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Preface

The papers in this volume were accepted for presentation at the 34th Computational Com-
plexity Conference (CCC 2019), held July 18-–20, 2019 in New Brunswick, New Jersey. The
conference is organized by the Computational Complexity Foundation (CCF) in cooperation
with the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT)
and the European Association for Theoretical Computer Science (EATCS). CCC 2019
was co-organized by the Center for Discrete Mathematics and Theoretical Computer Sci-
ence (DIMACS) and co-sponsored by Microsoft Research.

The call for papers sought original research papers in all areas of computational complexity
theory. Of the 99 submissions the program committee selected 32 for presentation at the
conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation and especially its president Venkatesan Guruswami, past president Dieter van
Melkebeek and secretary Ashwin Nayak for their advice and assistance; Ran Raz and Rocco
Servedio for sharing their knowledge as prior PC chairs for CCC; the Local Arrangements
Committee chair Eric Allender; Dor Minzer and Ran Raz for their invited talks; and Michael
Wagner for coordinating the production of these proceedings.
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Criticality of Regular Formulas
Benjamin Rossman
Departments of Mathematics and Computer Science, University of Toronto, Canada
ben.rossman@utoronto.ca

Abstract
We define the criticality of a boolean function f : {0, 1}n → {0, 1} as the minimum real number
λ ≥ 1 such that

P
[

DTdepth(f�Rp) ≥ t
]
≤ (pλ)t

for all p ∈ [0, 1] and t ∈ N, where Rp is the p-random restriction and DTdepth is decision-tree depth.
Criticality is a useful parameter: it implies an O(2(1− 1

2λ )n) bound on the decision-tree size of f , as
well as a 2−Ω(k/λ) bound on Fourier weight of f on coefficients of size ≥ k.

In an unpublished manuscript [11], the author showed that a combination of Håstad’s switching
and multi-switching lemmas [5, 6] implies that AC0 circuits of depth d+ 1 and size s have criticality
at most O(log s)d. In the present paper, we establish a stronger O( 1

d
log s)d bound for regular

formulas: the class of AC0 formulas in which all gates at any given depth have the same fan-in.
This result is based on
(i) a novel switching lemma for bounded size (unbounded width) DNF formulas, and
(ii) an extension of (i) which analyzes a canonical decision tree associated with an entire depth-d

formula.

As corollaries of our criticality bound, we obtain an improved #SAT algorithm and tight Linial-
Mansour-Nisan Theorem for regular formulas, strengthening previous results for AC0 circuits due to
Impagliazzo, Matthews, Paturi [7] and Tal [17]. As a further corollary, we increase from o( logn

log logn )
to o(logn) the number of quantifier alternations for which the QBF-SAT (quantified boolean formula
satisfiability) algorithm of Santhanam and Williams [14] beats exhaustive search.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases AC0 circuits, formulas, criticality

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.1

Funding Benjamin Rossman: NSERC and Sloan Research Fellowship

Acknowledgements I am grateful to Prahladh Harsha, Shrikanth Srinivasan, Siddharth Bhandari,
Tulasi Molli and Or Meir for valuable feedback on a preliminary version of this paper.

1 Introduction

For a boolean function f , we consider the random variable DTdepth(f�Rp) (the decision-tree
depth of f under a p-random restriction) parameterized by p ∈ [0, 1]. For every f , there is a
sufficient small value of p > 0 such that DTdepth(f�Rp) satisfies an exponential tail bound.
This “sufficiently small” is quantified by the following notion of criticality.

I Definition 1. For λ ∈ R≥1, we say that a boolean function f is λ-critical if

P
[

DTdepth(f�Rp) ≥ t
]
≤ (pλ)t

for all p ∈ [0, 1] and t ∈ N. The criticality of f is the minimum λ ∈ R≥1 for which f is
λ-critical.
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1:2 Criticality of Regular Formulas

Criticality has been implicitly studied in previous works, although we are unaware if this
parameter of boolean functions has been named before. Most notably, Håstad’s switching
lemma [5] is equivalent to the statement that every width-w CNF or DNF formula is O(w)-
critical. Motivating our study of criticality is the observation that upper bounds on criticality
imply upper bounds on decision-tree size.

I Theorem 2. If f : {0, 1}n → {0, 1} is λ-critical, then DTsize(f) is at most O(2(1− 1
2λ )n).

In light of Theorem 2, it is reasonable to expect upper bounds on the criticality of a class
of boolean functions to yield (randomized) #SAT algorithms.

In an unpublished manuscript [11], we observed that a combination of Håstad’s switching
lemma [5] and “multi-swithing lemma” [6] can be used to show that AC0 circuits of depth d+1
and size s have criticality O(log s)d. Via Theorem 2, this implies an essentially tight upper
bound on the decision-tree size of AC0 circuits and yields a randomized #SAT algorithm
with parameters matching that of Impagliazzo, Matthews and Paturi [7] for AC0 circuits
of super-linear size n1+Ω(1). In the present paper, we improve these results by giving a
quantitatively stronger upper bound on the criticality of regular AC 0 formulas, where regular
means that all gates at the same height have equal fan-in.

I Theorem 3. Regular AC0 formulas of depth d+ 1 and size s have criticality O( 1
d log s)d

(specifically, at most 60d( 1
d ln s+ 1)d).

Theorem 3 unifies (and arguably simplifies) several of the main results on AC0 circuits,
including bounds on decision-tree size and the Fourier spectrum and #SAT algorithms. In
addition, by obtaining quantitative stronger versions of these results for regular AC0 formulas,
we improve an algorithm of Santhanam and Williams [14] for satisfiability of quantified
boolean formulas with bounded-many quantifier blocks.

1.1 Known bounds on criticality
The following bounds on criticality are immediate or known from previous work.
(1) If f is a boolean function which depends on n variables, then it is n-critical. This follows

from

P
[

DTdepth(f�Rp) ≥ t
]
≤ P

[
Bin(n, p) ≥ t

]
≤ pt

(
n

t

)
≤ (pn)t.

(2) If f has decision-tree depth k, then f is k-critical. This follows from the folklore bound:
for all t ≥ 1,

P
[

DTdepth(f�Rp) ≥ t
]
≤ 2t−1pt

(
k

t

)
≤ 2t−1

t! (pk)t ≤ (pk)t.

(The first inequality is shown by induction on t.)
(3) Showing that (1) and (2) are tight: the n-variable parity function has criticality exactly

λ = n. This follows from

np(1− p)n−1 = P
[

Bin(n, p) = 1
]
≤ P

[
DTdepth(PARITYn�Rp) ≥ 1

]
≤ pλ.

Therefore, λ ≥ n(1− p)n−1 for all p ∈ (0, 1], hence λ ≥ n.
(4) Håstad’s switching lemma [5] shows that every width-w CNF or DNF formula is O(w)-

critical.



B. Rossman 1:3

(5) An alternative switching lemma in [11] (included in Section 4 of this paper) shows that
every size-m CNF or DNF formula is O(logm)-critical.

(6) By a combination of Hastad’s switching lemma [5] and multi-switching lemma [6], it is
shown in [11] that every boolean function f computable by an AC0 circuit of depth d+ 1
and size s is O(log s)d-critical. The switching lemma is used to show

P
[

DTdepth(f�Rp) ≥ t
]
≤
(
p ·O(log s)d

)
t

for t ≤ log s, while the multi-switching lemma establishes this inequality for t > log s.

1.2 Formulas vs. circuits
Every AC0 circuit of depth d+ 1 and size s is equivalent to a regular AC0 formula of depth
d+ 1 and size at most sd. Theorem 3 therefore implies the O(log s)d criticality bound for
AC0 circuits.

The proof of our quantitatively stronger O( 1
d log s)d bound for regular AC0 formulas is

based on a novel “depth-d switching lemma”. Previous switching lemmas analyze the so-called
canonical decision tree of bounded-width depth-2 formula under a random restriction. In
contrast, we analyze a certain canonical decision tree associated with a depth-d formula
under a sequence of random restrections. The bound we obtain is in terms of top fan-in, as
opposed to width (i.e., bottom fan-in of a depth-2 formula).

While our proof of Theorem 3 relies on the assumption of regularity, we conjecture that
the O( 1

d log s)d criticality bound applies to all AC0 formulas. In this connection, let us
mention that a previous result of the author [12] implies that every boolean function f

computed by a (not necessarily regular) AC0 formula of depth d+ 1 and size s satisfies

P
[

DTdepth(f�Rp) ≥ t
]
≤
(
p ·O( 1

d log s)d
)
t

for all t ≤ log s. The method of [12] applies Håstad’s switching lemma to AC0 formulas in
a more efficient way. However, this method encounters the same log s barrier mentioned
in §1.1(6). We do not know how to establish criticality for non-regular AC0 formulas by
proving the above inequality for t > log s.

1.3 Outline of the paper
In Section 2 we state the definitions of AC0 formulas, restrictions, decision trees, and present
some key inequalities. Section 3 gives some results on criticality, including a proof of Theorem
2. In Section 4 we show that size-m DNF formulas have criticality O(logm) via a novel
switching lemma argument. (This section and Appendix A are independent of the rest of
the paper, but serve a warm-up for the more complicated switching lemmas that follow.) In
Section 5, we introduce a canonical decision tree associated with an entire depth-d formula
under a chain of restrictions. Sections 6 and 7 prove switching lemmas for this notion of
canonical decision tree. Section 8 contains the proof of Theorem 3. Section 9 discusses
satisfiability algorithms. The paper concludes with some open questions in Section 10.

2 Preliminaries

N is the set of natural numbers {0, 1, 2, . . . }. For n ∈ N, [n] is the set {1, . . . , n} (in particular,
[0] is the empty set). ln(·) is the natural logarithm and log(·) is the base-2 logarithm. We
consistently use boldface for random objects.

CCC 2019
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Throughout this paper, we fix an arbitrary set V whose elements we call variable indices.
Without loss of generality, V = [n]; however, since the nature and number of variable indices
plays no role in our switching lemma, we prefer to think of V as an abstract set. (The only
time we assume V = [n] is when speaking of boolean functions f : {0, 1}n → {0, 1} in §3.)

I Definition 4 (AC0 formulas). A depth-0 formula is a constant 0 or 1 or a literal Xv or
Xv where v is a variable index. For d ≥ 1, a depth-d formula is a syntactic object of the
form OR(F1, . . . , Fm) or AND(F1, . . . , Fm) where m ≥ 1 and F1, . . . , Fm are depth d − 1
formulas.

We measure size of a formula by the number of depth-1 subformulas. Formally,

size(F ) :=


0 if F has depth 0,
1 if F has depth 1,∑m
`=1 size(F`) if F has depth ≥ 2 and is the OR or AND of F1, . . . , Fm.

Up to a constant factor, size is equivalent to the number of gates in F .
The (syntactic) support of a formula is the set of variable indices v such that the literal

Xv or Xv occurs as a depth-0 subformula. Throughout this paper, all definitions and proofs
by induction are, first, with respect to depth, and second, with respect to support size.

If F is a formula, we write F ≡ 0 (resp. F ≡ 1) if F computes the constant 0 function
(resp. the constant 1 function).

A depth-d formula is regular if there exist integers m2, . . . ,md ≥ 1 such that, for all
i ∈ {2, . . . , d}, every depth i subformula has top fan-in mi. Note that such a formula has
size

∏d
i=2mi.

I Definition 5 (Restrictions and inputs). A restriction is a partial function % from V to {0, 1},
viewed as a subset of V × {0, 1}, whose elements we denote by v 7→ b. We write Dom(%) for
the domain of %, and we write Stars(%) for the set V \ Dom(%) of “unrestricted” variable
indices.

An input is a restriction with domain V (i.e., a total function from V to {0, 1}, as
opposed to a string in {0, 1}|V |).

Two restrictions % and σ are consistent (we also say that σ is %-consistent) if %(v) = σ(v)
for all v ∈ Dom(%) ∩Dom(σ). In this case, the union % ∪ σ is a restriction. We say that σ
is a refinement of % if % ⊆ σ (i.e., σ extends % by fixing additional variables).

If F is a formula and % is a restriction, we denote by F �% the formula obtained from F

by relabeling literals according to % (we do not perform any simplification to F ). Formally,
we have the induction definition:

F �% =


F if F is a constant or a literal Xv or Xv where v ∈ Stars(%),
0 if F is Xv and %(v) = 0, or F is Xv and %(v) = 1,
1 if F is Xv and %(v) = 1, or F is Xv and %(v) = 0,
OR/AND(F1�%, . . . , Fm�%) if F is OR/AND(F1, . . . , Fm).

Note that the support of F �% equals the support of F minus the domain of %.
For p ∈ [0, 1], the p-random restriction Rp is the random restriction which independent

maps each variable index v to 0 or 1 with probability 1−p
2 , or leaves v unrestricted with

probability p. For a restriction %, a p-random refinement of % is the random restriction Rp

conditioned on being an extension of % (i.e., conditioned on % ⊆ Rp).
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I Definition 6 (Sequences and bitstrings). For integers s, t ∈ N and arbitrary sequences
α = 〈α1, . . . , αs〉 and β = 〈β1, . . . , βt〉, we write α ◦ β for the concatenated sequence
〈α1, . . . , αs, β1, . . . , βt〉. The unique sequence of length 0 is denoted by 〈〉. (Note that 〈〉
is the identity with respect to concatenation.)

We refer to sequences a = 〈a1, . . . , as〉 in the set {0, 1}s as bitstrings. (To avoid confusion,
we regard inputs to formulas as total functions V → {0, 1} rather than as ordered bitstrings in
the set {0, 1}|V |.) For t ≥ s, we write {0, 1}ts for the set of bitstrings q = 〈q1, . . . , qt〉 ∈ {0, 1}t
such that q1 + · · · + qt = s. For bitstrings a ∈ {0, 1}s and b ∈ {0, 1}t and q ∈ {0, 1}ts, we
write b←q a for the bitstring 〈c1, . . . , ct〉 defined by

cj :=
{
bj if qj = 0,
ai if qj = 1 and q1 + · · ·+ qj−1 = i (i.e., qj is the ith 1-coordinate of q).

That is, b←q a overwrites b with a in the indices specified by q.

I Definition 7 (Ordered restrictions). An ordered restriction is a sequence β = 〈v1 7→
b1, . . . , vt 7→ bt〉 where t ∈ N and each vi 7→ bi is an ordered pairs with vi ∈ V and bi ∈ {0, 1}
such that v1, . . . , vt are distinct. As a matter of notation, we sometimes identify β with its
underlying (unordered) restriction {v1 7→ b1, . . . , vt 7→ bt}, for instance, by writing Dom(β)
for {v1, . . . , vt} or F �β for F �{v1 7→b1, ..., vt 7→bt}.

For an ordered restriction β = 〈v1 7→ b1, . . . , vt 7→ bt〉 and a set of variable indices
S ⊆ V and a bitstring a = 〈a1, . . . , as〉 ∈ {0, 1}|Dom(β)∩S|, we write β ←S a for the ordered
restriction 〈v1 7→ c1, . . . , vt 7→ ct〉 where

cj :=
{
bj if vj /∈ S,
ai if vj is the ith variable of Dom(β) ∩ S in the order given by β.

In other words, 〈c1, . . . , ct〉 = 〈b1, . . . , bt〉 ←q a where q ∈ {0, 1}ts is the bitstring defined by
qj = 1 :⇔ vj ∈ S.

I Definition 8 (Decision trees). A decision tree is a finite rooted binary tree T in which each
non-leaf is labeled by a variable index v and the two edges to its children are labeled by 0 and
1. We require the variable indices on any root-to-leaf branch are distinct; each root-to-leaf
branch therefore corresponds to an ordered restriction. We measure size by the number of
leaves and depth by the maximum number of non-leaves on a root-to-leaf path.

We say that a decision tree T determines a boolean function f if the restricted function
f�α is constant for each ordered restriction α corresponding to a branch of T . (We might also
say that T “computes” f , if we regard T as having output values on leaves.) The decision-tree
size (resp. decision-tree depth) of a boolean function f , denoted DTsize(f) (resp. DTdepth(f)),
is the minimum size (resp. depth) of a decision tree that determines f .

Later on, it will be convenient to identify decision trees with the set of ordered restrictions
corresponding to branches. From this perspective, a decision tree is a nonempty set T ∗ of
ordered restrictions such that, for all 〈v1 7→ a1, . . . , vs 7→ as〉 ∈ T ∗ and i ∈ [s],

if 〈v1 7→ a1, . . . , vi−1 7→ ai−1, v
′
i 7→ a′i〉 is an initial subsequence of any element of T ∗,

then v′i = vi,

〈v1 7→ a1, . . . , vi−1 7→ ai−1, vi 7→ 1− ai〉 is an initial subsequence of some element of T ∗.
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2.1 Inequalities
I Lemma 9. For every integer s ≥ 1 and ε ∈ (0, 1],

∞∑
t=s

(1− ε)t
(
t− 1
s− 1

)
=
(

1− ε
ε

)s
.

Proof. Let X1,X2, . . . be independent Bernoulli(ε) random variables. Then

1 = P

[ ∞∑
i=1

Xi ≥ s
]

=
∞∑
t=s

P

[
Xt = 1 and

t−1∑
i=1

Xi = s− 1
]

=
∞∑
t=s

εs(1− ε)t−s
(
t− 1
s− 1

)
.

The identity follows by multiplying both sides by ((1− ε)/ε)s. J

The next inequality also comes up in the AC0[⊕] formula lower bound of Rossman and
Srinivasan [13].

I Lemma 10. For all real numbers a, b, c ≥ 0,(
a

c
+ 1
)c

(b+ 1) ≤
(
a+ b

c+ 1 + 1
)c+1

.

Proof. The lemma is trivial if c = 0 (under the convention that (a0 + 1)0 = 1), so assume
c > 0. Let f(a, b, c) := RHS− LHS. Then

∂

∂b
f(a, b, c) =

(
a+ b

c+ 1 + 1
)c
−
(
a

c
+ 1
)c
.

Note that this is an increasing function of b with a zero at b = a/c. Therefore, f(a, b, c) is
minimal at b = a/c where it takes value f(a, a/c, c) = 0. J

As a corollary, we get:

I Lemma 11. For all integers d,m1, . . . ,md ≥ 1,

d∏
i=1

(lnmi + 1) ≤
(

1
d

ln
( d∏
i=1

mi

)
+ 1
)d
.

Proof. For each j ∈ [d− 1], Lemma 10 implies

(
1

j − 1 ln
( j−1∏
i=1

mi

)
+ 1
)j−1

(lnmj + 1) ≤
(

1
j

ln
( j∏
i=1

mi

)
+ 1
)j
.

The lemma follows from these d− 1 inequalities. J

The final inequality of this section plays a key role in our switching lemma analysis.

I Lemma 12. Let I be a finite set and let µ : I → [0, 1] be a function such that
∑
i∈I µ(i) ≤ 1.

Then for every function t : I → R≥1 and s ∈ R≥1,∑
i∈I

(
t(i)
s

)s
µ(i) ≤

(
1
s

ln
(∑
i∈I

et(i)µ(i)
)

+ 1
)s
.
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Proof. Let λ :=
∑
i∈I µ(i) (∈ [0, 1]) and let ν(i) := µ(i)/λ (≥ µ(i)). We have

∑
i∈I

(
t(i)
s

)s
µ(i) = λ

∑
i∈I

(
t(i)
s

)s
ν(i) ≤ λ

∑
i∈I

(
1
s

ln(et(i)) + 1
)s
ν(i)

≤ λ
(

1
s

ln
(∑
i∈I

et(i)ν(i)
)

+ 1
)s

by Jensen’s inequality since a 7→ ( 1
s ln(a) + 1)s is concave over a ∈ R≥1

= λ

(
1
s

ln
(∑
i∈I

et(i)µ(i)
)

+ 1− 1
s

ln(λ)
)s

≤
(

1
s

ln
(∑
i∈I

et(i)µ(i)
)

+ 1
)s

since λ 7→ λ(a − 1
s ln(λ))s is increasing over λ ∈ (0, 1] (hence maximal at λ = 1) for every

a ∈ R≥1. J

In the special case t(i) = ln(1/µ(i)) and s = 1, we get the inequality
∑
i∈I µ(i) ln(1/µ(i)) ≤

ln |I|+ 1. For distributions µ, this is essentially the inequality H(µ) ≤ log |Support(µ)| for
Shannon entropy; when µ is a sub-distribution, this inequality requires + O(1) on the
righthand side.

3 Implications of Criticality

Before presenting our main result on regular AC0 formulas, we give some general results on
λ-critical functions. We begin with the following upper bound on decision-tree size, which is
slightly stronger than Theorem 2.

I Proposition 13. If f : {0, 1}n → {0, 1} is 1
2ε -critical, then

DTsize(f) ≤ 2n−εn−
√
εn+log(εn)+O(1).

Proof. We first note that the proposition is trivial if ε > 1
2 , since no non-constant boolean

function has criticality < 1. If n < 10 or ε < 2
n , then the bound DTsize(f) ≤

2n−εn−
√
εn+log(εn)+O(1) follows from the trivial bound DTsize(f) ≤ 2n by choosing a large

enough constant. We may therefore assume that n ≥ 10 and ε ∈ [ 2
n ,

1
2 ].

Let p := ε− 1
n and note that p ∈ [ 1

n ,
1
2 ]. We have

E
[

DTsize(f�Rp)
]
≤ E

[
2DTdepth(f�Rp) ] =

∞∑
t=0

2tP
[

DTdepth(f�Rp) = t
]

≤
∞∑
t=0

2t
(
p

2ε

)t
=
∞∑
t=0

(
1− 1

εn

)t
= εn.

We next make use of the following facts:
P
[

Bin(n, p) ≥ pn+
√
pn+ 1

]
> 0.05

(this bound holds for all n ≥ 10 and p ∈ [ 1
n ,

1
2 ], as can be shown using estimates in [19]),

DTsize(f) ≤
∑

%:S→{0,1}

DTsize(f�%) for every set of variable indices S ⊆ [n].
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1:8 Criticality of Regular Formulas

Let S be a p-random subset of [n] (i.e., a uniform random subset of size Bin(n, p)), and let
% be a uniform random function [n] \ S → {0, 1}. Note that % is a p-random restriction.

For any c > 0, we have

1[ DTsize(f) > c2n−εn ]

≤ P
S

[
2n−|S|E

%

[
DTsize(f�%)

]
> c2n−εn

]
≤ P

S

[ (
|S| < pn+

√
pn+ 1

)
or
(
E
%

[
DTsize(f�%)

]
> c2pn+

√
pn+1−εn

) ]
≤ P

S

[
|S| < pn+

√
pn+ 1

]
+ P

S

[
E
%

[
DTsize(f�%)

]
> c2

√
εn−1

]
≤ P

[
Bin(n, p) < pn+

√
pn+ 1

]
+ 2
c2
√
εn
E
[

DTsize(f�Rp)
]

< 0.95 + 2εn
c2
√
εn
.

Setting c := 40εn/2
√
εn, we have 1 [ DTsize(f) > c2n−εn ] < 1. We conclude that

DTsize(f) ≤ c2n−εn = 40 · 2n−εn−
√
εn+log(εn). J

The following theorem (which includes Theorem 2) lists several consequences of criticality,
which follow from Proposition 13 as well as results of Linial, Mansour and Nisan [9] and Tal [17]
relating the Fourier spectrum of a boolean function to its degree under a p-random restriction.

I Theorem 14 (Implications of criticality). If f : {0, 1}n → {0, 1} is λ-critical, then
(1) DTsize(f) ≤ O(2(1− 1

2λ )n),
(2) f agrees with PARITYn on at most 1

2 +O(2−n/2λ) fraction of inputs,
(3) P[ deg(f�Rp) ≥ t ] ≤ (pλ)t for all p and t,
(4)

∑
S⊆[n] : |S|≥k f̂(S)2 ≤ 2e · e−k/λ for all k,

(5)
∑
S⊆[n] : |S|=k |f̂(S)| ≤ O(λ)k for all k.

Proof. (1) follows immediately from Proposition 13. Property (2) is a consequence of (1).
Property (3) follows from the definition of criticality and the fact that deg(·) ≤ DTdepth(·).
Linial, Mansour and Nisan [9] showed that (3) ⇒ (4). Tal [17] showed that (4) ⇒ (5)
(and moreover that (4) ⇒ (3), i.e., properties (3) and (4) are equivalent up to constant in
the O(·)). J

We conclude this section by observing that any exponential tail bound on DTdepth(f�Rq)
implies an upper bound on criticality.

I Proposition 15. Let f be a boolean function, let q, ε ∈ (0, 1], and suppose P[ DTdepth(f�Rq) =
t ] ≤ (1− ε)t for all t ∈ N. Then f is 2

εq -critical.

Proof. Let 0 ≤ p ≤ q, let %1 be a q-random restriction over the variables of f , and let %2 be
a p/q-random restriction over Stars(%1). Then using §1.1(2) and Lemma 9, we have
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P
[

DTdepth(f�Rp) ≥ t
]

= E
%1

[
P
%2

[
DTdepth((f�%1)�%2) ≥ t

] ]
=
∞∑
k=t

P
%1

[
DTdepth(f�%1) = k

]
E
%1

[
P
%2

[
DTdepth((f�%1)�%2) ≥ t

] ∣∣∣∣ DTdepth(f�%1) = k

]

≤
∞∑
k=t

P
[

DTdepth(f�Rq) = k
]

max
g : DTdepth(g)=k

P
[

DTdepth(g�Rp/q) ≥ t
]

≤
∞∑
k=t

(1− ε)k
(

2p
q

)t(
k

t

)
=
(

2p
q

)t (1− ε)t−1

εt
≤
(

2p
εq

)t
. J

4 Criticality of Size-m DNF Formulas

In this section, we show that size-m (unbounded width) DNF formulas have criticality
O(logm) via a novel switching lemma. This switching lemma is based on convexity (it uses
the inequality in Lemma 12). As a simple illustration of the underlying idea, in Appendix
A we present a simple entropy argument showing that size-m DNF formulas have average
sensitivity O(logm).

The switching lemma for DNF formulas in this section serves as a warm-up for more
complicated switching lemmas for (sequences of) depth-d formulas in Sections 6 and 7. Those
switching lemmas analyze a different construction of canonical decision trees. (Our result for
DNF formulas is technically distinct from the depth-2 case of our depth-d switching lemma.)

Let us now fix a DNF formula F = OR(F1, . . . , Fm) where each term F` is an AND
of literals. We identify each F` with an ordered restriction β` = 〈v1 7→ b1, . . . , vt 7→ bt〉
corresponding to its unique minimal satisfying assignment, and we let V` = Dom(β`) =
{v1, . . . , vt}. We say that a restriction % satisfies F` if β` ⊆ %, and we say that % falsifies F`
if there exists v ∈ V` ∩Dom(%) such that β`(v) 6= β`(%).

For restrictions %, we define the canonical decision tree CDT (F, %) inductively as follows:
If % satisfies F` for any ` ∈ [m], or if % falsifies F` for every ` ∈ [m], then CDT (F ) is the
trivial decision tree {〈〉}.
Otherwise, let ` ∈ [m] be the unique index such that % falsifies F1, . . . , F`−1 but not
F`. Let Q := V` ∩ Stars(%) and note that |Q| ≥ 1. In this case, CDT (F, %) queries all
variables in Q, receives answers α : Q→ {0, 1}, and then proceeds as the decision tree
CDT (F, % ∪ α).
Formally, if β` = 〈v1 7→ b1, . . . , vt 7→ bt〉 and Q = {vi1 , . . . , vis} where 1 ≤ i1 < · · · < is ≤
t, then we have

CDT (F, % ∪ α) := {(vi1 7→ a1, . . . , vis 7→ as) ◦ β :
a ∈ {0, 1}s, β ∈ CDT (F, % ∪ {vi1 7→ a1, . . . , vis 7→ as})}.

Note that the decision tree CDT (F, %) determines the function computed by F �%.

I Lemma 16. Suppose CDT (F, %) has depth s ≥ 1. Then there exist
integers r ∈ [s] and s1, . . . , sr ≥ 1 with s1 + · · ·+ sr = s,
integers 1 ≤ `1 < · · · < `r ≤ m,
sets Qi ⊆ V`i \ (V`1 ∪ · · · ∪ V`i−1) with |Qi| = si and restrictions αi, σi : Qi → {0, 1} for
each i ∈ [r]

CCC 2019



1:10 Criticality of Regular Formulas

such that, for all i ∈ [r],
(i) % ∪ α1 ∪ · · · ∪ αi−1 falsifies F`′ for all 1 ≤ `′ < `i,
(ii) % ∪ α1 ∪ · · · ∪ αi−1 ∪ σi satisfies F`i ,
(iii) Qi = (V`i \ (V`1 ∪ · · · ∪ V`i−1)) ∩ Stars(%).

Proof. Straightforward from unpacking the inductive definition of CDT (F, %). J

I Lemma 17. Let F = OR(F1, . . . , Fm) be a DNF formula and let % be a p-random
restriction. Then

P[ CDT (F,%) has depth s ] ≤ (8ep log(em))s.

Proof. By Lemma 16, we have

P
%

[ CDT (F,%) has depth s ]

≤
∑

r,s1,...,sr,`1,...,`r,Q1,...,Qr,α1,...,αr,σ1,...,σr

P
%

[ (i),(ii),(iii) for all i ∈ [r] ]

≤ 2s max
r,~s

∑
~̀, ~Q,~α,~σ

P
%

[ (i),(ii),(iii) for all i ∈ [r] ].

The second inequality uses the fact that there are at most 2s possibilities for data (r, s1, . . . , sr).
Let x : V → {0, 1} be a uniform random completion of %. For any restriction γ, let xγ be

the input where xγ(v) equals γ(v) if v ∈ Dom(γ) and x(v) otherwise. For any r, ~s, ~̀, ~Q, ~α, ~σ,
note that

P
%

[ (i),(ii),(iii) for all i ∈ [r] ] = 2s P
%,x

[ (i),(ii),(iii) for all i ∈ [r] and σ1 ∪ · · · ∪ σr ⊆ x ]

= 2s P
%,x

[ (i’),(ii’),(iii’) for all i ∈ [r] ]

= (2p)s(1− p)|V1∪···∪V`r |−sP
x

[ (i’),(ii’) for all i ∈ [r] ]

≤ (2p)sP
x

[ (i’),(ii’) for all i ∈ [r] ]

where
(i’) xα1∪···∪αi−1 falsifies F`′ and 1 ≤ `′ < `i,
(ii’) xα1∪···∪αi−1 satisfies F`i ,
(iii’) Qi = (V`i \ (V`1 ∪ · · · ∪ V`i−1)) ∩ Stars(%).

Letting

µ(~̀, ~Q, ~α) := P
x

[ (i’),(ii’) for all i ∈ [r] ],

we have

P
%

[ CDT (F,%) has depth t ] ≤ (4p)s max
r,~s

∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α).

We next observe that, given any `1, . . . , `i, there are 2si
(
|V`i \ (V`1 ∪ · · · ∪ V`i−1)|

si

)
choices
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for (Qi, αi). Therefore,∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α) ≤ 2s
∑
`1

max
Q1,α1

(
|V`1 |
s1

)∑
`2

max
Q2,α2

(
|V`2 \ V`1 |

s2

)
· · ·

· · ·
∑
`r

max
Qr,αr

(
|V`2 \ (V`1 ∪ · · · ∪ V`r−1)|

sr

)
µ(~̀, ~Q, ~α)

≤ 2s
∑
`1

max
Q1,α1

∑
`2

max
Q2,α2

∑
`r

max
Qr,αr

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q, ~α).

We replace each
∑

max with max
∑

as follows. Let Q?i and α?i range over functions
Q?i (`1, . . . , `i) ∈

(
V`i\(V`1∪···∪V`i−1 )

si

)
and α?i (`1, . . . , `i) : Q?i (`1, . . . , `i) → {0, 1}, and let

µ(~̀, ~Q?, ~α?) be short for

µ(〈`1, . . . , `r〉, 〈Q?1(`1), . . . , Q?r(`1, . . . , `r)〉, 〈α?1(`1), . . . , α?r(`1, . . . , `r)〉).

This allows us replace each
∑
`1,...,`i

maxQi,αi with maxQ?
i
,α?
i

∑
`1,...,`i

to obtain∑
~̀, ~Q,~α

µ(~̀, ~Q, ~α) ≤ 2s max
~Q?,~α?

∑
~̀

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q?, ~α?).

A key observation is that, for any given ~Q? and ~α?, we have
∑
~̀ µ(~̀, ~Q?, ~α?) ≤ 1. To

see why, note that each input x determines at most one sequence ~̀= 〈`1, . . . , `r〉 such that
(i’) and (ii’) hold for all i ∈ [r], that is, xα

?
1(`1)∪···∪α?i−1(`1,...,`i−1) satisfies F`i and falsifies

F`′ for all `′ < `i. Therefore, the events (over random x) defining probabilities µ(~̀, ~Q?, ~α?)
are mutually exclusive. We now have the following bound, using Lemma 12 for the last
inequality:∑

~̀

(
|V`1 ∪ · · · ∪ V`r |

s

)
µ(~̀, ~Q?, ~α?) ≤

∑
~̀

(
e|V`1 ∪ · · · ∪ V`r |

s

)s
µ(~̀, ~Q?, ~α?)

=
(

e

ln(2)

)s∑
~̀

(
ln(2|V`1∪···∪V`r |)

s

)s
µ(~̀, ~Q?, ~α?)

≤
(

e

ln(2)

)s(1
s

ln
(∑

~̀

2|V`1∪···∪V`r |µ(~̀, ~Q?, ~α?)
)

+ 1
)s
.

A second key observation is that, for any ~̀, ~Q, ~α, we have

µ(~̀, ~Q, ~α) = P[ (i’),(ii’) for all i ∈ [r] ]
≤ P[ (ii’) for all i ∈ [r] ]

=
{

(1/2)|V`1∪···∪V`r | if
∧
i∈[r] F`i�αi∪···∪αi−1 is satisfiable,

0 otherwise.

Therefore,∑
~̀

2|V`1∪···∪V`r |µ(~̀, ~Q?, ~α?) ≤
∑
~̀

1 ≤
(
m

r

)
≤ mr ≤ ms.

Putting the pieces together, we conclude

P
%

[ CDT (F,%) has depth s ] ≤
(

8ep
ln(2)

)s(1
s

ln(ms) + 1
)s

=
(

8ep log(em)
)s
. J
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I Corollary 18. Every size-m DNF formula has criticality at most 16e log(em).

Proof. Let F be a size-m DNF formula. Without loss of generality, let t ≥ 1 and 0 < p ≤
(16e log(em))−1. Then

P
%

[ DTdepth(F �%) ≥ t ] ≤
∞∑
s=t

P
%

[ CDT (F,%) has depth s ]

≤
∞∑
s=t

(
8ep log(em)

)s
≤
(

16ep log(em)
)t
. J

5 The Canonical Decision Tree of a Depth-d Formula

In this section, we define the canonical decision tree of a depth-d formula F under a chain
of restrictions %1 ⊆ · · · ⊆ %d, denoted T ∗%1,...,%d

(F ). The primary definition, however, is of a
richer object T%1,...,%d(F ).

I Definition 19. For every d ∈ N and chain of restrictions %1 ⊆ · · · ⊆ %d and depth-d
formula F , we define a set of ordered restrictions T%1,...,%d(F ) as follows. In the base case
d = 0, let

T%1,...,%d(F ) :=
{
{〈〉} if F is a constant 0 or 1,
{〈v 7→ 0〉, 〈v 7→ 1〉} if F is a literal Xv or Xv.

For d ≥ 1, the definition is inductive. Suppose F = OR(F1, . . . , Fm) where each F`
is a depth d − 1 formula. Assume that T%1,...,%d−1(F`) is defined for all ` ∈ [m] and that
T%1,...,%d(F �γ) is defined for every restriction γ whose domain includes at least one variable
index in the support of F . We consider three cases:
(i) If F1�%d ≡ · · · ≡ Fm�%d ≡ 0, then T%1,...,%d(F ) := {〈〉}.
(ii) If F1�%d ≡ · · · ≡ F`−1�%d ≡ 0 and F`�%d ≡ 1, then T%1,...,%d(F ) := {〈〉}.
(iii) If F1�%d ≡ · · · ≡ F`−1�%d ≡ 0 and F`�%d computes a non-constant function, then

T%1,...,%d(F ) is the set of ordered restrictions 〈v1 7→ a1, . . . , vu 7→ au〉 of length u ≥ 1
such that there exist t ∈ [u] and b ∈ {0, 1}t satisfying
〈v1 7→ b1, . . . , vt 7→ bt〉 ∈ T%1,...,%d−1(F`),
〈vt+1 7→ at+1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F �{v1 7→a1, ..., vt 7→at}), and
for all i ∈ [t], if vi ∈ Dom(%d), then bi = ai = %d(vi); and if vi ∈ Stars(%d), then

bi =
{
ai if (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1, vi 7→ai} 6≡ 0,
1− ai if (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1, vi 7→ai} ≡ 0.

Finally, T%1,...,%d(F ) is defined in the same way if F = AND(F1, . . . , Fm), but with the
roles 0 and 1 exchanged.

I Lemma 20. T%1,...,%d(F ) is nonempty and every α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F )
satisfies:
(a) α is consistent with %d (i.e., for all i ∈ [u], if vi ∈ Dom(%d), then ai = %d(vi)),
(b) the support of F contains Dom(α) (i.e., for all i ∈ [u], the literal Xvi or Xvi occurs as

a depth-0 subformula of F ),
(c) for all i ∈ [u], if vi ∈ Stars(%d), then 〈v1 7→ a1, . . . , vi−1 7→ ai−1, vi 7→ 1 − ai〉 is an

initial subsequence of some element of T%1,...,%d(F ),
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(d) for all i ∈ [u] and every variable index v′i and bit a′i ∈ {0, 1}, if 〈v1 7→ a1, . . . , vi−1 7→
ai−1, v

′
i 7→ a′i〉 is an initial subsequence of any element of T%1,...,%d(F ), then v′i = vi,

(e) the function computed by F �%d∪α is constant (i.e., F �%d∪α ≡ 0 or F �%d∪α ≡ 1).

Proof. Though the proof is straightforward from Definition 19, we include full details. Note
that the lemma is trivial when d = 0 as well as in cases (i) and (ii) when d ≥ 1. So we assume
that F = OR(F1, . . . , Fm) falls under case (iii), as witnessed by ` ∈ [m]. By the induction
hypothesis, we may assume that the lemma holds with respect to F` as well as F �γ for every
restriction γ whose domain includes at least one variable index in the support of F .

We first establish that T%1,...,%d(F ) is nonempty. By the induction hypothesis,
T%1,...,%d−1(F`) is nonempty. Since F`�%d is non-constant and F`�%d∪β is constant for every
β ∈ T%1,...,%d−1(F`), there exists β ∈ T%1,...,%d−1(F`) such that F`�%d∪β ≡ 1. Let β = 〈v1 7→
b1, . . . , vt 7→ bt〉 and note that t ≥ 1. For all i ∈ [t], we have (F`�%d)�{v1 7→b1, ..., vi 7→bi} 6≡ 0,
since this is the same formula as F`�%d∪{v1 7→b1, ..., vi 7→bi} by %d-consistency of β. By the defini-
tion of T%1,...,%d(F ) in case (iii), it follows that β ◦γ ∈ T%1,...,%d(F ) for every γ ∈ T%1,...,%d(F �β).
Nonemptiness of T%1,...,%d(F ) therefore follows from nonemptiness of T%1,...,%d(F �β), which we
know by the induction hypothesis applied to F �β (noting that Dom(β) contains a variable
index in the support of F , namely v1, which is in the support of F` by the induction hypothesis
applied to F`).

Now consider any α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F ), as witnessed by some
t ∈ [u] and b ∈ {0, 1}t in definition of case (iii). Let γ := {v1 7→ a1, . . . , vt 7→ at}. We
establish properties (a)–(e) in order.

(a): Suppose i ∈ [u] and vi ∈ Dom(%d). If i ∈ {1, . . . , t}, then ai = %d(vi) by definition of
T%1,...,%d(F ) in case (iii). Otherwise, if i ∈ {t+ 1, . . . , u}, then ai = %d(vi) by property
(a) with respect to F �γ .

(b): From the induction hypothesis, we know that v1, . . . , vt are in the support of F` (hence
also the support of F ) and that vt+1, . . . , vt are in the support of F �γ (hence also the
support of F ).

(c): First note that (F`�%d)�{v1 7→b1, ..., vi−1 7→bi−1} 6≡ 0 for all i ∈ [t], as easily shown by
induction on i. It then follows from the definition of case (iii) that for all i ∈ [t], if
vi ∈ Stars(%d), then 〈v1 7→ a1, . . . , vi−1 7→ ai−1, vi 7→ 1− ai〉 is an initial subsequence
of some element of T%1,...,%d(F ). The same conclusion for all i ∈ {t+ 1, . . . , u} follows
from property (c) with respect to F �γ .

(d): If i ∈ [t] and 〈v1 7→ a1, . . . , vi−1 7→ ai−1, v
′
i 7→ a′i〉 is an initial subsequence of an element

of T%1,...,%d(F ), then by definition of case (iii), 〈v1 7→ b1, . . . , vi−1 7→ bi−1, v
′
i 7→ a′i〉

is initial subsequence of an element of T%1,...,%d−1(F`) and therefore v′i = vi. For
i ∈ {t+ 1, . . . , u}, the conclusion follows from property (d) with respect to F �γ .

(e): Since 〈vt+1 7→ at+1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F �γ), the formula
(F �γ)�%d∪{vt+1 7→at+1, ...,vu 7→au}, which is the same formula as F �%d∪α by %d-consistency
of α, computes a constant function by property (e) with respect to F �γ . J

I Definition 21. For α = 〈v1 7→ a1, . . . , vu 7→ au〉 ∈ T%1,...,%d(F ), let α∗ denote the
subsequence

α∗ := 〈vi1 7→ ai1 , . . . , vis 7→ ais〉

for the unique 1 ≤ i1 < · · · < is ≤ u such that {vi1 , . . . , vis} = Dom(α) ∩ Stars(%d). Let

T ∗%1,...,%d
(F ) := {α∗ : α ∈ T%1,...,%d(F )}.
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I Lemma 22. T ∗%1,...,%d
(F ) is the set of branches of a decision tree determining F �%d .

Moreover, each element of T ∗%1,...,%d
(F ) is a subsequence of a unique element of T%1,...,%d(F ).

Proof. Straightforward from Lemma 20. J

I Definition 23. We call T ∗%1,...,%d
(F ) the canonical decision tree of F �%d under %1, . . . , %d.

For a bitstring a ∈ {0, 1}s and an ordered restriction α, we write “T (a)
%1,...,%d(F ) = α” if α ∈

T%1,...,%d(F ) and there exist variable indices v1, . . . , vs such that α∗ = 〈v1 7→ a1, . . . , vs 7→ as〉.
We say that “T (a)

%1,...,%d(F ) exists” if T (a)
%1,...,%d(F ) = α for any α ∈ T%1,...,%d(F ).

Note that, by Lemma 22, if T (a)
%1,...,%d(F ) exists then T (a)

%1,...,%d(F ) = α for a unique
α ∈ T%1,...,%d(F ) (justifying our use of the equality symbol). We may regard T (·)

%1,...,%d(F ) as a
partial function from bitstrings to elements of the set T%1,...,%d(F ).

6 Depth-d Switching Lemma

In this section, we consider a depth-d formula F = OR(F1, . . . , Fm) and study the branches
of T%1,...,%d(F ) where %1 ⊆ · · · ⊆ %d is a chain of random restrictions where %d is a p-random
refinement of %d−1 and formulas F1, . . . , Fm satisfy a certain hypothesis with respect to
%1, . . . ,%d−1. This allows us to bound the probability that T%1,...,%d(F ) has an a-branch for
any string a ∈ {0, 1}s. We refer to the main result of this section, Proposition 25, as the
“depth-d switching lemma” since it analyzes the canonical decision tree of F in a similar
manner as Håstad’s switching lemma analyzes the canonical decision tree of a CNF or DNF
formula.

Proposition 25 is in fact a special case of the slightly more general Proposition 27 (“serial
depth-d switching lemma”), which we prove in the next section. The proofs are essentially
the same, but with Proposition 25 we have fewer indices to keep track of. The next lemma
unpacks the recursive definition of T%1,...,%d(F ) to obtain a more explicit characterization
of its branches. This lemma associates T (a)

%1,...,%d(F ), whenever this exists, with certain data
(r,~s,~̀,~t,~b,~q).

I Lemma 24 (Unpacking T (a)
%1,...,%d(F )). Let F = OR(F1, . . . , Fm) be a depth-d formula, let

%1 ⊆ · · · ⊆ %d be restrictions, let s ≥ 1, and let a ∈ {0, 1}s. If T (a)
%1,...,%d(F ) exists, then there

exist
integers r ∈ [s] and s1, . . . , sr ≥ 1 with s1 + · · ·+ sr = s,
integers 1 ≤ `1 < · · · < `r ≤ m,
integers ti ≥ si and bitstrings bi ∈ {0, 1}ti and qi ∈ {0, 1}tisi for each i ∈ [r]

with the property that there exist unique ordered restrictions β1, . . . , βr such that, for all
i ∈ [r],
(i) (F`′�γi)�%d ≡ 0 for all 1 ≤ `′ < `i,
(ii) (F`i�γi)�%d 6≡ 0,
(iii) T (bi)

%1,...,%d−1(F`i�γi) = βi,
(iv) βi is %d-consistent and (F`i�γi)�%d−1∪βi ≡ 1,
(v) “qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)” in the following sense: for all

j ∈ [ti],

qi,j = 1 ⇐⇒ Stars(%d) contains the jth variable of Dom(βi) ∩ Stars(%d−1)
in the order given by βi.
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where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1〉.

(Note that conditions (iii) and (v) imply that |Dom(βi) ∩ Stars(%d−1)| = ti and |Dom(βi) ∩
Stars(%d)| = si and γi = (β1 ◦ · · · ◦ βi−1)←Stars(%d) 〈a1, . . . , as1+···+si−1〉.)

Proof. Straightforward from Definition 19. J

I Proposition 25 (“Depth-d switching lemma”). Let F = OR(F1, . . . , Fm) be a depth-d
formula. Suppose %1 ⊆ · · · ⊆ %d−1 are random restrictions such that the following holds:
for all integers r ≥ 1 and 1 ≤ `1 < · · · < `r ≤ m and t1, . . . , tr ≥ 1 and bitstrings
b1, . . . , br, c1, . . . , cr where bi ∈ {0, 1}ti and ci ∈ {0, 1}t1+···+ti−1 ,

P
%1,...,%d−1

[
∃β1, . . . , βr

∧
i∈[r]

(
T (bi)

%1,...,%d−1 (F`i�(β1◦···◦βi−1)←Stars(%d−1)ci
) = βi

) ]
≤
( 1

2e

)t1+···+tr
.

Then for every integer s ≥ 1 and bitstring a ∈ {0, 1}s and p ∈ [0, 1], letting %d be a p-random
refinement of %d−1, we have

P
%1,...,%d

[
T (a)

%1,...,%d
(F ) exists

]
≤
(
4ep(lnm+ 1)

)s
.

Proof. By Lemma 24 and a union bound,

P
%1,...,%d

[
T (a)

%1,...,%d(F ) exists
]

≤
∑

r,s1,...,sr
`1,...,`r
t1,...,tr
b1,...,br
q1,...,qr

P
%1,...,%d



∃β1, . . . , βr such that, for all i ∈ [r],
(i) (F`′�γi)�%d ≡ 0 for all 1 ≤ `′ < `i

(ii) (F`i�γi)�%d 6≡ 0

(iii) T (bi)
%1,...,%d−1 (F`i�γi) = βi

(iv) βi is %d-consistent and (F`i�γi)�%d−1∪βi ≡ 1

(v) qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)
where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1〉


≤ 2s max

r,s1,...,sr

∑
`1,...,`r,t1,...,tr,
b1,...,br,q1,...,qr

P
%1,...,%d

[
∃β1, . . . , βr such that (i)–(v) for all i ∈ [r]

]
.

Henceforth, we fix r, s1, . . . , sr and bound the sum over ~̀,~t,~b,~q.
Let x be a uniform random completion of %d. For each choice of ~̀,~t,~b,~q, we have the

following key sequence of (in)equalities, which we state below and justify afterwards:
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P
%1,...,%d

[
∃β1, . . . , βr such that (i)–(v) for all i ∈ [r]

]
= 2s P

%1,...,%d,x

[
∃β1, . . . , βr such that (i)–(v) and βi ⊆ x for all i ∈ [r]

]

≤ 2s P
%1,...,%d,x



∃β1, . . . , βr such that, for all i ∈ [r],
(i’) (F`′�γi)(x) = 0 for all 1 ≤ `′ < `i

(ii’) (F`i�γi)(x) = 1

(iii’) T (bi)
%1,...,%d−1 (F`i�γi) = βi

(iv’) βi ⊆ x

(v’) qi identifies Stars(%d) within Dom(βi) ∩ Stars(%d−1)
where γi := (β1 ◦ · · · ◦ βi−1)←Stars(%d−1) ci,

ci := ( b1 ◦ · · · ◦ bi−1 )←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1〉


= (2p)s(1− p)(t1+···+tr−s)µ(~̀,~t,~b,~q)

≤ (2p)sµ(~̀,~t,~b,~q)

where

µ(~̀,~t,~b,~q) := P
%1,...,%d,x

[
∃β1, . . . , βr such that (i’)–(iv’) for all i ∈ [r]

]
.

The first equality follows from the independence of conditions (i)–(v) (which only depend
on %1, . . . ,%d) and the event that (β1 ∪ · · · ∪ βr) ⊆ (x \ %d) for any fixed %d in the support
of %d (this event has probability 2−s since |Dom(βi) ∩ Stars(%d)| = si for each i ∈ [r]). The
subsequent inequality follows from the observation that conditions (i)–(v) together with
(β1∪· · ·∪βr) ⊆ x imply conditions (i’)–(v’). The next equality follows from the independence
of conditions (i’)–(iv’) and condition (v’). To see this, consider the following alternative way of
generating %d and x given %1, . . . ,%d−1: first generate x as a uniform random completion of
%d−1 (rather than of %d), then obtain %d from x by randomly removing each pair v 7→ xv with
v ∈ Stars(%d−1) independently with probability 1− p. The independence of conditions (i’)–
(iv’) and condition (v’) is now seen by observing that the former only depends on %1, . . . ,%d−1
and x, while the latter only depends on %d (for any fixed %1, . . . , %d−1, x in the support of
%1, . . . ,%d−1,x). The probability of the latter event is precisely ps(1− p)(t1+···+tr−s) since
for each i ∈ [r], the set Dom(βi) ∩ Stars(%d−1) contains ti variables, of which Stars(%d) is
required to include exactly the si variables specified by qi.

Combining the above inequalities, we have

P
%1,...,%d

[
T (a)

%1,...,%d
(F ) exists

]
≤ (4p)s max

r,s1,...,sr

∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

µ(~̀,~t,~b,~q).

We next turn to bounding both the individual probabilities µ(~̀,~t,~b,~q) and their sum
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∑
~̀,~t,~b,~q µ(~̀,~t,~b,~q). Ignoring conditions (i’) and (ii’), we have

µ(~̀,~t,~b,~q)

≤ P
%1,...,%d,x

[
∃β1, . . . , βr such that (iii’) and (iv’) for all i ∈ [r]

]
=
(1

2

)t1+···+tr
P

%1,...,%d−1

[
∃β1, . . . , βr such that (iii’) for all i ∈ [r]

]

=
(1

2

)t1+···+tr
P

%1,...,%d−1


∃β1, . . . , βr such that, for all i ∈ [r],

T (bh,i)
%1,...,%d−1 (F`i�(β1◦···◦βi−1)←Stars(%d−1)ci

) = βi

where ci := (b1 ◦ · · · ◦ bi−1)←q1◦···◦qi−1 〈a1, . . . , as1+···+si−1〉


≤
( 1

4e

)t1+···+tr
.

The first equality follows from independence of conditions (iii’) and (iv’). The second equality
is a restatement of condition (iii’). The last inequality uses the hypothesis of the theorem
concerning formulas F1, . . . , Fm.

We next bound the sum
∑
~̀,~t,~b,~q µ(~̀,~t,~b,~q). We start out by observing that

∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

P
%1,...,%d,x

[
∃β1, . . . , βr such that (i’)–(v’) for all i ∈ [r]

]
≤ 1,

since these events are mutually exclusive. To see why, consider any %1, . . . , %d, x in the
support of %1, . . . ,%d,x and notice that there is a unique process of uniquely determining
~̀,~t,~b,~q (if any exist) such that conditions (i’)–(v’) hold. First, we find the unique `1 (if any
exists) such that F`1(x) = 1 and F`′(x) = 0 for all 1 ≤ `′ < `1 (note that γ1 = 〈〉). Next, let
β1 be the unique branch of T%1,...,%d−1(F`1) consistent with x, let bi be the sequence of answers
to the queried variable indices on this branch, and let ti be the length of b1. If F`1(x) = 0
or |Dom(β1) ∩ Stars(%d)| 6= s1, then the process fails; otherwise, let q1 ∈ {0, 1}t1s1

be the
unique bitstring that identifies Stars(%d) within Dom(β1) ∩ Stars(%d−1). Having uniquely
determined `1, t1, b1, q1, the process continues by finding the unique `2 (if any exists) such
that (F`2�γ2)(x) = 1 and (F`′�γ2)(x) = 0 for all 1 ≤ `′ < `1 (note that γ2 is completed
determined by previous data β1, b1, q1). Continuing in this manner, we find unique t2, b2, q2,
etc.

Note that condition (v’) uniquely determines bitstrings q1, . . . , qs. This condition is
omitted from the events in probabilities µ(~̀,~t,~b,~q), which therefore are not mutually exclusive
as the choice of qi ∈ {0, 1}tisi is now free. However, we can restore mutual exclusivity as
follows. For each i ∈ [r], let q?i range over functions associating each sequence of partial data
(`1, t1, b1, . . . , `i, ti, bi) with an element q?i (`1, t1, b1, . . . , `i, ti, bi) ∈ {0, 1}tisi . Let

µ(~̀,~t,~b,~q?) := µ
(
~̀,~t,~b, 〈q?1(`1, t1, b1), . . . , q?r (`1, t1, b1, . . . , `r, tr, br)〉

)
.

For any choice of q?1 , . . . , q?r , the events in probabilities µ(~̀,~t,~b,~q?) are mutually exclusive
over ~̀,~t,~b. (It is a subtle but important point that q?i is a function of (`1, t1, b1, . . . , `i, ti, bi)
independent of any “future” data `j , tj , bj for j > i.) Therefore,∑

`1,...,`r,t1,...,tr,b1,...,br

µ(~̀,~t,~b,~q?) ≤ 1.

CCC 2019



1:18 Criticality of Regular Formulas

We now have the bound∑
`1,...,`r,t1,...,tr,b1,...,br,q1,...,qr

µ(~̀,~t,~b,~q)

≤
∑

`1,t1,b1

(
t1
s1

)
max
q1
· · ·

∑
`r,tr,br

(
tr
sr

)
max
qr

µ(~̀,~t,~b,~q)

= max
q?1 ,...,q

?
r

∑
`1,t1,b1

(
t1
s1

)
· · ·

∑
`r,tr,br

(
tr
sr

)
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

∑
`1,...,`r,t1,...,tr,b1,...,br

(
t1 + · · ·+ tr

s

)
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

∑
`1,...,`r,t1,...,tr,b1,...,br

es
(
t1 + · · ·+ tr

s

)s
µ(~̀,~t,~b,~q?)

≤ max
q?1 ,...,q

?
r

es
(

1
s

ln
( ∑
`1,...,`r,t1,...,tr,b1,...,br

e(t1+···+tr)µ(~̀,~t,~b,~q?)
)

+ 1
)s

where the final inequality is by Lemma 12.
We next have

∑
~̀,~t,~b e

(t1+···+tr)µ(~̀,~t,~b,~q?) ≤ ms as follows:

∑
`1,...,`r,t1,...,tr,b1,...,br

e(t1+···+tr)µ(~̀,~t,~b,~q?) ≤
∑

`1,...,`r,t1,...,tr,b1,...,br

(
1
4

)t1+···+tr

≤
∑

`1,...,`r

∞∑
t=r

(
1
4

)t ∑
t1,...,tr,b1,...,br : t1+···+tr=t

1

=
∑

`1,...,`r

∞∑
t=r

(
1
2

)t(
t− 1
r − 1

)

=
∑

`1,...,`r

1 =
(
m

r

)
≤ mr ≤ ms.

The first inequality uses our bound µ(~̀,~t,~b,~q) ≤ (1/8e)(t1+···+tr) (which holds for any
q1, . . . , qr including q?1(`1, t1, b1), . . . , q?r (`1, t1, b1, . . . , `r, tr, br)). The first equality is due to
the fact that there are

(
t−1
r−1
)
choices for integers t1, . . . , tr ≥ 1 such that t1 + · · · + tr = t,

and there are 2ti choices for each bitstring bi ∈ {0, 1}ti . The second equality uses Lemma 9.
Finally, we use the fact that r ≤ s since s1, . . . , sr ≥ 1 are integers such that s1 + · · ·+ sr = s.

Putting together these inequalities, we get the desired bound

P
%1,...,%d

[
T (a)

%1,...,%d
(F ) exists

]
≤
(
4ep(lnm+ 1)

)s
. J

7 Serial Depth-d Switching Lemma

We would like to prove Theorem 3 (our upper bound on the criticality of regular AC0

formulas) by applying Proposition 25 (“depth-d switching lemma”) to each layer of a regular
AC0 formula. Unfortunately, there is a mismatch between the hypothesis and the conclusion
of Proposition 25: the hypothesis applies to a sequence of depth d− 1 formulas, while the
conclusion applies to single depth-d formula (and cannot therefore serve as the hypothesis
for a depth d+ 1 formula).
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In this section, we prove an extension of Proposition 25 which we require for Theorem 3.
We call this result, Proposition 27, the “serial depth-d switching lemma”, since it explores the
canonical decision trees of a sequence of depth-d formulas F1, . . . , Fk in order. For integers
s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh (h ∈ [k]), we would like to bound the event that
T%1,...,%d(F1) has an a1-branch, call it α1, and that T%1,...,%d(F2�α1) has an a2-branch α2,
etc., and finally that T%1,...,%d(Fd�α1◦···◦αk−1

) has an ak-branch αk. However, in order for the
conclusion of Proposition 27 to match the hypothesis, we need to consider a more general
event where, instead of considering T%1,...,%d(Fh�α1◦···◦αh−1

) in the hth stage, we instead apply
the restriction (α1 ◦ · · · ◦ αh−1) ←Stars(%d) ch (overwriting α1 ◦ · · · ◦ αh−1 on all previously
queried variables) where ch ∈ {0, 1}s1+···+sh−1 is an arbitrary bitstring. Although this makes
notation in Proposition 27 slightly more cumbersome, the probabilistic main argument is
nearly identical to Proposition 25.

I Notation 1. In what follows, we will consider integers k ≥ 1 and r1, . . . , rk ≥ 1 and various
indexed families ~w = {wh,i}h∈[k],i∈[rh]. It is often convenient to regard ~w as a sequence of
length r1 + · · ·+ rk:

~w = 〈w1,1, . . . , w1,r1 , . . . . . . , wh,1, . . . , wh,rk〉.

For h ∈ [k] and i ∈ [rk + 1], notation “w1,1, . . . , wh,i−1” shall refer to the initial subsequence
of length r1 + · · ·+ rh−1 + i− 1:

〈w1,1, . . . , wh,i−1〉 = 〈w1,1, . . . , w1,r1 , . . . . . . , wh−1,1, . . . , wh−1,rh−1 , wh,i, . . . , wh,i−1〉.

For example, if wh,i are integers (or bitstrings, ordered restrictions, etc.), we will write
“w1,1 + · · · + wh,i−1” (or “w1,1 ◦ · · · ◦ wh,i−1”) for the sum (or composition) of the first
r1 + · · ·+ rh−1 + i− 1 elements of ~w.

The following lemma plays the same role in Proposition 27 as Lemma 24 does in Proposi-
tion 25.

I Lemma 26. Let F1, . . . , Fk be depth-d formulas where Fh = OR(Fh,1, . . . , Fh,m) for each
h ∈ [k]. Let %1 ⊆ · · · ⊆ %d be restrictions. Let s1, . . . , sk ≥ 1 and let ah ∈ {0, 1}sh and
ch ∈ {0, 1}s1+···+sh−1 for each h ∈ [k]. Suppose there exist ordered restrictions α1, . . . , αk
such that, for all h ∈ [k],

T (ah)
%1,...,%d

(Fh�(α1◦···◦αh−1)←Stars(%d)ch
) = αh.

Then there exist
integers rh ∈ [sh] and sh,1, . . . , sh,rh ≥ 1 with sh,1 + · · ·+ sh,rh = sh for each h ∈ [k],
integers 1 ≤ `h,1 < · · · < `h,rh ≤ m for each h ∈ [k],
integers th,i ≥ sh,i and bitstrings bh,i ∈ {0, 1}th,i and qh,i ∈ {0, 1}

th,i
sh,i for each h ∈ [k] and

i ∈ [rh]
with the property that there exist unique ordered restrictions β1,1, . . . , βh,rh such that, for all
h ∈ [k] and i ∈ [rh],
(i) (Fh,`′�γh,i)�%d ≡ 0 for all 1 ≤ `′ < `h,i,
(ii) (Fh,`h,i�γh,i)�%d 6≡ 0,
(iii) T (bh,i)

%1,...,%d−1(Fh,`h,i�γh,i) = βh,i,
(iv) βh,i is %d-consistent and (Fh,`h,i�γh,i)�%d−1∪βh,i ≡ 1,
(v) “qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)” in the following sense: for

all j ∈ [th,i], we have qh,i,j = 1 ⇐⇒ Stars(%d) contains the jth variable of Dom(βh,i)∩
Stars(%d−1) in the order given by βh,i.
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where

γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1 (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1〉).

(Note that conditions (iii) and (v) imply that |Dom(βh,i)∩Stars(%d−1)| = th,i and |Dom(βh,i)∩
Stars(%d)| = sh,i and γh,i = (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d) (ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1〉).)

Proof. Straightforward from Definition 19. J

I Proposition 27 (“Serial depth-d switching lemma”). Let k,m ≥ 1, let F1, . . . , Fk be depth-d
formulas where Fh = OR(Fh,1, . . . , Fh,m) for each h ∈ [k]. Suppose %1 ⊆ · · · ⊆ %d−1 are
random restrictions such that, for all r1, . . . , rk ≥ 1 and 1 ≤ `h,1 < · · · < `h,rh ≤ m and
th,i ≥ 1 and bh,i ∈ {0, 1}th,i and dh,i ∈ {0, 1}t1,1+···+th,i−1 (h ∈ [k] and i ∈ [rh]),

P
%1,...,%d−1

[
∃β1,1, . . . , βk,rk

∧
h∈[k]
i∈[rh]

(
T (bh,i)

%1,...,%d−1 (Fh,`h,i�(β1,1◦···◦βh,i−1)←Stars(%d−1)dh,i
) = βh,i

) ]
≤
( 1

2e

)t1,1+···+tk,rk
.

Then for all integers s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1

(h ∈ [k]) and p ∈ [0, 1], letting %d be a p-random refinement of %d−1, we have

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

%1,...,%d
(Fh�(α1◦···◦αh−1)←Stars(%d)ch

) = αh

) ]
≤
(

4ep(lnm + 1)
)s1+···+sk

.

Note that Proposition 25 is precisely the special case k = 1 of Proposition 27. The
following proof closely parallels the proof of Proposition 25 (with a few more indices to keep
track of). We omit the justifications of certain (in)equalities that would be redundant.

Proof. Fix s1, . . . , sk and a1, . . . , ak and c1, . . . , ck and p, and let s := s1 + · · ·+ sk.
Let ~r = {rh} and ~s = {sh,i} and ~̀= {`h,i} and ~t = {th,i} and ~b = {bh,i} and ~q = {qh,i}

(where h ∈ [k] and [i] ∈ [rh]) range over data satisfying the bullet items of Lemma 26. We
have

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

%1,...,%d(Fh�(α1◦···◦αh−1)←Stars(%d)ch
) = αh

) ]

≤
∑

~r,~s,~̀,~t,~b,~q

P
%1,...,%d



∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],
(i) (Fh,`′�γh,i)�%d ≡ 0 for all 1 ≤ `′ < `h,i

(ii) (Fh,`h,i�γh,i)�%d 6≡ 0

(iii) T (bh,i)
%1,...,%d−1 (Fh,`h,i�γh,i) = βh,i

(iv) βh,i is %d-consistent and (Fh,`h,i�γh,i)�%d−1∪βh,i ≡ 1

(v) qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)
where γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1

(ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1〉)


≤ 2s max

~r,~s

∑
~̀,~t,~b,~q

P
%1,...,%d

[
∃β1,1, . . . , βk,rk such that (i)–(v) for all h ∈ [k] and i ∈ [rh]

]
.
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Letting x be a uniform random completion of %d, we have

P
%1,...,%d

[
∃β1,1, . . . , βk,rk such that (i)–(v) for all h ∈ [k] and i ∈ [rh]

]
= 2s P

%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (i)–(v) and βh,i ⊆ x for all h ∈ [k], i ∈ [rh]

]

≤ 2s P
%1,...,%d,x



∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],
(i’) (Fh,`′�γh,i)(x) = 0 for all 1 ≤ `′ < `h,i

(ii’) (Fh,`h,i�γh,i)�(x) = 1

(iii’) T (bh,i)
%1,...,%d−1(Fh,`h,i�γh,i) = βh,i

(iv’) βh,i ⊆ x

(v’) qh,i identifies Stars(%d) within Dom(βh,i) ∩ Stars(%d−1)
where γh,i := (β1,1 ◦ · · · ◦ βh,i−1)←Stars(%d−1) dh,i,

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1

(ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1〉)


= (2p)s(1− p)(t1,1+···+tk,r−s)µ(~̀,~t,~b,~q)

≤ (2p)sµ(~̀,~t,~b,~q)

where

µ(~̀,~t,~b,~q) := P
%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (i’)–(iv’) for all h ∈ [k] and i ∈ [rh]

]
.

Ignoring conditions (i’) and (ii’), we have

µ(~̀,~t,~b,~q)

≤ P
%1,...,%d,x

[
∃β1,1, . . . , βk,rk such that (iii’) and (iv’) for all h ∈ [k] and i ∈ [rh]

]
=
(1

2

)t1,1+···+tk,rk
P

%1,...,%d−1

[
∃β1,1, . . . , βk,rk such that (iii’) for all h ∈ [k] and i ∈ [rh]

]

=
(1

2

)t1,1+···+tk,rk
P

%1,...,%d−1


∃β1,1, . . . , βk,rk such that, for all h ∈ [k] and i ∈ [rh],

T (bh,i)
%1,...,%d−1 (Fh,`h,i�(β1,1◦···◦βh,i−1)←Stars(%d−1)dh,i

) = βh,i where

dh,i := ( b1,1 ◦ · · · ◦ bh,i−1 )←q1,1◦···◦qh,i−1

(ch ◦ 〈ah,1, . . . , ah,sh,1+···+sh,i−1〉)


≤
( 1

4e

)t1,1+···+tk,rk
.

For each h ∈ [k] and i ∈ [rh], let q?h,i range over functions associating each sequence
(`1,1, t1,1, b1,1, . . . , `h,i, th,i, bh,i) with an element q?h,i(`1,1, t1,1, b1,1, . . . , `h,i, th,i, bh,i) ∈ {0, 1}

th,i
sh,i .

Let

µ(~̀,~t,~b,~q?) := µ
(
~̀,~t,~b, 〈q?1,1(`1,1, t1,1, b1,1), . . . , q?k,rk (`1,1, t1,1, b1,1, . . . , `k,rk , tk,rk , bk,rk )〉

)
.
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For every choice of q?1,1, . . . , q?k,rk , we have
∑
~̀,~t,~b µ(~̀,~t,~b,~q?) ≤ 1. Therefore, using Lemma 9,

∑
~̀,~t,~b,~q

µ(~̀,~t,~b,~q) ≤
∑

`1,1,t1,1,b1,1

(
t1,1
s1,1

)
max
q1,1
· · ·

∑
`k,rk ,tk,rk ,bk,rk

(
tk,rk
sk,rk

)
max
qk,rk

µ(~̀,~t,~b,~q)

= max
~q?

∑
`1,1,t1,1,b1,1

(
t1,1
s1,1

)
· · ·

∑
`k,rk ,tk,rk ,bk,rk

(
tk,rk
sk,rk

)
µ(~̀,~t,~b,~q?)

≤ max
~q?

∑
~̀,~t,~b

(
t1,1 + · · ·+ tk,rk

s

)
µ(~̀,~t,~b,~q?)

≤ max
~q?

es
(

1
s

ln
(∑
~̀,~t,~b

e(t1,1+···+tk,rk )µ(~̀,~t,~b,~q?)
)

+ 1
)s
.

Finally, we have

∑
~̀,~t,~b

e(t1,1+···+tk,rk )µ(~̀,~t,~b,~q?) ≤
∑
~̀,~t,~b

(
1
4

)t1,1+···+tk,rk

≤
∑
~̀

∞∑
t=r1+···+rk

(
1
4

)t ∑
~t,~b : t1,1+···+tk,rk=t

1

=
∑
~̀

∞∑
t=r1+···+rk

(
1
2

)t(
t− 1

r1 + · · ·+ rk − 1

)

=
∑
~̀

1 =
(
m

r1

)
· · ·
(
m

rk

)
≤ m(r1+···+rk) ≤ ms.

Putting together these inequalities, we get the desired bound

P
%1,...,%d

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

%1,...,%d(Fh�(α1◦···◦αh−1)←Stars(%d)ch
) = αh

) ]
≤
(
4ep(lnm+ 1)

)s
. J

8 Proof of Theorem 3

The following lemma is required for the analysis of depth-1 subformulas in the proof of
Theorem 3.

I Lemma 28. Let % be a p-random restriction. Let F1, . . . , Fk be depth-1 formulas, let
s1, . . . , sk ≥ 1, and let ah ∈ {0, 1}sh and ch ∈ {0, 1}s1+···+sh−1 for each h ∈ [k]. Then

P
%

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

% (Fh�(α1◦···◦αh−1)←Stars(%)ch
) = αh

) ]
≤ (2p)s1+···+sk .

Proof. Assume F1�% computes a non-constant function, since otherwise T (a1)
% (F1) does not

exist (note that α1 = 〈〉). Let V1 be the set of variable indices occurring in literals of F1.
Observe that T (a1)

% (F1) exists if, and only if, |V1 ∩ Stars(%)| = s1 and % gives the unique
assignment to variables in V1 ∩Dom(%) such that F1�% is non-constant. This happens with
probability

(|V1|
s1

)
ps1( 1−p

2 )|V1|−s1 , which is at most (2p)s1 . Also note that this event only
depends %|V1 (i.e., the partial function % restricted to Dom(%)∩V1). If this event holds, then
we have T (a1)

% (F1) = α1 for the unique ordered restriction α1 with Dom(α1) = V1 ∩ Stars(%)
whose values are given by a1.
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Next let F ′2 := F2�α1←Stars(%)c1 and assume that F ′2�% computes a non-constant function,
since otherwise T (a2)

% (F ′2) does not exist. Let V2 be the set of variable indices occurring
in literals of F ′2, and note that V1 ∩ V2 = ∅. Observe that T (a2)

% (F ′2) exists if, and only if,
|V2 ∩ Stars(%)| = s2 and % gives the unique assignment to variables in V2 ∩ Dom(%) such
that F ′2�% is non-constant. Conditioned on the value of %|V1 , this second event happens with
probability

(|V2|
s2

)
ps2( 1−p

2 )|V2|−s2 , which is at most (2p)s2 . Moreover, this second event only
depends on %|V2 .

Continuing in this manner, we conclude that the event in question holds with probability
at most (2p)s1+···+sk . J

Proof of Theorem 3. Let F be a regular formula of depth d + 1 and size s. For i ∈
{2, . . . , d+ 1}, let mi be the top fan-in of depth-i subformulas of F . Let

λ :=
d+1∏
i=2

8e2(lnmi + 1).

Note that s = m2 · · ·md+1 and therefore by Lemma 11

λ ≤ (8e2)d
(

1
d

ln s+ 1
)d

.

We claim that F is λ-critical. To see this, consider any p ∈ [0, 1
λ ]. Let %1 ⊆ · · · ⊆ %d+1

be a sequence of random restrictions where

%1 is a 1
4e -random restriction,

%i is a
1

8e2(lnmi + 1) -random refinement of %i for each i ∈ {2, . . . , d},

%d+1 is a pλ

16e(lnmd+1 + 1) -random refinement of %d.

Note that %d+1 is a p-random restriction.
For all integers k ≥ 1 and s1, . . . , sk ≥ 1 and bitstrings ah ∈ {0, 1}sh and ch ∈

{0, 1}s1+···+sh−1 (h ∈ [k]), we have:
for all depth-1 subformulas F1, . . . , Fk of F , Lemma 28 implies

P
%1

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

%1
(Fh�(α1◦···◦αh−1)←Stars(%1)ch

) = αh

) ]
≤
(

1
2e

)s1+···+sk
,

for all i ∈ {2, . . . , d} and depth-i subformulas F1, . . . , Fk of F , Proposition 27 implies

P
%1,...,%i

[
∃α1, . . . , αk

∧
h∈[k]

(
T (ah)

%1,...,%i(Fh�(α1◦···◦αh−1)←Stars(%i)ch
) = αh

) ]
≤
( 1

2e

)s1+···+sk
,

finally, Proposition 25 (or Proposition 27) implies

P
%1,...,%d+1

[
T (a1)

%1,...,%d+1
(F ) exists

]
≤
(
pλ

4

)s1

.
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Therefore, for all t ≥ 1, we have

P
[

DTdepth(F �Rp) ≥ t
]
≤
∞∑
u=t

P
[
T ∗%1,...,%d+1

(F ) has depth u
]

≤
∞∑
u=t

∑
a∈{0,1}u

P
[
T (a)

%1,...,%d+1
(F ) exists

]
≤
∞∑
u=t

2u
(
pλ

4

)u
≤ (pλ)t.

This shows that F is λ-critical, and since λ = O( 1
d log s)d, the theorem is proved. J

9 Satisfiability Algorithms

The following theorem gives a randomized #SAT algorithm for regular AC0 formulas. For
AC0 circuits of size Ω(n2) (after converting to regular formulas), this matches the runtime of
the #SAT algorithm of Impagliazzo, Matthews and Paturi [7].

I Theorem 29. There is a randomized, zero-error algorithm which, given a regular AC0

formula F of depth d + 1 and size s on n variables, outputs a decision tree for F of size
O(sn · 2(1−ε)n) where ε = 1/O( 1

d log s)d. This algorithm also solves the #SAT problem, that
is, it counts the number of satisfying assignments for F .

Proof. First we require a lemma that |T%1,...,%d(F �γ)| ≤ |T%1,...,%d(F )| for any depth-d formulas
F , restrictions %1 ⊆ · · · ⊆ %d and %d-consistent restriction γ. This is straightforward from
Definition 19 of T%1,...,%d(·), but requires a careful argument (by induction on a stronger
statement) to make precise. We omit the details.

Accepting this claim, we can extract from Definition 19 an algorithm which, given any
depth-d formula F and restrictions %1 ⊆ · · · ⊆ %d, computes the set T%1,...,%d(F ) in time
O(n) ·

∑d
i=1

∑
Fi
|T%1,...,%i(Fi)| where Fi ranges over depth-i subformulas of F .

If we are now given a regular AC0 formula F of depth d+ 1 and size s on n variables,
we can compute a decision tree for F as follows. Consider any sets D1 ⊆ · · · ⊆ Dd+1 ⊆ [n]
and let D := Dd+1. We get a decision tree for F by querying all variables in D, receiving
answers % : D → {0, 1}, and then proceeding as the decision tree T%1,...,%d+1(F ) where %i
is the restriction of % to domain Di. The time required to construct this decision tree
is O(n) ·

∑d+1
i=1

∑
Fi

∑
%:D→{0,1} |T%1,...,%i(Fi)|. If % is a uniform random restriction with

domain D and |D| ≤ (1− ε)n (for a choice of δ > 0 to be determined), then this bound is
O(n·2(1−δ)n) ·

∑d+1
i=1

∑
Fi
E |T%1,...,%i(Fi)|.

Let us now randomly generate sets D1 ⊆ · · · ⊆Dd+1 ⊆ [n] as follows:
D1 is a 1− 1

4e -random subset of [n] (i.e., D1 includes each variable index in [n] independ-
ently with probability 1− 1

4e ),
for each i ∈ {2, . . . , d+ 1}, Di is the union of Di−1 and a 1− 1

8e2(lnmi+1) -random subset
of [n]\Di−1 where mi is the top fan-in of depth-i subformulas of F (equivalently: [n]\Di

is a 1
8e2(lnmi+1) -random subset of [n] \Di−1).

Note that D (:= Dd+1) is a (1− 1
λ )-random subset of [n] where λ = O( 1

d log s)d. The proof
of Theorem 3 shows that, for every i ∈ [d+ 1] and depth-i subformula Fi,

E |T%1,...,%i(Fi)| =
∞∑
t=0

∑
a∈{0,1}t

P
[
T (a)

%1,...,%i(Fi) exists
]
≤ 1 +

∞∑
t=1

2t(1/2e)t = 1
1− (1/e) .
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We may assume that λ ≤ n/2, since otherwise the theorem is trivial. We then have
P[ |D| ≤ (1 − 1

2λ )n ] with probability Ω(1) (and in fact 1 − o(1) when λ � n). It follows
that, with at least this probability, our algorithm constructs a decision tree for F in time
O(sn·2(1− 1

2λ )n). J

As a corollary, we improve the parameters of an algorithm of Santhanam and Williams
[14] for the satisfiability problem for q-QB-CNF and q-QB-DNF, the class of quantified CNF
and DNF formulas with q quantifier blocks (i.e., q quantifier alternations).

I Corollary 30. Satisfiability of q-QB-CNF (resp. q-QB-DNF) with n variables and poly(n)
clauses (resp. disjuncts) can be solved probabilistically with zero error in time poly(n) ·
2n−Ω(qn1/(q+1))+O(q).

The proof of Corollary 30 is adapted straightforwardly from [14], using Theorem 29 in
place of the AC0-circuit satisfiability algorithm of Impagliazzo, Matthews and Paturi [7].
Corollary 30 extends from o( logn

log logn ) to o(logn) the range of q for which the algorithm of [14]
beats exhaustive search (i.e., poly(n) · 2n time). We remark that a second algorithm in [14]
running time poly(n) · 2n−Ω(q), which beats exhaustive search when q = ω(logn). The range
of q where q-QB-CNF and q-QB-DNF is not known to beat exhaustive search by a factor of
at least nk is therefore reduced to between c1 logn and c2 logn for constants c1(k) < c2(k).

10 Open Questions

It is an open question whether the assumption of regularity is unnecessary in Theorem 3.
We conjecture that our criticality bound for regular formulas holds for all formula.

I Conjecture 1. All AC0 formulas of depth d + 1 and size s have criticality at most
O( 1

d log s)d.

For (regular) formulas of n variables, can this bound be improved to O( 1
d log( sn )+log(d))d?

(Results in [7] for AC0 circuits involve the quantity O(log( sn ) + d log(d))d.)
Since deg(f) ≤ DTdepth(f) for all boolean functions f , it follows that λ-criticality implies

λ-degree-criticality, that is, the bound P[ deg(f�Rp) ≥ t ] ≤ (pλ)t. What about a reserve
implication?
I Question 1. Does degree-criticality λ imply criticality O(λ)?

Tal [16] showed that DeMorgan formulas of size L have degree-criticality O(
√
L). As a

special case of Question 1, one can ask:
I Question 2. Do DeMorgan formulas of size L have criticality O(

√
L)?

Finally, we ask a question that would potentially yield a much simpler and more aesthetic
proof of Theorem 3. We will say that a boolean function f is hereditarily λ-critical if every
subfunction of f is λ-critical (i.e., f�% is λ-critical for every restriction %).
I Question 3. Suppose f is the disjunction of boolean functions f1 ∨ · · · ∨ fm where each fi
is hereditarily λ-critical. Is f necessarily O(λ ln(m+ 1)) critical?

A positive answer to Question 3 implies Theorem 3. If Question 3 could be answered
affirmatively, we may then consider the following generalization:
I Question 4. Suppose f is the disjunction of boolean functions f1 ∨ · · · ∨ fm where each
fi is hereditarily λi-critical. Let λ ≥ max{λ1, . . . , λm} such that

∑m
i=1 e

−(λ/λi) ≤ 1. Is f
necessarily O(λ) critical?

A positive answer to Question 4 would be very interesting as it implies Conjecture 1.

CCC 2019



1:26 Criticality of Regular Formulas

References

1 Kazuyuki Amano. Tight Bounds on the Average Sensitivity of k-CNF. Theory of Computing,
7(1):45–48, 2011.

2 Paul Beame. A switching lemma primer. Technical report, Technical Report UW-CSE-95-07-01,
Department of Computer Science and Engineering, University of Washington, 1994.

3 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by Small
Height Decision Trees and a Deterministic Algorithm for #AC0-SAT. In 27th Annual IEEE
Conference on Computational Complexity, pages 117–125, 2012.

4 Ravi B Boppana. The average sensitivity of bounded-depth circuits. Information processing
letters, 63(5):257–261, 1997.

5 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 6–20. ACM, 1986.

6 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM Journal on
Computing, 43(5):1699–1708, 2014.

7 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 961–972. SIAM, 2012.

8 Nathan Keller and Noam Lifshitz. Approximation of biased Boolean functions of small total
influence by DNF’s. arXiv preprint, 2017. arXiv:1703.10116.

9 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. Journal of the ACM, 40(3):607–620, 1993.

10 Alexander A Razborov. An equivalence between second order bounded domain bounded
arithmetic and first order bounded arithmetic, 1993.

11 Benjamin Rossman. An entropy proof of the switching lemma and tight bounds on the
decision-tree size of AC0 circuits.

12 Benjamin Rossman. The average sensitivity of bounded-depth formulas. Computational
Complexity, 27(2):209–223, 2018.

13 Benjamin Rossman and Srikanth Srinivasan. Separation of AC0[⊕] Formulas and Circuits. In
LIPIcs-Leibniz International Proceedings in Informatics, volume 80. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

14 Rahul Santhanam and Ryan Williams. Beating exhaustive search for quantified boolean
formulas and connections to circuit complexity. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 231–241. SIAM, 2014.

15 Dominik Scheder and Li-Yang Tan. On the average sensitivity and density of k-CNF for-
mulas. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 683–698. Springer, 2013.

16 Avishay Tal. Shrinkage of De Morgan formulae by spectral techniques. In 55th Annual IEEE
Symposium on Foundations of Computer Science, pages 551–560, 2014.

17 Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

18 Patrick Traxler. Variable Influences in Conjunctive Normal Forms. In Theory and Applications
of Satisfiability Testing-SAT 2009: 12th International Conference, SAT 2009, Swansea, UK,
June 30-July 3, 2009. Proceedings, volume 5584, page 101. Springer, 2009.

19 Andre M. Zubkov and Aleksandr A. Serov. A complete proof of universal inequalities for
the distribution function of the binomial law. Theory of Probability & Its Applications,
57(3):539–544, 2013.

http://arxiv.org/abs/1703.10116


B. Rossman 1:27

A Appendix: Average Sensitivity of Size-m DNF Formulas

As a warm-up for our switching lemma for size-m DNF formulas (Section 4), we present a
simple proof that every size-m DNF formula F with expected value λ ∈ [0, 1] has average
sensitivity at most min{2 log(m+ 1), 2λ log(m/λ)}. Up to an 1 + o(1) factor, these bounds
can be derived from known results on the average sensitivity of width-w DNFs (see Remark
33). However, our proof involves different argument based on the entropy of the “first witness
function” associated with F . This argument was the starting point for our alternative proof
of the switching lemma and provides a simple illustration of the underlying principle.

Recall the definitions of sensitivity and average sensitivity. For a function f with domain
{0, 1}n and a point x ∈ {0, 1}n, let

S(f, x) := |{i ∈ [n] : f(x) 6= f(x⊕ i)}| and AS(f) := E
x∈{0,1}n

[ S(f, x) ].

The expected value of f is Ex∈{0,1}n [ f(x) ].

I Theorem 31. Every m-clause DNF with expected value λ has average sensitivity at most
min{2 log(m+ 1), 2λ log(m/λ)}.

Proof. Let F = C1 ∨ · · · ∨ Cm be an m-clause DNF. Let F̃ : {0, 1}n → [m+ 1] be the “first
witness function” mapping x ∈ {0, 1}n to the index of the first satisfied clause if any, and
otherwise to m+ 1. Let

S<(F̃ , x) := |{i ∈ [n] : F̃ (x) < F̃ (x⊕ i)}| and AS<(F̃ ) := E
x∈{0,1}n

[ S<(F̃ , x) ].

Observe that AS(F ) ≤ AS(F̃ ) = 2·AS<(F̃ ).
Let µ = (µ1, . . . , µm+1) be the probability distribution induced by F̃ under the uniform

distribution on {0, 1}n, that is, µ` := Px∈{0,1}n [ F̃ (x) = ` ]. For each ` ∈ [m], we have

2
E
y∈F̃−1(`)

[ S<(F̃ ,y) ]
≤ E
y∈F̃−1(`)

[ 2S<(F̃ ,y) ] by Jensen’s inequality

≤ 2|C`| since S<(F̃ , y) ≤ |C`| for all y ∈ F̃−1(`)

≤ 1
µ`

since µ` ≤ P
x∈{0,1}n

[ C`(x) = 1 ] = 2−|C`|.

Therefore, E
y∈F̃−1(`)[ S<(F̃ , y) ] ≤ log(1/µ`).

Using the fact that µ has entropy at most log(m+ 1), we have

AS<(F̃ ) = E
x∈{0,1}n

[ S<(F̃ , x) ]

=
∑
`∈[m]

µ` E
y∈F̃−1(`)

[ S<(F̃ , y) ]

≤
∑
`∈[m]

µ` log(1/µ`) ≤
∑

`∈[m+1]

µ` log(1/µ`) = H(µ) ≤ log(m+ 1).

We conclude that AS(F ) ≤ 2 log(m+ 1).
If F has expected value λ, then letting µ′` := µ`/λ (and noting that λ =

∑
`∈[m] µ`), we

have∑
`∈[m]

µ` log(1/µ`) = λ
∑
`∈[m]

µ′`

(
log(1/µ′`)− log(λ)

)
= λ

(
H(µ′)− log(λ)

)
≤ λ log(m/λ).

This gives the bound AS(F ) ≤ 2λ log(m/λ). J
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For k, t ∈ N, observe that the function PARITY(x1, . . . , xk) ∧ AND(xk+1, . . . , xk+t) is
equivalent to a DNF with m := 2k−1 clauses and has expected value λ := (1/2)t+1 and
average sensitivity (k+ t)2−t (= 2λ log(m/λ)). This shows that Theorem 31 is tight whenever
λ ∈ [0, 1

2 ] is an inverse power of two.
I Remark 32. Theorem 31 has a (weak) converse: Keller and Lifshitz [8] showed that every
boolean function with expected value λ and average sensitivity at most 2λ log(m/λ) is
ελ-approximated by a DNF of size 2mO(1/ε) .
I Remark 33. The average sensitivity of a width-w DNF with expected value λ is known to be
at most the minimum of w (Amano [1]), 2λw (Boppana [4]) and 2(1−λ)w/ log( 1

1−λ ) (Traxler
[18]). Each of these bounds is tight for a certain values of λ. Extending all three bounds,
Scheder and Tan [15] proved an upper bound of β(λ)w for a certain piecewise linear function
β : [0, 1]→ [0, 1]; this bound is asymptotically tight for all values of λ. By approximating
any m-clause by a DNF of width dlogme, they also observe that (1 + o(1))β(λ) log(m+ 1) is
an upper bound on the average sensitivity of m-clause DNFs.
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Abstract
We consider the problem of testing whether an unknown n-variable Boolean function is a k-junta
in the distribution-free property testing model, where the distance between functions is measured
with respect to an arbitrary and unknown probability distribution over {0, 1}n. Chen, Liu, Servedio,
Sheng and Xie [35] showed that the distribution-free k-junta testing can be performed, with one-sided
error, by an adaptive algorithm that makes Õ(k2)/ε queries. In this paper, we give a simple two-sided
error adaptive algorithm that makes Õ(k/ε) queries.
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1 Inroduction

Property testing of Boolean function was first considered in the seminal works of Blum, Luby
and Rubinfeld [11] and Rubinfeld and Sudan [42] and has recently become a very active
research area. See for example, [1, 2, 3, 4, 7, 8, 13, 14, 15, 16, 18, 19, 22, 24, 27, 29, 32, 33,
37, 36, 39, 43] and other works referenced in the surveys [26, 40, 41].

A function f : {0, 1}n → {0, 1} is said to be k-junta if it depends on at most k variables.
Juntas have been of particular interest to the computational learning theory community [9, 10,
12, 30, 34, 38]. A problem closely related to learning juntas is the problem of testing juntas:
Given black-box query access to a Boolean function f . Distinguish, with high probability,
the case that f is k-junta versus the case that f is ε-far from every k-junta.

In the uniform distribution framework, where the distance between two functions is
measured with respect to the uniform distribution, Ficher et al. [24] introduced the junta
testing problem and gave adaptive and non-adaptive algorithms that make poly(k)/ε queries.
Blais in [5] gave a non-adaptive algorithm that makes Õ(k3/2)/ε queries and in [6] an adaptive
algorithm that makes O(k log k + k/ε) queries. On the lower bounds side, Fisher et al. [24]
gave an Ω(

√
k) lower bound. Chockler and Gutfreund [21] gave an Ω(k) lower bound for

adaptive testing and, recently, Sağlam in [43] improved this lower bound to Ω(k log k). For
the non-adaptive testing Chen et al. [17] gave the lower bound Ω̃(k3/2)/ε.

In the distribution-free property testing, [28], the distance between Boolean functions is
measured with respect to an arbitrary and unknown distribution D over {0, 1}n. In this model,
the testing algorithm is allowed (in addition to making black-box queries) to draw random
x ∈ {0, 1}n according to the distribution D. This model is studied in [20, 23, 25, 31, 35].
For testing k-junta in this model, Chen et al. [35] gave a one-sided adaptive algorithm that
makes Õ(k2)/ε queries and proved a lower bound Ω(2k/3) for any non-adaptive algorithm.
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The results of Halevy and Kushilevitz [31] gives a one-sided non-adaptive algorithm that
makes O(2k/ε) queries. The adaptive Ω(k log k) uniform-distribution lower bound from [43]
trivially extend to the distribution-free model.

In this paper, we close the gap between the adaptive lower and upper bound. We prove

I Theorem 1. For any ε > 0, there is a two-sided distribution-free adaptive algorithm for
ε-testing k-junta that makes Õ(k/ε) queries.

Our exact upper bound is O((k/ε) log(k/ε)) and therefore, by Sağlam [43] lower bound
of Ω(k log k), our bound is tight for any constant ε.

2 Preliminaries

In this section we give some notations follows by a formal definition of the model and some
preliminary known results

2.1 Notations
We start with some notations. Denote [n] = {1, 2, . . . , n}. For S ⊆ [n] and x = (x1, . . . , xn)
we write x(S) = {xi|i ∈ S}. For X ⊂ [n] we denote by {0, 1}X the set of all binary strings
of length |X| with coordinates indexed by i ∈ X. For x ∈ {0, 1}n and X ⊆ [n] we write
xX ∈ {0, 1}X to denote the projection of x over coordinates in X. We denote by 1X and
0X the all one and all zero strings in {0, 1}X , respectively. When we write xI = 0 we mean
xI = 0I . For X1, X2 ⊆ [n] where X1 ∩X2 = ∅ and x ∈ {0, 1}X1 , y ∈ {0, 1}X2 we write x ◦ y
to denote their concatenation, the string in {0, 1}X1∪X2 that agrees with x over coordinates
in X1 and agrees with y over X2. For X ⊆ [n] we denote X = [n]\X. We say that the
Boolean function f : {0, 1}n → {0, 1} is a literal if f ∈ {x1, . . . , xn, x̄1, . . . , x̄n}.

Given f, g : {0, 1}n → {0, 1} and a probability distribution D over {0, 1}n, we say that f
is ε-close to g with respect to D if Prx∈D[f(x) 6= g(x)] ≤ ε, where x ∈ D means x is chosen
from {0, 1}n according to the distribution D. We say that f is ε-far from g with respect to D
if Prx∈D[f(x) 6= g(x)] ≥ ε. We say that f is ε-far from every k-junta with respect to D if for
every k-junta g, f is ε-far from g with respect to D. We will use U to denote the uniform
distribution over {0, 1}n.

2.2 The Model
In this subsection, we define the model.

We consider the problem of testing juntas in the distribution-free testing model. In this
model, the algorithm has access to a k-junta f via a black-box that returns f(x) when a string
x is queried, and access to unknown distribution D via an oracle that returns x ∈ {0, 1}n
chosen randomly according to the distribution D.

A distribution-free testing algorithm A is a algorithm that, given as input a distance
parameter ε and the above two oracles,
1. if f is k-junta then A output “accept” with probability at least 2/3.
2. if f is ε-far from every k-junta with respect to the distribution D then it output “reject”

with probability at least 2/3.

We say that A is one-sided if it always accepts when f is k-junta, otherwise, it is called
two sided algorithm. The query complexity of a distribution-free testing algorithm is the
number of queries made on f .
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2.3 Preliminaries Results
In this section, we give some known results that will be used in the sequel.

For a Boolean function f and X ⊂ [n], we say that X is a relevant set of f if there are
a, b ∈ {0, 1}n such that f(a) 6= f(bX ◦ aX). When X = {i} then we say that xi is relevant
variable of f . Obviously, if X is relevant set of f then x(X) contains at least one relevant
variable of f . In particular, we have

I Lemma 2. If {Xi}i∈[r] is a partition of [n] then for any Boolean function f the number
of relevant sets Xi of f is at most the number of relevant variables of f .

We will use the following folklore result that is formally proved in [35].

I Lemma 3. Let {Xi}i∈[r] be a partition of [n]. Let f be a Boolean function and u ∈ {0, 1}n.
If f(u) 6= f(0) then a relevant set X` of f with a string v ∈ {0, 1}n that satisfies f(v) 6=
f(0X`

◦ vX`
) can be found with dlog2 re queries.

The following is from [6]

I Lemma 4. There exists a one-sided adaptive algorithm, UniformJunta(f, k, ε, δ), for
ε-testing k-junta that makes O(((k/ε)+k log k) log(1/δ)) queries and rejects f with probability
at least 1− δ when it is ε-far from every k-junta with respect to the uniform distribution.

The following is from [35].

I Lemma 5. Let D be any probability distribution over {0, 1}n. If f is ε-far from every
k-junta with respect to D then for any J ⊆ [n], |J | ≤ k we have

Prx∈D,y∈U [f(x) 6= f(xJ ◦ yJ̄)] ≥ ε.

Proof. Let J ⊆ [n] of size |J | ≤ k. For every fixed y ∈ {0, 1}n the function f(xJ ◦ yJ̄) is
k-junta and therefore Prx∈D[f(x) 6= f(xJ ◦ yJ̄)] ≥ ε. Therefore

Prx∈D,y∈U [f(x) 6= f(xJ ◦ yJ̄)] ≥ ε. J

3 The Algorithm

In this section, we prove the correctness of the algorithm and show that it makes Õ(k/ε)
queries. We first give an overview of the algorithm then prove its correctness and analyze its
query complexity.

3.1 Overview of the Algorithm
In this subsection we give an overview of the algorithm. We will use the notation in
Subsection 2.1 and the definitions and Lemmas in Subsection 2.3.

Consider the algorithm in Figure 1. In steps 1-2, the algorithm uniformly at random
partitions [n] into r = 2k2 disjoint sets X1, . . . , Xr. Lemma 6 shows that,

I Fact 1. If the function is k-junta then with high probability (w.h.p), each set of variables
x(Xi) = {xj |j ∈ Xi} contains at most one relevant variable.

In steps 3-12, the algorithm finds

I Fact 2. relevant sets {Xi}i∈I such that for X = ∪i∈IXi, w.h.p., the function f(xX ◦ 0X)
is ε/2-close to f with respect to D.
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To find such set, the algorithm, after finding relevant sets {Xi}i∈I′ , chooses random string
u ∈ D and tests if f(uX′ ◦ 0X′) 6= f(u) where X ′ = ∪i∈I′Xi. The variable t(X ′) counts for
how many random strings u ∈ D we get f(uX′ ◦ 0X′) = f(u). If t(X ′) reaches the value
O((log k)/ε) then, w.h.p, f(xX′ ◦ 0X′) is ε/2-close to f with respect to D and X = X ′.
Otherwise, f(uX′ ◦ 0X′) 6= f(u) and using Lemma 3 the algorithm finds a new relevant set
X`. This is proved in Lemma 10.

In addition, for each relevant set X`, ` ∈ I, it finds a string v(`) that satisfies f(v(`)) 6=
f(0X`

◦ v(`)
X`

). Obviously, if |I| > k then, since each relevant set contains at least one relevant
variable, the target is not k-junta and the algorithm rejects. See Lemma 2.

Now one of the key ideas is the following: If f is k-junta then f(xX ◦ 0X) is k-junta. If f
is ε-far from every k-junta with respect to D then since, by Fact 2, w.h.p., f(xX ◦ 0X) is
ε/2-close to f with respect to D we have that,

I Fact 3. If f is ε-far from every k-junta with respect to D then, w.h.p., f(xX ◦ 0X) is
ε/2-far from every k-junta with respect to D.

Now, since each X`, ` ∈ I is relevant set and f(v(`)) 6= f(0X`
◦v(`)

X`
), for ` ∈ I the function

f(xX`
◦ v(`)

X`
) is non-constant. In steps 13-17, the algorithm tests that,

I Fact 4. w.h.p., for each ` ∈ I there is τ(`) ∈ X` such that f(xX`
◦ v(`)

X`
) is close to some

literal in {xτ(`), xτ(`)}, with respect to the uniform distribution.

This is done using the procedure UniformJunta in Lemma 4.
If f is k-junta then, by Fact 1 and 2, w.h.p., it passes this test (does not output reject).

This is Lemma 7. If the algorithm does not pass this test, it rejects. If f is not k-junta and
it passes this test, then the statement in Fact 4 is true. This is proved in Lemma 11.

Consider now steps 18-28. First, let us consider a function f that is ε-far from every
k-junta with respect to D. Let J = {τ(`) | ` ∈ I} where τ(`) is as defined in Fact 4. Since by
Fact 3, w.h.p., f(xX ◦ 0X) is ε/2-far from every k-junta with respect to D and |J | = |I| ≤ k,
by Lemma 5, w.h.p.,

Pry∈U,x∈D[f(xX ◦ 0X) 6= f(xJ ◦ yX\J ◦ 0X)] ≥ ε/2.

So we need to test whether f(xX ◦ 0X) is ε/2-far from f(xJ ◦ yX\J ◦ 0X) (those are equal in
the case when f is k-Junta). This is the last test we would like to do but the problem is that
we do not know J , so we cannot use this test as is. So we change it, as is done in [35], to an
equivalent test as follows

Prz∈U,x∈D[f(xX ◦ 0X) 6= f((xX + zX) ◦ 0X) | zJ = 0J ] ≥ ε/2.

To be able to draw uniformly random zX with zJ = 0J , we use Fact 4, that is, the fact
that each f(xX`

◦ v(`)
X`

) is close to one of the literals in {xτ(`), xτ(`)}. For every ` ∈ I, the

algorithm draws uniformly random w := zX`
and then using the fact that f(xX`

◦ v(`)
X`

) is
close to one of the literals in {xτ(`), xτ(`)} where τ(`) ∈ X` the algorithm tests in which set
Y`,0 := {j ∈ X`| wj = 0} or Y`,1 := {j ∈ X`| wj = 1} the index τ(`) falls. If τ(`) ∈ Y`,0
then the entry τ(`) in zX`

is zero and if τ(`) ∈ Y`,1 then the entry τ(`) in zX`
is one. In

the latter case, the algorithm replaces zX`
with zX`

(negation of each entry in zX`
) which is

also uniformly random. This gives a random uniform zX`
with zτ(`) = 0. We do that for

every ` ∈ I and get a random uniform z with zJ = 0. This is proved in Lemma 12. Then the
algorithm rejects if f(xX ◦ 0X) 6= f((xX + zX) ◦ 0X). If f(xX ◦ 0X) is ε/2-far from every



N.H. Bshouty 2:5

k-junta then, by Lemma 5, f(xX ◦ 0X) is ε/2-far from f(xJ ◦ yX\J ◦ 0X), and the algorithm,
with one test, rejects with probability at least ε/2. Therefore, by repeating this test O(1/ε)
times the algorithm rejects w.h.p. This is proved in Lemma 13.

Now we consider f that is k-junta. Obviously, if f is k-junta then f(xX ◦ 0X) =
f((xX + zX) ◦ 0X) when zJ = 0 and the algorithm accepts. This is because x(J) are the
relevant variables in f(xX ◦ 0X). This is proved in Lemma 8.

3.2 The algorithm for k-Junta
In this subsection, we show that if the target function f is k-junta then the algorithm accepts
with probability at least 2/3.

We first prove

I Lemma 6. Consider steps 1-2 in the algorithm. If f is a k-junta then, with probability at
least 2/3, for each i ∈ [r], the set x(Xi) = {xj |j ∈ Xi} contains at most one relevant variable
of f .

Proof. Let xi1 and xi2 be two relevant variables in f . The probability that xi1 and xi2 are
in the same set is equal to 1/r. By the union bound, it follows that the probability that
some relevant variables xi1 and xi2 in f are in the same set is at most

(
k
2
)
/r ≤ 1/3. J

We now show that w.h.p. the algorithm reaches the final test in the algorithm

I Lemma 7. If f is k-junta and each x(Xi) contains at most one relevant variable of f then
1. Each x(Xi), i ∈ I, contains exactly one relevant variable.
2. The algorithm reaches step 18

Proof. By Lemma 3 and steps 7-9, for ` ∈ I, f(v(`)) 6= f(0X`
◦ v(`)

X`
) and therefore x(X`)

contains exactly one relevant variable. Thus, for every ` ∈ I, f(xX`
◦ v(`)

X`
) is a literal.

If the algorithm does not reach step 18, then it either halts in step 10, 15 or 17. If it
halts in step 10 then |I| > k and therefore, by Lemma 2, f contains more than k relevant
variables and then it is not k-Junta. If it halts in step 15 then, by Lemma 4, for some X`,
` ∈ I, f(xX`

◦ v(`)
X`

) is not 1-Junta (literal or constant function) and therefore X` contains at

least two relevant variables. If it halts in step 17, then f(bX`
◦ v(`)

X`
) = f(bX`

◦ v(`)
X`

) and then

f(xX`
◦ v(`)

X`
) is not a literal. In all cases we get a contradiction. J

We now give two Lemmas that show that, with probability at least 2/3, the algorithm
accepts k-junta.

I Lemma 8. If f is k-Junta and each x(Xi) contains at most one relevant variable of f
then the algorithm outputs “accept”.

Proof. By Lemma 7, the algorithm reaches step 18. We now show that it reaches step 29.
Now we need to show that the algorithm does not halt in step 25 or 28.

Since Y`,0, Y`,1 is a partition of X`, ` ∈ I and X` contains exactly one relevant variable in
x(X`) of f , this variable is either in x(Y`,0) or in x(Y`,1) but not in both. Suppose w.l.o.g. it
is in x(Y`,0) and not in x(Y`,1). Then f(xY`,0 ◦ bY`,1 ◦ v

(`)
X`

) is a literal and f(xY`,1 ◦ bY`,0 ◦ v
(`)
X`

)

is a constant function. This implies that for any b, f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) 6= f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

)

and f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

) = f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

). Therefore, G`,0 = h and G`,1 = 0. Thus the
algorithm does not halt in step 25.
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Algorithm SimpleDk−Junta(f,D, ε)
Input: Oracle that accesses a Boolean function f and

oracle that draws a random x ∈ {0, 1}n according to the distribution D.
Output: Either “accept” or “reject”

Partition [n] into r sets
1. Set r = 2k2.
2. Choose uniformly at random a partition X1, X2, . . . , Xr of [n]

Find a close function and relevant sets
3. Set X = ∅; I = ∅; t(X) = 0
4. Repeat M = 2k ln(15k)/ε times
5. Choose u ∈ D.
6. t(X)← t(X) + 1
7. If f(uX ◦ 0X) 6= f(u) then
8. Binary search: find a new relevant set X`; X ← X ∪X`; I ← I ∪ {`}
9. and a string v(`) ∈ {0, 1}n such that f(v(`)) 6= f(0X`

◦ v(`)
X`

).
10. If |I| > k then output “reject” and halt.
11. t(X) = 0.
12. If t(X) = 2 ln(15k)/ε then Goto 13.

Tests if each relevant set is close to a literal
13.For every ` ∈ I do
14. If UniformJunta(f(xX`

◦ v(`)
X`

), 1, 1/30, 1/15)=“reject”
15. then output “reject” and halt
16. Choose b ∈ U
17. If f(bX`

◦ v(`)
X`

) = f(bX`
◦ v(`)

X`
) then output “reject” and halt

The final test of Lemma 5
18.Repeat M ′ = (2 ln 15)/ε times
19. Choose w ∈ U ; z = 0X
20. For every ` ∈ I do
21. Set Y`,ξ = {j ∈ X`|wj = ξ} for ξ ∈ {0, 1}.
22. Set G`,0 = G`,1 = 0;
23. Repeat h = ln(15M ′k)/ ln(4/3) times
24. Choose b ∈ U ;

If f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) 6= f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) then G`,0 ← G`,0 + 1
If f(bY`,1 ◦ bY`,0 ◦ v

(`)
X`

) 6= f(bY`,1 ◦ bY`,0 ◦ v
(`)
X`

) then G`,1 ← G`,1 + 1
25. If ({G`,0, G`,1} 6= {0, h}) then output “reject” and halt
26. If G`,0 = h then z ← z ◦ wX`

else z ← z ◦ wX`

27. Choose u ∈ D
28. If f(uX ◦ 0X) 6= f((uX + zX) ◦ 0X) then output “reject” and halt.
29.Output “accept”

Figure 1 A two-sided distribution-free adaptive algorithm for ε-testing k-junta.
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Now for every X`, ` ∈ I, let τ(`) ∈ X` be such that f(xX`
◦ v(`)

X`
) ∈ {xτ(`), xτ(`)}. If

τ(`) ∈ Y`,0 then G`,0 = h and then by step 26, zτ(`) = wτ(`) = 0. If τ(`) ∈ Y`,1 then G`,1 = h

and then zτ(`) = wτ(`) = 0. Therefore for every relevant variable xτ(`) in f̂ = f(xX ◦ 0X)
we have zτ(`) = 0 which implies that f(uX ◦ 0X) = f((uX + zX) ◦ 0X) and therefore the
algorithm does not halt in step 28. J

I Lemma 9. If f is k-Junta then the algorithm outputs “accept” with probability at least 2/3
.

Proof. The result follows from Lemma 6 and Lemma 8. J

3.3 The Algorithm for ε-Far Functions
In this subsection, we prove that if f is ε-far from every k-junta then the algorithm rejects
with probability at least 2/3.

The first lemma shows that, w.h.p., f(uX ◦ 0X) is ε/2-close to f .

I Lemma 10. If the algorithm reaches step 13 then t(X) = 2 ln(15k)/ε and |I| ≤ k. If

Pru∈D[f(uX ◦ 0X) 6= f(u)] ≥ ε/2

then the algorithm reaches step 13 with probability at most 1/15.

Proof. The algorithm does not reaches step 13 if and only if it halts in step 10 and then
|I| > k. The size of I is increased by one each time the condition, f(uX ◦ 0X) 6= f(u), in
step 7, is true. Therefore, if the algorithm reaches step 13 then the condition in step 7 was
true at most k times and |I| ≤ k. Then steps 8-11 are executed at most k times. Thus, t() is
updated to 0 at most k times. The loop 5-12 is repeated M times and t() is updated to 0 at
most k times and therefore there is X for which t(X) = M/k = 2 ln(15k)/ε. This implies
that when the algorithm reaches step 13, we have t(X) = 2 ln(15k)/ε.

The probability that the algorithm reaches step 13 with Pru∈D[f(uX ◦ 0X) 6= f(u)] > ε/2
is the probability that for one (of the at most k) X ′, Pru∈D[f(uX′ ◦ 0X′) 6= f(u)] > ε/2 and
t(X ′) = 2 ln(15k)/ε. By the union bound, this probability is less than

k
(

1− ε

2

)2 ln(15k)/ε
= 1

15 . J

In the following lemma we show that, w.h.p, each f(xX`
◦ v(`)

X`
) is close to a literal.

I Lemma 11. Consider steps 13-15. If for some ` ∈ I, f(xX`
◦ v(`)

X`
) is (1/30)-far from

every literal with respect to the uniform distribution then, with probability at least 1− (2/15),
the algorithm rejects.

Proof. If f(xX`
◦v(`)

X`
) is (1/30)-far from every literal with respect to the uniform distribution

then it is either (case 1) (1/30)-far from every 1-Junta (literal or constant) or (case 2)
(1/30)-far from every literal and (1/30)-close to 0-Junta. In case 1, by Lemma 4, with
probability at least 1− (1/15), UniformJunta (f(xX`

◦ v(`)
X`

), 1, 1/30, 1/15) = “reject” and

then the algorithm rejects. In case 2, if f(xX`
◦ v(`)

X`
) is 1/30-close to some 0-Junta then

it is either (1/30)-close to 0 or (1/30)-close to 1. Suppose it is (1/30)-close to 0. Let b
be a random uniform string generated in steps 16. Then b is random uniform and for
g(x) = f(xX`

◦ v(`)
X`

) we have
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Pr[The algorithm does not reject] = Pr
[
g(b) 6= g(b)

]
= Pr[g(b) = 1 ∧ g(b) = 0] + Pr[g(b) = 0 ∧ g(b) = 1]
≤ Pr[g(b) = 1] + Pr[g(b) = 1]

≤ 1
15 .

By the union bound the result follows. J

In the next lemma we prove that, w.h.p, the string z generated in steps 19-26 satisfies
zJ = 0 where x(J) are relevant variables of f(uX ◦ 0X).

I Lemma 12. Consider steps 19-26. If for every ` ∈ I the function f(xX`
◦ v(`)

X`
) is (1/30)-

close to a literal in {xτ(`), x̄τ(`)} with respect to the uniform distribution, where τ(`) ∈ X`,
and {G`,0, G`,1} = {0, h} then, with probability at least 1−k(3/4)h, we have: For every ` ∈ I,
zτ(`) = 0.

Proof. Fix some `. Suppose f(xX`
◦ v(`)

X`
) is (1/30)-close to xτ(`) with respect to the uniform

distribution. The case when it is (1/30)-close to xτ(`) is similar. Since X` = Y`,0 ∪ Y`,1
and Y`,0 ∩ Y`,1 = ∅ we have that τ(`) ∈ Y`,0 or τ(`) ∈ Y`,1, but not both. Suppose
τ(`) ∈ Y`,0. The case where τ(`) ∈ Y`,1 is similar. Define the random variable Z(xX`

) = 1 if
f(xX`

◦ v(`)
X`

) 6= xτ(`) and Z(xX`
) = 0 otherwise. Then

ExX`
∈U [Z(xX`

)] ≤ 1
30 .

Therefore

ExY`,1 ∈UExY`,0 ∈U [Z(xY`,0 ◦ xY`,1)] ≤ 1
30

and by Markov’s bound

PrxY`,1 ∈U

[
ExY`,0 ∈U [Z(xY`,0 ◦ xY`,1)] ≥ 2

15

]
≤ 1

4 .

That is, for a random uniform string b ∈ {0, 1}n, with probability at least 3/4, f(xY`,0 ◦
bY`,1 ◦ v

(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution. Now, given

that f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution the

probability that G`,0 = 0 is the probability that f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) = f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

)
for h random uniform strings b ∈ {0, 1}n. Let b(1), . . . , b(h) be h random uniform strings in
{0, 1}n, V (b) be the event f(bY`,0 ◦ bY`,1 ◦ v

(`)
X`

) = f(bY`,0 ◦ bY`,1 ◦ v
(`)
X`

) and A the event that

f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

) is (2/15)-close to xτ(`) with respect to the uniform distribution. Let

g(xY`,0) = f(xY`,0 ◦ bY`,1 ◦ v
(`)
X`

). Then

Pr[V (b)|A] = Pr[g(bY`,0) = g(bY`,0)|A]
= Pr[(g(bY`,0) = bτ(`) ∧ g(bY`,0) = bτ(`)) ∨

(g(bY`,0) = bτ(`) ∧ g(bY`,0) = bτ(`))|A]
≤ Pr[g(bY`,0) 6= bτ(`) ∨ g(bY`,0) 6= bτ(`))|A]

≤ Pr[g(bY`,0) 6= bτ(`)|A] + Pr[g(bY`,0) 6= bτ(`))|A] ≤ 4
15 .



N.H. Bshouty 2:9

Since τ(`) ∈ Y`,0, we have wτ(`) = 0. Therefore, by step 26 and since τ(`) ∈ X`,

Pr[zτ(`) = 1] = Pr[G`,0 = 0 ∧G`,1 = h]
≤ Pr[G`,0 = 0] = Pr[(∀j ∈ [h])V (b(j))]

= (Pr[V (b)])h ≤
(
Pr[V (b)|A] + Pr[A]

)h ≤ (4/15 + 1/4)h ≤ (3/4)h

Therefore, the probability that zτ(`) = 1 for some ` ∈ I is at most k(3/4)h. J

We now show that w.h.p the algorithm reject if f is ε-far from every k-junta

I Lemma 13. If f is ε-far from every k-junta with respect to D then, with probability at
least 2/3, the algorithm outputs “reject”.

Proof. If the algorithm stops in step 10 then we are done. Therefore we may assume that

|I| ≤ k. (1)

By Lemma 10, if Pru∈D[f(uX ◦ 0X) 6= f(u)] ≥ ε/2 then, with probability at most 1/15, the
algorithm reaches step 13. So we may assume that (failure probability 1/15)

Pru∈D[f(uX ◦ 0X) 6= f(u)] ≤ ε/2. (2)

Since f is ε-far from every k-junta with respect to D and f(xX ◦ 0X) is ε/2-close to f with
respect to D we have f(xX ◦0X) is (ε/2)-far from every k-junta with respect to D. Therefore,
by Lemma 5,

Pr
u∈D,y∈U

[f(uX ◦ 0X) = f(uI ◦ yX\I ◦ 0X)] ≥ 1− ε

2 . (3)

By Lemma 11, if some f(xX`
◦ v(`)

X`
) is (1/30)-far from any literal with respect to the

uniform distribution then, with probability at least 1− (2/15), the algorithm rejects. So we
may assume (failure probability 2/15) that every f(xX`

◦ v(`)
X`

) is (1/30)-close to some xτ(`)

or xτ(`) with respect to the uniform distribution, where τ(`) ∈ X`.
Let z(1), . . . , z(M ′) be the strings generated in step 26. By Lemma 12, with probability

at least 1 −M ′k(3/4)h ≥ 1 − (1/15), every z(i) generated in step 26 satisfies z(i)
τ(`) = 0 for

all ` ∈ I. Also, since the distribution of wX`
and wX`

is uniform, the distribution of z(i)
X\I

and uX\I + z
(i)
X\I is uniform. We now assume (failure probability 1/15) that z(i)

I = 0 for all i.
Therefore, by (3),

Pr
u∈D,z(i)

X\I
∈U

[(∀i)f(uX ◦ 0X) = f((uX + z
(i)
X ) ◦ 0X)]

=

 Pr
u∈D,z(1)

X\I
∈U

[f(uX ◦ 0X) = f((uX + z
(1)
X ) ◦ 0X)]

M ′

=
(

Pr
u∈D,y∈U

[f(uX ◦ 0X) = f(uI ◦ yX\I ◦ 0X)]
)M ′

≤ (1− ε/2)M
′
≤ 1

15 .

Therefore, the failure probability of an output “reject” is at most 1/15+2/15+1/15+1/15 =
1/3. J
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3.4 The Query Complexity of the Algorithm
In this section we show that

I Lemma 14. The query complexity of the algorithm is

Õ

(
k

ε

)
.

Proof. The condition in step 7 requires two queries and is executed at mostM = 2k ln(15k)/ε
times. This is 2M = O((k log k)/ε) queries. Steps 8 is executed at most k + 1 times.
This is because each time it is executed, the value of |I| is increased by one, and when
|I| = k+1 the algorithm rejects. By Lemma 3, to find a new relevant set the algorithm makes
O(log r) = O(log k) queries. This is O(k log k) queries. Steps 14 and 17 are executed |I| ≤ k
times, and by Lemma 4, the total number of queries made is O(1/(1/30) log(15))k+2k = O(k).

The final test in the algorithm is repeated M ′ = (2 ln 15)/ε times (step 18) and each
time, and for each ` ∈ I, (step 20) it repeats h times (step 23) two conditions that takes 2
queries each (step 24). This takes 4M ′kh = O((k/ε) ln(k/ε)) queries. The number of queries
in step 28 is 2M ′ = O(1/ε). Therefore the total number of queries is

O

(
k

ε
ln k
ε

)
. J

4 Open Problems

In this paper we proved that for any ε > 0, there is a two-sided distribution-free adaptive
algorithm for ε-testing k-junta that makes Õ(k/ε) queries. It is also interesting to find a
one-sided distribution-free adaptive algorithm with such query complexity.

Chen et al. [35] proved the lower bound Ω(2k/3) for any non-adaptive (one round)
algorithm. What is the minimal number rounds one needs to get poly(k/ε) query complexity?
Can O(1)-round algorithms solve the problem with poly(k/ε) queries?

In the uniform distribution framework, where the distance between two functions is
measured with respect to the uniform distribution Blais in [5] gave a non-adaptive algorithm
that makes Õ(k3/2)/ε queries and in [6] an adaptive algorithm that makes O(k log k + k/ε)
queries. On the lower bounds side, Sağlam in [43] gave an Ω(k log k) lower bound for
adaptive testing and Chen et al. [17] gave an Ω̃(k3/2)/ε lower bound for the non-adaptive
testing. Thus in both the adaptive and non-adaptive uniform distribution settings, the query
complexity of k-junta testing has now been pinned down to within logarithmic factors. It is
interesting to study O(1)-round algorithms. For example, what is the query complexity for
2-round algorithm.
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Abstract
The 2-to-2 Games Theorem of [16, 10, 11, 17] implies that it is NP-hard to distinguish between
Unique Games instances with assignment satisfying at least ( 1

2 − ε) fraction of the constraints vs.
no assignment satisfying more than ε fraction of the constraints, for every constant ε > 0. We
show that the reduction can be transformed in a non-trivial way to give a stronger guarantee in
the completeness case: For at least ( 1

2 − ε) fraction of the vertices on one side, all the constraints
associated with them in the Unique Games instance can be satisfied.

We use this guarantee to convert the known UG-hardness results to NP-hardness. We show:
1. Tight inapproximability of approximating independent sets in degree d graphs within a factor of

Ω
(

d
log2 d

)
, where d is a constant.

2. NP-hardness of approximate the Maximum Acyclic Subgraph problem within a factor of 2
3 + ε,

improving the previous ratio of 14
15 + ε by Austrin et al. [4].

3. For any predicate P−1(1) ⊆ [q]k supporting a balanced pairwise independent distribution, given
a P -CSP instance with value at least 1

2 − ε, it is NP-hard to satisfy more than |P
−1(1)|
qk

+ ε

fraction of constraints.
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1 Introduction

Unique Games Conjecture (UGC) is a central open problem in computer science. It states
that for a certain constraint satisfaction problem over a large alphabet, called Unique Games
(UG), it is NP-hard to decide whether a given instance has an assignment that satisfies
almost all the constraints or there is no assignment which satisfies even an ε fraction of the
constraints for a very small constant ε > 0.

Since the formulation of the conjecture, it has found interesting connections to tight
hardness of approximation result for many optimization problems [14, 15, 19, 23, 13, 18, 20, 21].
One of the most notable implications is the result of Raghavendra [23] which informally can
be stated as follows: Assuming the NP-hardness of approximating this single CSP (Unique
Games) implies tight hardness for approximating every other constraint satisfaction problem,
stated in terms of integrality gap of certain canonical SDP.

Unique Games Conjecture is inspired by the NP-hardness of approximating a problem
called Label Cover. A Label Cover instance consists of two sets of variables A and B and
a bipartite graph G between them. The variables from A take values from some alphabet
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ΣA and variables from B take values from ΣB. Every edge e in G has a d-to-1 projection
constraint π : ΣA → ΣB.1 For an edge (a, b), a label α to a and a label β to b satisfies
the edge iff π(α) = β where π is a constraint on the edge (a, b). In this language, Unique
Games is a Label Cover instance where all the constraints are 1-to-1. An instance is called
ε-satisfiable if there exists an assignment σ : A ∪ B → ΣA ∪ ΣB, that satisfies at least ε
fraction of the edges in the graph.

A recent series of works [16, 10, 11, 17] implies that for a given Label Cover instance with
2-to-1 projection constraints, it is NP-hard to find an ε-satisfiable assignment even if the
instance is (1−ε)-satisfiable for all ε > 0. This directly implies the following inapproximability
for Unique Games.

I Theorem 1. For every ε > 0, there exists Σ such that for Unique Games instance over Σ,
it is NP-hard to distinguish between the following two cases

Yes Case: The instance is ( 1
2 − ε)-satisfiable.

No Case: No assignment satisfies ε fraction of the constraints.

Although we do not improve upon this theorem in terms of inapproximability gap, we
show a stronger guarantee in the Yes Case. Specifically, we show that in the Yes case, there
are at least 1

2 − ε fraction of vertices on, say, the left side such that all the edges incident
on them are satisfied by some assignment and also the instance is left-regular. This clearly
implies the above theorem. Formally, the main theorem that we prove is (See Definition 7
for a formal definition of Unique Games):

I Theorem 2. For every δ > 0 there exists L ∈ N such that the following holds. Given an
instance G = (A,B,E, [L], {πe}e∈E) of Unique Games, which is regular on the A side, it is
NP-hard to distinguish between the following two cases:

YES case: There exist A′ ⊆ A of size ( 1
2 − δ)|A| and assignment that satisfies all the

edges incident on A.
NO case: Every assignment satisfies at most δ fraction of the edge constraints.

We will denote by val(G) the maximum, over all assignments, fraction of edges satisfied
and sval(G) to be the maximum, over all assignments, fraction of vertices in A such that all
its edges are satisfied. Thus, the above theorem says that for every δ there exists a label set
[L] such that it is NP-hard to distinguish between the cases sval(G) > 1

2 − δ and val(G) 6 δ.

1.1 (1
2 − ε)-satisfiable UG vs. (1− ε)-satisfiable UG

Let ε > 0 be a very small constant. In the (1 − ε)-satisfiable Unique Games instance, by
simple averaging argument it follows that for any satisfying assignment σ : A ∪ B → [L],
there exists A′ ⊆ A, |A′| > (1−

√
ε)|A| such that for all v ∈ A′, at least (1−

√
ε) fraction of

edges of v are satisfied. Having such a large A′ is crucial in many UG-reductions. For eg.
a typical k-query inner verifier samples v ∈ A and k neighbors of u1, u2, . . . , uk of v u.a.r.
Thus, with probability at least (1−

√
ε)(1− k

√
ε) ≈ 1 all the edges (u, vi) are satisfied by

any (1− ε) satisfying assignment σ.
In contrast to this, if we take 1

2 -satisfiable UG then the probability that all the edges
(v, ui) are satisfied is at most 1

2k in the worst case. Therefore, in converting the known
UG-hardness result to NP-hardness result using the NP-hardness of Unique Games with gap
( 1

2 − ε, ε), it is not always the case that we lose ‘only half ’ in the completeness case.

1 A constraint π : ΣA → ΣB is called a d-to-1 projection constraint, if every β ∈ ΣB has exactly d
pre-images.



A. Bhangale and S. Khot 3:3

Another important property of the Unique Games instance which was used in many
reductions is that in the completeness case, there are 0.99 fraction of vertices on one side such
that all the edges attached to them are satisfied i.e sval(G) > 1− δ instead of val(G) > 1− δ.
For eg., this property was crucial in the hardness of approximating independent sets in
bounded degree graphs [3] and in many other reductions [7, 8].

As shown in [19], having completeness val(G) > 1− δ for all sufficiently small δ > 0 is
equivalent to having completeness sval(G) > 1− δ′ for all sufficiently small δ′ > 0. It was
crucial in the reduction that the val(G) is arbitrarily close to one for the equivalence to hold.
We do not know a black-box way of showing the equivalence of val(G) = c and sval(G) = c for
any c < 1. Thus, in order to prove Theorem 2, with a stronger completeness guarantee, we
crucially exploit the structure of the game given by the known proofs of the 2-to-2 theorems.

1.2 Implications
Using Theorem 2, we show the following hardness results by going over the known reductions
based on the Unique Games Conjecture.

Independent sets in degree d graphs

The first application is approximating maximum sized independent set in a degree d graph,
where d is a large constant.

I Theorem 3. It is NP-hard (under randomized reductions) to approximate independent sets
in a degree d graph within a factor of O

(
d

log2 d

)
, where d is constant.

This improves the NP-hardness of approximation within a factor O
(

d
log4 d

)
, as shown in

Chan [9] as well as shows the tightness of the randomized polynomial time approximation
algorithm given by Bansal et al. [6].

Max-Acyclic Subgraph

Given a directed graph G(V,E), the Max-Acyclic Subgraph problem is to determine the
maximum fraction of edges E′ ⊆ E such that removal of E \ E′ makes the graph acyclic
(removes all the cycles). We can always make a graph acyclic by removing at most 1

2 fraction
of the edges and hence it gives a trivial 1

2 -approximation algorithm. Guruswami et al. [13]
showed this is tight by showing that assuming the Unique Games Conjecture, it is NP-hard
to approximate Max-Acyclic Subgraph within a factor of 1

2 + ε for all ε > 0. In terms of
NP-hardness, Austrin et al. [4] showed NP-hardness of approximating Max-Acyclic Subgraph
within a ratio of 14

15 + ε, improving upon the previous bound of 65
66 + ε by Newman [22]. Our

next theorem shows an improved inapproximability of 2
3 + ε. One interesting feature of the

hard instance is that it is hard to perform better than the trivial 1
2 -approximation on the

instance.

I Theorem 4. For all ε > 0, given a directed graph G(V,E), it is NP-hard to approximate
Max-Acyclic Subgraph problem within a factor of 2

3 + ε for all ε > 0.

We note that Theorem 1 along with the reduction from [13] imply NP-hardness of Max-
Acyclic Subgraph problem within a factor of 4

5 + ε (See Remark 35 for a proof sketch).
Therefore, Theorem 4 improves upon this bound too.

CCC 2019
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Select a `− 1 dimensional subspace L′ u.a.r.
Select a ` dimensional subspace L containing L′ u.a.r.
Check if f(L)|L′ = h(L′).

Figure 1 2-to-1 Test T1.

Predicates supporting balanced pairwise independent distributions

The next result is approximating Max-k-CSP(P) for a predicate P : [q]k → {0, 1} where
P−1(1) supports a balanced pairwise independent distribution. In [5], it was shown that
assuming UGC, given a (1− ε)-satisfiable instance of Max-k-CSP(P), it is hard to find an
assignment that satisfies more than |P

−1(1)|
qk

+ ε fraction of the constraints for any constant
ε > 0. Note that a random assignment satisfies |P

−1(1)|
qk

fraction of the constraints in
expectation and the theorem says that doing better than this even for almost satisfiable
instance is UG-hard. If we instead use Theorem 2 as a starting point of the reduction, we
get the following NP-hardness result.

I Theorem 5. If a predicate P : [q]k → {0, 1} supports a balanced pairwise independent
distribution, then it is NP-hard to find a solution with value P−1(1)

qk
+ ε if a given P -CSP

instance is 1
2 − ε satisfiable, for every ε > 0.

Theorem 2 implies many more NP-hardness results in a straightforward way by going
over the known reductions based on UGC, but we shall restrict ourselves to proving only the
above three theorems. We only state the following important implication which follows from
the result of Raghavendra [23] and our main theorem. We refer to [23] for the definition of
(c, s) SDP integrality gap of a P -CSP instance.

I Theorem 6 (Informal). For all ε > 0, if a P -CSP has (c, s) SDP integrality gap instance,
then it is NP-hard to distinguish between ( c2 − ε)-satisfiable instances from at most (s+ ε)-
satisfiable instances.

The reduction actually gives a stronger result; Instead of completeness ( c2 − ε) one can
get ( c2 + r

2 − ε) where r = |P−1(1)|
qk

for a predicate P : [q]k → {0, 1}.

2 Overview

In this section, we give an overview of the proof of Theorem 2. The main idea which goes in
proving Theorem 2 is very simple and we elaborate it next.

Let V = Fn2 and
[
V
`

]
denotes the set of all ` dimensional subspaces of V . Consider the

following Grassmann 2-to-1 test T1 for functions f :
[
V
`

]
→ F`2 and h :

[
V
`−1
]
→ F`−1

2 , where
for a subspace L (L′), f(L) (h(L′)) represents a linear function on the subspace, by fixing an
arbitrarily chosen basis of L (L′).

From the test it is clear that for every pair (L,L′) such that L′ ⊆ L, for every linear
function β on L′, there are linear functions α1, α2 on L such that the test passes for any pair
(αi, β). This gives the 2-to-1 type constraints.

One way to convert a 2-to-1 test to a unique test is by choosing a random i ∈ {1, 2} for
every pair (L,L′) such that L′ ⊆ L and for every linear function β on L′, and adding the
accepting pair (αi, β) where {(α1, α2), β} are the original accepting assignments. This does
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Select a `− 1 dimensional subspace L′ u.a.r.
Select a ` dimensional subspace L containing L′ u.a.r. and x ∈ L \ L′ u.a.r.
Check if f(L, x)|L′ = h(L′).

Figure 2 Unique Test T2.

give a unique test and if f and h are restrictions of a global linear function to the subspaces,
then with high probability the test passes with probability ≈ 1

2 . One drawback of this test is
that, if we consider a bipartite graph on

[
V
`

]
×
[
V
`−1
]
where two subspaces L,L′ are connected

iff L′ ⊆ L, then for any global linear function we can only argue that half the edges are
satisfied in the sense of the unique test. Note that the uniform distribution on the edges of
this bipartite graph is the same as the test distribution T1. Hence, the similar guarantee of
satisfying around half the edges stays in the final Unique Games instance created from the
works of [16, 10, 11, 17] and hence falls short of proving Theorem 2.

Now we convert it into a Unique Test T2 with a guarantee that for around 1
2 fraction

of the vertices, all the edges incident on them are satisfied if the assignments f and h are
restrictions of a global linear function. Towards this, we modify the domain of f . We consider
two functions f :

[
V
`

]
× 2[`] → F`2 and h :

[
V
`−1
]
→ F`−1

2 . We fix an arbitrary one-to-one
correspondence between the elements of ` dimension subspace and 2[`]. Thus, we can now
interpret f as defined on tuples (L, x) where x ∈ L. We consider the assignments f(L, x) and
h(L′) as linear functions on spaces L and L′ respectively. Consider the following bipartite
graph (

[
V
`

]
× 2[`],

[
V
`−1
]
, E) where (L, x) is connected to L′ iff x /∈ L′ and L′ ⊆ L. The test

distribution which we will define next will be uniform on the edges of this graph.
We now put permutation constraint on the edges of the graph. For each vertex (L, x)

we select bL,x ∈ {0, 1} u.a.r. For an edge e ∈ E between (L, x) and L′ we set the following
unique constraint: Extend the linear function given by h on L′ to a linear function h̃ on
span{L′, x} by setting h̃(x) = bL,x. The accepting labels for an edge e are f(L, x) and h(L′)
such that h̃(span{L′, x})|L′ and f(L, x)|L′ are identical. Note that once bL,x is chosen, for
every label f(L, x) there is a unique label to its neighbor L′ which satisfies the constraint
and also vice-versa.

Suppose (f, h) are restrictions of a fixed global linear function g : V → F2 to the respective
subspaces. In this case, if bL,x ∈ {0, 1} is such that g(x) = bL,x, then the assignments (f, h)
satisfy all the edges incident on (L, x). This is because for any edge between (L, x) and
L′, we have h̃(span{L′, x})|L′ = f(L, x)|L′ = g|L′ . Since the event g(x) = bL,x happens
with probability 1

2 , we get that with high probability for at least ( 1
2 − ε) fraction of the

vertices on the left, all the edges incident on it are satisfied by the assignment (f, h) for any
constant ε > 0.

3 Preliminaries

We start by defining the Unique Games.

I Definition 7 (Unique Games). An instance G = (A,B,E, [L], {πe}e∈E) of the Unique
Games constraint satisfaction problem consists of a bipartite graph (A,B,E), a set of
alphabets [L] and a permutation map πe : [L]→ [L] for every edge e ∈ E. Given a labeling
` : A ∪B → [L] , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of
the edges.

CCC 2019
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We will define the following two quantities related to the satisfiability of the Unique Games
instance.

val(G) := max
σ:A∪B→[L]

{fraction of edges in G satisifed by σ} .

sval(G) := max
σ:A∪B→[L]

{
|A′|
|A|
| ∀e(u, v) s.t. u ∈ A, e is satisfied by σ

}
.

The following is a conjecture by Khot [14] which has been used to prove many tight
inapproximability results.

I Conjecture 8 (Unique Games Conjecture [14]). For every sufficiently small δ > 0 there
exists L ∈ N such that given a an instance G = (A,B,E, [L], {πe}e∈E) of Unique Games it
is NP-hard to distinguish between the following two cases:

YES case: val(G) > 1− δ.
NO case: val(G) 6 δ.

For a linear subspace L ⊆ Fn2 , the dimension of L is denoted by dim(L). For two subspaces
L1, L2 ⊆ Fn2 , we will use span(L1, L2) to denote the subspace {x1 + x2 | x1 ∈ L1, x2 ∈
L2}. We will sometimes abuse the notation and write span(x, L),where x ∈ Fn2 , to denote
span({0, x}, L). For subspaces L1, L2 such that L1∩L2 = {0}, define L1⊕L2 := span(L1, L2).

For 0 < ` < n, let Gr(Fn2 , `) be the set of all ` dimensional subspaces of Fn2 . Similarly,
for a subspace L of Fn2 such that dim(L) > `, let Gr(L, `) be the set of all ` dimensional
subspaces of Fn2 contained in L.

4 The Reduction

In this section, we go over the reduction in [11] from a gap 3LIN instance to a 2-to-1 Label
Cover instance and then show how to reduce it to a Unique Games instance in Section 4.4.
We retain most of the notations from [11].

4.1 Outer Game
The starting point of the reduction is the following problem:

I Definition 9 (Reg-3Lin). The instance (X,Eq) of Reg-3Lin consists if variables X =
{x1, x2, . . . , xn} taking values in F2 and F2 linear constraints e1, e2, . . . , em, where each ei
is a linear constraint on 3 variables. The instance is regular in the following ways: every
equation consists of 3 distinct variables, every variable xi appears in exactly 5 constraints
and every two distinct constraints share at most one variable.

An instance (X,Eq) is said to be t-satisfiable if there exists an assignment to X which
satisfies t fraction of the constraints. We have the following theorem implied by the PCP
theorem of [1, 2, 12].

I Theorem 10. There exists an absolute constant s < 1 such that for every constant ε > 0
it is NP-hard to distinguish between the cases when the instance is at least (1− ε) satisfiable
vs. at most s satisfiable.

We now define an outer 2-prover 1-round game, parameterized by k, q ∈ Z+ and β ∈ (0, 1),
which will be the starting point of our reduction. The verifier selects k constraints e1, e2, . . . , ek
from the instance (X,Eq) uniformly at random with repetition. If ei and ej share a variable
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for some i 6= j then accept. otherwise, Let xi,1, xi,2, xi,3 be the variables in constraint ei.
Let X1 = ∪ki=1{xi,1, xi,2, xi,3}. The verifier then selects a subset X2 of X1 as follows: for
each i ∈ [k], with probability (1− β) add xi,1, xi,2, xi,3 to X2 and with probability β, select
a variable from {xi,1, xi,2, xi,3} uniformly at random and add it to X2.

On top of this, the verifier selects q pair of advice strings (sj , s∗j ) where sj ∈ {0, 1}X2 ,

and s∗j ∈ {0, 1}X1 for 1 ≤ j ≤ q as follows : For each j ∈ [q], select sj ∈ {0, 1}X2 uniformly
at random. The string sj can be though as assigning bits to each of the variables from X2.
The string s∗j ∈ {0, 1}3k is deterministically selected such that its projection on X2 is same
as sj and the rest of the coordinates are filled with 0.

The verifier sends (X1, s
∗
1, s
∗
2, . . . , s

∗
q) to prover 1 and (X2, s1, s2, . . . , sq) to prover 2. The

verifier expects an assignment to variables in Xi from prover i. The verifier accepts if and
only if the assignment to X1 given by prover 1 satisfies all the equations e1, e2, . . . , ek and
the assignment X2 given by prover 2 is consistent with the answer of prover 1.

Completeness: It is easy to see the completeness case. If the instance (X,Eq) is (1 − ε)
satisfiable then there is a provers’ strategy which makes the verifier accepts with probability
at least (1− kε). The strategy is to use a fixed (1− ε)-satisfiable assignment and answer
according to it. In this case, with probability at least (1 − kε), the verifier chooses k
constraints which are all satisfied by the fixed assignment and hence the verifier will
accept provers’ answers.

Soundness: Consider the case when the instance (X,Eq) is at most s-satisfiable for s < 1
from Theorem 10. If the provers were given only X1 and X2 without the advice strings,
then the parallel repetition theorem of Raz [24] directly implies that for any provers’
strategy, they can make the verifier accept with probability at most 2−Ω(βk). It turns
out that a few advice strings will not give provers any significant advantage. This is
formalized in the following theorem.

I Theorem 11 ([16]). If the Reg-3Lin instance (X,Eq) is at most s < 1 (from Theorem 10)
satisfiable then there is no strategy with which the provers can make the verifier accept with
probability greater than 2−Ω(βk/2q).

I Remark 12. The importance of advice strings will come later in the proof of soundness.
Specifically, the proof of Theorem 23 (from [11] which we use as a black-box) crucially uses
the advice strings given to the provers.

To prove our main theorem, the reduction is carried out in three steps:

Outer Game
↓ [11]

Gunfolded(A,B,E,Π,ΣA,ΣB) (unfolded 2-to-1 Game)
↓ [11]

Gfolded(Ã, B, Ẽ, Π̃,ΣA,ΣB) (folded 2-to-1 Game)
↓ (This work)

UGfolded(Â, B, Ê, Π̂,Σ) (Unique Game)

The first two steps are explained in the next two subsections. These follow from [11]. The
main contribution of our work is the last step which is given in Section 4.4.
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4.2 Unfolded 2-to-1 Game
In this section we reduce Reg-3Lin to an instance of 2-to-1 Label cover instance Gunfolded =
(A,B,E,Π,ΣA,ΣB).

A set of k equations (e1, e2, . . . , ek) is legitimate if the support of equations are pairwise
disjoint and for every two different equations ei and ej and for any x ∈ ei and y ∈ ej , the
pair {x, y} does not appear in any equation in (X,Eq). Let U be the set of all legitimate
tuples of k equations. For U ∈ U , Let XU ⊆ Fn2 be the subspace with support in U ⊆ [n].
For an equation e = (i, j, k) ∈ U , let xe be a vector in XU where xi = xj = xk = 1 and rest
of the coordinates are 0. Denote by be ∈ F2 the RHS of the equation e. Let HU be the span
of {xe : e ∈ U}. Finally, Let V be the collection of all sets of variables upto size 3k..

Vertices (A, B)

Let `� k which we will set later. The vertex set of the game Gunfolded is defined as follows:

A = {(U,L) | U ∈ U , L ∈ Gr(XU , `), L ∩HU = {0}}.

B = {(V,L′) | V ∈ V, L′ ∈ Gr(XV , `− 1)}.

Edges E

The distribution on edges are defined by the following process: Choose X1 and X2 as per
the distribution given in the outer verifier conditioned on X1 ∈ U . Let U = X1 and V = X2.
Choose a random subspace L′ ∈ Gr(XV , ` − 1) and a random L ∈ Gr(XU , `) such that
L′ ⊆ L. Output {(U,L), (V,L′)} ∈ (A,B).

Labels (ΣA, ΣB)

The label set ΣA = F`2 and the label set ΣB = F`−1
2 . A labeling σ ∈ ΣA to (U,L) can be

thought of as a linear function σ : L→ F2. Similarly the label σ′ ∈ ΣB to a vertex (V,L′) is
though of as a linear function σ′ : L′ → F2. This can be done by fixing arbitrary basis of the
respective spaces.

4.3 Folded 2-to-1 Game
For every assignment to the 3LIN instance, there are many vertices in the graph Gunfolded

which get the same label according to strategy of labeling the vertices in Gunfolded with
respect to the assignment. So we might as well enforce this constraint on the variables in
Gunfolded. This is acheived by folding. In this section, we convert Gunfolded to the following
Game Gfolded = (Ã, B, Ẽ, Π̃,ΣA,ΣB).

Vertices (Ã, B)

Consider the following grouping of the vertices from A

C(U0, L0) = {(U,L) ∈ A | L0 ⊕HU ⊕HU0 = L⊕HU ⊕HU0}.

The following Lemma 13 says that C is indeed an equivalence class. We define the vertex
set Ã as follows:

Ã = {C(U,L) | (U,L) ∈ A}.
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In other words, there is a vertex for every equivalence class in Ã.

I Lemma 13 ([11]). C is an equivalence class: there exists a ` dimension subspace RC such
that for all (U,L) ∈ C,

HU ⊕ L = RC ⊕HU .

Edges Ẽ

Sample (U,L) (V,L′) with respect to E. Output C(U,L) , (V,L′).

Labels (ΣA, ΣB)

The label set ΣA = F`2, a label σ to C can be thought of as a linear function σ : RC → F2. As
before, the label σ′ ∈ ΣB to a vertex (V,L′) is though of as a linear function σ′ : L′ → F2.

In order to define the constraints on the edges, we need the following definitions:

I Definition 14. For a space HU ⊕ L such that L ∩ HU = {0} and a linear function
σ : L→ F2, the extension of σ, respecting side conditions, to the whole space HU ⊕ L is a
linear function β : HU ⊕ L→ F2 such that for all e ∈ U , β(xe) = be and β|L = σ.

Note that there is one to one mapping from a linear function on L and its extension as all
the equations in U are disjoint and hence {xe | e ∈ U} form a basis of the space HU .

I Definition 15. Consider a label σ to a vertex C which is a linear function on RC. The
unfolding of it to the elements of the C is given as follows: For (U,L) ∈ C, define a linear
function σ̃U : HU ⊕L→ F2 such that it is equal to the extension of σ to HU ⊕RC respecting
side conditions.

The spaces HU ⊕ L and HU ⊕RC are the same and hence the above definition makes sense.
We are now ready to define the constraints.

Constraints Π̃

Consider linear functions σ : RC → F2 and σ′ : L′ → F2. A pair (σ, σ′) satisfies the
edge (C, (V,L′)) ∈ Ẽ, if for every (U,L) ∈ C such that ((U,L), (V,L′)) ∈ E, the unfolding
σ̃U |L′ = σ′.

We have the following completeness and soundness guarantee of the reduction from [11].

I Lemma 16 (Completeness). If the Reg-3Lin instance (X,Eq) is (1− ε) satisfiable then
there exists Ã′ ⊆ Ã, |Ã′| > (1 − kε)|Ã| and a labeling to the 2-to-1 Label Cover instance
Gfolded such that all the edges incident on Ã′ are satisfied.

I Lemma 17 (Soundness). For all δ > 0, there exists q, k ≥ 1 and β ∈ (0, 1), such that if
the Reg-3Lin instance (X,Eq) is at most s satisfiable (where s is from Theorem 10) then
every labeling to Gfolded satisfies at most δ fraction of the edges.

4.4 Reduction to Unique Games
In this section, we convert Gfolded Label Cover instance to a Unique Games instance
with the stronger completeness guarantee that we are after. We will reduce an instance
Gfolded = (Ã, B, Ẽ, Π̃,ΣA,ΣB) to an instance of Unique Game UGfolded = (Â, B, Ê, Π̂,Σ).
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Vertices (Â, B)

We will split each vertex C ∈ Ã into many copies. Fix an ` dimensional subspace RC given
by Lemma 13. For every x ∈ RC and b ∈ {0, 1} we add a copy Cx,b to Â.

Â =
⋃
C∈Ã

{Cx,b | x ∈ RC , b ∈ {0, 1}}.

Edges Ê

The distribution on the edge set Ê is as follows: We first pick ((U,L), (V,L′)) according
to the distribution E. Let (U,L) ∈ C. We then select y ∈ (HU ⊕ L) \ (HU ⊕ L′) and
b ∈ {0, 1} uniformly at random. Note that dim(span{y,HU} ∩ RC) = 1 since y /∈ HU . Let
x ∈ span{y,HU} ∩RC be the non-zero vector. Output (Cx,b, (V,L′)).

B Claim 18. x is distributed uniformly in RC \ (HU ⊕ L′) conditioned on (U, V, L, L′).

Proof. We first claim that x ∈ RC \ (HU ⊕ L′) by showing x /∈ HU ⊕ L′. Suppose not, then
we can write x = h + x′ where h ∈ HU and x′ ∈ L′. We also know that x ∈ span{y,HU}
and thus x can be written as x = h̃+ y where h̃ ∈ HU . This implies h+ x′ = h̃+ y. In other
words, y = h+ h̃+ x′ ∈ HU ⊕ L′, a contradiction.

Since each y ∈ (HU ⊕ L) \ (HU ⊕ L′) gives an unique non-zero x ∈ span{y,HU} ∩ RC,
we will show that the number of y ∈ (HU ⊕ L) \ (HU ⊕ L′) which gives a fixed x is same for
all x ∈ RC \ (HU ⊕ L′) and this will prove the claim.

Fix any x̃ ∈ RC \ (HU ⊕ L′). We now claim that the set of all y ∈ (HU ⊕ L) \ (HU ⊕ L′)
that gives x̃ is span{x̃, HU} \HU . Clearly, for any y /∈ span{x̃, HU} \HU , x̃ /∈ span{y,HU}
and also for every y ∈ span{x̃, HU} \HU , x̃ ∈ span{y,HU}. Thus, it remains to show that
span{x,HU} \HU ⊆ (HU ⊕ L) \ (HU ⊕ L′) for all x ∈ RC \ (HU ⊕ L′).

To prove the inclusion, suppose for contradiction span{x,HU} ∩ (HU ⊕ L′) 6= ∅. This
means x+h = h̃+ v′ for some h, h̃ ∈ HU and v′ ∈ L′. This implies x = h+ h̃+ v′ ∈ HU ⊕L′
contradicting x ∈ RC \ (HU ⊕ L′). C

Labels Σ

The label set Σ = F`−1
2 , a label σ to Cx,b can be thought of as a linear function σ : RC → F2

such that σ(x) = b. It is easy to see that there is a one-to-one correspondence between a
label σ and a linear function σ̃ on RC . Similar to the previous case of Gfolded, a label from
Σ(= ΣB) to a vertex (V,L′) in B is interpreted as a linear function σ′ : L′ → F2.

We define an analogous unfolding of label to vertices in Â to the elements of the
corresponding equivalence class. Since the label sets are different, for a label σ to Cx,b
(thought of as a linear function on RC respecting σ(x) = b) we use the notation σ̂U to denote
its unfolding to (U,L) ∈ Cx,b .

1-to-1 Constraints Π̂

Finally the constraint πe : Σ→ Σ between the endpoints of an edge e = (Cx,b, (V,L′)) is given
as follows: Consider linear functions σ : RC → F2 respecting σ(x) = b and σ′ : L′ → F2. A pair
(σ, σ′) ∈ πe if for every (U,L) ∈ C such that ((U,L), (V,L′)) ∈ E and span{x,HU}∩L′ = {0},
the unfolding σ̃U satisfies σ̃U |L′ = σ′.

To see that every σ′ has a unique preimage, for any linear function σ′ : L′ → F2, there
is a unique linear function σ : RC → F2 such that σ(x) = b satisfying the above conditions.
This is because of the following claim.
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B Claim 19. Any basis for L′ along with x and {xe : e ∈ U} form a basis for HU ⊕RC for
every (U,L) ∈ C.

Proof. Let us unwrap the conditions for putting an edge between (V,L′) and Cx,b. One
necessary condition is that (C, (V,L′)) should be an edge in Ẽ. By the definition of Ẽ, there
exists (U,L) ∈ C such that L′ ⊆ L. Recall, x is such that there exists y ∈ (HU⊕L)\(HU⊕L′)
such that dim(span{y,HU} ∩RC) = 1 and x ∈ span(y,HU )∩RC . Therefore x ∈ (HU ⊕L) \
(HU ⊕ L′) and hence dim(span{x,HU ⊕ L′}) = k + ` (as HU ∩ L′ = {0}). This implies that
any basis of L′, basis {xe : e ∈ U} of HU and x span HU ⊕ L. Since by Lemma 13 the space
HU ⊕ L is same as the space HU ⊕RC , the claim follows. C

We now show the completeness and soundness of the Unique Games instance:

I Theorem 20 ([11]). If the Reg-3Lin instance is (1 − ε)-satisfiable, then there exists
Ã′ ⊆ Ã, |Ã′| > (1 − kε)|Ã| and a labeling to the 2-to-1 Label Cover instance Gfolded such
that all the edges incident on Ã′ are satisfied.

I Lemma 21 (Completeness). For all ε > 0, if there exists Ã′ ⊆ Ã, |Ã′| > (1− kε)|Ã| and a
labeling to the 2-to-1 Label Cover instance Gfolded such that all the edges incident on Ã′ are
satisfied then there exists Â′ ⊆ Â, |Â′| > ( 1−kε

2 )|Â| and a labeling to Unique Games instance
UGfolded such that all the edges incident on Â′ are satisfied.

Proof. Fix a labeling (Ã, B̃) to Gfolded where Ã : Ã→ ΣA and B̃ : B → ΣB which satisfies
all the edges incident on (1− kε) fraction of the vertices in Ã. We will construct a labeling
(Â, B̂) to the instance UGfolded, where Â : Â→ Σ and B̂ : B → Σ which will satisfy all the
edges adjacent to at least (1−kε)

2 fraction of vertices Â in UGfolded.
We will set B̂ = B̃. Now to assign a label to Cx,b ∈ Â, we look at the labeling

σ := Ã(C) ∈ F`2 as a linear function σ : RC → F2. If σ(x) = b, we set Â(Cx,b) to be
the same linear function σ : RC → F2 respecting σ(x) = b. Otherwise, we set Â(Cx,b) =⊥. It
is obvious that exactly half the vertices in Â got assigned a label in Σ.

B Claim 22. If the label Ã(C) to C satisfies all the edges incident on it, then the label Â(Cx,b)
satisfies all the edges incident on Cx,b, unless Â(Cx,b) =⊥.

Proof. For convenience let σ = Ã(C). If we let Γ(C) ⊆ B to be the neighbors of C in Gfolded,
then the set of neighbors of Cx,b is a subset of Γ(C). Furthermore if (V,L′) is connected
to Cx,b in UGfolded then x /∈ L′ and x ∈ RC. The condition that the edge (C, (V,L′)) is
satisfied by Ã means that for all (U,L) ∈ C such that L′ ⊆ L, the unfolding of σ satisfies
σ̃U |L′ = B̃((V,L′)). Since the unfolding of the label Â(Cx,b) to Cx,b gives the same linear
function σ̃, it follows that σ̃U |L′ = B̂((V,L′)) for every (U,L) ∈ C and every (V,L′) ∈ Γ(C)
such that L′ ⊆ L. Therefore Â satisfies all the edges incident on Cx,b. C

Let Ã′ ⊆ Ã be the set of vertices such that all the edges incident on them are satisfied by
labeling (Ã, B̃). By assumption |Ã′| > (1− kε)|Ã|. Consider the subset Â′ ⊆ Â

Â′ = {Cx,b | Â(Cx,b) 6=⊥, C ∈ Ã′}.

Now, |Â′| > 1−kε
2 |Â| and from the above claim, all the edges incident on Â′ are satisfied by

the labeling (Â, B̂). J
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4.5 Soundness
Define agreement(FU ) for FU : {L⊕HU : L ∈ Gr(XU , `), L∩HU = {0}} → F`+3k

2 , respecting
side conditions, as the probability of the following event:

Select a `− 1 dimension subspace L′ ∈ XU u.a.r.
Select a ` dimension subspaces L1 and L2 containing L′ u.a.r.
Check if FU [L1 ⊕HU ]|L′ = FU [L1 ⊕HU ]|L′ .

The main technical theorem which was conjectured in [11] and proved in [17] is that if
agreement(FU ) is a constant bounded away from 0, then there is a global linear function
g : XU → {0, 1} respecting the side conditions and a special (not too small) subset S of
{L⊕HU : L ∈ Gr(XU , `), L ∩HU = {0}} such that for a constant fraction of elements in S,
FU agrees with g. We will not need the details of this theorem. Instead, we state the main
soundness lemma from [11] which crucially used the aforementioned structural theorem and
also the advice strings as mentioned in Remark 12.

I Theorem 23 ([11]). For every constant δ > 0, there exist large enough `� k, q ∈ Z+ and
β ∈ (0, 1) such that if there is an unfolded assignment A : A → ΣA to Gunfolded such that
for at least δ fraction of U , agreement(FU ) > δ, then there exists a provers’ strategy which
makes the outer verifier accepts with probability at least pδ, where pδ is independent of k.

Armed with this theorem, we are ready to prove the soundness of the Unique Games
instance UGfolded.

I Lemma 24 (Soundness). Let δ > 0 and fix q ∈ Z+ and β ∈ (0, 1) and ` � k as in
Theorem 23. If UGfolded is δ satisfiable then there exists a provers strategy which makes the
outer verifier accepts with probability at least p δ4

216
.

Proof. Fix any δ-satisfiable assignment (Â, B̂), Â : Â→ Σ, B̂ : B̂ → Σ to the Unique Games
instance UGfolded. We first get a randomized labeling (Ã, B̃) to Gfolded where Ã : Ã→ ΣA
and B̃ : B → ΣB as follows: We will keep B̃ = B̂. For every C ∈ Ã, we pick a random x ∈ RC
and b ∈ {0, 1} and set Ã(C) = Â(Cx,b). We now unfold the assignment Ã to A. Define
FU [L] = A(U,L) for every L ∈ Gr(XU , `).

Let p(U) denote the probability that an edge in UGfolded is satisfied conditioned on U .
Consider U such that p(U) > δ

2 . By an averaging argument, there are at least δ
2 fraction of

U such that p(U) > δ
2 .

B Claim 25. EFU [agreement(FU )] > p(U)4

211 − ok(1).

Proof. Define a randomized assignment F ′U [L′] as follows: Select a random V ⊆ U conditioned
on the event that L′ ⊆ XV . Set F ′U [L′] = B̂(V,L′).

Consider the following two distributions:
Distribution DU :

Select V u.a.r from {V | (U, V ) ∈ E}
Select L′ u.a.r from Gr(XV , `− 1)
Select L u.a.r. from {L | L ∈ Gr(XU , `) and L′ ⊆ L}
Let C be the equivalence class such that (U,L) ∈ C, select x ∼ RC as in the edge
distribution Ê.
Select b ∈ {0, 1} u.a.r.
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Distribution D′
U :

Select L′ u.a.r from Gr(XU , `− 1)
Select V u.a.r from {V | (U, V ) ∈ E and L′ ∈ Gr(XV , `− 1)}
Select L u.a.r. from {L | L ∈ Gr(XU , `) and L′ ⊆ L}
Let C be the equivalence class such that (U,L) ∈ C, select x ∼ RC as in the edge
distribution Ê.
Select b ∈ {0, 1} u.a.r.

We have the following lemma from [11].

I Lemma 26 ([11]). Consider the two marginal distributions on the pair (V,L′), one w.r.t DU
and another w.r.t D′U . If 2`β ≤ 1

4 , then the statistical distance between the two distributions
is at most β

√
k · 2`+3.

In the distribution DU , there is always constraint between Cx,b and (V,L′) in UGfolded.
Moreover, the distribution of (Cx,b, (V,L′)) is same as the edge distribution Ê. Therefore

p(U) = Pr
DU

[
Â(Cx,b), B̂(V,L′) satisfy the edge (Cx,b, (V,L′))

]
.

Rewriting the above equality,

p(U) = Pr
DU

[
σ̂U |L′ = B̂(V,L′) | σ = Â(Cx,b)

]
.

Using Claim 18, the distribution of FU [L], conditioned on x ∈ RC \ (HU ⊕ L′), is same as
the distribution Â(Cx,b) (with appropriate unfolding of it) chosen with respect to DU . As
|RC \ (HU ⊕L′)| = |RC |/2 for a random x ∈ RC , the event x ∈ RC \ (HU ⊕L′) happens with
probability 1

2 . Since we pick an uniformly random x ∈ RC while defining Ã(C), which in turn
defines FU [L], we have

p(U)
2 6 E

FU
Pr
DU

[
FU [L]|L′ = B̂(V,L′)

]
,

Now,

Pr
DU

[
FU [L]|L′ = B̂(V,L′)

]
≈ Pr
D′
U

[
FU [L]|L′ = B̂(V,L′)

]
.

follows from the closeness of distributions DU and D′U on (V,L′) given by Lemma 26 by setting
β � 1√

k
(this setting of β is consistent with the setting of β in Theorem 23). Conditioned

on L′ the distribution of (V,L′) in D′U is same as the distribution we used to assign F ′U [L′]
and therefore we get

p(U)
2 − ok(1) 6 E

FU
Pr
L′⊆L

[FU [L]|L′ = F ′U [L′]] .

Let E1 be the event that p(U)
4 6 PrL′⊆L [FU [L]|L′ = F ′U [L′]], by averaging argument Pr[E1] >

P (U)
4 . We now fix an FU for which E1 occurs. By an averaging argument, there are at least

p(U)
8 fraction of L′ ∈ Gr(XU , `− 1) such that PrL⊇L′ [FU [L]|L′ = F ′U [L′]] > p(U)

8 . For each
of such L′ we have,

Pr
L1,L2⊇L′

[FU [L1] = FU [L2]] = Pr
L1,L2⊇L′

[FU [L1]|L′ = FU [L2]|L′ = F ′U [L′]] > p(U)2

26 − ok(1).
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Thus overall, we get

Pr
L1,L2⊇L′

[FU [L1] = FU [L2] | E1] > p(U)3

29 − ok(1).

Hence,

E
FU

[agreement(FU )] > Pr[E1] · Pr
L1,L2⊇L′

[FU [L1] = FU [L2] | E1] > p(U)4

211 − ok(1). J

There are at least δ
2 fraction of U such that p(U) > δ

2 . This means for at least δ
2 fraction of

U , E[agreement(FU )] > δ4

215 − ok(1) using the previous claim. Thus, again by an averaging
argument, there exists a fixed {FU : U ∈ U}, coming from unfolding of some assignment Ã,
such that for at least δ4

216 fraction of U , we have agreement(FU ) > δ4

216 . The Lemma now
follows from Theorem 23. J

We now prove the main theorem.

Proof of Theorem 2. Fix δ > 0. We let q, β and ` � k be as given in the setting of
Theorem 23. Firstly, if we look the the marginal distribution of the edge distribution on Â
then it is uniform and hence the instance is left-regular.2 Now, starting with an instance of
(X,Eq) we have the following two guarantees of the reduction:
1. If the instance (X,Eq) is 1 − 2δ

k satisfiable then by Theorem 20 and Lemma 21, the
Unique Games instance UGfolded has a property that for at least ( 1

2 − δ) fraction of the
vertices in Â, all the edges incident on them are satisfied.

2. Consider the other case in which the instance (X,Eq) is at most s < 1, satisfiable. If
the Unique Games instance UGfolded is has a δ-satisfying assignment, then by Lemma 24
there is a provers’ strategy which can make the outer verifier accepts with probability at
least p δ4

216
� 2−Ω(βk/2q) for large enough k. This contradicts Theorem 11 and hence in

this case, UGfolded has no assignment which satisfies δ fraction of the edges.

Since by Theorem 10 distinguishing between a given instance (X,Eq) being at least 1− 2δ
k

satisfiable or at most s satisfiable is NP-hard, this proves our main theorem. J

5 Independent set in degree d graphs

We consider a weighted graph H = (V,E) where the sum of all weights of all the vertices is 1
and also sum of weights of all the edges is also 1. For S ⊆ V , we will denote the total weight
of vertices in S by w(S).

I Definition 27. A graph H is (δ, ε)-dense if for every S ⊆ V (H) with w(S) > δ, the total
weight of edges inside S is at least ε.

For ρ ∈ [−1, 1] and β ∈ [0, 1], the quantity Γρ(β) is defined as:

Γρ(β) := Pr[X ≤ φ−1(β) ∧ Y ≤ φ−1(β)],

where X and Y are jointly distributed normal Gaussian random variables with co-variance ρ
and φ is the cumulative density function of a normal Gaussian random variable.

We will prove the following theorem.

2 The edges have weights, but it can be made an unweighted left-regular instance by adding multiple
edges proportional to its weight with the same constraint.
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Let G(A,B,E, [L], {πe}e∈E}) be an instance of Unique Games. The distribution of
edges in H is as follows:

Select u ∈ B uniformly at random.
Select its two neighbors v1 and v2 uniformly at random. Let π1 and π2 are the
constraints between (u, v1) and (u, v2) respectively.
Select x, y ∈ {0, 1}L, such that for each i ∈ [L], (xi, yi) are sampled independently
from the distribution D.
Output an edge (v1, x ◦ π1), (v2, y ◦ π2).

Figure 3 Reduction from UG to Independent Set from [3].

I Theorem 28. Fix ε > 0, p ∈
(
0, 1

2
]
, then for all sufficiently small δ > 0, there exists a

polynomial time reduction from an instance of a left-regular Unique Games G(A,B,E, [L],
{πe}e∈E) to a graph H such that
1. If sval(G) > c, then there is an independent set of weight c · p in H.
2. If val(G) 6 δ, then H is (β,Γρ(β)− ε) dense for every β ∈ [0, 1] and ρ = − p

p−1 .
The reduction is exactly the same as the one in [3]. We will only show the complete case
(1) here. The soundness is proved in [3]. This theorem will imply Theorem 3 using a
randomized sparsification technique of [3] to convert the weighted graph into a bounded
degree unweighted graph.

5.1 The AKS reduction
Consider the distribution D on (a, b) ∈ {0, 1}2 such that Pr[a = b = 1] = 0 and each bit
is p-biased i.e. Pr[b = 1] = Pr[b = 1] = p. For a string x ∈ {0, 1}L and a permutation
π : [L]→ [L], let x ◦ π ∈ {0, 1}L, (x ◦ π)i = xπ(i).

Let G(A,B,E, [L], {πe}e∈E}) be an instance of Unique Games which is regular on the
A side. We convert it into a weighted graph H. The vertex set is A × {0, 1}L. Weight of
a vertex (v, x) where v ∈ A and x ∈ {0, 1}L is µp(x)

|A| , where µp(x) := p|x|(1− p)L−|x|. The
edge distribution is given as follows:

I Lemma 29 (Completeness). If sval(G) > c, then there is an independent set in H of
weight c · p.

Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set
of vertices such that its edges are satisfied by `, we know that |A′| > c · |A|. Consider the
following subset of vertices in H.

I = {(v, x) | v ∈ A′, x`(v) = 1}.

Firstly, the weight of set I is c · p. We show that I is in fact an independent set in H.
Suppose for contradiction, there exists an edge (v1, x), (v2, y) and both of its endpoints in I.
Let u be the common neighbor of v1, v2 (one such u must exist). If we let π1 and π2 be the
permutation constraints between (u, v1) and (u, v2) then the conditions for being an edge
implies that (xπ1(`(u)), yπ2(`(u))) should have a support in D. Since all the edges incident on
A′ are satisfied, πi(`(u)) = `(vi) for i ∈ {1, 2}. Therefore,(x`(v1), y`(v2)) is also supported in
D and hence both cannot be 1 which implies that both cannot belong to I. J

I Lemma 30 (Soundness [3]). For every ε > 0, if H is not (β,Γρ(β) − ε)-dense for some
β ∈ [0, 1] and ρ = − p

p−1 , then G is δ-satisfiable for δ := δ(ε, p) > 0.

Lemma 29 and Lemma 30 prove Theorem 28.
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Let G(A,B,E, [L], {πe}e∈E}) be an instance of Unique Games. Fix a graph
H([m], EH) from Lemma 32 with parameters η > 0 and t ∈ Z+, along with the
distribution D. Construct a weighted directed graph G on B× [m]L with the following
distribution on the edges:

Select u ∈ A uniformly at random.
Select its two neighbors v1 and v2 uniformly at random. Let π1 and π2 are the
constraints between (u, v1) and (u, v2) respectively.
Pick an edge e = (a, b) ∈ EH at random from the graph H.
Select x, y ∈ [m]L, such that for each i ∈ [L], (xi, yi) are sampled independently
as follows:

sample O ∼ D, set xi = O(a) and yi = O(b).
Perturb x and y as follows: for each i ∈ [L], with probability (1− ε), set x̃i = xi,
with probability ε set x̃i to be u.a.r from [m]. Do the same thing for y independently
to get ỹ.
Output a directed edge (v1, x̃ ◦ π1)→ (v2, ỹ ◦ π2).

Figure 4 Reduction from UG to Max-Acyclic Graph from [13].

6 Maximum Acyclic Subgraph

In this section we state the reduction from [13] and analyze the completeness case. Given a
directed graph H = (V,E), we will denote by Val(H) the fraction of edges in the maximum
sized acyclic subgraph of H. We need the following definition.

I Definition 31. A t-ordering of a directed graph H = (V,E) consists of a map O : V → [t].
The value of a t-ordering O is given by

Valt(O) = Pr
(a,b)∈E

[O(a) < O(b)] + 1
2 · Pr

(a,b)∈E
[O(a) = O(b)].

Define Valt(H) as:

Valt(H) = max
O

Valt(O).

The following lemma [13] will be crucial in the reduction from Unique Games to Maximum
Acyclic Subgraph.

I Lemma 32 ([13]). Given η > 0 and a positive integer t, for every sufficiently large m, there
exists a weighted directed acyclic graphs H(V,E) on m vertices along with a of distribution
D on the orderings {O : V → [m]} such that:
1. For every u ∈ V and i ∈ [m], PrO∼D[O(u) = i] = 1

m .
2. For every directed edge (a→ b), PrO∼D[O(a) < O(b)] > 1− η.
3. Valt(H) 6 1

2 + η.

The reduction is given in Figure 4. For a string x ∈ [q]L and a permutation π : [L]→ [L],
let x ◦ π ∈ [q]L such that (x ◦ π)i = xπ(i).

I Lemma 33 (Completeness). For small enough ε, η > 0, if the Unique Games instance G
has sval(G) > c then Val(G) > c · (1− 2ε)(1− η) + (1− c) ·

( 1
2 −

1
2m
)
.
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Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set
of vertices such that its edges are satisfied by `, we know that |A′| > c · |A|. Consider the
following m ordering O : B × [m]L → [m] of the vertices of G: O(v, x) = x`(v). We will show
that Valm(O) > c(1− ε)(1− η) + (1− c) · 1

2 . This will prove the lemma.

Val(G) > Valm(O) > Pr[O((v1, x̃ ◦ π1) < O(v2, ỹ ◦ π2)]
= Pr[x̃π1(`(v1)) < ỹπ2(`(v2))]
> c · Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′]
+ (1− c) · Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′]. (1)

Now, if u ∈ A′ then π1(`(v1)) = π2(`(v2)) = `(u) and hence,

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u ∈ A′] = Pr[x̃`(u) < ỹ`(u)]
> (1− 2ε) · E

(a,b)∈EH
Pr
O∼D

[O(a) < O(b)]

> (1− 2ε)(1− η). (2)

Now, we can lower bound Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] by (1 − 2ε)(1 − η) as above if
π1(`(v1)) = π2(`(v2)). If π1(`(v1)) 6= π2(`(v2)) then x̃π1(`(v1)) and ỹπ1(`(v1)) are uncorrelated

and are distributed uniformly in [m]. Therefore, Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] = (m2 )
m2 =

1
2 −

1
2m . Thus, for small enough ε and η, we can lower bound

Pr[x̃π1(`(v1)) < ỹπ2(`(v2)) | u /∈ A′] > min
{

(1− 2ε)(1− η), 1
2 −

1
2m

}
>

1
2 −

1
2m. (3)

Plugging (2) and (3) into (1), we get

Val(G) > c · (1− 2ε)(1− η) + (1− c) ·
(

1
2 −

1
2m

)
. J

The following soundness of the reduction is shown in [13].

I Lemma 34 (Soundness [13]). If the Unique Games instance G has val(G) 6 δ then
Val(G) 6 1

2 + η + ot(1) + δ′, where δ′ → 0 as δ → 0.

Proof of Theorem 4

For every ε′ < 0, setting ε, η, δ > 0 small enough constants and m large enough, in the
completeness case we have a maximum acyclic subgraph of size at least c

2 + 1
2 − ε

′, whereas
in the soundness case it is at most 1

2 + ε′. Since by Theorem 2, it is NP-hard to distingusih
between sval(G) > 1

2 − δ and val(G) 6 δ we get that it is NP-hard to approximate the
Maximum Acyclic Subgraph problem within a factor of 1/2+ε′

1/4+1/2+ε′+δ/2 ≈
2
3 .

I Remark 35. Instead of sval(G) = 1
2 , if we only have val(G) = 1

2 , then the same construction
and the labeling from Lemma 33 gives Val(G) > 5

8 . To see this, fix an assignment ` : A∪B → Σ
which gives val(G) > 1

2 . Let αu denote the fraction of edges attached to u that are satisfied by
`. Therefore, we have val(G) = Eu∈A[αu] = 1

2 . Using a similar analysis as in the completeness
case, we get Val(G) > Eu∈A[α2

u · (1 − 2ε)] + Eu∈A[(1 − α2
u) · 1

2 ] > (1 − 2ε) E[ 1
2 + α2

u

2 ]. By
Cauchy-Schwartz inequality E[α2

u] > (E[αu])2 = 1
4 and hence Val(G) > (1 − 2ε) · 5

8 . This
along with the soundness lemma gives the NP-hardness of 4

5 .
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Let G(A,B,E, [L], {πe}e∈E}) be an instance of Unique Games.
Select u ∈ A uniformly at random.
Select k neighbors {v1, v2, . . . , vk} of u uniformly at random. Let πi be the
constraints between (u, vj) for all j ∈ [k].
Select x1, x2, . . . , xk ∈ [q]L, such that for each i ∈ [L] sample (x1

i , x
2
i , . . . , x

k
i )

independently as follows:
with probability (1− ε), (x1

i , x
2
i , . . . , x

k
i ) is sampled from the distribution D.

with probability ε, (x1
i , x

2
i , . . . , x

k
i ) is sampled from [q]k uniformly at random.

Output ((v1, x
1 ◦ π1), (v2, x

2 ◦ π2), . . . , (vk, xk ◦ πk)).

Figure 5 Reduction from UG to a P -CSP instance I from [5].

7 Predicates supporting Pairwise Independence

In this section, we prove Theorem 5.

7.1 The Austrin-Mossel reduction
Let D be a distribution on P−1(1) which is balanced and pairwise independent. For a string
x ∈ [q]L and a permutation π : [L]→ [L], let x ◦ π ∈ [q]L such that (x ◦ π)i = xπ(i).

Let G(A,B,E, [L], {πe}e∈E}) be an instance of Unique Games. We convert it into a
P -CSP instance I as follows. The variable set is B × [q]L. The variable sets are folded in
the sense that for every assignment f : B × [q]L → [q] to the variables, we enforce that for
every v ∈ B, x ∈ [q]L and α ∈ [q],

f(v, x+ αL) = f(v, x) + α,

where additions are (mod q).
The distribution on the constraints is given in Figure 5:

I Lemma 36 (Completeness). If sval(G) > c, the I is (c− ε)- satisfiable.

Proof. Fix an assignment ` : A ∪ B → Σ which gives sval(G) > c. Let A′ ⊆ A be the set
of vertices such that its edges are satisfied by `, we know that |A′| > c · |A|. Thus with
probability c, u ∈ A′ and all edges attached to it are satisfied by `. Consider the following
assignment f to the variables of I : For a variable (v, x), we assign f(v, x) = x`(v).

Conditioned on u ∈ A′, we will show that (f(v1, x
1 ◦ π1), f(v2, x

2 ◦ π2), . . . , f(vk, xk ◦
πk)) ∈ P−1(1) with probability (1 − ε) and this will prove the lemma. Now, (f(v2, x

2 ◦
π2), . . . , f(vk, xk ◦ πk))) is same as ((x1 ◦ π1)`(v1), (x2 ◦ π2)`(v2), . . . , (xk ◦ πk)`(vk)), which in
turns equals (x1

π1(`(v1), x
2
π2(`(v2), . . . , x

k
πk(`(vk)). Since ` satisfies all the edges (u, vi), we have

that for all j ∈ [k], πj(`(vj)) = `(u) =: i for some i ∈ [L]. Therefore we get (x1
i , x

2
i , . . . , x

k
i ),

and according to the distribution, it belongs to P−1(1) with probability (1− ε). J

We have the following soundness of the reduction.

I Lemma 37 (Soundness [5]). If the instance I is P−1(1)
qk

+ η satisfiable, then G is δ :=
δ(η, ε, k, q) > 0 satisfiable.

The completeness and soundness of the reduction, along with our main theorem, imply
Theorem 5.
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Abstract
We show that a very simple pseudorandom generator fools intersections of k linear threshold functions
(LTFs) and arbitrary functions of k LTFs over n-dimensional Gaussian space. The two analyses of
our PRG (for intersections versus arbitrary functions of LTFs) are quite different from each other
and from previous analyses of PRGs for functions of halfspaces. Our analysis for arbitrary functions
of LTFs establishes bounds on the Wasserstein distance between Gaussian random vectors with
similar covariance matrices, and combines these bounds with a conversion from Wasserstein distance
to “union-of-orthants” distance from [5]. Our analysis for intersections of LTFs uses extensions of
the classical Sudakov-Fernique type inequalities, which give bounds on the difference between the
expectations of the maxima of two Gaussian random vectors with similar covariance matrices.

For all values of k, our generator has seed length O(logn) + poly(k) for arbitrary functions of k
LTFs and O(logn) + poly(log k) for intersections of k LTFs. The best previous result, due to [14],
only gave such PRGs for arbitrary functions of k LTFs when k = O(log logn) and for intersections
of k LTFs when k = O( logn

log logn ). Thus our PRG achieves an O(logn) seed length for values of k
that are exponentially larger than previous work could achieve.

By combining our PRG over Gaussian space with an invariance principle for arbitrary functions
of LTFs and with a regularity lemma, we obtain a deterministic algorithm that approximately counts
satisfying assignments of arbitrary functions of k general LTFs over {0, 1}n in time poly(n)·2poly(k,1/ε)

for all values of k. This algorithm has a poly(n) runtime for k = (logn)c for some absolute constant
c > 0, while the previous best poly(n)-time algorithms could only handle k = O(log logn). For
intersections of LTFs, by combining these tools with a recent PRG due to [28], we obtain a
deterministic algorithm that can approximately count satisfying assignments of intersections of k
general LTFs over {0, 1}n in time poly(n) · 2poly(log k,1/ε). This algorithm has a poly(n) runtime for
k = 2(logn)c

for some absolute constant c > 0, while the previous best poly(n)-time algorithms for
intersections of k LTFs, due to [14], could only handle k = O( logn

log logn ).
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1 Introduction

Constructing explicit pseudorandom generators (PRGs) for interesting classes of Boolean-
valued functions is a fundamental problem in complexity theory which has witnessed a rich
line of work. An important class of functions, which have been intensively studied from this
perspective, are linear threshold functions (henceforth referred to as LTFs), i.e. functions
of the form f(x) = sign(

∑n
i=1 wixi − θ) for some w ∈ Rn and θ ∈ R. LTFs arise naturally

in a variety of areas including machine learning, social choice theory, circuit complexity
and pseudorandomness. Through a very successful line of work [8, 26, 13], explicit PRGs
have been obtained which ε-fool the class of LTFs over {−1, 1}n with seed length O(logn+
log2(1/ε)) [26], or alternately seed length O(log(n/ε)(log log(n/ε))2) [13]. For LTFs over
the Gaussian distribution, [23] give an ε-PRG that fools LTFs with seed length O(logn+
log(1/ε) log log(1/ε))).

Given these successes in designing PRGs to fool a single LTF, a natural next goal is to
develop PRGs for intersections of k LTFs (i.e. polytopes with k facets) or, more generally,
for arbitrary Boolean functions of k LTFs. PRGs for polytopes have direct applications to
central problems at the intersection of derandomization and combinatorial optimization, such
as deterministic approximate volume estimation for polytopes and approximate counting
of feasible solutions to 0-1 integer programs. The standard way to use a PRG for such
applications is to run through the list of all seeds, and hence it is desirable to have seed
length as small as possible as a joint function of n and k. In particular, a seed length of
the form O(logn) · α(k, 1/ε) leads to a running time of nO(α(k,1/ε)), which even for constant
ε is super-polynomial for any super-constant k. In contrast, a seed length of the form
O(logn) + α(k, 1/ε) leads to a running time of poly(n) · 2α(k,1/ε), which can be a fixed
polynomial in n even for various super-constant values of k (depending on the function α).

In this paper we work over Gaussian space, and we give the first PRGs for intersections
and arbitrary functions of k LTFs which have seed length of the form O(logn) + α(k, 1/ε)
for all k. For intersections of LTFs we achieve α(k, 1/ε) = poly(log k, 1/ε), and for arbitrary
functions of LTFs we achieve α(k, 1/ε) = poly(k, 1/ε). Thus for constant ε our seed length
is O(logn) for k = 2(logn)c LTFs (for intersections) and k = (logn)c LTFs (for arbitrary
functions), where c > 0 is an absolute constant. Previously, such an O(logn) seed length was
only known for k = O(log(n)/ log logn) (for intersections) and k = O(log logn) (for arbitrary
functions) [14]. Thus, in both cases our PRGs achieve the (optimal) O(logn) seed length for
exponentially larger values of k than was previously known.

Before stating our results in detail we recall the definition of a PRG over Gaussian space
(see [18, 17, 16, 19, 23, 21]):

I Definition 1 (PRGs for Boolean-valued functions over Gaussian space). Let C be a class of
functions from Rn to {−1, 1}. Given ε > 0, a function G : {−1, 1}s → Rn is an ε-PRG for
class C over Gaussian space if for every function F ∈ C,

|Pr[F (G(U(s))) = 1]−Pr[F (G(n)) = 1]| ≤ ε,
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where G(n) denotes (G1, . . . ,Gn), a random variable distributed according to the standard
Gaussian N (0, 1)n, and U(s) denotes the uniform distribution on {−1, 1}s. The parameter s
is called the seed length of G.

1.1 Our results and comparison to prior work
Our PRG results. The following are our main PRG theorems:

I Theorem 2 (Fooling arbitrary functions of LTFs). There is an explicit PRG which ε-fools
any Boolean function of k LTFs g(h1, . . . , hk) over N (0, 1)n, for any ε > 0 and any k, with
seed length

O (logn+ poly(k, 1/ε)) .

This seed length is not far from the best possible in terms of its dependence on both n and
k, as it is not difficult (see Appendix A) to establish a seed length lower bound for this class
of max{blognc, k} = Ω(k + logn) for any 1 ≤ k ≤ n.

In the special case when the combining function g is an AND, we get an exponential
improvement in the seed length dependence on k:1

I Theorem 3 (Fooling intersections of LTFs). There is an explicit PRG which ε-fools any
intersection of k LTFs over N (0, 1)n, for any ε > 0 and any k, with seed length

O (logn+ poly(log k, 1/ε)) .

Here too the seed length is not far from best possible for a broad range of parameters; we
note that the above-mentioned lower bound of logn even when k = 1 implies a seed length
lower bound of Ω(logn), which is Ω(logn+ log k) for any k ≤ poly(n) (the most interesting
regime for Theorem 3).

For arbitrary functions of k LTFs, Theorem 2 is the first result which gives a seed length
of O(logn) for k = (logn)c, and for intersections of k LTFs Theorem 3 is the first result
which gives a seed length of O(logn) for k = 2(logn)c . As mentioned earlier and discussed in
more detail below, an optimal seed length of O(logn) was previously only known [14] for
exponentially smaller values of k in both settings. Below we briefly review prior results on
explicit PRGs for these classes, starting with intersections of LTFs.

The most directly comparable prior result for intersections of k LTFs is the main result
of [28], which gives a PRG for intersections of k LTFs over {−1, 1}n with seed length
log(n) · poly(log k, 1/ε). (Such a PRG directly implies a PRG for intersections of k LTFs over
Gaussian space with the same seed length via a standard reduction.) The [28] PRG builds on
a PRG due to Harsha et al. [16] which has seed length log(n) ·poly(log k, 1/ε) for intersections
of sufficiently regular LTFs; the [16] PRG in turn is similar to a PRG construction of Meka
and Zuckerman [26] (for a single LTF) in which the basic idea is to (pseudorandomly) hash
the coordinates into buckets and use `-wise independence for coordinates hashed to the same
bucket. The analysis of the [28] PRG combines a range of technical ingredients including
an invariance principle for polytopes that [16] establish, combinatorial PRGs for depth-2
circuits, and new Littlewood-Offord type theorems for polytopes.

1 We note that a weak form of Theorem 2, with a seed length of O
(
logn+ poly(2k, 1/ε)

)
, follows

immediately from Theorem 3 just by setting its error parameter to be ε/2k and observing that any
function of k LTFs is a union of at most 2k many disjoint intersections of k LTFs. However, this is
exponentially worse than we achieve in Theorem 2 above.
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PRGs for intersection of LTFs were also studied by Gopalan, O’Donnell, Wu, and
Zuckerman [14], Diakonikolas, Kane and Nelson [9], and recently by Servedio and Tan [29].
These results give PRGs with respect to the uniform distribution on the Boolean cube (in
fact, the PRG in [14] fools arbitrary product distributions). For general k, the seed length of
the PRG in [14] for intersection of k LTFs is O((logn+ k log(k/ε)) · log(k/ε)). This linear
dependence of the seed length on k is far from optimal; for example, if k ≥ n then their result
does not yield a non-trivial PRG. For the special case when k/ε is at most poly(logn), [14]
achieves the better seed length of O(logn + k log(k/ε)). Thus, for k = O(logn/ log logn),
the [14] seed length is O(logn).

The work of Diakonikolas et al. [9] achieves a similar polynomial dependence on k in the
seed length of their PRG (more precisely, they achieve seed length O(logn · poly(k, 1/ε)),
and their PRG works also for intersections of k degree-2 polynomial threshold functions).
The work of Servedio and Tan [29] achieves seed length with polylogarithmic dependence on
k, but only gives a good bound against intersections of LTFs with small integer weights. In
more detail, if each of the k LTFs in the intersection has all its weights wi being integers in
[−t, t], then the PRG in [29] has seed length poly(logn, log k, t, 1/ε). The parameter t for
an LTF can in general be exponential in n (and in fact, for a random LTF, t is exponential
in n with high probability), and hence the [29] result is of interest only for intersections of
low-weight LTFs.

Turning to arbitrary functions of k LTFs, we observe that (as indicated in the earlier
footnote) any PRG for intersections of k LTFs can be used to fool arbitrary functions of k
LTFs by setting its accuracy parameter to ε/2k. If the seed length of the PRG has an inverse
polynomial dependence on the accuracy parameter (as in our result) then this simple approach
does not yield a very good seed length, but [14] used essentially this approach to obtain a PRG
that fools any function of k LTFs with seed length O((k2 +k log(1/ε)+logn) · (k+log(1/ε))).
In the special case when k · 2k/ε is at most poly(logn), they achieve a better seed length of
O(k2 + k log(1/ε) + logn), which is O(logn) for constant ε and k = O(log logn).

Our results on deterministic approximate counting. By combining our new PRGs with
invariance principles and a (multi-)regularity lemma, we obtain deterministic algorithms
which approximately count the number of satisfying assignments to intersections or arbitrary
functions of k arbitrary LTFs over {−1, 1}n. (Note that such algorithms, unlike PRGs, are
non-oblivious, i.e. they can “inspect” the particular LTFs which comprise the input to the
problem.)

I Theorem 4 (Deterministic approximate counting for arbitrary functions of k LTFs over
{−1, 1}n). There is a deterministic algorithm which, given as input k LTFs h1, . . . , hk over
{−1, 1}n, an explicit function g : {−1, 1}k → {−1, 1} and an error parameter ε > 0, runs in
poly(n) · 2poly(k,1/ε) time and outputs a value ṽ ∈ [0, 1] such that |ṽ − v| ≤ ε, where v is the
fraction of points in {−1, 1}n that satisfy g(h1, . . . , hk).

For intersections of LTFs, by combining our approach with the [28] PRG we can get an
exponentially better runtime dependence on k:

I Theorem 5 (Deterministic approximate counting for intersections of k LTFs over {−1, 1}n).
There is a deterministic algorithm which, given as input k LTFs h1, . . . , hk over {−1, 1}n and
an error parameter ε > 0, runs in poly(n) · 2poly(log k,1/ε) time and outputs a value ṽ ∈ [0, 1]
such that |ṽ − v| ≤ ε, where v is the fraction of points in {−1, 1}n that satisfy h1 ∧ · · · ∧ hk.

We are not aware of prior results on deterministic approximate counting for intersections
(or arbitrary functions) of k LTFs which run faster than simply enumerating over the
seeds of a PRG. Thus Theorem 4 gives the first deterministic algorithm that runs in fixed
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poly(n) runtime even for k which is polylogarithmic in n; as indicated earlier, given the
previous state of the art on PRGs for arbitrary functions of k LTFs for k = ω(log logn)
prior algorithms would have a running time of at least npoly(k). Similarly, Theorem 5 gives
the first deterministic algorithm that runs in fixed poly(n) runtime even for k = 2(logn)Ω(1) .
The previous state of the art on PRGs for intersection of k LTFs for k = ω(logn/ log logn)
would have a running time of at least npoly(log k) (such a running time is obtained simply by
enumerating over the seeds of the [28] PRG).

A key ingredient in the proof of Theorem 4 is an invariance principle for arbitrary functions
of k LTFs, analogous to the main structural result of [16] which is an invariance principle
for intersections of k LTFs. Such an invariance principle was proved in [14], and we provide
an alternate proof in Appendix C (which is very different from the proofs of the invariance
principles in [16, 14]). We believe this could be of independent interest. We elaborate on
this, still at a conceptual level, in Section 3 and give full details in Section 7.

A straightforward approach to Theorem 5 using only the multi-regularity lemma and an
invariance principle would have a running time which is exponential in k because the number
of leaves in the decision tree constructed by the multi-regularity lemma is exponential in k.
We achieve a quasi-polynomial dependence on k by exploiting additional structure in the
decision tree (specifically, that it is a so-called “junta decision tree” in which the same variable
occurs at each node of any given depth). Intuitively, this makes it possible for us to use the
[28] PRG on the space of all variables occurring in the decision tree (to “pseudorandomly
sample” leaves of the decision tree and use only those to construct an accurate estimate of
the overall desired probability). Since the size of this variable space, roughly speaking, is
m = Õ(k) (crucially with no dependence on n), the [28] PRG’s seed length in this context
(of intersections of k LTFs over m variables) is log(m) · poly(log k, 1/ε) = poly(log k, 1/ε),
which leads to our overall final running time of poly(n) · 2poly(log k,1/ε).

2 Our PRG and a high-level overview of its analysis

We use the same simple PRG construction to obtain both of our PRG results (Theorems 2
and 3); the two results are obtained by instantiating the parameters in two different ways.
We describe this PRG below with general parameters; the precise parameter settings we use
for each class (intersections versus arbitrary functions of k LTFs) will be made clear in the
course of the respective analyses.

An idealized version of our PRG is as follows:
1. Let G(d) be an N (0, 1)d Gaussian (which we view as a column vector).
2. Let A ∈ Rd×n be a pseudorandom Johnson-Lindenstrauss matrix drawn from the distri-

bution of pseudorandom d× n JL-matrices given by the work of Kane, Meka and Nelson
[20] (more details on this will be given below).

3. A draw from our generator Gen is Z := ATG(d) (note that this is a vector in Rn).

The actual PRG differs from the above-described idealized version because using finitely
many bits it is not possible to generate a draw from the continuous G(d) distribution with
perfect fidelity. So in Step 1 the actual PRG uses a discrete approximation of each coordinate
of G(d) (we explain precisely what is meant by this in Appendix B); let Ĝ(d) denote the
resulting distribution over Rd. For clarity of exposition, the main analysis in the paper will
be carried out for a “perfect” Gaussian G(d), i.e. we will analyze the idealized PRG and show
that it is an O(ε)-PRG for each of our two classes of interest (intersections and arbitrary
functions of k LTFs). Appendix B shows that, for each of these two classes, if the idealized
generator (which uses G(d)) is an O(ε)-PRG, then so is the actual generator which uses Ĝ(d).
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High level idea of our generator. The Johnson-Lindenstrauss (JL) transform is one of
the most important tools in high-dimensional data analysis. In a nutshell, for any error
parameter ε, the JL transform gives a family D of d× n matrices such that for A ∼ D and
any k unit vectors W 1, . . . ,W k ∈ Rn, with high probability, the following holds: For all
0 ≤ i, j ≤ k, ‖AW i −AW j‖2 = (1 ± ε)‖W i −W j‖2 (where W 0 = 0). Crucially, one can
obtain this guarantee with d = O(ε−2 log k).

We can reinterpret the guarantee of the JL transform in the following way: Let A ∼ D
and consider the two distributions Z := AT ·G(d) and Z′ = G(n). Let W ∈ Rk×n be the
k × n matrix whose rows are W 1, . . . ,W k. Then, for any ~θ, the distributions X = W · Z− ~θ
and Y = W ·Z′−~θ (i) are both Gaussian distributions over Rk, (ii) have the same mean, and
(iii) are such that the two k × k covariance matrices Cov(X) and Cov(Y) differ pointwise
by at most ε. Let us define the affine function f : Rn → Rk as f(z) = Wz − ~θ. Then, the
guarantee of the JL transform is that Cov(f(Z)) ≈ε Cov(f(Z′)); we may loosely view this
guarantee as showing that the generator above fools the covariance.

The above perspective leads to the insight which motivates our work, which is essentially
the following: since both X and Y are Gaussians, which are completely determined by
their means and covariances, other interesting tests besides the covariance may reasonably be
expected to be fooled by (a pseudorandom version of) the Johnson-Lindenstrauss transform.
In this paper we consider tests of the form h(sign(f(z)1), . . . , sign(f(z)k)), where h may be
any function from {−1, 1}k to {−1, 1} (we will also specialize to the case where h is an AND)
and f(z)i denotes the ith coordinate of f(z). In other words, we are interested in fooling
functions (given by h) of k LTFs (given by sign(f(z)1), . . . , sign(f(z)k)). As we show in this
paper, for a suitable choice of d (depending on whether h is arbitrary or is an AND) our
generator can indeed fool all functions of the above form.

Seed length of our PRG. In order to state the seed length of our generator we first need
to identify all of the relevant parameters. In Step 1, for each of our two results we will take
d = O(log(k/δ′)/ε′2) where ε′ is a parameter that will be discussed below; as mentioned
above each coordinate of Ĝ(d) will be a discrete approximation of an N (0, 1) Gaussian. In
Step 2, the KMN distribution over pseudorandom d × n JL-matrices has two additional
parameters, which we denote ε′ and δ′ (see Section 4.2 for details.)

For the first step, as we show in Appendix B, a total of O(d log(kd/ε)) many random
bits suffice to generate a draw from Ĝ(d). For the second step, as we discuss in Section 4.2,
a pseudorandom d × n JL-matrix with parameters ε′, δ′ can be drawn from the KMN
distribution using O(logn+ log(1/δ′) · log(log(1/δ′)/ε′)) bits of randomness. So the overall
seed length of our PRG is

O(d log(kd/ε)) +O(logn+ log(1/δ′) · log(log(1/δ′)/ε′))

= O

(
log(k/δ′)

ε′2
· (log k + log log(k/δ′) + log(1/(ε′ε))) + logn

)
.

As we will see in Section 4.2, we will always take δ′ to be ε, so the seed length of our
generator is

O

(
log(k/ε)
ε′2

· (log k + log log(k/ε) + log(1/(ε′ε))) + logn
)
. (1)

We will instantiate the parameter ε′ to one specific value (a function of k and ε) in Section 5
for arbitrary functions of LTFs, and to another specific value in Section 6 for intersections of
LTFs, thus obtaining the seed lengths claimed in Theorems 2 and 3.
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In the rest of this section we give an overview of the analyses of our PRGs. While the
same PRG gives both our results, the analyses are quite different for the two classes we
consider (arbitrary functions of LTFs and intersections of LTFs). We first sketch the (simpler)
analysis for fooling arbitrary functions of LTFs.

2.1 An outline of our analysis for fooling arbitrary functions of LTFs
We start by recalling some definitions which are useful for our overview. An orthant of Rk is
a subset O ⊂ Rk of the form

O = {x ∈ Rk : sign(xi) = bi, i = 1, . . . , k} for some (b1, . . . , bk) ∈ {−1, 1}k.

Given two random variables X,Y over Rk, the quadratic Wasserstein distance W2(X,Y)
between X and Y is defined to be

W2(X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖2])1/2,

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.2
Now we can present our overview. Our goal is to show that our PRG ε-fools every function

of the form g(h1(x), . . . , hk(x)) : Rn → {−1, 1}, where g : {−1, 1}k → {−1, 1} is arbitrary
and each hi : Rn → {−1, 1} is an LTF, relative to the standard Gaussian distribution. This
is equivalent to showing the following: for any unit vectors W 1, . . . ,W k ∈ Rn and any
~θ = (θ1, . . . , θk) ∈ Rk, taking W to be the k × n matrix whose rows are W 1, . . . ,W k and
taking O to be any union of orthants over Rk, we have∣∣∣∣ Pr

Z←Gen
[WZ− ~θ ∈ O]− Pr

G(n)←N (0,1)n
[WG(n) − ~θ ∈ O]

∣∣∣∣ ≤ ε. (2)

Here is a high-level sketch of why our PRG ensures this.

(1) A (pseudorandom) JL projection of the k unit vectors W 1, . . . ,W k ∈ Rn results in
much lower-dimensional vectors V 1, . . . , V k ∈ Rd, where d = Θ(log(k)/ε′2), which
approximately preserve pairwise distances. Let us write ΣW (ΣV respectively) to denote
the k × k covariance matrix of the k-dimensional Gaussian random variable WG(n) − ~θ
(VG(d) − ~θ respectively, where G(d) is distributed according to N (0, 1)d). As we will
see in Section 4.1, we have that ΣW and ΣV are entrywise close to each other (see
Observation 6 for details).

(2) The entrywise closeness of ΣW and ΣV implies that the quadratic Wasserstein distance
W2(WG(n) − ~θ, VG(d) − ~θ) is small; more precisely, we get that

W2(WG(n) − ~θ, VG(d) − ~θ) ≤ τ, where τ = O(k 7
8 · (ε′)1/4). (3)

(See Proposition 8 in Section 5.2 for details.)
(3) As the main step of our analysis, using an adaptation of an argument from [5], in

Section 5.3 we use (3) to infer that for every union of orthants O, we have∣∣∣∣ Pr
G(n)←N (0,1)n

[WG(n) − ~θ ∈ O]− Pr
G(d)←N (0,1)d

[VG(d) − ~θ ∈ O]
∣∣∣∣ ≤ O(k2/3τ2/3) = ε. (4)

This concludes the analysis since the inequality (4) is exactly the same as (2). This is
because for each j we have V j = W jAT where A is the (pseudorandom) projection matrix.

2 By the Kantorovich-Rubinstein duality theorem, there is an equivalent formulation W2(X,Y) in terms
of Lipschitz test functions, but we will not need this alternative formulation.
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2.2 An outline of our analysis for fooling intersections of LTFs
At a high level, our analysis for fooling intersections of LTFs exploits the rich and influential
line of work on analyzing supremum (maximum) of Gaussian processes [24, 11, 31]. We recall
that a Gaussian process is a set of jointly normal random variables (the set may be infinite,
though we will only concerned with the finite case where it has cardinality k). To see the
relationship between the maximum of a Gaussian process and an intersection of LTFs, let
W 1, . . . ,W k ∈ Rn be unit vectors and ~θ ∈ Rk. Define the LTF hi(z) = sign(W iz − θi) and
consider the k-face polytope h1(z) ∧ . . . ∧ hk(z). Showing that our PRG ε-fools this k-face
polytope (i.e., the function h1 ∧ . . . ∧ hk) relative to the standard Gaussian distribution
is equivalent to showing the following: Taking W to be the k × n matrix whose rows
are W 1, . . . ,W k,∣∣∣∣ Pr

Z←Gen
[WZ ≤ ~θ ]− Pr

G←N (0,1)n
[WG ≤ ~θ ]

∣∣∣∣ ≤ ε. (5)

Note that WZ ≤ ~θ if and only if maxj∈[k]((WZ)j − θj) ≤ 0. Likewise, WG ≤ ~θ if and only
if maxj∈[k]((WG)j − θj) ≤ 0.

Both {(WZ)j − θj}1≤j≤k and {(WG)j − θj}1≤j≤k are Gaussian processes, and we
are interested in comparing the maxima of these two processes. If we were interested
in comparing just the expectations of the maxima, i.e., E[maxj∈[k]((WZ)j − θj)] versus
E[maxj∈[k]((WG)j − θj)], then the classical Sudakov-Fernique inequality [11, 30] provides a
tool to compare (and prove the closeness of) these two quantities. Indeed, Meka [25] used
this as a starting point in his work on a deterministic algorithm for estimating the supremum
of a Gaussian process. We are interested in a somewhat more delicate quantity, and so we
will use a generalization of a recent result of Chernozhukov et al. [6] which itself extends the
Sudakov-Fernique inequality.

Now we turn from the above conceptual overview to a more detailed sketch of our
analysis. Let the vectors V 1, . . . , V k and the covariance matrix ΣV be defined in the
previous subsection.

(1’) The first step of the argument is identical to Step 1 in the previous subsection: the
covariance matrices ΣW and ΣV are entrywise close to each other.

(2’) Next, we use the entrywise closeness of ΣW and ΣV to show that for any sufficiently
smooth function g, we have that∣∣∣∣E[g(max

j∈[k]
(W j ·G(n) − θj))]−E[g(max

j∈[k]
(V j ·G(d) − θj))]

∣∣∣∣ is small. (6)

is small. This is via an extension (to non-centered Gaussians) of Theorem 1 of [6], which
in turn is a generalization of Chatterjee’s quantitative Fernique-Sudakov bound [4].3
We carry out this step in Section 6.2.

(3’) Using a result of [16] (which follows almost directly from an influential work of Nazarov
[27]), we have that the real-valued random variable

max
j∈[k]

(W j ·G(n) − θj),

which is a max of non-centered Gaussians, has good anticoncentration, meaning that it
does not put very much mass in any small interval. See Section 6.3 for more details.

3 Chatterjee’s original argument in [4] bounds the difference in the expectations of maxj∈[k] (W j ·G(n)−θj)
and maxj∈[k] (V j ·G(n) − θj), corresponding to the identity function g(x) = x.
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(4’) We specialize (6) to the case where g is a smooth approximator of the sign function. For
a particular such g, combining (6) with the anticoncentration of maxj∈[k] (W j ·G(n)−θj)
mentioned above, we can pass from g, which is a smooth approximator of sign(·), to the
actual sign(·) function, and thereby show that∣∣∣∣Pr[sign(max

j∈[k]
(W j ·G(n) − θj)) = 1]−Pr[sign(max

j∈[k]
(V j ·G(d) − θj)) = 1]

∣∣∣∣ (7)

is small. We give this argument in Section 6.4.
(5’) Having (7) be small is exactly the same as having the LHS of (5) is small, since for each

j we have V j = W jAT where A is the (pseudorandom) projection matrix from Step 1
of our PRG. See Section 6.5 for more details.

3 The idea of our deterministic approximate counting results

In this section, we give an overview of our approximate counting algorithms for intersections
and arbitrary functions of LTFs. We begin with the description for arbitrary functions as it
relies on (extensions of) relatively well known tools from the literature such as regularity
lemmas and invariance principles. In particular, we follow the (by now standard) paradigm
of reducing the counting problem over the discrete cube to the Gaussian case by applying an
appropriate regularity lemma; the proof of correctness relies on an invariance principle for
arbitrary functions of LTFs. Once in the Gaussian case, we apply Theorem 3 which allows
us to do counting over Gaussian space. This is explained in more detail in Section 3.1.

We then move on to the case of intersections of LTFs, which is somewhat more subtle.
Similar to the first case, we also use a regularity lemma to reduce the Boolean case to the
Gaussian case. However, instead of a naive approach of traversing all the root-to-leaf paths
in the decision tree (constructed by the regularity lemma), we use the PRG construction of
[28] to traverse only a small subset of the leaves. More details are given in Section 3.2.

3.1 Deterministic approximate counting for arbitrary functions of k
LTFs via an invariance principle and a multiregularity lemma

A regular LTF is an LTF sign(
∑n
i=1 wixi − θ) in which, intuitively, no individual weight

wi has large magnitude compared to the overall magnitude of the weights (see Section 7.1
for a precise definition). The main structural result of [16] is an invariance principle for
intersections of LTFs: roughly speaking, this states that if F0 = h1∧· · ·∧hk is an intersection
of k LTFs all of which are sufficiently regular, then the expected values of F0(U(n)) (where
the input is uniform over {−1, 1}n) and of F0(G(n)) (where the input is a standard N (0, 1)n

Gaussian) are close. A notable aspect of the [16] invariance principle is that its error
bound has only a poly-logarithmic dependence on k (see Theorem 28 in Section 7.3 for a
precise statement).

Now, consider any F = g(h1, · · · , hk) (where g : {−1, 1}k → {−1, 1} is arbitrary). A
naive approach based on just using the [16] invariance principle 2k times together with a
union bound would give an invariance principle for arbitrary functions of k LTFs with an error
bound that depends exponentially on k. Instead, we use an analogue of the [16] invariance
principle which goes beyond intersections of LTFs and works for arbitrary functions of k LTFs.
The work of Gopalan et al. [14] gives an invariance principle for arbitrary functions of k LTFs
that has a polynomial dependence on k in the error bound. We provide an alternate proof of
this invariance principle for arbitrary functions of k LTFs. This polynomial dependence on k
is crucial for obtaining a final overall running time for counting satisfying assignments with
a singly exponential dependence on k, rather than a doubly exponential dependence which
would follow from the naive approach.
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4:10 PRGs from Gaussian Processes

As we explain in Section 7.2, the proof of our invariance principle is completely different
from the proofs of of [16], [14]; we feel that our new proof of the invariance principle,
Theorem 24, may be of independent interest. The [16] and [14] invariance principles are
proved using a Lindeberg-type “replacement” argument; key ingredients are an analysis of
hashing n coordinates into buckets and bounds on the derivatives of particular “smooth
mollifiers” for functions of LTFs. Our proof of Theorem 24 uses none of these ingredients;
instead, its main components are (a) a CLT for Wasserstein distance due to Valiant and
Valiant [32], and (b) a conversion from Wasserstein distance to “union-of-orthants” distance.
(Indeed, the ideas underlying the proof of Theorem 24 are very similar to the ideas underlying
our PRG for arbitrary functions of k LTFs; this is analogous, at a high level, to how the
proof of the [16] invariance principle is closely related to the analysis of the [16] PRG for
intersections of regular LTFs.)

Using the invariance principle for deterministic approximate counting. By combining
the invariance principle for arbitrary functions of LTFs with our PRG, which shows that a
random variable Z← Gen is such that the expectation of F (Z) is close to that of F (G(n)),
it is straightforward to obtain a deterministic approximate counting algorithm for arbitrary
functions of k regular LTFs over {−1, 1}n simply by enumerating over all the seeds of our
PRG. This algorithm has running time poly(n) · 2poly(k,1/ε).) To obtain a deterministic
approximate counting algorithm for arbitrary functions of k general LTFs over {−1, 1}n, we
combine the above algorithm with the deterministic algorithmic version of the multi-regularity
lemma of [14]. Briefly, this is a deterministic algorithm which builds a decision tree of depth
roughly k, with the property that at almost every leaf ρ of the decision tree, either the
restriction of g(h1, · · · , hk) according to ρ is very close to a constant function −1 or 1, or
else each restricted LTF h1 � ρ, . . . hk � ρ is regular (and hence the deterministic approximate
counting algorithm for arbitrary functions of regular LTFs can be used). We note that the
total number of leaves in this decision tree is exponential in k. By running the approximate
counting algorithm for functions of k-regular LTFs at each of the leaves, it is possible to
approximate the overall number of satisfying assignments. We give the details of this (fairly
standard) approach in Section 7.2.

3.2 Deterministic approximate counting for intersections of k LTFs
Let F = h1 ∧ · · · ∧ hk. Recall that the invariance principle of [16] shows that if all the
LTFs are sufficiently regular, then the expected values of F0(U(n)) and of F0(G(n)) are close,
where crucially the error bound only has a polylogarithmic dependence on k. By combining
this with our PRG, it is straightforward to obtain a deterministic approximate counting
algorithm for intersections of k regular LTFs over {−1, 1}n simply by enumerating over all
the seeds of our PRG – the resulting running time is poly(n) · 2poly(log k,1/ε). For intersections
of general halfspaces, one can apply the multi-regularity lemma of [15] to reduce to the case
of intersection of regular halfspaces. A naive application of this (similar to the previous
subsection) will result in a running time exponential in k – this is because there are 2k leaves
in the resulting decision tree and running the algorithm for each of the leaves separately will
result in an exponential in k overhead.

To instead get a 2poly(log k) overhead, we crucially rely on two facts: (i) the decision tree
constructed by the regularity lemma is non-adaptive, i.e., all nodes at the same level are
labeled by the same variable. Further, if the set of internal variables is denoted by S, then
this set can be enumerated in time poly(S). (ii) For any fixing of the set of variables in S,
the computation of the decision tree can be represented as an intersection of k halfspaces.
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Glossing over some subtleties, this suggests that instead of doing approximate counting for
all the leaves in the decision tree, one can just perform this computation on a subset of the
leaves given by the output of a PRG. In particular, we use the PRG due to [28] to select
the subset. While the PRG in [28] has a (logn) · poly(log k) seed length (where n is the
ambient dimension), in this application ‘n’ is set to |S| which has polynomial dependence
on k (for constant error ε > 0). Putting this together, we obtain a deterministic algorithm
for counting intersection of k arbitrary halfspaces with running time poly(n) · 2poly(log k,1/ε).

The full details are given in Section 7.3.

4 Notation and setup

We writeW ∈ Rk×n to denote the matrix whose j-th row is the weight vector of the j-th LTF
in a function of k LTFs. We assume that each such LTF has been normalized so that its weight
vector has norm 1. For j ∈ [k] (indexing one of the LTFs) we write W j = (W j

1 , . . . ,W
j
n) to

denote the j-th row of W , so ‖W j‖ = 1 for all j. Thus an arbitrary function of k LTFs is
g(h1, . . . , hk), where g : {−1, 1}k → {−1, 1} and

hj(x) = sign(W j · x− θj) where W j = (W j
1 , . . . ,W

j
n) ∈ Rn has ‖W j‖ = 1

(we take −1 to represent True and 1 to represent False throughout), and an intersection of k
LTFs is a function h1(x) ∧ · · · ∧ hk(x).

Throughout this paper we will use notation like ~θ to denote vectors in Rk, i.e. ~θ =
(θ1, . . . , θk) ∈ Rk. We write G or simply G(n) to denote (G1, . . . ,Gn), a random variable
distributed according to N (0, 1)n (so each of G1, . . . ,Gn is an i.i.d. N (0, 1) Gaussian).

4.1 Entrywise closeness of the original covariance matrix and the
pseudorandomly-projected covariance matrix

As above let W ∈ Rk×n have j-th row W j with ‖W j‖ = 1 for all j ∈ [k]. For convenience
we also define W 0 ∈ Rn to be the all-0 vector.

Let d = O(log(k/δ′)/ε′2) (where ε′ will be taken to be at most 1) and let V ∈ Rk×d
satisfy the following:

For all 0 ≤ i, j ≤ k we have ‖W i −W j‖ ≤ ‖V i − V j‖ ≤ (1 + ε′)‖W i −W j‖ (8)

where we take V 0 = (0, . . . , 0) ∈ Rd. (As we will see in the next subsection, V 1, . . . , V k should
be thought of as the vectors we get by doing a pseudorandom JL-projection of W 1, . . . ,W k

to d dimensions.)
We will consider the two k-dimensional Gaussian random vectors WG(n) and VG(d).

The covariance matrix of WG(n), which we denote ΣW , is the k × k matrix WTW which
has σWij := W i ·W j as its (i, j) entry, and similarly the covariance matrix ΣV of VG(d) has
σVij := V i · V j as its (i, j) entry. We define

∆ := max
1≤i,j≤k

|σWij − σVij | = max
1≤i,j≤k

|W i ·W j − V i · V j |, (9)

the maximum entry-wise difference between the two covariance matrices. The following
simple observation upper bounds ∆:

I Observation 6. If W 0, . . . ,W k ∈ Rn, V 0, . . . , V k ∈ Rd satisfy (8), then ∆ ≤ 9ε′.
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4:12 PRGs from Gaussian Processes

Proof. Taking i = 0, (8) implies that each V j , j ∈ [k], has ‖V j‖ ∈ [1, 1 + ε′]. Now fix any
i, j ∈ [k]. We have

‖W i −W j‖2 = W i ·W i − 2W i ·W j +W j ·W j = 2− 2W i ·W j

and similarly (using the fact that each ‖V `‖2 ≤ (1 + ε′)2)

‖V i − V j‖2 = V i · V i − 2V i · V j + V j · V j = 2 + 2γ − 2V i · V j

for some 0 ≤ γ ∈ 2ε′ + ε′2 ≤ 3ε′. Hence

2γ + 2W i ·W j − 2V i · V j = ‖V i − V j‖2 − ‖W i −W j‖2,

which implies

|W i ·W j − V i · V j | ≤ γ + 1
2
(
‖V i − V j‖2 − ‖W i −W j‖2)

≤ 3ε′ + 1
2

((
(1 + ε′)‖W i −W j‖

)2 − ‖W i −W j‖2
)

= 3ε′ + 1
2
(
(2ε′ + ε′2)‖W i −W j‖2)

≤ 3ε′ + 2(2ε′ + ε′2) ≤ 9ε′,

where for the penultimate inequality we used ‖W i −W j‖2 ≤ 4 and ε′2 ≤ ε′ which holds
since 0 < ε′ < 1. J

4.2 Formalizing step (1) of the intuitive sketch: Getting d-dimensional
vectors V 1, . . . , V k via pseudorandom projection

Recall that Steps 1 and 1′ of the analysis are identical for arbitrary functions of LTFs (in
Section 2.1) and for intersections of LTFs (in Section 2.2). We give the details of this step
here.

We use the following derandomized JL lemma given by Kane, Meka, and Nelson [20]:
I Theorem 7 (Derandomized Johnson-Lindenstrauss [20]). Let 0 ≤ ε′, δ′ < 1/2 and let
δ′′ = δ′/k2. There is a distribution D over random matrices A ∈ Rd×n, d = O(log(k/δ′)/ε′2),
such that (i) a draw of A← D can be generated using O(logn+log(1/δ′′)·log((log(1/δ′′))/ε′))
bits, and (ii) the following holds: Fix unit vectors W 1, . . . ,W k ∈ Rn. Then

Pr
A←D

[
‖W i −W j‖ ≤ ‖W iAT −W jAT‖ ≤ (1 + ε′)‖W i −W j‖ for all i, j ∈ [k]

]
≥ 1− δ′.

(10)

Let Vj = W jAT where A← D. By Theorem 7, except with failure probability at most δ′,
(8) is satisfied. We will always take δ′ = ε, and so this δ′ failure probability just gets absorbed
into the overall O(ε) error bound of the PRG. Fix V 1, . . . , V k to be any such outcome of
V1, . . . ,Vk; in the rest of the argument we will work with this V 1, . . . , V k. Note that by
Observation 6 we have that ∆, which is defined in terms of this V 1, . . . , V k, satisfies ∆ ≤ 9ε′.

5 Fooling arbitrary functions of LTFs: Proof of Theorem 2

5.1 Parameter settings
As will be seen in the analysis below, in order for the overall PRG to O(ε)-fool arbitrary
functions of k LTFs, we take ε′ = ε6

k15/2 . Recalling that δ′ = ε, by (1) the overall seed length
(as a function of n, k and ε) is O(logn) + Õ(k

15

ε12 ), as claimed in Theorem 2. In the rest of
this section we establish correctness of the PRG.
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5.2 Formalizing step (2) of the intuitive sketch: Upper bounding the
quadratic Wasserstein distance

Recall that the quadratic Wasserstein distance between random variables X,Y in Rk is
defined to be

W2(X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖2])1/2, (11)

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.

I Proposition 8. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd
satisfying (8) and let ~θ ∈ Rk. Then we have

W2(WG(n) − ~θ, VG(d) − ~θ) ≤ τ, where τ = O(k 7
8 · (ε′)1/4). (12)

Proof. Observe that WG(n) − ~θ and VG(d) − ~θ have the same mean. For this case, Proposi-
tion 7 of Givens and Shortt [12] shows that

W2
2 (WG(n) − ~θ, VG(d) − ~θ) = Tr(ΣW + ΣV − 2((ΣW )1/2ΣV (ΣW )1/2)1/2). (13)

Here ΣW and ΣV are the covariance matrices of the distribution WG(n) − ~θ and VG(d) − ~θ
respectively4. To bound the expression on the right hand side, first observe that∣∣Tr(ΣW + ΣV )− 2Tr(ΣW )

∣∣ ≤ ∣∣Tr(ΣW − ΣV )
∣∣ ≤ 9k · ε′. (14)

The last inequality uses Observation 6. To proceed further, we recall the following very
useful fact from Bhatia [2] (Theorem X.1.3)

I Fact 9. Let ‖ · ‖ be any unitarily invariant matrix norm. For psd matrices A and B, we
have the following

‖ |A 1
2 −B 1

2 | ‖ ≤ ‖
√
|A−B|‖,

where |X| denotes the psd matrix
√
X∗X.

For any symmetric matrix X, let ‖X‖tr denotes its trace norm, i.e., the sum of the singular
values of X. Note that the trace-norm is unitarily invariant. With this, we now have∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)

∣∣ ≤ 2‖ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2‖tr

≤ 2‖
√
|(ΣW )2 − (ΣW )1/2ΣV (ΣW )1/2|‖tr

= 2‖
√
|(ΣW )1/2(ΣW − ΣV )(ΣW )1/2|‖tr (15)

In the above, the first inequality uses the fact that for any symmetric matrix X, |Tr(X)| ≤
‖X‖tr and the second inequality follows from Fact 9. We now recall the following fact:

I Fact 10. For any symmetric X ∈ Rk×k,

‖
√
|X|‖tr ≤

√
k ·
√
‖X‖tr.

4 [12] states their theorem for non-singular ΣV and ΣW . However, we can always perturb our Gaussians
infinitesimally, apply (13) and then take a limit.

CCC 2019



4:14 PRGs from Gaussian Processes

Proof. If σ1, . . . , σk denotes the singular values of X, then the left hand side is
∑k
j=1
√
σj

and the right hand side is
√
k ·
√
σ1 + . . .+ σk, so the inequality is a consequence of the

AM-GM inequality. J

Applying Fact 10 to (15), we have that∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 2

√
k
√
‖|(ΣW )1/2(ΣW − ΣV )(ΣW )1/2|‖tr.

= 2
√
k
√
‖(ΣW )1/2(ΣW − ΣV )(ΣW )1/2‖tr.(16)

The second equality simply uses that for symmetric X, ‖|X|‖tr = ‖X‖tr. Next, we recall the
following useful inequality for unitarily invariant norms (see [2], p.94).

I Fact 11. Let A,B,C be symmetric matrices and let ‖ · ‖ be any unitarily invariant norm.
Then, ‖ABC‖ ≤ ‖A‖2 · ‖B‖ · ‖C‖2.

Applying Fact 11 to the right hand side of (16), we obtain∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 2

√
k
√
‖(ΣW )1/2‖2‖ΣW − ΣV ‖tr‖(ΣW )1/2‖2.

= 2
√
k‖(ΣW )1/2‖2 ·

√
‖ΣW − ΣV ‖tr. (17)

Now, ΣW is a matrix in which each entry W i ·W j is upper bounded by 1 in absolute value.
Thus, ‖ΣW ‖2 ≤ k. This immediately implies that ‖(ΣW )1/2‖2 ≤

√
k. Similarly,

‖ΣW − ΣV ‖tr ≤
√
k · ‖ΣW − ΣV ‖F ≤ 9

√
k · k · ε′ = 9ε′ · k3/2.

Here the last inequality is again using Observation 6. Combining this with (17), we have∣∣2Tr(ΣW − ((ΣW )1/2ΣV (ΣW )1/2)1/2)
∣∣ ≤ 6k 7

4 ·
√
ε′.

Combining the above equation with (14) and (13) (and using triangle inequality), we get that

W2
2 (WG(n) − ~θ, VG(d) − ~θ) ≤ 9kε′ + 2k 7

4 ·
√
ε′.

This immediately yields the proposition. J

5.3 Formalizing step (3) of the intuitive sketch: Upper bounding the
“union-of-orthants distance”

The following definition will be convenient: Given two random variables X,Y over Rk, the
union-of-orthants distance between X and Y is defined to be

dUO(X,Y) := max
O
|Pr[X ∈ O]−Pr[Y ∈ O]| , (18)

where the max is taken over all 22k possible unions of orthants O in Rk. This definition
aligns well with arbitrary functions of k LTFs g(h1, . . . , hk) because of the following easy
observation:

I Observation 12. For any g : {−1, 1}k → {−1, 1} and any random variables X,Y over
Rk, we have

|Pr[g(sign(X1), . . . , sign(Xk)) = 1]−Pr[g(sign(Y1), . . . , sign(Yk)) = 1]| ≤ dUO(X,Y).
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I Lemma 13. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying
(8) and let ~θ ∈ Rk. Then we have

dUO(WG(n) − ~θ, VG(d) − ~θ) ≤ O(k2/3τ2/3), (19)

where τ is as defined in Proposition 8.

The argument here is similar to the proof of Theorem 5 in [5]. That result used a CLT
due to Valiant and Valiant (which gave an upper bound on the L1 (as opposed to quadratic,
i.e.W2) transportation distance between a certain sum of vector-valued random variables and
a Gaussian distribution) to obtain an upper bound on union-of-orthants distance between
those two distributions. We briefly explain the main idea (which is quite simple) behind the
argument in our setting.

We consider an optimal coupling of the random variables X = WG(n) − ~θ and Y =
VG(d) − ~θ which achieves the minimal quadratic transportation distance as in (11). Since by
Proposition 8 the quadratic transportation cost W2(X,Y) of transforming X to Y is “small”,
the optimal coupling cannot move a “non-small” amount of mass by a distance that is not
“small.” Assume (contrary to our desired conclusion) that the union-of-orthants distance
between X and Y is not small, and fix a union of orthants O that achieves the max in (18).
Without loss of generality we may suppose that X puts more mass on O than Y (and this
difference is large by the above assumption). Gaussian anticoncentration tells us that X can
only have a small amount of mass overall that is close to orthant boundaries, and hence X
can have only a small amount of such mass in O. This means that a non-small amount of
mass from X must be moved a non-small distance (since it must go from being within O
and not close to any orthant boundary, to being outside of O) in order to transform X to Y;
but this contradicts the premise that W2(X,Y) is small.

We now proceed to the formal argument.

Proof of Lemma 13. As above let X = WG(n) − ~θ and Y = VG(d) − ~θ. By Proposition 8
we have that W2(X,Y) ≤ τ. We define

Br :=
{
x ∈ Rk : |xi| ≤ r for some i ∈ [k]

}
to be the region of all points in Rk whose L∞-distance from any orthant boundary point
is at most r. With foresight we choose r = τ2/3/k1/3 (the rationale for this choice will be
evident toward the end of the proof). We partition O into Obd := O ∩Br (the points in O
that lie close to the orthant boundaries) and Oin := O \Br (the points in O that lie far away
from the orthant boundaries). We have

∣∣Pr[X ∈ O]−Pr[Y ∈ O]
∣∣ =

∣∣(Pr[X ∈ Oin] + Pr[X ∈ Obd])− (Pr[Y ∈ Oin] + Pr[Y ∈ Obd])
∣∣

≤
∣∣Pr[X ∈ Oin]−Pr[Y ∈ Oin]

∣∣︸ ︷︷ ︸
=Ξ

+ Pr[X ∈ Obd] + Pr[Y ∈ Obd]︸ ︷︷ ︸
=Γ

.

We bound the quantities Ξ and Γ separately.
For Γ, we have that

Γ ≤
k∑
i=1

Pr
[
Xi ∈ [−r, r]

]
+ Pr

[
Yi ∈ [−r, r]

]
≤ O(kr), (20)

where we used the fact that each coordinate Xi of X is a one-dimensional Gaussian with
variance ‖W i‖2 = 1 and each coordinate Yi of Y is a one-dimensional Gaussian with variance
1 ≤ ‖V i‖2 ≤ (1 + ε′)2 = O(1).
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4:16 PRGs from Gaussian Processes

For Ξ, let us assume without loss of generality (a symmetrical argument works in the
other case) that Pr[X ∈ Oin] ≥ Pr[Y ∈ Oin], so Ξ = Pr[X ∈ Oin]−Pr[Y ∈ Oin]. Let D be
any coupling of X and Y that achieves

E
(X̂,Ŷ)∼D

[‖X̂− Ŷ‖2]1/2 = 2τ,

so D is the joint distribution of a pair (U,V) of Rk-valued random variables with marginals
distributed according to X and Y respectively. Since∫

Oin

∫
Rk

D(u, v) dv du = Pr[X ∈ Oin]

and∫
Oin

∫
Oin

D(u, v) dv du ≤
∫
Rk

∫
Oin

D(u, v) dv du = Pr[Y ∈ Oin],

it follows that∫
Oin

∫
Rk\Oin

D(u, v) dv du =
∫
Oin

∫
Rk

D(u, v) dv du−
∫
Oin

∫
Oin

D(u, v) dv du ≥ Ξ. (21)

Next we define the quantities

Ξnear(D) :=
∫
Oin

∫
Obd

D(u, v) dv du

(in words, this is the probability that U lies “well inside” O and V lies “close to the boundary”
in O), and

Ξfar(D) :=
∫
Oin

∫
Rk\O

D(u, v) dv du

(in words, this is the probability that U lies “well inside” O and V lies outside O). Note that
Ξnear(D) and Ξfar(D) sum to the quantity on the left-hand side of (21), and so Ξnear(D) +
Ξfar(D) ≥ Ξ. (In words, since X places Ξ more mass on Oin than Y does, any scheme D of
moving the mass of X to obtain Y must move at least Ξ amount from within Oin to outside
it. Ξnear(D) is the amount moved from within Oin to O’s boundary Obd, and Ξfar(D) is the
rest, moved from within Oin to locations entirely out of O.) Since ‖u− v‖2 ≥ r2 for any pair
of points u ∈ Oin and y /∈ O, it follows that

(2τ)2 = E
(U,V)∼D

[‖U−V‖2] ≥ r2 · Ξfar(D).

We consider two cases, depending on the relative magnitudes of Ξnear(D) and Ξfar(D). If
Ξfar(D) ≥ Ξnear(D), then we have

r2 · Ξ
2 ≤ r

2 · Ξfar(D) ≤ 4τ2,

and hence Ξ ≤ 8τ2/r2, which along with our upper bound on Γ given by (20) completes the
proof. If on the other hand Ξnear(D) > Ξfar(D), then

Ξ
2 ≤ Ξnear(D) ≤

∫
Rk

∫
Obd

D(u, v) dv du = Pr[Y ∈ Obd] ≤ Γ,

and again our upper bound on Γ completes the proof. J
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Observing that by our setting of parameters we have that k2/3τ2/3 = O(ε), we get that

dUO(WG(n) − ~θ, VG(d) − ~θ) ≤ O(ε)

provided that W 1, . . . ,W k, V 1, . . . , V k satisfy (8). Recalling from Section 4.2 that all but a
δ′ = ε fraction of outcomes V 1, . . . , V k of Vj = W jAT satisfy (8), we have

dUO(WG(n) − ~θ,WATG(d) − ~θ) ≤ O(ε),

and recalling that a draw Z from our generator Gen is Z = ATG(d), this is equivalent to

dUO(WG(n) − ~θ,WZ− ~θ) ≤ O(ε),

and the proof of Theorem 2 is complete.

6 Fooling intersections of LTFs: Proof of Theorem 3

6.1 Parameter settings, notation and terminology
As we will see in the analysis given below, in order for the overall PRG to ε-fool k-facet
Gaussian polytopes it suffices to take ε′ = O(ε3/ log2 k) and δ′ = ε′/k2, so by (1) the overall
seed length (as a function of n, k and ε) is O(logn) + Õ( log6 k

ε6 ) as claimed in Theorem 3.
The following notation will be useful: For 0 < λ, k ≥ 1, and ~θ = (θ1, . . . , θk) ∈ Rk,

we define

Stripλ,k,~θ = {x ∈ Rk : some j ∈ [k] has xj ∈ (θj , θj+λ) and every j ∈ [k] has xj < θj+λ}.

We recall that the Kolmogorov distance between two real-valued random variables S and
T is defined to be

dK(S,T) = sup
θ∈R

∣∣Pr[S ≤ θ]−Pr[T ≤ θ]
∣∣.

For f : Rk → R a smooth function we write ∂jf(z) to denote ∂f
∂zj

(z) and write ∂i∂jf(z)
to denote ∂2f

∂zi∂zj
(z).

6.2 Formalizing step (2′) of the intuitive sketch: Fooling smooth test
functions of max of non-centered Gaussians

A crucial ingredient in executing step (2′) of our analysis is the the following “soft-max”
function which is used in [4, 6] and many other works. The soft-max function Fβ : Rk → R
is defined as

Fβ(x1, . . . , xk) = 1
β
· ln
(

k∑
i=1

eβxi

)
.

For conciseness let us write eβ to denote β−1 ln k. We record some useful facts about the
soft-max function:

I Fact 14. For any vector v ∈ Rk, and any parameter β > 0,

0 ≤ Fβ(v)−max
i∈[k]

vi ≤ eβ .
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I Fact 15 (Lemma 3 of [6]). For every 1 ≤ i, j ≤ k, we have

∂iFβ(z) = πi(z), ∂i∂jFβ(z) = βwij(z),

where

πi(z) := eβzi∑k
`=1 e

βz`

, wij(z) := 1[i = j]πi(z)− πi(z)πj(z).

Furthermore, we have

πj(z) ≥ 0,
k∑
j=1

πj(z) = 1,
k∑
i=1

k∑
j=1
|wij(z)| ≤ 2.

I Fact 16 (Lemma 4 of [6]). Let m(z) = g(Fβ(z)) where g ∈ C2(R). Then for every
1 ≤ i, j ≤ k, we have

∂i∂jm(z) = (g′′(Fβ(z))πi(z)πj(z) + βg′(Fβ(z))wij(z),

where πi and wij are defined as in Fact 15 above.

Fact 14 follows almost directly from the definition of Fβ . Facts 15 and 16 can be routinely
verified by calculus.

The following is the main result of this section (cf. (6)):

I Theorem 17 (Fooling smooth test functions of max of non-centered Gaussians). Let
W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying (8) and let ~θ ∈ Rk.
Fix any function g ∈ C2(R), g : R → [−1, 1] such that ‖g′‖∞ := supx∈R |g′(x)| < ∞ and
‖g′′‖∞ := supx∈R |g′′(x)| <∞. Then for any β > 0, we have∣∣∣E[g(Fβ(W 1 ·G(n) − θ1, . . . ,W

k ·G(n) − θk))]−

E[g(Fβ(V 1 ·G(d) − θ1, . . . , V
k ·G(d) − θk))]

∣∣∣ ≤ O(‖g′′‖∞ε′ + ‖g′‖∞ε′β).

Further,∣∣∣∣E[g(max
j∈[k]

(W j ·G(n) − θj))]−E[g(max
j∈[k]

(V j ·G(d) − θj))]
∣∣∣∣ ≤ O(‖g′′‖∞ε′+ ‖g′‖∞

√
ε′ ln k).

We use the rest of this subsection to prove Theorem 17. The proof extends the proofs of
similar results in [4, 6] to the case of non-centered Gaussians.

For ease of presentation, for i ∈ [k] define the non-centered Gaussian random variables
Xi := W i ·G(n) − θi and Yi := V i ·G(d) − θi. We may suppose, without loss of generality,
that X = (X1, . . . ,Xk) and Y = (Y1, . . . ,Yk) are defined over the same probability space
and that X and Y are independent of each other. Our goal is to bound the magnitude of
the difference

E[g(Fβ(X1, . . . ,Xk))]−E[g(Fβ(Y1, . . . ,Yk))]. (22)

Let µi denote E[Xi] = E[Yi], and let X̃i = Xi − µi be the centered version of Xi and
similarly let Ỹi = Yi − µi. Observe that by independence we have E[XiYj ] = 0 for all
i, j ∈ [k]. Now, as is standard, we do a Slepian interpolation; so for t ∈ [0, 1], we define
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Zt,i :=
√
tX̃i +

√
1− tỸi + µi, and we write Zt to denote (Zt,1, . . . ,Zt,k). We define the

function

Ψ(t) = E[g(Fβ(Zt,1, . . . ,Zt,k))],

and we observe that

(22) = Ψ(1)−Ψ(0) =
∫ 1

0
Ψ′(t)dt. (23)

Thus to upper bound the magnitude of (22) it suffices to upper bound
∫ 1

0 |Ψ
′(t)|dt.

For x ∈ Rk let us write m(x) to denote g(Fβ(x)). By applying the chain rule, we have

Ψ′(t) = 1
2

k∑
i=1

E
[
∂im(Zt) ·

(
X̃i√
t
− Ỹi√

1− t

)]
.

Now we recall the following “integration by parts” lemma, which is sometimes referred to as
“Stein’s identity:”

I Lemma 18 (Lemma 2 of [6], see also Lemma 2.1 of [4]). Let A = (A1, . . . ,Ap) be a
p-dimensional Gaussian random vector with mean zero and let f : Rp → R be a C1 function
with E[|∂`f(A)|] <∞ for all ` ∈ [p]. Then for each ` ∈ [p], we have

E[A`f(A)] =
p∑
j=1

E[A`Aj ] E[∂jf(A)].

We now set (i) p = k+ 1, (ii) Aj = Zt,j (for 1 ≤ j ≤ k), (iii) Ak+1 = X̃i√
t
− Ỹi√

1−t and (iv)
f(A) = ∂im(Zt). Observe that with this setting, ∂k+1f(A) = 0. Applying Lemma 18 with
` = k + 1, we get that

Ψ′(t) = 1
2

k∑
i=1

k∑
j=1

E
[(

X̃i√
t
− Ỹi√

1− t

)(√
tX̃j −

√
1− tỸj

)]
E[∂i,jm(Zt)]

= 1
2

k∑
i=1

k∑
j=1

(σWi,j − σVi,j) ·E[∂i,jm(Zt)],

where the second equality uses the independence between X and Y. We get that∫ 1

t=0
|Ψ′(t)|dt ≤ 1

2

∫ 1

t=0

k∑
i,j=1

|σWi,j − σVi,j | · |E[∂i,jm(Zt)]| dt

≤ ∆
2 ·
∫ 1

t=0

k∑
i,j=1

|E[∂i,jm(Zt)]| dt, (24)

where ∆ = maxi,j∈[k] |σWi,j − σVi,j | is the quantity defined in (9). Thus, we are left with the
task of upper bounding the double derivatives. We have

∂im(x) = ∂i(g(Fβ(x1, . . . , xk))) = g′(Fβ(x1, . . . , xk)) · ∂Fβ
∂xi

and hence

∂i,jm(x) = ∂i,j(g(Fβ(x1, . . . , xk))) = g′′(Fβ(x1, . . . , xk)) · ∂Fβ
∂xi

∂Fβ
∂xj

+ g′(Fβ(x1, . . . , xk)) · ∂
2Fβ

∂xi∂xj
.
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Applying Facts 15 and 16, it follows that

k∑
i,j=1

|E[∂i,jm(Zt)]| = O(‖g′′‖∞ + ‖g′‖∞ · β).

Hence combining (23), (24), and the above, and recalling that ∆ ≤ 9ε′ (see Observation 6),
we get that

|E[g(Fβ(X1, . . . ,Xk))]−E[g(Fβ(Y1, . . . ,Yk))]| ≤ O(||g′′||∞ · ε′ + ||g′||∞ · ε′ · β),

giving the first claim of the theorem. For the second claim, using Fact 14, it follows that

|E[g(max
j∈[k]

(Xj))]−E[g(max
j∈[k]

(Xj))]| ≤ O(||g′′||∞ · ε′ + ||g′||∞ · ε′ · β) + ||g′||∞ ·
ln k
β

≤ O
(
||g′||∞ ·

(
ε′ · β + (ln k)/β

)
+ ||g′′||∞ · ε′

)
.

The second claim of the theorem now follows by setting β =
√

(ln k)/ε′.

6.3 Formalizing step (3’) of the intuitive sketch: anticoncentration of
max of non-centered Gaussians

We recall the following useful anticoncentration result from [16], which follows almost directly
from a result of Nazarov [27]:

I Lemma 19 (Lemma 3.4 of [16]: anticoncentration of multidimensional Gaussian). Let
W 1, . . . ,W k be unit vectors in Rn. For all ~θ ∈ Rk and all λ > 0, we have

Pr
G←N (0,1)n

[
WG ∈ Stripλ,k,~θ

]
= O(λ

√
log k). (25)

This can be viewed as a k-dimensional analogue of Theorem 3 from [6], which gives
an anticoncentration bound on max{W 1 ·G, · · ·W k ·G} (and also the above lemma is for
non-centered Gaussians, whereas Theorem 3 of [6] is about centered Gaussians). As an
immediate consequence of Lemma 19 we obtain the following:

I Theorem 20 (anticoncentration of max of non-centered Gaussians). Fix any ~θ ∈ Rk. For all
λ > 0 and all t ∈ R it holds that

Pr[max
j∈[k]

(W j ·G(n) − θj) ∈ [t− λ, t]] = O(λ
√

log k).

6.4 Formalizing step (4’) of the intuitive sketch: Passing from a
smooth approximator of sign(·) to sign(·)

In this section we prove the following theorem, which upper bounds the Kolmogorov distance
between the random variables maxj∈[k] (W j ·G(n) − θj) and maxj∈[k] (V j ·G(d) − θj):

I Theorem 21. Let W 1, . . . ,W k be unit vectors in Rn, V 1, . . . , V k be vectors in Rd satisfying
(8). For all ~θ ∈ Rk, the following bound holds:

dK

(
max
j∈[k]

(W j ·G(n) − θj),max
j∈[k]

(V j ·G(d) − θj)
)
≤ O(ε′ log2 k)1/3.
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This is equivalent to showing that for all ~θ ∈ Rk and all t ∈ R, we have

|Pr[max
j∈[k]

(W j ·G(n) − θj) ≤ t]−Pr[max
j∈[k]

(V j ·G(d) − θj) ≤ t]| ≤ O(ε′ log2 k)1/3. (26)

Our argument follows the proof of Theorem 2 in [6]; the main idea is to combine Theorem 17,
where g is a smooth approximation of the sign function, with Theorem 20, which establishes
anticoncentration of the max of non-centered Gaussians. The particular g ∈ C2(R), g : R→
[−1, 1] which we use is the following smooth approximator of the sign function:

g(z) =


−1 z ≤ −1
−60

∫ 1
(z+1)/2 s

2(1− s)2ds+ 1 −1 < z < 1
1 z ≥ 1.

Given parameters x ∈ R, β > 0, and δ > 0, define the function gx,β,δ(z) = g((z − x− eβ)/δ).
We record a simple claim that can be verified by direct calculation:

B Claim 22. For any x ∈ R, β > 0 and δ > 0, the following hold:
1. ||g′x,β,δ||∞ = ||g′||∞/δ ≤ O(1/δ),
2. ||g′′x,β,δ||∞ = ||g′||∞/δ2 ≤ O(1/δ2),
3. 1(z ≤ x+ eβ) ≤ gx,β,δ(z) ≤ 1(z ≤ x+ eβ + δ), for all z ∈ R.
We now proceed to prove (26). As before, for ease of presentation define the random variables
Xi = W i ·G(n) − θi and Yi = V i ·G(d) − θi, i ∈ [k].

For arbitrary x ∈ R, β > 0, and δ > 0, we have

Pr
[

max
j∈[k]

Xj ≤ x
]
≤ Pr[Fβ(X) ≤ x+ eβ ] (Claim 14)

≤ E[gx,β,δ(Fβ(X))] (Claim 22)

≤ E[gx,β,δ(Fβ(Y))] +O

(
||g′′||∞ ·

ε′

δ2 + ||g′||∞ ·
ε′β

δ

)
(Theorem 17, Claim 22)

≤ Pr[Fβ(Y) ≤ x+ eβ + δ] +O

(
ε′

δ2 + ε′β

δ

)
(Claim 22)

≤ Pr[max
j∈[k]

Yj ≤ x+ eβ + δ] + eβ +O

(
ε′

δ2 + ε′β

δ

)
(Claim 14)

= Pr[max
j∈[k]

Yj ≤ x] + (Pr[max
j∈[k]

Yj ≤ x+ eβ + δ]−Pr[max
j∈[k]

Yj ≤ x])+

eβ +O

(
ε′

δ2 + ε′β

δ

)
≤ Pr[max

j∈[k]
Yj ≤ x] +O((eβ + δ)

√
log k) + eβ +O

(
ε′

δ2 + ε′β

δ

)
(Theorem 20)

Setting β = (log k)/δ and δ = O(ε′
√

log k)1/3 completes the proof of (26).

6.5 Formalizing step (5’) of the intuitive sketch: Re-interpreting the
Kolmogorov distance bound as a PRG

We conclude the proof of our PRG construction from the bound proved in Theorem 21; recall
that this gives CDF-closeness at every point in R, specifically

dK(max
j∈[k]

(W j ·G(n) − θj),max
j∈[k]

(V j ·G(d) − θj)) ≤ O(ε′ log2 k)1/3

Specializing this to CDF-closeness at the point 0, we get that∣∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[V j ·G(d) ≤ θj for all j ∈ [m]]
∣∣∣ ≤ O(ε′ log2 k)1/3.
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Now we recall that, from Section 4.2, all but a δ′ = ε fraction of outcomes V 1, . . . , V k of
Vj = W jAT satisfy (8). Hence we have∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[W jAT ·G(d) ≤ θj for all j ∈ [m]]

∣∣ ≤ O(ε′ log2 k)1/3 + ε,

and recalling that a draw Z from our generator Gen is Z = ATG(d), we get that this is
equivalent to∣∣∣Pr[W j ·G(n) ≤ θj for all j ∈ [m]]−Pr[W j · Z ≤ θj for all j ∈ [m]]

∣∣∣ ≤ O(ε′ log2 k)1/3 +ε.

Setting ε′ = ε3/ log2 k completes the proof of correctness of our PRG construction.

7 Application of our PRG: Deterministic approximate counting for
functions of LTFs over {−1, 1}n

In this section we prove Theorems 4 and 5, which we state with precise bounds as two parts
of the following theorem.

I Theorem 23 (Restatements of Theorem 4 and 5).
1. (Arbitrary functions of LTFs). There is a deterministic algorithm which, given as input k

LTFs h1, . . . , hk over {−1, 1}n, an explicit function g : {−1, 1}k → {−1, 1}, and an error
parameter ε > 0, runs in poly(n) · 2Õ( k15

ε12 ) time and outputs a value ṽ ∈ [0, 1] such that
|ṽ − v| ≤ ε, where v is the fraction of points in {−1, 1}n that satisfy g(h1, . . . , hk).

