastly, we provide some variations of a client-server program which can
be verified thanks to such extension.

2.1 Verifying Channels
Leino et al. [33] introduced a modular approach to verify deadlock-freedom of programs
which communicate through channels. The main idea in this approach is to associate with
each thread a bag4 of channels, namely the bag of obligations of that thread, which must be
empty when that thread terminates. A thread can discharge an obligation for a channel by
either sending a message on that channel or delegating that obligation to a forked thread.
This approach guarantees absence of deadlock by making sure that for any thread trying to
receive a message from a channel ch there is either a message in ch or an obligation for ch in
the bag of obligations of a thread which only waits for objects whose levels are lower than
the level of ch (preventing circular dependencies). This constraint is applied by making sure
that if a thread tries to receive from a channel ch then 1) it spends a credit for ch, where
a thread can obtain a credit for ch by adding ch to the bag of its obligations, and 2) the
level of ch is lower than the levels of the obligations of that thread. Note that a credit for a
channel in this approach indicates that there is either a message on that channel or there is
a thread holding an obligation for that channel.

As an example, consider the deadlock-free program shown in the left hand side of Figure
1, where after creating a channel ch, the main thread first forks a receiver thread, trying to
receive a message from ch, and then sends a message on ch. The verification of this program
is shown in the right hand side of this figure, where we use separation logic [42] to reason
about the ownership of permissions. The verification of this program is started with an empty
bag of obligations, denoted by obs({[]}). As indicated below each command, by creating a
channel a (duplicable and leakable) permission channel for accessing that channel is produced
and an arbitrary level, denoted by a function R, is assigned to that channel. Before forking
the receiver thread, using a ghost command5 g_credit, a credit and an obligation for this
channel are loaded onto the main thread. The former is given to the forked thread, where
this credit is spent by the command receive(ch), and the latter is discharged by the main
thread when it executes the command send(ch, 12).

The separation logic-based proof rules, introduced by Jacobs et al. [23, 24], used to
verify this program are shown in Figure 2. Note that the postcondition of each command in
this figure is a lambda expression that given the return value of that command returns the
assertion held after execution of that command. When a channel is created, as shown in
Rule NewChannel, any arbitrary level can be assigned to that channel by the proof author.
Note that, generally, this level must be chosen such that the constraint number 2, mentioned
above, is met at each receive operation. Sending a message on a channel, as shown in Rule
Send, discharges an obligation for that channel. As shown in Rule Receive, a thread can

4 We model bags of objects as functions from objects to natural numbers. We also use] indicating the
union (i.e. the pointwise sum) of two bags.

5 The ghost commands are inserted into the program for verification purposes and have no effect on the
program’s behavior.

ECOOP 2019

19:4 Transferring Obligations Through Synchronizations

ch := new_channel();
fork(receive(ch));
send(ch, 12)

{obs({[]})}
ch := new_channel();
{obs({[]}) ∗ channel(ch) ∧ R(ch)=r}
g_credit(ch);
{obs({[ch]}) ∗ channel(ch) ∗ credit(ch)}
fork(
{obs({[]}) ∗ channel(ch) ∗ credit(ch) ∧ ch ≺ {[]}}
receive(ch)
{obs({[]})}

);
{obs({[ch]}) ∗ channel(ch)}
send(ch, 12)
{obs({[]})}

Figure 1 Verification of deadlock-freedom of channels, where O in obs(O) is the bag of obligations
of the running thread, R(ch) denotes the level of ch, and ch ≺ O ⇔ ∀o∈O. R(ch) < R(o).

try to receive a message from a channel ch only if that thread spends a credit for ch and
the level of ch is lower than the levels of all obligations of that thread. As shown in Rule
Fork, a thread can transfer a part of its permissions and obligations to a forked thread,
provided that the forked thread discharges all the delegated obligations. Lastly, as shown in
Rule Credit, using a ghost command g_credit a thread can obtain a credit for a channel if
that channel is loaded onto the bag of the obligations of that thread.

It can be proved that any program verified by the mentioned proof rules, where the
verification starts from an empty bag of obligations and also ends with such bag, never
deadlocks, i.e. it always has a running thread, not waiting for any channel, until it terminates.
We know that for any channel ch all of these proof rules preserve the following invariant,
where Ct(ch) and Ot(ch) denote the total number of credits and obligations for ch in the
system, respectively, and size(ch) denotes the number of messages in ch:

Ct(ch) 6 Ot(ch) + size(ch) (1)

Now consider a deadlocked state, where each thread of a verified program is waiting for
a channel. Among all of these channels take the one having a minimal wait level, namely
chmin. Since size(chmin)=0 and there exists a credit for chmin in the system held by the
waiting thread, according to the invariant above and the constraint number 2, there exists a
thread having an obligation for chmin that is waiting for a channel whose level is lower than
the level of chmin, which contradicts minimality of the level of chmin.

2.2 Transferring Permissions and Obligations Through Channels
The approach presented in the previous section fails to verify some applications of channels
where some obligations must be transferred from a thread sending on a channel to the thread
receiving from that channel. Consider the client-server program shown in Figure 3, for
example, where the server waits to receive a message that consists of a client request, which
must be processed by the server, and a client channel, from which the client expects to receive
the response of the server. Although the client routine in this example is deadlock-free, the
Leino et al. approach fails to verify this program, since the routine main cannot give any
credit for the channel ch′, which is created inside the client, to the client. This program can
be verified if after creating ch′ a credit and an obligation for ch′ are loaded onto the client
such that the latter is transferred to the server through the client’s request and the former is
spent for the command receive(ch′) executed in the client.

J. Hamin and B. Jacobs 19:5

NewChannel
{true} new_channel {λch. channel(ch) ∧ R(ch)=r}

Send
{obs(O) ∗ channel(ch)} send(ch,m) {λ_. obs(O−{[ch]}) ∗ channel(ch)}

Receive
{obs(O) ∗ channel(ch) ∗ credit(ch) ∧ ch ≺ O} receive(ch) {λ_. obs(O) ∗ channel(ch)}

Fork
{a ∗ obs(O)} c {λ_. obs({[]})}

{a ∗ obs(O]O′)} fork(c) {λ_. obs(O′)}

Credit
{obs(O) ∗ channel(ch)} g_credit(ch) {λ_. obs(O]{[ch]}) ∗ channel(ch) ∗ credit(ch)}

Figure 2 Proof rules ensuring deadlock-freedom of channels.

routine server(channel ch){
(req, ch′) := receive(ch);
result := process(req);
send(ch′, result)}

routine client(channel ch){
ch′ := new_channel();
send(ch, (request(), ch′));
receive(ch′)}

routine main(){
ch := new_channel();
fork(server(ch));
client(ch)}

Figure 3 A client-server program.

Similar to permissions, two necessary conditions for transferring obligations are: 1) when
a thread sends a message on a channel ch the transferred obligations of ch, which are
transferred through ch, are discharged from the bag of the obligations of that thread, and 2)
when a thread receives a message from a channel ch the transferred obligations of ch are
loaded onto the bag of the obligations of that thread. However, these conditions are not
sufficient because these obligations are lost if no thread receives from ch. Additionally, even
in the presence of a receiver if the receive(ch) is not scheduled to be executed immediately
after the send(ch,m) then there would be a state where no thread holds the transferred
obligations, which makes the approach unsound.

To address this problem, in addition to the bag of obligations, we associate with each
thread a new bag, namely the bag of importers of that thread, which consists of the channels
that transfer (import) some obligations to that thread. Similar to the bag of obligations,
the bag of importers of a thread must be empty when that thread terminates and a thread
can wait for a channel ch only if the level of ch is lower than the levels of all obligations
which are possibly imported by all importers of that thread except for ch itself. Having this
bag, we enforce an additional condition, numbered 3, when a thread sends some obligations
on an importer channel, which imports some obligations, this channel must be already in
the bag of importers of a (receiver) thread. This importer channel is discharged from the
receiver thread as it receives a message from this channel. This additional condition is met
by making sure that any thread sending on an importer channel ch spends a transferring
credit for ch, where a thread can obtain a transferring credit of ch by adding ch to the bag
of its importers.

ECOOP 2019

19:6 Transferring Obligations Through Synchronizations

Formally, the third condition, which holds for any importer channel ch, ensures that for
any transferring credit of ch or any message in ch (which means a transferring credit of ch
has been spent by sending a message on ch and no thread has received it yet), there exists
an instance of ch in the bag of importers of a (receiver) thread. This invariant is shown in
the following as Invariant 2, where Mr(ch) denotes the bag of the levels of the obligations
which are possibly imported by ch, Tt(ch) denotes the total number of transferring credits of
ch in the system, It(ch) denote the number of occurrences of ch in the bags of importers of
all threads in the system, and size(ch) denotes the number of messages in the queue of ch.

∀ch. Mr(ch)6={[]} ⇒ Tt(ch) + size(ch) 6 It(ch) (2)

Additionally, the two first conditions mentioned above, as well as the ones mentioned in
the previous section, ensure that if a thread waits on a channel ch′ then there is either an
obligation of ch′ in the system, or a message on ch′, or a message in the queue of a channel
through which an obligation of ch′ is transferred (which means an obligation of ch′ has
been transferred through this message and no thread has received it yet). This invariant is
formally shown in the following as Invariant 3, where Ot(ch) and Ct(ch) denote the total
number of obligations and credits of ch in the system, queue(ch) denotes the list of messages
in the channel ch, and M′(ch) is a function, that given a message, specifies the bag of the
obligations which are transferred through that message in ch. Note that the levels of these
obligations must be in the bag of the levels of the obligations which are possibly imported by
ch, as shown formally in Invariant 4, where levels(O) maps each element of O to its level.

∀ch′. Ct(ch′) 6 Ot(ch′) + size(ch′) +
∑
ch

∑
m∈queue(ch)

M′(ch)(m)(ch′) (3)

∀ch,m∈queue(ch). levels(M′(ch)(m)) ⊆ Mr(ch) (4)

It can be proved that any program preserving such invariants never deadlocks, i.e. it always
has a running thread, not waiting for any channel, until it terminates. Consider a deadlocked
state, where each thread of a program is waiting for a channel. Among all of these channels
take the one having a minimal wait level, namely chmin. Since size(chmin)=0 and there
exists a credit for chmin in the system held by the waiting thread, according to Invariant 3,
there exists either 1) a thread having an obligation of chmin that is waiting for a channel
whose level is lower than the level of chmin, or 2) there exists a message m on a channel
ch through which an obligation of chmin is transferred, i.e. 0<M′(ch)(m)(chmin) which by
Invariant 4 implies R(chmin)∈Mr(ch), where R(chmin) denotes the level of chmin. In the first
case minimality of the level of chmin is contradicted. In the second case, since 0<size(ch)
and Mr(ch) 6={[]}, by Invariant 2, there exists a thread having an importer channel ch that is
waiting for a channel whose level is lower than the level of chmin (because ch imports an
obligation of level of chmin), which again contradicts minimality of chmin.

The proof rules enforcing such invariants are shown in Figure 4, where Mr(ch) denotes the
bag of the levels of the obligations which are possibly imported by ch, and the parameters M
and M ′ in the permission channel of a channel are two functions that given a message return
the permissions and the obligations which are transferred through that message. When a
channel ch is created, as shown in Rule NewChannel, the value of these functions for this
channel can be specified arbitrarily. As shown in Rule Send, when a message m is sent on
ch, the permissions which are transferred through m as well as one transferring credit of
ch, denoted by trandit(ch), (if ch is an importer channel) are consumed and the obligations

J. Hamin and B. Jacobs 19:7

NewChannel
{true} new_channel {λch. channel(ch,M,M ′) ∧ R(ch)=r ∧Mr(ch)=R}

Send
{obs(O, I) ∗ channel(ch,M,M ′) ∗M(m) ∗ (Mr(ch)={[]} ∨ trandit(ch)) ∧

levels(M ′(m)) ⊆ Mr(ch)} send(ch,m)
{λ_. obs(O−{[ch]}−M ′(m), I) ∗ channel(ch,M,M ′)}

Receive
{obs(O, I) ∗ channel(ch,M,M ′) ∗ credit(ch) ∧ ch ≺ O ∧ ch ≺r I} receive(ch)

{λm. obs(O]M ′(m), I−{[ch]}) ∗ channel(ch,M,M ′) ∗M(m)}

Fork
{a ∗ obs(O, I)} c {λ_. obs({[]}, {[]})}

{a ∗ obs(O]O′, I]I ′)} fork(c) {λ_. obs(O′, I ′)}

Credit
{obs(O) ∗ channel(ch,M,M ′)} g_credit(ch)

{λ_. obs(O]{[ch]}) ∗ channel(ch,M,M ′) ∗ credit(ch)}

Trandit
{obs(O, I) ∗ channel(ch,M,M ′)} g_trandit(ch)

{λ_. obs(O, I]{[ch]}) ∗ channel(ch,M,M ′) ∗ trandit(ch)}

Figure 4 The updated proof rules ensuring deadlock-freedom of importer channels, where Mr(ch)
denotes the bag of the levels of the obligations which are possibly imported by ch; M and M ′ in
the permission channel of a channel are functions, that given a message, return the permissions and
the obligations which are transferred through that message, respectively; bag I in the permission
obs(O, I) of a thread denotes the channels importing some obligations onto that thread; levels(O)
maps each element of O to its level; and ch ≺r I ⇔ ∀ch′∈I. ch=ch′ ∨ ch ≺ Mr(ch′).

which are transferred through m as well as an obligation of ch are discharged from the bag of
the obligations. Additionally, this rule makes sure by adding m to the queue of ch Invariant
4 is still preserved. As shown in Rule Receive, when a thread tries to receive a message m
from ch the level of ch must be lower than the levels of the obligations of the thread and
also the levels of the obligations which are possibly imported by all importers of that thread
except for ch itself, i.e. ∀ch′∈I. ch=ch′ ∨ ch ≺ Mr(ch′) where I is the bag of the importers
of the receiving thread. Additionally, a credit of ch is consumed, the permissions which are
transferred through m are produced, ch is discharged from the bag of the importers, and
the obligations which are transferred through m are loaded onto the bag of the obligations.
As shown in Rule Fork, a thread can transfer a part of its permissions, obligations, and
importer channels to a forked thread, provided that the forked thread discharges all of the
delegated obligations and importer channels. As shown in Rule Trandit a thread can obtain
a transferring credit of ch by loading ch onto the bag of its importers.

The verification of the program in Figure 3 using the proposed proof rules is illustrated
in Figure 5. Note that for the sake of readability we elide repeated occurrences of the
permissions channel in the proof of the given programs. As shown in the precondition and
the postcondition of the routine server, denoted by req and ens, this routine discharges an
importer channel ch, where a message from ch is received. Since this routine tries to wait

ECOOP 2019

19:8 Transferring Obligations Through Synchronizations

on ch, it requires a credit and a permission channel for ch. The permission channel in the
precondition of this routine indicates that along with the client’s request the server receives
an obligation and a permission channel for the client’s channel through which no permission
or obligation is transferred. The specification of the routine client indicates that this routine
discharges an obligation for the server channel ch, since it sends a request to this channel. As
it is shown in the verification of this routine, after creating the client channel ch′ and before
sending it to the server, one obligation and one credit for ch′ are loaded onto the system.
The former is transferred to the server, where it is discharged by sending a response on ch′,
and the latter is spent in the rest of this routine for receiving from ch′. The routine main
in this program is successfully verified, since starting with an empty bag of obligations and
importers the verification of this routine is finished with such bags too.

2.3 Conditional Channels
A different variation of a client-server program is shown in Figure 6, where a server keeps
accepting the clients’ requests until it receives a specific message done. The verification of
this program using the proposed proof rules is illustrated in Figure 7. Note that if the client
sends a message done to the server the session is finished and the client should not transfer
an obligation of ch′ through this message, i.e an obligation of ch′ is transferred through a
message sent on ch only if that message is not a message done. Since in this program a
client can send multiple requests to the server and for each request it requires a permission
trandit(ch), the server sends this permission to the client each time it replies to the client, i.e.
a permission trandit(ch) is transferred through the client’s channel ch′. Additionally, since
the server might wait for ch more than once and for each wait it requires a credit(ch), before
replying to the client a credit and an obligation for ch are loaded onto the server and the
loaded obligation is transferred to the client, where this obligation is discharged by sending
on ch, i.e. an obligation for ch is transferred through the client’s channel ch′. Since the
channel ch′ transfers some obligations from the server to the client, the server requires a
permission trandit(ch′) before sending on ch′, which can be obtained from the client through
the channel ch, i.e. if the client sends a request (and not a message done) to the server it
also sends a permission trandit(ch′) to the server.

2.4 Server Channels
Another variation of a client-server program is shown in Figure 8, where a server infinitely
accepts the clients’ requests through a server channel s. A desired property of these kinds
of programs is that if they have a thread waiting for a non-server channel they also have a
running thread, not waiting for any channel. In other words, a program can be considered as
a terminated program even if there are still some specific threads, namely daemon threads,
such as a server thread or a garbage collector thread, which are not terminated. In Java
these threads are terminated by the JVM when there is no longer any user thread running.

To achieve the mentioned property we only need to make sure that if a thread tries to
receive from a server channel s it has no obligation and the bag of the importers of this
thread only contains s.

It can be proved that any program verified by enforcing the constraint above meets the
mentioned desired property, i.e. if this program has a thread waiting for a non-server channel
it also has a running thread, not waiting for any channel. Consider an undesired state, where
each thread is waiting for a channel while some of these channels are non-server channels.
Among all of these non-server channels take the one having a minimal wait level, namely

J. Hamin and B. Jacobs 19:9

Mch ::= λm. channel(snd(m), λ_. true, λ_. {[]}) ∧Mr(snd(m))={[]}
M′ch ::= λm. {[snd(m)]}

routine server(channel ch){
req : {obs({[]}, {[ch]}) ∗ channel(ch,Mch,M′ch) ∗ credit(ch)}
(req, ch′) := receive(ch);
{obs({[ch′]}, {[]}) ∗ channel(ch′, λ_. true, λ_. {[]}) ∧Mr(ch′)={[]}}
result := process(req);
send(ch′, result)
ens : {obs({[]}, {[]})}}

routine client(channel ch){
req : {obs({[ch]}, {[]}) ∗ channel(ch,Mch,M′ch) ∗ trandit(ch) ∧Mr(ch)={[1]}}
ch′ := new_channel();
{obs({[ch]}, {[]}) ∗ channel(ch′, λ_. true, λ_. {[]}) ∗ trandit(ch) ∧ R(ch′)=1 ∧Mr(ch′)={[]}}
g_credit(ch′);
{obs({[ch, ch′]}, {[]}) ∗ trandit(ch) ∗ credit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[]}) ∗ credit(ch′)}
receive(ch′)
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
ch := new_channel();
{obs({[]}, {[]}) ∗ channel(ch,Mch,M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch);
{obs({[ch]}, {[]}) ∗ credit(ch)}
g_trandit(ch);
{obs({[ch]}, {[ch]}) ∗ credit(ch) ∗ trandit(ch)}
fork(
{obs({[]}, {[ch]}) ∗ credit(ch)}
server(ch)
{obs({[]}, {[]})});
{obs({[ch]}, {[]}) ∗ trandit(ch)}
client(ch)
ens : {obs({[]}, {[]})}}

Figure 5 Verification of the program in Figure 3.

routine cserver(channel ch){
(req, ch′) := receive(ch);
while(req 6= done){

send(ch′, process(req));
(req, ch′) := receive(ch) }}

routine client(channel ch){
ch′ := new_channel();
send(ch, (request(), ch′));
receive(ch′);
send(ch, (done, ch′))}

routine main()
{
ch := new_channel();
fork(cserver(ch));
client(ch)}

Figure 6 A server keeps serving a client until receiving a specific message done.

ECOOP 2019

19:10 Transferring Obligations Through Synchronizations

Mch(ch) ::= λm. channel(snd(m), λ_. trandit(ch), λ_. {[ch]}) ∧Mr(snd(m))={[1]} ∗
fst(m)=done ? true : trandit(snd(m))

M′ch ::= λm. fst(m)=done ? {[]} : {[snd(m)]}

routine cserver(channel ch){
req : {obs({[]}, {[ch]}) ∗ channel(ch,Mch(ch),M′ch) ∗ credit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
(req, ch′) := receive(ch);
{obs(req=done ? {[]} : {[ch′]}, {[]}) ∗ channel(ch′, λ_. trandit(ch), λ_. {[ch]}) ∗
(req=done ? true : trandit(ch′)) ∧Mr(ch′)={[1]}}
while(req 6= done){
inv : {Mr(ch′)={[1]} ∧ req=done ? obs({[]}, {[]}) : (obs({[ch′]}, {[]}) ∗ trandit(ch′))}

g_trandit(ch); g_credit(ch);
{obs({[ch′, ch]}, {[ch]}) ∗ trandit(ch′) ∗ trandit(ch) ∗ credit(ch)}
send(ch′, process(req));
{obs({[]}, {[ch]}) ∗ credit(ch)}
(req, ch′) := receive(ch)
}ens : {obs({[]}, {[]})}}

routine client(channel ch){
req : {obs({[ch]}, {[]}) ∗ channel(ch,Mch(ch),M′ch) ∗ trandit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
ch′ := new_channel();
{obs({[ch]}, {[]}) ∗ trandit(ch) ∗ channel(ch′, λ_. trandit(ch), λ_. {[ch]}) ∧ R(ch′)=1 ∧
Mr(ch′)={[1]}}
g_credit(ch′); g_trandit(ch′);
{obs({[ch, ch′]}, {[ch′]}) ∗ trandit(ch) ∗ credit(ch′) ∗ trandit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
receive(ch′);
{obs({[ch]}, {[]}) ∗ trandit(ch)}
send(ch, (done, ch′))
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
ch := new_channel();
{obs({[]}, {[]}) ∗ channel(ch,Mch(ch),M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch) ; g_trandit(ch);
{obs({[ch]}, {[ch]}) ∗ credit(ch) ∗ trandit(ch)}
fork(
{obs({[]}, {[ch]}) ∗ credit(ch)}
cserver(ch)
{obs({[]}, {[]})});
{obs({[ch]}, {[]}) ∗ trandit(ch)}
client(ch)
ens : {obs({[]}, {[]})}}

Figure 7 Verification of the program in Figure 6, where a ? b : c evaluates to b if the value of a is
true, and otherwise to c.

J. Hamin and B. Jacobs 19:11

routine server(channel s){
while(true){

(req, ch′) := receive(s);
send(ch′, process(req))
}}

routine client(channel s){
ch′ := new_channel();
send(s, (request(), ch′));
receive(ch′)
}

routine main(){
s := new_channel();
fork(server(s));
fork(client(s));
client(s)}

Figure 8 A server keeps serving clients.

NewChannel
{true} new_channel {λch. channel(ch,M,M ′) ∧ R(ch)=r ∧Mr(ch)=R ∧ S(ch)=b}

Receive
{obs(O, I) ∗ channel(ch,M,M ′) ∗ (S(ch) ∨ credit(ch)) ∧ ch ≺ O ∧ ch ≺r I ∧

(¬S(ch) ∨ (O={[]} ∧ ∀ch′∈I. ch′=ch))} receive(ch)
{λm. obs(O]M ′(m), I−{[ch]}) ∗ channel(ch,M,M ′) ∗M(m)}

Trandits
{obs(O, I) ∗ channel(ch,M,M ′)} g_trandits(ch)

{λ_. obs(O, I]{[ch∞]}) ∗ channel(ch,M,M ′) ∗ trandit∞(ch)}

Figure 9 The updated proof rules ensuring deadlock-freedom of server channels, where S is a
function that given a channel specifies whether that channel is a server channel or not, and o∞

represents an infinite number of occurrences of o.

chmin. Since size(chmin)=0 and there exists a credit for chmin in the system held by the
waiting thread, by Invariant 3, either 1) there exists a thread having an obligation of chmin
that is waiting for a channel ch whose level is lower than the level of chmin, or 2) there
exists a message m in a channel ch through which an obligation of chmin is transferred,
i.e. 0<M′(ch)(m)(chmin) which by Invariant 4 implies R(chmin)∈Mr(ch), where R(chmin)
denotes the level of chmin. The first case contradicts minimality of the level of chmin, because
in this case ch is a non-server channel, since that thread is waiting for ch while it has some
obligations. In the second case, since 0<size(ch) and Mr(ch) 6={[]}, by Invariant 2, there exists
a thread t having an importer channel ch that is waiting for a channel ch1 whose level is
lower than the level of chmin (because ch imports an obligation of level of chmin). Since
0<size(ch) we know ch1 6=ch. Accordingly, ch1 cannot be a server channel (because t is trying
to receive from ch1 while it has an importer channel ch which is not equal to ch1), which is
a contradiction.

The proof rules which need to be updated are shown in Figure 9. As shown in Rule
NewChannel, when a channel is created it must be specified whether this channel is a
server channel or not, which is denoted by a function S. As shown in Rule Receive, if a
thread tries to receive from a server channel ch the bag of the obligations of this thread
must be empty and the bag of the importer channels of this thread must only contain ch.
Note that a thread does not need to spend a credit for waiting on a server channel. We also
introduce a new ghost command g_trandits(ch), shown in Rule Trandits, which produces
an infinite number of transferring credits of ch, denote by trandit∞(ch), by loading an infinite
number of ch, denoted by ch∞, onto the importers. The verification of the program in
Figure 8 using these rules is shown in Figure 10, where the server does not need any credit
for waiting on the server channel s. Note that this verification ensures neither termination
nor deadlock-freedom. It actually ensures that if this program has a thread waiting for the
non-server channel ch′ it also has a running thread, not waiting for any channel.

ECOOP 2019

19:12 Transferring Obligations Through Synchronizations

Ms(s) ::= λm. channel(snd(m), λ_. trandit(s), λ_. {[]}) ∧Mr(snd(m))={[]}
M′s ::= λm. {[snd(m)]}

routine server(channel s){
req : {obs({[]}, {[s∞]}) ∗ channel(s,Ms(s),M′s) ∧Mr(s)={[1]} ∧ S(s)}
while(true){
inv : {obs({[]}, {[s∞]})}

(req, ch′) := receive(s);
{obs({[ch′]}, {[s∞]}−{[s]}) ∗ channel(ch′, λ_. trandit(s), λ_. {[]}) ∧Mr(ch′)={[]}}
g_trandit(s);
{obs({[ch′]}, {[s∞]}) ∗ trandit(s)}
send(ch′, process(req))
{obs({[]}, {[s∞]})}
}
ens : {false}}

routine client(channel s){
req : {obs({[]}, {[]}) ∗ channel(s,Ms(s),M′s) ∗ trandit(s) ∧Mr(s)={[1]}}
ch′ := new_channel();
{obs({[]}, {[]}) ∗ trandit(s) ∗ channel(ch′, λ_. trandit(s), λ_. {[]}) ∧ R(ch′)=1 ∧Mr(ch′)={[]}}
g_credit(ch′);
{obs({[ch′]}, {[]}) ∗ trandit(s) ∗ credit(ch′)}
send(s, (request(), ch′));
{obs({[]}, {[]}) ∗ credit(ch′)}
receive(ch′)
{obs({[]}, {[]}) ∗ trandit(s)}
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]}}
s := new_channel();
{obs({[]}, {[]}) ∗ channel(s,Ms(s),M′s) ∧Mr(s)={[1]}}
g_trandits(s);
{obs({[]}, {[s∞]}) ∗ trandit∞(s)}
fork(
{obs({[]}, {[s∞]})}
server(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
fork(client(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
client(s)
ens : {obs({[]}, {[]})}}

Figure 10 Verification of the program in Figure 8.

J. Hamin and B. Jacobs 19:13

routine server(channel s){
while(true){

(thr, ch′) := receive(s);
ch := new_channel();
send(ch′, (through, ch));
fork(cserver(ch))
}}

routine client(channel s){
ch′ := new_channel();
send(s, (through, ch′));
(thr, ch) := receive(ch′);
send(ch, (request(), ch′));
(res, ch) := receive(ch′);
send(ch, (done, ch′))}

routine main()
{
s := new_channel();
fork(server(s));
fork(client(s));
client(s)
}

Figure 11 A server keeps serving clients through separate conditional channels.

Using the proposed proof rules it is also possible to verify some other variations of
client-server programs such as the one shown in Figure 11, where a server infinitely serves
clients’ request through separate conditional channels (see Appendix A illustrating the proof
of this program). Note that the definition of the function cserver in this figure is similar to
the one shown in Figure 6.

3 Transferring Obligations Through Notifications

In this section we introduce a mechanism which allows obligations to be transferred from
a thread notifying a condition variable (CV) to the notified thread. The main idea behind
this mechanism is based on this unique feature of condition variables that when a sender
thread notifies a CV, if there is a receiver thread waiting for that CV, the receiver thread
immediately receives this notification. Accordingly, if there exists a thread waiting for a
condition variable v, it is safe to discharge the transferred obligations of v when v is notified
and load these obligations to the receiver thread as it is notified. Note that a notification on
a condition variable is lost if there is no thread waiting for that condition variable.

The number of threads waiting for a condition variable can be tracked by using the
approach introduced by Hamin et al. [15, 16], which modularly verifies deadlock-freedom
of programs synchronized by monitors. Since this approach only allows permissions to be
transferred from a notifying thread to the one notified, it cannot verify some interesting
programs such as a particular implementation of fair readers-writers locks, shown in Figure
19, and dining philosophers (see Appendix B). In the following we first review this approach
and then we extend this approach such that it also allows transferring of obligations, enabling
it to verify a wider range of programs such as the ones we just mentioned.

3.1 Verifying Monitors
Hamin et al. [15, 16] introduced a modular approach for verifying deadlock-freedom of
programs synchronized by condition variables (CVs), where executing a command wait(v, l)
on a CV v, which is associated with a lock l, releases l and suspends the running thread, and
executing a command notify(v)/notifyAll(v) wakes up one/all thread(s) waiting for CV v, if
any. This approach ensures absence of deadlock by making sure that for any CV v for which
a thread is waiting there is a thread obliged to fulfill an obligation for v which only waits for
waitable objects whose levels are lower than the level of v. In this approach when a thread
acquires a lock l, the total number of waiting threads, and the total number of obligations of
any CV v associated with l, denoted by Wt(v) and Ot(v) respectively, can be mentioned in
the proof of that thread. In order to ensure the mentioned constraint this approach makes
sure that 1) if a command wait(v, l) is executed then 0 < Ot(v), i.e. there is an obligation of
v in the system, 2) if an obligation of v is discharged then after this discharge the invariant

ECOOP 2019

19:14 Transferring Obligations Through Synchronizations

NewLock
{true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=r}

InitLock
{ulock(l,Wt, Ot) ∗ inv(Wt, Ot) ∗ obs(O)} g_initl(l) {λ_. lock(l) ∗ obs(O) ∧ I(l)=inv}

Acquire
{lock(l) ∗ obs(O) ∧ l ≺ O} acquire(l)

{λ_. ∃Wt, Ot. locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[l]})}

Release
{locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[l]})} release(l) {λ_. lock(l) ∗ obs(O)}

NewCV
{true} new_cvar {λv. ucond(v) ∧ R(v)=r}

InitCV
{ucond(v) ∗ ulock(l,Wt, Ot)} g_initc(v) {λ_. cond(v,M) ∗ ulock(l,Wt, Ot) ∧ L(v)=l}

Wait
{cond(v,M) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[v]}, Ot) ∗ obs(O]{[l]}) ∧
l=L(v) ∧ v ≺ O ∧ l ≺ O ∧ enoughObs(v,Wt]{[v]}, Ot)} wait(v, l)

{λ_. cond(v,M) ∗ obs(O]{[l]}) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M}

Notify
{cond(v,M) ∗ locked(L(v),Wt, Ot) ∗ (Wt(v)=0 ∨M)} notify(v)

{λ_. cond(v,M) ∗ locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{cond(v,M) ∗ locked(L(v),Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M)} notifyAll(v)
{λ_. cond(v,M) ∗ locked(L(v),Wt[v:=0], Ot)}

ChargeObligation
{obs(O) ∗ ulock/locked(L(v),Wt, Ot)} g_chrg(v)
{λ_. obs(O]{[v]}) ∗ ulock/locked(L(v),Wt, Ot]{[v]})}

DischargeObligation
{obs(O) ∗ ulock/locked(L(v),Wt, Ot) ∧ enoughObs(v,Wt, Ot−{[v]})} g_disch(v)

{λ_. obs(O−{[v]}) ∗ ulock/locked(L(v),Wt, Ot−{[v]})}

Figure 12 Proof rules verifying deadlock-freedom of monitors, where Wt(v) and Ot(v) denote
the total number of threads waiting for v and the total number of obligations for v, respectively;
the parameter M in the permission cond of a condition variable denotes the permissions which are
transferred from the thread notifying that condition variable to the one(s) notified; L(v) denotes the
lock associated with the condition variable v; enoughObs(v,Wt, Ot)⇔ (Wt(v)>0⇒ Ot(v)>0); and
v ≺ O ⇔ ∀o∈O. R(v) < R(o).

J. Hamin and B. Jacobs 19:15

0 < Wt(v)⇒ 0 < Ot(v) holds, i.e. if there is a thread waiting for v then after this discharge
there are still some obligations for v in the system, and 3) a thread executes a command
wait(v, l) only if the level of v is lower than the levels of the obligations of that thread.

A program in this approach can be successfully verified if each lock associated with some
CVs has an appropriate invariant such that for any CV v associated with that lock this
invariant implies 0 < Wt(v)⇒ 0 < Ot(v). Accordingly, in this approach each lock invariant
is parametrized over the bags Wt and Ot, which map all CVs associated with that lock to
the number of their waiting threads and obligations, respectively.

The proof rules proposed in this approach are shown in Figure 12. As shown in Rule
NewLock, when a lock l is created an arbitrary level is assigned to that lock and an
uninitialized lock permission ulock(l, {[]}, {[]}) is produced. The second and the third parameters
of this permission are two bags mapping the CVs associated with l to their number of waiting
threads and obligations, respectively. As shown in Rule InitLock, this uninitialized lock
permission can be converted to a (duplicable and leakable) lock permission lock(l) if the
assertion resulting from applying the invariant of that lock, denoted by I(l), to the bags
stored in the permission ulock is consumed (the permissions described by the invariant of this
lock are transferred from the thread to the lock). As shown in Rule Acquire, when a thread
acquires this lock the permissions described by the invariant of this lock are transferred from
the lock to the thread. Additionally, a permission locked(l,Wt, Ot) is provided for the thread,
where Wt and Ot are two bags mapping the CVs associated with l to their number of waiting
threads and obligations, respectively, and are existentially quantified in the postcondition.
Note that to prevent circular dependencies the precondition of this rule enforces that the
level of l be lower than the levels of the obligations of the acquiring thread. Additionally,
this lock is added to the bag of the obligations of this thread. As shown in rule Release,
when this lock is released it is discharged from the bag of the obligations and the assertion
resulting from applying the invariant of this lock to the bags stored in the permission locked
is consumed. Additionally, the permission locked is converted to a permission lock.

As shown in Rule NewCV, when a CV is created an arbitrary level is assigned to it
and an uninitialized permission ucond for that CV is produced. As shown in Rule InitCV,
this permission can be converted to a (duplicable and leakable) permission cond if a lock is
associated to this CV, denoted by L(v). Additionally, the transferred permissions of this
CV, which are transferred from the notifying thread to the one notified, are also specified in
this rule, denoted by M in the permission cond. These permissions are consumed when a
command notify(v) is executed (if there is a thread waiting for v; see the precondition of Rule
Notify), and are produced when a command wait(v, l) is executed (see the postcondition of
Rule Wait). Note that notifyAll(v) transfers Wt(v) instances of these permissions, denoted

by
Wt(v)
∗
i:=1

M (see the precondition of Rule NotifyAll). As shown in Rule Wait, when a
command wait(v, l) is executed, since l is going to be released and the number of threads
waiting for v is going to be increased, the result of applying the invariant of lock l to bags
Wt]{[v]} and Ot must be consumed, where Wt and Ot are the bags stored in the permission
locked of l. Additionally, the level of v must be lower than the levels of all obligations of
the thread except for l. Note that the level of l must be lower than the levels of these
obligations, too, since when the thread is woken up it tries to reacquire l. As previously
mentioned, the precondition of this rule also makes sure that 0 < Ot(v), which is enforced
by the invariant enoughObs(v,Wt]{[v]}, Ot). This invariant follows from I(l)(Wt]{[v]}, Ot)
if the invariant of l is properly defined such that for any CV v′ associated with l and any
Wt′ and Ot′, we have I(l)(Wt, Ot)⇒ enoughObs(v′,Wt, Ot). Lastly the precondition of this
command makes sure that v is associated with lock l, which is enforced by L(v)=l. As

ECOOP 2019

19:16 Transferring Obligations Through Synchronizations

InitCV
{ucond(v) ∗ ulock(l,Wt, Ot)} g_initc(v)

{λ_. cond(v,M,M ′) ∗ ulock(l,Wt, Ot) ∧ L(v)=l}

Wait
{cond(v,M,M ′) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[v]}, Ot) ∗ obs(O]{[l]}) ∧
l=L(v) ∧ v≺O ∧ l≺O]M ′ ∧ enoughObs(v,Wt]{[v]}, Ot)} wait(v, l)

{λ_. cond(v,M,M ′) ∗ obs(O]{[l]}]M ′) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M}

Notify
{obs(O](0<Wt(v) ? M ′ : {[]})) ∗ cond(v,M,M ′) ∗ locked(L(v),Wt, Ot) ∗ (Wt(v)=0 ∨M)}

notify(v) {λ_. obs(O) ∗ cond(v,M,M ′) ∗ locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{cond(v,M, {[]}) ∗ locked(L(v),Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M)} notifyAll(v)
{λ_. cond(v,M, {[]}) ∗ locked(L(v),Wt[v:=0], Ot)}

Figure 13 New proof rules verifying deadlock-freedom of monitors allowing transferring obligations
through notifications, where the parameter M ′ in the permission cond of a condition variable denotes
the obligations which are transferred from the thread notifying that condition variable to the
one notified.

shown in Rules Notify/NotifyAll, when a CV v is notified, one/all instance(s) of v is/are
removed from the bag Wt stored in the permission locked of the lock associated with v,
if any. Unlike the Leino et al. approach [33], this approach has no notion of credits and
an obligation for a CV v is loaded/unloaded when that obligation is also loaded/unloaded
onto/from the bag Ot stored in the permission locked of the lock associated with v, as shown
in Rules ChargeObligation and DischargeObligation. However, an obligation for v is
discharged only if after this discharge we have 0 < Wt(v)⇒ 0 < Ot(v), which is enforced by
the invariant enoughObs in the precondition of the rule DischargeObligation.

3.2 Transferring Obligations Through Notifications

In this subsection we extend the Hamin et al. approach [15] such that it also allows obligations
to be transferred from the notifying thread to the one notified. To this end we make sure
that 1) when a thread notifies a CV v the transferred obligations of v, which are transferred
through a notification on v, are discharged from the thread only if there is a thread waiting
for v which is notified, that is 0<Wt(v), 2) when a thread waits for a CV v the transferred
obligations of v are loaded onto the bag of obligations of that thread as that thread is notified,
and 3) when a thread waits for a CV v the level of the lock associated with v is lower than
the levels of the transferred obligations of v, too, since when the thread wakes up, where
these obligations are loaded onto the bag of the obligations of the thread, this lock must be
reacquired. For the sake of simplicity, any CV v on which notifyAll(v) is performed must have
no transferred obligations. The proof rules which need to be updated are shown in Figure 13.

It can be proved that any program verified by the mentioned proof rules, where the
verification starts from an empty bag of obligations and also ends with such bag, never
deadlocks, i.e. it always has a running thread, not waiting for any waitable object such as a
condition variable or a lock, until it terminates. We know that for any waitable object o all

J. Hamin and B. Jacobs 19:17

routine new_mutex(){
l := new_lock;
v := new_cvar;
mutex(l:=l, v:=v,
b:=new_bool(false))
}

routine enter_cs(mutex m){
acquire(m.l);
while(m.b)

wait(m.v,m.l);
m.b := true;
release(m.l)}

routine exit_cs(mutex m){
acquire(m.l);
m.b := false;
notify(m.v);
release(m.l)
}

Figure 14 Mutexes.

routine main(){
m := new_mutex();
fork(

while(1){
enter_cs(m); /* CS */
exit_cs(m)});

enter_cs(m); /* CS */
exit_cs(m)}

Figure 15 The main thread is starved if it is scheduled only when the forked thread is in the CS.

of these proof rules preserve the invariant 0 < Wt(o)⇒ 0 < Ot(o), where Wt(o) and Ot(o)
denote the total number of waiting threads and obligations for o in the system, respectively.
Note that this invariant holds even when some obligations are transferred because these
obligations are immediately transferred from the notifying thread to the one notified. Now
consider a deadlocked state, where each thread of a verified program is waiting for an object.
Among all of these objects take the one having a minimal wait level, namely omin. By
the invariant above, there exists a thread having an obligation for omin that is waiting for
an object whose level is lower than the level of omin, which contradicts minimality of the
level of omin.

3.3 Fair Mutexes
In this section we show how our extension helps to verify a fair implementation of a mutex,
in which threads are synchronized by CVs. Before introducing this implementation, consider
a simple (unfair) implementation of a mutex, shown in Figure 14. In this implementation a
mutex consists of a boolean variable b, indicating whether the critical section (CS) is executed
by any thread or not, a lock l, protecting this variable from concurrent accesses, and a CV
v, preventing threads from entering the CS if there is a thread running that CS. As shown
in the routine enter_cs, when a thread tries to enter a CS, protected by a mutex m, it first

routine new_mutex(){
l := new_lock;
v := new_cvar;
mutex(l:=l, v:=v,
b:=new_bool(false),
w:=new_int(0))

}

routine enter_cs(mutex m){
acquire(m.l);
if(m.b){
m.w := m.w+1;
wait(m.v,m.l)}

else
m.b := true;

release(m.l)}

routine exit_cs(mutex m){
acquire(m.l);
m.b := false;
if(0<m.w){
m.w := m.w−1;
m.b := true;
notify(m.v)}

release(m.l)}

Figure 16 Fair mutexes on top of fair monitors.

ECOOP 2019

19:18 Transferring Obligations Through Synchronizations

mutex(mutex m,waitobj o) = lock(m.l) ∗ cond(m.v, true, {[m.v]}) ∧
I(m.l)=linv(m) ∧ L(m.v)=m.l ∧ R(m.l) < R(m.v) ∧ o=m.v

linv(mutex m) =
λWt. λOt. ∃b, w. m.b 7→ b ∗m.w 7→ w ∧Wt(m.v)=w ∧ (b ? 0 < Ot(v) : Wt(v) = 0)

routine new_mutex(){
req : {true}
l := new_lock;
{ulock(l, {[]}, {[]}) ∧ R(l)=r−1}
v := new_cvar; g_initc(v);
{ulock(l, {[]}, {[]}) ∗ cond(v, true, {[v]}) ∧ R(v)=r ∧ L(v)=l}
m := mutex(l:=l, v:=v, b:=new_bool(false), w:=new_int(0)); g_initl(l); m
ens : {λm. ∃o. mutex(m, o) ∧ R(o)=r}}

routine enter_cs(mutex m){
req : {obs(O) ∗mutex(m, o) ∧ o ≺ O}
acquire(m.l);
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
if(m.b){
m.w := m.w+1;
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt]{[m.v]}, Ot)}
wait(m.v,m.l)
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}}

else{
m.b := true; g_chrg(m.v)
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
};
{obs(O]{[m.l,m.v]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
release(m.l)
ens : {obs(O]{[o]}) ∗mutex(m, o)}}

routine exit_cs(mutex m){
req : {obs(O]{[o]}) ∗mutex(m, o) ∧ o ≺ O}
acquire(m.l);
{obs(O]{[m.v,m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}
m.b := false;
if(0<m.w){
m.w := m.w−1; m.b := true; notify(m.v)
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}}

else{
g_disch(m.v)
{obs(O]{[m.l]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(m.l,Wt, Ot) ∗ linv(m)(Wt, Ot)}};

release(m.l)
ens : {obs(O) ∗mutex(m, o)}}

Figure 17 Verification of the fair mutexes implementation shown in Figure 16.

J. Hamin and B. Jacobs 19:19

acquires the mutex’s lock and while there is a thread running the CS it releases that lock and
suspends itself. If that thread is notified (and reacquires the mutex’s lock) while there is no
thread running the CS it changes the value of the variable b to true, preventing other threads
from entering the CS, and releases the mutex’s lock. Before leaving the critical section, as
shown in routine exit_cs, this thread acquires the mutex’s lock, changes the value of the
variable b to false, allowing other threads to enter the CS, notifies the condition variable of
the mutex, waking up a waiting thread, if any, and finally releases the mutex’s lock.

However, one problem with this implementation is that a thread might be in starvation;
it might infinitely wait for entering the CS. For example, consider the program in Figure 15,
where the main thread is starved if it is scheduled only when the forked thread is in the CS.
In this situation, when the forked thread exits the CS, since m.b=false, this thread without
waiting for m.v again changes m.b to true and enters the CS. To address this problem a
new variable w can be added to the structure of the mutex, tracking the number of threads
waiting for that mutex. Introducing this variable, the operations enter_cs and exit_cs can
be updated, as shown in Figure 16. As shown in the routine enter_cs(m), when a thread
tries to enter a CS, if the CS is currently executed by another thread (m.b=true) this thread
increases the variable m.w and waits for a notification on m.v. Otherwise, this threads
changes m.b to true and continue its execution. As shown in the routine exit_cs(m), when a
thread leaves a CS it first changes m.b to false and if there is a thread waiting for this CS
it decreases the number of the waiting threads, changes m.b to true and notifies a thread
waiting for m.v. Having this implementation, the forked thread in Figure 15 cannot enter
the critical section if the main thread is already waiting to enter. Note that this mutex is
fair under the assumption that the monitor primitives are fair, i.e. the lock and condition
variable wait queues are FIFO.

This implementation can be verified against the expected specifications, shown in Figure
17, if an obligation of m.v is transferred from the thread leaving the CS to the next thread
entering the CS. This transfer is necessary because one of the desired invariants of such
program is m.b⇒ 0 < Ot(m.v), that is if the CS is executed by any thread there exists an
obligation of m.v in the system. Since in the fair implementation of exit_cs before notifying
m.v the variable m.b is changed to true, an obligation of m.v must be loaded onto the system.
This obligation can be transferred to the notified thread, which is going to enter the CS.
Note that this transfer is sound since it is only performed when 0 < m.w, that is there is a
thread waiting for m.v which immediately receives the transferred obligation.

3.4 Fair Readers-Writers Locks
In this section we show how our extension makes it possible to verify a fair implementation
of a readers-writers lock, which is synchronized by CVs. Before that, consider a naive
implementation of a readers-writers lock (writers-preference), shown in Figure 18, which
can be verified by the Hamin et al. [15] approach. This lock consists of three variables
aw,ww, and ar, keeping track of the total number of active writers, waiting writers, and
active readers respectively, a lock l, protecting these variables from concurrent accesses, a
condition variable vw, preventing writers from writing while other threads are reading or
writing, and a condition variable vr, preventing readers from reading while there is another
thread writing or waiting to write.

However, in this implementation due to the same reason mentioned in the previous section
a writer might be starved by other writers, where for example a writer continuously releases
the writing lock and without waiting for the CV vw immediately reacquires it.

ECOOP 2019

19:20 Transferring Obligations Through Synchronizations

routine new_rdwr(){
l := new_lock();
vw := new_cvar;
vr := new_cvar;
rdwr(l:=l, vw:=vw, vr:=vr,

aw := new_int(0), ww := new_int(0),
ar := new_int(0))}

routine acquire_write(rdwr b){
acquire(b.l);
while(b.aw+b.ar>0){
b.ww := b.ww+1;
wait(b.vw, b.l);
b.ww := b.ww−1 };

b.aw := b.aw+1;
release(b.l)}

routine release_write(rdwr b){
acquire(b.l);
b.aw := b.aw−1;
notify(b.vw);
if(b.ww = 0)

notifyAll(b.vr);
release(b.l)}

routine acquire_read(rdwr b){
acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar := b.ar+1;
release(b.l)}

routine release_read(rdwr b){
acquire(b.l);
b.ar := b.ar−1;
notify(b.vw);
release(b.l)}

routine main(){
rw := new_rdwr();
fork(

while(1){
acquire_read(rw); /* reading ... */
release_read(rw)

);
while(1){

acquire_write(rw); /* writing ... */
release_write(rw)
}}

Figure 18 Readers-writers locks synchronized by condition variables.

A solution to solve this problem is that when a writer releases the writing lock, if there is
a waiting writer, in addition to notifying that waiting writer, it also increases the number
of active writers. In other words, if there is a waiting writer in the system, the number of
the active writers is increased in advance by the thread releasing the writing lock (or the
reading lock) and not by the thread acquiring the writing lock. A fair implementation of
the readers-writers lock (writers-preference) following this idea along with the details of the
specifications of each routine is shown in Figure 196. When a readers-writers lock b is created,
a permission rw(b,Ow, Or) is provided, where Ow and Or are two bags of waitable objects
whose levels are in an arbitrary client-specified range R. A thread can acquire a writing lock
of b if the levels of objects in Ow are lower than the levels of all obligations of that thread.
When that lock is acquired the objects in Ow are loaded onto the bag of the obligations of
this thread, which are discharged when this thread releases this lock. Similar to a writing
lock, a reading lock of b can be acquired if the levels of the objects in Or are lower than the
levels of the obligations of the reading thread. When this lock is acquired the objects in Or
are loaded which are discharged when this lock is released. Note that in this program one of
the desired invariants is b.ar + b.aw 6 Ot(b.vw). Accordingly, since the variable tracking the
number of active writers (aw) is increased in the thread notifying vw and not in the notified
one, it is necessary to load an obligation of vw onto the notifying thread and then transfer
this obligation to the notified thread, through the notification.

6 We inserted assert(e) commands, shorthand for while(¬e){} (loop forever if e is false), to simplify the
proof. They can be eliminated using ghost state [27]. The verification of this program without using
the assert commands can be found in [17].

J. Hamin and B. Jacobs 19:21

rw(rdwr b, bag〈waitobj〉 Ow, bag〈waitobj〉 Or) =
lock(b.l) ∗ cond(b.vr, true, {[]}) ∗ cond(b.vw, true, {[b.vw]}) ∧ I(ch.l)=linv(b) ∧
R(b.l) < R(b.vw) < R(b.vr) ∧Ow={[b.vr, b.vw]} ∧Or={[b.vw]}

linv(rdwr b) =
λWt. λOt. ∃ar, aw,ww. b.ar 7→ ar ∗ b.aw 7→ aw ∗ b.ww 7→ ww ∧ L(b.vr)=L(b.vw)=b.l ∧
0 6 ar ∧ 0 6 aw ∧ 0 6 ww ∧Wt(b.vw)=ww ∧
ar + aw 6 Ot(b.vw) ∧ (Wt(b.vw) = 0 ∨ 0 < ar + aw) ∧
aw + ww 6 Ot(b.vr) ∧ (Wt(b.vr) = 0 ∨ 0 < aw + ww)

routine new_rdwr()
req : {R ∼=< Q}
ens : {λb. ∃Ow, Or. rw(b,Ow, Or) ∧
levels(Ow) ⊆ R ∧ levels(Or) ⊆ R}
{l := new_lock();
vw := new_cvar; g_initc(vw);
vr := new_cvar; g_initc(vr);
b := rdwr(l:=l, vw:=vw, vr:=vr,

aw:=new_int(0), ww:=new_int(0),
ar:=new_int(0)); g_initl(l);

b}

routine acquire_write(rdwr b)
req : {obs(O) ∗ rw(b,Ow, Or) ∧Ow ≺ O}
ens : {obs(O]Ow) ∗ rw(b,Ow, Or)}
{acquire(b.l); g_chrg(b.vr);
if(b.aw+b.ar>0){
b.ww := b.ww+1;
wait(b.vw, b.l)
}
else{ b.aw := b.aw+1; g_chrg(b.vw)};
release(b.l)}

routine release_write(rdwr b)
req : {obs(O]Ow) ∗ rw(b,Ow, Or) ∧Ow ≺ O}
ens : {obs(O) ∗ rw(b,Ow, Or)}
{acquire(b.l);
assert(0 < b.aw);
b.aw := b.aw−1;
if(b.ww > 0){

notify(b.vw);
b.ww := b.ww−1;
b.aw := b.aw+1
}
else{ notifyAll(b.vr); g_disch(b.vw)};
g_disch(b.vr);
release(b.l)}

routine acquire_read(rdwr b)
req : {obs(O) ∗ rw(b,Ow, Or) ∧Or ≺ O}
ens : {obs(O]Or) ∗ rw(b,Ow, Or)}
{acquire(b.l);
while(b.aw+b.ww>0)

wait(b.vr, b.l);
b.ar := b.ar+1; g_chrg(b.vw);
release(b.l)}

routine release_read(rdwr b)
req : {obs(O]Or) ∗ rw(b,Ow, Or) ∧Or ≺ O}
ens : {obs(O) ∗ rw(b,Ow, Or)}
{acquire(b.l);
assert(0 < b.ar);
b.ar := b.ar−1;
if(b.ar = 0 ∧ b.ww > 0){

notify(b.vw);
b.ww := b.ww−1;
b.aw := b.aw+1
} else g_disch(b.vw);
release(b.l)}

routine main()
req : {obs({[]})}
ens : {obs({[]})}
{rw := new_rdwr();
fork(

while(1){
acquire_read(rw); /* reading ... */
release_read(rw)
}

);
while(1){

acquire_write(rw); /* writing ... */
release_write(rw)
}
}

Figure 19 Fair readers-writers locks on top of fair monitors, where R ∼=< Q indicates that R is
order-isomorphic to the rational numbers.

ECOOP 2019

19:22 Transferring Obligations Through Synchronizations

4 Related Work

Permissions

One common approach to prove safety properties of a program is assigning permissions to the
threads of that program and to make sure that each thread only performs actions for which
that thread has permissions [3]. This approach has been adopted by concurrent separation
logic [37], where a thread can access a heap location only if it owns that location. This logic
has been extended to handle dynamic thread creation [11, 19, 13], rely/guarantee [48, 8],
reentrant locking [12], and channels [18, 40].

Jung et al. [27] proposed a concurrent separation logic, namely Iris, for reasoning about
safety of concurrent programs, as the logic in logical relations, and to reason about type
systems and data abstraction, among other things. In this logic user-defined protocols on
shared state are expressed through partial commutative monoids and are enforced through
invariants. However, the Iris program logic and many other logics such as [41, 36] only
prove per-thread safety (i.e. no thread ever crashes): their adequacy theorems state that the
program does not reach a state where some thread cannot make a step. This works because
these logics do not consider blocking constructs, where a thread may legitimately be stuck
temporarily. It follows that these logics do not support programs that use primitive blocking
operations. Recently, an extension of Iris, namely Iron [1], exploits a notion of obligation
to prove absence of resource leaks, but not deadlock-freedom. The adequacy theorem of
this logic only considers the state reached by a program after it is completely finished (i.e.
all threads have reduced to a value), and it proves that in that state all resources have
been freed.

Deadlock

Several approaches to verify termination [35, 14, 43], total correctness [4], and lock-freedom
[20] of concurrent programs have been proposed. These approaches are only applicable to
non-blocking algorithms, where the suspension of one thread cannot lead to the suspension
of other threads. Consequently, they cannot be used to verify deadlock-freedom of programs
using condition variables or channels, where the suspension of a notifying/sending thread
might cause a waiting thread to be infinitely blocked. In [39] a compositional approach to
verify termination of multi-threaded programs is introduced, where rely-guarantee reasoning
is used to reason about each thread individually while there are some assertions about other
threads. In this approach a program is considered to be terminating if it does not have any
infinite computations. As a consequence, it is not applicable to programs using condition
variables because a waiting thread that is never notified cannot be considered as a terminating
thread. There are some other works on verifying deadlock-freedom and starvation-freedom
of concurrent objects with partial methods, which do not return under certain circumstances
such as acquiring a held lock [34]. In addition to locks these approaches allows to verify other
concurrent objects such as sets, stacks and queues. However, this approach is not applicable
to condition variables because of lost notifications, i.e. a notification on a condition variable
is lost if no thread is waiting for that condition variable. Note that releasing a lock, pushing
an item into stack, and enqueueing an item when there is no thread waiting for the related
concurrent object is not lost, since the next thread, which tries to acquire/pop/dequeue the
concurrent object, will not be blocked.

There are also some other approaches addressing some common synchronization bugs of
programs in the presence of condition variables. In [49], for example, an approach to identify
some potential problems of concurrent programs using condition variables is presented.

J. Hamin and B. Jacobs 19:23

However, it does not take the order of execution of theses commands into account. In other
words, it might accept an undesired execution trace where the waiting thread is scheduled
after the notifying thread, that might lead the waiting thread to be infinitely suspended. [28]
uses Petri nets to identify some common problems in multithreaded programs such as data
races, lost signals, and deadlocks. However the model introduced for condition variables in
this approach only covers the communication of two threads and it is not clear how it deals
with programs having more than two threads communicating through condition variables.
Recently, [6, 9] have introduced an approach ensuring that every thread synchronizing under
a set of condition variables eventually exits the synchronization block if that thread eventually
reaches that block. This approach succeeds in verifying one of the applications of condition
variables, namely the buffer. However, since this approach is not modular and relies on a Petri
net analysis tool to solve the termination problem, it suffers from a long verification time
when the size of the state space is increased, such that the verification of a buffer application
having 20 producer and 18 consumer threads, for example, takes more than two minutes.

There are several verification techniques and type systems to check deadlock-freedom
of programs that either synchronize via locks [10, 32, 47] or communicate via messages
[7, 30]. Kobayashi [30, 29] proposed a type system for deadlock-free processes, ensuring
that a well-typed process that is annotated with a finite capability level is deadlock-free.
He extended channel types with the notion of usages, describing how often and in which
order a channel is used for input and output. In his type system, which works in the context
of π-calculus, the send operation is synchronous; i.e. the thread sending on a channel is
suspended until the sent message is received by another thread. However, this approach and
other approaches, such as [31, 5, 38], verifying deadlock-freedom in the context of π-calculus
are not straight forwardly applicable to imperative programming languages.

Obligations

Inspired by the notion of capabilities [30, 29] and implicit dynamic frames [46, 44, 45], Leino et
al. [33] later integrated deadlock prevention into a verification system for an object-oriented
and imperative programing language. In this approach each thread trying to receive a
message from a channel must spend one credit for that channel, where a credit for a channel
is obtained if a thread is obliged to discharge an obligation for that channel. A thread can
discharge an obligation for a channel if it either sends a message on that channel or delegates
that obligation to another thread. This approach supports asynchronous send operations,
where sending on a channel does not suspend the sender thread and there might be a state
where a message is sent but not received by any thread. The notion of obligations is used in
other verification approaches, which verify deadlock-freedom of semaphores [21], monitors
[15, 16] and channels in a separation logic-based system [23, 24], and finite blocking in non-
terminating programs [2]. However, these approaches allow obligations to be transferred only
when a thread is forked. In other words, unlike permissions which can be transfered through
synchronizations, transferring obligations through synchronizations in these approaches is
forbidden. In this paper we provide two mechanisms that allow these approaches to transfer
obligations, along with permissions, through synchronization. Our approach can be used to
verify deadlock-freedom of imperative programs where some obligation must be transferred
through notifications and channels (with asynchronous send operations).

5 Conclusion

This paper introduces two techniques to transfer obligations through synchronization, while
ensuring that there is no state where the transferred obligations are lost, i.e. where they are dis-
charged from the sender thread and not loaded onto the receiver thread yet. These techniques

ECOOP 2019

19:24 Transferring Obligations Through Synchronizations

allow the obligation-based verification approaches, which modularly verify deadlock-freedom
and liveness properties of programs, to transfer obligations, along with permissions, between
threads, enabling them to verify a wider range of interesting programs, where obligations
must be transferred through synchronizations. We encoded the proposed proof rules in
the VeriFast program verifier and succeeded in verifying deadlock-freedom of a number of
interesting programs, such as some variations of client-server programs, fair readers-writers
locks and dining philosophers, which cannot be modularly verified without such transfer.
Integrating the two mechanisms introduced in this paper is an area of future work. Addition-
ally, designing a new variant of Iris for programs with primitive blocking constructs on top
of which our presented approach can be built is another important area of future work.

References
1 Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. Iron: Managing Obligations

in Higher-Order Concurrent Separation Logic. To appear in POPL 2019: ACM SIGPLAN
Symposium on Principles of Programming Languages, Lissabon, Portugal, 2019.

2 Pontus Boström and Peter Müller. Modular verification of finite blocking in non-terminating
programs, volume 37. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

3 John Boyland. Checking interference with fractional permissions. In International Static
Analysis Symposium, pages 55–72. Springer, 2003.

4 Pedro da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner, and Julian Sutherland.
Modular Termination Verification for Non-blocking Concurrency. In ESOP, pages 176–201,
2016.

5 Ornela Dardha and Simon J Gay. A new linear logic for deadlock-free session-typed processes.
In International Conference on Foundations of Software Science and Computation Structures,
pages 91–109. Springer, 2018.

6 Pedro de Carvalho Gomes, Dilian Gurov, and Marieke Huisman. Specification and Verification
of Synchronization with Condition Variables. In International Workshop on Formal Techniques
for Safety-Critical Systems, pages 3–19. Springer, 2016.

7 Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou.
Session types for object-oriented languages. In European Conference on Object-Oriented
Programming, pages 328–352. Springer, 2006.

8 Xinyu Feng. Local rely-guarantee reasoning. In ACM SIGPLAN Notices, volume 44, pages
315–327. ACM, 2009.

9 Pedro de C Gomes, Dilian Gurov, Marieke Huisman, and Cyrille Artho. Specification and
verification of synchronization with condition variables. Science of Computer Programming,
163:174–189, 2018.

10 Colin S Gordon, Michael D Ernst, and Dan Grossman. Static lock capabilities for deadlock
freedom. In Proceedings of the 8th ACM SIGPLAN workshop on Types in language design
and implementation, pages 67–78. ACM, 2012.

11 Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. Local
reasoning for storable locks and threads. In Asian Symposium on Programming Languages
And Systems, pages 19–37. Springer, 2007.

12 Christian Haack, Marieke Huisman, and Clément Hurlin. Reasoning about Java’s reentrant
locks. In Asian Symposium on Programming Languages And Systems, pages 171–187. Springer,
2008.

13 Christian Haack and Clément Hurlin. Separation logic contracts for a Java-like language with
fork/join. In International Conference on Algebraic Methodology and Software Technology,
pages 199–215. Springer, 2008.

14 Jafar Hamin and Bart Jacobs. Modular verification of termination and execution time
bounds using separation logic. In Information Reuse and Integration (IRI), 2016 IEEE 17th
International Conference on, pages 110–117. IEEE, 2016.

J. Hamin and B. Jacobs 19:25

15 Jafar Hamin and Bart Jacobs. Deadlock-Free Monitors. In European Symposium on Program-
ming, pages 415–441. Springer, 2018.

16 Jafar Hamin and Bart Jacobs. Deadlock-free monitors: extended version. TR CW712,
Department of Computer Science, KU Leuven, Belgium. Full version available at
http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW712.abs.html, 2018.

17 Jafar Hamin and Bart Jacobs. Deadlock-Free Monitors and Channels. Zenodo,
http://doi.org/10.5281/zenodo.3241454, 2019. doi:10.5281/zenodo.3241454.

18 Tony Hoare and Peter O’Hearn. Separation logic semantics for communicating processes.
Electronic Notes in Theoretical Computer Science, 212:3–25, 2008.

19 Aquinas Hobor, Andrew W Appel, and Francesco Zappa Nardelli. Oracle semantics for
concurrent separation logic. In European Symposium on Programming, pages 353–367. Springer,
2008.

20 Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving lock-
freedom. In Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM Symposium
on, pages 124–133. IEEE, 2013.

21 Bart Jacobs. Provably live exception handling. In Proceedings of the 17th Workshop on Formal
Techniques for Java-like Programs, page 7. ACM, 2015.

22 Bart Jacobs. VeriFast 18.02. Zenodo, http://doi.org/10.5281/zenodo.1182724, 2018. doi:
10.5281/zenodo.1182724.

23 Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 37. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

24 Bart Jacobs, Dragan Bosnacki, and Ruurd Kuiper. Modular termination verification of single-
threaded and multithreaded programs. ACM Transactions on Programming Languages and
Systems (TOPLAS), 40(3):12, 2018.

25 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. NASA
Formal Methods, 6617:41–55, 2011.

26 Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the VeriFast program verifier.
Programming Languages and Systems, pages 304–311, 2010.

27 Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning.
ACM SIGPLAN Notices, 50(1):637–650, 2015.

28 Krishna M Kavi, Alireza Moshtaghi, and Deng-Jyi Chen. Modeling multithreaded applications
using Petri nets. International Journal of Parallel Programming, 30(5):353–371, 2002.

29 Naoki Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122–159, 2002.

30 Naoki Kobayashi. A new type system for deadlock-free processes. In International Conference
on Concurrency Theory, pages 233–247. Springer, 2006.

31 Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks.
Information and Computation, 252:48–70, 2017.

32 Duy-Khanh Le, Wei-Ngan Chin, and Yong-Meng Teo. An expressive framework for verifying
deadlock freedom. In International Symposium on Automated Technology for Verification and
Analysis, pages 287–302. Springer, 2013.

33 K Rustan M Leino, Peter Müller, and Jan Smans. Deadlock-free channels and locks. In
European Symposium on Programming, pages 407–426. Springer, 2010.

34 Hongjin Liang and Xinyu Feng. Progress of concurrent objects with partial methods. Proceed-
ings of the ACM on Programming Languages, 2(POPL):20, 2017.

35 Hongjin Liang, Xinyu Feng, and Zhong Shao. Compositional verification of termination-
preserving refinement of concurrent programs. In Proceedings of the Joint Meeting of the

ECOOP 2019

http://dx.doi.org/10.5281/zenodo.3241454
http://dx.doi.org/10.5281/zenodo.1182724
http://dx.doi.org/10.5281/zenodo.1182724

19:26 Transferring Obligations Through Synchronizations

Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-
Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), page 65. ACM,
2014.

36 Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Communic-
ating state transition systems for fine-grained concurrent resources. In ESOP, volume 8410 of
Lecture Notes in Computer Science, pages 290–310. Springer, 2014.

37 Peter W O’Hearn. Resources, concurrency, and local reasoning. Theoretical computer science,
375(1-3):271–307, 2007.

38 Luca Padovani. Type-Based Analysis of Linear Communications. Behavioural Types: from
Theory to Tools, page 193, 2017.

39 Corneliu Popeea and Andrey Rybalchenko. Compositional Termination Proofs for Multi-
threaded Programs. In TACAS, volume 12, pages 237–251. Springer, 2012.

40 David Pym and Chris Tofts. A calculus and logic of resources and processes. Formal Aspects
of Computing, 18(4):495–517, 2006.

41 Azalea Raad, Jules Villard, and Philippa Gardner. Colosl: Concurrent local subjective logic.
In European Symposium on Programming Languages and Systems, pages 710–735. Springer,
2015.

42 John C Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on, pages 55–74. IEEE,
2002.

43 Reuben NS Rowe and James Brotherston. Automatic cyclic termination proofs for recursive
procedures in separation logic. In Proceedings of the 6th ACM SIGPLAN Conference on
Certified Programs and Proofs, pages 53–65. ACM, 2017.

44 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. In Proceedings of the
10th ECOOP Workshop on Formal Techniques for Java-like Programs, pages 1–12, 2008.

45 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In European Conference on Object-Oriented Programming, pages
148–172. Springer, 2009.

46 Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames. ACM Transactions on
Programming Languages and Systems (TOPLAS), 34(1):2, 2012.

47 Kohei Suenaga. Type-based deadlock-freedom verification for non-block-structured lock
primitives and mutable references. In Asian Symposium on Programming Languages and
Systems, pages 155–170. Springer, 2008.

48 Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and separation logic.
In International Conference on Concurrency Theory, pages 256–271. Springer, 2007.

49 Chao Wang and Kevin Hoang. Precisely Deciding Control State Reachability in Concurrent
Traces with Limited Observability. In VMCAI, pages 376–394. Springer, 2014.

A Proof of Conditional Server Channels

In this section the verification of the program shown in Figure 11 is illustrated in Figures 20
and 21.

B Proof of Dining Philosophers

Transferring obligations through notifications allows to verify some other interesting programs
such as some variants of dining philosophers, where a number of philosophers sit at a round
table, think, get hungry, and eat if their neighbors are not eating (due to the limited number
of forks). An implementation of this program is shown in Figures 227, and 23, where a

7 For simplicity, in the proof of this program we avoid writing the heap ownership permissions

J. Hamin and B. Jacobs 19:27

Mch′ ::= λm. channel(snd(m),Mch,M′ch) ∗ trandit(snd(m)) ∧ R(snd(m))=1 ∧
Mr(snd(m))={[1]}
M′ch′ ::= λm. {[snd(m)]}

Mch ::= λm. channel(snd(m),Mch′,M′ch′) ∗ (fst(m)=done ? true : trandit(snd(m))) ∧
Mr(snd(m))={[1]} ∧ ¬S(snd(m))

M′ch ::= λm. fst(m)=done ? {[]} : {[snd(m)]}

Ms ::= λm. channel(snd(m),Mch′,M′ch′) ∗ trandit(snd(m))∧Mr(snd(m))={[1]}∧¬S(snd(m))
M′s ::= λm. {[snd(m)]}

routine server(channel s){
req : {obs({[]}, {[s∞]}) ∗ channel(s,Ms,M′s) ∧Mr(s)={[1]} ∧ S(s)}
while(true){
inv : {obs({[]}, {[s∞]})}

(thr, ch′) := receive(s);
{obs({[ch′]}, {[s∞]}) ∗ channel(ch′,Mch′,M′ch′) ∗ trandit(ch′) ∧Mr(ch′)={[1]} ∧ ¬S(ch′)}
ch := new_channel();
{obs({[ch′]}, {[s∞]}) ∗ trandit(ch′) ∗ channel(ch,Mch,M′ch) ∧ R(ch)=1 ∧Mr(ch)={[1]} ∧
¬S(ch)}
g_credit(ch); g_trandit(ch);
{obs({[ch′, ch]}, {[s∞, ch]}) ∗ trandit(ch′) ∗ credit(ch) ∗ trandit(ch)}
send(ch′, (through, ch));
{obs({[]}, {[s∞, ch]}) ∗ credit(ch)}
fork(cserver(ch))
{obs({[]}, {[s∞]})} }

ens : {false}}

routine client(channel s){
req : {obs({[]}, {[]}) ∗ channel(s,Ms,M′s) ∗ trandit(s)}
ch′ := new_channel();
{obs({[]}, {[]}) ∗ trandit(s) ∗ channel(ch′,Mch′,M′ch′) ∧ R(ch′)=1 ∧Mr(ch′)={[1]} ∧ ¬S(ch′)}
g_credit(ch′); g_trandit(ch′);
{obs({[ch′]}, {[ch′]}) ∗ trandit(s) ∗ credit(ch′) ∗ trandit(ch′)}
send(s, (through, ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
(thr, ch) := receive(ch′); if(thr 6=through) abort();
{obs({[ch]}, {[]}) ∗ channel(ch,Mch,M′ch) ∗ trandit(ch) ∧ R(ch)=1 ∧Mr(ch)={[1]}}
g_credit(ch′); g_trandit(ch′);
{obs({[ch, ch′]}, {[ch′]}) ∗ trandit(ch) ∗ credit(ch′) ∗ trandit(ch′)}
send(ch, (request(), ch′));
{obs({[]}, {[ch′]}) ∗ credit(ch′)}
(res, ch1) := receive(ch′); if(res=through ∨ ch6=ch1) abort();
{obs({[ch]}, {[]}) ∗ trandit(ch)}
send(ch, (done, ch′))
ens : {obs({[]}, {[]})}}

Figure 20 Verification of the program in Figure 11 (part one of two).

ECOOP 2019

19:28 Transferring Obligations Through Synchronizations

routine main(){
req : {obs({[]}, {[]}}
s := new_channel();
{obs({[]}, {[]}) ∗ channel(s,Ms,M′s) ∧Mr(s)={[1]} ∧ S(s)}
g_trandits(s);
{obs({[]}, {[s∞]}) ∗ trandit∞(s)}
fork(
{obs({[]}, {[s∞]})}
server(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
fork(client(s));
{obs({[]}, {[]}) ∗ trandit∞(s)}
client(s)
ens : {obs({[]}, {[]})}}

Figure 21 Verification of the program in Figure 11 (part two of two).

dining_philosophers structure consists of phs, a circular doubly linked list of philosopher, size,
the size of this list, and a lock (l), where a philosopher structure consists of pre, a pointer to
the previous philosopher, next, a pointer to the next philosopher, a condition variable v, and
a state which can be Thinking, Hungry, or Eating. Calling new_dining_philosophers(size)
creates size philosophers which are initially thinking. Calling pickup(dp, i) makes the ith
philosopher in dp start eating if he/she is already hungry and none of its neighbors are eating.
Calling putdown(dp, i) makes the ith philosopher in dp stop eating if he/she is already eating,
and also makes this philosopher’s neighbors eat if they are hungry and their neighbors are
not eating.

The specification of the routine new_dining_philosophers in this figure indicates that
creating a number of dining philosophers dp produces a permission dp(dp, cvs), where cvs is a
list of condition variables associated with philosophers whose levels are assigned arbitrarily. A
philosopher can try to start eating only if the level of the CV associated with that philosopher
is lower than the levels of the obligations of the running thread. When this philosopher
starts eating the CV associated with his/her left and right neighbors are loaded onto the
bag of the obligations of the running thread. These obligations are discharged when this
philosopher stops eating.

One desired invariant in this program is that the number of obligations for a CV as-
sociated with a philosopher ph is greater than the number of his/her neighbors which
are eating, that is st(pre.state) + st(next.state) 6 Ot(ph.v), where st(Eating)=1 and
st(Thinking)=st(Hungry)=0. Since the state of a hungry philosopher ph waiting in a sus-
pended thread t is changed to Eating in a thread t′ where its neighbor stops eating, an
obligation of ph.v must be loaded onto the bag of the obligations of t′ and be transferred to
t as t′ notifies t. This requires transferring obligations through notifications which is possible
using our proposed extension. Accordingly, as shown in Figure 22, this program can be
verified if for any condition variable v of a philosopher ph, when v is notified the obligations
{[ph.pre.v, ph.next.v]} are transferred.

J. Hamin and B. Jacobs 19:29

dp(dining_philosophers dp, list〈waitobj〉 cvs) =
lock(dp.l) ∗ phs_cvs(dp.phs, dp.phs.pre, cvs) ∧
I(dp.l)=linv(dp) ∧ L(dp.l)=new_dp ∧ size(cvs)=dp.size ∧ ∀06i6size. R(rl) < R(rs[i])

phs_cvs(ph, ph′, cvs) =
ph=ph′ ? cvs=[ph.v] : ∃cvs′, cvs=[ph.v :: cvs′] ∗ phs_cvs(ph.next, ph′, cvs′)

linv(dp dp) = λWt. λOt. philosophers(dp.phs, dp.phs.pre,Wt,Ot, dp.l)

philosophers(ph, ph′,Wt,Ot, l) = philosopher(ph,Wt,Ot, l, ph.pre, ph.next) ∗
ph=ph′ ? true : philosophers(ph.next, ph′,Wt,Ot, l)

philosopher(ph,Wt,Ot, l, pre, next) = cond(ph.v, true, {[pre.v, next.v]}) ∧
pre=ph.pre ∧ next=ph.next ∧ ph 6=pre ∧ ph 6=next ∧ pre6=next ∧
next.pre=ph ∧ pre.next=ph ∧ L(ph.v)=l ∧ 0 6Wt(ph.v) ∧Wt(ph.v) 6 1 ∧
(ph.state=Hungry ∨Wt(ph.v) 6 0) ∧ (ph.state6=Hungry ∨ 0 < Wt(ph.v)) ∧
(Wt(ph.v) 6 0 ∨ 0 < st(pre.state) + st(next.state)) ∧
st(pre.state) + st(next.state) 6 Ot(ph.v)

st(state) ::= state=Eating ? 1 : 0

routine new_dining_philosophers(int size){
req : {∀06i<size. rl < rs[i] ∧ size(rs)=size ∧ 2 < size}
ens : {λdp. dp(dp, cvs) ∧ size(cvs)=size ∧ R(dp.l)=rl ∧ ∀06i<size. R(cvs[i])=rs[i]}
phs := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

ph1 := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

ph2 := philosopher(state:=new_cell(Thinking), v:=new_cvar,
pre:=new_cell(null), next:=new_cell(null));

phs.pre := ph2; phs.next := ph1;
ph1.pre := phs; ph1.next := ph2;
ph2.pre := ph1; phs.next := phs;
l := new_lock; i := 3
while(i<size){
ph:=philosopher(state:=new_cell(Thinking), v:=new_cvar, pre:=phs, next:=phs.next);
phs.next.pre := ph;
phs.next = ph;
i := i+1
};
dining_philosophers(phs:=phs, l:=l, size:=size)}

Figure 22 Dining philosophers (part one of two).

ECOOP 2019

19:30 Transferring Obligations Through Synchronizations

routine pickup(dining_philosophers dp, int i){
req : {obs(O) ∗ dp(dp, cvs) ∧ cvs[i] ≺ O ∧ 06i<size(cvs)}
ens : {obs(O]{[cvs[(i+n−1)%n], cvs[(i+1)%n]]}) ∗ dp(dp, cvs) ∧ n=size(cvs)}
acquire(dp.l);
ph := dp.phs;
j := new_int(0);
while(j < i){
ph := ph.next;
j := j+1
};
if(ph.state 6= Thinking)

abort;
ph.state := Hungry;
if(ph.next.state=Eating ∨ ph.pre.state=Eating)

wait(ph.v, dp.l)
else
ph.state := Eating;

release(dp.l)}

routine putdown(dining_philosophers dp, int i){
req : {obs(O) ∗ dp(dp, cvs) ∧ 06i<size(cvs)}
ens : {obs(O−{[cvs[(i+n−1)%n], cvs[(i+1)%n]]}) ∗ dp(dp, cvs) ∧ n=size(cvs)}
acquire(dp.l);
ph := dp.phs;
j := new_int(0);
while(j < i){
ph := ph.next;
j := j+1
};
if(ph.state 6= Eating)

abort;
ph.state := Thinking;
test_and_notify(ph.next);
test_and_notify(ph.pre);
release(dp.l)}

routine test_and_notify(philosopher ph)
{if(ph.next.state 6=Eating ∧ ph.pre.state6=Eating ∧ ph.state=Hungry){
ph.state := Eating;
notify(ph.v)
}}

Figure 23 Dining philosophers (part two of two).

J. Hamin and B. Jacobs 19:31

c ∈ Commands, e ∈ Expressions, z ∈ Z, b ∈ Booleans, x ∈ Variables
e ::= z | x | e1+e2 | (e1, e2) | fst(e) | snd(e)

| true | e1 = e2 | e1 6 e2 | ¬e
c ::= val(e) | let(x, c1, c2) | fork(c) | while(c) | if(e, c1, c2)
| new_channel(b) | send(e1, e2) | receive(e) | wait(e) | nop

Figure 24 Syntax of the programming language.

C Transferring Obligations Through Channels: Soundness Proof

In this appendix we provide a formalization and soundness proof for the approach introduced
in Section 2. However, unfortunately, there are a few technical differences between this
formalization and the one proposed in Section 2 such that in this formalization the ghost
information, such as level and transferred permissions and obligations, are associated with
channel addresses via the channel permissions rather than via global functions8. The proof
rules associated with this formalization and the verification of the program in Figure 3,
proved using these rules, are shown in Sections C.4 and C.6, respectively.

C.1 Syntax and Semantics of Programs
The syntax of our programming language is defined in Figure 24, where val(e) is a command
that simply yields the value of e as its result and has no side effects, let(x, c1, c2) is syntactic
sugar for x:=c1; c2, fork(c) creates a thread executing c, while(c) keeps executing c while c
evaluates to true, if(e, c1, c2) executes c1 if e evaluates to true and otherwise it executes c2,
send and receive are used for sending and receiving on channels, and wait, which cannot be
used by programmers, indicates that the related thread has tried to receive from an empty
channel. Additionally, instead of defining three ghost commands g_credit, g_trandit, and
g_trandits, we define a single ghost command nop which is inserted into the program for
verification purposes and has no effect on the program’s behavior. The expressions used in
the syntax of programs can be evaluated and substituted as shown in Figure 25.

The small step semantics, defined in Figure 27, relates two configurations, defined in
Figure 26. A configuration consists of a heap, which maps a channel identifier to the list
of messages of that channel; a thread table, which maps a thread identifier to the pair
command-context related to that thread; and a list of server channels.

C.2 Syntax and Semantics of Assertions
The syntax of assertions is defined in Figure 289. Note that the location of a channel ch
consists of the obligation of ch and the permissions and the obligations which are transferred
through a specific message sent on ch, denoted by M(ch) and M′(ch). Also note that the

8 The reason is to make this formalization consistent with the one in Appendix D which is machine-checked
with Coq, where ghost information is associated with lock and condition variable addresses via the
lock and cond permissions. However, we believe one way to formalize the precise approach of Section 3
would be to define assertions as functions from ghost information to separating conjunctions of chunks.
In the soundness proof, one would track these as partial functions whose domain is the set of allocated
addresses. The functions passed into the assertions would be totalizations of these partial functions. An
assertion is true if it is true for all totalizations of the functions.

9 Note that we use a shallow embedding: assertions have no variables; to model quantifications, we use
meta-level functions from values to assertions.

ECOOP 2019

19:32 Transferring Obligations Through Synchronizations

v ∈ Values ::= z | b | (v, v)
JK ∈ Expressions → Values

JzK=z
JxK=0
Je1+e2K=Je1K+Je2K
J(e1, e2)K=(Je1K, Je2K)
JtrueK=true
J(e1 = e2)K=(Je1K = Je2K)
J(e1 6 e2)K=(Je1K 6 Je2K)
J(¬e)K=(¬JeK)

Jfst(e)K =
{

Je1K if e=(e1, e2)
0 otherwise

Jsnd(e)K =
{

Je2K if e=(e1, e2)
0 otherwise

z[v/x] = z

x[v/x′] = x if x 6= x′

x[v/x] = v

(e1+e2)[v/x] = e1[v/x]+e2[v/x]
(e1, e2)[v/x] = (e1[v/x], e2[v/x])
true[v/x] = true
(e1 = e2)[v/x] = (e1[v/x] = e2[v/x])
(e1 6 e2)[v/x] = (e1[v/x] 6 e2[v/x])
(¬e)[v/x] = (¬e[v/x])
fst(e)[v/x] = fst(e[v/x])
snd(e)[v/x] = snd(e[v/x])

val(e)[v/x] = val(e[v/x])
let(x, c1, c2)[v/x] = let(x, c1, c2)
let(x, c1, c2)[v/x′] = let(x, c1[v/x′], c2[v/x′]) if x 6= x′

fork(c)[v/x] = fork(c[v/x])
while(c)[v/x] = while(c[v/x])
if(e, c1, c2)[v/x] = if(e[v/x], c1[v/x], c2[v/x])
new_channel(b)[v/x] = new_channel(b)
send(e1, e2)[v/x] = send(e1[v/x], e2[v/x])
receive(e)[v/x] = receive(e[v/x])
nop[v/x] = nop

Figure 25 Evaluation of expressions and substitution of expressions and commands.

J. Hamin and B. Jacobs 19:33

m ∈ Messages = Values
Addresses = Z
ThreadIds = Z
h ∈ Heaps = Addresses ⇀ Lists(Messages)
ξ ∈ Contexts ::= done | let′(x, c, ξ) | while′(c, ξ)
θ ∈ ThreadConfigurations ::= (c; ξ)
t ∈ ThreadTables = ThreadIds ⇀ ThreadConfigurations
s ∈ ServerChannelsSets = Sets(Addresses)
κ ∈ Configurations = Heaps × ThreadTables × ServerChannelsSets

Figure 26 Configurations.

(t[id:=new_channel(b); ξ], h[z:=∅], s) (t[id:=val(z); ξ], h[z:=[]], b=true ? s∪{z} : s)
(t[id:=send(e1, e2); ξ], h[Je1K:=M], s) (t[id:=tt; ξ], h[Je1K:=M ·[Je2K]], s)
(t[id:=receive(e); ξ], h[JeK:=[m]·M], s) (t[id:=val(m); ξ], h[JeK:=M], s)
(t[id:=receive(e); ξ], h[JeK:=[]], s) (t[id:=wait(e); ξ], h[JeK:=[]], s)
(t[id:=wait(e); ξ], h[JeK:=[m]·M], s) (t[id:=val(m); ξ], h[JeK:=M], s)
(t[id:=fork(c); ξ, id′:=∅], h, s) (t[id:=tt; ξ, id′:=c; done], h, s)
(t[id:=let(x, c1, c2); ξ], h, s) (t[id:=c1; let′(x, c2, ξ)], h, s)
(t[id:=val(e); let′(x, c, ξ)], h, s) (t[id:=c[JeK/x]; ξ], h, s)
(t[id:=val(e); done], h, s) (t[id:=∅], h, s)
(t[id:=if(e, c1, c2); ξ], h, s) (t[id:=c1; ξ], h, s) if JeK = true
(t[id:=if(e, c1, c2); ξ], h, s) (t[id:=c2; ξ], h, s) if JeK 6= true
(t[id:=while(c); ξ], h, s) (t[id:=c; while′(c, ξ)], h, s)
(t[id:=val(e); while′(c, ξ)], h, s) (t[id:=c; while′(c, ξ)], h, s) if JeK = true
(t[id:=val(e); while′(c, ξ)], h, s) (t[id:=tt; ξ], h, s) if JeK 6= true
(t[id:=nop; ξ], h, s) (t[id:=tt; ξ], h, s)

Figure 27 Semantics of programs, where tt stands for val(0), and [m] represents a list with one
element m, and M1·M2 appends two lists M1 and M2.

ECOOP 2019

19:34 Transferring Obligations Through Synchronizations

n ∈ N
NF ::= n | ∞
Bags(A) = A→ NF
Indexes = Z
Arguments = Z
r ∈ Levels = R
o ∈ Obligations = Addresses × Levels × Bags(Levels)× Booleans
l ∈ Locations =

Obligations × (Indexes × Lists(Arguments)),Messages → Bags(Obligations)
O, I ∈ Bags(Obligations)
b ∈ Booleans
v̂ ∈ AValues ::= z | r | b | l | o | O
α ∈ AValues → Assertions
a ∈ Assertions ::= channel(l) | credit(z) | trandit(z) | trandit∞(z) | obs(O, I)

| b | a1 ∧ a2 | a1 ∨ a2 | a1 ∗ a2 | a1 −∗ a2 | ∀α | ∃α

pt : PredicateTables = Indexes → Lists(Arguments)→ Messages → Assertions
O : Locations → Obligations , where O((A,R,Mr, S),M,M ′) = (A,R,Mr, S)
A : Locations → Addresses , where A((A,R,Mr, S),M,M ′) = A

R : Locations → Levels , where R((A,R,Mr, S),M,M ′) = R

Mr : Locations → Bags(Levels) , where Mr((A,R,Mr, S),M,M ′) = Mr

S : Locations → Booleans , where S((A,R,Mr, S),M,M ′) = S

M : Locations → Messages → Assertions
where M((A,R,Mr, S), (M1,M2),M ′) = pt(M1,M2)

M′ : Locations → Messages → Bags(Obligations) , where M′((A,R,Mr, S),M,M ′) = M ′

Ro : Obligations → Levels , where Ro(A,R,Mr, S) = R

Figure 28 Syntax of assertions.

J. Hamin and B. Jacobs 19:35

p ∈ PermissionHeaps = Locations ⇀ {channel}
Option(A) ::= s | ∅ , where s ∈ A
Õ, Ĩ ∈ Option(Bags(Obligations))
C, T ∈ Bags(Addresses)

p, Õ, Ĩ, C, T |= channel(l) ⇔ p(l) = channel
p, Õ, Ĩ, C, T |= credit(z) ⇔ 0 < C(z)
p, Õ, Ĩ, C, T |= trandit(z) ⇔ 0 < T (z)
p, Õ, Ĩ, C, T |= trandit∞(z) ⇔ T (z) =∞
p, Õ, Ĩ, C, T |= obs(O, I) ⇔ Õ = O ∧ Ĩ = I

p, Õ, Ĩ, C, T |= b ⇔ b = true
p, Õ, Ĩ, C, T |= a1 ∧ a2 ⇔ p, Õ, Ĩ, C, T |= a1 ∧ p, Õ, Ĩ, C, T |= a2
p, Õ, Ĩ, C, T |= a1 ∨ a2 ⇔ p, Õ, Ĩ, C, T |= a1 ∨ p, Õ, Ĩ, C, T |= a2
p, Õ, Ĩ, C, T |= a1 ∗ a2 ⇔ ∃p1, p2, Õ1, Õ2, Ĩ1, Ĩ2, C1, C2, T1, T2.

p=p1]p2 ∧ Õ=Õ1]̃Õ2 ∧ Ĩ=Ĩ1]̃Ĩ2 ∧ C=C1]C2 ∧ T=T1]T2 ∧
p1, Õ1, Ĩ1, C1, T1 |= a1 ∧ p2, Õ2, Ĩ2, C2, T2 |= a2

p, Õ, Ĩ, C, T |= a1 −∗ a2 ⇔ ∀p1, Õ1, Ĩ1, C1, T1. p1, Õ1, Ĩ1, C1, T1 |= a1 ∧
Õ ⊥ Õ1 ∧ Ĩ ⊥ Ĩ1 ⇒ (p]p1), (Õ]̃Õ1), (Ĩ]̃Ĩ1), (C]C1), (T]T1) |= a2

p, Õ, Ĩ, C, T |= ∀α ⇔ ∀v̂∈AValues. p, Õ, Ĩ, C, T |= α(v̂)
p, Õ, Ĩ, C, T |= ∃α ⇔ ∃v̂∈AValues. p, Õ, Ĩ, C, T |= α(v̂)

a1 ` a2 ⇔ (∀p, Õ, Ĩ, C, T. p, Õ, Ĩ, C, T |= a1 ⇒ p, Õ, Ĩ, C, T |= a2)

where for any p1, p2 ∈ A ⇀ B and Õ1, Õ2 ∈ Option(Bags(A)) and B1, B2 ∈ Bags(A)

Õ1 ⊥ Õ2 ⇔ Õ1 = ∅ ∨ Õ2 = ∅

p1] p2 = λv.

{
p1(v) if p2(v)=∅
p2(v) otherwise

Õ1]̃Õ2 =

Õ1 if Õ2=∅
Õ2 if Õ1=∅
undefined otherwise

B1]B2 = λv.

{
∞ if B1(v)=∞ or B2(v)=∞
B1(v) +B2(v) otherwise

Figure 29 Satisfaction relation.

ECOOP 2019

19:36 Transferring Obligations Through Synchronizations

permissions which are transferred through a specific message sent on ch, denoted by M(ch),
are specified through an index (as well as the required arguments) pointing to a table in
which each element is a function that given a list of arguments and a message returns an
assertion. This makes it possible for the predicates specifying these permissions to recursively
refer to themselves or to each other, as in Figure 2010. The obligation of a location ch,
denoted by O(ch), consists of the address of that location, denoted by A(ch), as well as other
related information such as the level of ch, denoted by R(ch); the bag of the levels of the
obligations which are possibly imported by ch, denoted by Mr(ch); and whether ch is a server
channel or not, denoted by S(ch).

The proposed assertions describe some ghost resources, namely p, Õ, Ĩ, C, T , that keep
track of allocated channels, and the current thread’s obligations, importers, credits, and
trandits, respectively, shown in Figure 29.

C.3 Weakest Precondition of Commands
The weakest precondition of a command c for n>0 steps w.r.t. a postcondition Q (with a
given predicate table, specified by pt), denoted by wpn,pt(c,Q) is defined in Figure 30. Note
that wp(c,Q)0,pt = true. Also note that for the sake of simplicity the index pt is elided.
Having this definition, we define the weakest precondition of a context and the weakest
precondition of a command-context as shown in Definitions 1 and 2. Having these definitions,
we can prove some auxiliary lemmas, shown in Lemmas 4, 5, 6, and 7, which are used to
prove Theorem 13.

I Definition 1 (Weakest Precondition of a Context).

wpxn(ξ) =

λ_. obs({[]}, {[]}) if ξ=done
λv. wpn(c[v/x],wpxn(ξ′)) if ξ=let′(x, c, ξ′)
λv. v 6= true ? wpn(tt,wpxn(ξ′)) : wpn(c,wpxn−1(ξ)) if ξ=while′(c, ξ′)

I Definition 2 (Weakest Precondition of a command-context).

wpcxn(c, ξ) = wpn(c,wpxn(ξ))

I Lemma 3 (Weakening Postcondition).

∀n, c,Q,Q′, p, Õ, Ĩ, C, T. p, Õ, Ĩ, C, T |= wpn(c,Q) ∧ (∀z. Q(z) ` Q′(z))⇒
∀n′6n. p, Õ, Ĩ, C, T |= wpn′(c,Q′)

Proof. By induction on n and case analysis of c. J

I Lemma 4 (Weakest Precondition of new_channel).

∀b, ξ, p, O, I, C, T.
p,O, I, C, T |= wpcxn(new_channel(b), ξ)⇒ ∀z.(∀l. A(l) = z ⇒ p(l) = ∅)⇒
∃r,Mr,M,M ′, ch. p[ch:=channel], O, I, C, T |= wpcxn(val(z), ξ) ∧
A(ch) = z ∧ R(ch)=r ∧Mr(ch)=Mr ∧M(ch)=M ∧M′(ch)=M ′ ∧ S(ch)=b

10An alternative approach is to use a step-indexed domain of assertions, as in Iris [27]. There, I Assertions
could be used instead of Indexes × Lists(Arguments), where I is Iris’s guard for guarded recursive
definitions.

J. Hamin and B. Jacobs 19:37

wp ∈WeakestPreconditions =
Commands → (Values → Assertions)→ N→ PredicateTables → Assertions

levels(O) = {[Ro(o) | o ∈ O]}
o ≺′ R⇔ ∀r∈R. Ro(o) < r

o ≺ O ⇔ o ≺′ levels(O)
o ≺r I ⇔ ∀o′∈I. o=o′ ∨ o ≺′ Mr(o′)

wpn(val(e), Q) = Q(JeK)
wpn(new_channel(b), Q) = ∀z. ∃r,Mr,M,M ′. channel((z, r,Mr, b),M,M ′) −∗ Q(z)
wpn(send(e1, e2)) = ∃O, I, ch,m. (obs(O, I) ∗ channel(ch) ∗M(ch)(m) ∗

(Mr(ch)={[]} ∨ trandit(A(ch))) ∧ levels(M′(ch)(m))⊆Mr(ch) ∧ A(ch) = Je1K ∧m = Je2K)
∗ ((obs(O−{[O(ch)]}−M′(ch)(m), I) ∗ channel(ch)) −∗ Q(tt))

wpn(receive(e)) = ∃O, I, ch. (obs(O, I) ∗ channel(ch) ∗ ((S(ch) ∨ credit(A(ch))) ∧
O(ch)≺O ∧ O(ch)≺rI ∧ (¬S(ch) ∨ (O={[]} ∧ ∀o∈I. o=O(ch))) ∧ A(ch) = JeK)) ∗
∀m. ((obs(O]M′(ch)(m), I−{[O(ch)]}) ∗M(ch)(m)) −∗ Q(m))

wpn(wait(e)) = wpn(receive(e))
wpn(fork(c), Q) = ∃O1, O2, I1, I2. obs(O1]O2, I1]I2) ∗ (obs(O1, I1) −∗ Q(tt)) ∗

(obs(O2, I2) −∗ wpn−1(c, λ_. obs({[]}, {[]})))
wpn(if(e, c1, c2), Q) = (JeK = true) ? wpn−1(c1, Q) : wpn−1(c2, Q)
wpn(while(c), Q) = wpn−1(c, (λvl. vl 6=true ? Q(tt) : wpn−1(while(c), Q)))
wpn(nop) =
as g_credit

(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗
((obs(O]{[O(ch)]}, I) ∗ channel(ch) ∗ credit(A(ch))) −∗ Q(tt))) ∨

as g_trandit
(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗

((obs(O, I]{[O(ch)]}) ∗ channel(ch) ∗ trandit(A(ch))) −∗ Q(tt))) ∨
as g_trandits

(∃O, I, ch. obs(O, I) ∗ channel(ch) ∗
((obs(O, I](λo. o=O(ch) ?∞ : 0)) ∗ channel(ch) ∗ trandit∞(A(ch))) −∗ Q(tt)))

Figure 30 Weakest precondition, where tt stands for 0.

ECOOP 2019

19:38 Transferring Obligations Through Synchronizations

I Lemma 5 (Weakest Precondition of send).

∀n, e1, e2, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(send(e1, e2), ξ)⇒
∃p1, p2, C1, C2, T1, T2, Te, ch,m. p = p1]p2 ∧ C = C1]C2 ∧ T = T1]T2 ∧ Te = T2(Je1K)
∧ A(ch) = Je1K ∧m = Je2K ∧ (Mr(ch) = {[]} ∨ 0 < Te) ∧ levels(M′(ch)(m)) ⊆ Mr(ch) ∧
p2(ch) = channel ∧
p1,∅,∅, C1, T1 |= M(ch)(m) ∧
(Mr(ch) = {[]} ⇒ p2, O−{[O(ch)]}−M′(ch)(m), I, C2, T2 |= wpcxn(tt, ξ)) ∧
(Mr(ch) 6= {[]} ⇒ p2, O−{[O(ch)]}−M′(ch)(m), I, C2, T2[Je1K:=Te−1] |= wpcxn(tt, ξ))

I Lemma 6 (Weakest Precondition of receive).

∀n, e, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(receive(e), ξ)⇒
∃ch. p(ch) = channel ∧ (S(ch) = true ∨ 0 < C(JeK)) ∧ O(ch) ≺ O ∧ O(ch) ≺r I ∧
(¬S(ch) ∨ (O = {[]} ∧ ∀o ∈ I. o = O(ch))) ∧ A(e) = JchK ∧
∀m, p1, C1, T1. p1,∅,∅, C1, T1 |= M(ch)(m)⇒
p]p1, O]M′(ch)(m), I−{[O(ch)]}, C[JeK:=C(JeK)−1]]C1, T]T1 |= wpcxn(val(m), ξ)

I Lemma 7 (Weakest Precondition of fork).

∀n, c, ξ, p, O, I, C, T. p,O, I, C, T |= wpcxn(fork(c), ξ)⇒
∃p1, p2, O1, O2, I1, I2, C1, C2, T1, T2.

p=p1]p2 ∧O=O1]O2 ∧ I=I1]I2 ∧ C=C1]C2 ∧ T=T1]T2 ∧
p1, O1, I1, C1, T1 |= wpcxn(tt, ξ) ∧
p2, O2, I2, C2, T2 |= wpn−1(c, λ_.obs({[]}, {[]}))

C.4 Correctness of Commands
We define correctness of commands, as shown in Definition 8, ensuring that each proposed
proof rule, where correctpt(P , c,Q) is abbreviated as {P} c {Q}, respects the definition of
the weakest precondition. Having this definition we prove the proposed proof rules, ensuring
deadlock freedom of importer channels, as well as some other necessary proof rules shown in
Theorems 9, 10, and 11.