2. (Intersections of LTFs). There is a deterministic algorithm which, given as input k LTFs
h1, . . . , hk over {−1, 1}n and an error parameter ε > 0, runs in poly(n) · 2poly(log k,1/ε)

time and outputs a value ṽ ∈ [0, 1] such that |ṽ − v| ≤ ε, where v is the fraction of points
in {−1, 1}n that satisfy h1(x) ∧ · · · ∧ hk(x).

We prove Part 1 first since it is simpler and relies on (extensions of) known tools such
as regularity lemmas and invariance principles. In particular, Part 1 requires an invariance
principle for arbitrary functions of LTFs. Such an invariance principle was proved in [14];
we provide an alternate proof of the invariance principle that we require in Appendix C,
which we believe could be of independent interest. For Part 2, the main ingredients are
an invariance principle of [16] for intersections of LTFs and a “multi-regularity lemma” for
k-tuples of LTFs due to [14] along with a subtle application of the PRG for intersections of
LTFs due to [28].

7.1 A useful notion: Regularity
Given an LTF h(x) = sign(w1x1 + · · ·+ wnxn − θ) and a parameter 0 < τ < 1, we say that
h is τ -regular if

n∑
j=1

w4
j ≤ τ2 · (

n∑
j=1

w2
j )2.

Intuitively, τ -regularity (when τ is small) captures the property that no weight in w1, . . . , wn
has magnitude which is large relative to “the overall scale of the weights.” Regularity is
a useful condition because if w is a τ -regular weight vector with two-norm 1, then by the
Berry-Esseen theorem [1, 10] the CDF of the real random variable w ·X (where X is uniform
over {−1, 1}n) is τ -close to the CDF of an N (0, 1) Gaussian. Thus the Berry-Esseen theorem
implies that regular LTFs will “behave similarly” whether they are given uniform inputs
X ← {−1, 1}n or Gaussian inputs G ← N (0, 1)n; in this sense, it can be viewed as an
invariance principle for a single LTF.
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7.2 Proof of Part 1 of Theorem 23: Arbitrary functions of k LTFs
The first principal ingredient that we use is an invariance principle for arbitrary functions of
LTFs. As mentioned earlier, such a result was established in [14] via a “Lindeberg-method”
type proof. In Appendix C we give an alternate proof (which is very different from the proofs
of [14, 16]) of the version that we require, which is stated below:

I Theorem 24 (Invariance principle for arbitrary functions of k LTFs). Let h1, h2, . . . , hk be
τ -regular LTFs and let F (x) = g(h1(x), · · · , hk(x)) where g : {−1, 1}k → {−1, 1} may be
any function. Then∣∣∣∣ Pr

X←{−1,1}n
[F (X) = −1]− Pr

Z←N (0,1)n
[F (Z) = −1]

∣∣∣∣ ≤ O(k3/2τ
√

log(k/τ)). (27)

Combining Theorem 2 (our PRG for arbitrary functions of LTFs over Gaussian space)
and Theorem 24, an algorithm that simply enumerates over all the seeds of our PRG yields
the following deterministic approximate counting algorithm for intersections of sufficiently
regular LTFs:

I Corollary 25 (Deterministic approximate counting for arbitrary functions of regular LTFs).
There is a deterministic algorithm with the following performance guarantee: Given ε >

0, a collection h1, . . . , hk of LTFs over {−1, 1}n each of which is τ -regular where τ =
O( ε

k3/2
√

(log k)(log k
ε )

), and a function g : {−1, 1}k → {−1, 1}, the algorithm runs in time

poly(n) · 2Õ( k15
ε12 ) and outputs a value ṽ ∈ [0, 1] such that |ṽ − v| ≤ ε, where v is the fraction

of points in {−1, 1}n that satisfy g(h1, . . . , hk).

We next extend Corollary 25 to obtain a deterministic approximate counting algorithm
for arbitrary functions of k general LTFs using a slight extension of the “multi-regularity
lemma” established in [14] (see Theorem 5.4 of the ArXiV version, available at [15]) for
k-tuples of general LTFs.

While not precisely stated in these terms, we recall that this multi-regularity lemma,
roughly speaking, asserts the following: Given a k-tuple of LTFs h1, . . . , hk, there is a
relatively shallow non-adaptive decision tree on the variables such that for all i ∈ [k], one of
the two following two possibilities hold:
1. For every leaf ρ of the decision tree (corresponding to a restriction), the restricted LTF

hi � ρ is regular.
2. With high probability, the restricted LTF hi � ρ is close to a constant.
Similar to Lemma 18 of [7], the multi-regularity lemma of [14] can be implemented as a
deterministic algorithm. In fact, because the decision tree is non-adaptive, the set of variables
appearing in the internal nodes can be computed in time polynomial in depth of the decision
tree (as opposed to exponential in the depth which is the size of the tree). This is because at
each node, in order to choose which variable from x1, . . . , xn should be placed at that node it
suffices to compute the influence of each variable in each of the k restricted linear forms, and
this is a straightforward deterministic computation. We remark that the ability to compute
the tree in polynomial time (in terms of its depth) is not crucial for this subsection. However,
it is vital for the application in the next subsection – deterministic counting for intersections
of general LTFs. Viewed as an algorithmic procedure from this perspective, Theorem 5.4 of
[15] yields the following in our setting:

I Lemma 26 (Algorithmic regularity lemma for LTFs, general k, based on Theorem 5.4 of [15]).
There is an algorithm ConstructTree with the following properties: Let h1, . . . , hk be LTFs
over {−1, 1}n. Algorithm ConstructTree (which is deterministic) receives h1, . . . , hk and
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0 < τ, γ < 1/4 as input, runs in time poly(n,Dk(τ, γ)) and outputs a set of variables S ⊆ [n]
and a k-tuple of labels (label1, . . . , labelk) ∈ {R, J}k such that the following holds:
1. |S| ≤ Dk(τ, γ) where

Dk(τ, γ) := k · 1
τ
· poly

(
log 1

γ

)
.

2. For each leaf ρ and i ∈ [k], if labeli = R, then the LTF hi � ρ is τ -regular.
3. For each i ∈ [k], if labeli = J , then the LTF h′i obtained by zeroing the coordinates outside

S satisfies Prx∈{−1,1}n [hi(x) 6= h′i(x)] ≤ γ. In particular, observe that for any leaf ρ,
h′i � ρ is fixed at either +1 or −1.

I Remark 27. The theorem above can be obtained by essentially observing the proof of
Theorem 5.4 in [15]. In particular, the S in the above theorem corresponds to the H0 in their
theorem. Similarly, the coordinates i ∈ [k] which are labeled ‘R’ (resp. labeled ‘J ’) in our
theorem correspond exactly to the coordinates i ∈ [d] which fall in the first case (resp. second
case) of Theorem 5.4 in [15]. To get the guarantee for the third case, we define h′i as follows.
Let hi(x) = sign(

∑
j wi,jxj−θj). We then define h′i(x) = sign(

∑
j∈S wi,jxj−θj), i.e., simply

erase the coordinates outside of S. The upper bound on the quantity Prx∈{−1,1}n [hi(x) 6=
h′i(x)] can essentially be derived from the event whose probability is upper bound in the
centered equation in item (2) of Theorem 5.4 of [15].

We now extend the algorithm in Corollary 29 to handle arbitrary functions of k general
LTFs using the algorithmic regularity lemma for multiple LTFs given in Lemma 26. The
parameter“δ” in Lemma 26 is set to ε and the parameter “γ” is set to ε/k, and the parameter
“τ” is set to O( ε

k3/2
√

(log k)(log k
ε )

) so that Corollary 25 can be applied. Constructing the
decision tree in the first step of the algorithm for general LTFs takes time poly(n,Dk(τ, ε, δ)) =
poly(n, k, 1/ε). In the second step of the algorithm for general LTFs, for each leaf ρ in the
decision tree,

If any of the k labels are “fail” the contribution from that leaf is 0;
If all k labels are bits b1, . . . , bk ∈ {−1, 1}, then the contribution from that leaf is
2−Dk · 1[g(b1, . . . , bk) = −1];
If k − t of the labels (for notational convenience, say these are the ones corresponding to
ht+1, . . . , hk) are bits bt+1, . . . , bk and the remaining t labels (say the ones corresponding
to h1 � ρ, . . . , ht � ρ) are “regular,” we run the approximate counting algorithm for the
regular case from Corollary 25 to compute an ±ε-accurate estimate (call it vρ) of the
fraction of satisfying assignments of g((h1 � ρ) ∧ · · · ∧ (ht � ρ), bt+1, . . . , bk), and the
contribution from that leaf is 2−Dk · vρ.

The overall running time for the algorithm is at most poly(n)· (number of leaves) · (running
time of Corollary 25), which is poly(n) · 2Õ(k3/2/ε)+Õ(k15/ε12). To establish correctness, we
observe that the final value ṽ may be viewed as a sum of contributions across all the leaves.
Property 3 of Lemma 26 and the setting of δ = ε in Step 1 ensures that leaves that have any
“fail” label contribute a total of O(ε) to the error |v − ṽ|. The setting of the γ parameter
to be ε/k ensures that leaves containing any +1 label, or having all −1’s as their labels,
collectively contribute a total of at most O(ε) to |v − ṽ|. Finally, Theorem 2 ensures that
leaves as in the last bullet above contribute a total of O(ε) to |v − ṽ|. This concludes the
proof of Theorem 23.
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7.3 Proof of Part 2 of Theorem 23: Intersections of k LTFs
We begin by recalling the main structural result of [16], which extends the Berry-Esseen
theorem to intersections of LTFs (also known as polytopes). (Recall that we view −1 as
“true” and +1 as “false.”)

I Theorem 28 (Theorem 3.1 of [16]: invariance principle for polytopes). Let h1, h2, . . . , hk be
τ -regular LTFs and let F (x) = h1(x) ∧ · · · ∧ hk(x). Then∣∣∣∣ Pr

U(n)←{−1,1}n
[F (U(n)) = −1]− Pr

G(n)←N (0,1)n
[F (G(n)) = −1]

∣∣∣∣ ≤ C(log k)8/5(τ log(1/τ))1/5

where C is an absolute constant.

Combining Theorem 3 (our PRG for intersections of LTFs over Gaussian space) and
Theorem 28, an algorithm that simply enumerates over all the seeds of our PRG yields
the following deterministic approximate counting algorithm for intersections of sufficiently
regular LTFs:

I Corollary 29 (Deterministic approximate counting for intersections of regular LTFs). There is
a deterministic algorithm with the following performance guarantee: Given ε > 0 and a collec-
tion h1, . . . , hk of LTFs over {−1, 1}n, each of which is τ -regular where τ = O( ε5

log8(k)·log( log k
ε )

),

the algorithm runs in time poly(n)·2Õ( log6 k

ε6 ) and outputs a value ṽ ∈ [0, 1] such that |ṽ−v| ≤ ε,
where v is the fraction of points in {−1, 1}n that satisfy h1 ∧ · · · ∧ hk.

The above algorithm works only for intersections of sufficiently regular LTFs. We will
now extend Corollary 29 to obtain a deterministic approximate counting algorithm for
intersections of k general LTFs using two tools. The first is the multi-regularity lemma
(Lemma 26) from the previous subsection. The second ingredient we require is the recent
construction of a PRG for intersection of LTFs by O’Donnell, Servedio and Tan [28] where
they construct a PRG for the uniform distribution on {−1, 1}n which fools intersections
of k LTFs with seed length (logn) · poly(log k, 1/ε). More precisely, we have the following
theorem from [28].

I Theorem 30. There is an efficiently computable ε-PRG GOST : {−1, 1}s → {−1, 1}n for
intersections of k LTFs over {−1, 1}n with s = (logn) · poly(log k, 1/ε).

Observe that while GOST simultaneously achieves polylogarithmic dependence on both n and
k, to get a deterministic approximate counting algorithm with the kind of guarantee we want,
we would need a seed length of the form logn+ poly(log k, 1/ε). While we will crucially use
GOST, we will essentially bootstrap it with the algorithms from Corollary 29 and Lemma 26
as follows.

Given as input h1, . . . , hk and a desired accuracy parameter ε, the algorithm proceeds
as follows:
1. Run the algorithm ConstructTree on the LTFs h1, . . . , hk with its “γ” parameter as

ε/4k and “τ” parameter as O( ε5

log8(k)·log( log k
ε )

).
2. Let S be the set of variables returned by the algorithm ConstructTree. We set nOST = |S|,

εOST = ε/4 and kOST = k.
3. Let us run GOST with parameters nOST, εOST and kOST. Let sOST be the seed length. Let
OOST ⊆ {−1, 1}S denote the range of GOST. We treat each ρ ∈ OOST as an assignment
for the coordinates in S.
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4. For each ρ ∈ OOST, compute vρ as follows: If there is any i ∈ [k] such that labeli = J and
h′i � ρ = −1, then set vρ = 0. Otherwise, observe that for all i ∈ [k] such that labeli = R,
hi � ρ is τ -regular (for τ specified earlier). Run the algorithm from Corollary 29 to
compute Pr[∧i:labeli=R(hi � ρ)]. Let the output be vρ.

5. Output the value Eρ∈OOST [vρ].

The analysis of the running time of the above routine is straightforward: Observe
that for our choice of τ and γ, the value Dk(τ, γ) (from Lemma 26) is Õ(k · ε−5). The
running time of the first step, i.e., ConstructTree is bounded by poly(n,Dk(τ, γ)). Now,
observing that |S| ≤ Dk(τ, γ), from Theorem 30, we get that sOST = poly(log k, ε−1) and thus
|OOST| = 2poly(log k,ε−1). For each ρ ∈ OOST, the running time of the algorithm from Lemma 26
is bounded by poly(n)·2Õ(log6 k/ε6). Thus, the total running time is |OOST|·poly(n)·2Õ(log6 k/ε6)

which is poly(n) · 2poly(log k,1/ε).
We now move to the proof of correctness of the algorithm. Observe that if labeli = J for

any i ∈ [k], then by guarantee of Lemma 26, Prx∈{−1,1}n [hi(x) 6= h′i(x)] ≤ γ. Thus, if we
define AJ = {i ∈ [k] : labeli = J} and AR = {i ∈ [k] : labeli = R},∣∣Prx∈{−1,1}n [h1(x)∧ . . .∧hk(x)]−Prx∈{−1,1}n [∧i∈AJ

h′i(x) ∧i∈AR
hi(x)]

∣∣ ≤ kγ = ε

4 . (28)

Now, consider any assignment z ∈ {−1, 1}[n]\S of the variables in [n] \ S. Then, using the
guarantee of GOST, we get∣∣Prx∈{−1,1}S [∧i∈AJh

′
i � z(x) ∧i∈AR hi � z(x)]−Prρ∈OOST [∧i∈AJh

′
i � z(ρ) ∧i∈AR hi � z(ρ)]

∣∣ ≤ ε

4 .

Averaging over all possible values of z ∈ {−1, 1}[n]\S and combining with (28), we get

∣∣Prx∈{−1,1}n[h1(x)∧. . .∧hk(x)]−Prz∈{−1,1}[n]\S ,ρ∈OOST [∧i∈AJ
h′i(z, ρ) ∧i∈AR

hi(z, ρ)]
∣∣ ≤ ε

2 .

(29)

Now, observe that for any ρ ∈ OOST, h′i(z, ρ) = h′i(ρ) (since h′i does not depend on the
variables outside S). Further, for each i ∈ AR, the LTF hi � ρ is τ -regular. Consequently, for
each choice of ρ, Step 4 of our routine outputs vρ such that∣∣Prz∈{−1,1}[n]\S [∧i∈AJ

h′i(z, ρ) ∧i∈AR
hi(z, ρ)]− vρ

∣∣ ≤ ε

2 .

Averaging it over all choices of ρ, we get that output in the final step Eρ∈OOST [vρ] satisfies∣∣Eρ∈OOST [vρ]−Prz∈{−1,1}[n]\S ,ρ∈OOST [∧i∈AJ
h′i(z, ρ) ∧i∈AR

hi(z, ρ)]
∣∣ ≤ ε

2 .

Combining this with (29) finishes the proof.
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A Lower bound on seed length for PRG fooling arbitrary functions of
k LTFs

The following simple claim gives an Ω(logn) lower bound even for k = 1:

B Claim 31. Let G be a 0.49-PRG for the class of all LTFs over Gaussian space N (0, 1)n.
Then the seed length of G is at least blognc.

Proof. Suppose that G is a generator with seed length s ≤ blognc−1. Let S = {v1, . . . , vm} ⊂
Rn, |S| ≤ n/2 be the set of all points G({−1, 1}s). Since m < n there is a unit vector w ∈ Rn
which hs orthogonal to all of v1, . . . , vm; fix such a w. Fix any value κ = on(1). It is easy to
see that the LTF f(x) = sign(w · x− κ) has PrG(n)←N (0,1)n [f(G(n)) = 1] = 1

2 − on(1), but
each of v1, . . . , vm has sign(w · x− κ) = sign(−κ) = −1, so Pr[f(G(U(s))) = 1] = 0. Hence
G cannot be a 0.49-PRG for the class of all LTFs over Gaussian space. C

B Claim 32. Let k ≤ n and let G be a 0.49-PRG for the class of all functions g(h1, . . . , hk) :
Rn → {−1, 1}n where g : {−1, 1}k → {−1, 1} and each hi is an LTF. Then the seed length
of G is at least k.

Proof. Suppose that G is a generator with seed length s ≤ k − 1. Let S = {v1, . . . , vm} ⊂
Rn, |S| ≤ 2k−1 be the set of all points G({−1, 1}s). Say that b ∈ {−1, 1}k is good if some
j ∈ [m] satisfies sign(vji ) = bi for all i ∈ [k] (i.e. b is the sign-pattern of the first k coordinates
of some string in S). Let g : {−1, 1}k → {−1, 1} be any function which outputs −1 on
each good string in {−1, 1}k and outputs 1 on exactly 2k−1 strings in {−1, 1}k (such a g
must exist since |S| ≤ 2k−1 and hence there are at most 2k−1 good strings in {−1, 1}k). Let
hi(x) be the LTF sign(xi) for each i ∈ [k]. Then for f(x) = g(h1(x), . . . , hk(x)), we have
Pr[f(G(U(s))) = 1] = 0 but Pr[f(G(n)) = 1] = 1/2. Hence G cannot be a 0.49-PRG for the
class of all functions of k LTFs over Gaussian space. C

https://arxiv.org/abs/1808.04035


E. Chattopadhyay, A. De, and R. A. Servedio 4:29

B Simulating draws from the Gaussian distribution

In the analysis of our PRGs for arbitrary functions of k LTFs and for intersections of k
LTFs, we assumed that we can sample from d-dimensional Gaussians, but to do this with
perfect fidelity clearly requires infinitely many random bits. In this section we show that
O(d log(kd/ε)) truly random bits suffice to produce d-dimensional “approximate Gaussian”
distributions that suffice for our applications.

IDefinition 33. We say that a random variable G′ on R is a δ-approximate Gaussian random
variable if there is a standard (correlated) Gaussian Ĝ such that Pr[|G′ − Ĝ| > δ] < δ.

We recall a lemma proved by Kane [22] which generates such approximate Gaussians in a
randomness efficient way. It is based on the Box-Muller transform.

I Lemma 34 ([22]). There is an explicit construction of a δ-approximate Gaussian random
variable using O(log(1/δ)) bits of randomness.

Let Gd be a N (0, 1)d Gaussian. Let Ĝ(d) denote a coordinate-wise independent distribu-
tion in which the i-th coordinate Ĝ(d)

i is a δ-approximate Gaussian random variable with
respect to G(d)

i as given by Lemma 34. We set (with foresight) the parameter δ = ε/(k
√
d).

By Lemma 34, a draw of Ĝ(d) can be generated using O(d log(kd/ε)) bits of randomness.
Below we prove that Ĝ(d) can be used instead of Gd in our PRGs, at the cost of an additional
additive ε error for our PRG.

Let X = VG(d) − ~θ and X̂ = V Ĝ(d) − θ. We prove that the “union-of-orthants”
distance dUO(X, X̂) between X and X̂ (see (18)) is at most ε. This directly implies that the
approximation works since, as observed in Section 5.3, for any function g : {−1, 1}k → {−1, 1},
we have∣∣∣Pr[g(sign(X1), . . . , sign(Xk)) = 1]−Pr[g(sign(X̂1), . . . , sign(X̂k)) = 1]

∣∣∣ ≤ dUO(X, X̂).

In order to prove that dUO(X, X̂) ≤ ε, we recall some definitions from Section 5.3. Recall
that

Br :=
{
x ∈ Rk : |xi| ≤ r for some i ∈ [k]

}
is the region of all points in Rk whose L∞-distance from any orthant boundary point is at
most r. Set r = 2δ

√
d. For any union of orthants O, we partition O into Obd := O ∩ Br

(the points in O that lie close to the orthant boundaries) and Oin := O \Br (the points in O
that lie far away from the orthant boundaries).

We have

|Pr[X ∈ O]−Pr[X̂ ∈ O]| ≤ Pr[X ∈ Obd] + |Pr[X ∈ Oin]−Pr[X̂ ∈ O]|.

By Lemma 34 and a union bound, it follows that with probability at least 1− kδ, |G(d)
i −

Ĝ(d)
i | ≤ δ for each i ∈ [k]. Thus, with probability at least 1− kδ, for each i ∈ [k], we have

|Xi − X̂i| = V i · (G(d)
i − Ĝ(d)

i ) ≤ ||V i||2||G(d)
i − Ĝ(d)

i ||2 ≤ δ
√
d.

As a direct consequence, we have that Pr[X̂ ∈ O|X 6∈ Oin]| ≤ kδ and Pr[X̂ ∈ O|X ∈ Oin] ≥
1− kδ. Thus,

Pr[X̂ ∈ O] ≤ Pr[X̂ ∈ O|X ∈ Oin] ·Pr[X ∈ Oin] + Pr[X̂ ∈ O|X 6∈ Oin] ·Pr[X 6∈ Oin]
≤ Pr[X ∈ Oin] + kδ,
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and

Pr[X̂ ∈ O] ≥ Pr[X̂ ∈ O|X ∈ Oin] ·Pr[X ∈ Oin]
≥ (1− kδ) Pr[X ∈ Oin] ≥ Pr[X ∈ Oin]− kδ.

Hence, |Pr[X ∈ Oin]−Pr[X̂ ∈ O]| ≤ kδ.
Finally note that, as estimated in Section 5.3, using anti-concentration of Gaussians,

Pr[X ∈ Obd] ≤ O(kr).

Combining the above estimates, we have

|Pr[X ∈ O]−Pr[X̂ ∈ O]| ≤ Pr[X ∈ Obd] + |Pr[X ∈ Oin]−Pr[X̂ ∈ O]|

≤ O(kδ
√
d) = O(ε),

which concludes our proof.

C Proof of Theorem 24: An invariance principle for arbitrary
functions of LTFs

C.1 Our starting point: a Wasserstein distance bound
Our proof of Theorem 24 closely parallels the arguments underlying our PRG for arbitrary
functions of k LTFs that were given in Section 5. However, for technical reasons we will now
be using the (non-quadratic) Wasserstein distance. We recall the definition of this distance
measure between distributions that we will use. (As was the case earlier for quadratic
Wasserstein distance, there is an equivalent formulation in terms of Lipschitz test functions,
but we will not need this alternative formulation.)

I Definition 35. For any two distributions X and Y over Rk, the Wasserstein distance
between X and Y is defined to be

dW (X,Y) = inf
(X̂,Ŷ)

(E[‖X̂− Ŷ‖]),

where the infimum is taken over all couplings (X̂, Ŷ) of X and Y.

As in the analysis of our PRG for arbitrary functions of k LTFs, we need an upper bound
on the Wasserstein distance between the two random variables of interest as a starting point.
In Section 5 the two relevant random variables were both multi-dimensional Gaussians and
the desired (quadratic) Wasserstein closeness was given by Proposition 8. In the context of
Theorem 24, the two relevant random variables are (i) a sum of independent vector-valued
random variables and (ii) the Gaussian with matching mean and covariance, so it is natural
to turn to the literature on central limit theorems for sums of vector-valued random variables
for the desired upper bound on Wasserstein distance.

A range of central limit theorems for sums of independent vector-valued random variables
have been established in the literature, but we are not aware of one which can be used “out of
the box” for our purposes. Valiant and Valiant [32] gave a central limit theorem which upper
bounds the Wasserstein distance between a sum of n vector-valued random variables and the
corresponding Gaussian, but their quantitative bound has a logn factor which would spoil
our desired final result. Zhai [33] gave a variant of the [32] CLT, but only for the setting of
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i.i.d. vector-valued random variables, whereas our summands are not identically distributed.
Bonis [3] gave a sharpening of Zhai’s bound, but it assumes that each summand random
variable has identity covariance, which need not hold for us. While we do not know of any
CLTs in the literature which directly yield our desired starting point, below we show how a
“bucketing” scheme can be applied to the Valiant-Valiant CLT to yield a CLT of exactly the
type that we need (where there is no dependence on n in the upper bound).

We begin by recalling the Valiant-Valiant CLT:

I Theorem 36 (Valiant-Valiant CLT for Wasserstein distance [32]). Let Z1, . . . ,Zn be inde-
pendent distributions in Rk with mean 0 and ||Zi||2 ≤ β. Then, writing Σ to denote the
covariance matrix of Z1 + · · ·+ Zn, we have

dW (
n∑
a=1

Za,N (0,Σ)) ≤ βk(2.7 + 0.83 logn).

We use this to prove the following:

I Proposition 37. Let h1, h2, . . . , hk be τ -regular LTFs, hi(x) = sign(W i
1x1 + · · ·+W i

nxn−θ)
where we have normalized so that each vector W i = (W i

1, . . . ,W
i
n) has two-norm 1. Let W

be the k×n matrix with (i, j) entry W i
j , and for ` ∈ [n] let W` denote the column vector with

entries W 1
` , . . . ,W

k
` . For ` ∈ [n] let Z` denote the k-dimensional random variable Z` = x`W`

where x = (x1, . . . ,xn) is uniform over {−1, 1}n and let Z = Z1 + · · ·+ Zn. Let G′ be the
k-dimensional random Gaussian vector G′ = WG where G is distributed as N (0, 1)n. Then

dW (Z,G′) ≤ O(k2 log(k) · τ2 + k). (30)

Further, if τ < 10/
√
k, then the following bound also holds:

dW (Z,G′) ≤ O(k2τ2 log(k/τ)). (31)

(We note that while (30) does not provide a very strong upper bound on Wasserstein distance,
for suitably small values of τ the bound (31) does give a useful upper bound, and it is this
bound that we will employ in the next subsection.)

Proof. We begin by observing that the random variables Z1, . . . ,Z` are independent, have
mean zero (indeed each has support size two, on the two points W` and −W`), and lie in
Rk. However, at this point, just having the condition that the rows of W are τ -regular
and have two-norm 1 doesn’t provide much useful information about the two-norms of the
columns W`. Our approach is to bucket the columns according to the two-norms and use the
Valiant-Valiant CLT (Theorem 36) separately on each of these buckets. We now proceed to
give more details.

Let Ai be the subset of those ` ∈ [n] such that 2−i−1 ≤ ‖W`‖2 ≤ 2−i, i.e.

2−2i−2 ≤ (W 1
` )2 + · · ·+ (W k

` )2 ≤ 2−2i.

Fix an ` ∈ [n] and consider the column vector W` = (W 1
` , . . . ,W

k
` ). We have that each

|W i
` | ≤ τ (using the τ -regularity of each row and the fact that each row is normalized to

have 2-norm 1). Thus, we have 0 ≤ (W 1
` )2 + · · ·+ (W k

` )2) ≤ kτ2. It follows that Ai is empty
if i < i0 := (log(1/kτ2))/2− 1. (Note that if k is large and τ is not very small then i0 may
be a negative value; this will come up below.)
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The sum of squares of all Wi,j is k, so each Ai can have at most k · 22i+2 = 4k22i many
elements. Fix an i such that Ai is nonempty (so i ≥ i0). Each ` ∈ Ai has ‖W`‖2 ≤ 2−i, and
hence applying the Valiant-Valiant CLT to

∑
`∈Ai

Z` (setting its parameter “β” to 2−i) gives

dW

(∑
`∈Ai

Z`,N (0,Σ(i))
)
≤ 2−i · k · (2.7 + log |Ai|) ≤ 2−i · k · (O(1) + log k + 2i)

= O(k log(k) · 2−i + k · i · 2−i).

Now we use the fact that if X,Y are two independent random variables and U,V are
two independent random variables, then

dW (X + Y,U + V) ≤ dW (X,U) + dW (Y,V)

(this is easy to see from the coupling-based definition that we have given for dW ). Applying
this, where the sum is over all i ≥ i0, since

∑
i

∑
`∈Ai

Z` = Z and
∑
iN (0,Σ(i)) = G′, we

get that

dW (Z,G′) ≤
∑
i≥i0

O(k log(k) · 2−i) +
∑
i≥i0

O(k · i · 2−i).

Let us upper bound this sum, keeping in mind that log(1/kτ2) may be negative. The first
sum is at most∑

i≥i0

O(k log(k) · 2−i) ≤ O(k2 log(k) · τ2).

The second sum is∑
i≥i0

O(k · i · 2−i)

which needs to be considered with a bit of care since i0 may be negative. Summing over any
negative values of i obviously gives a negative contribution. Summing over positive values of
i gives at most O(k) (and we note that indeed the contribution when i = 1 is Θ(k)). So the
total sum is at most

O(k2 log(k) · τ2 + k).

We note that either of the two summands may dominate depending on the relation
between τ and k). However, if we assume that τ < 10/

√
k (so i0 is a positive number), then

the upper bound on the second sum above becomes O(k2τ2 log(1/kτ2)), which is at most
O(k2τ2 log(1/τ)), and we can bound the whole quantity by O(k2τ2 log(k/τ)) as claimed. J

C.2 The invariance principle for arbitrary functions of LTFs
The CLT in Proposition 37 gives closeness in (non-quadratic) Wasserstein distance. As in
Section 5, using arguments from [5] this can be translated into closeness in union-of-orthants
distance. The details of the arguments are almost identical to the analysis from [5] since now
(as in that work) one of the random variables is a sum of independent vector-valued random
variables, the other is Gaussian, and the relevant Wasserstein distance under consideration is
the non-quadratic Wasserstein distance. In a bit more detail, the analogue of (20) is now
established, as in [5], using the Berry-Esseen theorem and the fact that each linear form
is τ -regular, yielding Γ ≤ O(k(r + τ)). The upper bound on Wasserstein distance that was



E. Chattopadhyay, A. De, and R. A. Servedio 4:33

provided by Theorem 7 in the [5] analysis is now provided by our Proposition 37; to be more
precise, the analogue to the next-to-last centered equation in the proof of Theorem 5 of [5] in
our setting is that we have r∆/2 ≤ dW (Z,G′) which is O(k2τ2 log(k/τ)) by Proposition 37.
Optimizing the choice of r to make Γ + ∆ as small as possible, we obtain the following (we
refer the reader to the proof of Theorem 5 of [5] for more details):

I Theorem 38. Let h1, h2, . . . , hk be τ -regular LTFs, hi(x) = sign(W i
1x1 + · · ·+W i

nxn − θ)
where we have normalized so that each vector W i = (W i

1, . . . ,W
i
n) has two-norm 1. Let W

be the k×n matrix with (i, j) entry W i
j , and for ` ∈ [n] let W` denote the column vector with

entries W 1
` , . . . ,W

k
` . For ` ∈ [n] let Z` denote the k-dimensional random variable Z` = x`W`

where x = (x1, . . . ,xn) is uniform over {−1, 1}n and let Z = Z1 + · · ·+ Zn. Let G′ be the
k-dimensional random Gaussian vector G′ = WG where G is distributed as N (0, 1)n. Then

dUO(Z,G′) ≤ O(k3/2τ
√

log(k/τ)).

(The condition τ < 10/
√
k in Proposition 37 does not necessitate any condition on τ in

Theorem 38, because if τ ≥ 10/
√
k then the claimed bound of Theorem 38 holds trivially.)

Finally, we note that the desired invariance principle, Theorem 24, is a restatement of
Theorem 38, using the connection between union-of-orthants distance and any k-variable
Boolean combining function g that was formalized in Observation 12.
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The sunflower conjecture is one of the most well-known open problems in combinatorics. It has
several applications in theoretical computer science, one of which is DNF compression, due to
Gopalan, Meka and Reingold (Computational Complexity, 2013). In this paper, we show that
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1 Introduction

The sunflower conjecture is one of the most well-known open problems in combinatorics. An
r-sunflower is a family of r sets S1, . . . , Sr where all pairwise intersections are the same. A
w-set system is a collection of sets where each set has size at most w. Erdős and Rado [3]
asked how large can a w-set system be, without containing an r-sunflower. They proved an
upper bound of w!(r − 1)w, and conjectured that the bound can be improved.

I Conjecture 1 (Sunflower conjecture, [3]). Let r ≥ 3. There is a constant cr such that any
w-set system F of size |F| ≥ cwr contains an r-sunflower.

60 years later, only lower order improvements have been achieved, and the best bounds are
still of the order of magnitude of about ww for any fixed r, same as in the original theorem
of Erdős and Rado. A good survey on the current bounds is [6].

Sunflowers have been useful in various areas in theoretical computer science. Some
examples include monotone circuit lower bounds [9, 10], barriers for improved algorithms for
matrix multiplication [1] and faster deterministic counting algorithms via DNF compression [5].
The focus on this paper is on this latter application, in particular DNF compression.
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5:2 From DNF Compression to Sunflower Theorems via Regularity

A DNF (Disjunctive Normal Form) is disjunction of conjunctive terms. The size of a DNF
is the number of terms, and the width of a DNF is the maximal number of literals in a term.
It is a folklore result that any DNF of size s can be approximated by another DNF of width
O(log s), by removing all terms of larger width. The more interesting direction is whether
DNFs of small width can be approximated by DNFs of small size. Namely - can DNFs of
small width be “compressed” while approximately preserving their computational structure?

A beautiful result of Gopalan, Meka and Reingold [5] shows that DNFs of small width
can be approximated by small size DNFs. Their proof relies on the sunflower theorem
(more precisely, a variant thereof due to Rossman [10] that we will discuss shortly). Before
stating their result, we introduce some necessary terminology. We say that two functions
f, g : {0, 1}n → {0, 1} are ε-close if Pr[f(x) 6= g(x)] ≤ ε over a uniformly chosen input. We
say that f is a lower bound of g, or that g is an upper bound of f , if f(x) ≤ g(x) for all x.

I Theorem 2 (DNF compression using sunflowers, sandwiching bounds [5]). Let f be a width-w
DNF. Then for every ε > 0 there exist two width-w DNFs, flower and fupper such that
(i) flower(x) ≤ f(x) ≤ fupper(x) for all x.
(ii) flower and fupper are ε-close.
(iii) flower and fupper have size (w log(1/ε))O(w).

Recently, Lovett and Zhang [8] improved the dependence of the size of the lower bound
DNF on w (but with a worse dependence on ε). In particular, the proof avoids the use of
the sunflower theorem.

I Theorem 3 (DNF compression without sunflowers, lower bound [8]). Let f be a width-w
DNF. Then for every ε > 0 there exists a width-w DNFs flower such that
(i) flower(x) ≤ f(x) for all x.
(ii) flower and f are ε-close.
(iii) flower has size (1/ε)O(w).

It is natural to speculate that a similar bound holds for upper bound DNFs.

I Conjecture 4 (Improved upper bound DNF compression). Let f be a width-w DNF. Then
for every ε > 0 there exists a width-w DNF fupper such that
(i) f(x) ≤ fupper(x) for all x.
(ii) fupper and f are ε-close.
(iii) fupper has size (1/ε)O(w).

To study the connection between DNF compression and sunflowers, we would need an
analog of Conjecture 4 for monotone DNFs.

I Conjecture 5 (Improved upper bound monotone DNF compression). In Conjecture 4, if f
is a monotone DNF, then fupper can also be taken to be a monotone DNF.

The main result of this paper is that Conjecture 5 implies an improved bound for the
sunflower conjecture, with a bound of (logw)O(w) instead of the current bound of O(w)w.
Thus, the connection between sunflower theorems and DNF compression goes both ways.
We note that the proof of [5] is also true for monotone DNF compression.

To simplify the presentation, we assume from now on that w ≥ 2. This will allow us to
assume that logw > 0. In any case, for w = 1 the sunflower conjecture is trivial, as any 1-set
system of size r is an r-sunflower.
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I Theorem 6 (Main theorem). Assume that Conjecture 5 holds. Then for any r ≥ 3 there
exists a constant cr such that the following holds. Any w-set system F of size |F| ≥ (logw)crw

contains an r-sunflower.

In fact, Theorem 6 holds even with a slightly weaker conjecture instead of Conjecture 5,
where the size bound can be assumed to be ((logw)/ε)O(w) instead of (1/ε)O(w).

1.1 Proof overview

The proof of Erdős and Rado [3] is by a simple case analysis which we now recall. Let F be a
w-set system. Then either F contains r disjoint sets, which are in particular an r-sunflower;
or at most r − 1 sets whose union intersects all other sets. In the latter case, there is an
element that belongs to a 1

(r−1)w fraction of the sets in F . If we restrict to these sets, and
remove the common element, then we reduced the problem to a (w − 1)-set system of size
|F|

(r−1)w . The proof concludes by induction.
Our approach is to refine this via a structure-vs-pseudorandomness approach. Either

there is a set T of elements that belong to many sets in F (concretely, at least |F|/κ|T |,
for an appropriately chosen κ), or otherwise the set system F is pseudo-random, in the
sense that no set T is contained in too many sets in F . The main challenge is showing that
by choosing κ large enough, this notion of pseudo-randomness is useful. This will involve
introducing several new concepts and tying them to the sunflower problem.

The following proof overview follows the same structure as the sections in the paper, to
ease readability.

Section 2: DNFs and set systems

First, we note that set systems are one-to-one correspondence to monotone DNFs. Formally,
we identify a set system F = {S1, . . . , Sm} with the monotone DNF fF (x) =

∨
S∈F

∧
i∈S xi.

This equivalence will be useful in the proof, as at different stages one of these viewpoints is
more convenient.

The notions of “lower bound DNF” flower and “upper bound DNF” fupper used in
Theorem 2, Theorem 3 and Conjecture 5 have analogs for set systems, which we refer to as
proper lower bound and upper bound DNFs (or set systems). For the purpose of this high
level overview, we ignore this distinction here.

Section 3: Approximate sunflowers

The notion of approximate sunflowers was introduced by Rossman [10]. It relies on the
notion of satisfying set systems.

Let F be a set system on a universeX. We say that F is (p, ε)-satisfying if Prx∼Xp
[fF (x) =

1] > 1 − ε, where fF is the corresponding monotone DNF for F , and Xp is the p-biased
distribution on X. The importance of satisfying set systems in our context is that a
(1/r, 1/r)-satisfying set system contains r disjoint sets (Claim 14).

Let K = ∩S∈FS be the intersection of all sets in F . We say that F is a (p, ε)-approximate
sunflower if the set system {S \K : S ∈ F} is (p, ε)-satisfying. An interesting connection
between approximate sunflowers and sunflowers is that a (1/r, 1/r)-approximate sunflower
contains an r-sunflower (Corollary 15).

CCC 2019



5:4 From DNF Compression to Sunflower Theorems via Regularity

Section 4: Regular set systems

Let D be a distribution over subsets of X. We say that D is regular if when sampling
S ∼ D, the probability that S contains any given set T is exponentially small in the size of
T . Formally, D is κ-regular if for any set T ⊆ X it holds that PrS∼D[T ⊆ S] ≤ κ−|T |.

A set system F is κ-regular if there exists a κ-regular distribution supported on sets in
F . We show that if F is κ-regular, then the same holds for any upper bound set system
(Claim 18) and any “large enough” lower bound set system (Claim 19). These facts will turn
out to be useful later.

Section 5: Regular set systems are (1/2, 1/2)-satisfying

In this section, we focus on regular set systems F , or equivalently regular DNFs f = fF .
We show that, assuming Conjecture 5 (or the slightly weaker Conjecture 21), any κ-regular
DNF of width w, where κ = (logw)O(1), is (1/2, 1/2)-satisfying. Namely, Pr[f(x) = 1] ≥ 1/2,
where x is uniformly chosen. In particular, this implies that F contains two disjoint sets.
However, our goal is to prove that F contains an r-sunflower for r ≥ 3, so we are not done
yet.

Section 6: Intersecting regular set systems

Let α(w, r) denote the maximal κ such that there exists a κ-regular w-set system without
r disjoint sets. It is easy to prove that the sunflower theorem holds for any set system of
size |F| > α(w, r)w (Claim 29). However, our discussion so far only allows us to bound
β(w) = α(w, 2); concretely, assuming Conjecture 5 we have β(w) ≤ (logw)O(1).

We show (Lemma 30) that nontrivial upper bounds on β(w) imply related upper bounds
on α(w, r) for every r. Concretely, if β(w) ≤ (logw)O(1) then α(w, r) ≤ (logw)cr where
cr > 0 are constants. This concludes the proof, as we get that any w-set system of size
|F| ≥ (logw)crw must contain an r-sunflower.

2 DNFs and set systems

A DNF is monotone if it contains no negated variables. Monotone DNFs are in one-to-one
correspondence with set systems. Formally, if F is a set system then the corresponding
monotone DNF is

fF (x) =
∨
S∈F

∧
i∈S

xi.

In the other direction, if f =
∨
j∈[m]

∧
i∈Sj

xi is a monotone DNF then its corresponding set
system is

Ff = {S1, . . . , Sm}.

Observe that a w-set system corresponds to a width-w monotone DNF, and vice versa. If X
is the set of elements over which F is defined then we write F ⊆ P(X).

To recall, we consider both lower bound and upper bound DNFs. As our main motivation
is to better understand sunflowers, we restrict attention to monotone DNFs from now on;
however, all the definitions can be easily adapted for general DNFs.

We next define proper upper and lower bound DNFs. Proper lower bound DNFs are
obtained by removing terms from the DNF, and proper upper bound DNFs are obtained by
removing variables from terms in the DNF. We describe both in terms of the corresponding
set systems.
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I Definition 7 (Proper lower bound DNF / set system). Let F be a set system. A proper
lower bound set system for F is simply a sub set system F ′ ⊆ F . Observe that indeed

fF ′(x) ≤ fF (x) ∀x.

I Definition 8 (Proper upper bound DNF / set system). Let F be a set system. A proper
upper bound set system for F is a set system F ′ that satisfies the following: for each S ∈ F
there exists S′ ∈ F ′ such that S′ ⊆ S. Observe that indeed

fF ′(x) ≥ fF (x) ∀x.

For monotone DNFs, upper bounds and proper upper bounds are the same.

B Claim 9. Let F ,F ′ be set systems over the same universe, such that

fF ′(x) ≥ fF (x) ∀x.

Then F ′ is a proper upper bound set for F .

Proof. Assume not. Then there exists S ∈ F such that there is no S′ ∈ F ′ with S′ ⊆ S. Let
x = 1S be the indicator vector for S. Then fF (x) = 1 but fF ′(x) = 0, a contradiction. C

I Corollary 10. In Conjecture 5, we may assume that fupper is a proper upper bound
DNF for f .

We note that the lower and upper bound DNFs in [5] are in fact proper lower and upper
bounds, and the same holds for the lower bound DNF in [8].

3 Approximate sunflowers

We introduce the notion of approximate sunflowers, first defined by Rossman [10]. We first
need some notation. Given a finite set X and 0 < p < 1, we denote by Xp the p-biased
distribution over X, where W ∼ Xp is sampled by including each x ∈ X in W independently
with probability p. The definition of approximate sunflowers relies on the notion of a satisfying
set system.

I Definition 11 (Satisfying set system). Let F ⊆ P(X) be a set system and let 0 < p, ε < 1.
We say that F is (p, ε)-satisfying if

Pr
W∼Xp

[∃S ∈ F : S ⊆W ] > 1− ε.

Equivalently, if fF : {0, 1}X → {0, 1} is the DNF corresponding to F , then F is (p, ε)-
satisfying if

Pr
x∼Xp

[fF (x) = 1] > 1− ε.

An approximate sunflower is a set system which is satisfying if we first remove the common
intersection of all the sets in the set system.

I Definition 12 (Approximate sunflower). Let F ⊆ P(X) be a set system and let 0 < p, ε < 1.
Let K = ∩S∈FS. Then F is a (p, ε)-approximate sunflower if the set system {S \K : S ∈ F}
is (p, ε)-satisfying.
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5:6 From DNF Compression to Sunflower Theorems via Regularity

Rossman proved an analog of the sunflower theorem for approximate sunflowers. Li,
Lovett and Zhang [7] reproved this theorem by using a connection to randomness extractors.

I Theorem 13 (Approximate sunflower lemma [10]). Let F be a w-set system and let ε > 0.
If |F| ≥ w! · (1.71 log(1/ε)/p)w then F contains a (p, ε)-approximate sunflower.

To conclude this section, we show that satisfying set systems contain many disjoint sets,
and hence approximate sunflowers contain sunflowers.

B Claim 14. Let r ≥ 2 and F be a (1/r, 1/r)-satisfying set system. Then F contains r
pairwise disjoint sets.

Proof. Let F ⊆ P(X). Consider a uniform random coloring of X with r colors. A coloring
induces a partition of X into X = W1 ∪ . . . ∪Wr, where Wc is the set of all elements that
attain the color c. Given a color c ∈ [r], a set S ∈ F is c-monochromatic if all its elements
attain the color c. Observe that for each color c,

Pr[∃S ∈ F , S is c-monochromatic] = Pr[∃S ∈ F , S ⊆Wc].

The marginal distribution of each Wc is (1/r)-biased. By our assumption that F is (1/r, 1/r)-
satsifying, the probability that Wc contains some S ∈ F is more than 1 − 1/r. So by the
union bound,

Pr[∀c ∈ [r] ∃S ∈ F , S is c-monochromatic] > 0.

In particular, there exists a coloring where this event happens. Let S1, . . . , Sr be the sets for
which Sc is c-monochromatic. Then S1, . . . , Sr must be pairwise disjoint. C

I Corollary 15. Let F be a (1/r, 1/r)-approximate sunflower. Then F contains an r-
sunflower.

Proof. Let K = ∩S∈FS. Apply Claim 14 to the set system F ′ = {S \K : S ∈ F} which
by assumption is (1/r, 1/r)-satisfying. We obtain that F ′ contains r pairwise disjoint sets
S1 \K, . . . , Sr \K. This implies that S1, . . . , Sr form an r-sunflower. J

4 Regular set systems

The notion of regularity of a set system is pivotal in this paper. At a high level, a set system
is regular if no element belongs to too many sets, no pair of elements belongs to too many
sets, and so on. It is closely related to the notion of block min-entropy studied in the context
of lifting theorems in communication complexity [4].

I Definition 16 (Regular distribution). Let X be a finite set, and let D be a distribution on
subsets S ⊆ X. The distribution D is κ-regular if for any set T ⊆ X it holds that

Pr
S∼D

[T ⊆ S] ≤ κ−|T |.

I Definition 17 (Regular set system). A set system F is κ-regular if there exists a κ-regular
distribution D supported on the sets in F .

The following claims show that if F is a κ-regular set system then any proper upper
bound set system for it is also κ-regular, and any “large” proper lower bound set system is
approximately κ-regular.
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B Claim 18. Let F be a κ-regular set system. Let F ′ be a proper upper bound set system
for F . Then F ′ is also κ-regular.

Proof. Let D be a κ-regular distribution supported on F . Let ϕ : F → F ′ be a map such
that ϕ(S) ⊆ S for all S ∈ F . Define a distribution D′ on F ′ as follows:

D′(S′) =
∑

S∈ϕ−1(S′)

D(S).

Then for any set T ,

Pr
S′∼D′

[T ⊆ S′] =
∑

S′∈F ′:T⊆S′
D′(S′) =

∑
S∈F :T⊆ϕ(S)

D(S) ≤
∑

S∈F :T⊆S
D(S) = Pr

S∼D
[T ⊆ S]

Since D is a regular distribution, the claim then follows. C

B Claim 19. Let F be a κ-regular set system, and D be a κ-regular distribution supported
on F . Let F ′ ⊆ F be a proper lower bound set system for F , and let α = D(F ′). Then F ′
is (κα)-regular.

Proof. Define a distribution D′ on F ′ by D′(S) = α−1D(S). Then for any non-empty set T ,

Pr
S∼D′

[T ⊆ S] ≤ α−1 Pr
S∼D

[T ⊆ S] ≤ α−1κ−|T | ≤ (κα)−|T |. J

5 Regular set systems are (1/2, 1/2)-satisfying

In this section we use Conjecture 5 to prove that regular enough DNFs are (1/2, ε)-satisfying,
where in light of Claim 14 we care about ε = 1/2. To recall the definitions, a DNF f is
(1/2, ε)-satisfying if for a uniformly chosen x,

Pr
x

[f(x) = 1] > 1− ε.

Define

γ(w) = sup{κ : ∃κ-regular w-set system which is not (1/2, 1/2)-satisfying}.

We start by giving a lower bound on γ(w), where the motivation is to help the reader
gain intuition.

B Claim 20. γ(w) ≥ logw −O(1).

Proof. We construct a κ-regular w-set system which is not (1/2, 1/2)-satisfying, for κ =
logw−O(1). Let X1, . . . , Xw be disjoint sets, each of size κ = logw− c for a constant c > 0
to be determined. Let X = X1 ∪ . . . ∪Xw. Let F ⊆ P(X) be the w-set system of all sets S
that contain exactly one element from each set Xi. It is simple to verify that the uniform
distribution over F is κ-regular, and hence F is κ-regular. Let W ∼ X1/2. Then

Pr[∃S ∈ F , S ⊆W ] = Pr[∀i ∈ [w], |Xi ∩W | ≥ 1] = (1− 2−κ)w = (1− c/w)w ≤ exp(−c).

In particular, for c ≥ 1 we get that F is not (1/2, 1/2)-satisfying. C

As we shall soon see, Conjecture 5 implies that the lower bound is not far from tight:

γ(w) ≤ (logw)O(1).

It will be sufficient to assume a slightly weaker version of Conjecture 5, where we allow the
size of fupper to be somewhat bigger.
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5:8 From DNF Compression to Sunflower Theorems via Regularity

I Conjecture 21 (Weaker version of Conjecture 5). Let w ≥ 2, ε > 0. For any monotone
width-w DNF f there exists a monotone width-w DNF fupper such that
(i) fupper is a proper upper bound DNF for f .
(ii) fupper and f are ε-close.
(iii) fupper has size at most ((logw)/ε)cw for some absolute constant c > 1.

I Lemma 22. Assume Conjecture 21 holds. Then there exists a constant c0 > 1 such that
the following holds. For w ≥ 2, ε > 0 let κ0(w, ε) = ((logw)/ε)c0 . Let F be a w-set system
which is κ0(w, ε)-regular. Then F is (1/2, ε)-satisfying.

I Corollary 23. γ(w) ≤ κ0(w, 1/2) = (logw)O(1).

We prove Lemma 22 in the remainder of this section. We start with some simple claims
that would serve as a base case for Lemma 22 for w = O(1).

B Claim 24. Let r ≥ 2. Let F be a κ-regular w-set system, where κ > w
(
r
2
)
. Then F

contains r pairwise disjoint sets.

Proof. Let D be a κ-regular distribution over F . Sample independently S, S′ ∼ D. The
probability that S, S′ intersect is at most

Pr[|S ∩ S′| ≥ 1] ≤
∑
i∈S

Pr[i ∈ S′] ≤ w/κ.

Let S1, . . . , Sr ∼ D be chosen independently. Then by the union bound, the probability that
two of them intersect is at most

(
r
2
)
w/κ < 1. In particular, there exist r pairwise disjoint

sets in F . C

B Claim 25. Let ε > 0. Let F be a κ-regular w-set system, where κ = w(2w log(1/ε))2.
Then F is (1/2, ε)-satisfying.

Proof. Assume F ⊆ P(X). Claim 24 implies that F contains r = 2w log(1/ε) disjoint sets
S1, . . . , Sr. Let W ∼ X1/2. Then

Pr[∃S ∈ F , S ⊆W ] ≥ Pr[∃i ∈ [r], Si ⊆W ] = 1− (1− 2−w)r > 1− ε. J

Proof of Lemma 22. We will need several properties from κ0 in the proof. To simplify
notations, we shorthand κ0(w/2, ε) for κ0(bw/2c, ε) throughout. The constant c > 1 below
is the absolute constant from Conjecture 5. We need a constant c′ > 1 so that the following
conditions are satisfied:
(i) κ0(w, ε) ≥ w(2w log(1/ε))2 for w = 1, 2 and ε > 0.
(ii) κ0(w, ε) ≥ ((logw)/ε)12c for w ≥ 3, ε > 0.
(iii) κ0(w, ε) ≥ κ0(w/2, ε(1− 1/ logw)) + 1 for w ≥ 3, ε > 0.
One can check that the function τ(w, ε) = (logw)/ε satisfies τ(w/2, ε(1−1/ logw)) ≤ τ(w, ε),
with equality when w is even. Thus taking κ0(w, ε) = ((logw)2/ε)c′ satisfies the conditions
for a large enough c′ ≥ 12c. We then take c0 = 2c′.

The proof of lemma Lemma 22 is by induction on w. The base cases are w = 1 and w = 2
which follow from Claim 25 and condition (i) on κ0. Thus, we assume from now that w ≥ 3.
We need to prove that for f = fF we have

Pr[f(x) = 0] < ε.
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Let γ = ε/ logw and assume that F is κ-regular for κ = κ0(w, ε). Let F1 = {S ∈ F :
|S| ≥ w/2} and let f1 = fF1 be the corresponding DNF. Applying Conjecture 21 to f1 with
error parameter γ, we obtain that there exists a γ-approximate proper upper bound DNF f2
for f1 of size s = ((logw)/γ)cw ≤ ((logw)/ε)2cw. Let F2 be the corresponding set system to
f2, and observe that F2 is a proper upper bound set system for F1. Let F3 = (F \ F1) ∪ F2
and let f3 = fF3 be the corresponding DNF. Then

Pr[f(x) = 0] ≤ Pr[f3(x) = 0] + (Pr[f2(x) = 0]− Pr[f1(x) = 0]) ≤ Pr[f3(x) = 0] + γ.

Next, observe that F3 is a proper upper bound set system for F . As we assume that F
is κ-regular, then by Claim 18 we obtain that F3 is also κ-regular. Let D be a κ-regular
distribution supported on F3. Let F4 = {S ∈ F3 : |S| ≥ w/2}, where F4 ⊆ F2. As each set
S ∈ F4 has size |S| ≥ w/2 then, since D is κ-regular, we have

D(S) ≤ κ−w/2.

Summing over all S ∈ F4 we obtain that

D(F4) ≤ |F4| · κ−w/2 ≤ |F2| · κ−w/2 ≤

((
logw
ε

)2c
κ−1/2

)w
.

We would need that D(F4) ≤ 1/κ. As w ≥ 3, this follows from condition (ii) on κ0. Let
F5 = F3 \ F4. Then F5 is a (w/2)-set system. By Claim 19 F5 is κ′-regular for

κ′ = κ · D(F5) = κ(1−D(F4)) ≥ κ− 1.

Let ε′ = ε(1 − 1/ logw). Assumption (iii) on κ0 gives that κ0(w/2, ε′) ≤ κ0(w, ε) − 1.
Thus, F5 is κ0(w/2, ε′)-regular. Applying the induction hypothesis, if we denote by f5 the
corresponding DNF for F5, then

Pr[f5 = 0] < ε′.

Finally, as F5 ⊆ F3 we have Pr[f3(x) = 0] ≤ Pr[f5(x) = 0]. Putting these together we obtain
that

Pr[f(x) = 0] ≤ Pr[f3(x) = 0] + γ

≤ Pr[f5(x) = 0] + γ < ε′ + γ = ε(1− 1/ logw) + ε/ logw = ε. J

6 Intersecting regular set systems

As we showed in Claim 14, if F is a (1/r, 1/r)-satisfying set system, then it contains an
r-sunflower. However we only proved that a regular enough set system is (1/2, 1/2)-satisfying
so far. In this section, we prove that this is enough to show the existence of an r-sunflower
for any constant r, and with a comparable condition of regularity. Our proof is based on a
the study of regular intersecting set systems.

I Definition 26 (Intersecting set system). A set system is intersecting if any two sets in it
intersect. In other words, it does not contain two disjoint sets.

I Definition 27. For w ≥ 1, r ≥ 2 define

α(w, r) = sup{κ : ∃κ-regular w-set system without r pairwise disjoint sets}.

It will be convenient to shorthand β(w) = α(w, 2), which can equivalently be defined as

β(w) = sup{κ : ∃κ-regular intersecting w-set system}.

CCC 2019
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B Claim 28. α(w + 1, r) ≥ α(w, r) and α(w, r + 1) ≥ α(w, r) for all w ≥ 1, r ≥ 2.

Proof. The first claim follows by our definition that a w-set system is a set system where all
sets have size at most w. In particular, any w-set system is also a (w + 1)-set system and
hence α(w+ 1, r) ≥ α(w, r). The second claim holds since a set system that does not contain
r disjoint sets, also does not contain r + 1 disjoint sets. C

We start by showing that upper bounds on α(w, r) directly translate to upper bounds on
sunflowers. This is reminiscent to the original proof of Erdős and Rado [3].

B Claim 29. Let F be a w-set system of size |F| > α(w, r)w. Then F contains an r-sunflower.

Proof. The proof is by induction on w. If F contains r pairwise disjoint sets then we are done.
Otherwise, F is not κ-regular for any κ > α(w, r). In particular, the uniform distribution
over F is not κ-regular. This implies that there exists a nonempty set T of size |T | = t ≥ 1
such that

F ′ = {S \ T : S ∈ F , T ⊆ S}

has size |F ′| ≥ |F|κ−t > α(w, r)w−t ≥ α(w − t, r)w−t. By induction, F ′ contains an
r-sunflower S1 \ T, . . . , Sr \ T . Hence S1, . . . , Sr is a sunflower in F . C

The main lemma we prove in this section is that upper bounds on β imply upper
bounds on α.

I Lemma 30. For all w ≥ 1, r ≥ 3 it holds that α(w, r) ≤ r2r+1β(wr)r.

Before proving Lemma 30, we first prove some upper and lower bounds on β(w). Although
these are not needed in the proof of Lemma 30, we feel that they help gain intuition on β(w).

B Claim 31. β(w) ≤ w.

Proof. Apply Claim 24 for r = 2. C

It is easy to construct examples that show that β(w) > 1; for example, the family of
all sets of size w in a universe of size 2w − 1 is intersecting and ((2w − 1)/w)-regular. The
following example shows that β(w) is super-constant.

B Claim 32. β(w) ≥ Ω
(

logw
log logw

)
.

Proof. We construct an example of an intersecting w-set system for κ = Ω(logw/ log logw).
Let t ≤ w/2 to be optimized later and set m = w− t+ 1. Let X1, . . . , Xm be disjoint sets of
size t each, and let X = X1 ∪ . . . ∪Xm. Consider the set system F of all sets S ⊆ X of the
following form:

F = {S ⊆ X : ∃i ∈ [m], Xi ⊆ S, ∀j 6= i, |Xj ∩ S| = 1}.

Observe that F is an intersecting w-set system.
Let D be the uniform distribution over F . We show that D is κ-regular, and hence F is

κ-regular. There are two extreme cases: for sets T of size |T | = 1 we have

Pr
S∼D

[T ⊆ S] = 1
m

+
(

1− 1
m

)
1
t
≤ 2
t
.
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For sets T = Xi we have

Pr
S∼D

[Xi ⊆ S] = 1
m
.

One can verify that these are the two extreme cases which control the regularity, and hence
F is κ-regular for

κ = min(t/2,m1/t).

Setting t = Θ(logw/ log logw) gives κ = Θ(logw/ log logw). C

We conjecture that this is essentially tight. In fact, by Claim 14 we have that

β(w) ≤ γ(w)

As we proved, Conjecture 21 implies γ(w) = (logw)O(1), thus it also implies β(w) =
(logw)O(1).

Proof of Lemma 30. For w, r ≥ 1 define

η(w, r) = r2r+1β(wr)r.

We will first prove that

α(w, 2r) ≤ max (η(w, r), 2α(w, r))

and then that this implies the bound

α(w, r) ≤ η(w, r).

Let F be a κ-regular w-set system F which does not contain 2r pairwise disjoint sets,
where κ > max (η(w, r), 2α(w, r)). We will show that this leads to a contradiction.

Let D be the corresponding κ-regular distribution on F . Let F ′ ⊆ F be any sub set-
system with D(F ′) ≥ 1/2. Claim 19 then implies that F ′ is (κ/2)-regular. By our choice of
κ, κ/2 > α(w, r), and hence F ′ contains r pairwise disjoint sets.

More generally, consider the following setup. Let D′ : F → R≥0 with D′(S) ≤ D(S) for
all S ∈ F . Define F ′ = {S : D′(S) > 0} and D′(F) =

∑
D′(S). As long as D′(F) ≥ 1/2 we

are guaranteed that F ′ is (κ/2)-regular, and hence contains r pairwise disjoint sets. Consider
the following process:
1. Initialize D0(S) = D(S) for all S ∈ F and i = 0.
2. As long as Di(F) ≥ 1/2 do:

a. Let Fi = {S : Di(S) > 0}.
b. Find r pairwise disjoint sets Si,1, . . . , Si,r ∈ Fi.
c. Let wi = min(Di(Si,1), . . . , Di(Si,r)).
d. Set Di+1(S) = Di(S)− wi if S ∈ {Si,1, . . . , Si,r}, and Di+1(S) = Di(S) otherwise.
e. Set i← i+ 1

Assume that the process terminates after m steps. Let Wi = Si,1 ∪ . . . ∪ Si,r, which by
construction is a set of size wr. Note that as we assume that F does not contain 2r pairwise
disjoint sets, we obtain that W1, . . . ,Wm must be an intersecting set system (possibly with
some repeated sets). Let w =

∑
wi. As Di+1(F) = Di(F)− wir, and as we terminate when

Dm(F) < 1/2, we have

w ≥ 1/2r.

CCC 2019
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Let F∗ = {W1, . . . ,Wm}, namely taking each set exactly once. As it may be the case that
W1, . . . ,Wm are not all distinct, we only know that |F∗| ≤ m. Consider the distribution
D∗ on F∗ given by D∗(W ) = 1

w

∑
i:Wi=W wi. Then as F∗ is an intersecting set system, we

obtain that D∗ cannot be β-regular for β = β(wr).
Thus, there exists a nonempty set T of size |T | = t ≥ 1 such that∑
W∈F∗: T⊆W

D∗(W ) ≥ β−t.

This implies that if we denote I = {i ∈ [m] : T ⊆Wi} then∑
i∈I

wi ≥ wβ−t ≥
1

2rβt .

Next, consider some i ∈ I. Recall thatWi is the union of pairwise disjoint sets Si,1, . . . , Si,r ∈
F . In particular, there must exist ji ∈ [r] such that |T ∩ Si,ji

| ≥ |T |/r. We denote
Ti = T ∩ Si,ji . As the number of possibles subsets of T is 2|T |, there must exist T ∗ ⊆ T

such that∑
i∈I: Ti=T∗

wi ≥ 2−t
∑
i∈I

wi ≥
1

2r(2β)t .

In particular, |T ∗| ≥ |T |/r and∑
i∈I: T∗⊆Si,ji

wi ≥
1

2r(2β)t .

It may be that the list of Si,ji
contains repeated sets (namely, that Si,ji

= Si′,ji′ for some
i 6= i′). For each S ∈ F let I(S) = {i ∈ I : Si,ji = S}. In particular, I(S) is not empty only
for sets S with T ∗ ⊆ S. We can rewrite the sum as∑

i∈I: T∗⊆Si,ji

wi =
∑

S∈F : T∗⊆S

∑
i∈I(S)

wi.

Next, fix some S ∈ F with T ∗ ⊆ S and consider the internal sum. Recall that wi =
Di(S)−Di+1(S), and hence the sum is a telescopic sum and can be bounded by∑

i∈I(S)

wi ≤ D0(S)−Dm(S) ≤ D(S).

We thus obtain that∑
S∈F :T∗⊆S

D(S) ≥
∑

i∈I: T∗⊆Si,ji

wi ≥
1

2r(2β)t .

Recall that D is κ-regular. We can upper bound κ by

κ ≤
(
2r(2β)t

)1/|T∗| ≤
(
2r(2β)t

)r/t ≤ 2r(2β)r = η(w, r).

Putting everything together, we get

α(w, 2r) ≤ max (η(w, r), 2α(w, r)) .

To conclude the proof, note that if r is a power of two then by induction and our choice of η
we have

α(w, 2r) ≤ max (η(w, r), 2η(w, r/2), 4η(w, r/4), . . .) = η(w, r).

Thus for a general r, if r ≤ s ≤ 2r is the smallest power of two that upper bounds r then

α(w, r) ≤ α(w, s) ≤ η(w, s/2) ≤ η(w, r). J
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Proof of Theorem 6. We put all the pieces together. Let w ≥ 2. Assume Conjecture 21
holds. Lemma 22 gives that

γ(w) ≤ (logw)c

for some constant c ≥ 1. Claim 24 then gives that

β(w) ≤ γ(w)

and Lemma 30 gives that

α(w, r) ≤ r2r+1β(wr)r ≤ r2r+1(log(wr))cr ≤ (logw)cr

for some constant cr ≥ 1. Finally, Claim 29 shows that if F is a w-set system of size
|F| ≥ (logw)crw then F contains an r-sunflower. J

7 Further discussions

Recall that β(w) is the maximal κ such that there exists an intersecting κ-regular w-set system.

I Conjecture 33. β(w) ≤ (logw)O(1).

We would like to point out that in Conjecture 33, the assumption that the set system is
intersecting cannot be replaced by a weaker assumption that it is almost intersecting, namely
that most pairs of sets intersect. To see that, consider the following example.

I Example 34. Let F be the family of all sets of size w in a universe of size n = cw2. By
choosing an appropriate constant c > 0, we get that 99% of the sets S, S′ ∈ F intersect.
However, F is (w/c)-regular.

The following is an interesting family of examples, that might help shed light on Conjec-
ture 33.

I Example 35. Let Fp be a finite field and n ≥ 1. Let V ⊂ Fnp be a linear subspace of
dimension k. Given a set of coordinates I ⊆ [n], define VI = {(vi)i∈I : v ∈ V } to be the
subspace obtained by restricting vectors v ∈ V to coordinates I. We say that V is α-large if

dim(VI) ≥ α|I| ∀I ⊆ [n].

In particular, this implies that k ≥ αn.
Next, we define a set system corresponding to a subspace. LetX = {(i, a) : i ∈ [n], a ∈ Fp}.

For any vector v ∈ Fnp define its corresponding set

S(v) = {(i, vi) : i ∈ [n]} ⊂ X.

For a subspace V ⊂ Fnp define the set system

F(V ) = {S(v) : v ∈ V }.

Observe that:
(i) F(V ) is an n-set system of size pk.
(ii) For any T ⊆ X it holds that |{S ∈ F(V ) : T ⊆ S}| ≤ p−α|T ||F|. Hence F(V ) is

κ-regular for κ = pα.
(iii) F(V ) is intersecting iff any v ∈ V contains at least one zero coordinate.

CCC 2019
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If Conjecture 33 holds and p ≥ (logn)c for some absolute constant c > 0, then it must hold
that V contains a vector with no zero coordinates. This motivates the following problem.

I Problem 36. Let V ⊂ Fnp be a α-large subspace. Prove that if p ≥ (logn)c, for some
c = c(α), then V must contain a vector with no zero coordinates.

A previous version of this paper gave a more restricted version of Example 35, corres-
ponding to the case when V spans an MDS code. Namely, dim(VI) = |I| for all I ⊆ [n]
with |I| ≤ k. Ryan Alweiss [2] proved the analog of Problem 36 for this case, in fact where
p ≥ p0(n/k).
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Abstract
Res(s) is an extension of Resolution working on s-DNFs. We prove tight nΩ(k) lower bounds for the
size of refutations of the binary version of the k-Clique Principle in Res(o(log logn)). Our result
improves that of Lauria, Pudlák et al. [27] who proved the lower bound for Res(1), i.e. Resolution.
The exact complexity of the (unary) k-Clique Principle in Resolution is unknown. To prove the
lower bound we do not use any form of the Switching Lemma [35], instead we apply a recursive
argument specific for binary encodings. Since for the k-Clique and other principles lower bounds
in Resolution for the unary version follow from lower bounds in Res(logn) for their binary version
we start a systematic study of the complexity of proofs in Resolution-based systems for families of
contradictions given in the binary encoding.

We go on to consider the binary version of the weak Pigeonhole Principle Bin-PHPm
n for m > n.

Using the the same recursive approach we prove the new result that for any δ > 0, Bin-PHPm
n

requires proofs of size 2n1−δ
in Res(s) for s = o(log1/2 n). Our lower bound is almost optimal since

for m ≥ 2
√

n log n there are quasipolynomial size proofs of Bin-PHPm
n in Res(logn).

Finally we propose a general theory in which to compare the complexity of refuting the binary
and unary versions of large classes of combinatorial principles, namely those expressible as first order
formulae in Π2-form and with no finite model.
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1 Introduction

Various fundamental combinatorial principles used in Proof Complexity may be given in
first-order logic as sentences ϕ with no finite models. Riis discusses in [34] how to generate
from ϕ a family of CNFs, the nth of which encodes that ϕ has a model of size n, which are
hence contradictions. Following Riis, it is typical to encode the existence of the witnesses
in longhand with a big disjunction, that we designate the unary encoding. As recently
investigated in the works [19, 12, 13, 27, 22], it may also be possible to encode the existence
of such witnesses succinctly by the use of a binary encoding. Essentially, the existence of
the witness is now given implicitly as any propositional assignment to the relevant variables
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6:2 Resolution and the Binary Encoding of Combinatorial Principles

gives a witness, whereas in the unary encoding a solitary true literal tells us which is the
witness. Combinatorial principles encoded in binary are interesting to study since, loosely
speaking, they still preserve the hardness of the combinatorial principle encoded while giving
a more succinct propositional representation. In certain cases this leads to obtain significant
lower bounds in an easier way than for the unary case [19, 13, 27].

The central thrust of this work is to contrast the proof complexity (size) between the
unary and binary encodings of natural combinatorial principles. This has not previously been
done systematically in Proof Complexity, though it has been better-studied the in the “dual”
area of SAT-solving [26, 29]. In the SAT community it is well-known one may try various
different encodings of the 1-from-n constraint to speed-up proofs of unsatisfiability as well
as satisfiability. In [29, 37], what we call the binary encoding is referred to as logarithmic.
The Pigeonhole Principle is explored experimentally in both [26] and Chapter 7 in [29, 37]
(though sadly the binary encoding is not among the tests).

A principal motivation is to approach size lower bounds of refutations in Resolution
for families of contradictions in the usual unary encoding, by looking at the complexity of
proofs in Res(s) for the corresponding families of contradictions where witnesses are given
in the binary encodings. Res(s), is a refutational proof system extending Resolution to
s-bounded DNFs, introduced by Krajíĉek in [23]. Our approach is justified by observing that
(see Lemma 26), for a family of contradictions encoding a principle which is expressible as
Π2 first-order formulae having no finite models, short Res(logn) refutations of their binary
encoding can be obtained from short Resolution refutations for the unary encoding. Lower
bounds for Res(s) have appeared variously in the literature. Of most interest to us are those
for the (moderately weak) Pigeonhole Principle PHP2n

n , for Res(
√

logn/ log logn) in [35],
improved to Res(ε logn/ log logn) in [2]. A hierarchy in Res(s) is uncovered by the use of
relativising the (Linear) Ordering Principle in [17].

Our first interest is the k-Clique Principle, whose precise Resolution complexity is still
unknown; but we also study other principles, to make progress in the direction of our
approach. The three combinatorial principles we deal with in this paper are: (1) the k-Clique
Formulae, Cliquen

k(G); (2) the (weak) Pigeonhole Principle PHPmn ; and (3) the (Linear)
Ordering Principle, (L)OPn. The k-Clique Formulae introduced in [10, 11, 6] are formulae
stating that a given graph G does have a k-clique and are therefore unsatisfiable when G does
not contain a k-clique. The Pigeonhole Principle states that a total mapping f : [m]→ [n] has
necessarily a collision when m > n. Its propositional formulation in the negation, PHPmn is
well-studied in proof complexity (see among others: [21, 35, 16, 31, 33, 32, 8, 15, 9, 7, 5, 3, 28]).
The LOPn formulae encode the negation of the Linear Ordering Principle which asserts that
each finite linearly ordered set has a maximal element and was introduced and studied,
among others, in the works [24, 36, 14].

1.1 k-Clique Principle
Deciding whether a graph has a k-clique it is one of the central problems in Computer
Science and can be decided in time nO(k) by a brute force algorithm. It is then of the
utmost importance to understand whether given algorithmic primitives are sufficient to
design algorithms solving the Clique problem more efficiently than the trivial upper bound.
Resolution refutations for the formula Cliquen

k(G) (respectively any CNF F ), can be thought as
the execution trace of an algorithm, whose primitives are defined by the rules of the Resolution
system, searching for a k-Clique inside G (respectively deciding the satisfiability of F ). Hence
understanding whether there are nΩ(k) size lower bounds in Resolution for refuting Cliquen

k(G)
would then answer the above question for algorithms based on Resolution primitives. This
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question was posed in [10], where it was also answered in the case of refutations in the form
of trees (treelike Resolution). Recently in a major breakthrough Atserias et al. in [4] prove
the nΩ(k) lower bound for the case of read-once proofs (Regular resolution). The graph G
considered in [10, 4] to plug in the formula Cliquen

k(G) to make it unsatisfiable was a random
graph obtained by a slight variation of Erdös-Rényi distribution of random graphs as defined
in [10]. But the exact Resolution complexity of Cliquen

k(G), for G random is unknown. In
the work [27], Lauria et al. consider the binary encoding of Ramsey-type propositional
statements, having as a special case a binary version of Cliquen

k(G): Bin-Cliquen
k(G). They

obtain optimal lower bounds for Bin-Cliquen
k(G) in Resolution, which is Res(1).

Our main result (Theorem 7) is a nΩ(k) lower bound for the size of refutations of
Bin-Cliquen

k(G) in Res(o(log logn)), when G is a random graph as that defined in [10].
Lemma 2 in Section 3 proves that a lower bound in Res(log) for the Bin-Cliquen

k(G) would
prove a lower bound in Resolution for Cliquen

k(G).

1.2 Weak Pigeonhole Principle
An interesting example to test the relative hardness of binary versions of combinatorial
principle comes from the (weak) Pigeonhole Principle. In Section 4, we consider its binary
version Bin-PHPmn and we prove that in Res(s), for all ε > 0 and s ≤ log

1
2−ε (n), the shortest

proofs of the Bin-PHPmn , require size 2n1−δ , for any δ > 0 (Theorem 22). This is the first size
lower bound known for the Bin-PHPmn in Res(s). As a by-product of this lower bound we
prove a lower bound of the order 2Ω( n

logn ) (Theorem 18) for the size of the shortest Resolution
refutation of Bin-PHPmn . Our lower bound for Res(s) is obtained through a technique that
merges together the random restriction method, an inductive argument on the s of Res(s)
and the notion of minimal covering of a k-DNF of [35]. Since we are not using any (even
weak) form of Switching Lemma (as for instance in [35, 1]), we consider how tight is our
lower bound in Res(s). We prove that Bin-PHPmn (Theorem 23) can be refuted in size 2O(n)

in treelike Res(1). Our upper bound is contrasting with the unary case of the Pigeonhole
Principle, PHPmn , which instead requires treelike Res(1) refutations of size 2Ω(n logn), as
proved in [9, 16].

For the Pigeonhole Principle, similarly to the k-Clique Principle, we can prove that short
Res(logn) refutations for Bin-PHPmn can be efficiently obtained from short Res(1) of PHPmn
(Lemma 15). This allows us to prove that our lower bound is almost optimal: Buss and
Pitassi, in [15], proved an upper bound of 2O(

√
n logn) for the size of refuting PHPmn in Res(1)

when m ≥ 2
√
n logn, which by our Lemma 15 holds also for Res(logn) proofs of Bin-PHPmn .

It follows that our exponential lower bound for Bin-PHPmn (Theorem 18) for any m > n in
Res(log1/2−ε n) is almost optimal.

1.3 Contrasting unary and binary principles
To work with a more general theory in which to contrast the complexity of refuting the binary
and unary versions of combinatorial principles, following Riis [34] we consider principles which
are expressible as first-order formulae with no finite model in Π2-form, i.e. as ∀~x∃~wϕ(~x, ~w)
where ϕ(~x, ~y) is a formula built on a family of relations ~R. For example the Ordering
Principle, which states that a finite partial order has a maximal element is one such principle.
Its negation can be expressed in Π2-form as: ∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧ R(y, z) →
R(x, z)) ∧ R(x,w). In Definition 25 we explain how to generate a binary encoding Bin-Cn
from any combinatorial principle Cn expressible as a first order formulae in Π2-form with
no finite models and whose unary encoding we denote by Un-Cn. Another example is the
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6:4 Resolution and the Binary Encoding of Combinatorial Principles

Pigeonhole Principle whose negation of its relational form can be expressed as a Π2-formula
as ∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧ R(y, z) → x = y) ∧ R(x,w). Notice that in the case of
the Pigeonhole Principle, the existential witness w to the type pigeon is of the distinct type
hole. Furthermore, pigeons only appear on the left-hand side of atoms R(x, z) and holes only
appear on the right-hand side. This accounts for why, in the case of the Pigeonhole Principle,
one can give another more efficient (in terms of number of variables) binary encoding (see
Section 5 for details), than the one given by Bin-Cn applied to the PHP. Nevertheless in
Lemma 27 we observe that in Resolution efficient refutations for one encoding can be obtained
from refutations of the other encoding. We propose a framework to compare lower bounds
for the Bin-Cn in Res(s) with lower bounds for Un-Cn in Res(1) by proving in Lemma 26 that
short Resolution refutations for Un-Cn produces short Res(logn) refutations for Bin-Cn.

1.3.1 Linear Ordering Principles

Linear ordering formulae LOPn encodes a Linear Ordering Principle. They were used in
[14, 20] as families of formulae witnessing the optimality of the size-width tradeoffs for
Resolution ([8]), so that they require high width to be refuted, but still admit polynomial size
refutations in Resolution. Here we face the following open question: is the binary encoding
of LOPn formula still efficiently refutable in Resolution? In answering this question we will
show something stronger, as we study under what conditions the complexity of proofs in
Resolution will not increase significantly (by more than a polynomial factor) when shifting
from the unary encoding to the binary encoding. In Lemma 24 we prove that this is true
for the negation of principles expressible as first order formula in Π2-form involving total
variable comparisons. Hence in particular the binary version of the Linear Ordering Principle
Bin-LOPn. Finally, we also prove that the binary encoding of the Ordering Principle Bin-OPn,
where antisymmetry is not encoded and hence there is no total variable comparison, is also
polynomially provable in Resolution. Broadly speaking, these results are saying that shifting
to the binary encodings is not destroying the hardness of a unary principle when working in
Resolution. Hence binary encodings of combinatorial principles are meaningful benchmarks
for Resolution to prove lower bounds for.

1.3.2 Binary encodings of principles versus their Unary functional
encodings

The unary functional encoding of a combinatorial principle replaces the big disjunctive
clauses of the form vi,1 ∨ . . . ∨ vi,n, with vi,1 + . . .+ vi,n = 1, where addition is made on the
natural numbers. This is equivalent to augmenting the axioms ¬vi,j ∨ ¬vi,k, for j 6= k ∈ [n].
One might argue that the unary functional encoding is the true unary analog to the binary
encoding, since the binary encoding naturally enforces that there is a single witness alone. It
is likely that the non-functional formulation was preferred for its simplicity (similarly as the
Pigeonhole Principle is often given in its non-functional formulation).

In Subsection 5.3, we prove that the Resolution refutation size increases by only a
quadratic factor when moving from the binary encoding to the unary functional encoding.
This is interesting because the same does not happen for treelike Resolution, where the unary
encoding has complexity 2Θ(n logn) [9, 16], while, as we prove in Subsection 4.1 (Theorem
23), the binary (functional) encoding is 2Θ(n). The unary encoding complexity is noted in
[17] and remains true for the unary functional encoding with the same lower-bound proof.
The binary encoding complexity is addressed directly in this paper.
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1.4 Techniques and Organization
The method of random restrictions in Proof Complexity is often employed to prove size lower
bounds. Loosely speaking the method works as follows: we consider formulae having a given
specific combinatorial property P ; after hitting, with a suitable random partial assignment,
on an allegedly short proof of the formula we are refuting, we are left to prove that with
high probability a formula with property P is killed away from the proof. The growth rate
as the probability approaches to 1 together with a counting argument using averaging (as
the union bound), implies a lower bound on the number of formulae with property P in the
proof. Lower bounds in Res(s) using random restrictions were known only for s = 2 (see [5]).
Using a weak form of the Switching Lemma, lower bounds for Res(s) were obtained in [35, 1].
From the latter paper we use the notion of covering number of a k-DNF F , i.e. the minimal
size of a set of variables to hit all the k-terms in F . In this work we merge the covering
number with the random restriction method together with an inductive argument on the s,
to get size lower bounds in Res(s) specifically for binary encoding of combinatorial principles.

After a section with the preliminaries, the paper is divided into four sections: one with
the lower bound for the k-Clique Principle, one containing all the results for the (weak)
Pigeonhole Principle, one for the contrasting the proof complexity between unary and binary
principles containing all the results about the various Ordering Principles, and finally the last
section containing a general approach to unary vs binary encodings for principle expressible
as a Π2-formulae.

2 Preliminaries

We denote by > and ⊥ the Boolean values “true” and “false”, respectively. A literal is either
a propositional variable or a negated variable. We will denote literals by small letters, usually
l’s. An s-conjunction (s-disjunction) is a conjunction (disjunction) of at most k literals. A
clause with s literals is a s-disjunction. The width w(C) of a clause C is the number of literals
in C. A term (s-term) is either a conjunction (s-conjunction) or a constant, > or ⊥. A s-DNF
or s-clause (s-CNF) is a disjunction (conjunction) of an unbounded number of s-conjunctions
(s-disjunctions). We will use calligraphic capital letters to denote s-CNFs or s-DNFs, usually
Cs for CNFs, Ds for DNFs and Fs for both. For example, ((v1 ∧¬v2)∨ (v2 ∧ v3)∨ (¬v1 ∧ v3))
is an example of a 2-DNF and its negation ((v1 ∨¬v2)∧ (v2 ∨ v3)∧ (¬v1 ∨ v3)) is an example
of a 2-CNF.

We can now describe the propositional refutation system Res (s) ([23]). It is used to refute
(i.e. to prove inconsistency) of a given set of s-clauses by deriving the empty clause from the
initial clauses. There are four derivation rules:
1. The ∧-introduction rule is

D1 ∨
∧
j∈J1

lj D2 ∨
∧
j∈J2

lj

D1 ∨ D2 ∨
∧
j∈J1∪J2

lj
,

provided that |J1 ∪ J2| ≤ s.
2. The cut (or resolution) rule is

D1 ∨
∨
j∈J lj D2 ∨

∧
j∈J ¬lj

D1 ∨ D2
,

3. The two weakening rules are

D
D ∨

∧
j∈J lj

and
D ∨

∧
j∈J1∪J2

lj

D ∨
∧
j∈J1

lj
,

provided that |J | ≤ s.
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6:6 Resolution and the Binary Encoding of Combinatorial Principles

A Res(s) refutation can be considered as a directed acyclic graph (DAG), whose sources
are the initial clauses, called also axioms, and whose only sink is the empty clause. We
shall define the size of a proof to be the number of the internal nodes of the graph, i.e. the
number of applications of a derivation rule, thus ignoring the size of the individual s-clauses
in the refutation. In principle the s from “Res(s)” could depend on n – an important special
case is Res(logn).

Clearly, Res(1) is (ordinary) Resolution, working on clauses, and using only the cut rule,
which becomes the usual resolution rule, and the first weakening rule. Given an unsatisfiable
CNF C, and a Res(1) refutation π of C the width of π, w(π) is the maximal width of a
clause in π. The width refuting C in Res(1), w(` C), is the minimal width over all Res(1)
refutations of C.

A covering set for a s-DNF D is a set of literals L such that each term of D has at least
a literal in L. The covering number c(D) of a s-DNF D is the minimal size of a covering
set for D.

Let F(x1 . . . , xn) be a boolean s-DNF (resp. s-CNF) defined over variables X =
{x1, . . . , xn}. A partial assignment ρ to F is a truth-value assignment to some of the
variables of F : dom(ρ) ⊆ X. By F�ρ we denote the formula F ′ over variables in X \ dom(ρ)
obtained from F after simplifying in it the variables in dom(ρ) according to the usual boolean
simplification rules of clauses and terms.

2.1 Res(s) vs Resolution
Similarly to what was done for treelike Res(s) refutations in [18], if we turn a Res (s) refutation
of a given set of s-clauses Σ upside-down, i.e. reverse the edges of the underlying graph and
negate the s-clauses on the vertices, we get a special kind of restricted branching s-program
whose nodes are labelled by s-CNFs and at each node some s-disjunction is questioned. The
restrictions are as follows.

Each vertex is labelled by a s-CNF which partially represents the information that can
be obtained along any path from the source to the vertex (this is a record in the parlance of
[30]). Obviously, the (only) source is labelled with the constant >. There are two kinds of
queries, which can be made by a vertex:

1. Querying a new s-disjunction, and branching on the answer, which can be depicted
as follows.

C
?
∨
j∈J lj

> ↙ ↘ ⊥
C ∧

∨
j∈J lj C ∧

∧
j∈J ¬lj

(1)

2. Querying a known s-disjunction, and splitting it according to the answer:

C∧
∨
j∈J1∪J2

lj
?
∨
j∈J1

lj
> ↙ ↘ ⊥

C ∧
∨
j∈J1

lj C ∧
∨
j∈J2

lj

(2)

There are two ways of forgetting information,

C1 ∧ C2
↓
C1

and
C ∧

∨
j∈J1

lj
↓

C ∧
∨
j∈J1∪J2

lj

, (3)
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the point being that forgetting allows us to equate the information obtained along two
different branches and thus to merge them into a single new vertex. A sink of the branching
s-program must be labelled with the negation of a s-clause from Σ. Thus the branching
s-program is supposed by default to solve the Search problem for Σ: given an assignment of
the variables, find a clause which is falsified under this assignment.

The equivalence between a Res (s) refutation of Σ and a branching s-program of the kind
above is obvious. Naturally, if we allow querying single variables only, we get branching
1-programs – decision DAGs – that correspond to Resolution. If we do not allow the forgetting
of information, we will not be able to merge distinct branches, so what we get is a class of
decision trees that correspond precisely to the treelike version of these refutation systems.

Finally, we mention that the queries of the form (1) and (2) as well as forget-rules of the
form (3) give rise to a Prover-Adversary game (see [30] where this game was introduced for
Resolution). In short, Adversary claims that Σ is satisfiable, and Prover tries to expose him.
Prover always wins if her strategy is kept as a branching program of the form we have just
explained, whilst a good (randomised) Adversary’s strategy would show a lower bound on
the branching program, and thus on any Res (k) refutation of Σ.

I Lemma 1. If a CNF φ has a refutation in Res(k + 1) of size N , whose corresponding
branching (k + 1)-program has no records of covering number ≥ d, then φ has a Res(k)
refutation of size 2d+2 ·N (which is ≤ ed when d > 4).

Proof. In the branching program, consider a (k + 1)-CNF record φ whose covering number
< d is witnessed by variable set V ′ := {v1, . . . , vd}. At this node some (k + 1)-disjunction
(l1 ∨ . . . ∨ lk ∨ lk+1) is questioned.

Now in place of the record φ in our original branching program we expand a mini-tree
of size 2d+2 with 2d+1 leaves questioning all the variables of V ′ as well as the literal lk+1.
Clearly, each evaluation of these reduces φ to a k-CNF that logically implies φ. It remains
to explain how to link the leaves of these mini-trees to the roots of other mini-trees. At
each leaf we look to see whether we have the information lk+1 or ¬lk+1. If lk+1 then we link
immediately to the root of the mini-tree corresponding to the yes-answer to (l1∨ . . .∨ lk∨ lk+1)
(without asking a question). If ¬lk+1 then we question (l1 ∨ . . . ∨ lk and, if this is answered
yes, link the yes-answer to (l1 ∨ . . . ∨ lk ∨ lk+1), otherwise to its no-answer. J

3 The binary encoding of k-Clique

Consider a graph G such that G is formed from k blocks of n nodes each: G = (
⋃
b∈[k] Vb, E),

where edges may only appear between distinct blocks. Thus, G is a k-partite graph. Let the
edges in E be denoted as pairs of the form E((i, a), (j, b)), where i 6= j ∈ [k] and a, b ∈ [n].

The (unary) k-Clique CNF formulae Cliquen
k(G) for G, has variables vi,q with i ∈ [k], a ∈

[n], with clauses ¬vi,a ∨ ¬vj,b whenever ¬E((i, a), (j, b)) (i.e. there is no edge between node
a in block i and node b in block j), and clauses

∨
a∈[n] vi,a, for each block i. This expresses

that Gnk has a k-clique (with one vertex in each block), which we take to be a contradiction,
since we will arrange for G not to have a k-clique.

Bin-Cliquen
k(G) variables ωi,j range over i ∈ [k], j ∈ [logn]. Let us assume for simplicity of

our exposition that n is a power of 2, the general case is explained in Section 5.2. Let a ∈ [n]
and let a1 . . . alogn be its binary representation. Each (unary) variable vi,j semantically
corresponds to the conjunction (ωa1

i,1 ∧ . . . ∧ ω
alogn
i,logn), where

ω
aj
i,j =

{
ωi,j if aj = 1
ωi,j if aj = 0
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6:8 Resolution and the Binary Encoding of Combinatorial Principles

Hence in Bin-Cliquen
k(G) we encode the unary clauses ¬vi,a ∨ ¬vj,b, by the clauses

(ω1−a1
i,1 ∨ . . . ∨ ω1−alogn

i,logn ) ∨ (ω1−b1
j,1 ∨ . . . ∨ ω1−blogn

j,logn )

The wide clauses from the unary encoding simply disappear in the binary encoding being
implicit.

By the next Lemma short Resolution refutations for Cliquen
k(G) can be translated into

short Res(logn) refutations of Bin-Cliquen
k(G). hence to obtain lower bounds for Cliquen

k(G)
in Resolution, it suffices to obtain lower bounds for Bin-Cliquen

k(G) in Res(logn).

I Lemma 2. Suppose there are Resolution refutations of Cliquen
k(G) of size S. Then there

are Res(logn) refutations of Bin-Cliquen
k(G) of size S.

Proof. Where the decision DAG for Cliquen
k(G) questions some variable vi,a, the decision

branching logn-program questions instead (ω1−a1
1,1 ∨ . . .∨ω1−alogn

1,logn ) where the out-edge marked
true in the former becomes false in the latter, and vice versa. What results is indeed a
decision branching logn-program for Bin-Cliquen

k(G), and the result follows. J

Following [10, 4, 27] we consider Bin-Cliquen
k(G) formulae where G is a random graph

distributed according to a variation of the Erdös-Rényi as defined in [10]. In the standard
model, random graphs on n vertices are constructed by including every edge independently
with probability p. It is known that k-cliques appear at the threshold probability p∗ = n−

2
k−1 .

If p < p∗, then with high probability there is no k-clique. By Gnk,ε(p) we denote the distribution
on random multipartite Erdős-Renyi graph with k blocks Vi of n vertices each, where each
edge is present with probability p depending on ε. For p = n−(1+ε) 2

k−1 we just write Gnk,ε.
We use the notation G = (

⋃
b∈[k] Vb, E) ∼ Gnk (p) to say that G is a graph drawn at

random from the distribution Gnk (p).
In the next sections we explore lower bounds for Bin-Cliquen

k(G) in Res(s) for s ≥ 1,
when G ∼ Gnk (p).

3.1 Isolating the properties of G

Let α be a constant such that 0 < α < 1. Define a set of vertices U in G, U ⊆ V to be
an α-transversal if: (1) |U | ≤ αk, and (2) for all b ∈ [k], |Vb ∩ U | ≤ 1. Let B(U) ⊆ [k] be
the set of blocks mentioned in U , and let B(U) = [k] \B(U). We say that U is extendible
in a block b ∈ B(U) if there exists a vertex a ∈ Vb which is a common neighbour of all
nodes in U , i.e. a ∈ Nc(U) where Nc(U) is the set of common neighbours of vertices in U i.e.
Nc(U) = {v ∈ V | v ∈

⋂
u∈U N(u)}.

Let σ be a partial assignment (a restriction) to the variables of Bin-Cliquen
k(G) and β a

constant such that 0 < β < 1. We call σ, β-total if σ assigns bβ lognc bits in each block
b ∈ [k], i.e. bβ lognc variables νb,i in each block b. Let v = (i, a) be the a-th node in the
i-the block in G. We say that a restriction σ is consistent with v if for all j ∈ [logn], σ(ωi,j)
is either aj or not assigned.

I Definition 3. Let 0 < α, β < 1. A α-transversal set of vertices U is β-extendible, if
for all β-total restriction σ, there is a node vb in each block b ∈ B(U), such that σ is
consistent with vb.
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I Lemma 4 (Extension Lemma). Let 0 < ε < 1, let k ≤ logn. Let 1 > α > 0 and
1 > β > 0 such that 1− β > α(2 + ε). Let G ∼ Gnk,ε. With high probability both the following
properties hold:

1. all α-transversal sets U are β-extendible;
2. G does not have a k-clique.

Proof. Let U be an α-transversal set and σ be a β-total restriction. The probability that a
vertex w is in Nc(U) is pαk. Hence w 6∈ Nc(U) with probability (1− pαk). After σ is applied,
in each block b ∈ B(U) remain 2logn−β logn = n1−β available vertices. Hence the probability
that we cannot extend U in each block of B(U) after σ is applied is (1 − pαk)n1−β . Fix
c = 2 + ε and δ = 1− β − αc. Notice that δ > 0 by our choice of α and β. Since p = 1

n
c
k
,

previous probability is (1− 1/nαc)n1−β , which is asymptotically e−n
1−β
nαc = e−n

δ .
There are

(
k
αk

)
possible α-transversal sets U and

( logn
β logn

)
· k possible β-total restrictions σ.(

k
αk

)
·
( logn
β logn

)
· k ≤ kαk · (logn)β logn · k

= 2αk log k+β logn log logn+log k

≤ 2log2 n

Notice that the last inequality holds since k ≤ logn. Hence the probability that there is in
G no α-transeversal set U which is β-extendible is going to 0 as n grows.

To bound the probability that G contains a k-clique, notice that the expected number of
k cliques is

(
n
k

)
·p(

k
2) ≤ nk ·p(k(k−1)/2). Recalling p = 1/nc/k, we get that the probability that

G does not have a k-clique is nk ·n−c(k−1)/2 = nk−c(k−1)/2. Since c = 2 + ε, k− c(k− 1)/2 =
1− ε

2 (k − 1). Hence nk · n−c(k−1)/2 ≤ 2− logn for sufficiently large n and since k ≤ logn.
So the probability that either property (1) or (2) does not hold is bounded above by

2log2 n · e−nδ + 2− log2 n which is below 1 for sufficiently large n. J

3.2 Res(s) lower bounds for Bin-Cliquen
k

Let s ≥ 1 be an integer. Call a 1
2s+1 -total assignment to the variables of Bin-Cliquen

k(G)
an s-restriction. A random s-restriction for Bin-Cliquen

k(G) is an s-restriction obtained by
choosing independently in each block i, b 1

2s+1 lognc variables among ωi,1, . . . , ωi,logn, and
setting these uniformly at random to 0 or 1.

Let s, k ∈ N, s, k ≥ 1 and let G be graph over nk nodes and k blocks which does not
contain a k-clique. Fix δ = 1

242 and p(s) = 2(s+1)2 and d(s) = (p(s)s)s.
Consider the following property.

I Definition 5 (Property Clique(G, s, k)). For any γ ≥ 2 and for any γ-restriction ρ, there
are no Res(s) refutations of Bin-Cliquen

k(G)�ρ of size less than n
δ(k−1)

d(s) .

If property Clique(G, s, k) holds, we immediately have nΩ(k) size lower bounds for refuting
Bin-Cliquen

k(G) in Res(s).

I Corollary 6. Let s, k be integers, s ≥ 1, k > 1. Let G be a graph and assume that
Clique(G, s, k) holds. Then there are no Res(s) refutations of Bin-Cliquen

k(G) of size smaller
that nδ

k−1
d(s) .

Proof. Choose ρ to be any s-restriction, for γ ≥ 1. The result follows from the previous
definition since the shortest refutation of a restricted principle can never be larger than the
shortest refutation of the unrestricted principle. J
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We use the previous corollary to prove lower bounds for Bin-Cliquen
k(G) in Res(s) as long

as s = o(log logn).

I Theorem 7. Let 0 < ε < 1 be given. Let k be an integer with k > 1. Let s be an
integer with 1 < s ≤ 1

2 log logn. Then there exists a graph G such that Res(s) refutations of
Bin-Cliquen

k(G) have size nΩ(k).

Proof. Let 1 > α > 0 and 1 > β > 0 such that 1− β > α(2 + ε). By Lemma 4, we can fix
G ∼ Gnk,ε such that:
1. all α-transversal sets U are β-extendible;
2. G does not have a k-clique.
We will prove, by induction on s = o(log logn), that property Clique(G, s, k) does hold.
The result then follows by Corollary 6. Lemma 8 is the base case and Lemma 9 the
inductive case. J

I Lemma 8 (Base Case). Clique(G, 1, k) does hold.

Proof. Fix β = 3
4 and α = 1

4(2+ε) ≥
1
12 . Notice that d(1) = 16. Let ρ be a 1-restriction, that is

a 1
4 -total assignment. We claim that any Resolution refutation of Bin-Cliquen

k(G)�ρ must have
width at least k logn

24 . This is a consequence of the extension property which allows Adversary
to play against Prover with the following strategy: for each block, while fewer than logn

2 bits
are known, Adversary offers Prover a free choice. Once logn

2 bits are set then Adversary chooses
an assignment for the remaining bits according to the extension property. Since 1

4 + 1
2 = 3

4 ,
this allows the game to continue until some record has width at least logn

2 · k12 = k logn
24 .

Size-width tradeoffs for Resolution [8] tells us that minimal size to refute any unsat CNF F

is lower bounded by 2
(w(`F)−w(F))2

16V(F) 1. In our case w(F ) = 2 logn and V (F) = k logn, hence

the minimal size required is ≥ 2
( k logn

24 −2 logn)2

16k logn = 2
logn( k24−2)2

16k = n
( k24−2)2

16k . It is not difficult to
see that ( k24−2)2

16k ≥ (k−1)
16·242 . Since δ = 1

242 and d(1) = 16 the result is proved. J

I Lemma 9 (Inductive Case). Clique(G, s− 1, k) implies Clique(G, s, k).

Proof. Recall that we fixed p(s) = 2(s+1)2 and d(s) = (p(s)s)s. Set L(s) = n
δ(k−1)

d(s) and
χ(s) = (s−1)s−1

ss23s2+s . (Proof of the next claim is postponed after the proof.)

B Claim 10. lnL(s) = χ(s) lnL(s− 1)

We prove the contrapositive of the statement of the Lemma. Assume there is some
s-restriction ρ such that there exists a Res(s) refutation π of Bin-Cliquen

k(G)�ρ with size less
than L(s). We prove that that there is a (s− 1)-restriction τ such that there are Res(s− 1)
proofs of Bin-Cliquen

k(G)�τ of size < L(s− 1).
Consider the function:

f(s, n) = (1− χ(s))
(ln 2) d(s− 1) −

4
δ(k − 1) lnn.

f(s, n) is lower bounded as follows (see the proof after the the proof of this Lemma).

B Claim 11. For sufficiently large n and for all s ≥ 2,

f(s, n) > 1
(p(s)s)s−1 .

1 According to [25] Th 8.11
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Fix the covering number as:

c = f(s, n)δ(k − 1) lnn

Define r = c
s and let us call a bottleneck a record R in π whose covering number is ≥ c.

Hence in such a record it is always possible to find r pairwise disjoint s-tuples of literals
T1 = (`11, . . . , `s1), . . . , Tr = (`1r, . . . , `sr) such that the

∧
Ti’s are the terms of the s-DNF

forming the record R.
Let σ be a s-random restriction on the variables of Bin-Cliquen

k(G)�ρ. Let us say that σ
kills a tuple T if it sets to 0 all literals in T (notice that a record is the negation of a s-DNF)
and that T survives σ otherwise. And that σ kills R if it kills at at least one of the tuples in
R. Let Σi be the event that Ti survives σ and ΣR the event that R survives σ. We claim
(postponing the proof) that

B Claim 12. Pr[ΣR] ≤ (1− 1
p(s) )r.

Consider now the restriction τ = ρσ. This is a (s − 1)-restriction on the variables of
Bin-Cliquen

k(G). We argue that in π�τ there is no bottleneck. Notice that by the union bound
the probability that there exists such a record in π�τ , is bounded by

Pr[∃R ∈ π�τ : ΣR] ≤ |π�τ|(1−
1

p(s) )r.

We claim that this probability is < 1. Notice that (1− 1
p(s) )r ≤ e−

c
s p(s) using the definition

of r. So to prove the claim it is sufficient to prove that |π �τ | < e
c

p(s)s or equivalently
that ln |π�τ | < c

s p(s) . But ln |π�τ | ≤ ln |π| = lnL(s) = 1
s p(s)

δ(k−1) lnn
(p(s)s)s−1 . Since by Claim 11

f(s, n) > 1
(p(s)s)s−1 , then ln |π�τ| < f(s,n)δ(k−1) lnn

s p(s) = c
s p(s) , where the last inequality follows

by definition of c.
Since in π�τ there is no bottleneck, by Lemma 1, we can morph π�τ through the restriction

τ to a Res(s − 1) refutation of Bin-Cliquen
k(G)�τ of size 2c+2 · L(s). Hence the Lemma is

proved arguing that

2c+2 · L(s) < L(s− 1) (4)

Since by Claim 10, lnL(s) = χ(s) lnL(s− 1), we have the following equivalences:

(c+ 2) ln 2 + lnL(s) < lnL(s− 1) Passing to ln of Eq. 4 (5)
(c+ 2) ln 2 < lnL(s− 1)(1− χ(s)) (6)

(f(s, n)δ(k − 1) lnn+ 2) ln 2 < δ(k − 1) lnn
d(s− 1) · (1− χ(s)) def of c and of L(s− 1) (7)

f(s, n)δ(k − 1) lnn+ 2 < δ(k − 1) lnn
d(s− 1) · (1− χ(s))

ln 2 dividing by ln 2 (8)

f(s, n)δ(k − 1) lnn < δ(k − 1) lnn
d(s− 1) · (1− χ(s))

ln 2 − 2 subtracting 2 (9)

f(s, n) < (1− χ(s))
(ln 2) d(s− 1) −

2
δ(k − 1) lnn. dividing by δ(k − 1) lnn

(10)

The last line is true since by its definition f(s, n) = (1−χ(s))
(ln 2) d(s−1) −

4
δ(k−1) lnn . J

Notice that the due to the definition of L(s) the proof can be carried as long as (s p(s))s ≤
lnn which means s = o(log logn).
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6:12 Resolution and the Binary Encoding of Combinatorial Principles

Proof of Claim 10. Notice that p(s − 1) = 2s2 and that p(s) = 2s222s+1 = p(s − 1)22s+1.
Consider the following equalities

lnL(s) = δ(k − 1) lnn
(p(s)s)s (11)

= δ(k − 1) lnn
(p(s− 1)22s+1)sss ·

(s− 1)s−1

(s− 1)s−1 (12)

= δ(k − 1) lnn
p(s− 1)s−1(s− 1)s−1 ·

(s− 1)s−1

ss p(s− 1)(22s+1)s (13)

= δ(k − 1) lnn
p(s− 1)s−1(s− 1)s−1 ·

(s− 1)s−1

ss p(s− 1)22s2+s (14)

= δ(k − 1) lnn
d(s− 1) · (s− 1)s−1

ss2s222s2+s (15)

= L(s− 1) · (s− 1)s−1

ss23s2+s (16)

Notice that χ(s) = (s−1)s−1

ss23s2+s so the result follows. C

Proof of Claim 11. For n→∞, 4
δ(k−1) lnn → 0, so for a sufficiently large n we can ignore the

term 4
δ(k−1) lnn . Moreover since ln 2 < 1 we forgot the factor 1

ln 2 in f(s, n). We have to show
that for all s ≥ 2

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s)s)s−1 . (17)

First we bound the RHS in a convenient form. First since 1
s−1 >

1
s the claim in Eq 17

follows from proving that

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s)(s− 1))s−1 . (18)

Recall from proof of Claim 10 that p(s) = p(s − 1)22s+1. Hence we can write the
denominator (p(s)(s− 1))s−1 of RHS of Eq. 18 as

(p(s)(s− 1))s−1 =(p(s− 1)(s− 1))s−1 · (22s+1)s−1 (19)

=(p(s− 1)(s− 1))s−1 · 22s2−(s+1) (20)

Hence Eq. 18 follows from proving

(1− χ(s))
(p(s− 1)(s− 1))s−1 >

1
(p(s− 1)(s− 1))s−1 · 22s2−(s+1) (21)

Multiplying both sides by (p(s− 1)(s− 1))s−1 this is equivalent to prove that

(1− χ(s)) > 1
22s2−(s+1) (22)

Which is equivalent to prove that

(1− χ(s)) > 2s+1

22s2 (23)
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Now we work on a more convenient form of LHS. Recall that

χ(s) = (s− 1)s−1

ss23s2+s

so that

1− χ(s) = ss23s2+s − (s− 1)s−1

ss23s2+s (24)

So Eq 23 can be rewritten as

ss23s2+s − (s− 1)s−1

ss23s2+s >
2s+1

22s2 (25)

Multiplying both sides by ss23s2+s we have the equivalent equation

ss23s2+s − (s− 1)s−1 > 2s+1ss2s
2+s (26)

which, dividing both sides by ss is equivalent to prove

23s2+s − (s− 1)s−1

ss
> 2s

2+2s+1 (27)

First we claim that (s−1)s−1

ss < 1, which is equivalent tor prove that (s− 1) ln(s− 1)−
s ln(s) < 0 by passing to logarithms. But (s− 1) ln(s− 1)− s ln(s) < (s− 1) ln(s− 1)− (s−
1) ln(s) < (s− 1) ln(s− 1)− (s− 1) ln(s− 1) = 0.

So

23s2+s − (s− 1)s−1

ss
> 2s

2+s − 1

and Eq 27 follows from proving that

23s2+s − 1 ≥ 2s
2+2s+1 (28)

divide both sides by the RHS, which is 2s2+2s+1 so that we want to prove that

23s2+s−(s2+2s+1) − 1
2s2+2s+1 ≥ 1 (29)

Again 1
2s2+2s+1 ≤ 1 and 23s2+s−(2s2+2s+1) = 22s2−(s+1), so that Eq 29 follows from

proving that

22s2−(s+1) − 1 ≥ 1 (30)

22s2−(s+1) is a growing function in s and for s = 2 is value is exactly 25 = 32 > 2. Hence
it is always true that 2s2−(s+1) ≥ 2, which proves Eq 29 and hence our Claim. C

Proof of Claim 12. Since T1, . . . , Tr are tuples in R, then Pr[ΣR] ≤ Pr[Σ1∧. . .∧Σr]. Moreover
Pr[Σ1 ∧ . . . ∧ Σr] =

∏r
i=1 Pr[Σi|Σ1 ∧ . . . ∧ Σi−1]. We will prove that for all i = 1, . . . , r,

Pr[Σi|Σ1 ∧ . . . ∧ Σi−1] ≤ Pr[Σi] (31)
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6:14 Resolution and the Binary Encoding of Combinatorial Principles

Hence the result follows from Lemma 13 which is proving that Pr[Σi] ≤ 1− 1
p(s) .

By Lemma 14 (i), to prove that Equation 31 holds, we show that Pr[Σi|¬Σ1∨. . .∨¬Σi−1] ≥
Pr[Σi]. We claim that for j ∈ [r], i 6= j:

Pr[Σi|¬Σj ] ≥ Pr[Σi] (32)

Hence repeated applications of Lemma 14 (ii), prove that Pr[Σi|¬Σ1 ∨ . . .∨¬Σi−1] ≥ Pr[Σi].
To prove Equation 32, let B(Ti) be the set of blocks mentioned in Ti. If B(Ti) and B(Tj)

are disjoint, then clearly Pr[Σi|¬Σj ] = Pr[Σi]. When B(Ti) and B(Tj) are not disjoint, we
reason as follows: For each ` ∈ B(Ti), let T `i be the set of variables in Ti mentioning block
`. Ti is hence partitioned into

⋃
`∈B(Ti) T

`
i and hence the event “Ti surviving σ”, can be

partitioned into the sum of the events that T `i survives to σ, for ` ∈ B(Ti). Denote by Σ`
i

the event “T `i survives σ” and let A=B(Ti) ∩B(Tj) and B = B(Ti) \ (B(Ti) ∩B(Tj)). The
following inequalities holds:

Pr[Σi|¬Σj ] = Pr[∃` ∈ B(Ti) : Σ`i |¬Σj ] (33)

=
∑

`∈B(Ti)

Pr[Σ`i |¬Σj ] (34)

=
∑
`∈A

Pr[Σ`i |¬Σj ] +
∑
`∈B

Pr[Σ`i |¬Σj ] (35)

(36)

Since B is disjoint from B(Tj), as for the case above for each ` ∈ B, Pr[Σ`i |¬Σj ] = Pr[Σ`i ].
Then:∑

`∈B

Pr[Σ`i |¬Σj ] =
∑
`∈B

Pr[Σ`i ] (37)

(38)

Notice that Ti and Tj are disjoint, hence knowing that some indices in blocks ` ∈ A are
already chosen to kill Tj , only increase the chances of Ti to survive (since less positions are
left in the blocks ` ∈ A to potentially kill Ti).

Hence:∑
`∈A

Pr[Σ`i |¬Σj ] ≥
∑
`∈A

Pr[Σ`i ] (39)

(40)

Which proves the claim since:∑
`∈A

Pr[Σ`i ] +
∑
`∈B

Pr[Σ`i ] = Pr[Σi] (41)

C

I Lemma 13. Let ρ be a s-random restriction. For all s-tuples S:

Pr[S survives ρ] ≤ 1− 1
p(s)
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Proof. Let T = (`i1,j1 , . . . , `is,js) be an s-tuple made of of disjoint literals of Bin-Cliquen
k(G).

We say that T is perfect if all literals are bits of a same block.
Let γ = 1

2s+1 . A block with r distinct bits contributes a factor of(
γ logn
r

)(logn
r

) · 1
2r

to the probability that the s-tuple does not survive. Expanding the left-hand part of this
we obtain

γ logn · γ logn − 1 · · · γ logn − r + 1
logn · logn − 1 · · · logn − r + 1 = γ

logn
logn · γ

logn − 1
γ

logn − 1 · · · γ
logn − r

γ + 1
γ

logn − r + 1

Next, let us note that

1 = logn
logn >

logn − 1
γ

logn − 1 > · · · >
logn − r

γ + 1
γ

logn − r + 1

The result now follows when we recall that the probability of surviving is maximised when
the probability of not surviving is minimised. J

I Lemma 14. Let A,B,C three events such that Pr[A],Pr[B],Pr[C] > 0:
(i) If Pr[A|¬B] ≥ Pr[A] then Pr[A|B] ≤ Pr[A];
(ii) Pr[A|B] ≥ Pr[A] and Pr[A|C] ≥ Pr[A]. Then Pr[A|B ∨ C] ≥ Pr[A].

Proof. For part (i) consider the following equivalences:

Pr[A] = Pr[A|B] Pr[B] + Pr[A|¬B] Pr[¬B]
Pr[A] = Pr[A|B] Pr[B] + Pr[A|¬B](1− Pr[B])
Pr[A] ≥ Pr[A|B] Pr[B] + Pr[A](1− Pr[B])
Pr[A] Pr[B] ≥ Pr[A|B] Pr[B]
Pr[A] ≥ Pr[A|B]

For part (ii) consider the following inequalities:

Pr[A|B ∨ C] = Pr[A∧(B∨C)]
Pr[B∨C]

≥ Pr[A∧B]
Pr[B∨C] + Pr[A∧C]

Pr[B∨C]
= Pr[A∧B]

Pr[B] ·
Pr[B]

Pr[B∨C] + Pr[A∧C]
Pr[C] ·

Pr[C]
Pr[B∨C]

= Pr[A|B] · Pr[B]
Pr[B∨C] + Pr[A|C] · Pr[C]

Pr[B∨C]
≥ Pr[A] · (Pr[B]+Pr[C]

Pr[B∨C] )
≥ Pr[A]

J

4 The weak Pigeonhole Principle

For n < m, let Bin-PHPmn be the binary encoding of the (weak) Pigeonhole Principle.
Bin-PHPmn is a well-known formula and its definition can be found in Section 5. First notice
that an analogous of Lemma 2 holds for the Pigeonhole Principle too.

I Lemma 15. Suppose there are Resolution refutations of PHPmn of size S. Then there are
Res(logn) refutations of Bin-PHPmn of size S.
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6:16 Resolution and the Binary Encoding of Combinatorial Principles

Let ρ be a partial assignment (a restriction) to the variables of Bin-PHPmn . We call ρ
a t-bit restriction if ρ assigns t bits of each pigeon b ∈ [m], i.e. t variables ωb,i for each
pigeon b. Let v = (i, a) be an assignment meaning that pigeon i is assigned to hole a and
let a1 . . . alogn be the binary representation of a. We say that a restriction ρ is consistent
with v if for all j ∈ [logn], σ(ωi,j) is either aj or not assigned. We denote by Bin-PHPmn�ρ,
Bin-PHPmn restricted by ρ. We will also consider the situation in which an s-bit restriction is
applied to some Bin-PHPmn�ρ, creating Bin-PHPmn�τ , where τ is an s+ t-bit restriction.

Throughout this section, let u = u(n, t) := (logn) − t. We do not use this shorthand
universally, but sometimes where otherwise the notation would look cluttered. We also
occasionally write (logn)− t as logn − t (note the extra space).

I Lemma 16. Let ρ be a t-bit restriction for Bin-PHPmn . Any decision DAG for Bin-PHPmn�ρ
must contain a record which mentions n

2t pigeons.

Proof. Let Adversary play in the following fashion. While some pigeon is not mentioned at
all, let him give Prover a free choice to answer any one of its bits as true or false. Once a
pigeon is mentioned once, then let Adversary choose a hole for that pigeon by choosing some
assignment for the remaining unset bits (we will later need to prove this is always possible).
Whenever another bit of an already mentioned pigeon is queried, then Adversary will answer
consistently with the hole he has chosen for it. Only once all of a pigeon’s bits are forgotten
(not including those set by ρ), will Adversary forget the hole he assigned it.

It remains to argue that Adversary must force Prover to produce a record of width ≥ n
2t+1

and for this it suffices to argue that Adversary can remain consistent with Bin-PHPmn�ρ up
until the point that such a record exists. For that it is enough to show that there is always a
hole available for a pigeon for which Adversary gave its only currently questioned bit as a
free choice (but for which ρ has already assigned some bits).

The current record is assumed to have fewer than n
2t literals and therefore must mention

fewer than n
2t pigeons, each of which Adversary already assigned a hole. Each hitherto

unmentioned pigeon that has just been given a free choice has logn −t bits which corresponds
to n

2t holes. Since we have assigned fewer than n
2t pigeons to holes, one of these must be

available, and the result follows. J

Let ξ(s) satsify ξ(1) = 1 and ξ(s) = ξ(s− 1) + 1 + s. Note that ξ(s) = Θ(s2).

I Definition 17 (Property PHP(s, t)). Let s, t ≥ 1. For any t-bit restriction ρ to Bin-PHPmn ,
there are no Res(s) refutations of Bin-PHPmn�ρ of size smaller than e

n

4ξ(s)+1s!2tuξ(s) .

I Theorem 18. Let ρ be a t-bit restriction for Bin-PHPmn . Any decision DAG for Bin-PHPmn�ρ
is of size 2Ω( n

logn ) (indeed, asymptotically of size ≥ e
n

2t+2u ).

Proof. Call a bottleneck a record in the decision DAG that mentions n
2t+1 pigeons. Now

consider a random restriction that picks for each pigeon one bit uniformly at random and
sets this to 0 or 1 with equal probability. The probability that a bottleneck survives (is not
falsified by) the random restriction is no more than(

u− 1
u

+ 1
2u

) n
2t+1

=
(

1− 1
2u

)u· n
2t+1u

≤ 1
e

n
2t+2u

,

since e−x = limm→∞(1− x/m)m and indeed e−x ≥ (1− x/m)m when x,m ≥ 1.
Now suppose for contradiction that we have fewer than e

n
2t+2u bottlenecks in a decision

DAG for Bin-PHPmn �ρ. By the union bound there is a random restriction that kills all
bottlenecks and this leaves a decision DAG for some Bin-PHPmn�σ, where σ is a (t+ 1)-bit
restriction for Bin-PHPmn . However, we know from Lemma 16 that such a refutation must
involve a record mentioning n

2t+1 pigeons. This is now the desired contradiction. J
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Note that the previous theorem could have been proved, like Lemma 8, by the size-width
trade-off. However, the method of random restrictions used here could not be easily applied
there, due to the randomness of G.

I Corollary 19. Property PHP(1, t) holds, for each t < logn.

Note that, PHP(1, t) yields only trivial bounds as t approaches logn.
Let (`i1,j1 , . . . , `is,js) be an s-tuple made of disjoint literals of Bin-PHPmn �ρ. We say that

a tuple is perfect if all literals come from the same pigeon.

I Lemma 20. Let s be an integer, s ≥ 1 and s+t < logn. Let σ be a random s-bit restriction
over Bin-PHPmn�ρ where ρ is itself some t-bit restriction over Bin-PHPmn . Let T be a perfect
s-tuple of Bin-PHPmn�ρ. Then for all s-tuples S:

Pr[T survives σ] ≥ Pr[S survives σ].

and so Pr[S survives σ] ≤ 1− 1
us .

Proof. A pigeon with r distinct bits contributes to not surviving a factor of

s

logn − t ·
s− 1

logn − t− 1 · · ·
s− r + 1

logn− t− r + 1 ·
1
2r .

Noting that

s

logn − t ·
s− 1

logn − t− 1 · · ·
1

logn− t− s+ 1 ·
1
2r >

1
us

the result now follows when we recall that the probability of surviving is maximised when
the probability of not surviving is minimised. J

I Theorem 21. Let s > 1 and s+ t < logn. Then, PHP(s− 1, s+ t) implies PHP(s, t).

Proof. We proceed by contraposition. Assume there is some t-bit restriction ρ so that there
exists a Res(s) refutation π of Bin-PHPmn�ρ with size less than e

n

4ξ(s)+1·s!2tuξ(s) .
Call a bottleneck a record that has covering number ≥ n

4ξ(s)·(s−1)!2tuξ(s−1) . In such a
record, by dividing by s and u, it is always possible to find r := n

4ξ(s)s!2tuξ(s−1)+1 s-tuples
of literals (`11, . . . , `s1), . . . , (`1r, . . . , `sr) so that each s-tuple is a clause in the record and no
pigeon appearing in the ith s-tuple also appears in the jth s-tuple (when i 6= j). This
important independence condition plays a key role. Now consider a random restriction that,
for each pigeon, picks uniformly at random s bit positions and sets these to 0 or 1 with
equal probability. The probability that the ith of the r s-tuples survives the restriction is
maximised when each variable among the s describes a different pigeon (by Lemma 20) and
is therefore bound above by(

1− 1
us

)
whereupon(

1− 1
us

) n

4ξ(s)s!2tuξ(s−1)+1

=
(

1− 1
us

) nus

4ξ(s)s!2tu(ξ(s−1)+1+s)
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6:18 Resolution and the Binary Encoding of Combinatorial Principles

which is ≤ 1/e
n

4ξ(s)+1s!·2tuξ(s) . Supposing therefore that there are fewer than e
n

4ξ(s)+1s!·2tuξ(s)

bottlenecks, one can deduce a random restriction that kills all bottlenecks. What remains after
doing this is a Res(s) refutation of some Bin-PHPmn�σ, where σ is a s+ t-bit restriction, which
moreover has covering number < n

4ξ(s)·(s−1)!2tuξ(s−1) . But if the remaining Res(s) refutation
is of size < e

n

4ξ(s)+1s!·2tuξ(s) then, from Lemma 1, it would give a Res(s− 1) refutation of size

< e
n

4ξ(s)·(s−1)!2tuξ(s−1) · e
n

4ξ(s)+1s!·2tuξ(s) = e
n

4ξ(s)·(s−1)!2tuξ(s−1) (1+ 1
4sus+1 )

< e
2n

4ξ(s)·(s−1)!2tuξ(s−1) < e
n

4ξ(s)·(s−1)!2t−1uξ(s−1)
< e

n

4ξ(s)−s·(s−1)!2s+tuξ(s−1) ,

since 4s > 2s+1, which equals e
n

4ξ(s−1)+1·(s−1)!2s+tuξ(s−1) in contradiction to the inductive
hypothesis. J

I Theorem 22. Fix λ, µ > 0. Any refutation of Bin-PHPmn in Res(
√

2 log
1

2+λ n) is of size
2Ω(n1−µ).

Proof. First, let us claim that PHP(
√

2 log
1

2+λ n, 0) holds (and this would hold also at λ = 0).
Applying Theorem 21 gives ` such that `(`+1)

2 < logn. Noting `2

2 < `(`+1)
2 , the claim follows.

Now let us look at the bound we obtain by plugging in to e
n

4ξ(s)+1·s!2tuξ(s) at s =
√

2 log
1

2+λ n

and t = 0. We recall ξ(s) = Θ(s2). It follows, since λ > 0, that each of 4ξ(s)+1, s! and
logξ(s) n is o(nµ). The result follows. J

4.1 The treelike case
Concerning the Pigeonhole Principle, we can prove that the relationship between PHP and
Bin-PHP is different for treelike Resolution from general Resolution. In particular, for very
weak Pigeonhole Principles, we know the binary encoding is harder to refute in general
Resolution; whereas for treelike Resolution it is the unary encoding which is the harder.

I Theorem 23. The treelike Resolution complexity of Bin-PHPmn is 2Θ(n).

Proof. For the lower bound, one can follow the proof of Lemma 16 with t = 0 and finds
n free choices on each branch of the tree. Following the method of Riis [34], we uncover a
subtree of the decision tree of size 2n.

For an upper bound of 22n we pursue the following strategy. First we choose some n+ 1
pigeons to question. We then question all of them on their first bit and separate these into
two sets T1 and F1 according to whether this was answered true or false. If n is a power of
2, choose the larger of these two sets (if they are the same size then choose either). If n is
not a power of two, the matter is mildly complicated, and one must look at how many holes
are available with the first bit set to 1, say h1

1; versus 0, say h0
1. At least one of |T1| > h1

1 or
|F1| > h0

1 must hold and one can choose between T1 and F1 correspondingly. Now question
the second bit, producing two sets T2 and F2, and iterate this argument. We will reach a
contradiction in logn iteration since we always choose a set of maximal size. The depth of
our tree is bound above by n+ n

2 + n
4 + · · · < 2n and the result follows. J

5 Contrasting unary and binary encodings

To work with a more general theory in which to contrast the complexity of refuting the binary
and unary versions of combinatorial principles, following Riis [34] we consider principles which
are expressible as first order formulae with no finite model in Π2-form, i.e. as ∀~x∃~wϕ(~x, ~w)
where ϕ(~x, ~y) is a formula built on a family of relations ~R. For example the Ordering
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Principle, which states that a finite partial order has a maximal element is one of such
principle. Its negation can be expressed in Π2-form as:

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z)→ R(x, z)) ∧R(x,w).

This can be translated into a unsatisfiable CNF OPn using a unary encoding of the witness,
as shown below. In Definition 25 we explain how to generate a binary encoding Bin-Cn from
any combinatorial principle Cn expressible as a first order formulae in Π2-form with no finite
models and whose unary encoding we denote by Un-Cn. For example Bin-OPn would be the
conjunction of the clauses below.

OPn : Unary encoding Bin-OPn : Binary encoding

vx,x x ∈ [n]
vx,y ∨ vy,z ∨ vx,z x, y, z ∈ [n]∨

i∈[n] vx,i x ∈ [n]

νx,x x ∈ [n]
νx,y ∨ νy,z ∨ νx,z x, y, z ∈ [n]∨

i∈[log n] ω
1−ai
x,i ∨ νx,a x, a ∈ [n]

a1 . . . alog n binary representation of a

ω
aj
x,j =

{
ωx,j aj = 1
ωx,j aj = 0

As a second example we consider the Pigeonhole Principle which states that a total
mapping from [m] to [n] has necessarily a collision when m and n are integers with m > n.
Following Riis [34], for m = n+ 1, the negation of its relational form can be expressed as a
Π2-formula as

∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧R(y, z)→ x = y) ∧R(x,w)

and its usual unary and binary propositional encoding are:

PHP : Unary encoding Bin-PHP : Binary encoding∨n

j=1 vi,j i ∈ [m]
vi,j ∨ vi′,j i, 6= i′ ∈ [m], j ∈ [n]

∨log n

j=1 ωi,j ∨
∨log n

j=1 ωi′,j i 6= i′ ∈ [m]

Notice that in the case of Pigeonhole Principle, the existential witness w to the type
pigeon is of the distinct type hole. Furthermore, pigeons only appear on the left-hand side
of atoms R(x, z) and holes only appear on the right-hand side. For the Ordering Principle
instead, the transitivity axioms effectively enforce the type of y appears on both the left-
and right-hand side of atoms R(x, z). This account for why, in the case of the Pigeonhole
Principle, we did not need to introduce any new variables to give the binary encoding, yet
for the Ordering Principle a new variable w appears.

5.1 Binary encodings of principles involving total comparison
We will now argue that the proof complexity in Resolution of principles involving total
comparison will not increase significantly (by more than a polynomial factor) when shifting
from the unary encoding to the binary encoding. Total comparison is here indicated by the
axioms vi,j ⊕ vj,i, where ⊕ indicates XOR, for each i 6= j. It follows that it does not make
sense to consider the binary encoding of such principles in the search for strong lower bounds.
Examples of natural principles involving total comparison include the totally ordered variant
of the Ordering Principle (known to be polynomially refutable in Resolution [14]) as well as
all of its unary relativisations (which can be exponentially hard for any Res(s) [17]).

Let TC-Prin be some Π2 first-order principle involving relations of arity no more than 2.
Let n ∈ N and discover TC-Prin(n) with variables vi,j , for i, j ∈ [n], of arity 2, including
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6:20 Resolution and the Binary Encoding of Combinatorial Principles

axioms of total comparison: vi,j ⊕ vj,i, for each i 6= j. There may additionally be unary
variables, of the form ui, for i ∈ [n], but no further variables of other arity. Let Un-TC-Prin(n)
have axioms vi,1 ∨ . . . ∨ vi,n, for each i ∈ [n] (for the Ordering Principle this would most
naturally correspond to the variant stating a finite total order has a maximal element).
To make our translation to the binary encoding, we tacitly assume n is a power or 2.
When this is not the case, we need clauses forbidding certain evaluations, and we defer
this treatment to Section 5.2. Let Bin-TC-Prin(n) have corresponding variables ωi,` for
i ∈ [n], ` ∈ [logn], where vi,j from the unary encoding semantically corresponds to the
conjunction (ωa1

i,1 ∧ . . . ∧ ω
alogn
i,logn), where

ω
ap
i,p =

{
ωi,p if ap = 1
ωi,p if ap = 0

with a1 · · · alogn being the binary representation of j. The unary variables stay as they are.
From this, the axioms of Bin-TC-Prin(n), including total comparison, can be canonically
calculated from the corresponding axioms of Un-TC-Prin(n) as explained in Section 5.2 in
Defintion 25. Note that the large disjunctive clauses of Un-TC-Prin(n), that encode the
existence of the witness, disappear completely in Bin-TC-Prin(n).

I Lemma 24. Suppose there is a Resolution refutation of Un-TC-Prin(n) of size S(n). Then
there is a Resolution refutation of Bin-TC-Prin(n) of size at most n2 · S(n).

Proof. Take a decision DAG π for Un-TC-Prin(n) and consider the point at which some
variable vi,j is questioned. Each node in π will be expanded to a small tree in π′, which will
be a decision DAG for Bin-TC-Prin(n). The question “vi,j?” in π will become a sequence
of 2 logn questions on variables ωi,1, . . . , ωi,logn, ωj,1, . . . , ωj,logn, giving rise to a small tree
of size 22 logn = n2 questions in π′. Owing to total comparison, many of the branches
of this mini-tree must end in contradiction. Indeed, many of their leaves would imply
the impossible ¬vi,j ∧ ¬vj,i, while precisely one would imply the impossible vi,j ∧ vj,i (see
Figure 1 for an example). Those that don’t will always have a sub-branch labelled by
(ωa1
i,1 ∧ . . . ∧ ω

alogn
i,logn), where

ω
ap
i,p =

{
ωi,p if ap = 1
ωi,p if ap = 0

with a1 · · · alogn being the binary representation of j; or (ωb1
j,1 ∧ . . . ∧ ω

blogn
j,logn), where

ω
bp
j,p =

{
ωj,p if bp = 1
ωj,p if bp = 0

with b1 · · · blogn being the binary representation of i. By forgetting information along these
branches and unifying branches with the same labels of their sub-branches, we are left with
precisely these two outcomes, corresponding to “vi,j” and “¬vi,j”, which is “vj,i”. Indeed,
this is the crux, ¬vi,j being equivalent to vj,i, and thus being expressible as some conjunction
of variables ωbpj,p. Thus, π gives rise to π′ of size n2 · S(n) and the result follows. J

5.2 Binary versus unary encodings in general
Let Cn be some combinatorial principle expressible as a first-order Π2-formula F of the
form ∀~x∃~wϕ(~x, ~w) where ϕ(~x, ~w) is a quantifier-free formula built on a family of relations ~R.
Following Riis [34] we restrict to the class of such formulae having no finite model.
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ω2,1

qq --ω2,2
rr ,,

ω2,2
rr ,,ω3,1

vv ((

ω3,1
vv ((

ω3,1
vv ((

ω3,1
vv ((

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
|| !!

ω3,2
}} !!

ω3,2
}} !!# # B # # # B # # # B # A A # A

Figure 1 Example converting the question v2,3? from a Resolution refutation of Un-TC-Prin(n)
to a small tree in a refutation of Bin-TC-Prin(n). The variables ω2,1, ω2,2, ω3,1, ω3,2 are questioned
in order. The left-hand and right-hand branches correspond to false and true, respectively. Note
that 2 and 3 are 10 and 11 in binary, respectively. Thus, v2,3 is equivalent to ω2,1 ∧ ω2,2 (labelled A
at the leaves) and v3,2 is equivalent to ω3,1 ∧ ω3,2 (labelled B at the leaves). The remaining leaves
contradict the total comparison clauses (including one that would be labelled both A and B).

Let Un-Cn be the standard unary (see Riis in [34]) CNF propositional encoding of F .
For each set of first-order variables ~a := {x1, . . . , xk} of (first order) variables, we consider
the propositional variables vxi1 ,xi2 ,...,xik (which we abbreviate as v~a) whose semantics are to
capture at once the value of variables in ~a if they appear in some relation in ϕ. For easiness
of description we restrict to the case where F is of the form ∀~x∃wϕ(~x,w), i.e. ~w is a single
variable w. Hence the propositional variables of Un-Cn are of the type v~a for ~a ⊆ ~x (type
1 variables) and/or of the type v~xw for w ∈ ~w (type 2 variables) and which we denote by
simply vw, since each existential variable in F depends always on all universal variables.
Notice that we consider the case of F = ∀~x∃wϕ(~x,w), since the generalisation to higher arity
is clear as each witness w ∈ ~w may be treated individually.

I Definition 25 (Canonical form of Bin-Cn). Let Cn be a combinatorial principle expressible as
a first-order formula ∀~x∃wϕ(~x,w) with no finite models. Let Un-Cn be its unary propositional
encoding. Let 2r−1 < n ≤ 2r ∈ N (r = dlogne). The binary encoding Bin-Cn of C is defined
as follows:

The variables of Bin-Cn are defined from variables of Un-Cn as follows:
1. For each variable of type 1 v~a, for ~a ⊆ ~x, we use a variable ν~x, for ~a ⊆ ~x, and
2. For each variable of type 2 vw, we have r variables ω1, . . . ωr, where we use the convention

that if z1 . . . zr is the binary representation of w, then

ω
zj
j =

{
ωj zj = 1
ωj zj = 0

so that vw can be represented using binary variables by the clause (ω1−z1
1 ∨ . . . ∨ ω1−zr

r )

The clauses of Bin-Cn are defined form the clauses of Un-Cn as follows:
1. If C ∈ Un-Cn contains only variables of type 1, v~b1

, . . . , v~bk , hence C is mapped as follows

C :=
∨k1
j=1 v~bj ∨

∨k2
j=1 v~cj 7→

∨k1
j=1 ν~bj ∨

∨k2
j=1 ν~cj

2. If C ∈ Un-Cn contains type 1 and type 2 variables, it is mapped as follows:

C := vw ∨
∨k1
j=1 v~cj ∨

∨k2
l=1 v~dj 7→

(∨
i∈[r] ω

1−zi
i

)
∨
∨k1
j=1 ν~cj ∨

∨k2
l=1 ν ~dj

C := vw ∨
∨k1
j=1 v~cj ∨

∨k2
l=1 v~dj 7→

(∨
i∈[r] ω

zi
i

)
∨
∨k1
j=1 ν~cj ∨

∨k2
l=1 ν ~dj

where ~cj , ~dl ⊆ ~x and where z1, . . . , zr is the binary representation of w.
3. If n 6= 2r, then, for each n < a ≤ 2r we need clauses

ω1−a1
1 ∨ . . . ∨ ω1−ar

r

where a1, . . . , ar is the binary representation of a.
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Getting short proofs for the binary version Bin-Cn in Res(logn) form short Res(1) proofs
of the unary version Un-Cn is possible also in the general case.

I Lemma 26. Let Cn be a combinatorial principle expressible as a first-order formula
∀~x∃~wϕ(~x, ~w) with no finite models. Let Un-Cn and Bin-Cn be respectively the unary and
binary propositional encoding. Let n ∈ N. If there is a size S refutation for Un-Cn in Res(1),
then there is a size S refutation for Bin-Cn in Res(logn)

Proof Sketch. Where the decision DAG for Un-Cn questions some variable v~a,b, the decision
branching logn-program questions instead (ω1−z1

~a,1 ∨ . . .∨ω1−zlogn
~a,logn ) where the out-edge marked

true in the former becomes false in the latter, and vice versa. What results is indeed a
decision branching logn-program for Bin-Cn, and the result follows. J

As one can easily notice reading Subsection 1.3, the binary version Bin-PHP of the
Pigeonhole Principle we displayed there, is different from the one we would get applying
the canonical transformation of Definition 5.2. However, we can easily and efficiently move
between these versions in Resolution (we leave the proof to the reader below), and the version
we have chosen is easier to handle, having fewer variables.

I Lemma 27. The two versions of the binary Pigeonhole Principle (Bin-PHP and the one
arising from Definition 5.2 to PHP) are linearly equivalent in Resolution.

5.3 Binary encodings of principles versus their Unary functional
encodings

Recall the unary functional encoding of a combinatorial principle C, denoted Un-Fun-C(n),
replaces the big clauses from Un-C(n), of the form vi,1 ∨ . . . ∨ vi,n, with vi,1 + . . .+ vi,n = 1,
where addition is made on the natural numbers. This is equivalent to augmenting the axioms
¬vi,j ∨ ¬vi,k, for j 6= k ∈ [n].

I Lemma 28. Suppose there is a Resolution refutation of Bin-C(n) of size S(n). Then there
is a Resolution refutation of Un-Fun-C(n) of size at most n2 · S(n).

Proof. Take a decision DAG π′ for Bin-C(n), where w.l.o.g. n is even, and consider the point
at which some variable ν′i,j is questioned. Each node in π′ will be expanded to a small tree
in π, which will be a decision DAG for Un-Fun-C(n). The question “ν′i,j?” in π will become a
sequence of questions vi,1, . . . , vi,n where we stop the small tree when one of these is answered
true, which must eventually happen. Suppose vi,k is true. If the jth bit of k is 1 we ask
now all vi,b1 , . . . , vi,bn2

, where b1, . . . , bn2 are precisely the numbers in [n] whose jth bit is 0.
All of these must be false. Likewise, if the jth bit of k is 0 we ask all vi,b1 , . . . , vi,bn2

, where
b1, . . . , bn2 are precisely the numbers whose jth bit is 1. All of these must be false. We now
unify the branches on these two possibilities, forgetting any intermediate information. (To
give an example, suppose j = 2. Then the two outcomes are ¬vi,1 ∧¬vi,3 ∧ . . .∧¬vi,n−1 and
¬vi,2 ∧¬vi,4 ∧ . . .∧¬vi,n.) Thus, π′ gives rise to π of size n2 ·S(n) and the result follows. J

5.4 The Ordering Principle in binary
Recall the Ordering Principle specified in Π2 first-order logic

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z)→ R(x, z)) ∧R(x,w)
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with propositional translation to the binary encoding of witnesses, Bin-OPn, as follows.

νx,x x ∈ [n]
νx,y ∨ νy,z ∨ νx,z x, y, z ∈ [n]∨
i∈[logn] ω

1−ai
x,i ∨ νx,a x, a ∈ [n]

where

ω
aj
i,j =

{
ωi,j if aj = 1
ωi,j if aj = 0

and a1 . . . alogn is the binary representation of a.

I Lemma 29. Bin-OPn has refutations in Resolution of polynomial size.

Proof. We follow the well-known proof for the unary version of the Ordering Principle, from
[36]. Consider the domain to be [n] = {1, . . . , n}. At the ith stage of the decision DAG we
will find a maximal element, ordered by R, among [i] = {1, . . . , i}. That is, we will have a
record of the special form

νj,1 ∧ . . . ∧ νj,j−1 ∧ νj,j+1 ∧ . . . ∧ νj,i

for some j ∈ [i]. The base case i = 1 is trivial. Let us explain the inductive step. From the
displayed record above we ask the question νj,i+1? If νj,i+1 is true, then ask the sequence
of questions νi+1,1, . . . , νi+1,i, all of which must be false by transitivity. Now, by forgetting
information, we uncover a new record of the special form. Suppose now νj,i+1 is false. Then
we equally have a new record again in the special form. Let us consider the size of our
decision tree so far. There are n2 nodes corresponding to special records and navigating
between special records involves a path of length n, so we have a DAG of size n3. Finally, at
i = n, we have a record of the form

νj,1 ∧ . . . ∧ νj,j−1 ∧ νj,j+1 ∧ . . . ∧ νj,n.

Now we expand a tree questioning the sequence wj,1, . . . , wj,logn, and discover each leaf
labels a contradiction of the clauses of the final type. We have now added n · 2logn nodes, so
our final DAG is of size at most n3 + n2. J

I Theorem 30. Bin-OPn has poly size resolution refutations in Res(1).

6 Final remarks

Various questions are left unanswered in our exposition. Primarily, there is the question as
to the optimality of our lower bounds for the binary encodings of k-Clique and the (weak)
Pigeonhole Principle. In terms of the strongest refutation system Res(s) (largest s) for which
we can prove superpolynomial bounds, then it is not hard to see that our method can go
no further than s = Θ(log logn) for the former, and s = o(log1/2 n) for the latter. This is
because we run out of space with the random restrictions as they become nested in the
induction. We have no reason, however to think that our results are truly optimal, only that
another method is needed to improve them.

Similarly, one might ask whether converses to our lemmas might hold. For example, to
Lemmas 24 and 26. In these cases, we do not know about the converses. The converse of
Lemma 28(even for n2 replaced by some polynomial) is false. For example, consider the very
weak Pigeonhole Principle of [15].
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Abstract
We study the Fourier spectrum of functions f : {0, 1}mk → {−1, 0, 1} which can be written as a
product of k Boolean functions fi on disjoint m-bit inputs. We prove that for every positive integer d,∑

S⊆[mk]:|S|=d

|f̂S | = O
(
min{m,

√
m log(2k)}

)d
.

Our upper bounds are tight up to a constant factor in the O(·). Our proof uses Schur-convexity, and
builds on a new “level-d inequality” that bounds above

∑
|S|=d

f̂S
2 for any [0, 1]-valued function f

in terms of its expectation, which may be of independent interest.
As a result, we construct pseudorandom generators for such functions with seed length Õ(m+

log(k/ε)), which is optimal up to polynomial factors in logm, log log k and log log(1/ε). Our
generator in particular works for the well-studied class of combinatorial rectangles, where in addition
we allow the bits to be read in any order. Even for this special case, previous generators have an
extra Õ(log(1/ε)) factor in their seed lengths.

We also extend our results to functions fi whose range is [−1, 1].
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1 Introduction

In this paper we study tests on n bits which can be written as a product of k bounded
real-valued functions defined on disjoint inputs of m bits. We first define them formally.

I Definition 1 (Product tests). A function f : {0, 1}n → [−1, 1] is a product test with k
functions of input length m if there exist k disjoint subsets I1, I2, . . . , Ik ⊆ {1, 2, . . . , n} of
size ≤ m such that f(x) =

∏
i≤k fi(xIi) for some functions fi with range in [−1, 1]. Here

xIi
are the |Ii| bits of x indexed by Ii.
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7:2 Fourier Bounds and Pseudorandom Generators for Product Tests

More generally, the range of each function fi can be C≤1 := {z ∈ C : |z| ≤ 1}, the
complex unit disk [22, 26], or the set of square matrices over a field [44]. However, in this
paper we only focus on the range [−1, 1]. As we will soon explain, our results do not hold for
the broader range of C≤1.

The class of product tests was first introduced by Gopalan, Kane and Meka under the
name of Fourier shapes [22]. However, in their definition, the subsets Ii are fixed. Motivated
by the recent constructions of pseudorandom generators against unordered tests, which are
tests that read input bits in arbitrary order [8, 28, 44, 50], Haramaty, Lee and Viola [26]
considered the generalization in which the subsets Ii can be arbitrary as long as they are of
bounded size and pairwise disjoint.

Product tests generalize several restricted classes of tests. For example, when the range of
the functions fi is {0, 1}, product tests correspond to the AND of disjoint Boolean functions,
also known as the well-studied class of combinatorial rectangles [4, 40, 41, 30, 20, 7, 36, 56,
23, 25]. When the range of the fi is {−1, 1}, they correspond to the XOR of disjoint Boolean
functions, also known as the class of combinatorial checkerboards [57]. More importantly,
product tests also capture read-once space computation. Specifically, Reingold, Steinke and
Vadhan [44] showed that the class of read-once width-w branching programs can be encoded
as product tests with outputs {0, 1}w×w, the set of w × w Boolean matrices.

In the past year, the study of product tests [26, 33] has found applications in con-
structing state-of-the-art pseudorandom generators (PRGs) for space-bounded algorithms.
Using ideas in [23, 25, 33, 14], Meka, Reingold and Tal [38] constructed a pseudorandom
generator for width-3 read-once branching programs (ROBPs) on n bits with seed length
Õ(logn log(1/ε)), giving the first improvement of Nisan’s generator [40] in the 90s. Building
on [44, 26, 14], Forbes and Kelley significantly simplified the analysis of [38] and constructed
a generator that fools unordered polynomial-width read-once branching programs. Thus,
it is motivating to further study product tests, in the hope of gaining more insights into
constructing better generators for space-bounded algorithms, and resolving the long-standing
open problem of RL vs. L.

In this paper we are interested in understanding the Fourier spectrum of product tests.
We first define the Fourier weight of a function. For a function f : {0, 1}n → R, consider its
Fourier expansion f =

∑
S⊆[n] f̂SχS .

I Definition 2 (dth level Fourier weight in Lq-norm). Let f : {0, 1}n → C≤1 be any function.
The dth level Fourier weight of f in Lq-norm is

Wq,d[f ] :=
∑
|S|=d

|f̂S |q.

We denote by Wq,≤d[f ] the sum
∑d
`=0Wq,`[f ].

Several papers have studied the Fourier spectrum of different classes of tests. This
includes constant-depth circuits [37, 51], read-once branching programs [44, 50, 14], and
low-sensitivity functions [24]. More specifically, these papers showed that they have bounded
L1 Fourier tail, that is, there exists a positive number b such that for every test f in the
class and every positive integer d, we have

W1,d[f ] ≤ bd.

One technical contribution of this paper is giving tight upper and lower bounds on the L1
Fourier tail of product tests.
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I Theorem 3. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Suppose there is a constant c > 0 such that |E[fi]| ≤ 1− 2−cm for every fi. For
every positive integer d, we have

W1,d[f ] ≤
(
72(
√
c ·m)

)d
.

Theorem 3 applies to Boolean functions fi with outputs {0, 1} or {−1, 1}, for which we
know a bound on c. Moreover, the parity function on mk bits can be written as a product
test with outputs {−1, 1}, which has f̂[mk] = 1. So product tests do not have non-trivial L2
Fourier tail. (See [51] for a definition.)

We also obtain a different upper bound when the fi are arbitrary [−1, 1]-valued functions.

I Theorem 4. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Let d be a positive integer. We have

W1,d[f ] ≤
(
85
√
m ln(4ek)

)d
.

We note that Theorems 3 and 4 are incomparable, as one can take m = 1 and k = n, or
m = n and k = 1.

B Claim 5. For all positive integers m and d, there exists a product test f : {0, 1}mk → {0, 1}
with k = d · 2m functions of input length m such that

W1,d[f ] ≥ (m/e3/2)d.

This matches the upper bound W1,d[f ] = O(m)d in Theorem 3 up to the constant in
the O(·). Moreover, applying Theorem 4 to the product test f in Claim 5 gives W1,d[f ] =
O(
√
m log(2k))d = O(m +

√
m log d)d. Therefore, for all integers m and d ≤ 2O(m), there

exists an integer k and a product test f such that the upper boundW1,d[f ] = O(
√
m log(2k))d

is tight up to the constant in the O(·).
We now discuss some applications of Theorems 3 and 4 in pseudorandomness.

Pseudorandom generators

In recent years, researchers have developed new frameworks to construct pseudorandom
generators against different classes of tests. Gopalan, Meka, Reingold, Trevisan and Vad-
han [23] refined a framework introduced by Ajtai and Wigderson [5] to construct better
generators for the classes of combinatorial rectangles and read-once DNFs. Since then, this
framework has been used extensively to construct new PRGs against different classes of
tests [53, 22, 25, 44, 50, 15, 26, 27, 46, 33, 14, 21, 38, 19]. Recently, a beautiful work by
Chattopadhyay, Hatami, Hosseini and Lovett [12] developed a new framework of constructing
PRGs against any classes of functions that are closed under restriction and have bounded L1
Fourier tail. Thus, applying their result to Theorems 3 and 4, we can immediately obtain a
non-trivial PRG for product tests. However, using the recent result of Forbes and Kelley [21]
and exploiting the structure of product tests, we use the Ajtai–Wigderson framework to
construct PRGs with much better seed length than using [12] as a blackbox.

I Theorem 6. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools the XOR
of any k Boolean functions on disjoint inputs of length ≤ m with error ε and seed length
O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)).

CCC 2019



7:4 Fourier Bounds and Pseudorandom Generators for Product Tests

Here Õ(1) hides polynomial factors in logm, log log k, log logn and log log(1/ε). When
mk = n or ε = n−Ω(1), the generator in Theorem 6 has seed length Õ(m+ log(k/ε)), which
is optimal up to Õ(1) factors.

We now compare Theorem 6 with previous works. Using a completely different analysis,
Lee and Viola [33] obtained a generator with seed length Õ((m + log k)) log(1/ε). When
m = O(logn) and k = 1/ε = nΩ(1), this is Õ(log2 n), whereas the generator in Theorem 6
has seed length Õ(logn). When each function fi is computable by a read-once width-w
branching program on m bits, Meka, Reingold and Tal [38] obtained a PRG with seed
length O(log(n/ε))(logm+ log log(n/ε))2w+2. When m = O(log(n/ε)), Theorem 6 improves
on their generator on the lower order terms. As a result, we obtain a PRG for read-once
F2-polynomials, which are a sum of monomials on disjoint variables over F2, with seed length
O(logn/ε)(log log(n/ε))2. This also improves on the seed length of their PRG for read-once
polynomials in the lower order terms by a factor of (log log(n/ε))4.

Our generator in Theorem 6 also works for the AND of the functions fi, corresponding
to the class of unordered combinatorial rectangles. Previous generators [11, 17] use almost-
bounded independence or small-bias distributions, and have seed length O(log(n/ε))(1/ε).
While several papers [36, 56, 23, 25, 22] have improved the seed length for this model in the
fixed order setting, our generator is the first improvement for the unordered setting and has
nearly-optimal seed length. In fact, we have the following more general corollary.

I Corollary 7. There exists an explicit pseudorandom generator G : {0, 1}` → {0, 1}n with
seed length Õ(m+log(n/ε)) such that the following holds. Let f1, . . . , fk : {0, 1}Ii → {0, 1} be
k Boolean functions where the subsets Ii ⊆ [n] are pairwise disjoint and have size at most m.
Let g : {0, 1}k → C≤1 be any function and write g in its Fourier expansion g =

∑
S⊆[k] ĝSχS.

Then G fools g(f1, . . . , fk) with error L1[g] · ε, where L1[g] :=
∑
S 6=∅|ĝS |.

Proof. Let G be the generator in Theorem 6. Note that χS(f1(xI1), . . . , fk(xIk
)) is a product

test with outputs {−1, 1}. So by Theorem 6 we have∣∣E[g(f1(UI1), . . . , fk(UIk
))− E[g(f1(GI1), . . . , fk(GIk

)]
∣∣

≤
∑
S

|ĝS |
∣∣E[χS(f1(UI1), . . . , fk(UIk

))]− E[χS(f1(GI1), . . . , fk(GIk
)]
∣∣

≤ L1[g] · ε. J

Note that the AND function has L1[AND] ≤ 1, and so the generator in Corollary 7 fools
unordered combinatorial rectangles.

When the functions fi in the product tests have outputs [−1, 1], we also obtain the
following generator.

I Theorem 8. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools any prod-
uct test with k functions of input length m with error ε and seed length O(logmk)((m +
log(k/ε))(logm+ log log(k/ε)) + log logn) = Õ(m+ log(k/ε)) log k.

When m = o(logn) and k = 1/ε = 2o(
√

logn), Theorem 8 gives a better seed length than
Theorem 6. Thus the generator in Theorem 8 remains interesting for fi ∈ {−1, 1} when a
product test f depends on very few variables and the error ε is not so small.

Previous best generator [33] has an extra Õ(log(1/ε)) in the seed length. However, the
generator in [33] works even when the fi have range C≤1, which implies generators for several
variants of product tests such as generalized halfspaces and combinatorial shapes. (See [22]
for the reductions.)
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Finally, when the subsets Ii of a product test are fixed and known in advanced, Gopalan,
Kane and Meka [22] constructed a PRG of the same seed length as Theorem 6, but again
their PRG works more generally for the range of C≤1 instead of {−1, 1}.

F2-polynomials

Chattopadhyay, Hatami, Lovett and Tal [13] recently constructed a pseudorandom generator
for any class of functions that are closed under restriction, provided there is an upper bound
on the second level Fourier weight of the functions in L1-norm. They conjectured that every
n-variate F2-polynomial f of degree d satisfies the bound W1,2[f ] = O(d2). In particular, a
bound of n1/2−o(1) would already imply a generator for polynomials of degree d = Ω(logn),
a major breakthrough in complexity theory. Theorem 4 shows that their conjecture is true
for the special case of read-once polynomials. In fact, it shows that W1,t[f ] = O(dt) for every
positive integer t. Previous bound for read-once polynomials gives W1,t[f ] = O(log4 n)t [14].

The coin problem

Let Xn,ε = (X1, . . . , Xn) be the distribution over n bits, where the variables Xi are indepen-
dent and each Xi equals 1 with probability (1− ε)/2 and 0 otherwise. The ε-coin problem
asks whether a given function f can distinguish between the distributions Xn,ε and Xn,0
with advantage 1/3.

This central problem has wide range of applications in computational complexity and
has been studied extensively for different restricted classes of tests, including bounded-depth
circuits [2, 54, 3, 6, 55, 47, 1, 56, 16], space-bounded algorithms [9, 49, 16], bounded-depth
circuits with parity gates [47, 32, 45, 35], F2-polynomials [35, 13] and product tests [34].

It is known that if a function f has bounded L1 Fourier tail, then it implies a lower bound
on the smallest ε∗ of ε that f can solve the ε-coin problem.

I Fact 9. Let f : {0, 1}n → C≤1 be any function. If for every integer d ∈ {0, . . . , n} we have
W1,d[f ] ≤ bd, then f solves the ε-coin problem with advantage at most 2bε.

Proof. We may assume bε ≤ 1/2, otherwise the result is trivial. Observe that we have
E[χS(Xn,ε)] = ε|S| for every subset S ⊆ [n]. Thus,∣∣E[f(Xn,ε)]− E[f(Xn,0)]

∣∣ =
∣∣∣∑
S 6=∅

f̂S E[Xn,ε]
∣∣∣

≤
n∑
d=1

∑
|S|=d

|f̂S | · εd =
n∑
d=1

(bε)d ≤ bε ·
n∑
d=1

2−(d−1) ≤ 2bε. J

Lee and Viola [34] showed that product tests with range [−1, 1] can solve the ε-coin
problem with ε∗ = Θ(1/

√
m log k). Hence, Fact 9 implies that Theorem 4 recovers their lower

bound. Moreover, their upper bound implies that the dependence on m and k in Theorem 4
is tight up to constant factors when d is constant. Claim 5 complements this by showing
that the dependence on d in Theorem 4 is also tight for some choice of k.

The work [34] also shows that when the range of the functions fi is C≤1, the right answer
for ε∗ is Θ(1/

√
mk). Therefore, one cannot hope for a better tail bound than the trivial

bound of (
√
mk)d when the range is C≤1.

1.1 Techniques
We now explain how to obtain Theorems 3 and 4 and our pseudorandom generators for
product tests (Theorems 6 and 8).

CCC 2019



7:6 Fourier Bounds and Pseudorandom Generators for Product Tests

1.1.1 Fourier spectrum of product tests
The high-level idea of proving Theorems 3 and 4 is inspired from [34]. For intuition, let us
first assume that the functions fi have outputs {0, 1} and are all equal to f1 (but defined
on disjoint inputs). It will also be useful to think of the number of functions k being much
larger than input length m of each function. We first explain how to bound above W1,1[f ].
(Recall in Definition 2 we defined Wq,d[f ] of a function f to be

∑
|S|=d|f̂S |q.)

Bounding W1,1[f ]

Since the functions fi of a product test f are defined on disjoint inputs, each Fourier coefficient
of f is a product of the coefficients of the fi, and so each weight-1 coefficent of f is a product
of k − 1 weight-0 and 1 weight-1 coefficients of the fi. From this, we can see that W1,1[f ] is
equal to(

k

1

)
·W1,1[f1] ·W1,0[f1]k−1 = k ·W1,1[f1] · E[f1]k−1. (1)

Because of the term E[f1]k−1, to maximize W1,1[f ] it is natural to consider taking f1 to be a
function with expectation E[f1] as close to 1 as possible, i.e. the OR function. In such case,
one would hope for a better bound on W1,1[f1]. Indeed, Chang’s inequality [10] (see also [29]
for a simple proof) says that for a [0, 1]-valued function g with expectation α ≤ 1/2, we have

W2,1[g] ≤ 2α2 ln(1/α).

(The condition α ≤ 1/2 is without loss of generality as one can instead consider 1−g.) It follows
by a simple application of the Cauchy–Schwarz inequality that W1,1[g] ≤ O(

√
n) ·α

√
ln(1/α)

(see Fact 12 below for a proof). Moreover, when the functions fi are Boolean, we have
2−m ≤ E[fi] ≤ 1− 2−m, and so

√
ln(1/α) ≤

√
m. Plugging these bounds into Equation (1),

we obtain a bound of O(m) · k(1−E[f1])E[f1]k−1. So indeed E[f1] should be roughly 1− 1/k
in order to maximize W1,1[f ], giving an upper bound of O(m). For the case where the fi
can be different, a simple convexity argument shows that W1,1[f ] is maximized when the
functions fi have the same expectation.

Bounding W1,d[f ] for d > 1

To extend this argument to d > 1, one has to generalize Chang’s inequality to bound
above W2,d[g] for d > 1. The case d = 2 was already proved by Talagrand [52]. Following
Talagrand’s argument in [52] and inspired by the work of Keller and Kindler [31], which
proved a similar bound in terms of a different measure than E[g], we prove the following
bound on W2,d[g] in terms of its expectation.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

We note that the exponent 1/d of E[g] either did not appear in previous upper bounds
(mentioned without proof in [29]), or only holds for restricted values of d [42]. This exponent
is not important for proving Theorem 3 , but will be crucial in the proof of Theorem 4, which
we will explain later on.

For d > 1, the expression for W1,d[f ] becomes much more complicated than W1,1[f ], as it
involves W1,z[f1] for different values of z ∈ [m]. So one has to formulate the expression of
W1,d[f ] carefully (see Lemma 13). Once we have obtained the right expression for W1,d[f ],
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the proof of Theorem 3 follows the outline above by replacing Chang’s inequality with
Lemma 10. One can then handle functions fi with outputs {−1, 1} by considering the
translation fi 7→ (1 − fi)/2, which only changes each W1,d[fi] (for d > 0) by a factor of 2.
We remark that Theorem 3 is sufficient for constructing the generator in Theorem 6.

Handling [−1, 1]-valued fi

Extending this argument to proving Theorem 4 poses several challenges. Following the
outline above, after plugging in Lemma 10, we would like to show that E[f1] should be
roughly 1− 1/k to maximize W1,d[f ]. However, it is no longer clear why this is the case even
assuming the maximum is attained by functions fi with the same expectation, as we now do
not have the bound

√
ln(1/α) ≤

√
m, and so it cannot be used to simplify the expression

of W1,d[f ] as before. In fact, the above assumption is simply false if we plug in the upper
bound in Lemma 10 with the exponent 1/d omitted to the W1,zi [fi].

Using Lemma 10 and the symmetry of the expression for W1,d[f ], we reduce the problem
of bounding above W1,d[f ] with different fi to bounding the same quantity but with the
additional assumption that the fi have the same expectation E[f1]. This uses Schur-convexity
(see Section 2 for its definition). Then by another convexity argument we show that the
maximum is attained when E[f1] is roughly equal to 1 − d/k. Both of these arguments
critically rely on the aforementioned exponent of 1/d in Lemma 10.

1.1.2 Pseudorandom generators
We now discuss how to use Theorems 3 and 4 to construct our pseudorandom generators for
product tests. Our construction follows the Ajtai–Wigderson framework [5] that was recently
revived and refined by Gopalan, Meka, Reingold, Trevisan and Vadhan [23].

The high-level idea of this framework involves two steps. For the first step, we show
that derandomized bounded independence plus noise fools f . More precisely, we will show
that if we start with a small-bias or almost-bounded independent distribution D (“bounded
independence”), and select roughly half of D’s positions T pseudorandomly and set them to
uniform U (“plus noise”), then this distribution, denoted by D + T ∧ U , fools product tests.

Forbes and Kelley [21] recently improved the analysis in [26] and implicitly showed that
δ-almost d-wise independent plus noise fools product tests, where d = O(m+ log(k/ε)) and
δ = n−Ω(d). Using Theorem 4, we improve the dependence on δ to (m ln k)−Ω(d) and obtain
the following theorem.

I Theorem 11. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length
m. Let d be a positive integer. Let D and T be two independent δ-almost d-wise independent
distributions over {0, 1}n, and U be the uniform distribution over {0, 1}n. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ · (170 ·
√
m ln(ek))d + 2−(d−m)/2),

where “+” and “∧” are bit-wise XOR and AND respectively.

The second step of the Ajtai–Wigderson framework builds a pseudorandom generator
by applying the first step (Theorem 11) recursively. Let f : {0, 1}n → {0, 1} be a product
test with k functions of input length m. As product tests are closed under restrictions (and
shifts), after applying Theorem 11 to f and fixing D and T in the theorem, the function
fD,T : {0, 1}T → {0, 1} defined by fD,T (y) := f(D + T ∧ y) is also a product test. Thus
one can apply Theorem 11 to fD,T again and repeat the argument recursively. We will use
different progress measures to bound above the number of recursion steps in our constructions.
We first describe the recursion in Theorem 8 as it is simpler.

CCC 2019



7:8 Fourier Bounds and Pseudorandom Generators for Product Tests

Fooling [−1, 1]-valued product tests

Here our progress measure is the number of bits that are defined by the product test f .
We show that after O(log(mk)) steps of the recursion, the restricted product test is defined
on at most O(m + log(k/ε)) bits with high probability, which can then be fooled by an
almost-bounded independent distribution. This simple recursion gives our second PRG
(Theorem 8).

Fooling Boolean-valued product tests

Our construction of the first generator (Theorem 6) is more complicated and uses two
progress measures. The first one is the maximum input length m of the functions fi, and
the second is the number k of the functions fi. We reduce the number of recursion steps
from O(log(k/ε)) logm to O(logm). This requires a more delicate construction and analysis
that are similar to the recent work of Meka, Reingold and Tal [38], which constructed
a pseudorandom generator against XOR of disjoint constant-width read-once branching
programs. There are two main ideas in their construction. First, they ensure k ≤ 16m in each
step of the recursion, by constructing another PRG to fool the test f for the case k ≥ 16m.
We will also use this PRG in our construction. Next, throughout the recursion they allow
one “bad” function fi of the product test f to have a longer input length than m, but not
longer than O(log(n/ε)). Using these two ideas, they show that whenever m ≥ log logn
during the recursion, then after O(1) steps of the recursion all but the “bad” fi have their
input length restricted by a half, while the “bad” fi always has length O(log(n/ε)). This
allows us to repeat O(logm) steps until we are left with a product test of k′ ≤ polylog(n)
functions, where all but one of the fi have input length at most m′ = O(log logn).

Now we switch our progress measure to the number of functions. This part is different
from [38], in which their construction relies on the fact that the fi are computable by
read-once branching programs. Here because our functions fi are arbitrary, by grouping
c functions as one, we can instead think of the parameters k′ and m′ in the product test
as k′′ = k′/c and m′′ = cm′, respectively. Choosing c to be O(logn/ log logn), we have
m′′ = O(logn) and so we can repeat the previous argument again. Because each time k′ is
reduced by a factor of c, after repeating this for O(1) steps, we are left with a product test
defined on O(logn) bits, which can be fooled using a small-bias distribution. This gives our
first generator (Theorem 6).

Organization

In Section 2 we prove Theorems 3 and 4. In Section 3 we construct our pseudorandom
generators for product tests, proving Theorems 6 and 8. In Section 4 we prove Lemma 10,
which is used in the proof of Theorem 4.

2 Fourier spectrum of product tests

In this section we prove Theorems 3 and 4. We first restate the theorems.

I Theorem 3. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Suppose there is a constant c > 0 such that |E[fi]| ≤ 1− 2−cm for every fi. For
every positive integer d, we have

W1,d[f ] ≤
(
72(
√
c ·m)

)d
.
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I Theorem 4. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m. Let d be a positive integer. We have

W1,d[f ] ≤
(
85
√
m ln(4ek)

)d
.

Both theorems rely on the following lemma which gives an upper bound on W2,d[g] in
terms of the expectation of a [0, 1]-valued function g. The case d = 1 is known as Chang’s
inequality [10]. (See also [29] for a simple proof.) This was then generalized by Talagrand to
d = 2 [52]. Using a similar argument to [52], we extend this to d > 2.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

We defer its proof to Section 4. We remark that a similar upper bound was proved by
Keller and Kindler [31]. However, the upper bound in [31] was proved in terms of

∑n
i=1 Ii[g]2,

where Ii[g] is the influence of the ith coordinate on g, instead of E[g]. A similar upper bound
in terms of E[g] can be found in [42] under the extra condition d ≤ 2 ln(1/E[g]).

We will also use the following well-known fact that bounds above W1,d[f ] in terms of
W2,d[f ].

I Fact 12. Let f : {0, 1}n → R be any function. We have W1,d[f ] ≤ nd/2
√
W2,d[f ].

Proof. By the Cauchy–Schwarz inequality,

W1,d[f ] =
∑
|S|=d

|f̂S | ≤

√√√√(n
d

) ∑
|S|=d

f̂2
S ≤ n

d/2
√
W2,d[f ]. J

I Lemma 13. Let f : {0, 1}n → [−1, 1] be a product test of k functions f1, . . . , fk with input
length m, and αi := (1− E[fi])/2 for every i ∈ [k]. Let d be a positive integer. We have

W1,d[f ] ≤
(√

32e3m
)d
g(α1, . . . , αk),

where the function g : (0, 1]k → R is defined by

g(α1, . . . , αk) := e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(

ln
(
e/α

1/zi

i

))zi/2
)
.

Proof. For notational simplicity, we will use Wd[f ] to denote W1,d[f ]. Write f =
∏k
i=1 fi.

Without loss of generality we will assume each function fi is non-constant. Since fi and −fi
have the same weight Wd[fi], we will further assume E[fi] ∈ [0, 1). Note that for a subset
S = S1 × · · · × Sk ⊆ ({0, 1}m)k, we have f̂S =

∏k
i=1 f̂iSi

. So,

Wd[f ] =
∑

z∈{0,...,m}k∑
i
zi=d

k∏
i=1

Wzi
[fi] =

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

(∏
i∈S

Wzi
[fi] ·

∏
i 6∈S

W0[fi]
)
.

Since x = 1− (1− x) ≤ e−(1−x) for every x ∈ R, for every subset S ⊆ [k] of size at most d,
we have∏

i 6∈S

W0[fi] ≤ e
−
∑

i6∈S
(1−W0[fi]) ≤ e−

∑
i6∈S

(1−W0[fi]) · e
∑

i∈S
W0[fi] ≤ ed · e−

∑k

i=1
(1−W0[fi]).
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Hence,

Wd[f ] =
d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

(∏
i∈S

Wzi
[fi] ·

∏
i6∈S

W0[fi]
)

≤ ed · e−
∑k

i=1
(1−W0[fi])

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

Wzi
[fi]. (2)

Define f ′i := (1−fi)/2 ∈ [0, 1]. Let αi := E[f ′i ] = (1−E[fi])/2 ∈ (0, 1/2]. Applying Lemma 10
and Fact 12 to the functions f ′i , we have for every subset S ⊆ [k] of size at most d,∑

z∈[m]S∑
i
zi=d

∏
i∈S

Wzi [f ′i ] ≤
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
2mzi/2αi

(
2e ln

(
e/α

1/zi

i

))zi/2
)

≤ (
√

8em)d
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
αi
(
ln
(
e/α

1/zi

i

))zi/2
)
.

Note that for every integer d ≥ 1, we have Wd[fi] = 2Wd[f ′i ]. Plugging the bound above into
Equation (2), we have

Wd[f ] ≤ (2e)d · e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

Wzi [f ′i ] ≤
(√

32e3m
)d
g(α1, . . . , αk),

where the function g : (0, 1]k → R is defined by

g(α1, . . . , αk) := e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(

ln
(
e/α

1/zi

i

))zi/2
)
. J

We now prove Theorems 3 and 4. For every (α1, . . . , αk) ∈ (0, 1]k, let α :=
∑k
i=1 αi/k ∈

(0, 1]. We note that the upper bound in Theorem 3 is sufficient to prove Theorem 6.

Proof of Theorem 3. We will bound above g(α1, . . . , αk) in Lemma 13. Recall that αi =
(1−E[fi])/2. Since |E[fi]| ≤ 1−2−cm, we have αi ≥ 2−(cm+1), and so ln(1/αi) ≤ cm+1. For
every subset S ⊆ [k], the set {z ∈ [m]S :

∑
i zi = d} has size at most

(
d−1
|S|−1

)
≤ 2d. Hence,∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
ln(1/αi)

)zi/2 ≤ 2d(cm+ 1)d/2.

By Maclaurin’s inequality (cf. [48, Chapter 12]), we have

∑
S⊆[k]
|S|=`

∏
i∈S

αi ≤ (e/`)`
( k∑
i=1

αi

)`
= (e/`)`(kα)`.
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Because the function x 7→ e−2xx` is maximized when x = `/2, it follows that

d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

∏
i∈S

αi ≤
d∑
`=1

e−2kα(e/`)`(kα)` ≤
d∑
`=1

e−`(e/`)`(`/2)` =
d∑
`=1

2−` ≤ 1.

Therefore,

g(α1, . . . , αk) = e−2
∑k

i=1
αi

d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

(
αi
(
ln(1/α1/zi

i )
)zi/2

)

≤ 2d(cm+ 1)d/2
d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

∏
i∈S

αi

≤ 2d(cm+ 1)d/2.

Plugging this bound into Lemma 13, we have

W1,d[f ] ≤
(√

32e3m
)d · (√4(cm+ 1)

)d ≤ (72(
√
c ·m)

)d
. J

We now prove Theorem 4. Recall that we let α :=
∑k
i=1 αi/k ∈ (0, 1] for every

(α1, . . . , αk) ∈ (0, 1]k. We will show that the maximum of the function g defined in Lemma 13
is attained at the diagonal (α, . . . , α). We state the claim now and defer the proof to the
next section.

B Claim 14. Let g be the function defined in Lemma 13. For every (α1, . . . , αk) ∈ (0, 1]k,
we have g(α1, . . . , αk) ≤ g(α, . . . , α).

Proof of Theorem 4. We first apply Claim 14 and obtain

g(α1, . . . , αk) ≤ g(α, . . . , α) = e−2kα
d∑
`=1

∑
S⊆[k]
|S|=`

α`
∑

z∈[m]S∑
i
zi=d

∏
i∈S

(
ln
(
e/α1/zi

))zi/2
.

We next give an upper bound on g(α, . . . , α) that has no dependence on the numbers zi. By
the weighted AM-GM inequality, for every subset S ⊆ [k] of size ` and numbers zi such that∑
i∈S zi = d,

∏
i∈S

(
ln
(
e/α1/zi

))zi/2 ≤
(∑
i∈S

zi ln
(
e/α1/zi

)
d

)d/2
=
(1
d

∑
i∈S

zi

(
1 + 1

zi
ln(1/α)

))d/2
=
(

1 + `

d
ln(1/α)

)d/2
=
(
ln
(
e/α`/d

))d/2
.
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7:12 Fourier Bounds and Pseudorandom Generators for Product Tests

For every subset S ⊆ [k], the set {z ∈ [m]S :
∑
i zi = d} has size at most

(
d−1
|S|−1

)
≤ 2d. Thus,

g(α, . . . , α) ≤ e−2kα
d∑
`=1

∑
S⊆[k]
|S|=`

α`
∑

z∈[m]S∑
i
zi=d

(
ln
(
e/α`/d

))d/2

≤ 2d
d∑
`=1

e−2kα
∑
S⊆[k]
|S|=`

α`
(
ln
(
e/α`/d

))d/2

≤ 2d
d∑
`=1

e−2kα
(ekα

`

)`(
ln
(
e/α`/d

))d/2
. (3)

For every ` ∈ [k], define g` : (0, 1]→ R to be

g`(x) := e−2kx
(ekx

`

)`(
ln
(
e/x`/d

))d/2
.

We now bound above the maximum of g` over x ∈ (0, 1]. One can verify easily that the
derivative of g is

g′`(x) = g`(x)
2x ln

(
e/x`/d

)(ln(1/x2`/d)(`− 2kx) + (`− 4kx)
)
.

Observe that when x ≤ `/4k, then g′`(x) ≥ g`(x)
4x ln(e/x`/d)

(
` ln(1/x2`/d)

)
≥ 0. Likewise,

when x ≥ `/2k, then g′`(x) ≤ g`(x)
2x ln(e/x`/d) (−`) ≤ 0. Also, we have g`(0) = 0. Hence,

g`(x) ≤ g`(β``/4k) for some β` ∈ [1, 2], which is at most

e−`/2 · (e/2)` ·
(

ln
(
e(4k/`)`/d

))d/2
.

(In the case when `/4k ≥ 1, we have g`(x) ≤ g`(1) ≤ e−2k(ek/`)`.) Therefore, plugging this
back into Equation (3),

g(α, . . . , α) ≤ 2d
d∑
`=1

g`(α) ≤ 2d
d∑
`=1

g`(β``/4k)

≤ 2d
d∑
`=1

e−`/2 · (e/2)` ·
(

ln
(
e(4k/`)`/d

))d/2
≤ 2d

(
e ln(4ek)

)d/2 d∑
`=1

2−`

≤
(√

4e ln(4ek)
)d
.

Putting this back into the bound in Lemma 13, we conclude that

W1,d[f ] ≤
(
84
√
m ln(4ek)

)d
,

proving the theorem. J
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2.1 Schur-concavity of g

We prove Claim 14 in this section. First recall that the function g : (0, 1]k → R is defined as

g(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k]
|S|=`

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi),

where for every positive integer z, the function φz : (0, 1]→ R is defined by

φz(x) = x ln(e/x1/z)z/2.

The proof of Claim 14 follows from showing that g is Schur-concave. Before defining it,
we first recall the concept of majorization. Let x, y ∈ Rk be two vectors. We say that y
majorizes x, denoted by x ≺ y, if for every j ∈ [k] we have

j∑
i=1

x(i) ≤
j∑
i=1

y(i),

and
∑k
i=1(xi − yi) = 0, where x(i) and y(i) are the ith largest coordinates in x and y

respectively.
A function f : D → R where D ⊆ Rk is Schur-concave if whenever x ≺ y we have

f(x) ≥ f(y). We will show that g is Schur-concave using the Schur–Ostrowski criterion.

I Theorem 15 (Schur–Ostrowski criterion (Theorem 12.25 in [43])). Let f : D → R be a
function where D ⊆ Rk is permutation-invariant, and assume that the first partial derivatives
of f exist in D. Then f is Schur-concave in D if and only if

(xj − xi)
( ∂f
∂xi
− ∂f

∂xj

)
≥ 0

for every x ∈ D, and every 1 ≤ i 6= j ≤ k.

Claim 14 then follows from the observation that (
∑
i xi/k, . . . ,

∑
i xi/k) ≺ x for every

x ∈ [0, 1]k.

B Claim 16. For every x ∈ (0, 1] we have
1. φz(x) ≥ 0;
2. φ′z(x) = 1

2 ln
(

e
x2/z

)
ln
(

e
x1/z

)z/2−1
> 0, and

3. φ′′z (x) = − 1
2xz ln

(
e

x1/z

)z/2−2(2 ln
(

e
x1/z

)
+ ( z2 − 1) ln

(
e

x2/z

))
≤ 0.

Proof. The derivatives of φz and the non-negativity of φz and φ′z can be verified easily. It is
also clear that φ′′z is non-positive when z ≥ 2. Thus it remains to verify φ′′1(x) ≤ 0 for every
x. We have

φ′′1(x) = − 1
2x ln

( e
x

)−3/2(
2 ln
( e
x

)
− 1

2 ln
( e
x2

))
.

It follows from 1
2 ln(e/x2) ≤ ln(e2/x2) = 2 ln(e/x) that φ′′1(x) ≤ 0. C

I Lemma 17. g is Schur-concave.
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Proof. Fix 1 ≤ u 6= v ≤ k and write g = g1 + g2, where

g1(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k],|S|=`

(S3u∧S 63v)∨(S 63u∧S3v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi)

and

g2(α1, . . . , αk) :=
d∑
`=1

∑
S⊆[k],|S|=`

(S3u∧S3v)∨(S 63u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S

φzi
(αi).

We will show that for every α ∈ (0, 1]k, whenever αv ≤ αu we have (1)
(
∂g1
∂αu
− ∂g1
∂αv

)
(α) ≤ 0

and (2)
(
∂g2
∂αu
− ∂g2

∂αv

)
(α) ≤ 0, from which the lemma follows from Theorem 15.

For g1, since φ′′z ≤ 0 and αv ≤ αu, we have φ′zu
(αv) ≥ φ′zu

(αu). Moreover, as φz ≥ 0 and
φ′z > 0, we have

∂g1

∂αu
(α) ≤

d∑
`=1

∑
S⊆[k],|S|=`
(S3u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i6=u

φzi(αi) · φ′zu
(αu) ·

φ′zu
(αv)

φ′zu
(αu)

=
d∑
`=1

∑
S⊆[k],|S|=`
(S3u∧S 63v)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i 6=u

φzi(αi) · φ′zu
(αv)

=
d∑
`=1

∑
S⊆[k],|S|=`
(S3v∧S 63u)

∑
z∈[m]S∑

i
zi=d

∏
i∈S
i 6=v

φzi(αi) · φ′zv
(αv) = ∂g1

∂αv
(α),

where in the second equality we simply renamed zu to zv.
We now show that

(
∂g2
∂αu
− ∂g2

∂αv

)
(α) ≤ 0 whenever αv ≤ αu. For all positive integers z

and w, define ψz,w : (0, 1]2 → R by

ψz,w(x, y) := φ′z(x)φw(y) + φ′w(x)φz(y)− φz(x)φ′w(y)− φw(x)φ′z(y).

Note that when x = y we have ψz,w(x, x) = 0. Moreover, when z = w we have ψz,z(x, y) =
2(φ′z(x)φz(y)− φz(x)φ′z(y)). For every x, y ∈ (0, 1], by Claim 16 we have

∂

∂y
ψz,w(x, y) = φ′z(x)φ′w(y) + φ′w(x)φ′z(y)− φz(x)φ′′w(y)− φw(x)φ′′z (y) ≥ 0.

Since ψzu,zv (αu, αu) = 0, we have ψzu,zv (αu, αv) ≤ 0 whenever αv ≤ αu, and so(
∂g2

∂αu
− ∂g2

∂αv

)
(α) =

d∑
`=2

∑
S⊆[k]
|S|=`

S3u∧S3v

( ∑
z∈[m]S∑

i
zi=d

zu=zv

∏
i∈S
i6=u
i6=v

φzi (αi) ·ψzu,zv (αu, αv)/2+
∑

z∈[m]S∑
i

zi=d

zu<zv

∏
i∈S
i 6=u
i 6=v

φzi (αi) ·ψzu,zv (αu, αv)
)
≤ 0

because the values φzi
are non-negative. J
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2.2 Lower bound
In this section we prove Claim 5. We first restate our claim.

B Claim 5. For all positive integers m and d, there exists a product test f : {0, 1}mk → {0, 1}
with k = d · 2m functions of input length m such that

W1,d[f ] ≥ (m/e3/2)d.

Proof. Let k = d · 2m and f1, . . . , fk : {0, 1}mk → {0, 1} be the OR function on k disjoint
sets of m bits. It is easy to verify that f̂i(∅) = 1− 2−m and |f̂i(S)| = 2−m for every S 6= ∅.
Consider the product test f :=

∏k
i=1 fi. Using the fact that 1− x ≥ e−x(1+x) for x ∈ [0, 1/2],

we have

(1− 2−m)k ≥ e−2m(1+2−m)k ≥ e−d(1+2−m) ≥ e−3d/2.

Hence,

W1,d[f ] =
∑

z∈{0,...,m}k∑
i
zi=d

k∏
i=1

Wzi [fi]

≥
∑
|S|=d

(∏
i∈S

W1,1[fi]
∏
i 6∈S

W1,0[fi]
)

=
(
k

d

)
· (m2−m)d · (1− 2−m)k−d

≥
(d · 2m

d

)d
· (m2−m)d · e−3d/2

= (m/e3/2)d. J

3 Pseudorandom generators

In this section, we use Theorem 4 to construct two pseudorandom generators for product
tests. The first one (Theorem 8) has seed length Õ(m + log(k/ε)) log k. The second one
(Theorem 6) has a seed length of Õ(m + log(n/ε)) but only works for product tests with
outputs {−1, 1} and their variants (see Corollary 7). We note that Theorem 6 can also be
obtained using Theorem 3 in place of Theorem 4.

Both constructions use the Ajtai–Wigderson framework [5, 23], and follow from recursively
applying the following theorem, which roughly says that 2−Ω̃(m+log(k/ε))-almost O(m +
log(k/ε))-wise independence plus constant fraction of noise fools product tests.

I Theorem 11. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length
m. Let d be a positive integer. Let D and T be two independent δ-almost d-wise independent
distributions over {0, 1}n, and U be the uniform distribution over {0, 1}n. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ · (170 ·
√
m ln(ek))d + 2−(d−m)/2),

where “+” and “∧” are bit-wise XOR and AND respectively.

Theorem 11 follows immediately by combining Theorem 4 and Lemma 18 below.
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I Lemma 18. Let f : {0, 1}n → [−1, 1] be a product test with k functions of input length m.
Let d be a positive integer. Let D,T, U be a δ-almost (d+m)-wise independent, a γ-almost
(d+m)-wise independent, and the uniform distributions over {0, 1}n, respectively. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ k · (√δ ·W1,≤d+m[f ] + 2−d/2 +√γ
)
,

where “+” and “∧” are bit-wise XOR and AND respectively.

Proof. We slightly modify the decomposition in [21, Proposition 6.1] as follows. Let f
be a product test and write f =

∏k
i=1 fi. As the distribution D + T ∧ U is symmetric,

we can assume the function fi is defined on the ith m bits. For every i ∈ {1, . . . , k}, let
f≤i =

∏
j≤i fj and f>i =

∏
j>i fj . We decompose f into

f = f̂∅ + L+
k∑
i=1

Hif
>i, (4)

where

L :=
∑

α∈{0,1}mk

0<|α|<d

f̂αχα

and

Hi :=
∑

α=(α1,...,αi)∈{0,1}mi:
the dth 1 in α appears in αi

f̂≤iα χα.

We now show that the expressions on both sides of Equation (4) are identical. Clearly, every
Fourier coefficient on the right hand side is a coefficient of f . To see that every coefficient
of f appears on the right hand side exactly once, let α = (α1, . . . , αk) ∈ {0, 1}mk and
f̂α =

∏k
i=1 f̂i(αi) be a coefficient of f . If |α| < d, then f̂α appears in f̂∅ or L. Otherwise,

|α| ≥ d. Then the dth 1 in α must appear in one of α1, . . . , αk. Say it appears in αi. Then
we claim that α appears in Hif

>i. This is because the coefficient indexed by (α1, . . . , αi)
appears in Hi, and the coefficient indexed by (αi+1, . . . , αk) appears in f>i. Note that all
the coefficients in each function Hi have weights between d and d + m, and because our
distributions D and T are both almost (d+m)-wise independent, we get an error of 2−d + γ

in Lemma 7.1 in [21]. The rest of the analysis follows from [21] or [26]. J

3.1 Generator for product tests
We now prove Theorem 8.

I Theorem 8. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools any prod-
uct test with k functions of input length m with error ε and seed length O(logmk)((m +
log(k/ε))(logm+ log log(k/ε)) + log logn) = Õ(m+ log(k/ε)) log k.

The high-level idea is very simple. Let f be a product test. For every choice of D and T
in Theorem 11, the function f ′ : {0, 1}T → [−1, 1] defined by f ′(y) := f(D + T ∧ y) is also a
product test. So we can apply Theorem 11 again and recurse. We show that if we repeat this
argument for t = O(log(mk)) times with t independent copies of D and T , then for every
fixing of D1, . . . , Dt and with high probability over the choice of T1, . . . , Tt, the restricted
product test defined on {0, 1}

∧t

i=1
Ti is a product test defined on at most O(m+ log(k/ε))

bits, which can then be fooled by an almost O(m+ log(k/ε))-wise independent distribution.
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Proof of Theorem 8. Let C be a sufficiently large constant. Let d = C(m + log(k/ε)),
δ = d−2d, and t = C log(mk) = Õ(log k). Let D1, . . . , Dt, T1, . . . , Tt be 2t independent
δ-almost d-wise independent distributions over {0, 1}n. Define D(1) := D1 and D(i+1) :=
Di+1 + Ti ∧D(i).

Let D := D(t), T :=
∧t
i=1 Ti. Let G′ be a δ-almost d-wise independent distribution over

{0, 1}n. For a subset S ⊆ [n], define the function PADS(x) : {0, 1}|S| → {0, 1}n to output n
bits of which the positions in S are the first |S| bits of x0|S| and the rest are 0. Our generator
G outputs

D + T ∧ PADT (G′).

We first look at the seed length of G. By [39, Lemma 4.2], sampling the distributions Di

and Ti takes a seed of length

s := t ·O(d log d+ log logn)
= t ·O

(
(m+ log(k/ε))(logm+ log log(k/ε)) + log logn

)
= t · Õ

(
m+ log(k/ε)

)
.

Sampling G′ takes a seed of length O((m+ log(k/ε))(logm+ log log(k/ε)) + log logn). Hence
the total seed length of G is Õ(m+ log(k/ε)) log k.

We now look at the error of G. By our choice of δ and applying Theorem 11 recursively
for t times, we have∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ t · k · (√δ · (170 ·
√
m ln(ek)

)d + 2−(d−m)/2
)

≤ t · k ·
((170

√
m ln(ek)
d

)d
+ 2−Ω(d)

)
≤ t · 2−Ω(d) ≤ ε/2.

Next, we show that for every fixing of D and most choices of T , the function fD,T (y) :=
f(D + T ∧ y) is a product test defined on d bits, which can be fooled by G′.

Let I =
⋃k
i=1 Ii. Note that |I| ≤ mk. Because the variables Ti are independent and each

of them is δ-almost d-wise independent, we have

Pr
[
|I ∩ T | ≥ d

]
≤
(
|I|
d

)
(2−d + δ)t ≤ 2d log(mk) · 2−Ω(d log(mk)) ≤ ε/4.

It follows that for every fixing of D, with probability at least 1− ε/4 over the choice of T ,
the function fD,T is a product test defined on at most d bits, which can be fooled by G′ with
error ε/4. Hence G fools f with error ε. J

3.2 Almost-optimal generator for XOR of Boolean functions
In this section, we construct our generator for product tests with outputs {−1, 1}, which
correspond to the XOR of Boolean functions fi defined on disjoint inputs. Throughout this
section we will call these tests {−1, 1}-products. We first restate our theorem.

I Theorem 6. There exists an explicit generator G : {0, 1}` → {0, 1}n that fools the XOR
of any k Boolean functions on disjoint inputs of length ≤ m with error ε and seed length
O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)).
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Theorem 6 relies on applying the following lemma recursively in different ways. From
now on, we will relax our tests to allow one of the k functions to have input length greater
than m, but bounded by O(m+ log(n/ε)).

I Lemma 19. There exists a constant C such that the following holds. Let m and s be two
integers such that m ≥ C log log(n/ε) and s = 5(m+log(n/ε)). If there is an explicit generator
G′ : {0, 1}`′ → {0, 1}n that fools {−1, 1}-products with k′ ≤ 16m+1 functions, k′ − 1 of which
have input lengths ≤ m/2 and one has length ≤ s, with error ε′ and seed length `′, then there
is an explicit generator G : {0, 1}` → {0, 1}n that fools {−1, 1}-products with k ≤ 162m+1

functions, k − 1 of which have input lengths ≤ m and one has length ≤ s, with error ε′ + ε

and seed length ` = `′ +O(m+ log(n/ε))(logm+ log log(n/ε)) = `′ + Õ(m+ log(n/ε)).

The proof of Lemma 19 closely follows a construction by Meka, Reingold and Tal [38].
First of all, we will use the following generator in [38]. It fools any {−1, 1}-products when
the number of functions k is significantly greater than the input length m of the functions fi.

I Lemma 20 (Lemma 6.2 in [38]). There exists a constant C such that the following holds.
Let n, k,m, s be integers such that C log log(n/ε) ≤ m ≤ logn and 16m ≤ k ≤ 2 ·162m. There
exists an explicit pseudorandom generator G⊕Many : {0, 1}` → {0, 1}n that fools {−1, 1}-
products with k non-constant functions, k − 1 of which have input lengths ≤ m and one has
length ≤ s, with error ε and seed length O(s+ log(n/ε)).

Here is the high-level idea of proving Lemma 19. We consider two cases depending on
whether k is large with respect to m. If k ≥ 16m, then by Lemma 20, the generator G⊕Many
fools f . Otherwise, we show that for every fixing of D and most choices of T , the restriction
of f under (D,T ) is a {−1, 1}-product with k functions, k − 1 of which have input length
≤ m/2 and one has length ≤ s. More specifically, we will show that for most choices of T ,
the following would happen: for the function with input length ≤ s, at most s/2 of its inputs
remain in T ; for the rest of the functions with input length ≤ m, after being restricted by
(D,T ), at most ds/2me of them have input length > m/2, and so they are defined on a total
of s/2 positions in T . Now we can think of these “bad” functions as one function with input
length ≤ s, and the rest of the at most k “good” functions have input length m/2. So we
can apply the generator G′ in our assumption.

Proof of Lemma 19. Let C be the constant in Lemma 20 and C ′ be a sufficiently large
constant.

Let d = C ′s and δ = d−2d. Let D1, . . . , D50, T1, . . . , T50 be 100 independent δ-almost d-
wise independent distributions over {0, 1}n. Define D(1) := D1 and D(i+1) := Di+1+Ti∧D(i).

Let D := D(50), T :=
∧50
i=1 Ti and G⊕Many be the generator in Lemma 20 with respect

to the values of n, k,m, s given in this lemma. For a subset S ⊆ [n], define the function
PADS(x) : {0, 1}|S| → {0, 1}n to output n bits of which the positions in S are the first |S|
bits of x0|S| and the rest are 0. Our generator G outputs

(D + T ∧ PADT (G′)) +G⊕Many.

We first look at the seed length of G. By Lemma 20, G⊕Many uses a seed of length
O(s+ log(n/ε)) = O(m+ log(n/ε)). By [39, Lemma 4.2], sampling the distributions Di and
Ti takes a seed of length

O(s log s) = O
(
m+ log(n/ε)

)
(logm+ log log(n/ε)) = Õ(m+ log(n/ε)).

Hence the total seed length of G is `′ +O(m+ log(n/ε))(logm+ log log(n/ε)) = `′ + Õ(m+
log(n/ε)).
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We now show that G fools f . Write f =
∏k
i=1 fi, where fi : {0, 1}Ii → {−1, 1}. Without

loss of generality we can assume each function fi is non-constant. We consider two cases.

k is large

If k ≥ 16m, then for every fixing ofD, T andG′, the function f ′(y) := f(D+T∧PADT (G′)+y)
is also a {−1, 1}-product with the same parameters as f . Note that we always have k ≤ n
and so m ≤ logn. Hence it follows from Lemma 20 that the generator G⊕Many fools f ′ with
error ε. Averaging over D, T and G′ shows that G fools f with error ε.

k is small

Now suppose k ≤ 16m. For every fixing of G⊕Many, consider f ′(y) := f(y +G⊕Many). Again,
f ′ is a {−1, 1}-product with the same parameters as f . In particular, it is a {−1, 1}-product
with k functions with input length s. So, by our choice of δ and applying Theorem 11
recursively for 50 times, we have∣∣E[f ′(D + T ∧ U)]− E[f ′(U)]

∣∣ ≤ 50 · k ·
(√

δ ·
(
170 ·

√
s ln(ek)

)d + 2−(d−s)/2
)

≤ 50 · 2s ·
(

(170s/d)d + 2−Ω(s)
)

≤ 2−Ω(s) ≤ ε/2.

Next, we show that for every fixing of D and most choices of T , the function f ′D,T (y) :=
f ′(D+T ∧ y) is a {−1, 1}-product with k functions, k− 1 of which have input lengths ≤ m/2
and one has length ≤ s, which can be fooled by G′.

Because the variables Ti are independent and each of them is δ-almost d-wise independent,
for every subset I ⊆ [n] of size at most d, we have

Pr[T ∩ I = I] =
50∏
i=1

Pr[Ti ∩ I = I] ≤ (2−|I| + δ)50 ≤ (3/4)−50|I|.

Without loss of generality, we assume I1, . . . , Ik−1 are the subsets of size at most m and
Ik is the subset of size at most s. We now look at which subsets T ∩ Ii have length at most
m/2 and which subsets do not. For the latter, we collect the indices in these subsets.

Let G := {i ∈ [k − 1] : |T ∩ Ii| ≤ m/2}, B := {i ∈ [k − 1] : |T ∩ Ii| > m/2} and
BV := {j ∈ [n] : j ∈

⋃
i∈B(T ∩ Ii)}. We claim that with probability 1 − ε/2 over the

choice of T , we have |BV | ≤ s. Note that the indices in BV either come from Ik, or Ii for
i ∈ [k − 1]. For the first case, the probability that at least s/2 of the indices in Ik appear in
BV is at most(

|Ik|
s/2

)
(3/4)−25s ≤ 2s · (3/4)−25s ≤ ε/4.

For the second case, note that if at least s/2 of the variables in
⋃
i∈[k−1] Ii appear in BV ,

then they must appear in at least ds/2me of the subsets T ∩ I1, . . . , T ∩ Ik−1. The probability
of the former is at most the probability of the latter, which is at most(

k − 1
ds/2me

)(
m · ds/2me

s/2

)
(3/4)−25s ≤ 16m·(s/2m+1) · 2m·(s/2m+1) · (3/4)−25s ≤ ε/4,

because k ≤ 16m and m ≤ s. Hence with probability 1 − ε/2 over the choice of T , the
function f ′D,T is a product g · h, where g is a product of |G| ≤ k− 1 functions of input length
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7:20 Fourier Bounds and Pseudorandom Generators for Product Tests

m/2, and h is a product of |B|+ 1 functions defined on a total of |BV | ≤ s bits. Recall that
k ≤ 16m, so by our assumption G′ fools f ′D,T with error ε′. Therefore G fools f with error
ε+ ε′. J

We obtain Theorem 6 by applying Lemma 19 repeatedly in different ways.

Proof of Theorem 6. Given a {−1, 1}-product f : {0, 1}n → {−1, 1} with k functions of
input length m, we will apply Lemma 19 in stages. In each stage, we start with a {−1, 1}-
product f with k1 functions, k1 − 1 of which have input lengths ≤ m1 = max{m, 2 log(n/ε)}
and one has length ≤ s := 5(m+ log(n/ε)). Note that k1 ≤ 162m1+1. Let C be the constant
in Lemma 19. We apply Lemma 19 for t = O(logm1) times until f is restricted to a
{−1, 1}-product f ′ with k2 functions, k2 − 1 of which have input lengths ≤ m2 and one has
length ≤ s, where m2 = C log log(n/ε), k2 ≤ 162m2+1 ≤ (log(n/ε))r, and r := 8C + 4 is a
constant. This uses a seed of length

t ·O(m+ log(n/ε))(logm+ log log(n/ε)) ≤ O(m+ log(n/ε))(logm+ log log(n/ε))2

= Õ(m+ log(n/ε)).

At the end of each stage, we repeat the above argument by grouping every dlog(n/ε)/m2e
functions of f ′ that have input lengths ≤ m2 as one function of input length ≤ 2 log(n/ε), so
we can think of f ′ as a {−1, 1}-product with k3 := k2/dm2/(logn)e ≤ (log(n/ε))r−1 log logn
functions, k3 − 1 of which have input lengths ≤ log(n/ε) and one has length ≤ s.

Repeating above for r + 1 = O(1) stages, we are left with a {−1, 1}-product of two
functions, one has input length ≤ C log log(n/ε), and one has length ≤ s, which can then be
fooled by a 2−Ω(s)-biased distribution that can be sampled using O(m+ log(n/ε)) bits [39].
So the total seed length is O(m+ log(n/ε))(logm+ log log(n/ε))2 = Õ(m+ log(n/ε)), and
the error is (r + 1) · t · ε. Replacing ε with ε/(r + 1)t proves the theorem. J

4 Level-d inequalities

In this section, we prove Lemma 10 that gives an upper bound on the dth level Fourier
weight of a [0, 1]-valued function in L2-norm. We first restate the lemma.

I Lemma 10. Let g : {0, 1}n → [0, 1] be any function. For every positive integer d, we have

W2,d[g] ≤ 4E[g]2
(
2e ln(e/E[g]1/d)

)d
.

Our proof closely follows the argument in [52].

B Claim 21. Let f : {0, 1}n → R have Fourier degree at most d and ‖f‖2 = 1. Let
g : {0, 1}n → [0, 1] be any function. If t0 ≥ 2ed/2, then

E
[
g(x)|f(x)|

]
≤ E[g]t0 + 2et1−2/d

0 e−
d

2e t
2/d
0 .

To prove this claim, we will use the following concentration inequality for functions with
Fourier degree d from [18].

I Theorem 22 (Lemma 2.2 in [18]). Let f : {0, 1}n → R have Fourier degree at most d and
assume that ‖f‖2 :=

∑
S f̂

2
S = 1. Then for any t ≥ (2e)d/2,

Pr
[
|f | ≥ t

]
≤ e− d

2e t
2/d

.
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We also need to bound above the integral of e− d
2e t

2/d .

B Claim 23. Let d be any positive integer. If t0 ≥ (2e)d/2, then we have∫ ∞
t0

e−
d

2e t
2/d

dt ≤ 2et1−2/d
0 e−

d
2e t

2/d
0 .

Proof. First we apply the following change of variable to the integral. We set s = d
2e t

2/d and
obtain∫ ∞

t0

e−
d

2e t
2/d

dt = e
(2e
d

)d/2−1 ∫ ∞
s0

sd/2−1e−sds,

where s0 = d
2e t

2/d
0 . Define

Γs0(d) =
∫ ∞
s0

sd−1e−sds.

(Note that when s0 = 0 then Γ0(d) is the Gamma function.) Using integration by parts, we
have

Γs0(d) = sd−1
0 e−s0 + (d− 1)Γs0(d− 1). (5)

Moreover, when d ≤ 1, we have Γs0(d) ≤ sd−1
0

∫∞
s0
e−sds = sd−1

0 e−s0 .
Note that if t0 ≥ (2e)d/2, then s0 ≥ d− 2. Hence, if we open the recursive definition of

Γs0(d/2) in Equation (5), we have

Γs0(d/2) ≤ e−s0

d d
2 e−1∑
i=0

s
d/2−1−i
0

i∏
j=1

(d/2− j)

≤ e−s0s
d/2−1
0

d d
2 e−1∑
i=0

(d/2− 1
s0

)i
≤ 2e−s0s

d/2−1
0 ,

because the summation is a geometric sum with ratio at most 1/2. Substituting s0 with t0,
we obtain

e
(2e
d

)d/2−1 ∫ ∞
s0

sd/2−1e−sds ≤ 2e
(2e
d

)d/2−1
e−s0s

d/2−1
0

= 2et1−2/d
0 e−

d
2e t

2/d
0 . J

Proof of Claim 21. We rewrite |f(x)| as
∫ |f(x)|

0 1dt =
∫∞

0 1(|f(x)| ≥ t)dt and obtain

E
x∼{0,1}n

[g(x)|f(x)|] = E
x∼{0,1}n

[∫ ∞
0

g(x)1(|f(x)| ≥ t)dt
]

≤ E
x∼{0,1}n

[∫ ∞
0

min
{
g(x),1(|f(x)| ≥ t)

}
dt
]

=
∫ ∞

0
min

{
E[g],Pr

x
[|f(x)| ≥ t]

}
dt

≤
∫ t0

0
E[g]dt+

∫ ∞
t0

Pr
[
|f(x)| ≥ t

]
dt

≤ E[g]t0 +
∫ ∞
t0

e−
d

2e t
2/d

dt.

Since t0 ≥ (2e)d/2, by Claim 23 this is at most E[g]t0 + 2et1−2/d
0 e−

d
2e t

2/d
0 . C
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Proof of Lemma 10. Define f to be f(x) :=
∑
|S|=d f̂SχS(x), where f̂S = ĝS

(∑
|T |=d

ĝ2
T

)−1/2.
Note that ‖f‖2 = 1, and we have

E[g(x)f(x)] =
∑
S ĝS E[g(x)χS(x)](∑
|T |=d ĝ

2
T

)1/2 =
(∑
|S|=d

ĝ2
S

)1/2
.

Let t0 = (2e ln(e/E[g]1/d))d/2 ≥ (2e)d/2. By Claim 21,(∑
|S|=d

ĝ2
S

)1/2
= E[g(x)f(x)] ≤ E[g(x)|f(x)|] ≤ E[g]t0 + 2et1−2/d

0 e−
d

2e t
2/d
0 .

By our choice of t0, the second term is at most

2et1−2/d
0 e−

d
2e t

2/d
0 ≤

(
2e ln

( e

E[g]1/d
))d/2 E[g]

ed
≤ (2/e)d/2 E[g] ln

( e

E[g]1/d
)d/2

,

which is no greater than the first term. So(∑
|S|=d

ĝ2
S

)1/2
≤ 2E[g]

(
2e ln(e/E[g]1/d)

)d/2
,

and the lemma follows. J
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Abstract

Let G be any n-vertex graph whose random walk matrix has its nontrivial eigenvalues bounded
in magnitude by 1/

√
∆ (for example, a random graph G of average degree Θ(∆) typically has

this property). We show that the exp
(
c logn

log ∆

)
-round Sherali–Adams linear programming hierarchy

certifies that the maximum cut in such a G is at most 50.1% (in fact, at most 1
2 + 2−Ω(c)). For

example, in random graphs with n1.01 edges, O(1) rounds suffice; in random graphs with n·polylog(n)
edges, nO(1/ log logn) = no(1) rounds suffice.

Our results stand in contrast to the conventional beliefs that linear programming hierarchies
perform poorly for max-cut and other CSPs, and that eigenvalue/SDP methods are needed for
effective refutation. Indeed, our results imply that constant-round Sherali–Adams can strongly
refute random Boolean k-CSP instances with ndk/2e+δ constraints; previously this had only been
done with spectral algorithms or the SOS SDP hierarchy.
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1 Introduction

Linear programming (LP) is a fundamental algorithmic primitive, and is the method of
choice for a huge number of optimization and approximation problems. Still, there are some
very basic tasks where it performs poorly. A classic example is the simplest of all constraint
satisfaction problems (CSPs), the max-cut problem: Given a graph G = (V,E), partition
V into two parts so as to maximize the fraction of “cut” (crossing) edges. The standard LP
relaxation for this problem [5, 38] involves optimizing over the metric polytope. Using “±1
notation”, we have a variable Yuv for each pair of vertices {u, v} (with Yuv supposed to be
−1 if the edge is cut, +1 otherwise); the LP is:

max-cut(G) ≤ max 1
2 −

1
2 ·

1
|E|

∑
uv∈E

Yuv

−1 ≤ Yuv ≤ 1 (for all u, v ∈ V )
s.t. − Yuv − Yvw − Ywu ≤ 1 (for all u, v, w ∈ V )

−Yuv + Yvw + Ywu ≤ 1 (for all u, v, w ∈ V )

While this LP gives the optimal bound for some graphs (precisely, all graphs not contractible
to K5 [5]), it can give a very poor bound in general. Indeed, although there are graphs
with maximum cut arbitrarily close to 1/2 (e.g., Kn), the above LP bound is at least 2/3
for every graph, since Yuv ≡ −1/3 is always a valid solution. Worse, there are graphs
G with max-cut(G) arbitrarily close to 1/2 but with LP value arbitrarily close to 1 –
i.e., graphs where the integrality ratio is 2 − o(1). For example, this is true [39] of an
Erdős–Rényi G(n,∆/n) random graph with high probability (whp) when ∆ = ∆(n) satisfies
ω(1) < ∆ < no(1).

There have been two main strategies employed for overcoming this deficiency: strengthened
LPs, and eigenvalue methods.

Strengthened LPs

One way to try to improve the performance of LPs on max-cut is to add more valid
inequalities to the LP relaxation, beyond just the “triangle inequalities”. Innumerable valid
inequalities have been considered: (2k+1)-gonal, hypermetric, negative type, gap, clique-web,
suspended tree, as well as inequalities from the Lovász–Schrijver hierarchy; see Deza and
Laurent [20, Ch. 28–30] for a review.

It is now known that the most principled and general form of this strategy is the Sherali–
Adams LP hierarchy [45], reviewed in Section 2.4. At a high level, the Sherali–Adams LP
hierarchy gives a standardized way to tighten LP relaxations of Boolean integer programs, by
adding variables and constraints. The number of new variables/constraints is parameterized
by a positive integer R, called the number of “rounds”. Given a Boolean optimization problem
with n variables, the R-round Sherali–Adams LP has variables and constraints corresponding
to monomials of degree up to R, and thus has size O(n)R. A remarkable recent line of
work [13, 35] has shown that for any CSP (such as max-cut), the R-round Sherali–Adams
LP relaxation achieves essentially the tightest integrality ratio among all LPs of its size.
Nevertheless, even this most powerful of LPs arguably struggles to certify good bounds
for max-cut. In a line of work [18, 44] concluding in a result of Charikar–Makarychev–
Makarychev [15], it was demonstrated that for any constant ε > 0, there are graphs (random
∆-regular ones, ∆ = O(1)) for which the nΩ(1)-round Sherali–Adams LP has a max-cut
integrality gap of 2− ε. As a consequence, every max-cut LP relaxation of size up to 2nΩ(1)

has such an integrality gap.
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Eigenvalue and SDP methods

But for max-cut, there is a simple, non-LP, algorithm that works very well to certify that
random graphs have maximum cut close to 1/2: eigenvalue bounds. There are two slight
variants here (that coincide in the case of regular graphs): Given graph G = (V,E) with
adjacency matrix A and diagonal degree matrix D, the eigenvalue bounds are

max-cut(G) ≤ |V |4|E|λmax(D −A) (1)

max-cut(G) ≤ 1
2 + 1

2λmax(−D−1A). (2)

Here D −A and D−1A are the Laplacian matrix and the random walk matrix, respectively.
The use of eigenvalues to bound various cut values in graphs (problems like max-cut,
min-bisection, 2-xor, expansion, etc.) has a long history dating back to Fieldler and
Donath–Hoffman [25, 21] among others (Inequality (1) is specifically from Mohar–Poljak [37]).
It was recognized early on that eigenvalue methods work particularly well for solving planted-
random instances (e.g., of 2-xor [32] and min-bisection [11]) and for certifying max-cut
values near 1/2 for truly random instances. Indeed, as soon as one knows (as we now
do [46, 24]) that D−1A has all nontrivial eigenvalues bounded in magnitude by O(1/

√
∆)

(whp) for a random ∆-regular graph (or an Erdős–Rényi G(n,∆/n) graph with ∆ & logn),
the eigenvalue bound Inequality (2) certifies that max-cut(G) ≤ 1/2 + O(1/

√
∆). This

implies an integrality ratio tending to 1; indeed, max-cut(G) = 1/2 + Θ(1/
√

∆) in such
random graphs (whp).

Furthermore, if one extends the eigenvalue bound Inequality (1) above to

max-cut(G) ≤ min
U diagonal

tr(U)=0

|V |
4|E|λmax(D −A+ U) (3)

(as suggested by Delorme and Poljak [19], following [21, 11]), one obtains the polynomial-
time computable semidefinite programming (SDP) bound. Goemans and Williamson [29]
showed this bound has integrality ratio less than 1.14 ≈ 1/.88 for worst-case G, and it was
subsequently shown [50, 23, 14] that the SDP bound is 1/2 + o(1) whenever max-cut(G) ≤
1/2 + o(1).

LPs cannot compete with eigenvalues/SDPs?

This seemingly striking separation between the performance of LPs and SDPs in the context
of random max-cut instances is now taken as a matter of course. To quote, e.g., [47],

[E]xcept for semidefinite programming, we know of no technique that can provide,
for every graph of max cut optimum ≤ .501, a certificate that its optimum is ≤ .99. In-
deed, the results of [18, 44]1 show that large classes of Linear Programming relaxations
of max cut are unable to distinguish such instances.

Specifically, the last statement here is true for ∆-regular random graphs when ∆ is a certain
large constant. The conventional wisdom is that for such graphs, linear programs cannot
compete with semidefinite programs, and cannot certify even the eigenvalue bound.

Our main result challenges this conception.

1 One would also add the subsequently written[15] here.
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1.1 Our results
We show that whenever the eigenvalue bound Inequality (2) certifies the bound
max-cut(G) ≤ 1/2 + o(1), then no(1)-round Sherali–Adams can certify this as well.2

I Theorem 1 (Simplified version of Theorem 30 and Corollary 31). Let G be a simple n-vertex
graph and assume that |λ| < ρ for all eigenvalues λ of G’s random walk matrix D−1A

(excluding the trivial eigenvalue of 1). Then for any 1 ≤ c ≤ Ω(log(1/ρ)), Sherali–Adams
with nO(c/ log(1/ρ)) rounds certifies that max-cut(G) ≤ 1/2 + 2−c.

For example, if G’s random walk matrix has its nontrivial eigenvalues bounded in
magnitude by n−.001, as is the case (whp) for random graphs with about n1.002 edges, then
Sherali–Adams can certify max-cut(G) ≤ 50.1% with constantly many rounds. We find this
result surprising, and in defiance of the common belief that polynomial-sized LPs cannot
take advantage of spectral properties of the underlying graph.
I Remark 2. We wish to emphasize that it is not the resulting nO(1) running time that is
surprising; one can (and should) already achieve this with the eigenvalue bound. What is
surprising is the inherent power of the Sherali–Adams relaxation itself.
I Remark 3. One might ask whether Theorem 1 even requires the assumption of small
eigenvalues. That is, perhaps no(1)-round Sherali–Adams can certify max-cut ≤ 1/2 + o(1)
whenever this is true. We speculate that this may in fact be the case. As mentioned earlier,
the basic SDP relaxation Inequality (3) has this property [50, 23, 14], meaning that whenever
graph G has max-cut(G) ≤ 1/2 + o(1), there is a traceless diagonal matrix U such that the
eigenvalue bound applied to A− U certifies the maxcut bound. It seems possible that our
proof might be adapted to work with this A−U rather than A, in which case Sherali–Adams
would also have the property.

We add that the plain eigenvalue bound does not have this property: there exist graphs
with large (nontrivial) eigenvalues even though the maximum cut is close to 1/2.3

1.1.1 Subexponential-sized LPs for max-cut in sparse random graphs
One setting in which the spectral radius ρ is understood concretely is in random regular
graphs. Building upon [27, 12, 17], the following was recently shown:

I Theorem ([46]). There is a fixed constant C such that for all 3 ≤ ∆ ≤ n/2 with ∆n even,
it holds that a uniformly random n-vertex ∆-regular simple graph G satisfies the following
with high probability: all eigenvalues of G’s normalized adjacency matrix, other than 1, are
at most C/

√
∆ in magnitude.

Combining the above with Theorem 1, we have the following consequence for max-cut on
random regular graphs:

I Corollary 4. Let n, 3 ≤ ∆ ≤ n/2, and 1 ≤ c ≤ Ω(log ∆) be positive integers. Then if G is
a random ∆-regular n-vertex graph, with high probability nO(c/ log ∆)-round Sherali–Adams
can certify that max-cut(G) ≤ 1

2 + 2−c.

2 Actually, there is a slight mismatch between our result and Inequality (2): in Theorem 1 we need the
maximum eigenvalue in magnitude to be small; i.e., we need λmin(−D−1A) to be not too negative. This
may well just be an artifact of our proof.

3 Consider, for example, a graph given by the union of a ∆-regular random graph on n vertices and a
∆-regular bipartite graph on

√
n vertices. This will have max-cut value close to 1/2, but will also have

large negative eigenvalues coming from the bipartite component.
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For example, if ∆ ≥ C ·106 (for C the constant in the bound on λ(G)), then n1/3-rounds of
Sherali–Adams can certify max-cut(G) ≤ .51. This result serves as a partial converse to [15]:

I Theorem ([15, Theorem 5.3]). For every fixed integer ∆ ≥ 3, with high probability over
the choice of an n-vertex ∆-regular random graph G,4 the nΘ(1/f(∆))-round Sherali–Adams
relaxation for max-cut has value at least max-cut(G) ≥ 0.99, where f(∆) is a function
that grows with ∆.

While [15] show that ∆-regular random graphs require Sherali–Adams (and by [35], any
LP) relaxations of at least subexponential size, our result implies that subexponential LPs are
sufficient. Further, though the function f(∆) is not specified in [15], by tracing back through
citations (e.g. [3, 4, 16]) to extract a dependence, it appears we may take f(∆) = log ∆. So
our upper bound is tight as a function of ∆, up to constant factors.

Prior to our result, it was unclear whether even (n/polylogn)-round Sherali–Adams could
certify that the max-cut value was bounded by .99 for sparse random regular graphs. Indeed,
it was equally if not more conceivable that Charikar et al.’s result was not tight, and could
be extended to Ω̃(n)-rounds. In light of our result, we are left to wonder whether there are
instances of max-cut which have truly exponential extension complexity.

1.1.2 Refuting Random CSPs with linear programs
With minor modifications, our argument extends as well to 2-xor. Then, following the
framework in [2], we have the following consequence for certifying bounds on the value of
random k-CSPs:

I Theorem 5 (Simplified version of Theorem 38). Suppose that P : {±1}k → {0, 1} is a k-ary
Boolean predicate, and that δ, ε > 0. Let E[P ] be the probability that a random x ∈ {±1}k
satisfies P . Then for a random instance I of P on n variables with m ≥ ndk/2e+δ expected
clauses, with high probability Sherali–Adams can certify that OBJI(x) ≤ E[P ] + ε using
R = Oε,δ,k(1) rounds.

This almost matches the comparable performance of Sum-of-Squares (SOS) and spectral
algorithms [2], which are known to require m ≥ nk/2 clauses to certify comparable bounds in
polynomial time [31, 43, 34].5 Prior to our work it was known that Sherali–Adams admits
weak refutations (i.e. a certificate that OBJ ≤ 1−o(1)) whenm ≥ nk/2, but it was conceivable
(and even conjectured) that O(1)-rounds could not certify OBJ ≤ 1 − δ for constant δ at
m = o(nk).

The result above also extends to t-wise independent predicates as in [2] (see Section 5).
Also, one may extract the dependence on the parameters ε, δ to give nontrivial results when
these parameters depend on n.6

4 In [15], the graph is actually a pruned random graph, in which o(n) edges are removed; this does not
affect compatibility with our results, as the LP value is Lipschitz and so the pruning changes the LP
value by o(1).

5 The expert may notice that we require the number of clauses m� ndk/2e, whereas the best Sum-of-
Squares and spectral algorithms require only m� nk/2. This is because we do not know how to relate
the Sherali–Adams value of the objective function to its square (local versions of the Cauchy-Schwarz
argument result in a loss). Such a relation would allow us to apply our techniques immediately to prove
that Sherali–Adams matches the SOS and spectral performance for odd as well as even k.

6 Though for 2-xor and max-cut we have done this explicitly, for higher-arity random CSPs we have
left this for the interested reader.
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1.2 Prior work

It is a folklore result that in random graphs with average degree nδ, 3-round Sherali–Adams
certifies a max-cut value of at most max(1−Ω(δ), 2

3 ) (observed for the special case of δ > 1
2

in [6, 39]); this is simply because of concentration phenomena, since most edges participate
in roughly the same number of odd cycles of length O( 1

δ ) ≥ 3, after which one can apply
the triangle inequality. However this observation does not allow one to take the refutation
strength independent of the average degree.

There are some prior works examining the performance of Sherali–Adams hierarchies on
random (and otherwise “locally dense”) CSPs. Building on works showing a PTAS for fully
dense max-cut [28], the work of de la Vega and Mathieu [18] shows that in graphs with
average degree Ω(n), Sherali–Adams with O(1) rounds certifies tight bounds on max-cut.
Subsequent works extended this to give a density/rounds tradeoff [49, 6]; the best of these
shows that Sherali–Adams accurately estimates the max-cut in graphs of average degree ∆
using O(n/∆) rounds. One may compare this to our theorem, which uses nO(1/ log ∆) rounds
for random graphs of average degree ∆.

Another relevant line of work is a series of LP hierarchy lower bounds (both for Sherali–
Adams and for the weaker Lovász-Schrijver hierarchy) for problems such as max-cut,
Vertex-Cover, and Sparsest-Cut, including [1, 3, 18, 44], and culminating in the already
mentioned result of Charikar, Makarychev and Makarychev; in [15], they give subexponential
lower bounds on the number of rounds of Sherali–Adams required to strongly refute max-cut
in random regular graphs. Initially, one might expect that this result could be strengthened
to prove that sparse random graphs require almost-exponential-sized LPs to refute max-cut;
our result demonstrates instead that [15] is almost tight.

We also mention the technique of global correlation rounding in the Sum-of-Squares
hierarchy, which was used to give subexponential time algorithms for Unique-Games [8]
and polynomial-time approximations to Max-Bisection [42]. One philosophical similarity
between these algorithms and ours is that both relate local properties (correlation among
edges) to global properties (correlation of uniformly random pairs). But [8, 42] use the
fact that the relaxation is an SDP (whereas our result is interesting because it is in the
LP-only setting), and the “conditioning” steps that drive their algorithm are a fundamentally
different approach.

There are many prior works concerned with certifying bounds on random CSPs, and
we survey only some of them here, referring the interested reader to the discussion in [2].
The sequence of works [31, 43, 34] establishes Sum-of-Squares lower bounds for refuting any
random constraint satisfaction problem, and these results are tight via the SOS algorithms
of [2, 40]. The upshot is that for k-sat and k-xor,7 ω(1) rounds of SOS are necessary to
strongly refute an instance with m = o(nk/2) clauses, and O(1) rounds of SOS suffice when
m = Ω̃(nk/2). Because SOS is a tighter relaxation than Sherali–Adams, the lower bounds
[31, 43, 34] apply; our work can be seen to demonstrate that Sherali–Adams does not lag far
behind SOS, strongly refuting with O(1) rounds as soon as m = Ω(ndk/2e+δ) for any δ > 0.

In a way, our result is part of a trend in anti-separation results for SDPs and simpler
methods for pseudorandom and structured instances. For example, we have for planted clique
that the SOS hierarchy performs no better than the Lovász-Schrijver+ hierarchy [22, 7], and
also no better than a more primitive class of estimation methods based on local statistics (see

7 This is more generally true for any CSP that supports a k-wise independent distribution over satisfying
assignments.
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e.g. [41] for a discussion). Similar results hold for problems relating to estimating the norms
of random tensors [33]. Further, in [33] an equivalence is shown between SOS and spectral
algorithms for a large class of average-case problems. Our result shows that for random
CSPs, the guarantees of linear programs are surprisingly not far from the guarantees of SOS.

Finally, we mention related works in extended formulations. The sequence of works
[13, 35] show that Sherali–Adams lower bounds for CSPs imply lower bounds for any LP
relaxation; the stronger (and later) statement is due to [35], who show that subexponential-
round integrality gaps for CSPs in the Sherali–Adams hierarchy imply subexponential-size
lower bounds for any LP. These works are then applied in conjunction with [31, 43, 15] to
give subexponential lower bounds against CSPs for any LP; our results give an upper limit
to the mileage one can get from these lower bounds in the case of max-cut, as we show
that the specific construction of [15] cannot be strengthened much further.

1.3 Techniques
Our primary insight is that while Sherali–Adams is unable to reason about spectral properties
globally, it does enforce that every set of R variables behave locally according to the marginals
of a valid distribution, which induces local spectral constraints on every subset of up
to R variables.

At first, it is unclear how one harnesses such local spectral constraints. But now suppose
that we are in a graph whose adjacency matrix has a small spectral radius (excluding
the trivial eeigenvalue). This implies that random walks mix rapidly, in say t steps, to a
close-to-uniform distribution. Because a typical pair of vertices at distance t is distributed
roughly as a uniformly random pair of vertices, any subset of R vertices which contains a
path of length t already allows us to relate global and local graph properties.

To see why this helps, we take for a moment the “pseudoexpectation” view, in which we
think of the R-round Sherali–Adams as providing a proxy for the degree-R moments of a
distribution over max-cut solutions x ∈ {±1}n, with max-cut value

max-cut(G) = 1
2 −

1
2 E

(u,v)∈E(G)
Ẽ[xuxv], (4)

where Ẽ[xuxv] is the “pseudo-correlation” of variables xu, xv. Because there is no globally
consistent assignment, the pseudo-correlation Ẽ[xuxv] for vertices u, v sampled uniformly at
random will be close to 0.8 But in any fixed subgraph of size Ω(t), enforcing Ẽ[xuxv] ≈ 0 for
pairs u, v at distance t has consequences, and limits the magnitude of correlation between
pairs of adjacent vertices as well. In particular, because the pseudo-second moment matrix
Ẽ[xSx>S ] for xS the restriction of x to a set S of up to R vertices must be PSD, forcing some
entries to 0 gives a constraint on the magnitude of edge correlations.

For example, suppose for a moment that we are in a graph G with t = 2, and that S is a
star graph in G, given by one “root” vertex r with k ≤ R− 1 children U = {u1, . . . , uk}, and
call X = Ẽ[xSx>S ] � 0. Notice that pairs of distinct children ui, uj are at distance t = 2 in S.
If we then require Ẽ[xuixuj ] = 0 for every ui 6= uj , the only nonzero entries of X are the
diagonals (which are all Ẽ[x2

i ] = 1), and the entries corresponding to edges from the root to
its children, (r, ui), which are Ẽ[xrxui ]. Now defining the vector c ∈ RS with a 1 at the root
r, cr = 1 and α on each child u ∈ U , cu = α, we have from the PSDness of X that

0 ≤ c>Xc = ‖c‖22 +
∑
u∈U

2crcu · Ẽ[xrxu] = (1 + α2k) + 2αk E
(u,v)∈E(S)

Ẽ[xuxv].

8 This is implicit in our proof, but intuitively it should be true because e.g. u, v should be connected by
equally many even- and odd-length paths.
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Choosing α = k−1/2, this implies that within S, the average edge correlation is lower
bounded by E(u,v)∈E[S] Ẽ[xuxv] ≥ −k−1/2. Of course, for a given star S we cannot know
that Ẽ[xuixuj ] = 0, but if we take a well-chosen weighted average over all stars, this will
(approximately) hold on average.

Our strategy is to take a carefully-chosen average over specific subgraphs S of G with |S| =
Ω(t). By our choice of distribution and subgraph, the fact that the subgraphs locally have
PSD pseudocorrelation matrices has consequences for the global average pseudocorrelation
across edges, which in turn gives a bound on the objective value Equation (4). This allows
us to show that Sherali–Adams certifies much better bounds than we previously thought
possible, by aggregating local spectral information across many small subgraphs.

Organization

We begin with technical preliminaries in Section 2. In Section 3 we prove our main result.
Section 4 establishes a mild lower bound for arbitrary graphs. Finally, Section 5 applies
Theorem 1 to the refutation of arbitrary Boolean CSPs.

2 Setup and preliminaries

We begin by recalling preliminaries and introducing definitions that we will rely upon later.

2.1 Random walks on undirected graphs

Here, we recall some properties of random walks in undirected graphs that will be of use to us.

I Definition 6. Let G = (V,E) be an undirected finite graph, with parallel edges and self-loops
allowed9, and with no isolated vertices. The standard random walk on G is the Markov chain
on V in which at each step one follows a uniformly random edge out of the current vertex.
For u ∈ V , we use the notation v ∼ u to denote that v is the result of taking one random
step from u.

I Definition 7. We write K for the transition operator of the standard random walk on G.
That is, K is obtained from the adjacency matrix of G by normalizing the uth row by a factor
of 1/ deg(u).

I Definition 8. We write π for the probability distribution on V defined by π(v) = deg(v)
2|E| .

As is well known, this is an invariant distribution for the standard random walk on G, and
this Markov chain is reversible with respect to π. For u ∼ π and v ∼ u, the distribution of
(u,v) is that of a uniformly random (directed) edge from E. We will also use the notation
π∗ = minv∈V {π(v)}.

I Definition 9. For f, g : V → R we use the notation 〈f, g〉π for Eu∼π[f(u)g(u)]. This is
an inner product on the vector space RV ; in case G is regular and hence π is the uniform
distribution, it is the usual inner product scaled by a factor of 1/|V |. It holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[f(u)g(v)]. (5)

9 Self-loops count as “half an edge”, and contribute 1 to a vertex’s degree.
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I Definition 10. A stationary d-step walk is defined to be a sequence (u0,u1, . . . ,ud) formed
by choosing an initial vertex u0 ∼ π, and then taking a standard random walk, with ut ∼ ut−1.
Generalizing Equation (5), it holds in this case that

E[f(u0)g(ud)] = 〈f,Kdg〉π.

2.2 Tree-indexed random walks
To prove our main theorem we define a class of homomorphisms we call tree-indexed random
walks.

I Definition 11. Suppose we have a finite undirected tree with vertex set T . A stationary
T -indexed random walk in G is a random homomorphism φ : T → V defined as follows:
First, root the tree at an arbitrary vertex i0 ∈ T . Next, define φ(i0) ∼ π. Then, independently
for each “child” j of i0 in the tree, define φ(j) ∼ φ(i0); that is, define φ(j) ∈ V to be the
result of taking a random walk step from φ(i0). Recursively repeat this process for all children
of i0’s children, etc., until each vertex k ∈ T has been assigned a vertex φ(k) ∈ V .

We note that the homomorphism φ defining the T -indexed random walk need not be injective.
Consequently, if T is a tree with maximum degree D, we can still have a T -indexed random
walk in a d-regular graph with d < D.

The following fact is simple to prove; see, e.g., [36].

I Fact 12. The definition of φ does not depend on the initially selected root i0 ∈ T . Further,
for any two vertices i, j ∈ T at tree-distance d, if i = i0, i1, . . . , id = j is the unique path in
the tree between them, then the sequence (φ(i0),φ(i1), . . . ,φ(id)) is distributed as a stationary
d-step walk in G.

2.3 2XOR and signed random walks
The 2-xor constraint satisfaction problem is defined by instances of linear equations in Fn2 .
For us it will be convenient to associate with these instances a graph with signed edges, and
on such graphs we perform a slightly modified random walk.

I Definition 13. We assume that for each vertex pair (u, v) where G has edge, there
is an associated sign ξuv = ξvu ∈ {±1}.10 We arrange these signs into a symmetric
matrix Ξ = (ξuv)uv. If G has no (u, v) edge then the entry Ξuv will not matter; we can take
it to be 0.

I Definition 14. We write K = Ξ ◦K for the signed transition operator. The operator K
is self-adjoint with respect to 〈·, ·〉π, and hence has real eigenvalues. It also holds that

〈f,Kg〉π = 〈Kf, g〉π = E
(u,v)∼E

[ξuvf(u)g(v)]. (6)

I Definition 15. We may think of G and Ξ as defining a 2-xor constraint satisfaction
problem (CSP), in which the task is to find a labeling f : V → {±1} so as to maximize the
fraction of edges (u, v) ∈ E for which the constraint f(u)f(v) = ξuv is satisfied. The fraction
of satisfied constraints is

E
(u,v)∼E

[ 1
2 + 1

2ξuvf(u)f(v)
]

= 1
2 + 1

2 〈f,Kf〉π. (7)

We will typically ignore the 1
2 ’s and think of the 2-xor CSP as maximizing the quadratic form

〈f,Kf〉π. When all signs in the matrix Ξ are −1, we refer to this as the max-cut CSP.

10 If G has multiple (u, v) edges, we think of them as all having the same sign.
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I Definition 16. We say that a signed stationary d-step walk is a sequence of pairs (ut,σt) ∈
{±1} × V for 0 ≤ t ≤ d, chosen as follows: first, we choose a stationary d-step walk
(u0,u1, . . . ,ud) in G; second, we choose σ0 ∈ {±1} uniformly at random; finally, we define
σt = σt−1ξσt−1σt . Generalizing Equation (6), it holds in this case that

E[σ0f(u0)σdg(ud)] = 〈f,Kd
g〉π.

I Definition 17. We extend the notion from Definition 11 to that of a signed stationary
T -indexed random walk in G. Together with the random homomorphism φ : T → V , we also
choose a random signing σ : T → {±1} as follows: for the root i0, the sign σ(i0) ∈ {±1} is
chosen uniformly at random; then, all other signs are deterministically chosen – for each
j of i0 we set σ(j) = ξi0jσ(i0), and in general σ(k) = ξk′kσ(k) where k′ is the parent
of k. Again, it is not hard to show that the definition of (φ,σ) does not depend on the
choice of root i0, and that for any path i0, i1, . . . , id of vertices in the tree, the distribution of
(φ(i0),σ(i0)), (φ(i1),σ(i1)), . . . (φ(id),σ(id)) is that of a signed stationary d-step walk in G.

2.4 Proof systems
Our central object of study is the Sherali–Adams proof system, although our results also
apply to a weaker proof system (see Remark 24). We first define Sherali–Adams in this
“proof system” format (as opposed to the original optimization format); see, e.g., [9] for some
commentary on this perspective.

I Definition 18. Let X1, . . . ,Xn be indeterminates that are supposed to stand for real num-
bers ±1. The R-round Sherali–Adams proof system [45] may be defined as follows: The
“lines” of the proof are real polynomial inequalities in X1, . . . ,Xn (where the polynomials
may as well be multilinear). The allowed “axioms” are any real inequalities of the form
q(Xu1 , . . . ,XuR) ≥ 0, where the inequality is true for every ±1 assignment to the indetermin-
ates Xui . The “deduction rules” allow one to derive any nonnegative linear combination of
previous lines. This is a sound proof system for inequalities about ±1 numbers X1, . . . ,Xn.

I Fact 19. There is a poly(nR, L)-time algorithm based on Linear Programming for de-
termining whether a given polynomial inequality p(X) ≥ 0 of degree at most R (and rational
coefficients of total bit-complexity L) is derivable in the R-round Sherali–Adams proof system.

As mentioned earlier, it will helpful for us to take a “Sum-of-Squares” perspective on
Sherali–Adams. The well-known fact here is that a multilinear polynomial q(Xu1 , . . . ,XuR) is
nonnegative for all±1 assignments if and only if it can be represented as the (multilinearization
of) a squared polynomial p2 on R indeterminates. (This p will be the unique “Fourier
expansion” for the function √q : {±1}R → R; again, see [9] for some discussion.) Let us now
define a proof system that can encapsulate both Sherali–Adams and SOS:

I Definition 20. We define the R-local, degree-D (static) Sum-of-Squares (SOS) proof
system over indeterminates X1, . . . ,Xn as follows. The “lines” of the proof are real polynomial
inequalities in X = (X1, . . . ,Xn). The default “axioms” are any real inequalities of the form
p(Xu1 , . . . ,XuR)2 ≥ 0, where p is a polynomial in at most R variables and of degree at most
D/2. The “deduction rules” allow one to derive any nonnegative linear combination of
previous lines. This is a sound proof system for inequalities about n real numbers X1, . . . ,Xn.

In addition to the default axioms, one may also sometimes include problem-specific
“equalities” of the form q(X) = 0. In this case, one is allowed additional axioms of the form
q(X)s(X) R 0 the polynomial q(X)s(X) depends on at most R indeterminates and has degree
at most D.
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I Fact 21. The case of R =∞ (equivalently, R = n) corresponds to the well-known degree-D
SOS proof system.

I Definition 22. Suppose one includes the Boolean equalities, meaning X2
u − 1 = 0 for all

1 ≤ i ≤ n.11 In this case D =∞ is equivalent to D = R, and the corresponding proof system
is equivalent to R-round Sherali–Adams.

I Fact 23. We will often be concerned with the R-local, degree-2 SOS proof system, where
all lines are quadratic inequalities. In this case, we could equivalently state that the default
axioms are all those inequalities of the form

x>P x ≥ 0, (8)

where x = (Xu1 , . . . ,XuR) is a length-R subvector of X, and P is an R×R positive semidefinite
(PSD) matrix.

I Remark 24. In fact, we will often be concerned with the R-round, degree-2 Sherali–Adams
proof system, which is strictly weaker than the general R-round Sherali–Adams proof system.
Despite this restriction to D = 2, we only know the poly(nR, L)-time algorithm for deciding
derivability of a given quadratic polynomial p(X) ≥ 0 (of bit-complexity L).

3 Proof of Main Theorem (2XOR certifications from “spider walks”)

In this section, we prove our main theorem: given a 2-xor or max-cut instance on a graph
G with small spectral radius, we will show that the R-local degree-2 SOS proof system gives
nontrivial refutations with R not too large.

Our strategy is as follows: we select a specific tree T of size ∝ R, and we consider the
distribution over copies of T in our graph given by the T -indexed stationary random walk.
We will use this distribution to define the coefficients for a degree-2, R-local proof that
bounds the objective value of the CSP. We will do this by exploiting the uniformity of the
graph guaranteed by the small spectral radius, and the fact that degree-2 R-local SOS proofs
can certify positivity of quadratic forms c>X|SX|>S c, where X|S is the restriction of X to a
set S of variables with |S| ≤ R and c ∈ R|S|.

Intuitively, in the “pseudoexpectation” view, the idea of our proof is as follows. When
there is no globally consistent assignment, a uniformly random pair of vertices u, v ∈ V will
have pseudocorrelation close to zero. On the other hand, if t-step random walks mix to a
roughly uniform distribution over vertices in the graph, then pairs of vertices at distance t
will also have pseudocorrelation close to zero. But also, in our proof system the degree-2
pseudomoments of up to R variables obey a positive-semidefiniteness constraint. By choosing
the tree T with diameter at least t, while also choosing T to propagate the effect of the
low-pseudocorrelation at the diameter to give low-pseudocorrelation on signed edges, we
show that the proof system can certify that the objective value is small. Specifically, we will
choose T to be a spider graph:

I Definition 25. For integers k, ` ∈ N+, we define a (k, `)-spider graph to be the tree formed
by gluing together k paths of length ` at a common endpoint called the root. This spider has
k`+ 1 vertices and diameter 2`.

11Or alternatively, X2
u − Xu = 0 for all i.
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While we were not able to formally prove that the spider is the optimal choice of tree,
intuitively, we want to choose a tree that maximizes the ratio of the number of pairs at
maximum distance (since such pairs relate the local properties to the global structure) to
the number of vertices in the tree (because we need to take our number of rounds R to be at
least the size of the tree). Among trees, the spider is the graph that maximizes this ratio.

Let us henceforth fix a (k, `)-spider graph, where the parameters k and ` will be chosen
later. We write S for the vertex set of this tree (and sometimes identify S with the tree itself).

I Definition 26. For 0 ≤ d ≤ 2`, we define the matrix A(d) ∈ RS×S to be the “distance-d”
adjacency matrix of the spider; i.e., A(d)

ij is 1 if distS(i, j) = d and is 0 otherwise. (We
remark that A(0) is the identity matrix.)

The following key technical theorem establishes the existence of a matrix Ψ which will allow
us to define the coefficients in our R-local degree-2 SOS proof. It will be proven in Section 3.2:

I Theorem 27. For any parameter α ∈ R, there is a PSD matrix Ψ = Ψα ∈ RS×S with the
following properties:

〈Ψ, A(0)〉 = 1 + 1
2kα

2` + 1
k − 1

α2` − α2

α2 − 1 ,

〈Ψ, A(1)〉 = α,

〈Ψ, A(d)〉 = 0 for 1 < d < 2`,

〈Ψ, A(2`)〉 = 1− 1/k
2 α2`.

Here we are using the notation 〈B,C〉 for the “matrix (Frobenius) inner product” Tr(B>C).

I Corollary 28. Assuming that k ≥ 3` and taking α = k1/(2`), the PSD matrix Ψ satisfies
the following four statements:

3/2 ≤ 〈Ψ, A(0)〉 ≤ 2, 〈Ψ, A(1)〉 = k1/(2`),

〈Ψ, A(d)〉 = 0 for 1 < d < 2`, 〈Ψ, A(2`)〉 = 1
2 (k − 1).

We will also use the following small technical lemma:

I Lemma 29. Let M ∈ RV×V and recall π∗ = minv∈V {π(v)} > 0. Then the 2-local, degree-2
SOS proof system can derive

E
u∼π

∑
v∈V

MuvXuXv ≤ π−1/2
∗ ‖M‖2 E

u∼π
X2
u.

Proof. The proof system can derive the following inequality for any γ > 0, since the difference
of the two sides is a perfect square:

MuvXuXv ≤
M2
uv

2γπ(v)X2
u + γπ(v)

2 X2
v.

Thus it can derive

E
u∼π

∑
v∈V

MuvXuXv ≤ E
u∼π

X2
u

∑
v∈V

M2
uv

2γπ(v) + γ

2 E
v∼π

X2
v. (9)

We’ll take γ = π
−1/2
∗ ‖M‖2. Since we can certainly derive aX2

u ≤ bX2
u whenever a ≤ b, we see

that it suffices to establish∑
v∈V

M2
uv

2γπ(v) ≤
γ

2
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for every outcome of u. But this is implied by
∑
vM

2
uv ≤ (π(v)/π∗)‖M‖22 for all v ∈ V ,

which is indeed true. J

We can now prove the following main theorem:

I Theorem 30. Given parameters k ≥ 3`, let R = k`+ 1 and define

β = kπ
−1/2
∗

2k1/(2`) ρ(K)2` + 2
k1/(2`) ,

where ρ(K) denotes the spectral radius of the signed transition matrix K. Then R-local,
degree-2 SOS can deduce the bound “ρ(K) ≤ β”; more precisely, it can deduce the two
inequalities

−β〈X,X〉π ≤ 〈X,KX〉π ≤ β〈X,X〉π.

Before proving this theorem, let us simplify the parameters. For any ε > 0, we can choose
` to be the smallest integer so that ( 1

ερ(K))2`π
−1/2
∗ ≤ ε, and k = d( 1

ε )
2`e. This gives the

corollary:

I Corollary 31. Suppose we have a graph G = (V,E) with signed transition operator K
and π∗ = minv∈V deg(v)

2|E| . Given ε > min(π−1/2
∗ , ρ(K)), take ` =

⌈
1
4

log(ε2π∗)
log(ρ(K)/ε)

⌉
, and take

k = d( 1
ε )2`e. Then for R = k`+ 1, it holds that R-local degree-2 SOS can deduce the bound

ρ(K) ≤ 5
2ε. In particular, if we think of G,Ξ as a 2-xor CSP, it holds that R-round

Sherali–Adams can deduce the bound OBJ ≤ 1
2 + 5

4ε.

Proof. Taking the parameters as above, and using that the constraints X2
u = 1 imply that

R-round Sherali–Adams can deduce that 〈X,X〉π = 1 whenever R ≥ 2, and that as noted in
Equation (7), OBJ(X) = 1

2 + 1
2 〈X,KX〉π, so Theorem 30 gives the result. J

Corollary 31 implies the 2-xor version of Theorem 1 since in simple graphs, log 1
π∗ =

Θ(logn).

Proof of Theorem 30. For our (k, `)-spider graph on S, let (φ,σ) be a signed stationary
S-indexed random walk in G. Define x to be the S-indexed vector with xi = σ(i)Xφ(i). Then
letting Ψ be the PSD matrix from Corollary 28, the R-local, degree-2 SOS proof system can
derive

〈Ψ, xx>〉 = x>Ψx ≥ 0.

(This is in the form of Inequality (8) if we take P = diag(σ)Ψ diag(σ).) Furthermore, the
proof system can deduce this inequality in expectation; namely,

〈Ψ,Y〉 ≥ 0, where Y = E[xx>]. (10)

Now by the discussion in Definitions 16 and 17,

Yij = E[σ(i)Xφ(i)σ(j)Xφ(j)] = 〈X,KdistS(i,j)X〉π. (11)

Thus recalling the notation A(d) from Definition 26,

Y =
2∑̀
d=0
〈X,KdX〉πA(d), (12)

CCC 2019



8:14 Sherali–Adams Strikes Back

and hence from Inequality (10) we get that R-local, degree-2 SOS can deduce

0 ≤
2∑̀
d=0
〈Ψ, A(d)〉〈X,KdX〉π = c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2 (k − 1)〈X,K2`X〉π, (13)

for some constant 3/2 ≤ c0 ≤ 2 (here we used Corollary 28). Regarding the last term,
we have:

〈X,K2`X〉π = E
u∼π

∑
v∈V

(K2`)uvXuXv. (14)

If we cared only about the Sherali–Adams proof system with Boolean equalities, we would
simply now deduce

E
u∼π

∑
v∈V

(K2`)uvXuXv ≤ E
u∼π

∑
v∈V

∣∣∣(K2`)uv
∣∣∣

≤
√
|V | E

u∼π
‖K2`

u,·‖2 ≤
√
|V |ρ(K2`) =

√
|V |ρ(K)2`,

and later combine this with c0〈X,X〉π = c0. But proceeding more generally, we instead use
Lemma 29 to show that our proof system can derive

E
u∼π

∑
v∈V

(K2`)uvXuXv ≤ π−1/2
∗ ρ(K)2`〈X,X〉π.

Putting this into Equation (14) and Inequality (13) we get

〈X,KX〉π ≥ −
c0 + 1

2 (k − 1)π−1/2
∗ ρ(K)2`

k1/(2`) 〈X,X〉π ≥ −β〈X,X〉π.

Repeating the derivation with −K in place of K completes the proof. J

3.1 Max-Cut
The following theorem is quite similar to Theorem 30. In it, we allow K to have the large
eigenvalue 1, and only certify that it has no large-magnitude negative eigenvalue. The
subsequent corollary is deduced identically to Corollary 31.

I Theorem 32. Given transition operator K for the standard random walk on G, let
K ′ = K − J , where J is the all-1’s matrix. For parameters k ≥ 3`, let R = k`+ 1 and define

β = kπ
−1/2
∗

2k1/(2`) ρ(K ′)2` + 2
k1/(2`) .

(Note that ρ(K ′) is equal to maximum-magnitude eigenvalue of K when the trivial 1 eigenvalue
is excluded.) Then 2R-local, degree-2 SOS can deduce the bound “λmin(K) ≥ −β”; more
precisely, it can deduce the inequality

〈X,KX〉π ≥ −β〈X,X〉π.

I Corollary 33. Suppose we have a graph G = (V,E) with transition operator K and centered
transition operator K ′ = K − J , and π∗ = minv∈V deg(v)

2|E| . Given ε > min(π−1/2
∗ , ρ(K ′)), take

` =
⌈

1
4

log(ε2π∗)
log(ρ(K)/ε)

⌉
, and take k = d( 1

ε )2`e. Then for R = k`+1, it holds that 2R-local degree-2
SOS can deduce the bound ρ(K ′) ≤ 5

2ε. In particular, if we think of G as a max-cut CSP,
it holds that R-round Sherali–Adams can deduce the bound OBJ ≤ 1

2 + 5
4ε.
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Again, Corollary 33 implies Theorem 1 since in simple graphs, log 1
π∗ = Θ(logn).

Proof of Theorem 32. The proof is a modification of the proof of Theorem 30. Letting S
be the (k, `)-spider vertices, instead of taking a signed stationary S-indexed random walk
in G, we take two independent unsigned stationary S-indexed random walks, φ1 and φ2.
For j ∈ {1, 2}, define xj to be the S-indexed vector with ith coordinate equal to Xφj(i), and
write ẋ for the concatenated vector (x1, x2). Also, for 0 < θ < 1 a parameter12 slightly less
than 1, let Ψ be the PSD matrix from Corollary 28, and define the PSD block-matrix

Ψ̇ = 1
2

(
1
θΨ −Ψ
−Ψ θΨ

)
.

Then as before, the 2R-local, degree-2 SOS proof system can derive

0 ≤ 〈Ψ̇,E ẋẋ>〉 = ι〈Ψ,Y〉− 〈Ψ,Z〉, where ι = 1/θ+θ
2 , Y = E[xx>], Z = E[x1x>2 ], (15)

and x (which will play the role of x) denotes the common distribution of x1 and x2. Similar
to Equations (11) and (12), we now have

Y =
2∑̀
d=0
〈X,KdX〉πA(d),

and by independence of x1 and x2 we have

Z = 〈1, X〉2π · J = 〈1, X〉2π ·
2∑̀
d=0

A(d).

Thus applying Corollary 28 to Inequality (15), our proof system can derive

0 ≤ ι ·
(
c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1

2 (k − 1)〈X,K2`X〉π
)

− E
u∼π

[Xu]2 ·
(
c0 + k1/(2`) + 1

2 (k − 1)
)
. (16)

By selecting θ appropriately, we can arrange for the factor c0 + k1/(2`) + 1
2 (k− 1) on the right

to equal ι · 1
2 (k − 1). Inserting this choice into Inequality (16) and then dividing through

by ι, we conclude that the proof system can derive

0 ≤ c0〈X,X〉π + k1/(2`)〈X,KX〉π + 1
2 (k − 1)

(
〈X,K2`X〉π − 〈1, X〉2π

)
,

cf. Inequality (13). Recalling now that K has the constantly-1 function as an eigenvector,
with eigenvalue 1, we have the identity

〈X,K2`X〉π − 〈1, X〉2π = 〈X, (K − J)2`X〉π.

Now the remainder of the proof is just as in Theorem 27, with K − J in place of K, except
we do not have the step of repeating the derivation with −K in place of K. J

12This parameter is introduced to fix a small annoyance; the reader might like to imagine θ = 1 at first.
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3.2 A technical construction of coefficients on the spider
Proof of Theorem 27. We are considering the (k, `)-spider graph on vertex set S. We write
Vt for the set of all vertices at distance t from the root (so |V0| = 1 and |Vt| = k for 1 ≤ t ≤ `).
We will be considering vectors in RS , with coordinates indexed by the vertex set S. For
0 ≤ t ≤ ` define the vector

µt = avg
i∈Vt
{αtei},

where ei = (0, . . . , 0, 1, 0, . . . , 0) is the vector with the 1 in the ith position. Further define
vectors

χ = µ0 + µ1,

ψt = µt − µt+2 for 0 ≤ t < `,

with the understanding that µ`+1 = 0. Next, define the PSD matrix

Ψ̃ = χχ> +
`−1∑
t=0

ψtψ
>
t .

This will almost be our desired final matrix Ψ. Let us now compute

〈Ψ̃, A(d)〉 = χ>A(d)χ+
`−1∑
t=0

ψ>t A
(d)ψt.

To do this, we observe that

µ>s A
(d)µt = αs+t Pr

i∼Vs, j∼Vt
[distS(i, j) = d],

and

µ>0 A
(d)µt = µ>t A

(d)µ0 =
{
αt if d = t,

0 else;

and for s, t > 0, µ>s A
(d)µt =


(1/k)αs+t if d = |s− t|,
(1− 1/k)αs+t if d = s+ t,

0 else.

From this we can compute the following (with a bit of effort):

〈Ψ̃, A(0)〉 = 2 + (2/k)α2 + (2/k)α4 + · · ·+ (2/k)α2`−2 + (1/k)α2`

〈Ψ̃, A(1)〉 = 2α

〈Ψ̃, A(2)〉 = −(2/k)α2 − (2/k)α4 − (2/k)α6 − · · · − (2/k)α2`−2

〈Ψ̃, A(2t+1)〉 = 0, 1 ≤ t < `

〈Ψ̃, A(2t)〉 = 0, 1 < t < `

〈Ψ̃, A(2`)〉 = (1− 1/k)α2`

Now, for a parameter η > 0 to be chosen shortly, we finally define the PSD matrix

Ψ = 1
2Ψ̃ + ηµ1µ

>
1 .
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We have

〈ηµ1µ
>
1 , A

(d)〉 =
{
η(1/k)α2 if d = 0,
η(1− 1/k)α2 if d = 2.

Therefore by carefully choosing

η = 1
k − 1

(
α2`−2 − 1
α2 − 1

)
,

we get all of the desired inner products in the theorem statement. J

4 Lower Bounds

In this section, we show that degree-R Sherali–Adams cannot refute a random 2-xor or
max-cut instance better than 1

2 + Ω( 1
R ). This is a straightforward application of the

framework of Charikar, Makarychev and Makarychev [15]. In that work, the authors show
that if every subset of r points in a metric can be locally embedded into the unit sphere, then
Goemans-Williamson rounding can be used to give a Θ(r)-round Sherali–Adams feasible
point. The upshot is the following theorem appearing in [15] (where it is stated in slightly
more generality, for the 0/1 version of the cut polytope):

I Theorem 34 (Theorem 3.1 in [15]). Let (X, ρ) be a metric space, and assume that every
r = 2R+ 3 points of (X, ρ) isometrically embed in the Euclidean sphere of radius 1. Then the
following point is feasible for R-rounds of the Sherali–Adams relaxation for the cut polytope:

Ẽ[xixj ] = 1− 2
π

arccos
(

1− 1
2ρ(i, j)2

)
.

I Proposition 35. In any 2-xor or max-cut instance, R-rounds of Sherali–Adams cannot
certify that

OBJ(x) < 1
2 + 1

πR
− 1

2R2

Proof. Suppose that we are given a 2-xor (equivalently, max-cut) instance on the graph G,
so that on each edge (i, j) ∈ E(G) we have the constraint xixjbij = 1 for some bij ∈ {±1}.
Define the metric space on (X, ρ) as follows: let X = {x1, . . . , xn} have a point for each
vertex of G, and set ρ(xi, xj) =

√
2
(
1− bij 1

R

)
.

We claim that any r = 2R+ 3 points of X embed isometrically into the Euclidean sphere
of radius 1. To see this, fix a set S ⊂ X, and define the |S| × |S| matrix BS so that

(BS)ij =
{
bij
r if (i, j) ∈ E(G),

0 otherwise.

So long as |S| ≤ r, the matrix MS = 1 +BS is diagonally dominant, and therefore positive
semidefinite, so from the Cholesky decomposition of MS we assign to each xi ∈ S a vector vi
so that ‖vi‖2 = 1, and so that for every pair xi, xj ∈ S, ‖vi − vj‖2 = 2− 2bij 1

r = ρ(i, j)2.
Applying Theorem 34, we have that the solution

Ẽ[xixj ] = 1− 2
π

arccos
(

1− 1
2 · 2

(
1− bij

1
r

))
= 1− 2

π
arccos

(
bij

1
r

)
is feasible. For convenience, let f(z) = 1− 2

π arccos(z). We use the following properties of f :
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B Claim 36. The function f(z) = 1− 2
π arccos(z) exhibits the rotational symmetry f(z) =

−f(−z), and further f(z) ≥ 2
π z for z ∈ [0, 1].

We give the proof of the claim (using straightforward calculus) below. Now, because
f(z) = −f(−z), we have that

bij · Ẽ[xixj ] = bij · f
(
bij

1
r

)
= f

(
1
r

)
,

and using that for z ∈ [0, 1], f(z) ≥ 2
π z ≥ 0,

≥ 2
π
· 1
r
.

We conclude that R = 1
2 (r − 3) rounds of Sherali–Adams are unable to certify that

OBJ < 1
2 + 2

π
1

2R+3 , as desired. J

Proof of Claim 36. The rotational symmetry follows from simple manipulations:

f(z)− (−f(−z)) = 2− 2
π

(arccos(z) + arccos(−z)) = 2− 2
π

arccos(−1) = 0.

For the second claim, we use that the derivative of f(z)− 2
π z is positive in the interval [0, 1

2 ]:

∂

∂z
f(z)− 2

π
z = 2

π

1√
1− z2

− 1
2 > 0 for |z| < 1,

and that at z = 0, f(z)− 2
π z = 0. C

5 Refutation for any Boolean CSP

In this section, we argue that R-round Sherali–Adams can also refute any non-trivial Boolean
CSP. First, for any predicate P : {±1}k → {0, 1} we define a parameterized distribution over
the CSP with constraints from P :

I Definition 37. Let P : {±1}k → {0, 1} be a predicate. Then we define a random instance
of P on n vertices with m expected clauses to be an instance sampled as follows: define
p = m

nk
, and for each ordered multiset S ⊂ [n] with |S| = k, independently with probability p

we sample a uniformly random string ζS ∈ {±1}k and add the constraint that P (xS�ζS) = 1,
where � denotes the entry-wise (or Hadamard) product.

This is one of several popular models, and in our case it is the most convenient to work with.
By employing some manipulations, results from this model transfer readily to the others (see
for example Appendix D of [2] for details).

Our result is as follows:

I Theorem 38. Suppose that P : {±1}k → {0, 1} and that δ, ε > 0 are fixed constants. Let
E[P ] be the probability that a random x ∈ {±1}k satisfies P . Then with high probability, for
a random instance I of P on n variables with m ≥ ndk/2e+δ expected clauses, the R-round
Sherali–Adams proof system can certify that OBJI(x) ≤ E[P ] + ε when R = Oε,δ,k(1) rounds.

More specifically, R = k`
(

3·2k/2−1

ε

)2`
+ k for ` = ddk2 e

1
2δ e.

We can also prove a more fine-grained result, to obtain strong refutation at lower clause
densities when the predicate has certain properties.
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I Definition 39. We say that a predicate P : {±1}k → {0, 1} is η-far from t-wise supporting
if every t-wise uniform distribution has probability mass at least η on the set of unsatisfying
assignments P−1(0).

I Theorem 40. Suppose that P : {±1}k → {0, 1} is η-far from t-wise supporting, and that
δ, ε > 0. Then with high probability, for a random instance I of P on n variables and
m ≥ ndt/2e+δ expected clauses, the R-round Sherali–Adams proof system can certify that
OBJI(x) ≤ 1 − η + ε with R = Oε,δ,t(1) rounds. More specifically, R = t`

(
3·2t/2−1

ε

)2`
+ t

for ` = dd t2e
1
2δ e.

Following the strategy introduced in [2], we will do this by first refuting weighted random
instances of k-xor for k ≥ 1. After this, any predicate P : {±1}k → {0, 1} can be decomposed
according to its Fourier decomposition, which will yield a weighted sum of t-xor instances
for t ≤ k, and our proof system will refute each individually.

5.1 Higher-arity XOR
Ultimately, we will reduce each k-CSP to a sum over weighted t-xor instances with t ≤ k:

I Definition 41. Let W be a distribution over signed integers. We say that I is a random
k-xor instance weighted according to W if it is sampled as follows: for each ordered multiset
S ⊂ [n] with |S| = k, we take a bS to be equal to a uniformly random sample from W, and
finally set the objective function to be

∑
S bS · xS.

Following the standard strategy introduced by [30, 26] and subsequently honed in many
works, we will reduce refuting these t-xor instances to refuting 2-xor instances.

5.1.1 Even k-XOR
In this case, we perform a standard transformation to view the k-xor instance as a 2-xor
instance on super-vertices given by subsets of vertices of size k/2.

I Definition 42. Suppose k > 1 is an integer and I is a 2k-xor instance on n variables
x1, . . . , xn, with objective

∑
U∈[n]2k bU · xU where the sum is over ordered multisets U ⊂

[n], |U | = 2k. Then we let its flattening, Iflat, be the 2-xor instance on nk variables given
by associating a new variable yS for each ordered multiset S ⊂ [n], |S| = k, and for each
U ⊂ [n] with |U | = 2k, choosing the partition of U into the ordered multisets S, T with S
containing the first k elements and T containing the last k, taking the objective function∑

S,T bU · ySyT .

I Lemma 43. Suppose that I is a 2k-xor instance, and let Iflat be the 2-xor instance
given by its flattening. Then if the R-round Sherali–Adams proof system can certify that
OBJIflat(x) ≤ c, then the k ·R-round Sherali–Adams proof system can certify that OBJI(x) ≤
c.

Proof. Every degree-R Sherali–Adams proof for Iflat can be transformed into a Sherali–
Adams proof of degree at most kR for I by applying the transformation yS =

∏
i∈S xi = xS .

Further, this transformation exactly relates the objective functions of Iflat and I. This
proves the claim. J

If the 2k-xor instances that we start with are random weighted instances, then their
flattenings are also random weighted 2-xor instances.
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B Claim 44. Suppose that I is a random 2k-xor instance on n vertices weighted according to
W . Then the flattening Iflat is a random 2-xor instance on nk vertices weighted according
to W.

Proof. This fact is immediate, since the ordered multisets U ⊂ [n], |U | = 2k are in bijection
with ordered pairs of multisets S, T ⊂ [n], |S| = |T | = k. C

We will require the following proposition, which applies our main theorem in the context
of random k-xor instances with random weights from well-behaved distributions.

I Proposition 45. Suppose that W is a distribution over integers which is symmetric about
the origin, and let n, k ≥ 1 be positive integers. Let E denote the expectation under the
measure W, and let σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

The expected absolute value is at least E |w| � σ
√

logn
nk

,
With high probability over n2k i.i.d. samples w1, . . . , wn2k ∼ W, maxi∈[n2k] |wi| ≤M �
σ2nk.

Now, define

ρ = O

(
σ logN

E |w|
√
nk
·max(1, M√

nk
)
)
.

Then if I is a random 2k-xor instance on n variables weighted according to W, with high
probability I has E |w| · n2k ± O(σnk

√
logn) constraints. Further, choosing ` ∈ N+ large

enough so that nk/4`ρ ≤ 1
2ε

2` and setting R = 2k · ` ·
( 1
ε

)2`, R rounds of Sherali–Adams can
deduce the bound OBJI(x) ≤ 1

2 + 3
2ε.

To prove the above, we require the following standard matrix Bernstein inequality:

I Theorem 46 (Theorem 6.6.1 in [48]). Let A1, . . . , Am ∈ RN×N be independent random
matrices, with E Ai = 0 for all i ∈ [m] and ‖Ai‖ ≤ M for all i ∈ [m]. Let A =

∑
i∈[m]Ai

denote their sum, and suppose that ‖E AA>‖, ‖EA>A‖ ≤ σ2. Then

Pr (‖A‖ ≥ t) ≤ N · exp
(

1
2

−t2

σ2 + 1
3Mt

)
.

Proof of Proposition 45. Given a weighted 2k-xor instance on n variables with weights from
W , we consider its flattening Iflat with objective function OBJ(x) = 1

m

∑
i,j∈[N ]

1
2 (1+bijxixj)

for m the absolute sum of weights, we construct its signed adjacency matrix as follows: first
take the matrix W defined so that Wi,j = bij , and obtain a new matrix B = 1

2 (W +W>).
For any x, applying Lemma 43 we have that 1

2 + 1
2mx

>Bx = OBJI(x).
Since W is a distribution over integers, 2B has signed integer entries. We think of 2B

as defining a multigraph G on nk vertices with signed edges, so that there are 2 · |Bij |
multiedges between i, j ∈ [nk], each with sign sgn(Bij). Let 2 ·D be the degree matrix of G,
let A = |2B| be the adjacency matrix of G, let Ξ = sgn(B) be the matrix of signs of B, and
let K = (2D−1)A = D−1B ⊗ Ξ be the transition matrix for the random walk on G.

To apply Corollary 31, we must upper bound the spectral radius of Ξ◦K = D−1B, as well
as bound the minimum degree of G and the total number of edges. We will use the bound

‖D−1B‖op ≤ ‖D−1‖op · ‖B‖op ≤
1
π∗
‖B‖op.
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First, we bound ‖B‖op. Take B′ to be the truncated version of B, so that B′i,j = sgn(Bi,j) ·
max(|Bi,j |,M). Thinking of the matrix B′ as the sum of

(
nk

2
)

+ nk symmetric matrices,
one for each pair i, j ∈ [nk], satisfies the requirements of Theorem 46. We have that
E[B′B′>] � nkσ2 · 1, so applying Theorem 46 with t = Omax(

√
σ2nk logn,M logn) we get

that with high probability,

‖B‖op ≤ O
(

max
(√

σ2nk logn,M logn
))

,

where we have also used that with high probability B = B′ by the properties of W.
Now, we bound the sum of degrees 2m and the minimum degree dmin. We have that

the total sum of the degrees is given by 2m =
∑
i,j∈[nk] |bij | with bij ∼ W. By a Bernstein

inequality,

Pr
(∣∣2m− n2k E |w|

∣∣ ≥ s) ≤ 2 exp
(
−1

2
s2

n2k ·Ew2 + 1
3Ms

)
,

so since by assumption σ2n2k � M , setting s = O(σnk
√

logn) we have that with high
probability

2m = n2k E |w| ±O(σnk
√

logn). (17)

By our assumptions onW we have that for every i ∈ [nk], E degG(i) = nk E |w|. Applying
a Bernstein inequality gives that

Pr[degG(i) ≤ nk E |w| − t] ≤ exp
(
−1

2 ·
t2

nkσ2 + 1
3Mt

)
,

so using that M ≤ nkσ2 and taking t = O
(√

nkσ2 logn
)
we get that dmin = nk · E |w| ±

O(
√
nkσ2 logn) with high probability. This gives that with high probability,

π∗ = dmin

2m ≥ nk ·E |w| −O(σ
√
nk logn)

n2k ·E |w|+O(σnk
√

logn)
≥ 1
nk
· (1− o(1))

‖Ξ ◦K‖op ≤
‖B‖op
dmin

≤
O(σ
√
nk logn) ·max(1, M√

nk
)

nk ·E |w| −O(σ
√
nk logn)

≤ O

(
σ logn

E |w|
√
nk

)
·max(1, M√

nk
)

where we have used that σ
√

logn�
√
nk E |w|.

Now, the result follows by applying Corollary 31 and Lemma 43. J

5.1.2 Odd k-XOR
For odd integers k, k-xor instances do not have the same natural, symmetric flattenings.
Instead, we define what we call a lift:

I Definition 47. Suppose k ≥ 1 is an integer and I is a (2k+1)-xor instance on n variables
x1, . . . , xn, with objective

∑
U∈[n]2k+1 bU ·xU . Then we let its lift, Ilift, be the bipartite 2-xor

instance on parts each containing nk+1 variables created as follows:
Create new variables w1, . . . , wn
For each U ∈ [n]2k+1, choose a random index iU ∈ [n] and add modify the objective to∑
U∈[n]2k+1 bU · xU · wiU
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For each ordered multiset S associate a new variable yS, and for each ordered multiset
T ∈ [n]k and index i ∈ [n] associate a new variable zT,i We understand yS =

∏
i∈S xi,

and zT,i =
(∏

j∈T xj

)
· wi.

For each U ∈ [n]2k+1, we take the ordered multiset V = (U, iU ) and assign it a new
coefficient b′V = bU . For the remaining b′V , we set b′V = 0.

Finally, Ilift is the instance with the objective function
∑
S∈[n]k+1,T∈[n]k,i∈[n] b

′
S∪T∪i · ySzT,i.

We obtain a statement analogous to Lemma 43 for odd k-xor:

I Lemma 48. Suppose that I is a weighted (2k + 1)-xor instance, and let Iflat be the
bipartite 2-xor instance given by its flattening. Then if the R-round Sherali–Adams proof
system can certify that OBJIflat(x) ≤ c, then the (k + 1) · R-round Sherali–Adams proof
system can certify that OBJI(x) ≤ c.

Proof. The only modification to the proof of Lemma 48 is that for zT,i we substitute
zT,i = xT (where we have implicitly substituted wi = 1 for all i ∈ [n]). J

However, the lifting procedure does not preserve the weighting distribution W, because
of the step in which a random index iU is chosen to lift U . For this reason, we prove an
analog of Proposition 45:

I Proposition 49. Suppose that W is a distribution over integers which is symmetric about
the origin, and let n, k ≥ 1 be integers. Let E denote the expectation under the measure W,
and let σ2 ≥ Ew2 be a bound on the variance. Furthermore, suppose that

The expected absolute value is at least E |w| � σ
√

logn
nk

,
With high probability over n2k+1 i.i.d. samples w1, . . . , wn2k+1 ∼ W, maxi∈[n2k+1] |wi| ≤
M � σ2nk.

Now, define

ρ = O

(
σ logn

E |w|
√
nk
·max(1, M√

nk
)
)
.

Then if I is a random (2k + 1)-xor instance on n variables weighted according to W, with
high probability it has E |w| · n2k+1 ± O(σnk

√
logn) constraints. Furthermore, choosing

` ∈ N+ large enough so that n(k+1)/4`ρ ≤ 1
2ε

2` and setting R = (2k + 2)` ·
( 1
ε

)2`, R rounds
of Sherali–Adams can deduce the bound OBJI(x) ≤ 1

2 + 3
2ε.

Proof. The thread of the proof is the same as that of Proposition 45. We will refute Ilift,
since by Lemma 48 this is sufficient. We begin by associating with Ilift a multigraph G

(which we may do becauseW is a distribution over integers). The multigraph G is a bipartite
graph, with one bipartition corresponding to variables yS for S ∈ [n]k+1, and one bipartition
corresponding to variables zT,i for T ∈ [n]k and i ∈ [n]. We let the block matrix B be (the
1
2 -scaled) signed adjacency matrix of G, let Ξ be the matrix of signs, D be the diagonal
degree matrix, and K ◦ Ξ = D−1B be the signed transition matrix of the random walk on G.
In order to apply Corollary 31 we must bound ‖K ◦ Ξ‖ and π∗ = dmin(G)/2m.

First, we bound the vertex degrees. For a vertex of the form (T, i), the expected value of
the incident edge (S, T ∪ i) is bS,T · 1

n , where bS,T . The degree of T ∪ i is simply the sum

degG(T ∪ i) =
∑

S∈[n]k+1

|bS,T∪i|,
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a sum of independent random variables with expectation 1
n E |w| and variances 1

nσ
2. Applying

a Bernstein inequality, we have that

Pr
(∣∣∣∣degG(T ∪ i)− 1

n
· nk+1 E[|w|]

∣∣∣∣ ≥ t) ≤ 2 exp
(

1
2

−t2

nkσ2 + 1
3Mt

)
,

so taking t = O(
√
σ2nk logn) (and using that M � nkσ2), we have that the degree of T ∪ i

vertices is degG(T ∪ i) = nk E |w| ±O(
√
σ2nk logn) with high probability.

A similar argument applies to the S vertices; the total degree of such a vertex is

degG(S) =
∑

T∈[n]k
|
∑
i∈[n]

bS,T∪i|,

since only one of the bS,T∪i will be nonzero. The inner sums are independent random
variables with mean E |w| and variance σ2, therefore

Pr
(∣∣degG(S)− nk E |w|

∣∣ ≥ t) ≤ 2 exp
(

1
2

−t2

nkσ2 + 1
3Mt

)
,

so taking t = O(
√
σ2nk logn) (and using that M � nkσ2), we have that the degree of S

vertices is also degG(S) = nk E |w| ±O(
√
σ2nk logn) with high probability.

We finally bound ‖K ◦Ξ‖ ≤ ‖D−1‖·‖B‖. As before, B is a sum of independent symmetric
matrices, one for each coefficient bU from I. That is, we can define matrices BU for each
U ∈ [n]2k+1 with U = S, T for S ∈ [n]k+1, T ∈ [n]k where BU has a number bU ∼ W in one
off-diagonal block entry (S, T ∪ i) and the other off-diagonal block entry (T ∪ i, S) for a
randomly chosen i ∈ [n]. Thus, EBUB

>
U is a diagonal matrix with 1

nσ
2 on each diagonal of

the form (T ∪ i, T ∪ i) and σ2 on each block diagonal of the form (S, S). We then have that
EBB> � nkσ21, since for each S there is a sum over nk matrices BU and for each T ∪ i
there is a sum over nk+1 matrices BU . Applying Theorem 46 by using the same truncation
trick again, we have that

‖B‖ ≤ O
(

max
(√

σ2nk logn,M logn
))

,

and from this we have that with high probability,

‖K ◦ Ξ‖ ≤ 1
degmin(G) ≤ O

(
σ logn

E |w|
√
nk

)
·max(1, M√

nk
), (18)

π∗ = degmin(G)
2m = 1

nk+1 · (1± o(1)) (19)

After which we can apply Corollary 31. J

5.2 From Boolean CSPs to k-XOR
Following [2], we prove Theorem 38 via reduction to XOR.

Proof of Theorem 38. Given a random instance of the CSP defined by the predicate P ,
and p = n−bk/2c+δ, a Bernstein inequality gives us that the number of constraints m is with
high probability given by m = ndk/2e+δ ± 10

√
ndk/2e+δ logn. Set ` = d 1

2δ e.
Since P is a Boolean predicate, we can write P in its Fourier expansion:

P (z) =
∑
α⊆[k]

P̂ (α)
∏
i∈α

zi.
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Using this expansion, we re-write the objective function. Recall that [n]k is the set of all
ordered multisets of k elements of [n]. For each S ∈ [n]k, let bS be the 0/1 indicator that
there is a constraint on S. Then, if the total number of constraints is m,

OBJI(x) = 1
m

∑
S∈[n]k

bS · P (xS � ζS)

= 1
m

∑
S={i1,...,ik}∈[n]k

∑
α⊆[k]

bS · P̂ (α)
∏
a∈α

xia(ζS)ia

= 1
m

∑
α⊆[k]

P̂ (α) ·
∑

T∈[n]|α|

 ∑
S∈[n]k,S|α=T

bS ·
∏
a∈α

(ζS)ia

 · xT . (20)

Now, define for each α ⊆ [k] with |α| = t > 0 the t-xor instance

Iα(x) = 1
m

∑
T∈[n]t

 ∑
S∈[n]k,S|α=T

bS ·
∏
a∈α

(ζS)ia

 · xT = 1
m

∑
T∈[n]t

wT · xT ,

where we have taken wT =
∑
S∈[n]k,S|α=T bS ·

∏
a∈α(ζS)ia . So that from Equation (20),

OBJI(x) =
∑
α⊆[k]

P̂ (α) · Iα(x). (21)

Let Wnk−t be the distribution defined so that w ∼ Wt is a sum of nk−t independent
variables taking value {±1} with probability p and value 0 otherwise. Since for each S ⊇ T ,
the quantity

∏
a∈α(ζS)ia is an independent uniform sign in {±1} and bS is an independent

Bernoulli-p variable, we have that the coefficients wT in Iα are i.i.d. from Wnk−t . The
following lemma establishes some properties ofWN (we will prove the lemma in Appendix A):

I Lemma 50. Let WN (p) be the distribution defined so that X ∼ WN is given by X =∑N
t=1 Yt · Zt, where the {Yt}t, {Zt}t are i.i.d with Yt ∼ Ber(p) and Zt ∼ {±1}. Then for

X ∼ WN (p), E X = 0 and E X2 = pN . Further, so long as pN ≥ 1, E |X| ≥ 2
e3/2

√
pN ,

and Pr(|X| > 2t
√
pN) ≤ 2 exp

(
−t2

)
. Otherwise, if pN ≤ 1, E |X| ≥ 1

2e log 1
1−pN , and

Pr(|X| ≥ 1 + t) ≤ exp
(
− 1

2 t
)
.

From Lemma 50, we have that Ew2
T = pnk−t, and by Cauchy-Schwarz E |wT | ≤

√
Ew2

T .
Let mα be the total absolute weight of constraints in Iα,

mα =
∑
T

|wT |.

Notice that in all cases, mα ≤ m.
Now, we show that SA can certify upper bounds on |Iα(x)| for every α. First, consider α

with |α| = t = 1. In this case, Sherali–Adams with R = 1 can certify that

Iα(x) = 1
m

∑
i∈[n]

wi · xi ≤
1
m

∑
i∈[n]

|wi| =
mα

m
,

From an application of Bernstein’s inequality (the same as in the proof of Proposition 45),
mα ≤ n ·

√
Ew2

T +
√
pnk logn with high probability whenever pnk �

√
pnk−1, and applying

our bound on m we conclude that with high probability SA will certify that

Iα(x) ≤ n ·
√
pnk−1(1 + o(1))
pnk(1± o(1)) ≤ 2√

pnk−1
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The lower bound on Iα(x) follows from identical reasoning with its negation, so we can
conclude that with high probability SA can certify that

|Iα(x)| ≤ 2√
pnk−1

= o(1).

Now, we tackle α with |α| = t for 2 ≤ t ≤ k. We will verify that the conditions of
Propositions 45 and 49 hold. First, consider the α with |α| = t for pnk−t ≥ 1. From
Lemma 50, in this case we have that E |wT | ≥ 2

e3/2

√
pnk−t, and with high probability,

|wT | ≤ O(
√
tpnk−t logn) for all T ∈ [n]t. Letting M = O(

√
tpnk−t logn), and σ2 = pnk−t,

we meet the conditions for Proposition 45:

M ≤ O(
√
pnk−t)� pnk−t · nbt/2c = σ2nbt/2c

E |wT | ≥
2
e3/2

√
pnk−t �

√
pnk−t logn
nbt/2c

=
√
σ2 logn
nbt/2c

so long as pnk−t ≥ 1, which we have assumed. So applying Propositions 45 and 49 to both
m
mα
Iα and − m

mα
Iα, we have

ρ = O

(
σ logn

E |wT |
√
nbt/2c

)
·max(1, M√

nbt/2c ) ≤ O
(

logn√
nbt/2c

)
·max

(
1,
√
pnk−t

nbt/2c

)

and so long as mα
m · n

dt/2e/4`ρ ≤ 1
2ε

2`, with high probability over Iα, t(`r + 1) rounds of
Sherali–Adams certify that |Iα(x)| ≤ 3

2ε. We confirm that

mα

m
· ndt/2e/4` · ρ =

√
pnk−t · nt

pnk
· ndt/2e/4` · ρ� o(1),

whenever t ≥ 1 and ` ≥ 1.
Finally, we handle α with |α| = t for 2 ≤ t and pnk−t < 1. From Lemma 50 we have

E |wT | ≥ 1
e log 1

1−pnk−t , and with high probability, |wT | ≤ 4 logn for all T ∈ [n]t. Taking
M = 4 logn, we have that we meet the conditions of Propositions 45 and 49

M ≤ 4 logn� ndk/2e−dt/2e+δ = pnk−tnbt/2c = σ2nbt/2c,

E |wT | ≥
1
e

log 1
1− pnk−t ≥

1
e
pnk−t �

√
pnk−t logn
nbt/2c

=
√
σ2 logn
nbt/2c

,

where the last inequality is true whenever pnk−t+bt/2c = ndk/2e−dt/2e+δ � logn, which we
have by assumption. So applying Propositions 45 and 49 to both m

mα
Iα and − m

mα
Iα, we

have that for

ρ = O

(√
pnk−t logn

pnk−t
√
nbt/2c

)
= O(logn) ·

√
1

pnk−dt/2e
= O

(
logn√

ndk/2e−dt/2e+δ

)
,

so long as mα
m ndt/2e/4`ρ ≤ 1

2ε
2`, R = t(`r+1) rounds of Sherali–Adams certify that |Iα(x)| ≤

3
2ε with high probability. Verifying,

mα

m
· ndt/2e/4` ·O

(
logn√

ndk/2e−dt/2e+δ

)
= 1√

pnk−t
· ndt/2e/4` ·O

(
logn√

ndk/2e−dt/2e+δ

)
,

which is maximized at t = k. By our choice of `, the condition holds.
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We therefore have (using Parseval’s identity and ‖x‖1 ≤
√
k‖x‖2 for x ∈ Rk to simplify

Equation (21)) that the same number of rounds certifies that

OBJI(x) ≤
∑
α⊂[k]

P̂ (α) · Iα(x) ≤ P̂ (∅) +
√

2k 3
2ε,

as desired. J

Using arguments analogous to the above along with the reasoning outlined in Theorem
4.9, proof 2 and Claim 6.7 from [2], we can also prove Theorem 40.
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A Characteristics of distributions of XOR-subformula coefficients

We now prove Lemma 50. We will use the following estimate for the mean absolte deviation
of a binomial random variable.

I Lemma 51 (e.g. [10]). If X is distributed according to the binomial distribution X ∼
Bin(n, p), then E |X −E X| =

√
2
πnp(1− p) +O( 1√

n
).

Proof of Lemma 50. We calculate the absolute value directly. Given that there are exactly
k nonzero Yt, the absolute value of X is distributed according to |Bin(k, 1

2 )− 1
2k|. Using the

method of conditional expectations,

E |X| =
N∑
k=0

Pr I[k nonzero Yt’s] ·E |Bin(k, t2 )− 1
2k| ≥

N∑
k=0

(
N

k

)
pk(1− p)N−k ·

√
1

2πk,

where we have applied the estimate from Lemma 51. Letting D(a‖b) = a ln a
b + (1−a) ln 1−a

1−b
be the relative entropy, we then have from Stirling’s inequality that

E |X| ≥
N∑
k=1

√
2π
e2

N

k(N − k) · exp
(
−N ·D

(
k
N
‖p
))
·
√

1
2π k ≥

1
e

N∑
k=1

exp
(
−N ·D

(
k
N
‖p
))
, (22)

Now, if pN < 1, we take

Equation (22) ≥ 1
e

N∑
k=1

exp
(
k log

(
pN

k

))
= 1
e

N∑
k=1

(
pN

k

)k
≥ −1

e
log(1− pN)−O(pN ) (23)

as desired.
If pN ≥ 1, applying the change of variables ` = k − bpNc and δ = `

N ,

Equation (22) ≥ 1
e

b(1−p)Nc∑
`=1−bpNc
δ= `

N

exp (−N ·D (p+ δ‖p)) (24)
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Now using the Taylor expansion for log(1− x) to simplify and restricting the sum over the
range ` = [−b

√
pNc, b

√
pNc], we get the bound

Equation (24) ≥ 1
e

b
√
pNc∑

`=−b
√
pNc

δ= `
N

exp
(
−N δ2

2

)
≥ 1
e
· 2
√
pN · exp(−p2 ) ≥ 2

e3/2

√
pN, (25)

as desired.
The first and second moment we can also obtain by calculation; the Zt ensure that the

summands have mean 0, and the Yt give that the variance of the summands is p, which gives
the result.

The tail bound Pr(|X| ≥ (1 + 2t)
√
pN) ≤ 2 exp(−t2) comes from an application of

Bernstein’s inequality if pN ≥ 1; when pN < 1, we again apply Bernstein’s inequality, in
which case we have

Pr (|X| −E |X| ≥ s) ≤ exp
(
−1

2
s2

pN + 1
3s

)
,

and choosing s = 1 + t gives the result. J
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1 Introduction

1.1 The Power of Randomness When Time and Space Are Limited
A central goal of complexity theory is to understand the relationship between three fun-
damental resources: time, space, and randomness. Based on a long line of research
[42, 9, 6, 29, 20, 37, 25], most complexity theorists believe that randomized decision al-
gorithms can be made deterministic without paying too much in terms of time and space.
Specifically, suppose a language L can be decided by a randomized algorithm that runs
in time T = T (n) ≥ n and space S = S(n) ≥ logn. Klivans and van Melkebeek showed
that assuming some language in DSPACE(n) has exponential circuit complexity, there is a
deterministic algorithm for L that runs in time poly(T ) and space O(S) [25].1

Proving the hypothesized circuit lower bound seems unlikely for the foreseeable future. In
the 90s and early 2000s, researchers managed to prove powerful unconditional derandomization
theorems by focusing on the space complexity of the deterministic algorithm. For example,
Nisan and Zuckerman showed that if S ≥ TΩ(1), there is a deterministic algorithm for

1 More generally, Klivans and van Melkebeek constructed a pseudorandom generator that fools size-T
circuits on T input bits under this assumption. The generator has seed length O(log T ) and is computable
in O(log T ) space.
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L that runs in space O(S) [30].2 Alas, in the past couple of decades, progress on such
general, unconditional derandomization has stalled. Nobody has managed to extend the
Nisan-Zuckerman theorem to a larger regime of pairs (T, S), and researchers have been forced
to focus on more restricted models of computation.

In this paper, we focus on highly efficient randomized algorithms. That is, we consider
the case that T and S are both small, such as T ≤ Õ(n) and S ≤ O(logn).

1.2 Our Results
1.2.1 Reducing the Amount of Randomness to O(S)
Suppose T ≤ n · poly(S). For our main result, we give a randomized algorithm for L that
still runs in time n · poly(S) and space O(S) that uses only O(S) random bits. The catch
is that our algorithm is only guaranteed to succeed on most inputs. The fraction of “bad”
inputs of length n is at most 2−Sc , where c ∈ N is an arbitrarily large constant. On “good”
inputs, our algorithm’s failure probability is at most 2−S1−α , where α > 0 is an arbitrarily
small constant.

1.2.2 Eliminating Randomness Entirely
From the result described in the preceding paragraph, a deterministic algorithm that runs
in space O(S) follows immediately by iterating over all O(S)-bit random strings. We can
express this theorem in terms of complexity classes using terminology introduced by Kinne
et al. for typically-correct algorithms [24]. Suppose L is a language, C is a complexity class,
and ε(n) is a function. We say that L is within ε of C if there is some L′ ∈ C such that
for every n,

Pr
x∈{0,1}n

[x ∈ L∆L′] ≤ ε(n). (1)

If C and C′ are complexity classes, we say that C is within ε of C′ if every language in C is
within ε of C′. In these terms, our result is that

BPTISP(n · poly(S), S) is within 2−S
c

of DSPACE(S). (2)

Here, BPTISP(T, S) is the class of languages that can be decided by a bounded-error
randomized algorithm that runs in time O(T (n)) and space O(S(n)), and DSPACE(S) is
the class of languages that can be decided by a deterministic algorithm that runs in space
O(S). Note that if S ≥ nΩ(1), the mistake rate in Equation (2) drops below 2−n. Since
there are only 2n inputs of length n, the algorithm must in fact be correct on all inputs.
Our result can therefore be viewed as a generalization of the Nisan-Zuckerman theorem
BPTISP(poly(S), S) ⊆ DSPACE(S) [30].

1.2.3 Derandomization with Advice
Adleman’s argument [1] shows that BPL ⊆ L/poly. We study the problem of derandomizing
BPL with as little advice as possible. Goldreich and Wigderson discovered a critical threshold:
roughly, if an algorithm can be derandomized with fewer than n bits of advice, then there is
a typically-correct derandomization of the algorithm with no advice [15].3

2 More generally, the Nisan-Zuckerman theorem applies as long as the original randomized algorithm for
L uses only poly(S) random bits, regardless of how much time it takes.

3 This result also requires that (a) most advice strings are “good”, and (b) there is an appropriate efficient
extractor.
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Motivated by this phenomenon, Fortnow and Klivans proved that BPL ⊆ L/O(n) [12].
We refine their argument and show that BPL ⊆ L/(n+O(log2 n)), getting very near the
critical threshold of n bits of advice. More interestingly, we show that the connection
identified by Goldreich and Wigderson [15] works the other way: in the space-bounded
setting, typically-correct derandomizations imply derandomizations with just a little advice.
Combining with our main result gives that for every constant c ∈ N,

BPTISP(Õ(n), logn) ⊆ L/(n− logc n). (3)

1.2.4 Derandomizing Turing Machines
All algorithms in the results mentioned so far are formulated in a general random-access
model, i.e., the algorithm can read any specified bit of its input in a single step. (See
Section 2.2 for details.) We also study the weaker multitape Turing machine model. The
main weakness of the Turing machine model is that if its read head is at position i of its
input and it wishes to read bit j of its input, it must spend |i− j| steps moving its read head
to the appropriate location. Let BPTISPTM(T, S) denote the class of languages that can
be decided by a bounded-error randomized Turing machine that runs in time O(T (n)) and
space O(S(n)).

1.2.4.1 Beyond Linear Advice

We give a typically-correct derandomization for BPTISPTM analogous to our main result
but with a lower mistake rate. In terms of advice, our derandomization implies that for every
constant c ∈ N,

BPTISPTM(Õ(n), logn) ⊆ L/O
(

n

logc n

)
. (4)

Equation (4) gives an interesting example of a class of BPL algorithms that can be deran-
domized with o(n) bits of advice.

1.2.4.2 Beyond Quasilinear Time

Using different techniques, we also show how to derandomize log-space Turing machines that
use almost a quadratic amount of time. In particular, we show that if TS2 ≤ o(n2/ logn),
then

BPTISPTM(T, S) is within o(1) of DTISP(poly(n), S). (5)

1.2.5 Disambiguating Nondeterministic Algorithms
For some of our derandomization results, we give analogous theorems regarding unambiguous
simulations of nondeterministic algorithms. We defer a discussion of these results to Section 6.

1.3 Techniques
1.3.1 “Out of Sight, out of Mind”
Our typically-correct derandomizations work by treating the input as a source of randomness.
This idea was pioneered by Goldreich and Wigderson [15]. For the sake of discussion, let A
be a randomized algorithm that uses n random bits. A naïve strategy for derandomizing A

CCC 2019
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is to run A(x, x). Most random strings of A lead to the right answer, so it is tempting to
think that for most x, A(x, x) will give the right answer. This reasoning is flawed, because
A might behave poorly when its input is correlated with its random bits.

In this work, we avoid these troublesome correlations using a simple idea embodied by
the adage “out of sight, out of mind.” We use part of the input as a source of randomness
while A is processing the rest of the input.

To go into more detail, suppose A runs in time Õ(n) and space O(logn). Our randomness-
efficient simulation of A operates in polylog(n) phases. At the beginning of a new phase,
we pick a random polylog(n)-bit block x|I of the input x. We apply a seeded extractor
to x|I , giving a string of length Θ(log2 n). We apply Nisan’s pseudorandom generator for
space-bounded computation [26], giving a pseudorandom string of length Õ(n). We use the
pseudorandom string to run the simulation of A forward until it tries to read from x|I , at
which time we pause the simulation of A and move on to the next phase.

The key point is that the output of the extractor is processed without ever looking at x|I ,
the input to the extractor. Extractors are good samplers [44], and A only has polynomially
many possible configurations, so for most x, the output of the extractor is essentially as
good as a uniform random seed to Nisan’s generator. Therefore, in each phase, with high
probability, we successfully simulate n/ polylog(n) steps of A before it reads from x|I and
we have to move on to the next phase. Thus, with high probability, after polylog(n) phases,
the simulation of A is complete.

Each bit of the output of Nisan’s generator can be computed in time4 polylog(n) and
space O(logn). Therefore, our simulation of A still runs in time Õ(n) and space O(logn),
but now it uses just polylog(n) random bits (O(logn) random bits per phase to pick the
random block I and to pick a seed for the extractor).

The reader may wonder whether we could have achieved the same effect by simply directly
applying Nisan’s generator from the start – its seed length is polylog(n), after all. The point
is that Nisan’s generator requires two-way access to its seed, whereas our simulation only
uses one-way access to its random bits. During our simulation, we are able to give Nisan’s
generator two-way access to its seed, because we have two-way access to the input x from
which we extract that seed.

Finally, because our simulation reads its polylog(n) random bits from left to right, we can
further reduce the number of random bits to just O(logn) by applying the Nisan-Zuckerman
pseudorandom generator [30].

1.3.2 Other Techniques

Our derandomizations with advice are based on Fortnow and Klivans’ technique for proving
BPL ⊆ L/O(n) [12] and Nisan’s technique for proving RL ⊆ SC [28]. Our derandomization
of BPTISPTM with a low mistake rate uses a similar “out of sight, out of mind” technique
as our main result. The lower mistake rate is achieved by exploiting knowledge of the region
of the input that will be processed in the near future, based on the locality of the Turing
machine’s read head. Our derandomization of BPTISPTM(T, S) for T (n) ≈ n2 is based
on a seed-extending pseudorandom generator for multiparty communication protocols by
Kinne et al. [24].

4 See work by Diehl and van Melkebeek [11] for an even faster implementation of Nisan’s generator.
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1.4 Related Work

We will only mention some highlights of the large body of research on unconditional deran-
domization of time- and space-bounded computation. Fix L ∈ BPTISP(T, S). Nisan gave
a randomized algorithm for L that runs in time poly(T ) and space O(S log T ) that uses only
O(S log T ) random bits [26]. Nisan also gave a deterministic algorithm for L that runs in
time 2O(S) and space O(S log T ) [28]. Nisan and Zuckerman gave a randomized algorithm
for L that runs in time poly(T ) and space O(S + T ε) that uses only O(S + T ε) random
bits, where ε > 0 is an arbitrarily small constant [30] (this is a generalization of the result
mentioned in Section 1.1). Saks and Zhou gave a deterministic algorithm for L that runs in
space O(S

√
log T ) [32]. Combining the techniques from several of these works, Armoni [4]

gave a deterministic algorithm for L that runs in space5

O

(
S ·

√
log T

max{1, logS − log log T}

)
. (6)

Armoni’s algorithm remains the most space-efficient derandomization known for all T and S.
When T = Θ̃(n) and S = Θ(logn), Armoni’s algorithm runs in space Θ(log3/2 n), just like
the earlier Saks-Zhou algorithm [32]. Cai et al. gave a time-space tradeoff [10] interpolating
between Nisan’s deterministic algorithm [28] and the Saks-Zhou algorithm [32].

All of the preceding results apply, mutatis mutandis, to derandomizing algorithms that
use at most T random bits, regardless of how much time they take. In contrast, our proofs
crucially rely on the fact that a time-T algorithm queries its input at most T times. This
aspect of our work is shared by work by Beame et al. [8] on time-space lower bounds.

Goldreich and Wigderson’s idea of using the input as a source of randomness for a
typically-correct derandomization [15] has been applied and developed by several researchers
[5, 41, 23, 43, 35, 24, 33, 3]; see related survey articles by Shaltiel [34] and by Hemaspaandra
and Williams [19]. Researchers have proven unconditional typically-correct derandomization
results for several restricted models, including sublinear-time algorithms [43, 35], commu-
nication protocols [35, 24], constant-depth circuits [35, 24], and streaming algorithms [35].
On the other hand, Kinne et al. proved that any typically-correct derandomization of BPP
with a sufficiently low mistake rate would imply strong circuit lower bounds [24]. We are the
first to study typically-correct derandomization for algorithms with simultaneous bounds on
time and space.

1.5 Outline of This Paper

In Section 2, we discuss random-access models of computation and extractors. In Section 3,
we give our derandomization of BPTISP(n · poly(S), S). In Section 4, we give our two
derandomizations of BPTISPTM(T, S). In Section 5, we discuss derandomization with
advice. Section 6 concerns disambiguation of nondeterministic algorithms, and we conclude
in Section 7 with some suggested directions for further research.

5 Actually, the space bound given in Equation (6) is achieved by using better extractors than were known
when Armoni wrote his paper [4, 22].
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2 Preliminaries

2.1 General Notation
Strings

For strings x, y, let x ◦ y denote the concatenation of x with y. For a natural number n, let
[n] = {1, 2, . . . , n}. For a string x ∈ {0, 1}n and a set I = {i1 < i2 < · · · < i`} ⊆ [n], let
x|I = xi1xi2 . . . xi` ∈ {0, 1}`.

Sets

For a finite set X, we will use the notations #X and |X| interchangeably to refer to the
number of elements of X. For X ⊆ {0, 1}n, let density(X) = |X|/2n. We will sometimes
omit the parentheses, e.g., density{000, 111} = 0.25. We identify a language L ⊆ {0, 1}∗
with its indicator function L : {0, 1}∗ → {0, 1}, i.e.,

L(x) =
{

1 if x ∈ L
0 if x 6∈ L.

(7)

Probability

If X and Y are probability distributions on the same space, we write X ∼ε Y to indicate
that X and Y are ε-close in total variation distance. For T ∈ N, let UT denote the uniform
distribution over {0, 1}T .

2.2 Random-Access Algorithms
Our main theorems govern general random-access algorithms. Our results are not sensitive
to the specific choice of model of random-access computation. For concreteness, following
Fortnow and van Melkebeek [13], we will work with the random-access Turing machine model.
This model is defined like the standard multitape Turing machine model, except that each
ordinary tape is supplemented with an “index tape” that can be used to move the ordinary
tape’s head to an arbitrary specified location in a single step. See the paper by Fortnow and
van Melkebeek [13] for details.

A randomized random-access Turing machine is a random-access Turing machine equipped
with an additional read-only tape, initialized with random bits, that can only be read from
left to right. Thus, if the algorithm wishes to reread old random bits, it needs to have copied
them to a work tape, which counts toward the algorithm’s space usage. The random tape
does not have a corresponding index tape.

For functions T : N → N and S : N → N, we define BPTISP(T, S) to be the class of
languages L such that there is a randomized random-access Turing machine A such that on
input x ∈ {0, 1}n, A(x) always halts in time O(T (n)), A(x) always touches O(S(n)) cells on
all of its read-write tapes, and Pr[A(x) = L(x)] ≥ 2/3.

2.3 Randomized Branching Programs
Our algorithms are most naturally formulated in terms of branching programs, a standard
nonuniform model of time- and space-bounded computation. Recall that in a digraph, a
terminal vertex is a vertex with no outgoing edges. In the following definition, n is the
number of input bits and m is the number of random bits.
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I Definition 1. A randomized branching program on {0, 1}n × {0, 1}m is a directed acyclic
graph, where each nonterminal vertex v is labeled with two indices i(v) ∈ [n], j(v) ∈ [m] and
has four outgoing edges labeled with the four two-bit strings. If P is a randomized branching
program, we let V (P) be the set of vertices of P.

The interpretation is that from vertex v, the program follows the edge labeled xi(v)yj(v),
where x is the input and y is the random string. This interpretation is formalized by the
following definition, which sets P(v;x, y) to be the vertex reached from v on input x using
randomness y.

I Definition 2. Suppose P is a randomized branching program on {0, 1}n × {0, 1}m. We
identify P with a function P : V (P) × {0, 1}n × {0, 1}m → V (P) defined as follows. Fix
v ∈ V (P), x ∈ {0, 1}n, y ∈ {0, 1}m. Take a walk through P by starting at v and, having
reached vertex u, following the edge labeled xi(u)yj(u). Then P(v;x, y) is the terminal vertex
reached by this walk.

As previously discussed, random-access Turing machines can only access their random
bits from left to right. This corresponds to an R-OW randomized branching program.

I Definition 3. An R-OW randomized branching program is a randomized branching program
P such that for every edge (v, v′) between two nonterminal vertices, j(v′) ∈ {j(v), j(v) + 1}.

The term “R-OW” indicates that the branching program has “random access” to its input
bits and “one-way access” to its random bits.

The size of a branching program is defined as size(P) = |V (P)|. The length of the
program, length(P), is defined to be the length of the longest path through the program.
Observe that BPTISP(T, S) corresponds to R-OW randomized branching programs of size
2O(S) and length O(T ).

Many of our algorithms will use a restriction operation that we now introduce.

I Definition 4. Suppose P is a randomized branching program on {0, 1}n and I ⊆ [n]. Let
P|I be the program obtained from P by deleting all outgoing edges from vertices v such
that i(v) 6∈ I.

So in P|I , there are two types of terminal vertices: vertices that were terminal in P,
and vertices v that are now terminal because i(v) 6∈ I. The computation P|I(v;x, y) halts
when it reaches either type of terminal vertex. Thus, P|I(v;x, y) does not depend on x|[n]\I ,
because P|I(v;x, y) outputs the vertex reached by running the computation P(v;x, y) until
it finishes or it tries to read from x|[n]\I .

2.4 Extractors
Recall that a (k, ε)-extractor is a function Ext : {0, 1}` × {0, 1}d → {0, 1}s such that if X
has “min-entropy” at least k and Y ∼ Ud is independent of X, then Ext(X,Y ) ∼ε Us. It
can be shown nonconstructively that for every `, k, ε, there exists Ext with d ≤ log(`− k) +
2 log(1/ε) +O(1) and s ≥ k + d− 2 log(1/ε)−O(1) (see, e.g., Vadhan’s monograph [38]).

We will need a computationally efficient extractor. The extractor literature has mainly
focused on the time complexity of computing extractors, but we are concerned with space
complexity, too. This paper is not meant to be about extractor constructions, so we encourage
the reader to simply pretend that optimal extractors can be computed in a single step with
no space overhead. In actuality, we will use two incomparable non-optimal extractors.

To prove our main results, we will use an extractor by Shaltiel and Umans [36]. The
benefit of the Shaltiel-Umans extractor is that it allows for small error ε.

CCC 2019
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I Theorem 5 ([36]). Fix a constant α > 0. For every `, k ∈ N, ε > 0 such that k ≥ log4/α `

and k ≥ log4/α(1/ε), there is a (k, ε)-extractor SUExt : {0, 1}` × {0, 1}d → {0, 1}s where
d ≤ O

(
log `+ log ` log(1/ε)

log k

)
and s ≥ k1−α. Given x, y, k, and ε, SUExt(x, y) can be computed

in time poly(`) and space O(d).

To derandomize BPL with as little advice as possible, we will use an extractor by
Guruswami, Umans, and Vadhan [16] (not the most famous extractor from their work, but a
slight variant). The benefit of the GUV extractor is that it outputs a constant fraction of
the entropy.

I Theorem 6 ([16]). Let α, ε > 0 be constant. For every `, k ∈ N, there is a (k, ε)-extractor
GUVExt : {0, 1}` × {0, 1}d → {0, 1}s with s ≥ (1 − α)k and d ≤ O(log `) such that given x

and y, GUVExt(x, y) can be computed in O(log `) space.

In both cases, the original authors [36, 16] did not explicitly analyze the space complexity
of their extractors, so we explain in Appendices A and B why these extractors can be
implemented in small space. (We remark that Hartman and Raz also constructed small-space
extractors [18], but the seed lengths of their extractors are too large for us.)

2.4.1 Extractors as Samplers
We will actually only be using extractors for their sampling properties. The connection
between extractors and samplers was first discovered by Zuckerman [44]. The following
standard proposition expresses this connection for non-Boolean functions.

I Proposition 7 ([44]). Suppose Ext : {0, 1}` × {0, 1}d → {0, 1}s is a (k, ε)-extractor and
f : {0, 1}s → V is a function. Let δ = ε|V |/2. Then

#{x ∈ {0, 1}` : f(Us) 6∼δ f(Ext(x, Ud))} ≤ 2k+1|V |. (8)

For completeness, we include a proof of Proposition 7 in Appendix C, since the specific
statement of Proposition 7 does not appear in Zuckerman’s paper [44].

2.5 Constructibility
We say that f : N → N is constructible in space S(n), time T (n), etc. if there is a
deterministic random-access Turing machine A that runs in the specified resource bounds
with A(1n) = f(n), written in binary. As usual, we say that f is space constructible if f is
constructible in space O(f(n)). We say that δ : N→ [0, 1] is constructible in specified resource
bounds if δ can be written as δ(n) = δ1(n)

δ2(n) , where δ1, δ2 : N→ N are both constructible in
the specified resource bounds.

3 Derandomizing Efficient Random-Access Algorithms

3.1 Main Technical Algorithm: Low-Randomness Simulation of
Branching Programs

Suppose P is an R-OW randomized branching program on {0, 1}n × {0, 1}T of length T

and size 2S . (As a reminder, such a program models BPTISP(T, S).) Given P, v0, and x,
the distribution P(v0;x, UT ) can trivially be sampled in time T · poly(S) and space O(S)
using T random bits. Our main technical result is an efficient typically-correct algorithm for
approximately sampling P(v0;x, UT ) using roughly T/n random bits.
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I Theorem 8. For each constant c ∈ N, there is a randomized algorithm A with the following
properties. Suppose P is an R-OW randomized branching program on {0, 1}n × {0, 1}T with
S ≥ logn, where S def= dlog size(P)e. Suppose v0 ∈ V (P), T ≥ length(P), and x ∈ {0, 1}n.
Then A(P, v0, x, T ) outputs a vertex v ∈ V (P) in time6 T · poly(S) and space O(S) using
dT/ne · poly(S) random bits. Finally, for every such P, v0, T ,

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼exp(−cS) P(v0;x, UT )} ≤ 2−S
c

. (9)

The algorithm of Theorem 8 relies on Nisan’s pseudorandom generator [26]. The seed
length of Nisan’s generator is not O(S), but Nisan’s generator does run in space O(S), given
two-way access to the seed.

I Theorem 9 ([26]). For every S, T ∈ N, ε > 0 with T ≤ 2S, there is a generator NisGen :
{0, 1}s → {0, 1}T with seed length s ≤ O((S + log(1/ε)) · log T ), such that if P is an R-OW
randomized branching program of size 2S, v is a vertex, and x is an input, then

P(v;x,NisGen(Us)) ∼ε P(v;x, UT ). (10)

Given S, T, ε, z, i, the bit NisGen(z)i can be computed in time poly(S, log(1/ε)) and space
O(S + log(1/ε)).

Algorithm 1: The algorithm A of Theorem 8.
if Sc+1 > bn/9c then

Directly simulate P (v0;x, UT ) using T random bits
else

Let I1, I2, . . . , IB ⊆ [n] be disjoint sets of size Sc+1 with B as large as possible
Initialize v ← v0
repeat r times /* r is given by Equation (11) */

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y ∈ {0, 1}O(S) uniformly at random
Update v ← P|[n]\I(v;x,NisGen(SUExt(x|I , y)))

end
return v

end

For Theorem 8, we can replace T with min{T, 2S} without loss of generality, so we will
assume that T ≤ 2S . The algorithm A is given in Algorithm 1.

Parameters

Set

r
def= max

{⌈
8T

B − 8

⌉
, 8(cS + 1)

}
= dT/ne · poly(S). (11)

The parameter r is the number of “phases” of A as outlined in Section 1.3.1. Note that
if Sc+1 ≤ bn/9c, then B ≥ 9, so Equation (11) makes sense. Naturally, Nisan’s generator

6 The graph of P should be encoded in adjacency list format, so that the neighborhood of a vertex v can
be computed in poly(S) time.
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NisGen is instantiated with the parameters S, T from the statement of Theorem 8. The error
of NisGen is set at

ε
def= e−cS

4r = 2−Θ(S). (12)

That way, the seed length of NisGen is s ≤ O(S log T ) ≤ O(S2). The algorithm A also relies
on the Shaltiel-Umans extractor SUExt of Theorem 5. This extractor is instantiated with
source length ` def= Sc+1, α def= 2/3, error

ε′
def= e−cS

2r · 2S = 2−Θ(S), (13)

and entropy

k
def= max{s3, log6 `, log6(1/ε)} = Θ(S6). (14)

Our choice of k explicitly meets the hypotheses of Theorem 5, and by construction, k1−α ≥ s,
so we can think of SUExt as outputting s bits.

Efficiency

We now analyze the computational efficiency of A. First, we bound the running time. If
Sc+1 > bn/9c, then A clearly runs in time T · poly(S). Otherwise, A repeatedly replaces v
with one of its neighbors a total of at most T times, since T ≥ length(P). Each such step
requires computing a bit of Nisan’s generator, which takes time poly(S), times poly(S) steps
to compute each bit of the seed of Nisan’s generator by running SUExt. Thus, overall, A runs
in time T · poly(S).

Next, we bound the space complexity of A. If Sc+1 > bn/9c, then A clearly runs in
space O(S + log T ) = O(S). Otherwise, space is required to store a loop index (O(log r)
bits), the vertex v (O(S) bits), the index b (O(logn) bits), and the seed y (O(S) bits).
These terms are all bounded by O(S). Running SUExt takes O(log ` + log ` log(1/ε′)

log k ) bits
of space. Since k ≥ SΩ(1), log `

log k ≤ O(1), and hence the space used for SUExt is only
O(logS + log(1/ε′)) = O(S). Finally, running NisGen takes O(S + log(1/ε)) = O(S) bits of
space. Therefore, overall, A runs in space O(S).

Finally, we bound the number of random bits used by A. If Sc+1 > bn/9c, then A uses T
random bits, which is at most 9T (1+Sc+1)

n in this case. Otherwise, in each iteration of the
loop, A uses O(logn) random bits for b, plus O(S) random bits for y. Therefore, overall, the
number of random bits used by A is O(rS), which is dT/ne · poly(S).

Correctness

We now turn to proving Equation (9). If Sc+1 > bn/9c, then obviously A(P, v0, x, T ) ∼
P(v0;x, UT ). Assume, therefore, that Sc+1 ≤ bn/9c. The proof will be by a hybrid argument
with three hybrid distributions. The first hybrid distribution is defined by the algorithm H1
given by Algorithm 2.

We need a standard fact about Markov chains. SupposeM andM ′ are stochastic matrices
(i.e., each row is a probability vector) of the same size. We write M ∼γ M ′ to mean that
for each row index i, the probability distributions Mi and M ′i are γ-close in total variation
distance.

I Lemma 10. If M ∼γ M ′, then Mr ∼γr (M ′)r.
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Algorithm 2: The algorithm H1 defining the first hybrid distribution used to prove
Equation (9). The only difference between A and H1 is that H1 picks a uniform
random seed for NisGen, instead of extracting the seed from the input.
Initialize v ← v0
repeat r times

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′ ∈ {0, 1}s uniformly at random
Update v ← P|[n]\I(v;x,NisGen(y′))

end
return v

For a proof of Lemma 10, see, e.g., work by Saks and Zhou [32, Proposition 2.3]. We are now
ready to prove that for most x, the behavior of A is statistically similar to the behavior of H1.

B Claim 11 (A ≈ H1). Let δ = ε′ · r · 2S−1 = 2−Θ(S). Then

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼δ H1(P, v0, x, T )} ≤ 2−S
c

. (15)

Proof. Fix any b ∈ [B] and v ∈ V (P). Let I = Ib, and fix any x′ ∈ {0, 1}n with x′|I = 0|I|.
Define f : {0, 1}s → V by

f(y′) = P|[n]\I(v;x′,NisGen(y′)). (16)

By Proposition 7,

#{x|I ∈ {0, 1}` : f(SUExt(x|I , Ud)) 6∼ε′2S−1 f(Us)} ≤ 2k+S+1. (17)

Therefore,

#{x ∈ {0, 1}n : x|[n]\I = x′|[n]\I and f(SUExt(x|I , Ud)) 6∼ε′2S−1 f(Us)} ≤ 2k+S+1. (18)

Now, let M [x] be the size(P)× size(P) stochastic matrix defined by

M [x]uv = Pr
b,y

[P|[n]\I(u;x,NisGen(SUExt(x|I , y))) = v where I = Ib]. (19)

Let M ′[x] be the stochastic matrix defined by

M ′[x]uv = Pr
b,y′

[P|[n]\I(u;x,NisGen(y′)) = v where I = Ib]. (20)

By summing over all b, v, x′, we find that

#{x ∈ {0, 1}n : M [x] 6∼ε′2S−1 M ′[x]} ≤ B · 2S · 2n−` · 2k+S+1 (21)

≤ 2n−S
c+1+O(S6) (22)

≤ 2n−S
c

, (23)

assuming c ≥ 6 and n is sufficiently large. If M [x] ∼ε′2S−1 M ′[x], then by Lemma 10,
M [x]r ∼δ M ′[x]r. The output of A is a sample from (M [x]r)v0 and the output of H1 is a
sample from (M ′[x]r)v0 , completing the proof. C

The second hybrid distribution is defined by the algorithm H2 given by Algorithm 3.
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Algorithm 3: The algorithm H2 defining the second hybrid distribution used to
prove Equation (9). The only difference between H1 and H2 is that H2 feeds true
randomness to P|[n]\I , instead of feeding it a pseudorandom string from Nisan’s
generator.
Initialize v ← v0
repeat r times

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

Algorithm 4: The algorithm H3 defining the third hybrid distribution used to
prove Equation (9). The only difference between H2 and H3 is that H2 terminates
after r iterations, whereas H3 waits until it reaches a terminal vertex of P.
Initialize v ← v0
while v is not a terminal vertex of P do

Pick b ∈ [B] uniformly at random and let I ← Ib
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

B Claim 12 (H1 ≈ H2). For every x,

H1(P, v0, x, T ) ∼εr H2(P, v0, x, T ). (24)

Proof. This follows immediately from the correctness of NisGen and an application of
Lemma 10 that is perfectly analogous to the reasoning used to prove Claim 11. C

Next, we must show that the output of H2 is statistically close to the output of H3. The
idea is that in each iteration, with high probability, H2 progresses by roughly B steps before
running into a vertex v with i(v) ∈ I. (Recall that i(v) is the index of the input queried by
vertex v.) Therefore, in total, with high probability, H2 progresses roughly rB steps, which
is at least T by our choice of r. We now give the detailed statement and proof.

B Claim 13 (H2 ≈ H3). For every x,

H2(P, v0, x, T ) ∼exp(−r/8) H3(P, v0, x, T ). (25)

Proof. Consider iteration t of the loop in H2, where 1 ≤ t ≤ r. Let Tt be the number of
steps through P|[n]\I that are taken in iteration t when updating v = P|[n]\I(v;x, y′′) before
reaching a vertex that tries to query from I. (If we never reach such a vertex, i.e., we reach
a terminal vertex of P, then let Tt = T .) We claim that

Pr
[

r∑
t=1

Tt < T

]
≤ e−r/8. (26)

Proof: For t ∈ [r], consider the value of v at the beginning of iteration t and the string
y′′ ∈ {0, 1}T chosen in iteration t. As a thought experiment, consider computing P(v;x, y′′),
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i.e., taking a walk through the unrestricted program. Let v = u0, u1, u2, . . . , uT ′ be the
vertices visited in this walk, T ′ ≤ T . Let St be the set of blocks b′ ∈ [B] that are queried by
the first B/2 steps of this walk. That is,

St = {b′ ∈ [B] : ∃h < bB/2c such that i(uh) ∈ Ib′}, (27)

so that |St| ≤ bB/2c. Let S′t = St ∪ [B′], where B′ is chosen so that |S′t| = bB/2c. Let Et be
the event that b ∈ S′t, where b is the value chosen by H2 in iteration t of the loop.

Since b and y′′ are chosen independently at random, the events Et are independent, and
Pr[Et] = bB/2c

B ≤ 1/2. Therefore, by Hoeffding’s inequality,

Pr[#Et that occur > (3/4)r] ≤ e−r/8. (28)

Now, suppose that Et does not occur. Then b 6∈ S′t, so b 6∈ St. This implies that when
updating v = P|[n]\I(v;x, y′′) (taking a walk through the restricted program), we either reach
a terminal vertex of P or we take at least bB/2c steps before reaching a vertex that tries to
query I. Therefore, Tt ≥ min{bB/2c, T}. By Equation (11),

r

4 ·
⌊
B

2

⌋
≥ r ·

(
B

8 − 1
)
≥ T. (29)

Equation (26) follows. Since T ≥ length(P),
∑r
t=1 Tt ≥ T implies that H2 outputs a terminal

vertex of P . Therefore, any random string that gives
∑r
t=1 Tt ≥ T also causes H2 and H3 to

output the same vertex. C

Finally, we argue that H3 perfectly simulates P (with zero error).

B Claim 14 (H3 ∼ P). For every x,

H3(P, v0, x, T ) ∼ P(v0;x, UT ). (30)

Proof. For any path v0, v1, . . . , vT ′ through P ending at a terminal vertex, both computations,
H3(P, v0, x, T ) and P(v0;x, UT ), have exactly a 2−T ′ chance of following that path. C

Proof of Theorem 8. By Claims 11 to 14 and the triangle inequality,

density{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼δ P(v0;x, UT )} ≤ 2−S
c

, (31)

where δ = εr+ε′r ·2S−1 +e−r/8. By our choice of ε (Equation (12)), the first term is at most
e−cS/4. By our choice of ε′ (Equation (13)), the second term is also at most e−cS/4. By our
choice of r (Equation (11)), the third term is at most e−cS/2. Therefore, δ ≤ e−cS . J

3.2 Main Result: Derandomizing Uniform Random-Access Algorithms
Theorem 8 immediately implies BPTISP(n · poly(S), S) can be simulated by a typically-
correct algorithm that runs in time n · poly(S) and space O(S) that uses only poly(S)
random bits.

I Corollary 15. Fix a function S(n) ≥ logn that is constructible in time n · poly(S) and
space O(S), and fix a constant c ∈ N. For every language L ∈ BPTISP(n · poly(S), S),
there is a randomized algorithm A running in time n · poly(S) and space O(S) that uses
poly(S) random bits such that

density{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
c

} ≤ 2−S
c

. (32)
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Proof. Let B be the algorithm witnessing L ∈ BPTISP(n ·poly(S), S). Let c′ be a constant
so that B runs in time n · Sc′ . For n ∈ N, let Pn be a randomized branching program, where
each vertex in V (Pn) describes a configuration of B with at most S(n) symbols written on
each tape. For each vertex v ∈ V (Pn), let i(v) be the location of the input tape read head in
the configuration described by v, and let j(v) be the location of the random tape read head
in the configuration described by v. The transitions of Pn correspond to the transitions of B
in the obvious way.

By construction, Pn is an R-OW branching program with size 2O(S) and length at most
n · Sc′ . Furthermore, given a vertex v, the neighborhood of v can be computed in poly(S)
time and O(S) space, simply by consulting the transition function for B.

Given x ∈ {0, 1}n, the algorithmA0 runs the algorithm of Theorem 8 on input (Pn, v0, x, n·
Sc
′), where v0 encodes the starting configuration of B. This gives a vertex v ∈ V (Pn). The

algorithm A0 accepts if and only if v encodes an accepting configuration of B. That way,

density{x ∈ {0, 1}n : Pr[A0(x) 6= L(x)] > 1/3 + e−cS} ≤ 2−S
c

. (33)

The algorithm A(x) runs O(Sc) repetitions of A0(x) and takes a majority vote, driving the
failure probability down to 2−Sc .

Clearly, A runs in time n · Sc′ · poly(S) · Sc = n · poly(S) and space O(S). The number
of random bits used by A is O(n·S

c′

n · poly(S) · Sc) = poly(S). J

We can further reduce the randomness complexity by using a pseudorandom generator
by Nisan and Zuckerman [30].

I Theorem 16 ([30]). Fix constants c ∈ N, α > 0. For every S ∈ N, there is a generator
NZGen : {0, 1}s → {0, 1}Sc with seed length s ≤ O(S) such that if P is an R-OW randomized
branching program of size 2S, v is a vertex, and x is an input, then

P(v;x,NZGen(Us)) ∼ε P(v;x, USc), (34)

where ε = 2−S1−α . Given S and z, NZGen(z) can be computed in O(S) space and poly(S) time.

I Corollary 17 (Main result). Fix a function S(n) ≥ logn that is constructible in time
n · poly(S) and space O(S), and fix constants c ∈ N, α > 0. For every language L ∈
BPTISP(n · poly(S), S), there is a randomized algorithm A running in time n · poly(S) and
space O(S) that uses O(S) random bits such that

density{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
1−α
} ≤ 2−S

c

. (35)

Proof sketch. Compose the algorithm of Corollary 15 with the Nisan-Zuckerman generator
(Theorem 16). The algorithm of Corollary 15 can be implemented as a randomized branching
program as in the proof of Corollary 15. J

Finally, we can eliminate the random bits entirely at the expense of time.

I Corollary 18. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

BPTISP(n · poly(S), S) is within 2−S
c

of DSPACE(S). (36)

Proof. Run the algorithm of Corollary 17 on all possible random strings and take a majority
vote. J
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4 Derandomizing Turing Machines

In this section, we give our improved typically-correct derandomizations for Turing machines.
Sections 4.1 and 4.2 concern derandomization with a low mistake rate, and Sections 4.3
to 4.5 concern derandomization of Turing machines with runtime T ≈ n2.

4.1 Low-Randomness Simulation of Sequential-Access Branching
Programs with a Low Mistake Rate

Recall that for a nonterminal vertex v in a branching program, i(v) is the index of the input
queried by v, and j(v) is the index of the random string queried by v.

I Definition 19. An S-OW randomized branching program is a randomized branching
program P such that for every edge (v, v′) between two nonterminal vertices, |i(v)− i(v′)| ≤ 1
and j(v′) ∈ {j(v), j(v) + 1}.

In words, an S-OW randomized branching program has sequential access to its input and
one-way access to its random bits. By “sequential access”, we mean that after reading
bit i, it reads bit i − 1, bit i, or bit i + 1, like a head of a Turing machine. For S-OW
branching programs, we give an algorithm analogous to Theorem 8 but with a much lower
rate of mistakes.

I Theorem 20. For each constant c ∈ N, there is a randomized random-access algorithm
A with the following properties. Suppose P is an S-OW randomized branching program
on {0, 1}n × {0, 1}T with S ≥ logn, where S def= dlog size(P)e. Suppose v0 ∈ V (P), T ≥
length(P), and x ∈ {0, 1}n. Then A(P, v0, x, T ) outputs a vertex v ∈ V (P). The number of
random bits used by A is dT/ne · poly(S), and A runs in time7 T · poly(n, S) and space O(S).
Finally, for every such P, v0, T ,

#{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼exp(−cS) P(v0;x, UT )} ≤ 2n/S
c

. (37)

The proof of Theorem 20 is very similar to the proof of Theorem 8. The main difference
is that instead of using a small part of the input as the source of randomness, we use most of
the input as a source of randomness. The only part of the input that is not used as a source
of randomness is the region near the bit that the branching program was processing at the
beginning of the current phase.

Because the proof of Theorem 20 does not introduce any significantly new techniques, we
defer the proof to Appendix D.

4.2 Derandomizing Turing Machines with a Low Mistake Rate
A randomized Turing machine is defined like a randomized random-access Turing machine
except that there are no index tapes. Thus, moving a read head from position i to position
j takes |i− j| steps. For functions T, S : N→ N, let BPTISPTM(T, S) denote the class of
languages L such that there is a randomized Turing machine A that always runs in time
O(T (n)) and space O(S(n)) such that for every x ∈ {0, 1}∗,

Pr[A(x) = L(x)] ≥ 2/3. (38)

7 Like in Theorem 8, the graph of P should be encoded in adjacency list format. We also stress that A is
a random-access simulation of sequential-access branching programs.
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Trivially, a randomized Turing machine can be simulated by a randomized random-access
Turing machine without loss in efficiency. Conversely, a single step of a randomized O(S)-
space random-access Turing machine can be simulated in O(n+ S) steps by a randomized
Turing machine. This proves the following elementary containments.

I Proposition 21. For any functions T, S : N→ N with S(n) ≥ logn,

BPTISPTM(T, S) ⊆ BPTISP(T, S) ⊆ BPTISPTM(T · (n+ S), S). (39)

Theorem 20 combined with the Nisan-Zuckerman generator [30] immediately implies a
derandomization theorem for Turing machines analogous to Corollary 17.

I Corollary 22. Fix a function S : N → N with S(n) ≥ logn that is constructible in
time poly(n, S) and space O(S), and fix constants c ∈ N, α > 0. For every language
L ∈ BPTISPTM(n·poly(S), S), there is a randomized algorithm A running in time poly(n, S)
and space O(S) that uses O(S) random bits such that

#{x ∈ {0, 1}n : Pr[A(x) 6= L(x)] > 2−S
1−α
} ≤ 2n/S

c

. (40)

Proof sketch. A randomized Turing machine obviously gives rise to an S-OW randomized
branching program. Like in the proof of Corollary 15 (but with Theorem 20 in place of
Theorem 8), we first obtain an algorithm that uses poly(S) random bits. Composing with
the Nisan-Zuckerman generator (Theorem 16) completes the proof. J

I Corollary 23. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

BPTISPTM(n · poly(S), S) is within 2−n+n/Sc of DSPACE(S). (41)

Proof. Simulate the algorithm of Corollary 22 on all possible random strings and take a
majority vote. J

4.3 Simulating Branching Programs with Random Access to Random
Bits

We now move on to our second derandomization of Turing machines, as outlined in Sec-
tion 1.2.4. Recall that for a nonterminal vertex v in a branching program, i(v) is the index
of the input that is queried by v.

I Definition 24. An S-R randomized branching program is a randomized branching program
P such that for every edge (v, v′) between two nonterminal vertices, |i(v)− i(v′)| ≤ 1.

In words, an S-R randomized branching program has sequential access to its input and
random access to its random bits. This model is more general than the S-OW model; the
S-OW model corresponds more directly to the randomized Turing machine model. But
studying the more general S-R model will help us derandomize Turing machines.

We will give a randomness-efficient algorithm for simulating S-R randomized branching
programs, roughly analogous to Theorems 8 and 20. The simulation will only work well if
the branching program has small length and uses few random bits.

Our simulation of S-R randomized branching programs is a fairly straightforward applica-
tion of work by Kinne et al. [24]; this section is not technically novel. But it is useful to be
able to compare the work by Kinne et al. [24] to our algorithms based on the “out of sight,
out of mind” technique.
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Unlike Theorems 8 and 20, our simulation of S-R branching programs will not work on a
step-by-step basis, generating a distribution on vertices that approximates the behavior of the
branching program. Instead, our simulation of S-R branching programs will only work for S-R
branching programs that compute a Boolean function. We now give the relevant definition.

I Definition 25. Let P be a randomized branching program on {0, 1}n × {0, 1}m. Suppose
some vertex v0 ∈ V (P) is labeled as the start vertex, and every terminal vertex of P
is labeled with an output bit b ∈ {0, 1}. In this case, we identify P with a function
P : {0, 1}n × {0, 1}m → {0, 1} defined by

P(x, y) = the output bit labeling P(v0;x, y). (42)

We say that P computes f : {0, 1}n → {0, 1} with failure probability δ if for every x ∈ {0, 1}n,

Pr[P(x, Um) = f(x)] ≥ 1− δ. (43)

Instead of assuming a time bound, it will be useful to assume a bound on the query
complexity of the branching program.

I Definition 26. Let P be randomized branching program. The query complexity of P,
denoted queries(P), is the maximum, over all paths v1, v2, . . . , vT through P consisting
entirely of nonterminal vertices, of

1 + #{t ∈ {2, 3, . . . , T} : i(vt) 6= i(vt−1)}. (44)

In words, queries(P) is the number of steps that P takes in which it queries a new bit of its
input, i.e., not the bit that it queried in the previous step. Trivially, queries(P) ≤ length(P).
The reader is encouraged to think of the distinction between queries(P) and length(P) as
being a technicality that can be ignored on the first reading.

We can now state our deterministic simulation theorem for S-R randomized branching
programs. It consists of a method of deterministically generating coins for the branching
program from its input.

I Theorem 27. There is a constant α > 0 so that for every n,m with m ≤ n/3, there is a
function R : {0, 1}n → {0, 1}m with the following properties. Suppose P is an S-R randomized
branching program on {0, 1}n × {0, 1}m that computes a function f with failure probability δ.
Suppose TSm ≤ αn2, where T def= queries(P) and S def= dlog size(P)e. Then

density{x ∈ {0, 1}n : P(x,R(x)) 6= f(x)} ≤ 3δ +m · 2−αn/m. (45)

Furthermore, given x and m, R(x) can be computed in space O(logn).

The function R is based on a pseudorandom generator by Kinne et al. [24] for multiparty
communication protocols. In a public-coin randomized 3-party NOF protocol Π, there are
three parties, three inputs x1, x2, x3, and one random string y. Party i knows xj for j 6= i,
and all three parties know y. All parties have access to a blackboard. The protocol specifies
who should write next as a function of what has been written on the blackboard so far and y.
Eventually, the protocol specifies the output Π(x1, x2, x3, y), which should be a function of
what has been written on the blackboard and y. The communication complexity of Π is the
maximum number of bits written on the blackboard over all x1, x2, x3, y. A deterministic
3-party NOF protocol is just the case |y| = 0.
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Following Kinne et al. [24], we rely on a 3-party communication complexity lower bound by
Babai et al. [7]. For an integer ` ∈ N, define GIP` : ({0, 1}`)3 → {0, 1} to be the generalized
inner product function, i.e.,

GIP`(x, y, z) =
∑̀
i=1

xiyizi mod 2. (46)

Babai et al. showed that the trivial communication protocol for GIP` is essentially optimal,
even in the average-case setting.

I Theorem 28 ([7]). There is a constant β > 0 so that for every ` ∈ N, ε > 0, if Π is a
deterministic 3-party NOF protocol with

Pr
x,y,z

[Π(x, y, z) = GIP`(x, y, z)] ≥
1
2 + ε, (47)

then the communication complexity of Π is at least β · (`− log(1/ε)).

To define R, let x ∈ {0, 1}n. Partition n = n1 + n2 + n3, where ni ≥ bn/3c for each i.
Correspondingly partition x = x1 ◦ x2 ◦ x3, where |xi| = ni. Define

` =
⌊
bn/3c
m

⌋
, (48)

so that ` ≥ 1. For i ∈ [3] and j ∈ [m], let xij be the jth `-bit substring of xi. (Note that due
to roundoff errors, for some values of n, some bits of x are not represented in any xij .) Then
we define

R(x) = GIP`(x11, x21, x31) ◦ · · · ◦GIP`(x1m, x2m, x3m) ∈ {0, 1}m. (49)

Kinne et al. observed that x 7→ (x,R(x)) is a pseudorandom generator that fools 3-party
NOF protocols [24]. For clarity, we reproduce the argument here.

I Lemma 29. Suppose Π : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}m → {0, 1} is a public-
coin randomized 3-party NOF protocol. Suppose that for some ε > 0, Π uses less than
β · (`− log(1/ε)) bits of communication, where β is the constant of Theorem 28. Then∣∣∣∣ Pr

x1,x2,x3,y
[Π(x1, x2, x3, y) = 1]− Pr

x1,x2,x3
[Π(x1, x2, x3,R(x1, x2, x3)) = 1]

∣∣∣∣ < εm. (50)

Proof. Let

δ =
∣∣∣∣ Pr
x1,x2,x3,y

[Π(x1, x2, x3, y) = 1]− Pr
x1,x2,x3

[Π(x1, x2, x3,R(x1, x2, x3)) = 1]
∣∣∣∣ . (51)

By Yao’s distinguisher-to-predictor argument [42], there is some index i ∈ [m] and a protocol
Π′ : {0, 1}n1 × {0, 1}n2 × {0, 1}n3 × {0, 1}i−1 → {0, 1} so that

Pr
x1,x2,x3

[Π′(x1, x2, x3,R(x1, x2, x3)|[i−1]) = R(x1, x2, x3)i] ≥
1
2 + δ

m
. (52)

The protocol Π′ is a public-coin randomized 3-party NOF protocol that still uses less than
β · (`− log(1/ε)) bits of communication, since it merely involves simulating Π with certain
input/coin bits fixed to certain values and possibly negating the output. This immediately
implies a protocol for GIP` with the same parameters with advantage δ/m. There is some
way to fix the randomness to preserve advantage, so by Theorem 28, δ/m < ε. J
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The connection between S-R randomized branching programs and 3-party communication
protocols is given by the following lemma.

I Lemma 30. There is a public-coin randomized 3-party NOF protocol Π : {0, 1}n1 ×
{0, 1}n2 × {0, 1}n3 × {0, 1}m → {0, 1} such that

Π(x1, x2, x3, y) = P(x1 ◦ x2 ◦ x3, y), (53)

and Π uses only O(TSn ) bits of communication.

Proof. Parties 1 and 3 alternate simulating the operation of P . If party 1 is simulating and
the program reads from the first n1 bits of the input, party 1 sends the state to party 3.
Similarly, if party 3 is simulating and the program reads from the last n3 bits of the input,
party 3 sends the state to party 1. Each such transition indicates that the program must
have spent at least n2 steps traversing the middle n2 bits of the input. Therefore, the total
number of such transitions is at most T

n2
. J

Given Lemmas 29 and 30, Theorem 27 follows by a lemma by Kinne et al. [24, Lemma 1].
For clarity, we reproduce the argument here.

Proof of Theorem 27. The best case is at least as good as the average case, so there is some
string y∗ ∈ {0, 1}m such that

Pr
x∈{0,1}n

[P(x, y∗) 6= f(x)] ≤ δ. (54)

Define g : {0, 1}n × {0, 1}m → {0, 1} by

g(x, y) =
{

1 if P(x, y) = P(x, y∗)
0 otherwise.

(55)

Think of x ∈ {0, 1}n as x = x1 ◦x2 ◦x3, like in the definition of R. Then by Lemma 30, g can
be computed by a 3-party NOF protocol using O(TSn ) bits of communication. By choosing α
small enough and setting ε = 2−αn/m, this protocol for f will use fewer than β(`− log(1/ε))
bits of communication. Therefore, by Lemma 29,

Pr
x

[P(x,R(x)) 6= P(x, y∗)] ≤ Pr
x,y

[P(x, y) 6= P(x, y∗)] + εm. (56)

Therefore,

Pr
x

[P(x,R(x)) 6= f(x)] ≤ Pr
x

[P(x, y∗) 6= f(x)] + Pr
x

[P(x,R(x)) 6= P(x, y∗)] (57)

≤ δ + Pr
x,y

[P(x, y) 6= P(x, y∗)] + εm (58)

≤ δ + Pr
x,y

[P(x, y) 6= f(x)] + Pr
x

[P(x, y∗) 6= f(x)] + εm (59)

≤ δ + δ + δ + εm. (60)

Obviously, R(x) can be computed in O(logn) space. J
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4.4 Randomness-Efficient Amplification for Branching Programs
We will use a space-efficient expander walk algorithm by Gutfreund and Viola [17].

I Theorem 31 ([17]). For every s ∈ N, there is a constant-degree expander graph G on
vertex set {0, 1}s. Furthermore, there is an algorithm GVWalk such that if y ∈ {0, 1}s is a
vertex and e1, e2, . . . , er ∈ {0, 1}O(1) are edge labels, then GVWalk(y, e1, e2, . . . , er) outputs
the vertex reached by starting at y and taking a walk by following the edge labels e1, e2, . . . , er.
The algorithm GVWalk runs in space O(log s+ log r).

Recall that we are working toward derandomizing the class BPTISPTM(T, S) for all
TS2 ≤ o(n2/ logn). This class corresponds to branching programs on {0, 1}n × {0, 1}T that
compute some function with failure probability 1/3. But Theorem 27 requires that the
branching program use at most αn2

TS random bits. Furthermore, the failure probability of the
branching program governs the mistake rate of the derandomization.

We can overcome these two difficulties because randomized Turing machines correspond
to S-OW randomized branching programs (i.e., programs that have sequential access to the
input and one-way access to the random bits), whereas Theorem 27 applies to the more
powerful S-R model (i.e., programs that have sequential access to the input and random
access to the random bits). An S-OW branching program can be simulated by an S-R
branching program using very few random bits by applying Nisan’s generator. The following
lemma combines this idea with a random walk on an expander graph (Theorem 31) for
amplification. This is the same technique that Fortnow and Klivans used to prove that
BPL ⊆ L/O(n) [12].

I Lemma 32. Suppose P is an S-OW randomized branching program on {0, 1}n × {0, 1}T
that computes a function f : {0, 1}n → {0, 1} with failure probability 1/3. Let S = log size(P).
For every δ > 0, there is an S-R branching program P ′ on {0, 1}n × {0, 1}m that computes f
with failure probability δ such that

queries(P ′) ≤ O((queries(P) + n) log(1/δ)), (61)
log size(P ′) ≤ O(S + log log(1/δ)), (62)

m ≤ O(S log T + log(1/δ)). (63)

Furthermore, given P, δ, and a vertex v ∈ V (P ′), the neighborhood of v can be computed in
time8 poly(S, log(1/δ)) and space O(S + log log(1/δ)).

Proof. Let NisGen : {0, 1}s → {0, 1}T be Nisan’s generator with error 0.1 for randomized
branching programs of size size(P). Let G be the expander of Theorem 31 on vertex set
{0, 1}s. We will interpret a string y ∈ {0, 1}m as describing a walk through G from an
arbitrary initial vertex of length r − 1, so that m = s+O(r). Let y1, . . . , yr ∈ {0, 1}s be the
vertices visited by this walk. The program P ′(x, y) runs P(x,NisGen(yt)) for every y ∈ [r]
and takes a majority vote of the answers; it finds the vertices yt by running the algorithm
GVWalk of Theorem 31. By the expander walk Chernoff bound [14], for an appropriate choice
of r = Θ(log(1/δ)), the failure probability of P ′ is at most δ.

Clearly, queries(P ′) ≤ r · (queries(P) + n), where the +n term takes care of the steps
needed to get from the final position of x read in one iteration of P to the first position of x
read in the next iteration of P (recall that P ′ is an S-R branching program).

8 As usual, we assume that the graph of P is encoded in adjacency list format. We also assume that the
start vertex v0 is designated in a way that allows it to be computed in the specified time and space.
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The space needed by P ′ consists of the S bits of space needed for P, plus O(S) bits of
space for computing NisGen, plus O(log r) bits of space to keep track of the answers generated
by the iterations, plus O(logS + log r) bits of space for GVWalk. Finally, computing the
neighborhood of v merely requires inspecting the transition functions for the algorithms
NisGen and GVWalk, inspecting P, and doing arithmetic. J

4.5 Derandomizing Turing Machines with Runtime Near n2

Finally, we are ready to state and prove our typically-correct derandomization of Turing
machines based on Theorem 27.

I Corollary 33. Suppose T, S : N→ N are both constructible in time poly(n) and space O(S)
and TS2 ≤ o

(
n2

logn

)
. For every language L ∈ BPTISPTM(T, S), there is a constant γ > 0

so that

L is within exp
(
− γn√

TS

)
+ exp

(
− γn2

TS2 logn

)
of DTISP(poly(n), S). (64)

The rate of mistakes in Corollary 33 is always o(1). The rate of mistakes gets smaller
(i.e., the simulation quality gets higher) when T and S are smaller. For example, if S = logn
and T = n2/ log4 n, the rate of mistakes in Equation (64) is n−Ω(1). For another example, if
S = polylogn and T = npolylogn, the rate of mistakes in Equation (64) is exp

(
−Ω̃(
√
n)
)
.

As a reminder, Corollary 33 is incomparable to Corollary 18: the randomized classes in
the two results are incomparable; the deterministic algorithm in Corollary 33 is faster; the
mistake rate in Corollary 33 is lower when S and T are not too big. Similarly, Corollary 33
is incomparable to Corollary 23: the randomized class in Corollary 33 is more powerful and
the deterministic algorithm in Corollary 33 is faster, but the mistake rate in Corollary 33 is
much higher. Finally, even when S ≥ nΩ(1), Corollary 33 is incomparable to derandomizing
via the Nisan-Zuckerman generator [30], because the deterministic algorithm of Corollary 33
runs in polynomial time, although it makes some mistakes.

Conceptually, the proof of Corollary 33 merely consists of combining Lemma 32 and The-
orem 27. The only work to be done is in appropriately choosing δ and verifying parameters.

Proof of Corollary 33. Let A be the algorithm witnessing L ∈ BPTISPTM(T, S). Let Pn
be the S-OW branching program on {0, 1}n × {0, 1}T describing the behavior of A on inputs
of length n.

We consider two cases. First, suppose TS3 > n2/ log2 n. Then let

δ = exp
(
− γ0n

2

TS2 logn

)
, (65)

where the constant γ0 will be specified later. Let P ′n be the S-R branching program on
{0, 1}n × {0, 1}m given by Lemma 32. There is a constant c that does not depend on γ

so that

queries(P ′n) · log size(P ′n) ·m ≤ cTS2 logn ln(1/δ) + cTS ln2(1/δ) (66)

= cγ0n
2 + cγ2

0n
4

TS3 log2 n
(67)

≤ cγ0n
2 + cγ2

0n
2. (68)

CCC 2019



9:22 Typically-Correct Derandomization for BPTISP

Choose γ0 so that cγ0+cγ2
0 ≤ α, where α is the value in Theorem 27. Since TS2 ≤ o(n2/ logn)

and T ≥ n, we must have S ≤ o(
√
n/ logn). Therefore,

m ≤ O
(
S logn+ n2

TS2 logn

)
≤ O

(
S logn+ TS3 logn

TS2

)
≤ o(

√
n logn) ≤ n/3. (69)

Therefore, the hypotheses of Theorem 27 are satisfied.
The deterministic algorithm, naturally, outputs P ′n(x,R(x)), where R is the function of

Theorem 27. It is immediate that this runs in poly(n) time and O(S) space. Finally, to
compute the rate of mistakes, observe that

m · 2−αn/m ≤ exp
(
−Ω

(
− n

S logn

))
, (70)

whereas

δ ≥ exp
(
−O

(
n

S2 logn

))
. (71)

Therefore, when n is sufficiently large, m · 2−αn/m < δ. Therefore,

density{x ∈ {0, 1}n : P ′n(x,R(x)) 6= L(x)} ≤ 4δ. (72)

For the second case, suppose TS3 ≤ n2/ log2 n. Then let

δ = exp
(
− γ0n√

TS

)
. (73)

Again, let P ′n be the S-R branching program on {0, 1}n × {0, 1}m given by Lemma 32. Then

queries(P ′n) · log size(P ′n) ·m ≤ cTS2 logn ln(1/δ) + cTS ln2(1/δ) (74)

= cγ1
√
TS3n logn+ cγ2

1n
2 (75)

≤ cγ1n
2 + cγ2

1n
2 (76)

≤ αn2. (77)

Furthermore, since TS3 ≤ n2/ log2 n, taking a square root gives S
√
TS ≤ n/ logn, and hence

m ≤ O
(
S logn+ n√

TS

)
≤ O

(
n√
TS

)
< n/3. (78)

Therefore, again, the hypotheses of Theorem 27. In this case as well, the deterministic
algorithm outputs P ′n(x,R(x)). We now compute the rate of mistakes again. We have

m · 2−αn/m ≤ exp(−Ω(
√
TS)) < δ (79)

for sufficiently large n, because
√
TS ≥

√
n logn. Therefore, once again,

density{x ∈ {0, 1}n : P ′n(x,R(x)) 6= L(x)} ≤ 4δ. (80)

Choosing γ < γ0 completes the proof. J
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5 Derandomization with Advice

As previously mentioned, Fortnow and Klivans showed that BPL ⊆ L/O(n) [12]. We now
explain how to refine their ideas and slightly improve their result. Fortnow and Klivans’
argument relied on the Gutfreund-Viola space-efficient expander walk (Theorem 31). They
only used this expander for its sampling properties. Extractors also have good sampling
properties. Our improvement will come from simply replacing the expander-based sampler
in Fortnow and Klivans’ argument with the GUV-based extractor of Theorem 6.

I Theorem 34. BPL ⊆ L/(n+O(log2 n)).

Proof. Let A be an algorithm witnessing L ∈ BPL, and assume A has failure probability
at most 0.1. Let NisGen : {0, 1}s → {0, 1}poly(n) be Nisan’s generator (Theorem 9) with
error 0.1 and space bound sufficient to fool A, so that s ≤ O(log2 n). Let GUVExt :
{0, 1}n+2s+3×{0, 1}d → {0, 1}s be the (2s, 0.1)-extractor of Theorem 6, so that d ≤ O(logn).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}n+2s+3, run A(x,NisGen(GUVExt(a, z))) for
all z and take a majority vote.

This algorithm clearly runs in space O(logn). By Proposition 7, for each fixed x, the
number of advice strings a causing the algorithm to give the wrong answer is at most 22s+2.
Therefore, the total number of advice strings a that cause the algorithm to give the wrong
answer for any x is at most 2n+2s+2 < 2|a|. Therefore, there is some choice of a such that
the algorithm succeeds on all inputs. J

We now generalize Theorem 34, showing that the amount of advice can be reduced to
below n in certain cases. We will rely on a special feature of Nisan’s generator that Nisan
used to prove RL ⊆ SC. The seed to Nisan’s generator is naturally divided into two parts,
s = s1 +s2, where s2 ≤ O(S+log(1/ε)).9 Nisan showed that there is an efficient procedure to
check that the first part of the seed is “good” for a particular randomized log-space algorithm
and a particular input to that algorithm.

I Lemma 35 ([28]). For every S ∈ N, there is a function NisGen : {0, 1}s1 × {0, 1}s2 →
{0, 1}2S , with s1 ≤ O(S2) and s2 ≤ O(S), and an algorithm Check, so that

For any R-OW randomized branching program P with log size(P) ≤ S and any input
x ∈ {0, 1}n,

Pr
y1∈{0,1}s1

[Check(P, x, y1) = 1] ≥ 1/2. (81)

If Check(P, x, y1) = 1, then for any vertex v0 ∈ V (P),

P(v0;x,NisGen(y1, Us2)) ∼0.1 P(v0;x, U2S ). (82)

Furthermore, Check runs in space O(S), and given S, y1, and y2, NisGen(y1, y2) can be
computed in space O(S).

A ZP · SPACE(S) algorithm for a language L with failure probability δ is a randomized
Turing machine A with two-way access to its random bits such that A runs in space O(S),
Pr[A(x) ∈ {L(x),⊥}] = 1, and Pr[A(x) = ⊥] ≤ δ. The following lemma refines a theorem by
Nisan that says that BPL ⊆ ZP · L [27]; the improvement is that our algorithm has a low
failure probability relative to the number of random bits it uses.

9 The first s1 bits specify the hash functions, and the last s2 bits specify the input to those hash functions.
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I Lemma 36. Fix S : N → N with S(n) ≥ logn and δ : N → [0, 1], both constructible in
space O(S). For every L ∈ BPSPACE(S), there is a ZP · SPACE(S) algorithm A that
decides L with failure probability δ and uses log2(1/δ) +O(S2) random bits.

Proof. Let B be the algorithm witnessing L ∈ BPSPACE(S), and assume B has failure
probability at most 0.1. Let P be the corresponding R-OW branching program for inputs of
length n. Let NisGen : {0, 1}s1 × {0, 1}s2 → {0, 1}poly(n) be the generator of Lemma 35 with
space bound dlog size(P)e, so that s1 ≤ O(S2).

Let ` = dlog2(1/δ)e + 2s1 + 2, and let GUVExt : {0, 1}` × {0, 1}d → {0, 1}s1 be the
(2s1, 0.1)-extractor of Theorem 6, so that d ≤ O(log log(1/δ) + logS). On input x ∈ {0, 1}n
and random string y ∈ {0, 1}`, run Algorithm 5.

Algorithm 5: The algorithm used to prove Lemma 36.
for z ∈ {0, 1}d do

Let y1 ← GUVExt(y, z)
if Check(P, x, y1) accepts then /* Check is the algorithm of Lemma 35 */

Run B(x,NisGen(y1, y2)) for every y2, take a majority vote, and output the
answer

end
end
Output ⊥

Clearly, Algorithm 5 runs in space O(S + d). Since δ is constructible in space O(S), its
denominator must have at most 2O(S) digits. Therefore, δ ≥ 2−2O(S) and d ≤ O(S), so the
algorithm runs in space O(S). Furthermore, the algorithm is clearly zero-error. Finally, by
Proposition 7, the number of y such that Check(P, x, y1) rejects for every z is at most 22s1+2,
and hence the failure probability of the algorithm is at most 22s1+2

2` ≤ δ. J

We now give our generalization of Theorem 34. From the work of Goldreich and Wigderson
[15], it follows that if a language L ∈ BPSPACE(S) is in DPSPACE(S)/a for a� n via an
algorithm where most advice strings are “good”, then L is close to being in DPSPACE(S).
Our theorem is a converse10 to this result, showing that in the space-bounded setting, there
is a very tight connection between typically-correct derandomizations and simulations with
small amounts of advice.

I Theorem 37. Fix functions S : N → N with S(n) ≥ logn and ε : N → [0, 1] that
are constructible in space O(S). Suppose a language L ∈ BPSPACE(S) is within ε of
DSPACE(S). Then

L ∈ DSPACE(S)/(n− log2(1/ε(n)) +O(S2)). (83)

Proof. Let A be the algorithm of Lemma 36 with δ < 2−n/ε. Let m = m(n) be the number
of random bits used by A. Let B be the algorithm witnessing the fact that L is within ε of
DSPACE(S).

The algorithm with advice is very simple. Given input x ∈ {0, 1}n and advice a ∈ {0, 1}m,
output A(x, a), unless A(x, a) = ⊥, in which case output B(x). This algorithm clearly runs
in O(S) space and uses n− log2(1/ε(n)) +O(S2) bits of advice.

10The statement of Theorem 37 doesn’t mention it, but indeed, in the proof of Theorem 37, most advice
strings are “good”.
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Now we argue that there is some advice string such that the algorithm succeeds on all
inputs. Let S ⊆ {0, 1}n be the set of inputs on which B fails. Consider picking an advice
string a uniformly at random. For each string x ∈ S, Pra[A(x, a) = ⊥] ≤ δ. Therefore, by
the union bound, the probability that there is some x ∈ S such that A(x, a) = ⊥ is at most
|S|δ = ε · 2n · δ < 1. Therefore, there is some advice string such that the algorithm succeeds
on all inputs in S. Finally, for any advice string, the algorithm succeeds on all inputs in
{0, 1}n \ S, because A is zero-error. J

Combining Theorem 37 with our typically-correct derandomizations gives unconditional
simulations with fewer than n bits of advice:

I Corollary 38. For every constant c ∈ N,

BPTISP(n polylogn, logn) ⊆ L/(n− logc n). (84)

Proof. Combine Corollary 18 and Theorem 37. J

I Corollary 39. For every constant c ∈ N,

BPTISPTM(n polylogn, logn) ⊆ L/
(

n

logc n

)
. (85)

Proof. Combine Corollary 23 and Theorem 37. J

I Corollary 40.

BPTISPTM(n1.99, logn) ⊆ L/(n− nΩ(1)). (86)

Proof. Combine Corollary 33 and Theorem 37. J

6 Disambiguating Efficient Nondeterministic Algorithms

6.1 Overview
Recall that a nondeterministic algorithm is unambiguous if on every input, there is at most
one accepting computation. Suppose a language L can be decided by a nondeterministic
algorithm that runs in time T = T (n) ≥ n and space S = S(n) ≥ logn. Allender, Reinhardt,
and Zhou showed that if SAT has exponential circuit complexity, there is an unambiguous
algorithm for L that runs in space O(S) [2]. Unconditionally, van Melkebeek and Prakriya
recently gave an unambiguous algorithm for L that runs in time 2O(S) and space O(S

√
log T )

[40].
For some of our results on derandomizing efficient algorithms, we give a corresponding

theorem for disambiguating efficient nondeterministic algorithms, albeit with slightly worse
parameters.

6.1.1 Our Results
Let NTISP(T, S) denote the class of languages that can be decided by a nondeterministic
random-access Turing machines that runs in time T and space S. Define UTISP(T, S)
the same way, but with the additional requirement that the algorithm is unambiguous. In
Sections 6.4 and 6.5, we show that for every S and every constant c ∈ N,

NTISP(n · poly(S), S) is within 2−S
c

of UTISP(2O(S), S
√

logS). (87)

Equation (87) is analogous to Corollary 18.
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Reinhardt and Allender showed that NL ⊆ UL/ poly [31]. In Section 6.6, we improve
the Reinhardt-Allender theorem by showing that NL ⊆ UL/(n+O(log2 n)). More generally,
we show that if a language L ∈ NSPACE(S) is within ε(n) of being in USPACE(S), then
L ∈ USPACE(S)/(n− log2(1/ε(n)) +O(S2)). This result is analogous to Theorem 37.

6.1.2 Techniques
Our disambiguation theorems are proven using the same “out of sight, out of mind” technique
that we used in Sections 3 and 4.2 for derandomization. Roughly, this is possible because
of prior work [31, 40] that reduces the problem of disambiguating algorithms to certain
derandomization problems. We review the necessary background in Section 6.3.

Our disambiguation algorithms do not really introduce any additional novel techniques,
beyond what we already used in Sections 3 and 4.2. Rather, our contribution in this section is
to identify another setting where our techniques are helpful, thereby illustrating the generality
of our techniques.

6.2 Preliminaries
Unambiguous algorithms can be composed as long as the inner algorithm is “single-valued”,
which we now define. This notion corresponds to classes such as UL ∩ coUL.

I Definition 41. A single-valued unambiguous algorithm A is a nondeterministic algorithm
such that for every input x, all but one computation path outputs a special symbol ⊥n
(indicating that the nondeterministic choices were “bad”). We let A(x) denote the output of
the one remaining computation path.

When describing unambiguous algorithms, we will often include steps such as “Compute
a ← A(x)”, where A is a single-valued unambiguous algorithm. Such a step should be
understood as saying to run A on input x. If A outputs ⊥n, immediately halt and output
⊥n. Otherwise, let a be the output of A.

6.3 Unambiguous Algorithms for Connectivity by van Melkebeek and
Prakriya

Recall that the s-t connectivity problem is defined by

STConn = {(G, s, t) : there is a directed path from s to t}, (88)

where G is a digraph and s, t ∈ V (G). STConn is a classic example of an NL-complete
language [21]. Using an “inductive counting” technique, Reinhardt and Allender gave a
single-valued unambiguous algorithm for testing whether a given digraph is “min-unique”, as
well as a single-valued unambiguous algorithm for solving STConn in min-unique digraphs
[31]. Using the isolation lemma, Reinhardt and Allender showed that assigning random
weights to a digraph makes it “min-unique” [31]. These two results are the main ingredients
in the proof that NL ⊆ UL/poly [31].

Recently, van Melkebeek and Prakriya gave a “pseudorandom weight generator” with
seed length O(log2 n) [40].11 Just like uniform random weights, the weights produced by this
generator make a digraph “min-unique” with high probability.12

11 In the terminology of van Melkebeek and Prakriya [40], here we refer to the “hashing only” approach.
12The van Melkebeek-Prakriya generator only works for layered digraphs, but this technicality does not

matter for us.



W.M. Hoza 9:27

Roughly, this pseudorandom weight generator by van Melkebeek and Prakriya will play a
role in our disambiguation results that is analogous to the role that Nisan’s generator played
in our derandomization results.

For our purposes, it is not necessary to give a precise account of min-uniqueness. What
matters is that STConn can be decided in unambiguous log-space given two-way access to
an O(log2 n)-bit random string. Furthermore, “bad” random strings can be unambiguously
detected. We now state this result more carefully.

I Theorem 42 ([40]). There is a single-valued unambiguous algorithm vMPSeededAlg so
that for every x ∈ {0, 1}n,

Pr
y∈{0,1}∞

[vMPSeededAlg(x, y) ∈ {STConn(x),⊥r}] = 1, (89)

Pr
y∈{0,1}∞

[vMPSeededAlg(x, y) = ⊥r] ≤ 1/2. (90)

Furthermore, vMPSeededAlg(x, y) only reads the first O(log2 n) bits of y (the “seed”) and
runs in space O(logn).

Proof sketch. We assume that the reader is familiar with the paper by van Melkebeek and
Prakriya [40]. Given an instance x of STConn, the algorithm vMPSeededAlg first applies a
reduction, giving a layered digraph G on which to test connectivity. Then, the first O(log2 n)
bits of y are interpreted as specifying O(logn) hash functions, which are used to assign
weights to the vertices in G. An algorithm by Reinhardt and Allender [31] is run to determine
whether the resulting weighted digraph is min-unique. If it is not, vMPSeededAlg outputs
⊥r. If it is, another closely related algorithm by Reinhardt and Allender [31] is run to decide
connectivity in the resulting weighted digraph. J

Notice that vMPSeededAlg can be thought of as having three read-only inputs: the
“real” input x ∈ {0, 1}n; the random seed y ∈ {0, 1}O(log2 n); and the nondeterministic bits
z ∈ {0, 1}poly(n). The algorithm has two-way access to x and y and one-way access to z.
Notice also that a computation path of vMPSeededAlg has four possible outputs: 0, indicating
that x 6∈ STConn; 1, indicating that x ∈ STConn; ⊥n, indicating bad nondeterministic bits
z; and ⊥r, indicating bad random bits y.

Iterating over all y in Theorem 42 would take Θ(log2 n) space. By modifying their “pseu-
dorandom weight generator”, van Melkebeek and Prakriya gave an unambiguous algorithm
for STConn that runs in O(log3/2 n) space. The performance of their algorithm is improved if
we only need to search for short paths; the precise details are given by the following theorem.

I Theorem 43 ([40]). There is a single-valued unambiguous algorithm vMPShortPathsAlg
such that if G is a digraph, s, t ∈ V (G), and r ∈ N, then vMPShortPathsAlg(G, s, t, r) = 1
if and only if there is a directed path from s to t in G of length at most r. Furthermore,
vMPShortPathsAlg runs in time poly(n) and space O(logn

√
log r).

Proof sketch. Again, we assume that the reader is familiar with the paper by van Melkebeek
and Prakriya [40]. Again, we first apply a reduction, giving a layered digraph G′ of width
|V (G)| and length r, so that the question is whether there is a path from the first vertex in
the first layer to the first vertex in the last layer.

We rely on the “combined hashing and shifting” generator by van Melkebeek and Prakriya
[40, Theorem 1]. The seed of this generator specifies O(

√
log r) hash functions (each is

specified with O(logn) bits). We find these hash functions by exhaustive search one at a time,
maintaining the invariant that portions of G′ that have weights assigned are min-unique. We
test for min-uniqueness using a slight variant of the algorithm by Reinhardt and Allender
[31] described by van Melkebeek and Prakriya [40, Lemma 1]. J
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Roughly speaking, Theorem 43 plays a role in our disambiguation results that is analogous
to the role that the Nisan-Zuckerman generator played in our derandomization results.

6.4 Disambiguating Branching Programs
For us, a nondeterministic branching program P on {0, 1}n × {0, 1}m is a randomized
branching program (but we think of the second input to the program as nondeterministic
bits instead of random bits) such that some vertex v0 ∈ V (P) is labeled as the start vertex
and some vertex vaccept ∈ V (P) is labeled as the accepting vertex. We identify P with a
function P : {0, 1}n × {0, 1}m → {0, 1} defined by

P(x, y) =
{

1 if P(v0;x, y) = vaccept,

0 otherwise,
(91)

and we also identify P with a function P : {0, 1}n → {0, 1} defined by

P(x) = 1 ⇐⇒ ∃y P(x, y) = 1. (92)

(Equation (92) expresses the fact that P is a nondeterministic branching program.) Finally,
an R-OW nondeterministic branching program is just a nondeterministic branching program
that is R-OW when thought of as a randomized branching program, i.e., it reads its
nondeterministic bits from left to right.

I Theorem 44. For every constant c ∈ N, there is a single-valued unambiguous algorithm A
with the following properties. Suppose P is an R-OW nondeterministic branching program on
{0, 1}n × {0, 1}T . Suppose S ≥ logn, where S def= dlog size(P)e, and T ≥ length(P). Then

density{x ∈ {0, 1}n : A(P, x, T ) 6= P(x)} ≤ 2−S
c

. (93)

Furthermore, A(P, x, T ) runs in time 2O(S) and space O(S
√

logdT/ne+ logS).

Toward proving Theorem 44, we introduce some notation. The computation of P(x)
naturally reduces to STConn. Let P[x] be the digraph (V,E), where V = V (P) and E is
the set of edges (u, v) in P labeled with xi(u)0 or xi(u)1. (So every nonterminal vertex in
P[x] has outdegree 2.) That way, P(x) = 1 if and only if (P[x], v0, vaccept) ∈ STConn.

The algorithm A of Theorem 44 is given in Algorithm 6. The algorithm relies on a
subroutine B given in Algorithm 7.

Parameters

Let s be the number of random bits used by vMPSeededAlg, so that s ≤ O(S2). The
subroutine B relies on the extractor GUVExt of Theorem 6. This extractor is instantiated
with source length `

def= Sc+1, error 0.1, entropy k def= 2s, and output length s. The seed
length of GUVExt is d ≤ O(log `) = O(logS).

Efficiency

First, we bound the space complexity of A. If Sc+1 > n, then A runs in space

O(log size(P)
√

log T ) = O(S
√

log T ) ≤ O
(
S

√
log TS

c+1

n

)
(94)

= O(S
√

log(T/n) + logS). (95)
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Algorithm 6: The algorithm A of Theorem 44.
if Sc+1 > n then

return vMPShortPathsAlg(P[x], v0, vaccept, T )
else

Let I1, I2, . . . , IB ⊆ [n] be disjoint sets of size Sc+1 with B as large as possible
for b = 1 to B do

Let I ← Ib
Let Vb ← {v ∈ V (P) : i(v) ∈ I} ∪ {v0, vaccept}
Let Eb be the set of pairs (u, v) ∈ V 2

b such that there is a directed path from
u to v in P|[n]\I [x]
Let Hb be the digraph (Vb, Eb)
Compute a← vMPShortPathsAlg(Hb, v0, vaccept, bSc+1T/nc+ 1). Whenever
vMPShortPathsAlg asks whether some pair (u, v) is in Eb, run B(P, x, b, u, v),
where B is given in Algorithm 7

if a = 1 then return 1
end
return 0

end

Algorithm 7: The algorithm B used by A to decide whether (u, v) ∈ Eb. The block
I is the same block Ib used by A.

for y ∈ {0, 1}O(logS) do
Let a′ ← vMPSeededAlg(P|[n]\I [x], u, v,GUVExt(x|I , y))
if a′ 6= ⊥r then return a′

end
return ⊥i

Suppose now that Sc+1 ≤ n. The extractor GUVExt runs in space O(logS), and the algorithm
vMPSeededAlg runs in space O(S), so B runs in space O(S). The algorithm vMPShortPathsAlg
runs in space

O(log |Vb|
√

log(bSc+1T/nc+ 1)) ≤ O(S
√

logdT/ne+ logS). (96)

Therefore, overall, A runs in space O(S
√

logdT/ne+ logS).
Next, we bound the running time of A. If Sc+1 > n, then A runs in time poly(size(P)) =

2O(S) as claimed. Suppose now that Sc+1 ≤ n. Because B runs in space O(S), it must run
in time 2O(S). Therefore, vMPShortPathsAlg runs in time 2O(S) · 2O(S) = 2O(S). Therefore,
overall, A runs in time 2O(S).

Correctness

Since vMPSeededAlg and vMPShortPathsAlg are single-valued unambiguous algorithms, A
is a single-valued unambiguous algorithm. All that remains is to show that for most x,
A(P, x, T ) = P(x). First, we show that for most x, the subroutine B is correct, i.e., the one
computation path that does not output ⊥n outputs a bit indicating whether (u, v) ∈ Eb.
Clearly, the only way that B can be incorrect is if it outputs ⊥i, indicating a “hard” input x.
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B Claim 45. For every P,

density{x ∈ {0, 1}n : ∃b, u, v such that B(P, x, b, u, v) = ⊥i} ≤ 2−S
c

. (97)

Proof. The graph P|[n]\I [x] does not depend on x|I . Therefore, for each fixed b, each fixed
z ∈ {0, 1}n−|Ib|, and each fixed u, v ∈ V (P), by Proposition 7,

#{x : x|[n]\I = z and B(P, x, b, u, v) = ⊥i} ≤ 2k+2 ≤ 2O(S4). (98)

Therefore, by summing over all b, z, u, v,

#{x ∈ {0, 1}n : ∃b, u, v such that B(P, x, b, u, v) = ⊥i} ≤ 2n−S
c+1+logn+2S+O(S4) (99)

= 2n−S
c+1+O(S4) (100)

≤ 2n−S
c

(101)

for sufficiently large n. C

Next, we show that as long as B does not make any mistakes, A is correct.

B Claim 46. If P(x) = 1, there is some b ∈ [B] so that there is a path from v0 to vaccept
through Hb of length at most bSc+1T/nc+ 1.

Proof. Since P(x) = 1, there is a path from v0 to vaccept through P[x] of length at most
T . Let v0, v1, v2, . . . , vT ′ = vaccept be the vertices visited by that path, so that T ′ ≤ T .
Consider picking b ∈ [B] uniformly at random. Then for each t < T ′, Pr[i(vt) ∈ Ib] ≤ Sc+1/n.
Therefore, by linearity of expectation,

E[#{t : i(vt) ∈ Ib}] ≤ Sc+1T/n. (102)

The best case is at least as good as the average case, so there is some b ∈ [B] such that
#{t : i(vt) ∈ Ib} ≤ Sc+1T/n. Let t1, t2, . . . , tr be the indices t such that i(vt) ∈ Ib. Then by
the definition of Eb, the edges (v0, t1), (t1, t2), . . . , (tr−1, tr), (tr, vaccept) are all present in Hb.
Therefore, there is a path from v0 to vaccept through Hb of length at most r + 1. C

Combining Claims 45 and 46 completes the proof of Theorem 44.

6.5 Disambiguating Uniform Random-Access Algorithms
I Corollary 47. For every space-constructible function S(n) ≥ logn, for every constant
c ∈ N,

NTISP(n · poly(S), S) is within 2−S
c

of UTISP(2O(S), S
√

logS). (103)

Proof sketch. The class NTISP(n · poly(S), S) corresponds to R-OW nondeterministic
branching programs of size 2O(S) and length T = n · poly(S). For these parameters, the
algorithm of Theorem 44 runs in time 2O(S) and space O(S

√
logS). J

6.6 Disambiguation with Advice
We now show how to disambiguate NL with only n+O(log2 n) bits of advice. The proof is
very similar to the proof of Theorem 34.

I Theorem 48. NL ⊆ UL/(n+O(log2 n)).
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Proof. Let R be a log-space reduction from L ∈ NL to STConn. Let s be the number
of random bits used by vMPSeededAlg on inputs of length nc, where nc is the length of
outputs of R on inputs of length n. Let GUVExt : {0, 1}n+2s+3 × {0, 1}d → {0, 1}s be the
(2s, 0.1)-extractor of Theorem 6, so that d ≤ O(logn).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}n+2s+3, compute

az
def= vMPSeededAlg(R(x),GUVExt(a, z)) (104)

for all z and accept if there is some z so that az = 1.
This algorithm clearly runs in space O(logn) and is unambiguous. By Proposition 7, for

each fixed x, the number of advice strings a causing the algorithm to give the wrong answer
is at most 22s+2. Therefore, the total number of advice strings a that cause the algorithm to
give the wrong answer for any x is at most 2n+2s+2 < 2|a|. Therefore, there is some choice
of a such that the algorithm succeeds on all inputs. J

Just like we did with Theorem 34, we now generalize Theorem 48, showing that the amount
of advice can be reduced to below n if we start with a language that has a typically-correct
disambiguation.

I Theorem 49. Fix functions S : N → N with S(n) ≥ logn and ε : N → [0, 1] that
are constructible in O(S) space. Suppose a language L ∈ NSPACE(S) is within ε of
USPACE(S). Then

L ∈ USPACE(S)/(n− log2(1/ε(n)) +O(S2)). (105)

The proof of Theorem 49 is very similar to the proof of Theorem 37. Because the proof
of Theorem 49 does not introduce any significantly new techniques, we defer the proof to
Appendix E.

I Corollary 50. For every constant c ∈ N,

NTISP(npolylogn, logn) ⊆ USPACE(logn
√

log logn)/(n− logc n). (106)

Proof. For any L ∈ NTISP(npolylogn, logn), obviously L ∈ NSPACE(logn
√

log logn),
and by Corollary 47, L is within 2− logc n of USPACE(logn

√
log logn). Applying Theorem 49

completes the proof. J

7 Directions for Further Research

The main open problem in this area is to prove that BPL is within o(1) of L. Corollary 18
implies that BPTISP(npolylogn, logn) is within o(1) of L, and Corollary 33 implies
that BPTISPTM(n1.99, logn) is within o(1) of L, but BPL allows time nc where c is an
arbitrarily large constant. At present, for a generic language L ∈ BPL, we do not even know
a deterministic log-space algorithm that succeeds on at least one input of each length.

This work also provides some additional motivation for studying small-space extractors.
The two extractors we used in this paper (Theorems 5 and 6) were sufficient for our
applications, but it would be nice to have a single log-space extractor that is optimal up to
constants for the full range of parameters.
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A Proof of Theorem 5: The Shaltiel-Umans Extractor

In this section, we discuss the proof of Theorem 5. The extractor follows the same basic
construction that Shaltiel and Umans used for a “low error” extractor [36, Corollary 4.21].
We will assume that the reader is familiar with the paper by Shaltiel and Umans [36]. We
will also switch to the parameter names by Shaltiel and Umans, so the source length of the
extractor is n rather than `, and the seed length is t rather than d. In these terms, we are
shooting for time poly(n) and space O(t).

The only change to the construction that we make is that we will use a different in-
stantiation of the “base field” Fq. Shaltiel and Umans [36] used a deterministic algorithm
by Shoup that finds an irreducible polynomial of degree log q over F2 in time poly(log q).
Unfortunately, Shoup’s algorithm is not sufficiently space-efficient for our purposes. To get
around this issue, we use an extremely explicit family of irreducible polynomials:

I Lemma 51 ([39, Theorem 1.1.28]). For every a ∈ N, the polynomial x2·3a + x3a + 1 is
irreducible over F2.

Therefore, by replacing q by some power of two between q and q3, we can easily, determin-
istically construct an irreducible polynomial of degree log q in time poly(log q) and space
O(log q). This only affects the bit length of field elements, log q, by at most a factor of 3.
Therefore, the hypotheses of Shaltiel and Umans’ main technical theorem [36, Theorem 4.5]
are still met, so the extractor is still correct.

Now we turn to analyzing the efficiency of the extractor. The parameters h, d,m, ρ, q
used by Shaltiel and Umans (with the described modification to q) can all easily be computed
in time poly(n) and space O(t). Next, we inspect the construction of the matrix B used
by Shaltiel and Umans [36, Proof of Lemma 4.18]. The exhaustive search used to find the
irreducible polynomial p(z) takes space O(d log q) ≤ O(t). The exhaustive search used to
find the generator g for (Hd)× also takes space O(d log q) = O(t). Finally, multiplication by
g takes space O(d log q) = O(t).

It follows immediately that the “q-ary extractor” E′ given by Shaltiel and Umans [36,
Equation 8] runs in space O(t), because we only need to store the vector Bi~v. Finally, to get
from E′ to the final extractor, a simple Hadamard code is applied, which can trivially be
computed in time poly(n) and space O(t).
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B Proof of Theorem 6: The GUV Extractor

In this section, we discuss the proof of Theorem 6. We will assume that the reader is familiar
with the paper by Guruswami, Umans, and Vadhan. Recall that a condenser is like an
extractor, except that the output is merely guaranteed to be close to having high entropy
instead of being guaranteed to be close to uniform.

I Definition 52. A function Con : {0, 1}n × {0, 1}d → {0, 1}n′ is a k →ε k
′ condenser if for

every random variable X with H∞(X) ≥ k, there exists a distribution Z with H∞(Z) ≥ k′
such that if we let Y ∼ Ud be independent of X, then Con(X,Y ) ∼ε Z.

Guruswami, Umans, and Vadhan constructed a lossy condenser based on folded Reed-
Solomon codes [16, Theorem 6.2]. To ensure space efficiency, we will slightly modify their
construction to get the following condenser. We will follow the parameter names by Gu-
ruswami, Umans, and Vadhan.

I Theorem 53 (Based on [16, Theorem 6.2]). Let α > 0 be a constant. Consider any
n ∈ N, ` ≤ n such that 2` is an integer and any ε > 0. There is a parameter t = Θ(log(n`/ε))
and a

(1 + 1/α)`t+ log(1/ε)→3ε `t+ d− 2

condenser GUVCon : {0, 1}n × {0, 1}d → {0, 1}n′ , computable in space O(d), with seed length
d ≤ (1 + 1/α)t and output length n′ ≤ (1 + 1/α)`t+ d, provided `t ≥ log(1/ε).

Proof sketch. We need to use a base field Fq based on Lemma 51, so we slightly modify the
parameters of the GUV construction as follows. Choose q to be the smallest power of two of
the form 22·3a such that q ≥ (22+1/α ·n`/ε)1+α. This q satisfies q ≤ (22+1/α ·n`/ε)3+3α. Next,
define t = dα log q

1+α e and h = 2t, so that q ∈ ((h/2)1+1/α, h1+1/α]. Therefore, we still have

q > h · h1/α/21+1/α (107)

≥ h · q1/(1+α)/21+1/α (108)
≥ 2hn`/ε, (109)

and hence A ≥ εq/2. The rest of the argument is as in the original paper [16]. J

There is a standard extractor based on expander walks that works well for constant error
and constant entropy rate. Using the Gutfreund-Viola expander walk (Theorem 31), this
extractor runs in logarithmic space:

I Lemma 54. Let α, ε > 0 be constants. There is some constant β ∈ (0, 1) so that for all
n, there is a (βn, ε)-extractor GVExt : {0, 1}n × {0, 1}d → {0, 1}m with t ≤ log(αn) and
m ≥ (1− α)n so that given x and y, GVExt(x, y) can be computed in O(logn) space.

Proof sketch. This construction of an extractor from an expander is standard; see, e.g.,
an exposition by Guruswami et al. [16, Theorem 4.6]. The space bound follows from
Theorem 31. J

Finally, Theorem 6 follows by composing Theorem 53 and Lemma 54, just as is explained
in the paper by Guruswami et al. [16, Theorem 4.7].
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C Proof of Proposition 7: Extractors Are Good Samplers

Let X ⊆ {0, 1}` be the set on the left-hand side of Equation (8). Since total variation
distance is half `1 distance, for each x ∈ X,∑

v∈V
|Pr[f(Us) = v]− Pr[f(Ext(x, Ud)) = v]| > ε|V |. (110)

Therefore, by the triangle inequality, for each x ∈ X, there is some vx ∈ V such that

|Pr[f(Us) = vx]− Pr[f(Ext(x, Ud)) = vx]| > ε. (111)

Partition X = X1 ∪ · · · ∪X|V |, where Xv = {x ∈ X : vx = v}. For each v, we can further
partition Xv into X+

v ∪X−v , based on which term of the left hand side of Equation (111) is
bigger.

Identify X+
v with a random variable that is uniformly distributed over the set X+

v , and
let Y ∼ Ud be independent of X+

v . Then

Pr[Ext(X+
v , Y ) ∈ f−1(vx)] > Pr[Us ∈ f−1(vx)] + ε. (112)

Therefore, by the extractor condition, |X+
v | ≤ 2k. Similarly, |X−v | ≤ 2k, and hence |Xv| ≤

2k+1. By summing over all v, we conclude that |X| ≤ 2k+1|V | as claimed.

D Proof of Theorem 20: Derandomizing S-OW Branching Programs

The algorithm A of Theorem 20 is given in Algorithm 8. The analysis is similar to the proof
of Theorem 8. The main difference is when we argue that the second hybrid distribution, H2,
simulates P. (This argument has just two hybrid distributions.) Details follow.

Parameters

Just like in the proof of Theorem 8, we can assume without loss of generality that T ≤ 2S .
The block size h in Algorithm 8 is

h
def=
⌊ n

3Sc+1

⌋
. (113)

Note that this time, the number of phases, r, is dT/he, where h is the block size, in contrast
to the proof of Theorem 8, where the number of phases was roughly T/B, where B is the
number of blocks.

The algorithm A relies on Nisan’s generator NisGen (Theorem 9). Naturally, the generator
is instantiated with parameters S, T from the statement of Theorem 20. The error of NisGen
is set at ε def= exp(−cS)

2r , just like in the proof of Theorem 8. Again, the seed length of NisGen
is s ≤ O(S log T ) ≤ O(S2).

The algorithm A also relies on the Shaltiel-Umans extractor SUExt of Theorem 5. This
extractor is instantiated with source length ` def= n− 3h, α def= 1/2, error

ε′
def= exp(−cS)

r · 2S , (114)

and entropy k
def=
√
n. This choice of k meets the hypotheses of Theorem 5, because

log4/α ` ≤ log8 n ≤ k, and Sc+1 ≤
√
n, so log4/α(1/ε) ≤ polylogn ≤ k. Furthermore, by

construction, k1−α = n1/4 ≥ s as long as c ≥ 4 and n is sufficiently large, so we can think of
SUExt2 as outputting s bits.
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Algorithm 8: The algorithm A of Theorem 20.
if Sc+1 >

√
n then

Directly simulate P(v0;x, UT ) using T random bits
else

Partition [n] into disjoint blocks, [n] = I1 ∪ I2 ∪ · · · ∪ IB , where |Ib| ≈ h. More
precisely, let B = dn/he, and let
Ib ← {h · (b− 1) + 1, h · (b− 1) + 2, . . . ,min{h · b, n}}
Let I0, IB+1 ← ∅
for b ∈ [B] do

Let I ′b ← [n] \ (Ib−1 ∪ Ib ∪ Ib+1), with the largest elements removed so that
|I ′b| = n− 3h

end
Initialize v ← v0

repeat r times /* Here r
def= dT/he */

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y ∈ {0, 1}O(S) uniformly at random
Update v ← P|[n]\I(v;x,NisGen(SUExt(x|I , y)))

end
return v

end

Efficiency

The runtime analysis of A is essentially the same as in the proof of Theorem 8; the only
substantial difference is that the input to SUExt has length Θ(n), so SUExt takes poly(n) time
instead of poly(S) time. Thus, overall, A runs in time T · poly(n, S). The space complexity
and randomness complexity analyses are essentially the same as in the proof of Theorem 8.

Correctness

The proof of Equation (37) has the same structure as the proof of Equation (9). Assume
without loss of generality that Sc+1 ≤

√
n. The first hybrid distribution is defined by

Algorithm 9. The number of “bad” inputs in Claim 55 is much lower than the number of
“bad” inputs in Claim 11; intuitively, this is because A uses a much larger portion of the
input as a source of randomness compared to the algorithm of Theorem 8.

B Claim 55 (A ≈ H1). Recall that ε′ is the error of SUExt. Then

#{x ∈ {0, 1}n : A(P, v0, x, T ) 6∼ε′r·2S−1 H1(P, v0, x, T )} ≤ 2n/S
c

. (115)

Proof sketch. The proof follows exactly the same reasoning as the proof of Claim 11. The
number of bad x values is bounded by

# bad x ≤ B · 2S · 2n−|I
′
b| · 2k+S+1 (116)

≤ 23h+
√
n+O(S) (117)

≤ 2n/S
c+1+

√
n+O(S) (118)

≤ 23n/Sc+1
(119)

≤ 2n/S
c

(120)

for sufficiently large n. C
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Algorithm 9: The algorithm H1 defining the first hybrid distribution used to prove
Equation (37). The only difference between A and H1 is that H1 picks a uniform
random seed for NisGen, instead of extracting the seed from the input.
Initialize v ← v0
repeat r times

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y′ ∈ {0, 1}s uniformly at random
Update v ← P|[n]\I(v;x,NisGen(y′))

end
return v

Algorithm 10: The algorithm H2 defining the second hybrid distribution used to
prove Equation (37). The only difference between H1 and H2 is that H2 feeds true
randomness to P|[n]\I , instead of feeding it a pseudorandom string from Nisan’s
generator.
Initialize v ← v0
repeat r times

Let b ∈ [B] be such that i(v) ∈ Ib
Let I ← I ′b
Pick y′′ ∈ {0, 1}T uniformly at random
Update v ← P|[n]\I(v;x, y′′)

end
return v

The second hybrid distribution is defined by Algorithm 10.

B Claim 56 (H1 ≈ H2). For every x,

H1(P, v0, x, T ) ∼εr H2(P, v0, x, T ), (121)

where ε is the error of NisGen.

Proof sketch. The proof is the same as that of Claim 12. C

All that remains is the final step of the hybrid argument. In this case, H2 actually
simulates P with no error. This argument is where we finally use the fact that P only has
sequential access to its input.

B Claim 57 (H2 ∼ P). For every x,

H2(P, v0, x, T ) ∼ P(v0;x, UT ). (122)

Proof sketch. The set I ′b chosen by H2 excludes every index in [n] that is within h of i(v).
Therefore, each iteration of the loop in H2 simulates at least h steps of P. Since r ≥ T/h,
overall, H2 simulates at least T steps of P. But T ≥ length(P), so we are done, just like in
the proof of Claim 14. C

Proof of Theorem 20. By Claims 55 to 57 and the triangle inequality,

#{x ∈ {0, 1}n : A(P, v0, x, t) 6∼δ P(v0;x, UT )} ≤ 2n/S
c

, (123)

where δ = εr+ ε′r · 2S−1. By our choice of ε, the first term is at most e−cS/2. By our choice
of ε′, the second term is also at most e−cS/2. Therefore, δ ≤ e−cS . J
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E Proof of Theorem 49: Disambiguation with Advice

We begin with randomness-efficient amplification of Theorem 42; Lemma 58 is analogous
to Lemma 36, and its proof follows the same reasoning. The details are included only for
completeness.

I Lemma 58. Fix S : N → N with S(n) ≥ logn and δ : N → [0, 1], both constructible in
space O(S). For every L ∈ NSPACE(S), there is a single-valued unambiguous algorithm A
so that for every x ∈ {0, 1}n,

Pr
y∈{0,1}∞

[A(x, y) ∈ {L(x),⊥r}] = 1, (124)

Pr
y∈{0,1}∞

[A(x, y) = ⊥r] ≤ δ(n). (125)

Furthermore, A only reads the first log2(1/δ(n)) +O(S2) bits of y and runs in space O(S).

Proof. LetR be anO(S)-space reduction from L to STConn. For x ∈ {0, 1}n,R(x) ∈ {0, 1}n,
where n = 2O(S), and without loss of generality, n depends only on n. Let s be the number
of random bits used by vMPSeededAlg on inputs of length n, so that s ≤ O(log2 n) = O(S2).

Let ` = dlog2(1/δ)e+ 2s+ 2, and let GUVExt : {0, 1}`×{0, 1}d → {0, 1}s be the (2s, 0.1)-
extractor of Theorem 6, so that d ≤ O(log log(1/δ)+logS). On input x ∈ {0, 1}n, y ∈ {0, 1}`,
run Algorithm 11.

Algorithm 11: The algorithm used to prove Lemma 58.
for z ∈ {0, 1}d do

Let a← vMPSeededAlg(R(x),GUVExt(y, z))
if a 6= ⊥r then return a

end
return ⊥r

Clearly, Algorithm 11 runs in space O(S + d). Since δ is constructible in space O(S), its
denominator must have at most 2O(S) digits. Therefore, δ ≥ 2−2O(S) and d ≤ O(S), so the
algorithm runs in space O(S). Furthermore, it is clearly single-valued unambiguous, and it
is “zero-error”, i.e., Equation (124) holds. Finally, by Proposition 7, the number of y such
that vMPSeededAlg(R(x),GUVExt(y, z)) = ⊥r for every z is at most 22s+2, and hence the
probability that the algorithm outputs ⊥r is at most 22s+2

2` ≤ δ. J

Proof of Theorem 49. Let A be the algorithm of Lemma 58 with δ < 2−n/ε. Let m = m(n)
be the number of random bits used by A. Let B be the algorithm witnessing the fact that L
is within ε of USPACE(S).

Given input x ∈ {0, 1}n and advice a ∈ {0, 1}m, compute a = A(x, a). If a 6= ⊥r, output
a. If a = ⊥r, output B(x). This algorithm clearly runs in O(S) space, uses n− log2(1/ε(n)) +
O(S2) bits of advice, and is unambiguous (in fact, single-valued unambiguous).

Now we argue that there is some advice string such that the algorithm succeeds on all
inputs. Let S ⊆ {0, 1}n be the set of inputs on which B fails. Consider picking an advice
string a uniformly at random. For each string x ∈ S, Pra[A(x, a) = ⊥r] ≤ δ. Therefore, by
the union bound, the probability that there is some x ∈ S such that A(x, a) = ⊥r is at most
|S|δ = ε · 2n · δ < 1. Therefore, there is some advice string such that the algorithm succeeds
on all inputs in S. Finally, for any advice string, the algorithm succeeds on all inputs in
{0, 1}n \ S by Equation (124). J
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1 Introduction

Kleitman, Leighton and Ma [21] asked the following question: assume you wish to build a
logic circuit C from AND and OR gates, however, due to some confusion, some small amount
of AND gates were placed in the box of the OR gates (and vice versa), and there is no way
to distinguish between the two types of gates just by looking at them. Can you construct a
“resilient” logic circuit C ′ that computes the same functionality of C, even if some (small
amount) of the AND gates are replaced with OR gates (and vice versa)?

The above toy question is a special case of a more general type of noise (faulty gates)
known as short-circuit noise. In this model, a faulty gate “short-circuits” one of its input-legs
to the output-leg. That is, the output of the gate is determined by the value of one of its
input-legs. The specific input that is connected to the output is determined by an all-powerful
adversary, possibly as a function of the input to the circuit. This model is equivalent to
a setting in which a faulty gate can be replaced with an arbitrary function g, as long as
it holds that g(0, 0) = 0 and g(1, 1) = 1. Note that this type of noise is different from the
so-called von Neumann noise model for circuits [29], in which the noise flips the value of each
wire in the circuit independently with probability p. See [21, 19] and references therein for a
comparison between these two separate models.

The first solution to the above question – constructing circuits that are resilient to
short-circuit faults – was provided by Kleitman et al. [21]. They show that for any number e,
a circuit of size |C| gates can be transformed into a “resilient” circuit of size |C ′| that
behaves correctly even if up to e of its gates are faulty (short-circuited), and it holds that
|C ′| ≤ O(e · |C|+ elog 3).

Further progress was made by Kalai, Lewko, and Rao [19] showing, for any constant ε > 0,
how to convert any formula1 F of size |F | into a resilient formula F ′ of size |F ′| = polyε(|F |)
such that F ′ computes the same function that F computes, as long as at most ( 1

6−ε)-fraction
of the gates in any input-to-output path in F ′ suffer from short-circuit noise. Kalai et
al. explicitly leave open the question of finding the optimal fraction of faulty gates for a
resilient formula F ′.2

We make further progress on the above open question and show that 1
5 is a tight bound on

the tolerable fraction of faulty gates per input-to-output path, conditioned that the increase
in the size of the formula is sub-exponential. Namely, we show how to convert any formula
to a resilient version that tolerates up to a fraction 1

5 − ε of short-circuit gates per path,

I Theorem 1 (Main, informal). For any ε > 0, any formula F can be efficiently converted
into a formula F ′ of size |F ′| = polyε(|F |) that computes the same function as F even when
up to 1

5 − ε of the gates in any of its input-to-output paths are short-circuited.

We also show that our bound is tight. Namely, for an arbitrary formula F , it is impossible
to make a resilient version (of sub-exponential size in |F |) that tolerates a fraction 1

5 (or
more) of short-circuit gates per path.

I Theorem 2 (Converse). There exists a formula F for computing some function f , such
that no formula F ′ of size |F ′| = o(exp(|F |)) that computes f is resilient to a fraction 1

5 of
short-circuit noise in any of its input-to-output paths.

1 A formula is a circuit in which each gate has fan-out 1.
2 For instance, it is clear that if all the gates in an input-to-output path can be short-circuited (i.e., the

fraction of noise is 1), then the adversary has full control on the output of the circuit. Hence, the
optimal noise rate for formulas lies within the range [ 1

6 , 1].
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Similar to the work of Kalai et al. [19], a major ingredient in our result is a transformation,
known as the Karchmer-Wigderson transformation [20] (hereinafter, the KW-transformation),
between a formula that computes a boolean function f , and a two-party interactive com-
munication protocol for a task related to f which we denote the KW-game for f , or KWf

for short. Similarly, a reverse KW-transformation converts protocols back to formulas; see
below for more details on the KW-transformation. The work of Kalai et al. adapts the
KW-transformation to a noisy setting in which the formula may suffer from short-circuit
noise, and the protocol may suffer from channel noise. The “attack plan” in [19] for making a
given formula F resilient to short-circuit noise is (i) apply the KW-transformation to obtain
an interactive protocol π; (ii) Convert π to a noise-resilient protocol π′ that tolerates up to
δ-fraction of noise; (iii) apply the (reverse) KW-transformation on π′ to obtain a formula F ′.
The analysis of [19] shows that the obtained F ′ is resilient to δ/2 fraction of noise in any of
its input-to-output paths.

The interactive protocols π, π′ are defined in a setting where the parties have access to
a noiseless feedback channel – the sender learns whether or not its transmission arrived
correctly at the other side. Building upon recent progress in the field of coding for interactive
protocols (see, e.g., [11]), Kalai et al. [19] construct a coding scheme for interactive protocols
(with noiseless feedback) that features resilience of δ = 1

3 − ε for any ε > 0; this gives their
result. Note that a resilience of δ = 1/3 is maximal for interactive protocols in that setting [8],
suggesting that new techniques must be introduced in order to improve the result by [19].

The loss in resilience witnessed in step (iii) stems from the fact that short-circuit noise
affects formulas in a “one-sided” manner: a short-circuit of an AND gate can only turn the
output from 0 to 1. A short-circuit in an OR gate can only turn the output from 1 to 0. The
noisy AND gates are thus decoupled from the noisy OR gates: if the output of the circuit is
0, any amount of short-circuited OR gates will keep the output 0 and if the output is 1 any
amount of short-circuited AND gates will keep the output 1.

Informally speaking, this decoupling reduces by half the resilience of circuits generated by
the KW-transformation. Assume the formula F ′ obtained from the above process is resilient
to δ′-fraction of noise. Then F ′ is correct if on a specific input-to-output path (a) at most δ′-
fraction of the AND gates are short-circuited, but also if (b) at most δ′-fraction of the OR gates
are short-circuited. Since the noise is decoupled, from (a) and (b) we get that F outputs the
correct value even when 2δ′-fraction of the gates on that input-to-output path are noisy. Yet,
the resilience of F ′ originates in the resilience of π′ (step (iii) above). The KW-transformation
limits the resilience of F ′ by the resilience of π′, i.e., 2δ′ ≤ δ, leading to a factor 2 loss.

We revisit the above line of thought and take a more careful noise analysis. Instead of
bounding the total fraction of noise by some δ, we consider the case where the noise from
Alice to Bob is bounded by some α while the noise in the other direction is bounded by β. A
similar approach used by Braverman and Efremenko [6], yields interactive protocols (without
noiseless feedback) with maximal resilience. In more detail, assume that the protocol π
communicates n symbols overall. We define an (α, β)-corruption as any noise that corrupts
up to αn symbols sent by Alice and up to βn symbols sent by Bob. We emphasize that the
noise fraction on Alice transmissions is higher than α, since Alice speaks less than n symbols
overall; the global noise fraction in this case is α+ β.

This distinction may be delicate but is instrumental. The KW-transformation translates
a protocol of length n that is resilient to (α, β)-corruptions into a formula which is resilient
to up to αn short-circuited AND gates in addition to up to βn short-circuited OR gates.
When α = β the obtained formula is resilient to up to α-fraction of short-circuited gates in
any input-to-output path, avoiding the factor 2 loss in resilience.
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1.1 Techniques overview
Achievability: Coding schemes for noisy channels with noiseless feedback

We obtain resilient formulas by employing the approach of [19] described above. In order to
increase the noise resilience to its optimal level, we develop a novel coding scheme which is
resilient to (1/5− ε, 1/5− ε)-corruptions, assuming noiseless feedback.

The mechanism of our coding scheme resembles, in a sense, the Blockchain technology [23].
Given a protocol π0 that assumes reliable channels, the parties simulate π0 message by
message. These messages may arrive at the other side correctly or not, however, a noiseless
feedback channel allows each party to learn which of its messages made it through. With this
knowledge, the party tries to create a “chain” of correct messages. Each message contains
a pointer to the last message that was not corrupted by the channel. As time goes by, the
chain grows and grows, and indicates the entire correct communication of that party. An
appealing feature of this mechanism is the fact that whenever a transmission arrives correctly
at the other side, the receiver learns all the correct transmissions so far. On the other hand,
the receiver never knows whether a single received transmission (and the chain linked to it)
is indeed correct.

The adversarial noise may corrupt up to (1/5− ε)n of the messages sent by each party.
We think of the adversary as trying to construct a different, corrupt, chain. Due to its limited
budget, at the end of the coding scheme one of two things may happen. Either it is the case
that the correct chain is the longest, or it is the case where the longest chain contains in its
prefix a sufficient amount of uncorrupted transmissions.

Indeed, if the adversary tries to create its own chain, its length is bounded by (1/5− ε)n,
while the correct chain is of length 2n/5 at the least.3 On the other hand, the adversary can
create a longer chain which forks off the correct chain. As a simple example, consider the case
where a party sends ≈ 2n/5 messages which go through uncorrupted. Now the adversary
starts corrupting the transmissions and extends the correct chain with (1/5− ε)n corrupt
messages.4 The corrupt forked chain is of length 2n/5 + (1/5− ε)n and may be longer than
the correct chain. However, in this case, the information contained in the uncorrupted prefix
of the corrupt forked chain is sufficient to simulate the entire transcript of π0.

Another essential part of our coding scheme is its ability to alter the order of speaking
according to the observed noise.5 Most previous work usually follows the succeeding intuition.
If party’s transmissions were corrupted, then the information contained in these transmissions
still needs to reach the other side. Therefore, the coding scheme should allow that party to
speak more times. In this work we take the opposite direction – the more a party is corrupted
at the first part of the protocol, the less it speaks in the later part. The intuition here is
that if the adversary has already wasted its budget on the party, it cannot corrupt much
of the sequential transmissions and we can reduce their amount. A resembling approach
appears in [1].

3 The order of speaking in the coding scheme depends on the noise and is not alternating. Therefore, it is
not necessary that a party speak half of the times. See discussion below.

4 This attack assumes that there are n/5 additional rounds where the same party speak. This assumption
is usually false and serves only for this intuitive (yet unrealistic) example.

5 Protocols that change their length or order of speaking as a function of the observed noise are called
adaptive [15, 1]. Since these decisions are noise-dependent, the parties may disagree on the identity of
the speaker in each round, e.g., both parties may decide to speak in a given round, etc. We emphasize
that due to the noiseless feedback there is always a consensus regarding whose turn it is to speak next.
Hence, while our scheme has a non-predetermined order of speaking, the scheme is non-adaptive by the
terminology of [8]; see discussion in [8] and in Section 6 of [11].
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One hurdle we face in constructing our coding scheme comes from the need to communicate
pointers to previous messages using a small (constant-size) alphabet. Towards this end, we
first show a coding scheme that works with a large alphabet that is capable of pointing
back to any previous transmission. Next, we employ a variable-length coding, replacing each
pointer with a large number of messages over a constant-size alphabet. We prove that this
coding does not harm the resilience, leading to a coding scheme with a constant-size alphabet
and optimal resilience to (1/5− ε, 1/5− ε)-corruptions.

Converse: Impossibility Bound

The converse proof consists of two parts. First, we show that for certain functions, any protocol
resilient to (1/5, 1/5)-corruptions must have an exponential blowup in the communication. In
the second part, we show a (noisy) KW-transformation from formulas to protocols. Together,
we obtain an upper bound on the noise of formulas. Indeed, assuming that there is a “shallow”
formula that is resilient to (1/5, 1/5)-corruptions, converting it into a protocol yields a “short”
protocol with resilience to (1/5, 1/5)-corruptions. The existence of such a protocol contradicts
the bound of the first part.

The bound on the resilience of protocols follows a natural technique of confusing a
party between two possible inputs. We demonstrate that a (1/5, 1/5)-corruption suffices in
making one party (say, Alice) observe exactly the same transcript whether Bob holds y or y′.
Choosing x, y, y′ such that the output of the protocol differs between (x, y) and (x, y′), leads
to Alice erring on at least one of the two instances.

This idea does not work if the protocol is allowed to communicate a lot of information.
To illustrate this point, assume f : Σn × Σn → Σz defined over a channel with alphabet Σ.
Consider a protocol where the parties send their inputs to the other side encoded via a
standard Shannon error-correcting code of length n′ = O(n) symbols, with distance 1− ε
for some small constant ε > 0. The protocol communicates 2n′ symbols overall, and a valid
(1/5, 1/5)-corruption may corrupt up to 2n′/5 symbols of each one of the codewords. However,
this does not suffice to invalidate the decoding of either of the codewords, since an error
correcting code with distance ≈1 is capable of correcting up to ≈n′/2 corrupted symbols.

On the other hand, once we limit the communication of the protocol, even moderately,
to around n symbols, the above encoding is not applicable anymore. Quite informally, our
lower bound follows the intuition described below. We show the existence of a function f
such that for any protocol that computes f in r rounds (where r is restricted as mentioned
above), the following properties hold for one of the parties (stated below, without loss of
generality, for Alice). There are inputs x, x′, y, y′ such that (1) f(x, y) 6= f(x′, y) 6= f(x′, y′)
and (2) Alice speaks at most r/5 times during the first 2r/5 rounds. Further, (3) when Alice
holds x, the protocol communicates exactly the same messages during its first 2r/5 rounds,
whether Bob holds y or y′ (assuming no channel noise is present).

When we bound the protocol to these conditions, a (1/5, 1/5)-corruption is strong enough
to make the transcript identical from Alice’s point of view on (x′, y) and (x′, y′), implying
the protocol cannot be resilient to such an attack. In more details, we now describe an
attack and assume Bob speaks at most 2r/5 times beyond round number 2r/5, given the
attack. [If Bob speaks more, then an equivalent attack will be able to confuse Bob rather
than Alice.] The attack changes the first 2r/5 rounds as if Alice holds x rather than x′;
this amounts to corrupting at most r/5 transmissions by Alice due to property (2). Bob
behaves the same regardless of its input due to property (3). From round 2r/5 and beyond,
the attack corrupts Bob’s messages so that the next r/5 symbols Bob sends are consistent
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10:6 Optimal Short-Circuit Resilient Formulas

with y and the following r/5 symbols Bob communicates are consistent with y′. Since Bob
speaks less than 2r/5 times (given the above noise), the attack corrupts at most r/5 of Bob’s
transmissions after round 2r/5.

Unfortunately, while the above shows that some functions f cannot be computed in
a resilient manner, this argument cannot be applied towards a lower bound on resilient
formulas. The reason is that the KWf task is not a function, but rather a relation – multiple
outputs may be valid for a single input. The attack on protocols described earlier shows that
a (1/5, 1/5)-corruption drives the protocol to produce a different output than in the noiseless
instance. However, it is possible that a resilient protocol gives a different but correct output.

Therefore, we need to extend the above argument so it applies to computations of arbitrary
relations. Specifically, we consider the parity function on n bits and its related KW-game.
We show the existence of inputs that satisfy conditions (2) and (3) above while requiring
that the outputs of different inputs be disjoint. I.e., any possible output of (x′, y) is invalid
for (x, y) and for (x′, y′).

The last part of the converse proof requires developing a KW-transformation from formulas
to protocols, in a noise-resilience preserving manner. Let us begin with some background on
the (standard) KW-transformation. The KW game (or rather a slight adaptation we need
for our purposes) is as follows. For a boolean function f on {0, 1}n, Alice gets an input x
such that f(x) = 0 and Bob gets an input y such that f(y) = 1, their goal is to output a
literal function `(z) (i.e. one of the 2n functions of the form `(z) = zi or `(z) = ¬zi) such
that `(x) = 0 and `(y) = 1.

Let F be a boolean formula for f , consisting of ∨ and ∧ gates, and where all the negations
are pushed to the input layer (i.e. F is a monotone formula of the literals zi, ¬zi). The
conversion of F to a protocol π for the KWf game is as follows. View the formula as the
protocol tree, with the literals at the bottom of the tree being the output literal function.
Assign each ∧ node to Alice, and each ∨ node to Bob.

The invariant maintained throughout the execution of the protocol is that if the protocol
reaches a node v, then the value of v in F is 0 when evaluated on x, and 1 when evaluated
on y. Each time when the protocol is at node v and it is Alice’s turn to speak (thus v is an ∧
gate in F ), Alice sends the identity of a child which evaluates to 0 on x. Note that assuming
the invariant holds for v, Alice can send the identity of such a child (since one of the inputs
to an AND gate which outputs a 0 also evaluates to 0), while this child must evaluate to 1
on y assuming v evaluates to 1 on y. By maintaining this invariant, Alice and Bob arrive at
the bottom, where they reach a literal evaluating to 0 on x and 1 on y. Note that there is
some room for arbitrary decision making: if more than one child of v evaluates to 0 on x,
Alice is free to choose any such child – the protocol will be valid for any such choice.

In this work we extend the above standard KW-transformation to the noisy-regime.
Namely, we wish to convert a resilient formula into an interactive protocol π while keeping
the protocol resilient to a similar level of channel noise. We note that the extension we
need is completely different from previous uses of the KW-transformation. Indeed, for the
achievability bound, a KW-transformation is used both in steps (i) and (iii) in the above
outline of [19]. However, the instance used in step (i) assumes there is no noise, while the
instance in step (iii) works in the other direction, i.e., it transforms (resilient) protocols to
(resilient) formulas.

Similar to the standard transformation, our noisy KW-transformation starts by construct-
ing a protocol tree based on the formula’s structure, where every ∧-gate is assigned to Alice
and any ∨-gate to Bob. The main difference is in the decision making of how to proceeds
when reaching a node v. The goal is to keep the invariant that the gate v in F evaluates to 0
on x and to 1 on y, even when noise is present.
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When only one of v’s descendants evaluates to 0 on x in F , Alice has no choice but to
choose that child. However, when more than a single descendant evaluates to 0 on x, Alice’s
decision is less obvious. Moreover, this decision may affect the resilience of the protocol – it
is possible that noise causes one of the descendants evaluate to 1 on that given x.

We observe, however, that one of v’s children evaluates to 0 on x given all the noise
patterns F is resilient against. The other children may still evaluate to 1 sometimes, as a
function of the specific noise. Once we identify this special child that always evaluates to 0,
Alice can safely choose it and maintain the invariant (and the correctness of the protocol),
regardless of future noise. Giving some more details, we prove that if such a special child
did not exist and all descendants could evaluate to both 0 and 1 as a function of the noise,
then we could construct a noise E∗ that would make all descendants evaluate to 1 on x

simultanously. Hence, assuming the noise is E∗, the node v would evaluate to 1 on x, and
consequently F (x) = 1. At the same time, we show that F is resilient to the noise E∗, so
F (x) = 0 assuming the noise is E∗, and we reach a contradiction.

1.2 Other related work

The field of interactive coding schemes [11] started with the seminal line of work by Schul-
man [26, 25, 27]. Commonly, the goal is to compile interactive protocols into a noise-resilient
version that has (1) good noise resilience; (2) good rate; and (3) good probability of success.
Computational efficiency is another desired goal. Numerous works achieve these goals, either
fully or partially [5, 13, 3, 9, 6, 14, 22, 16, 10], where the exact parameters depend on the
communication and noise model.

Most related to this work are coding schemes in the setting where a noiseless feedback
channel is present. Pankratov [24] gave the first interactive coding scheme that assumes
noiseless feedback. The scheme of [24] aims to maximize the rate of the scheme assuming all
communication passes over a binary symmetric channel (BSC) with flipping parameter ε (i.e.,
a channel that communicates bits, where every bit is flipped with probability ε, independently
of other bits). Pankratov’s scheme achieves a rate of 1 − O(

√
ε) when ε → 0. Gelles and

Haeupler [12] improved the rate in that setting to 1 − O(ε log 1/ε), which is the current
state of the art. For the regime of large noise, Efremenko, Gelles, and Haeupler [8] provided
coding schemes with maximal noise resilience, assuming noiseless feedback. They showed
that the maximal resilience depends on the channel’s alphabet size and on whether or not
the order of speaking is noise-dependent. Specifically, they developed coding schemes with a
noise-independent order of speaking and a constant rate that are resilient to 1/4 − ε and
1/6− ε fraction of noise with a ternary and binary alphabet, respectively. When the order of
speaking may depend on the noise, the resilience increases to 1/3− ε for any alphabet size.
They show that these noise levels are optimal and that no general coding scheme can resist
higher levels of noise.

There has been tremendous work on coding for noisy channels with noiseless feedback in
the one-way (non-interactive) communication setting, starting with the work of Shannon,
Horstein, and Berlekamp [28, 18, 2]. It is known that the presence of feedback does not change
the channel’s capacity, however, it improves the error exponent. The maximal noise-resilience
in this setting is also known. Recently, Haeupler, Kamath, and Velingker [17] considered
deterministic and randomized codes that assume a partial presence of feedback.
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2 Preliminaries

Notations

For integers i ≤ j we denote by [i, j] the set {i, i + 1, . . . , j} any by [i] the set {1, . . . , i}.
For a string s ∈ Σ∗ and two indices x, y ∈ {1, . . . , |s|}, x < y we let s[x, y] = sxsx+1 · · · sy.
We will treat ∅ as the empty word, i.e., for any a ∈ Σ∗ we have a ◦ ∅ = ∅ ◦ a = a. For bits
a, b ∈ {0, 1} we let a⊕ b = a+ b mod 2, and b = 1− b. All logarithms are taken to base 2,
unless the base is explicitly written.

Interactive Protocols

In the interactive setting we have two parties, Alice and Bob, which receive private inputs
x ∈ X and y ∈ Y , respectively. Their goal is to compute some predefined function f(x, y) :
X × Y → Z by sending messages to each other. A Protocol describes for each party the
next message to send, given its input and the communication received so far. We assume
the parties send symbols from a fixed alphabet Σ. The protocol also determines when
the communication ends and the output value (as a function of the input and received
communication).

Formally, an interactive protocol π can be seen as a |Σ|-ary tree (also referred to as the
protocol tree), where each node v is assigned either to Alice or to Bob. For any v node
assigned to Alice there exists a mapping av : X → Σ that maps the next symbol Alice should
send, given her input. Similarly, for each one of Bob’s nodes we set a mapping bv : Y → Σ.
Each leaf is labeled with an element of Z. The output of the protocol on input (x, y) is
the element at the leaf reached by starting at the root node, and traversing down the tree
where at each internal node v owned by Alice (resp., Bob), if av(x) = i (resp., bv(y) = i)
the protocol advances to the i-th child of v. We conveniently denote Alice’s nodes by the
set Va and Bob’s nodes by the set Vb. We may assume that all the nodes in a given protocol
tree are reachable by some input (x, y) ∈ X × Y (otherwise, we can prune that branch
without affecting the behaviour of the protocol). Note that the order of speaking in π is not
necessarily alternating and it is possible the same party is the sender in consecutive rounds.
For any given transcript T , we denote π(· | T ) the instance of π assuming the history T .
Specifically, assuming Alice is the sender in the next round (assuming the history so far is T ),
then the next communicated symbol is π(x | T ).

The length of a protocol, denoted |π|, is the length of the longest root-to-leaf path in the
protocol tree, or equivalently, it is the maximal number of symbols the protocol communicates
in any possible instantiation. In the following we assume that all instances have the same
length |π|. The communication complexity of the protocol is

CC(π) = |π| log |Σ|.

When Σ is constant (independent of the input size), we have CC(π) = O(|π|).

Transmission Noise with Feedback

We will assume the communication channel may be noisy, that is, the received symbol
may mismatch with the sent symbol. All the protocols considered in this work assume the
setting of noiseless feedback: the sender always learns the symbol that the other side received
(whether corrupted or not). The receiver, however, does not know whether the symbol it
received is indeed the one sent to him.
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A noise pattern is defined as E ∈ {0, 1, . . . , |Σ|−1, ∗}|Va|∪|Vb|. For any node v, Ev denotes
the symbol that the receiver gets for the transmission that is done when the protocol reaches
the node v. Specifically, say v is an Alice-owned node, then if Ev = ∗, Bob receives the
symbol sent by Alice; otherwise, Ev 6= ∗, Bob receives the symbol Ev. Note that due to
the feedback, Alice learns that her transmission was corrupted as well as the symbol that
Bob received, and the protocol descends to the node dictated by Ev. We denote by πE the
protocol π when the noise is dictated by E; we sometimes write π0 for a run of the protocol
with no transmission noise, i.e., with the pattern E = ∗|Va|∪|Vb|.

We say that a protocol is resilient to a noise pattern E if for any (x, y) ∈ X × Y it holds
that πE outputs the same value as π0. While it is common to limit the noise to a constant
fraction of the transmissions, in this work we take a more careful look at the noise, and
consider the exact way it affects the transmissions of each party.

I Definition 3. An (α, β)-corruption, is a noise pattern that changes at most α|π| symbols
sent by Alice and at most β|π| symbols sent by Bob. Note that the effective (combined) noise
rate is (α+ β).

3 Resilience to (1/5, 1/5)-Corruptions is Impossible

In this section we prove that no coding scheme with constant overhead can be resilient to a
(1/5, 1/5)-corruption. To this end we show a specific (1/5, 1/5)-corruption that confuses any
protocol for a specific function f that is “hard” to compute in linear communication. Our
results does not apply to coding schemes with vanishing rates. In fact, if the communication
is exponentially large, coding schemes with resilience higher than 1/5 exist.6

Normally, we discuss the case where protocols compute a function f : X ×Y → Z. While
our converse bound on the resilience of interactive protocols works for some hard function
(e.g., the pointer jumping), such a proof does not suffice towards our converse on the resilience
of boolean circuits (Theorem 2). The reason is that the conversion between formulas to
protocols does not yield a protocol that computes a function but rather a protocol that
computes a relation. Recall that for any given function f and any input (x, y) such that
f(x) = 0 and f(y) = 1, the KW-game for f , KWf , outputs an index i ∈ [n] for which xi 6= yi

(see Section 5.1 for a formal definition). However, multiple such indices may exist and each
such index is a valid output.

Let X,Y, Z be finite set and R ⊆ X×Y ×Z be a ternary relation. For any (x, y) ∈ X×Y
and a given relation R let R(x, y) = {z | (x, y, z) ∈ R} be the set of all z that satisfy the
relation for x, y. Given such a relation, a protocol that computes the relation is the following
two-party task. Alice is given x ∈ X and Bob is given y ∈ Y . The parties need to agree on
some z ∈ R(x, y). We say that (x, y) is a valid input for R, if x ∈ X and y ∈ Y . We assume
that for any valid input, |R(x, y)| > 0.

We now show an explicit relation for which no protocol (of “short”’ length) is resilient to
(1/5, 1/5) corruptions. Specifically, in the rest of this section we consider the binary parity
function on n bits, par : {0, 1}n → {0, 1}, defined for any x ∈ {0, 1}n by

par(x) = x1 ⊕ · · · ⊕ xn.

6 For instance, consider the scheme in which each party sends its input to the other side encoded via
a standard (Shannon) error-correcting code with distance ≈ 1. This trivial protocol is resilient to
(1/4− ε, 1/4− ε)-corruption, yet its rate is 0.
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Let X = {x ∈ {0, 1}n | par(x) = 0} and Y = {y ∈ {0, 1}n | par(y) = 1}. We let
KWpar ⊆ X × Y × [n] be the KW-game for the parity function, defined by

KWpar = {(x, y, z) | par(x) = 0 ∧ par(y) = 1 ∧ xz 6= yz} .

We will need the following technical claim.

B Claim 4. Let Y ⊆ {0, 1}n. If |Y | ≥ 2n/2 + 1 then there exist two elements y1, y2 ∈ Y such
that 〈y1, y2〉 = 1. Furthermore, if |Y | ≥ 2(n+1)/2 + 1 then there exist two elements y1, y2 ∈ Y
such that 〈y1, y2〉 = 0.

Proof. Consider the linear space L = span{Y }. By a counting argument, it holds that
dim(L) > n/2. Let L⊥ be the space orthogonal to L. Then dim(L) + dim(L⊥) = n and
dim(L⊥) < n/2. Hence, |L⊥| < 2n/2 and thus Y 6⊂ L⊥. Let y1 ∈ Y \ L⊥. Since y1 /∈ L⊥ it
means that there must exist some element in Y , say y2, for which 〈y1, y2〉 6= 0. It follows
that these two elements satisfy the claim, 〈y1, y2〉 = 1.

For the second part of the claim, let us construct Ỹ = {(y, 1) ∈ {0, 1}n+1 : y ∈ Y }; this
is merely the set Y with an additional coordinate which is always set to one (over a space of
dimension n+ 1). Note that |Y ′| = |Y | ≥ 2(n+1)/2 + 1 and we can use the first part of this
claim to show that there exist two elements (y1, 1), (y2, 1) ∈ Ỹ such that 〈(y1, 1), (y2, 1)〉 = 1,
therefore, 〈y1, y2〉 = 0. C

I Lemma 5. Let π be an interactive protocol for KWpar (with inputs of n bits) of length
|π| = r defined over a communication channel with alphabet Σ and noiseless feedback.
Without loss of generality, let Alice be the party who speaks less in the first 2r/5 rounds of π.
Additionally, assume n/3 > 2r log |Σ|/5 + 1.

Then, there exist inputs x, x′ ∈ X, y, y′ ∈ Y for which:
(1) π(x, y) and π(x, y′) agree on the first 2r/5 rounds.
(2) During the first 2r/5 rounds of the execution π(x, y) Alice speaks fewer times than Bob.
(3) KWpar(x′, y) ∩KWpar(x′, y′) = ∅ and KWpar(x′, y) ∩KWpar(x, y) = ∅.
Note that the above lemma assumes Alice is the party that speaks fewer times in the first
2r/5 rounds of π when averaging on all possible inputs (x, y) ∈ X×Y ; otherwise, a symmetric
lemma holds for Bob.

Proof. Let x be an input for Alice such that on most y’s Alice speaks fewer times in the
first 2n/5 rounds of π(x, y). Such an input must exist by our choice of Alice. Let

Y ′ =
{
y ∈ Y

∣∣∣CC≤2r/5
A (π(x, y)) ≤ CC≤2r/5

B (π(x, y))
}

be the set of all inputs for Bob, where Alice speaks fewer times in the first 2r/5 rounds of π
assuming Alice holds the above x. By the choice of x, it holds that |Y ′| ≥ 2n/2.

Consider the set of transcript prefixes of length 2r/5 generated by π when Alice holds
the above x and Bob holds some input from the set Y ′,

Tx = {t[1, 2r/5] | t = π(x, y), y ∈ Y ′} .

Note that there are at most (2|Σ|)2r/5 different prefixes of length 2r/5 over Σ with an
arbitrary order of speaking. Since we assumed n/3 > 2r log |Σ|/5 + 1, we have for large
enough n,

|Y ′| ≥ 2n−1 ≥ (2(n+1)/2 + 1)2n/3 ≥ (2(n+1)/2 + 1)22r log |Σ|/5+1 ≥ Υ|Tx|,
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with Υ = 2(n+1)/2 + 1. Using a pigeon-hole principle, there must be y1, y2, . . . , yΥ ∈ Y ′ such
that {π(x, yi)}Υi=1 agree on the first 2r/5 rounds of the protocol – they have an identical
order of speaking and they communicate the same information.

Next consider the set {x⊕ yi}Υi=1. Claim 4 guarantees that there exist two elements in
that set such that 〈x⊕ yi, x⊕ yj〉 = par(x); these yi, yj will be our y, y′.

Note that Properties (1) and (2) of the lemma are satisfied by the above x, y, y′. We are
left to show an input x′ for Alice that satisfies property (3).

Based on the above x, y, y′ we construct x′ in the following manner. For any i ∈ [n] set

x′i =
{
yi yi = y′i

xi yi 6= y′i
.

The above x′ is constructed such that outputs given by KWpar are disjoint if we change only
the input of Alice or only the input of Bob. Formally,

B Claim 6. The following claims hold for the above x, x′, y, y′
a. par(x′) = 0
b. KWpar(x′, y) ∩KWpar(x′, y′) = ∅
c. KWpar(x′, y) ∩KWpar(x, y) = ∅ and KWpar(x′, y′) ∩KWpar(x, y′) = ∅

Proof.
a. It is easy to check that x′i = ((xi ⊕ yi) · (xi ⊕ y′i))⊕ xi. Therefore,

par(x′) =
n⊕

i=1
x′i =

n⊕
i=1

(((xi ⊕ yi) · (xi ⊕ y′i))⊕ xi)

= 〈x⊕ y, x⊕ y′〉 ⊕ par(x).

Since we picked y, y′ for which 〈x⊕ y, x⊕ y′〉 = par(x), we conclude that par(x′) = 0.
b. Assume towards contradiction that i ∈ KWpar(x′, y) ∩KWpar(x′, y′), i.e., x′i 6= yi as well

as x′i 6= y′i. However, x′i, yi, y
′
i are all bits and these two inequalities imply yi = y′i. But

then, x′i = yi by the way we construct x′, which is a contradiction.
c. Assume towards contradiction that i ∈ KWpar(x′, y) ∩KWpar(x, y). That is, x′i 6= yi and
xi 6= yi which means that x′i = xi. On the other hand, by the construction of x′, either
x′i 6= xi or x′i = yi. Both options lead to a contradiction. The proof of the second part is
identical.

C

The first claim proves that x′ is a valid input, i.e., x′ ∈ X. The other claims prove property
(3) of the lemma and conclude its proof. J

Our main result in this section is the following Theorem, proving that no protocol for
the KWpar can be resilient to a (1/5, 1/5)-corruption if its communication is bounded. This
will imply that any coding scheme that is resilient to (1/5, 1/5)-corruption must have rate 0.
Specifically, it cannot produce a protocol with a constant overhead with respect to the
optimal protocol that computes KWpar over reliable channels.

I Theorem 7. Any interactive protocol π that computes the relation KWpar by at most
|π| < 5

6
n−3

log |Σ| rounds over a noisy channel with alphabet Σ and noiseless feedback, is not
resilient to (1/5, 1/5)-corruptions.

Proof. Let π be a protocol with r < 5
6

n−3
log |Σ| rounds communicating symbols from the

alphabet Σ. Via Lemma 5, let x0, x1 ∈ X and y0, y1 ∈ Y be inputs that satisfy
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(1) π(x0, y0) and π(x0, y1) agree on the first 2r/5 rounds
(2) During the first 2r/5 bits of the protocol π(x0, y0) Alice speaks less than Bob.
(3) KWpar(x1, y0) ∩KWpar(x1, y1) = ∅ and KWpar(x1, y0) ∩KWpar(x0, y0) = ∅

We now generate a simulated transcript T and show that T is consistent with a (1/5, 1/5)-
corruption of π(x1, y0). Additionally, it is either the case that T is consistent with a
(1/5, 1/5)-corruption of π(x1, y1) or it is consistent with a (1/5, 1/5)-corruption of π(x0, y0).
In the first case, Alice is unable to distinguish the case where Bob holds y0 and y1; in the
second, Bob cannot tell if Alice holds x0 or x1. The outputs for different inputs are distinct
by property (3). Thus the confused party is bound to err on at least one of them.

Note that the simulated transcript T contains messages received by the two parties, which
may be noisy. Due to the feedback, both parties learn T . Additionally, the order of speaking
in π is entirely determined by (prefixes of) T . Specifically, if two different instances of π have
the same received transcript by round j, the party to speak in round j + 1 is identical in
both instances.

The string T is obtained in the following manner:
1. Run π(x0, y0) for 2r/5 rounds. Let T1 be the generated transcript.
2. Run π(x1, y0 | T1) until Bob transmits r/5 additional symbols (unless π terminates

beforehand). Let T2 be the generated transcript.
3. (if |T1T2| < r) Run π(x1, y1 | T1T2) until Bob transmits r/5 additional symbols (unless π

terminates beforehand).
4. (if |T1T2T3| < r), let T4 describe π(x1, y0 | T1T2T3) until it terminates.
5. Set T = T1T2T3T4.
In case the above algorithm didn’t execute Step i, for i ∈ {3, 4}, assume Ti = ∅.

We now show that T corresponds to a (1/5, 1/5)-corrupted execution of π for two different
valid inputs with disjoint outputs. We consider two cases: (i) when Step 3 halts since T
reached its maximal size of r symbols (i.e., when T4 = ∅), and (ii) when Step 3 halts since
Bob transmitted r/5 symbols in this step (T4 6= ∅).
case (i) T4 = ∅. In this case we show that a (1/5, 1/5)-corruption suffices to make the

executions of π(x1, y0) and π(x1, y1) look the same from Alice’s point of view.
Let Π be the transcript of a noisy execution of π(x1, y0) (defined shortly) and split
Π into three parts Π = Π1Π2Π3 that correspond in length to T1, T2, T3. The noise
changes all Alice transmissions in Π1 so that they correspond to Alice’s symbols in T1;
the noise changes all Bob’s transmissions in Π3 so that they correspond to Bob’s trans-
missions in T3. It is easy to verify that the obtained transcript Π of received messages
is exactly T . Furthermore, the first part changes at most r/5 transmissions by Alice,
since by property (2) Alice speaks fewer times in the first 2r/5 of the instance π(x0, y0).
The second part changes at most r/5 transmissions of Bob since T3 halts before Bob
communicates additional r/5 transmissions. Hence the noise described above is a valid
(1/5, 1/5)-corruption.
On the other hand, and abusing notations, consider a (noisy) instance of π(x1, y1) and
let Π = Π1Π2Π3 be the received messages transcript split to parts that corresponds in
length to T1, T2, T3, assuming the following noise. Again, the noise changes all Alice’s
transmissions in Π1 to be the corresponding symbols received in T1. This makes the 2r/5
first rounds of the received transcript look as an instance π(x0, y1). By Property (1), these
transmissions agree with the first 2r/5 transmissions in the noiseless instance π(x0, y0);
hence, the corrupted Π1 equals T1. Next, the noise changes Bob’s transmissions in Π2 to
correspond to T2. The obtained transcript Π is then exactly T . Again, T1 contains at
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most 2r/5 of Alice’s transmissions, and T2 contains at most r/5 transmissions of Bob by
their definition. Hence, this is a valid (1/5, 1/5)-corruption.
We conclude by recalling that KWpar(x1, y0) ∩KWpar(x1, y1) = ∅, then Alice must be
wrong on at least one of the above executions, since her view in both executions is the
same. Note that above proof holds even when T3 = ∅.

case (ii) T4 6= ∅. In this case we show a (1/5, 1/5)-corruptions that makes the executions of
π(x0, y0) and π(x1, y0) look the same from Bob’s point of view. We point out that Alice
speaks at most r/5 times after Step 1. Indeed, Step 1 contains 2r/5 rounds, and Steps
2–3 contain 2r/5 rounds where Bob speaks, hence Alice may speak in at most another
r/5 times after Step 1.
Let Π be the transcript of a noisy execution of π(x0, y0) where the noise is defined below.
Split Π into 4 parts Π = Π1Π2Π3Π4 that correspond in length to T1, T2, T3, T4. The
noise changes all Alice’s transmissions in Π2Π3Π4 so that they match the corresponding
symbols of T2, T3, T4. As mentioned, this corrupts at most r/5 symbols. Additionally, the
noise changes Bob’s transmissions in Π3 to correspond to T3; this by definition entails
r/5 corruptions of Bob’s transmissions. The obtained transcript Π is exactly T .
On the other hand, and abusing notations again, consider a noisy execution of π(x1, y0)
denoted by Π = Π1Π2Π3Π4. Here the noise is defined as follows. The noise changes all
Alice’s transmissions in Π1 to match the corresponding symbols of T1. As before, the
noise changes Bob’s transmissions in Π3 to match T3. Now it holds that Π = T , while
the noise corrupted at most r/5 of each party’s transmissions.
We conclude by recalling that KWpar(x0, y0) ∩KWpar(x1, y0) = ∅. Thus, Bob must be
wrong on at least one of the above executions, since his view in both executions is exactly
the same. J

Note thatKWpar has a protocol of length O(logn) assuming reliable channels.7 Theorem 7
leads to the following conclusion.

I Corollary 8. There exists an interactive protocol π0 defined over a noiseless channel with
feedback such that any protocol π that computes the same functionality as π0 and is resilient
to (1/5, 1/5)-corruptions (assuming noiseless feedback) must incur with an exponential blowup
in the communication.

As a consequence, any coding scheme that compiles any protocol into a (1/5, 1/5)-resilient
version, must have rate zero.

4 A Coding Scheme with Large Alphabet

In this section we construct a coding scheme for interactive protocols assuming a noiseless
feedback. We show that for any constant ε > 0, any protocol π0 defined over noiseless
channels (with noiseless feedback) can be simulated by a protocol π = πε defined over
noisy channels (with noiseless feedback) such that (1) CC(π)/CC(π0) = Oε(1), and (2) π
is resilient to (1/5− ε, 1/5− ε)-corruptions. The protocol π in this section communicates
symbols from a large alphabet of polynomial size in π0. In the full version [7] we show how
to reduce the size of the alphabet.

On a high level, the coding scheme π simulates π0 step by step. The availability of a
noiseless feedback channel allows a party to notice when the channel alters a transmission
sent by that party. The next time that party speaks, it will re-transmit its message and

7 This can easily be seen, e.g., by considering a formula that computes the parity of n bits, and applying
the Karchmer-Wigderson transformation [20].
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“link” the new transmission to its latest uncorrupted transmission. That is, each message
carries a “link” – a pointer to a previous message sent by the same party. By following the
links, the receiver learns the “chain” of uncorrupted transmissions; the party considers all
“off-chain” transmissions as corrupted.

The Parse procedure (in Algorithm 1) parses all the transmissions received so far and
outputs the “current chain”: the (rounds of the) transmissions linked by the latest received
transmission. Note that once a new transmission arrives, the current chain possibly changes.
Moreover, upon reception of a corrupt transmission, a corrupt chain may be retrieved.

The TempTranscript procedure determines the partial simulated transcript of π0
according to messages received in π so far, i.e., according to the current chains. Again, the
scheme considers only transmissions that are on-chain and ignore all off-chain transmissions.
The partial simulated transcript is defined as the concatenation of all the messages that (a)
were received uncorrupted and (b) that were generated according to the correct information.

To clarify this issue, consider round i where, without loss of generality, Alice sends the
message mi. The latter property means that the last transmission received by Alice prior to
round i, must be uncorrupted. This ensures that Alice learns which transmissions (so far)
are correct and which are not, in both directions. It follows that Alice has full information
about the on-going simulation of π0. In particular, she can generate the correct mi that
extends the simulation of π0 by one symbol. The former property ensures that mi itself, the
correct extension of the simulation of π0, indeed arrives uncorrupted at the other side.

In each round of the protocol, the parties construct the partial transcript implied by
messages received so far. If the received transmission is uncorrupt, the TempTranscript
procedure retrieves the correct implied transcript (i.e., the implied transcript is indeed a
prefix of the transcript of π0). Then, the parties simulate the next rounds of π0 assuming
the implied partial transcript. As long as there is no noise in two alternating rounds, the
next transmission extends the simulation of π0 by one symbol. Otherwise, the sent symbol
may be wrong, however, it will be ignored in future rounds once the chains indicate that this
transmission was generated due to false information. Finally, at the end of the protocol, the
parties output the transcript implied by the longest chain. The main part of this section is
proving that the longest chain indeed implies a complete and correct simulation of π0.

An important property of the coding scheme is its adaptive order of speaking. The first
2n/5 rounds are alternating. On later rounds the order of speaking is determined according
to observed noise: the more corrupted transmissions a party has, the less the party gets to
speak. In particular, the protocol is split into epochs of 2 or 3 rounds each. In the first two
rounds of an epoch, the order is fixed: Alice speaks in the first round and Bob speaks in the
second. Then, the parties estimate the noise each party suffered so far (namely, the length of
their current chain) and decide whether or not the epoch has a third round as well as who
gets to speak in that extra round. For Alice to be the speaker in the third epoch-round,
her current chain must be of length less than n/5 while Bob’s current chain must be longer
than n/5; Bob gets to speak if his chain is of length less than n/5 while Alice’s chain is longer
than n/5. In all other cases, the epoch contains only two rounds. We emphasize that due
to the noiseless feedback, both parties agree on the received symbols (in both sides), which
implies they agree on the current chains in both side, and thus, on the order of speaking
in every epoch. The Next procedure, which determines the next speaker according to the
current received transcript, captures the above idea.

The coding scheme is depicted in Algorithm 1. In the full version of this paper [7] we
analyze Algorithm 1 and prove the following.
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I Theorem 9. For any ε > 0 and any binary alternating protocol π0, Algorithm 1 correctly
simulates π0 over a noisy channel with noiseless feedback and is resilient to any (1/5 −
ε, 1/5− ε)-corruption.

In the full version we also show how to reduce the channel’s alphabet so it becomes independent
of n, and depends only on the noise parameter ε. This is done via quite standard techniques
of variable-length coding, cf. [5, 6, 4].

Algorithm 1 (Part I): A coding scheme against (1/5, 1/5)-corruptions assuming noiseless
feedback (Large Alphabet; Alice’s side).

Input: A binary alternating protocol π0 with feedback; noise parameter 1/5− ε. Alice’s input
for π0 is x. Let Σ = [n]× {0, 1, ∅}.

1: Throughout the protocol, maintain SA, RA, RB , the sent, received by Alice, and received by Bob
(as indicated by the feedback) symbols communicated up to the current round, respectively.

2: for i = 1 to n = |π0|/ε do
3: pnext = Next(RA, RB) . Determine the next party to speak
4: if pnext =Alice then
5: T ←TempTranscript(SA, RA, RB)
6: The next symbol σ = (link, b) to be communicated is:

link is the latest non-corrupted round link < i where Alice is the speaker
(0 if no such round exists).

b = π0(x | T ) if Alice is the sender in π0, otherwise (or if π0 has completed) b = ∅.
7: else
8: (receive a symbol from Bob)
9: end if
10: end for

11: j ← arg max |Parse(R≤j
B )|

12: j′ ← arg max |Parse(R≤j′

A )|
13: Output TempTranscript(SA, R

≤j′

A , R≤j
B )

5 Applications for Circuits with Short-Circuit Noise

In this section we show that the KW-transformation between formulas and protocols (and
vice versa) extends to the noisy setting in a manner that preserves noise-resilience. Applying
the results of Section 4 onto the realm of boolean formulas gives a construction of formulas
resilient to an optimal level of a fraction (1/5−ε) of short-circuit gates in any input-to-output
path. Additionally, the results of Section 3 imply that noise-resilience of 1/5 is maximal for
formulas (assuming polynomial overhead).

In the following subsections, we show how to convert between formulas and proto-
cols without affecting the noise-resilience. If we start with a formula that is resilient to
(α, β)-corruptions, our transformation yields a protocol resilient to (α, β)-corruptions (Propo-
sition 20). Moreover, given a protocol resilient to (α, β)-corruptions, the transformation
yields a formula which is resilient to a similar level of noise (Proposition 23). Most proofs
are deferred to the full version of this work.
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Algorithm 1 (Part II): the Parse, Next, and TempTranscript Procedures.

14: procedure Parse(m1, . . . ,mt)
15: Chain← ∅; j ← t;
16: while j > 0 do
17: Chain← Chain ∪ {j}
18: j ← mj .link

19: return Chain
20: end procedure

21: procedure TempTranscript(SA, RA, RB) . Procedure for Alice; Bob’s al-
gorithm is symmetric22: Set GB = Parse(RA)

23: Set GA as all the rounds in which outgoing trans-
missions are not corrupted (as learnt by RB , SA)

24: For any i < n, if Prev(i), i ∈ GA ∪GB ∪ {0} add i to GoodChain
25: Set T as the concatenation of all {bi}i∈GoodChain, where σi = (linki, bi) is the symbol

received in round i.
26: return T

27: end procedure

28: procedure Next(RA, RB)
29: i← |RA|+ |RB |+ 1 .We are at round i
30: j ← 1; SkipCntA ← 0, SkipCntB ← 0
31: loop
32: if i = j then return Alice . The speakers in the first two

rounds of each epoch are fixed33: if i = j + 1 then return Bob
. Update the Skip counters

34: if |Parse(R<j+2
A )| ≤ n/5 then SkipCntB ← SkipCntB + 1

35: if |Parse(R<j+2
B )| ≤ n/5 then SkipCntA ← SkipCntA + 1

36: if |Parse(R<j+2
B )| ≤ n/5 < |Parse(R<j+2

A )| then . The epoch contains a
3rd round whenever
one skip counter in-
creases but the other
does not

37: if i = j + 2 then return Bob
38: else j ← j + 3
39: else if |Parse(R<j+2

A )| ≤ n/5 < |Parse(R<j+2
B )| then

40: if i = j + 2 then return Alice
41: else j ← j + 3
42: otherwise
43: j ← j + 2 . An epoch with only 2 rounds
44: end loop
45: end procedure

Note: R≤j
A is the prefix of RA as received by the j-th round of the protocol (incl. j) and

R≤j
A excluding round j. R≤j

B and R<j
B are similarly defined.
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5.1 Preliminaries
Formulas

A formula F (z) over n-bit inputs z ∈ {0, 1}n is a k-ary tree where each node is a {∧,∨}
gate with fan-in k and fan-out 1. [While our results apply to any k, in this section we will
usually assume k = 2 for simplicity.] Each leaf is a literal (either zi or ¬zi). The value
of a node v given the input z ∈ {0, 1}, denoted v(z) ∈ {0, 1}, is computed in a recursive
manner: the value of a leaf is the value of the literal (given the specific input z); the value
of an ∧ gate is the boolean AND of the values of its k descendants, v0, · · · , vk−1, that is
v(z) = v0(z) ∧ · · · ∧ vk−1(z). The value of an OR gate is v(z) = v0(z) ∨ · · · ∨ vk−1(z). The
output of the formula on z, F (z), is the value of the root node. We say that F computes the
function f : {0, 1}n → {0, 1} if for any z ∈ {0, 1}n it holds that F (z) = f(z).

The depth of a formula, denoted depth(F ), is the longest root-to-leaf path in it. The size
of a formula, denoted |F |, is the number of nodes it contains. We denote by V∧ the set of all
the ∧ nodes, and by V∨ the set of all the ∨ nodes.

Karchmer-Wigderson Games

For any boolean function f : {0, 1}n → {0, 1}, the Karchmer-Wigderson game is the following
interactive task. Alice is given an input x ∈ f−1(0) and Bob gets y ∈ f−1(1). Their task is
to find an index i ∈ [n] such that xi 6= yi. We are guaranteed that such an index exists since
f(x) = 0 while f(y) = 1. We denote the above task by KWf .

Karchmer and Wigderson [20] proved the following relation between formulas and proto-
cols.

I Theorem 10 ([20]). For any function f : {0, 1}n → {0, 1}, the depth of the optimal formula
for f equals the length of the optimal interactive protocol for KWf .

I Remark 11. In the above, formulas are assumed to have fan-in 2 and protocols are assumed
to communicate bits. However, the same reasoning and conversion applies also for a more
general case, where each ∧, ∨ gate has fan-in k, and the protocol sends symbols from alphabet
of size |Σ| = k.

Furthermore, while our claims below are stated and proved assuming fan-in 2, all our
claims apply to any arbitrary fan-in k.

Short-Circuit Noise

A short circuit noise replaces the value of a specific node with the value of one of its
descendants. A noise pattern E ∈ {0, 1, . . . , k − 1, ∗}|V∧|∪|V∨| defines for each node whether
it is short-circuited and to which input. Specifically, if for some node v, Ev = ∗ then the
gate is not corrupted and it behaves as defined above. Otherwise, the value of the node is
the value of its Ev-th descendant, v(z) = vEv

(z). We denote by FE the formula with short
circuit pattern E; we sometime write F for the formula with no short-circuit noise, i.e. with
the noise pattern E = ∗|V∧|∪|V∨|.

We say that a circuit is resilient to a noise pattern E if for any z ∈ {0, 1}n it holds that
F (z) = FE(z).

I Definition 12. We say that F is resilient to δ-fraction of noise if it is resilient to all
noise patterns E in which the fraction of corrupted gates in any input-to-output path in F is
at most δ.
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We can also be more delicate and distinguish between noise in ∧-gates and ∨-gates.

I Definition 13. An (α, β)-corruption of short-circuit errors, is a noise pattern on a formula
F of depth n that changes at most αn ∧-gates and at most βn ∨-gates in any input-to-output
path in F .

The following is immediate by definition.

B Claim 14. If, for some δ > 0, the formula F is resilient to any (δ, δ)-corruption of
short-circuit errors, then F is also resilient to δ-fraction of noise.

On its surface, the other direction does not necessarily hold: (δ, δ)-corruption may corrupt
up to a fraction 2δ of the gates in each path, hence resilience to δ-fraction appears to be
insufficient to resist all (δ, δ)-corruptions. Nevertheless, we argue that these two notions are
indeed equivalent. The reason is that a short-circuit in an ∧-gate can only turn the output
from 0 to 1. A short-circuit in an ∨-gate can only turn the output from 1 to 0. Then, if
a formula evaluates to 1 on some input, the output remains 1 regardless of any amount
of short-circuited ∧-gates. If the output is 0, it remains so regardless of any number of
short-circuited ∨-gates. This observation was already made by Kalai et al. [19].

I Lemma 15 ([19, Claim 7]). Let F be a formula, z an input and E any error pattern. Let
E∧ be the error pattern induced by E on the ∧ gates alone (no errors in ∨ gates); Let E∨
be the error pattern induced by E on the ∨ gates alone. It holds that if FE∧(z) = 0, then
FE(z) = 0 and if FE∨(z) = 1 then FE(z) = 1.

The above lemma then implies that resilience to δ-fraction of noise corresponds to
resilience to the same fraction of noise in both type of gates.

I Lemma 16. If, for some δ > 0, the formula F is resilient to a fraction δ of short-circuit
noise, then F is also resilient to any (δ, δ)-corruption.

5.2 From Formulas to Protocols
We begin with a KW-transformation for noisy formulas, given a specific noise pattern.

I Definition 17 (Noisy KW-transformation). For any formula F (z) and any noise pattern E
for F , the noisy transformation of FE yields an interactive protocol πFE defined as follows
over the domain F−1

E (0)× F−1
E (1).

The formula-tree is converted into a protocol tree, where every ∧ gate becomes a node
where Alice speaks and every ∨ gate becomes a node where Bob speaks.
For a node v, the mapping av(z) for z ∈ F−1

E (0) and the mapping bv(z) for z ∈ F−1
E (1)

are set as follows. Consider the evaluation of the formula FE on z.
If v is an ∧ gate, write v(z) = v0(z) ∧ v1(z) where v0 and v1 are v’s left and right
descendants in F , respectively. For any z ∈ F−1

E (0), if v0(z) = 0 we set av(z) = 0;
otherwise we set av(z) = 1.
For an ∨ gate and z ∈ F−1

E (1) denote v(z) = v0(z) ∨ v1(z), and set bv(z) = 0 if
v0(z) = 1; otherwise bv(z) = 1.

A leaf of F marked with the literal zi or ¬zi becomes a leaf (output) of the protocol with
the same literal.
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I Remark 18. In the above definition, we assume that if both v0(z) = 0 and v1(z) = 0 (for
z ∈ F−1(0)), the protocol continues to the left child. This choice is arbitrary, and any other
choice is valid and gives an alternative protocol which still satisfies Proposition 19 below.

For instance, we can have non-intersecting sets Z0 and Z1 that determine the inputs z
for which we take the left or right child, respectively (assuming both subformulas evaluate
to 0 exactly on Z0 ∪ Z1).

Following the mapping between formulas and protocols, [19] made the observations that
a short-circuit error in a formula translates to channel noise in the equivalent KW protocol,
assuming both parties learn the noise, i.e., assuming noiseless feedback. We will sometimes
abuse notations and identify a short-circuit noise pattern with a transmission noise pattern
for a formula F and a protocol π that share the same underlying tree structure. Furthermore,
we will denote the two different objects with the same identifier E.

Next, we claim that performing the protocol πFE assuming the channel noise E computes
the KW game of the noisy formula FE .

I Proposition 19. Assume that FE(z) computes the function f(z). Then, πFE

E com-
putes KWf .

The proof goes by induction, similar to the original KW proof. The short-circuit noise forces
some gate’s output to be the output of a specific sub-formula. At the same time, channel
noise causes the protocol to proceed to the corresponding sub-protocol. Together, we show
that the following invariant holds, given the noise E: for any reachable node v, v(x) = 0 and
v(y) = 1. This implies that once a leaf is reached, Alice and Bob disagree on its value, hence
it is a valid output for the KW-game.

The above suggests that, for a given noise E, we can construct a protocol resilient to E.
The next proposition proves that this can be extended to a family of noise patterns. This
yields our main proposition for converting formulas to protocols in a noise-preserving way.

I Proposition 20. Let F be a (complete) formula that computes the function f and is
resilient to (α, β)-corruption of short-circuit gates in every input-to-output path. Then, a
noisy KW-transformation yields a protocol π (over channels with feedback) that solves KWf

and is resilient to (α, β)-corruptions.

The conversion from resilient formulas into resilient protocols of Proposition 20 implies
an upper bound on the maximal resilience of formulas, and proves Theorem 2.

I Theorem 21. There exists a function f : {0, 1}n → Z such that no formula F that
computes f with fan-in k and depth less than r < 5

6
n−3

log |k| , is resilient to a fraction 1/5 of
short-circuit noise.

Proof. For z ∈ {0, 1}n, let par(z) = z1 ⊕ · · · ⊕ zn be the parity function.
Let F be a formula that computes par(z) with AND/OR gates of fan-in k and depth(F ) <

5
6

n−3
log k . Assume that F is resilient to a fraction 1/5 of short-circuit noise. Lemma 16 shows

that F is also resilient to (1/5, 1/5)-corruptions of short-circuits. Moreover, assume that the
formula’s underlying graph is a complete k-ary tree.8 Then, using Proposition 20 we obtain
an interactive protocol π for KWpar of length |π| = depth(F ) < 5

6
n−3
log k that communicates

symbol from alphabet of size |Σ| = k, and is resilient to (1/5, 1/5)-corruptions. This
contradicts Theorem 7. J

8 If F has a node that has missing children, we can duplicate one of its children to obtain a complete
graph. This clearly does not change the functionality of F , nor its resilience.
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Note that computing the parity of n bits can be done with a formula of depth O(logn).
However, the above theorem shows that any resilient formula for the parity function will
have an exponential blow-up in depth, and thus exponential blow-up in size.

I Corollary 22. There is no coding scheme that converts any formula F of size s into a
formula F ′ of size o(exp(s)), such that F ′ computes the same function as F and is resilient
to 1/5-fraction of short-circuit gates on every input to output path.

5.3 From Protocols to Formulas
Here we would like to prove that a resilient protocol implies a resilient formula.

I Proposition 23. Let π be a protocol that solves KWf for some function f and is resilient
to (α, β)-corruption. The KW-transformation on the reachable protocol tree of π yields a
formula F that computes f and is resilient to (α, β)-corruption of short-circuit noise in any
of its input-to-output paths.

The above proposition is in fact a reformulation of a result by Kalai, Lewko, and Rao [19],
implied by Lemma 15 and by Lemma 8 in [19].

Using our coding scheme that is resilient to (1/5− ε, 1/5− ε)-corruptions we get that we
can fortify any formula F so it becomes resilient to (1/5− ε)-fraction of short-circuit noise,
with only polynomial growth in size.

I Theorem 24. For any ε > 0, any formula F of depth n and fan-in 2 that computes a
function f can be efficiently converted into a formulas F ′ that computes f even up to 1/5− ε
of the gates in any of its input-to-output path are short-circuited. F ′ has a constant fan-in
Oε(1) and depth O(n/ε).

Theorem 1 is an immediate corollary of the above theorem, by noting that

|F ′| ≤ kdepth(F ′) =
(

2O(log(1/ε))
)O((log |F |)/ε)

= polyε(|F |).

Here k ≈ ε−2 is the fan-in of |F ′| given by the alphabet size of the resilient interactive
protocol π′ constructed earlier.
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Abstract
For 0 ≤ α ≤ 1/2, we show an algorithm that does the following. Given appropriate preprocessing
P (L) consisting of Nα := 2O(n1−2α+logn) vectors in some lattice L ⊂ Rn and a target vector t ∈ Rn,
the algorithm finds y ∈ L such that ‖y − t‖ ≤ n1/2+αη(L) in time poly(n) ·Nα, where η(L) is the
smoothing parameter of the lattice.

The algorithm itself is very simple and was originally studied by Doulgerakis, Laarhoven, and
de Weger (to appear in PQCrypto, 2019), who proved its correctness under certain reasonable
heuristic assumptions on the preprocessing P (L) and target t. Our primary contribution is a choice
of preprocessing that allows us to prove correctness without any heuristic assumptions.

Our main motivation for studying this is the recent breakthrough algorithm for IdealSVP due to
Hanrot, Pellet–Mary, and Stehlé (to appear in Eurocrypt, 2019), which uses the DLW algorithm as
a key subprocedure. In particular, our result implies that the HPS IdealSVP algorithm can be made
to work with fewer heuristic assumptions.

Our only technical tool is the discrete Gaussian distribution over L, and in particular, a lemma
showing that the one-dimensional projections of this distribution behave very similarly to the
continuous Gaussian. This lemma might be of independent interest.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Lattices, guaranteed distance decoding, GDD, GDDP

Digital Object Identifier 10.4230/LIPIcs.CCC.2019.11

Related Version A full version of the paper is available at http://arxiv.org/abs/1902.08340.
(Please read the full version!)

Acknowledgements I thank Guillaume Hanrot, Thijs Laarhoven, Alice Pellet–Mary, Oded Regev,
and Damien Stehlé for helpful discussions. I also thank Alice Pellet–Mary, Guillaume Hanrot, and
Damien Stehlé for sharing early versions of their work with me. I am also grateful to the CCC 2019
reviewers for their very helpful comments, and Daniel Dadush for showing me how to obtain the
stronger results to be written up in the full version.

1 Introduction

A lattice L ⊂ Rn is the set of all integer linear combinations

L := {z1b1 + · · ·+ znbn : zi ∈ Z}

of linearly independent basis vectors b1, . . . , bn ∈ Rn. For a lattice L ⊂ Rn and target vector
t ∈ Rn, the d-Guaranteed Distance Decoding problem (d-GDD, or just GDD) asks us to
find y ∈ L such that ‖y − t‖ ≤ d for some distance d := d(L) that depends only on L. In
particular, we must have d ≥ µ(L), where µ(L) := max dist(t,L) is the covering radius of
the lattice.

GDD with preprocessing (GDDP) is the variant of this problem in which we are allowed
to perform arbitrary preprocessing on the lattice (but not on t). I.e., formally an “algorithm”
for GDDP is really a pair of algorithms, a preprocessing algorithm, which takes as input (a
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11:2 GDD with Preprocessing

basis for) a lattice L ⊂ Rn and outputs some preprocessing P (L), and a query algorithm
which takes as input P (L) and a target t and outputs a valid solution to the GDD instance
(L, t). The complexity measure that interests us for such algorithms is the running time of
the query algorithm.

In [7], Doulgerakis, Laarhoven, and de Weger (DLW) gave an elegant algorithm for GDDP
whose correctness relies on certain heuristic assumptions. (Our presentation here differs quite
a bit from DLW’s. See Section 1.2.) In fact, [7] gave a family of algorithms parameterized
by 0 ≤ α ≤ 1/2 whose preprocessing consists of Nα ≈ 2n1−2α lattice vectors in L whose
length is roughly r. Given a target t, the query algorithm starts by setting t′ = t. The
algorithm then simply searches for a vector y in the preprocessing list and an integer k such
that ‖ky − t′‖ < ‖t′‖. If it finds one, it replaces t′ by t′ − ky and repeats this procedure.
Finally, it outputs y′ := t− t′ ∈ L. Under certain heuristic assumptions that in particular
imply that the preprocessing is nicely distributed, [7] showed that this algorithm terminates
with ‖y′ − t‖ = ‖t′‖ . nα · r in time poly(n) ·Nα.

DLW’s algorithm is the first to provide a smooth trade-off between the running time
and the distance d. (Such trade-offs are known for other lattice problems. E.g., without
preprocessing, block reduction [19, 8] algorithms accomplish this for many lattice problems,
and with preprocessing, such trade-offs are known for Bounded Distance Decoding and the
Closest Vector Problem [12, 6].) This recently found an exciting application discovered by
Pellet–Mary, Hanrot, and Stehlé [18]. [18] showed the best known time-approximation-factor
trade-off for the very important problem of finding short non-zero vectors in ideal lattices
(given suitable preprocessing on the underlying number field). Their algorithm uses the DLW
algorithm as a key subprocedure. However, since DLW’s algorithm relies on certain heuristic
assumptions, their application crucially relies on the (reasonable but unproven) assumption
that these heuristics apply in their particular use case.

1.1 Removing the heuristic in DLW’s GDDP algorithm
We show how to instantiate DLW’s heuristic algorithm in a provably correct way. In particular,
we show an explicit distribution over the lattice such that, when the preprocessing consists of
independent samples from this distribution, the above algorithm provably succeeds with high
probability. Indeed, there is a very natural choice for this distribution: the discrete Gaussian
over the lattice, DL,s. This is the distribution that assigns probability to each lattice vector
y ∈ L proportional to its Gaussian mass exp(−π‖y‖2/s2), and it is a ubiquitous tool in
lattice algorithms and the study of lattices more generally. (See, e.g., [20].) When the
width parameter s > 0 is at least as large as the smoothing parameter η(L), the discrete
Gaussian distribution DL,s provably behaves quite similarly to the continuous Gaussian in
many ways [15]. (E.g., its moments are close to those of a continuous Gaussian.) So, one
might expect that it will be distributed nicely enough to work for DLW’s use case.

We show that for s = η(L), the discrete Gaussian DL,s does in fact suffice to provably
instantiate DLW’s heuristic algorithm with r ≈

√
n · η(L). (This is essentially the same value

of r used in [7]. See Section 1.2 for more discussion.) I.e., we prove the following theorem.

I Theorem 1. For any 0 ≤ α ≤ 1/2, there is an algorithm that solves d-GDDP in time
2O(n1−2α+logn) where d(L) := n1/2+α · η(L).

Theorem 1 is primarily interesting for α strictly between zero and 1/2. For α = 0,
Theorem 1 is outperformed by existing 2O(n)-time algorithms for CVP [16, 2]. These
algorithms do not require preprocessing and are actually guaranteed to find a closest vector
to the target t, so our algorithm is beaten in many respects by the competition in this regime.
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Similarly, for α = 1/2, Babai’s celebrated polynomial-time algorithm [3] always matches
or outperforms Theorem 1 when instantiated with an appropriate basis as preprocessing.
However, we will show in the full version [21] how to essentially combine ideas from Babai’s
algorithm to correct this and to beat all prior algorithms for all (constants) 0 < α < 1/2.

However, even without these improvements, this result is already quite strong for the
“typical” lattices that interest us – e.g., that that arise in cryptography and those that satisfy
the heuristics in [7] – which in particular satisfy η(L) ≈ µ(L)/

√
n. In particular, Theorem 1 is

already enough to remove [18]’s reliance on certain heuristic assumptions. ([18] also requires
additional unrelated heuristic assumptions, which our result does not remove. We refer the
reader to [18] for more information.)

Behind this result is a geometric lemma concerning the discrete Gaussian distribution
that, to the author’s knowledge, is novel. The lemma shows that one-dimensional projections
of the discrete Gaussian look very much like a continuous Gaussian for parameters above
smoothing. (See Theorem 7.)

1.2 Relation to DLW
Our presentation here is quite different from the presentation in [7]. (See also an earlier
version of the same paper [10] and a closely related paper [11].) We attempt to clarify some
of the differences here to avoid confusion.

First of all, DLW described their algorithm as a solution to the Closest Vector Problem
(CVP), in which the goal is to output a vector y ∈ L with ‖y − t‖ ≤ γ · dist(t,L) for
some approximation factor γ ≥ 1. In contrast, we call the same algorithm a GDD(P)
algorithm. This discrepancy arises when one moves from heuristic algorithms to provably
correct algorithms. Since dist(t,L) is nearly maximal for “most” t [9], DLW’s heuristics
quite reasonably imply that dist(t,L) is nearly maximal, i.e., dist(t,L) ≈ µ(L). With this
assumption, γ-CVP is essentially equivalent to (γµ(L))-GDD. However, without such a
heuristic, the two problems seem to be quite different, so that the distinction is unfortunately
necessary here.

Second, since [7] describe their results in terms of CVP and do not mention the smoothing
parameter η(L), their results are formally incomparable with Theorem 1. However, we note
that the heuristics in [7] imply that η(L) ≈ λ1(L)/

√
n ≈ µ(L)/

√
n, and the DLW algorithm

finds vectors within distance roughly nαλ1(L) of the target. Since we obtain vectors within
distance n1/2+αη(L), our result essentially matches theirs when their heuristics apply.

Third, while we match DLW’s algorithm asymptotically, we do not claim to match
the constants. Indeed, in the language of this paper, much of [7] is devoted to finding
vectors within distance c1

√
n · η(L) in time 2c2n+o(n) for small constants 0 < c1, c2 < 1.

In contrast, we are mostly interested in what appears as a secondary result in that paper:
the time-distance trade-off achievable for distance n1/2+αη(L) and time 2O(n1−2α+logn) for
0 < α < 1/2. And, we make very little effort to optimize the constants. For example, [7]
uses nearest neighbor data structures to let the query algorithm avoid reading the entire
preprocessing, which we do not attempt to replicate here. Similarly, while [7] proposed
specific techniques for computing the preprocessing in 2cn+o(n) time, we ignore this. (We do
note, however, that [1] shows how to sample the preprocessing in time 2n+o(n).)

2 Preliminaries

Throughout this work, we adopt the common convention of expressing the running times of
lattice algorithms in terms of the dimension n only, ignoring any dependence on the bit length
of the input B. Formally, we should specify a particular input format for the (basis of the)
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lattice (e.g., by restricting our attention to rational numbers and using the natural binary
representation of a rational matrix to represent a basis for the lattice), and our running
time should of course have some dependence on B. Consideration of the bit length would
simply add a poly(B) factor to the running time for the algorithm(s) considered in this
paper, provided that the input format allows for efficient arithmetic operations.

2.1 The discrete Gaussian
For a vector x ∈ Rn and parameter s > 0, we write ρs(x) := exp(−π‖x‖2/s2) for the
Gaussian mass of x with parameter s. For a lattice L ⊂ Rn and shift vector t ∈ Rn, we write

ρs(L − t) :=
∑
y∈L

ρs(y − t)

for the Gaussian mass of L−t with parameter s. We writeDL,s for the probability distribution
over L defined by

Pr
X∼DL,s

[X = y] = ρs(y)
ρs(L)

for y ∈ L.
The dual lattice L∗ ⊂ Rn is the set of vectors that have integer inner product with all

lattice vectors,

L∗ := {w ∈ Rn : ∀y ∈ L, 〈w,y〉 ∈ Z} .

Micciancio and Regev defined the smoothing parameter η(L) as the unique parameter s such
that ρ1/s(L∗) = 3/2 [15].1 The following claim justifies the name “smoothing parameter,”
and it is the only fact about the smoothing parameter that we will need.
B Claim 2. For any lattice L ⊂ Rn, parameter s ≥ η(L), and shift t ∈ Rn,

1
3 ≤

ρs(L − t)
ρs(L) ≤ 1 .

We will also need a simplified version of Banaszczyk’s celebrated tail bound for the
discrete Gaussian [4].
I Theorem 3. For any lattice L ⊂ Rn and parameter s > 0,

Pr
X∼DL,s

[‖X‖ ≥
√
ns] ≤ 2−n .

Finally, we will need the following rather weak consequence of Babai’s algorithm [3].
I Theorem 4. There is a polynomial-time algorithm for (2nη(L))-GDD.

2.2 ε-nets
For ε > 0, we say that a set {v1, . . . ,vM} ⊂ Rn of unit vectors with ‖vi‖ = 1 is an ε-net of
the unit sphere if for any t ∈ Rn with ‖t‖ = 1, there exists vi such that ‖vi − t‖ ≤ ε. We
will use a simple bound on the size of such a net, which can be proven via a simple packing
argument. See [22, Lemma 5.2], for example.
I Lemma 5. For any ε > 0, there exists an ε-net of the unit sphere in Rn with (1 + 2/ε)n
points.

1 This is more commonly referred to as η1/2(L), where ηε(L) is the unique parameter s such that
ρ1/s(L∗) = 1 + ε. Since we will always take ε = 1/2, we simply omit it. Our results remain essentially
unchanged if we take ε to be any constant strictly between zero and one.
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3 The algorithm

We consider the following algorithm for GDDP. For an input lattice L ⊂ Rn with n ≥ 40,
the preprocessing consists of N lattice vectors y1, . . . ,yN ∈ L. On input t ∈ Rn, the
query algorithm behaves as follows. It first uses Theorem 4 to find t0 ∈ L + t such that
‖t0‖ ≤ 2nη(L) and sets j = 0. The algorithm then does the following repeatedly. It finds an
index i and integer k such that ‖tj − kyi‖2 ≤ (1− 1/n2) · ‖tj‖2, sets tj+1 := tj − kyi, and
increments j. Once the algorithm fails to find such a vector, it outputs tj − t ∈ L.2

Our main theorem shows that this algorithm will succeed when the preprocessing is chosen
from the right distribution. We emphasize the order of quantifiers: with high probability
over the preprocessing, the algorithm works for all targets t ∈ Rn. In particular, there exists
fixed preprocessing that works for all targets t.

I Theorem 6. For any α with 2
logn ≤ α ≤

1
2 , when the preprocessing of the above algorithm

consists of Nα := n2e(n1/2−α+4)2 = 2O(n1−2α+logn) samples from DL,s for s := η(L), it yields
a solution to d-GDDP in time poly(n) ·Nα with high probability, where d := n1/2+α · η(L).

Proof. By scaling appropriately, we may assume without loss of generality that d = 1, and
therefore s = n−1/2−α. Let y1, . . . ,yNα ∼ DL,s. To prove correctness, we must show that,
with high probability over the yi, for every t ∈ Rn with ‖t‖ ≥ 1, there exists an index i
and integer k such that ‖t− kyi‖2 ≤ (1− 1/n2) · ‖t‖2. It suffices to prove that for ‖t‖ = 1,
there exists an i with ‖t − yi‖2 ≤ 1 − 4/n2.3 Finally, to prove this, it suffices to take a
(1/n3)-net of the unit sphere, v1, . . . ,vM , and to show that for each j, there exists an i such
that ‖vj − yi‖2 ≤ 1− 5/n2.

By Lemma 5, there exists such a net of cardinality M = (3n)3n. For each vj in this net
and each index i, we have by Corollary 8 (proven below) that

Pr
[
‖vj − yi‖2 ≤ 1− 5/n2] ≥ exp(−π(5/(n2s) + ns+ 4)2/4)− 2−n

≥ exp(−(n1/2−α + 4)2)
= n2/Nα .

Since the yi are sampled independently, the probability that no such i exists is at most
(1− n2/Nα)Nα < 2−n/M . The result then follows by taking a union bound over the vj . J

3.1 One-dimensional projections of the discrete Gaussian
We are interested in the lower bound in the following lemma (whose proof uses a very nice
idea from [13]). The upper bound (i.e., the subgaussianity of the discrete Gaussian) applies
for all parameters s > 0 and is well known. (It appears in slightly different forms in [5, 17].
See also [14, Lemma 2.8].) We only include the upper bound for comparison, and we make
no effort to optimize the lower-order term.

2 The author made no effort to optimize these parameters. Notice that we can find such an i and k (if
they exist) in time essentially poly(n) ·N . To guarantee a total running time of poly(n) ·N , we can
also assume that the algorithm halts and outputs tj − t ∈ L if j reaches, say, 100n3. This is not strictly
necessary, since we will have ‖yi‖ ≈

√
n · η(L) with very high probability.

3 Indeed, suppose that ‖t− yi‖2 ≤ 1− 4/n2 and ‖t‖ = 1, so that in particular 〈yi, t〉 ≥ 0. Then for any
β/2 ≤ k ≤ β,

‖βt− kyi‖2

‖βt‖2 = 1− k2

β2 ·
(
1− ‖t− yi‖

2)− (2k
β
− 2k2

β2

)
· 〈yi, t〉 ≤ 1− k2

β2 ·
4
n2 ≤ 1− 1

n2 .
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I Theorem 7. For any lattice L ⊂ Rn, parameter s ≥ η(L), unit vector v ∈ Rn with ‖v‖ = 1,
and r0 > 0, we have

exp(−π(r0/s+ 2)2) < Pr
X∼DL,s

[
〈X,v〉 ≥ r0

]
≤ exp(−πr2

0/s
2) . (1)

Before presenting the proof, we provide some of the intuition behind it. The idea is
to control the moment-generating function g(β) := E[exp(2πβ〈X,v〉)] for β > 0. For a
continuous Gaussian, this is exp(πβ2), and the discrete Gaussian behaves similarly, with
g(β) ≈ exp(πβ2) (see Eq. (2)). For a fixed value of β, knowledge of g(β) is insufficient to
prove something like Eq. (1). So, we take a weighted combination α1g(β1)−α2g(β2)−α3g(β3)
for appropriately chosen weights to essentially approximate

E[1〈X,v〉&r0 ] ≈ Pr
X∼DL,s

[
〈X,v〉 ≥ r0

]
.

More specifically, we define the function f(r) as in Eq. (3), which satisfies f(r) < 0 unless
r ≈ r0 and f(r) ≈ exp(2πβr0) for r ≈ r0. We then use our bounds on the moment-generating
function to show that E[f(〈X,v〉)] is not too small, which implies the result.

Proof. By scaling appropriately, we may assume that s = 1. Let β > 0 to be chosen later.
By completing the square in the exponent, we see that

E[exp(2πβ〈X,v〉)] = exp(πβ2) · ρ1(L − βv)
ρ1(L) .

Therefore, by Claim 2,
1
3 ≤ exp(−πβ2) · E[exp(2πβ〈X,v〉)] ≤ 1 . (2)

I.e., we know the moment generating function of 〈X,v〉 to within a multiplicative constant.
The upper bound in Eq. (1) then follows from taking β = r0 and applying Markov’s inequality.
(This proof of the upper bound is identical to the proof in [14]. See their Lemma 2.8 and
their discussion above it.)

Turning to the lower bound, for r ∈ R, let

f(r) := exp(2πβr) ·
(
1− exp(2π(r0 − r))− exp(2π(r − r0 − 2))

)
. (3)

Notice that f(r) < 0 unless r0 < r < r0 + 2. And, f(r) < exp(2πβr), which together with
the previous two inequalities implies that f(r) < exp(2πβ(r0 + 2)) for all r. Therefore,

E
[
f(〈X,v〉)

]
< exp(2πβ(r0 + 2)) · Pr

[
〈X,v〉 ≥ r0

]
. (4)

By applying Eq. (2) term-wise and taking β = r0 + 1, we have

E
[
f(〈X,v〉)

]
= E

[
exp(2πβ〈X,v〉)

]
− exp(2πr0)E

[
exp(2π(β − 1)〈X,v〉)

]
− exp(−2π(r0 + 2))E

[
exp(2π(β + 1)〈X,v〉)

]
≥ 1

3 · exp(πβ2)− exp(π(β − 1)2 + 2πr0)− exp(π(β + 1)2 − 2π(r0 + 2))

= exp(πr2
0 + 2πr0) · (eπ/3− 2)

> exp(πr2
0 + 2πr0) . (5)

Combining Eqs. (4) and (5) and rearranging, we have

Pr
[
〈X,v〉 ≥ r0

]
> exp(πr2

0 + 2πr0 − 2πβ(r0 + 2)) = exp(−π(r0 + 2)2) ,

as needed. J
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I Corollary 8. For any 0 < r < 1, lattice L ⊂ Rn, unit vector v ∈ Rn with ‖v‖ = 1, and
s ≥ η(L), we have

Pr
X∼DL,s

[
‖v −X‖2 ≤ 1− r

]
> exp(−π(r/s+ ns+ 4)2/4)− 2−n .

Proof. Notice that ‖v−X‖2 = 1+‖X‖2−2〈v,X〉. By Theorem 3, we have that ‖X‖2 ≤ ns2

except with probability at most 2−n. By Theorem 7, we see that

Pr[〈v,X〉 ≥ (ns2 + r)/2] > exp(−π(r/s+ ns+ 4)2/4) .

The result follows from union bound. J
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Limits on the Universal Method for Matrix
Multiplication
Josh Alman
MIT CSAIL and EECS, Cambridge, MA, USA
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Abstract
In this work, we prove limitations on the known methods for designing matrix multiplication
algorithms. Alman and Vassilevska Williams [2] recently defined the Universal Method, which
substantially generalizes all the known approaches including Strassen’s Laser Method [20] and Cohn
and Umans’ Group Theoretic Method [9]. We prove concrete lower bounds on the algorithms one
can design by applying the Universal Method to many different tensors. Our proofs use new tools
for upper bounding the asymptotic slice rank of a wide range of tensors. Our main result is that the
Universal method applied to any Coppersmith-Winograd tensor CWq cannot yield a bound on ω,
the exponent of matrix multiplication, better than 2.16805. By comparison, it was previously only
known that the weaker “Galactic Method” applied to CWq could not achieve an exponent of 2.

We also study the Laser Method (which is, in principle, a highly special case of the Universal
Method) and prove that it is “complete” for matrix multiplication algorithms: when it applies to
a tensor T , it achieves ω = 2 if and only if it is possible for the Universal method applied to T to
achieve ω = 2. Hence, the Laser Method, which was originally used as an algorithmic tool, can
also be seen as a lower bounding tool. For example, in their landmark paper, Coppersmith and
Winograd [12] achieved a bound of ω ≤ 2.376, by applying the Laser Method to CWq. By our result,
the fact that they did not achieve ω = 2 implies a lower bound on the Universal Method applied to
CWq. Indeed, if it were possible for the Universal Method applied to CWq to achieve ω = 2, then
Coppersmith and Winograd’s application of the Laser Method would have achieved ω = 2.
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1 Introduction

One of the biggest open questions in computer science asks how quickly one can multiply
two matrices. Progress on this problems is measured by giving bounds on ω, the exponent
of matrix multiplication, defined as the smallest real number such that two n× n matrices
over a field can be multiplied using nω+o(1) field operations. Since Strassen’s breakthrough
algorithm [21] showing that ω ≤ log2(7) ≈ 2.81, there has been a long line of work, resulting
in the current best bound of ω ≤ 2.3729 [26, 18], and it is popularly conjectured that ω = 2.

The key to Strassen’s algorithm is an algebraic identity showing how 2× 2× 2 matrix
multiplication can be computed surprisingly efficiently (in particular, Strassen showed that
the 2 × 2 × 2 matrix multiplication tensor has rank at most 7; see Section 3 for precise
definitions). Arguing about the ranks of larger matrix multiplication tensors has proven
to be quite difficult – in fact, even the rank of the 3 × 3 × 3 matrix multiplication tensor
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isn’t currently known. Progress on bounding ω since Strassen’s algorithm has thus taken the
following approach: Pick a tensor (trilinear form) T , typically not a matrix multiplication
tensor, such that

Powers T⊗n of T can be efficiently computed (i.e. T has low asymptotic rank), and
T is useful for performing matrix multiplication, since large matrix multiplication tensors
can be “embedded” within powers of T .

Combined, these give an upper bound on the rank of matrix multiplication itself, and hence ω.
The most general type of embedding which is known to preserve the ranks of tensors

as required for the above approach is a degeneration. In [2], the author and Vassilevska
Williams called this method of taking a tensor T and finding the best possible degeneration
of powers T⊗n into matrix multiplication tensors the Universal Method applied to T , and
the best bound on ω which can be proved in this way is written ωu(T ). They also defined
two weaker methods: the Galactic Method applied to T , in which the “embedding” must be a
more restrictive monomial degeneration, resulting in the bound ωg(T ) on ω, and the Solar
Method applied to T , in which the “embedding” must be an even more restrictive zeroing
out, resulting in the bound ωs(T ) on ω. Since monomial degenerations and zeroing outs are
successively more restrictive types of degenerations, we have that for all tensors T ,

ω ≤ ωu(T ) ≤ ωg(T ) ≤ ωs(T ).

These methods are very general; there are no known methods for computing ωu(T ), ωg(T ),
or ωs(T ) for a given tensor T , and these quantities are even unknown for very well-studied
tensors T . The two main approaches to designing matrix multiplication algorithms are the
Laser Method of Strassen [20] and the Group-Theoretic Method of Cohn and Umans [9].
Both of these approaches show how to give upper bounds on ωs(T ) for particular structured
tensors T (and hence upper bound ω itself). In other words, they both give ways to find
zeroing outs of tensors into matrix multiplication tensors, but not necessarily the best zeroing
outs. In fact, it is known that the Laser Method does not always give the best zeroing out
for a particular tensor T , since the improvements from [12] to later works [13, 26, 18] can be
seen as giving slight improvements to the Laser Method to find better and better zeroing
outs1. The Group-Theoretic Method, like the Solar Method, is very general, and it is not
clear how to optimally apply it to a particular group or family of groups.

All of the improvements on bounding ω for the past 30+ years have come from studying
the Coppersmith-Winograd family of tensors {CWq}q∈N. The Laser Method applied to
powers of CW5 gives the bound ωs(CW5) ≤ 2.3729. The Group-Theoretic Method can also
prove the best known bound ω ≤ 2.3729, by simulating the Laser Method analysis of CWq

(see e.g. [1] for more details). Despite a long line of work on matrix multiplication, there are
no known tensors2 which seem to come close to achieving the bounds one can obtain using
CWq. This leads to the first main question of this paper:

I Question 1. How much can we improve our bound on ω using a more clever analysis of
the Coppersmith-Winograd tensor?

The author and Vassilevska Williams [2] addressed this question by showing that there
is a constant c > 2 so that for all q, ωg(CWq) > c. In other words, the Galactic Method
(monomial degenerations) cannot be used with CWq to prove ω = 2. However, this leaves open

1 These works apply the Laser Method to higher powers of the tensor T = CWq, a technique which is
still captured by the Solar Method.

2 The author and Vassilevska Williams [2] study a generalization of CWq which can tie the best known
bound, but its analysis is identical to that of CWq. Our lower bounds in this paper will apply equally
well to this generalized class as to CWq itself.
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a number of important questions: How close to 2 can we get using monomial degenerations;
could it be that ωg(CWq) ≤ 2.1? Perhaps more importantly, what if we are allowed to use
arbitrary degenerations; could it be that ωu(CWq) ≤ 2.1, or even ωu(CWq) = 2?

The second main question of this paper concerns the Laser Method. The Laser Method
upper bounds ωs(T ) for any tensor T with certain structure (which we describe in detail in
Section 6), and has led to every improvement on ω since its introduction by Strassen [20].

I Question 2. When the Laser Method applies to a tensor T , how close does it come to
optimally analyzing T?

As discussed, we know the Laser Method does not always give a tight bound on ωs(T ).
For instance, Coppersmith-Winograd [12] applied the Laser Method to CWq to prove
ωs(CWq) ≤ 2.376, and then later work [13, 26, 18] analyzed higher and higher powers of
CWq to show ωs(CWq) ≤ 2.373. Ambainis, Filmus and Le Gall [3] showed that analyzing
higher and higher powers of CWq itself with the Laser Method cannot yield an upper bound
better than ωs(CWq) ≤ 2.3725. What about for other tensors? Could there be a tensor
such that applying the Laser Method to T yields ωs(T ) ≤ c for some c > 2, but applying
the Laser Method to high powers T⊗n of T yields ωs(T ) = 2? Could applying an entirely
different method to such a T , using arbitrary degenerations and not just zeroing outs, show
that ωu(T ) = 2?

1.1 Our Results
We give strong resolutions to both Question 1 and Question 2.

Universal Method Lower Bounds

To resolve Question 1, we prove a new lower bound for the Coppersmith-Winograd tensor:

I Theorem 3. ωu(CWq) ≥ 2.16805 for all q.

In other words, no analysis of CWq, using any techniques within the Universal Method,
can prove a bound on ω better than 2.16805. This generalizes the main result of [2] from the
Galactic method to the Universal method, and gives a more concrete lower bound, increasing
the bound from “a constant greater than 2” to 2.16805. We also give stronger lower bounds
for particular tensors in the family. For instance, for the specific tensor CW5 which yields
the current best bound on ω, we show ωu(CW5) ≥ 2.21912 . . ..

Our proof of Theorem 3 proceeds by upper bounding S̃(CWq), the asymptotic slice rank
of CWq. The slice rank of a tensor, denoted S(T ), was first introduced by Blasiak et al. [5]
in the context of lower bounds against the Group-Theoretic Method. In order to study
degenerations of powers of tensors, rather than just tensors themselves, we need to study an
asymptotic version of slice rank, S̃. This is important since the slice rank of a product of two
tensors can be greater than the product of their slice ranks, and as we will show, S(CW⊗nq )
is much greater than S(CWq)n for big enough n.

We will give three different tools for proving upper bounds on S̃(T ) for many different
tensors T . These, combined with the known connection, that upper bounds on the slice rank
of T yield lower bounds on ωu(T ), will imply our lower bound for CWq as well as many
other tensors of interest, including: the same lower bound ωu(CWq,σ) ≥ 2.16805 for any
generalized Coppersmith-Winograd tensor CWq,σ as introduced in [2], a similar lower bound
for cwq,σ, the generalized “simple” Coppersmith-Winograd tensor missing its “corner terms”,
and a lower bound for Tq, the structural tensor of the cyclic group Cq, matching the lower
bounds obtained by [1, 5]. In Section 5 we give tables of our precise lower bounds for these
and other tensors.

CCC 2019
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The Galactic Method lower bounds of [2] were proved by introducing a suite of tools for
giving upper bounds on Ĩ(T ), the asymptotic independence number (sometimes also called
the “galactic subrank” or the “monomial degeneration subrank”) for many tensors T . We
will show that our new tools are able to prove at least as high a lower bound on S̃(T ) as the
tools of [2] can prove on Ĩ(T ). We thus show that all of those previously known Galactic
Method lower bounds hold for the Universal Method as well.

We also show how our slice rank lower bounds can be used to study other properties of
tensors. Coppersmith and Winograd [12] introduced the notion of the value Vτ (T ) of a tensor
T , which is useful when applying the Laser Method to a larger tensor T ′ which contains
T as a subtensor. We show how our slice rank lower bounding tools yield a tight upper
bound on the value of t112, the notorious subtensor of CW⊗2

q which arises when applying the
Laser Method to powers of CWq. Although the value Vτ (t112) appears in every analysis of
CWq since [12], including [13, 26, 18, 17, 14], the best lower bound on it has not improved
since [12], and our new upper bound here helps explain why. See Sections 3.5 and 5.4 for
more details.

We briefly note that our lower bound of 2.16805 > 2 + 1
6 in Theorem 3 may be significant

when compared to the recent algorithm of Cohen, Lee and Song [8] which solves n-variable
linear programs in time about O(nω + n2+1/6).

The Laser Method is “Complete”

We also show that for a wide class of tensors T , including CWq, cwq, Tq, and all the other
tensors we study in Section 5, our tools are tight, meaning they not only give an upper
bound on S̃(T ), but they also give a matching lower bound. Hence, for these tensors T , no
better lower bound on ωu(T ) is possible by arguing only about S̃(T ).

The tensors we prove this for are what we call laser-ready tensors – tensors to which the
Laser Method (as used by [12] on CWq) applies; see Definition 25 for the precise definition.
Tensors need certain structure to be laser-ready, but tensors T with this structure are
essentially the only ones for which successful techniques for upper bounding ωu(T ) are known.
In fact, every record-holding tensor in the history of matrix multiplication algorithm design
has been laser-ready.

We show that for any laser-ready tensor T , the Laser Method can be used to construct a
degeneration from T⊗n to an independent tensor of size Λn−o(n), where Λ is the upper bound
on S̃(T ) implied by one of our tools, Theorem 18. Combined, these imply that S̃(T ) = Λ,
showing that the lower bound from Theorem 18 is tight. This gives an intriguing answer
to Question 2:

I Theorem 4. If T is a laser-ready tensor, and the Laser Method applied to T yields the
bound ωu(T ) ≤ c for some c > 2, then ωu(T ) > 2.

To reiterate: If T is any tensor to which the Laser Method applies (as in Definition 25),
and the Laser Method does not yield ω = 2 when applied to T , then in fact ωu(T ) > 2,
and even the substantially more general Universal method applied to T cannot yield ω = 2.
Hence, the Laser Method, which was originally used as an algorithmic tool, can also be seen
as a lower bounding tool. Conversely, Theorem 4 shows that the Laser Method is “complete”,
in the sense that it cannot yield a bound on ω worse than 2 when applied to a tensor which
is able to prove ω = 2.

Theorem 4 explains and generalizes a number of phenomena:
The fact that Coppersmith-Winograd [12] applied the Laser method to the tensor CWq

and achieved an upper bound greater than 2 on ω implies that ωu(CWq) > 2, and no
arbitrary degeneration of powers of CWq can yield ω = 2.
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As mentioned above, it is known that applying the Laser method to higher and higher
powers of a tensor T can successively improve the resulting upper bound on ω. Theorem 4
shows that if the Laser method applied to the first power of any tensor T did not yield
ω = 2, then this sequence of Laser method applications (which is a special case of the
Universal method) must converge to a value greater than 2 as well. This generalizes the
result of Ambainis, Filmus and Le Gall [3], who proved this about applying the Laser
Method to higher and higher powers of the specific tensor T = CWq.
Our result also generalizes the result of Kleinberg, Speyer and Sawin [16], where it was
shown that (what can be seen as) the Laser method achieves a tight lower bound on
S̃(T lowerq ), matching the upper bound of Blasiak et al. [5]. Indeed, T lowerq , the lower
triangular part of Tq, is a laser-ready tensor.

Our proof of Theorem 4 also sheds light on a notion related to the asymptotic slice
rank S̃(T ) of a tensor T , called the asymptotic subrank Q̃(T ) of T . Q̃ is a “dual” notion of
asymptotic rank, and it is important in the definition of Strassen’s asymptotic spectrum
of tensors [20].

It is not hard to see (and follows, for instance, from Propositions 8 and 9 below) that
Q̃(T ) ≤ S̃(T ) for all tensors T . However, there are no known separations between the two
notions; whether there exists a tensor T such that Q̃(T ) < S̃(T ) is an open question. As a
Corollary of Theorem 4, we prove:

I Corollary 5. Every laser-ready tensor T has Q̃(T ) = S̃(T ).

Since, as discussed above, almost all of the most-studied tensors are laser-ready, this might
help explain why we have been unable to separate the two notions.

1.2 Other Related Work
Probabilistic Tensors and Support Rank

Cohn and Umans [10] introduced the notion of the support rank of tensors, and showed that
upper bounds on the support rank of matrix multiplication tensors can be used to design
faster Boolean matrix multiplication algorithms. Recently, Karppa and Kaski [15] used
“probabilistic tensors” as another way to design Boolean matrix multiplication algorithms.

In fact, our tools for proving asymptotic slice rank upper bounds can be used to prove
lower bounds on these approaches as well. For instance, our results imply that finding a
“weighted” matrix multiplication tensor as a degeneration of a power of CWq (in order to
prove a support rank upper bound) cannot result in a better exponent for Boolean matrix
multiplication than 2.16805.

This is because “weighted” matrix multiplication tensors can degenerate into independent
tensors just as large as their unweighted counterparts. Similarly, if a probabilistic tensor T
is degenerated into a (probabilistic) matrix multiplication tensor, Karppa and Kaski show
that this gives a corresponding support rank expression for matrix multiplication as well,
and so upper bounds on S̃(T ) for any T in the support of T also result in lower bounds on
this approach.

Concurrent Work

Christandl, Vrana and Zuiddam [6] independently proved some of the same lower bounds
on ωu as us, including Theorem 3. Although we achieve the same upper bounds on ωu(T )
for a number of tensors, our techniques seem different: we use simple combinatorial tools
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generalizing those from our prior work [2], while their bounds use the seemingly more
complicated machinery of Strassen’s asymptotic spectrum of tensors [23]. They thus phrase
their results in terms of the asymptotic subrank Q̃(T ) of tensors rather than the asymptotic
slice rank S̃(T ), and the fact that their bounds are often the same as ours is related to the
fact we prove, in Corollary 5, that Q̃(T ) = S̃(T ) for all of the tensors we study; see the
bottom of Section 3.6 for a more technical discussion of the differences between the two
notions. Our other results and applications of our techniques are, as far as we know, entirely
new, including our matching lower bounds for S̃(CWq), S̃(cwq), and S̃(Tq), bounding the
value Vτ (T ) of tensors, and all our results about the completeness of the Laser Method. By
comparison, their “irreversibility” approach only seems to upper bound ωu(T ) itself.

1.3 Outline
In Section 2 we give an overview of the proofs of our main results. In Section 3 we introduce
all the concepts and notation related to tensors which will be used throughout the paper. In
particular, in Subsection 3.6 we introduce the relevant notions and basic properties related to
slice rank. In Section 4 we present the proofs of our new lower bounding tools for asymptotic
slice rank. In Section 5 we apply these tools to a number of tensors of interest including
CWq. Finally, in Section 6, we define and discuss the “completeness” of the Laser method.

2 Proof Overview

We give a brief overview of the techniques we use to prove our main results, Theorems 3 and 4.
All the technical terms we refer to here will be precisely defined in Section 3.

Section 3.6: Asymptotic Slice Rank and its Connection with Matrix Multiplication

The tensors we study are 3-tensors, which can be seen as trilinear forms over three sets
X,Y, Z of formal variables. The slice rank S(T ) of a tensor T is a measure of the complexity
of T , analogous to the rank of a matrix. In this paper we study the asymptotic slice rank
S̃(T ) of tensors T :

S̃(T ) := lim sup
n∈N

S(T⊗n)1/n.

S̃ satisfies two key properties:
1. Degenerations cannot increase the asymptotic slice rank of a tensor. In other words, if A

degenerates to B, then S̃(B) ≤ S̃(A).
2. Matrix multiplication tensors have high asymptotic slice rank.
This means that if a certain tensor T has a small value of ωu(T ), or in other words, powers
T⊗n can degenerate into large matrix multiplication tensors, then T itself must have large
asymptotic slice rank. Hence, in order to lower bound ωu(T ), it suffices to upper bound S̃(T ).

Section 4: Tools for Upper Bounding Asymptotic Slice Rank

In general, bounding S̃(T ) for a tensor T can be much more difficult than bounding S(T ).
This is because S can be supermultiplicative, i.e. there are tensors A and B such that
S(A) · S(B) � S(A ⊗ B). Indeed, we will show that S̃(T ) > S(T ) for many tensors T of
interest, including T = CWq.

We will give three new tools for upper bounding S̃(T ) for many tensors T . Each applies
to tensors with different properties:
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Theorem 16: If T is over X,Y, Z, then it is straightforward to see that if one of the
variable sets is not too large, then S̃(T ) must be small: S̃(T ) ≤ min{|X|, |Y |, |Z|}. In
this first tool, we show how if T can be written as a sum T = T1 + · · · + Tk of a few
tensors, and each Ti does not have many of one type of variable, then we can still derive
an upper bound on S̃(T ).
Theorem 18: The second tool concerns partitions of the variable sets X,Y, Z. It shows
that if S̃(T ) is large, then there is a probability distribution on the blocks of T (subtensors
corresponding to a choice of one part from each of the three partitions) so that the total
probability mass assigned to each part of each partition is proportional to its size. Loosely,
this means that T must have many different “symmetries”, no matter how its variables
are partitioned.
Theorem 22: Typically, for tensors A and B, even if S̃(A) and S̃(B) are “small”, it
may still be the case that S̃(A + B) is large. This third tool shows that if A has an
additional property, then one can still bound S̃(A+B). Roughly, the property that A
must satisfy is that not only is S̃(A) small, but a related notion called the “x-rank” of A
must also be small.

In particular, we will remark that our three tools for bounding S̃(T ) strictly generalize
similar tools introduced by [2] for bounding Ĩ(T ). Hence, we generalize their results bounding
ωg(T ) for various tensors T to bounds on ωu(T ).

Section 5: Universal Method Lower Bounds

We apply our tools to prove upper bounds on S̃(T ), and hence lower bounds on ωu(T ), for
a number of tensors T of interest. To prove Theorem 3, we show that all three tools can
be applied to CWq. We also apply our tools to many other tensors of interest including
the generalized Coppersmith-Winograd tensors CWq,σ, the generalized small Coppersmith-
Winograd tensors cwq,σ, the structural tensor Tq of the cyclic group Cq as well as its “lower
triangular version” T lowerq , and the subtensor t112 of CW⊗2

q which arises in [12, 13, 26, 18,
17, 14]. Throughout Section 5 we give many tables of concrete lower bounds that we prove
for the tensors in all these different families.

Section 6: “Completeness” of the Laser Method

Finally, we study the Laser Method. The Laser Method applied to a tensor T shows that
powers T⊗n can zero out into large matrix multiplication tensors. Using the properties of S̃
that we prove in Section 3.6, we will show that the Laser Method can also be applied to a
tensor T to prove a lower bound on S̃(T ). (More precisely, it actually proves a lower bound
on Q̃(T ), the asymptotic subrank of T , which in turn lower bounds S̃(T )).

We prove Theorem 4 by combining this construction with Theorem 18, one of our tools
for upper bounding S̃(T ). Intuitively, both Theorem 18 and the Laser Method are concerned
with probability distributions on blocks of a tensor, and both involve counting the number of
variables in powers T⊗n that are consistent with these distributions. We use this intuition to
show that the upper bound given by Theorem 18 is equal to the lower bound given by the
Laser Method.

3 Preliminaries

We begin by introducing the relevant notions and notation related to tensors and matrix
multiplication. We will use the same notation introduced in [2, Section 3], and readers
familiar with that paper may skip to Subsection 3.5.
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3.1 Tensor Basics
For sets X = {x1, . . . , xq}, Y = {y1, . . . , yr}, and Z = {z1, . . . , zs} of formal variables, a
tensor over X,Y, Z is a trilinear form

T =
∑

xi∈X,yj∈Y,zk∈Z
αijkxiyjzk,

where the αijk coefficients come from an underlying field F. The terms, which we write as
xiyjzk, are sometimes written as xi ⊗ yj ⊗ zk in the literature. We say T is minimal for
X,Y, Z if, for each xi ∈ X, there is a term involving xi with a nonzero coefficient in T , and
similarly for Y and Z (i.e. T can’t be seen as a tensor over a strict subset of the variables).
We say that two tensors T1, T2 are isomorphic, written T1 ' T2, if they are equal up to
renaming variables.

If T1 is a tensor over X1, Y1, Z1, and T2 is a tensor over X2, Y2, Z2, then the tensor product
T1 ⊗ T2 is a tensor over X1 ×X2, Y1 × Y2, Z1 × Z2 such that, for any (x1, x2) ∈ X1 ×X2,
(y1, y2) ∈ Y1 × Y2, and (z1, z2) ∈ Z1 × Z2, the coefficient of (x1, x2)(y1, y2)(z1, z2) in T1 ⊗ T2
is the product of the coefficient of x1y1z1 in T1, and the coefficient of x2y2z2 in T2. For
any tensor T and positive integer n, the tensor power T⊗n is the tensor over Xn, Y n, Zn

resulting from taking the tensor product of n copies of T .
If T1 is a tensor over X1, Y1, Z1, and T2 is a tensor over X2, Y2, Z2, then the direct sum

T1 ⊕ T2 is a tensor over X1 tX2, Y1 t Y2, Z1 t Z2 which results from forcing the variable
sets to be disjoint (as in a normal disjoint union) and then summing the two tensors. For a
nonnegative integer m and tensor T we write m� T for the disjoint sum of m copies of T .