I Definition 8 (Correctness of Commands). A command is correct w.r.t a precondition P

and a postcondition Q if and only if P implies the weakest precondition of that command
w.r.t Q.

correctpt(P , c,Q)⇔ ∀n. P ⇒ wpn,pt(c,Q)

I Theorem 9 (Rule Sequential Composition).

correct(P , c1, Q) ∧ (∀z. correct(Q(z), c2[z/x], R))⇒ correct(P , let(x, c1, c2), R)

I Theorem 10 (Rule Consequence).

correct(P , c,Q) ∧ (P ′ ` P) ∧ (∀z. Q(z) ` Q′(z))⇒ correct(P ′, c,Q′)

I Theorem 11 (Rule Frame).

correct(P , c,Q)⇒ correct(P ∗ F , c, λz. Q(z) ∗ F)

As previously mentioned, since in this formalization ghost information is associated with
channel addresses via the channel permissions rather than via global functions, we provide a
new version of the proof rules, proposed in Section 2, associated with this formalization as
shown in Figure 31.

J. Hamin and B. Jacobs 19:39

NewChannel
{true} new_channel {λa. channel((a, r,R, b), (Mindex,Margs),M ′)}

Send
{obs(O, I) ∗ channel(ch) ∗M(ch)(m) ∗ (Mr(ch)={[]} ∨ trandit(a)) ∧

levels(M′(ch)(m)) ⊆ Mr(ch) ∧ A(ch) = a} send(a,m)
{λ_. obs(O−{[O(ch)]}−M′(ch)(m), I) ∗ channel(ch)}

Receive
{obs(O, I) ∗ channel(ch) ∗ (S(ch) ∨ credit(a)) ∧ O(ch) ≺ O ∧ O(ch) ≺r I ∧

(¬S(ch) ∨ (O={[]} ∧ ∀o∈I. o=O(ch))) ∧ A(ch) = a} receive(a)
{λm. obs(O]M′(ch)(m), I−{[O(ch)]}) ∗ channel(ch) ∗M(ch)(m)}

Credit
{obs(O) ∗ channel(ch)} nop {λ_. obs(O]{[O(ch)]}) ∗ channel(ch) ∗ credit(A(ch))}

Trandit
{obs(O, I) ∗ channel(ch)} nop {λ_. obs(O, I]{[O(ch)]}) ∗ channel(ch) ∗ trandit(A(ch))}

Trandits
{obs(O, I) ∗ channel(ch)} nop {λ_. obs(O, I]{[O(ch)∞]}) ∗ channel(ch) ∗ trandit∞(A(ch))}

Figure 31 The proof rules ensuring deadlock-freedom of importer channels, where ghost informa-
tion is associated with channel addresses via the channel permissions.

C.5 Validity of a Configuration
We define validity of a configuration, shown in Definition 12, and prove that 1) starting
from a valid configuration, all the subsequent configurations of the execution are also valid
(Theorem 13), 2) a valid configuration is not deadlocked (Theorem 14), and 3) if a program
c is verified by the proposed proof rules, where the verification starts from empty bags of
obligations and importers and ends with such bags too, then the initial configuration, where
the heap is empty, denoted by 0=λ_.∅, and there is only one thread with the command
c (and a context done), and the list of server channels is empty, is a valid configuration
(Theorem 16).

I Definition 12 (Validity of a Configuration). A configuration (t, h, s) is valid for n steps,
denoted by validn(t, h, s), if there exists a set of augmented threads A, consisting of the
identifier (id), the program (c), the context (ξ), the permission heap (p), the obligations (O),
the importers (I), the credits (C), and the trandits (T) associated with each thread such that
all of the following conditions hold:
1. ∀id, c, ξ. t(id) = (c; ξ)⇔ ∃p,O, I, C, T. (id, c, ξ, p, O, I, C, T) ∈ A
2. ∀(id1, c1, ξ1, p1, O1, I1, C1, T1) ∈ A, (id2, c2, ξ2, p2, O2, I2, C2, T2) ∈ A. id1 = id2 ⇒

(id1, c1, ξ1, p1, O1, I1, C1, T1) = (id2, c2, ξ2, p2, O2, I2, C2, T2)
3. ∀l1, l2. Pt(l1) 6= ∅ ∧ Pt(l2) 6= ∅ ∧ A(l1) = A(l1)⇒ l1 = l2

4. ∀l. Pt(l) 6= ∅⇒ h(A(l)) 6= ∅ and ∀z. (∀l. A(l) = z ⇒ Pt(l) = ∅)⇒ h(z) = ∅
5. ∀ch. Pt(ch)=channel⇒

a. Mr(ch) 6= {[]} ⇒ Tt(A(ch)) + sizeh(ch) 6 It(ch) ∧
b. ∀m ∈ queueh(ch). levels(M′(ch)(m)) ⊆ Mr(ch) ∧

ECOOP 2019

19:40 Transferring Obligations Through Synchronizations

c. S(ch) = false⇒
Ct(A(ch))6Ot(ch)+sizeh(ch)+

∑
ch′ where Pt(ch′)=channel

∑
m∈queueh(ch′) M′(ch′)(m)(ch)

6. ∀(id, c, ξ, p, O, I, C, T) ∈ A. p,O, I, C, T |= wpcxn(c, ξ)
7. ∀z ∈ s. ∃ch. Pt(ch) = channel ∧ S(ch) = true ∧ A(ch) = z

8. ∀ch. Pt(ch) = channel ∧ S(ch) = true⇒ A(ch) ∈ s
where

sizeh(ch) returns the number of the messages in the channel ch, i.e. |h(A(ch))|
queueh(ch) returns the messages in the channel ch, i.e. h(A(ch))
levels(O) returns the levels of the obligations in O, i.e. {[r | (a, r) ∈ O]}
Pt =]

(id,c,ξ,p,O,I,C,T)∈A
p and Wt =]

(id,wait(l),ξ,p,O,I,C,T)∈A
{[l]}

Ct =]
(id,c,ξ,p,O,I,C,T)∈A

C and Ot =]
(id,c,ξ,p,O,I,C,T)∈A

O

Tt =]
(id,c,ξ,p,O,I,C,T)∈A

T and It =]
(id,c,ξ,p,O,I,C,T)∈A

I

I Theorem 13 (Small Steps Preserve Validity of Configurations). Each step of the execution
preserves validity of configurations.

(t, h, s) (t′, h′, s′) ∧ validn+1(t, h, s)⇒ validn(t′, h′, s′)

Proof. By case analysis of the small step relation .
Case (t[id:=new_channel(b); ξ], h[z:=∅], s) (t[id:=val(z); ξ], h[z:=[]], b=true ? s∪{z} : s):
By valid(t[id:=new_channel(b); ξ], h[z:=∅], s) we have an augmented thread set A consisting
of an element (id, new_channel(b), ξ, p, O, I, C, T) which satisfies all the conditions in the
definition of validity of configurations, including p,O, I, C, T |= wpcx(new_channel(b), ξ).
valid(t[id:=val(z); ξ], h[ch:=[]], b=true ? s∪{z} : s) holds because by Lemma 4 there exists an
augmented thread set A′=A−(id, new_channel(b), ξ, p, O, I, C, T)∪(id, val(z), ξ, p[l:=channel]
, O, I, C, T) which satisfies all the conditions in the definition of validity of configurations.

Case (t[id:=send(e1, e2); ξ], h[JchK:=M], s) (t[id:=tt; ξ], h[Je1K:=M.[Je2K]], s):
By valid(t[id:=send(e1, e2); ξ], h[JchK:=M], s) we have an augmented thread set A consisting of
an element (id, send(e1, e2), ξ, p, O, I, C, T) which satisfies all the conditions in the definition
of validity of configurations, including p,O, I, C, T |= wpcx(send(e1, e2), ξ). valid(t[id:=tt; ξ],
h[Je1K:=M.[Je2K]], s) holds because by Lemma 5 there exists an augmented thread set
A′=A−(id, send(e1, e2), ξ, p, O′, I ′, C, T)∪ (id, tt, ξ, p2, O]M′(ch)(m), I−{[ch]}, C2, T2) which
satisfies all the conditions in the definition of validity of configurations.

Case (t[id:=receive(e); ξ], h[JeK:=[m].M], s) (t[id:=val(m); ξ], h[JeK:=M], s):
By valid(t[id:=receive(e); ξ], h[JeK:=[m].M], s) we have an augmented thread set A consisting
of an element (id, receive(e), ξ, p, O, I, C, T) which satisfies all the conditions in the definition of
validity of configurations, including p,O, I, C, T |= wpcx(receive(e), ξ). valid(t[id:=val(m); ξ],
h[JeK:=M], s) holds because by Lemma 6 there exists an augmented thread set A′=A−(id,
receive(e), ξ, p, O, I, C, T)∪(id, val(m), ξ, p2, O]M′(ch)(m), I−{[ch]}, C2, T2) which satisfies all
the conditions in the definition of validity of configurations.

Case (t[id:=fork(c); ξ, id′:=∅], h, s) (t[id:=val(tt); ξ, id′:=c; done], h, s):
By validn(t[id:=fork(c); ξ, id′:=∅]; ξ, h, s) we have an augmented thread set A consisting of an
element (id, fork(c), ξ, p, O, I, C, T) which satisfies all the conditions in the definition of valid-
ity of configurations, including p,O, I, C, T |= wpcxn(fork(c), ξ). valid(t[id:=val(tt); ξ, id′:=c;
done], h, s) holds because by Lemma 7 there exists an augmented thread set A′=A−(id, fork(c)
, ξ, p, O, I, C, T)∪(id, tt, ξ, p1, O1, I1, C1, T1)∪(id′, c, done, p2, O2, I2, C2, T2) which satisfies all
the conditions in the definition of validity of configurations.

J. Hamin and B. Jacobs 19:41

Case (t[id:=let(x, c1, c2); ξ], h, s) (t[id:=c1; let′(x, c2, ξ)], h, s):
By validn(t[id:=let(x, c1, c2); ξ], h) we have an augmented thread set A consisting of an element
(id, let(x, c1, c2), ξ, p, O, g) which satisfies all the conditions in the definition of validity of con-
figurations, including p,O, I, C, T |= wpcxn(let(x, c1, c2), ξ). Since wpcxn(let(x, c1, c2), ξ) =
wpn−1(c1, λz. wpn−1(c2[z/x], Q)), we have p,O, I, C, T |= wpn−1(c1, λz. wpn−1(c2[z/x], Q)).
Consequently valid(t[id:=c1; let′(x, c2, ξ)], h, s) holds because there exists an augmented thread
set A′=A−(id, let(x, c1, c2), ξ, p, O, I, C, T) ∪ (id, c1, let′(x, c2, ξ), p, O, I, C, T) which satisfies
all the conditions in the definition of validity of configurations. The rest of the cases can be
proved similarly. J

I Theorem 14 (A Valid Configuration Is Not Deadlocked). If a valid configuration has some
threads then either all threads in this configuration are waiting for some server channels, or
there exists a thread in this configuration which is not waiting for an empty channel.

validn(t, h, s) ∧ ∃id. t(id) 6= ∅⇒ NotDeadlock(t, h, s)

where NotDeadlock(t, h, s)⇔ AllWaitingToServe(t, s) ∨ ∃id′. ¬is_waiting(fst(t(id′)), h), where
AllWaitingToServe(t, s)⇔ ∀id. t(id) 6= ∅⇒ ∃e. fst(t(id)) = wait(e) ∧ JeK ∈ s
is_waiting(c, h)⇔ ∃e. c = wait(e) ∧ h(JeK) = [].

Proof. By contradiction; we assume that all threads in t are waiting for some empty channels
where some of these channels are not server channels, i.e. ∀id. ∃e. fst(t(id))=wait(e) ∧
h(e)=[] ∧ ∃id′, e′. fst(t(id′))=wait(e′) ∧ Je′K /∈ s. Since (t, h, s) is a valid configuration and all
threads in this configuration are waiting for a channel, there exists a set of valid augmented
threads A from which we produce a valid bag G = valid_bag(A), where valid_bag maps
any element (id,wait(e), ξ, p, O, I, C, T) ∈ A to an element (JeK,Addresses(O),Addresses(I))
where Addresses(O) = {[A(o) | o ∈ O]}. By Lemma 15, we have G={[]}, implying A={},
implying t=0 which contradicts the hypothesis of the theorem.

Note that in the definition of validity of a configuration we also keep track of all locations
whose addresses are allocated, which makes it possible to provide the functions R,Mr, and
S, mapping channel addresses to their ghost information, for Lemma 15. Additionally, the
hypotheses H2, H3, H4, and H5 ∨ H6 in Lemma 15 are met as follows. For each element
(id,wait(e), ξ, p, O, I, C, T) ∈ A we have p,O, I, C, T |= wpcx(wait(e), ξ), which implies 0 <
C(JeK) and there exists a channel ch with address JeK such that ch ≺ O (which implies H2)
and ch ≺r I (which implies H3), and S(ch) = true ⇒ O = {[]} ∧ ∀o1.0 < I(o1) ⇒ o1 = ch

(which implies H4). Additionally, by 0 < C(JeK) we have 0 < Ct(JeK), which (by 4.c in
validity of configurations) implies if S(ch) = false either 1) 0 < Ot(ch) (which implies H5), or
2) there exists a message m in a channel ch′ through which an obligation of ch is transferred,
i.e. 0 < size(ch′) and m ∈ queueh(ch′) and 0<M′(ch′)(m)(ch). By m ∈ queueh(ch′) and 4.b
we have levels(M′(ch′)(m)) ⊆ Mr(ch′), which by {[ch]}∈M′(ch′)(m) implies R(ch) ∈ Mr(ch′).
Additionally, by Mr(ch′) 6= {[]}, and 0 < size(ch′), and 4.a we have 0 < It(ch′) (which
implies H6). J

Lemma 15 ensures that in any state of the execution if all the desired invariants are
respected then it is impossible that all threads of the program are waiting for some empty
channels where some of these channels are not server channels. In this lemma G is a bag of
waitable object-obligations-importers triples such that each element t of G is associated with
a thread in a state of the execution, where the first element of t is associated with the address
of the object for which t is waiting, the second element is associated with the addresses of
obligations of t, and the third element is associated with the addresses of importers of t.

ECOOP 2019

19:42 Transferring Obligations Through Synchronizations

I Lemma 15 (A Valid Bag of Augmented Threads Is Not Deadlocked).

∀ G : Bags(Addresses × Bags(Addresses)× Bags(Obligations)),
R : Addresses → Levels,
Mr : Addresses → Bags(Levels),
S : Addresses → Booleans.

H1 ∧ ∀(o,O, I) ∈ G. H2 ∧H3 ∧H4 ∧ (H5 ∨H6)⇒ G = {[]}

where
H1 : ∃(o,O, I) ∈ G. S(o) = false
H2 : o ≺ O
H3 : o ≺r I
H4 : S(o) = true⇒ O = {[]} ∧ ∀o1. 0 < I(o1)⇒ o1 = o

H5 : S(o) = false⇒ 0 < Ot(o)
H6 : S(o) = false⇒ ∃o1. R(o) ∈ Mr(o1) ∧Wt(o1) = 0 ∧ 0 < It(o1)
where Wt =]

(o,O,I)∈G
{[o]} and Ot =]

(o,O,I)∈G
O and It =]

(o,O,I)∈G
I

Proof. By H1 we know ∃(om, O1, I1) ∈ G where S(om) = false and ∀(o,O, I) ∈ G. S(o) =
false ⇒ R(om) 6 R(o). By (H5 ∨ H6) there are two cases: 1) ∃(o2, {[om]}]O2, I2) ∈ G,
or 2) ∃(o3, O3, {[o1]}]I3) ∈ G. R(om) ∈ Mr(o1) ∧Wt(o1) = 0. In the first case by H4 we
have S(o2) = false, which implies R(om) 6 R(o2), that contradicts the hypothesis H2, i.e
o2 ≺ {[om]}]O2. In the second case by Wt(o1) = 0 we have o1 6= o3 (because 0 < Wt(o3)), and
consequently by H4 we have S(o3) = false, which implies R(om) 6 R(o3), that contradicts
the hypothesis H3, i.e. o3 ≺r {[o1]}]I3 (because R(om) ∈Mr(o1)). J

I Theorem 16 (The Initial Configuration Is Valid).

correct(obs({[]}, {[]}), c, λ_.obs({[]}, {[]}))⇒ ∀n, id. validn(0[id:=c; done],0, [])

Proof. The goal is achieved because there exists an augmented thread set A=[(id, c, done,0, 0
, 0 , 0 , 0)], such that all the conditions in the definition of validity of configurations are met,
where 0 = λ_.∅ and 0 = λ_.0. J

C.6 An Example Proof

In this section we show how the program in Figure 3 can be verified using the proof rules in
Figure 31, as shown in Figure 32.

D Transferring Obligations Through Notifications: Soundness Proof

In this appendix we provide a formalization and soundness proof, machine-checked with
Coq11, for the approach introduced in Section 3. However, unfortunately, there are a few
technical differences between this formalization and the system of Section 3 such that in this
formalization the ghost information, such as level and transferred permissions and obligations,
are associated with lock and condition variable addresses via the lock and cond permissions

11The soundness proof of the second mechanism, machine-checked in Coq, can be found in [17].

J. Hamin and B. Jacobs 19:43

ob(a) ::= (a, 1, {[1]}, false)
ob′(a) ::= (a, 1, {[]}, false)
loc(a) ::= (ob(a), (Mch, []), λm. {[ob′(snd(m))]})
loc′(a) ::= (ob′(a), (Mch′, []), λ_. {[]})
pt(Mch, args) ::= λm. channel(loc′(snd(m)))
pt(Mch′, args) ::= λm. true

routine server(channel a){
req : {obs({[]}, {[ob(a)]}) ∗ channel(loc(a)) ∗ credit(a)}
(req, a′) := receive(ch);
{obs({[ob′(a′)]}, {[]}) ∗ channel(loc′(a′))}
result := process(req);
send(a′, result)
ens : {obs({[]}, {[]})}}

routine client(channel a){
req : {obs({[ob(a)]}, {[]}) ∗ channel(loc(a)) ∗ trandit(a)}
a′ := new_channel();
{obs({[ob(a)]}, {[]}) ∗ channel(loc′(a′)) ∗ trandit(a)}
nop; //Rule Credit
{obs({[ob(a), ob′(a′)]}, {[]}) ∗ trandit(a) ∗ credit(a′)}
send(a, (request(), a′));
{obs({[]}, {[]}) ∗ credit(a′)}
receive(a′)
ens : {obs({[]}, {[]})}}

routine main(){
req : {obs({[]}, {[]})}
a := new_channel();
{obs({[]}, {[]}) ∗ channel(loc(a))}
nop; //Rule Credit
{obs({[ob(a)]}, {[]}) ∗ credit(a)}
nop; //Rule Trandit
{obs({[ob(a)]}, {[ob(a)]}) ∗ credit(a) ∗ trandit(a)}
fork(
{obs({[]}, {[ob(a)]}) ∗ credit(a)}
server(a)
{obs({[]}, {[]})});
{obs({[ob(a)]}, {[]}) ∗ trandit(a)}
client(a)
ens : {obs({[]}, {[]})}}

Figure 32 Verification of the program in Figure 3 using the rules in Figure 31.

ECOOP 2019

19:44 Transferring Obligations Through Synchronizations

c ∈ Commands, e ∈ Expressions, z ∈ Z, x ∈ Variables
e ::= z | x | e1+e2 | −e
c ::= val(e) | new_int(z) | lookup(e) | mutate(e1, e2)

| if(c, c1, c2) | while(c, c1) | let(x, c1, c2) | fork(c) | new_lock | acquire(e) | release(e)
| new_cvar | wait(e1, e2) | notify(e) | notifyAll(e)
| waiting4lock(e) | waiting4cvar(e1, e2) | nop

Figure 33 Syntax of the programming language.

rather than via global functions12. The proof rules associated with this formalization and
the verification of the program in Figure 16, proved using these rules, are shown in Sections
D.4 and D.6, respectively.

D.1 Syntax and Semantics of Programs
We define the syntax of our programming language as indicated in Figure 33. In this syntax
an arithmetic expression, e, can be an integer value, z, a variable, x, an addition of two
expressions, or a negation of an expression. An integer value can be substituted for a
free variable in an expression or a command, and each expression can be evaluated to an
integer value, as shown in Figure 34. Commands include commands val(e) which simply
yield the value of e as their result and have no side effects, memory allocations13, memory
reads, memory writes, conditionals, loops, parallel composition, sequential composition, lock
creations, lock acquisitions, lock releases, condition variable creations, waits, and notifications.
We also define some extra commands waiting4lock, indicating that the related thread is waiting
for a lock, and waiting4cvar, indicating that the related thread has executed wait; these are not
supposed to appear in the source program and appear only during execution. Additionally,
instead of defining all the ghost commands introduced in Section 3, we define a single ghost
command nop which is inserted into the program for verification purposes and has no effect
on the program’s behavior. The small step semantics, defined in Figure 36, relates two
configurations, defined in Figure 35.

D.2 Syntax and Semantics of Assertions
The syntax of assertions is defined in Figure 3714. Note that a location l of an object o
consists of the obligation of o (if o is a lock or a CV); the lock invariant of o (if o is a lock),
denoted by I(l); and the permissions and the obligations which are transferred through a
notification on o (if o is a CV), denoted by M(l) and M′(l) respectively. Also note that
permissions described by invariants of locks as well as permissions which are transferred
through notifications are specified through an index (as well as the required arguments)

12Note that one way to formalize the precise approach of Section 3 would be to define assertions as
functions from ghost information to separating conjunctions of chunks. In the soundness proof, one
would track these as partial functions whose domain is the set of allocated addresses. The functions
passed into the assertions would be totalizations of these partial functions. An assertion is true if it is
true for all totalizations of the functions.

13Note that new_int(n) allocates n consecutive memory locations and returns the address of the first one.
14Note that we use a shallow embedding: assertions have no variables; to model quantifications, we use

meta-level functions from values to assertions.

J. Hamin and B. Jacobs 19:45

JK ∈ Expressions → Z

JzK=z
JxK=0
Je1+e2K=Je1K+Je2K
J−eK=− JeK

z[z′/x] = z

x[z/x′] = x if x 6= x′

x[z/x] = z

(e1+e2)[z/x] = e1[z/x]+e2[z/x]

val(e)[z/x] = val(e[z/x])
let(x, c1, c2)[z/x] = let(x, c1, c2)
let(x, c1, c2)[z/x′] = let(x, c1[z/x′], c2[z/x′]) if x 6= x′

fork(c)[z/x] = fork(c[z/x])
new_lock[z/x] = new_lock
new_int(z′)[z/x] = new_int(z′)
lookup(e)[z/x] = lookup(e[z/x])
mutate(e1, e2)[z/x] = mutate(e1[z/x], e2[z/x])
acquire(e)[z/x] = acquire(e[z/x])
release(e)[z/x] = release(e[z/x])
new_cvar[z/x] = new_cvar
wait(e1, e2)[z/x] = wait(e1[z/x], e2[z/x])
notify(e)[z/x] = notify(e[z/x])
notifyAll(e)[z/x] = notifyAll(e[z/x])
waiting4lock(e)[z/x] = waiting4lock(e[z/x])
waiting4cvar(e1, e2)[z/x] = waiting4cvar(e1[z/x], e2[z/x])
while(c, c1)[z/x] = while(c[z/x], c1[z/x])
if(c, c1, c2)[z/x] = if(c[z/x], c1[z/x], c2[z/x])
nop[z/x] = nop

Figure 34 Evaluation of expressions and substitution of expressions and commands.

Addresses = Z
ThreadIds = Z
h ∈ Heaps = Addresses ⇀ Z
ξ ∈ Contexts ::= done | let′(x, c, ξ) | if ′(c1, c2, ξ)
θ ∈ ThreadConfigurations ::= (c; ξ)
t ∈ ThreadTables = ThreadIds ⇀ ThreadConfigurations
κ ∈ Configurations = Heaps × ThreadTables

Figure 35 Configurations.

ECOOP 2019

19:46 Transferring Obligations Through Synchronizations

(t[id:=new_int(n); ξ], h[z...z+n−1:=∅]) (t[id:=val(z); ξ], h[z...z+n−1:=0])
(t[id:=lookup(e); ξ], h[JeK:=z]) (t[id:=val(z); ξ], h[JeK:=z])
(t[id:=mutate(e1, e2); ξ], h) (t[id:=tt; ξ], h[Je1K:=Je2K])
(t[id:=if(c, c1, c2); ξ], h) (t[id:=c; if ′(c1, c2, ξ)], h)
(t[id:=val(e); if ′(c1, c2, ξ)], h) (t[id:=c1; ξ], h) if 0<JeK
(t[id:=val(e); if ′(c1, c2, ξ)], h) (t[id:=c2; ξ], h) if JeK60
(t[id:=while(c, c1); ξ], h) (t[id:=if(c, let(x, c1,while(c, c1)), tt), ξ], h)
where x is not free in c and c1

(t[id:=fork(c); ξ, id′:=∅], h) (t[id:=tt; ξ, id′:=c; done], h)
(t[id:=let(x, c1, c2); ξ], h) (t[id:=c1; let′(x, c2, ξ)], h)
(t[id:=val(e); let′(x, c, ξ)], h) (t[id:=c[JeK/x]; ξ], h)
(t[id:=val(e); done], h) (t[id:=∅], h)
(t[id:=new_lock; ξ], h[z:=∅]) (t[id:=val(z); ξ], h[z:=1])
(t[id:=acquire(e); ξ], h[JeK:=1]) (t[id:=tt; ξ], h[JeK:=0])
(t[id:=acquire(e); ξ], h[JeK:=0]) (t[id:=waiting4lock(e); ξ], h[JeK:=0])
(t[id:=waiting4lock(e); ξ], h[JeK:=1]) (t[id:=tt; ξ], h[JeK:=0])
(t[id:=release(e); ξ], h) (t[id:=tt; ξ], h[JeK:=1])
(t[id:=new_cvar; ξ], h[z:=∅]) (t[id:=val(z); ξ], h[z:=0])
(t[id:=wait(e1, e2); ξ], h) (t[id:=waiting4cvar(e1, e2); ξ], h[Je2K:=1])
(t[id:=notify(e); ξ, id′:=waiting4cvar(e1, e2); ξ′], h)

(t[id:=val(tt); ξ, id′:=waiting4lock(e2); ξ′], h) if JeK = Je1K
(t[id:=notify(e); ξ], h) (t[id:=tt; ξ], h) if nowaiting(JeK, t)
(t[id:=notifyAll(e); ξ], h) (wkup(JeK, t[id:=val(tt); ξ]), h)
(t[id:=nop; ξ], h) (t[id:=tt; ξ], h)
where

wkup(z, t) = λid.

{
waiting4lock(l); ξ if t(id) = waiting4cvar(v, l); ξ ∧ JvK = z

t(id) otherwise

nowaiting(z, t)⇔6 ∃id, ξ, l, v. JvK=z ∧ t(id)=waiting4cvar(v, l); ξ

Figure 36 Semantics of programs, where tt stands for val(0).

J. Hamin and B. Jacobs 19:47

Bags(A) = A→ N
Wt, Ot ∈ Bags(Z)
Indexes = Z
Arguments = Z
r ∈ Levels = R
o ∈ Obligations = Addresses × Levels ×Addresses
l ∈ Locations = Obligations × (Indexes × Lists(Arguments))×

(Indexes × Lists(Arguments))× Bags(Obligations)
O ∈ Bags(Obligations)
b ∈ Booleans
v̂ ∈ AValues ::= z | r | b | l | o | O
α ∈ AValues → Assertions
π ∈ Fractions
a ∈ Assertions ::= l

π7−→ z | ulock(l,Wt, Ot) | lock(l) | locked(l,Wt, Ot) | ucond(l) | cond(l)
| obs(O) | ctr(z, n) | tic(z)
| b | a1 ∧ a2 | a1 ∨ a2 | a1 ∗ a2 | a1 −∗ a2 | ∀α | ∃α

pt : PredicateTables = Indexes → Lists(Arguments)→
Bags(Obligations)→ Bags(Obligations)→ Assertions

O : Locations → Obligations , where O((A,R,L), I,M,M ′) = (A,R,L)
A : Locations → Addresses , where A((A,R,L), I,M,M ′) = A

R : Locations → Levels , where R((A,R,L), I,M,M ′) = R

L : Locations → Addresses , where L((A,R,L), I,M,M ′) = L

I : Locations → Bags(Obligations)→ Bags(Obligations)→ Assertions
where I((A,R,L), I,M,M ′) = pt(fst(I), snd(I))

M : Locations → Assertions,
where M((A,R,L), I,M,M ′) = pt(fst(M), snd(M), {[]}, {[]})

M′ : Locations → Bags(Obligations) , where M′((A,R,L), I,M,M ′) = M ′

Figure 37 Syntax of assertions.

ECOOP 2019

19:48 Transferring Obligations Through Synchronizations

k ∈ Knowledge ::= cell(π, z) | ulock(Wt, Ot) | lock | locked(Wt, Ot) | ucond | cond
p ∈ PermissionHeaps = Locations ⇀ Knowledge
GhostIdentifications = Z
gv ∈ GhostValues ::= Option(N)× N
g ∈ GhostHeaps = GhostIdentifications ⇀ GhostValues
Option(A) ::= s | ∅ , where s ∈ A
Õ ∈ Option(Bags(Obligations))

p, Õ, g |= l
π7−→ z ⇔ p(l) = cell(π, z)

p, Õ, g |= ulock(l,Wt, Ot) ⇔ p(l) = ulock(Wt, Ot)
p, Õ, g |= lock(l) ⇔ p(l) = lock()
p, Õ, g |= locked(l,Wt, Ot) ⇔ p(l) = locked(Wt, Ot)
p, Õ, g |= ucond(l) ⇔ p(l) = ucond
p, Õ, g |= cond(l) ⇔ p(l) = cond
p, Õ, g |= obs(O) ⇔ Õ = O

p, Õ, g |= ctr(z, n) ⇔ ∃n1. g(z) = (n, n1)
p, Õ, g |= tic(z) ⇔ ∃n, ñ. g(z) = (ñ, n+1)
p, Õ, g |= b ⇔ b = true
p, Õ, g |= a1 ∧ a2 ⇔ p, Õ, g |= a1 ∧ p, Õ, g |= a2
p, Õ, g |= a1 ∨ a2 ⇔ p, Õ, g |= a1 ∨ p, Õ, g |= a2
p, Õ, g |= a1 ∗ a2 ⇔ ∃p1, p2, Õ1, Õ2, g1, g2. p=p1]p2 ∧ Õ=Õ1]Õ2 ∧ g=g1]g2 ∧
p1, Õ1, g1 |= a1 ∧ p2, Õ2, g2 |= a2

p, Õ, g |= a1 −∗ a2 ⇔ ∀p1, Õ1, g1. p1, Õ1, g1 |= a1 ⇒
∀p2, Õ2, g2. p2=p]p1 ∧ g2=g]g1 ∧ Õ2=Õ]Õ1 ⇒ p2, Õ2, g2 |= a2

p, Õ, g |= ∀α ⇔ ∀v̂∈AValues. p, Õ, g |= α(v̂)
p, Õ, g |= ∃α ⇔ ∃v̂∈AValues. p, Õ, g |= α(v̂)

a1 ` a2 ⇔ (∀p, Õ, g. p, Õ, g |= a1 ⇒ p, Õ, g |= a2)

Figure 38 Satisfaction relation.

J. Hamin and B. Jacobs 19:49

O1, O2 ∈ Bags(A)
Õ1, Õ2 ∈ Option(A)
gv1, gv2 ∈ GhostValues
g1, g2 ∈ GhostIdentifications ⇀ GhostValues
k1, k2 ∈ Knowledge
p1, p2 ∈ PermissionHeaps

O1]O2 = λv. O1(v) +O2(v)

Õ1] Õ2 =

Õ1 if Õ2=∅
Õ2 if Õ1=∅
undefined otherwise

Õ1]̃Õ2 =

Õ1 if Õ2 = ∅
Õ2 if Õ1 = ∅
Õ1] Õ2 otherwise

gv1]gv2 =

(m̃1]m̃2, n1+n2) if gv1 = (m̃1, n1) ∧ gv2 = (m̃2, n2) ∧

(m̃1]m̃2 = n⇒ n > n1+n2)
undefined otherwise

g1] g2 =
{
λl. g1(l)]̃g2(l) if ∃g. ∀l. g(l) = g1(l)]̃g2(l)
undefined otherwise

k1] k2 =

cell(π+π′, z) if k1=cell(π, z) ∧ k2=cell(π′, z) ∧ π+π′ 6 1
lock if k1=lock ∧ k2=lock
locked(Wt, Ot) if k1=lock ∧ k2 = locked(Wt, Ot)
locked(Wt, Ot) if k1 = locked(Wt, Ot) ∧ k2=lock
cond if k1=cond ∧ k2=cond
undefined otherwise

p1] p2 =
{
λl. p1(l)]̃p2(l) if ∃p. ∀l. p(l) = p1(l)]̃p2(l)
undefined otherwise

Figure 39 Operations on ghost resources.

ECOOP 2019

19:50 Transferring Obligations Through Synchronizations

pheap_heap(p, h)⇔
(∀z. (∀l. A(l) = z ⇒ p(l) = ∅)⇒ h(z) = ∅) and
∀l.
p(l) = ∅ or
∀z. (∃π. p(l) = cell(π, z))⇒ h(A(l)) = z and
(∃O1, O2. p(l) = ulock(O1, O2))⇒ h(A(l)) = 1 and
p(l) = lock⇒ h(A(l)) = 1 and
(∃O1, O2. p(l) = locked(O1, O2))⇒ h(A(l)) = 0 and
p(l) = cond⇒ h(A(l)) 6= ∅ and
p(l) = ucond⇒ h(A(l)) 6= ∅

Figure 40 Permission heaps corresponding to concrete heaps.

pointing to a table in which each element is a function that given a list of arguments returns
an assertion. This makes it possible to quantify over locations in assertions15. The obligation
of a location l, denoted by O(l), consists of the address of that location, denoted by A(l), as
well as other ghost information such as the level of l, denoted by R(l); and the lock associated
with l (if l is the location of a CV), denoted by L(l).

These assertions describe some ghost resources, namely p, O, and g that keep track of
heap locations, obligations, and ghost counters, respectively, shown in Figure 38, where some
operations and relations defined on these resources are shown in Figures 39, 40.

D.3 Weakest Precondition of Commands
The weakest precondition of a command c for n>0 steps w.r.t. a postcondition Q (with a
given predicate table, specified by pt), denoted by wpn,pt(c,Q) is defined in Figures 41 and
42. Note that wp(c,Q)0,pt = true. Also note that for the sake of simplicity the index pt
is elided. Having this definition, we define the weakest precondition of a context and the
weakest precondition of a command-context as shown in Definitions 17 and 18. Having these
definitions, we can prove some auxiliary lemmas, shown in Lemmas 20, 21, 22, 23, and 24,
which are used to prove Theorem 31.

I Definition 17 (Weakest Precondition of a Context).

wpxn(ξ) =

λ_. obs({[]}) if ξ=done
λz. wpn(c[z/x],wpxn(ξ′)) if ξ=let′(x, c, ξ′)
λz. 0<z ? wpn(c1, (wpxn(ξ′))) : wpn(c2, (wpxn(ξ′))) if ξ=if ′(c1, c2, ξ

′)

I Definition 18 (Weakest Precondition of a command-context).

wpcxn(c, ξ) = wpn(c,wpxn(ξ))

I Lemma 19 (Weakening Postcondition).

p, Õ, g |= wpn(c,Q) ∧ (∀z. Q(z) ` Q′(z))⇒ ∀n′6n. p, Õ, g |= wpn′(c,Q′)

15An alternative approach is to use a step-indexed domain of assertions, as in Iris [27]. There, I Assertions
could be used instead of Indexes × Lists(Arguments), where I is Iris’s guard for guarded recursive
definitions.

J. Hamin and B. Jacobs 19:51

wp ∈WeakestPreconditions =
Commands → (Z→ Assertions)→ N→ PredicateTables → Assertions

wpn(val(e), Q) = Q(JeK)
wpn(new_lock, Q) = ∀z. ∃r. ulock(((z, r, z), (0, []), (0, []), {[]}), {[]}, {[]}) −∗ Q(z)
wpn(acquire(e), Q) = ∃O, l. (lock(l) ∗ obs(O) ∧ O(l)≺O ∧ A(l) = JeK) ∗

(∀Wt, Ot. (obs(O]{[O(l)]}) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt, Ot)) −∗ Q(tt))
wpn(waiting4lock(e), Q) = wpn(acquire(e), Q)
wpn(release(e), Q) = ∃Wt, Ot,O, l. (locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]}) ∧

A(l) = JeK) ∗ ((lock(l) ∗ obs(O)) −∗ Q(tt))
wpn(new_cvar, Q) = ∀z. ∃r. ucond(((z, r, z), (0, []), (0, []), {[]})) −∗ Q(z)
wpn(wait(e1, e2), Q) = ∃Wt, Ot,O, v, l. (cond(v) ∗ locked(l,Wt, Ot) ∗

I(l)(Wt]{[A(v)]}, Ot) ∗ obs(O]{[O(l)]}) ∧ L(v)=A(l) ∧ O(v)≺O ∧ O(l)≺O]M′(v) ∧
enoughObs(v,Wt]{[A(v)]}, Ot) ∧ A(v) = Je1K ∧ A(l) = Je2K) ∗
(∀Wt′, Ot′. (cond(v) ∗ locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗
obs(O]{[O(l)]}]M′(v)) ∗M(v)) −∗ Q(tt))

wpn(waiting4cvar(e1, e2), Q) = ∃O, v, l. (cond(v) ∗ lock(l) ∗ obs(O) ∧
O(v)≺O ∧ O(l)≺O]M ′ ∧ L(v)=A(l) ∧ A(v)=Je1K ∧ A(l) = Je2K) ∗
(∀Wt, Ot. (cond(v) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗
obs(O]{[O(l)]}]M′(v)) ∗M(v)) −∗ Q(tt))

wpn(notify(e), Q) = ∃Wt, Ot,O, v. (cond(v) ∗ locked(L(v),Wt, Ot) ∗
obs(O](0<Wt(A(v)) ? M′(v) : {[]})) ∗ (Wt(A(v))=0 ∨M(v)) ∧ A(v) = JeK) ∗
((cond(v) ∗ locked(L(v),Wt−{[A(v)]}, Ot) ∗ obs(O)) −∗ Q(tt))

wpn(notifyAll(e), Q) = ∃Wt, Ot,O, v, l. (cond(v) ∗ locked(l,Wt, Ot) ∗ (
Wt(v)
∗
i:=1

M(v)) ∧
M′(v) = {[]} ∧ A(v)=JeK ∧ L(v)=A(l)) ∗ ((cond(v) ∗ locked(l,Wt[A(v):=0], Ot)) −∗ Q(tt))

wpn(let(x, c1, c2), Q) = wpn−1(c1, λz. wpn−1(c2[z/x], Q))
wpn(fork(c), Q) = ∃O1, O2. obs(O1]O2) ∗ (obs(O1) −∗ Q(tt)) ∗ (obs(O2) −∗

wpn−1(c, λ_. obs({[]})))
wpn(if(c, c1, c2), Q) = wpn−1(c, (λz. 0<z ? wpn−1(c1, Q) : wpn−1(c2, Q)))
wpn(while(c, c1), Q) = wpn−1(c, (λz. z60 ? Q(tt) :

wpn−1(c1, (λ_. wpn−1(while(c, c1), Q)))))

Figure 41 Weakest precondition, where tt stands for 0 (part one of two).

ECOOP 2019

19:52 Transferring Obligations Through Synchronizations

wpn,pt(nop) =
as g_initl

(∃Wt, Ot,O, a, r, I. ulock(((a, r, a), (0, []), (0, []), {[]}),Wt, Ot) ∗ pt(I)(Wt, Ot) ∗ obs(O) ∗
((lock(((a, r, a), I, (0, []), {[]})) ∗ obs(O)) −∗ Q(tt))) ∨

as g_initc
(∃Wt, Ot, a, r, l,M,M ′. ucond((a, r, a), (0, []), (0, []), {[]}) ∗ ulock(l,Wt, Ot) ∗

((cond((a, r,A(l)), (0, []),M,M ′) ∗ ulock(l,Wt, Ot)) −∗ Q(tt))) ∨
as g_load

(∃v, l. (cond(v) ∗ ulock/locked(l,Wt, Ot) ∗ obs(O) ∧ L(v)=A(l)) ∗
((cond(v) ∗ ulock/locked(l,Wt, Ot]{[A(v)]}) ∗ obs(O]{[O(v)]})) −∗ Q(tt)))

as g_discharge
(∃v, l. (cond(v) ∗ ulock/locked(l,Wt, Ot) ∗ obs(O) ∧ enoughObs(v,Wt, Ot−{[A(v)]}) ∧
L(v)=A(l)) ∗ ((cond(v) ∗ ulock/locked(l,Wt, Ot−{[A(v)]}) ∗ obs(O−{[O(v)]})) −∗ Q(tt)))∨

as g_new_ctr (∀gv. ctr(gv, 0) −∗ Q(tt)) ∨
as g_inc (∃n, gv. ctr(gv, n) ∗ ((ctr(gv, n+1) ∗ tic(gv)) −∗ Q(tt))) ∨
as g_dec (∃n, gv. ctr(gv, n) ∗ tic(gv) ∗ (ctr(gv, n−1) −∗ Q(tt)))

Figure 42 Weakest precondition (part two of two).

Proof. By induction on n and case analysis of c. J

I Lemma 20 (Weakest Precondition of Wait).

∀n, e1, e2, ξ, p, O, g. p,O, g |= wpcxn(wait(e1, e2), ξ)⇒
∃p1, p2, g1, g2, O1, v, l,Wt, Ot. p=p1]p2 ∧O=O1]{[O(l)]} ∧ g=g1]g2 ∧
A(v) = Je1K ∧ A(l) = Je2K ∧ p1(l)=locked(Wt, Ot) ∧ p1(v)=cond ∧
p2,∅, g2 |= I(l)(Wt]{[A(v)]}, Ot) ∧ O(v) ≺ O1 ∧ O(l) ≺ O1]M′(v) ∧ L(v)=A(l) ∧
enoughObs(v,Wt]{[A(v)]}, Ot) ∧
p1[l:=lock], O1, g1 |= wpcxn(waiting4cvar(e1, e2), ξ)

I Lemma 21 (Weakest Precondition of Notify).

∀n, e, ξ, p, O, g. p,O, g |= wpcxn(notify(e), ξ)⇒ ∃p1, pM , g1, gM , O1, v, l,Wt, Ot.
p=p1]pM ∧ g=g1]gM ∧O=O1](0<Wt(A(v)) ? M′(v) : {[]})
∧ A(v) = JeK ∧ L(v) = A(l) ∧ p1(v)=cond ∧ p1(l)=locked(Wt, Ot) ∧
(0<Wt(A(v)) ? pM ,∅, gM |= M(v) : (pM=0 ∧ gM=0)) ∧
p1[l:=locked(Wt−{[A(v)]}, Ot)], O1, g1 |= wpcxn(tt, ξ)

I Lemma 22 (Weakest Precondition of waiting4cvar).

∀n, e1, e2, ξ, p, O, g. p,O, g |= wpcxn(waiting4cvar(e1, e2), ξ)⇒
∃v, l. p(v)=cond ∧ (p(l)=lock ∨ ∃Wt, Ot. p(l)=locked(Wt, Ot)) ∧ L(v)=A(l) ∧ O(v) ≺ O
∧ O(l) ≺ O]M′(v) ∧ A(v) = Je1K ∧ A(l) = Je2K ∧
∀pM , gM . pM ,∅, gM |= M(v)⇒ p]pM , O]M′(v), g]gM |= wpcxn(waiting4lock(e2), ξ)

I Lemma 23 (Weakest Precondition of g_discharge).

∀n, ξ, p,O, g. p,O, g |= wpcxn(g_discharge, ξ)⇒
∃O1,Wt, Ot, v, l. O=O1]{[O(v)]} ∧ p(l)=locked(Wt, Ot) ∧ p(v)=cond ∧
enoughObs(v,Wt, Ot−{[A(v)]}) ∧ L(v)=A(l) ∧
p[l:=locked(Wt, Ot−{[A(v)]})], O1, g |= wpcxn(tt, ξ)

J. Hamin and B. Jacobs 19:53

I Lemma 24 (Weakest Precondition of fork).

∀n, c, ξ, p, O, g. p,O, g |= wpcxn(fork(c), ξ)⇒
∃p1, p2, g1, g2, O1, O2. p=p1]p2 ∧ g=g1]g2 ∧O=O1]O2 ∧
p1, O1, g1 |= wpcxn(tt, ξ) ∧ p2, O2, g2 |= wpn−1(c, λ_.obs({[]}))

I Lemma 25 (Frame in Weakest Precondition).

∀n, c,Q, F, p, Õ, g. p, Õ, g |= wpn(c,Q) ∗ F ⇒ ∀n′6n. p, Õ, g |= wpn′(c, (λz. Q(z) ∗ F))

Proof. By induction on n and case analysis of c. J

D.4 Correctness of Commands
We define correctness of commands, as shown in Definition 26, ensuring that each proposed
proof rule, where correctpt(P , c,Q) is abbreviated as {P} c {Q}, respects the definition of
the weakest precondition. Having this definition we prove the proposed proof rules, ensuring
deadlock freedom of importer channels, as well as some other necessary proof rules shown in
Theorems 27, 28, and 29.

I Definition 26 (Correctness of Commands). A command is correct w.r.t a precondition P
and a postcondition Q if and only if P implies the weakest precondition of that command
w.r.t Q.

correctpt(P , c,Q)⇔ ∀n. P ⇒ wpn,pt(c,Q)

I Theorem 27 (Rule Sequential Composition).

correct(P , c1, Q) ∧ (∀z. correct(Q(z), c2[z/x], R))⇒ correct(P , let(x, c1, c2), R)

I Theorem 28 (Rule Consequence).

correct(P , c,Q) ∧ (P ′ ` P) ∧ (∀z. Q(z) ` Q′(z))⇒ correct(P ′, c,Q′)

I Theorem 29 (Rule Frame).

correct(P , c,Q)⇒ correct(P ∗ F , c, λz. Q(z) ∗ F)

As previously mentioned, since in this formalization ghost information is associated with
lock and condition variable addresses via the lock and cond permission rather than via global
function, we provide a new version of the proof rules, proposed in Section 3, regarding this
formalization as shown in Figure 43.

D.5 Validity of a Configuration
We define validity of a configuration, shown in Definition 30, and prove that 1) starting
from a valid configuration, all the subsequent configurations of the execution are also valid
(Theorem 31), 2) a valid configuration is not deadlocked (Theorem 32), and 3) if a program
c is verified by the proposed proof rules, where the verification starts from an empty bag
of obligations and ends with such a bag too, then the initial configuration, where the heap
is empty, denoted by 0=λ_.∅, and there is only one thread with the command c (and a
context done), is a valid configuration (Theorem 34).

ECOOP 2019

19:54 Transferring Obligations Through Synchronizations

NewLock
{true} newlock {λa. ulock(((a, r, a), (0, []), (0, []), {[]}), {[]}, {[]})}

InitLock
{ulock(((a, r, a), (0, []), (0, []), {[]}),Wt, Ot) ∗ pt(Iindex, Iargs)(Wt, Ot) ∗ obs(O)} nop

{λ_. lock(((a, r, a), (Iindex, Iargs), (0, []), {[]})) ∗ obs(O)}

Acquire
{lock(l) ∗ obs(O) ∧ O(l) ≺ O ∧ A(l) = al} acquire(al)

{λ_. ∃Wt, Ot. locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]})}

Release
{locked(l,Wt, Ot) ∗ I(l)(Wt, Ot) ∗ obs(O]{[O(l)]}) ∧ A(l) = al} release(al)

{λ_. lock(l) ∗ obs(O)}

NewCV
{true} new_cvar {λa. ucond(((a, r, a), (0, []), (0, []), {[]}))}

InitCV
{ucond((a, r, a), (0, []), (0, []), {[]}) ∗ ulock(l,Wt, Ot)} nop

{λ_. cond((a, r,A(l)), (0, []), (Mindex,Margs),M ′) ∗ ulock(l,Wt, Ot)}

Wait
{cond(v) ∗ locked(l,Wt, Ot) ∗ I(l)(Wt]{[A(v)]}, Ot) ∗ obs(O]{[O(l)]}) ∧ A(v) = av ∧ A(l) = al
∧ A(l)=L(v) ∧ O(v)≺O ∧ O(l)≺O]M′(v) ∧ enoughObs(A(v),Wt]{[A(v)]}, Ot)} wait(av, al)
{λ_. cond(v) ∗ obs(O]{[O(l)]}]M′(v)) ∗ ∃Wt′, Ot′. locked(l,Wt′, Ot′) ∗ I(l)(Wt′, Ot′) ∗M(v)}

Notify
{obs(O](0<Wt(A(v)) ? M′(v) : {[]})) ∗ cond(v) ∗ locked(l,Wt, Ot) ∗ (Wt(A(v))=0 ∨M(v)) ∧

A(l)=L(v) ∧ A(v) = av} notify(av) {λ_. obs(O) ∗ cond(v) ∗ locked(l,Wt−{[A(v)]}, Ot)}

NotifyAll

{cond(v) ∗ locked(l,Wt, Ot) ∗ (
Wt(A(v))
∗
i:=1

M(v)) ∧M′(v)={[]} ∧ A(l)=L(v) ∧ A(v) = av}
notifyAll(av) {λ_. cond(v) ∗ locked(l,Wt[v:=0], Ot)}

ChargeObligation
{obs(O) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot) ∧ A(l)=L(v)} nop
{λ_. obs(O]{[O(v)]}) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot]{[A(v)]})}

DischargeObligation
{obs(O) ∗ cond(v) ∗ ulock/locked(l,Wt, Ot) ∧ enoughObs(A(v),Wt, Ot−{[A(v)]})
∧ A(l)=L(v)} nop {λ_. obs(O−{[O(v)]}) ∗ ulock/locked(l,Wt, Ot−{[A(v)]})}

Figure 43 Proof rules verifying deadlock-freedom of importer monitors, where ghost information
is associated with lock and channel addresses via lock and cond permissions.

J. Hamin and B. Jacobs 19:55

IDefinition 30 (Validity of a Configuration). A configuration (t, h) is valid for n steps, denoted
by validn(t, h), if there exist a list of augmented threads A, consisting of the identification
(id), the program (c), the context (ξ), the permission heap (p), the ghost resource heap (g)
and the obligations (O) associated with each thread; a list of lock-invariant pairs Linv, storing
the locks which are not held along with their invariants; three permission heaps pi (associated
with the invariants of the locks which are not held), pl (the part of the permission heap which
is leaked), and pA (the union of all permission heaps in A and pi as well as pl); three ghost
resource heaps gi (associated with the invariants of the locks which are not held), gl (the part
of the ghost resource heap which is leaked), gA (the union of all ghost resource heaps in A
and gi as well as gl); and locs (the set of locations for which a memory has been allocated),
such that all of the following conditions hold:

1. ∀id, c, ξ. t(id) = (c; ξ)⇔ ∃p,O, g. (id, c, ξ, p, O, g) ∈ A
2. ∀(id1, c1, ξ1, p1, O1, g1) ∈ A, (id2, c2, ξ2, p2, O2, g2) ∈ A. id1 = id2 ⇒

(id1, c1, ξ1, p1, O1, g1) = (id2, c2, ξ2, p2, O2, g2)
3. pA = pi]pl]]

(id,c,ξ,p,O,g)∈A
p ∧ gA = gi]gl]]

(id,c,ξ,p,O,g)∈A
g

4. ∀l1, l2. pA(l1) 6= ∅ ∧ pA(l2) 6= ∅ ∧ A(l1) = A(l1)⇒ l1 = l2
5. ∀l. pA(l) 6= ∅⇔ l ∈ locs
6. pheap_heap(pA, h)
7. pi,∅, gi |= ∗

(l,inv)∈Linv
inv

8. pA(l) = lock ∧ ¬heldh(l)⇒ (l, I(l)(Wtl,A, Otl,A)) ∈ Linv
9. (l, inv) ∈ Linv ⇒ pA(l) = lock ∧ ¬heldh(l)
10. ∀o ∈ OA. ∃l. O(l)=o ∧ (pA(l)=cond ∨ pA(l)=lock ∨ ∃Wt, Ot. pA(l)=locked(Wt, Ot))
11. pA(l)=ulock(Wt, Ot) ∨ pA(l)=locked(Wt, Ot)⇒Wt=Wtl,A ∧Ot=Otl,A
12. pA(l)=lock ∨ pA(l)=ulock(Wt, Ot) ∨ pA(l)=locked(Wt, Ot)⇒heldh(l)⇒ l ∈ OA
13. ∀(id, c, ξ, p, O, g)∈A.

a. p,O, g |= wpcxn(c, ξ)
b. c = waiting4cvar(e1, e2)⇒ enoughObs(Je1K,WtJe2K,A, OtJe2K,A)

where
OA =]

(id,c,ξ,p,O,g)∈A
O

Otl,A = λv. L(v)=l ? OA(v) : 0 , and Wtl,A =]
(id,c,ξ,p,O,g)∈A∧waiting_forh(c)=v∧L(v)=l

{[v]}

waiting_forh(c) returns the object for which c is waiting, if any, i.e.

waiting_forh(c, h) =

Je1K if c=waiting4cond(e1, e2)
JeK if c=waiting4lock(e) ∧ h(JeK)6=1
∅ otherwise

heldh(l) returns true if and only if the lock l is held, i.e. heldh(l)⇒ h(A(l)) 6= 1

Each item in this definition ensures some properties as follows: (1) and (2) ensure that
the list of augmented threads A is correctly associated with the thread tables t, (3) ensures
that the union of all permission heaps as well as the union of all ghost resource heaps in A
are defined, (4) ensures that any two allocated locations which have the same address are
equal, (5) locs is the set of locations for which a memory has been allocated (having this set
it is possible to map addresses to their ghost information) (6) ensures that pA corresponds
to the concrete heap h, (7) ensures that pi and gi model the separating conjunction of the
invariants of the locks which are not held, and these invariants do not assert any obligation,
(8) ensures that any lock which is not held along with its invariant exist in Linv, (9) ensures
that the locks in Linv are not held, (10) ensures that any obligation in A is associated with

ECOOP 2019

19:56 Transferring Obligations Through Synchronizations

the address of a condition variable or a lock which has been initialized, (11) ensures that
the parameters Wt and Ot stored in the permissions ulock and locked of any lock store the
total number of waiting threads and obligations of the condition variables associated with
that lock, respectively, (12) ensures that any lock l which is held exists in the union of the
obligations of A, (13-a) the permission heap, the obligations, and the ghost resource heap
of each thread model the weakest precondition of the command of that thread w.r.t. the
postcondition in which there is no obligation, and (13-b) for any condition variable for which
a thread is waiting the invariant enoughObs holds.

I Theorem 31 (Small Steps Preserve Validity of Configurations). Each step of the execution
preserves validity of configurations.

(t, h) (t′, h′) ∧ validn+1(t, h)⇒ validn(t′, h′)

Proof. By case analysis of the small step relation . J

I Theorem 32 (A Valid Configuration Is Not Deadlocked). If a valid configuration has some
threads then there exists a thread in this configuration neither waiting for a condition variable
nor a lock.

validn(t, h) ∧ ∃id. t(id) 6= ∅⇒ ∃id′. waiting_for(fst(t(id′)) = ∅

Proof. We assume that all threads in t are waiting for a condition variable or a lock. Since
(t, h) is a valid configuration there exists a valid list of augmented threads A with a corres-
ponding valid bag G = valid_bag(A), where valid_bag maps any element (id, c, ξ, p, O, g) to
an element (waiting_for(c), O). By Lemma 33, we have G={[]}, implying A={}, implying t=0
which contradicts the hypothesis of the theorem.

Note that in the definition of validity of a configuration we also keep track of all locations
whose addresses are allocated, which makes it possible to provide the function R, mapping
lock and condition variable addresses to their levels, for Lemma 33. The first hypothesis
in this lemma is met by the constraint 13-a in the definition of validity of a configuration.
Additionally, the second hypothesis in this lemma is met by the constraints 12 or 13-b, where
the related thread is waiting for a lock or a condition variable, respectively. J

Lemma 33 ensures that in any state of the execution if all the desired invariants are
respected then it is impossible that all threads are waiting for an object. In this lemma G is
a bag of object-obligations pairs such that each element t of G is associated with a thread in
a state of the execution, where the first element of t is associated with the object for which t
is waiting and the second element is associated with the obligations of t.

I Lemma 33 (A Valid Bag of Augmented Threads Is Not Deadlocked).

∀ G : Bags(Addresses × Bags(Addresses)), R : Addresses→Levels.
(∀(o,O)∈G. o ≺ O ∧ (∃o′, O′. (o′, {[o]}]O′) ∈ G))⇒ G = {[]}

Proof. By contradiction; assume that ∃(om, O1) ∈ G where ¬∃(o,O) ∈ G. R(o) < R(om). By
H2 we have ∃o′, O′. (o′, {[om]}]O′) ∈ G and by H1 we have o′ ≺ {[om]}]O′, which contradicts
minimality of the level of om. J

I Theorem 34 (The Initial Configuration Is Valid). The initial configuration, consisting of an
empty heap and a single thread whose program is verified by the proposed proof rules, is a
valid configuration.

correctsp(obs({[]}), c, λ_.obs({[]}))⇒ ∀n, id. validn(0[id:=c; done],0)

J. Hamin and B. Jacobs 19:57

ol(m, r) ::= (m.l, r,m.l)
ov(m, r) ::= (m.v, r,m.l)
l(m, r) ::= (ol(m, r), (linv, [m]), (0, []), {[]})
v(m, r) ::= (ov(m, r), (0, []), (M, []), {[ov(m, r)]})

mutex(mutex m,waitobj o) = lock(l(m,R(o)−1)) ∗ cond(o) ∧ o = v(m,R(o))

pt(linv, [m]·args) = λWt. λOt. ∃b, w. m.b 7→ b ∗m.w 7→ w ∧Wt(m.v)=w ∧
(0 < b ? 0 < Ot(v) : Wt(v) = 0)
pt(M, args) = λWt. λOt. true

Figure 44 Verification of the fair mutexes implementation shown in Figure 16 using the proof
rules in Figure 43 (part one of two).

Proof. The goal is achieved because there are an augmented thread list T=[(id, c, done,0, {[]}
,0)], a list of lock-invariant pairs Linv=[], two permission heaps pi=0 and pl=0, and two
ghost resource heaps gi=0 and gl=0, such that all the conditions in the definition of validity
of configurations are met. J

D.6 An Example Proof
In this section we show how the program in Figure 16 can be verified using the proof rules in
Figure 43, as shown in Figures 44 and 4516.

16Note that for this program we assume a straightforward extension of the programming language with
immutable structures, i.e. tuples with named components.

ECOOP 2019

19:58 Transferring Obligations Through Synchronizations

routine new_mutex(){
req : {true}
l := new_lock;
{ulock(((l, r−1, l), (0, []), (0, []), {[]}), {[]}, {[]})}
v := new_cvar; nop; //Rule InitCV
{ulock(((l, r−1, l), (0, []), (0, []), {[]}), {[]}, {[]}) ∗ cond((v, r, l), (0, []), (M, []), {[(v, r, l)]})}
m := mutex(l:=l, v:=v, b:=new_int(1), w:=new_int(1)); nop; //Rule InitLock
m ens : {λm. ∃o. mutex(m, o) ∧ R(o)=r}}

routine enter_cs(mutex m){
req : {obs(O) ∗mutex(m, o) ∧ O(o) ≺ O}
acquire(m.l);
// Let l = l(m,R(o)−1) and ol = ol(m,R(o)−1)
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
if(m.b){
m.w := m.w+1;
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt]{[m.v]}, Ot)}
wait(m.v,m.l)
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}}

else{ m.b := 1; nop; //Rule ChargeObligation
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}};
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
release(m.l)
ens : {obs(O]{[O(o)]}) ∗mutex(m, o)}}

routine exit_cs(mutex m){
req : {obs(O]{[O(o)]}) ∗mutex(m, o) ∧ O(o) ≺ O}
acquire(m.l);
// Let l = l(m,R(o)−1) and ol = ol(m,R(o)−1)
{obs(O]{[ol,O(o)]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}
m.b := 0;
if(0<m.w){ m.w := m.w−1; m.b := 1; notify(m.v)
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}}

else{ nop //Rule DischargeObligation
{obs(O]{[ol]}) ∗mutex(m, o) ∗ ∃Wt, Ot. locked(l,Wt, Ot) ∗ pt(linv, [m])(Wt, Ot)}};

release(m.l)
ens : {obs(O) ∗mutex(m, o)}}

Figure 45 Verification of the fair mutexes implementation shown in Figure 16 using the proof
rules in Figure 43 (part two of two).

Automated Large-Scale Multi-Language Dynamic
Program Analysis in the Wild
Alex Villazón
Universidad Privada Boliviana, Bolivia
avillazon@upb.edu

Haiyang Sun
Università della Svizzera italiana, Switzerland
haiyang.sun@usi.ch

Andrea Rosà
Università della Svizzera italiana, Switzerland
andrea.rosa@usi.ch

Eduardo Rosales
Università della Svizzera italiana, Switzerland
rosale@usi.ch

Daniele Bonetta
Oracle Labs, United States
daniele.bonetta@oracle.com

Isabella Defilippis
Universidad Privada Boliviana, Bolivia
isabelladefilippis@upb.edu

Sergio Oporto
Universidad Privada Boliviana, Bolivia
sergiooporto@upb.edu

Walter Binder
Università della Svizzera italiana, Switzerland
walter.binder@usi.ch

Abstract
Today’s availability of open-source software is overwhelming, and the number of free, ready-to-use

software components in package repositories such as NPM, Maven, or SBT is growing exponentially.
In this paper we address two straightforward yet important research questions: would it be possible
to develop a tool to automate dynamic program analysis on public open-source software at a large
scale? Moreover, and perhaps more importantly, would such a tool be useful? We answer the first
question by introducing NAB, a tool to execute large-scale dynamic program analysis of open-source
software in the wild. NAB is fully-automatic, language-agnostic, and can scale dynamic program
analyses on open-source software up to thousands of projects hosted in code repositories. Using
NAB, we analyzed more than 56K Node.js, Java, and Scala projects. Using the data collected by
NAB we were able to (1) study the adoption of new language constructs such as JavaScript Promises,
(2) collect statistics about bad coding practices in JavaScript, and (3) identify Java and Scala
task-parallel workloads suitable for inclusion in a domain-specific benchmark suite. We consider
such findings and the collected data an affirmative answer to the second question.

2012 ACM Subject Classification Software and its engineering → Dynamic analysis

Keywords and phrases Dynamic program analysis, code repositories, GitHub, Node.js, Java, Scala,
promises, JIT-unfriendly code, task granularity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.20

Category Tool Insights Paper

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alex Villazón, Haiyang Sun, Andrea Rosà, Eduardo Rosales, Daniele Bonetta,
Isabella Defilippis, Sergio Oporto, and Walter Binder;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 20; pp. 20:1–20:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8428-3420
mailto:avillazon@upb.edu
mailto:haiyang.sun@usi.ch
mailto:andrea.rosa@usi.ch
https://orcid.org/0000-0002-6404-3128
mailto:rosale@usi.ch
mailto:daniele.bonetta@oracle.com
mailto:isabelladefilippis@upb.edu
mailto:sergiooporto@upb.edu
mailto:walter.binder@usi.ch
https://doi.org/10.4230/LIPIcs.ECOOP.2019.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Large-Scale Dynamic Program Analysis in the Wild

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.11

Acknowledgements This work has been supported by Oracle (ERO project 1332), Swiss National
Science Foundation (scientific exchange project IZSEZ0_177215), Hasler Foundation (project 18012),
and by a Bridging Grant with Japan (BG 04-122017).

1 Introduction

Analyzing today’s large code repositories1 has become an important research area for
understanding and improving different aspects of modern software systems. Static and
dynamic program analyses are complementary approaches to this end. Static program
analysis is the art of reasoning about the behavior of computer programs without actually
running them, which is useful not only in optimizing compilers for producing efficient code, but
also for automatic error detection and other tools that help programmers [45]. Complementary
to static analysis is dynamic program analysis (DPA), which employs runtime techniques
(such as instrumentation and profiling) to explore the runtime behavior of applications under
specific workload conditions and input.

In contrast to the large body of work on mining code repositories through static program
analysis [39, 52, 37, 53, 38, 7, 11, 51], studies applying DPA to large public code repositories
are scarce [35, 42]. Moreover, all such studies are limited at narrow, specific aspects of a
particular programming language or framework, and none of them scales to the overwhelming
amount of available projects that could potentially be analyzed.

In this paper, we tackle two basic yet important research questions: can we create a
tool for automated DPA that can scale to the vast amount of available public open-source
projects, and would such a tool be of practical interest?

Given the constant growth of the number of projects in public code repositories and
the increasing popularity of different programming languages and runtimes – e.g., Java-
Script/Node.js and the many languages targeting the Java Virtual Machine (JVM) – such
a tool not only should be scalable, but should also be language-agnostic and resilient to
malicious or buggy code. Such aspects already correspond to non-trivial technical challenges.
Beyond these technical aspects, developing such a tool would require answering one more
fundamental question: how should the tool execute code from repositories that are not
designed to enable DPA?

Our answer to the question is pragmatic: the tool should automatically look for the
available executable code in a repository, and try to execute anything that could potentially
be executed. Such executable code could correspond to existing benchmarks (e.g., workloads
defined by the developers via the Java Microbenchmark Harness (JMH) [48]) or software
tests (e.g., defined in the default test entry of a Node.js project managed by Node Package
Manager (NPM), or based on popular testing frameworks such as JUnit [63]). By replicating
the process on the massive size of public repositories, such a tool should be able to identify a
very high amount of (automatically) executable code.

With the tool, would running massive DPA on publicly available repositories be of any
scientific interest? Our insight is that such a tool can be useful to collect statistics and
evidence about code patterns and application characteristics that may benefit language
designers, software system designers, and programming-language researchers at large.

1 In this paper, the term repository denotes a code hosting site (such as GitHub, GitLab, or BitBucket),
containing multiple projects (i.e., open-source code subjected to version control).

https://dx.doi.org/10.4230/DARTS.5.2.11

A. Villazón et al. 20:3

One concrete application for such a tool could be the study of the adoption (by a
wide open-source community) of new programming-language constructs involving dynamic
behavior (i.e., where pure static analysis cannot give any concrete insight). For example,
it is currently unclear how the recently-introduced JavaScript Promise API [29] is being
used by Node.js developers: while some recent research seems to suggest that developers are
frequently mis-using the API [40, 1], its growing adoption by the Node.js built-in modules
(e.g., Node.js’ file-system module) could result in a more disciplined usage. In this context, a
massive analysis of Node.js projects would be of great help to assess the adoption of the API,
and to drive its future evolution. Measuring aspects such as the size of a so-called promise
chain [1] (i.e., the number of promises that are linked together) requires DPA.

A second practical application of a tool for massive DPA is the study of problematic
code patterns in dynamic languages. For example, several studies [12, 46, 17] focus on JIT-
unfriendly code patterns [17], i.e., code that may obstacle dynamic optimizations performed
by a Just-In-Time (JIT) compiler. While these studies have shown that such bad code
patterns can impair the performance of modern language execution runtimes, none of them
has investigated how common problematic coding practices are. Identifying such bad code
patterns and assessing their use on the high number of open-source Node.js projects as well
as the NPM modules they depend on could be very useful in practice, as it would provide
a “bird’s-eye view” over the quality of the NPM ecosystem. Similarly to the previous case,
DPA is needed to identify such patterns in several runtime-dependent scenarios.

A final useful application for a massive DPA tool is the search for workloads suitable to
conduct experimental evaluations. For many domain-specific evaluation needs (e.g., concur-
rency on the JVM), there is a lack of suitable benchmarks, and creating new benchmark
suites requires non-trivial effort for finding proper workload candidates [69]. For example,
existing general-purpose benchmark suites including Java and Scala benchmarks (e.g., Da-
Capo [64] and ScalaBench [56]) have only few task-parallel workloads [5, 58, 61]. Ideally, a
fully automated system could discover relevant workloads by massively analyzing the open-
source projects in public code repositories. Such a system could find real-world concurrent
applications that spawn numerous tasks of diverse granularities, suitable for inclusion in a
benchmark suite targeting concurrency on the JVM. Similarly to our previous examples,
profiling all parallel tasks spawned by an application and measuring each task’s granularity
requires DPA.

To support the diversity of DPA scenarios that we have described at the scale of public
code repositories, in this paper we present NAB,2 a novel, distributed, container-based
infrastructure for massive DPA on code repositories hosting open-source projects, which
may be implemented in different programming languages. NAB resorts to containerization
for efficient sandboxing, for the parallelization of DPA execution, and for simplifying the
deployment on clusters or in the Cloud. Sandboxing is important to isolate the underlying
execution environment and operating system, since NAB executes unverified projects that
may contain buggy or even harmful code. Also, parallelizing DPA execution is an important
feature for massive analysis, as sequential analysis of massive code repository would take
prohibitive time. NAB features both crawler and analyzer components, which are deployed
in lightweight containers and can be replicated. They are governed by NAB’s coordination
component, which ensures scalability and elasticity, facilitating the provisioning of new
container images through simple configuration settings. NAB includes a plugin mechanism
for the integration of existing DPA tools and the selection of different build systems, testing
frameworks, and runtimes for multi-language support.

2 NAB’s recursive name stands for “NAB is an Analysis Box”.

ECOOP 2019

20:4 Large-Scale Dynamic Program Analysis in the Wild

Our work makes the following contributions:
We present NAB, a novel, distributed infrastructure for custom DPA in the wild. To
the best of our knowledge, NAB is the first scalable, container-based infrastructure for
automated, massive DPA on open-source projects, supporting multiple programming
languages.
We present a novel analysis to collect runtime statistics about the usage of promises
in Node.js projects, which focuses on the size of promise chains. The analysis sheds
light on the usage of the Promise API in open-source Node.js projects. We present an
implementation of the analysis called Deep-Promise, which relies on NodeProf [62], an
open-source dynamic instrumentation framework for Node.js based on GraalVM [68].
We conduct a large-scale study on Node.js projects, searching for JIT-unfriendly code
that may impair the effectiveness of optimizations performed by the JavaScript engine’s
JIT compiler. To this end, we apply JITProf [17], an open-source DPA.
We perform a large-scale analysis on Java and Scala projects searching for task-parallel
workloads suitable for inclusion in a benchmark suite. To this end, we apply tgp [54], an
open-source DPA for task-granularity profiling on the JVM.

Our work confirms (1) that NAB can be used for applying DPA massively on public code
repositories, and (2) that the large-scale analyses enabled by NAB provide insights that are
of practical interest, thus affirmatively answering to our research questions.

This paper is structured as follows. Section 2 describes NAB’s architecture and imple-
mentation. Section 3 details the experimental setup for our studies. Sections 4, 5, and 6
present the results of our three case studies. Section 7 discusses important aspects such as
safety, extensibility, scalability, as well as the limitations of NAB. We discuss related work in
Section 8 and conclude in Section 9.

2 NAB

This section presents our tool for massive DPA, NAB. First, we introduce NAB’s architecture
(Section 2.1); then, we describe how NAB’s main components interact (Section 2.2). We
continue by detailing the crawling (Section 2.3) and analysis (Section 2.4) process. Finally,
we describe NAB’s plugin mechanism supporting different DPA tools (Section 2.5), as well as
the implementation technologies used to support containerization (Section 2.6).

2.1 Architecture

At its core, NAB features a microservice architecture based on a master-worker pattern
relying on a publish-subscribe communication layer, allowing asynchronous events to be
exchanged between its internal components. Figure 1 depicts the overall NAB architecture
based on Docker containers [22]. NAB uses existing containerized services (marked in gray)
and introduces four new components, three of them running in containers: NAB-Crawler,
NAB-Analyzer, and NAB-Master; as well as one external service, NAB-Dashboard.

The NAB-Crawler instances are responsible for mining and crawling code repositories,
collecting metadata that allows making a decision on which projects to analyze. The NAB-
Analyzer instances are responsible for downloading the code, applying some filtering and
eventually running the DPA tool. The results generated by the DPA (such as profiles
containing various dynamic metrics) are stored in a NoSQL MongoDB [26] database. NAB
provides a plugin mechanism to integrate different DPA tools in NAB-Analyzer instances.

A. Villazón et al. 20:5

!"#$"%&'()*+

!"#$,+&-'*+

./001#+23*+

.2%425#

!"#$.&67*+

5283*+

9-&+:

;'<4=%

>=7?<@
!"#$5&6A@2&+B

B*;'2(

C<*+(

:2%=72+

67&76

+*6<'76

6*
&+8

A

8'2%*

&%&'(6=61&87=D=7(

8+&-'1&87=D=7(

68A*B<'*

Figure 1 Overview of NAB. The three core NAB containerized services (NAB-Master, NAB-
Crawler, and NAB-Analyzer) are shown as white boxes inside the Docker Swarm, whereas existing
containerized services are marked in gray. A third-party DPA tool (not shown) is invoked by
NAB-Analyzer through a plugin and generates profiles.

NAB-Master orchestrates the distribution of crawling and DPA activities with NAB-
Crawler and NAB-Analyzer instances. Finally, NAB-Dashboard is responsible for the de-
ployment of the NAB components through the Docker Swarm [23] orchestration service and
monitors the progress of an ongoing DPA.

NAB communication service is based on MQTT (Message Queuing Telemetry Transport),
an ISO-standard, lightweight publish-subscribe protocol [14]. The MQTT Broker is the core
communication service that receives subscription requests from NAB components to different
topics and redistributes messages that are published on such topics. This ensures that the
communication between NAB components is implemented in a loosely-coupled manner, as
they only need to agree on specific topics without knowing each other beforehand.

Some NAB services expose ports (represented as black circles in Figure 1) to allow
interaction with them from outside the Docker Swarm. For example, NAB-Dashboard uses
the exposed ports to access the MQTT communication service and subscribes to all topics used
by the other NAB components. This information allows monitoring the distributed execution
of a DPA. Similarly, the NAB-Dashboard can query the MongoDB database to collect
execution results of previous runs, e.g., for post-mortem performance analysis, for visualizing
the detailed distributed execution, for finding load imbalances, or for debugging purposes.

To improve scalability, NAB can be configured to use several MQTT Brokers through
HAProxy [19] (a high-performance TCP load balancer that distributes the exchanged MQTT
messages) as well as multiple distributed and replicated MongoDB instances through a
mongos router [25] coordinating a MongoDB Shard [27] (not shown in Figure 1).

2.2 Interactions between NAB Components

When NAB is started, NAB-Dashboard initializes (through Docker Swarm) all the container-
ized services shown in Figure 1, passing user-defined specifications about the analysis to
be executed to NAB-Master. Such specifications depend on the DPA to use, as well as on
the code repository where crawling should be performed. While NAB provides supports for
crawling different repositories (e.g., GitHub [24], GitLab [16], Bitbucket [2]), in this paper
we focus on GitHub, which is the one providing the most advanced search API.

ECOOP 2019

20:6 Large-Scale Dynamic Program Analysis in the Wild

When performing a DPA on GitHub, the specifications sent to NAB-Master include
crawling and analysis settings, the DPA plugin configuration, and a set of user-defined time
intervals (which restricts the crawling to specific ranges of dates). The time intervals refer to
the dates where the projects had the most recent activity (i.e., commits made to any branch).
Since Docker Swarm does not provide a mechanism to enforce a given order for starting
containers, we implement a synchronization mechanism such that all NAB components wait
for the MQTT Broker container to be ready, since it is the core communication-related
component, responsible for receiving and dispatching messages.

NAB-Master handles four lists: timeIntervals (storing the time intervals to crawl and
initialized according to the specifications set by the user), projects (storing the name
of the projects to analyze, initially empty), crawlers and analyzers (storing the IDs of
available and ready NAB-Crawlers and NAB-Analyzer instances, respectively, both initially
empty). During the initialization, NAB-Master subscribes to three topics: availableCrawler
(to receive messages from NAB-Crawler instances that are ready), availableAnalyzer
(same purpose of availableCrawler, but reserved for ready NAB-Analyzer instances, and
projectFound (to receive the name of the projects to analyze from NAB-Crawler instances).
Then, NAB-Master simply waits for messages on these topics to arrive. Thanks to the loosely
coupled and asynchronous architecture, NAB-Crawler and NAB-Analyzer instances can start
at any moment or be spawned on demand.

Figure 2 depicts the interaction between NAB components for crawling and analysis (note
that topic subscription is now shown in the figure). Whenever a NAB-Crawler instance
starts, it subscribes to the crawlerAssignment topic to receive crawling tasks from NAB-
Master. To announce that it is ready for crawling, the NAB-Crawler publishes a message
to the availableCrawler topic together with its ID. NAB-Master stores the received ID
in the crawlers list. Then, it verifies if there are available time intervals to crawl in the
timeIntervals list, and, if so, publishes a message to the crawlerAssignment topic to start
the crawling process, including the ID of the NAB-Crawler that should perform the crawling.
Each NAB-Crawler instance receives the message, and verifies if its own ID corresponds to
the ID included in the message. In this case, it processes the request and starts crawling.

The NAB-Crawler performs the query on GitHub’s search API, and filters out the projects
matching the analysis criteria (more details are given in Section 2.3). For each matching
project (see the loop frame in Figure 2), a message is published to the projectFound topic
such that NAB-Master can collect all projects amenable to analysis in the projects list.
Once the crawling is terminated, a message is sent to the availableCrawler topic to signal
the availability to crawl projects in a new time interval.

Following a procedure similar to the one employed for NAB-Crawlers, when a NAB-
Analyzer instance starts, it subscribes to the analyzerAssignment topic and publishes
a message to the availableAnalyzer topic specifying its ID. Such ID is stored in the
analyzers list handled by NAB-Master. If there are entries in the projects list, NAB-
Master publishes a message to the analyzerAssignment topic, specifying the ID of the
NAB-Analyzer that should execute the DPA and the project to analyze. The corresponding
NAB-Analyzer, upon verifying that its ID matches the one contained in the message, starts the
DPA activity, by first cloning the project and then running the DPA tool though the selected
plugin (more details on the DPA execution are given in Section 2.4). Upon completion,
the NAB-Analyzer collects the generated results as well as statistics on the DPA execution
(shown as results and stats in the figure, respectively), and stores them in the MongoDB
database. Finally, the NAB-Analyzer discards the temporary data needed for running the

A. Villazón et al. 20:7

!"#$"%&
'()*+, -.&/.#012345 -.&/!06)45 -.&/7508145 !9::;&5"<45

75081(#$

=+,1(6>?@0A0(10,147508145@B;7C

=+,1(6>?@0A0(10,147508145@B;7C

D5081456E=+)?7C

7;F;D5081456E$4)?CG;(#)45A01;F;)(H4I#)45A016E$4)?CG;=+,1(6>?@D508145.66($#H4#)@B7B(#)45A01C

=+,1(6>?@D508145.66($#H4#)@B7B(#)45A01C

6405D>?(#)45A01C

=5"J4D)K(6)

L;F;M1)45L5"J4D)?=5"J4D)C

=+,1(6>?@=5"J4D)N"+#O@BLC

=+,1(6>?@=5"J4D)N"+#O@BLC

=5"J4D)6E=+)?LC

=+,1(6>?@0A0(10,147508145@B;7C

=+,1(6>?@0A0(10,147508145@B;7C

D5081456E=+)?7C

.#0126(6

=+,1(6>?@0A0(10,14.#012345@B.C

=+,1(6>?@0A0(10,14.#012345@B.C

0#0123456E=+)?.C

.;F;0#0123456E$4)?CG;L;F;=5"J4D)6E$4)?CG;=+,1(6>?@0#012345.66($#H4#)@B.BLC

=+,1(6>?@0#012345.66($#H4#)@B;.B;LC

D1"#4?LC

D"O4PL

546+1)6;F;5+#%L.L1+$(#?D"O4PLC

6)0)6;F;D"114D)QR4D+)("#S)0)6?C

60A4?LB546+1)6B6)0)6C

=+,1(6>?@0A0(10,14.#012345@B.C

=+,1(6>?@0A0(10,14.#012345@B.C

0#0123456E=+)?.C

!""# $%"&'()*+#&",-).+/0+#&",-).1/2.3

Figure 2 Interactions between NAB’s components during crawling and analysis (after component
initialization).

DPA, initializes a fresh execution environment and announces that is ready for a new DPA
activity by publishing a message to the availableAnalyzer topic. NAB-Master stops when
no further time intervals to crawl and projects to analyze are in the corresponding lists.

2.3 Crawling

Each NAB-Crawler instance receives (from NAB-Master) a set of specifications describing
the characteristics of projects to be crawled, including the time intervals to consider during
crawling (which can express either the date of project creation or the last update), the
programming language(s) or the build system(s) to match, and the maximum number of
results per request. This information is used to query the GitHub’s search API to collect
metadata of the matching projects. Additionally, NAB-Crawler can filter the metadata
resulting from the query according to various criteria, such as selecting only projects with a
specific entry in the build file (useful for discarding projects that are unrelated to a given
DPA), or those with a minimum number of forks, watchers, stars, or contributors. Such
criteria are set by the user, and are sent to the NAB-Crawler instance by NAB-Master.
Finally, the NAB-Crawler sends the matching projects’ names to NAB-Master.

ECOOP 2019

20:8 Large-Scale Dynamic Program Analysis in the Wild

Since the GitHub API has a limit3 of 1,000 results per search query (independently from
the selected time intervals), NAB-Master automatically subdivides the user-defined search
intervals such that each NAB-Crawler instance is assigned fewer projects to crawl than the
aforementioned limit, thus eventually crawling all the projects in the specified time intervals.

2.4 Executing DPA
The analysis starts with cloning the source code of the project from GitHub. NAB provides
support for different build systems, e.g., NPM for Node.js, SBT for Scala, or Maven (MVN)
for Java and Scala. NAB-Analyzer spawns a process to run the automatic build system, which
typically downloads dependencies and compiles the required code. Finally, the project’s
testing code is executed, applying a DPA through a plugin (see Section 2.5). Upon DPA
completion, the NAB-Analyzer instance stores the analysis results and the execution statistics
in the database. By default, the DPA is run on the most recent revision of the default branch
(as set up by the manager of the project on GitHub).

Apart from the results of the DPA, NAB collects different statistics on the analysis
execution, such as start and end timestamps for every performed activity, and the exit code of
the spawned process (indicating success or failure). Such statistics are stored in the database
along with the analysis results. NAB-Analyzer sets a timeout (called analysis timeout) for
the spawned process running the DPA to prevent buggy, malicious, or non-terminating
application code (or DPA code) from excessively consuming resources. DPAs exceeding the
analysis timeout are forcibly terminated.

NAB also reports projects that fail to build. Build failures are usually caused by developers
assuming the presence of pre-installed software or specific settings (e.g., variables or paths)
in the environment, which instead are not present. For example, in a Node.js project, some
module dependencies may be missing in its configuration. Similar issues can occur in Java
projects, where some Maven-managed projects may fail to build due to missing libraries or
tools (e.g., parsers or pre-processors).

Since NAB uses a two-level orchestration (i.e., an external orchestration handled by Docker
Swarm and an internal one handled by NAB-Master), it can happen that NAB-Analyzer
containers are restarted by Docker Swarm without NAB-Master being notified. To handle
this case, NAB implements a fault-tolerance mechanism using a timer that is started for
each scheduled DPA. If a result arrives before the analysis timeout, the timer is stopped;
otherwise, the DPA is re-scheduled for execution for a configurable number of times. Users
can configure how NAB should handle multiple results in the case of a restarted DPA (e.g.,
keep only the first result, keep all results, combine the set of results.)

2.5 NAB Plugins and DPA Tools
To run massive analyses, NAB provides a plugin mechanism for different analysis frameworks
to run DPA tools.4 To integrate a third-party DPA tool into NAB, the user needs to provide
three shell scripts: (1) to set up the execution environment for the analysis framework, (2) to
execute the DPA tool, and (3) to post-process the DPA results. NAB allows one to select a
build system and a runtime, and takes care of executing the provided scripts and applying
the DPA tools to the projects under analysis. Integrating existing DPA tools into NAB does
not require much effort. Typically, creating a new plugin requires about 100 lines of code,
divided into the three aforementioned shell scripts. The post-processing script is usually the
longest, as it needs to format the DPA results in JSON for storing them in the NAB database.

3 https://developer.github.com/v3/search/
4 NAB plugins can also directly integrate DPA tools that do not depend on any analysis framework.

https://developer.github.com/v3/search/

A. Villazón et al. 20:9

Table 1 NAB supported languages, build systems, analysis frameworks, DPA tools, and runtimes.
The sign † indicates those used in the following case studies.

Language Build
System

Analysis
Framework DPA Tool Runtime

JavaScript† NPM† NodeProf†[62] Deep-Promise†

JITProf†[17] GraalVM†[68]

Java† MVN† DiSL†[41]
AspectJ [34]

tgp†[54]
JavaMOP [31]

HotSpot VM†[9]
GraalVM

Scala† SBT†

MVN DiSL† tgp† HotSpot VM†

GraalVM

For the supported build systems, NAB captures the exact entry point where the runtime
is invoked, and plugs in the corresponding DPA tool. For example, to run a DPA tool with a
plugin for a weaver or instrumentation framework working at the Java bytecode level (e.g.,
AspectJ’s load-time weaver [34] or the DiSL [41] dynamic instrumentation framework) the user
can select the MVN build system and Oracle’s HotSpot JVM [9] as runtime; NAB takes care
of passing all the required parameters (e.g., instrumentation agents, libraries, or generated
harness bytecode) to the JVM, to start the analysis. Existing DPA tools that can run in a
containerized environment are suitable for NAB. On the contrary, DPA tools that require
access to special OS- or hardware-layer features that are not supported in containerized
environments (e.g., hardware performance counters or NUMA-specific CPU/memory policy
control) are not candidates for a NAB plugin. Table 1 shows the currently supported
programming languages, build systems, analysis frameworks, DPA tools, and runtimes.

Extending NAB to support other languages, build systems and testing frameworks is
mostly a straightforward engineering effort. To extend NAB, one needs to modify the
NAB-Analyzer component (generating new scripts wrapping the build system to set NAB-
specific variables and to invoke the selected plugin) and its building configuration (updating
the Dockerfile, to install the new build system and to deploy the runtime within the
NAB-Analyzer image). All other core NAB components remain unchanged.

2.6 Implementation Technologies for Containerization
NAB-Master, NAB-Crawler, and NAB-Analyzer are implemented in Node.js and are deployed
in containers in a Docker Swarm. NAB uses an overlay network inside the Swarm to optimize
the communication between the NAB components and to leverage the internal DNS service (to
reach NAB services by name, avoiding complex settings). NAB relies on Docker Compose [21],
which simplifies the deployment of the whole analysis infrastructure on a cluster or in the
Cloud. Since all NAB services are based on Docker container technology, NAB can be easily
migrated to other Docker-friendly orchestration engines, such as Kubernetes [4] or Mesos [20],
which provide similar functionalities as Docker Swarm. NAB has been tested on Azure
Cloud [44] and on a shared cluster with hundreds of nodes.

3 Experimental Setup

Here, we present the experimental setup used for running NAB to analyze massive collections
of open-source projects in our case studies. Even though crawling and analysis can be done
at the same time in NAB, we separate both processes to first generate a list of projects that
is then used for different DPAs.

ECOOP 2019

20:10 Large-Scale Dynamic Program Analysis in the Wild

Table 2 Number of selected GitHub projects. For each programming language
(JavaScript/Node.js, Java, Scala), the first row lists the amount of all GitHub projects. Sub-
sequent rows show the number of surviving projects after applying filters (i.e., the predicates in
the leftmost column). The number of projects considered in our case studies is shown in the row
“≥ 2 Contrib.”.

2013 2014 2015 2016 2017 Total
All Node.js 226,879 380,607 620,211 1,055,799 1,708,261 3,991,757
NPM Build 226,858 332,399 363,181 364,871 363,898 1,651,207
Test Entry 22,956 65,018 100,581 134,917 158,547 482,019
≥ 2 Contrib. 4,311 11,415 20,593 30,889 42,078 109,286
All Java 164,208 321,290 636,316 1,001,370 1,477,473 3,600,657
MVN Build 164,146 301,632 362,061 364,861 363,898 1,556,598
Test Entry 17,569 28,411 32,005 32,948 35,773 146,706
≥ 2 Contrib. 2,748 4,361 5,583 6,112 7,114 25,918
All Scala 7,875 11,670 18,692 25,501 33,463 97,201
SBT Build 7,853 11,640 18,618 25,402 33,188 96,701
Test Entry 1,802 3,222 5,991 9,217 11,971 32,203
≥ 2 Contrib. 222 404 706 1,021 1,723 4,076

3.1 NAB Configuration and Deployment
We run NAB in a shared cluster, composed of 176 nodes (each requiring reservation), where
each node is equipped with a 16-core AMD Opteron CPU (2.6 GHz) and 128 GB RAM. We
run 1,024 NAB-Analyzer instances using 64 nodes, i.e., 16 NAB-Analyzer instances per node.
The nodes are connected to a 10 Gb/s internal network and to a 1 Gb/s external network.

We configure the NAB core services with V8 Node.js 10.9 deployed with Docker-CE 1.18.
The NAB containers are built using a Linux Ubuntu 16.04 Docker image. We deploy Eclipse
Mosquitto MQTT 1.4 broker and MongoDB 4.0.

For all the analyses performed in the three case studies, the NAB-Analyzer instances are
configured with an analysis timeout of one hour.

3.2 Crawling and Project Selection
We crawl 5 years of Node.js,5 Java, and Scala projects from GitHub (from 2013-01-01 to
2017-12-31). To minimize the number of (typically small) personal projects crawled, we only
collect projects with a minimum of 2 contributors, as suggested by [33]. For each crawled
project, we check whether an automatic build configuration file is present (i.e., NPM’s
package.json file for Node.js, SBT’s build.sbt file for Scala, or MVN’s pom.xml file for
Java), such that the project can be automatically built. The analyses presented in this paper
are conducted on the unit tests in the projects that can be run by automatic means (e.g.,
in case of NPM, by executing “npm test”). For this reason, we also check whether a test
entry exists.

Table 2 shows the total number of crawled and selected projects per year (i.e., projects
that existed and whose most recent commit made on any branch occurred that year). For

5 Node.js projects are identified as JavaScript projects in GitHub, as JavaScript is used as programming
language in the project description, but can be recognized thanks to the presence of Node.js-specific
configuration files.

A. Villazón et al. 20:11

each programming language considered, the table reports the number of projects that can
be built, that contain a test entry, and those with at least 2 contributors (such filters are
applied in cascade). Only projects passing all filters (i.e., 109,286 Node.js projects, 25,918
Java projects, and 4,076 Scala projects, as reported in the last row) are considered in the
following case studies.

4 Case Study I: Analyzing the Use of Promises in Node.js

In our first study, we present a novel dynamic analysis (called Deep-Promise) to collect
insights on how developers use JavaScript’s Promise API, allowing one to understand its
actual adoption to handle asynchronous executions. The Promise API is a key novel language
feature introduced in the ECMA specification to enable better handling of asynchronous
interactions in JavaScript applications. Promises greatly simplify the way asynchronous code
can be expressed, by introducing the notion of promise chain, i.e., a sequence of asynchronous
events with logical dependencies.

The goal of this study is to provide a better understanding of the popularity and usage
trend of the API in real-world projects and in the modules they depend on, which can be
useful for the Node.js community. To the best of our knowledge, this is the first large-scale
study on the use of promises in Node.js projects and the NPM modules they depend on,
enabled by NAB.

4.1 Monitoring Promises in JavaScript
The introduction of promises since ECMAScript 6 [29] greatly simplifies the development of
asynchronous applications in JavaScript. With promises, asynchronous executions can be
implemented elegantly, avoiding the so-called “callback hell” problem, by enabling chaining
of (asynchronous) functions [1]. The value that resolves or rejects a promise can be used
as the input of the reacting promise(s). The latter promise(s) depend on the previous one,
forming a promise chain.

In [40], the authors introduce the notion of promise graph, a formal graph-based model
for understanding and debugging code developed using the Promise API. A promise graph is
composed of several promise chains. Each promise chain is an acyclic data structure showing
the dependencies among promises and the values that resolve or reject each promise. The
size of a promise chain, i.e., the number of promises inside the chain, gives us insights about
the use of promise constructs. As promise chains of size one have no subsequent reactions to
be executed asynchronously, such chains are not used to handle asynchronous executions.
Hence, we denote as trivial a promise chain of size one, as opposed to a non-trivial promise
chain, which size is greater than one.

Building a DPA to accurately capture all promise chains requires an instrumentation
framework capable of intercepting every use of the Promise API. Before explaining Deep-
Promise, we first introduce the underlying instrumentation framework NodeProf, integrated
in NAB through a dedicated analysis plugin.

4.1.1 NodeProf Framework
NodeProf [62] is an open-source6 dynamic instrumentation framework for Node.js based on
GraalVM [68]. NodeProf relies on the dynamic instrumentation of the Abstract Syntax Tree
(AST) interpreter of the GraalVM JavaScript engine. In contrast to other dynamic analysis

6 https://github.com/Haiyang-Sun/nodeprof.js

ECOOP 2019

https://github.com/Haiyang-Sun/nodeprof.js

20:12 Large-Scale Dynamic Program Analysis in the Wild

frameworks for Node.js (e.g., Jalangi [57]), NodeProf is compatible with ECMAScript 8, and
supports JavaScript constructs such as promises and async/await, which are not supported
in other frameworks. An additional advantage of NodeProf is that it instruments only loaded
code, while other frameworks typically rely on source-code instrumentation, which usually
needs to instrument all source code files in advance before execution, even if they are not
used. NodeProf’s approach can significantly reduce the time needed for the instrumentation,
as the NPM modules a project depends on can contain thousands of source code files (while
only a small portion of them may be used by the project).

4.1.2 Deep-Promise DPA
Deep-Promise is a DPA implemented on top of NodeProf that constructs the full promise
graph of any Node.js application at runtime. Deep-Promise tracks the creation of all promises
and the dependent relations between them. There can be three different dependencies
between two promises: (1) fork, where a promise has one or more reactions registered, e.g.,
via Promise.then or Promise.catch; (2) join, where multiple promises join into one promise
via Promise.all or Promise.race; (3) delegate, where a promise is used as a value to resolve
or reject another promise. Additionally, Deep-Promise also tracks usages of async/await,
which deal with implicit promises.

Deep-Promise directly instruments the built-in promise implementation, capturing the
creation of every promise and the dependency between promises. Upon program termination,
the promise graph is dumped and stored in the database by the NAB-Analyzer instance
executing the analysis. The resulting promise chains are later analyzed with an offline tool
to compute statistics.

4.2 Executing Deep-Promise with NAB
For every project to analyze, we run the automatic build system through NPM, by executing
“npm install”, which downloads, compiles, and installs dependencies, including third-party
testing frameworks such as mocha, unitest, or grunt. If the installation succeeds, we run the
default test program in the project by executing “npm test” with Deep-Promise enabled.

From the 109,286 executed Node.js projects (see Table 2 on page 10), NAB reports
23,297 successfully analyzed projects with Deep-Promise. Unsuccessful projects include
those with broken tests (e.g., wrong test settings or assuming non-standard pre-installed
software), projects with failing tests, and those exceeding the 1-hour analysis timeout of our
cluster-based experimental setup.

The total execution time reported by NAB is 7.1 hours. Running the analysis sequentially
in a single NAB-Analyzer would take up to about 2.7 months.7

4.3 Promise API Adoption for Asynchronous Executions
First, we measure how widely promises are used in project tests by identifying the usage of
the Promise API in either application code (i.e., code exercised by tests) or the dependent
NPM modules. From the 23,297 successfully analyzed projects, we find that 5,971 projects
(i.e., 25.6%) make use of the Promises API. In our analysis, we differentiate trivial promise
chains (that are not used to handle asynchronous executions) from non-trivial ones.

7 This estimation is calculated as the sum of the execution times reported for the analysis of each project
by a NAB-Analyzer instance.

A. Villazón et al. 20:13

452 (541)

App: 609 (641) Module: 2216 (5871)

1764 (5330)157 (100)

Overall: 2373 (5971)

Figure 3 Distribution of projects that use promises only in application code (blue circle), only in
modules (green circle), or in both (intersection). The left-side values indicate the number of projects
excluding trivial promises, while the right-side values in parentheses include trivial promises.

Figure 3 shows the overall distribution of projects that use promises in the application code
(blue circle), in the dependent NPM modules (green circle), or in both (their intersection).
The right-side values in parentheses show the total number of projects making use of promises
(before excluding trivial promise chains), while the left-side values indicate the number of
projects after the exclusion. Overall, 5,971 projects use promises, while only 2,373 projects
use non-trivial promise chains. The left-side numbers (after excluding trivial promises) are
smaller than the right-side numbers in parentheses, except for the application-only part,
because some projects use promises in both application code and in modules, but only trivial
promises in modules. After excluding trivial promises, such projects are found using promises
only in the application code.

From the figure, we can observe that out of 23,297 projects, only 157 (0.6%) of them use
promises only in application code, while 2,216 (9.5%) use promises also indirectly, i.e., in the
modules they depend on. Our findings suggest that many projects do not directly depend
on promises, but rather rely on the promise support introduced by other modules that they
depend on.

Our analysis also reveals that from the 5,971 projects that use the Promise API, a total
of 440 different dependent NPM modules use promises, out of which 41 modules create
only trivial ones. Figure 4 shows the most frequently used NPM modules that make use of
promises on the x-axis (used by at least 100 projects), and the number of projects using
such NPM modules on the y-axis. Each bar represents the number of projects and is further
divided into two parts according to the maximum size of the promise chain (i.e., showing
trivial and non-trivial promise chain usages). Modules lodash and prettier contain only trivial
promise chains, as they use promises only for version detection.8 The other modules use
promises for different purposes. For example, jest and mocha are test harnesses widely used
by NPM modules, which use promises to run tests, while pify is a library used to “promisify”
a callback by returning a promise-wrapped version of it.

8 Such modules execute Promise.resolve and check whether the returned object is a promise object or
not, to detect whether the current JavaScript version is ECMAScript 6 or higher. Such a promise usage
is unrelated to asynchronous executions.

ECOOP 2019

20:14 Large-Scale Dynamic Program Analysis in the Wild

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

lodash

bluebird

core-js
pify jest

globby
throat

xo ava
hullabaloo

release-zalgo

mocha

package-hash

path-ty
pe

prettie
r

fast-g
lob

dir-g
lob

resolve

#
 P

ro
je

c
ts

 U
s
in

g
 a

 M
o

d
u

le

trivial promise chains
non-trivial promise chains

Figure 4 Most frequently used NPM modules that make use of promises, and the number of
projects using such modules.

Our results suggest that such modules (i.e., with non-trivial promises) should be preferred
over the others (i.e., without promises or with only trivial ones) by researchers as well as
language implementers who might want to evaluate and optimize the usage of promises in
real-world Node.js applications. Specifically, identifying and optimizing a popular promise
usage pattern in one of such modules might have a positive performance impact on several
existing applications.

4.4 Frequency of Promise API usage
We further study the frequency of Promise API usages among the 2,373 projects with
non-trivial promise chains. The Promise constructor and the Promise.then method are the
most used ones (in 2,287 and 2,363 projects, respectively), as they are the most common
way to create and use promises. Promise.catch is used less frequently (in 1,732 projects),
which reveals that not all programmers add a catch statement when programming with
promises (which is considered a best practice when using promises in JavaScript [55]). Other
APIs, such as Promise.all and Promise.race, are used even less frequently (in 1,488 and
233 projects, respectively). Finally, only 47 projects use await for asynchronous functions,
as the async/await feature was introduced in ECMAScript 8 [30] (mid 2017).

The size of a promise chain is an important characteristic for understanding how applica-
tions use promises. Figure 5 shows the distribution of different maximum promise-chain sizes
among the 2,373 projects that use non-trivial promise chains. 50.5% of the projects create
only promise chains sized within 10; in 38.3% of the projects the longest promise-chain has a
size between 11 and 100; and 11.2% of the projects have at least one promise chain with
size greater than 100. We observe the longest promise chain (5,002 promises) in the project
lahmatiy/postcss-csso.

Our findings suggest that the number of projects with long promise chains is relatively high.
As the length of the promise chain is a potential indicator of a long-living application, such
projects could be considered as potentially interesting for the development of microbenchmarks
stressing the Promise API.

A. Villazón et al. 20:15

Figure 5 Statistics for the maximum promise-chain size observed in the 2,373 projects that make
use of non-trivial promise chains. Percentages indicate projects with maximum chain size between 2
and 10, between 11 and 100, and more than 100.

In conclusion, this study demonstrates how NAB can be used for analyzing the usage of a
particular programming-language construct (here, asynchronous executions via promises in
Node.js projects) in the wild. The results of our analysis could be useful for Node.js developers
to find projects and popular modules that use promises for asynchronous executions. In
particular, evaluating and optimizing such modules could be beneficial to several existing
applications. Moreover, we found many projects with long promise chains; such projects
might be considered as potentially interesting for benchmarking promises on Node.js.

In future work, we plan to re-execute our analysis on new versions of the considered
modules, and to track the adoption of the Promise API over time. In this way, the analysis
could also indicate which specific parts of the API are gaining more adoption (if any).

5 Case Study II: Finding JIT-unfriendly Code Patterns in Node.js

Our second massive study of public repositories using NAB deals with the quality of the
JavaScript code available on the NPM package repository. Specifically, our goal is to execute a
comprehensive DPA to identify bad coding practices that are known to affect the performance
of Node.js applications. Such coding patterns – also called JIT-unfriendly code patterns – may
prevent typical JIT compiler optimizations, such as function inlining, on-stack replacement,
and polymorphic inline caching.

To this end, we resort to an existing DPA for JavaScript, called JITProf [17], which can
identify and collect a variety of JIT-unfriendly code patterns otherwise impossible to identify
using static analysis. JITProf is open-source,9 and relies on the Jalangi [57] instrumentation
framework. Since Jalangi does not support the latest ECMAScript standard, we adapt the
analysis to run on the NodeProf framework (see Section 4.1.1) for the GraalVM.

This yields the benefits of supporting up-to-date language features (as NodeProf is
compatible with ECMAScript 8), and also reduces the time needed for the instrumentation.

JITProf can identify seven different categories of JIT-unfriendly code patterns, namely:
AccessUndefArrayElem, tracking accesses to undefined array elements; BinaryOpOnUndef,
to track when undefined is used in binary operations; InconsistentObjectLayout, to

9 https://github.com/Berkeley-Correctness-Group/JITProf

ECOOP 2019

https://github.com/Berkeley-Correctness-Group/JITProf

20:16 Large-Scale Dynamic Program Analysis in the Wild

Table 3 Amount of projects where at least a JIT-unfriendly code pattern in found (out of 26,938
analyzed Node.js projects). Dependent NPM modules are excluded from the analysis.

JIT-unfriendly Pattern # Projects %
AccessUndefArrayElem 1,253 4.7%
BinaryOpOnUndef 757 2.8%
InconsistentObjectLayout 9,509 35.3%
NonContiguousArray 194 0.7%
PolymorphicOperation 3,073 11.4%
SwitchArrayType 81 0.3%
TypedArray 546 2.0%
At least one 9,969 37.0%

find object access patterns that lead to inline-cache misses; NonContiguousArray, to locate
non-contiguous array accesses; PolymorphicOperation, to identify polymorphic (including
megamorphic) binary and unary operations; SwitchArrayType, to find unexpected transitions
in arrays internal backing storage (i.e., array strategies [6]); TypedArray, to account for
unnecessary usages of generic arrays where typed arrays could be used (e.g., to replace
contiguous numeric arrays). A detailed description of the analyses required to identify such
patterns can be found in [17].

5.1 Executing JITProf with NAB

We run JITProf with NodeProf in two settings, i.e., (1) profiling only application code, and
(2) profiling also dependent NPM modules. Out of the 109,286 Node.js projects executed (see
Table 2 on page 10), NAB reports 26,938 successfully analyzed projects with application-only
profiling, and 3,940 projects when profiling also dependent NPM modules. The analyses in
JITProf that identify JIT-unfriendly patterns require heavy instrumentation (as they track
object creation, accesses and operations), which may significantly slow down application
execution (leading to failures due to the presence of timeouts in the code, or increasing the
execution time past the 1-hour analysis timeout) or cause out-of-memory errors, particularly
when profiling NPM modules, due to the large amount of code that is instrumented and
analyzed in all dependent NPM modules in each project. For this reason, JITProf does not
complete on several projects, which are ignored in our analysis. Similarly to the previous use
case, we exclude projects with broken or failing tests.

The total execution time reported by NAB is 25.3 hours, whereas a sequential execution
in a single NAB-Analyzer would take up to about 8.4 months.

5.2 JIT-unfriendly Patterns in Application Code

We first focus on application code disregarding the dependent NPM modules. The results of
the analyses are shown in Table 3. As shown in the second column (“# Projects”), a total of
9,969 projects result in at least one JITProf warning, i.e., 37.0% of the successfully analyzed
projects suffer from at least one JIT-unfriendly code pattern. The most common pattern
found is InconsistentObjectLayout, occurring in 9,509 projects. This result implies that
these projects perform read or write accesses to objects in a sub-optimal way that may prevent
compiler optimizations, and may therefore pay a performance penalty when performing such
accesses in frequently executed code.

A. Villazón et al. 20:17

Table 4 Top 3 dependent NPM modules suffering from JIT-unfriendly code. Column “# Modules”
indicates the number of unique modules where a given pattern occurs. For each module, the values
in parentheses indicate the number of projects using that module.

JIT-unfriendly Pattern # Modules Top 3 NPM Modules

AccessUndefArrayElem 252 commander
(637)

glob
(569)

abbrev
(178)

BinaryOpOnUndef 83 strip-json-comments
(110)

jsbn
(110)

sinon
(83)

InconsistentObjectLayout 523 commander
(687)

chai
(369)

tape
(337)

NonContiguousArray 49 semver
(167)

jsbn
(110)

eslint
(51)

PolymorphicOperation 453 lodash
(311)

glob
(178)

mime-types
(174)

SwitchArrayType 16 babylon
(4)

lodash
(3)

eslint
(3)

TypedArray 144 lodash
(51)

jshint
(48)

regenerate
(38)

At least one 900 commander
(963)

glob
(569)

lodash
(432)

5.3 JIT-unfriendly Patterns in NPM Modules (top 3)

We also collect statistics on JIT-unfriendly code in the NPM modules used by the exercised
tests, which is reported in Table 4. From the set of 3,940 Node.js projects successfully
analyzed, 900 dependent NPM modules execute at least one JIT-unfriendly code pattern, as
shown in the second column (“# Modules”). The most common JIT-unfriendly code pattern
is InconsistentObjectLayout (in 523 modules), while only 16 modules show occurrences
of SwitchArrayType. For each code pattern, we also identify the top 3 modules (i.e., the
3 NPM modules used most frequently among projects where we found the pattern). The
values in parentheses below a module name in Table 4 show the number of projects using
that module. For example, as shown in the first row of the table, there are 637 projects using
the NPM module commander, 569 projects using glob, and 178 projects using abbrev.

Several modules suffer from more than one JIT-unfriendly code pattern. For example,
the popular NPM module lodash frequently executes 3 kinds of JIT-unfriendly code patterns
(i.e., PolymorphicOperation, SwitchArrayType and TypedArray). The 3 top modules with
at least one JIT-unfriendly code pattern are commander, glob and lodash (as reported in
the last row of the table). These modules are very popular, being imported by almost 130K
other distinct NPM modules overall.10

In summary, our study reveals that Node.js developers frequently use code patterns that
could prevent or jeopardize dynamic optimizations and have a potential negative impact on
applications performance. Such patterns occur both in application code and in dependent
NPM modules used by a project.

10The estimation of the number of dependent modules is taken from the global NPM registry
(https://www.npmjs.com/) and dated November 2018.

ECOOP 2019

https://www.npmjs.com/

20:18 Large-Scale Dynamic Program Analysis in the Wild

6 Case Study III: Discovering Task-parallel Workloads

For many specific evaluation needs, there is a lack of suitable domain-specific benchmarks,
forcing researchers to resort to less appropriate general-purpose benchmarks. In our third
case study, we focus on discovering workloads that can fulfill the needs of a domain-specific
evaluation. We consider a researcher requiring task-parallel applications on the JVM
exhibiting diverse task granularities, to analyze concurrency-related aspects. Currently, only
few task-parallel workloads can be found in well-known benchmark suites [5, 58, 61, 60]
targeting the JVM. Moreover, except for DaCapo,11 such suites were last updated several years
ago, thus they may be not representative of state-of-the-art applications using task parallelism.

6.1 Executing tgp with NAB
tgp [54] is an open-source12 DPA for detecting the granularity of tasks spawned by multi-
threaded, task-parallel applications running on the JVM. tgp profiles all tasks spawned
by an application (defined as subtypes of the Java interfaces/classes java.lang.Runnable,
java.util.concurrent.Callable, and java.util.concurrent.ForkJoinTask), collecting
their granularity, i.e., the amount of work carried out by each parallel task, in terms of the
number of executed bytecode instructions. The DPA runs on top of DiSL [41], a dynamic
analysis framework for the JVM that ensures complete instrumentation coverage (i.e., it can
instrument every method with a bytecode representation), thus enabling the detection of
tasks used inside the Java class library.

For this case study, we run tgp on top of DiSL (which can be attached to NAB via a
dedicated plugin) to measure the granularity of all tasks spawned during the execution
of testing code in Java and Scala projects from GitHub. Our goal is to discover projects
with a high diversity of task granularities, which could be good workload candidates for
benchmarking task parallelism on the JVM.

The total execution times reported by NAB for this DPA are 9.5 hours (Java projects)
and 1.8 hours (Scala projects), whereas a sequential execution in a single NAB-Analyzer
instance would take up to about 1.9 months (Java) and 12.5 days (Scala).

6.2 Results for Java Projects
Out of the 25,918 Java projects analyzed (see Table 2 on page 10), 1,769 projects make use
tasks and successfully complete all tests within the 1-hour analysis timeout, thus they are
considered for the following analysis.

The total number of tasks spawned by the analyzed projects is 1,406,802. The minimum
granularity found is 1 and the maximum granularity is 187,673,879,636. Table 5 (Java section)
shows the distribution of tasks wrt. their granularities. The first column shows all ranges of
task granularities found. The second column reports the number of tasks with granularity in
the corresponding range. The third column indicates the number of projects having at least
one task with a granularity in the considered range.

The analysis results obtained with NAB reveal that test methods in project https:
//github.com/rolfl/MicroBench (a Java harness for building and running microbench-
marks written in Java 8) spawn a total of 55 tasks with granularities spanning all ranges

11Dacapo 9.12-MR1-bach was released on January 2018. However, the workloads were not significantly
modified since the previous release (dated 2009) and no new workload has been added.

12 https://github.com/Fithos/tgp

https://github.com/rolfl/MicroBench
https://github.com/rolfl/MicroBench
https://github.com/Fithos/tgp

A. Villazón et al. 20:19

Table 5 Distribution of all tasks spawned in the considered Java and Scala projects wrt. their
granularities.

Granularity
Range

Java Scala
Tasks Projects Tasks Projects

[100 - 101) 137,468 686 301,066 771
[101 - 102) 278,765 466 280,244 710
[102 - 103) 215,211 673 2,795,702 860
[103 - 104) 285,196 1,092 1,278,974 769
[104 - 105) 247,284 1,367 124,473 771
[105 - 106) 128,992 1,492 74,989 769
[106 - 107) 89,710 1,327 13,002 806
[107 - 108) 17,178 1,046 4,555 677
[108 - 109) 5,696 581 1,789 619
[109 - 1010) 1,164 177 430 276
[1010 - 1011) 120 53 22 20
[1011 - 1012) 18 8 1 1

except [104 - 105). In addition, the project https://github.com/47Billion/netty-http
(a library to develop HTTP services with Netty [65]) makes use of a total of 123 tasks in
its tests, with granularities in all ranges except [1011 - 1012). Both Java projects can be
good candidate workloads for task benchmarking, as they exhibit a high diversity of task
granularities.

6.3 Results for Scala Projects

Out of the 4,076 Scala projects analyzed (see Table 2 on page 10), 860 projects contain
task-parallel workloads and successfully complete all tests within the analysis timeout. Such
projects spawn a total of 4,875,247 tasks. The minimum granularity found is 2 while
the maximum is 204,418,653,894. Table 5 (Scala section) shows the distribution of tasks
wrt. their granularities.

The analysis results pinpoint three candidate workloads spawning tasks with gran-
ularities spanning all ranges except [1011 - 1012). First, the project https://github.
com/iheartradio/asobu (a library for building distributed REST APIs for microservices
based on Akka cluster [36]) spawns a total of 19,880 tasks in its tests. Second, project
https://github.com/TiarkRompf/virtualization-lms-core (a library for building high
performance code generators and embedded compilers in Scala) executes a total of 5,759 tasks.
Finally, tests inside project https://github.com/ryanlsg/gbf-raidfinder (a library for
tracking gaming-related tweets from Twitter) run a total of 20,934 tasks. This set of projects
provides candidate Scala workloads for benchmarking task execution on the JVM, due to
their high diversity of task granularities.

Overall, our analysis results show that NAB can help discover good candidate workloads
satisfying domain-specific benchmarking needs. Moreover, this study demonstrates NAB’s
support for multiple programming languages.

7 Discussion

In this section, we discuss the strengths and limitations of our approach, focusing on different
aspects of massive DPA, including safety, extensibility, scalability, and code evolution.

ECOOP 2019

https://github.com/47Billion/netty-http
https://github.com/iheartradio/asobu
https://github.com/iheartradio/asobu
https://github.com/TiarkRompf/virtualization-lms-core
https://github.com/ryanlsg/gbf-raidfinder

20:20 Large-Scale Dynamic Program Analysis in the Wild

7.1 Safety
As NAB is executing unknown projects, sandboxing is crucial to protect the execution
platform from malicious or erroneous code. NAB relies on Docker containers to isolate the
execution of DPAs from the host environment. Thus, a project may only crash a NAB-
Analyzer instance running in a Docker container, without harming the underlying platform.
Such crashes are handled by NAB’s fault-tolerance mechanism. A project that repeatedly
crashes or takes excessive time to execute will be excluded from any further DPA. The
fault-tolerance mechanism also mitigates problems caused by unstable third-party DPA tools
or by experimental runtimes.

7.2 Extensibility
NAB has been designed for extensibility, as code repositories have different search APIs, and
projects may use different version-control systems, programming languages, build systems,
and testing frameworks. Moreover, third-party DPA tools may require specific execution
environments, such as a modified JVM. NAB uses a plugin mechanism to handle the large
variety of systems it needs to interact with. The currently supported analysis settings are
listed in Table 1 on page 9. It is straightforward to implement additional plugins; each
existing NAB plugin has only about 100 lines of code.

We plan to add support for other version-control systems such as Mercurial [43], and
for other programming languages and their ecosystems. Moreover, supporting the Java
Microbenchmark Harness (JMH) [48] is straightforward, allowing leveraging existing bench-
marks in open-source projects that use MVN. Furthermore, we are extending NodeProf to
support additional dynamic languages offered by GraalVM, such as Python, Ruby, and R.
These extensions will enable studies on an even larger code base, targeting many popular
programming languages.

Finally, in addition to the direct interaction with the standard GitHub search API, NAB
can be extended to interact with offline mirrors and metadata archive dataset of GitHub,
such as GHTorrent [18] and GHArchive [15], which may improve the crawling time. However,
the suitability of using such offline services strongly depends on the type of DPA and required
metadata. For example, for the case studies presented in this paper, we found that GHTorrent
and GHArchve lack part of the required metadata (e.g., information about build system and
the number of contributors).

7.3 Scalability
NAB’s analysis infrastructure has been designed with scalability as a driving principle,
leveraging a container-based microservice architecture. We executed NAB in clusters varying
the number of nodes (16, 32, 48, and 64) with a constant number of containers per node (16),
observing close to linear scalability when testing the core analysis infrastructure, i.e., running
a test project with fixed execution time and without any analysis plugin, thus confirming the
low overhead of NAB’s distributed infrastructure.

Although NAB features load-balancing mechanisms for its publish-subscribe communica-
tion infrastructure and for database accesses, during massive DPA (as in our case studies) we
started observing some performance degradation with more than 1K NAB-Analyzer contain-
ers, when the number of messages exchanged for analysis coordination, result notification
and result storing increases significantly. This is due to the limits reached by Docker Swarm’s
internal overlay network, which will be improved as Docker evolves. This issue can be
mitigated by running several NAB deployments (i.e., running in separate Docker Swarms)
that coordinate themselves using external MQTT brokers.

A. Villazón et al. 20:21

The optimal number of NAB-Analyzer instances to run on each host depends on the
resource demands of the DPA tool to be executed. Even though Docker Swarm’s scheduler
tries to distribute the load fairly, it cannot distinguish the containers’ roles and may stop and
restart them without making any difference. While the restart of NAB services is handled
by the fault-tolerance mechanism, it is important to avoid deploying critical NAB services
(notably NAB-Master and the MQTT Brokers) on the same host where high-demanding
NAB-Analyzer instances are deployed, so as to avoid performance penalties in running the
analysis. NAB provides configurable deployment settings to properly place the core services.

7.4 DPA Reproducibility and Code Evolution
NAB can differentiate between different versions of a DPA (e.g., when an existing DPA
is updated, it results in a new version). Moreover, NAB can apply an arbitrary DPA
version to an arbitrary project revision. When a DPA completes, NAB stores provenance
metadata, which identifies the DPA version and project revision. This metadata makes DPAs
reproducible, as NAB allows one to re-execute a specific DPA version on a specific project
revision even if they have been updated.

For version dependency management supporting wildcards, as in the case of Node.js, since
many versions may match a given wildcard for a single dependency, it would be extremely
costly (and thus impractical) to test each valid version for every dependency. NAB follows
the default behavior of “npm install”, which installs only the latest version of a dependent
module matching the wildcard. Thus, provenance metadata includes the exact dependency
version installed.

NAB enables the analysis of multiple revisions of the same project, which helps gain
insight into the changing runtime behavior during project evolution. NAB supports this
through incremental analysis: the user may request the analysis of only those project revisions
that have not been analyzed yet, avoiding to re-analyze projects that have not changed
since the last run of the same DPA. While such studies would significantly increase the
number of analyses to run, NAB enables such computationally expensive analyses thanks to
its distributed and scalable architecture, allowing the deployment of an analysis on a large
cluster or in the Cloud.

Preserving provenance metadata is also useful to understand the evolution of a DPA. The
user may apply the new version of a DPA to exactly the same project revisions analyzed
previously (with an older version of the DPA). Exploring the differences between the analysis
results can help identify bugs in the DPA implementation.

7.5 Limitations
In the following text, we outline the main limitations of our approach.

7.5.1 Low-level Metrics
One inherent limitation when running in a virtualized environment (which container tech-
nology is based on) is that low-level performance counters such as hardware performance
counters [28] are restricted or not accessible. Thus, low-level dynamic metrics related to
the CPU or memory subsystem cannot be collected when running the NAB components in
Docker containers. Moreover, if multiple NAB components are deployed on the same machine,
performance interference will prevent the collection of accurate time-based metrics.

This limitation is due to the trade-off between the safety offered by Docker containers and
the flexibility of collecting arbitrary low-level metrics. While NAB also supports a deployment

ECOOP 2019

20:22 Large-Scale Dynamic Program Analysis in the Wild

setting without containerization, such a setting would sacrifice the safety properties needed
when automatically executing the code of unknown (and hence untrusted) projects. Thus,
for the measurements presented in this paper, we always use NAB with containerization.

7.5.2 Security Vulnerabilities and OS/Kernel Dependencies

NAB relies on Docker’s default sandboxing (i.e., it does not use any privileged setting).
However, DPA tools that require host’s kernel system calls (e.g., the linux “perf” tool) will
need to run NAB with privileged access (thus, potentially insecure). Furthermore, since the
real host kernel is used by such tools, this setting will not work in virtualized environments.
This is a well-known limitation of hardware-specific and OS-dependent profilers running on
Docker.13

7.5.3 Representativeness of Testing Code

A general limitation of the presented use cases is that DPAs are applied only to the existing
testing code of open-source projects. Such workloads may not be representative for a real
usage scenario of an application in production. However, since testing code in projects also
exercises library code extensively (as is the case of Node.js projects executing dependent
NPM modules), significant information on the dynamic behavior of library code can be
collected and analyzed. Thus, our approach ensures that the analyzed code stems from real
applications and libraries, and the analyses presented in this paper yield relevant results.
Moreover, in [69] the authors point out that many projects have relatively long-running
testing code, different from simple and short unit tests.

As mentioned before, we will provide a plugin for JMH to analyze existing benchmarks in
open-source projects, in addition to testing code. Furthermore, we plan to apply techniques
for automated test-case generation [50, 59] to yield executable (and hence dynamically
analyzable) code that maximizes various coverage metrics [42].

7.5.4 Analyzed Codebase and Analysis Timeout

The cluster used for obtaining our evaluation results requires a reservation and is heavily
booked. For this reason, the projects considered in our use cases cover only the period
2013–2017. An extension of the use cases to cover also year 2018 is already scheduled. The
choice of 1 hour as analysis timeout for DPAs also stems from the need of limiting the
computational effort of the DPAs, to complete them within the limited timeframe of the
cluster reservation.

8 Related Work

In this section, we provide an overview of the most significant related work. First, we review
massive analysis of code repositories. Next, we discuss DPAs targeting JavaScript. Finally,
we focus on previous approaches for generating benchmarks.

13 https://docs.docker.com/engine/security/seccomp/

https://docs.docker.com/engine/security/seccomp/

A. Villazón et al. 20:23

8.1 Massive Analysis of Code Repositories
Analyzing publicly available code repositories has become an important research area for
understanding and improving different characteristics of software. Most related work relies
on static analysis, notably for evaluating code quality [39, 52], predicting program proper-
ties [53], detecting code duplication [37], checking contracts in Java [11], identifying effects of
software scale [38], automatically documenting code modifications [7], and summarizing bug
reports [51]. Although static analyses can shed light on several aspects of software, there is a
large body of properties that can be observed only when applications are executed [8], as
DPA exposes the system’s actual behavior. Our work facilitates the application of third-party
DPAs to the projects in large code repositories.

Studies massively applying DPA are scarce. Legunsen et al. [35] use the JavaMOP [31]
runtime-verification tool to check the correct usage of Java APIs. Even though the authors
target 200 projects, their evaluation does not rely on any automated system enabling
massive DPA. Marinescu et al. [42] present a framework to analyze how open-source projects
evolve in terms of code, tests, and coverage by collecting both static and dynamic metrics.
Although the authors apply DPA using containers to easily deploy several versions of the
studied applications, their evaluation is limited to only 6 open-source projects. Overall,
the aforementioned work dynamically analyzes a small and fixed set of projects, lacking an
automatic and scalable system supporting massive custom DPA in the wild, as offered by NAB.

8.2 DPA for JavaScript
Dynamic analysis of JavaScript and Node.js applications is an active area of research. In [40]
the authors introduce the notion of promise graph, a graph-based model to reason about the
usage of JavaScript Promise objects through graphical visualization. Promise graphs are
built using DPA, and can be used to identify bugs and API misuses in Node.js. A follow-up
paper [1] from the same authors expands the work on promise graphs to perform automatic
bug detection on real-world Node.js applications. The main focus of promise graphs is bug
detection, while our DPA Deep-Promise focuses on the characterization of the Promise API
usage and on asynchronous application behaviors (non-trivial promise chains) in the wild.
To the best of our knowledge, no other large-scale study on the usage of the Promise API on
Node.js projects and the NPM modules they depend on has been conducted.

Beyond JavaScript promises, DPA has been applied to JavaScript and Node.js in a variety
of forms. As an example, JITProf [17] is a DPA tool that can identify JIT-unfriendly code
patterns in JavaScript programs. JITProf lacks the ability to perform analyses on large code
bases, and the JITProf paper evaluates only 50 client-side JavaScript applications. With
NAB, we are able to scale analyses similar to those of JITProf up to a significantly higher
number of JavaScript applications, enabling more representative results.

8.3 Benchmark Generation
Several studies focus on the creation of hand-coded synthetic benchmarks [10, 67], synthetic
workload traces [49, 47, 13], and automatically synthesized benchmarks [3, 66, 32]. Overall,
these techniques generate short workloads exhibiting a set of desired behaviors (e.g., intensive
use of CPU, memory, I/O) to enable estimating and comparing the performance of hardware
and applications. In contrast, our approach massively applies DPAs to existing testing code
at the scale of public code repositories, as a technique for automatically discovering potential
workload candidates satisfying domain-specific benchmarking needs.

ECOOP 2019

20:24 Large-Scale Dynamic Program Analysis in the Wild

To the best of our knowledge, NAB is the first system that can automatically run third-
party DPAs in the wild. Similar in spirit, the AutoBench [69] toolchain can be used to look for
potential benchmarks in Java workloads. In comparison to NAB, AutoBench lacks scalability,
multi-language support, failure handling, sandboxing, and parallel code-repository crawling
and analysis on clusters or in the Cloud. Moreover, AutoBench only supports MVN projects,
relies exclusively on JUnit, and lacks any plugin mechanism for integrating third-party DPA
tools that are fundamental for conducting analyses in the wild.

9 Conclusions

Motivated by the vast amount of today’s public open-source code and available ready-to-use
software components, this paper tackles two important research questions: whether it would
be possible to develop a tool to automate large-scale DPA on public open-source software at
a large scale, and whether such a tool would be useful for the community.

To positively answer the first question, we develop NAB, a novel, distributed infrastruc-
ture for executing massive custom DPA on open-source code repositories. NAB resorts to
containerization for efficient DPA parallelization (fundamental to obtain analysis results in
reasonable timeframes), sandboxing (to isolate buggy or malicious code) and for simplify-
ing the deployment on clusters or in the Cloud. NAB features both crawler and analyzer
components, which are deployed in lightweight containers that can be efficiently replicated.
Moreover, NAB supports different build systems, testing frameworks, runtimes for multi-
language support, and can easily integrate existing DPA tools. To the best of our knowledge,
NAB is the first scalable, container-based infrastructure for automated, massive DPA on
open-source projects, supporting multiple programming languages.

To positively answer the second question, we present three case studies where NAB enables
massive DPA on more than 56K open-source projects hosted on GitHub, leveraging unit tests
that can be automatically executed and analyzed. We present a novel analysis that sheds
light on the usage of the Promise API in open-source Node.js projects. We find many projects
with long promise chains, which can potentially be considered for benchmarking promises
on Node.js. Moreover, the results of our analysis could be useful for Node.js developers to
find projects and popular modules that use promises for asynchronous executions, which
optimization could be beneficial to several existing applications. We conduct a large-scale
study on the presence of JIT-unfriendly code on Node.js projects. Our study reveals that
Node.js developers frequently use code patterns that could prevent or jeopardize dynamic
optimizations and have a potential negative impact on applications performance. Finally, we
perform a large-scale analysis on Java and Scala projects, searching for task-parallel workloads
suitable for inclusion in a benchmark suite. We identify five candidate workloads (two in
Java and three in Scala) that may be used for benchmarking task parallelism on the JVM.

Regarding ongoing research, we are exploring to which extent the testing code executed
by NAB is representative for real-world usage scenarios of applications. We are applying
automated test-case-generation techniques to increase the amount of dynamically analyzable
code. Finally, we are also extending NAB to different repositories (including offline mirrors
and datasets) and programming languages.

A. Villazón et al. 20:25

References
1 S. Alimadadi, D. Zhong, M. Madsen, and F. Tip. Finding Broken Promises in Asynchronous

JavaScript Programs. OOPSLA, pages 162:1–162:26, 2018.
2 Atlassian. Bitbucket API. https://developer.atlassian.com/bitbucket/api/2/

reference/, 2018.
3 R. Bell Jr and L. K. John. The Case for Automatic Synthesis of Miniature Benchmarks. In

MoBS, pages 4–8, 2005.
4 D. Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes. IEEE Cloud

Computing, 1(3):81–84, 2014.
5 S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, et al.

The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In OOPSLA, pages
169–190, 2006.

6 C. F. Bolz, L. Diekmann, and L. Tratt. Storage Strategies for Collections in Dynamically
Typed Languages. In OOPSLA, pages 167–182, 2013.

7 R. P.L. Buse and W. R. Weimer. Automatically Documenting Program Changes. In ASE,
pages 33–42, 2010.

8 B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A Systematic
Survey of Program Comprehension through Dynamic Analysis. IEEE Transactions on Software
Engineering, 35(5):684–702, 2009.

9 Oracle Corporation. Java SE HotSpot at a Glance. https://www.oracle.com/technetwork/
java/javase/tech/index-jsp-136373.html, 2018.

10 H. J. Curnow and Brian A. Wichmann. A Synthetic Benchmark. Comput. J., 19:43–49, 1976.
11 J. Dietrich, D.J. Pearce, K. Jezek, and P. Brada. Contracts in the Wild: A Study of Java

Programs. In ECOOP, pages 9:1–9:29, 2017.
12 Y. Ding, M. Zhou, Z. Zhao, S. Eisenstat, and X. Shen. Finding the Limit: Examining the

Potential and Complexity of Compilation Scheduling for JIT-based Runtime Systems. In
ASPLOS, pages 607–622, 2014.

13 L. Eeckhout, K. de Bosschere, and H. Neefs. Performance Analysis Through Synthetic Trace
Generation. In ISPASS, pages 1–6, 2000.

14 International Organization for Standardization. ISO/IEC 20922:2016. https://www.iso.org/
standard/69466.html, 2018.

15 GHArchive. Public GitHub Timeline and Archive. https://www.gharchive.org/, 2018.
16 GitLab. GitLab API. https://docs.gitlab.com/ee/api/, 2018.
17 L. Gong, M. Pradel, and K. Sen. JITProf: Pinpointing JIT-unfriendly JavaScript Code. In

ESEC/FSE, pages 357–368, 2015.
18 G. Gousios. The GHTorrent Dataset and Tool Suite. In MSR, pages 233–236, 2013.
19 HAProxy. HAProxy Community Edition. http://www.haproxy.org/, 2018.
20 B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and

I. Stoica. Mesos: A Platform for Fine-grained Resource Sharing in the Data Center. In NSDI,
pages 295–308, 2011.

21 Docker Inc. Docker Compose. https://docs.docker.com/compose/, 2018.
22 Docker Inc. Docker Technology. https://docs.docker.com/, 2018.
23 Docker Inc. Swarm Mode Overview. https://docs.docker.com/engine/swarm/, 2018.
24 GitHub Inc. REST API v3. https://developer.github.com/v3/search/, 2018.
25 MongoDB Inc. mongos. https://docs.mongodb.com/manual/reference/program/mongos/,

2018.
26 MongoDB Inc. Scalable and Flexible document database. https://www.mongodb.com/, 2018.
27 MongoDB Inc. Sharding. https://docs.mongodb.com/manual/sharding/, 2018.
28 Innovative Computing Laboratory (ICL) - University of Tennessee. PAPI. http://icl.utk.

edu/papi/, 2017.
29 ECMA International. ECMAScript 2015 Language Specification (ECMA-262 6th Edition).

https://www.ecma-international.org/ecma-262/6.0/, 2015.

ECOOP 2019

https://developer.atlassian.com/bitbucket/api/2/reference/
https://developer.atlassian.com/bitbucket/api/2/reference/
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://www.oracle.com/technetwork/java/javase/tech/index-jsp-136373.html
https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
https://www.gharchive.org/
https://docs.gitlab.com/ee/api/
http://www.haproxy.org/
https://docs.docker.com/compose/
https://docs.docker.com/
https://docs.docker.com/engine/swarm/
https://developer.github.com/v3/search/
https://docs.mongodb.com/manual/reference/program/mongos/
https://www.mongodb.com/
 https://docs.mongodb.com/manual/sharding/
http://icl.utk.edu/papi/
http://icl.utk.edu/papi/
https://www.ecma-international.org/ecma-262/6.0/

20:26 Large-Scale Dynamic Program Analysis in the Wild

30 ECMA International. ECMAScript 2017 Language Specification (ECMA-262 8th Edition).
https://www.ecma-international.org/ecma-262/8.0/, 2017.

31 D. Jin, P. O. N. Meredith, C. Lee, and G. Roşu. JavaMOP: Efficient Parametric Runtime
Monitoring Framework. In ICSE, pages 1427–1430, 2012.

32 A. Joshi, L. Eeckhout, and L. K. John. The Return of Synthetic Benchmarks. In SPEC
Benchmark Workshop, pages 1–11, 2008.

33 E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and D. Damian. The
Promises and Perils of Mining GitHub. In MSR, pages 92–101, 2014.

34 G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview
of AspectJ. In ECOOP, pages 327–353, 2001.

35 O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov. How Good Are the Specs? A
Study of the Bug-Finding Effectiveness of Existing Java API Specifications. In ASE, pages
602–613, 2016.

36 Lightbend, Inc. Cluster Specification. https://doc.akka.io/docs/akka/2.5/common/
cluster.html, 2018.

37 C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani, and J. Vitek. DéjàVu:
A Map of Code Duplicates on GitHub. OOPSLA, pages 84:1–84:28, 2017.

38 C. V. Lopes and J. Ossher. How Scale Affects Structure in Java Programs. In OOPSLA, pages
675–694, 2015.

39 Y. Lu, X. Mao, Z. Li, Y. Zhang, T. Wang, and G. Yin. Does the Role Matter? An Investigation
of the Code Quality of Casual Contributors in GitHub. In APSEC, pages 49–56, 2016.

40 M. Madsen, O. Lhoták, and F. Tip. A Model for Reasoning About JavaScript Promises.
OOPSLA, pages 86:1–86:24, 2017.

41 L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL: A Domain-specific
Language for Bytecode Instrumentation. In AOSD, pages 239–250, 2012.

42 P. D. Marinescu, P. Hosek, and C. Cadar. COVRIG: A Framework for the Analysis of Code,
Test, and Coverage Evolution in Real Software. In ISSTA, pages 93–104, 2014.

43 Mercurial. Mercurial Source Control Management. https://www.mercurial-scm.org/, 2018.
44 Microsoft. Microsoft Azure. https://azure.microsoft.com/en-us/, 2018.
45 A. Møller and M. I. Schwartzbach. Static Program Analysis, October 2018. Department of

Computer Science, Aarhus University, http://cs.au.dk/˜amoeller/spa/.
46 R. Mudduluru and M. K. Ramanathan. Efficient Flow Profiling for Detecting Performance

Bugs. In ISSTA, pages 413–424, 2016.
47 S. Nussbaum and J. E. Smith. Modeling Superscalar Processors via Statistical Simulation. In

PACT, pages 15–24, 2001.
48 OpenJDK. JMH - Java Microbenchmark Harness. http://openjdk.java.net/projects/

code-tools/jmh/, 2018.
49 M. Oskin, F. T. Chong, and M. Farrens. HLS: Combining Statistical and Symbolic Simulation

to Guide Microprocessor Designs. In ISCA, pages 71–82, 2000.
50 C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-Directed Random Test Generation.

In ICSE, pages 75–84, May 2007.
51 S. Rastkar, G. C. Murphy, and G. Murray. Summarizing Software Artifacts: A Case Study of

Bug Reports. In ICSE, pages 505–514, 2010.
52 B. Ray, D. Posnett, P. Devanbu, and V. Filkov. A Large-scale Study of Programming Languages

and Code Quality in GitHub. CACM, pages 91–100, 2017.
53 Veselin Raychev, Martin Vechev, and Andreas Krause. Predicting Program Properties from

"Big Code". In POPL, pages 111–124, 2015.
54 A. Rosà, E. Rosales, and W. Binder. Analyzing and Optimizing Task Granularity on the JVM.

In CGO, pages 27–37, 2018.
55 O. Rudenko. Best Practices for Using Promises in JS. https://60devs.com/

best-practices-for-using-promises-in-js.html, 2015.
56 Scala Benchmarking Project. ScalaBench. http://www.scalabench.org/, 2018.

https://www.ecma-international.org/ecma-262/8.0/
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://doc.akka.io/docs/akka/2.5/common/cluster.html
https://www.mercurial-scm.org/
https://azure.microsoft.com/en-us/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://60devs.com/best-practices-for-using-promises-in-js.html
https://60devs.com/best-practices-for-using-promises-in-js.html
http://www.scalabench.org/

A. Villazón et al. 20:27

57 K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A Selective Record-replay and
Dynamic Analysis Framework for JavaScript. In ESEC/FSE, pages 488–498, 2013.

58 A. Sewe, M. Mezini, A. Sarimbekov, and W. Binder. DaCapo con Scala: Design and Analysis
of a Scala Benchmark Suite for the Java Virtual Machine. In OOPSLA, pages 657–676, 2011.

59 S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri. Do Automatically
Generated Unit Tests Find Real Faults? An Empirical Study of Effectiveness and Challenges
(T). In ASE, 2015, pages 201–211, 2015.

60 K. Shiv, K. Chow, Y. Wang, and D. Petrochenko. SPECjvm2008 Performance Characterization.
In SPEC Benchmark Workshop on Computer Performance Evaluation and Benchmarking,
pages 17–35, 2009.

61 L. A. Smith, J. M. Bull, and J. Obdrzálek. A Parallel Java Grande Benchmark Suite. In SC,
pages 6–16, 2001.

62 H. Sun, D. Bonetta, C. Humer, and W. Binder. Efficient Dynamic Analysis for Node.Js. In
CC, pages 196–206, 2018.

63 The JUnit Team. JUnit. https://junit.org, 2018.
64 The DaCapo Benchmark Suite. DaCapo. http://http://www.dacapobench.org/, 2018.
65 The Netty project. Netty project. https://netty.io/, 2018.
66 L. Van Ertvelde and L. Eeckhout. Benchmark Synthesis for Architecture and Compiler

Exploration. In IISWC, pages 1–11, 2010.
67 R. P. Weicker. Dhrystone: A Synthetic Systems Programming Benchmark. Commun. ACM,

27(10):1013–1030, 1984.
68 T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton, G. Duboscq, D. Simon,

and M. Grimmer. Practical Partial Evaluation for High-performance Dynamic Language
Runtimes. In PLDI, pages 662–676, 2017.

69 Y. Zheng, A. Rosà, L. Salucci, Y. Li, H. Sun, O. Javed, L. Bulej, L. Y. Chen, Z. Qi, and
W. Binder. AutoBench: Finding Workloads That You Need Using Pluggable Hybrid Analyses.
In SANER, pages 639–643, 2016.

ECOOP 2019

https://junit.org
http://http://www.dacapobench.org/
https://netty.io/

MagpieBridge: A General Approach to Integrating
Static Analyses into IDEs and Editors
Linghui Luo
Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany
linghui.luo@upb.de

Julian Dolby
IBM Research, New York, USA
dolby@us.ibm.com

Eric Bodden
Heinz Nixdorf Institute, Paderborn University, Paderborn, Germany
Fraunhofer IEM, Paderborn, Germany
eric.bodden@upb.de

Abstract
In the past, many static analyses have been created in academia, but only a few of them have
found widespread use in industry. Those analyses which are adopted by developers usually have
IDE support in the form of plugins, without which developers have no convenient mechanism to use
the analysis. Hence, the key to making static analyses more accessible to developers is to integrate
the analyses into IDEs and editors. However, integrating static analyses into IDEs is non-trivial:
different IDEs have different UI workflows and APIs, expertise in those matters is required to write
such plugins, and analysis experts are not typically familiar with doing this. As a result, especially
in academia, most analysis tools are headless and only have command-line interfaces. To make static
analyses more usable, we propose MagpieBridge– a general approach to integrating static analyses
into IDEs and editors. MagpieBridge reduces the m × n complexity problem of integrating m

analyses into n IDEs to m + n complexity because each analysis and type of plugin need be done just
once for MagpieBridge itself. We demonstrate our approach by integrating two existing analyses,
Ariadne and CogniCrypt, into IDEs; these two analyses illustrate the generality of MagpieBridge,
as they are based on different program analysis frameworks – WALA and Soot respectively – for
different application areas – machine learning and security – and different programming languages –
Python and Java. We show further generality of MagpieBridge by using multiple popular IDEs
and editors, such as Eclipse, IntelliJ, PyCharm, Jupyter, Sublime Text and even Emacs and Vim.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases IDE, Tool Support, Static Analysis, Language Server Protocol

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.21

Category Tool Insights Paper

Funding This research was supported by the research training group “Human Centered Systems
Security” (NERD.NRW) sponsored by the state of North-Rhine Westphalia in Germany and by the
DFG’s collaborative research center 1119 CROSSING.

1 Introduction

Many static analyses have been created to find a wide range of issues in code. Given the
prominence of security exploits in practice, many analyses focus on security, such as TAJ [59],
Andromeda [58], HybriDroid [34], FlowDroid [31], CogniCrypt [48] and DroidSafe [44].
There are also many analyses that address other code quality issues, such as FindBugs [46],
SpotBugs [23], PMD [17] for common programming flaws (e.g. unused variables, dead code,
empty catch blocks, unnecessary creation of objects, etc.) and TRACKER [57] for resource

© Linghui Luo, Julian Dolby, and Eric Bodden;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 21; pp. 21:1–21:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:linghui.luo@upb.de
mailto:dolby@us.ibm.com
mailto:eric.bodden@upb.de
https://doi.org/10.4230/LIPIcs.ECOOP.2019.21
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 MagpieBridge

leaks. Other analyses target code performance, such as J2EE transaction tuning [41]. There
are also specialized analyses for specific domains, such as Ariadne [38] for machine learning.
These analyses collectively represent a large amount of work, as they embody a variety of
advanced analyses for a range of popular programming languages. To make this effort more
tractable, many analyses are built on existing program analysis frameworks that provide
state-of-the-art implementations of commonly-needed building blocks such as call-graph
construction, pointer analysis, data-flow analysis and slicing, which in turn all rest on an
underlying abstract internal representation (IR) of the program. Doop [7,33], Soot [21,49],
Safe [19], Soufflé [22] and WALA [29] are well-known.

While development of these analyses has been a broad success of programming language
research, there has been less adoption of such analyses in tools commonly used by de-
velopers, i.e., in interactive development environments (IDEs) such as Eclipse [8], IntelliJ [13],
PyCharm [18], Android Studio [1], Spyder [24] and editors such as Visual Studio Code [28],
Emacs [10], Atom [3], Sublime Text [26], Monaco [16] and Vim [27]. There have been
some positive examples: the J2EE transaction analysis shipped in IBM WebSphere [12],
Andromeda was included in IBM Security AppScan [2], both ultimately based on Eclipse
technology. Similarly, CogniCrypt comprises an Eclipse plugin that exposes the results of its
crypto-misuse analysis directly to the developer within the IDE. Each of these tools involved
a substantial engineering effort to integrate a specific analysis for a specific language into a
specific tool. Table 1 shows the amount of code in plugins for analyses is a significant fraction
of code in the analysis itself. Given that degree of needed effort, the sheer variety of popular
tools and potentially-useful analyses makes it impractical to build every combination.

Table 1 Comparison between the LOC (lines of Java code) for analysis and the LOC for plugin.

Tool Analysis (LOC) Plugin (LOC) Plugin/Analysis
FindBugs 132,343 16,670 0.13
SpotBugs 121,841 16,266 0.13
PMD 117,551 33,435 0.28
CogniCrypt 11,753 18,766 1.60
DroidSafe 41,313 8,839 0.21
Cheetah 4,747 864 0.18
SPLlift 1,317 3,317 2.52

While the difficulty of integrating such tools into different development environments has
lead to poor adoption of these tools and research results in practice, it also makes empirical
evaluations of them challenging. Evaluations of static analyses have been mostly restricted
to automated experiments where the analyses are run in “headless” mode as command-line
tools [31, 50, 53, 62], paying little to no attention to usability aspects on the side of the
developer. As many recent studies show [35,36,47], however, those aspects are absolutely
crucial: if program analysis tools do not yield actionable results, or if they do not report
them in a way that developers can understand, then the tools will not be adopted. So to
develop and evaluate such tools, researchers need ways to bring tools into IDEs more easily
and quickly.

The ideal solution is the magic box shown in Figure 1, which adapts any analysis to any
editor,1 and presents the results computed by the analysis, e.g., security vulnerabilities or
other bugs, using common idioms of the specific tool, e.g., problem lists or hovers.

1 Note: In the following, when we write editor, we mean any code editor, which comprises IDEs.

L. Luo, J. Dolby, and E. Bodden 21:3

In this work, we present MagpieBridge,2 a system which uses two mechanisms to realize
a large fraction of this ultimate goal:
1. Since many analyses are written using program analysis frameworks, MagpieBridge

can focus on supporting the core data structures of these frameworks. For instance,
analyses based on data-flow frameworks can be supported if the magic box can render
their data-flow results naturally. Furthermore, while there are multiple frameworks, they
share many common abstractions such as data flow and call graphs, which allows one to
support multiple frameworks with relative ease.

2. More and more editors support the Language Server Protocol (LSP) [15], a protocol by
which editors can obtain information from arbitrary “servers”. LSP is designed in terms
of idioms common to IDEs, such as problem lists, hovers and the like. Thus, the magic
box can take information from a range of analyses and render it in a few common tooling
idioms. LSP support in each editor then displays these in the natural idiom of the editor.

Our system MagpieBridge exploits these two mechanisms to implement the magic box
for analyses built using WALA or Soot, with more frameworks under development, and for
any editor that supports the LSP. In this paper, we present the MagpieBridge workflow,
explaining the common APIs we defined for enabling integration. We demonstrate two
existing analyses – CogniCrypt and Ariadne, which are based on different frameworks (Soot
and WALA), for different application areas (cryptography misuses and machine learning)
and for different programming languages (Java and Python) into multiple popular IDEs
and editors (Eclipse, Visual Studio Code, PyCharm, IntelliJ, JupyterLab, Monaco, Vim,
Atom and Sublime Text) supporting different features (diagnostics, hovers and code lenses)
using MagpieBridge. We make MagpieBridge publicly available as https://github.
com/MagpieBridge/MagpieBridge.

2 In a Chinese legend, a human and a fairy fall in love, but this love angers the gods, who separate them
on opposite sides of the Milky Way. However, on the seventh day of the seventh lunar month each year,
thousands of magpies form a bridge, called 鹊桥 in Chinese and Queqiao in pinyin, allowing the lovers
to meet.

WALA

TAJ

Atom Vim Eclipse VSCode IntelliJ Sublime

MS
Monaco

Monaco Web Editor

...

Magic Box

Emacs

Soot Doop

Tool A Tool B Tool CAndromeda HybriDroid ... CogniCrypt FlowDroid DroidSafe

JupyterLab

Figure 1 The desired solution: a magic box that connects arbitrary static analyses to arbitrary
IDEs and editors.

ECOOP 2019

https://github.com/MagpieBridge/MagpieBridge
https://github.com/MagpieBridge/MagpieBridge

21:4 MagpieBridge

2 Background and Related Work

Existing tools and frameworks

Given the importance of programming tools for IDEs, there have been a variety of efforts
to provide them, both commercial and open source. We here survey some significant ones,
focusing on those that use WALA [40] or Soot [49,60] and hence are most directly comparable
to our work.

There have been a few commercial tools, notably IBM AppScan [2] and RIGS IT
Xanitizer [30]. Both products make use of WALA and target JavaScript among other
languages. They comprise views to display analysis results as annotations to the source code,
and allow for some triaging of the often longish lists of potential vulnerabilities within the
IDEs. Among other issues, AppScan finds tainted flows and allows the user to focus on a
specific flow through the program, although the user needs to decide what flow is of interest.

There has been a wider variety of open-source tools. WALA has been used in e.g.
JOANA [43, 45]. Soot is used in the widely adopted open-source crypto-misuse analyzer
Eclipse CogniCrypt [48], and is also part of the research tools Cheetah [36], SPLlift [32] and
DroidSafe [44]. All tools named so far integrate with the Eclipse IDE.
JOANA focuses on Java, including Android, and provides a range of advanced analyses

based on information flow control.
CogniCrypt is a tool to detect misuses of cryptographic APIs in Java and Android applica-

tions. Its current UI integration is relatively basic, offering simple error annotations in the
program code and the problems view. CogniCrypt further comprises an XText-based [39]
Eclipse plugin that allows developers to edit API-specification files using syntax high-
lighting and code completion. Those specification files directly determine the definition
of the static analysis.

SPLlift is a research tool to analyze Java-based software product lines. Its UI is an extension
to FeatureIDE [56], which allows it to show variations in the product line’s code base
through color coding. Detected programming errors are shown as code annotations and
in the problems view. FeatureIDE itself is also an extension to Eclipse.

Cheetah is a research prototype for the just-in-time static taint analysis within IDEs. In
Cheetah, the analysis is triggered upon saving a source-code file, but in its case the
analysis is automatically prioritized to provide rapid updates to the error messages in
those code regions that are in the developer’s current scope. From there the analysis
works its way outwards, potentially reporting errors in farther parts of the program only
after several seconds or even minutes. Due to this mechanism, Cheetah requires the IDE
to provide information about which file edit caused the analysis to be triggered, and what
the project layout looks like. Cheetah also provides a somewhat richer UI integration
than the previously named tools. For instance, when users select an individual taint-flow
message in the problems view, it highlights in the code all statements involved in that
particular taint, and also shows a list of those statements in a separate view – useful in
case those are scattered across multiple source code files.

Analysis based on Doop [7, 33] has been experimentally integrated into the ProGuard
optimizer for Android applications [61]. This is a once-off integration rather than a framework
for Doop analyses, and it is focused on the build processs rather than the IDE itself. Still, it
reflects the special-purpose integrations that show how analysis tends to be used.

L. Luo, J. Dolby, and E. Bodden 21:5

Until now, program-analysis frameworks have focused on making it easier to develop
analyses, with supportive infrastructure for basics such as scalable call graph, pointer analysis,
and data-flow analysis. There have been presentations3 and tutorials4 at conferences which
have provided both introductions and detailed tutorials for analysis construction; however,
until now, there has been little focus on assisting with integrating such analyses into
usable tools.

Language Server Protocol (LSP)

The Language Server Protocol (LSP) [15] is a JSON-based RPC protocol originally developed
by Microsoft for its Visual Studio Code to support different programming languages. LSP
follows a client/server architecture, in which “clients” are typically meant to be code editors,
i.e., IDEs such as IntelliJ, Eclipse, etc., or traditional editors such as Visual Studio Code,
Vim, Emacs or Sublime Text. Those clients can trigger certain actions in “servers”, e.g. by
opening a source-code file. Those servers can be of different flavours, but LSP allows them to
contribute certain contents to the editor’s user interface, such as code annotations, list items
or hovers. We will give concrete examples, including screenshots, in Section 4. As we show in
this work, the LSP’s design lends itself to implement static code analysis tools as servers. In
such a design, clients trigger analysis servers through LSP, and those servers communicate
back their results through LSP as well, causing analysis results to automatically be shown in
the client through the respective editor’s native interfaces.

SASP and SARIF

The Static Analysis Server Protocol (SASP) [25], although similar in name to LSP, is a
distinctly different protocol. Started in 2017 by the static code analysis vendor GrammaTech,
it describes a standardized communication protocol to facilitate communication between static
analysis tools and consumers of their results. Compared to LSP, it supports a richer data-
exchange format that is explicitly fine-tuned to static analysis. This is realized through the
Static Analysis Results Interchange Format (SARIF) [20,25] that SASP uses to communicate
static-analysis results from servers to clients. Generally, SASP therefore promises a more
tight coupled integration compared to LSP static analyses into editors, potentially needing
more work on the server. Also, as of now, SASP and SARIF have seen little adoption by
tool vendors. Currently, the standard is mostly put forward by GrammaTech, which through
SASP offers third-party static analysis tools to allow a triaging of those tools’ results in
GrammaTech’s CodeSonar [5]. SARIF exporters currently exist for some few static analysis
tools, including CogniCrypt [48], the Clang Static Analyzer [4], Cppcheck [6], and Facebook
Infer [11], which makes them amenable for an integration through SASP. However, right now,
CodeSonar appears to be the only client ready to consume SARIF results, and it is unclear
whether this will change in the near future. It is for this reason that MagpieBridge builds,
for now, on top of LSP instead of SASP and SARIF. Furthermore, SASP is currently still in
the early stage of its development and there exists no formal specification of the protocol [25],
which makes it hard to compare it to LSP in detail and hard to use for our work.

3 e.g. https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
4 e.g. http://wala.sourceforge.net/wiki/index.php/Tutorial

ECOOP 2019

https://souffle-lang.github.io/pdf/SoufflePLDITutorial.pdf
http://wala.sourceforge.net/wiki/index.php/Tutorial

21:6 MagpieBridge

3 Approach

3.1 The MagpieBridge Workflow
MagpieBridge uses the Language Server Protocol to integrate program analyses into
editor and IDE clients. MagpieBridge is implemented using the Eclipse LSP4J [9] LSP
implementation based on JSON-RPC [14], but MagpieBridge hides LSP4J details and
presents an interface in terms of high-level analysis abstractions. The overall workflow is
shown in Figure 2.

There are multiple mechanisms by which LSP-based tools can be used, but the most
common mechanism is that an IDE or editor is configured to launch any desired tools. Each
tool is built as a jar file based on the MagpieServer, with a main method that creates a
MagpieServer (Listing 1), then adds the desired program analyses (ServerAnalysis in
Listing 2) with addAnalysis, and then launches MagpieServer with launch so that it
receives messages. This is shown with the addAnalysis and launch edges in Figure 2. With
such a jar, MagpieBridge can be used simply by configuring an editor to launch it. Figure 3
shows our Sublime Text setup to launch both Ariadne and CogniCrypt analyses. The user
merely obtains jar files of the analyses and sets up Sublime Text to launch each of them for
the appropriate languages. That is all the setup that is needed.

Based on LSP4J, there are several mechanisms for sending and receiving messages. Most
clients/editors simply launch the server and then expect it to handle messages using standard
I/O (e.g. Eclipse, IntelliJ, Emacs and Vim); however some clients expect to talk using
a well-known socket (e.g. Spyder), Web-based tools communicate using WebSockets (e.g.

LSP4J

addAnalysis(ServerAnalysis)

analyze(Collection<Module>, MagpieServer)

consume(Collection<AnalysisResult>)

didOpen(DidOpenTextDocumentParams)

publishDiagnostics(PublishDiagnosticsParams)

launch(…)

hover(TextDocumentPositionParams)

response: Hover

codeLens(CodeLensParams)

response: CodeLens

didChange(DidChangeTextDocumentParams)

analyze(Collection<Module>, MagpieServer)

...

...

ServerAnalysis MagpieServer LSP Client

...

Tim
e

Initialize(InitializeParams)

IProjectService
setRootPath(…)

didSave(DidSaveTextDocumentParams)

response: InitializeResult

Figure 2 Overall MagpieBridge workflow.

L. Luo, J. Dolby, and E. Bodden 21:7

Figure 3 Configuration for Sublime Text to launch MagpieServer.

Jupyter and Monaco) and only few tools support both standard I/O and socket (e.g. Visual
Studio Code). Our MagpieServer supports all these channels out of the box and can be
configured to communicate with a client using any of the channels.

Once MagpieServer is launched, it interacts with the client tool using standard LSP
mechanisms:

The first step is initialization. The client sends an initialize message to the server,
which includes information about the project being analyzed, such as its project root
path. MagpieServer calls setRootPath on each IProjectService (service that resolves
project scope such as source code path and library code path) instance to initialize project
path information. MagpieBridge currently understands Eclipse, Maven and Gradle
projects. MagpieServer also sends the response InitializeResult which declares its
capabilities back to the client. This is shown in the upper portion of Figure 2
Subsequently, the client informs MagpieServer whenever it works with a file: the didOpen,
didChange and didSave messages are sent to the server whenever files are opened, edited
and saved respectively. These messages allow MagpieBridge to call the analysis via the
analyze method whenever anything changes. Each analysis server decides the granularity
of when it actually runs analysis and how much analysis it does. This is shown with the
didOpen and analyze edges in Figure 2
As shown in the rest of Figure 2, analysis uses the consume method to report analysis
results of type AnalysisResult (Listing 4) to MagpieServer, which handles them via
the appropriate LSP mechanism, specified by the kind method (Listing 4), which returns
a Kind (Listing 5):
Diagnostic denotes issues found in the code, corresponding to lists of errors and warnings

that might be reported by a compiler. Tools typically report them either in a list
of results or highlight the results directly in the code. When the program analysis
provides such results via consume, MagpieServer reports them to the client tool with
the LSP publishDiagnostics API.

Hover denotes annotations to be displayed for a specific program variable or location.
It could be used to report e.g. the type of a variable or the targets of a function
call. Tools often show them when the cursor highlights a specific location. When the
program analysis provides such results via consume, MagpieServer keeps them and
reports them to the client tool as responses to LSP hover API calls by the client tool.

ECOOP 2019

21:8 MagpieBridge

CodeLens denotes information to be added inline in the source code, analogous to
generated comments. Tools typically report them as distinguished lines of text inserted
between lines of source code. When the program analysis provides such results via
consume, MagpieServer keeps them and reports them to the client tool as responses
to LSP codeLens API calls by the client tool.

These analysis results have a position method that returns a Position (Listing 6)
denoting the source location to which the result pertains. The result requires a precise
location based on starting and ending line and column numbers, which is required
by the LSP protocol. Note that the Position of MagpieBridge implements the
Java Comparable interface; MagpieBridge exploits this to store analysis results in
NavigableMap structures so that it can find the nearest result if a user hovers in a
location near result, e.g. some whitespace immediately after a variable or expression.

public class MagpieServer implements LanguageServer, LanguageClientAware{
protected LanguageClient lspClient;
protected Map<String, IProjectService> languageProjectServices;
protected Map<String, Set<ServerAnalysis>> languageAnalyses;

public void addProjectService(String language, IProjectService projectService){...}
public void addAnalysis(String language, ServerAnalysis analysis){...}
public void doAnalyses(String language){...}
public void consume(Collection<AnalysisResult>){...}

protected Consumer<AnalysisResult> createDiagnosticConsumer(){...}
protected Consumer<AnalysisResult> createHoverConsumer(){...}
protected Consumer<AnalysisResult> createCodeLensConsumer(){...}
...

}

Listing 1 The core of the server.

public interface ServerAnalysis{
public String source();
public void analyze(Collection<Module> files, MagpieServer server);

}

Listing 2 Interface for defining analysis on the server.

public interface IProjectService {
public void setRootPath(Path rootPath);

}

Listing 3 Interface for defining service which resolves project scope.

3.2 The MagpieBridge System
We explain our MagpieBridge system with an overview in Figure 4. MagpieBridge
needs to support various analysis tools that were built on top of different frameworks, e.g.,
TAJ, Andromeda and HybriDroid use WALA, while CogniCrypt, FlowDroid and DroidSafe
rely on Soot and many other analyses are based on Doop. These analysis frameworks have
different IRs, which MagpieBridge needs to use to generate analysis results. One key
requirement for all the frameworks supported by MagpieBridge is very precise source-code

L. Luo, J. Dolby, and E. Bodden 21:9

public interface AnalysisResult {
public Kind kind();
public String toString(boolean useMarkdown);
public Position position();
public Iterable<Pair<Position,String>> related();
public DiagnosticSeverity severity();
public Pair<Position, String> repair();

}

Listing 4 Interface for defining analysis result.

public enum Kind {
Diagnostic, Hover, CodeLens

}

Listing 5 Enum for defining kinds of analysis results.

public interface Position extends Comparable {
public int getFirstLine();
public int getLastLine();
public int getFirstCol();
public int getLastCol();
public int getFirstOffset();
public int getLastOffset();
public URL getURL();

}

Listing 6 Interface for defining position.

MagpieServer

Source
Code

Library
Code

Bytecode
Front Ends

WALA IR

Soot IR

Doop IR

Source-Code
Position

Information Soot-based
Analysis

Doop-based
Analysis

WALA-based
Analysis

Analysis
Results

WALA-Soot
IRConverter

WALA-Doop
IRConverter

LSP
Notifications

WALA
Source-Code
Front Ends

Eclipse
IntelliJ
Emacs
Atom
Vim

VSCode
MS Monaco

Sublime

...

LSP Client

LSP

Existing Flow

Work in progress

Results
Mapping

2

1

3

Figure 4 Overview of our MagpieBridge system.

ECOOP 2019

21:10 MagpieBridge

mappings, since in LSP all the messages communicate using starting and ending line and
column numbers. In the following we explain how MagpieBridge achieves this requirement
for WALA-based analyses, Soot-based analyses and Doop-based analyses respectively.

3.2.1 WALA-based Analysis
The simplest code path in MagpieBridge (flow 1 in Figure 4) uses WALA source language
front ends for creating IR on which to perform analysis. WALA comprises both bytecode
and source-code front ends for different languages (Java, Python and JavaScript), and the
source-code front end preserves source-code positions very well. This information can be
consumed later in the LSP notifications, since it is kept in WALA’s IR. WALA’s IR is a
traditional three-address code in Static Single Assignment (SSA) form, which is translated
from WALA’s Common Abstract Syntax Tree (CAst).

The approach to source-code front ends for WALA is using existing infrastructure for
each supported language: Eclipse JDT for Java, Mozilla Rhino for JavaScript and Jython
for Python. Each of these front ends is maintained with respect to its respective language
standards, and all the front ends provide precise mappings of source locations for constructs.
To provide detailed source mapping for the generated IR, each WALA function body has
an instance of DebuggingInformation (Listing 7) which allows MagpieBridge to map
locations from requests to IR elements at a very fine level.

public interface DebuggingInformation {
Position getCodeBodyPosition();
Position getCodeNamePosition();
Position getInstructionPosition(int instructionOffset);
String[][] getSourceNamesForValues();
Position getOperandPosition(int instructionOffset, int operand);
Position getParameterPosition(int param);

}

Listing 7 Debugging information interface.

Listing 7 details how much source mapping information is available. getCodeBodyPosition
is the source range of the entire function, and getCodeNamePosition is the position of
just the name in the body. getInstructionPosition is the source position of a given
IR instruction. getOperandPosition is the source position of a given operand in an IR
instruction. getParameterPosition is the position of a given parameter declaration in the
source.

3.2.2 Soot-based Analysis
Soot comprises a solid Java bytecode front end. The bytecode only has the line number of
each statement. This is not sufficient to support features such as hover, fix and codeLens
in an editor. For those features, position information about variable, expressions, calls and
parameters are necessary. However, they are lost in the bytecode. Soot further comprises
source-code front ends. Such front ends, however, require frequent updates due to the
frequently changing specification of the Java source language, which has caused Soot’s
source-code front ends to become outdated. Besides, Soot IR was not designed to keep
precise source-code position information, e.g., there is no API for getting the parameter
position in a method. Our approach is to take WALA’s source-code front end to generate
WALA IR and convert it to Soot IR. Soot has multiple IRs, the most commonly used IR

L. Luo, J. Dolby, and E. Bodden 21:11

is called Jimple [60]. Jimple is also a three-address code and has Java-like syntax, but is
simpler, e.g., no nested statements. Opposed to WALA IR, Jimple is not in SSA-form. Both
WALA and Soot are implemented in Java and manipulate the IR through Java objects. This
makes the conversion between the IRs feasible. In particular, we have implemented the
WALA-Soot IRConverter and defined the common APIs (Listing 4) to encode analysis results,
as well as the MagpieServer (Listing 1) that hosts the analysis. Currently the WALA-Soot
IRConverter only converts WALA IR generated by WALA’s Java source-code front end. In
fact, WALA uses a pre-IR before generating the actual WALA IR in SSA-form, and this
non-SSA pre-IR is actually the IR that we convert to Jimple. Since also Jimple is not in
SSA, this conversion is more direct. This pre-IR contains 24 different instructions as shown
in Figure 5. After studying both IRs, we found out that 15 instructions in WALA IR can be
converted to JAssignStmt in Jimple. Most of the times the conversion is one-to-one, only a
few cases are one-to-many. The precise source-code position information from WALA IR is
encapsulated in the tags (annotations) of the converted Soot IR. In the future, we plan to
convert WALA IR from front ends of other languages such as Python and JavaScript to a
potentially extended version of the Soot IR.

The flow 2 in Figure 4 for integrating Soot-based analysis starts by dividing the analyzed
program code into application source code and library code (which can be in binary form).
The source code is parsed by one of WALA’s source-code front end and it outputs WALA
IR, as well as precise source code position information associated in the IR. For a Soot-
based analysis, the WALA IR is translated by a WALA-Soot IRConverter into Soot IR

WALA IR Soot IR
1. SSAArrayStoreInstruction
2. SSAArrayLoadInstruction
3. SSAArrayLengthInstruction
4. AstLexicalWrite
5. AstLexicalRead
6. EnclosingObjectReference
7. SSACheckCastInstruction
8. SSALoadMetadataInstruction
9. SSAUnaryOpInstruction
10. SSAPutInstruction
11. SSANewInstruction
12. SSAInstanceofInstruction
13. SSAConversionInstruction
14. SSABinaryOpInstruction
15. SSAGetInstruction
16. SSAGetCaughtExceptionInstruction
17. SSAMonitorInstruction
18. SSASwitchInstruction
19. SSAThrowInstruction
20. AstJavaInvokeInstruction
21. SSAConditionalBranchInstruction
22. SSAReturnInstruction
23. SSAGotoInstruction
24. AstAssertionInstruction

JAssignStmt

JIdentityStmt
JEnterMonitorStmt/JExitMonitorStmt
JLookupSwitchStmt
JThrowStmt
JInvokeStmt/JAssignStmt
JIfStmt
JReturnStmt/JReturnVoidStmt
JGotoStmt
synthetic static field +JIfStmt

Figure 5 Conversion from WALA IR to Soot IR.

ECOOP 2019

21:12 MagpieBridge

public class ExampleAnalysis implements ServerAnalysis{

@Overide
public String source(){

return "Example Analysis"
}

@Overide
public void analyze(Collection<Module> sources, MagpieServer server){

ExampleTransformer t = getExampleTransformer();
loadSourceCodeWithWALA(sources);
JavaProjectService service = (JavaProjectService)

server.getProjectService("java");
loadLibraryCodeWithSoot(service.getLibraryPath());
runSootPacks(t);
List<AnalysisResult> results = t.getAnalysisResults();
server.consume(results);

}
...

}

public class Example{

public static void main(String... args){
MagpieServer server = new MagpieServer();
IProjectService service = new JavaProjectService();
ExampleAnalysis analysis = new ExampleAnalysis();
String language = "java";
server.addProjectService(language, service);
server.addAnalysis(language, analysis);
server.launch(...);

}
}

Listing 8 The MagpieServer runs a Soot-based analysis.

(Jimple). The library code is parsed by Soot’s bytecode front end and then complements the
program’s IR obtained from the source code. The Soot IR in Figure 4 thus consists of two
parts: Jimple converted by the WALA-Soot IRConverter, which represents the source-code
portion/application code of the program, and Jimple generated by Soot’s bytecode front end
which represents the library code. Based on the composite Soot IR, Soot further conducts
a call graph and optionally also pointer analysis, which can then be followed by arbitrary
data-flow analyses.

Listing 8 shows an example of running a Soot-based analysis ExampleTransformer
(analyses are called transformers in Soot) on the MagpieServer. The ExampleTransformer
accesses the program through the singleton object Scene in order to analyze the program.
Once the MagpieServer receives the source code, the method loadSourceCodeWithWALA
parses the source code, converts it to Soot IR with the WALA-Soot IRConverter and stores
the IR in the Scene. The class JavaProjectService resolves library path for the current
project. loadLibraryCodeWithSoot loads the necessary library code from the path and adds
the IR into Scene. The method runSootPacks invokes Soot to build call-graph and run the
actual analysis. The analysis results will be then consumed by the server. In this example,
only the source files sent to the server are analyzed together with the library code. However,
it can be configured to perform a whole-program analysis, since the source code path can
also be resolved by JavaProjectService.

We explain how the class JavaProjectService which implements IProjectService
resolves the full Java project scope, i.e., source code path and library code path. As

L. Luo, J. Dolby, and E. Bodden 21:13

specified in LSP, the editors send the project root path (rootURI) to the server in the first
request initialize. Library and source code path can be resolved by using the build-tool
dependency plugins (e.g. caching results of mvn dependency:list) or parsing the configuration
(e.g. pom.xml, build.gradle) and source code files located in the root path. Project structure
conventions for different kinds of projects are also considered in MagpieBridge. For more
customized projects, MagpieBridge also allows the user to specify the library and source
code path manually as program arguments.

3.2.3 Doop-based Analysis
Doop uses Datalog to allow for declarative analysis specifications, encoding instructions as
Datalog relations as well as instruction source positions. There is code to convert from the
WALA Python IR to Datalog, and that captures both the semantics of statements as well
as source mapping, and these declarations capture the information needed for analysis tool
support. For instance, there is a Datalog relation that captures instruction positions and is
generated directly from WALA IR:

.decl Instruction_SourcePosition(?insn:Instruction,
?startLine:number, ?endLine:number, ?startColumn:number, ?endColumn:number)

This code has been used experimentally for analysis using Doop of machine code written
in Python. This code path could be used to express analyses in editors using MagpieBridge,
and such work is under development.

4 Demonstration

To make MagpieBridge more concrete, we use two illustrative analyses, based on different
frameworks – Soot and WALA, respectively – for different languages – Java and Python – in
different domains – security and bug finding – both in a range of editors:
CogniCrypt analyzes how cryptographic APIs are used in a program, and reports a variety

of vulnerabilities such as encryption protocols being misused or when protocols are used
in situations where they should not. The tool then also gives suggestions on how to fix
the problem. CogniCrypt comprises a highly efficient demand-driven, inter-procedural
data-flow analysis [55] based on Soot, and has its own Eclipse-based plugin. As Table 1
shows, its plugin actually required substantially more code than the analysis itself. The
plugin also is limited to Eclipse. We illustrate what it looks like to use CogniCrypt in
multiple tools using MagpieBridge. To keep exposition simple, we focus on a case in
which a weak encryption mode is used (Electronic Codebook Mode, ECB). In the general
case the analysis can also report complex flows through the program. Screenshots in
Figure 6, Figure 7, Figure 8 and Figure 9 show the crypto warning reported by CogniCrypt
in different editors. As we can see, only the call Cipher.getInstance with the insecure
parameter is marked in each editor.

Ariadne analyzes how tensor (multi-dimensional array) data structures are used in machine-
learning code written in Python, and reports a range of information. It presents basic
tensor-shape information for program variables, and finds and fixes certain kinds of
program bugs. A key operation is reshaping a tensor: the reshape operation takes a
tensor and a new shape, and returns a new tensor with the desired shape when that is
possible. To simplify complex tensor semantics, a tensor can be reshaped only when its
total size is equal to size of the desired new shape. Another operation is performing a
convolution, e.g. conv2d, which requires the input tensor to have a specific number of
dimensions. We illustrate cases of these bugs, and how they are shown in multiple editors
(Figure 10, Figure 11, Figure 12, Figure 13, and Figure 14).

ECOOP 2019

21:14 MagpieBridge

We illustrate how the aspects of LSP used by MagpieBridge are rendered in a variety of
editors; while there are common notions such as a list of diagnostics, different tools make
different choices in how those elements are displayed. We describe in turn several LSP aspects
and how analysis information is displayed using them.

4.1 Diagnostics
The most straightforward interface is for an analysis to report a set of issues, but even this
simple concept is handled differently in different editors.

Some editors have a problem view, i.e., a list summarizing all outstanding issues. An
example of this interface is Sublime Text, illustrated in Figure 8 where a warning about
weak encryption is shown in a list.
Some editors do not have such a list, but choose to highlight issues directly in the code. An
example of this interface is Monaco, illustrated in Figure 7; the same warning about weak
encryption is shown inline. To minimize clutter, editors typically make such warnings as
hovers, and we show it displayed in Monaco. A somewhat different visualization of the
same idea is in Figure 13, in which Atom shows an invalid use of reshape in Tensorflow.
Some editors do both. An example of this interface is Eclipse, illustrated in Figure 6
where a warning about weak encryption is shown both inline and in a list. Again to
minimize clutter, the inline message is realized via a hover.

Note that all issues displayed here are computed by the very same analysis in all editors and
rendered as the same LSP objects; however, they appear natural in each editor, due to the
editor-specific LSP client implementations.

4.2 Code Lenses
Code lenses look like comments, but are inserted into the code by analyses and are used to
reflect generally-useful information about the program. An example is shown in Figure 10,
in which the shapes of tensors are listed explicitly for various program variables and function
arguments.

4.3 Hovers
Hovers are used to reflect generally-useful information about the program, but, unlike code
lenses, they are visible only on demand. As such, an analysis can sprinkle them liberally
in the program and they will not be distracting since they are only visible when needed.
Different tools have different ways of user interaction. In Figure 11, the user hovers over the
variable x_dict in PyCharm to reveal the shape of tensors that it holds. In Figure 12, the
user enters a Vim command with the cursor over the variable x_dict.

4.3.1 Repairs
LSP provides the ability to specify fixes for diagnostics; a diagnostic can specify replacement
text for the text to which the given diagnostic applies. The method repair() in the interface
AnalysisResult is designed exactly for this purpose (see Listing 4). Figure 14 shows an
example of this: the top half shows an error report in Visual Studio Code that a call to
conv2d is invalid, since such calls require a tensor with four dimensions whereas the provided
argument has only 2. However, the analysis determines that a plausible fix is to reshape
the provided argument to have more dimensions, and the lower part of the figure shows a
prompt, in Emacs, suggesting a reshape call to insert.

L. Luo, J. Dolby, and E. Bodden 21:15

Figure 6 Insecure crypto warning in Eclipse.

Figure 7 Insecure crypto warning in Monaco.

Figure 8 Insecure crypto warning in Sublime Text.

Figure 9 Insecure crypto warning in IntelliJ.

ECOOP 2019

21:16 MagpieBridge

Figure 10 Code lenes showing tensor types in JupyterLab.

Figure 11 Hover tip showing tensor types in PyCharm.

Figure 12 Hover tip showing tensor types in Vim

Figure 13 Diagnostic warning showing an incompatible reshape in Atom.

Figure 14 Diagnostic error showing fixable incorrect dimensions for conv2d. Error shown in
Visual Studio Code and quick fix in Emacs.

L. Luo, J. Dolby, and E. Bodden 21:17

5 Comparison Between MagpieBridge-Based Approach and
Plugin-Based Approach

While MagpieBridge enables analyses to run in a larger set of IDEs, the question remains
of how the support in any specific IDE using MagpieBridge compares to a custom-built
plugin for that same IDE. Because most analysis tools do not have integration with most
IDEs, we are going to focus our comparison on one existing combination: the CogniCrypt
plugin for Eclipse. Afterwards, we discuss in more general terms the range of functionality
exploited by custom plugins that is supported by LSP.

5.1 Comparison Between MagpieBridge-Based CogniCrypt and
CogniCrypt Eclipse Plugin

The CogniCrypt Eclipse Plugin [48] consists of two components: code generation, which
generates secure implementations for user-defined cryptographic programming tasks, and
cryptographic misuse detection, which runs static code analysis in the background and
reports insecure usage of cryptographic APIs. MagpieBridge focuses on analysis, and so
we do not consider the code-generation component here. For comparison, we integrated the
static crypto analysis of CogniCrypt with MagpieBridge into Eclipse IDE.

Figure 15 and Figure 16 are screenshots in which the original CogniCrypt Eclipse
Plugin reports insecure crypto warnings. In comparison, Figure 17 shows our CogniCrypt-
integration with MagpieBridge. Figure 15 shows two buttons that CogniCrypt adds to
the toolbar: “Generate Code For Cryptographic Task” and “Apply CogniCrypt Misuse
to Selected Project”. By clicking the latter, one triggers the misuse detection using the
plugin in its default configuration. The plugin can also be configured to trigger the analysis
whenever a Java file is saved. On the other hand, MagpieBridge-based CogniCrypt starts
the analysis automatically whenever a Java file is opened or saved. In either case, after the
analysis has been run, any detected misuses are indicated in Eclipse in several ways, which
the corresponding numbers show in Figure 15 and Figure 17:
1. In the Package Explorer view, the error ticks appear on the affected Java element and

their parent elements.
2. In the Problems view, the detected misuses are listed as errors.
3. The editor tab is annotated with an error marker.
4. In the editor’s vertical ruler / gutter, an error marker is displayed near the affected line.
As shown in Figure 16, one can hover over an error marker next to the affected line to view
the description of the misuse. The appearance of the MagpieBridge-based and plugin-based
CogniCrypt is rather similar, with just a few differences:

MagpieBridge-based CogniCrypt does not change the appearance of the IDE. To work
with the MagpieServer which runs the crypto analysis, end-users do not have to do
anything different. The analysis runs automatically whenever a Java file is opened or
saved by an end-user. In contrast, in the Eclipse Plugin, one can trigger the analysis
manually, or (optionally) have it started automatically whenever a file is saved.
Results are indicated similarly in the CogniCrypt Eclipse Plugin MagpieBridge-based
CogniCrypt; however, in MagpieBridge-based CogniCrypt in addition to the error
markers, squiggly lines appear under the affected lines.
In MagpieBridge-based CogniCrypt, the hover message also includes a quick fix that
can replace the insecure parameter AES/ECB/PKCS5Padding with a secure parameter
ASE/CBC/PKCS5Padding automatically. Since MagpieBridge preserves the precise source

ECOOP 2019

21:18 MagpieBridge

Figure 15 The appearance of CogniCrypt Eclipse Plugin.

Figure 16 CogniCrypt Eclipse Plugin: insecure crypto warning message shown by hovering.

code position from the WALA source-code front end, e.g., the exact code range (start-
ing/ending line/column numbers) of each parameter of a method call, we were able to
build such quick fix easily with the codeAction feature supported by LSP. Such quick fix
is not available in the CogniCrypt Eclipse Plugin, although the warning message already
indicates what a secure parameter should look like.

Another difference is that, since MagpieBridge does not add buttons to the IDE, it
needs to invoke the analysis automatically. When the end-user changes the opened file, the
MagpieServer clears the warnings when it receives the didChange notification from the IDE.
The analysis is then restarted whenever the end-user saves the file, i.e., the MagpieServer
receives a didSave notification. Once the MagpieServer receives the notification from the
Eclipse IDE, it resolves the source code and library code path required for the inter-procedural
crypto analysis. This analysis is all asynchronous, so that the analysis always runs in the
background and updated error messages are shown once they are available. If they want to,
end-users have the ability to connect and disconnect the MagpieServer at runtime, e.g., via
“Preferences” in Eclipse IDE.

5.2 Comparison to Other Plugin-Based Approaches
As shown in Figure 18, LSP offers a set of UI features to present the analysis results to
end-users that are sufficient to capture the majority of UI features used in a range of existing
plugins for a single analysis tool in a specific IDE. Most of the plugin approaches we identified
were implemented as Eclipse plugins (Cheetah [37], SpotBugs [23] and ASIDE [63]), but

L. Luo, J. Dolby, and E. Bodden 21:19

Figure 17 The appearance of MagpieBridge-based CogniCrypt: insecure crypto warning
message and quick fix shown by hovering.

some of them were created for other popular IDEs such as Android Studio (FixDroid [52]),
IntelliJ (wIDE [51]) and Visual Studio (GhostFactor [42]). Figure 18 shows the comparison
between features that can be supported with LSP to features supported by these existing
plugin approaches.

Some plugins do use IDE features that are not explicitly supported by LSP; however,
there are often analogs in LSP that could be used instead. For instance, Cheetah uses a
custom view, essentially a separate window panel in the IDE, to show an example data-flow
trace for a bug; in LSP, related information capturing a trace can be attached to problems
as illustrated in Figure 14. Other uses of custom views and wizards are mainly for analysis
configuration. Simple forms of such analysis configuration could be supported by the message
protocol in LSP.

Feature Comparison

Feature LSP-based
Approach

FixDroid
(Android Studio)

wIDE
(IntelliJ)

GhostFactor
(Visual Studio)

Cheetah
(Eclipse)

SpotBugs
(Eclipse)

ASIDE
(Eclipse)

Plugins
support the
feature

Warning Marker 5

Code Highlighting 4

Code Actions
(quick fix, code
generation)

3

Hover Tips 6

Pop-ups 2

Code Change Detection 2

Customized Icons 3

Customized Views 3

Customized Wizards 1

Figure 18 Feature comparison between LSP-based approach and other plugin-based approaches.

ECOOP 2019

21:20 MagpieBridge

One minor feature unsupported by LSP appeared in the plugins: customized icons (see
Figure 19, Figure 20 and Figure 21) are not supported by the LSP-based approach, since
that requires changes to the appearance of the IDEs, which LSP intends not to. Although
studies have shown customized icons are useful to catch end-users’ attention [52, 54, 63], it is
not clear if it is more effective than the default error icon supported by each editor.

As we can see in Figure 18, the major features such as hover tips, warning marker and
code highlighting, which are supported by a majority of the plugins, can be supported by an
LSP-based approach. However, LSP support varies across IDEs, both in what features are
handled and how they are shown. In LSP, hover tips are specified as the hover request sent
from the client to the server, warning marker can be realized by the publishDiagnostics
notification and documentHighlight is the corresponding request for code highlighting.
However, the implementation of documentHighlight varies from editor to editor, since the
specification for this feature in LSP is unclear. Most plugins listed in Figure 18 support code
highlighting. This features means changing the background color of affected lines of code as
shown in Figure 19, Figure 20 and Figure 21. While Visual Studio Code limits this feature to
only highlights all references to a symbol scoped in a file, sublime Text choses an underline
for highlighting (see Figure 23). In addition, there is no possibility with LSP to specify the
background color used in this feature, all editors have their pre-defined colors.

Some advanced features such as code actions (we have shown quick fix with Mag-
pieBridge-based CogniCrypt), pop-ups and code change detections can also be supported
by LSP. There are two interfaces (showMessage and showMessageRequest) defined in LSP
which are implemented as pop-up windows in editors. Figure 24 shows a message sent from a
server to the Eclipse IDE that is displayed in a pop-up window. Where more interactions are
required, the interface showMessageRequest allows to pass actions and wait for an answer
from the client. Figure 25 shows a pop-up windows with a message and available actions in
Visual Studio Code.

Features that are not supported by LSP for now can be extended to LSP in the future,
since LSP is a moving target with ever-growing functionality and support. One just has to
keep in mind that, as the LSP is extended, the IDEs/editors that support it, might require
extensions as well.

Figure 19 Cheetah: code highlighting, hover tips, customized icon and views.

Figure 20 FixDroid: code highlighting, hover tips and customized icon.

L. Luo, J. Dolby, and E. Bodden 21:21

Figure 21 ASIDE: code highlighting and customized icon.

Figure 22 wIDE: customized wizard.

Figure 23 Highlighting in Sublime Text.

Figure 24 Pop-up in Eclipse.

Figure 25 Pop-up with actions in Visual Studio Code.

6 Conclusion and Future Work

The difficulty of integrating static tools into different IDEs and editors has caused little
adoption of the tools by developers and researchers, and MagpieBridge addresses this
problem by providing a general approach to integrating static analyses into IDEs and editors.
MagpieBridge uses the increasingly popular Language Server Protocol and supports from
rich analysis frameworks, WALA and Soot. We have shown MagpieBridge supporting
CogniCrypt, but this is just the beginning; we conclude and presage future work by showing
what is, to the best of our knowledge, the first ever IDE integration of the well-known
FlowDroid security analysis. Figure 26 shows FlowDroid analyzing the data flow starting
from a parameter of the HTTP request, finding a cross-site scripting vulnerability which
can be exploited by attackers, and showing a witness trace of it. The expressions in the

ECOOP 2019

21:22 MagpieBridge

witness are shown precisely, which is possible since the IRConverter of MagpieBridge is
able to run FlowDroid unchanged on the converted IR and recover precise source mappings.
As far as we know, this has never been done before with FlowDroid. MagpieBridge then
renders this precise trace from FlowDroid in the IDE, also the first time this has been done.
While FlowDroid is one of the best-known security analyses, this is just one example of
what more can be done with MagpieBridge, and our future work includes handling many
more analyses.

Figure 26 A sensitive data flow reported by FlowDroid in Visual Studio Code.

References
1 Android Studio. https://developer.android.com/studio. Accessed: 2019-01-10.
2 AppScan. https://www.ibm.com/security/application-security/appscan. Accessed:

2019-01-10.
3 Atom. https://atom.io/. Accessed: 2019-01-10.
4 Clang Static Analyzer. https://clang-analyzer.llvm.org/. Accessed: 2019-01-10.
5 CodeSonar. https://www.grammatech.com/products/codesonar. Accessed: 2019-01-10.
6 Cppcheck. http://cppcheck.sourceforge.net/. Accessed: 2019-01-10.
7 Doop. http://doop.program-analysis.org/. Accessed: 2019-01-10.
8 Eclipse. https://www.eclipse.org/. Accessed: 2019-01-10.
9 Eclipse LSP4J. https://projects.eclipse.org/proposals/eclipse-lsp4j. Accessed: 2019-

01-10.
10 Emacs. https://www.gnu.org/software/emacs/. Accessed: 2019-01-10.
11 Facebook Infer. https://fbinfer.com/. Accessed: 2019-01-10.
12 IBM WebSphere. https://www.ibm.com/cloud/websphere-application-platform. Ac-

cessed: 2019-01-10.

https://developer.android.com/studio
https://www.ibm.com/security/application-security/appscan
https://atom.io/
https://clang-analyzer.llvm.org/
https://www.grammatech.com/products/codesonar
http://cppcheck.sourceforge.net/
http://doop.program-analysis.org/
https://www.eclipse.org/
https://projects.eclipse.org/proposals/eclipse-lsp4j
https://www.gnu.org/software/emacs/
https://fbinfer.com/
https://www.ibm.com/cloud/websphere-application-platform

L. Luo, J. Dolby, and E. Bodden 21:23

13 IntelliJ. https://www.jetbrains.com/idea/. Accessed: 2019-01-10.
14 JSON-RPC. https://www.jsonrpc.org/. Accessed: 2019-01-10.
15 Language Server Protocol. https://microsoft.github.io/language-server-protocol/. Ac-

cessed: 2019-01-10.
16 Monaco. https://microsoft.github.io/monaco-editor/index.html. Accessed: 2019-01-10.
17 PMD. https://pmd.github.io/. Accessed: 2019-01-10.
18 PyCharm. https://www.jetbrains.com/pycharm/. Accessed: 2019-01-10.
19 Safe. https://github.com/sukyoung/safe. Accessed: 2019-01-10.
20 SARIF Specification. https://github.com/oasis-tcs/sarif-spec. Accessed: 2019-01-10.
21 Soot. https://github.com/Sable/soot. Accessed: 2019-01-10.
22 Souffle. https://github.com/oracle/souffle/wiki. Accessed: 2019-01-10.
23 SpotBugs. https://spotbugs.github.io/. Accessed: 2019-01-10.
24 Spyder. https://www.spyder-ide.org/. Accessed: 2019-01-10.
25 Static Analysis Results: A Format and a Protocol: SARIF and SASP. http://blogs.

grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp. Ac-
cessed: 2019-01-10.

26 Sublime. https://www.sublimetext.com/. Accessed: 2019-01-10.
27 Vim. https://www.vim.org/. Accessed: 2019-01-10.
28 Visual Studio Code. https://code.visualstudio.com/. Accessed: 2019-01-10.
29 WALA. https://github.com/wala/WALA. Accessed: 2019-01-10.
30 Xanitizer. https://www.rigs-it.com/xanitizer/. Accessed: 2019-01-10.
31 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein,

Yves Le Traon, Damien Octeau, and Patrick D. McDaniel. FlowDroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,
United Kingdom - June 09 - 11, 2014, pages 259–269, 2014. doi:10.1145/2594291.2594299.

32 Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini.
SPLLIFT: statically analyzing software product lines in minutes instead of years. In Proceedings
of the 34th ACM SIGPLAN conference on Programming language design and implementation
(PLDI), pages 355–364, 2013. URL: http://www.bodden.de/pubs/bmb+13spllift.pdf.

33 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis:
better together. In Proceedings of the Eighteenth International Symposium on Software
Testing and Analysis, ISSTA 2009, Chicago, IL, USA, July 19-23, 2009, pages 1–12, 2009.
doi:10.1145/1572272.1572274.

34 Hongyi Chen, Ho-fung Leung, Biao Han, and Jinshu Su. Automatic privacy leakage detection
for massive android apps via a novel hybrid approach. In IEEE International Conference
on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages 1–7, 2017. doi:
10.1109/ICC.2017.7996335.

35 Maria Christakis and Christian Bird. What developers want and need from program analysis:
an empirical study. In ASE, pages 332–343, 2016.

36 Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and
Emerson Murphy-Hill. Just-in-time Static Analysis. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2017, pages 307–317, New
York, NY, USA, 2017. ACM. doi:10.1145/3092703.3092705.

37 Lisa Nguyen Quang Do, Karim Ali, Benjamin Livshits, Eric Bodden, Justin Smith, and
Emerson R. Murphy-Hill. Cheetah: just-in-time taint analysis for Android apps. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017 - Companion Volume, pages 39–42, 2017. doi:10.1109/ICSE-C.
2017.20.

38 Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. Ariadne: Analysis for
Machine Learning Programs. In Proceedings of the 2Nd ACM SIGPLAN International

ECOOP 2019

https://www.jetbrains.com/idea/
https://www.jsonrpc.org/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/monaco-editor/index.html
https://pmd.github.io/
https://www.jetbrains.com/pycharm/
https://github.com/sukyoung/safe
https://github.com/oasis-tcs/sarif-spec
https://github.com/Sable/soot
https://github.com/oracle/souffle/wiki
https://spotbugs.github.io/
https://www.spyder-ide.org/
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
http://blogs.grammatech.com/static-analysis-results-a-format-and-a-protocol-sarif-sasp
https://www.sublimetext.com/
https://www.vim.org/
https://code.visualstudio.com/
https://github.com/wala/WALA
https://www.rigs-it.com/xanitizer/
http://dx.doi.org/10.1145/2594291.2594299
http://www.bodden.de/pubs/bmb+13spllift.pdf
http://dx.doi.org/10.1145/1572272.1572274
http://dx.doi.org/10.1109/ICC.2017.7996335
http://dx.doi.org/10.1109/ICC.2017.7996335
http://dx.doi.org/10.1145/3092703.3092705
http://dx.doi.org/10.1109/ICSE-C.2017.20
http://dx.doi.org/10.1109/ICSE-C.2017.20

21:24 MagpieBridge

Workshop on Machine Learning and Programming Languages, MAPL 2018, pages 1–10, New
York, NY, USA, 2018. ACM. doi:10.1145/3211346.3211349.

39 Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster than the quick
and dirty way. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion, pages 307–309. ACM,
2010.

40 Stephen Fink and Julian Dolby. WALA–The TJ Watson Libraries for Analysis, 2012.
41 Stephen Fink, Julian Dolby, and L Colby. Semi-automatic J2EE transaction configuration,

January 2019.
42 Xi Ge and Emerson R. Murphy-Hill. Manual refactoring changes with automated refactoring

validation. In 36th International Conference on Software Engineering, ICSE ’14, Hyderabad,
India - May 31 - June 07, 2014, pages 1095–1105, 2014. doi:10.1145/2568225.2568280.

43 Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic security.
International Journal of Information Security, 14(3):263–287, June 2015. doi:10.1007/
s10207-014-0257-6.

44 Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C Rinard. Information Flow Analysis of Android Applications in DroidSafe. In NDSS,
volume 15, page 110, 2015.

45 Christian Hammer and Gregor Snelting. Flow-Sensitive, Context-Sensitive, and Object-sensitive
Information Flow Control Based on Program Dependence Graphs. International Journal of
Information Security, 8(6):399–422, December 2009. doi:10.1007/s10207-009-0086-1.

46 David Hovemeyer and William Pugh. Finding More Null Pointer Bugs, but Not Too Many.
In Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’07, pages 9–14, New York, NY, USA, 2007. ACM.
doi:10.1145/1251535.1251537.

47 Brittany Johnson, Yoonki Song, Emerson R. Murphy-Hill, and Robert W. Bowdidge. Why
don’t software developers use static analysis tools to find bugs? In ICSE, pages 672–681, 2013.

48 Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian
Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, et al. CogniCrypt: supporting
developers in using cryptography. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, pages 931–936. IEEE Press, 2017.

49 Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. The Soot framework for
Java program analysis: a retrospective. In Cetus Users and Compiler Infastructure Workshop
(CETUS 2011), volume 15, page 35, 2011.

50 Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein, Yves Le Traon, Steven
Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick D. McDaniel. IccTA:
Detecting Inter-Component Privacy Leaks in Android Apps. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015, Volume 1,
pages 280–291, 2015. doi:10.1109/ICSE.2015.48.

51 Alfonso Murolo, Fabian Stutz, Maria Husmann, and Moira C. Norrie. Improved Developer
Support for the Detection of Cross-Browser Incompatibilities. In Web Engineering - 17th
International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017, Proceedings, pages
264–281, 2017. doi:10.1007/978-3-319-60131-1_15.

52 Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir, and
Sascha Fahl. A Stitch in Time: Supporting Android Developers in Writing Secure Code.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1065–1077,
2017. doi:10.1145/3133956.3133977.

53 Damien Octeau, Patrick D. McDaniel, Somesh Jha, Alexandre Bartel, Eric Bodden,
Jacques Klein, and Yves Le Traon. Effective Inter-Component Communication Map-
ping in Android: An Essential Step Towards Holistic Security Analysis. In Proceed-
ings of the 22th USENIX Security Symposium, Washington, DC, USA, August 14-16,

http://dx.doi.org/10.1145/3211346.3211349
http://dx.doi.org/10.1145/2568225.2568280
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-014-0257-6
http://dx.doi.org/10.1007/s10207-009-0086-1
http://dx.doi.org/10.1145/1251535.1251537
http://dx.doi.org/10.1109/ICSE.2015.48
http://dx.doi.org/10.1007/978-3-319-60131-1_15
http://dx.doi.org/10.1145/3133956.3133977

L. Luo, J. Dolby, and E. Bodden 21:25

2013, pages 543–558, 2013. URL: https://www.usenix.org/conference/usenixsecurity13/
technical-sessions/presentation/octeau.

54 S. E. Schechter, R. Dhamija, A. Ozment, and I. Fischer. The Emperor’s New Security
Indicators. In 2007 IEEE Symposium on Security and Privacy (SP ’07), pages 51–65, May
2007. doi:10.1109/SP.2007.35.

55 Johannes Späth, Karim Ali, and Eric Bodden. Context-, Flow-, and Field-sensitive Data-flow
Analysis Using Synchronized Pushdown Systems. Proc. ACM Program. Lang., 3(POPL):48:1–
48:29, January 2019. doi:10.1145/3290361.

56 Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake, and Thomas
Leich. FeatureIDE: An extensible framework for feature-oriented software development. Science
of Computer Programming, 79:70–85, 2014.

57 Emina Torlak and Satish Chandra. Effective Interprocedural Resource Leak Detection. In
Proceedings of the 32Nd ACM/IEEE International Conference on Software Engineering -
Volume 1, ICSE ’10, pages 535–544, New York, NY, USA, 2010. ACM. doi:10.1145/1806799.
1806876.

58 Omer Tripp, Marco Pistoia, Patrick Cousot, Radhia Cousot, and Salvatore Guarnieri. An-
dromeda: Accurate and Scalable Security Analysis of Web Applications. In Fundamental Ap-
proaches to Software Engineering - 16th International Conference, FASE 2013, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, pages 210–225, 2013. doi:10.1007/978-3-642-37057-1_15.

59 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:
Effective Taint Analysis of Web Applications. In Proceedings of the 30th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’09, pages 87–97,
New York, NY, USA, 2009. ACM. doi:10.1145/1542476.1542486.

60 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., 2010.

61 Christos V. Vrachas. Integration of static analysis results with ProGuard optimizer for Android
applications. Bachelor Thesis, 2017.

62 Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A Precise and General
Inter-component Data Flow Analysis Framework for Security Vetting of Android Apps. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014, pages 1329–1341, 2014. doi:10.1145/2660267.
2660357.

63 Jing Xie, Bill Chu, Heather Richter Lipford, and John T. Melton. ASIDE: IDE support
for web application security. In Twenty-Seventh Annual Computer Security Applications
Conference, ACSAC 2011, Orlando, FL, USA, 5-9 December 2011, pages 267–276, 2011.
doi:10.1145/2076732.2076770.

ECOOP 2019

https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/octeau
http://dx.doi.org/10.1109/SP.2007.35
http://dx.doi.org/10.1145/3290361
http://dx.doi.org/10.1145/1806799.1806876
http://dx.doi.org/10.1145/1806799.1806876
http://dx.doi.org/10.1007/978-3-642-37057-1_15
http://dx.doi.org/10.1145/1542476.1542486
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2660267.2660357
http://dx.doi.org/10.1145/2076732.2076770

Semantic Patches for Java Program
Transformation
Hong Jin Kang
School of Information Systems, Singapore Management University, Singapore

Ferdian Thung
School of Information Systems, Singapore Management University, Singapore

Julia Lawall
Sorbonne Université/Inria/LIP6, France

Gilles Muller
Sorbonne Université/Inria/LIP6, France

Lingxiao Jiang
School of Information Systems, Singapore Management University, Singapore

David Lo
School of Information Systems, Singapore Management University, Singapore

Abstract
Developing software often requires code changes that are widespread and applied to multiple locations.
There are tools for Java that allow developers to specify patterns for program matching and source-
to-source transformation. However, to our knowledge, none allows for transforming code based on
its control-flow context. We prototype Coccinelle4J, an extension to Coccinelle, which is a program
transformation tool designed for widespread changes in C code, in order to work on Java source
code. We adapt Coccinelle to be able to apply scripts written in the Semantic Patch Language
(SmPL), a language provided by Coccinelle, to Java source files. As a case study, we demonstrate
the utility of Coccinelle4J with the task of API migration. We show 6 semantic patches to migrate
from deprecated Android API methods on several open source Android projects. We describe how
SmPL can be used to express several API migrations and justify several of our design decisions.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Program transformation, Java

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.22

Category Experience Report

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.10
Coccinelle4J can be found at https://github.com/kanghj/coccinelle/tree/java

Funding This research was supported by the Singapore National Research Foundation (award
number: NRF2016-NRF-ANR003) and the ANR ITrans project.

1 Introduction

Over ten years ago, Coccinelle was introduced to the systems and Linux kernel developer
communities as a tool for automating large-scale changes in C software [23]. Coccinelle
particularly targeted so-called collateral evolutions, in which a change to a library interface
triggers the need for changes in all of the clients of that interface. A goal in the development
of Coccinelle was that it should be able to be used directly by Linux kernel developers,
based on their existing experience with the source code. Accordingly, Coccinelle provides
a language, the Semantic Patch Language (SmPL), for expressing transformations using a

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Hong Jin Kang, Ferdian Thung, Julia Lawall, Gilles Muller, Liangxiao Jiang,
and David Lo;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 22; pp. 22:1–22:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2019.22
https://dx.doi.org/10.4230/DARTS.5.2.10
https://github.com/kanghj/coccinelle/tree/java
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Semantic Patches for Java Program Transformation

generalization of the familiar patch syntax. Like a traditional patch, a Coccinelle semantic
patch consists of fragments of C source code, in which lines to remove are annotated with -
and lines to add are annotated with +. Connections between code fragments that should
be executed within the same control-flow path are expressed using “...” and arbitrary
subterms are expressed using metavariables, raising the level of abstraction so as to allow a
single semantic patch to update complex library usages across a code base. This user-friendly
transformation specification notation, which does not require users to know about typical
program manipulation internals such as abstract-syntax trees and control-flow graphs, has
led to Coccinelle’s wide adoption by Linux kernel developers, with over 6000 commits to
the Linux kernel mentioning use of Coccinelle [14]. Coccinelle is also regularly used by
developers of other C software, such as the Windows emulator Wine1 and the Internet of
Things operating system Zephyr.2

Software developers who learn about Coccinelle regularly ask whether such a tool exists
for languages other than C.3 To begin to explore the applicability of the Coccinelle approach
to specifying transformations to software written in other languages, we have extended the
implementation of Coccinelle to support matching and transformation of Java code. Java is
currently the most popular programming language according to the TIOBE index.4 The
problem of library changes and library migration has also been documented for Java software
[29]. While tools have been developed to automate transformations of Java code [20, 25, 28],
none strikes the same balance of closeness to the source language and ease of reasoning
about control flow, as provided by Coccinelle. Still, Java offers features that are not found
in C, such as exceptions and subtyping. Thus, we believe that Java is an interesting target
for understanding the generalizability of the Coccinelle approach, and that an extension of
Coccinelle to Java can have a significant practical impact.