3.2 Tensor Rank
A tensor T has rank one if there are values ai ∈ F for each xi ∈ X, bj ∈ F for each yj ∈ Y , and
ck ∈ F for each zk ∈ Z, such that the coefficient of xiyjzk in T is aibjck, or in other words,

T =
∑

xi∈X,yj∈Y,zk∈Z
aibjck · xiyjzk =

(∑
xi∈X

aixi

)∑
yj∈Y

bjyj

(∑
zk∈Z

ckzk

)
.

The rank of a tensor T , denoted R(T ), is the smallest number of rank one tensors whose
sum (summing the coefficient of each term individually) is T . It is not hard to see that for
tensors T and positive integers n, we always have R(T⊗n) ≤ R(T )n, but for some tensors T
of interest this inequality is not tight. We thus define the asymptotic rank of tensor T as
R̃(T ) := lim infn∈N(R(T⊗n))1/n.

3.3 Matrix Multiplication Tensors
For positive integers a, b, c, the matrix multiplication tensor 〈a, b, c〉 is a tensor over
{xij}i∈[a],j∈[b], {yjk}j∈[b],k∈[c], {zki}k∈[c],i∈[a] given by

〈a, b, c〉 =
a∑
i=1

b∑
j=1

c∑
k=1

xijyjkzki.

It is not hard to verify that for positive integers a1, a2, b1, b2, c1, c2, we have 〈a1, b1, c1〉 ⊗
〈a2, b2, c2〉 ' 〈a1a2, b1b2, c1c2〉. The exponent of matrix multiplication, denoted ω, is defined as

ω := lim inf
a,b,c∈N

3 logabc(R(〈a, b, c〉)).
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Because of the tensor product property above, we can alternatively define ω in a number
of ways:

ω = lim inf
a,b,c∈N

3 logabc(R̃(〈a, b, c〉)) = lim inf
n∈N

logn R̃(〈n, n, n〉) = log2(R̃(〈2, 2, 2〉)).

For instance, Strassen [21] showed that R(〈2, 2, 2〉) ≤ 7, which implies that ω ≤ log2(7).

3.4 Degenerations and the Universal Method
We now describe a very general way to transform from a tensor T1 over X1, Y1, Z1 to a tensor
T2 overX2, Y2, Z2. For a formal variable λ, pick maps α : X1×X2 → F(λ), β : Y1×Y2 → F(λ),
and γ : Z1 × Z2 → F(λ), which map pairs of variables to polynomials in λ, and pick an
integer h. Then, when you replace each x ∈ X1 with

∑
x′∈X2

α(x, x′)x′, each y ∈ Y1 with∑
y′∈Y2

β(y, y′)y′, and each z ∈ Z1 with
∑
z′∈Z2

γ(z, z′)z′, in T1, then the resulting tensor
T ′ is a tensor over X2, Y2, Z2 with coefficients over F(λ). When T ′ is instead viewed as a
polynomial in λ whose coefficients are tensors over X2, Y2, Z2 with coefficients in F, it must
be that T2 is the coefficient of λh, and the coefficient of λh′ is 0 for all h′ < h.

If such a transformation is possible, we say T2 is a degeneration of T1. There are also two
more restrictive types of degenerations:

T2 is a monomial degeneration of T1 if such a transformation is possible where the
polynomials in the ranges of α, β, γ have at most one monomial, and furthermore, for
each x ∈ X1 there is at most one x′ ∈ X2 such that α(x, x′) 6= 0, and similarly for β and
γ.3
T2 is a zeroing out of T1 if, in addition to the restrictions of a monomial degeneration,
the ranges of α, β, γ must be {0, 1}.

Degenerations are useful in the context of matrix multiplication algorithms because
degenerations cannot increase the rank of a tensor. In other words, if T2 is a degeneration
of T1, then R(T2) ≤ R(T1) [4]. It is often hard to bound the rank of matrix multiplication
tensors directly, so all known approaches proceed by bounding the rank of a different tensor
T and then showing that powers of T degenerate into matrix multiplication tensors.

More precisely, all known approaches fall within the following method, which we call
the Universal Method [2] applied to a tensor T of asymptotic rank R = R̃(T ): Consider
all positive integers n, and all ways to degenerate T⊗n into a disjoint sum

⊕m
i=1〈ai, bi, ci〉

of matrix multiplication tensors, resulting in an upper bound on ω by the asymptotic sum
inequality [19] of

∑m
i=1(aibici)ω/3 ≤ Rn. Then, ωu(T ), the bound on ω from the Universal

Method applied to T , is the lim inf over all such n and degenerations, of the resulting upper
bound on ω.

In [2], two weaker versions of the Universal Method are also defined: the Galactic Method,
in which the degeneration must be a monomial degeneration, resulting in a bound ωg(T ),
and the Solar Method, in which the degeneration must be a zeroing out, resulting in a bound
ωs(T ). To be clear, all three of these methods are very general, and we don’t know the
values of ωs(T ), ωg(T ), or ωu(T ) for almost any nontrivial tensors T . In fact, all the known

3 Some definitions of monomial degenerations do not have this second condition, or equivalently, consider a
monomial degeneration to be a “restriction” composed with what we defined here. The distinction is not
important for this paper, but we give this definition since it captures Strassen’s monomial degeneration
from matrix multiplication tensors to independent tensors [22] (see also Proposition 10 below), and it is
the notion that the prior work [2] proved lower bounds against.

CCC 2019



12:10 Limits on the Universal Method for Matrix Multiplication

approaches to bounding ω proceed by giving upper bounds on ωs(T ) for some carefully
chosen tensors T ; the most successful has been the Coppersmith-Winograd family of tensors
T = CWq, which has yielded all the best known bounds on ω since the 80’s [11, 13, 26, 18].
Indeed, the two most successful approaches, the Laser Method [20] and the Group-Theoretic
Approach [9] ultimately use zeroing outs of tensors. We refer the reader to [2, Sections 3.3
and 3.4] for more details on these approaches and how they relate to the notions used here.

3.5 Tensor Value
Coppersmith and Winograd [12] defined the value of a tensor in their analysis of the CWq

tensor. For a tensor T , and any τ ∈ [2/3, 1], the τ -value of T , denoted Vτ (T ), is defined as
follows: Consider all positive integers n, and all ways σ to degenerate T⊗n into a direct sum⊕q(σ)

i=1 〈aσi , bσi , cσi 〉 of matrix multiplication tensors. Then, Vτ (T ) is given by

Vτ (T ) := lim sup
n,σ

q(σ)∑
i=1

(aσi bσi cσi )τ
1/n

.

We can then equivalently define ωu(T ) as the lim inf of ωu, over all ωu ∈ [2, 3] such that
Vωu/3(T ) ≥ R̃(T ). We can see from the power mean inequality that Vτ (T ) ≥ V2/3(T )3τ/2 for
all τ ∈ [2/3, 1], although this bound is often not tight as there can be better degenerations of
T⊗n depending on the value of τ .

3.6 Asymptotic Slice Rank
The main new notions we will need in this paper relate to the slice rank of tensors. We say a
tensor T over X,Y, Z has x-rank 1 if it is of the form

T =
(∑
x∈X

αx · x

)
⊗

∑
y∈Y

∑
z∈Z

βy,z · y ⊗ z

 =
∑

x∈X,y∈Y,z∈Z
αxβy,z · xyz

for some choices of the α and β coefficients over the base field. More generally, the x-rank of
T , denoted Sx(T ), is the minimum number of tensors of x-rank 1 whose sum is T . We can
similarly define the y-rank, Sy, and the z-rank, Sz. Then, the slice rank of T , denoted S(T ),
is the minimum k such that there are tensors TX , TY and TZ with T = TX + TY + TZ and
Sx(TX) + Sy(TY ) + Sz(TZ) = k.

Unlike tensor rank, the slice-rank is not submultiplicative in general, i.e. there are
tensors A and B such that S(A⊗B) > S(A) · S(B). For instance, it is not hard to see that
S(CW5) = 3, but since it is known [26, 18] that ωs(CW5) ≤ 2.373, it follows (e.g. from
Theorem 14 below) that S(CW⊗nq ) ≥ 7n·2/2.373−o(n) ≥ 5.15n−o(n). We are thus interested in
the asymptotic slice rank, S̃(T ), of tensors T , defined as

S̃(T ) := lim sup
n∈N

[S(T⊗n)]1/n.

We note a few simple properties of slice rank which will be helpful in our proofs:

I Lemma 6. For tensors A and B:
(1) S(A) ≤ Sx(A) ≤ R(A),
(2) Sx(A⊗B) ≤ Sx(A) · Sx(B),
(3) S(A+B) ≤ S(A) + S(B), and Sx(A+B) ≤ Sx(A) + Sx(B),
(4) S(A⊗B) ≤ S(A) ·max{Sx(B),Sy(B),Sz(B)}, and
(5) If A is a tensor over X,Y, Z, then Sx(T ) ≤ |X| and hence S(T ) ≤ min{|X|, |Y |, |Z|}.
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Proof. (1) and (2) are straightforward. (3) follows since the sum of the slice rank (resp.
x-rank) expressions for A and for B gives a slice rank (resp. x-rank) expression for A+B.
To prove (4), let m = max{Sx(B),Sy(B),Sz(B)}, and note that if A = AX +AY +AZ such
that Sx(AX) + Sy(AY ) + Sz(AZ) = S(A), then

A⊗B = AX ⊗B +AY ⊗B +AZ ⊗B,

and so

S(A⊗B) ≤ S(AX ⊗B) + S(AY ⊗B) + S(AZ ⊗B)
≤ Sx(AX ⊗B) + Sy(AY ⊗B) + Sz(AZ ⊗B)
≤ Sx(AX) Sx(B) + Sy(AY ) Sy(B) + Sz(AZ) Sz(B)
≤ Sx(AX)m+ Sy(AY )m+ Sz(AZ)m = S(A) ·m.

Finally, (5) follows since, for instance, any tensor with one only x-variable has x-rank 1. J

Asymptotic slice rank is interesting in the context of matrix multiplication algorithms
because of the following facts.

I Definition 7. For a positive integer q, the independent tensor of size q, denoted 〈q〉, is the
tensor

∑q
i=1 xiyizi with q terms that do not share any variables.

I Proposition 8 ([25] Corollary 2). If A and B are tensors such that A has a degeneration
to B, then S(B) ≤ S(A), and hence S̃(B) ≤ S̃(A).

I Proposition 9 ([24] Lemma 1; see also [5] Lemma 4.7). For any positive integer q, we have
S(〈q〉) = S̃(〈q〉) = q, where 〈q〉 is the independent tensor of size q.

I Proposition 10 ([22] Theorem 4; see also [2] Lemma 4.2). For any positive integers a, b, c,
the matrix multiplication tensor 〈a, b, c〉 has a (monomial) degeneration to an independent
tensor of size at least 0.75 · abc/max{a, b, c}.

I Corollary 11. For any positive integers a, b, c, we have S̃(〈a, b, c〉) = abc/max{a, b, c}.

Proof. Assume without loss of generality that c ≥ a, b. For any positive integer n, we have
that 〈a, b, c〉⊗n ' 〈an, bn, cn〉 has a degeneration to an independent tensor of size at least
0.75 · anbn, meaning S(〈a, b, c〉⊗n) ≥ 0.75 · anbn and hence S̃(〈a, b, c〉) ≥ (0.75)1/nab, which
means S̃(〈a, b, c〉) ≥ ab. Meanwhile, 〈a, b, c〉 has ab different x-variables, so it must have
Sx(〈a, b, c〉) ≤ ab and more generally, S(〈a, b, c〉⊗n) ≤ Sx(〈a, b, c〉⊗n) ≤ (ab)n, which means
S̃(〈a, b, c〉) ≤ ab. J

To summarize: we know that degenerations cannot increase asymptotic slice rank, and
that matrix multiplication tensors have a high asymptotic slice rank. Hence, if T is a tensor
such that ωu(T ) is “small’, meaning a power of T has a degeneration to a disjoint sum of
many large matrix multiplication tensors, then T itself must have “large” asymptotic slice
rank. This can be formalized identically to [2, Theorem 4.1 and Corollary 4.3] to show:

I Theorem 12. For any tensor T ,

S̃(T ) ≥ R̃(T )
6

ωu(T )−2.

I Corollary 13. For any tensor T , if ωu(T ) = 2, then S̃(T ) = R̃(T ). Moreover, for every
constant s < 1, there is a constant w > 2 such that every tensor T with S̃(T ) ≤ R̃(T )s must
have ωu(T ) ≥ w.
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Almost all the tensors we consider in this note are variable-symmetric tensors, and for
these tensors T we can get a better lower bound on ωu(T ) from an upper bound on S̃(T ). We
say that a tensor T over X,Y, Z is variable-symmetric if |X| = |Y | = |Z|, and the coefficient
of xiyjzk equals the coefficient of xjykzi in T for all (xi, yj , zk) ∈ X × Y × Z.

I Theorem 14. For a variable-symmetric tensor T we have ωu(T ) ≥ 2 log(R̃(T ))/ log(S̃(T )).

Proof. As in the proof of [2, Theorem 4.1], by definition of ωu, we know that for every
δ > 0, there is a positive integer n such that T⊗n has a degeneration to F � 〈a, b, c〉
for integers F, a, b, c such that ωu(T )1+δ ≥ 3 log(R̃(T )n/F )/ log(abc). In fact, since T is
symmetric, we know T⊗n also has a degeneration to F � 〈b, c, a〉 and to F � 〈c, a, b〉, and
so T⊗3n has a degeneration to F 3 � 〈abc, abc, abc〉. As above, it follows that S̃(T⊗3n) ≥
S̃(F 3 � 〈abc, abc, abc〉) = F 3 · (abc)2. Rearranging, we see

abc ≤ S̃(T )3n/2/F 3/2.

Hence,

ωu(T )1+δ ≥ 3 log(R̃(T )n/F )
log(abc) ≥ 3 log(R̃(T )n/F )

log(S̃(T )3n/2/F 3/2)

= 2
log(R̃(T ))− 1

n log(F )
log(S̃(T ))− 1

n log(F )
≥ 2 log(R̃(T ))

log(S̃(T ))
,

where the last step follows because R̃(T ) ≥ S̃(T ) and so subtracting the same quantity from
both the numerator and denominator cannot decrease the value of the fraction. This holds
for all δ > 0 and hence implies the desired result. J

Slice Rank versus Subrank

For a tensor T , let Q′(T ) denote the largest integer q such that there is a degeneration
from T to 〈q〉. The asymptotic subrank of T is defined as Q̃(T ) := lim supn∈NQ′(T⊗n)1/n.
Propositions 8 and 9 above imply that Q̃(T ) ≤ S̃(T ) for all tensors T . Similarly, it is not
hard to see that Theorems 12 and 14 hold with S̃ replaced by Q̃. One could thus conceivably
hope to prove stronger lower bounds than those in this paper by bounding Q̃ instead of
S̃. However, we will prove in Corollary 29 below that Q̃(T ) = S̃(T ) for every tensor we
study in this paper, so such an improvement using Q̃ is impossible. More generally, there are
currently no known tensors T for which the best known upper bound on Q̃(T ) is smaller
than the best known upper bound on S̃(T ) (including the new bounds of [7, 6]). Hence,
novel tools for upper bounding Q̃ would be required for such an approach to proving better
lower bounds on ωu.

3.7 Partition Notation
In a number of our results, we will be partitioning the terms of tensors into blocks defined
by partitions of the three variable sets. Here we introduce some notation for some properties
of such partitions; these definitions all depend on the particular partition of the variables
being used, which will be clear from context.

Suppose T is a tensor minimal over X,Y, Z, and let X = X1∪· · ·∪XkX
, Y = Y1∪· · ·∪YkY

,
Z = Z1 ∪ · · · ∪ ZkZ

be partitions of the three variable sets. For (i, j, k) ∈ [kX ]× [kY ]× [kZ ],
let Tijk be T restricted to Xi, Yj , Zk (i.e. T with X \Xi, Y \ Yj , and Z \ Zk zeroed out),
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and let L = {Tijk | (i, j, k) ∈ [kX ] × [kY ] × [kZ ], Tijk 6= 0}. Tijk is called a block of T . For
i ∈ [kX ] let LXi

= {Tij′k′ ∈ L | (j′, k′) ∈ [kY ]× [kZ ]}, and define similarly LYj
and LZk

.
We will be particularly interested in probability distributions p : L → [0, 1]. Let P (L)

be the set of such distributions. For such a p ∈ P (L), and for i ∈ [kX ], let p(Xi) :=∑
Tijk∈LXi

p(Tijk), and similarly p(Yj) and p(Zk). Then, define pX ∈ R by

pX :=
∏

i∈[kX ]

(
|Xi|
p(Xi)

)p(Xi)
,

and pY and pZ similarly. This expression, which arises naturally in the Laser Method, will
play an important role in our upper bounds and lower bounds.

3.8 Tensor Rotations and Variable-Symmetric Tensors
If T is a tensor over X,Y, Z, then the rotation of T , denoted rot(T ), is the tensor over
Y, Z,X such that for any (xi, yj , zk) ∈ X × Y × Z, the coefficient of xiyjzk in T is equal to
the coefficient of yjzkxi in rot(T ). Tensor T is variable-symmetric if T ' rot(T ).

If T is a variable-symmetric tensor minimal over X,Y, Z, then partitions X = X1 ∪ · · · ∪
XkX

, Y = Y1 ∪ · · · ∪ YkY
, Z = Z1 ∪ · · · ∪ ZkZ

of the variable sets are called T -symmetric
if (using the notation of the previous subsection) kX = kY = kZ , |Xi| = |Yi| = |Zi| for all
i ∈ [kX ], and the block Tjki ' rot(Tijk) for all (i, j, k) ∈ [kX ]3. For the L resulting from
such a T -symmetric partition, a probability distribution p ∈ P (L) is called T -symmetric if
it satisfies p(Tijk) = p(Tjki) for all (i, j, k) ∈ [kX ]3, and we write P sym(L) ⊆ P (L) for the
set of such T -symmetric distributions. Notice in particular that any p ∈ P sym(L) satisfies
pX = pY = pZ .

4 Combinatorial Tools for Asymptotic Slice Rank Upper Bounds

We now give three general tools for proving upper bounds on S̃(T ) for many tensors T . Each
of our tools generalizes one of the three main tools of [2], which were bounding the weaker
notion Ĩ instead of S̃, and could also only apply to a more restrictive set of tensors. We
will make clear what previous result we are generalizing, although our presentation here is
entirely self-contained.

4.1 Generalization of [2, Theorem 5.3]
We know that tensors T without many of one variable have small S̃(T ). We begin by showing
that if T can be written as a sum of a few tensors, each of which does not have many of one
variable, then we can still prove an upper bound on S̃(T ).

If X,Y, Z are minimal for T , then the measure of T , denoted µ(T ), is given by µ(T ) :=
|X| · |Y | · |Z|. We state two simple facts about µ:

I Fact 15. For tensors A and B,
µ(A⊗B) = µ(A) · µ(B), and
if A is minimal over X,Y, Z, then S(A) ≤ min{|X|, |Y |, |Z|} ≤ µ(A)1/3.

I Theorem 16. Suppose T is a tensor, and T1, . . . , Tk are tensors with T = T1 + · · ·+ Tk.
Then, S̃(T ) ≤

∑k
i=1(µ(Ti))1/3.
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Proof. Note that

T⊗n =
∑

(P1,...,Pn)∈{T1,...,Tk}n

P1 ⊗ · · · ⊗ Pn.

It follows that

S(T⊗n) ≤
∑

(P1,...,Pn)∈{T1,...,Tk}n

S(P1 ⊗ · · · ⊗ Pn)

≤
∑

(P1,...,Pn)∈{T1,...,Tk}n

µ(P1 ⊗ · · · ⊗ Pn)1/3

=
∑

(P1,...,Pn)∈{T1,...,Tk}n

(µ(P1) · µ(P2) · · ·µ(Pn))1/3

= (µ(T1)1/3 + · · ·+ µ(Tk)1/3)n,

which implies as desired that S̃(T ) ≤ (µ(T1)1/3 + · · ·+ µ(Tk)1/3). J

I Remark 17. [2, Theorem 5.3], in addition to bounding Ĩ instead of S̃, also required that
T = T1 + · · ·+ Tk be a partition of the terms of T . Here in Theorem 16 we are allowed any
tensor sum, although in general a partition minimizes the resulting upper bound.

4.2 Generalization of [2, Theorem 5.2]
This tool will be the most important in upper bounding the asymptotic slice rank of many
tensors of interest. We show that a partitioning method similar to the Laser Method applied
to a tensor T can be used to prove upper bounds on S̃(T ). Recall the definitions and notation
about partitions of tensors from Section 3.7.

I Theorem 18. For any tensor T and partition of its variable sets,

S̃(T ) ≤ lim sup
p∈P (L)

min{pX , pY , pZ}.

Proof. For any positive integer n, we can write

T⊗n =
∑

(P1,...,Pn)∈Ln

P1 ⊗ · · · ⊗ Pn.

For a given (P1, . . . , Pn) ∈ Ln, let dist(P1, . . . , Pn) be the probability distribution on L

which results from picking a uniformly random α ∈ [n] and outputting Pα. For a probability
distribution p : L → [0, 1], define Ln,p := {(P1, . . . , Pn) ∈ Ln | dist(P1, . . . , Pn) = p}.
Note that the number of p for which Ln,p is nonempty is only poly(n), since they are the
distributions which assign an integer multiple of 1/n to each element of L. Let D be the set
of these probability distributions.

We can now rearrange:

T⊗n =
∑
p∈D

∑
(P1,...,Pn)∈Ln,p

P1 ⊗ · · · ⊗ Pn.

Hence,

S(T⊗n) ≤
∑
p∈D

S

 ∑
(P1,...,Pn)∈Ln,p

P1 ⊗ · · · ⊗ Pn


≤ poly(n) ·max

p∈D
S

 ∑
(P1,...,Pn)∈Ln,p

P1 ⊗ · · · ⊗ Pn

 .
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For any probability distribution p : L→ [0, 1], let us count the number of x-variables used
in
(∑

(P1,...,Pn)∈Ln,p
P1 ⊗ · · · ⊗ Pn

)
. These are the tuples of the form (x1, . . . , xn) ∈ Xn

where, for each i ∈ [kX ], there are exactly n · p(Xi) choices of j for which xj ∈ Xi. The
number of these is4(

n

n · p(X1), n · p(X2), . . . , n · p(XkX
)

)
·
∏

i∈[kX ]

|Xi|n·p(Xi).

This is upper bounded by pn+o(n)
X , where pX is the quantity defined in Section 3.7. It follows

that Sx

(∑
(P1,...,Pn)∈Ln,p

P1 ⊗ · · · ⊗ Pn
)
≤ p

n+o(n)
X . We can similarly argue about Sy and

Sz. Hence,

S(T⊗n) ≤ poly(n) ·max
p∈D

S

 ∑
(P1,...,Pn)∈Ln,p

P1 ⊗ · · · ⊗ Pn


≤ poly(n) ·max

p∈D
min{pX , pY , pZ}n+o(n)

≤ poly(n) · lim sup
p∈P (L)

min{pX , pY , pZ}n+o(n).

Hence, S(T⊗n) ≤ lim supp min{pX , pY , pZ}n+o(n), and the desired result follows. J

I Remark 19. [2, Theorem 5.2] is less general than our Theorem 18 in two ways: it used Ĩ
instead of S̃, and it required each Xi, Yj , Zk to contain only one variable.

I Remark 20. Suppose T is over X,Y, Z with |X| = |Y | = |Z| = q. For any probability
distribution p we always have pX , pY , pZ ≤ q, and moreover we only have pX = q when
p(Xi) = |Xi|/q for each i. Similar to [2, Corollary 5.1], it follows that if no probability
distribution p is δ-close (say, in `1 distance) to having p(Xi) = |Xi|/q for all i, p(Yj) = |Yj |/q
for all j, and p(Zk) = |Zk|/q for all k, simultaneously, then we get S̃(T ) ≤ q1−f(δ) for some
increasing function f with f(δ) > 0 for all δ > 0.

We make a remark about applying Theorem 18 to variable-symmetric tensors. This
remark has implicitly been used in past work on applying the Laser method, such as [12],
but we prove it here for completeness. Recall the notation in Section 3.8 about such tensors.

I Proposition 21. Suppose T is a variable-symmetric tensor over X,Y, Z, and X = X1 ∪
· · · ∪XkX

, Y = Y1 ∪ · · · ∪ YkY
, Z = Z1 ∪ · · · ∪ ZkZ

are T -symmetric partitions. Then,

S̃(T ) ≤ lim sup
p∈P sym(L)

pX .

Proof. We know from Theorem 18 that S̃(T ) ≤ lim supp∈P (L) min{pX , pY , pZ}. We will show
that for any p ∈ P (L), there is a p′ ∈ P sym(L) such that min{pX , pY , pZ} ≤ min{p′X , p′Y , p′Z},
which means that in fact, S̃(T ) ≤ lim supp∈P sym(L) min{pX , pY , pZ}. Finally, the desired
result will follow since, for any p′ ∈ P sym(L), we have p′X = p′Y = p′Z .

4 Here,
(

n
p1n,p2n,...,p`n

)
= n!

(p1n)!(p2n)!···(p`n)! , with each pi ∈ [0, 1] and p1 + · · ·+ p` = 1, is the multinomial
coefficient, with the known bound from Stirling’s approximation, for fixed pis, that

(
n

p1n,p2n,...,p`n

)
≤(∏

i
p−pi

i

)n+o(n). Throughout this paper we use the convention that ppi

i = 1 when pi = 0.

CCC 2019



12:16 Limits on the Universal Method for Matrix Multiplication

Consider any p ∈ P (L), and define the distribution p′ ∈ P sym(L) by p′(Tijk) := (p(Tijk)+
p(Tjki) + p(Tkij))/3 for each Tijk ∈ L. In order to show that min{pX , pY , pZ} ≤ p′X , we will
show that (pXpY pZ)1/3 ≤ p′X :

(pXpY pZ)1/3 =
∏

i∈[kX ]

(
|Xi|
p(Xi)

)p(Xi)/3( |Yi|
p(Yi)

)p(Yi)/3( |Zi|
p(Zi)

)p(Zi)/3

=
∏

i∈[kX ]

|Xi|p
′(Xi)

(p(Xi)p(Xi)p(Yi)p(Yi)p(Zi)p(Zi))1/3

≤
∏

i∈[kX ]

|Xi|p
′(Xi)

p′(Xi)p′(Xi)

= p′X ,

where the second-to-last step follows from the fact that for any real numbers a, b, c ∈ [0, 1],
setting d = (a+ b+ c)/3, we have aabbcc ≥ d3d. J

4.3 Generalization of [2, Theorem 5.1]
The final remaining tool from [2], their Theorem 5.1, turns out to be unnecessary for proving
our tight lower bounds in the next section. Nonetheless, we sketch here how to extend it to
give asymptotic slice rank upper bounds as well.

For a tensor T , let m(T ) := max{Sx(T ),Sy(T ),Sz(T )}. Recall from Lemma 6 that for
any two tensors A,B we have S(A⊗B) ≤ S(A) ·m(B).

In general, for two tensors A and B, even if S̃(A) and S̃(B) are “small”, it might still be
the case that S̃(A+B) is “large”, much larger than S̃(A)+S̃(B). For instance, for any positive
integer q, define the tensors T1 :=

∑q
i=0 x0yizi, T2 :=

∑q+1
i=1 xiy0zi, and T3 :=

∑q+1
i=1 xiyizq+1.

We can see that S̃(T1) = S̃(T2) = S̃(T3) = 1, but T1 + T2 + T3 = CWq, and we will show
soon that S̃(CWq) grow unboundedly with q.

Here we show that if, not only is S̃(A) small, but even Sx(A) is small, then we can get a
decent bound on S̃(A+B).

I Theorem 22. Suppose T,A,B are tensors such that A+B = T . Then,

S̃(T ) ≤
(

m(A)
(1− p) · Sx(A)

)1−p
· 1
pp
,

where p ∈ [0, 1] is given by

p :=
log
(

Sx(B)
S̃(B)

)
log
(
m(A)
Sx(A)

)
+ log

(
Sx(B)
S̃(B)

) .
Proof. We begin by, for any integers n ≥ k ≥ 0, giving bounds on S(A⊗k ⊗B⊗(n−k)). First,
since Sx is submultiplicative, we have

S(A⊗k ⊗B⊗(n−k)) ≤ Sx(A⊗k ⊗B⊗(n−k)) ≤ Sx(A)k · Sx(B)n−k.

Second, from the definition of m, we have

S(A⊗k ⊗B⊗(n−k)) ≤ m(A⊗k) · S(B⊗(n−k)) ≤ m(A)k · S̃(B)n−k.
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It follows that for any positive integer n we have

S(T⊗n) ≤
n∑
k=0

(
n

k

)
·S(A⊗k⊗B⊗(n−k)) ≤

n∑
k=0

(
n

k

)
·min{Sx(A)k·Sx(B)n−k,m(A)k·S̃(B)n−k}.

As in the proof of [2, Theorem 5.1], we can see that the quantity
(
n
k

)
· min{Sx(A)k ·

Sx(B)n−k,m(A)k · S̃(B)n−k} is maximized at k = pn, and the result follows. J

I Remark 23. This result generalizes [2, Theorem 5.1], no longer requiring that A be the
tensor T restricted to a single x-variable. In [2, Theorem 5.1], since A is T restricted to a
single x-variable, and we required A to have at most q terms, we got the bounds Sx(A) = 1 and
m(A) ≤ q. Similarly, B had at most q−1 different x-variables, so Sx(B) ≤ q−1. Substituting
those values into Theorem 22 yields the original [2, Theorem 5.1] with Ĩ replaced by S̃.

5 Computing the Slice Ranks for Tensors of Interest

In this section, we give slice rank upper bounds for a number of tensors of interest. It will
follow from Section 6 that all of the bounds we prove in this Section are tight.

5.1 Generalized Coppersmith-Winograd Tensors
We begin with the generalized CW tensors defined in [2], which for a positive integer q and a
permutation σ : [q]→ [q] are given by

CWq,σ := x0y0zq+1 + x0yq+1z0 + xq+1y0z0 +
q∑
i=1

(xiyσ(i)z0 + xiy0zi + x0yizi).

The usual Coppersmith-Winograd tensor CWq results by setting σ to the identity per-
mutation. Just as in [2, Section 7.1], we can see that Theorems 16 and 18 immediately apply
to CWq,σ to show that there is a universal constant δ > 0 such that for any q and σ we
have S̃(CWq,σ) ≤ (q+ 2)1−δ, and hence a universal constant c > 2 such that ωu(CWq,σ) ≥ c.
Indeed, by proceeding in this way, we get the exact same constants as in [2].

That said, we will now use Theorem 18 to prove that c ≥ 2.16805. (In fact, essentially
the same argument as we present now shows that [2, Theorem 5.2] was already sufficient to
show the weaker claim that ωg(CWq,σ) ≥ 2.16805).

We begin by partitioning the variable sets of CWq,σ, using the notation of Theorem 18.
Let X0 = {x0}, X1 = {x1, . . . , xq}, and X2 = {xq+1}, so that X0 ∪X1 ∪X2 is a partition
of the x-variables of CWq,σ.5 Similarly, let Y0 = {y0}, Y1 = {y1, . . . , yq}, Y2 = {yq+1},
Z0 = {z0}, Z1 = {z1, . . . , zq}, and Z2 = {zq+1}. We can see this is a CWq,σ-symmetric
partition with L = {T002, T020, T200, T011, T101, T110}.

Consider any probability distribution p ∈ P sym(L). By symmetry, we know that p(T002) =
p(T020) = p(T200) = v and p(T011) = p(T101) = p(T110) = 1/3− v for some value v ∈ [0, 1/3].
Applying Theorem 18, and in particular Proposition 21, yields:

S̃(CWq) ≤ sup
v∈[0,1/3]

q2(1/3−v)

vv(2/3− 2v)2/3−2v(1/3 + v)1/3+v .

5 The sets of partitions were 1-indexed before, but we 0-index here for notational consistency with past
work.
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In fact, we will see in the next section that this is tight (i.e. the value above is equal to
S̃(CWq), not just an upper bound on it). The values for the first few q can be computed
using optimization software as follows:

q S̃(CWq,σ)
1 2.7551 · · ·
2 3.57165 · · ·
3 4.34413 · · ·
4 5.07744 · · ·
5 5.77629 · · ·
6 6.44493 · · ·
7 7.08706 · · ·
8 7.70581 · · ·

Finally, using the lower bound R̃(CWq,σ) ≥ q + 2 (in fact, it is known that R̃(CWq,σ) =
q + 2), and the upper bound on S̃(CWq,σ) we just proved, we can apply Theorem 14 to give
lower bounds ωu(CWq,σ) ≥ 2 log(R̃(CWq,σ))/ log(S̃(CWq,σ)) ≥ 2 log(q + 2)/ log(S̃(CWq,σ))
as follows:

q Lower Bound on ωu(CWq,σ)
1 2.16805 · · ·
2 2.17794 · · ·
3 2.19146 · · ·
4 2.20550 · · ·
5 2.21912 · · ·
6 2.23200 · · ·
7 2.24404 · · ·
8 2.25525 · · ·

It is not hard to see that the resulting lower bound on ωu(CWq,σ) is increasing with q
and is always at least 2.16805 . . . (see Appendix A below for a proof), and hence that for any
q and any σ we have ωu(CWq,σ) ≥ 2.16805 as desired.

5.2 Generalized Simple Coppersmith-Winograd Tensors
Similar to CWq,σ, we can define for a positive integer q and a permutation σ : [q]→ [q] the
simple Coppersmith-Winograd tensor cwq,σ given by:

cwq,σ :=
q∑
i=1

(xiyσ(i)z0 + xiy0zi + x0yizi).

These tensors, when σ is the identity permutation id, are well-studied. For instance,
Coppersmith and Winograd [12] showed that if R̃(cw2,id) = 2 then ω = 2.

We will again give a tight bound on S̃(cwq,σ) using Theorem 18 combined with the next
section. To apply Theorem 18, and in particular Proposition 21, we again pick a partition of
the variables. Let X0 = {x0}, X1 = {x1, . . . , xq}, Y0 = {y0}, Y1 = {y1, . . . , yq}, Z0 = {z0},
and Z1 = {z1, . . . , zq}. This is a cwq,σ-symmetric partition with L = {T011, T101, T110}.
There is a unique p ∈ P sym(L), which assigns probability 1/3 to each part. It follows that

S̃(cwq,σ) ≤ (1/3)−1/3(2/3)−2/3 · q2/3 = 3
22/3 · q

2/3.
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Again, we will see in the next section that this bound is tight. Using the lower bound
R̃(cwq,σ) ≥ q + 1, we get the lower bound

ωu(cwq,σ) ≥ 2 log(q + 1)
log
( 3

22/3 · q2/3
) .

The first few values are as follows; note that we cannot get a bound better than 2 when
q = 2 because of Coppersmith and Winograd’s remark.

q Lower Bound on ωu(cwq,σ)
1 2.17795 · · ·
2 2
3 2.02538 · · ·
4 2.06244 · · ·
5 2.09627 · · ·
6 2.12549 · · ·
7 2.15064 · · ·

5.3 Cyclic Group Tensors
We next look at two tensors which were studied in [9], [1], and [2, Section 7.3]. For each
positive integer q, define the tensor Tq (the structural tensor of the cyclic group Cq) as:

Tq =
q−1∑
i=0

q−1∑
j=0

xiyjzi+j mod q.

Define also the lower triangular version of Tq, called T lowerq , as:

T lowerq =
q−1∑
i=0

q−1−i∑
j=0

xiyjzi+j .

While Theorem 18 does not give any nontrivial upper bounds on S̃(Tq), it does give
nontrivial upper bounds on S̃(T lowerq ), as noted in [2, Section 7.3]. Using computer optimiza-
tion software, we can compute our lower bound on S̃(T lowerq ), using Theorem 18 where each
partition contains exactly one variable, for the first few values of q:

q Upper Bound on S̃(T lowerq )
2 1.88988 · · ·
3 2.75510 · · ·
4 3.61071 · · ·
5 4.46157 · · ·

We show in the next section that these numbers are also tight. It is known (see e.g. [1])
that R̃(Tq) = R̃(T lowerq ) = q. Thus we get the following lower bounds on ωu(T lowerq ) ≥
2 log(q)/ log(S̃(T lowerq )):

q Lower Bound on ωu(T lowerq )
2 2.17795 · · ·
3 2.16805 · · ·
4 2.15949 · · ·
5 2.15237 · · ·
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These numbers match the lower bounds obtained by [1, 5] in their study of Tq; our
Theorem 18 can be viewed as an alternate tool to achieve those lower bounds. The bound
approaches 2 as q → ∞, as it is known that log(S(Tq))/ log(q) = 1 − o(1) as q → ∞.
Interestingly, it is shown in [7, Theorem 4.16] that T lowerq degenerates to Tq over the field Fq,
which implies that our bounds above also hold for Tq over Fq.

5.4 The Value of the Subtensor t112 of CW⊗2
q

A key tensor which arises in applying the Laser method to increasing powers of CWq, including
[12, 26, 18, 17, 14], is the tensor t112 which (for a given positive integer q) is given by

t112 :=
q∑
i=1

xi,0yi,0z0,q+1 +
q∑

k=1
x0,ky0,kzq+1,0 +

q∑
i,k=1

xi,0y0,kzi,k +
q∑

i,k=1
x0,kyi,0zi,k.

Coppersmith-Winograd [12] and future work studied the value of this tensor. In [12] it is
shown that for every τ ∈ [2/3, 1],

Vτ (t112) ≥ 22/3qτ (q3τ + 2)1/3.

This bound has been used in all the subsequent work using CWq, without improvement.
Here we show it is tight and cannot be improved in the case τ = 2/3:

I Proposition 24. V2/3(t112) = 22/3q2/3(q2 + 2)1/3.

Proof. Consider the variable-symmetric tensor ts := t112 ⊗ rot(t112) ⊗ rot(rot(t112)). As
in [12], by definition of V2/3, for every δ > 0 there is a positive integer n such that t⊗ns has a
degeneration to

⊕
i〈ai, ai, ai〉 for values such that

∑
i a

2
i ≥ (V2/3(T112))3n(1−δ). In particular,

by Corollary 11 this yields the bound

S̃(t⊗ns ) ≥
∑
i

a2
i ≥ (V2/3(t112))3n(1−δ).

Since this holds for all δ > 0, it follows that S̃(ts) ≥ (V2/3(t112))3 ≥ 22q2(q2 + 2).
We now upper bound S̃(ts) using Theorem 18. Although we are analyzing ts, we will make

use of a partition of the variables of t112. The partition is as follows: X0 = {xi,0 | i ∈ [q]},
X1 = {x0,k | k ∈ [q]}, Y0 = {yi,0 | i ∈ [q]}, Y1 = {y0,k | k ∈ [q]}, Z0 = {zi,k | i, k ∈ [q]},
Z1 = {z0,q+1}, and Z2 = {zq+1,0}. Hence, L = {T001, T112, T010, T100}. As in [12], and similar
to Proposition 21, since ts is defined as ts := t112 ⊗ rot(t112)⊗ rot(rot(t112)), it follows that
S̃(ts) ≤ lim supp∈P (L) pX · pY · pZ . We can assume, again by symmetry, that any probability
distribution p on L assigns the same value v to T010 and T100, and the same value 1/2− v to
T001 and T112. We finally get the bound:

S̃(ts) ≤ lim sup
v∈[0,1/2]

(2q)2 · (q2)2v

(2v)2v(1/2− v)1−2v .

This is maximized at v = q2/(2q2 + 2), which yields exactly S̃(ts) ≤ 22q2(q2 + 2). The
desired bound follows. J

The only upper bound we are able to prove on Vτ for τ > 2/3 is the straightforward
Vτ (t112) ≤ V2/3(t112)3τ/2 = 2τqτ (q2 + 2)τ/2, which is slightly worse than the best known
lower bound Vτ (t112) ≥ 22/3qτ (q3τ + 2)1/3. It is an interesting open problem to prove tight
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upper bounds on Vτ (T ) for any nontrivial tensor T and value τ > 2/3. T = t112 may be a
good candidate since the Laser method seems unable to improve Vτ (t112) for any τ , even
when applied to any small tensor power t⊗n112.

Notice that we were able to prove a tight bound on S̃(ts) here: the upper bound we
proved matches a lower bound which we were able to derive from Coppersmith-Winograd’s
analysis (which made use of the Laser Method) of Vτ (t112). In the next section we will
substantially generalize this fact, by showing a tight bound on S̃(T ) for any tensor T to
which the Laser Method applies.

6 Slice Rank Lower Bounds via the Laser Method

In this section, we show that the Laser Method can be used to give matching upper and
lower bounds on S̃(T ) for any tensor T to which it applies. We will build off of Theorem 18,
which we will show matches the bounds which arise in the Laser Method.

Consider any tensor T which is minimal over X,Y, Z, and let X = X1 ∪ · · · ∪ XkX
,

Y = Y1 ∪ · · · ∪ YkY
, Z = Z1 ∪ · · · ∪ ZkZ

be partitions of the three variable sets. Define Tijk,
L, and pX for a probability distribution p on L, as in the top of Subsection 3.7. Recall in
particular that Tijk is T restricted to the variable sets Xi, Yj , and Zk.

I Definition 25. We say that T , along with partitions of X,Y, Z, is a laser-ready tensor
partition if the following three conditions are satisfied:
(1) For every (i, j, k) ∈ [kX ]× [kY ]× [kZ ], either Tijk = 0, or else Tijk has a degeneration

to a tensor 〈a, b, c〉 with ab = |Xi|, bc = |Yj |, and ca = |Zk| (i.e. a matrix multiplication
tensor which is as big as possible given |Xi|, |Yj |, and |Zk|).

(2) There is an integer ` such that Tijk 6= 0 only if i+ j + k = `.
(3) T is variable-symmetric, and the partitions are T -symmetric.

These conditions are exactly those for which the original Laser Method used by Copper-
smith and Winograd [12] applies to T . We note that condition (3) is a simplifying assumption
rather than a real condition on T : for any tensor T and partitions satisfying conditions (1)
and (2), the tensor T ′ := T ⊗ rot(T ) ⊗ rot(rot(T )) along with the corresponding product
partitions, satisfies all three conditions, gives at least as good a bound on ω using the Laser
Method as T and the original partitions, and more generally has ωu(T ′) ≤ ωu(T ).

I Theorem 26 ([12, 13, 26]). Suppose T , along with the partitions of X,Y, Z, is a laser-ready
tensor partition. Then, for any distribution p ∈ P sym(L), and any positive integer n, the
tensor T⊗n has a degeneration into ∏

i∈[kX ]

p(Xi)−p(Xi)

n−o(n)

� 〈a, a, a〉,

where

a =

 ∏
Tijk∈L

|Xi|p(Tijk)

n/2−o(n)

.

Proof. Typically, as described in [26, Section 3], there is an additional loss in the size of
the degeneration if there are multiple different distributions p, p′ with the same marginals
(meaning p(Xi) = p′(Xi), p(Yj) = p′(Yj), and p(Zk) = p′(Zk) for all i, j, k) but different
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12:22 Limits on the Universal Method for Matrix Multiplication

values of V (p) :=
∏
Tijk∈L Vτ (Tijk)p(Tijk) for any τ ∈ [2/3, 1]. However, because of condition

(1) in the definition of a laser-ready tensor partition, the quantity V (p) is equal to∏
Tijk∈L

(|Xi| · |Yj | · |Zk|)p(Tijk)·τ/2,

and in particular satisfies V (p) = V (p′) for any two distributions p, p′ with the same marginals.
Thus, we do not incur this loss, and we get the desired degeneration. J

Our key new result about such tensor partitions is as follows:

I Theorem 27. Suppose tensor T , along with the partitions of X,Y, Z, is a laser-ready
tensor partition. Then,

S̃(T ) = lim sup
p∈P sym(L)

pX .

Proof. The upper bound, S̃(T ) ≤ lim supp∈P sym(L) pX , is given by Proposition 21.
For the lower bound, we know from Theorem 26 that for all p ∈ P sym(L), and all positive

integers n, the tensor T⊗n has a degeneration into ∏
i∈[kX ]

p(Xi)−p(Xi)

n−o(n)

� 〈a, a, a〉,

where

a =

 ∏
Tijk∈L

|Xi|p(Tijk)

n/2−o(n)

.

By Proposition 10, this means T⊗n has a degeneration to an independent tensor of size ∏
i∈[kX ]

p(Xi)−p(Xi)

n−o(n)

· a2 = p
n−o(n)
X .

Applying Propositions 8 and 9 implies that S̃(T ) ≥ pX for all p ∈ P sym(L), as desired. J

I Corollary 28. The upper bounds on S̃(CWq,σ), S̃(cwq,σ), S̃(T lowerq ), and S̃(Tq) from
Section 5 are tight.

Proof. CWq,σ, cwq,σ, and T lowerq , partitioned as they were in the previous section, are
laser-ready tensor partitions. The tight bound for Tq follows from the degeneration to T lowerq

described in the previous section. J

I Corollary 29. Every tensor T with a laser-ready tensor partition (including CWq,σ, cwq,σ,
and T lowerq ) has S̃(T ) = Q̃(T ).

Proof. All tensors satisfy S̃(T ) ≥ Q̃(T ). In Theorem 27, the upper bound on S̃(T ) showed
that T⊗n has a degeneration to an independent tensor of size S̃(T )n−o(n), which implies that
Q̃(T ) ≥ S̃(T ). J

I Corollary 30. If T is a tensor with a laser-ready tensor partition, and applying the Laser
method to T with this partition yields an upper bound on ω of ωu(T ) ≤ c for some c > 2,
then ωu(T ) > 2.
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Proof. When the Laser method shows, as in Theorem 26, that T⊗n has a degeneration into ∏
i∈[kX ]

p(Xi)−p(Xi)

n−o(n)

� 〈a, a, a〉,

the resulting upper bound on ωu(T ) is that ∏
i∈[kX ]

p(Xi)−p(Xi)

n−o(n)

· aωu(T ) ≥ R̃(T )n.

In particular, since the left-hand side equals pX when ωu(T ) = 2, this yields ωu(T ) = 2 if
and only if pX = R̃(T ), so if it yields ωu(T ) ≤ c, then S̃(T ) = pX < R̃(T )1−δ for some δ > 0.
Combined with Theorem 12 or Theorem 14, this means that ωu(T ) > 2. J
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A Proof that ωu(CWq,σ) ≥ 2.16805 for all q

Define the function f : [0, 1/3]→ R by

f(v) := 1
vv(2/3− 2v)2/3−2v(1/3 + v)1/3+v .

In Section 5.1, we showed that

ωu(CWq,σ) ≥ min
v∈[0,1/3]

2 log(q + 2)
log(q2/3−2v · f(v))

.

The value of this optimization problem is computed for 1 ≤ q ≤ 8 in a table in Section 5.1,
where we see that ωu(CWq,σ) ≥ 2.16805 for all q ≤ 8.

Let vq denote the argmin for the optimization problem. In particular, for q = 8, the
argmin is v8 = 0.017732422 . . .. From the q2/3−2v term in the optimization problem, we
see that vq+1 ≤ vq for all q, and in particular, vq ≤ v8 for all q > 8. It follows that
f(vq) ≤ f(v8) = 2.07389 . . . for all q > 8. Thus, for all q > 8 we have:

ωu(CWq,σ) ≥ min
v∈[0,1/3]

2 log(q + 2)
log(q2/3−2v · f(v8))

= 2 log(q + 2)
log(q2/3 · f(v8))

.

This expression equals 2.18562 . . . at q = 9, and is easily seen to be increasing with q for
q > 9, which implies as desired that ωu(CWq,σ) ≥ 2.16805 for all q ≥ 9 and hence all q.
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Abstract
We study the relation between streaming algorithms and linear sketching algorithms, in the context
of binary updates. We show that for inputs in n dimensions, the existence of efficient streaming
algorithms which can process Ω(n2) updates implies efficient linear sketching algorithms with
comparable cost. This improves upon the previous work of Li, Nguyen and Woodruff [23] and Ai,
Hu, Li and Woodruff [3] which required a triple-exponential number of updates to achieve a similar
result for updates over integers. We extend our results to updates modulo p for integers p ≥ 2, and
to approximation instead of exact computation.
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1 Introduction

Linear sketching has emerged in the recent years as a fundamental primitive for algorithm
design and analysis including streaming and distributed computing. Applications of linear
sketching include randomized algorithms for numerical linear algebra (see survey [32]), graph
sparsification (see survey [24]), frequency estimation [4], dimensionality reduction [19], various
forms of sampling, signal processing, and communication complexity. In fact, linear sketching
has been shown to achieve optimal space complexity [3, 23] for processing very long dynamic
data streams, which allow elements to be both inserted and deleted. Linear sketching is
also a frequently used tool in distributed computing – summaries communicated between
processors in massively parallel computational settings are often linear sketches.

In this paper we focus on linear sketches for functions evaluated modulo p. Namely,
functions of the form f : Znp → [0, 1]. Informally, the main result of our work is that for
computing such functions linear sketching modulo p achieves almost optimal space complexity
in dynamic streaming and distributed simultaneous communication settings. In particular,
the setting of p a power of two (say, 32 or 64) is relevant as CPUs perform computations
modulo such powers of two.
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13:2 Optimality of Linear Sketching Under Modular Updates

Exact sketching for binary data

We start with presenting our result in the simplest setting, where p = 2 and where the output
of f is binary. Namely, we are interested in computing a given Boolean function of the form
f(x) : {0, 1}n → {0, 1} using only a small sketch of the input. In this context it is natural to
consider sketches which are linear functions over the finite field F2. Due to their prominence
in design of dynamic streaming graph algorithms and other applications [1,2,5,6,9,11,12,14,
15,21,22,25] a study of such F2-sketches has been initiated in [20].

I Definition 1 (Exact F2-sketching, [20]). The exact randomized F2-sketch complexity
with error δ of a function f : Fn2 → {0, 1} is the smallest integer k such that there exists
a distribution over linear functions `1, . . . , `k : Fn2 → F2 and a post-processing function
h : Fk2 → {0, 1} that satisfies:

∀x ∈ Fn2 : Pr
`1,...,`k,h

[h(`1(x), `2(x), . . . , `k(x)) = f(x)] ≥ 1− δ.

In particular, F2-sketches naturally allow one to design algorithms for processing data
streams in the XOR update model [30] which we refer to as just XOR streams below. In this
model the input x ∈ {0, 1}n is generated via a sequence of additive updates to its coordinates
i1, . . . , it where each ij ∈ [n]. Formally, let x0 = 0n and let xj = xj−1 ⊕ eij where ek is the
k-th unit vector. This corresponds to flipping the bit in position ij in x at time j and after
applying the sequence of updates the resulting input is x = xt. The goal of the streaming
algorithm is to output f(x). It is easy to see that by flipping linear functions which depend
on xij when the update ij arrives one can maintain an F2-sketch through the XOR stream.
Hence the size of the F2-sketch gives an upper bound on the space complexity of streaming
algorithms in XOR streams.1

Whether this simple approach in fact achieves optimal space complexity for streaming
applications is one of the central questions in the field. Two structural results regarding
space optimality F2-sketching for dynamic streaming are known:
1. F2-sketches achieve optimal space for streams of length 222Ω(n)

[3, 20,23].
2. F2-sketches achieve optimal space for streams of length Õ(n) under the assumption that

updates are uniformly random [20].
It is open whether optimality of F2-sketching holds for short streams without any assumptions
about the distribution of updates. In fact, it was conjectured in [20] that such optimality might
hold for streams of length only 2n (see also Open Problem 78 on http://sublinear.info
from Banff Workshop on Communication Complexity and Applications, 2017).

In this paper we make major progress towards resolving the gap between the two results
discussed above. In particular, we show the following theorem.

I Theorem 2. Let f : {0, 1}n → {0, 1}. Assume that there exists a streaming algorithm for
computing f over XOR streams of length Ω(n2), which uses c bits of space. Then the exact
randomized F2-sketch complexity of f is O(c).

Moreover, using some more advanced tools in additive combinatorics we prove the
following.

1 More precisely, one also needs to derandomize the randomness in the sketching algorithm. This follows
from a standard application of Nisan’s pseudorandom generator [27]. For completeness we explain this
in Appendix A.

http://sublinear.info
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I Theorem 3. Let f : {0, 1}n → {0, 1}. Assume that there exists a streaming algorithm for
computing f over XOR streams of length Ω(n), which uses c bits of space. Then the exact
randomized F2-sketch complexity of f is O(c4).

The proof of Theorems 2 and 3 follows from a standard approach in this field, of proving
lower bounds for one-way communication protocols. We refer the reader to Section 2 where
the model is defined, and to Theorems 8 and 12 which are the formal versions of Theorems 2
and 3, respectively.

Extensions to updates modulo p

We now consider the more general streaming model where updates modulo p are allowed,
where p ≥ 2 is an integer. In this model an underlying n-dimensional vector x is initialized to
0n and evolves through a sequence of additive updates to its coordinates. These updates are
presented to the streaming algorithm as a sequence and have the form xi ← (xi + δt) mod p

changing the i-th coordinate by an additive increment δt modulo p in the t-th update. Here
δt can be an arbitrary positive or negative integer. In this setting the streaming algorithm is
required to output a given function f of {0, . . . , p− 1}n in the end of the stream.

The definition of the exact randomized Zp-sketch complexity of f is the natural extension
of the definition for F2.

I Definition 4 (Exact Zp-sketching). The exact randomized Zp-sketch complexity with error
δ of a function f : Znp → {0, 1} is the smallest integer k such that there exists a distribution
over linear functions `1, . . . , `k : Znp → Zp and a post-processing function h : Zkp → {0, 1}
that satisfies:

∀x ∈ Znp : Pr
`1,...,`k,h

[h(`1(x), `2(x), . . . , `k(x)) = f(x)] ≥ 1− δ.

I Theorem 5. Let f : Znp → {0, 1}. Assume that there exists a streaming algorithm for
computing f over streams with modulo p updates of length Ω(n2 log p), which uses c bits of
space. Then the exact randomized Zp-sketch complexity of f is O(c).

The proof of Theorem 5 for prime p is very similar to the proof of Theorem 2. However,
for non-prime p the proof is a bit more involved. We define the relevant model in Section 4,
and the relevant theorem that implies Theorem 5 is Theorem 17.

Extensions to approximation

It is also natural to consider real-valued functions f : {0, 1}n → [0, 1] and to allow the
streaming algorithm to compute f with error ε (see e.g. [34]). It turns out that technically, a
convenient notion of approximation is `2 approximation. Namely, a randomized function g
(computed by a streaming protocol, or a sketching protocol) ε-approximates f if

E
[
|f(x)− g(x)|2

]
≤ ε ∀x ∈ {0, 1}n.

A similar definition holds for more general functions f : Znp → [0, 1]. The definition of
approximate randomized Zp-sketch complexity is the natural extension of the previous
definitions.

I Definition 6 (Approximate Zp-sketching). The approximate randomized Zp-sketch com-
plexity with error δ of a function f : Znp → [0, 1] is the smallest integer k such that there
exists a distribution over linear functions `1, . . . , `k : Znp → Zp and a post-processing function
h : Zkp → [0, 1] that satisfies:

∀x ∈ Znp : E
`1,...,`k,h

[
|h(`1(x), `2(x), . . . , `k(x))− f(x)|2

]
≤ δ.
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I Theorem 7. Let f : Znp → [0, 1]. Assume that there exists a streaming algorithm which
ε-approximates f over streams with modulo p updates of length Ω(n2 log p), which uses c bits
of space. Then the approximate randomized Zp-sketch complexity of f with error O(ε) is O(c).

We develop the machinery needed to handle approximation in two steps. First, in Section 3
we prove it for p = 2, see in particular Theorem 14. For general p it is done in Section 4,
where the relevant theorem which implies Theorem 7 is Theorem 18.

Techniques

The result in Theorem 2 starts with a standard connection between streaming algorithms and
a multi-party one-way communication game. Let f : {0, 1}n → {0, 1} be a Boolean function,
and assume that we are given a streaming algorithm for f which can process streams of Nn
updates. We model this as a game with N players, each holding an input in {0, 1}n which
captures the commulative effect of n binary updates. We denote these inputs as x1, . . . , xN .

The players communicate sequentially in N rounds where in the i-th round the i-th player
sends a message to the (i + 1)-th player. The players have access to shared randomness
and the i-th message can depend on the (i − 1)-th message, the input xi and the shared
randomness. The message sent in the final N -th round should be equal to f(x1 + · · ·+ xN ).
In fact, our proof works in a more general model where the i-th message can depend on all
messages sent by previous players. We refer to the above model as the one-way broadcasting
communication model.

We show (Theorem 8) that in any protocol which computes f at least one of the messages
sent by the players has to be of size Ω(k) where k is the smallest dimension of an F2-sketch
for f . This immediately implies a space lower bound of Ω(k) for streaming algorithms in the
XOR update model. Indeed, if a streaming algorithm with smaller space existed then the
players could just pass its state as their message after applying updates corresponding to
their local inputs.

Our proof of the communication lower bound proceeds as follows. First, it will be easier
to present the argument for N + 1 players instead of N players. Assume that there exists
a communication protocol which succeeds with probability q and sends at most c bits in
every round. This protocol has to succeed for any distribution of the inputs. So, fix a “hard”
distribution D over inputs x ∈ {0, 1}n.

We sample the inputs x1, . . . , xN+1 ∈ {0, 1}n to the N players as follows: first, sample
x ∼ D. Then, sample x1, . . . , xN ∈ {0, 1}n uniformly. Finally, set xN+1 = x+ x1 + . . .+ xN ,
so that the sum (modulo two) of the inputs to the N + 1 players equals x.

Next, an averaging argument then shows that there is a transcript (sequence of messages)
π = (m1, . . . ,mN ) of the first N players such that:
(i) Conditioned on the transcript π, the protocol computes f correctly with probability
≈ q.

(ii) The probability for the transcript π is not too tiny, concretely ≈ 2−cN .

Once we fixed the transcript π, note that the output of the protocol depends only on the
last input xN+1, which we denote by F (xN+1). Recall that by our construction, xN+1 =
x+x1+. . .+xN . Define sets A1, . . . , AN ⊂ {0, 1}n such that whenever x1 ∈ A1, . . . , xN ∈ AN ,
the players send the transcript π. By (ii) above it holds that the density of a typical Ai is
approximately 2−c. Then, if we sample yi ∈ Ai uniformly then by (i) we have

Pr
x∼D,yi∈Ai

[F (x+ y1 + . . .+ yN ) = f(x)] ≈ q.
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The next step is to apply Fourier analysis. In particular, we rely of Chang’s lemma [10].
This allows us to deduce that there exists a subspace V ⊂ Fn2 of co-dimension O(c) such
that, if we sample in addition v ∈ V uniformly, then

Pr
x∼D,yi∈Ai,v∈V

[F (x+ y1 + . . .+ yN + v) = f(x)] ≈ q.

Concretely, V is chosen to be orthogonal to the common large Fourier coefficients of the
indicator functions of A1, . . . , AN . In order for this to hold, it is necessary to choose N large
enough so that the sum y1 + . . . + yN “mixes” enough in the group Fn2 . It turns out that
N = Ω(n) is sufficient for this.

This allows us to define a randomized F2-sketching protocol. Consider the quantity

g(x) = Pr
yi∈Ai,v∈V

[F (x+ y1 + . . .+ yN + v) = 1] .

The function g(x) depends only on the coset x + V , and hence can be computed by a
randomized F2-sketching protocol with complexity equals to the co-dimension of V .

The results for updates modulo p (Theorem 5) and approximation (Theorem 7) follow
the same general scheme, except that now players are holding inputs in Znp and we convert
any c-bit protocol with small error into a sketch modulo p of dimension O(c) which has a
similar error. In order to achieve mixing in this setting the required number of players is
N = Ω(n log p).

Distributed computing in the simultaneous communication model

Our results imply that lower bounds on linear sketches modulo p immediately lead to lower
bounds for computing additive functions in the simultaneous communication complexity
(SMP) model. In this model [7,8] there are N players and a coordinator, who are all aware of
a function f : Znp → [0, 1]. The players have inputs x1, . . . , xN ∈ Znp and must send messages
of minimal size to the coordinator so that the coordinator can compute f(x1, . . . , xN ) using
shared randomness. If f is additive, i.e. of the form f(x1 + · · ·+ xN ) then this is strictly
harder than the one-way broadcasting model described above. Note that dimension of the
best linear sketch modulo p for f still translates to a protocol for the SMP model.

Previous work

Most closely related to ours are results of [23] and [3] which stemmed from the work of [16]. In
particular [23] shows that under various assumptions about the updates turnstile streaming
algorithms can be turned into linear sketches over integers with only a O(log p) multiplicative
loss in space. While this is similar to our results, these approaches inherently require
extremely long streams of adversarial updates (of length triply exponential in n in [23]) as
they essentially aim to fail any small space algorithm (modeled as a finite state automaton)
using a certain sequence of updates. Furthermore, the results of [23] rely on a certain “box
constraint” requirement. This requirement says that correctness of the streaming algorithm
should be guaranteed for the resulting input x ∈ {−m, . . . ,m}n even if the intermediate
values of the coordinates of x throughout the stream are allowed to be much larger than m
in absolute value. While this requirement has been subsequently removed in [3], their results
again impose a certain constraint on the class of streaming algorithms they are applicable to.
In particular, their Theorem 3.4 which removes the “box constraint” is only applicable to
algorithms which use space at most c logm

n which is only non-trivial for m = Ω(2n).
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It has been open since the work of [23] and [3] whether similar results can be obtained using
the tools from communication complexity, as has been the case for most other streaming lower
bounds. While our results do not apply directly to updates over integers, a key component
of the [3,23] technique is to first reduce general automata to linear sketching modulo fixed
integers. Hence our result can be seen as an alternative to their reduction which is specific
to modular updates and is obtained through communication complexity tools.

Another related line of work is on communication protocols for XOR-functions [17,
20, 26, 29, 31, 33, 34]. For inputs x1, . . . , xN ∈ Fn2 a multi-parity XOR-function is defined
as f(x1 + · · · + xN ). For the case of p = 2 our results are using one-way broadcasting
communication complexity for the corresponding XOR-function of interest. While the
communication complexity of XOR-functions has been studied extensively in the two-party
communication model, to the best of our knowledge prior to our work it has not been
considered in the one-way multi-party setting.

2 Sketching for f : Fn2 → {0, 1}

2.1 Model
We use regular letters x, f for deterministic objects and bold letters x, f for random variables.

Streaming protocol

Let F : (Fn2 )N → {0, 1} be an N -player function, where the players’ inputs are x1, . . . , xN ∈
Fn2 . We assume that the players have access to shared randomness r ∈ {0, 1}r.

A streaming protocol for F with c bits of communication is defined as follows. The players
send messages in order, where the i-th player’s message mi depends on her input xi, the
previous player’s message mi−1 and the shared randomness r. That is,

m1 = M1(x1, r),
mi = Mi(xi,mi−1, r), i = 2, . . . , N

whereMi : Fn2×{0, 1}c×{0, 1}r → {0, 1}c for 1 ≤ i ≤ N−1 andMN : Fn2×{0, 1}c×{0, 1}r →
{0, 1}, where the output of the protocol is the last message sent mN ∈ {0, 1}. We may write
it as mN = G(x1, . . . , xN , r), where G respects the protocol structure:

G(x1, . . . , xN , r) = Mn(. . . ,M2(x2,M1(x1, r), r), r).

The protocol computes F correctly with probability q, if for all possible inputs x1, . . . , xN ∈
Fn2 , it holds that

Pr [G(x1, . . . , xN , r) = F (x1, . . . , xN )] ≥ q.

One-way broadcasting

A one-way broadcasting protocol is a generalization of a streaming protocol. We introduce
this model as our simulation theorem extends to this model seamlessly.

In this model, the message sent by the i-th player is seen by all the players coming after
her. Equivalently, the i-th player’s message may depend on m1, . . . ,mi−1,

mi = Mi(xi,m1, . . . ,mi−1, r).

The notion of a protocol computing F correctly with probability q is defined analogously.
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Linear sketches

A function g : Fn2 → {0, 1} is a k-linear-junta if g(x) = h(`1(x), . . . , `k(x)), where each
`i : Fn2 → F2 is a linear function, and h : Fk2 → {0, 1} is an arbitrary function. A linear
sketch of cost k is a distribution g over k-linear-juntas. We think of g as a randomized
function g : Fn2 → {0, 1}. It computes f with success probability q if, for every input x ∈ Fn2 ,
it holds that

Pr [g(x) = f(x)] ≥ q.

Simulation theorem

Let f : Fn2 → {0, 1} and F : (Fn2 )N → {0, 1} be the N -player function defined by

F (x1, . . . , xN ) = f(x1 + . . .+ xN ).

We show that if there are sufficiently many players (N is large enough) and F has an efficient
one-way broadcasting protocol, then f also has an efficient linear sketch.

I Theorem 8. Let N ≥ 10n and suppose that F has a one-way broadcasting protocol with
c bits of communication per message and success probability q. Then there exists a linear
sketch of cost k which computes f with success probability q − 2−Ω(N), where k = O(c).

I Remark 9. We remark that the statement and proof of Theorem 8 generalizes straightfor-
wardly to the case that f : Fnp → {0, 1} for any prime p; the only difference is that we have
to ensure that N ≥ 10n log p. We provide the proof over F2 to slightly simplify the notation.

2.2 Proof of Theorem 8
By Yao’s minimax principle, it will suffice to show that for any distribution D over Fn2 , there
exists a k-linear-junta g : Fn2 → {0, 1} such that

Pr
x∼D

[g(x) = f(x)] ≥ q − 2−Ω(N).

Fix a distribution D. We consider the following distribution over the inputs. It will be
easier to assume we have N + 1 players instead of N players. First, sample x1, . . . ,xN ∈ Fn2
uniformly, and let x ∼ D. Set xN+1 = x1 + . . .+xN +x. Under this input distribution, there
exists a fixed choice of the shared randomness which attains success probability ≥ q. Namely,
there is a fixed r∗ such that for m1 = M1(x1, r

∗),m2 = M2(x2,m1, r
∗), etc, it holds that

Pr
x1,...,xN+1

[G(m1, . . . ,mN+1, r
∗) = f(x)] ≥ q. (1)

Let π = (m1, . . . ,mN ) ∈ {0, 1}cN denote the messages of the first N players. For every
possible value π of π, define

a(π) = Pr[π = π], b(π) = Pr [G(m1, . . . ,mN+1, r
∗) = f(x) | π = π] .

Then we may rewrite Equation (1) as∑
π

a(π)b(π) ≥ q.

Let δ = 2−N . By averaging, there exists a choice of π = (m1, . . . ,mN ) such that
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(i) a(π) ≥ δ2−cN = 2−(c+1)N .
(ii) b(π) ≥ q − δ.
Define sets Ai = {xi ∈ Fn2 : Mi(xi,m1, . . . ,mi−1, r

∗) = mi} for i = 1, . . . , N so that

[π = π] ⇔ [x1 ∈ A1, . . . ,xN ∈ AN ] .

Let αi = |Ai|
2n denote the density of Ai. Condition (i) translates to

N∏
i=1

αi = a(π) ≥ 2−(c+1)N . (2)

Next, conditioned on π = π, the one-way broadcasting protocol simplifies. First, define
h : Fn2 → {0, 1} as

h(xN+1) = G(m1, . . . ,mN ,MN+1(xN+1,m1, . . . ,mN , r
∗), r∗).

Let y1 ∈ A1, . . . ,yN ∈ AN be uniformly and independently chosen. Condition (ii) trans-
lates to

Pr [h(x + y1 + . . .+ yN ) = f(x)] = b(π) ≥ q − δ. (3)

We next apply Fourier analysis. Let us quickly set some common notation in the following
paragraph.

Fourier analysis

Let f : Fn2 → R be a function. Then given γ ∈ Fn2 , the Fourier coefficient f̂(γ) is define
as f̂(γ) = Ex∈Fn

2
f(x)(−1)〈x,γ〉. The function f can be expressed in the Fourier basis

as f(x) =
∑
γ∈Fn

2
f̂(γ)(−1)〈x,γ〉. Given two functions f, g : Fn2 → R, their convolution

f ∗ g : Fn2 → R, is defined by f ∗ g(x) = Ey∈Fn
2
f(y)g(x+ y). Moreover, we have the equality

f̂ ∗ g(γ) = f̂(γ)ĝ(γ) for all γ ∈ Fn2 . Given a set A ⊂ Fn2 of density α = |A|
2n , define its

normalized indicator function ϕA : Fn2 → R as

ϕA(x) =
{

1/α if x ∈ A
0 otherwise

.

Note that under this normalization, ϕ̂A(0) = E[ϕA] = 1 and |ϕ̂A(γ)| ≤ 1 for all γ ∈ Fn2 .
Going back to the proof, for technical reasons we switch to {−1, 1} instead of {0, 1}.

Define the functions h′ = (−1)h and f ′ = (−1)f . We work with h′, f ′ instead. Note that
Equation (3) translates to

Pr [h′(x + y1 + . . .+ yN )f ′(x) = 1] = b(π) ≥ q − δ. (4)

We use the following immediate consequence of Chang’s lemma (lemma 3.12 in [10]).

I Lemma 10. Let A ⊂ Fn2 of density α = |A|
2n . Let γ1, . . . , γk ∈ Fn2 be linearly independent.

Then

k∑
i=1
|ϕ̂A(γi)|2 ≤ 8 log 1/α.
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Let S ⊂ Fn2 be a set of “noticeable” Fourier coefficients of A1, . . . , AN , defined as follows.
First, define

B =
{
i ∈ [N ] : |Ai|2n ≥ 2−2(c+1)

}
.

Equation (2) implies that |B| ≥ N/2. Then, define

S =
{
γ ∈ Fn2 :

∑
i∈B
|ϕ̂Ai

(γ)|2 ≥ |B|/2
}
.

Let γ1, . . . , γk be a maximal set of linearly independent elements in S. Lemma 10 implies
that k = O(c). Thus, there exists a subspace U ⊂ Fn2 of dimension k such that S ⊂ U . Let
V ⊂ Fn2 be the orthogonal subspace to U .

B Claim 11. Let y1 ∈ A1, . . . ,yN ∈ AN ,v ∈ V be chosen uniformly and independently.
Then for every x ∈ Fn2 it holds that

|E[h′(x+ y1 + . . .+ yN )]− E[h′(x+ y1 + . . .+ yN + v)]| ≤ 2n2−N/8.

Proof. We rewrite both expressions using their Fourier expansion:

E[h′(x+ y1 + . . .yN )] = ϕA1 ∗ · · · ∗ ϕAN
∗ h′(x) =

∑
γ∈Fn

2

(−1)〈γ,x〉ĥ′(γ)
N∏
i=1

ϕ̂Ai
(γ)

and similarly

E[h′(x+ y1 + . . .yN + v)] =
∑
γ∈Fn

2

(−1)〈γ,x〉ĥ′(γ)ϕ̂V (γ)
N∏
i=1

ϕ̂Ai
(γ).

As V is a subspace, we have ϕ̂V (γ) = 1U (γ). We can thus bound

|E[h′(x+ y1 + . . .+ yN )]− E[h′(x+ y1 + . . .+ yN + v)]| ≤
∑
γ /∈U

N∏
i=1
|ϕ̂Ai

(γ)| .

If γ ∈ S then also γ ∈ U . Otherwise, by the construction of S, |ϕ̂Ai
(γ)|2 ≤ 1/2 for at least

|B|/2 elements i ∈ [N ]. We thus have

|E[h′(x+ y1 + . . .+ yN )]− E[h′(x+ y1 + . . .+ yN + v)]| ≤ 2n2−|B|/4 ≤ 2n2−N/8. J

Moreover, using the assumption N ≥ 10n provides

|E[h′(x+ y1 + . . .+ yN )]− E[h′(x+ y1 + . . .+ yN + v)]| ≤ 2−Ω(N).

Now, by Equation (4) we already have

E[h′(x + y1 + . . .+ yN )f ′(x)] ≥ 2q − 1− 2−Ω(N)

allowing us to obtain

E[h′(x + y1 + . . .+ yN + v)f ′(x)] ≥ 2q − 1− 2−Ω(N)

implying

Pr [h(x + y1 + . . .+ yN + v) = f(x)] ≥ q − 2−Ω(N)
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To conclude the proof, define the function w : Fn2 → [0, 1] as

w(x) = E [h(x+ y1 + . . .+ yN + v)] .

Note that w(x) = W (`1(x), . . . , `k(x)), where `1, . . . , `k are a basis for U , andW : Fk2 → [0, 1].
Define a randomized function G : Fk2 → {0, 1}, where Pr[G(z) = 1] = W (z) independently
for each z ∈ Fk2 . Define g(x) = G(`1(x), . . . , `k(x)), which is a randomized k-linear-junta
and observe that g(x) and h(x+ y1 + · · ·+ yN + v) have the same distribution for every
x ∈ Fn2 . Therefore, we have that

Pr [g(x) = f(x)] = Pr [h(x + y1 + . . .+ yN + v) = f(x)] ≥ q − 2−Ω(N),

Finally, note that by an averaging argument, we can fix the internal randomness of g to
obtain a k-linear-junta g so that

Pr
x∼D

[g(x) = f(x)] ≥ q − 2−Ω(N).

This concludes the proof.

2.3 Sketching for three players
In this section we revise the proof of Theorem 8 and use a tool from additive combinatorics
to obtain a version of Theorem 8 that requires only three players. In particular we show the
following.

I Theorem 12. Let N ≥ 3 and suppose that F has a one-way broadcasting protocol with
c bits of communication per message and success probability q. Then there exists a linear
sketch of cost k which computes f with success probability q − 0.01, where k = O(c4).

Note that the only caveat is that here we obtain k = O(c4) instead of the bound k = O(c)
in Theorem 8. The main technical lemma that we use is an almost periodicity result due to
Croot and Sisask [13]. We quote the suitable version of the result bellow.

I Lemma 13 (Theorem 3.2 of [28]). Let h′ : Fn2 → R be a function with ‖h′‖∞ ≤ 1. Let
A1, A2 ⊂ Fn2 and |A1|, |A2| ≥ α|Fn2 | for some α > 0. Also let ε > 0 be an error parameter.
Then there is a subspace V of codimension O(ε−2 log4(ε−1α−1)) so that for all x ∈ Fn2 ,

|h′ ∗ ϕA1 ∗ ϕA2 ∗ ϕV (x)− h′ ∗ ϕA1 ∗ ϕA2(x)| ≤ ε.

Proof of Theorem 12. The proof is similar to the proof of Theorem 8 so we just explain the
point where it differs. Find a transcript π and sets A1, A2 and functions h : Fn2 → {0, 1},h′ :
Fn2 → {−1, 1} as before that satisfy:

1. [π = π] ⇔ [x1 ∈ A1,x2 ∈ A2] .
2. |A1|, |A2| ≥ 2−O(c)2n
3. Pr [h(x + y1 + y2) = f(x)] = b(π) ≥ q − 0.001, for uniform and independent y1 ∈

A1,y2 ∈ A2.
Then instead of Claim 11, apply Lemma 13 to the function h′, sets A1, A2, and ε = 0.001,

to obtain the subspace V of codim O(c4) that we are looking for. Then continue the proof
as before. J
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3 Sketching for f : Fn2 → [0, 1]

In this section, we approximate a given function f : Fn2 → [0, 1] with an additive error. Both
the model and the proof are similar to the previous case.

3.1 Model
Protocols

The notions of streaming protocol and one-way broadcasting protocol with c bits of commu-
nication are defined similar as before, where the only difference is that the last message mN

takes values in [0, 1] instead of {0, 1}.
The protocol G is said to ε-approximate F : (Fn2 )N → [0, 1] if for all possible inputs

x1, . . . , xN ∈ Fn2 , it holds that

E
r

[
|G(x1, . . . , xN , r)− F (x1, . . . , xN )|2

]
≤ ε.

Linear sketches

A linear sketch of cost k is a distribution g over k-linear-juntas, where a k-linear-junta
g : Fn2 → [0, 1] is defined as before. We think of g as a randomized function g : Fn2 → [0, 1].
The linear sketch g ε-approximates f : Fn2 → [0, 1] if, for every x ∈ Fn2 , it holds that

E
[
|g(x)− f(x)|2

]
≤ ε.

We prove the following theorem in the rest of the section.

I Theorem 14. Let f : Fn2 → [0, 1] and assume N ≥ 10n and F : (Fn2 )N → [0, 1] is defined
by F (x1, . . . , xN ) = f(x1 + . . . + xN ). Suppose that F is ε-approximated by a one-way
broadcasting protocol with c bits of communication per message. Then there is a linear sketch
g : Fn2 → [0, 1] of cost k that ε′-approximates f , where k = O(c) and ε′ = 2ε+ 2−Ω(N).

I Remark 15. In this case as well, the proof directly generalizes to the case that f : Fnp → [0, 1]
for prime p conditioned on N ≥ 10n log p.

3.2 Proof of Theorem 14
The proof is similar to the proof of Theorem 8. We point out the necessary modifications.
Same as before, we fix an arbitrary distribution D over Fn2 , and show that there exists a
k-linear-junta g : Fn2 → [0, 1] such that

E
x∼D

[
|g(x)− f(x)|2

]
≤ ε′.

To do so, obtain a function h : Fn2 → [0, 1] and sets A1, · · · , AN as before, so that for
x ∼ D,yi ∈ Ai, we have

E
[
|h(x + y1 + . . .+ yN )− f(x)|2

]
≤ ε+ 2−N . (5)

Now we switch to the exponential basis. Define functions f ′, h′ : Fn2 → C by

f ′(x) = eif(x), h′(x) = e−ih(x).

where e = 2.71828 · · · is Euler’s constant. Note that if f(x) = h(x), then Re [f ′(x)h′(x)] = 1,
where Re[z] is the real component of z. We need the following claim.
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B Claim 16. Let z be a [−1, 1]-valued random variable. Then,

1− 1
2 E

[
z2] ≤ E

[
Re[eiz]

]
≤ 1− 1

3 E
[
z2] .

Proof. The Taylor expansion of Re eiz = cos(z) is 1− z2

2! + z4

4! − · · · . Therefore

1− z2

2 ≤ Re[eiz] ≤ 1− z2

3

provided that z ∈ [−1, 1]. C

Using the lower bound in Claim 16, by taking z = h(x + y1 + . . .+ yN )− f(x), we get

E [Re[h′(x + y1 + . . .+ yN )f ′(x)]] ≥ 1− ε/2− 2−Ω(N)

We apply Claim 11 same as before to obtain subspaces V,U and

E [Re[h′(x + y1 + . . .+ yN + v)f ′(x)]] ≥ 1− ε/2− 2−Ω(N) (6)

Define a randomized k-linear-junta r : Fn2 → [0, 1] as follows. Sample y1, · · · ,yN ,v. Then
for every u ∈ U and v ∈ V + u, set

r(v) = h(u+ y1 + · · ·+ yN + v).

Observe that for every x ∈ Fn2 , the randomized functions r(x) and h(x+ y1 + . . .+ yN + v)
have identical distributions, and therefore, e−πir(x) has the same distribution as h′(x+ y1 +
· · ·+ yN + v). Combining this with Equation (6) implies

E
[
Re[e−πir(x)f ′(x)]

]
≥ 1− ε/2− 2−Ω(N)

By an averaging argument, there is a k-linear-junta g : Fn2 → [0, 1] that

E
[
Re[e−πig(x)f ′(x)]

]
≥ 1− ε/2− 2−Ω(N).

Finally, by using the upper bound in Claim 16, we get that

E
[
|g(x)− f(x)|2

]
≤ 1− 4E

[
Re[e−πig(x)f ′(x)]

]
≤ 2ε+ 2−Ω(N)

which finishes the proof.

4 Sketching over abelian groups of bounded exponent

Let G be a finite abelian group. We generalize Theorem 8 and Theorem 14 to the case where
f : G → {0, 1} and f : G → [0, 1], respectively. Even though we are mostly interested in
G = Znp , it turns out to be useful to consider this more general formulation. In particular,
the proofs of Theorem 8 and Theorem 14 directly generalize to the case of prime p, but the
case of composite p requires a more careful analysis. We introduce the required modifications
to the definitions and the proofs.

Protocols

The concept of broadcasting protocol and streaming protocol for the function F (x1, · · · , xN ) =
f(x1 + · · ·+ xN ) is defined as before.
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Sketching

We modify the previous definition of sketching so that it will be meaningful for arbitrary
abelian groups. Let H be an arbitrary subgroup of G. Let Q = G/H be the quotient group.
A function g : G → {0, 1} is H-invariant if it is constant on every coset H + w for all
w ∈ Q. Note that such g can be factored as g(x) = h(q(x)) where q : H → Q is defined by
q(x) = x + H and h : Q → {0, 1} is an arbitrary function. A function g : G → {0, 1} has
linear complexity r if there is a subgroup H ≤ G so that g is H-invariant and also |G/H| ≤ r.
Note that for functions g : Fn2 → {0, 1}, the notion of k-linear-junta is equivalent to linear
complexity 2k.

A linear sketch of complexity r is a distribution g : G → {0, 1} over functions g : G →
{0, 1} of linear complexity r. We have the following two theorems for functions g : G→ {0, 1}
and g : G→ [0, 1].

Simulation theorems

Before stating the theorems, we need to introduce one parameter of the group G that will
be important here. Let the exponent of G, be the smallest m so that m · g = 0 for all
g ∈ G. Now, we can state the simulation theorems. Same as before, let f : G → {0, 1}
(respectively, f : G→ [0, 1]) and define F : GN → {0, 1} (respectively, F : GN → [0, 1]) by
F (x1, · · · , xN ) = f(x1 + · · ·+ xN ).

I Theorem 17. Let G be an abelian group of exponent m. Let N ≥ 10n logm and suppose
that F has a one-way broadcasting protocol with c bits of communication per message and
success probability q. Then there exists a linear sketch of complexity r which computes f with
success probability q − 2−Ω(N), where r = mO(c).

And similarly, for bounded real-valued functions we have the following.

I Theorem 18. Let G be an abelian group of exponent m and N ≥ 10n logm. Suppose that
F is ε-approximated by a one-way broadcasting protocol with c bits of communication per
message. Then there is a linear sketch g : Fn2 → [0, 1] of complexity r that ε′-approximates f ,
where r = mO(c) and ε′ = 2ε+ 2−Ω(N).

We need to provide suitable versions of Lemma 10 and Claim 11 here. The other parts of
the proof are same as before. We first have to introduce some notation to do Fourier analysis.

Fourier analysis

A character γ : G→ C∗ of G is a homomorphism to the group C∗. That is, for every x, y ∈ G
we have γ(x+ y) = γ(x)γ(y) and γ(0) = 1. The dual group of G, denoted by Ĝ, is the group
of all characters of G. Ĝ has the group structure introduced by (γ1 + γ2)(x) = γ1(x)γ2(x).
In fact Ĝ is isomorphic to G. Given any function f : G→ C, we can write f in its Fourier
basis as

f(x) =
∑
γ∈Ĝ

f̂(γ)γ(x)

where

f̂(γ) = E
x∈G

f(x)γ(x)
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and γ(x) is the complex conjugate of γ(x). Moreover the convolution operator is defined as
before. Given f, g : G → C, write f ∗ g(x) = Ey∈G f(y)g(x − y) for x ∈ G, which leads to
f̂ ∗ g(γ) = f̂(γ)ĝ(γ) for all γ ∈ Ĝ. Again, given a set A ⊂ G, define its normalized function
as ϕA = |G|

|A|1A. We need two more definitions. Let Γ ⊂ Ĝ. Then Γ⊥, called the annihilator
of Γ is a subgroup of G defined by Γ⊥ = {x ∈ G : γ(x) = 1,∀γ ∈ Γ}. A subset Γ ⊂ Ĝ is
called dissociated if there are no non-trivial solutions to the equation∑

γ∈Γ
aγ · γ = 0

where each aγ ∈ {−1, 0, 1}, 1 · γ = γ, (−1) · γ = −γ, and 0 · γ = 0. Let us restate the general
form of Chang’s lemma [10].

I Lemma 19. Let A ⊂ G be a set of density α > 0. Suppose that Γ ⊂ Ĝ is a dissociated set.
Then∑

γ∈Γ
|ϕ̂A(γ)|2 ≤ O(logα−1).

Note that if Γ ⊂ Ĝ and Γ′ ⊂ Γ is the largest dissociated subset of Γ, then Γ ⊂ 〈Γ′〉, the
span of Γ′. Since G has exponent m, we have |Γ| ≤ m|Γ

′|. Moreover, one can show that
Γ⊥ ∼= G/〈Γ〉, therefore, |〈Γ⊥〉| ≥ |G|

m|Γ′| .
Finally, the last part to modify in the proof of Theorems 17 and 18 is to obtain a suitable

version of Claim 11. Using Chang’s lemma as stated above and an analogous proof as before,
we can find the function h′ : G → C taking values in the unit circle, and also the sets
A1, · · · , AN ⊂ G as discussed in the proof of Theorem 8. Also using Lemma 19 we can find
a maximal dissociated subset Γ′ of size k = O(c). Then take the subgroup H = Γ′⊥ ≤ G (as
the analog of the subspace V ≤ Fn2 ) so that |G/H| ≤ mk. The following claim about H is
what we need.

B Claim 20. Let y1 ∈ A1, . . . ,yN ∈ AN ,v ∈ H be chosen uniformly and independently.
Then for every x ∈ G it holds that

|E[h′(x+ y1 + . . .+ yN )]− E[h′(x+ y1 + . . .+ yN + v)]| ≤ 2−N/8|G|.

The proof is analogous to the proof of Claim 11. By taking N ≥ 10n logm we can make sure
that 2−N/8|G| ≤ 2−Ω(N). This finishes the proofs of Theorems 17 and 18.
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A Pseudorandom generators

Below we describe a standard application of pseudorandom generators for space bounded
computation by Nisan [27] in the streaming setting following presentation given by Indyk [18].
Such pseudorandom generators can be used to fool any Finite State Machine which uses only
O(S) space or 2O(S) states. Since a sketch consisting of s numbers modulo p can only take
ps values we can think of such sketches as being Finite State Machines with O(s log p) space.

Assume that a Finite State Machine Q which uses O(S) bits of space uses at most k
blocks of random bits where each block is of length b. The generator G : {0, 1}m → ({0, 1}b)k
expands a small number m of uniformly random bits into kb bits which “look random” for
Q. Formally, let U({0, 1}t) be a uniform distribution over {0, 1}t. For any discrete random
variable let D[X] be the distribution of X interpreted is a vector of probabilities. Let Q(x)
denote the state of Q after using the random bits sequence x. Then G is a pseudorandom
generator with parameter ε > 0 for a class C of Finite State Machines, if for every Q ∈ C:

|D[Qx∼U({0,1}bk)]−D[Qx∼U({0,1}m)(G(x))]|1 ≤ ε,

where |y|1 denotes the `1-norm of a vector y.

I Theorem 21 ([27]). There exists a pseudorandom generator G with parameter ε = 2−O(S)

for Finite State Machines using space O(S) such that:
G expands O(S logR) bits into O(R) bits.
G requires only O(S) bits of storage (in addition to its random input bits)
Any length-O(S) block of G(x) can be computed using O(logR) arithmetic operations on
O(S)-bit words.

Using the above results we can reduce the amount of randomness used by a linear sketch
modulo p as follows. Consider any state S of the linear sketch of dimension s. From the
above discussion it follows that this state can be represented using O(s log p) bits. When a
streaming update to coordinate i arrives we need only O(s log p) bits to generate the i-th
row of the linear sketch matrix so that we can add it to the linear sketch. However, in order
to ensure consistency, i.e. to make sure that when the i-th row is generate again we get the
same result, we still need a lot of memory. Solution to this issue due to [18] follows below.

First, assume that the streaming updates (i, δt) are coming in the non-decreasing order
of i. In this case we do not have to store the rows of the linear sketch matrix as we can
generate them on the fly. Indeed, after the i-th row is generated we can apply it to all
updates which contain i since such updates arrive sequentially one after another. This gives
an algorithm which uses only O(s log p) storage and O(n) blocks of random bits of size
O(s log p) each. Hence there exists a pseudorandom generator G which given a random seed
of size O(s log p log(n/δ)) expands it to a pseudorandom sequence using which instead of the
rows the sketch matrix only results in a negligible probability of error. I.e. the resulting
state of the sketch can still be used to estimate the value of the function f of interest.

The key observation is that for every fixed random seed the resulting state doesn’t depend
on the order of updates (i, δt) by the commutativity of addition. Hence one can use G even
if the updates come in any order.
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Abstract
The canonical problem that gives an exponential separation between deterministic and randomized
communication complexity in the classical two-party communication model is “Equality”. In this
work we show that even allowing access to an “Equality” oracle, deterministic protocols remain
exponentially weaker than randomized ones. More precisely, we exhibit a total function on n bits
with randomized one-sided communication complexity O(log n), but such that every deterministic
protocol with access to “Equality” oracle needs Ω(n) cost to compute it.

Additionally we exhibit a natural and strict infinite hierarchy within BPP, starting with the
class PEQ at its bottom.
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1 Introduction

A deterministic communication protocol in Yao’s two-party model is a strategy for a collab-
orative game between two parties, Alice and Bob, each of whom receives an input and whose
task is to compute a function while communicating as little as possible.

It has been known since the origins of communication complexity that randomized
protocols, where the parties are given access to a source of randomness and are allowed to
make errors with small probability, are strictly more powerful than deterministic protocols.
The classic example is the Equality function over n-bit strings, which has a randomized
protocol with O(logn) bits of communication, while every deterministic protocol requires at
least n+ 1 bits [15].
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An efficient protocol for Equality is obtained by using a fingerprinting technique: use the
randomness source to obtain a fingerprint of the strings to be compared of length O(logn),
exchange the fingerprints, and answer whether the fingerprints are equal.

A few more examples of functions where randomness is helpful are the ‘Greater-Than’
function [13], the sparse set disjointness problem [8], and the Hamming distance problem
with a small threshold [16]. In all cases the fingerprinting technique is enough to efficiently
solve the problems. Is fingerprinting all there is to randomized protocols?

To state this question in a formal way we consider a model of communication where the
parties are given access to an oracle that solves the Equality problem and are charged a cost
of one bit each time the parties call the oracle. The set of functions that can be computed by
some protocol in this model with cost polylogn bits is called PEQ. The set of functions that
have randomized protocols of cost polylogn is called BPP. We overload notation and use
PEQ and BPP to refer to both the class of functions and the corresponding communication
models respectively. The question then is whether every function that has a randomized
protocol with c bits of communication, also has a PEQ protocol with poly(c, logn) bits of
communication and oracle calls. In other words, is PEQ = BPP?

The PEQ model was first considered in [3]. The knowledge about it until our work (for
total functions, see discussion below) can be summarized as follows:

P ( PEQ ⊆ BPP.

PEQ is also strictly weaker than the PNP model, since EQ calls can be simulated with an NP
oracle but PEQ cannot efficiently solve the coNP-complete set disjointness problem. It also is
worth mentioning that giving access to an Equality oracle is equivalent to giving access to a
Greater-Than oracle up to a logarithmic factor. The latter model was introduced as real
communication by Krajíček [10], with a connection to proof complexity in mind, and later
found further applications in the same area [5, 4].

Partial functions

There are many examples in the literature of partial functions that separate PEQ from BPP.
One such example is the gap Hamming distance problem with a large gap. Concretely, the
problem is to distinguish between pairs of input strings whose Hamming distance is less
than a 1/3-fraction and more than a 2/3-fraction. This can be solved with a randomized
protocol with O(1) bits that samples a position in the strings uniformly at random and
answers whether the strings are the same at that position. On the other hand, this problem
has cost Ω(n) in the PNP model [14], and hence in the PEQ model too.

A different example follows from the simulation theorem of [5], made explicit in [6], and
it is to lift a (partial) function that exhibits an exponential gap between deterministic and
randomized query complexity, say promised majority. To be more precise, we consider the
majority function of n bits with the promise that the fraction of zeros is either less than 1/3
or more than 2/3, which can be computed with a randomized decision tree by querying the
input at a constant number of randomly sampled points, but requires linearly many queries
to be solved by a deterministic decision tree. If we compose this function with the indexing
gadget with pointers of size O(logn) then we have a randomized protocol of cost O(logn)
that evaluates a constant number of instances of the gadget, while the simulation theorem
tells us that it requires real communication Ω(n logn).
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Total functions

The question about a separation between PEQ and BPP for total functions requires a
different approach. If one uses the same means as before, namely lifting theorems, then a
quadratic separation follows for example from the pointer chasing function [2] composed
with indexing. However, this is where the lifting from query complexity approach seems to
end, since deterministic and randomized query complexity are known to be polynomially
related for total functions [12]. Our main result is a non-lifted total function, which exhibits
an exponential separation between PEQ and randomized communication.

I Definition 1.1. The integer inner product problem IIPm,t(x, y) is defined as follows. The
inputs are integer vectors x, y ∈ [−M,M ]t where M = 2m. The output is 1 if 〈x, y〉 = 0,
where the inner product is computed over the integers.

We denote by IIPt the family of functions IIPm,t with fixed t = O(1) and growing m.
Note that the input size of IIPm,t is n = (m+ 1)t.

I Theorem 1.2 (Main theorem, informal). For any t ≥ 6, the total function IIPt on n bits
can be computed with O(logn) bits of randomized communication but requires Ω(n) cost to be
solved by PEQ protocols.

Once we settled that EQ is not enough to simulate BPP because PEQ cannot efficiently
solve IIP, the next natural candidate for an oracle A such that PA = BPP becomes IIP itself.
However, we also show that for any fixed t, IIPt is not enough to simulate BPP, and in fact
the complexity classes defined by IIP oracles form a strict infinite hierarchy.

I Theorem 1.3. There is an infinite sequence (ti)i∈N such that

P ( PEQ ( PIIPt1 ( · · · ( PIIPti ( PIIPti+1 ( · · · ⊂ BPP .

2 Preliminaries

We assume familiarity with standard definitions in communication complexity, such as in
[11]. The only somewhat non-standard definition we need is that of protocols with access to
an oracle.

If A is a family of communication problems AN : {0, 1}N × {0, 1}N → {0, 1} for N ∈ N,
then the parties involved in a PA protocol communicate via an oracle for A. Informally,
if the players hold inputs (x, y) ∈ {0, 1}n × {0, 1}n, every message is a pair of inputs
(g1(x), g2(y)) ∈ {0, 1}N × {0, 1}N for one of the functions AN , where g1 and g2 have been
agreed beforehand, and the output AN (x, y) is visible to both parties. We assume that A is
nontrivial in the sense that it can simulate sending one-bit messages from each party to the
other one. The cost of such a protocol is the number of bits the oracle outputs, and PA(f) is
the minimum over all protocols. In particular, PEQ is a protocol with oracle access to the
Equality oracle, and PGT is a protocol with oracle access to the Greater-Than oracle, both
of which are nontrivial.

Usually the cost of an oracle call is defined with an additional term logarithmic in the
size of its inputs, since otherwise we could solve any function with a single call to a strong
oracle such as set disjointness. The kind of oracles we consider are weak enough that we do
not need any limits on the input size to prove lower bounds, hence we omit the additional
term for simplicity.

In fact, in our analysis, after a call to the oracle we immediately partition the set of
inputs compatible with the answer into a set of rectangles. This makes it convenient to work
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with a stronger model where all the possible sets of answers are partitioned beforehand, and
the oracle tells the players not only the answer to their query, but also which rectangle in
the partition their input belongs to, at no extra cost.

Observe that calling a function AN with inputs transformed by g1 and g2 is equivalent to
calling a function B = AN ◦(g1, g2) and that the matrix of B can be obtained from the matrix
of AN by removing, duplicating, and permuting some rows or columns. Therefore we identify
an oracle A with the smallest family of matricesMA that contains all the communication
matrices of the functions AN , and is closed under removing, duplicating, and permuting rows
or columns. To each matrix M ∈ MA we associate a monochromatic rectangle partition
R(M), i.e., a set of rectangles such that for each rectangle R ∈ R(M) the submatrix of M
defined by R is an all-zeros or all-ones matrix. In general, there may be many such choices;
a good choice will be crucial for our lower bound technique. The only requirement is that
this partition is to monochromatic rectangles, and hence a refinement of the answer given
by the oracle.

A PA protocol to compute a function f : {0, 1}n × {0, 1}n → {0, 1} is a tree where each
node corresponds to a rectangle R ⊆ {0, 1}n × {0, 1}n of compatible inputs. Each internal
node is associated with a matrix M ∈MA of the same dimensions as R, and has one child
for each rectangle R′ ∈ R(M). Upon reaching a node labelled by R the players move to the
child R′ that contains their input. Each leaf is labelled 0 or 1, and the label of a leaf R
equals f(x, y) for each (x, y) ∈ R.

Analogous to how one bit of deterministic communication induces a refined partition
of the input space where each rectangle is split into two, one call to an oracle induces a
refined partition where each rectangle R is replaced by the partition R(M(R)) associated
to a matrix M(R) ∈ MA of the same size. This is, we start with a single rectangle
R0 = {{0, 1}n × {0, 1}n}, and after i calls to the oracle we have the partition Ri =⋃
R∈Ri−1

R(M(R)). If a protocol computes a function f after c calls, then the partition Rc
applied to Mf yields a set of monochromatic rectangles.

3 A Lower Bound Technique for P with Oracle Access

The goal of this section is to develop a lower bound technique for PEQ, and more generally
for P with oracle access. The key property of EQ that we exploit is that, no matter how it is
transformed by an oracle call, we can always partition the matrix of EQ into few rectangles
so that a large area is monochromatic. More generally, if we denote the number of elements
in a matrix M by |M |, we define the property as follows.

I Definition 3.1. A family of Boolean matricesM has ε-monochromatic rectangles if every
matrix M ∈M contains a monochromatic rectangle – i.e., an all-zeros or all-ones submatrix
– of size at least ε|M |.

We obtain our lower bounds by estimating the following complexity measure.

I Definition 3.2. If R is a set of rectangles and η ∈ (1/2, 1) is a real number, we denote the
η-area of R by pη(R) =

∑
Ri∈R|Ri|

η. The η-area of a matrix M is the minimum of pη(R)
over all monochromatic partitions R of M .

Observe that the η-area of a matrixM is bounded below by |M |η, which is attained if and
only if the matrix is monochromatic, and above by |M |, which corresponds to partitioning
the matrix into singletons. In fact, partitioning into either rows or columns gives a better
upper bound of 2|M |(1+η)/2 for any matrix, and it can be shown that the matrix of inner
product modulo 2 attains this bound up to a constant factor.
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The relative η-area of a matrix M is qη(M) = pη(M)/|M |η. Note that qη(M) ≥ 1 with
equality attained if and only if M is monochromatic. The relative η-area of a family of
matrices is the maximum relative η-area over all matrices in the family.

I Lemma 3.3. For any η such that 1/(1 − log2(1 − ε)) < η < 1 there exists a constant
ξ = ξ(ε, η) such that every ε-monochromatic family of matricesM that is closed under taking
submatrices satisfies qη(M) ≤ ξ.

Proof. We prove the lemma by induction over the size of the matrices in the family. This
is clearly true for 1× 1 matrices; otherwise consider a matrix M ∈M of size r = |M |. By
assumption M contains a monochromatic rectangle R1 of size r1 ≥ εr, so we can partition
M into R1 and two non-monochromatic rectangles R2 and R3 of respective sizes r2 and r3.
We then apply the induction hypothesis to each non-monochromatic rectangle, while noting
that the η-area of R1 is rη1 :

pη(M) ≤ rη1 + pη(R2) + pη(R3)
≤ rη1 + ξrη2 + ξrη3

≤ (1 + 2ξ)
(
r1 + ξr2 + ξr3

1 + 2ξ

)η
= (1 + 2ξ)1−η (r1 + ξr2 + ξr3)η

≤ (1 + 2ξ)1−η(ξ + (1− ξ)ε
)η
rη .

We can write (1 − ε) = (2 + δ)1−1/η with δ > 0 by the assumption on η. Set α =
(2 + δ/2)1−1/η so that α > (1− ε) and set ξ = max{2/δ, ε/(α− (1− ε))}. Then we can bound

1 + 2ξ = ξ(2 + 1/ξ) ≤ ξ(2 + δ/2) = ξα1/(1−1/η)

and

ξ + (1− ξ)ε = ξ(1− ε+ ε/ξ) ≤ ξα

so that

pη(M) ≤ (1 + 2ξ)1−η(ξ + (1− ξ)ε
)η
rη ≤ ξrη

(
α−ηαη

)
= ξrη . J

For simplicity we can take η = 1− ε > 1/(1− log2(1− ε)) whenever 0 < ε < 1/2.

I Lemma 3.4. Assume that f is a function which has a PA protocol with cost c. For any
η ∈ (0, 1) the communication matrix of f has relative η-area qη(f) ≤ (qη(MA))c.

Proof. First we associate to each matrix M ∈MA a partition R(M) with relative η-area at
most q = qη(MA). Next, assume that we have a partition of the input space into rectangles
R with η-area pη(R). For each rectangle Ri ∈ R choose a matrix Mi ∈ MA of the same
dimensions. We obtain a refined partition R′ by replacing each rectangle Ri by R(Mi). We
can bound the total η-area of R′ by

pη(R′) =
∑
Ri∈R

pη(R(Mi)) ≤
∑
Ri∈R

q · |Ri|η = q · pη(R) .

As R,R′ are partitions of the same dimensions, their relative η-areas satisfy

qη(R′) ≤ q · qη(R) .
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To conclude the proof, let R0, . . . ,Rc denote the intermediate partitions induced by the
protocol, where Ri is the partition obtained after the first i calls. Then R0 is the singleton
partition, Rc is a monochromatic partition ofMf , and all partitions have the same dimensions.
Thus qη(R0) = 1 and qη(Ri) ≤ q · qη(Ri−1) for i = 1, . . . , c. We conclude that qη(Mf ) ≤
qη(Rc) ≤ qc as claimed. J

The next lemma gives an easy to verify condition under which Lemma 3.4 can be applied.

I Lemma 3.5. Fix 0 < η < 1. Let A be an oracle with constant relative η-area and let f be
an n-bit function with a corresponding 2n × 2n communication matrix M . Assume that:
1. The number of entries i, j with Mi,j = 1 is α22n.
2. For any 1-monochromatic rectangle R in M it holds that |R| ≤ β22n.
Then the communication complexity of f in PA is Ω(log(αβη−1)).

Proof. Let R be a partition of f−1(1) with minimum η-area. Let xi = |Ri|/22n denote the
density of each rectangle Ri. Then the following minimization problem lower bounds the
η-area of R:

pη(R) ≥ 22ηn · min∑
i
xi=α,0≤xi≤β

∑
i

xηi .

The minimum of a concave function over a convex polytope is attained at a vertex, in
this case any point with bα/βc coordinates equal to β, one coordinate equal to α− bα/βcβ,
and the rest equal to 0. Hence

pη(R) ≥ 22ηnbα/βcβη .

If f has a PA protocol with cost c, then by Lemma 3.4

pη(R) ≤ 22ηn(qη(MA))c = 22ηn+O(c) .

Rearranging these gives c ≥ Ω(log(αβη−1)) as claimed. J

3.1 An Improved Bound for Equality
Coming back to the particular case of PEQ, it is not hard to prove that the MEQ family
of matrices has 1/9-monochromatic rectangles, and hence Lemma 3.5 applies to EQ with
η = 8/9. While this is already enough to separate PEQ and BPP, some of our applications
require a tighter bound on η.

To obtain a better bound it is convenient to consider instead the model of PGT, where
the players have oracle access to a Greater-Than oracle. Note that as an EQ oracle can be
simulated by two calls to a GT oracle, the latter model is stronger.

We show thatMGT has constant η-area for any η > 1/2. The matrix GTN is monotone,
in the sense that it satisfies Mi1,j1 ≤ Mi2,j2 for all pairs of entries such that i1 ≤ i2 and
j1 ≤ j2, and duplicating or removing rows and columns preserves monotonicity. Therefore
every matrix M ∈MGT is (a permutation of) a monotone matrix.

I Lemma 3.6. A monotone matrix M can be partitioned into four rectangles R1, R2, R3, R4,
such that R1, R2 are monochromatic and |R1|+ |R2| ≥ |R3|+ |R4|.

Proof. Let a and b be the dimensions of the matrix M and assume without loss of generality
that a ≥ b. Let a1 be the maximal number such that Ma1,b1 = 0, with b1 = da1b/ac. Then
the rectangle R1 = [1, a1]× [1, b1] is 0-monochromatic, while the rectangle R2 = [a1 + 1, a]×
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[b1 + 1, b] is 1-monochromatic. We define R3 = [1, a1]× [b1 + 1, b] and R4 = [a1 + 1, a]× [1, b1].
To complete the proof let a2 = a − a1 and b2 = b − b2, and observe that if a1 > a2 then
b1 ≥ b2, while if a1 < a2 then b1 ≤ b2. Therefore by the rearrangement inequality

|R1|+ |R2| = a1b1 + a2b2 ≥ a1b2 + a2b1 = |R3|+ |R4| . J

We use this partition to prove a more refined version of Lemma 3.3.

I Lemma 3.7. For any 1/2 < η < 1 there exists a constant ξ = ξ(η) such that qη(MGT) ≤ ξ.

Proof. The proof is analogous to that of Lemma 3.3, except that we use Lemma 3.6
to partition each matrix into two monochromatic rectangles R1 and R2, and two non-
monochromatic rectangles R3 and R4. We then get a bound

pη(M) ≤ rη1 + rη2 + pη(R3) + pη(R4)
≤ rη1 + rη2 + ξrη3 + ξrη4

≤ (2 + 2ξ)
(
r1 + r2 + ξr3 + ξr4

2 + 2ξ

)η
≤ (2 + 2ξ)

(
r1 + r2 + r3 + r4

4

)η
= ξrη

for ξ = 1/(22η−1 − 1). J

It follows that Lemma 3.5 holds for both EQ and GT with 1/2 < η < 1.

4 Separation

We demonstrate the separation by considering the inner product function over the integers.
We recall the definition from the introduction.

I Definition 4.1. The integer inner product problem IIPm,t(x, y) is defined as follows. The
inputs are integer vectors x, y ∈ [−M,M ]t where M = 2m. The output is 1 if 〈x, y〉 = 0,
where the inner product is computed over the integers.

We use n to denote the input length, where n = (m+ 1)t. We recall that we consider
t = O(1) and growing m.

I Lemma 4.2. There is a coRP protocol for IIPm,t of cost O(t logm).

Proof. Consider the following protocol: sample a uniformly random prime q among the first
4m+ 2 log t primes, compute 〈x, y〉 (mod q) by having Alice send t integers xi (mod q) to
Bob, and accept if and only if 〈x, y〉 = 0 (mod q). The protocol uses O(t log q) = O(t logm)
bits of communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with
probability at least 1/2 we observe that the probability of failure is the probability of picking
a prime q that divides 〈x, y〉. Since the number 〈x, y〉 is bounded by tM2 in absolute value,
it is divisible by at most log(tM2) = 2m+ log t primes, and since we have 4m+ 2 log t primes
to choose from, the probability of failure is at most 1/2. J

I Lemma 4.3. If t is even then Prx,y[IIPm,t(x, y) = 1] = Ω(1/tM2).
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Proof. Write x = (x′,−x′′) and y = (y′, y′′) where x′, y′, x′′, y′′ ∈ [−M,M ]t/2, so that
〈x, y〉 = 〈x′, y′〉− 〈x′′, y′′〉. The distribution of 〈x′, y′〉 and 〈x′′, y′′〉 are i.i.d. and take at most
O(tM2) possible values. So the collision probability is Ω(1/tM2). J

I Lemma 4.4. For any rectangle R ⊆ IIP−1
m,t(1) we have |R| ≤ (4M)t.

Proof. Let A,B ⊂ [−M,M ]t such that 〈x, y〉 = 0 for all x ∈ A, y ∈ B. Let p be a prime
between 2M + 1 and 4M , and consider the problem modulo p. Note that we can injectively
identify A,B with subsets of Ftp. Let V,W denote the linear subspaces of Ftp spanned by A,B,
respectively. Then V⊥W and hence |V ||W | ≤ pt. This implies that |A||B| ≤ pt ≤ (4M)t. J

I Lemma 4.5. Any PEQ protocol for IIPm,t with even t ≥ 6 has cost Ω(n).

Proof. Apply Lemma 3.5 with η = 1
2 + 1

100 , α = Ω(1/tM2) as given by Lemma 4.3, and
β = (4M)t/(2M + 1)2t ≤ 1/M t as given by Lemma 4.4. We obtain

PEQ(IIPm,t) = Ω(log(αβη−1)) = Ω(log(M t(1−η)−2/t)) = Ω(tm) = Ω(n) . J

Theorem 1.2 follows immediately from Lemma 4.2 and Lemma 4.5.

A related example

We give a similar separation by the inner product function over polynomials. Let F2[z]
denote the ring of univariate polynomials over F2.

I Definition 4.6. The polynomial inner product problem PIPm,t(x, y) is defined as follows.
The inputs x, y are t-tuples of polynomials in F2[z], each of degree at most m. The output is
1 if 〈x, y〉 = 0, where the inner product is computed over F2[z].

Note that also here the input size is n = (m+1)t. Again we consider large m and t = O(1).

I Lemma 4.7. There is a coRP protocol for PIPm,t of cost O(t logm).

Proof. Consider the following protocol. Alice and Bob interpret their polynomials as
polynomials in Fq[z] with q = 2dlogme+2. They sample a uniformly random point z ∈ Fq and
compute 〈x, y〉(z) by having Alice send the result of evaluating each of her polynomials at z.
The protocol uses O(t log q) = O(t logm) bits of communication.

The protocol is always correct on 1-inputs. To see that it is correct on 0-inputs with
probability at least 1/2 we observe that the probability of failure is the probability of picking
a root of 〈x, y〉. Since the number of roots is at most 2m and we have q ≥ 4m points in Fq
to choose from, the probability of failure is at most 1/2. J

I Lemma 4.8. Any PEQ protocol for PIPm,t with even t ≥ 6 has cost Ω(n).

The proof is analogous to that of Lemma 4.5. We can use Lemma 4.3 unchanged, and we
adapt Lemma 4.4 by considering the inner product function over Fq with q = 2m.

Set disjointness

Babai et al. [3] were the first who attempted to prove a strong lower bound on the cost
of any PEQ protocol solving DISJ, however their method only yielded lower bounds for
one-way protocols. The subsequent breakthrough tight bound of Ω(n) by Kalyanasundaram
and Schnitger [9] on the randomized complexity of DISJ yields an Ω(n/ logn) bound on
the PEQ cost of DISJ. Using the techniques developed here, we prove a simple tight lower
bound of Ω(n) on the cost of PEQ protocols for set disjointness that does not rely on lower
bounds for BPP.
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I Lemma 4.9. Any PEQ protocol for DISJ has cost Ω(n).

Proof. Apply Lemma 3.5 with η = 1
2 + 1

100 , α = (3/4)n, and β = 1/2n. We obtain

PEQ(DISJ) = Ω(log(αβη−1)) = Ω(log(2(log 3−2+0.49)n) = Ω(log(20.07n)) = Ω(n) . J

5 Hierarchy

A generic way to obtain ε-monochromatic families is by extracting large rectangles from
matrices of small sign-rank. A real matrix M , each of whose entries are non-zero, is said
to be sign represented by another matrix A if each entry of A and M agree in sign. The
sign-rank of M is the minimum r such that there exists an A of rank r that sign represents
it. A corollary of the following theorem allows us to extract large rectangles from matrices of
small sign-rank.

I Theorem 5.1 ([1]). Let U and V be finite multisets of vectors in Rd and let δ = 1/2d+1.
Then there are subsets U ′ ⊂ U and V ′ ⊂ V such that |U ′| ≥ δ|U |, |V ′| ≥ δ|V |, and either
〈u, v〉 ≥ 0 for all u, v ∈ U ′ × V ′ or 〈u, v〉 < 0 for all u, v ∈ U ′ × V ′.

I Corollary 5.2. A Boolean matrix of sign-rank d and size r contains a monochromatic
rectangle of size at least 1/22(d+1)r.

Proof. Let M be a matrix of size n×m and sign rank d, and let A and B be matrices of
size n× d and d×m such that M = sign(AB). Apply Theorem 5.1 to the set of rows of A
and the set of columns of B. J

Since sign-rank does not increase with respect to removing, duplicating, or permuting
rows or columns, in order to establish that IIPt is ε-monochromatic, it is sufficient to look at
the sign-rank of IIPt.

I Lemma 5.3. The sign-rank of IIPm,t is at most t2 + 1.

Proof. IIPm,t(x, y) = sign(〈x, y〉2−1/2), which can be decomposed into a linear combination
of t2 rank-one matrices of the form Mx,y = 〈xixj , yiyj〉 and the all-ones matrix. J

We can now put all the pieces together and prove a lower bound for PIIPt .

I Lemma 5.4. Any PIIPt protocol for IIPm,t′ with even t′ ≥ 23t2 has cost Ω(n).

Proof. Let ε = 1/22(t2+1) given by Corollary 5.2. ThenMIIPt is an ε-monochromatic family,
therefore we can apply Lemma 3.5 with η = 1− ε. Choose t′ to be the smallest even integer
such that (2 log t′)/t′ < (1− η). We can bound t′ by

t′ ≤ 4
1− η log

(
1

1− η

)
= 4
ε

log
(

1
ε

)
≤ 23t2 .

Apply Lemma 3.5 with α = Ω(1/t′M2) as given by Lemma 4.3, and β ≤ 1/M t′ as given
by Lemma 4.4. We obtain

PIIPt(IIPm,t′) = Ω(log(αβη−1)) = Ω
(
t′m

(
−2 log t′

t′
+ 1− η

))
= Ω(t′m) = Ω(n) . J

To prove Theorem 1.3 we consider the sequence of classes PIIPti where t1 = 6 and
ti+1 = 23t2i . The inclusion PEQ ⊆ PIIPt1 follows from the observation that EQ(x, y) =
IIP2((x, 1), (−1, y)), and Lemma 4.5 shows that it is strict. The inclusions PIIPti ⊆ PIIPti+1

are immediate since we can solve IIPm,t with a single call to IIPm,t′ padding the additional
coordinates with zeros, and we just proved the non-inclusions in Lemma 5.4.
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6 Concluding Remarks

This work belongs to the general area of understanding the power of randomness in commu-
nication complexity. We use this opportunity to remind the readers of a fascinating open
problem, posed explicitly by Göös, Pitassi and Watson [7], which is whether BPP ⊂ PNP for
total functions. It is known that this containment is not true for partial functions. Göös et al.
suggested, as a first step, separating the class of total functions in BPP from an interesting
subclass of PNP. In this work, we took this step by providing the first (exponential) separation
between BPP and PEQ, the latter being one of the most natural subclasses of PNP. However,
the original problem of separating BPP from PNP remains open.

To state this in combinatorial terms, a function f has a PNP protocol of cost c if the
following holds. There exists a list of 2c rectangles Ri and values zi ∈ {0, 1}, such that
f(x, y) = zi for the first rectangle Ri in the list for which (x, y) ∈ Ri (We may assume that
the last rectangle contains all possible inputs, to make this model well defined). In particular,
if BPP ⊂ PNP then there must exist a monochromatic rectangle in f of density 2−O(c) for
c = polylogn. Understanding this question seems to be pivotal towards understanding the
relation between BPP and PNP.

I Problem 6.1. Let f be an n-bit total Boolean function with a randomized protocol of cost
c. Is it true that f must contain a monochromatic rectangle R of size |R| ≥ 2−O(c)22n?
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Abstract
Finding an irreducible factor, of a polynomial f(x) modulo a prime p, is not known to be in
deterministic polynomial time. Though there is such a classical algorithm that counts the number
of irreducible factors of f mod p. We can ask the same question modulo prime-powers pk. The
irreducible factors of f mod pk blow up exponentially in number; making it hard to describe them.
Can we count those irreducible factors mod pk that remain irreducible mod p? These are called
basic-irreducible. A simple example is in f = x2 + px mod p2; it has p many basic-irreducible factors.
Also note that, x2 + p mod p2 is irreducible but not basic-irreducible!

We give an algorithm to count the number of basic-irreducible factors of f mod pk in deterministic
poly(deg(f), k log p)-time. This solves the open questions posed in (Cheng et al, ANTS’18 & Kopp et
al, Math.Comp.’19). In particular, we are counting roots mod pk; which gives the first deterministic
poly-time algorithm to compute Igusa zeta function of f . Also, our algorithm efficiently partitions
the set of all basic-irreducible factors (possibly exponential) into merely deg(f)-many disjoint sets,
using a compact tree data structure and split ideals.
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1 Introduction

Factoring a univariate polynomial, over prime characteristic, is a highly well studied problem.
Though efficient factoring has been achieved using randomization, still efficient derandomiza-
tion is a longstanding problem. A related question of equal importance is root finding, but
this is known to be equivalent to factoring in deterministic poly-time. Surprisingly, testing
irreducibility, or even counting irreducible factors, is easy in this regime. The main tool here
is the magical Frobenius morphism of prime p characteristic rings: x 7→ xp.
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15:2 Counting Basic-Irreducible Factors

Though much effort has been put in prime characteristic, few results are known in
composite characteristic n [27]. Even irreducibility testing of a polynomial, with the prime
factorization of n given, has no efficient algorithm known. This reduces to prime-power
characteristic pk [32]. Deterministic factoring in such a ring is a much harder question (at
least it subsumes deterministic factoring mod p). In fact, even randomized algorithms, or
practical solutions, are currently elusive [31, 32, 17, 26, 30, 13]. The main obstruction is
non-unique factorization.

Being a non-unique factorization domain, there could be exponential number of roots, or
irreducible factors, modulo prime-powers [31]. So one could ask a related question about
counting all the irreducible factors (respectively roots) modulo prime-powers. Efficiently
solving this counting problem will give us an efficient irreducibility testing criteria, which
is the first question one wants to try. Recall that prime characteristic allows such an
efficient method.

Motivated by this, we ask – Could we describe all factors which remain irreducible
mod p? Such factors are called basic-irreducible in the literature. This is much more than
counting roots mod pk (as, f(α) = 0 iff x− α is a basic-irreducible factor of f). These roots,
besides being naturally interesting, have various applications in – factoring [7, 8, 4], coding
theory [2, 26], elliptic curve cryptography [20], arithmetic algebraic-geometry [35, 12, 11, 16].
Towards this we design a machinery, yielding the following result:

Given a degree d integral polynomial f(x) and a prime-power pk, we partition the set
of all basic-irreducible factors of f mod pk into at most d (compactly provided) subsets in
deterministic poly(d, k log p)-time; in the same time we count the number of factors in each
of these subsets.

Also, we can compactly partition (and count) the roots of f mod pk in deterministic
poly-time.

This efficient partitioning of (possibly exponentially many) roots into merely d subsets is
reminiscent of the age-old fact: there are at most deg(g) roots of a polynomial g(x) over a
field. Root sets mod pk are curious objects; not every subset of Z/pkZ is a root set (except
when k = 1). Their combinatorial properties have been studied extensively [29, 9, 3, 10, 22].
In this regard, our result is one more step to understand the hidden properties of root-sets
mod prime-powers.

Factoring mod pk has applications in factoring over local fields [7, 8, 4]. Previously,
the latter was achieved through randomized factoring mod p [5] and going to extensions
of Qp. Directly factoring mod pk, for arbitrary k, would imply a new and more natural
factoring algorithm over p-adic fields. In fact, our method gives the first deterministic
poly-time algorithm to count basic-irreducible factors of f ∈ Qp[x]; by picking k such that
pk/2 - discriminant(f) (see [32, Thm. 3.11]). This derandomization was not known before,
though Qp[x] is indeed a unique factorization domain.

1.1 Previously known results
The questions of root finding and root counting of f mod pk are of classical interest, see
[25, 1]. Using Hensel lifting (Section A) we know how to “lift” a root, of multiplicity one, of
f mod p to a root of f mod pk, in a unique way. But this method breaks down when the
root (mod p) has multiplicity more than one. [2, Cor.4] was the first work to give an efficient
randomized algorithm to count, as well as find, all the roots of f mod pk. [24] improved the
time complexity of [2]. In this line of progress, very recently [6] gave a deterministic algorithm
to count roots in time exponential in the parameter k. Extending the idea of [6], [19] gave
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another efficient randomized algorithm to count roots of f mod pk. Note that finding the
roots deterministically seems a difficult problem because it requires efficient deterministic
factoring of f mod p (which is a classical open problem). But counting the roots mod pk
deterministically may be an easier first step.

Recently there has been some progress in factoring f mod pk when k is constant. [13]
gave the first efficient randomized algorithm to factor f mod pk for k ≤ 4. This gives an
exponential improvement over the previous best algorithms of [30, 32, 31] mod pk (k ≤ 4). In
fact, they generalized Hensel lifting method to mod pk, for k ≤ 4, in the difficult case when
f mod p is power of an irreducible. The related derandomization questions are all open.

The case of factoring f mod pk when k is “large” – larger than the maximum power of p
dividing the discriminant of the integral f – has an efficient randomized algorithm due to [32].
They showed, assuming large k, that factorization mod pk is well behaved and corresponds
to the unique p-adic factorization of f (i.e. in Qp[x]). In turn, p-adic factoring has known
efficient randomized algorithms [7, 8, 4]. The derandomization questions are all open.

We now give a deterministic method to count all the roots (resp. basic-irreducible factors)
efficiently. In fact, our proof can be seen as a deterministic poly-time reduction of basic-
irreducible factor finding mod pk to root finding mod p. In particular, it subsumes all the
results of [2].

1.2 Our results

I Theorem 1 (Root count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then, all the roots of
f mod pk can be counted in deterministic poly(deg f, k log p)-time.

This is the first efficient derandomization of the randomized root counting algorithms
[2, 19], and an exponential improvement over the recent deterministic algorithm of [6]. The
challenge arises from the fact that we need to count the possibly exponentially many roots
without being able to find them1.

Remarks.
1) In the algorithm, the (possibly exponential) root-set of f mod pk gets partitioned into at

most deg(f)-many disjoint subsets and we output a compact representation, called split
ideal, for each of these subsets. We do count them, but do not yet know how to find a
root deterministically.

2) This gives an efficient way to deterministically compute the Igusa zeta function, given
an integral univariate f and a prime p. This follows from the fact that we just need to
compute Nk(f) :=number of roots of f mod pk, for k ∈ [`] s.t. p`/2 - discriminant(f), to
estimate Poincaré series

∑∞
i=0Ni(f)xi [11, 16]. Interestingly, it converges to a rational

function!
The proof follows from the fact that for each i > l, Ni(f) is the sum of t ≤ d many
p-powers where t is constant for each i > l (see [32, Thm. 3.11]). So the sum

∑∞
i>lNi(f)xi

converges.
3) This is the first deterministic poly-time algorithm to count the number of lifts of a repeated

root of f mod p to f mod pk.

1 Note that counting roots of a multivariate polynomial over a finite field is #P-complete, even if the
degree is restricted to be three [14].
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4) This gives the first deterministic poly-time algorithm to count the number of p-adic
integral roots of a given p-adic polynomial f ∈ Qp[x]. (Count roots mod p` where
p`/2 - discriminant(f) [32, Thm. 3.11].)

Next, we extend the ideas for counting roots to count all the basic-irreducible factors of
f mod pk in deterministic polynomial time. Recall that a basic-irreducible factor of f mod pk
is one that remains irreducible in mod p arithmetic.

I Theorem 2 (Factor count). Let p be a prime, k ∈ N and f(x) ∈ Z[x]. Then, all the
basic-irreducible factors of f mod pk can be counted in deterministic poly(deg f, k log p)-time.

We achieve this by extending the idea of counting roots to more general p-adic integers.
Essentially, we efficiently count all the roots of f(x) in OK/〈pk〉, where OK is the ring
of integers of a p-adic unramified extension K/Qp (refer [18] for the standard notation).
Currently, there is no fast, practical method known to find/count roots when K is ramified.

I Corollary 3. Consider (an unknown) p-adic extension K := Qp[y]/〈g(y)〉, which is un-
ramified and has degree ∆. Let f(x) ∈ Z[x], p, k,∆ be given as input (in binary).

Then, we can count all the roots of f , in OK/〈pk〉, in deterministic poly(deg(f), k log p,∆)-
time.

Remarks.
1) This gives the first deterministic poly-time algorithm to count the number of (unramified

p-adic integral) roots of a given p-adic polynomial f ∈ K[x].
2) Our method generalizes to efficiently count all the roots of a given polynomial f(x) ∈

(F[t]/〈h(t)k〉)[x] for a given polynomial h (resp. f ∈ F[[t]][x] with power-series coefficients);
assuming that F is a field over which root counting is efficient (eg. Q,R,Fp and their
algebraic extensions).

1.3 Proof techniques

Our implementation involves constructing a list data structure L which implicitly partitions
the root-set of f mod pk into at most deg(f)-many disjoint subsets; and count the number of
roots in each such subset. The construction of L is incremental, by doing arithmetic modulo
special ideals,

Split ideals. A split ideal Il of length l + 1, and degree b, is a “triangular” ideal defined as
Il = 〈h0(x0), h1(x̄1), . . . , hl(x̄l)〉, where the notation x̄i refers to the variable set {x0, . . . , xi}
and b =

∏
0≤i≤l degxi

(hi). It implicitly stores a size-b subset of the root-set of f mod pk,
where a root looks like

∑
0≤i≤l xip

i till precision pl+1. Note that a root r of f mod pk is also
a root of f mod pl for all l ∈ [k]. Since we cannot access them directly, we “virtualize” them
in the notation x̄l.

The structure of these ideals is quite nice and recursive (Section 2). So it may keep
splitting (in Algorithm 1) till it becomes a maximal ideal, which corresponds to a single point
in (Fp)l and has degree one. Or, the algorithm may halt earlier, due to “stable clustering”
of roots, and then we call the ideals– maximal split ideal; in fact, L has only maximal split
ideals. These do not give us the actual roots but do give us their count!
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List data structure. L implicitly stores, and may partition, the root-set of f mod pk.
Essentially, L is a set of at most d maximal split ideals, i.e. L = {I1(l1, d1), . . . , In(ln, dn) },
where each ideal Ij ⊆ Fp[x̄k−1] has two parameters – length lj and degree dj . A maximal split
ideal I(l,D) implicitly stores a size-D subset of the root-set of f mod pk. This yields a simple
count of Dpk−l for the corresponding roots. Ideals in L have the property that they represent
disjoint subsets of roots; and they collectively represent the whole root-set of f mod pk. Thus,
L gives us both the (implicit) structure and the (exact) size of the root-set of f mod pk. In
the intermediate steps of the algorithm, for efficiency reasons, we will store a tuple (Ij , fIj )
in a changing stack S. Where, fIj

(x̄lj−1, x) := f(x0 + px1 + · · ·+ plj−1xlj−1 + pljx) mod Îj
is a “shifted and reduced” version of f tagging along (with x as the only free variable).

Roots-tree data structure. Most importantly, we need to prove that |L|, and the degree of
the split ideals in L, remains at most deg(f) at all times in the algorithm (while f mod pk
may have exponentially many roots). To achieve this, we use a different way to look at the
data structure L – in tree form RT where each generator hi appearing in an I ∈ L appears
as an edge of the tree; conversely, each tree node v denotes the intermediate split ideal
corresponding to the path from the root (of the tree RT ) to v.

The roots-tree RT has a useful parameter at every node– degree. Degree of a node
measures the possible extensions to the next level, and it possesses the key property: it
“distributes” to its children degrees. This helps us to simultaneously bound the width of RT
and degree of split ideals, to be at most the degree deg(f) of the root node. Otherwise, since
we compute with k-variate polynomials, a naive analysis of the tree-size (resp. degree of split
ideals) would give a bound of deg(f)k, or a slightly better deg(f)2k as in [6, pg.9]; which is
exponential in the input size deg(f) · k log p.

1.4 Proof overview

Proof idea of Theorem 1. Let R := Z/〈pk〉; so R/〈p〉 ∼= Fp. Let ZR(f) be the zeroset of
f mod pk.

The idea to count roots of f mod pk comes from the elementary fact: Any root r ∈ R of
f mod pk can be seen in a p-adic (or base-p) representation as r =: r0 + pr1 + p2r2 + . . .+
pk−1rk−1, for each ri ∈ Fp. Thus, we decompose our formal variable x into multi-variables
x0, . . . , xk−1 being related as, x = x0 + px1 + p2x2 + . . .+ pk−1xk−1.

Though, getting roots of f(x0) mod p deterministically is difficult, we can get the count
on the number of roots of f(x0) mod p from the degree of a polynomial h(x0) ∈ Fp[x0], which
is the gcd of f and Frobenius polynomial xp0 − x0 mod p. This way of implicitly representing
a set of desired objects by a polynomial and using its properties (eg. degree) to get a count
on the objects is widely termed as polynomial method.

This gives us a length-1 and degree-degx0(h0) split ideal I0 := 〈h0(x0)〉. Since I0 represents
all roots of f mod p, we can again apply the polynomial method to incrementally build on
ideal I0 to get greater length split ideals representing roots of f with greater precision, say
mod pl+1.

To do this, we trivially lift I0 to make it an ideal Î0 in R. Solve f(x0 + px) ≡
pαg(x0, x) mod Î0 for α ∈ N and g 6≡ 0 mod p. Reduce g(x0, x) over Fp again, and cal-
culate the next set of candidates for x1 implicitly in a polynomial h1 ∈ Fp[x0, x] defined as,
h1 := GCD(g(x0, x) mod p, xp − x) mod I0. Using the properties of split ideal (Lemma 11),
multivariate-gcd modulo I0 yields h1 that “stores” all the candidates for x1, for each root x0
represented by I0. So, we get a length 2 split ideal I1 := I0 + 〈h1(x0, x1)〉.
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In every iteration, we add a new variable, by solving equations like f(x0 +px1 +p2x2 +. . .+
plxl+pl+1x) ≡ pαg(x̄l, x) modulo a length l+1 triangular ideal Îl, for α ∈ N and g 6≡ 0 mod p.
This gives us the next candidate hl+1(x̄l, x) := GCD(g(x̄l, x) mod p, xp − x) mod Il; moving
to a more precise split ideal. Sometimes we get that g and xp − x are coprime mod Il, those
cases indicate dead-end and we stop processing those branches. Finally we reach α = k,
which indicates full precision; and we get a maximal split ideal Il which we add to the list L.

Division by “zero”. Some computations modulo a split ideal may not be possible. These
cases arise only due to zerodivisors. In those cases, we will exploit the zerodivisor to
split/factor the current split ideal into more split ideals of smaller degree. We can keep track
of all these split ideals using a stack and keep performing the same computations iteratively.
Since a split ideal has finite length, the process must terminate. The real challenge lies in
proving a good bound.

Efficiency via roots-tree. Now, we need to show that the algorithm to construct L is
efficient and that |L| ≤ deg(f) (in fact, sum of degrees of all maximal split ideals in L is
at most deg(f)). In a particular iteration, the algorithm just performs routine computa-
tions like– reduction modulo the current split ideal I, inversion, zerodivisor testing, gcd,
exponentiation, and computing p-valuations or multiplicities; which are clearly bounded by
poly(deg(f), k log p, deg(I)) (Sections C & D). It is harder to bound the number of iterations
and deg(I).

To understand the number of iterations, we review the construction of L as the formation
of a tree, which we call roots-tree RT . A node of RT corresponds to an intermediate split
ideal I, where an edge at level i on the path from the root (of RT ) to the node corresponds
to the generator hi(x̄i) of I. Each time we update a split ideal Il−1 to Il := Il−1 + 〈hl〉 we
add a child, to the node corresponding to Il−1, hanging by a new edge labelled hl. Similarly,
splitting of an ideal at some generator hi(x̄i) into m ideals corresponds to creating m subtrees
hanging by edges which are m copies of the edge labelled hi. This way the roots-tree
upper bounds the number of iterations; moreover, the maximal split ideals in L appear as
leaves in RT .

Degree distribution in RT . Each node N of RT has an associated parameter, “degree
of node” [N ] (Definition 15), which is defined in such a way that it distributes to degree
of its children (i.e. [N ] is at least the sum of degrees of its child nodes). This is intended
to measure the possible extensions xl modulo the corresponding split ideal Il−1, and is a
suitable multiple of deg(Il−1). Applying degree’s property inductively, we get that the degree
of root node of RT , which is deg(f), distributes to the degree of the leaves and so the sum
of degrees of all maximal split ideals in L is at most deg(f). The distributive property of
[N ], corresponding to ideal Il−1, comes from the fact: the degree of a child C corresponding
to ideal Il = Il−1 + 〈hl〉 is bounded by the multiplicity of roots of hl(ā, x) times deg(Il−1),
corresponding to some root ā of Il−1; and the overall sum of these multiplicities for every
child of N is naturally bounded by the degree of N (Lemma 16).

The details are given in Section 3.

Proof idea of Theorem 2. The idea, and even the algebra, is the same as for Theorem 1.
The definition of list L easily extends to implicitly store all the basic-irreducible factors of
f mod pk of some degree b (a generalization over roots which corresponds to degree b = 1
basic-irreducible factors). This uses a strong property possessed by basic-irreducible factors.
A basic-irreducible factor g(x) ∈ (Z/〈pk〉)[x] of f mod pk, of degree b, completely splits over
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the Galois ring G(pk, b) := Z[y]/〈pk, ϕ(y)〉, where ϕ(y) mod p is an irreducible of degree
b (Section A). Conversely, if we find a root of f(x), in G(pk, b), then we find a degree-b
basic-irreducible factor of f mod pk.

By distinct degree factorization we can assume f(x) ≡ (ϕ1 . . . ϕm)e+ph(x) mod pk, where
each ϕi(x) mod p is irreducible and degree-b. We construct L by applying the algorithm of
Theorem 1, with one change: every time to update a length-l split ideal Il−1 to a length l+ 1
ideal Il := Il−1 + 〈hl〉, we compute hl using the Frobenius polynomial xq − x mod p, where
q := pb. Basically, for x, we focus on Fq-roots instead of the erstwhile Fp-roots.

We count the number of (distinct, monic, degree-b) basic-irreducible factors represented
by each maximal split ideal I(l,D) ∈ L as: Dqk−l/b. The details are given in Section 4.

1.5 Comparison with previous works

Broad outline. As already mentioned in Section 1.1, [2] was the first work to give an
efficient algorithm to count, as well as find, all the roots of f mod pk. The outline of [2] is as
follows:
(1) Consider the roots of f mod pk in p-adic form as r =: Σk−1

i=0 rip
i.

(2) Design an algorithm which builds up root r incrementally by finding candidates for the
ri’s. The analysis of this gives rise to an exploration tree (which we call roots-tree).

(3) Bound the size of the roots-tree to show the efficiency of the algorithm.
At the most basic level, all the subsequent works, i.e. [6] and [19], as well as the present work,
follow the above outline.

Previous randomized algorithms. The crux of the algorithm of [2], is that at every iteration
it reduces finding the roots of f(x) mod pk to fa(x) mod pk−α, where fa(x) is an integral
polynomial defined as fa(x) := f(a+ px)/pα, for every root a of f mod p and pα||f(a+ px).
They used known randomized algorithms over Fp to get each such root a.2

The efficiency of their algorithm was based upon the observation that the degree of a
node represented by fa in the roots-tree is at most the multiplicity of the root a. This way
[2] could show that, although exponential, the roots of f mod pk can be divided into at
most d many easily representable clusters. The randomized root counting algorithm of [19]
also follows the same multiplicity argument to show the efficiency of their algorithm ([19,
Lem.3.6]). Unlike [2], even with randomization, [19] only do root-counting mod pk.

Challenges in derandomization. It is challenging to extend the properties, of the random-
ized algorithms, to the deterministic (poly-time) context. The big questions that remained
open were –
(1) Can we still cluster the roots of f mod pk deterministically? Note that efficient root

finding algorithm over Fp is unavailable now in deterministic context.
(2) Can we get (may be implicitly) d clusters, deterministically?
(3) Can we generalize the multiplicity argument, first introduced in [2], in the deterministic

context to show that size of the corresponding roots-tree is small?
(4) Can we extend the techniques to count basic-irreducible factors f mod pk, deterministic-

ally?

2 We refer to [13, Appdx.B] for a simple exposition of the algorithm of [2], after replacing ϕ by p there.
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Deterministic Algorithms. Prior to our work, [6] was the best known deterministic al-
gorithm (taking time exponential in k) for root-counting. The work of [6] was the first to
give the idea of storing roots implicitly in ideals of triangular form, which we call split ideals.
In that sense, the outline of both [6] and our work are the same – start with the split ideal of
length one and keep growing it into more and more split ideals until we get all the maximal
split ideals.

However, our algorithm to construct all the maximal split ideals, in particular growing
and splitting intermediate split ideals, are quite different from [6]. [6] relies on special
Grobner basis computation, and ideal decomposition algorithms, to grow and split ideals.
For example, unlike [6]’s complexity bound of poly(deg(f), 2k log p) to compute f(x0 + px1 +
. . . + plxl + pl+1x) =: pαg(x̄l, x) mod Il, we manage to optimize the time-complexity to
poly(deg(f), k log p) deterministically.

In lieu of Grobner basis, our algorithm relies on some simple key properties of split
ideals (we systematically define and emphasize the key property of split ideals in Section 2).
We also develop the algebra to perform computation (such as reduction, gcd, and testing
for zero divisors) modulo a split ideal efficiently. Given these properties and subroutines,
growing a split ideal Il = 〈h0(x0), . . . , hl(x̄l)〉 is just a gcd computation modulo Il (see
the proof idea Section 1.4). Whenever we have a factorization hi =: hi,1hi,2 of some
generator, we split Il efficiently into two split ideals I1 = 〈h0, . . . , hi−1, hi,1, . . . , hl〉 and
I2 = 〈h0, . . . , hi−1, hi,2, . . . , hl〉 (a key property of split ideals).

Our simplified algorithm gives rise to a different roots-tree than [6], and helps us to
observe some key properties of our roots-tree (Section 3.3). Using these properties, we could
generalize the multiplicity argument of [2] (also improvement of [19, Lemma 3.6]) which in
turn helped in bounding the number of clusters and tree size.

We feel that our idea is quite natural as Algorithm 1 easily extends to unramified
extensions, as was the case with [2], and this in turn gives the count of all basic-irreducible
factors as well. Moreover, our methods apply to the p-adic context (as they work for
arbitrary k).

2 Preliminaries

Here we introduce our main tool - “split ideals”. Proofs for this section have been moved
to Section B. Basic introduction to Galois rings (i.e. non-prime characteristic analog of
finite fields), Hensel lifting, randomized factoring over finite fields, etc. have been moved to
Section A.

We will be given a univariate polynomial f(x) ∈ Z[x] of degree d and a prime power pk
(for a prime p and a positive integer k ∈ N). Wlog, we assume that f is monic over Fp.

A tuple of variables (x0, . . . , xl) will be denoted by x̄l. Often, an (l+1)-variate polynomial
a(x0, x1, . . . , xl) will be written as a(x̄l), and the polynomial ring Fp[x0, . . . , xl] as Fp[x̄l].

We denote the ring Z/〈pk〉 by R (ring R/〈p〉 is the same as field Fp). An element a ∈ R
can be seen in its p-adic representation as a = a0 + pa1 + . . .+ pk−1ak−1, where ai ∈ Fp for
i ∈ {0, . . . , k − 1}.
ZR(g) := {r ∈ R | g(r) ≡ 0 mod pk} denotes the zeroset of a polynomial g(x) ∈ R[x].
Zeroset of an ideal I ⊆ Fp[x0, . . . , xl] is defined as the intersection of zeroset of all

polynomials in I, ZFp
(I) := {ā = (a0, . . . , al) ∈ (Fp)l+1 | g(ā) ≡ 0 mod p,∀g ∈ I}.

We will heavily use ideals of the form I := 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉 satisfying the
condition – for any i ∈ [l + 1] and ā ∈ ZFp(〈h0(x̄0), h1(x̄1), . . . , hi−1(x̄i−1)〉), polynomial
hi(ā, xi) splits completely into distinct linear factors. They are formally defined as:
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I Definition 4 (Split ideal). We will call a polynomial monic wrt x if the leading-coefficient
is one. Given f(x) ∈ R[x], an ideal I, in Fp[x̄l], is called a split ideal wrt f mod pk if,
1) I is a triangular ideal of length l+ 1, meaning: I =: 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉, for some

0 ≤ l ≤ k − 1; hi(x̄i) ∈ Fp[x̄i] is monic wrt xi, for all i ∈ {0, . . . , l},
2) |ZFp(I)| =

∏l
i=0 degxi

(hi), and
3) ∀(a0, . . . , al) ∈ ZFp

(I), f(a0 + pa1 + . . .+ plal) ≡ 0 mod pl+1.

The length of I is l + 1 and its degree is deg(I) :=
∏l
i=0 degxi

(hi).

Split ideal I relates to possible roots of f mod pk. Since f, p, k are fixed, we will call I a
split ideal. The definition of a split ideal implies that its roots represent a set of “potential”
roots of f , i.e. roots of f modulo some pl+1 for 0 ≤ l < k. Restriction of a split ideal is also
a split ideal.

I Lemma 5 (Restriction of a split ideal). Let Il := 〈h0(x̄0), . . . , hl(x̄l)〉 be a split ideal in
Fp[x0, . . . , xl], then ideal Ij := 〈h0(x̄0), . . . , hj(x̄j)〉 is also a split ideal in Fp[x0, . . . , xj ], for
all 0 ≤ j ≤ l.

Further, we show that a split ideal I can be decomposed in terms of its zeros.

I Lemma 6 (Split ideal structure). A split ideal I ⊆ Fp[x0, . . . , xl] can be decomposed as
I =

⋂
ā∈ZFp (I) Iā, where each Iā := 〈x0−a0, . . . , xl−al〉 corresponds to root ā =: (a0, . . . , al) ∈

ZFp(I). By Chinese remainder theorem, R/I =
⊕

ā∈ZFp (I)R/Iā .

Let I =: 〈h0(x̄0), h1(x̄1), . . . , hl(x̄l)〉 be a split ideal. Suppose some hi factors as hi(x̄i) =
hi,1(x̄i) . . . hi,m(x̄i). Define Ij := 〈h0(x̄0), . . . , hi−1(x̄i−1), hi,j(x̄i), hi+1(x̄i+1), . . . , hl(x̄l)〉,
for j ∈ [m]. The following corollary of Lemma 6 is evident because root-sets of Ij partition
the root-set of I.

I Corollary 7 (Splitting split ideals). Let I = 〈h0(x̄0), . . . , hl(x̄l)〉 be a split ideal of
Fp[x0, . . . , xl]. Let some hi(x̄i) factor as hi(x̄i) = hi,1(x̄i) . . . hi,m(x̄i).

Then, I =
⋂m
j=1 Ij, where each Ij := 〈h0(x̄0), . . . , hi−1(x̄i−1), hi,j(x̄i), hi+1(x̄i+1), . . . ,

hl(x̄l)〉 is a split ideal.

We call a split ideal Il := 〈h0, . . . , hl〉 to be maximal split ideal if,
1) for any ā = (a0, . . . , al) ∈ ZFp(Il), g(x) := f(a0 + pa1 + . . . + plal + pl+1x) vanishes

identically mod pk,
2) the restriction Il−1 := 〈h0, . . . , hl−1〉 does not follow the previous condition.

I Lemma 8 (Roots represented by a root of maximal split ideal). Let I be a maximal split
ideal of length l + 1, then a zero ā = (a0, . . . , al) ∈ ZFp

(I) maps to exactly pk−l−1 zeros of f
in ZR(f). We will say that these pk−l−1 roots of f are represented by ā.

3 Proof of Theorem 1

The algorithm to compute a compact data-structure which stores roots of f mod pk will be
described in Section 3.1. Algorithm’s correctness will be proved in Section 3.2, which involves
studying the algebraic structure underlying the algorithm. Its efficiency will be shown in
Section 3.3, by devising an auxiliary structure called roots-tree and the important notion of
“degree of a node”.
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3.1 Algorithm to implicitly partition the root-set of f(x) mod pk

We describe our algorithm in this section. It takes a monic univariate polynomial f(x) ∈ Z[x]
of degree d and a prime-power pk as input (in binary), and outputs a list of at most d
maximal split ideals whose roots partition the root-set of f modulo pk.

A maximal split ideal Ij =: 〈h0(x̄0), . . . , hl(x̄l)〉 has |ZFp(Ij)| =
∏l
i=0 degxi

(hi) zeros,
and each such zero “represents” pk−l−1 actual zeros of f mod pk (Lemma 8). Thus, this
algorithm gives an exact count on the number of zeros of f in R.

Overview of Algorithm 1. Since any root of f mod pk is an extension of a root modulo p,
the algorithm starts by initializing a stack S with the ideal I := 〈h0(x0)〉, where h0(x0) :=
gcd(xp0 − x0, f(x0)). This is a split ideal containing all the roots of f mod p. By a lift
Î ⊂ R[x0] of I, we mean the ideal generated by the generator {h0} when viewed as a
polynomial in R[x0] (i.e. char pk).

At every intermediate iteration (Steps 4− 21), we pop a split ideal from the stack and
try to increase the precision of its root-set (equivalently, lengthen the split ideal). This
step mostly results in two cases: either we succeed and get a split ideal whose root-set has
increased precision (Step 18) by a new placeholder xl+1, or the split ideal factors into more
split ideals increasing the size of the stack S (Steps 10, 14, 20). We update the relevant “part
of f” to fI(x̄l, xl+1 + px) mod Ĵ (J is the new split ideal) that we carry around with each
split ideal. This helps in efficiently increasing the precision of roots in the next iteration.
Otherwise, computing f

(
x0 + px1 + · · ·+ plxl + pl+1x

)
/pα mod I is too expensive, in Step

6, due to the underlying degree-d (l + 1)-variate monomials blowup.
If we reach a maximal split ideal (Step 7), it is moved to a list L. Sometimes the split

ideal cannot be extended and we get a dead-end (Step 16). The size of the stack decreases
when we get a maximal split ideal or a dead-end. The algorithm terminates when stack
becomes empty. List L contains maximal split ideals which partition, and cover, the root-set
of f (implicitly). This becomes our output.

The main intuition behind our algorithm: If two roots of a split ideal (representing
potential roots of f) give rise to different number of roots of f , the split ideal will get factored
further. Though not at all apparent immediately, we will show that the algorithm takes only
polynomial number of steps (Section 3.3).

We will use four subroutines to perform standard ring arithmetic modulo split ideals;
they are described in the Appendices C & D.

1. Modify f (Steps 3, 18, 20) whenever pushing in the stack (Lemma 30 & 31).

2. Reduce(a(x̄l), Jl) gives the reduced form of a mod triangular ideal Jl (over a Galois
ring).

3. Test-Zero-Div(a(x̄l), Il) either reports that a is a not a zero-divisor modulo triangular
ideal Il or outputs a non-trivial factorization of one of the generators of Il when true.

4. GCD(a(x̄l, x), b(x̄l, x), Il) either successfully computes a monic gcd, wrt x, of two mul-
tivariates modulo a triangular ideal Il, or encounters a zerodivisor in intermediate
computation (outputting False and a non-trivial factorization of one of the generators
of Il).
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Algorithm 1 Root-counting mod pk.

1: Let L = {} be a list and S = {} be a stack (both initially empty).
2: Let f̃(x0) := f(x0) mod p for a monic univariate f̃ ∈ Fp[x0] of degree d.
3: [Initializing the stack S] Let h0(x0) := gcd(f̃(x0), xp0 − x0), I := 〈h0〉, Î ⊆ R[x0]

be a lift of I. Compute fI(x0, x) := f(x0 + px) mod Î using Lemma 30. Update
S ← push(({h0}, fI)).

4: while S is not empty do
5: Stop ← pop(S). Let Stop = ({h0(x0), . . . , hl(x0, . . . , xl)}, fI(x̄l, x)) where I =

〈h0, . . . , hl〉 ⊆ Fp[x̄l] is a split ideal. Let Î ⊆ R[x0, . . . , xl] be a lift of I.
6: [Valuation computation] Compute α ∈ N and g ∈ R[x̄l, x] such that fI ≡

pαg(x̄l, x) mod Î and p 6 |g mod Î.
7: [Maximal split ideal found] if(α ≥ k) then update List L ← L∪{I}. Go to Step

4.
8: Let g̃ := g(x̄l, x) mod I be the polynomial in Fp[x̄l, x], and let g1(x̄l) be the leading

coefficient of g̃(x̄l, x) wrt x.
9: if Test-Zero-Div(g1(x̄l), I)= True then
10: Test-Zero-Div(g1(x̄l), I) returns a factorization hi(x̄i) =:

hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) modIi−1 of some generator hi(x̄i) of I. Go to
Step 20.

11: end if
[Filter out distinct virtual Fp-roots by taking gcd with xp − x]

12: Recompute g̃ := g(x̄l, x)·g1(x̄l)−1 mod I (Lemmas 29, 28). Compute xp by repeatedly
squaring and reducing modulo the triangular ideal I + 〈g̃〉 (Algorithm 2 and Lemma
28). This yields h̃l+1(x̄l, x) := xp − x mod I in a reduced form.

13: if GCD(g̃, h̃l+1, I) = False then
14: The call GCD(g̃, h̃l+1, I) returns factorization hi(x̄i) =

hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod Ii−1 of a generator hi(x̄i) of I. Go to Step 20.
15: else if g̃ and h̃l+1 are coprime then
16: [Dead End] The ideal I cannot grow more, go to Step 4.
17: else
18: [Grow the split ideal I] Here gcdx(g̃, h̃l+1) mod I is non-trivial, say hl+1(x̄l, x)

(monic wrt x). Substitute x by xl+1 in hl+1(x̄l, x) and update J ← I+〈hl+1(x̄l+1)〉.
Let Ĵ ⊆ R[x0, . . . , xl+1] be a lift of J . Substitute x by xl+1 + px in fI(x̄l, x),
and compute fJ(x̄l+1, x) := fI(x̄l, xl+1 + px) mod Ĵ using Lemma 30. Update
S ← push(({h0, . . . , hl+1}, fJ)), and go to Step 4.

19: end if
20: [Factoring split ideals] We have a factorization hi(x̄i) =

hi,1(x̄i)hi,2(x̄i) . . . hi,m(x̄i) mod Ii−1 of a generator hi of I. Push Stop back
in stack S. For every entry (U, f〈U〉) ∈ S, where hi(x̄i) appears in U , find m

(smaller) split ideals Uj (using Corollary 7); using Lemma 31 compute f〈Uj〉 and push
(Uj , f〈Uj〉) in S, for j ∈ [m].

21: end while
22: Return L (the list of maximal split ideals partitioning the root-set ZR(f)).
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3.2 Correctness of Algorithm 1
Our main goal is to prove the following result about partitioning of root-set.

I Theorem 9 (Algo 1 partitions ZR(f)). Algorithm 1 yields the structure of the root-set
ZR(f) through a list data structure L (a collection of maximal split ideals I1, . . . , In) which
partitions the zeroset ZR(f) =:

⊔
j∈[n] Sj , where Sj is the set of roots of f mod pk represented

by ZFp
(Ij).

Later, we will show a surprising property: n ≤ d (Section 3.3).

Proof of Theorem 9. Lemma 12 states that at any point, Stack S only contains split ideals
which have disjoint root sets. Lemma 13 assures that Algorithm 1 terminates on every input.
So from Lemmas 12, 13 and the definition of maximal split ideal, it is clear that Algorithm 1
returns a list L containing maximal split ideals I1, . . . , In, for n ∈ N. Further, we show:
1) The root-set of Ij (1 ≤ j ≤ n) yields a subset Sj of ZR(f), and they are pairwise disjoint.
2) Given a root r ∈ ZR(f), there exists j such that r is represented by a root in ZFp(Ij).

For the first part, root-sets for different maximal split ideals Ij are pairwise disjoint
because of Lemma 12. Each of these root-set yields a subset of the zeroset of f mod pk
(follows from the definition of maximal split ideal).

For the second part, let r =:
∑k−1
i=0 rip

i be a root in ZR(f). Stack S was initialized by the
split ideal 〈h0 := gcd(f(x0) mod p, xp0 − x0)〉; so r0 ∈ ZFp(I0), as f(r0) ≡ f(r) ≡ 0 mod p.

Assume that I0 is not a maximal split ideal (otherwise we are done). Applying Lemma 14,
there must exist an I1 whose root-set contains (r0, r1). Repeated applications of Lemma 14
show that we will keep getting split ideals of larger lengths, partially representing r; finally,
reaching a maximal split ideal (say Ij) fully representing r.

We showed that each root r of f mod pk is represented by a unique maximal split ideal
I, given by Algorithm 1, and they collectively represent exactly the roots of f modulo pk.
Hence, root-sets of ideals in L partition the zeroset ZR(f). J

Now, let us see the properties of our algorithm which go in proving Theorem 9. Given a
polynomial g(x̄l) ∈ Fp[x̄l] and an element ā ∈ Flp, consider the projection gā(xl) := g(ā, xl).
Using Chinese remainder theorem (Lemma 6) we easily get the following degree condition.
(Here, lcx refers to the leading coefficient wrt variable x.)

B Claim 10. Let I be a split ideal of Fp[x̄l−1] and g ∈ Fp[x̄l]. Then, lcxl
(g) is unit mod I

iff ∀ā ∈ ZFp
(I), deg(gā(xl)) = degxl

(g(x̄l) mod I).

Chinese remaindering also gives us a gcd property under projections.

I Lemma 11. Let w(x̄l), z(x̄l) ∈ Fp[x̄l] and Il−1 ⊆ Fp[x̄l−1] be a split ideal. Suppose Algo-
rithm 4 succeeds in computing gcd of w and z mod Il−1: define h(x̄l) := GCD(w(x̄l), z(x̄l), Il−1).
Then, for all ā ∈ ZFp

(Il−1): hā(xl) equals gcd(wā(xl), zā(xl)) up to a unit multiple (in F∗p).

Proof. Lemma 33 proves, h(x̄l) is a monic polynomial mod Il−1, s.t., h|w and h|z (mod
Il−1). Fix ā ∈ ZFp

(Il−1). Since hā(xl) 6≡ 0 mod p (∵ h is monic), restricting x̄l−1 to ā gives
hā|wā and hā|zā, showing hā| gcd(wā, zā), in Fp[xl].

Lemma 33 also shows that there exists u, v ∈ (Fp[x̄l−1]/Il−1)[xl], such that, h = uw + vz.
Restricting first l co-ordinates to ā, we get hā = uāwā + vāzā. This equation implies
gcd(wā, zā)|hā. Thus, we get an equality up to a unit multiple. J
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Let I ⊆ Fp[x̄i], J ⊆ Fp[x̄j ] be two split ideals (say i ≤ j). I and J are called prefix-free iff
@ ā = (a0, a1, . . . , ai) ∈ ZFp

(I), b̄ = (b0, b1, . . . , bj) ∈ ZFp
(J) : ak = bk ∀k ≤ i.

(Note that it may still happen that (a0, . . . , ai−1) = (b0, . . . , bi−1) above.)
Our next lemma shows an invariant about Algorithm 1.

I Lemma 12 (Stack contents). Stack S in Algorithm 1 satisfies following conditions at every
point:
1) l < k and in Step 6, α > l.
2) All ideals in S are split ideals.
3) Any two ideals in S are prefix-free.

Proof. We first prove the invariant 1. Step 6 defines g via fI as, fI =: pαg(x̄l, x) mod Î.
Looking at the fI analogues pushed in Steps 3, 18, 20, one easily deduces the invariants:
f
(∑

0≤i≤l xip
i + xpl+1

)
≡ fI(x̄l, x) mod Î, and

f
(∑

0≤i≤l xip
i
)
≡ 0 mod Î + 〈pl+1〉 .

Thus, f
(∑

0≤i≤l xip
i
)
≡ pαg(x̄l, x) ≡ 0 mod Î + 〈pl+1〉. Since, p - g mod Î, we deduce

α > l. Moreover, by Step 7 we know that l < k throughout the algorithm.
There are three ways in which a new ideal is added to stack S. We show below that the

invariant is maintained in all three cases.
(Step 3) S is initialized with the ideal I = 〈h0(x0)〉 ⊆ Fp[x0]. The triangular ideal I is a

split ideal, because |ZFp
(I)| = degx0(h0) and its root are all the distinct roots of f(x0) mod p.

(Step 20) Ideal Il is popped from S, and some generator hi of Il splits. In this case, we
update S with the corresponding factors of any (U, f〈U〉) ∈ S, wherever currently U has
hi. Corollary 7 shows that the factors of U are split ideals themselves, and their root-sets
partition that of U . Thus, these root-sets are prefix-free among themselves. Moreover, they
are prefix-free with any other ideal J appearing in S, because U was prefix-free with J .

(Step 18) Ideal Il is popped, it grows to Il+1 by including hl+1(x̄l, x) = gcdx(g̃(x̄l, x), xp−
x) mod Il (g̃ is defined in Step 8). First (resp. third) condition for Il+1 being a split ideal
follows from the definition of g̃ (resp. hl+1).

For the second condition for Il+1 being a split ideal, fix a particular root ā ∈ ZFp
(Il).

Using Lemma 11, the projection hl+1,ā(x) equals gcd(g̃ā(x), xp − x) (up to a unit multiple).
By Lemma 33, hl+1 is monic mod Il; giving deg(hl+1,ā) = degxl+1

(hl+1). Since hl+1|xp − x,
there are exactly degx(hl+1)-many al+1 ∈ Fp, such that hl+1,ā(al+1) ≡ 0 mod p. So, every
root ā ∈ ZFp

(Il) can be extended to degx(hl+1)-many roots; giving |ZFp
(Il+1)| = degx(hl+1) ·∏l

i=0 degxi
(hi). This makes Il+1 a split ideal.

Il+1 remains prefix-free with any other ideal J of S, because roots of Il+1 are extension
of roots of Il (recall: Il was prefix-free with J and it was popped out of S).

This proves all the invariants for the stack S. J

Using the invariant, we prove that Algorithm 1 terminates on any input.

I Lemma 13. Algorithm 1 finishes in finite number of steps for any f ∈ Z[x] and a prime
power pk.

Proof. We show that the number of iterations in Algorithm 1 are finite. Assume that all the
ideals which result in a dead-end are moved to a list D; say C is the disjoint union of all
ideals in S, L and D. Whenever a split ideal I from S is moved to L or D, the underlying
roots (of I) stop extending to the next precision. Togetherwith Lemma 12, we deduce that
in fact all the ideals in C are prefix-free. Now by Step 18, and the rate of growth of split
ideals up to length l + 1 ≤ k, we get a lazy estimate of |C| ≤ min(dk, pk).
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Let len(I) denote the length of an ideal I, it is bounded by k. Notice that factoring/growing
an ideal increases

∑
I∈C len(I); and getting a maximal split ideal/ dead-end increases |L|+|D|.

Thus, every iteration of the algorithm strictly increases the quantity (
∑
I∈C len(I))+ |L|+ |D|.

By the estimate on |C|, all the terms in this quantity are bounded; thus, the number of
iterations are finite. J

The following lemma shows: if we see a restriction of r ∈ ZR(f) (say, up to length l + 1)
at some point in Algorithm 1, we will again see its restriction of length l + 2 at a later point
in the algorithm.

I Lemma 14 (Getting roots with more precision). Assume that at some time (say t), Al-
gorithm 1 pops an ideal I of length l + 1, that is not yet a maximal split ideal. Let
ā = (a0, . . . , al) ∈ ZFp(I) partially represent a “root” r =:

∑
0≤i≤l+1 aip

i such that f(r) ≡ 0
mod pl

′ , but f
(∑

0≤i≤l aip
i + xpl+1

)
6≡ 0 mod pl

′ , for some l+ 2 ≤ l′ ≤ k. Then, there ex-
ists a time t′ > t, when stack S will pop an ideal J of length l+2, such that, (ā, al+1) ∈ ZFp

(J).

Proof. We again consider three possible situations.
(Step 18) Ideal I grows to another split ideal, say J . Notice, J is obtained by adding

hl+1 := GCD(g(x̄l, x), xp − x) mod I to I (setting x 7→ xl+1).
Step 6 defines g via fI as, fI =: pαg(x̄l, x) mod Î. Looking at the fI analogues pushed in

Steps 3, 18, 20, one can deduce the invariant: f
(∑

0≤i≤l xip
i + xpl+1

)
≡ fI(x̄l, x) mod Î.

Now, let us project to (suitable integral lifts of) ā and consider f
(∑

0≤i≤l aip
i + xpl+1

)
≡

fI(ā, x) ≡ pαg(ā, x) mod Î. By Step 9, and Claim 10, we are assured that g(ā, x), g(x̄l, x) mod
I are equi-degree (wrt x). Thus, by non-maximality hypothesis we have α < l′. Hy-
pothesis tells us that f

(∑
0≤i≤l+1 aip

i
)
≡ 0 mod pl

′ . So, by the previous paragraph,
pαg(ā, al+1) ≡ 0 mod pl

′ . Whence, g(ā, al+1) ≡ 0 mod p. Clearly, apl+1 − al+1 ≡ 0 mod p.
Thus, hl+1(ā, al+1) ≡ 0 mod p. So (ā, al+1) is a root of J .

(Step 16) Proof of the previous case shows that hl+1(ā, x) has degree at least 1, so I
could not result in a dead-end.

(Step 20) Ideal I factors into (smaller) split ideals. In this case, ā will be included in
exactly one of those ideals (by Corollary 7). This ideal will be handled later in the algorithm
and will give an ideal J with (ā, al+1) as root. J

3.3 Time complexity of Algorithm 1 – introducing roots-tree RT

We know that Algorithm 1 takes finite amount of time and terminates (Lemma 13). To
show that it is efficient, note that the time complexity of the algorithm can be divided into
two parts.
1) Number of iterations taken by Algorithm 1, which is clearly bounded by the number of

updates on Stack S in the algorithm.
2) Time taken by the various algebraic operations in one iteration of the algorithm: reduc-

tion by a triangular ideal, valuation computation modulo a split ideal, testing if some
polynomial is a zerodivisor modulo a split ideal, performing repeated squaring modulo a
triangular ideal and computing gcd of two multi-variates modulo a split ideal.

For the purpose of bounding iterations, we define a “virtual” tree, called roots-tree (RT ),
which essentially keeps track of the updates on Stack S. We will map a node N = (I, fI) in
roots-tree to the element (I, fI) in stack S. Each push will create a new node in RT . The
nodes are never deleted from RT .
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Construction of roots-tree (RT ). Denote the root of RT by N〈0〉 := (〈0〉, f〈0〉 := f(x)).
Add a child node NI0 to the root corresponding to the initialization of Stack S by (I0, fI0),
where I0 := 〈h0(x0)〉 (label the edge h0 in RT ).

If, at some time t, the algorithm pops (Il−1, fIl−1) from S then the current node in RT
will be the leaf node NIl−1 = (Il−1, fIl−1). We map the updates on stack S to RT as follows:

(Step 18) If ideal Il−1 grows to Il := Il−1 + 〈hl〉 and (Il, fIl
) is pushed in S, then create

a child of NIl−1 in RT using an edge labelled hl (label the node NIl
:= (Il, fIl

)).
(Steps 7, 16) If the algorithm reached dead-end (no update in stack S or list L), then add a

child labelled D to node NIl−1 . It indicates a dead-end at the current branch. Analogously, if
the algorithm finds a maximal split ideal, we add a child labelledM to Node NIl−1 (indicating
Il−1 is a maximal split ideal).

(Step 20) Suppose, processing of length-l split ideal Il−1 results in factoring each ideal U
in S, containing hi, to m split ideals. We describe the duplication process for a particular U
(repeat it for each split ideal containing hi).

Let Ui−1 be the length-i restriction of U . First, we move to the ancestor node NUi−1 :=
(Ui−1, fUi−1) of NU . Make m copies of the sub-tree at Node NUi−1 , each of them attached
to NUi−1 by edges labelled with hi,1, . . . , hi,m respectively. The copy of each old node
N = (V, fV ), in sub-tree corresponding to hi,j , will be relabelled with (Vj , fVj

) corresponding
to the factor split ideal Vj of V and the newly computed fVj

.
This step does not increase the height of the tree, though it increases the size.
For the rest of this section, RT denotes the final roots-tree created at the end of the

above process.

Properties of RT . We state some easy properties of RT , which will help us in analyzing
the time complexity.
1) By construction, size of the roots-tree increases at every iteration. We never delete a node

or an edge (though relabelling might be done). So, the size of RT bounds the number of
iterations taken by Algorithm 1.

2) Consider a node NI =: (I, fI) in RT . Here fI(x̄l, x) ∈ R[x̄l, x], and let gI ∈ R[x̄l, x] be
defined as in Algorithm 1, gI := fI(x̄l, x)/pα mod Î, where pα || fI mod Î, and Î is a lift
of I over R. Then, gI mod I is a nonzero polynomial over Fp.

3) For each node NI =: (I, fI(x̄l, x)) and its child NJ =: (J, fJ(x̄l+1, x)), we have the
relation, fJ = fI(x̄l, xl+1 + px) mod Ĵ .

Bounding |RT |. To bound the size of RT , we define a parameter for a node N of RT ,
called the degree of the node N and denoted by [N ].

I Definition 15 (Degree of a node in RT ). Degree of leaves D resp.M is defined to be 1.
Let NI =: (I, fI) be a node corresponding to a split ideal I ⊆ Fp[x̄l], where fI(x̄l, x)

belongs to R[x̄l, x]. Let pα || fI mod Î and gI(x̄l, x) := fI/p
α mod Î. Except, gI := 0 if

α ≥ k.
Then, the degree of N is defined as, [N ] := max (1, degx(gI mod I)× deg(I)).
We remark that for the root node, N〈0〉 = (〈0〉, f〈0〉 := f(x)) we will set deg(〈0〉) := 1.

Then, it is clear by the general definition of degree that [N〈0〉] = d (= deg(f) ≥ 1).

We show that the degree of a parent node bounds the sum of the degree of its children.

I Lemma 16 (Degree distributes in RT ). Let N be a node in roots-tree RT and des(N)
denote the set of all children of N . Then, [N ] ≥

∑
C∈des(N)[C].

So, the sum of the degrees of all nodes, at any level l, is at least the sum of the degrees of
all nodes at level l + 1.
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Proof. Let N = (I, fI), where I = 〈h0, . . . , hl〉 and fI(x̄l, x) ∈ R[x̄l, x]. Define g̃I ∈ Fp[x̄l, x]
as g̃I := gI(x̄l, x) mod I. Assume α < k, otherwise we are done. So, gI mod I is nontrivial
wrt x; by Step 9 (failure) and Claim 10, we get,

∀ā ∈ ZFp
(I) : degx(g̃I mod I) = degx(g̃I(ā, x)) . (1)

Recall hl+1(x̄l, x) := gcd(g̃I(x̄l, x), xp − x).Let C be a child node of N in RT such that
C =: (JC , fJC

), where JC =: I + 〈hl,C(x̄l+1)〉 and fJC
(x̄l+1, x) := fI(x̄l, xl+1 + px) mod ĴC .

This gives us the factorization hl+1(x̄l, x) =
∏
C∈des(N) hl,C(x̄l, x) mod I (Step 20, and

“duplication step” when we constructed RT ). Again,

∀b̄ ∈ ZFp(JC) : degx(g̃JC
mod JC) = degx(g̃JC

(b̄, x)) . (2)

If gJC
=: fJC

/pv
′ mod ĴC for some v′ ∈ N, by property 3 of RT , we have gJC

= fI(x̄l, xl+1 +
px)/pv′ mod ĴC .

By definition, [N ] = deg(I) · degx(g̃I) and [C] = deg(JC) · degx(g̃JC
). Since deg(JC) =

deg(I) · degx(hl,C(x̄l, x)), the lemma statement is equivalent to showing,

degx(g̃I) ≥
∑

C∈des(N)

degx(hl,C(x̄l, x)) · degx(g̃JC
) . (3)

Continuing with the notation of a particular child C, fix an ā ∈ ZFp
(I). Since JC is a

split ideal, hl,C(ā, x) (of degree d′C) can be written as
∏d′C
i=1(x− ci), where each ci ∈ Fp and

are distinct. Then, each ci is also a root of g̃I(ā, x), say with multiplicity mi ∈ N. So, there
exists G(x) ∈ Fp[x] (coprime to x−ci), such that, g̃I(ā, x) ≡ (x−ci)mi ·G(x) mod p. Lifting
this equation mod pk, there exists G1(x) ∈ R[x], of degree less than mi, and a unique lift
G2(x) ∈ R[x] of G(x) (Hensel lemma (21)) : gI(ā, x) ≡ ((x−ci)mi +pG1(x))·G2(x) mod pk .
Substituting x→ ci+px, we get, gI(ā, ci+px) ≡ ((px)mi +pG1(ci+px))·G2(ci+px) mod pk
.

Let b̄i = (ā, ci) ∈ ZFp(JC). We know that g̃JC
(b̄i, x) = fI(ā, ci + px)/pv′ mod p is

nontrivial. This implies that, ((px)mi + pG1(ci + px))/pv′ mod p is a nonzero polynomial of
degree at most mi (∵ p - G2(ci)).

Since G2(ci + px) 6≡ 0 mod p is a unit, degx(g̃JC
(b̄i, x)) = degx(g̃JC

) ≤ mi (Eqn. 2).
Summing up over all the roots ci of g̃I(ā, x),

d′C∑
i=1

degx(g̃JC
(b̄i, x)) = d′C · degx(g̃JC

) ≤
d′C∑
i=1

mi =: dC(gI) .

Summing over all children C ∈ des(N) (using Eqn. 1, factorization of hl+1 & distinctness of
Fp-roots), we deduce,∑

C∈des(N)

degx(hl,C) degx(g̃JC
) ≤

∑
C

dC(gI) ≤ degx(g̃I(ā, x)) = degx(g̃I) .

This proves Eqn. 3, and hence the lemma. J

Define the degree of list L as, deg(L) := ΣI∈L deg(I).

I Lemma 17 (Bounding |RT |, deg(I), deg(L), |L|). Let RT be the roots-tree constructed
from the execution of Algorithm 1. The number of leaves of RT , resp. deg(L), is at most
d = deg(f(x)). Also, the size |RT | of the roots-tree (hence, the number of iterations by
Algorithm 1) is bounded by dk.
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Proof. Applying Lemma 16 inductively, sum of the degrees of nodes at any level is bounded
by the degree d of the root node. In particular,
1) We can extend every leaf to bring it to the last level (create a chain of nodes of same

degree) without changing the degree distribution property. So, deg(L) = ΣI∈L deg(I) ≤ d.
Since the number of leaves is ≥ |L|, we get |L| ≤ d.

2) For any split ideal I in stack S, deg I ≤ d.
3) Since the depth of the roots-tree is at most k, |RT | ≤ kd. J

I Lemma 18 (Computation cost at a node). Computation cost at each node of RT (time
taken by Algorithm 1 in every iteration of the while loop) is bounded by poly(d, k log p).

Proof. During an iteration, the major computations performed by the algorithm are – testing
for zerodivisors (Step 9), computing modular gcd (Step 13), computing reduced fI (Steps
3, 18), performing reduction for repeated squaring (Step 12), and factoring ideals (Step 20).

These operations are described by Lemmas 28, 29, 30, 32 and 33. All of them take time
poly(d, k log p, deg(I)), where I is the concerned triangular ideal.

For any split ideal I (or its lift Î), we know that deg(I) ≤ d (Lemma 17). So, Steps
3, 9, 13, 18, 20 take time poly(d, k log p). Step 12 to compute repeated squaring modulo I+〈g̃〉
takes time poly(degx(g̃),deg(I), k log p) (using Lemma 28). Since I is a split ideal with
deg(I) ≤ d, and degree of g̃ is at most d, so Step 12 also takes poly(d, k log p) time.

Hence the computation cost at each node is poly(d, k log p). J

Proof of Theorem 1. The definition of roots-tree shows that the number of leaves upper
bound the number of all maximal split ideals in L. Lemmas 17 and 18 show that the
time complexity of Algorithm 1 is bounded by poly(d, k log p) (by bounding both number
of iterations and the cost of computation at each iteration). Using Lemma 8 on the
output of Algorithm 1, we get the exact count on the number of roots of f mod pk in time
poly(d, k log p). J

4 Proof of Theorem 2

A polynomial f can be factored mod pk if it has two basic-irreducible factors of different
degree (using distinct degree factorization [33] and Hensel Lemma 21).

If two basic-irreducible factors appear with different exponents/multiplicities, then again
f can be factored (using formal derivatives [33] and Hensel Lemma 21).

So, for factoring f mod pk, we can assume f ≡ (ϕ1 . . . ϕt)e + ph mod pk, where every
ϕi ∈ (Z/〈pk〉)[x] is a basic-irreducible polynomial of a fixed degree b. Also, d := deg(f) = bte.
Let us fix this assumption for this section, unless stated explicitly.

A basic-irreducible factor of f mod pk has the form ϕi + pwi(x) mod pk, for i ∈ [t]
(Lemma 22).

If b = 1, counting basic-irreducible factors of f is equivalent to counting roots of f .
When b > 1, we prove a simple generalization of this idea; it is enough to count all

the roots of f in the ring extension Z[y]/〈pk, ϕ(y)〉, where ϕ(y) is an irreducible mod p of
degree-b. These rings are called Galois rings, we denote them by G(pk, b) (unique, for fixed
k and b, up to isomorphism).

4.1 Reduction to root-counting in G(pk, b)
By Lemma 22, any basic-irreducible factor of f mod pk is a factor of a unique (ϕie + pwi(x));
and ϕi are coprime mod p. So in this subsection, for simplicity of exposition, we will assume
that f(x) equals ϕe mod p (ϕ is a monic degree-b irreducible mod p).
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Define G := G(pk, b). Let y0, y1, . . . , yb−1 be the roots of ϕ(x) in G (Claim 24). Wlog,
take y := y0, yi ≡ yp

i mod p, for all i ∈ {0, . . . , b − 1} (Frobenius conjugates in Fp). Note
that G ∼= (Z/〈pk〉)[y] =: G′. We will prefer to use G′ below.

The lemma below associates a root of f , in G or G′, to a unique basic-irreducible factor
of f in (Z/〈pk〉)[x].

I Lemma 19 (Root to factor). Let r(y) ∈ G′ be a root of f(x). Then, h(x) :=
∏b−1
i=0 (x−r(yi))

is the unique basic-irreducible factor of f having root r(y). We say: h(x) is the basic-irreducible
factor associated to root r(y).

Proof. The coefficients of h are symmetric polynomials in r(yi) (over 0 ≤ i < b). Since the
automorphism ψ1 : y → y1 of G′ (as defined in Claim 25) permutes r(yi)’s (∵ it permutes
yi’s), it fixes all the coefficients of h. From Claim 25, all these coefficients are then in Z/〈pk〉.
Hence, h ∈ (Z/〈pk〉)[x].

If r(y) is a root of another polynomial h′ in (Z/〈pk〉)[x], then r(yi)’s are also roots of h′
(applying automorphisms ψi of G′). Since these roots are coprime mod p, we actually get:
h|h′. Thus, h is the unique monic irreducible factor of f containing r(y).

Looking mod p, r(yi)’s are a permutation of the roots of ϕ(x), so h(x) ≡ ϕ(x) mod p.
Hence, h(x) is the unique monic basic-irreducible factor of f having root r(y). J

Following is the reduction to counting all roots of f in G.

I Theorem 20 (Factor to root). Any degree-b basic-irreducible factor of f mod pk has exactly
b roots in G. Conversely, if f has a root r(y) ∈ G, then it must be a root of a unique degree-b
basic-irreducible factor of f mod pk.

So, the number of degree-b basic-irreducible factors of f mod pk is exactly the number of
roots, of f in G, divided by the degree b.

Proof. By Lemma 19 (& uniqueness of Galois rings), for every root r(y) ∈ G of f , we can
associate a unique basic-irreducible factor of f(x).

Conversely, let h(x) =: ϕ(x) + pw(x) be a basic-irreducible factor of f(x). It splits
completely in G (as, h(x) ≡ ϕ mod p; first factor in G/〈p〉 and then Hensel lift to G). So, h
has exactly b roots in G, each of them is also a root of f in G.

Hence the theorem statement follows. J

Remark. This “irreducible factor vs root” correspondence, for f mod pk, breaks down if G
is not a Galois ring. E.g., what happens when the ring is Z[y]/〈pk, y2 − p〉?

4.2 Counting roots in G(pk, b)– Wrapping up Thm. 2
In this section, we show how to count the roots of f ≡ (ϕ1ϕ2 . . . ϕt)e + ph(x) mod pk in
G(pk, b). Since G := G(pk, b) is a Galois ring, so G/〈p〉 = Fpb =: Fq. (Recall: R = Z/〈pk〉.)

Split ideals and zerosets in the Galois ring. First, we will modify the definition of zerosets
(Section 2) to include zeros of f in G. A G-zeroset of f(x) ∈ R[x] will be defined as
ZG(f) := {r ∈ G | f(r) ≡ 0 mod pk}. Similarly, for an ideal I ⊆ Fp[x̄l], its Fq-zeroset is
defined as ZFq

(I) := {ā = (a0, . . . , al) ∈ (Fq)l+1 | g(ā) ≡ 0 mod pk,∀g ∈ I}.
The definition of triangular ideals, split ideals and maximal split ideals will remain exactly

same (generators defined over Fp, Section 2), except that in the third condition for split ideals,
zeroset will be over Fq instead of Fp. But, they can now be seen as storing potential roots of
f(x) in G (or, storing potential basic irreducible factors of f mod pk). The reason is, a root
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r(y) ∈ G of f mod pk can be viewed as, r(y) = r0(y) + pr1(y) + p2r2(y) + . . .+ pk−1rk−1(y),
where each ri(y) ∈ G/〈p〉 = Fq. So, the decomposition of formal variable x =: x0 + px1 +
p2x2 + . . .+ pk−1xk−1, now represents candidates for r0, r1, and so on, over Fq.

A split ideal Il ⊆ Fp[x̄l], defined as Il := 〈h0(x0), . . . , hl(x̄l)〉, now implicitly stores the
candidates for (r0) in h0, (r0, r1) in h1, and so on. These, in turn, give candidates for
basic-irreducible factors of f mod pl′ (some l′ ≤ k).

In particular, when Il is a maximal split ideal, an r̄l implicitly denote a basic-irreducible
factor of f mod pk. The number of such factors is deg(Il)·qk−l−1/b (Theorem 20 & Lemma 8).

Split ideals follow all the properties given in Section 2, just by replacing the fact that
roots belong to Fq and not Fp.

Description of the modified algorithm. Algorithm 1, to count roots in R, extends directly
to count roots in G. The algorithm is exactly same except one change: to compute GCD
(Steps 3 and 13), we now use the Frobenius polynomial xq − x instead of the prior xp − x
(GCD computation implicitly stores the candidate roots, they are in Fq now).

So the algorithm works as follows:
1. It gets f(x) ≡ (ϕ1 . . . ϕt)e+pw(x) mod pk as input, computes gcd h0(x) := gcd(f(x), xq−

x) over Fp. Since xq−x, over Fp, is the product of all irreducible factors of degree dividing
b, we deduce: h0(x) = ϕ1 . . . ϕt mod p; and define the first split ideal I0 := 〈h0〉. (Note–
We do not have access to ϕi’s themselves.)
Remark. The length 1 split ideal stores all the roots of f in G/〈p〉, or all the basic
irreducible factors of f mod p; as h0(x) = ϕ1 . . . ϕt. Also, its degree is tb, which when
divided by b, gives the count of the basic-irreducible factors of f mod p.

2. The algorithm then successively looks for the next precision candidates. It computes hl
by taking gcd with xq − x, and adds it to the previous ideal Il−1 like before.

3. All the supporting algebraic algorithms and lemmas (given in appendix) work the same
as before; since they are being passed the same parameters – a split ideal, or a triangular
ideal, or a polynomial over R.

Thus, a similar proof of correctness and time complexity can be given as before.

Proof of Theorem 2. Consider a univariate f(x) mod pk. As discussed in the beginning
of this section, f mod pk can be efficiently factorized as f ≡

∏m
i=1 fi mod pk, where each

fi(x) is a power of a product of degree-bi irreducible polynomials mod p (i.e. of the form
≡ (ϕ1ϕ2 . . . ϕt)e + ph(x), where ϕj is a degree-bi irreducible mod p).

On each such fi mod pk, we use Algorithm 1 with the new Frobenius polynomial (xqi −x)
(qi = pbi), in Steps 3 and 18, as discussed above. Let the final list output, for fi mod pk, be
Li =: {I1(l1, D1), . . . , In(ln, Dn)}. Thus, we get the count on the G(pk, bi)-roots of fi mod pk
as Σnj=1Djq

k−lj
i (Lemma 8). Using Theorem 20, the number of the degree-bi basic-irreducible

factors of f mod pk is Bk(fi) := (1/bi)× Σnj=1Djq
k−lj
i .

Using Lemma 22, we get the count on the basic-irreducible factors of f mod pk as,
Bk(f) = Σmi=1Bk(fi).

For the time complexity, only difference is the repeated-squaring to compute the re-
duced form of polynomial xqi − x (Steps 3, 12), it will take bi log p operations instead of
log p operations. But bi ≤ d, so the algorithm runs in time poly(d, k log p) (& remains
deterministic). J
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5 Conclusion

There are well known efficient deterministic algorithms to count the number of roots/irre-
ducible factors over prime characteristic. Surprisingly, not many results are known when
the characteristic is a prime-power. The main difficulty is that the ring has non-unique
factorization.

We give the first efficient deterministic algorithm to count the number of basic-irreducible
factors modulo a prime-power. Restricting it to degree-one irreducibles, we get a deterministic
polynomial-time algorithm to count the roots too. This is achieved by storing and improving
roots (wrt precision) virtually using split ideals (we do not have access to roots directly).
As a corollary: we can compute the Igusa zeta function deterministically, and we also get a
deterministic algorithm to count roots in p-adic rings (resp. formal power-series ring).

Many interesting questions still remain to be tackled. For p-adic fields, there is only a
randomized method to count the number of irreducible factors. Analogously, the question of
counting irreducible factors modulo a prime-power also remains open; no efficient method
is known even in the randomized setting. The ramified roots seem to elude practical
methods. On the other hand, the problem of actually finding an irreducible factor (resp. a
root) deterministically, seems much harder; it subsumes the analogous classic problem in
prime characteristic.
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A Preliminaries

Lifting factorization. Below we state a lemma, originally due to Kurt Hensel [15], for I-adic
lifting of factorization of a given univariate polynomial. Over the years, Hensel’s lemma has
acquired many forms in different texts, version presented here is due to Zassenhaus [34].
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I Lemma 21 (Hensel’s lemma [15]). Let R be a commutative ring with unity, denote the
polynomial ring over it by R[x]. Let I ⊆ R be an ideal of ring R. Given a polynomial
f(x) ∈ R[x], suppose f factorizes as

f = gh mod I,

such that gu + hv = 1 mod I (for some g, h, u, v ∈ R[x]). Then, given any l ∈ N, we can
efficiently compute g∗, h∗, u∗, v∗ ∈ R[x], such that,

f = g∗h∗ mod Il.

Here g∗ = g mod I, h∗ = h mod I and g∗u∗ + h∗v∗ = 1 mod Il (i.e. pseudo-coprime lifts).
Moreover g∗ and h∗ are unique up to multiplication by a unit.

Using Hensel’s lemma, for the purpose of counting roots (resp. basic-irreducible factors), a
univariate polynomial f(x) ∈ Z[x] can be assumed to be a power of an irreducible modulo p.

I Lemma 22. By the fundamental theorem of algebra, a univariate f(x) ∈ Z[x] factors
uniquely, over Fp, into coprime powers as, f ≡

∏m
i=1 ϕi

ei , where each ϕi ∈ Z[x] is irreducible
mod p and m, ei ∈ N. Then, for all k ∈ N,
1. f factorizes mod pk as f = g1g2 . . . gm, where gi’s are mutually co-prime mod pk and

gi ≡ ϕiei mod p, for all i ∈ [m].
2. any basic-irreducible factor of f(x) mod pk is a basic-irreducible factor of a unique

gj mod pk, for some j ∈ [m]. Let Bk(h) denote the number of (coprime) basic-irreducible
factors of h(x) mod pk. Then, Bk(f) = Σmi=1Bk(gi) .

3. any root of f mod pk is a root of a unique gi mod pk. Let Nk(h) denote the number of
(distinct) roots of h(x) mod pk. Then, Nk(f) = Σmi=1Nk(gi).

Proof. We can apply Hensel’s lemma by taking ring R := Z and ideal I := 〈p〉. The co-prime
factorization of f mod p lifts to a unique coprime factorization f ≡ g1g2 . . . gm mod pk, for
any k ∈ N and gi ≡ ϕiei mod p.

Any basic-irreducible factor h(x) of f(x) mod pk has to be h ≡ ϕi mod p for some i ∈ [m];
otherwise, h will become reducible mod p. Since gi’s are co-prime and h|f mod pk, h must
divide a unique gi. So, any basic-irreducible factor h of f(x) mod pk is a basic-irreducible
factor of a unique gj mod pk. Clearly, any basic-irreducible factor of a gi is also a basic-
irreducible factor of f mod pk. This proves Bk(f) = Σmi=1Bk(gi).

The third part follows from a similar reasoning as the second part. J

Root finding over a finite field: The following theorem, called CZ in this paper and given
by Cantor-Zassenhaus [5], finds all roots of a given univariate polynomial over a finite field
in randomized polynomial time. (Equivalently, it finds all irreducible factors as well.)

I Theorem 23 (Cantor-Zassenhaus Algo (CZ)). Given a univariate degree d polynomial f(x)
over a finite field Fq, all roots of f in Fq can be found in randomized poly(d, log q) time.

A.1 Properties of Galois rings– Analogues of finite fields
A Galois ring, of characteristic pk and size pkb, is denoted by G(pk, b) (where p is a prime,
k, b ∈ N). It is known that two Galois rings of same characteristic and size are isomorphic
to each other. We will define Galois ring G(pk, b) as the ring G := Z[y]/〈pk, ϕ(y)〉, where
ϕ(y) ∈ Z[y] is an irreducible mod p of degree b [23]. Let us prove some useful properties of
G below.
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B Claim 24 (Roots of ϕ). Let ϕ′(x) ∈ Z[x] be any irreducible mod p of degree b. There are
b distinct roots of ϕ′(x) in G. Let r denote one of the roots, then all other roots, modulo p,
are of the form rp

i (i ∈ {0, . . . , b− 1}).

Proof. G/〈p〉 is isomorphic to the finite field of degree b over Fp. So, irreducible ϕ′(x) ∈ Fp[x]
has exactly b roots in G/〈p〉 [21, Ch.2]. By Hensel Lemma 21, roots in G/〈p〉 can be lifted to
G uniquely. Hence, ϕ′(x) has exactly b distinct roots in G. Modulo p, they are of the form
rp

i (i ∈ {0, . . . , b− 1}) for a root r (lifted from roots in G/〈p〉). C

Using Claim 24, denote roots of ϕ(x) as y0, . . . , yb−1; here yi ≡ yp
i

0 mod p for all i ∈
{0, . . . , b − 1}. For all roots yj , G ≡ R[yj ]. In other words, yj generate the extension G
over R.

B Claim 25 (Symmetries of G). There are exactly b automorphisms of G fixing R = Z/〈pk〉,
denoted by ψj (j ∈ {0, . . . , b− 1}). Each of these automorphisms can be described by a map
taking y0 to one of the roots of ϕ(x) and fixing R. Wlog, assume ψj maps y0 → yj .

Moreover, for all j coprime to b, ψj fixes R and nothing else.

Proof. Since coefficients of ϕ(x) belong to R, an automorphism fixing R should map the root
y0 to another of its roots yj . We only need to show that ψj is an automorphism (it is a valid
map because yj ∈ G)

Writing elements of G in terms of y0 (i.e. G ∼= R[y0]), it can be verified that ψj(ab) =
ψj(a)ψj(b) and ψj(a+ b) = ψj(a) + ψj(b), so ψj is a homomorphism.

Similarly, if ψj(g) = 0, writing g in terms of y0, we get that g = 0. So, kernel of ψj is the
set {0}; thus, it is an isomorphism.

For the moreover part, let ψj be such that j is coprime to b. We will show a stronger
statement by induction: for any i ≤ k−1, if a(y0) = ψj(a(y0)) in G/〈pi〉, then a(y0) ∈ Z/〈pi〉.

Base case: If i = 1 and j = 1, then a(y0) = ψ1(a(y0)) mod p⇒ a(y0) = a(y0)p mod p. It
means a(y0) ∈ Z/〈p〉.

If j is coprime to b, then ψj generates ψ1 modulo p. So, a(y0) = ψj(a(y0)) mod p implies
that, a(y0) mod p =: a0 ∈ Z/〈p〉.

This argument also proves: for any i ≤ k, if a(y0) = a(yj) in G/〈pi〉, then a(y0) ∈ Fp (in
other words, a(y0) is y0 free).

Induction step: Let us assume that a(y0) = ψj(a(y0)) in G/〈pi〉. By the previous
argument, a(y0) = a0 + pa′(y0), where a0 ∈ Z/〈p〉 and a′(y0) ∈ G/〈pi−1〉.

From the definition, a(y0) = ψj(a(y0)) iff a′(y0) = ψj(a′(y0)) in G/〈pi−1〉. By induction
hypothesis, the latter is equivalent to a′(y0) ∈ Z/〈pi−1〉. So, a(y0) ∈ Z/〈pi〉.

Hence, the only fixed elements under the map ψj (j coprime to b) are integers; in Z/〈pk〉.
C

B Proofs of Section 2

Proof of Lemma 5. It is enough to show the lemma for j = l− 1. It is easy to observe that
Il−1 is triangular.

Looking at the second condition for being a split ideal, |ZFp
(Il−1)| ≤

∏l−1
i=0 degxi

(hi)
follows because a degree d ≥ 1 polynomial can have at most d roots in Fp.

To show equality, notice that for any ā = (a0, . . . , al−1) ∈ ZFp(Il−1), degxl
(hl(ā, xl)) is

bounded by degxl
(hl). This implies hl(ā, xl) can have at most degxl

(hl) roots in Fp. If
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|ZFp(Il−1)| <
∏l−1
i=0 degxi

(hi) then |ZFp(Il)| < degxl
(hl) ·

∏l−1
i=0 degxi

(hi), contradicting that
Il is a split ideal. 3

For the third condition, since Il is a split ideal, for any (a0, . . . , al−1) ∈ ZFp(Il−1),
f(a0 + pa1 + . . .+ plal) ≡ 0 mod pl+1 ⇒ f(a0 + pa1 + . . .+ pl−1al−1) ≡ 0 mod pl. J

Lemma 6 shows that a split ideal I can be decomposed in terms of ideals Iā := 〈x0 −
a0, . . . , xl − al〉, where ā =: (a0, . . . , al) is a root of I. Before we prove this structural lemma,
let us see some properties of these ideals Iā’s.

B Claim 26. Let I be a split ideal.
1. For any ideal Iā, quotient Fp[x0, . . . , xl]/Iā ∼= Fp is a field.
2. Iā and Ib̄ are coprime for any two distinct roots ā, b̄ ∈ ZFp

(I). This is because there
exists i, for which ai 6= bi; yielding (ai − bi)−1 ((xi − bi)− (xi − ai)) = 1 in the sum-ideal
Iā + Ib̄.

3. Iā ∩ Ib̄ = IāIb̄ for any two distinct roots ā, b̄ ∈ ZFp
(I). It follows because there exist

rā ∈ Iā and rb̄ ∈ Ib̄, s.t., rā + rb̄ = 1. So, r ∈ Iā ∩ Ib̄ ⇒ r = r(rā + rb̄) ∈ IāIb̄. On the
other hand, IāIb̄ ⊆ Iā ∩ Ib̄ follows from the definition of the product-ideal.

4. Generalizing the previous point – for a set A of distinct roots ā’s,
⋂
ā∈A Iā =

∏
ā∈A Iā.

Proof of Lemma 6. We will prove this decomposition by applying induction on the length of
the split ideal. For the base case, length of I is 1 and I = 〈h0(x̄0)〉 ⊆ Fp[x0]. Since I is a split
ideal, h0(x0) =

∏deg(h0)
i=1 (x0 − ai) for distinct ai ∈ Fp. So, I =

∏deg(h0)
i=1 Iai =

⋂deg(h0)
i=1 Iai

by Claim 26.

Let I be a split ideal of length l+1, I =: 〈h0(x̄0), . . . , hl(x̄l)〉 ⊆ Fp[x0, . . . , xl]. Define ideal
I ′ := 〈h0(x̄0), . . . , hl−1(x̄l−1)〉. By Lemma 5, I ′ is a split ideal. From the induction hypothesis
(& Claim 26), we have I ′ =

⋂
ā∈ZFp (I) I

′
ā =

∏
ā I
′
ā, where I ′ā := 〈x0 − a0, . . . , xl−1 − al−1〉 for

a zero ā =: (a0, . . . , al−1) of I ′. We know that,

I = I ′ + 〈hl(x̄l)〉 =
∏

ā∈ZFp (I′)

(I ′ā + 〈hl(x̄l)〉) . (4)

Claim 10 shows deg(hl(ā, xl)) = degxl
(hl) for all ā ∈ ZFp

(I ′), and hl(ā, xl) splits completely
over Fp. So, for any ā ∈ ZFp

(I ′), I ′ā + 〈hl(x̄l)〉 =
∏degxl

(hl)
i=1 Iā,bi

, where (ā, bi) are roots of I
extended from ā. From Eqn. 4 (& Claim 26), I =

∏
b̄∈ZFp (I) Ib̄ =

⋂
b̄∈ZFp (I) Ib̄.

This finishes the inductive proof, completely factoring I. J

Lemma 8 shows that a root of a maximal split ideal represents a set of roots of f mod pk
and provides the size of that set.

Proof of Lemma 8. By definition of a maximal split ideal, for any ā = (a0, . . . , al) ∈ ZFp
(I),

pk|g(x) where g(x) = f(a0 + pa1 + p2a2 + . . .+ plal + pl+1x). So, g(x) = 0 mod pk for any
pk−l−1 choices of x. For each such fixing of x, a0 +pa1 +p2a2 + . . .+plal+pl+1x is a distinct
root of f(x) mod pk. Hence proved. J

3 This argument also shows that every Fp-zero of Il−1 “extends” to exactly degxl
(hl) many Fp-zeros of Il.
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C Computation modulo a triangular ideal– Reduce & Divide

For completeness, we show that it is efficient to reduce a polynomial a(x̄l) ∈ G[x̄l] modulo
a triangular ideal Jl = 〈b0(x̄0), b1(x̄1), . . . , bl(x̄l)〉 ⊆ G[x̄l], where G is any Galois ring (in
particular, R = Z/pk, or Fp).

Note: Jl need not be a split ideal for f mod pk, though the algorithms of this section
work for split ideals (∵ they are triangular by definition).

Assumptions: In the generators of the triangular ideal we assume degxi
bi(x̄i) ≥ 2 (for

0 ≤ i ≤ l). Otherwise, we could eliminate variable xi and work with fewer variables (&
smaller length triangular ideal). Additionally, each bi(x̄i) (for 0 ≤ i ≤ l) is monic (leading
coefficient is 1 wrt xi), and presented in a reduced form modulo the prior triangular ideal
Ji−1 := 〈b0(x̄0), . . . , bi−1(x̄i−1)〉 ⊆ G[x̄i−1].

Let us first define reduction mod an ideal (assume G to be the Galois ring G(pk, b)).

I Definition 27 (Reduction by a triangular ideal). The reduction of a multivariate polynomial
a(x̄l) ∈ G[x̄l] by a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l] is the unique polynomial
ã(x̄l) ≡ a(x̄l) mod Jl, where degxi

(ã) < degxi
(bi), for all i ∈ {0, . . . , l}.

Idea of reduction. The idea behind the algorithm is inspired from the univariate reduction.
If l = 0, then reduction of a(x0) modulo b0(x0) is simply the remainder of the division of a
by b0 in the underlying polynomial ring G[x0]. For a larger l, the reduction of a(x̄l) modulo
the triangular ideal Jl = 〈b0(x0), . . . , bl(x̄l)〉 is the remainder of the division of a(x̄l) by
bl(x̄l) in the polynomial ring (G[x0, . . . , xl−1]/Jl−1)[xl]. The fact that bl is monic, helps in
generalizing “long division”.

Input: An a(x̄l) ∈ G[x̄l] and a triangular ideal Jl = 〈b0(x̄0), . . . , bl(x̄l)〉 ⊆ G[x̄l].
Output: Reduction ã of a mod Jl as defined above.

Algorithm 2 Reduce a(x̄l) modulo Jl.
1: procedure Reduce(a(x̄l), Jl)
2: if l = 0 then
3: [Reduce a(x0) by b0(x0)] return remainder of univariate division of a by b0 in

R[x0].
4: end if
5: da ← degxl

(a) and db ← degxl
(bl).

6: Let a(x̄l) =: Σda
i=0ai(x̄l−1)xil be the polynomial representation of a(x̄l) with respect

to xl.
7: Recursively reduce each coefficient ai(x̄l−1) of a modJl−1:

ãi(x̄l−1)← Reduce(ai(x̄l−1), Jl−1), for all i ∈ {0, . . . , da}.
8: while da ≥ db do
9: a(x̄l)← a−

(
ada
· xda−db

l · bl
)

10: Update da ← degxl
(a). Update ai’s such that a(x̄l) =: Σda

i=0ai(x̄l−1) · xil .
11: Call Reduce(ai(x̄l−1), Jl−1) for all i ∈ {0, . . . , da}: recursively reduce each

coefficient ai(x̄l−1) mod Jl−1 (like Step 7).
12: end while
13: return a(x̄l).
14: end procedure

Following lemma shows that reduction modulo a triangular ideal (Algorithm 2) is efficient.

CCC 2019



15:26 Counting Basic-Irreducible Factors

I Lemma 28 (Reduction). Given a(x̄l) ∈ G[x̄l] and Jl ⊆ G[x̄l], to reduce a(x̄l) mod Jl,
Algorithm 2 takes time poly

(∏l
i=0 degxi

(a), log |G|,deg(Jl)
)
.

In particular, if each coefficient ai(x̄l−1) of a(x̄l) (viewed as a polynomial in xl) is in
reduced form mod Jl−1, then reduction takes time poly (da, log |G|,deg(Jl)), where da =
degxl

(a).

Proof. We prove the lemma by induction on the length l + 1 of the ideal Jl.
For l = 0, we have a standard univariate reduction which takes at most O(deg(a) deg(b))

ring operations in G. Since addition/multiplication/division in G take time at most Õ(log |G|)
[28], we get the lemma.

Assume that the lemma is true for any ideal of length less than l.
Coefficients ai(x̄l−1) can be reduced, in time poly

(∏l−1
i=0 degxi

(a), log |G|,deg(Jl−1)
)
,

mod Jl−1 using induction hypothesis. We need to make da + 1 such calls; total time is
bounded by poly

(∏l
i=0 degxi

(a), log |G|,deg(Jl−1)
)
. In the same time we can compute

Step 9.
After the update at Step 9, individual-degrees degxi

(a) (for 0 ≤ i < l) can become at most
double the previous degree (safely assuming 2 ≤ degxi

(bi) ≤ degxi
(a)). By induction hypo-

thesis, each call to reduce ai(x̄l−1) mod Jl−1 takes time poly
(∏l−1

i=0 degxi
(a), log |G|, deg(Jl−1)

)
.

Algorithm makes at most da such calls and the while-loop runs at most da times. Hence, the
algorithm takes time poly

(∏l
i=0 degxi

(a), log |G|,deg(Jl)
)
; and we are done.

If coefficients of a are already reduced modulo Jl−1, then degxi
(a) < degxi

(bi) for all
0 ≤ i < l. Hence, Algorithm 2 takes time d2

a · poly (log |G|,deg(Jl−1)). J

I Lemma 29 (Division mod triangular ideal). Given a triangular ideal Jl ⊆ G[x̄l] and a unit
a(x̄l) ∈ G[x̄l]/Jl. We can compute a−1 mod Jl, in reduced form, in time
poly

(∏l
i=0 degxi

(a), log |G|,deg(Jl)
)
.

Proof. Let u(x̄l) ∈ G[x̄l]/Jl be such that u · a ≡ 1 mod Jl. We can write u as∑
ē ≥ 0̄

∀ 0≤i≤l, ei < degxi
(bi)

uē · x̄ēl .

We want to find the unknowns uē in G, satisfying u · a ≡ 1 mod Jl. This gives us a linear
system in the unknowns; it has size deg(Jl). The linear system can be written down, using
Algorithm 2, by reducing the monomial products x̄ēl · x̄ē

′

l that appear in the product u · a.
This takes time poly

(∏l
i=0 degxi

(a), log |G|,deg(Jl)
)
.

Since there exists a unique u, our linear system is efficiently solvable, by standard linear
algebra, in the required time. J

Let us see two direct applications of the reduction Algorithm 2 to compute valuation and
to compute reduced form of split ideals.

First, we explain how Algorithm 1 (Steps 3, 18) computes reduced fJ modulo the lift Ĵ
of the newly computed split ideal J , when x is replaced by xl+1 + px in the intermediate
polynomial fI(x̄l, x).

I Lemma 30 (Updating stack with reduced polynomial). Let I ⊆ Fp[x̄l] be a split ideal and
fI(x̄l, x) ∈ R[x̄l, x] be reduced modulo Î (the lift of I over R). Define split ideal J ⊆ Fp[x̄l+1]
as J := I + 〈hl+1(x̄l+1)〉, and Ĵ be the lift of J over R.

Then, in time poly (log |R|,degx(fI),deg(J)), we can compute a reduced polynomial fJ
modulo Ĵ defined by, fJ(x̄l+1, x) := fI(x̄l, xl+1 + px) mod Ĵ .
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Proof. Since fI(x̄l, x) is already reduced modulo Î, degxi
(fI) < degxi

(hi). Define D :=
degx(fI), perform the shift x→ xl+1 + px in fI , and expand fI using Taylor series,

fJ(x̄l, x) = fI(x̄l, xl+1 + px) =: g0(x̄l+1) + g1(x̄l+1)(px) + . . .+ gD(x̄l+1)(px)D ,

where gi could also be seen as the i-th derivative of fI(x̄l, xl+1) (wrt xl+1) divided by i!. To
compute fJ mod Ĵ , we call Reduce(gi, Ĵ) (for all i) to get the reduction of each term mod
Ĵ .

To calculate the time complexity of Reduce(gi, Ĵ), note that coefficients of each gi, wrt
xl+1, is already reduced mod Î. Since J = I + 〈hl+1〉, using Lemma 28, time complexity of
reducing each gi by Ĵ is at most poly(degxl+1

(gi), log |R|,deg(J)) (deg(J) = deg(Ĵ)).
Since degxl+1

(gi) ≤ degx(fI) (for i ≤ D), total time complexity is
poly (log |R|,degx(fI),deg(J)). J

Next, we explain Step 20 in Algorithm 1 a bit more.

I Lemma 31 (Ideal factors in reduced form). Consider the tuple
(U := {h0(x̄0), . . . , hl(x̄l)}, f〈U〉) ∈ S and consider a non-trivial factorization hi =: hi,1 . . . hi,m
for some hi ∈ U . Wlog each factor hi,j is monic wrt xi.

Then, we can compute the factor-related tuples (Uj , f〈Uj〉), for all j ∈ [m], in time
poly(deg(〈U〉), log |R|,degx(f〈U〉)) (f〈Uj〉 will be in reduced form mod 〈Uj〉).

Proof. First, we successively reduce hi+t (1 ≤ t ≤ l − i) modulo triangular ideal Ii+t,j :=
〈h0, . . . , hi−1, hi,j , hi+1, . . . , hi+t〉. Time complexity of each of these steps is bounded by
poly(deg(〈U〉), log |R|) (Lemma 28). This ensures that the degree of hi+t in a variable xs
(s < i+ t) is less than the individual-degree of the s-th generator of ideal 〈Uj〉.

Then, f〈Uj〉 can be calculated by reducing each degx(f〈U〉)+1 coefficients of f〈Uj〉 (wrt x) by
the lifted triangular ideal Îl,j = Ûj . By Lemma 28, this takes time
poly(

∏l
i=0 degxi

(f〈U〉),degx(f〈U〉), log |R|, deg(〈U〉)). Since coefficients (wrt x) of f〈U〉 were
already reduced modulo 〈U〉,

∏l
i=0 degxi

(f〈U〉) ≤ deg(〈U〉).
So, the computation time is bounded by poly

(
deg(〈U〉), log |R|,degx(f〈U〉)

)
. J

D Computation modulo a triangular ideal – Zerodivisor test & GCD

Test-Zero-Div(a(x̄l), Il), for a triangular ideal Il =: 〈h0, . . . , hl〉, either reports that
a(x̄l) is not a zerodivisor modulo Il, or returns a non-trivial factorization of a generator
hi =: hi,1 · · ·hi,m (into monic, wrt xi, factors mod prior ideal). In this section we assume F
to be a finite field.

Idea. In the quotient ring F[x̄l]/〈Il〉, a monic (wrt xi) polynomial a(x̄i) is a zerodivisor iff
it contains a factor of hi(x̄i) – generator of triangular ideal Il with variables {x0, . . . , xi}. So,
firstly the algorithm checks if the given polynomial a(x̄l) is monic (recursively, from variables
xl−1 to x0). If it fails, it factors some generator hi for i < l. After making a(x̄l) monic, we
take gcd of a with hl – if it finds non-trivial gcd it factors hl, else a(x̄l) is not a zerodivisor.

I Lemma 32 (Efficiency of testing zerodivisors). Assuming, coefficients of a(x̄l) wrt xl are in
reduced form modulo Il−1, Algorithm 3 takes time poly(degxl

(a), log |F|,deg(Il)).

Proof. We apply induction on the length l + 1 of ideal Il.
For l = 0, it runs univariate gcd and takes time poly(deg(a),deg(h0), log |F|) [28].
Assume lemma statement holds true for ideals of length l.
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Algorithm 3 Zerodivisor test of a(x̄l) modulo Il.
1: procedure Test-Zero-Div(a(x̄l),Il)
2: if l = 0 then
3: [Take univariate GCD] gcd← gcd(a(x0), h0(x0)).
4: if gcd is non-trivial then
5: Factorize h0(x0) =: gcd · h0

gcd ; return (True, gcd · h0
gcd ).

6: else
7: return (False).
8: end if
9: end if
10: Let the leading coefficient of a(x̄l) wrt xl be ã(x̄l−1).
11: Call Test-Zero-Div(ã(x̄l−1), Il−1).
12: if The test returned True then
13: return the result of the test including the factorization of a generator hi(x̄i).
14: end if

[Now, we will take gcd of a and hl using iterated division method (Euclid’s method).]
15: Define b(x̄l)← hl(x̄l).
16: while b(x̄l) 6= 0 do
17: Let b̃(x̄l−1) be the leading coefficient of b(x̄l) wrt xl.
18: if Test-Zero-Div(b̃(x̄l−1), Il−1) = True then
19: return result of Test-Zero-Div(b̃(x̄l−1),Il−1), factorization of a generator

hi(x̄i).
20: end if
21: Let c(x̄l)← Reduce(a(x̄l), Il−1 + 〈b(x̄l)/b̃〉) (same as taking remainder of a(x̄l)

when divided by the monic polynomial b(x̄l)/b̃ modulo Il−1).
22: a(x̄l)← b(x̄l)/b̃, b(x̄l)← c(x̄l). [Invariant: degxl

(b) has fallen.]
23: end while

[Gcd of original a(x̄l) and hl(x̄l) mod Il is stored in a(x̄l).]
24: if gcd a(x̄l) is non-trivial then
25: return (True, a non-trivial factorization of hl(x̄l)).
26: else
27: return (False). [a(x̄l) is not a zerodivisor.]
28: end if
29: end procedure

By induction, checking ã(x̄l−1) is a zerodivisor mod Il−1, takes
poly(degxl−1

(ã), log |F|,deg(Il−1)) time.

To compute gcd of a and hl, Euclidean gcd algorithm will run at most degxl
(a)+degxl

(hl)
while-loops. From induction hypothesis, and Lemmas 28-29, each loop takes at most
poly(degxl

(a), log |F|, deg(Il)) time. So, we are done. J

GCD(a(x̄l, x), b(x̄l, x), Il) computes gcd of two polynomials a(x̄l, x) and b(x̄l, x) modulo a
triangular ideal Il = 〈h0(x0), . . . , hl(x̄l)〉 resp. False. It computes the monic gcd resp. returns
a non-trivial factorization of some hi.
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Algorithm 4 GCD computation modulo Il.
1: procedure GCD(a(x̄l, x), b(x̄l, x), Il)
2: Let b̃(x̄l) be the leading coefficient of b with respect to x.
3: if Test-Zero-Div(b̃(x̄l), Il) = True then
4: return False, Test-Zero-Div(b̃(x̄l), Il) factors some generator hi(x̄i).
5: end if
6: Let c(x̄l, x)←Reduce(a, Il + 〈b/b̃〉).
7: if c = 0 then
8: return b/b̃.
9: else
10: return GCD(b(x̄l, x), c(x̄l, x), Il).
11: end if
12: end procedure

I Lemma 33 (Multivariate GCD). Algorithm 4 either factors a generator hi (& outputs
False), or computes a monic polynomial g(x̄l, x) ∈ F[x̄l, x], such that, g divides a, b modulo
Il. Moreover, g = ua+ vb mod Il, for some u(x̄l, x), v(x̄l, x) ∈ F[x̄l, x].

If a and b are in reduced form mod Il, then it takes time
poly (degx(a),degx(b), log |F|,deg(Il)).

Proof. Algorithm 4 is just an implementation of multivariate Euclidean gcd algorithm over
the coefficient ring Fp[x̄l]/Il =: R′. If the algorithm outputs g(x̄l, x) ∈ R′[xl] then, by
standard Euclidean gcd arguments (using recursion), there exists u(x̄l, x), v(x̄l, x) ∈ R′[x],
such that, ua+ vb = g, and g divides both a and b modulo Il.

The algorithm works fine if in each step it was able to work with a monic divisor.
Otherwise, it gets stuck at a “division” step, implying that the divisor’s leading-coefficient is
a zerodivisor, factoring some generator of Il.

For time complexity, each recursive step makes one call each to Test-Zero-Div, Re-
duce, and division procedures. They take time poly (degx(a),degx(b), log |F|,deg(Il)) (∵
coefficients of a and b are in reduced form mod Il, and use Lemmas 28, 29 & 32). Since
number of recursive steps are bounded by degx(a) + degx(b), total time is bounded by
poly (degx(a),degx(b), log |F|,deg(Il)). J
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Abstract

We give an explicit pseudorandom generator (PRG) for read-once AC0, i.e., constant-depth read-once
formulas over the basis {∧,∨,¬} with unbounded fan-in. The seed length of our PRG is Õ(log(n/ε)).
Previously, PRGs with near-optimal seed length were known only for the depth-2 case [22]. For a
constant depth d > 2, the best prior PRG is a recent construction by Forbes and Kelley with seed
length Õ(log2 n+ logn log(1/ε)) for the more general model of constant-width read-once branching
programs with arbitrary variable order [17]. Looking beyond read-once AC0, we also show that
our PRG fools read-once AC0[⊕] with seed length Õ(t+ log(n/ε)), where t is the number of parity
gates in the formula.

Our construction follows Ajtai andWigderson’s approach of iterated pseudorandom restrictions [1].
We assume by recursion that we already have a PRG for depth-d AC0 formulas. To fool depth-(d+1)
AC0 formulas, we use the given PRG, combined with a small-bias distribution and almost k-wise
independence, to sample a pseudorandom restriction. The analysis of Forbes and Kelley [17] shows
that our restriction approximately preserves the expectation of the formula. The crux of our work is
showing that after poly(log logn) independent applications of our pseudorandom restriction, the
formula simplifies in the sense that every gate other than the output has only polylogn remaining
children. Finally, as the last step, we use a recent PRG by Meka, Reingold, and Tal [32] to fool this
simpler formula.
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Figure 1 A depth-3 read-once AC0 formula on n = 13 bits.

1 Introduction

In complexity theory and algorithm design, randomness is a valuable yet scarce resource. A
powerful, black-box method for reducing the randomness used by a computationally bounded
process is to construct a pseudorandom generator (PRG). A PRG for a class of tests C is an
algorithm that stretches a short truly random seed to a long n-bit string that “fools” C, i.e.,
any test f ∈ C behaves the same on the output of the PRG as it does on a truly random
string, up to some error ε.

Ideally, one would like to construct explicit unconditional PRGs with short seed length that
fool powerful classes such as general polynomial-time algorithms. Unfortunately, constructing
such general-purpose PRGs requires proving circuit lower bounds that seem to be far beyond
the reach of state of the art techniques.

On the bright side, there has been a lot of success designing PRGs for more restricted
classes. The two most intensely studied classes are read-once small-space algorithms and
constant-depth circuits. In this work, we study constant-depth read-once formulas with
unbounded fan-in over the basis {∧,∨,¬} (Figure 1). This class is the read-once version of
AC0. We construct an explicit PRG for this class with seed length Õ(log(n/ε)), which is
optimal up to log log factors.1

I Theorem 1. For any positive integers n, d and for any ε > 0, there is an explicit ε-PRG
for depth-d read-once AC0 formulas over n variables with seed length

log(n/ε) ·O(d log log(n/ε))2d+2.

1 A standard probabilistic argument shows the existence of a PRG with seed length O(log(n/ε)). One
can show a matching Ω(log(n/ε)) lower bound even for the depth-2 case.



D. Doron, P. Hatami, and W.M. Hoza 16:3

1.1 Motivation and related work

Derandomizing Small-Space Algorithms

We are motivated by the L vs. BPL problem – namely whether every bounded-error
probabilistic algorithm can be fully derandomized with only a constant factor space blowup.
The way a log-space algorithm acts on its random bits can be modeled by a polynomial-width
read-once branching program (ROBP). A natural approach to the L vs. BPL problem is
thus coming up with a PRG for such ROBPs with seed length O(logn). Seminal work of
Nisan gave a PRG with seed length O(log2 n) for this model [35]. To this day, no better
PRG is known even for ROBPs where the width is a large constant, though better generators
are known in special cases [40, 14, 28, 41, 7, 22, 4, 10, 32].

Surprisingly, the study of fooling constant-width ROBPs has so far been closely entangled
with the study of fooling read-once AC0. A depth-d read-once AC0 formula can be computed
by a width-(d+ 1) ROBP, possibly after reordering the inputs [13]. In the other direction,
Gopalan et al. constructed a near-optimal PRG for read-once CNFs, and then used that PRG
to construct a near-optimal hitting set generator for width-3 ROBPs [22]. Very recently,
following the paradigm of Gopalan et al. [22], Meka, Reingold, and Tal gave a PRG for
general width-3 ROBPs with near-optimal seed length when ε is constant [32].

Meanwhile, for any constant d, Chen, Steinke and Vadhan constructed a PRG for depth-d
read-once AC0 formulas with seed length Õ(logd+1 n) [13].2 They obtained this PRG by
proving new Fourier tail bounds for such formulas. Subsequently, Chattopadhyay et al. proved
similar tail bounds for the stronger class of general width-(d+ 1) ROBPs with arbitrarily
ordered inputs; they used these tail bounds to construct a PRG with similar seed length for
that model [11].

In a recent breakthrough, Forbes and Kelley gave an elegant construction of a PRG for
ROBPs with arbitrarily ordered inputs [17]. In the polynomial-width case, their PRG has
seed length O(log3 n). For width-(d+ 1) ROBPs when d is small, their PRG has seed length
Õ(d log2 n); prior to the present work, this was also the best PRG for read-once AC0. Note
that Theorem 1 improves on the Forbes-Kelley PRG [17] even for non-constant d, e.g., if
d = 0.2 log logn/ log log logn and ε = 1/ poly(n).

Given the recent trend of connections between PRGs for ROBPs and PRGs for read-once
AC0, we hope that our result will serve as a stepping stone toward optimal PRGs for general
constant-width ROBPs.

Fooling General Constant-Depth Circuits

Ajtai and Wigderson were the first to consider the problem of fooling general AC0 circuits, and
in their pioneering work they achieved seed lengthO(nγ) for any constant γ > 0 [1]. A long line
of research has worked on improving this seed length [34, 29, 31, 3, 36, 6, 15, 21, 43, 42, 24, 38].
Today, for constant error, the best PRG for depth-d AC0 circuits known, by Tal, has seed
length Õ(logd+2 n) [42]. When ε is small, the best PRG is a very recent construction by
Servedio and Tan [38], which achieves seed length O(logd+C n log(1/ε)) for some unspecified
absolute constant C.

2 Note that Nisan’s generator [35] is not guaranteed to fool read-once AC0 formulas because of the issue
of variable ordering [5].
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Fooling More General Read-Once Formulas

Bogdanov, Papakonstantinou, and Wan gave the first PRG for unbounded-depth read-once
formulas [5]. Their PRG has seed length (1 − Ω(1))n. More generally, their PRG fools
formulas over an arbitrary basis, provided the fan-in is at most O(n/ logn). For the case
that the basis is {∧,∨,¬}, Impagliazzo, Meka, and Zuckerman gave an improved PRG for
unbounded-depth read-once formulas with seed length O(n0.2342) [26]. This was further
improved by Forbes and Kelley [17]; their recent PRG with seed length O(log3 n) fools
unbounded-depth read-once formulas over an arbitrary basis with constant fan-in.

In another direction, Gavinsky, Lovett, and Srinivasan gave a PRG for constant-depth
read-once formulas over the basis {∧,∨,¬,MODm}, i.e., read-once ACC0 [19]. When the
modulus m and the error ε are constant, their PRG has seed length 2O(d2) · logO(d) n; this
result is also subsumed by the recent work of Forbes and Kelley [17]. As a reminder, in the
present work, we focus on constant-depth read-once formulas over the {∧,∨,¬} basis with
unbounded fan-in.

Fooling Read-k Depth-2 Formulas

De et al. gave a PRG for read-once CNFs with seed length O(logn log(1/ε)) [15]; this result
can also be deduced from earlier work by Chari, Rohatgi, and Srinivasan [8]. As mentioned
previously, Gopalan et al. gave a PRG for read-once CNFs with seed length Õ(log(n/ε)) [22].
Meanwhile, Klivans, Lee, and Wan constructed a PRG that fools read-k CNFs even for
small k > 1 [27]. Building on their work, Servedio and Tan recently gave an improved
PRG for read-k CNFs [39]; if the size of the CNF is poly(n), their PRG has seed length
logn · poly(k, log(1/ε)).

1.2 Overview of our Construction and Analysis

1.2.1 The Ajtai-Wigderson Approach
Our PRG follows the paradigm pioneered by Ajtai and Wigderson [1] and further developed
by Gopalan et al. [22]. We begin by briefly explaining this general approach for constructing
PRGs. Ultimately, to fool a test f , we want to pseudorandomly assign values to its inputs in
such a way that f accepts or rejects with approximately the same probability as it would
under a truly random input. As a first step, we pseudorandomly choose a partial assignment
to f . Equivalently, we pseudorandomly choose a restriction X ∈ {0, 1, ?}n, where Xi = ?

indicates that the variable Xi is still unset.
We need our pseudorandom distribution over restrictions to satisfy two key properties.

The first property is that the restriction should approximately preserve the expectation of the
function, i.e., in expectation over X, the restricted function f |X should have approximately
the same bias as f itself. This feature ensures that after sampling the pseudorandom
restriction X, our remaining task is simply to fool the restricted function f |X .

The second property is that the restriction should simplify f , i.e., with high probability3
over the pseudorandom restriction X, the restricted function f |X should in some sense be
simpler than f itself. The purpose of this feature is that simplifying f should make it easier
to fool, perhaps using a PRG from prior work. We shall now give a brief exposition of how
we achieve these two properties in our work.

3 In principle, it would actually suffice for f to merely simplify in expectation over X.
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1.2.2 Preserving the Expectation Using the Work of Forbes and Kelley
Building on several prior works [37, 23, 11], Forbes and Kelley constructed a very simple
pseudorandom distribution over restrictions that approximately preserves the expectation
of any constant-width ROBP [17], hence any read-once AC0 formula. In the Forbes-Kelley
distribution, the locations of the ?-s are chosen almost k-wise independently, and the non-?
coordinates are filled in using a small-bias space. Each coordinate is ? with probability
roughly 1

2 , and the distribution can be sampled using Õ(log(n/ε)) truly random bits.
In our setting, we will design our restriction in such a way that the distribution of ?

locations is almost k-wise independent and the distribution of bits in the non-? coordinates
has small bias, in addition to other properties we also need. That way, to argue that the
expectation of the formula is preserved under our pseudorandom restriction, we can simply
appeal to the Forbes-Kelley result [17].

1.2.3 Simplifying the Formula Given a PRG
The remaining challenge is to ensure that our pseudorandom restriction simplifies AC0

formulas. In the work of Forbes and Kelley [17], the measure of complexity was simply the
number of remaining unset variables. That is, Forbes and Kelley argued that after applying
O(logn) independent pseudorandom restrictions, with high probability, all variables are
set, and hence there is nothing left to fool [17].4 This gives them an overall seed length
of Õ(log(n/ε) logn).

In this work, to achieve seed length Õ(log(n/ε)), we use a more sophisticated pseudor-
andom restriction and subtler measures of complexity. That way, we can argue that after
applying just poly(log log(n/ε)) independent restrictions, the formula has simplified enough
that it can be fooled by a prior PRG.

Several “pseudorandom switching lemmas” are already known for AC0 [1, 43, 20, 38],
but we were not able to use these lemmas for our result. Instead, the starting point for
our approach to simplification is the work of Chen, Steinke, and Vadhan [13]. Chen et al.
analyzed the effect of truly random restrictions on read-once AC0 formulas [13]. They showed
that with high probability, a truly random restriction dramatically simplifies the formula in
the sense that every node in the restricted formula has very few remaining children5 [13].
Chen et al. mentioned that they would have liked to show that the same is true under
pseudorandom restrictions – this would have improved the parameters of their main result –
but they were not able to prove such a statement [13].

A key insight in our work is that roughly speaking, the predicate that some node is still
alive after a random restriction X can be computed by another read-once AC0 formula
whose inputs are the bits encoding X. Therefore, to pseudorandomly sample a restriction
X that kills off each node with approximately the right probability, it suffices to select the
bits encoding X using a PRG for read-once AC0. (Gavinsky, Lovett, and Srinivasan used a
similar idea to fool read-once ACC0 [19].)

1.2.4 Obtaining the Necessary PRG Through Recursion
It may strike the reader that we have reached a “chicken or egg” problem: we can simplify
formulas given a PRG for read-once AC0, but the whole reason we are interested in simplifying
formulas is to design an improved PRG for read-once AC0! We resolve this difficulty by

4 Actually, to get the best dependence on ε, Forbes and Kelley stop applying restrictions once the number
of remaining variables drops below O(logn).

5 A technicality is that this is only true “up to sandwiching.”
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recursing on the depth of the formula we wish to fool. That is, we assume we already
have a PRG Gd that fools depth-d read-once AC0 formulas, and we use Gd to sample
pseudorandom restrictions that simplify depth-(d + 1) read-once AC0 formulas. (This is
similar to the approach of Gavinsky et al. [19].) Making this idea work requires overcoming
several technical challenges.

In more detail, consider a collection of nodes {φ1, . . . , φk} that form subformulas of depth
d′ ≤ d− 1. Roughly speaking, we show how to test the predicate that they are all still alive
by a formula T of depth d′ + 1 ≤ d.6 The recursive generator Gd fools T , so under our
pseudorandom restriction, the probability that φ1, . . . , φk all remain alive is roughly what it
would be under a truly random restriction.

Unfortunately, to ensure that the Forbes-Kelley analysis applies to our scenario, we are
forced to design our pseudorandom restriction so that each coordinate is ? with constant
probability. The pseudorandom restriction has a similar effect as a truly random restriction
with the same ?-probability, but that is not good enough. The analysis of truly random
restrictions by Chen et al. only applies to the case that the ?-probability is 1/ polylog(n/ε) [13].

Roughly speaking, we overcome this difficulty using a kind of hybrid argument. A
truly random restriction with ?-probability 1/ polylog(n/ε) is equivalent to the composi-
tion of t independent truly random restrictions, each with constant ?-probability, where
t = O(log log(n/ε)). We show that for the purpose of simplification, a composition of t
independent copies of our pseudorandom restriction is almost as good. Each individual step
of this hybrid argument relies on the fact that Gd fools a formula closely related to the
formula T mentioned earlier.

By applying an argument due to Gopalan et al. [22], we relate the condition that
a collection of gates all remain alive to the number of remaining children of each node.
Altogether, these arguments show that after applying poly(log log(n/ε)) independent copies
of our pseudorandom restriction, every gate other than the root has at most polylog(n)
remaining children.7 (We are not able to establish such a bound for the root gate, because
its children form subformulas of depth d′ = d.) Fortunately, this condition is strong enough
that the restricted formula is fooled by a recent PRG by Meka, Reingold, and Tal [32]. We
use the MRT PRG [32] as the last step in our construction.

1.3 Extension to Read-Once AC0[⊕] with a Few Parity Gates
AC0 is admittedly a fairly weak circuit class. The parity function is the most famous example
of a function that cannot be computed in AC0 (e.g., [18, 25]). Having shown how to fool
read-once AC0, the natural next problem is to fool read-once AC0[⊕], i.e., constant-depth
read-once formulas over the basis {⊕,∧,∨,¬} with unbounded fan-in. Read-once AC0[⊕]
can still be simulated by constant-width ROBPs (possibly after reordering the inputs), so
fooling read-once AC0[⊕] would be another step on the long road to derandomizing BPL.
The best prior PRG for this model is once again Forbes and Kelley’s PRG with seed length
Õ(log2 n+ logn log(1/ε)) [17].

Fooling general (not necessarily read-once) AC0[⊕] circuits is a notoriously difficult
problem in unconditional pseudorandomness. Currently, the best seed length is only slightly
less than n [16].

6 See Claim 10 for the precise statement.
7 Again, this is only true up to sandwiching.
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There has been more success fooling AC0[⊕] circuits under the assumption that the
circuit only has a few parity gates [44, 9, 30]. In the same spirit, we show that our PRG for
read-once AC0 formulas also fools read-once AC0[⊕] formulas with a bounded number of
parity gates. We achieve seed length Õ(t+ log(n/ε)), where t is the number of parity gates:

I Theorem 2. For any positive integers n, d, t and for any ε > 0, there is an explicit ε-PRG
for depth-d read-once AC0[⊕] formulas with at most t parity gates with seed length

(td+ log(n/ε)) ·O(d log log(n/ε) + d log(td))2d+2.

At a very high level, this extension to AC0[⊕] is possible because the MRT PRG [32]
was already designed for parities of small ROBPs. However, suitably extending the analysis
of truly random restrictions by Chen et al. [13] to the case of AC0[⊕] is nontrivial. We defer
further discussion to Section 9.

2 Preliminaries

2.1 Pseudorandomness Primitives
Let Un denote the uniform distribution over {0, 1}n. Suppose C is a class of functions
f : {0, 1}n → R and G is a distribution over {0, 1}n. We say that G ε-fools C if for
every f ∈ C,

|E[f(G)]− E[f(Un)]| ≤ ε.

As two special cases, a δ-biased distribution is one that δ-fools parity functions, and a
γ-almost k-wise independent distribution is one that γ-fools Boolean k-juntas [33, 2]. An
ε-PRG for C is a function G : {0, 1}s → {0, 1}n such that G(Us) ε-fools C. As a shorthand,
we will write E[f ] to denote E[f(Un)].

2.2 Read-Once Formulas
An AC0 formula on {0, 1}n is a rooted tree in which each internal node (“gate”) is labeled
with ∧ or ∨ and each leaf is labeled with a constant (0 or 1), a variable xi, or its negation
¬xi, where i ∈ [n]. Gates may have arbitrary fan-in. The formula computes a function
φ : {0, 1}n → {0, 1} in the natural way. The depth of the formula is the length of the longest
path from the output gate to a leaf. The formula is read-once if each variable xi appears
at most once. We make no assumptions about the order in which the variables appear. A
layered AC0 formula is one in which the gates are arranged in alternating layers of ∧ and ∨
gates. Any read-once AC0 formula can be simulated by a layered read-once AC0 formula of
the same depth.

2.3 Random Restrictions
A restriction is a string x ∈ {0, 1, ?}n. We define an associative composition operation on
{0, 1, ?}n by

(x ◦ x′)i =
{
xi if xi 6= ?

x′i if xi = ?.

Conceptually, x◦x′ corresponds to first restricting according to x and then further restricting
according to x′. As a special case, if x′ ∈ {0, 1}n, then x ◦ x′ ∈ {0, 1}n is the string obtained
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by using x′ to “fill in the ? positions” of x. If f : {0, 1}n → {0, 1} is a function and x is a
restriction, we define the restricted function (f |x) : {0, 1}n → {0, 1} by

(f |x)(x′) = f(x ◦ x′).

We define Rn to be the distribution over X ∈ {0, 1, ?}n in which the coordinates are
independent, Pr[Xi = ?] = 1/2, and Pr[Xi = 0] = Pr[Xi = 1] = 1/4. If H1, H2 are
distributions over {0, 1, ?}n, we define H1 ◦ H2 to be the distribution over X ∈ {0, 1, ?}n
obtained by drawing independent samples X1 ∼ H1, X2 ∼ H2 and composing them, X =
X1 ◦X2. For a nonnegative integer s, we define

H◦s = H ◦H ◦ · · · ◦H︸ ︷︷ ︸
s times

.

For example, R◦sn is a random restriction where each coordinate is ? with probability 2−s
and the non-? positions are uniform random bits.

A restriction can be specified by two n-bit strings as follows. Define Res: {0, 1}n ×
{0, 1}n → {0, 1, ?}n by

Res(y, z)i =
{
? if yi = 1
zi if yi = 0.

In words, y indicates which positions have ?, and z specifies the bits in the non-? positions.
Observe that Res(U2n) ∼ Rn.

3 Our PRG Construction

The construction of our generator is by induction on the depth of the formula we wish to fool.
For the base case of depth-2 formulas, we use the PRG by Gopalan et al. for read-once CNFs
and DNFs [22]. For the inductive step, let d ≥ 2 be arbitrary, let Gd be a random variable
over {0, 1}n that α-fools depth-d read-once AC0 formulas, and let ε > 0 be arbitrary. We
will show how to ε-fool depth-(d+ 1) formulas, assuming α is sufficiently small.

Step 1: XORing with Small-Bias and Almost k-wise Independence

Let G′d be an independent copy of Gd. Sample T from a γ-almost k-wise independent
distribution over {0, 1}n, and sample D from a δ-biased distribution over {0, 1}n, where the
parameters γ, k, δ will be specified later. Define

Gd = (Gd ⊕ T,G′d ⊕D) ∈ {0, 1}n × {0, 1}n.

Step 2: Assigning Most Inputs Using Gd

Define a pseudorandom restriction Hd ∈ {0, 1, ?}n by

Hd = Res(Gd).

Since Res(U2n) ∼ Rn, each coordinate of Hd is ? with probability roughly 1/2. For a
parameter

s = O((d log log(n/ε)) · log logn),

we will restrict according to H◦sd , i.e., we will compose s independent copies of the restric-
tion Hd.
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Step 3: Assigning Remaining Inputs Using the MRT PRG

We rely on a PRG by Meka, Reingold, and Tal for XORs of short ROBPs [32]; we will discuss
this in more detail in Section 7. Sample GMRT ∈ {0, 1}n using this PRG. Our final PRG for
depth-(d+ 1) read-once AC0 is defined by

Gd+1 = H◦sd ◦GMRT,

i.e., we use GMRT to assign bits to all remaining ?-positions after restricting according to H◦sd .

4 Pseudorandom Restrictions Preserve Expectation

Toward proving the correctness of our PRG, in this section, we will show that restricting a
depth-(d+ 1) formula using the distribution Hd approximately preserves the expectation of
the formula.

The following lemma proved by Forbes and Kelley shows that bounded-width ROBPs
behave nicely under pseudorandom restrictions that are defined by small biased distributions
and almost k-wise independence. In the lemma, L(n,w; k) is defined to be the maximum
of
∑k
i=1
∑
S⊆[n],|S|=k |f̂(S)| over all width-w ROBPs f , where f̂(S) denotes the Fourier

coefficient of f at S.

I Lemma 3 (Lemma 7.2 from [17], rephrased). Let T and D be independent random variables
over {0, 1}n, which are sampled respectively from a γ-almost k-wise independent distribution
and a δ-biased distribution. Let f : {0, 1}n → {0, 1} be a width-w arbitrarily-ordered ROBP.
Then,∣∣∣∣∣∣ E

U∼Un

[f(U)]− E
T,D
V∼Un

[
f |Res(T,D)(V )

]∣∣∣∣∣∣ ≤
(
√
δ · L(n,w; k) +

(
1
2

)k/2
+√γ

)
· nw.

We are mainly interested in fooling AC0 formulas, but for the analysis, it will be helpful
to consider NAND formulas, i.e., formulas in which each internal node is a NAND gate
instead of an ∧ gate or an ∨ gate. In Section 8, we will explain why it suffices to reason
about NAND formulas.

Recall from Section 3 that Gd = (Gd ⊕ T,G′d ⊕D), where Gd and G′d are independent
random variables over {0, 1}n that α-fool depth-d read-once formulas, T is sampled from
a γ-almost k-wise independent distribution over {0, 1}n, and D is sampled from a δ-biased
distribution over {0, 1}n. We will use the following simple application of the above lemma
to our pseudorandom restriction Hd = Res(Gd). Looking ahead, we will eventually choose
ε0 = ε/ poly(log log(n/ε)).

I Lemma 4. There exist constants c1, c2, c3 > 0, such that for all positive integers n, d, for
every ε0 > 0, if we set

k = c1 log(nd/ε0), δ = ε0 ·
(

c2
logn

)−k(d+2)
and γ = c3ε0

nd
,

then Hd as defined above satisfies the following. For every depth-(d+ 1) read-once NAND
formula φ : {0, 1}n → {0, 1},∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤ ε0.
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Proof. We start by noting that Gd ⊕ T and G′d ⊕D are independent, Gd ⊕ T is γ-almost
k-wise independent, and G′d ⊕D is δ-biased. This is due to the fact that linear tests and
k-juntas are closed under shifts.

The lemma is then an immediate corollary of Lemma 3, because every depth-(d + 1)
read-once NAND formula can be computed by a width d+ 2 read-once branching program
[13], and L(n, d+ 2; k) is bounded by O(logn)k(d+2) [11]. Thus∣∣∣∣ E

U∼Un

[φ(U)]− E
Hd,V∼Un

[φ|Hd
(V )]

∣∣∣∣ ≤
(
√
δ ·O(logn)k(d+2) +

(
1
2

)k/2
+√γ

)
· n(d+ 2),

and it is easy to check that there are constants c1, c2, c3 such that the right hand side is
bounded by ε0 for a choice of δ, γ, k as in the statement of the lemma. J

We get the following corollary about repeated applications of Hd immediately since
depth-(d+ 1) read-once formulas are closed under restrictions.

I Corollary 5. Let φ be a depth-(d + 1) read-once NAND formula over n variables. Let
δ, k, γ be as in Lemma 4. Then, for every integer t ≥ 1,∣∣∣∣ E

U∼Un

[φ(U)]− E
H◦t

d
,V∼Un

[
φ|H◦t

d
(V )
]∣∣∣∣ ≤ ε0t.

5 Pseudorandom Restrictions Simplify Read-Once Formulas

In this section, we derandomize the analysis of Chen et al. [13] and show that our pseu-
dorandom restriction generator H◦td simplifies depth-(d + 1) formulas, as we discussed in
Section 1.2. We first introduce our progress measure.

I Definition 6. Given a read-once NAND formula φ, we let ∆(φ) be the maximum fan-in
of any gate in φ that is not the root.

Our goal is to show that when X is sampled from H◦td then a read-once formula φ is
simplified in the sense that ∆(φ|X) is roughly

√
∆(φ), with high probability. We will show

that t = O(d log log(n/ε)) is sufficient. Our analysis will closely follow the analysis by Chen et
al. [13] for truly random restrictions.

5.1 Truly Random Restrictions Simplify Depth-(d − 1) Formulas
Chen, Steinke and Vadhan proved that biased read-once formulas collapse to a constant
after a random restriction, with high probability [13]. Looking ahead, we will eventually set
θ = (ε/n)O(1).

I Lemma 7 ([13], Lemma A.3). Let ϕ be a depth-d read-once NAND formula over n variables
such that either E[¬ϕ] ≤ ρ or E[ϕ] ≤ ρ for some ρ ≤ 1

2 . Then, for every θ ∈ (0, 2
n ) and

p ≤ 1
(9 log(2·4dn/θ))d it holds that

Pr
X∼R◦dlog p−1e

n

[ϕ|X is not a constant] ≤ 2p · ρ · (9 log(2 · 4dn/θ))d + θ.

We use Lemma 7 to prove the following variation; note that this lemma considers the case of
several read-once formulas and analyzes the probability of collapsing to 1 instead of collapsing
to any constant.
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I Lemma 8. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d ≤ logn and over disjoint subsets of n variables. Further, assume that for
every i ∈ [k], E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such that for every
θ ∈ (0, 2

n ) and integer t ≥ cd log log(n/θ),

Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ (2ρ+ θ)k.

Proof. Consider some φ ∈ Φ and let t be the smallest integer such that

2−t ≤ 1
2(9 log(2 · 4dn/θ))d ,

and indeed t = c (d log log(n/θ) + d log d) for some universal constant c. By Lemma 7,

Pr
X∼R◦t

n

[φ|X is not a constant] ≤ ρ+ θ.

Now,

Pr
X∼R◦t

n

[φ|X ≡ 0] ≤ E[¬φ] ≤ ρ,

so by the union bound

Pr
X∼R◦t

n

[φ|X 6≡ 1] ≤ 2ρ+ θ.

The lemma follows by the fact that each formula in Φ is over distinct variables and the
coordinates of R◦tn are independent. J

5.2 Hd Simplifies Depth-(d − 1) Formulas
Ultimately, we are interested in the simplification of depth-(d + 1) formulas with respect
to the ∆(·) measure of progress. However, in this subsection, our goal is to prove that our
iterated pseudorandom restriction H◦td simplifies depth-(d− 1) formulas just as well as truly
random restrictions up to an additive error. In this subsection, the notion of simplification is
the event in the statement of Lemma 8.

I Lemma 9. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

Pr
X∼Hd◦R◦(t−1)

n

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2α,

where α is the error of the PRG for depth-d read-once formulas underlying Hd.

Proof. Fix some restriction v ∈ {0, 1, ?}n. (Think of v as some fixing of R◦(t−1)
n .) Let

Tv : {0, 1}2n → {0, 1} be the predicate indicating that with respect to v, the given initial
restriction does a poor job of simplifying Φ. That is,

Tv(y, z) = 1⇐⇒ ∀φ ∈ Φ, φ|Res(y,z)◦v 6≡ 1.

B Claim 10. For every d ≥ 2, Tv can be computed by a depth-d read-once AC0 formula.

Proof. We will prove, by induction on d, that for every φ ∈ Φ,
1. The test φ|Res(y,z)◦v 6≡ 1 can be computed by a depth-d read-once AC0 formula with an
∧ gate on top.
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2. The test φ|Res(y,z)◦v 6≡ 0 can be computed by a depth-d read-once AC0 formula with an
∨ gate on top.

The claim will then follow, as the “∀φ ∈ Φ” part is simply an ∧ over formulas with a top ∧
gate and thus the two top layers can be collapsed to a single layer.

For d = 2, φ is of depth 1 and so is simply a NAND of variables or their negation, say of
the literals `1, . . . , `m. Now,

NAND(`1, . . . , `m) 6≡ 1⇐⇒
∧
i∈[m]

(`i 6≡ 0),

and

NAND(`1, . . . , `m) 6≡ 0⇐⇒
∨
i∈[m]

(`i 6≡ 1).

For each b ∈ {0, 1}, let us express the condition `i 6≡ b in terms of the inputs y and z to Tv.
If `i is a variable xi, then

xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b)).

Now, v is fixed, so either vi 6≡ b is the constant 0, in which case the formula amounts
to (yi = 0) ∧ (zi = b), or it is the constant 1, in which case the formula amounts to
(yi = 1) ∨ (zi = b). Either way, this is a depth-1 read-once formula in terms of the inputs
y and z to Tv.
If `i is the negation ¬xi of some variable, then

¬xi 6≡ b⇐⇒ ((yi = 1) ∧ (vi 6≡ b)) ∨ ((yi = 0) ∧ (zi = b))

Again, by the same reasoning, the above is a depth-1 read-once formula, where the top
gate is determined by the value of vi 6≡ b.