Our research goal is to explore what can be done for Java programs with the Coccinelle
approach, i.e. transformation rules expressed in a patch-like notation and other features
from Coccinelle. This experience paper documents our design decisions for Coccinelle4J, our
extension of Coccinelle to handle Java code. We present the challenges we have encountered
in the design of Coccinelle4J and the initial implementation. The design has been guided
by a study of the changes found in the development history of five well-known open-source
Java projects. Through a case study where we transform deprecated API call sites to use
replacement API methods, we evaluate Coccinelle4J in terms of its expressiveness and its
suitability for use on Java projects.

This paper makes the following contributions:
We show that the approach of program transformation of Coccinelle, previously only
used for C programs, generalizes to Java programs.
We document the design decisions made to extend Coccinelle to work with Java.
In the context of migrating APIs, we use Coccinelle4J and show that control-flow
information is useful for Java program transformation.

The rest of this paper is organized as follows. Section 2 briefly introduces Coccinelle.
Section 3 presents our extensions to support Java. Section 4 looks at a case study involving
migrating APIs in open source Java projects. Section 5 discusses related work. Finally, we
present our conclusions and discuss possible future directions of this work in Section 6.

1 https://wiki.winehq.org/Static_Analysis#Coccinelle
2 https://docs.zephyrproject.org/latest/guides/coccinelle.html
3 https://twitter.com/josh_triplett/status/994753065478582272
4 https://www.tiobe.com/tiobe-index/, visited January 2019

https://wiki.winehq.org/Static_Analysis#Coccinelle
https://docs.zephyrproject.org/latest/guides/coccinelle.html
https://twitter.com/josh_triplett/status/994753065478582272
https://www.tiobe.com/tiobe-index/

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:3

Control-
flow Graph CTL-VW

Source Code SmPL

Model checking
algorithm

Matched
Code AST

Modified
Code AST

Modified
Source Code

Parsed Parsed

Transformed

Pretty-printed

Figure 1 The process of transforming programs for a single rule.

2 Background

Coccinelle is a program transformation tool with the objective of specifying operating system
collateral evolutions [19], code modifications required due to changes in interfaces of the
operating system kernel or driver support libraries. Similar to widespread changes, such an
evolution may involve code that is present in many locations within a software project. It was
found that, to automate such changes, it is often necessary to take into account control-flow
information, as collateral evolutions may involve error-handling code after invoking functions,
or adding arguments based on context [3]. Much of the design of Coccinelle has been
based on pragmatism, trading off correctness for ease of use and expressiveness. Coccinelle
works on the control-flow graph and Abstract Syntax Tree (AST) for program matching
and transformation, and therefore matches on program elements regardless of variations
in formatting.

Coccinelle’s engine is designed based on model checking. Building on an earlier work by
Lacey and De Moor [12] on using Computational Tree Logic (CTL) to reason about compiler
optimizations, Brunel et al. [3] propose CTL-VW as a foundation for program matching
on control-flow graphs in Coccinelle. CTL-VW extends CTL, by adding predicates over
metavariables that can be existentially qualified over program elements, as well as by adding
witnesses, which record variable bindings and track locations to be transformed.

As input, Coccinelle accepts source code and a semantic patch describing the program
transformation. The source code is parsed, producing an intraprocedural control-flow graph
for each function, while the semantic patch language is converted into a CTL-VW formula.
For each function definition or other top-level declaration in the source code, the CTL-VW
formula is matched against the control-flow graph using a model-checking algorithm. This
process is summarized in Figure 1.

Semantic patches are specified in SmPL, which has a declarative syntax resembling
patches produced by the familiar diff command. A semantic patch describes code that is
removed and added, with any relevant surrounding code given as context. ’-’ and ’+’ are
used to mark lines containing code to be removed and added, respectively. This syntax
follows a WYSIWYG approach and is familiar to developers using revision control software.
Listing 1 shows a simplified version of a semantic patch checked into the mainline Linux
kernel repository. This semantic patch removes declarations of variables that are assigned a
constant value and immediately returned. It makes use of some notation unique to Coccinelle
that we will explain further below.

ECOOP 2019

22:4 Semantic Patches for Java Program Transformation

Listing 1 Example of a rule that removes variables that only exist to return a constant.
1 @@
2 type T;
3 constant C;
4 identifier ret;
5 @@
6 - T ret = C;
7 ... when != ret
8 when strict
9 return

10 - ret
11 + C
12 ;

We briefly describe semantic patches and SmPL, using Listing 1 as an example. A rule
in a semantic patch has two parts: the declaration of metavariables (lines 2-4), followed by
the specification of the intended transformation over the declared metavariables (lines 6-12).
Although our example contains only a single rule, a semantic patch can consist of multiple
rules. Rules after the first one can refer to metavariables matched by prior rules.

Coccinelle offers abstractions to reason about paths. The “...” operator in SmPL
represents an arbitrary sequence. In the context of Listing 1, the operator represents any
sequence of statements over any control flow path. The when keyword restricts matches of
“...”. In Listing 1, the use of when != ret means that there should be no occurrences of
ret in the matched control-flow path, and the use of when strict means that this property
applies to all control-flow paths starting from the declaration, including those that abort
with an error value. Without when strict, all paths must be matched except those that end
with an error abort. A further option is when exists, which is satisfied whenever a single
path meets the specified criteria on any other when constraints. By default, a control-flow
path matched with “...” may not contain code that matches the patterns preceding or
following the “...”, here the declaration of ret and the return of its value, thus matching
the shortest path between these points. This constraint can be lifted using when any. One
caveat is that Coccinelle does not account for the run-time values when computing paths,
and thus over-approximates the set of paths that can be taken.

As we do not modify the semantics of SmPL, we do not discuss SmPL in further detail.
A more complete treatment of SmPL is given by Padioleau et al. [24].

3 Extending Coccinelle to Java

In this section, we document our experience and design decisions made during the development
of Coccinelle4J. Our first observation is that much of the syntax of Java is also found in
C. For example, both languages contain if statements, assignments, function/method calls,
etc. And even some differences in the syntax, such as the ability to declare a variable in
the header of a for loop, amount to only minor variations. Thus, we can use much of the
implementation of Coccinelle unchanged and provide a transformation language that has a
similar look and feel.

Still, Java is a different language than C, and notably offers an object-oriented program-
ming paradigm, rather than a simple imperative one, as found in C. To identify the language
features that are most relevant to widespread changes in Java code, we performed an analysis

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:5

Table 1 Number of commits for each type of change.

Type of change Number of commits
Addition of new methods or modification of method signatures 43
Modification of multiple methods’ implementation 33
Changes that are non-functional 23
Modification of imports 14
Changes related to sub-typing or inheritance 9
Modification of annotations 8

based on commits in the past year of five common Java libraries: Gson,5 Apache Commons
IO6 and Commons Lang,7 Mockito,8 and Selenium.9 Out of the 1179 commits to these
projects, we found 130 containing a widespread change, i.e., a change that is both semantically
and syntactically similar made in multiple locations. Depending on the widespread change
present in the commit, we manually categorized these commits as shown in Table 1. We use
the frequency of each category of change to motivate and prioritize the necessary features of
Coccinelle that we port to Coccinelle4J. In particular, we notice that the features of class
hierarchy and annotations are changed least frequently, so these features are not offered in
the current design of Coccinelle4J.

Guided by this analysis, we have developed Coccinelle4J in three phases. As a first
milestone for our work, we target the constructs found in Middleweight Java [1]. Middleweight
Java is a minimal imperative fragment for Java, designed for the study of the Java type
system. In contrast to other formal models of Java, Middleweight Java programs are valid
executable Java programs, thus representing a useful first step for our work. Still, most real
Java programs involve constructs that go beyond the very limited syntax of Middleweight
Java. With ad-hoc testing on some real projects, we identified the need for handling control-
flow with exceptions in the context of try-catch, and the need to introduce Java-specific
isomorphisms, Coccinelle meta-rules that make it possible to match semantically equivalent
code with concise patterns. These features were added in the second phase. Finally, our
third phase introduces the ability to reason to a limited degree about subtyping. Across the
three phases, we added or modified a total of 3084 lines of code.

Much like the original design of Coccinelle, we focus on pragmatism and provide most
features on a best-effort basis, without proving correctness. Like Coccinelle, Coccinelle4J
does not crash or throw any errors when it encounters code that it cannot parse or transform.
Instead, it recovers from any errors and ignores the parts of the code that it cannot handle.

3.1 Phase 1: Middleweight Java

Middleweight Java is a minimal but valid subset of Java that still retains features of Java such
as field assignments, null pointers, and constructor methods. The syntax of Middleweight
Java programs is as follows:

5 https://github.com/google/gson
6 https://gitbox.apache.org/repos/asf?p=commons-io.git
7 https://gitbox.apache.org/repos/asf?p=commons-lang.git
8 https://github.com/mockito/mockito
9 https://github.com/SeleniumHQ/selenium

ECOOP 2019

https://github.com/google/gson
https://gitbox.apache.org/repos/asf?p=commons-io.git
https://gitbox.apache.org/repos/asf?p=commons-lang.git
https://github.com/mockito/mockito
https://github.com/SeleniumHQ/selenium

22:6 Semantic Patches for Java Program Transformation

Program
p ::= cd1...cdn; s̄

Class definition
cd ::= class C extends C {

fd1...fdk

cnd

md1...mdn

}

Field definition
fd ::= Cf ;

Constructor definition
cnd ::= C(C1x1, ..., Cjxj) {

super(e1, ..., ek); s1...sn

}

Method definition
md ::= τ m(C1x1, ..., Cnxn) {s1...sk}

Return type
τ ::= C | void

Expression
e ::=x Variable

| null Null
| e.f Field access
| (C)e Cast
| pe Promotable expression

Promotable Expression
pe :: = e.m(e1, ..., ek) Method invocation

| new C(e1, ...ek) Object creation

Statement
s :: = ; No-op

| pe; Promoted expression
| if (e==e) s1...sk else s(k+1)...sn Conditional
| e.f=e; Field assignment
| C x; Local variable declaration
| x=e; Variable assignment
| return e; Return
| {s1...sn} Block

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:7

Middleweight Java is imperative and does not add any new control flow structure as
compared to C. We thus map each AST element in Middleweight Java to an AST element
in C. When compared to C, the three main additions of Middleweight Java are method
invocation, object creation and constructor declarations. We map method invocations and
object creations to function calls, and constructor declarations to function declarations. Class
definitions are ignored as Coccinelle4J only allows matching and transformations of functions.

While we try to support the syntax of Java, we follow the goals of Coccinelle to decide the
scope of our analysis on the source code [14]. One of Coccinelle’s goals is to keep performance
acceptable when used by developers on their development laptops. Thus, we always favor
decisions keeping Coccinelle4J fast.

When the source code references an identifier, we do not attempt to resolve its type
information that is not immediately obvious from the file getting parsed, such as the interfaces
implemented by its class or its class hierarchy. We note that our choice contrasts with the
design of some popular Java code-manipulation tools. For example, both Spoon [25] and
Soot [27] provide an option for the user to pass the tool a classpath, allowing developers to
specify where third-party library method and types can be found. Our choice is motivated
by the statistics of widespread change in Table 1, where changes related to modifications in
sub-typing or inheritance only comprise 6% of commits making widespread changes. When
these transformations are required, a more appropriate tool such as Spoon can be used
instead, as Coccinelle4J is complementary to it. We further discuss this decision and other
implications of only allowing a limited form sub-typing and inheritance in Phase 3 (Section
3.3), the performance of Coccinelle4J in Section 4, and a brief comparison to Spoon in
Section 4.8.

3.2 Phase 2: Control-flow with Exceptions and Java-specific
Isomorphisms

Our second phase of the development of Coccinelle4J adds exceptions in the context of
try-catch, to allow Coccinelle4J to parse and process a wider range of Java programs. To
further improve the usability of Coccinelle4J, we add Java-specific isomorphisms, allowing
some kinds of Java pattern code to match related syntactic variants.

3.2.1 Control-flow with exceptions
Middleweight Java does not allow code to throw exceptions, other than ClassCastException
and NullPointerException, and does not provide syntax for try and catch. While this
may be convenient for analysis, exceptions are used heavily in real-world Java programs.
For example, about 25% of the Java classes in the source code of the five Java libraries
previously discussed in Section 3 contain exception handling code. To allow Coccinelle4J
to be more useful in practice, we add support for handling exceptions in the context of
try-catch. Coccinelle4J does not deal with code throwing exceptions out of a method as it
only performs intraprocedural analysis.

Given the code snippet in Listing 2, adapted from the code found in the NextCloud
Android project,10 we construct the control flow graph for the try statement as shown in
Figure 2. As Coccinelle4J ignores the signatures of invoked methods from project dependencies
and even within the same project, it does not know if any of the methods or constructors will
throw an exception. It thus over-approximates the set of paths that can be taken, adding
edges between all the nodes in the try block and the start of the catch block.

10 https://github.com/nextcloud/android

ECOOP 2019

https://github.com/nextcloud/android

22:8 Semantic Patches for Java Program Transformation

try

OwnCloudAccount
ocAccount = ...

client = ...catch

Log_OC.e

} (catch)

end try

userId = ...

Figure 2 Control flow graph of try-catch.

Listing 2 Code snippet from the NextCloud Android project, modified for conciseness.
1 public RemoteTrashbinRepository (Context context) {
2 AccountManager accountManager = AccountManager .get(context);
3 Account account = AccountUtils . getCurrentOwnCloudAccount (
4 context);
5 try {
6 OwnCloudAccount ocAccount = new OwnCloudAccount (account ,
7 context);
8 client = OwnCloudClientManagerFactory . getDefaultSingleton ()
9 . getClientFor (ocAccount , context);

10 } catch (Exception e) {
11 Log_OC .e(TAG , e. getMessage ());
12 }
13 userId = accountManager . getUserData (account ,
14 com. owncloud . android .lib. common . accounts . AccountUtils .
15 Constants . KEY_USER_ID);
16 }

There are some ramifications of performing the control flow analysis in this way. For
example, consider the following code snippet (Listing 3) and semantic patch (Listing 4), where
thisWontThrow will never throw an ExceptionA. The control-flow graph created by Coccinelle4J
has a path where reachedHere is reached. As the match succeeds, the Coccinelle adds the
new invocation of log.info. However, in reality, the code in the catch (ExceptionA e) block
is unreachable.

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:9

Listing 3 Hypothetical code where thisWontThrow() will not throw an exception.
1 ObjectA A = new ObjectA ();
2 try {
3 A. thisWontThrow ();
4 reachedEnd = true;
5 } catch (ExceptionA e) {
6 A. reachedHere ();
7 }

Listing 4 Semantic patch adding a log message after A.reachedHere.
1 @@
2 @@
3 A. thisWontThrow ();
4 ... when exists
5 A. reachedHere ();
6 + log.info (" reached end of catch block ");

In practice, we do not expect this to be common in real projects or be surprising to
a user of Coccinelle4J. If ExceptionA is a checked exception, the Java compiler reports an
error if the exception is never thrown in the try statement. For unchecked exceptions, as
method signatures do not contain information about them, having the method signatures
of the invocations in the try block will not help us prevent over-approximating the set of
possible paths.

3.2.2 Isomorphisms
The fact that SmPL expresses patterns in terms of source code makes it easy to learn, but
risks tying the specification to the coding style habits of a given developer. To address this
issue, Coccinelle’s engine handles isomorphisms during matching. Isomorphisms describe
semantically equivalent code fragments that are used to expand SmPL rules, allowing
syntactically different source code with the same semantics to be matched. For example, it
allows i++ (postfix increment) to be successfully matched against queries for i=i+1.

In Coccinelle4J, we disable Coccinelle isomorphism rules that are not relevant for Java
(for example, pointer-related isomorphisms), and add Java-specific rules such as considering
A.equals(B) to be semantically identical to B.equals(A).

One particular difficulty we face in Java is that fully qualified names are considered by
Coccinelle4J to be different from non-fully qualified ones even when referring to the same
enumeration or method. This results in long patches specifying the same name multiple
times using different qualifiers. To resolve this issue, we add a preprocessor to generate
isomorphisms based on how names are qualified in a project. For example, when the rules in
Listing 5 are enabled, users can specify “sqrt” in SmPL to match Math.sqrt or java.lang.
Math.sqrt in the Java source code. This allows for more concise semantic patches. From our
analysis of the 5 Java libraries previously discussed at the start of Section 3, less than 10% of
method names and enumeration names were not unique when considering all of the projects
together. Therefore, in many contexts, users do not need to distinguish between invocations
of these different types of methods as there is often little risk in matching undesired function
invocations of the same name.

ECOOP 2019

22:10 Semantic Patches for Java Program Transformation

Listing 5 Generated isomorphism rules, named java_lang_Math_sqrt and Math_sqrt, conflating
qualified names and non-qualified names.

1 Expression
2 @java_lang_Math_sqrt@
3 @@
4 sqrt => java.lang.Math.sqrt
5

6 Expression
7 @Math_sqrt@
8 @@
9 sqrt => Math.sqrt

Isomorphisms can be disabled on an individual basis within each rule by specifying
disable <isomorphism name> beside the rule name or by passing a command line option to
Coccinelle4J. The isomorphisms generated for matching fully qualified names are named
“<package name>_<class name>_<identifier>” with the “.” in the package name replaced by
“_”. As such, the rules in Listing 5 can be disabled by specifying disable java_lang_Math_sqrt
and disable Math_sqrt. New isomorphisms can also be added by users.

3.3 Phase 3: Matching programs with sub-typing
Java projects often make use of sub-typing. Developers writing semantic patches may expect
that a variable can be matched based on both its declared interface and the type specified
in its constructor. Therefore, we permit a limited form of matching on variable types.
Coccinelle4J annotates a variable using both its declared interface and its constructor. As a
simple example, the metavariable x, declared with ArrayList<Integer> in the patch in Listing
6 can bind to the variable numbers in the statements in Listing 7. Coccinelle originally would
only match if x was declared with List<Integer> in the semantic patch.

Listing 6 Semantic patch matching identifiers of type ArrayList<Integer>.
1 @@
2 ArrayList <Integer > x;
3 identifier f;
4 @@
5 * f(x)

Listing 7 Statements with a List<Integer> variable.
1 List <Integer > numbers = new ArrayList <Integer >();
2 doSomething (numbers);

Coccinelle4J’s support for subtyping builds on Coccinelle’s support for typedef. In C,
typedef allows developers to introduce synonyms for types. For example, typedef short s16;
introduces a new type alias s16 for the type short. During program matching, developers
may expect that writing short in SmPL matches expressions of type s16 in the source code.

Coccinelle already resolves type information related to typedefs during program matching.
When parsing C programs, Coccinelle tracks type information for each typedef and annotates
each program element in the C source code with the types that it can be matched on.
Whenever an element declared as a typedef is reached, Coccinelle tries to resolve the type
information from the relevant typedef declaration. In Coccinelle4J, we reuse this mechanism
to deal with sub-typing in Java, maintaining a list of types that each program element can
be matched on.

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:11

One limitation is that we only match interfaces to object instances of their sub-types
if the variables were explicitly declared with their interface. For example, numbers in
Listing 7 implements multiple interfaces including List<Integer> and Iterable<Integer>. In
Coccinelle4J, we only match numbers on the explicitly declared types List<Integer> and
ArrayList<Integer>. Information such as the inheritance path of the identifier’s class is also
ignored; numbers inherits AbstractList<Integer>, AbstractCollection<Integer>, and Object,
but Coccinelle4J will not match them. As a result of this decision, in Listing 8, patterns
specifying Deque<UserInfoDetailsItem> will not match any statement in the Listing even
though LinkedLists satisfy the Deque interface, since it is not declared as a Deque here.

Listing 8 Code snippet modified from NextCloud Android. This code snippet
matches List<UserInfoDetailsItem> or LinkedList<UserInfoDetailsItem>, but not Deque<
UserInfoDetailsItem>.

1 List < UserInfoDetailsItem > result = new LinkedList <>();
2 addToListIfNeeded (result , R. drawable .ic_phone , userInfo . getPhone (),
3 R. string . user_info_phone);
4 return result ;

In practice, allowing a semantic patch specifying an interface/parent class to match
on all uses of sub-types/child classes may result in many unwanted results. Classes may
implement multiple interfaces, and when given a particular context, it is improbable that
every implemented interface is relevant. In many situations where matching an interface or
parent class is intended, specifying the interface or its methods will suffice. In most cases,
matching on explicit declarations is sufficient, since it is idiomatic in Java to “Refer to objects
by their interfaces” [2]. For example, numbers is declared with its interface List<Integer> in
Listing 7 and result is declared with List<UserInfoDetailsItem> in Listing 8.

We verified this idiom empirically. In the Java libraries we studied, 75% of method
parameters and local variable declarations were declared with an interface, whenever such
an interface (excluding low-level interfaces from java.lang and java.io) existed. In cases
where variables are not declared with their interfaces and we wish to detect them, specifying
the methods on the interface can be attempted next. For example, the Cloneable interface
is implemented by numerous classes. If the user intends to find parts of programs where
objects are cloned, it is sufficient to specify the invocation of the clone() method in the
semantic patch.

Another reason for this decision is that resolving the type of every identifier will incur a
performance penalty, and we would like to avoid the cost of trying to resolve project dependen-
cies or having to fetch type information from third-party libraries. Coccinelle4J is designed
to be used by developers for rapid prototyping, one rule at a time, so that users can receive
feedback from the tool quickly. Thus, one of our goals is to keep Coccinelle4J lightweight.

4 Case Study: Migrating APIs

Android applications may have many dependencies on third-party libraries or frameworks,
and keeping up with changes in those dependencies may introduce a significant maintenance
burden. Due to security or performance issues, libraries or frameworks deprecate API
methods and these methods are eventually removed [16]. It is therefore important to upgrade
the uses of deprecated methods to their more modern alternatives. McDonnell et al. studied
the impact of API evolution of Android on developer adoption [17], and they found that it
takes time for developers to catch up with new API versions. They also observed that API
updates are more probable to lead to defects than other changes. We note that this shows
the importance of providing developers with a faster and more reliable way of updating
API usage.

ECOOP 2019

22:12 Semantic Patches for Java Program Transformation

We show examples of deprecated Android API methods with typical migration pathways,
and show possible semantic patches for these migrations. Using these examples, we show
that typical migrations can be written concisely in SmPL. We order these examples in
approximately increasing order of complexity. In Section 4.1, 4.2, and 4.3, we show basic
features of Coccinelle4J to replace method invocations, arguments to them, and their method
receivers. In Section 4.4, we describe a case requiring a change in logic due to a different
return type of the replacement API, and in Section 4.5, we distinguish between the different
ways the deprecated API can be used based on its context. In Section 4.6, we replace the
parameters of a method overriding a deprecated method from its parent class. Finally, we
discuss an example where we encounter some false positives during program matching due to
the limitations described earlier.

As some method invocations may have numerous call sites across a project, migration
of these API methods is a form of widespread change. We show that the use of semantic
patches may reduce developer effort. This also serves as a short guide on specifying program
transformations in SmPL, and we show how context information may be useful. While
performing the migrations, there are two questions that we wish to answer:

Is SmPL expressive enough to perform widespread changes in Java projects?
How much development effort can a developer potentially save by the use of semantic
patches?

4.1 Removing sticky broadcasts
We use SmPL to demonstrate two related trivial migrations of replacing invocations of a
deprecated method while keeping the same arguments, and removing the invocations of
another method.

The use of sticky broadcasts was discouraged in the release of Android API level 21
due to problems such as the lack of security, therefore the methods sendStickyBroadcast(
Intent) and removeStickyBroadcast(Intent) were deprecated. The official API reference11
recommends sendBroadcast(Intent) to replace sendStickyBroadcast(Intent), while usage of
removeStickyBroadcast(Intent) should be removed. It was suggested that the developer
should also provide some mechanism for other applications to fetch the data in the sticky
broadcasts. Providing this latter mechanism is highly dependent on the Android application,
and requires knowledge of what the broadcast receivers expect of the broadcast. However,
replacing and removing these method calls can be expressed in SmPL.

Listings 9 and 10 illustrate the use of these API methods in the NextCloud Android
project, while Listing 11 shows a semantic patch that handles this migration. The call site of
removeStickyBroadcast is an example motivating that migration of function invocations on
exceptional control flow may be required, as removeStickyBroadcast may be included in a
finally block to ensure that it always executes. In this patch, we use the ’|’ operator, i.e., the
sequential disjunction operator of SmPL, to remove invocations of removeStickyBroadcast.
The ’|’ operator allows matching and transformation using any of the terms delimited by ’|’
within the parenthesis. Earlier matches take precedence over later ones, for a given node
in the control-flow graph. In this case, the rule matches on either sendStickyBroadcast or
removeStickyBroadcast. This allows for the succinct expression of multiple matching code
that have similar contexts.

11 https://developer.android.com/reference/android/content/Context.html#
sendStickyBroadcast(android.content.Intent)

https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)
https://developer.android.com/reference/android/content/Context.html#sendStickyBroadcast(android.content.Intent)

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:13

Listing 9 Example call site of sendStickyBroadcast in the NextCloud Android project.
1 private void sendBroadcastUploadsAdded () {
2 Intent start = new Intent (getUploadsAddedMessage ());
3 // nothing else needed right now
4 start. setPackage (getPackageName ());
5 sendStickyBroadcast (start);
6 }

Listing 10 Example call site of removeStickyBroadcast in the NextCloud Android project.
1 try {
2 ... // omitted for brevity
3 removeStickyBroadcast (intent);
4 Log_OC .d(TAG , " Setting progress visibility to " + mSyncInProgress);
5 } catch (RuntimeException e) {
6 // comments omitted for brevity
7 removeStickyBroadcast (intent);
8 DataHolderUtil . getInstance (). delete (
9 intent . getStringExtra (FileSyncAdapter . EXTRA_RESULT));

10 }

Listing 11 Semantic patch for migrating from sendStickyBroadcast.
1 @@
2 Intent intent ;
3 @@
4 (
5 - sendStickyBroadcast (intent);
6 + sendBroadcast (intent);
7 |
8 - removeStickyBroadcast (intent);
9)

4.2 setTextSize → setTextZoom
Li et al. have inferred a collection of mappings from deprecated Android API methods to
their replacement methods [16]. A typical migration in this collection requires modifying
both method names and method arguments, either by adding or removing arguments, or
by changing the arguments’ type. One such transformation was required when WebSettings
.setTextSize(WebSettings.TextSize) was deprecated and replaced by WebSettings.setText
Zoom(int). This involves transforming both the method name and the method arguments.
Listing 12 shows part of the patch on the Lucid-Browser project12 and Listing 13 then shows
a semantic patch producing it. The semantic patch modifies both the method’s name and its
arguments in a single rule.

Listing 12 Part of a patch replacing invocations of setTextSize in the Lucid-Browser project.
1 if (Properties . webpageProp . fontSize ==0)
2 - this. getSettings (). setTextSize (WebSettings . TextSize . SMALLEST);
3 + this. getSettings (). setTextZoom (50);
4 if (Properties . webpageProp . fontSize ==1)
5 - this. getSettings (). setTextSize (WebSettings . TextSize . SMALLER);
6 + this. getSettings (). setTextZoom (75);

12 https://github.com/powerpoint45/Lucid-Browser

ECOOP 2019

https://github.com/powerpoint45/Lucid-Browser

22:14 Semantic Patches for Java Program Transformation

7 if (Properties . webpageProp . fontSize ==2)
8 - this. getSettings (). setTextSize (WebSettings . TextSize . NORMAL);
9 + this. getSettings (). setTextZoom (100);

10 if (Properties . webpageProp . fontSize ==3)
11 - this. getSettings (). setTextSize (WebSettings . TextSize . LARGER);
12 + this. getSettings (). setTextZoom (150);
13 if (Properties . webpageProp . fontSize ==4)
14 - this. getSettings (). setTextSize (WebSettings . TextSize . LARGEST);
15 + this. getSettings (). setTextZoom (200);

Listing 13 Semantic patch replacing usage of setTextSize.
1 @@
2 expression E;
3 @@
4 (
5 - E. setTextSize (LARGEST);
6 + E. setTextZoom (200);
7 |
8 - E. setTextSize (LARGER);
9 + E. setTextZoom (150);

10 |
11 - E. setTextSize (NORMAL);
12 + E. setTextZoom (100);
13 |
14 - E. setTextSize (SMALLER);
15 + E. setTextZoom (75);
16 |
17 - E. setTextSize (SMALLEST);
18 + E. setTextZoom (50);
19)

This example illustrates the usefulness of the isomorphisms conflating fully qualified and
non-fully qualified class names. While in most projects, WebSettings.TextSize.LARGEST is
often qualified with WebSettings.TextSize, some projects, such as K-9 Mail,13 use the shorter
TextSize.LARGEST. Listings 14 and 15 show the isomorphism rules generated for LARGEST.

Listing 14 Isomorphism rule for expanding LARGEST for Lucid Project.
1 Expression
2 @ WebSettings_TextSize_LARGEST @
3 @@
4 LARGEST => WebSettings . TextSize . LARGEST

Listing 15 Isomorphism rule for expanding LARGEST for K-9 Mail.
1 Expression
2 @ TextSize_LARGEST @
3 @@
4 LARGEST => TextSize . LARGEST

4.3 Resources.getColor → ContextCompat.getColor
Another migration pathway is changing the method receiver. We use the deprecation of
Resources.getColor(int) as an example. One approach to replace this deprecated method
is to use the static method ContextCompat.getColor(Context, int), which was specifically
introduced to help migrate from the deprecated method. A commit making such a change

13 https://github.com/k9mail/k-9/commit/f8695f9a61c8a411a09ccee8c8bf739149f0f17e

https://github.com/k9mail/k-9/commit/f8695f9a61c8a411a09ccee8c8bf739149f0f17e

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:15

can be found in the Kickstarter Android project.14 A patch, similar to that commit, that
can be applied on Kickstarter Android is in Listing 16 and the semantic patch producing
this patch is in Listing 17.

Listing 16 Part of a patch replacing getColor from Kickstarter Android.
1 return new NotificationCompat . Builder (context)
2 . setSmallIcon (R. drawable . ic_kickstarter_k)
3 - . setColor (context . getResources (). getColor (R.color.green))
4 + . setColor (ContextCompat . getColor (context , R.color.green))
5 . setContentText (text)
6 . setContentTitle (title)
7 . setStyle (new NotificationCompat . BigTextStyle (). bigText (text))
8 . setAutoCancel (true);

Listing 17 Semantic patch replacing uses of getColor.
1 @@
2 Context ctx;
3 expression E;
4 @@
5 - ctx. getResources (). getColor (E)
6 + ContextCompat . getColor (ctx , E)

4.4 AudioManager.shouldVibrate(int) →
AudioManager.getRingerMode()

In some cases, migration requires more changes than just replacing the deprecated method
with another and requires additional logic to be added by the developer. For example, the
migration pathway for AudioManager.shouldVibrate was to replace it with a comparison of
the ringer mode retrieved from AudioManager.getRingerMode. This deprecation required an
application to maintain its own policy for allowing vibration of the phone based on the
phone’s current ringer mode. Support for both older and newer Android versions may
be kept by using the deprecated method only on earlier Android versions, while using the
replacement method on later Android versions. An example showing the result of the required
transformation can be found in the Signal Android application15 shown in Listing 18. Listing
19 shows a semantic patch that adds a new function that dispatches a call to the right
method after checking the Android version, and replaces the deprecated method invocation
with this method. A default policy of allowing vibration on non-silent modes is assumed in
this patch, but developers can modify the semantic patch to customize the vibrate policy for
their own applications appropriately.

Listing 18 Example code invoking the deprecated method from Signal Android.
1 private boolean shouldVibrate (Context context , MediaPlayer player ,
2 int ringerMode , boolean vibrate) {
3 if (player == null) {
4 return true;
5 }
6

14 https://github.com/kickstarter/android-oss/commit/
053b0a32731bd9a4e9dd42c297565f87145a964b

15 https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924
ce/src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java

ECOOP 2019

https://github.com/kickstarter/android-oss/commit/053b0a32731bd9a4e9dd42c297565f87145a964b
https://github.com/kickstarter/android-oss/commit/053b0a32731bd9a4e9dd42c297565f87145a964b
https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924ce/src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java
https://github.com/signalapp/Signal-Android/blob/f9adb4e4554a44fd65b77320e34bf4bccf7924ce/src/org/thoughtcrime/securesms/webrtc/audio/IncomingRinger.java

22:16 Semantic Patches for Java Program Transformation

7 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . JELLY_BEAN) {
8 return shouldVibrateNew (context , ringerMode , vibrate);
9 } else {

10 return shouldVibrateOld (context , vibrate);
11 }
12 }
13

14 @TargetApi (Build. VERSION_CODES . HONEYCOMB)
15 private boolean shouldVibrateNew (Context context ,
16 int ringerMode , boolean vibrate) {
17 Vibrator vibrator = (Vibrator) context . getSystemService (
18 Context . VIBRATOR_SERVICE);
19

20 if (vibrator == null || ! vibrator . hasVibrator ()) {
21 return false;
22 }
23

24 if (vibrate) {
25 return ringerMode != AudioManager . RINGER_MODE_SILENT ;
26 } else {
27 return ringerMode == AudioManager . RINGER_MODE_VIBRATE ;
28 }
29 }
30

31 private boolean shouldVibrateOld (Context context , boolean vibrate) {
32 AudioManager audioManager = ServiceUtil . getAudioManager (context);
33 return vibrate &&
34 audioManager . shouldVibrate (AudioManager . VIBRATE_TYPE_RINGER);
35 }

Listing 19 Semantic Patch replacing uses of shouldVibrate.
1 @@
2 identifier am , f, ctx;
3 expression vibrate_type ;
4 @@
5 + boolean shouldVibrate (AudioManager am , Context ctx , int vibrateType) {
6 + if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . JELLY_BEAN) {
7 + Vibrator vibrator = (Vibrator) ctx. getSystemService (
8 + Context . VIBRATOR_SERVICE);
9 + if (vibrator == null || ! vibrator . hasVibrator ()) {

10 + return false;
11 + }
12 + return am. getRingerMode () != AudioManager . RINGER_MODE_SILENT ;
13 + } else {
14 + return audioManager . shouldVibrate (vibrateType);
15 + }
16 + }
17 f(... , Context ctx , ...) {
18 ...
19 - am. shouldVibrate (vibrate_type)
20 + shouldVibrate (am , ctx , vibrate_type)
21 ...
22 }

4.5 Display.getHeight() and Display.getWidth() →
Display.getSize(Point)

Deprecated methods can be used in different ways, and migration requires consideration of
how they were used. For example, in the release of Android API Level 15, Display.getHeight
and Display.getWidth were deprecated in favor of constructing a Point object, initializing
it using Display.getSize(Point), before obtaining the height and width using Point.y and

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:17

Point.x. Listings 20 and 21 show two examples of code (from the Materialistic for Hacker
News application16 and the Glide library17) managing the deprecation. Both examples check
for the currently installed Android version, and invoke the deprecated method only on earlier
versions of Android where the method has not been deprecated.

These two examples show the need to distinguish between code requiring a Point object
instance, and code requiring just the height of a display. In Listing 21, a Point object is
already constructed and only the way it is initialized requires modification. In Listing 20,
however, only the height of the display is required. Listing 22 shows a simplified semantic
patch that consists of two rules to fix the two variants of this deprecation. The tokens <...
and ...> form a variant of “...” indicating that matching display.getHeight() within the
path is optional and can occur multiple times. In this case, we use <... ...> to specify
that we wish to transform all of its occurrences. The use of ... when != Point(...) in rule2
omits matches where a Point object has already been created in the control flow context, in
order to distinguish between the two cases. Listing 23 shows one example patch produced by
Coccinelle4J that is semantically similar to a commit fixing the deprecation in the Android
framework itself.18

Listing 20 Example from Materialistic of correct usage of the deprecated method, getHeight,
after checking for the device’s Android version.

1 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . HONEYCOMB_MR2) {
2 displayDimens = new Point ();
3 display . getSize (displayDimens);
4 } else {
5 displayDimens = new Point(display . getWidth (), display . getHeight ());
6 }
7 ... // omitted for brevity

Listing 21 Example from Glide of correct usage of the deprecated method, getHeight, after
checking for the device’s Android version.

1 ... // omitted for brevity
2 if (Build. VERSION . SDK_INT >= Build. VERSION_CODES . HONEYCOMB_MR2) {
3 Point point = new Point ();
4 display . getSize (point);
5 return point.y;
6 } else {
7 return display . getHeight ();
8 }

Listing 22 Simplified version of a semantic patch to migrate invocations of getWidth and
getHeight. The use of != Point(...) prevents rule2 from erroneously matching code transformed for
the first case.

1 @ rule1@
2 Display display ;
3 identifier p;
4 type T;
5 @@
6 (
7 - p = new Point(display . getWidth (),
8 - display . getHeight ());
9 + p = new Point ();

16 https://github.com/hidroh/materialistic/commit/baaf9eeb28f09b8d0d875107687a595a2f377f79
17 https://github.com/bumptech/glide/commit/827fc08222eb61595ab0d5fdebeea0033e9e8382
18 https://github.com/aosp-mirror/platform_frameworks_base/commit/

ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324

ECOOP 2019

https://github.com/hidroh/materialistic/commit/baaf9eeb28f09b8d0d875107687a595a2f377f79
https://github.com/bumptech/glide/commit/827fc08222eb61595ab0d5fdebeea0033e9e8382
https://github.com/aosp-mirror/platform_frameworks_base/commit/ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324
https://github.com/aosp-mirror/platform_frameworks_base/commit/ac8dea12c17aa047e03a358110aeb60401d36aa2#diff-40287e2f0fc8c327021400d034442324

22:18 Semantic Patches for Java Program Transformation

10 + display . getSize (p);
11 |
12 - T p = new Point(display . getWidth (),
13 - display . getHeight ());
14 + T p = new Point ();
15 + display . getSize (p);
16)
17 // ‘<...’ indicates that all occurrences should be replaced
18 <...
19 (
20 - display . getHeight ()
21 + p.y
22 |
23 - display . getWidth ()
24 + p.x
25)
26 ...>
27

28 @ rule2@
29 identifier display , f;
30 expression E;
31 @@
32 f(...) {
33 ...
34 Display display = E;
35 + Point p = new Point ();
36 + display . getSize (p);
37 // ‘when ’ omits matches where a Point object has already been created
38 <... when != Point (...)
39 (
40 - display . getHeight ()
41 + p.y
42 |
43 - display . getWidth ()
44 + p.x
45)
46 ...>
47 }

Listing 23 Example patch created by Coccinelle4J using the semantic patch above, semantically
equivalent to a commit fixing this deprecation in the Android framework.

1 public static void dragQuarterScreenDown (
2 InstrumentationTestCase test , Activity activity) {
3 Display display = activity . getWindowManager (). getDefaultDisplay ();
4 - int screenHeight = display . getHeight ();
5 - int screenWidth = display . getWidth ();
6 + Point p = new Point ();
7 + display . getSize (p);
8 + int screenHeight = p.y;
9 + int screenWidth = p.x;

4.6 WebChromeClient.onConsoleMessage(String, int, String) →
WebChromeClient.onConsoleMessage(ConsoleMessage)

We show how method signatures of classes extending other classes with deprecated methods
can be transformed using SmPL. Developers can override onConsoleMessage(String, int,
String) of WebChromeClient, which was deprecated in favour of an overloaded method with
a different set of parameters onConsoleMessage(ConsoleMessage). Listing 24 shows example

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:19

code from the MGit project19 overriding this method, and Listing 25 shows a semantic patch
changing the parameters of onConsoleMessage(String, int, String). The use of <... and
...> specifies that all occurrences of p1, p2, and p3 should be transformed.

Listing 24 An example replacement site of onConsoleMessage from MGit.
1 mFileContent . setWebChromeClient (new WebChromeClient () {
2 @Override
3 public void onConsoleMessage (String message , int lineNumber ,
4 String sourceID) {
5 Log.d(" MyApplication ", message + " -- From line " + lineNumber
6 + " of " + sourceID);
7 }
8 ... // other overridden methods
9 })

Listing 25 Semantic patch updating method signatures of onConsoleMessage.
1 @@
2 identifier p1 , p2 , p3;
3 @@
4 - onConsoleMessage (String p1 , int p2 , String p3) {
5 + onConsoleMessage (ConsoleMessage cs) {
6 <...
7 (
8 - p1
9 + cs. message ()

10 |
11 - p2
12 + cs. lineNumber ()
13 |
14 - p3
15 + cs. sourceId ()
16)
17 ...>
18 }

4.7 Resources.getDrawable(int) → Resources.getDrawable(int,
Theme)

In Phase 3 of developing Coccinelle4J, we made some trade-offs that introduced the limitations
discussed in Section 3. While we do not run into problems writing the majority of the patches,
some patches would have benefited from Coccinelle4J having the ability to resolve types, one
of the features deliberately omitted to keep Coccinelle4J fast. In the release of Android API
level 22, Resources.getDrawable(int) was deprecated in favour of getDrawable(int, Theme),
the same method overloaded with an additional Theme parameter. After inspecting calls to
getDrawable in a project, a developer may write a semantic patch to find these calls and
transform them using the simple patch in Listing 26.

Listing 26 Semantic patch updating invocations to getDrawable.
1 @@
2 expression E;
3 expression p;
4 @@
5 - E. getDrawable (p)
6 + E. getDrawable (p, getContext (). getTheme ())

19 https://github.com/maks/MGit

ECOOP 2019

https://github.com/maks/MGit

22:20 Semantic Patches for Java Program Transformation

While all the locations that should be transformed are correctly transformed, this also
results in several false positives, as illustrated by the patch in Listing 27, based on code from
the NextCloud Android project. As the semantic patch does not assert that the metavariable
E is of type Resources, Coccinelle4J updates a getDrawable invocation on a TypedArray instead
of Resources. This results in code that does not compile as TypedArray does not have a
method with a getDrawable(int, Theme) signature.

Listing 27 Example patch created by Coccinelle4J for the above semantic patch to replace
getDrawable.

1 public SimpleListItemDividerDecoration (Context context) {
2 super(context , DividerItemDecoration . VERTICAL);
3 final TypedArray styledAttributes =
4 context . obtainStyledAttributes (ATTRS);
5 - divider = styledAttributes . getDrawable (0);
6 + divider = styledAttributes . getDrawable (0,
7 + getContext (). getTheme ());
8 leftPadding = Math.round (72 *
9 (context . getResources (). getDisplayMetrics ().xdpi /

10 DisplayMetrics . DENSITY_DEFAULT));
11 styledAttributes . recycle ();
12 }

On the other hand, if one does specify the need for a Resource, as illustrated in Listing
28, then Coccinelle4J misses locations where a Resource variable is not explicitly declared.
For example, a Resource may be produced from an invocation as part of a larger expression,
as in getResources().getDrawable(R.drawable.ic_activity_light_grey). The metavariable
Resources R will not match the invocation of getResources. In cases like this, developers
may be surprised that there is no way to write a rule in SmPL with a metavariable binding
to the invocation of getResources based on its return type.

Listing 28 Semantic patch updating invocations to getDrawable.
1 @@
2 Resources R;
3 expression p;
4 @@
5 - R. getDrawable (p)
6 + R. getDrawable (p, getContext (). getTheme ())

4.8 Evaluation
Using the case of performing changes to multiple locations, we evaluate Coccinelle4J based
on how much it helped development efficiency, the ease of specifying patches, and the speed
at which it applied patches to projects. We also report limitations we experienced with
Coccinelle4J.

We use development efficiency metrics that were previously used to evaluate Coccinelle
for backporting device drivers [26]. Table 2 shows the ratio of the number of source-code
insertions and deletions that Coccinelle4J generates, the number of lines in the semantic
patch, excluding whitespace, and the number of files changed by Coccinelle4J. Comparing
these quantities indicates the amount of savings from the use of semantic patches. We use
the patches updating the uses of sendStickyBroadcast on the NextCloud Android project
(Section 4.1),20 setTextSize on the Lucid-Browser (Section 4.2), getColor on the Kickstarter

20 https://github.com/nextcloud/android

https://github.com/nextcloud/android

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:21

Table 2 Summary of the patches generated by Coccinelle4J in our case study.

Patch Semantic patch size Lines generated Ratio Files changed
sendStickyBroadcast 9 19 2.11 5
setTextSize 19 10 0.53 1
getColor 6 16 2.67 4
shouldVibrate 35 17 0.49 1
getHeight 44 3 0.07 1
onConsoleMessage 18 14 0.78 2

Android project (Section 4.3), shouldVibrate on Signal (Section 4.4), getHeight on Glide
(Section 4.5), and onConsoleMessage on the MGit project (Section 4.6). In total, these projects
contain 311755 lines of code and 2030 source files.

The development effort saved of using Coccinelle4J increases in proportion with the
number of replacement sites. For changes that have to be made at multiple locations,
Coccinelle4J will save more effort. In our examples, as there were only a few uses of
shouldVibrate, getHeight, and onConsoleMessage in MGit, Signal, and Glide, the number of
lines of code in the semantic patch is greater than the number of lines of code of the actual
change. However, the amount of code changed is an incomplete measure of the development
effort saved, as Coccinelle4J also helps in locating the files requiring modification, as well
as in identifying the correct locations in each file. Furthermore, as these are methods of
the Android API, they will be commonly used by many projects, and each patch will have
numerous matches when considering all Android repositories.

In all our examples, the semantic patches to update the call sites of the deprecated
methods are concise. The semantic patches are declarative and describe what code will be
changed after their application to the source code.

We briefly compare the expressiveness of SmPL to Spoon [25]. With Spoon, there are
currently no abstractions over control-flow constraints. Transformations in Spoon are less
declarative compared to SmPL. Using the example of onConsoleMessage (Listing 25) discussed
earlier in Section 4.6, where we change its parameters, Listing 29 shows part of a processor
written in Spoon. As compared to the semantic patch, the Spoon processor is imperative and
requires reasoning about Spoon’s meta-model, whereas SmPL takes a WYSIWYG approach.

Listing 29 Replacing parameters of onConsoleMessage using Spoon.
1 // ...
2 // Code for selecting the onConsoleMessage method omited
3 public void process (CtMethod method) {
4 List < CtParameter > params = method . getParameters ();
5 while (! params . isEmpty ()) {
6 CtParameter param = params .get (0);
7 param. delete ();
8 params . remove (param);
9 }

10 CtParameter < ConsoleMessage > newParam = getFactory ().Core ()
11 . createParameter ();
12 newParam . setSimpleName (" consoleMessage ");
13 newParam . setType (getFactory ().Type ()
14 . createReference (ConsoleMessage .class));
15 method . addParameter (newParam);
16 // ...
17 }
18 // ...

ECOOP 2019

22:22 Semantic Patches for Java Program Transformation

Listing 30 Replacing parameters of onConsoleMessage using SmPL.
1 @@
2 identifier p1 , p2 , p3;
3 @@
4 - onConsoleMessage (String p1 , int p2 , String p3) {
5 + onConsoleMessage (ConsoleMessage consoleMessage) {
6 ...
7 }

We further elaborate on other convenience features Coccinelle4J provides. While Spoon
has templates for transformation, developers have to specify template parameters and write
logic in Spoon processors to extract or construct the corresponding arguments. Using the
example discussed in Section 4.2 about replacing setTextSize with setTextZoom, we define a
Spoon template in Listing 31. This template has two parameters, an expression returning a
WebSettings that setTextSize is invoked on, and a literal that is passed as an argument to
setTextSize. A Spoon processor (Listing 32) has to select these meta-model elements from
the matching statement, and pass them as arguments to the template to generate a new state-
ment, before replacing the original statement invoking setTextSize. The corresponding patch
in SmPL was given previously in Section 4.2. In contrast to Spoon, a user of Coccinelle4J
does not need to think about these low-level details, as Coccinelle4J binds metavariables to
subterms while matching code and automatically applies them during transformation.

Listing 31 Spoon template for producing statements using setTextZoom.
1 public class ReplaceTemplate extends StatementTemplate {
2 public ReplaceTemplate (CtExpression < WebSettings > _settings ,
3 CtLiteral <Integer > _value) {
4 this. _settings = _settings ;
5 this. _value = _value ;
6 }
7

8 @Parameter
9 CtExpression < WebSettings > _settings ;

10

11 @Parameter
12 CtLiteral <Integer > _value ;
13

14 @Override
15 public void statement () {
16 _settings .S(). setTextZoom (_value .S());
17 }
18 }

Listing 32 Spoon processor using the Spoon template replacing invocations of setTextSize.
1 public class SetTextzoomProcessor
2 extends AbstractProcessor < CtStatement > {
3 ... // other details omitted for brevity
4 @Override
5 public void process (CtStatement stmt) {
6 ... // omitted code to select the expressions :
7 // 1. oldValue refers to the argument of setTextSize
8 // 2. settingsExpression refers to the expression
9 // returning the WebSettings that setTextSize is invoked on.

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:23

10 if (oldValue . getVariable (). getSimpleName (). equals (" SMALLEST ")
) {

11 value. setValue (50);
12 } else if (oldValue . getVariable (). getSimpleName ()
13 . equals (" SMALLER ")) {
14 value. setValue (75);
15 } else if (...) {
16 ...
17 }
18 ... // more code to set a correct value for the template
19

20 ReplaceTemplate template = new ReplaceTemplate (
21 settingsExpression , value);
22 CtStatement newstmt = template .apply(stmt. getParent (
23 new TypeFilter <>(CtType .class)));
24 stmt. replace (newstmt);
25 }
26

27 }

We also briefly compare Coccinelle4J to Refaster [31], a tool to refactor code by writing
templates of code before and after its transformation. While both SmPL and Refaster tem-
plates allow developers to declaratively refine transformation rules, the design of Coccinelle4J
allows reasoning on control-flow paths and fundamentally differs from Refaster. The practical
advantages are:

Constraints can be specified on control-flow paths and matching is supported within
arbitrary control-flow paths (including around loops), see Listing 1,
Metavariables can have different values in different control-flow paths, while being forced
to have consistent values within a control-flow path,
Coccinelle4J interleaves addition or removal of code in the same rule. This makes it easy
to position code changes in a long series of code elements, see Listing 22.

It may not be easy to add these advantages, which are inherent in Coccinelle4J, to
Refaster. Additionally, Refaster lacks several features of Coccinelle4J, such as:

inheritance of metavariables between rules,
interaction with scripting languages (OCaml or Python).

Performance-wise, Coccinelle4J runs quickly. Our experiments were performed on a 2017
Macbook Pro with 2.3 GHz Intel Core i5, 8 GB 2133 MHz LPDDR3, likely similar to an
average developer’s working laptop. We report the time required for Coccinelle4J to perform
each transformation. We also report the time required to build the project, but exclude the
time for downloading the project dependencies in the first build. We consider this time to be
an upper bound on the time that project developers will wait for a tool to complete running.
The results are given in Table 3.

In each case, the time to apply a semantic patch on an entire project is nearly negligible,
even when there are multiple transformation sites, and it is only a small fraction of the time
required to build the project. As such, we conclude that other than the time required to
write a semantic patch, usage of the tool will not affect a developer’s time negatively.

A limitation of Coccinelle4J is that users may write patches that gives false negatives
while matching programs. When writing a semantic patch, it is often the case that one
starts with a simple semantic patch that misses more complex cases. We believe that this
limitation is circumvented as semantic patches are concise and developers can quickly refine

ECOOP 2019

22:24 Semantic Patches for Java Program Transformation

Table 3 Time to apply semantic patch compared to time to build the project (rounded to the
nearest second).

Patch Project Time to apply patch Time to build project
sendStickyBroadcast NextCloud 3s 46s
setTextSize Lucid-Browser 1s 21s
getColor Kickstarter 1s 1 min 6s
shouldVibrate Signal 1s 1 min 54s
getHeight Glide 0s 33s
onConsoleMessage MGit 0s 57s

a semantic patch after inspecting the output produced by Coccinelle4J. The time to apply
the updated semantic patch to a project is also negligible. This short feedback loop allows
for a fast iterative development process and facilitates exploratory programming, much like
working with a read-eval-print loop (REPL). We find this aspect of development lacking in
other program transformation tools.

On the other hand, Coccinelle4J inherits some limitations of Coccinelle. One painful
aspect of working with Coccinelle4J is it does not always report errors when parsing SMPL
in a user-friendly way. This limitation is inherent in yacc-like parsers. While Coccinelle
reports the position and identifier in the semantic patch where the error was detected, it may
not be immediately clear to a new user of Coccinelle what the error is or how to correct it.
Editing semantic patches may be difficult due to the current lack of support in tools familiar
to Java developers. For example, while Coccinelle provides some support for Vim and Emacs,
there is lack of support for other popular text editors or IDEs that Java developers may
be more familiar with. Without basic support that developers may be accustomed to, such
as syntax highlighting or code completion, developers may make mistakes that are hard to
notice. However, this limitation is circumvented by the ease of adding support for SmPL in
text editors, due to the reuse of Java syntax as the code matching language. Providing such
support may be a next step to improve the ergonomics of writing SmPL.

Since Coccinelle4J does not guarantee correctness, there is the danger that it may generate
semantically incorrect patches (false positives). We believe that this risk is mitigated by two
factors. Firstly, most incorrect patches will be caught by the Java compiler. As Coccinelle4J
is targeted at changing code in multiple locations, we expect most patches produced by
Coccinelle4J to fall into categories of widespread changes, which researchers have categorized
for Java projects [30]. Code changes in most of these categories will result in compiler
errors if mistakes are made. The iterative process of refining patches also allows mistakes
to be detected and identified quickly. Developers can fix incorrect changes manually or
revert them with revision control tools. Secondly, in large Java projects where widespread
changes are most relevant, there are strict code review processes where errors will be caught
by more experienced project maintainers. As such, despite not having the guarantee of
producing correct patches, the use of Coccinelle4J will not negatively impact the software
development process.

5 Related Work

5.1 Program matching and transformation for Java

There are several existing tools for Java program transformation. Refaster [31] and Spoon
[25], already considered in the previous section, are designed to be easy for developers to use.
Like Coccinelle4J, they work on the AST and match elements independent of white-space

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:25

and formatting. However, unlike Coccinelle4J, neither Spoon nor Refaster takes control flow
into account when matching code and does not allow for the specification of constraints
over control-flow paths. More generally, there is no equivalent to the “...” abstraction in
SmPL that abstracts over an arbitrary sequence of code. On the other hand, Spoon allows
rules to reason about more precise type information. As such, our work on Coccinelle4J is
complementary to the work on Spoon.

Stratego [28], Rascal [10], and TXL [6] are other tools for program transformation that
can work on Java. However, these tools requires developers to invest time to learn syntax
and formalisms that do not resemble Java.

Soot [27] is a framework for Java program optimization and also offers program analysis
tools. Although it provides tools that can compute control flow graphs, it does not provide
any program transformation tool that acts on these results.

Another class of Java transformation tools operate on bytecode, unlike Coccinelle4J which
works on Java source code. JMangler [11], ASM [4] and Javassist[5] are examples of tools
providing APIs for bytecode manipulation, that can be used for tasks like creating new class
definitions derived from other classes.

5.2 Migration of APIs
There are several approaches to automated API usage updates. For example, Henkel and
Diwan [8] presented a tool to capture API refactoring actions when a developer updates the
API usage. LibSync [21] recommends potential edit operations for adapting code based on
clients that have already migrated from an API. Semdiff [7] recommends calls to a framework
based on how the framework adapted to its own changes. HiMa [18] performs pairwise
comparisons in the evolutionary history of a project to construct framework-evolution rules.

Several works also propose program transformation languages to describe rules for mapping
APIs calls to alternative APIs. Nita and Notkin describe Twinning [22], a rule-based language
that allows developers to specify mappings of blocks of API invocations to sequences of
alternative API invocations. SWIN [15] extends Twinning, including adding type safety of
transformations. The type safety of SWIN is proved on Featherweight Java [9], a minimal
core calculus similar to Middleweight Java.

The approaches above do not allow for context-sensitive many-to-many mappings. Many-
to-many mappings refer to the transformation of a sequence of statements using an old API
to a new sequence of statements using a replacement API. Wang et al. [29] highlight the
difficulty of API migrations when these mappings are required. They show the need to
account for control-flow as the statements requiring transformation may take multiple forms.
They propose guided-normalisation and a language PATL for transforming Java programs
between different APIs. The semantics of PATL are formalised on Middleweight Java.

Their work differs from ours as their focus is transforming programs between two APIs,
a single task where program transformation is useful, while our work targets the more
general task of program transformation itself. We use migrations of deprecated APIs
as an example only to demonstrate the utility of our program transformation tool. While
transforming programs between APIs often focuses on short sequences of function invocations,
Coccinelle4J can express constraints and transformations of the code over a longer range,
including involving information collected from multiple field and method declarations. There
is also no equivalent of the “...” operator in PATL.

An experience report about the use of automated API migration techniques suggests
that the difficulty of API migrations lies in the change of API parameter types, rather
than selecting an alternative API [13]. This is motivation for our work, as we support the

ECOOP 2019

22:26 Semantic Patches for Java Program Transformation

transformation of code and arguments to methods based on the code context. Semantic
patches allow argument values to be determined based on code context, including specifying
constraints over paths, the use of multiple rules, and information collected from multiple
fields and method declarations.

6 Conclusion and Future Work

While SmPL has been shown to be useful for program transformation on C code, its use has
not been explored in the context of Java projects. Semantic patches have the benefit of being
declarative, are relatively easy to specify, and are unique in how they allow the expression
of control-flow patterns. To introduce a tool with these features into the Java ecosystem,
we have developed Coccinelle4J, a prototype extending Coccinelle, to support some Java
language features. We document our implementation and the design decisions made. Finally,
we look at several cases of updating call sites of deprecated Android API in six projects to
show the utility of Coccinelle4J. Based on this case study, we discuss its suitability for use in
Java projects.

As future work, we hope to evaluate the use of semantic patches and Coccinelle4J for
other uses, such as to fix common bugs. From our preliminary work on migrating deprecated
Android API, a further extension may be to create a public dataset of reliable semantic
patches that developers can apply to their Android projects.

References
1 Gavin M Bierman, MJ Parkinson, and AM Pitts. MJ: An imperative core calculus for Java

and Java with effects. Technical report, University of Cambridge, Computer Laboratory, 2003.
2 Joshua Bloch. Effective Java. Addison-Wesley Professional, 2008.
3 Julien Brunel, Damien Doligez, René Rydhof Hansen, Julia L Lawall, and Gilles Muller. A

foundation for flow-based program matching: Using temporal logic and model checking. In
POPL, pages 114–126. ACM, 2009.

4 Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems, 30(19), 2002.

5 Shigeru Chiba. Javassist-a reflection-based programming wizard for Java. In Proceedings of
OOPSLA’98 Workshop on Reflective Programming in C++ and Java, page 174. ACM, 1998.

6 James R Cordy. The TXL source transformation language. Science of Computer Programming,
61(3):190–210, 2006.

7 Barthelemy Dagenais and Martin P Robillard. SemDiff: Analysis and recommendation support
for API evolution. In Proceedings of the 31st International Conference on Software Engineering,
pages 599–602. IEEE Computer Society, 2009.

8 Johannes Henkel and Amer Diwan. CatchUp! Capturing and replaying refactorings to support
API evolution. In 27th International Conference on Software Engineering, pages 274–283.
IEEE, 2005.

9 Atsushi Igarashi, Benjamin C Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):396–450, 2001.

10 Paul Klint, Tijs Van Der Storm, and Jurgen Vinju. Rascal: A domain specific language for
source code analysis and manipulation. In 2009 Ninth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 168–177. IEEE, 2009.

11 Günter Kniesel, Pascal Costanza, and Michael Austermann. JMangler-a framework for
load-time transformation of Java class files. In SCAM, pages 100–110. IEEE, 2001.

12 David Lacey and Oege de Moor. Imperative Program Transformation by Rewriting. In
Reinhard Wilhelm, editor, Compiler Construction, pages 52–68, 2001.

H. J. Kang, F. Thung, J. Lawall, G. Muller, L. Jiang, and D. Lo 22:27

13 Maxime Lamothe and Weiyi Shang. Exploring the Use of Automated API Migrating Techniques
in Practice: An Experience Report on Android. In 15th International Conference on Mining
Software Repositories, 2018, 2018.

14 Julia Lawall and Gilles Muller. Coccinelle: 10 years of automated evolution in the Linux
kernel. In USENIX Annual Technical Conference, pages 601–614, 2018.

15 Jun Li, Chenglong Wang, Yingfei Xiong, and Zhenjiang Hu. Swin: Towards type-safe Java
program adaptation between APIs. In Proceedings of the 2015 Workshop on Partial Evaluation
and Program Manipulation, pages 91–102. ACM, 2015.

16 Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein. Characterising
deprecated Android APIs. In Proceedings of the 15th International Conference on Mining
Software Repositories, pages 254–264. ACM, 2018.

17 Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of API stability
and adoption in the Android ecosystem. In Software Maintenance (ICSM), 2013 29th IEEE
International Conference on, pages 70–79. IEEE, 2013.

18 Sichen Meng, Xiaoyin Wang, Lu Zhang, and Hong Mei. A history-based matching approach
to identification of framework evolution. In Proceedings of the 34th International Conference
on Software Engineering, pages 353–363. IEEE Press, 2012.

19 Gilles Muller, Yoann Padioleau, Julia L Lawall, and René Rydhof Hansen. Semantic patches
considered helpful. ACM SIGOPS Operating Systems Review, 40(3):90–92, 2006.

20 Beevi S Nadera, D Chitraprasad, and Vinod SS Chandra. The varying faces of a program
transformation systems. ACM Inroads, 3(1):49–55, 2012.

21 Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson Jr, Anh Tuan Nguyen, Miryung Kim,
and Tien N Nguyen. A graph-based approach to API usage adaptation. In OOPSLA, pages
302–321. ACM, 2010.

22 Marius Nita and David Notkin. Using twinning to adapt programs to alternative APIs. In
2010 ACM/IEEE 32nd International Conference on Software Engineering,, volume 1, pages
205–214. IEEE, 2010.

23 Yoann Padioleau, Julia L. Lawall, René Rydhof Hansen, and Gilles Muller. Documenting and
automating collateral evolutions in Linux device drivers. In EuroSys, pages 247–260, 2008.

24 Yoann Padioleau, Julia L Lawall, and Gilles Muller. SmPL: A domain-specific language
for specifying collateral evolutions in Linux device drivers. Electronic Notes in Theoretical
Computer Science, 166:47–62, 2007.

25 Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel Seinturier.
Spoon: A library for implementing analyses and transformations of Java source code. Software:
Practice and Experience, 46(9):1155–1179, 2016.

26 Luis R Rodriguez and Julia Lawall. Increasing automation in the backporting of Linux drivers
using Coccinelle. In Dependable Computing Conference (EDCC), 2015 Eleventh European,
pages 132–143. IEEE, 2015.

27 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In Proceedings of the 1999
Conference of the Centre for Advanced Studies on Collaborative Research (CASCON 1999),
page 13, 1999.

28 Eelco Visser. Stratego: A language for program transformation based on rewriting strategies
system description of Stratego 0.5. In International Conference on Rewriting Techniques and
Applications, pages 357–361. Springer, 2001.

29 Chenglong Wang, Jiajun Jiang, Jun Li, Yingfei Xiong, Xiangyu Luo, Lu Zhang, and Zhenjiang
Hu. Transforming Programs between APIs with Many-to-Many Mappings. In 30th European
Conference on Object-Oriented Programming, 2016.

30 Shaowei Wang, David Lo, and Xingxiao Jiang. Understanding widespread changes: A
taxonomic study. In Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 5–14. IEEE, 2013.

31 Louis Wasserman. Scalable, example-based refactorings with Refaster. In Proceedings of the
2013 ACM Workshop on Refactoring Tools, pages 25–28. ACM, 2013.

ECOOP 2019

Minimal Session Types
Alen Arslanagić
University of Groningen, The Netherlands

Jorge A. Pérez
University of Groningen, The Netherlands
http://www.jperez.nl/

Erik Voogd
University of Groningen, The Netherlands

Abstract
Session types are a type-based approach to the verification of message-passing programs. They have
been much studied as type systems for the π-calculus and for languages such as Java. A session type
specifies what and when should be exchanged through a channel. Central to session-typed languages
are constructs in types and processes that specify sequencing in protocols.

Here we study minimal session types, session types without sequencing. This is arguably the
simplest form of session types. By relying on a core process calculus with sessions and higher-order
concurrency (abstraction-passing), we prove that every process typable with standard (non minimal)
session types can be compiled down into a process typed with minimal session types. This means that
having sequencing constructs in both processes and session types is redundant; only sequentiality in
processes is indispensable, as it can precisely codify sequentiality in types.

Our developments draw inspiration from work by Parrow on behavior-preserving decompositions
of untyped processes. By casting Parrow’s results in the realm of typed processes, our results reveal
a conceptually simple formulation of session types and a principled avenue to the integration of
session types into languages without sequencing in types.

2012 ACM Subject Classification Theory of computation → Type structures; Theory of computation
→ Process calculi; Software and its engineering → Concurrent programming structures; Software
and its engineering → Message passing

Keywords and phrases Session types, process calculi, π-calculus

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.23

Category Pearl

Related Version Extended version with omitted proofs: http://arxiv.org/abs/1906.03836.

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.5

Funding Work partially supported by the Netherlands Organization for Scientific Research (NWO)
under the VIDI Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Acknowledgements We are grateful to the anonymous reviewers for their remarks and questions.
Pérez is also with CWI, Amsterdam and NOVA LINCS – the NOVA Laboratory for Computer
Science and Informatics, Universidade Nova de Lisboa, Portugal (Ref. UID/CEC/04516/2019).

1 Introduction

Session types are a type-based approach to the verification of message-passing programs. A
session type specifies what and when should be exchanged through a channel; this makes them
a useful tool to enforce safety and liveness properties related to communication correctness.
Session types have had a significant impact on the foundations of programming languages [15],

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Alen Arslanagić, Jorge A. Pérez, and Erik Voogd;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 23; pp. 23:1–23:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0292-478X
https://orcid.org/0000-0002-1452-6180
http://www.jperez.nl/
https://doi.org/10.4230/LIPIcs.ECOOP.2019.23
http://arxiv.org/abs/1906.03836
https://dx.doi.org/10.4230/DARTS.5.2.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Minimal Session Types

but also on their practice [1]. In particular, the interplay of session types and object-oriented
languages has received much attention (cf. [8, 7, 14, 11, 2, 18, 25]). In this work, our goal is to
understand to what extent session types can admit simpler, more fundamental formulations.
This foundational question has concrete practical ramifications, as we discuss next.

In session-typed languages, sequencing constructs in types and processes specify the
intended structure of message-passing protocols. In the session type S =?(Int); ?(Int); !〈Bool〉;
end, sequencing (denoted ‘;’) allows us to specify a protocol for a channel that first receives
(?) two integers, then sends (!) a Boolean, and finally ends. As such, S could type a service
that checks for integer equality. Sequencing in types goes hand-in-hand with sequencing in
processes, which is specified using prefix constructs (denoted ‘.’). The π-calculus process
P = s?(x1).s?(x2).s!〈b〉.0 is an implementation of the equality service: it first expects two
values on name s, then outputs a Boolean on s, and finally stops. Thus, name s in P conforms
to type S. Session types can also specify sequencing within labeled choices and recursion;
these typed constructs are also in close match with their respective process expressions.

Originally developed on top of the π-calculus for the analysis of message-passing protocols
between exactly two parties [12], session types have been extended in many directions.
We find, for instance, multiparty session types [13] and extensions with dependent types,
assertions, exceptions, and time (cf. [6, 15] for surveys). All these extensions seek to address
natural research questions on the expressivity and applicability of session types theories.

Here we address a different, if opposite, question: is there a minimal formulation of session
types? This is an appealing question from a theoretical perspective, but seems particularly
relevant to the practice of session types: identifying the “core” of session types could
enable their integration in languages whose type systems do not have advanced constructs
present in session types (such as sequencing). For instance, the Go programming language
offers primitive support for message-passing concurrency; it comes with a static verification
mechanism which can only enforce that messages exchanged along channels correspond with
their declared payload types – it cannot ensure essential correctness properties associated
to the structure of protocols. This observation has motivated the development of advanced
static verification tools based on session types for Go programs [22, 21].

This paper identifies an elementary formulation of session types and studies its properties.
We call them minimal session types: these are session types without sequencing. That is, in
session types such as ‘!〈U〉;S’ and ‘?(U);S’, we decree that S can only correspond to end,
the type of the terminated protocol.

Adopting this elementary formulation entails dispensing with sequencing, which is one of
the most distinctive features of session types. While this may appear as a far too drastic
restriction, it turns out that it is not: our main result is that for every process P that is
well-typed under standard (non minimal) session types, there is a process decomposition D(P)
that is well-typed using minimal session types. Intuitively, D(P) codifies the sequencing
information given by the session types (protocols) of P using additional synchronizations. This
shows that having sequencing in both types and processes is redundant; only sequencing at
the level of processes is truly fundamental. To define D(P) we draw inspiration from a known
result by Parrow [24], who proved that untyped π-calculus processes can be decomposed as a
collection of trios processes, i.e., processes with at most three nested prefixes [24].

The question of how to relate session types with other type systems has attracted interest
in the past. Session types have been encoded into generic types [10] and linear types [5, 3, 4].
As such, these prior studies concern the relative expressiveness of session types: where the
expressivity of session types stands with respect to that of some other type system. In sharp
contrast, we study the absolute expressiveness of session types: how session types can be
explained in terms of themselves. To our knowledge, this is the first study of its kind.

A. Arslanagić, J. A. Pérez, and E. Voogd 23:3

The process language that we consider for decomposition into minimal session types is HO,
the core process calculus for session-based concurrency studied by Kouzapas et al. [19, 20].
HO is a very small language: it supports abstraction-passing only and lacks name-passing
and recursion; still, it is also very expressive, because both features can be expressed in it
in a fully abstract way. As such, HO is an excellent candidate for a decomposition. Being
a higher-order language, HO is very different from the (untyped, first-order) π-calculus
considered by Parrow in [24]. Also, the session types of HO severely constrain the range and
kind of conceivable decompositions. Therefore, our results are not an expected consequence
of Parrow’s: essential aspects of our decomposition into processes typable with minimal
session types are only possible in a higher-order setting, not considered in [24].

Summing up, in this paper we make the following contributions:
1. We identify the class of minimal session types as a simple fragment of standard session

types that retains its absolute expressiveness.
2. We show how to decompose processes typable with standard session types into processes

typable with minimal session types. We prove that this decomposition satisfies a typability
result for a rich typed language that includes labeled choices and recursive types.

3. We develop optimizations of our decomposition that bear witness to its robustness.

The rest of the paper is organized as follows. § 2 summarizes the syntax, semantics, and
session type system for HO, the core process calculus for session-based concurrency. § 3
presents the decomposition of well-typed HO processes into minimal session types. The
decomposition is presented incrementally, starting with a core fragment that is later extended
with further features. § 4 presents optimizations of the decomposition. § 5 elaborates further
on related works and § 6 concludes.

2 The Source Language

We recall the syntax, semantics, and type system for HO, the higher-order process calculus
for session-based concurrency studied by Kouzapas et al. [19, 20].1 HO is arguably the
simplest language for session types: it supports passing of abstractions (functions from
names to processes) but does not support name-passing nor process recursion. Still, HO is
very expressive: it can encode name-passing, recursion, and polyadic communication via
type-preserving encodings that are fully-abstract with respect to contextual equivalence [19].

2.1 Syntax and Semantics
The syntax of names, variables, values, and HO processes is defined as follows:

n,m ::= a, b | s, s u, w ::= n | x, y, z V,W ::= x, y, z | λx. P

P,Q ::= u!〈V 〉.P | u?(x).P | u / l.P | u . {li : Pi}i∈I | V u | P | Q | (ν n)P | 0

We use a, b, c, . . . to range over shared names, and s, s, . . . to range over session names.
Shared names are used for unrestricted, non-deterministic interactions; session names are
used for linear, deterministic interactions. We write n,m to denote session or shared names,
and assume that the sets of session and shared names are disjoint. The dual of n is denoted
n; we define s = s and a = a, i.e., duality is only relevant for session names. Variables are

1 We summarize the content from [19, 20] that concerns HO; the notions and results given in [19, 20] are
given for HOπ, a super-calculus of HO.

ECOOP 2019

23:4 Minimal Session Types

denoted with x, y, z, An abstraction λx. P is a process P with parameter x. Values
V,W, . . . include variables and abstractions, but not names. A tuple of variables (x1, . . . , xk)
is denoted x̃ (and similarly for names and values). We use ε to denote the empty tuple.

Processes P,Q, . . . include usual π-calculus output and input prefixes, denoted u!〈V 〉.P
and u?(x).P , respectively. Processes u / l.P and u . {li : Pi}i∈I are selecting and branching
constructs, respectively, commonly used in session calculi to express deterministic choices [12].
Process V u is the application which substitutes name u on abstraction V . Constructs for
inaction 0, parallel composition P1 | P2, and name restriction (ν n)P are standard. HO lacks
name-passing and recursion, but they are expressible in the language (see Exam. 2.1 below).

We sometimes omit trailing 0’s, so we may write, e.g., u!〈V 〉 instead of u!〈V 〉.0. Also, we
write u!〈〉.P and u?().P whenever the exchanged value is not relevant (cf. Rem. 3.7).

Session name restriction (ν s)P simultaneously binds session names s and s in P . Functions
fv(P), fn(P), and fs(P) denote, respectively, the sets of free variables, names, and session
names in P , and are defined as expected. If fv(P) = ∅, we call P closed. We write P{u/y}
(resp.,P{V/y}) for the capture-avoiding substitution of name u (resp., value V) for y in
process P . We identify processes up to consistent renaming of bound names, writing ≡α for
this congruence. We shall rely on Barendregt’s variable convention, which ensures that free
and bound names are different in every mathematical context.

The operational semantics of HO is defined in terms of a reduction relation, denoted −→.
Reduction is closed under structural congruence, denoted ≡, which is defined as the smallest
congruence on processes such that:

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3 (ν n)0 ≡ 0

P | (ν n)Q ≡ (ν n)(P | Q) (n /∈ fn(P)) P ≡ Q if P ≡α Q

We assume the expected extension of ≡ to values V . The reduction relation expresses the
behavior of processes; it is defined as follows:

(λx. P)u −→ P{u/x} [App]
n!〈V 〉.P | n?(x).Q −→ P | Q{V/x} [Pass]

n / lj .Q | n . {li : Pi}i∈I −→ Q | Pj (j ∈ I) [Sel]
P −→ P ′ ⇒ (ν n)P −→ (ν n)P ′ [Res]
P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ Q −→ Q′ ≡ P ′ ⇒ P −→ P ′ [Cong]

Rule [App] defines name application. Rule [Pass] defines a shared or session interaction,
depending on the nature of n. Rule [Sel] is the standard rule for labelled choice/selection.
Other rules are standard π-calculus rules. We write −→k for a k-step reduction, and −→∗
for the reflexive, transitive closure of −→.

We illustrate HO processes and their semantics by means of an example.

I Example 2.1 (Encoding Name-Passing). HO lacks name-passing, and so the reduction

n!〈m〉.P | n?(x).Q −→ P | Q{m/x} (1)

is not supported by the language. Still, as explained in [19], name-passing can be encoded in
a fully-abstract way using abstraction-passing, by “packing” the name m in an abstraction.
Let J·K be the encoding defined as

Jn!〈m〉.P K = n!
〈
λz. z?(x).(xm)

〉
.JP K

Jn?(x).QK = n?(y).(ν s)(y s | s!〈λx. JQK〉)

A. Arslanagić, J. A. Pérez, and E. Voogd 23:5

and as an homomorphism for the other constructs. Reduction (1) can be mimicked as

Jn!〈m〉.P | n?(x).QK = n!
〈
λz. z?(x).(xm)

〉
.JP K | n?(y).(ν s)(y s | s!〈λx. JQK〉)

−→ JP K | (ν s)(λz. z?(x).(xm) s | s!〈λx. JQK〉)
−→ JP K | (ν s)(s?(x).(xm) | s!〈λx. JQK〉)
−→ JP K | (λx. JQK)m
−→ JP K | JQK{m/x} y

I Remark 2.2 (Polyadic Communication). HO as presented above allows only for monadic
communication, i.e., the exchange of tuples of values with length 1. We will find it convenient
to use HO with polyadic communication, i.e., the exchange of tuples of values Ṽ , with length
k ≥ 1. In HO, polyadicity appears in session synchronizations and applications, but not in
synchronizations on shared names. This entails having the following reduction rules:

(λx̃. P) ũ −→ P{ũ/x̃}

s!〈Ṽ 〉.P | s?(x̃).Q −→ P | Q{Ṽ/x̃}

where the simultaneous substitutions P{ũ/x̃} and P{Ṽ/x̃} are as expected. This polyadic HO
can be readily encoded into (monadic) HO [20]; for this reason, by a slight abuse of notation
we will often write HO when we actually mean “polyadic HO”.

2.2 Session Types for HO
We give essential definitions and properties for the session type system for HO, following [20].

I Definition 2.3 (Session Types for HO [20]). Let us write � to denote the process type. The
syntax of types for HO is defined as follows:

U ::= C→� | C(�
C ::= S | 〈U〉
S ::= end | !〈U〉;S | ?(U);S | ⊕ {li : Si}i∈I | &{li : Si}i∈I | µt.S | t

Value types U include C→� and C(�, which denote shared and linear higher-order types,
respectively. Shared channel types are denoted 〈S〉 and 〈U〉. Session types, denoted by S,
follow the standard binary session type syntax [12]. Type end is the termination type. The
output type !〈U〉;S first sends a value of type U and then follows the type described by S.
Dually, ?(U);S denotes an input type. The branching type &{li : Si}i∈I and the selection
type ⊕{li : Si}i∈I are used to type the branching and selection constructs that define the
labeled choice. We assume the recursive type µt.S is guarded, i.e., type µt.t is not allowed.

In session types theories duality is a key notion: implementations derived from dual session
types will respect their protocols at run-time, avoiding communication errors. Intuitively,
duality is obtained by exchanging ! by ? (and vice versa) and ⊕ by & (and vice versa),
including the fixed point construction. We write S dual T if session types S and T are dual
according to this intuition; the formal definition is coinductive, and given in [20].

We consider shared, linear, and session environments, denoted Γ, Λ, and ∆, resp.:

Γ ::= ∅ | Γ, x : C→� | Γ, u : 〈U〉 Λ ::= ∅ | Λ, x :C(�
∆ ::= ∅ | ∆, u :S

ECOOP 2019

23:6 Minimal Session Types

(Prom)
Γ; ∅; ∅ ` V . C(�
Γ; ∅; ∅ ` V . C→�

(EProm)
Γ; Λ, x : C(�; ∆ ` P . �
Γ, x : C→�; Λ; ∆ ` P . �

(Abs)
Γ; Λ; ∆1 ` P . � Γ; ∅; ∆2 ` x . C

Γ\x; Λ; ∆1\∆2 ` λx. P . C(�
(App)
Γ; Λ; ∆1 ` V . C � ∈ {(,→} Γ; ∅; ∆2 ` u . C

Γ; Λ; ∆1,∆2 ` V u . �

(Send)
u : S ∈ ∆1,∆2 Γ; Λ1; ∆1 ` P . � Γ; Λ2; ∆2 ` V . U

Γ; Λ1,Λ2; ((∆1,∆2) \ u : S), u :!〈U〉;S ` u!〈V 〉.P . �

(Rcv)
Γ; Λ1; ∆, u : S ` P . � Γ; Λ2; ∅ ` x . U
Γ\x; Λ1\Λ2; ∆, u :?(U);S ` u?(x).P . �

(Req)
Γ; ∅; ∅ ` u . 〈U〉 Γ; Λ; ∆1 ` P . �

Γ; ∅; ∆2 ` V . U

Γ; Λ; ∆1,∆2 ` u!〈V 〉.P . �

(Acc)
Γ; ∅; ∅ ` u . 〈U〉 Γ; Λ1; ∆ ` P . �

Γ; Λ2; ∅ ` x . U
Γ\x; Λ1\Λ2; ∆ ` u?(x).P . �

Figure 1 Selected Typing Rules for HO. See [20] for a full account.

Γ maps variables and shared names to value types; Λ maps variables to linear higher-order
types. ∆ maps session names to session types. While Γ admits weakening, contraction, and
exchange principles, both Λ and ∆ are only subject to exchange. The domains of Γ,Λ, and
∆ are assumed pairwise distinct. ∆1 ·∆2 is the disjoint union of ∆1 and ∆2.

We write Γ\x to denote Γ\{x : C}, i.e., the environment obtained from Γ by removing
the assignment x : C→�, for some C. Notations ∆\u and Γ\x̃ will have expected readings.
With a slight abuse of notation, given a tuple of variables x̃, we sometimes write (Γ,∆)(x̃)
to denote the tuple of types assigned to variables in x̃.

The typing judgements for values V and processes P are denoted

Γ; Λ; ∆ ` V . U and Γ; Λ; ∆ ` P . �

Fig. 1 shows selected typing rules; see [20] for a full account. The shared type C→�
is derived using Rule (Prom) only if the value has a linear type with an empty linear
environment. Rule (EProm) allows us to freely use a shared type variable as linear.
Abstraction values are typed with Rule (Abs). Application typing is governed by Rule (App):
the type C of an application name u must match the type of the application variable x
(C(� or C→�). In Rule (Send), the type U of value V should appear as a prefix in the
session type !〈U〉;S of u. Rule (Rcv) is its dual. Rules (Req) and (Acc) type interaction
along shared names; the type of the sent/received object V (i.e., U) should match the type
of the subject s (〈U〉).

To state type soundness, we require two auxiliary definitions on session environments.
First, a session environment ∆ is balanced (written balanced(∆)) if whenever s : S1, s : S2 ∈ ∆
then S1 dual S2. Second, we define the reduction relation −→ on session environments as:

∆, s :!〈U〉;S1, s :?(U);S2 −→ ∆, s : S1, s : S2

∆, s : ⊕{li : Si}i∈I , s : &{li : S′i}i∈I −→ ∆, s : Sk, s : S′k (k ∈ I)

A. Arslanagić, J. A. Pérez, and E. Voogd 23:7

I Theorem 2.4 (Type Soundness [20]). Suppose Γ; ∅; ∆ ` P . � with balanced(∆). Then
P −→ P ′ implies Γ; ∅; ∆′ ` P ′ . � and ∆ = ∆′ or ∆ −→ ∆′ with balanced(∆′).

I Remark 2.5 (Typed Polyadic Communication). When using processes with polyadic commu-
nication (cf. Rem. 2.2), we shall assume the extension of the type system defined in [20].

I Notation 1 (Type Annotations). We shall often annotate bound names and variables with
their respective type. We will write, e.g., (ν s : S)P to denote that the type of s in P is
S. Similarly for values: we shall write λu : C.P . Also, letting ∈ {(,→}, we may write
λu : C . P to denote that the value is linear (if =() or shared (if =→). That is, we
write λu : C . P if Γ; Λ; ∆ ` λu. P . C �, for some Γ, Λ, and ∆.

Having introduced the core session process language HO, we now move to detail its
type-preserving decomposition into minimal session types.

3 Decomposing Session-Typed Processes

3.1 Key Ideas

Our goal is to transform an HO process P , typable with the session types in Def. 2.3, into
another HO process, denoted D(P), typable using minimal session types (cf. Def. 3.1 below).
By means of this transformation on processes, which we call a decomposition, the sequencing
in session types for P is codified in D(P) by using additional actions. To ensure that this
transformation on P is sound, we must also decompose its session types; our main result
says that if P is well-typed under session types S1, . . . , Sn, then D(P) is typable using the
minimal session types G(S1), . . . ,G(Sn), where G(·) is a decomposition function that “slices”
a session type (as in Def. 2.3) into a list of minimal session types (cf. Def. 3.2 below).

To define the decomposition D(P), in Def. 3.8 we rely on a breakdown function that
translates P into a composition of trios processes (or simply trios). A trio is a process with
exactly three nested prefixes. Roughly speaking, if P is a sequential process with k nested
actions, then D(P) will contain k trios running in parallel: each trio in D(P) will enact
exactly one prefix from P ; the breakdown function must be carefully designed to ensure that
trios trigger each other in such a way that D(P) preserves the prefix sequencing in P .

We borrow from Parrow [24] some useful terminology and notation on trios. The context
of a trio is a tuple of variables x̃, possibly empty, which makes variable bindings explicit. We
use a reserved set of propagator names (or simply propagators), denoted with ck, ck+1, . . ., to
carry contexts and trigger the subsequent trio. A process with less than three sequential
prefixes is called a degenerate trio. Also, a leading trio is the one that receives a context,
performs an action, and triggers the next trio; a control trio only activates other trios.

The breakdown function works on both processes and values. The breakdown of process
P is denoted by Bkx̃

(
P
)
, where k is the index for the propagators ck, and x̃ is the context to

be received by the previous trio. Similarly, the breakdown of a value V is denoted by Vkx̃
(
V
)
.

We present the decomposition of well-typed HO processes (and its associated typability
results) incrementally – this is useful to gradually illustrate our ideas and highlight the
several ways in which our developments differ from Parrow’s. In § 3.2, we consider a “core
fragment” of HO, which contains output and input prefixes, application, restriction, parallel
composition, and inaction. Hence, this fragment does not have labeled choice and recursion,
nor recursive types. In § 3.3 we shall extend the decomposition functions with selection and
branching; an extension that supports names with recursive types is presented in § 3.4.

ECOOP 2019

23:8 Minimal Session Types

3.2 The Core Fragment
We present our approach for a core fragment of HO. We start introducing some preliminary
definitions, including the definition of breakdown function. Then we give our main result:
Thm. 3.11 (Page 13) asserts that if process P is well-typed with standard session types, then
D(P) is well-typed with minimal session types. This theorem relies crucially on Thm. 3.10
(Page 13), which specifies the way in which the breakdown function preserves typability.

3.2.1 Preliminaries
We start by introducing minimal session types as a fragment of Def. 2.3:

I Definition 3.1 (Minimal Session Types). The syntax of minimal session types for HO is
defined as follows:

U ::= C̃→� | C̃(�
C ::= M | 〈U〉

M ::= end | !〈Ũ〉; end | ?(Ũ); end

Clearly, this minimal type structure induces a reduced set of typable HO processes. We shall
implicitly assume a type system for HO based on these minimal session types by considering
the expected specializations of the notions, typing rules, and results summarized in § 2.2.

We now define how to “slice” a session type into a list of minimal session types.

I Definition 3.2 (Decomposing Session Types). Let S be a session type, U be a higher-order
type, C be a name type, and 〈U〉 be a shared type, all as in Def. 2.3. The type decomposition
function G(·) is defined as:

G(!〈U〉;S) =
{

!〈G(U)〉; end if S = end

!〈G(U)〉; end ,G(S) otherwise

G(?(U);S) =
{

?(G(U)); end if S = end

?(G(U)); end ,G(S) otherwise

G(end) = end

G(C(�) = G(C)(�
G(C→�) = G(C)→�
G(〈U〉) = 〈G(U)〉

G(S1, . . . , Sn) = G(S1), . . . ,G(Sn)

Thus, intuitively, if a session type S contains k input/output actions, the list G(S) will
contain k minimal session types. We write |G(S)| to denote the length of G(S).

I Example 3.3. Let S =?(Int); ?(Int); !〈Bool〉; end be the session type given in § 1. Then
G(S) is the list of minimal session types given by ?(Int); end , ?(Int); end , !〈Bool〉; end. y

The breakdown function Bkx̃
(
·
)
will operate on processes with indexed names (cf. Def. 3.6).

Indexes are relevant for session names: a name si will execute the i-th action in session s. For
this reason, to extend the decomposition function G(·) to typing environments, we consider
names ui in Γ and ∆. To define the decomposition of environments, we rely on the following
notation. Given a tuple of names s̃ = s1, . . . , sn and a tuple of (session) types S̃ = S1, . . . , Sn
of the same length, we write s̃ : S̃ to denote a list of typing assignments s1 : S1, . . . , sn : Sn.

A. Arslanagić, J. A. Pérez, and E. Voogd 23:9

I Definition 3.4 (Decomposition of Environments). Let Γ, Λ, and ∆ be typing environments.
We define G(Γ), G(Λ), and G(∆) inductively as follows:

G(∆, ui : S) = G(∆), (ui, . . . , ui+|G(S)|−1) : G(S)
G(Γ, ui : 〈U〉) = G(Γ), ui : G(〈U〉)
G(Γ, x : U) = G(Γ), x : G(U)
G(Λ, x : U) = G(Λ), x : G(U)

G(∅) = ∅

In order to determine the required number of propagators (ck, ck+1, . . .) required in the
breakdown of processes and values, we mutually define their degree:

I Definition 3.5 (Degree of a Process and Value). Let P be an HO process. The degree of P ,
denoted |P |, is inductively defined as follows:

|P | =

|V |+ |Q|+ 1 if P = ui!〈V 〉.Q
|Q|+ 1 if P = ui!〈y〉.Q or P = ui?(y).Q
|V |+ 1 if P = V ui

|P ′| if P = (ν s : S)P ′

|Q|+ |R|+ 1 if P = Q | R
1 if P = y ui or P = 0

The degree of a value V , denoted |V |, is defined as follows:

|V | =
{
|P | if V = λx : C(. P
0 if V = λx : C→. P or V = y

We define an auxiliary function that “initializes” the indices of a tuple of names.

I Definition 3.6 (Name and Process Initialization). Let ũ = (a, b, s, s′, . . .) be a finite tuple
of names. We shall write init(ũ) to denote the tuple (a1, b1, s1, s

′
1, . . .). We will say that a

process has been initialized if all of its names have some index.

I Remark 3.7. Recall that we write ‘ck?()’ and ‘ck!〈〉’ to denote input and output prefixes
in which the value communicated along ck is not relevant. While ‘ck?()’ stands for ‘ck?(x)’,
‘ck!〈〉’ stands for ‘ck!〈λx.0〉’. Their corresponding minimal types are ?(end→�); end and
!〈end→�〉; end, which are denoted by ?(·); end and !〈·〉; end, respectively.

Recall that P is closed if fv(P) = ∅. We now define the decomposition of a process.

I Definition 3.8 (Decomposing Processes). Let P be a closed HO process such that ũ = fn(P).
The decomposition of P , denoted D(P), is defined as:

D(P) = (ν c̃)
(
ck!〈〉.0 | Bkε

(
Pσ
))

where: k > 0; c̃ = (ck, . . . , ck+|P |−1); σ = {init(ũ)/ũ}; and the breakdown function Bkx̃
(
·
)
,

where x̃ is a tuple of variables, is defined inductively in § 3.2.2.

The bulk of the decomposition of a process is given by the breakdown function, detailed next.

ECOOP 2019

23:10 Minimal Session Types

3.2.2 The Breakdown Function
Given a context x̃ and a k > 0, the breakdown function Bkx̃

(
·
)
is defined on the structure

of initialized processes, relying on the breakdown function on values Vkỹ
(
·
)
. The definition

relies on type information; we describe each of its cases next.

Output. The decomposition of ui!〈V 〉.Q is the most interesting case: an output prefix sends
a value V (i.e., an abstracted process) that has to be broken down as well. We then have:

Bkx̃
(
ui!〈V 〉.Q

)
= ck?(x̃).ui!

〈
Vk+1
ỹ

(
V σ
)〉
.ck+l+1!〈z̃〉 | Bk+l+1

z̃

(
Qσ
)

Process Bkx̃
(
ui!〈V 〉.Q

)
consists of a leading trio that mimics an output action in parallel

with the breakdown of the continuation Q. The context x̃ must include the free variables
of V and Q, denoted ỹ and z̃, respectively. These tuples are not necessarily disjoint:
variables with shared types can appear free in both V and Q. The output object V is
then broken down with parameters ỹ and k + 1; the latter serves to consistently generate
propagators for the trios in the breakdown of V , denoted Vk+1

ỹ

(
V σ
)
(see below for its

definition). The substitution σ increments the index of session names; it is applied to
both V and Q before they are broken down. We then distinguish two cases:

If name ui is linear (i.e., it has a session type) then its future occurrences are renamed
into ui+1, and σ = {ui+1/ui};
Otherwise, if ui is not linear, then σ = {}.

Note that if ui is linear then it appears either in V or Q and σ affects only one of them.
The last prefix in the leading trio activates the breakdown of Q with its corresponding
context z̃. To avoid name conflicts with the propagators used in the breakdown of V , we
use ck+l+1, with l = |V | as a trigger for the continuation.
We remark that the same breakdown strategy is used when V stands for a variable y.
Since by definition |y| = 0, Vkỹ

(
y
)

= y, and yσ = y, we have:

Bkx̃
(
ui!〈y〉.Q

)
= ck?(x̃).ui!〈y〉.ck+1!〈z̃〉 | Bk+1

z̃

(
Qσ
)

We may notice that variable y is not propagated further if it does not appear in Q.
Input. The breakdown of an input prefix is defined as follows:

Bkx̃
(
ui?(y).Q

)
= ck?(x̃).ui?(y).ck+1!〈x̃′〉 | Bk+1

x̃′

(
Qσ
)

where x̃′ = fv(Q). A leading trio mimics the input action and possibly extends the
context with the received variable y. The substitution σ is defined as in the output case.

Application. The breakdown of V ui is as follows:

Bkx̃
(
V ui

)
= ck?(x̃).Vk+1

x̃

(
V
)
m̃

A degenerate trio receives a context x̃ and then proceeds with the application. We break
down V with x̃ as a context since these variables need to be propagated to the abstracted
process. We use k + 1 as a parameter to avoid name conflicts. Name ui is decomposed
into a tuple m̃ using type information: if ui : C then m̃ = (ui, . . . , ui+|G(C)|−1) and so
the length of m̃ is |G(C)|; each name in m̃ will perform exactly one action. When V is a
variable y, we have:

Bkx̃
(
y ui

)
= ck?(y).y m̃

Notice that by construction x̃ = y.

A. Arslanagić, J. A. Pérez, and E. Voogd 23:11

Restriction. We define the breakdown of a restricted process as follows:

Bkx̃
(
(ν s : C)P ′

)
= (ν s̃ : G(C))Bkx̃

(
P ′σ

)
By construction, x̃ = fv(P ′). Similarly as in the decomposition of ui into m̃ discussed
above, we use the type C of s to obtain the tuple s̃ of length |G(C)|. We initialize the
index of s in P ′ by applying the substitution σ. This substitution depends on C: if it is
a shared type then σ = {s1/s}; otherwise, if C is a session type, then σ = {s1s1/ss}.

Composition. The breakdown of a process Q | R is as follows:

Bkx̃
(
Q | R

)
= ck?(x̃).ck+1!〈ỹ〉.ck+l+1!〈z̃〉 | Bk+1

ỹ

(
Q
)
| Bk+l+1

z̃

(
R
)

A control trio triggers the breakdowns of Q and R; it does not mimic any action of the
source process. The tuple ỹ ⊆ x̃ (resp. z̃ ⊆ x̃) collects the free variables in Q (resp. R).
To avoid name conflicts, the trigger for the breakdown of R is ck+l+1, with l = |Q|.

Inaction. To breakdown 0, we define a degenerate trio with only one input prefix that
receives a context that by construction will always be empty, i.e., x̃ = ε:

Bkx̃
(
0
)

= ck?().0

Value. In defining the breakdown function for values we distinguish two main cases:
If V = λy : C . P , where ∈ {(,→}, then we have:

Vkx̃
(
λy : C . P

)
= λỹ : G(C) . (ν c̃)

(
ck!〈x̃〉 | Bkx̃

(
P{y1/y}

))
We use type C to decompose y into the tuple ỹ. We abstract over ỹ; the body of
the abstraction is the composition of a control trio and the breakdown of P , with
name index initialized with the substitution {y1/y}. If =→ then we restrict the
propagators c̃ = (ck, . . . , ck+|P |−1): this enables us to type the value in a shared
environment. When =(we do not have to restrict the propagators, and c̃ = ε.
If V = y, then the breakdown function is the identity: Vkx̃

(
y
)

= y.
Tab. 1 summarizes the definition of the breakdown, spelling out the side conditions involved.
We illustrate it by means of an example:

I Example 3.9 (Breaking Down Name-Passing). Consider the following process P , in which
a channel m is passed, through which a Boolean value is sent back:

P = (ν u)(u!〈m〉.m?(b).0 | u?(x).x!〈true〉.0)

P is not an HO process as it features name-passing. We then use the encoding described in
Exam. 2.1 to construct its encoding into HO. We thus obtain JP K = (ν u)(Q | R), where

Q = u!〈V 〉.m?(y).(ν s)(y s | s!〈λb.0〉.0) V = λz. z?(x).(xm)
R = u?(y).(ν s)(y s | s!〈W 〉.0) W = λx. x!〈W ′〉.0 with W ′ = λz. z?(x).(x true)

By Exam. 2.1, we know that J·K requires exactly four reduction steps to mimic a name-passing
synchronization. We show here part of the reduction chain of JP K:

JP K −→4 Jm?(b).0 | m!〈true〉.0K −→4 0 (2)

We will now investigate the decomposition of JP K and its reduction chain. First, we use Def. 3.5
to compute |V | = |W ′| = 2, and so |W | = 4. Then |Q| = |y s | s!〈λb.0〉.0|+ |V |+ 2 = 9, and
similarly, |R| = 9. Therefore, |JP K| = 19. Following Def. 3.8, we see that σ = {m1m1/mm},
which we silently apply. Using k = 1, we then have the decomposition shown in Tab. 2.

ECOOP 2019

23:12 Minimal Session Types

Table 1 The breakdown function for processes and values (core fragment).

P Bkx̃
(
P
)

ui!〈V 〉.Q
ck?(x̃).ui!

〈
Vk+1
ỹ

(
V σ
)〉
.ck+l+1!〈z̃〉 |

Bk+l+1
z̃

(
Qσ
)

ỹ = fv(V), z̃ = fv(Q)
l = |V |

σ =
{
{ui+1/ui} if ui : S
{} otherwise

ui?(y).Q ck?(x̃).ui?(y).ck+1!〈x̃′〉 | Bk+1
x̃′

(
Qσ
) x̃′ = fv(Q)

σ =
{
{ui+1/ui} if ui : S
{} otherwise

V ui ck?(x̃).Vk+1
x̃

(
V
)
m̃

ui : C
x̃ = fv(V)
m̃ = (ui, . . . , ui+|G(C)|−1)

(ν s : C)P ′ (ν s̃ : G(C))Bkx̃
(
P ′σ

) x̃ = fv(P ′)
s̃ = (s1, . . . , s|G(C)|)

σ =
{
{s1s1/ss} if C = S

{s1/s} if C = 〈U〉

Q | R ck?(x̃).ck+1!〈ỹ〉.ck+l+1!〈z̃〉 |
Bk+1
ỹ

(
Q
)
| Bk+l+1

z̃

(
R
) ỹ = fv(Q)

z̃ = fv(R)
l = |Q|

0 ck?().0

V Vkx̃
(
V
)

y y

λu : C . P

λỹ : G(C) . (ν c̃)
(
ck!〈x̃〉 |
Bkx̃
(
P{y1/y}

))
c̃ =

{
ε if =(
(ck, . . . , ck+|P |−1) if =→

x̃ = fv(V)
ỹ = (y1, . . . , y|G(C)|)

Tab. 2 we have omitted substitutions that have no effect and trailing 0s. The first
interesting process appears after synchronizations on c1, c2, and c11. At that point, the
process will be ready to mimic the first action that is performed by JP K, i.e., u1 will send
V3
ε

(
V
)
, the breakdown of V . Next, c12, c13, and c14 will synchronize, and V3

ε

(
V
)
is passed

further along, until s1 is ready to be applied to it in the breakdown of R. At this point, we
know that JP K −→7 (ν c̃)P ′, where c̃ = (c3, . . . , c10, c15, . . . , c19), and

P ′ = c5!〈〉.0 | c5?().m1?(y).c6!〈y〉.0
| (ν s1)(c6?(y).c7!〈y〉.c8!〈〉.0 | c7?(y).y s1 | c8?().s1!〈V9

ε

(
λb.0

)
〉.c10!〈〉.0 | c10?().0)

| (ν s1)
(
V3
ε

(
V
)
s1 | s1!〈V15

ε

(
W
)
〉.c19!〈〉.0 | c19?().0

)
After s1 is applied, the trio guarded by c3 will be activated, where z1 has been substituted
by s1. Then s1 and s1 will synchronize, and the breakdown of W is passed along. Then c4
and c19 synchronize, and now m1 is ready to be applied to V15

ε

(
W
)
, which was the input

A. Arslanagić, J. A. Pérez, and E. Voogd 23:13

Table 2 The process decomposition discussed in Exam. 3.9.

D(JP K) = (ν c1, . . . , c19)
(
c1!〈〉 | (ν u1)

(
c1?().c2!〈〉.c11!〈〉 | B2

ε

(
Q
)
| B11

ε

(
R
)))

B2
ε

(
Q
)

= c2?().u1!〈V3
ε

(
V
)
〉.c5!〈〉 | c5?().m1?(y).c6!〈y〉 |

(ν s1)(c6?(y).c7!〈y〉.c8!〈〉 | c7?(y).(y s1) | c8?().s1!〈V9
ε

(
λb.0

)
〉.c10!〈〉 | c10?())

B11
ε

(
R
)

= c11?().u1?(y).c12!〈y〉 |
(ν s1)

(
c12?(y).c13!〈y〉.c14!〈〉 | c13?(y).(y s1) | c14?().s1!〈V15

ε

(
W
)
〉.c19!〈〉 | c19?()

)
V3
ε

(
V
)

= λz1. (c3!〈〉 | c3?().z1?(x).c4!〈x〉 | c4?(x).(xm1))
V9
ε

(
λb.0

)
= λb1. (c9!〈〉 | c9?())

V15
ε

(
W
)

= λx1. (c15!〈〉 | c15?().x1!〈V16
ε

(
W ′
)
〉.c18!〈〉 | c18?())

V16
ε

(
W ′
)

= λz1. (c16!〈〉 | c16?().z1?(x).c17!〈x〉 | c17?(x).(x true))

for c4 in the breakdown of V . After this application, c5 and c15 can synchronize with their
duals, and we know that (ν c̃)P ′ −→8 (ν c̃′)P ′′, where c̃′ = (c6, . . . , c10, c16, c17, c18), and

P ′′ = m1?(y).c6!〈y〉.0 | m1!〈V15
ε

(
W ′
)
〉.c17!〈〉.0 | c17?().0

| (ν s1)(c6?(y).c7!〈y〉.c8!〈〉.0 | c7?(y).y s1 | c8?().s1!〈V9
ε

(
λb.0

)
〉.c10!〈〉.0 | c10?().0)

Remarkably, P ′′ is standing by to mimic the encoded exchange of value true. Indeed, the
decomposition of the four-step reduced process in (2) will reduce in three steps to a process
that is equal (up to ≡α) to the process we obtained here. This strongly suggests a tight
operational correspondence between a process and its decomposition. y

We may now state our technical results:

I Theorem 3.10 (Typability of Breakdown). Let P be an initialized process and V be a value.
1. If Γ; Λ; ∆ ` P . � then

G(Γ1); ∅;G(∆),Θ ` Bkx̃
(
P
)
. � (k > 0)

where: x̃ = fv(P); Γ1 = Γ\ x̃; and balanced(Θ) with dom(Θ) = {ck, ck+1, . . . , ck+|P |−1}∪
{ck+1, . . . , ck+|P |−1} and Θ(ck) =?(M̃); end, where M̃ = (G(Γ),G(Λ))(x̃).

2. If Γ; Λ; ∆ ` V . C(� then

G(Γ);G(Λ);G(∆),Θ ` Vkx̃
(
V
)
. G(C)(� (k > 0)

where: x̃ = fv(V); and balanced(Θ) with dom(Θ)={ck, . . . , ck+|V |−1}∪{ck, . . . , ck+|V |−1}
and Θ(ck) =?(M̃); end and Θ(ck) =!〈M̃〉; end, where M̃ = (G(Γ),G(Λ))(x̃).

3. If Γ; ∅; ∅ ` V . C→� then G(Γ); ∅; ∅ ` Vkx̃
(
V
)
. G(C)→�, where x̃ = fv(V) and k > 0.

Proof. By mutual induction on the structure of P and V . J

Using the above theorem, we can prove our main result:

I Theorem 3.11 (Typability of the Decomposition). Let P be a closed HO process with
ũ = fn(P). If Γ; ∅; ∆ ` P . � then G(Γσ); ∅;G(∆σ) ` D(P) . �, where σ = {init(ũ)/ũ}.

Proof. Direct from the definitions, using Thm. 3.10. J

ECOOP 2019

23:14 Minimal Session Types

3.3 Extensions (I): Select and Branching
We now show how to extend the decomposition to handle select and branch processes, which
implement labeled (deterministic) choice in session protocols, as well as their corresponding
session types. As we will see, in formalizing this extension we shall appeal to the expressive
power of abstraction-passing. We start by extending the syntax of minimal session types:

I Definition 3.12 (Minimal Session Types (with Labeled Choice)). The syntax of minimal
session types for HO is defined as follows:

M ::= end | !〈Ũ〉; end | ?(Ũ); end | ⊕ {li : Mi}i∈I | &{li : Mi}i∈I

where U and C are defined as in Def. 3.1.

We may then extend Def. 3.2 to branch and select types as follows:

I Definition 3.13 (Decomposing Session Types, Extended (I)). The decomposition function
on types as given in Def. 3.2 is extended as follows:

G(&{li : Si}i∈I) = &{li :!〈G(Si)(�〉; end}i∈I
G(⊕{li : Si}i∈I) = ⊕{li :?(G(Si)(�); end}i∈I

The above definition for decomposed types already suggests our strategy to breakdown
branching and selection processes: we will exploit abstraction-passing to exchange one
abstraction per each branch of the labeled choice. This intuition will become clearer shortly.

We now extend the definition of the degree of a process/value (cf. Def. 3.5) to account
for branch and select processes:

I Definition 3.14 (Degree of a Process, Extended). The degree of a process P , denoted |P |,
is as given in Def. 3.5, extended as follows:

|P | =
{

1 if P = ui . {lj : Pj}j∈I
|P ′|+ 2 if P = ui / lj .P

′

The definition of process decomposition (cf. Def. 3.8) does not require modifications; it relies
on the extended definition of the breakdown function for processes Bkx̃

(
·
)
that combines the

definitions in Tab. 1 with those in Tab. 3 (see below). The breakdown of values Vkx̃
(
·
)
is as

before, and relies on the extended definition of Bkx̃
(
·
)
.

We now present and describe the breakdown of branching and selection processes:
Branching. The breakdown of a branching process ui . {lj : Pj}j∈I is as follows:

Bk
x̃

(
ui . {lj : Pj}j∈I

)
= ck?(x̃).ui . {lj : ui!

〈
Nu,j

〉
}j∈I

where Nu,j = λỹu
j : G(Sj). (ν c̃j)

(
ck+1!〈x̃〉 | Bk+1

x̃

(
Pj{yu

1/ui}
))

The first prefix receives the context x̃. The next two prefixes are along ui: the first one
mimics the branching action of P , whereas the second outputs an abstraction Nu,j . This
output does not have a counterpart in P ; it is meant to synchronize with an input in
the breakdown of the corresponding selection process (see below). Nu,j encapsulates
the breakdown of subprocess Pj . It has the same structure as the breakdown of a
value λy : C→. P in Tab. 1: it is a composition of a control trio and the breakdown
of Pj ; the generated propagators, denoted c̃j , are restricted. We use types to define
Nu,j : we assume Sj is the session type of ui in the j-th branch of P . We abstract over
ỹuj = (yu1 , . . . , yu|G(Sj)|). We substitute ui with yu1 in Pj before breaking it down: this way,
ui is decomposed and bound by abstraction.

A. Arslanagić, J. A. Pérez, and E. Voogd 23:15

Table 3 The breakdown function for processes (extension with selection and branching).

Bkx̃
(
ui . {lj :Pj}j∈I

)
ck?(x̃).ui . {lj : ui!

〈
Nu,j

〉
}j∈I

where:
Nu,j = λỹuj : G(Sj). (ν c̃j)

(
ck+1!〈x̃〉 | Bk+1

x̃

(
Pj{y

u
1/ui}

)) ỹuj = (yu1 , . . . , yu|G(Sj)|)
c̃j = (ck+1, . . . , ck+|Pj |)

Bkx̃
(
ui / lj .P

′)
ck?(x̃).ck+1!

〈
Mj

〉
|

(ν ũ : G(Sj))
(
ck+1?(y).y ũ | Bk+2

x̃

(
P ′{ui+1/ui}

))
where:
Mj = λỹ. ui / lj .ui?(z).ck+2!〈x̃〉.z ỹ

ỹ = (y1, . . . , y|G(Sj)|)
ũ = (ui+1, . . . , ui+|G(Sj)|)
ũ = (ui+1, . . . , ui+|G(Sj)|)

Selection. The breakdown of a selection process ui / lj .P ′ is as follows:

Bkx̃
(
ui / lj .P

′) = ck?(x̃).ck+1!
〈
Mj

〉
| (ν ũ : G(Sj))(ck+1?(y).y ũ | Bk+2

x̃

(
P ′{ui+1/ui}

)
)

where Mj = λỹ. ui / lj .ui?(z).ck+2!〈x̃〉.z ỹ

After receiving the context x̃, the abstraction Mj is sent along ck+1, and is to be received
by the second subprocess in the composition. This sequence of actions allows us to
preserve the intended trio structure. We use Sj , the type of ui in P ′, to construct a
corresponding tuple ũ, with type G(Sj). We apply the abstraction Mj , received along
ck+1, to ũ (the duals of ũ). At this point, the selection action in P can be mimicked,
and so label lj is chosen from the breakdown of a corresponding branching process. As
discussed above, such a breakdown will send an abstraction Nu,j with type Sj(�, which
encapsulates the breakdown of the chosen subprocess. Before running Nu,j with names ũ,
we trigger the breakdown of P ′ with an appropriate substitution.

Summing up, our strategy for breaking down labeled choices exploits higher-order concurrency
to uniformly handle the fact that the subprocesses of a branching process have a different
session type and degree. Interestingly, it follows the intuition that branching and selection
correspond to a form of output and input actions involving labels, respectively.
I Remark 3.15. Theorems 3.10 and 3.11 hold also for the extension with selection and
branching .

I Example 3.16 (Breaking down Selection and Branching). We illustrate the breaking down
of selection and branching processes by considering a basic mathematical server Q that
allows clients to add or subtract two integers. The server contains two branches: one sends
an abstraction V+ that implements integer addition, the other sends an abstraction V−
implementing subtraction. A client R selects the first option to add integers 16 and 26:

Q , u . {add : u!〈V+〉.0, sub : u!〈V−〉.0}
R , u / add.u?(x).x (16,26)

The composition P , (ν u)(Q | R) reduces in two steps to a process V+ (16,26):

P −→ (ν u)(u!〈V+〉.0 | u?(x).x (16,26)) −→ V+ (16,26) (3)

We will investigate the decomposition of P , and its reduction chain. First, by Def. 3.5 and
Def. 3.14, we have: |Q| = 1, |R| = 4, and |P | = 6. Following the extension of Def. 3.8, using
k = 1, and observing that σ1 = {}, we obtain:

D(P) = (ν c1 . . . c6)
(
c1!〈〉.0 | (ν u1)(c1?().c2!〈〉.c3!〈〉.0 | B2

ε

(
Qσ2

)
| B3

ε

(
Rσ2

)
)
)

ECOOP 2019

23:16 Minimal Session Types

where σ2 = {u1u1/uu}. The breakdown of Q is obtained by applying the first rule in Tab. 3:

B2
ε

(
Qσ2

)
= c2?().u1 . {add : (ν c3c4)u1!

〈
λy1. c3!〈〉.0 | B3

ε

(
u1!〈V+〉.0{y1/u1}

)〉
.0,

sub : (ν c3c4)u1!
〈
λy1. c3!〈〉.0 | B3

ε

(
u1!〈V−〉.0{y1/u1}

)〉
.0}

The breakdown of R is obtained by applying the second rule in Tab. 3:

B3
ε

(
Rσ2

)
= c3?().c4!〈λy1. u1 / add.u1?(z).c5!〈〉.z y1〉.0
| (ν u2)(c4?(y).y u2 | B5

ε

(
u1?(x).x (16,26){u2/u1}

)
)

We will now follow the chain of reductions of the process D(P). First, c1, c2, and c3 will
synchronize, after which c4 will pass the abstraction. Let D(P) −→4 P ′, then we know:

P ′ = (ν c5c6)(ν u1)
(
u1 . {add : (ν c3c4)u1!

〈
λy1. c3!〈〉.0 | B3

ε

(
y1!〈V+〉.0

)〉
.0,

sub : (ν c3c4)u1!
〈
λy1. c3!〈〉.0 | B3

ε

(
y1!〈V−〉.0

)〉
.0}

| (ν u2)(λy1. u1 / add.u1?(z).c5!〈〉.z y1 u2 | B5
ε

(
u2?(x).x (16,26)

)
)
)

In P ′, u2 will be applied to the abstraction with variable y1. After that, the choice for the
process labeled by add is made. Process P ′ will reduce further as P ′ −→2 P ′′ −→2 P ′′′, where:

P ′′ = (ν c5c6)(ν u1)
(
(ν c3c4)u1!

〈
λy1. c3!〈〉.0 | B3

ε

(
y1!〈V+〉.0

)〉
.0

| (ν u2)(u1?(z).c5!〈〉.z u2 | B5
ε

(
u2?(x).x (16,26)

)
)
)

P ′′′ = (ν c3c4c5c6)
(
(ν u2)c5!〈〉.c3!〈〉.0 | B3

ε

(
u2!〈V+〉.0

)
| B5

ε

(
u2?(x).x (16,26)

)
)
)

Interestingly, P ′′′ strongly resembles a decomposition of the one-step reduced process in (3).
This advocates the operational correspondence between a process and its decomposition. y

3.4 Extensions (II): Recursion

We extend the decomposition to handle HO processes in which names can be typed with
recursive session types µt.S. We consider recursive types which are simple and contractive,
i.e., in µt.S, the body S 6= t does not contain recursive types. Unless stated otherwise,
we shall handle tail-recursive session types such as, e.g., S = µt.?(Int); ?(Bool); !〈Bool〉; t.
Non-tail-recursive session types such as µt.?((T̃ , t)→�); end, which is essential in the fully
abstract encoding of HOπ into HO [19], can also be accommodated; see Rem. 3.29 below.

We start by extending minimal session types (Def. 3.1) with minimal recursive types:

I Definition 3.17 (Minimal Recursive Session Types). The syntax of minimal recursive session
types for HO is defined as follows:

M ::= γ | !〈Ũ〉; γ | ?(Ũ); γ | µt.M
γ ::= end | t

Thus, types such as µt.!〈U〉; t and µt.?(U); t are minimal recursive session types: in fact they
are tail-recursive session types with exactly one session prefix. We extend Def. 3.2 as follows:

A. Arslanagić, J. A. Pérez, and E. Voogd 23:17

I Definition 3.18 (Decomposing Session Types, Extended (II)). Let µt.S be a recursive session
type. The decomposition function given in Def. 3.2 is extended as:

G(t) = t G(µt.S) =
{
R(S) if µt.S is tail-recursive
µt.G(S) otherwise

R(t) = ε R(!〈U〉;S) = µt.!〈G(U)〉; t,R(S)
R(?(U);S) = µt.?(G(U)); t,R(S)

We shall also use the function R?(·), which is defined as follows:

R?(?(U);S) = R?(S) R?(!〈U〉;S) = R?(S) R?(µt.S) = R(S)

Hence, G(µt.S) is a list of minimal recursive session types, obtained using the auxiliary
function R(·) on S: if S has k prefixes then the list G(µt.S) will contain k minimal recursive
session types. The auxiliary function R?(·) decomposes guarded recursive session types: it
skips session prefixes until a type of form µt.S is encountered; when that occurs, the recursive
type is decomposed using R(·). We illustrate Def. 3.18 with two examples:

I Example 3.19 (Decomposing a Recursive Type). Let S = µt.S′ be a recursive session type,
with S′ =?(Int); ?(Bool); !〈Bool〉; t. By Def. 3.18, since S is tail-recursive, G(S) = R(S′).
Further, R(S′) = µt.?(G(Int)); t,R(?(Bool); !〈Bool〉; t). By definition of R(·), we obtain
G(S) = µt.?(Int); t, µt.?(Bool); t, µt.!〈Bool〉; t,R(t) (using G(Int) = Int and G(Bool) = Bool).
Since R(t) = ε, we obtain G(S) = µt.?(Int); t, µt.?(Bool); t, µt.!〈Bool〉; t. y

I Example 3.20 (Decomposing an Unfolded Recursive Type). Let T =?(Bool); !〈Bool〉;S be a
derived unfolding of S from Exam. 3.19. Then, by Def. 3.18, R?(T) is the list of minimal
recursive types obtained as follows: first, R?(T) = R?(!〈Bool〉;µt.S′) and after one more
step, R?(!〈Bool〉;µt.S′) = R?(µt.S′). Finally, we have R?(µt.S′) = R(S′). We get the same
list of minimal types as in Exam. 3.19: R?(T) = µt.?(Int); t, µt.?(Bool); t, µt.!〈Bool〉; t. y

We now explain how to decompose processes whose names are typed with recursive types.
In the core fragment, we decompose a name u into a sequence of names ũ = (u1, . . . , un):
each ui ∈ ũ is used exactly by one trio to perform exactly one action; the session associated
to ui ends after its single use, as prescribed by its minimal session type. The situation is
different when names can have recursive types, for the names ũ should be propagated in
order to be used infinitely many times. As a simple example, consider the process

R = r?(x).r!〈x〉.V r

where name r has type S = µt.?(Int); !〈Int〉; t and the higher-order type of V is S → �.
Processes of this form are key in the encoding of recursion given in [19]. A naive decomposition
of R, using the approach we defined for processes without recursive types, would result into

B1
ε

(
R
)

= c1?().r1?(x).c2!〈x〉.0 | c2?(x).r2!〈x〉.c3!〈〉.0 | c3?().Vε
(
V
)

(r3, r4)

There are several issues with this breakdown. One of them is typability: we have that
r1 : µt.?(Int); t, but subprocess c2!〈x〉.0 is not typable under a linear environment containing
such a judgment. Another, perhaps more central, issue concerns r̃: the last trio (which
mimics application) should apply to the sequence of names (r1, r2), rather than to (r3, r4).
We address both issues by devising a mechanism that propagates names with recursive types
(such as (r1, r2)) among the trios that use some of them. This entails decomposing R in
such a way that the first two trios propagate r1 and r2 after they have used them; the trio
simulating V r should then have a way to access the propagated names (r1, r2).

ECOOP 2019

23:18 Minimal Session Types

We illustrate the key insights underpinning our solution by means of two examples. The
first one illustrates how to break down input and output actions on names with recursive
types (the “first part” of R). The second example shows how to break down an application
where a value is applied to a tuple of names with recursive names (the “second part” of R).

I Example 3.21 (Decomposing Processes with Recursive Names (I)). Let P = r?(x).r!〈x〉.P ′
be a process where r has type S = µt.?(Int); !〈Int〉; t and r ∈ fn(P ′). To define B1

ε

(
P
)
in a

compositional way, names (r1, r2) should be provided to its first trio; they cannot be known
beforehand. To this end, we introduce a new control trio that will hold these names:

cr?(b).b (r1, r2)

where the shared name cr provides a decomposition of the (recursive) name r. The intention
is that each name with a recursive type r will get its own dedicated propagator channel cr.
Since there is only one recursive name in P , its decomposition will be of the following form:

D(P) = (ν c̃)(ν cr)
(
cr?(b).b (r1, r2) | c1!〈〉.0 | B1

ε

(
P
))

The new control trio can be seen as a server that provides names: each trio that mimics some
action on r should request the sequence r̃ from the server on cr. This request will be realized
by a higher-order communication: trios should send an abstraction to the server; such an
abstraction will contain further actions of a trio and it will be applied to the sequence r̃.
Following this idea, we may refine the definition of D(P) by expanding B1

ε

(
P
)
:

D(P) = (ν c̃)(ν cr)
(
cr?(b).b (r1, r2) | c1!〈〉.0 | c1?().cr!〈N1〉.0 | c2?(y).cr!〈N2〉.0 | B3

ε

(
P ′
))

The trios involving names with recursive types have now a different shape. After being
triggered by a previous trio, rather than immediately mimicking an action, they will send an
abstraction to the server available on cr. The abstractions N1 and N2 are defined as follows:

N1 = λ(z1, z2). z1?(x).c2!〈x〉.cr?(b).b (z1, z2) N2 = λ(z1, z2). z2!〈x〉.c3!〈〉.cr?(b).b (z1, z2)

Hence, the formal arguments for these values are meant to correspond to r̃. The server on
name cr will appropriately instantiate these names. Notice that all names in r̃ are propagated,
even if the abstractions only use some of them. For instance, N1 only uses r1, whereas N2
uses r2. After simulating an action on ri and activating the next trio, these values reinstate
the server on cr for the benefit of future trios mimicking actions on r. y

I Example 3.22 (Decomposing Processes with Recursive Names (II)). Let S = µt.?(Int); !〈Int〉; t
and T = µt.?(Bool); !〈Bool〉; t, and define Q = V (u, v) as a process where u : S and v : T ,
where V is some value of type (S, T)→�. The decomposition of Q is as in the previous
example, except that now we need two servers, one for u and one for v:

D(Q) = (ν c1c̃)(ν cucv)
(
cu?(b).b (u1, u2) | cv?(b).b (v1, v2) | c1!〈〉.0 | B1

ε

(
Q
))

where c̃ = (c2, . . . , c|Q|). We should break down Q in such a way that it could communicate
with both servers to collect sequences ũ and ṽ. To this end, we define a process in which
abstractions are nested using output prefixes and whose innermost process is an application.
After successive communications with multiple servers this innermost application will have
collected all names in ũ and ṽ. We apply this idea to breakdown Q:

B1
ε

(
Q
)

= c1?().cu!
〈
λ(x1, x2). cv!〈λ(y1, y2).V2

ε

(
V
)

(x1, x2, y1, y2)〉.0
〉
.0

A. Arslanagić, J. A. Pérez, and E. Voogd 23:19

Observe that we use two nested outputs, one for each name with recursive types in Q. We
now look at the reductions of D(Q) to analyze how the communication of nested abstractions
allows us to collect all name sequences needed. After the first reduction along c1 we have:

D(Q) −→(ν c̃)(ν cucv)
(
cu?(b).b (u1, u2) | cv?(b).b (v1, v2) |

cu!〈λ(x1, x2). cv!〈λ(y1, y2).V2
ε

(
V
)

(x1, x2, y1, y2)〉.0〉.0 = R1

From R1 we have a synchronization along name cu:

R1 −→(ν c̃)(ν cucv)
(
λ(x1, x2). cv!〈λ(y1, y2).V2

ε

(
V
)

(x1, x2, y1, y2)〉.0 (u1, u2) |
cv?(b).b (v1, v2)

)
= R2

Upon receiving the value, the server applies it to (u1, u2) obtaining the following process:

R2 −→(ν c̃)(ν cucv)
(
cv!〈λ(y1, y2).V2

ε

(
V
)

(u1, u2, y1, y2)〉.0 | cv?(b).b (v1, v2)
)

= R3

Up to here, we have partially instantiated name variables of a value with the sequence ũ.
Next, the first trio in R3 can communicate with the server on name cv:

R3 −→(ν c̃)(ν cucv)
(
λ(y1, y2).V2

ε

(
V
)

(u1, u2, y1, y2) (v1, v2)
)

−→(ν c̃)(ν cucv)
(
V2
ε

(
V
)

(u1, u2, v1, v2)
)

This completes the instantiation of name variables with appropriate sequences of names with
recursive types. At this point, D(Q) can proceed to mimic the application in Q. y

These two examples illustrate the main ideas of the decomposition of processes that
involve names with recursive types. Tab. 4 presents a formal account of the extension of the
definition of process decomposition given in Def. 3.8. Before explaining the table in detail,
we require an auxiliary definition.

Given an unfolded recursive session type S, the auxiliary function f(S) returns the position
of the top-most prefix of S within its body. (Whenever S = µt.S′, we have f(S) = 1.)

I Definition 3.23 (Index function). Let S be an (unfolded) recursive session type. The
function f(S) is defined as follows:

f(S) =
{
f ′0(S′{S/t}) if S = µt.S′

f ′0(S) otherwise

where: f ′l (µt.S) = |R(S)| − l + 1, f ′l (!〈U〉;S) = f ′l+1(S), f ′l (?(U);S) = f ′l+1(S).

I Example 3.24. Let S′ =?(Bool); !〈Bool〉;S where S is as in Exam. 3.19. Then f(S′) = 2
since the top-most prefix of S′ (‘?(Bool);’) is the second prefix in the body of S. y

Given a typed process P , we write rn(P) to denote the set of free names of P whose
types are recursive. As mentioned above, for each r ∈ rn(P) with r : S we shall rely on a
control trio of the form cr?(b).b r̃, where r̃ = r1, . . . , r|G(S)|.

I Definition 3.25 (Decomposition of a Process with Recursive Session Types). Let P be a
closed HO process with ũ = fn(P) and ṽ = rn(P). The decomposition of P , denoted D(P),
is defined as:

D(P) = (ν c̃)(ν c̃r)
(∏
r∈ṽ

cr?(b).b r̃ | ck!〈〉.0 | Bkε
(
Pσ
))

where: k > 0; c̃ = (ck, . . . , ck+|P |−1); c̃r =
⋃
r∈ṽ c

r; σ = {init(ũ)/ũ}.

ECOOP 2019

23:20 Minimal Session Types

Table 4 The breakdown function for processes and values (extension with recursive types).

Bkx̃
(
r!〈V 〉.Q

)
ck?(x̃).cr!

〈
NV
〉
| Bk+l+1

w̃

(
Q
)

where:
NV = λz̃. zf(S)!

〈
Vk+1
ỹ

(
V
)〉
.

ck+l+1!〈w̃〉.cr?(b).(b z̃)

r : S ∧ tr(S)
ỹ = fv(V), w̃ = fv(Q)
l = |V |
z̃ = (z1, . . . , z|R?(S)|)

Bkx̃
(
r?(y).Q

)
ck?(x̃).cr!

〈
Ny
〉
| Bk+1

x̃′

(
Q
)

where:
Ny = λz̃. zf(S)?(y).ck+1!〈x̃′〉.cr?(b).(b z̃)

r : S ∧ tr(S)
x̃′ = fv(Q)
z̃ = (z1, . . . , z|R?(S)|)

Bkx̃
(
V (r̃, ui)

)
ck?(x̃).

n=|r̃|

cr1 !
〈
λz̃1.c

r2 !〈λz̃2. · · · .crn !〈λz̃n. Q〉 〉
〉

where:
Q = Vk+1

x̃

(
V
)

(z̃1, . . . , z̃n, m̃)

∀ri ∈ r̃.(ri : Si ∧ tr(Si)∧
z̃i = (zi1, . . . , zi|R?(Si)|))

ui : C
m̃ = (ui, . . . , ui+|G(C)|−1)

Bkx̃
(
(ν s : µt.S)P ′

)
(ν s̃ : R(S))(ν cs)cs?(b).(b s̃) |

(ν cs̄)cs̄?(b).(b s̃) | Bkx̃
(
P ′
) tr(µt.S)

s̃ = (s1, . . . , s|R(S)|)
s̃ = (s1, . . . , s|R(S)|)

Vkx̃
(
λ(ỹ, z) : (S̃, C)

. P
)

λ(ỹ1, . . . , ỹn, z̃) : (T̃)

. N

where:
T̃ = (G(S1), . . . ,G(Sn),G(C))
N = (ν c̃)

∏
i∈|ỹ|(c

yi?(b).(b ỹi)) | ck!〈x̃〉 |
Bkx̃
(
P{z1/z}

)
∀yi ∈ ỹ.(yi : Si ∧ tr(Si)∧

ỹi = (yi1, . . . , yi|G(Si)|))
z̃ = (z1, . . . , z|G(C)|)

c̃ =
{
ε if =(
(ck, . . . , ck+|P |−1) if =→

We now describe the required extensions for the function Bkx̃
(
·
)
. We will use predicate tr(S)

on types to indicate that S is a tail-recursive session type. Tab. 4 describes the breakdown
of prefixes whose type is recursive; all other prefixes can be treated as in Tab. 1.

Output. The breakdown of process r!〈V 〉.Q, when r has a recursive type S, is as follows:

Bkx̃
(
r!〈V 〉.Q

)
= ck?(x̃).cr!

〈
NV
〉
| Bk+l+1

w̃

(
Q
)

where NV = λz̃. zf(S)!
〈
Vk+1
ỹ

(
V
)〉
.ck+l+1!〈w̃〉.cr?(b).(b z̃)

The decomposition consists of a leading trio that mimics the output action running in
parallel with the breakdown of Q. After receiving the context x̃, the leading trio sends an
abstraction NV along cr. Value NV performs several tasks. First, it collects the sequence
r̃; then, it mimics the output action of P along one of them (rf(S)) and triggers the
next trio, with context w̃; finally, it reinstates the server on cr for the next trio that

A. Arslanagić, J. A. Pérez, and E. Voogd 23:21

uses r. Notice that differently from what is done in Tab. 1, indexing is not relevant when
breaking down names with recursive types. Also, since by definition Vkỹ

(
y
)

= y, yσ = y,
and |y| = 0, when the communicated value V is a variable y we obtain the following:

Bkx̃
(
r!〈y〉.Q

)
= ck?(x̃).cr!

〈
λz̃. zf(S)!〈y〉.ck+1!〈w̃〉.cr?(b).(b z̃)

〉
| Bk+1

w̃

(
Q
)

Input. The breakdown of process r?(y).Q, when r has recursive session type S, is as follows:

Bkx̃
(
r?(y).Q

)
= ck?(x̃).cr!

〈
λz̃. zf(S)?(y).ck+1!〈x̃′〉.cr?(b).(b z̃)

〉
| Bk+1

x̃′

(
Q
)

The breakdown follows the lines of the output case, but also of the linear case in Tab. 1,
with additional structure needed to implement the reception of r̃, using one of the received
names (rf(S)) as a subject for the input action and propagating those names further.

Application. For simplicity we consider applications V (r̃, ui), where names in r̃ have recursive
types and only name ui has a non-recursive type; the general case involving different
orders in names and multiple names with non-recursive types is as expected. We have:

Bkx̃
(
V (r̃, ui)

)
=ck?(x̃).

n=|r̃|

cr1 !
〈
λz̃1.c

r2 !〈λz̃2. · · · .crn !〈λz̃n.Vk+1
x̃

(
V
)

(z̃1, . . . , z̃n, m̃)〉 〉
〉

We rely on types to decompose every name in (r̃, ui). Letting |r̃| = n and i ∈ {1, . . . , n},
for each ri ∈ r̃ (with ri : Si) we generate a sequence z̃i = (zi1, . . . , zi|R?(Si)|) as in the
output case. Since name ui has a non-recursive session type, we decompose it as in Tab. 1.
Subsequently, we define an output action on propagator cr1 that sends a value containing
n abstractions that occur nested within output prefixes: for each j ∈ {1, . . . , n − 1},
each abstraction binds z̃j and sends the next abstraction along crj+1 . The innermost
abstraction abstracts over z̃n and encapsulates process Vk+1

x̃

(
V
)

(z̃1, . . . , z̃n, m̃), which
mimics the application in the source process. By this abstraction nesting we bind all
variables z̃i in Q. This structure can be seen as an encoding of partial application: by
virtue of a single synchronization on cri part of variables (i.e., z̃i) will be instantiated.
The breakdown of a value application of the form y (r̃, ui) results into a specific form of
the breakdown:

Bkx̃
(
y (r̃, ui)

)
=ck?(x̃).

n=|r̃|

cr1 !
〈
λz̃1.c

r2 !〈λz̃2. · · · .crn !〈λz̃n. y (z̃1, . . . , z̃n, m̃)〉 〉
〉

Restriction. The restriction process (ν s : µt.S)P ′ is translated as follows:

Bkx̃
(
(ν s : µt.S)P ′

)
= (ν s̃ : R(S))(ν cs)cs?(b).(b s̃) | (ν cs̄)cs̄?(b).(b s̃) | Bkx̃

(
P ′
)

We decompose s into s̃ = (s1, . . . , s|R(S)|) and s into s̃ = (s1, . . . , s|R(S)|) . The breakdown
introduces two servers in parallel with the breakdown of P ′; these servers provide names
for s and s along cs and cs, respectively. The server on cs (resp. cs) receives a value and
applies it to the sequence s̃ (resp. s̃). We restrict over s̃ and propagators cs and cs.

Value. The polyadic value λ(ỹ, z) : (S̃, C)

. P , where ∈ {(,→}, is decomposed as follows:

Vkx̃
(
λ(ỹ, z) : (S̃, C)

. P
)

=λ(ỹ1, . . . , ỹn, z̃) : (G(S1), . . . ,G(Sn),G(C)) . N

where: N = (ν c̃)
∏
i∈|ỹ|

(cyi?(b).(b ỹi)) | ck!〈x̃〉 | Bkx̃
(
P{z1/z}

)
We assume variables in ỹ have recursive session types S̃ and variable z has some non-
recursive session type C; the general case involving different orders in variables and
multiple variables with non-recursive types is as expected. Every variable yi (with yi : Si)

ECOOP 2019

23:22 Minimal Session Types

is decomposed into ỹi = (y1, . . . , y|G(Si)|). Variable z is decomposed as in Tab. 1. The
breakdown is similar to the (monadic) shared value given in Tab. 1. In this case, for
every yi ∈ ỹ there is a server cyi?(b).(b ỹi) as a subprocess in the abstracted composition.
The rationale for these servers is as described in previous cases.

To sum up, each trio using a name with a recursive session type first receives a sequence of
names; then, it uses one of such names to mimic the appropriate action; finally, it propagates
the entire sequence by reinstating a server defined as a control trio. Interestingly, this scheme
for name propagation follows the implementation of the encoding of name-passing in HO.

I Example 3.26 (Breakdown of Recursion Encoding). Consider the recursive process P =
µX.a?(m).a!〈m〉.X, which is not an HO process. P can be encoded into HO as follows [19]:

JP K = a?(m).a!〈m〉.(ν s)(V (a, s) | s!〈V 〉.0)

where the value V is an abstraction that potentially reduces to JP K:

V = λ(xa, y1). y1?(zx).xa?(m).xa!〈m〉.(ν s)(zx (xa, s) | s!〈zx〉.0)

We compose JP K with an appropriate client process to illustrate the encoding of recursion:

JP K | a!〈W 〉.a?(b).R
−→2 (ν s)(V (a, s) | s!〈V 〉.0) | R
−→ (ν s)(s?(zx).a?(m).a!〈m〉.(ν s′)(zx (a, s′) | s′!〈zx〉.0) | s!〈V 〉.0) | R
−→ a?(m).a!〈m〉.(ν s′)(V (a, s′) | s′!〈V 〉.0) | R = JP K | R

where R is some unspecified process such that a ∈ rn(R). We now analyze D(JP K) and its
reduction chain. By Def. 3.5, we have |JP K| = 7, and |V | = 0. Then, we choose k = 1 and
observe that σ = {a1a1/aa}. Following Def. 3.25, we get:

D(JP K) = (ν c1, . . . , c7)(ν ca)(ca?(b).b (a1, a2) | c1!〈〉.0 | B1
ε

(
JP Kσ

)
)

B1
ε

(
JP K

)
= c1?().ca!〈λ(z1, z2). z1?(m).c2!〈m〉.ca?(b).b (z1, z2)〉.0
| c2?(m).ca!〈λ(z1, z2). z2!〈m〉.c3!〈〉.ca?(b).b (z1, z2)〉.0
| (ν s1)

(
c3?().c4!〈〉.c5!〈〉.0 | c4?().ca!〈λ(z1, z2).V5

ε

(
V
)

(z1, z2, s1)〉.0
| c5?().s1!〈V6

ε

(
V
)
〉.c7!〈〉.0 | c7?().0

)
The decomposition relies twice on the breakdown of value V , so we give Vkε

(
V
)
here for

arbitrary k > 0. For this, we observe that V is an abstraction of a process Q with |Q| = 7.

Vkε
(
V
)

= λ(xa1 , xa2 , y1). (ν ck, . . . , ck+6)(cxa?(b).b (xa1 , xa2) | ck!〈〉.0 | Bkε
(
Q
)
)

Bkε
(
Q
)

= ck?().y1?(zx).ck+1!〈zx〉.0
| ck+1?(zx).ca1 !〈λ(z1, z2). z1?(m).ck+2!〈zx,m〉.ca2?(b).b (z1, z2)〉.0
| ck+2?(zx).ca2 !〈λ(z1, z2). z2!〈m〉.ck+3!〈zx〉.ca3?(b).b (z1, z2)〉.0
| (ν s1)

(
ck+3?(xz).ck+4!〈zx〉.ck+5!〈zx〉.0

| ck+4?(zx).ca3 !〈λ(z1, z2). zx (z1, z2, s1)〉.0 | ck+5?(zx).s1!〈zx〉.ck+6!〈〉.0 | ck+6?().0
)

We follow the reduction chain on D(JP K) until it is ready to mimic the first action with
channel a, which is an input. First, c1 will synchronize, after which ca sends the abstraction

A. Arslanagić, J. A. Pérez, and E. Voogd 23:23

to which then (a1, a2) is applied. We obtain D(JP K) −→3 (ν c2, . . . , c7, ca)P ′, where

P ′ = a1?(m).c2!〈m〉.ca?(b).b (a1, a2)
| c2?(m).ca!〈λ(z1, z2). z2!〈m〉.c3!〈〉.ca?(b).b (z1, z2)〉.0
| (ν s1)

(
c3?().c4!〈〉.c5!〈〉.0 | c4?().ca!〈λ(z1, z2).V5

ε

(
V
)

(z1, z2, s1)〉.0
| c5?().s1!〈V6

ε

(
V
)
〉.c7!〈〉.0 | c7?().0

)
Note that this process is awaiting an input on channel a1, after which c2 can synchronize
with its dual. At that point, ca is ready to receive another abstraction that mimics an input
on a1. This strongly suggests a tight operational correspondence between a process P and
its decomposition in the case where P performs higher-order recursion. y

Below we write ∆µ to denote a session environment that concerns only recursive types.
We state our main results:

I Theorem 3.27 (Typability of Breakdown). Let P be an initialized HO process and V be a
value.
1. If Γ; Λ; ∆,∆µ ` P . � then G(Γ1),Φ; ∅;G(∆),Θ ` Bkx̃

(
P
)
. � where: r̃ = dom(∆µ);

Φ =
∏
r∈r̃ c

r : 〈R?(∆µ(r))(�〉; x̃ = fv(P); k > 0; Γ1 = Γ \ x̃; and balanced(Θ) with
dom(Θ) = {ck, . . . , ck+|P |−1} ∪ {ck+1, . . . , ck+|P |−1} such that Θ(ck) =?(M̃); end, where
M̃ = (G(Γ),G(Λ))(x̃).

2. If Γ; Λ; ∆ ` V . C(� then G(Γ);G(Λ);G(∆),Θ ` Vkx̃
(
V
)
. G(C)(�, where: x̃ = fv(V);

k > 0; and balanced(Θ) with dom(Θ) = {ck, . . . , ck+|V |−1} ∪ {ck, . . . , ck+|V |−1} such that
Θ(ck) =?(M̃); end and Θ(ck) =!〈M̃〉; end, where M̃ = (G(Γ),G(Λ))(x̃).

3. If Γ; ∅; ∅ ` V . C→� then G(Γ); ∅; ∅ ` Vkx̃
(
V
)
. G(C)→� where x̃ = fv(V) and k > 0.

Proof. By mutual induction on the structure of P and V . J

I Theorem 3.28 (Typability of the Decomposition with Recursive Types). Let P be a closed
HO process with ũ = fn(P) and ṽ = rn(P). If Γ; ∅; ∆,∆µ ` P . �, where ∆µ only involves
recursive session types, then G(Γσ); ∅;G(∆σ),G(∆µσ) ` D(P) . �, where σ = {init(ũ)/ũ}.

Proof. Directly from the definitions, using Thm. 3.27. J

I Remark 3.29 (Non-Tail-Recursive Session Types). Our definitions and results apply to tail-
recursive session types. We can accommodate the non-tail-recursive type µt.?((T̃ , t)→�); end
into our approach: in Def. 3.18, we need to have G(µt.S) = µt.G(S) if µt.S is non-tail-recursive.
The decomposition functions for non-recursive session types suffice in this case.

4 Optimizations of the Decomposition

Here we briefly discuss two optimizations of the decompositions. They simplify the structure
of trios and the underlying communication discipline. Interestingly, they are both enabled
by the higher-order nature of HO. In fact, they hinge on thunk processes, i.e., inactive
processes that can be activated upon reception. We write {{P}} to stand for the thunk
process λx : 〈end→�〉. P , with x 6∈ fn(P). We write run {{P}} to denote the application of
a thunk to a (dummy) name of type end→�. This way, we have run {{P}} −→ P .

ECOOP 2019

23:24 Minimal Session Types

From Trios to Duos. We can simplify the breakdown functions by replacing trios with
duos, i.e., processes with exactly two sequential prefixes. The idea is to transform trios such
as ck?(x̃).u!〈V 〉.ck+1!〈ỹ〉 into the composition of a duo with a control trio:

ck?(x̃).ck+1!
〈
{{u!〈V 〉.ck+2!〈z̃〉}}

〉
| ck+1?(b).(run b) (4)

The first action is as before; the two remaining prefixes are encapsulated into a thunk. This
thunk is sent via a propagator to the control trio that activates it upon reception. This
transformation involves an additional propagator, denoted ck+2 above. This requires minor
modifications in the definition of the degree function | · | (cf. Def. 3.5).

In some cases, the breakdown function in § 3.2 already produces duos. Breaking down
input and output prefixes and parallel composition involves proper trios; following the scheme
illustrated by (4), we can define a map {| · |} to transform these trios into duos:

{|ck?(x̃).ui!〈V 〉.ck+1!〈z̃〉|} = ck?(x̃).ck+1!
〈
{{ui!〈V 〉.ck+2!〈z̃〉}}

〉
| ck+1?(b).(run b)

{|ck?(x̃).ui?(y).ck+1!〈x̃′〉|} = ck?(x̃).ck+1!
〈
{{ui?(y).ck+2!〈x̃′〉}}

〉
| ck+1?(b).(run b)

{|ck?(x̃).ck+1!〈ỹ〉.ck+l+1!〈z̃〉|} = ck?(x̃).ck+1!
〈
{{ck+2!〈ỹ〉.ck+l+2!〈z̃〉}}

〉
| ck+1?(b).(run b)

In the breakdown given in § 3.3 there is a proper trio, which can be transformed as follows:

{|ui / lj .ui?(z).ck!
〈
x̃
〉
.(z ỹ)|} = ui / lj .ck!

〈
{{ui?(z).ck+1!〈x̃〉.z ỹ}}

〉
| ck?(b).(run b)

Similarly, in the breakdown function extended with recursion (cf. § 3.4) there is only one trio
pattern, which can be transformed into a duo following the very same idea.

From Polyadic to Monadic Communication. Since we consider closed HO processes, we
can dispense with polyadic communication in the breakdown function. We can define a
monadic decomposition, D(P), that simplifies Def. 3.8 as follows:

D(P) = (ν c̃)
(
ck?(b).(run b) | Bk

(
Pσ
))

where k > 0, c̃ = (ck, . . . , ck+|P |−1), and σ is as in Def. 3.8. Process ck?(b).(run b) activates
a thunk received from Bk

(
·
)
, the monadic breakdown function that simplifies the one in

Tab. 1 by using only one parameter, namely k:

Bk
(
ui?(x).Q

)
= (ν cx)

(
ck!
〈
{{ui?(x).ck+1?(b).(cx!〈x〉 | (run b))}}

〉
| Bk+1(Qσ))

Bk
(
ui!〈x〉.Q

)
= ck!

〈
{{cx?(x).ui!〈x〉.ck+1?(b).(run b)}}

〉
| Bk+1(Qσ)

Bk
(
ui!〈V 〉.Q

)
= ck!

〈
{{ui!〈Vk+1(V σ)〉.ck+1?(b).(run b)}}

〉
| Bk+1(Qσ)

Bk
(
xu
)

= ck!
〈
{{cx?(x).(x ũ)}}

〉
Bk
(
V u
)

= ck!
〈
{{Vk+1(V) ũ)}}

〉
Bk
(
(ν s)P ′

)
= (ν s̃)Bk

(
P ′σ

)
Bk
(
Q | R

)
= ck!〈{{ck+1?(b).run b | ck+|Q|+1?(b).run b}}〉 | Bk+1(Q) | Bk+|Q|+1(R)

Above, σ is as in Tab. 1. Bk
(
·
)
propagates values using thunks and a dedicated propagator

cx for each variable x. We describe only the definition of Bk
(
ui?(x).Q

)
: it illustrates key

ideas common to all other cases. It consists of an output of a thunk on ck composed in
parallel with Bk+1(Qσ). The thunk will be activated by a process ck?(b).(run b) at the
top-level; this activation triggers the input action on ui, and prepares the activation for
the next thunk (exchanged on name ck+1). Upon reception, such a thunk is activated in

A. Arslanagić, J. A. Pérez, and E. Voogd 23:25

parallel with cx!〈x〉, which propagates the value received on ui. The scope of cx is restricted
to include input actions on cx in Bk+1(Qσ); such actions are the first in the thunks present
in, e.g., Bk

(
ui!〈x〉.Q

)
. We also need to revise the breakdown function for values Vkx̃

(
·
)
. The

breakdown functions given in § 3.3 and § 3.4 (cf. Tables 3 and 4) can be made monadic
following similar lines.

These two optimizations can be combined by transforming the trios of the monadic
breakdown into duos, following the key idea of the first optimization (cf. (4)).

5 Related Work

Our developments are related to results by Parrow [24], who showed that every process in the
untyped, summation-free π-calculus with replication is weakly bisimilar to its decomposition
into trios processes (i.e., P ≈ D(P)). We draw inspiration from insights developed in [24], but
pursuing different goals in a different technical setting: our decomposition treats processes
from a calculus without name-passing but with higher-order concurrency (abstraction-passing),
supports labeled choices, and accommodates recursive types. Our goals are different than
those in [24] because trios processes are relevant to our work in that they allow us to formally
justify minimal session types; however, they are not an end in themselves. Still, we opted to
retain the definitional style and terminology for trios from [24], which are elegant and clear.

Our main result connects the typability of a process with that of its decomposition; this is
a static guarantee. Based on our examples, we conjecture that the behavioral guarantee given
by P ≈ D(P) in [24] holds in our setting too, under an appropriate typed weak bisimilarity.
An obstacle here is that known notions of typed bisimilarity for session-typed processes, such
as those given by Kouzapas et al. [20], are not adequate: they only relate processes typed
under the same typing environments. We need a relaxed equivalence that (i) relates processes
typable under different environments (e.g., ∆ and G(∆)) and (ii) admits that actions along s
from P can be matched by D(P) using actions along sk, for some k (and viceversa). Defining
this notion precisely and studying its properties goes beyond the scope of this paper.

Our approach is broadly related to works that relate session types with other type systems
for the π-calculus (cf. [17, 3, 4, 5, 10]). Kobayashi [17] encoded a finite session π-calculus
into a π-calculus with linear types with usages (without sequencing); this encoding uses a
continuation-passing style to codify a session name using multiple linear channels. Dardha et
al. [3, 4] formalize and extend Kobayashi’s approach. They use two separate encodings, one
for processes and one for types. The former uses a freshly generated linear name to mimic
each session action; this fresh name becomes an additional argument in communications.
Polyadicity is thus an essential ingredient in [3, 4], whereas in our work it is convenient but
not indispensable (cf. § 4). The encoding of types in [3, 4] codifies sequencing in session
types by nesting payload types. In contrast, we “slice” the n actions occurring in a session
s along indexed names s1, . . . , sn with minimal session types, i.e., slices of the type for s.
All in all, an approach based on minimal session types appears simpler than that in [3, 4].
Works by Padovani [23] and Scalas et al. [25] is also related: they rely on [3, 4] to develop
verification techniques based on session types for OCaml and Scala programs, respectively.

Gay et al. [10] formalize how to encode a monadic π-calculus, equipped with a finite
variant of the binary session types of [9], into a polyadic π-calculus with an instance of the
generic process types of [16]. The work of Demangeon and Honda [5] encodes a session
π-calculus into a linear/affine π-calculus with subtyping based on choice and selection types.
Our developments differ from these previous works in an important respect: we relate two

ECOOP 2019

23:26 Minimal Session Types

formulations of session types, namely standard session types and minimal session types.
Indeed, while [17, 3, 4, 5, 10] target the relative expressiveness of session-typed process
languages, our work emerges as the first study of absolute expressiveness in this context.

Finally, we elaborate further on our choice of HO as source language. HO is a sub-calculus
of HOπ, whose basic theory and expressivity were studied by Kouzapas et al. [19, 20] as a
hierarchy of session-typed calculi based on relative expressiveness. Our developments enable
us to include HO with minimal session types within this hierarchy. Still, our approach does
not rely on having HO as source language, and can be adapted to other typed frameworks
based on session types, such as the type discipline for first-order π-calculus processes in [26].

6 Concluding Remarks

Session types are a class of behavioral types for message-passing programs. We presented a
decomposition of session-typed processes in [19, 20] using minimal session types, in which
there is no sequencing. The decomposition of a process P , denoted D(P), is a collection of
trios processes that trigger each other mimicking its sequencing. We prove that typability of
P using standard session types implies the typability of D(P) with minimal session types.
Our results hold for all session types constructs, including labeled choices and recursive types.

Our contributions can be interpreted in three ways. First, from a foundational standpoint,
our study of minimal session types is a conceptual contribution to the theory of behavioral
types, in that we precisely identify sequencing as a source of redundancy in all preceding
session types theories. As remarked in § 1, there are many session types variants, and their
expressivity often comes at the price of an involved underlying theory. Our work contributes
in the opposite direction, as we identified a simple yet expressive fragment of an already
minimal session-typed framework [19, 20], which allows us to justify session types in terms
of themselves. Understanding further the underlying theory of minimal session types (e.g.,
notions such as type-based compatibility) is an exciting direction for future work.

Second, our work can be seen as a new twist on Parrow’s decomposition results in the
untyped setting [24]. While Parrow’s work indeed does not consider types, in fairness we
must observe that when Parrow’s work appeared (1996) the study of types for the π-calculus
was rather incipient (for instance, binary session types appeared in 1998 [12]). That said, we
should stress that our results are not merely an extension of Parrow’s with session types, for
types in our setting drastically narrow down the range of conceivable decompositions. Also,
we exploit features not supported in [24], most notably higher-order concurrency.

Last but not least, from a practical standpoint, we believe that our approach paves a new
avenue to the integration of session types in programming languages whose type systems
lack sequencing, such as Go. It is natural to envision program analysis tools which, given a
message-passing program that should conform to protocols specified as session types, exploit
our decomposition as an intermediate step in the verification of communication correctness.
Remarkably, our decomposition lends itself naturally to an implementation – in fact, we
generated our examples automatically using MISTY, an associated artifact written in Haskell.

References

1 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nicholas
Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types in Pro-
gramming Languages. Foundations and Trends in Programming Languages, 3(2-3):95–230,
2016. doi:10.1561/2500000031.

http://dx.doi.org/10.1561/2500000031

A. Arslanagić, J. A. Pérez, and E. Voogd 23:27

2 Stephanie Balzer and Frank Pfenning. Objects as session-typed processes. In Elisa Gonzalez
Boix, Philipp Haller, Alessandro Ricci, and Carlos Varela, editors, Proceedings of the 5th
International Workshop on Programming Based on Actors, Agents, and Decentralized Control,
AGERE! 2015, Pittsburgh, PA, USA, October 26, 2015, pages 13–24. ACM, 2015. doi:
10.1145/2824815.2824817.

3 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Proc. of
PPDP 2012, pages 139–150. ACM, 2012. doi:10.1145/2370776.2370794.

4 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf. Comput.,
256:253–286, 2017. doi:10.1016/j.ic.2017.06.002.

5 Romain Demangeon and Kohei Honda. Full Abstraction in a Subtyped pi-Calculus with Linear
Types. In Proc. of CONCUR 2011, volume 6901 of LNCS, pages 280–296. Springer, 2011.
doi:10.1007/978-3-642-23217-6_19.

6 Mariangiola Dezani-Ciancaglini and Ugo de’ Liguoro. Sessions and Session Types: an Overview.
In WS-FM’09, volume 6194 of LNCS, pages 1–28. Springer, 2010. URL: http://www.di.unito.
it/~dezani/papers/sto.pdf.

7 Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou, and Nobuko Yoshida.
Bounded Session Types for Object Oriented Languages. In Frank S. de Boer, Marcello M.
Bonsangue, Susanne Graf, and Willem P. de Roever, editors, Formal Methods for Compo-
nents and Objects, 5th International Symposium, FMCO 2006, Amsterdam, The Netherlands,
November 7-10, 2006, Revised Lectures, volume 4709 of Lecture Notes in Computer Science,
pages 207–245. Springer, 2006. doi:10.1007/978-3-540-74792-5_10.

8 Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia Drossopoulou.
Session Types for Object-Oriented Languages. In Dave Thomas, editor, ECOOP 2006 -
Object-Oriented Programming, 20th European Conference, Nantes, France, July 3-7, 2006,
Proceedings, volume 4067 of Lecture Notes in Computer Science, pages 328–352. Springer,
2006. doi:10.1007/11785477_20.

9 Simon Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta Inf.,
42:191–225, 2005. doi:10.1007/s00236-005-0177-z.

10 Simon J. Gay, Nils Gesbert, and António Ravara. Session Types as Generic Process Types.
In Johannes Borgström and Silvia Crafa, editors, Proceedings Combined 21st International
Workshop on Expressiveness in Concurrency and 11th Workshop on Structural Operational
Semantics, EXPRESS 2014, and 11th Workshop on Structural Operational Semantics, SOS
2014, Rome, Italy, 1st September 2014., volume 160 of EPTCS, pages 94–110, 2014. doi:
10.4204/EPTCS.160.9.

11 Simon J. Gay, Vasco Thudichum Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z.
Caldeira. Modular session types for distributed object-oriented programming. In Manuel V.
Hermenegildo and Jens Palsberg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January
17-23, 2010, pages 299–312. ACM, 2010. doi:10.1145/1706299.1706335.

12 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type
Disciplines for Structured Communication-based Programming. In ESOP’98, volume 1381 of
LNCS, pages 22–138. Springer, 1998.

13 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In POPL’08, pages 273–284. ACM, 2008.

14 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP 2008 - Object-Oriented Programming, 22nd European
Conference, Paphos, Cyprus, July 7-11, 2008, Proceedings, volume 5142 of Lecture Notes in
Computer Science, pages 516–541. Springer, 2008. doi:10.1007/978-3-540-70592-5_22.

15 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1):3, 2016. doi:10.1145/2873052.

ECOOP 2019

http://dx.doi.org/10.1145/2824815.2824817
http://dx.doi.org/10.1145/2824815.2824817
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1016/j.ic.2017.06.002
http://dx.doi.org/10.1007/978-3-642-23217-6_19
http://www.di.unito.it/~dezani/papers/sto.pdf
http://www.di.unito.it/~dezani/papers/sto.pdf
http://dx.doi.org/10.1007/978-3-540-74792-5_10
http://dx.doi.org/10.1007/11785477_20
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.4204/EPTCS.160.9
http://dx.doi.org/10.4204/EPTCS.160.9
http://dx.doi.org/10.1145/1706299.1706335
http://dx.doi.org/10.1007/978-3-540-70592-5_22
http://dx.doi.org/10.1145/2873052

23:28 Minimal Session Types

16 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-calculus. Theor.
Comput. Sci., 311(1-3):121–163, 2004. doi:10.1016/S0304-3975(03)00325-6.

17 Naoki Kobayashi. Type Systems for Concurrent Programs. In Formal Methods at the Crossroads,
volume 2757 of LNCS, pages 439–453. Springer, 2003. doi:10.1007/978-3-540-40007-3_26.

18 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and StMungo. In James Cheney and Germán Vidal, editors, Proceedings of
the 18th International Symposium on Principles and Practice of Declarative Programming,
Edinburgh, United Kingdom, September 5-7, 2016, pages 146–159. ACM, 2016. doi:10.1145/
2967973.2968595.

19 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. On the Relative Expressiveness
of Higher-Order Session Processes. In Peter Thiemann, editor, Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Computer
Science, pages 446–475. Springer, 2016. Extended version to appear in Information and
Computation (Elsevier). doi:10.1007/978-3-662-49498-1_18.

20 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. Characteristic bisimula-
tion for higher-order session processes. Acta Inf., 54(3):271–341, 2017. doi:10.1007/
s00236-016-0289-7.

21 Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. A static verification
framework for message passing in Go using behavioural types. In Michel Chaudron, Ivica
Crnkovic, Marsha Chechik, and Mark Harman, editors, Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03,
2018, pages 1137–1148. ACM, 2018. doi:10.1145/3180155.3180157.

22 Nicholas Ng and Nobuko Yoshida. Static deadlock detection for concurrent go by global session
graph synthesis. In Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18,
2016, pages 174–184. ACM, 2016. doi:10.1145/2892208.2892232.

23 Luca Padovani. A Simple Library Implementation of Binary Sessions. Journal of Functional
Programming, 27, 2017. doi:10.1017/S0956796816000289.

24 Joachim Parrow. Trios in concert. In Gordon D. Plotkin, Colin Stirling, and Mads Tofte,
editors, Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages 623–638.
The MIT Press, 2000. Online version, dated July 22, 1996, available at http://user.it.uu.
se/~joachim/trios.pdf.

25 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs, pages
21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.
ECOOP.2016.21.

26 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012. doi:
10.1016/j.ic.2012.05.002.

http://dx.doi.org/10.1016/S0304-3975(03)00325-6
http://dx.doi.org/10.1007/978-3-540-40007-3_26
http://dx.doi.org/10.1145/2967973.2968595
http://dx.doi.org/10.1145/2967973.2968595
http://dx.doi.org/10.1007/978-3-662-49498-1_18
http://dx.doi.org/10.1007/s00236-016-0289-7
http://dx.doi.org/10.1007/s00236-016-0289-7
http://dx.doi.org/10.1145/3180155.3180157
http://dx.doi.org/10.1145/2892208.2892232
http://dx.doi.org/10.1017/S0956796816000289
http://user.it.uu.se/~joachim/trios.pdf
http://user.it.uu.se/~joachim/trios.pdf
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.1016/j.ic.2012.05.002
http://dx.doi.org/10.1016/j.ic.2012.05.002

Julia’s Efficient Algorithm for Subtyping Unions
and Covariant Tuples
Benjamin Chung
Northeastern University, Boston, MA, USA
bchung@ccs.neu.edu

Francesco Zappa Nardelli
Inria of Paris, Paris, France
francesco.zappa_nardelli@inria.fr

Jan Vitek
Northeastern University, Boston, MA, USA
Czech Technical University in Prague, Czech Republic
j.vitek@neu.edu

Abstract
The Julia programming language supports multiple dispatch and provides a rich type annotation
language to specify method applicability. When multiple methods are applicable for a given call,
Julia relies on subtyping between method signatures to pick the correct method to invoke. Julia’s
subtyping algorithm is surprisingly complex, and determining whether it is correct remains an open
question. In this paper, we focus on one piece of this problem: the interaction between union
types and covariant tuples. Previous work normalized unions inside tuples to disjunctive normal
form. However, this strategy has two drawbacks: complex type signatures induce space explosion,
and interference between normalization and other features of Julia’s type system. In this paper,
we describe the algorithm that Julia uses to compute subtyping between tuples and unions – an
algorithm that is immune to space explosion and plays well with other features of the language. We
prove this algorithm correct and complete against a semantic-subtyping denotational model in Coq.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Type systems, Subtyping, Union types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.24

Category Pearl

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.8

Acknowledgements The authors thank Jiahao Chen for starting us down the path of understanding
Julia, and Jeff Bezanson for coming up with Julia’s subtyping algorithm. We would also like to thank
Ming-Ho Yee, Celeste Hollenbeck, and Julia Belyakova for their help in preparing this paper. This
work received funding from the European Research Council under the European Union’s Horizon
2020 research and innovation programme (grant agreement 695412), the NSF (award 1544542 and
award 1518844), the ONR (grant 503353), and the Czech Ministry of Education, Youth and Sports
(grant agreement CZ.02.1.01/0.0/0.0/15_003/0000421).

1 Introduction

Union types, originally introduced by Barbanera and Dezani-Ciancaglini [2], are being
adopted in mainstream languages. In some cases, such as Julia [5] or TypeScript [11], they
are exposed at the source level. In others, such as Hack [8], they are only used internally as
part of type inference. As a result, subtyping algorithms between union types are of increasing
practical import. The standard subtyping algorithm for this combination of features has, for
some time, been exponential in both time and space. An alternative algorithm, linear in space

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Benjamin Chung, Francesco Zappa Nardelli, and Jan Vitek;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bchung@ccs.neu.edu
mailto:francesco.zappa_nardelli@inria.fr
mailto:j.vitek@neu.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2019.24
https://dx.doi.org/10.4230/DARTS.5.2.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Subtyping Union Types and Covariant Tuples

but still exponential in time, has been tribal knowledge in the subtyping community [15]. In
this paper, we describe and prove correct an implementation of that algorithm.

We observed the algorithm in our prior work formalizing the Julia subtyping relation [17].
There, we described Julia’s subtyping relation as it arose from its decision procedure but were
unable to prove it correct. Indeed, we found bugs in the Julia implementation and identified
unresolved correctness issues. Contemporary work addresses some correctness concerns [3]
but leaves algorithmic correctness open.

Julia’s subtyping algorithm [4] is used for method dispatch. While Julia is dynamically
typed, method arguments can have type annotations. These annotations allow one method
to be implemented by multiple functions. At run time, Julia searches for the most specific
applicable function for a given invocation. Consider these declarations of multiplication:

*(x:: Number , r:: Range) = range(x*first(r) ,...)
*(x:: Number , y:: Number) = *(promote (x,y)...)
*(x::T, y::T) where T <: Union{Signed , Unsigned } = mul_int (x,y)

The first two methods implement, respectively, multiplicaton of a range by a number and
generic numeric multiplication. The third method invokes native multiplication when both
arguments are either signed or unsigned integers (but not a mix of the two). Julia uses
subtyping to decide which of the methods to call at any specific site. The call 1*(1:4)
dispatches to the first, 1*1.1 the second, and 1*1 the third.

Julia offers programmers a rich type language to express complex relationships in type
signatures. The type language includes nominal primitive types, union types, existential
types, covariant tuples, invariant parametric datatypes, and singletons. Intuitively, subtyping
between types is based on semantic subtyping: the subtyping relation between types holds
when the sets of values they denote are subsets of one another [5]. We write the set of values
represented by a type t as JtK. Under semantic subtyping, the types t1 and t2 are subtypes
iff Jt1K ⊆ Jt2K. From this, we derive a forall-exists intuition for subtyping: for every value
denoted on the left-hand side, there must exist some value on the right-hand side to match
it, thereby establishing the subset relation. This simple intuition is, however, complicated to
check algorithmically.

In this paper, we focus on the interaction of two features: covariant tuples and union
types. These two kinds of type are important to Julia’s semantics. Julia does not record
return types, so a function’s signature consists solely of the tuple of its argument types.
These tuples are covariant, as a function with more specific arguments is preferred to a more
generic one. Union types are widely used as shorthand to avoid writing multiple functions
with the same body. As a consequence, Julia library developers write many functions with
union typed arguments, functions whose relative specificity must be decided using subtyping.
To prove the correctness of the subtyping algorithm, we first examine typical approaches
in the presence of union types. Based on Vouillon [16], the following is a typical deductive
system for subtyping union types:
allexist
ft′ <: t t′′ <: t

Union{t′, t′′} <: t

existL
t <: t′

t <: Union{t′, t′′}

existR
t <: t′′

t <: Union{t′, t′′}

tuple
t1 <: t′

1 t2 <: t′
2

Tuple{t1, t2} <: Tuple{t′
1, t′

2}
While this rule system might seem to make intuitive sense, it does not match the semantic
intuition for subtyping. For instance, consider the following judgment:

Tuple{Union{t′, t′′}, t} <: Union{Tuple{t′, t}, Tuple{t′′, t}}

Using semantic subtyping, the judgment should hold. The set of values denoted by a
union JUnion{t1, t2}K is just the union of the set of values denoted by each of its members

B. Chung, F. Zappa Nardelli, and J. Vitek 24:3

Jt1K ∪ Jt2K. A tuple Tuple{t1, t2}’s denotation is the set of tuples of the respective values
{Tuple{v1, v2} | v1 ∈ Jt1K ∧ v2 ∈ Jt2K}. Therefore, the left-hand side denotes the values
{Tuple{v′, v′′} | v′ ∈ Jt′K ∪ Jt′′K ∧ v′′ ∈ JtK}, while the right-hand side denotes JTuple{t′, t}K ∪
JTuple{t′′, t}K or equivalently {Tuple{v′, v′′} | v′ ∈ Jt′K ∪ Jt′′K ∧ v′′ ∈ JtK}. These sets are the
same, and therefore subtyping should hold in either direction between the left- and right-hand
types. However, we cannot derive this relation from the above rules. According to them, we
must pick either t′ or t′′ on the right-hand side using existL or existR, respectively, ending
up with either Tuple{Union{t′, t′′}, t} <: Tuple{t′, t} or Tuple{Union{t′, t′′}, t} <: Tuple{t′′, t}.
In either case, the judgment does not hold. How can this problem be solved?

Most prior work addresses this problem by normalization [2, 14, 1], rewriting all types into
their disjunctive normal form, as unions of union-free types, before building the derivation.
Now all choices are made at the top level, avoiding the structural entanglements that cause
difficulties. The correctness of this rewriting step comes from the semantic denotational
model, and the resulting subtyping algorithm can be proved both correct and complete. Other
proposals, such as Vouillon [16] and Dunfield [7], do not handle distributivity. Normalization
is used by Frisch et al.’s [9], by Pearce’s flow-typing algorithm [13], and by Muehlboeck
and Tate in their general framework for union and intersection types [12]. Few alternatives
have been proposed, with one example being Damm’s reduction of subtyping to regular tree
expression inclusion [6].

However, a normalization-based algorithm has two major drawbacks: it is not space
efficient, and other features of Julia render it incorrect. The first drawback is caused because
normalization can create exponentially large types. Real-world Julia code [17] has types like
the following whose normal form has 32,768 constituent union-free types:

Tuple{Tuple{Union{Int64, Bool}, Union{String, Bool}, Union{String, Bool},
Union{String, Bool}, Union{Int64, Bool}, Union{String, Bool},
Union{String, Bool}, Union{String, Bool}, Union{String, Bool},
Union{String, Bool}, Union{String, Bool}, Union{String, Bool},
Union{String, Bool}, Union{String, Bool}, Union{String, Bool}}, Int64}

The second drawback arises because of type-invariant constructors. For example, Array{Int}
is an array of integers, and is not a subtype of Array{Any}. In conjunction with type variables,
this makes normalization ineffective. Consider Array{Union{t′, t′′}}, the set of arrays whose
elements are either t′ or t′′. It wrong to rewrite it as Union{Array{t′}, Array{t′′}}, as this
denotes the set of arrays whose elements are either all t′ or t′′. A weaker disjunctive normal
form, only lifting union types inside each invariant constructor, is a partial solution. However,
this reveals a deeper problem caused by existential types. Consider the judgment:

Array{Union{Tuple{t}, Tuple{t′}}} <: ∃T . Array{Tuple{T}}

It holds if the existential variable T is instantiated with Union{t, t′}. If types are in invariant-
constructor weak normal form, an algorithm would strip off the array type constructors
and proceed. However, since type constructors are invariant, the algorithm must test that
both Union{Tuple{t}, Tuple{t}} <: Tuple{T } and Tuple{T } <: Union{Tuple{t}, Tuple{t′}} hold.
The first of these can be concluded without issue, producing the constraint Union{t, t′} <: T .
However, this constraint on T is retained for checking the reverse direction, which is where
problems arise. When checks the reverse direction, the algorithm has to prove that Tuple{T } <:
Union{Tuple{t}, Tuple{t′}}, and in turn either T <: t or T <: t′. All of these are unprovable
under the assumption that Union{t, t′} <: T . The key to deriving a successful judgment for
this relation is to rewrite the right-to-left check into Tuple{T } <: Tuple{Union{t, t′}}, which
is provable. This anti-normalization rewriting must be performed on sub-judgments of the

ECOOP 2019

24:4 Subtyping Union Types and Covariant Tuples

derivation; to the best of our knowledge it is not part of any subtyping algorithm based on
ahead-of-time disjunctive normalization.

Julia’s subtyping algorithm avoids these problems, but it is difficult to determine how:
the complete subtyping algorithm is implemented in close to two thousand lines of highly
optimized C code. In this paper, we describe and prove correct only one part of that
algorithm: the technique used to avoid space explosion while dealing with union types and
covariant tuples. This is done by defining an iteration strategy over type terms, keeping a
string of bits as its state. The space requirement of the algorithm is bounded by the number
of unions in the type terms being checked.

We use a minimal type language with union, tuples, and primitive types to avoid being
drawn into the vast complexity of Julia’s type language. This tiny language is expressive
enough to highlight the decision strategy and illustrate the structure of the algorithm.
Empirical evidence from Julia’s implementation suggests that this technique extends to
invariant constructors and existential types [17], among others. We expect that the algorithm
we describe can be leveraged in other modern language designs.

Our mechanized proof is available at: benchung.github.io/subtype-artifact.

2 A space-efficient subtyping algorithm

Formally, our core type language consists of binary unions, binary tuples, and primitive types
ranged over by p1 . . . pn, as shown below:

type typ = Prim of int | Tuple of typ * typ | Union of typ * typ

We define subtyping for primitives as the identity, so pi <: pi.

2.1 Normalization
To explain the operation of the space-efficient algorithm, we first describe how normalization
can be used as part of subtyping. Normalization rewrites types to move all internal unions
to the top level. The resultant term consists of a union of union-free terms. Consider the
following relation:

Union{Tuple{p1, p2}, Tuple{p2, p3}} <: Tuple{Union{p2, p1}, Union{p3, p2}}.

The term on the left is in normal form, but the right term needs to be rewritten as follows:

Union{Tuple{p2, p3}, Union{Tuple{p2, p2}, Union{Tuple{p1, p3}, Tuple{p1, p2}}}}

The top level unions can then be viewed as sets of union-free-types equivalent to each side,

`1 = {Tuple{p1, p2}, Tuple{p2, p3}}

and

`2 = {Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}}.

Determining whether `1 <: `2 is equivalent to checking that for each tuple component t1
in `1, there should be an element t2 in `2 such that t1 <: t2. Checking this final relation is
straightforward, as neither t1 nor t2 may contain unions. Intuitively, this mirrors the rules
([allexist], [existL/R], [tuple]).

benchung.github.io/subtype-artifact

B. Chung, F. Zappa Nardelli, and J. Vitek 24:5

A possible implementation of normalization-based subtyping can be written compactly,
as shown in the code below. The subtype function takes two types and returns true if they
are related by subtyping. It delegates its work to allexist to check that all normalized
terms in its first argument have a supertype, and to exist to check that there is at least one
supertype in the second argument. The norm function takes a type term and returns a list of
union-free terms.

let subtype (a:typ)(b:typ) = allexist (norm a) (norm b)

let allexist (a:list typ)(b:list typ) =
foldl (fun acc a' => acc && exist a' b) true a

let exist(a:typ)(b:list typ) =
foldl (fun acc b' => acc || a==b') false b

let rec norm = function
| Prim i -> [Prim i]
| Tuple t t' ->

map_pair Tuple (cartesian_product (norm t) (norm t'))
| Union t t' -> (norm t) @ (norm t')

However, as previously described, this expansion is space-inefficient. Julia’s algorithm is
more complicated, but avoids having to pre-compute the set of normalized types as norm
does.

2.2 Iteration with choice strings

Given a type term such as the following,

Tuple{Union{Union{p2, p3}, p1}, Union{p3, p2}}

we want an algorithm that checks the following tuples,

Tuple{p2, p3}, Tuple{p2, p2}, Tuple{p1, p3}, Tuple{p1, p2}, Tuple{p3, p3}, Tuple{p3, p2}

without having to compute and store all of them ahead-of-time. This algorithm should be
able to generate each tuple on-demand while still being guaranteed to explore every tuple of
the original type’s normal form.

To illustrate the process that the algorithm uses to generate each tuple, consider the
type term being subtyped. An alternative representation for the term is a tree, where each
occurrence of a union node is a choice point. The following tree thus has three choice points,
each represented as a ? symbol:

[,]

2

? ?
1 3 2?

3

At each choice point we can go either left or right; making such a decision at each point
leads to visiting one particular tuple.

ECOOP 2019

24:6 Subtyping Union Types and Covariant Tuples

[,]

2

L L
1 3 2L

3

= Tuple{p2, p3}

[,]

2

L R
1 3 2L

3

= Tuple{p2, p2}

[,]

2

L L
1 3 2R

3
= Tuple{p3, p3}

[,]

2

L R
1 3 2R

3
= Tuple{p3, p2}

[,]

2

R L
1 3 2?

3

= Tuple{p1, p3}

[,]

2

R R
1 3 2?

3

= Tuple{p1, p2}

Each tuple is uniquely determined by the original type term t and a choice string c. In
the above example, the result of iteration through the normalized, union-free, type terms
is defined by the strings L L L, L L R, L R L, L R R, R L, R R. The length of each string is
bounded by the number of unions in a term.

The iteration sequence in the above example is thus L LL → LL R → L RL → L R R → RL
→ R R, where the underlined choice is next one to be toggled in that step. Stepping from
a choice string c to the next string consists of splitting c in three, c′ L c′′, where c′ can be
empty and c′′ is a possibly empty sequence of Rs. The next string is c′ R cpad, that is to say
it retains the prefix c′, toggles the L to an R, and is padded by a sequence of Ls. The leftover
tail c′′ is discarded. If there is no L in c, iteration terminates.

One step of iteration is performed by calling the next function with a type term and a
choice string (encoded as a list of choices); next either returns the next string in the sequence
or None. Internally, it calls step to toggle the last L and shorten the string (constructing c′ R).
Then it calls on pad to add the trailing sequence of Ls (constructing c′ R cpad).

type choice = L | R

let rec next(a:typ)(l: choice list) =
match step l with

| None -> None
| Some(l ') -> Some(fst (pad a l '))

The step function delegates the job of flipping the last occurrence of L to toggle. For ease
of programming, it reverses the string so that toggle can be a simple recursion without an
accumulator. If the given string has no L, then toggle returns empty and step returns None.

let step(l: choice list) =
match rev (toggle (rev l)) with
| [] -> None
| hd:: tl -> Some(hd::tl)

let rec toggle = function
| [] -> []
| L::tl -> R::tl
| R::tl -> toggle tl

The pad function takes a type term and a choice string to be padded. It returns a pair, whose
first element is the padded string and second element is the string left over from the current
type. Each union encountered by pad in its traversal of the type consumes a character from
the input string. Unions explored after the exhaustion of the original choice string are treated
as if there was an L remaining in the choice string. The first component of the returned value
is the original choice string extended with an L for every union encountered after exhaustion
of the original.

let rec pad t l =
match t,l with
| (Prim i,l) -> ([],l)

B. Chung, F. Zappa Nardelli, and J. Vitek 24:7

| (Tuple(t,t'),l) ->
let (h,tl) = pad t l in
let (h',tl ') = pad t' tl in (h @ h',tl ')

| (Union(t,_),L::r) ->
let (h,tl) = pad t r in (L::h,tl)

| (Union(_,t),R::r) ->
let (h,tl) = pad t r in (R::h,tl)

| (Union(t,_) ,[]) -> (L::(fst(pad t [])) ,[])

To obtain the initial choice string, the string composed solely of Ls, it suffices to call pad
with the type term under consideration and an empty list. The first element of the returned
tuple is the initial choice string. For convenience, we define the function initial for this.

let initial (t:typ) = fst (pad t [])

2.3 Subtyping with iteration
Julia’s subtyping algorithm visits union-free type terms using choice strings to iterate over
types. The subtype function takes two type terms, a and b, and returns true if they are
related by subtyping. It does so by iterating over all union-free type terms ta in a, and
checking that for each of them, there exists a union-free type term tb in b such that ta <: tb.

let subtype (a:typ)(b:typ) = allexist a b (initial a)

The allexist function takes two type terms, a and b, and a choice string f, and returns true
if a is a subtype of b for the iteration sequence starting at f. This is achieved by recursively
testing that for each union-free type term in a (induced by a and the current value of f),
there exists a union-free super-type in b.

let rec allexist (a:typ)(b:typ)(f: choice list) =
match exist a b f (initial b) with
| true -> (match next a f with

| Some ns -> allexist a b ns
| None -> true)

| false -> false

Similarly, the exist function takes two type terms, a and b, and choice strings, f and e. It
returns true if there exists in b, a union-free super-type of the type specified by f in a. This
is done by recursively iterating through e. The determination if two terms are related is
delegated to the sub function.

type res = NotSub | IsSub of choice list * choice list

let rec exist(a:typ)(b:typ)(f: choice list)(e: choice list) =
match sub a b f e with
| IsSub(_,_) -> true
| NotSub ->

(match next b e with
| Some ns -> exist a b f ns
| None -> false)

Finally, the sub function takes two type terms and choice strings and returns a value of type
res. A res can be either NotSub, indicating that the types are not subtypes, or IsSub(_,_)

ECOOP 2019

24:8 Subtyping Union Types and Covariant Tuples

when they are subtypes. If the two types are primitives, then they are only subtypes if they
are equal. If the types are tuples, they are subtypes if each of their respective elements
are subtypes. Note that the return type of sub, when successful, holds the unused choice
strings for both type arguments. When encountering a union, sub follows the choice strings
to decide which branch to take. Consider, for instance, the case when the first type term is
Union(t1,t2) and the second is type t. If the first element of the choice string is an L, then
t1 and t are checked, otherwise sub checks t2 and t.
let rec sub t1 t2 f e =

match t1 ,t2 ,f,e with
| (Prim i,Prim j,f,e) -> if i==j then IsSub(f,e) else NotSub
| (Tuple(a1 ,a2), Tuple(b1 ,b2),f,e) ->

(match sub a1 b1 f e with
| IsSub(f', e ') -> sub a2 b2 f' e'
| NotSub -> NotSub)

| (Union(a,_),b,L::f,e) -> sub a b f e
| (Union(_,a),b,R::f,e) -> sub a b f e
| (a,Union(b,_),f,L::e) -> sub a b f e
| (a,Union(_,b),f,R::e) -> sub a b f e

2.4 Further optimization
This implementation represents choice strings as linked lists, but this design requires allocation
and reversals when stepping. However, the implementation can be made more efficient by
using a mutable bit vector instead of a linked list. Additionally, the maximum length of the
bit vector is bounded by the number of unions in the type, so it need only be allocated once.
Julia’s implementation uses this efficient representation.

3 Correctness and completeness of subtyping

To prove the correctness of Julia’s subtyping, we take the following general approach. We start
by giving a denotational semantics for types from which we derive a definition of semantic
subtyping. Then we easily prove that a normalization-based subtyping algorithm is correct
and complete. This provides the general framework for which we prove two iterator-based
algorithms correct. The first iterator-based algorithm explicitly includes the structure of the
type in its state to guide iteration; the second is identical to that of the prior section.

The order in which choice strings iterate through a type term is determined by both the
choice string and the type term being iterated over. Rather than directly working with choice
strings as iterators over types, we start with a simpler structure, namely that of iterators over
the trees induced by type terms. We prove correct and complete a subtyping algorithm that
uses these simpler iterators. Finally, we establish a correspondence between tree iterators
and choice string iterators. This concludes our proof of correctness and completeness, and
details can be found in the Coq mechanization.

The denotational semantics we use for types is as follows:

JpiK = {pi}
JUnion{t1, t2}K = Jt1K ∪ Jt2K

JTuple{t1, t2}K = {Tuple{t′
1, t′

2} | t′
1 ∈ Jt1K, t′

2 ∈ Jt′
2K}

We define subtyping as follows: if JtK ⊆ Jt′K, then t <: t′. This leads to the definition of
subtyping in our restricted language.

B. Chung, F. Zappa Nardelli, and J. Vitek 24:9

I Definition 1. The subtyping relation t1 <: t2 holds iff ∀t′
1 ∈ Jt1K,∃ t′

2 ∈ Jt2K, t′
1 = t′

2.

The use of equality for relating types is a simplification afforded by the structure of primitives.

3.1 Subtyping with normalization
The correctness and completeness of the normalization-based subtyping algorithm requires
proving that the norm function returns all union-free type terms.

I Lemma 2 (NF Equivalence). t′ ∈ JtK iff t′ ∈ norm t.

Theorem 3 states that the subtype relation of Section 2.1 abides by Definition 1 because it
uses norm to compute the set of union-free type terms for both argument types, and directly
checks subtyping.

I Theorem 3 (NF Subtyping). For all a and b, subtype a b iff a <: b.

Therefore, normalization-based subtyping is correct against our definition.

3.2 Subtyping with tree iterators
Reasoning about iterators that use choice strings, as described in Section 2.2, is tricky as it
requires simultaneously reasoning about the structure of the type term and the validity of the
choice string that represents the iterator’s state. Instead, we propose to use an intermediate
data structure, called a tree iterator, to guarantee consistency of iterator state with type
structure.

A tree iterator is a representation of the iteration state embedded in a type term. Thus a
tree iterator yields a union-free tuple and can either step to a successor state or a final state.
Recalling the graphical notation of Section 2.2, we can represent the state of iteration as a
combination of type term and a choice or, equivalently, as a tree iterator.

Choice string: Tree iterator:

[,]

2

? ?
1 3 2?

3

, R L = Tuple{p1, p3}

[,]
R L
1 3

2

= Tuple{p1, p3}

This structure-dependent construction makes tree iterators less efficient than choice strings.
A tree iterator must have a node for each structural element of the type being iterated over,
and is thus less space efficient than the simple choices-only strings. However, it is easier to
prove subtyping correct for tree iterators first.

Tree iterators depend on the type term they iterate over. The possible states are IPrim
at primitives, ITuple at tuples, and for unions either ILeft or IRight.

Inductive iter: Typ -> Set :=
| IPrim : forall i, iter (Prim i)
| ITuple : forall t1 t2 , iter t1 -> iter t2 -> iter (Tuple t1 t2)
| ILeft : forall t1 t2 , iter t1 -> iter (Union t1 t2)
| IRight : forall t1 t2 , iter t2 -> iter (Union t1 t2).

The next function for tree iterators steps in depth-first, right-to-left order. There are four
cases to consider:

A primitive has no successor.
A tuple steps its second child; if that has no successor step, then it steps its first child
and resets the second child.

ECOOP 2019

24:10 Subtyping Union Types and Covariant Tuples

An ILeft tries to step its child. If it has no successor, then the ILeft becomes an IRight
with a newly initialized child corresponding to the right child of the union.
An IRight also tries to step its child, but is final if its child has no successor.

Fixpoint next(t:Typ)(i:iter t): option (iter t) := match i with
| IPrim _ => None
| ITuple t1 t2 i1 i2 =>

match (next t2 i2) with
| Some i' => Some(ITuple t1 t2 i1 i')
| None =>

match (next t1 i1) with
| Some i' => Some(ITuple t1 t2 i' (start t2))
| None => None
end

end
| ILeft t1 t2 i1 =>

match (next t1 i1) with
| Some(i ') => Some(ILeft t1 t2 i ')
| None => Some(IRight t1 t2 (start t2))
end

| IRight t1 t2 i2 =>
match (next t2 i2) with
| Some(i ') => Some(IRight t1 t2 i ')
| None => None
end

end.

An induction principle for tree iterators is needed to reason about all iterator states for a
given type. First, we show that iterators eventually reach a final state. This is done with a
function inum, which assigns natural numbers to each state. It simply counts the number of
remaining steps in the iterator. To count the total number of union-free types denoted by a
type, we use the tnum helper function.
Fixpoint tnum(t:Typ):nat :=

match t with
| Prim i => 1
| Tuple t1 t2 => tnum t1 * tnum t2
| Union t1 t2 => tnum t1 + tnum t2
end.

Fixpoint inum(t:Typ)(ti:iter t):nat :=
match ti with
| IPrim i => 0
| ITuple t1 t2 i1 i2 => inum t1 i1 * tnum t2 + inum t2 i2
| IUnionL t1 t2 i1 => inum t1 i1 + tnum t2
| IUnionR t1 t2 i2 => inum t2 i2
end.

This function then lets us define the key theorem needed for the induction principle. At each
step, the value of inum decreases by 1, and since it cannot be negative, the iterator must
therefore reach a final state.

I Lemma 4 (Monotonicity). If next t it = it′ then inum t it = 1 + inum t it′.

It is now possible to define an induction principle over next. By monotonicity, next eventually
reaches a final state. For any property of interest, if we prove that it holds for the final state
and for the induction step, we can prove it holds for every state for that type.

B. Chung, F. Zappa Nardelli, and J. Vitek 24:11

I Theorem 5 (Tree Iterator Induction). Let P be any property of tree iterators for some type
t. Suppose P holds for the final state, and whenever P holds for a successor state it then it
holds for its precursor it′ where next t it′ = it. Then P holds for every iterator state over t.

Now, we can prove correctness of the subtyping algorithm with tree iterators. We implement
subtyping with respect to choice strings in the Coq implementation in a two-stage process.
First, we compute the union-free types induced by the iterators over their original types using
here. Second, we decide subtyping between the two union-free types in ufsub. The function
here walks the given iterator, producing a union-free type mirroring its state. To decide
subtyping between the resulting union-free types, ufsub checks equality between Prims and
recurses on the elements of Tuples, while returning false for all other types. Since here will
never produce a union type, the case of ufsub for them is irrelevant, and is false by default.

Fixpoint here(t:Typ)(i:iter t):Typ :=
match i with
| IPrim i => Prim i
| ITuple t1 t2 p1 p2 =>

Tuple (here t1 p1) (here t2 p2)
| ILeft t1 t2 pl => (here t1 pl)
| IRight t1 t2 pr => (here t2 pr)
end.

Fixpoint ufsub(t1 t2:Typ) :=
match (t1 , t2) with
| (Prim p, Prim p') => p==p'
| (Tuple a a', Tuple b b ') =>

ufsub a b && ufsub a' b'
| (_, _) => false
end.

Definition sub (a b:Typ) (ai:iter a) (bi:iter b) :=
ufsub (here a ai) (here b bi).

This version of sub differs from the algorithmic implementation to ensure that recursion is
well founded. The previous version of sub was, in the case of unions, decreasing on alternating
arguments when unions were found on either of the sides. In contrast, the proof’s version
of sub applies the choice string to each side first using here, a strictly decreasing function
that recurs structurally on the given type. This computes the union-free type induced by
the iterator applied to the current type. The algorithm then checks subtyping between the
resultant union-free types, which is entirely structural. These implementations are equivalent,
as they both apply the given choice strings at the same places while computing subtyping;
however, the proof version separates choice string application while the implementation
intertwines it with the actual subtyping decision.

Versions of exist and allexist that use tree iterators are given next. They are similar
to the string iterator functions of Section 2.2. exist tests if the subtyping relation holds
in the context of the current iterator states for both sides. If not, it recurs on the next
state. Similarly, allexist uses its iterator for a in conjunction with exist to ensure that the
current left-hand iterator state has a matching right-hand state. We prove termination of
both using Lemma 4.

Definition subtype (a b:Typ) = allexist a b (initial a)

Program Fixpoint allexist (a b:typ)(ia:iter a) { measure (inum ia)} =
exists a b ia (initial b) &&

(match next a ia with
| Some(ia ') => allexist a b ia '
| None => true).

Program Fixpoint exist(a b:typ)(ia:iter a)(ib:iter b)
{ measure (inum ib)} =

subtype a b ia ib ||

ECOOP 2019

24:12 Subtyping Union Types and Covariant Tuples

(match next b ib with
| Some(ib ') => exist a b ia ib '
| None => false).

The denotation of a tree iterator state R(i) is the set of states that can be reached using
next from i. Let a(i) indicate the union-free type produced from the type a at i, and |i|a is
the set {a(i′) | i′ ∈ R(i)}, the union-free types that result from states in the type a reachable
by i. This lets us prove that the set of types corresponding to states reachable from the
initial state of an iterator is equal to the set of states denoted by the type itself.

I Lemma 6 (Initial equivalence). |initial a|a = JaK.

Next, Theorem 5 allows us to show that exists of a, b, with ia and ib tries to find an iterator
state i′

b starting from ib such that b(i′
b) = a(ia). The desired property trivially holds when

|ib|b = ∅, and if the iterator can step then either the current union-free type is satisfying or
we defer to the induction hypothesis.

I Theorem 7. exist a b ia ib holds iff ∃t ∈ |ib|b, a(ia) = t.

We can then appeal to both Theorem 7 and Lemma 6 to show that exist a b ia (initial b)
finds a satisfying union-free type on the right-hand side if it exists in JbK. Using this, we can
then use Theorem 5 in an analogous way to exist to show that allexist is correct up to the
current iterator state.

I Theorem 8. allexist a b ia holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.

Finally, we can appeal to Theorem 8 and Lemma 6 again to show correctness of the algorithm.

I Theorem 9. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.

3.3 Subtyping with choice strings
We prove the subtyping algorithm using choice strings correct and complete. We start by
showing that iterators over choice strings simulate tree iterators. This lets us prove that
the choice string based subtyping algorithm is correct by showing that the iterators at
each step are equivalent. To relate tree iterators to choice string iterators, we use the itp
function, which traverses a tree iterator state and linearizes it, producing a choice string
using depth-first search.

Fixpoint itp{t:Typ }(it:iter t): choice list :=
match it with
| IPrim _ => nil
| ITuple t1 t2 it1 it2 => (itp t1 it1)++(itp t2 it2)
| ILeft t1 _ it1 => Left ::(itp t1 it1)
| IRight _ t2 it1 => Right ::(itp t2 it1)
end.

Next, we define an induction principle over choice strings by way of linearized tree iterators.
The next function in Section 2.2 works by finding the last L in the choice string, turning it
into an R, and replacing the rest with Ls until the type is valid. If we use itp to translate both
the initial and final states for a valid next step of a tree iterator, we see the same structure.

I Lemma 10 (Linearized Iteration). For some type t and tree iterators it it′, if next t it = it′,
there exists some prefix c′, an initial suffix c′′ made up of Rs, and a final suffix c′′′ consisting
of Ls such that itp t it = c′ Left c′′ and itp t it′ = c′ Right c′′′.

B. Chung, F. Zappa Nardelli, and J. Vitek 24:13

We can then prove that stepping a tree iterator state is equivalent to stepping the linearized
versions of the state using the choice string next function.

I Lemma 11 (Step Equivalence). If it and it′ are tree iterator states and next it = it′, then
next(itp it) = (itp it′).

The initial state of a tree iterator linearizes to the initial state of a choice string iterator.

I Lemma 12 (Initial Equivalence). itp(initial t) = pad t [].

The functions exist and allexist for choice string based iterators are identical to those
for tree iterators (though using choice string iterators internally), and sub is as described in
Section 2.2. The correctness proofs for the choice string subtype decision functions use the
tree iterator induction principle (Theorem 5), and are thus in terms of tree iterators. By
Lemma 11, however, each step that the tree iterator takes will be mirrored precisely by itp
into choice strings. Similarly, the initial states are identical by Lemma 12. As a result, the
sequence of states checked by each of the iterators is equivalent with itp.

I Lemma 13. exist a b (itp ia) (itp ib) holds iff ∃t ∈ |ib|b, a(ia) = t.

With the correctness of exist following from the tree iterator definition, we can apply the
same proof methodology to show that allexist is correct. In order to do so, we instantiate
Lemma 13 with Lemma 6 and Lemma 12 to show that if exist a b (itp ia) (pad t []) then
∃t ∈ JbK, a(ia) = t, allowing us to check each of the exists cases while establishing the
forall-exists relationship.

I Lemma 14. allexist a b (itp ia) holds iff ∀a′ ∈ |ia|a,∃b′ ∈ JbK, a′ = b′.

We can then instantiate Lemma 14 with Lemma 12 and Lemma 6 to show that allexist for
choice strings ensures that the forall-exists relation holds.

I Theorem 15. allexist a b (pad t []) holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.

Finally, we can prove that subtyping is correct using the choice string algorithm.

I Theorem 16. subtype a b holds iff ∀a′ ∈ JaK,∃b′ ∈ JbK, a′ = b′.

Thus, we can correctly decide subtyping with distributive unions and tuples using the choice
string based implementation of iterators.

4 Complexity

The worst-case time complexity of Julia’s subtyping algorithm and normalization-based
approaches is determined by the number of terms that could exist in the normalized type. In
the worst case, there are 2n union-free tuples in the fully normalized version of a type that
has n unions. Each of those tuples must always be explored. As a result, both algorithms
have worst-case O(2n) time complexity. The approaches differ, however, in space complexity.
The normalization approach computes and stores each of the exponentially many alternatives,
so it also has O(2n) space complexity. However, Julia need only store the choice made at
each union, thereby offering O(n) space complexity.

Julia’s algorithm improves best-case time performance. Normalization always experiences
worst-case time and space behavior as it has to precompute the entire normalized type.
Julia’s iteration-based algorithm can discover the relation between types early. In practice,
many queries are of the form uft <: union(t1...tn), where uft is an already union-free tuple.
As a result, all that Julia needs to do is find one matching tuple in t1...tn, which can be done
sequentially without needing explicit enumeration.

ECOOP 2019

24:14 Subtyping Union Types and Covariant Tuples

5 Future work

We plan to handle additional features of Julia. Our next steps will be subtyping for primitive
types, existential type variables, and invariant constructors. Adding subtyping to primitive
types would be the simplest change. The challenge is how to retain completeness, as a
primitive subtype heirarchy and semantic subtyping have undesirable interactions. For
example, if the primitive subtype hierarchy contains only the relations p2 <: p1 and p3 <: p1,
then is p1 a subtype of Union{p2, p3}? In a semantic subtyping system, they are, but this
requires changes both to the denotational framework and the search space of the iterators.
Existential type variables create substantial new complexities in the state of the algorithm.
No longer is the state solely restricted to that of the iterators being attempted; now, the
state includes variable bounds that are accumulated as the algorithm compares types to
type variables. As a result, correctness becomes a much more complex contextually linked
property to prove. Finally, invariant type constructors induce contravariant subtyping, which
when combined with existential variables may create cycles within the subtyping relation.

6 Conclusion

It is likely that subtyping with unions and tuples is always going to be exponential time,
as subtyping of regular expression types have been proven to be EXPTIME-complete [10].
However, it need not take exponential space to decide subtyping: we have described and
proven correct a subtyping algorithm for covariant tuples and unions that uses iterators
instead of normalization. This algorithm uses linear space and allows common patterns, such
as testing if a tuple of primitives is a subtype of a tuple of unions, to be handled as a special
case of the subtyping algorithm. Finally, based on Julia’s experience with the algorithm, we
think that it can generalize to rich type languages; Julia supports bounded polymorphism
and invariant constructors enabled in part by its use of this algorithm.

References
1 Alexander Aiken and Brian R. Murphy. Implementing regular tree expressions. In Functional

Programming Languages and Computer Architecture FPCA, 1991. doi:10.1007/3540543961_
21.

2 Franco Barbanera and Mariangiola Dezani-Ciancaglini. Intersection and union types. In
Theoretical Aspects of Computer Software TACS, 1991. doi:10.1007/3-540-54415-1_69.

3 Julia Belyakova. Decidable Tag-Based Semantic Subtyping for Nominal Types, Tuples, and
Unions. In Proceedings of the 21st Workshop on Formal Techniques for Java-like Programs
FTFJP, 2019.

4 Jeff Bezanson. Abstraction in technical computing. PhD thesis, Massachusetts Institute of
Technology, 2015. URL: http://dspace.mit.edu/handle/1721.1/7582.

5 Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A Fresh Approach
to Numerical Computing. SIAM Review, 59(1), 2017. doi:10.1137/141000671.

6 Flemming M. Damm. Subtyping with Union Types, Intersection Types and Recursive Types.
In Theoretical Aspects of Computer Software TACS, 1994. doi:10.1007/3-540-57887-0_121.

7 Joshua Dunfield. Elaborating intersection and union types. J. Funct. Program., 2014. doi:
10.1017/S0956796813000270.

8 Facebook. Hack. https://hacklang.org/.
9 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping: Dealing

set-theoretically with function, union, intersection, and negation types. J. ACM, 55(4), 2008.
doi:10.1145/1391289.1391293.

http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3540543961_21
http://dx.doi.org/10.1007/3-540-54415-1_69
http://dspace.mit.edu/handle/1721.1/7582
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1007/3-540-57887-0_121
http://dx.doi.org/10.1017/S0956796813000270
http://dx.doi.org/10.1017/S0956796813000270
https://hacklang.org/
http://dx.doi.org/10.1145/1391289.1391293

B. Chung, F. Zappa Nardelli, and J. Vitek 24:15

10 Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular Expression Types for XML.
ACM Trans. Program. Lang. Syst., 2005.

11 Microsoft. Typescript Language Specification. URL: https://github.com/Microsoft/
TypeScript/blob/master/doc/spec.md.

12 Fabian Muehlboeck and Ross Tate. Empowering Union and Intersection Types with Integrated
Subtyping. Proc. ACM Program. Lang., 2(OOPSLA), 2018.

13 David J. Pearce. Sound and Complete Flow Typing with Unions, Intersections and Negations.
In Verification, Model Checking, and Abstract Interpretation VMCAI, 2013. doi:10.1007/
978-3-642-35873-9_21.

14 Benjamin Pierce. Programming with intersection types, union types, and polymorphism.
Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.

15 Ross Tate. personal communication.
16 Jerome Vouillon. Subtyping Union Types. In Computer Science Logic (CSL), 2004. doi:

10.1007/978-3-540-30124-0_32.
17 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,

and Jan Vitek. Julia subtyping: a rational reconstruction. Proc. ACM Program. Lang.,
2(OOPSLA), 2018. doi:10.1145/3276483.