Thus, the predicate NAND(`1, . . . , `m) 6≡ 1 can be tested by a depth-2 formula where the top
gate is an ∧, and the predicate NAND(`1, . . . , `m) 6≡ 0 can be tested by a depth-2 formula
where the top gate is an ∨.

Assume the claim holds for some d ≥ 2 and let φ = NAND(ϕ1, . . . , ϕm) be a read-once
NAND formula of depth d, so each ϕi is a depth-(d − 1) read-once NAND formula. We
already mentioned that

NAND(ϕ1, . . . , ϕm) 6≡ 1⇐⇒
∧
i∈[m]

(ϕi 6≡ 0).

By the induction’s hypothesis, the predicate ϕi|Res(y,z)◦v 6≡ 0 can be tested by a depth-d
read-once AC0 formula with a top ∨ gate, so overall we get a depth-(d+ 1) read-once AC0

formula with a top ∧ gate. Similarly,

NAND(ϕ1, . . . , ϕm) 6≡ 0⇐⇒
∨
i∈[m]

(ϕi 6≡ 1).

Again, by our assumption, the predicate ϕi|Res(y,z)◦v 6≡ 1 can be tested by a depth-d read-once
AC0 formula with a top ∧ gate, so overall we get a depth-(d+ 1) read-once AC0 formula
with a top ∨ gate. C

Recall from Section 3 the distribution

Gd = (Gd ⊕ T,G′d ⊕D).

We shall later show:
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B Claim 11. Gd (2α)-fools depth-d read-once AC0 formulas over {0, 1}2n.

With the above claim in mind, and Claim 10, we are now ready to proceed with proving the
lemma. We get that:

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] = Pr
X∼Hd

[Tv(X) = 1] ≤ Pr
(Y,Z)∼U2n

[Tv(Y, Z) = 1] + 2α.

A uniform (Y,Z) corresponds to a truly random restriction, so

Pr
X∼Hd

[∀φ ∈ Φ, φ|X◦v 6≡ 1] ≤ Pr
X∼Rn

[∀φ ∈ Φ, φ|X◦v 6≡ 1] + 2α.

As the above is true for every restriction v, obviously

E
V∼R◦(t−1)

n

[
Pr

X∼Hd

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]
≤ E
V∼R◦(t−1)

n

[
Pr

X∼Rn

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]

+ 2α,

so

E
X∼Hd

[
Pr

V∼R◦(t−1)
n

[∀φ ∈ Φ, φ|X◦V 6≡ 1]
]
≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2α,

which amounts to what we wanted to prove. All that is left is to prove Claim 11.

Proof of Claim 11. We start by noting that since depth-d read-once AC0 is closed under
shifts, Gd ⊕ T and G′d ⊕D both α-fool depth-d read-once AC0.

We will next use the fact that depth-d read-once AC0 is closed under restrictions. Suppose
φ : {0, 1}n × {0, 1}n → {0, 1} is a depth-d read-once AC0 formula. We have∣∣∣∣∣ E

U,V∼Un

[φ(U, V )]− E
(X,Y )∼Gd

[φ(X,Y )]

∣∣∣∣∣
≤
∣∣∣∣ E
V∼Un

[
E

U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]
]∣∣∣∣

+
∣∣∣∣ E
X∼Gd⊕T

[
E

V∼Un

[φ(X,V )]− E
Y∼G′

d
⊕D

[φ(X,Y )]
]∣∣∣∣

≤ E
V∼Un

∣∣∣∣ E
U∼Un

[φ(U, V )]− E
X∼Gd⊕T

[φ(X,V )]
∣∣∣∣

+ E
X∼Gd⊕T

∣∣∣∣ E
V∼Un

[φ(X,V )]− E
Y∼G′

d
⊕D

[φ(X,Y )]
∣∣∣∣

≤ 2α,

where we used the fact that Gd ⊕ T and G′d ⊕D are independent and α-fool the formulas
φ(·, v) and φ(x, ·) respectively. C

J

Iterating Hd for t times, we get the following lemma. Roughly speaking, the proof is a
hybrid argument of which Lemma 9 is a single step.

I Lemma 12. Let Φ = {φ1, . . . , φk} be a set of read-once NAND formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Then, for every integer t ≥ 1,

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2tα,

where α is the error of the PRG for depth-d read-once AC0 formulas underlying Hd.
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Proof. We prove the lemma by induction on t. The case of t = 0 is trivial. Now, assume
that

Pr
X∼H◦(t−1)

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ Pr
X∼R◦(t−1)

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2(t− 1)α.

Thus,

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] = E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ, φ|X1◦X2 6≡ 1]
]

= E
X1∼Hd

[
Pr

X2∼H◦(t−1)
d

[∀φ ∈ Φ, (φ|X1) |X2 6≡ 1]
]

≤ E
X1∼Hd

[
Pr

X2∼R◦(t−1)
n

[∀φ ∈ Φ, (φ|X1) |X2 6≡ 1]
]

+ 2(t− 1)α

≤ Pr
X∼R◦t

n

[∀φ ∈ Φ, φ|X 6≡ 1] + 2tα.

The third transition used the induction’s hypothesis and the last one is due to Lemma 9. J

Combining Lemma 12 with Lemma 8 we immediately get the following corollary.

I Corollary 13. Let Φ = {φ1, . . . , φk} be a set of NAND read-once formulas over n variables,
each of depth d− 1 and over disjoint subsets of n variables. Further, assume that d ≤ logn
and that for every i ∈ [k], E[¬φi] ≤ ρ for some ρ ≤ 1

2 . Then, there exists a constant c such
that for every θ ∈ (0, 2

n ) and integer t ≥ cd log log(n/θ),

Pr
X∼H◦t

d

[∀φ ∈ Φ, φ|X 6≡ 1] ≤ (2ρ+ θ)k + 2tα,

where α is the error of the PRG for depth-d read-once AC0 formulas underlying Hd.

5.3 H◦t
d Simplifies Depth-(d + 1) Formulas

We are now ready to prove our main result for this section.

I Lemma 14. Let φ be a depth-(d + 1) read-once NAND formula over n variables where
d ≤ logn. Let ε0 > 0 and let c be the constant guaranteed by Corollary 13. Further assume
that θ ∈ (0, 2

n ) is such that for every gate ψ in φ, possibly excluding the root, E[¬ψ] ≥ θ.
Then, for every integer t ≥ cd log log(n/θ) and every α ≤ ε2

0
8(dn)2√n log2(1/θ)t ,

Pr
X∼H◦t

d

[
∆(φ|X) ≤ 10

√
∆(φ) log2(1/θ)

]
≥ 1− ε0,

where the PRG for depth-d read-once AC0 formulas underlying Hd is instantiated with
error α.

Note that we assume here that every gate in φ has a non-negligible probability of rejecting,
which may not always be the case. Following Chen et al. [13], in Section 6 we will get rid
of that assumption by a sandwiching argument. The proof of Lemma 14 is based on an
argument introduced by Gopalan et al. [22], later also used by Chen et al. [13].
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Proof. Let ψ be any gate in φ other than the root, so ψ is a depth-d read-once NAND
formula. We shall partition its children Ψ according to their rejection probability. Namely,
for every integer 0 ≤ i ≤ log(1/θ)− 1 define

Ψi =
{
ϕ ∈ Ψ : 2iθ ≤ E[¬ϕ] < 2i+1θ

}
.

Note that if E[¬ϕ] = 1 then ψ is fixed to 1 so we can simply ignore it.
Let us fix some 0 ≤ i ≤ log(1/θ)− 1 and consider the set of formulas Ψi. In hindsight,

set the parameters

M = 5e ln(1/θ)
√

∆(φ)

and

k =
⌈

2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)⌉
.

Write Ψi = {ϕ1, . . . , ϕw}. For every j ∈ [w], let Yj be the indicator for the event that ϕj is
not identically 1 after a pseudorandom restriction, namely ϕj |X 6≡ 1. We wish to bound

Pr

∑
j∈[w]

Yj ≥M

 ,
where the probability is taken over X ∼ H◦td . Let

Sk(x1, . . . , xw) =
∑

I⊆[w],|I|=k

∏
i∈I

xi

be the k-th elementary symmetric polynomial. Note that if
∑
j∈[w] Yj ≥ M then

Sk(Y1, . . . , Yw) is at least
(
M
k

)
, and so

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1(
M
k

) E[Sk(Y1, . . . , Yw)]

≤
(
k

M

)k ∑
I⊆[w],|I|=k

Pr [∀j ∈ I, Yj = 1] .

We know that E[¬ϕ] ≤ 2i+1θ and ϕ is a depth-(d− 1) NAND formula, so by Corollary 13
we get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (
w

k

)(
(2 · 2i+1θ + θ)k + 2tα

)
. (1)

Now,

B Claim 15. It holds that w ≤ ln(1/θ)
2iθ .

Proof. On the one hand,∏
ϕ∈Ψ

E[ϕ] = E[¬ψ] ≥ θ.

On the other hand,∏
ϕ∈Ψ

E[ϕ] ≤
∏
ϕ∈Ψi

E[ϕ] ≤ (1− 2iθ)w ≤ e−2iwθ.

Combining the two gives the desired bound. C

CCC 2019



16:16 Near-Optimal PRGs for Constant-Depth Read-Once Formulas

Plugging in the above bound to Equation (1), we get

Pr

∑
j∈[w]

Yj ≥M

 ≤ ( k

M

)k (we
k

)k (
(2 · 2i+1θ + θ)k + 2tα

)
≤
(
ew · (2i+2θ + θ)

M

)k
+ 2

(we
M

)k
tα

≤
(

5e ln(1/θ)
M

)k
+ 2

(
∆(φ)e
M

)k
tα,

where for the second summand we only used the trivial fact that w ≤ ∆(φ).
Plugging in M , we achieve

Pr

∑
j∈[w]

Yj ≥M

 ≤ 1
∆(φ)k/2

+ 2(∆(φ))k/2 · tα. (2)

As k ≥ 2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)
we have that the first summand of Equation (2) is at most

ε0
2dn log(1/θ) . Also, the bound on α implies

2dn log(1/θ)
ε0

≤ ε0

4dn log(1/θ)tα ·
1√

∆(φ)

so

k ≤ 2
log ∆(φ) log

(
2dn log(1/θ)

ε0

)
+ 1 ≤ 2

log ∆(φ) log
(

ε0

4dn log(1/θ)tα

)
and the second summand of Equation (2) is at most ε0

2dn log(1/θ) as well. Thus,

Pr

∑
j∈[w]

Yj ≥M

 ≤ ε0

dn log(1/θ) .

Define Ei =
∑
j∈[w] Yj . By union-bounding over Ψ0, . . . ,Ψlog(1/θ)−1 we get that

Pr

log(1/θ)−1∑
i=0

Ei ≥M log(1/θ)

 ≤ log(1/θ)−1∑
i=0

Pr [Ei] ≤
ε0

dn
.

Another union bound over all possible ψ-s (at most dn of them) gives us the desired bound. J

6 Ensuring Noticeable Chance of Rejecting

In Section 5, we showed that H◦t simplifies formulas with high probability under the
assumption that every gate rejects with noticeable probability. In this section, following
Chen, Steinke, and Vadhan [13], we will use a sandwiching argument to handle gates with
negligible probability of rejecting. Our starting point is a helpful lemma implicit in the work
of Chen et al. [13]:

I Lemma 16 ([13]). Suppose φ is a depth-d read-once NAND formula over n variables with
d ≤ n and let ε0 > 0. Define θ = ε2

0
4n2 . Then, there exist read-once NAND formulas `φ, uφ

with the following properties.
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1. `φ ≤ φ ≤ uφ and E[uφ − `φ] ≤ ε0.
2. The underlying tree structure of `φ is a subgraph of the underlying tree structure of φ,

and the underlying tree structure of uφ is a subgraph of the underlying tree structure of φ.
3. Every non-constant gate ψ in either `φ or uφ satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.

Since Chen, Steinke, and Vadhan did not state Lemma 16 exactly as we have stated it
here, for completeness, we include a proof of Lemma 16 in Appendix A.

The sandwiching formulas in Lemma 16 satisfy the hypothesis of Lemma 14, so after
restricting according to H◦t, they simplify in the sense that ∆ goes down by roughly a square
root. We would like to apply H◦t again to simplify the formulas even further. Unfortunately,
after the first application of H◦t, the restricted formulas might no longer satisfy the hypothesis
of Lemma 14. Therefore, before applying H◦t the second time, we must apply Lemma 16
again. We will continue in this manner, alternately applying H◦t to simplify and applying
Lemma 16 to eliminate gates with negligible probability of rejecting. In this way, we will
prove the following lemma.

I Lemma 17. Suppose φ is a depth-(d + 1) read-once NAND formula over n variables
where d ≤ logn and let ε0 > 0. Assume the parameters α, k, δ, γ underlying Hd satisfy the
hypotheses of Lemma 14 and Lemma 4. Let θ be the value in Lemma 16, let t be as in
Lemma 14, let r = d3 log logne, and let s = rt.

Sample independent restrictions X1, . . . , Xr ∼ H◦td . For any such vector of restrictions ~X,
there exist depth-(d+ 1) read-once NAND formulas `φ, ~X , uφ, ~X with the following properties.
1. (Bounding.) For every sample ~X,

`φ, ~X ≤ φ|X1◦···◦Xr
≤ uφ, ~X .

2. (Sandwiching.) For U ∼ Un independent of ~X,

E
~X,U

[
uφ, ~X(U)− `φ, ~X(U)

]
≤ 3sε0.

3. (Simplicity.) Let ∆0 = 404 log8(2n/ε0). Then,

Pr
~X

[
∆
(
`φ, ~X

)
≤ ∆0 and ∆

(
uφ, ~X

)
≤ ∆0

]
≥ 1− 2rε0.

Toward proving Lemma 17, fix a depth-(d+1) read-once NAND formula φ, define X0 = ?n,
and define `(0)

~X
= u

(0)
~X

= φ. Then, for i < r, inductively define

`
(i+1)
~X

= `(`(i)
~X
|Xi

).

That is, `(i+1)
~X

is the lower sandwiching formula when Lemma 16 is applied to `(i)~X
∣∣
Xi

. Similarly,
define

u
(i+1)
~X

= u(u(i)
~X
|Xi

),

i.e., u(i+1)
~X

is the upper sandwiching formula when Lemma 16 is applied to u(i)
~X

∣∣
Xi

. Finally,
define

`φ, ~X = `
(r)
~X

∣∣
Xr

uφ, ~X = u
(r)
~X

∣∣
Xr
.
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Proof of Item 1 of Lemma 17. We show by induction on i that `(i)~X
∣∣
Xi
≤ φ|X1◦···◦Xi

≤
u

(i)
~X

∣∣
Xi

. In the base case i = 0, this is trivial. For the inductive step, we have

`
(i+1)
~X

∣∣
Xi+1

≤
(
`
(i)
φ

∣∣
Xi

)
|Xi+1 By Item 1 of Lemma 16

≤ (φ|X1◦···◦Xi)|Xi+1 By the induction’s hypothesis
= φ|X1◦···◦Xi+1 .

A completely analogous argument works for the upper bound as well. J

Proof of Item 2 of Lemma 17. We show by induction on i that

E
~X,U

[
u

(i)
~X

∣∣
Xi

(U)− `(i)~X
∣∣
Xi

(U)
]
≤ (2t+ 2)iε0. (3)

In the base case i = 0, the statement is trivial. For the inductive step, we have

E
~X,U

[
u

(i+1)
~X

∣∣
Xi+1

(U)− `(i+1)
~X

∣∣
Xi+1

(U)
]

≤ E
~X,U

[
u

(i+1)
~X

(U)− `(i+1)
~X

(U)
]

+ 2tε0 By Corollary 5

≤ E
~X,U

[
u

(i)
~x

∣∣
Xi

(U) + `
(i)
~X

∣∣
Xi

(U)
]

+ (2t+ 2)ε0 By Item 1 of Lemma 16

≤ (2t+ 2)(i− 1)ε0 + (2t+ 2)ε0. By the induction’s hypothesis

Finally, Item 2 of Lemma 17 follows from Equation (3) by plugging-in i = r and as s = rt. J

Proof of Item 3 of Lemma 17. By construction, for every i ≥ 1, the formula `(i)~X and the
formula u(i)

~X
both have the property that every gate ψ satisfies E[¬ψ] ≥ θ, where

θ = ε2
0

4n2 .

Furthermore, as the restrictions are independent, Xi is independent of
(
`
(i)
~X
, u

(i)
~X

)
. Therefore,

by Lemma 14,

Pr
~X

[
∆
(
`
(i)
~X

∣∣
Xi

)
> 10

√
∆
(
`
(i)
~X

)
· log2(1/θ)

]
≤ ε0,

and

Pr
~X

[
∆
(
u

(i)
~X
|Xi

)
> 10

√
∆
(
u

(i)
~X

)
· log2(1/θ)

]
≤ ε0.

By the union bound, we may assume that none of these bad events occur and accumulate an
error of 2ε0 for every restriction. Based on this assumption, we now show by induction on i
that

∆
(
`
(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
, (4)

and

∆
(
u

(i)
~X

∣∣
Xi

)
≤ max

{
104 log8(1/θ), n(3/4)i

}
. (5)
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The base case i = 0 follows from the trivial bound ∆(φ) ≤ n. Now the inductive step. We
have

∆
(
`

(i+1)
~X

∣∣
Xi+1

)
≤ 10

√
∆
(
`

(i+1)
~X

)
· log2(1/θ) By our assumption

≤ 10
√

∆
(
`

(i)
~X

∣∣
xi

)
· log2(1/θ) By Item 2 of Lemma 16

≤ 10
√

max
{

104 log8(1/θ), n(3/4)i
}
· log2(1/θ) By the induction’s hypothesis

Now we have two cases. First, suppose n(3/4)i ≤ 104 log8(1/θ). Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
104 log8(1/θ) · log2(1/θ)

= 103 log6(1/θ)
≤ 104 log8(1/θ),

completing the proof of Equation (4) in this case. Now, suppose instead that 104 log8(1/θ) <
n(3/4)i . Then the bound becomes

∆
(
`
(i+1)
~X

)
≤ 10

√
n(3/4)i · log2(1/θ)

≤
√
n(3/4)i · (n(3/4)i

)1/4

= n(3/4)i+1
,

once again completing the proof of Equation (4). The proof of Equation (5) is completely
analogous and we omit it. Item 3 of Lemma 17 follows because by our choice of r, n(3/4)r ≤ 2,
and by the definition of θ,

104 log8(1/θ) = 404 log8(2n/ε0). J

7 Fooling Formulas When ∆ is Small

Recall from Section 3 that our pseudorandom distribution for depth-(d + 1) read-once
formulas is

H◦sd ◦GMRT.

So far, we have shown that up to sandwiching, applying H◦sd substantially simplifies the
formula with high probability while approximately preserving its expectation (Lemma 17).
It remains to show that GMRT fools these simpler formulas. Meka, Reingold, and Tal studied
the problem of fooling XORs of short ROBPs and achieved the following parameters.

I Theorem 18 ([32]). For any positive integers n, w, b and any ε0 > 0 there is an explicit
PRG that ε0-fools all functions f : {0, 1}n → {±1} of the form

f(x) =
m∏
i=1

gi(x),

where g1, . . . , gm : {0, 1}n → {±1} are defined over disjoint variable sets of size at most b
and each gi can be computed by an arbitrarily ordered width-w ROBP. The seed length of the
PRG is

log(n/ε0) ·O(log b+ log log(n/ε0))2w+2.
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It immediately follows that we can fool formulas when ∆ is small with the following
parameters.

I Corollary 19. For any integers n, d, ∆0 and any ε0 > 0, there is an explicit distribution
GMRT that ε0-fools depth-d read-once NAND formulas φ satisfying ∆(φ) ≤ ∆0 that can be
sampled using

log(n/ε0) ·O(d log ∆0 + log log(n/ε0))2d+2

truly random bits.

Proof. Write φ = NAND(ϕ1, . . . , ϕm). Then ¬φ = ∧mi=1ϕi. Applying the Fourier expansion
of the m-input ∧ function gives

¬φ =
∑
S⊆[m]

(−1)|S|

2m ·
∏
i∈S

(−1)ϕi .

Since
∑
S

∣∣∣ (−1)|S|
2m

∣∣∣ = 1, it suffices to fool each function
∏
i∈S(−1)ϕi separately.

Since ∆(φ) ≤ ∆0, each ϕi depends on at most ∆d−1
0 variables. Since φ is read-once, the

ϕi-s depend on disjoint sets of variables. Since each ϕi is a depth-(d− 1) read-once NAND
formula, it can be computed by a width-d ROBP under some ordering of the variables [13].
Applying Theorem 18 completes the proof, since fooling φ is equivalent to fooling ¬φ. J

8 Putting Everything Together: Proof of Theorem 1

To prove the correctness of our PRG, we first need to justify the fact that our analysis has so
far focused on NAND formulas whereas our main result governs AC0 formulas, i.e., formulas
over the {∧,∨,¬} basis.

I Lemma 20. For any layered read-once AC0 formula φ, either φ or ¬φ can be computed
by a read-once NAND formula with the same underlying tree structure as φ.

Proof. We proceed by induction on the depth d of φ to show that if the output gate of φ is
∨, then φ can be computed by a read-once NAND formula with the same underlying tree
structure as φ. In the base case d = 1, we have φ = ∨mi=1`i, where each `i is a literal. Then
we can also write

φ = NAND(¬`1, . . . ,¬`m).

Now, for the inductive step, assume φ = ∨mi=1ϕi, where each ϕi is a depth-d read-once
formula with output gate ∧. Then once again,

φ = NAND(¬ϕ1, . . . ,¬ϕm).

By moving ¬ gates downward, ¬ϕi can be converted to a depth-d read-once formula with
output gate ∨ without altering its underlying tree structure. Applying the induction’s
hypothesis completes the proof. Finally, the lemma follows, because if the output gate of φ is
∧, then ¬φ can be computed by a read-once formula with the same underlying tree structure
with output gate ∨. J

Conversely, any read-once NAND formula can be straightforwardly simulated by a layered
read-once AC0 formula with the same underlying tree structure. We are now ready to
complete the analysis of our PRG.



D. Doron, P. Hatami, and W.M. Hoza 16:21

Proof of Theorem 1. Recall that our PRG is Gd+1 = H◦sd ◦GMRT.

Parameters. Assume d ≤ log log(n/ε). (Otherwise, Theorem 1 follows already from the work
of Forbes and Kelley [17].) Let c be the constant from Lemma 8. Let r = d3 log logne,
and define

ε0 = ε

10r · cd log log(n/ε) .

Let θ = ε2
0

4n2 . Let t = cddlog log(n/θ)e (without loss of generality, take c to be an integer),
and let s = tr. Let α = ε4/n3; this is small enough to satisfy the hypothesis of Lemma 14.
Let k, δ, γ be the values required by Lemma 4. Let ∆0 be the value specified by Lemma 17.

Correctness. Let φ be a depth-(d+ 1) read-once AC0 formula. We can straightforwardly
make φ a layered read-once AC0 formula without changing its depth. Since fooling φ
is equivalent to fooling ¬φ, by Lemma 20, we may assume that φ is a depth-(d + 1)
read-once NAND formula. Since s = tr, we can write H◦sd = (H◦td )◦r. Consider drawing
independent samples X1, . . . , Xr ∼ H◦td . Let `φ, ~X , uφ, ~X be the formulas guaranteed to
us by Lemma 17. For brevity, let G = GMRT, and let U ∼ Un be independent of G and
H◦sd . Let E be the high-probability event of Item 3 of Lemma 17, so whether E occurs
depends only on ~X. Then,

E
Gd+1

[φ(Gd+1)] = E
~X

[
E
G

[φ|X1◦···◦Xr (G)]
]

By the definition of Gd+1

≤ E
~X

[
E
G

[uφ, ~X(G)]
]

By Item 1 of Lemma 17

≤ E
~X

[
E
G

[uφ, ~X(G)]
∣∣∣ E]+ Pr

~X
[¬E]

≤ E
~X

[
E
U

[uφ, ~X(U)] + ε0

∣∣∣ E]+ Pr
~X

[¬E] By Corollary 19

≤ E
~X

[
E
U

[uφ, ~X(U)] + ε0

]
+ 2 Pr

~X
[¬E]

≤ E
~X,U

[uφ, ~X(U)] + (1 + 2r)ε0 By Item 3 of Lemma 17

≤ E
~X,U

[φ|X1◦···◦Xr
(U)] + (1 + 2r + 3s)ε0 By Item 2 of Lemma 17

≤ E[φ] + (1 + 2r + 4s)ε0 By Corollary 5.

A completely analogous argument handles the lower bound. To complete the proof of
correctness, we verify that with our choice of parameters, the error is bounded by ε:

(1 + 2r + 4s)ε0 ≤ 5sε0 ≤
1 + log log(n/θ)
2 log log(n/ε) · ε ≤ ε.

Seed Length. Let q(n, d, ε) denote the seed length of our ε-PRG for depth-d read-once AC0.
We will prove by induction on d that

q(n, d, ε) ≤ log(n/ε) · (Cd log log(n/ε))2d+2, (6)

where C is an absolute constant to be specified later.
In the base case d = 2, our PRG is just the PRG by Gopalan et al. [22], which has seed
length C1 log(n/ε)(log log(n/ε))3 for some absolute constant C1. Since 2d + 2 > 3, we
can ensure that Equation (6) holds by choosing C > C1.
Now, for the inductive step, fix d ≥ 2 and consider Gd+1. We can divide the seed length
of Gd+1 into three components.
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(The inductive seed length.) To sample from H◦sd , we must draw 2s independent
samples from Gd. The number of truly random bits required for this process is bounded
by 2s · q(n, d, α). There is an absolute constant C2 so that s ≤ (C2d log log(n/ε))2.
By induction and our choice of α = ε4/n3, the number of truly random bits for this
component, q1, is bounded by

q1 ≤ 8 log(n/ε) · (Cd)2d+2 · (2 + log log(n/ε))2d+2 · s.

To handle the additive 2 term in the middle, we can bound

(2 + log log(n/ε))2d+2 = (log log(n/ε))2d+2 ·
(

1 + 2
log log(n/ε)

)2d+2

≤ (log log(n/ε))2d+2 · exp
(

4d+ 4
log log(n/ε)

)
≤ e8,

since we assumed d ≤ log log(n/ε). Therefore,

q1 ≤ 8 · e8 · log(n/ε) · (Cd log log(n/ε))2d+2 · (C2d log log(n/ε))2

≤ 1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2

as long as we choose C > C2.
(The seed length for D and T .) To sample from H◦sd , we must also draw 2s independent
samples from D and T . Using standard constructions [33, 2], the number of truly
random bits required for this process, q2, is 2s ·O(k + log(n/δ) + log(1/γ)). For some
absolute constant C3, by our choices of k, δ, γ, this is bounded by

q2 ≤ C3d
2 log(n/ε) log log(n/ε) log logn

≤ 1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2,

provided C > C3.
(The seed length for the MRT generator.) Because of our choices for the parameters
ε0 and ∆0, there is an absolute constant C4 such that in the construction of Gd+1, the
seed length q3 of the distribution GMRT from Corollary 19 satisfies

q3 ≤ log(n/ε) · (C4(d+ 1) log log(n/ε))2(d+1)+2.

Choosing C > C4 ensures

q3 ≤
1
3 log(n/ε) · (C(d+ 1) log log(n/ε))2(d+1)+2.

Summing up q1, q2, q3 completes the proof of Equation (6).

Explicitness. Our PRG construction combines explicit PRGs in a straightforward way, so it
is explicit as well, i.e., it can be computed in space proportional to its seed length. J
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9 Fooling Read-Once AC0[⊕] Formulas With a Few Parity Gates

In this section, as outlined in Section 1.3, we prove Theorem 2, which extends our main
theorem to the case of AC0[⊕] formulas with a bounded number of parity gates. (An AC0[⊕]
formula is defined just like an AC0 formula except that the gates may be labled ∧, ∨, or ⊕.)
The main challenge in proving Theorem 2 is that the sandwiching argument from Section 6
does not easily generalize. The trouble is that the parity function is not monotone, so it does
not compose well with sandwiching formulas. This difficulty already arises in the special case
of PARITY ◦AC0, i.e., the case that the root gate is a parity gate and there are no other
parity gates. Instead of true sandwiching formulas, we merely get the following: For every
read-once PARITY ◦AC0 formula φ, there is a PARITY ◦AC0 formula φ̃ in which every
gate rejects with non-negligible probability; this formula φ̃ approximates φ in the sense that

Pr
X∼Un

[
φ(X) = φ̃(X)

]
≈ 1.

This does not straightforwardly imply correctness of our PRG, because it says nothing about
the expectation of φ under our pseudorandom distribution.

Briefly, to resolve this difficulty, we also design an auxiliary AC0 formula Tφ that certifies
that most points x satisfy φ(x) = φ̃(x). Since Tφ is itself fooled by our PRG, φ̃ must be
a good approximation of φ under our pseudorandom distribution as well as the uniform
distribution, i.e.,

Pr
X∼Gd

[
φ(X) = φ̃(X)

]
≈ 1.

This condition is a suitable alternative to the sandwiching condition. (A similar approach
has been taken in several other works, e.g., [6, 12, 32].)

9.1 Special Case: Read-Once PARITY◦AC0

Toward proving Theorem 2, we begin by considering read-once formulas of the form PARITY◦
AC0. Fix any positive integers n, d and any ε1 > 0. Let H◦sd ◦ GMRT be our ε1-PRG for
depth-(d+ 1) read-once AC0 formulas used to prove Theorem 1, but with different values
for the parameters k, δ, γ (we will explain the changes later). We will prove the following.

I Lemma 21 (Fooling Read-Once PARITY ◦AC0). Let φ =
⊕m

j=1 φj, where each φj is a
depth-d read-once AC0 formula, φ1, . . . , φm are on disjoint variable sets, and φ is defined
over {0, 1}n. Then H◦2sd ◦GMRT fools φ with error n2ε1.

Note that the PRG in Lemma 21 applies twice as many independent copies of Hd as the
PRG in the proof of Theorem 1. Note also that the PRG Gd that underlies Hd is merely
assumed to fool depth-d read-once AC0 formulas (i.e., without any parity gates).

In the remainder of this subsection, we sketch the proof of Lemma 21 by reviewing the
proof of Theorem 1 and making the necessary alterations.

9.1.1 Hd Still Preserves the Expectation
The analogue of Corollary 5 still holds in the PARITY ◦AC0 setting, with suitable changes
to the constants:

I Lemma 22. There exist absolute constants c′1, c′2, c′3 > 0, such that if we set

k = c′1 log(nd/ε0), δ = ε0 ·
(

c′2
logn

)−k(2d+2)
, and γ = c′3ε0

nd
,
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then Hd satisfies the following. Let φ =
⊕m

j=1 φj, where each φj is a depth-d read-once
NAND formula, φ1, . . . , φm are on disjoint variable sets, and φ is defined on {0, 1}n. Then,
for every integer t ≥ 1,∣∣∣∣ E

U∼Un

[φ(U)]− E
H◦t

d
,V∼Un

[
φ|H◦t

d
(V )
]∣∣∣∣ ≤ ε0t.

Proof sketch. The argument is essentially the same as the proof of Corollary 5. The only
change is the width bound. The parity function can be computed by a width-2 ROBP and
each φj can be simulated by a width-(d+ 1) ROBP, so we can simulate φ by a width-(2d+ 2)
ROBP. J

9.1.2 H◦t
d Still Simplifies Formulas Where Each Gate Rejects with

Noticeable Probability

Once again, for a formula φ as in Lemma 22, we define ∆(φ) to be the maximum fan-in of
any gate other than the root. The analogue of Lemma 14 also still holds in this setting:

I Lemma 23. Let φ be as in Lemma 22. Assume d ≤ logn, let ε0 > 0, and let c be the
constant guaranteed by Corollary 13. Further assume that θ ∈ (0, 2

n ) is such that for every
gate ψ in φ, possibly excluding the root, E[¬ψ] ≥ θ. Then, for every integer t ≥ cd log log(n/θ)
and every α ≤ ε2

0
8(dn)2√n log2(1/θ)t ,

Pr
X∼H◦t

d

[
∆(φ|X) ≤ 10

√
∆(φ) log2(1/θ)

]
≥ 1− ε0,

where the PRG for depth-d read-once formulas underlying Hd is instantiated with error α.

Proof. The proof of Lemma 9 still works in this setting, because if ψ is a gate other than the
root, then the subformula rooted at ψ is a read-once NAND formula of depth at most d. J

9.1.3 Ensuring Noticeable Chance of Rejecting

As discussed at the beginning of this section, we are not able to generalize Lemma 16 to the
PARITY◦AC0 setting. However, in the original setting of NAND formulas, we can strengthen
Lemma 16 by obtaining a read-once AC0 formula that certifies that the sandwiching formulas
are good approximations. Here, for simplicity and because it is sufficient, we focus on the
lower sandwiching formula:

I Lemma 24. Let φ, ε0, and `φ be as in Lemma 16. There is a depth-d read-once AC0

formula T `φ : {0, 1}n → {0, 1} such that E[T `φ] ≥ 1 − ε0, and for every x ∈ {0, 1}n, if
T `φ(x) = 1 then

`φ(x) = φ(x).

We defer the proof of Lemma 24 to Appendix A, where we prove the generalization
involving both the lower and the upper sandwiching formulas (Lemma 30). Just like in
Section 6, we must alternately apply Lemma 24 to ensure non-negligible chance of rejection
and Lemma 23 to argue that the formula simplifies. The following lemma is analogous
to Lemma 17.
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I Lemma 25. Let φ be as in Lemma 22. Assume the parameters α, k, δ, γ underlying Hd

satisfy the hypotheses of Lemma 23 and Lemma 22. Let θ be the value in Lemma 16, let t be
as in Lemma 23, let r = d3 log logne, and let s = rt.

Sample independent restrictions X1, . . . , Xr ∼ H◦td . For any such vector of restrictions
~X, there is a formula φ̃ ~X =

⊕m
j=1 φ̃j, where each φ̃j is a depth-d read-once NAND formula

and φ̃1, . . . , φ̃m are on disjoint variable sets, and there is a function Tφ, ~X : {0, 1}n → {0, 1}
with the following properties.
1. (Success indication.) For every sample ~X and every point x ∈ {0, 1}n, if Tφ, ~X(x) = 1,

then

φ̃ ~X(x) = (φ|X1◦···◦Xr
)(x).

2. (Approximation.) If G ε1-fools depth-d read-once AC0 formulas and is independent of
~X, then

E
~X,G

[
Tφ, ~X(G)

]
≥ 1−mr(ε1 + (s+ 1)ε0).

3. (Simplicity.) Let ∆0 = 404 log8(2n/ε0). Then,

Pr
~X

[
∆
(
φ̃ ~X

)
≤ ∆0

]
≥ 1− rε0.

The proof of Lemma 25 is similar to the proof of Lemma 17, and we defer it to Appendix B.

9.1.4 GMRT Still Fools Formulas When ∆ Is Small
The analogue of Corollary 19 still holds in the PARITY ◦AC0 setting:

I Lemma 26. Fix any positive integers n, d,∆0 and any ε0 > 0. Let φ be as in Lemma 22,
assume ∆(φ) ≤ ∆0, and let GMRT be as in Corollary 19. Then GMRT fools φ with error ε0/2.

Proof sketch. We can write

φ =
m⊕
j=1

φj = 1
2 −

1
2

m∏
j=1

(−1)φj .

The rest of the argument is the same as in the proof of Corollary 19. J

9.1.5 Putting Everything Together for PARITY◦AC0

Proof Sketch of Lemma 21. We can straightforwardly make each φj a layered read-once
formula without changing its depth. By Lemma 20, either φj or ¬φj can be computed by a
read-once NAND formula with the same underlying tree structure. Furthermore, ¬ gates
can be pushed upward through ⊕ gates. Therefore, since fooling φ is the same as fooling ¬φ,
we may simply assume that φ1, . . . , φm are NAND formulas.

Since s = tr, we can write H◦2sd = (H◦td )◦r ◦H◦sd . Consider drawing independent samples
X1, . . . , Xr ∼ H◦td , Y ∼ H◦sd . Let φ̃ ~X , Tφ, ~X be the functions guaranteed to us by Lemma 25.
For brevity, let G = GMRT, and let U ∼ Un, all independent of X1, . . . , Xr, Y . Let E be
the high-probability event of Item 3 of Lemma 25, so whether E occurs depends only on ~X.
Then,

E
H◦2s

d
,G

[φ(H◦2sd ◦G)] = E
~X,Y,G

[φ|X1◦···◦Xr (Y ◦G)] .
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By Item 2 of Lemma 25,∣∣∣∣∣ E
~X,Y,G

[φ|X1◦···◦Xr (Y ◦G)]− E
~X,Y,G

[
φ̃ ~X(Y ◦G)

]∣∣∣∣∣ ≤ E
~X,Y,G

[
¬Tφ, ~X(Y ◦G)

]
.

Observe that Y ◦ G is exactly the pseudorandom distribution used to prove Theorem 1.
Therefore, it ε-fools depth-d read-once AC0 formulas. Therefore, by Item 1 of Lemma 25,

E
~X,Y,G

[
¬Tφ, ~X(Y ◦G)

]
≤ nr(ε1 + (s+ 1)ε0).

This will be one term in the overall error. Next, we have∣∣∣∣∣ E
~X,Y,G

[
φ̃ ~X(Y ◦G)

]
− E

~X,Y,U

[
φ̃ ~X(Y ◦ U)

]∣∣∣∣∣
≤
∣∣∣∣E~X
[
E
Y,G

[(
φ̃ ~X |Y

)
(G)
] ∣∣∣∣ E]− E

~X

[
E
Y,U

[(
φ̃ ~X |Y

)
(U)
] ∣∣∣∣ E]∣∣∣∣+ 2 Pr

~X
[¬E]

≤ ε0

2 + 2 Pr
~X

[¬E],

where the last step was by Lemma 26 (note that ∆
(
φ̃ ~X |Y

)
≤ ∆

(
φ̃ ~X

)
.) This is another

term in the overall error. For the next step, by Lemma 22, we have∣∣∣∣∣ E
~X,Y,U

[
φ̃ ~X(Y ◦ U)

]
− E

~X,U

[
φ̃ ~X(U)

]∣∣∣∣∣ ≤ sε0.

Now, trivially, U fools read-once AC0 with error 0, so∣∣∣∣∣ E~X,U
[
φ̃ ~X(U)

]
− E

~X,U
[φ|X1◦···◦Xr

(U)]

∣∣∣∣∣ ≤ E
~X,U

[
¬Tφ, ~X(U)

]
By Item 1 of Lemma 25

≤ nr(s+ 1)ε0 By Item 2 of Lemma 25.

Invoking Lemma 22 one more time gives∣∣∣∣∣ E~X,U [φ|X1◦···◦Xr (U)]− E
U

[φ(U)]

∣∣∣∣∣ ≤ sε0.

Adding up all the errors by the triangle inequality, we get∣∣∣∣∣ E
H◦2s

d
,G

[φ(H◦2sd ◦G)]− E
U

[φ(U)]

∣∣∣∣∣ ≤ nr(ε+ (s+ 1)ε0) + ε0

2 + 2 Pr[¬E]

+ sε0 + nr(s+ 1)ε0 + sε0

≤ nrε1 + 5nrsε0

< n2ε1

as claimed. J

9.2 The General Case of Read-Once AC0[⊕] with t Parity Gates
We first prove a seemingly weak bound on the spectral norm (i.e. the sum of the absolute
value of the Fourier coefficients) of a read-once AC0[⊕] formula φ in terms of the number of
its gates, denoted as size(φ).
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I Lemma 27. Let φ be an AC0[⊕] formula. Then,∥∥∥φ̂∥∥∥
1
≤ 3size(φ).

Proof. The proof uses the fact that spectral norm behaves nicely under composition.

B Claim 28. Let f(x) = g(h1(x), ..., hm(x)), where f : {0, 1}n → {−1, 1}, g : {−1, 1}m →
{−1, 1}. Then,∥∥∥f̂∥∥∥

1
≤ ‖ĝ‖1 ·

m∏
i=1

∥∥∥ĥi∥∥∥
1

Proof. Note that,

f(x) =
∑
S⊆[n]

ĝ(S)
∏
i∈S

hi(x).

The triangle inequality and submultiplicativity of the spectral norm give∥∥∥f̂∥∥∥ ≤ ∑
S⊆[n]

|ĝ(S)|
∏
i∈S

∥∥∥ĥi∥∥∥
1
≤
∑
S⊆[n]

|ĝ(S)|
m∏
i=1

∥∥∥ĥi∥∥∥
1

= ‖ĝ‖1 ·
m∏
i=1

∥∥∥ĥi∥∥∥
1
,

where the second inequality uses the fact that
∥∥∥ĥi∥∥∥

1
≥ 1, as can be seen as follows. Choose

an arbitrary x ∈ {0, 1}n, we have

1 = |hi(x)| =

∣∣∣∣∣∣
∑
S⊆[n]

ĥi(S)χS(x)

∣∣∣∣∣∣ ≤
∑
S⊆[n]

∣∣∣ĥi(S)
∣∣∣ =

∥∥∥ĥi∥∥∥
1
. J

Let ∧m,∨m,⊕m : {0, 1}m → {0, 1} denote an ∧ gate with m inputs, an ∨ gate with m inputs,
and a ⊕ gate with m inputs respectively. We use the fact that for any m > 0,∥∥∥ ̂(−1)∧m

∥∥∥
1
,
∥∥∥ ̂(−1)∨m

∥∥∥
1
,
∥∥∥ ̂(−1)⊕m

∥∥∥
1
≤ 3.

Let G denote the set of the gates in the circuit φ. Applying Claim 28 recursively over all the
gates of φ implies that∥∥∥φ̂∥∥∥

1
≤ 1

2 + 1
2 ·
∥∥∥(̂−1)φ

∥∥∥
1
≤ 1

2 + 1
2 ·
∏
g∈G

∥∥∥(̂−1)g
∥∥∥ ≤ 1

2 + 1
2 · 3

|G| ≤ 3size(φ). J

I Proposition 29. Let φ be a depth-(d + 1) read-once AC0[⊕] formula with t ≥ 1 parity
gates. Then H◦2sd ◦GMRT fools f with error n2ε1 · 3(d+1)t.

Proof. Let A denote the set of all gates of φ that are either a parity gate or have a descendant
that is a parity gate. It is easy to see that |A| ≤ (d+ 1)t, since each parity gate contributes
to at most d+ 1 ancestors. Define Y = {y1, ..., ym} to be the set of all nodes outside A that
have an immediate parent in A, moreover, let h1, ..., hm to be the functions computed at
these nodes respectively. It is easy to see that

φ(x) = g(h1, ..., hm),

where g is a depth-d read-once AC0[⊕] formula of size at most (d+ 1)t. Using the Fourier
expansion of g,

φ(x) =
∑
S⊆[m]

ĝ(S) ·
∏
i∈S

(−1)hi =
∑
S⊆[m]

ĝ(S) · (1− 2 ·
⊕
i∈S

hi).

By Lemma 27, ‖ĝ‖1 ≤ 3(d+1)t, and by Lemma 21, each
⊕

i∈S hi is n2ε fooled by H◦2sd ◦GMRT.
As a result H◦2sd ◦GMRT fools φ with error at most 2 · n2ε1 · 3(d+1)t. J
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Proof of Theorem 2. By Proposition 29, the generator H◦2sd ◦GMRT ε-fools depth-(d+ 1)
read-once AC0[⊕] formulas with at most t parity gates provided we set ε1 := ε

n2·3(d+1)t . Now
we bound the seed length. The seed length for the distributions D and T underlying Hd

is still bounded by O(d2 log(n/ε1) log log(n/ε1) log logn), just as in the proof of Theorem 1.
Similarly, the seed length for Gd and GMRT is still bounded by

log(n/ε1) ·O((d+ 1) log log(n/ε1))2(d+1)+2

((d+ 1)t+ log(n/ε)) ·O((d+ 1)(log log(n/ε) + log((d+ 1)t))2(d+1)+2.

This second term dominates. Replacing d with d− 1 completes the proof. J
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A Proofs of Lemma 16 and Lemma 24

Recall that Lemma 16 states that every read-once NAND formula can be sandwiched by two
similar structured NAND formulas where every gate has a non-negligible chance of rejecting.
We now present the proof of Lemma 16. We emphasize that this argument was already given
by Chen, Steinke, and Vadhan [13]; we are reproducing it here to verify the exact parameters
of Lemma 16 and so that we can reference the proof when proving Lemma 24.

Proof of Lemma 16. We proceed by induction on size(φ), i.e., the number of NAND gates,
to prove the lemma with the modified bound E[uφ − `φ] ≤ n

√
θ + size(φ)θ. In the base case

size(φ) = 0, if φ is non-constant, it is a single literal, which has expectation 1
2 , so we can

simply take `φ = uφ = φ. Now for the inductive step, suppose φ = NAND(φ1, . . . , φm). Let
ni be the number of inputs to φi, so

∑
i ni = n (recall φ is read-once). By induction, for

each i ∈ [m], there exist formulas `φi
≤ φi ≤ uφi

with the following properties:
E[uφi

− `φi
] ≤ ni

√
θ + size(φi)θ.

Each of uφi
and `φi

has an underlying tree structure that is a subgraph of the underlying
tree structure of φi.
Every non-constant gate ψ in either `φi or uφi satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ.

https://doi.org/10.1007/BF01375474
http://arxiv.org/abs/1801.03590
https://doi.org/10.1137/1.9781611975482.39
https://doi.org/10.1007/978-3-642-20712-9_10
https://doi.org/10.1007/978-3-642-20712-9_10
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1137/050640941


D. Doron, P. Hatami, and W.M. Hoza 16:31

We consider two cases. For the first case, suppose E[¬φ] ≥ θ. In this case, define

`φ = NAND(uφ1 , . . . , uφm)

uφ =
{
NAND(`φ1 , . . . , `φm

) if that gives E[¬uφ] ≥ θ
1 otherwise.

Because NAND is anti-monotone, `φ ≤ φ ≤ uφ. In the first case of the definition of uφ, by
the union bound, we have

E[uφ − `φ] ≤
m∑
i=1

(ni
√
θ + size(φi)θ) = n

√
θ + (size(φ)− 1)θ

as desired. In the second case of the definition of uφ, the error only increases by at most
θ, which is still within the bound of n

√
θ + size(φ)θ. Finally, we must verify that every

non-constant gate ψ in these formulas satisfies E[ψ] ≥ θ and E[¬ψ] ≥ θ. For gates other than
the output gate, this is true by induction, so let us verify that it holds for the output gates.
We have E[¬`φ] ≥ E[¬φ] ≥ θ. On the other hand, if `φ is non-constant, then some child uφi

is non-constant, hence E[`φ] ≥ E[¬uφi ] ≥ θ. Similarly, by construction, if uφ is non-constant,
then E[¬uφ] ≥ θ and E[uφ] ≥ E[¬`φi

] ≥ θ.
Now, for the second case, suppose E[¬φ] < θ. In this case, define

˜̀
φ = NAND(uφ1 , . . . , uφm

)
uφ = 1.

As before, ˜̀φ ≤ φ ≤ uφ, and if ˜̀φ is non-constant, then E[˜̀φ] ≥ E[¬uφi
] ≥ θ. Furthermore,

E[uφ − ˜̀φ] ≤ n
√
θ + size(φ)θ. So if E[¬˜̀φ] ≥ θ, we can just set `φ = ˜̀

φ and we’re done.
Assume, therefore, that E[¬˜̀φ] < θ.

In this case, we divide into two subcases. First, suppose that for some i, we have
E[uφi

] ≤
√
θ. Then we define `φ = NAND(uφi

). Clearly, we still have `φ ≤ φ. Furthermore,

E[uφ − `φ] = E[¬`φ] = E[uφi ] ≤
√
θ.

For the second and final subcase, suppose that for every i, E[uφi ] >
√
θ. In this case, since∏m

i=1 E[uφi
] = E[¬˜̀φ] < θ, there must be some j such that

θ ≤
j∏
i=1

E[uφi ] ≤
√
θ.

Therefore, define

`φ = NAND(uφ1 , . . . , uφj ).

That way, `φ ≤ φ ≤ uφ, and E[¬`φ] ≥ θ, and

E[uφ − `φ] = E[¬`φ] ≤
√
θ.

That completes the induction. To get the parameters claimed in the lemma statement, just
observe that size(φ) ≤ nd and n

√
θ + ndθ < ε0. J

Now we state and prove a strengthening of Lemma 24.
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I Lemma 30. Let φ be a depth-d read-once NAND formula over n variables with d ≤ n and
let ε0 > 0. Let `φ and uφ be the read-once NAND formulas guaranteed to us by Lemma 16.
Then, there exist T `φ, Tuφ : {0, 1}n → {0, 1} satisfying the following conditions:
1. If x ∈ {0, 1}n is such that φ(x) 6= `φ(x) then T `φ(x) = 0.
2. If x ∈ {0, 1}n is such that φ(x) 6= uφ(x) then Tuφ (x) = 0.
3. Both E[T `φ] ≥ 1− ε0 and E[T `φ] ≥ 1− ε0.
4. Both T `φ and Tuφ are computable by depth-d read-once AC0 formulas.
Roughly speaking, the lemma gives us an “error-indicator” read-once formula that is guar-
anteed to be zero whenever the sandwiching formula does not give the same value as the
original formula. The proof of the lemma will heavily use the proof of Lemma 16.

Proof. The proof is by induction on size(φ), as in Lemma 16. In the base case size(φ) = 0,
we simply take T `φ = Tuφ = 1 since `φ = uφ = φ. For the inductive step, suppose φ =
NAND(φ1, . . . , φm) where for each i, size(φi) = ni so that

∑
i ni = n. By our hypothesis,

for every i ∈ [m] there exist formulas `φi
and uφi

guaranteed to us by Lemma 16, as well as
formulas Tuφi

and Tuφi
with the following properties:

T `φi
(x) = 0 whenever φi(x) 6= `φi .

Tuφi
(x) = 0 whenever φi(x) 6= uφi

.

E[¬T `φi
] ≤ ni

√
θ + size(φi)θ and E[¬Tuφi

] ≤ ni
√
θ + size(φi)θ, for θ = ε2

0
4n2 .

T `φi
and Tuφi

are computable by depth-(d− 1) read-once AC0 formulas.
Let us first handle Tuφ . For uφ there are two possibilities. It can be either set to uφ = 1 or
set to uφ = NAND(`φ1 , . . . , `φm

).
1. In the first case, where uφ = 1, we set Tuφ = φ and so when Tuφ (x) = 1 clearly φ(x) =

uφ(x) = 1. To bound E[Tuφ ] = E[φ], recall that this case is invoked only when either
E[¬φ] < θ, in which case the bound is clear, or when E[`φ1 ∧ . . . ∧ `φm

] =
∏
i E[`φi

] < θ.
In the latter case, since E[φi − `φi ] ≤ ni

√
θ + size(φi)θ , ζi, we obtain

E[¬Tuφ ] =
m∏
i=1

E[φi]

=
m∏
i=1

E[`φi
] +

m∑
i=1

(E[φi]− E[`φi
])
i−1∏
j=1

E[φj ]
m∏

j=i+1
E[`φj

]


≤ θ +

m∑
i=1

ζi = θ + n
√
θ + (size(φ)− 1)θ = n

√
θ + size(φ)θ ≤ ε0.

2. In the second case, where uφ = NAND(`φ1 , . . . , `φm), set Tuφ =
∧m
i=1 T

`
φi
. If x ∈

{0, 1}n is such that Tuφ (x) = 1 then T `φi
(x) = 1 for every i ∈ [m] and so uφ(x) =

NAND(φ1(x), . . . , φm(x)) = φ(x). To bound E[Tuφ ], note that

Pr[Tuφ = 0] ≤
m∑
i=1

Pr[T `φi
= 0] ≤

m∑
i=1

(ni
√
θ + size(φi)θ) = n

√
θ + (size(φ)− 1)θ ≤ ε0,

as desired.
In both cases, the depth requirement is immediate.

We shall now handle T `φ. The two possibilities for `φ are as follows.
1. In the first case, `φ = NAND(uφ1 , . . . , uφm). Here, we set T `φ =

∧m
i=1 T

u
φi

and the
correctness is similar to case (2) of Tuφ .
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2. In the second case, up to reordering of the formulas, there exists j ∈ [m− 1] such that
`φ = NAND(uφ1 , . . . , uφj

). We choose T `φ = `φ, and surely if x ∈ {0, 1}n is such that
`φ(x) = 1 then φ(x) = 1 since φ ≥ `φ.
To bound E[T `φ], recall that j is chosen (again, up to reordering) so that E[uφ1∧. . .∧uφj

] ≤√
θ. Thus, E[¬T `φ] ≤

√
θ ≤ ε0.

Again, in both cases, the depth requirement is immediate. J

B Proof of Lemma 25

Toward proving Lemma 25, fix φ, define X0 = ?n, and define `(0)
j, ~X

= φj for each j ∈ [m].
Then, for i < r, inductively define

`
(i+1)
j, ~X

= `(`(i)
j, ~X
|Xi

)

That is, `(i+1)
j, ~X

is the lower sandwiching formula when Lemma 16 is applied to `
(i)
j, ~X
|Xi .

Furthermore, define

T
(i+1)
j, ~X

= T `
(`(i)

j, ~X
|Xi

)

∣∣
Xi+1◦···◦Xr

.

That is, T (i+1)
j, ~X

is the success certifier of Lemma 24 for the sandwiching formula `
(i+1)
j, ~X

,
restricted according to Xi+1 ◦ · · · ◦Xr. Finally, define

φ̃ ~X =
m⊕
j=1

(
`
(r)
j, ~X
|Xr

)
Tφ, ~X =

r∧
i=1

m∧
j=1

T
(i)
j, ~X

.

Proof of Item 1 of Lemma 25. Fix x and assume Tφ, ~X(x) = 1. Fix an arbitrary j ∈ [m].
We’ll show by backward induction on i that

(`(r)
j, ~X
|Xr

)(x) = (`(i)
j, ~X
|Xi◦Xi+1◦···◦Xr

)(x). (7)

In the base case i = r, this is trivial. Now for the inductive step, assume Equation (7) is
true for i+ 1, and we’ll prove it for i. Since Tφ, ~X(x) = 1, we must have T (i+1)

φ, ~X
(x) = 1. That

is, (T `
(`(i)

j, ~X
|Xi

)
|Xi+1◦···◦Xr

)(x) = 1. This implies that

`
(i+1)
j, ~X

(Xi+1 ◦ · · · ◦Xr ◦ x) = `
(i)
j, ~X

(Xi ◦Xi+1 ◦ · · · ◦Xr ◦ x).

Applying the induction hypothesis completes the proof of Equation (7). Now, plugging in
i = 0 to Equation (7), we find that

(`(r)
j, ~X
|Xr

)(x) = (φj |X1◦···◦Xr
)(x). (8)

Since Equation (8) holds for all j simultaneously, we can apply the parity operation from
j = 1 to m to complete the proof. J
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Proof of Item 2 of Lemma 25. Fix any arbitrary i ∈ [r], j ∈ [m]. Let U ∼ Un be independ-
ent of ~X. We have

E
~X,G

[
T

(i)
j, ~X

(G)
]
≥ E

~X,U

[
T

(i)
j, ~X

(U)
]
− ε1 T

(i)
j, ~X

is a depth-d formula

= E
~X,U

[
T `

(`(i−1)
j, ~X

|Xi−1 )
(Xi ◦ · · · ◦Xr ◦ U)

]
− ε1 By the definition of T (i)

j, ~X

≥ E
~X,U

[
T `

(`(i−1)
j, ~X

|Xi−1 )
(U)
]
− ε1 − sε0 By Corollary 5

≥ 1− ε1 − (s+ 1)ε0 By Lemma 24.

Taking a union bound over i and j completes the proof. J

The proof of Item 3 of Lemma 25 is essentially the same as the proof of Item 3 of
Lemma 17 and we omit it.
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Abstract
The concept of matrix rigidity was first introduced by Valiant in [12]. Roughly speaking, a matrix is
rigid if its rank cannot be reduced significantly by changing a small number of entries. There has
been extensive interest in rigid matrices as Valiant showed in [12] that rigidity can be used to prove
arithmetic circuit lower bounds.

In a surprising result, Alman and Williams showed that the (real valued) Hadamard matrix,
which was conjectured to be rigid, is actually not very rigid. This line of work was extended by [3]
to a family of matrices related to the Hadamard matrix, but over finite fields. In our work, we take
another step in this direction and show that for any abelian group G and function f : G→ C, the
matrix given by Mxy = f(x− y) for x, y ∈ G is not rigid. In particular, we get that complex valued
Fourier matrices, circulant matrices, and Toeplitz matrices are all not rigid and cannot be used to
carry out Valiant’s approach to proving circuit lower bounds. This complements a recent result of
Goldreich and Tal [5] who showed that Toeplitz matrices are nontrivially rigid (but not enough for
Valiant’s method). Our work differs from previous non-rigidity results in that those works considered
matrices whose underlying group of symmetries was of the form Fnp with p fixed and n tending to
infinity, while in the families of matrices we study, the underlying group of symmetries can be any
abelian group and, in particular, the cyclic group ZN , which has very different structure. Our results
also suggest natural new candidates for rigidity in the form of matrices whose symmetry groups are
highly non-abelian.

Our proof has four parts. The first extends the results of [1,3] to generalized Hadamard matrices
over the complex numbers via a new proof technique. The second part handles the N ×N Fourier
matrix when N has a particularly nice factorization that allows us to embed smaller copies of
(generalized) Hadamard matrices inside of it. The third part uses results from number theory to
bootstrap the non-rigidity for these special values of N and extend to all sufficiently large N . The
fourth and final part involves using the non-rigidity of the Fourier matrix to show that the group
algebra matrix, given by Mxy = f(x− y) for x, y ∈ G, is not rigid for any function f and abelian
group G.
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1 Introduction

1.1 Background
A major goal in complexity theory is to prove lower bounds on the size and depth of arithmetic
circuits that compute certain functions. One specific problem that remains open despite
decades of effort is to find functions for which we can show super-linear size lower bounds
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for circuits of logarithmic depth. In [12], Valiant introduced the notion of matrix rigidity
as a possible method of proving such lower bounds for arithmetic circuits. More precisely,
over a field F, an m × n matrix M is said to be (r, s)-rigid if any m × n matrix of rank
at most r differs from M in at least s entries. Valiant showed that for any linear function
f : Fn → Fn that can be computed by an arithmetic circuit of size O(n) and depth O(logn),
the corresponding matrix can be reduced to rank O( n

log logn ) by changing O(n1+ε) entries for
any ε > 0. Thus, to prove a circuit lower bound for a function f , it suffices to lower bound
the rigidity of the corresponding matrix at rank O( n

log logn ). We call a matrix Valiant-rigid if

it is
(
O( n

log logn ), O(n1+ε)
)
-rigid for some ε > 0, i.e. sufficiently rigid for Valiant’s method to

yield circuit lower bounds. Over any infinite field, Valiant shows that almost all n×n matrices
are (r, (n− r)2)-rigid for any r, while over a finite field one can get a similar result with a
logarithmic loss in the sparsity parameter. Despite extensive work, explicit constructions of
rigid matrices have remained elusive.

Over infinite (or very large) fields, there are ways to construct highly rigid matrices using
either algebraically independent entries or entries that have exponentially large description
(see [7–9]) 1. However, these constructions are not considered to be fully explicit as they
do not tell us anything about the computational complexity of the corresponding function.
Ideally, we would be able to construct rigid 0, 1-matrices, but even a construction where
the entries are in a reasonably simple field (such as the Fourier matrix) would be a major
breakthrough. The best known constructions of such matrices are (r,O(n

2

r log n
r ))-rigid

(see [4, 11]). There has also been work towards constructing semi-explicit rigid matrices,
which require O(n) bits of randomness (instead of the usual O(n2)), as such a construction
would still yield circuit lower bounds through Valiant’s approach 2. The best result in this
realm (see [5]) shows that random Toeplitz matrices are (r, n3

r2 logn )-rigid with high probability.
Note that both of these bounds become trivial when r is n

log logn .

Many well-known families of matrices, such as Hadamard matrices and Fourier transform
matrices, have been conjectured to be Valiant-rigid [10]. However, a recent line of works
(see [1, 3]) shows that certain well-structured matrices are not rigid. Alman and Williams
show in [1] that the 2n × 2n Hadamard matrix, given by Hxy = (−1)x·y as x and y range
over {0, 1}n, is not Valiant-rigid over Q. Along similar lines, Dvir and Edelman show in [3]
that group algebra matrices for the additive group Fnp , given by Mxy = f(x − y) where
f : Fnp → Fp and x, y range over Fnp , are not Valiant-rigid over Fp (where we view p as fixed
and n goes to infinity). The Hadamard matrix and the group algebra matrices for Fnp satisfy
the property that for any ε > 0, there exists an ε′ > 0 such that it is possible to change at
most N1+ε entries and reduce the rank to N1−ε′ (where N denotes the size of the matrix).
The proofs of both results rely on constructing a matrix determined by a polynomial P (x, y)
that agrees with the given matrix on almost all entries and then arguing that the constructed
matrix has low rank.

1 It remains open to construct a matrix that is Valiant-rigid, even if we only require that the entries live
in a number field of dimension polynomial in the size of the matrix.

2 Note however, that it is easy to construct rigid matrices with O(n1+ε) bits of randomness for any ε > 0
(for example by taking a random matrix with at most nε non-zeros per row) but this is not sufficient for
Valiant’s approach.
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1.2 Our Contribution
In this paper, we show that several broad families of matrices, including Fourier, circulant
and Toeplitz matrices3, are all not Valiant-rigid. The families of matrices we consider in
our work have very different underlying group structure than those considered in previous
works. Both [1, 3] analyze matrices constructed from an underlying group of the form Fnp
with p fixed and n tending to infinity. Fourier and circulant matrices, which we focus on,
are analogs of the Hadamard and group algebra matrices4 for a cyclic group ZN . Since any
abelian group can be decomposed into simple building blocks of the form ZN , our results
extend to all abelian groups (see details below). While most natural constructions of matrices
are highly symmetric, our results suggest that matrices that are symmetric under abelian
groups are not rigid and that perhaps we should look toward less structured matrices, or
matrices whose symmetry group is non-abelian, as candidates for rigidity.

We now move into a more technical overview of our paper. Define the regular-rigidity
of a matrix A, rA(r), as the minimum value of s such that it is possible to change at most
s entries in each row and column of A to obtain a matrix of rank at most r. The notion
of regular-rigidity is weaker than the usual notion of rigidity (and is also weaker than the
commonly used notion of row-rigidity) as if A is an n× n matrix and A is (r, ns)-rigid then
rA(r) ≥ s. Note that this actually makes our results stronger as we will show that the
matrices we consider are not regular-rigid.

All matrices that we deal with will be over C. The dn × dn generalized Hadamard
matrix Hd,n has rows and columns indexed by Znd and entries Hxy = ωx·y where ω = e

2πi
d .

Throughout this paper, we use the term Hadamard matrix to refer to any generalized
Hadamard matrix. We use FN = HN,1 to denote the N ×N Fourier transform matrix. Our
main result, that all Fourier matrices are not rigid enough to carry out Valiant’s approach, is
stated below.

I Theorem 1 (Fourier Matrices are Not Rigid). Let FN denote the N ×N Fourier transform
matrix. For any fixed 0 < ε < 0.1 and N sufficiently large,

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

One key idea in our work is the observation that, if a large family of matrices A are
all diagonalizable by a single matrix M then, the rigidity of any matrix A ∈ A implies
the rigidity of the single matrix M . This situation happens, e.g., when A is the family of
circulant matrices and M is the Fourier matrix. This simple, yet crucial observation allows
us to deduce the non-rigidity of a larger family of matrices.

I Corollary 2 (Circulant Matrices are not Rigid). Let 0 < ε < 0.1 be fixed. For all sufficiently
large N , if M is an N ×N circulant matrix over C,

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

3 It is not hard to see that rigidity of circulant and Toeplitz matrices is essentially the same question
so for the sake of consistency with our (group theoretic) approach we will primarily consider circulant
matrices.

4 While group algebra matrices are supposed to be defined as Mxy = f(x − y), we will work with
Mxy = f(x+ y) in the body of our paper for technical reasons. Note that the two definitions differ only
in a permutation of the rows and thus have the same rigidity.
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Also notice that since any Toeplitz matrix of size at most N
2 can be embedded in an N ×N

circulant matrix, the above implies an analogous result for all Toeplitz matrices. While [5]
shows nontrivial rigidity lower bounds for rank much smaller than N , our results imply that
there are actually no nontrivial rigidity lower bounds for rank close to N .

With a bit more work, it is possible to prove the non-rigidity of group algebra matrices
for any abelian group.

I Theorem 3. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a
function. Let M be a matrix with rows and columns indexed by elements x, y ∈ G and entries
Mxy = f(x− y). If |G| is sufficiently large then

rM
(

2|G|
2ε6(log |G|)0.0001

)
≤ |G|26ε

1.3 Proof Overview
We now take a more detailed look at the techniques used in the proof of Theorem 1.

1.3.1 Generalized Hadamard Matrices
The first step in the proof of Theorem 1 is proving the following result that all Hadamard
matrices are not rigid.

I Theorem 4 (Hadamard Matrices are not Rigid). For fixed d and 0 < ε < 0.1, there exists
an ε′ such that for all sufficiently large n, rHd,n

(
dn(1−ε′)

)
≤ dnε

Note that Theorem 4 generalizes the main result of [1] (which only deals with d = 2).
Also, given any dn×dn matrix of the form Mxy = f(x−y) with f : Znd → C, we can permute
its rows so that it is diagonalized by Hd,n. Thus, we can apply the diagonalization trick
mentioned above and obtain the following result, which extends the work in [3] to matrices
over C.

I Corollary 5. Let f be a function from Znd → C and let M be a dn × dn matrix with
Mxy = f(x− y). Then for any fixed d and 0 < ε < 0.1, there exists an ε′ > 0 such that for
all sufficiently large n, rM

(
dn(1−ε′)

)
≤ dnε

1.3.2 Fourier Matrices
Equipped with the machinery for Hadamard matrices, we can complete the proof of Theorem
1. Our proof consists of two steps. First we show that for integers N of a very special form,
the N ×N Fourier matrix is not rigid because it can be decomposed into submatrices with
Hadamard-type structure. We say an integer N is well-factorable if it is a product of distinct
primes q1, . . . , ql such that for all i, qi − 1 has no large prime power divisors. We will make
this notion more precise later, but informally, the first step is as follows:

I Theorem 6. Let FN denote the N×N Fourier transform matrix. For any fixed 0 < ε < 0.1
and well-factorable integer N , we have

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε
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The main intuition is that if N is a product of distinct primes q1, . . . , ql, then within the
Fourier matrix FN , we can find submatrices whose rows and columns can be indexed by
Z∗q1
⊗ · · · ⊗ Z∗ql . This multiplicative structure can be replaced by the additive structure

of Zq1−1 ⊗ · · · ⊗ Zql−1. We can then factor each additive group Zqi−1 into prime power
components. If q1 − 1, . . . , ql − 1 all have no large prime power divisors, we expect prime
powers to be repeated many times when all of the terms are factored. This allows us to find
submatrices with Zld additive structure for which we can apply tools such as Theorem 4 and
Corollary 5 to reduce the rank while changing a small number of entries. We then bound the
rank and total number of entries changed over all submatrices to deduce that FN is not rigid.

The second step of our proof that Fourier matrices are not rigid involves extending
Theorem 6 to all values of N . The diagonalization trick gives that N ×N circulant matrices
are not rigid when N is well-factorable. We then show that for N ′ < N

2 , we can rescale the
columns of the N ′ ×N ′ Fourier matrix and embed it into an N ×N circulant matrix. As
long as N ′ is not too much smaller than N (say N ′ > N

(logN)2 ), we get that the N ′ × N ′
Fourier matrix is not rigid. Thus, for each well-factorable N and all N ′ in the range

N
(logN)2 < N ′ < N

2 , the N ′×N ′ Fourier transform matrix is not rigid. We then use a number
theoretic result of [2] to show that the gaps between well-factorable integers are not too
large. Thus, the above intervals cover all integers as N runs over all well-factorable numbers,
finishing the proof.

1.4 Organization
In Section 2, we introduce notation and prove several basic results that we will use throughout
the paper. In Section 3, we show that Hadamard and several closely related families of
matrices are not rigid. In Section 4, we show that N ×N Fourier matrices are not rigid when
N satisfies certain number-theoretic properties. In Section 5, we complete the proof that all
Fourier matrices are not rigid. We then deduce that all Toeplitz matrices are not rigid. In
Section 6, we use the results from the previous section to show that group algebra matrices
for abelian groups are not rigid. Finally, in Section 7, we discuss a few open questions and
possible directions for future work.

2 Preliminaries

Throughout this paper, we let d ≥ 2 be an integer and ω = e
2πi
d be a primitive dth root of

unity. When we consider an element of Znd , we will view it as an n-tuple with entries in the
range [0, d− 1]. When we say a list of dn elements x1, . . . , xdn is indexed by Znd , we mean
that each xi is labeled with an element of Znd such that all labels are distinct and the labels
of x1, . . . , xdn are in lexicographical order.

2.1 Basic Notation
We will frequently work with tuples, say I = (i1, . . . , in) ∈ Znd . Below we introduce some
notation for dealing with tuples that will be used later on.

I Definition 7. For a tuple I, we let Ii denote its ith entry. For instance if I = (i1, . . . , in)
then Ik = ik.

I Definition 8. For an n-tuple I = (i1, i2, . . . , in), define the polynomial over n variables
xI = xi11 . . . xinn .

CCC 2019
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I Definition 9. For ω a dth root of unity and an n-tuple I = (i1, i2, . . . , in) ∈ Znd , we define
ω[I] = (ωi1 , . . . , ωin).

I Definition 10. For a function f : Znd → C, define the n-variable polynomial Pf as

Pf =
∑
I∈Zn

d

f(I)xI

I Definition 11. For an n-tuple I = (i1, i2, . . . , in), we define the set perm(I) to be a set of
n-tuples consisting of all distinct permutations of the entries of I. Similarly, for a set of
n-tuples S, we define perm(S) to be the set of all n-tuples that can be obtained by permuting
the entries of some element of S.

I Definition 12. We say a set S ⊆ Znd is symmetric if for any I ∈ S, perm(I) ⊆ S.

I Definition 13. For a set of n-tuples S, let red(S) denote the set of equivalence classes
under permutation of entries in S. Let rep(S) be a set of n-tuples formed by taking one
representative from each equivalence class in red(S) (note rep(S) is not uniquely determined
but this will not matter for our use).

Note that if rep(S) = {I1, . . . , Ik}, then the sets perm(I1), perm(I2), . . . , perm(Ik) are disjoint
and their union contains S. If the set S is symmetric then their union is exactly S.

2.2 Special Families of Matrices

We now define notation for working with a few special families of matrices.

I Definition 14. An N ×N matrix M is called a Toeplitz matrix if Mij depends only on
i− j. An N ×N matrix M is called a Hankel matrix if Mij depends only on i+ j. Note that
the rows of any Toeplitz matrix can be permuted to obtain a Hankel matrix so any non-rigidity
results we show for one family also hold for the other.

I Definition 15. For an abelian group G and a function f : G→ C, let MG(f) denote the
|G| × |G| matrix (over C) whose rows and columns are indexed by elements x, y ∈ G and
whose entries are given by Mxy = f(x + y). When it is clear what G is from context, we
will simply write M(f). We let VG denote the family of matrices MG(f) as f ranges over
all functions from G to C. We call VG the family of adjusted group algebra matrices for the
group G. When G is a cyclic group, we call the matrices in VG adjusted-circulant.

Compared to the usual group algebra (and circulant) matrices defined by Mxy = f(x− y),
the matrix MG(f) differs only in a permutation of the rows. In the proceeding sections,
we will work with MG(f) for technical reasons, but it is clear that the same non-rigidity
results hold for the usual group algebra matrices. Similarly, we will use adjusted-circulant
and Hankel matrices as it is clear that the same non-rigidity results hold for circulant and
Toeplitz matrices. Also note that adjusted-circulant matrices are a special case of Hankel
matrices.

I Definition 16. Let Hd,n denote the dn × dn Hadamard matrix, i.e. the matrix whose rows
and columns are indexed by n-tuples I, J ∈ Znd and whose entries are HIJ = ωI·J where
ω = e

2πi
d . When n = 1, we define Fd = Hd,1 and call Fd a Fourier matrix.
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2.3 Matrix Rigidity
Here, we review basic notation for matrix rigidity.

I Definition 17. For a matrix M and a real number r, we define RM (r) to be the smallest
number s for which there exists a matrix A with at most s nonzero entries and a matrix B
of rank at most r such that M = A+B. If RM (r) ≥ s, we say M is (r, s)-rigid.

I Definition 18. For a matrix M and a real number r, we define rM (r) to be the smallest
number s for which there exists a matrix A with at most s nonzero entries in each row and
column and a matrix B of rank at most r such that M = A+B. If rM (r) ≥ s, we say M is
(r, s)-regular rigid.

It is clear that if a matrix is (r, ns)-rigid, then it must be (r, s)-regular rigid. In proceeding
sections, we will show that various matrices are not ( N

log logN , N
ε)-regular rigid for any ε > 0

and this will imply that Valiant’s method for showing circuit lower bounds in [12] cannot
be applied.

2.4 Preliminary Results
Next, we mention several basic results that will be useful in the proofs later on.

B Claim 19. Hd,n = Fd ⊗ · · · ⊗ Fd︸ ︷︷ ︸
n

where ⊗ denotes the Kronecker product.

Proof. This can easily be verified from the definition. C

B Claim 20. Hd,nH
∗
d,n = dnI where H∗d,n is the conjugate transpose of Hd,n and I is the

identity matrix.

Proof. We verify that FdF ∗d = dI, and then using the previous claim, we deduce that
Hd,nH

∗
d,n = dnI. C

B Claim 21. Let f : Znd → C be a function. Let ω be a dth root of unity and set
Pf =

∑
I∈Zn

d
f(I)xI . Let D = Hd,nMZn

d
(f)Hd,n. Then D is a diagonal matrix with diagonal

entries dnPf (ω[J]) as J ranges over Znd .

Proof. First, we analyze the product MZn
d
(f)Hd,n. This is a dn× dn matrix and its rows and

columns can naturally be indexed by tuples I, J ∈ Znd . The entry with row indexed by I and
column indexed by J is∑

I′∈Zn
d

f(I + I ′)ωI
′·J = ω−I·J

∑
I′∈Zn

d

f(I + I ′)ω(I′+I)·J = ω−I·JPf (ω[J])

Therefore, the columns of MZn
d
(f)Hd,n are multiples of the columns of H∗d,n. In fact, the

column of MZn
d
(f)Hd,n indexed by J is Pf (ω[J]) times the corresponding column of H∗d,n.

Since Hd,nH
∗
d,n = dnI, D must be a diagonal matrix whose entries on the diagonal are

dnPf (ω[J]) as J ranges over Znd . C

Plugging n = 1 into the above gives:

B Claim 22. Let M be a d× d adjusted-circulant matrix. Then FdMFd is a diagonal matrix.

Claim 21 gives us a characterization of the rank of matrices of the form MZn
d
(f).
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B Claim 23. Let f : Znd → C be a function. Let ω be a dth root of unity and say
Pf =

∑
I∈Zn

d
f(I)xI has C roots among the set {(ωi1 , . . . , ωin)|(i1, . . . , in) ∈ Znd}. Then

rank(MZn
d
(f)) = dn − C.

Proof. Consider the product D = Hd,nMZn
d
(f)Hd,n. Note that Hd,n is clearly invertible by

Claim 20. Therefore, it suffices to compute the rank of D. By Claim 21, D must be a
diagonal matrix whose entries on the diagonal are dnPf (ω[J]) as J ranges over Znd . The rank
of D is the number of nonzero diagonal entries which is simply dn − C C

As mentioned in the introduction, we can relate the rigidity of a matrix to the rigidity of
matrices that it diagonalizes.

I Lemma 24. If B = A∗DA where D is a diagonal matrix and rA(r) ≤ s then rB(2r) ≤ s2.
The same inequality holds also for B′ = ADA.

Proof. Let E be the matrix with at most s nonzero entries in each row and column such
that A− E has rank at most r. We have

B − E∗DE = A∗D(A− E) + (A∗ − E∗)DE

Since rank(A− E) ≤ r, rank(B − E∗DE) ≤ 2r. Also, E∗DE has at most s2 nonzero entries
in each row and column so rB(2r) ≤ s2. The second part can be proved in the exact same
way with A∗ replaced by A. J

In light of Lemma 24, Claim 22, and Claim 21, proving non-rigidity for d×d circulant matrices
reduces to proving non-rigidty for Fd and proving non-rigidity for group algebra matrices
for Znd reduces to proving non-rigidity for Hd,n. Below, we show that these statements are
actually equivalent.

B Claim 25. It is possible to rescale the rows and columns of Hd,n to get a matrix of the
form MZn

d
(f) for some symmetric function f : Znd → C. In particular, it is possible to rescale

the rows and columns of Fd to get an adjusted-circulant matrix.

Proof. Let ζ be such that ζ2 = ω. Multiply each row of Hd,n by ζ(I·I) and each column by
ζ(J·J) to get a matrix H ′. We have

H ′IJ = ζ(I+J)·(I+J)

For a tuple x = (x1, . . . , xn) ∈ Znd , we define f(x) = ζx
2
1+···+x2

n . To complete the proof, it
suffices to show that f : Znd → C is well defined. To do this, we will show that ζx2 depends
only on the residue of x mod d. If d is odd, we can choose ζ to be a dth root of unity and
the claim is clear. If d is even ζ(x+d)2 = ζx

2
ζ2dx+d2 but since 2dx+ d2 is a multiple of 2d,

ζ2dx+d2 = 1 and thus ζ(x+d)2 = ζx
2 . C

3 Non-rigidity of Generalized Hadamard Matrices

In this section, we show that the Hadamard matrix Hd,n becomes highly non-rigid for large
values of n. The precise result is stated below.

I Theorem 26. Let N = dn for positive integers d, n. Let 0 < ε < 0.1 and assume
n ≥ d2(log d)2

ε4 . Then rHd,n(N1− ε4
d2 log d ) ≤ N ε.

First we prove a few lemmas about symmetric polynomials that we will use in the proof
of Theorem 26.
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I Lemma 27. Let Tm denote the set of tuples in Znd such that at least m entries are equal to
0. Say rep(Tm) = {I1, . . . , Ik}. Consider the polynomials P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn)
defined by

Pi(x1, . . . , xn) =
∑

I∈perm(Ii)

xI

For any complex numbers y1, . . . , ym, and any polynomial Q(xm+1, . . . xn) that is symmetric
and degree at most d− 1 in each of its variables, there exist coefficients c1, . . . , ck such that

Q(xm+1, . . . , xn) =
∑

ciPi(y1, . . . ym, xm+1, . . . , xn)

Proof. It suffices to prove the statement for all Q of the form∑
I′′∈perm(I′)

xI
′′

where I ′ ∈ Zn−md . We will prove this by induction on the degree. Clearly one of the Ii is
(0, 0 . . . 0), so one of the polynomials Pi(x1, . . . , xn) is constant. This finishes the case when
Q has degree 0. Now we do the induction step. Note that we can extend I ′ to an element of
Tm by setting the first m entries equal to 0. Call this extension I and say that I ∈ perm(Ii).
We have∑

I′′∈perm(I′)

xI
′′

= Pi(y1, . . . , ym, xm+1, . . . , xn)−R(y1, . . . , ym, xm+1, . . . xn)

R(y1, . . . , ym, xm+1, . . . xn), when viewed as a polynomial in xm+1, . . . , xn (since y1, . . . , ym
are complex numbers that we can plug in), is symmetric and of lower degree than the left
hand side. Thus, using the induction hypothesis, we can write R in the desired form. This
completes the induction step. J

The key ingredient in the proof of Theorem 26 is the following lemma which closely
resembles the main result in [3], but deals with matrices over C instead of matrices over a
finite field.

I Lemma 28. Let f : Znd → C be a symmetric function on the n variables. Let N = dn. Let
0 < ε < 0.1 and assume n ≥ d2(log d)2

ε4 . Then rM(f)(N
1− ε4

d2 log d ) ≤ N ε.

Let δ = ε2, m = dn
( 1−δ

d

)
e and let S denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such

that the entries indexed 1, 2, . . .m are equal to 0, the entries indexed m+ 1, . . . , 2m are equal
to 1 and in general for 0 ≤ i ≤ d− 1, the entries indexed im+ 1, . . . , (i+ 1)m are equal to i.
Note |S| = dn−dm ≈ dδn = N ε2 (since n− dm is approximately δn).

The main idea will be to change f in a small number of locations so that it has many
zeros in the set {ω[I]|I ∈ Znd} in order to make use of Claim 23. More precisely, first we will
change f to f ′ by changing its values in at most N ε places so that f ′ is still symmetric in all
of the variables and

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S

Note that although the size of S is small, the fact that f ′ is symmetric implies that f ′ also
vanishes on perm(S), which covers almost all of Znd . Once we have shown the above, we
quantitatively bound the number of entries changed between M(f) and M(f ′) and also the
rank of M(f ′) to complete the proof of Lemma 28. To do the first part, we need the following
sub-lemma.
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I Lemma 29. Let T denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such that at least
n
(
1− δ

)
of the entries are 0. By changing the values of f only on elements of T , we can

obtain f ′ satisfying

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S (1)

Proof. We interpret (1) as a system of linear equations where the unknowns are the values
of f ′ at various points. Let rep(T ) = {J1, J2, . . . , Jk} for J1, J2, . . . Jk ∈ T . Since we must
maintain that f ′ is symmetric, there are essentially k variables each corresponding to an
equivalence class of tuples under permutations. Each equivalence class is of the form perm(Jj)
and we denote the corresponding variable by mj . The system of equations in (1) can be
rewritten in the form

k∑
j=1

mj

∑
J∈perm(Jj)

ωI·J +
∑
J′ /∈T

f(J ′)ωI·J
′

= 0 ∀I ∈ S

If we let rep(S) = {I1, I2, . . . , Il}, the system has exactly l distinct equations corresponding to
each element of rep(S) due to our symmetry assumptions. Let M denote the l× k coefficient
matrix represented by Mij =

∑
J∈perm(Jj) ω

Ii·J . To show that the system has a solution, it
suffices to show that the column span of M is full. This is equivalent to showing that for
each i = 1, 2, . . . l there exist coefficients a1, a2, . . . , ak such that

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi·J 6= 0

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi′ ·J = 0 ∀i′ 6= i

Fix an index i0. We can view each equation above as a polynomial in ω[Ii] given by

P (x1, . . . , xn) =
k∑
j=1

aj
∑

J∈perm(Jj)

xJ

and the problem becomes equivalent to constructing a polynomial that vanishes on ω[Ii] if
and only if i 6= i0. Note that only the entries xdm+1, . . . , xn matter as we have x1 = · · · =
xm = 1, . . . , x(d−1)m+1 = · · · = xdm = ωd−1 for all points we consider.

For Ii = (i1, i2, . . . in), let I ′i denote the sub-tuple (idm+1, . . . , in). The problem is equivalent
to constructing a polynomial

Q(xdm+1, . . . , xn) = P (1, 1, . . . , ωd−1, . . . , ωd−1, xdm+1, . . . xn)

such that Q vanishes on ω[I′i] if and only if i 6= i0.

Lemma 27 implies that by choosing the coefficients a1, . . . , ak, we can make Q be any
polynomial that is symmetric in xdm+1, . . . , xn and degree at most d − 1 in each of the
variables.

Now consider the polynomial

Qi0(xdm+1, . . . , xn) =
∑

I′∈perm(I′
i0

)

(
xddm+1 − 1
xdm+1 − ωI′0

)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
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(note this is a polynomial with coefficients in C since each of the factors reduces to a degree
d− 1 polynomial).

It is clear that the above polynomial is symmetric in all of the variables and satisfies the
degree constraint so we know we can choose suitable coefficients a1, . . . , ak. We claim that
the polynomial we construct does not vanish on ω[I′i0 ] but vanishes on ω[I′i] for i 6= i0. Indeed,
the product(

xddm+1 − 1
xdm+1 − ωI′0

)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
is 0 if and only if (xdm+1, . . . , xn) 6= I ′. However, there is exactly one I ′ ∈ perm(I ′i0) with
I ′ = I ′i0 and none with I ′ = I ′i for i 6= i0 since I1, I2, . . . , Il are representatives of distinct
equivalence classes under permutation of entries. This means that the polynomial Qi0 we
constructed has the desired properties and completes the proof that the system is solvable. J

Proof of Lemma 28. Since M(f) = (M(f) −M(f ′)) + M(f ′), to complete the proof of
Lemma 28, it suffices to bound the number of nonzero entries in M(f) −M(f ′) and the
rank of M(f ′).

The number of nonzero entries in each row and column of (M(f)−M(f ′)) is at most |T |.
This is exactly the number of elements of Znd with at least n

(
1− δ

)
entries equal to 0. Using

standard tail bounds on the binomial distribution, the probability of a random n-tuple having
at least that many 0s is at most

e−nD(1−δ|| 1d ) = e−n
(

(1−δ) log(d(1−δ))+δ log( dδ
d−1 )

)
= d−n(1−δ)e−n

(
(1−δ) log(1−δ)+δ log( dδ

d−1 )
)

where D(·||·) denotes KL-divergence. For δ < 0.01, the above is at most d−n(1−
√
δ) and thus

we change at most dεn entries in each row and column.
By Claim 23, the rank of M(f ′) is at most dn − |perm(S)|. Equivalently, this is the

number of n-tuples such that some element in {0, 1, . . . , d − 1} appears less than
( 1−δ

d

)
n

times. We use Hoeffding’s inequality and then union bound over the d possibilites to get the
probability that a randomly chosen n-tuple in Znd is outside S is at most

de−2 δ2n
d2 = e−2 δ2n

d2 +log d

When n > d2(log d)2

δ2 , the above is at most d−
ε4n

d2 log d and thus the rank of M(f ′) is at most

d

(
1− ε4

d2 log d

)
n, completing the proof of Lemma 28. J

Proof of Theorem 26. Applying Claim 25 and Lemma 28 we immediately get the desired.
J

Using Theorem 26, Lemma 24, and Claim 21, we get the following result which extends
Lemma 28 to matrices where f is not symmetric.

I Corollary 30. For any function f : Znd → C and any 0 < ε < 0.1 such that n ≥ d2(log d)2

ε4 ,
we have

rM(f)(2N
1− ε4

d2 log d ) ≤ N2ε

where N = dn.
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4 Non-rigidity for Fourier Matrices of Well-Factorable Size

Our goal in this section is to show that we can find infinitely many values of N for which the
Fourier matrix FN is highly non-rigid. The integers N we analyze will be products of many
distinct primes qi with the property that qi − 1 is very smooth (has all prime factors small).
For these values of N , we can decompose the matrix FN into several submatrices that are
closely related to Hadamard matrices. We then apply the results from the previous section
to show that each submatrix is non-rigid and aggregate over the submatrices to conclude
that FN is non-rigid.

We first show precisely how to construct N . The properties that we want N to have are
stated in the following two definitions.

I Definition 31. We say a prime q is (α, x)-good if the following properties hold.
x0.999 ≤ q ≤ x
All prime powers dividing q − 1 are at most xα

I Definition 32. We say an integer N is (l, α, x)-factorable if the following properties hold.
N = q1 . . . ql where q1, . . . , ql are distinct primes
q1, . . . , ql are all (α, x)-good

To show the existence of (l, α, x)-factorable integers, it suffices to show that there are
many (α, x)-good primes. This is captured in the following lemma.

I Lemma 33. There exists a fixed constant C0 such that for any parameter α > 0.2961 and
sufficiently large x (possibly depending on α), there are at least x

(log x)C0 distinct (α, x)-good
primes.

The proof of Lemma 33 relies on the following result from analytic number theory, found
in [2], that allows us to find a large set of primes qi for which qi − 1 is very smooth.

I Definition 34. For a positive integer m, let P+(m) denote the largest prime factor of m.
For a fixed positive integer a, let

πa(x, y) = |{p|a < p ≤ x, P+(p− a) ≤ y}|

where p ranges over all primes. In other words, πa(x, y) is the number of primes at most x
such that p− a is y-smooth.

I Theorem 35 ([2]). There exist constants x0, C such that for β = 0.2961, x > x0 and
y ≥ xβ we have 5

π1(x, y) > x

(log x)C

Proof of Lemma 33. Let y = xβ where β = 0.2961. By Theorem 35, for sufficiently large x,
we can find at least d x

(log x)C − x
0.999e primes p1, . . . , pl between x0.999 and x such that all

prime factors of pi − 1 are at most xβ . Eliminate all of the pi such that one of the prime
powers in the prime factorization of pi − 1 is more than xα. Note that there are at most
xβ distinct primes that divide pi − 1 for some i. Thus, there are at most xβ log x different
prime powers bigger than xα that divide some pi − 1. Each of these prime powers can divide

5 [2] proves the same inequality with πa(x, y) for any integer a where x0 may depend on a and C is an
absolute constant.
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at most x1−α of the elements {p1, . . . , pl}, so in total, we eliminate at most x1−α+β log x of
the pi. Thus, for sufficiently large x, the number of (α, x)-good primes is at least

x

(log x)C − x
0.999 − x1−α+β log x ≥ x

2(log x)C J

For simplicity, we will set α = 0.3 by default.

I Definition 36. A prime is said to be x-good if it is (0.3, x)-good. An integer N is said to
be (l, x)-factorable if it is (l, 0.3, x)-factorable.

Lemma 33 implies that for all sufficiently large x and l ≤ x
(log x)C0 , we can find (l, x)-

factorable integers. We now show that if we choose x sufficiently large and N to be
(l, x)-factorable for some x0.99 ≤ l ≤ x0.993, then FN is highly non-rigid.

I Theorem 37. Let 0 < ε < 0.1 be given. For x sufficiently large and N a (l, x)-factorable
number for x0.99 ≤ l ≤ x0.993, we must have

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε

In order to prove Theorem 37, we will first prove a series of preliminary results that
characterize the structure of Fourier and Hadamard matrices.

4.1 Structure of Hadamard and Fourier Matrices
I Lemma 38. Let n = x1x2 . . . xj for pairwise relatively prime positive integers x1, . . . , xj.
There exists a permutation of the rows and columns of Fn, say F ′ such that

F ′ = Fx1 ⊗ · · · ⊗ Fxj

where ⊗ denotes the Kronecker product.

Proof. Let γ be a primitive nth root of unity. For i = 1, 2, . . . j, let γi = γ
ci
n
xi where ci

is chosen such that ci nxi ≡ 1 mod xi. Note this is possible since x1, . . . , xj are pairwise
relatively prime. γi is a primitive xith root of unity.

Now by the Chinese remainder theorem, there is a ring isomorphism between Zn and
Zx1 × · · · × Zxj . We can thus view Fn as a matrix whose rows and columns are indexed
by elements of Zx1 × · · · × Zxj and such that the entry Fn|AB corresponding to tuples
A = (a1, . . . , aj) and B = (b1, . . . , bj) is γc where c is the unique element of Zn with c ≡ aibi
mod xi for all i.

For each matrix Fxi its rows and columns are labeled with elements of Zxi and its entries
are Fxi|ab = γa·bi . Thus in the Kronecker product, the rows and columns are labeled with
elements of Zx1 × · · · × Zxj such that the entry corresponding to tuples (a1, . . . , aj) and
(b1, . . . , bj) is

γa1b1
1 . . . γ

ajbj
j = γ

c1a1b1
n
x1

+···+cjajbj nxj

For each xi, we compute the residue of the exponent in the above expression mod xi. The
term ciaibi

n
xi

is congruent to aibi by definition and all other terms are 0 so the sum is
congruent to aibi mod xi. Thus, for some permutation of the rows and columns of Fn, it is
equal to the Kronecker product Fx1 ⊗ · · · ⊗ Fxj , as desired. J
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I Lemma 39. Let M = A⊗B where A is an m×m matrix and B is an n× n matrix. For
any two integers r1, r2 we have

rM (r1n+ r2m) ≤ rA(r1)rB(r2)

Proof. The proof of this lemma is similar to the proof of Lemma 24. There are matrices
E,F with atmost rA(r1) and rB(r2) nonzero entries respectively such that rank(A+E) ≤ r1
and rank(B + F ) ≤ r2. We will now show that rank(M − E ⊗ F ) ≤ r1n+ r2m. Indeed

M − E ⊗ F = (A+ E)⊗B − E ⊗ (B + F )

and the right hand side of the above has rank at most r1n+ r2m since rank multiplies under
the Kronecker product. Clearly E ⊗ F has at most rA(r1)rB(r2) nonzero entries in each row
and column so we are done. J

I Lemma 40. Consider the matrix

A = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
an

)

Let 0 < ε < 0.1 be some chosen parameter. Assume ai ≥ t2i (log ti)2

ε4 for all i. Let P = ta1
1 . . . tann .

Then

rA

P n∑
i=1

 1

t

aiε
4

t2
i

log ti
i


 ≤ P ε

Proof. Note Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

= Ht
a1
1
. Now we apply Theorem 26 to each of the n terms. Let

Tti,ai = Fti ⊗ · · · ⊗ Fti︸ ︷︷ ︸
ai

. We have

rTti,ai

tai
(

1− ε4
t2
i

log ti

)
i

 ≤ taiεi
Now we combine the above estimates over all i by repeatedly applying Lemma 39. We get

rA

 n∑
i=1

t
ai

(
1− ε4

t2
i

log ti

)
i

(
P

taii

) ≤ P ε
This easily rearranges into the desired. J

4.2 Proof of Theorem 37
To complete the proof of Theorem 37, we will break FN into submatrices, show that
each submatrix is non-rigid using techniques from the previous section, and then combine
our estimates to conclude that FN is non-rigid. Recall that N is (l, x)-factorable with
x0.99 ≤ l ≤ x0.993, meaning N = q1q2 . . . ql for some distinct primes q1, . . . , ql where qi − 1
has no large prime power divisors for all i. Let γ be a primitive N th root of unity.

I Definition 41. For a subset S⊂ [l] define multN (S)=
∏
s∈S qs and factN (S)=

∏
s∈S(qs−1).
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I Definition 42. For all S ⊂ [l] we will define TS as the subset of [N ]× [N ] indexed by (i, j)
such that

ij 6≡ 0 mod qs ∀s ∈ S
ij ≡ 0 mod qs ∀s /∈ S

Note that as S ranges over all subsets of [l], the sets TS form a partition of [N ]× [N ].

For each S, we will divide the set TS into submatrices such that when filled with the
corresponding entries of FN , we can apply Lemma 40 to show that each submatrix is nonrigid.
The key intuition is that for a given prime qi, once we restrict to nonzero residues, the
multiplicative subgroup actually has the additive structure of Zqi−1. Since qi − 1 is smooth,
Zqi−1 is a direct sum of cyclic groups of small order.

I Definition 43. For all S ⊂ [l], we define the factN (S)× factN (S) matrix M(S) as follows.
Let RS be the set of residues modulo multN (S) that are relatively prime to multN (S). Note
that |RS | = factN (S). Each row and each column of M(S) is indexed by an element of RS
and the entry in row i and column j is θi·j where θ is a primitive multN (S) root of unity.
The exact order of the rows and columns will not matter for our uses. Note that replacing θ
with θk for k relatively prime to multN (S) simply permutes the rows so it does not matter
which root of unity we choose.

I Lemma 44. Consider the set of entries in FN indexed by elements of TS. We can partition
this set into

∏
s/∈S(2qs − 1) submatrices each of size factN (S)× factN (S) that are equivalent

to M(S) up to some permutation of rows and columns.

Proof. In TS , for each prime qs with s /∈ S, there are 2qs − 1 choices for what i and j are
mod qs. Now fix the choice of i, j mod qs for all s /∈ S. Say we restrict to indices with i ≡ c1
mod

∏
s/∈S qs and j ≡ c2 mod

∏
s/∈S qs.

We are left with a factN (S)× factN (S) matrix, call it A, where i and j run over all residues
modulo multN (S) that are relatively prime to multN (S). Naturally, label all rows and
columns of this matrix by what the corresponding indices i and j are modulo multN (S). For
a row labeled a and a column labeled b, we compute the entry Aab. The value is γa′·b′ where
a′ is the unique element of ZN such that a′ ≡ a mod multN (S) and a′ ≡ c1 mod

∏
s/∈S qs

and b′ is defined similarly. We have

a′ · b′ ≡ ab mod multN (S)

a′ · b′ ≡ c1c2 ≡ 0 mod
∏
s/∈S

qs

Therefore

a′b′ ≡ k
∏
s/∈S

qsab mod multN (S)

where k is defined as an integer such that k
∏
s/∈S qs ≡ 1 mod multN (S). Note that k

clearly exists since
∏
s/∈S qs and multN (S) are relatively prime. Since γk

∏
s/∈S

qs is a primitive
multN (S) root of unity, the matrix A is equivalent to M(S) up to some permutation,
as desired. J
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I Lemma 45. For a subset S ⊂ [l] with |S| = k and M(S) (as defined in Definition 43) a
factN (S)× factN (S) matrix as described above, we have

rM(S)

(
factN (S)
2ε4x0.01

)
≤ (factN (S))3ε

as long as k ≥ x0.95

Proof. WLOG S = {1, 2, . . . , k}. Consider the factorizations of q1 − 1, . . . , qk − 1 into prime
powers. For each prime power peii ≤ x0.3, let c(peii ) be the number of indices j for which peii
appears (exactly) in the factorization of qj − 1. Note that

(q1 − 1) . . . (qk − 1) =
∏
t

tc(t)

where t ranges over all prime powers at most x0.3. Consider all prime powers peii for which
c(peii ) < x0.62.∏

t,c(t)≤x0.62

tc(t) ≤
(

(x0.3)x
0.62
)x0.3

≤ xx
0.92

Now consider all prime powers say t1, . . . , tn for which c(ti) ≥ x0.62. Let P = t
c(t1)
1 . . . t

c(tn)
n .

From the above and the assumption that k ≥ x0.95, qi ≥ x0.999, we know that

P ≥ factN (S)
xx0.92 ≥ (factN (S))(1−ε)

We will use the prime powers ti and Theorem 26 to show that M(S) is not rigid. Note that
we can associate each row and column of M(S) to a k-tuple (a1, . . . , ak) where ai ∈ Zqi−1 as
follows. First, it is clear that each row and column of M(S) can be associated to a k-tuple
(z1, . . . , zk) ∈ Z∗q1

× · · · × Z∗qk . Now Z∗qi can be viewed as a cyclic group on qi − 1 elements.
This allows us to create a bijection between the rows and columns of M(S) and elements of
Zq1−1 × · · · × Zqk−1.

Also note that for a row indexed by A = (a1, . . . , ak) and a column indexed by B = (b1, . . . , bk),
the entry M(S)AB is dependent only on A+B. We will now decompose M(S) into several
P × P submatrices. In particular, we can write qi − 1 = diTi where Ti is a product of
some subset of {t1, . . . , tn} and di is relatively prime to Ti. We have T1T2 . . . Tk = P . For
each A′, B′ ∈ Zd1 × · · · × Zdk , we can construct a P × P submatrix M(S,A′, B′) consisting
of all entries M(S)AB of M(S) such that A ≡ A′, B ≡ B′ (where the equivalence is over
Zd1 × · · · × Zdk). This gives us d2 different submatrices where d = d1 . . . dk. Naturally,
we can associate each row and column of a submatrix M(S,A′, B′) with an element of
ZT1×· · ·×ZTk such that for a row labeled I and a column labeled J , the entryM(S,A′, B′)IJ
only depends on I + J . In particular, this means that X (M(S,A′, B′))X is diagonal where
X = FT1 ⊗ · · · ⊗ FTk . Now, using Lemma 38, we can rewrite

X = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
c(t1)

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
c(tn)

)

Since for x sufficiently large, c(ti) ≥ x0.62 ≥ t2i (log ti)2

ε4 , we can use Lemma 40 and get that

rX

P n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i


 ≤ P ε
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Let E be the matrix of changes to reduce the rank of X according to the above. We have
that E has at most P ε nonzero entries in each row and column and

rank(X − E) ≤ P
n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i


We can write M(S) in block form as

M(S,A1, B1) M(S,A1, B2) . . . M(S,A1, Bd)
M(S,A2, B1) M(S,A2, B2) . . . M(S,A1, Bd)

...
...

. . .
...

M(S,Ad, B1) M(S,Ad, B2) . . . M(S,Ad, Bd)


where A1, . . . , Ad and B1, . . . , Bd range over the elements of Zd1×· · ·×Zdk . We can rearrange
the above asM(S,A1, B1) . . . M(S,A1, Bd)

...
. . .

...
M(S,Ad, B1) . . . M(S,Ad, Bd)

 =

XD11X . . . XD1dX
...

. . .
...

XDd1X . . . XDddX


where the Dij are diagonal matrices. Now consider the matrix

E(S) =

ED11E . . . ED1dE
...

. . .
...

EDd1E . . . EDddE


We have

M(S)− E(S) =

XD11X − ED11E . . . XD1dX − ED1dE
...

. . .
...

XDd1X − EDd1E . . . XDddX − EDddE

 =

XD11(X − E) . . . XD1d(X − E)
...

. . .
...

XDd1(X − E) . . . XDdd(X − E)

+

(X − E)D11E . . . (X − E)D1dE
...

. . .
...

(X − E)Dd1E . . . (X − E)DddE


In the above expression, each of the two terms has rank at most

dP

n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i

 = factN (S)
n∑
i=1

 1

t

c(ti)ε4

t2
i

log ti
i

 ≤ 1
2

(
factN (S)
2ε4x0.01

)

Note that when computing the rank, we only multiply by d (and not d2) because the small
blocks are all multiplied by the same low rank matrix on either the left or right. The
number of nonzero entries in each row and column of E(S) is at most P 2εd = factN (S)

P 1−2ε . Since
P ≥ (factN (S))1−ε, we conclude

rM(S)

(
factN (S)
2ε4x0.01

)
≤ (factN (S))3ε J

We are now ready to complete the analysis of the non-rigidity of the Fourier transform
matrix FN .
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Proof of Theorem 37. Set the threshold k0 = l
(

1− ε4

x0.985

)
. The sets TS , as S ranges over

all subsets of [l], form a partition of [N ]× [N ]. For each S ⊂ [l] with |S| ≥ k0, we will divide
TS into factN (S)× factN (S) submatrices using Lemma 44 and change entries to reduce the
rank of every submatrix according to Lemma 45. We will not touch the entries in sets TS
for |S| < k0. Call the resulting matrix M ′. We now estimate the rank of M ′ and then the
maximum number of entries changed in any row or column.

Let m = l−k0 = ε4

x0.985 l. Note since l ≥ x0.99, m ≥ ε4x0.005. We remove all rows and columns
corresponding to integers divisible by at least m

2 of the primes q1, . . . , ql. Since l ≤ x0.993.
The number of rows and columns removed is at most

N

 ∑
S⊂[l],|S|=m

2

∏
i∈S

1
qi

 ≤ N

x0.999m2

(
l
m
2

)
<

N

x0.999m2
l
m
2 ≤ N

x0.003m

The remaining entries must be subdivided into matrices of the form M(S) for various
subsets S ⊂ [l], |S| ≥ k0. Say q1 < q2 < · · · < ql. The number of such submatrices is at most

N2

((q1 − 1) . . . (qk0 − 1))2 ≤ (qk0+1 . . . ql)2
(

q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)2
≤ 3(qk0+1 . . . ql)2 ≤ 3x2m

Each one of the submatrices has rank at most
N

2ε4x0.01

so in total the rank is at most

N
3x2m

2ε4x0.01 ≤
N

2ε4x0.002

Combining the two parts we easily get

rank(M ′) ≤ N

2ε4x0.001

Now we bound the number of entries changed. The number of entries changed in each
row or column is at most

N

((q1 − 1) . . . (qk0 − 1))N
3ε ≤ (qk0+1 . . . ql)

(
q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)
N3ε ≤ 3N3ε+1.1ml ≤ N4ε

As 2ε4x0.001 ≥ 2ε4(logN)0.0005 for sufficiently large x, we conclude

rFN
(

N

2ε4(logN)0.0005

)
≤ N4ε J

5 Non-rigidity of All Fourier Matrices

In the previous section, we showed that there exists an infinite set of Fourier matrices that
are not Valiant-rigid. In this section, we will bootstrap the results from Section 4 to show
that in fact, all sufficiently large Fourier matrices are not rigid.

The first ingredient will be a stronger form of Lemma 33. Recall that a prime q is defined to
be x-good if x0.999 ≤ q ≤ x and all prime powers dividing q − 1 are at most x0.3 and that an
integer N is defined to be (l, x)-factorable if it can be written as the product of l distinct
x-good primes.
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I Lemma 46. For all sufficiently large integers K, there exist l, x,N such that x0.99 ≤ l ≤
x0.993, N is (l, x)-factorable, and K < N < K(logK)2.

Proof. Call an N well-factorable if it is (l, x)-factorable for some x and x0.99 ≤ l ≤ x0.993.
Let N0 be the largest integer that is well-factorable with N0 ≤ K. Say N0 is (l, x)-factorable.

We have N0 = q1 . . . ql where q1, . . . , ql are distinct, x-good primes. If l < bx0.993c then by
Lemma 33, we can find another x-good prime ql+1. We can then replace N0 with ql+1N0.
ql+1N0 > K by the maximality of N0 and also ql+1N0 ≤ N0x ≤ N0(logN0)2 so ql+1N0
satisfies the desired properties.

We now consider the case where l = bx0.993c. First, if q1, . . . , ql are not the l largest x-good
primes then we can replace one of them say q1 with q′1 > q1. The number N ′ = q′1q2 . . . ql is
well-factorable and between N0 and N0x

0.001. Using the maximality of N0, we deduce that
N ′ must be in the desired range.

On the other hand if q1, . . . , ql are the l largest x-good primes, we know they are actually
all between x0.9995 and x. This is because by Lemma 33, there are more than x0.9995 + l

distinct x-good primes. Let C be the constant in Theorem 35 and let x′ = x(log x)C0+1.
The above implies that q1, . . . , ql are x′-good and clearly x′0.99 ≤ l < x′0.993. By Lemma 33,
there are more than x distinct x′-good primes so there exists some q > x that is x′-good.
The product N ′ = q1 . . . ql−1q is well-factorable and larger than N0 so N ′ > K. Also
N ′ ≤ N0x

0.001(log x)C0+1 < K(logK)2 so N ′ is in the desired range. J

Also note that as a consequence of Theorem 37 we have:

I Lemma 47. Let 0 < ε < 0.1 be fixed, x sufficiently large, and N0 a (l, x)-factorable integer
with x0.99 ≤ l ≤ x0.993. If N0

(logN0)2 ≤ N ≤ N0
2 then any N ×N adjusted-circulant matrix M

satisfies

rM
(

N

2ε4(logN)0.0004

)
≤ N9ε

Proof. By Claim 22, Lemma 24 and Theorem 37, any adjusted-circulant matrix M0 of size
N0 satisfies

rM0

(
2N0

2ε4(logN0)0.0005

)
≤ N8ε

0

Any adjusted-circulant matrix of size at most N0
2 can be embedded (in the upper left corner)

of an adjusted-circulant matrix of size N0 so we have the same inequality for the matrix M .
Rewriting the bounds in terms of N , we get the desired. J

We now have all of the parts to prove that all Fourier matrices are highly non-rigid.

I Theorem 48. For any fixed 0 < ε < 0.1 and N sufficiently large,

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

Proof. By Lemma 46, we can find an integer N0 such that 2N < N0 < 2N(log 2N)2 and N0
is (l, x) factorable for some x and x0.99 ≤ l ≤ x0.993. We have N0

(logN0)2 ≤ N ≤ N0
2 . Thus, by

Lemma 47, all N ×N adjusted-circulant matrices satisfy.

rM
(

N

2ε4(logN)0.0004

)
≤ N9ε
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Note that by Claim 25, the rows and columns of FN can be rescaled to obtain an adjusted-
circulant matrix so FN also satisfies the above inequality, completing the proof. J

We can now conclude that all adjusted-circulant and Hankel matrices are not Valiant-rigid.

I Corollary 49. Let 0 < ε < 0.1 be fixed. For all sufficiently large N , if M is an N × N
adjusted-circulant (or Hankel) matrix

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

Proof. The result for circulant matrices follows immediately from the above and Lemma 24.
For Hankel matrices, note that it is possible to embed any Hankel matrix of size N into the
top left corner of a circulant matrix of size 2N . J

6 Non-rigidity of Group Algebra Matrices for Abelian Groups

Using the results from the previous section, we can show that group algebra matrices for any
abelian group are not Valiant-rigid.

I Theorem 50. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a
function. Let M = MG(f) be the adjusted group algebra matrix. If |G| is sufficiently large
then

rM
(

2|G|
2ε6(log |G|)0.0001

)
≤ |G|26ε

Proof. By the fundamental theorem of finite abelian groups, we can write G = Zn1⊕· · ·⊕Zna .
In light of Lemma 24, it suffices to bound the rigidity of F = Fn1 ⊗ · · · ⊗ Fna .

WLOG, n1 ≤ n2 ≤ · · · ≤ na. We will choose k to be a fixed, sufficiently large positive
integer. By Theorem 48, we can ensure that for N > k

rFN
(

N

2ε4(logN)0.0004

)
≤ N9ε

Consider the ranges I1 = [k, k2), I2 = [k2, k4), . . . Ij = [k2j−1
, k2j ) . . . and so on. Let Sj

be a multiset defined by Sj = Ij ∩ {n1, . . . , na}. Fix a j and say the elements of Sj are
x1 ≤ · · · ≤ xb. By Theorem 48, for each xi, there are matrices Exi and Axi such that
Fxi = Axi + Exi , Exi has at most x9ε

i nonzero entries in each row and column, and

rank(Axi) ≤
xi

2ε4(log xi)0.0004

Now we can write

Mj = Fx1 ⊗ · · · ⊗ Fxb = (Ax1 + Ex1 )⊗ · · · ⊗ (Axb + Exb) =
∑
S⊂[b]

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)

=
∑

S⊂[b],|S|≥εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)
+

∑
S⊂[b],|S|<εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′
i

)
Let the first term above be N1 and the second term be N2. We will bound the rank of N1
and the number of nonzero entries in each row and column of N2. Note that by grouping the
terms in the sum for N1 we can write it in the form∑

S⊂[b],|S|=dεbe

⊗
i∈S

Axi ⊗ ES
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where for each S, ES is some matrix. This implies that

rank(N1) ≤
(

b

dεbe

)
x1 . . . xb(

2ε4(log x1)0.0004)dεbe
≤ bdεbe

( εb3 )dεbe
x1 . . . xb(

2ε4(log x1)0.0004)dεbe = x1 . . . xb

(
3

ε2ε4(log x1)0.0004

)dεbe
As long as k is sufficiently large, we have

rank(N1) ≤ x1 . . . xb

(
3

ε2ε4(log x1)0.0004

)dεbe
≤ x1 . . . xb

(
1

2ε4(log x1)0.0003

)dεbe
≤ x1 . . . xb

2ε5(log x1...xb)0.0002

where in the last step we used the fact that xi ≤ x2
1 for all i. The number of nonzero entries

in each row or column of N2 is at most

2bxb . . . xb−bεbc+1(xb−bεbc . . . x1)9ε = 2b(x1 . . . xb)9ε(xb . . . xb−bεbc+1)1−9ε ≤ (x1 . . . xb)12ε

Note in the last step above, we used the fact that xi ≤ x2
1.

For each integer c between 2 and k, let nc be the number of copies of c in the set {n1, . . . , na}.
If nc ≥ k2(log k)2

ε4 then by Theorem 26, if we define Ac = Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

then

rAc
(
c
nc(1− ε4

k2 log k
)
)
≤ cncε

Let L = d2 log log |G|e and ensure that |G| is sufficiently large so that L > k. Let T be the
set of integers c between 2 and k such that cnc ≥ |G| ε2L (note that as long as |G| is sufficiently
large, all elements of T must satisfy nc ≥ k2(log k)2

ε4 ). Let R be the set of indices j for which∏
x∈Sj x ≥ |G|

ε
2L . Since Sj is clearly empty for j ≥ L, the matrix F can be written as

F =

 ⊗
2≤c<k

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
 ⊗

1≤j≤L
Mj


Define

B =

⊗
c/∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j /∈R

Mj


Note that the size of B is at most

(
|G| ε2L

)k+L ≤ |G|ε. Also F = B ⊗D where

D =

⊗
c∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j∈R

Mj


For any rank r, rM (|B|r) ≤ |B|rD(r). Applying Lemma 39 iteratively, we get

rD

 |G|
|B|

∑
c∈T

1

c
nc

ε4
k2 log k

+
∑
j∈R

1

2
ε5(log

∏
x∈Sj

x)0.0002

 ≤ ( |G|
|B|

)12ε
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Note that(∑
c∈T

1

c
nc

ε4
k2 log k

+
∑
j∈R

1

2
ε5(log

∏
x∈Sj

x)0.0002

)
≤ k

|G|
ε5

2Lk2 log k

+ L

2ε
6
(

log |G|
2L

)0.0002 ≤
1

2ε6(log |G|)0.0001

Overall, we conclude

rF
(

|G|
2ε6(log |G|)0.0001

)
≤ |B|

(
|G|
|B|

)12ε
≤ |G|13ε

Since FMF is diagonal, Lemma 24 gives the desired. J

7 Final Remarks

7.1 Rigidity over Fields and Extensions
The proofs in the previous sections actually tell us slightly more about the non-rigidity
of Fourier and circulant matrices than what is stated in our results. Firstly, our proof of
Theorem 48 easily generalizes to any field where the necessary roots of unity (for the Fourier
matrix and the generalized Hadamard matrices we embed into it) exist. Over a finite field of
characteristic p, it is not difficult to adapt our proof in order to avoid using roots of unity of
order p (as xp− 1 = (x− 1)p). Also note that in our proof of non-rigidity for FN (the N ×N
Fourier matrix), the changes we make to the entries all live in a number field of dimension
polynomial in N . Combining this insight with Lemma 24 gives us:

I Corollary 51. Let 0 < ε < 0.1 be fixed. Let M be an N ×N circulant matrix with entries
in a field F. For N sufficiently large, there exists an algebraic extension of F with dimension
polynomial in N , say E, such that over E

rM
(

N

2ε4(logN)0.0003

)
≤ N20ε

In particular, M is not rigid over the algebraic closure of F.

In fact, we get a slightly stronger result, that for any circulant matrix M , the locations of
the entries that need to be changed is fixed and the changes are fixed linear combinations of
the entries. This is important because when following Valiant’s graph-theoretic approach for
proving circuit lower bounds in [12], this slightly weaker notion of rigidity is exactly what
is necessary to prove lower bounds. Our result is thus a strong indication that Valiant’s
overall graph-theoretic approach cannot be used to prove circuit lower bounds for computing
convolutions (which correspond to circulant matrices).

Corollary 51 naturally raises the question of whether matrices can be rigid over some
small field F but non-rigid over some extension. While it seems unlikely to expect the rigidity
over any field F to equal the rigidity over any extension, we think it is an interesting open
question to consider when it might be possible to relate (asymptotically) the rigidity of a
family of matrices over F to their rigidity over various extensions of F.

7.2 Group Algebra Matrices
Theorem 50 naturally raises the question of what happens when G is a non-abelian group.
When G is non-abelian, it is no longer possible to diagonalize the matrix MG(f) but there is
a change of basis matrix A such that AMG(f)A∗ is block-diagonal where the diagonal blocks
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correspond to the irreducible representations of G. When all of the irreducible representations
of G are small, it may be possible to use similar techniques to the ones used here. On the
other hand, this suggests that perhaps MG(f) is a candidate for rigidity when all irreducible
representations of G are large (for instance quasi-random groups [6]).
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Abstract
We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz
refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and
space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t + 1
and degree s (independently of the field in which the Nullstellensatz refutation is made). We use
this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to
the best of our knowledge are the first such results for this proof system.
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1 Introduction

In this work, we obtain strong trade-offs in proof complexity by making a connection to
pebble games played on graphs. In this introductory section we start with a brief overview
of these two areas and then explain how our results follow from connecting the two.
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18:2 Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

1.1 Proof Complexity
Proof complexity is the study of efficiently verifiable certificates for mathematical statements.
More concretely, statements of interest claim to provide correct answers to questions like:

Given a CNF formula, does it have a satisfying assignment or not?
Given a set of polynomials over some finite field, do they have a common root?

There is a clear asymmetry here in that it seems obvious what an easily verifiable certificate
for positive answers to the above questions should be, while it is not so easy to see what a
concise certificate for a negative answer could look like. The focus of proof complexity is
therefore on the latter scenario.

In this paper we study the algebraic proof system system Nullstellensatz introduced by
Beame et al. [7]. A Nullstellensatz refutation of a set of polynomials P = {pi | i ∈ [m]} with
coefficients in a field F is an expression

m∑
i=1

ri · pi +
n∑
j=1

sj · (x2
j − xj) = 1 (1)

(where ri, sj are also polynomials), showing that 1 lies in the polynomial ideal in the
ring F[x1, . . . , xn] generated by P ∪

{
x2
j − xj

∣∣j ∈ [n]
}
. By (a slight extension of) Hilbert’s

Nullstellensatz, such a refutation exists if and only if there is no common {0, 1}-valued root
for the set of polynomials P.

Nullstellensatz can also be viewed as a proof system for certifying the unsatisfiability
of CNF formulas. If we translate a clause like, e.g., C = x ∨ y ∨ z to the polynomial
p(C) = (1− x)(1− y)z = z − yz − xz + xyz, then an assignment to the variables in a CNF
formula F =

∧m
i=1 Ci (where we think of 1 as true and 0 as false) is satisfying precisely if all

the polynomials {p(Ci) | i ∈ [m]} vanish.
The size of a Nullstellensatz refutation (1) is the total number of monomials in all the

polynomials ri · pi and sj · (x2
j − xj) expanded out as linear combinations of monomials.

Another, more well-studied, complexity measure for Nullstellensatz is degree, which is defined
as max{deg(ri · pi),deg(sj · (x2

j − xj))}.
In order to prove a lower bound d on the Nullstellensatz degree of refuting a set of

polynomials P, one can construct a d-design, which is a map D from degree-d polynomials
in F[x1, . . . , xn] to F such that
1. D is linear, i.e., D(αp+ βq) = αD(p) + βD(q) for α, β ∈ F;
2. D(1) = 1;
3. D(rp) = 0 for all p ∈ P and r ∈ F[x1, . . . , xn] such that deg(rp) ≤ d;
4. D(x2s) = D(xs) for all s ∈ F[x1, . . . , xn] such that deg(s) ≤ d− 2.
Designs provide a characterization of Nullstellensatz degree in that there is a d-design for P
if and only if there is no Nullstellensatz refutation of P in degree d [18]. Another possible
approach to prove degree lower bounds is by computationally efficient versions of Craig’s
interpolation theorem. It was shown in [53] that constant-degree Nullstellensatz refutations
yield polynomial-size monotone span programs, and that this is also tight: every span
program is a unique interpolant for some set of polynomials refutable by Nullstellensatz.
This connection has not been used to obtain Nullstellensatz degree lower bounds, however,
due to the difficulty of proving span program lower bounds.

Lower bounds on Nullstellensatz degree have been proven for sets of polynomials encoding
combinatorial principles such as the pigeonhole principle [6], induction principle [20], house-
sitting principle [26, 18], matching [19], and pebbling [17]. It seems fair to say that research in
algebraic proof complexity soon moved on to stronger systems such as polynomial calculus [26,
1], where the proof that 1 lies in the ideal generated by P ∪

{
x2
j − xj

∣∣j ∈ [n]
}
can be
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constructed dynamically by a step-by-step derivation. However, the Nullstellensatz proof
system has been the focus of renewed interest in a recent line of works [54, 50, 51, 29] showing
that Nullstellensatz lower bounds can be lifted to stronger lower bounds for more powerful
computational models using composition with gadgets. The size complexity measure for
Nullstellensatz has also received attention in recent papers such as [14, 5].

In this work, we are interested in understanding the relation between size and degree
in Nullstellensatz. In this context it is relevant to compare and contrast Nullstellensatz
with polynomial calculus as well as with the well-known resolution proof system [15], which
operates directly on the clauses of a CNF formula and repeatedly derives resolvent clauses
C ∨ D from clauses of the form C ∨ x and D ∨ x until contradiction, in the form of the
empty clause without any literals, is reached. For resolution, size is measured by counting
the number of clauses, and width, measured as the number of literals in a largest clause in a
refutation, plays an analogous role to degree for Nullstellensatz and polynomial calculus.

By way of background, it is not hard to show that for all three proof systems upper
bounds on degree/width imply upper bounds on size, in the sense that if a CNF formula over
n variables can be refuted in degree/width d, then such a refutation can be carried out in
size nO(d). Furthermore, this upper bound has been proven to be tight up to constant factors
in the exponent for resolution and polynomial calculus [4], and it follows from [44] that this
also holds for Nullstellensatz. In the other direction, it has been shown for resolution and
polynomial calculus that strong enough lower bounds on degree/width imply lower bounds
on size [36, 11]. This is known to be false for Nullstellensatz, and the pebbling formulas
discussed in more detail later in this paper provide a counter-example [17].

The size lower bounds in terms of degree/width in [36, 11] can be established by trans-
forming refutations in small size to refutations in small degree/width. This procedure blows
up the size of the refutations exponentially, however. It is natural to ask whether such a
blow-up is necessary or whether it is just an artifact of the proof. More generally, given that a
formula has proofs in small size and small degree/width, it is an interesting question whether
both measures can be optimized simultaneously, or whether there has to be a trade-off
between the two.

For resolution this question was finally answered in [59], which established that there are
indeed strong trade-offs between size and width making the size blow-up in [11] unavoidable.
For polynomial calculus, the analogous question remains open.

In this paper, we show that there are strong trade-offs between size and degree for
Nullstellensatz. We do so by establishing a tight relation between Nullstellensatz refutations
of pebbling formulas and reversible pebblings of the graphs underlying such formulas. In
order to discuss this connection in more detail, we first need to describe what reversible
pebblings are. This brings us to our next topic.

1.2 Pebble Games
In the pebble game first studied by Paterson and Hewitt [48], one places pebbles on the
vertices of a directed acyclic graph (DAG) G according to the following rules:

If all (immediate) predecessors of an empty vertex v contain pebbles, a pebble may be
placed on v.
A pebble may be removed from any vertex at any time.

The game starts and ends with the graph being empty, and a pebble should be placed on
the (unique) sink of G at some point. The complexity measures to minimize are the total
number of pebbles on G at any given time (the pebbling space) and the number of moves
(the pebbling time).
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The pebble game has been used to study flowcharts and recursive schemata [48], register
allocation [56], time and space as Turing-machine resources [27, 35], and algorithmic time-
space trade-offs [25, 57, 55, 58, 60]. In the last two decades, pebble games have seen a revival
in the context of proof complexity (see, e.g., [46]), and pebbling has also turned out to be
useful for applications in cryptography [30, 2]. An excellent overview of pebbling up to
ca. 1980 is given in [49] and some more recent developments are covered in the upcoming
survey [47].

Bennett [13] introduced the reversible pebble game as part of a broader program [12]
aimed at eliminating or reducing energy dissipation during computation. Reversible pebbling
has also been of interest in the context of quantum computing. For example, it was noted
in [45] that reversible pebble games can be used to capture the problem of “uncomputing”
intermediate values in quantum algorithms.

The reversible pebble game adds the requirement that the whole pebbling performed
in reverse order should also be a correct pebbling, which means that the rules for pebble
placement and removal become symmetric as follows:

If all predecessors of an empty vertex v contain pebbles, a pebble may be placed on v.
If all predecessors of a pebbled vertex v contain pebbles, the pebble on v may be removed.

Reversible pebblings have been studied in [43, 39, 38] and have been used to prove time-space
trade-offs in reversible simulation of irreversible computation in [42, 40, 61, 16]. In a different
context, Potechin [52] implicitly used reversible pebbling to obtain lower bounds in monotone
space complexity, with the connection made explicit in later works [24, 31]. The paper [23]
(to which this overview is indebted) studied the relative power of standard and reversible
pebblings with respect to space, and also established PSPACE-hardness results for estimating
the minimum space required to pebble graphs (reversibly or not).

1.3 Our Contributions
In this paper, we obtain an exactly tight correspondence between on the one hand reversible
pebblings of DAGs and on the other hand Nullstellensatz refutations of pebbling formulas
over these DAGs. We show that for any DAG G it holds that G can be reversibly pebbled in
time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula
over G in size t+ 1 and degree s. This correspondence holds regardless of the field in which
the Nullstellensatz refutation is operating, and so, in particular, it follows that pebbling
formulas have exactly the same complexity for Nullstellensatz regardless of the ambient field.

We then revisit the time-space trade-off literature for the standard pebble game, focusing
on the papers [21, 22, 41]. The results in these papers do not immediately transfer to the
reversible pebble game, and we are not fully able to match the tightness of the results for
standard pebbling, but we nevertheless obtain strong time-space trade-off results for the
reversible pebble game.

This allows us to derive Nullstellensatz size-degree trade-offs from reversible pebbling
time-space trade-offs as follows. Suppose that we have a DAG G such that:
1. G can be reversibly pebbled in time t1 � t2.
2. G can be reversibly pebbled in space s1 � s2.
3. There is no reversible pebbling of G that simultaneously achieves time t1 and space s1.
Then for Nullstellensatz refutations of the pebbling formula PebG over G (which will be
formally defined shortly) we can deduce that:
1. Nullstellensatz can refute PebG in size t1 + 1� t2 + 1.
2. Nullstellensatz can also refute PebG in degree s1 � s2.
3. There is no Nullstellensatz refutation of PebG that simultaneously achieves size t1 + 1

and degree s1.
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We prove four such trade-off results, which can be found in Section 4. The following
theorem is one example of such a result (specifically, it is a simplified version of Theorem 4).

I Theorem 1. There is a family of 3-CNF formulas {Fn}∞n=1 of size Θ(n) such that:
1. There is a Nullstellensatz refutation of Fn in degree s1 = O

(
6
√
n logn

)
.

2. There is a Nullstellensatz refutation of Fn of near-linear size and degree s2 = O
(

3
√
n logn

)
.

3. Any Nullstellensatz refutation of Fn in degree at most 3
√
n must have exponential size.

It should be noted that this is not the first time proof complexity trade-off results have
been obtained from pebble games. Pebbling formulas were used in [9, 10] to obtain size-space
trade-offs for resolution, and later in [8] also for polynomial calculus. However, the current
reductions between pebbling and Nullstellensatz are much stronger in that they go in both
directions and are exact even up to additive constants.

With regard to Nullstellensatz, it was shown in [17] that Nullstellensatz degree is lower-
bounded by standard pebbling price. This was strengthened in [29], which used the connection
between designs and Nullstellensatz degree discussed above to establish that the degree
needed to refute a pebbling formula exactly coincides with the reversible pebbling price of
the corresponding DAG (which is always at least the standard pebbling price, but can be
much larger). Our reduction significantly improves on [29] by constructing a more direct
reduction, inspired by [34], that can simultaneously capture both time and space.

1.4 Outline of This Paper
After having discussed the necessary preliminaries in Section 2, we prove the reductions
between Nullstellensatz and reversible pebblings in Section 3. In Section 4, we present the
size-degree trade-offs for Nullstellensatz we obtain for different degree regimes. Section 5
contains some concluding remarks with suggestions for future directions of research.

2 Preliminaries

All logarithms in this paper are base 2 unless otherwise specified. For a positive integer n we
write [n] to denote the set of integers {1, 2, . . . , n}.

A literal a over a Boolean variable x is either the variable x itself or its negation x (a
positive or negative literal, respectively). A clause C = a1∨ · · ·∨ak is a disjunction of literals.
A k-clause is a clause that contains at most k literals. A formula F in conjunctive normal
form (CNF) is a conjunction of clauses F = C1 ∧ · · · ∧ Cm. A k-CNF formula is a CNF
formula consisting of k-clauses. We think of clauses and CNF formulas as sets, so that the
order of elements is irrelevant and there are no repetitions. A truth value assignment ρ to
the variables of a CNF formula F is satisfying if every clause in F contains a literal that is
true under ρ.

2.1 Nullstellensatz
Let F be any field and let ~x = {x1, . . . , xn} be a set of variables. We identify a set of
polynomials P = {pi(~x) | i ∈ [m]} in the ring F[~x] with the statement that all pi(~x) have a
common {0, 1}-valued root. A Nullstellensatz refutation of this claim is a syntactic equality

m∑
i=1

ri(~x) · pi(~x) +
n∑
j=1

sj(~x) · (x2
j − xj) = 1 , (2)

where ri, sj are also polynomials in F[~x]. We sometimes refer to the polynomials pi(~x) as
axioms and (x2

j − xj) as Boolean axioms.
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As discussed in the introduction, Nullstellensatz can be used as a proof system for
CNF formulas by translating a clause C =

∨
x∈P x ∨

∨
y∈N y to the polynomial p(C) =∏

x∈P (1 − x) ·
∏
y∈N y and viewing Nullstellensatz refutations of {p(Ci) | i ∈ [m]} as

refutations of the CNF formula F =
∧m
i=1 Ci.

The degree of a Nullstellensatz refutation (1) is max{deg(ri(~x) · pi(~x)),deg(sj(~x) · (x2
j −

xj))}. We define the size of a refutation (2) to be the total number of monomials encountered
when all products of polynomials are expanded out as linear combinations of monomials. To
be more precise, let mSize(p) denote the number of monomials in a polynomial p written
as a linear combination of monomials. Then the size of a Nullstellensatz refutation on the
form (1) is

m∑
i=1

mSize
(
ri(~x)

)
·mSize

(
pi(~x)

)
+

n∑
j=1

2 ·mSize
(
sj(~x)

)
. (3)

This is consistent with how size is defined for the “dynamic version” of Nullstellensatz known
as polynomial calculus [26, 1], and also with the general size definitions for so-called algebraic
and semialgebraic proof systems in [4, 14, 5].

We remark that this is not the only possible way of measuring size, however. It can be
noted that the definition (3) is quite wasteful in that it forces us to represent the proof in
a very inefficient way. Other papers in the semialgebraic proof complexity literature, such
as [33, 37, 28], instead define size in terms of the polynomials in isolation, more along the
lines of

m∑
i=1

(
mSize

(
ri(~x)

)
+ mSize

(
pi(~x)

))
+

n∑
j=1

(
mSize

(
sj(~x)

)
+ 2
)
, (4)

or as the bit size or “any reasonable size” of the representation of all polynomials ri(~x), pi(~x),
and sj(~x).

In the end, the difference is not too important since the two measures (3) and (4) are
at most a square apart, and for size we typically want to distinguish between polynomial
and superpolynomial. In addition, and more importantly, in this paper we will only deal
with k-CNF formulas with k = O(1), and in this setting the two definitions are the same up
to a constant factor 2k. Therefore, we will stick with (3), which matches best how size is
measured in the closely related proof systems resolution and polynomial calculus, and which
gives the cleanest statements of our results.1

When proving lower bounds for algebraic proof systems it is often convenient to consider
a multilinear setting where refutations are presented in the ring F[~x]/{x2

j − xj | j ∈ [n]}.
Since the Boolean axioms x2

j − xj are no longer needed, the refutation (2) can be written
simply as

m∑
i=1

ri(~x) · pi(~x) = 1 , (5)

where we assume that all results of multiplications are implicitly multilinearized. It is clear
that any refutation on the form (2) remains valid after multilinearization, and so the size and
degree measures can only decrease in a multilinear setting. In this paper, we prove our lower
bound in our reduction in the multilinear setting and the upper bound in the non-multilinear
setting, making the tightly matching results even stronger.

1 We refer the reader to Section 2.4 in [3] for a more detailed discussion of the definition of proof size in
algebraic and semialgebraic proof systems.
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(a) Pyramid of height 2.

xp

∧ xq
∧ xr
∧ (xp ∨ xq ∨ xu)
∧ (xq ∨ xr ∨ xv)
∧ (xu ∨ xv ∨ xz)
∧ xz

(b) Pebbling formula in CNF.

xp − 1
xq − 1
xr − 1
xpxq(1− xu)
xqxr(1− xv)
xuxv(1− xz)
xz

(c) Polynomial translation.

Figure 1 Example pebbling contradiction for the pyramid graph of height 2.

2.2 Reversible Pebbling and Pebbling Formulas
Throughout this paper G = (V,E) denotes a directed acyclic graph (DAG) of constant
fan-in with vertices V (G) = V and edges E(G) = E. For an edge (u, v) ∈ E we say that
u is a predecessor of v and v a successor of u. We write predG(v) to denote the sets of all
predecessors of v, and drop the subscript when the DAG is clear from context. Vertices with
no predecessors/successors are called sources/sinks. Unless stated otherwise we will assume
that all DAGs under consideration have a unique sink z.

A pebble configuration on a DAG G = (V,E) is a subset of vertices P ⊆ V . A reversible
pebbling strategy for a DAG G with sink z, or a reversible pebbling of G for short, is a sequence
of pebble configurations P = (P0,P1, . . . ,Pt) such that P0 = Pt = ∅, z ∈

⋃
0≤t≤t Pt, and such

that each configuration can be obtained from the previous one by one of the following rules:
1. Pi+1 = Pi ∪ {v} for v /∈ Pi such that predG(v) ⊆ Pi (a pebble placement on v).
2. Pi+1 = Pi \ {v} for v ∈ Pi such that predG(v) ⊆ Pi (a pebble removal from v).
The time of a pebbling P = (P0, . . . ,Pt) is time(P) = t and the space is space(P) =
max0≤t≤t{|Pt|}.

We could also say that a reversible pebbling P = (P0, . . . ,Pt) should be such that P0 = ∅
and z ∈ Pt, and define the time of such a pebbling to be 2t. This is so since once we have
reached a configuration containing z we can simply run the pebbling backwards (because of
reversibility) until we reach the empty configuration again, and without loss of generality
all time- and space-optimal reversible pebblings can be turned into such pebblings. For
simplicity, we will often take this viewpoint in what follows.

Pebble games can be encoded in CNF by so-called pebbling formulas [11], or pebbling
contradictions. Given a DAG G = (V,E) with a single sink z, we associate a variable xv
with every vertex v and add clauses encoding that

the source vertices are all true;
if all immediate predecessors are true, then truth propagates to the successor;
but the sink is false.

In short, the pebbling formula over G consists of the clauses xv ∨
∨
u∈pred(v) ¬xu for all v ∈ V

(note that if v is a source pred (v) = ∅), and the clause ¬xz.
We encode this formula by a set of polynomials in the standard way. Given a set U ⊆ V ,

we denote by xU the monomial
∏
u∈U xu (in particular, x∅ = 1). For every vertex v ∈ V , we

have the polynomial

Av := (1− xv) · xpred(v) , (6)
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and for the sink z we also have the polynomial

Asink := xz . (7)

See Figure 1 for an illustration, including how the CNF formula is translated to a set of
polynomials.

3 Reversible Pebblings and Nullstellensatz Refutations

In this section, we prove the correspondence between the reversible pebbling game on a
graph G and Nullstellensatz refutation of the pebbling contradiction of G. Specifically, we
prove the following result.

I Theorem 2. Let G be a directed acyclic graph with a single sink, let φ be the corresponding
pebbling contradiction, and let F be a field. Then, there is a reversible pebbling strategy for G
with time at most t and space at most s if and only if there is a Nullstellensatz refutation
for φ over F of size at most t + 1 and degree at most s. Moreover, the same holds for
multilinear Nullstellensatz refutations.

We prove each of the directions of Theorem 2 separately in Sections 3.1 and 3.2 below.

3.1 From Pebbling to Refutation
We start by proving the “only if” direction of Theorem 2. Let

P = (P0, . . . ,Pt) (8)

be an optimal reversible pebbling strategy for G. Let Pt′ be the first configuration in which
there is a pebble on the sink z. Without loss of generality, we may assume that t = 2 · t′: if
the last t− t′ steps were more efficient than the first t′ steps, we could have obtained a more
efficient strategy by replacing the first t′ steps with the (reverse of) the last t− t′ steps, and
vice versa.

We use P to construct a Nullstellensatz refutation over F for the pebbling contradiction φ.
To this end, we will first construct for each step i ∈ [t′] of P a Nullstellensatz derivation of
the polynomial xPi−1 − xPi . The sum of all these polynomials is a telescoping sum, and is
therefore equal to

xP0 − xPt′ = 1− xPt′ . (9)

We will then transform this sum into a Nullstellensatz refutation by adding the polynomial

xPt′ = Asink · xPt′−{z} . (10)

We turn to constructing the aforementioned derivations. To this end, for every i ∈ [t′],
let vi ∈ V denote the vertex which was pebbled or unpebbled during the i-th step, i.e.,
during the transition from Pi−1 to Pi. Then, we know that in both configurations Pi−1 and
Pi the predecessors of vi have pebbles on them, i.e., pred(v) ⊆ Pi−1,Pi. Let us denote by
Ri = Pi − {vi} − pred(vi) the set of other vertices that have pebbles during the i-th step.
Finally, let pi be a number that equals to 1 if vi was pebbled during the i-th step, and equals
to −1 if vi was unpebbled. Now, observe that

xPi−1 − xPi
= pi · xPi−1(1− xvi

) = pi · xRi
Avi

, (11)
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where the last step follows since the predecessors of vi are necessarily in Pi−1. Therefore,
our final refutation for φ is

t′∑
i=1

Avi
· pi · xRi

+Asink · xPt′−{z} = xPt′ +
t′∑
i=1

xPi−1 − xPi

= xPt′ + (xP0 − xPt′ ) (12)
= xPt′ + (1− xPt′ ) = 1 .

Note, in fact, it is a multilinear Nullstellensatz refutation, since it contains only multilinear
monomials and does not use the Boolean axioms. It remains to analyze its degree and size.

For the degree, observe that every monomial in the proof is of the form xPi , and the
degree of each such monomial is exactly the number of pebbles used in the corresponding
configuration. It follows that the maximal degree is exactly the space of the pebbling
strategy P.

Let us turn to considering the size. Observe that for each of the configurations P1, . . . ,Pt′ ,
the refutation contains exactly two monomials: for all i ∈ [t′ − 1], one monomial for Pi is
generated in the i-th step, and another in the (i+ 1)-th step, and for the configuration Pt′
the second monomial is generated when we add Asink · xPt′−{z}. In addition, the refutation
contains exactly one monomial for the configuration P0, which is generated in the first step.
Hence, the total number of monomials generated in the refutation is exactly 2 · t′ + 1 = t+ 1,
as required.

3.2 From Refutation to Pebbling
We turn to prove the “if” direction of Theorem 2. We note that it suffices to prove it for
multilinear Nullstellensatz refutations, since every standard Nullstellensatz refutation implies
the existence of a multilinear one with at most the same size and degree. Let∑

v∈V
Av ·Qv +Asink ·Qsink = 1 (13)

be a multilinear Nullstellensatz refutation of φ over F of degree s. We use this refutation to
construct a reversible pebbling strategy P for G.

To this end, we construct a “configuration graph” C, whose vertices consist of all possible
configurations of at most s pebbles on G (i.e., the vertices will be all subsets of V of size
at most s). The edges of C will be determined by the polynomials Qv of the refutation,
and every edge {U1, U2} in C will constitute a legal move in the reversible pebbling game
(i.e., it will be legal to move from U1 to U2 and vice versa). We will show that C contains a
path from the empty configuration ∅ to a configuration Uz that contains the sink z, and our
pebbling strategy will be generated by walking on this path from ∅ to Uz and back.

The edges of the configuration graph C are defined as follows: Let v ∈ V be a vertex of G,
and let q be a monomial of Qv that does not contain xv. Let W ⊆ V be the set of vertices
such that q = xW (such a set W exists since the refutation is multilinear). Then, we put an
edge eq in C that connects W ∪ pred(v) and W ∪ pred(v) ∪ {v} (we allow parallel edges). It
is easy to see that the edge eq connects configurations of size at most s, and that it indeed
constitutes a legal move in the reversible pebbling game. We note that C is a bipartite graph:
to see it, note that every edge eq connects a configuration of an odd size to a configuration
of an even size.

For the sake of the analysis, we assign the edge eq a weight in F that is equal to coefficient
of q in Qv. We define the weight of a configuration U to be the sum of the weights of all
the edges that touch U (where the addition is done in the field F). We use the following
technical claim, which we prove at the end of this section.
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B Claim 3. Let U ⊆ V be a configuration in C that does not contain the sink z. If U is
empty, then its weight is 1. Otherwise, its weight is 0.

We now show how to construct the required pebbling strategy P for G. To this end, we first
prove that there is a path in C from the empty configuration to a configuration that contains
the sink z. Suppose for the sake of contradiction that this is not the case, and let H be the
connected component of C that contains the empty configuration. Our assumption says that
none of the configurations in H contains z.

The connected component H is bipartite since C is bipartite. Without loss of generality,
assume that the empty configuration is in the left-hand side of H. Clearly, the sum of the
weights of the configurations on the left-hand side should be equal to the corresponding sum
on the right-hand side, since they are both equal to the sum of the weights of the edges
in H. However, the sum of the weights of the configurations on the right-hand side is 0
(since all these weights are 0 by Claim 3), while the sum of the weights of the left-hand side
is 1 (again, by Claim 3). We reached a contradiction, and therefore H must contain some
configuration Uz that contains the sink z.

Next, let ∅ = P0,P1, . . . ,Pt′ = Uz be a path from the empty configuration to Uz. Our
reversible pebbling strategy for G is

P = (P0, . . . ,Pt′−1,Pt′ ,Pt′−1, . . . ,P0) . (14)

This is a legal pebbling strategy since, as noted above, every edge of C constitutes a legal
move of the reversible pebbling game. The strategy P uses space s, since all the configurations
in C contain at most s pebbles by definition. The time of P is t = 2 · t′. It therefore remains
to show that the size of the Nullstellensatz refutation from Equation 13 is at least t+ 1.

To this end, note that every edge eq in the path corresponds to some monomial q in
some polynomial Qv. When the monomial q is multiplied by the axiom Av, it generates two
monomials in the proof: the monomial q · xpred(v) and the monomial q · xpred(v) · xv. Hence,
the Nullstellensatz refutation contains at least 2 · t′ monomials that correspond to edges
from the path. In addition, the product Asink ·Qsink must contains at least one monomial,
since the refutation must use the sink axiom Asink (because φ without this axiom is not a
contradiction). It follows that the refutation contains at least 2 · t′ + 1 = t+ 1 monomials, as
required. We conclude this section by proving Claim 3.

Proof of Claim 3. We start by introducing some terminology. First, observe that a mono-
mial m may be generated multiple times in the refutation of Equation 13, and we refer to
each time it is generated as an occurrence of m. We say that an occurrence of m is generated
by a monomial qv of Qv if it is generated by the product Av · qv. Throughout the proof, we
identify a configuration U with the monomial xU .

We first prove the claim for the non-empty case. Let U ⊆ V be a non-empty configuration.
We would like to prove the weight of U is 0. Recall that the weight of U is the sum of the
coefficients of the occurrences of U that are generated by monomials qv that do not contain
the corresponding vertex v. Observe that Equation 13 implies that the sum of the coefficients
of all the occurrences of U is 0: the coefficient of U on the right-hand side is 0, and it must
be equal to the coefficient of U on the left-hand side, which is the sum of the coefficients of
all the occurrences.

To complete the proof, we argue that every monomial qv that does contain the vertex v
contributes 0 to that sum. Let qv be a monomial of Qv that contains the vertex v and
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generates an occurrence of U . Let α be the coefficient of q. Then, it must hold that

Av · qv = xpred(v) · qv − xv · xpred(v) · qv
= xpred(v) · qv − xpred(v) · qv (15)
= α · xU − α · xU ,

where the second equality holds since we qv contains v and we are working with a multilinear
refutation, and the third equality holds since we assumed that qv generates an occurrence
of U . It follows that qv generates two occurrences of U , one with coefficient α and one
with coefficient −α, and therefore it contributes 0 to the sum of the coefficients of all the
occurrences of U .

We have shown that the sum of the coefficients of all the occurrences of U is 0, and that
the occurrences generated by monomials qv that contain v contribute 0 to this sum, and
therefore the sum of coefficients of occurrences that are generated by monomials qv that do
not contain v must be 0, as required. In the case that U is the empty configuration, the
proof is identical, except that the sum of the coefficients of all occurrences is 1, since the
coefficient of ∅ is 1 on the right hand side of Equation 13. C

4 Nullstellensatz Trade-offs from Reversible Pebbling

In this section we present the Nullstellensatz size-degree trade-offs we obtain for different
degree regimes. Let us first recall what is known with regards to degree and size. In what
follows, a Nullstellensatz refutation of a CNF formula F refers to a Nullstellensatz refutation
of the translation of F to polynomials. As mentioned in the introduction, if a CNF formula
over n variables can be refuted in degree d then it can be refuted in simultaneous degree
d and size nO(d). However, for Nullstellensatz it is not the case that strong enough degree
lower bounds imply size lower bounds.

A natural question is whether for any given function d1(n) there is a family of CNF
formulas {Fn}∞n=1 of size Θ(n) such that
1. Fn has a Nullstellensatz refutation d1(n);
2. Fn has a Nullstellensatz refutation of (close to) linear size and degree d2(n)� d1(n);
3. Any Nullstellensatz refutation of Fn in degree only slightly below d2(n) must have size

nearly nd1(n).

We present explicit constructions of formulas providing such trade-offs in several different
parameter regimes. We first show that there are formulas that require exponential size in
Nullstellensatz if the degree is bounded by some polynomial function, but if we allow slightly
larger degree there is a nearly linear size proof.

I Theorem 4. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that:
1. There is a Nullstellensatz refutation of Fn in degree d1 = O

(
6
√
n logn

)
.

2. For any constant ε > 0, there is a Nullstellensatz refutation of Fn of size O(n1+ε) and
degree d2 = O

(
d1 · 6
√
n
)

= O
(

3
√
n logn

)
.

3. There exists a constant K > 0 such that any Nullstellensatz refutation of Fn in degree at
most d = Kd2/ logn = O

(
3
√
n
)
must have size

(
6
√
n
)
! .

We also analyse a family of formulas that can be refuted in close to logarithmic degree
and show that even if we allow up to a certain polynomial degree, the Nullstellensatz size
required is superpolynomial.
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I Theorem 5. Let δ > 0 be an arbitrarily small positive constant and let g(n) be any
arbitrarily slowly growing monotone function ω(1) = g(n) ≤ n1/4. Then there is a family of
explicitly constructible unsatisfiable 3-CNF formulas {Fn}∞n=1 of size Θ(n) such that:
1. There is a Nullstellensatz refutation of Fn in degree d1 = g(n) log(n).
2. For any constant ε > 0, there is a Nullstellensatz refutation of Fn of size O(n1+ε) and

degree

d2 = O
(
d1 · n1/2/g(n)2) = O

(
n1/2 logn/g(n)

)
.

3. Any Nullstellensatz refutation of Fn in degree at most

d = O
(
d2/n

δ logn
)

= O
(
n1/2−δ/g(n)

)
must have size superpolynomial in n.

Still in the small-degree regime, we present a very robust trade-off in the sense that
superpolynomial size lower bound holds for degree from log2(n) to n/ log(n).

I Theorem 6. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that:
1. There is a Nullstellensatz refutation of Fn in degree d1 = O(log2 n).
2. For any constant δ > 0, there is a Nullstellensatz refutation of Fn of size O(n) and degree

d2 = O(d1 · n/ log3−δ n) = O(n/ log1−δ n).

3. There exists a constant K > 0 such that any Nullstellensatz refutation of Fn in degree at
most d = Kd2/ logδ n = O(n/ logn) must have size nΩ(log logn).

Finally, we study a family of formulas that have Nullstellensatz refutation of quadratic
size and that present a smooth size-degree trade-off.

I Theorem 7. There is a family of explicitly constructible unsatisfiable 3-CNF formulas
{Fn}∞n=1 of size Θ(n) such that any Nullstellensatz refutation of Fn that optimizes size given
degree constraint d = nΘ(1) (and less than n) has size Θ

(
n2/d

)
.

We prove these results by obtaining the analogous time-space trade-offs for reversible
pebbling and then applying the tight correspondence between size and degree in Nullstellensatz
and time and space in reversible pebbling. We differ the reader to the upcoming full version
for the details.

5 Concluding Remarks

In this paper we prove that size and degree of Nullstellensatz refutations in any field of
pebbling formulas are exactly captured by time and space of the reversible pebble game on
the underlying graph. This allows us to prove a number of strong size-degree trade-offs for
Nullstellensatz. To the best of our understanding no such results have been known previously.

The most obvious, and also most interesting, open question is whether there are also size-
degree trade-offs for the stronger polynomial calculus proof system. Such trade-offs cannot
be exhibited by the pebbling formulas considered in this work, since such formulas have
small-size low-degree polynomial calculus refutations, but the formulas exhibiting size-width
trade-offs for resolution [59] appear to be natural candidates.

Another interesting question is whether the tight relation between Nullstellensatz and
reversible pebbling could make it possible to prove even sharper trade-offs for size versus
degree in Nullstellensatz, where just a small constant drop in the degree would lead to an
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exponential blow-up in size. Such results for pebbling time versus space are known for the
standard pebble game, e.g., in [32]. It is conceivable that a similar idea could be applied to
the reversible pebbling reductions in [23], but it is not obvious whether just adding a small
amount of space makes it possible to carry out the reversible pebbling time-efficiently enough.

Finally, it can be noted that our results crucially depend on that we are in a setting with
variables only for positive literals. For polynomial calculus it is quite common to consider
the stronger setting with “twin variables” for negated literals (as in the generalization of
polynomial calculus in [26] to polynomial calculus resolution in [1]). It would be nice to
generalize our size-degree trade-offs for Nullstellensatz to this setting, but it is not obvious
whether the reductions in the current work could be made to work or not.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space

Complexity in Propositional Calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.
Preliminary version in STOC ’00.

2 Joël Alwen and Vladimir Serbinenko. High Parallel Complexity Graphs and Memory-Hard
Functions. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing
(STOC ’15), pages 595–603, June 2015.

3 Albert Atserias and Tuomas Hakoniemi. Size-Degree Trade-Offs for Sums-of-Squares and
Positivstellensatz Proofs. Technical report, arXiv.org, November 2018. arXiv:1811.01351.

4 Albert Atserias, Massimo Lauria, and Jakob Nordström. Narrow Proofs May Be Maximally
Long. ACM Transactions on Computational Logic, 17(3):19:1–19:30, May 2016. Preliminary
version in CCC ’14.

5 Albert Atserias and Joanna Ochremiak. Proof Complexity Meets Algebra. ACM Transactions
on Computational Logic, 20:1:1–1:46, February 2019. Preliminary version in ICALP ’17.

6 Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
Relative Complexity of NP Search Problems. Journal of Computer and System Sciences,
57(1):3–19, August 1998. Preliminary version in STOC ’95.

7 Paul Beame, Russell Impagliazzo, Jan Krajíček, Toniann Pitassi, and Pavel Pudlák. Lower
Bounds on Hilbert’s Nullstellensatz and Propositional Proofs. In Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer Science (FOCS ’94), pages 794–806,
November 1994.

8 Chris Beck, Jakob Nordström, and Bangsheng Tang. Some Trade-off Results for Polynomial
Calculus. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13), pages 813–822, May 2013.

9 Eli Ben-Sasson. Size-Space Tradeoffs for Resolution. SIAM Journal on Computing,
38(6):2511–2525, May 2009. Preliminary version in STOC ’02.

10 Eli Ben-Sasson and Jakob Nordström. Understanding Space in Proof Complexity: Separations
and Trade-offs via Substitutions. In Proceedings of the 2nd Symposium on Innovations in
Computer Science (ICS ’11), pages 401–416, January 2011.

11 Eli Ben-Sasson and Avi Wigderson. Short Proofs are Narrow—Resolution Made Simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.

12 Charles H. Bennett. Logical Reversibility of Computation. IBM Journal of Research and
Development, 17(6):525–532, November 1973.

13 Charles H. Bennett. Time/Space Trade-offs for Reversible Computation. SIAM Journal on
Computing, 18(4):766–776, August 1989.

14 Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-
Squares Proofs. In Proceedings of the 35th Symposium on Theoretical Aspects of Computer
Science (STACS ’18), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1–11:14, February 2018.

CCC 2019

http://arxiv.org/abs/1811.01351


18:14 Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

15 Archie Blake. Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

16 Harry Buhrman, John Tromp, and Paul Vitányi. Time and Space Bounds for Reversible
Simulation. Journal of physics A: Mathematical and general, 34:6821–6830, 2001. Preliminary
version in ICALP ’01.

17 Joshua Buresh-Oppenheim, Matthew Clegg, Russell Impagliazzo, and Toniann Pitassi. Homo-
genization and the Polynomial Calculus. Computational Complexity, 11(3-4):91–108, 2002.
Preliminary version in ICALP ’00.

18 Samuel R. Buss. Lower Bounds on Nullstellensatz Proofs via Designs. In Proof Complexity and
Feasible Arithmetics, volume 39 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 59–71. American Mathematical Society, 1998. Available at http:
//www.math.ucsd.edu/~sbuss/ResearchWeb/designs/.

19 Samuel R. Buss, Russell Impagliazzo, Jan Krajíček, Pavel Pudlák, Alexander A. Razborov,
and Jiri Sgall. Proof Complexity in Algebraic Systems and Bounded Depth Frege Systems
with Modular Counting. Computational Complexity, 6(3):256–298, 1997.

20 Samuel R. Buss and Toniann Pitassi. Good Degree Bounds on Nullstellensatz Refutations of
the Induction Principle. Journal of Computer and System Sciences, 2(57):162–171, October
1998. Preliminary version in CCC ’96.

21 David A. Carlson and John E. Savage. Graph Pebbling with Many Free Pebbles Can Be
Difficult. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing
(STOC ’80), pages 326–332, 1980.

22 David A. Carlson and John E. Savage. Extreme Time-Space Tradeoffs for Graphs with Small
Space Requirements. Information Processing Letters, 14(5):223–227, 1982.

23 Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness of Approxima-
tion in PSPACE and Separation Results for Pebble Games (Extended Abstract). In Proceedings
of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’15), pages
466–485, October 2015.

24 Siu Man Chan and Aaron Potechin. Tight Bounds for Monotone Switching Networks via
Fourier Analysis. Theory of Computing, 10:389–419, October 2014. Preliminary version in
STOC ’12.

25 Ashok K. Chandra. Efficient Compilation of Linear Recursive Programs. In Proceedings of the
14th Annual Symposium on Switching and Automata Theory (SWAT ’73), pages 16–25, 1973.

26 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner Basis
Algorithm to Find Proofs of Unsatisfiability. In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC ’96), pages 174–183, May 1996.

27 Stephen A. Cook. An Observation on Time-Storage Trade Off. Journal of Computer and
System Sciences, 9(3):308–316, 1974. Preliminary version in STOC ’73.

28 Stefan S. Dantchev, Barnaby Martin, and Martin Rhodes. Tight Rank Lower Bounds for
the Sherali–Adams Proof System. Theoretical Computer Science, 410(21–23):2054–2063, May
2009.

29 Susanna F. de Rezende, Or Meir, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Marc Vinyals. Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity.
Manuscript in preparation, 2019.

30 Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and Proofs of Work. In Proceedings of
the 25th Annual International Cryptology Conference (CRYPTO ’05), volume 3621 of Lecture
Notes in Computer Science, pages 37–54. Springer, August 2005.

31 Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen A Cook. Average Case Lower
Bounds for Monotone Switching Networks. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’13), pages 598–607, November 2013.

32 John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The Pebbling Problem is
Complete in Polynomial Space. SIAM Journal on Computing, 9(3):513–524, August 1980.
Preliminary version in STOC ’79.

http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/
http://www.math.ucsd.edu/~sbuss/ResearchWeb/designs/


S. F. de Rezende, J. Nordström, O. Meir, and R. Robere 18:15

33 Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Exponential Lower Bound for
Static Semi-algebraic Proofs. In Proceedings of the 29th International Colloquium on Automata,
Languages and Programming (ICALP ’02), volume 2380 of Lecture Notes in Computer Science,
pages 257–268. Springer, July 2002.

34 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in Monotone
Complexity and TFNP. Technical Report TR18-163, Electronic Colloquium on Computational
Complexity (ECCC), September 2018.

35 John Hopcroft, Wolfgang Paul, and Leslie Valiant. On Time Versus Space. Journal of the
ACM, 24(2):332–337, April 1977. Preliminary version in FOCS ’75.

36 Russell Impagliazzo, Pavel Pudlák, and Jiří Sgall. Lower Bounds for the Polynomial Calculus
and the Gröbner Basis Algorithm. Computational Complexity, 8(2):127–144, 1999.

37 Arist Kojevnikov and Dmitry Itsykson. Lower Bounds of Static Lovász–Schrijver Calculus
Proofs for Tseitin Tautologies. In Proceedings of the 33rd International Colloquium on
Automata, Languages and Programming (ICALP ’06), volume 4051 of Lecture Notes in
Computer Science, pages 323–334. Springer, July 2006.

38 Balagopal Komarath, Jayalal Sarma, and Saurabh Sawlani. Pebbling meets coloring: Reversible
pebble game on trees. Journal of Computer and System Sciences, 91:33–41, 2018. doi:
10.1016/j.jcss.2017.07.009.

39 Richard Královič. Time and Space Complexity of Reversible Pebbling. RAIRO – Theoretical
Informatics and Applications, 38(02):137–161, April 2004.

40 Klaus-Jörn Lange, Pierre McKenzie, and Alain Tapp. Reversible Space Equals Deterministic
Space. Journal of Computer and System Sciences, 60(2):354–367, April 2000.

41 Thomas Lengauer and Robert Endre Tarjan. Asymptotically Tight Bounds on Time-Space
Trade-offs in a Pebble Game. Journal of the ACM, 29(4):1087–1130, October 1982. Preliminary
version in STOC ’79.

42 Ming Li, John Tromp, and Paul Vitányi. Reversible Simulation of Irreversible Computation.
Physica D: Nonlinear Phenomena, 120(1–2):168–176, September 1998.

43 Ming Li and Paul Vitányi. Reversibility and Adiabatic Computation: Trading Time and Space
for Energy. Proceedings of the Royal Society of London, Series A, 452(1947):769–789, April
1996.

44 Jesús A. De Loera, Jon Lee, Susan Margulies, and Shmuel Onn. Expressing Combinatorial
Problems by Systems of Polynomial Equations and Hilbert’s Nullstellensatz. Combinatorics,
Probability and Computing, 18(4):551–582, July 2009.

45 Giulia Meuli, Mathias Soeken, Martin Roetteler, Nikolaj Bjørner, and Giovanni De Micheli.
Reversible Pebbling Game for Quantum Memory Management. CoRR, abs/1904.02121, 2019.
arXiv:1904.02121.

46 Jakob Nordström. Pebble Games, Proof Complexity and Time-Space Trade-offs. Logical
Methods in Computer Science, 9(3):15:1–15:63, September 2013.

47 Jakob Nordström. New Wine into Old Wineskins: A Survey of Some Pebbling Classics with
Supplemental Results. Manuscript in preparation. To appear in Foundations and Trends in
Theoretical Computer Science. Current draft version available at http://www.csc.kth.se/
~jakobn/research/, 2019.

48 Michael S. Paterson and Carl E. Hewitt. Comparative Schematology. In Record of the Project
MAC Conference on Concurrent Systems and Parallel Computation, pages 119–127, 1970.

49 Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center, 1980.
in Proceedings of the 5th IBM Symposium on Mathematical Foundations of Computer Science,
Japan.

50 Toniann Pitassi and Robert Robere. Strongly Exponential Lower Bounds for Monotone
Computation. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC ’17), pages 1246–1255, June 2017.

CCC 2019

http://dx.doi.org/10.1016/j.jcss.2017.07.009
http://dx.doi.org/10.1016/j.jcss.2017.07.009
http://arxiv.org/abs/1904.02121
http://www.csc.kth.se/~jakobn/research/
http://www.csc.kth.se/~jakobn/research/


18:16 Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

51 Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to Monotone Span Programs over
Any Field. In Proceedings of the 50th Annual ACM Symposium on Theory of Computing
(STOC ’18), pages 1207–1219, June 2018.

52 Aaron Potechin. Bounds on Monotone Switching Networks for Directed Connectivity. In Pro-
ceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS ’10),
pages 553–562, October 2010.

53 Pavel Pudlák and Jirí Sgall. Algebraic Models of Computation and Interpolation for Algeb-
raic Proof Systems. In Proof Complexity and Feasible Arithmetics, volume 39 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pages 279–296. American
Mathematical Society, 1998. Available at http://users.math.cas.cz/~pudlak/span.pdf.

54 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen A. Cook. Exponential Lower
Bounds for Monotone Span Programs. In Proceedings of the 57th Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’16), pages 406–415, October 2016.

55 John E. Savage and Sowmitri Swamy. Space-Time Tradeoffs for Oblivious Interger Multi-
plications. In Proceedings of the 6th International Colloquium on Automata, Languages and
Programming (ICALP ’79), pages 498–504, 1979.

56 Ravi Sethi. Complete Register Allocation Problems. SIAM Journal on Computing,
4(3):226–248, September 1975.

57 Sowmitri Swamy and John E. Savage. Space-Time Trade-offs on the FFT-algorithm. Technical
Report CS-31, Brown University, 1977.

58 Sowmitri Swamy and John E. Savage. Space-Time Tradeoffs for Linear Recursion. Mathematical
Systems Theory, 16(1):9–27, 1983.

59 Neil Thapen. A Trade-off Between Length and Width in Resolution. Theory of Computing,
12(5):1–14, August 2016.

60 Martin Tompa. Time-Space Tradeoffs for Computing Functions, Using Connectivity Properties
of Their Circuits. In Proceedings of the 10th annual ACM symposium on Theory of computing
(STOC ’78), pages 196–204, 1978.

61 Ryan Williams. Space-Efficient Reversible Simulations. Technical report, Cornell University,
2000. Available at http://web.stanford.edu/~rrwill/spacesim9_22.pdf.

http://users.math.cas.cz/~pudlak/span.pdf
http://web.stanford.edu/~rrwill/spacesim9_22.pdf


Stronger Connections Between Circuit Analysis
and Circuit Lower Bounds, via PCPs of Proximity
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Abstract
We considerably sharpen the known connections between circuit-analysis algorithms and circuit lower
bounds, show intriguing equivalences between the analysis of weak circuits and (apparently difficult)
circuits, and provide strong new lower bounds for approximately computing Boolean functions with
depth-two neural networks and related models.

We develop approaches to proving THR ◦ THR lower bounds (a notorious open problem), by
connecting algorithmic analysis of THR ◦ THR to the provably weaker circuit classes THR ◦MAJ
and MAJ ◦MAJ, where exponential lower bounds have long been known. More precisely, we
show equivalences between algorithmic analysis of THR ◦ THR and these weaker classes. The
ε-error CAPP problem asks to approximate the acceptance probability of a given circuit to within
additive error ε; it is the “canonical” derandomization problem. We show:

There is a non-trivial (2n/nω(1) time) 1/ poly(n)-error CAPP algorithm for poly(n)-size
THR ◦ THR circuits if and only if there is such an algorithm for poly(n)-size MAJ ◦MAJ.
There is a δ > 0 and a non-trivial SAT (δ-error CAPP) algorithm for poly(n)-size THR ◦THR
circuits if and only if there is such an algorithm for poly(n)-size THR ◦MAJ.
Similar results hold for depth-d linear threshold circuits and depth-d MAJORITY circuits.

These equivalences are proved via new simulations of THR circuits by circuits with MAJ gates.
We strengthen the connection between non-trivial derandomization (non-trivial CAPP algorithms)
for a circuit class C, and circuit lower bounds against C. Previously, [Ben-Sasson and Viola,
ICALP 2014] (following [Williams, STOC 2010]) showed that for any polynomial-size class
C closed under projections, non-trivial (2n/nω(1) time) CAPP for ORpoly(n) ◦ AND3 ◦ C yields
NEXP 6⊂ C. We apply Probabilistic Checkable Proofs of Proximity in a new way to show it would
suffice to have a non-trivial CAPP algorithm for either ⊕2 ◦ C, AND2 ◦ C or OR2 ◦ C.
A direct corollary of the first two bullets is that NEXP 6⊂ THR ◦ THR would follow from either:

a non-trivial δ-error CAPP (or SAT) algorithm for poly(n)-size THR ◦MAJ circuits, or
a non-trivial 1/ poly(n)-error CAPP algorithm for poly(n)-size MAJ ◦MAJ circuits.

Applying the above machinery, we extend lower bounds for depth-two neural networks and
related models [R. Williams, CCC 2018] to weak approximate computations of Boolean functions.
For example, for arbitrarily small ε > 0, we prove there are Boolean functions f computable in
nondeterministic nlog n time such that (for infinitely many n) every polynomial-size depth-two
neural network N on n inputs (with sign or ReLU activation) must satisfy maxx∈{0,1}n |N(x)−
f(x)| > 1/2− ε. That is, short linear combinations of ReLU gates fail miserably at computing
f to within close precision. Similar results are proved for linear combinations of ACC ◦ THR
circuits, and linear combinations of low-degree Fp polynomials. These results constitute further
progress towards THR ◦ THR lower bounds.
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1 Introduction

Recall TC0 is the class of decision problems that are computable with circuit families of
constant depth, composed of MAJORITY and NOT gates. As this class remains the same
when “MAJORITY” is replaced by other more expressive functions such as linear threshold
functions [21, 32], TC0 naturally captures many mathematical models of neural computing,
and contains many natural arithmetic functions (for example, see [9, 38, 26]).

What interesting functions do not have polynomial-size TC0 circuits? Despite substantial
research effort [23, 2, 4, 17, 19, 21, 22, 24, 25, 29, 28, 35, 37, 40, 51, 44, 3, 31] it is consistent
with current knowledge that the huge class nondeterministic exponential time (NEXP) has
polynomial-size THR ◦ THR circuits, which are depth two and can compute arbitrary linear
threshold functions at both layers.1 It seems obvious that “shallow” nets cannot be so
powerful, but concrete proofs of their limitations have been elusive.

In 2011, R. Williams [49, 52] proved that NEXP does not have polynomial-size ACC0

circuits (a presumably weaker circuit class), by showing how circuit lower bounds follow from
non-trivial algorithms2 for problems such as circuit satisfiability or circuit derandomization.
The canonical circuit derandomization problem is CAPP, where the task is to approximate
the acceptance probability of a given circuit within an additive constant error (less than 1/3,
say). Along these lines, subsequent works have followed Williams’ program [50, 51, 12, 30, 3,
47, 44, 48], and more circuit lower bounds have been proved by either introducing new SAT
algorithms, or tightening the algorithms-to-lower-bounds connection. For an example of the
latter, Murray and Williams [34] recently showed that nondeterministic quasi-polynomial
time does not have polynomial-size ACC0 ◦ THR circuits using a strengthened connection.

A potential next step in this program would be to prove that NEXP does not have
polynomial-size depth-two threshold circuits (THR ◦THR). Partial progress has already been
made: for example, in [44, 3], it is shown that ENP does not have n2−o(1) size THR ◦ THR
circuits. Until now, essentially all lower bounds proven by this program have applied very
strong circuit-analysis algorithms, such as circuit satisfiability or #SAT algorithms. It looks
difficult to find such strong circuit-analysis algorithms for THR ◦ THR circuits. Indeed,
even for the simpler MAX-k-SAT problem (equivalent to the SAT problem for MAJ ◦ ANDk
circuits), no non-trivial algorithms are known for k(n) = ω(logn) (see [8]). For slightly larger
circuit classes such as NC1 (a.k.a. poly(n)-size formulas), it has been conjectured that there
are no non-trivial SAT algorithms [1].

An approach based on derandomizing a circuit class (finding non-trivial algorithms for
CAPP) looks more plausible than one based on SAT solving, because most researchers believe
“full” derandomization is possible and that CAPP is in P even for arbitrary circuits. However,
there is still a substantial obstacle for proving NEXP 6⊂ THR ◦ THR via derandomization
approaches. While previous works ([30, 13]) have shown that NEXP 6⊂ C would follow from a
non-trivial satisfiability algorithm for AND3 ◦ C (i.e., an AND of three C-circuits), the best

1 See Section 2.1 for formal definitions.
2 Throughout the paper, we use the term “non-trivial algorithm” to mean that, for every constant c ≥ 1,

the algorithm runs in 2n/nω(1) time on circuits of n inputs and nc gates.
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known connection theorem (namely, that of Ben-Sasson and Viola [13]) is that non-trivial
derandomization of ORpoly(n) ◦ AND3 ◦ C (i.e., a non-trivial CAPP algorithm for a 3-DNF
on poly(n) many C circuits) implies NEXP 6⊂ C. Finding a tighter correspondence (with no
“DNF overheads” in the connection) has been an intriguing open problem.

In this work, applying Probabilistically Checkable Proofs of Proximity (PCPPs), we
substantially tighten the connection given by Ben-Sasson and Viola, showing that non-trivial
derandomization for depth-d TC circuits would directly imply NEXP does not have depth-d
TC circuits. That is, in order to show NEXP 6⊂ THR ◦ THR, it suffices to find a non-trivial
derandomization of THR ◦ THR. Furthermore, we show that non-trivial derandomization
algorithms for THR ◦ THR is in fact equivalent to derandomization for the weaker class
THR ◦MAJ (tightly) and derandomization for the even weaker class MAJ ◦MAJ (with inverse
polynomial error). (THR ◦MAJ circuits are the special case of THR ◦ THR circuits where all
gates on the bottom layer only compute linear threshold functions with polynomial integer
weights; MAJ ◦MAJ circuits have that restriction on both layers. See Section 2.1 for formal
definitions.) Therefore, for our desired lower bounds against THR ◦THR, it suffices to obtain
non-trivial CAPP algorithms for THR◦MAJ or MAJ◦MAJ circuits, for which exponential-size
circuit lower bounds have long been known [19, 23].

As an additional application, we apply our new PCPP approach to strengthen recent depth-
two neural network lower bounds of R. Williams [48] for approximate computation of Boolean
functions. For example, we show that for every ε > 0 and every (non-uniform) polynomial-
size family of depth-two neural nets {Nn} with sign or ReLU activation functions, there
are Boolean functions f in nondeterministic nO(log? n) time such that maxx∈{0,1}n |Nn(x)−
f(x)| > 1/2− ε for infinitely many n. That is, arbitrary linear combinations of ReLU gates
fail miserably at computing f to within any close precision. Versions of the PCP theorem are
crucial elements in the proofs of these lower bounds; indeed, our overall argument involves
applications of a PCP in two different places. Previously, all concrete circuit lower bounds
proved via the algorithmic approach have not required the full power of the PCP theorem [5, 6]
for the argument to work.

To formally describe our results, we recall three circuit-analysis problems.

1. CAPP with error δ: Given a circuit C on n inputs, estimate the probability that
C(a) = 1 over uniformly random input a ∈ {0, 1}n, to within ±δ.

2. SAT: Given a circuit C, determine if there is an input a such that C(a) = 1.

3. Gap-UNSAT with gap δ: Given a circuit C, output YES when C(a) = 0 for all a, and
NO when C has at least δ · 2n satisfying assignments. Note that Gap-UNSAT with gap δ
is easier than the other two problems: either a SAT algorithm or a CAPP algorithm with
error δ would immediately imply a Gap-UNSAT algorithm with gap δ.

1.1 Equivalence Between Algorithmic Analysis of THR ◦ THR,
THR ◦ MAJ, MAJ ◦ MAJ

Our first results give equivalences between algorithmic analysis of THR ◦ THR, THR ◦MAJ,
and MAJ ◦MAJ circuits. These equivalences are surprising, because the latter two classes
are provably weaker than THR ◦ THR [16]. In fact, 2Ω(n)-size lower bounds are well-known
for them [23, 19].
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Poly-Size THR ◦ MAJ and THR ◦ THR are Equivalent for Circuit-Analysis
Algorithms

We say an algorithm running on n-input circuits is non-trivial if for all c, it runs in 2n/nω(1)

time for all circuits of size nc. We first show that, in terms of designing non-trivial SAT or
CAPP algorithms, THR ◦MAJ and THR ◦ THR are equally hard or easy.

I Theorem 1. The following two statements hold:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ MAJ circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size THR ◦ THR circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant δ > 0, If there is a non-trivial CAPP algorithm with error δ for THR ◦MAJ
circuits of poly(n) size, then there is a non-trivial CAPP algorithm with error δ+ 1/n for
poly(n)-size THR ◦ THR circuits.

Theorem 1 generalizes readily to TC circuits of any constant depth d. Let LTd be the
class of the depth-d circuits consisting entirely of arbitrary linear threshold functions, and
let L̂Td be the subclass of LTd with the restriction that all gates have polynomially-bounded
integer weights (see Section 2.1 for formal definitions). E.g., L̂T2 = MAJ ◦MAJ.

I Corollary 2. The following two statements hold for every constant d:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ L̂Td−1 circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size LTd circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant ε > 0, if there is a non-trivial CAPP algorithm with error ε for THR ◦ L̂Td−1
circuits of poly(n)-size, then there is a non-trivial CAPP algorithm with error ε+ 1/n for
poly(n)-size LTd circuits.

Weaker Equivalence Between Poly-Size THR ◦ THR and MAJ ◦ MAJ

We also obtain some weaker equivalences between circuit-analysis algorithms for THR ◦ THR
and MAJ ◦MAJ circuits.

I Theorem 3. The following two statements hold:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for poly(n)-size MAJ ◦MAJ
circuits is in 2(1−ε)n time for an ε > 0, then SAT for poly(n)-size THR ◦ THR circuits is
in 2(1−ε′)n time for an ε′ > 0.
Equivalence of Non-Trivial CAPP Algorithms with Inverse Polynomial Error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size MAJ ◦MAJ
circuits, then there is a non-trivial CAPP algorithm with 1/ poly(n) error for poly(n)-size
THR ◦ THR circuits.

Again, a similar result holds for TC circuits of any constant depth d.

I Corollary 4. The following two statements hold for any constant d:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for L̂Td circuits of poly(n)-size
is in 2(1−ε)n time for an ε > 0, then SAT for poly(n)-size LTd circuits is in 2(1−ε′)n time
for an ε′ > 0.
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Equivalence of Non-trivial CAPP Algorithms with inverse polynomial error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size L̂Td cir-
cuits, then there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size
LTd circuits.

1.2 Tighter Connection Between Circuit Lower Bounds and Non-trivial
Derandomization

Our next results give a tighter connection between non-trivial circuit-analysis algorithms
for C, and circuit lower bounds against C. We say a circuit class C is typical if it is closed
under taking negations of the output, and variable projections.3 We show that, to prove
NEXP 6⊂ C, it suffices to obtain non-trivial derandomization of AND3 ◦ C, OR2 ◦ C, or ⊕2 ◦ C
(a.k.a. XOR2 ◦ C).

I Theorem 5 (Lower Bounds From Non-Trivial Gap-UNSAT or CAPP Algorithms). There is an
absolute constant δ > 0, such that for any typical circuit class C, if one of the following holds:

there is a non-trivial Gap-UNSAT algorithm with gap δ for poly(n)-size AND3 ◦C circuits,
or
there is a non-trivial CAPP algorithm with error δ for poly(n)-size OR2 ◦ C, ⊕2 ◦ C, or
AND2 ◦ C circuits,

then NEXP 6⊂ C. Moreover, in the second bullet, C does not need to be closed under negation.

Comparison with Ben-Sasson and Viola

Ben-Sasson and Viola [12] showed that non-trivial Gap-UNSAT algorithms for ORpoly(n) ◦
AND3 ◦ C, or non-trivial satisfiability algorithms for AND3 ◦ C would imply NEXP 6⊂ C.
Theorem 5 is a strict strengthening of these two connections, as Gap-UNSAT is an easier
problem than SAT. In particular, note we avoid the unbounded fan-in OR entirely.

Applying the “easy witness lemma for NP” results of Murray and Williams [34], we can
naturally generalize to circuit lower bounds for NP if faster algorithms are used.

I Theorem 6 (NP Lower Bounds From Faster Gap-UNSAT or CAPP Algorithms). There is an
absolute constant α > 0, such that for any typical circuit class C, if there is a constant δ such
that one of the following holds:

Gap-UNSAT for 2δn-size AND3 ◦ C circuits with gap α can be solved in 2n−δn time, or
CAPP for 2δn-size OR2 ◦ C, ⊕2 ◦ C, or AND2 ◦ C circuits with error α can be solved in
2n−δn time,

then for every k there is a function in NP that doesn’t have nk-size C circuits. Moreover, in
the second bullet, C does not need to be closed under negation.

I Remark 7. In Theorems 5 and 6, the desired algorithms can even be non-deterministic,
as long as on all computation paths the algorithm either outputs don’t know or the correct
answer, and the correct answer always appears on at least one path.

In terms of techniques, our approach is very different from that of the previous derandom-
ization connection proved by Ben-Sasson and Viola [12]. They constructed a highly efficient
PCP for NTIME[T (n)], where the queries are projections of random bits, and the verifier is a
3-CNF. Their results were then obtained by directly plugging this PCP construction into the
original argument of [49].

3 See Section 2.1 for the details.

CCC 2019



19:6 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

Our approach is less direct. Our key insight in proving Theorem 5 (and Theorem 6
similarly) is to use PCPs of Proximity to reduce circuit evaluation tasks to derandomization
tasks. Using efficient PCPs for NTIME[2n] [10], Williams [49] showed NEXP 6⊂ P/ poly follows
from non-trivial Gap-UNSAT algorithms for poly(n)-size general circuits. Applying PCPs of
Proximity to the Circuit Evaluation Problem, we design a Gap-UNSAT algorithm for general
circuits, only assuming that NEXP ⊂ C and a Gap-UNSAT algorithm for AND3 ◦ C, which
results in a contradiction when C ⊂ P/ poly. Therefore our overall argument applies PCP
constructions in two different ways: first on a nondeterministic 2n-time computation to reduce
to a Gap-UNSAT problem, and then on a poly(n)-size circuit evaluation. See Section 1.6 for
an overview of the whole argument.

1.3 Potential Approaches to THR ◦ THR Circuit Lower Bounds
As a direct corollary of Theorem 5 and the folklore result that and XOR of two THR◦THR can
be written as a polynomially-larger THR ◦THR,4 it follows that non-trivial CAPP algorithms
for THR ◦ THR circuits with small constant error would imply NEXP 6⊂ THR ◦ THR. With a
little additional work, the same can be shown for non-trivial SAT algorithms for THR ◦ THR
circuits.

I Theorem 8. There is an absolute constant δ > 0, such that if δ-error CAPP for poly(n)-
size THR◦THR circuits can be solved in 2n/nω(1) time, then NEXP 6⊂ THR◦THR. The same
is true with SAT in place of CAPP.

The above theorem generalizes to TC circuits of any constant depth d (LTd circuits).

I Theorem 9. There is an absolute constant δ > 0, such that for any constant d, if CAPP
for poly(n)-size LTd circuits with error δ can be solved in 2n/nω(1) time, then NEXP 6⊂ LTd.
The same is true with SAT in place of CAPP.

It still appears to be a tough challenge to obtain a non-trivial CAPP algorithm for
polynomial-size THR ◦ THR circuits, as it is usually the case that derandomizations come
from circuit lower bounds (and ironically, our goal here is to prove circuit lower bounds for
THR ◦THR!). However, armed with our new equivalence results between algorithmic analysis
of THR ◦THR circuits and THR ◦MAJ or MAJ ◦MAJ circuits (Theorem 1 and Theorem 3), it
suffices for us to obtain non-trivial CAPP algorithms for THR ◦MAJ or MAJ ◦MAJ circuits,
for which 2Ω(n) lower bounds are known.

I Corollary 10. There is an absolute constant δ > 0, such that if one of the following holds:
1. CAPP (or SAT) for poly(n)-size THR ◦MAJ circuits with error δ is in 2n/nω(1) time, or
2. CAPP for poly(n)-size MAJ ◦MAJ circuits with 1/poly(n) error is in 2n/nω(1) time,
then NEXP 6⊂ THR ◦ THR.

Therefore NEXP 6⊂ THR ◦ THR follows if we can “mine” the known 2Ω(n) lower bounds
for THR ◦MAJ or MAJ ◦MAJ, and design non-trivial circuit-analysis algorithms from them!

1.4 Lower Bounds on Representing Boolean Functions Approximately
by Linear Combinations of Simple Functions

Finally, we apply our new techniques to strengthen recent depth-two lower bounds of
R. Williams [48]. He studied the problem of representing a Boolean function f exactly by a
linear combination of simple functions from a class C. Here we introduce an approximate
form of such representations.

4 See e.g. Lemma 50 for a proof.
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I Definition 11. Let C be a class of functions from {0, 1}n → R and ε ∈ [0, 0.5). We
say f : {0, 1}n → {0, 1} admits a S̃umε ◦ C circuit of sparsity S, if there are S functions
C1, C2, . . . , CS from C, together with S coefficients α1, α2, . . . , αS in R, such that for all
x ∈ {0, 1}n,∣∣∣∣∣

S∑
i=1

αi · Ci(x)− f(x)

∣∣∣∣∣ ≤ ε.
We use Sum ◦ C to denote the special case of ε = 0, which was the case studied in prior

work [48].
When C is the class of AND gates (or PARITY gates, respectively), we are asking for the

sparsest ε-approximate polynomial for f , with respect to the standard (or Fourier basis,
respectively). This is related to the ε-approximate degree5 of f , which is already a highly-
nontrivial notion; for instance, the approximate degrees of simple natural functions have only
recently been determined [15, 14, 42].

In prior work, Williams [48] showed that non-trivial algorithms for the so-called “Sum-
Product”6 of O(1) functions from C implies sparsity lower bounds against Sum ◦ C, and he
obtained sparsity lower bounds against various Sum ◦ C circuits by designing corresponding
Sum-Product algorithms.

Applying our new techniques together with other new ideas, we show that Sum-Product
algorithms in fact yield sparsity lower bounds against S̃umε◦C. That is, we can systematically
“lift” the Sum ◦ C lower bounds in [48] to lower bounds for S̃umε ◦ C.

First, we generalize the lower bounds for Sum ◦THR in [48] to S̃umε ◦THR. Such circuits
are also known in the machine learning literature as depth-two neural networks with sign
activation functions.

I Theorem 12 (Lower Bound for S̃umε ◦ THR). For all k and constant ε < 1/2, there
is a function in NP without S̃umε ◦ THR circuits of nk sparsity. Furthermore, if α(n) is
unbounded such that nα(n) is time-constructible, then NTIME[nα(n)] 6⊂ S̃umε ◦ THR for all
constant ε < 1/2.

A ReLU (rectified linear unit) gate is a function f : {0, 1}t → R+ such that there is a
vector w ∈ Rt and scalar a ∈ R such that for all x,

f(x) = max{0, 〈x,w〉+ a}.

Linear combinations of ReLU gates are also known as depth-two neural networks with ReLU
activation functions, and they are intensely studied in machine learning.7

Next we generalize the lower bounds for Sum ◦ ReLU in [48] to S̃umε ◦ ReLU.

I Theorem 13 (Lower Bound for S̃umε ◦ ReLU). For all k and constant ε < 1/2, there
is a function in NP without S̃umε ◦ ReLU circuits of nk sparsity. Furthermore, if α(n) be
unbounded such that nα(n) is time-constructible, then NTIME[nα(n)] 6⊂ S̃umε ◦ ReLU for all
constant ε < 1/2.

We also obtain analogous lower bounds for S̃umε◦(O(1)-degree Fp-polynomials), strength-
ening lower bounds for exact linear combinations of O(1)-degree polynomials [48].

5 The ε-approximate degree of f is the lowest degree of all polynomial p : {0, 1}n → {0, 1} such that
‖p− f‖∞ ≤ ε. Note that a low degree polynomial is also sparse.

6 See Section 6 for a formal definition. Intuitively, the “Sum-Product” problem generalizes #SAT.
7 We refer the readers to [48] and the references therein for more discussion on this topic.
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I Theorem 14 (Lower Bound for S̃umε ◦ (Fp-polynomials)). For all prime p, integers k, d,
and constant ε < 1/2, there is a function in NP without S̃umε ◦MODp ◦ ANDd circuits of
nk sparsity. Furthermore, if α(n) be unbounded such that nα(n) is time-constructible, then
NTIME[nα(n)] 6⊂ S̃umε ◦MODp ◦ ANDd for all constant ε < 1/2.

Finally, using the known #SAT algorithm for ACC0 ◦ THR [51], we show a sparsity lower
bound for S̃umε ◦ ACC0 ◦ THR circuits.
I Theorem 15. For every d,m ≥ 1 and ε ∈ [0, 0.5), there is a b ≥ 1 and an f ∈
NTIME[nlogb n] that does not have S̃umε ◦ AC0

d[m] ◦ THR circuits of na size, for every a.
Therefore, no polynomially-sparse linear combination of AC0

d[m] ◦ THR circuits can
approximate the value of the hard function in Theorem 15.

This constitutes the strongest known circuit class for which we can presently prove lower
bounds for nondeterministic quasi-polynomial time (improving [34]).

1.5 Techniques: Two Structure Lemmas for THR ◦ THR
Two major technical ingredients in our results are structure lemmas for THR ◦ THR, which
are of interest in their own right. Informally, our first structure lemma says that every
THR ◦ THR is equivalent to a polynomial-sized OR of Threshold-of-Majority circuits. The
second structure lemma says that every THR ◦THR circuit is equivalent to a subexponential-
sized OR of Majority-of-Majority circuits. For the program of proving THR ◦ THR lower
bounds, this is significant, as exponential-size Majority-of-Majority and Threshold-of-Majority
lower bounds are well-known [23, 19].

In the following, DOR refers to a “disjoint” OR gate: an OR gate with the promise that
at most one of its inputs is ever true, and Gap-ORδ refers to a “gapped” OR gate with a
error parameter δ: an OR gate with the promise that either all inputs are false or at least a
1− δ fraction of the inputs are true. We also use Gap-OR to denote Gap-OR1/2 for simplicity.
(See Section 2.1 for formal definitions.)
I Lemma 16 (Structure Lemma I for THR ◦THR circuits). Let n be the number of inputs, let
s = s(n) ≥ n be a size function, and let δ = δ(n) ∈ (0, 1) be an error function. Every s-size
THR ◦ THR circuit C is equivalent to a Gap-ORδ ◦ THR ◦MAJ circuit C ′ such that:

The top Gap-ORδ gate of C ′ has poly(s, δ−1) fan-in.
Each THR ◦MAJ subcircuit of C ′ has size poly(s, δ−1).
The transformation from C to C ′ can be computed in deterministic poly(s, δ−1) time.

I Lemma 17 (Structure Lemma II for THR ◦ THR circuits). Let n be the number of inputs
and let s = s(n) ≤ 2o(n) be a size parameter. Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR

circuit C is equivalent to a DOR ◦MAJ ◦MAJ circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each sub MAJ ◦MAJ circuit has size sO(1/ε).
The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.
Previously, Goldmann-Håstad-Razborov [21] showed that every THR ◦ THR circuit has

an equivalent MAJ ◦MAJ ◦MAJ circuit of polynomially larger size. The top OR gates in our
structure lemmas have additional benefits: for instance, an OR ◦ C circuit is satisfiable, if
and only if one of its C subcircuits is satisfiable. Therefore, solving SAT on an OR ◦ C circuit
is easily reduced to solving SAT on C circuits.

In Appendix C, we discuss more applications of the above two structure lemmas, beyond
the algorithmic equivalences for THR ◦ THR, THR ◦MAJ, and MAJ ◦MAJ circuits.
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1.6 Intuition: Solving Gap-UNSAT with Probabilistic Checkable Proofs
of Proximity

Here we provide an overview of the ideas behind our new tightened connection between
circuit lower bounds and circuit-analysis algorithms.

Starting Point: Designing Gap-UNSAT Algorithms for General Circuits, Assuming
NEXP ⊂ C

Suppose C ⊂ P/ poly. We want to show that a non-trivial Gap-UNSAT algorithm with
a constant gap for poly(n)-size AND3 ◦ C circuits implies NEXP 6⊂ C. We start with the
following connection of R. Williams [49]:

If Gap-UNSAT with gap 1−1/n10 for (fan-in 2) circuits with n inputs and poly(n) size
is solvable in O(2n/nω(1)) nondeterministic time, then NEXP doesn’t have poly(n)-size
(fan-in 2) circuits.

Our strategy is to assume NEXP ⊂ C, and use our non-trivial Gap-UNSAT algorithm for
AND3 ◦ C to derive a non-trivial Gap-UNSAT algorithm for general fan-in-2 circuits. This
would imply a contradiction, since by the above connection, it follows that NEXP 6⊂ P/ poly
and therefore NEXP 6⊂ C.

So suppose we are given a poly(n)-size general circuit C : {0, 1}n → {0, 1} with the
promise that either C is unsatisfiable (the YES case) or C has at least (1 − 1/n10) · 2n
satisfying assignments (the NO case), where our goal is to distinguish the two cases in
2n/nω(1) non-deterministic time.

To simplify the discussion, we negate the circuit C. Now we are promised C is a tautology,
or C has at most 1/n10 · 2n satisfying assignments, and we must nondeterministically prove
C is a tautology (when that is the case) in 2n/nω(1) time.

Review of the Approach in Williams’ ACC Lower Bound

It will be useful to review the previous approach ([52]) first, and see where we deviate
from it.8 Let the circuit C be given as above. First, assuming NEXP ⊂ C (which implies
Circuit-Eval ∈ C), there is an equivalent poly(n)-size C circuit D equivalent to C. Since we
are allowed to use non-deterministic algorithms, we might try to guess a C circuit D, and
verify that D is equivalent to C. If this verification can be done in 2n/nω(1) time, then we
could apply the Gap-UNSAT algorithm for C to the circuit D, and solve Gap-UNSAT for C.
Indeed, this is the original approach of Wiliams [52].

Since the NAND gate (NAND(z1, z2) := ¬(z1∧z2)) is universal, we may assume C consists
of m = poly(n) NAND gates, the first n gates are the inputs (that is, the i-th gate is the
input bit xi for i ∈ [n]), and the m-th gate is the output gate. Let Ci be the subcircuit of C
where the i-th gate is the output. Since we are assuming Circuit-Eval ∈ C, for all Ci there is
always an equivalent C-circuit Ti of poly(n) size.

The overall guess-and-verify algorithm works as follows:
Guess m− n C-circuits Tn+1, Tn+2, . . . , Tm, such that Ti is intended to be equivalent to
Ci. For i ∈ [n], we set Ti to be a trivial circuit which always outputs the i-th bit of the
input.

8 Our presentation here is slightly different from the original proof.
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For i ∈ {n+ 1, n+ 2, . . . ,m}, let i1 and i2 be the indices of the two gates which are inputs
to the i-th gate of C. We want to verify

NAND(Ti1(x), Ti2(x)) = Ti(x) (1)

is true for all x ∈ {0, 1}n. This can be reduced to solving SAT for AND3 ◦ C circuits.
If all the above checks pass, then we know Tm is equivalent to C.

The Proof System View

The above approach requires using SAT algorithms to verify (1) is true for all x ∈ {0, 1}n,
whereas we only want to assume non-trivial Gap-UNSAT algorithms (which could be much
weaker). Here we present a different perspective on the above approach.

Letting π(x) := (Tn+1(x), Tn+2(x), . . . , Tm(x)), we can view π(x) as a certain “locally-
checkable proof” for C(x) = 1. That is, C(x) = 1 if and only if there is a proof
π(x) ∈ {0, 1}m−n such that for the string z = x ◦ π(x) (◦ means concatenation), we
have NAND(zi1 , zi2) = zi for all i ∈ {n+ 1, n+ 2, . . . ,m}, and zm = 1.

Can we obtain something better from the “locally-checkable” perspective? We may
write all the constraints checked in our proof system as a 3-CNF formula ϕ on z = x ◦ π(x)
of ` = O(m) = poly(n) clauses. (Note, this simply mimics the standard reduction from
Circuit-Eval to 3-SAT.) Suppose the i-th clause is Fi(z) := ∨3

j=1(zij ⊕ bi,j).

As before, we guess C circuits Tn+1(x), Tn+2(x), . . . , Tm(x), but this time with the
intention that T (x) = (Tn+1(x), Tn+2(x), . . . , Tm(x)) is the correct proof for input x.
When C is a tautology, there is a guess T (x) such that Ex∼Un Ei∈[`][Fi(x ◦ T (x))] = 1.
Otherwise, for all guessed T (x), we have Ex∼Un Ei∈[`][Fi(x ◦ T (x))] ≤ 1/n10 + `−1

` ,
since for at least a 1− 1/n10 fraction of inputs, we have C(x) = 0, and therefore at most
`− 1 clauses can be satisfied by x ◦ T (x).

Note that Fi(x◦T (x)) is an OR3◦C circuit. We can try to estimate Ex∼Un [Fi(x◦T (x))] for
each i ∈ [`] to distinguish between the above two cases. Note there is only a 1/` = 1/poly(n)
gap between the above two cases. Therefore, this argument does show that, if we assume to
have non-trivial CAPP algorithms for OR3◦C with 1/ poly(n) error, the above guess-and-verify
approach already suffices to obtain lower bounds against C.

However, in our case, we are only assuming to have a Gap-UNSAT algorithm with a
constant gap. It is not clear how to make further progress with the above idea.

A Better Proof System?

The above idea does not work, essentially because the described “proof system” is a pretty
bad PCP! Given the pair (x, T (x)), if the verifier draws a random i ∈ [`] and checks whether
the clause Fi is satisfied, it is only promised to detect an error with probability ≥ 1/` when
C(x) = 0 and the proof T (x) is incorrect. In other words, it has a completeness/soundness
gap of only 1/` = 1/poly(n). A natural response to this observation is to try using a better
proof system for proving that C(x) = 1; it comes as no surprise that we turn to the PCP
Theorem [5, 6].

However, there is a subtle issue. In the above proof system, the verifier does not need to
know the input x beforehand, and only needs to query a bit of x when verifying a clause Fi
containing that bit. The most important property here is that the verifier’s queries do not
depend on the input x, as otherwise we cannot formulate the condition “the verifier accepts
with the random index i and proof T (x) on input x” as a simple function Fi(x ◦ T (x)) which
can be represented by an OR3 ◦ C circuit.
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Suppose we forced the verifier to access the input x using only O(1) queries, as in the
above proof system, but the circuit is computing a highly-sensitive function such as the
parity of x. There is no way that a verifier querying x for only O(1) times can correctly
infer (with high probability) that the parity of x is odd! This is because if the parity of x is
odd, the parity will change if we flip a random bit of x, so it is not possible for a verifier to
distinguish between these two cases with constant probability, if the verifier can only query
x for O(1) times.

Error Correcting Codes and Probabilistic Checkable Proofs of Proximity

To avoid the above trivial counterexample, our next key idea is to provide the PCP verifier
an error-correcting encoding of the input. Now we are at the right position to introduce
the main technical concept used in this paper: Probabilistic Checkable Proofs of Proximity
(PCPP) for the Circuit-Eval problem. When properly applied, PCPPs allow us to reduce the
error requirement on the CAPP algorithms from inverse polynomial to only a constant.

In this type of proof system9, a circuit E is fixed in advance, the verifier V (E) gets
oracle access to the input x of length n and a proof string π, tosses some random coins, and
makes at most 3 non-adaptive queries. The proof system has constant parameters δ > 0 and
s ∈ (0, 1), and satisfies two important properties:

(Perfect Completeness.) E(x) = 1 ⇒ there is a π such that Pr[V (E) accepts x ◦ π] = 1.
(Soundness on inputs far from being correct.) If x is δ-far from the set {y : E(y) = 1},
where δ is the proximity parameter, then for all possible proofs π, V (E) accepts x ◦ π
with probability at most s < 1.

To clarify the second point, we are saying that if x has hamming distance more than δn
from all y that satisfy E, then V (E) has decent probability of rejection on any proof π.

Suppose we use a linear error correcting code with an efficient encoder Enc and decoder
Dec, and define the circuit E by E(y) := C(Dec(y)). That is, E treats its input y as an
encoding of an input to the circuit C; it first decodes y to a string z, then feeds z to C to
get its output.

Let x ∈ {0, 1}n be an input to C. We instantiate a PCP of proximity proof system with
the circuit E and the input Enc(x). It is not hard to see that when C(x) = 0, Enc(x) is
δ1-far from the accepting inputs for E for a constant δ1 depending on the error correcting
code. We can ensure that δ1 > δ.

The Final Reduction

Now, suppose there are ` possible outcomes of the random coins, and assume that the
proof π is of length ` as well. Let Fi(Enc(x) ◦ T (x)) be the indicator that given a random
outcome i ∈ [`], whether the verifier V (E) accepts the oracle Enc(x) ◦ T (x). By definition,
Fi(Enc(x) ◦ T (x)) is a function on 3 coordinates of Enc(x) ◦ T (x) (we can assume WLOG
that Fi is simply an OR, by using a special PCP of proximity proof system; see Lemma 24).
Note that a bit of Enc(x) is just a parity over a subset of bits in x. For simplicity, let us
further assume C = THR ◦ THR, which can compute parity (note, this assumption can be
removed). Then Fi(Enc(x) ◦ T (x)) can now be formulated as an OR3 ◦ C circuit. Now we
proceed similarly as before.

9 see Definition 20
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We again try to guess C circuits T1(x), T1(x), . . . , T`(x), but this time with the hope that
T (x) = (T1(x), T2(x), . . . , T`(x)) is the correct proof for the verifier V (E) given input
Enc(x).
When C is a tautology, there is a guess T (x) such that Ex∼Un Ei∈[`][Fi(Enc(x)◦T (x))] = 1.
Otherwise, for all guesses T (x), Ex∼Un Ei∈[`][Fi(Enc(x) ◦ T (x))] ≤ 1/n10 + s, since for at
least a 1− 1/n10 fraction of inputs, we have C(x) = 0, and therefore at most an s fraction
of Fi’s can be satisfied by Enc(x) ◦ T (x), because Enc(x) is δ-far from any accepting
input to E.

In this new situation, it now suffices to estimate Ex∼Un [Fi(x ◦ T (x))] for each i ∈ [`]
within sufficiently small constant error. A careful examination of the above argument shows
it suffices to use a non-trivial Gap-UNSAT algorithm for AND3 ◦C circuits with a constant gap
(note that the negation of Fi is an AND3 ◦ C circuit), because we have perfect completeness
in the case where C is a tautology.

Lower Bounds From CAPP Algorithms for OR2 ◦ C, AND2 ◦ C, or ⊕2 ◦ C Circuits

The above shows how to use a non-trivial CAPP algorithm for OR3 ◦ C; how can we use
a non-trivial CAPP algorithm for OR2 ◦ C, AND2 ◦ C, or ⊕2 ◦ C? The natural idea is to
instead use a 2-query PCPP for Circuit-Eval. Unfortunately, there is no PCPP with only 2
queries with perfect completeness for Circuit-Eval, unless P = NP.10 Thus we must use a
construction with imperfect completeness. Luckily, there is a 2-query PCPP for Circuit-Eval
with a constant soundness/completeness gap (Lemma 25). We use that PCPP in the above
argument, together with other ideas, to establish the connection with a non-trivial CAPP
algorithm for OR2 ◦ C, AND2 ◦ C or ⊕2 ◦ C circuits.

1.7 Related Work

For more history on previous works on lower bounds for constant-depth threshold circuits,
see the corresponding sections in [51, 31]. We only discuss a few recent results here.

In 2014, Williams [51] showed that NEXP is not contained in ACC0◦THR, by devising a fast
satisfiability algorithm for ACC0 ◦ THR. The lower bound was recently improved by Murray
and Williams [34] to show NTIME[npolylog(n)] is not contained in ACC0 ◦ THR. Tamaki [44],
Alman, Chan and Williams [3] proved that ENP does not have n2−o(1) size THR◦THR circuits.
Most recently, Williams [48] showed that there are functions in NTIME[nlogω(1)(n)] that can
not be represented by a linear combination of polynomially many ACC0 ◦ THR circuits.

Tell [46] constructed a quantified derandomization algorithm for TC circuits with depth d
and n1+exp(−d) wires, and showed that a modest improvement of his algorithm would imply
standard derandomization of TC0, and consequently NEXP 6⊆ TC0.

Using random restrictions, Kane and Williams [31] proved that any THR ◦ THR circuits
computing Andreev’s function requires Ω̃(n1.5) gates and Ω̃(n2.5) wires. Chattopadhyay
and Mande [16] recently showed an exponential size separation between THR ◦MAJ and
THR ◦ THR, by constructing a function in THR ◦ THR with exponential sign-rank.

10A 2-query PCPP for Circuit-Eval with perfect completeness implies a 2-query PCP for NP with perfect
completeness [11], which in turn implies P = NP, as 2-SAT is in P.
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1.8 Organization of the Paper
In Section 2 we discuss necessary preliminaries. In Section 3 we prove equivalences between
non-trivial circuit analysis tasks of THR ◦ THR and that of THR ◦MAJ or MAJ ◦MAJ. In
Section 4 we establish a tighter connection between non-trivial derandomization and circuit
lower bounds. In Section 5, we propose approaches toward proving NEXP 6⊂ THR ◦ THR. In
Section 6 we prove lower bounds for various S̃umε ◦ C circuits. In Section 7 we prove two
new structure lemmas for THR ◦ THR circuits.

2 Preliminaries

The Circuit Evaluation Problem (Circuit-Eval) is the language of pairs {(C,w)} such that
when C is a general fan-in-2 circuit and w is a Boolean input, (C,w) ∈ Circuit-Eval if and
only if C(w) = 1. For two strings a, b, we use a ◦ b to denote their concatenation11.

2.1 Circuit Classes
Let C be a circuit class. We use Csn to denote the set of C of circuits with n inputs and size at
most s. Slightly abusing notation, we also use Csn to denote the Boolean functions computed
by circuits in Csn, when convenient.

We say a circuit class C is typical, if given the description of a circuit C from Csn, for all
indices 1 ≤ i, j ≤ n and b ∈ {0, 1}, the following functions are in Csn:

¬C, C(x1, . . . , xi−1, xj ⊕ b, xi+1, . . . , xn), C(x1, . . . , xi−1, b, xi+1, . . . , xn).

Furthermore, we require that given a description of C, descriptions of all the above circuits
can be constructed in poly(s) time. That is, C is typical if it is closed under both efficiently-
computable negation and efficiently-computable projection.

Notations for Circuit Classes
As many circuit classes are discussed in this work, we begin with some notation for such
classes.

Let x ∈ {0, 1}n. For w ∈ Rn and t ∈ R, we define THRw,t(x) (the threshold function)
to be the indicator function for the condition w · x ≥ t. Similarly, ETHRw,t(x) (the exact
threshold function) is the indicator function for the condition w · x = t. The values in the
vector w are called the weights, and the real t is called the threshold of THRw,t and ETHRw,t.
We say these weights and thresholds are realizations of the Boolean functions they define. A
fixed Boolean function may have many different realizations. It is known that, without loss of
generality, the weights and thresholds are integers of absolute value at most 2O(n logn) [33, 7].
For a threshold or exact threshold function with weight w, we call L(x) := w ·x its associated
linear function.

We use MAJn and EMAJn to denote the corresponding threshold (exact threshold)
functions on n inputs where all weights are 1 and the threshold value is n/2. Slightly abusing
notation, we also use THR,ETHR,MAJ,EMAJ to denote the classes of all such functions. We
also consider ⊕k (PARITY), ANDn, and ORn, with their usual meanings. We use DORn
to denote the disjoint OR function, that is, an OR function with the promise that at most

11Note that we also use ◦ for the composition of two circuits, but throughout the paper the meaning of
the symbol ◦ will always be clear from the context
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19:14 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

one input bit is true over all inputs. We use Gap-ORn,δ to denote the gap-OR function on
n inputs, that is, an OR function with the promise that either all n inputs are false, or at
least a 1− δ fraction of the n inputs are true. (The function may have undefined behavior
on other inputs.)

For two classes of functions like THR and MAJ, we use THR ◦ MAJ to denote the
corresponding class of depth-two circuits. Similar notations are used for more than two classes.

We use AC0[m]d to denote depth-d AC0[m] circuits (with unbounded fan-in OR, AND,
and MODm gates). We use LTd to denote the depth-d THR circuit class, that is, LTd :=
THR ◦ . . . ◦ THR︸ ︷︷ ︸

d times

. Similarly, we use L̂Td to denote its unweighted version, that is, L̂Td :=

MAJ ◦ . . . ◦MAJ︸ ︷︷ ︸
d times

.

Previous Known Containment Results
We need the following known circuit classes containment results for this paper.

I Proposition 18. The following hold:
1. THR ⊆ MAJ ◦MAJ [21, 27].
2. THR ⊆ DOR ◦ ETHR [24]. (also see Appendix B)
3. MAJ ◦ THR and MAJ ◦ ETHR are contained in MAJ ◦MAJ [21, 24].
4. ETHR ◦ ETHR ⊆ THR ◦ THR [24].
5. AND ◦ ETHR ⊆ ETHR [24].
6. EMAJ ⊆ MAJ ◦ AND2 [24].
7. ⊕k ◦ THR ◦ THR ⊆ THR ◦ THR for a constant k. (see Appendix B)
8. THR ◦ EMAJ ⊆ THR ◦MAJ [24].

Moreover, all the above have corresponding polynomial-time, deterministic constructions.

For the containment THR ⊆ DOR◦ETHR, we present an alternative proof in Appendix B,
which is more efficient than the previously known construction of Hansen and Podolskii [24].12
The last containment is folklore; we present a proof in Appendix B for completeness.

2.2 Approximation Theory
We need the following standard result from approximation theory.

I Lemma 19 ([39] Corollary.1.4.1). Let 0 < ε1 < ε2 < 1/2 be two constants, there is an
Oε1,ε2(1) degree polynomial P : R→ R, such that:

for all z ∈ [−ε2, ε2], P (z) ∈ [−ε1, ε1], and
for all z ∈ [1− ε2, 1 + ε2], P (z) ∈ [1− ε1, 1 + ε1].

2.3 Probabilistic Checkable Proofs of Proximity
The concept of probabilistically checkable proofs of proximity is crucial for this paper. In
the following we introduce its definition and several instantiations useful for this paper.

12Hansen and Podolskii [24] proved that a THR gate on n bits with weights of absolute value no greater
than W , can be written as a DOR of O(n2 · logW ) many ETHR gates. In Appendix B we show it can
be improved to O(n · logW ) many ETHR gates.
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I Definition 20 (Probabilistic Checkable Proofs of Proximity (PCP of proximity, or PCPP)).
For s, δ : N→ [0, 1] and r, q : N→ N, a verifier V is a PCP of proximity system for a pair
language L with proximity parameter δ, soundness parameter s, number of random bits r
and query complexity q if the following holds for all x, y:

If (x, y) ∈ L, there is a proof π such that V (x) accepts oracle y ◦ π with probability 1.

If y is δ(|x|)-far from L(x) := {z : (x, z) ∈ L}, then for all proofs π, V (x) accepts oracle
y ◦ π with probability at most s(|x|).

V (x) tosses r(|x|) random coins, and makes at most q(|x|) non-adaptive queries.

I Remark 21. We can also relax the first condition to be that there is a proof π such that
V (x) accepts oracle y ◦ π with probability at least c = c(|x|), where c is the completeness
parameter. In the above definition we assume c = 1, i.e., the perfect completeness.

I Lemma 22 (Theorem 3.3 in [11]). For any constants 0 < δ, s < 1, there is a PCP of
proximity system for Circuit-Eval with proximity δ, soundness s, number of random bits
r = O(logn) and query complexity q = O(1). Moreover, given the pair (C,w) ∈ Circuit-Eval,
a proof π making V (C) always accepts can be constructed in poly(|C|+ |w|) time.

I Remark 23. The moreover part is not explicitly stated in [11], but it is evident from the
constructions.

The exact number of queries used in a PCPP will be significant for us, so we use query-
efficient PCPPs. They are already implicit in the literature; for completeness, we provide
expositions for them in Appendix A.

I Lemma 24 (3-query PCPP with perfect completeness). For any constant δ > 0 there is
a constant 0 < s < 1, such that there is a PCP of proximity system for Circuit-Eval with
proximity δ, soundness s, random bits r = O(logn), and query complexity q = 3. Moreover,
the system satisfies two additional properties:

(1) Given the random coins, the verifier simply computes an OR on these 3 queried bits or
their negations, and accepts iff the OR is true.

(2) Given the pair (C,w) ∈ Circuit-Eval, we can construct a proof π in poly(|C|+ |w|) time
that makes V (C) accept with probability 1.

I Lemma 25 (2-query PCPP with constant completeness/soundness gap). For any constant
δ > 0 there two constants 0 < s < c < 1, such that there is a PCP of proximity system
for Circuit-Eval with proximity δ, soundness s, completeness c, number of random bits
r = O(logn) and query complexity q = 2. Moreover, it satisfies two additional properties:

(1) Given the random coins, the verifier computes an OR on the 2 queried bits or their
negations, and accepts iff the OR is true.

(2) Given the pair (C,w) ∈ Circuit-Eval, a proof π can be constructed in poly(|C|+ |w|) time
that makes V (C) accept with probability at least c.
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2.4 Error Correcting Codes
We also need standard constructions of constant-rate linear error correcting codes.

I Lemma 26 ([43]). There is a constant δ > 0 such that there is a constant-rate linear
error correcting code ECC with minimum relative distance δ, an efficient encoder Enc and an
efficient decoder Dec recovering error up to c1 · δ, where c1 is a universal constant.

We use a slight modification of the above construction, which is convenient when we want
to guess-and-verify a circuit for the encoder.

I Lemma 27. There is a constant δ > 0 such that there is a constant-rate linear error
correcting code ECC with minimum relative distance δ, an efficient encoder Enc and an
efficient decoder Dec recovering error up to c1 · δ, where c1 is a universal constant. Moreover,
each bit of the codeword depends on at most n/2 bits of the input.

Proof. Given a message x ∈ {0, 1}n, we split it into three parts x1, x2, x3, each of length
between bn/3c and dn/3e. Let Enc′ and Dec′ be the corresponding encoder and decoder of
Lemma 26.

We construct our new error correcting code by setting Enc(x) := Enc′(x1) ◦ Enc′(x2) ◦
Enc′(x3). Given a codeword y, we split it into three strings y1, y2, y3 of appropriate lengths,
and let Dec(y) := Dec′(y1) ◦ Dec′(y2) ◦ Dec′(y3). J

2.5 Norms and Inequalities for Functions on Boolean Cube
For our lower bounds on approximate sums of functions, we will require a bit of Fourier
analysis on Boolean functions. Here we introduce some notations and inequalities for real-
valued functions on the Boolean hypercube. (See [36] for an excellent reference on this
topic.)

Let f : {0, 1}n → R be a function and p ∈ R+. We define

‖f‖p :=
(

E
x∼Un

[|f(x)|p]
)1/p

.

We also define the infinity norm in the usual way:

‖f‖∞ = max
x∈{0,1}n

|f(x)|.

By the standard relations between different Lp-norms, for all 0 < p < q ≤ ∞, we have
‖f‖p ≤ ‖f‖q.

For two functions f, g : {0, 1}n → R, we define their inner product as

〈f, g〉 := E
x∼Un

[f(x) · g(x)].

Note that the Cauchy-Schwarz inequality implies 〈f, g〉 ≤ ‖f‖2 · ‖g‖2. We need the following
simple lemma for this paper.

I Lemma 28. For functions f1, f2 and g1, g2 from {0, 1}n → R and positive ε, α ∈ R,
suppose for all i ∈ [2] we have:
‖fi‖2 ≤ α and ‖gi‖2 ≤ α,
‖fi − gi‖2 ≤ ε.

Then 〈f1, f2〉 − 〈g1, g2〉‖ ≤ 2 · α · ε.
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Proof. We have

‖〈f1, f2〉 − 〈g1, g2〉‖ ≤ ‖〈f1, f2〉 − 〈f1, g2〉‖+ ‖〈f1, g2〉 − 〈g1, g2〉‖
≤ ‖〈f1, f2 − g2〉‖+ ‖〈f1 − g1, g2〉‖
≤ 2 · α · ε. J

2.6 Connections Between Nondeterministic Gap-UNSAT Algorithms
and Circuit Lower Bounds

We also appeal to several known connections between Gap-UNSAT algorithms which improve
upon exhaustive search and circuit lower bounds against nondeterministic time classes [49,
30, 41, 13].

I Theorem 29 ([49]). If Gap-UNSAT with gap 1− 1/n10 for (general) circuits with n inputs
and poly(n) size is solvable in O(2n/nω(1)) nondeterministic time, then NEXP doesn’t have
poly(n)-size (general) circuits.

I Theorem 30 ([34]). If there is an ε > 0 such that Gap-UNSAT with gap 1 − 1/n10 for
(general) circuits with n inputs and 2εn size is solvable in O(2n−εn) nondeterministic time,
then for every k there is a function in NP that does not have nk-size (general) circuits.

I Theorem 31 (Corollary 12 in Tell [45], following [34]). If there is a δ > 0 and c ≥ 1 such
that Gap-UNSAT with gap 1− 1/n10 for (general) circuits with n variables and m gates is
solvable in O(2n(1−δ) ·mc) nondeterministic time, then for every unbounded α(n) such that
nα(n) is time-constructible, there is a function in NTIME[nα(n)] that is not in P/ poly.

I Theorem 32 ([34]). If there is an ε > 0 such that Gap-UNSAT with gap 1 − 1/n10 for
(general) circuits with n inputs and 2nε size is solvable in O(2n−nε) nondeterministic time,
then for every k there is a function in NTIME[npoly(logn)] that does not have nlogk n-size
(general) circuits.

3 Equivalence Between Algorithmic Analysis of THR ◦ THR and of
THR ◦ MAJ or MAJ ◦ MAJ

In this section, building on our new structure lemmas for THR◦THR circuits. We show several
equivalence results between canonical circuit-analysis tasks (SAT or CAPP) of THR ◦ THR
circuits and that of THR ◦MAJ or MAJ ◦MAJ circuits.

3.1 Poly-Size THR ◦ MAJ and THR ◦ THR are Equivalent for
Circuit-Analysis Algorithms

We first show that, in terms of designing non-trivial circuit-analysis algorithms, THR ◦ THR
and THR ◦MAJ circuits are essentially equivalent.

I Reminder of Theorem 1. The following two statements hold:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ MAJ circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size THR ◦ THR circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant δ > 0, If there is a non-trivial CAPP algorithm with error δ for THR ◦MAJ
circuits of poly(n) size, then there is a non-trivial CAPP algorithm with error δ+ 1/n for
poly(n)-size THR ◦ THR circuits.
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Proof. We begin with the first equivalence. We only have to show that a 2n/nω(1) time
SAT algorithm for poly(n)-size THR ◦MAJ circuits implies such an algorithm for THR ◦THR
circuits. By Lemma 16, given any THR ◦THR circuit of poly(n) size, in poly(n) time we can
construct an equivalent poly(n)-size Gap-OR ◦ THR ◦MAJ circuit C. Applying the assumed
SAT algorithm for THR◦MAJ circuits on all THR◦MAJ subcircuits of C completes the proof
of the first equivalence.

For the second equivalence, given any THR ◦ THR circuit C of poly(n) size, we construct
in poly(n) time a Gap-OR1/n ◦ THR ◦MAJ circuit D that is equivalent to C, by Lemma 16.
Let D1, D2, . . . , Dm be the THR ◦MAJ subcircuits of C, where m = poly(n).

By the definition of a Gap-OR1/n gate, for all x ∈ {0, 1}n, we have∣∣∣∣C(x)− E
i∈[m]

Di(x)
∣∣∣∣ ≤ 1/n.

Therefore, to estimate Ex∼Un [C(x)] within error δ+ 1/n, it suffices to estimate Ex∼Un [Di(x)]
for each i ∈ [m] within error δ. Applying the non-trivial CAPP algorithm for THR ◦MAJ
circuits from the assumption completes the proof. J

With an argument similar to the proof of Theorem 1 and using the fact that MAJ◦THR ⊆
MAJ ◦MAJ (potentially multiple times), it is not hard to generalize Theorem 1 to hold for
TC circuits of any constant depth d.

I Reminder of Corollary 2. The following two statements hold for any constant d:
Equivalence of Non-Trivial SAT Algorithms: There is a non-trivial SAT algorithm
for THR ◦ L̂Td−1 circuits of poly(n)-size if and only if there is such an algorithm for
poly(n)-size LTd circuits.
Equivalence of Non-Trivial CAPP Algorithms With Constant Error: For any
constant ε > 0, if there is a non-trivial CAPP algorithm with error ε for THR ◦ L̂Td−1
circuits of poly(n)-size, then there is a non-trivial CAPP algorithm with error ε+ 1/n for
poly(n)-size LTd circuits.

3.2 Weaker Equivalence Between Poly-Size THR ◦ THR and
MAJ ◦ MAJ

We also show a weaker equivalence for THR ◦ THR and MAJ ◦MAJ circuits.

I Reminder of Theorem 3. The following two statements hold:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for poly(n)-size MAJ ◦MAJ
circuits is in 2(1−ε)n time for some constant ε > 0, then SAT for poly(n)-size THR ◦THR
circuits is in 2(1−ε′)n time for some ε′ > 0.
Equivalence of Non-Trivial CAPP Algorithms with Inverse Polynomial Error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size MAJ ◦MAJ
circuits, then there is a non-trivial CAPP algorithm with 1/ poly(n) error for poly(n)-size
THR ◦ THR circuits.

Proof. We begin with the first equivalence.

The first equivalence. Suppose we have a 2(1−ε1)n time SAT algorithm for poly(n) size
MAJ ◦ MAJ circuits for a constant ε1 > 0, and want to design a 2n−Ω(n) time SAT
algorithm for poly(n) size THR ◦ THR circuits.
Let c be the hidden constant in the big-O of the fan-in of the top DOR gate from
Lemma 17. Set ε := ε1/2c, and apply Lemma 17 to the given poly(n)-size THR ◦ THR
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circuit. We obtain an equivalent DOR ◦MAJ ◦MAJ circuit with top fan-in 2cεn = 2ε1/2·n

and poly(n)-size MAJ ◦ MAJ subcircuits. Then we can apply our SAT algorithm for
poly(n)-size MAJ ◦MAJ circuits to solve the SAT problem for poly(n) size THR ◦ THR
circuits, which completes the proof of the first equivalence.

The second equivalence. To show the second equivalence, suppose for all constants k′, there
is a CAPP algorithm for poly(n)-size MAJ ◦MAJ circuits with error 1/nk′ . We have to
design such an algorithm for poly(n)-size THR ◦ THR circuits.
Given a THR ◦ THR circuit C of s = poly(n) ≤ nc1 size and a constant k, we want to
estimate

E
x∼Un

[C(x)] (2)

within error 1/nk.
Since THR ⊆ DOR ◦ ETHR (item (2) of Proposition 18), we can write C as a DOR of
m = poly(s) = poly(n) ETHR ◦ THR subcircuits C1, C2, . . . , Cm. By the definition of
DOR, we have

E
x∼Un

[C(x)] = E
x∼Un

[
m∑
i=1

Ci(x)
]

=
m∑
i=1

E
x∼Un

[Ci(x)].

Therefore, in order to estimate (2) within error 1/nk, it suffices to estimate

E
x∼Un

[Ci(x)]

within error 1/(m · nk) for each i ∈ [m].
So fix an i ∈ [m]. Let D = Ci, and let D’s top ETHR gate be G. By construction, G
has weights of absolute value at most 2nc , for a constant c depending on c1. Define
L : {0, 1}n → Z so that L(x) is the value of the linear function associated with G on
input x. That is, D(x) = 1 if and only if L(x) = T for the threshold T of G.
Suppose we pick a random prime number p in the interval [2,M ], where M = n2c · (2m ·
nk)2 ≤ poly(n). Then for a fixed x ∈ {0, 1}n, if L(x) 6= T , the probability that L(x) ≡ T
(mod p) is less than 1/(2m · nk).
Recall that for a prime p and an ETHR gate G(x) = [

∑n
i=1 wi · xi = T ], we use Gp to

denote its “mod p” version (see Definition 41). Let Dp denote the circuit obtained by
replacing the top G gate in D by Gp. For all x ∈ {0, 1}n, by the above discussion, we
have∣∣∣∣D(x)− E

prime p ∈ [2,M ]
[Dp(x)]

∣∣∣∣ ≤ 1/(2m · nk).

Therefore, in order to estimate Ex∼Un [D(x)] within error 1/(m ·nk), it suffices to estimate

E
x∼Un

[Dp(x)]

for all primes p ≤M , within error 1/(2m · nk).
By Lemma 42, each Dp can be written as a DOR of O(n) EMAJ◦ETHR circuits of poly(n)
size. Since EMAJ ⊆ MAJ ◦AND2, AND ◦ ETHR ⊆ ETHR and MAJ ◦ ETHR ⊆ MAJ ◦MAJ
(items (6), (5), and (3) of Proposition 18), Dp can be further written as a DOR of cn
MAJ ◦MAJ circuits Dp

1 , D
p
2 , . . . , D

p
cn of poly(n) size, for a universal constant c.
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Therefore, to estimate Ex∼Un [Dp(x)] within error 1/(2m · nk), it suffices to estimate
Ex∼Un [Dp

i (x)] within error 1/(2m · nk · cn), for each i ∈ [cn].
Observe that 2m · nk · cn ≤ poly(n), and all Dp

i ’s are poly(n)-size MAJ ◦MAJ circuits.
Applying the assumed CAPP algorithm completes the proof of the second equivalence. J

Again applying the fact that MAJ ◦ THR ⊆ MAJ ◦MAJ, the generalization to TC circuits
of any constant depth d is immediate.

I Reminder of Corollary 4. The following two statements hold for any constant d:
Equivalence of 2(1−ε)n-time SAT Algorithms: If SAT for L̂Td circuits of poly(n)-size
is in 2(1−ε)n time for a constant ε > 0, then SAT for poly(n)-size LTd circuits is in
2(1−ε′)n time for some ε′ > 0.
Equivalence of Non-trivial CAPP Algorithms with inverse polynomial error:
If there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size L̂Td circuits,
then there is a non-trivial CAPP algorithm with 1/poly(n) error for poly(n)-size LTd
circuits.

4 Tighter Connection Between Derandomization and Circuit Lower
Bounds

In this section we show that C circuit lower bounds for NEXP or NP follow from better-than-2n
time derandomization of AND3 ◦ C, OR2 ◦ C, ⊕2 ◦ C or AND2 ◦ C circuits.

I Reminder of Theorem 5. There is an absolute constant δ > 0, such that for any typical
circuit class C, if one of the following holds:

there is a non-trivial Gap-UNSAT algorithm with gap δ for poly(n)-size AND3 ◦C circuits,
or
there is a non-trivial CAPP algorithm with error δ for poly(n)-size OR2 ◦ C, ⊕2 ◦ C, or
AND2 ◦ C circuits,

then NEXP 6⊂ C. Moreover, in the second bullet, C does not need to be closed under negation.

Proof. We use Un to denote the uniform distribution on {0, 1}n.
We will show there is an absolute constant δ > 0, such that if one of the algorithmic

assumptions of the theorem holds and NEXP ⊂ C, then Gap-UNSAT with gap 1− 1/n10 for
poly(n)-size general circuits can be solved in 2n/nω(1) non-deterministic time. This proves
the theorem, since by Theorem 29, we have NEXP 6⊂ P/ poly, which is a contradiction to
NEXP ⊂ C.

We are given a poly(n)-size general circuit C : {0, 1}n → {0, 1} with the promise that
either C is unsatisfiable, or C has at least (1− 1/n10) · 2n satisfying assignments. Our goal
is to distinguish between these two cases in 2n/nω(1) non-deterministic time.

Let δ1 > 0 be the constant of Lemma 27. We fix a constant-rate linear error correcting code
with minimum relative distance δ1, as guaranteed by Lemma 27. Let Enc : {0, 1}n → {0, 1}cn
and Dec : {0, 1}cn → {0, 1}n be the corresponding encoder and decoder, where c ≥ 1 is a
constant corresponding to the rate of the code. Let δDec = c1 · δ1, which is error rate that
Dec can recover.

We also need a C circuit for the parity function on n/2 bits for computing Enc (by
Lemma 27, the code is linear, and each output bit depends on at most n/2 input bits). By
the assumption NEXP ⊂ C, the parity function must have a C-circuit of poly(n) size. We
can guess a C-circuit Parn/2, and brute-force verify that it is correct in 2n/2 · poly(n) time.
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Let D : {0, 1}cn → {0, 1} be the circuit defined as D(y) = ¬C(Dec(y)). Since C has
poly(n) size and Dec is efficient, D also has poly(n) size. Then we can see

Pr
x∼Un

[C(x) = 0] = Pr
x∼Un

[D(Enc(x)) = 1] = Pr
x∼Un

[(D,Enc(x)) ∈ Circuit-Eval].

With non-trivial Gap-UNSAT algorithms for poly-size AND3 ◦ C circuits. We first prove
the theorem under the first assumption. For that purpose we make use of a PCP of
proximity system V for Circuit-Eval, with δPCPP < δDec, r = O(logn), q = 3 and a constant
s < 1, whose existence is guaranteed by Lemma 24. We fix the circuit to be D, and write
the verifier as V (D).
We can view the verification of V (D) as m = 2r(|D|) = poly(n) many constraints on the
oracle y ◦ π. We can also assume |π| = ` = poly(n). Suppose there are F1, F2, . . . , Fm
constraints on y ◦ π, each constraint is an OR on q = 3 variables or their negations.
Then the properties of PCP of proximity system translate to:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that all constraints Fi’s are satisfied by y ◦ π.
If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D) =
{z : z ∈ {0, 1}cn and (D, z) ∈ Circuit-Eval}. Since δDec > δPCPP, we have that for all
proofs π ∈ {0, 1}`, at most a s fraction of constraints Fi’s are satisfied by y ◦ π.

When C is unsatisfiable, then there is a proof π(x) for each y = Enc(x), such that V (D)
accepts y ◦ π(x) with probability 1. Note that by Lemma 24, such a proof π(x) can be
computed in polynomial time from y and D, which in particular means that π(x) admits
a polynomial-size circuit, hence each bit of π(x) admits a nproof = poly(n) size C circuit
(here we use the assumption that NEXP ⊂ C).
Next, we guess a list of nproof-size C circuits T1, T2, . . . , T` such that

T (x) = (T1(x), T2(x), . . . , T`(x))

is intended to be the proof π(x) for y = Enc(x). Slightly abusing notation, we also use Fi
to denote the function Fi(x) := Fi(Enc(x) ◦ T (x)). Since a bit of Enc(x) is just a parity
on at most n/2 bits in x, and since C is typical, each Fi can be written as an OR3 ◦ C
circuit. We also set Ei(x) = ¬Fi(x), which is an AND3 ◦ C circuit.
Therefore, when C is unsatisfiable, by the previous discussion, on some guesses of the
Ti’s, we have

Pr
x∼Un

[V (D)Enc(x)◦T (x) = 1] = E
x∼Un

E
i∈[m]

[Fi(x)] = 1.

Therefore, for all i ∈ [m],

E
x∼Un

[Ei(x)] = 0.

When C has at most 2n/n10 unsatisfying assignments, for all possible T1, T2, . . . , T`, we
have

E
x∼Un

E
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

By an averaging argument, there must be an i such that

E
x∼Un

[Fi(x)] ≤ 1/n10 + s,

CCC 2019



19:22 Stronger Connections Between Circuit Analysis and Circuit Lower Bounds

or equivalently

E
x∼Un

[Ei(x)] ≥ 1− s− 1/n10 ≥ 1− s
2 .

Next, we set δ = 1−s
2 . When C is unsatisfiable, all Ei’s are unsatisfiable on the correct

guesses. When C has at most 1/n10 · 2n unsatisfying assignments, then for all guesses,
there is at least one i such that Ei has at least δ ·2n satisfying assignments. Hence, solving
Gap-UNSAT with gap δ for all Ei’s suffices to non-deterministically distinguish between
the two cases. By the first assumption, that takes 2n/nω(1) time, and the theorem follows
from Theorem 29.

With non-trivial CAPP algorithms for poly(n)-size AND2 ◦C, ⊕2 ◦C or OR2 ◦C circuits.
The theorem under the second assumption can be proved similarly if we use the 2-query
PCP of proximity system for Circuit-Eval instead, which is given by Lemma 25. The proof
here is similar in parts to the one we just described for AND3 ◦ C; for completeness we
will give the proof in full.
Now we make use of a PCP of proximity system V for Circuit-Eval, with δPCPP < δDec,
r = O(logn), q = 2 and constants 0 < s < c < 1, whose existence is guaranteed by
Lemma 25. We again fix the circuit to be D, and write the verifier as V (D).
Similarly, we can view the verification of V (D) as m = 2r(|D|) ≤ poly(n) many con-
straints on the oracle y ◦ π. We can also assume |π| = ` ≤ poly(n). Suppose there
are F1, F2, . . . , Fm constraints on y ◦ π, where each constraint is a function on q = 2
coordinates of y ◦ π.
Then the properties of PCP of proximity system translate to:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that at least a c-fraction of Fi’s are satisfied by y ◦ π.
If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D).
Since δDec > δPCPP, we have that for all proofs π ∈ {0, 1}`, at most an s-fraction of
Fi’s are satisfied by y ◦ π.

If C is unsatisfiable, then there is a proof π(x) for each y = Enc(x) that makes V (D)
accept y ◦ π(x) with probability at least c. By Lemma 24, such a proof π(x) can be
computed in polynomial time from y and D, which in particular means that π(x) has a
polynomial-size circuit. Therefore each output bit of π(x) has an nproof = poly(n) size
C-circuit, from the assumption that NEXP ⊂ C.
The next step is to guess a list of nproof-size C circuits T1, T2, . . . , T` such that T (x) =
(T1(x), T2(x), . . . , T`(x)) is supposed to the proof π(x) given input y = Enc(x). Slightly
abusing notation, Fi is also used to denote the function Fi(x) := Fi(Enc(x) ◦ T (x)).
When C is unsatisfiable, by the previous discussion, there is a guess of Ti’s such that

Pr
x∼Un

[V (D)Enc(x)◦T (x) = 1] = E
x∼Un

E
i∈[m]

[Fi(x)] ≥ c.

When C has at most 2n/n10 unsatisfying assignments, then for all possible T1, T2, . . . , T`,
we have

E
x∼Un

E
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

Now set δ1 := c−s
2 . In order for us to non-deterministically distinguish between the above

two cases, it suffices to estimate

E
x∼Un

[Fi(x)]
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to within δ1, for each i ∈ [m].
Since each output bit of Enc(x) is simply a parity on at most n/2 bits of x, each Fi can
be written as a function Fi(x) = P (C1(x), C2(x)), where C1, C2 are two C circuits, and
P is a function from {0, 1}2 → {0, 1}. (Recall that in this case, we do not require C to be
closed under negation.)
Now we write P as a polynomial:

P (z1, z2) =
∑
S⊆[2]

αS ·
∏
i∈S

zi =
∑
S⊆[2]

αS ·
∧
i∈S

zi,

where each coefficient αS ∈ [−4, 4]. Given two C circuits C1, C2, to estimate

E
x∼Un

[P (C1(x), C2(x))] =
∑
S⊆[2]

αS · E
x∼Un

[∧
i∈S

Ci(x)
]

within error δ1, it suffices to estimate each

E
x∼Un

[∧
i∈S

Ci(x)
]

within error δ = δ1/16. Finally, we can apply our assumed non-trivial CAPP algorithm
for poly(n)-size AND2 ◦ C circuits to non-deterministically distinguish the two cases, and
the theorem follows from Theorem 29.
When we only have non-trivial CAPP algorithms for ⊕2 ◦ C or OR2 ◦ C circuits, we can
simply write P in the basis of OR functions or ⊕ functions instead. That is, we can write

P (z1, z2) =
∑
S⊆[2]

α′S ·
⊕
i∈S

zi,

or

P (z1, z2) =
∑
S⊆[2]

α′′S ·
∨
i∈S

zi.

The rest of the argument is the same as the case of AND2 ◦ C circuits. J

Using Theorem 30, the following theorem can be proved with the same argument as of
Theorem 5.

I Reminder of Theorem 6. There is an absolute constant α > 0, such that for any typical
circuit class C, if there is a constant δ such that one of the following holds:

Gap-UNSAT for 2δn-size AND3 ◦ C circuits with gap α can be solved in 2n−δn time, or
CAPP for 2δn-size OR2 ◦ C, ⊕2 ◦ C, or AND2 ◦ C circuits with error α can be solved in
2n−δn time,

then for every k there is a function in NP that doesn’t have nk-size C circuits. Moreover, in
the second bullet, C does not need to be closed under negation.

5 Approaches For THR ◦ THR Circuit Lower Bounds

In this section we propose approaches for proving NEXP 6⊂ THR ◦ THR. We will see that
surprisingly weak algorithms suffice for proving this lower bound.

Applying Theorem 5 and the fact that ⊕2 ◦ THR ◦ THR ⊆ THR ◦ THR, we first show
that NEXP 6⊂ THR ◦ THR would follow from a non-trivial CAPP algorithm for poly(n)-size
THR ◦ THR circuits.
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I Reminder of Theorem 8. There is an absolute constant δ > 0, such that if δ-error CAPP
for poly(n)-size THR◦THR circuits can be solved in 2n/nω(1) time, then NEXP 6⊂ THR◦THR.
The same is true with SAT in place of CAPP.

Proof. The theorem for CAPP follows directly from the fact that ⊕2◦THR◦THR ⊆ THR◦THR
(item (7) of Proposition 18) and Theorem 5.

Suppose SAT for poly(n)-size THR ◦ THR circuits can be solved in 2n/nω(1) time. By
Theorem 5, it suffices to give a 2n/nω(1) time algorithm for solving SAT for AND3◦THR◦THR
circuits of poly(n) size (note that Gap-UNSAT is easier than SAT).

Given such an AND3 ◦THR◦THR circuit C, we first use the fact that THR ⊆ DOR◦ETHR
(item (2) of Proposition 18) to transform it into a poly(n) size AND3 ◦DOR ◦ ETHR ◦ ETHR
circuit C ′.

Treating the DOR as an addition gate (that has at most one true input), and the
AND3 as a multiplication, we can apply distributivity to the circuit. Together with the
fact that AND ◦ ETHR ⊆ ETHR (item (5) of Proposition 18), C ′ is then equivalent to a
DOR ◦ ETHR ◦ ETHR circuit C ′′ of poly(n) size.

Finally, observe that solving SAT for C ′′ can be reduced to solving SAT for its poly(n)
ETHR ◦ ETHR subcircuits, and note that ETHR ◦ ETHR can be converted efficiently into
THR◦THR (item (4) of Proposition 18). Therefore, applying the 2n/nω(1) time SAT algorithm
for poly(n)-size THR ◦ THR circuits from the assumption completes the proof. J

In fact, similar results apply to TC circuits of any constant depth d (i.e., LTd circuits).
The following theorem can be proved in exactly the same way.

I Reminder of Theorem 9. There is an absolute constant δ > 0, such that for any constant
d, if CAPP for poly(n)-size LTd circuits with error δ can be solved in 2n/nω(1) time, then
NEXP 6⊂ LTd. The same is true with SAT in place of CAPP.

Now, combing Theorem 8 and our equivalence theorems (Theorem 1 and Theorem 3),
the following corollary follows immediately.

I Reminder of Corollary 10. There is an absolute constant δ > 0, such that if one of the
following holds:
1. CAPP (or SAT) for poly(n)-size THR◦MAJ circuits with error δ can be solved in 2n/nω(1)

time, or
2. CAPP for poly(n)-size MAJ ◦MAJ circuits with 1/poly(n) error can be solved in 2n/nω(1)

time.
Then NEXP 6⊂ THR ◦ THR.

6 Lower Bounds for S̃umε ◦ C Circuits

We now present our lower bounds for various S̃umε ◦ C circuits. In the following we slightly
abuse notation, by also using C to denote a class of functions from {0, 1}n → R. Note that
Boolean circuit classes are special cases of real-valued function classes. We also assume C

contains the constant functions 0 and 1 for simplicity.
We first define the Sum-Product problem over functions from C.

Sum-Product over C

Given k functions f1, . . . , fk : {0, 1}n → R from C, compute

∑
x∈{0,1}n

k∏
i=1

fi(x).
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6.1 The Main Challenge: Guessed Sumε ◦ C Circuits Could be Invalid

The main idea is to follow the proof of Theorem 5. Suppose we are given S̃umε ◦ C circuits
C1 and C2 computing two Boolean functions f1 and f2, respectively. One can see that their
product C(x) := C1(x) ·C2(x) (which is a real function on {0, 1}n), is an (3 ·ε)-approximation
to f1 ∧ f2, for small enough ε > 0.

Therefore, if we simply computed∑
x∈{0,1}n

C1(x) · C2(x), (3)

we would have estimated Prx∈{0,1}n [(f1(x) ∧ f2(x)) = 1] within 3ε. Note that if C1 (C2)
is a linear sum of m1 (m2) C-circuits, then the above quantity can be reduced to m1 ·m2
instances of the sum-product problem over C.

However, the above reasoning does not complete the proof. The problem is that in the
proof of Theorem 5, one actually has to guess the S̃umε ◦ C circuits which are supposed to
compute the PCPP proofs. It could well be the case that our guessed representations are not
valid at all. That is, it could be that for some x ∈ {0, 1}n,

∑S
i=1 αi · Ci(x) is much larger

than 1, or much less than 0. If C1 and C2 are not valid Sumε ◦ C circuits to begin with, then
the quantity (3) would not be useful.

6.2 Testing Whether a Linear Representation is Close to Boolean

This issue also occurs in Williams’ lower bounds on Sum ◦C circuits [48]. There, the problem
is solved by using a clever algorithm to verify whether a given Sum ◦ C circuit is valid. In
particular, the test of whether a Sum ◦ C outputs 0 or 1 on every Boolean input is effectively
reduced to a small number of Sum-Product calls. But this argument crucially uses the fact
that the Sum ◦ C must output one of two discrete values on every Boolean input. It appears
to be much harder to verify that a given S̃umε ◦ C circuit is valid.

We will later show that it suffices to test whether a given S̃umε ◦ C circuit is close to a
Boolean function with respect to `2 distance, in which case we know how to get an algorithm.

It will be convenient to introduce some notation. Let dbin(z) = minb∈{0,1} |z − b|. Intuit-
ively, dbin(z) measures how close z is to a bit-value. For a function f : {0, 1}n → R, define
its closest binary function binf as follows: for all x ∈ {0, 1}, if f(x) ≥ 1/2, binf (x) := 1,
otherwise binf (x) := 0. By definition, for any p > 0 we have

‖f − binf‖p =
(

E
x∼Un

[|dbin(f(x))|p]
)1/p

,

and

‖f − binf‖∞ = max
x∈{0,1}n

|dbin(f(x))| .

Let f =
∑S
i=1 αi ·Ci be a linear combination of functions from C; we wish to verify that f is

a S̃umε ◦ C circuit for some Boolean function. With respect to the above definitions, f is a
valid S̃umε ◦ C circuit for some Boolean function if and only if ‖f − binf‖∞ ≤ ε.

The following algorithm shows that, given an algorithm for evaluating the Sum-Product
of 4 functions from C, the algorithm can be used to distinguish between the case that
‖f − binf‖∞ is small and the case that ‖f − bin‖2 is large.
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I Lemma 33. For S ∈ N, suppose we are given S reals {αi}i∈[S], S functions from C

{Ci}i∈[S], and parameter ε < 0.01. Suppose Sum-Product of 4 functions on n bits from C

can be solved in T (n) time. Let f =
∑S
i=1 αi · Ci.

There is an algorithm A such that:
If ‖f − binf‖∞ ≤ ε, then A always accepts. (That is, if

∑S
i=1 αi · Ci is a valid S̃umε ◦ C

circuit for some Boolean function, then A always accepts.)
If ‖f − binf‖2 ≥ 3 · ε, then A always rejects.
Otherwise, A can output anything.
A runs in T (n) · (S + 1)4 + 2o(n) time.

Proof. We define a polynomial of degree 4,

P (z) := z2 · (1− z)2,

to approximate dbin(z). Simple calculations confirm the following facts about P (z):

P (z) ≤ dbin(z)2 · (1 + dbin(z))2, and
P (z) ≥ dbin(z)2 · 2−2.

When dbin(z) ≤ ε, we have P (z) ≤ ε2 · (1 + ε)2. This means that if ‖f − binf‖∞ ≤ ε, then
we have

E
x∼Un

[P (f(x))] ≤ ε2 · (1 + ε)2 ≤ ε2 · (1 + 0.01)2.