ECOOP 2019

https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-642-35873-9_21
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1007/978-3-540-30124-0_32
http://dx.doi.org/10.1145/3276483

Finally, a Polymorphic Linear Algebra Language
Amir Shaikhha
Department of Computer Science, University of Oxford, UK
amir.shaikhha@cs.ox.ac.uk

Lionel Parreaux
DATA Lab, EPFL, Lausanne, Switzerland
lionel.parreaux@epfl.ch

Abstract
Many different data analytics tasks boil down to linear algebra primitives. In practice, for each
different type of workload, data scientists use a particular specialised library. In this paper, we
present Pilatus, a polymorphic iterative linear algebra language, applicable to various types of
data analytics workloads. The design of this domain-specific language (DSL) is inspired by both
mathematics and programming languages: its basic constructs are borrowed from abstract algebra,
whereas the key technology behind its polymorphic design uses the tagless final approach (a.k.a.
polymorphic embedding/object algebras). This design enables us to change the behaviour of
arithmetic operations to express matrix algebra, graph algorithms, logical probabilistic programs,
and differentiable programs. Crucially, the polymorphic design of Pilatus allows us to use multi-
stage programming and rewrite-based optimisation to recover the performance of specialised code,
supporting fixed sized matrices, algebraic optimisations, and fusion.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Com-
puting methodologies → Linear algebra algorithms; Mathematics of computing → Automatic
differentiation; Mathematics of computing → Graph algorithms; Theory of computation → Probab-
ilistic computation

Keywords and phrases Linear Algebra, Domain-Specific Languages, Tagless Final, Polymorphic Em-
bedding, Object Algebra, Multi-Stage Programming, Graph Processing, Probabilistic Programming,
Automatic Differentiation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.25

Category Pearl

Acknowledgements The authors would like to thank Jeremy Gibbons and Oleg Kiselyov for their
helpful comments on draft versions of this paper. The first author was partially supported by EPFL
during the preparation of this paper.

1 Introduction

It is well-known that many problems can be formulated using linear algebra primitives. These
problems come from various data analytics domains including machine learning, statistical
data analytics, signal processing, graph processing, computer vision, and robotics.

Despite the fact that all these workloads could use a standard unified linear algebra
library, in practice many different specialised libraries are developed and used for each of
these workload types [9]. This is mainly due to the performance-critical nature of such data
analytics workloads: in order to satisfy their performance requirement, such workloads use
hand-tuned specialised libraries implemented using either general-purpose or specialised
domain-specific programming languages.

In this paper, we demonstrate the Pilatus language (Polymorphic Iterative Linear
Algebra, Typed, Universal, and Staged). Pilatus is a polymorphic domain-specific language
(DSL), in the sense that it can support various workloads, such as standard iterative linear
algebra tasks, graph processing algorithms, logical probabilistic programs, and linear algebra

© Amir Shaikhha and Lionel Parreaux;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 25; pp. 25:1–25:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.shaikhha@cs.ox.ac.uk
mailto:lionel.parreaux@epfl.ch
https://doi.org/10.4230/LIPIcs.ECOOP.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Finally, a Polymorphic Linear Algebra Language

programs relying on automatic differentiation. By default, this polymorphic nature causes a
significant performance overhead. We demonstrate how to remove this overhead by using safe
high-level meta-programming and compilation techniques, and more specifically multi-stage
programming (MSP, or staging) [66, 65].

This paper uses the tagless final approach [36, 10] (also known as polymorphic embed-
ding [30] and object algebras [48]) in order to embed [32] the Pilatus DSL in the Scala
programming language. This technique allows embedding an object language in a host
language in a type-safe manner. In addition, this approach allows multiple semantics for the
embedded DSL (EDSL). Based on this feature and by carefully choosing the abstractions
involved in defining Pilatus (such as semi-ring/ring, module, and linear map structures),
we provide several evaluation semantics. More specifically, we allow several variants of a
linear algebra language, such as: a standard matrix algebra language, a graph language
for expressing all-pairs reachability and shortest path problems, a logical probabilistic pro-
gramming language, and a differentiable programming language. The polymorphic aspect
of Pilatus is also essential for the seamless application of staging, and to express different
optimised staged variants: fixed size matrices, deforestation [67, 25, 63, 13], and algebraic
optimisations.1

Next, we motivate the need for Pilatus (Section 2), and we make the following contributions:
We present Pilatus, a polymorphic EDSL in Section 3. This DSL uses the notion
of semi-rings and rings (Section 3.2) in order to define operations on each individual
element of a vector and a matrix. Furthermore, Pilatus uses the notion of pull arrays
(Section 3.5) for defining a collection (or array) of elements.
We present four different languages that are implemented by providing a concrete inter-
preter for Pilatus in Section 5: (1) a standard matrix algebra language (Section 5.1); (2) a
graph DSL (Section 5.2); (3) a logical probabilistic linear algebra language (Section 5.3);
and (4) a differentiable linear algebra language (Section 5.4).
We present our use of multi-stage programming to improve the performance of Pilatus
programs by creating a staged language (Section 6.2) for fixed size matrices (Section 6.5),
performing algebraic optimisations (Section 6.4), and performing fusion (Section 6.6).
We show the impact of using multi-stage programming on the performance of applications
written using Pilatus in Section 7. Overall, the implementation of Pilatus consists
of around 400 LoC supporting all the features presented in this paper. Pilatus uses
the Squid [51] type-safe meta-programming framework for its multi-stage programming
facilities, which is the only external library dependency.

Finally, we present the related work in Section 8 and conclude the paper in Section 9.

2 Motivation

Apart from standard matrix algebra tasks, many numerical workloads in various domains can
be expressed using linear algebra primitives [17]. Among such examples are various graph

1 We used Scala as the implementation language for Pilatus, but other programming languages with
support for lambda expressions and multi-stage programming could be used as well; most of the
techniques presented in this paper can also be implemented in Haskell, OCaml, and Java for example.
For expressing rewrite-based optimisations, either the multi-stage programming framework should
support code inspection (as is the case with Squid [51], which we use), or the developer is responsible
for implementing/extending the intermediate representations (as with frameworks like LMS [57]).

A. Shaikhha and L. Parreaux 25:3

problems such as reachability and shortest path. Figure 1 shows as example the reachability
problem on both deterministic and probabilistic graphs.

Despite the expressiveness of linear algebra, there are many different libraries specialized
for each particular data analytics task. This is because of two main reasons. First, most
existing linear algebra libraries do not define the interfaces for extending their usage for the
problems in other domains. Second, despite some efforts on providing abstract and extensible
linear algebra libraries [17], such analytical tasks are performance critical. As a result, there
should be hand-tuned and specialized libraries for each particular task. As an example, for
graph problems, rather than having the linear-algebra-based solutions presented in Figure 1,
the library developers prefer to provide specialized graph libraries for performance reasons.

This paper aims to solve both these issues by combining ideas from mathematics and
programming languages. The first issue is tackled by defining a polymorphic linear algebra
language by using abstractions from abstract algebra, including the ring, module, and linear
map structures for expressing scalar values, a vector of values, and a matrix of values,
respectively. Furthermore, for implementing these abstract interfaces, we use the tagless-final
approach [10, 36], a well-known technique from the programming language community.

The examples of Figure 1 show matrices of elements of various types, for which the
addition and multiplication operations can be assigned various meanings. Figure 1a shows
the usage of linear algebra primitives for expressing graph reachability problems. To do so, the
addition and multiplication operators are instantiated to boolean disjunction and conjunction,
respectively. For expressing the reachability problems on probabilistic graphs, these two
operators are instantiated with the disjunction and conjunction on boolean distributions,
as shown in Figure 1b. Finally, Figure 1c shows the process of computing the derivative
of an example matrix expression with respect to a given variable. To do so, each element
of the matrix should be represented as a pair of numbers, known as dual numbers, where
the first component is the actual value of that expression and the second component is the
value of its derivative with respect to the given variable. As an example, the dual number
representation for the element of the 2nd row and 3rd column is represented as 3B2, meaning
that the actual value of this element at x = 2 is 2x− 1 = 3, whereas its derivative value is
(2x− 1)′ = 2. Similarly, the addition and multiplication operators are instantiated with the
corresponding ones operating on dual numbers, which implement the derivative rules.

All of these use cases can be easily represented as Pilatus programs, parameterized over
the meaning one wants to use for a particular domain.

The second issue is the performance overhead caused by the polymorphic nature of
the language, due to the abstractions introduced in order to solve the first issue. We use
multi-stage programming (also known as staging) to compile away the overhead corresponding
to these abstractions. Moreover, by using a staging framework with support for rewriting,
we can also implement algebraic optimization rules for further improving performances.

Next, we give more details on the design of Pilatus.

3 Pilatus Design

In this section, we first give an overview of the tagless final approach. Then, we define the
polymorphic interface for the semi-ring and ring structures. Afterwards, we show an abstract
interface for vectors and matrices using the mathematical notions of modules and linear
maps. Finally, we define the interface for a functional encoding of an array of elements and
control-flow constructs.

ECOOP 2019

25:4 Finally, a Polymorphic Linear Algebra Language

21 3

4

1
Reachability with 2 hops

2 3

4
0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

⊗

0 0 1 1
1 0 1 1
0 1 0 0
0 0 1 0

 =

0 1 1 0
0 1 1 1
1 0 1 1
0 1 0 0

 M2,2 = (1∧0)∨(0∧0)∨(1∧1)∨(1∧0) = 1

(a) The reachability problem in a graph can be expressed using matrix-matrix multiplication of the
adjacency matrix of a graph. Instead of using the standard addition operator, here we use the boolean
disjunction, and instead of the multiplication operator, we use the boolean conjunction.

21 3

4

0.1

0.5

0.3

0.6

0.8

0.2

0.9
1

Reachability with 2 hops
2 3

4

0.1

0.09 0.19

0.4

0.27

0.18
0.54

0.72

0.27

0 0 0.1 0.5

0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

⊗

0 0 0.1 0.5
0.8 0 0.3 0.6
0 0.9 0 0
0 0 0.2 0

 =

0 0.09 0.1 0
0 0.27 0.19 0.4

0.72 0 0.27 0.54
0 0.18 0 0

(b) The reachability problem in a probabilistic graph can also be expressed using matrix-matrix multi-
plication of its adjacency matrix. Each element of the adjacency matrix represents the presence of a node
with probability p. The addition and multiplication operators correspond to disjunction and conjunction
of two boolean distributions, respectively.

f(x) =

0 0 1 x + 3
8 0 2x− 1 6
0 3x + 3 0 0
0 0 x 0

2

=

 0 3x + 3 x2 + 3x 0
0 6x2 + 3x− 3 6x + 8 8x + 24

24x + 24 0 6x2 + 3x− 3 18x + 18
0 3x2 + 3x 0 0

f ′(x) =

 0 3 2x + 3 0
0 12x + 3 6 8
24 0 12x + 3 18
0 6x + 3 0 0

 f(2) =

 0 9 10 0
0 27 20 40
72 0 27 54
0 18 0 0

 f ′(2) =

 0 3 7 0
0 27 6 8
24 0 27 18
0 15 0 0

0 B 0 0 B 0 1 B 0 5 B 1

8 B 0 0 B 0 3 B 2 6 B 0
0 B 0 9 B 3 0 B 0 0 B 0
0 B 0 0 B 0 2 B 1 0 B 0

⊗
0 B 0 0 B 0 1 B 0 5 B 1

8 B 0 0 B 0 3 B 2 6 B 0
0 B 0 9 B 3 0 B 0 0 B 0
0 B 0 0 B 0 2 B 1 0 B 0

 =

 0 B 0 9 B 3 10 B 7 0 B 0
0 B 0 27 B 27 20 B 6 40 B 8

72 B 24 0 B 0 27 B 27 54 B 18
0 B 0 18 B 15 0 B 0 0 B 0

(c) The derivative of a matrix with respect to the variable x can also be expressed using linear algebra
operations. The dual number technique represents each element of a matrix as the pair v B d of the
actual value v and the value of its derivative d. Accordingly, the addition and multiplication operators
are the corresponding ones on dual numbers.

Figure 1 Example of problems expressed using different interpretations of linear algebra primitives.

A. Shaikhha and L. Parreaux 25:5

3.1 Tagless Final
Tagless final [10, 36] (also known as polymorphic embedding [30] and object algebras [48] in the
context of object-oriented programming languages) is a type-safe approach for embedding [32]
domain-specific languages. This approach solves the expression problem [68] by encoding
each DSL construct as a separate function, and leaving their interpretation abstract.

There are different ways of implementing this approach: (1) in languages like Haskell, one
can use type classes [10, 36]; (2) in OCaml, one can use the module system [10, 37]; (3) in
languages like Java, one can use the object-oriented features [48]; and (4) in Scala one can
use either type classes or mixin composition (also known as the cake pattern) [30, 57].

In this paper, we follow the approach based on type classes. Consider a DSL with two
constructs, one for creating an integer literal, and the other for adding two terms. The
tagless final interface for this DSL is as follows:

trait SimpleDSL[Repr] {
def lit(i: Int): Repr
def add(a: Repr, b: Repr): Repr

}

The code above defines a trait (similar to an interface in Java or a module signature in ML).
The SimpleDSL trait is parameterised with a Repr type, which is the type of the objects
manipulated by the DSL. This trait contains one abstract method for each constructs of the
DSL, here lit and add.

For convenience, we also typically define free-standing functions for writing programs in
the DSL while omitting the particular DSL implementation used:

def lit[Repr](i: Int) (implicit dsl: SimpleDSL[Repr]): Repr = dsl.lit(i)
def add[Repr](a: Repr, b: Repr)(implicit dsl: SimpleDSL[Repr]): Repr = dsl.add(a, b)

These functions require an implicit instance of the SimpleDSL trait, and redirect to the
implementations of the corresponding methods in that instance. In Scala, implicit parameters
need not be specified by users at each call site; indeed, they can be filled in automatically by
the compiler, based on their expected type. Implicits are the mechanism used to implement
type classes in Scala [49].

One can then define generic programs in the DSL, as follows:

def myProgram[Repr](implicit dsl: SimpleDSL) = add(lit(2), lit(3))

Which can also be written using the following shorthand syntax:

def myProgram[Repr: SimpleDSL] = add(lit(2), lit(3))

Then, one can specify a particular evaluation semantic for this program. As an example,
the following type class instance defines an evaluator/interpreter for SimpleDSL:

implicit object SimpleDSLInter extends SimpleDSL[Int] {
def lit(i: Int): Int = i
def add(a: Int, b: Int): Int = a + b

}

Evaluating the example program above in the REPL with this evaluation semantics,
which is automatically picked up by the compiler based on the requested type Int, results in:

scala> myProgram[Int]
result: Int = 5

ECOOP 2019

25:6 Finally, a Polymorphic Linear Algebra Language

trait SemiRing[R] {
def add(a: R, b: R): R
def mult(a: R, b: R): R
def one: R
def zero: R

}
trait Ring[R] extends SemiRing[R] {
def neg(a: R): R
def sub(a: R, b: R): R = add(a, neg(b))

}

object Pilatus {
def add[R](a: R, b: R)(implicit sr: SemiRing[R]): R = sr.add(a, b)
// ... other boilerplate methods elided for brevity

}

Figure 2 The tagless final interface for semi-rings and rings.

Rather than directly evaluating DSL programs, one can also represent the programs as
strings. Below is a type class instance that stringifies programs in our DSL:2

implicit object SimpleDSLStringify extends SimpleDSL[String] {
def lit(i: Int): String = i.toString
def add(a: String, b: String): String = s"$a + $b"

}

Evaluating the same program with the stringification evaluation semantic results in:

scala> myProgram[String]
result: String = "2 + 3"

Pilatus defines a separate type class for each category of the language constructs (e.g.,
semi-rings, rings, modules, linear maps, etc.), as we show next. We will introduce different
evaluation semantics for this DSL by providing type class instances. These evaluation
semantics are both interpretation-based (cf. Section 5) and compilation-based (cf. Section 6).

3.2 Semi-Ring and Ring
A semi-ring is defined as a set of numerical values R, with two binary operators + and ×, and
two elements 0 (additive identity) and 1 (multiplicative identity), such that for all elements
a, b, and c in R the following properties hold:

a + 0 = a

a + b = b + a

(a + b) + c = a + (b + c)
a× 1 = 1× a = a

a× 0 = 0× a = 0
(a× b)× c = a× (b× c)
a× (b + c) = (a× b) + (a× c)
(a + b)× c = (a× c) + (b× c)

2 String interpolation syntax s"...$x..." is equivalent to "..."+ x + "...".

A. Shaikhha and L. Parreaux 25:7

A ring is a semi-ring with an additional additive inverse operator (−) such that for all
elements a in R, a + (−a) = 0. The binary operator for subtraction can be easily defined as
a− b = a + (−b).

The tagless final encoding of semi-rings and rings is shown in Figure 2. There are six
DSL constructs corresponding to addition, multiplication, negation, subtraction, one, and
zero. These methods are redirected to the implementation of the corresponding operations
of the SemiRing and Ring type classes. The implementation of the methods of these type
classes are left abstract. These definitions will be given by each concrete semantics, which
should make sure that the aforementioned properties hold for the elements of type R.

3.3 Module
A mathematical module is a generalization of the notion of a vector space. A module over a
particular semi-ring is realised using an addition operator for two modules (similar to vector
addition), and a multiplication between a semi-ring element and the module (similar to
scalar-vector multiplication). For all elements a and b in a semi-ring R with the multiplicative
identity 1R, and the elements u and v in a (left-)module M , the following properties hold:

a · (u + v) = a · u + a · v
(a + b) · u = a · u + b · u
(a× b) · u = a · (b · u)
1R · u = u

Additionally, the dimension of a finite module generalises the notion of the number of
basis vectors3 representing a vector.

Figure 3 shows the tagless final interface for modules. The Module type class has three
type parameters: (1) V specifies the type of the underlying vector representation; (2) R

specifies the type of each element of the vector; and (3) D specifies the type of the dimension
of the underlying vector. Note that all the elements of type R and D support semi-ring
operations, thanks to the two type class instances sr and dr. Furthermore, the Module

type class supports the following operations: (1) the dim method returns the dimension of
the given module; (2) the add method computes the result of the addition of two module
elements; and (3) the smult method computes the multiplication of a semi-ring element and
a given module.

3.4 Linear Map
A linear map is a transformation between two modules, which preserves the addition and the
scalar multiplication operations of the given module. Assume the linear map M transforming
module V to module W , and both modules are over the semi-ring R. Then for all elements
f in the linear map M , u and v from module V , and a from the semi-ring R, the following
properties hold:

f(u + v) = f(u) + f(v)
f(a · u) = a · f(u)

Similar to functions, linear maps have two operations. First, a linear map can be applied
to a module returning a transformed module, behaving similar to the function application.

3 The basis vectors are linearly independent vectors (none of them can be expressed as a linear combination
of the other ones) that can be used to express every vector as a unique linear combination of them.

ECOOP 2019

25:8 Finally, a Polymorphic Linear Algebra Language

trait Module[V, R, D] {
implicit val sr: SemiRing[R]
implicit val dr: SemiRing[D]
def dim(a: V): D
def add(a: V, b: V): V
def smult(s: R, a: V): V

}

object Pilatus {
// ...
def dim[V, D](a: V)(implicit m: Module[V, _, D]): D = m.dim(a)
// ... other boilerplate methods elided for brevity

}

Figure 3 The tagless final interface for modules.

trait LinearMap[M, V, R, D] {
implicit val rowModule: Module[V, R, D]
implicit val sr: SemiRing[R]
implicit val dr: SemiRing[D]
def apply(m: M, v: V): V
def compose(m1: M, m2: M): M
def add(m1: M, m2: M): M
def dims(mat: M): (D, D)

}

object Pilatus {
// ...
def apply[M, V](m: M, v: V)(implicit lm: LinearMap[M, V, _, _]): V = lm.apply(m, v)
// ... other boilerplate methods elided for brevity

}

Figure 4 The tagless final interface for linear maps.

Second, a linear map can be composed with another linear map resulting in another linear
map, behaving similarly to function composition.

Figure 4 shows the tagless final encoding of linear maps. Here, we only consider finite
linear maps transforming two finite modules, and we assume that both modules are over
the same semi-ring (represented with type R, and the sr type class instance) with the same
module type representation (represented with the type V). From a vector/matrix point of
view, the compose and apply methods correspond to the matrix-matrix and matrix-vector
multiplication, respectively. The add method corresponds to the matrix addition operator,
and the dims construct returns the dimension of the input and output modules, which is
represented as a tuple.

3.5 Pull Array and Control-Flow Constructs
Using a pull array is a well-known approach in the high-performance functional programming
community for a functional encoding of arrays [64, 2, 12]. In this representation, an array is
defined using two components: (1) the length of the array; and (2) a function mapping an
index to the value of the corresponding element in that array.

Figure 5 demonstrates the tagless final encoding of pull arrays and looping constructs.
The build method is responsible for constructing a pull array of size len, in which the ith

A. Shaikhha and L. Parreaux 25:9

trait PullArrayOps[A, E, L] {
def build(len: L)(f: L => E): A
def get(arr: A)(i: L): E
def length(arr: A): L

}
trait Looping[L] {
def forloop[S](z: S)(n: L)(f: (S, L) => S): S

}
object Pilatus {
// ...
def build[A, E, L](len: L)(f: L => E)(implicit p: PullArrayOps[A, E, L]): A =
p.build(len)(f)

// ... other boilerplate methods elided for brevity
}

Figure 5 The tagless final interface for pull arrays and control-flow constructs.

element is f(i), indexed from 0 to len - 1. The get method returns the ith element of
the array arr, whereas the length method returns the size of the given array. Finally, the
forloop method is meant for implementing recursion and iteration. More specifically, this
function starts from the state z, iterates n times (from 0 to n - 1), and at the ith step,
updates the state s with f(s, i).

4 Matrix Algebra

In this section, we build the constructs of matrix algebra based on the mathematical notions
explained in the previous section. First, we show the construction of vector constructs using
modules and pull arrays. Then, we demonstrate the matrix constructs by using linear maps
and vectors.

4.1 Vector: Module + Pull Array
A vector (more specifically, a dense vector where most elements are non-zero) can be seen
as a module the elements of which are stored as a pull array. Given that each element of a
vector form a semi-ring, we can define the addition, element-wise multiplication, and dot
product of two vectors.

The implementation for the tagless final encoding of a vector, as well as the mentioned
methods are given in Figure 6. The V type parameter specifies the underlying vector type
representation, the R type parameter specifies the type of each element of the vector, and the
D type parameter is the type of the dimension of the underlying vector.

The zipMap method, receives two vectors v1 and v2 as input and creates a vector of
the same size,4 for which each element is constructed by applying the binary operator op
on the corresponding elements from v1 and v2. The add and elemMult are constructed by
passing the addition and multiplication functions of the underlying semi-ring of elements to
the zipMap method. The map method applies a given function to each element of the input
vector and produces a vector of the same size with the transformed elements as output. The
smult method is implemented using this method. Finally, the dot method computes the dot

4 We assume that the input vectors have the same size for the sake of simplicity. In practice, this property
can be enforced statically using Scala’s powerful implicit programming capabilities, and singleton types.

ECOOP 2019

25:10 Finally, a Polymorphic Linear Algebra Language

trait Vector[V, R, D] extends Module[V, R, D] {
implicit val pa: PullArrayOps[V, R, D]
implicit val looping: Looping[D]
def dim(a: V): D = pa.length(a)
def add(v1: V, v2: V): V = zipMap(v1, v2, sr.add)
def smult(s: R, a: V): V = map(a, e => sr.mult(s, e))
def map(v: V, op: R => R): V = pa.build(pa.length(v))(i => op(pa.get(v)(i)))
def zipMap(v1: V, v2: V, op: (R, R) => R): V =
pa.build(pa.length(v1))(i => op(pa.get(v1)(i), pa.get(v2)(i)))

def elemMult(v1: V, v2: V): V = zipMap(v1, v2, sr.mult)
def dot(v1: V, v2: V): R =
looping.forloop(sr.zero)(pa.length(v1))((acc, i) =>
sr.add(acc, sr.mult(pa.get(v1)(i), pa.get(v2)(i))))

/* sum and norm are omitted for brevity */
}

Figure 6 The tagless final implementation for (dense) vectors.

product of two vectors v1 and v2 by first computing the element-wise multiplication of these
vectors, and then adding the elements of this intermediate vector.

Next, we use the mentioned vector data structure together with linear maps in order to
define a matrix data-structure.

4.2 Matrix: Linear Map + Vector

Figure 7 shows the implementation of matrices (more specifically, dense matrices) using
linear maps and vectors. The M type parameter specifies the type of the underlying matrix
representation, V represents the type of each row-vector and column-vector of the matrix, R
denotes the type of each element of the matrix, and D specifies the type of the dimension of
each row and each column of the matrix.

In order to facilitate usages of the generic library, we have implemented several helper
methods. The get method returns the corresponding element in the rth row and cth column
of the matrix.5 The numRows and numCols methods return the number of rows and columns
of a matrix, respectively. The getRow method returns the vector representing the rth row of
the given matrix, whereas getCol returns a vector containing the elements in the cth column
of the given matrix. Finally, the zipMap and map methods have similar behaviour to the
methods with the same name from the vector data type.

The add method returns the result of the addition of two matrices, which is implemented
using the zipMap method. The mult method returns the matrix-matrix multiplication of two
matrices. This method is implemented by performing a vector dot-product of each row of the
first matrix with each column of the second matrix. Finally, the transpose method returns
the transpose of the given matrix.

4.3 Putting It All Together

Before showing different evaluation semantics in the upcoming sections, we need a way to
print the result values. To do so, we define the Printable type class which converts the value
of a particular type into a string. Figure 8 shows the corresponding tagless final definition.

5 As we will see in Section 6, r and c can have types other than Int.

A. Shaikhha and L. Parreaux 25:11

trait Matrix[M, V, R, D] extends LinearMap[M, V, R, D] {
implicit val paMat: PullArrayOps[M, V, D]
implicit val vector: Vector[V, R, D]
/* Other implicit values: paRow, rowModule, looping, dr, sr */
/* apply and compose methods use the mult method, elided for brevity. */
def get(mat: M, r: D, c: D): R =
paRow.get(paMat.get(mat)(r))(c)

def numRows(mat: M) = dims(mat)._1
def numCols(mat: M) = dims(mat)._2
def getRow(mat: M, i: D): V = paMat.get(mat)(i)
def getCol(mat: M, j: D): V = getRow(transpose(mat), j)
def zipMap(m1: M, m2: M, bop: (R, R) => R): M =
paMat.build(numRows(m1))(i =>
paRow.build(numCols(m1))(j =>
bop(get(m1, i, j), get(m2, i, j))))

def add(m1: M, m2: M): M = zipMap(m1, m2, sr.add)
def mult(m1: M, m2: M): M =
paMat.build(numRows(m1))(i =>
paRow.build(numCols(m2))(j =>
vector.dot(getRow(m1, i), getCol(m2, j))))

def transpose(mat: M): M =
paMat.build(numCols(mat))(i =>
paRow.build(numRows(mat))(j => get(mat, j, i)))

/* map, eye, fill, and zeros are omitted for brevity */
}

Figure 7 The tagless final implementation for (dense) matrices.

trait Printable[T] {
def string(e: T): String

}
object Pilatus {
// ...
def getString[T](e: T)(implicit p: Printable[T]) = p.string(e)

}

Figure 8 The tagless interface for the stringification of the values of different evaluation semantics.

I Example 1. Throughout this paper, we use the following example matrix program, where
we change the values for matrix m based on the evaluation semantic that we are interested in:

def example[M, D](m: M)(implicit mev: Matrix[M,_,_,D], pev: Printable[M]): Unit = {
import mev._
val I = eye(numRows(m))
val m2 = mult(m, m)
val res = add(I, add(m, m2))
println(getString(res))

}

This program accepts the matrix m, the value of which differs based on the evaluation
semantic that we would like to use. The result of this program is the addition of the
identity matrix (represented using the eye method), the given input matrix, and the second
power of it.

In the next sections, we give several concrete interpretations for Pilatus, and we show
the output of the example program above for each of the interpretations.

ECOOP 2019

25:12 Finally, a Polymorphic Linear Algebra Language

implicit object RingInt extends Ring[Int] {
def add(a: Int, b: Int) = a + b
def mult(a: Int, b: Int) = a * b
def one: Int = 1
def zero: Int = 0
def neg(a: Int): Int = -a

}
implicit object RingDouble extends Ring[Double] {
/* Similar to RingInt */

}

Figure 9 The tagless final interpreter (a.k.a. type class instances) for a ring of integer and double
values.

class PullArrayArrayOps[E: ClassTag] extends PullArrayOps[Array[E], E, Int] {
def build(len: Int)(f: Int => E): Array[E] =
Array.tabulate(len)(f)

def get(arr: Array[E])(i: Int): E =
arr(i)

def length(arr: Array[E]): Int =
arr.length

}
class LoopingInt extends Looping[Int] {
def forloop[S](f: (S, Int) => S)(z: S)(n: Int): S =
(0 until n).foldLeft(z)(f)

}
object Semantics {
implicit def pullArrayArrayOps[E: ClassTag] = new PullArrayArrayOps[E]
implicit val loopingInt = new Looping[Int]

}

Figure 10 The tagless final interpreter for a pull array, represented as a list of elements, and the
control-flow constructs.

5 Interpreted Languages

In this section, we first show an evaluation strategy which results in a standard matrix
algebra library. Then, we show how we can define an alternative interpretation which leads
to treating Pilatus as a graph library. Afterwards, we show a linear algebra library for
logical probabilistic programming. Finally, we demonstrate how Pilatus can behave as a
library for differentiable programming.

5.1 Standard Matrix Algebra
In order to define a standard matrix algebra library for Pilatus, we start by defining a
normal interpreter for rings. Figure 9 shows the interpretation for a ring of integer and
double values. In both cases, the addition and multiplication operations are defined using
the primitive operations provided by the Scala language.

Figure 10 shows an interpreter for pull arrays, where every constructed pull array is
materialised into an array of elements. Hence, retrieving an element and returning the size of
the pull array is achieved by returning the corresponding element in the materialised array
and the length of the array, respectively. Finally, the implementation of forloop is achieved
by performing a foldLeft on the range of elements from 0 to n-1, and passing the initial
state and the accumulator function.

A. Shaikhha and L. Parreaux 25:13

case class PullArrayInter[E](len: Int, f: Int => E)

class PullArrayInterOps[E] extends PullArrayOps[PullArrayInter[E], E, Int] {
def build(len: Int)(f: Int => E): PullArrayInter[E] =
PullArrayInter(len, f)

def get(arr: PullArrayInter[E])(i: Int): E =
arr.f(i)

def length(arr: PullArrayInter[E]): Int =
arr.len

}
object Semantics {
// ...
implicit def pullArrayInterOps[E] = new PullArrayInterOps[E]

}

Figure 11 The tagless final interpreter for a pull array, represented as a pair of length and the
element constructor function.

An alternative way of interpretation for pull arrays, which avoids the materialisation of
the intermediate arrays into a sequence, keeps a data structure which holds the length and
the constructor function of each element. This representation is given in Figure 11.

I Example 2. The standard matrix algebra interpreter evaluates the example program as
follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt }
val adj = Array(Array(0, 0, 1, 5),

Array(8, 0, 3, 6),
Array(0, 9, 0, 0),
Array(0, 0, 2, 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[[1, 9, 11, 5]
, [8, 28, 23, 46]
, [72, 9, 28, 54]
, [0, 18, 2, 1]]

Note that the build method is redirected to the build method of the PullArrayOps type
class (cf. Figure 5).

5.2 Graph DSL for Reachability and Shortest Path

A directed graph can be represented using its adjacency matrix. More specifically, a graph
with n vertices can be represented using a matrix of size n × n, in which all elements are
Boolean. If the element in the ith row and jth column is true, this means that there is an
edge between the ith and jth vertices in the graph.

In order to support such adjacency matrices, we need to use the Boolean semi-ring for
the matrix elements. Figure 12 shows the implementation of the Boolean semi-ring, in which
addition performs disjunction, and multiplication performs conjunction.

Using the Boolean semi-ring for the elements of a matrix leads to a graph library. This
instantiation of Pilatus is appropriate for expressing reachability computations among
all vertices of a graph: given an adjacency matrix M , each element of M ×M shows the
existence of a path of length 2 between the two vertices in the corresponding graph.

ECOOP 2019

25:14 Finally, a Polymorphic Linear Algebra Language

class SemiRingBoolean extends SemiRing[Boolean] {
def add(a: Boolean, b: Boolean) = a || b
def mult(a: Boolean, b: Boolean) = a && b
def one: Boolean = true
def zero: Boolean = false

}
object Semantics {
// ...
implicit val semiRingBoolean = new SemiRingBoolean

}

Figure 12 The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph reachability problems.

The graph algorithms that can be implemented on top of Pilatus are not limited
to reachability ones. By adding other types of semi-rings, one can express other graph
computation problems. As an example, Tropical semi-rings can express shortest-path graph
problems [45, 17]. Figure 13 shows the tagless final encoding of Tropical semi-rings. The
ShortestPath data type represents the path between two nodes of a graph, where Unreachable
specifies a path of length +∞, and Distance(v) specifies a path of length v. The Tropical
semi-ring computes the minimum length of two paths as the addition operator of the semi-
ring, and adds the length of two paths as the multiplication operator. We omit the definition
for other semi-rings for graph and other similar problems (e.g., linear equations, data-flow
analysis, petri nets, etc., which are already explored in the literature [17]).

I Example 3. When one uses the Boolean semi-ring, the example program is actually
computing the existence of paths with maximum length two among all the nodes. When we
provide the adjacency matrix of the graph of Figure 1a, the example program evaluates to:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolean }
val adj = Array(Array(false, false, true, true),

Array(true, false, true, true),
Array(false, true, false, false),
Array(false, false, true, false))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[[T, T, T, T]
, [T, T, T, T]
, [T, T, T, T]
, [F, T, T, T]]

5.3 Probabilistic Linear Algebra Language
Probabilistic models are used in many applications including artificial intelligence, machine
learning, cryptography, and economics. Probabilistic programming languages have proven to
be successful for expressing such stochastic models in a declarative style without worrying
about computational aspects [11, 28, 27, 39]. As an example, an important computer vision
application was recently expressed in only 50 lines of code in the Picture probabilistic
programming language [40].

In this paper, our aim is not to make Pilatus a full-fledged probabilistic programming
language. Instead, we show how we can encode Boolean probability distributions in Pilatus
in the form of a semi-ring. This means that we support the conjunction and disjunction

A. Shaikhha and L. Parreaux 25:15

sealed trait ShortestPath {
def add(o: ShortestPath): ShortestPath = (this, o) match {
case (Unreachable, x) => Unreachable
case (x, Unreachable) => Unreachable
case (Distance(v1), Distance(v2)) => Distance(v1 + v2)

}
def min(o: ShortestPath): ShortestPath = (this, o) match {
case (Unreachable, x) => x
case (x, Unreachable) => x
case (Distance(v1), Distance(v2)) => Distance(math.min(v1, v2))

}
}
case class Distance(v: Int) extends ShortestPath
case object Unreachable extends ShortestPath

class SemiRingTropical extends SemiRing[ShortestPath] {
def add(a: ShortestPath, b: ShortestPath) = a.min(b)
def mult(a: ShortestPath, b: ShortestPath) = a.add(b)
def one: ShortestPath = Distance(0)
def zero: ShortestPath = Unreachable

}

object Semantics {
// ...
implicit val semiRingTropical = new SemiRingTropical

}

Figure 13 The tagless final interpreter for a semi-ring of Boolean values, used for expressing
graph shortest-path problems.

between two Boolean distributions. Also, the zero and one elements of the semi-ring
correspond to the distribution with the probability of one for false and true, respectively. As
a side effect of the compositional design of Pilatus, we can support vectors and matrices of
such distributions as well, virtually for free. Thus, Pilatus supports probabilistic graphs
and the associated path queries, similar to systems such as ProbLog [15].

Figure 14 shows the tagless final implementation for Boolean distributions. The BoolProb
data type has a list of probabilities assigned to each Boolean value. This data type is actually
a probability monad [26, 19]. As is customary with monad implementation in Scala, the
flatMap method represents the bind operator of the monad, and the apply method of the
companion object represents the unit operator. The normalise method makes sure that the
list of probabilities associated to each Boolean value has distinct Boolean values, and that
the probabilities sum up to one.

There are many alternative implementations for the probability monad such as lazy
trees [39] with the possibility to support distributions for values other than Booleans.
Furthermore, in this context one can use various optimisations such as variable elimination [16].
Finally, it is possible to explore other inference mechanisms [42]. All these aspects are
orthogonal to the purposes of this work, and Pilatus can be extended to support all these
features, which we leave as exercises to the reader.

ECOOP 2019

25:16 Finally, a Polymorphic Linear Algebra Language

case class BoolProb(l: List[(Boolean, Double)]) {
def flatMap(f: Boolean => BoolProb): BoolProb = {
val ll = for(x <- l; y <- f(x._1).l) yield { y._1 -> (y._2 * x._2) }
BoolProb(ll).normalise()

}
def normalise(): BoolProb = {
val sum = l.map(_._2).sum
val nl = l.groupBy(_._1).mapValues(_.map(_._2).sum / sum)
BoolProb(nl.toList)

}
}
object BoolProb {
def apply(v: Boolean): BoolProb = BoolProb(List(v -> 1.0))

}

class SemiRingBoolProb extends SemiRing[BoolProb] {
def add(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) one else b)
def mult(a: BoolProb, b: BoolProb) = a.flatMap(x => if(x) b else zero)
def one: BoolProb = BoolProb(true)
def zero: BoolProb = BoolProb(false)

}

object Semantics {
// ...
implicit val semiRingBoolProb = new SemiRingBoolProb

}

Figure 14 The tagless final implementation using the Boolean probability monad for semi-ring
operations.

I Example 4. When we give the adjacency matrix of the probabilistic graph of Figure 1b as
the input to the example program, the evaluation is as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, semiRingBoolProb }
def flip(p: Double): BoolProb = BoolProb(List(true -> p, false -> (1 - p)))
val adj = Array(Array(flip(0), flip(0), flip(0.1), flip(0.5)),

Array(flip(0.8), flip(0), flip(0.3), flip(0.6)),
Array(flip(0), flip(0.9), flip(0), flip(0)),
Array(flip(0), flip(0), flip(0.2), flip(0)))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:
[[1, 0.1, 0.2, 0.5]
, [0.8, 1, 0.4, 0.8]
, [0.7, 0.9, 1, 0.5]
, [0, 0.2, 0.2, 1]]

As in the previous section, the example program computes the all-pairs path with
maximum length of two. Hence, the result matrix is the probability of the existence of a
path by traversing at most one intermediate node.

A. Shaikhha and L. Parreaux 25:17

class DualSemiRing[R](implicit val sr: SemiRing[R])
extends SemiRing[(R, R)] {
type Dual = (R, R)
def add(a: Dual, b: Dual) = (sr.add(a._1, b._1), sr.add(a._2, b._2))
def mult(a: Dual, b: Dual) =
(sr.mult(a._1, b._1), sr.add(sr.mult(a._1, b._2), sr.mult(a._2, b._1)))

def one: Dual = (sr.one, sr.zero)
def zero: Dual = (sr.zero, sr.zero)

}
class DualRing[R](implicit val ring: Ring[R])
extends DualSemiRing[R] with Ring[(R, R)] {
def neg(a: Dual) = (ring.neg(a._1), ring.neg(a._2))

}
object Semantics {
// ...
implicit def dualSemiRing[R: SemiRing] = new DualSemiRing[R]
implicit def dualRing[R: Ring] = new DualRing[R]

}

Figure 15 The tagless final implementation using dual numbers for ring operations.

5.4 Differentiable Linear Algebra DSL
Many applications in machine learning such as training artificial neural networks require
computing the derivate of an objective function. In many cases, the manual derivation of
analytical derivatives is not a practical solution, as it is error prone and time consuming.
Hence, several techniques were developed for automating the derivation process.

Automatic differentiation (or algorithmic differentiation) is one of the most well-known
techniques to systematically compute the derivative of a program. This technique system-
atically applies the chain rule, and evaluates the derivatives for the primitive arithmetic
operations (such as addition, multiplication, etc.) [4].

Among different implementations of automatic differentiation, here we show the forward
mode technique using dual numbers. In this implementation, every number is augmented with
an additional component, which maintains the computed derivative value. Correspondingly,
all primitive operations should be augmented with the appropriate derivation computation.

Figure 15 demonstrates the generic tagless final interface for the dual number repres-
entation of a ring. This interface uses the pair representation for dual numbers, in which
the first component is the normal value, whereas the second component is the derivative
value. The second component in the implementation of the addition operator reflects the
addition rule of derivation (d(a + b) = da + db), whereas the one in multiplication reflects
the multiplication rule (d(a× b) = da× b + a× db).

I Example 5. Let us consider again the example matrix given in Figure 1c. By representing
this input matrix using dual numbers, our running example is evaluated as follows:

import Semantics.{ pullArrayInterOps, loopingInt, ringInt, dualRing }
val adj = Array(Array(0 -> 0, 0 -> 0, 1 -> 0, 5 -> 1),

Array(8 -> 0, 0 -> 0, 3 -> 2, 6 -> 0),
Array(0 -> 0, 9 -> 3, 0 -> 0, 0 -> 0),
Array(0 -> 0, 0 -> 0, 2 -> 1, 0 -> 0))

val m = build(4)(i => build(4)(j => adj(i)(j)))
example(m)
// output:

ECOOP 2019

25:18 Finally, a Polymorphic Linear Algebra Language

[[1 -> 0, 9 -> 3, 11 -> 7, 5 -> 1]
, [8 -> 0, 28 -> 27, 23 -> 8, 46 -> 8]
, [72 -> 24, 9 -> 3, 28 -> 27, 54 -> 18]
, [0 -> 0, 18 -> 15, 2 -> 1, 1 -> 0]]

More specifically, computing the square of this matrix results in:

val m2 = compose(m, m)
println(getString(m2))
// output:
[[0 -> 0, 9 -> 3, 10 -> 7, 0 -> 0]
, [0 -> 0, 27 -> 27, 20 -> 6, 40 -> 8]
, [72 -> 24, 0 -> 0, 27 -> 27, 54 -> 18]
, [0 -> 0, 18 -> 15, 0 -> 0, 0 -> 0]]

This output is the same as what we have observed in Figure 1c.

6 Staging and Optimisation

In this section, we show how to use multi-stage programming (MSP, or just staging) to
improve the performance of Pilatus programs, by removing the abstraction overhead
incurred by the high-level programming features we use to make our DSL polymorphic. We
use Squid [51, 52], a type-safe meta-programming framework that supports MSP. Squid is
implemented in Scala as a macro library, making its usage straightforward and user-friendly.

6.1 Preliminaries on Squid and Multi-Stage Programming
Squid makes use of quasi-quotes to manipulate program fragments; this way, one can both
compose programs together (multi-stage programming) and pattern-match on them to
perform rewritings, thereby achieving quoted staged rewriting [50].

Quasi-quotes. Given a Scala expression e of type T, the quasi-quote expression code''e'' has
type Code[T] and represents a program fragment whose representation can be manipulated
programmatically. Crucially, quasi-quotes may contain holes, delineated by the ${...}

escape syntax.6 When constructing a program fragment, code inside of a hole is evaluated
and inserted in place of the hole. For example, val part = code''List(1,2,3)''; code''2 *

$part.length'', which has type Code[Int], evaluates to code''2 * List(1,2,3).length''.

Runtime Compilation. After composing a program at run time using quasi-quotes, one can
then either dump a stringified version of the code inside a file to be compiled and run later,
or runtime-compile it on the fly, using the .compile method, which will produce bytecode
that can then be run efficiently. After the one-off cost of runtime compilation, a definition
such as val f = code''(x: Int)\[=> x + 1''.compile will be as efficient as val f = (x: Int)\]

=> x + 1.

Multi-Stage Programming (MSP). The goal of MSP is to turn a program which contains
abstractions and indirections into a code generator : instead of producing the program’s
result directly, this staged program will produce code that is straightforward and free of

6 When the escaped expression is a simple identifier, one can leave out the curly braces.

A. Shaikhha and L. Parreaux 25:19

abstractions, to compute the program’s result more efficiently. To achieve this, one annotates
the non-static parts of the program (those that should be executed later) using quasi-quotes
and Code types. Thanks to runtime compilation, the staged program effectively partially
evaluates the fixed parts of a program even if they depend on values obtained at runtime.

Code Pattern Matching and Rewriting. Squid extends the classical MSP ability with
code pattern matching and rewriting (quasi-quotes are allowed in patterns), which lets
programmers inspect already-composed code fragments in a type-safe way. As we will see
in Section 6.4, in practice this saves programmers the trouble of having to define their own
inspectable program representations before turning them into code.

6.2 Staging Pilatus
Thanks to the polymorphic nature of Pilatus, it is quite straightforward to turn a given
semantics into a multi-stage program. All we need to do is to provide an evaluation semantics
which manipulates program fragments instead of normal values, and which composes these
fragments together instead of directly evaluating the results of each operation.

Figure 16 shows the staged versions of some of the Pilatus interfaces. A RingCode[T]

is a ring implementation7 that manipulates Code[T] ring elements (the RingCode[T] class
extends Ring[Code[T]]). The CodeType[T] type class is used to automatically infer runtime
type representations, which is necessary for Squid program manipulation. Notice that the
implicit ringCode definition takes an implicit argument of type Code[Ring[T]]. This works out
of the box, because Squid can turn an implicit Ring[T] into a Code[Ring[T]] automatically,
lifting the code used for generating the implicit.

As an example, consider the following polymorphic Pilatus program:

def polymorphicProgram[R: Ring](a: R, b: R): R = mult(add(a, one), b)

And the following two usages, one with a direct R = Int interpretation, and one with a staged
R = Code[Int] one:

import Semantics.{ ringInt }, StagedSemantics.{ ringCode }
Console.print("Enter an integer number: ")
val k = Console.readInt
val f_slow = (x: Int) => polymorphicProgram(x, k)
val f_code = (x: Code[Int]) => polymorphicProgram(x, Const(k))
val f_fast = code''(x: Int) => ${f_code}(x)''.compile

The Const constructor turns a primitive value (here an Int) into a code value (here a Code[Int]).
Notice that we insert f_code into a quasi-quote even though it is not a code value, but a
function from code to code; in fact, it is implicitly lifted by Squid [51].

Assuming the user enters the number 27 on the console, the code generated at runtime for
f_fast will be equivalent to (x: Int)\[=> Semantics.ringInt.mult(Semantics.ringInt.add(x,

1), 27) which, after inlining of the statically-dispatched ringInt methods, corresponds to
(x: Int)\] => (x + 1)* 27. To understand why this is much more efficient than the f_slow

version, consider that the evaluation of f_slow has to go through virtual dispatch of all
the ring operations; moreover, it also has to use boxed representations of the manipulated

7 Strictly speaking, this implementation does not form a ring, because for example code''2+1'' is not the
same as code''1+2'' – though they are “morally” equivalent as they represent equivalent programs.

ECOOP 2019

25:20 Finally, a Polymorphic Linear Algebra Language

integer values due to the generic context in which ring operations are defined, which requires
repeated allocations and unwrapping of boxed integers. As a result, in a realistic workload,
even the just-in-time compiler will typically not manage to make that code as fast as the
straightforward primitive operations performed by f_fast.8

This kind of overhead easily compounds as we introduce more abstractions, to the point
where non-staged abstract programs end up being orders of magnitude slower than the staged
versions [72], as we will see in Section 7.

6.3 Staged Representation Optimisations
An interesting aspect of MSP is that it lets us define data structures made of partially-
staged data. For example, if we want to partially evaluate the allocation of pairs and the
selection of their components, we can use representations of type (Code[A],Code[B]) instead
of Code[(A,B)].

This comes in useful when representing dual numbers in our staged interpreter. We can
implement an alternative to DualRing that is specialised for handling code values, and define
its operations accordingly, for example:

def mult(a: (Code[R], Code[R]), b: (Code[R], Code[R])) =
(code''$sr.mult(${a._1}, ${b._1})'',
code''$sr.add($sr.mult(${a._1}, ${b._2}), $sr.mult(${a._2}, ${b._1}))'')

Note that in the code above, we use program fragments a._1 and b._1 several times. This
is fine, because the default intermediate representation that Squid uses to encode program
fragment is based on the A-normal form [20], which let-binds every subexpression to a local
variable, and thus avoids code duplication [51, 50]; in other words, by inserting a given code
value in several places, we only duplicate variable references.

6.4 Algebraic Optimisations
Thanks to the staged interpretations of Pilatus, which allows us to manipulate program
fragments as first-class values, we can leverage the algebraic properties of ring structures
to perform optimisations. To do so, we can extend the staged ring implementation, so that
we use the normal staged method implementations by default, and override those methods
where there is a potential for algebraic optimisations. The goal of the overridden methods is
to return simplified program fragments based on the shape of their inputs.

This technique is similar to the original tagless final [10] and polymorphic embedding [30]
approaches to algebraic optimisation. The main difference is that thanks to Squid’s analytic
capabilities, we do not need to create our own intermediate symbolic representation of
programs, and instead we can pattern-match on code values directly.

An implementation of this optimised staged semantics for rings is given in Figure 17.
When used in pattern position, traditional quasi-quote escapes ${...}, which insert code
values into bigger expressions, are written $${...} instead.

8 Runtime systems like the CLR for C# avoid boxing by performing runtime specialisation of generic
code, but that only achieves a small part of all the optimisation and partial evaluation we are interested
in here. C++ templates can perform advanced compile-time specialisation, which could get us closer to
our goal (though this means specialisation could not rely on runtime values), but they are difficult and
heavyweight, yet much less flexible because they do not allow for first-class manipulation of code values.

A. Shaikhha and L. Parreaux 25:21

import squid.IR.Predef._ // import the ‘Code’, ‘CodeType’ and ‘code’ functionalities

class SemiRingCode[T: CodeType](val sr: Code[SemiRing[T]]) extends SemiRing[Code[T]] {
def add(a: Code[T], b: Code[T]) = code''$sr.add($a, $b)''
def mult(a: Code[T], b: Code[T]) = code''$sr.mult($a, $b)''
def one: Code[T] = code''$sr.one''
def zero: Code[T] = code''$sr.zero''

}
class RingCode[T: CodeType](val ring: Code[Ring[T]])
extends SemiRingCode[T](ring) with Ring[Code[T]] {
def neg(a: Code[T]) = code''$ring.neg($a)''

}
class PullArrayCodeOps[E: CodeType]
extends PullArrayOps[Code[PullArrayInter[E]], Code[E], Code[Int]] {
def build(len: Code[Int])(f: Code[Int] => Code[E]): Code[PullArrayInter[E]] =
code''PullArrayInter($len, $f)''

def get(arr: Code[PullArrayInter[E]])(i: Code[Int]): Code[E] = code''$arr.f($i)''
def length(arr: Code[PullArrayInter[E]]): Code[Int] = code''$arr.len''

}

object StagedSemantics {
implicit def semiRingCode[T: CodeType]
(implicit cde: Code[SemiRing[T]]): SemiRing[Code[T]] = new SemiRingCode(cde)

implicit def ringCode[T: CodeType]
(implicit cde: Code[Ring[T]]): Ring[Code[T]] = new RingCode(cde)

// other similar definitions elided...
}

Figure 16 The tagless final encoding of compiled rings, pull arrays, and control-flow constructs.

Many more algebraic rewritings can be added to perform partial evaluation and normal-
ization of program fragments. We have omitted them for the sake of brevity. Furthermore,
one can encode the algebraic properties of modules (cf. Section 3.3) and linear maps (cf.
Section 3.4) as rewrite rules, which we leave for the future.

6.5 Fixed-Size Matrix DSL

In some applications, such as computer vision, the matrices or vectors have a small size
and sometimes their size are statically known (e.g. a vector of size 3 to show a point in
the 3D space). In these cases the necessary memory for the corresponding arrays can be
allocated at compile time (or even stack allocated), leading to better performance and
memory consumption at run time.

Pilatus can be instantiated with an evaluator that makes sure that the length of arrays
is known during the compilation time. In this case, the representation of a pull array is a
sequence of the symbolic representation for each element. Furthermore, the representation for
its length is an integer, instead of a symbolic representation. Interestingly, this representation
is the same as the one shown in Figure 10, but with the E type instantiated to multi-stage
code types.

ECOOP 2019

25:22 Finally, a Polymorphic Linear Algebra Language

class SemiRingOptCode[T: CodeType](sr: Code[SemiRing[T]]) extends SemiRingCode[T](sr) {
override def add(a: Code[T], b: Code[T]) = (a, b) match {
case (_, code''$$sr.zero'') => a
case (code''$$sr.zero'', _) => b
case _ => super.add(a, b)

}
override def mult(a: Code[T], b: Code[T]) = (a, b) match {
case (_, code''$$sr.zero'') => code''$sr.zero''
case (code''$$sr.zero'', _) => code''$sr.zero''
case (_, code''$$sr.one'') => a
case (code''$$sr.one'', _) => b
case _ => super.mult(a, b)

}
}

class RingOptCode[T: CodeType](ring: Code[Ring[T]]) extends RingCode[T](ring) {
override def neg(a: Code[T]) = a match {
case code''$$ring.zero'' => code''$ring.zero''
case _ => super.neg(a)

}
}

Figure 17 The tagless final encoding of the compiled library of Pilatus, which applies algebraic
optimisations for the elements of matrices.

6.6 Fused DSL
Deforestation [67, 25, 63, 13] is a well-known technique used in functional languages in order
to remove the unnecessary intermediate data structures. This removal has a positive effect on
both memory consumption and run-time performance, thanks to the removal of unnecessary
memory allocations and avoidance of unnecessary computations.

One of the key advantages of using pull arrays is providing deforestation. However, to
benefit from this feature, one should provide an appropriate representation for pull arrays
which avoids materialisation. This can be achieved by symbolically maintaining the length
and the constructor function. Whenever the array is indexed or the length of array is needed,
instead of creating a symbolic representation for them, we can use the maintained length
and constructor function.

Figure 18 represents the implementation of fused pull array, and a compiler allowing
deforestation for Pilatus.

7 Evaluation

In this section, we show how multi-stage programming and rewriting can make Pilatus
faster than the high-level implementation, while being competitive with a handwritten
low-level implementation. We use several micro benchmarks consisting of a pipeline of vector
operations such as addition, dot product, and norm. Each benchmark is tested with five
different approaches:

Pilatus by using a native array without optimisation
Pilatus by using a pull array without optimisation
Pilatus by using a pull array with staging
Pilatus by using a pull array with staging and fusion
A handwritten low-level optimised implementation

A. Shaikhha and L. Parreaux 25:23

case class PullArrayCode[E](len: Code[Int], f: Code[Int] => Code[E])

class PullArrayCodeFusedOps[E]
extends PullArrayOps[PullArrayCode[E], Code[E], Code[Int]] {

def build(len: Code[Int])(f: Code[Int] => Code[E]): PullArrayCode[E] =
PullArrayCode(len, f)

def get(arr: PullArrayCode[E])(i: Code[Int]): Code[E] =
arr.f(i)

def length(arr: PullArrayCode[E]): Code[Int] =
arr.len

}

Figure 18 The tagless final encoding of the compiled library of Pilatus, which removes all
unnecessary intermediate arrays.

1

10

100

1000

add3N add dot

R
un

 ti
m

e
(m

illi
se

co
nd

s)

Native Array
Pull Array (PA)
PA+Staged (PAS)
PAS+Fused
Baseline

Figure 19 Performance comparison between Pilatus with different configurations and a baseline
low-level implementation.

The experiments are performed on a six-core Intel Xeon E5-2620 v2 processor with 256GB
of DDR3 RAM (1600Mhz), with Scala version 2.12.8 running on the OpenJDK 64-Bit Server
VM (build 24.95-b01) with Java 1.7.0_101.

Figure 19 shows the performance results. For these experiments, the input vectors are
all stored in a native JVM array, consisting of one million integer elements. Based on these
experiments we make the following observations. First, changing the usage of native array
representation to a pull array causes a minor performance overhead. This is because the JIT
of JVM is unable to remove the overhead caused by the lambdas used in a pull array. Second,
the overhead of lambdas as well as several other overheads are removed by using staging.
This performance improvement is between 2.5x to 5x. Finally, the intermediate arrays are
successfully removed by benefiting from the fusion of pull arrays (cf. Section 6.6). The
improvement varies between 4x to 26x depending on the number of removed intermediate
arrays. This makes the staged and fused Pilatus competitive with the baseline low-level
implementation.

8 Related Work

8.1 Linear Algebra Languages and Libraries
The R programming language [56] is widely used by statisticians and data miners. It provides
a standard language for statistical computing that includes arithmetic, array manipulation,
object oriented programming and system calls. It is a Turing-complete language. By contrast,

ECOOP 2019

25:24 Finally, a Polymorphic Linear Algebra Language

with our language we chose to focus solely on linear algebra operations. This minimalistic
approach results in a language that is not Turing Complete, but is nevertheless polymorphic
in various dimensions.

The Spiral [55] project introduces the languages SPL [71], OL [22], and more recently
LL [62] which mainly captures the non-iterative matrix operations of Pilatus. Furthermore,
the intermediate languages Σ-SPL [23] and Σ-LL [62] expose opportunities to perform loop
fusion. One interesting direction is to use the search-based techniques to perform global
optimisations offered by Spiral. Furthermore, Spiral in Scala [47] supports loop unrolling
and fixed size matrices by using the staging facilities offered by LMS [57] and abstracting
over data layout. Kiselyov [37] has used the tagless final approach and staging facilities
of MetaOCaml in order to implement a linear algebra DSL based on rings and pull arrays
(but not modules and linear maps) and has implemented many of the optimisations that
we have presented in this paper. However, to the best of our knowledge, none of these
projects consider graph algorithms, probabilistic programming, and automatic differentiation
of linear algebra.

In the Haskell programming language, Dolan [17] implements a linear algebra library
which uses different semi-ring configurations for expressing graph algorithms, as well as
several other algorithms. We can easily extend Pilatus in order to support the additional
semi-ring configurations used in that work. However, even though Elliot [18] implements
a library for forward automatic differentiation in Haskell, Dolan [17] does not consider
automatic differentiation. In addition, as both these two libraries are implemented without
using any multi-stage programming facilities, none of them can support the staged libraries
provided by Pilatus.

8.2 Deforestation and Array Fusion
Deforestation [67] and the corresponding short cut techniques [25, 63, 13] were introduced for
functional languages for removing the unnecessary intermediate collections. Recently, these
techniques have been implemented as a library using multi-stage programming [33, 38, 59].

On the other hand, in the high-performance functional array programming there are the
two well-known array representations, which also achieve deforestation: pull arrays and push
arrays [2, 12]. Each one of these two array representations comes with its own benefits, for
which [64] combines the benefits of these two complementary representations. Pull arrays
have been used for various DSLs [3, 37, 60] to produce efficient low-level code from the
high-level specification of linear algebra programs. However, none of these systems consider
other domains presented in this paper.

8.3 Automatic Differentiation and Differentiable Programming
Many techniques for finding optima of a given objective function (such as gradient-descent-
based techniques) require the derivative of that function. Automatic differentiation (AD) [35]
is one of the key techniques for automatically computing the derivative of a given program.
Thus, these tools are an essential component of many machine learning frameworks. There
is a large body of work on AD frameworks for imperative programming languages such as
Tapenade [29] for C and Fortran, ADIFOR [7] for Fortran, and Adept [31] and ADIC [46]
for C++, ADiMat [8], ADiGator [70], and Mad [21] performs AD for MATLAB programs,
whereas AutoGrad [41], Theano [6], Tensorflow [1] performs AD for a subset of Python
programs. There are also AD tools developed for functional languages such as DiffSharp [5]
for F#, dF˜ [61] for a subset of F#, Stalingrad [53] for a dialect of Scheme, as well as the

A. Shaikhha and L. Parreaux 25:25

work by Karczmarczuk [34] and Elliott [18] for Haskell. The most similar work to ours is
Lantern [69], which uses the multi-stage programming features provided by LMS [57] in order
to perform AD for numerical programs written in a subset of Scala. A key feature provided
by Lantern is supporting reverse-mode AD by using delimited continuations [14], which can
also be supported by Pilatus, which we leave it for the future. All the presented frameworks
are only for differentiable programming, whereas Pilatus supports graph computations and
probabilistic programming, while providing algebraic-based and compiler optimisations for
improving performance.

8.4 Probabilistic Programming
Probabilistic programming languages (PPL) can express stochastic models in a productive
manner without worrying about the low-level details [28]. Infer.NET [44], Picture [40], and
probabilistic C are examples of imperative PPLs, whereas, BUGS [24], STAN [11], and
Church [27] are functional PPLs. Figaro [54] is an object-oriented probabilistic programming
language which is defined as an EDSL on top of Scala. PRISM [58], BLOG [43], and
ProbLog [15] are examples of Logical PPLs. Pilatus is inspired by both logical PPLs and
the embedding of functional PPLs [39]. Although Pilatus has a more limited expressivity
power in comparison with other logical probabilistic programs, it supports various other
domains such as differentiable programming for linear algebra workloads.

9 Conclusions

In this paper, we have presented Pilatus, a polymorphic linear algebra language. This
language is embedded in Scala and can have several interpretations supporting various domains
such as standard matrix algebra, all-pairs reachability and shortest-path computations for
graphs, logical probabilistic programming, and differentiable programming. In order to
compensate the performance penalty caused by the abstraction overheads, Pilatus uses
multi-stage programming. Furthermore, thanks to the mathematical nature of Pilatus, we
use algebraic rewrite rules to further improve the performance.

References
1 Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. TensorFlow: A System for
Large-Scale Machine Learning. In OSDI, volume 16, pages 265–283, 2016.

2 Johan Anker and Josef Svenningsson. An EDSL approach to high performance Haskell
programming. In ACM Haskell Symposium, pages 1–12, 2013.

3 Emil Axelsson, Koen Claessen, Mary Sheeran, Josef Svenningsson, David Engdal, and Anders
Persson. The Design and Implementation of Feldspar an Embedded Language for Digital
Signal Processing. In Proceedings of the 22Nd International Conference on Implementation
and Application of Functional Languages, IFL’10, pages 121–136, Berlin, Heidelberg, 2011.
Springer-Verlag.

4 Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. arXiv preprint, 2015.
arXiv:1502.05767.

5 Atilim Gunes Baydin, Barak A Pearlmutter, and Jeffrey Mark Siskind. DiffSharp: Automatic
Differentiation Library. arXiv preprint, 2015. arXiv:1511.07727.

6 James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guil-
laume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU
and GPU math compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

ECOOP 2019

http://arxiv.org/abs/1502.05767
http://arxiv.org/abs/1511.07727

25:26 Finally, a Polymorphic Linear Algebra Language

7 Christian Bischof, Peyvand Khademi, Andrew Mauer, and Alan Carle. ADIFOR 2.0: Automatic
differentiation of Fortran 77 programs. IEEE Computational Science and Engineering, 3(3):18–
32, 1996.

8 Christian H Bischof, HM Bucker, Bruno Lang, Arno Rasch, and Andre Vehreschild. Combining
source transformation and operator overloading techniques to compute derivatives for MATLAB
programs. In Source Code Analysis and Manipulation, 2002. Proceedings. Second IEEE
International Workshop on, pages 65–72. IEEE, 2002.

9 Jacques Carette and Oleg Kiselyov. Multi-stage Programming with Functors and Monads:
Eliminating Abstraction Overhead from Generic Code. Sci. Comput. Program., 76(5):349–375,
May 2011.

10 Jacques Carette, Oleg Kiselyov, and Chung-Chieh Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of Functional Programming,
19(05):509–543, 2009.

11 Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael
Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic
programming language. Journal of statistical software, 76(1), 2017.

12 Koen Claessen, Mary Sheeran, and Bo Joel Svensson. Expressive Array Constructs in an
Embedded GPU Kernel Programming Language. In Proceedings of the 7th Workshop on
Declarative Aspects and Applications of Multicore Programming, DAMP ’12, pages 21–30, NY,
USA, 2012. ACM.

13 Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream Fusion: From Lists to Streams
to Nothing at All. In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP ’07, pages 315–326, New York, NY, USA, 2007. ACM.

14 Olivier Danvy and Andrzej Filinski. Abstracting control. In Proceedings of the 1990 ACM
conference on LISP and functional programming, pages 151–160. ACM, 1990.

15 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A Probabilistic Prolog and
Its Application in Link Discovery. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 2468–2473, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

16 Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. In
Learning in graphical models, pages 75–104. Springer, 1998.

17 Stephen Dolan. Fun with Semirings: A Functional Pearl on the Abuse of Linear Algebra. In
Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming,
ICFP ’13, pages 101–110, New York, NY, USA, 2013. ACM.

18 Conal M. Elliott. Beautiful Differentiation. In Proceedings of the 14th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’09, pages 191–202, New York,
NY, USA, 2009. ACM.

19 Martin Erwig and Steve Kollmansberger. Functional pearls: Probabilistic functional program-
ming in Haskell. Journal of Functional Programming, 16(1):21–34, 2006.

20 Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The Essence of
Compiling with Continuations. In Proceedings of the ACM SIGPLAN 1993 Conference on
Programming Language Design and Implementation, PLDI ’93, pages 237–247, New York, NY,
USA, 1993. ACM.

21 Shaun A Forth. An efficient overloaded implementation of forward mode automatic differenti-
ation in MATLAB. ACM Transactions on Mathematical Software (TOMS), 32(2):195–222,
2006.

22 Franz Franchetti, Frédéric de Mesmay, Daniel McFarlin, and Markus Püschel. Operator
language: A program generation framework for fast kernels. In Domain-Specific Languages,
pages 385–409. Springer, 2009.

23 Franz Franchetti, Yevgen Voronenko, and Markus Püschel. Formal Loop Merging for Signal
Transforms. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 315–326, 2005.

A. Shaikhha and L. Parreaux 25:27

24 Wally R Gilks, Andrew Thomas, and David J Spiegelhalter. A language and program for
complex Bayesian modelling. The Statistician, pages 169–177, 1994.

25 Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In
Proceedings of the conference on Functional programming languages and computer architecture,
FPCA, pages 223–232. ACM, 1993.

26 Michele Giry. A categorical approach to probability theory. In Categorical aspects of topology
and analysis, pages 68–85. Springer, 1982.

27 Noah Goodman, Vikash Mansinghka, Daniel M Roy, Keith Bonawitz, and Joshua B Tenenbaum.
Church: a language for generative models. arXiv preprint, 2012. arXiv:1206.3255.

28 Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic
programming. In Proceedings of the on Future of Software Engineering, pages 167–181. ACM,
2014.

29 Laurent Hascoet and Valérie Pascual. The Tapenade Automatic Differentiation Tool: Principles,
Model, and Specification. ACM Trans. Math. Softw., 39(3):20:1–20:43, May 2013.

30 Christian Hofer, Klaus Ostermann, Tillmann Rendel, and Adriaan Moors. Polymorphic embed-
ding of DSLs. In Proceedings of the 7th international conference on Generative programming
and component engineering, pages 137–148. ACM, 2008.

31 Robin J. Hogan. Fast Reverse-Mode Automatic Differentiation Using Expression Templates in
C++. ACM Trans. Math. Softw., 40(4):26:1–26:16, July 2014.

32 Paul Hudak. Building Domain-specific Embedded Languages. ACM Comput. Surv., 28(4es),
December 1996.

33 Manohar Jonnalagedda and Sandro Stucki. Fold-based Fusion As a Library: A Generative
Programming Pearl. In Proceedings of the 6th ACM SIGPLAN Symposium on Scala, pages
41–50. ACM, 2015.

34 Jerzy Karczmarczuk. Functional differentiation of computer programs. ACM SIGPLAN
Notices, 34(1):195–203, 1999.

35 Gershon Kedem. Automatic Differentiation of Computer Programs. ACM Trans. Math. Softw.,
6(2):150–165, June 1980.

36 Oleg Kiselyov. Typed tagless final interpreters. In Generic and Indexed Programming, pages
130–174. Springer, 2012.

37 Oleg Kiselyov. Reconciling Abstraction with High Performance: A MetaOCaml approach.
Foundations and Trends in Programming Languages, 5(1):1–101, 2018.

38 Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smaragdakis. Stream Fusion,
to Completeness. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, pages 285–299, New York, NY, USA, 2017. ACM.

39 Oleg Kiselyov and Chung-Chieh Shan. Embedded probabilistic programming. In Domain-
Specific Languages, pages 360–384. Springer, 2009.

40 Tejas D Kulkarni, Pushmeet Kohli, Joshua B Tenenbaum, and Vikash Mansinghka. Picture: A
probabilistic programming language for scene perception. In Proceedings of the ieee conference
on computer vision and pattern recognition, pages 4390–4399, 2015.

41 Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effortless Gradients in
Numpy. In ICML 2015 AutoML Workshop, 2015.

42 Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and
Martin Rinard. Probabilistic programming with programmable inference. In Proceedings of
the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 603–616. ACM, 2018.

43 Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L Ong, and Andrey
Kolobov. BLOG: Probabilistic Models with Unknown Objects. Statistical relational learning,
page 373, 2007.

44 Tom Minka, John Winn, John Guiver, and David Knowles. Infer.NET 2.4, 2010. Microsoft
Research Cambridge, 2014.

ECOOP 2019

http://arxiv.org/abs/1206.3255

25:28 Finally, a Polymorphic Linear Algebra Language

45 Mehryar Mohri. Semiring frameworks and algorithms for shortest-distance problems. Journal
of Automata, Languages and Combinatorics, 7(3):321–350, 2002.

46 Sri Hari Krishna Narayanan, Boyana Norris, and Beata Winnicka. ADIC2: Development of a
component source transformation system for differentiating C and C++. Procedia Computer
Science, 1(1):1845–1853, 2010.

47 Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus Püschel. Spiral
in Scala: Towards the Systematic Construction of Generators for Performance Libraries. In
Proceedings of the 12th International Conference on Generative Programming: Concepts and
Experiences, GPCE ’13, pages 125–134, New York, NY, USA, 2013. ACM.

48 Bruno C.d.S Oliveira and William R Cook. Extensibility for the Masses. In European
Conference on Object-Oriented Programming, pages 2–27. Springer, 2012.

49 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type Classes As Objects and
Implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 341–360, New York, NY, USA, 2010.
ACM.

50 Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Quoted Staged Rewriting: A
Practical Approach to Library-defined Optimizations. In Proceedings of the 16th ACM
SIGPLAN International Conference on Generative Programming: Concepts and Experiences,
GPCE 2017, pages 131–145, New York, NY, USA, 2017. ACM.

51 Lionel Parreaux, Amir Shaikhha, and Christoph E. Koch. Squid: Type-safe, Hygienic, and
Reusable Quasiquotes. In Proceedings of the 8th ACM SIGPLAN International Symposium on
Scala, SCALA 2017, pages 56–66, New York, NY, USA, 2017. ACM.

52 Lionel Parreaux, Antoine Voizard, Amir Shaikhha, and Christoph E. Koch. Unifying Analytic
and Statically-typed Quasiquotes. Proc. ACM Program. Lang., 2(POPL):13:1–13:33, December
2017.

53 Barak A Pearlmutter and Jeffrey Mark Siskind. Reverse-mode AD in a functional framework:
Lambda the ultimate backpropagator. ACM Transactions on Programming Languages and
Systems (TOPLAS), 30(2):7, 2008.

54 Avi Pfeffer. Figaro: An object-oriented probabilistic programming language. Technical Report
137, Charles River Analytics, 2009.

55 Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso,
Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al.
SPIRAL: code generation for DSP transforms. Proceedings of the IEEE, 93(2):232–275, 2005.

56 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2014. URL: http://www.R-project.org/.

57 Tiark Rompf and Martin Odersky. Lightweight Modular Staging: A Pragmatic Approach
to Runtime Code Generation and Compiled DSLs. In the ninth international conference on
Generative programming and component engineering, GPCE ’10, pages 127–136, New York,
NY, USA, 2010. ACM.

58 Taisuke Sato. A Glimpse of Symbolic-Statistical Modeling by PRISM. Journal of Intelligent
Information Systems, 31(2):161–176, October 2008.

59 Amir Shaikhha, Mohammad Dashti, and Christoph Koch. Push versus Pull-Based Loop Fusion
in Query Engines. Journal of Functional Programming, 28:e10, 2018.

60 Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis.
Destination-passing Style for Efficient Memory Management. In Proceedings of the 6th
ACM SIGPLAN International Workshop on Functional High-Performance Computing, FHPC
2017, pages 12–23, New York, NY, USA, 2017. ACM.

61 Amir Shaikhha, Andrew Fitzgibbon, Dimitrios Vytiniotis, Simon Peyton Jones, and Christoph
Koch. Efficient Differentiable Programming in a Functional Array-Processing Language. arXiv
preprint, 2018. arXiv:1806.02136.

http://www.R-project.org/
http://arxiv.org/abs/1806.02136

A. Shaikhha and L. Parreaux 25:29

62 Daniele G. Spampinato and Markus Püschel. A Basic Linear Algebra Compiler. In Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’14, pages 23:23–23:32. ACM, 2014.

63 Josef Svenningsson. Shortcut Fusion for Accumulating Parameters & Zip-like Functions. In Pro-
ceedings of the Seventh ACM SIGPLAN International Conference on Functional Programming,
ICFP ’02, pages 124–132. ACM, 2002.

64 Bo Joel Svensson and Josef Svenningsson. Defunctionalizing Push Arrays. In Proceedings of
the 3rd ACM SIGPLAN Workshop on Functional High-performance Computing, FHPC ’14,
pages 43–52, NY, USA, 2014. ACM.

65 Walid Taha. A gentle introduction to multi-stage programming. In Domain-Specific Program
Generation, pages 30–50. Springer, 2004.

66 Walid Taha and Tim Sheard. MetaML and multi-stage programming with explicit annotations.
Theor. Comput. Sci., 248(1-2):211–242, 2000.

67 Philip Wadler. Deforestation: Transforming programs to eliminate trees. In ESOP’88, pages
344–358. Springer, 1988.

68 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
69 Fei Wang, James Decker, Xilun Wu, Gregory Essertel, and Tiark Rompf. Backpropagation

with Callbacks: Foundations for Efficient and Expressive Differentiable Programming. In
Advances in Neural Information Processing Systems, pages 10200–10211, 2018.

70 Matthew J Weinstein and Anil V Rao. Algorithm 984: ADiGator, a toolbox for the algorithmic
differentiation of mathematical functions in MATLAB using source transformation via operator
overloading. ACM Trans. Math. Softw, 2016.

71 Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David Padua. SPL: A Language and
Compiler for DSP Algorithms. In Proceedings of the ACM SIGPLAN 2001 Conference on
Programming Language Design and Implementation, PLDI ’01, pages 298–308, New York, NY,
USA, 2001. ACM.

72 Jeremy Yallop. Staged Generic Programming. Proc. ACM Program. Lang., 1(ICFP):29:1–29:29,
August 2017.

ECOOP 2019

Towards Language-Parametric Semantic Editor
Services Based on Declarative Type System
Specifications
Daniel A. A. Pelsmaeker
Delft University of Technology, Delft, The Netherlands
d.a.a.pelsmaeker@tudelft.nl

Hendrik van Antwerpen
Delft University of Technology, Delft, The Netherlands
h.vanantwerpen@tudelft.nl

Eelco Visser
Delft University of Technology, Delft, The Netherlands
e.visser@tudelft.nl

Abstract
Editor services assist programmers to more effectively write and comprehend code. Implementing
editor services correctly is not trivial. This paper focuses on the specification of semantic editor
services, those that use the semantic model of a program. The specification of refactorings is a
common subject of study, but many other semantic editor services have received little attention.
We propose a language-parametric approach to the definition of semantic editor services, using a
declarative specification of the static semantics of the programming language, and constraint solving.
Editor services are specified as constraint problems, and language specifications are used to ensure
correctness. We describe our approach for the following semantic editor services: reference resolution,
find usages, goto subclasses, code completion, and the extract definition refactoring. We do this in
the context of Statix, a constraint language for the specification of type systems. We investigate the
specification of editor services in terms of Statix constraints, and the requirements these impose on
a suitable solver.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases semantics, constraint solving, Statix, name binding, editor services, reference
resolution, code completion, refactoring

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.26

Category Brave New Idea Paper

Funding This research was partially funded by the NWO VICI Language Designer’s Workbench
project (639.023.206).

Acknowledgements We thank the anonymous reviewers for their feedback on previous versions
of this paper. We also thank Arjen Rouvoet for his comments and his work on Ministatix, an
implementation of the core Statix language we use for prototyping.

1 Introduction

Editor services, such as syntax highlighting, reference navigation, and variable renaming, are
an important tool for programmers. For example, code navigation is important for effective
comprehension of code [13], and refactoring approaches rely heavily on good tool support [8].
It is therefore no surprise that such services are regularly used by users of IDEs [9].

© Daniel A.A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 26; pp. 26:1–26:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0196-0567
mailto:d.a.a.pelsmaeker@tudelft.nl
https://orcid.org/0000-0001-5117-0921
mailto:h.vanantwerpen@tudelft.nl
https://orcid.org/0000-0002-7384-3370
mailto:e.visser@tudelft.nl
https://doi.org/10.4230/LIPIcs.ECOOP.2019.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Towards Language-Parametric Semantic Editor Services

Editor services can be classified into syntactic and semantic editor services. The former,
such as syntax highlighting, rely only on the (abstract) syntax of a program. The latter
depend on a semantic model of the program, and use type or name binding information.
Semantic editor services can be further divided in two groups: services that inform about
the program, and services that transform the program. Informing services depend on the
program model that is the result of type checking. The program model contains information
on the types of variables, the declarations that references refer to, etc. Transforming services
are guided by the program model (e.g., to rename a declaration and all its usages), but may
also rely on the typing rules to ensure the resulting, transformed program is well-formed.

Implementing semantic editor services and ensuring their correctness is not a trivial task
(see, e.g., the difficulties around correctly implementing Java refactorings [14]). Language
workbenches are tools to aid the development of programming languages and programming en-
vironments [5] by means of declarative formalisms and reusable tools that support correctness
and reduce development effort. A good example of this is the use of a context-free grammar to
specify syntax. This specification can be used to drive a parser, but also for unparsing, or to
provide syntactic code completion. The language developer writes a declarative specification,
which helps with the correctness of the syntax, while existing parsing, unparsing, and code
completion algorithms can be reused, reducing development time.

However, even though “editor support is a central pillar of language workbenches” [3],
and many language workbenches do indeed support many common editor services, there is
little literature on reusable formalisms and algorithms for their definition [12]. An important
exception is the extensive work on defining correct refactorings (e.g., [14, 19, 16]). However,
many editor services common to modern IDEs, such as reference resolution, finding declaration
usages, or semantic code completion, have received little attention.

In this paper we argue that a range of semantic editor services, beyond those that have
already appeared in the literature, can be specified as constraint problems. Constraints
separate the declarative specification of a problem from the operational interpretations
necessary to solve it. This separates concerns, but also allows reuse of constraint-based
specifications for different purposes. For example, in addition to verifying the correctness of
the static semantics of a program, constraint-based typing rules have also been successfully
used in the implementation of semantically correct refactorings [16].

Many editor services rely on name binding information, where complex scoping and
name binding rules can be a challenge for the correct implementation of editor services (e.g.,
correct Java refactorings involving names [15]). Although constraint-based formulations of
typing rules are pervasive, constraint-based formulations of the scoping and name binding
rules are rare. Name binding introduces complexities, such as avoiding accidental name
capture when refactorings introduce new names. We believe that treating name binding and
name resolution as an integral part of the constraint problem increases the applicability of a
constraint-based approach to editor services, and can improve existing specifications from
the literature in this regard.

As the basis for our investigations we use Statix, a constraint language developed for the
specification of type systems [21]. Statix is built around scope graphs, a language-independent
model for name binding and name resolution [20]. We argue that Statix is a suitable basis
for the definition of editor services by expressing them in terms of Statix constraints and
Statix type system specifications. Although Statix constraints are suitable for a declarative
specification of editor services, the current deterministic solver algorithm of Statix, suitable
for type checking and code navigation, is not capable of solving the editor scenarios we
discuss. We identify requirements for an alternative solver for Statix that does support the
interpretation and solving algorithms required for our proposed editor service definitions.

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:3

Specifically, we have the following contributions:
We express several common editor services in terms of Statix constraint problems.
We identify requirements on an operational semantics of Statix that is able to solve these
problems.

This paper is organized as follows. Section 2 discusses the characteristics of semantic
editor services and motivates our choice of editor services. In Section 3, we introduce Statix,
and Statix type specifications using an example. In Section 4 we express several informing
editor services in terms of the resulting program model. In Section 5 and Section 6, we do
the same for the semantic code completion and extract definition refactoring editor services,
respectively. In Section 7 we discuss related work. We conclude and discuss future work
necessary to fully realize our proposed approach in Section 8.

2 Characterizing Editor Services

Editor services can be characterized as syntactic, those that only need the syntactic model of
the program to work, and semantic, those that require the semantic model of the program [3].
We can further distinguish the semantic editor services by whether they transform the
program, or merely inform the user. The informing services include editor services such
as goto declaration, finding and highlighting usages, navigating to the supertype, and
listing all overriding methods. The transforming editor services include quick fixes, static
semantics-preserving refactorings, and (semantic) code completion.

In this section we discuss aspects that distinguish the various semantic editor services,
and motivate our choice for the editor services we discuss.

Completeness

Some editor services have to be able to work on syntactically and/or semantically incomplete
programs. For example, as code completion can be invoked while the user is typing, it must be
able to deal with a program that is both syntactically and semantically incomplete. Similarly,
the fix import quick fix that adds an import statement to a program to make a reference
resolve, must be able to deal with programs that have incomplete semantic information;
namely the program with the reference that initially does not resolve. Other editor services
could provide a better user experience if they can deal with syntactically or semantically
incomplete programs, but this is not a requirement.

Preserving Static Semantics

The transforming editor services all need to preserve the existing semantics of the program up
to some degree. Refactorings such as rename refactoring and extract definition tend to have
very strict semantic preservation requirements, including that all existing references need
to resolve to the same declarations before and after the refactoring. Quick fixes and code
completion, by their nature, introduce new syntax that may change certain local semantics
of the code, but should not have an impact outside the area of influence.

Concrete Name Generation

Often, transforming editor services add new declarations to the program as part of their
refactoring or fixing behavior. These declarations need a concrete name, one which is
syntactically valid and does not clash with existing names in the program. That is, the new
name should not overlap with existing names, or cause inadvertent variable capture.

ECOOP 2019

26:4 Towards Language-Parametric Semantic Editor Services

0 D : type:Scope Declaration

Labeled edge Associated scope

Reference Scope1

P

R

Figure 1 Overview of the notation used for scope graphs in this paper.

What We Study

Given the characterization above, we picked five editor services for which we describe the
ideas of this paper. As informing editor services we choose reference resolution, find usages,
and list subclasses, because they show how scope graphs can be used to answer these queries,
where the last one requires language-specific knowledge. The last two also explore how
flexible the solver must be to be able to answer such inverse queries.

We discuss two transforming editor services: code completion, which will have to deal with
syntactically incomplete programs, and the extract definition refactoring, which is interesting
because it introduces new syntax for which we want to use the solver to find the concrete,
semantically correct, values to fill in.

We do not claim that these editor services cover all issues, or that the resulting require-
ments cover all editor services. However, we think that they exhibit a sufficient range of
features to show the range of possibilities, and expose important requirements that need to
be fulfilled to realize our approach.

3 Introduction to Statix

Statix is a recently introduced meta-language for the specification of static semantics [21],
based on scope graphs and constraints [10, 20]. We chose Statix because it allows us to
declare semantic editor services in terms of constraints and type system specifications.

First, we explain scope graphs, a language-independent model for name binding and
name resolution. Then, we introduce the rules for static semantics, and their (declarative)
meaning. Finally, we explain how type checking based on these rules is implemented. We use
the Java program in Figure 2 as a running example. The subscripts on program identifiers
are a notational convention we use to distinguish different occurrences of the same name.

Name Binding with Scope Graphs

In Statix the name binding and resolution is part of the constraint problem, to allow complex
interactions between type checking and name resolution. The name binding structure of a
program is represented as a language-independent model called a scope graph [10, 20, 21],
which is a graph of scopes and declarations in those scopes. As shown in Figure 1, the scopes
are connected by labeled, directed edges. Name resolution corresponds to a query finding a
path in the graph to a matching declaration.

Consider our example program and the corresponding scope graph in Figure 2. The
global scope of the whole program is represented by the circled node 0. The definition of
class A corresponds to a declaration A1. Declarations contain both the name and its type,
and therefore use the ’is of type’-symbol “:” to label these edges. Class types are represented
by the class scope. For example, scope 1 is the scope of class A, and its type is class(1).
The class scopes are lexical sub-scopes of the global scope, which is modeled by the P-labeled

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:5

class A1 {
int f2 = -1;

}
class B3 extends A4 {

int g5 = f6;
}

0A1 : class(1) :

1

P

f2 : int :

B3 : class(2):

2

P

A4

S g5 : int: f6

(J-ClassDec)

∇sc sc
P s s : Ci : class(sc) sc ` d ok

query s P∗: decl(Dj) asDk : class(sd) sc
S sd

s ` classCi extendsDj { d } ok

(J-FieldDec)

s ` JtK⇒ T s : fj : T
s ` e : T ′ ` T ′ <: T

s ` t fj = e; ok (J-Var)
query s P∗S∗: decl(xi) asxj : T

s ` xi : T

(T-Int)
s ` JintK⇒ int

(T-Class)
query s P∗: decl(Ci) asCj : T

s ` JCiK⇒ T

(<:-Int) ` int<: int (<:-Class)
query s1

S∗ scope(s2) as p
` class(s1)<: class(s2)

Figure 2 Example Java program with two classes, its corresponding scope graph, and the relevant
Statix typing rules.

(parent) edges. The fact that class B extends class A is represented by the edge labeled S
(supertype). This edge makes the fields from the super class visible in the subclass, but is
also used to decide subtyping between class types. The field declarations are similar to the
class declarations, but in the class scopes.

Resolving a name corresponds to querying the scope graph for a matching declaration.
Resolution queries are parameterized by a regular expression that determines which decla-
ration can be reached, a predicate determining which declarations match. An additional
order on labels is used to disambiguate multiple matching declarations. For example, the
class reference A4 is resolved in the global scope 0. Class references are resolved in the lexical
context, and the regular expression that encodes this is P∗:, which matches any path to a
declaration via any number of P-steps to lexical parents. The declaration itself should match
the reference, which is specified with the predicate decl(A4), which holds for any xi where
x = A. In this case the reference resolves directly to declaration A1 in scope 0.

Resolving the variable reference f6 follows the same pattern. However, it should be
possible to resolve not just to variables in the lexical context, but also to fields in the super
class. This is achieved by using the regular expression P∗S∗: . This allows the reference to
be resolved to declaration f2, by following the S-edge to scope 1.

ECOOP 2019

26:6 Towards Language-Parametric Semantic Editor Services

Type Specifications

The rules of a Statix specification formally describe the scope graph that corresponds to a
program, as well as constraints on references and types, in terms of syntax-directed rules.
Figure 2 shows some of the rules that apply to our example program. For example, the
rule (J-ClassDec) specifies that a class definition c is well-formed in scope s, written as
s ` c ok, if the scope graph has the correct structure, and the definitions in the class are
well-formed as well (sc ` d ok). The first three premises state that the scope graph contains
a scope sc that is unique to this class (∇sc), that this scope has a P-edge to its lexical
parent (sc

P s), and that there is a declaration Ci for the class in the lexical scope s,
typed by the class scope sc (s : Ci : class(sc)). The last two premises say that the
reference to the super class resolves to a declaration Dk, which is typed by a class scope sd

(query s P∗: decl(Dj) asDk : class(sd)), and that an inheritance edge exists from the scope
of this class to the scope of the super class (sc

S sd).
The rule (J-FieldDec) specifies that a field declaration is well-formed if a declaration for

the field exists in the scope graph (s : fj : T), if the assigned expression is well-typed
for some type T ′ (s ` e : T ′), and the expression type T ′ is a subtype (` T ′ <: T) of the
semantic type T corresponding to the type annotation (s ` JtK ⇒ T). The relations for
semantic typing, subtyping, and expression typing are also defined with Statix rules. The
only built-in constraints are constraints to define the scope graph, constrains to query the
scope graph, and term equality. All other relations are completely determined by the rules
from the specification.

Type Checking

The specification is declarative, and only gives a logical description of what well-formed
programs are with respect to a scope graph. We made no assumptions yet on how to
operationalize it. One possible interpretation is to use the specification to type check
programs. Checking that a program p is well-formed corresponds to checking if the constraint
s ` p ok is satisfiable. Van Antwerpen et al. describe an algorithm to solve such constraints,
given a specification and a program p as input [21]. The algorithm uses the rules from the
specification to simplify constraints until only built-in constraints remain. These are solved
using unification and scope graph resolution algorithms. This solver is deterministic: it does
not use back-tracking, and only applies rules if they match the given program construct.
The result of solving a constraint such as s ` p ok is a solution consisting of a variable
assignment V and a scope graph G, or no solution if the constraint cannot be satisfied. A
resulting program model would also include the types assigned to all expressions, and the
resolution R of all references in the program.

4 Informing Editor Services

Many editors have editor services through which the user can navigate their program. The
simplest of these involve clicking a reference and jumping to the corresponding declaration,
or listing all usages of a declaration, but there are also more sophisticated editor services
such as those that list the subclasses of a particular class. All these services have in common
that they can be expressed as queries on the program model that resulted from type checking.
Even though these queries themselves do not change the program, they may be part of
the implementation of other editor services that do change the program. For example, a
refactoring that renames a variable first needs to find all usages of the variable to ensure
they are all renamed.

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:7

Reference resolution and finding declaration usages can easily be derived from the program
model, which contains the resolution relation R, which consists of pairs of references and their
declaration. Consider the example in Figure 2 again. Finding the declaration corresponding
to reference A4, involves finding the entry for the reference in R. Conversely, finding all
usages of declaration f2 corresponds to a reverse lookup. These queries parallel the resolution
queries in the typing rules, and can directly be derived from the specification.

While a query to find all subclasses of a certain class is not directly present in the typing
rules, we can phrase such a query as a constraint, which we solve with respect to the given
program model. For instance, how would we specify – in constraints – the query to get all
subclasses of class A1? We assume as input the declaration itself, and the scope 0 of the class
definition, which should be part of the program model. The general idea of the query is to
find the class scope, find other class scopes that are connected to it by inheritance edges,
and find their corresponding declarations. This is encoded by the following constraint:

query 0 : decl(A1) as A1 : class(sc)

query sd
S+ scope(sc)

query s′ : true asxi : class(sd)

where sc, sd and s′ are existentially quantified, and xi is the output. The first constraint
says that the class declaration is typed by a scope sc. The second constraint states that there
is a path from some subclass scope sd to the class scope sc. The final constraint indicates
that there is a declaration with any name xi, which is typed by the subclass scope sd.

None of these constraints appear as such in the typing rules, and we have to do work
to find possible solutions. This may seem daunting, given the free variables for scopes and
names, both of which have infinite domains. However, we are only interested in solutions
that are valid in the context of an existing scope graph. This scope graph is always finite,
which gives us an initial, if maybe inefficient, strategy to find possible solutions. In the case
of our example, there is one solution, where sc = 1, sd = 2, s′ = 0, and xi = B3.

The given formulation requires an algorithm quite different from the current, deterministic
solver of Statix. Instead of strictly relying on inference via forward resolution and unification,
it needs to be able to guess values, try different alternatives, and back-track on failed attempts.
An alternative approach could have been to change scope graph queries to allow backward
edge steps. For example, if we use l̂ for backward steps in the regular expression, our second
constraint might have been:

query sc
Ŝ+ true as sd

In this case, we could do forward resolution from scope sc again, reusing the resolution
algorithm that is already there. Although this approach may work for queries designed
specifically with editor services in mind, it does not work if we want to use our typing rules
as-is. Therefore, we choose not to change the formalism, but require a solver that supports
more flexible inference.

Summary

We showed that queries on the program model can be expressed as constraints, and that
finding answers to these queries corresponds to solving these constraints in the context of
a given program model. We discussed that solving these queries requires different solver
strategies to be supported by the solver for Statix. However, this solver would be independent

ECOOP 2019

26:8 Towards Language-Parametric Semantic Editor Services

of the specific object language the query is for, and is therefore reusable between languages.
Given such a solver, implementing such editor services reduces to being able to specify the
query as a constraint.

5 Code Completion

Code completion is an editor service that suggests a valid code fragment to be inserted at the
caret position. This assists the user while typing, attempts to minimize typing errors, and
aids in discovery by showing the possible syntax and references. Syntactic code completion
is the most basic kind of code completion: it suggests only syntax fragments that fit at the
caret location, with no regard for whether the proposal fits semantically. Semantic code
completion improves on this by suggesting only those proposals that conform to the static
semantics of the language, such as only suggesting expression syntax that can produce a value
of the expected type. Additionally, semantic code completion proposes inserting references
to declarations, such as variables, fields, and functions, that are visible from the scope at the
caret location. In this section we discuss how the type system and semantic specification of
a language can be used to provide accurate semantic code completion without additional
work on the part of the language designer.

In Figure 3 we show an example Java program with the caret position denoted by |, near
the end of the last line of class X11. The program is incomplete: it is not syntactically valid
because the user has not yet finished typing. Despite this, we would want the semantic model
of the program so we can suggest relevant syntax and references.

As a first step, we propose to use the techniques described by Amorim et al. in [2] to use
the syntactic specification of the language to introduce placeholders into the abstract syntax.
A placeholder is a term in the syntax that represents a place where syntax of a certain
sort, such as an expression or a declaration, could be inserted. This makes the program
syntactically complete, and the placeholders provide us with syntax terms which we can
constrain. Therefore, to the completion service, the incomplete line of code has the following
syntax, with placeholder $Exp for a possible expression that would complete the program:

int i13 = $Exp ;

At this point, we would want to invoke the solver and let it verify our program using the
rules shown in Figure 3. However, no rules apply to the placeholder term $Exp. Instead, we
propose to replace any occurrence of a placeholder in the syntax terms with a corresponding
constraint variable in the constraint terms. In this example, we use ε for $Exp, which, because
of the semantic rule (J-FieldDec), results in the following constraints for this line:

3 ` JintK⇒ T 3 : i13 : T 3 ` ε : T ′ ` T ′ <: T

Solving these constraints assigns T ′ 7→ int and T 7→ int. In other words, the editor
service has inferred that the expected type of the expression on that line must be int,
and produced the scope graph shown in Figure 3. The solver can continue, trying to find
an assignment for ε. There are two rules in Figure 3 that it could apply: (J-Plus) and
(J-ThisMethodCall). In fact, we would want the solver to return both solutions for code
completion. We will explore both these alternatives.

Expression Completion

From rule (J-Plus) (s ` e1 + e2 : T) we would get the assignment ε = ε1 + ε2, where ε1 and
ε2 are new constraint variables introduced by the solver. We would like to stop here, and let
the solver return the solution ε = ε1 + ε2. Note that this solution is incomplete: it does not

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:9

interface A1 {
int a2 ();
int b3(int x4 , int y5);

}

interface B6 extends A7 {
boolean c8 ();
int d9(int x10);

}

class X11 implements B12 {
int i13 = |;

}

0 2P

1

P

3

P

S

S

a2 : [] → int:

b3 : [int, int] → int:

c8 : [] → bool:

d9 : [int] → int:

i13 : int:

B6 : interface(2) :

A1 : interface(1)
:

X11 : class(3)
:

(J-InterfaceDec)

∇sc sc
P s s : Ci : interface(sc)

query s : decl(Dj) as {Dk : interface(sd)}
sc

S sd sc ` d ok
s ` interfaceCi extendsDj { d } ok

(J-InterfaceMethodDec)
s ` JCiK⇒ T s ` JCkK⇒ Tk s : xj : Tk → T

s ` Ci xj(Ck xk); ok

(J-ClassDec)

∇sc sc
P s s : Ci : class(sc) sc ` d ok

query s : decl(Dj) as {Dk : interface(sd)} sc
S sd

s ` classCi implementsDj { d } ok

(J-FieldDec)

s ` JtK⇒ T s : fj : T
s ` e : T ′ ` T ′ <: T

s ` t fj = e; ok

(J-ThisMethodCall)

s ` e : V ` V <: U
query s S∗: decl(mi) as {mj : U → T}

s ` mi(e) : T

(J-Plus)
s ` e1 : T1 s ` e2 : T2 T1 = T2 = T = int

s ` e1 + e2 : T

Figure 3 Java program illustrating code completion, and the corresponding scope graph and
relevant Statix typing rules.

ECOOP 2019

26:10 Towards Language-Parametric Semantic Editor Services

describe the whole program as there are still free constraint variables in them. Therefore,
the solver would need to be able to return incomplete solutions. As part of this solution, we
get some constraints that not ground because they contain these free constraint variables:

3 ` ε1 : int 3 ` ε2 : int

Translated back to syntax terms, replacing the free constraint variables by placeholders, this
would result in the following syntax on the line being completed:

int i13 = $Exp + $Exp ;

Of course, we could also let the solver continue its search to find assignments for ε1 and ε2,
but this would likely result in an ever expanding sequence of ε1 + ε2 + ε3 + Ultimately,
there are infinitely many solutions if we were to try to make all variables ground. This shows
that we need a way to instruct the solver on how deep we want a constraint variable to be
solved. In this example, we want solutions for ε only one level deep.

Method Call Completion

When the solver instead applies rule (J-ThisMethodCall), we get method call comple-
tion: where code completion suggests calls to methods in scope at the caret position,
and whose return a type is compatible with the expected type of the expression. From rule
(J-ThisMethodCall) (s ` mi(e) : T) we would get the assignment ε = µ(ε), again introducing
new constraint variables µ and ε to represent the method name and arguments respectively.

Since proposing just the syntax for a method call is not very satisfactory to a user, this
time we do want to get another level of solutions. At least, we want µ to be solved, but
we do not care about ε. We need a way to indicate this to the solver. Through the rule
(J-ThisMethodCall) the solver would add these constraints:

3 ` ε : V ` V <: U query 3 S∗: decl(µ) as {mj : U → int}

There are multiple possible assignments for constraint variables µ and ε, and for code
completion to work, the solver must find them all. The following table shows the possible
assignments for µ, ε, T , U , and V that the solver might yield.

Solution µ ε T U V

Solution 1 a2 [] int [] []
Solution 2 b3 [ε1, ε2] int [int, int] [τ1, τ2]
Solution 3 c8 [] bool [] []
Solution 4 d9 [ε1] int [int] [τ1]

Note that solution 3 is not valid, as it tries to assign T 7→ bool whereas T had previously
already been assigned int. Also note how the solver could infer lists of constraint variables for
U and V . But, as before, we would not want the solver to keep expanding on the constraint
variables it has introduced. If we had not relaxed these variables such that they may remain
free, the solver would have to find some assignment for the variables that satisfies them.
In this example the solver might have added a method call to an arbitrary method with a
compatible return type, such as a2. In other scenarios the solver may not be able to find
such a solution, or find infinitely many.

The solutions returned by the solver can be turned into syntax fragments and presented
to the user as code completion proposals, where we replace the free constraint variables
by syntax placeholders. The order of the proposals is not determined by the solver, as we

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:11

consider this to be a separate concern. For example, we may want to order the proposals by
their frequency of use, or use the semantic model to order the proposals by closeness (e.g.,
local variables before global variables). In this example, code completion would propose the
following method calls:

a2()
b3($Exp, $Exp)
d9($Exp)

Summary

To use the semantic of the programming language for code completion, we first need a
semantic specification that includes a model for name binding. This is already provided by
the scope graphs used by the Statix constraint solver. However, the solver also needs to
support returning incomplete solutions. The solver needs to be able to distinguish between
constraint variables that we want to have solved and those that may remain free, and we
need to be able to indicate how deep we want a given constraint variable to be solved. By
using the semantic rules, a solution can include syntactic assignments to variables. Finally,
the solver must be able to return more than one solution, so we can display them all to the
user as part of code completion.