On the other hand, if ‖f − binf‖2 ≥ 3 · ε, then by definition we have

E
x∼Un

[
dbin(f(x))2] ≥ (3 · ε)2,

therefore

E
x∼Un

[P (f(x))] ≥ (3/2)2 · ε2.

Therefore, it suffices to compute

E
x∼Un

[P (f(x))] (4)

to distinguish between these two cases.
Expanding out P (f(x)) = P (

∑S
i=1 αi · Ci), it can be written as a R-sum of at most

(S + 1)4 products of 4 functions from C. By rearranging the order of summation (summing
all (S + 1)4 terms first), we see that (4) can be evaluated by making at most (S + 1)4 calls
to the assumed Sum-Product algorithm. Assuming that algorithm runs in T (n) time, the
sum (4) can be evaluated in time T (n) · (S + 1)4 + 2o(n). J

6.3 Meta-Theorem for S̃umε ◦ C Lower Bounds
Now we are ready to prove the following meta theorem for lower bounds on S̃umε ◦ C circuits.

I Theorem 34. Suppose every C ∈ C has a poly(n)-bit representation, where each C can be
evaluated in poly(n) time. Assume there is a δ > 0 such that for all constant integers k > 0,
there is a poly(n) · 2n−δn-time algorithm for computing the Sum-Product of k functions on n
bits from C. Then:
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For every k and constant ε < 1/2, there is a function in NP without S̃umε ◦ C circuits of
nk sparsity.
For every unbounded function α(n) such that nα(n) is time-constructible, NTIME[nα(n)]
doesn’t have S̃umε ◦ C circuits of polynomial sparsity for all constant ε < 1/2.

The most important component in the proof of the above meta-theorem is an argument
that we can solve Gap-UNSAT faster, given a non-trivial algorithm for evaluating Sum-
Product of functions from C and the assumption that Circuit-Eval has a small S̃umε ◦C circuit.
Formally, we have the following lemma, whose proof follows similar reasoning as the proof of
Theorem 5, while taking care of the issue that a guessed S̃umε ◦ C circuit may not be a valid
one with the algorithm from Lemma 33.

I Lemma 35. There is an absolute constant ε > 0 such that if:
there is a δ > 0 such that for all integers k ≤ 4, there is a poly(n) · 2n−δn-time algorithm
for computing the Sum-Product of k functions on n bits from C, and
Circuit-Eval has a S̃umε ◦ C circuit of sparsity nk for some k > 0,

then there is a non-deterministic 2n−δn · poly(n, s) time algorithm for Gap-UNSAT with gap
1− 1/n10, on general (fan-in 2) circuits with n inputs and s gates.

Proof. Suppose we are given an s-size general circuit C : {0, 1}n → {0, 1} with the promise
that either C is unsatisfiable or C has at least (1− 1/n10) · 2n satisfying assignments. We
want to distinguish between these two cases in 2n−δn · poly(n, s) non-deterministic time.

Let δ1 be the constant from Lemma 27. Fix a constant-rate linear error correcting code
with minimum relative distance δ1, as guaranteed by Lemma 27, letting Enc : {0, 1}n →
{0, 1}cn and Dec : {0, 1}cn → {0, 1}n be the corresponding encoder and decoder, for a
constant c corresponding to the rate of the code. Let δDec = c1 · δ1, which is error rate that
Dec can recover.

We also need a S̃umε ◦ C circuit for the parity function on n/2 bits for computing Enc
(by Lemma 27, the code is linear and each output bit depends on at most n/2 input bits).
Applying the second assumption of the theorem, and the fact that parity reduces easily to
Circuit-Eval (parity has linear-size circuits), there is a S̃umε◦C circuit of sparsity nparity = nO(k)

for the parity function on n/2 inputs. We can guess such a S̃umε ◦ C circuit Parn/2 of nparity
size, and verify it is correct in 2n/2 · poly(nparity) = 2n/2 · poly(n) time, as in the proof of
Theorem 5.

Let D : {0, 1}cn → {0, 1} be the circuit defined as D(y) = ¬C(Dec(y)). Since C is of s
size and Dec is efficient, D is of size nD = poly(n, s).

Then we observe that

Pr
x∼Un

[C(x) = 0] = Pr
x∼Un

[D(Enc(x)) = 1] = Pr
x∼Un

[(D,Enc(x)) ∈ Circuit-Eval].

Now we make use of a PCP of proximity system V for Circuit-Eval, with parameters
δPCPP < δDec, r = O(logn), q = 2, and constants 0 < s < c < 1, with existence guaranteed
by Lemma 25. We fix the circuit to be D, and write the verifier as V (D).

We can view the verification of V (D) as m = 2r(|D|) = poly(nD) ≤ poly(n, s) constraints
on the oracle y ◦π. We can also assume |π| = ` ≤ poly(n, s). Suppose there are m constraints
F1, F2, . . . , Fm on y ◦π, where each constraint is a function on two coordinates of y ◦π. Then
the properties of the PCP of proximity yield the following consequences:

If y = Enc(x) such that C(x) = 0, then D(y) = 1 and there is a proof π ∈ {0, 1}` such
that such that at least a c-fraction of the Fi’s are satisfied by y ◦ π.
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If y = Enc(x) such that C(x) = 1, then for all z ∈ {0, 1}cn with dist(z, y) ≤ δDec, we
have D(z) = C(Dec(z)) = C(x) = 0. Therefore, y is δDec-far from Circuit-Eval(D). Since
δDec > δPCPP, we have that for all proofs π ∈ {0, 1}`, at most an s-fraction of the Fi’s are
satisfied by y ◦ π.

When C is unsatisfiable, it means there is a proof π(x) for each y = Enc(x), so that V (D)
accepts y ◦ π(x) with probability at least c. Note that by Lemma 25, such a proof π(x) can
be computed in polynomial time from y and D, which in particular means that π(x) admits
a poly(n, nD) = poly(n, s)-size circuit. By our second assumption, each bit of π(x) therefore
has a S̃umε ◦ C circuit of sparsity nproof = poly(n, s)O(k) ≤ poly(n, s).

Now, we guess a list of (presumably) S̃umε ◦C circuits T1, T2, . . . , T` each of sparsity nproof,
and denote Hi = binTi . We want H(x) = (H1(x), H2(x), . . . ,H`(x)) to be the proof π(x) for
the input y = Enc(x). Let each Ti =

∑nproof
j=1 αi,j · Ei,j , where each αi,j ∈ R and Ei,j ∈ C.

Slightly abusing notation, we also use Fi to denote the function Fi(x) := Fi(Enc(x) ◦H(x)).
First, for all i, we apply the test of Lemma 33 on Ti with parameter ε. We reject

immediately if some test rejects. Note that by Lemma 33 and our first assumption, all the
tests take 2n−δn · poly(n, s) time in total.

If all guesses are valid S̃umε ◦ C circuits, (that is, ‖Hi − Ti‖∞ ≤ ε for all i), then all the
tests are passed by Lemma 33. Furthermore if all tests passed, we know that ‖Hi−Ti‖2 ≤ 3 ·ε
for all i ∈ [`] by Lemma 33.

Therefore, when C is unsatisfiable, by the previous discussion, there is some guess of Ti’s
such that

Pr
x∼Un

[V (D)Enc(x)◦H(x) = 1] = Pr
x∼Un

Pr
i∈[m]

[Fi(x) = 1] ≥ c.

When C has at most 2n/n10 unsatisfying assignments, then for all possible T1, T2, . . . , T`,
we have

Pr
x∼Un

Pr
i∈[m]

[Fi(x)] ≤ 1/n10 + s.

Note that Fi is a function on two coordinates of Enc(x) ◦H(x). In particular, since each bit
of Enc(x) is a just a parity of some inputs in x (it is a linear code), we only need to estimate
the following quantity for a function P : {0, 1}2 → {0, 1}:

E
x∼Un

[P (L1(x), L2(x))], (5)

where for each function Li(x), we have an approximate linear representation Ti =
∑nfinal
j=1 αi,j ·

Ei,j , such that ‖Ti − Li‖2 ≤ 3 · ε, where each Ei,j ∈ C and nfinal = max(nproof, nparity) ≤
poly(n, s).13 (Note that when Li(x) is a bit in the error correcting code, we can simply use
the guessed circuit Parn/2.)

Let ε2 = c−s
2 . In order to non-deterministically distinguish between the above two cases,

we only have to estimate (5) within error ε2.
We can write P : {0, 1}2 → {0, 1} as a multi-linear polynomial, with

P (z) :=
∑
S⊆[2]

αS ·
∏
i∈S

zi,

13Here we don’t need the fact that Fi is an OR on variables or their negations.



L. Chen and R. R. Williams 19:29

where each αS ∈ [−22, 22]. Therefore, to estimate (5) within ε2, we only need to estimate

E
x∼Un

[∏
i∈S

Li(x)
]

within error ε2/16, for each |S| ≥ 1. (when S = ∅, it is 1 by definition.)
Now, instead of the above, we compute

E
x∼Un

[∏
i∈S

Ti(x)
]
. (6)

When |S| = 1 and in particular S = {i}, we have

E
x∼Un

[Li(x)]− E
x∼Un

[Ti(x)] ≤ ‖Li − Ti‖1 ≤ ‖Li − Ti‖2 ≤ 3 · ε.

When |S| = 2, we want to bound

|〈L1, L2〉 − 〈T1, T2〉|.

Since Li is Boolean, we have ‖Li‖2 = 1, and therefore ‖Ti‖2 ≤ 1 + 3 · ε by the triangle
inequality. By Lemma 28, we have

|〈L1, L2〉 − 〈T1, T2〉| ≤ (1 + 3ε) · 2 · 3ε.

Now we set ε such that (1 + 3ε) · 2 · 3ε = ε2/16.
Finally, for each S ⊆ [2], computing (6) can be reduced to n|S|final ≤ poly(n, s) evaluations

of Sum-Products of |S| ≤ 2 functions on n bits from C. By assumption, thse evaluations can
be computed in 2n−δn · poly(n, s) time, which completes the proof. J

Now we are ready to prove Theorem 34.

Proof of Theorem 34. For the first consequence, assume every function in NP has a S̃umε

circuit of nk sparsity, for some fixed k > 0 and 0 < ε < 0.5. Let ε1 be the absolute constant
specified in Lemma 35. By Lemma 19, there is a polynomial P of degree d = O(1), such that
for all b ∈ {0, 1}, if |z − b| ≤ ε then |P (z)− b| ≤ ε1.

Let L : {0, 1}? → {0, 1} be any function in NP and
∑nk

i=1 αi · Ci be the S̃umε ◦ C circuit
for Ln : {0, 1}n → {0, 1}, where each Ci ∈ C.

Consider the function

P

 nk∑
i=1

αi · Ci

 . (7)

By the definition of P , for all x ∈ {0, 1}n, we have∣∣∣∣∣∣P
 nk∑
i=1

αi · Ci(x)

− Ln(x)

∣∣∣∣∣∣ ≤ ε1.

Expanding the expression of (7) into a sum of products, we obtain a S̃umε1 ◦ C⊗d circuit
for Ln of sparsity nk′ , where C⊗d consists of all possible products of d functions from C, and
k′ ≤ O(d · k) ≤ O(k). Observe that the Sum-Product problem for at most 4 functions from
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C⊗d is simply the Sum-Product problem for at most 4 · d functions from C, which admits a
poly(n) · 2n−δn time algorithm by assumption.

Since Circuit-Eval ∈ NP, both conditions of Lemma 35 are now satisfied for C⊗d. Therefore
Gap-UNSAT with gap 1− 1/n10 for s-gate n-input circuits of fan-in 2 has a 2n−δn · poly(n, s)
time non-deterministic algorithm. It follows from Lemma 30 that, for every k, there is
a function in NP which does not have general circuits of nk size and fan-in 2. This is a
contradiction, since every S̃umε ◦ C circuit of nk sparsity can be simulated by an nα·k-size
general fan-in-2 circuit, for a universal constant α ≥ 1.

The second consequence follows the same way, by applying Theorem 31 instead. J

6.4 Lower Bounds for S̃umε ◦ THR/ReLU/Fp-polynomials
In order to apply Theorem 34, we need the following algorithms from [48], for computing the
Sum-Product of O(1) functions from the function classes we care about.

I Lemma 36 (Theorem 4.1 in [48]). The Sum-Product of k THR functions on n variables
(with weight in [−nn, nn]) can be computed in 2n/2 · nO(k) time.

I Lemma 37 (Theorem 5.1 in [48]). The Sum-Product of k ReLU functions on n variables
(with weight in [−W,W ]) can be computed in 2n/2 · nO(k) · poly(k, n, logW ) time.

I Lemma 38 (Theorem 6.1 in [48]). The Sum-Product of k degree-d polynomials p1, . . . , pk ∈
Fp[x1, . . . , xn] can be computed in p2k · (1.9n + 2n−n/(6dp)) · poly(n) time.

Applying Theorem 34 with the above algorithms for computing the Sum-Product for
functions from THR, ReLU and O(1)-degree Fp-polynomials, Theorem 12, Theorem 13 and
Theorem 14 follow immediately.

6.5 Lower Bounds for S̃umε ◦ ACC0 ◦ THR
Theorem 15 follows via a similar argument as Theorem 34, and the known #SAT algorithms
for ACC0 ◦ THR [52]. Formally, we prove

I Reminder of Theorem 15. For every d,m ≥ 1 and ε ∈ [0, 0.5), there is a b ≥ 1 and an
f ∈ NTIME[nlogb n] that does not have S̃umε ◦ AC0

d[m] ◦ THR circuits of na size, for every a.

Using the argument of Lemma 35, we can show:

I Lemma 39. There is an absolute constant ε > 0 such that if the following two conditions
hold:

there is a δ > 0 such that for all integer k ≤ 4, there is a poly(n) · 2n−nδ -time algorithm
for computing the Sum-Product of k functions on n bits from C, and
Circuit-Eval has a S̃umε ◦ C of sparsity nk for some k > 0.

Then there is non-deterministic 2n−nδ · poly(n, s) time algorithm for Gap-UNSAT with
gap 1− 1/n10 and a general fan-in-2 circuit with n input and s gates.

Theorem 15 then follows from exactly the same arguments as that of Theorem 34,
combining the following two facts:

1. For every depth d and integer m ≥ 2, there is an ε > 0 such that the Sum-Product of
O(1) AC0

d[m] ◦ THR circuits of 2nε size can be computed in 2n−nε time. This simply
applies the algorithm for counting satisfying assignments of AC0

d[m] ◦ THR circuits ([51]).
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2. If for some α > 0 there is a nondeterministic 2n−nα-time Gap-UNSAT algorithm with
gap 1 − 1/n10 for 2nα-size circuits, then for every a ≥ 1, there is a b ≥ 1 such that
NTIME[nlogb n] does not have nloga n-size circuits (this is a theorem of Murray and
Williams [34]).

6.6 A Note on the Coefficients in the S̃umε ◦ C Circuits
In our proof, we have to guess a S̃umε ◦ C circuit, so it is crucial that all S̃umε ◦ C circuits we
consider have “reasonable” coefficients, with in poly(n)-bit complexity. When all functions
in C are Boolean-valued, the following proposition provides this guarantee.

I Proposition 40. Let ε ∈ [0, 0.5) be a constant of bit complexity b.14 Let C be a class of
functions with co-domain {0, 1}, and let C be a Sumε ◦ C circuit of sparsity s for a Boolean
function f : {0, 1}n → {0, 1}. There is an equivalent S̃umε ◦ C circuit C ′ such that every
weight in the linear combination of C has the form j/k, where both j and k are integers in
[−spoly(s,b), spoly(s,b)].

Proof. Let C be a linear combination of s functions from C. We may assume without loss of
generality that these s functions are linearly independent. The problem of finding coefficients
for these s functions to ε-approximate a given boolean function f is equivalent to finding a
solution to a certain linear programming instance ‖Ax− b‖∞ ≤ ε in s unknowns over the
rationals, where b ∈ {0, 1}2n represents the truth-table of the function f and A ∈ {0, 1}2n×s.

Standard results from the theory of linear programming show that, if the instance is
feasible, then there is a valid solution corresponding to the unique solution of a linear system
where some of the inequalities are tight (that is (Ax − b)i = ε or (Ax − b)i = −ε). Then
proposition then follows from Cramer’s rule. J

The case for S̃umε ◦ ReLU circuits is more involved. Luckily, Maass [32] showed that the
weights for such a circuit of sparsity s needs only poly(s, n) bits of precision.

7 Structure Lemmas for THR ◦ THR Circuits

In this section we present our structure lemmas for THR ◦ THR circuits. We first need a
simple construction, which will be used in both proofs.

I Definition 41 (Mod p Exact Threshold Gate). Let G be an ETHR gate with n inputs, p
be a prime and Gp be the “mod p” version of G. That is, let L and T be the corresponding
linear function and threshold of G, Gp(x) := [L(x) ≡ T (mod p)].

I Lemma 42. Let G be an ETHR gate with n inputs and p be a prime. Then Gp can be
written as a DOR ◦ ETHR circuit such that

The top DOR gate has O(n) fan-in.
All ETHR gates have positive weights and thresholds smaller than O(np).15

Proof. Let w1, w2, . . . , wn and T be the corresponding weights and threshold of G. Reduce
each weight wi in G to wi mod p (the corresponding integer between 0 and p − 1). This
yields another circuit with associate top linear function L′(x), whose value is always at
most np. Setting t = T mod p, L(x) ≡ T (mod p) is equivalent to L′(x) = t + k · p for

14That is, we assume ε can be specified as the ratio of two b-bit integers.
15Therefore, when p ≤ poly(n), the ETHR gate can be seen as an EMAJ gate.
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some k ∈ {0, 1, 2, . . . , n}. Therefore, by taking an OR over all possible k on the condition
L′(x) = t+ k · p, it is a disjoint OR, and we obtain the equivalent DOR ◦ ETHR circuit. J

7.1 Proof of Structure Lemma I
We begin with the proof of Structure Lemma I for THR ◦ THR circuits (restated below).

I Reminder of Lemma 16. Let n be number of inputs, s = s(n) ≥ n be a size parameter
and δ = δ(n) be the error parameter. Every s-size THR ◦ THR circuit C is equivalent to a
Gap-ORδ ◦ THR ◦MAJ circuit such that:

The top Gap-ORδ gate has poly(s, δ−1) fan-in.
Each sub THR ◦MAJ circuit has size poly(s, δ−1).

Moreover, the reduction can be computed in deterministic poly(s, δ−1) time.

Proof. Let C ′ be the given THR ◦ THR circuit. By negating some of its input gates (THR is
closed under negation), we may assume all weights in the top THR gate of C ′ are ≤ 0. Since
every THR can be converted into a DOR ◦ ETHR (item (2) of Proposition 18), C ′ can be
transformed into an equivalent THR ◦ ETHR circuit C of size t = poly(s).

Let G1, G2, . . . , Gt, w1, w2, . . . , wt be the ETHR gates on the bottom layer and their
corresponding weights in the top gate of C. By assumption, we also have wi ≤ 0 for all i.
Let T be the threshold of the top gate. For all inputs x of n bits, we have

C(x) =
[

t∑
i=1

wi ·Gi(x) ≥ T
]
.

By construction, we may assume that the weights in Gi are bounded by 2nc for a constant c.
Suppose we fix an input x, and let p be a random prime from 2 to n2c · t2 · δ−1 = poly(s, δ−1).
With probability at least 1− δ/t, we have Gpi (x) = Gi(x). Let Cp be the circuit obtained by
replacing all Gi’s in C by corresponding Gpi ’s.

When C(x) = 1, it follows from a union bound that Cp(x) = C(x) = 1 with probability
at least 1− δ. When C(x) = 0, note that for all primes p, we have Gpi (x) ≥ Gi(x) for all i,
therefore we must have

∑s
i wi ·G

p
i (x) ≤

∑s
i wi ·Gi(x) < T (all wi’s are ≤ 0) and Cp(x) = 0.

Therefore C is equivalent to a Gap-ORδ over all Cp’s, for every prime p (recall their
total number is poly(s, δ−1)). By Lemma 42, each Cp can be expressed as a poly(s, δ−1)-
size THR ◦ EMAJ circuit. Converting each THR ◦ EMAJ into a THR ◦ MAJ (item (8) of
Proposition 18) completes the proof. J

7.2 Proof of Structure Lemma II
Now we turn to proving Lemma 17. The proof has two steps, provided by Lemma 43 and
Lemma 45.

I Lemma 43 (Weight Reduction at the Top THR gate). Every size-s THRd ◦C circuit (having
a top THR gate of fan-in d) is equivalent to a DOR ◦ ETHR ◦ C circuit such that:

The top DOR gate has poly(d) fan-in.
Each ETHR gate has fan-in d, with positive weights and threshold value, all of which are
less than poly(d) · 2n.
The C-part is unchanged.

The same statement also holds for ETHRd ◦ C circuits. Moreover, the reductions can be
computed in randomized poly(s) time.
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Proof. We only consider the THRd ◦ C case (the ETHRd ◦ C case is even easier).
Let C be the given circuit. First, by the fact that THR ⊆ DOR ◦ ETHR (item (2) of

Proposition 18), C can be transformed to an equivalent DOR ◦ ETHR ◦ C circuit C ′.
Let G be a ETHR gate in C ′; note that G has fan-in d. Let D be the subcircuit with top

gate G. By construction, G has weights of absolute value at most Mold = 2poly(d).
Next, we define L : {0, 1}n → Z such that L(x) is the value of the linear function

associated with the gate G when the input is x. That is D(x) = 1 if and only if L(x) = T

for the threshold T of G.
Pick a random prime number m in the interval [2,Mnew], where Mnew = dc · 2n and c

is a sufficiently large constant. For a fixed x ∈ {0, 1}n, if L(x) 6= T , the probability that
L(x) ≡ T (mod m) is smaller than

log(Mold)
Mnew/ ln(Mnew) = poly(d)

Θ(2n · dc/(n+ c log d)) ≤ d
−c/2/2n,

for a sufficiently large c. Applying the union bound over all inputs x, with probability at
least 1− d−c/2, we have L(x) ≡ T (mod m) if and only if L(x) = T for all x ∈ {0, 1}n.

Finally, applying Lemma 42 with prime m, we can replace G with an equivalent DOR ◦
ETHR subcircuit, whose ETHR gates have positive weights and thresholds smaller than
poly(d) · 2n.

Union-bounding over all ETHR gates, and choosing c to be a large enough constant, this
completes the randomized reduction. J

I Remark 44. One can observe that the above reduction indeed only introduces one-sided
error. That is, even if it chooses some “bad” primes, the resulting circuit D satisfies the
property that D(x) = 1 whenever C(x) = 1.

I Lemma 45 (Decomposition of the top ETHR gate). Given an ETHRd ◦ C circuit C (a
circuit with a top ETHR gate of fan-in d) of size s and a real ε ∈

(
log d
n , 1

)
, suppose the top

ETHR gate in C has positive weights and threshold smaller than 22n. C is equivalent to a
DOR ◦MAJ ◦ AND2 ◦ C circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each MAJ gate has fan-in dO(1/ε).
The C part is unchanged.

Moreover, the reduction can be computed in deterministic

2O(εn) · dO(1/ε) + poly(s)

time.

Proof. Let Gtop be the top ETHR in C, and let G1, G2, . . . , Gd be its input gates. Let wi’s
and T be the weights and the threshold of Gtop and L(x) be the associated linear function.
We have for all x ∈ {0, 1}n that

L(x) =
d∑
i=1

wi ·Gi(x).

Observe that the binary representations of wi’s and T are of length at most log(22n) ≤ 2n.
Break each of their binary representations into D =

⌈
ε·n

log d

⌉
blocks, where each block has

B ≤ 2/ε·log d bits. Let wi,j , Tj ∈ [2B−1] be the values of wi’s and T ’s j-th block, respectively
(where blocks are numbered from the least significant bit to the most significant bit).
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Consider adding the wi ·Gi(x)’s in base 2B, keeping track of all D − 1 carries on each
position, except for the highest one. Let c = (c1, c2, . . . , cD−1) ∈ {0, 1, . . . , d− 1}D−1 be such
a carry sequence. Observe that

∑d
i=1 wi ·Gi(x) = T with carry sequence c if and only if for

all j ∈ [D]:

d∑
i=1

wi,j ·Gi(x) + cj−1 = Tj + 2B · cj ,

where we set CD and C0 to be 0 for notational convenience. That is, after we fix the carries
cj ’s for all j, the sums

∑d
i=1 wi,j · Gi(x) are also forced to be T cj = Tj + 2B · cj − cj−1.

Therefore, consider the sum

ε·n∑
j=1

(
d∑
i=1

wi,j ·Gi(x)− T cj

)2

.

Checking whether this sum is at most 0 can be formulated as a poly(d) · 2O(B) = dO(1/ε) size
MAJ ◦ AND2 subcircuit, with input gates G1, G2, . . . , Gd.

Each of these addition checks corresponds to one carry sequence. By enumerating all
possible dD−1 carry sequences, the above transforms Gtop into a DOR◦MAJ◦AND2 subcircuit
with input gates G1, G2, . . . , Gd, having top fan-in:

dD−1 = dO(ε·n/ log d) = 2O(ε·n),

which completes the proof. J

Finally, the Structure Lemma II for THR ◦THR circuits follows from applying Lemma 43
and Lemma 45 in the appropriate way.

I Reminder of Lemma 17. Let n be the number of inputs and let s = s(n) ≤ 2o(n) be a
size parameter. Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR circuit C is equivalent to a

DOR ◦MAJ ◦MAJ circuit such that:

The top DOR gate has 2O(εn) fan-in.
Each sub MAJ ◦MAJ circuit has size sO(1/ε).

The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.

Proof. First, since THR ⊆ DOR ◦ ETHR (item (2) of Proposition 18), C is equivalent to a
poly(s)-size THR ◦ETHR circuit C1. Moreover, we can convert C into C1 in polynomial time.

Second, we apply Lemma 43 to transform C1 into a DORpoly(s) ◦ ETHR ◦ ETHR circuit
C2, such that all middle-layer ETHR gates have positive weights and thresholds smaller than
poly(s) · 2n < 22n.

Third, we apply Lemma 45 to C2, which changes all middle-layer ETHR gates of C2 into
DOR ◦MAJ ◦ AND2 subcircuits, with top gate fan-in 2O(ε·n). This yields a DOR ◦MAJ ◦
AND ◦ ETHR circuit. Converting the remaining AND ◦ ETHR subcircuits into ETHR’s (item
(5) of Proposition 18), we obtain a DOR2O(ε·n) ◦MAJ ◦ ETHR circuit where all MAJ ◦ ETHR
subcircuits have size at most sO(1/ε).

Finally, converting each MAJ ◦ ETHR into a MAJ ◦ MAJ (item (3) of Proposition 18)
completes the reduction. The running time bound follows from plugging in the time bounds
of Lemma 43 and Lemma 45. J

Setting the parameter ε carefully in Lemma 17, we have the following corollary.
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I Corollary 46. Let n be the number of inputs and let s = s(n) ≤ 2o(n) be a size parameter.
Let ε ∈

(
log s
n , 1

)
. Every s-size THR ◦ THR circuit C is equivalent to a DOR ◦MAJ ◦MAJ

circuit C ′ such that:
The top DOR gate of C ′ has sO(1/ε) fan-in.
Every sub MAJ ◦MAJ circuit of C ′ has size 2O(ε·n).

The reduction can be computed in randomized 2O(εn) · sO(1/ε) time.
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A Constructions of Super Query-Efficient PCP of Proximity Systems

In this appendix we present proofs for Lemma 24 and Lemma 25 for completeness. We
remark that we did not make any effort to optimize the soundness/completeness constants s
and c in our construction; any universal constant suffices in our applications.16

We start with Lemma 24 (restated below).

I Reminder of Lemma 24 (3-query PCPP with perfect completeness). For any constant
δ > 0 there is a constant 0 < s < 1, such that there is a PCP of proximity system for
Circuit-Eval with proximity δ, soundness s, random bits r = O(logn), and query complexity
q = 3. Moreover, the system satisfies two additional properties:
(1) Given the random coins, the verifier simply computes an OR on these 3 queried bits or

their negations, and accepts if the OR is true.
(2) Given the pair (C,w) ∈ Circuit-Eval, we can construct a proof π in poly(|C|+ |w|) time

that makes V (C) accept with probability 1.

Proof. By Lemma 22, there is a PCP of proximity system V for Circuit-Eval with proximity
δ, soundness s = 1/2, number of random bits r = O(logn) and query complexity q = Oδ(1).

Let the circuit be C. Suppose we are given random bits R ∈ {0, 1}r, so that V (C) queries
positions k1 = k1(C,R), k2 = k2(C,R), . . . , kq = kq(C,R) of the oracle z = w ◦ π, computes
a predicate P = P (C,R) on these bits, and outputs P (zk1 , zk2 , . . . , zkq ).

We construct a new PCP of proximity system V ′ as follows. Fix the circuit C. and let
PR = P (C,R). Slightly abusing notation, we let xj denote the bit zkj . PR can be computed
by a circuit DR of Oq(1) size; therefore PR can computed in size S for a universal constant
S only depending on q. We can construct a group of auxiliary variables {yR,`}`∈[S], and
a group of constraints {Fw,`}`∈[S], where each constraint is an OR of three bits (or their
negations) from the xj ’s and yR,`’s, such that Pw(x1, x2, . . . , xq) = 1 if and only if there
exists an assignment to the yR,`’s such that all constraints FR,`’s are satisfied.

The verifier V ′(C) treats its oracle as three parts. The first two parts are w and π

(where π is supposed to be a proof for V (C)), while the third part πy is supposed to contain
assignments to all yR,`’s for all R ∈ {0, 1}r and ` ∈ [S]. V ′(C) first tosses r random coins
to get a random string R ∈ {0, 1}r, then tosses log(S) more coins to pick a random integer
` ∈ [S]. Then V ′(C) queries the 3 bits appearing in the constraint FR,`, and accepts if and
only if the constraint is satisfied by those 3 bits. We denote its proof to be π′ = (π, πy).

We claim that V ′(C) is a correct PCP of Proximity system. If (C,w) ∈ Circuit-Eval, let π
be a proof such that V (C) accepts w ◦ π with probability 1. Then by our construction of
V ′(C), there is a πy such that V ′(C) accepts w ◦ (π ◦ πy) with probability 1.

16Here we are actually composing the PCPP from [11] with some trivial PCPP constructions for constant-
size functions. There are much better constructions, see e.g. [18].
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Otherwise, suppose w is δ-far from the set {z : C(z) = 1}. Then for any proof π, V (C)
accepts (w◦π) with probability at most 1/2. This means for all additional proofs πy, at least a
1/2-fraction of R ∈ {0, 1}r are such that at least one constraint from {FR,`}`∈[S] is not satisfied
by w ◦ (π ◦ πy). Therefore, V ′(C) rejects with probability at least 1/2 · 1/S = Ωq(1) = Ωδ(1),
which completes the proof. J

In order to get a 2-query PCP of proximity system from the above, we use the following
classical gadget by Garey, Johnson, and Stockmeyer [20], originally used to prove the
NP-hardness of MAX-2-SAT.

I Lemma 47. Let X1, X2, X3 and Y be 4 Boolean variables. Consider the following 10
constraints:

X1, X2, X3,¬X1 ∨ ¬X2,¬X2 ∨ ¬X3,¬X3 ∨ ¬X1,

Y,X1 ∨ ¬Y,X2 ∨ ¬Y,X3 ∨ ¬Y.

If X1 ∨X2 ∨X3, then there exists an assignment to Y such that 7 of the above constraints
are satisfied. Otherwise, all assignments to Y satisfy at most 6 of the above constraints.

I Reminder of Lemma 25 (2-query PCPP with constant completeness/soundness gap). For
any constant δ > 0 there two constants 0 < s < c < 1, such that there is a PCP of proximity
system for Circuit-Eval with proximity δ, soundness s, completeness c, number of random
bits r = O(logn) and query complexity q = 2. Moreover, the system satisfies two additional
properties:
(1) Given the random coins, the verifier computes an OR on the 2 queried bits or their

negations, and accepts iff the OR is true.
(2) Given the pair (C,w) ∈ Circuit-Eval, a proof π can be constructed in poly(|C|+ |w|) time

that makes V (C) accept with probability at least c.

Proof. By Lemma 24, there is a PCP of proximity system V for Circuit-Eval with proximity
δ, soundness s = s(δ) < 1, number of random bits r = O(logn) and query complexity q = 3.
The verifier computes an OR on these 3 queried bits or their negations, and accepts if it is
true.

Let the circuit be C. We begin as in the previous proof. Suppose we have randomness
R ∈ {0, 1}r, and V (C) queries positions k1 = k1(C,R), k2 = k2(C,R), k3 = k3(C,R) of
the oracle z = w ◦ π, computes a predicate P = P (C,R) on these bits, then outputs
P (zk1 , zk2 , zk3). Slightly abusing notation, we use xj to denote the bit zkj . By Lemma 24,
we can assume

P (x1, x2, x3) = ∨j∈[3](xj ⊕ bj),

where bj = bj(C,R) is whether it negates the bit xj .
Our new PCP of proximity system V ′ works as follows. Fix the circuit C and let

PR = P (C,R). By Lemma 47, we can construct an auxiliary variable yR and a group of
constraints {FR,`}`∈[10], each is an OR of 2 bits (or their negations) from xj ’s and yR17 such
that if Pw(x1, x2, x3) = 1 then there is an assignment to the yR such that 7 constraints from
{FR,`}`∈[10] are satisfied; otherwise, for all assignments to yR, at most 6 constraints from
{FR,`}`∈[10] are satisfied.

17 In Lemma 47, constraint Xi can be written as Xi ∨Xi, which is an OR of 2 bits.
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As in the 3-query PCPP, V ′(C) treats its oracle as three parts: the first two are w
and π (π is intended to be a proof in V (C)), and the third part πy is intended to contain
assignments to all yR’s, for all R ∈ {0, 1}r. Our V ′(C) first tosses r random coins to get
R ∈ {0, 1}r, then tosses O(1) more coins to pick a random integer ` ∈ [10]. Then it simply
queries the 2 bits appearing in the constraint FR,`, and accepts iff that constraint is satisfied.
We denote its proof to be π′ = (π, πy).

Let us argue V ′(C) satisfies our requirement. If (C,w) ∈ Circuit-Eval, let π be a proof
such that V (C) accepts w ◦ π with probability 1. Then by our construction of V ′(C), there
is a πy such that V ′(C) accepts w ◦ (π ◦ πy) with probability at least 7/10.

Now suppose w is δ-far from the set {z : C(z) = 1}. Then for all proofs π, V (C) accepts
(w ◦ π) with probability at most s. This means that for any additional proof πy, there is
at most an s-fraction of R ∈ {0, 1}r such that 7 constraints from {FR,`}`∈[S] are satisfied
by w ◦ (π ◦ πy); for the remaining R’s, at most 6 constraints from {FR,`}`∈[S] are satisfied.
Therefore, V ′(C) accepts with probability at most s · 7/10 + (1 − s) · 6/10 < 7/10, which
completes the proof. J

B Proofs for THR ⊆ DOR ◦ ETHR and
⊕k ◦ THR ◦ THR ⊆ THR ◦ THR

Here we present an alternative proof that THR ⊆ DOR ◦ ETHR, which has a better weight
dependence than prior work [24] and is arguably simpler. We first give a construction for the
special case when all the weights and the threshold value are non-negative. Then we show
that the general case can be easily reduced to this case.

I Lemma 48. Let G be a THR gate on n bits defined as G(x) := [
∑n
i=1 wi · xi > T ], such

that all wi’s and T are integers in [0, 2L − 1] for some L ∈ N. Then G can be written as a
DOR of O(n · L) many ETHR gates, each with weights and threshold from [0, 2L+1 − 1].

Proof. For each weight wi ∈ [0, 2L − 1], write it in its binary representation

wi,L, wi,L−2, . . . , wi,1 ∈ {0, 1}L,

such that

wi =
L∑
j=1

2j−1 · wi,j .

In this way, we can view w as a Boolean matrix from {0, 1}n×L. For each position (a, b) ∈
[n]× [L], we build a partial matrix w(a,b) as follows: for (i, j) ∈ [n]× [L],

w
(a,b)
i,j =

{
wi,j (j > b) or ((j = b) and (i ≥ a))
0 otherwise

That is, w(a,b) is the sub-matrix of w, consisting of entries which are either to the right of
(a, b), or directly above (a, b). (We number the rows of the matrix from bottom to top, and
the columns of the matrix from left to right.)

Given x ∈ {0, 1}n, we define

w(a,b) · x :=
n∑
i=1

 L∑
j=1

2j−1 · w(a,b)
i,j

 · xi.
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That is, we treat each row of w(a,b) as the L-bit binary representation of the corresponding
weight on xi. By definition, we have w(1,1) · x = w · x =

∑n
i=1 wi · xi.

Now, fix x ∈ {0, 1}n, and consider the sequence S, defined as:

w(n,L) ·x,w(n−1,L) ·x, . . . , w(1,L) ·x,w(n,L−1) ·x, . . . , w(1,L−1) ·x, . . . , w(n,1) ·x, . . . , w(1,1) ·x.

By definition of w(a,b), we are including 1-entries of the matrix w one-by-one, hence the
sequence S is non-decreasing (and begins with 0).

Suppose w · x = w(1,1) · x > T . Then there must be a unique position (a, b) ∈ [n]× [L]
such that w(a,b) · x is the first value in the sequence S which is greater than T . For each
(a, b) ∈ [n]× [L], we will use an ETHR gate E(a,b) to specify the condition that w(a,b) · x is
the first value greater than T from S. Then when G(x) is true, exactly one of the E(a,b)(x)’s
is true, and when G(x) is false, all of the E(a,b)(x)’s are false.

To see that an ETHR gate suffices, we observe that w(a,b) · x is the first value greater
than T from the sequence S, if and only if the following conditions hold:
1. w(a,b) · x > T (it is greater than T ),
2. (wa,b = 1) ∧ (xa = 1) (it is bigger than the previous value), and
3. w(a,b) · x− 2b−1 ≤ T (the previous value is no greater than T ).
We crucially observe that w(a,b) ·x is a multiple of 2b−1. In the matrix w(a,b), we only include
nonzero wi,j ’s where j ≥ b. Thus in w(a,b) · x, every 1 in x is getting multiplied by a power
of two which is at least 2b−1.

By division, T = 2b−1 · Tb + Tr, for some 0 ≤ Tr < 2b−1 and Tb > 0. Then w(a,b) · x > T

if and only if w(a,b) · x ≥ 2b−1 · (Tb + 1). Furthermore, w(a,b) · x − 2b−1 ≤ T if and only if
w(a,b) · x ≤ 2b−1 · (Tb + 1). Therefore, the above conditions are equivalent to
1. (wa,b = 1) ∧ (xa = 1), and
2. w(a,b) · x = 2b−1 · (Tb + 1).
Now all these conditions are linear equations, so we can define an ETHR function E(a,b)

that checks all of them. In particular, set E(a,b) to be the constant function 0 if wa,b = 0;
otherwise set

E(a,b)(x) :=
[
(2 · w(a,b) · x) + xa = 2b · (Tb + 1) + 1

]
.

This completes the proof. J

Now we reduce the general case to the non-negative weights and thresholds case, and
complete the reduction from THR to DOR ◦ ETHR.

I Lemma 49. Let G be a THR gate on n bits, G(x) := [
∑n
i=1 wi · xi > T ], such that all wi’s

and T are integers from [−W,W ] for some W ∈ N. Then G can be written as a DOR of
O(n · logW ) many ETHR gates, each with weights and threshold from [−Θ(W ),Θ(W )].

Proof. We start by defining n new variables z1, z2, . . . , zn ∈ {0, 1}n. Set zi := xi if wi ≥ 0,
and zi := 1− xi otherwise. Letting S = {i : wi ≥ 0}, we have

n∑
i=1

wi · xi =
∑
i∈S

wi · zi +
∑
i/∈S

wi · (1− zi)

=
∑
i∈S

wi · zi +
∑
i/∈S

−wi · zi +
∑
i/∈S

wi.

Let ŵi = |wi|, and T̂ = T −
∑
i/∈S wi. Observe that[

n∑
i=1

wi · xi > T

]
⇔

[
n∑
i=1

ŵi · zi > T̂

]
.
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If T̂ is negative, then G(x) = 1 on all Boolean inputs x (since all ŵi’s are non-negative,
and the zi are Boolean) and we are done. Otherwise, we can apply Lemma 48 with
Ĝ(z) :=

[∑n
i=1 ŵi · zi > T̂

]
. Substituting each zi by 1 − xi, we obtain the desired DOR

decomposition for G(x). J

I Lemma 50. Let k be a constant, a ⊕k ◦ THR ◦ THR circuit of s = s(n) size on n bits is
equivalent to a THR ◦ THR circuit of sO(k) size. Moreover, the corresponding THR ◦ THR
circuit can be constructed deterministically in sO(k) time.

Proof. First, by Lemma 49, the given ⊕k ◦ THR ◦ THR circuit can be transformed into a
⊕k ◦ THR ◦ ETHR circuit C of t = poly(s) size.

Let C1, C2, . . . , Ck be the THR ◦ETHR subcircuits of C. For each Ci, let Ei,1, . . . , Ei,t be
its ETHR gates, wi,1, . . . , wi,t be the corresponding weights in the output threshold function,
and Ti be the threshold value of the output threshold function. We have

Ci(x) :=

 t∑
j=1

wi,j · Ei,j(x) > Ti

 .
By slightly perturbing the wi,j ’s and Ti, we can ensure that

∑t
j=1 wi,j ·Ei,j(x)− Ti is never

equal to 0, over all x ∈ {0, 1}n. Next, we define

F (x) =

 k∏
i=1

Ti − t∑
j=1

wi,j · Ei,j(x)

 < 0

 . (8)

Noting that Ci(x) = 1 if and only if Ti−
∑t
j=1 wi,j ·Ei,j(x) < 0, we observe that F (x) = 1

when an odd number of Ci(x)’s are 1, and F (x) = 0 otherwise. Therefore, F computes the
same function as the original circuit C.

Finally, expanding the product of k sums in (8) into a sum of sO(k) products, and recalling
that AND ◦ ETHR ⊆ ETHR (Proposition 18), F can be written as a THR ◦ ETHR circuit.
Converting this back to a THR ◦ THR circuit (Proposition 18), the proof is complete. J

C More Applications of Structure Lemmas for THR ◦ THR Circuits

Here we discuss more applications of Lemma 16 and Lemma 17.

C.1 Generalization to Threshold Circuits of Constant Depth
Lemma 17 generalizes readily to threshold circuits of any constant depth. In the following
LTd denotes threshold circuits of depth-d, while L̂Td denotes depth-d majority circuits (see
Section 2.1 for formal definitions).

I Corollary 51. Let n be number of inputs and s = s(n) be a size parameter. Let ε ∈
(

log s
n , 1

)
and d be a constant. For s = 2o(n), every s-size LTd circuit is equivalent to a DOR ◦ L̂Td
circuit such that:

The top DOR gate has 2O(ε·n) fan-in.
Each sub L̂Td circuit has size O

(
sO(1/ε)).

Proof. We apply Lemma 17 to the top 2 layers, and then apply item (5) of Proposition 18
recursively to obtain an equivalent DOR ◦ L̂Td circuit. J
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C.2 A Structure Lemma for Polynomial Threshold Functions
Our ideas can also be used to derive a structure lemma for polynomial threshold functions of
degree k, i.e., THR ◦ ANDk circuits:

I Corollary 52. Let n be number of inputs and s = s(n) be a size parameter. Let ε ∈
(

log s
n , 1

)
and k be a constant. Assuming s = 2o(n), an s-size THR ◦ ANDk circuit is equivalent to a
DOR ◦MAJ ◦ AND2k circuit such that:

The top DOR gate has 2O(ε·n) fan-in.
Each sub MAJ ◦ AND2k circuit has size O

(
sO(1/ε)).

The above still holds if we replaced both ANDk and AND2k by unbounded fan-in AND
gates.

Proof. We simply apply Lemma 43 and Lemma 45, and merge each AND2 ◦ANDk subcircuits
into a single AND2k gate. J

That is, every polynomial threshold function of degree k with arbitrary weights can be
simulated by a subexponential-size disjoint OR of polynomial threshold functions of degree
2k with small weights.

The following corollary follows from that the SAT problem for THR ◦ ANDk circuits is
equivalent to the weighted MAX-k-SAT problem (given a CNF formula ϕ with weights on
each clause, find an assignment satisfying clauses of maximum total weight), and that SAT
for MAJ ◦ AND2k is equivalent to the (unweighted) MAX-2k-SAT problem.

I Corollary 53. For any integer k, if there is a 2(1−Ω(1))n time algorithm for polynomial
size unweighted MAX-2k-SAT, then so does polynomial size weighted MAX-k-SAT.18

To prove the above corollary, we need the following folklore lemma, which helps us to
transform between MAJ ◦ AND circuits and MAJ ◦ OR circuits.

I Lemma 54. Let x = x1, x2, . . . , xk be the inputs, there are k OR functions O1, O2, . . . , Ok
on the inputs (or their negations) such that:

AND(x) =
(

k∑
i=1

Oi(x)
)
− (k − 1).

Proof. We define

Oi(x) :=

i−1∨
j=1
¬xj

 ∨ xi.
That is, Oi(x) = 0 if and only if the first i− 1 bits are 1, and the i-th bit is 0. Now, note

that if AND(x) = 1, then all bits are 1, which means all Oi(x)’s are 1. When AND(x) = 0,
let i be the index of the first 0-bit, it is easy to see that Oi(x) = 0 and all other Oj(x)’s are
1, and hence

∑k
i=1Oi(x) = k − 1. J

Proof of Corollary 53. We can use Lemma 54 to transform the bottom AND gates to OR
gates for THR ◦ AND and MAJ ◦ AND circuits. From there, the proof is the same as of
Theorem 3. J

18We assume the weights are at most 2poly(n) for making the input polynomial size.
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Abstract
In this work we consider the role of entanglement assistance in quantum communication protocols,

focusing, in particular, on whether the type of shared entangled state can affect the quantum
communication complexity of a function. This question is interesting because in some other settings
in quantum information, such as non-local games, or tasks that involve quantum communication
between players and referee, or simulating bipartite unitaries or communication channels, maximally
entangled states are known to be less useful as a resource than some partially entangled states.
By contrast, we prove that the bounded-error entanglement-assisted quantum communication
complexity of a partial or total function cannot be improved by more than a constant factor by
replacing maximally entangled states with arbitrary entangled states. In particular, we show that
every quantum communication protocol using Q qubits of communication and arbitrary shared
entanglement can be ε-approximated by a protocol using O(Q/ε+log(1/ε)/ε) qubits of communication
and only EPR pairs as shared entanglement. This conclusion is opposite of the common wisdom in
the study of non-local games, where it has been shown, for example, that the I3322 inequality has a
non-local strategy using a non-maximally entangled state, which surpasses the winning probability
achievable by any strategy using a maximally entangled state of any dimension [17]. We leave open
the question of how much the use of a shared maximally entangled state can reduce the quantum
communication complexity of a function.

Our second result concerns an old question in quantum information theory: How much quantum
communication is required to approximately convert one pure bipartite entangled state into another?
We give simple and efficiently computable upper and lower bounds. Given two bipartite states |χ〉
and |υ〉, we define a natural quantity, d∞(|χ〉 , |υ〉), which we call the `∞ Earth Mover’s distance,
and we show that the communication cost of converting between |χ〉 and |υ〉 is upper bounded by a
constant multiple of d∞(|χ〉 , |υ〉). Here d∞(|χ〉 , |υ〉) may be informally described as the minimum
over all transports between the log of the Schmidt coefficients of |χ〉 and those of |υ〉, of the maximum
distance that any amount of mass must be moved in that transport. A precise definition is given
in the introduction. Furthermore, we prove a complementary lower bound on the cost of state
conversion by the ε-Smoothed `∞-Earth Mover’s Distance, which is a natural smoothing of the
`∞-Earth Mover’s Distance that we will define via a connection with optimal transport theory.
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1 Introduction

1.1 Entanglement-assisted communication complexity
Imagine that two cooperating players, Alice and Bob, are given the task of evaluating a
function f(x, y) (x, y ∈ {0, 1}n), where x is known only to Alice and y is known only to
Bob. The communication complexity of f is the number of bits that Alice and Bob need to
exchange in order to compute f . Popular variations of this framework include allowing a
small probability of error, allowing qubits to be communicated instead of classical bits, and
allowing extra resources such as shared randomness or entanglement.

In classical communication complexity, Newman’s theorem [14] states that arbitrarily
large amounts of shared randomness in a protocol can be replaced by a distribution with
O(log(n/ε)) bits of entropy while only reducing the success probability of that protocol by ε.
(Here n is the input size of each party.) Is there a quantum analogue to this result?

In one sense the answer is “no”. Given a two-party entanglement-assisted protocol for, say,
computing the value of some function, we cannot replace the shared entanglement with some
different, less entangled, state, without causing large errors [10, 1]. It is an open question
whether it is possible to replace a large entangled state with a less entangled one while also
changing the communication protocol.

However, while it remains a challenge to characterize the dimension of shared entanglement
required for optimal entanglement-assisted quantum communication protocols, in this work
we show that the type of shared entanglement required by such protocols can be neatly
characterized. In Theorem 1 below, we establish that the bounded-error entanglement-assisted
quantum communication complexity of a partial or total function cannot be improved by
more than a constant factor by replacing maximally entangled states with arbitrary entangled
states. This is accomplished by constructing an explicit protocol which allows two parties,
who only share maximally entangled states, to simulate any entanglement-assisted quantum
communication task regardless of the shared state that that task originally required.

I Theorem 1. Consider a quantum communication protocol R whose goal it is to compute
a joint function f(x, y) ∈ {0, 1}. Suppose that R uses an arbitrary bipartite entangled state
|ψ〉AB (of unbounded dimension), as well as Q qubits of communication total, in either
direction (for sufficiently large Q ≥ 15). Then, for every ε > 0, there exists a quantum
communication protocol R′ which simulates R with error ε, while using only a maximally
entangled state as an entangled resource (rather than |ψ〉AB or any other state), and using
O(Q/ε+ log(1/ε)/ε) qubits of communication. Thus, if R computes f with error ε′ it follows
that R′ computes f with error ε+ ε′.

Theorem 1 shows that, although the role of shared entanglement in quantum commu-
nication complexity is still not well understood, the type of shared entanglement does not
drastically change communication complexity. This is true regardless of input size or promise,
as long as we are in the constant-error regime and some communication is allowed between
players (unlike, say, the simultaneous-message-passing model). This result sets quantum
communication complexity apart from settings such as channel simulation [3], nonlocal
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games [11, 16], unitary gate simulation [6], and communication tasks involving quantum
communication between referees and players [12]. In each of those cases the ratio between
the EPR-assisted costs and the (unrestricted) entanglement-assisted costs can be made arbi-
trarily large. This suggests that the role of shared entanglement in quantum communication
complexity may be fundamentally different than in these other settings. Furthermore, the
result achieved in Theorem 1 may be useful in future work attempting to further bound the
role of entanglement in quantum communication complexity, as it restricts the problem to
the case of shared EPR pairs, without loss of generality.

Previously it was known that a universal form of entanglement existed: the embezzling
state [8]. Our Theorem 1 can be viewed as showing that these states can be replaced by the
much simpler family of maximally entangled states.

It may be worth noting that the proof of Theorem 1 is nearly oblivious to the entanglement-
assisted protocol being considered in the following sense: Given a protocol P using Q qubits
of entanglement and a shared entangled state |ψ〉, we can replace |ψ〉 with a “consolidated”
state ρ at the cost of error ε. Moreover, ρ can be prepared from a maximally entangled state
using O(Q/ε+ log(1/ε)/ε) communication. Taking ε constant implies that the EPR-assisted
communication complexity of a function is at most O(1) times the (unrestricted) entanglement-
assisted communication complexity of that function. It was not necessary to modify the
protocol P to achieve this result, except to pre-compose it with a pre-processing protocol
which starts with only EPR pairs, and prepares the state ρ using only O(Q/ε+ log(1/ε)/ε)
communication. P can then be run on ρ directly. Such a protocol-agnostic preprocessing
should not be taken for granted, since it is known that reducing the number of EPR pairs
may in some cases require more than just pre-processing [10, 1].

1.2 Communication cost of state transformations
Our second contribution, which is related at the level of techniques to Theorem 1, is to
provide upper and lower bounds for an old quantity studied in quantum information theory,
the communication cost of state transformation.

Suppose that |χ〉AB and |ν〉AB are bipartite pure quantum states, with vectors of Schmidt
coefficients denoted respectively by χ and ν. In this setting it is known that |χ〉 can be exactly
converted into |ν〉 using LOCC if and only if χ is majorized by ν [15]. But the communication
cost of this transformation is known only in a few special cases. If |χ〉 = |χ0〉⊗n and
|ν〉 = |ν0〉⊗n for some states |χ0〉 , |ν0〉, then this cost is O(

√
n) or less in some special

cases (e.g. |ν0〉 is maximally entangled). More generally there is, in principle, an exact
characterization of the communication cost (either LOCC, or quantum communication) of
state transformation using the Schubert calculus due to Daftuar and Hayden [4], but in
practice it is difficult to extract concrete bounds from their main theorem.

In this work we identify a simple and efficiently computable quantity, which we call the `∞
Earth Mover’s (or Wasserstein) Distance, which tells us approximately how much quantum
communication is required to transform |χ〉 to |ν〉. Given its simple form, we believe that
this quantity may be a useful tool in quantum information theory.

I Definition 2 (`∞ Earth Mover’s Distance ). Let |χ〉AB =
∑
i∈X
√
χi |i〉A⊗|i〉B and |υ〉AB =∑

j∈Y
√
υj |j〉A ⊗ |j〉B be two states. We define d∞(|χ〉 , |υ〉) to be the `∞ Earth Mover’s

distance between |χ〉 and |υ〉, which is equal to the minimum µ ≥ 0 for which there exists a
joint distribution ω(x, y) : X × Y → R≥0 such that:∑

j∈Y ω(i, j) = χi ∀i ∈ X∑
i∈X ω(i, j) = υj ∀j ∈ Y

ω(i, j) = 0 whenever | log(χi)− log(υj)| > µ
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We can think of χ as corresponding to placing χi mass at position log(χi) for each i,
and similarly for υ. Then d∞(|χ〉 , |υ〉) is the `∞ EMD (Earth Mover’s distance) between
these distributions.

In Section 4 we will show that this quantity gives an intuitive upper bound on the amount
of quantum communication required to transform one bipartite shared state into another. In
particular we prove the following theorem.

I Theorem 3. Let |χ〉AB and |υ〉AB be two bipartite shared states. There is a protocolMχ→υ
which can prepare |υ〉 from |χ〉, using only 4dd∞(|χ〉 , |υ〉)e+ 8 qubits of communication.

In Section 3 we establish a complementary lower bound, showing that a “ε-smoothed”
version of the `∞ Earth Mover’s Distance, denoted by dε∞(|χ〉 , |υ〉), gives a lower bound on
the cost of state transformation. That is:

I Theorem 4. Given any two bipartite shared states |ψ〉AB =
∑
i

√
ψi |i〉A ⊗ |i〉B and

|φ〉AB =
∑
i

√
φi |i〉A ⊗ |i〉B, shared between two parties A and B, together with a unitary

UP which can be performed on the state |ψ〉AB via a quantum communication protocol P,
that uses Q qubits of communication between A and B, we have that, for every ε:∣∣∣〈φ|AB UP |ψ〉AB∣∣∣ ≤ 1− 1

4ε
2 + 24 · 2− 1

2 (dε∞(|ψ〉,|φ〉)−3Q)

In words: If two shared states cannot be brought within small `∞ Earth Mover’s Distance
of each other by moving an ε quantity of mass of their Schmidt coefficients, then they also
cannot be brought closer than 1−O(ε2) fidelity with each other without using Ω(dε∞(|ψ〉 , |φ〉))
qubits of communication (for sufficiently large values of dε∞(|ψ〉 , |φ〉)). Thus, the ε-smoothed
`∞ Earth Mover’s Distance provides a lower bound on the communication cost of state
conversion. On the other hand, from the definition of dε∞(|ψ〉 , |φ〉), stated in Definition 13,
we note here that one can use Theorem 3 to move |ψ〉 to within 1− ε fidelity of |φ〉 using only
O(dε∞(|ψ〉 , |φ〉)) qubits of communication. To do this, omit the ε mass of Schmidt coefficients
on which the two states have large ε-smoothed `∞ distance, and apply Theorem 3 as one
would do with the regular `∞ Earth Mover’s Distance. In this sense dε∞(|ψ〉 , |φ〉) gives both
an upper and lower bound on the communication cost of state conversion.

To put these bounds in context: One could consider entanglement concentration and
dilution to be the starting point for the study of state conversion. The original paper on
entanglement concentration and dilution [2] concerned the many-copy limit and did not
attempt to bound the amount of classical communication used. The first time the classical
communication cost of state conversion was considered explicitly seems to have been in [13],
which could be said to establish a version of our upper bound in the case where the starting
state is maximally entangled. (Their result is not quite that general but contains many of
the key ideas.) A version of our lower bound was established, again for the case of starting
with maximally entangled states, in [7, 9]. These lower bounds could be applied to general
state conversion but relied on Rènyi entropy inequalities that are clearly not tight in many
cases. Finally, as noted earlier, a full characterization of the communication cost of general
state conversion was given in [4] but the resulting formula is complicated and there is not an
efficient algorithm known to evaluate it.

We conclude the section with two remarks about notation.
I Remark 5. In theorem statements above, and where appropriate, we have made use of
superscripts A and B, as in |ψ〉AB =

∑
i

√
ψi |i〉A⊗|i〉B to explicitly denote the two halves of

the bipartite division of a state. However, since all of the shared entangled states considered in
this paper are bipartite, and since the two components of the bipartite division are generally
clear from context, we will usually omit this notation.
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I Remark 6. When considering a bipartite state |ψ〉, we will assume that the state has
a Schmidt decomposition of the form |ψ〉 =

∑
i

√
ψi |i〉 ⊗ |i〉 across the implicit bipartite

division. This is done in the theorem statements above and everywhere in the paper. We
can assume this WLOG because any state that has the same Schmidt coefficients as |ψ〉 can
be moved to this canonical form (and vice versa) using only local unitary transformations,
which can be implemented with no quantum communication between the two components of
the bipartite division. Thus our analysis of communication costs is unaffected by assuming
WLOG that, in any quantum communication protocol, shared entangled states start and
end in this form.

I Remark 7. Given a quantum state |ν〉 in HA ⊗HB, we will use rkSchmidt(|ν〉) to denote
the Schmidt rank of |ν〉 across the bipartite division between HA and HB .

2 Entanglement-Assisted Communication Complexity

In this section we will discuss the proof of our main result, Theorem 1, which shows
that arbitrary entanglement-assisted quantum communication protocols can be simulated
by quantum communication protocols that use only the maximally entangled state as an
entangled resource. A basic fact we will need is that two bipartite pure states which are
sufficiently different in the distribution of mass across their Schmidt coefficients must be
nearly orthogonal. This fact is stated for our specific purposes in Lemma 9 below. Crucially,
such states remain nearly orthogonal even after one of them is acted on by any unitary
which can be implemented with a small amount of quantum communication, as we detail in
Lemma 8.

I Lemma 8. Given two quantum states |ψ〉 and |ν〉 on HA ⊗HB, such that the Schmidt
coefficients of ψ are upper bounded by λmax, and those of ν are upper bounded by νmax, and
further given a unitary transformation U on HA ⊗HB which can be implemented using at
most Q qubits of communication between the HA and HB components of the Hilbert space, it
follows that:

| 〈ψ| U |ν〉 | ≤ 2 3
2Q · rkSchmidt(|ψ〉)

√
λmaxνmax

Proof. If U is a unitary transform using Q qubits of communication, then rkSchmidt(U |ν〉) ≤
2QrkSchmidt(|ν〉) [9]. We also know that the Schmidt coefficients of U |ν〉 are bounded above
by 2Qνmax [9]. The desired result now follows by Lemma 9. J

I Lemma 9. Given two quantum states |ψ〉 and |ν〉 on HA ⊗HB, such that the Schmidt
coefficients of ψ are upper bounded by λmax, and those of ν are upper bounded by νmax,
we have:

| 〈ψ|ν〉 | ≤ rkSchmidt(|ψ〉)
√
λmaxνmax

Proof. For brevity let r = rkSchmidt(|ψ〉). Schmidt decompose |ψ〉 and |ν〉 as |ψ〉 =∑r−1
i=0
√
λi |i〉A⊗|i〉B , as |ν〉 =

∑
j

√
νj |j〉A⊗|j〉B . Define the matrixMν =

∑
j

√
νj |j〉A 〈j|

∗
B ,

and note that
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〈ψ|ν〉 =
r−1∑
i=0

∑
j

√
λiνj 〈iA|jA〉 · 〈iB |jB〉

=
r−1∑
i=0

√
λi 〈iA|

∑
j

√
νj |j〉A 〈j|

∗
B

 |i∗B〉
=

r−1∑
i=0

√
λi 〈iA|Mν |i∗B〉

Now, by definition of a Schmidt Decomposition, we know that the maximum singular
value of Mν is √νmax. Thus, for all i we have that | 〈iA|Mν |i∗B〉 | ≤

√
νmax (since |iA〉 and

|iB〉 are normalized vectors by definition). It then follows that:

| 〈ψ|ν〉 | ≤ r
√
λmaxνmax = rkSchmidt(|ψ〉)

√
λmaxνmax J

Although Theorem 1 is the main result of this work, the proof is too long to fit in a 10
page abstract. Therefore will now give a brief, intuitive outline of the proof of Theorem 1,
restated below for the reader’s convenience, and include the complete proof in Section A of
the Appendix.

I Theorem (Restatement of Theorem 1). Consider a quantum communication protocol R
whose goal it is to compute a joint function g(x, y) ∈ {0, 1}. Suppose that R uses an
arbitrary bipartite entangled state |ψ〉AB (of unbounded dimension), as well as Q qubits of
communication total, in either direction (for sufficiently large Q ≥ 15). Then, for every
ε > 0, there exists a quantum communication protocol R′ which simulates R with error ε,
while using only a maximally entangled state as an entangled resource (rather than |ψ〉AB

or any other state), and using O(Q/ε + log(1/ε)/ε) qubits of communication. Thus, if R
computes f with error ε′ it follows that R′ computes f with error ε+ ε′.

Proof Sketch of Theorem 1. Suppose that we have a communication protocol using Q

qubits of communication and a pure entangled state |ϕ〉. If we can prepare |ϕ〉 from EPR
pairs using O(Q) qubits of communication then we are done. Thus we can assume that |ϕ〉
has entanglement spread that is � Q. This will be defined more precisely below (see also
[9, 7, 5]) but roughly speaking it means that we can write |ϕ〉 as a superposition of varying
numbers of EPR pairs, say from Emin to Emax, with Emax − Emin � Q. (Technically we
need to use Theorem 3 to show that with a small amount of communication |ϕ〉 can be
mapped to a superposition of maximally entangled states of different sizes.)

For simplicity, suppose that |ϕ〉 = |α〉+ |β〉 where |α〉 , |β〉 each have norm 1/
√

2 and, up
to normalization, |α〉 is locally equivalent to Emin EPR pairs and |β〉 is locally equivalent to
Emax EPR pairs. This difference in entanglement means that |α〉 and |β〉 must be nearly
orthogonal: specifically their overlap can be at most 1/

√
2Emax−Emin . Moreover, if we apply

a unitary communication protocol P using Q qubits of communication to one of them, say β,
then that will not be enough to bridge the gap. If we perform P and then measure the first
qubit, this is equivalent to measuring the observable P†σ(1)

z P, which conveniently is also a
unitary using 2Q qubits of communication. The bias of the protocol (i.e. Pr[1]− Pr[0]) is
then

〈ϕ| P†σ(1)
z P |ϕ〉 = 〈α| P†σ(1)

z P |α〉+ 〈β| P†σ(1)
z P |β〉+ (1)

〈α| P†σ(1)
z P |β〉+ 〈β| P†σ(1)

z P |α〉 (2)
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Because of the limited communication used by P the terms in (2) are negligible, on the order
of 1/

√
2Emax−Emin−4Q.

This means that |ϕ〉 behaves effectively like an incoherent mixture of |α〉 and |β〉. The
phase of the superposition between |α〉 and |β〉 cannot be observed without using more
communication. Similar arguments were used in [6] to argue that projecting onto |ϕ〉 required
a lot of communication even given the assistance of unlimited EPR pairs. Indeed applying a
phase of −1 to |α〉+ |β〉 but not |α〉 − |β〉 is equivalent to the unitary which maps |α〉 ↔ |β〉,
and so must require quantum communication if the two states have different amounts of
entanglement. (The only exception would be if an embezzling state is used.)

If |α〉 and |β〉 are locally equivalent to maximally entangled states of different sizes then
their mixture can be prepared using no communication starting with a large number of EPR
pairs and a shared random bit (which can also be obtained from an EPR pair). Since P
cannot distinguish ϕ from this mixture, we can run the protocol successfully starting with
EPR pairs which we map for free (or almost for free, given our above use of Theorem 3) to
the mixture of |α〉 and |β〉.

To prove the full theorem we need to consider more general superpositions and new
mathematical subtleties arise. But the key principle is still that a low-communication protocol
cannot observe phases of superpositions between states whose degrees of entanglement are
too far apart. J

3 The Cost of State Transformation: A Lower Bound

It is natural at this point to discuss the background and proof for Theorem 4, which establishes
a lower-bound on the cost of State Transformation by the ε-Smoothed `∞ Earth Mover’s
Distance, and to postpone the discussion of Theorem 3 until Section 4, for two reasons. First,
the proof of Theorem 4 in this section shares key techniques in common with the proof of
Theorem 1 in Section 2 above, and so this progression may provide the reader with some
continuity of thought while also reiterating the usefulness of the techniques. Second, Theorem
4 in this section motivates the notion of the `∞ Earth Mover’s Distance by highlighting
its, perhaps surprising, relevance to lower bounding the cost of state transformation. This
prepares the reader with some motivation for why the upper bound proven in Theorem 3, in
Section 4 below, is interesting and potentially useful. Thus, covering Theorem 4 at this point
may provide the reader with a reason to accept the ε-smoothed `∞ Earth Mover’s Distance
as a useful proxy for the cost of State Transformation.

Whereas the proof of Theorem 3 in the next section will make direct use of Definition 2, the
proof of Theorem 4 in this section is elucidated by first establishing an equivalent formulation
of the `∞ Earth Mover’s Distance which is derived by establishing the relationship between
the `∞ Earth Mover’s Distance as defined in Definition 2, and the Monge-Kantorovich
Transportation distance on the real line, as shown below. After translating to this equivalent
definition, stated in Definition 12, the generalization to the ε-smoothed `∞ Earth Mover’s
Distance in Definition 13 is straightforward and natural.

I Definition 10. Given two probability distributions µ and ν on the real line, define Γ(µ, ν)
to be the set of probability distributions on R× R whose marginals are µ and ν, respectively.
Given a cost function c : R × R → [0,∞] the corresponding Monge-Kantorovich distance,
dMK(µ, ν) between µ and ν is defined as:

dMK(µ, ν) = inf
{∫

R×R
c(x, y)dγ(x, y)|γ ∈ Γ(µ, ν)

}
.
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We can interpret Γ(µ, ν) as flows mapping µ to ν and c(x, y) as the cost of moving one
unit of mass from position x to position y. The Monge-Kantorovich distance is then the
minimum cost flow using this cost function and boundary conditions.

In order to translate into a statement about quantum states, we make the following
definition in a similar style to Definition 2:

I Definition 11. Given a bipartite shared state |ψ〉 =
∑
i∈X
√
ψi |i〉 ⊗ |i〉 let us define a

random variable Vψ which takes value log(ψi) with probability ψi (note that, since the ψi
sum to one, this is a well defined random variable). We now define pψ to be the probability
distribution of this random variable.

It is clear that, for every ψ, pψ is a probability distribution on the real line. One may
note the following simple relationship between Monge-Kantorovich distance and `∞ Earth
Mover’s Distance:

For any θ > 0, consider the Monge-Kantorovich distance, dMK(θ) where the function
c : R × R → [0,∞] is defined by c(x, y) = 1 if |x − y| ≥ θ and c(x, y) = 0 if |x − y| < θ.
Then, for any two quantum states |ψ〉 and |φ〉, we have that d∞(|ψ〉 , |φ〉) < θ if and only if
dMK(θ)(pψ, pφ) = 0.

Given this concrete connection between `∞ Earth Mover’s Distance and the Monge-
Kantorovich distance, we can now make use of the following characterization of Monge-
Kantorovich distance for distributions on the real line, which is well known in optimal
transport theory:

I Fact. Let µ and ν be probability distributions supported on the real line, and let Fµ and Fν
be their cumulative distribution functions, respectively. Then, for any c : R× R→ [0,∞] :

dMK(µ, ν) ≡ inf
γ∈Γ(µ,ν)

{∫
R×R

c(x, y)dγ(x, y)
}

=
∫ 1

0
c(F−1

µ (s), F−1
ν (s))ds

It follows from this Fact, combined with the discussion above, that an equivalent definition
of the `∞ Earth Mover’s Distance is given by:

I Definition 12.

d∞(|ψ〉 , |φ〉) ≡ max
q∈[0,1]

|F−1
pψ

(q)− F−1
pφ

(q)|

A drawback of d∞(|ψ〉 , |φ〉) is that it is not robust against tiny changes of either distri-
bution in the total variation distance. Concretely, it is lower but not upper semi-continuous,
since adding an infinitesimal amount of mass far away can cause d∞(, t)o increase by an un-
bounded amount. This is acceptable for an upper bound (i.e. protocols using communication
scaling with d∞(, )) but it would be impossible to prove a lower bound (or no-go theorem) of
the form of Theorem 4 if stated using that definition. For this reason, we find it convenient
to introduce a “smoothed” version of the distance measure.

I Definition 13. ε-Smoothed `∞-Earth Mover’s Distance

dε∞(|ψ〉 , |φ〉) ≡ max
q∈[0,1]

min
r∈[q−ε,q+ε]

|F−1
pψ

(q)− F−1
pφ

(r)|

With this definition in place we can now state the lower bound.

I Theorem (Restatement of Theorem 4). Given any two bipartite shared states |ψ〉AB =∑
i

√
ψi |i〉A ⊗ |i〉B and |φ〉AB =

∑
i

√
φi |i〉A ⊗ |i〉B, shared between two parties A and
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B, together with a unitary UP which can be performed on the state |ψ〉AB via a quantum
communication protocol P, that uses Q qubits of communication between A and B, we have
that, for every ε:∣∣∣〈φ|AB UP |ψ〉AB∣∣∣ ≤ 1− 1

4ε
2 + 24 · 2− 1

2 (dε∞(|ψ〉,|φ〉)−3Q)

Intuitively, Theorem 4 states that two bipartite shared states which are far apart in the
ε-Smoothed `∞-Earth Mover’s Distance, cannot be made equal via a quantum communication
protocol unless it uses at least c · dε∞(|ψ〉 , |φ〉) qubits of communication (for a particular
constant c which can be computed from the statement of Theorem 4).

Proof. Suppose that two bipartite shared states |ψ〉 and |φ〉 have dε∞(|ψ〉 , |φ〉) = d. By
definition ∃p ∈ [0, 1] such that

min
r∈[p−ε,p+ε]

|F−1
pψ

(p)− F−1
pφ

(r)| = d (3)

Suppose that F−1
pψ

(p) < F−1
pφ

(r) (if the opposite is true then we simply switch the
roles of ψ and φ and continue with the same proof). Define x ≡ F−1

pψ
(p). Further define

|ψ〉≤x ≡
∑
{i:| log 1/ψi|≤x}

√
ψi |i〉 ⊗ |i〉, and |ψ〉>x ≡ |ψ〉 − |ψ〉≤x. Similarly define |φ〉≥x+d ≡∑

{i:| log 1/φi|≥x+d}
√
φi |i〉 ⊗ |i〉, and |φ〉<x+d ≡ |φ〉 − |φ〉≥x+d. Note that |ψ〉≤x, and |ψ〉>x

are orthogonal, as are |φ〉<x+d and |φ〉≥x+d.
Since we have x ≡ F−1

pψ
(p) it follows from the definitions that || |ψ〉≤x ||2 = p. Since

Fpψ(x) = p, and F−1
pψ

(p) < F−1
pφ

(r), it follows from Equation 3 that Fpφ(x + d) ≤ p − ε.
Therefore, || |φ〉<x+d ||2 ≤ p− ε and thus || |φ〉≥x+d ||2 = 1− || |φ〉<x+d ||2 ≥ 1− p+ ε.

The main idea in the proof of this theorem is that we can now decompose UP |ψ〉 and |φ〉
each into three nearly orthogonal parts as follows:

I Definition 14.∣∣ψ1〉 ≡ UP |ψ〉≤x ,∣∣ψ3〉 ≡ ∣∣φ3〉 〈φ3∣∣UP |ψ〉>x ,

∣∣φ3〉 ≡ |φ〉≥x+d ,∣∣φ1〉 ≡ ∣∣ψ1〉 〈ψ1∣∣ |φ〉<x+d ,

∣∣ψ2〉 ≡ (I − ∣∣φ3〉 〈φ3∣∣)UP |ψ〉>x∣∣φ2〉 ≡ (I − ∣∣ψ1〉 〈ψ1∣∣) |φ〉<x+d

It follows from this definition that:

UP |ψ〉 =
∣∣ψ1〉+

∣∣ψ2〉+
∣∣ψ3〉 (4)

|φ〉 =
∣∣φ1〉+

∣∣φ2〉+
∣∣φ3〉 (5)

The motivation and key property of the particular decomposition described in Definition
14 is best illustrated by the discussion of Lemma 15 below and the remainder of the proof of
Theorem 4, which follows that.

I Lemma 15. For i, j ∈ {1, 2, 3} with i 6= j, we have that |〈φi|ψj〉| ≤ h(Q, d), |〈ψi|ψj〉| ≤
h(Q, d), and |〈φi|φj〉| ≤ h(Q, d), where h(Q, d) ≡ 4 · 2

3Q−d
2 .

The proof of Lemma 15 is given separately in the appendix. Within that proof is the key
use of Lemma 8 which is the primary conceptual step in proving Theorem 4. Understanding
the proof of Lemma 15 is also the best way of understanding the motivation behind Definition
14 above.

While the individual
∣∣ψi〉 and ∣∣φi〉 are not necessarily all orthogonal we do have

∣∣ψ2〉 ⊥∣∣ψ3〉 and ∣∣ψ1〉 ⊥ ∣∣ψ2〉+
∣∣ψ3〉. Likewise ∣∣φ1〉 ⊥ ∣∣φ2〉 and ∣∣φ3〉 ⊥ ∣∣ψ1〉+

∣∣ψ2〉. Together with
equations (4) and (5), these imply

1 =
∥∥∣∣ψ1〉∥∥2 +

∥∥∣∣ψ2〉∥∥2 +
∥∥∣∣ψ3〉∥∥2 (6a)

1 =
∥∥∣∣φ1〉∥∥2 +

∥∥∣∣φ2〉∥∥2 +
∥∥∣∣φ3〉∥∥2 (6b)
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From Lemma 15 it follows that:

| 〈φ|P(ψ)〉 | ≡ | 〈φ|UP |ψ〉 | =
∣∣(〈φ1∣∣+

〈
φ2∣∣+

〈
φ3∣∣) (∣∣ψ1〉+

∣∣ψ2〉+
∣∣ψ3〉)∣∣

≤
∣∣〈φ1∣∣ψ1〉∣∣+

∣∣〈φ2∣∣ψ2〉∣∣+
∣∣〈φ3∣∣ψ3〉∣∣+ 6 · h(Q, d)

≤
∥∥∣∣φ1〉∥∥ ∥∥∣∣ψ1〉∥∥+

∥∥∣∣φ2〉∥∥ ∥∥∣∣ψ2〉∥∥+
∥∥∣∣φ3〉∥∥ ∥∥∣∣ψ3〉∥∥+ 6 · h(Q, d) (7)

Now recall that∥∥∣∣ψ1〉∥∥ =
∥∥∥UP |ψ〉≤x∥∥∥ =

∥∥∥|ψ〉≤x∥∥∥ = √p∥∥∣∣φ3〉∥∥ =
∥∥∥|φ〉≥x+d

∥∥∥ ≥√1− p+ ε

We now return to Equation 7. Setting xi = ‖ |ψi〉‖ and yi = ‖ |φi〉‖ for i = 1, 2, 3 we have

| 〈φ|P(ψ)〉 | ≤ x1y1 + x2y2 + x3y3 + 6 · h(Q, d) (8)

where x1 = √p, y3 ≥
√

1− p+ ε and (x1, x2, x3), (y1, y2, y3) are unit vectors. We claim that
this quantity is maximized by setting x2 = y2 = 0 and y3 =

√
1− p+ ε. Indeed we can

upper bound √py1 + x2y2 ≤ x12y12 where x12 ≡
√
x2

1 + x2
2 and y12 ≡

√
y2

1 + y2
2 . Now define

x12 = cos(α), x3 = sin(α), y12 = cos(β), y3 = sin(β) and we have

x1y1 + x2y2 + x3y3 ≤ cos(α− β). (9)

This is maximized by taking (x1, x2, x3) = (√p, 0,
√

1− p) and (y1, y2, y3) =
(
√
p− ε, 0,

√
1− p+ ε). Thus

| 〈φ|P(ψ)〉 | ≤
√
p− ε√p+

√
1− p

√
1− p+ ε+ 6 · h(Q, d). (10)

Finally we would like an upper bound independent of p. This maximization is performed
in the proof of Fact 27 from Section G of the Appendix and yields the following.

| 〈φ|P(ψ)〉 | ≤ 1− 1
4ε

2 + 6 · h(Q, d). J

4 The Cost of State Transformation: An Upper Bound

In this section we will give a proof of Theorem 3, which states that the quantum communica-
tion cost of converting between two bipartite entangled states is upper bounded by the `∞
Earth Mover’s Distance between those states. This upper bound represents the second half
of our two sided argument (employing both Theorem 3 and Theorem 4) that the `∞ Earth
Mover’s Distance is a simple and efficiently computable proxy for the cost of state conversion.
The proof is divided into two parts which are proved separately in Lemma 18, and Lemma 19
together with Corollary 20. At a high level Lemma 18 tells us that, given bipartite states |χ〉
and |υ〉, one can map the Schmidt coefficients of |χ〉 directly onto the Schmidt coefficients
of |υ〉 using a series of bipartite “flows” that have small degree (where degree is a quantity
defined below). Lemma 19 and Corollary 20 then tell us that any such “flow” which has small
degree, can be implemented as an actual bipartite state transformation, with correspondingly
small communication required.

Here we establish Lemmas 18 and 19 which, together, prove the desired theorem. We
begin with a couple definitions establishing the concept of flows, as we use it here.
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I Definition 16 (Right (Left) Index-1 Flow). Fix two states |χ〉 =
∑
i∈X
√
χi |i〉 ⊗ |i〉 and

|υ〉 =
∑
j∈Y
√
υj |j〉 ⊗ |j〉. A Right Index-1 Flow from |χ〉 to |υ〉 is a bipartite graph GX,Y

with vertex set X ∪ Y , and edge set EX,Y (where X,Y represents the bipartition of the
vertices) such that:

Each vertex in j ∈ Y has degree 1 in GX,Y .
For all i ∈ X, χi =

∑
j∈Y :(i,j)∈EX,Y υj

If the roles of |χ〉 and |υ〉 are reversed in the above, then we say that there is a Left
Index-1 Flow from |χ〉 to |υ〉. Equivalently, there is a Left Index-1 Flow from |υ〉 to |χ〉
exactly when there is a a Right Index-1 Flow from |χ〉 to |υ〉.

I Definition 17 (Degree of a Right (Left) Index-1 Flow). We define the degree of a Right
(Left) Index-1 Flow from |χ〉 =

∑
i∈X
√
χi |i〉 ⊗ |i〉 to |υ〉 =

∑
j∈Y
√
υj |j〉 ⊗ |j〉 to be the

maximum degree of any vertex in the bipartite graph GX,Y .

The following lemma, which a key step in proving Theorem 3, establishes that bipartite
states which are close to each other in the `∞ Earth Mover’s Distance of Definition 2, can
be mapped to each other through a series of flows of bounded degree. This series of flows
intuitively establishes a map for converting one bipartite state to the other using bounded
quantum communication, in a manner that will be made rigorous in Lemma 19. The main
step in the proof of Lemma 18 involves constructing a flow through a type of greedy algorithm
whose analysis has a number of subtle cases. In order to concretely exhibit these cases the
entire greedy algorithm, including every case, is written out in pseudocode in Algorithm 1.

I Lemma 18. Given two states |χ〉 and |υ〉, there exist two “intermediate” states |γ〉 and |ρ〉,
such that there is a Right Index-1 Flow from |χ〉 to |γ〉 of degree at most 22dd∞(|χ〉,|υ〉)e+4, a
Left Index-1 Flow from |γ〉 to |ρ〉 of degree at most 2dd∞(|χ〉,|υ〉)e+2, and a Left Index-1 Flow
from |ρ〉 to |υ〉 of degree at most 2dd∞(|χ〉,|υ〉)e+2.

The Proof of Lemma 18 is included in the Appendix, section D.
Lemma 18, above, shows that two bipartite entangled states can be connected to each

other by a series of flows which have a degree which is bounded in terms of the `∞ Earth
Mover’s Distance between them. The next step is to establish that every flow can be
implemented via a quantum communication protocol. Lemma 19 and Corollary 20, below,
accomplish this by showing that, if two bipartite states can be connected by flows of small
degree, then one state can be converted to the other (and vice versa) using a quantum
communication protocol which only requires small amounts of communication.

I Lemma 19. Given two states |τ〉 and |κ〉 such that there is a Right Index-1 Flow from |τ〉
to |κ〉 with degree at most 2Q, there exists a quantum communication protocol P, which uses
Q qubits of communication, and converts the shared state |τ〉 to the shared state |κ〉.

The idea of the proof is that if |τ〉 =
∑
i

√
τi |i〉 ⊗ |i〉 then it suffices to define separately

protocols for each |i〉 ⊗ |i〉 term. These protocols simply use quantum communication to
create a shared entangled state, resulting in the state

∑
i τi |i〉A ⊗ |i〉B ⊗ |ψi〉A′B′ . Choosing

the Schmidt coefficients according to the given Right Index-1 Flow yields the result. The
details of this argument are in the Appendix xE.

Corollary 20 establishes the same result as Lemma 19, but in the reverse direction.

I Corollary 20. Given two states |τ〉 and |κ〉 such that there is a Left Index-1 Flow from |κ〉
to |τ〉 with degree at most 2Q, then, for two parties sharing entangled state |κ〉, there exists a
quantum communication protocol P, which uses Q qubits of communication, and converts
the shared state |κ〉 to the shared state |τ〉.
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The proof of Corollary 20 is straightforward and appears in Appendix F.

I Theorem (Restatement of Theorem 3). Let |χ〉AB and |υ〉AB be two bipartite shared states.
There is a protocol Mχ→υ which can prepare |υ〉 from |χ〉, using only 4dd∞(|χ〉 , |υ〉)e + 8
qubits of communication.

Proof. The proof follows by applying Lemma 18, followed by Lemma 19 and Corollary 20. J
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A Proof of Theorem 1

A concept which will be useful in the proof of Theorem 1 is the notion of the spread of a state:

I Definition 21 (Spread). For a finite dimensional bipartite entangled state |ψ〉AB =∑
i

√
ψi |i〉A ⊗ |i〉B let λmax be the maximum of the Schmidt coefficients of ψ, and let

λmin be the minimum Schmidt coefficient. We define the spread of |ψ〉 to be the quantity
log(λmax/λmin).

We note that the above definition of spread is given in the case of finite dimensional
|ψ〉, which is the only case we will need. There is also an ε-smoothed variant of the spread
of a state [9, 5], but it will not be needed for this proof. Within the proof of Theorem 1
the spread of a bipartite state will be used as a proxy for the amount of communication
required to create that state from a maximally entangled state. This intuition is formalized,
for example, by Theorem 3, but in this case of converting from a maximally entangled state,
is also an implication of earlier works, such as [7, 9].

I Theorem (Restatement of Theorem 1). Consider a quantum communication protocol R
whose goal it is to compute a joint function g(x, y) ∈ {0, 1}. Suppose that R uses an arbitrary
bipartite entangled state |ψ〉AB (of unbounded, but finite, dimension), as well as Q qubits
of communication total, in either direction (for sufficiently large Q ≥ 15). Then, for every
ε > 0, there exists a quantum communication protocol R′ which simulates R with error ε,
while using only a maximally entangled state as an entangled resource (rather than |ψ〉AB

or any other state), and using O(Q/ε + log(1/ε)/ε) qubits of communication. Thus, if R
computes f with error ε′ it follows that R′ computes f with error ε+ ε′.

Proof. Given R, g, and |ψ〉 as in the theorem statement, Schmidt decompose |ψ〉 as∑
i

√
λi |i, i〉 (see Remark 6 for why we may assume WLOG that |ψ〉 has this form).

Let N ≥ 2 be an integer, which will be specified later. Define a function f : [0, 1] →
{0, 1, . . . , 2N} given by

f(λ) = 2
⌈⌈

log(1/λ)
N

⌉
N−log(1/λ)

⌉
∈ {1, 2, 4, . . . , 2N},

and define a new state |ϕ〉 ≡
∑
i

∑
j∈{1,...,f(λi)}

√
νi,j |(i, j), (i, j)〉, where νi,j ≡ λi

f(λi) .
Note that

∑
i,j νi,j = 1, so that |ϕ〉 is a normalized pure state. Furthermore, every Schmidt

coefficient νi,j of |ϕ〉 is within a multiple of 2 of the integer power 2−
⌈ log(1/λi)

N

⌉
N . This follows

because∣∣∣∣∣log
(

νi,j

2−
⌈ log(1/λi)

N

⌉
N

)∣∣∣∣∣ =
∣∣∣∣log (λi)− log(f(λi)) +

⌈
log(1/λi)

N

⌉
N

∣∣∣∣
=
∣∣∣∣log (λi)− log

(
2
⌈⌈ log(1/λi)

N

⌉
N−log(1/λi)

⌉)
+
⌈

log(1/λi)
N

⌉
N

∣∣∣∣
=
∣∣∣∣⌈ log(1/λi)

N

⌉
N − log (1/λi)−

⌈⌈
log(1/λi)

N

⌉
N − log(1/λi)

⌉∣∣∣∣
≤ 1 (11)

Next, we can upper bound d∞(|ψ〉 , |ϕ〉) ≤ N by considering the coupling in which each
νi,j is moved to λi. The largest distance obtained here is the maximum log f(λi) for which
λi > 0, and this in turn is ≤ N . Therefore, by Theorem 3, there is a protocolM by which
Alice and Bob can prepare |ψ〉 from |ϕ〉, using 4dd∞(|χ〉 , |υ〉)e + 8 ≤ 4N + 8 qubits of
communication. (For this special case, of course a simpler protocol could also be used.)

CCC 2019



20:14 Entanglement and Communication Complexity

Define C ≡ R◦M to be the composed protocol in which Alice and Bob start with shared
state |ϕ〉, first use protocol M to convert |ϕ〉 to |ψ〉, and then perform protocol R using
shared state |ψ〉 and inputs x and y, to compute the joint function g(x, y). It is evident that
C has exactly the same success probability as R. SinceM uses at most 4N + 8 qubits of
communication and R uses Q qubits of communication, C can be performed with Q+ 4N + 8
qubits of communication.

For k a nonnegative integer, define Ik := {i : 2−kN+1 ≥ λi > 2−kN−1} and define the
subnormalized state

|ϕk〉 ≡
∑
i∈Ik

√
λi |i, i〉 . (12)

From Equation (11) and the surrounding discussion, we have that |ϕ〉 =
∑
k |ϕk〉. Further-

more, by the definition of Ik, it follows that |ϕk〉 has spread at most 2; note that the spread
of |ϕk〉 does not depend on whether the state is normalized or not.

The idea of the proof is that different |ϕk〉 are not only orthogonal, but must remain
approximately orthogonal even after a small amount of quantum communication. In particular,
note that for any l, rkSchmidt(|ϕl〉) ≤ 2lN+1‖ |ϕl〉 ‖2. Furthermore, for all l we have, by
definition, that the Schmidt coefficients of |ϕl〉 are bounded above by 2−lN+1. Therefore, if
U is a unitary transform using M qubits of communication, then, it follows by Lemma 8,
that ∀j, k,

|〈ϕk|U |ϕj〉| ≤ 2 3
2M2min(j,k)N+1 ∥∥∣∣ϕmin(j,k)

〉∥∥2√2−jN+1 · 2−kN+1

≤ 2 3
2M2−N

|j−k|
2 +2 ∥∥∣∣ϕmin(j,k)

〉∥∥2 (13)

To apply this to our problem, we first note that the protocol C depends, a priori, on the
inputs x, y to the function g(x, y) that we wish to compute (just like the the protocol R).
We now fix any input pair x, y and for the remainder of the proof of this theorem we will
perform only transformations of the shared state which do not depend on the value of x, y.
We will therefore establish that our transformation to a maximally entangled shared state
does not significantly impact the success probability of the quantum communication protocol
regardless of the value of x, y. The desired Theorem then follows.

With the input x, y now fixed, we observe that the success probability of protocol C (which
we have already established is equal to the success probability of the original protocol R)
can be expressed WLOG by performing C and then computing the probability of outcomes
when measuring the first qubit in the computational basis. The probability that such a
measurement on protocol C outputs b ∈ {0, 1} is

Pr[b] = 〈ϕ| C†(|b〉 〈b| ⊗ I)C |ϕ〉 ,

where I acts on all qubits except for the first, which is being measured. Define P ≡
C†(σz ⊗ I)C = C†(|0〉 〈0| ⊗ I)C − C†(|1〉 〈1| ⊗ I)C. Then

Pr[0]− Pr[1] = 〈ϕ| P |ϕ〉 =
∑
j,k

〈ϕj | P |ϕk〉 (14)

Observe, for later, that P is a unitary operator that can be implemented using 2Q+8N+16
qubits of communication.

The proof will proceed as follows: In Lemma 24 we show that the density matrix
ϕ = |ϕ〉 〈ϕ| can be divided into three “pieces”, one piece which has small trace norm and can
therefore be omitted, one piece called ϕfar which only has non-zero terms which are far from
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the diagonal in the appropriate basis, and one piece called ϕblock which is a block-diagonal
mixed state that can be produced with small error and low communication cost from a
maximally entangled state. Then, in Lemma 25, we show that the ϕfar piece of ϕ has very
little effect on the protocol C. This means that ϕ can be replaced by ϕblock alone while
incurring very little error in the success probability of C. Stated equivalently, via the equality
in Equation 14 above, Lemma 25 shows that the quantity |Tr(P(ϕ− ϕblock))| is small. Since
we know from Lemma 24 that ϕblock can be produced with low cost from a maximally
entangled state, this leads us to the desired result.

We now establish some notation which will be useful throughout the rest of the proof:

I Definition 22 (subset-matrix). Consider operators on the Hilbert space which is the span
of the |ϕj〉. We say that an operator M ′ is a subset-matrix of an operator M , if it is the
case that for all l, k either 〈ϕl|M ′ |ϕk〉 = 〈ϕl|M |ϕk〉, or 〈ϕl|M ′ |ϕk〉 = 0.

I Definition 23 (Non-Zero Set). For an operator θ on the Hilbert space which is the span of
the |ϕj〉, define the non-zero set of θ to be Tθ = {(l, k) : 〈ϕk| θ |ϕl〉 6= 0}.

I Lemma 24. Consider the density matrix ϕ ≡
∑
k,l |ϕk〉 〈ϕl|. For any ε > 0, there exist

subset-matrices, ϕblock, ϕfar, of ϕ, such that
1. ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε
2. Tϕfar ⊆ {(l, k) : |k − l| > B}, where B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
.

3. The bipartite shared state ϕblock can be prepared starting from EPR pairs with O(N/ε+
log(1/ε)/ε) bits of communication.

The proof of Lemma 24 is included in Section B of the Appendix.
We can now bound the difference between the protocol C acting on ϕ versus C acting on

ϕblock, following equation 14 as follows:

|(Prϕ[0]− Prϕ[1])− (Prϕblock [0]− Prϕblock [1])| = |Tr(P(ϕ− ϕblock))|

Setting N = 2Q and recalling from the Theorem statement that Q ≥ 15 by assumption,
it follows by Lemma 25, stated below, that:

|(Prϕ[0]− Prϕ[1])− (Prϕblock [0]− Prϕblock [1])| = |Tr(P(ϕ− ϕblock))| ≤ 3ε (15)

This completes the proof of the Theorem as we now describe.
We know from Lemma 24 that there is a quantum communication protocol, call it K,

which prepares the shared state ϕblock starting from just a maximally entangled state using at
most O(N/ε+ log(1/ε)/ε) bits of communication. Now define the protocol R′ ≡ C ◦K. Since
C uses at most Q+ 4N + 8 qubits of communication, and since we have chosen to set N = 2Q
(in the line above Equation 15), it follows that R′ uses at most O(N/ε + log(1/ε)/ε) =
O(Q/ε+ log(1/ε)/ε) qubits of communication. Furthermore, the success probability of R′
with only the maximally entangled state as an entangled resource is the same, by construction,
as the success probability of C with ϕblock as an entangled resource, which, by Equation 15
above and the original definition C ≡ R ◦M, is within 3ε of the success probability of the
original protocol R from the theorem statement when using the original shared state |ψ〉 as
an entangled resource. This is the desired result. J

I Lemma 25. For ϕblock as constructed in Lemma 24, and for N,Q as defined in the proof
of Theorem 1 we have, |Tr(P(ϕ− ϕblock))| ≤ 3ε whenever N ≥ 2Q ≥ 30.
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Proof. Following Lemma 24, we define B ≡ 30 + 2
⌈

log(1/ε)
N

⌉
. Now, letting ϕblock and ϕfar

be as in Lemma 24, and recalling that ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε, we have:

|Tr(P(ϕ− ϕblock))| ≤ |Tr(P((ϕblock + ϕfar)− ϕblock))|+ 2ε = |Tr(Pϕfar)|+ 2ε

=

∣∣∣∣∣∣
∑

(k,l)∈Tϕfar

〈ϕk| P |ϕl〉

∣∣∣∣∣∣+ 2ε ≤
∑

(k,l)∈Tϕfar

|〈ϕk| P |ϕl〉|+ 2ε

≤
∑

k,l:|k−l|>B

|〈ϕk| P |ϕl〉|+ 2ε

where the final inequality follows because Tϕfar ⊆ {(l, k) : |k − l| > B} by Lemma 24.
Recalling that the unitary P can be implemented using 2Q+8N+16 qubits of communication,
and applying equation 13 then gives that:

|Tr(P(ϕ− ϕblock))| − 2ε ≤
∑

k,l:|k−l|>B

min(1, 23/2·(2Q+8N+16)2−N
|k−l|

2 +4)
∥∥∣∣ϕmin(k,l)

〉∥∥2

= 2
∑
l

‖|ϕl〉‖2
∑

k>l+B
min(1, 23Q+12N+242−N

|k−l|
2 +4)

= 2
∑
n>B

min(1, 23Q+12N+242−N n
2 +4)

≤ 2 · 23Q+12N+242−BN/2+4
∞∑
k=0

2−N k
2

= 2 · 23Q+12N+242−BN/2+4

(
1 + 2−N2

1− 2−N2

)
≤ 4 · 23Q+12N+242−BN/2+4

So, recalling from the Lemma statement that N ≥ 2Q ≥ 30 by assumption:

|Tr(P(ϕ− ϕblock))| − 2ε ≤ 4 · 23Q+12N+242−BN/2+4

≤ 4 · 228214N2−15N−
⌈

log(1/ε)
N

⌉
N

≤ 2302−N−log(1/ε)

≤ ε

So,

|Tr(P(ϕ− ϕblock))| ≤ 3ε J

Note, in the pre-processing step in the proof of Theorem 1, and again at a point within
the proof of Lemma 24 we use our Theorem 3 in a setting where either the starting or
ending state is very close to a maximally entangled state. It is helpful to observe, to avoid
confusion, that in such cases Theorem 3 is not strictly necessary and could be replaced with
previously known results from, for example, [7, 9]. In this manuscript we will use Theorem 3
in these cases in order to remain self-contained, and for the convenience of the reader, but
we emphasize that the lines of the proof of Theorem 1 in which we use Theorem 3 could be
replaced with known results.
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B Proof of Lemma 24

I Lemma (Restatement of Lemma 24). Consider the density matrix ϕ ≡
∑
k,l |ϕk〉 〈ϕl|. For

any ε > 0, there exist subset-matrices, ϕblock, ϕfar, of ϕ, such that
1. ‖ϕ− (ϕblock + ϕfar)‖1 ≤ 2ε
2. Tϕfar ⊆ {(l, k) : |k − l| > B}, where B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
.

3. The bipartite shared state ϕblock can be prepared starting from EPR pairs with O(N/ε+
log(1/ε)/ε) bits of communication.

Proof. Note: The terminology used in this proof is defined in the proof of Theorem 1
preceding the use of Lemma 24 there (Appendix A).

Fixing an ε > 0 we will now show how to “cut” ϕ ≡
∑
k,l |ϕk〉 〈ϕl| down into a mixture of

states of small spread such that the cut only removes subset-matrices of the operator which
are either far from the diagonal or small in the trace norm (less than 2ε).

Define a sequence of mutually orthogonal projectors {Pi}, where each Pi is the projection
onto the span of {|ϕl〉}2(i−1)B<l≤2i·B . Let

Mi ≡ (P2i−1 + P2i)ϕ(P2i−1 + P2i).

Now, for k ∈ [1, ...., d1/εe] define

Sk ≡
∞∑
i=0

Mi·d1/εe+k.

The Sk are block-diagonal subset-matrices of ϕ, which are disjoint in the sense that TSk ∩
TSk′ = ∅ when k 6= k′. Additionally,

∑d1/εe
k=1 Sk =

∑
iMi is a subset-matrix of ϕ which

contains the entire diagonal of ϕ. Indeed
∑d1/εe
k=1 Sk can be obtained from ϕ via the “pinching”

TPCP which has Kraus operators given by the {P2i−1 + P2i}. Thus

1 = tr
d1/εe∑
k=1

Sk.

Choose k′ such that tr[Sk′ ] ≤ 1/d1/εe ≤ ε. Since the Sk are all PSD we also have ‖Sk′‖1 ≤ ε.
Our strategy now is to use something like ϕ− Sk′ as a candidate for ϕblock + ϕfar in the

Lemma statement. However, subtracting all of Sk′ removes some terms close to the diagonal,
which, even though it is not a large fraction of all entries in ϕ, would make the proof and
statement of Lemma 24 somewhat awkward. So, in order to make the Lemma statement
as clean as possible we will only subtract the “anti-diagonal” parts of Sk′ , and leave the
“diagonal” parts of Sk′ in a manner made precise below.

Define the block matrices

Di ≡ P2i−1ϕP2i−1 + P2iϕP2i Ai ≡ P2i−1ϕP2i + P2iϕP2i−1

Di and Ai are, respectively, the diagonal and off-diagonal blocks of Mi.
Further define Kk′ ≡

∑∞
i=0Ai·d1/εe+k′ . We have that Kk′ = Sk′ −

∑∞
i=0Di·d1/εe+k′ , and

that ‖
∑∞
i=0Di·d1/εe+k′‖1 = ‖Sk′‖1 since

∑∞
i=0Di·d1/εe+k′ is a block-diagonal subset-matrix

of Sk′ containing the entire diagonal of Sk′ . Thus,

‖Kk′‖1 = ‖Sk′ −
∞∑
i=0

Di·d1/εe+k′‖1 ≤ ‖Sk′‖1 + ‖
∞∑
i=0

Di·d1/εe+k′‖1 = 2‖Sk′‖1 ≤ 2ε
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We now define a “cut down” version of ϕ by ϕ̃ ≡ ϕ−Kk′ . From this definition we have:

‖ϕ− ϕ̃‖1 = ‖Kk′‖1 ≤ 2ε. (16)

Further, we define the projectors

ηj ≡
∑

2((j−1)·d1/εe+k′)≤l<2(j·d1/εe+k′)

Pl, (17)

and define the block diagonal matrix ϕblock as:

ϕblock ≡
∑
j

Qjϕ̃Qj =
∑
j

Qj(ϕ−Kk′)Qj =
∑
j

QjϕQj (18)

where the last equality follows because
∑
j QjKk′Qj = 0 because Kk′ consists only of

the “anti-diagonal” components Ai·d1/εe+k′ which lie outside of the Qj . Note that ϕblock is a
subset-matrix of ϕ̃ according to Definition 22. Now define ϕfar by:

ϕfar ≡ ϕ̃− ϕblock (19)

Therefore, ϕfar is also a subset-matrix of ϕ̃ according to Definition 22. Furthermore, it
follows immediately using Equation 16 that:

‖ϕ− (ϕfar + ϕblock)‖1 = ‖ϕ− ϕ̃‖1 ≤ 2ε (20)

Second Claim: To establish the second claim in Lemma 24 we now show that Tϕfar ⊆
{(l, k) : |k − l| > B} (recall that B ≡ 30 + 2

⌈
log(1/ε)
N

⌉
). To see this, we consider the case

that |k − l| ≤ B and show that in this case (l, k) /∈ Tϕfar . Assume WLOG that k ≥ l. When
|k − l| ≤ B we know that either ∃j such that:

2B(2(j − 1)d1/εe+ 2k′ − 1) < l, k ≤ 2B(2jd1/εe+ 2k′ − 1) (21)

or ∃j such that:

4B(jd1/εe+ k′)− 3B ≤ l ≤ 2B(2jd1/εe+ 2k′ − 1) ≤ k ≤ 4B(jd1/εe+ k′)−B (22)

In the first case, denoted by Equation 21, we have that the coordinates (l, k) lie within
the subset-matrix ϕblock of ϕ, and thus that either (l, k) ∈ Tϕblock or (l, k) /∈ Tϕ by definition.
In particular, either (l, k) ∈ TQjϕQj ⊆ Tϕblock as follows by Equation 18 and the definition of
Qj in Equation 17, or (l, k) /∈ Tϕ. If (l, k) ∈ Tϕblock then we note that Tϕblock ∩ Tϕfar = ∅ by
definition (Equation 19), and this implies that (l, k) /∈ Tϕfar . If (l, k) /∈ Tϕ, then (l, k) /∈ Tϕfar

because Tϕfar ⊆ Tϕ.
On the other hand, in the case denoted by Equation 22, we have the coordinates (l, k)

lie within the subset-matrix Kk′ of ϕ, and thus that either (l, k) ∈ TKk′ , or (l, k) /∈ Tϕ.
The reason for this is that we know that, in this case, the coordinates (l, k) are within
the subset-matrix Mjd1/εe+k′ of ϕ. Furthermore, since we have already ruled out the case
of Equation 21, we know that (l, k) is not in Djd1/εe+k′ , the block diagonal portion of
Mjd1/εe+k′ . Therefore, the coordinates (l, k) must lie in the block-anti-diagonal portion
Ajd1/εe+k′ = Mjd1/εe+k′ −Djd1/εe+k′ (this can also be determined directly from Equation
22 itself, and the definition of Ajd1/εe+k′). Since Kk′ ≡

∑∞
i=0Aid1/εe+k′ we know that the

coordinates (l, k) lie within the Kk′ , or more precisely, either (l, k) ∈ TKk′ , or (l, k) /∈ Tϕ.
Just as before, if (l, k) /∈ Tϕ, then (l, k) /∈ Tϕfar ⊆ Tϕ. On the other hand, in the case
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that (l, k) ∈ TKk′ we know that TKk′ ∩ Tϕfar = ∅ because Tϕfar ⊆ Tϕ̃ by Equation 19, and
Tϕ̃ ∩ TKk′ = ∅ as follows from the definition ϕ̃ ≡ ϕ−Kk′ .

This establishes that Tϕfar ⊆ {(l, k) : |k − l| > B}.
Third Claim: To establish the third claim in Lemma 24, and complete the proof, we

will show that ϕblock is a mixture of states of spread at most O(N/ε + log(1/ε)/ε), which
means that ϕblock can be produced from a shared maximally entangled state with at most
O(N/ε+ log(1/ε)/ε) bits of communication.

Recalling the definition of ϕblock in Equation 18, let us define ρ′j ≡ QjϕQj , so that it is
clear that ϕblock =

∑
j ρ
′
j . It is also clear that ρ′j is not only PSD, but also an un-normalized

pure state, because

ρ′j ≡ QjϕQj = Qj |ϕ〉 〈ϕ|Qj .

From the definition of Qj in Equation 17 we have that:

Qj |ϕ〉 =
∑

Bs<l≤Bb

|ϕl〉 ,

Where the index limits are

Bs ≡ 2(2((j − 1) · d1/εe+ k′)− 1) ·B
Bb ≡ 2(2(j · d1/εe+ k′)− 1) ·B.

We know from the definition in Equation 12 that the |ϕl〉 are orthogonal to each other,
and that each |ϕl〉 has Schmidt coefficients bounded by 2−lN+1 ≥ λi > 2−lN−1. Thus, it is
immediate that ρ′j has spread at most (Bb−Bs)N+4 = 2d1/εeBN+4 = O(N/ε+log(1/ε)/ε),
where the last equality follows because B = 30+2

⌈
log(1/ε)
N

⌉
. Therefore ϕblock is a normalized

mixture of states with spread at most O(N/ε+ log(1/ε)/ε).
Consider the normalized version of ρ′j , which is still a pure state of spread at most O(N/ε+

log(1/ε)/ε) it is clear that this state has Earthmover distance at most O(N/ε+ log(1/ε)/ε)
from the nearest maximally entangled state (simply move all of the weight onto Schmidt
coefficients of the size of the smallest Schmidt coefficient, which can be done by moving all
the weight a distance less than or equal to the spread). It follows, by using Theorem 3 that
there is a protocol which prepares the normalized version of ρ′i from EPR pairs, with only
O(N/ε+log(1/ε)/ε) bits of communication (we note that this line of the proof could also have
been established using result from [7, 9], for example). Now the state ϕblock ≡

∑
i ρ
′
i can be

prepared by applying this same protocol in superposition over i (with the probability tr(ρ′i)
assigned to each i), and then tracing out over the i register. Thus ϕblock can be prepared
starting from EPR pairs with O(N/ε+ log(1/ε)/ε) bits of communication. J

C Proof of Lemma 15

Proof. First note that it is immediate from the definitions that
〈
φ2
∣∣ψ1〉 =

〈
φ3
∣∣ψ2〉 = 0, so

the conditions of the lemma are automatically satisfied in those cases.
To bound the remaining inner products we will first prove a bound on the inner product

|
〈
φ3
∣∣ψ1〉 | and note that the remaining inner products are bounded as a consequence of

this first bound. For notational convenience, while establishing the bound on |
〈
φ3
∣∣ψ1〉 |,

we set |ρ〉 ≡ |ψ〉≤x, and let ρj be the non-zero Schmidt coefficients of |ρ〉 (which are just a
renamed version of the non-zero Schmidt coefficients of |ψ〉≤x). Therefore, we know that,
for all j, 1 ≥ ρj ≥ 2−x, and |ψ〉≤x = |ρ〉 =

∑
j

√
ρj |j〉 ⊗ |j〉. The purpose of this renaming
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convention is that we can now cleanly make the following definition. For integers i define
|ρ〉i ≡

∑
{j:i<| log 1/ρj |≤i+1}

√
ρj |j〉 ⊗ |j〉, so that we have |ψ〉≤x = |ρ〉 =

∑dxe
i=−1 |ρ〉i, and

〈ρk|ρi〉 = 0 whenever k 6= i. So,

dxe∑
i=−1

‖|ρ〉i‖
2 = ‖|ρ〉‖2 ≤ 1 (23)

By definition, for any 1 ≤ i ≤ dxe, the Schmidt coefficients of |ρ〉i are upper bounded by
2−i, and lower bounded by 2−(i+1), and from the latter we have rkSchmidt(|ρ〉i) ≤ 2i+1 ‖|ρ〉‖2.
Furthermore, the Schmidt coefficients of |φ≥x+d〉 are upper bounded by 2−(x+d), and thus,
we have by Lemma 8 that:

|〈φ≥x+d|UP |ρ〉i| ≤ 2 3
2QrkSchmidt(|ρ〉i)

√
2−(x+d)2−i ≤ 2 3

2Q · 2i+1 ‖|ρ〉i‖
2 ·
√

2−(x+d)2−i

= 2 · 2 3
2Q ‖|ρ〉i‖

2√2i−x−d ≤ 2 · 2 3
2Q ‖|ρ〉i‖

2 · 2 · 2−d/2 = 4 · 2
3Q−d

2 ‖|ρ〉i‖
2
, (24)

where the final inequality follows because i ≤ dxe by assumption. Thus,

∣∣〈φ3∣∣ψ1〉∣∣ =
∣∣∣〈φ≥x+d|UP |ψ〉≤x

∣∣∣ =

∣∣∣∣∣∣
dxe∑
i=−1

〈φ≥x+d|UP |ρ〉i

∣∣∣∣∣∣ ≤
dxe∑
i=−1

|〈φ≥x+d|UP |ρ〉i|

≤ 4 · 2
3Q−d

2

dxe∑
i=−1

‖|ρ〉i‖
2 = 4 · 2

3Q−d
2

∥∥∥|ψ〉≤x∥∥∥2
≤ 4 · 2

3Q−d
2 = h(Q, d), (25)

where the second inequality follows by Equation 24 and the subsequent equality follows
by Equation 23. Having established this upper bound on

∣∣〈φ3
∣∣ψ1〉∣∣ we now proceed with

bounding the other inner products in the Lemma statement:∣∣〈ψ3∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

∣∣φ3〉 〈φ3∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

∣∣φ3〉∣∣ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d), (26)∣∣〈ψ2∣∣ψ1〉∣∣ =
∣∣〈ψ>x|U†P

(
I −
∣∣φ3〉 〈φ3∣∣) ∣∣ψ1〉∣∣ ≤ ∣∣〈ψ>x|U†P

∣∣ψ1〉∣∣+
∣∣〈ψ>x|U†P

∣∣φ3〉 〈φ3∣∣ψ1〉∣∣
=
∣∣〈ψ>x|U†PUP |ψ〉≤x

∣∣+
∣∣〈ψ3∣∣ψ1〉∣∣ = |〈ψ>x|ψ≤x〉|+

∣∣〈ψ3∣∣ψ1〉∣∣ =
∣∣〈ψ3∣∣ψ1〉∣∣ ≤ h(Q, d),

where both of the inequality steps follow by Equation 26 (the first of which also uses the
triangle inequality).∣∣〈φ3∣∣φ1〉∣∣ =

∣∣〈φ3∣∣ψ1〉 〈ψ1∣∣φ<x+d
〉∣∣ =

∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d
〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d),

∣∣〈φ3∣∣φ2〉∣∣ =
∣∣〈φ3∣∣ (I − ∣∣ψ1〉 〈ψ1∣∣) |φ〉<x+d

∣∣ ≤ ∣∣〈φ3∣∣φ<x+d

〉∣∣+
∣∣〈φ3∣∣ψ1〉 〈ψ1∣∣φ<x+d

〉∣∣
= |〈φ>x+d|φ<x+d〉|+

∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d

〉∣∣ =
∣∣〈φ3∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣φ<x+d

〉∣∣ ≤ ∣∣〈φ3∣∣ψ1〉∣∣ ≤ h(Q, d)

Now, as noted earlier,
〈
φ2
∣∣ψ1〉 =

〈
φ3
∣∣ψ2〉 = 0. Continuing with the cross terms we have:∣∣〈φ1

∣∣ψ2
〉∣∣ =

∣∣〈ψ2
∣∣φ1
〉∣∣ =

∣∣〈ψ2
∣∣ψ1
〉〈

ψ
1
∣∣φ<x+d

〉∣∣ =
∣∣〈ψ2

∣∣ψ1
〉∣∣ ∣∣〈ψ1

∣∣φ<x+d
〉∣∣ ≤ ∣∣〈ψ2

∣∣ψ1
〉∣∣ ≤ h(Q, d),

∣∣〈φ1
∣∣ψ3
〉∣∣ =

∣∣〈ψ3
∣∣φ1
〉∣∣ =

∣∣〈ψ3
∣∣ψ1
〉〈

ψ
1
∣∣φ<x+d

〉∣∣ =
∣∣〈ψ3

∣∣ψ1
〉∣∣ ∣∣〈ψ1

∣∣φ<x+d
〉∣∣ ≤ ∣∣〈ψ3

∣∣ψ1
〉∣∣ ≤ h(Q, d),
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where the last inequality follows from Equation 26. And, since we already have
∣∣〈φ3

∣∣ψ1〉∣∣ ≤
h(Q, d) from Equation 25, the final inner product to bound is:∣∣〈φ2∣∣ψ3〉∣∣ =

∣∣〈φ|<x+d
(
I −

∣∣ψ1〉 〈ψ1∣∣) ∣∣ψ3〉∣∣
≤
∣∣〈φ<x+d

∣∣ψ3〉∣∣+
∣∣〈φ<x+d

∣∣ψ1〉 〈ψ1∣∣ψ3〉∣∣
=
∣∣〈φ<x+d

∣∣φ3〉 〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉 〈ψ1∣∣ψ3〉∣∣
=
∣∣〈φ<x+d

∣∣φ3〉∣∣ ∣∣〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣ψ3〉∣∣
= |〈φ<x+d|φ>x+d〉|

∣∣〈φ3∣∣UP |ψ〉>x∣∣+
∣∣〈φ<x+d

∣∣ψ1〉∣∣ ∣∣〈ψ1∣∣ψ3〉∣∣
≤ 0 +

∣∣〈ψ1∣∣ψ3〉∣∣ ≤ h(Q, d),

where the last inequality follows by Equation 26. J

D Proof of Lemma 18

Proof. Given two states |χ〉 =
∑
i∈X
√
χi |i〉 ⊗ |i〉 and |υ〉 =

∑
j∈Y
√
υj |j〉 ⊗ |j〉, let ω(i, j) :

X × Y → R≥0 be the joint distribution on X × Y which satisfies the `∞ Earth Mover
conditions for |χ〉 and |υ〉, and acheives the optimal earth mover bound d∞(|χ〉 , |υ〉). That is,
for all i ∈ X,

∑
j∈Y ω(i, j) = χi, for all j ∈ Y ,

∑
i∈X ω(i, j) = υj , and ω(i, j) = 0 whenever

| log(χi)− log(υj)| > d∞(|χ〉 , |υ〉).
Define |ρ〉 ≡

∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

√
ρj,k |j〉 ⊗ |k〉 ⊗ |j〉 ⊗ |k〉, where

ρj,k ≡ υj/2dd∞(|χ〉,|υ〉)e+2.

We now define the intermediate state

|γ〉 ≡
∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

∑
r∈[2dd∞(|χ〉,|υ〉)e+2]

√
γj,k,r |j〉 ⊗ |k〉 ⊗ |r〉 ⊗ |j〉 ⊗ |k〉 |r〉 ,

where the Schmidt coefficients γj,k,r are left unspecified for now.
In order to specify the Schmidt coefficients of the intermediate state |γ〉 as well as the

Right Index-1 Flow from |χ〉 to |γ〉, and the Left Index-1 Flow from |γ〉 to |ρ〉 we will first
define “bins” for the Schmidt coefficients of |υ〉 as follows:

For l ∈ N ∪ {0} let Υl ≡ {j ∈ Y : 2−l ≥ υj ≥ 2−(l+1)}, and Xl ≡ {i ∈ X : 2−l ≥ χi ≥
2−(l+1)}. Define ω(Xm,Υl) ≡

∑
(i,j)∈Xm×Υl ω(i, j).

I Fact 26. If |m− l| > d∞(|χ〉 , |υ〉) + 1, then ω(Xm,Υl) = 0

Proof. Given i ∈ Xm, and j ∈ Υl we have by definition that 2−l ≥ υj ≥ 2−(l+1), and
2−m ≥ χi ≥ 2−(m+1), and therefore that | log(χi) − log(υj)| ≥ |m − l| − 1 > d∞(|χ〉 , |υ〉),
where the last equality follows by assumption. It follows by definition of d∞(|χ〉 , |υ〉) and of
ω, that ω(i, j) = 0. Since this is true for all (i, j) ∈ Xm ×Υl, the claim follows. J

We will now specify an iterative, “greedy” procedure to define the Schmidt coefficients
γj,k,c as a function of the |χ〉 and |ρ〉.

For each (m, l) ∈ N ∪ {0} × N ∪ {0} such that ω(Xm,Υl) > 0 we first note that by Fact
26 that |m− l| < d∞(|χ〉 , |υ〉) + 1. Thus, for each (i, j) ∈ Xm ×Υl,

χi ≥ 2−(m+1) ≥ 2−l−d∞(|χ〉,|υ〉)−2 ≥ 2−l/2dd∞(|χ〉,|υ〉)e+2 ≥ υj/2dd∞(|χ〉,|υ〉)e+2 ≡ ρj,k

for all k ∈ [2dd∞(|χ〉,|υ〉)e+2].
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Algorithm 1.
1: For all i set tempi = χi
2: Set im = min{Xm} for all m
3: for l ∈ N ∪ {0} do
4: Set j := min{Yl};
5: Set k = 0;
6: Set overflow = 0
7: for m ∈ N ∪ {0} do
8: if ω(Xm,Υl) > 0 then
9: Set tempω = ω(Xm,Υl)

10: while tempω > 0 do
11: if

∑
r≤overflow γj,k,r < ρj,k then

12: while tempω ≥ ρj,k −
∑
r≤overflow γj,k,r do

13: if k = 2dd∞(|χ〉,|υ〉)e+2 then
14: Set j = j + 1
15: Set overflow = 0
16: Set k = 0
17: if tempim < ρj,k −

∑
r≤overflow γj,k,r then

18: Set γj,k,overflow+1 = tempim
19: Set tempω = tempω − tempim
20: Set tempim = 0
21: Add an edge in the flow graph from im to (j, k, overflow + 1)
22: Set im = im + 1
23: Set overflow = overflow + 1
24: if tempim ≥ ρj,k−

∑
r≤overflow γj,k,r and tempω ≥ ρj,k−

∑
r≤overflow γj,k,r then

25: Set γj,k,overflow+1 = ρj,k −
∑
r≤overflow γj,k,r

26: Set tempω = tempω − γj,k,overflow+1
27: Set tempim = tempim − γj,k,overflow+1
28: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
29: Set k = k + 1
30: Set overflow = 0
31: if k = 2dd∞(|χ〉,|υ〉)e+2 then
32: Set j = j + 1
33: Set overflow = 0
34: Set k = 0
35: if tempω < ρj,k −

∑
r≤overflow γj,k,r then

36: if tempim ≤ tempω then
37: Set γj,k,overflow+1 = tempim
38: Set tempω = tempω − tempim
39: Set tempim = 0
40: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
41: Set im = im + 1
42: Set overflow = overflow + 1
43: if tempim ≥ tempω then
44: Set γj,k,overflow+1 = tempω
45: Set tempω = 0
46: Set tempim = tempim − tempω
47: Add an edge in the flow graph GX,Z from im to (j, k, overflow + 1)
48: Set overflow = overflow + 1
49: if k = 2dd∞(|χ〉,|υ〉)e+2 then
50: Set j = j + 1
51: Set overflow = 0
52: Set k = 0
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One may check that Algorithm 1 defines Schmidt coefficients γj,k,r, satisfying∑
j∈Y

∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

∑
r∈[2dd∞(|χ〉,|υ〉)e+2]

γj,k,r =
∑
i∈X

χi = 1,

as well as a Right Index-1 Flow from |χ〉 to |γ〉, with degree at most 2dd∞(|χ〉,|υ〉)e+2 ·
2dd∞(|χ〉,|υ〉)e+2 = 22dd∞(|χ〉,|υ〉)e+4. In particular the Right Index-1 Flow from |χ〉 to |γ〉 is
constructed in Algorithm 1 by iteratively adding edges to form the bipartite flow-graph GX,Z
where Z ≡ (Y, [2dd∞(|χ〉,|υ〉)e+2], [2dd∞(|χ〉,|υ〉)e+2]). Each line in the pseudocode which reads
“Add an edge in the flow graph from im to (j, k, overflow + 1)”, or similar, adds a single edge
to the graph GX,Z and the union of all these edges forms the bipartite flow GX,Z between
X and Z. Furthermore, for the γj,k,r defined by Algorithm 1,∑

r∈[2dd∞(|χ〉,|υ〉)e+2]

γj,k,r = ρj,k,

so that there is a Left Index-1 flow from |γ〉 to |ρ〉 defined by a bipartite graph between
the Schmidt coefficients of |γ〉 and |ρ〉 respectively, in which, for every (j, k, r) ∈ Y ×
[2dd∞(|χ〉,|υ〉)e+2]× [2dd∞(|χ〉,|υ〉)e+2], there is an edge from γj,k,r to ρj,k of weight γj,k,r. This
Left Index-1 flow then clearly has degree 2dd∞(|χ〉,|υ〉)e+2.

Finally, recall that,∑
k∈[2dd∞(|χ〉,|υ〉)e+2]

ρj,k =
∑

k∈[2dd∞(|χ〉,|υ〉)e+2]

υj/2dd∞(|χ〉,|υ〉)e+2 = νj

So, by very similar reasoning, there is a Left Index-1 flow from |ρ〉 to |ν〉 with degree
exactly 2dd∞(|χ〉,|υ〉)e+2. J

E Proof of Lemma 19

Proof. By assumption there is a Right Index-1 Flow from |τ〉 to |κ〉 with degree at most
2Q, so there exists a bipartite graph GX,Y with vertex set X ∪ Y , and edge set EX,Y (where
X,Y represents the bipartition of the vertices), such that:

Each vertex in j ∈ Y has degree 1 in GX,Y .
For all i ∈ X, τi =

∑
j∈Y :(i,j)∈EX,Y κj .

The maximum degree of any vertex i ∈ X in GX,Y is 2Q.

The protocol for Alice and Bob to start with shared state |τ〉 and end up with shared
state |κ〉 will proceed as follows: Beginning with the state |τ〉 shared between Alice and
Bob, we will refer to the register containing the Alice half of |τ〉 as A, and the register
containing the Bob half as B. Alice will append two additional registers, of Q qubits each,
and initialize each of them to the all zeros state. We will call these two new registers C1 and
C2 respectively. Alice will then perform a controlled unitary operation between A and the
registers C1 and C2. She will then pass the register C2 to Bob using Q qubits of quantum
communication to do so. Bob will then perform a controlled unitary between B and C2,
Alice will perform a controlled unitary between A and C1, and after that Alice and Bob will
share the state |κ〉.

To describe the protocol more precisely we will define the specific controlled unitaries
performed by Alice and Bob at each step. Beginning with a shared state |τ〉, after Alice
appends the two additionalQ-qubit registers to her side of |τ〉, the shared state looks as follows:

|τ〉 =
∑
i∈X

√
τi
∣∣0⊗Q〉

C1
⊗
∣∣0⊗Q〉

C2
⊗ |i〉A ⊗ |i〉B
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Where, initially, Alice holds the registers A, C1, and C2. Alice now performs a controlled
unitary operation, acting on registers C1 and C2 and controlled on register A. To describe
this controlled unitary concisely we will need to imagine that there is some total order on the
elements j ∈ Y (any total order will do, one can simply imagine that the j’s are indexed by bit
strings which encode integers), and we will define sij ≡ |{j′ ∈ Y : j′ < j, and (i, j′) ∈ EX,Y }|.
Note that, since every i ∈ X has degree at most 2Q, sij is always an integer between 0 and
2Q, so it can always be expressed in binary as a Q-bit binary number. We will take this
convention in the following argument.

Now to define Alice’s controlled unitary: When controlled on |i〉A Alice’s unitary moves the
state

∣∣0⊗Q〉
C1
⊗
∣∣0⊗Q〉

C2
to the state |i-controlled〉C1C2

≡
∑
j∈Y :(i,j)∈EX,Y

√
κj/τi |sij〉C1

⊗
|sij〉C2

. Note that since sij is always a Q-bit binary string, it can always be contained in the
Q-qubit registers C1 and C2. Further note that, since τi =

∑
j∈Y :(i,j)∈EX,Y κj by assumption,

|i-controlled〉C1C2
is a normalized pure state. Thus there exists a unitary operation that

moves
∣∣0⊗Q〉

C1
⊗
∣∣0⊗Q〉

C2
to |i-controlled〉C1C2

and Alice need only perform this specific
unitary when the control register is in state |i〉A. So, when Alice applies this controlled
unitary to her registers C1, C2 and A (where A is the controlling register), the resulting new
shared state between Alice and Bob is:

|τ〉 =
∑
i∈X
|i-controlled〉C1C2

⊗ |i〉A ⊗ |i〉B (27)

=
∑
i∈X

∑
j∈Y :(i,j)∈EX,Y

√
τi ·
√
κj/τi |sij〉C1

⊗ |sij〉C2
⊗ |i〉A ⊗ |i〉B (28)

=
∑
i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |sij〉C1

⊗ |sij〉C2
⊗ |i〉A ⊗ |i〉B (29)

At this point Alice uses Q qubits of communication to pass the Q-qubit register C2 to
Bob. The resulting shared state is:∑

i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |sij〉C1

⊗ |i〉A ⊗ |i〉B ⊗ |sij〉C2

Where Alice owns registers C1 and A, and Bob owns registers C2 and B. Now it is not
hard to see from the definition of sij and the fact that every j ∈ Y has degree exactly 1 in
the graph GX,Y , that there is a bijection mapping each j ∈ Y to the tuple (i, sij). Alice and
Bob both know this bijection since they know the description of GX,Y , and since bijections
are invertible, Alice and Bob can now both apply a local unitary which relabels the basis
element |i〉 ⊗ |sij〉 to the basis element j. The resulting shared state is:∑

i∈X

∑
j∈Y :(i,j)∈EX,Y

√
κj |j〉A ⊗ |j〉B =

∑
j∈Y

√
κj |j〉A ⊗ |j〉B ≡ |κ〉

Where the first equality follows because each j ∈ Y appears in the initial sum exactly
once (because j has degree exactly one in GX,Y ).

This completes the protocol. J

F Proof of Corollary 20

Proof. By definition, if there is a Left Index-1 Flow from |κ〉 to |τ〉, then there is a Right
Index-1 Flow from |τ〉 to |κ〉 (which is the starting assumption of Lemma 19). One can check
that, in the proof Lemma 19, every operation performed by Alice and Bob was reversible.
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Therefore, the proof of this corollary is simply to start at the end of the proof of Lemma
19, and “reverse” every step of the proof in order from end to beginning (including the
communication step...now communication goes from Bob to Alice rather than Alice to Bob).
The result is the desired quantum communication protocol, which converts the shared state
|κ〉 to the shared state |τ〉 using Q qubits of communication. J

G Fact 27

I Fact 27. For p ∈ [0, 1] and 0 ≤ ε ≤ p,
√
p− ε√p+

√
1− p

√
1− p+ ε ≤ 1− 1

8ε
2

Proof. Define f(x) ≡
√
p− x√p+

√
1− p

√
1− p+ x. Note that f ′(x) = −

√
p

2
√
p−x+

√
1−p

2
√

1−p+x ,

and f ′′(x) = −1/4
( √

p

(p−x)3/2 +
√

1−p
(1−p+x)3/2

)
. So, f(0) = 1, f ′(0) = 0, and

f ′′(x) = −1/4
( √

p

(p− x)3/2 +
√

1− p
(1− p+ x)3/2

)
≤ −1/4

√
p

(p− x)3/2 ≤ −1/41
p
≤ −1/4

for all p ∈ [0, 1] and 0 ≤ x ≤ p. It follows by integration that:

f(x) = 1 +
∫ x

0

∫ z

0
f ′′(y)dydz ≤ 1 +

∫ x

0

∫ z

0
(−1/4)dydz = 1− 1

8x
2

So,

√
p− ε√p+

√
1− p

√
1− p+ ε = f(ε) ≤ 1− 1

8ε
2. J
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1 Introduction

1.1 Background and our results

A fundamental problem in quantum complexity theory is to prove the superiority of quantum
computation over classical computation. While this has been shown in constrained models of
computation such as query complexity (see for instance [4] for a recent survey), in weak models
of computation like finite-state automata [21], and when considering relativized complexity
classes (see, e.g., [7] for the first results and [25] for the most recent breakthrough), no
definite answer is known in standard computational models such as Turing machines or
general circuits. Indeed, since the complexity class BQP corresponding to the problems that
can be solved efficiently by a quantum computer satisfies the inclusions P ⊆ BQP ⊆ PSPACE,
unconditionally separating P and BQP cannot be shown without separating P and PSPACE.

A recent active research area focuses on conditionally showing the superiority of quantum
computation. Under several assumptions from computational complexity such as non-
collapse of the polynomial hierarchy, the superiority of quantum computation with respect to
classical computation has been shown in the standard circuit model in the worst-case setting
[1, 2, 3, 11, 15, 17, 16, 23, 27] and even in the average-case setting [1, 2, 3, 8, 12, 13, 17].
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21:2 Average-Case Quantum Advantage with Shallow Circuits

Note that showing the superiority in the average-case setting is a much stronger evidence of
the superiority of quantum computation than a proof for the worst-case setting.

A recent breakthrough by Bravyi, Gosset and König [9, 10] showed an unconditional
separation between the computational powers of quantum and classical small-depth circuits:
they constructed a computational problem that can be solved by quantum circuits of constant
depth with bounded-fanin1 gates (“shallow quantum circuits”) and showed that any classical
circuit with bounded fanin gates solving this problem on all inputs must have depth Ω(logm),
where m denotes the input size. Besides being the first such unconditional separation in the
circuit model, this separation is also especially important since shallow quantum circuits
are likely to be the easiest quantum circuits to experimentally implement, due to their
robustness to noise and decoherence. (Note that separations were already known when
allowing gates with unbounded fanin or fanout [18, 20, 26]. The strength of Bravyi, Gosset
and König’s result is that it holds for the weaker model of quantum circuits with bounded
fanin and fanout.)

The original classical lower bound shown in [9] required the classical circuit to output the
correct answer (with high probability) on each input, i.e., this was only a worst-case hardness
result. Showing the advantages of shallow quantum circuits for a distribution (i.e., proving
a corresponding average-case hardness result), which would give a significantly stronger
evidence of the advantage of quantum shallow circuits, was discussed in [9, Section 5] and
referred to as a “challenging open question”. The recently published journal version [10]
partially answers this open question: it presents an average-case lower bound showing that
any classical circuit that outputs the correct answer on a constant fraction of some restricted
subset of the inputs (which can be efficiently sampled) must have logarithmic depth. In
other words, it shows that any sublogarithmic-depth classical algorithm will fail with some
constant probability on a input chosen uniformly at random in this restricted subset.

In this work we give a stronger average-case hardness result. Our main result is the
following theorem.

I Theorem 1. There exists a relation R ⊆ {0, 1}M × {0, 1}N for which the following two
assertions hold.2

There is a constant-depth quantum circuit with bounded-fanin gates (i.e., a shallow
quantum circuit) that on any input x ∈ {0, 1}M outputs an element in the set R(x) with
probability 1.
There is a constant γ > 0 such that any randomized circuit C with bounded-fanin gates
satisfying

1
2M

∑
x∈{0,1}M

Pr[C(x) ∈ R(x)] ≥ 1
exp(γ

√
M)

has depth Ω(logM).
Theorem 1 thus shows the existence of a computational problem that can be solved by a
shallow quantum circuit on all inputs but such that any classical circuit with bounded-fanin
gates solving this problem on a non-negligible fraction of the inputs must have logarithmic

1 In this paper the term bounded-fanin means, as usual, that the fanin is bounded from above by a
constant.

2 As usual in computational complexity, the subset R ⊆ {0, 1}M × {0, 1}N is interpreted as the following
computational problem: given an input x ∈ {0, 1}M , output any element of the set {z ∈ {0, 1}N |(x, z) ∈
R}. Through this paper we will use the convenient notation R(x) = {z ∈ {0, 1}N | (x, z) ∈ R}, for any
x ∈ {0, 1}N .
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depth. This gives an average-case result that is a strengthening of the average-case result
from [10] with respect to two aspects. First, our lower bound holds for any classical circuit
that solves the problem on a non-negligible fraction of the inputs (even exponentially small),
and not only on a constant fraction. Second, our statement does not make any restriction on
the set of inputs for which the hardness is established, i.e., it shows that any sublogarithmic-
depth classical algorithm will fail with high probability on an input chosen uniformly at
random in the whole set {0, 1}M .

1.2 Overview of our techniques
Main technical result. Our central technical result is the following theorem.

I Theorem 2. There exists a relation R ⊆ {0, 1}m × {0, 1}n for which the following two
assertions hold.

There is a constant-depth quantum circuit with bounded-fanin gates (i.e., a shallow
quantum circuit) that on any input x ∈ {0, 1}m outputs a string in the set R(x) with
probability 1.
There is a constant α > 0 such that any randomized circuit C with bounded-fanin gates
satisfying

1
2m

∑
x∈{0,1}m

Pr[C(x) ∈ R(x)] ≥ 1− α

has depth Ω(logm).
Theorem 1 is obtained from Theorem 2 by amplifying the soundness using standard techniques:
the relation R is obtained by taking the direct product of t copies of the relation R for some
sufficiently large integer t (the sizes of the inputs and outputs in R are thus M = mt and
N = nt). We show in Section 6 how the soundness is then amplified from 1− α to (1− α)t′

with t′ ≈ t by this process and observe that (1− α)t′ is upper bounded by 1/ exp(γ
√
M) for

some constant γ. Note that this approach can also be applied to amplify the soundness of
the average-case result in [10], which directly gives a result similar to Theorem 1 (but for a
hard distribution that is not simply the uniform distribution).

Techniques from prior works. Before presenting our techniques we first describe how the
result from [9, 10] was obtained. A central technical tool is a simple but fascinating result
by Barrett et al. [5] that shows that correlations arising from local entanglement cannot be
simulated classically without global interaction. This result was also used recently to show a
separation between quantum and classical distributed computing [22]. More precisely, [5]
considers the problem of simulating the measurement outcomes that occur when measuring
each qubit of a well-chosen quantum state on n qubits (the graph state associated with a
cycle of length n) in either the X-basis or the Y -basis (the choice of the basis depends on
input bits), and shows that creating the resulting output distribution classically requires
coordinating the outcomes of qubits located at distance Ω(n) on the cycle. This result can
actually easily be adapted to show that any classical circuit with one-dimensional nearest-
neighbor architecture and bounded-fanin gates requires logarithmic depth to create this
distribution, since otherwise distant wires cannot interact. Since a graph state over a cycle
(and more generally over any constant-degree graph) can be created using a shallow quantum
circuit, this already gives an unconditional separation between the computational power of
quantum shallow circuits and the computational power of this restricted class of small-depth
classical circuits.

CCC 2019



21:4 Average-Case Quantum Advantage with Shallow Circuits

The main contribution of [9, 10] is to show how to get a similar separation without
restricting the topology of the classical circuit (other than its depth, naturally). A first
important observation is that while interactions can now naturally occur between distant
wires, any sublogarithmic-depth bounded-fanin classical circuit C cannot create interactions
between all pairs of wires. Ref. [9] showed that it is then always possible to find a large subset
of wires SC that are connected as a long cycle and in which distant wires do not interact.
The key idea is then to consider a computational problem (called 2D Hidden Linear Function)
where the input is divided in two parts: one part specifies the basis in which the qubits of
the graph state are measured and the second part the topology of the graph state. By using
the second part of the input to force the graph state to use only nodes corresponding to
wires in SC , the same argument as in [5] can be again applied on the cycle defined by SC to
conclude that the sublogarithmic-depth classical circuit C cannot output a valid output with
high probability.

Our approach. Let us now describe the main ideas of our approach to prove Theorem 2.
Our main technical tool, described in Section 3 is a generalization of the construction from [5]:
we show how to generate useful quantum correlations not only from a cycle but also from
any undirected graph G. The key insight is to consider what we call the extended graph
of G, denoted G, which is obtained by adding a vertex on each edge of G. We show that
when measuring the qubits of the graph state corresponding to G in either the X-basis
or the Y -basis, we get probability distributions that satisfy global conditions related to
properties of subgraphs (in particular paths and cycles) of G. The conditions are described
in Theorems 5 and 6.

In order to prove our separations we consider a d3 × d3 square grid in which one vertex
(called a control vertex) is placed at the center of each 1×1 square of the grid (and connected
by 4 edges to the 4 corners of the square), and then adding one vertex on each edge. The final
graph is denoted Gd. The construction is described in Section 4. Note that by construction Gd

is an extended graph. This means that the probability distributions arising when measuring
the qubits of the graph state associated with this graph, which we denote |Gd〉, can be
described by Theorems 5 and 6.

We can now describe the computational problem that we consider to show our separation.
Let m denote the number of control vertices in Gd and n denote the total number of vertices.
Observe that m = Θ(d6) and n = Θ(d6). Given as input a string of bits x ∈ {0, 1}m, we
consider the following process: measure each qubit of the quantum state |Gd〉 in the X-basis
except the qubits corresponding to the control vertices, which are measured either in the
X-basis or in the Y -basis depending on the value of x. The relation R considered to prove
Theorem 2 simply asks, given x ∈ {0, 1}m as input, to compute any sequence of measurement
outcomes z ∈ {0, 1}n that has non-zero probability of being obtained by this process. Note
that this problem can be solved by shallow quantum circuits: the graph Gd has constant
degree and thus the graph state |Gd〉 can be constructed in constant depth.

In Section 5 we first show that for any sublogarithmic-depth bounded-fanin classical
circuit C there exists a subset SC of wires that are connected as a long cycle and in which
distant wires do not interact. The proof of this claim is similar to what was done in [9, 10].
We then show that this claim, along with Theorems 5 and 6, are enough to prove that the
sublogarithmic-depth classical circuit C cannot output a valid output with high probability.
The key point of our argument – and the reason why our result holds for average-case
hardness on the whole set {0, 1}m of possible inputs and not only for worst-case hardness or
average-case hardness on a restricted set of inputs – is that we do not need to construct the
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graph state corresponding to the subgraph induced by SC , i.e., we do not need to adapt the
topology of the measured graph state to the circuit. Theorems 5 and 6 guarantee that we can
instead work with the graph state |Gd〉 corresponding to the whole graph and simply look at
the relevant part of the probability distribution (the part corresponding to the wires in SC).

Related works. A similar result has been recently (and independently) obtained by Coudron,
Stark and Vidick and expanded into a framework for robust randomness expansion [14]. The
proof techniques are nevertheless different: [14] constructs a problem hard for small-depth
classical circuits by starting with a non-local game and showing how to plant a polynomial
number of copies of the game into a graph. Our approach, on the other hand, starts with a
graph and shows how to create from it a quantum state exhibiting global quantum correlations
that cannot be simulated by small-depth classical circuits with bounded-fanin gates.

An even stronger result has been very recently announced: Bene Watts, Kothari, Schaeffer
and Tal [6] have shown that the 2D Hidden Linear Function introduced in [9, 10] cannot be
solved on a non-negligible fraction of the inputs even by small-depth classical circuits with
unbounded-fanin parity gates.

2 Preliminaries

2.1 General notations and a technical lemma
Given a Boolean function f : A→ {0, 1} on a finite set A, we write |f | the number of elements
a ∈ A such that f(a) = 1, i.e., |f | =

∑
a∈A f(a). Similarly, for any finite binary string

x ∈ {0, 1}∗, we denote |x| the Hamming weight of x, i.e., the number of non-zero bits of x.
All the graphs considered in this paper will be undirected. Given a graph G = (V,E)

and any vertex u ∈ V , we denote

N (u) = {v ∈ V | {u, v} ∈ E}

the set of neighbors of u. Given a path p in the graph G we will often be mainly interested
only in the set of vertices on the path. For a vertex v ∈ V , we will thus use the convenient
notation v ∈ p to express the fact that v is on the path p.

The notation ⊕ will denote the addition modulo 2 (i.e., the bit parity). We will use the
following lemma, which was first implicitly mentioned in [5], and stated formally (but in
a form slightly different from the form we present below) in [9, 10]. For completeness we
include a proof.

I Lemma 3. ([5, 9, 10]) Consider any affine function q : {0, 1}3 → {0, 1} and any three
affine functions q1 : {0, 1}2 → {0, 1}, q2 : {0, 1}2 → {0, 1}, q3 : {0, 1}2 → {0, 1} such that

q1(b2, b3)⊕ q2(b1, b3)⊕ q3(b1, b2) = 0 (1)

holds for any (b1, b2, b3) ∈ {0, 1}3. Then at least one of the four following equalities does
not hold:

q(0, 0, 0) = 0, (2)
q(0, 1, 1)⊕ q1(1, 1) = 1, (3)
q(1, 0, 1)⊕ q2(1, 1) = 1, (4)
q(1, 1, 0)⊕ q3(1, 1) = 1. (5)
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21:6 Average-Case Quantum Advantage with Shallow Circuits

Proof. Consider any affine function q : {0, 1}3 → {0, 1} and any three affine functions
q1, q2, q3 : {0, 1}2 → {0, 1} satisfying Condition (1) for all (b1, b2, b3) ∈ {0, 1}3. These four
functions can be written as

q(b1, b2, b3) = α0 ⊕ α1b1 ⊕ α2b2 ⊕ α3b3, (6)
q1(b2, b3) = β0 ⊕ β2b2 ⊕ β3b3, (7)
q2(b1, b3) = γ0 ⊕ γ1b1 ⊕ β3b3, (8)
q3(b1, b2) = (β0 ⊕ γ0)⊕ γ1b1 ⊕ β2b2. (9)

for some coefficients α0, α1, α2, α3, β0, β2, β3, γ0, γ1 ∈ {0, 1}. Assume that these functions
satisfy all the four equations (2)-(5). Equation (2) implies that α0 = 0. Consider the quantity

λ = q(1, 1, 0)⊕ q1(1, 1)⊕ q(0, 1, 1)⊕ q2(1, 1)⊕ q(1, 0, 1)⊕ q3(1, 1).

Computing this quantity using the four equations (6)-(9) gives λ = 3α0 = 0. On the other
hand, computing λ using the three equations (3)-(5) gives λ = 1⊕ 1⊕ 1 = 1, which leads to
a contradiction and implies that the four equations (2)-(5) cannot hold simultaneously. J

2.2 Quantum computation: graph states and their measurements
Quantum gates. We assume that the reader is familiar with the basics of quantum compu-
tation and refer to [24] for a standard reference. We will use the Hadamard gate H and the
Pauli X, Y and Z gates:

H = 1√
2

(
1 1
1 −1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

where i denotes the imaginary unit of complex numbers. Note that XZ = −ZX = −iY .
We will use two kinds of measurements: measurements in the X-basis and measurements
in the Y -basis, which correspond to projective measurements with observables X and Y ,
respectively. Concretely, a measurement in the X-basis is realized by applying a Hadamard
gate to this qubit and then measuring it in the computational basis {|0〉, |1〉}. A measurement
in the Y -basis is realized by applying the gate

1√
2

(
1 −i
1 i

)
to this qubit and then measuring it in the computational basis.3

Graph states. Graph states are quantum states that can be described using graphs [19].
Let G = (V,E) be any undirected graph. The graph state associated with G is the quantum
state on |V | qubits obtained by first constructing the state⊗

u∈V

|0〉Qu
,

3 The outcome of a measurement in the X-basis or the Y -basis is often defined as an element in {−1, 1},
i.e., the outcome corresponds to one of two eigenvalues of the observables X and Y . In our description
the measurement outcome is a bit (the two bits 0 and 1 correspond to the two eigenvalues 1 and −1,
respectively), which will be more convenient to describe our results.
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where each Qu represents a 1-qubit register, then applying a Hadamard gate on each register
and, finally, applying a Controlled-Z gate on (Qu,Qv) for any pair {u, v} ∈ E. We will write
|G〉 the graph state associated with G.

Graph states can equivalently be defined using the stabilizer formalism. For each vertex
u ∈ V define the operator

πu = Xu ⊗
⊗

v∈N (u)

Zv,

where we use Xu to denote the Pauli operator X applied to Register Qu and use Zv to denote
the Pauli operator Z applied to Register Qv. Observe that all these operators commute, and

πu|G〉 = |G〉

for each u ∈ G. The graph state |G〉 is thus the simultaneous eigenstate, associated with the
eigenvalue 1, of all these operators .

Measurements of graph states. The description of graph states using the stabilizer form-
alism is especially convenient to derive the properties of measurements we describe below
(we refer to [24] for details of the general discussion of measurements of stabilizer states and
state below only the properties we will use in this paper).

Consider the graph state |G〉 of a graph G = (V,E). Let UX , UY ⊆ V be any two disjoint
subsets of vertices. Assume that we measure Register Qu, for each vertex u ∈ UX , in the
X-basis and measure Register Qv, for each vertex v ∈ UY , in the Y -basis. The observable
corresponding to this measurement is

M =
∏

u∈UX

Xu

∏
v∈UY

Yv.

For each u ∈ UX ∪ UY , let zu ∈ {0, 1} denote the random variable corresponding to the
measurement outcome of the measurement performed on Register Qu. Let us denote

z =
⊕

u∈UX∪UY

zu

the random variable corresponding to the parity of all the measurement outcomes. Using the
stabilizer formalism it is easy to show that the value of this random variable is as follows:

if M can be written as M =
∏

u∈S πu for some set S ⊆ V then z = 0 with probability 1;
if M can be written as M = −

∏
u∈S πu for some set S ⊆ V then z = 1 with probability

1;
if M cannot be written as M =

∏
u∈S πu or M = −

∏
u∈S πu for some set S ⊆ V then

z = 0 with probability 1/2 and z = 1 with probability 1/2.

3 Extended Graphs and their Graph States

In this section we describe the general construction on which our results are based.
For any undirected graph G = (V,E), let G denote the graph with |V |+ |E| vertices and

2|E| edges obtained from G by inserting a vertex at the middle of each edge of G. We call G
the extended graph of G. We will write V ∗ the set of inserted vertices and consider G as a
graph over the vertex set V ∪ V ∗. We refer to Figure 1 for an illustration.

We now define the concept of f -covering of a graph.

CCC 2019



21:8 Average-Case Quantum Advantage with Shallow Circuits

Figure 1 Example for our construction. The graph G = (V,E) is represented on the left. The
extended graph G is represented on the right. In this figure the large circles represent the vertices
in V , while the small circles represent the vertices in V ∗.

I Definition 4. Let G = (V,E) be an undirected graph and f : V → {0, 1} be any function
such that |f | is even. An f-covering of G is a set of |f |/2 paths of G such that each vertex
in {v ∈ V | f(v) = 1} appears once as an endpoint of one of these paths.

We refer to Figure 2 for an illustration. Note that the |f |/2 paths of an f -covering do not
need to be edge-disjoint.

u8 u9 u10 u11

u5 u6 u7

u1 u2 u3 u4

Figure 2 Illustration of the concept of f -covering. Here V = {u1, . . . , u11} and f : V → {0, 1}
is defined as follows: f(u2) = f(u4) = f(u5) = f(u10) = 1 and f(u1) = f(u3) = f(u6) = f(u7) =
f(u8) = f(u9) = f(u11) = 0. The two paths depicted in red form an f -covering.

1. Construct the graph state over G.
2. For each v ∈ V such that f(v) = 1, measure the qubit of the node v in the Y -basis.

Measure the qubits of all the other nodes of G in the X-basis.

Figure 3 The process P(G, f).

Given a graph G = (V,E) and a function f : V → {0, 1}, consider the process P(G, f)
described in Figure 3. For any vertex v ∈ V ∪ V ∗, let zv denote the random variable
corresponding to the outcome of the measurement performed on the qubit of node v. The
following two theorems describe the correlations among these random variables.

I Theorem 5. For any cycle C of G the following equality holds with probability 1:⊕
v∈C∩V ∗

zv = 0. (10)

Proof. In Process P(G, f) all the vertices in C ∩ V ∗ are measured in the X-basis. Since C is
a cycle we have∏

v∈C∩V ∗

πv =
∏

v∈C∩V ∗

Xv,
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which is the measurement operator corresponding to this measurement. The discussion
of Section 2.2 implies that the parity of all the measurement outcomes is always zero, as
claimed. J

I Theorem 6. Assume that |f | is even and let {p1, . . . , p|f |/2} be any f -covering of G. Let
us write

zV =
⊕
v∈V

zv.

Then the following equality holds with probability 1:

zV ⊕
|f |/2⊕
i=1

⊕
v∈pi∩V ∗

zv =
{

0 if |f | mod 4 = 0,
1 if |f | mod 4 = 2.

(11)

Proof. Let V1 = {u1, . . . , u|f |/2, v1, . . . , v|f |/2} ⊆ V denote the set of vertices that appear as
an endpoint of one of the paths. Let V2 ⊆ V ∗ denote the set of vertices in V ∗ that appear
on an odd number of paths (remember that the paths in an f -covering do not need to be
disjoint). Note that the equation we want to show (Equation (11)) can be rewritten as

zV ⊕
⊕
v∈V2

zv =
{

0 if |f | mod 4 = 0,
1 if |f | mod 4 = 2.

(12)

From the definition of an f -covering, we have V1 = {v ∈ V | f(v) = 1}, and thus in
Process P(G, f) all the vertices in V1 are measured in the Y -basis, while the vertices in V \V1
and the vertices in V2 are measured in the X-basis. The observable corresponding to this
measurement is thus∏

u∈V1

Yu

∏
v∈(V \V1)∪V2

Xv. (13)

Observe that∏
v∈V

πv =
∏
v∈V

Xv.

This simple but crucial property follows from our construction: G is obtained from G by
inserting a vertex on each edge of G. For each i ∈ {1, . . . , |f |/2} we also have

∏
v∈pi∩V ∗

πv = Zui

 ∏
v∈pi∩V ∗

Xv

Zvi
.

Thus(∏
v∈V

πv

)
×

|f |/2∏
i=1

∏
v∈pi∩V ∗

πv

 =
(∏

u∈V1

XuZu

)
×

 ∏
v∈V \V1

Xv

×(∏
v∈V2

Xv

)

= (−1)|f |/2
∏

u∈V1

Yu

∏
v∈(V \V1)∪V2

Xv.

When |f | mod 4 = 0 the observable of Equation (13) can then be written as a product
of generators of the graph state, and thus the parity of all the measurement outcomes is 0.
When |f | mod 4 = 2 the additive inverse of this observable can be written as a product of
generators of the graph states, and thus the parity of all the measurement outcomes is 1.
This proves Equation (12), and thus Equation (11). J

CCC 2019



21:10 Average-Case Quantum Advantage with Shallow Circuits

Remark. The conditions of Equations (10) for all the cycles C of G and the condition of
Equation (11) together actually completely characterize the distribution of the outcomes
of P(G, f): the variables {zv}v∈V ∪V ∗ are uniformly distributed over the set of all values
satisfying all these equations. Note that when G is a connected graph then this corresponds
to satisfying exactly |E| − |V | + 2 independent linear equations. Indeed, |E| − (|V | − 1)
equations suffice to guarantee that Equation (10) holds for all the cycles C of G, as can be
seen by considering a spanning tree of G: the spanning tree contains |V | − 1 edges and each
of the remaining |E| − (|V | − 1) edges gives rise to a cycle in G (and thus to a new linear
equation) when added to the spanning tree. A similar characterization can be easily obtained
when G is not connected as well, by considering separately each connected component.

4 Description of the Relation R

In this section we describe the computational problem we use to prove Theorem 2.

4.1 Our graph construction

For any even positive integer d, we explain how to construct two graphs Gd and Gd that we
will use to define the computational problems. The construction is illustrated in Figure 4.

The graph Gd is the graph with vertex set Vd = V 1
d ∪V 2

d defined as follows. We start with
a d3 × d3 square grid and denote V 1

d the set of vertices of this grid (observe that |V 1
d | = d6).

This grid can be divided into d4 contiguous square regions each of size d× d. We call each
region a box. In each box we place a vertex at the center of each 1× 1 square and connect
it to the four corners of the square. Let V 2

d denote the set of all these new vertices. We
have |V 2

d | = d4(d− 1)2. It will be convenient to denote those vertices uij for i, j ∈ {1, . . . , k},
where k = d2(d− 1), with the index i representing the horizontal position and the index j
representing the vertical position. This completes the description of Gd.

The graph Gd is obtained from Gd by the construction described in Section 3: one
vertex is inserted on each edge of Gd. Let V ∗d denote the introduced vertices. Note that
|V ∗d | = 2d3(d3 − 1) + 4d4(d− 1)2. Let us denote V d = V 1

d ∪ V 2
d ∪ V ∗d the set of all vertices in

Gd and write

n = |V d| = Θ(d6).

For any vertex u ∈ Vd, let Box(u) denote the unique d×d box in which u is included. Finally,
we denote ∂(Gd) the external border of the graph, i.e., the perimeter of the whole grid.

4.2 Definition of the relation

Let d, k and n be as in Section 4.1. Given a matrix A ∈ {0, 1}k×k, consider the process
Pd(A) described in Figure 5.

In this process each node of Gd performs a measurement and outputs one bit. We represent
the whole output by a binary string of length n by fixing an arbitrary ordering of the n
nodes of Gd. With this representation of measurement outcomes as strings, let

Λd(A) ⊆ {0, 1}n

denote the set of all the strings that occur with non-zero probability in Process Pd(A).
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Figure 4 The graph Gd, here represented for d = 4. The vertices in V 1
d are represented in white,

the vertices in V 2
d are represented in blue and the vertices in V ∗

d are represented in green. The blue
line represents the external border of the graph. The dashed squares represent the boxes.

1. Construct the graph state over Gd.
2. For each vertex uij ∈ V 2

d , measure the qubit of the vertex uij in the X-basis if
Aij = 0, and measure it in the Y -basis if Aij = 1.
For each vertex u ∈ V 1

d ∪ V ∗d , measure the qubit of the vertex u in the X-basis.

Figure 5 The process Pd(A).

Definition of the relation R. For any even positive integer d, the computational problem
that we consider is as follows: given a matrix A ∈ {0, 1}k×k as input, where k = d2(d− 1),
compute a string from Λd(A). Note that since |Λd(A)| > 1 there are more than one valid
output. This computational problem corresponds to the relation

R =
{

(A, z) |A ∈ {0, 1}k×k and z ∈ Λd(A)
}
⊆ {0, 1}k×k × {0, 1}n.
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By setting m = k2 and identifying {0, 1}k×k with {0, 1}m, we interpret R as a subset of
{0, 1}m×{0, 1}n. This relation R is the relation that appears in the statement of Theorem 2.
To avoid confusion it will be preferable to make explicit the dependence on the parameter d.
We will thus denote this relation by Rd instead of R in the next sections.

5 Proof of Theorem 2

In this section we prove Theorem 2. Let Rd be the relation defined in Section 4.2.
In the quantum setting, the computational problem corresponding to Rd can obviously

be solved by directly implementing the process Pd(A). This can be done by a constant-depth
quantum circuit since the graph Gd, which has constant degree, can be constructed in constant
depth. Note that the description of the quantum circuit can be computed easily, e.g., by a
logarithmic-space classical Turing machine.

We now show the classical lower bound, i.e., show that any classical circuit of sublogar-
ithmic depth with bounded-fanin gates cannot output a string in Λd(A) with high probability
on a non-negligible fraction of the inputs A. For concreteness (and without loss of generality)
we will assume in this section that all the gates in the classical circuit have fanin at most 2.

Consider any randomized classical circuit Cd, with gates of fanin at most 2, of depth at
most 1

8 log2 m for the relation Rd. The circuit has m = k2 = Θ(d6) input wires to receive
the matrix A and n output wires. Remember that n = Θ(d6). To simplify the presentation
we assume that d is large enough so that the inequality

3n1/7 < d− 2 (14)

holds. In Section 5.1 below we show how to associate the wires of Cd to the nodes of Gd.
In Section 5.2 we present technical results that exploit this correspondence. Finally, in
Section 5.3 we give an upper bound on the success probability of Cd and conclude the proof
of Theorem 2.

5.1 Correspondence between Cd and Gd

We associate the wires of Cd to the nodes of Gd in the following way. For any vertex uij ∈ V 2
d ,

we denote xuij the input wire of Cd that receives the entry Aij of A. For any vertex u ∈ V d,
we denote zu the output wire of Cd that should output the outcome of the measurement
performed at vertex u.

For any vertex u ∈ V d, we denote L(zu) the set of all vertices v ∈ V 2
d such that the input

wire xv is in the lightcone of zu (i.e., the value of zu depends on the value of xv). For any
u ∈ V 2

d , we denote L(xu) the set of all vertices v ∈ V d such that the output wire zv is in the
lightcone of xu (i.e., the value of zv depends on the value of xu). Since the depth of Cd is at
most 1

8 log2 m and since each gate of Cd has fanin at most 2, we have |L(zu)| ≤ m1/8 ≤ n1/8

for each u ∈ V d. Let us define the set

Γ = {u ∈ V 2
d | L(xu) > n1/7}.

Since the number of input wires is |V 2
d | = Θ(n), a simple counting argument shows that

|Γ| = O(n55/56), i.e., most input wires have small lightcones as well.
Define the sets U ,V,W ⊆ V 2

d as follows:

U =
{
uij | i ∈ {1, . . . , bk/3c} and j ∈ {1, . . . , bk/3c}

}
\ Γ,

V =
{
uij | i ∈ {d2k/3e , . . . , k} and j ∈ {1, . . . , bk/3c}

}
\ Γ,

W =
{
uij | i ∈ {d2k/3e , . . . , k} and j ∈ {d2k/3e , . . . , k}

}
\ Γ.
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These three sets represent the vertices in V 2
d ∩ Γ that are in the upper left part, the upper

right part, and the lower right part of the graph Gd, respectively. From the above discussion
we have |U| = Θ(n), |V| = Θ(n) and |W| = Θ(n).

5.2 Graph-theoretic arguments
We start with a first lemma, which is similar to [9, Claim 6].

I Lemma 7. The number of triples (u, v, w) ∈ U × V ×W such that the three conditions
L(xu) ∩ Box(v) = ∅ and L(xu) ∩ Box(w) = ∅;
L(xv) ∩ Box(u) = ∅ and L(xv) ∩ Box(w) = ∅;
L(xw) ∩ Box(u) = ∅ and L(xw) ∩ Box(v) = ∅.

do not simultaneously hold is O(n2+10/21).

Proof. Observe that for each u ∈ U , there are at most n1/7 boxes that intersect L(xu). Since
each box contains (d − 1)2 = O(n1/3) vertices in V 2

d , there are at most O(n10/21) vertices
v ∈ V such that Box(v) intersects L(xu). Assume that we choose a vertex v uniformly at
random in V. Then we have

Pr
v∈V

[L(xu) ∩ Box(v) 6= ∅] = O
(
n−11/21

)
.

Applying the union bound shows that if we choose a triple (u, v, w) uniformly at random
in U × V ×W, then the probability that this triple does not satisfy all the three conditions
of the lemma is O(n−11/21). Since |U × V ×W| = Θ(n3), we thus obtain the statement of
the lemma. J

The following simple lemma will be crucial for our analysis.

I Lemma 8. The number of triples (u, v, w) ∈ U × V ×W such that the three lightcones
L(xu), L(xv) and L(xw) are not pairwise disjoint is O(n2+2/7).

Proof. Let t ∈ V d be any vertex of Gd. When choosing (u, v) uniformly at random in U ×V ,
the probability that t is in L(xu) ∩L(xv) is O((n1/7/n)2) = O(n−12/7). By the union bound
this implies that when choosing a triple (u, v, w) uniformly at random in U × V ×W, the
probability that x is in more than one of the three lightcones L(xu), L(xv) and L(xw) is
O(n−12/7) as well. By the union bound again, we conclude that when choosing (u, v, w)
uniformly at random in U × V ×W, the probability that the three lightcones L(xu), L(xv)
and L(xw) are not pairwise disjoint is O(n−5/7). J

The following proposition is the main result of this subsection.

I Proposition 9. There exists a triple of vertices (u, v, w) ∈ U × V ×W such that all the
following conditions hold:
(i) the lightcones L(xu), L(xv) and L(xw) are pairwise disjoint;
(ii) there exists a cycle C containing u, v and w such that

(ii-a) C does not use any edge from the external border ∂(Gd);
(ii-b) C ∩ V 2

d = {u, v, w};
(ii-c) q1 ∩ L(xw) = ∅, q2 ∩ L(xu) = ∅ and q3 ∩ L(xv) = ∅, where q1 denotes the direct

path4 from v to w in the cycle C, q2 denotes the direct path from u to w in C and let
q3 denote the direct path from u to v in C.

4 There are two paths from v to w in the cycle C: one path going via u and one path not using u. The
direct path is the latter.
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Proof. Lemmas 7 and 8 imply that among the Θ(n3) triples (u, v, w) ∈ U × V ×W there
exists one triple such that Condition (i) and the three conditions of Lemma 7 simultaneously
hold. Let us fix such a triple.

Let u1, . . . , ud−2 denote the vertices on the right border5 of Box(u) and u′1, . . . , u
′
d−2

denote the vertices on the bottom border of Box(u). Similarly, let v1, . . . , vd−2 denote the
vertices on the left border of Box(v) and v′1, . . . , v

′
d−2 denote the vertices on the bottom

border of Box(v). Finally, let w1, . . . , wd−2 denote the vertices on the top border of Box(w)
and w′1, . . . , w′d−2 denote the vertices on the left border of Box(w). We refer to Figure 6 for
an illustration.

We can construct a path p1
i from ui to vi, a path p2

i from v′i to wi and a path p3
i from w′i

to u′i, for each i ∈ {1, . . . , d− 2}, so that the 3(d− 2) paths constructed are disjoint, do not
use any edge on the border ∂(Gd), do not go through any vertex in V 2

d , and do not contain
any vertex in Box(u) ∪ Box(v) ∪ Box(w) except their endpoint. From Inequality (14) and
since the three lightcones L(xu), L(xv) and L(xw) do not have size larger than n1/7, there
necessarily exist three indices i1, i2, i3 ∈ {1, . . . , d− 2} such that the three paths p1

i1
, p2

i2
and

p3
i3

do not contain any vertex in L(xu) ∪ L(xv) ∪ L(xv). Finally, observe that these three
paths can be completed (avoiding all vertices in V 2

d \ {u, v, w}) to obtain a cycle

u −→ ui1

p1
i1−−→ vi1 −→ v −→ v′i2

p2
i2−−→ wi2 −→ w −→ w′i3

p3
i3−−→ u′i3

−→ u

that satisfies Conditions (ii-a), (ii-b) and (ii-c). See Figure 6 for an illustration. Note that
Condition (ii-c) can be guaranteed due to the fact that (u, v, w) satisfies the three conditions
from Lemma 7. J

5.3 Upper bound on the success probability

Let (u, v, w) denote the triple from U ×V×W whose existence is guaranteed by Proposition 9.
Let C, q1, q2 and q3 denote the cycle and the three paths of Condition (ii) of the proposition.

Remember that each entry Aij of the input matrix A specifies the basis in which the qubit
of vertex uij in the graph state |Gd〉 is measured. We will say that the vertex uij is marked
if Aij = 1. The input matrix A ∈ {0, 1}k×k can then be constructed by first considering the
k2 − 3 entries corresponding to all vertices in V 2

d \ {u, v, w}, and then specifying the entries
of the three vertices u, v and w. This means that A can be represented as a pair of strings
(a, b) where a ∈ {0, 1}k2−3 and b = (bu, bv, bw) ∈ {0, 1}3.

The randomized classical circuit Cd can be seen as a deterministic circuit receiving a
random string r. Let us fix the value of this random string. Let us also fix the string
a ∈ {0, 1}k2−3 and assume that the Hamming weight |a| is even (note that |a| corresponds
to the number of marked vertices in V 2

d \ {u, v, w}). The only remaining variables are thus
the three bits bu, bv and bw.

Observe that the graph Gd remains connected when removing all the vertices on the
cycle C, due to Conditions (ii-a) and (ii-b) of Proposition 9. No vertex from V 2

d \ {u, v, w}
appears in C, from Condition (ii-b) of Proposition 9. This implies that there exists a set
of |a|/2 paths {p1, . . . , p|a|/2} such that pi ∩ C = ∅ for each i ∈ {1, . . . , |a|/2}, and each
marked vertex in V 2

d \ {u, v, w} appears once as an endpoint of one of these paths. Define

5 To simplify the presentation we exclude the two corners at the extremities of each border.
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Figure 6 The paths considered to construct the cycle C in the proof of Proposition 9 are depicted
in red. The blue line show how the paths are completed to construct the cycle C in the case i1 = 1,
i2 = 2 and i3 = 2. Note that some vertices in V 2

d are omitted in order to make the figure clearer.

the three bits

λ1 =
⊕
`∈Vd

z`,

λ2 =
|a|/2⊕
i=1

⊕
`∈pi∩V ∗

d

z`,

y =
{

λ1 ⊕ λ2 if |a| mod 4 = 0,
λ1 ⊕ λ2 ⊕ 1 if |a| mod 4 = 2.

A crucial observation is that y is an affine function of bu, bv and bw, due to Condition (i) of
Proposition 9.

Define

y1 =
⊕

`∈q1∩V ∗
d

z`, y2 =
⊕

`∈q2∩V ∗
d

z`, y3 =
⊕

`∈q3∩V ∗
d

z`.
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Condition (i) of Proposition 9 again guarantees that y1, y2 and y3 are affine functions of the
three bits bu, bv, bw. Moreover, Condition (ii-c) implies that y1 does not depend on bu, y2
does not depend on bv and y3 does not depend on bw.

Theorem 5 implies that if the output of the circuit is in the set Λd(A) (i.e., the output
corresponds to a valid outcome arising from the corresponding measurement of the graph
state |Gd〉), then the following condition should hold:

y1 ⊕ y2 ⊕ y3 = 0 for all (bu, bv, bw) ∈ {0, 1}3. (15)

Theorem 6 additionally implies that if the output of the circuit is in the set Λd(A) then the
following condition should hold:

y = 0 if (bu, bv, bw) = (0, 0, 0),
y ⊕ y1 = 1 if (bu, bv, bw) = (0, 1, 1),
y ⊕ y2 = 1 if (bu, bv, bw) = (1, 0, 1),
y ⊕ y3 = 1 if (bu, bv, bw) = (1, 1, 0).

(16)

Lemma 7 implies that there is at least one value for the triple (bu, bv, bw) for which these
conditions are not satisfied.

We have just shown that for any value of r and any value of a such that |a| is even, the
output of the circuit Cd is incorrect for at least a fraction 1/8 of the strings b = (bu, bv, bw) ∈
{0, 1}3. Since |a| is even with probability 1/2 when choosing the matrix A uniformly at
random, we conclude that for any value of r the output of the circuit is incorrect for at least
a fraction 1/16 of the matrices A ∈ {0, 1}k×k. This implies the inequality

∑
A∈{0,1}k×k

Pr
r

[Cd(A) /∈ Λd(A)] ≥ 2k2

16 .

and thus
1

2k2

∑
A∈{0,1}k×k

Pr
r

[Cd(A) ∈ Λd(A)] < 15/16.

This concludes the proof of Theorem 2.

6 Soundness Amplification for Small-Depth Circuits

In this section we show how to obtain Theorem 1 from Theorem 2. In Section 6.1 we
first present a general soundness amplification result that holds for any relation. Then in
Section 6.2 we apply this result to the relation Rd of Theorem 2 in order to obtain Theorem 1.

6.1 General result
Consider any relation R ⊆ {0, 1}m × {0, 1}n for some positive integers m and n. As usual,
this relation is interpreted as the following computational problem: given as input a string
x ∈ {0, 1}m, output one string from the set R(x) = {z ∈ {0, 1}n | (x, z) ∈ R}. For any
integer t ≥ 1, now consider the following computational problem: given as input t strings
x1, . . . , xt ∈ {0, 1}m, output one element from the setR(x1)×· · ·×R(xt). This computational
problem corresponds to the direct product of t copies of the relation R. We will write this
relation R×t and interpret it as the subset

R×t ⊆ {0, 1}mt × {0, 1}nt

by associating {0, 1}mt with the t copies of {0, 1}m and {0, 1}nt with the t copies of {0, 1}n.
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The main result of this section is the following repetition theorem, which shows that if R
cannot be computed with average success probability larger than 1− α using small-depth
classical circuits, then R×t cannot be computed with average success probability larger than
(1− α)t′ for some t′ ≈ t by circuits of the same depth. The idea is to show how to extract,
from the t copies of R making R×t, at least t′ copies on which the circuit acts independently.

I Theorem 10. Let R ⊆ {0, 1}m × {0, 1}n be a relation for which the following assertion
holds for some real numbers c ≥ 0 and α ∈ [0, 1]: any m-input n-output randomized circuit
C with bounded-fanin gates and depth at most c log2 m satisfies the inequality

1
2m

∑
x∈{0,1}m

Pr[C(x) ∈ R(x)] < 1− α.

Let t be any integer such that t ≥ 6nmc + 2. Then any (mt)-input (nt)-output randomized
circuit C ′ with bounded-fanin gates and depth at most c log2 m satisfies

1
2mt

∑
x′∈{0,1}mt

Pr[C ′(x′) ∈ R×t(x′)] < (1− α)t/(6mcn+2).

Proof. Consider any (mt)-input (nt)-output randomized circuit C ′ with gates of fanin at
most 2 and depth at most c log2 m for the relation R×t. For each i ∈ {1, . . . , t}, let Si denote
the set of wires corresponding to the inputs of the i-th copy of R in R×t and Ti denote the
set of wires corresponding to the outputs of the i-th copy of R in R×t. The following claim
is the crucial part of the proof.

B Claim 11. There exists a subset of indices I ⊆ {1, . . . , t} of size |I| ≥ t
6nmc+2 such that

L(Si) ∩ Tj = ∅ for all distinct i, j ∈ I.

Proof. Define the set

J =
{
i ∈ {1, . . . , t} |

∑
x∈Si

|L(x)| ≤ 2mcn
}
.

Since the circuit C ′ has depth c log2 m and its gates have fanin at most 2, we have |L(z)| ≤ mc

for any output wire z. Since the total number of output wires is nt, a simple counting
argument shows that |J | ≥ t/2.

Let us now construct a graph on the vertex set J as follows: two distinct vertices i, j ∈ J
are connected by an edge if and only if at least one of L(Si) ∩ Tj 6= ∅ and L(Sj) ∩ Ti 6= ∅
holds. In this graph each vertex has degree at most 2mcn+mcn = 3mcn. There thus exists6
an independent set I ⊆ J of G of size

|I| ≥ t/2
3mcn+ 1 = t

6mcn+ 2 .

This independent set is precisely the set of indices we wanted to construct. J

To lighten the notation we will assume that the set I from Claim 11 is I = {1, . . . , `} for
some integer ` (with ` ≥ t

6mcn+2 ). This assumption can be made without loss of generality.
Claim 11 implies that when the values of all the input wires in S`+1 ∪ · · · ∪ St are fixed, then

6 Here we are using a trivial result from graph theory that states that a graph of maximum degree ∆ on
N vertices has an independent set of size at least N/(∆ + 1).
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for each i ∈ {1, . . . , `} the values of the output wires in Ti only depend on the values of the
input wires in Si. This implies that for any (x`+1, . . . , xt) ∈ {0, 1}(t−`)m the inequality

1
2m`

∑
x1,...,x`∈{0,1}m

Pr[C ′(x1, . . . , x`, x`+1, . . . , xt) ∈ R×t(x1, . . . , x`, x`+1, . . . , xt)]

< (1− α)`,

holds, from our assumption on the relation R (since the depth of C ′ is at most c log2 m).
Thus

1
2mt

∑
x1,...,xt∈{0,1}m

Pr[C ′(x1, . . . , xt) ∈ R×t(x1, . . . , xt)] < (1− α)` ≤ (1− α)t/(6mcn+2),

as claimed. This concludes the proof of Theorem 10. J

6.2 Application: proof of Theorem 1
We are now able to give the proof of Theorem 1.

Proof of Theorem 1. We consider the relation Rd ⊆ {0, 1}m × {0, 1}n defined in Section
4.2 and used in Theorem 2. Remember that for this relation we have m = Θ(d6) and
n = Θ(d6). Take the integer t =

⌈
(6nm1/8 + 2)3⌉ and observe that the inequality t ≥ m27/8

holds. Define R = R×t
d . The sizes of the inputs and outputs in R are M = mt and N = nt,

respectively. Observe that t ≥ m27/8 implies t ≥ M27/35. Theorem 2 and then Theorem
10 with R = Rd imply that there exist constants c > 0 and α > 0 such that any M -input
N -output randomized circuit C ′ with bounded-fanin gates and depth at most c log2 m satisfies

1
2M

∑
x′∈{0,1}M

Pr[C ′(x′) ∈ R(x′)] < (1− α)t2/3
≤ (1− α)M54/105

< (1− α)
√

M
,

which leads to the claimed statement. J
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√
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√
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1 Introduction

A large number of recent works studied the problem of proving memory-samples lower bounds
for learning [14, 15, 11, 16, 7, 8, 12, 9, 10, 2, 5, 4], a study that was initiated by the beautiful
papers of Shamir [14] and Steinhardt, Valiant and Wager [15]. The motivation for studying
this question comes from learning theory, computational complexity and cryptography (see
for example the discussion and references in [14, 15, 11, 16, 7, 10]).

Steinhardt, Valiant and Wager conjectured that any algorithm for learning parities of
size n requires either a memory of size Ω(n2) or an exponential number of samples. This
conjecture was proven in [11], followed by a line of works that showed that for a large number
of learning problems, any learning algorithm requires either super-linear memory size or
a super-polynomial number of samples [7, 12, 9, 2, 5]. For example, such bounds were
established for learning sparse parities, linear-size DNF Formulas, linear-size Decision Trees
and logarithmic-size Juntas [7]; learning low-degree polynomials [2, 5]; learning from sparse
linear equations and low-degree polynomial equations [5]; learning codewords from random
coordinates [12, 9, 5]; etc.

All previous memory-samples lower bounds (in the regime where the lower bound on
the memory size is super-linear and the lower bound on the number of samples is super-
polynomial) modeled the learning algorithm by a one-pass branching program, allowing only
one pass over the stream of samples.

In this work, we prove the first such results when two passes over the stream of samples
are allowed. (We remark that we leave open the question of handling more than two passes.
While some parts of the current proof naturally extend to more than two passes, others are
more delicate.)

Our Results
As in [12, 2, 7], we represent a learning problem by a matrix. Let X, A be two finite sets
of size larger than 1 (where X represents the concept-class that we are trying to learn and
A represents the set of possible samples). Let M : A × X → {−1, 1} be a matrix. The
matrix M represents the following learning problem: An unknown element x ∈ X was chosen
uniformly at random. A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . .,
where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai, x).

We model the learner for the learning problem that corresponds to the matrix M , by a
two-pass ordered branching program (Definition 2). Such a program reads the entire stream
of samples twice, in the exact same order. Roughly speaking, the model allows a learner
with infinite computational power, and bounds only the memory size of the learner and the
number of samples used.

As in [5], our result is stated in terms of the properties of the matrix M as a two-
source extractor. Two-source extractors, first studied by Santha and Vazirani [13] and Chor
and Goldreich [3], are central objects in the study of randomness and derandomization.
As in [5], our results hold whenever the matrix M has (even relatively weak) two-source
extractor properties.

Roughly speaking, our main result can be stated as follows: Assume that k, `, r are
such that any submatrix of M of at least 2−k · |A| rows and at least 2−` · |X| columns, has
a bias of at most 2−r. Then, any two-pass learning algorithm for the learning problem
corresponding to M requires either a memory of size at least Ω

(
k ·min{k,

√
`}
)
, or at least

2Ω(min{k,
√
`,r}) samples.
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Formally, our result is stated in Theorem 4 in terms of the properties of M as an L2-
Extractor (Definition 1), a notion that was defined in [5] and (as formally proved in [5]) is
closely related to the notion of two-source extractor. (The two notions are equivalent up to
small changes in the parameters.)

As in [5], our main result can be used to prove (two-pass) memory-samples lower bounds
for many of the problems that were previously studied in this context. For example, for
learning parities, sparse parities, DNFs, decision trees, random matrices, error correcting
codes, etc. For example, our main result implies that any two-pass algorithm for learning
parities of size n requires either a memory of size Ω(n1.5) or at least 2Ω(

√
n) samples.

Related Work
To the best of our knowledge, the only previous work that proved memory-samples lower
bounds for more than one pass over the stream of samples, is the intriguing recent work of
Dagan and Shamir [4]. We note however that their results apply for a very different setting
and regime of parameters, where the obtained lower bound on the number of samples is at
most polynomial in the dimension of the problem. (Their result is proved in a very different
setting, where the samples may be noisy, and the lower bound obtained on the number of
samples is at most the product of the length of one sample times one over the information
given by each sample).

Motivation and Discussion
Many previous works studied the resources needed for learning, under certain information,
communication or memory constraints (see in particular [14, 15, 11, 16, 7, 8, 12, 9, 10, 2, 5, 4]
and the many references given there). A main message of some of these works is that for
some learning problems, access to a relatively large memory is crucial. In other words, in
some cases, learning is infeasible, due to memory constraints.

From the point of view of human learning, such results may help to explain the importance
of memory in cognitive processes. From the point of view of machine learning, these results
imply that a large class of learning algorithms cannot learn certain concept classes. In
addition, these works are related to computational complexity and have applications in
bounded-storage cryptography.

Most of these works apply to bounded-memory learning algorithms that consider the
samples one by one, with only one pass over the samples. In many practical situations,
however, more than one pass over the samples is used, so it’s desirable to extend these results
to more than one pass over the samples.

From the point of view of computational complexity, the problem of extending these
works to more than one pass over the samples is fascinating and challenging. It’s a common
practice in streaming-complexity to consider more than one pass over the inputs, and in
computational complexity read-k-times branching programs have attracted a lot of attention.

We note that by Barrington’s celebrated result, any function in NC can be computed by a
polynomial-length branching program of width 5 [1]. Hence, proving super-polynomial lower
bounds on the time needed for computing a function, by a branching program of width 5,
with polynomially many passes over the input, would imply super-polynomial lower bounds
for formula size, and is hence a very challenging problem.

Finally, let us mention that technically, allowing more than one pass over the samples is
very challenging, as all previous techniques are heavily based on the fact that in the one-pass
case all the samples are independent and hence at each time step, the learning algorithm has
no information about the next sample that it is going to see.

CCC 2019
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Techniques
Our proof builds on the works of [12, 5] that gave a general technique for proving memory-
samples lower bounds for learning problems. However, these works (as well as all other
previous works that prove memory-samples lower bounds in this regime of parameters) are
heavily based on the fact that in the one-pass case all the samples are independent and hence
at each time step, the learning algorithm has no information about the next sample that it is
going to see. Roughly speaking, the proofs of [12, 5] bound the L2-norm of the distribution
of x, conditioned on reaching a given vertex v of the branching program, but they rely on the
fact that the next sample is independent of x. Once one allows more than one pass over the
stream of samples, the assumption that the next sample is independent of x doesn’t hold, as
in the second pass the vertex may remember a lot of information about the joint distribution
of x and a1, . . . , am.

Roughly speaking, [12, 5] considered the computation-path of the branching program and
defined “stopping-rules”. Intuitively, the computation stops if certain “bad” events occur.
The proofs show that each stopping rule is only applied with negligible probability and that
conditioned on the event that the computation didn’t stop, the L2-norm of the distribution
of x, conditioned on reaching a vertex v of the branching program, is small (which implies
that the program didn’t learn x).

When more than one pass over the samples is allowed, there is a serious problem with
this approach. After one pass, a vertex of the branching program has joint information on x
and a1, . . . , am. If we only keep track of the distribution of x conditioned on that vertex, it
could be the case that the next sample completely reveals x. One conceptual problem seems
to be that the second part of the program (that is, the part that is doing the second pass)
is not aware of what the first part did. An idea that turned out to be very important in
our proof is to take the second part to be the product of the first and second part, so that,
in some sense, the second part of the computation runs its own copy of the first part. In
addition, we have each vertex in the second part remembering the vertex reached at the end
of the first part.

As in [12, 5], we define stopping rules for the computation-path and we prove that the
probability that the computation stops is small. We then analyze each part separately, as a
read once program. For each part separately, we prove that conditioned on the event that
the program didn’t stop, the L2-norm of the distribution of x, conditioned on reaching a
vertex v, is small. It turns out that since the second part of the program runs its own copy
of the first part, the analysis of each part separately is sufficient.

We note, however, that the entire proof is completely different than [12, 5]. The stopping
rules are different and are defined differently for each part. The proof that the computation
stops with low probability is much more delicate and complicated. The main challenge is that
when analyzing the probability to stop on the second part, we cannot ignore the first part
and we need to prove that we stop with low probability on the second part, when starting
from the start vertex of the first part (that is, the start vertex of the entire program). This
turns out to be very challenging and, in particular, requires a use of the results for one-pass
branching programs.

A proof outline is given in Section 4.

2 Preliminaries

Denote by log the logarithm to base 2. For a random variable Z and an event E, we denote
by PZ the distribution of the random variables Z, and we denote by PZ|E the distribution of
the random variable Z conditioned on the event E.
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We will sometimes take probabilities and expectations, conditioned on events E that may
be empty. We think of these probabilities and expectations as 0, when the event E is empty.

2.1 Learning Problem

We represent a learning problem by a matrix. Let X, A be two finite sets of size larger than 1
(where X represents the concept-class that we are trying to learn and A represents the set
of possible samples). Let M : A×X → {−1, 1} be a matrix. The matrix M represents the
following learning problem: An unknown element x ∈ X was chosen uniformly at random.
A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i,
ai ∈ A is chosen uniformly at random and bi = M(ai, x).

Let n = log |X| and n′ = log |A|.

2.2 Norms and Inner Products

Let p ≥ 1. For a function f : X → R, denote by ‖f‖p the Lp norm of f , with respect to the
uniform distribution over X, that is:

‖f‖p =
(

E
x∈RX

[|f(x)|p]
)1/p

.

For two functions f, g : X → R, define their inner product with respect to the uniform
distribution over X as

〈f, g〉 = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the
function corresponding to the a-th row of M . Note that for a function f : X → R, we have
〈Ma, f〉 = (M ·f)a

|X| .

2.3 L2-Extractors

I Definition 1. L2-Extractor: Let X,A be two finite sets. A matrix M : A×X → {−1, 1}
is a (k, `)-L2-Extractor with error 2−r, if for every non-negative f : X → R with ‖f‖2

‖f‖1
≤ 2`

there are at most 2−k · |A| rows a in A with

|〈Ma, f〉|
‖f‖1

≥ 2−r .

2.4 Computational Model

In the following definition, we model the learner for the learning problem that corresponds
to the matrix M , by a branching program. We consider a q-pass ordered branching program.
Such a program reads the entire input q times, in the exact same order. That is, the program
has q parts (that are sequential in time). Each part reads the same stream in the exact same
order. Our main result is proved for two-pass ordered branching programs, that is, for the
case q = 2.

CCC 2019
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I Definition 2.
q-Pass Branching Program for a Learning Problem: A q-pass (ordered) branching program

of length q ·m and width d, for learning, is a directed (multi) graph with vertices arranged
in qm + 1 layers containing at most d vertices each. In the first layer, that we think
of as layer 0, there is only one vertex, called the start vertex. A vertex of outdegree 0
is called a leaf. All vertices in the last layer are leaves (but there may be additional
leaves). Every non-leaf vertex in the program has 2|A| outgoing edges, labeled by elements
(a, b) ∈ A× {−1, 1}, with exactly one edge labeled by each such (a, b), and all these edges
going into vertices in the next layer. Each leaf v in the program is labeled by an element
x̃(v) ∈ X, that we think of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A×{−1, 1} that are given as input
define a computation-path in the branching program, by starting from the start vertex and
following at step (j − 1) ·m + i the edge labeled by (ai, bi) (where j ∈ [q] and i ∈ [m]),
until reaching a leaf. The program outputs the label x̃(v) of the leaf v reached by the
computation-path.

Success Probability: The success probability of the program is the probability that x̃ = x,
where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am
(where x is uniformly distributed over X and a1, . . . , am are uniformly distributed over A,
and for every i, bi = M(ai, x)).

Remark: We will sometimes consider branching programs in which the leaves are not labeled,
and hence the program doesn’t return any value. It will be convenient to refer to such
objects also as branching programs. In particular, we will view a part of the branching
program (e.g., the first few layers of a program) also as a branching program.

We think of the program as composed of q parts, where for every j ∈ [q], part-j contains
layers {(j − 1) ·m+ i}i∈[m].

For convenience, we think of each vertex u of the branching program as having a small
memory Su that contains some information about the path that led to the vertex, that
the vertex “remembers” (or “records”). Formally, this means that in the actual branching
program the vertex u is split into distinct vertices u1, . . . , ud(u), according to the content
of the memory Su. Adding information to Su means that the vertex u is further split into
distinct vertices, according to the content of the information that was added. Thus, when we
refer to a vertex u of a program, we mean, a vertex u plus content of the memory Su.

In this paper, we will have the property that whenever we add some information to the
memory of a vertex u, that information is never removed/forgotten. That is, information
that was added to the memory of u, remains in the memory of all the vertices that can be
reached from u.

As mentioned above, in this paper we focus on the case q = 2. We denote by v0 the
start vertex of the program and by v1 the vertex reached at the end of the first part, that is,
layer-m. Note that v1 is a random variable that depends on x, a1, . . . , am.

2.5 Product of Programs
Intuitively, the product of two branching programs is a branching program that runs both
programs in parallel.

I Definition 3.
Product of One-Pass Branching Programs: Let B,B′ be two one-pass branching programs

for learning, of length m and widths d, d′, respectively. The product B×B′ is a (one-pass)
branching program of length m and width d · d′, as follows: For every i ∈ {0, . . . ,m} and
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vertices v in layer-i of B and v′ in layer-i of B′, we have a vertex (v, v′) in layer-i of
B ×B′. For every two edges: (u, v) from layer-(i− 1) to layer-i of B and (u′, v′) from
layer-(i− 1) to layer-i of B′, both labeled by the same (a, b), we have in B ×B′ an edge
((u, u′), (v, v′)) labeled by (a, b).
The label of a leaf (v, v′) is the label given by the second program B′. The content of
the memory S(v,v′) of a vertex (v, v′) is the concatenation of the content of Sv and the
content of Sv′ .

Remark: We will use this definition also in cases where the leaves of B and/or B′ are not
labeled (that is, where B and/or B′ do not output any value; see a remark in Definition 2).

3 Main Result

Fix k, `, r ∈ N, such that r
k ,

r
` are smaller than a sufficiently small constant and k < n′, ` < n.

Let ε > 0 be a sufficiently small constant. In particular, we assume that ε is sufficiently
smaller than all other constants that we discuss, say, ε < 1

1010 . We assume that n, n′ are
sufficiently large. Let

˜̀= min
{
k,
√
`
}
.

Let

r̃ = min
{

r
100 ,

˜̀
100

}
. (1)

We assume that

r̃ > 100 ·max {logn, logn′} . (2)

We assume that M is a (10k, 10`)-L2-extractor with error 2−10r.

I Theorem 4. Let X, A be two finite sets. Let n = log2 |X| and n′ = log2 |A|. Fix k, `, r ∈ N,
such that, r

k ,
r
` <

1
100 , and k < n′, ` < n. Let ε > 0 be a sufficiently small constant, say,

ε < 1
1010 . Assume that n, n′ are sufficiently large. Let

˜̀= min
{
k,
√
`
}
.

Let

r̃ = min
{

r
100 ,

˜̀
100

}
.

Assume that

r̃ > 100 ·max {logn, logn′} .

Let M : A×X → {−1, 1} be a matrix which is a (10k, 10`)-L2-extractor with error 2−10r.
Let B be a two-pass ordered branching program of length 2 ·m, where m is at most 2εr̃, and
width at most d = 2εk ˜̀/10, for the learning problem that corresponds to the matrix M . Then,
the success probability of B is at most 1

100 + o(1).
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4 Overview of the Proof

One-Pass Learners
We will start with giving a short outline of the proof of [12, 5] for one-pass learners. Assume
that M is a (10k, 10`)-L2-extractor with error 2−10r, where r < k, `. Let B be a one-pass
branching program for the learning problem that corresponds to the matrix M . Assume for
a contradiction that B is of length m = 2εr and width d = 2εk`, where ε is a small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching
a leaf if certain “bad” events occur. Nevertheless, we show that the probability that T
stops before reaching a leaf is negligible, so we can think of T as almost identical to the
computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote
by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am), and
we denote by Px|v = Px|Ev

the distribution of the random variable x conditioned on the
event Ev. Similarly, for an edge e of the branching program B, let Ee be the event that T
traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee

.
A vertex v of B is called significant if∥∥Px|v∥∥2 > 2` · 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v,
a non-negligible amount of information is known about x. In order to guess x with a non-
negligible success probability, T must reach a significant vertex. We show that the probability
that T reaches any significant vertex is negligible, and thus the main result follows.

To prove this, we show that for every fixed significant vertex s, the probability that T
reaches s is at most 2−Ω(k`) (which is smaller than one over the number of vertices in B).
Hence, we can use a union bound to prove the bound.

The proof that the probability that T reaches s is extremely small is the main part of
the proof. To that end, we use the following functions to measure the progress made by the
branching program towards reaching s.

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of
edges e from layer-(i− 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉k,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′i as measuring the progress made by the branching program, towards
reaching a state with distribution similar to Px|s.

We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to
calculate that Z0 = 2−2nk, it follows that Zi is close to 2−2nk, for every i. On the other hand,
if s is in layer-i then Zi is at least Pr(s) · 〈Px|s,Px|s〉k. Thus, Pr(s) · 〈Px|s,Px|s〉k cannot be
much larger than 2−2nk. Since s is significant, 〈Px|s,Px|s〉k > 2`k · 2−2nk and hence Pr(s) is
at most 2−Ω(k`).

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps. We show
by a simple convexity argument that Zi ≤ Z ′i. The hard part is to prove that Z ′i may only
be negligibly larger than Zi−1.
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For this proof, we define for every vertex v, the set of edges Γout(v) that are going out
of v, such that Pr(e) > 0 and show that for every vertex v,∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉k

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉k.

For this proof, we consider the function Px|v · Px|s. We first show how to bound∥∥Px|v · Px|s∥∥2. We then consider two cases: If
∥∥Px|v · Px|s∥∥1 is negligible, then 〈Px|v,Px|s〉k is

negligible and doesn’t contribute much, and we show that for every e ∈ Γout(v), 〈Px|e,Px|s〉k
is also negligible and doesn’t contribute much. If

∥∥Px|v · Px|s∥∥1 is non-negligible, we use the
bound on

∥∥Px|v · Px|s∥∥2 and the assumption that M is a (10k, 10`)-L2-extractor to show
that for almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉k is very close to 〈Px|v,Px|s〉k.
Only an exponentially small (2−k) fraction of edges are “bad” and give a significantly larger
〈Px|e,Px|s〉k.

The reason that in the definitions of Zi and Z ′i we raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to
the power of k is that this is the largest power for which the contribution of the “bad” edges
is still small (as their fraction is 2−k).

This outline oversimplifies many details. Let us briefly mention two of them. First, it is
not so easy to bound

∥∥Px|v · Px|s∥∥2. We do that by bounding
∥∥Px|s∥∥2 and

∥∥Px|v∥∥∞. In order
to bound

∥∥Px|s∥∥2, we force T to stop whenever it reaches a significant vertex (and thus we
are able to bound

∥∥Px|v∥∥2 for every vertex reached by T ). In order to bound
∥∥Px|v∥∥∞, we

force T to stop whenever Px|v(x) is large, which allows us to consider only the “bounded”
part of Px|v. (This is related to the technique of flattening a distribution that was used
in [6]). Second, some edges are so “bad” that their contribution to Z ′i is huge so they cannot
be ignored. We force T to stop before traversing any such edge. (This is related to an idea
that was used in [7] of analyzing separately paths that traverse “bad” edges). We show that
the total probability that T stops before reaching a leaf is negligible.

Thus, in [12, 5] there are three stopping rules: We stop if we reach a significant vertex.
We stop if we have a bad edge and we stop if x is a significant-value of Px|v, that is, if
Px|v(x) is too large.

Two-Pass Learners
Let us now give a short outline of the additional ideas in the proof for two-pass learners. Let
B be a two-pass branching program for the learning problem that corresponds to the matrix
M . We denote by v0 the starting vertex of the program and by v1 the vertex reached at the
end of the first part. We assume without loss of generality that the answers are given in the
last layer of the program.

We update the second part so that every vertex v in the second part “remembers” v1.
This information is stored in the memory Sv. Formally, this means that starting from every
possible v1, we have a separate copy of the entire second part of the program. We then
change the second part so that it is now the product (see definition 2) of the first part and
the second part. Intuitively, this means that the second part runs a copy of the first part of
the computation, in parallel to its own computation.

As in [12, 5], we define the truncated-path, T , to be the same as the computation-path of
the new branching program, except that it sometimes stops before reaching a leaf. Roughly
speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, we show
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that the probability that T stops before reaching a leaf is small, so we can think of T as
essentially identical to the computation-path. The decision of whether or not T stops on a
given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are able
to consider the path T , starting from any vertex v (without knowing the history of the path
that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program (where an answer should be given).
The vertex v remembers (in Sv) the vertex v1. We denote by v1 → v the event that the path
T that starts from v1 reaches v (where v1 is the vertex at the end of the first part of the
program that v remembers, and the event is over x, a1, . . . , am). We denote by v0 → v the
event that the path T that starts from the start vertex v0 reaches v. More generally, for two
vertices w1, w2 in the program, we denote by w1 → w2 the event (over x, a1, . . . , am) that
the path T that starts from w1 reaches w2.

Let v be a vertex in the last layer of the program, such that Pr(v0 → v) > 0. Since
v remembers v1, the event v0 → v is equivalent to v0 → v1 → v (where v1 is the vertex
remembered by v). Since the second part of the program runs a copy of the first part and
since v is in the last layer, the event v1 → v implies the event v0 → v1. Thus, the event
v0 → v is equivalent to v1 → v.

Moreover, this is true when conditioning on x, and hence,

Px|v0→v = Px|v1→v

and

Pr[v0 → v] = Pr[v1 → v].

This is a crucial point as it means that∥∥Px|v0→v
∥∥

2 =
∥∥Px|v1→v

∥∥
2 ,

that is, if we bound
∥∥Px|v1→v

∥∥
2 we also get a bound on

∥∥Px|v0→v
∥∥

2.
The bound on

∥∥Px|v0→v
∥∥

2 is what we really need because if this is small then the program
cannot answer correctly. On the other hand, the bound on

∥∥Px|v1→v
∥∥

2 is easier to obtain as
it is a bound for a one-pass branching program. Thus, all we need is a bound on

∥∥Px|v1→v
∥∥

2,
which is a bound for a one-pass branching program, and we already know how to obtain
bounds on the conditional distribution for one-pass programs.

Things, however, are not so simple, as we need to prove that T stops with small probability,
when starting from v0, rather than v1. The main problem with using the previous stopping
rules (in the second part of the program) is that it’s impossible to prove that we stop on
a bad edge with negligible probability (as demonstrated next). Roughly speaking, we say
that an edge e = (u, v) is “bad” if the equation on it splits the distribution Px|u in a biased
way. That is, a good edge is one where roughly half the probability mass of Px|u satisfies the
equation on the edge e. If the program stores in memory the i-th sample from the first pass,
then in the i-th step of the second pass, an edge e = (u, v) will definitely be bad, since it will
not split the distribution Px|u evenly.

For that reason, we change the bad-edges stopping rule. We say that an edge (v, u),
labelled by (a, b), is of high probability if the probability to sample a, conditioning on reaching
v from v0 (that is, reaching v from the starting vertex of the entire program) is large. The
third stopping rule is changed so that T doesn’t stop on a bad edge if it is of high probability.
Instead, if T traverses such an edge, we “remember” the time step in which T traversed that
edge, in all the future. That is, we enter the index i to Su (and remember it in all the future,
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until the end of the program). In addition, we add a stopping rule that stops if the edge is
“very-bad” and a stopping rule that stops if the number of indices in Sv is too large, that is,
if the number of high-probability edges that were already traversed is too large (intuitively,
Sv won’t be too large because of the bounded memory size).

We analyze separately the probability to stop because of each stopping rule. The main
challenge is that we need to analyze these probabilities when starting from v0, that is, when
running a two-pass program. These proofs are technically hard, but the main reason that we
manage to analyze these probabilities is the following:

Recall that the second part of the program runs a copy of the first part of the program.
Thus, a vertex v in layer-i of the second part has a corresponding vertex v′ in layer-i of the
first part, such that, if the path T reached v it previously reached v′. Recall also that v
remembers v1, so if the path T reached v it previously reached v1. Thus, the event v0 → v is
equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies
the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).

Note that v′ is in layer-i of the first part and v is in layer-i of the second part, and from
layer-i of the first part to layer-i of the second part, the program is a one-pass program and
is hence easier to analyze.

5 Proof of Theorem 4

Assume that we have a two-pass ordered branching program, B, for the learning problem
that corresponds to the matrix M . We assume without loss of generality that the output
is given in the last layer. Assume that the length of the program is 2 ·m, where m is at
most 2εr̃ and the width of the program is at most d = 2εk ˜̀/10. We will show that the success
probability of B is at most 1

100 + o(1).
Let

`1 = ˜̀
100

and

`2 = `.

5.1 The Truncated Path
Below, we will make some changes in the branching program B. We will denote by B̂ the
resulting branching program. Let v0 be the start vertex of B̂. We will denote by v1 the
vertex reached at the end of the first part of B̂. Note that v1 is a random variable, that
depends on x, a1, . . . , am.

In the resulting branching program B̂, we will have the property that the vertex v1
reached at the end of the first part of the program is remembered by every future vertex v.
That is, every vertex v, in the second part of the program, remembers which vertex the path
that led to v reached, at the end of the first part of the program. Formally, this information
is stored in Sv.
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Below, we will define the truncated-path, T , to be the same as the computation-path of
the new branching program, except that it sometimes stops before reaching a leaf. Roughly
speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, we show
that the probability that T stops before reaching a leaf is small, so we can think of T as
essentially identical to the computation-path. The decision of whether or not T stops on a
given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are able
to consider the path T , starting from any vertex v (without knowing the history of the path
that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program. The vertex v remembers (in Sv)
the vertex v1. We denote by v1 → v the event that the path T that starts from v1 reaches v
(where v1 is the vertex at the end of the first part of the program that v remembers, and the
event is over x, a1, . . . , am).

More generally, for two vertices w1, w2 in the program, we denote by w1 → w2 the event
(over x, a1, . . . , am) that the path T that starts from w1 reaches w2. In particular, v0 → v is
the event that the path T that starts from the start vertex v0 reaches v.

We change the original branching program B as follows:

First Part
We define stopping rules for the first part as defined in [12, 5] for one-pass programs, as if
the first part were the entire program. Next, we describe these rules formally.

Significant Vertices
We say that a vertex v in layer-i of the first part of the program is significant if∥∥Px|v0→v

∥∥
2 > 2`1 · 2−n.

Significant Values
Even if v is not significant, Px|v0→v may have relatively large values. For a vertex v in layer-i
of the first part of the program, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v0→v(x
′) > 24` · 2−n.

Bad Edges
For a vertex v in layer-i of the first part of the program, denote by Bad(v) the set of all
a ∈ A, such that,∣∣(M · Px|v0→v)(a)

∣∣ ≥ 2−2r.

The Truncated-Path T on the First Part
We define T on the first part, by induction on the layers. Assume that we already defined T
until it reaches a vertex v in layer-i of the first part. The path T stops on v if (at least) one
of the following occurs:
1. v is significant.
2. x ∈ Sig(v).
3. ai+1 ∈ Bad(v).
Otherwise, (unless i = m) T proceeds by following the edge labeled by (ai+1, bi+1) (same as
the computational-path).
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Second Part

We denote by v1 the vertex in layer-m (that is, the last layer of the first part of the program)
that is reached by T . Note that v1 is a random variable that depends on x, a1, . . . , am. We
denote by d1 the number of vertices in layer-m. We assume without loss of generality that
each vertex in layer-m is reached with probability of at least 2−10r̃ · d−1

1 , as vertices reached
with negligible probability can be ignored. Formally, if we reach a vertex in layer-m, such
that, the probability to reach that vertex is smaller than 2−10r̃ · d−1

1 , the path T stops.
We update the second part so that every vertex v in the second part “remembers” v1.

This information is stored in the memory Sv. Formally, this means that starting from every
possible v1, we have a separate copy of the entire second part of the program.

We then change the second part so that it is now the product (see definition 2) of the
first part (after it was changed as described above) and the second part. Intuitively, this
means that the second part runs a copy of the first part of the computation, in parallel to its
own computation.

Next, we define stopping rules for the second part, by induction over the layers, and
at the same time (by the same induction), we also define for each vertex v, a list Lv of
indices i1, . . . , id(v) ∈ [m] that the vertex v remembers (that is, the list Lv is stored in the
memory Sv). Once an index was added to Lv, it is remembered in all the future, that is, for
every vertex u reached from v (in the second part of the program), we have Lv ⊆ Lu. Note
that the stopping rules are defined for the updated second part (as described above).

The stopping rules for the second part extend the stopping rules in the case of one-pass
programs, as defined in [12, 5], as if the second part were the entire program, with starting
vertex v1. However, the third stopping rule (bad edges) is now different. We say that an edge
(v, u), labelled by (a, b), is of high probability if the probability to sample a, conditioning on
reaching v from v0 (that is, reaching v from the starting vertex of the entire program) is
larger than 2k ·2−n′ . That is, if v is in layer-i of the second part, (v, u) is of high probability if
Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n′ . The third stopping rule is changed so that T doesn’t stop
on a bad edge if it is of high probability. Instead, if T traverses such an edge, we “remember”
the time step in which T traversed that edge, in all the future. That is, we enter the index
i to Lu (and remember it in all the future, until the end of the program). In addition, we
add a stopping rule that stops if the edge is “very-bad” and a stopping rule that stops if the
number of indices in Lv is too large, that is, if the number of high-probability edges that
were already traversed is too large.

Next, we describe these rules formally. We initiate Lv1 = ∅.

Significant Vertices

We say that a vertex v in layer-i of the second part of the program is significant if∥∥Px|v1→v
∥∥

2 > 2`2 · 2−n.

Significant Values

For a vertex v in layer-i of the second part of the program, denote by Sig(v) the set of all
x′ ∈ X, such that,

Px|v1→v(x
′) > 24` · 2−n.
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Bad Edges
For a vertex v in layer-i of the second part of the program, denote by Bad(v) the set of all
a ∈ A, such that,∣∣(M · Px|v1→v)(a)

∣∣ ≥ 2−2r.

Very-Bad Edges
For a vertex v in layer-i of the second part of the program, denote by VeryBad(v) the set of
all (a, b) ∈ A× {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.

High-Probability Edges
For a vertex v in layer-i of the second part of the program, denote by High(v) the set of all
a ∈ A, such that,

Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n
′
.

The Truncated-Path T on the Second Part
We define T on the second part, by induction on the layers. Assume that we already defined
T until it reaches a vertex v in layer-i of the second part (and we already defined Lv). The
path T stops on v if (at least) one of the following occurs:
1. v is significant.
2. x ∈ Sig(v).
3. ai+1 ∈ Bad(v) \High(v).
4. (ai+1, bi+1) ∈ VeryBad(v).
5. |Lv| ≥ 200ε˜̀.
6. Recall that we changed the second part of the program so that it is the product of the

first part and the (original) second part. This means that the second part of the program
runs its own copy of the first part of the program. If the path T , that was defined for the
first part, stops on the copy of the first part that the second part runs, the path T stops
on the vertex v too.
I Remark 5. We note that if T stopped on the first part, it couldn’t have reached v1
in the first place. Thus, conditioned on the event v0 → v1, the path T didn’t stop on
the first part. Therefore, conditioned on the event v0 → v1, the path T never stops
because of stopping rule 6. Thus, this stopping rule is not necessary. Nevertheless, we
add this stopping rule for completeness, so that it would be possible to consider the path
T starting from any vertex (even in the middle of the program), without conditioning on
the event of reaching that vertex.

Otherwise, unless T already reached the end of the second part, T proceeds by following
the edge labeled by (ai+1, bi+1) (same as the computational-path). Let (v, u) be the edge
labeled by (ai+1, bi+1). It remains to define the list Lu.

Updating Lu

Let (v, u) be the traversed edge, labeled by (ai+1, bi+1). If the traversed edge (v, u) is not a
high-probability edge, that is, if ai+1 6∈ High(v), we define Lu = Lv.
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If the traversed edge (v, u) is a high-probability edge, that is, if ai+1 ∈ High(v), we define
Lu = Lv ∪ {i+ 1}, and hence, by induction, Lu is the list of all indices corresponding to the
high-probability edges that T traversed, in the second part of the program, until reaching u.

5.2 Bounding the Width of the Branching Program B̂

From now on, we will only consider the final branching program, B̂.
The final branching program, B̂, has a larger width than the original one. The main

contributions to the larger width is that we changed the second part to be the product of the
first and second parts of the original program and that each vertex in the second part of B̂
remembers the vertex v1 (reached at the end of the first part). This multiplies the memory
needed (that is, the logarithm of the width of the program) by a factor of at most 3. In
addition, each vertex v has to remember Lv, but by Equation (1) and since T stops when
|Lv| ≥ 200ε˜̀, this adds memory of at most ε˜̀r

100 . Thus, the final width of B̂ is at most 2εk ˜̀/2.

5.3 The Probability that T Stops is Small
We will now prove that the probability that T stops before reaching a leaf is at most 1

100 +o(1).

I Lemma 6. The probability that T stops before reaching a leaf is at most 1
100 + o(1).

Proof. First, recall that if T reaches a vertex in layer-m, such that, the probability to reach
that vertex is smaller than 2−10r̃ · d−1

1 , then T stops. By the union bound, the probability
that T stops because of this rule is at most 2−10r̃ = o(1).

We will now bound the probability that T stops because of each of the other stopping rules.
Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over

x, a1, . . . , am) that the path T that starts from w1 reaches w2.

5.3.1 Stopping Rule 1: Significant-Vertices
I Lemma 7. The probability that T reaches a significant vertex is at most o(1).

Lemma 7 is proved in Section 6.
Next, we will bound the probability that T stops because of each of the other stopping

rules. By Lemma 7, it’s sufficient to bound these probabilities, under the assumption that T
doesn’t reach any significant vertex (as otherwise, T would have stopped because of stopping
rule 1).

5.3.2 Stopping Rule 2: Significant-Values
We will now bound the probability that T stops because of stopping rule 2. We will first
prove the following claim.

B Claim 8. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2`.

Proof. Since v is not significant,

E
x′∼Px|vj−1→v

[
Px|vj−1→v(x′)

]
=
∑

x′∈X

[
Px|vj−1→v(x′)2] = 2n · E

x′∈RX

[
Px|vj−1→v(x′)2] ≤ 22`j · 2−n.
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Hence, by Markov’s inequality,

Pr
x′∼Px|vj−1→v

[
Px|vj−1→v(x

′) > 24` · 2−n
]
≤ 22`j−4` ≤ 2−2`.

Since conditioned on the event vj−1 → v, the distribution of x is Px|vj−1→v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ vj−1 → v
]

= Pr
x

[(
Px|vj−1→v(x) > 24` · 2−n

) ∣∣ vj−1 → v
]
≤ 2−2`. J

By Claim 8, if v is a non-significant vertex in layer-i of part-j then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2` ≤ 2−4˜̀
. (3)

We need to bound from above

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]
, (4)

where the expectation is over the non-significant vertices v in layer-i of part-j, reached by
the path T . (If T stops before reaching layer-i of part-j, or if it reaches a significant vertex,
we think of v as undefined and think of the inner probability as 0). If j = 1, we are done by
Claim 8. We will proceed with the case j = 2. Recall that `2 = `.

We will use the following lemma, whose proof is deferred to the next subsection. We shall
instantiate the lemma by setting Sv = Sig(v).

I Lemma 9. Assume that for every non-significant vertex v in layer-i of part-2, we have
some subset of values Sv ⊆ X that depends only on v. Assume that for every such v (with
positive probability for the event v1 → v, where v1 is the vertex recorded by v), we have

Pr
x

[x ∈ Sv | v1 → v] ≤ 2−4˜̀
.

Then,

E
v

[Pr
x

[x ∈ Sv | v0 → v]] < 2−Ω(˜̀) (5)

where the expectation is over the non-significant vertices v in layer-i of part-2, reached by
the path T . (If T stops before reaching layer-i of part-2, or if it reaches a significant vertex,
we think of v as undefined and think of the inner probability as 0).

By Expression (3), the assumption of the lemma is satisfied by the choice Sv = Sig(v).
Thus, the conclusion of the lemma implies that

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]
≤ 2−Ω(˜̀).

Thus, the probability that T stops because of stopping rule 2 is at most 2−Ω(˜̀), in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 2 is at most 2−Ω(˜̀).

5.3.3 Proof of Lemma 9
Proof. We could also write Ev[Prx[x ∈ Sv | v0 → v]] as∑

v∈Li,2

Pr[v0 → v] · Pr
x

[x ∈ Sv | v0 → v] =
∑
v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)]
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where Li,2 denotes the non-significant vertices v in layer-i of part-2, that are reachable
(with probability larger than 0) from the start vertex.

Later on, we will define for every v ∈ Li,2, an event Gv that will occur with high
probability. We will denote by Ḡv, the complement of Gv. We will bound∑

v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)],

by bounding separately∑
v∈Li,2

Pr[Gv ∧ (x ∈ Sv) ∧ (v0 → v)] (6)

and ∑
v∈Li,2

Pr[Ḡv ∧ (x ∈ Sv) ∧ (v0 → v)] (7)

The second expression will be bounded by∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)], (8)

that will be at most 2−Ω(˜̀) (see Claim 10). Thus, we will focus first on bounding Expression (6),
which is equal to∑

v∈Li,2

∑
x′∈Sv

Pr[Gv ∧ (x = x′) ∧ (v0 → v)] (9)

=
∑
v∈Li,2

∑
x′∈Sv

Pr[Gv ∧ (v0 → v) | (x = x′)] · Pr[x = x′]. (10)

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over
x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1
of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,
such that, if the path T reached v it previously reached v′. Recall also that v remembers v1,
so if the path T reached v it previously reached v1.

Thus, the event v0 → v is equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies
the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).

Note also that if we fix x, that is, if we condition on x = x′, and we fix v (which also fixes
v′, v1) the events (v′ → v1) and (v1 → v) are independent (as the first one depends only on
ai+1, . . . , am and the second depends only on a1, . . . , ai). We will also have the property that
the event Gv is a function of v′ rather than v, and hence will also be denoted by Gv′ = Gv
(recall that v determines v′). Moreover, if we fix x and v′, we will have the property that
the event Gv′ depends only on ai+1, . . . , am, and hence the events Gv′ and (v′ → v1) are
independent of (v1 → v).
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Thus, for a fixed v (which also fixes v′, v1) and any x′ ∈ X,

Pr[Gv ∧ (v0 → v) | x = x′] = Pr[Gv′ ∧ (v′ → v1) ∧ (v1 → v) | x = x′]
= Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′].

We introduce the event (v′ →̃ v1) to indicate that the computational path from v′ reached v1
(as opposed to the usual notation that denotes the truncated path). Since (v′ → v1) implies
(v′ →̃ v1) we have

Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′]

≤ Pr[Gv′ ∧ (v′ →̃ v1) | x = x′] · Pr[v1 → v | x = x′].

By Bayes’ rule, the last expression is at most

Pr[x = x′ | Gv′ ∧ (v′ →̃ v1)] · Pr[x = x′ | v1 → v] · Pr[v′ →̃ v1] · Pr[v1 → v]
Pr[x = x′]2

= P
x|Gv′∧(v′ →̃ v1)(x

′) · Px|v1→v(x
′) · Pr[v′ →̃ v1] · Pr[v1 → v]

Pr[x = x′]2 .

Thus, Expression (10) is at most

∑
v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑
x′∈Sv

P
x|Gv′∧(v′ →̃ v1)(x

′)
Pr[x = x′] · Px|v1→v(x

′)
)
. (11)

Note that from layer-i of part-1 to layer-m of part-1, the branching program is one-pass.
Denote by Rv′ the one-pass branching program, from layer-i of part-1 to layer-m of part-1,
with starting vertex v′. Thus, we can use what we already know about one-pass branching
programs. We will apply a slight modification of the main theorem of [5] (Proposition 24
from Appendix), for one-pass branching programs, with parameters k′ = k, `′ = ˜̀, r′ = r̃/4.

As m ≤ 2εr̃ and Rv′ has width at most 2εk ˜̀/2 ≤ 2k′·`′/100 (ε is small enough), by
Proposition 24, we know that for any fixed v′, there exists an event Gv′ that depends only
on x, ai+1, . . . , am, such that, Pr(Gv′) ≥ 1− 2−˜̀/8 (˜̀≤ k), and for every x′ ∈ X, and every
v1 such that Pr[Gv′ ∧ (v′ →̃ v1)] > 0 it holds that

P
x|Gv′∧(v′ →̃ v1)(x

′) ≤ 22˜̀ · 2−n.

Namely, the event Gv′ is the event G from Proposition 24 corresponding to the branching
program Rv′ (that is, the event Gv′ is the event that the truncated-path as defined for
one-pass branching programs in [5] with slight modification, didn’t stop because of one of the
stopping rules, until the last layer, and didn’t violate the significant vertices and significant
values stopping rules in the last layer, that is, layer-m of part-1).

Substituting this in Expression (11), we get that the expression is at most

22˜̀ ·
∑
v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑
x′∈Sv

Px|v1→v(x
′)
)
. (12)

By the assumption of the lemma, for any v ∈ Li,2 we have
∑
x′∈Sv

Px|v1→v(x′) ≤ 2−4˜̀, thus
Expression (12) is at most

2−2˜̀ ·
∑
v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v].
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Recall that Li,2 denotes only the vertices v in layer-i of part-2, that are reachable (with
probability larger than 0) from the start vertex, v0. Recall that the event (v1 → v) is
equivalent to the event (v0 → v′) ∧ (v1 → v).

Thus,∑
v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v] ≤
∑
v′,v1,v

Pr [v′ →̃ v1] · Pr [(v0 → v′) ∧ (v1 → v)]

=
∑
v′,v1

Pr [v′ →̃ v1] ·
(∑

v

Pr [(v0 → v′) ∧ (v1 → v)]
)

≤
∑
v′,v1

Pr [v′ →̃ v1] · Pr [v0 → v′]

=
∑
v′

Pr [v0 → v′] ·
(∑

v1

Pr [v′ →̃ v1]
)

≤
∑
v′

Pr [v0 → v′] ≤ 1

(where the possible inequality in the first line is because the first sum is on all the paths
v0 → v′ → v1 → v, obtained with positive probabilities, whereas the second sum is on all
possible vertices v0, v

′, v1, v in the corresponding layers of the branching program).
Thus, we conclude that Expression (6) is at most 2−2˜̀. It remains to bound Expression (8).

B Claim 10.∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ 2−Ω(˜̀).

Proof.∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] =
∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

≤
∑
v′,v1,v

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

=
∑
v′,v1,v

Pr[Ḡv′ ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

=
∑

v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)] ·
∑
v1,v

Pr[(v′ → v1) ∧ (v1 → v)|Ḡv′ ∧ (v0 → v′)]

≤
∑

v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)]. (13)

For every non-significant v′ ∈ Li,1, denote by

Xv′ = {x′ : Px|v0→v′(x
′) ≥ 2˜̀/16 · 2−n},

and split the expression Pr[Ḡv′ ∧ (v0 → v′)] according to whether or not (x ∈ Xv′).

Pr[Ḡv′ ∧ (v0 → v′)] ≤ Pr[(v0 → v′) ∧ (x ∈ Xv′)] + Pr[Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)] (14)

We begin by bounding the first summand in Expression (14):

Pr[(v0 → v′) ∧ (x ∈ Xv′)] = Pr(v0 → v′) · Pr[(x ∈ Xv′)|v0 → v′]
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We bound Pr[x ∈ Xv′ |v0 → v′] very similarly to the proof of Claim 8, but with a different
threshold. Since v′ is not significant,

E
x′∼Px|v0→v′

[
Px|v0→v′(x

′)
]

=
∑
x′∈X

[
Px|v0→v′(x

′)2] = 2n · E
x′∈RX

[
Px|v0→v′(x

′)2] ≤ 22`1 · 2−n.

Hence, by Markov’s inequality,

Pr[x ∈ Xv′ |v0 → v′] = Pr
x′∼Px|v0→v′

[
Px|v0→v′(x

′) ≥ 2˜̀/16 · 2−n
]
≤ 22`1−˜̀/16 ≤ 2−˜̀/32

(recall that `1 = ˜̀/100). Overall, we bounded the first summand in Expression (14) by
Pr(v0 → v′) · 2−˜̀/32.

Next, we bound the second summand in Expression (14).

Pr
[
Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)

]
=

∑
x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′

]
.

Since if we fix x and v′, the event Gv′ depends only on ai+1, . . . , am and hence is independent
of (v0 → v′), we have∑

x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′

]
=

∑
x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ | x = x′

]
· Pr

[
v0 → v′ | x = x′

]
= Pr

(
v0 → v′

)
·

∑
x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· Pr

[
x = x′ | v0 → v′

]
(by Bayes’ rule)

= Pr
(
v0 → v′

)
·

∑
x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· Px|v0→v′(x

′)

≤ Pr
(
v0 → v′

)
·

∑
x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· 2˜̀/16 · 2−n

(by the definition of Xv′)

≤ Pr
(
v0 → v′

)
· Pr

(
Ḡv′
)
· 2˜̀/16

≤ Pr
(
v0 → v′

)
· 2−˜̀/8 · 2˜̀/16

≤ Pr
(
v0 → v′

)
· 2−˜̀/16.

Substituting in Expression (14), we have

Pr[Ḡv′ ∧ (v0 → v′)] ≤ Pr
(
v0 → v′

)
· 2−˜̀/32 + Pr

(
v0 → v′

)
· 2−˜̀/16.

Substituting in Expression (13), we have∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ (2−˜̀/32 + 2−˜̀/16) ·
∑

v′∈Li,1

Pr
(
v0 → v′

)
≤ 2 · 2−˜̀/32. J

This finishes the proof of Lemma 9. J
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5.3.4 Stopping Rule 3: Bad-Edges
We will now bound the probability that T stops because of stopping rule 3. We will first
prove the following claim.

B Claim 11. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

Proof. Since v is not significant,
∥∥Px|vj−1→v

∥∥
2 ≤ 2`j · 2−n ≤ 2` · 2−n. Since Px|vj−1→v is a

distribution,
∥∥Px|vj−1→v

∥∥
1 = 2−n. Thus,∥∥Px|vj−1→v

∥∥
2∥∥Px|vj−1→v
∥∥

1
≤ 2`.

Since M is a (10k, 10`)-L2-extractor with error 2−10r, there are at most 2−10k · |A| elements
a ∈ A with∣∣〈Ma,Px|vj−1→v〉

∣∣ ≥ 2−10r ·
∥∥Px|vj−1→v

∥∥
1 = 2−10r · 2−n

The claim follows since ai+1 is uniformly distributed over A. C

By Claim 11, if v is a non-significant vertex then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

We need to bound

Pr
ai+1

[ai+1 ∈ Bad(v) \High(v) | v0 → v].

We bound

Pr
ai+1

[ai+1 ∈ Bad(v) \High(v) | v0 → v] =
∑

a∈Bad(v)\High(v)

Pr[ai+1 = a | v0 → v]

≤
∑

a∈Bad(v)\High(v)

2k · 2−n
′
≤ 2k ·

∑
a∈Bad(v)

Pr[ai+1 = a]

= 2k · Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2k · 2−4k = 2−3k.

Thus, the probability that T stops because of stopping rule 3 is at most 2−3k, in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 3 is at most 2−2k.

5.3.5 Stopping Rule 4: Very-Bad Edges
We will now bound the probability that T stops because of stopping rule 4.

Recall that for a vertex v in layer-i of part-2 of the program, VeryBad(v) is the set of all
(a, b) ∈ A× {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.

Note that for every a ∈ A, there is at most one b ∈ {−1, 1}, denoted bv(a), such that

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.
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If such a b doesn’t exist we let bv(a) = ∗, and think of it as undefined. Thus, for every v,
and every (a, b) ∈ A× {−1, 1},(

(a, b) ∈ VeryBad(v)
)
⇐⇒

(
b = bv(a)

)
, (15)

and

Pr
x

[M(a, x) = bv(a) | v1 → v] ≤ 2−4˜̀
. (16)

Let av ∈ A be an a ∈ A, such that Prx[M(a, x) = bv(a) | v0 → v] is maximal and let
bv = bv(av). We need to bound from above

E
v

[
Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]

]
, (17)

where the expectation is over the vertex v in layer-i of part-2, reached by the path T . (If
T stops before reaching layer-i of part-2, we think of v as undefined and think of the inner
probability as 0). That is, we could also write Expression (17) as∑

v∈Li,2

Pr[v0 → v] · Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v],

where Li,2 denotes the vertices v in layer-i of part-2, that are reachable (with probability
larger than 0) from the start vertex. By Equation (15), Expression (17) is equal to

E
v

[
Pr[bi+1 = bv(ai+1) | v0 → v]

]
,

which, by the definition of bi+1, is equal to

E
v

[
Pr[M(ai+1, x) = bv(ai+1) | v0 → v]

]
,

which, by the definitions of av, bv, is at most

E
v

[
Pr[M(av, x) = bv | v0 → v]

]
. (18)

In what follows, we assume for simplicity and without loss of generality that for every v,
bv ∈ {−1, 1} is defined (as otherwise Pr[M(av, x) = bv | v0 → v] = 0 and can be omitted
from the expectation).

For any fixed v, denote by Sv = {x : M(av, x) = bv}. We can apply Lemma 9, since from
Expression (16) for any non-significant v

Pr[x ∈ Sv | v1 → v] ≤ 2−4˜̀
.

Thus, we get

E
v

[Pr[x ∈ Sv | v0 → v]] ≤ 2−Ω(˜̀) ,

and since (x ∈ Sv) ⇐⇒ (M(av, x) = bv), we have

E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(˜̀) .

Finally, by the definitions of av and bv we have

E
v

[Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]] ≤ E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(˜̀) .

Thus, the probability that T stops because of stopping rule 4 is at most 2−Ω(˜̀), in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 4 is at most 2−Ω(˜̀).
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5.3.6 Stopping Rule 5: Large Lv

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over
x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that v1 is the vertex reached by the path at the end of part-1. Fix v1 and denote
by E the event v0 → v1. Let u0, u1, . . . , um be the vertices reached by the path in part-2,
where u0 = v1. (If the path stops before reaching layer-i of part-2, we define ui to be a
special stop vertex in that layer). Note that conditioned on the event E, the random variable
ui is a function of x, a1, . . . , ai and for i ≥ 1 it can also be viewed as a function of x, ui−1, ai.

Denote by T the number of high-probability edges that the path traverses in part-2. For
every i ∈ [m], let Ti ∈ {0, 1} be an indicator random variable that indicates whether the
path traverses a high-probability edge at step-i of part-2. Thus,

T =
m∑
i=1

Ti.

For every i ∈ [m], we have that Ti = 1 only if ai ∈ High(ui−1), that is, only if Pr(ai|ui−1, E) ≥
2k · 2−n′ , or equivalently

log
(

2n′ · Pr(ai|ui−1, E)
)

k
≥ 1.

B Claim 12. Let Z ∈ {0, 1}n′ be any random variable. Let k ≥ 4. Let T (Z) ∈ {0, 1} be an
indicator random variable for the event Pr(Z) ≥ 2k · 2−n′ . Then,

2 ·E
Z

 log
(

2n′ · Pr(Z)
)

k

 ≥ E
Z

[T (Z)].

Proof. Let α = PrZ(T (Z) = 1). That is, we have Pr(Z) ≥ 2k · 2−n′ with probability α. Thus,

E
Z

 log
(

2n′ · Pr(Z)
)

k

 =

α ·E
Z

 log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 1

+ (1− α) ·E
Z

 log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 0

 .
By the monotonicity of the logarithm function, we have,

α ·E
Z

 log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 1

 ≥ α ·E
Z

 log
(

2n′ · 2k · 2−n′
)

k

∣∣∣∣∣ T (Z) = 1

 = α

By the monotonicity of the logarithm function and the concavity of the entropy function, we
have,

(1− α) ·E
Z

 log
(

2n′ · Pr(Z)
)

k

∣∣∣∣∣ T (Z) = 0

 ≥
(1− α) ·E

Z

 log
(

2n′ · (1− α) · 2−n′
)

k

∣∣∣∣∣ T (Z) = 0

 =
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(1− α) log(1− α)
k

(as, by the concavity of the entropy function, the expression is minimized when the random
variable Z|(T (Z) = 0) is uniformly distributed).

Thus, the left hand side of the claim is at least

2α+ 2(1− α) log(1− α)
k

≥ 2α− 4α
k
≥ 2α− 4α

4 = α.

The claim follows Since EZ [T (Z)] = α. C

By Claim 12,

E
x,a1,...,am

[T |E] =
m∑
i=1

E
x,a1,...,am

[Ti|E] ≤ 2 ·
m∑
i=1

E
x,a1,...,am

 log
(

2n′ · Pr(ai|ui−1, E)
)

k



= 2
k
·

(
mn′ −

m∑
i=1

H(ai|ui−1, E)
)
,

where H denotes the entropy function. Since conditioning may only decrease the entropy,
the last expression is at most

≤ 2
k
·

(
mn′ −

m∑
i=1

H(ai|x, ui−1, E)
)
.

Since, conditioned on E, the random variable ui−1 is a function of x, a1, . . . , ai−1, by the
data-processing inequality, H(ai|x, ui−1, E) ≥ H(ai|x, a1, . . . , ai−1, E), and hence the last
expression is at most

≤ 2
k
·

(
mn′ −

m∑
i=1

H(ai|x, a1, . . . , ai−1, E)
)
.

By the chain rule, the last expression is equal to

= 2
k
·
(
mn′ −H(a1, . . . , am|x,E)

)
= 2
k
·
(
mn′ −H(x, a1, . . . , am|E) + H(x|E)

)
≤ 2
k
·
(
mn′ + n−H(x, a1, . . . , am|E)

)
≤ 2
k
· log

(
1

Pr(E)

)
.

Thus,

E
x,a1,...,am

[T |E] ≤ 2
k
· log

(
1

Pr(E)

)
.

By Markov inequality

Pr
x,a1,...,am

[
T ≥ 200

k
· log

(
1

Pr(E)

) ∣∣∣∣∣E
]
≤ 1

100 .
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Since we assumed that Pr(E) ≥ 2−10r̃ · d−1
1 and since the width of B̂ is at most 2εk ˜̀/2

and since by Equation (1) and Equation (2), r̃ is negligible compared to εk ˜̀/2, we have that
log
(

1
Pr(E)

)
≤ εk ˜̀. Hence,

Pr
x,a1,...,am

[
T ≥ 200ε˜̀

∣∣∣∣ E] ≤ 1
100 .

Thus, the probability to stop on part-2 because of stopping rule 5 is at most 1
100 .

5.3.7 Stopping Rule 6: Consistency-Stop
We will now show that the probability that T stops on a vertex v, in layer-i of part-2, because
of stopping rule 6, conditioned on the event v0 → v, is 0.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1
of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,
such that, if the path T reached v it previously reached v′.

If T needs to stop on v, because of stopping rule 6, because T stopped on the vertex v′, it
couldn’t have reached v in the first place (as it would have stopped on v′). Thus, conditioned
on the event v0 → v, the path T didn’t stop on v′ and doesn’t need to stop on v because of
stopping rule 6.

Thus, the probability that T stops because of stopping rule 6 is 0.
This completes the proof of Lemma 6. J

5.4 The Final Success Probability is Small
Let v be a vertex in the last layer of the program. Assume that the probability for the event
v0 → v is larger than 0. Since v is in the last layer, the event v0 → v is equivalent to v1 → v

(since the second part of the program runs a copy of the first part). Hence,

Px|v0→v = Px|v1→v

and

Pr[v0 → v] = Pr[v1 → v].

In particular, if v is not significant, Px|v0→v has small L2-norm.

E
x′∈RX

[
Px|v0→v(x

′)2] ≤ 22` · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | v0 → v] = Px|v0→v(x
′) ≤ 2` · 2−n/2 ≤ 2−n/4

In particular,

Pr[x̃(v) = x | v0 → v] ≤ 2−n/4.

Thus, either the computation path stops before reaching v which happens with probability
at most 1

100 + o(1) or it reaches a non-significant vertex where the probability of guessing
correctly is o(1). Thus, the final success probability is bounded by 1

100 + o(1). This completes
the proof of Theorem 4.
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6 Proof of Lemma 7

Proof Overview

Let s be a significant vertex in part-j (that remembers the vertices visited at the end of parts
1, . . . , j − 1, denoted by s1, . . . , sj−1). Assume that the probability for the event v0 → s is
larger than 0. We need to bound from above the probability for the event v0 → s. Since the
event v0 → s is equivalent to (v0 → sj−1) ∧ (sj−1 → s), it suffices to bound from above the
probability for (sj−1 → s). Note that to analyze this probability we can ignore all parts of
the program, except for part-j, which is a one-pass branching program.

We would like to reprove Lemma 4.1 of [5], with the updated stopping rules. In the
definition of the progress function Zi, we will take the sum only on vertices u ∈ Li,j , such
that s can be reached from u (and in the same way for edges in the definition of Z ′i). In
particular, this implies that every index in Lu is contained in Ls (as otherwise s cannot be
reached from u).

The progress function is still small at the beginning and large at the end, so as before
the main thing to do is to prove that it grows slowly. This was done in Claim 4.10 of [5].

The main difference here is that the progress function doesn’t grow slowly for every edge,
as some edges are now bad, and we have to take the bad edges into account. We separate to
time steps that are in Ls and time steps that are not in Ls. For time steps that are not in
Ls, we don’t need to count the bad edges at all, as they are not recorded by Ls and hence s
is not reachable from these edges.

As for steps in Ls, we know that the edges are not very-bad, and we show that the
progress function may increase by a factor of at most 25˜̀k. Since |Ls| ≤ 200ε˜̀ (as otherwise
T would have stopped by stopping rule 5), the total effect of the bad edges on the progress
function is a factor of at most 25˜̀k·200ε˜̀≤ 21000εk`, which we can afford.

6.1 Proof of Lemma 7
Proof. We need to prove that the probability that T reaches any significant vertex is o(1).
Let s be a significant vertex in part-j. Assume that the probability that T reaches s is
larger than 0. We will bound from above the probability that T reaches s, and then use
a union bound over all significant vertices of B̂. Since the event v0 → s is equivalent to
(v0 → sj−1) ∧ (sj−1 → s), it suffices to bound from above the probability for (sj−1 → s).
Note that to analyze this probability we can ignore all parts other than j of the program,
which leaves us with a one-pass branching program. Furthermore, since s determines sj−1,
we can only consider the subprogram that starts at sj−1 and analyze the probability that
the restriction of T to this subprogram reaches s. We denote by B′ the subprogram of B̂
restricted to the j-part with sj−1 as the starting node.

The Distributions Px|v and Px|e

For a vertex v in B′, we denote by Ev the event that T starting from sj−1 reaches the vertex
v. For simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability
is over x, a1, . . . , am), and we denote by Px|v = Px|Ev

the distribution of the random variable
x conditioned on the event Ev.

Similarly, for an edge e of the branching program B′, let Ee be the event that T starting
from sj−1 traverses the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over
x, a1, . . . , am), and Px|e = Px|Ee

.
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Notation

B′ inherits the definitions of significant vertices, Sig(v), Bad(v), VeryBad(v) and High(v)
from B̂. Note that significant vertices, Sig(v), Bad(v) and VeryBad(v) are defined conditioned
on the event vj−1 → v, which is equivalent to the event Ev. Recall that the walk T does not
stop on an edge (v, u) marked (a, b) if a ∈ High(v), as long as (a, b) /∈ VeryBad(v). We will
use the following fact on T : if i /∈ Ls and T takes a bad-edge (v, u) on the i-th step, then
Lu 6⊆ Ls and s is not reachable from u.

For i ∈ {0, . . . ,m}, let L′i be the set of vertices v in layer-i of B′ such that Pr(v) > 0
and it is possible to reach s from v (in particular, the set of high-probability equations
stored in v is also stored in s). For i ∈ {1, . . . ,m}, let Γi be the set of edges e from L′i−1 to
L′i of B′, such that Pr(e) > 0.

Recall that by the construction of the branching-program B̂, part-j runs a copy of all
previous parts of the computation. Thus, a vertex v in B′ or equivalently a vertex v in part-j
of B̂ has corresponding vertices v′1, . . . , v′j−1 in layer-i of parts 1, . . . , j − 1, respectively, such
that, if the path T reached v it previously reached v′1, . . . , v′j−1. We denote by v′j = v. We
denote by

S̃ig(v) ,
j⋃

j′=1
Sig(v′j′).

Recall that by stopping rules 2 and 6, the path T stops if x ∈ S̃ig(v).
The next claim bounds the probability of stopping on a vertex v in part-2 due to stopping

rule 2 of part-1 on the vertex v′ that v remembers.

B Claim 13. If v is a non-significant vertex in layer-i of part-2 that remembers v′, and v′ is
a non-significant vertex in layer-i of part-1, then

Pr
x

[x ∈ Sig(v′) | v1 → v] ≤ 2−2`.

Proof. Since v is not significant,

E
x′∼Px|v1→v

[
Px|v0→v′(x

′)
]

=
∑
x′∈X

[
Px|v0→v′(x

′) · Px|v1→v(x
′)
]

(using Cauchy-Schwarz)

≤
√∑
x′∈X

Px|v0→v′(x′)2 ·
∑
x′∈X

Px|v1→v(x′)2

= 2n ·
√

E
x′∈RX

[
Px|v0→v′(x′)2

]
E

x′∈RX

[
Px|v1→v(x′)2

]
(since both v′ and v are non-significant)

≤ 2`1+`2 · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v1→v

[
Px|v0→v′(x

′) > 24` · 2−n
]
≤ 2`1+`2−4` ≤ 2−2`.

Since conditioned on the event v1 → v, the distribution of x is Px|v1→v, we obtain

Pr
x

[
x ∈ Sig(v′)

∣∣ v1 → v
]

= Pr
x

[(
Px|v0→v(x) > 24` · 2−n

) ∣∣ v1 → v
]
≤ 2−2`. J
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B Claim 14. Let i ∈ {1, . . . ,m}. For any edge e = (v, u) ∈ Γi, labeled by (a, b), such that
Pr(e) > 0, for any x′ ∈ X,

Px|e(x′) =
{

0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies
ce ≥ 1

2 − 2 · 2−2r, if i /∈ Ls.
ce ≥ 2−4˜̀− 2 · 2−2` ≥ 2−5˜̀, if i ∈ Ls.

Proof. Let v′1, . . . , v′j be the vertices in the branching program B̂ that v remembers. Let
e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since Pr(e) > 0, the
vertices v′1, . . . , v′j are not significant (as otherwise T always stops on v and hence Pr(e) = 0).
Also, since Pr(e) > 0, we know that (a, b) is not very-bad (as otherwise T never traverses e
and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if: x 6∈ S̃ig(v) (as otherwise T stops
on v) and M(a, x) = b and ai+1 = a. Therefore, for any x′ ∈ X,

Px|e(x′) =
{

0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑{

x′ : x′ 6∈S̃ig(v) ∧M(a,x′)=b
}Px|v(x′) = Pr

x
[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev].

Since v′1, . . . , v′j are not significant, by Claim 8 and Claim 13:

Pr
x

[x ∈ S̃ig(v) | Ev] ≤
j∑

j′=1
2−2` ≤ 2 · 2−2` ≤ 2−2r.

If i /∈ Ls, then a /∈ Bad(v), as otherwise Lu 6⊆ Ls and s is not reachable from u. Thus∣∣∣Pr
x

[M(a, x) = 1 | Ev]− Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣ ≤ 2−2r,

and hence

Pr
x

[M(a, x) 6= b | Ev] ≤ 1
2 + 2−2r.

Hence, by the union bound,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 1
2 − 2 · 2−2r.

If i ∈ Ls, then (a, b) /∈ VeryBad(v), and we have Prx[M(a, x) = b | Ev] ≥ 2−4˜̀. Thus,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 2−4˜̀− 2 · 2−2` . J
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Bounding the Norm of Px|s

We will show that
∥∥Px|s∥∥2 cannot be too large. Towards this, we will first prove that for

every edge e of B′ that is traversed by T starting from sj−1 with probability larger than
zero,

∥∥Px|e∥∥2 cannot be too large.

B Claim 15. For any edge e of B′, such that Pr(e) > 0,∥∥Px|e∥∥2 ≤ 25˜̀ · 2`j · 2−n.

Proof. Let e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Thus,∥∥Px|v∥∥2 ≤ 2`j · 2−n.

By Claim 14, for any x′ ∈ X,

Px|e(x′) =
{

0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce satisfies ce ≥ 2−5˜̀. Thus,∥∥Px|e∥∥2 ≤ c
−1
e ·

∥∥Px|v∥∥2 ≤ 25˜̀ · 2`j · 2−n J

B Claim 16.∥∥Px|s∥∥2 ≤ 25˜̀ · 2`j · 2−n.

Proof. Let Γin(s) be the set of all edges e of B′, that are going into s, such that Pr(e) > 0.
Note that∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s) · Px|e(x

′)2.

Summing over x′ ∈ X, we obtain,∥∥Px|s∥∥2
2 ≤

∑
e∈Γin(s)

Pr(e)
Pr(s) ·

∥∥Px|e∥∥2
2 .

By Claim 15, for any e ∈ Γin(s),∥∥Px|e∥∥2
2 ≤

(
25˜̀ · 2`j · 2−n

)2
.

Hence,∥∥Px|s∥∥2
2 ≤

(
25˜̀ · 2`j · 2−n

)2
. J
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Similarity to a Target Distribution
Recall that for two functions f, g : X → R+, we defined

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

B Claim 17.

〈Px|s,Px|s〉 > 22`j · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s∥∥2

2 > 22`j · 2−2n. J

B Claim 18.

〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n. J

Measuring the Progress
For i ∈ {0, . . . ,m}, let

Zi =
∑
v∈L′

i

Pr(v) · 〈Px|v,Px|s〉k.

For i ∈ {1, . . . ,m}, let

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′i as measuring the progress made by the branching program, towards
reaching a state with distribution similar to Px|s.

For a vertex v ∈ L′i of B′, let Γout(v) be the set of all edges e of B′, that are going out of
v to L′i+1, such that Pr(e) > 0. Note that∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v, or goes to a vertex
from which s is not reachable).

Recall that Ls stores a (not too long) list of indices to layers on which the path might
choose to go over bad edges. The next four claims show that the progress made by the
branching program is slow on every layer i /∈ Ls. On layers i ∈ Ls the progress might be
significant but we will still have meaningful bounds on it.
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B Claim 19. For every vertex v ∈ L′i−1, such that Pr(v) > 0,∑
e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k ≤ 〈Px|v,Px|s〉k · cki + 2−2nk+k · cki ,

where ci is defined as
ci = 1 + 2−r, if i /∈ Ls.
ci = 25˜̀, if i ∈ Ls.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty
and thus the left hand side is equal to zero and the right hand side is positive, so the claim
follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R+ as follows. For any x′ ∈ X,

P (x′) =
{

0 if x′ ∈ S̃ig(v)
Px|v(x′) if x′ 6∈ S̃ig(v)

Note that by the definition of Sig(v) and since Sig(v) ⊆ S̃ig(v), for any x′ ∈ X,

P (x′) ≤ 24` · 2−n. (19)

Define f : X → R+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 16 and Equation (19),

‖f‖2 ≤ 24` · 2−n ·
∥∥Px|s∥∥2 ≤ 24` · 2−n · 25˜̀ · 2`j · 2−n ≤ 210` · 2−2n. (20)

By Claim 14, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =
{

0 if M(a, x′) 6= b

P (x′) · c−1
e if M(a, x′) = b

where ce satisfies ce ≥ 1
2 − 2 · 2−2r if i /∈ Ls and ce ≥ 2−5˜̀ if i ∈ Ls. Denote by cv the

minimal value that ce can get for e ∈ Γout(v). By the above, cv ≥ 2−5˜̀ and cv ≥ 1
2 − 2 · 2−2r

if i /∈ Ls. Note that c−1
v ≤ 2ci in both cases (recall that ci = 25˜̀ for i ∈ Ls and ci = 1 + 2−r

if i /∈ Ls). Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) =
{

0 if M(a, x′) 6= b

f(x′) · c−1
e if M(a, x′) = b

and hence, we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x′) · Px|s(x′)] = E
x′∈RX

[f(x′) · c−1
e · 1{x′∈X : M(a,x′)=b}]

= E
x′∈RX

[
f(x′) · c−1

e ·
(1+b·M(a,x′))

2

]
≤ (‖f‖1 + b · 〈Ma, f〉) · (2cv)−1. (21)

We will now consider two cases:

Case I: ‖f‖1 < 2−2n

In this case, we bound |〈Ma, f〉| ≤ ‖f‖1 (since f is non-negative and the entries of M are
in {−1, 1}) and obtain for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < c−1
v · 2−2n ≤ 2ci · 2−2n.