6 Extract Definition

A common refactoring is the extract definition refactoring, where the user selects a subex-
pression and the refactoring replaces any occurrences of that expression by a reference to
a variable definition initialized by the subexpression. In the example in Figure 4, we want
to extract the x - 3 subexpression into a separate definition. We assume the program is
syntactically complete and semantically correct.

The first step in this refactoring is to determine the new syntax that we expect as a
result of the refactoring. This is language-specific syntax, selected by the user and specified
in advance by the language developer. The syntax fragment uses placeholders, as shown
below, where $Type is a placeholder for the type of the newly created variable and $ID is a
placeholder for a variable name. In this case we want all three occurrences $ID to refer to
the same variable.

int f1(int x2) {
$Type $ID = x3 - 3;
return $ID + $ID * x5;

}

We create a copy of the previous, valid, solution returned by the solver, and adapt it to
this refactoring. This is a two-part process: relaxing the solution, and adding new constraints
to the problem. Relaxing the solution removes any variables, resolutions, constraints, and
scope graph nodes that are no longer valid or that impact the aspects we want to refactor.
For extracting a definition, relaxation only involves removing the reference relation x4 7→ x2,
since the reference x4 has been removed. However, we still want the variable references x3
and x5 to resolve to the same definition x2.

Now we can add new constraints to the problem, but the refactoring should add only
those constraints that result from the changed syntax. The constraints may contain syntax
terms, but we replace any occurrences of the placeholders by constraint variables. For the

ECOOP 2019

26:12 Towards Language-Parametric Semantic Editor Services

int f1(int x2) {
return (x3 - 3) + (x4 - 3) * x5;

}

0

1

P

f1 : [int] → int:

x2 : int:

(J-MethodDec)

s ` JCiK⇒ T ∇sm sm
P s

s ` JCkK⇒ Tk sm
: pk : Tk

sm ` b ok s : mj : Tk → T
sm ` e : U ` U <: T

s ` Ci mj(Ck pk) { b return e; } ok

(J-VarDec)
s ` JCxK⇒ T s : vy : T s ` e : T

s ` Cx vy = e; ok

(J-Var)
query s P∗S∗: decl(xi) asxj : T

s ` xi : T

(J-IntBinOp)
s ` e1 : T1 s ` e2 : T2 T1 = T2 = T = int

s ` e1 ⊕ e2 : T

Figure 4 Java program before applying the extract definition refactoring, and the corresponding
scope graph and relevant Statix typing rules.

type placeholder $Type, we will use the constraint variable τ . Since we want all occurrences
of the $ID placeholder to refer to the same variable, we should replace all occurrences with
the same constraint variable.

Where other approaches use the solver to find a concrete name for the variable ([16]), we
argue that this is not necessary for the solver to give a correct result. We merely want to
indicate to the solver that the new name is different from all other names in the program.
This gives a separation of concerns: the solver can verify that the program satisfies the
constraints without needing to produce any concrete names, and generating the concrete
names can be done externally after the solver has verified the program. For example, some
IDEs provide a list of name suggestions that they generate from the context, such as the
type of the expression.

To distinguish the abstract name from any other name in the program, we can use a
rigid variable: one that is distinct from any other variable or name. Similar to how rigid
variables are used to create new distinct scopes in the scope graph (through ∇s), we create
a new rigid variable to represent the name of the newly introduced variable: ∇n. Due to
rules (J-VarDec) and (J-Var), this results in the following constraints:

∇n
1 ` JτK⇒ T 1 : n : T

1 ` (x3 − 3) : T query 1 P∗S∗: decl(n) asxj : T

Solving these constraints results in the variable assignment and scope graph shown in Figure 5.

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:13

int f(int x) {
int n = x - 3;
return n + n * x;

}

0

1

P

f1 : [int] → int:

n : int:

x2 : int:

n

n τ T vj

Solution n int int n

Figure 5 Java program after applying the extract definition refactoring, and the corresponding
scope graph and variable assignments. Note that n in the program is a rigid variable, which has yet
to be assigned a concrete name.

From this we can conclude that the refactoring is valid, does not semantically change
the program (since the existing constraints and reference resolutions are preserved), and
that the type of the newly introduced variable is int. However, to finish the refactoring we
have to decide on a concrete name for rigid variable n. A concrete name can be provided by
the refactoring tool or by the user. In any case, we can test whether the suggested name
is allowed by reinvoking the solver with the new solution and one additional constraint: to
constrain n to the chosen name, say i.

n = i

The new constraint may result in an invalid solution, for example when the chosen name
overlaps with another, or causes inadvertent name capture somewhere in the program. In
this example, x is not allowed as a concrete name for n. However, if this results in a valid
solution, the concrete name is acceptable and the refactoring can finish. In this example it
would produce the following code:

int f(int x) {
int i = x - 3;
return i + i * x;

}

Summary

As part of the refactoring we generate new syntax, where we use placeholders to indicate
where we need more information. In the newly generated constraints we have a constraint
variable taking the place of every placeholder, which allows us to use the solver to find
a solution to the problem. By using a rigid variable in place of a concrete name, we can
indicate that the name is different from all other names in the program without having to
specify such a name concretely, giving a separation of concerns between finding whether the
program is valid and what concrete name to choose.

ECOOP 2019

26:14 Towards Language-Parametric Semantic Editor Services

7 Related Work

Erdweg et al. [3] identify editor services as an important aspect of language workbenches,
and give an overview of commonly supported editor services. However, Omar et al. have
pointed out that the study of the semantic foundations of editors and editor interactions
has received little attention so far [12]. We discuss work related to code completion, and
refactoring, as those are most relevant to the editor services we covered in this paper.

Reference Resolution

Language workbenches such as Xtext [4] and Spoofax [6, 22] provide support for language-
parametric reference resolution based on declarative name binding specifications. Xtext
supports specification of references in the language grammar as crosslinks, which specify the
sort that an identifier can refer to. Xtext will check the validity of the references and add
them to the model.

The first approach to declarative name binding specification in Spoofax was the NaBL
name binding language [7]. The name binding rules defined the definition sites and their
scopes based on the abstract syntax of the program. The built-in reference resolution
algorithm could only create an index in which references can be looked up, which limits its
flexibility to be used in other editor services.

Instead, the approach we use in this paper uses the expressiveness of the constraints and
the flexibility of the Statix constraint solver to enable reference resolution to be used in
various editor services.

Code Completion

The Xtext and Spoofax language workbenches also provide support for language-parametric
syntactic completion, based on a syntax definition. In the case of Xtext, it suggests possible
keywords. Spoofax suggests complete syntactic constructs, and represents incomplete syntax
trees using placeholders that act like holes in the program text [2]. This representation is
instrumental for translating an incomplete program to an abstract syntax tree with variables,
which allows us to use it in a constraint context. A program with placeholders is similar
to the representation of an AST with holes that is common in structure editors. Although
structure editors are primarily concerned with guaranteeing that the program is well-typed
with respect to the abstract syntax signature, recent work investigates editors that also
maintain other well-formedness properties, such as well-typedness.

The Hazelnut editor provides a language-parametric structure editor that guarantees
well-typed ASTs for languages whose type system is defined in a bidirectional style [11].
JastAdd extends their reference attribute grammars to provide a context-sensitive completion
service that suggest the names of variables and functions, but still requires some language-
specific effort to derive these suggestions [18]. Steimann et al. use constraint-based language
specifications to ensure edits preserve well-formedness [17]. They focus on an architecture
that allows interaction between the solver and the user during the editing process, to resolve
conflicts that may have been introduced. Our aim is to generate semantic completion
proposals by combining the mechanisms for syntactic completion, with checking and inference
based on the language specification. Another important difference is that issues around name
resolution are largely ignored in their work, because references are actual references in the
underlying model, whereas in our text-based setting we need to consider naming issues.

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:15

Semantic code completion also has similarities to interactive proof search, such as offered
by proof assistants. For example, the editor of Agda [1] features holes that are similar to
placeholders. An automatic procedure tries to find proof terms (expressions) that fit the
goal (type). There are some important differences with our approach to code completion.
The procedure to find these terms is not language-parametric, but specific to Agda. The
search procedure does not exploit the typing rules, but duplicates knowledge from the type
checker. Type correctness is guaranteed by type checking the fragment after it is generated.

Refactoring

There is a long line of research on the specification and implementation of refactorings.
Tip et al. [19] study type related refactorings, such as adding type parameters, extracting
interfaces, and pulling up methods. They use type constraints to specify the invariants that
ensure correct behavior. Steimann and others [16] extend this work to include constraints
for other aspects such as access modifiers and names. By representing the program itself
using constraint variables, both the invariants and the refactoring intent can be represented
as constraints. Finding the refactored program, within the limits of the given constraints,
is delegated to the constraint solver. This approach is in many aspects similar to ours,
and hopefully techniques they developed for performance carry over to our approach. An
important difference is that by using Statix, the constraint solver is aware of the complete
binding model. In their approach preventing capture requires the introduction of inequality
constraints between names. These constraints do not follow from regular constraint-based
typing rules. In our approach, the resolution constraints that are part of the typing rules
can also be used to ensure the invariance of name resolution during refactoring.

8 Conclusion

In this paper we have discussed various semantic editor services, and shown how they can be
expressed in terms of the semantic rules, constraints, and scope graph. We show that Statix
constraints are expressive enough to formulate interesting editor services. We have pointed
out that the Statix solver used for type checking is not suitable for the scenarios that arise
in editor services, and we have identified several requirements that such alternative solver
strategies should have. The main requirements we identified are:

The solver must be able to try different alternatives, guess values, back-track on failed
attempts, and able to return multiple solutions. As we have shown, this is a requirement
to implementing code completion, but also for other editor services such as find usages
and find all subclasses.
Instead of always searching for complete solutions (i.e., assignments to all variables),
the search should be controlled by user-defined criteria, including whether the solver
should only consider deterministic inference, or whether it tries to find solutions non-
deterministically. These criteria should be able to depend on variables appearing in the
constraints. Specifying which constraint variables may remain unconstrained, and how
deep the solver should search for an assignment, allows us to direct the search to finding
solutions to only those constraint variables we are interested in, and prevent the solver
from getting stuck.

Finally, we propose to extend the mechanisms of creating scopes in Statix to a general
mechanism of rigid variables. These rigid variables can be used to solve problems around
inventing new concrete names in the constraint solver, and should make it easier to imple-
ment various refactorings without having to deal with concrete names, accidental variable

ECOOP 2019

26:16 Towards Language-Parametric Semantic Editor Services

capture, and ambiguous names. Factoring out the choice of finding concrete names separates
concerns, and also allows for language-specific strategies (e.g., suggesting variables names
based on types).

Future Work

This paper presented ideas on what would be needed for language-parametric semantic editor
services. To verify our approach, we need to implement the proposed extensions to the Statix
solver. This will allows us to evaluate their feasibility in practice, as it is not clear whether
implementing some of these techniques, such as having the solver back-track and trying to
find multiple possible solutions, would cause performance issues or introduce non-termination.
And if so, how we could avoid that without impacting the expressiveness of the semantic
rules too much.

There are editor services, other than those we discussed, to which we could apply our
approach, such as fix import, search for symbol, and in particular rename refactoring. Rename
refactoring is interesting because it not only needs to rename the references to the renamed
declaration, but possibly other references and declarations as well. For example, when a
method is renamed, all overriding methods need to be renamed too, and this relation is not
visible in the program model, but only encoded in the semantic rules.

While our current approach is focussed on preserving the static semantics of the program,
for certain refactorings it may be required to extend the approach to also preserve certain
dynamic aspects of the semantics. Additionally, a combination of our approaches might be
used to implement program generation that is guaranteed to produce programs that are
semantically correct.

References
1 Catarina Coquand, Makoto Takeyama, and Dan Synek. An Emacs-Interface for Type-Directed

Supportfor Constructing Proofs and Programs. In European Joint Conferences on Theory and
Practice of Software, ENTCS, volume 2, 2006.

2 Luis Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth, and Eelco Visser.
Principled syntactic code completion using placeholders. In Tijs van der Storm, Emilie Balland,
and Dániel Varró, editors, Proceedings of the 2016 ACM SIGPLAN International Conference
on Software Language Engineering, Amsterdam, The Netherlands, October 31 - November 1,
2016, pages 163–175. ACM, 2016.

3 Sebastian Erdweg, Tijs van der Storm, Markus Völter, Meinte Boersma, Remi Bosman,
William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven Kelly, Alex Loh, Gabriël Konat,
Pedro J. Molina, Martin Palatnik, Risto Pohjonen, Eugen Schindler, Klemens Schindler,
Riccardo Solmi, Vlad A. Vergu, Eelco Visser, Kevin van der Vlist, Guido Wachsmuth, and
Jimi van der Woning. The State of the Art in Language Workbenches - Conclusions from
the Language Workbench Challenge. In Martin Erwig, Richard F. Paige, and Eric Van Wyk,
editors, Software Language Engineering - 6th International Conference, SLE 2013, Indianapolis,
IN, USA, October 26-28, 2013. Proceedings, volume 8225 of Lecture Notes in Computer Science,
pages 197–217. Springer, 2013. doi:10.1007/978-3-319-02654-1_11.

4 M. Eysholdt and H. Behrens. Xtext: implement your language faster than the quick and
dirty way. In Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pages 307–309. ACM, 2010.

5 Martin Fowler. Language Workbenches: The Killer-App for Domain Specific Languages?,
2005.

http://dx.doi.org/10.1007/978-3-319-02654-1_11

D.A. A. Pelsmaeker, H. van Antwerpen, and E. Visser 26:17

6 Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules for declarative
specification of languages and IDEs. In William R. Cook, Siobhán Clarke, and Martin C.
Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2010, pages 444–463,
Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869497.

7 Gabriël Konat, Lennart C. L. Kats, Guido Wachsmuth, and Eelco Visser. Declarative Name
Binding and Scope Rules. In Krzysztof Czarnecki and Görel Hedin, editors, Software Language
Engineering, 5th International Conference, SLE 2012, Dresden, Germany, September 26-28,
2012, Revised Selected Papers, volume 7745 of Lecture Notes in Computer Science, pages
311–331. Springer, 2012. doi:10.1007/978-3-642-36089-3_18.

8 Tom Mens, Serge Demeyer, Bart Du Bois, Hans Stenten, and Pieter Van Gorp. Refactoring:
Current Research and Future Trends. Electronic Notes in Theoretical Computer Science,
82(3):483–499, 2003.

9 Gail C. Murphy, Mik Kersten, and Leah Findlater. How Are Java Software Developers Using
the Eclipse IDE? IEEE Software, 23(4):76–83, 2006. doi:10.1109/MS.2006.105.

10 Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido Wachsmuth. A Theory of Name
Resolution. In Jan Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings,
volume 9032 of Lecture Notes in Computer Science, pages 205–231. Springer, 2015. doi:
10.1007/978-3-662-46669-8_9.

11 Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer.
Hazelnut: a bidirectionally typed structure editor calculus. In Giuseppe Castagna and
Andrew D. Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, pages 86–99.
ACM, 2017.

12 Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan
Aldrich, and Matthew A. Hammer. Toward Semantic Foundations for Program Editors.
In Benjamin S. Lerner, Rastislav Bodík, and Shriram Krishnamurthi, editors, 2nd Summit
on Advances in Programming Languages, SNAPL 2017, May 7-10, 2017, Asilomar, CA,
USA, volume 71 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:
10.4230/LIPIcs.SNAPL.2017.11.

13 Martin P. Robillard, Wesley Coelho, and Gail C. Murphy. How Effective Developers Investigate
Source Code: An Exploratory Study. IEEE Trans. Software Eng., 30(12):889–903, 2004.
doi:10.1109/TSE.2004.101.

14 Max Schäfer and Oege de Moor. Specifying and implementing refactorings. In William R. Cook,
Siobhán Clarke, and Martin C. Rinard, editors, Proceedings of the 25th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2010, pages 286–301, Reno/Tahoe, Nevada, 2010. ACM. doi:10.1145/1869459.1869485.

15 Max Schäfer, Andreas Thies, Friedrich Steimann, and Frank Tip. A Comprehensive Approach
to Naming and Accessibility in Refactoring Java Programs. IEEE Trans. Software Eng.,
38(6):1233–1257, 2012. doi:10.1109/TSE.2012.13.

16 Friedrich Steimann. Constraint-Based Refactoring. ACM Transactions on Programming
Languages and Systems, 40(1), 2018. doi:10.1145/3156016.

17 Friedrich Steimann, Marcus Frenkel, and Markus Voelter. Robust projectional editing. In Benoît
Combemale, Marjan Mernik, and Bernhard Rumpe, editors, Proceedings of the 10th ACM
SIGPLAN International Conference on Software Language Engineering, SLE 2017, Vancouver,
BC, Canada, October 23-24, 2017, pages 79–90. ACM, 2017. doi:10.1145/3136014.3136034.

18 Emma Söderberg and Görel Hedin. Building semantic editors using JastAdd: tool demon-
stration. In Claus Brabrand and Eric Van Wyk, editors, Language Descriptions, Tools and
Applications, LDTA 2011, Saarbrücken, Germany, March 26-27, 2011. Proceeding, page 11.
ACM, 2011. doi:10.1145/1988783.1988794.

ECOOP 2019

http://dx.doi.org/10.1145/1869459.1869497
http://dx.doi.org/10.1007/978-3-642-36089-3_18
http://dx.doi.org/10.1109/MS.2006.105
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.1007/978-3-662-46669-8_9
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.11
http://dx.doi.org/10.4230/LIPIcs.SNAPL.2017.11
http://dx.doi.org/10.1109/TSE.2004.101
http://dx.doi.org/10.1145/1869459.1869485
http://dx.doi.org/10.1109/TSE.2012.13
http://dx.doi.org/10.1145/3156016
http://dx.doi.org/10.1145/3136014.3136034
http://dx.doi.org/10.1145/1988783.1988794

26:18 Towards Language-Parametric Semantic Editor Services

19 Frank Tip, Robert M. Fuhrer, Adam Kiezun, Michael D. Ernst, Ittai Balaban, and Bjorn De
Sutter. Refactoring using type constraints. ACM Transactions on Programming Languages
and Systems, 33(3):9, 2011. doi:10.1145/1961204.1961205.

20 Hendrik van Antwerpen, Pierre Néron, Andrew P. Tolmach, Eelco Visser, and Guido
Wachsmuth. A constraint language for static semantic analysis based on scope graphs.
In Martin Erwig and Tiark Rompf, editors, Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 49–60. ACM, 2016. doi:10.1145/2847538.2847543.

21 Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser. Scopes
as types. Proceedings of the ACM on Programming Languages, 2(OOPSLA), 2018. doi:
10.1145/3276484.

22 Eelco Visser, Guido Wachsmuth, Andrew P. Tolmach, Pierre Néron, Vlad A. Vergu, Augusto
Passalaqua, and Gabriël Konat. A Language Designer’s Workbench: A One-Stop-Shop
for Implementation and Verification of Language Designs. In Andrew P. Black, Shriram
Krishnamurthi, Bernd Bruegge, and Joseph N. Ruskiewicz, editors, Onward! 2014, Proceedings
of the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, part of SPLASH ’14, Portland, OR, USA, October 20-24, 2014,
pages 95–111. ACM, 2014. doi:10.1145/2661136.2661149.

http://dx.doi.org/10.1145/1961204.1961205
http://dx.doi.org/10.1145/2847538.2847543
http://dx.doi.org/10.1145/3276484
http://dx.doi.org/10.1145/3276484
http://dx.doi.org/10.1145/2661136.2661149

Multiverse Debugging: Non-Deterministic
Debugging for Non-Deterministic Programs
Carmen Torres Lopez
Vrije Universiteit Brussel, Belgium
ctorresl@vub.be

Robbert Gurdeep Singh
Universiteit Gent, Belgium
Robbert.GurdeepSingh@ugent.be

Stefan Marr
School of Computing, University of Kent, United Kingdom
s.marr@kent.ac.uk

Elisa Gonzalez Boix
Vrije Universiteit Brussel, Belgium
egonzale@vub.be

Christophe Scholliers
Universiteit Gent, Belgium
Christophe.Scholliers@ugent.be

Abstract
Many of today’s software systems are parallel or concurrent. With the rise of Node.js and more
generally event-loop architectures, many systems need to handle concurrency. However, its non-
deterministic behavior makes it hard to reproduce bugs. Today’s interactive debuggers unfortunately
do not support developers in debugging non-deterministic issues. They only allow us to explore a
single execution path. Therefore, some bugs may never be reproduced in the debugging session,
because the right conditions are not triggered.

As a solution, we propose multiverse debugging, a new approach for debugging non-deterministic
programs that allows developers to observe all possible execution paths of a parallel program and
debug it interactively. We introduce the concepts of multiverse breakpoints and stepping, which
can halt a program in different execution paths, i.e. universes. We apply multiverse debugging to
AmbientTalk, an actor-based language, resulting in Voyager, a multiverse debugger implemented
on top of the AmbientTalk operational semantics. We provide a proof of non-interference, i.e.,
we prove that observing the behavior of a program by the debugger does not affect the behavior
of that program and vice versa. Multiverse debugging establishes the foundation for debugging
non-deterministic programs interactively, which we believe can aid the development of parallel and
concurrent systems.

2012 ACM Subject Classification Software and its engineering → Concurrent programming lan-
guages; Software and its engineering → Software testing and debugging

Keywords and phrases Debugging, Parallelism, Concurrency, Actors, Formal Semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.27

Category Brave New Idea Paper

Supplement Material ECOOP 2019 Artifact Evaluation approved artifact available at
https://dx.doi.org/10.4230/DARTS.5.2.4

Funding Carmen Torres Lopez: Funded by FWO Research Foundation Flanders (FWO), project
number G004816N.
Robbert Gurdeep Singh: Doctoral fellowship from the Special Research Fund (BOF) of Ghent
University (reference number: BOF18/DOC/327).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix,
and Christophe Scholliers;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 27; pp. 27:1–27:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-3125-0921
mailto:ctorresl@vub.be
https://orcid.org/0000-0003-4394-0011
mailto:Robbert.GurdeepSingh@ugent.be
https://orcid.org/0000-0001-9059-5180
mailto:s.marr@kent.ac.uk
mailto:egonzale@vub.be
mailto:Christophe.Scholliers@ugent.be
https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://dx.doi.org/10.4230/DARTS.5.2.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Multiverse Debugging

Acknowledgements We would like to thank Thomas Dupriez (ENS Paris-Saclay - RMoD, Inria,
Lille-Nord Europe) for an initial implementation of the underlying visualization and reduction code.

1 Introduction

Parallelism has become an integral part of modern software ranging from large-scale server
code to responsive web applications or networked embedded systems. While a wide range of
high-level concurrency abstractions are available for developers, understanding and debugging
parallel programs remains challenging. The main reason why parallel programs are so difficult
to debug is due to their non-determinism. Since the state of a parallel program at any
given moment in time can alter to one of many possible successor states, it is very difficult
to reason about their behavior and to reproduce bugs as they may only manifest in rare
execution traces.

Debugging tools for parallel and concurrent programs have been studied in the past
and can be categorized in two main families [48]: event-based debuggers (also known as
log-based debuggers) and breakpoint-based debuggers (also known as online or interactive
debuggers). While event-based approaches generate a program trace for offline browsing or
deterministic replay, breakpoint-based debuggers control the program execution allowing
developers to pause/resume program execution at well-defined points (e.g. on a breakpoint),
inspect program state, and perform step-by-step execution.

Despite the presence of online debuggers in modern IDEs, a recent study showed that
debugging parallel applications remains very problematic [53], because debuggers do not
account for the non-determinism of concurrent applications. Most of the existing tools only
provide support for deterministic debugging, i.e., they support the debugging of only one
parallel entity at a time rather than the program as a whole. This means that one run of the
debugger is very likely to miss the erroneous state in which the bug manifests itself, requiring
many debugging cycles before being able to reproduce the bug. Even worse, the mere
presence of a debugger may affect the order in which parallel entities are executed, making
the reproduction of a bug even rarer. This condition akin to the Heisenberg uncertainty
principle, is known as the probe effect [25].

In addition to debugging techniques, static analyses have been studied for parallel and
concurrent programs to detect certain types of program errors without executing the program,
e.g. static analysis to verify the boundedness of actor mailboxes [24], model checkers for
concurrent programs written in Erlang [15] or Scala [38], type systems to ensure type safety on
reciprocal communication channels [56]. These techniques detect synchronization errors such
as deadlocks [10, 23], incorrect ordering of locks [4], and incorrect interleaving of messages
in actor systems [15]. However, they often put severe restrictions on the way programs are
organized (e.g. on how futures are used in actor-based programs [26]). More importantly,
they expect developers to have a good understanding of what caused the bug as they verify
a well-defined property over a program, but they currently cannot be used interactively to
explore and search for a bug with an unknown cause. Finally, static analysis techniques are
almost always about approximations, when the analysis detects a bug it might be impossible
to find a concrete execution path which triggered the bug.

What is needed to debug non-deterministic programs is a technique which: 1) allows
programmers to observe all the possible states a parallel program can exhibit at run time
and 2) is probe-effect free. In this paper, we propose multiverse debugging, a novel debugging
technique for parallel programs which combines breakpoint-based debugging with state
exploration from static techniques. The key idea of multiverse debugging is that non-

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:3

deterministic programs require non-deterministic debugging. Contrary to current state-of-the-
art debuggers, which only execute the program in one execution path (i.e. one universe),
a multiverse debugger can observe all possible universes. A multiverse debugger is itself a
non-deterministic program which is able to explore all possible states of a parallel program
while leveraging breakpoints and stepping commands of online debuggers to interactively
search for the root cause of a bug. This means that regular breakpoints become multiverse
breakpoints which are potentially triggered multiple times in different universes. As such, a
multiverse debugger ensures that if a bug is in the program, it will be observed during the
debugging session.

In this paper we give an overview of how to design a multiverse debugger starting from
the operational semantics of a non-deterministic language. We evaluate multiverse debugging
by applying it to actor-based programs written in the AmbientTalk language. On top of the
existing AmbientTalk operational semantics (known as Featherweight AmbientTalk) [62],
we formalized the debugging semantics and developed Voyager, a tool that takes as input
Featherweight AmbientTalk programs written in PLT-Redex, and allows programmers to
interactively browse all possible execution states by means of multiverse breakpoints and
stepping commands. We also provide a proof of non-interference, i.e. the base language and
the debugger are observational equivalent.

The key contributions of this paper are:
Definition of multiverse debugging and multiverse stepping, i.e. novel stepping semantics
which allow developers to step to all possible states in the execution of a parallel program.
A semantics for a non-deterministic debugger & proof of non-interference.
An implementation of applying multiverse debugging to an actor-based language including
a tool to interact with the debugged program written in PLT-Redex.

2 Brave New Idea: Multiverse Debugging

The vision of multiverse debugging is to allow programmers to debug concurrent non-
deterministic programs with a debugging technique that allows them to observe all possible
states the program can exhibit at run time and to interactively explore these states for bugs
in a fashion similar to breakpointed-based debuggers while being probe-effect free. Current
debuggers for non-deterministic programming languages do not allow such exploration because
they only follow a single path of many possible execution paths. In this paper, we provide a
concrete recipe on how to build debuggers which allow programmers to observe all possible
states of a non-deterministic program. To this end, multiverse debugging builds on the
operational semantics of the language in which target programs are written.

2.1 Multiverse Debugging Recipe

We now give an overview of the basic recipe for defining the semantics of a multiverse
debugger:
1. Define the operational semantics of the base language, a language which can specify

programs that exhibit non-deterministic behavior.
2. Define the operational semantics of the debugger in terms of the base language semantics.

This implies to:
a. define a debugger configuration, which includes the state the debugger needs to

maintain to debug a target program.

ECOOP 2019

27:4 Multiverse Debugging

b. define the debugging operations that the debugger offers to developers to interactively
explore the target program, e.g. by pausing/resuming program execution on breakpoints,
or performing step-by-step execution of the target program.

In this paper, we apply this recipe to define the semantics of two multiverse debuggers.
First, in Section 3, we apply this recipe to build a debugger for a small language called
λamb. Afterwards, in Section 6, we show that our technique scales for a mid-size actor-based
language called AmbientTalk [62], a prototype-based object-oriented language with an event
loop concurrency model featured by mainstream languages such as JavaScript.

We believe that those two steps are general enough to be applicable to a wide range
of programming languages. Applying this recipe to other programming languages consists
of identifying where and how non-determinism originates. This is, however, tied to the
language’s concurrency model. The behavior and properties of concurrent entities (e.g.
threads, transactions, actors) differ and hence these properties should be carefully considered
when defining the operational semantics of the multiverse debugger.

2.2 Multiverse Debugging Main Challenges

It is our vision that the foundations explained in this paper, places multiverse debugging
where research in program analysis and verification was three decades ago. At that time,
static techniques were a new brave idea which could only be used to verify relatively small
programs [12]. Likewise, the approach towards multiverse debugging explained in this paper
is currently only feasible for relative small programs. Nevertheless, we hope that further
research can be spawned from the seed we plant here to expand on what is possible today.

The main challenge of our approach is the growth in the number of states; the number of
possible states increases exponentially by every non-deterministic step that is chosen in the
program. This problem, called state explosion, is a well-researched problem in the context of
program analysis and verification [61]. Multiverse debugging also suffers from this problem.
It is, however, essential to make the complexity of these non-deterministic programs explicit
to the programmer so that actions can be taken. We believe that providing a recipe on how
to build multiverse debuggers is an important first step which gives developers the tools to
explore parts of this state space interactively. After all, being able to inspect part of this
enormous state space is better than to have a debugging tool which can only explore one
execution path without any guarantees that the path being explored triggers the bug.

Symbolic execution and model checking have studied scalable solutions for the state
explosion problem [17, 14, 44, 41]. Future research is needed to investigate how to adopt
those techniques in a debugging tool to increase the scale on which multiverse debugging can
be applied. In section 8.2 we further compare multiverse debugging with symbolic execution
and model checking.

In our proof of concept implementation, we apply two techniques to help the programmer
to keep an overview of the state space. First, we do not blindly explore all the possible
states but let the developer decide which states to explore next, either explicitly or by using
multiverse breakpoints. We believe this makes multiverse debugging comparable to bounded
model checking [9]. Second, whenever two states are syntactically the same we merge those
states into one node. Depending on the programming language other means of equality could
be applied to further reduce the amount of states exposed to the programmer.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:5

3 Multiverse Debugging for Ambiguous Programs

In this section, we apply the multiverse debugging recipe to debug ambiguous programs
written in λamb. In Section 3.1, we specify the base language semantics (step 1) and
Section 3.2 defines the semantics of a multiverse debugger on top of it (step 2). To simplify
the exposition and focus on the core idea of multiverse debugging, we do not model any
breakpoints, stepping commands nor user interaction with the debugger in this section. They
are detailed later when we apply the idea of multiverse debugging for actor-based programs
in Section 4.2. There, we will specify the semantics of a base language in which to write actor-
based concurrent programs (step 1), and Section 6 describes the semantics of a multiverse
debugger on top of it including multiverse breakpoints and stepping commands (step 2).

3.1 Syntax and Operational Semantics of the Base Language λamb
We now show how the multiverse debugging idea can be applied to the λamb calculus, a
small functional language. Non-determinism in this language is introduced by a variation of
McCarthy’s ambiguity operator [47] called amb which behaves as a non-deterministic choice.
Intuitively, when this operator is applied to a number of arguments it returns one of them in
an unpredictable way.

Figure 1 gives an overview of the syntax and reduction rules of the λamb calculus.
Expressions consist of numbers, addition, and the amb operator. We define an evaluation
context E which dictates a left to right evaluation order of the arguments. The only values v
in the language are numbers. The add rule shows how the addition of two numbers reduces
and the amb rule shows the amb operator non-deterministically picks one of its arguments.

e ::= (+ e e)|(amb e e)|number Expressions
E ::= (+ E e)|(+ v E)|(amb E e)|(amb v E) Context
v ::= number Values

(add)
n = bn1 + n2c

E[(+ n1 n2)]→amb E[n]

(amb)
ex ∈ [e1, e2]

E[(amb e1 e2)]→amb E[ex]

Figure 1 Semantic entities and reduction rules of the λamb calculus.

To get an intuition of the λamb calculus, consider the evaluation graph of the program
(+ (amb 1 2) (amb 3 4)) shown in Figure 2. While in a deterministic evaluator there is at most
one applicable rule for each expression in a non-deterministic evaluator it is possible that
multiple reduction rules apply for the same expression. In our example, this is clearly the
case. In the start state, there are two possible reductions leading to two execution paths the
program could take. We denote a universe to each distinct state in which a program can
be. In this example, the top universe denotes the state in which the amb operator selected
the value 1 while in the bottom universe it chose 2. For these two universes, there are again
two possible successor universes possible by choosing between number 3 and 4. Finally,
each of these universes can be reduced by applying the add rule leading to three possible
end universes.

3.2 Syntax and Operational Semantics of the Debugger Damb

Armed with the semantics of our non-deterministic language λamb, we can now define a
multiverse debugger for this base language, which allows us to pause a program and resume
its evaluation until it reaches an end state. Resuming a program corresponds to a user
stepping through the program, expression by expression.

ECOOP 2019

27:6 Multiverse Debugging

am b

am b

am b

am b

am b

am b

add

add

add

add
6

5

4

(+ 2 4)

(+ 2 3)

(+ 1 4)

(+ 1 3)

(+ 2 (amb 3 4))

(+ 1 (amb 3 4))

(+ (amb 1 2) (amb 3 4))

Figure 2 Multiverse evaluation graph of a λamb program.

Figure 3 gives an overview of Damb, the semantics of a debugger for the λamb calculus.
We first define the debugger configuration that keeps track of the state that the debugger
needs to store to debug a target λamb program. In this case, the debugger is either paused
or has resumed execution evaluating an expression at a time. The debugger configuration is
thus a pair which consists of a state label (either step or paused) and a λamb expression e.

The debugger operations are defined by two reduction rules. The Step rule takes one
evaluation step of the enclosing λamb expression e and transitions the debugger state by
changing the state label from step to paused. This means, we take one evaluation step,
and yield to the debugger, where a user could inspect the program. Though, for simplicity,
the only other operation our debugger has is the Resume rule, which transitions a paused
program back to the step state.

state ::= step | paused Debugger State
ed ::= (state, e) Debugger Configuration

(Step)
e →amb e′

(step, e)→debug (paused, e′)

(Resume)

(paused, e)→debug (step, e)

Figure 3 Semantic entities and reduction rules of the Damb calculus.

As an example of a multiverse debugging session, let us execute the program shown in
Figure 2 in Damb. The resulting session is shown in Figure 4. It starts by applying the Step
rule on the (+ (amb 1 2) (amb 3 4)) expression. The first step will cause the reduction of the
amb rule in λamb for the (amb 1 2) expression. This leads to two possible reductions the
debugger could take, i.e. one universe in which the amb rule reduces to 1 and one in which
it reduces to 2. This means stepping to a next state is non-deterministic. By defining the
debugger operations in terms of the non-deterministic evaluator of the base language, we
automatically obtain a multiverse debugger, i.e. a step does not lead to one possible next
universe but to a set of universes.

(debug step 4)

(debug step 5)

(debug step 6)

(debug paused 4)

(debug paused 5)

(debug paused 6)

(debug step (+ 1 4))

(debug step (+ 1 3))

(debug step (+ 2 3))

(debug step (+ 2 4))

(debug paused (+ 1 4))

(debug paused (+ 1 3))

(debug paused (+ 2 3))

(debug paused (+ 2 4))

(debug step (+ 1 (amb 3 4)))

(debug step (+ 2 (amb 3 4)))

(debug paused (+ 1 (amb 3 4)))

(debug paused (+ 2 (amb 3 4)))

(debug

 step

 (+ (amb 1 2) (amb 3 4)))

Figure 4 Multiverse debugging graph of a λamb program.

While this multiverse debugger is simplistic, it already shows two important characteristics.
First, all evaluation steps observed in the base-level semantic are also observed in the
multiverse debugger. This means that when programmers debug their programs in the
multiverse debugger, the error will manifest in the debugger. Second, there are no states in
the debugger which are not observed in the base-level semantics. This means that the act of
debugging the program does not introduces any state (and thus also no bugs) which are not
observed in the base-level semantics. As such, a multiverse debugger is probe-effect free.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:7

4 Communicating Event Loops (CEL)

The overall goal of this work is to improve the debugging of parallel and concurrent programs.
To this end, we now apply the multiverse debugging recipe defined in Section 2.1 to create
a multiverse debugger for actor-based concurrent programs. To this end, we first need
to specify a base language in which target programs will be written in. In this work, we
use AmbientTalk [62], a distributed programming language originally designed to develop
mobile peer-to-peer applications. AmbientTalk is a prototype-based object-oriented language
featuring a concurrency model based on Communicating Event Loops (CEL). The language
paradigm is featured by mainstream languages such as JavaScript, the Proxy API of which
was actually inspired by AmbientTalk’s reflective model [50].

In this section, we first describe the necessary background information on Communicating
Event Loops.We then apply the first step of the multiverse debugging recipe by defining the
operational semantics of AmbientTalk in Section 4.2.

4.1 Communicating Event Loops Concurrency Model
The Communicating Event Loops is a non-blocking variant of the actor model [32] first
introduced by the E language [49]. The model was also adopted by languages such as
AmbientTalk [62], Newspeak [11], and it is embraced by the asynchronous programming
model of JavaScript and Node.js [58].

Actor Actor

A B

Message
queue

Event
Loop

Message from A to B

Object Far reference

Near
reference

Figure 5 Overview of the CEL model (from [62]).

Figure 5 shows an overview of the CEL model. Each actor is a container of objects, a
message queue (or mailbox), and an event loop (or thread of control). An actor executes
sequentially messages from its mailbox, i.e. messages are processed one by one in order of
arrival. The processing of one message by an actor defines a turn. Actors have exclusive
access to their mutable state. This means that each object is owned by one actor and only
the owner can directly access it. Communication with objects owned by other actors happens
using asynchronous messages via far references. When a far reference receives a message, it
forwards it to the mailbox of the actor owning the object. Objects passed as arguments in
asynchronous message sends are parameter-passed either by far reference, or by (deep) copy.

An asynchronous message send immediately returns a future (also known as a promise).
A future is a placeholder for the result that is to be computed. The future itself is an object,
which can receive asynchronous messages. Those messages are accumulated within the future
object and forwarded to the result value once it is available. Once the result value is available,
the future is said to be resolved with the value. Programmers can register a block of code
with a future which is asynchronously executed when the future becomes resolved. Access to
the result thus happens in a non-blocking way.

ECOOP 2019

27:8 Multiverse Debugging

4.2 Syntax and Operational Semantics of the AmbientTalk Language
Recall that in order to build a multiverse debugger for non-deterministic concurrent programs,
we first need to define the operational semantics of the base language (step 1 of the recipe
in Section 2.1). In this work, we employ the semantics of the AmbientTalk language, i.e
the Featherweight AmbientTalk (atf) semantics [62]. It formalizes common features of the
CEL model such as actors, objects, blocks, non-blocking functions and asynchronous message
sending. Non-determinism in the CEL model is exhibited in the order in which actors process
messages. Non-blocking futures also introduce additional non-determinism as messages sent
to futures, while futures are not resolved, messages are forwarded to the result value once it
is available.

The core calculus of atf consists of 30 evaluation rules (excluding helper functions).
Considering that Featherweight Java [34], a minimal core calculus for Java and GJ, only has
10 evaluation rules, we believe that the AmbientTalk semantics should be not be considered
a small language but at least a mid-size one. For brevity, we sketch only the parts of atf
that are necessary to follow the contributions of this work and refer to Van Cutsem et al. [62]
for the complete semantics. In a nutshell, atf specifies that actors evaluate messages as
expressions to obtain a result value.1 It is based on a small step operational semantics.
This means that the representation of each of the steps of the program execution is atomic,
i.e. there is no intermediate execution steps. This is useful because it is possible to get all
possible states of the evaluation of a non-deterministic program.

K ∈ Configuration ::= a Actor configurations
a ∈ Actor ::= A〈ιa, O,Qin, e〉 Actors

Object ::= O〈ιo, t, F,M〉 Objects
t ∈ Tag ::= o | i Object tags
Future ::= F〈ιf , Qin, v〉 Futures

Resolver ::= R〈ιr, ιf 〉 Resolvers
m ∈ Message ::= M〈v,m, v〉 Messages
Qin ∈ Queue ::= m Inbox queues
M ⊆ Method ::= m(x){e} Methods

F ⊆ Field ::= f := v Fields
v ∈ Value ::= r | null | ε Values

r ∈ Reference ::= ιa.ιo | ιa.ιf | ιa.ιr References

e ∈ E ⊆ Expr ::= . . . | e← m(e) | r Runtime
Expressions

o ∈ O ⊆ Object ∪ Future ∪ Resolver
ιa ∈ ActorId, ιo ∈ ObjectId, ιn ∈ NetworkId

ιf ∈ FutureId ⊂ ObjectId, ιr ∈ ResolverId ⊂ ObjectId

Figure 6 Semantic entities of the atf calculus.

Figure 6 shows the semantic entities of the operational semantics of atf . A configuration
K represents the set of actors that are executed concurrently in the program. An actor is
represented by an identity ιa, a set of objects O, an inbox queue Qin that stores the messages
to be processed and an expression e the actor is currently evaluating. An object O consists
of an identity ιo, a tag t and a set of fields F and methods M . The tag distinguishes between
objects passed by reference o, and passed by copy i. A future consists of an identity ιf ,
a queue for the pending messages Qin and a resolved value v. A resolver object allows to

1 In this work we use the subset of Featherweight AmbientTalk for concurrency, i.e. without the notion of
networks for distribution.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:9

assign a value to its unique paired future and as such, it consists of an identity ιr and the
identity of its corresponding future ιf . A message m is represented by an identifier ιm, a
receiver value v, a method name m and a sequence of arguments values v. References to
objects r consist of an identifier for the actor ιa owning the referenced value and a local
component that can be ιo, ιf or ιr. The local component indicates that the reference refers
to either an object, a resolver or a future. An expression e can include references r or an
asynchronous message send e← m(e) .

5 Multiverse Debugging for Actor-based Programs

Having the operational semantics of AmbientTalk, we can now apply the second step of
the multiverse debugging recipe to create a multiverse debugger for actor-based programs
by defining the operational semantics of the debugger in terms of the AmbientTalk ones.
Before detailing this operational semantics in Section 6, we informally describe the debugger’s
breakpoints and stepping semantics. Additionally, we show a debugging session in the
resulting multiverse debugger called Voyager.

5.1 Breakpoint-based Debugging for Actor-based Programs
As explained before, multiverse debugging allows developers to interactively explore a target
program (step 2.b. in the multiverse debugging recipe of Section 2.1). In this section we
describe the two main features that multiverse debugging borrows from breakpoint-based
debuggers to enable such an interactive exploration of the program’s state, i.e. breakpoints
and stepping operations.

1 2

34 F V

msg send

future msg

Actor Actor

A
B

Figure 7 Points of interest for debugging actor-based programs.

A breakpoint defines a point of interest in a program in which to pause execution for
further inspection. The main idea of breakpoints is to allow developers to observe the effects
on an operation that may interleave with other operations in the system. Since turns run
till completion, operation interleavings in CEL programs happen at message level. As such,
breakpoints need to be applied to asynchronous message passing.

As a general principle, we consider the point in time right before and right after a message
is processed as relevant for breakpoints. Figure 7 shows the points of interests involved in an
asynchronous message send in CEL. When object A sends a message to object B, it is first
placed in the sender actor’s mailbox (point 1) and a future object F is immediately returned.
The message is then sent to the actor hosting the receiver object B, and is placed in its
mailbox (point 2). After the value for the future is computed, a message with the result value

ECOOP 2019

27:10 Multiverse Debugging

V is placed in the receiver actor’s mailbox (point 3) and sent back to the actor hosting the
sender object. The message carrying the result value is then placed in the sender’s mailbox
(point 4) and the future resolution listeners are finally executed.

Stepping is a debugger feature that allows developers to follow the execution of a program
between various points of interest. In sequential programs, stepping operations typically
allow to step through the program line by line. In CEL programs, stepping also needs
to allow developers step through program execution concurrently, i.e. let them follow the
execution between the points of interest involved in asynchronous message passing. Stepping
operations can thus be applied at each of the points shown in Figure 7, and it will allow the
developer to step to the next point of interest. For example, the program may be paused at
point 2, before the receiver actor has processed a message. A possible stepping operation is
to step to the next turn, which will let the actor process the message sent by A, and halt
before processing the next message, i.e. at the beginning of the turn.

In prior work we have explored catalogs of breakpoint types and stepping operations for
actor-based programs [29, 46]. These debugging operations are used in breakpoint-based
debuggers for CEL programs written in AmbientTalk and SOMns2, respectively. In this
work, we apply the debugging operations that we proposed in [46] to our multiverse debugger.

5.2 Voyager: a Multiverse Debugger for AmbientTalk Programs

To showcase the use of a multiverse debugger for AmbientTalk programs, we implemented
a tool called Voyager, which allows developers to interactively explore a target program
through the debugger operational semantics. Voyager is a web application build on top of
PLT-Redex, which executes the operation semantics of a multiverse debugger. Both the
operational semantics of the debugger and atf are implemented in PLT-Redex. Target
programs are written in PLT-Redex and can be loaded in Voyager. Voyager then asks
PLT-Redex to reduce the program according to the debugger semantics, which results in the
reduction graph for the program. All states in this graph are stored in a graph database3 for
easy manipulation and exploration of the reduction graph.

5.2.1 Debugging a Sample Program

We now show a debugging session in Voyager for the AmbientTalk program depicted in
Listing 1. The program shows an interaction between 3 actors: a math actor (created in
Line 20, and two client actors, client1 (created in Line 21) and client2 (Line 22). The
math actor (Lines 1 to 7) understands the messages double, which doubles its argument and
stores the result for further operations, as well as the getResult message, which returns the
result of a number of operations. After creating the three actors, the program sends a start
message to both client actors (Lines 23 and 24). As a result, client1 sends a double(12)
message followed by a getResult one. Concurrently, client2 sends a double(33) message to
the math actor as well.

Despite being a simple program, it contains a bad message interleaving bug [60], which is
common for actor-based programs. It is possible that client1 gets the result of doubling 33
instead of doubling 12. Table 1 shows all possible interleavings that the program exhibits.

2 SOMns is a Newspeak implementation build on top of the Truffle platform. https://github.com/sma
rr/SOMns

3 Our prototype uses ArangoDB. https://www.arangodb.com/

https://github.com/smarr/SOMns
https://github.com/smarr/SOMns
https://www.arangodb.com/

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:11

1 def makeMath () {
2 actor :{
3 def result := 0;
4 def double (x){ result := x+x};
5 def getResult (){ result };
6 }
7 };
8 def makeClient1 (math){
9 actor :{ |math|

10 def start (){
11 math <- double (12);
12 when : math <- getResult () @FutureMessage becomes : {| res|
13 system . println (res);
14 }}}
15 };
16 def makeClient2 (math){
17 actor : { |math|
18 def start (){ math <- double (33) }}
19 };
20 def math := makeMath ();
21 def client1 := makeClient1 (math);
22 def client2 := makeClient2 (math);
23 client1 <- start ();
24 client2 <- start ();

Listing 1 AmbientTalk program containing a bad message interleaving bug.

It also depicts the message sender for each message. Line 13 would print the result value,
which is 24 for the correct interleavings and 66 for the faulty one.

Table 1 Message interleavings for the AmbientTalk program shown in Listing 1.

Faulty Interleaving Correct Interleaving Correct Interleaving
client 1 - double(12) client 1 - double(12) client 2 - double(33)
client 2 - double(33) client 1 - getResult() → 24 client 1 - double(12)
client 1 - getResult() → 66 client 2 - double(33) client 1 - getResult() → 24

5.2.2 Overview of a Debugging Session
Taking the faulty interleaving of our example program of Listing 1 as example, a developer
may choose to explore the issue in Voyager and identify why the unexpected result is 66.
Thus, the developer needs to find the cause of the bad message interleaving exhibited by
the program. For a screencast of the debugging session, we refer the reader to https:
//tinyurl.com/VoyagerYoutube.

Figure 8 shows the Voyager UI. The left panel allows developers to upload the target
program to debug (either by selecting an existing file or creating a new one directly), and
shows information on the selected node in the “Node data” section. The right panel shows
the reduction graph for the target program. In this case, Voyager shows all possible universes
for the sample program. The end states of the program are shown in red. As expected (cf.
Table 1), there are three possible end states. “Node Data” shows the information for the end
state under the cursor. The selected state corresponds to the end state of an execution path
with the faulty interleaving since the result stored in res is 66.

Let us now start a debugging session to understand how we arrived at the result being 66.
Since math actor is the central point of synchronization in the program, we set a breakpoint
that pauses the program’s execution each time the math actor receives a message (before
processing it). In Voyager, this is called a message receiver breakpoint; its semantics are
shown in Section 6. With this breakpoint activated, we run the program again in Voyager.

ECOOP 2019

https://tinyurl.com/VoyagerYoutube
https://tinyurl.com/VoyagerYoutube

27:12 Multiverse Debugging

Figure 8 Overview of the Voyager tool.

Figure 9(a) shows the new reduction graph, with the execution paused once the breakpoint
was reached. The blue nodes denote the state of a running debugger executing the program.
When the message receiver breakpoint on the math actor is reached, in one of the universes
the debugger halts the execution (in that universe) and highlights the node in pink. As a
result, the evaluation of the underlying AmbientTalk program pauses. The magnifier glass
shows the pink node representing the triggering of the Message-Receiver-Breakpoint rule
(later detailed in Section 6). At this point in the execution, a developer can click on the node
to inspect the state, resume execution, or execute one of the step commands. The debugging
operations applicable at this point are accessible by means of a radial menu.

For this example, we make Voyager step to the next turn of the math actor. Figure 9(b)
shows the resulting graph after applying that stepping command. The first pink node in
Figure 9(b) corresponds to the node shown with the magnified glass in Figure 9(a). Notice
that the dashed lines are used to indicate user interaction. The new graph shows how
the debugger stops again at all possible universes in which the math actor receives the
second message.

The initial expectation of a developer may be that the next message in the mailbox of
the math actor will always be the getResult message. However, in Figure 9(b) we see that
there are two possible kinds of universes the base level program can evolve to. Inspecting
the actors inbox reveals that in some universes the next processed message is from client2.
As shown in the figure the top universe corresponds to the interleaving in which the double
message from client2 arrives first, and the bottom universe corresponds to the interleaving
in which the getResult message from client1 correctly arrives after the doubling message.
At this point, a developer sees that the initial expectation does not hold and a fix can be
developed to account for this bad interleaving.

One might be tempted to think that the program could be debugged by a traditional
concurrent debugger using a deterministic message order. While single-stepping individual
messages in a deterministic pattern would create a deterministic message order, traditional
concurrent debuggers only keep track of one universe. Because such a debugger simply picks
one of many universes determined by the execution order of messages, and it may not be the

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:13

...

A

B
client2-double

client1-getResult

Figure 9 A debugging session in Voyager for the program displayed in Listing 1.

universe in which the bug manifests. Hence, traditional concurrent debuggers do not avoid
the probe effect. In contrast, multiverse debugging allows developers to explore all possible
non-deterministic execution paths of a concurrent application. In order to steer the state
exploration, Voyager provides query facilities that we detail below.

5.2.3 Querying the state graph
As previously mentioned, the Voyager debugger stores the state graph in a graph database
which we can use to query the state of the multiverse graph. The left panel of the Voyager
UI (Figure 8) has a button to create new queries. Figure 10(a) shows the original graph for
the program. Figure 10(b) shows a more simplified view on the multiverse after applying a
query to the original graph that filters all paths except the shortest path from the start node
to all end nodes, i.e., nodes that cannot be reduced any further.

Listing 2 shows the code for the query that generates the simplified graph shown in
Figure 10(b) with the shortest path to the three possible end states of our sample problem.
The used query language is AQL4 using Bind parameters5 (@start, @graph, and @@nodes).
The query computes the shortest path to all end states as follows:

First, it finds all stuck nodes, by querying the database for nodes that have been marked
as stuck. The FOR operation returns an array of the values that have been returned by
RETURN in its body.
Second, Line 5 to Line 9 find the shortest path from the start node to each stuck node
using ArangoDB’s SHORTEST_PATH. This primitive returns an array of the nodes and
edges on the shortest path between two nodes in a graph. Since the SHORTEST_PATH
is used for each of the stuck nodes, we end up with an array of arrays which is then
flattened. The path variable now holds an array of nodes and edges on the shortest path
from the start node to a stuck node.
Finally, in order to visualize the paths, this array is converted to an object that lists the
edges and nodes to be displayed separately (Line 12 to Line 15).

4 https://docs.arangodb.com/3.4/AQL/Fundamentals/Syntax.html
5 https://docs.arangodb.com/3.4/AQL/Fundamentals/BindParameters.html

ECOOP 2019

https://docs.arangodb.com/3.4/AQL/Fundamentals/Syntax.html
https://docs.arangodb.com/3.4/AQL/Fundamentals/BindParameters.html

27:14 Multiverse Debugging

1 // make an array containing all stuck nodes
2 LET stuckNodes = (FOR n in @@nodes FILTER n. _stuck == true RETURN n)
3
4 // find the path to each of them and join the results
5 LET path = FLATTEN (
6 FOR target IN stuckNodes
7 FOR n,e IN OUTBOUND SHORTEST_PATH
8 @start TO target ._id GRAPH @graph
9 RETURN {n,e})

10
11 // convert to the needed format
12 RETURN {
13 edges : (FOR d in path FILTER d.e != null RETURN DISTINCT d.e),
14 nodes : (FOR d in path FILTER d.n != null RETURN DISTINCT d.n)
15 }

Listing 2 AQL query to search the shortest path from the start state to all possible end states of
a program.

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local
CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al CEL-Step-Local

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL
-Ste

p-G
lob
al

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Global

CE
L-S
tep
-Lo
ca
l

CEL-Step-Global

CEL-Step-Local

CE
L-
St
ep
-G
lo
ba
l

CE
L-
St
ep
-G
lo
ba
l

CEL-Step-Global

CEL-Step-Local

CEL
-St
ep-
Glo

bal

CEL-Step-Local

CEL-Ste
p-Local

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Step-Global

CE
L-
St
ep
-G
lo
ba
l

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local
CEL-Step-Global

CEL
-St
ep-
Glo

bal

CEL-Step-Local

CEL
-Ste

p-G
lob
al

CEL
-St
ep-
Loc

al

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CE
L-S
te
p-
Lo
ca
l

CEL-Step-Local

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-LocalCEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-G
lob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Global

CEL
-St
ep-
Loc

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CE
L-S
te
p-
Lo
ca
l

CE
L-S
tep
-Gl
ob
al

CEL
-St
ep-
Loc

al

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Local

CE
L-S
tep

-Gl
ob
al

CEL-Step-Local

CE
L-S
tep
-G
lob
al

CEL
-Ste

p-Gl
oba

l

CE
L-S
tep
-Lo
ca
l

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local
CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Global

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Global

CEL
-St
ep-
Glo

bal

CE
L-S
tep

-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-G
lobal

CE
L-S
te
p-
Gl
ob
al

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-S
tep-L

ocal

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL-Ste
p-Loca

l
CE
L-S
tep
-Gl
ob
al

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Loca
l

CE
L-S
tep
-Lo
cal

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-G
lob
al

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-
Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-S
tep-L

ocal

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-Step-L
ocal

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL
-Ste

p-G
loba

l

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-S
tep-L

ocal
CE
L-S
tep
-Gl
ob
al

CEL-Step-Local

CEL-Step-Local

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL-Step
-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-S
tep-G

lobal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-Gl
oba

l

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-Lo
cal

CEL-
Step

-Glo
bal

CEL-Step-Local

CEL-
Step

-Loc
al

CEL-Step-Global

CEL-Ste
p-Globa

l

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL
-Ste

p-G
loba

l

CEL-Step-Global

CEL-Step-Local

CEL
-Ste

p-G
lob

al
CEL-Ste

p-Local
CEL

-Ste
p-L

oca
l

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL
-Ste

p-G
lob

al

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-Lo
cal

CEL
-Ste

p-L
oca

l

CEL-S
tep-G

lobal

CEL-Step-Local

CEL
-Ste

p-G
loba

l

CEL
-Ste

p-Lo
cal

CEL-Step-Global

CEL-Step-Local

CEL-Step-Local

CEL-Step-Global

CEL-Ste
p-Local

CEL-Step-Local

CEL-Step
-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step
-Local

CEL-Step-Glo
bal

CEL
-Ste

p-Lo
cal

CEL-Step-Local

CEL-
Step

-Glo
bal

CEL-S
tep-Lo

cal
CEL

-Ste
p-L

oca
l

CEL-S
tep-G

lobal

CEL-Step-Global

CEL-Step-Local

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Global

CEL-Step-Global

CEL-St
ep-Glo

balCEL-Step-Local

CEL-Step-Global

CEL-S
tep-Lo

cal

CEL-Step-Local

CEL-Step-Loc
al

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-
Step

-Loc
al

CEL-Step-Local

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-Step-Globa
l

CEL-Step-Local
CEL-Step-Global

CEL-
Step

-Glob
al

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-Step-Local

CEL-Step-
Local

CEL-Step-Local

CEL-Step-Loc
al

CEL-Step-
Local

CEL-Step-Global

CEL-Step-Local

CEL-St
ep-Glo

bal

CEL-St
ep-Loc

al

CEL-Step-Local

CEL
-Ste

p-L
oca

l

CEL-Step-G
lobal

CEL-Step-Local

CEL-Step-Global

CE
L-S
tep
-Lo
cal

CEL-Step-Global

CEL-S
tep-G

lobal

CEL-Step-Local

CEL-Step-Local

CEL-S
tep-L

ocal

CEL-Step-Local

Add-New-Actor Add-New-Actor CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Global

CEL-Step-Local

CEL-Step-Global

CEL-Step-Local
CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CEL-Step-Global
CEL-Step-Local

CEL-Ste
p-Globa

l

CEL-Step-L
ocal

CEL-Step-Glo
bal

CEL-Step-Local
CEL-Step-Global

CEL-Step-Global
CEL-Step-Global

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global CEL-Step-Local

CE
L-S
tep
-Gl
ob
al

CEL
-Ste

p-L
oca

l

CEL
-Ste

p-G
loba

l

CEL-
Step

-Glob
al

CEL-S
tep-G

lobal

CEL-St
ep-Loc

al

CEL-Step
-Local

CEL-Step-G
lobal

CEL-Step-Glob
al

CEL-Step-Local
CEL-Step-Global

CEL-Step-Local CEL-Step-Global CEL-Step-Local CEL-Step-Global
CEL-Step-Local

A B

Figure 10 Application of a shortest-path-to-end-states query to the program displayed in Listing 1.

The breakpoints and stepping operations combined with the query facilities of Voyager
provide an interactive experience of browsing the multiverse graph of a program to find the
root cause of bugs. It is important to note that in contrast to static analyses, a multiverse
debugger allows developers to explore and query states of the concrete program execution
interactively. This enables developers to focus on relevant elements and thereby directly
steer the state exploration.

6 Syntax and Operational Semantics of the Voyager Multiverse
Debugger

In this section we finally apply step 2 of the multiverse debugging recipe and describe the
syntax and operational semantics of our multiverse debugger, Voyager. We first describe
the general strategy of the debugger to be able to debug AmbientTalk programs, and we
then detail the elements of the debugger configuration of Voyager (step 2a) and the key
mechanisms for supporting breakpoints and stepping operations as the one described in the
previous section (step 2b).

6.1 Overview of the Debugger Semantics
The Voyager debugger keeps track of both the state of the underlying AmbientTalk program
and its own state. The semantics of the debugger consists of a set of reduction rules which
transition from one debugger state to the next one. In order to model the catalog of

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:15

breakpoints and stepping operations that we proposed in [46], we define the debugger state
D, which consists of six elements, Bp, Bc, ds, C,As,K.

The first two elements Bp and Bc are respectively the list of pending breakpoints and
the list of already checked breakpoints.
To keep track of which action the debugger is performing, the debugger configuration
contains a debugger state ds for representing the state run and pause. When the debugger
is in the run state it verifies whether there is an applicable breakpoint. When a breakpoint
hits, the debugger transitions itself to the pause state and halts execution.
To model the possible debugging operations offered to the user, e.g. stepping, resume,
and pause, the debugger state contains a list of commands C.
To keep track of the state of the actor the debugger configuration contains a map As.
Finally, K is the state of the actor configuration being debugged, i.e. the state of the
AmbientTalk program.

The general form of the reduction rules of the Voyager debugger consists of transitions
between debugger states:

D〈Bp, Bc, ds, C,As,K〉 →d D〈B′p, B′c, d′s, C ′, A′s,K ′〉

Note that the transition relation of the debugger is denoted by →d while the transition
rules of the base language are defined as→k. The evaluation strategy of the debugger consists
of traversing the list of pending breakpoints Bp one-by-one from left to right, moving the
debugger to a stopped state when a breakpoint hits. When a breakpoint does not apply for
the current state of the actor configuration, it is moved from the list of pending breakpoints
to the list of checked ones. When there are no pending breakpoints left the debugger instructs
the actor configuration to take one step and swaps the checked breakpoints with the pending
breakpoints, this continues till either a breakpoint is hit or an end state is reached.

6.2 Syntax of the Debugger Semantics
Figure 11 shows the semantics of two elements that we needed to extend in the AmbientTalk
semantics atf presented in Figure 6.

The first element corresponds to the message entity m, which we extended with an id ιm
to identify the message.
The second element corresponds to the send expression e ←id m(e) that we extended
also with an identifier id to determine which message is breakpointed. This identifier is
needed because different types of breakpoints can be set on the same message.

m ∈ Message ::= M〈ιm, v,m, v〉 Messages

e ∈ E ⊆ Expr ::= . . . | e←id m(e) Runtime
Expressions

Figure 11 Extended semantic entities in atf for debugging in Voyager calculus.

Figure 12 shows an overview of the elements of the Voyager calculus. More concretely, it
includes all the entities of the semantics that are needed by the six elements of the debugger
configuration D, i.e. bu, bt, c, cs, as, tub, ttb, tc.

ECOOP 2019

27:16 Multiverse Debugging

d ∈ Debugger ::= D〈Bp, Bc, ds, C,As,K〉 Debugger configurations

Bp ∈ Pending breakpoint ::= bu | bt Pending breakpoints
Bc ∈ Checked breakpoint ::= bt Checked breakpoints

ds ∈ Debugger state ::= run | pause Debugger states
C ∈ Command ::= c Commands

As ∈ Actor state map ::= cs Actor state map

bu ∈ User breakpoint ::= B〈tub, ιi〉 User Breakpoints
bt ∈ Trigger breakpoint ::= B〈ttb, ιa, ιi〉 Trigger Breakpoints

c ∈ C ::= C〈tc〉 | C〈tc, n〉 Commands
cs ∈ Current actor state ::= CS〈ιa, as〉 Current actor state

as ∈ Actor state ::= run | pause | hold | step n Actor states

tub ∈ User breakpoint tag ::= msb | mrb User breakpoint tags
ttb ∈ Trigger breakpoint tag ::= mrb-trigger Trigger breakpoint tags

tc ∈ Command tag ::= step-next-turn ιa | Command tags
resume |
pause

ιi ∈ BreakpointId

Figure 12 Semantic entities of the Voyager calculus.

To define a breakpoint bu we use a two-element tuple consisting of a breakpoint tag tub
and an expression id ιi.
Additionally, we define breakpoints at the level of the debugger semantics, i.e. breakpoints
which are defined by the semantics itself rather than by the developer debugging a target
program. We call these breakpoints trigger breakpoints to distinguish them from the
user ones aforementioned. A trigger breakpoint bt consists of a tuple of three elements, a
breakpoint tag ttb, an actor id ιa, and an expression id ιi.
A command c is defined by a tag tc. In the case of a step to next turn we need to define
also the number of steps n the command needs to take in the evaluation of the program,
i.e. C〈c, step n〉.
The map of actors As keeps a list of pairs CS〈ιa, as〉 consisting of the id of the actor ιa
and the current state as.
An actor can be in run, pause or hold state. In addition, an actor can have a state
step n.
The breakpoint tags tub indicate the tags a user can identify when defining a breakpoint.
The trigger breakpoint tags ttb correspond to the tags built-in in the semantics to actually
trigger the breakpoint.
The command tags tc refer to the debugging commands the user can specify to debug
the program, i.e. several stepping operations and resume/pause commands.

6.3 Operational Semantics of the Voyager Debugger
Having defined the syntax of the Voyager debugger and the debugger configuration (step
2a of the multiverse debugging recipe), we can now define the semantics of the debugger
operations that Voyager offers to developers to interactively explore the target program
(step 2b).

The reduction rules of Voyager can be separated in five groups:
1. Reduction rules for modeling the connection of the debugger with the base level language

(cf. Section 6.3.1)

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:17

2. Reduction rules for breakpoints (cf. Section 6.3.2), including rules needed to model
breakpoints which require trigger breakpoints for their functioning.

3. Bookkeeping reduction rules (cf. Section 6.3.3), i.e. rules that are related to the actor
state when breakpoints are not applicable and when new actors are created.

4. Reduction rules for the stepping operations (cf. Section 6.3.4), consists of the rules for
stepping commands that can be applied on the level of messages, futures, and turns.

5. Reduction rules for other debugging commands (cf. Section 6.3.5), i.e. rules that will
resume and pause the program’s execution.

For brevity, the following sections focus on the rules required to define the semantics
for the message receiver breakpoint and the step to next turn command employed in the
debugging session shown in Section 5.2. The complete set of reduction rules is included in
Appendix A.

6.3.1 Connection with the Base Level Language

Recall that the semantics of a multiverse debugger is defined in terms of the underlying base
language semantics, atf in the case of Voyager. Two reductions rules (shown below) govern
the connection of Voyager’s semantics with atf : cel-step-global and cel-step-local.
The cel-step-global rule transitions the actor configuration K to the actor configuration
K ′ by applying the global AmbientTalk reduction relation (→k). This relation governs all
the actor transitions rules that affect two or more actors, i.e. sending asynchronous messages
and creating new actors. The cel-step-local rule, on the other hand, non-deterministically
picks an actor a from the actor configuration K and transitions it to an actor a′ by applying
the local multi-step AmbientTalk relation ∗−→a. This reduction relation applies one or more
single-step local reduction which can be applied to the actor, all these single-step reductions
are deterministic. Finally, we require that the actor which we transition is in a local running
state and update it accordingly, i.e. when the actors local state is (step n) the update
meta-function will update the actors state to (step n− 1).

Both the cel-step-global and cel-step-local rule can only be triggered when all
the pending breakpoints are checked. Note that after taking a step in atf , the checked
breakpoints and the pending breakpoints are swapped. At certain points during the execution
it could be that both cel-step-global and cel-step-local are applicable at the same time.
This is intentional and is part of the non-deterministic nature of executing the AmbientTalk
semantics that we want to capture in the debugger.

(cel-step-global)
K →k K

′

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,As,K ′〉

(cel-step-local)
K = K ′∪̇{a} a

∗−→a a
′ A′s = update(As, a)

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,A′s,K ′∪̇a′〉

ECOOP 2019

27:18 Multiverse Debugging

6.3.2 Reduction Rules for Breakpoints
As mentioned before, the Voyager semantics features two families of breakpoints: user
breakpoints denote breakpoints that are activated by the user while trigger breakpoints denote
breakpoints generated by the debugger. As an example of user breakpoint consider the
message receiver breakpoint, which we explained in the debugging session shown in Section 5.2.
It halts execution of an actor before it processes a message (identified by a unique id).

Generally, we only know during program execution which actor hosts the receiver object
of a message. Therefore, the debugger monitors the program and inserts a new trigger
breakpoint when the id of the receiver actor becomes known. The trigger breakpoint is used
by the debugger semantics to later halt the execution when the message is actually received
at the receiver side.

The save-mrb reduction rule below governs the semantics of transforming a message
receiver breakpoint into a trigger message receiver breakpoint. When the message is about
to be sent the user breakpoint B〈mrb, ιi〉 that is in the list of pending breakpoints, the
save-mrb is triggered if the actor id of the breakpoint corresponds to the actor id of the
receiver actor. In this case, the breakpoint is removed from the pending list and a trigger
breakpoint B〈mrb − trigger, ιa′ , ιi〉 is added in the list of checked breakpoints. Note that
the sender and receiver actors of that message continue with run state, but the addition of
the trigger message breakpoint will make the execution of the debugger pause at the receiver
actor (the actor id of which is included in the trigger breakpoint itself).

(save-mrb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K

D〈B〈mrb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈mrb− trigger, ιa′ , ιi〉, run, C,As,K〉

The next reduction rule is trigger-mrb and it governs the semantics of the trigger
breakpoint added for a message receiver breakpoint. Back in the example debugging session,
Figure 9 showed that the triggering of this rule resulted in the pink node under the magnifying
glass. In the trigger breakpoint the id of the actor ιa is saved to identify the actor the
user wants to halt, and the ιi is saved to identify in which message. When the message
arrives in the queue of the receiver actor, the trigger breakpoint is removed from the pending
list Bp and the debugger and the receiver actor changes its state to pause. Note that the
receiver actor cannot process local operations but it can execute global ones, e.g. receive a
new message from another actor. The two operations of the message receiver breakpoint
for saving the information needed when the message is about to be sent and triggering the
breakpoint are shown in Appendix A, i.e. save-mrb and trigger-mrb.

(trigger-mrb)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As + {CS〈ιa, pause〉}

D〈B〈mrb− trigger, ιa, ιi〉 ·Bp, Bc, run,C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

6.3.3 Bookkeeping Reduction Rules
For each of the breakpoint triggering rules there should be a rule which instructs the debugger
to move the breakpoint to the list of checked breakpoints when the breakpoint does not
hit. Instead of listing all these individual rules we compressed them into one rule called
breakpoint-not-applicable which should be triggered when the breakpoint at the head
of the list is not applicable. The breakpoint-not-applicable rule is shown Appendix A.

Appendix A also includes the add-new-actor reduction rule for the creation of new
actors. This rule basically updates the As map when an actor is created.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:19

6.3.4 Reduction Rules for Stepping Operations

Similarly to the formalisation of the message sender breakpoint, some stepping commands
need to be encoded with several reduction rules. For example, the step-next-turn employed in
debugging session in Section 5.2, is formalised with two reduction rules: prepare-step-next-
turn and trigger-step-next-turn. The prepare-step-next-turn rule is triggered
when the debugger is in the paused state and transitions a particular actor with id ιa from
the paused state to the (step 1) state indicating that the actor is allowed to take exactly one
local step (cf. cel-step-local in Section 6.3.1).

The trigger-step-next-turn rule is triggered when a particular actor with id ιa is in
the state (step 0). When this rule is triggered, the debugger moves form the run state to
the paused state. At the same time, the local actor state is also changed to the pause state.

(prepare-step-next-turn)
A〈ιa, O,m ·Qin, e〉 ∈ K A′s = As∪̇{CS〈ιa, (step 1)〉}

D〈Bp, Bc,pause, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (pause)〉,K〉 →d

D〈Bp, Bc, run, (StepNextTurn ιa) · C,A′s,K〉

(trigger-step-next-turn)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As∪̇{CS〈ιa, pause〉}

D〈Bp, Bc, run, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (step 0)〉,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Note that other breakpoints and stepping commands can be encoded in a similar vain as
we have shown for the message receiver breakpoint and step to next turn. Some of these
breakpoints such as the message sender breakpoint (cf. Appendix A) are easier because they
do not require any bookkeeping, i.e. all the information to pause the execution is known at
the start of the program.

6.3.5 Reduction Rules for Basic Debugging Commands

Finally, we show below the rules which govern basic debugging commands to control the
execution of a program, namely pause and resume. The resume-execution rule guarantees
that the execution of the program continues from any pause state of the debugger. As such,
the debugger state transits from pause to run. The rule updates the state of the local actors
to run.

The pause-execution rule halts the execution of all actors in the actor configuration,
transitioning the debugger state from run to pause. The rule updates the state of the local
actors to pause.

(resume-execution)
A′s = run(As)

D〈Bp, Bc,pause, Resume · C,As,K〉 →d D〈Bp, Bc, run, C,A′s,K〉

(pause-execution)
A′s = pause(As)

D〈Bp, Bc, run, Pause · C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

ECOOP 2019

27:20 Multiverse Debugging

6.3.6 Discussion
There are a number of design decisions and limitations worth discussing. First, in an early
prototype of the debugger semantics [59], we did not separate the global from the local atf
reduction rules. This turned out to be problematic because it makes it hard to pause a
specific actor from processing messages while still allowing it to receive messages in its inbox.
Separating the global from the local semantics simplified the semantics significantly.

Second, the early prototype used the single-step operational semantics to transition
the local actor semantics [59], while in the final version reported here, we are using a
multi-step relation. As previously mentioned, in the actor model the only points where
the non-determinism matters is when messages are being exchanged between the actors.
However, when using the single-step local reduction relation a lot of additional and irrelevant
non-determinism is introduced. This made working with the Voyager debugger very tedious
and reduced its usefulness for larger programs. By switching to the local multi-step relation
the amount of states being shown to the end user is significantly reduced while the non-
deterministic behavior due to message passing is completely preserved.

Finally, it is worth noting that even though the multi-step relation alleviates the problem
of growing number of states, the number of states still grows depending on the program size,
as previously mentioned. Further research is needed to investigate ways to reduce the number
of states without removing relevant sources of non-determinism in the program. To this end,
advances in the context of static techniques like symbolic execution and model checking can
be employed as starting point (cf. Section 8.2). We believe that with the current hardware
evolution of multicore machines, the size of programs which can be debugged with multiverse
debugging is steadily growing as well. At this point, we have used the Voyager tool to debug
programs of the size of dining philosophers. Further research is also needed to investigate
techniques to guide the exploration of the state graph, e.g. novel stepping semantics that work
at the level of universes. Of course, applying this technique to industrial-strength languages
will also required further work. But the goal would be that a traditional breakpoint-based
debugger can be a foundation for such multiverse debugging.

7 Proof of Non-Interference

In this section we provide a proof of non-interference for the semantics of the Voyager
debugger. More specifically, we prove observational equivalence between the debugger and
the base language semantics. Intuitively, this means that any execution of the Voyager
debugger corresponds to an execution of an AmbientTalk program, and any execution of an
AmbientTalk program is observed by Voyager. Formally,

I Theorem 1 (Equivalence of evaluation steps). Let K be an actor configuration in the atf
semantics, for which there exists a transition to an actor configuration K ′. Let D be a
debugging configuration for K and Bp, Bc, ds, C,As elements of D such that the commands
C resume all the paused actors then:

(K →k K
′) ⇐⇒

(D〈Bp, Bc, ds, C,As,K〉 →dk
D〈B′p, B′c, d′s, C ′, A′s,K ′〉)

The left handside of the biconditional relation represents the evaluation of the program
in the AmbientTalk semantics atf , i.e. the configuration of actors K, to another program
state K ′. Where →k corresponds to the evaluation regarding the reduction rules of the
base language.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:21

The right handside of the biconditional relation represents the evaluation of the program in
the debugger semantics D〈Bp, Bc, ds, C,As,K〉, which yields in an another debugger configu-
ration D〈B′p, B′c, d′s, C ′, A′s,K ′〉. Where→dk

represents one or more evaluation steps taken by
the debugger transition rules in K, until the debugger configuration D〈B′p, B′c, d′s, C ′, A′s,K ′〉
is reached.

To prove the biconditional relation of Theorem 1 we divide our proof in two parts, which
corresponds to the two implications of the relation.

Implication 1. An evaluation step in the AmbientTalk semantics implies
equivalent evaluation steps in the debugger semantics
Proof sketch. We proceed by induction over the set of pending breakpoints Bp.

Base case: In this case the list Bp is empty. Either the actor is in running or in the paused
state. By assumption, when the debugger is in a pause state, the commands C will
un-pause the debugger.
In general a step in the base-level language can be done in two modes. In case the base
level semantics performed a global reduction, there is a corresponding transition in the
debugger by taking a step with cel-step-global. Similarly if it was a local rule, there
is a possible transition with the cel-step-local rule.

Inductive case: Assuming that there is list of pending breakpoints Bp leading to the actor
configuration K ′. When adding one breakpoint to that list we need to consider two cases.
Either the breakpoint is applicable or it is not. When the breakpoint does not apply
the corresponding not-applicable-breakpoint rule will move the breakpoint to the
list of checked breakpoints and the induction hypothesis applies. In the other case the
breakpoint applies, in which by assumption the commands C will transition the debugger
back to the run state at which point the induction hypothesis can be applied. J

Implication 2. An evaluation step in the debugger semantics implies an
equivalent evaluation step in the AmbientTalk semantics
Proof sketch. By construction, the only two rules cel-step-local and cel-step-global
where the debuggers K field transitions to K ′ directly rely on the underlying AmbientTalk
semantics. J

8 Related Work

To the best of our knowledge, multiverse debugging is the first debugging approach that
allows developers to interactively browse all execution paths of parallel programs. In this
section, we compare our work to other efforts on formalizing debuggers for actor languages
and other programming paradigms. We also relate our work to static analysis techniques for
debugging non-deterministic programs such as model checking and symbolic execution.

8.1 Formal specifications for debuggers
The first formal specification for debuggers was proposed by Da Silva [19]. He used a structural
operational semantics that considers a debugger as a system, which transitions from one state
to another using an evaluation history. He defines the semantics of his debugging approach on
top of a deterministic relation specification of a programming language. To prove debugger
correctness, Da Silva presented a proof of equivalence between two debugger approaches.

ECOOP 2019

27:22 Multiverse Debugging

This work served as inspiration for multiverse debugging, but we focus on proving the
equivalence between the base language and the debugger, i.e., their non-interference. While
Da Silva does not address non-deterministic languages, he argues that non-repeatability
of evaluation can be avoided by recording all choices where more than one evaluation rule
could be chosen. However, to the best of our knowledge Da Silva never put this theory into
practice. Our approach differs from Da Silva by embracing the non-deterministic nature of
the base language and using it to derive a non-deterministic debugger.

Bernstein et al. [8] developed a debugging semantics based on transitions for a deterministic
functional programming language. The evaluation steps in the debugging session correspond
to executing subexpressions of the program. Similar to Voyager, developers can select
terms (represented as nodes in the graph) corresponding to the program states and create
new programs from them to debug. Bernstein et al. did not apply their techniques to
non-deterministic languages.

In the context of distributed systems, Ferrari et al. [22] proposed a debugging calculus
for mobile ambients. Similar to our approach, they model a debugger as an extension of the
operational semantics of an underlying programming language. Their operational semantics
is a causal model of behaviors which they represent using Petri nets. In a later work, Ferrari
et al. [21] proposed Causal Nets which allows the developer to query a causal message graph
generated by the execution of a set of distributed processes. We have experimented with
converting the multiverse execution graph into a Petri net, but due to the size of the execution
graphs the resulting Petri nets offered few additional insight into the program behavior.

In the context of algorithmic debugging, Luo et al. [45] proposed a formal model of tracing
for functional programs. The authors proved correctness of evaluation dependency trees to
identify faulty nodes, i.e. a node with erroneous computation. They consider correctness
when the debugging algorithm detects a faulty node that matches the answer of the user. In
contrast to multiverse debugging, this approach does not show an exploration of different
non-deterministic paths, but the exploration of one path of execution of a functional program
based on a trace. Similarly, Caballero et al. [13] uses a technique of algorithmic debugging
to detect liveness issues in Erlang programs. Their approach can analyze sequential and
concurrent programs using a calculus based on proofs to build execution trees.

Li et al. [40] introduced a formal semantics for debugging synchronous message-passing
programs, e.g. MPI, Occam, and JCSP. They propose a structural operational semantics for
a tracing procedure and bug/fix locating procedure. The goal of these procedures is to record
useful information that helps to build the execution history of the program. More concretely,
the tracing procedure records to one execution path in the evaluation of the program, ignoring
non-determinism. In contrast, our approach considers all possible execution paths.

Giachino et al. [27] provide a causal consistent reversible semantics for the µOz language,
featuring thread-based concurrency and asynchronous communication over ports. These
semantics however, do not explore different paths of the execution of a concurrent program.
Following the idea of reversible semantics, Lanese et al. [37] proposed a causal consistent
reversible debugger for Erlang processes. More concretely, they use a reversible semantics for
Erlang [52], in which they record a history of all the computed expressions, corresponding to
each execution step. In contrast, our semantics only keep track of the state of actors and
breakpoint information. In addition, the rules related to the reversible semantics are said to
be non-deterministic, but no concrete exploration examples of different execution paths are
included in the paper.

In the context of Petri nets, Van Mierlo et al. [63] proposed a debugging tool for observing
erroneous states of non-deterministic behavior. The tool takes a model of a system as input,
and builds a Petri net reachability graph which can be debugged in an interactive way. Similar

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:23

to our approach, they provide online debugging operations, e.g., breakpoints and stepping,
to explore specific program states. Multiverse debugging however, takes as input programs
based on the operational semantics of the programming language and allows to debug the
execution graph of the program.

8.2 Static Analysis Techniques
Since multiverse debugging allows developers to explore all possible paths of execution of an
application, it can be considered closely related to static analysis techniques such as model
checking and symbolic execution. Below, we provide an overview of such techniques, with a
focus on actor-based approaches, and compare them to multiverse debugging.

Model checking. Model checking is a static technique for automatically verifying correctness
properties of programs given a specification of the property. It has been studied for thread-
based concurrency models to verify safety requirements such as the absence of deadlocks
[31, 51, 36]. Ignoring recursion or relying on finite state models avoids undecidability problems
due to synchronization as well as applying bounded analysis using testing or bounded model
checking techniques [18].

Model checking has also been explored in the context of actor-based languages to verify
properties like boundedness of actor mailboxes, and incorrect interleavings of messages. In
the context of Erlang programs, Fredlund et al. [24] proposed a model checker that verifies
boundedness of their mailboxes and process spawning. Other approaches have focused on
verifying the property of mutual exclusion in Erlang programs [33, 20] or to analyze message
interleavings between Erlang processes [16]. There exist model checkers for other actor-based
languages such as Basset [39], a model checker that can analyze message schedules in actor-
based programs written in Scala and ActorFoundry library for Java. Tasharofi et al. proposed
an algorithm based on partial order reduction to prune the number of message interleavings
in Scala and ActorFoundry programs [57]. Additionally, a more theoretic approach uses
model checking to verify actors behavior based on compositional analysis of schedules [35].

Model checking tools excel at finding a set of bugs of which the programmer knows
exactly how to describe them. Multiverse debugging is meant for debugging and interactively
exploring the state space in order to discover bugs for which the programmer may not have
a good description. Similar to model checking, multiverse debugging can suffer from the
state explosion problem. As mentioned before, our approach does not blindly explore all the
possible states but lets the developer decide which states to explore next, either explicitly
or by using multiverse breakpoints, which makes multiverse debugging similar to bounded
model checking [9]. Other techniques in model checking have been proposed to handle the
state explosion problem including symbolic model checking with binary decision diagrams,
partial order reductions and counter example guided abstraction refinement [17].

Symbolic execution. Symbolic execution is a static technique to test whether certain
predefined properties can be violated by a program [5]. A key idea in symbolic execution is
to explore programs taking as input symbolic values rather than concrete ones. According
to [42], most symbolic execution techniques can be categorized in either techniques that
create and search in a subset of the concrete search space (i.e. an under-approximation), or
techniques that create and search in a superset of it (i.e. an over-approximation). Under-
approximation techniques lead to false negatives (i.e. missing real errors) but are preferred
over over-approximation techniques because the latter ones introduce false positives (report

ECOOP 2019

27:24 Multiverse Debugging

errors that do not exist) and do not scale as well because of the cost of handling infeasible
states. Many research efforts on symbolic execution for multi-threaded programs have focused
on improving the efficiency of over-approximation techniques [7, 43].

Concolic execution is a mix of concrete and symbolic execution which has been throughly
studied for thread-based programs [5, 3, 28, 55]. In the context of actors, much work has also
focused on concolic execution. Sen et al. [54] proposed a testing algorithm based on concolic
execution together with runtime partial order reduction for detecting deadlock states in a
language related to the actor semantics. Albert et al. [1] developed a test case generation
framework which avoids redundant computations when exploring the order of several tasks.
More recently, Albert et al. [2] proposed a variant of a dynamic partial order reduction
algorithm which can be used when searching for deadlocks. Their algorithm aims to reduce
state space exploration by distinguishing between two sources of non-determinism: actor
selection and task selection. Recently, Li et al. proposed an exploration of the state space
using symbolic execution based on heuristics that consider paths where only interact with a
small number of actors [41].

Like multiverse debugging, symbolic execution can explore all possible execution paths of
a program. While the use of abstract states alleviates the state explosion problem, that may
imply missing execution paths (i.e. universes) containing a bug due to under approximation.
In contrast to symbolic execution, multiverse debugging models the program execution only
with concrete values, and can not miss executions paths. While multiverse debugging does not
solve the state explosion problem, developers can pause and resume the program, and select
themselves the different execution paths to explore. In the context of thread-based programs,
some work in symbolic execution has studied solutions for reducing the complexity of path
exploration based on merging paths [14], state pruning [30], probabilistic computations [44]
and search heuristics [41].

9 Conclusion

We proposed multiverse debugging as a new debugging approach to tackle the problem of
non-determinism in concurrent and parallel programs. Contrary to traditional concurrent
debugging approaches, multiverse debugging allows developers to explore non-deterministic
execution paths corresponding to the evaluation of a program. This is meant to simplify the
reproduction and inspection of concurrency bugs, because it removes chance and probability
from the equation of hitting the problematic interleaving. Instead, an execution path that
can lead to a bug can be explored interactively and a developer can see the state in all
possible universes.

To build a multiverse debugger, we provided a recipe with two steps. First, we need to
define the operational semantics of a non-deterministic base language. Second, we need to
define a debugger configuration and its operational semantics in terms of the base language
semantics. In this paper, we have applied this recipe to provide a proof-of-concept multiverse
debugger for actor-based programs called Voyager. Voyager uses as input a PLT-Redex
program implemented in the AmbientTalk operational semantics and gives as output the
reduction graph corresponding to all possible universes of the program. To make this
exploration manageable, the graph can be explored interactively as one would do in a classic
breakpoint-based debugger. Besides providing the semantics of a multiverse debugger, we
also demonstrate that there is no interference between the debugger and the target program
by proving non-interference. This shows that the debugger is probe-effect free.

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:25

We consider multiverse debugging to be a good basis for further experiments in debugging
non-deterministic concurrent programs. Voyager’s debugging operations merely scratch
the surface of a new branch in debugging tools. The main open research question is how
to make multiverse debugging practical for complex concurrent applications. While we
believe that the interactive nature alleviates some of the scalability issues of static analyses,
exploring the multiverses of larger programs can become unwieldy. Thus, research is needed
to guide the exploration of the state graph, e.g. novel stepping semantics that work at the
level of universes. Furthermore, the technique needs to be applied to a concrete language
implementation beyond a PLT-Redex-based formalism. Efficient runtime techniques will be
cornerstone to make it practical, but we may be able to leverage work of static analyses and
back-in-time debugging [6].

References
1 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Test Case Generation of Actor

Systems. In Bernd Finkbeiner, Geguang Pu, and Lijun Zhang, editors, ATVA, volume
9364 of Lecture Notes in Computer Science, pages 259–275. Springer, 2015. doi:10.1007/
978-3-319-24953-7_21.

2 Elvira Albert, Puri Arenas, and Miguel Gómez-Zamalloa. Systematic testing of actor systems.
Softw. Test., Verif. Reliab., 28(3), 2018. doi:10.1002/stvr.1661.

3 Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. Enhancing
symbolic execution with veritesting. In Pankaj Jalote, Lionel C. Briand, and André van der
Hoek, editors, ICSE, pages 1083–1094. ACM, 2014. doi:10.1145/2568225.2568293.

4 Thibaut Balabonski, Franccois Pottier, and Jonathan Protzenko. Type Soundness and
Race Freedom for Mezzo. In Michael Codish and Eijiro Sumii, editors, Functional and
Logic Programming, pages 253–269, Cham, 2014. Springer International Publishing. doi:
10.1007/978-3-319-07151-0_16.

5 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A Survey of Symbolic Execution Techniques. ACM Comput. Surv., 51(3):50:1–50:39, May
2018. doi:10.1145/3182657.

6 Earl T. Barr, Mark Marron, Ed Maurer, Dan Moseley, and Gaurav Seth. Time-travel Debugging
for JavaScript/Node.Js. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2016, pages 1003–1007. ACM, 2016.
doi:10.1145/2950290.2983933.

7 Tom Bergan, Dan Grossman, and Luis Ceze. Symbolic execution of multithreaded programs
from arbitrary program contexts. In Andrew P. Black and Todd D. Millstein, editors, OOPSLA,
pages 491–506. ACM, 2014. doi:10.1145/2660193.2660200.

8 Karen L. Bernstein and Eugene W. Stark. Operational Semantics of a Focusing De-
bugger. Electronic Notes in Theoretical Computer Science, 1:13–31, 1995. MFPS XI,
Mathematical Foundations of Programming Semantics, Eleventh Annual Conference. doi:
10.1016/S1571-0661(04)80002-1.

9 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic Model
Checking Without BDDs. In Proceedings of the 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, TACAS ’99, pages 193–207, Berlin,
Heidelberg, 1999. Springer-Verlag. doi:10.1007/3-540-49059-0_14.

10 Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership Types for Safe Pro-
gramming: Preventing Data Races and Deadlocks. In Proceedings of the 17th ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA
’02, pages 211–230, New York, NY, USA, 2002. ACM. doi:10.1145/582419.582440.

11 Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William Maddox, and Eliot
Miranda. Modules as Objects in Newspeak. In Theo D’Hondt, editor, ECOOP 2010 –

ECOOP 2019

http://dx.doi.org/10.1007/978-3-319-24953-7_21
http://dx.doi.org/10.1007/978-3-319-24953-7_21
http://dx.doi.org/10.1002/stvr.1661
http://dx.doi.org/10.1145/2568225.2568293
http://dx.doi.org/10.1007/978-3-319-07151-0_16
http://dx.doi.org/10.1007/978-3-319-07151-0_16
http://dx.doi.org/10.1145/3182657
http://dx.doi.org/10.1145/2950290.2983933
http://dx.doi.org/10.1145/2660193.2660200
http://dx.doi.org/10.1016/S1571-0661(04)80002-1
http://dx.doi.org/10.1016/S1571-0661(04)80002-1
http://dx.doi.org/10.1007/3-540-49059-0_14
http://dx.doi.org/10.1145/582419.582440

27:26 Multiverse Debugging

Object-Oriented Programming, volume 6183 of LNCS, pages 405–428. Springer, 2010. doi:
10.1007/978-3-642-14107-2_20.

12 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic Model Checking: 102̂0 States and Beyond. In LICS, pages 428–439. IEEE Computer
Society, 1990. doi:10.1016/0890-5401(92)90017-A.

13 Rafael Caballero, Enrique Martin-Martin, Adrián Riesco, and Salvador Tamarit. Declarative
debugging of concurrent Erlang programs. Journal of Logical and Algebraic Methods in
Programming, 101:22–41, 2018. doi:10.1016/j.jlamp.2018.07.005.

14 Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three Decades
Later. Commun. ACM, 56(2):82–90, February 2013. doi:10.1145/2408776.2408795.

15 M. Christakis, A. Gotovos, and K. Sagonas. Systematic Testing for Detecting Concurrency
Errors in Erlang Programs. In 2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 154–163, March 2013.

16 Maria Christakis, Alkis Gotovos, and Konstantinos F. Sagonas. Systematic Testing for
Detecting Concurrency Errors in Erlang Programs. In ICST, pages 154–163. IEEE Computer
Society, 2013.

17 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Progress on
the State Explosion Problem in Model Checking. In Reinhard Wilhelm, editor, Informatics,
volume 2000 of Lecture Notes in Computer Science, pages 176–194. Springer, 2001. doi:
10.1007/3-540-44577-3_12.

18 Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer, 2018. doi:10.1007/978-3-319-10575-8.

19 Fabio Q. B. da Silva. Correctness proofs of compilers and debuggers: an approach based on
structural operational semantics. PhD thesis, University of Edinburgh, UK, 1992. British
Library, EThOS. URL: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649061.

20 Emanuele D’Osualdo, Jonathan Kochems, and C. H. Luke Ong. Automatic Verification
of Erlang-Style Concurrency. In Francesco Logozzo and Manuel Fähndrich, editors, 20th
International Symposium on Static Analysis, SAS 2013, pages 454–476. Springer, June 2013.
doi:10.1007/978-3-642-38856-9_24.

21 Gian Luigi Ferrari, Roberto Guanciale, Daniele Strollo, and Emilio Tuosto. Debugging
Distributed Systems with Causal Nets. ECEASST, 14:1–10, 2008. doi:10.14279/tuj.eceasst
.14.190.181.

22 GianLuigi Ferrari and Emilio Tuosto. A Debugging Calculus for Mobile Ambients. In
Proceedings of the 2001 ACM Symposium on Applied Computing, SAC ’01, page 2, New York,
NY, USA, 2001. ACM. doi:10.1145/372202.380701.

23 Cormac Flanagan and Stephen N. Freund. Type-based Race Detection for Java. In Proceedings
of the ACM SIGPLAN 2000 Conference on Programming Language Design and Implementation,
PLDI ’00, pages 219–232, New York, NY, USA, 2000. ACM. doi:10.1145/349299.349328.

24 Lars-Ake Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas Arts, and Gennady
Chugunov. A verification tool for ERLANG. STTT, 4(4):405–420, 2003. doi:10.1007/
s100090100071.

25 Jason Gait. A probe effect in concurrent programs. Software: Practice and Experience,
16(3):225–233, 1986. doi:10.1002/spe.4380160304.

26 Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and Peter Y. H. Wong.
Deadlock Analysis of Concurrent Objects: Theory and Practice. In Einar Broch Johnsen and
Luigia Petre, editors, Integrated Formal Methods, pages 394–411, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-38613-8_27.

27 Elena Giachino, Ivan Lanese, and Claudio Antares Mezzina. Causal-Consistent Reversible
Debugging. In Stefania Gnesi and Arend Rensink, editors, FASE, volume 8411 of Lecture Notes
in Computer Science, pages 370–384. Springer, 2014. doi:10.1007/978-3-642-54804-8_26.

28 Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Random
Testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language

http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1007/978-3-642-14107-2_20
http://dx.doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1016/j.jlamp.2018.07.005
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1007/3-540-44577-3_12
http://dx.doi.org/10.1007/3-540-44577-3_12
http://dx.doi.org/10.1007/978-3-319-10575-8
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.649061
http://dx.doi.org/10.1007/978-3-642-38856-9_24
http://dx.doi.org/10.14279/tuj.eceasst.14.190.181
http://dx.doi.org/10.14279/tuj.eceasst.14.190.181
http://dx.doi.org/10.1145/372202.380701
http://dx.doi.org/10.1145/349299.349328
http://dx.doi.org/10.1007/s100090100071
http://dx.doi.org/10.1007/s100090100071
http://dx.doi.org/10.1002/spe.4380160304
http://dx.doi.org/10.1007/978-3-642-38613-8_27
http://dx.doi.org/10.1007/978-3-642-54804-8_26

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:27

Design and Implementation, PLDI ’05, pages 213–223, New York, NY, USA, 2005. ACM.
doi:10.1145/1065010.1065036.

29 Elisa Gonzalez Boix, Carlos Noguera, and Wolfgang De Meuter. Distributed Debugging for
Mobile Networks . Journal of Systems and Software, 90:76–90, 2014. doi:10.1016/j.jss
.2013.11.1099.

30 Shengjian Guo, Markus Kusano, and Chao Wang. Conc-iSE: Incremental Symbolic Execution
of Concurrent Software. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, ASE 2016, pages 531–542, New York, NY, USA, 2016. ACM.
doi:10.1145/2970276.2970332.

31 K. Havelund and T. Pressburger. Model Checking Java Programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer, 2(4), 1998. doi:10.1007/
s100090050043.

32 Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for
Artificial Intelligence. In IJCAI’73: Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, pages 235–245. Morgan Kaufmann, 1973.

33 Frank Huch. Verification of Erlang Programs Using Abstract Interpretation and Model
Checking. In Proceedings of the Fourth ACM SIGPLAN International Conference on Functional
Programming, ICFP ’99, pages 261–272, New York, NY, USA, 1999. ACM. doi:10.1145/
317636.317908.

34 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

35 Mohammad Mahdi Jaghoori, Frank S. de Boer, Delphine Longuet, Tom Chothia, and Marjan
Sirjani. Compositional schedulability analysis of real-time actor-based systems. Acta Inf.,
54(4):343–378, 2017. doi:10.1007/s00236-015-0254-x.

36 Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor Vafeiadis. Effective
stateless model checking for C/C++ concurrency. PACMPL, 2(POPL):17:1–17:32, 2018.
doi:10.1145/3158105.

37 Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. CauDEr: A Causal-Consistent
Reversible Debugger for Erlang. In John P. Gallagher and Martin Sulzmann, editors, Functional
and Logic Programming, volume 10818 of FLOPS’18, pages 247–263, Cham, 2018. Springer.
doi:10.1007/978-3-319-90686-7_16.

38 Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul Agha. A Framework for State-Space
Exploration of Java-Based Actor Programs. In Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’09, pages 468–479, Washington,
DC, USA, 2009. IEEE Computer Society. doi:10.1109/ASE.2009.88.

39 Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and Gul Agha. Basset: A Tool for
Systematic Testing of Actor Programs. In Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE ’10, pages 363–364,
New York, NY, USA, 2010. ACM. doi:10.1145/1882291.1882349.

40 He Li, Jie Luo, and Wei Li. A formal semantics for debugging synchronous message passing-
based concurrent programs. Science China Information Sciences, 57(12):1–18, December 2014.
doi:10.1007/s11432-014-5150-4.

41 Sihan Li, Farah Hariri, and Gul Agha. Targeted Test Generation for Actor Systems. In
Todd D. Millstein, editor, ECOOP, volume 109 of LIPIcs, pages 8:1–8:31. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.8.

42 Yude Lin. Symbolic execution with over-approximation. PhD thesis, The University of
Melbourne, 2017.

43 Yude Lin, Tim Miller, and Harald Søndergaard. Compositional Symbolic Execution: Incre-
mental Solving Revisited. In Alex Potanin, Gail C. Murphy, Steve Reeves, and Jens Dietrich,
editors, APSEC, pages 273–280. IEEE Computer Society, 2016. doi:10.1109/ASWEC.2015.32.

ECOOP 2019

http://dx.doi.org/10.1145/1065010.1065036
http://dx.doi.org/10.1016/j.jss.2013.11.1099
http://dx.doi.org/10.1016/j.jss.2013.11.1099
http://dx.doi.org/10.1145/2970276.2970332
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1007/s100090050043
http://dx.doi.org/10.1145/317636.317908
http://dx.doi.org/10.1145/317636.317908
http://dx.doi.org/10.1145/503502.503505
http://dx.doi.org/10.1007/s00236-015-0254-x
http://dx.doi.org/10.1145/3158105
http://dx.doi.org/10.1007/978-3-319-90686-7_16
http://dx.doi.org/10.1109/ASE.2009.88
http://dx.doi.org/10.1145/1882291.1882349
http://dx.doi.org/10.1007/s11432-014-5150-4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2018.8
http://dx.doi.org/10.1109/ASWEC.2015.32

27:28 Multiverse Debugging

44 Kasper Søe Luckow, Corina S. Pasareanu, Matthew B. Dwyer, Antonio Filieri, and Willem
Visser. Exact and approximate probabilistic symbolic execution for nondeterministic programs.
In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher, editors, ASE, pages 575–586. ACM,
2014. doi:10.1145/2642937.2643011.

45 Yong Luo and Olaf Chitil. Proving the correctness of algorithmic debugging for functional
programs. In Henrik Nilsson, editor, Trends in Functional Programming, volume 7 of Trends
in Functional Programming, pages 19–34. Intellect, 2006.

46 Stefan Marr, Carmen Torres Lopez, Dominik Aumayr, Elisa Gonzalez Boix, and Hanspeter
Mössenböck. A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging
Tools. In Davide Ancona, editor, Proceedings of the 13th Symposium on Dynamic Languages,
pages 3–14. ACM, 2017. doi:10.1145/3133841.3133842.

47 John McCarthy. A Basis for a Mathematical Theory of Computation, Preliminary Report. In
Papers Presented at the May 9-11, 1961, Western Joint IRE-AIEE-ACM Computer Conference,
IRE-AIEE-ACM ’61 (Western), pages 225–238, New York, NY, USA, 1961. ACM. doi:
10.1145/1460690.1460715.

48 Charles E McDowell and David P Helmbold. Debugging concurrent programs. ACM Computing
Surveys (CSUR), 21(4):593–622, 1989. doi:10.1145/76894.76897.

49 Mark S Miller, E Dean Tribble, and Jonathan Shapiro. Concurrency among strangers. In
International Symposium on Trustworthy Global Computing, pages 195–229. Springer, 2005.
doi:10.1007/11580850_12.

50 Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonzalez Boix, Éric Tanter,
and Wolfgang De Meuter. Mirror-based reflection in AmbientTalk. Softw. Pract. Exper.,
39(7):661–699, 2009. doi:10.1002/spe.v39:7.

51 Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of
multithreaded programs. In Jeanne Ferrante and Kathryn S. McKinley, editors, PLDI, pages
446–455. ACM, 2007. doi:10.1145/1250734.1250785.

52 Naoki Nishida, Adrián Palacios, and Germán Vidal. A Reversible Semantics for Er-
lang. In Manuel V. Hermenegildo and Pedro López-García, editors, LOPSTR, volume
10184 of Lecture Notes in Computer Science, pages 259–274. Springer, 2016. doi:10.1007/
978-3-319-63139-4_15.

53 Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld. Studying
the advancement in debugging practice of professional software developers. Software Quality
Journal, 25(1):83–110, 2016. doi:10.1007/s11219-015-9294-2.

54 Koushik Sen and Gul Agha. Automated Systematic Testing of Open Distributed Programs. In
Luciano Baresi and Reiko Heckel, editors, FASE, volume 3922 of Lecture Notes in Computer
Science, pages 339–356. Springer, 2006. doi:10.1007/11693017_25.

55 Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In Thomas Ball and Robert B. Jones, editors, Computer Aided
Verification, pages 419–423, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. doi:10.1007/
11817963_38.

56 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its
typing system. In Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios
Theodoridis, editors, PARLE’94 Parallel Architectures and Languages Europe, pages 398–413,
Berlin, Heidelberg, 1994. Springer Berlin Heidelberg. doi:10.1007/3-540-58184-7_118.

57 Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and
Gul Agha. TransDPOR: A Novel Dynamic Partial-Order Reduction Technique for Testing
Actor Programs. In Holger Giese and Grigore Rosu, editors, Formal Techniques for Distributed
Systems: Joint 14th IFIP WG 6.1 International Conference, FMOODS 2012 and 32nd IFIP
WG 6.1 International Conference, FORTE 2012, Stockholm, Sweden, June 13-16, 2012.
Proceedings, pages 219–234. Springer, 2012. doi:10.1007/978-3-642-30793-5_14.

http://dx.doi.org/10.1145/2642937.2643011
http://dx.doi.org/10.1145/3133841.3133842
http://dx.doi.org/10.1145/1460690.1460715
http://dx.doi.org/10.1145/1460690.1460715
http://dx.doi.org/10.1145/76894.76897
http://dx.doi.org/10.1007/11580850_12
http://dx.doi.org/10.1002/spe.v39:7
http://dx.doi.org/10.1145/1250734.1250785
http://dx.doi.org/10.1007/978-3-319-63139-4_15
http://dx.doi.org/10.1007/978-3-319-63139-4_15
http://dx.doi.org/10.1007/s11219-015-9294-2
http://dx.doi.org/10.1007/11693017_25
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/978-3-642-30793-5_14

C. Torres Lopez, R. Gurdeep Singh, S. Marr, E. Gonzalez Boix, and C. Scholliers 27:29

58 Stefan Tilkov and Steve Vinoski. Node.js: Using JavaScript to Build High-Performance
Network Programs. IEEE Internet Computing, 14(6):80–83, November 2010. doi:10.1109/MI
C.2010.145.

59 Carmen Torres Lopez, Elisa Gonzalez Boix, Christophe Scholliers, Stefan Marr, and Hanspeter
Mössenböck. A Principled Approach Towards Debugging Communicating Event-loops. In
Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control, AGERE!’17, pages 41–49. ACM, October 2017.
doi:10.1145/3141834.3141839.

60 Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mössenböck. A
Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs,
chapter 6, pages 155–185. Springer International Publishing, Cham, 2018. doi:10.1007/
978-3-030-00302-9_6.

61 Antti Valmari. The state explosion problem, chapter 9, pages 429–528. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998. doi:10.1007/3-540-65306-6_21.

62 Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton,
Dries Harnie, Kevin Pinte, and Wolfgang De Meuter. AmbientTalk: programming responsive
mobile peer-to-peer applications with actors. Computer Languages, Systems & Structures,
40(3-4):112–136, 2014. doi:10.1016/j.cl.2014.05.002.

63 Simon Van Mierlo and Hans Vangheluwe. Debugging non-determinism: a petrinets modelling,
analysis, and debugging tool. In CEUR workshop proceedings, volume 2019, pages 460–462,
2017.

A Reduction Rules of the Operational Semantics of Voyager

In this appendix we give an overview of all the reduction rules of the Voyager debugger to
debug the example application. We split the reduction rules into five groups:

1. Reduction rules for modeling the connection of the debugger with the base level language
(cf. Section 6.3.1)

2. Reduction rules for breakpoints (cf. Section 6.3.2), including rules needed to model
breakpoints which require trigger breakpoints for their functioning.

3. Bookkeeping reduction rules (cf. Section 6.3.3), i.e. rules that are related to the actor
state when breakpoints are not applicable and when new actors are created.

4. Reduction rules for the stepping operations (cf. Section 6.3.4), consists of the rules for
stepping commands that can be applied on the level of messages, futures, and turns.

5. Reduction rules for other debugging commands (cf. Section 6.3.5), i.e. rules that will
resume and pause the program’s execution.

(cel-step-global)
K →k K

′

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,As,K′〉

(cel-step-local)
K = K′∪̇{a} a

∗−→a a
′ A′s = update(As, a)

not− applicable− add− new − actor
D〈(), Bc, run, C,As,K〉 →d D〈Bc, (), run, C,A′s,K′∪̇a′〉

Figure 13 Reduction rules for connecting the debugger with the base language.

ECOOP 2019

http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1109/MIC.2010.145
http://dx.doi.org/10.1145/3141834.3141839
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/3-540-65306-6_21
http://dx.doi.org/10.1016/j.cl.2014.05.002

27:30 Multiverse Debugging

(trigger-msb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K A′s = As + {CS〈ιa, pause〉}
D〈B〈msb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

(save-mrb)
A〈ιa, O,Qin, e�[ιa′ .ιo ←ιi m(v)]〉 ∈ K

D〈B〈mrb, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈mrb− trigger, ιa′ , ιi〉, run, C,As,K〉

(trigger-mrb)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As + {CS〈ιa, pause〉}

D〈B〈mrb− trigger, ιa, ιi〉 ·Bp, Bc, run,C,As,K〉 →d D〈Bp, Bc, pause, C,A′s,K〉

Figure 14 Reduction rules for breakpoints.

(add-new-actor)
A〈ιa, O,Qin, e�[actor{f := e,m(x){e}}]〉 ∈ K CS〈ιnew, as〉 6∈ As
D〈Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc, run, C,As · CS〈ιnew, run〉,K〉

(not-applicable-breakpoint[trigger-msb,save-mrb,trigger-mrb])
not− applicable− breakpoint

D〈B〈tub, ιi〉 ·Bp, Bc, run, C,As,K〉 →d D〈Bp, Bc · B〈tub, ιi〉, run, C,As,K〉

Figure 15 Reduction rules for bookkeeping information about the program state needed for
breakpoints and stepping operations.

(prepare-step-next-turn)
A〈ιa, O,m ·Qin, e〉 ∈ K A′s = As∪̇{CS〈ιa, (step 1)〉}

D〈Bp, Bc,pause, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (pause)〉,K〉 →d D〈Bp, Bc, run, (StepNextTurn ιa) · C,A′s,K〉

(trigger-step-next-turn)
A〈ιa, O,m ·Qin, v〉 ∈ K A′s = As∪̇{CS〈ιa, pause〉}

D〈Bp, Bc, run, (StepNextTurn ιa) · C,As ∪̇ CS〈ιa, (step 0)〉,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Figure 16 Reduction rules for stepping operations.

(resume-execution)
A′s = run(As)

D〈Bp, Bc,pause, Resume · C,As,K〉 →d D〈Bp, Bc, run, C,A′s,K〉

(pause-execution)
A′s = pause(As)

D〈Bp, Bc, run, Pause · C,As,K〉 →d D〈Bp, Bc,pause, C,A′s,K〉

Figure 17 Reduction rules for basic debugging commands.

Motion Session Types for Robotic Interactions
Rupak Majumdar
MPI-SWS, Saarbrücken, Germany
rupak@mpi-sws.org

Marcus Pirron
MPI-SWS, Saarbrücken, Germany
mpirron@mpi-sws.org

Nobuko Yoshida
Imperial College London, UK
n.yoshida@imperial.ac.uk

Damien Zufferey
MPI-SWS, Saarbrücken, Germany
zufferey@mpi-sws.org

Abstract
Robotics applications involve programming concurrent components synchronising through messages
while simultaneously executing motion primitives that control the state of the physical world. Today,
these applications are typically programmed in low-level imperative programming languages which
provide little support for abstraction or reasoning.

We present a unifying programming model for concurrent message-passing systems that addi-
tionally control the evolution of physical state variables, together with a compositional reasoning
framework based on multiparty session types. Our programming model combines message-passing
concurrent processes with motion primitives. Processes represent autonomous components in a
robotic assembly, such as a cart or a robotic arm, and they synchronise via discrete messages as well
as via motion primitives. Continuous evolution of trajectories under the action of controllers is also
modelled by motion primitives, which operate in global, physical time.

We use multiparty session types as specifications to orchestrate discrete message-passing concur-
rency and continuous flow of trajectories. A global session type specifies the communication protocol
among the components with joint motion primitives. A projection from a global type ensures that
jointly executed actions at end-points are communication safe and deadlock-free, i.e., session-typed
components do not get stuck. Together, these checks provide a compositional verification methodo-
logy for assemblies of robotic components with respect to concurrency invariants such as a progress
property of communications as well as dynamic invariants such as absence of collision.

We have implemented our core language and, through initial experiments, have shown how mul-
tiparty session types can be used to specify and compositionally verify robotic systems implemented
on top of off-the-shelf and custom hardware using standard robotics application libraries.

2012 ACM Subject Classification Computer systems organization → Robotics; Software and its
engineering → Concurrent programming languages; Theory of computation → Process calculi;
Theory of computation → Type theory

Keywords and phrases Session Types, Robotics, Concurrent Programming, Motions, Communica-
tions, Multiparty Session Types, Deadlock Freedom

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2019.28

Category Brave New Idea Paper

Funding Rupak Majumdar : DFG 389792660 TRR 248, ERC Synergy Grant 610150.
Marcus Pirron: DFG 389792660 TRR 248, ERC Synergy Grant 610150.
Nobuko Yoshida: EPSRC EP/K034413/1, EP/K011715/1, EP/L00058X/1, EP/N027833/1 and
EP/N028201/1.
Damien Zufferey: DFG 389792660 TRR 248, ERC Synergy Grant 610150.

© Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey;
licensed under Creative Commons License CC-BY

33rd European Conference on Object-Oriented Programming (ECOOP 2019).
Editor: Alastair F. Donaldson; Article No. 28; pp. 28:1–28:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rupak@mpi-sws.org
mailto:mpirron@mpi-sws.org
https://orcid.org/0000-0002-3925-8557
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0002-3197-8736
mailto:zufferey@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://perspicuous-computing.science
https://perspicuous-computing.science
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Motion Session Types for Robotic Interactions

1 Introduction

Many cyber-physical systems today involve an interaction among communication-centric
components which together control trajectories of physical variables. For example, consider
an autonomous robotic system executing in an assembly line. The components in such an
example would be robotic manipulators or arms as well as robotic carts onto which one or more
arms may be mounted. A global task may involve communication between the carts and the
arms – for example, to jointly decide the position of the arms and to jointly plan trajectories
– as well as the execution of motion primitives – for example, to follow a trajectory or to grip
an object. Today, a programmer developing such an application must manually orchestrate
the messaging and the dynamics: errors in either can lead to potentially catastrophic system
failures. Typically, programs are written in (untyped) imperative programming language
using messaging libraries. Arguments about correctness are informal at best, with no support
from the language.

In this paper, we take the first steps towards a uniform programming model for autonomous
robotic systems. Our model combines message-based communication with physical dynamics
(“motion primitives”) over time. Our starting point is the notion of multiparty session
types [25, 26, 10], a principled, type-based, discipline to specify and reason about global
communication protocols in a concurrent system. We enrich a process-based core language
for communication with the ability to execute dynamic motion primitives over time. Motion
primitives encapsulate the actions of dynamic controllers on the physical world and define
the continuous evolution of the trajectories of the system. At the same time, we enrich a
type system for multiparty session-based communication with motion primitives.

The interaction of communication and dynamics is non-trivial. Since time is global to a
physical system, every independently running process must be ready to execute their motion
primitives simultaneously. Thus, for example, programs in which one component is blocked
waiting for a message while another moves along a trajectory must be ruled out as ill-typed.
To keep the complexity of the problem manageable, our semantics keeps, as much as possible,
the message exchanges separate from the continuous trajectories. In particular, in our model,
message exchanges occur instantaneously and at discrete time steps, à la synchronous reactive
programming, while motion primitives execute in global time. System evolution is then
organised into rounds; each round consists of a logical time for communication followed by
physical time for motion. This assumption is realistic for systems where the speed of the
trajectories is comparatively slow compared to the message transmission delay.

Our reasoning principles closely follow the usual type-checking approach of multiparty
session types. Specifications are described through global types, which constrain both message
sequences and motion sequences. Global types are projected to local types, which specify the
actions in a session from the perspective of a single end-point process. Finally, a verification
step checks that each process satisfies its local type. The soundness theorem ensures that in
this last case, the composition of the processes satisfy a protocol compliance.

Our type system ensures communication safety and deadlock-freedom for messages,
ensuring, for example, that communication is not stuck or time cannot progress. In addition,
we verify safety properties of physical trajectories such as non-collision by constraint-based
verification of simultaneously executed motion primitives specified in the global type.

Existing session type formalisms such as [9] fall short to model a combination of individual
interactions and global synchronisations by motions. To demonstrate our initial step and
to observe an effect of new primitives specific to robotics interactions, we start from the
simplest multiparty session type system in [15, 18]. The programming model and type

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:3

system introduced in this paper provides the foundations for PGCD programs, a practical
programming system to develop concurrent robotics applications [4]. We have used our
calculus and type system to verify correctness properties of (abstract versions of) multi-robot
co-ordination programs written in PGCD, which then execute on real robotics hardware.
Our evaluation shows that multiparty session types and choreographies for multi-robot
co-ordination and manipulation can lead to statically verified implementations that run on
off-the-shelf and custom robotics hardware platforms.

Outline. We first give a gentle introduction to motion session types to those who are
interested in concurrent robotics programming, but not familiar with session types. Section 3
discusses a core abstract calculus of processes where motions are abstracted by just the
passage of time; Section 4 defines a typing system with motion primitives; Section 5 extends
our theory to deal with continuous trajectories; Section 6 discusses our implementation;
Section 7 gives related work and Section 8 concludes.

2 A Gentle Introduction to Motion Session Types

The aim of this section is to give a gentle introduction of motion session types for readers
who are interested in robotics programming but who are not familiar with session types nor
process calculi.

A key difficulty in robotics programming is that the programmer has to reason about
concurrent processes communicating through messages as well as about dynamics evolving
in time. The idea of motion session types is to provide a typing framework to only allow
programs that follow structured sequences of interactions and motion. A session will be a
natural unit of structured communication and motion. Motion session types abstract the
structure of a session. and provide a syntax-driven approach to restricting programs to a
well-behaved subclass – for this subclass, one can check processes compositionally and derive
properties of the composition.

Motion session types extend session types, introduced in a series of papers during the
1990s [23, 43, 24], in the context of pure concurrent programming. Session types have since
been studied in many contexts over the last decade – see the surveys of the field [27, 17].

We begin by an overview of the key technical ideas of multiparty session types. Then
we introduce motion primitives to multiparty session types for specifying actions over time.
Finally, we refine the motion primitives to physical motion executed by the robots.

2.1 Communication: Multiparty Session Types
We begin with a review of multiparty session types, a methodology to enable compositional
reasoning about communication.

As a simple example, consider a scenario in which a cart and arm assembly has to fetch
objects. We associate a process with each physical component; thus, we model the scenario
using a cart (Cart) and an arm (Arm) attached to the cart. The task involves synchronisation
between the cart and the arm as well as co-ordinated motion. Synchronization is obtained
through the exchange of messages. We defer the discussion on motion to Section 2.2.

Specifically, the protocol works as follows.
1. The cart sends the arm a fold command fold. On receiving the command, the arm folds

itself. When the arm is completely folded, it sends back a message ok to the cart. On
receipt of this message, the cart moves.

ECOOP 2019

28:4 Motion Session Types for Robotic Interactions

2. When the cart reaches the object, it stops and sends a grab message to the arm to grab
the object. While the cart waits, the arm executes the grabbing operation, followed by
a folding operation. Then the arm sends a message ok to the cart. This sequence may
need to be repeated.

3. When all tasks are finished, the cart sends a message done to the arm, and the protocol
terminates.

The multiparty session types methodology is as follows. First, define a global type that
gives a shared contract of the allowed pattern of message exchanges in the system. Second,
project the global type to each end-point participant to get a local type: an obligation on
the message sends and receipts for each process that together ensure that the pattern of
messages are allowed by the global type. Finally, check that the implementation of each
process conforms to its local type.

In our protocol, from a global perspective, we expect to see the following pattern of
message exchanges, encoded as a global type for the communication:

µt.Cart→ Arm : {fold.Arm→ Cart : ok.Cart→ Arm : grab.Arm→ Cart : ok.t, done.end} (1)

The type describes the global pattern of communication between Cart and Arm using message
exchanges, sequencing, choice, and repetition. The basic pattern Cart→ Arm :m indicates a
message m sent from the Cart to the Arm. The communication starts with the cart sending
either a fold or a done command to the arm. In case of done, the protocol ends (type
end); otherwise, the communication continues with the sequence ok. grab. ok followed by a
repetition of the entire pattern. The operator “.” denotes sequencing, and the type µt.T
denotes recursion of T .

The global type states what are the valid message sequences allowed in the system.
When we implement Cart and Arm separately, we would like to check that their composition
conforms to the global type. We can perform this check compositionally as follows.

Since there are only two participants, projecting to each participant is simple. From the
perspective of the Cart, the communication can be described by the type:

µt. ((!fold. ?ok. !grab. ?ok.t) ⊕ (!done. end)) (2)

where !m denotes a message m sent (to the Arm) and ?m denotes a message m received from
the Arm. and ⊕ denotes an (internal) choice. Thus, the type states that Cart repeats actions
!fold. ?ok. !grab. ?ok until at some point it sends done and exits.

Dually, from the viewpoint of the Arm, the same global session is described by the
dual type

µt. ((?fold. !ok. ?grab. !ok.t) & (?done. end)) (3)

in which & means that a choice is offered externally.
We can now individually check that the implementations of the cart and the arm conform

to these local types.
The global type seems overkill if there are only two participants; indeed, the global type

is uniquely determined given the local type (2) or its dual (3). However, for applications
involving multiple parties, the global type and its projection to each participant are essential
to provide a shared contract among all participants.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:5

For example, consider a simple ring protocol, where the Arm process above is divided into
two parts, Lower and Upper. Now, Cart sends a message fold to the lower arm Lower, which
forwards the message to Upper. After receiving the message, Upper sends an acknowledgement
ok to Cart. We start by specifying the global type as:

Cart→ Lower : fold.Lower→ Upper : fold.Upper→ Cart : ok.end (4)

As before, we want to check each process locally against a local type such that if each process
conforms to its local type then the composition satisfies the global type.

The global type in (4) is projected into the three endpoint session types:

Cart’s endpoint type: Lower!fold.Upper?ok.end

Lower’s endpoint type: Cart?fold.Upper!fold.end

Upper’s endpoint type: Lower?fold.Cart!ok.end

where Lower!fold means “send to Lower a fold message,” and Upper?ok means “receive
from Upper an ok message.” Then each process is type-checked against its own endpoint
type. When the three processes are executed, their interactions automatically follow the
stipulated scenario.

If instead of a global type, we only used three separate binary session types to describe
the message exchanges between Cart and Lower, between Lower and Upper, and between
Upper and Cart, respectively, without using a global type, then we lose essential sequencing
information in this interaction scenario. Consequently, we can no longer guarantee deadlock-
freedom among these three parties. Since the three separate binary sessions can be interleaved
freely, an implementation of the Cart that conforms to Upper?ok.Lower!fold.end becomes
typable. This causes the situation that each of the three parties blocks indefinitely while
waiting for a message to be delivered. Thus, we shall use the power of multiparty session
types to ensure correct communication patterns.

2.2 Motion: Motion Primitives and Trajectories
So far, we focused on the communication pattern and ignored the physical actions of the
robots. Our framework of motion session types extends multiparty session types to also
reason about motion primitives, which model change of state in the physical world effected
by the robots. We add motion in two steps: first we treat motion primitives as abstract
actions that have associated durations, and second as dynamic trajectories.

Abstractly, we model motion primitives as actions that take physical time. Accordingly,
we extend session types with motion primitive dt〈pi : ai〉, which indicates that the participants
pi jointly execute motion primitives ai for the same duration of time.

Let us add the motion primitives to the cart and arm example. Recall that on receiving the
command fold, the arm folds itself; meanwhile, the cart waits. When the arm is completely
folded, it sends back a message to the cart, then the cart moves, following a trajectory to the
object. This means the time the arm folds and the time the cart is idle (waiting for the arm)
should be the same. Similarly, the time cart is moving and the idle time the arm waits for
the cart should be synchronised. This explicit synchronisation is represented by the following
global type:

Cart→ Arm : fold.dt〈Cart : idle,Arm : fold〉.
Arm→ Cart : ok.dt〈Cart : move,Arm : idle〉.G

ECOOP 2019

28:6 Motion Session Types for Robotic Interactions

where “dt〈Cart : idle,Arm : fold〉” specifies the joint motion primitives idle executed by the
Cart and fold executed by the Arm are synchronised. We extend local types with motion
primitives as well. The conformance check ensures that, if each process conforms to its
local types, then the composition of the system conforms to the global type – which now
includes both message-based synchronization as well as synchronization over time using
motion primitives.

Finally, we expand the abstract motion primitives with the underlying dynamic controllers
and ensure that the joint execution of motion primitives is possible in the system. This
requires refining each motion primitive to its underlying dynamical system and checking that
whenever the global type specifies a joint execution of motion primitives, there is in fact a
joint trajectory of the system that can be executed.

3 Motion Session Calculus

We now introduce the syntax and semantics of a synchronous multiparty motion session
calculus. Our starting point is to associate a process with the physical component it controls.
This can be either a “complete” robot or parts of a robot (like the cart or arm in the previous
section). This makes it possible to model modular robots where parts may be swapped for
different tasks. In the following, we simply say “robot” to describe a physical component
(which may be a complete robot or part of a larger robot). Our programming model will
associate a process with each such robot.

We build our motion session calculus based on a session calculus studied in [15, 18], which
simplifies the synchronous multiparty session calculus in [29] by eliminating both shared
channels for session initiations and session channels for communications inside sessions.

I Notation 3.1 (Base sets). We use the following base sets: values, ranged over by v, v′, . . .;
expressions, ranged over by e, e′, . . .; expression variables, ranged over by x, y, z . . . ; labels,
ranged over by `, `′, . . . ; session participants, ranged over by p, q, . . .; motion primitives,
ranged over by a, b, . . .; process variables, ranged over by X,Y, . . . ; processes, ranged over
by P,Q, . . . ; and multiparty sessions, ranged over by M,M ′,

Motion Primitives

When reasoning about communication and synchronisation, the actual trajectory of the
system is not important and only the time taken by a motion is important. Therefore, we
first abstract away trajectories by just keeping the name of the motion primitive (a, b, . . .)
and, for each motion, we assume we know up front how long the action takes. We use the
notation dt〈a〉 to represent that a motion primitive executes and time elapses. Every motion
can have a different, a priori known, duration denoted duration(a). We write the tuple
dt〈(pi : ai)〉 to denote a group of processes executing their respective motion primitives at
the same time. For the sake of simplicity, we sometimes use a for both single or grouped
motions. In Section 5, we look in more details into the trajectories defined by the joint
execution of motion primitives.

Syntax of Motion Session Calculus

A value v can be a natural number n, an integer i, a Boolean true / false, or a real number.
An expression e can be a variable, a value, or a term built from expressions by applying
(type-correct) computable operators. The processes of the synchronous multiparty session
calculus are defined by:

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:7

P ::= p!`〈e〉.P ||
∑
i∈I

p?`i(xi).Pi ||
∑
i∈I

p?`i(xi).Pi + dt〈a〉.P || dt〈a〉.P

|| if e then P else P || µX.P || X || 0

The output process p!`〈e〉.Q sends the value of expression e with label ` to participant p.
The sum of input processes (external choice)

∑
i∈I p?`i(xi).Pi is a process that can accept a

value with label `i from participant p for any i ∈ I;
∑
i∈I p?`i(xi).Pi + dt〈a〉.P is an external

choice with a default branch with a motion action dt〈a〉.P which can always proceed when
there is no message to receive. According to the label `i of the received value, the variable
xi is instantiated with the value in the continuation process Pi. We assume that the set I
is always finite and non-empty. The conditional process if e then P else Q represents the
internal choice between processes P and Q. Which branch of the conditional process will be
taken depends on the evaluation of the expression e. The process µX.P is a recursive process.
We assume that the recursive processes are guarded. For example, µX.p?`(x).X is a valid
process, while µX.X is not. We often omit 0 from the tail of processes.

We define a multiparty session as a parallel composition of pairs (denoted by p / P) of
participants and processes:

M ::= p / P || M | M

with the intuition that process P plays the role of participant p, and can interact with other
processes playing other roles in M . The participants correspond to the physical components
in the system and the processes correspond to the code run by that physical component.
A multiparty session is well formed if all its participants are different. We consider only
well-formed multiparty sessions.

Operational Semantics of Motion Session Calculus

The value v of expression e (notation e ↓ v) is computed as expected. We assume that e ↓ v
is effectively computable and takes logical “zero time.”

We adopt some standard conventions regarding the syntax of processes and sessions.
Namely, we will use

∏
i∈I pi / Pi as short for p1 / P1 | . . . | pn / Pn, where I = {1, . . . , n}.

We will sometimes use infix notation for external choice process. For example, instead of∑
i∈{1,2} p?`i(x).Pi, we will write p?`1(x).P1 + p?`2(x).P2.

The computational rules of multiparty sessions are given in Table 1. They are closed
with respect to structural congruence. The structural congruence includes a recursion rule
µX.P ≡ P{µX.P/X}, as well as expected rules for multiparty sessions such as P ≡ Q ⇒
p / P | M ≡ p / Q | M . Other rules are standard from [15, 18]. However, unlike the usual
treatment of π-calculi, our structural congruence does not have a rule to simplify inactive
processes (p / 0). The reason is that even when a program might be logically terminated,
the physical robot continues to exist and may still collide with another robot. Therefore, in
our model, all processes need to terminate at the same time, and so we need to keep p / 0.

In rule [comm], the participant q sends the value v choosing the label `j to participant p,
who offers inputs on all labels `i with i ∈ I. In rules [t-conditional] and [f-conditional],
the participant p chooses to continue as P if the condition e evaluates to true and as Q if e
evaluates to false. Rule [r-struct] states that the reduction relation is closed with respect to
structural congruence. We use −→∗ for the reflexive transitive closure of −→.

The motion primitives are handled with [motion] and [m-par]. Here, we need to label
transitions with the time taken by the action and propagate these labels with the parallel
composition. This ensures that when (physical) time elapses for one process, it elapses

ECOOP 2019

28:8 Motion Session Types for Robotic Interactions

Table 1 Reduction rules. The communication between an output and an external choice (without
the default motion action) is formalised similarly to [comm].

[comm]
j ∈ I e ↓ v

p /
∑
i∈I

q?`i(x).Pi + dt〈a〉.P | q / p!`j〈e〉.Q −→ p / Pj{v/x} | q / Q

[default]

p /
∑
i∈I

q?`i(x).Pi + dt〈a〉.P dt〈a〉−→ p / P
[motion]

p / dt〈a〉.P dt〈a〉−→ p / P

[t-conditional]
e ↓ true

p / if e then P else Q −→ p / P

[f-conditional]
e ↓ false

p / if e then P else Q −→ p / Q

[r-par]
p / Q −→ p / Q′

p / Q | M −→ p / Q′ | M

[m-par]

pi / Pi
dt〈ai〉−→ pi / P ′i ∀i, j. duration(ai) = duration(aj)

Πipi / Pi
dt〈(pi:ai)〉−→ Πipi / P ′i

[r-struct]
M ′1 ≡M1 M1 −→M2 M2 ≡M ′2

M ′1 −→M ′2

[m-struct]

M ′1 ≡M1 M1
dt〈a〉−→ M2 M2 ≡M ′2

M ′1
dt〈a〉−→ M ′2

equally for all processes; every process has to spend the same amount of time. This style of
synchronisation is reminiscent of broadcast calculi [39]. Instead of broadcast messages, we
broadcast time.

In order to state that communications can always make progress, we formalise when a
multiparty session contains communications or motion actions that will never be executed.

I Definition 3.2. A multiparty motion session M is stuck if M 6≡
∏
i∈I pi / 0 and there is

no multiparty session M ′ such that M −→M ′. A multiparty session M gets stuck, notation
stuck(M) , if it reduces to a stuck motion multiparty session.

We finish this section with some examples of multi-party sessions.

I Example 3.3 (A Simple Fetch Scenario). Recall the scenario from Section 2 in which a cart
and arm assembly has to fetch an object. There are two processes: a cart and an arm; the
arm is attached to the cart. The task involves synchronization between the cart and the arm.
Specifically, the protocol works as follows. Initially, the cart sends the arm a command to
fold. On receiving the command, the arm folds itself. Meanwhile, the cart waits. When the
arm is completely folded, it sends back a message to the cart. On receipt of this message,
the cart moves, following a trajectory to the object. When it reaches the object, it stops and
sends a message back to the arm to grab the object. While the cart waits, the arm executes
the grabbing operation, followed by a folding operation. When the arm is done, it again
synchronises with the cart. At this point, the cart moves back to its original position. (We
simplify the example from Section 2 so that the sequence is not repeated.)

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:9

Cart/
Arm!fold〈〉.
wait (dt〈idle〉){

Arm?ok().
dt〈move〉.
Arm!grab.
wait (dt〈idle〉){

Arm?ok().
dt〈move〉.
Arm!done().0

}
}

Arm/
µX.wait (dt〈idle〉){

Cart?fold().dt〈fold〉.Cart!ok〈〉.X
+ Cart?grab().

dt〈grip〉.
Cart!ok〈〉.X

+ Cart?done().0
}

Figure 1 A cart and arm example.

Figure 1 shows how the cart and arm processes can be encoded in our core language.
We introduce some syntactic sugar for readability. We write wait (dt〈a〉) {

∑
i∈I

p?`i(xi).Pi}

as shorthand for the process µX.
∑
i∈I

p?`i(xi).Pi + dt〈a〉.X, which keeps running the default

motion a until it receives a message.
The motion primitive idle keeps the cart or the arm stationary. The primitive move moves

the cart, the primitives grip and fold respectively move the arm to grab an object or to fold
the arm. At this point, we focus on the communication pattern and therefore abstract away
the actual trajectories traced by the motion primitives. We come back to the trajectories
in Section 5.

Finally, the multiparty session is the parallel composition of the participants Cart and
Arm with the corresponding processes.

The processes in our calculus closely follow the syntax of PGCD programs [4]. In Figure 2,
we show a side by side comparison of a PGCD program and the corresponding process
expressed in the motion session calculus.

I Example 3.4 (Multi-party Co-ordination: Handover). We describe a more complex handover
example in which a cart and arm assembly transfers an object to a second cart, called the
carrier. The process for the arm is identical to Figure 1, but the cart now co-ordinates with
the carrier as well. Figure 3 shows all the processes. Note that the cart now synchronises
both with the arm and with the carrier.

The protocol is as follows. As before, the cart moves to a target position, having ensured
that the arm is folded, and then waits for the carrier to be ready. When the carrier is ready,
the arm is instructed to grab an object on the carrier. Once the object is grabbed, the arm
synchronises with the cart, which then informs the carrier that the handover is complete.
The cart and the carrier move back to their locations and the protocol is complete. The
multiparty session is the parallel composition of the participants Cart, Arm, and Carrier, with
the corresponding processes.

ECOOP 2019

28:10 Motion Session Types for Robotic Interactions

PGCD: pseudo code for the Arm
1 while true do
2 receive (idle)
3 fold ⇒
4 fold();
5 send(Cart, ok)
6 grab ⇒
7 grip();
8 send(Cart, ok)
9 done ⇒

10 break

Arm/
µX.wait (dt〈idle〉){

Cart?fold().
dt〈fold〉.
Cart!ok〈〉.X

+ Cart?grab().
dt〈grip〉.
Cart!ok〈〉.X

+ Cart?done().
0

}

Figure 2 Comparison of a PGCD code and the corresponding motion session calculus process.

4 Multiparty Motion Session Types

This section introduces motion session types for the calculus presented in Section 3. The
formulation is based on [29, 30, 14], with adaptations to account for our motion calculus.

4.1 Motion Session Types and Projections

Global types act as specifications for the message exchanges among robotic components.

I Definition 4.1 (Sorts and global motion session types). Sorts, ranged over by S, are used to
define base types:

S ::= unit || nat || int || bool || real

Global types, ranged over by G, are terms generated by the following grammar:

G ::= dt〈(pi : ai)〉.G || p→ q : {`i(Si).Gi}i∈I || t || µt.G || end

We require that p 6= q, I 6= ∅, `i 6= `j, and duration(ai) = duration(aj) whenever i 6= j, for
all i, j ∈ I. We postulate that recursion is guarded and recursive types with the same regular
tree are considered equal [37, Chapter 20, Section 2].

In Definition 4.1, the type dt〈(pi : ai)〉.G is a motion global type which explicitly declares
a synchronisation by a motion action among all the participants pi. The rest is the standard
definition of global types in multiparty session types [29, 30, 14]. The branching type
p→ q : {`i(Si).Gi}i∈I formalises a protocol where participant p must send to q one message
with label `i and a value of type Si as payload, for some i ∈ I; then, depending on which `i
was sent by p, the protocol continues as Gi. Value types are restricted to sorts. The type end
represents a terminated protocol. A recursive protocol is modelled as µt.G, where recursion
variable t is bound and guarded in G, e.g., µt.t is not a valid type. The notation pt{G}
denotes a set of participants of a global type G.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:11

Cart/
Arm!fold〈〉.
wait (dt〈idle〉){

Arm?ok().Carrier!ok〈〉.
dt〈move〉.
wait (dt〈idle〉){

Carrier?ok().Arm!grab〈〉.
wait (dt〈idle〉){

Arm?ok().Carrier!ok〈〉.
dt〈move〉.
Arm!done〈〉.Carrier!done〈〉.0

}
}

}

Carrier/
wait (dt〈idle〉){

Cart?ok().dt〈move〉.
Cart!ok〈〉.
wait (dt〈idle〉){

Cart?ok().
dt〈move〉.
wait (dt〈idle〉){Cart?done().0}

}}
Arm/

µX.wait (dt〈idle〉){
Cart?fold().dt〈fold〉.Cart!ok〈〉.X

+ Cart?grab().dt〈grip〉.Cart!ok〈〉.X
+ Cart?done().0

}

Figure 3 A multi-party handover example.

I Example 4.2 (Global session types). The global session type for the fetch example (Ex-
ample 3.3) is:

Cart→ Arm : fold(unit).dt〈Cart : idle,Arm : fold〉.
Arm→ Cart : ok(unit).dt〈Cart : move,Arm : idle〉.
Cart→ Arm : grab(unit).dt〈Cart : idle,Arm : grip〉.
Arm→ Cart : ok(unit).dt〈Cart : move,Arm : idle〉.
Cart→ Arm : done(unit).end

and the global session type for the handover example (Example 3.4) is:

Cart→ Arm : fold(unit).dt〈Cart : idle,Carrier : idle,Arm : fold〉.
Arm→ Cart : ok(unit).Cart→ Carrier : ok(unit).
dt〈Cart : move,Carrier : move,Arm : idle〉.
Carrier→ Cart : ok(unit).Cart→ Arm : grab(unit).
dt〈Cart : idle,Carrier : idle,Arm : grip〉.
Arm→ Cart : ok(unit).Cart→ Carrier : ok(unit).
dt〈Cart : move,Carrier : move,Arm : idle〉.
Cart→ Arm : done(unit).Cart→ Carrier : done(unit).end

ECOOP 2019

28:12 Motion Session Types for Robotic Interactions

A (local) motion session type describes the behaviour of a single participant in a multiparty
motion session.

I Definition 4.3 (Local motion session types). The grammar of local types, ranged over
by T , is:

T ::= dt〈a〉.T || &{p?`i(Si).Ti}i∈I || &{p?`i(Si).Ti}i∈I & dt〈a〉.T || ⊕{q!`i(Si).Ti}i∈I

|| t || µt.T || end

We require that `i 6= `j whenever i 6= j, for all i, j ∈ I. We postulate that recursion is always
guarded. Unless otherwise noted, session types are closed.

Labels in a type need to be pairwise different, e.g., p?`(int).end&p?`(nat).end is not a
type. The motion local type dt〈a〉.T represents a motion action followed by the type T ; the
external choice or branching type &{p?`i(Si).Ti}i∈I requires to wait to receive a value of
sort Si (for some i ∈ I) from the participant p, via a message with label `i; if the received
message has label `i, the protocol will continue as prescribed by Ti. The motion branching
choice is equipped with a default motion type dt〈a〉.T . The internal choice or selection type
⊕{q!`i(Si).Ti}i∈I says that the participant implementing the type must choose a labelled
message to send to q; if the participant chooses the message `i, for some i ∈ I, it must
include in the message to q a payload value of sort Si, and continue as prescribed by Ti.
Recursion is modelled by the session type µt.T . The session type end says that no further
communication is possible and the protocol is completed. We adopt the following conventions:
we do not write branch/selection symbols in case of a singleton choice, we do not write
unnecessary parentheses, and we often omit trailing ends. The notation pt{T} denotes a set
of participants of a session type T .

In Definition 4.4 below, we define the global type projection as a relation G �r T between
global and local types. Our definition extends the one originally proposed by [25, 26], along
the lines of [12] and [13] with motion types: i.e., it uses a merging operator

d
to combine

multiple session types into a single type.

I Definition 4.4. The projection of a global type onto a participant r is the largest relation
�r between global and session types such that, whenever G �r T :

• G = end implies T = end; [proj-end]

• G = dt〈(pi : ai)〉.G′ implies T = dt〈aj〉.T ′ with r = pj and G′ �r T ′; [proj-motion]

• G = p→ r : {`i(Si).Gi}i∈I implies T = &{p?`i(Si).Ti}i∈I with Gi �r Ti; [proj-in]

• G = r→ q : {`i(Si).Gi}i∈I implies T = ⊕{q!`i(Si).Ti}i∈I and Gi �r Ti, ∀i∈I; [proj-out]

• G = p→ q : {`i(Si).Gi}i∈I and r 6∈{p, q} implies that there are Ti, i ∈ I s.t. [proj-cont]
T =

d
i∈ITi, and Gi �rTi, for every i ∈ I.

• G = µt.G implies T = µt.T ′ with G �r T ′ if r occurs in G, otherwise T = end. [proj-rec]

Above,
d

is the merging operator, that is a partial operation over session types defined as:

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:13

T1
d
T2 =

T1 if T1 = T2 [mrg-id]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I and
T2 = &{p′?`j(Sj).Tj}j∈J and
T3 = &{p′?`k(Sk).Tk}k∈I∪J

[mrg-bra1]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′ and
T2 = &{p′?`j(Sj).Tj}j∈J & dt〈a〉.T ′ and
T3 = &{p′?`k(Sk).Tk}k∈I∪J & dt〈a〉.T ′

[mrg-bra2]

T3 if ∃I, J :

 T1 = &{p′?`i(Si).Ti}i∈I and
T2 = &{p′?`j(Sj).Tj}j∈J & dt〈a〉.T ′ and
T3 = &{p′?`k(Sk).Tk}k∈I∪J & dt〈a〉.T ′

[mrg-bra3]

T3 if ∃I, J :

 T1 = dt〈a〉.T ′ and
T2 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′ and
T3 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′

[mrg-bra4]

T3 if ∃I, J :

 T1 = dt〈a〉.T ′ and
T2 = &{p′?`j(Sj).Tj}i∈I and
T3 = &{p′?`i(Si).Ti}i∈I& dt〈a〉.T ′

[mrg-bra5]

T2
d
T1 if T2

d
T1 is defined,

undefined otherwise.

We omit the cases for recursions and selections (defined as [42, S 3]).

Note that our definition is slightly simplified w.r.t. the one of [12] and [13]. Instead of this
mergeability operator, one might use more general approach from [42]. This definition is
sufficient for our purposes (i.e., to demonstrate an application of session types to robotics
communications).

I Example 4.5. The projection of the global session type for the fetch example on the cart
gives the following local session type:

Arm!fold〈unit〉.dt〈idle〉.Arm?ok(unit).dt〈move〉.Arm!grab〈unit〉.
dt〈idle〉.Arm?ok(unit).dt〈move〉.Arm!done〈unit〉.end

The local motion session type for the arm is:

Cart?fold(unit).dt〈fold〉.Cart!ok〈unit〉.dt〈idle〉.Cart?grab(unit).
dt〈grip〉.Cart!ok〈unit〉.dt〈idle〉.Cart?done(unit).end

On Progress of Time. Our model assumes that the computation and message transmission
time is much faster than the dynamics of the system and, therefore, the messages can be
seen as instantaneous. This assumption depends on parameters of the system, like the speed
of the network and the dynamics of the physical system, and also on the program being
executed. While we cannot directly change the physical system, we can at least check the
program is well behaved w.r.t. to time.

If a program can send an unbounded number of messages without executing a motion
then this assumption, obviously, does not hold. From the perspective of using the motion
calculus to verify a system, this may lead to situation where an unsafe program is deemed
safe because time does not progress. For instance, a robot driving straight into a wall could
“avoid” crashing into the wall by sending messages in a loop and, therefore, stopping the
progress of time.

This problem is not unique to our system but a more general problem in defining the
semantics of hybrid systems [20, 21]. In general, one needs to assume that time always
diverges for infinite executions. In this work, we take a pragmatic solution and simply disallow

ECOOP 2019

28:14 Motion Session Types for Robotic Interactions

0-time recursion. When recursion is used, all the paths between a µt and the corresponding t
must contain at least one motion primitive. This is a simple check which can be done at the
syntactic level of global types and it is a sufficient condition for forcing the progress of time.

4.2 Motion Session Typing
We now introduce a type system for the multiparty session calculus presented in Section 3.
We distinguish three kinds of typing judgments:

Γ ` e : S Γ ` P : T `M : G

where Γ is the typing environment defined as: Γ ::= ∅ || Γ, x : S || Γ, X : T , i.e., a mapping
that associates expression variables with sorts, and process variables with session types.

We use the subtyping relation 6 to augment the flexibility of the type system by
determining when a type T is “smaller” than T ′, it allows to use a process typed by the
former whenever a process typed by the latter is required.

I Definition 4.6 (Subsorting and subtyping). Subsorting ≤: is the least reflexive binary
relation such that nat ≤: int ≤: real. Subtyping 6 is the largest relation between session
types coinductively defined by the following rules:

[sub-end]
end 6 end

[sub-in1]
∀i ∈ I : S′i ≤: Si Ti 6 T

′
i T 6 T ′

&{p?`i(Si).Ti}i∈I∪J & dt〈a〉.T 6 &{p?`i(S′i).T ′i}i∈I & dt〈a〉.T ′
===

[sub-motion]
T 6 T ′

dt〈a〉.T 6 dt〈a〉.T ′
=================

[sub-in2]
∀i ∈ I : S′i ≤: Si Ti 6 T

′
i

&{p?`i(Si).Ti}i∈I∪J & dt〈a〉.T 6 &{p?`i(S′i).T ′i}i∈I
==

[sub-in3]
T 6 T ′

&{p?`i(Si).Ti}i∈I & dt〈a〉.T 6 dt〈a〉.T ′
======================================

[sub-out]
∀i ∈ I : Si ≤: S′i Ti 6 T

′
i

⊕{p!`i(Si).Ti}i∈I ≤: ⊕{p!`i(S′i).T ′i}i∈I∪J
=======================================

The double line in the subtyping rules indicates that the rules are interpreted coinductively [37,
Chapter 21].

The typing rules for expressions are given as expected and omitted. The typing rules for
processes and multiparty sessions are the content of Table 2:

[t-sub] is the subsumption rule: a process with type T is also typed by the supertype T ′;
[t-0] says that a terminated process implements the terminated session type;
[t-rec] types a recursive process µX.P with T if P can be typed as T , too, by extending
the typing environment with the assumption that X has type T ;
[t-var] uses the typing environment assumption that process X has type T ;
[t-motion] types a motion process as a motion local type;
[t-input-choice] types a summation of input prefixes as a branching type and a default
branch as a motion type. It requires that each input prefix targets the same participant
q, and that, for all i ∈ I, each continuation process Pi is typed by the continuation type
Ti, having the bound variable xi in the typing environment with sort Si. Note that the
rule implicitly requires the process labels `i to be pairwise distinct (as per Definition 4.3);

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:15

Table 2 Typing rules for motion processes.

[t-0]
Γ ` 0 : end

[t-rec]
Γ, X : T ` P : T

Γ ` µX.P : T

[t-var]
Γ, X : T ` X : T

[t-motion]
Γ ` Q : T

Γ ` dt〈a〉.Q : dt〈a〉.T

[t-out]
Γ ` e : S Γ ` P : T

Γ ` q!`(e).P : q!`(S).T

[t-input-choice1]
∀i ∈ I Γ, xi : Si ` Pi : Ti

Γ `
∑
i∈I

q?`i(xi).Pi : &{q?`i(Si).Ti}i∈I

[t-input-choice2]
∀i ∈ I Γ, xi : Si ` Pi : Ti Γ ` dt〈a〉.Q : T

Γ `
∑
i∈I

q?`i(xi).Pi + dt〈a〉.Q : &{q?`i(Si).Ti}i∈I & T

[t-choice]
Γ ` e : bool ∃k ∈ I Γ ` P1 : Tk Γ ` P2 : ⊕{Ti}i∈I\{k}

Γ ` if e then P1 else P2 : ⊕{Ti}i∈I

[t-sub]
Γ ` P : T T 6 T ′

Γ ` P : T ′

[t-sess]
∀i ∈ I ` Pi : G�pi pt{G} = {pi | i ∈ I}

`
∏
i∈I

pi / Pi : G

[t-out] types an output prefix with a singleton selection type, provided that the expression
in the message payload has the correct sort S, and the process continuation matches the
type continuation;
[t-choice] types a conditional process by matching the branches of the types to branches
of the sub-processes;
[t-sess] types multiparty sessions, by associating typed processes to participants. It
requires that the processes being composed in parallel can play as participants of a
global communication protocol: hence, their types must be projections of a single global
type G. As the temporal evolution (motion) synchronises all the processes condition
pt{G} = {pi | i ∈ I} guarantees that motions are defined for every participant.

I Example 4.7. We sketch the main steps to show that the Arm process is typed by the
local type from Example 4.5. The type derivation uses the subtyping rules. This is because
the process for the arm makes an external choice between the messages fold, grab, done, and
the default motion primitive idle, and the type fixes a specific sequence of messages. The
usual subtyping rules [sub-in1] and [sub-in2] allow typing the process against the local type,
by “expanding” the local type with the other possible choices. The interesting subtyping
rule is [sub-in3], which states that an external choice with a default motion type refines only
the default motion type. This is needed to type the process against the local type

dt〈idle〉.Cart?grab(unit).T

This subtyping rule is sound, because the local type ensures that the other message choices
cannot arise.

ECOOP 2019

28:16 Motion Session Types for Robotic Interactions

The proposed motion session type system satisfies two fundamental properties: typed
sessions only reduce to typed sessions (subject reduction), and typed sessions never get stuck.

In order to state subject reduction, we need to formalise how global types are reduced
when local session types reduce and evolve. Note that since the same motion actions always
synchronise among all participants, they always make progress (hence they are always
consumed).

I Definition 4.8 (Global types consumption and reduction). The consumption of the commu-
nication p `−→ q and motion dt〈a〉 for the global type G (notation G \ p `−→ q and G \ dt〈a〉) is
the global type defined (up to unfolding of recursive types) as follows:

dt〈a〉.G \ dt〈a〉 = G(
p→ q : {`i(Si).Gi}i∈I

)
\ p `−→ q = Gk if ∃k ∈ I : ` = `k(

r→ s : {`i(Si).Gi}i∈I
)
\ p `−→ q = r→ s : {`i(Si).Gi \ p `−→ q}i∈I

if {r, s} ∩ {p, q} = ∅ ∧ ∀i∈I : {p, q}⊆Gi

The reduction of global types is the smallest pre-order relation closed under the rule: G =⇒
G \ p `−→ q and G =⇒ G \ dt〈a〉.

We can now state the main results.

I Theorem 4.9 (Subject Reduction). Let `M : G. For all M ′, if M −→M ′, then `M ′ : G′
for some G′ such that G =⇒ G′.

I Corollary 4.10. Let ` M : G. If M −→∗ M ′, then ` M ′ : G′ for some G′ such that
G =⇒ G′.

I Theorem 4.11 (Progress). If `M : G, then either M ≡
∏
i∈I pi / 0 or there is M ′ such

that M −→M ′.

As a consequence of subject reduction and progress, we get the safety property stating
that a typed multiparty session will never get stuck.

I Theorem 4.12 (Type Safety). If `M : G, then it does not hold stuck(M) .

Proof. Direct consequence of Corollary 4.10, Theorem 4.11, and Definition 3.2. J

5 Motion Primitives: Trajectories and Resources

So far, our motion calculus abstracted the trajectories of the robots and only considered the
time it takes to execute motion primitives. This is sufficient to show that the synchronisation
and communication protocol between the robots executes correctly. However, it is too
abstract to prove more complex properties about executions of the system. In particular,
for an execution to proceed correctly we need to check the existence of trajectories for all
the robots. A joint trajectory may not exist, for example, if the motion primitives cause a
collision in the physical world.

In this section, we explain how to make our model more detailed and how to look inside
the motion primitives for the continuous evolution of trajectories. To accomplish this, first,
we give a semantics that includes trajectories. Then, we refine our calculus to replace internal
choice with guarded choice. Finally, we explain how to use session types to prove properties
over the trajectories.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:17

5.1 Model for the Robots and Motion Primitives
We proceed following the formalisation of trajectories in the PGCD language for robotics [4].

Robots. Each participant (p, q, . . .) maintains a state in the physical world. This state is
updated when its own motion primitives execute as well as on potential physical interactions
with other processes.

We model the physical state of a process as a tuple (Var , ρ, rsrc) where Var is a set of
variables, with two distinguished disjoint subsets X and W of physical state and external
input variables, ρ : Var → R is a store mapping variables to values, and rsrc is a resource
function mapping a store to a subset of R3. The resource function represents the geometric
footprint in space occupied by the robot. We shall use this function to check the absence of
collisions between robots.

When two robots p1 and p2 are in the same environment, we may connect some state
variables of one process to the external inputs of the other. This represents physical coupling
between these robots. A connection θ between p1 and p2 is a finite set of pairs of variables,
θ = {(xi, wi) | i = 1, . . . ,m}, such that: (1) for each (x,w) ∈ θ, we have x ∈ p1.X and
w ∈ p2.W or x ∈ p2.X and w ∈ p1.W , and (2) there does not exist (x,w), (x′, w) ∈ θ such
that x and x′ are distinct. Two connections θ1 and θ2 are compatible if θ1∪ θ2 is a connection.
We assume that all the participants in a session are connected by compatible connections.

For example, consider a cart and an arm. The physical variables can provide the position
and velocities of the center of mass of the cart and of the arm. Note that if the arm is
attached to the cart, then its position changes when the cart moves. Thus, the position and
velocity of the cart are external inputs to the arm, and play a role in determining its own
position. However, the arm can also move relative to the cart and the position of its end
effector is determined both by the external inputs as well as its relative position and velocity.
Furthermore, the mass and the position of the center of mass of the arm are external inputs
to the cart, because these variables affect the dynamics of the cart.

Motion Primitives. Let X and W be two sets of real-valued variables, representing internal
state and external input variables of a robotic system, respectively. A motion primitive
updates the values of the variables in X over time, while respecting the values of variables
in W set by the external world. This dynamic process results in a pair of state and input
trajectories (ξ, ν), i.e., a valuation over time to variables in X and W .

Formally, a motion primitive m is a tuple (T,Pre, Inv,Post) consisting of a duration T , a
pre-condition Pre ⊆ R|X|×R|W |, an invariant Inv ⊆

(
[0, T]→ R|X|

)
×
(
[0, T]→ R|W |

)
, and

a post-condition Post ⊆ R|X| × R|W |. A trajectory of duration T of the motion primitive
m is a pair of continuous functions (ξ, ν) mapping the real interval [0, T] to R|X| and R|W |,
respectively, such that (ξ, ν) ∈ Inv, (ξ(0), ν(0)) ∈ Pre, and (ξ(T), ν(T)) ∈ Post.

Correspondingly, we need to update the semantics of our motion calculus:
The participant executing a program p / P now also carries a store containing a valuation
for the physical state of the robot: p, ρ / P .
The motion transitions dt〈a〉−→ get labelled with trajectories: dt〈(ξ,ν)〉−→ .
The semantics rule for choice can use values from the store:

[t-conditional]
ρ(e) ↓ true

p, ρ / if e then P else Q −→ p, ρ / P

[f-conditional]
ρ(e) ↓ false

p, ρ / if e then P else Q −→ p, ρ / Q

where ρ(e) replaces the variables from Var in e with their value according to ρ.

ECOOP 2019

28:18 Motion Session Types for Robotic Interactions

The semantics of a motion checks the trajectories against the motion primitive specification
and the store:

[motion]
a = (T,Pre, Inv,Post) range(ξ) = [0, T] ρ = ξ(0) ρ′ = ξ(T)

(ξ(0), ν(0)) ∈ Pre (ξ(T), ν(T)) ∈ Post ∀t ∈ [0, T]. (ξ(t), ν(t)) ∈ Inv

p, ρ / dt〈a〉.P dt〈(ξ,ν)〉−→ p, ρ′ / P

The rule checks that the trajectory is valid w.r.t. a: the duration of the trajectory must
match the duration of the motion primitive, the start and end of the trajectory match
the state of ρ and ρ′ respectively. Furthermore, the pre-condition, post-condition, and
invariant must be respected.
The parallel composition of motions connects the external inputs of each process according
to the connections. For the notations, we use subscript to denote that an element belongs
to a particular process p, e.g., Xp for the internal variables of p. We denote the restriction
of a trajectory ξ over a subset X of the dimensions by ξ|X .

[m-par]

∀i ξi = ξ|Xpi
νi = θpi

(ξ)|Wpi
pi, ρi / Pi

dt〈(ξi,νi)〉−→ pi, ρ′i / P ′i
∀i, j, t. i 6= j ⇒ rsrcpi

(ξ|Xpi
(t), θpi

(ξ)|Wpi
(t)) ∩ rsrcpj

(ξ|Xpj
(t), θpj

(ξ)|Wpj
(t)) = ∅

Πipi, ρi / Pi
dt〈(ξ,ν)〉−→ Πipi, ρ′i / P ′i

Even at the top level, there is a ν as there can be elements which are under the control
of the environment. Then, for each process we create the appropriate trajectory (ξ, ν)
by applying the appropriate connection θ. Also, the resources used by each participants
during the motion needs to disjoint from each other. This last check ensures the absence
of collision between robots. We use this check to avoid the complexity of modelling
collisions.

I Example 5.1. Let us look at the cart from Example 3.3. The cart is moving on the ground,
a 2D plane and, therefore, we model its physical state (XCart) by its position pCart ∈ R2,
orientation rCart ∈ [−π;π), and speed sCart ∈ R.

A trivial motion primitive idle(p0, r0) keeps the cart at its current position p0 and
orientation r0; the pre-condition is sCart = 0 (i.e., it is at rest), the post-condition is
sCart = 0∧pCart = p0 ∧ rCart = r0, and the invariant is pCart(t) = p0 ∧ rCart(t) = r0 ∧ sCart = 0
for all t ∈ [0, T].

A slightly more interesting motion primitive is move(p0,pt), which moves the cart
from position p0 to pt. The pre-condition is sCart = 0 ∧ pCart = p0. The post-condition is
sCart = 0∧pCart = pt. The invariant can specify a bound on the velocity, e.g., 0 ≤ sCart ≤ vmax,
that the cart moves in straight line between p0 and pt, etc.

We can also include external input. For instance, we may add an external variable wobj
to represent the weight of any carried object, e.g., the arm attached on top. Then, the
pre-condition of move may include an extra constraint 0 ≤ wobj ≤ wmax to say that the cart
can only move if the weight of the payload is smaller than a given bound.

5.2 Motion Calculus with Guarded Choice
Before executing some motion, a process may need to test the state of the physical world
and, according to the current state, decide what to do. Therefore, we extend the calculus
with the ability for a process to test predicates over its Var as part of the if · then · else ·.
On the specification side, we also add predicates to the internal choice.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:19

Let P range over predicates. The global and local motion session types are modified
as follows:

The branching type for global session types becomes p→ q : {[Pi]`i(Si).Gi}i∈I .
The branching type for local session types becomes ⊕{[Pi]q!`i(Si).Ti}i∈I .

To make sure the modified types can be projected and then used for typing they need to
respect the following constraints. Assume that Varp are the variables associated with the robot
executing the role of p. (1) The choices are local, i.e., for p→ q : {[Pi]`i(Si).Gi}i∈I we have
that fv(Pi) ⊆ Varp for all i in I. (2) The choices are total, i.e., for p→ q : {[Pi]`i(Si).Gi}i∈I
we have that

∨
i∈I Pi is valid. The local types have similar constraints.

The subtyping and typing relation are updated as follows:

[sub-out]
∀i ∈ I : Si ≤: S′i Ti 6 T

′
i Pi ⇒ P ′i

⊕{[Pi]p!`i(Si).Ti}i∈I 6 ⊕{[P ′i]p!`i(S′i).T ′i}i∈I∪J
==

The change in this rule is the addition of checking the implication Pi ⇒ P ′i to make sure
that if the pre-condition of a motion primitive relies on P ′i, it still holds with Pi. Notice that
⊕{[Pi]p!`i(Si).Ti}i∈I which can have more restricted predicates needs to be a valid local
type and the guards still need to be total.

[t-choice]
Γ ` e : bool ∃k ∈ I e⇒ Pk Γ ` P1 : Tk Γ ` P2 : ⊕{[e ∨ Pi]Ti}i∈I\{k}

Γ ` if e then P1 else P2 : ⊕{[Pi]Ti}i∈I

Type checking the rules propagates the expression from if then else and matches it into a
branch of the type. To deal with the else branch we modify the predicate in the remaining
branches of the type. For the last else branch of a, possibly nested, if then else we need
the following extra rule:

[t-choice-final]
Γ ` P : T

Γ ` P : ⊕{[true]T}

I Example 5.2. Usually, for the propagation of tested expressions through the branches we
modify the type. Let us make an example of how this works. Consider we have the following
process if e1 then P1 else P2 which has the type ⊕{[e1]T1, [¬e1]T2}. Assuming that Pi : Ti
for i ∈ {1, 2} we can build the following derivation:

e1 ⇒ e1 Γ ` P1 : T1
Γ ` P2 : T2

Γ ` P2 : ⊕{[e1 ∨ ¬e1]T2}
Γ ` if e1 then P1 else P2 : ⊕{[e1]T1, [¬e1]T2}

With a bit of boolean algebra, we can show that e1 ∨ ¬e1 ⇔ true.

5.3 Existence of Joint Trajectories and Verification
The goal of the compatibility check is to make sure that abstract motion primitives specified in
a global type can execute concurrently. This requires two checks. First, for motion primitives
of different processes executed in parallel, we need to make sure that there exists a trajectory

ECOOP 2019

28:20 Motion Session Types for Robotic Interactions

satisfying all the constraints of the motion primitives. Second, for motion primitives executed
sequentially by the same process, we need to make sure that the post-condition of the first
implies the pre-condition of the second motion primitive, taking into account the guards of
choices in the middle.

To check that motion primitives executing in parallel have a joint trajectory, we use an
assume-guarantee style of reasoning. When two processes are attached, one process relies
on the invariants of the other’s output (which can be an external input) to satisfy its own
invariant and vice versa. We refer to standard methods [35, 4] for the details.

For the allowed trajectories, we need to also check the absence of collision. This means
that once we have the constrains defining a joint trajectory ξ to check that for any two
distinct processes p and q the property rsrcp(ξp) ∩ rsrcq(ξq) = ∅.

I Example 5.3. In Example 3.4, the cart and the carrier are moving toward each other.
They need to be close enough for the arm to grab the object but far enough to avoid colliding.
We model the resources of the cart by a cylinder around the cart’s position: rsrcCart =
{(x, y, z)||(x, y)− pCart| ≤ r ∧ 0 ≤ z ≤ h} where r is the “radius” of the cart and h its height.
The carrier’s resources are similar but with the appropriate radius and height r′, h′. The cart
and carrier does not collide if we can prove that ∀t. | ξCart|pCart(t)− ξCarrier|pCarrier (t) | > r + r′.

6 Evaluation

6.1 Implementation
We have implemented the system we describe on top of PGCD [4]1, a system for programming
and verification of robotic systems. PGCD is build on top of the Robotic Operating System
(ROS) [40], a software ecosystem for robots. The core of ROS is a publish-subscribe messaging
system. PGCD uses ROS’s messaging to implement its synchronous message-passing layer.
On the verification side, PGCD uses a mix of model-checking (using Spin [22]) to deal with
the message-passing structure, and symbolic reasoning (using SymPy [33]) and constraint
solving (using dReal [16]) to reason about motion primitives.

We replace the global model-checking algorithm of PGCD with motion session calculus
specifications but reuse PGCD’s infrastructure to reason about the trajectories of motion
primitives. Currently, our implementation uses a syntax for specifications closer to the
state-machine form of session types [11] but without the parallel composition operator. This
representation allows for more general guarded choice. if · then · else · implicitly forces disjoint
guards for the two branches. Our implementation allows overlapping guards. Algorithmically,
since the types are represented in a form close to an automaton, the projection and merge
operations are implemented using automata theoretic operation: morphism, minimisation,
and checking determinism of the result.

The typing, including subtyping, is implemented by computing an alternating simulation
[2] between programs and their respective local type. Intuitively, an alternative refinement
relation check that a process implements its specification (subset of the behaviours) without
restricting the other processes. For synchronous message passing programs, the subtyping
relation for session type matches alternating refinement. We use this view on subtyping as
the theory of alternating simulation [2] gives us an algorithm to compute this relation and,
therefore, check subtyping.

1 PGCD repository is https://github.com/MPI-SWS/pgcd. The code for this work is located in the
pgcd/nodes/verification/choreography folder.

https://github.com/MPI-SWS/pgcd

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:21

6.2 Experiments
For the evaluation, we take two existing PGCD programs and write global types in motion
session calculus that describe the co-ordination in the program.

First, we describe our experimental setup, both for the hardware and for the software.
Then, we explain the experiments. Finally, we report on the size of the specifications, and
time to check the programs satisfy the specification.

Setup

We use three robots: a robotic arm and two carts, shown in Figure 4. The robots are built
with a mix of off-the-self parts and 3D printed parts.
Arm. The arm is a modified BCN3D MOVEO,2 where the upper arm section is shortened

to make it lighter and easier to mount on the cart. The arm with its control electronics
is mounted on top of the cart.

Cart. The cart is shown on Figure 4a. The control electronics and motors are situated below
the wooden board. The cart is an omnidirectional driving platform. It uses omniwheels to
get three degrees of freedom (two in translation, one in rotation) and can move between
any two positions on a flat ground. The advantage of using such wheels is that all
the three degrees of freedom are controllable and movement does not require complex
planning. Due to the large power consumption of the arm mounted on top, this cart is
powered by a tether.

Carrier. We call the second cart the carrier (Figure 4b) as we use it to carry the block that
is grabbed by the arm. As the first cart, it is also omnidirectional (mecanum wheels).

All the three robots use stepper motors to move precisely. The robots do not have
feedback on their position and keep track of their state using dead reckoning, i.e., they know
their initial state and then they update their virtual state by counting the number of steps
the motors turns. If we control slippage and do not exceed the maximum torque of the
motors, there is little accumulation of error as long as the initial state is known accurately.
In our experiments, we use markings on the ground to fix the initial state as can be seen in
Figure 5. Furthermore, using stepper motors allows us to know the time it takes to execute
a given motion primitive by fixing the rate of steps.

Each robot has a RaspberryPi 3 model B to run the program. The ROS master node,
providing core messaging services, runs on a separate laptop to which all the robots connect.
The RaspberryPi runs Raspbian OS (based on Debian Jessie) and the laptop runs Ubuntu
16.04. The ROS version is Kinetic Kame.

Experiments

We describe two experiments:
Handover. This experiment corresponds to our earlier example. The two carts meet before

the arm takes an object placed on top of the carrier and, then, they go back to their
initial position (see Figure 5a).

Underpass. First, the carrier cart brings an object to the arm which is then taken by the
arm. Then, the carrier cart goes around the arm passing under an obstacle which is high
enough for just the carrier alone. Finally, the arm puts the object back on the carrier on
the other side of the obstacle. This can be seen in Figure 5b.

2 https://github.com/BCN3D/BCN3D-Moveo

ECOOP 2019

https://github.com/BCN3D/BCN3D-Moveo

28:22 Motion Session Types for Robotic Interactions

(a) The cart and arm robots attached together. (b) The carrier robot.

Figure 4 Robots used in our experiments.

(a) Handover. (b) Underpass.

Figure 5 Composite images of the experiments. (a) For handover, a cart containing an object
moves close to the cart with the attached arm. The arm picks up the object. (b) For underpass, the
carrier containing an object moves near the underpass. The arm picks up the object. The carrier
moves under the underpass and moves close to the arm. The arm places the object on the carrier.

Composite images (combination of multiple frame of the video) are shown in Figure 5. The
carts implement motion explicitly using the motion primitives (move straight, strafe, rotate).
For instance, when going around the cart in the second experiment, the carrier executes
rotate, move straight, rotate, strafe. In the model of the resources, we exclude the gripper
from the footprint and we do not model the objects gripped (gripping is a collision). For
the environment, we model obstacles as regions of R3 and also test for collision against
these regions.

Table 3 shows the size of the programs in the language of PGCD (sum for all the robots)
and the size of the global specifications. As part of the program we include a description of
the environment which specifies the initial states of the robots and the obstacles used for
additional collision checks. Finally, we show the number of verification conditions (#VCs)
generated during the subtyping and the checks for joint trajectories. The total running time
includes all the steps, i.e., checking the global specification, projection, typing, the existence
of joint trajectories, and the absence of collision. The running time is dominated by the check
on trajectories and collisions. The motion primitives (implementation and specification)
are taken from PGCD without any change and represent around 1K lines of codes for all
three robots.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:23

Table 3 Programs, Specification, and Checks.

Experiment Program Specification #VCs Time
(LoC) (LoC) (sec.)

Handover 22 12 141 38
Underpass 29 22 302 56

Compared to the verification results presented with PGCD [4, Section 5], we have roughly
a 2× speed-up. The reason is that PGCD is used model-checking instead of global/local
types. The motion session calculus makes it possible to have an abstract global specification
which is easier to check.

In conclusion, our evaluation demonstrates that session types allow the specification of
non-trivial co-ordination tasks between multiple robots with reasonable effort, while allowing
automated and compositional verification.

7 Related Work

There is considerable interest in the robotics community on designing modular robotic
components from higher-level specifications [32, 19]. However, most of this work has focused
on descriptions for the physical and electronic design of components or on generating plans
from higher level specifications rather than on language abstractions and types to reason
about concurrency and motion. The interaction between concurrency and dynamics, and
the use of automated verification techniques were considered in PGCD [4]. Our work takes
PGCD as a starting point and formalises a compositional verification methodology through
session types.

At the specification level, hybrid process algebras and other models of hybrid systems
[1, 41, 7, 38] can model concurrent hybrid systems. However, these papers do not provide a
direct path to implementation. Hybrid extensions to synchronous reactive languages [6, 5]
describe programs which interact through events and control physical variables. Most existing
verification methodologies for these programs rely on global model checking rather than on
types. Our choice of session types is inspired by efficient type checking but also as the basis
for describing interface specifications for components.

Extensions and applications of multiparty session types have been proposed in many
different settings. See, e.g. [27, 3, 17]. We discuss only most related work. The work [9]
extends multiparty session types with time, to enable the verification of realtime distributed
systems. This extension with time allows specifications to express properties on the causalities
of interactions, on the carried data types, and on the times in which interactions occur. The
projected local types correspond to Communicating Timed Automata (CTA). To ensure the
progress and liveness properties for projected local types, the framework requires several
additional constraints on the shape of global protocols, such as feasibility condition (at
any point of the protocol the current time constraint should be satisfiable for any possible
past) and a limitation to the recursion where in the loop, the clock should be always reset.
The approach is implemented in Python in [34] for runtime monitoring for the distributed
system. Later, the work in [8] develops more relaxed conditions in CTAs, and applies them to
synthesise timed global protocols. Unlike our work, no type checking for processes is studied
in [8]. The main difference from [9, 34, 8] is that our approach does not rely on CTAs and is
more specific to robotics applications where the verification is divided into the two layers; (1)

ECOOP 2019

28:24 Motion Session Types for Robotic Interactions

a simple type check for processes with motion primitives to ensure communication deadlock-
freedom with global synchronisations; and (2) additional more refined checks for trajectories
and resources. This two layered approach considerably simplifies our core calculus and typing
system in Section 4, allowing to verify more complex scenarios for robotics interactions.

8 Conclusion

We have outlined a unifying programming model and typing discipline for communication-
centric systems that sense and actuate the physical world. We work in the framework of
multiparty session types [25, 26], which have proved their worth in many different scenarios
relating to “pure” concurrent software systems. We show how to integrate motion primitives
into a core calculus and into session types. We demonstrate how multiparty session types are
used to specify correct synchronisation among multiple participants: we first provide a basic
progress guarantee for communications and synchronisation by motion primitives, which is
useful to extend richer verification related to trajectories.

At this point, our language is a starting point and not a panacea for robotics programming.
Decoupling specifications into parallel and/or sequential tasks and using distributed controllers
assumes “loosely coupled dynamics.” In some examples, such as a multiple cart/arm co-
ordination control, it may not be easy to assume a purely distributed control strategy based on
independent motion primitives. We are thus exploring simultaneous concurrent programming
and distributed controller and co-ordinator synthesis. As an example, assume that we have
two cart/arm compositions which should lift one object together. In particular we can assume
that lifting the object with only one arm would cause the cart/arm compositions to tilt over,
which generates a strong coupling between all components during the coordinated lift of the
object. Our framework allows to easily synchronise all the components. However, in any
realistic scenario a robust controller would need (almost) continuous feedback between all
components to fulfill the coordinated lift task. Thus, our model of loosely coupled motion
primitives, one per component, may be too weak or incur too much communication and
bandwidth overhead for a real implementation.

Going in this direction, we need a better way to integrate specifications of controllers
(motion primitives) and their robustness. This would also enable a more realistic non-
synchronous model for the communication [31] and, after checking some robustness condition
on the controller, rigorously show that the synchronous idealised model is equivalent to the
more realistic model, i.e., considering delay in the communication as disturbances for the
motion primitives. We also plan to tackle channel passing. The challenge is that the physical
world (time and space) is hard to isolate: for instance, time is an implicit synchronisation
which occurs at the same time across all sessions.

Finally, robotics applications manipulate physical state and time as resources. An
interesting open question is how resource-based reasoning techniques such as separation
logics for concurrency [36, 28] can be repurposed to reason about separation of components
in space and time.

References

1 R. Alur and T.A. Henzinger. Modularity for Timed and Hybrid Systems. In CONCUR ’97:
Concurrency Theory, volume 1243 of LNCS, pages 74–88. Springer, 1997.

2 R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Alternating refinement relations.
In CONCUR’98 Concurrency Theory, pages 163–178. Springer, 1998.

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:25

3 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Denielou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova, Nich-
olas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral Types in
Programming Languages. FTPL, 3(2-3):95–230, 2016.

4 Gregor B. Banusic, Rupak Majumdar, Marcus Pirron, Anne-Kathrin Schmuck, and Damien
Zufferey. PGCD: robot programming and verification with geometry, concurrency, and
dynamics. In Xue Liu, Paulo Tabuada, Miroslav Pajic, and Linda Bushnell, editors, Proceedings
of the 10th ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS 2019,
Montreal, QC, Canada, April 16-18, 2019, pages 57–66. ACM, 2019. doi:10.1145/3302509.
3311052.

5 Kerstin Bauer and Klaus Schneider. From synchronous programs to symbolic representations of
hybrid systems. In Proceedings of the 13th ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 41–50.
ACM, 2010. doi:10.1145/1755952.1755960.

6 Albert Benveniste, Timothy Bourke, Benoît Caillaud, Jean-Louis Colaço, Cédric Pasteur,
and Marc Pouzet. Building a Hybrid Systems Modeler on Synchronous Languages Principles.
Proceedings of the IEEE, 106(9):1568–1592, 2018. doi:10.1109/JPROC.2018.2858016.

7 J.A. Bergstra and C.A. Middelburg. Process algebra for hybrid systems. Theoretical Computer
Science, 335(2):215–280, 2005. Process Algebra. doi:10.1016/j.tcs.2004.04.019.

8 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In 26th
International Conference on Concurrency Theory, volume 42 of LIPIcs, pages 283–296. Schloss
Dagstuhl, 2015.

9 Laura Bocchi, Weizhen Yang, and Nobuko Yoshida. Timed Multiparty Session Types. In
25th International Conference on Concurrency Theory, volume 8704 of LNCS, pages 419–434.
Springer, 2014.

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko Yoshida. A Gentle
Introduction to Multiparty Asynchronous Session Types. In SFM, volume 9104 of LNCS,
pages 146–178. Springer, 2015.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty Session Types Meet Communicating
Automata. In ESOP 2012 - European Symposium on Programming. Springer, 2012. doi:
10.1007/978-3-642-28869-2_10.

12 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
Multiparty Session Types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

13 Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu. Parameterised
Multiparty Session Types. Logical Methods in Computer Science, 8(4), 2012. doi:10.2168/
LMCS-8(4:6)2012.

14 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Precise subtyping for synchronous multiparty sessions. In PLACES, volume
203 of EPTCS, pages 29–43, 2015. doi:10.4204/EPTCS.203.3.

15 Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, and
Nobuko Yoshida. Denotational and Operational Preciseness of Subtyping: A Roadmap. In
Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on the Occasion
of His 60th Birthday, volume 9660 of LNCS, pages 155–172. Springer, 2016.

16 Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Maria Paola Bonacina, editor, Automated Deduction - CADE-24 -
24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,
2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 208–214. Springer,
2013. doi:10.1007/978-3-642-38574-2_14.

17 Simon Gay and Antonio Ravera, editors. Behavioural Types: from Theory to Tools. River
Publishers, 2017.

ECOOP 2019

http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1145/3302509.3311052
http://dx.doi.org/10.1145/1755952.1755960
http://dx.doi.org/10.1109/JPROC.2018.2858016
http://dx.doi.org/10.1016/j.tcs.2004.04.019
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.1007/978-3-642-38574-2_14

28:26 Motion Session Types for Robotic Interactions

18 Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko Yoshida.
Precise subtyping for synchronous multiparty sessions. J. Log. Algebr. Meth. Program.,
104:127–173, 2019. doi:10.1016/j.jlamp.2018.12.002.

19 Sehoon Ha, Stelian Coros, Alexander Alspach, James M. Bern, Joohyung Kim, and Katsu
Yamane. Computational Design of Robotic Devices From High-Level Motion Specifications.
IEEE Trans. Robotics, 34(5):1240–1251, 2018. doi:10.1109/TRO.2018.2830419.

20 Thomas A. Henzinger. Sooner is Safer Than Later. Inf. Process. Lett., 43(3):135–141, 1992.
doi:10.1016/0020-0190(92)90005-G.

21 Thomas A. Henzinger. The Theory of Hybrid Automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July 27-30,
1996, pages 278–292. IEEE Computer Society, 1996. doi:10.1109/LICS.1996.561342.

22 G.J. Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng., 23(5):279–295, 1997.
doi:10.1109/32.588521.

23 Kohei Honda. Types for Dyadic Interaction. In CONCUR’93, pages 509–523, 1993.
24 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type

Disciplines for Structured Communication-based Programming. In ESOP, volume 1381 of
LNCS, pages 22–138. Springer, 1998. doi:10.1007/BFb0053567.

25 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
In POPL, pages 273–284. ACM Press, 2008.

26 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
Journal of ACM, 63:1–67, 2016.

27 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv., 49(1), 2016. doi:10.1145/2873052.

28 R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL 15, pages
637–650. ACM, 2015.

29 Dimitrios Kouzapas and Nobuko Yoshida. Globally Governed Session Semantics. In Pedro R.
D’Argenio and Hernán C. Melgratti, editors, CONCUR, volume 8052 of LNCS, pages 395–409.
Springer, 2013.

30 Dimitrios Kouzapas and Nobuko Yoshida. Globally Governed Session Semantics. Logical
Methods in Computer Science, 10(4), 2015.

31 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 221–232. ACM, 2015.

32 A.M. Mehta, N. Bezzo, P. Gebhard, B. An, V. Kumar, I. Lee, and D. Rus. A Design
Environment for the Rapid Specification and Fabrication of Printable Robots. Experimental
Robotics, pages 435–449, 2015.

33 Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina
Rathnayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony
Scopatz. SymPy: symbolic computing in Python. PeerJ Computer Science, 3:e103, January
2017. doi:10.7717/peerj-cs.103.

34 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Asp. Comput., 29(5):877–910, 2017.

35 Pierluigi Nuzzo. Compositional Design of Cyber-Physical Systems Using Contracts. PhD
thesis, EECS Department, University of California, Berkeley, August 2015. URL: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html.

http://dx.doi.org/10.1016/j.jlamp.2018.12.002
http://dx.doi.org/10.1109/TRO.2018.2830419
http://dx.doi.org/10.1016/0020-0190(92)90005-G
http://dx.doi.org/10.1109/LICS.1996.561342
http://dx.doi.org/10.1109/32.588521
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.7717/peerj-cs.103
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-189.html

R. Majumdar, M. Pirron, N. Yoshida, and D. Zufferey 28:27

36 P.W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007. doi:10.1016/j.tcs.2006.12.035.

37 Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
38 A. Platzer. Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics.

Springer, 2010.
39 K. V. S. Prasad. A Calculus of Broadcasting Systems. Sci. Comput. Program., 25(2-3):285–327,

1995. doi:10.1016/0167-6423(95)00017-8.
40 Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In ICRA workshop
on open source software, 2009.

41 W.C. Rounds and H. Song. The Phi-Calculus: A Language for Distributed Control of
Reconfigurable Embedded Systems. In HSCC, pages 435–449. Springer, 2003.

42 Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, January 2019. doi:10.1145/3290343.

43 Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language and its
Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994. doi:10.1007/
3-540-58184-7_118.

ECOOP 2019

http://dx.doi.org/10.1016/j.tcs.2006.12.035
http://dx.doi.org/10.1016/0167-6423(95)00017-8
http://dx.doi.org/10.1145/3290343
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/3-540-58184-7_118

	p000-Frontmatter
	Message from the Chairs
	ECOOP: Looking Forward: a Message from the AITO President
	Message from the Artifact Evaluation Chairs
	ECOOP 2019 Conference Organization
	External Reviewers

	p001-Meier
	Introduction
	Overview: Specifying and Modeling Lifestates
	Predict Violations from Recorded Interactions
	Specify Event-Driven Protocols and Model Callback Control Flow
	Event-Driven App-Framework Interfaces

	Defining Event-Driven Application-Programming Protocols
	Syntax: Enabling, Disabling, Allowing, and Disallowing
	Semantics: Protocol Violations
	Messages, Observable Traces, and the App-Framework Interface

	Specifying Protocols and Modeling Callback Control Flow
	Dynamic Reasoning with Lifestates
	Empirical Evaluation
	Related Work
	Conclusion

	p002-Fernandez-Reyes
	Introduction
	Problems Inherent in Explicit and Implicit Futures
	Current Solutions to Future Problems
	Standard Mitigation Strategies and Problem Avoidance
	Data-flow Explicit Futures
	Delegating Future Fulfilment

	Godot: Integrating Data- and Control-Flow Futures and Delegation
	Design Space and Formal Semantics
	FlowFut: Primitive Data-Flow and Encoded Control-Flow Futures
	FutFlow: Primitive Control-Flow and Encoded Data-Flow Futures
	Godot's Solutions to Future Problems

	Discussion
	Avoiding Future Nesting through Implicit Delegation
	Notes on Implementing Godot

	Related Work
	Conclusion

	p003-Weisenburger
	Introduction
	Background
	ScalaLoci
	Scala Abstract Data Types and Path-Dependent Types

	LociMod Multitier Modules
	Multitier Modules
	Abstract Peer Types
	Peer Type Specialization with Module References
	Peer Type Specialization with Multitier Mixing
	Properties of Abstract Peer Types

	Constrained Multitier Modules
	Peer Startup

	Implementation
	Evaluation
	Distributed Algorithms
	Distributed Data Structures
	Apache Flink

	Related Work
	Conclusion

	p004-Vergu
	Introduction
	Background
	DynSem
	Truffle and Graal

	Meta-Interpreters
	Scopes and Frames
	Name Resolution with Scope Graphs
	Static Semantics with NaBL2
	DynSem with Scopes-and-Frames
	Native Library for Scopes-and-Frames

	Rule Inlining
	Evaluation
	Experiment Set-up
	Results

	Discussion; Related and Future Work

	p005-Roberts
	Introduction
	Gradual Types in Grace
	The Grace Programming Language
	Why Gradual Typing?
	Using Grace's Gradual Types

	Graal, Truffle, Self-Optimization and Dynamic Adaptive Compilation
	Self-Optimizing Interpreters
	Polymorphic Inline Caches for Optimizing Dynamic Behavior
	Object Shapes: Metadata for Dynamic Objects
	Just-in-Time Compilation with Graal and Truffle

	Moth: Grace on Graal and Truffle
	Adding Gradual Type Checking
	Optimization

	Evaluation
	Method and Setup
	Are We Fast Yet?
	Performance of Transient Gradual Type Checks
	Effectiveness of Optimizations
	Transient Typechecks are (Almost) Free
	Changes to Moth

	Discussion
	The VM Could Not Already Know That
	Optimizations
	Threats to Validity

	Related Work
	Conclusion

	p006-DeMuijnck-Hughes
	Introduction
	Contributions
	Outline

	The Mungo Protocol
	Abstract Interface Descriptions
	Properties
	Model Components
	A Model for Abstract Interfaces
	Example

	Specifying Interface Descriptions
	Counting Label Usage
	Terms
	Type-System
	Example

	Building Models from Specifications

	Specifying IP Core Interfaces
	Projecting Abstract Interfaces
	Example

	Specifying Physical Interfaces
	Example

	Type-Checking Interfaces

	Implementation
	Case Studies
	ARMs Advanced Peripheral Bus
	Xilinx's LocalLink
	ARMs Advanced eXtensible Interface

	Discussion & Related Work
	Discussion
	Modelling Hardware Interfaces
	Substructural Typing
	Implementing Cordial

	Conclusion

	p007-Misonizhnik
	Introduction
	The type system
	The SUBTYPE-SAT problem
	SUBTYPE-SAT is undecidable
	Decidable fragments of SUBTYPE-SAT
	Related work
	Conclusion

	p008-Sotiropoulos
	Introduction
	Modeling Asynchrony
	The lambda_q calculus
	Syntax and Domains
	Semantics
	Modeling the Event Loop
	Modeling Timers & Asynchronous I/O

	Expressing Promises in Terms of lambda_q

	The Core Analysis
	The Analysis Domains
	Tracking the Execution Order

	Callback Graph
	Analysis Sensitivity
	Callback Sensitivity
	Context-Sensitivity

	Implementation
	Limitations

	Evaluation
	Experimental Setup
	Results
	Case Studies
	Threats to Validity

	Related Work
	Conclusions & Future Work

	p009-Watt
	Introduction
	A Brief Overview of WebAssembly
	WebAssembly Syntax
	The WebAssembly Memory Model
	WebAssembly Instructions
	WebAssembly Semantics

	Wasm Logic
	Assertion Language
	Wasm Logic Triple
	Proof Rules

	Using Wasm Logic: A Verified B-Tree Library
	Ordered, Bounded Arrays in WebAssembly
	B-Trees in WebAssembly

	Soundness
	Related Work
	Conclusions and Future Work

	p010-VanEs
	Introduction
	Motivating Abstract Garbage Collection
	Problem: Application Policies for Abstract Garbage Collection
	Approach: Abstract Reference Counting

	Background
	Concrete Interpretation of lambdaANF
	Abstract Interpretation of lambdaANF

	Abstract Reference Counting
	Abstract Interpretation with Reference Counting using (ARC)
	Properties of (ARC)

	Reclaiming Garbage Cycles
	Artificial Cycles in (ARC)
	Abstract Reference Counting with Cycle Detection: (ARCplusplus)

	Evaluation
	Experimental Setup
	Impact of Cycle Detection
	Comparison to Existing Policies for Abstract GC

	Related Work
	Conclusion
	Proofs
	Supplementary Definitions for (ARCplusplus)
	Supplementary Code Listings

	p011-Bastani
	Introduction
	Overview
	Eventually Sound Points-To Analysis
	Background and Assumptions
	Eventual Soundness
	Naïve Algorithm
	Optimized Monitoring

	Abstract Objects in the Library
	Proxy Objects
	Ideal Proxy Object Mapping
	Proxy Object Mapping

	Specification Inference
	Extensions
	Shared Fields
	Callbacks
	Concrete Types
	Context- and Object-Sensitivity

	Implementation
	Evaluation
	Instrumentation Overhead
	Reported Counterexamples
	Specification Inference and a Static Information Flow Client

	Discussion
	Related Work
	Conclusion

	p012-Eichholz
	Introduction
	Background and Problem Statement
	P4 Language
	Common Bugs in P4 Programs
	Parser Bugs
	Control Bugs
	Table Reads Bugs
	Table Action Bugs
	Default Action Bugs

	A Typing Discipline to Eliminate Invalid References

	SafeP4
	Design
	Syntax
	Type System
	Typing Judgement

	Operational Semantics
	Safety of SafeP4

	Experience (Evaluation)
	Overview of Bugs in the Wild
	P4Check in Action
	Parser Bugfixes
	Control Bugfixes
	Table Reads Bugfixes
	Table Action Bugfixes
	Default Action Bugfix

	Overhead

	Related Work
	Conclusion

	p013-Gil
	Introduction
	Contribution
	Previous work

	Pushdown Automata
	Example
	Deterministic pushdown automata
	Deterministic languages
	Simplification of DPDAs

	Realtime emulation of DPDAs with tree encoding
	Encoding configurations as trees
	Emulating a DPDA with tree encoding
	Computing the next encoding
	Correctness of the emulation
	Use of memory

	Compiling a Tree Encoding to Java
	Intuition
	Structure of the encoding
	Correctness

	Fluent-API Generation in Fling
	Embedding Datalog in Java using Fling
	Code generation

	Discussion and Further Work

	p014-Makwana
	Introduction
	Contributions

	NumLin Overview and Examples
	Type System and Other Features
	Intuitionism: ! and Many
	Fractional Permissions
	Runtime Errors
	Recursion

	Syntax
	Examples
	Factorial
	Summing over an Array
	One-dimensional Convolution
	Digression: Types of Primitives
	Squaring a Matrix
	Linear Regression
	L1-norm Minimisation on Manifolds
	Kalman Filter

	Formal System
	Core Type Theory
	Dynamic Semantics
	Logical Relation
	Soundness Theorem
	Explanation
	Proof Sketch

	Implementation
	Implementation Strategy
	Desugaring, Matrix Expressions and Type Checking
	Type checking
	Code Generation

	Performance Metrics
	Setup
	Hypothesis
	Results
	Analysis

	Discussion and Related Work
	Finding Bugs in SymPy's Output
	Related Work
	Linear types for implementing linear algebra routines
	Our contribution: linear types for enforcing correct usage of linear algebra routines
	Traditionally complex approaches to sharing
	Our contribution: a simpler approach to sharing
	Implications

	Simplicity and Further Work

	p015-Fourtounis
	Introduction
	Motivation and Illustration
	Motivating Example 1: Late Linking
	Motivating Example 2: Lambdas
	Motivating Example 3: Method References
	Motivating Example 4: SAM Conversion

	Technical Background
	Method Handles and Method Types
	The invokedynamic Instruction
	Method References and Lambdas

	Static Analysis
	Model Basics
	Model: Method Types and Method Handles
	Generic Handling of invokedynamic
	Model: Method References and Lambdas

	Evaluation
	Microbenchmark Suite
	Microbenchmark: Method References
	Microbenchmark: Lambdas
	Microbenchmark: Method Handles and invokedynamic

	Sui et al. Test Suite

	Related work
	Conclusion

	p016-Turcotte
	Introduction
	Background
	Foreign Function Interfaces
	Dynamic Taint Analysis
	The Base for Poseidon Lua
	Lua
	Typed Lua
	Featherweight Lua

	Related Work: Linking Types

	The Problem
	Taint and Nondeterminism
	Overview of Poseidon Lua

	Semantics
	Type Systems
	The Language
	Typed Language
	Untyped Language

	Typing Judgment
	Operational Semantics
	Proofs

	Poseidon Lua: Implementation
	Performance

	Conclusions
	Appendix
	Full Typing Rules
	Full Reduction Rules

	p017-Springer
	Introduction
	Design Goals
	Programming Interface
	Memory Access Performance
	High Density Memory Allocation
	Parallel Object Enumeration Strategy
	Scalability

	Architecture Overview
	Block Structure
	Block Capacity
	C++ Data Layout DSL and Object Pointers
	Block Bitmaps
	Object Slot Allocation
	Object Deallocation
	Parallel Object Enumeration: parallel_do

	Optimizations
	Hierarchical Bitmaps
	Data Structure
	Operations
	Set and Clear with Atomic Operations
	Finding an Arbitrary Set Bit
	Enumerating Set Bit Indices

	Reducing Thread Contention
	Efficient Bit Operations

	Related Work
	Benchmarks
	Performance Overview
	Space Efficiency
	Detailed Analysis of wa-tor
	Raw Allocation Performance
	Parallel Object Enumeration

	Conclusion
	Concurrency and Correctness
	Object Slot Reservation/Freeing
	Slot Reservation
	Slot Freeing

	Safe Memory Reclamation with Block Invalidation
	Object Allocation
	Object Deallocation
	Correctness of Hierarchical Bitmap Operations

	Field Address Computation

	p018-Mukherjee
	Introduction
	Overview
	Programming and testing the word-count application
	RSM runtime

	Formalization of RSMs
	Syntax and semantics
	Local evaluation judgment
	Global evaluation judgment

	Failure transparency

	Implementation
	Azure Service Fabric backend
	Optimizing the SF backend
	Kafka backend
	P# backend

	Case-Study: ResourceGroupServer
	Service description
	RSM-based ResourceGroupServer

	Evaluation
	Microbenchmarks
	RsmRgs Case Study

	Related Work

	p019-Hamin
	Introduction
	Transferring Obligations Through Channels
	Verifying Channels
	Transferring Permissions and Obligations Through Channels
	Conditional Channels
	Server Channels

	Transferring Obligations Through Notifications
	Verifying Monitors
	Transferring Obligations Through Notifications
	Fair Mutexes
	Fair Readers-Writers Locks

	Related Work
	Conclusion
	Proof of Conditional Server Channels
	Proof of Dining Philosophers
	Transferring Obligations Through Channels: Soundness Proof
	Syntax and Semantics of Programs
	Syntax and Semantics of Assertions
	Weakest Precondition of Commands
	Correctness of Commands
	Validity of a Configuration
	An Example Proof

	Transferring Obligations Through Notifications: Soundness Proof
	Syntax and Semantics of Programs
	Syntax and Semantics of Assertions
	Weakest Precondition of Commands
	Correctness of Commands
	Validity of a Configuration
	An Example Proof

	p020-Villazon
	Introduction
	NAB
	Architecture
	Interactions between NAB Components
	Crawling
	Executing DPA
	NAB Plugins and DPA Tools
	Implementation Technologies for Containerization

	Experimental Setup
	NAB Configuration and Deployment
	Crawling and Project Selection

	Case Study I: Analyzing the Use of Promises in Node.js
	Monitoring Promises in JavaScript
	NodeProf Framework
	Deep-Promise DPA

	Executing Deep-Promise with NAB
	Promise API Adoption for Asynchronous Executions
	Frequency of Promise API usage

	Case Study II: Finding JIT-unfriendly Code Patterns in Node.js
	Executing JITProf with NAB
	JIT-unfriendly Patterns in Application Code
	JIT-unfriendly Patterns in NPM Modules (top 3)

	Case Study III: Discovering Task-parallel Workloads
	Executing tgp with NAB
	Results for Java Projects
	Results for Scala Projects

	Discussion
	Safety
	Extensibility
	Scalability
	DPA Reproducibility and Code Evolution
	Limitations
	Low-level Metrics
	Security Vulnerabilities and OS/Kernel Dependencies
	Representativeness of Testing Code
	Analyzed Codebase and Analysis Timeout

	Related Work
	Massive Analysis of Code Repositories
	DPA for JavaScript
	Benchmark Generation

	Conclusions

	p021-Luo
	Introduction
	Background and Related Work
	Approach
	The MagpieBridge Workflow
	The MagpieBridge System
	WALA-based Analysis
	Soot-based Analysis
	Doop-based Analysis

	Demonstration
	Diagnostics
	Code Lenses
	Hovers
	Repairs

	Comparison Between MagpieBridge-Based Approach and Plugin-Based Approach
	Comparison Between MagpieBridge-Based CogniCrypt and CogniCrypt Eclipse Plugin
	Comparison to Other Plugin-Based Approaches

	Conclusion and Future Work

	p022-Kang
	Introduction
	Background
	Extending Coccinelle to Java
	Phase 1: Middleweight Java
	Phase 2: Control-flow with Exceptions and Java-specific Isomorphisms
	Control-flow with exceptions
	Isomorphisms

	Phase 3: Matching programs with sub-typing

	Case Study: Migrating APIs
	Removing sticky broadcasts
	setTextSize –> setTextZoom
	Resources.getColor –> ContextCompat.getColor
	AudioManager.shouldVibrate(int) –> AudioManager.getRingerMode()
	Display.getHeight() and Display.getWidth() –> Display.getSize(Point)
	WebChromeClient.onConsoleMessage(String, int, String) –> WebChromeClient.onConsoleMessage(ConsoleMessage)
	Resources.getDrawable(int) –> Resources.getDrawable(int, Theme)
	Evaluation

	Related Work
	Program matching and transformation for Java
	Migration of APIs

	Conclusion and Future Work

	p023-Arslanagic
	Introduction
	The Source Language
	Syntax and Semantics
	Session Types for HO

	Decomposing Session-Typed Processes
	Key Ideas
	The Core Fragment
	Preliminaries
	The Breakdown Function

	Extensions (I): Select and Branching
	Extensions (II): Recursion

	Optimizations of the Decomposition
	Related Work
	Concluding Remarks

	p024-Chung
	Introduction
	A space-efficient subtyping algorithm
	Normalization
	Iteration with choice strings
	Subtyping with iteration
	Further optimization

	Correctness and completeness of subtyping
	Subtyping with normalization
	Subtyping with tree iterators
	Subtyping with choice strings

	Complexity
	Future work
	Conclusion

	p025-Shaikhha
	Introduction
	Motivation
	Pilatus Design
	Tagless Final
	Semi-Ring and Ring
	Module
	Linear Map
	Pull Array and Control-Flow Constructs

	Matrix Algebra
	Vector: Module + Pull Array
	Matrix: Linear Map + Vector
	Putting It All Together

	Interpreted Languages
	Standard Matrix Algebra
	Graph DSL for Reachability and Shortest Path
	Probabilistic Linear Algebra Language
	Differentiable Linear Algebra DSL

	Staging and Optimisation
	Preliminaries on Squid and Multi-Stage Programming
	Staging Pilatus
	Staged Representation Optimisations
	Algebraic Optimisations
	Fixed-Size Matrix DSL
	Fused DSL

	Evaluation
	Related Work
	Linear Algebra Languages and Libraries
	Deforestation and Array Fusion
	Automatic Differentiation and Differentiable Programming
	Probabilistic Programming

	Conclusions

	p026-Pelsmaeker
	Introduction
	Characterizing Editor Services
	Introduction to Statix
	Informing Editor Services
	Code Completion
	Extract Definition
	Related Work
	Conclusion

	p027-Lopez
	Introduction
	Brave New Idea: Multiverse Debugging
	Multiverse Debugging Recipe
	Multiverse Debugging Main Challenges

	Multiverse Debugging for Ambiguous Programs
	Syntax and Operational Semantics of the Base Language lambda_{amb}
	Syntax and Operational Semantics of the Debugger D_{amb}

	Communicating Event Loops (CEL)
	Communicating Event Loops Concurrency Model
	Syntax and Operational Semantics of the AmbientTalk Language

	Multiverse Debugging for Actor-based Programs
	Breakpoint-based Debugging for Actor-based Programs
	Voyager: a Multiverse Debugger for AmbientTalk Programs
	Debugging a Sample Program
	Overview of a Debugging Session
	Querying the state graph

	Syntax and Operational Semantics of the Voyager Multiverse Debugger
	Overview of the Debugger Semantics
	Syntax of the Debugger Semantics
	Operational Semantics of the Voyager Debugger
	Connection with the Base Level Language
	Reduction Rules for Breakpoints
	Bookkeeping Reduction Rules
	Reduction Rules for Stepping Operations
	Reduction Rules for Basic Debugging Commands
	Discussion

	Proof of Non-Interference
	Related Work
	Formal specifications for debuggers
	Static Analysis Techniques

	Conclusion
	Reduction Rules of the Operational Semantics of Voyager

	p028-Majumdar
	Introduction
	A Gentle Introduction to Motion Session Types
	Communication: Multiparty Session Types
	Motion: Motion Primitives and Trajectories

	Motion Session Calculus
	Multiparty Motion Session Types
	Motion Session Types and Projections
	Motion Session Typing

	Motion Primitives: Trajectories and Resources
	Model for the Robots and Motion Primitives
	Motion Calculus with Guarded Choice
	Existence of Joint Trajectories and Verification

	Evaluation
	Implementation
	Experiments

	Related Work
	Conclusion