Since
∑
e∈Γout(v)

Pr(e)
Pr(v) ≤ 1, Claim 19 follows, as the left hand side of the claim is smaller

than the second term on the right hand side.
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Case II: ‖f‖1 ≥ 2−2n

For every a ∈ A, define

t(a) = |〈Ma, f〉|
‖f‖1

.

By Equation (21),

〈Px|e,Px|s〉k < ‖f‖
k
1 · (1 + t(a))k · (2cv)−k (22)

Note that by the definitions of P and f ,

‖f‖1 = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),
and at most one edge e(a,−1) ∈ Γout(v), labeled by (a,−1), and we have

Pr(e(a,1))
Pr(v) + Pr(e(a,−1))

Pr(v) ≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (22),∑
e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k < 〈Px|v,Px|s〉k · E
a∈RA

[
(1 + t(a))k

]
· (2cv)−k. (23)

It remains to bound

E
a∈RA

[
(1 + t(a))k

]
, (24)

using the properties of the matrix M and the bounds on the L2 versus L1 norms of f .
By Equation (20) and the assumption that ‖f‖1 ≥ 2−2n we get

‖f‖2
‖f‖1

≤ 210` .

Since M is a (10k, 10`)-L2-extractor with error 2−10r, there are at most 2−10k · |A| rows
a ∈ A with t(a) = |〈Ma,f〉|

‖f‖1
≥ 2−10r. We bound the expectation in Equation (24), by splitting

the expectation into two sums

E
a∈RA

[
(1 + t(a))k

]
= 1
|A| ·

∑
a : t(a)≤2−10r

(1 + t(a))k + 1
|A| ·

∑
a : t(a)>2−10r

(1 + t(a))k . (25)

We bound the first sum in Equation (25) by (1 + 2−10r)k. As for the second sum in
Equation (25), we know that it is a sum of at most 2−10k · |A| elements, and since for every
a ∈ A, we have t(a) ≤ 1, we have

1
|A| ·

∑
a : t(a)>2−10r

(1 + t(a))k ≤ 2−10k · 2k ≤ 2−2r

(where in the last inequality we used the fact that r ≤ k). Overall, we get

E
a∈RA

[
(1 + t(a))k

]
≤ (1 + 2−10r)k + 2−2r ≤ (1 + 2−2r)k+1. (26)
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Substituting Equation (26) into Equation (23), we obtain∑
e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k < 〈Px|v,Px|s〉k ·
(
1 + 2−2r)k+1 · (2cv)−k.

If i /∈ Ls, then (2cv)−1 ≤
(
1 + 2−2r+3) and thus

(
1 + 2−2r)k+1 · (2cv)−k ≤ (1 + 2−r)k (where

the inequality uses the assumption that r is sufficiently large).
If i ∈ Ls, then (2cv)−1 ≤ 1

2 · 2
5˜̀ and thus

(
1 + 2−2r)k+1 · (2cv)−k ≤ 25˜̀k. This completes

the proof of Claim 19. C

B Claim 20. Recall the definition of ci from Claim 19. For every i ∈ {1, . . . ,m},

Z ′i ≤ (Zi−1 + 2−2nk+k) · cki

Proof. By Claim 19,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k =
∑

v∈L′
i−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k

≤
∑

v∈L′
i−1

Pr(v) ·
(
〈Px|v,Px|s〉k + 2−2nk+k) · cki

= cki ·
(
Zi−1 +

∑
v∈L′

i−1

Pr(v) · 2−2nk+k
)

≤ cki ·
(
Zi−1 + 2−2nk+k) J

B Claim 21. For every i ∈ {1, . . . ,m},

Zi ≤ Z ′i.

Proof. For any v ∈ L′i, let Γin(v) be the set of all edges e ∈ Γi, that are going into v. Note
that ∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ L′i and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v) · Px|e(x

′),

and hence

〈Px|v,Px|s〉 =
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k.

Summing over all v ∈ L′i, we get

Zi =
∑
v∈L′

i

Pr(v) · 〈Px|v,Px|s〉k ≤
∑
v∈L′

i

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v) · 〈Px|e,Px|s〉

k

=
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k = Z ′i. J
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B Claim 22. For every i ∈ {1, . . . ,m},

Zi ≤ 2r+3k+5˜̀k·|Ls| · 2−2k·n.

Proof. By Claim 20 and Claim 21, for every i ∈ {1, . . . ,m},

Zi ≤ (Zi−1 + 2−2nk+k) · cki

where ci = (1 + 2−r) if i /∈ Ls and ci = 25˜̀ if i ∈ Ls. Thus, we can show by induction on
i ∈ {1, . . . ,m} that

Zi ≤ 2−2nk+k · (i+ 1) ·
i∏

i′=1
cki′

Hence, for any i ∈ {1, . . . ,m} it holds that

Zi ≤ 2−2nk+k · (m+ 1) · (1 + 2−r)mk · 25˜̀k|Ls|.

Since m ≤ 2εr̃ ≤ 2r − 1,

Zi ≤ 2−2k·n+k · 2r · ek · 25˜̀k|Ls|. J

Proof of Lemma 7
We can now complete the proof of Lemma 7. Assume that s is in layer-i of B′. By Claim 17,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉k > Pr(s) ·
(
22`j · 2−2n)k = Pr(s) · 22`j ·k · 2−2k·n.

On the other hand, by Claim 22,

Zi ≤ 2r+3k+5˜̀k·|Ls| · 2−2k·n.

Thus, we get

Pr(s) ≤ 2r+3k+5˜̀k·|Ls| · 2−2`j ·k

We treat differently the case j = 1 and j = 2 as follows. For j = 1, the set Ls is empty, and
we have

Pr(s) ≤ 2r+3k · 2−2`1·k ≤ 2−`1·k.

For j = 2 we have

Pr(s) ≤ 2r+3k+5˜̀k·|Ls| · 2−2`·k

≤ 2r+3k+1000ε˜̀2k · 2−2`·k (|Ls| ≤ 200ε˜̀)
≤ 24k+1000ε`k · 2−2`·k (r ≤ k, ˜̀≤

√
`)

≤ 2−`k ≤ 2−`1·k . (ε < 1/1010)

Thus, in both cases we showed Pr(s) ≤ 2−`1k.
Recall that we showed that the width of B̂ is at most 2εk ˜̀/2, and note that the length of

B̂ is at most 2 · 2εr̃. Taking a union bound over at most 2εk ˜̀/2 · 2 · 2εr̃ ≤ 2k`1/2 significant
vertices of B̂, we conclude that the probability that T reaches any significant vertex is at
most 2−k`1/2 = o(1). J
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A Appendix

We first state the main theorem of [5] and then the modified proposition used in the proof of
Lemma 9.

I Theorem 23 (Theorem 1, [5]). Let 1
100 < c < 2

3 . Fix γ to be such that 3c
2 < γ2 < 1. Let

X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1} be a matrix which is a
(k′, `′)-L2-extractor with error 2−r′ , for sufficiently large1 k′, `′ and r′, where `′ ≤ n. Let

r := min
{
r′

2 ,
(1−γ)k′

2 , (1−γ)`′
2 − 1

}
.

1 k′, `′, r′ are larger than some constant that depends on γ.
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Let B be a branching program of length at most 2r and width at most 2c·k′·`′ for the learn-
ing problem that corresponds to the matrix M . Then, the success probability of B is at
most O(2−r).

The authors prove the above theorem by first defining a truncated path that stops on a
significant vertex, a significant value or a bad edge, such that, if the path doesn’t stop before
reaching a leaf, then the probability of guessing the correct x is small (at most O(2−r) to
be precise). Then, the authors prove that the probability that the truncated path stops
is at most O(2−r). Through slight modifications to the proof of the above theorem (with
weaker bounds on the memory and length of B, in terms of constants), we can prove that
the probability that a slightly modified truncated path stops is at most 2−Ω(min{k′,`′}). As
the modified proof is very similar to that of Theorem 23 and the original proof is lengthy, we
just highlight the changes to the proof to get the following proposition.

I Proposition 24. Let X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1}
be a matrix which is a (k′, `′)-L2-extractor with error 2−r′ , for sufficiently large k′, `′ and r′,
where `′ ≤ n. Let

r := min {r′, k′, `′}
100 .

Let B be a branching program of length at most 2r and width at most 2 k′·`′
100 for the learning

problem that corresponds to the matrix M . Then, there exists an event G such that

Pr[G] ≥ 1− 2−
min{k′,`′}

8

and for every x′ ∈ X and every leaf z of the branching program B (with starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22`′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the
computational path (as opposed to the truncated path) from z0 reaches z.

Proof. The proof of Theorem 1 of [5] defines the truncated-path, T , to be the same as the
computation-path of B, except that it sometimes stops before reaching a leaf. Roughly
speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, the
proof shows that the probability that T stops before reaching a leaf is negligible, so we can
think of T as almost identical to the computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote
by Pr(v) = Pr(Ev) the probability for Ev, and we denote by Px|v = Px|Ev

the distribution of
the random variable x conditioned on the event Ev.

We first look at the definition of the truncated-path from the proof of Theorem 1 of [5].
We modify the stopping rules for a path as follows:

Let l̂ = `′

6 .

Significant Vertices. A vertex v in layer-i of B is significant if∥∥Px|v∥∥2 > 2l̂ · 2−n.

Significant Values. Even if v is not significant, Px|v may have relatively large values. For a
vertex v in layer-i of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 23l̂ · 2−n.
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Bad Edges. For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)
∣∣ ≥ 2−r

′
.

Recall, that the truncated path is defined by induction on the layers of the branching
program B:

The Truncated-Path T
Assume that we already defined T until it reaches a vertex v in layer-i of B. The path T
stops on v if (at least) one of the following occurs:
1. v is significant.
2. x ∈ Sig(v).
3. ai+1 ∈ Bad(v).
4. v is a leaf.
Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the computa-
tional-path).

The Event G

We define G to be the event that the truncated-path T didn’t stop because of one of the
first three stopping rules: That is, T didn’t stop before reaching a leaf and didn’t violate the
significant vertices and significant values stopping rules (that is, the first two stopping rules)
on the leaf that it reached.

We can upper bound the probability for Ḡ similarly to the way that it’s done in [5].

I Lemma 25. The probability that T reaches a significant vertex is at most 2−k′ .

The proof of the above lemma is very similar to the analogous lemma in the proof of
Theorem 23. The only change is in the definition of significant value - we define the significant
values to be the set of all x′ ∈ X, such that, Px|v(x′) > 23l̂ · 2−n instead of the set of all
x′ ∈ X, such that, Px|v(x′) > 22l̂+2r · 2−n. With the above (worse in terms of constants)
bounds on the memory and the length of the branching program, the proof works in the
same way.

Lemma 25 shows that the probability that T stops on a vertex, because of the first reason
(i.e., that the vertex is significant), is small. The next two claims imply that the probabilities
that T stops on a vertex, because of the second and third reasons, are also small.

B Claim 26. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−l̂.

Proof. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=
∑
x′∈X

[
Px|v(x′)2] = 2n · E

x′∈RX

[
Px|v(x′)2] ≤ 22l̂ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 2l̂ · 22l̂ · 2−n

]
≤ 2−l̂.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev] = Pr
x

[(
Px|v(x) > 2l̂ · 22l̂ · 2−n

) ∣∣ Ev ] ≤ 2−l̂. J
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B Claim 27. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−k
′
.

Proof. Since v is not significant,
∥∥Px|v∥∥2 ≤ 2l̂·2−n. Since Px|v is a distribution,

∥∥Px|v∥∥1 = 2−n.
Thus,∥∥Px|v∥∥2∥∥Px|v∥∥1

≤ 2l̂ ≤ 2`
′
.

Since M is a (k′, `′)-L2-extractor with error 2−r′ , there are at most 2−k′ · |A| elements α ∈ A
with∣∣〈Mα,Px|v〉

∣∣ ≥ 2−r
′
·
∥∥Px|v∥∥1 = 2−r

′
· 2−n.

The claim follows since ai+1 is uniformly distributed over A. C

We can now use Lemma 25, Claim 26 and Claim 27 to prove that the probability that T
stops because of the first three stopping rules is at most 2−

min{k′,`′}
8 . Lemma 25 shows

that the probability that T reaches a significant vertex and hence stops because of the first
stopping rule, is at most 2−k′ . Assuming that T doesn’t reach any significant vertex (in
which case it would have stopped because of the first stopping rule), Claim 26 shows that in
each step, the probability that T stops because of the second stopping rule, is at most 2− `′

6 .
Taking a union bound over the 2r steps, the total probability that T stops because of the
second stopping rule, is at most 2− `′

7 (for sufficiently large `′). In the same way, assuming
that T doesn’t reach any significant vertex (in which case it would have stopped because
of the first stopping rule), Claim 27 shows that in each step, the probability that T stops
because of the third stopping rule, is at most 2−k′ . Again, taking a union bound over the
2r steps, the total probability that T stops because of the third stopping rule, is at most
2− k′

7 . Thus, the total probability that T stops (for any reason) before reaching a leaf (or
violated the significant vertices or significant values stopping rules (that is, the first two
stopping rules) on the leaf that it reached) is at most 2−

min{k′,`′}
8 . (Summing over the three

probabilities and using the fact that k′, `′ are sufficiently large).
Thus, Pr[Ḡ] ≤ 2−

min{k′,`′}
8 , as required.

Bounding Pr [x = x′ | G ∧ (z0→̃z)]
It remains to prove that for every x′ ∈ X and every leaf z of the branching program B (with
starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22`′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the
computational path (as opposed to the truncated path) from z0 reaches z.

Recall that Ez is the event that T reaches the vertex z.

B Claim 28. The event G∧ (z0→̃z) is equivalent to Ez ∧ (z is not significant)∧ (x 6∈ Sig(z)).

Proof. If G ∧ (z0→̃z) occurs then the truncated-path T didn’t stop before reaching a leaf
(since G occurs) and the computational path from z0 reaches z (since (z0→̃z) occurs). Thus,
Ez occurs. Also, since the first stopping rule is not violated on z, we have that z is not
significant and since the second stopping rule is not violated on z, we have x 6∈ Sig(z).
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On the other direction, if Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) occurs, then (z0→̃z)
occurs (since Ez occurs), the truncated-path T didn’t stop before reaching a leaf (since Ez
occurs) and none of the first two stopping rules are violated on z, since z is not significant
and x 6∈ Sig(z). C

By Claim 28, it remains to prove that for every leaf z and every x′ ∈ X, if the event
Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) is non-empty then

Pr [x = x′ | Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z))] ≤ 22`′ · 2−n.

Equivalently, we need to prove that for every non-significant leaf z and every x′ ∈ X, if the
event Ez ∧ (x 6∈ Sig(z)) is non-empty then

Px|Ez∧(x 6∈Sig(z))(x′) = Pr [x = x′ | Ez ∧ (x 6∈ Sig(z))] ≤ 22`′ · 2−n.

By the definition of conditional distribution,

Px|Ez∧(x 6∈Sig(z))(x′) =
{

0 if x′ ∈ Sig(z)
Px|Ez

(x′) · c−1 if x′ 6∈ Sig(z)

where c =
∑
x′ /∈Sig(z) Px|Ez

(x′) is the normalization factor. As z is not significant, by
Claim 26,

Pr
x

[x ∈ Sig(z) | Ez] ≤ 2−l̂.

Therefore, c ≥ 1− 2−l̂. Since by the definition of Sig(z), for x′ 6∈ Sig(z), we have Px|z(x′) ≤
23l̂ · 2−n, we can bound

Px|Ez∧(x 6∈Sig(z))(x′) ≤ 23l̂ · 2−n · c−1 ≤ 23l̂+1 · 2−n ≤ 22`′ · 2−n. J
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Abstract
We study the complexity of computing symmetric and threshold functions by constant-depth circuits
with Parity gates, also known as AC0[⊕] circuits. Razborov [23] and Smolensky [25, 26] showed
that Majority requires depth-d AC0[⊕] circuits of size 2Ω(n1/2(d−1)). By using a divide-and-conquer
approach, it is easy to show that Majority can be computed with depth-d AC0[⊕] circuits of size
2Õ(n1/(d−1)). This gap between upper and lower bounds has stood for nearly three decades.

Somewhat surprisingly, we show that neither the upper bound nor the lower bound above is tight
for large d. We show for d ≥ 5 that any symmetric function can be computed with depth-d AC0[⊕]
circuits of size exp(Õ(n

2
3 · 1

(d−4) )). Our upper bound extends to threshold functions (with a constant
additive loss in the denominator of the double exponent). We improve the Razborov-Smolensky
lower bound to show that for d ≥ 3 Majority requires depth-d AC0[⊕] circuits of size 2Ω(n1/(2d−4)).
For depths d ≤ 4, we are able to refine our techniques to get almost-optimal bounds: the depth-3
AC0[⊕] circuit size of Majority is 2Θ̃(n1/2), while its depth-4 AC0[⊕] circuit size is 2Θ̃(n1/4).
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1 Introduction

Given the difficulty of proving lower bounds for general Boolean circuits, much work in
circuit complexity has focused on restricted classes, and in particular on bounded-depth
classes. Super-polynomial lower bounds are known for explicit Boolean functions against
various classes of bounded-depth circuit classes, including AC0 (constant-depth circuits with
unbounded fan-in AND and OR gates) and AC0[⊕] (constant-depth circuits with unbounded
fan-in AND, OR and Parity gates).

In the case of AC0, we have almost optimal size bounds [1, 11, 14] for the Parity function.
A simple divide-and-conquer argument shows that Parity on n variables can be computed
by depth-d AC0 circuits of size Õ(2n1/(d−1)). The classic lower bound of Håstad [14] shows
that Parity requires depth-d AC0 circuits of size 2Ω(n1/(d−1)). Thus the upper bound is tight
up to the constant factor in the exponent. The same lower bound holds for the Majority
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function [14], but the upper bound given by the divide-and-conquer argument [8] weakens
slightly to 2Õ(n1/(d−1)), meaning that the upper bound is tight up to a logarithmic factor in
the exponent.

For AC0[⊕], however, we do not have optimal bounds. The celebrated polynomial
approximation method of Razborov and Smolensky [23, 25, 26] yields a lower bound of
2n1/2(d−1) on the size of depth-d AC0[⊕] circuits computing Majority. The best known upper
bound thus far for Majority was the one mentioned in the previous paragraph, which in fact
gives constant-depth circuits that don’t use Parity gates.

Note that there is a significant gap between upper and lower bounds for Majority – the
exponent in the upper bound is quadratically larger than the exponent in the lower bound.
This gap between upper and lower bounds has stood for almost three decades.

Since the best known upper bound for Majority can be implemented without Parity
gates, a natural question arises. Do Parity gates help when computing Majority using
bounded-depth circuits? It is easy to see that Majority gates help to compute Parity – indeed,
Parity can be easily written as a small DNF of Majorities. However, it is far from clear how
to take advantage of Parity to compute Majority. Indeed, we ourselves believed until recently
that the upper bound was close to optimal for AC0[⊕] circuits computing Majority.

1.1 Our results
Our main result in this paper is that neither the upper bound using divide-and-conquer nor
the lower bound given by the Razborov-Smolensky method is tight for Majority, when the
depth is large enough. We first describe our new upper bound, and then our lower bound
that slightly improves Razborov-Smolensky.

First, we show how to save a constant factor in the double exponent when computing
Majority.

I Theorem 1. Let d ≥ 5 be an integer. Majority on n bits can be computed by depth-d

AC0[⊕] circuits of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

Theorem 1 follows from a result giving the same upper bound for the AC0[⊕] size
complexity of any symmetric function. Similar techniques combined with another idea and a
more careful implementation allow us to obtain an improved upper bound at depth d = 4
(stated in Corollary 3 below). We also show how to extend the upper bound in Theorem 1 to
any linear threshold function, though we lose a small additive term in the denominator of the
double exponent. We refer to the body of the paper for more details about the latter result.

Next, we show how to improve the Razborov-Smolensky lower bound slightly to achieve
a better double exponent.

I Theorem 2. For any integer d ≥ 3, Majority on n bits requires depth-d AC0[⊕] circuits of
size 2Ω(n1/(2d−4)).

Note that there is still a gap between our new upper bound for Majority given by Theorem
1 and our new lower bound given by Theorem 2. We do not have a clear belief at this point
about what the optimal size bound should be at large depths.

For depths d = 3 and d = 4, our results do provide nearly optimal bounds. For d = 3,
the new lower bound is close to the upper bound given by the divide-and-conquer strategy,
showing that parity gates do no significantly help when d = 3. On the other hand, for depth
d = 4 our improved upper bound construction essentially matches the new lower bound
from Theorem 2.
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I Corollary 3. The following results hold:
(i) The depth-3 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/2).
(ii) The depth-4 AC0[⊕] circuit size complexity of Majority is 2Θ̃(n1/4).

Note the contrast with the known size bounds for AC0 circuits, as a result of which we
have a significantly stronger AC0[⊕] upper bound than an AC0 lower bound at depth d = 4,
but not at smaller depths.

Our results indicate that even for simple circuit models, naive upper bound strategies
might not be optimal, and surprising savings can be achieved in circuit size. It might be
worthwhile to look for other examples of this phenomenon.

1.2 Proof ideas
Upper bounds. We describe the upper bound for the Majority function (the same idea works
for any symmetric function.) We follow the same basic high-level strategy as a construction of
better approximating polynomials for the Majority function due to Alman and Williams [3].
They observed that while the Majority function on n variables seems hardest to compute
when the Hamming weight is close to n/2, by polynomial interpolation, it is easy to obtain a
low-degree polynomial that computes Majority on such inputs. Conversely, when the input
has weight far from n/2, one can use sampling to reduce the input size and recurse.

A similar idea works in our setting as well. For inputs of weight within distance t of n/2,
we use a degree-t polynomial to compute the Majority function. This polynomial is over F2
and moreover symmetric, and thus by standard techniques can be represented as a AC0[⊕]
circuit of depth d and size roughly exp(t2/d logn). When the weight is t-far from n/2, we use
sampling not to recurse but to solve the problem directly. In fact, using standard results on
the complexity of the Coin Problem from the literature [21, 4], it follows that there are AC0

circuits that solve Majority on inputs that are t-far from n/2 in depth d and size roughly
exp((n/t)1/d)). Putting these strategies together and optimizing the value of t yields the
upper bound.

The above strategy yields a constant factor improvement in the double exponent of known
upper bounds for large enough d. Using these ideas and a bit more work, we are also able to
obtain a similar improvement at depth 4. In particular, all these upper bounds are stronger
than known AC0 lower bounds for symmetric functions [14], proving that parity gates indeed
help in computing arbitrary symmetric functions.

It is worth understanding what these upper bounds mean at a higher level. A possible
comparison can be made with the well-known result of Barrington, Beigel and Rudich [6],
which showed that the OR function on n variables can be represented by a polynomial
modulo 6 of degree just O(

√
n). The crucial observation there was that given any two distinct

integers i, j ∈ {0, . . . , n}, their difference i− j cannot simultaneously be divisible by a large
power of 2 and a large power of 3 (here, “large” means more than

√
n). This can be stated

in the language of p-adic norms: recall that for a prime p, the p-adic distance between i and
j is inversely related to the largest power of p that divides i− j. Thus, the result of [6] uses
the fact that no i, j as above can be at small 2-adic as well as 3-adic distances. Our result
leverages a similar contrast between the 2-adic norm and the standard Euclidean norm.

Lower Bounds. First we describe a new but weaker circuit size lower bound of 2Ω(n1/(2d−3)).
Our proof follows the general polynomial approximation framework of Razborov [23]. The
high-level idea is to show that any AC0[⊕] circuit of small size can be approximated by
low-degree polynomials from F2[x1, . . . , xn]: this is done by approximating each AND/OR

CCC 2019
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gate1 in the circuit by a low-degree polynomial and composing these approximations together.
The second step is to show that the hard function (the Majority function in our scenario)
does not have low-degree polynomial approximations of this form; here, the proofs that yield
the best known parameters are due to Smolensky [25, 26].

To improve on known lower bounds, we need two new ingredients.
1. The first is the observation that the standard Razborov approximations for the OR and

AND functions are one-sided. While this is obvious from the construction, we do not know
of a previous lower-bound application of this. In our setting, we use this to show that any
AC0[⊕] circuit C has a low-degree polynomial approximation P where the approximation
is much better on one of C−1(0) or C−1(1).

2. To use these improved polynomial approximations, we need an improved lower bound
for approximating the Majority function in the sense described above. It follows from
Smolensky’s work [25] that any polynomial that computes the Majority function on all
but an ε-fraction of inputs must have degree Ω(

√
n log(1/ε)). In our setting, however, we

need to lower bound the degree of a polynomial computing the Majority function on all
but an ε-fraction of the 0-inputs but may err on a constant (say 1/10) fraction of the
1-inputs. We are able to recover the lower bound of Ω(

√
n log(1/ε)) even under these

weaker assumptions, which finishes the proof. This extension of Smolensky’s lower bound
uses results on the combinatorics of Hilbert functions [29, 15, 20].

Using some of the above ideas in conjunction with standard AC0 lower bound techniques [1,
11, 14] based on random restrictions, we show how to get a lower bound of exp(Ω(

√
n))

on the size of depth-3 circuits for the Majority function, matching the known AC0 lower
bound [14] and nearly matching the AC0 upper bound of exp(Õ(

√
n)) [8].

Finally, we observe that the method of random restrictions employed in the depth-3 lower
bound allows us to further improve the lower bound in the general case. To achieve that,
we combine the refined analysis of approximate degree from items 1. and 2. above with the
effects of a random restriction on the approximate degree of depth-2 subcircuits. This gives
a 2Ω(n1/(2d−4)) lower bound on the depth-d AC0[⊕] circuit size of Majority, completing the
proof of Theorem 2.

2 The Upper Bounds

2.1 An improved upper bound for all large depths

I Theorem 4. For every integer d ≥ 5, if fn : {0, 1}n → {0, 1} is a symmetric boolean

function then it can be computed by an AC0[⊕] circuit of depth d and of size 2Õ
(
n

2
3 ·

1
(d−4)

)
.

Proof. For convenience, given a string x ∈ {0, 1}∗, we let |x|1
def=
∑
i xi denote its hamming

weight. For 0 ≤ i, j ≤ n and i 6= j, let Di,j and Ei be boolean functions on n-bit inputs
satisfying

Di,j(y) =
{

1 if |y|1 = i,

0 if |y|1 = j.
Ei(y) =

{
1 if |y|1 = i,

0 otherwise.

1 The parity gates are already low-degree polynomials and hence trivially approximable in this sense.
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(The behaviour of Di,j on inputs of different hamming weight is not relevant in our construc-
tion.) Notice that, for every 0 ≤ i ≤ n,

Ei(y) =
∧

0≤ j≤n
j 6= i

Di,j(y).

Clearly, if fn : {0, 1}n → {0, 1} is a symmetric boolean function, then it can be written as
a disjunction of at most n+ 1 functions Ei. (In other words, separating two layers of the
hypercube can be as difficult as computing the hardest symmetric function.) Consequently, our
task is reduced to the construction of AC0[⊕] circuits for each (partial) boolean function Di,j .

Given 0 ≤ i, j ≤ n with i 6= j, we describe two circuits that agree with Di,j over the
relevant input strings. The first circuit relies on an “algebraic” construction, while the second
circuit is of a more “combinatorial” nature. Before going into further details, let us informally
describe the main properties of the circuits (the discussion omits polylogarithmic factors
in exponents).
1. Algebraic construction. If |i − j| ≤ n1/4, there is an AC0[⊕] circuit for Di,j of depth d

and size roughly 2n1/2d . This circuit explores parity gates in a crucial way.
2. Combinatorial construction. If |i− j| ≥ n1/2, there is an AC0 circuit for Di,j of depth d

and size roughly 2n1/2d . This circuit is obtained from AND/OR circuits solving the coin
problem.

3. In the “critical” interval n1/4 ≤ |i − j| ≤ n1/2, we still don’t know if there are circuits
computing Di,j of size roughly 2n1/2d . Jumping ahead, we will rely on the algebraic
construction when n1/4 ≤ |i − j| ≤ n1/3, and on the combinatorial construction when
n1/3 ≤ |i − j| ≤ n1/2. The maximum circuit complexity peaks at |i − j| = n1/3, where
both constructions provide depth-d circuits of size roughly 2n2/3d .

We now present the technical details.

AC0[⊕] circuits for small |i− j|. We need the following lemma.

I Lemma 5 ([3, Proof of Lemma 3.1]). For integers n ≥ 1, k ≥ 0, and ` ≥ 1 such that
n ≥ k+`−1, and for every c0, . . . , c`−1 ∈ Z, there is a multivariate polynomial Q : {0, 1}n → Z
of degree at most `− 1 and with integer coefficients such that p(x) = ct for every x ∈ {0, 1}n
for which |x|1 = k + t, where 0 ≤ t ≤ `− 1. Moreover,

Q(x) =
`−1∑
t=0

at ·Qt(x),

where each at ∈ Z, and Qt(x) =
∑
S∈([n]

t )
∏
j∈S xj denotes the t-th elementary symmetric

polynomial.

Since the function ψ : Z→ F2 that maps each integer to its parity is a ring homomorphism,
it follows from Lemma 5 that there is a polynomial P ∈ F2[y1, . . . , yn] of degree ` ≤ |i− j|
that agrees with Di,j on every input y ∈ {0, 1}n such that |y|1 ∈ {i, j}. Moreover,

P (y) =
∑̀
t=0

bt · Pt(y),

where each bt ∈ {0, 1}, Pt ∈ F2[y1, . . . , yn] is the t-th elementary symmetric polynomial (over
F2), and t ≤ `.
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It is well known that each polynomial Pt can be computed by an algebraic branching
program of width n and length t+ 1 (the j-th layer contains nodes 1, . . . , n that store the
largest coordinate in [n] that has been read so far). Using a standard divide-and-conquer
approach which is analogous to the construction of bounded-depth circuits for distance-k
connectivity (see e.g. [10]), it follows that for every even depth d′ ≥ 2, Pt can be computed
by a layered AC0[⊕] circuit of depth d′ (consisting of ⊕ and ∧ gates) and of size at most
nO(t2/d′ ). Moreover, the top gate of this circuit is a parity gate. Using the definition of P
as a sum of polynomials Pt over F2 (which allows us to collapse two layers of parities), and
the fact that t ≤ ` ≤ |i− j|, it follows that for every even integer d′ ≥ 2, each Di,j can be
computed by a depth-d′ AC0[⊕] circuit of size at most nO(|i−j|2/d′ ). Consequently, there are
circuits for Di,j of size nO(|i−j|2/(d′−1)) and depth d′ for each integer d′ ≥ 3.

AC0 circuits for large |i − j|. We assume without loss of generality that i > j, since
negating the output of the circuit will handle the other case. First, we note that the
computation of Di,j can be reduced to the case where i and j are near the middle layer. For
0 ≤ a < b ≤ m, let Promise-Thma,b be an m-bit boolean function such that

Promise-Thma,b(y) =
{

0 if |y|1 ≤ a,
1 if |y|1 ≥ b.

Let r def= i− j. Then Di,j can be obtained as a projection of Promise-Th10n
5n−dr/10e,5n+dr/10e.

More precisely, it is easy to check that, over the inputs of interest for Di,j ,

Di,j(y) = Promise-Th10n
5n−dr/10e,5n+dr/10e(15n−dr/10e−j y 010n−(5n−dr/10e−j+n)).

It follows from the work of [24] (see also [18]) that this promise threshold function can be
computed by randomized AC0 circuits of depth d′ ≥ 2 and of size exp(O(1/δ)1/(d′−1)), where
δ

def= Θ(r/n). By a standard derandomization argument (see e.g. [2]) that increases the number
of layers by at most 2, and by collapsing adjacent layers during this derandomization, it follows
that for every d′ ≥ 3, Promise-Th10n

5n−dr/10e,5n+dr/10e can be computed by a (deterministic)
depth-d′ circuit of size exp(O(n/r)1/(d′−2)). Therefore, for every integer d′ ≥ 3, each Di,j

can be computed by a depth-d′ AC0 circuit of size at most exp(O(n/|i− j|)1/(d′−2)).

Let d ≥ 5 be given. In order to compute the symmetric function fn, we proceed
as described above. Two layers are employed to combine the sub-circuits Di,j in the
appropriate way (via the functions Ei). In the remaining d′ def= d − 2 layers, we pick the
best construction for Di,j depending on the value |i− j|. If |i− j| ≤ n1/3, we employ the
algebraic construction. It provides for each integer d′ ≥ 3 a depth-d′ AC0[⊕] circuit of size at
most exp(O(logn · |i− j|2/(d′−1))) = exp(Õ

(
n

2
3 ·

1
(d′−1)

)
). On the other hand, if |i− j| > n1/3

the combinatorial construction gives for each integer d′ ≥ 3 a depth-d′ AC0 circuit of size
at most exp(O(n/|i− j|)1/(d′−2)) = exp(O

(
n

2
3 ·

1
(d′−2)

)
). Overall, we obtain a depth-d AC0[⊕]

circuit for fn of size at most 2Õ
(
n

2
3 ·

1
(d−4)

)
. J

2.2 An upper bound for linear threshold functions
Recall that an exact threshold function is a boolean function f(x1, . . . , xn) that evaluates to
1 if and only if

∑
i wixi = t, where w1, . . . , wn, t ∈ R.
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I Lemma 6. Any threshold function on n variables can be computed by a polynomial-size
constant-depth circuit with unbounded fan-in AND and OR gates, and a single layer of exact
threshold gates each of fan-in n.

Proof. The lemma is implicit in the work of Hansen and Podolskii [13]. Indeed, the proof of
Theorem 7 in their paper shows that every threshold function on n variables can be written as
a polynomial-sized OR of exact threshold functions, each of which is also on n variables. J

I Lemma 7. Any exact threshold function on n variables can be computed by a polynomial-
size constant-depth circuit with unbounded fan-in AND and OR gates, and a single layer of
symmetric gates each of fan-in n.

Proof. Our proof proceeds via Chinese remaindering, which is a common technique in the
study of threshold functions.

Suppose the exact threshold function is
∑
i wixi = t, where we can assume w.l.o.g. that

each wi as well as t are integers that are nO(n) (we refer to [13] for more information about
exact threshold gates). Let p1, p2 . . . pn2 be the first n2 primes. Using the upper bounds on
each wi, we have that for any input x,

∑
i wixi is characterized by its sequence of remainders

modulo {pj}, j = 1 . . . n2; the same holds for t. We design a circuit that is an AND of n2

circuits Cj , one for each pj , where circuit Cj verifies that (
∑
i wixi) mod pj = t mod pj .

We now describe how to construct any fixed Cj . Note that t mod pj is a fixed quantity
independent of the input, so our task reduces to computing (

∑
i wixi) mod pj and taking

an AND of the output bits or their negations as appropriate.
Let wij be wi mod pj for each i ∈ [1, n], j ∈ [1, n2]. We need to compute

∑
i wijxi using

a polynomial-size constant-depth circuit with unbounded fan-in AND and OR gates, and a
single layer of symmetric gates each of fan-in n.

It follows from the Prime Number Theorem that each wij has at most 3 log(n) bits in its
binary representation, for large enough n. We write each wij as

∑
k wijk2k, where wijk is

the kth bit in the binary representation of wij , for k ≤ 3 log(n).
For each j and k, consider the following circuit Bjk. It has n inputs, where the i’th input

bit is the AND of wijk (which is a fixed bit independent of the input) and xi. Bjk computes
the sum of these n inputs – this can be done by using at most dlog(n)e symmetric gates in
parallel, each of fan-in n.

Let yjk be the output of each circuit Bjk. Cj computes (
∑
k yjk2k) mod pj using a

constant-depth circuit of polynomial size. This can be done because there are only O(log(n))2

input bits and the function we are computing is in NC1 (see e.g. [19]); it is folklore that
any NC1 function on polylogarithmically many bits can be computed by polynomial-size
AC0 circuits.

Summing up, our circuit has poly(n) size and O(1) depth, and has a single layer of
symmetric gates with fan-in n, as promised. J

I Theorem 8. There is an integer c such that for every integer d > c, if fn : {0, 1}n → {0, 1}
is a threshold function, then it can be computed by an AC0[⊕] circuit of depth d and of size

2Õ(n
2
3 ·

1
(d−c) ).

Proof. We combine Lemmas 6 and 7 with Theorem 4. From Lemma 6 and Lemma 7, it
follows that every threshold function on n variables can be computed by a polynomial-size
constant-depth circuit with unbounded fan-in AND and OR gates, and a single layer of
symmetric gates each of fan-in n. Suppose that the depth of this circuit is k. We set c = k+4.
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By using Theorem 4, we can replace each symmetric gate by a AC0[⊕] circuit of depth

d−k and of size 2Õ(n
2
3 ·

1
(d−c) ). The total size of the resulting circuit is poly(n)2Õ(n

2
3 ·

1
(d−c) ) and

its depth is d. We can absorb the polynomial factor in the circuit size into the exponential
term, to yield the result stated in the theorem. J

We have made no attempt to optimize the integer c in the statement of Theorem 8.
Note that the same proof as for Theorem 8 yields that any Boolean function truth-table

reducible to linear threshold functions using a polynomial-size AC0 reduction, where the size
of any query is at most n, is also computable by AC0[⊕] circuits of the same size and depth
as in the statement of the theorem. In particular, this is the case for polytopes, since any
polytope over n variables is simply an AND of linear threshold functions over n variables.

2.3 A depth-4 upper bound
For any n ≥ 1 and i ∈ {0, . . . , n}, let En,i denote the n-variable Boolean function that
accepts inputs of Hamming weight i and rejects all other inputs.

I Theorem 9. Any symmetric function on n variables has a depth-4 AC0[⊕] circuit of size
exp(O(n1/4 · (logn)3/4)).

This improves on the AC0 upper bound of exp(Õ(n1/3)) [8], which is tight up to log
factors in the exponent [14]. To prove the above theorem, it suffices to show the following
upper bound for exact majorities.

I Lemma 10. Assume n is even. Then En,n/2 has a depth-4 AC0[⊕] circuit C of size
exp(O(n1/4 · (logn)3/4)) with the output gate being an OR gate.

We first prove Theorem 9 assuming Lemma 10.

Proof of Theorem 9. By Lemma 10, we have a depth-4 AC0[⊕] circuit C of size exp(O(n1/4 ·
(logn)3/4)) with an OR output gate that computes E2n,n. Note that this yields a circuit Ci
for En,i via the substitution Ci(x1, . . . , xn) = C(x0i1n−i); observe that Ci is also a depth-4
AC0[⊕] circuit of size exp(O(n1/4(logn)3/4)) with an OR output gate.

Since any symmetric function on n variables is an OR of a subset of the En,i, this yields
the theorem. J

We now discuss the proof of Lemma 10. Let r, s be growing functions of n with s =
o(n/ logn). We will design a random depth-3 circuit C ′n,r,s such that
1. For any input a of Hamming weight k 6= n/2, PrC′n,r,s

[C ′n,r,s(a) = 1] = 0.

2. For any input a of Hamming weight n/2, PrC′n,r,s
[C ′n,r,s(a) = 1] ≥ p def= n−r.

(The parameter s will be used to optimize the size of the final circuit.)
The construction of C will easily follow from that of C ′n,r,s. The latter, which we

now describe, uses a modification of Amano’s construction [4] of random formulas for
approximating the Majority function (which itself builds upon [2, 28, 21]), some basic facts
about polynomial interpolation, and well-known ideas for computing Exact majorities [8, 22].

The lemma below is Amano’s construction with a few parameters modified.

I Lemma 11. Let m be a growing parameter and δ = o(1/ logm). There exists a random∧∨∧
formula F3 of size exp(O(

√
(logm)/δ)) such that

1. For any input a of Hamming weight i ≤ m((1/2)− δ), PrF3 [F3(a) = 1] = 0.
2. For any input a of Hamming weight i ≥ m/2, PrF3 [F3(a) = 1] ≥ (3/4).
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A proof sketch is given later in this section. The construction of the random circuit C ′n,r,s
now proceeds as follows.
1. Divide the n input variables x1, . . . , xn randomly into r buckets B1, . . . , Br of size n/r

each. We assume r|n and that m def= n/r is even for simplicity.
2. Let δ = s/m. For each bucket Bi, use Lemma 11 to construct a random

∧∨∧
formula

F (i) of size exp(O(
√

(1/δ) logm)) on the variables in Bi that accepts no input of Hamming
weight at most m((1/2) − δ) and accepts each input of Hamming weight at least m/2
with probability at least 3/4.
Define G(i) to be F (i)(¬x : x ∈ Bi). Note that G(i) accepts no input of Hamming weight
at least m((1/2) + δ) and accepts each input of Hamming weight at most m/2 with
probability at least 3/4.
Let H(i) = F (i) ∧G(i). By a union bound, H(i) accepts each input of Hamming weight
exactly m/2 with probability at least 1/2 and no input of Hamming weight k such that
|k − (m/2)| ≥ δm.

3. For each bucket Bi, let P (i) ∈ F2[x : x ∈ Bi] be a multilinear polynomial of degree at
most 2s that accepts inputs of Hamming weight m/2 but no input of Hamming weight k
such that |k − (m/2)| < s. Such a polynomial exists by standard interpolation arguments
(cf. Lemma 5; for a proof see e.g. Alman and Williams [3, Proof of Lemma 3.1]).
We think of P (i) as a depth-2

⊕∧
formula of size nO(s).

4. Finally, we define C ′n,r,s =
∧
i∈[r]

(
H(i) ∧ P (i)) .

By construction, C ′n,r,s is a depth-3 AC0[⊕] circuit of size poly(n) · exp(O(s logn +√
(m/s) logn)).

Given any input a of Hamming weight k 6= n/2, there is a bucket Bi such that the
restriction a(i) to Bi has weight ki 6= m/2. In this case, either H(i) or P (i) rejects a(i)

(depending on whether |ki −m| ≥ s or |ki −m| < s respectively). Hence, C ′n,r,s rejects a
(with probability 1).
Conversely, given an input a of Hamming weight n/2, C ′n,r,s accepts a if its restriction
a(i) of a to each bucket Bi has weight exactly m/2 and we have a good choice for the
randomness of each H(i). The probability of this is at least(

3
4

)r
·

(
m
m/2
)r(

n
n/2
) ≥ (2m/10

√
m)r

2n ≥ 1
nr

= p.

So we have constructed C ′n,r,s as required. In order to convert this to a circuit for En,n/2,
we use a standard covering argument. Let t = n/p. We choose independent random circuits
C1, . . . ,Ct where each Ci has the same distribution as C ′n,r,s. Define Cn,r,s =

∨
iCi.

Clearly, Cn,r,s accepts no input a of Hamming weight k 6= n/2. On the other hand,
the probability that Cn,r,s rejects an input a of weight n/2 can be upper bounded by
(1− p)t ≤ exp(−pt) = exp(−n). By a union bound, the probability that Cn,r,s rejects some
input of weight n/2 is at most

(
n
n/2
)
· exp(−n) < 1.

In particular, by averaging, there is a fixed circuit Cn,r,s in the support of the distribution
of Cn,r,s that computes En,n/2 correctly on all inputs.

By construction, the circuit Cn,r,s has size poly(n) · exp(O((r+ s) logn+
√

(m/s) logn)).
Setting r = s = Θ((n/ logn)1/4), we get a circuit C of the claimed size. This completes the
proof of Lemma 10.

Proof Sketch of Lemma 11. We provide a sketch of the proof, omitting calculations. The
reader is invited to consult Amano’s paper [4] for more details.
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Set ` = d
√

(logm)/δe and define the random formulas Fi (i ∈ [3]) of depth i as follows.
1. F1 is simply an AND of size `, where each input is chosen i.u.a.r. from among the input

variables {x1, . . . , xm}.
2. F2 is an OR of L def= d2` · (100` ln 2)e independent copies of F1.
3. F ′3 is an AND of M def= 2100`−3 independent copies of F2.

4. We define F3 to be F ′3 conditioned on the event that F ′3 does not accept any input of
Hamming weight i ≤ m((1/2)− δ).

Clearly, F3 is a random formula of the required size.
To argue that F3 has the required input-output behaviour, we proceed as follows.

1. Say a is an input of Hamming weight at least m/2.
a. A uniformly random co-ordinate of a is 1 with probability at least 1/2. Hence, F1(a) = 1

with probability at least p1
def= 2−`.

b. Hence, the probability that F2 rejects a is at most (1− p1)L ≤ p2
def= 2−100`.

c. Therefore, the probability that F ′3 rejects a is at most Mp2 ≤ 1/8.
2. Now assume a′ is an input of Hamming weight at most m((1/2)− δ).

a. A uniformly random co-ordinate of a′ is 1 with probability at most 1/2− δ. Hence,
F1(a′) = 1 with probability at most q1

def= p1 · (1− δ`).
b. Hence, the probability that F2 rejects a′ is at least (1−q1)L ≥ q2

def= p2·exp(10δ`2 ln 2) ≥
p2 ·m10.

c. Therefore, the probability that F ′3 accepts a′ is at most (1−q2)M ≤ exp(−M ·p2 ·m10) ≤
exp(−m9).

3. Thus, the probability that F3 accepts an input a of Hamming weight at least m/2 is at
least (7/8)− 2m · exp(−m9) ≥ (3/4). This concludes the proof.

3 The Lower Bounds

3.1 A refined analysis of approximate-degree bounds
The main theorem of this section is the following result.

I Theorem 12. Fix any d ≥ 2. Let C be a depth-d AC0[⊕] circuit computing the n-bit
majority function Majn. Then, C has size at least exp(Ω(n1/(2d−3))).

We follow the lower bound approach of Razborov [23], who showed that any small AC0[⊕]
circuit C can be suitably approximated by a low-degree polynomial. This is proved by
iteratively constructing low-degree polynomials for the OR and AND gates of C (parity
gates are low-degree by definition, and hence trivial to approximate), and then composing
the polynomials together to obtain a low-degree approximation to C. We follow a similar
idea, but make the (crucial) observation that the approximations for the AND and OR gates
are one-sided (on opposite sides). This means that the construction of Razborov is slightly
better than normally advertised: the error is much lower on C−1(b) than C−1(1 − b) for
some b ∈ {0, 1}.

I Definition 13. Let f : {0, 1}n → {0, 1} be any Boolean function. For parameters ε0, ε1 ∈
(0, 1), an (ε0, ε1)-error Probabilistic polynomial for f is a random multilinear polynomial P
chosen from F2[x1, . . . , xn] such that for b ∈ {0, 1} and any a ∈ f−1(b),

Pr
P

[P (a) 6= f(a)] ≤ εb.
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We say that P has degree at most d (denoted deg(P ) ≤ d) if the underlying distribution
is supported on multilinear polynomials of degree at most d. We define the (ε0, ε1)-error
probabilistic degree of f (denoted pdegε0,ε1(f)) to be the least d such that there is a P as
above of degree at most d.

Typically, the above is stated for ε0 = ε1, but it will be important for us to track the
errors on the 0 and 1 inputs of f separately. For example, it allows us to observe the following
feature of a construction due to Razborov [23]. (See also Kopparty’s lecture notes [16]
for a proof.)

I Lemma 14 (Razborov [23]). Let ANDm and ORm denote the AND and OR functions on
m inputs respectively. Then, for any ε > 0, pdegε,0(ANDm) and pdeg0,ε(ORm) are both at
most dlog(1/ε)e.

From this, we get the following corollary.

I Corollary 15. Let C be an AC0[⊕] circuit of size s and depth d ≥ 1. Then, for any c ≥ 1
and large enough s, we have

min{pdeg(1/10),(1/sc)(C),pdeg(1/sc),(1/10)(C)} ≤ O(c log s)d−1

where the O(·) hides an absolute constant.

Proof Sketch. We assume that the output gate of C is either a parity gate or an OR gate
(the case of the AND gate is similar to the case of the OR gate).

For each non-output gate g in the circuit (viewed as a function of its input wires), we
first construct a (1/sc+2, 1/sc+2)-error probabilistic polynomial Pg of degree O(c log s) for g.
Note that the existence of Pg is trivial if g is a parity gate (since the parity function is a
polynomial of degree 1) and otherwise, Lemma 14 gives us such a probabilistic polynomial.

For the output gate g0, we construct a (0, 1/20)-error probabilistic polynomial Pg0 of
degree O(1): again, this is trivial if g0 is a parity gate and follows from Lemma 14 if g0
is an OR gate.

Composing these polynomials together, we get a probabilistic polynomial P of degree
O(c log s)d−1 · O(1) = O(c log s)d−1. Further for any input a ∈ {0, 1}n, we have P (a) =
C(a) unless there is some gate g of C such that Pg does not simulate g faithfully on the
corresponding setting of its inputs. For non-output gates, this probability is at most 1/sc+2.
For the output gate, this probability is either 0 or at most 1/20 depending on whether
a ∈ C−1(0) or C−1(1) respectively. A union bound now implies that pdeg1/sc,1/10(C) =
O(c log s)d−1. J

The rest of the proof follows the lower bound of Smolensky [25] on the probabilistic
degree of the Majority function. More precisely, we prove the following.

I Lemma 16. Let n be a growing parameter. There exist absolute constants α, β > 0 such
that for all large enough n and all ε ∈ (1/2αn, β), we have

min{pdeg1/10,ε(Majn),pdegε,1/10(Majn)} = Ω(
√
n log(1/ε)).
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Smolensky2 proved the above for pdegε,ε(Majn). Note that the above statement in
conjunction with Corollary 15 immediately implies Theorem 12. Putting the upper bound in
Corollary 15 for c = 1 together with the lower bound in Lemma 16, we get

O(log s)d−1 ≥ Ω(
√
n log s),

which yields s = exp(Ω(n1/(2d−3))).
To prove Lemma 16, we follow a “dual” version of Smolensky’s proof that appears in a

result of Kopparty and Srinivasan [17], which itself follows the closely-related ideas of Aspnes,
Beigel, Furst and Rudich [5] and Green [12]. It is not clear that this dual reformulation is
necessary for the proof below, but the language of this formulation makes it easier to use
some other results from the literature in this context.

We start with the notion of a certifying polynomial for a Boolean function.

I Definition 17 (Certifying polynomials). A non-zero multilinear polynomial R ∈ F2[x1, . . . , xn]
is a certifying polynomial for f : {0, 1}n → {0, 1} if f is constant on Supp(R) def= {a ∈
Fn2 | R(a) 6= 0}.

The following is an easy corollary of standard properties of multilinear polynomials (see
e.g. [17, Lemma 3.3]).

I Fact 18. If R is a certifying polynomial for Majn, then deg(R) ≥ dn/2e.

We now return to Lemma 16. Let P be an (ε, 1/10)-error3 probabilistic polynomial for
Majn, and let us assume deg(P ) ≤ d. We need to lower bound d. By a union bound and
averaging, we can find a (deterministic) polynomial P ∈ F2[x1, . . . , xn] of degree at most d
such that

Pr
x∈Maj−1

n (0)
[P (x) 6= 0] ≤ 2ε and Pr

x∈Maj−1
n (1)

[P (x) 6= 1] ≤ 1
4 . (1)

It suffices to lower bound deg(P ). To do so, we show that there is a non-zero polyno-
mial Q ∈ F2[x1, . . . , xn] of low degree such that Q vanishes on all points in E0

def= {x ∈
Maj−1

n (0) | P (x) 6= 0}. We then consider the multilinear polynomial R = P ·Q (we use the
identity x2

i = xi to ensure that R is multilinear). Note that R vanishes on all points of
Hamming weight less than n/2: given a of weight less than n/2, either a ∈ E0, in which case
Q(a) = 0, or a 6∈ E0, which implies that P (a) = 0. If we could argue that R is a non-zero
polynomial, then it follows that R is a certifying polynomial for Majn and hence has degree
at least dn/2e (by Fact 18). On the other hand, deg(R) ≤ deg(P ) + deg(Q) which implies a
lower bound on deg(P ).

The main part of the above argument is arguing the non-zeroness of R. To do this, we
would like to show that there is a low-degree polynomial Q such that Q vanishes on E0, but
there is an a ∈ Supp(P ) such that Q(a) 6= 0. To argue the existence of a suitable such Q, we
use a result of Nie and Wang [20]. Informally, the result says that if a parameter D is chosen
so that the number of multilinear monomials of degree at most D is much larger than |E0|,
then constraining a polynomial of degree at most D to be zero on E0 does not constrain it
at too many other points.

2 Smolensky actually proves lower bounds for mod functions, which we don’t consider here. However, it is
clear that his proof works also for Majority. As far as we know, this proof first appeared in Szegedy’s
PhD thesis [27]. See [9] for a more recent exposition. A different proof, also due to Smolensky, appears
in [26].

3 A symmetric argument can be used to argue about pdeg1/10,ε(Majn).
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To make this precise, we define the degree-D Closure of E0, denoted clD(E0), to be the
set of all a ∈ Fn2 such that Q(a) = 0 for each Q of degree at most D such that Q vanishes
at all points in E0. Clearly, clD(E0) ⊇ E0 but could potentially be much larger. The result
of Nie and Wang [20] bounds the closure of small sets in Fn2 (see also the earlier results
of Wei [29] and Keevash and Sudakov [15] which prove similar or stronger statements in
different language).

I Theorem 19 (Nie and Wang [20]). Fix any E ⊆ Fn2 and any D ≥ 1. Let ND denote the
number of multilinear monomials of degree at most D. Then, we have

|clD(E)|
2n ≤ |E|

ND
.

I Remark 20. Note that the above theorem generalizes the following standard fact (which
follows easily from linear algebra): if |E| < ND, then there is a non-zero polynomial of degree
at most D that vanishes on E. Smolensky’s proof (as formulated in [17]) can be seen as
using only this special case of Theorem 19. Using the theorem in its full generality is what
yields the stronger result below.

We are now ready to prove Lemma 16.

Proof of Lemma 16. It suffices to lower bound deg(P ) where P is as in (1). Let E0 be as
defined above; by (1), we have |E0| ≤ 2ε · 2n. Also define S = Supp(P ). Note that S contains
all those a ∈ Maj−1

n (1) such that P (a) = 1 which, by (1), has size at least 2n · (3/8− o(1)).
Now, choose the least D such that ND ≥ (20ε) · 2n. As long as α and β are small

enough constants, we have D = (n/2)−Ω(
√
n log(1/ε)). Also, by Theorem 19, we know that

|clD(E0)| ≤ 2n/10 < |S|. In particular, S * clD(E0). This means that there is some a0 ∈ S
and some Q of degree at most D such that Q vanishes on E0 but not at a0.

Let R = P · Q (we assume R is multilinear by using the identity x2
i = xi). As argued

above, R vanishes at all points in Maj−1
n (0) and further, R(a0) = P (a0)Q(a0) 6= 0. Hence, R

is a non-zero polynomial such that Majn is the constant function 1 on inputs from Supp(R).
By Fact 18, we have deg(R) ≥ n/2.

This implies that deg(P ) ≥ n/2−D = Ω(
√
n log(1/ε)). J

3.2 A depth-3 lower bound
In this section, we show how to use the ideas from the proof of Theorem 12 in conjunction
with standard AC0 lower bound techniques to get a near optimal lower bound of exp(Ω(

√
n))

for depth-3 circuits (there is an AC0 circuit of size exp(Õ(
√
n)) computing the Majority

function [8]).

I Theorem 21. Let C be any depth-3 AC0[⊕] circuit computing the n-bit Majority function
Majn. Then, C has size exp(Ω(

√
n)).

The proof requires random restriction arguments [11, 1]. Recall that a restriction on
n variables x1, . . . , xn is a function ρ : {x1, . . . , xn} → {0, 1, ∗}. A Random restriction with
∗-probability p ∈ [0, 1] is a random function ρ : {x1, . . . , xn} → {0, 1, ∗} where ρ−1(∗) is
chosen to be a random subset S ⊆ [n] of size bpnc and each ρ(xi) (xi 6∈ S) is set to 0 or 1
independently with probability (1 − p)/2 each. We use ρ ∼ Rnp to denote the fact ρ is a
random restriction on n variables with ∗-probability p.

Given a Boolean function f : {0, 1}n → {0, 1}, and a restriction ρ : {x1, . . . , xn} →
{0, 1, ∗}, we use f |ρ to denote the restriction of f obtained by substituting variables as
dictated by ρ (variables in ρ−1(∗) are left as is).

CCC 2019
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We recall the Switching Lemma of Håstad [14] (this version is from Beame’s survey [7]).

I Lemma 22 (Håstad’s Switching Lemma). Let ϕ be a k-CNF or k-DNF. Then for p ≤ 1/10k,
we have

Pr
ρ∼Rp

[ϕ|ρ has no decision tree of depth at most t ] ≤ (7pk)t.

We say that a restriction ρ is balanced if |ρ−1(1)| = |ρ−1(0)|. Balanced restrictions will
be useful for us since for a balanced restriction ρ, we have Majn|ρ = Maj|ρ−1(∗)|. Lemma 22
easily implies a similar corollary for random balanced restrictions.

I Corollary 23. Let ϕ be a k-CNF or k-DNF on n variables. Then for p ≤ 1/10k such that
(n− bpnc) is even, we have

Pr
ρ∼Rn

p

[ϕ|ρ has no decision tree of depth at most t | ρ is balanced ] ≤ O(
√
n) · (7pk)t.

Proof. Follows directly from Lemma 22 and Bayes’ rule since the probability that a random
ρ ∼ Rnp is balanced is at least Ω(1/

√
n). J

Using Corollary 23, we can derive the following simplification lemma for general depth-2
AC0[⊕] circuits.

I Lemma 24. Let n, s be growing parameters with s ≥ n2. Let C ′ be any AC0[⊕] circuit
on n variables of depth 2 and size at most s. Assume p ≤ 1/(500 log s) is chosen so that
(n− bpnc) is even. Then, for large enough n, s, we have

Pr
ρ∼Rn

p

[pdeg1/s2,1/s2(C ′|ρ) > 10 log s | ρ is balanced ] < 1
10s .

Proof. The proof is a routine application of the switching lemma. We provide details for
completeness.

To avoid some technicalities, we assume that n and n/10 are even integers. The proof
can easily be extended to the other cases.

We use ρ ∼ Rnp,bal to denote that ρ is a random restriction on n variables with ∗-
probability p conditioned on being balanced. We sample ρ in two steps: we sample random
restrictions ρ1 ∼ Rn1/10,bal and ρ2 ∼ Rn/10

10p,bal and set ρ to be their composition ρ2 ◦ ρ1 (i.e.
we apply ρ2 to the variables in ρ−1

1 (∗)).
We first analyze the effect of applying ρ1. Consider any OR or AND gate g at depth 1 in

C ′. Say that g is bad for ρ1 if g|ρ1 has fan-in at least 5 log s. Applying Corollary 23 with
k = 1, we get for any gate g at depth 1,

Pr
ρ1

[g bad for ρ1] ≤ O(
√
n) · (7/10)5 log s < 1/(20s2)

for large enough s. Union bounding over all gates g at depth 1 (there are at most s of
them), we see that with probability at least 1− 1/(20s), all gates at depth 1 are good for ρ1.

Condition on such a setting ρ1 of the random restriction ρ1. By definition of ρ1, the circuit
C ′1

def= C ′|ρ1 has the property that all the AND and OR gates of depth 1 in C ′1 have fan-in at
most 5 log s: in particular, they are polynomials of degree at most 5 log s.

Now we analyze the effect of ρ2 on C ′1. This is by a case analysis on the output gate g0
of C ′1. Since the statement of the lemma is true for C ′ if and only if it is true for ¬C ′, we
can assume w.l.o.g. that the output gate of C ′ is either a parity gate or an OR gate.
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1. g0 is a parity gate: In this case, since the OR and AND gates at depth 1 compute
polynomials of degree at most 5 log s, the entire circuit C ′1 already computes a polynomial
of degree at most 5 log s. In particular, C ′1|ρ2 has degree at most 5 log s with probability 1.

2. g0 is an OR gate: Then, we can write C ′1 = C ′1,1 ∨ C ′1,2, where C ′1,1 is an OR of parity
gates and C ′1,2 is a (5 log s)-DNF.
C ′1,2|ρ2 continues to be an OR of parities. By Lemma 14, any OR (and hence any OR of
parities) has (0, 1/s2)-probabilistic degree at most d2 log se ≤ 3 log s. In particular, we
have pdeg0,1/s2(C ′1,2|ρ2) ≤ 5 log s with probability 1.
For C ′1,1, we apply Corollary 23 (the Switching lemma) with k = 5 log s. The random
restriction ρ2 has ∗-probability 10p ≤ 1/50 log s = 1/10k. Corollary 23 implies that
the probability that C ′1,1 does not have a decision tree of height 5 log s is at most
O(
√
n) · (1/10)5 log s < 1/(20s). As a decision tree of height t can be represented as a

polynomial of degree at most t, we see that with probability 1− 1/(20s), the restricted
C ′1,1 has degree at most 5 log s.
Consequently, we see that with probability 1−1/(20s), we have both pdeg0,1/s2(C ′1,2|ρ2) ≤
5 log s and deg(C ′1,1) ≤ 5 log s. When this happens, we also have pdeg0,1/s2(C ′1|ρ2) ≤
10 log s (the probabilistic polynomial for C ′1 can be obtained by composing the polynomial
for the 2-bit OR function with polynomials for C ′1,1 and C ′1,2).

In both cases above, we have shown that

Pr
ρ2

[pdeg(1/s2,1/s2)(C ′1|ρ2) > 10 log s] < 1
20s .

Along with our analysis of ρ1, this implies

Pr
ρ

[pdeg(1/s2,1/s2)(C ′|ρ) > 10 log s] < 1
20s + 1

20s = 1
10s . J

We are now ready to prove Theorem 21.

Proof of Theorem 21. Assume that C has size s ≤ exp(
√
n/100), since otherwise we are

done. Let C ′1, . . . , C ′s be the depth-2 subcircuits of C. Fix p = Θ(1/ log s) so that Lemma 24
is applicable.

Using Lemma 24 and applying a union bound over i ∈ [s], we get

Pr
ρ∼Rn

p

[ ∃i ∈ [s], pdeg1/s2,1/s2(C ′i|ρ) > 10 log s | ρ is balanced ] < 1
10 .

In particular, there is a balanced restriction ρ on {x1, . . . , xn} such that |ρ−1(∗)| = m =
Θ(n/ log s), and further, pdeg(C ′i|ρ) ≤ 10 log s for each i ∈ [s]. Fix such a restriction ρ.
W.l.o.g. we assume ρ−1(∗) = {x1, . . . , xm}.

Fix (1/s2, 1/s2)-error probabilistic polynomials Pi(x1, . . . , xm) of degree at most 10 log s
for C ′i (i ∈ [s]). We assume that the output gate g of C is either an OR gate or a parity gate
(the case when the output is an AND gate is similar). In either case, Lemma 14 implies that
g has a (0, 1/10)-error probabilistic polynomial P of constant degree.

Define Q(x1, . . . , xm) = P (P1, . . . ,Ps). Clearly, deg(Q) ≤ O(maxi deg(Pi)) = O(log s).
Also, it is easy to see that Q is a (1/s, 1/5)-error probabilistic polynomial for C|ρ = Majn|ρ =
Majm. Lemma 16 therefore implies that deg(Q) ≥ Ω(

√
m · log s) = Ω(

√
n), which implies

that s = exp(Ω(
√
n)). J
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3.3 An improved lower bound for all depths
In this section, we complete the proof of Theorem 2. The proof extends the ideas employed
in the preceding sections in a natural way. The difference here is that the argument below
employs the construction from Corollary 15 as an intermediate step, while the proof of
Theorem 21 is slightly simpler and only requires Lemma 14.

Proof of Theorem 2. Let C be a depth-d AC0[⊕] circuit of size s that computes Majority
over n input bits, where d ≥ 3. Proceeding as in the proof of Theorem 21, we fix p

def=
Θ(1/ log s), and apply Lemma 24 to the depth-2 subcircuits of C. By the same argument and
after renaming input variables, this provides a balanced restriction ρ on {x1, . . . , xm} with
m

def= |ρ−1(∗)| = Θ(n/ log s) and (1/s2, 1/s2)-error probabilistic polynomials Pi(x1, . . . , xm)
of degree O(log s) for each (ρ-restricted) depth-2 subcircuit C ′i of C.

We apply now the construction in Corollary 15 to the top d− 2 layers of C|ρ, replacing its
depth-2 subcircuits by the probabilistic polynomials Pi(x1, . . . , xm) obtained above. Adapting
parameters in a straightforward way, this argument shows that C|ρ satisfies

ζ
def= min{pdeg(1/10),(1/s)(C|ρ),pdeg(1/s),(1/10)(C|ρ)} ≤ O(c log s)d−2.

Moreover, since ρ is a balanced restriction the function computed by C|ρ is precisely Majority
on m input bits.

We can assume w.l.o.g. that s ≤ 2γ
√
n for a small enough (universal) constant γ > 0

independent of n and d. This allows us to invoke Lemma 16, which implies that ζ =
Ω(
√
m · log s). Using the previously obtained upper bound on ζ and the value of m completes

the proof of Theorem 2. J
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Abstract
We show that if a system of degree-k polynomial constraints on n Boolean variables has a Sums-of-
Squares (SOS) proof of unsatisfiability with at most s many monomials, then it also has one whose
degree is of the order of the square root of n log s plus k. A similar statement holds for the more
general Positivstellensatz (PS) proofs. This establishes size-degree trade-offs for SOS and PS that
match their analogues for weaker proof systems such as Resolution, Polynomial Calculus, and the
proof systems for the LP and SDP hierarchies of Lovász and Schrijver. As a corollary to this, and to
the known degree lower bounds, we get optimal integrality gaps for exponential size SOS proofs for
sparse random instances of the standard NP-hard constraint optimization problems. We also get
exponential size SOS lower bounds for Tseitin and Knapsack formulas. The proof of our main result
relies on a zero-gap duality theorem for pre-ordered vector spaces that admit an order unit, whose
specialization to PS and SOS may be of independent interest.
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1 Introduction

A key result in semialgebraic geometry is the Positivstellensatz [33, 20], whose weak form
gives a version of the Nullstellensatz for semialgebraic sets: A system of polynomial equations
p1 = 0, . . . , pm = 0 and polynomial inequalities q1 ≥ 0, . . . , q` ≥ 0 on n commuting variables
x1, . . . , xn has no solution over reals if and only if

−1 = s∅ +
∑
J⊆[`]
J 6=∅

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj , (1)

where the sJ are sums of squares of polynomials, and the tj are arbitrary polynomials. Based
on this, Grigoriev and Vorobjov [16] defined the Positivstellensatz (PS) proof system for
certifying the unsatisfiability of systems of polynomial inequalities, and initiated the study
of its proof complexity.

For most cases of interest, the statement of the Positivstellensatz stays true even if the
first sum in (1) ranges only over singleton sets [31]. This special case of PS yields a proof
system called Sums-of-Squares (SOS). Starting with the work in [3], SOS has received a good
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deal of attention for its applications in algorithms and complexity theory. For the former,
through the connection with the hierarchies of SDP relaxations [21, 27, 26, 8]. For the latter,
through the lower bounds on the sizes of SDP lifts of combinatorial polytopes [11, 24, 23].
We refer the reader to the introduction of [26] for a discussion on the history of these proof
systems and their relevance for combinatorial optimization.

In this paper we concentrate on the proof complexity of PS and SOS when their variables
range over the Boolean hypercube, i.e., the variables come in pairs of twin variables xi and x̄i,
and are restricted through the axioms x2

i − xi = 0, x̄2
i − x̄i = 0 and xi + x̄i − 1 = 0. This

case is most relevant in combinatorial contexts. It is also the starting point for a direct link
with the traditional proof systems for propositional logic, such as Resolution, through the
realization that monomials represent Boolean disjunctions, i.e., clauses. In return, this link
brings concepts and methods from the area of propositional proof complexity to the study of
PS and SOS proofs.

In analogy with the celebrated size-width trade-off for Resolution [6] or the size-degree
trade-off for Polynomial Calculus [17], a question that is suggested by this link is whether
the monomial size of a PS proof can be traded for its degree. For a proof as in (1), the
monomial size of the proof is the number of monomials in an explicit representation of the
summands of the right-hand side. The degree of the proof is the maximum of the degrees
of those summands. These are the two most natural measures of complexity for PS proofs
(and precise definitions for both these measures will be made in Section 2). The importance
of the question whether size can be traded for degree stems from the fact that, at the time
of writing, the complexity of PS and SOS proofs is relatively well understood when it is
measured by degree, but rather poorly understood when it is measured by monomial size.
If size could be traded for degree, then strong lower bounds on degree would transfer to
strong lower bounds on monomial size. The converse, namely that strong lower bounds on
monomial size transfer to strong lower bounds on degree, has long been known by elementary
linear algebra.

In this paper we answer the size-degree trade-off question for SOS, and for PS proofs of
bounded product width, i.e., the number of inequalities that are multiplied together in (1).
We show that if a system of degree-k polynomial constraints on n pairs of twin variables
has a PS proof of unsatisfiability of product width w and no more than s many monomials
in total, then it also has one of degree O(

√
n log s + kw). By taking w = 1, this yields a

size-degree trade-off for SOS as a special case.
Our result matches its analogues for weaker proof systems that were considered before.

Building on the work of [5] and [9], a size-width trade-off theorem was established for
Resolution: a proof with s many clauses can be converted into one in which all clauses have
size O(

√
n log s+ k), where k is the size of the largest initial clause [6]. The same type of

trade-off was later established for monomial size and degree for the Polynomial Calculus (PC)
in [17], and for proof length and rank for LS and LS+ [29], i.e., the proof systems that come
out of the Lovász-Schrijver LP and SDP hierarchies [25]. To date, the question for PS and
SOS had remained open, and is answered here1.

Our proof of the trade-off theorem for PS follows the standard pattern of such previous
proofs with one new key ingredient. Suppose Q is a system of equations and inequalities
that has a size s refutation. Going back to the main idea from [9], the argument for getting

1 Besides the proofs of the trade-off results for LS and LS+, the conference version of [29] claims the result
for the stronger Sherali-Adams and Lasserre/SOS proof systems, but the claim is made without proof.
The very last section of the journal version [29] includes a sketch of a proof that, unfortunately, is an
oversimplification of the LS/LS+ argument that cannot be turned into a correct proof. The forthcoming
discussion clarifies how our proof is based on, and generalizes, the one for LS/LS+ in [29].
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a degree d refutation goes in four steps: (1) find a variable x that appears in many large
monomials, (2) set it to a value b ∈ {0, 1} to kill all monomials where it appears, (3) induct
on the number of variables to get refutations of Q[x = b] and Q[x = b̄] which, if s is small
enough, are of degrees d− 1 and d, respectively, and (4) compose these refutations together
to get a degree d refutation of Q. The main difficulty in making this work for PS is step (4),
for two reasons.

The first difficulty is that, unlike Resolution and the other proof systems, whose proofs
are deductive, the proofs of PS are formal identities, also known as static. This means that,
for PS, the reasoning it takes to refute Q from the degree d − 1 refutation of Q[x = b]
and the degree d refutation of Q[x = b̄] needs to be witnessed through a single polynomial
identity, without exceeding the bound d on the degree. This is challenging because the
general simulation of a deductive proof by a static one incurs a degree loss. The second
difficulty comes from the fact that, for establishing this identity, one needs to use a duality
theorem that is not obviously available for degree-bounded PS proofs. What is needed is
a zero-gap duality theorem for PS proofs of non-negativity that, in addition, holds tight
at each fixed degree d of proofs. For SOS, the desired zero-gap duals are provided by the
levels of the Lasserre hierarchy. This was established in [19] under the sole assumption that
the inequalities include a ball contraint B2 −

∑n
i=1 x

2
i ≥ 0 for some B ∈ R. In the Boolean

hypercube case, this can be assumed without loss of generality. For PS, we are not aware
of any published result that establishes what we need, so we provide our own proof. At
any rate, one of our contributions is the observation that a zero-gap duality theorem for
PS-degree is a key tool for completing the step (4) in the proof of the trade-off theorem. We
reached this conclusion from trying to generalize the proofs for LS and LS+ from [29] to SOS.
In those proofs, the corresponding zero-gap duality theorems are required only for the very
special case where d = 2 and for deriving linear inequalities from linear constraints. The fact
that these hold goes back to the work of Lovász and Schrijver [25].

In the end, the zero-gap duality theorem for PS-degree turned out to follow from very
general results in the theory of ordered vector spaces. Using a result from [28] that whenever
a pre-ordered vector space has an order-unit a zero-gap duality holds, we are able to establish
the following general fact: for any convex cone C of provably non-negative polynomials and its
restriction C2d to proofs of some even degree 2d, if the ball constraints R− x2 ≥ 0 belong to
C2 for all variables x and some R ≥ 0, then a zero-gap duality holds for C2d in the sense that

sup{r ∈ R : p− r ∈ C2d} = inf{E(p) : E ∈ E2d},

where E2d is an appropriate dual space for C2d. The conditions are easily seen to hold for
PS-degree and SOS-degree in the Boolean hypercube case, and we have what we want. We
use this in Section 3, where we prove the trade-off lemma, but defer its proof to Section 5.

In Section 4 we list some of the applications of the size-degree trade-off for PS that follow
from known degree lower bounds. Among these we include exponential size SOS lower bounds
for Tseitin formulas, Knapsack formulas, and optimal integrality gaps for sparse random
instances of MAX-3-XOR and MAX-3-SAT. Except for Knapsack formulas, for which size
lower bounds follow from an easy random restriction argument applied to the degree lower
bounds in [13, 15], these size lower bounds for SOS appear to be new.

2 Preliminaries

For a natural number n we use the notation [n] for the set {1, . . . , n}. We write R≥0 and R>0
for the sets of non-negative and positive reals, respectively and N for the set of natural
numbers. The natural logarithm is denoted log, and exp denotes base e exponentiation.

CCC 2019
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2.1 Polynomials and the Boolean ideal
Let x1, . . . , xn and x̄1, . . . , x̄n be two disjoint sets of variables. Each xi, x̄i is called a pair of
twin variables, where xi is the basic variable and x̄i is its twin. We consider polynomials
over the ring of polynomials with real coefficients and commuting variables {xi, x̄i : i ∈ [n]},
which we write simply as R[x]. The intention is that all the variables range over the Boolean
domain {0, 1}, and that x̄i = 1−xi. Accordingly, let In be the Boolean ideal, i.e., the ideal of
polynomials generated by the following set of Boolean axioms on the n pairs of twin variables:

Bn = {x2
i − xi : i ∈ [n]} ∪ {x̄2

i − x̄i : i ∈ [n]} ∪ {xi + x̄i − 1 : i ∈ [n]}

We write p ≡ q mod In if p− q is in In.
A monomial is a product of variables. A term is the product of a non-zero real

and a monomial. A polynomial is a sum of terms. For α ∈ N2n, we write xα for the
monomial

∏n
i=1 x

αi
i x̄

αn+i

i , so polynomials take the form
∑
α∈I aαx

α for some finite I ⊆ N2n.
The monomial size of a polynomial p is the number of terms, and is denoted size(p). A
sum-of-squares polynomial is a polynomial of the form s =

∑k
i=1 r

2
i , where each ri is a

polynomial in R[x]. For a polynomial p ∈ R[x] we write deg(p) for its degree. We think
of R[x] as an infinite dimensional vector space, and we write R[x]d for the subspace of
polynomials of degree at most d.

2.2 Sums-of-Squares proofs
Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set of polynomials. We think of the qj
polynomials as inequality constraints, and of the pj polynomials as equality constraints:

q1 ≥ 0, . . . , q` ≥ 0, p1 = 0, . . . , pm = 0. (2)

Let p be another polynomial. A Sums-of-Squares (SOS) proof of p ≥ 0 from Q is a formal
identity of the form

p = s0 +
∑
j∈[`]

sjqj +
∑
j∈[m]

tjpj +
∑
q∈Bn

uqq, (3)

where s0 and s1, . . . , s` are sums of squares of polynomials, sj =
∑kj

i=1 r
2
i,j for j ∈ [`] ∪ {0},

and t1, . . . , tm and all uq are arbitrary polynomials. The proof is of degree at most d if
deg(p) ≤ d, deg(s0) ≤ d, deg(sj) + deg(qj) ≤ d for each j ∈ [`], and deg(tj) + deg(pj) ≤ d

for each j ∈ [m]. The proof is of monomial size at most s if

k0∑
i=1

size(ri,0) +
∑
j∈[`]

kj∑
i=1

size(ri,j) +
∑
j∈[m]

size(tj) ≤ s.

This definition of size corresponds to the number of monomials of an explicit SOS proof given
in the form (s0, s1, . . . , s`, t1, . . . , tm), where each sj is given in the form (r1,j , . . . , rkj ,j), and
all the ri,j and tj polynomials are represented as explicit sums of terms. Accordingly, the
monomials of the ri,j ’s and the tj ’s are called the explicit monomials of the proof.

Note that the uq polynomials are not considered in the definition we have chosen of an
explicit SOS proof, so they do not contribute to its monomial size or its degree. The rationale
for this is that typically one thinks of the identity in (3) as an equivalence

p ≡ s0 +
∑
j∈[`]

sjqj +
∑
j∈[m]

tjpj mod In
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and we want proof size and degree to not depend on how the computations modulo the
Boolean ideal In are performed. For degree this choice is further justified from the fact that
one may always assume that the degrees of the products uqq do not surpass the degree d
in a proof of degree d. This follows from the fact that Bn is a Gröbner basis for In with
respect to any monomial ordering – one can see this quite easily using Buchberger’s Criterion
(see e.g. [10]). In particular upper and lower bounds for the restricted definition of degree
imply the same upper and lower bounds for our liberal definition of degree, and vice versa.
For monomial size, this goes only in one direction: lower bounds on our liberal definition
of monomial size translate into lower bounds for a restricted definition of monomial size
that takes

∑
q∈Bn

size(uq) also into account. Since our aim is to prove lower bounds on
the number of monomials in a proof, proving our results for our more liberal definition of
monomial size makes our results only stronger.

2.3 Positivstellensatz proofs
This proof system is an extension of SOS. Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set
of polynomials interpreted as in (2). A Positivstellensatz proof (PS) of p ≥ 0 from Q is a
formal identity of the form

p = s∅ +
∑
J∈J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj +
∑
q∈Bn

uqq, (4)

where J is a collection of non-empty subsets of [`], each sJ is a sum-of-squares polynomial, sJ =∑kJ

i=1 r
2
i,J , and each tj and uq is an arbitrary polynomial. The proof is of degree at most d if

deg(p) ≤ d, deg(s∅) ≤ d, deg(sJ )+
∑
j∈J deg(qj) ≤ d for each J ∈ J, and deg(tj)+deg(pj) ≤ d

for each j ∈ [m]. The proof is of monomial size at most s if

k0∑
i=1

size(ri,∅) +
∑
J∈J

kJ∑
i=1

size(ri,J) +
∑
j∈[m]

size(tj) ≤ s.

The proof has product-width at most w if each J ∈ J has cardinality at most w. The explicit
monomials of the proof are the monomials of the ri,J ’s and the tj ’s. It should be noted
that PS applied to a Q that contains at most one inequality constraint (i.e., ` ≤ 1) is literally
equivalent to SOS: any power of a single inequality is either a square, or the lift of that
inequality by a square.

As in SOS proofs, the definitions of monomial size and degree of a proof do not take
into account the uq polynomials. Likewise, the monomials in the products

∏
j∈J qj do not

contribute to the definition of monomial size. As above, this liberal definition plays in favour
of lower bounds in the case of monomial size. For degree, ignoring the uq’s does not really
matter, again, because Bn is a Gröbner basis for In.

2.4 More on the definition of monomial size
Starting at [9, 1], counting monomials in algebraic proof systems such as the Polynomial
Calculus (PC) is a well-established practice in propositional proof complexity. One motivation
for it comes from the fact that PC with twin variables, called PCR in [1], polynomially
simulates Resolution, and the natural transformation that is given by the proof turns the
clauses of the Resolution proof into monomials. Another motivation comes from the fact that,
in the area of computational algebra, the performance of the Gröbner basis method appears
to depend significantly on how the polynomials are represented. In this respect, the sum of
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monomials representation of polynomials features among the first and most natural choices
to be used in practice. That said, for the natural static version of PC called Nullstellensatz
(NS) [4], let alone for SOS and PS, counting monomials does not appear to have such a
well-established tradition. Note that in the presence of twin variables, SOS monomial size is
known to polynomially simulate Resolution (see Lemma 4.6 in [2], where this is proved with
a slightly different definition of SOS and monomial size from the one above; the difference is
minor). It follows that the first of the two motivations for counting monomials in PC carries
over to SOS, and hence to PS.

In the original Beame et al. and Grigoriev-Vorobjov papers [4, 16] where NS and PS
were defined first, size is never considered, only degree. The subsequent Grigoriev’s papers
on SOS [13, 14] did not consider size either. To the best of our knowledge, the first reference
that defines a notion of size for (the version of) PS proofs (with w = 0) appears to be
[15], where the size of a proof is defined as “the length of a reasonable bit representation
of all polynomials” in the proof. The same paper proves lower bounds on the “number of
monomials” of an SOS proof (see Lemma 9.1 in [15]) without being precise as to whether it
is counting monomials in the ri,0 polynomials (in the notation of (3)), or in the expansion
of s0 as a sum of terms. Note, however, that size(s0) ≤

∑
i size(ri,0)2, hence the difference

between these two possibilities is not terribly critical. As with the squares sj , the definitions
in [15] are not explicit as to whether the monomials in the tj polynomials (in the notation
of (3) again) contribute to the monomial size by themselves, or whether one is to take into
account the expansions of the products tjpj . Unlike ours, the definitions in [15] do not
distinguish between the uq polynomials that multiply the Boolean axioms and the rest.

The difference between counting the monomials of the sj (or the ri,j) polynomials versus
counting those in the expansions of the products sjqj and tjpj is again not critical if one
is satisfied with a notion of size up to a polynomial factor that depends on the size of the
input. If one is to care about such refinements of monomial size that take into account
polynomial factors, then a natural size measure for, say, tjpj could well be size(tj) + size(pj)
or even size(tj) · size(pj), instead of size(tjpj). Note that size(tj) · size(pj) corresponds to the
number of monomials that one would encounter while expanding the product tjpj in the naive
way before merging terms with the same monomial, and in particular, before any potential
cancelling of terms occurs. In [2], the monomial size of (their slightly different version of)
Lasserre/SOS is defined in terms of the expanded summands, which in the notation of (3),
would correspond to size(s0) +

∑
j size(sjqj) +

∑
j size(tjpj) +

∑
q size(uqq). In [22] the same

convention for defining monomial size is used but the last sum over q is omitted since they
work mod In by default. For PS proofs as in (4) that have large product-width w, whether we
count the monomials in the sJ polynomials or in the expansions of the products sJ

∏
j∈J qj

could make a significant difference, i.e., exponential in w. If we think of the proof in (4)
as given by the indexed sequences (sJ : J ∈ J ∪ {∅}) and (tj : j ∈ [m]), then counting
only the monomials in the sJ polynomial, or even better in the ri,J polynomials, looks
like the natural choice.

3 Size-Degree Trade-Off

In this section we prove the following.

I Theorem 1. For every two natural numbers n and k, every indexed set Q of polynomials of
degree at most k with n pairs of twin variables, and every two positive integers s and w, if there
is a PS refutation from Q of product-width at most w and monomial size at most s, then there
is a PS refutation from Q of product-width at most w and degree at most 4

√
2(n+ 1) log(s) +

kw + 4.
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An immediate consequence is a degree criterion for size lower bounds:

I Corollary 2. Let Q be an indexed set of polynomials of degree at most k with n pairs
of twin variables, and let w be a positive integer. If d is the minimum degree and s is
the minimum monomial size of PS refutations from Q of product-width at most w, and
d ≥ kw + 4, then s ≥ exp((d− kw − 4)2/(32(n+ 1))).

The proof of Theorem 1 will follow the standard structure of proofs for degree-reduction
lemmas for other proof systems, except for some complications in the unrestricting lemmas.
These difficulties come from the fact that PS proofs are static. The main tool around these
difficulties is a tight Duality Theorem for degree-bounded proofs with respect to so-called
cut-off functions as defined next.

3.1 Duality modulo cut-off functions
Let Q = {q1, . . . , q`, p1, . . . , pm} be an indexed set of polynomials interpreted as constraints as
in (2). A cut-off function for Q is a function c : P([`]) ∪̇ [m]→ N with c(J) ≥

∑
j∈J deg(qj)

for each J ⊆ [`], and c(j) ≥ deg(pj) for each j ∈ [m]. A PS proof as in (4) has degree mod c at
most d if deg(p) ≤ d, deg(s0) ≤ d, deg(sJ ) ≤ d− c(J) for each J ∈ J, and deg(tj) ≤ d− c(j)
for each j ∈ [m].

Let PScw,d(Q) denote the set of all polynomials q of degree at most d such that q ≥ 0
has a PS proof from Q of degree mod c at most d and product-width at most w. We
write Q `cw,d q ≥ p if q − p ∈ PScw,d(Q). A pseudo-expectation for Q of degree mod c at
most d and product-width at most w is a linear functional E from the set of all polynomials
of degree at most d such that E(1) = 1 and E(q) ≥ 0 for all q ∈ PScw,d(Q). We denote
by Ecw,d(Q) the set of pseudo-expectations for the indicated parameters.

I Theorem 3. Let d be a positive integer, let Q be an indexed set of polynomials, let c be
a cut-off function for Q, let w be a positive integer, and let p be a polynomial of degree at
most 2d. Then

sup{r ∈ R : Q `cw,2d p ≥ r} = inf{E(p) : E ∈ Ecw,2d(Q)}.

Moreover, if the set Ecw,2d(Q) is non-empty, then there is a pseudo-expectation achieving the
infimum; i.e., min{E(p) : E ∈ Ecw,2d(Q)} is well-defined.

Note that the statement of Theorem 3 applies only to even degrees. This comes as an
artifact of the proof but is in no way a severe restriction for the applications that we have in
mind. The definitions of degree for SOS and PS proofs as defined in Section 2 are special
cases of the definitions above for appropriate choices of w and c. Thus, Theorem 3 gives
Duality Theorems for them. The role of the cut-off function c in our application below will be
explained in due time; i.e., after its use in the unrestricting Lemma 6 below. It is important
for the lemmas that follow that these duality theorems are tight in two ways: that they have
zero duality gap and that they respect the degree; i.e., the degree bound is the same for
proofs and pseudo-expectations. We defer the proof of Theorem 3 to Section 5 where a more
general statement is proved.

3.2 Unrestricting lemmas
For this section, fix three positive integers n, d and w for the numbers of pairs of twin
variables, degree, and product width. We also fix an indexed set Q = {q1, . . . , q`, p1, . . . , pm}
of polynomials on the n pairs of twin variables, and a cut-off function c for Q.
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I Lemma 4. Let p and q be polynomials of degree at most 2d. If p ≡ q mod In, then
E(p) = E(q) for any E ∈ Ecw,2d(Q).

Proof. The assumption that p ≡ q mod In implies that both p − q and q − p belong
to PScw,2d(Q). Hence E(p) = E(q) for any E ∈ Ecw,2d(Q). J

I Lemma 5. Let x be one of the 2n variables and let m be a monomial of degree at most 2d−1.
Then E(x) = 0 implies E(xm) = 0 for any E ∈ Ecw,2d(Q).

Proof. Let m1 and m2 be two monomials of degree at most d− 1 and d, respectively, such
that m = m1m2. Note first that E((xm1)2) = 0, since x − (xm1)2 ≡ (x − xm1)2 mod In
and all degrees are at most 2d. Hence, 0 = E(x) ≥ E((xm1)2) ≥ 0 by Lemma 4. Let
then a = E(m2

2) and note that a ≥ 0. For every positive integer k we have

E(xm) ≤ 1
2k (E(2kxm1m2) + E((kxm1 −m2)2)) = a

2k ,

E(xm) ≥ 1
2k (E(2kxm1m2)− E((kxm1 +m2)2)) = − a

2k ,

where in both cases the equalities follow from E((xm1)2) = 0 and E(m2
2) = a. Since a ≥ 0

and the inequalities hold for every k > 0 it must be that E(xm) = 0 and the lemma
is proved. J

For q a polynomial on the n pairs of twin variables, i ∈ [n] an index, and b ∈ {0, 1} a
Boolean value, we denote by q[i/b] the polynomial that results from assigning xi to b and x̄i
to 1− b in q. We extend the notation to indexed sets of such polynomials through Q[i/b] to
mean {qj [i/b] : j ∈ [`]} ∪ {pj [i/b] : j ∈ [m]}. Note that qj [i/b] and pj [i/b] are polynomials
on n− 1 pairs of twin variables, and their degrees are at most those of qj and pj , respectively.

I Lemma 6. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with the polynomials pm+1 = xi
and pm+1 = x̄i, respectively, and let c′ be the extension of c that maps m + 1 to 1. The
following hold:
(i) The function c′ is a cut-off function for both Q0 and Q1,
(ii) If Q[i/0] `cw,2d −1 ≥ 0, then Q0 `c

′

w,2d −1 ≥ 0.
(iii) If Q[i/1] `cw,2d −1 ≥ 0, then Q1 `c

′

w,2d −1 ≥ 0.

Proof. (i) is obvious. By symmetry we prove only (ii). Suppose that Q[i/0] `cw,2d −1 ≥ 0,
say:

−1 = s0 +
∑
J∈J

sJ
∏
j∈J

qj [i/0] +
∑
j∈[m]

tjpj [i/0] +
∑
q∈Bn

tqq[i/0]. (5)

For j ∈ [`], write qj =
∑
α∈Ij

aj,αx
α, let Jj = {α ∈ Ij : αi ≥ 1} and Kj = {α ∈ Ij : αi =

0 and αn+i ≥ 1} and note that

qj [i/0] = qj +
∑
α∈Jj

aj,α(xα/xαi
i )(−xαi

i ) +
∑
α∈Kj

aj,α(xα/x̄αn+i

i )(1− x̄αn+i

i ).

Therefore qj [i/0] ≡ qj + rjxi mod In where

rj =
∑
α∈Kj

aj,α(xα/x̄αn+i

i )−
∑
α∈Jj

aj,α(xα/xαi
i ).
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Note that deg(rj) ≤ deg(qj)− 1 since αi ≥ 1 for α ∈ Jj and αn+i ≥ 1 for α ∈ Kj . Now

sJ
∏
j∈J

qj [i/0] ≡ sJ
∏
j∈J

(qj + rjxi) mod In

≡ sJ
∏
j∈J

qj +
(∑
T⊆J
T 6=J

sJ
∏
j∈T

qj
∏

j∈J\T

rj

)
xi mod In.

Because c is a cut-off function forQ and c′(J) = c(J), we have deg(sJ ) ≤ 2d−c(J) = 2d−c′(J).
Likewise for every T 6= J , we have:

deg
(
sJ
∏
j∈T

qj
∏

j∈J\T

rj

)
≤ deg(sJ) +

∑
j∈T

deg(qj) +
∑
j∈J\T

deg(rj)

≤ 2d− c(J) +
∑
j∈J

deg(qj)− 1 ≤ 2d− 1 = 2d− c′(m+ 1).

The second inequality follows from the facts that J \ T 6= ∅ and deg(rj) ≤ deg(qj) − 1
for all j ∈ [m], the third inequality follows from the fact that c is a cut-off function for
Q, and the equality follows from the definition of c′. Hence, Q0 `c

′

w,2d sJ
∏
j∈J qj [i/0].

A similar and easier argument with tj and pj in place of sJ and
∏
j∈J qj shows that

Q0 `c
′

w,2d tjpj [i/0]. This gives proofs for all terms in the right-hand side of (5), and the proof
of the lemma is complete. J

Some comments are in order about the role of the cut-off function in the above proof.
First note that, at the semantic level, the constraint qj [i/0] ≥ 0 is equivalent to the pair
of constraints qj ≥ 0 and xi = 0. At the level of syntatic proofs, though, these two
representations of the same constraint behave differently: although a lift sjqj [i/0] of the
restriction qj [i/0] ≡ qj + rjxi of qj may have its degree bounded by 2d, the degree of its
direct simulation through sjqj + sjrjxi could exceed 2d. The role of the cut-off function is to
restrict the lifts sjqj [i/0] in such a way that their simulation through sjqj + sjrjxi remains a
valid lift of degree at most 2d; this is the case if, indeed, the allowed lifts sjqj [i/0] of qj [i/0]
are those satisfying deg(sj) ≤ 2d− c(j), where c(j) ≥ deg(qj). This is why c is designed to
depend only on the index j (or J) and not on the polynomial indexed by j (or J).

I Lemma 7. Let i ∈ [n], let Q0 and Q1 be the extensions of Q with the polynomials pm+1 = xi
and pm+1 = x̄i, respectively, and let c′ be the extension of c that maps m + 1 to 1. The
following hold:
(i) The function c′ is a cut-off function for both Q0 and Q1.
(ii) If Q0 `c

′

w,2d −1 ≥ 0, then E(xi) > 0 for any E ∈ Ecw,2d(Q).
(iii) If Q1 `c

′

w,2d −1 ≥ 0, then E(x̄i) > 0 for any E ∈ Ecw,2d(Q).

Proof. (i) is obvious. We prove (ii); the proof of (iii) is symmetric. Suppose towards a
contradiction that there is E ∈ Ecw,2d(Q) such that E(xi) = 0. We want to show that E is
also in Ec

′

w,2d(Q0). This contradicts the assumption that Q0 `c
′

w,2d −1 ≥ 0. Let

s∅ +
∑
J∈J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj + tm+1xi +
∑
q∈Bn

tqq (6)

be a proof from Q0 of degree mod c′ at most 2d and product-width at most w. First note
that deg(tm+1) ≤ 2d− c′(m+ 1) ≤ 2d− 1. Therefore, Lemma 5 applies to all the monomials
of tm+1, so E(tm+1xi) = 0. The rest of (6) will get a non-negative value through E, since by
assumption E is in Ecw,2d(Q) and c is c′ restricted to P([`]) ∪̇ [m]. Thus, E is in Ec

′

w,2d(Q0). J

CCC 2019



24:10 Size-Degree Trade-Offs for Sums-of-Squares and Positivstellensatz Proofs

I Lemma 8. Let i ∈ [n] and assume that d ≥ 2. The following hold:
(i) If Q[i/0] `cw,2d−2 −1 ≥ 0 and Q[i/1] `c2d −1 ≥ 0, then Q `cw,2d −1 ≥ 0.
(ii) If Q[i/0] `cw,2d −1 ≥ 0 and Q[i/1] `c2d−2 −1 ≥ 0, then Q `cw,2d −1 ≥ 0.

Proof. Since in this proof c and w remain fixed, we write `2d instead of `cw,2d and E2d(Q)
instead of Ecw,2d(Q), and act similarly for degree 2d− 2. First note that −x̄ixi = (x2

i − xi)−
xi(xi + x̄i − 1), and d ≥ 1, so

`2d −x̄ixi ≥ 0. (7)

We prove (i); the proof of (ii) is entirely analogous.
Assume Q[i/0] `2d−2 −1 ≥ 0. By Lemmas 6 and 7 and d ≥ 2 we have E(xi) > 0 for

any E ∈ E2d−2(Q). Then, by the Duality Theorem, there exist ε > 0 such that Q `2d−2 xi ≥ ε.
To see this, let γ = sup{r ∈ R : Q `2d−2 xi ≥ r} = inf{E(xi) : E ∈ E2d−2(Q)}. If E2d−2(Q)
is empty, then γ = +∞ and any ε > 0 serves the purpose. If E2d−2(Q) is non-empty, then
the Duality Theorem says that the infimum is achieved, hence γ = E(xi) > 0 for some E
in E2d−2(Q), and ε = γ/2 > 0 serves the purpose. Using d ≥ 2 again, Q `2d x̄

2
ixi ≥ x̄2

i ε, so

Q `2d x̄ixi ≥ x̄iε. (8)

Assume also Q[i/1] `2d −1 ≥ 0. By Lemmas 6 and 7 we have E(x̄i) > 0 for any E ∈ E2d(Q),
and this time d ≥ 1 suffices. By the same argument as before, by the Duality Theorem there
exist δ > 0 such that Q `2d x̄i ≥ δ. Now d ≥ 1 suffices to get

Q `2d x̄iε ≥ δε. (9)

Adding (7), (8) and (9) gives Q `2d 0 ≥ δε, i.e., Q `2d −1 ≥ 0. J

3.3 Inductive proof
We need one more technical concept: a PS proof as in (4) is multilinear if s0 and sJ are
sums-of-squares of multilinear polynomials for each J ∈ J, and tj is a multilinear polynomial
for each j ∈ [m].

I Lemma 9. For every two positive integers s and w and every indexed set Q of polynomials,
if there is a PS refutation from Q of monomial size at most s and product-width at most w,
then there is a multilinear PS refutation from Q of monomial size at most s and product-width
at most w.

Proof. Assume that Q = {q1, . . . , q`, p1, . . . , pm} and that there is a refutation from Q

as in (4), with s0 =
∑k0
i=1 r

2
i,0 and sJ =

∑kJ

i=1 r
2
i,J for J ∈ J, where the total number of

monomials among the ri,0, ri,J and tj is at most s. For each polynomial r let r be its direct
multilinearization; i.e., each power xl with l ≥ 2 that appears in r is replaced by x. It is
obvious that r ≡ r mod In and also r2 ≡ r2 mod In, where n is the number of pairs of
twin variables in Q. Moreover, the number of monomials in r does not exceed that of r.
Thus, setting s′0 =

∑k0
i=1 ri,0

2, s′J =
∑kJ

i=1 ri,J
2 and t′j = tj we get

−1 ≡ s′0 +
∑
J∈J

s′J
∏
j∈J

qj +
∑
j∈[m]

t′jpj mod In,

It follows that Q has a multilinear refutation of monomial size at most s. J

Theorem 1 will be a consequence of the following lemma for a suitable choice of d and c:
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I Lemma 10. For every natural number n, every indexed set Q of polynomials with n pairs
of twin variables, every cut-off function c for Q, every real s ≥ 1 and every two positive
integers w and d, if there is a multilinear PS refutation from Q of product-width at most w
with at most s many explicit monomials of degree at least d (counted with multiplicity), then
there is a PS refutation from Q of product-width at most w and degree mod c at most 2d′+2d′′
where d′ = d+ b2(n+ 1) log(s)/dc and d′′ = max{1, d(max c)/2e}.

Proof. The proof is an induction on n. Let Q be an indexed set of polynomials with n

pairs of twin variables, let c be a cut-off function for Q, let s ≥ 1 be a real, let w and
d be positive integers, and let Π be a multilinear refutation from Q of product-width at
most w and at most s many explicit monomials of degree at least d. For n = 0 the statement
is true because 2d′′ ≥ 2d(max c)/2e ≥ max c. Assume now that n ≥ 1. Let t ≤ s be
the exact number of explicit monomials of degree at least d in Π. The total number of
variable occurrences in such monomials is at least dt. Therefore, there exists one among
the 2n variables that appears in at least dt/2n of the explicit monomials of degree at least d.
Let i ∈ [n] be the index of such a variable, basic or twin. If it is basic, let a = 0. If it is twin,
let a = 1. Our goal is to show that

Q[i/a] `c2d′+2d′′−2 −1 ≥ 0 and Q[i/1− a] `c2d′+2d′′ −1 ≥ 0, (10)

for d′ and d′′ as stated in the lemma. If we achieve so, then d′ + d′′ ≥ 2 because d′ ≥ d ≥ 1
and d′′ ≥ 1, so Lemma 8 applies on (10) to give Q `c2d′+2d′′ −1 ≥ 0, which is what we are
after.

Consider Q[i/a] first. This is a set of polynomials on n − 1 pairs of twin variables,
and Π[i/a] is a multilinear refutation from it of product-width at most w that has at
most s′ := t(1 − d/2n) explicit monomials of degree at least d. Moreover c is a cut-off
function for it. We distinguish the cases s′ < 1 and s′ ≥ 1. If s′ < 1, then all explicit
monomials in Π[i/a] have degree at most d− 1. Since 2d′′ ≥ max c, this refutation has degree
mod c at most 2(d− 1) + 2d′′ ≤ 2d′ + 2d′′ − 2. This gives the first part of (10). If s′ ≥ 1,
then first note that d < 2n. Moreover, the induction hypothesis applied to Q[i/a] and s′,
and the same c, d and w, gives that there is a refutation from Q[i/a] of product-width at
most w and degree mod c at most 2da + 2d′′, where

da = d+ b2n log(t(1− d/2n))/dc ≤ d+ b2(n+ 1) log(s)/dc − 1.

Here we used the inequality log(1 + x) ≤ x which holds true for every real x > −1, and the
fact that d < 2n. This gives the first part of (10) since da ≤ d′ − 1.

Consider Q[i/1 − a] next. In this case, the best we can say is that c is still a cut-off
function for it, and that Π[i/1− a] is a multilinear refutation from it of product-width at
most w, that still has at most s many explicit monomials of degree at least d. But Q[i/1− a]
has at most n− 1 pairs of twin variables, so the induction hypothesis applies to it. Applied
to the same c, s, d and w, it gives that there is a refutation from Q[i/1− a] of degree mod c
at most 2d1−a + 2d′′, where

d1−a = d+ b2n log(s)/dc ≤ d+ b2(n+ 1) log(s)/dc.

This gives the second part of (10) since d1−a ≤ d′. The proof is complete. J

Proof of Theorem 1. Assume that Q has a refutation of product-width at most w and
monomial size at most s. Applying Lemma 9 we get a multilinear refutation with at most s
many explicit monomials, and hence with at most s many explicit monomials of degree at
least d0, for any d0 of our choice. We choose

d0 := b
√

2(n+ 1) log(s)c+ 1.
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By assumption s ≥ 1 and we chose d0 in such a way that d0 ≥ 1. Thus, Lemma 10 applies to
any cut-off function c for Q, in particular for the cut-off function that is kw everywhere. This
gives a refutation of product-width at most w and degree mod c at most 2d′ + kw + 2 with

d′ ≤ d0 + 2(n+ 1) log(s)/d0 ≤ 2
√

2(n+ 1) log(s) + 1.

Since a proof of product-width at most w and degree mod c at most 2d′ + kw + 2 is also a
proof of standard degree at most 2d′ + kw + 2, the proof is complete. J

4 Applications

The obvious targets for applications of Theorem 1 are the examples from the literature that
are known to require linear degree to refute. For some of them, such as Knapsack, the size
lower bound that follows was already known. For some others, the application of Theorem 1
yields a new result.

A note is in order: all the examples below are either systems of polynomial equations, i.e.,
` = 0, or have a single inequality, i.e., ` = 1. For such systems of constraints, PS and SOS are
literally equivalent. For this reason, our size lower bounds for them are stated only for SOS
(stating them for PS would be accurate, but also misleading).

4.1 Tseitin, Knapsack, and Random CSPs
The first set of examples that come to mind are the Tseitin formulas: If Gn = (V,E)
is an n-vertex graph from a family {Gn : n ∈ N} of constant degree regular expander
graphs, then the formula TSn has one Boolean variable xe for each e ∈ E and one parity
constraint

∑
e:u∈e xe = 1 mod 2 for each u ∈ V . Whenever the degree d of the graphs is even,

this is unsatisfiable when n is odd. In the encoding of the constraints given by the system of
polynomial equations Q = {

∏
e:u∈e(1− 2xe) = −1 : u ∈ V }, the Tseitin formulas TSn were

shown to require degree Ω(n) to refute in PS in Corollary 1 from [14]. Since the number of
variables of TSn is dn/2, the constraints in Q are equations of degree d, and d is a constant,
Theorem 1 gives:

I Corollary 11. There exists ε ∈ R>0 such that for every sufficiently large n ∈ N, every SOS
refutation of TSn has monomial size at least 2εn.

Among the semialgebraic proof systems in the literature, exponential size lower bounds
for Tseitin formulas were known before for a proof system called static LS+ in [15, 18]. Up
to at most doubling the degree, this can be seen as the subsystem of SOS in which every
square sj is of the very special form

sj =
((∑

i∈[n]

aixi + b
)∏
i∈I

xi
∏
j∈J

(1− xj)
)2
.

A second set of examples are the Knapsack equations 2x1 + · · · + 2xn = k, which are
unsatisfiable for odd integers k. We denote them KSn,k. These are known to require
degree Ω(min{k, 2n− k}) to refute in SOS [13]. Since the number of variables is n and the
degree is one, Theorem 1 gives an exponential size 2Ω(n) lower bound when k = n. For this
example, an exponential size lower bound for SOS was also proved in Theorem 9.1 from
[15] when k = Θ(n), so this result is not new. We state the precise relationship that the
degree-reduction theorem gives in terms of n and k, which yields superpolynomial lower
bounds for k = ω(

√
n logn).
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I Corollary 12. There exist ε ∈ R>0 such that for every sufficiently large n ∈ N and k ∈ [n],
every SOS refutation of KSn,k has monomial size at least 2εk2/n.

The third set of examples come from sparse random instances of constraint satisfaction
problems. As far as we know, monomial size lower bounds for these examples do not follow
from earlier published work without using our result, so we give the details.

When C is a clause with k literals, say xi1 ∨· · ·∨xi` ∨ x̄i`+1 ∨· · ·∨ x̄ik , we write pC for the
unique multilinear polynomial on the variables xi1 , . . . , xik of C that evaluates to the same
truth-value as C over Boolean assignments; concretely pC = 1−

∏`
j=1(1− xij )

∏k
j=`+1 xij .

More generally, if C denotes a constraint on k Boolean variables, we write pC for the unique
multilinear polynomial on the variables of C that represents C over Boolean assignments;
i.e., such that pC(x) = 1 if x satisfies C, and pC(x) = 0 if x falsifies C, for any x ∈ {0, 1}n.

I Theorem 13 (see Theorem 12 in [32]). For every δ ∈ R>0 there exist c, ε ∈ R>0 such that,
asymptotically almost surely as n goes to infinity, if m = dcne and C1, . . . , Cm are random
3-XOR (resp. 3-SAT) constraints on x1, . . . , xn that are chosen uniformly and independently
at random, then there is a degree-εn SOS pseudo-expectation for the system of polynomial
equations pC1 = 1, . . . , pCm

= 1, and at the same time every truth assignment for x1, . . . , xn
satisfies at most a 1/2 + δ fraction (resp. 7/8 + δ) of the constraints C1, . . . , Cm.

It should be noted that it is not immediately obvious, from just reading the definitions,
that the statement of Theorem 12 in [32] gives the pseudo-expectation as stated in Theorem 13.
However, the proof of Theorem 12 in [32] is by now sufficiently well understood to know
that Theorem 13 holds true as stated. One way of seeing this is by noting that the proof of
Theorem 12 in [32] and the proof of the lower bound for the Tseitin formulas in Corollary 1
of [14] are essentially the same. In particular Theorem 12 in [32] holds true also for proving
the existence of SOS pseudo-expectations as stated in Theorem 13.

As an immediate consequence we get:

I Corollary 14. There exist c, ε ∈ R>0 such that, asymptotically almost surely as n goes
to infinity, if m = dcne and C1, . . . , Cm are random 3-XOR (resp. 3-SAT) constraints on
x1, . . . , xn that are chosen uniformly and independently at random, then every SOS refutation
of pC1 = 1, . . . , pCm

= 1 has monomial size at least 2εn.

It is often stated that Theorem 13 gives optimal integrality gaps for the approximability
of MAX-3-XOR and MAX-3-SAT by linear degree SOS. Corollary 14 is its analogue for
subexponential size SOS. There is however a subtelty in that the validity of the integrality
gap statement could depend on the encoding of the objective function. The next section is
devoted to clarify this.

4.2 MAX-CSPs
An instance I of the Boolean MAX-CSP problem is a sequence C1, . . . , Cm of constraints on
n Boolean variables. We are asked to maximize the fraction of satisfied constraints. If pj
denotes the unique multilinear polynomial on the variables of Cj that represents Cj , then
the optimal value for an instance I can be formulated as follows:

opt(I) := maxx∈{0,1}n
1
m

∑m
j=1 pj(x). (11)

We could ask for the least upper bound on (11) that can be certified by an SOS proof of
some given complexity c, i.e., monomial size at most s, degree at most 2d, etc. There are at
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least three formulations of this question. Using the notation `c to denote SOS provability
with complexity c, the three formulations are:

sos′′c(I) := inf{γ ∈ R : `c 1
m

∑m
j=1 pj(x) ≤ γ}, (12)

sos′c(I) := inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} `c 1
m

∑m
j=1 yj ≤ γ}, (13)

sosc(I) := inf{γ ∈ R : {pj(x) = yj : j ∈ [m]} ∪ { 1
m

∑m
j=1 yj ≥ γ} `c −1 ≥ 0}. (14)

The first formulation asks directly for the least upper bound on the objective function of (11)
that can be certified in complexity c. The second formulation is similar but stronger since it
allows m additional Boolean variables y1, . . . , ym, and their twins. The third is the strongest
of the three as it asks for the least value that can be proved impossible. In addition, unlike the
other two, the set of hypotheses in (14) mixes equations and inequality constraints. It should
be obvious that (for natural complexity measures) we have sosc(I) ≤ sos′c(I) ≤ sos′′c(I) so
lower bounds on sosc imply lower bounds for the other two.

Theorem 13 gives, by itself, optimal integrality gaps for MAX-3-XOR and MAX-3-SAT for
linear degree SOS in the sos′′c formulation, when c denotes SOS-degree. However, the degree
lower bound that follows from this formulation does not let us apply our main theorem; the
statement is not about refutations, it is about proving an inequality, so Theorem 1 does not
apply. In the following we argue that Theorem 13 also gives optimal integrality gaps in the
sos′c and sosc formulations of the problems. Since the sosc formulation is about refutations,
our main theorem will apply.

We write αc(I) for the supremum of the α ∈ [0, 1] for which

α · sosc(I) ≤ opt(I) ≤ sosc(I) (15)

holds. If C is a class of instances, then we write α∗c(C) := inf{αc(I) : I ∈ C}; the sosc-
approximation factor for C. It is our goal to show that Theorem 13 implies that, for SOS
proofs of sublinear degree, the sosc-approximation factor of MAX-3-XOR is at most 1/2, and
that of MAX-3-SAT is at most 7/8. These are optimal. This will follow from Theorem 13 and
the following general fact about pseudo-expectations that (pseudo-)satisfy all the constraints:
I Lemma 15. Let I be a MAX-CSP instance with n Boolean variables and m constraints of
arity at most k, represented by multilinear polynomials p1, . . . , pm, and let Q = {pj(x) = 1 :
j ∈ [m]} and Q′ = {pj(x) = yj : j ∈ [m]} ∪ { 1

m

∑m
j=1 yj ≥ 1}. If there is a degree-2dk SOS

pseudo-expectation E for Q, then there is a degree-2d SOS pseudo-expectation E′ for Q′.
Proof. Let σ be the substitution that sends yj to pj(x) and ȳj to 1− pj(x) for j = 1, . . . ,m.
For each polynomial p on the x and y variables, define E′(p) := E(p[σ]), where p[σ] denotes
the result applying the substitution to p. The proof that this works relies on the fact
that if p and q are polynomial in the x and y variables, then (pq)[σ] = p[σ]q[σ], and
deg((pq)[σ]) ≤ deg(p[σ]q[σ]) ≤ 2k(deg(p) + deg(q)). In particular, squares maps to squares
by the substitution. It is obvious that each equation pj(x) = yj lifts: E′(t(pj(x) − yj)) =
E(t[σ](pj(x)−pj(x))) = E(0) = 0. It is equaly obvious that the inequality 1

m

∑m
j=1 yj−1 ≥ 0

lifts: E′(s( 1
m

∑m
j=1 yj − 1)) = 1

m

∑m
j=1E(s[σ](pj(x)− 1)) ≥ 0. This completes the proof of

the lemma. J

Combining this with Theorem 13 and Theorem 1 we get:
I Corollary 16. For every δ ∈ R>0, there exist r, ε ∈ R>0 such that if c denotes SOS monomial
size at most 2εn, where n is the number of variables, then α∗c(MAX-3-XOR) ≤ 1/2 + δ (resp.
α∗c(MAX-3-SAT) ≤ 7/8 + δ), and the gap is witnessed by an instance I with m = drne
many uniformly and independently chosen random constraints, for which sosc(I) = 1 and
opt(I) ≤ 1/2 + δ (resp. opt(I) ≤ 7/8 + δ), asymptotically almost surely as n goes to infinity.
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5 Duality

In this section we finally prove the stated Duality Theorem for PS in a more general setting.
We start by recalling some basic facts about ordered vector spaces from [28]. We prove the
results for pre-ordered vector spaces rather than ordered ones since the polynomial spaces
we will apply the results to carry a natural pre-order.

5.1 Vector spaces with order unit
A pre-ordered vector space is a pair 〈V,≤〉, where V is a real vector space and ≤ is a pre-order
that respects vector addition and multiplication by a non-negative scalar, i.e. the following
hold for all p, q, p1, p2, q1, q2 ∈ V and a ∈ R≥0:
(i) p1 ≤ q1 and p2 ≤ q2 only if p1 + p2 ≤ q1 + q2;
(ii) p ≤ q only if ap ≤ aq.

Pre-ordered vector spaces arise naturally from convex cones of real vector spaces. If C ⊆ V is
a convex cone, then the relation defined by p ≤C q if q−p ∈ C satisfies the above requirements.
An element e ∈ V is an order unit for 〈V,≤〉 if for any p ∈ V there is some r ∈ R≥0 such
that re ≥ p.

For the rest of this section let 〈V,≤〉 be a pre-ordered vector space with an order unit e.

I Lemma 17. The following hold.
(i) e ≥ 0;
(ii) For every p ∈ V and r1, r2 ∈ R with r1 ≤ r2, if r1e ≥ p, then r2e ≥ p.
(iii) For every p ∈ V there is r ∈ R≥0 such that re ≥ p ≥ −re;
(iv) If −e ≥ 0, then p ≥ 0 for every p ∈ V .

Proof. (i) There is some r ∈ R≥0 such that re ≥ −e, i.e. (r + 1)e ≥ 0, and so e ≥ 0.
(ii) Now r2 − r1 ≥ 0 and so (r2 − r1)e ≥ 0. Thus (r2 − r1)e + r1e ≥ p, i.e. r2e ≥ p.
(iii) Let r1 be such that r1e ≥ p and let r2 be such that r2e ≥ −p, and let r = max{r1, r2}.
Now re ≥ p ≥ −re. (iv) Suppose −e ≥ 0 and let r ∈ R≥0 be such that re ≥ −p. Now
also −re ≥ 0 and so 0 ≥ −p, i.e. p ≥ 0. J

Let U be a subspace of V . A linear functional L : U → R is positive if u ≥ 0 implies L(u) ≥
0 for all u ∈ U . Equivalently, L is positive if it is order-preserving, i.e., if u ≤ v implies
L(u) ≤ L(v) for all u, v ∈ U . A positive linear functional L on V is a pseudo-expectation if
L(e) = 1. We denote the set of all pseudo-expectations of V by E(V ).

Suppose U contains the order unit and let p ∈ V . By Lemma 17.(iii) the following two
sets are non-empty:

p ↓ U = {v ∈ U : p ≥ v},
p ↑ U = {v ∈ U : v ≥ p}.

If L is any positive linear functional that is defined on U , then dLp = sup{L(v) : v ∈ p ↓ U}
and uLp = inf{L(v) : v ∈ p ↑ U} are real numbers and dLp ≤ uLp . Note also that if p ∈ U ,
then dLp = L(p) = uLp .

I Lemma 18. Let U be a subspace of V containing the order unit e, and let L be a positive
linear functional on U . Then for any p ∈ V \ U and for any γ ∈ R satisfying dLp ≤ γ ≤ uLp
there is a positive linear functional L′ that is defined on span({p} ∪ U), that extends L, and
such that L′(p) = γ.
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Proof. Every element of span({p} ∪U) can be written uniquely in form ap+ v, where a ∈ R
and v ∈ U . Define L′ by

L′(ap+ v) = aγ + L(v).

It is easy to check that L′ is linear map. We show that L′ is positive by considering a
few cases.

Case (i) a = 0. If ap + v ≥ 0 and a = 0, then v ≥ 0 and L′(ap + v) = L(v) ≥ 0.
Case (ii) a > 0. Suppose that ap+v ≥ 0 and a > 0. Then p ≥ −(v/a), and so L(−(v/a)) ≤ γ,
i.e. 0 ≤ aγ + L(v). Case (iii) a < 0. Suppose that ap+ v ≥ 0 and a < 0. Then −a > 0, and
so −(v/a) ≥ p. Hence γ ≤ L(−(v/a)), and so 0 ≤ aγ + L(v). J

Now we can prove the general duality theorem for pre-ordered vector spaces that admit
an order unit. For a more general version of this result, see [28].

I Theorem 19. For any p ∈ V it holds that

sup{r ∈ R : p ≥ re} = inf{E(p) : E ∈ E(V )}.

Moreover, if the set E(V ) is non-empty, then there is a pseudo-expectation achieving the
infimum, i.e., min{E(p) : E ∈ E(V )} is well-defined.

Proof. The inequality from left to right is clear. For the inequality from right to left we
distinguish two cases: whether −e ≥ 0 or not. If −e ≥ 0, then E(V ) = ∅, since −1 � 0,
so inf{E(p) : E ∈ E(V )} = +∞. On the other hand sup{r ∈ R : p ≥ re} = +∞ by
Lemma 17.(iv), so the claim follows. If −e 6≥ 0, then re ≥ 0 implies r ≥ 0, so the map
defined by L0(re) = r for all r ∈ R is a positive linear functional on U0 = span({e}). Note
now that dL0

p = sup{r ∈ R : p ≥ re}, and so, to prove the theorem, it suffices to show that
there is some pseudo-expectation E extending L0 such that E(p) = dL0

p .
If p ∈ U0, then L0(p) = dL0

p . On the other hand if p 6∈ U0, then by Lemma 18, there
is a positive linear functional L′ extending L0 on span({e, p}) such that L′(p) = dL0

p . Now
consider the set A of all positive linear functionals L that are defined on a subspace U ⊆ V
containing both e and p, and satisfy L(e) = 1 and L(p) = dL0

p . By the argument above A 6= ∅.
On the other hand A is closed under unions of chains and so, by Zorn’s lemma, there is some
maximal E ∈ A.

Now the domain of E is the whole of V , since otherwise we could extend E by using
Lemma 18, contradicting the maximality of E. Hence E is the pseudo-expectation we
are after. J

5.2 Order units for semi-algebraic proof systems
For the purposes of this section we define a more general notion of Positivstellensatz proof
that works modulo an arbitrary ideal I, not only the Boolean ideal In. Let I be an ideal of
the polynomial space R[x], and let Q = {q1 ≥ 0, . . . , q` ≥ 0, p1 = 0, . . . , pm = 0} be a set of
constraints. A PS proof mod I of p ≥ 0 from Q is an identity (of R[x]/I) of the form

p ≡ s∅ +
∑
J⊆J

sJ
∏
j∈J

qj +
∑
j∈[m]

tjpj mod I, (16)

where J is a collection of non-empty subsets of [`], each sJ is a sum-of-squares polynomial, sJ =∑kJ

i=1 r
2
i,J , and each tj is an arbitrary polynomial.
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A cut-off function for Q is a function c : P([`]) ∪̇ [m]→ N with c(J) ≥
∑
j∈J deg(qj) for

each J ⊆ [`], and c(j) ≥ deg(pj) for each j ∈ [m]. A PS proof as in (16) has degree mod c at
most d if deg(p) ≤ d, deg(s0) ≤ d, deg(sJ ) ≤ d− c(J) for each J ∈ J, and deg(tj) ≤ d− c(j)
for each j ∈ [m]. It has product-width at most w if each J ∈ J has cardinality at most w. We
write PSc,Iw,d(Q) for the convex cone of all polynomials p such that p ≥ 0 has a PS proof mod I
from Q of degree mod c at most d and product-width at most w. We will write Q `c,Iw,d p ≥ q if
p−q ∈ PSc,Iw,d(Q), and denote by E

c,I
w,2d(Q) the set of pseudo-expectations over the pre-ordered

vector space determined by this cone. These definitions agree with those used in Section 3
when I = In.

We show that over any ideal I, any cut-off function c and any product-width w, if Q
proves that each variable is bounded in degree two, then the constant polynomial 1 is an
order unit for Q. We prove this in a series of lemmas. In order to simplify the notation, for
these lemmas we write `d instead of `c,Iw,d.

I Lemma 20. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any monomial
m of degree at most d and any a ∈ R there is b ∈ R≥0 such that

Q `2d am
2 + b ≥ 0.

Proof. We prove the claim by induction on the degree of m. If deg(m) = 0, then the
claim is trivial. Suppose then that deg(m) > 0. If a ≥ 0, then the claim is again clear:
am2 = (

√
am)2. Suppose that a < 0 and let x and m0 be such thatm = xm0. By assumption

Q `2 R − x2 ≥ 0, and so Q `2d (
√
−am0)2(R − x2) ≥ 0. By induction hypothesis applied

to m0 and aR there is b0 ∈ R≥0 such that Q `2d aRm
2
0 + b0 ≥ 0. By adding we have that

Q `2d am
2 + b0 ≥ 0. J

I Lemma 21. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any monomial
m of degree at most 2d and any a ∈ R there is b ∈ R≥0 such that

Q `2d am+ b ≥ 0.

Proof. Let m0 and m1 be monomials of degree at most d such that m = m0m1. Now if a ≥ 0,
then (

√
a/2m0 +

√
a/2m1)2 = (a/2)m2

0 +am+ (a/2)m2
1. Now, by previous lemma, there are

non-negative b0 and b1 such that Q `2d (−a/2)m2
i + bi ≥ 0 for i ∈ {0, 1}. Hence Q `2d am+

b0 + b1 ≥ 0. If a < 0, then (
√
−a/2m0 −

√
−a/2m1)2 = (−a/2)m2

0 + am+ (−a/2)m2
1. Now,

again by previous lemma, there are non-negative b0 and b1 such that Q `2d (a/2)m2
i + bi ≥ 0

for i ∈ {0, 1}. Hence Q `2d am+ b0 + b1 ≥ 0. J

I Lemma 22. If Q `2 R ≥ x2 for every variable x for some R ∈ R≥0, then for any
polynomial p of degree at most 2d there is r ∈ R≥0 such that

Q `2d r ≥ p.

Proof. Immediate from Lemma 21. J

This establishes the existence of an order-unit and hence, by Theorem 19, we have:

I Corollary 23. Let d be a positive integer, let Q be an indexed set of polynomials, let c
be a cut-off function for Q, let w be a positive integer, let I be an ideal of R[x], and let
p be a polynomial of degree at most 2d. If Q `c,Iw,2 R ≥ x2 for every variable x for some
R ∈ R≥0, then

sup{r ∈ R : Q `c,Iw,2d p ≥ r} = inf{E(p) : E ∈ E
c,I
w,2d(Q)}.

Moreover, if the set Ec,Iw,2d(Q) is non-empty, then there is a pseudo-expectation achieving the
infimum; i.e., min{E(p) : E ∈ E

c,I
w,2d(Q)} is well-defined.

CCC 2019
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For the Boolean ideal In, the assumption that Q `c,Iw,2 R ≥ x2 holds for every variable x
is fulfilled with R = 1 since 1 − x2 ≡ (1 − x)2 mod In. This gives Theorem 3. In
the ±1 representation of the Boolean hypercube, i.e., modulo the ideal I ′n generated by the
axioms B′n := {1− x2

i , 1− x̄i2, xi + x̄i : i ∈ [n]}, the assumption is fulfilled also with R = 1
since in this case 1− x2 ≡ 0 mod I ′n.

6 Concluding Remarks

In this paper we addressed the question of size-degree trade-offs for PS and SOS. Some
questions remain open. Most importantly, is the O(

√
n log(s) + kw) upper bound in the

degree-reduction lemma tight? For Resolution and PC, whose size-width/degree trade-
offs adopt the same form, the bound is known to be tight. In both cases the Ordering
Principle (OP) witnesses the necessity of the square root of the number of variables in the
upper bound [7, 12]. In this respect, it should be noted that it was recently shown that OPn,
which has N = n2 variables, can be refuted in degree O(

√
n), whence degree O( 4

√
N), in SOS

[30]. Since the relationship between N and
√
n is a 4-th root, this means that OPn cannot

be used for witnessing the necessity of the square root of the number of variables in our
theorem. But can OPn be used to show that at least some fixed root r

√
n of n is required?

So far, the best SOS degree lower bound for OPn known is superconstant [30].
Although it looks unlikely that the dependence of O(

√
n log(s) + kw) on the product-

width w could be improved by refining the current method, it is not even known whether
there are examples that separate PS from SOS. Could PS collapse to SOS with respect to size
or degree? Related to this, a comment worth making is that there is a general well-known
technique for transforming inequalities P ≥ 0 into equalities P − z2 = 0, where z is a fresh
variable. This looks relevant since, in the absence of inequalities, PS collapses to SOS just
by definition. On the other hand, note that the new variable z that is introduced by this
method is not Boolean, which takes us outside the Boolean hypercube.
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Abstract
We study the problem of approximating the commuting-operator value of a two-player non-local
game. It is well-known that it is NP-complete to decide whether the classical value of a non-local
game is 1 or 1 − ε, promised that one of the two is the case. Furthermore, as long as ε is small
enough, this result does not depend on the gap ε. In contrast, a recent result of Fitzsimons, Ji,
Vidick, and Yuen shows that the complexity of computing the quantum value grows without bound
as the gap ε decreases. In this paper, we show that this also holds for the commuting-operator
value of a game. Specifically, in the language of multi-prover interactive proofs, we show that the
power of MIPco(2, 1, 1, s) (proofs with two provers, one round, completeness probability 1, soundness
probability s, and commuting-operator strategies) can increase without bound as the gap 1− s gets
arbitrarily small.

Our results also extend naturally in two ways, to perfect zero-knowledge protocols, and to lower
bounds on the complexity of computing the approximately-commuting value of a game. Thus we get
lower bounds on the complexity class PZK-MIPcoδ (2, 1, 1, s) of perfect zero-knowledge multi-prover
proofs with approximately-commuting operator strategies, as the gap 1− s gets arbitrarily small.
While we do not know any computable time upper bound on the class MIPco, a result of the first author
and Vidick shows that for s = 1− 1/ poly(f(n)) and δ = 1/ poly(f(n)), the class MIPcoδ (2, 1, 1, s),
with constant communication from the provers, is contained in TIME(exp(poly(f(n)))). We give a
lower bound of coNTIME(f(n)) (ignoring constants inside the function) for this class, which is tight
up to polynomial factors assuming the exponential time hypothesis.
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1 Introduction

Non-local games are a subject of converging interest for quantum information theory and
computational complexity theory. A central question in both fields is the complexity of
approximating the optimal winning probability of a non-local game. Quantum mechanics
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allows non-local strategies in which the players share entanglement, and in quantum com-
plexity theory we are interested in understanding the optimal winning probability over these
entangled strategies. Answering this question is necessary for understanding the power of
multi-prover interactive proof systems with entangled provers and a classical verifier.

For classical strategies (i.e. strategies without entanglement), it is NP-hard to decide
whether a non-local game has winning probability 1. The PCP theorem implies that it is
NP-hard to decide whether a non-local game has winning probability 1 or winning probability
1 − ε, where ε is constant, promised that one of the two is the case [1, 2]. Therefore, for
classical games, the complexity of computing the winning probability is the same for constant
error as for zero error.

Two models for quantum strategies have historically been used when defining the entangled
value of a nonlocal game: the tensor product model and the commuting-operator model. The
optimal winning probability of a non-local game over tensor product strategies is called the
quantum value, and optimal winning probability over all commuting-operator strategies is
called the commuting-operator value.

A number of lower bounds on approximating the quantum value of a non-local game
are known. In particular, Ji has shown that it is NEXP-hard to compute the quantum
value of a non-local game with inverse polynomial precision, and NEEXP-hard to compute
the entangled value with inverse exponential precision [11]. Fitzsimons, Ji, Vidick, and
Yuen continue this line of results by showing, roughly, that for any computable function
f(n) : N → N, it is NTIME(exp(f(n))) hard to compute the quantum value of a nonlocal
game with 1/f(n) precision (here n is the input size) [7]. In particular, this implies that the
quantum value of a game behaves very differently from the classical winning probability, since
the complexity of computing the quantum value increases without bound as the required
precision increases.

It is also natural to ask whether one might be able to approximate the commuting-operator
value of a game efficiently. The study of the commuting-operator value goes back to [9],
where it is shown that it is NP-hard to distinguish whether the commuting operator value
is 1 or 1-1/poly(n). The complexity of the commuting operator value does not seem to be
explicitly studied in more recent work.

In this paper, we look at lower bounds on the complexity of approximating the commuting-
operator value of linear system nonlocal games, a type of nonlocal game closely connected
with the theory of finitely-presented groups [3]. We show that group-theoretic methods can
be used to lower bound the complexity of approximating the commuting-operator value
of a linear system nonlocal game. In particular we show that, just as with the quantum
value of a game, the complexity of computing the commuting operator value of a non-local
game to precision ε grows arbitrarily large as ε decreases. Because our results are based
on group-theoretic methods, we observe that they naturally extend to lower bounds on
approximately-commuting-operator strategies for games, a generalization of commuting-
operator strategies in which Alice and Bob’s strategies can interact slightly, but in such a
way that the interaction is bounded by a parameter δ. Thus we show:

I Theorem 1. There is a universal constant k such that for every language L ⊂ A∗ over a
finite alphabet A and contained in coNTIME(f(n)), where f(n) is at least polynomial, there
is a constant C > 0 and a family of two-player non-local games (Gw)w∈A∗ of size poly(|w|)
and computable in poly(|w|)-time, such that for any δ = o(1/f(Cn)2k), deciding whether
ωcoδ (Gw) = 1, or

ωcoδ (Gw) ≤ 1− 1/f(Cn)k +O(
√
δ),

promised that one of the two is the case, is as hard as deciding membership of w in L.
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Here ωcoδ (Gw) denotes the supremum of all winning probabilities for all δ-commuting-operator
strategies for the game Gw (see Definition 9). The proof of Theorem 1 is given in Section
5. Setting δ = 0 gives a hardness result for approximating the commuting-operator value
ωco := ωco0 of two-player non-local games.

The proof of Theorem 1 relies on a deep group theory result of Sapir, Birget, and Rips,
which shows that the acceptance problem for any Turing machine can be encoded in the
word problem of a finitely-presented group, in such a way that the Dehn function of the
group is equivalent to the running time of the Turing machine [16]. We then use [17] to
embed this group into linear system non-local games. In the case that a word w ∈ A∗ does
not belong to L, the provers demonstrate this fact by showing that a certain word in the
corresponding group is not equal to the identity. In this case, the representation of the
group forms the proof that the word is not equal to the identity, and this representation is
used to build the provers’ quantum strategy. The reason that we use commuting-operator
strategies in Theorem 1, and again in Theorem 2 below, is that this representation might
not be finite-dimensional.

Little is known about upper bounds on the complexity of computing the value of non-local
games. Most existing proposals for an algorithm are based on a hierarchy of semi-definite
programs [13, 14, 6]. It remains open whether such an algorithm can approximate the
commuting-operator value of a game to any precision ε in finite time. However, the first
author and Vidick have shown that the SDP hierarchy of [13, 14, 6] can be used to estimate
(with explicit convergence bounds) the optimal value of a non-local game over approximately-
commuting strategies [5]. In particular [5] gives an algorithm which, given a description of
a non-local game as a truth-table of size n, can decide whether the game has commuting-
operator value equal to 1, or has no δ-commuting-operator strategy with winning probability
higher than 1 − ε (for constant ε, promised that one of the two is the case), in time
nO(poly(`,1/δ)), where ` is the size of the output alphabet for the game. Theorem 1 shows
that the dependence of this algorithm on δ is necessary. For the games Gw in Theorem 1,
` = O(1), and ωcoδ (Gw) = 1 if and only if ωco(Gw) = 1. According to the exponential time
hypothesis, we might expect that the best deterministic upper bound for coNTIME(f(n)) is
TIME(2poly(f(n))). Thus, if we assume the exponential time hypothesis, the non-deterministic
lower bound in Theorem 1 matches the deterministic upper bound in [5] up to polynomial
factors (for families of games with a constant number of outputs).

Results about the complexity of non-local games have direct and natural implications for
the power of multi-prover interactive proofs. Multi-prover interactive proofs were originally
defined and studied in a purely classical setting. A seminal result of Babai, Fortnow, and
Lund, which studies the class MIP of languages which admit a multi-prover interactive
proof with polynomial time verifier, states that MIP = NEXP. Once again, this equality is
independent of the completeness-soundness gap, as long as this gap is a large enough constant.
For entangled strategies, there are, a priori, two analogs of the class MIP to consider, the
class MIP∗ of multi-prover interactive proofs in which provers may use finite-dimensional
entangled strategies, and MIPco, the equivalent class with commuting-operator strategies. A
result of Ito and Vidick states that the class MIP∗(4, 1, 1, 1− 1/poly(n)) with four provers,
one round, completeness probability 1, and soundness probability 1-1/poly(n) contains NEXP
[10]. Ji’s result mentioned earlier for computing the quantum value of game shows that with
a sufficient number of provers k, MIP∗(k, 1, 1, 1− 1/ exp(n)) contains NEEXP, in contrast
again to the classical case [11]. Ji’s result is based on a compression theorem for non-local
games, which also shows that the problem of computing the quantum value of a game is
complete for MIP∗.
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25:4 Lower Bounds for Computing Non-Local Games to High Precision

Theorem 1 can be translated into lower bounds on MIPcoδ , the class of languages with a
multiprover interactive proof sound against approximately commuting strategies. Further-
more, these lower bounds also apply to the class PZK-MIPcoδ of languages which admit a
perfect zero knowledge multiprover interactive proof sound against approximately commuting
strategies. In a perfect zero knowledge interactive proof the provers must reveal nothing to
the verifier except the proven statement itself. The formal definition of these two classes is
given in Definitions 18 and 20.

I Theorem 2. There is a universal constant k such that for any language L in NTIME(f(n)),
where f(n) is at least polynomial, there is a constant C such that for any δ = o(1/f(Cn)2k),

L ∈ PZK-MIPcoδ (2, 1, 1, 1− 1/f(Cn)k),

where L is the complement of L.

Note that, since the containment PZK-MIPcoδ ⊆ MIPcoδ is immediate (see Definition 20),
Theorem 2 represents both a lower bound for PZK-MIPcoδ and for MIPcoδ itself. Similarly to
Theorem 1, when δ = 0, we get a lower bound on the class MIPco := MIPco0 of multi-prover
interactive proofs with commuting-operator strategies, which is the direct analog of the
complexity class MIP∗ in the commuting operator setting (indeed, the term MIP∗ has been
used to denote MIPco in some previous works).

One reason we are interested in the class MIPcoδ is that the algorithm of [5] mentioned
above gives a (deterministic) time upper bound for MIPcoδ . For protocols with constant-sized
outputs, this upper bound is stated in Theorem 23. In contrast, no computable upper bounds
for MIP∗ or MIPco are known. Combining Theorem 2 with the upper bound in of [5] gives
the following series of containments (written here with constants, polynomial factors, and
some parameters of the MIPcoδ notation suppressed for conciseness, including a parameter
requiring a constant number of outputs). For any δ = o(1/f(Cn)2k):

coNTIME(f(n)) ⊆ PZK-MIPcoδ (1, 1− 1/ poly(f(n))) (1.1)
⊆ MIPcoδ (1, 1− 1/ poly(f(n)))
⊆ TIME(exp(1/poly(δ)))

Just as for the decision problem in Theorem 1, if we assume the exponential time hypothesis
then we can consider the left hand side and right hand side of Equation 1.1 above to be
matching up to polynomial factors.

Our results are complementary to the results of Fitzsimons, Ji, Vidick, and Yuen,
who show qualitatively similar lower bounds for computing the quantum value of k-player
games and for MIP∗(k, 1, 1, s), where k ≥ 15. Their results show that MIP∗ with 1/f(n)
completeness-soundness gap contains NTIME(2f(n)), matching the pattern seen in [11] for
inverse polynomial and inverse exponential gaps. In contrast, in our result the scaling
of the lower bound relative to the gap is weaker, requiring gap of order 1/f(n) to get a
lower bound of coNTIME(f(n)), and applying to commuting-operator strategies rather than
quantum strategies. However, our results apply to two-player protocols, while the results of
[7] apply to protocols with 15 or more players. That we get a lower bound of coNTIME(f(n))
rather than NTIME(2f(n)) can be explained by the fact that our lower bound extends to
MIPcoδ , which, with the restriction to protocols with constant-sized outputs, is contained
in TIME(2f(n)). Thus our results highlight the importance of considering soundness to
approximately-commuting strategies when seeking lower bounds on MIP∗ and MIPco. It
seems to be an interesting open problem to determine whether the improved bounds of [7]
can be done with algebraic methods.
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2 Group theory preliminaries

Recall that a finitely-presented group is a group G with a fixed presentation G = 〈S : R〉,
meaning that G is the quotient of the free group F(S) generated by a finite set S, by the
normal subgroup generated by a finite set of relations R ⊆ F(S). If G = 〈S : R〉, and
R′ ⊆ F(S ∪ S′), then the notation 〈G,S′ : R′〉 refers to the presentation 〈S ∪ S′ : R ∪ R′〉.
A (group) word of length k over the generators S is a string sa1

1 · · · s
ak
k where si ∈ S and

ai ∈ {±1} for all 1 ≤ i ≤ k. Such a word is said to be reduced if si = si+1 implies that
ai = ai+1 for all 1 ≤ i ≤ k − 1. Every element w ∈ F(S) is represented by a unique reduced
word, and the length |w| of w is defined to be the length of this reduced word. The word
problem for G is the problem of deciding whether the image of a given element w ∈ F(S) is
equal to the identity in G, or in other words, whether the word is in the normal subgroup
of F(S) generated by R. Since the reduced form of any non-reduced word over S can be
found in time linear in the length of that non-reduced word, we can ask that inputs to
the word problem be represented either as reduced or non-reduced words without changing
the problem.

A (unitary) representation of a group G is a homomorphism φ : G → U(H), where
U(H) is the unitary group of a Hilbert space H. If G = 〈S : R〉 is a finitely-presented
group, then a representation φ : G → U(H) can be specified by giving a homomorphism
φ̃ : F(S)→ U(H) such that φ̃(r) = 1 for every r ∈ R. If G is a group, then `2G is the Hilbert
space with Hilbert basis B = {|g〉 : g ∈ G}. This means that every element of H is of the form∑
g∈G cg |g〉, where

∑
g∈G |cg|2 ≤ +∞. Since every group G acts on itself by both left and

right multiplication, G also acts by left and right multiplication on B. Thus G acts unitarily
on `2G by left and right multiplication. The resulting representations L,R : G → U(`2G)
are called the left and right regular representations of G, respectively.

If w ∈ F(S) is a word which is equal to the identity in G, we let AreaG(w) be the
minimum t ≥ 1 such that

w = z1r
a1
1 z−1

1 · · · ztr
at
t z
−1
t

for some r1, . . . , rt ∈ R, z1, . . . , zt ∈ F(S), and a1, . . . , at ∈ {±1}.1 The Dehn function
DehnG of G is the function N→ N defined by

DehnG(n) = max{AreaG(w) : w ∈ F(S) has |w| ≤ n and w = 1 in G}.

If the word problem of G is decidable, then DehnG is computable. Conversely, the word
problem of G belongs to NTIME(DehnG(n)) [16]. An easy way to see that the complexity of
the word problem is bounded by the Dehn function (albeit with the slightly worse upper
bound of NTIME(poly(DehnG(n)))) is through the following lemma:

I Lemma 3 ([8], Lemma 2.2). Let G = 〈S : R〉 be a finitely-presented group, and let `
be the length of the longest relation in R. If w ∈ F(S) is equal to the identity in G and
k = AreaG(w), then

w = z1r
a1
1 z−1

1 · · · zkr
ak
k z−1

k

where r1, . . . , rk ∈ R, z1, . . . , zk ∈ F(S), a1, . . . , ak ∈ {±1}, and |zi| ≤ k` + ` + |w| for
all 1 ≤ i ≤ k.

1 AreaG(w) can also be defined as the minimum number of regions in a van Kampen diagram with
boundary word w, and this is where the name comes from.
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25:6 Lower Bounds for Computing Non-Local Games to High Precision

In general, the Dehn function can be much larger than the time-complexity of the word
problem of G. However, Sapir, Birget, and Rips have shown that every recursive language
can be reduced to the word problem of a finitely-presented group for which the Dehn
function is polynomially equivalent to the time-complexity of the word problem. For
the statement of the theorem, recall that two functions T, T ′ : N → N are said to be
(asymptotically) equivalent if there are constants C,C ′ such that T (n) ≤ CT ′(Cn) +Cn+C

and T ′(n) ≤ C ′T (C ′n) + C ′n+ C ′ for all n ≥ 1.

I Theorem 4 ([16], Theorem 1.3). Let A be a finite alphabet, and L ⊂ A∗ a language over
A contained in NTIME(T (n)), where T (n) is computable and T (n)4 is at least superadditive
(i.e. T (n+m)4 ≥ T (n)4 + T (m)4. Then there exists a finitely-presented group G = 〈S : R〉
and an injective function κ : A∗ → F(S), such that
(a) |κ(u)| = O(|u|) and κ(u) is computable in time O(|u|),
(b) u ∈ L if and only if κ(u) = 1 in G, and
(c) DehnG(n) is bounded by a function equivalent to T (n)4.

A group over Z2 is a pair (G, J) where J is a central involution, i.e. an element of the
center of G with J2 = 1. Usually we just write G for the pair, and refer to J = JG in the
same way we refer to the identity 1 = 1G of a group. When JG 6= 1G, it can be used as a
substitute for −1. Theorem 4 implies that any recursive decision problem can be encoded in
the word problem of a group. We want an embedding of this type where the word w is a
central involution. For this, we use the following trick:

I Definition 5. Let G = 〈S : R〉 be a finitely-presented group, and let x, J, t be indeterminates
not in S. Given w ∈ F(S), let

G̃w := 〈G, x, J, t : J2 = 1, [g, J ] = 1 for all g ∈ G,
[x, J ] = 1, [t, J ] = 1, [t, [x,w]] = J〉,

where [a, b] := aba−1b−1 is the group commutator.

Note that if G is finitely-presented, then we only need to include the relations [g, J ] = 1 for
g in a generating set of G, and this gives a finite presentation of G̃w.

I Lemma 6. Given a group G = 〈S : R〉 and a word w ∈ F(S), let G̃w be the group defined
in Definition 5. Then
(a) J is a central involution in G̃w,
(b) w = 1 in G if and only if J = 1 in G̃w, and
(c) if w = 1 in G then Area

G̃w
(J) ≤ 4 AreaG(w) + 1.

Proof. Part (a) is clear. For part (b), let

G′ := 〈G, x, J : J2 = [x, J ] = [g, J ] = 1 for all g ∈ G〉2,

The element y = [x,w] is equal to 1 in G′ if and only if w = 1. If w 6= 1 then y has infinite
order. Hence the subgroup 〈y, J〉 is equal to Z×Z2 if w 6= 1, and Z2 if w = 1. In both cases,
the homomorphism induced by y 7→ Jy and J 7→ J is an automorphism of this subgroup, and

G̃w = 〈G′, t : tyt−1 = Jy, tJt−1 = J〉

is the Higman-Neumann-Neumman (HNN) extension of G′ by this automorphism (we refer
to [12, Chapter IV] for the properties of HNN extensions). As a result, G′ is a subgroup of
G̃w, and part (b) follows.
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For part (c), if w = 1 in G, then AreaG(w−1) = AreaG(w), so

AreaG′([x,w]) ≤ 2 AreaG(w)

and similarly

Area
G̃w

([t, [x,w]]) ≤ 2 AreaG′([x,w]) ≤ 4 AreaG(w).

Thus we can use the relation J = [t, [x,w]] to conclude that Area
G̃w

(J) ≤ 4 AreaG(w)+1. J

The last result we include in this section is a lemma which will be used to translate area
calculations into bounds on distances between vectors in Hilbert spaces. If u and v are two
vectors in a Hilbert space H, we write u ≈ε v to mean that ‖u− v‖ ≤ ε. We use the standard
terminology and notation of quantum information, so for instance, a state in a Hilbert space
H is a unit vector |ψ〉 in H.

IDefinition 7. Let G = 〈S : R〉 be a finitely-presented group. A (δ, ε)-bipartite representation
of G with respect to a state |ψ〉 in a Hilbert space H is a pair of homomorphisms Φ,Φ′ :
F(S)→ U(H) such that
(i) Φ(r) |ψ〉 ≈ε |ψ〉 for all r ∈ R,
(ii) Φ(s)−1 |ψ〉 ≈ε Φ′(s) |ψ〉 for all s ∈ S, and
(iii) ‖[Φ(s),Φ′(t)]− 1‖ ≤ δ for all s, t ∈ S (here 1 represents the identity operator in U(H)).
In Part (iii) and throughout this paper the notation ‖A‖ for an operator A refers to the
operator norm of A. Part (i) of Definition 7 essentially says that Φ is an approximate
representation of G with respect to the state |ψ〉. Parts (ii) and (iii) are less straightforward,
but these conditions arise naturally in the theory of non-local games.

I Lemma 8. Let (Φ,Φ′) be a (δ, ε)-bipartite representation of a finitely-presented group
G = 〈S : R〉 with respect to a state |ψ〉 ∈ H, and let ` be the length of the longest relation in
R. If w ∈ F(S) is equal to the identity in G, then

Φ(w) |ψ〉 ≈A(w)·(ε+δ) |ψ〉 ,

where A(w) ≤ 5`2 AreaG(w)2 + 2`|w|AreaG(w).

Proof. If r ∈ R, then Φ(r) |ψ〉 ≈ε |ψ〉, and consequently Φ(r)−1 |ψ〉 ≈ε |ψ〉. Thus for any
r ∈ R, z ∈ F(S), and a ∈ {±1},

Φ(zraz−1) |ψ〉 = Φ(z)Φ(r)aΦ(z)−1 |ψ〉 ≈|z|ε Φ(z)Φ(r)aΦ′(z)−1 |ψ〉
≈|r||z|δ Φ(z)Φ′(z)−1Φ(r)a |ψ〉 ≈ε Φ(z)Φ′(z)−1 |ψ〉
≈|z|ε Φ(z)Φ(z)−1 |ψ〉 = |ψ〉 .

We conclude that Φ(zraz−1) |ψ〉 ≈(2|z|+1)ε+`|z|δ |ψ〉. The result follows from Lemma 3. J

3 Approximately-commuting operator strategies and linear system
games

A two-party Bell scenario (IA, IB ,O∗A,O∗B) consists of finite input sets IA, IB, a finite set
of outputs OxA for every x ∈ IA, and a finite set of outputs OyB for every y ∈ IB.3 The

3 The sets OxA and OyB are often assumed to be independent of the inputs x and y. However, this
assumption is not essential, since we can make the output sets independent of the input sets by adding
filler answers to make all output sets the same size, and stipulating that Alice and Bob lose if they
output one of the filler answers. When working with linear system games, it is more convenient to have
the output sets depend on the inputs.
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25:8 Lower Bounds for Computing Non-Local Games to High Precision

number of outputs in a Bell scenario is the maximum of |OxA| and |O
y
B | over x ∈ IA and

y ∈ IB . A two-player non-local game consists of a Bell scenario (IA, IB ,O∗A,O∗B), a function
V (·, ·|x, y) : OxA ×O

y
B → {0, 1} for every x ∈ IA and y ∈ IB , and a probability distribution

π on IA × IB . In the operational interpretation of the game, the referee sends players Alice
and Bob inputs x ∈ IA and y ∈ IB with probability π(x, y), the players reply with outputs
a ∈ OxA and b ∈ OyB , and the players win if and only if V (a, b|x, y) = 1.

In a non-local game, the players are not usually allowed to communicate while the game is
in progress. Thus, in a quantum strategy for a game, it’s assumed that each player determines
their output by measuring their own local system. Locality can be enforced in one of two ways:
by requiring that the joint system is the tensor product of the subsystems, or by requiring
that measurement operators for different players commute with each other. Strategies of
the former type are called tensor-product strategies, while strategies of the latter type are
called commuting-operator strategies. Tensor-product strategies are commuting-operator
strategies by definition, and finite-dimensional commuting-operator strategies can be turned
into equivalent tensor-product strategies. In infinite dimensional Hilbert spaces, there are
commuting-operator strategies for which the corresponding correlations do not have a tensor-
product model [17]. However, it’s still an open question as to whether all correlations arising
from commuting-operator strategies can be realized as a limit of tensor-product strategies.
By a theorem of Ozawa, this question is equivalent to the Connes embedding problem. In
[15, 5], the notion of a quantum strategy has been generalized to approximately-commuting
strategies, where Alice and Bob’s systems are allowed to interact slightly. In this paper,
we focus on the case of approximately-commuting operator strategies. Unlike [5], we use
projective measurements rather than the more general POVM measurements in this definition.
We refer to Remark 19 for some of the consequences of this difference.

I Definition 9. A δ-approximately-commuting operator strategy S (or δ-AC operator
strategy for short) for a Bell scenario (IA, IB ,O∗A,O∗B) consists of a Hilbert space H,
a projective measurement {P xa }a∈OxA on H for every x ∈ IA, a projective measurement
{Qyb}b∈OyB on H for every y ∈ IB, and a state |ψ〉 ∈ H such that

‖P xaQ
y
b −Q

y
bP

x
a ‖ ≤ δ

for all (x, y) ∈ IA × IB and (a, b) ∈ OxA ×O
y
B. A δ-approximately-commuting quantum (or

δ-AC quantum) strategy is a δ-AC operator strategy in which H is finite-dimensional.
Let G = (IA, IB ,O∗A,O∗B , V, π) be a non-local game. The winning probability of G with

strategy S is

ω(G;S) =

∣∣∣∣∣∣
∑

x∈IA,y∈IB

π(x, y)
∑

a∈OA,b∈OB

V (a, b|x, y) 〈ψ|P xaQ
y
b |ψ〉

∣∣∣∣∣∣ .
The δ-AC operator value ωcoδ (G) (resp. δ-AC quantum value ω∗δ (G)) of G is defined to be the
supremum of ω(G;S) across δ-AC operator strategies (resp. δ-AC quantum strategies).

With this definition, a commuting-operator strategy is simply a 0-AC operator strategy, and
the usual commuting-operator value of a game is ωco(G) := ωco0 (G). Since commuting-operator
strategies are the same as tensor product strategies in finite dimensions, a (tensor-product)
quantum strategy is simply a 0-AC quantum strategy, and the usual quantum value of a game
is ω∗(G) := ω∗0(G). Note that when δ = 0, the absolute value can be dropped in the definition
of ω(G;S). When δ > 0, the values 〈ψ|P xaQ

y
b |ψ〉 can be complex, and the absolute value is

necessary. This also means that ω(G,S) cannot necessarily be interpreted as a probability
when S is approximately but not exactly commuting.
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We look at a specific class of non-local games called linear system games. Let Mx = c

be an m × n linear system over Z2, so M ∈ Zm×n2 and c ∈ Zm2 . For each 1 ≤ i ≤ m, let
Vi = {1 ≤ j ≤ n : Mij 6= 0}. The linear system game GMx=c is the non-local game with

IA = {1, . . . ,m}, IB = {1, . . . , n},

OiA =

a ∈ ZVi2 :
∑
j∈Vi

aj = ci

 , OjB = Z2,

V (a, b|i, j) =
{

1 j 6∈ Vi or aj = b

0 otherwise
,

and π the uniform distribution over pairs (i, j) such that j ∈ Vi. In other words, Alice receives
the index i of an equation and Bob receives the index j of a variable, chosen uniformly
at random from pairs (i, j) with j ∈ Vi. Alice replies with a satisfying assignment to the
variables which appear in the ith equation, and Bob replies with an assignment for the jth
variable. The players win if Alice and Bob both give the same assignment to variable j.

For linear system games, it is often convenient to express strategies in terms of observables,
rather than measurement operators (see, for instance, [4, 3]). If S = (H, {P ia}a∈OiA , {Q

j
b}b∈Z2 ,

|ψ〉) is a δ-AC strategy for GMx=c, the corresponding observables are

Aij :=
∑
a∈Oi

A

(−1)ajP ia for 1 ≤ i ≤ m, j ∈ Vi, (3.1)

and

Bj := Qj0 −Q
j
1 for 1 ≤ j ≤ n. (3.2)

These operators are ±1-valued observables (meaning, self-adjoint unitary operators) satisfying
the equations∏

j

A
Mij

ij = (−1)ci for all 1 ≤ i ≤ m, (3.3)

[Aij , Aij′ ] = 1 whenever j, j′ ∈ Vi for some 1 ≤ i ≤ m, and (3.4)

‖[Aij , Bk]− 1‖ ≤ 2|Vi|+1δ for all 1 ≤ i ≤ m, j ∈ Vi, and 1 ≤ k ≤ n. (3.5)

We can recover the projections P ia, a ∈ OiA, and Q
j
b, b ∈ O

j
B , from the observables Aik and

Bj via the formulas

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)
and Qjb = 1 + (−1)bBj

2 . (3.6)

We define bias of strategy S to be

β(GMx=c;S) :=
∑

1≤i≤m

∑
j∈Vi

π(i, j) 〈ψ|AijBj |ψ〉 .
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25:10 Lower Bounds for Computing Non-Local Games to High Precision

It is not hard to see that

ω(GMx=c;S) = 1
2 |β(GMx=c,S) + 1|,

so we can work with the winning probability using observables as well.
It follows from [3] that when δ = 0, perfect commuting-operator strategies of GMx=c can

be understood using the following group.

I Definition 10. Let Mx = c be an m× n linear system over Z2. Then the solution group
of the system is the finitely presented group ΓMx=c generated by x1, . . . , xn, J , and satisfying
relations
1. [xi, J ] = x2

i = J2 = 1 for all 1 ≤ i ≤ n,
2.
∏
j x

Mij

j = Jci for all 1 ≤ j ≤ m, and
3. [xj , xk] = 1 if there is some 1 ≤ i ≤ m with Mij ,Mik 6= 0.
We consider Γ = ΓMx=c to be a group over Z2 with JΓ equal to the generator J .

In particular, we can characterize when the optimal winning probability of the game is
equal to 1 using this group.

I Theorem 11 ([3, 18]). Let Mx = c be a linear system over Z2. Then
(a) ωco(GMx=c) = 1 if and only if J 6= 1 in ΓMx=c, and
(b) ω∗(GMx=c) = 1 if and only if J is non-trivial in approximate representations of ΓMx=c.
For the definition of non-trivial in approximate representations, we refer to [18].

Near-perfect finite-dimensional strategies of GMx=c correspond to approximate represent-
ations of ΓMx=c [18]. We want to develop this theory when δ > 0.

I Proposition 12. LetMx = c be an m×n linear system, let Vi := {1 ≤ j ≤ n : Mij 6= 0}, let
r := maxi |Vi| be the maximum number of non-zero entries in any row, and let K :=

∑m
i=1 |Vi|

be the number of non-zero entries inM . Suppose S = (H, {P xa }, {Q
y
b}, |ψ〉) is a δ-AC operator

strategy with ω(GMx=c;S) ≥ 1 − ε for some ε, δ ≥ 0. Let Aij, Bk be the corresponding
observables defined in Equations (3.1) and (3.2). Then
(a) Aij |ψ〉 ≈2

√
K(ε+2r−1δ) Bj |ψ〉 for all 1 ≤ i ≤ m and j ∈ Vi,

(b)
∏m
j=1B

Mij

ij |ψ〉 ≈2r
√
K(ε+2r−1δ)+(r2)2r+1δ

(−1)ci |ψ〉 for all 1 ≤ i ≤ m, and
(c) [Bj , Bk] |ψ〉 ≈8

√
K(ε+2r−1δ)+6·2r+1δ

|ψ〉 whenever there is 1 ≤ i ≤ m with j, k ∈ Vi.

Proof. For part (a), any two unit vectors |ψ〉 and |φ〉 satisfy |ψ〉 ≈2 |φ〉, so we can assume
that ε+ 2r−1δ ≤ 1. Write β for β(GMx=c,S), and observe that

|2 Im β| = |β − β| =

∣∣∣∣∣∣
∑
i,j

π(i, j) 〈ψ|AijBj −BjAij |ψ〉

∣∣∣∣∣∣
≤
∑
i,j

π(i, j) ‖AijBj −BjAij‖ ≤ 2r+1δ

by Equation (3.5). Since ω(GMx=c;S) ≥ 1− ε, we have that

(1− ε)2 ≤
∣∣∣∣β + 1

2

∣∣∣∣2 = (Reβ + 1)2 + (Im β)2

4 ≤ (Reβ + 1)2 + (2rδ)2

4 .

Since Aij |ψ〉 and Bj |ψ〉 are unit vectors, −1 ≤ Reβ ≤ 1, and in particular Reβ + 1 ≥ 0.
Thus

Reβ + 1 ≥
√

4(1− ε)2 − (2rδ)2 =
√

(2− 2ε− 2rδ)(2− 2ε+ 2rδ) ≥ 2− 2ε− 2rδ,
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where the last inequality holds because of the assumption 2ε+ 2rδ ≤ 2. We conclude that
Reβ ≥ 1− 2ε− 2rδ, or 1− Reβ ≤ 2ε+ 2rδ.

Now π(i, j) = 1/K for all 1 ≤ i ≤ m, j ∈ Vi, so

1− Reβ = 1
K

∑
i,j

(1− Re 〈ψ|AijBj |ψ〉) ≤ 2ε+ 2rδ.

Since Re 〈ψ|AijBj |ψ〉 ≤ 1, we have that 1 − Re 〈ψ|AijBj |ψ〉 ≤ 2K(ε + 2r−1δ) for all
1 ≤ i ≤ m and j ∈ Vi. So

‖Aij |ψ〉 −Bj |ψ〉‖2 = 2− 2 Re 〈ψ|AijBj |ψ〉 ≤ 4K(ε+ 2r−1δ),

finishing the proof of part (a).
For parts (b) and (c), let τ = 2

√
K(ε+ 2r−1δ). Given 1 ≤ i ≤ m, let Vi = {j1, . . . , jk},

where 1 ≤ j1 < . . . < jk ≤ n. Then

Bj1 · · ·Bjk |ψ〉 ≈τ Bj1 · · ·Bjk−1Aijk |ψ〉 ≈(k−1)2r+1δ AijkBj1 · · ·Bjk−1 |ψ〉 .

Continuing this pattern, we see that

Bj1 · · ·Bjk ≈kτ+(k2)2r+1δ AijkAijk−1 · · ·Aij1 |ψ〉 = (−1)ci |ψ〉 ,

where the last equality is Equation (3.3). Part (c) follows similarly from Equation (3.4). J

I Corollary 13. Using the notation and hypotheses of Proposition 12, if we define Φ,Φ′ :
F(x1, . . . , xn, J)→ U(H) by

Φ(xj) = Bj for all 1 ≤ j ≤ n, Φ(J) = −1

and

Φ′(xj) =
{
Aij any i such that j ∈ Vi
1 if no such i exists

, Φ′(J) = −1

then (Φ,Φ′) is a (τ, κ)-bipartite representation of ΓMx=c with respect to |ψ〉, where

τ = 2 max(r, 4)
√
K(ε+ 2r−1δ) +

(
max(r, 4)

2

)
2r+1δ

and κ = 2r+1δ.

Proof. Follows immediately from Proposition 12, Equation (3.5), and the fact that B2
j =

1. J

4 Embedding finitely-presented groups in solution groups

By Theorem 4, every recursive language can be efficiently encoded as the word problem of a
finitely-presented group. By Lemma 6, the word problem for finitely-presented groups reduces
to the problem of determining whether JG = 1 in finitely-presented groups G over Z2. By
Theorem 11, if G = ΓMx=c is a solution group, then JG = 1 if and only if ωco(GMx=c) = 1.

The main result of [17] is that the problem of determining whether JG = 1 for general
finitely-presented groups G over Z2 reduces to the problem of determining whether JΓ = 1
for solution groups Γ = ΓMx=c. In this paper, we use the following version of this result:
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25:12 Lower Bounds for Computing Non-Local Games to High Precision

I Theorem 14 ([17]). Let G = 〈S : R〉 be a finitely presented group over Z2, such that
JG ∈ S, and let N = |S|+

∑
r∈R |r| be the size of the presentation. Then there is an m× n

linear system Mx = c and a map φ : F(S)→ F(x1, . . . , xn, J) such that
(a) φ(JG) = JΓ, and φ descends to an injection G → ΓMx=c (in other words, for all

w ∈ F(S), φ(w) is trivial in ΓMx=c if and only if w is trivial in G);
(b) for all w ∈ F(S), |φ(w)| ≤ 4|w|, and if w is trivial in G, then AreaΓ(φ(w)) = O(N ·

AreaG(w)); and
(c) M has exactly three non-zero entries in every row, the dimensions m and n of M are

O(N), and M and b can be constructed from 〈S : R〉 in time polynomial in N .
Note that if G = 〈S : R〉 and G′ = 〈S′ : R′〉 are finitely-presented groups, and φ :
F(S) → F(S′) is a homomorphism which descends to a homomorphism G → G′, then
AreaG′(φ(w)) = O(AreaG(w)), with a constant which depends on G, G′, and φ. The
statement in part (b) of Theorem 14 is stronger, in that the constant is independent of G (so
the only dependence on G comes from N).

Proof of Theorem 14. Part (a) is Theorem 3.1 of [17]. For the complexity statements in
parts (b) and (c), we need to analyze the construction ofM and b, which occurs in Proposition
4.3, Corollary 4.8, and Theorem 5.1 of [17]. For this purpose, suppose that G = 〈S : R〉 is
a finitely presented group over Z2. For simplicity, we assume that JG = J ∈ S, and that
all relations containing J are of the form J · r = 1 for some word r ∈ F(S \ {J}). This
assumption can always be satisfied by adding an extra generator.

For the first step of the construction, we also need some notation. If x ∈ F(S′) is equal to
the reduced word sa1

1 · · · s
ak
k , where si ∈ S′ and ai ∈ {±1} for all 1 ≤ i ≤ k, let x+ = s1 · · · sk.

Note that this word is still reduced, and that x and x+ represent the same element in
the group

〈S′ : s2 = 1 for all s ∈ S′〉.

Now, starting from G = 〈S : R〉, we take a new set of indeterminates S′ = {us, vs : s ∈
S \ {J}}, and define φ1 : F(S)→ F(S′ ∪ {J}) by φ1(s) = usvsusvs for all s ∈ S \ {J} and
φ1(J) = J . We then let

G′ = 〈S′ ∪ {J} : R′ ∪ {u2
s = v2

s = 1 : s ∈ S \ {J}} ∪ {J2 = 1}〉,

where R′ = {φ1(r)+ : r ∈ R}. Since u2
s = v2

s = J2 = 1 in G′, we conclude that φ1 descends
to a homomorphism φ1 : G→ G′. It is not hard to see that this morphism is injective (see,
for instance, [17, Proposition 4.3]), and clearly |φ1(w)| ≤ 4|w|. If r ∈ R, then φ1(r) can be
turned into φ1(r)+ in at most 4|r| applications of the relations u2

s = v2
s = 1, s ∈ S \ {J}. (In

particular, AreaG′(φ1(w)) ≤ 4N AreaG(w), although we use a more refined calculation for
bound on AreaΓ in part (b).) The size of the presentation of G′ is

N ′ = |S′|+ 1 +
∑
r∈R′
|r|+ 4|S| − 2 ≤ 6|S|+ 4

∑
r∈R
|r| ≤ 6N,

and the presentation can be constructed from 〈S : R〉 in O(N) time.
To finish the construction of Mx = c, we apply the wagon wheel construction from

Section 5 of [17] to the group G′. This construction is best understood pictorially. An m× n
matrix M with entries in Z2 can be represented graphically by drawing a hypergraph with
a vertex for each row of M , and an edge for each column, such that the jth hyperedge is
incident to the ith vertex if and only if Mij = 1. With this representation, a vector b ∈ Zm2 is
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Figure 1 Pictorial depiction of the linear system associated to each relation in the wagon wheel
embedding as described in the proof of Theorem 14. Figure reproduced from [17, Figure 2].

the same as function from the vertices of the hypergraph to Z2. So a linear system Mx = c

can thus be represented by a hypergraph with a (not necessarily proper) Z2-vertex colouring,
where the edges correspond to the variables of the system, and the vertices to the equations.

In the wagon wheel construction, Mx = c is defined as a union of subsystems Mrxr = cr,
each corresponding to a relation r ∈ R′. The variables ofMx = c consist of the indeterminates
S′, as well as an additional set of ancillary variables S′′. Each ancillary variable appears in
exactly one of the subsystemsMrxr = cr, while the variables S′ are shared. If r = Jps1 · · · sn,
where p ∈ Z2 and s1, . . . , sn ∈ S′, then the portion of the hypergraph ofMx = c corresponding
to Mrxr = cr is shown in Figure 1, with the ancillary variables denoted by ai, bi, ci, di,
1 ≤ i ≤ n. The vertex colouring is also shown in Figure 1: one vertex is given colour p, and
the remaining vertices are coloured 0.

As can be seen from Figure 1, the number of ancillary variables added for subsystem
Mrxr = cr is 4|r|, and the number of equations added is 3|r|. Since every vertex in the
hypergraph has degree three, every row of Mr has exactly three non-zero entries. Theorem
5.1 of [17] then states that the natural inclusion φ2 : F(S′∪{J})→ F(S′∪{J}∪S′′) : s 7→ s

descends to an injection G′ → ΓMx=c.
Recall from Definition 10 that every linear equation in Mx = c becomes a defining

relation of Γ := ΓMx=c. The wagon wheel construction is designed so that if r ∈ R′, then
φ2(r) can be turned into the identity by applying each defining relation from Mrx = cr
exactly once, so AreaΓ(φ2(r)) ≤ 3|r| for all r ∈ R′. This is easiest to see using pictures of
the group, for which we refer to Section 7 of [17]; with this formalism, Figure 1 is itself a
proof that φ2(r) = 1, with each vertex corresponding to a use of the corresponding relation.
For relations r = Jps1 · · · sn with p 6= 1, we start with the relation coloured by p, after which
J no longer appears in the word. If r ∈ R, then φ2(φ1(r)) can be turned into the identity
with at most 7|r| applications of the relations of Γ, by first changing φ2(φ1(r)) to φ2(φ1(r)+)
using the relations s2 = 1, s ∈ S′, and then applying the linear relations of Γ. It follows
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25:14 Lower Bounds for Computing Non-Local Games to High Precision

that AreaΓ(φ2(w)) = O(N AreaG(w)) for all w ∈ F(S) which are trivial in G. It should also
be clear from Figure 1 that Mrxr = cr can be constructed in time polynomial in |r|. We
conclude that Mx = c is an m× n linear system with m and n equal to O(N), and that M
and b can be constructed in time polynomial in N , so the theorem holds with φ = φ2 ◦φ1. J

Theorem 14 is sufficient to prove Theorem 1. However, to get perfect zero-knowledge
protocols for MIPcoδ , we need to prove an additional fact about the embedding in Theorem 14.

I Lemma 15. Let Mx = c be an m× n linear system from the wagon wheel construction in
the proof of Theorem 14. In the solution group ΓMx=c, the generator xi is not equal to 1 or J
for all 1 ≤ i ≤ n, and similarly the product xixj is not equal to 1 or J for all 1 ≤ i 6= j ≤ n.

Proof. We revisit the wagon wheel construction in the proof of Theorem 14. We need to
show that xi 6= 1 and xi 6= xj in Γ0 := ΓMx=c/〈J〉 for all 1 ≤ i 6= j ≤ n. This is the same as
showing that xi 6= 1 and xi 6= xj in ΓMx=0 = Γ0 × Z2. Recall that the generators of ΓMx=0
are split into two sets, the generators S′ of G′, and the ancillary variables S′′. The group
G′0 := G′/〈J〉 has a presentation where every generator s ∈ S′ occurs an even number of
times in every relation. Thus for any s ∈ S′, we can define a representation G′ → Cx by
sending s ∈ S′ to −1, and t ∈ S′ \ {s} to 1. It follows that s 6= 1 and s 6= t in G′0 for every
s 6= t ∈ S′. Since G′0 → Γ0 is an injection, we conclude that the same holds in Γ0.

For the ancillary variables, consider the hypergraph description of the system Mx = 0.
Given a subset of edges C, let y ∈ Zn2 be the vector with yi = 1 if and only if the ith edge is
in C. Then y is a classical solution to Mx = 0 if and only if every vertex of the hypergraph is
incident with an even number of edges from C. The classical solutions of Mx = 0 correspond
to 1-dimensional representations of Γ0; if y is a solution of Mx = 0, then the corresponding
1-dimensional representation of Γ0 sends xi 7→ (−1)yi .

Inspecting the wagon wheel hypergraph in Figure 1, we see that every ancilla variable
s ∈ S′′ belongs to a cycle C which does not contain any edges from S′. Using the corresponding
representation of Γ0, we see that s 6= 1 and s 6= t in Γ0 for all s ∈ S′′ and t ∈ S′. Similarly, if
s 6= t ∈ S′′, and {s, t} is not one of the pairs {ai, bi}, then there is a cycle C containing s
and not containing t, so s 6= t in Γ0.

For the pairs {ai, bi}, fix s ∈ S′′, and recall that if r = s1 · · · sn is a relation of G′, where
s1, . . . , sn ∈ S′, then s occurs an even number of times in r. Let 1 ≤ i1 < · · · < i2k ≤ n be
the indices such that sij = s, and let

Cr := {si1 , bi1 , ai1+1, bi1+1, . . . , ai2 , si2 ,

si3 , bi3 , ai3+1, bi3+1, . . . , ai4 , si4 ,

. . . ,

si2k−1 , bi2k−1 , ai2k−1+1, bi2k−1+1, . . . , ai2k , si2k}.

be the collection of paths along the outer cycle of the wagon wheel connection si1 with si2 ,
si3 with si4 , and so on. Let C :=

⋃
r∈R′ Cr. Then every vertex of the hypergraph of Mx = 0

is incident to an even number of edges in C. If we look at a particular relation r, then for
every 1 ≤ j ≤ 2k, exactly one of the edges aij , bij belongs to Cr, so aij 6= bij in Γ0. It follows
that all of the pairs of ancillary generators ai, bi are distinct in Γ0. J
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I Proposition 16. Let Mx = c be an m×n linear system from the wagon wheel construction
in the proof of Theorem 14, and suppose J 6= 1 in ΓMx=c. Then GMx=c has a commuting-
operator strategy S = (H, {P ia}a∈Oia , {Q

j
b}b∈Z2 , |ψ〉) such that ω(GMx=c;S) = 1, and

〈ψ|P iaQ
j
b |ψ〉 =

{
1+(−1)aj+b

8 j ∈ Vi
1
8 j 6∈ Vi

for all 1 ≤ i ≤ m, a ∈ OiA, 1 ≤ j ≤ m, b ∈ Z2.

Proof. Suppose J 6= 1 in ΓMx=c. We recall the construction of a perfect commuting-operator
strategy for GMx=c from [3]. Let H = `2ΓMx=c be the regular representation of ΓMx=c,
and given g ∈ ΓMx=c, let L(g) (resp. R(g)) denote left (resp. right) multiplication by g.
Then L(g) and R(g) are unitaries for all g ∈ ΓMx=c, and we can get a perfect strategy for
GMx=c by taking Aij = L(Xj) for all 1 ≤ i ≤ m, j ∈ Vi, Bj = R(Xj) for all 1 ≤ j ≤ n, and
|ψ〉 = 1−J√

2 considered as an element of H. Since J is central of order 2, we have that

〈ψ|AikBj |ψ〉 = 〈ψ|L(Xk)R(Xj) |ψ〉 = 〈ψ|R(XkXj) |ψ〉 =


1 XkXj = 1
−1 XkXj = J

0 otherwise.
.

Recall from Equation (3.6) that

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)

for all a ∈ OiA and Qjb = 1+(−1)bBj
2 for all b ∈ OjB. Using the fact that

∏
k∈Vi Aik = (−1)ci

in perfect strategies, and that |Vi| = 3 in the linear system constructed in Theorem 14, we
get that

P ia =
∏
k∈Vi

(
1 + (−1)akAik

2

)
= 1

4 + 1
4
∑
k∈Vi

(−1)akAik.

By Lemma 15

〈ψ|P iaQ
j
b |ψ〉 = 1

8 + 1
8 〈ψ|

∑
k∈Vi

(−1)ak+bAikBj |ψ〉 =
{

1
8 j 6∈ Vi
1+(−1)aj+b

8 j ∈ Vi.
. J

5 Proof of Theorem 1

In this section we prove Theorem 1, by proving the main technical result of the paper.

I Theorem 17. Let L ⊂ A∗ be a language over a finite alphabet A, and contained in
NTIME(T (n)), where T (n)4 is superadditive. Then for any string w ∈ A∗, there is a
non-local game Gw such that
(a) the game Gw has question sets of size O(|w|) and output sets of size at most 8,
(b) the function w 7→ Gw is computable in O(|w|k)-time, where k is some universal constant,
(c) if w 6∈ L then ωco(Gw) = 1, and
(d) if w ∈ L then

ωcoδ (Gw) ≤ 1− 1
T (O(|w|))k′ +O (δ)

for some universal constant k′.

CCC 2019
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While the constants k, k′ in Theorem 17 are independent of L, the other constants appearing
in the big-O can depend on L. The game Gw will be a linear system game GM(w)x=c(w),
where M(w)x = c(w) is an O(|w|) × O(|w|)-linear system. Since the linear system game
of an m × n linear system Mx = c can be constructed in O(mn)-time from M and b, the
goal in proving Theorem 17 will be to show that the linear system M(w)x = c(w) can be
constructed in time polynomial in |w|. Theorem 1 is an immediate corollary of Theorem 17.

Proof of Theorem 17. Given the language L, let G = 〈S : R〉 be the group from Theorem
4, and let κ be the function A∗ → F(S). Given w ∈ A∗, we let G̃κ(w) be the group over
Z2 constructed in Definition 5, and M(w)x = c(w) be the linear system constructed from
G̃κ(w) in Theorem 14. Finally, we let Gw := GM(w)x=c(w) and Γw := ΓM(w)x=c(w). The only
part of the presentation of G̃κ(w) that changes with w is the relation [t, [x, κ(w)]] = 1, so the
presentation of G̃κ(w) has size O(|κ(w)|) = O(|w|), and M(w)x = c(w) is an O(|w|)×O(|w|)
linear system. Because M(w) has only three non-zero entries per equation, Alice’s output
sets in Gw will have size 23 = 8, while Bob’s output sets will have size 2. Thus parts (a) and
(b) of Theorem 17 follow from part (c) of Theorem 14.

By Theorem 4 and Lemma 6, if w 6∈ L then κ(w) 6= 1 in G, and hence J 6= 1 in G̃κ(w).
Since the inclusion G̃κ(w) ↪→ Γw sends J

G̃κ(w)
7→ JΓw , we conclude that J 6= 1 in Γw. By

Theorem 11, ωco(Gw) = 1, proving part (c).
This leaves part (d). Suppose w ∈ L. Then κ(w) = 1 in G, J = 1 in G̃κ(w), and hence

J = 1 in Γw. Suppose S is a δ-AC operator strategy for Gw with ω(Gw;S) ≥ 1 − ε. Since
M has only three non-zero entries per row, the parameters r and K appearing in Corollary
13 are O(1) and O(|w|) respectively. Also, because we are interested in δ ≤ 2, we can say
that δ = O(

√
δ). Thus Corollary 13 states that there is a (O(

√
|w|(ε+ δ)), O(δ))-bipartite

representation (Φ,Φ′) of Gw with respect to the state |ψ〉 used in S. By construction, this
bipartite representation has Φ(J) = −1. The length of the longest relation in Γw is 4, and
the length of J in Γw is 1, so Lemma 8 implies that

− |ψ〉 = Φ(J) |ψ〉 ≈
O
(

AreaΓw (J)2
√
|w|(ε+δ)

) |ψ〉 . (5.1)

By Theorem 14, part (b) and Lemma 6, part (c),

AreaΓw(J) = O
(
|w| ·Area

G̃κ(w)
(J)
)

= O (|w| ·AreaG(κ(w))) .

Finally, by Theorem 4, |κ(u)| = O(|u|) and DehnG is bounded by a function equivalent to
T (n)4, so there is a constant C such that AreaG(κ(w)) = O(T (C|w|)4 + |w|). Since T (n)4

is superadditive by assumption, |w| = O(T (|w|)4), and we can conclude that AreaΓw(J) =
O(T (C|w|)8). Returning to Equation (5.1), since ‖− |ψ〉 − |ψ〉‖ = 2, we see that there is a
constant C0 > 0 such that

C0T (C|w|)18√ε+ δ ≥ 2.

Hence

C2
0T (C|w|)36(ε+ δ) ≥ 4.

so,

ε ≥ 4
C2

0T (C|w|)36 − δ,
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So we conclude that

ω(Gw;S) ≤ 1− Ω
(

1
T (C|w|)36

)
+O(δ).

Because T (n)4 is superadditive, T (C0 ·C|w|)36 ≥ C0T (C|w|)36 for any integer C0, so we can
move the constant from the big-Ω inside T , proving part (d). J

6 Multi-prover interactive proofs

In this section we define the complexity class PZK-MIPcoδ (2, 1, 1, 1 − 1/f(n)), and prove
Theorem 2. We first recall the definition of MIPcoδ . The definition given here is a simple
variant on Definition 8 of [5].

I Definition 18. A language L over an alphabet A is in the class MIPcoδ (2, 1, 1, 1− 1/f(n))
of multi-prover interactive proofs with two provers, one round, completness probability 1, and
soundness probability 1− 1/f(n), if and only if there is family of two-player non-local games
Gw = (IwA , IwB ,O

∗,w
A ,O∗,wB , Vw, πw) indexed by strings w ∈ A∗, such that

the input sets IwA , IwB and output sets O∗,wA , O∗,wB for Gw are subsets of strings of length
poly |w| (and hence can have size at most 2poly |w|).
the function Vw can be computed in polynomial time in |w| and the lengths of its inputs,
the distribution πw can be sampled in polynomial time in |w| and the lengths of its inputs,
(completeness) if w ∈ L then ωco(Gw) = 1, and
(soundness) if w 6∈ L then ωcoδ (Gw) ≤ 1− 1/f(|w|).

The family {Gw} is referred to as a protocol for L.

Here δ can also be a function of |w|. When δ = 0, MIPco0 is the class of commuting-operator
multi-prover interactive proofs, which dates back to [9]. Note that, in Definition 18, the
protocol must be sound against δ-AC operator strategies, whereas the completeness condition
requires a perfect commuting-operator strategy. As a result, MIPcoδ ⊂ MIPco for all δ.
Similarly, MIP∗δ ⊂ MIP∗.

I Remark 19. Our definition is slightly different from [5] in that we use δ-AC strategies with
projective measurements, rather than POVMs. It’s not clear how this changes the complexity
class in general, since we are restricting the class of strategies that a protocol must be sound
against (which potentially strengthens the class) and restricting the class of strategies that can
be used for completeness (which potentially weakens the class). However, Claim 9 of [5] shows
that projective measurements and POVMs are equivalent up to an increase in δ proportional
to the size of the output sets. Since our lower bounds use protocols with a constant number
of outputs, the lower bounds will also apply if we define MIPcoδ using POVMs.

Next we will define the perfect zero knowledge version of MIPcoδ , called PZK-MIPcoδ .
Informally, a multi-prover interactive proof is perfect zero-knowledge if the verifier gains no
new information from interacting with the provers. This is formalized by requiring that, for
every yes instance, the provers have a strategy for which the verifier can efficiently simulate
the provers’ behaviour.

Let G = (IA, IB ,O∗A,O∗B , V, π) be a non-local game. If the players use a commuting-
operator strategy given by measurements {P xa } and {Q

y
b} and a state |ψ〉 in a Hilbert space

H, then to an outside party (such as the verifier), the players actions are described by the
probabilities

p(a, b|x, y) = 〈ψ|P xaQ
y
b |ψ〉 .
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When x, y are fixed, p(a, b|x, y) gives a probability distribution over outcomes (a, b) ∈ OxA×O
y
B .

The family of probability distributions p = {p(a, b|x, y) : (x, y) ∈ IA×IB , (a, b) ∈ OxA×O
y
B}

is called the correlation matrix of the strategy.
In a interactive proof system, a record of interactions between verifier and provers is

called a transcript. Let {Gw} be a MIPcoδ (2, 1, 1, s) protocol for a language L as in Definition
18. During the game Gw, the transcript consists simply of the inputs (x, y) ∈ IwA × IwB sent
to the provers, and the outputs (a, b) ∈ OxA×O

y
B received back. If the verifier asks questions

x, y with probability π(x, y), then the distribution over transcripts (x, y, a, b) is given by
π(x, y)p(a, b|x, y), where {p(a, b|x, y)} is the correlation matrix of the provers’ strategy. A
strategy is said to be perfect zero-knowledge against an honest verifier if it is possible to
sample from the distribution {πw(x, y)p(a, b|x, y)}(x,y,a,b) in polynomial time. However, this
assumes that the verifier chooses questions x, y according to the probability distribution πw
given in the protocol, something that the provers cannot validate themselves while the game is
in progress. To be perfect zero-knowledge against a possibly dishonest verifier, it is necessary
that the verifier be able to simulate π(x, y)p(a, b|x, y) for any (simulable) distribution π(x, y)
on inputs. This is equivalent to being able to simulate the distributions {p(a, b|x, y)}, so we
make the following definition:

I Definition 20. Let {Gw} be a MIPcoδ (2, 1, 1, 1− s)-protocol for a language L. Then {Gw}
is said to be perfect zero-knowledge if for each string w and pair (x, y) ∈ IA × IB, there is a
probability distribution {pw(a, b|x, y) : (a, b) ∈ OxA ×O

y
B} over OxA ×O

y
B such that

1. the distribution {pw(a, b|x, y)} can be sampled in polynomial time in |w|, |x|, and |y|, and
2. if w ∈ L, then {pw(a, b|x, y) : (x, y) ∈ IA × IB , (a, b) ∈ OxA × O

y
B} is the correlation

matrix of a commuting-operator strategy S with winning probability ω(Gw;S) = 1.
The class PZK-MIPcoδ (2, 1, 1, 1−1/f(n)) is the class of languages in MIPcoδ (2, 1, 1, 1−1/f(n))
with a perfect zero-knowledge protocol.

Proof of Theorem 2. Theorem 17 immediately implies that any language
L ∈ coNTIME(f(n)) has a protocol in MIPcoδ (2, 1, 1, 1 − 1/f(Cn)k) for some constants
C and k, where δ = o(1/f(Cn)2k). Since the games constructed in the proof of Theorem
17 come from the wagon wheel construction, Proposition 16 implies that when w ∈ L, the
game Gw has a perfect commuting operator strategy with a correlation that can easily be
simulated by the verifier. J

6.1 Upper bounds
As mentioned in the introduction, no upper bound on MIPco is known, but an upper bound
on MIPcoδ follows from [5] as we will now describe. Consider the following theorem, which is
a restatement of Theorem 2 in [5]:

I Theorem (Theorem 2 [5]). Let G be a 2-prover non-local game with classical messages
in which each prover has ` possible answers, and ωNQCSDP (G) is the optimum of the N-
th level of the QC SDP hierarchy for G. Then there exists a δ = Θ(`2/

√
N) such that

ω∗δ (G) = ωNQCSDP (G).4

Here the QC SDP hierarchy for a non-local game G is as in Definition 10 of [5]. For our
purposes the only properties of the QC SDP hierarchy that we will require are the following:

4 The same statement could be made for non-local games with more players by raising the exponent on `.
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I Fact 21. The QC SDP hierarchy gives an upper bound on the entangled winning probability
of a game G at every level. That is, ωNQCSDP (G) ≥ ωco(G) for all N . This is an elementary
property of this hierarchy and is discussed in [5].

I Fact 22. The quantity ωNQCSDP (G) can be computed in time polynomial in (Q`)N where Q
is the maximum number of questions to either prover in G, and ` is the maximum number of
answers. This is because ωNQCSDP (G) is defined (in Definition 10 of [5]) to be the optimal value
of an semi-definite program on poly((Q`)N ) dimensional space, with poly((Q`)N ) constraints.

Now, suppose that one wishes to decide whether a non-local game G has ωco(G) = 1, or
has ωcoδ (G) ≤ 1− 1/f promised that one of the two is the case. By Theorem 2 of [5], there
existsM = O(`4/δ2) such that ω∗δ (G) = ωMQCSDP (G). To resolve the decision problem it then
suffices to compute the quantity ωMQCSDP (G). In the case that ωco(G) = 1 we know by Fact
21 that we will have ωMQCSDP (G) = 1. On the other hand, in the case that ωcoδ (G) ≤ 1− 1/f
we know that ωMQCSDP (G) = ω∗δ (G) ≤ ωcoδ (G) ≤ 1 − 1/f . It follows by Fact 22 that this
decision problem can be solved in time that is polynomial in (Q`)M = (Q`)O(`4/δ2) where Q
and ` are the sizes of the question and answer sets in G respectively.

This upper bound uses strategies with POVM measurements, but if we restrict to protocols
with constant size output sets, we can state this result for the class defined in Definition 18.

I Theorem 23 ([5]). If L ∈ MIPcoδ (2, 1, 1, 1 − 1/f(n)) has a protocol with constant size
output sets, and δ = o(1/f(n)), then L is contained in TIME(exp(poly(n)/δ2)).

Proof. While the result in [5] is stated for MIP∗δ which has completeness and soundness
conditions stated for finite-dimensional strategies, the proof is still valid for the analogously
defined MIPcoδ , which has completeness and soundness conditions stated for commuting-
operator strategies. J
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1 Introduction

1.1 Matrix multiplication
Determining the asymptotic algebraic complexity of matrix multiplication is a central open
problem in algebraic complexity theory. Several different methods for constructing fast matrix
multiplication algorithms have been developed, but on a high level they typically consist
of two parts: an efficient reduction of matrix multiplication to an intermediate problem
(some bilinear map, i.e. 3-tensor) and an efficient algorithm for the intermediate problem.
Recent results have shown “barriers” for such constructions to yield fast matrix multiplication
algorithms [4, 7, 8, 2, 3]. We give a barrier, based on a new notion called irreversibility, that
is more general and in some cases stronger than the barriers from previous work.

1.2 Matrix multiplication barriers
The matrix multiplication exponent ω is defined as the infimum over all real numbers β
such that any two n× n matrices can be multiplied with O(nβ) algebraic operations, and
thus ω represents the asymptotic algebraic complexity of matrix multiplication. Trivially
holds 2 ≤ ω ≤ 3. Strassen published the first non-trivial upper bound ω ≤ log2 7 in 1969 [20].
In the decades that followed, through the development of several ingenious methods by
several people, the upper bound was improved to the state-of-the-art bound ω ≤ 2.37.., and
the pursuit to prove whether ω = 2 or ω > 2 has been ongoing [12, 19, 27, 17, 10, 11]. As
mentioned before, these upper bound methods typically consist of a reduction of matrix
multiplication to an intermediate problem and an efficient algorithm for the intermediate
problem.

Ambainis et al. [4], for the first time, proved a “barrier” result for some collection of such
methods. Namely, they showed that a variety of methods that go via the big Coppersmith–
Winograd tensor as an intermediate problem cannot give ω = 2, and in fact not even
ω ≤ 2.30... We call any lower bound for all upper bounds on ω that can be obtained by some
method, a barrier for that method. In general, barriers in the sense of limitations to proof
methods have a long history in computational complexity theory and recognizing barriers is
a natural step towards finding proof methods that do solve the problem at hand.

Next, Alman and Williams [2, 3] extended the realm of barriers beyond the scope of the
Ambainis et al. barrier, to a larger collection of methods. Also Blasiak et al. [7, 8] did a
study of barriers, namely of barriers for a subset of the group-theoretic method. Both the
Blasiak et al. and the Alman and Williams barriers rely on studying versions of “asymptotic
subrank” of an intermediate problem.

We give a barrier that applies more generally than all previous barriers and that is in
some cases stronger. Our barrier also relies on studying versions of asymptotic subrank,
which together with the notion of asymptotic rank we combine into a single parameter called
irreversibility. Our barrier simplifies and generalises previous barriers and connects the
barrier literature to some central notions from the framework of Strassen [21, 22, 23, 9].
Alman reported similar independent results [1] shortly after our manuscript appeared on the
arxiv.

1.3 Our barrier: intuitive explanation
An intuitive explanation of our barrier is as follows. In the language of tensors, the matrix
multiplication exponent ω is the optimal “rate of transformation” from the “unit tensor” to



M. Christandl, P. Vrana, and J. Zuiddam 26:3

the “matrix multiplication tensor”,

unit tensor ω−→ matrix multiplication tensor. (1)

The rate of transformation naturally satisfies a triangle inequality and thus upper bounds
on ω can be obtained by combining the rate of transformation α1 from the unit tensor to
some intermediate tensor and the rate of transformation α2 from the intermediate tensor to
the matrix multiplication tensor; this is the two-component approach alluded to earlier,

unit tensor α1−−→ intermediate tensor α2−−→ matrix multiplication tensor. (2)

We define the irreversibility of the intermediate tensor as the necessary “loss” that will occur
when transforming the unit tensor to the intermediate tensor followed by transforming the
intermediate tensor back to the unit tensor. It is well-know that the transformation rate
from the matrix multiplication tensor to the unit tensor is 1

2 , so we can extend (2) to

unit tensor α1−−→ intermediate tensor α2−−→ matrix multiplication tensor 1/2−−−→ unit tensor.
(3)

We thus see that α1α2 is directly related to the irreversibility of the intermediate tensor, and
hence the irreversibility of the intermediate tensor provides limitations on the upper bounds
on ω that can be obtained from (2). In particular, any fixed irreversible intermediate tensor
cannot show ω = 2 via (2), since the matrix multiplication tensor is reversible when ω = 2.

1.4 Explicit numerical barriers
To exemplify our barrier we show that the support functionals [23] and quantum functionals [9]
give (so far, the best) lower bounds on the irreversibility of the following families of tensors:

the small Coppersmith–Winograd tensors

cwq =
q∑
i=1

e0,i,i + ei,0,i + ei,i,0

the big Coppersmith–Winograd tensors

CWq = e0,0,q+1 + e0,q+1,0 + eq+1,0,0 +
q∑
i=1

e0,i,i + ei,0,i + ei,i,0

the reduced polynomial multiplication tensors

tn =
n−1∑

i,j,k=0:
i+j=k

ei,j,k

which for small parameters lead to the following explicit barriers (Theorem 9 and Section 4.2):

q cwq-barrier

2 2
3 2.02..
4 2.06..
5 2.09..
6 2.12..
7 2.15..

q CWq-barrier

1 2.16..
2 2.17..
3 2.19..
4 2.20..
5 2.21..
6 2.23..

n tn-barrier

1 2.17..
2 2.16..
3 2.15..
4 2.15..
5 2.14..
6 2.14..

Indeed, as suggested by the values in the above tables, the cwq-barrier and CWq-barrier
increase with q (converging to 3), whereas the tn-barrier decreases with n (converging to 2).

CCC 2019
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1.5 Comparison and other applications

Compared to Ambainis, Filmus and Le Gall [4] our barriers are valid for a larger class of
approaches (and naturally we obtain lower barriers). Compared to Alman and Williams [3]
our barriers are valid for a larger class of approaches but our barriers are also higher. As a
variation on our barrier we introduce a “monomial” version. Compared to Blasiak, Church,
Cohn, Grochow, Naslund, Sawin and Umans [7], and Blasiak, Church, Cohn, Grochow and
Umans [8] our monomial barriers are valid for a class of approaches that includes their STPP
approach, and thus we provide a uniform view on the barriers that have appeared in the
literature. We have not tried to optimise the barriers that we obtain, but focus instead on
introducing the barrier itself. The barrier of Alman stated in [1] is very similar to ours,
but makes use of asymptotic slice rank instead of asymptotic subrank. Since asymptotic
subrank is at most asymptotic slice rank, our barriers are technically stronger. (It is not
known whether asymptotic slice rank and asymptotic subrank are equal in general.)

It will become clear to the reader during the development of our ideas that they not only
apply to the problem of fast matrix multiplication, but extend to give barriers for the more
general problem of constructing fast rectangular matrix multiplication algorithms or even
transformations between arbitrary powers of tensors. Such transformations may represent,
for example, asymptotic slocc (stochastic local operations and classical communication)
reductions among multipartite quantum states [5, 13, 25, 15].

We define irreversibility in Section 2. In Section 3 we introduce the irreversibility barrier.
Finally, in Section 4 we present explicit irreversibility barriers.

2 Irreversibility

We begin by introducing some standard notation and terminology. Then we discuss a useful
notion called the relative exponent and we define the irreversibility of a tensor. After that
we introduce the monomial versions of these ideas and discuss so-called balanced tensors.

2.1 Standard definitions

We assume familiarity with tensors and with the tensor Kronecker product and direct sum.
All our tensors will be 3-tensors over some fixed but arbitrary field F. For two tensors
t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we write t ≥ s and say t restricts to s if
there are linear maps Ai : Fni → Fmi such that (A1, A2, A3) · t = s. For n ∈ N we define the
diagonal tensor (also called the rank-n unit tensor) 〈n〉 :=

∑n
i=1 ei,i,i ∈ Fn ⊗ Fn ⊗ Fn. The

tensor rank of t is defined as R(t) := min{n ∈ N : t ≤ 〈n〉} (this coincides with the definition
that R(t) is the smallest size of any decomposition of t into a sum of simple tensors) and the
subrank of t is defined as Q(t) := max{n ∈ N : 〈n〉 ≤ t}. The asymptotic rank of t is defined
as

˜R(t) := lim
n→∞

R(t⊗n)1/n = inf
n

R(t⊗n)1/n (4)

and the asymptotic subrank of t is defined as

˜Q(t) := lim
n→∞

Q(t⊗n)1/n = sup
n

Q(t⊗n)1/n. (5)
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The above limits exist and equal the respective infimum and supremum by Fekete’s lemma.
For a, b, c ∈ N≥1 the matrix multiplication tensor 〈a, b, c〉 is defined as

〈a, b, c〉 :=
a∑
i=1

b∑
j=1

c∑
k=1

e(i,j), (j,k), (k,i) ∈ (Fa ⊗ Fb)⊗ (Fb ⊗ Fc)⊗ (Fc ⊗ Fa). (6)

The matrix multiplication exponent is defined as ω := log2 ˜R(〈2, 2, 2〉). The meaning of ω
in terms of algorithms is: for any ε > 0 there is an algorithm that for any n ∈ N multiplies
two n × n matrices using O(nω+ε) scalar additions and multiplications. The difficulty of
determining the asymptotic rank of 〈2, 2, 2〉 is to be contrasted with the situation for the
asymptotic subrank; to put it in Strassen’s words: Unlike the cynic, who according to Oscar
Wilde knows the price of everything and the value of nothing, we can determine the asymptotic
value of 〈h, h, h〉 precisely [22],

˜Q(〈h, h, h〉) = h2. (7)

2.2 Relative exponent
For a clean exposition of our barrier we will use the notion of relative exponent, which we
will define in this section. This notion is inspired by the notion of rate from information
theory and alternatively can be seen as a versatile version of the notion of the asymptotic
preorder for tensors of Strassen. In the context of tensors, the relative exponent previously
appeared in [28] and [26].

I Assumption 1. To avoid irrelevant technicalities, we will from now on, without further
mentioning, only consider tensors that are not of the form u⊗ v ⊗ w.

I Definition 2. For two tensors t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we define
the relative exponent from t to s as

ω(t, s) := lim
n→∞

1
n min{m ∈ N : t⊗m ≥ s⊗n} (8)

= sup
n

1
n min{m ∈ N : t⊗m ≥ s⊗n}. (9)

The limit is a supremum by Fekete’s lemma. Let us briefly relate the relative exponent to
the basic notions and results stated earlier. The reader verifies directly that the identities

ω(〈2〉, t) = log2 ˜R(t) (10)
ω(t, 〈2〉) = 1/(log2 ˜Q(t)) (11)

hold. By definition of the matrix multiplication exponent ω holds

ω(〈2〉, 〈2, 2, 2〉) = ω. (12)

We know from (7) that

ω(〈2, 2, 2〉, 〈2〉) = 1
2 . (13)

The relative exponent has the following two basic properties that the reader verifies directly.

I Proposition 3. Let s, t and u be tensors.
(i) ω(t, t) = 1.
(ii) ω(s, t)ω(t, u) ≥ ω(s, u) (triangle inequality).

CCC 2019
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2.3 Irreversibility
Our barrier framework relies crucially on the irreversibility of a tensor, a new notion that we
define now.

I Definition 4. We define the irreversibility of a tensor t as the product of the relative
exponent from 〈2〉 to t and the relative exponent from t to 〈2〉, i.e.

i(t) := ω(〈2〉, t)ω(t, 〈2〉). (14)

Thus i(t) measures the extent to which the asymptotic conversion from 〈2〉 to t is irreversible,
explaining the name. Equivalently, the irreversibility is the ratio of the logarithms of the
asymptotic rank and the asymptotic subrank, i.e.

i(t) = log2 ˜R(t)
log2 ˜Q(t) . (15)

From the basic properties of the relative exponent (Proposition 3) follows directly the
inequality i(t) = ω(〈2〉, t)ω(t, 〈2〉) ≥ ω(〈2〉, 〈2〉) = 1.

I Proposition 5. For any tensor t holds that

i(t) ≥ 1. (16)

I Definition 6. Let t be a tensor.
If i(t) = 1, then we say that t is reversible.
If i(t) > 1, then we say that t is irreversible.

For example, for any n ∈ N the diagonal tensor 〈n〉 =
∑n
i=1 ei,i,i is reversible. In fact,

any reversible tensor t that we know of is equivalent to 〈n〉 for some n, in the sense that
〈n〉 ≤ t ≤ 〈n〉.

For the matrix multiplication tensor 〈2, 2, 2〉 we have 2 i(〈2, 2, 2〉) = ω (using (13)). Thus
if ω = 2, then 〈2, 2, 2〉 is reversible (and also any other 〈n, n, n〉). As we will see in Section 3,
this is ultimately the source of our barrier.

Irreversible tensors exist. For example,W = e0,0,1+e0,1,0+e1,0,0 is irreversible. Namely, it
is well-known that log2 ˜R(W ) = 1 and that log2 ˜Q(W ) = h(1/3) = 0.918.. [23, Theorem 6.7],
so i(W ) = 1.088.. > 1. In Section 4 we will compute lower bounds on the irreversibility of
the small and big Coppersmith–Winograd tensors (that play a crucial role in the best upper
bounds on ω).

2.4 Monomial relative exponent and monomial irreversibility
The following restrained version of relative exponent and irreversibility will be relevant.
For two tensors t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 and s ∈ Fm1 ⊗ Fm2 ⊗ Fm3 we write t ≥M s and
say t monomially restricts to s if there are linear maps Ai : Fni → Fmi , the corresponding
matrices of which are generalised sub-permutation matrices in the standard basis, such that
(A1, A2, A3) · t = s [21, Section 6]. Replacing the preorder ≥ by ≥M in Section 2 gives the
notions of monomial subrank QM, monomial asymptotic subrank ˜QM and monomial relative
exponent ωM. (For simplicity we will use monomial restriction here, but our results will also
hold with ≥M replaced by monomial degeneration DM defined in [21, Section 6].) Note that
the notions QM and ˜QM only depend on the support of the tensor, and not on the particular
values of the nonzero coefficients. We define the monomial irreversibility iM(t) of t as the
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product of the (normal) relative exponent from 〈2〉 to t and the monomial relative exponent
from t to 〈2〉,

iM(t) := ω(〈2〉, t)ωM(t, 〈2〉). (17)

Equivalently, we have

iM(t) = log2 ˜R(t)
log2 ˜QM(t) . (18)

(This notion may depend on the tensor and not only on the support.)

I Proposition 7. Let s, t and u be tensors.
(i) ωM(t, t) = 1.
(ii) ωM(s, t)ωM(t, u) ≥ ωM(s, u) (triangle inequality).
(iii) ωM(s, t) ≥ ω(s, t).
(iv) iM(t) ≥ i(t).

I Definition 8. Let t be a tensor.
If iM(t) = 1, then we say that t is monomially reversible.
If iM(t) > 1, then we say that t is monomially irreversible.

There exist tensors that are reversible and monomially irreversible. For example, let C be
the structure tensor of the algebra C[Z/3Z] in the natural basis,

C = e0,0,0 + e0,1,1 + e1,0,1 + e2,0,2 + e0,2,2 + e1,1,2 + e1,2,0 + e2,1,0 + e2,2,1. (19)

Then we have ˜R(C) = 3, ˜Q(C) = 3 and ˜QM(C) = 2.75.. (this is proven in [14, 24], see also [9]
for the connection to [23]), so that i(C) = 1 and iM(C) = 1.08.. We note that C is equivalent
to the diagonal tensor 〈3〉, see e.g. [9] for the basis transformation that shows this.

With regards to matrix multiplication, the standard construction for (13) in fact shows
that

ωM(〈2, 2, 2〉, 〈2〉) = 1
2 . (20)

2.5 Balanced tensors
We finish this section with a general comment on upper bounds on irreversibility. A tensor
t ∈ V1 ⊗ V2 ⊗ V3 with dim(V1) = dim(V2) = dim(V3) is called balanced if the corresponding
maps t1 : V1 → V2 ⊗ V3, t2 : V2 → V1 ⊗ V3 and t3 : V3 → V1 ⊗ V2 (called flattenings) are
full-rank and for each i ∈ [3] there is an element v ∈ Vi such that ti(v) has full-rank [22,
page 121]. For any tensor space with cubic format Fn ⊗ Fn ⊗ Fn over an algebraically closed
field F, being balanced is a generic condition, i.e. almost all elements in such a space are
balanced. Balanced tensors are called 1-generic tensors in [16]. Let t ∈ Fn ⊗ Fn ⊗ Fn be
balanced. Then [22, Proposition 3.6]

˜R(t) ≤ n
2
3ω (21)

˜Q(t) ≥ n
2
3 (22)

and so

i(t) ≤ ω. (23)

If moreover ˜R(t) = n, then

i(t) ≤ 3/2. (24)
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3 Barriers through irreversibility

With the new notion of irreversibility available, we present a barrier for approaches to upper
bound ω via an intermediate tensor t.

3.1 The irreversibility barrier
For any tensor t the inequality

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ ω (25)

holds by the triangle inequality. Any such approach to upper bound ω respects the following
barrier in terms of the irreversibility i(t) of t.

I Theorem 9. For any tensor t holds

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ 2 i(t). (26)

Proof. By the triangle inequality (Proposition 3),

ω(〈2〉, t)ω(t, 〈2, 2, 2〉)ω(〈2, 2, 2〉, 〈2〉) ≥ ω(〈2〉, t)ω(t, 〈2〉) = i(t). (27)

Therefore, using the fact ω(〈2, 2, 2〉, 〈2〉) = 1
2 from (13), we have

ω(〈2〉, t)ω(t, 〈2, 2, 2〉) ≥ i(t)
ω(〈2, 2, 2〉, 〈2〉) = 2 i(t). (28)

This proves the claim. J

Theorem 9, in particular, implies that if i(t) > 1, then ω(〈2〉, t)ω(t, 〈2, 2, 2〉) > 2, i.e. one
cannot prove ω = 2 via any fixed irreversible intermediate tensor. (Of course one can consider
sequences of intermediate tensors with irreversibility converging to 1.)

3.2 Better barriers through more structure
Naturally, we should expect that imposing more structure on the approach to upper bound ω
leads to stronger barriers. In this section we impose that the final step of the approach is
an application of the Schönhage τ -theorem. The Schönhage τ -theorem (Strassen’s general
version [22]) says that

˜R(
q⊕
i=1
〈ai, bi, ci〉

)
≥

q∑
i=1

(aibici)ω/3. (29)

In particular holds

˜R(〈q〉 ⊗ 〈a, a, a〉) ≥ qaω. (30)

Therefore, in the language of rates, for any α, β ∈ N holds that

ω(〈2〉, 〈2〉α〈2, 2, 2〉β) ≥ α+ βω (31)

that is

ω(〈2〉, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω. (32)
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(Here α corresponds to log2 q and β corresponds to log2 a. For simplicity and concreteness
we will consider only integer α and β.) Thus for any tensor t and for any α, β ∈ N holds that

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω. (33)

We prove the following barrier in terms of α, β and the irreversibility i(t) of t.

I Theorem 10. For any tensor t and α, β ∈ N holds

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ 2 i(t) + α

β

(
i(t)− 1

)
≥ 2 i(t). (34)

Proof. By the triangle inequality,

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)ω(〈2〉α〈2, 2, 2〉β , 〈2〉) ≥ ω(〈2〉, t)ω(t, 〈2〉) = i(t). (35)

Therefore,

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β) ≥ i(t)
ω(〈2〉α〈2, 2, 2〉β , 〈2〉) = (α+ 2β) i(t). (36)

Subtracting α, dividing by β and using that i(t)− 1 ≥ 0 (Proposition 5) gives the barrier

ω(〈2〉, t)ω(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ (α+ 2β) i(t)− α
β

= 2 i(t) + α

β
(i(t)− 1) ≥ 2 i(t). (37)

This proves the claim. J

As a corollary of the above theorem we present a barrier on any approach of the following
form. The Schönhage τ -theorem implies that for any a, b, c ∈ N≥1 and any tensor t holds

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω. (38)

We prove the following barrier in terms of a, b, c, α and the irreversibility of the cyclically
symmetrized cyc(t) := t⊗ ((1, 2, 3) · t)⊗ ((1, 2, 3)2 · t).

I Corollary 11. For any tensor t and α ∈ N and a, b, c ∈ N≥1 holds

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ 2 i(cyc(t)) + α
1
3 log2(abc)

(i(cyc(t))− 1) (39)

≥ 2 i(cyc(t)). (40)

One verifies that i(t) ≥ i(cyc(t)). If t is cyclically symmetric, then cyc(t) = t⊗3 and we
have the equality i(t) = i(cyc(t)).

Proof. One verifies directly that ω(〈2〉, t) ≥ ω(〈2〉, cyc(t)
1
3 ) and

ω(t, 〈2〉α〈a, b, c〉) ≥ ω(cyc(t)
1
3 , 〈2〉α〈2, 2, 2〉

1
3 log2(abc)). (41)

Note that we are using real powers here, which is justified by taking powers of the relevant
tensors and taking a limit. Using both inequalities and then applying Theorem 10 gives

ω(〈2〉, t)ω(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω(〈2〉, cyc(t))ω(cyc(t), 〈2〉α〈2, 2, 2〉
1
3 log2(abc))− α

1
3 log2(abc)

(42)

≥ 2 i(cyc(t)). (43)

This proves the statement of the theorem. J
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I Remark 12. For cyclically symmetric tensors t our Corollary 11 implies the lower bound

ωg(t) ≥ ωu(t) ≥ 2 i(t), (44)

on the parameter ωg (and the “universal” version ωu) studied in [3], which is a significant
improvement over the barrier

ωg(t) ≥
3

1
2 i(t) + 1

(45)

proven in [3, Theorem IV.1].

3.3 Better barriers through monomial irreversibility
Finally, we impose as an extra constraint that the transformation from the intermediate
tensor t to the matrix multiplication tensor happens via monomial restriction (Section 2.4),
i.e. we consider the approach

ω(〈2〉, t)ωM(t, 〈2, 2, 2〉) ≥ ω (46)

and the more structured approaches

ω(〈2〉, t)ωM(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ ω (47)

and

ω(〈2〉, t)ωM(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ ω. (48)

The proofs in the previous sections can be directly adapted to prove:

I Theorem 13. For any tensor t holds

ω(〈2〉, t)ωM(t, 〈2, 2, 2〉) ≥ 2 iM(t). (49)

I Theorem 14. For any tensor t and α, β ∈ N holds

ω(〈2〉, t)ωM(t, 〈2〉α〈2, 2, 2〉β)− α
β

≥ 2 iM(t) + α

β

(
iM(t)− 1

)
≥ 2 iM(t). (50)

I Corollary 15. For any tensor t and α ∈ N and a, b, c ∈ N≥1 holds

ω(〈2〉, t)ωM(t, 〈2〉α〈a, b, c〉)− α
1
3 log2(abc)

≥ 2 iM(cyc(t)) + α
1
3 log2(abc)

(iM(cyc(t))− 1) (51)

≥ 2 iM(cyc(t)). (52)

4 Explicit irreversibility lower bounds

We have seen how barriers arise from lower bounds on irreversibility. In this section we
compute lower bounds on the irreversibility of two well-known intermediate tensors that play a
crucial role in the best upper bounds on ω: the small and big Coppersmith–Winograd tensors.
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4.1 Irreversibility and the asymptotic spectrum of tensors
We begin with a general discussion of how to compute irreversibility. The asymptotic spectrum
of tensors is the set of ≤-monotone semiring homomorphisms from the semiring of tensors
(with tensor product and direct sum as multiplication and addition) to the nonnegative reals,

∆ = {F ∈ Hom({tensors},R≥0) : a ≤ b⇒ F (a) ≤ F (b)}. (53)

Strassen proves in [22] that ˜Q(t) = minF∈∆ F (t) and ˜R(t) = maxF∈∆ F (t) and he also proves
(implicitly) that ω(s, t) = maxF∈∆ log2 F (t)/ log2 F (s). From this we directly obtain:

I Proposition 16. Let t be a tensor. Then

i(t) = maxF∈∆ logF (t)
minF∈∆ logF (t) . (54)

In an ideal world we would know ∆ and use it to compute i(t) (or better, we would use
it to compute ω). In practice we currently only have partial knowledge of ∆. This partial
knowledge is easiest to describe in terms of the best known lower bounds on ˜R(t) and the
best known upper bounds on ˜Q(t). The best known lower bounds on ˜R(t) are simply the
matrix ranks of each of the three flattenings t1, t2, t3 of t as described in Section 2.5. For
arbitrary fields, the best general upper bounds on ˜Q(t) that we are aware of are the Strassen
upper support functionals ζθ from [23], which we will define and use in the next section.
They relate asymptotically to slice rank via [9]

˜Q(t) ≤ lim sup
n

slicerank(t⊗n)1/n ≤ min
θ
ζθ(t). (55)

We are not aware of any example for which any of the inequalities in (55) is strict. For
oblique tensors 1 the right inequality is an equality [9] and for tight tensors 2 both inequalities
are equalities [23]. We thus have:

I Proposition 17. Let t be a tensor. Then

i(t) ≥ maxi log2 R(ti)
minθ log2 ζ

θ(t) . (56)

For tensors over the complex numbers (i.e. F = C) we have a deeper understanding of
the theory of upper bounds on the asymptotic subrank, via the quantum functionals F θ
introduced in [9]. The quantum functionals satisfy F θ ≤ ζθ and their minimum equals the
asymptotic slice rank [9], i.e.

˜Q(t) ≤ lim sup
n

slicerank(t⊗n)1/n = min
θ
F θ(t) ≤ min

θ
ζθ(t). (57)

For free tensors3 the right inequality in (57) is an equality [9]. We thus have:

I Proposition 18. Let t be a tensor over the complex numbers. Then

i(t) ≥ maxi log2 R(ti)
minθ log2 F

θ(t) . (58)

1 a tensor t ∈ Fn1 ⊗ Fn2 ⊗ Fn3 is called oblique if the support supp(t) ∈ [n1]× [n2]× [n3] in some basis is
an antichain in the product of the natural orders on the [ni]

2 a tensor t is called tight if for some choice of basis there are injective maps α1, α2, α3 such that for
every a ∈ supp(t) holds α1(a1) + α2(a2) + α3(a3) = 0

3 a tensor t is called free if in some basis any two different a, b ∈ supp(t) differ in at least two entries

CCC 2019



26:12 Barriers for Fast Matrix Multiplication from Irreversibility

4.2 Irreversibility of Coppersmith–Winograd tensors
We now compute lower bounds for the irreversibility of the Coppersmith–Winograd tensors.
As mentioned, we will use the support functionals of Strassen [23] in our computation to
upper bound the asymptotic subrank. For any θ ∈ R3

≥0 with θ1 + θ2 + θ3 = 1 the upper
support functional ζθ is defined as

ζθ(t) := 2ρ
θ(t) (59)

ρθ(t) := min
s∼=t

max
P∈P(supp(s))

3∑
i=1

θiH(Pi), (60)

where the minimum is over all tensors s isomorphic to t, the maximum is over all probability
distributions on the support of s in the standard basis, and H(Pi) denotes the Shannon
entropy of the ith marginal of P . Strassen proves in [23] that 1/ω(t, 〈2〉) = log2 ˜Q(t) ≤ ρθ(t).

(Besides from the Strassen support functionals, upper bound on the asymptotic subrank
of complex tensors may be obtained from the quantum functionals. For the tensors in
Theorem 19 and Theorem 22, however, this will give the same bound, since these tensors are
free [9, Section 4.3].)

I Theorem 19 (Small Coppersmith–Winograd tensors [12, Section 6]). For the small Copper-
smith–Winograd tensor

cwq :=
q∑
i=1

e0,i,i + ei,0,i + ei,i,0 (61)

the lower bound

2 i(cwq) ≥
2 log2(q + 1)

log2 3− 2
3 + 2

3 log2 q
(62)

holds.

Proof. The rank of each flattening of cwq equals q+ 1. Therefore, ˜R(cwq) ≥ q+ 1. To upper
bound the asymptotic subrank ˜Q(cwq) one can upper bound the Strassen upper support
functional with θ = (1/3, 1/3, 1/3) as in [9, Example 4.22] by

ρθ(cwq) ≤ log2 3− 2
3 + 2

3 log2 q. (63)

We find that

i(cwq) ≥
log2(q + 1)

log2 3− 2
3 + 2

3 log2 q
. (64)

This proves the theorem. J

I Remark 20. If q > 2, then the right-hand side of (62) is at least 2.02.. See the table in
Section 1 for more values. If q = 2, however, then the right-hand side of (62) equals 2.
Theorem 19 thus does not rule out using cw2 to prove that ω = 2. Indeed, as observed in
[12, Section 11]), if ω(〈2〉, cw2) = log2 3, then ω = 2.

Currently, the best upper bound we have on ω(〈2〉, cwq) is log2(q + 2). If ω(〈2〉, cwq) =
log2(q + 2), then instead of (62) we get the better barrier

2 i(cwq) ≥
2 log2(q + 2)

log2 3− 2
3 + 2

3 log2 q
. (65)
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The right-hand side of (65) has a minimum value of

18
5 log2 3 = 2.27.. (66)

attained at q = 6.
I Remark 21. The following computation serves as a sanity check for our barrier. Namely
we see in an example how by putting some extra assumption the barrier becomes tight.
Coppersmith and Winograd in [12] used cwq as an intermediate tensor in combination with
the laser method and a certain “outer structure”, see also [6, Section 9]. When we impose
that we apply the laser method on cwq with this outer structure to upper bound ω we get
the following better barrier via Theorem 10/Corollary 11:

2 i(cwq) + h(1/3)
1
3 log2(q)

(i(cwq)− 1) (67)

where

i(cwq) ≥
log2(q + 1)

log2(3)− 2
3 + 2

3 log2(q)
. (68)

Some values of (67) are:

q

2 2
3 2.04..
4 2.10..
5 2.15..
6 2.19..
7 2.22..

If in addition we assume that ω(〈2〉, cwq) = log2(q + 2), then we obtain the barrier

2 i(cwq) + h(1/3)
1
3 log2(q)

(i(cwq)− 1) (69)

where

i(cwq) ≥
log2(q + 2)

log2(3)− 2
3 + 2

3 log2(q)
. (70)

Some values of (69) are:

q

2 3.24..
3 2.65..
4 2.50..
5 2.44..
6 2.41..
7 2.40..
8 2.40..
9 2.40..
10 2.40..
11 2.41..
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with minimum value of 2.40... These barriers in fact match the upper bound

ω ≤ logq
4(q + 2)3

27 (71)

that was obtained by Coppersmith and Winograd by applying the laser method in the way
described above. Other intermediate tensors with a given outer structure may be analyzed
similarly.

I Theorem 22 (Big Coppersmith–Winograd tensors [12, Section 7]). For the big Coppersmith–
Winograd tensor

CWq := e0,0,q+1 + e0,q+1,0 + eq+1,0,0 +
q∑
i=1

e0,i,i + ei,0,i + ei,i,0 (72)

the lower bound

2 i(CWq) ≥



2 log2(3)
f( 1

18 (
√

33− 3))
= 2.16.. q = 1

2 log2(4)
f( 1

9 )
= 2.17.. q = 2

2 log2(q + 2)

f
( 3q−
√

32+q2

6(q2−4)
) q ≥ 3

(73)

holds, where

f(x) := −
(2

3 − qx
)

log2

(2
3 − qx

)
− q2x log2(2x)−

(1
3 − qx

)
log2

(1
3 − qx

)
. (74)

Proof. The rank of each flattening of CWq equals q+ 2, which coincides with the well-known
border rank upper bound R(CWq) ≤ q + 2. Therefore, ˜R(CWq) = q + 2.

To upper bound the asymptotic subrank ˜Q(CWq) we use the Strassen upper support
functional with θ = (1/3, 1/3, 1/3). In the standard basis, the support of CWq is the set

{(0, i, i), (i, 0, i), (i, i, 0) : i ∈ [q]} ∪ {(0, 0, q + 1), (0, q + 1, 0), (q + 1, 0, 0)}. (75)

The symmetry implies that we can assign probability x to each of (0, i, i), (i, 0, i) and (0, i, i),
and 1

3 − qx to (0, 0, q + 1), (0, q + 1, 0) and (q + 1, 0, 0). This leads to an average marginal
entropy of f(x) as defined in the theorem statement. The maximum of f(x) is attained at

x =


1
18 (
√

33− 3) q = 1
1
9 q = 2

3q −
√

32 + q2

6(q2 − 4) q ≥ 3.

(76)

This proves the theorem. J

I Remark 23. The lowest value of the right-hand side of (73) is 2.16.. attained at q = 1. See
the table in Section 1 for more values.

I Remark 24. A lower bound on the irreversibility of the tensors tn mentioned in the
introduction follows directly from the results in [23, Theorem 6.7].
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4.3 Monomial irreversibility of structure tensors of finite group algebras
We now discuss irreversibility and monomial irreversibility in the context of the group-
theoretic approach developed in [10]. This approach produces upper bounds on ω via
intermediate tensors that are structure tensors of complex group algebras of finite groups.
Let 〈G〉 denote the structure tensor of the complex group algebra C[G] of the finite group G, in
the standard basis. The group-theoretic approach (in particular [10, Theorem 4.1]) produces
an inequality of the form

〈G〉 ≥M 〈a, b, c〉 (77)

which ultimately (see [10, Eq. (1)]) leads to the bound

ω(〈2〉, 〈G〉)ωM(〈G〉, 〈a, b, c〉)
1
3 log2(abc)

≥ ω (78)

where ≥M and ωM are the monomial restriction and monomial relative exponent defined in
Section 2.4.

Now the monomial irreversibility barrier from Section 3.3 comes into play. Upper bounds
on the monomial asymptotic subrank of 〈G〉 have (using different terminology) been obtained
in [7, 8, 18]. Those upper bounds imply that 〈G〉 is monomially irreversible for every
nontrivial finite group G. Together with our results in Section 3.3 and the fact that the
tensor 〈G〉 is symmetric up to a permutation of the basis of one of the tensor legs, this
directly leads to nontrivial barriers for the left-hand side of (78) for any fixed nontrivial
group G, thus putting the work of [7, 8, 18] in a broader context. We have not tried to
numerically optimise the monomial irreversibility barriers for group algebras.

Finally we mention that the irreversibility barrier (rather than the monomial irreversibility
barrier) does not rule out obtaining ω = 2 via 〈G〉. Namely, 〈G〉 is isomorphic to a
direct sum of matrix multiplication tensors, 〈G〉 ∼=

⊕
i〈di, di, di〉 and, therefore, we have

i(〈G〉) = (log2
∑
i d
ω
i )/(log2

∑
i d

2
i ). Thus, if ω = 2, then 〈G〉 is reversible.
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Abstract
This work continues the development of hardness magnification. The latter proposes a new strategy
for showing strong complexity lower bounds by reducing them to a refined analysis of weaker models,
where combinatorial techniques might be successful.

We consider gap versions of the meta-computational problems MKtP and MCSP, where one
needs to distinguish instances (strings or truth-tables) of complexity ≤ s1(N) from instances of
complexity ≥ s2(N), and N = 2n denotes the input length. In MCSP, complexity is measured by
circuit size, while in MKtP one considers Levin’s notion of time-bounded Kolmogorov complexity. (In
our results, the parameters s1(N) and s2(N) are asymptotically quite close, and the problems almost
coincide with their standard formulations without a gap.) We establish that for Gap-MKtP[s1, s2]
and Gap-MCSP[s1, s2], a marginal improvement over the state-of-the-art in unconditional lower
bounds in a variety of computational models would imply explicit super-polynomial lower bounds.

Theorem. There exists a universal constant c ≥ 1 for which the following hold. If there exists ε > 0
such that for every small enough β > 0
(1) Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].
(2) Gap-MKtP[2βn, 2βn + cn] /∈ TC0[N1+ε], then EXP * TC0[poly].
(3) Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].
(4) Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].
(5) Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].
(6) Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].
These results are complemented by lower bounds for Gap-MCSP and Gap-MKtP against different
models. For instance, the lower bound assumed in (1) holds for U2-formulas of near-quadratic size,
and lower bounds similar to (3)-(5) hold for various regimes of parameters.

We also identify a natural computational model under which the hardness magnification threshold
for Gap-MKtP lies below existing lower bounds: U2-formulas that can compute parity functions at
the leaves (instead of just literals). As a consequence, if one managed to adapt the existing lower
bound techniques against such formulas to work with Gap-MKtP, then EXP * NC1 would follow via
hardness magnification.
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1 Introduction

1.1 Context
Establishing limits on the efficiency of computations is widely considered to be one of the
most important open problems in computer science and mathematics. Unconditional lower
bounds are known in many restricted computational settings (see e.g. [8, 24]), but progress
in understanding the limitations of more expressive devices has been slow and incremental
(cf. [1] for a recent survey and references). Table 1 summarizes the current landscape of
unconditional lower bounds with respect to general circuits, formulas, branching programs,
bounded-depth threshold circuits, and bounded-depth circuits with modular gates. These
constitute some of the most widely investigated models extending the weak computational
settings for which we already have explicit super-polynomial lower bounds.

Table 1 A summary of several state-of-the-art lower bounds in circuit complexity theory. In our
notation, N denotes input length, and C[s] refers to C-circuits of size ≤ s. Establishing stronger
lower bounds in these different models is open (or non-trivial lower bounds for a function in
E = DTIME[2O(N)] in the case of ACC0

d).

Computational Model Unconditional Lower Bounds Reference(s)

Boolean Circuits; w.r.t. P * Circuit[cN ], MA/1 * Circuit[Nk] [23, 14]
different forms of explicitness MAEXP * Circuit[poly] [9, 49]

Formulas over B2 P * B2-Formula[N2−o(1)] [39]

Formulas over U2 P * U2-Formula[N3−o(1)] [16, 54, 13]

Branching programs P * BP[N2−o(1)] [39]

Low-depth threshold circuits P * MAJ ◦ THR ◦ THR[N3/2−o(1)] [27]

Depth-d threshold circuits P * TC0
d[N1+exp(−d)] (wires) [22]

Depth-d circuits with mod gates quasi-NP * ACC0
d[poly] [38]

A conditional explanation has been proposed to address the difficulty of establishing
strong lower bounds in most of these computational settings. The theory of natural proofs [48]
shows that if a computational device can compute pseudorandom functions, then sufficiently
constructive techniques (such as those that have been successful against weaker models)
cannot show lower bounds of the form Nk if k is sufficiently large. This connection has
been quite influential, and subsequent works (see e.g. [36, 7]) have further investigated the
limitations of lower bound techniques from this perspective.

The Razborov-Rudich framework suggests that proving unconditional lower bounds
in stronger computational models might be tightly related to the investigation of meta-
computational problems of a particular form: those referring to the computational complexity
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of strings or truth-tables. Indeed, it has been subsequently proved that the existence of a
natural property for a class of circuits yields explicit lower bounds against the same class
[20, 60, 40, 19].

Our results describe a striking phenomenon associated to such problems. They show
that in several scenarios, if we could establish slightly stronger lower bounds for them,
i.e., lower bounds that marginally improve the size bounds described in Table 1, then
super-polynomial lower bounds for explicit problems would follow. More specifically, this
phenomenon concerns computational problems where the complexity of strings are measured
according to circuit complexity (often referred to as MCSP; see [26]) or Levin’s time-bounded
Kolmogorov complexity [32] (a problem known as MKtP; see [5]). MCSP and MKtP are
important meta-computational problems with connections to areas such as learning theory,
cryptography, proof complexity, pseudorandomness and circuit complexity (see e.g. [4] and
references therein). We refer to [3] for more discussion about the importance of these and
related complexity measures.

The new results are part of an emerging theory of hardness magnification showing that
weak lower bounds for some problems imply much stronger lower bounds. Several results
of this form have been obtained in different contexts [52, 6, 33, 37, 41], and we refer to [41]
for further discussion. Other forms of hardness magnification are known in settings such as
communication complexity and arithmetic circuit complexity. A recent example phrased in a
way that is closer to our results appears in [11] (see also [18]).

As explained in [6, 41], hardness magnification seems to avoid the natural proofs barrier
of [48]. It is therefore important to understand the role of magnification in connection to
super-polynomial lower bounds, and this work takes another step in this direction. Our main
contributions can be informally described as follows:
(i) We employ new techniques to obtain the first magnification theorem for the worst-case

formulation of the MCSP problem.1
(ii) Our results establish hardness magnification for a natural meta-computational problem

(MKtP) near the lower bound frontiers in several standard circuit models. In addition,
we identify a computational model where hardness magnification for MKtP lies below
existing lower bounds.

(iii) Crucially, our hardness magnification theorems hold for problems for which it is possible
to establish a variety of non-trivial lower bounds.

We believe these results further highlight the relevance of meta-computational problems in
connection to the main open problems in algorithms and complexity theory (see e.g. [59, 12]
for recent breakthroughs), and strongly indicate that the investigation of weak lower bounds
for MKtP and MCSP is a fundamental research direction.

1.2 Results
In this section, we formally state our results. We also briefly discuss some of our techniques,
which are explained in more detail in the main body of the paper. We defer a more elaborate
discussion of some results to Section 1.3.

Notation. We consider formulas over the bases U2 (fan-in two ANDs and ORs), B2 (all
boolean functions over two input bits), and extended U2-formulas where the input leaves
are labelled by literals, constants, or parity functions over the input bits of arbitrary arity.

1 Independently, Dylan McKay, Cody Murray, and Ryan Williams [35] established a magnification theorem
for a worst-case formulation of MCSP with a completely different proof.
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The corresponding classes of formulas of size at most s (measured by the number of leaves)
will be denoted by U2-Formula[s], B2-Formula[s], and U2-Formula-⊕[s], respectively. If we do
not specify the type of formulas, we are referring to De Morgan formulas (i.e., formulas over
U2). We also consider bounded-depth majority circuits, where each internal gate computes a
boolean-valued majority function (MAJ) of the form

∑
i∈S yi ≥? t (the circuit has access to

input literals x1, . . . , xn, x1, . . . , xn). We measure the size of such circuits by the number of
wires in the circuit. Depth-d majority circuits of size s will de denoted by MAJ0

d[s], where
d ≥ 1 is fixed. We also consider threshold circuits whose internal gates compute a threshold
function (THR) of the form

∑
i∈S wi · yi ≥? t, for wi, t ∈ R. We count number of gates in this

case, and let TC0
d[s] denote the corresponding class of circuits. Circuit[s] denotes fan-in two

boolean circuits of size s and of unbounded depth (gate types do not matter in our results).
More generally, for a circuit class C, we use C[s] to denote C-circuits of size ≤ s, where size is
measured by number of gates. Finally, BP[s] denotes deterministic branching programs of
size at most s. We refer to a standard textbook (see e.g. [24]) for more information about
these boolean devices.

Gap-MKtP and lower bounds for EXP. We use N to denote the input length of an instance
of Gap-MKtP[s1, s2] (see Definition 7 below), where we need to distinguish strings of Kt
complexity [32] (a certain time-bounded variant of Kolmogorov complexity) at most s1(N)
from strings of Kt complexity at least s2(N). It is not hard to see that for constructive
bounds s1 < s2, Gap-MKtP[s1, s2] ∈ EXP.

We establish a hardness magnification theorem for Gap-MKtP. (In Section 2, we review
some relations between the complexity classes and boolean devices appearing below.) Let
n = logN .

I Theorem 1 (Hardness magnification for MKtP). There is a universal constant c ≥ 1 for
which the following hold. If there exists ε > 0 such that for every small enough β > 0
1. Gap-MKtP[2βn, 2βn + cn] /∈ Circuit[N1+ε], then EXP * Circuit[poly].
2. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula-⊕[N1+ε], then EXP * Formula[poly].
3. Gap-MKtP[2βn, 2βn + cn] /∈ AND-THR-THR-XOR[N1+ε], then EXP * TC0

2[poly].
4. Gap-MKtP[2βn, 2βn + cn] /∈ MAJ0

2d′+d+1[N1+(2/d′)+ε], then EXP * MAJ0
d[poly].

5. Gap-MKtP[2βn, 2βn + cn] /∈ B2-Formula[N2+ε], then EXP * Formula[poly].
6. Gap-MKtP[2βn, 2βn + cn] /∈ U2-Formula[N3+ε], then EXP * Formula[poly].
7. Gap-MKtP[2βn, 2βn + cn] /∈ BP[N2+ε], then EXP * BP[poly].
8. Gap-MKtP[2βn, 2βn + cn] /∈ (AC0[6])[N1+ε], then EXP * AC0[6].

Interestingly, this result shows the existence of a single meta-computational problem that
is connected to several frontiers in complexity theory.

The proof of Theorem 1 relies on a refinement of some ideas from [41, Section 3.2]. In fact,
item 1 of Theorem 1 is a restatement of [41, Theorem 3]. For a sketch of the argument and
its underlying techniques, we refer to the discussion in Section 3. We mention that crucial in
the proof is the use of error-correcting codes, and that the complexity of computing these
objects using different boolean devices gives rise to the distinct magnification thresholds
observed in Theorem 1. The formal proof of Theorem 1 appears in Sections 3.1 and 3.2.

In contrast, we observe the following unconditional lower bounds.

I Theorem 2 (Strong lower bounds for large parameters). For every ε > 0 there exists δ > 0
for which the following results hold:
1. Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε].
2. Gap-MKtP[2(1−δ)n, 2n−1] /∈ B2-Formula[N2−ε].
3. Gap-MKtP[2(1−δ)n, 2n−1] /∈ BP[N2−ε].
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The proof of Theorem 2 is simple, assuming certain results. It relies on the existence of
pseudorandom generators against small formulas and small branching programs [21], together
with an observation from [3]. The argument appears in Appendix A.2.

Note the different regime of parameters for Gap-MKtP[s1, s2] in Theorems 1 and 2.
In order to magnify a weak lower bound using Theorem 1, we need that it holds for
s1 = 2o(n) = No(1). The next result shows that non-trivial unconditional lower bounds can
be obtained in this regime.

I Theorem 3 (A near-quadratic formula lower bound). For every constant 0 < α < 2 there
exists C > 1 such that Gap-MKtP[Cn2, 2(α/2)n−2] /∈ U2-Formula[N2−α].2

The proof of Theorem 3 adapts ideas from [17, Section 4] (see also the exposition in [41,
Appendix C.1]) employed in the context of MCSP for larger parameters. A sketch of the
argument followed by a proof can be found in Appendix A.1.

Gap-MCSP and lower bounds for NP. We use N = 2n to denote the input length of
an instance of Gap-MCSP[s1, s2] (see Definition 9 below), where one needs to distinguish
functions of circuit complexity at most s1 from functions of circuit complexity at least s2. It
is not hard to see that for constructive bounds s1 < s2, Gap-MCSP[s1, s2] ∈ NP.

We establish the following magnification theorem for Gap-MCSP.

I Theorem 4 (Hardness magnification for MCSP). There is a universal constant c ≥ 1 for
which the following holds. If there exists ε > 0 such that for every small enough β > 0
1. Gap-MCSP[2βn/cn, 2βn] /∈ Circuit[N1+ε], then NP * Circuit[poly].

MCSP and MKtP are quite different problems. In our results, an important distinction
is that applying a polynomial-time function to an input of MKtP does not substantially
increase its Kt complexity (cf. Proposition 8), but this is not necessarily true in the context
of circuit complexity, where the input string represents an entire truth-table. For this reason,
the proof of Theorem 4 is completely different from the proof of Theorem 1.

Theorem 4 is our main technical contribution. The argument relies on the notion of anti-
checkers. Roughly speaking, an anti-checker is a bounded collection S of inputs associated
with a hard function f such that any small circuit C differs from f on some input in S.
More precisely, it was established in [34] that any function f : {0, 1}n → {0, 1} that requires
circuits of size s admits a collection Sf containing O(s) strings that is an anti-checker against
circuits of size roughly s/n. Our argument makes crucial use of anti-checkers, and en route
to Theorem 4 we give a more constructive proof of their existence. (While the proof in [34]
uses min-max theory, our proof is combinatorial and self-contained.)

We remark that anti-checkers were first employed for hardness magnification in the
context of proof complexity [37]. However, while the existential result from [34] was sufficient
in that context, this is not the case in circuit complexity, and our argument needs to be more
sophisticated. For the reader interested in learning more about hardness magnification in
proof complexity, how it relates to meta-computational problems such as MCSP, and how
the new results compare with previous work, we refer to Appendix B.

The proof of Theorem 4 is not difficult given a certain lemma about the construction
of anti-checkers (see Section 4.1). The crucial Anti-Checker Lemma (see Lemma 17) says
that NP ⊆ Circuit[poly] implies the existence of circuits of almost linear size which given the

2 The constant C has an exponential dependence on 1/α.
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truth table of a Boolean function f print a corresponding set Sf . The circuits provided by
the Anti-Checker Lemma simulate the alternate proof of the existence of anti-checkers, but
make the involved argument constructive by using approximate counting and the assumption
NP ⊆ Circuit[poly]. The strategy for proving the Anti-Checker Lemma is somewhat similar to
the proof of Sp2 ⊆ ZPPNP [10]. A high-level exposition and the complete proof are described
in Section 4.3

I Remark. Implicit in our proof of Theorem 4 is a Turing kernelization for the parameterized
version of Gap-MCSP which might be of independent interest – there are nearly-linear sized
circuits which solve any instance of Gap-MCSP with parameter s using oracle access to
poly(s)-sized instances of a fixed language in the Polynomial Hierarchy.

We are able to show the following related unconditional lower bound against formulas.

I Theorem 5. For each 0 < α < 2 there exists d > 1 such that Gap-MCSP[nd, 2(α/2−o(1))n] /∈
U2-Formula[N2−α].

Consequently, if one could establish an analogue of Theorem 4 for sub-quadratic formulas,
then NP * Formula[poly]. We explain why the argument behind the proof of Theorem 4 fails
in the case of formulas in Section 4.2.4 The proof of Theorem 5 is similar to the proof of
Theorem 3, and we sketch the necessary modifications in Appendix A.3.

Finally, in Section 4.3 we discuss a certain combinatorial hypothesis (“The Anti-Checker
Hypothesis”) connected to the techniques behind the proof of Theorem 4. If this hypothesis
holds, then NP * Formula[poly]. We observe that the hypothesis does hold in the average-
case, but we are unsure about its plausibility in the worst-case context that is sufficient for
super-polynomial formula lower bounds.

1.3 Discussion
This work is a sequel to an earlier paper of two of the authors [41], in which hardness
magnification was first explored in a systematic way. The results in [41] are for a variety
of problems (including SAT, Vertex Cover and variants of MKtP and MCSP)5 and models
(including formulas, circuits and sublinear-time algorithms). For each (problem, model) pair
considered in [41], it is shown that non-trivial lower bounds for the problem against the
model imply super-polynomial lower bounds for some other explicit problem.

As discussed in [41], there are two natural interpretations of magnification results. The
first, more optimistic, interpretation is that magnification constitutes a new approach to
proving strong lower bounds. If we are able to replicate the non-trivial circuit lower bounds
we can prove against models such as constant-depth circuits (in the worst case) or formulas
(in the average case) for the problems witnessing the magnification phenomenon, then this
would lead to new and powerful lower bounds. There are no well-understood obstacles
to the success of such an approach. In particular, the natural proofs barrier of Razborov
and Rudich [48] does not seem to say anything interesting about the success or failure of
such an approach.

3 We stress that the assumption that NP ⊆ Circuit[poly] allows several computations to be performed
in circuit size O(Nc), where N is the input length. Note however that our requirement is much more
stringent: we need to construct anti-checkers using circuits of size O(N1+ε) instead of O(Nc) for
some c ∈ N.

4 Note that Theorem 4 implies lower bounds for a problem in NP. Theorem 1 only gives lower bounds in
EXP, but its proof extends to several low-complexity settings.

5 The variant of MCSP investigated in [41] is different than the one discussed in this work, and refers to
the average-case circuit complexity of the input truth table.
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The other, more pessimistic, interpretation of magnification results is that they indicate
that circuit lower bounds might be even harder to achieve than previously thought. Earlier,
super-polynomial lower bounds seemed to be out of reach, but there was no strong reasons to
believe that small fixed polynomial lower bounds or at least barely non-trivial lower bounds
are hard to show. Modulo the belief that super-polynomial circuit lower bounds for explicit
hard problems are hard to show, the magnification phenomenon suggests that for several
natural problems of interest, even non-trivial lower bounds are hard to show.

The results of [41] have drawbacks from the point of view of either interpretation, which
the present work addresses.

For the optimistic interpretation, it would be good to have examples of natural problems
where some magnification phenomenon holds, and where in addition, there are techniques
giving non-trivial lower bounds. In this work, we give magnification results for the Gap-MKtP
and Gap-MCSP problems, for both of which we show that there are non-trivial lower bounds
in the model of Boolean formulas. Thus there is some lower bound technique which works to
give a non-trivial result – the question is “merely” whether it can be strengthened to derive
a lower bound beyond the magnification threshold.

While the pessimistic interpretation might not lead to new lower bounds, it does have
the potential of leading to a better understanding of barriers. From this point of view, [41] is
not particularly sensitive to the specific model being considered. It is clear that some models
are easier to prove lower bounds for than others – indeed we have near-cubic lower bounds
in the De Morgan formula model, near-quadratic lower bounds in the branching program
model, and only trivial lower bounds in the Boolean circuit model. Can magnification be
used to give a new perspective on these differences between models?

We provide a positive answer to this question, by giving different magnification thresholds
for different models. What remains mysterious is why known lower bound techniques fall
short of proving lower bounds required to apply magnification. This suggests that there are
limitations of the known techniques above and beyond those captured by natural proofs – an
important direction for further research.

It is worth emphasizing that there are natural problems for which showing lower bounds
that are weaker than the current state-of-the-art size bounds would also imply super-
polynomial lower bounds [41]. A representative example presented in [41] concerns an
average-case version of MCSP, where the problem refers to the average-case circuit complexity
of the input function. The reason that work does not imply super-polynomial lower bounds
via magnification is that the corresponding unconditional lower bounds and magnification
theorems hold for a different regime of the average-case complexity parameter.6

Our results and techniques were motivated in part by the desire to address this gap. On
the one hand, it seems to be easier to analyse problems that refer to the worst-case complexity
of the input. But on the other hand, our new results indicate that the shift from average-case
to worst-case complexity (in the description of the problem) often increases the magnification
threshold to size bounds that are beyond existing techniques. As a concrete example, if
the formula magnification theorem for the average-case MCSP problem investigated in [41]
could be established for the worst-case variant investigated here, NP * NC1 would follow
via Theorem 5. Another glimpse of the subtle transition between worst-case and average-
case complexity and its role in magnification appears in the discussion of the Anti-Checker
Hypothesis in Section 4.3.

6 In particular, the lower bounds and magnification theorems from [41] do not hold for the same problems.
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Complementing these results, we identify a computational model that has not received
much attention in the literature, and for which the magnification threshold for Gap-MKtP
lies below existing lower bounds. This corresponds to Theorem 4 Item 2, i.e., U2-formulas
augmented with parities in the leaves (our exposition in Section 3 focuses on this model).
Note that, by a straightforward simulation, before breaking the cubic barrier for U2-formulas
or the quadratic barrier for B2-formulas, one needs to show super-linear lower bounds against
U2-Formula-⊕. But a recent result of Tal [55] implies exactly that: the inner product function
over N input bits is not in U2-Formula-⊕[N1.99].

This makes this computational model particularly attractive in connection to hardness
magnification and lower bounds. Indeed, it seems “obvious” that Gap-MKtP[2δn, 2δn + cn] /∈
U2-Formula-⊕[N1.01], given that such formulas cannot compute the much simpler inner
product function, and that standard formulas require at least near-quadratic size (Theorem 3).
Our work shows that if this is the case, then EXP * NC1.

2 Preliminaries

For ` ∈ N, we use [`] to denote the set {1, . . . , `}. The length of a string w will be denoted by
|w|. Our logarithms are in base 2, and we use exp(x) to denote ex. We use boldface symbols
such as i and ρ to denote random variables, and x ∈R S to denote that x is a uniformly
random element from a set S. We often identify n with logN or N with 2n, depending on
the context.

For concreteness, we employ a random-access model to formalize uniform algorithms. The
details of the model are not crucial in our results, and only mildly affect the gap parameters
s1 and s2. We fix some standard encoding of algorithms as strings, and use 〈M〉 to denote the
string encoding the algorithm M . Moreover, we assume for simplicity the following property
of this encoding: if an algorithm C is obtained via the composition of the computations of
algorithms A and B, then |〈C〉| ≤ |〈A〉|+ |〈B〉|+O(1). (Roughly speaking, composing two
codes gives a new valid code.7) The running time of M on x is denoted by tM (x).

We introduce next the notion of Kt complexity. We adopt a formulation that is more
convenient for our purposes. In particular, we avoid the use of universal machines in the
definition given below.8 (Our definition is easily seen to be within at most a logarithmic
additive term of the formulation using universal machines. We stress that our proofs can be
adapted to work with any reasonable definition.)

I Definition 6 (Kt Complexity ([32]; see also [3])). For a string x ∈ {0, 1}∗, Kt(x) denotes
the minimum of |〈M〉|+ |a|+ dlog tM (a)e over pairs (M,a) such that the machine M outputs
x when it computes on the input string a.

I Definition 7 (The Gap-MKtP Problem). We consider the promise problem Gap-MKtP[s1, s2],
where s1, s2 : N→ N and s1(N) < s2(N) for all N ∈ N. For each N ≥ 1, Gap-MKtP[s1, s2]

7 While this holds for instance for programs with relative jump instructions (i.e., goto instructions where
the new line is encoded relative to the number of the current line), we remark this is not true in general.
For instance, composing two Turing Machines might require renaming all states of one machine, which
could result in a new encoding of length (1 + o(1))|〈A〉|+ |〈B〉|. Depending on the computational model,
the results in Theorem 1 might need parameters s2 = (1 + o(1))s1.

8 Universal machines are still needed to upper bound the time complexity of computing Kt complexity.
Moreover, the exact Kt complexity of a string depends on the choice of encoding for algorithms/machines.
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is defined by the following sets of instances:

YESN
def= {x ∈ {0, 1}N | Kt(x) ≤ s1(N) }, and

NON
def= {x ∈ {0, 1}N | Kt(x) > s2(N) }.

We will need the following simple result.

I Proposition 8 (Kt complexity and composition). Let B be an algorithm that runs in time
at most TB(N) over inputs of length N . Then, for every input w ∈ {0, 1}N , as N grows
we have

Kt(B(w)) ≤ Kt(w) + log(TB(N)) +O(1).

Proof. Let A be a machine and a be a string such that the pair (A, a) witnesses the value
Kt(w). Let C be the composition of machines A and B, i.e., C(y) = B(A(y)). We claim that
the pair (C, a) witnesses the inequality in the conclusion of the proposition. Indeed, since
C(a) = B(A(a)) = B(w), we get

Kt(B(w)) ≤ |〈C〉|+ |a|+ dlog tC(a)e
≤ |〈A〉|+ |〈B〉|+O(1) + |a|+ log(tA(a) + tB(w))
≤ |〈A〉|+ |a|+ log(tA(a)) + log(tB(w)) + |〈B〉|+O(1)
≤ Kt(w) + log(TB(N)) +O(1),

where we have used that |〈B〉| is constant as N grows. J

We also consider a natural formulation of the gap version of the Minimum Circuit Size
Problem (MCSP). The circuit complexity of a boolean function f : {0, 1}n → {0, 1} is denoted
by Size(f). We use the same notation to represent the circuit complexity of the function
encoded by a string x ∈ {0, 1}2n .

IDefinition 9 (The Gap-MCSP Problem). We consider the promise problem Gap-MCSP[s1, s2],
where s1, s2 : N→ N and s1(n) < s2(n) for all n ∈ N. For each n ≥ 1, Gap-MCSP[s1(n), s2(n)]
is defined by the following sets of instances:

YESn
def= {x ∈ {0, 1}2n | Size(x) ≤ s1(n) }, and

NOn
def= {x ∈ {0, 1}2n | Size(x) > s2(n) }.

A brief review of uniform complexity classes and connections to non-uniform devices.
To provide some context for Theorem 1, we remind the reader about the following relations
involving boolean devices and complexity classes. Under an appropriate uniform formulation
of circuit classes, we have the inclusions:

(uniform classes) AC0 ⊆ ACC0 ⊆ MAJ0 ⊆ TC0 ⊆ NC1 ⊆ L ⊆ P.

Some of these classes are related in the non-uniform case as follows: NC1 = U2-Formula[poly] =
B2-Formula[poly] = (width 5) BP[poly], L/poly = BP[poly], P/poly = Circuit[poly], and
MAJ0[poly] = TC0[poly]. These equivalences might require a complexity overhead in size or
depth. We refer to [44, 24] for these and other related results.
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3 Hardness Magnification via Error-Correcting Codes

In this section, we prove Theorem 1. First, we provide a high-level exposition of the argument.

Proof Idea. The result is established in the contrapositive. The idea is to reduce Gap-
MKtP[s1, s2] to a problem in EXP over instances of size poly(s1, s2)� N , and to invoke the
assumed complexity collapse to solve Gap-MKtP using very efficient circuits (or other boolean
devices). First, we apply an error-correcting code (ECC) to the input string w ∈ {0, 1}N .
Since this can be done by a uniform polynomial time computation, we are able to show
that ECC(w) ∈ {0, 1}O(N) is a string of Kt complexity ` < s2 if w has Kt complexity ≤ s1.
On the other hand, using an efficient decoder for the ECC, we can show that if w has Kt
complexity ≥ s2, then any string of Kt complexity > ` differs from ECC(w) on a constant
fraction of coordinates. Let z = ECC(w). Given the gap in the input instances of Gap-MKtP,
our task now is to distinguish strings z that have Kt complexity at most ` from strings that
cannot be approximated by strings of Kt complexity at most `, where s1 < ` < s2.

We achieve this by using a random projection of the input z to a string y of size roughly
`� N . The intuition is that if z has Kt complexity at most `, then every projection of z
also agrees with some string (i.e., z) of Kt complexity at most `. However, it is possible to
argue that if z cannot be approximated by a string of Kt complexity at most `, then with
high probability no string of Kt complexity at most ` agrees with the randomly projected
coordinates of z. Checking which case holds when we are given the string y can be done by
an exponential time algorithm. Under the assumption that EXP admits small circuits, we
are able to solve this problem in complexity poly(`)� N .

The reduction sketched above requires (1) the computation of an appropriate ECC, and
(2) is randomized. A careful derandomization and the computation of the ECC in different
models of computation provide the size bounds corresponding to the magnification thresholds
appearing in the statement of Theorem 1.

We start with a detailed proof of Item (2), which covers the more interesting scenario
of formulas with parity leaves. We then discuss how a simple modification of the argument
together with known results imply the other cases.

3.1 Proof of Theorem 1 Case 2 (Magnification for formulas with
parities)

We will need the following explicit construction.

I Theorem 10 (Explicit linear error-correcting codes (cf. [25, 50])). There exists a sequence
{EN}N∈N of error-correcting codes EN : {0, 1}N → {0, 1}M(N) with the following properties:

EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).
M(N) = b ·N for a fixed b ≥ 1.
There exists a constant δ > 0 such that any codeword EN (x) ∈ {0, 1}M(N) that is
corrupted on at most a δ-fraction of coordinates can be uniquely decoded to x by a uniform
deterministic algorithm D running in time poly(M(N)).
Each output bit is computed by a parity function: for each input length N ≥ 1 and for
each coordinate i ∈ [M(N)], there exists a set SN,i ⊆ [N ] such that for every x ∈ {0, 1}N ,

EN (x)i =
⊕
j∈SN,i

xj .
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We proceed with the proof of Theorem 1 Part (2). We establish the contrapositive.
Assume that EXP ⊆ Formula[poly], and recall that N = 2n. For any ε > 0, we prove
that Gap-MKtP[2βn, 2βn + cn] ∈ U2-Formula-⊕[N1+ε] for a sufficiently small β > 0 and a
universal choice of the constant c. The value of c will be specified later in the proof (see
Claim 12 below).

Let EN : {0, 1}N → {0, 1}M be the error-correcting code granted by Theorem 10, where
M(N) = bN . Given an instance w ∈ {0, 1}N of Gap-MKtP[2βn, 2βn + cn], we first apply EN
to w ∈ {0, 1}N to get z = EN (w) ∈ {0, 1}M .

B Claim 11. There exists c0 ≥ 1 such that for every large enough N the following holds. If
Kt(w) ≤ 2βn, then Kt(z) ≤ 2βn + c0n.

Proof. The claim follows immediately from the upper bound on Kt(w), the definition of
z = EN (w), the running time of EN , and Proposition 8. C

B Claim 12. There exist c > c1 > c0 ≥ 1 such that for every large enough N the following
holds. If Kt(w) > 2βn + cn, then Kt(z′) > 2βn + c1n for any z′ ∈ {0, 1}M that disagrees with
z on at most a δ-fraction of coordinates.

Proof. Suppose that a string z′ ∈ {0, 1}M disagrees with z on at most a δ-fraction of
coordinates, and that Kt(z′) ≤ 2βn + c1n for some c1 > c0. We upper bound the Kt
complexity of w by combining a description of z′ with the decoder D provided by Theorem
10. In more detail, assume the pair (F, a) witnesses Kt(z′). Let B be the machine that first
applies the machine F to a (producing z′), then D to z′. It follows from Theorem 10 that
B(a) = D(F (a)) = D(z′) = w. Similarly to the proof of Proposition 8, we also get

Kt(w) ≤ |〈B〉|+ |a|+ dlog tB(a)e
≤ |〈F 〉|+ |〈D〉|+O(1) + |a|+ log(tF (a) + tD(z′))
≤ Kt(z′) + log(tD(z′)) +O(1)
≤ (2βn + c1n) +O(n) +O(1)
≤ 2βn + cn,

if n is large enough and we choose c sufficiently large. C

Next we define an auxiliary language L ∈ EXP, efficiently reduce Gap-MKtP to L, and use
the assumption that EXP has polynomial size formulas to obtain almost-linear size formulas
(of the appropriate kind) for Gap-MKtP. Roughly speaking, we are able to obtain a formula
of non-trivial size for Gap-MKtP because our reduction maps input instances of length N to
instances of L of length No(1) (the o(1) term is captured by the parameter β using n = logN).
As we will see shortly, the reduction is randomized. In order to get the final U2-formula-⊕
computing Gap-MKtP, the argument is derandomized in a straightforward but careful way.
More details follow.

An input string y encoding a tuple (a, 1b, (i1, α1), . . . , (ir, αr)) belongs to L (where a and
b are positive integers, a is encoded in binary, and αj ∈ {0, 1}) if each ij (for 1 ≤ j ≤ r) is a
string of length dlog ae and there is a string z of length a such that Kt(z) ≤ b and for each
index j we have zij = αj .

B Claim 13. L ∈ EXP.

Proof. L is decidable in exponential time as we can exhaustively search all strings of Kt
complexity at most b and length exactly a and check if there is one which has the specified
values at the corresponding bit positions. Indeed, using the definition of Kt complexity and
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an efficient universal machine, a list containing all such strings can be generated in time
poly(2b), which is at most exponential in the input length 1b. In turn, checking that a string
of length a satisfies the requirement takes time at most exponential in the total input length,
since each index ij is a string of length dlog ae. C

Since EXP ⊆ Formula[poly] by assumption, L has polynomial-size formulas. Assume
without loss of generality that L has formulas of size O(`k) for some constant k, where ` is
its total input length. We choose β = ε/100k.

We are ready to describe a low-complexity reduction from Gap-MKtP[2βn, 2βn + cn] to L.
First, we use the error-correcting code to compute z from w, as described above. Then we
apply the following sampling procedure. We sample uniformly and independently r = 22βn

indices i1, . . . , ir ∈R [M ], where M = bN . We then form the string y encoding the tuple

(M, 12βn+c1n, (i1, zi1), . . . , (ir, zir )),

where c1 > c0 ≥ 1 is provided by Claim 12. Note that this is a string of length `(N) ≤ Nε/10k.

B Claim 14. The following implications hold:
(a) If w ∈ {0, 1}N is a positive instance of Gap-MKtP[2βn, 2βn + cn], then y ∈ L with

probability 1.
(b) If w ∈ {0, 1}N is a negative instance of Gap-MKtP[2βn, 2βn + cn], then y /∈ L with

probability > 1/2.

Proof. If w is a YES instance, we have by Claim 11 that Kt(z) ≤ 2βn + c0n ≤ 2βn + c1n. In
this case, z is a string of length M that has the specified values at the specified bit positions,
regardless of the random positions that are sampled by the reduction. Consequently, y ∈ L
with probability 1.

For the claim about NO instances, as previously established in Claim 12, we have that
Kt(z′) > 2βn + c1n for any z′ such that |z′| = |z| = M and Pri∈R[M ][z′i 6= zi] ≤ δ. Now
consider any string z′′ of length M such that Kt(z′′) ≤ 2βn + c1n. For such a string z′′, for
each j ∈ [r], the probability that the random projection satisfies z′′ij

= zij
(where ij ∈R [M ])

is at most 1− δ. Hence the probability that z′′ agrees with z at all the specified bit positions
is at most (1− δ)r ≤ exp(−δr) ≤ exp(−δ22βn). By a union bound over all strings z′′ with
Kt(z′′) ≤ 2βn + c1n, the probability that there exists a string z′′ with Kt complexity at most
2βn + c1n which is consistent with the values at the specified bit positions is exponentially
small in n. Hence with high probability y /∈ L. C

To sum up, there is a randomized reduction from Gap-MKtP[2βn, 2βn + cn] over inputs of
length N to instances of L of length `(N) ≤ Nε/10k. Now let {F`(N)}N≥1 be a sequence of U2-
formulas of size O(`k) for L. Our randomized formulasG(·) for Gap-MKtP compute as follows.

1. G(w) =
∧N
j=1G

(j)(w), where each G(j) is an independent copy.
2. EachG(j)(w) is a randomized formula of the form G(j)(w, i1, . . . , ir) that first computes z

from w, then computes y from z using the (random) input indices i1, . . . , ir ∈ {0, 1}logM ,
and finally applies F` to y.

It follows from Claim 14 using the independence of each G(j) that

Pr[G(w) is incorrect ] < 2−N ,

where the probability is taken over the choice of the random input of G. Consequently, by a
union bound there is a fixed choice γ ∈ {0, 1}∗ of the randomness of G (corresponding to
the positions of the different random projections) such that the deterministic formula Gγ
obtained from G and γ is correct on every input string w.
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B Claim 15. Each deterministic sub-formula G(j)
γ (w) can be computed by a U2-formula

extended with parities at the leaves of size at most O(`(N)k) ≤ Nε/2.

Proof. Note that each bit of z can be computed from the input string w using an appropriate
parity function (as described in Theorem 10). We argue that the leaves of G(j)

γ are precisely
the leaves of the U2-formula F` replaced by appropriate literals, constants, or parities. Recall
that G(j)

γ applies F` to the string y obtained from z. However, since γ is fixed, the positions
of z that are projected in order to compute y are also fixed, and so are the substrings of y
describing the corresponding positions. Consequently, the size (i.e. number of leaves) of each
G

(j)
γ is at most the size of F`, which proves the claim. C

It follows from this claim that Gγ(w) can be computed by a formula containing at most
N1+ε leaves, and hence Gap-MKtP[2βn, 2βn + cn] ∈ U2-Formula-⊕[N1+ε]. (Observe that we
have used in a crucial way that the derandomized sub-formulas do not need to compute
address functions to generate y from z.) This completes the proof of Theorem 1 Part (2).

3.2 Completing the proof of Theorem 1
In this section, we discuss how the argument presented in Section 3.1 can be adapted to
establish the remaining items of Theorem 1.

First, note that Items (5) and (6) immediately follow from Item (2). This is because a
parity gate over at most N input variables can be computed by B2-formulas of size O(N) and
by U2-formulas of size O(N2). Consequently, using that formula size is measured with respect
to the number of leaves, we immediately get U2-Formula-⊕[s(N)] ⊆ B2-Formula[s(N) · N ]
and U2-Formula-⊕[s(N)] ⊆ U2-Formula[s(N) ·N2].

In order to get Item (1), it is sufficient to compute an error-correcting code as in Theorem
10 using circuits of (almost) linear size. In other words, we need the entire codeword (and
not just each output bit) to be computable from the input message using a circuit of size
O(N). The existence of such codes is well-known [50, 51]. The rest of the reduction produces
an additive overhead in circuit size of at most N1+ε gates.

Finally, to establish Item (4), we use the following construction from [56].

I Theorem 16 (Computing ECCs in parallel using majorities and few wires [56]). For every
depth d′ ≥ 1 there are constants δ(d′) > 0 and b(d′) ≥ 1 and a sequence {EN}N∈N of
error-correcting codes EN : {0, 1}N → {0, 1}M with the following properties:

EN (x) can be computed by a uniform deterministic algorithm running in time poly(N).
M(N) = b ·N .
Any codeword EN (x) ∈ {0, 1}M that is corrupted on at most a δ-fraction of coordinates
can be uniquely decoded to x by a uniform deterministic algorithm D running in time
poly(M).
EN (x) ∈ {0, 1}M can be computed by a multi-output circuit from MAJ0

2d′ [O(N1+(2/d′))],
where circuit size is measured by number of wires.

Following the steps of the reduction described in Section 3.1, under the assumption that
EXP ⊆ MAJ0

d[poly] the final depth of the circuit solving Gap-MKtP is 2d′ + d+ 1, where the
terms in this sum correspond respectively to the computation of the error-correcting code
(for a choice of d′ ≥ 1), each (circuit) G(j)

α , and the topmost AND gate in Gα (constant bits
can be produced in depth 1 from input literals). Similarly, the overall size (number of wires)
of the circuit is O(N1+(2/d′)) +O(N1+ε) +O(N) ≤ N1+(2/d′)+ε.

Item (3) is established in the obvious way given the previous explanations. Item (8) uses
that parity gates can be simulated using mod 6 gates.
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Finally, we deal with case (7), which refers to branching program complexity. First,
note that the parity of n bits can be computed by a branching program of size O(n). In
addition, if f(x) = g(h1(x), . . . , hk(x)), each hi has a branching program of size s, and g has
a branching program of size t, then f has a branching program of size ` = O(t · s). Finally, a
conjunction of N branching programs of size ` has branching program size at most O(N · `).
Combining these facts in the natural way yields case (7). This completes the proof of all
cases in Theorem 1.

4 Hardness Magnification via Anti-Checkers

4.1 Proof of Theorem 4 (Magnification for MCSP)
In this section, we derive Theorem 4 from Lemma 17, whose proof appears in Section 4.2.
Informally, an anti-checker (cf. [34]) for a function f is a multi-set of input strings such that
any circuit of bounded size that does not compute f is incorrect on at least one of these
strings.

I Lemma 17 (Anti-Checker Lemma). If NP ⊆ Circuit[poly] there is a constant k ∈ N for
which the following hold. For every sufficiently small β > 0, there is a circuit C of size
≤ 2n+kβn that when given as input a truth-table tt(f) ∈ {0, 1}N , where f : {0, 1}n → {0, 1},
outputs t = 210βn strings y1, . . . , yt ∈ {0, 1}n such that if f /∈ Circuit[2βn] then every circuit
of size ≤ s where s = 2βn/10n fails to compute f on at least one of these strings.

The Anti-Checker Lemma is a powerful tool that might be of independent interest. It
says that anti-checkers of bounded size for functions requiring circuits of size 2o(n) can be
produced in time that is almost-linear in the size of the function (viewed as a string), under
the assumption that circuit lower bounds do not hold.9

Proof of Theorem 4. Assume that NP ⊆ Circuit[poly]. We prove that for every given ε > 0
there exists a small enough β > 0 such that Gap-MCSP[2βn/10n, 2βn] ∈ Circuit[N1+ε].

We consider the problem Succinct-MCSP, defined next. Its input instances are of the form
〈1n, 1s, 1t, (x1, b1), . . . , (xt, bt)〉, where xi ∈ {0, 1}n and bi ∈ {0, 1}, i ∈ [t]. Note that each
instance can be encoded by a string of length exactly m = n+ 1 + s+ 1 + t+ 1 + t · (n+ 1).
An input string is a positive instance if and only if it is in the appropriate format and
there exists a circuit D over n input variables and of size at most s such that D(xi) = bi
for all i ∈ [t]. Note that the problem is in NP as a function of its total input length m.
Under the assumption that NP is easy for non-uniform circuits, there exists ` ∈ N such
that Succinct-MCSP can be solved by circuits Em of size m` on every large enough input
length m.

Take β = ε/(100 · ` · k), where k is the constant from Lemma 17. In order to construct
a circuit for Gap-MCSP, first we reduce this problem to an instance of Succinct-MCSP of
length m using Lemma 17, then we invoke the ml-sized circuit for this problem. More
precisely, on an input f : {0, 1}n → {0, 1}, we use the circuit C (as in Lemma 17) to
produce a list of strings y1, . . . , yt ∈ {0, 1}n, generate from this list and f the input instance
z = 〈1n, 1s, 1t, ((y1, f(y1)), . . . , (yt, f(yt))〉, for parameters s = 2βn/10n, t = 210βn, m =
poly(n) · 210βn, and output Em(z).

9 We have made no attempt to optimize the constants in Lemma 17.
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Correctness follows immediately from Lemma 17 and our choice of parameters. Indeed, if
f ∈ Circuit[2βn/10n] then no matter the choice of y1, . . . , yt the circuit Em accepts z thanks
to our choice of s = 2βn/10n. On the other hand, when f /∈ Circuit[2βn] then by Lemma 17
every circuit of size s fails on some string from the list, and consequently Em(z) = 0.

We upper bound the total circuit size using the choice of β. Circuit C has size at most
2n+kβn ≤ N1+ε/3. In addition, producing the input z can be done from f and y1, . . . , yt by
a circuit of size at most O(t ·N) ≤ N1+ε/3, since each address function can be computed
in linear size O(N) (see e.g. [58]). Finally, Em has size at most m` ≤ N1+ε/3. Overall, it
follows that Gap-MCSP[2βn/10n, 2βn] is computable by circuits of size N1+ε. J

4.2 Proof of Lemma 17 (Anti-Checker Lemma)
This section is dedicated to the proof of Lemma 17. This completes the proof of Theorem 4.
We start with a high-level exposition of the argument.

Proof Idea. We take β → 0, for simplicity of the exposition. In principle, the challenge
is to construct the list of strings from the description of f using a circuit of size N1+o(1),
given that the existence of such strings is guaranteed by the work of [34]. But it is not
clear how to use this existential result and the assumption that NP has polynomial size
circuits to construct almost-linear size circuits for this task. In order to achieve this, we use
a self-contained argument that produces the strings one by one until very few circuits of
bounded size are consistent with the values of f on the partial list of strings. We then find
polynomially many additional strings that eliminate the remaining circuits, completing the
list of strings.10

To produce the i-th string yi ∈ {0, 1}n given y1, . . . , yi−1 ∈ {0, 1}n and f , we estimate
the number of circuits of size ≤ 2βn/10n that agree with f over all strings in {y1, . . . , yi}.
We show that some string yi will reduce the number of consistent circuits from the previous
round by a factor of (roughly) 1−1/n if there are at least (roughly) n2 surviving circuits (this
is a combinatorial existential proof that relies on the lower bound on the circuit complexity
of f). As a consequence, it will be possible to show that at most 2O(βn) = No(1) rounds
suffice to produce the required set of strings (modulo handling the few surviving circuits).
The existence of a good string yi is at the heart of our argument, and we defer the exposition
of this result to the formal proof.

In each round, we exhaustively check each of the N candidate strings yi. As we will
explain soon, estimating the number of surviving circuits after picking a new candidate string
yi can be done by a circuit of size No(1) given access to y1, . . . , yi and to the corresponding
bits f(y1), . . . , f(yi).11 In summary, there are No(1) rounds, and in each one of them we
can find a good string yi using a circuit of size N1+o(1). We remark that it will also be
possible to produce the additional strings in circuit complexity No(1), so that the complete
list y1, . . . , yt can be computed from f by a circuit of size N1+o(1).

It remains to explain how to fix a good string in each round. We simply pick the most
promising string, using that we can upper bound the complexity of estimating the number of
surviving circuits. The latter relies on the assumed inclusion NP ⊆ Circuit[poly]. Indeed, from

10 In particular, our argument implies the worst-case version of the anti-checker result from [34] with
slightly different parameters.

11Technically speaking, projecting f(yi) ∈ {0, 1} from the input string f ∈ {0, 1}N and the address
y ∈ {0, 1}n already takes circuit complexity Ω(N). However, since we are trying all possible strings yi,
the corresponding bit positions of f can be directly hardwired.
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this assumption it follows that the polynomial hierarchy PH ⊆ Circuit[poly], and it is known
that relative approximate counting can be done in the polynomial hierarchy.12 Crucially, as
described in the paragraph above, the input length of each sub-problem that we need to
solve is ≤ No(1) (using that i is at most No(1)), so a polynomial overhead will not be an
issue when solving a sub-task of input length No(1). This completes the sketch of the proof.

We proceed with a formal proof of Lemma 17. Let R be a polynomial-time relation, where
R ⊆

⋃
m{0, 1}m × {0, 1}q(m) for some polynomial q. For every x, we use R#(x) to denote

|{y ∈ {0, 1}q(|x|) : (x, y) ∈ R}|. A randomized algorithm Π is called an (ε, δ)-approximator
for R if for every input x it holds that

Pr
[ ∣∣Π(x)−R#(x)

∣∣ ≥ ε(|x|) ·R#(x)
]
≤ δ(|x|).

I Theorem 18 (Relative approximate counting in BPPNP ([53]; see e.g. [15, Section 6.2.2])).
For every polynomial-time relation R and every polynomial p, there exists a probabilistic
polynomial-time algorithm A with access to a SAT oracle that is an (1/p(m), 2−p(m))-
approximator for R over inputs x of length m.

I Corollary 19. Assume NP ⊆ Circuit[poly]. For every polynomial-time relation R and for
each m ≥ 1, there is a multi-output circuit CR : {0, 1}m → {0, 1}poly(m) of polynomial size
such that on every input x ∈ {0, 1}m,

(1− 1/m2) ·R#(x) ≤ CR(x) ≤ (1 + 1/m2) ·R#(x).

Proof. This follows from Theorem 18 (using p(m) = m2) by non-uniformly fixing the
randomness of the algorithm, replacing the SAT oracle using the assumption that NP has
small circuits, and translating the resulting deterministic algorithm into a boolean circuit. J

We define a relation Q. The first input x is of the form 〈1n, 1s, 1i, 1t, (z1, b1), . . . , (zi, bi)〉,
where zj ∈ {0, 1}n and bj ∈ {0, 1} for 1 ≤ j ≤ i, and t = 210βn (t is used here to pad the
input appropriately). The second input is a string w of length m1/5 (for m = |x|) that is
interpreted as a boolean circuit Cw over n input variables and of size at most s. We let
(x,w) ∈ Q if and only if Cw(zj) = bj for all j ∈ [i]. Note that Q is a polynomial-time relation.

We employ circuits obtained from Corollary 19 using parameters s = 2βn/10n and
1 ≤ i ≤ t, where t = 210βn. The following result is immediate from Corollary 19 given that
for our choice of parameters m = poly(2βn).

I Proposition 20 (Circuits for approximate counting). There is a constant k1 ∈ N for which
the following holds. For every n ≥ 1, let s = 2βn/10n, t = 210βn, 1 ≤ i ≤ t. Then there is a
multi-output circuit Cn,i of size ≤ 2k1βn that outputs ≤ 2k1βn bits such that on every input
a = ((z1, b1), . . . , (zi, bi)) ∈ {0, 1}i·(n+1),

(1− 1/n10) ·Q#(x) ≤ Cn,i(a) ≤ (1 + 1/n10) ·Q#(x),

where x = x(a) is defined from the string a and from our choice of parameters in the
obvious way.

The next step is to guarantee that once just a few circuits remain consistent with f over
our partial list of strings (as described in the proof sketch above), we can efficiently find a
small number of strings to eliminate all of them.

12 In our formal proof, we take a slightly more direct route to compute the relative approximations.
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I Lemma 21 (Listing the remaining circuits). Assume NP ⊆ Circuit[poly]. There exists a
constant k2 ∈ N for which the following holds. Let a = ((z1, b1), . . . , (zt′ , bt′)), where t′ ≤ t,
and x = x(a) be the corresponding input of Q. There is a circuit Dn,t′ of size ≤ 2k2βn such
that if Q#(x) ≤ n3, then Dn,t′(a) outputs a string describing all such circuits.

Proof. It follows from NP ⊆ Circuit[poly] using a standard argument that PH ⊆ Circuit[poly].
In addition, it is not hard to define a relation in PH (using a padded input containing the
string 1t) that checks if a given input a satisfies Q#(x(a)) ≤ n3. Consequently, checking if a
string λ describes a list of such circuits for a can be done by a circuit of size at most poly(t).
Using again that NP ⊆ Circuit[poly] and a self-reduction, we obtain circuits Dn,t′ as in the
statement of the lemma. J

I Lemma 22 (Completing the list of strings). There is a constant k3 ∈ N for which the
following holds. For every n ≥ 1 there is a circuit En of size ≤ 2n+k3βn that given access
to a truth-table f ∈ {0, 1}2n and a string w ∈ {0, 1}2βn describing a circuit Cw of size
s ≤ 2βn/10n that does not compute f , En(f, w) outputs a string y such that C(y) 6= f(y).

Proof. First, En evaluates Cw on every string z ∈ {0, 1}n. This can be easily done by a
circuit of size 2n · poly(|w|) under a reasonable encoding of the circuit Cw. Then En inspects
one-by-one each string z and stores the first string where Cw and f differ. Note that a circuit
of size ≤ 2n · poly(n) can print this string from the truth-table of f and Cw. It follows that
the overall complexity of En is 2n+k3βn for some constant k3. J

The previously established results will allow us to find in each round a string yi that
significantly reduces the number of remaining circuits (while at least one such string exists),
and then to complete the list so that no circuit of bounded size is consistent with all strings
in the final list. We show next that if f is hard and a reasonable number of circuits of
bounded size are consistent with the current list of strings, then a good string yi exists.

For convenience, we introduce a function to capture the fraction of strings encoding
circuits that are consistent with a set of inputs and their corresponding labels. Given
a = ((z1, b1), . . . , (zi, bi)), let x = x(a) be the corresponding input to Q under our choice of
parameters. Furthermore, let m = |x|, and recall that Q ⊆

⋃
m≥1{0, 1}m × {0, 1}m

1/5 . In
order to maintain the same underlying domain size when considering the fraction of consistent
circuits, we assume without loss of generality using appropriate padding that the encoding of
x has a fixed length m = m(n) for each choice of n (i.e., the choice of 1 ≤ i ≤ t does not affect
m1/5). In addition, we can take m(n) ≤ 211βn, which will be useful when upper bounding the
number of necessary rounds. We let φ(a) ∈ [0, 1] denote the ratio Q#(x(a))/2m1/5 . (Thus in
our formal argument we count circuits using their descriptions as binary strings.)

I Lemma 23 (Existence of a good string yi). For every integer i ≥ 1 and for every
z1, . . . , zi−1 ∈ {0, 1}n, let a = ((z1, f(z1)), . . . , (zi−1, f(zi−1))). If

f /∈ Circuit[2βn] and Q#(x(a)) ≥ 4n2,

then there is some string yi ∈ {0, 1}n such that if a′ denotes the sequence a augmented with
(yi, f(yi)), then

φ(a′) ≤ φ(a) · (1− 1/2n).

Proof. The argument is inspired by a combinatorial principle discussed in [29]. Consider
the tuple a and the string x = x(a) as in the statement of the lemma. Moreover, let
Q(x) = {w ∈ {0, 1}m1/5 : (x,w) ∈ Q}. For convenience, let r = |Q(x)| = Q#(x) ≥ 4n2, using
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our assumption. Define an auxiliary undirected bipartite graph G = (L,R,E) as follows.
Set L = {0, 1}n, R =

(
Q(x)
n

)
, and (y, {w1, . . . , wn}) ∈ E(G) if and only if for ≤ n/2 of the

circuits Cwi we have f(y) = Cwi(y).
Note that for any right vertex v = (w1, . . . , wn) ∈ R there is a left vertex y ∈ L such that

(y, v) ∈ E. If not, then D = Majorityn(Cw1(x), . . . , Cwn(x)) is a circuit that computes f on
every input string y. The size of D is at most n · (2βn/10n) + 5n ≤ 2βn, using the definition
of Q and that the majority function can be computed (with room to spare) by a circuit of
size at most 5n [58]. This contradicts the hardness of f .

By an averaging argument, there is a left vertex y∗ that is connected to at least |R|/|L| =(
r
n

)
/2n vertices in R. We show below (Claim 24) that for at least r/2n strings w ∈ Q(x), the

corresponding circuit Cw satisfies Cw(y∗) 6= f(w∗). This implies that by taking y∗ as the
string yi described in the statement of the lemma, we get Q#(x(a′)) ≤ r−r/2n = r(1−1/2n),
and consequently

φ(a′) = Q#(x(a′))
2m1/5 ≤ r(1− 1/2n)

2m1/5 = Q#(x(a)) · (1− 1/2n)
2m1/5 = φ(a) · (1− 1/2n).

B Claim 24. Let y∗ ∈ L be a left-vertex connected to at least
(
r
n

)
· 2−n right-vertices in R,

where r ≥ 4n2 and n is sufficiently large. Then, for at least r/2n distinct strings w ∈ Q(x),
we have Cw(y∗) 6= f(y∗).

Proof. The claim follows using a standard counting argument. If the conclusion were false,
the vertex y∗ would be connected to strictly less than (assuming for simplicity that n is even
and r/2n is an integer)

n/2∑
j=0

(
r/2n
n
2 + j

)
·
(

r
n
2 − j

)
≤
(
r

n

)
· 2−n (as upper bounded below)

vertices in R, which is contradictory. It remains to verify this inequality, which can be done
using some careful estimates. First, note that
n/2∑
j=0

(
r/2n
n
2 + j

)(
r

n
2 − j

)
≤

∑
j=0,...,n2 −1

rn/(2n)n2 +j

(n2 + j)!(n2 − j)!
+ rn

n!(2n)n (using
(
n

k

)
≤ nk

k! )

≤
∑

j=0,...,n2 −1

enrn/(2n)n2 +j

e2(n2 + j)n2 +j(n2 − j)
n
2 −j + enrn

enn(2n)n (since e
(
n

e

)n
≤ n! )

≤
∑

j=0,...,n2 −1

enrn/(2n)n2
e2(n2 )j(n2 + j)n2 (n2 − j)

n
2

+ enrn

enn(2n)n (∗)

By considering the cases j < n
4 and n

2 > j ≥ n
4 , we get (n2 )j((n2 )2 − j2)n2 ≥ (n/8)3n/4, so

(∗) ≤
∑

j=0,...,n2−1

enrn

e2(n/8)3n/4(2n)n/2 + enrn

enn(2n)n

≤ nenrn

e2(n/8)3n/4(2n)n/2 ≤
√

2πrn

e2n1/2(2n)n
≤

√
2πrrr1/2

e2(r − n)r−n+1/2nn+1/2 ·
1
2n

≤
(
r

n

)
/2n,

where n is assumed to be sufficiently large, r > n, and the last inequality makes use of
Stirling’s approximation

√
2π(ne )nn1/2 ≤ n! ≤ e(ne )nn1/2. This completes the proof of

Claim 24. C
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This completes the proof of Lemma 23. J

We are ready to combine these results and define a circuit C of size ≤ 2n+kβn with the
property stated in Lemma 17. This circuit on an input f ∈ {0, 1}N where N = 2n computes
as follows.

1. C sequentially computes the string a(i) = (y1, f(y1)), . . . , (yi, f(yi)) for 1 ≤ i ≤ t′ and
t′ = 210βn − n3.

During stage i, C inspects all strings y ∈ {0, 1}n, using the circuit Cn,i (Proposition 20)
to fix yi as the string that minimizes Cn,i(a(i)).

2. C uses the circuit Dn,t′ (Lemma 21) to print the descriptions of n3 circuits of size at
most s = 2βn/10n.

3. Finally, C invokes n3 copies of the circuit En (Lemma 22) to complete the list y1, . . . , yt
of strings, where t = t′ + n3 = 210βn.

Correctness of the construction follows from the properties of the circuits Cn,i, Dn,t′ ,
and En in combination with Lemma 23. More precisely, if f /∈ Circuit[2βn], then for every
1 ≤ i ≤ t′, either φ(a(i)) ≤ (1− 1/4n)i or Q#(x(a(i−1))) < 4n2. To see this, note that if the
latter condition does not hold, then for some string y∗ as in Lemma 23 we get with respect to
the corresponding extension a(i) that φ(a(i)) ≤ φ(ai−1) · (1− 1/2n). Since C tries all strings
during its computation in step 1 when in stage i, and the relative approximation given by
circuit Cn,i is sufficiently precise, we are guaranteed in this case (using an inductive argument)
to fix a string yi such that φ(a(i)) ≤ φ(ai−1) · (1− 1/4n) ≤ (1− 1/4n)i. On the other hand,
if the condition Q#(x(a(i−1))) < 4n2 holds for some i ≤ t′, then by monotonicity it is
maintained until we reach i = t′. Consequently, using that initially φ(ε) = 1, t′ = 210βn − n3,
m(n) ≤ 211βn, and recalling that the second input of the relation Q has length m1/5 and
that this parameter is related to the definition of φ, when C reaches i = t′ at the end of step
1 we have

Q#(x(a(t′))) ≤ max {4n2, (1− 1/4n)t
′
· 2m

1/5
}

≤ n3.

This implies using Lemmas 21 and 22 and the description of C that if f /∈ Circuit[2βn]
then every circuit of size at most s = 2βn/10n disagrees with f on some input string
among y1, . . . , yt.

Finally, we upper bound the circuit size of C. For every i ≤ t′ in step 1 and each
string y ∈ {0, 1}n, C feeds Cn,i with the appropriate bit in the input string f and the
previously computed string a(i−1). This produces an estimate vy ∈ N represented as a string
of length 2O(βn) that is stored as a pair (y, vi). Using Proposition 20, all pairs (y, vy) can be
simultaneously computed by a circuit of size at most 2n · 2O(βn). By inspecting each such
pair in sequence, C can pick the string yi ∈ {0, 1}n minimizing vi using a sub-circuit of size
2n · poly(2O(βn)). Also note that the bit f(yi) can be easily computed from yi and f by a
circuit of size O(N logN). Therefore, each stage i can be done by a circuit of size at most
2n+O(βn), and since there are t′ ≤ 210βn stages, the computation in step 1. can be done
by a circuit of size 2n+O(βn). Lastly, steps 2 and 3 can be each implemented by a circuit
of size at most 2O(βn) using the upper bounds on circuit size provided by Lemmas 21 and
22, respectively, and the description of C. It follows that the overall circuit size of C is at
most 2n+kβn, where k is a constant that only depends on the circuits provided by the initial
assumption that NP ⊆ Circuit[poly].
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A remark on formulas vs. circuits. An obstacle to producing the anti-checker using formulas
of size N1+o(1) under the assumption that NP ⊆ Formula[poly] comes from the sequential
aspect of the construction. A string yj produced after the j-th round is inspected during
each subsequent round of the construction. In the case of formulas, the corresponding bits
need to be recomputed each time, and the overall complexity becomes prohibitive. (There
are other intermediate computations that one may not be able to simulate so easily with
sub-quadratic formulas, such as selecting the best string yi during each round.)

4.3 The Anti-Checker Hypothesis
The existence of anti-checkers of bounded size witnessing the hardness of Boolean functions
is far from obvious. In this section, we explore consequences of a hypothetical phenomenon
manifesting on a higher level: the existence of a small collection of anti-checker sets witnessing
hardness of all hard functions. We show that a certain formulation of this Anti-Checker
Hypothesis (AH) implies unconditional lower bounds. Complementing this result, we prove
unconditionally that (AH) holds for functions that are hard in the average case.

For simplicity, we adopt a concrete setting of parameters for the hypothesis and in the
results presented in this section. Understanding the validity of (AH) with respect to other
non-trivial setting of parameters would also be interesting.

I The Anti-Checker Hypothesis (AH). For every λ ∈ (0, 1), there are ε > 0 and a collection
Y = {Y1, . . . , Y`} of sets Yi ⊆ {0, 1}n, where ` = 2(2−ε)n and each |Yi| = 2n1−ε , for which the
following holds.

If f : {0, 1}n → {0, 1} and f /∈ Circuit[2nλ ], then some set Y ∈ Y forms an anti-checker
for f : For each circuit C of size 2nλ/10n, there is an input y ∈ Y such that C(y) 6= f(y).

The Anti-Checker Hypothesis can be shown to imply the hardness of a specific meta-
computational problem in NP (which is not necessarily NP-complete).

I Definition 25 (Succinct MCSP). Let s, t : N → N be functions. The Succinct Minimum
Circuit Size Problem with parameters s and t, abbreviated Succinct-MCSP(s, t), is the problem
of deciding given a list of t(n) pairs (yi, bi), where yi ∈ {0, 1}n and bi ∈ {0, 1}, if there exists
a circuit C of size s(n) computing the partial function defined by these pairs, i.e., C(yi) = bi
for every i ∈ [t].

Note that Succinct-MCSP(s, t) ∈ NP whenever s and t are constructive functions.

I Theorem 26. Assume (AH) holds, and let ε = ε(λ) > 0 be the corresponding constant
for λ = 1/2. Then Succinct-MCSP(2n1/2

/10n, 2n1−ε) /∈ Formula[poly]. In particular, NP *
Formula[poly].

Proof. The proof is by contradiction. Take λ = 1/2 in the Anti-Checker Hypothesis, and
let ε = ε(λ) > 0 be the given constant. In addition, let Fm : {0, 1}N → {0, 1} be a formula
of size mk for Succinct-MCSP(2n1/2

/10n, 2n1−ε), where m ≤ poly(n) · 2n1−ε is the total input
length for this problem. We argue below that from these assumptions it follows that Gap-
MCSP[2n1/3

, 2n2/3 ] ∈ Formula[N2−δ] for some δ > 0. This contradicts Theorem 5 if α is taken
to be a sufficiently small constant, which completes the proof.

We define a formula E : {0, 1}N → {0, 1} that solves Gap-MCSP[2n1/3
, 2n2/3 ]. It projects

the appropriate bits of the input f to produce T = 2(2−ε)n instances of the problem
Succinct-MCSP(2n1/2

/10n, 2n1−ε) obtained from f and from the collection Y in the natural
way. The formula E is defined as the conjunction of T independent copies of the formula Fm
from above. Note that E has at most T ·mk ≤ N2−δ leaves, where δ = δ(ε) > 0. Finally, it is
easy to see that it correctly solves Gap-MCSP using our choice of parameters and (AH). J
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We say that a Boolean function f with n inputs is hard on average for circuits of size s if
every circuit of size s fails to compute f on at least 1/s fraction of all inputs.

I Proposition 27 (Average-Case AH). For every λ ∈ (0, 1) there is ε > 0 such that for every
large enough n ∈ N there is a collection Y = {Y1, . . . , Y`} of ` = 2n sets Yi ⊆ {0, 1}n of size
2n1−ε for which the following holds. If f : {0, 1}n → {0, 1} is hard on average for circuits of
size 2nλ , then some set Y ∈ Y constitutes an anti-checker for f : For each circuit C of size
2nλ there is a string y ∈ Y such that C(y) 6= f(y).

Proof. Let H be the set of all Boolean functions f over n inputs that are hard on average
for circuits of size s = 2nλ . Then we can generate anti-checkers for f ∈ H by choosing n-bit
strings uniformly at random: for each i ∈ [2n], we let Yi be the set obtained by sampling
with repetition 2n1−ε random strings in {0, 1}n, where 1 − ε > λ. Then, for every large
enough n, for each circuit C of size at most 2nλ and for each f ∈ H,

Pr[C|Yi
≡ f |Yi

] ≤ (1− 1/2n
λ

)2n
1−ε

≤ exp(−2n
1−ε
/2n

λ

).

Now by a union bound over all such circuits, for a fixed f ∈ H we get

Pr[Yi is not an anti-checker set for f ] ≤ exp(O(n · 2n
λ

)) · exp(−2n
1−ε
/2n

λ

) < 1/4,

where the last inequality used our choice of ε. Finally,

Pr[∃f ∈ H s.t. none of Y1, . . . ,Y2n is an anti-checker set for f ] ≤ 22n · (1/4)2n < 1.

There is therefore a collection Y with the desired properties. J

Theorem 26 and Proposition 27 show a connection between establishing super-polynomial
formula size lower bounds for NP and understanding the difference between worst-case and
average-case collections of anti-checkers.
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A Unconditional Lower Bounds for Gap-MKtP and Gap-MCSP

A.1 MKtP – A near-quadratic lower bound against U2-formulas
In this section, we provide the proof of Theorem 3.

Proof Idea. We employ the technique of random restrictions to show that Gap-MKtP
requires near-quadratic size formulas. The idea is that, with high probability, a formula
F of sub-quadratic size simplifies under a random restriction ρ : [N ]→ {0, 1, ∗}. This will
allow us to complete a fixed restriction ρ either to a string wy of Kt complexity ≤ s1, or to a
string wn of Kt complexity ≥ s2. Because the simplified formula F �ρ depends on few input
variables in ρ−1(∗), if we define wy and wn appropriately F �ρ won’t be able to distinguish
the two instances. Consequently, F does not compute Gap-MKtP[s1, s2].

In order for this idea to work, we cannot use a truly random restriction. This is because
our restrictions will set most of the variables indexed in [N ] to simplify a near-quadratic
size formula, and a typical random restriction cannot be completed to a string of low Kt
complexity. We use instead pseudorandom restrictions, which can be computed from a much
smaller number of random bits. Previous work established that such restrictions also simplify
sub-quadratic size formulas. As a consequence, we are able to extend any restriction in the
support of a pseudorandom distribution of restrictions to either an “easy” or a “hard” string,
as explained in the paragraph above. (We remark that in order to improve our parameter s1
in Gap-MKtP[s1, s2], it is useful to compose a sequence of pseudodeterministic restrictions.)

We proceed with the technical details. Let ρ : [N ] → {0, 1, ∗} be a restriction, and ρ
be a random restriction, i.e., a distribution of restrictions. We say that ρ is p-regular if
Pr[ρ(i) = ∗] = p and Pr[ρ(i) = 0] = Pr[ρ(i) = 1] = (1− p)/2 for every i ∈ [N ]. In addition,
ρ is k-wise independent if any k coordinates of ρ are independent.

I Lemma 28 (cf. [21, 57]). There exist q-regular k-wise independent random restrictions ρ
distributed over ρ : [N ] → {0, 1, ∗} samplable with O(k log(N) log(1/q)) bits. Furthermore,
each output coordinate of the random restriction can be computed in time polynomial in the
number of random bits.

As a consequence, we get p-regular k-wise independent random restrictions where each
restriction in the support has bounded Kt complexity. In order to define the Kt complexity of

https://doi.org/10.1145/2559903
https://doi.org/10.1137/130938219
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a restriction ρ : [N ]→ {0, 1, ∗}, we view it as a 2N -bit string encoding(ρ) where each symbol
in {0, 1, ∗} is encoded by an element in {0, 1}2. We abuse notation and write Kt(ρ) to denote
Kt(encoding(ρ)).

I Proposition 29. There is a distribution Dq,k of q-regular k-wise independent restric-
tions such that each restriction ρ : [N ] → {0, 1, ∗} in the support of Dq,k satisfies Kt(ρ) =
O(k log(N) log(1/q)). Furthermore, this is witnessed by a pair (M,wρ) where the machine
M does not depend on ρ.

Proof. By Lemma 28, each output coordinate of ρ can be computed in time poly(`) from a
seed wρ of length ` = O(k log(N) log(1/q)). Therefore, the binary string describing ρ can be
computed in time O(N · poly(`)) from a string wρ with Kt(wρ) = O(k log(N) log(1/q)). It
follows from Proposition 8 that Kt(ρ) = O(k log(N) log(1/q)). The furthermore part follows
from the fact that the machine M is obtained from the generator provided by Lemma 28,
i.e., in order to produce different restrictions one only needs to modify the input seeds, which
are encoded in wρ. J

Let N = 2n. Given a function F : {0, 1}N → {0, 1} and a restriction ρ : [N ]→ {0, 1, ∗},
we let F �ρ be the function in {0, 1}ρ−1(∗) → {0, 1} obtained in the natural way from F and ρ.
In this section, we use L(F ) to denote the size (number of leaves) of the smallest U2-formula
that computes a function F .

The next result allows us to shrink the size of a formula using a pseudorandom restriction.
This restriction can be obtained by a composition of restrictions. This reduces the amount
of randomness and the corresponding complexity of the restriction.

I Lemma 30 (Shrinkage from pseudorandom restrictions ([17, Theorem 28]; cf. [21, 28])). Let
F : {0, 1}N → {0, 1}, q = p1/r for an integer r ≥ 1, and L(F ) · p2 ≥ 1. Moreover, let Rrp,k
be a distribution obtained by the composition of r independent q-regular k-wise independent
random restrictions supported over [N ] → {0, 1, ∗}, where k = q−2. Finally, assume that
q ≤ 10−3. Then,13

Eρ∈RRrp,k [L(F �ρ)] ≤ crp2L(F ),

where c ≥ 1 is an absolute constant.

I Proposition 31. There is a (p-regular k-wise independent) distribution Rrp,k obtained by the
composition of r independent q-regular k-wise independent random restrictions supported over
[N ]→ {0, 1, ∗}, where k = q−2 and q = p1/r, such that each restriction ρ : [N ]→ {0, 1, ∗} in
the support of Rrp,k satisfies Kt(ρ) = O(rk log(N) log(1/q)).

Proof. We use the distribution Dq,k of restrictions provided by Proposition 29. A restriction ρ
in the support ofRrp,k is therefore obtained through the composition of r restrictions ρ1, . . . , ρr
in the support of Dq,k. For each i ∈ [r], Kt(ρr) = O(k log(N) log(1/q)). Moreover, each Kt

13The assumption that q ≤ 10−3 does not appear in [17, Theorem 28]. The proof sketch appearing there
does not seem to address the cases where pΓL(ψ) < 1 in their analyses of formula shrinkage in Lemma
27 and Theorem 28. This can be easily fixed using appropriate expressions of the form 1 + p2L(ψ).
Lemma 27 is only affected by a constant factor. Then, proceeding by induction as in the proof of
their Theorem 28 but also addressing this possibility, one gets instead an upper bound of the form
1 + cqΓ(1 + cqΓ(. . .)), which translates to 1 + (cqΓ) + (cqΓ)2 + . . .+ (cqΓ)r−1 + (cqΓ)rL(f). This can
still be upper bounded by crp2L(F ) (for a different universal constant c as in the statement of Lemma
30) using that q is sufficiently small and therefore cqΓ ≤ 1/2 (note that Γ = 2 and c ≤ 500 in [17]).
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upper bound is witnessed by a pair (M,wi), whereM can be taken to be the same machine for
all i ∈ [r]. It is not hard to see that for the string w = 1|w1|0w11|w2|0w2 . . . 1|wr|0wr there is a
machine M ′ satisfying |〈M ′〉| ≤ |〈M〉|+O(1) and running in time tM ′(w) ≤ r ·maxi tM (wi)+
poly(rN) such that the pair (M ′, w) witnesses that Kt(ρ) = O(rk log(N) log(1/q)). J

We will also need the following simple proposition, which holds even with respect to
Kolmogorov complexity instead of Kt complexity.

I Proposition 32. Let S ⊆ [N ] be a set of size at least two. There exists a function
h : S → {0, 1} such that for every string w ∈ {0, 1}N , if w agrees with h over S then
Kt(w) ≥ |S| − 5 log |S|.

Proof. It is easy to encode a pair (M,a) (as in Definition 6) satisfying |〈M〉| + |a| <
|S| − 5 log |S| by a binary string of length at most 2 log |S|+ 2 + |〈M〉|+ |a| < |S|. Since each
pair (M,a) outputs at most one binary string of length N , it follows by a counting argument
that for some choice of h : S → {0, 1}, no string w of length N that agrees with h over S has
Kt(w) < |S| − 5 log |S|. J

The next lemma describes the high-level strategy of the lower bound proof.

I Lemma 33 (Adaptation of Lemma 27 from [17]). There exists a constant a ≥ 1 such
that the following holds. Let ρ : [N ] → {0, 1, ∗} be a restriction, V = ρ−1(∗), and let
F : {0, 1}N → {0, 1} be a function such that L(F �ρ) ≤M . If

Kt(ρ) + a · n ≤ s1(n) and (|V | −M)− 5 log(|V | −M) ≥ s2(n) and |V | ≥M + a,

then F does not compute Gap-MKtP[s1(n), s2(n)], where n = logN .

Proof. Under these assumptions, we define a positive instance wy ∈ YESN and a negative
instance wn ∈ NON such that F (wy) = F (wn).

wy ∈ {0, 1}N is obtained from ρ by additionally setting each ∗-coordinate of this
restriction to 0. Note that, given the 2N -bit binary string encoding ρ, wy can be computed
in time polynomial in N . It follows from Proposition 8 that Kt(wy) ≤ Kt(ρ) + a · n,
for some universal constant a ≥ 1. Since this bound is at most s1(n), we get that
wy ∈ YESN .
wn ∈ {0, 1}N is defined as follows. Since L(F �ρ) ≤M , F �ρ depends on at most M input
coordinates (indexed by elements in V ). Let W ⊆ V ⊆ [N ] be this set of coordinates.
Moreover, let S = V \W . The string wy ∈ {0, 1}N is obtained from ρ by additionally
setting each ∗-coordinate of this restriction in W to 0, and then setting each remaining
∗-coordinate in S to agree with the function h : S → {0, 1} provided by Proposition 32.
Since |S| ≥ |V | −M and the real-valued function φ(x) = x − 5 log x is non-decreasing
if x ≥ a for a large enough constant a, our assumptions and Proposition 32 imply that
Kt(wn) ≥ s2(n). Consequently, yn ∈ NON .

Using that F restricted to ρ depends only on variables from W ⊆ ρ−1(∗), and that the
strings wy and wn agree over coordinates in ρ−1({0, 1})∪W , it follows that F (wy) = F (wn).
Since wy is a positive instance while yn is a negative instance, F does not compute Gap-
MKtP[s1(n), s2(n)]. J

We are now ready to set parameters in order to complete the proof of Theorem 3. For a
sufficiently large constant C ′ ≥ 1, let
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n
def= logN, p

def= N−1+α/2, r
def= n/C ′, q

def= p1/r, k
def= q−2,

and assume that N is sufficiently large. Note that, under this choice of parameters, q =
2C′(−1+α/2) = Ω(1) and q ≤ 10−3.

I Proposition 34 (Concentration Bound for |ρ−1(∗)|). For ρ ∼ Rrp,k with parameters as
above, we have Pr[ |ρ−1(∗)| ≥ pN/2 ] ≥ 1/2.

Proof. Note that ρ is p-regular and pairwise independent (i.e., k ≥ 2 for our choice of
parameters). The result then follows from Chebyshev’s inequality using mean µ = pN ,
variance σ2 = Np(1− p), and the value of p. J

Using Proposition 31, we can sample a random restriction ρ ∈R Rrp,k as described in the
statement of Lemma 30 such that each ρ : [N ]→ {0, 1, ∗} in the support of Rrp,k satisfies

Kt(ρ) = O(rk log(N) log(1/q)) = O((n/C ′)q−2n log(1/q)) ≤ (C/2)n2,

if C is a sufficiently large constant.
Toward a contradiction, let F : {0, 1}N → {0, 1} be a formula of size L(f) that supposedly

computes Gap-MKtP[Cn2, 2(α/2)n−2], where p2L(F ) = 1 (note that L(F ) = N2−α), and let

M
def= 10 · crp2L(F ) = 10 · cr ≤ 2(α/4)n,

for a constant c ≥ 1 as in Lemma 30, and using that C ′ = C ′(α) is large enough in the
definition of r.

Invoking Lemma 30 and Markov’s inequality, Proposition 34, and a union bound, there is
a fixed restriction ρ : [N ]→ {0, 1, ∗} for which the following holds:

For V def= ρ−1(∗), we have |V | ≥ pN/2 = 2(α/2)n/2;
Kt(ρ) ≤ (C/2)n2.
L(F �ρ) ≤ M ≤ 2(α/4)n.

Using these parameters in the statement of Lemma 33, it is easy to check that its hypotheses
are satisfied given our choices of s1(n) = Cn2 and s2(n) = 2(α/2)n−2. This is a contradiction
to our assumption that F computes Gap-MKtP for these parameters, which completes
the proof.

A.2 MKtP – Stronger lower bounds for large parameters
The goal of this section is to prove Theorem 2. First, we need a definition. We say that a
generator G : {0, 1}r → {0, 1}N δ-fools a function f : {0, 1}N → {0, 1} if∣∣∣ Pr

x∈R{0,1}N
[f(x) = 1]− Pr

y∈R{0,1}r
[f(G(y)) = 1]

∣∣∣ ≤ δ.

Similarly, G δ-fools a class of functions F if G δ-fools every function f ∈ F . The parameter
r is called the seed-length of G. We say that G is explicit if it can be uniformly computed in
time poly(N, 1/δ).

I Theorem 35 ([21]). Let c > 0 be an arbitrary constant. The following hold:
1. There is an explicit generator GU2 : {0, 1}r → {0, 1}N using a seed of length r = s1/3+o(1)

that s−c-fools the class U2-Formula[s(N)] of formulas on N input variables.
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2. There is an explicit generator GB2 : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1)

that s−c-fools the class B2-Formula[s(N)] of formulas on N input variables.
3. There is an explicit generator GBP : {0, 1}r → {0, 1}N using a seed of length r = s1/2+o(1)

that s−c-fools the class BP[s(N)] of branching programs on N input variables.

We now prove Theorem 2 (Part 1). The other cases are similar. We instantiate GU2 with
s(N) = N3−ε and c = 1. Then GU2 : {0, 1}N1−δ′ → {0, 1}N for some δ′ = δ′(ε) > 0.

I Proposition 36. For every string w ∈ {0, 1}N1−δ′ , let GU2(w) ∈ {0, 1}N be the N-bit
output of GU2 on w. Then

Kt(GU2(w)) ≤ 2(1−δ′/2)n

for every large enough n = logN .

Proof. This follows from Proposition 8 using that GU2 is explicit and therefore runs in time
poly(N) under our choice of parameters. J

As a consequence of Proposition 36, every output of GU2 is always an N -bit string of Kt
complexity at most 2(1−δ)n, for a fixed δ > 0. On the other hand, it is well-known that a
random N -bit string (where N = 2n) has Kolmogorov complexity (and thus Kt complexity) at
least 2n−1 with high probability. It follows that Gap-MKtP[2(1−δ)n, 2n−1] /∈ U2-Formula[N3−ε],
since otherwise this would violate the security of the generator GU2 against formulas of this
type and size.

A.3 MCSP – A similar near-quadratic lower bound against U2-formulas
In this section, we sketch the proof of Theorem 5, which is the analogue of Theorem 3 in
the context of MCSP. More precisely, we explain why the argument carries over when we
measure the complexity of a string by circuit size instead of via Kt complexity, modulo small
changes to the involved parameters.

As explained in Section A.1, the crucial idea in the proof of Theorem 3 is that a
pseudorandom restriction simplifies a U2-formula of bounded size. For technical reasons, we
employ a composition of restrictions of small complexity, so that the overall complexity of
the combined restriction is bounded. This allows us to trivialize any small formula F using a
fixed restriction ρ of bounded complexity, where |ρ−1(∗)| is sufficiently large compared to
other relevant parameters of the argument. Then, Lemma 33 employs a counting argument
(via Proposition 32) to extend this restriction to a positive instance wy and to a negative
instance wn such that F (wy) = F (wn). This can be used to show that no small formula
correctly computes Gap-MKtP for our choice of parameters.

In order to establish Theorem 5, we make two observations. Firstly, Lemma 28 already
gives individual restrictions of low circuit complexity instead of low Kt complexity. Secondly,
the counting argument used to extend ρ to a negative instance wn works for most complexity
measures including circuit size, Kolmogorov complexity, etc.

Using these two observations, the proof goes through under minor adjustments of the rel-
evant parameters. We remark that one obtains a lower bound for Gap-MCSP[nd, 2(α/2−o(1))n]
instead of Gap-MCSP[Cn2, 2(α/2)n−2] because of a polynomial circuit complexity overhead
in the argument, which is not present in the case of Kt complexity since there one takes
the logarithmic of the running time when measuring complexity, and because the circuit
complexity (measured by number of gates) of a random string can be slightly smaller than
its Kt complexity.
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B Hardness Magnification and Proof Complexity

The initial instance of hardness magnification from [41] says that if an average-case version of
MCSP (with inputs being truth tables of Boolean functions) is worst-case hard for formulas
of super-linear size, then its succinct version (with inputs being lists of input-output tuples
representing partial Boolean functions) is hard for NC1 (cf. [41, Theorem 1]).

Hardness magnification forMCSP thus attacks strong circuit lower bounds by 1. employing
the natural proofs barrier which states a conditional hardness of MCSP, and 2. exploiting
the difference between feasible (succinct) and infeasible (uncompressed) formulations of a
meta-computational problem like MCSP.

This strategy has a history in proof complexity. The work of Razborov [45, 46] and
Krajíček [31] formulated the natural proofs barrier as a conditional proof complexity lower
bound expressing hardness of tautologies encoding circuit lower bounds. This idea was
further developed in the theory of proof complexity generators [30, 2]. It has led, in
particular, to Razborov’s conjecture [47] about hardness of Nisan-Wigderson generators for
strong proof systems. Razborov’s conjecture is designed to imply hardness of circuit lower
bounds formalized in a way so that the whole truth table of the hard function is hardwired
into the formula.

The realization that a feasible formulation of circuit lower bounds should be much harder
than the infeasible truth table formulas inspired the result about unprovability of circuit
lower bounds in theories of bounded arithmetic such as VNC1, cf. [43], and the proposal
[42, 0.1 Circuit lower bounds and Complexity-Theoretic tautologies] to study exponentially
harder lb formulas. Once the definitions are given, it is for example clear that polynomial-size
proofs of the lb formulas transform into almost linear-size proofs of the truth table formulas.
Another instance of this phenomena says that:

If the truth table formulas encoding a polynomial circuit lower bound require superlinear-
size proofs in AC0-Frege systems, then lb formulas encoding the same polynomial circuit
lower bound require (NC1)-Frege proofs of super-polynomial size (implicit in the proof of [37,
Proposition 4.14]).

Since AC0-Frege lower bounds are known, this suggests a way for attacking Frege lower bounds.
([41] established analogous results in circuit complexity, where it might be easier to prove lower
bounds. However, their version of the MCSP problem refers to the average-case complexity
of truth-tables, which seems harder to analyse. We refer to [41] for further discussion.)

The lb formulas result from the feasible witnessing of circuit lower bounds. In [37], the
witnessing was provided by a theorem of Lipton and Young [34] establishing the existence of
anti-checkers, described in Section 1.2. This allows to express the hardness of f without using
its whole truth table. The present paper extends the idea of anti-checkers into the context of
hardness magnification in circuit complexity for the standard worst-case formulation of MCSP.
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Abstract
The recent line of study on randomness extractors has been a great success, resulting in exciting new
techniques, new connections, and breakthroughs to long standing open problems in several seemingly
different topics. These include seeded non-malleable extractors, privacy amplification protocols with
an active adversary, independent source extractors (and explicit Ramsey graphs), and non-malleable
codes in the split state model. Previously, the best constructions are given in [54]: seeded non-
malleable extractors with seed length and entropy requirement O(logn+ log(1/ε) log log(1/ε)) for
error ε; two-round privacy amplification protocols with optimal entropy loss for security parameter
up to Ω(k/ log k), where k is the entropy of the shared weak source; two-source extractors for entropy
O(logn log logn); and non-malleable codes in the 2-split state model with rate Ω(1/ logn). However,
in all cases there is still a gap to optimum and the motivation to close this gap remains strong.

In this paper, we introduce a set of new techniques to further push the frontier in the above
questions. Our techniques lead to improvements in all of the above questions, and in several cases
partially optimal constructions. This is in contrast to all previous work, which only obtain close to
optimal constructions. Specifically, we obtain:
1. A seeded non-malleable extractor with seed length O(logn) + log1+o(1)(1/ε) and entropy re-

quirement O(log logn+ log(1/ε)), where the entropy requirement is asymptotically optimal by a
recent result of Gur and Shinkar [40];

2. A two-round privacy amplification protocol with optimal entropy loss for security parameter up
to Ω(k), which solves the privacy amplification problem completely;1

3. A two-source extractor for entropy O( log n log log n
log log log n

), which also gives an explicit Ramsey graph

on N vertices with no clique or independent set of size (logN)O( log log logN
log log log logN ); and

4. The first explicit non-malleable code in the 2-split state model with constant rate, which has been
a major goal in the study of non-malleable codes for quite some time. One small caveat is that
the error of this code is only (an arbitrarily small) constant, but we can also achieve negligible
error with rate Ω(log log logn/ log logn), which already improves the rate in [54] exponentially.

We believe our new techniques can help to eventually obtain completely optimal constructions in
the above questions, and may have applications in other settings.
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1 Introduction

The study of randomness extractors has been a central line of research in the area of
pseudorandomness, where the goal is to understand how to use randomness more efficiently
in computation. As fundamental objects in this area, randomness extractors are functions
that transform imperfect random sources into nearly uniform random bits. Their original
motivation is to bridge the gap between the uniform random bits required in standard
applications (such as in randomized algorithms, distributed computing, and cryptography),
and practical random sources which are almost always biased (either because of natural
noise or adversarial information leakage). However the study of these objects has led to
applications far beyond this motivation, in several different fields of computer science and
combinatorics (e.g., coding theory, graph theory, and complexity theory).

The inputs to a randomness extractor are usually imperfect randomness, modeled by the
notion of general weak random sources with a certain amount of entropy.

I Definition 1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

An extensively studied model of randomness extractors is the so called seeded extractors,
introduced by Nisan and Zuckerman [60]. The inputs to a seeded extractor are a general
weak random source and a short independent uniform random seed. The random seed is
necessary here since it is well known that no deterministic extractor with one general weak
source as input can exist. Such extractors have wide applications in computer science.

I Definition 2 (Seeded Extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for every source X with min-entropy k and independent Y which is uniform
on {0, 1}d,

|Ext(X,Y )− Um| ≤ ε.

If in addition we have |(Ext(X,Y ), Y )−(Um, Y )| ≤ ε then we say it is a strong (k, ε)-extractor.

Through a long line of research, we now have explicit constructions of seeded extractors
with almost optimal parameters (e.g., [55, 41, 33, 32]). In the last decade or so, the focus has
shifted to several different but related models of randomness extractors, including seedless
extractors and non-malleable extractors. The study of these topics has also been quite
fruitful, leading to breakthroughs to several long standing open problems.

1.1 Seedless extractors
As the name suggests, a seedless extractor uses no uniform seed, and the only inputs are
weak random sources. Here, again we have two different cases. In the first case, one puts
additional restrictions on a single weak random source in order to allow possible extraction,
thus obtaining deterministic extractors for special classes of (structured) sources. In the
second case, the sources are still general weak random sources, but the extractor needs to
use more than one sources. To make extraction possible, one typically assumes the input
sources to the extractor are independent, and this kind of extractors are sometimes called
independent source extractors.
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Since the pioneering work of Chor and Goldreich [19], the study of independent source
extractors has gained significant attention due to their close connections to explicit Ramsey
graphs, and their applications in distributed computing and cryptography with general
weak random sources [43, 42]. The goal here is to give explicit constructions that match the
probabilistic bound: an extractor for just two independent (n, k) sources with k ≥ logn+O(1)
that outputs Ω(k) bits with exponentially small (in k) error. Note that an explicit two-source
extractor for such entropy (even with one bit output and constant error) will give an (strongly)
explicit Ramsey graph on N vertices with no clique or independent set of size O(logN),
solving an open problem proposed by Erdős [37] in his seminal paper that inaugurated the
probabilistic method.

While early progress on this problem has been quite slow, with the best known construction
in almost 20 years only able to handle two independent (n, k) sources with k > n/2 [19],
since 2004 there has been a long line of work [4, 5, 62, 10, 61, 6, 46, 48, 50, 49, 52, 20,
16, 53, 26, 13, 21, 8, 24, 54] introducing exciting new techniques to this problem. This
line of work greatly improved the situation and led to a series of breakthroughs. Now
we have three source extractors for entropy k ≥ polylog(n) that output Ω(k) bits with
exponentially small error [52, 7], two-source extractors for entropy k ≥ polylog(n) that
output Ω(k) bits with polynomially small error [16, 53, 57], and two-source extractors for
entropy k ≥ O(logn log logn) that output one bit with any constant error [54]. This also
gives an explicit Ramsey graph on N vertices with no clique or independent set of size
(logN)O(log log logN). Interestingly and somewhat surprisingly, the most recent progress
which brought the entropy requirement close to optimal, has mainly benefited from the
study of another kind of extractors, the so called non-malleable extractors, which we now
describe below.

1.2 Non-malleable extractors

Non-malleable extractors are strengthening of standard extractors, where one requires that
the output is close to uniform even given the output of the extractor on tampered inputs.

I Definition 3 (Tampering Funtion). For any function f : S → S, We say f has no fixed
points if f(s) 6= s for all s ∈ S. For any n > 0, let Fn denote the set of all functions
f : {0, 1}n → {0, 1}n. Any subset of Fn is a family of tampering functions.

Depending on what the tampering function acts on, we also have different models of
non-malleable extractors. If the tampering acts on the seed of a seeded extractor, such
extractors are called seeded non-malleable extractors, originally introduced by Dodis and
Wichs [30].

I Definition 4. A function snmExt : {0, 1}n × {0, 1}d → {0, 1}m is a seeded non-malleable
extractor for min-entropy k and error ε if the following holds: If X is an (n, k) source and
A : {0, 1}d → {0, 1}d is an arbitrary tampering function with no fixed points, then

|snmExt(X,Ud) ◦ snmExt(X,A(Ud)) ◦ Ud − Um ◦ snmExt(X,A(Ud)) ◦ Ud| < ε

where Um is independent of Ud and X.

If the tampering acts on the sources of an independent source extractor, then we have
seedless non-malleable extractors, originally introduced by Cheraghchi and Guruswami [18].
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I Definition 5. A function nmExt : ({0, 1}n)C → {0, 1}m is a (k, ε)-seedless non-malleable
extractor for C independent sources, if it satisfies the following property: Let X1, · · · , XC be
C independent (n, k) sources, and f1, · · · , fC : {0, 1}n → {0, 1}n be C arbitrary tampering
functions such that there exists an fi with no fixed points,2 then

|nmExt(X1, · · · , XC)◦nmExt(f1(X1), · · · , fC(X2))−Um◦nmExt(f1(X1), · · · , fC(X2))| < ε.

Seeded non-malleable extractors and privacy amplification

Seeded non-malleable extractors were introduced by Dodis and Wichs [30], to study the
basic problem of privacy amplification [9]. Consider the situation where two parties with
local (non-shared) uniform random bits try to convert a shared secret weak random source X
into shared secret uniform random bits. They do this by communicating through a channel,
which is watched by an adversary with unlimited computational power. Standard strong
seeded extractors provide very efficient protocols for a passive adversary (i.e., can only see
the messages but cannot change them), but fail for an active adversary (i.e., can arbitrarily
change, delete and reorder messages). In the latter case, which is the focus of this paper, the
main goal is to design a protocol that uses as few number of interactions as possible, and
achieves a shared uniform random string R which has entropy loss (the difference between
the length of the output and H∞(X)) as small as possible. Such a protocol is defined with a
security parameter s, which means the probability that an active adversary can successfully
make the two parties output two different strings without being detected is at most 2−s. On
the other hand, if the adversary remains passive, then the two parties should achieve a shared
secret string that is 2−s-close to uniform. We refer the reader to [29] for a formal definition.

A long line of work has been devoted to this problem [56, 27, 30, 63, 44, 11, 29, 25, 47,
48, 51, 12, 22, 23, 13, 21, 24, 54]. It is known that one round protocol can only exist when
the entropy rate of X is bigger than 1/2, and the protocol has to incur a large entropy loss.
When the entropy rate of X is smaller than 1/2, [30] showed that any protocol has to take
at least two rounds with entropy loss at least Ω(s). Achieving a two-round protocol with
entropy loss O(s) for all possible security parameters s is thus the holy grail of this problem
(note that s can be at most Ω(k) where k = H∞(X)).

While early works on this problem used various techniques, in [30], Dodis and Wichs
introduced a major tool, the seeded non-malleable extractor defined above. They showed
that two-round privacy amplification protocols with optimal entropy loss can be constructed
using explicit seeded non-malleable extractors. Furthermore, non-malleable extractors exist
when k > 2m+ 2 log(1/ε) + log d+ 6 and d > log(n− k+ 1) + 2 log(1/ε) + 5. Since then, the
study of non-malleable extractors has seen significant progress starting from the first explicit
construction in [29], with further connections to independent source extractors established
in [48, 50, 16]. Previous to this work, the best known seeded non-malleable extractor is
due to the author [54], which works for entropy k ≥ O(logn + log(1/ε) log log(1/ε)) and
has seed length d = O(logn + log(1/ε) log log(1/ε)). Although close to optimal, the extra
O(log log(1/ε)) factor in the entropy requirement implies that by using this extractor, one
can only get two-round privacy amplification protocols with optimal entropy loss for security
parameter up to s = Ω(k/ log k). This still falls short of achieving the holy grail, and may be
problematic for some applications. For example, even if the shared weak source has slightly
super-logarithmic entropy, the error of the protocol can still be sub-polynomially large; while

2 The original definition of seedless non-malleable independent source extractors in [18] allows fixed points,
but the two definitions are equivalent up to a small loss in parameters. See Section 7 for details.
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ideally one can hope to get negligible error, which is important for other cryptographic
applications based on this. The only previous protocol that can achieve security parameter up
to s = Ω(k) is the work of [11], which has entropy loss O(logn+ s) but also uses O(logn+ s)
rounds of interactions, much larger than 2. This also results in a total communication
complexity of O((logn+ s)2) and requires the two parties’ local random bits to be at least
this long.

Seedless non-malleable extractors and non-malleable codes

Seedless non-malleable extractors were first introduced by Cheraghchi and Guruswami [18] to
study non-malleable codes [36], a generalization of standard error correcting codes to handle
a much larger class of attacks. Informally, a non-malleable code is defined w.r.t. a specific
family of tampering functions F . The code consists of a randomized encoding function E
and a deterministic decoding function D, such that for any f ∈ F , if a codeword E(x) is
modified into f(E(x)), then the decoded message x′ = D(f(E(x))) is either the original
message x or a completely unrelated message. The formal definition is given in Section 7. In
[36], Dziembowski et. al showed that such codes can be used generally in tamper-resilient
cryptography to protect the memory of a device.

Even with such generalization, non-malleable codes still cannot exist if F is completely
unrestricted. However, they do exist for many broad families of tampering functions. One of
the most studied families of tampering functions is the so called t-split-state model. Here,
a k-bit message x is encoded into a codeword with t parts y1, · · · , yt, each of length n. An
adversary can then arbitrarily tamper with each yi independently. In this case, the rate of
the code is defined as k/(tn).

This model arises naturally in many applications, typically when different parts of memory
are used to store different parts of y1, · · · , yt. Such a code can also be viewed as a kind of
“non-malleable secret sharing scheme”. The case of t = 2 is the most useful and interesting
setting, since t = 1 corresponds to the case where F is unrestricted. Again, there has been a
lot of previous work on non-malleable codes in this model. In this paper we will focus on the
information theoretic setting.

Dziembowski et. al [36] first proved the existence of non-malleable codes in the split-state
model. Cheraghchi and Guruswami [17] showed that the optimal rate of such codes in the
2-split-state model is 1/2. Since then a major goal is to construct explicit non-malleable
codes in the 2-split-state model with constant rate. The first construction appears in [34],
with later improvements in [3, 2, 1], but all constructions only achieve rate n−Ω(1).

Cheraghchi and Guruswami [18] found a way to construct non-malleable codes in the
t-split state model using non-malleable t-source extractors. Chattopadhyay and Zuckerman
[15] constructed the first seedless non-malleable extractor, which works for 10 independent
sources with entropy (1− γ)n, and consequently they obtained a constant rate non-malleable
code in the 10-split-state model. Subsequently, constructions of non-malleable two source
extractors appeared in [12] and [54]. Both constructions work for min-entropy k = (1− γ)n,
and the former gives a non-malleable code in the 2-split state model with rate n−Ω(1) while
the latter achieves rate Ω( 1

logn ). Very recently, a work by Kanukurthi et. al [45] achieved
constant rate in the 4-split state model, and another one by Gupta et. al [39] achieved
constant rate in the 3-split state model, but the best construction in the 2-split state model
still only achieves rate Ω( 1

logn ) [54].
As can be seen from the above discussions, extensive past research has established strong

connections among these different topics, and provided solutions close to optimal. However,
there still remains a gap and the motivation to close this gap remains strong.
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We also remark about the curious coincidences of some parameters here and the para-
meters in the literature of constructing unconditional pseudorandom generators for small
space computation, another central line of research in the area of pseudorandomness. The
holy grail in this case is to construct a logspace explicit pseudorandom generator (a function
that stretches a short uniform random seed into a long string that looks random) which
fools logspace computation with seed length O(log(n/ε)) and error ε. Such a construction
would imply that randomness does not add any more power in logspace computation. Al-
though for general logspace computation the best known pseudorandom generator remains
Nisan’s generator [59] which needs seed length O(logn log(n/ε)), recently there have been
several works achieving near optimal seed length for restricted cases. For example, Meka
et al. [58] constructed a pseudorandom generator for width-3 branching programs with
seed length O(log(n/ε)poly log log(n/ε)) +O(logn log(1/ε)), and Doron et al. [31] construc-
ted a pseudorandom generator for constant depth read once formulas with seed length
O(log(n/ε)poly log log(n/ε)), improving a previous similar result for depth 2 read-once for-
mulas by Gopalan et al. [38]. The extra poly log log(1/ε) dependence on error ε is quite
similar to the previously best known non-malleable extractors, and in the case of constant
or polynomially small error the seed length becomes lognpoly log logn, which is again quite
similar to the entropy requirement of the previously best known two-source extractors.

The high level reason for these coincidences is that all constructions use some recursive
steps (e.g., for O(log logn) steps), where in each step one needs to use say O(logn) independent
random bits, and thus the total entropy requirement becomes at least Ω(logn log logn).
Circumventing this barrier needs new techniques and can lead to improved or potentially
optimal constructions, which is of great interests. In this sense, the results in this paper
are the first kind to break this barrier, and we believe that the set of new techniques we
introduce can lead to further improvements and potentially optimal constructions.

1.3 Our Results
In this paper we achieve improvements in all the questions discussed in the context of
extractors, and in several cases partially optimal constructions. In contrast, all previous
works only obtain close to optimal constructions. Our first theorem gives explicit seeded
non-malleable extractors with optimal entropy requirement.

I Theorem 6. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(log logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m

with d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a ) and m = Ω(k).

Note that this theorem provides a trade-off between the entropy requirement and the seed
length. For example, if we take a = 2, then the entropy requirement is O(log logn+ log(1/ε))
while the seed length is O(logn) + 2O(

√
log log(1/ε)) log(1/ε) = O(logn) + log1+o(1)(1/ε). By

a recent result of Gur and Shinkar [40], the entropy requirement in our construction is
asymptotically optimal. We can also achieve smaller seed length while requiring slightly
larger entropy.

I Theorem 7. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε <

1 with k ≥ C(log logn + log(1/ε) log log log(1/ε)), there is an explicit construction of a
strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+
log(1/ε)(log log(1/ε))2)3 and m = Ω(k).

3 The exponent 2 can be reduced to be arbitrarily close to log 3.
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Combined with the protocol in [30], we have the following theorem.

I Theorem 8. There exists a constant 0 < α < 1 such that for any n, k ∈ N , there is an
explicit two-round privacy amplification protocol in the presence of an active adversary that
achieves (1) any security parameter s ≤ αk, entropy loss O(log logn+ s) and communication
complexity O(logn) + s2O(a(log s)

1
a ) for any constant integer a ≥ 2, or (2) any security

parameter s ≤ αk/ log log k, entropy loss O(log logn + s) and communication complexity
O(logn+ s log2 s).

Our two-round protocol can achieve optimal entropy loss for security parameter up to
s = Ω(k), thus achieving the holy grail of this problem. Compared to the O(logn+ s)-round
protocol in [11], our protocol also has better dependence on n and significantly better
communication complexity.

We remark that the O(log logn) term is also the best possible (up to constant) if one
wants to apply the two-round protocol in [30]. This is because the output of the non-malleable
extractor is used as the key for a message authentication code (MAC) that authenticates the
seed of a strong seeded extractor with security parameter s. Since the seed of the extractor
uses at least Ω(logn) bits, the MAC requires a key of length at least log logn+ s. See [30]
for more details.

I Remark 9. In Theorem 6 and Theorem 7, the dependence on error ε in the seed length and
the entropy requirement can be switched. For example, in Theorem 6, we can also achieve
k ≥ C log logn+ log(1/ε)2C·a(log log(1/ε))

1
a and d = O(logn+ a log(1/ε)), i.e., we can achieve

asymptotically optimal parameters in either the seed length or the entropy requirement, but
not in both.

We also have the following non-malleable two-source extractor and seeded non-malleable
extractor.

I Theorem 10. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor
for (n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

I Theorem 11. There is a constant C > 0 such that for any ε > 0 and n, k ∈ N with
k ≥ C(log logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded non-malleable extractor
for (n, k) sources with seed length d = O(logn + log(1/ε) log log(1/ε)

log log log(1/ε) ), error ε and output
length Ω(k).

Combined with the techniques in [8], we obtain the following theorems.

I Theorem 12. For every constant ε > 0, there exists a constant C > 1 and an explicit two
source extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.

I Corollary 13. For every large enough integer N there exists a (strongly) explicit construction
of a K-Ramsey graph on N vertices with K = (logN)O( log log logN

log log log logN ).

Our result gives the first two-source extractor for entropy o(logn log logn) and the first
explicit K-Ramsey graph on N vertices with K = (logN)o(log log logN). For non-malleable
codes in the 2-split state model, we have the following theorem.

I Theorem 14. There are constants 0 < η, µ < 1 such that for any n ∈ N and 2−
µn

logn ≤ ε ≤ η
there exists an explicit non-malleable code in the 2-split-state model with block length 2n, rate
Ω( log log log(1/ε)

log log(1/ε) ) and error ε.
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Note that if we choose ε = 2−c for some constant c > 1, then we get a non-malleable
code with rate Ω( log log c

log c ) and error 2−c. This gives the first construction of an explicit
non-malleable code in the 2-split-state model with constant rate. Note that the error can be
arbitrarily small, and the dependence of the rate on the error is pretty good. For example,
even if one wants to achieve error 2−2100 , which is more than enough for any practical
application, the rate is on the order of 1/16. On the other hand, if we choose ε = 2−polylog(n),
then we get a non-malleable code with negligible error and rate Ω( log log logn

log logn ), which already
improves the rate in [54] exponentially.

We can also achieve close to exponentially small error with an improved rate.

I Theorem 15. For any n ∈ N there exists a non-malleable code with efficient encoder-
/decoder in the 2-split-state model with block length 2n, rate Ω(log logn/ logn) and error
ε = 2−Ω(n log logn/ logn).

1.4 Overview of The Constructions and Techniques

We demonstrate our techniques here by an informal overview of our constructions. Throughout
this section we will be mainly interested in the dependence of various parameters (e.g., seed
length, entropy requirement) on the error ε, since this makes the presentation cleaner. The
dependence on n comes from the alternating extraction between the seed and the source, thus
the seed needs to have an O(logn) term while the source only needs an O(log logn) term.

All recent constructions of non-malleable extractors essentially follow the same high level
sketch: first obtain a small advice on L = O(log(1/ε)) bits such that with probability 1− ε,
the advice is different from its tampered version. Then, a correlation breaker with advice
(informally introduced in [12] and formally defined in [22]) is used to obtain the final output.
A correlation breaker with advice is a function AdvCB : X × Y × α→ V where X,Y are two
independent sources (in the case of a seeded non-malleable extractor, Y can be viewed as
the seed), such that if the advice α is not equal to its tampered version α′, then the output
AdvCB(X,Y, α) is close to uniform conditioned on the tampered version AdvCB(X ′, Y ′, α′).
There are several constructions of correlation breakers, and the goal is to minimize the
entropy requirement of X and Y . Previously, the most efficient construction is based on
a non-malleable independence preserving merger (NIPM for short, introduced in [26] and
generalized in [13]) in [54], which achieves entropy requirement O(logL log(1/ε)) using a
recursive structure. As discussed before, improving this needs new techniques, and our main
new idea is the following:

Idea 1: Instead of using fresh randomness, we borrow techniques from pseudorandom
generators for small space computation [59, 60] to recycle the randomness in each step of
the independence preserving merger. In this sense, we construct pseudorandom independence
preserving mergers.

Using this idea, we can improve the entropy requirement of X and Y in two different
settings. In the asymmetric case, one of them can be optimal while the other is larger,
e.g., one can be O(log(1/ε)) and the other is 2O(

√
logL) log(1/ε). This is good for seeded

non-malleable extractors and privacy amplification protocols. In the symmetric case which is
needed for two-source extractors, one can reduce the entropy requirement of both X and Y
to O( logL

log logL log(1/ε)).
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Turning to achieving constant rate non-malleable codes, our main new idea is the following:

Idea 2: In the connection between non-malleable codes and non-malleable two-source ex-
tractors found by Cheraghchi and Guruswami [18], the way of dealing with errors is too
coarse. For most recent constructions of non-malleable two-source extractors, one can actually
separate two different kinds of error, where one kind is relevant and the other is irrelevant.

We now discuss both ideas in more details. We start with Idea 1 and first briefly
recall the construction of the merger in [54]. The NIPM takes an L ×m random matrix
V with m = O(log(1/ε)) with the property that one row in the matrix is uniform given
the corresponding row in its tampered version4 (this can be obtained from the advice and
inputs), and does the following. Suppose the matrix V is a deterministic function of the
source X, then we first generate ` = logL random variables (Y1, · · · , Y`) from Y , such that
each Yi is close to uniform given the previous random variables and their tampered versions
(i.e., (Y1, Y

′
1 , · · · , Yi−1, Y

′
i−1)). We call this property the look-ahead property. Next, we run

a simple merger for ` iterations, with each iteration using a new Yi to merge every two
consecutive rows in V , thus decreasing the number of rows by a factor of 2. We output the
final matrix V which has one row.

Let’s turn to the entropy requirement. In this construction each Yi needs to have at least
Ω(log(1/ε)) bits in order to ensure the error is at most ε, thus it is clear that Y needs to
have entropy at least Ω(` log(1/ε)) = Ω(log(1/ε) log log(1/ε)). However, it turns out that X
also needs to have such entropy, for the following two reasons. First, in each iteration after
we apply the simple merger, the length of each row in the matrix decreases by a constant
factor (due to the entropy loss of any seeded extractor). Thus we cannot afford to just repeat
the process for ` times since that would require the original row in V (and hence X) to have
entropy at least polylog(1/ε). Instead, we again create ` random variables (X1, · · · , X`) from
X with the look-ahead property, and in each iteration after merging we use each row of the
matrix to extract from a new Xi (using a standard seeded extractor, and possibly after first
extracting from another new Yi), to restore the length of the rows in the matrix. We need
the look-ahead property in (X1, · · · , X`) and (Y1, · · · , Y`) so that after each iteration we can
fix the previously used random variables and maintain the independence of X and Y , as well
as the fact that the matrix is a deterministic function of X. Each Xi again needs at least
Ω(log(1/ε)) bits so this puts a lower bound on the entropy of X.

Second, in order to prepare the random variables (Y1, · · · , Y`), we in fact run an alternating
extraction protocol between (part of) X and Y . This protocol lasts 2` rounds between X
and Y , and in each round either X or Y needs to spend Ω(log(1/ε)) random bits. This again
puts a lower bound of Ω(` log(1/ε)) on the entropy of X.

We remark that the above description is slightly different from the standard definition of
an NIPM, where the only input besides the matrix V is Y . Indeed, in [54] it was presented
as a correlation breaker. However, these two objects are actually similar, and for this paper
it is more convenient to consider NIPMs with an additional input X, which is independent
of Y but may be correlated with V . We will use this notion here and formally define it
in Section 4.

Improved merger construction

To break the above barriers, our key observation is that we can recycle the entropy in X,
similar in sprit to what has been done in previous constructions of pseudorandom generators
for small space computation [59, 60]. Indeed, the random variables (X1, · · · , X`) can be

4 Sometimes we also require the other rows to be uniform, in order to make the construction simpler.
This is the case of this paper, but we ignore the issue here for simplicity and clarity.
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replaced by the original source X, as long as we have slightly more (e.g., 2`) Yi’s and they
satisfy the look ahead property. To achieve this we crucially use the property that the NIPM
only needs one row of V to be uniform given the corresponding row in its tampered version,
and does not care about the dependence among the rows of V (they can have arbitrary
dependence). Consider a particular iteration i in which we have just finished applying the
simple merger. We can first fix all random variables {Yj} that have been used so far, and
conditioned on this fixing we know that X and Y are still independent, and the matrix V is
a deterministic function of X, which is independent of all random variables obtained from
Y . To restore the length of each row in V , we use each row of V to first extract O(log(1/ε))
bits from Yj+1, and then extract back from the original source X. Note that we only need
to consider each row separately (since we don’t care about the dependence among them).
Assume row h in V has the property that Vh is uniform given V ′h (the tampered version).
Since each random variable only has O(log(1/ε)) bits, as long as the entropy of X is c log(1/ε)
for a large enough constant c > 1, we can argue that conditioned on the fixing of (Vh, V ′h),
X still has entropy at least some O(log(1/ε)). On the other hand since Vh is uniform given
V ′h, their corresponding outputs after extracting from (Yj+1, Y

′
j+1) will also preserve this

independence; and conditioned on the fixing of (Vh, V ′h), these outputs are deterministic
functions of (Y, Y ′), which are independent of (X,X ′). Thus they can be used to extract
back from (X,X ′) and preserve the independence. By standard properties of a strong seeded
extractor, this holds even conditioned on the fixing of (Yj+1, Y

′
j+1). Note that conditioned

on the further fixing of (Yj+1, Y
′
j+1), the new matrix is again a deterministic function of X,

thus we can go into the next iteration. Therefore, by recycling the entropy in X, altogether
we only need X to have entropy some O(log(1/ε)). In each iteration we use two new Yi’s so
we need roughly 2` such random variables.

However, we still need to address the second problem, where we need to generate the
random variables (Y1, · · · , Y2`). The old way to generate them by using an alternating
extraction protocol requires entropy roughly O(` log(1/ε)) from X. To solve this problem, we
develop a new approach that requires much less entropy from X. For simplicity assume that
Y is uniform, we first take 2` slices Y i from Y , where Y i has size (2i − 1)d for some d =
O(log(1/ε)). This ensures that even conditioned on the fixing of (Y 1, Y ′1, · · · , Y i−1, Y ′i−1),
the (average) conditional min-entropy of Yi is at least (2i − 1)d− 2 · (2i−1 − 1)d = d. Then,
we can take O(log(1/ε)) uniform bits obtained from X, and use the same bits to extract Yi
from Y i for every i. As long as we use a strong seeded extractor here, we are guaranteed
that (Y1, · · · , Y2`) satisfy the look-ahead property; and moreover conditioned on the fixing
of the O(log(1/ε)) bits from X, we have that (Y1, · · · , Y2`) is a deterministic function of
Y . Note here again we only require entropy O(log(1/ε)) from X, and together with the
approach described above this gives us a non-malleable extractor where X can have entropy
O(log(1/ε)). However Y will need to have entropy at least 22`O(log(1/ε)) = O(log3(1/ε)).

To improve the entropy requirement of Y , we note that in the above approach, we only
used part of X once to help obtaining the {Y i}. Thus we have to use larger and larger slices
of Y which actually waste some entropy. Instead, we can use several parts of X, each with
O(log(1/ε)) uniform bits. For example, suppose that we have obtained X1 and X2, where
each is uniform on some O(log(1/ε)) bits and X2 is uniform even conditioned on the fixing
of (X1, X ′1). We can now take some t slices {Y i} of Y , each of length (2i − 1) · 2d for some
parameters t, d. We first use X1 to extract from each Y i and obtain d uniform bits. Note that
conditioned on the fixing of (X1, X ′1), these t random variables already satisfy the look-ahead
property. Now for each of these d bits obtained from Y i, we can apply the same process,
i.e., we take some t slices of these d bits, each of length (2i − 1) ·O(log(1/ε)) and then use
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X2 to extract from each of them. This way we obtain t2 random variables {Yi} that satisfy
the look-ahead property. We can thus choose t2 = 2` which means t = O(

√
`). The entropy

requirement of Y is roughly (2t− 1) · (2t− 1)O(log(1/ε)) = O(22t log(1/ε)) = 2O(
√
`) log(1/ε),

while the entropy requirement for X is 2 · O(log(1/ε)) + O(log(1/ε)) = O(log(1/ε)). This
significantly improves the entropy requirement of Y .

We can repeat the previous process and use some a parts (X1, · · · , Xa) obtained from
X. As long as a is a constant, X only needs entropy O(a log(1/ε)) = O(log(1/ε)), while
the entropy requirement of Y is reduced to 2O(a`

1
a ) log(1/ε) = 2O(alog log(1/ε)

1
a ) log(1/ε). To

prepare the a parts of X, we perform an initial alternating extraction between X and
Y , which only needs entropy O(a log(1/ε)) from either of them. This gives Theorem 6. In
the extreme case, we can try to minimize the entropy requirement of Y by first creating
log `+1 = log log log(1/ε)+O(1) Xi’s, and in each step using a new Xi to double the number
of Yi’s. This can be done by using the same Xi to do an alternating extraction of two rounds
with each Yi in parallel. Thus after log ` + 1 steps we obtain (Y1, · · · , Y2`). Now X needs
to have entropy O(log(1/ε) log log log(1/ε)). Ideally, we would want to claim that Y needs
entropy O(log(1/ε) log log(1/ε)), but due to technical reasons we can only show that this
works as long as Y has entropy O(log(1/ε)(log log(1/ε))2).

The balanced case

In the above discussion, the entropy requirement for X and Y is unbalanced, in the sense that
one of them can be quite small, while the other is relatively large. For applications to two-
source extractors and non-malleable codes, we need a balanced entropy requirement. Upon
first look it does not seem that our new techniques can achieve any improvement in this case,
since we are still merging two rows of the matrix V in each step, and for this merging we need at
least Ω(log(1/ε)) fresh random bits. Note that we need ` = logL = log log(1/ε) steps to finish
the merging, thus it seems the total entropy requirement is at least Ω(log(1/ε) log log(1/ε)).

Our key observation here is that we can again apply the idea of recycling entropy.
Specifically, let us choose a parameter t ∈ N and we merge every t rows in the matrix V at
each step, using some merger that we have developed above. For example, we can choose
the merger which for merging t rows, requires X to have entropy O(log(1/ε)) and Y to have
entropy 2O(

√
log t) log(1/ε). This will take us logL

log t steps to finish merging, and we will do it
in the following way. First, we create s = O( logL

log t ) random variables X1, · · · , Xs that satisfy
the look-ahead property. Then, in each step of the merging, we will use a new Xj . The Xj ’s
can be prepared by taking a small slice of both X and Y and do an alternating extraction
protocol with O(s) rounds, which consumes entropy O(s log(1/ε)) = O( logL

log t log(1/ε)) from
both X and Y . However, in each step of the merging, we will not use fresh entropy from Y ,
but will recycle the entropy in Y . Note that by doing this, we are recycling the entropy in
both X and Y . The recycling in X is done within each step of applying the small merger,
while the recycling in Y is done between these steps.

Now, consider a particular step i in the merging. Since we are using a new Xj in each step,
we can fix all previous Xj ’s that have been used and their tampered versions. Conditioned
on this fixing, the matrix V obtained so far (and the tampered version V ′) is a deterministic
function of Y , therefore independent of X. We now want to claim that conditioned on the
random variable (V, V ′), Y still has high entropy. If this is true then we can take a new Xj+1
and apply a strong seeded extractor to Y using Xj+1 as the seed, and the extracted random
bits (which are deterministic functions of Y conditioned on the fixing of Xj+1) can be used
for merging in the next step. Also note that to apply the merger, we can take yet another
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new Xj+2 and use each row of V to extract from Xj+2 and create a matrix W . Conditioned
on the fixing of (V, V ′), we have that (W,W ′) is a deterministic function of (X,X ′) and
therefore independent of (Y, Y ′). Moreover the independence between corresponding rows
in (V, V ′) is preserved in (W,W ′) (i.e., there is also a row in W that is uniform given the
corresponding row in W ′). Thus now we can indeed apply the merger again to W and the
extracted random bits from Y , possibly together with a new Xj+3. Again, this is similar in
spirit to what has been done in previous constructions of pseudorandom generators for small
space computation [59, 60].

The above idea indeed works, except for the following subtle point: in the first several
steps of merging, the matrix V can have many rows and the size of V can be larger than
the entropy of Y , unless Y has entropy Ω(log2(1/ε)). Thus conditioning on (V, V ′) may
cause Y to lose all entropy. To get around this, we again use the fact that we only need
one row in V to be independent of the corresponding row in V ′ (call this the good row),
and does not care about the dependence between different rows. Thus in each step, we
only need to condition on the fixing of the t rows that we are merging (and their tampered
versions). This ensures that if originally there is a good row in these t rows, then after
merging the output is also a good row in the new matrix. Thus, we only need the entropy of
Y to be O(t log(1/ε)) + 2O(

√
log t) log(1/ε) +O( logL

log t log(1/ε)) = O(t log(1/ε) + logL
log t log(1/ε))

since we will maintain the length of each row in V to be O(log(1/ε)). Now by choosing
t = logL

log logL , both X and Y only need entropy O( logL
log logL log(1/ε)) = O( log(1/ε) log log(1/ε)

log log log(1/ε) ). By
the connections in [54, 8, 18], this dependence gives Theorem 10, 11, 12 and 15.

Non-malleable codes

To further improve the rate of non-malleable codes in the 2-split state model, we re-examine
the connection between non-malleable codes and non-malleable two-source extractors found
by Cheraghchi and Guruswami [18]. They showed that given a non-malleable two-source
extractor with error ε and output length m, the uniform sampling of the pre-image of any
given output gives an encoding of a non-malleable code in the 2-split state model with
error roughly 2mε. This blow up of error comes from the conditioning on the event that
the output of the extractor is a given string in {0, 1}m, which roughly has probability 2−m.
Therefore, one needs m < log(1/ε), and thus the error of the extractor puts a limit on the
rate of the code.

To break this barrier, we note that all recent constructions of non-malleable two-source
extractors [12, 54] follow a very special framework. As mentioned before, these constructions
first obtain an advice α̃ such that with probability 1− ε1 we have α̃ 6= α̃′, where α̃′ is the
tampered version. Then, using a correlation breaker with advice one obtains the output.
This part has error ε2, and the final error of the extractor is ε1 + ε2.

In all previous work, this error is treated as a whole, but our key observation here is that
these two errors ε1 and ε2 can actually be treated separately. More specifically, the error
that matters most for the rate of the code is actually ε2, not ε1. Intuitively, this is because
the event α̃ 6= α̃′ is determined by a set of random variables that have small size compared
to the length of X and Y . Thus even conditioned on the fixing of these random variables,
X and Y still have plenty of entropy, which implies that the output of the extractor is still
ε2-close to uniform. Thus, as long as ε2 is small, the output of the extractor is roughly
independent of the event α̃ 6= α̃′. Therefore, conditioned on any given output of the extractor,
the event α̃ 6= α̃′ still happens with probability roughly 1 − ε1 and we won’t be paying
a price of 2mε1 here. Once this event happens, the correlation breaker ensures that the
extractor is non-malleable with error ε2, and we can use a similar argument as in [18] to get
a non-malleable code with error roughly 2mε2. Thus the total error of the non-malleable
code is roughly ε1 + 2mε2. Now, we just need m < log(1/ε2).
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We can now play with the two parameters ε1, ε2. The advice length L is Ω(log(1/ε1)) and
we need to supply entropy O( logL

log logL log(1/ε2)) by using our improved correlation breaker.
If we can achieve L = Θ(log(1/ε1)) then one can see that if we choose ε1 to be any constant,
then we can set ε2 = 2−Ω(n) and also m = Ω(n), thus we get a constant rate non-malleable
code. If we set ε1 = 2−polylog(n) then we can set ε2 = 2−Ω(n log log logn

log logn ) and thus we get rate
Ω( log log logn

log logn ).
A technical issue here is how to achieve L = Θ(log(1/ε1)) for any ε1. In [12, 54], the

advice is obtained by using some random seed R to sample from an asymptotically good
encoding of X,Y , and concatenating the sampled symbols with R. This puts a lower bound
of logn on L, since we need at least this number of bits to sample from a string of length
n. However this is not good enough to achieve constant rate. Our idea around this is to
use repeated sampling. To illustrate the idea, suppose for example that we have obtained
an advice V such that V 6= V ′ with probability 1 − 1/poly(n) and V has length O(logn).
We now use another piece of independent random bits R1 of length O(log logn) to sample
O(log logn) bits from an asymptotically good encoding of V , and obtain a new advice V1 by
concatenating R1 with the sample bits. This ensures that V1 6= V ′1 happens with probability
1− 1/polylog(n) conditioned on V 6= V ′, and the length of V1 is now O(log logn). We repeat
this process until we get the desired error ε1 (e.g., a constant) and the advice length is
now L = Θ(log(1/ε1)). Note that the total error is still O(ε1), the total number of random
bits needed is small, and the process terminates in roughly log∗ n steps. To prepare the
independent random bits used in repeated sampling, we first take a small slice of X and Y
and do an alternating extraction with roughly log∗ n steps, which guarantees the bits used
for sampling in later steps are independent of the previous ones and their tampered versions.
Finally, some extra work are needed here to take care of the issue of fixed points, which is
more subtle than [18] since now we are treating the two errors ε1 and ε2 separately.

Organization. The rest of the paper is organized as follows. We give some preliminaries
in Section 2, and define alternating extraction in Section 3. We present independence
preserving mergers in Section 4, correlation breakers in Section 5, non-malleable extractors
in Section 6, and non-malleable codes in Section 7. Finally we conclude with some open
problems in Section 8.

2 Preliminaries

We often use capital letters for random variables and corresponding small letters for their
instantiations. Let |S| denote the cardinality of the set S. For ` a positive integer, U` denotes
the uniform distribution on {0, 1}`. When used as a component in a vector, each U` is
assumed independent of the other components. When we have adversarial tampering, we use
letters with prime to denote the tampered version of random variables. All logarithms are to
the base 2.

2.1 Probability Distributions
I Definition 16 (statistical distance). Let W and Z be two distributions on a set S. Their
statistical distance (variation distance) is

∆(W,Z) =: max
T⊆S

(|W (T )− Z(T )|) = 1
2
∑
s∈S
|W (s)− Z(s)|.
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We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. For a distribution D on a
set S and a function h : S → T , let h(D) denote the distribution on T induced by choosing
x according to D and outputting h(x).

I Lemma 17. For any function α and two random variables A,B, we have ∆(α(A), α(B)) ≤
∆(A,B).

2.2 Average Conditional Min Entropy
I Definition 18. The average conditional min-entropy is defined as

H̃∞(X|W ) = − log
(

Ew←W
[
max
x

Pr[X = x|W = w]
])

= − log
(

Ew←W
[
2−H∞(X|W=w)

])
.

I Lemma 19 ([28]). For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W )− s] ≥ 1− 2−s.

I Lemma 20 ([28]). If a random variable B has at most 2` possible values, then H̃∞(A|B) ≥
H∞(A)− `.

2.3 Prerequisites from Previous Work
Sometimes it is convenient to talk about average case seeded extractors, where the source X
has average conditional min-entropy H̃∞(X|Z) ≥ k and the output of the extractor should
be uniform given Z as well. The following lemma is proved in [28].

I Lemma 21 ([28]). For any δ > 0, if Ext is a (k, ε) extractor then it is also a (k+log(1/δ), ε+
δ) average case extractor.

For a strong seeded extractor with optimal parameters, we use the following extractor
constructed in [41].

I Theorem 22 ([41]). For every constant α > 0, there exists a constant β > 0 such that for
all positive integers n, k and any ε > 2−βk, there is an explicit construction of a strong (k, ε)-
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+ log(1/ε)) and m ≥ (1− α)k.
The same statement also holds for a strong average case extractor.

I Theorem 23 ([19]). For every 0 < m < n there is an explicit two-source extractor
IP : {0, 1}n × {0, 1}n → {0, 1}m based on the inner product function, such that if X,Y are
two independent (n, k1) and (n, k2) sources respectively, then

(IP(X,Y ), X) ≈ε (Um, X) and (IP(X,Y ), Y ) ≈ε (Um, Y ),

where ε = 2−
k1+k2−n−m−1

2 .

The following standard lemma about conditional min-entropy is implicit in [60] and
explicit in [56].

I Lemma 24 ([56]). Let X and Y be random variables and let Y denote the range of Y .
Then for all ε > 0, one has

Pr
Y

[
H∞(X|Y = y) ≥ H∞(X)− log |Y| − log

(
1
ε

)]
≥ 1− ε.

We also need the following lemma.

I Lemma 25. [49] Let (X,Y ) be a joint distribution such that X has range X and Y has
range Y. Assume that there is another random variable X ′ with the same range as X such that
|X −X ′| = ε. Then there exists a joint distribution (X ′, Y ) such that |(X,Y )− (X ′, Y )| = ε.
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3 Alternating Extraction

Our constructions use the following alternating extraction protocol as a key ingredient.
Alternating extraction was first introduced in [35], and has now become an important tool in
constructions related to extractors.

Quentin: Q,S1 Wendy: X

S1
S1

−−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

S` = Extq(Q,R`−1)
S`

−−−−−−−−−−−−−−→

R` = Extw(X,S`)

Figure 1 Alternating Extraction.

I Definition 26 (Alternating Extraction). Assume that we have two parties, Quentin and
Wendy. Quentin has a source Q, Wendy has a source W . Also assume that Quentin has a
uniform random seed S1 (which may be correlated with Q). Suppose that (Q,S1) is kept secret
from Wendy and W is kept secret from Quentin. Let Extq, Extw be strong seeded extractors
with optimal parameters, such as that in Theorem 22. Let r, s be two integer parameters for
the protocol. For some integer parameter ` > 0, the alternating extraction protocol is an
interactive process between Quentin and Wendy that runs in ` steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(W,S1). She
sends R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each
outputs r and s bits respectively. In each subsequent step i, Quentin sends Si to Wendy,
Wendy computes Ri = Extw(W,Si). She replies Ri to Quentin and Quentin computes
Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs r and s bits respectively. Therefore, this
process produces the following sequence:

S1, R1 = Extw(W,S1), S2 = Extq(Q,R1), · · · ,
S` = Extq(Q,R`−1), R` = Extw(W,S`).

The output of an alternating extraction protocol is often described as a look-ahead
extractor, defined as follows. Let Y = (Q,S1) be a seed, the look-ahead extractor is defined as

laExt(W,Y ) = laExt(W, (Q,S1)) =: R1, · · · , R`.

The following lemma is a special case of Lemma 6.5 in [12].

I Lemma 27. Let W be an (nw, kw)-source and W ′ be a random variable on {0, 1}nw that is
arbitrarily correlated withW . Let Y = (Q,S1) such that Q is a (nq, kq)-source, S1 is a uniform
string on s bits, and Y ′ = (Q′, S′1) be a random variable arbitrarily correlated with Y , where Q′
and S′1 are random variables on nq bits and s bits respectively. Let Extq,Extw be strong seeded
extractors that extract s and r bits from sources with min-entropy k with error ε and seed
length d ≤ min{r, s}. Suppose (Y, Y ′) is independent of (W,W ′), kq > k+2(`−1)s+2 log( 1

ε ),
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and kw > k + 2(`− 1)r + 2 log( 1
ε ). Let laExt be the look-ahead extractor defined above using

Extq,Extw, and (R1, · · · , R`) = laExt(W,Y ), (R′1, · · · , R′`) = laExt(W ′, Y ′). Then for any
0 ≤ j ≤ `− 1, we have

(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Rj+1)

≈ε1(Y, Y ′, {R1, R
′
1, · · · , Rj , R′j}, Ur),

where ε1 = O(`ε).

4 Non-Malleable Independence Preserving Merger

We now describe the notion of non-malleable independence preserving merger, introduced in
[13] based on the notion of independence preserving merger introduced in [26].

I Definition 28. A (L, d′, ε)-NIPM : {0, 1}Lm × {0, 1}d → {0, 1}m1 satisfies the following
property. Suppose

X,X′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Xi = Um,
{Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) >
d′,
there exists an h ∈ [L] such that (Xh,X′h) = (Um,X′h),

then

|(L, d′, ε)-NIPM(X,Y), (L, d′, ε)-NIPM(X′,Y′)
− Um1 , (L, d′, ε)-NIPM(X′,Y′)| 6 ε.

We have the following construction and theorem.
L-Alternating Extraction. We extend the previous alternating extraction protocol

by letting Quentin have access to L sources Q1, . . . , QL (instead of just Q) which have
the same length. Now in the i’th round of the protocol, he uses Qi to produce the r.v
Si = Extq(Qi, Ri). More formally, the following sequence of r.v’s is generated: S1, R1 =
Extw(W,S1), S2 = Extq(Q2, R1), . . . , RL−1 = Extw(W,S`−1), SL = Extq(QL, RL−1).

The NIPM is now constructed as follows. Let S1 be a slice of X1 with length O(log(d/ε)),
then run the L-alternating extraction described above with (Q1, . . . , QL) = (X1, . . . ,XL)
and W = Y. Finally output SL.

I Theorem 29 ([13]). There exists a constant c > 0 such that for all integers m, d, d′, L > 0
and any ε > 0, with m > 4cL log(d/ε), d′ > 4cL log(m/ε), the above construction NIPM :
({0, 1}m)` × {0, 1}d → {0, 1}m1 has output length m1 ≥ 0.2m, such that if the following
conditions hold:

X,X′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Xi = Um,
{Y,Y′} is independent of {X,X′}, s.t Y,Y′ are each supported on {0, 1}d and H∞(Y) >
d′,
there exists an h ∈ [L] such that (Xh,X′h) = (Um,X′h),

then

|NIPM(X,Y),NIPM(X′,Y′),Y,Y′ − Um1 ,NIPM(X′,Y′),Y,Y′| 6 Lε.

It is sometimes more convenient to consider NIPMs which use an additional source X in
the computation. We generalize the above definition as follows.
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I Definition 30. A (L, d, d′, ε)-NIPM : {0, 1}Lm ×{0, 1}d ×{0, 1}d′ → {0, 1}m1 satisfies the
following property. Suppose

V, V ′ are random variables, each supported on boolean L×m matrices s.t for any i ∈ [L],
Vi = Um,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h),
X,X′ are random variables, each supported on d bits, such that X is uniform conditioned
on (V, V ′),
(Y,Y′) is independent of (V, V ′,X,X′), s.t Y,Y′ are each supported on {0, 1}d′ and Y
is uniform,

If the function is an NIPM that is strong in Y then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),Y,Y′

− Um1 , (L, d, d′, ε)-NIPM(V ′,X′,Y′),Y,Y′| 6 ε.

If the function is an NIPM that is strong in X then

|(L, d, d′, ε)-NIPM(V,X,Y), (L, d, d′, ε)-NIPM(V ′,X′,Y′),X,X′

− Um1 , (L, d, d′, ε)-NIPM(V ′,X′,Y′),X,X′| 6 ε.

We will now use the above construction to give another NIPM, which recycles the entropy.
Specifically, we have the following construction.

I Construction 31. Asymmetric NIPM.
Inputs:
L,m, n, d ∈ N and an error parameter ε > 0 such that m ≥ c log(d/ε) and d ≥ c log(n/ε)
for some constant c > 1.
A random variable V supported on a boolean L×m matrix.
An (n, 6m) source X.
Random variables Y1, · · · ,Y` where ` = logL and each Yi is supported on {0, 1}d.

Output: a random variable W ∈ {0, 1}m.

Let V 0 = V . For i = 1 to logL do the following.
1. Take a slice Y1

i of Yi with length d/3. Merge every two rows of V i−1, using Y1
i and the

NIPM from Theorem 29. That is, for every j ≤ t/2 where t is the current number of
rows in V i−1 (initially t = L), compute V i−1

j = NIPM((V i−1
2j−1, V

i−1
2j ),Y1

i ).
2. For every j ≤ t/2, compute Yij = Ext1(Yi, V

i−1
j ), where Ext1 is the extractor in The-

orem 22 and output d/4 bits.
3. For every i ≤ t/2, compute Ṽ i−1

j = Ext2(X,Yij), where Ext2 is the extractor in The-
orem 22 and output m bits.

4. Let V i with the concatenation of Ṽ i−1
j , j = 1, · · · , t/2. Note that the number of rows in

V i has decreased by a factor of 2.

Finally output W = V logL.

I Lemma 32. There is a constant c > 1 such that suppose we have the following random
variables:

V, V ′, each supported on a boolean L×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h).
X,X′ where X is an (n, 6m) source.
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Random variables (Y1,Y′1), · · · , (Y`,Y′`) obtained from Y,Y′ deterministically, where
` = logL. These random variables satisfy the following look-ahead condition: ∀j < `, we
have

(Yj ,Y1,Y′1, · · · ,Yj−1,Y′j−1) = (Ud,Y1,Y′1, · · · ,Yj−1,Y′j−1).

In addition, (V, V ′,X,X′) is independent of (Y,Y′).
Let W be the output of the NIPM on (V,X,Y1, · · · ,Y`) and W′ be the output of the NIPM
on (V ′,X′,Y′1, · · · ,Y′`). Then

(W,W′,Y,Y′) ≈O(Lε) (Um,W′,Y,Y′).

Proof. We use induction to show the following claim.

B Claim 33. For every 0 ≤ i ≤ ` = logL, the following holds after step i.
V i, V ′i are each supported on boolean (t = L/2i) × m matrices s.t for any j ∈ [t],
(V ij ,Y,Y′) ≈εj (Um,Y,Y′). In addition, there exists an h ∈ [t] such that
(V ih , V ′ih ,Y,Y′) ≈εi (Um, V ′ih ,Y,Y′). Here εi is the error after step i which satisfies
that ε0 = 0 and εi+1 ≤ 2εi + 4ε.
Conditioned on the fixing of Y1,Y′1, · · · ,Yj ,Y′j , each of V i and V ′i is a deterministic
function of V, V ′,X,X′.

For the base case of i = 0, the claim clearly holds. Now assume that the claim holds for
i, we show that it holds for i+ 1.

We first fix Y1,Y′1, · · · ,Yi,Y′i. By the induction hypothesis, conditioned on the fixing
of these random variables, each of V i and V ′i is a deterministic function of V, V ′,X,X′, and
thus independent of (Yi+1,Y′i+1). We only consider the row h ∈ [t] such that (Vh, V ′h) ≈4·2iε
(Um, V ′h), since the analysis for the rest of the rows are similar and simpler.

First we ignore the error εi. By Theorem 29, and note that we are merging every two
rows at one step, we can choose a suitable constant c > 1 in the construction such that

(V ih′ , V ′ih′ ,Y
1
i+1,Y′1i+1) ≈2ε (Um1 , V

′i
h′ ,Y

1
i+1,Y′1i+1),

where h′ = dh2 e and m1 = 0.2m. We now fix (Y1
i+1,Y′1i+1). Note that conditioned on

the fixing, Yi+1 still has average conditional min-entropy at least d − d/3 = 2d/3 and is
independent of (V ih′ , V ′ih′). Now we can first fix V ′ih′ and then Y′ih′ . Note that conditioned on
this fixing, V ih′ is still (close to) uniform and the average conditional min-entropy of Yi+1 is
at least 2d/3− d/4 > d/3. Thus as long as c is large enough, by Theorem 22 we have that

(Yih′ , V ih′) ≈ε (Ud/4, V ih′).

We now further fix V ih′ . Note that conditioned on this fixing, Yih′ is still (close to) uniform.
Moreover conditioned on all the random variables we have fixed, Yih′ is a deterministic
function of Y1,Y′1, · · · ,Yi+1,Y′i+1 and thus independent of X,X′. Also conditioned on all
the random variables we have fixed, the average conditional min-entropy of X is at least
6m− 2m1 > 5m.

We can now further fix Ṽ ′ih′ , which is a deterministic function of X′. Conditioned on
this fixing the independence of random variables still holds, while the average conditional
min-entropy of X is at least 5m−m = 4m. Therefore by Theorem 22 we have that

(Ṽ ih′ ,Yih′) ≈ε (Um,Yih′).
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Since we have already fixed Y′ih′ and Ṽ ′ih′ , and note that conditioned on this fixing, (Y,Y′)
are independent of Ṽ ih′ which is a deterministic function of X, we also have that

(Ṽ ih′ , X̃′h′ ,Y,Y
′) ≈ε (Um, X̃′h′ ,Y,Y

′).

Adding back all the errors we get that there exists an h′ ∈ [t] such that

(X̃h′ , Ṽ ′ih′ ,Y,Y
′) ≈εi+1 (Um, Ṽ ′ih′ ,Y,Y

′),

where εi+1 ≤ 2εi + 4ε. Furthermore, it is clear that conditioned on the fixing of Y1,Y′1, · · · ,
Yi+1,Y′i+1, each of V i+1 and V ′i+1 is a deterministic function of V, V ′,X,X′.

We can now estimate the final error to be ε` ≤ 4(
∑`
i=1 2iε) = O(Lε). Finally, when

the number or rows in V i decreases to 1 after step `, the output W = V logL satisfies the
conclusion of the lemma. J

We will now construct another NIPM. First we need the following lemma.

I Lemma 34. For any constant a ∈ N , any `, s ∈ N and any ε > 0 there exists an explicit
function Conva : {0, 1}n × {0, 1}a·d → {0, 1}`·s with d = O(log(n/ε)) and n = 2O(a·`

1
a ) · s

such that the following holds. Let (Y, Y ′) be two random variables each on n bits, and Y
is uniform. Let (X = (X1, · · · , Xa), X ′ = (X ′1, · · · , X ′a)) be random variables each on a · d
bits, where each Xi and X ′i is on d bits. Further assume that (X,X ′) satisfies the following
look-ahead property: ∀i ∈ [a], we have

(Xi, X1, X
′
1, · · · , Xi−1, X

′
i−1) = (Ud, X1, X

′
1, · · · , Xi−1, X

′
i−1).

Let (W1, · · · ,W`) = Conva(Y,X) and (W ′1, · · · ,W ′`) = Conva(Y ′, X ′). Then we have

(X,X ′,W1,W
′
1, · · · ,W`,W

′
`) ≈O(`ε) (X,X ′, Us,W ′1, · · · , Us,W ′`),

where each Us is independent of previous random variables but may depend on later random
variables.

Proof. We will prove the lemma by induction on a. For the base case a = 1, consider the
following construction. For j = 1, · · · , `, let Yj be a slice of Y with length (2j − 1) · 2s (this
is possible since the total entropy required is at most 2` · 2s), and compute Wj = Ext(Yj , X1).
Note that for any j ∈ [`], conditioned on the fixing of Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1, the average

conditional min-entropy of Yj is at least (2j − 1) · 2s − 2(2j−1 − 1) · 2s = 2s. Thus by
Theorem 22 we have that

(Wj , Y1, Y
′
1 , · · · , Yj−1, Y

′
j−1, X,X

′) ≈ε (Us, Y1, Y
′
1 , · · · , Yj−1, Y

′
j−1, X,X

′).

Since (W1,W
′
1, · · · ,Wj−1,W

′
j−1) is a deterministic function of (Y1, Y

′
1 , · · · , Yj−1, Y

′
j−1)

and (X,X ′), we also have that

(Wj ,W1,W
′
1, · · · ,Wj−1,W

′
j−1, X,X

′) ≈ε (Us,W1,W
′
1, · · · ,Wj−1,W

′
j−1,W,W

′).

By adding all the errors the statement of the lemma holds.
Now assume that the lemma holds for a, we will construct another function Conva+1 for

the case of a+ 1. First choose a parameter t ∈ N to be decided later. For j = 1, · · · , `/t,
let Yj be a slice of Y with length (2j − 1) · 2m, where m is the length of Y (i.e., n) for
Conva when choosing ` = t. Thus we have m = 2O(a·t

1
a ) · s. Now, for every j we first
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use X1 to compute Ŵj = Ext(Yj , X1) and output m bits, then compute (Ŵ1j , · · · , Ŵtj) =
Conva(Ŵj , X2, · · · , Xa+1). The final outputs are obtained by combining all the {Ŵij} in
sequence.

Note that by the same argument as above, we have that

(X1, X
′
1, Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t) ≈O( `t ε)

(X1, X
′
1, Um, Ŵ

′1, · · · , Um, Ŵ ′`/t).

Now we can fix (X1, X
′
1). Note that conditioned on the fixing, (Ŵ1, Ŵ ′1, · · · , Ŵ`/t, Ŵ ′`/t)

is a deterministic function of (Y, Y ′), thus independent of (X,X ′). Now we can used the
induction hypothesis to conclude that the statement holds for the case of a+ 1. Note that
the total error is O( `t ε) + `/t ·O(tε) = O(`ε) since the part of O( `t ε) decreases as a geometric
sequence. Finally, the entropy requirement of Y is (2`/t−1) ·2m = (2`/t−1) ·2 ·2O(a·t

1
a ) · s =

2l/t+O(a·t
1
a )+1 · s.

We now just need to choose a t to minimize this quantity. We can choose t = `
a
a+1 so

that the entropy requirement of Y is 2O((a+1)·`
1
a+1 ) · s. J

We now have the following construction.

I Construction 35. NIPMx (which is strong in Y ) or NIPMy (which is strong in X).
Inputs:
An error parameter ε > 0 and a constant a ∈ N .
A random variable V supported on a boolean L×m matrix.
A uniform string X on d1 bits.
A uniform string Y on d2 bits.
Let d = c log(max{d1, d2}/ε) for some constant c > 1.

Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈
{0, 1}d.

1. Let ` = logL.5 Let X0 be a slice of X with length 4a · d, and Y0 be a slice of Y with
length 4a · d. Use X0 and Y0 to run an alternating extraction protocol, and output
(R0, · · · , Ra) = laExt(X0, Y0) where each Ri has d bits.

2. Compute Z = Ext(Y,R0) and output d2/2 bits, where Ext is the strong seeded extractor
from Theorem 22.

3. For every i ∈ [L], compute Vi = Ext(Y0, Vi) and output d bits. Then, compute V̂i =
Ext(X,Vi) and output m bits.

4. Compute (Z1, · · · , Z`) = Conva(Z,R1, · · · , Ra) where each Zi has d bits.
5. NIPMx outputs Wx = NIPM(V̂ , Z1, · · · , Z`), where NIPM is the merger in Construc-

tion 31 and Lemma 32. NIPMy outputs Wy = Ext(Y,Wx) with d bits.

We now have the following lemma.

I Lemma 36. There exist a constant c > 1 such that for any ε > 0 and any L,m, d1, d2, n ∈ N
such that d ≥ c(log max{d1, d2} + log(1/ε)), m ≥ d, d1 ≥ 8a · d + 6m and d2 ≥ 8a · d +
ca·log

1
a L · d, the above construction gives an (L, d1, d2, O(Lε))-NIPM that is either strong in

X or strong in Y .

5 Without loss of generality we assume that L is a power of 2. Otherwise add 0 to the string until the
length is a power of 2.
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Proof. Note that Y0 has min-entropy 4ad ≥ 4d, thus by Theorem 22 we have that for every
i ∈ [L],

(Vi, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(Vh, V ′h, Vh, V
′
h) ≈ε (Ud, V ′h, Vh, V

′
h).

Note that conditioned on the fixing of (V, V ′), we have that (X,X ′) and (Y, Y ′) are
still independent, and furthermore (V , V ′) is a deterministic function of (Y, Y ′). Note that
conditioned on the fixing of (X0, X

′
0), the average conditional min-entropy of X is at least

8a · d+ 6m− 2 · 4a · d = 6m. Thus again by Theorem 22 we have that for every i ∈ [L],

(V̂i, Vi) ≈ε (Ud, Vi),

and there exists an h ∈ [L] such that

(V̂h, V̂ ′h, Vh, V ′h) ≈ε (Ud, V̂ ′h, Vh, V ′h).

Note that now conditioned on the fixing of (Vh, V ′h), we have that (X,X ′) and (Y, Y ′) are
still independent, and furthermore (V̂h, V̂ ′h) is a deterministic function of (X,X ′). Thus we
basically have that conditioned on the fixing of (X0, X

′
0, Y0, Y

′
0), (V̂ , V̂ ′) is a deterministic

function of (X,X ′) and they satisfy the property needed by an NIPM.
Now, by Lemma 27, we have that

(Y0, Y
′
0 , R0, R

′
0, · · · , Ra, R′a) ≈O(a2ε) (Y0, Y

′
0 , Ud, R

′
0, · · · , Ud, R′a).

Note that conditioned on the fixing of (Y0, Y
′
0), we have that (X,X ′) and (Y, Y ′) are still

independent, and furthermore (R0, R
′
0, · · · , Ra, R′a) is a deterministic function of (X,X ′).

Also the average conditional min-entropy of Y is at least d2 − 2 · 4a · d = ca·log
1
a L · d > 3d2/4

for a large enough constant c. Thus by Theorem 22 we have that

(Z,R0) ≈ε (Ud2/2, R0).

We can now fix (R0, R0). Note that now (Z0, Z
′
0) is a deterministic function of (Y, Y ′),

and d2/2 > 1
2c
a·log

1
a L · d. Note that now (R1, R

′
1, · · · , Ra, R′a) still satisfies the look-ahead

property. Thus as long as c is large enough, by Lemma 34 we have that

(Z1, Z
′
1, · · · , Z`, Z ′`, X0, X

′
0) ≈O(`ε) (Ud,W ′1, · · · , Ud,W ′` , X0, X

′
0).

We can now fix (X0, X
′
0), and note that conditioned on this fixing (Z1, Z

′
1, · · · , Z`, Z ′`) is

a deterministic function of (Y, Y ′). In summary, conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0),

we have that (V̂ , V̂ ′)and (Z1, Z
′
1, · · · , Z`, Z ′`) satisfy the conditions required by Lemma 32.

Therefore we can now apply that lemma to finish the proof. The total error is at most
O(Lε) +O(a2ε) +O(ε) +O(`ε) = O(Lε). J

The extreme case of the above construction gives the following NIPM.

I Construction 37. NIPMx (which is strong in Y ) or NIPMy (which is strong in X).
Inputs:
An error parameter ε > 0.
A random variable V supported on a boolean L×m matrix.
A uniform string X on n bits.
A uniform string Y on n′ bits.
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Output: NIPMx outputs a random variable Wx ∈ {0, 1}m, and NIPMy outputs Wy ∈
{0, 1}O(log(n/ε)).

1. Let d1 = c log(n′/ε) and d2 = c log(n/ε). Take a slice X0 of X with length 10 log logL ·d1,
and a slice Y0 of Y with length 10 log logL · d2.

2. Use X0 and Y0 to do an alternating extraction protocol, and output (R0, R1, · · · , Rt) =
laExt(X0,Y0) where t = log logL and each Ri has 4d1 bits, each Si (used in the alternating
extraction) has d2 bits.

3. For each i ∈ [L], compute Yi = Ext(Y0, Vi) where each Yi outputs d2 bits. Then compute
V i = Ext(X,Yi) where each V i outputs m bits. Here Ext is the strong seeded extractor
from Theorem 22. Let V be the matrix whose i’th row is V i.

4. Let Y0
1 = Y. For j = 0 to log logL do the following. For h = 1 to 2j , use Yj

h and Rj to
do an alternating extraction protocol, and output (Sjh1, S

j
h2) = laExt(Yj

h, Rj), where each
Sjhi has ( loglog a L

aj−1 − 1)d2 bits. Note that altogether we get 2j+1 outputs and relabel them
as Yj+1

1 , · · · ,Yj+1
2j+1 .

5. After the previous step, we get 2 logL outputs. Let them be Y1, · · · ,Y2 logL, and output
Wx = NIPM(V ,X,Y1, · · · ,Y2 logL) with m bits. Let Wy = Ext(Y,Wx) with d2 bits.

We now have the following lemma.

I Lemma 38. There is a constant c > 1 such that suppose we have the following random
variables and conditions:

V, V ′, each supported on a boolean L×m matrix s.t for any i ∈ [L], Vi = Um. In addition,
there exists an h ∈ [L] such that (Vh, V ′h) = (Um, V ′h).
Y,Y′, each supported on n′ bits, where Y is uniform.
X,X′, each supported on n bits, where X is uniform. In addition, X is independent of
(V, V ′), and (V, V ′,X,X′) is independent of (Y,Y′).
m ≥ c log(n′/ε), n ≥ 20c log logL log(n′/ε) + 6m and n′ ≥ 20c loglog a L log(n/ε).

Let (Wx,Wy) be the outputs of (NIPMx,NIPMy) on (V,X,Y) and (W′
x,W′

y) be the outputs
of the (NIPMx,NIPMy) on (V ′,X′,Y′). Then

(Wx,W′
x,Y,Y′) ≈O(Lε) (Um,W′

x,Y,Y′)

and

(Wy,W′
y, V, V

′,X,X′) ≈O(Lε) (UO(log(n/ε)),W′
y, V, V

′,X,X′).

Proof. First, since (V, V ′,X,X′) is independent of (Y,Y′), as long as c is large enough, by
Theorem 22 we know that for any i ∈ [L],

(Yi, V ) ≈ε (Ud, V ).

In addition, suppose for some h ∈ [L] we have that (Vh, V ′h) = (Um, V ′h), then we can first
fix V ′h and then Yh. Conditioned on this fixing Vh is still uniform, the average conditional
min-entropy of Y0 is at least 10 log logL · d− d > 3d and Vh and Y0 are still independent,
thus by Theorem 22 we have that

(Yh,Y
′
h, V, V

′) ≈ε (Ud,Y
′
h, V, V

′).

In other words, the random variables {(Yi,Y
′
i)} inherit the properties of {(Vi, V ′i )}. We

now ignore the errors since this adds at most Lε to the final error. Now we fix (V, V ′). Note
that conditioned on this fixing, the random variables (Yi,Y

′
i) are deterministic functions of

(Y0,Y′0), and are thus independent of (X,X′). Furthermore, we have that conditioned on this
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fixing, X is still uniform. In addition, even conditioned on the fixing of (X0,X′0), the average
conditional min-entropy of X is at least 20c log logL log(n′/ε) + 6m−2 ·10 log logL ·d1 = 6m.
Thus by the same argument before we have that for any i ∈ [L],

(V i,Y0,X0,X′0) ≈ε (Um,Y0,X0,X′0),

and that there exists an h ∈ [L] such that

(V h, V
′
h,Y0,Y′0,X0,X′0) ≈ε (Um, V

′
h,Y0,Y′0,X0,X′0).

We will again ignore the error for now since this adds at most Lε to the final error. Next,
by Lemma 27 we have that for any 0 ≤ j ≤ t− 1,

(Rj+1, (R1, R
′
1, · · · , Rj , R′j),Y0,Y′0) ≈O(tε) (U4d1 , (R1, R

′
1, · · · , Rj , R′j),Y0,Y′0).

Thus by a hybrid argument and the triangle inequality, we have that

(Y0,Y′0, R1, R
′
1, · · · , Rt, R′t) ≈O(t2ε) (Y0,Y′0, U4d1 , R

′
1, · · · , U4d1 , R

′
t),

where each U4d1 is independent of all the previous random variables (but may depend on
later random variables). From now on, we will proceed as if each Rj is uniform given
(Y0,Y′0, {R1, R

′
1, · · · , Rj−1, R

′
j−1}), since this only adds O(t2ε) to the final error.

Now we can fix (Y0,Y′0). Note that conditioned on this fixing, (V , V ′, R1, R
′
1, · · · , Rt, R′t)

are deterministic functions of (V, V ′,X,X′), and thus independent of (Y,Y′). Also note that
conditioned on this fixing, the average conditional min-entropy of Y is at least 20 loglog a L ·
d2 − 2 · 10 log logL · d2 > a2 loglog a L · d2. We now prove the following claim.

B Claim 39. Let Rj = (R1, · · · , Rj). Suppose that at the beginning of the j’th iteration, we
have that conditioned on the fixing of Rj−1, the following holds.

1. , (X,X′) is independent of (Y,Y′), and (Y1,Y′1, · · · ,Y2j ,Y′2j ) is a deterministic function
of (Y,Y′).

2. For every h ∈ [2j ], the average conditional min-entropy of Yh given (Y1,Y′1, · · · ,Yh−1,

Y′h−1) is at least ( loglog a L
aj−2 − 1)d2.

Then at the end of the j’th iteration, the following holds.
1. Conditioned on the fixing of Rj , (X,X′) is independent of (Y,Y′), and (Y1,Y′1, · · · ,

Y2j+1 ,Y′2j+1) is a deterministic function of (Y,Y′).
2. For every h ∈ [2j+1],

(Yh, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rj) ≈ε (U
( loglog a L

aj−1 −1)d2
, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rj).

Proof of the claim. First, since the computation in the j’th iteration only involves (Rj , R′j)
and (Y1,Y′1, · · · ,Y2j ,Y′2j ), and (Rj , R′j) is a deterministic function of (X,X′) conditioned
on the fixing of the previous random variables, we know that at the end of the j’th iteration,
conditioned on the fixing of (R1, · · · , Rj) we have that (X,X′) is independent of (Y,Y′),
and (Y1,Y′1, · · · ,Y2j+1 ,Y′2j+1) is a deterministic function of (Y,Y′).

Next, we use (Z1, Z
′
1, · · · , Z2j+1 , Z ′2j+1) to represent the outputs computed from (Rj , R′j)

and (Y1,Y′1, · · · ,Y2j ,Y′2j ), and assume that 2`−1 ≤ h ≤ 2` for some `, then Zh is obtained
from Y`. We can now first fix (Y1,Y′1, · · · ,Y`−1,Y′`−1), and conditioned on this fixing
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Y` has average conditional min-entropy at least ( loglog a L
aj−2 − 1)d2. Now by Lemma 27 we

have that

(S`1, Rj , R′j) ≈ε (U
( loglog a L

aj−1 −1)d2
, Rj , R

′
j)

and

(S`2, S`1, S′`1 , Rj , R′j) ≈ε (U
( loglog a L

aj−1 −1)d2
, S`1, S

′`
1 , Rj , R

′
j),

since ( loglog a L
aj−2 − 1)d2 ≥ 2 · ( loglog a L

aj−1 − 1)d2 + (1 + α)( loglog a L
aj−1 − 1)d2 + d2 and 4d1 ≥

2d1 + 1.1d1 + 0.9d1. Thus as long as the constant c is large enough one can make sure
that min{d2, 0.9d1} ≥ 2 log(1/ε), and we can extract ( loglog a L

aj−1 − 1)d2 bits from entropy
(1 + α)( loglog a L

aj−1 − 1)d2 and d1 bits from entropy 1.1d1. Note that (Z1, Z
′
1, · · · , Z2`−2, Z

′
2`−2)

are computed from (Y1,Y′1, · · · ,Y`−1,Y′`−1) and (Rj , R′j), and (Y1,Y′1, · · · ,Y`−1,Y′`−1)
are already fixed. Thus the second part of the claim also holds. C

Now note that at the beginning of the first iteration, the condition of the claim holds.
Thus if we ignore the errors, then we can apply the claim repeatedly until the end of the
iteration. At this time for each h ∈ [logL] we have that Yh has at least ( loglog a L

alog logL−1 −1)d2 > d2
bits. Furthermore

(Yh, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rt) ≈ (U, (Y1,Y′1, · · · ,Yh−1,Y′h−1), Rt).

The total error so far is O(Lε) + O(t2ε) +
∑log logL
j=0 2j · 2ε = O(Lε). Note that now

conditioned on all the fixed random variables (X0,X′0,Y0,Y′0, Rt) (note that Rt is a determ-
inistic function of (X0,X′0,Y0,Y′0), we have that (V, V ′,Y1,Y′1, · · · ,Y2 logL,Y′2 logL,X,X′)
satisfies the conditions of the Lemma 32, since the average conditional min-entropy of X is
at least n− 20 log logL · d1 ≥ 6m. Now we can apply Lemma 32 to show that

(Wx,W′
x,Y,Y′) ≈ (Um,W′

x,Y,Y′),

where the total error is O(Lε)+O(Lε) = O(Lε). Furthermore, note that conditioned on the
fixing of (Y1,Y′1, · · · ,Y2 logL,Y′2 logL), we have that (Wx,W′

x) is a deterministic function
of (V, V ′,X,X′), and thus independent of (Y,Y′). Also note that Y has average conditional
min-entropy at least 20c loglog a L log(n/ε)− 4 logLd2 > 10d2. Thus by Theorem 22 we have
that

(Wy,W′
y,Wx,W′

x) ≈ (Ud2 ,W′
y,Wx,W′

x),

where the error is O(Lε)+O(ε) = O(Lε). Note that given (Wx,W′
x), we have that (Wy,W′

y)
is a deterministic function of (Y,Y′). Thus we also have that

(Wy,W′
y, V, V

′,X,X′) ≈O(Lε) (Ud2 ,W′
y, V, V

′,X,X′). J

5 Correlation Breaker with Advice

We now use our non-malleable independence preserving mergers to construct improved
correlation breakers with advice. A correlation breaker uses independent randomness to
break the correlations between several correlated random variables. The first correlation
breaker appears implicitly in the author’s work [49], and this object is strengthened and
formally defined in [20]. A correlation breaker with advice additionally uses some string as
an advice. This object was first introduced and used without its name in [12], and then
explicitly defined in [22].
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I Definition 40 (Correlation breaker with advice). A function

AdvCB : {0, 1}n × {0, 1}d × {0, 1}L → {0, 1}m

is called a (k, k′, ε)-correlation breaker with advice if the following holds. Let Y, Y ′ be d-
bit random variables such that H∞(Y ) ≥ k′. Let X,X ′ be n-bit random variables with
H∞(X) ≥ k, such that (X,X ′) is independent of (Y, Y ′). Then, for any pair of distinct L-bit
strings α, α′,

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′)) ≈ε (U,AdvCB(X ′, Y ′, α′)).

In addition, we say that AdvCB is strong if

(AdvCB(X,Y, α),AdvCB(X ′, Y ′, α′), Y, Y ′)
≈ε(U,AdvCB(X ′, Y ′, α′), Y, Y ′).

Our construction needs the following flip-flop extraction scheme, which was constructed
by Cohen [20] using alternating extraction, based on a previous similar construction of
the author [49]. The flip-flop function can be viewed as a basic correlation breaker, which
(informally) uses an independent source X to break the correlation between two r.v’s Y and
Y′, given an advice bit.

I Theorem 41 ([20, 12]). There exists a constant c41 such that for all n > 0 and any ε > 0,
there exists an explicit function flip-flop : {0, 1}n × {0, 1}d → {0, 1}m, m = 0.4k, satisfying
the following: Let X be an (n, k)-source, and X′ be a random variable on n bits arbitrarily
correlated with X. Let Y be an independent uniform seed on d bits, and Y′ be a random
variable on d bits arbitrarily correlated with Y. Suppose (X,X′) is independent of (Y,Y′).
If k, d > C41 log(n/ε), then for any bit b,

|flip-flop(X,Y, b),Y,Y′ − Um,Y,Y′| 6 ε.

Furthermore, for any bits b, b′ with b 6= b′,

|flip-flop(X,Y, b),flip-flop(X′,Y′, b′),Y,Y′

− Um,flip-flop(X′,Y′, b′),Y,Y′| 6 ε.

5.1 Asymmetric correlation breaker
We will present correlation breakers that use general NIPMs. By plugging in various NIPMs
this gives different correlation breakers.

I Construction 42. Inputs:
Let `,m ∈ N be two integers, ε > 0 be an error parameter.
X,Y , two independent sources on n bits and s bits respectively, with min-entropy at least
n− ` and s− `.
an advice string α ∈ {0, 1}L.
An (L, d1, d2, O(Lε))-NIPMx that is strong in Y .
Let IP be the two source extractor from Theorem 23.

1. Let d′ = O(log(max{n, s}/ε)) be the seed length of the extractor from Theorem 22, and
let d = 8d′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of Y
with length d+ 2`+ 2 log(1/ε).

2. Compute Z = IP(X0, Y 0) and output d bits.
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3. Use X and Z to do an alternating extraction, and output two random variables (X0, X1) =
laExt(X,Z) where each Xi has 3m bits.

4. Use Y and Z to do an alternating extraction, and output two random variables (Y0, Y1) =
laExt(Y, Z) where each Yi has 3d bits.

5. Use X1, Y1, α to obtain an L×m matrix V , where for any i ∈ [L], Vi = flip-flop(X1, Y1, αi)
and outputs m bits.

6. Compute X̂ = Ext(X,Y0) and output n/2 bits. Compute Ŷ = Ext(Y,X0) and output s/2
bits. Here Ext is the strong seeded extractor from Theorem 22.

7. Output V̂ = NIPMx(V, X̂, Ŷ ).

We now have the following lemma.

I Lemma 43. There exists a costant c > 1 such that the following holds. Suppose that there
exists an (L, d1, d2, O(Lε))-NIPM that is strong in Y which outputs m bits, then there exists
an explicit (n − `, s − `, O(Lε)) AdvCB : {0, 1}n × {0, 1}s × {0, 1}L → {0, 1}m as long as
m ≥ c log(max{n, s}/ε), n ≥ 20m+ 2d1 + 5`+ 4 log(1/ε) and s ≥ m+ 2d2 + 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding
random variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have
min-entropy at least d+ `+ 2 log(1/ε). Thus by Theorem 23 we have that

(Z,X0) ≈ε (Ud, X0)

and

(Z, Y 0) ≈ε (Ud, Y 0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a
deterministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average
conditional min-entropy of X given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 10m
as long as c is large enough. Thus by Lemma 27 (note that the extractor from Z side can
use seed length d′) we have that

(Y 0, Y ′0, X0, X
′
0, X1, X

′
1, Z, Z

′) ≈O(ε) (Y 0, Y ′0, U3m, X
′
0, Ud1 , X

′
1, Z, Z

′),

where each U3m is uniform given the previous random variables, but may depend on later
random variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a
deterministic function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average
conditional min-entropy of Y given this fixing is at least s− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 10d.
Thus by Lemma 27 we have that

(Y0, Y
′
0 , Y1, Y

′
1 , Z, Z

′, X0, X ′0) ≈O(ε) (U3d, Y
′
0 , Ud2 , Y

′
1 , Z, Z

′, X0, X ′0),

where each U3d is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have
that (X,X ′) and (Y, Y ′) are still independent, (X0, X

′
0, X1, X

′
1) is a deterministic function

of (X,X ′), and (Y0, Y
′
0 , Y1, Y

′
1) is a deterministic function of (Y, Y ′). Further they satisfy the

look-ahead properties in the previous two equations. We will ignore the error for now since
this only adds at most O(ε) to the final error.

We now claim that conditioned on the fixing of (X0, X
′
0, Y0, Y

′
0 , Y1, Y

′
1) (and ignoring the

error), the random variables (V, V ′, X̂, X̂ ′) and (Ŷ , Ŷ ′) satisfy the conditions required by
Lemma 36. To see this, note that if we fix (Y0, Y

′
0 , Y1, Y

′
1), then the average conditional
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min-entropy of Y is at least s− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3d > 2s/3 as long as c is large
enough. Thus by Theorem 22 we have that

(Ŷ , X0, X
′
0) ≈ε (Us/2, X0, X

′
0).

Thus conditioned on the further fixing of (X0, X
′
0), we have that (Ŷ , Ŷ ′) is a deterministic

function of (Y, Y ′), and s/2 ≥ d2. On the other hand, conditioned on the fixing of (X0, X
′
0)

and (Y0, Y
′
0), we have X1 is still close to uniform. Thus by Theorem 41 we have that for any

i ∈ [L],

|Vi, Y1, Y
′
1 − Um, Y1, Y

′
1 | 6 ε

and there exists i ∈ [L] such that

|Vi, V ′i , Y1, Y
′
1 − Um, V ′i , Y1, Y

′
1 | 6 ε.

We now further fix (Y1, Y
′
1). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are

still independent. Furthermore (V, V ′) is now a deterministic function of (X1, X
′
1), and thus

independent of (Y, Y ′). Finally, note that conditioned on the fixing of (X0, X
′
0, X1, X

′
1), the

average conditional min-entropy of X is at least n− `− 2(d+ 2`+ 2 log(1/ε))− 2 · 3m > 2n/3.
Thus by Theorem 22 we have that

(X̂, Y0, Y
′
0) ≈ε (Un/2, Y0, Y

′
0).

Thus conditioned on the further fixing of (Y0, Y
′
0), we have that (X̂, X̂ ′) is a determ-

inistic function of (X,X ′), and n/2 ≥ d1. Thus, even if conditioned on the fixing of
(X0, X

′
0, X1, X

′
1, Y0, Y

′
0 , Y1, Y

′
1), we have that (X̂ is close to Un/2. Since (V, V ′) is obtained

from (X1, X
′
1, Y1, Y

′
1), we know that (X̂ is close to uniform even given (X0, X

′
0, Y0, Y

′
0 , Y1, Y

′
1)

and (V, V ′). Thus by Lemma 36 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y ′),

where the error is O(Lε) +O(Lε) +O(ε) = O(Lε). J

Next we give another correlation breaker, which recycles the randomness used.

I Construction 44. Inputs:
Let `,m ∈ N be two integers, ε > 0 be an error parameter.
X,Y , two independent sources on n bits with min-entropy at least n− `.
an advice string α ∈ {0, 1}L and an integer 2 ≤ t ≤ L.
An (L, d1, d2, O(Lε))-NIPMy that is strong in X.
Let IP be the two source extractor from Theorem 23.

1. Let d′ = O(log(n/ε)) be the seed length of the extractor from Theorem 22, and let
d = 8 logL

log t d
′. Let X0 be a slice of X with length d+ 2`+ 2 log(1/ε), and Y 0 be a slice of

Y with length d+ 2`+ 2 log(1/ε).
2. Compute Z = IP(X0, Y 0) and output d bits.
3. Use X and Z to do an alternating extraction, and output 3 logL

log t + 1 random variables
X0, · · · , X3 logL

log t
where each Xi has d1 bits.

4. Use Y and Z to do an alternating extraction, and output two random variables Y0, Y1
where each Yi has d2 bits.

5. Use X0, Y0, α to obtain an L×m matrix V 0, where for any i ∈ [L], V 0
i = flip-flop(X0, Y0, αi)

and outputs m bits.
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6. For i = 1 to logL
log t do the following. Merge every t rows of V i−1 using NIPMy and

(X3i−2, Yi), and output d′ bits. Concatenate the outputs to become another matrix W i.
Note that W i has L/ti rows. Then for every row j ∈ [L/ti], compute V ij = Ext(X3i,W

i
j )

to obtain a new matrix V i. Finally let Yi+1 = Ext(Y,X3i−1) and output d2 bits.
7. Output V̂ = V

logL
log t .

We now have the following lemma.

I Lemma 45. There exists a costant c > 1 such that the following holds. Suppose that
for any t ∈ N there exists an (t, d1, d2, O(tε))-NIPMy that is strong in X which outputs
d′ = O(log(n/ε)) bits, then there exists an explicit (n−`, n−`, O(Lε)) correlation breaker with
advice AdvCB : {0, 1}n × {0, 1}n × {0, 1}L → {0, 1}m as long as d1 ≥ 4m, m ≥ c log(d2/ε),
and n ≥ c logL

log t log(n/ε) +max{8 logL
log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε).

Proof. Throughout the proof we will use letters with prime to denote the corresponding
random variables obtained from (X ′, Y ′, α′). First, notice that both X0 and Y 0 have
min-entropy at least d+ `+ 2 log(1/ε). Thus by Theorem 23 we have that

(Z,X0) ≈ε (Ud, X0)

and

(Z, Y 0) ≈ε (Ud, Y 0).

We now ignore the error ε. Note that conditioned on the fixing of (X0, X ′0), (Z,Z ′) is a
deterministic function of (Y 0, Y ′0), and thus independent of (X,X ′). Moreover, the average
conditional min-entropy of X given this fixing is at least n−`−2(d+2`+2 log(1/ε)) ≥ 8 logL

log t d1
as long as c is large enough. Thus by Lemma 27 (note that the extractor from Z side can
use seed length d′) we have that

(Y 0, Y ′0, Z, Z ′, X0, X
′
0, · · · , X3 logL

log t
, X ′3 logL

log t
)

≈O(( logL
log t )2ε) (Y 0, Y ′0, Z, Z ′, Ud1 , X

′
0, · · · , Ud1 , X

′
3 logL

log t
),

where each Ud1 is uniform given the previous random variables, but may depend on later
random variables. Similarly, note that conditioned on the fixing of (Y 0, Y ′0), (Z,Z ′) is a
deterministic function of (X0, X ′0), and thus independent of (Y, Y ′). Moreover, the average
conditional min-entropy of Y given this fixing is at least n− `− 2(d+ 2`+ 2 log(1/ε)) ≥ 4d2.
Thus by Lemma 27 we have that

(Z,Z ′, X0, X ′0, Y0, Y
′
0 , Y1, Y

′
1) ≈O(ε) (Z,Z ′, X0, X ′0, Ud2 , Y

′
0 , Ud2),

where each Ud2 is uniform given the previous random variables, but may depend on later
random variables. We can now fix (X0, X ′0, Y 0, Y ′0), and conditioned on this fixing, we have
that (X,X ′) and (Y, Y ′) are still independent, (X0, X

′
0, · · · , X3 logL

log t
, X ′3 logL

log t
) is a deterministic

function of (X,X ′), and (Y0, Y
′
0 , Y1, Y

′
1) is a deterministic function of (Y, Y ′). Further they

satisfy the look-ahead properties in the previous two equations. We will ignore the error for
now since this only adds at most O(( logL

log t )2ε) to the final error.
Now by Theorem 41 we have that for any i ∈ [L],

|V 0
i , Y0, Y

′
0 − Um, Y0, Y

′
0 | 6 ε
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and there exists i ∈ [L] such that

|V 0
i , V

′0
i , Y0, Y

′
0 − Um, V ′0i , Y0, Y

′
0 | 6 ε.

We now further fix (Y0, Y
′
0). Note that conditioned on this fixing (X,X ′) and (Y, Y ′) are still

independent. Furthermore (V 0, V ′0) is now a deterministic function of (X0, X
′
0), and thus

independent of (Y, Y ′). Thus by the property of NIPMy we have that for every row j in W 1,

(W 1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ , V 0, V ′0, X1, X

′
1),

and there exists a row j such that

(W 1
j ,W

′1
j , V

0, V ′0, X1, X
′
1) ≈O(tε) (Ud′ ,W ′1j , V 0, V ′0, X1, X

′
1).

Note that we have fixed (X0, X ′0, Y 0, Y ′0), and if we further condition on the fixing of
(X0, X

′
0, Y0, Y

′
0 , X1, X

′
1), then (W 1,W ′1) is a deterministic function of (Y, Y ′). Furthermore

(X,X ′) and (Y, Y ′) are still independent. We will now use induction to prove the following
claim (note that we have already fixed (X0, X ′0, Y 0, Y ′0)).

B Claim 46. Let Ti = (Y0, Y
′
0 , X0, X

′
0, · · · , X3i−2, X

′
3i−2). In the i’ th iteration, the following

holds.
1. Conditioned on the further fixing of Ti, we have that (X,X ′) and (Y, Y ′) are still

independent, and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′).
2. For every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),

and there exists a row j such that

(W i
j ,W

′i
j , Ti) ≈εi (Ud′ ,W ′ij , Ti),

where εi = O(
∑i
j=1 t

jε).

Proof of the claim. The base case of i = 1 is already proved above. Now suppose the claim
holds for the i’th iteration, we show that it also holds for the i+ 1’th iteration.

To see this, note that conditioned on the fixing of Ti, (X,X ′) and (Y, Y ′) are still
independent, and furthermore (W i,W ′i) is a deterministic function of (Y, Y ′) and thus
independent of (X,X ′). Note that Yi+1 is computed from Y and X3i−1 while V i is computed
from X3i and W i. Thus if we further fix X3i−1, X

′
3i−1 and (W i,W ′i), then (X,X ′) and

(Y, Y ′) are still independent, and furthermore Yi+1 is a deterministic function of Y and V i
is a deterministic function of X3i. Now W i+1 is computed from V i, X3i+1 and Yi+1. Thus
if we further fix (X3i, X

′
3i) and (X3i+1, X

′
3i+1) (i.e., we have fixed Ti+1) then (X,X ′) and

(Y, Y ′) are still independent, and furthermore (W i+1,W ′i+1) is a deterministic function of
(Y, Y ′).

Next, let h be the row in W i such that

(W i
h,W

′i
h , Ti) ≈εi (Ud′ ,W ′ih , Ti).

Note that V i has the same number of rows as W i, and consider the merging of some
t rows in V i that contain row h into W i+1

j (the merging of the other rows is similar and
simpler). Without loss of generality assume that these t rows are row 1, 2, · · · , t.

First, since for every row j in W i,

(W i
j , Ti) ≈εi (Ud′ , Ti),
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and rows h in W i and W ′i satisfy the independence property, by Theorem 22 (and ignoring
the error εi) we have that for every j ∈ [t],

(V ij , Ti, X3i−1, X
′
3i−1,W

i
j ,W

′i
j ) ≈ε (Um, Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ),

and

(V ih , V ′ih , Ti, X3i−1, X
′
3i−1,W

i
j ,W

′i
j ) ≈ε (Um, V ′ih , Ti, X3i−1, X

′
3i−1,W

i
j ,W

′i
j ).

This is because X3i has average conditional min-entropy at least d1 even conditioned
on the fixing of (X3i−1, X

′
3i−1). We now ignore the error ε. Note that conditioned on the

fixing of (W i
j ,W

′i
j ), we have that (V ij , V ′ij ) is a deterministic function of (X3i, X

′
3i), and

thus independent of (Y, Y ′). We now fix {(W i
j ,W

′i
j ), j ∈ [t]}. Note that conditioned on this

fixing {V ij , j ∈ [t]} and {V ′ij , j ∈ [t]} each is a t ×m matrix, and a deterministic function
of (X3i, X

′
3i). Further note that they form two matrices that meet the condition to apply

an NIPM. Since {(W i
j ,W

′i
j ), j ∈ [t]} is a deterministic function of (Y, Y ′), conditioned on

this fixing (X,X ′) and (Y, Y ′) are still independent. Furthermore the average conditional
min-entropy of Y is at least n − ` − 2(d + 2` + 2 log(1/ε)) − 2d2 − 2td′ ≥ 2d2. Thus by
Theorem 22 we have that

(Yi+1, X3i−1) ≈ε (Ud2 , X3i−1).

Note that conditioned on the fixing of X3i−1, we have that Yi+1 is a deterministic function
of Y . Thus we can now further fix (X3i−1, X

′
3i−1), and conditioned on this fixing, Yi+1 is

still close to uniform. To conclude, now conditioned on the fixing of {(W i
j ,W

′i
j ), j ∈ [t]}

and (X3i−1, X
′
3i−1), we have that {V ij , j ∈ [t]} and {V ′ij , j ∈ [t]} each is a t×m matrix, and

a deterministic function of (X3i, X
′
3i); Yi+1 is still close to uniform and (Yi+1, Y

′
i+1) is a

deterministic function of (Y, Y ′). Furthermore X3i+1 is close to uniform. Now we can use
the property of NIPMy to show that after merging these t rows, the corresponding row j in
W i+1 satisfies

(W i+1
j ,W ′i+1

j , Ti, X3i−1, X
′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1)

≈tε(Ud′ ,W ′i+1
j , Ti, X3i−1, X

′
3i−1, X3i, X

′
3i, X3i+1, X

′
3i+1).

Adding back all the errors we get that

(W i+1
j ,W ′i+1

j , Ti+1) ≈εi+1 (Ud′ ,W ′i+1
j , Ti+1),

where εi+1 = tεi +O(tε) = O(
∑i+1
j=1 t

jε). C

Now we are basically done. In the last iteration we know that W
logL
log t has reduced to one

row, and W
logL
log t is close to uniform given W ′

logL
log t . Also conditioned on the fixing of T logL

log t

they are deterministic functions of (Y, Y ′). Thus when we use W
logL
log t to extract V

logL
log t from

X3 logL
log t

, by Theorem 22 we have that

(V̂ , V̂ ′, Y, Y ′) ≈ (Um, V̂ ′, Y, Y ′),

where the error is O(
∑ logL

log t
j=1 tjε) +O(( logL

log t )2ε) = O(Lε). J
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6 The Constructions of Non-Malleable Extractors

In this section we construct our improved seeded non-malleable extractors and seedless
non-malleable extractors. Both the constructions follow the general approach developed in
recent works [12, 13, 21, 54], i.e., first obtaining an advice and then applying an appropriate
correlation breaker with advice. First we need the following advice generator from [12].

I Theorem 47 ([12]). There exist a constant c > 0 such that for all n > 0 and any ε > 0,
there exists an explicit function AdvGen : {0, 1}n × {0, 1}d → {0, 1}L with L = c log(n/ε)
satisfying the following: Let X be an (n, k)-source, and Y be an independent uniform seed
on d bits. Let Y ′ be a random variable on d bits s.t Y ′ 6= Y , and (Y, Y ′) is independent of
X. Then with probability at least 1− ε, AdvGen(X,Y ) 6= AdvGen(X,Y ′). Moreover, there is
a deterministic function g such that AdvGen(X,Y ) is computed as follows. Let Y1 be a small
slice of Y with length O(log(n/ε)), compute Z = Ext(X,Y1) where Ext is an optimal seeded
extractor from Theorem 22 which outputs O(log(n/ε)) bits. Finally compute Y2 = g(Y,Z)
which outputs O(log(1/ε)) bits and let AdvGen(X,Y ) = (Y1, Y2).

For two independent sources we also have the following slightly different advice generator.

I Theorem 48 ([12]). There exist constants 0 < γ < β < 1 such that for all n > 0 and any
ε ≥ ε′ for some ε′ = 2−Ω(n), there exists an explicit function AdvGen : {0, 1}n × {0, 1}n →
{0, 1}L with L = 2βn+O(log(1/ε)) satisfying the following: Let X,Y be two independent
(n, (1− γ)n)-sources, and (X ′, Y ′) be some tampered versions of (X,Y ), such that (X,X ′) is
independent of (Y, Y ′). Furthermore either X 6= X ′ or Y 6= Y ′. Then with probability at least
1− ε, AdvGen(X,Y ) 6= AdvGen(X ′, Y ′). Moreover, there is a deterministic function g such
that AdvGen(X,Y ) is computed as follows. Let X1, Y1 be two small slice of X,Y respectively,
with length βn, compute Z = IP(X,Y1) where IP is the inner product two source extractor
from Theorem 23 which outputs Ω(n) bits. Finally compute X2 = g(X,Z), Y2 = g(Y,Z)
which both output O(log(1/ε)) bits and let AdvGen(X,Y ) = (X1, X2, Y1, Y2).

By using these advice generators, the general approach of constructing seeded non-
malleable extractors and seedless non-malleable extractors can be summarized in the following
two theorems.

I Theorem 49. [12, 13, 21, 54] There is a constant c > 1 such that for any n, k, d ∈ N and
ε1, ε2 > 0, if there is a (k− c log(n/ε1), d− c log(n/ε1), ε2) advice correlation breaker AdvCB :
{0, 1}k × {0, 1}d × {0, 1}c log(n/ε1) → {0, 1}m, then there exists an (O(k), ε1 + ε2) seeded non-
malleable extractor nmExt : {0, 1}n×{0, 1}d → {0, 1}m. Furthermore if m ≥ c log(d/ε1) then
there exists an (O(k), ε1 + ε2) seeded non-malleable extractor nmExt : {0, 1}n × {0, 1}O(d) →
{0, 1}Ω(k).

Sketch. The seeded non-malleable extractor is constructed as follows. First use the seed and
the source to obtain an advice as in Theorem 47 with error ε1/3, however when we compute
Z = Ext(X,Y1) we in fact output Z1 = Ext(X,Y1) with k bits and choose Z to be a small slice
of Z1 with length O(log(n/ε)). Then we can fix the random variables (Y1, Y

′
1 , Z, Z

′, Y2, Y
′
2).

Note that conditioned on this fixing (X,X ′) is still independent of (Y, Y ′), and (Z1, Z
′
1)

is a deterministic function of (X,X ′) thus is independent of (Y, Y ′). Furthermore with
probability 1− ε1/3, Z1 has min-entropy at least k−O(log(n/ε1)) and Y has min-entropy at
least d−O(log(n/ε1)). We can now apply the correlation breaker to (Z1, Y ) and the advice
to get the desired output, where the total error is at most ε1/3 + ε1/3 + ε1/3 + ε2 = ε1 + ε2.
If the output m is large enough (i.e., m ≥ c log(d/ε1)), then we can use it to extract from Y

and then extract again from Z1 to increase the output length to Ω(k). J
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I Theorem 50. [12, 13, 21, 54] There are constants c > 1, 0 < γ < β < 1/100 such that for
any n ∈ N and ε1, ε2 > 0, if there is a ((1−2β)n−c log(n/ε1), (1−2β)n−c log(n/ε1), ε2) advice
correlation breaker AdvCB : {0, 1}n×{0, 1}n×{0, 1}2βn+c log(1/ε1) → {0, 1}m, then there exists
an ((1−γ)n, (1−γ)n, ε1 + ε2) non-malleable two source extractor nmExt : {0, 1}n×{0, 1}n →
{0, 1}m. Furthermore if m ≥ c log(n/ε1) then there exists an ((1 − γ)n, (1 − γ)n, ε1 + ε2)
non-malleable two source extractor nmExt : {0, 1}n × {0, 1}n → {0, 1}Ω(n).

Sketch. The non-malleable two-source extractor is constructed as follows. First use the two
independent sources (X,Y ) to obtain an advice as in Theorem 48 with error ε1/3, then we
can fix the random variables (X1, X

′
1, Y1, Y

′
1 , X2, X

′
2, Y2, Y

′
2). Note that conditioned on this

fixing (X,X ′) is still independent of (Y, Y ′), furthermore with probability 1− ε1/3, both X
and Y have min-entropy at least (1− γ)n− βn− c log(1/ε1) ≥ (1− 2β)n− c log(1/ε1). We
can now apply the correlation breaker to (X,Y ) and the advice to get the desired output,
where the total error is at most ε1/3 + ε1/3 + ε1/3 + ε2 = ε1 + ε2. If the output m is large
enough (i.e., m ≥ c log(d/ε1)), then we can use it to extract from Y and then extract again
from X to increase the output length to Ω(n). J

Combined with our new correlation breakers with advice, we have the following new
constructions of non-malleable extractors.

I Theorem 51. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with
d = O(logn) + log(1/ε)2O(a(log log(1/ε))

1
a ) and m = Ω(k). Alternatively, we can also achieve

entropy k ≥ C logn+ log(1/ε)2C·a(log log(1/ε))
1
a and d = O(logn+ a log(1/ε)).

Proof. The theorem is obtained by combining Theorem 49, Lemma 43 and Lemma 36. We
choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 36. Thus the total
error is O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take ε′ = ε

c log(n/ε)
for some constant c > 1. We know ` = O(log(n/ε′)). Therefore to apply Lemma 43 and
Lemma 36, we need to find m, d′, d1, d2 such that

d′ ≥ c(log max{d1, d2}+log(1/ε′)),m ≥ d′, d1 ≥ 8a ·d′+6m and d2 ≥ 8a ·d′+ca·log
1
a L ·d′.

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

It can be seen that we can take m = O(log(n/ε′)), d′ = O(log logn + log(1/ε′)), d1 =
8a · d′ + 6m = O(logn+ a log(1/ε′)) and d2 = 2O(a(log log(n/ε′))

1
a ) · d′. We now consider two

cases. First, log(1/ε′) > logn

c′a(log logn)
1
a

for some large constant c′. In this case we have that

log(1/ε′) > logn
c′a(log logn)

1
a

>
√

logn

for any a ≥ 2. Thus

log log(n/ε′)) = log(logn+ log(1/ε′)) < log(log2(1/ε′) + log(1/ε′)) < 2 log log(1/ε′) + 1.

Also note that d′ = O(log logn + log(1/ε′)) = O(log(1/ε′)). Thus in this case we have
d2 ≤ O(log(1/ε′))2O(a(log log(1/ε′))

1
a ) = log(1/ε′)2O(a(log log(1/ε′))

1
a ). Next, consider the case
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where log(1/ε′) ≤ logn

c′a(log logn)
1
a
. In this case note that we have log(1/ε′) < logn and thus

2O(a(log log(n/ε′))
1
a ) < 2O(a(log log(n))

1
a ). Therefore when c′ is large enough and a ≥ 2 we

have that

d2 ≤ 2O(a(log log(n))
1
a )(log logn+ log(1/ε′)) ≤ logn.

Therefore altogether we have that d2 ≤ (logn + log(1/ε′)2O(a(log log(1/ε′))
1
a )) and d =

O(d2 + m + ` + log(1/ε′)) = O(logn) + log(1/ε′)2O(a(log log(1/ε′))
1
a ). Note that log(1/ε′) =

log(1/ε) + log(logn+ log(1/ε)) +O(1), a careful analysis similar as above shows that we also
have that

d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a ).

Note that the correlation breaker is completely symmetric to both sources, and the only
difference is in generating the advice. Thus after advice generation which costs both sources
O(log(n/ε)) entropy, we can switch the role of the seed and the source. Therefore we can
also get the other setting of parameters where k ≥ C logn + log(1/ε)2C·a(log log(1/ε))

1
a and

d = O(logn+ a log(1/ε)). J

By using this theorem, we can actually improve the entropy requirement of the non-
malleable extractor. Specifically, we have the following theorem.

I Theorem 52. There exists a constant C > 1 such that for any constant a ∈ N ,a ≥ ∈,
any n, k ∈ N and any 0 < ε < 1 with k ≥ C(log logn + a log(1/ε)), there is an explicit
construction of a strong seeded (k, ε) non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with
d = O(logn) + log(1/ε)2O(a(log log(1/ε))

1
a ) and m = Ω(k). Alternatively, we can also achieve

entropy k ≥ C log logn+ log(1/ε)2C·a(log log(1/ε))
1
a and d = O(logn+ a log(1/ε)).

Proof. We start by taking a slice of the seed Y1 with length O(log(n/ε)) to extract from the
source, and output some k′ = 0.9k uniform bits with error ε/2. Note that conditioned on the
fixing of (Y1, Y

′
1) where Y ′1 is the tampered version, the two sources are still independent,

and the seed now has average conditional entropy at least d−O(log(n/ε)). We now switch
the role of the seed and the source, and use the output of the extractor from the source as
the seed of a non-malleable extractor and apply Theorem 51 with error ε/2, so that the final
error is ε.

Note that now we know the original seed is different from its tampered version, so we
only need to obtain advice from the original seed and thus the advice size is O(log(d/ε)).
Now we only need

k ≥ C(log d+ a log(1/ε))

and

d−O(log(n/ε)) ≥ C log k + log(1/ε)2C·a(log log(1/ε))
1
a .

Thus we can choose

k ≥ C ′(log logn+ a log(1/ε))

for some slightly larger constant C ′ > 1, while the requirement of the seed is still

d = O(logn) + log(1/ε)2O(a(log log(1/ε))
1
a ).

Similarly, we can switch the role of the seed and the source to get the other setting of
parameters. J
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The next theorem improves the seed length, at the price of using a slightly larger entropy.

I Theorem 53. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε < 1 with
k ≥ C(logn+log(1/ε) log log log(1/ε)), there is an explicit construction of a strong seeded (k, ε)
non-malleable extractor {0, 1}n×{0, 1}d → {0, 1}m with d = O(logn+log(1/ε)(log log(1/ε))2)
and m = Ω(k).

Proof. The theorem is obtained by combining Theorem 49, Lemma 43 and Lemma 38. Again,
We choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 38. Thus
the total error is O(Lε′) where L = O(log(n/ε′)). To ensure O(Lε′) = ε it suffices to take
ε′ = ε

c log(n/ε) for some constant c > 1. We also know ` = O(log(n/ε′)) in Lemma 43. Thus
to apply Lemma 38, we need to find m, d1, d2 such that (for simplicity, we choose a = 4 in
Lemma 38),

m ≥ c log(d2/ε
′), d1 ≥ 20c log logL log(d2/ε

′) + 6m and d2 ≥ 20c log2 L log(d1/ε
′).

Then we can take

k = O(d1 +m+ `+ log(1/ε′)) and d = O(d2 +m+ `+ log(1/ε′)).

A careful but tedious calculation shows that we can choose
k ≥ C(logn + log(1/ε′) log log log(1/ε′)) for some large enough constant C > 1, and
d = O(logn + log(1/ε′)(log log(1/ε′))2). Note that we can choose m = O(log(n/ε′)) for
a large enough constant in O(.), thus by Theorem 49 we can get an output length of Ω(k).
Finally, note that log(n/ε′) = O(log(n/ε)), thus the theorem follows. J

Similar to what we have done above, we can also use this to get improved parameters.
Specifically, we have

I Theorem 54. There exists a constant C > 1 such that for any n, k ∈ N and 0 < ε <

1 with k ≥ C(log logn + log(1/ε) log log log(1/ε)), there is an explicit construction of a
strong seeded (k, ε) non-malleable extractor {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn+
log(1/ε)(log log(1/ε))2) and m = Ω(k). Alternatively, we can also achieve entropy k ≥
C(log logn+ log(1/ε)(log log(1/ε))2) and seed length d = O(logn+ log(1/ε) log log log(1/ε)).

For non-malleable two-source extractors we have the following theorem.

I Theorem 55. There exists a constant 0 < γ < 1 and a non-malleable two-source extractor
for (n, (1− γ)n) sources with error 2−Ω(n log logn/ logn) and output length Ω(n).

Proof. The theorem is obtained by combining Theorem 50, Lemma 45 and Lemma 36.
Again, we choose an error ε′ to be the error in Theorem 49, Lemma 43 and Lemma 38.
Thus the total error is O(Lε′) where L = O(n). To ensure O(Lε′) = ε it suffices to take
ε′ = ε

cn for some constant c. We also know ` = 2βn+ o(n) for some constant β < 1/100 in
Lemma 45. We choose a = 2 in Lemma 36 and thus we obtain a correlation breaker with
m = O(log(n/ε′)), d1 = O(log(n/ε′)) and d2 = log(n/ε′)2O(

√
log t) where t is the parameter

in Construction 44 with t ≤ L. Note that this also satisfies that d1 ≥ 4m and m ≥ c log(d2/ε)
as required by Lemma 45.

Now we need to ensure that

(1− β)n ≥ c logL
log t log(n/ε′) +max{8 logL

log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε′),
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where d′ = O(log(n/ε′)). We choose t = logL
log logL and this gives us

(1− 12β)n ≥ C logL
log logL log(n/ε′),

for some constant C > 1. Note that log(n/ε′) = O(log(n/ε)) thus we can set ε =
2−Ω(n log logn/ logn) and satisfy the above inequality. J

For applications in two-source extractors, we first need the following generalization of
non-malleable extractors, which allows multiple tampering.

I Definition 56 (Seeded t-Non-malleable extractor). A function snmExt : {0, 1}n×{0, 1}d →
{0, 1}m is a seeded t-non-malleable extractor for min-entropy k and error ε if the following
holds : If X is a source on {0, 1}n with min-entropy k and A1, · · · ,At : {0, 1}d → {0, 1}d
are t arbitrary tampering functions with no fixed points, then∣∣snmExt(X,Ud) ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud

− Um ◦ {snmExt(X,Ai(Ud)), i ∈ [t]} ◦ Ud
∣∣ < ε

where Um is independent of Ud and X.

The following theorem is a special case of Theorem 8.6 proved in [54].

I Theorem 57. Suppose there is a function f , a constant γ > 0 and an explicit non-malleable
two-source extractor for (f(ε), (1− γ)f(ε)) sources with error ε and output length Ω(f(ε)).
Then there is a constant C > 0 such that for any 0 < ε < 1 with k ≥ Ct2(logn + f(ε)),
there is an explicit strong seeded t-non-malleable extractor for (n, k) sources with seed length
d = Ct2(logn+ f(ε)), error O(tε) and output length Ω(f(ε)).

Combined with Theorem 55, this immediately gives the following theorem.

I Theorem 58. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ Ct2(logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded t-non-malleable extractor
for (n, k) sources with seed length d = Ct2(logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ), error O(tε) and output
length Ω(k/t2). As a special case, there exists a seeded non-malleable extractor for entropy
k ≥ C(logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ) and seed length d = C(logn+ log(1/ε) log log(1/ε)
log log log(1/ε) ).

Similar techniques as above can reduce the logn term in the entropy requirement to
log logn, so we get

I Theorem 59. There is a constant C > 0 such that for any 0 < ε < 1 and n, k ∈ N with
k ≥ C(log logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ), there is an explicit strong seeded non-malleable extractor
for (n, k) sources with seed length and seed length d = C(logn+ log(1/ε) log log(1/ε)

log log log(1/ε) ).

Ben-Aroya et. al [8] proved the following theorem.

I Theorem 60 ([8]). Suppose there is a function f and an explicit strong seeded t-non-
malleable extractor (n, k′) sources with seed length and entropy requirement d = k′ = f(t, ε),
then for every constant ε > 0 there exist constants t = t(ε), c = c(ε) and an explicit extractor
Ext : ({0, 1}n)2 → {0, 1} for two independent (n, k) sources with k ≥ f(t, 1/nc) and error ε.

Combined with Theorem 53, this immediately gives the following theorem.

I Theorem 61. For every constant ε > 0, there exists a constant C > 1 and an explicit two
source extractor Ext : ({0, 1}n)2 → {0, 1} for entropy k ≥ C logn log logn

log log logn with error ε.
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7 Non-Malleable Two-Source Extractor and Non-Malleable Code

Formally, non-malleable codes are defined as follows.

I Definition 62 ([1]). Let NMk denote the set of trivial manipulation functions on k-
bit strings, which consists of the identity function I(x) = x and all constant functions
fc(x) = c, where c ∈ {0, 1}k. Let E : {0, 1}k → {0, 1}m be an efficient randomized encoding
function, and D : {0, 1}m → {0, 1}k be an efficient deterministic decoding function. Let
F : {0, 1}m → {0, 1}m be some class of functions. We say that the pair (E,D) defines an
(F , k, ε)-non-malleable code, if for all f ∈ F there exists a probability distribution G over
NMk, such that for all x ∈ {0, 1}k, we have

|D(f(E(x)))−G(x)| ≤ ε.

I Remark 63. The above definition is slightly different form the original definition in [36].
However, [1] shows that the two definitions are equivalent.

We will mainly be focusing on the following family of tampering functions in this paper.

I Definition 64. Given any t > 1, let Stn denote the tampering family in the t-split-state-
model, where the adversary applies t arbitrarily correlated functions h1, · · · , ht to t separate,
n-bit parts of string. Each hi can only be applied to the i-th part individually.

We remark that even though the functions h1, · · · , ht can be correlated, their correlation
is independent of the original codewords. Thus, they are actually a convex combination
of independent functions, applied to each part of the codeword. Therefore, without loss of
generality we can assume that each hi is a deterministic function, which acts on the i-th part
of the codeword individually.We will mainly consider the case of t = 2, i.e., the two-split-state
model. We recall the original definition of non-malleable two-source extractors by Cheraghchi
and Gursuswami [18]. First we define the following function.

copy(x, y) =
{
x if x 6= same?

y if x = same?

I Definition 65 (Seedless Non-Malleable 2-Source Extractor). A function nmExt : ({0, 1}n)2 →
{0, 1}m is a (k, ε)-seedless non-malleable extractor for two independent sources, if it satisfies
the following property: Let X,Y be two independent (n, k) sources, and f1, f2 : {0, 1}n →
{0, 1}n be two arbitrary tampering functions, then
1. |nmExt(X,Y )− Um| ≤ ε.
2. There is a distribution D over {0, 1}m∪{same?} such that for an independent Z sampled

from D, we have

(nmExt(X,Y ), nmExt(f1(X), f2(Y ))) ≈ε (nmExt(X,Y ), copy(Z, nmExt(X,Y ))).

Cheraghchi and Gursuswami [18] showed that the relaxed definition 5 implies the above
general definition with a small loss in parameters. Specifically, we have

I Lemma 66 ([18]). Let nmExt be a (k − log(1/ε), ε)-non-malleable two-source extractor ac-
cording to Definition 5. Then nmExt is a (k, 4ε)-non-malleable two-source extractor according
to Definition 65.

The following theorem was proved by Cheraghchi and Gursuswami [18], which establishes
a connection between seedless non-malleable extractors and non-malleable codes.
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I Theorem 67. Let nmExt : {0, 1}n × {0, 1}n → {0, 1}m be a polynomial time computable
seedless 2-non-malleable extractor at min-entropy n with error ε. Then there exists an explicit
non-malleable code with an efficient decoder in the 2-split-state model with block length = 2n,
rate = m

2n and error = 2m+1ε.
One can construct a non-malleable code in the 2-split-state model from a non-malleable

two-source extractor as follows: Given any message s ∈ {0, 1}m, the encoding Enc(s) is done
by outputting a uniformly random string from the set nmExt−1(s) ⊂ {0, 1}2n. Given any
codeword c ∈ {0, 1}2n, the decoding Dec(c) is done by outputting nmExt(c). Thus, to get an
efficient encoder we need a way to efficiently uniformly sample from the pre-image of any
output of the extractor.

Since our new non-malleable two-source extractor follows the same structure as in [54],
we can use the same sampling procedure there to efficiently uniformly sample from the
pre-image of any output of the extractor. We briefly recall the construction and sampling
procedure in [54].

The extractor construction and sampling

The high level structure of the non-malleable two-source extractor in [54] is as follows. First
take two small slices (X1, Y1) of both sources and apply the inner product based two-source
extractor, as in Theorem 23. Then, use the output to sample O(log(1/ε)) bits from the
encodings of both sources, using a randomness efficient sampler and an asymptotically good
linear encoding of the sources. We need an asymptotically good encoding since then we
only need to sample O(log(1/ε)) bits to ensure that the sampling of two different codewords
are different with probability at least 1− ε. The advice is then obtained by combining the
slices and the sample bits. Now, take two larger slices (X2, Y2) of both sources and apply the
correlation breaker. Finally, take another larger slice of either source (say X3 from X) and
apply a strong linear seeded extractor, which is easy to invert and has the same pre-image
size for any output. By limiting the size of each slice to be small, the construction ensures
that there are at least n/2 bits of each source that are only used in the encoding of the
sources but never used in the subsequent extraction.

Now to sample uniformly from the pre-image of any output, we first uniformly inde-
pendently generate the slices (X1, Y1, X2, Y2) and the sampled bits Z. From these we can
compute the coordinates of the sampled bits and the output of the correlation breaker. Now
we can invert the linear seeded extractor and uniformly sample X3 given the output of the
extractor and the output of the correlation breaker (which is used as the seed of the linear
seeded extractor). Now, to sample the rest of the bits, we need to condition on the event
that the sample bits from the encoding of the sources are indeed Z. Note that Z has size at
most αn for some small constant α < 1/2 since we can restrict the error to be at least some
2−Ω(n). Also note that for each source we have already sampled some bits but there are still
at least n/2 un-sampled free bits, thus we insist on that no matter which αn columns of the
generating matrix of the encoding we look at, the sub matrix corresponding to these columns
and the last n/2 rows have full column rank. If this is true then no matter which coordinates
we use and what Z is, the pre-image always have the same size and we can uniformly sample
from the pre-image by solving a system of linear equations.

In [54], we use the Reed-Solomn encoding for each source with field Fq for q ≈ n. This is
asymptotically good and also satisfies the property that any sub matrix with less columns
than rows has full column rank since it is a Vandermonde matrix. However in this case
each symbol has roughly logn bits so we can sample at most n/ logn symbols (otherwise
fixing them may already cost us all the entropy), thus the best error we can get using this
encoding is 2−n/ logn.
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We now give a new construction of non-malleable two-source extractors for two (n, (1−γ)n)
sources, where 0 < γ < 1 is some constant. First, we need the following ingredients.

I Theorem 68 ([54]). There exists a constant 0 < α < 1 such that for any n ∈ N and
2−αn < ε < 1 there exists a linear seeded strong extractor IExt : {0, 1}n × {0, 1}d → {0, 1}0.3d
with d = O(log(n/ε)) and the following property. If X is a (n, 0.9n) source and R is an
independent uniform seed on {0, 1}d, then

|(IExt(X,R), R)− (U0.3d, R)| ≤ ε.

Furthermore for any s ∈ {0, 1}0.3d and any r ∈ {0, 1}d, |IExt(·, r)−1(s)| = 2n−0.3d.

I Definition 69 (Averaging sampler [64]). A function Samp : {0, 1}r → [n]t is a (µ, θ, γ)
averaging sampler if for every function f : [n]→ [0, 1] with average value 1

n

∑
i f(i) > µ, it

holds that

Pr
i1,...,it←Samp(UR)

[
1
t

∑
i

f(i) < µ− θ

]
≤ γ.

Samp has distinct samples if for every x ∈ {0, 1}r, the samples produced by Samp(x) are all
distinct.

I Theorem 70 ([64]). Let 1 ≥ δ ≥ 3τ > 0. Suppose that Samp : {0, 1}r → [n]t is an (µ, θ, γ)
averaging sampler with distinct samples for µ = (δ−2τ)/ log(1/τ) and θ = τ/ log(1/τ). Then
for every δn-source X on {0, 1}n, the random variable (Ur, XSamp(Ur)) is (γ+ 2−Ω(τn))-close
to (Ur,W ) where for every a ∈ {0, 1}r, the random variable W |Ur=a is (δ − 3τ)t-source.

I Theorem 71 ([64]). For every 0 < θ < µ < 1, γ > 0, and n ∈ N , there is an explicit
(µ, θ, γ) averaging sampler Samp : {0, 1}r → [n]t that uses

t distinct samples for any t ∈ [t0, n], where t0 = O( 1
θ2 log(1/γ)), and

r = log(n/t) + log(1/γ)poly(1/θ) random bits.

7.1 A new advice generator
Here we show that we can give a new advice generator with optimal advice length. We have
the following construction. Let (X,Y ) be two independent (n, (1− τ)n) sources. Let IP be
the inner product two-source extractor from Theorem 23, and Samp : be the sampler from
Theorem 70. Let L > 0 be a parameter, and c > 0 be a constant to be chosen later. We have
the following algorithm.

1. Let n1 = 3τn. Divide X into X = (X1, X2) such that X1 has n1 bits and X2 has
n2 = (1− 3τ)n bits. Similarly divide Y into Y = (Y1, Y2) such that Y1 has n1 bits and
Y2 has n2 = (1− 3τ)n bits.

2. Compute Z = IP(X1, Y1) which outputs r = Ω(n) ≤ τn bits.
item Let F be the finite field F2logn . Let n0 = n2

logn . Let RS : Fn0 → Fn be the
Reed-Solomon code encoding n0 symbols of F to n symbols in F (we slightly abuse the
use of RS to denote both the code and the encoder). Thus RS is a [n, n0, n − n0 + 1]n
error correcting code. Let X̂2 be X2 written backwards, and similarly Ŷ2 be Y2 written
backwards. Let X2 = RS(X̂2) and Y 2 = RS(Ŷ2).

3. Use Z to sample r/ logn distinct symbols from X2 (i.e., use each logn bits to sample
a symbol), and write the symbols as a binary string X̃2. Note that X̃2 has r bits.
Similarly, use Z to sample r/ logn distinct symbols from Y 2 and obtain a binary string
Ỹ2 with r bits.
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4. Let V1 = X1 ◦ Y1 ◦ X̃2 ◦ Ỹ2.
5. Take a slice of X2 with length 15τn, and let it be X3. Similarly, take a slice of Y2 with

length 10τn, and let it be Y3. Compute W = IP(X3, Y3) which outputs r = Ω(n) ≤ τn
bits.

6. Take a slice of X2 with length 40τn, and let it be X4. Use W and X4 to do an alternating
extraction protocol for L = log∗ n6 rounds, and output (R1, · · · , RL) = laExt(X4,W ),
where each Si, Ri used in the alternating extraction has τn/ logn bits.

7. Set i = 1 and let n1 be the length of V1, which is at most 8τn. While L < c logni do
the following: encode Vi to Ṽi using an asymptotically good binary error correcting code.
Cut Ri into O(logni) bits. Use the sampler from Theorem 71 and Ri to sample logni
bits of Ṽi, let the sampled string be Vi. Set Vi+1 = Ri ◦ Vi and let i = i+ 1.

8. Finally, cut Ri into O(logni) bits. Use the sampler from Theorem 71 and Ri to sample
L− |Ri| bits of Ṽi, let the sampled string be Vi. Set α̃ = Ri ◦ Vi which has length L.

We have the following lemma.

I Lemma 72. There are constants 0 < τ, µ < 1 and C > 1 such that the following holds.
Let (X,Y ) be two independent (n, (1− τ)n) sources, and (X ′, Y ′) be their tampered versions.
Assume that either the tampering function f on X or the tampering function g on Y has no
fixed point. For any L such that C ≤ L ≤ µn

logn , with probability 1− 2−Ω(L) over the fixing of
(X1, Y1, X̃2, Ỹ2, X3, Y3, X4) and the tampered versions (X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), we have
that α̃ 6= α̃′. Moreover, conditioned on these fixings, X and Y are independent, and the
average conditional min-entropy of both X and Y is (1−O(τ))n.

Proof. As usual we use letters with primes to denote the tampered versions of random
variables. First note that both X1 and Y1 have min-entropy at least 2τn, thus by Theorem 23,
we have that

(Z,X1) ≈2−Ω(n) (U,X1),

and

(Z, Y1) ≈2−Ω(n) (U, Y1).

If X1 6= X ′1 or Y1 6= Y ′1 then we have V1 6= V ′1 . Now consider the case where X1 6= X ′1
and Y1 6= Y ′1 . In this case we have Z = Z ′ and either X2 6= X ′2 or Y2 6= Y ′2 . Without loss of
generality assume that X2 6= X ′2. We can now first fix (X1, X

′
1). Note that conditioned on this

fixing, Z = Z ′ is a deterministic function of Y , and thus independent of (X2, X
′
2). The Reed-

Solomon encoding of X̂2 and X̂ ′2 ensures that X2 and X ′2 differ in at least n− n0 + 1 > 0.9n
symbols. Thus, with probability 1− 2−Ω(n) − 2−Ω(r/ logn) = 1− 2−Ω(n/ logn) over Z, we have
that X̃2 6= X̃ ′2. Therefore, altogether with probability 1 − 2−Ω(n/ logn) over the fixing of
(X1, Y1, X̃2, Ỹ2) and (X ′1, Y ′1 , X̃ ′2, Ỹ ′2) we have that V1 6= V ′1 .

We now fix (X1, Y1, X̃2, Ỹ2) and (X ′1, Y ′1 , X̃ ′2, Ỹ ′2). Note that conditioned on this fixing,
X and Y are independent. Moreover, the average conditional min-entropy of both X3 and
Y3 is at least 15τn− τn− 2τn− 3τn = 9τn. Thus by Theorem 23, we have that

(W,X3) ≈2−Ω(n) (U,X3).

6 Here by log∗ n we mean the number of steps it takes to get down to c′ by computing n→ c logn for
some constants c, c′.
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We ignore the error for now since this only adds 2−Ω(n) to the final error. We now fix
(X3, X

′
3). Note that conditioned on this fixing, (W,W ′) is a deterministic function of (Y, Y ′),

and thus independent of (X,X ′). Further, the average conditional min-entropy of X4 is at
least 40τn − τn − 2(15τn + τn) − 3τn = 4τn. Thus by Lemma 27 we have that for any
0 ≤ j ≤ L− 1,

(W,W ′, {R1, R
′
1, · · · , Rj , R′j}, Rj+1) ≈ε′ (W,W ′, {R1, R

′
1, · · · , Rj , R′j}, U),

where ε′ = O(L2−Ω(n/ logn)) = 2−Ω(n/ logn). Since conditioned on the fixing of (W,W ′), the
random variables {Ri, R′i} are deterministic functions of (X,X ′) and independent of (Y, Y ′),
we also have that

(Y3, Y
′
3 , {R1, R

′
1, · · · , Rj , R′j}, Rj+1) ≈ε′ (Y3, Y

′
3 , {R1, R

′
1, · · · , Rj , R′j}, U).

We now further fix (Y3, Y
′
3). Note that now we have fixed (X1, Y1, X̃2, Ỹ2, X3, Y3) and

(X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3). Ignoring the error for now let’s assume that V1 6= V ′1 (note that
(V1, V

′
1) are now fixed) and for any 0 ≤ j ≤ L− 1,

({R1, R
′
1, · · · , Rj , R′j}, Rj+1) = ({R1, R

′
1, · · · , Rj , R′j}, U).

Let j be the index when the protocol executes step 8. We know that j ≤ L since in each
step the length of the string Vi goes from ni to O(logni). We have the following observation.
For any 1 ≤ i ≤ j, we have that Vi is a deterministic function of (R1, · · · , Ri−1); similarly,
V ′i is a deterministic function of (R′1, · · · , R′i−1). Next, we have the following claim.

B Claim 73. For any 1 ≤ i < j, suppose that conditioned on the fixing of
(R1, · · · , Ri−1), (R′1, · · · , R′i−1) we have Vi 6= V ′i , then with probability 1 − 2−Ω(logni) over
the further fixing of (Ri, R′i), we have Vi+1 6= V ′i+1. Suppose that conditioned on the fixing
of (R1, · · · , Rj−1), (R′1, · · · , R′j−1) we have Vj 6= V ′j , then with probability 1− 2−Ω(L) over
the further fixing of (Rj , R′j), we have α̃ 6= α̃′.

Proof of the claim. Suppose that conditioned on the fixing of (R1, · · · , Ri−1), (R′1, · · · , R′i−1)
we have Vi 6= V ′i . Note that now (Vi, V ′i ) is also fixed. We know that Ri is still uniform.
Again, we have two cases. First, if Ri 6= R′i, then we definitely have Vi+1 6= V ′i+1. Otherwise,
we have Ri = R′i. The encoding of Vi and V ′i ensures that at least a constant fraction of bits
in Ṽi and Ṽi

′ are different. Thus by Theorem 71 with probability 1 − 2−Ω(logni) over the
further fixing of (Ri, R′i), we have that Vi 6= Vi

′ and thus Vi+1 6= V ′i+1.
For the case of i = j, the argument is the same, except now we are sampling L−O(lognj)

bits, and the probability that Vi 6= Vi
′ is 2−Ω(L−O(lognj)) = 2−Ω(L) since L ≥ c lognj . C

Now we are basically done. Since we start with V1 6= V ′1 , at the end the probability that
α̃ 6= α̃′ is at least

Πj−1
i=1 (1− 2−Ω(logni)) · (1− 2−Ω(L)).

Note that for any 1 ≤ i < j we have ni+1 = O(logni), so 2−Ω(logni) ≤ 2−Ω(logni)/2.
Thus the terms 2−Ω(logni) form at least a geometric expression and hence this probability
is at least 1 − O(2−Ω(L)) = 1 − 2−Ω(L). Adding back all the errors, and noticing that
C ≤ L ≤ µn

logn for some properly chosen constants C and µ, the final error is still 1− 2−Ω(L).
Moreover, since the size of each random variable in (X1, Y1, X̃2, Ỹ2, X3, Y3, X4) is at most
O(τn), conditioned on the fixing of (X1, Y1, X̃2, Ỹ2, X3, Y3, X4) and the tampered versions
(X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), the average conditional min-entropy of both X and Y is (1 −
O(τ))n. J
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We now use the above advice generator to give a new construction of non-malleable
two-source extractors. Let (X,Y ) be two independent (n, (1− γ)n) sources with γ ≤ τ where
τ is the constant in Lemma 72.

Let AdvGen be the advice generator from Lemma 72 for some error ε1.
Let AdvCB be the correlation breaker with advice from Lemma 45 with error some ε2,
using the merger from Lemma 36.
Let IExt be the invertible linear seeded extractor form Theorem 68.

1. Compute α̃ = AdvGen(X,Y ).
2. Consider the unused part of X. Divide it into (X5, X6, X7) where X5, X6 has length

αn, βn for some constants β > α > γ, and X7 is the rest of X with length at least n/2.
Similarly, divide the unused part of Y into (Y5, Y6, Y7) where Y5, Y6 has length αn, βn
and Y7 is the rest of Y with length at least n/2 (this can be ensured by choosing α, β, γ
to be small enough).

3. Compute V = AdvCB(X5, Y5, α̃) which outputs d = O(log(n/ε2)) bits.
4. Finally compute W = IExt(Y6, V ) which outputs Ω(n) bits.

We need the following proposition.

I Proposition 74 ([18]). Let D and D′ be distributions over the same finite space Ω, and
suppose they are ε-close to each other. Let E ⊆ Ω be any event such that D(E) = p. Then,
the conditional distributions D|E and D′|E are (ε/p)-close.

We now have the following theorem.

I Theorem 75. Assume that either the tampering function f on X or the tampering
function g on Y has no fixed point. There exist a constant C > 1 such that as long as
n ≥ C log log(1/ε1)

log log log(1/ε1) log(n/ε2), the above non-malleable two-source extractor gives a non-
malleable code with error ε1 +O(log(1/ε1)√ε2) and rate Ω(log(1/ε2)/n).

Proof. First note that by Lemma 72, conditioned on the fixing of H = (X1, Y1, X̃2, Ỹ2, X3, Y3,

X4) and the tampered versions H ′ = (X ′1, Y ′1 , X̃ ′2, Ỹ ′2 , X ′3, Y ′3 , X ′4), X and Y are independent,
and the average conditional min-entropy of both X and Y is (1−O(γ))n. If in addition we
have that α̃ 6= α̃′, then we will apply Lemma 45 and Lemma 36. Note that in order to set the
error of the advice generator to be ε1, we need to set the advice length to be L = O(log(1/ε1))
by Lemma 72. Thus in Lemma 45 we need to merge L = O(log(1/ε1)) rows.

Again, as in Theorem 55, we know that when we apply the correlation breaker to X5
and Y5, the entropy loss of both of them is O(γn). By choosing α, β, γ appropriately we
can ensure that X5 and Y5 have sufficient entropy in them. We choose a = 2 in Lemma 36
and thus we obtain a correlation breaker with m = O(log(n/ε2)), d1 = O(log(n/ε2)) and
d2 = log(n/ε2)2O(

√
log t) where t is the parameter in Construction 44 with t ≤ L. Note that

this also satisfies that d1 ≥ 4m and m ≥ c log(d2/ε) as required by Lemma 45.
Now we need to ensure that

(α−O(γ))n ≥ c logL
log t log(n/ε2) +max{8 logL

log t d1, 2t · d′ + 4d2}+ 5`+ 4 log(1/ε2),

where d′ = O(log(n/ε2)). We choose t = logL
log logL and this gives us

n ≥ C logL
log logL log(n/ε2),
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for some constant C > 1. That is, we need

n ≥ C log log(1/ε1)
log log log(1/ε1) log(n/ε2),

for some constants C > 1. As long as this condition is satisfied, conditioned on the event
that α̃ 6= α̃′, we have that

(V, V ′, H,H ′, X,X ′) ≈O(Lε2) (U, V ′, H,H ′, X,X ′).

By choosing β > α appropriately, we can ensure that conditioned on the fixing of
the previous random variables in the computation, Y6 has entropy Ω(n) and (V, V ′) is a
deterministic function of (X,X ′) and thus independent of (Y, Y ′). Thus eventually we get

(W,W ′, H,H ′, X,X ′) ≈O(Lε2) (U,W ′, H,H ′, X,X ′).

However, note that our construction is a two-source extractor itself. Thus, regardless of
whether α̃ 6= α̃′, we have that

(W,H,H ′, X,X ′) ≈O(Lε2) (U,H,H ′, X,X ′).

We can cut the output length of the extractor to be m = Θ(log(1/ε2)) such that for any
s in the support, we have Pr[U = s] = 2−m = √ε2. Thus we have for any s,

(H,H ′, X,X ′|W = s) ≈O(L√ε2) (H,H ′, X,X ′|U = s).

This means for any s,

(H,H ′, X,X ′|W = s) ≈O(L√ε2) (H,H ′, X,X ′).

Let A be the event that α̃ 6= α̃′. Note that Pr[A] ≥ 1 − ε1. Since A is determined by
(H,H ′), we have that for any s, |Pr[A|W = s]− Pr[A]| ≤ O(L√ε2).

We now consider the probability distribution (W ′|W = s,A). This time we first condition
on A. Note that conditioned on this event, we have

(W,W ′, H,H ′, X,X ′) ≈O(Lε2) (U,W ′, H,H ′, X,X ′).

Thus again here we have that for any s,

(W ′, H,H ′, X,X ′|W = s) ≈O(L√ε2) (W ′, H,H ′, X,X ′).

Therefore, we have for any s,

(W ′|W = s,A) ≈O(L√ε2) (W ′|A).

We can now bound the statistical distance between (W ′|W = s) and W ′. We have∣∣(W ′|W = s)−W ′
∣∣

=
∣∣(Pr[A|W = s](W ′|W = s,A) + Pr[Ā|W = s](W ′|W = s, Ā))− (Pr[A](W ′|A) + Pr[Ā](W ′|Ā))

∣∣
≤
∣∣Pr[A]((W ′|W = s,A)−W ′|A)

∣∣+
∣∣(Pr[A|W = s]− Pr[A])(W ′|W = s,A)

∣∣
+
∣∣Pr[Ā]((W ′|W = s, Ā)− (W ′|Ā))

∣∣+
∣∣(Pr[Ā|W = s]− Pr[Ā])(W ′|W = s, Ā)

∣∣
≤
∣∣Pr[A]((W ′|W = s,A)−W ′|A)

∣∣+
∣∣Pr[Ā]((W ′|W = s, Ā)− (W ′|Ā))

∣∣+O(L
√
ε2)

≤
∣∣((W ′|W = s,A)−W ′|A)

∣∣+ Pr[Ā]

≤ε1 +O(L
√
ε2).

Note that the distribution of W ′ is a fixed probability distribution which is independent
of s. Thus the construction gives a non-malleable code with error ε1 + O(L√ε2) = ε1 +
O(log(1/ε1)√ε2), and the rate of the code is Ω(log(1/ε2)/n). J
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We need to use the following simple inequality:

I Fact 76. For any 0 < x ≤ 1/3, we have 1− 3x ≤ 1−x
1+x <

1+x
1−x ≤ 1 + 3x.

We now have the following lemma, which gives a construction of non-malleable codes in
the general case.

I Lemma 77. Assume 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfies the following conditions:

It is a two-source extractor for entropy n− log(1/ε′) with error ε′ ≤ 2−(m+2).
It is a non-malleable two-source extractor for entropy n− log(1/ε′), which gives a non-
malleable code in the two-split state model with error ε when either the tampering function
f or the tampering function g has no fixed point.

Then 2Ext gives non-malleable code in the two-split state model with error ε+ 2m+4ε′.

Proof. Consider the tampering function f : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n.
Let X and Y be two independent uniform distributions on {0, 1}n, let p0 = Pr[f(X) = X],
q0 = Pr[g(Y ) = Y ], p1 = Pr[f(X) 6= X] = 1− p0 and q1 = Pr[g(Y ) 6= Y ] = 1− q0. Let the
subsource of X conditioned on f(X) = X be X0, and the subsource of X conditioned on
f(X) 6= X be X1. Thus X = p0X0 + p1X1. Similarly, we can define the subsources Y0, Y1 of
Y such that Y = q0Y0 + q1Y1.

Consider the pairs of subsources (X0, Y0), (X0, Y1), (X1, Y0), and (X1, Y1), which have
probability mass p0q0, p0q1, p1q0 and p1q1 respectively. Note that we have

(X,Y ) = p0q0(X0, Y0) + p0q1(X0, Y1) + p1q0(X1, Y0) + p1q1(X1, Y1).

Let W = 2Ext(X,Y ). Consider any s ∈ {0, 1}m and the uniform distribution on the
pre-image of W = s in (X,Y ), call it Zs. For any i, j ∈ {0, 1}, let the subsource Zij
stand for the uniform distribution on the pre-image of W = s in (Xi, Yj). Further let
rij = Pr[2Ext(Xi, Yj) = s]. Then we have

Zs =
∑
i,j piqjrijZij∑
i,j piqjrij

=
∑
i,j

αijZij ,

where αij = piqjrij∑
i,j
piqjrij

.

We now have the following claim.

B Claim 78. For any i, j ∈ {0, 1}, we have
If either pi < ε′ or qj < ε′, then αij ≤ 2m+1ε′.
Otherwise, |αij/(piqj)− 1| ≤ 2m+2ε′

Proof of the claim. Note that
∑
i,j piqjrij = Pr[W = s], and we have Pr[W = s] ≥ 2−m−ε′ >

2−(m+1). Thus if either pi < ε′ or qj < ε′, we have

αij = piqjrij∑
i,j piqjrij

< 2m+1ε′.

Otherwise, both pi ≥ ε′ and qj ≥ ε′. This means that both Xi and Yj have min-entropy at
least n− log(1/ε′). Therefore we have |rij−2−m| ≤ ε′. Note that αij/(piqj) = rij/Pr[W = s]
and we also have .|Pr[W = s]− 2−m| ≤ ε′. Since ε′ ≤ 2−(m+2) by Fact 76 we have that

|αij/(piqj)− 1| ≤ 2m+2ε′. J
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We now consider the distribution 2Ext(T (Zs)), where for any distribution Z on {0, 1}n ×
{0, 1}n, T (Z) stands for the distribution (f(x), g(y)) where (x, y) is sampled from Z. Note
that 2Ext(Zs) is fixed to s and and 2Ext(T (Zs)) is the distribution of the decoded message after
tampering. We have that T (Zs) =

∑
i,j αijT (Zij) and 2Ext(T (Zs)) =

∑
i,j αij2Ext(T (Zij)).

We will show that this distribution is close to the following distribution. For any i, j ∈ {0, 1}
that are not both 0, if either pi < ε′ or qj < ε′, we define the distribution Dij on {0, 1}m to be
a fixed constant (e.g., Pr[Dij = 0m] = 1); otherwise since both Xi and Yj have min-entropy
at least n− log(1/ε′), 2Ext gives a non-malleable code and thus 2Ext(T (Zij) is ε-close to a
distribution Dij independent of s. We let D00 be the distribution obtained by the identity
function, i.e., for any s, D00 is fixed to be I(s) = s. We now claim that 2Ext(T (Zs)) is close
to the distribution

∑
i,j piqjDij . We have∣∣∣∣∣∣2Ext(T (Zs))−

∑
i,j

piqjDij

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i,j

αij2Ext(T (Zij))−
∑
i,j

piqjDij

∣∣∣∣∣∣
≤
∑
i,j

|αij2Ext(T (Zij))− piqjDij | .

For any i, j ∈ {0, 1}, if either pi < ε′ or qj < ε′, we have the following bound.

|αij2Ext(T (Zij))− piqjDij | ≤ |αij2Ext(T (Zij))|+ |piqjDij | ≤ 2m+1ε′ + ε′ < 2m+2ε′.

Otherwise if i, j are not both 0 we have the following bound.

|αij2Ext(T (Zij))− piqjDij | ≤ piqj |2Ext(T (Zij))−Dij |+ |(αij − piqj)2Ext(T (Zij))|
≤ piqjε+ 2m+2ε′.

For the case of i = j = 0, we have that for any (x, y) ∈ Supp(Z00), f(x) = x and g(y) = y.
Thus 2Ext(T (Zij)) = s = D00 and we have

|αij2Ext(T (Zij))− piqjDij | ≤ piqj |2Ext(T (Zij))−Dij |+ |(αij − piqj)2Ext(T (Zij))|
≤ 2m+2ε′.

Therefore altogether we have∣∣∣∣∣∣2Ext(T (Zs))−
∑
i,j

piqjDij

∣∣∣∣∣∣ ≤
∑
i,j

(piqjε+ 2m+2ε′) = ε+ 2m+4ε′.

Since
∑
i,j piqjDij is obtained by G(s) where G is a fixed probability distribution on the

identity function and constant functions (the distribution of G only depends on f and g, but
not on s), this implies that we have a non-malleable code in the 2 split-state model with
error ε+ 2m+4ε′. J

We now have the following theorem.

I Theorem 79. There are constants 0 < η, µ < 1 such that for any n ∈ N and 2−
µn

logn ≤ ε ≤ η
there exists an explicit non-malleable code in the 2-split-state model with block length 2n, rate
Ω( log log log(1/ε)

log log(1/ε) ) and error ε.

Proof. We combine Theorem 75 and Lemma 77. Note that in Theorem 75, the construction
is itself a two-source extractor for entropy (1 − γ)n with error O(log(1/ε1)ε2). To apply
Theorem 75, we just need to ensure that

n ≥ C log log(1/ε1)
log log log(1/ε1) log(n/ε2)
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for some constant C > 1. We set ε1 = ε/2 and ε2 = 2−Ω( log log log(1/ε)n
log log(1/ε) ). Note that

C
log log(1/ε1)

log log log(1/ε1) log(n/ε2) = O( log log(1/ε)
log log log(1/ε) logn) +O( log log(1/ε)

log log log(1/ε) log(1/ε2)).

Since 2−
µn

logn ≤ ε we have log log(1/ε)
log log log(1/ε) logn = O( log2 n

log logn ). Thus we can set ε2 =

2−Ω( log log log(1/ε)n
log log(1/ε) ) to satisfy the inequality. Now we apply Lemma 77. We can set ε′ =

O(log(1/ε1)ε2) since by Theorem 75 the construction is both a two-source extractor and
a non-malleable two-source extractor for entropy (1 − γ)n, and as long as ε ≤ η for some
appropriately chosen η < 1 we have log(1/ε′) ≤ γn. Since in Theorem 75 we set the output of
the extractor to be m = Θ(log(1/ε2)) such that 2−m = √ε2, we have that ε′ ≤ 2−(m+2) and
2m+4ε′ = O(log(1/ε1)√ε2). Thus by Lemma 77 the final error of the non-malleable code is

ε1 +O(log(1/ε1)
√
ε2) + 2m+4ε′ = ε/2 +O(log(1/ε)

√
ε2).

Finally, notice that
√
ε2 = 2−Ω( log log log(1/ε)n

log log(1/ε) ) ≤ α ε

log(1/ε)

for any arbitrary constant α > 0, since the latter is at least 1
n2−

µn
logn and ε2 is 2−Ω(n log logn

logn ).
Thus the final error of the non-malleable code is at most ε/2 + ε/2 = ε, while the rate of the
code, by Theorem 75, is Ω(log(1/ε2)/n) = Ω( log log log(1/ε)

log log(1/ε) ). J

Next, we show how to achieve better error in the non-malleable two-source extractor and
non-malleable codes. Recall that a bottleneck for error is the use of Reed-Solomon code in
the construction. In order to get better error, we instead use a binary linear error correcting
code and its generating matrix. It is easy to show using standard probabilistic argument
that there exists a binary generating matrix that satisfies our requirements.

I Theorem 80. There exists constants 0 < α, β < 1 such that for any n ∈ N there exists an
n×m matrix over F2 with n = βm which is the generating matrix of an asymptotically good
code. Furthermore, Any sub-matrix formed by taking αn columns and the last n/2 rows has
full column rank. In addition, for some ε = 2−O(n), an ε-biased sample space over nm bits
generates such a matrix with probability 1− 2−Ω(n).

Proof. We take an ε-biased sample space over nm bits for some ε = 2−O(n). First, consider
the sum of the rows over any non-empty subset of the rows. The sum is an m-bit string such
that any non-empty parity is ε-close to uniform. Thus by the XOR lemma it is 2m/2ε-close
to uniform. We know a uniform m-bit string has weight d = m/4 with probability at least
1− 2−Ω(m). Thus for this string the probability is at least 1− 2−Ω(m) − 2m/2ε. By a union
bound the total failure probability is at most 2n(2−Ω(m) + 2m/2ε) = 2−Ω(n) by an appropriate
choice of β and ε = 2−O(n).

Next, consider any sub-matrix formed by taking βm columns and the last n/2 rows, if it’s
truly uniform, then the probability that it has full column rank is at least 1− αn2αn−n/2 ≥
1− 2−n/4 for α < 1/5. Now by a union bound the total failure probability is at most(

m

αn

)
(2−n/4 + ε) ≤

(em
αn

)αn
2−n/4+1 =

(
e

βα

)αn
2−n/4+1,

if we choose ε < 2−n/4. Note that for a fixed β, the quantity ( e
βα )α goes to 1 as α goes

to 0. Thus we can choose α small enough such that this failure probability is also 2−Ω(n).
Therefore altogether the failure probability is 2−Ω(n). J
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Note that an ε-biased sample space over nm bits can be generated using O(log(nm/ε)) =
O(n) bits if ε = 2−O(n). Now for any length n ∈ N , we can compute the generating matrix
(either using an ε-biased sample space or compute it deterministically in 2O(n) time) once in
the pre-processing step, and when we do encoding and decoding of the non-malleable code,
all computation can be done in polynomial time.

Combining Theorem 67 and Theorem 55, we immediately obtain the following theorem.

I Theorem 81. For any n ∈ N there exists a non-malleable code with efficient encoder-
/decoder in the 2-split-state model with block length 2n, rate Ω(log logn/ logn) and error
= 2−Ω(n log logn/ logn).

8 Discussion and Open Problems

Several natural open problems remain here. The most intriguing one is how far we can push
our new techniques. As mentioned above, one bottleneck here is that the computation of the
merger is not a small space computation. If one can find a more succinct way to represent the
computation, then it will certainly lead to further improvements (e.g., decrease the entropy
requirement in two-source extractors to O(logn

√
log logn)). If in addition we can find a way

to apply the recursive construction as in Nisan’s generator [59], then it is potentially possible
to decrease the entropy requirement in two-source extractors to O(logn log log logn). We also
believe our approach has the potential to eventually achieve truly optimal (up to constants)
constructions. In addition, our techniques of treating the errors separately in non-malleable
two-source extractors, may be useful in helping improve the rate of non-malleable codes for
other classes of tampering functions (e.g., the affine tampering function and small depth
circuits studied in [14]).
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Abstract
We establish two results regarding the query complexity of bounded-error randomized algorithms.
Bounded-error separation theorem. There exists a total function f : {0, 1}n → {0, 1} whose ε-error

randomized query complexity satisfies Rε(f) = Ω(R(f) · log 1
ε
).

Strong direct sum theorem. For every function f and every k ≥ 2, the randomized query complexity
of computing k instances of f simultaneously satisfies Rε(fk) = Θ(k · R ε

k
(f)).

As a consequence of our two main results, we obtain an optimal superlinear direct-sum-type theorem
for randomized query complexity: there exists a function f for which R(fk) = Θ(k log k ·R(f)). This
answers an open question of Drucker (2012). Combining this result with the query-to-communication
complexity lifting theorem of Göös, Pitassi, and Watson (2017), this also shows that there is
a total function whose public-coin randomized communication complexity satisfies Rcc(fk) =
Θ(k log k · Rcc(f)), answering a question of Feder, Kushilevitz, Naor, and Nisan (1995).
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1 Introduction

We consider two fundamental questions related to the query complexity of functions in the
bounded-error randomized setting: how the randomized query complexity of total functions
scales with the allowable error ε (the separation problem), and how the query complexity of
computing k instances of a function scales with the complexity of computing only 1 instance
of the same function (the direct sum problem). Standard folklore arguments give upper
bounds on how much the randomized query complexity can depend on ε and on k in these
two problems; the results described below show that these well-known upper bounds are
tight in general.

A randomized algorithm A computes a function f : Xn → {0, 1} over a finite set Xn
with error ε ≥ 0 if for every input x ∈ Xn, the algorithm outputs the value f(x) with
probability at least 1− ε. The query cost of A is the maximum number of coordinates of x
that it queries, with the maximum taken over both the choice of input x and the internal
randomness of A. The ε-error (worst-case) randomized query complexity of f (also known
as the randomized decision tree complexity of f) is the minimum query complexity of an
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algorithm A that computes f with error at most ε. We denote this complexity by Rε(f),
and we write R(f) := R 1

3
(f) to denote the 1

3 -error randomized query complexity of f .
Another natural measure for the query cost of a randomized algorithm A is the expected

number of coordinates of an input x that it queries. Taking the maximum expected number
of coordinates queried by A over all inputs yields the average query cost of A. The minimum
average query complexity of an algorithm A that computes a function f with error at most
ε is the average ε-error query complexity of f , which we denote by Rε(f). We again write
R(f) := R 1

3
(f). Note that R0(f) corresponds to the standard notion of zero-error randomized

query complexity of f .

1.1 Our Results
Bounded-Error Separation Theorem for Query Complexity

One of the first tricks that one learns in the study of randomized algorithm is success
amplification: it is possible to cheaply reduce the error of a randomized algorithm from 1

3
to any ε > 0 by running the algorithm O(log 1

ε ) times and outputting the most frequent
answer. In the context of randomized query complexity, this means that for every function
f : {0, 1}n → {0, 1},

Rε(f) = O
(
R(f) · log 1

ε

)
. (1)

When considering partial functions, it is easy to see that the success amplification trick is
optimal, as there are partial functions for which this relationship is tight (see Section 2.2).
However, in the case of total functions, for many natural functions such as the majority
function, parity function, dictator function, etc., the stronger bound Rε(f) = O

(
R(f)

)
holds

and until now it was not known whether the bound in (1) is tight for any total function. In
fact, even separations between zero-error and 1

3 -error randomized query complexity were
not known until very recently, when Ambainis et al. [2] showed that there exists a total
function f for which R0(f) = Ω̃(R(f)2). Similarly, other separations between randomized
query complexity and other measures of complexity have also only been established very
recently [23, 1, 3, 4, 2].

In this work, we give the first separation within the bounded-error randomized query
complexity setting. Our separation shows that the bound in (1) is optimal in general.

I Theorem 1. For infinitely many values of n and every 2−( n
logn )1/3

< ε ≤ 1
3 , there exists a

total function f : {0, 1}n → {0, 1} with randomized query complexity

Rε(f) = Ω
(
R(f) · log 1

ε

)
.

Note that by the trivial relation Rε(f) ≤ Rε(f) between average and worst-case ran-
domized query complexity, Theorem 1 implies the existence of a function f for which
Rε(f) ≥ Ω

(
R(f) · log 1

ε

)
and Rε(f) ≥ Ω

(
R(f) · log 1

ε

)
, giving optimal separations in both the

worst-case randomized query complexity and average query complexity settings.

Strong Direct Sum Theorem

The direct sum problem asks how the cost of computing a function f scales with the number
k of instances of the function that we need to compute. This problem has received a
considerable amount of attention in the context of query complexity [18, 7, 24, 25, 19, 8, 13],
communication complexity [20, 14, 11, 5, 21, 6], and beyond.
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Given a function f : {0, 1}n → {0, 1} and a parameter k ≥ 2, define fk : {0, 1}n·k →
{0, 1}k by setting fk(x(1), . . . , x(k)) =

(
f(x(1)), . . . , f(x(k))

)
. A simple union bound argument

shows that the randomized query complexity of fk is bounded above by

Rε(fk) = O
(
k ·R ε

k
(f)
)

(2)

since we can run a randomized algorithm A that computes f with error at most ε
k on

each of the k instances. An analogous upper bound holds in the average query complexity
setting as well.

Jain, Klauck, and Santha [19] first considered the problem of showing a direct sum
theorem for randomized query complexity. They showed that for every function f and for
small enough constant δ > 0, Rε(fk) ≥ δ2k · R ε

1−δ+δ(f). Note that in this inequality, the
allowable error on the right-hand side of the equation is larger than the ε error parameter, in
contrast to the upper bound where it is (much) smaller. Ben-David and Kothari [8] obtained
an improved direct sum theorem holds, showing that Rε(fk) ≥ k · Rε(f) holds for every
function. This result is formally stronger since it implies the Jain–Klauck–Santha bound,
but it also does not show that the error parameter on the right-hand-side of the inequality
needs to be smaller than ε, as it is in the upper bound (2).

We show that the bound in (2) is tight in the average-case query complexity model.

I Theorem 2. For every function f : {0, 1}n → {0, 1}, every k ≥ 2, and every 0 ≤ ε ≤ 1
20 ,

Rε(fk) = Ω
(
k · R ε

k
(f)
)
.

We establish Theorem 2 by proving a corresponding strong direct sum theorem in the
distributional setting, as we discuss in more details in Section 1.3. It remains open to
determine whether a similar strong direct sum theorem holds in the worst-case randomized
query complexity model. However, in that setting Shaltiel [25] has shown that a proof of such
a direct sum theorem can’t be obtained via a corresponding theorem in the distributional
setting, as a counterexample shows that direct sum theorems do not hold in this setting
in general.

1.2 Applications
Superlinear Direct-Sum-Type Theorem for Query Complexity

Combining (1) and (2), we obtain a bound on the cost of computing k instances of a
function f with bounded (constant) error and the cost of computing a single instance of the
same function:

R(fk) = O
(
k log k · R(f)

)
. (3)

Drucker [13, Open problem 2] asked if the superlinear dependence on k in (3) is necessary
for any total function f . Theorems 1 and 2 give a positive answer to this question.

I Corollary 3. There exists a total function f : {0, 1}n → {0, 1} such that for all 1 ≤ k ≤
2( n

logn )1/3
,

R(fk) = Θ
(
k log k · R(f)

)
.

Note that Corollary 3 stands in contrast to the quantum query complexity setting, where
such a superlinear dependence on k is not required [10].

CCC 2019
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Superlinear Direct-Sum-Type Theorem for Communication Complexity

Let Rcc(f) denote the minimum amount of communication required of a public-coin ran-
domized protocol that computes a function f : {0, 1}m × {0, 1}n → {0, 1} with error at most
1
3 . As in the query complexity model, the communication complexity of the function fk is
bounded above by

Rcc(fk) = O
(
k log k · Rcc(f)

)
. (4)

Feder, Kushilevitz, Naor, and Nisan [14] showed that this upper bound is not tight in general,
as the equality function satisfies Rcc(Eqk) = O

(
k · Rcc(Eq)

)
.1 They then asked whether

Rcc(fk) = O(k · Rcc(f)) holds for all functions or not [14, Open problem 2 in §7].
In the last few years, there has been much work on related direct sum questions. Molinaro,

Woodruff, and Yaroslavtsev [21, 22] showed that in the one-way communication complexity
model, the equality function does satisfy the superlinear direct sum bound Rcc,→(Eqk) =
Θ
(
k log k · Rcc,→(Eq)

)
. In the two-way communication complexity model that we consider,

Barak, Braverman, Chen, and Rao [6] showed that every function f satisfies the direct sum
R(fk) = Ω̃

(√
k R(f)

)
, and this bound remains the state of the art as far as we know. Using

the connection between information complexity and amortized communication complexity
of Braverman and Rao [9], Ganor, Kol, and Raz [15] also showed that there is a partial
function whose distributional communication complexity is exponentially larger than its
amortized distributional communication complexity, showing that a tight direct sum theorem
cannot hold in general in this setting. None of these results, however, answer Feder et al.’s
original question.

Corollary 3 combined with the randomized query-to-communication lifting theorem of
Göös, Pitassi, and Watson [17] answers Feder et al.’s question by showing that there is a
function f for which the bound in (4) is tight.

I Corollary 4. There is a constant c > 0 and a total function f : {0, 1}n × {0, 1}n → {0, 1}
such that for all 1 ≤ k ≤ 2nc ,

Rcc(fk) = Θ
(
k log k · Rcc(f)

)
.

1.3 Proof Overviews
Bounded-Error Separation Theorem

The proof of Theorem 1 is established by following the general approach used to great effect by
Ambainis et al. [2]: first, identify a partial function f for which the query complexity separation
holds, then design a variant of the Göös–Pitassi–Watson (GPW) pointer function [16] that
“embeds” the partial function into a total function and preserves the same separation.

The first step in this plan is accomplished by observing that the partial gap identity
function GapID : {0, 1}m → {0, 1, ∗} defined by

GapID(x) =


1 if |x| = 0,
0 if |x| = bm2 c,
∗ otherwise

satisfies Rε(GapID) = Θ
(
R(GapID) · log 1

ε

)
for every ε ≥ 2−m.

1 In fact, Feder et al. showed that the private-coin randomized communication complexity of Eq satisfies
the stronger relation Rcc,priv(Eqk) = o

(
k · Rcc,priv(Eq)

)
; their construction also directly establishes

the result stated in the main text.
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Ambainis et al. [2] also used (essentially) the same gap identity function to establish
the separation R0(f) = Ω̃

(
R(f)2). In constructing a GPW pointer function analogue of the

GapID function, however, Ambainis et al. lose a few logarithmic factors: their construction
shows that there exists a total function f : {0, 1}n → {0, 1} with ε-error randomized
query complexity that satisfies Rε(f) = O(

√
n log2 n log 1

ε ) and Rε(f) = Ω(
√
n log 1

ε ). The
polylogarithmic gap between those two bounds is not particularly important when comparing
this query complexity to the zero-error randomized query complexity R0(f) = Ω̃(n) of the
same function, but it makes it impossible to obtain any separation at all between R(f) and
Rε(f) whenever ε = Ω(n− logn). To prove Theorem 1, we need a new variant of the GPW
pointer function whose analysis avoids any gap that is a non-constant function of n.

At a high-level, GPW pointer functions are constructed by defining an n×m array of cells,
whose values are taken from some (typically fairly large) alphabet Σ. The first logarithmic
gap in Ambainis et al.’s upper and lower bounds occurs because the upper bound is measured
in terms of the number of bits queried by the algorithm while the lower bound is in terms of
the number of cells queried by an algorithm. To eliminate this gap, we must either reduce the
size of the alphabet from |Σ| = O(logn) to a constant size or modify the analysis so that both
the upper and lower bounds are in terms of bit-query complexity. We do the latter, using the
notion of resilient functions [12] to show that an algorithm must query a constant fraction
of the bits of a cell to learn anything about the contents of that cell. Resilient functions
were introduced by Chor et al. [12], who gave an essentially optimal construction using basic
linear algebra and the probabilistic method. Sherstov recently created a gadget [26] resilient
to approximate polynomial degree. This gadget is both similar in construction to [12] and
in motivation to our work; it too removes some loss due to function inputs coming from
large alphabets.

The second logarithmic gap in Ambainis et al.’s construction occurs because the location
of the “special” cells that an algorithm seeks to discover in the GPW pointer function can
be found by following a binary tree structure; the upper bound accounts for the logn cell
queries an algorithm requires to follow this structure while the lower bound holds even if an
algorithm finds these special cells in a single query. We bypass this problematic issue with a
simple but powerful observation: in our setting, once we use resilient functions to encode the
contents of each cell, there is no longer any requirement to keep the size |Σ| of the alphabet
for each cell in the GPW pointer function to be polylogarithmic in n and so we can include
a lot more information in each cell without affecting the query complexity gap. We use this
flexibility to replace pointers to the root of a binary tree structure with direct pointers to all
the special cells in its leaves.

The details of the proof of Theorem 1 are presented in Section 2.

Strong Direct Sum Theorem

Our proof of the strong direct sum theorem proceeds by establishing an analogous result
in the setting of distributional query complexity. The ε-error distributional complexity of
f : {0, 1}n → {0, 1} with respect to the distribution µ on {0, 1}n, denoted by Dµ

ε (f), is
the minimum query complexity of a deterministic algorithm that computes the value f(x)
correctly with probability at least 1− ε when x is drawn from µ.

The distributional complexity approach is also the one used in prior work on direct sum
theorems for query complexity [19, 8]. The challenge with this approach, however, is that a
strong direct sum theorem for distributional query complexity does not hold in general, as
Shaltiel [25] demonstrated (see also §4 in [13]): there exists a function f and a distribution
µ on f ’s domain for which Dµk

ε (fk) = O
(
εkDµ

ε (f)
)
.
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A similar barrier to strong direct sum theorems exists in the communication complexity
setting. Molinaro, Woodruff, and Yaroslavstev [21, 22] bypassed this barrier by considering
randomized protocols that are allowed to abort with some bounded probability. They were
then able to show that the information complexity of such communication protocols (in both
the one-way and two-way communication models) satisfies a strong direct sum property.

Following an analogous approach, we consider randomized algorithms that are allowed
to abort (or, equivalently, to output some value ⊥ that corresponds to “don’t know”) with
some probability at most δ. The ε-error, δ-abort randomized query complexity of a function
f is denoted by Rδ,ε(f). With a natural extension of Yao’s minimax principle, we can obtain
bounds on this randomized query complexity by considering the corresponding ε-error, δ-abort
distributional complexity Dµ

δ,ε(f) of a function f , which is the minimum query complexity of
deterministic algorithms must err with probability at most ε and abort with probability at
most δ when inputs are drawn from the distribution µ. We show that a strong direct sum
theorem does hold in this setting.

I Lemma 5. There exists a constant c such that for every function f : {0, 1}n → {0, 1},
every distribution µ on {0, 1}n, and every 0 ≤ δ, ε ≤ 1

40 ,

Dµk

δ,ε(f
k) = Ω

(
k ·Dµ

1
3 ,
c·ε
k

(f)
)
.

The proof of Theorem 2 is then obtained from this lemma by showing that an analogue
of Yao’s minimax principle holds for algorithms that can both err and abort. The full details
of the proofs of Lemma 5 and Theorem 2 are presented in Section 3.

2 Bounded-Error Separation Theorem

We complete the proof of Theorem 1 in this section. In Section 2.1, we first define the
pointer function PtrFcn at the heart of the proof. In Sections 2.2–2.4, we establish a lower
bound on the query complexity of the PtrFcn function via reductions from the GapID
function, and in Section 2.5, we provide a matching upper bound on this query complexity.
We complete the proof of Theorem 1 in Section 2.6 by combining these results with the use
of resilient functions.

2.1 Pointer Function
The total function at the heart of the proof of Theorem 1 is a variant of the Göös–Pitassi–
Watson pointer function PtrFcn that we define below. Let [n] denote the set {1, . . . , n}.

Define Γ = {0, 1} × ([n] ∪ {⊥})m × ([m] ∪ {⊥}) to be the set of symbols σ that encode a
value that we denote by value(σ), m row pointers that we denote by row1(σ), . . . ,rowm(σ),
and one column pointer that we denote col(σ).

The function PtrFcn : Γn×m → {0, 1} is defined as follows. First, we represent an
input x ∈ Γn×m as an n×m grid of cells. We say that a column j∗ ∈ [m] is special for x if
value(xi,j∗) = 1 for every 1 ≤ i ≤ n. Then PtrFcn(x) = 1 if and only if

There is a unique column j∗ that is special for x;
Within the special column j∗, there is a unique cell i∗ called the special cell;
rowj(xi,j∗) = ⊥ for all i 6= i∗ and all j 6= j∗;
For all j 6= j∗, let ij : = rowj(xi∗,j∗). Then, we have

value(xij ,j) = 0 (i.e., all cells pointed to by the special cell have value 0)
|{j 6= j∗ : col(xij ,j) = j∗ ∧ rowj∗(xij ,j) = i∗}| = bm−1

2 c (i.e., half the cells pointed
to by the special cell point back to the special cell)
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We call the cells (ij , j) linked cells; linked cells that point back to the special cell are
good. In summary, PtrFcn(x) = 1 if (i) there is a special column, (ii) within the special
column, there is a special cell, (iii) all cells in the special column that are not the special cell
have rowj(xi,j∗) = ⊥ for all j 6= j∗, (iv) each linked cell has value 0, and (v) exactly half of
the linked cells are good.

The following simple claim will be useful in obtaining the query complexity lower bound
for PtrFcn.

B Claim 6. Let A be an ε-error randomized algorithm for PtrFcn. Let z ∈ PtrFcn−1(1),
and let (i∗, j∗) be the special cell of z. Then A(z) probes (i∗, j∗) with probability at least
1− 2ε.

Proof. Let z̄ be the same input as z except that value(i∗, j∗) = 0. Then PtrFcn(z) 6=
PtrFcn(z̄) but z, z̄ differ only on the special cell. Whenever A doesn’t probe the special
cell, it must output the same value for z and z̄, so it errs on either z or z̄. By the error
guarantee of A and a union bound, the probability that A doesn’t probe cell (i∗, j∗) is at
most 2ε. C

2.2 Lower Bound on the Query Complexity of GapID
We begin the proof of Theorem 1 by establishing a (simple, asymptotically optimal) lower
bound on the average query complexity of the GapID function.

I Lemma 7. For every m ≥ 2 and every ε < 1
2 , Rε(GapID) = Ω

(
min{log 1

ε ,m}
)
.

Proof. Fix any ε ≥ 2− 2
3m. We will show that Rε(GapID) = Ω

(
log 1

ε

)
. This suffices to

complete the proof of the theorem since it implies that for any ε < 2− 2
3m, Rε(GapID) ≥

R
2− 2

3m
(GapID) = Ω(m).

Let A be a randomized algorithm that computes GapID with error probability at most ε.
Let Q ⊆ [m] be a random variable that denotes the set of coordinates queried by A, and let
ξ := ξ(Q, x) denote the event that each coordinate of the input x queried by the algorithm
has the value 0. Note that when the event ξ(Q, x) occurs, A has the same behavior on input
x as it does on the input 0m. Since GapID(0m) = 1 and A has error probability at most ε,
this means that for every input x ∈ {0, 1}m,

Pr[A(x) = 0 ∧ ξ] = Pr[A(0m) = 0 ∧ ξ] ≤ Pr[A(0m) = 0] ≤ ε

and so Pr[A(x) = 1] ≥ Pr[A(x) = 1 ∧ ξ] ≥ Pr[ξ]− ε.
Define µ to be the uniform distribution on all inputs x ∈ {0, 1}m with |x| = m/2. To err

with probability at most ε on those inputs, the algorithm A must satisfy Pr [A(x) = 1] ≤ ε
for every x in the support of µ. Combining this upper bound with the previous lower bound,
we therefore have that

Pr
x∼µ,Q

[ξ]− ε ≤ E
x∼µ

[
Pr[A(x) = 1]

]
≤ ε =⇒ Pr

x∼µ,Q
[ξ] ≤ 2ε. (5)

For any value 1 ≤ q ≤ m
3 ,

Pr
x∼µ,Q

[
ξ
∣∣ |Q| = q

]
=
(
m−q
m/2

)(
m
m/2
) =

m
2 (m2 − 1) · · · (m2 − q + 1)
m(m− 1) · · · (m− q + 1)

>

( m
2 − q
m− q

)q
>

(
1
2 −

q

2(m− q)

)q
≥ 4−q.
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Therefore,

Pr
x∼µ,Q

[
ξ
∣∣ |Q| ≤ 1

2 log 1
4ε
]
> 4− 1

2 log 1
4ε = 4ε.

Combining this inequality with (5), we obtain

2ε ≥ Pr
x∼µ,Q

[ξ] ≥ Pr
[
|Q| ≤ 1

2 log 1
4ε
]
· Pr
x∼µ,Q

[
ξ
∣∣ |Q| ≤ 1

2 log 1
4ε
]
> Pr

[
|Q| ≤ 1

2 log 1
4ε
]
· 4ε.

Rearranging the inequality yields Pr
[
|Q| ≤ 1

2 log 1
4ε
]
< 1

2 and so the average query complexity
of A is bounded below by

E
[
|Q|
]
> 1

2 log 1
4ε · Pr

[
|Q| > 1

2 log 1
4ε
]
> 1

4 log 1
4ε . J

2.3 Lower Bound on the Query Complexity of BlueRed
We wish to relate the average query complexity of PtrFcn to that of the GapID function.
We do this by relating both query complexities to that of another partial function that we
call BlueRed.

Let Σ : ={black,blue,red}, and call a symbol colored if it is not black. The input
is an n ×m grid of entries from Σ, with the promise that each column contains a unique
colored entry, and either all colored entries are red, or half the colored entries are blue.
Formally, we define BlueRed : Σn×m → {0, 1, ∗} as follows:

BlueRed(x) =


1 if each column has 1 colored entry & all colored entries are red,
0 if each column has 1 colored entry & exactly bm2 c entries are blue,
∗ otherwise.

The following reduction shows that the average query complexity of BlueRed is Θ(n) times
as large as that of the GapID function.

I Lemma 8. For every ε > 0, Rε(BlueRed) ≥ n
4 · Rε(GapID).

Proof. Fix any algorithm A that computes BlueRed with error at most ε and has expected
query cost c = Rε(BlueRed). We will use A to construct an algorithm B that computes
GapID with error at most ε and expected cost 4c/n.

Given an input x ∈ {0, 1}m, the algorithm B constructs an instance of the BlueRed
problem in the following way. First, it generates indices i1, . . . , im ∈ [n] independently and
uniformly at random. Then it defines

yi,j =


red if i = ij and xj = 0,
blue if i = ij and xj = 1,
black if i 6= ij .

Finally, the algorithm B emulates the algorithm A on input y, querying the value of xj
whenever A queries the bit (ij , j) for some j ≤ m. This construction guarantees that B
computes GapID with error at most ε; its query complexity corresponds to the number of
red or blue entries that are queried by A.

Let Q ⊆ [n] × [m] be the random variable that denotes the set of indices queried by
A, and let C ⊆ [m] denote the set of columns whose red or blue entry is queried by A.
Without loss of generality, we may assume that A does not query any entry of a column
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after it finds the colored entry within that column. We partition C into two sets Cearly and
Clate, where Cearly denotes the set of columns whose colored entry is found within the first n

2
queries to that column and Clate denotes the set of columns whose colored entry was found
with more than n

2 queries to that column. Let X1, X2, . . . , X|Q| be indicator variables where
Xk = 1 if and only if the kth query (i, j) made by A is red or blue and is one of the first
n
2 queries to column j. Since each value ij is drawn uniformly at random from [n], each of
these indicator variables has expected value E[Xk] ≤ 2

n . Therefore,

E
[
|Cearly|

]
= E

∑
i≤|Q|

Xi

 ≤ 2
n

E
[
|Q|
]
.

Furthermore, by definition at least n2 queries are made to each column in Clate so the expected
size of this set is bounded by E

[
|Clate|

]
≤ 2

n E
[
|Q|
]
and

E
[
|C|
]

= E
[
|Cearly|

]
+ E

[
|Clate|

]
≤ 4
n

E
[
|Q|
]
.

Thus, the expected query cost of B is at most 4
n ·Rε(BlueRed), as we wanted to show. J

2.4 Lower Bound on the Query Complexity of PtrFcn
I Lemma 9. For every 0 ≤ ε ≤ 1

4 , Rε(PtrFcn) ≥ R2ε(BlueRed).
Proof. Let A be a randomized algorithm that computes PtrFcn with error at most ε and
expected query cost q := Rε(PtrFcn). We use A to construct a randomized algorithm B
that computes BlueRed with the same cost and error at most 2ε.

Let x be an input for BlueRed. Each time A queries a cell, B queries the corresponding
entry in x. If the entry in x is black, then B returns 〈1,⊥, . . . ,⊥〉. If the entry in x is
red, then B returns 〈0,⊥, . . . ,⊥〉. Finally, if the entry of x is blue, then B terminates
the emulation and returns 0. If A reaches the end of the emulation without having been
terminated, B outputs the same result as A.

The query complexity of B is at most that of A. It remains to show that B errs with
probability at most 2ε. There are two cases to consider.

The first case is when x ∈ BlueRed−1(1). Then x maps directly to an input z ∈
PtrFcn−1(0) and hence B errs with probability at most ε on x.

The second case is when x ∈ BlueRed−1(0). Let z be an arbitrary 1-input for PtrFcn
such that (i) zi,j = 〈1,⊥, . . . ,⊥〉 whenever xi,j = black, (ii) zi,j = 〈0,⊥, . . . ,⊥〉 whenever
xi,j = red, and (iii) the special entry and good entries of z correspond to blue entries of x.
It might not be possible to completely emulate A on input z without knowing the exact set
of blue entries. However, B doesn’t need to fully emulate A – it only needs to know how
to map black and red entries. Once a blue entry is probed, B halts and outputs 0. In
this way, we claim that B on input x probes the same cells as A on input z until it halts.
Therefore its output is the same as A(z) unless A(z) probes the special cell or a good cell.
Moreover, in this case, B outputs correctly with certainty. Thus, by Claim 6, the error of B
is at most

Pr[B errs] ≤ Pr[B probes no blue cells] ≤ Pr[A doesn’t probe special cell] ≤ 2ε . J

2.5 Upper Bound on the Query Complexity of PtrFcn
The proof of Theorem 1 also requires a tight upper bound on the (worst-case) randomized
query complexity of PtrFcn. This argument is straightforward, and similar to the analysis
of Ambainis et al. [2] for their analogous pointer function.
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Algorithm 1: PtrFcnSolver(x).
S ← [m];
T ← a random subset of [m] of size |T | = log 1

ε ;
for each cell (i, j) in a column in T do

if value(xi,j) = 0 ∧ col(xi,j) ∈ S then
j∗ ← col(xi,j);
i∗ ← rowj∗(xi,j);
valid← True;
while |S| > 1 ∧ valid do

`← any column in S \ {j∗};
if value(xrow`(xi∗,j∗ ),`) = 0 then

S ← S \ {`};
else

valid← False;
if |S| = 1 then

break;
if |S| = 1 then

fix j ∈ S. return 1 if (i) column j is special, (ii) there is a special cell within
column j, (iii) all cells linked by the special cell have value 0, and (iv) half of
linked cells point back to the special cell.

return 0

I Lemma 10. Rε(PtrFcn) = O(n log 1
ε +m).

Proof. The algorithm that computes the PtrFcn function is described in Algorithm 1. In
this algorithm, the set S corresponds to the set of potential special columns. The query
complexity of PtrFcnSolver follows from the fact that each iteration of the inner while loop
either eliminates one of the columns from the set S of candidates or one of the n log 1

ε cells
in the columns in T . The final check of the (lone remaining) potential special column at the
end of the algorithm examines at most n+m cells.

Whenever the PtrFcnSolver returns the value 1, then it in fact has observed a certificate
that PtrFcn(x) = 1 so the algorithm has perfect soundness.

Conversely, suppose PtrFcn(x) = 1. Exactly half of the columns are good, so T contains
such a cell with probability at least 1 − (1/2)log(1/ε) = 1 − ε. Now, consider the for loop
iteration when the first good cell (i, j) is selected. Since (i, j) is a good cell, it points back to
the special cell, which in turn points to a linked cell in all columns except the special column.
For any remaining j′ 6= j ∈ S, PtrFcn(x) probes the linked cell in column j′, verifies the
value equals 0, and removes it from S. In this way, the remaining columns in S save the
special column are eliminated. Once we reduce S to a single remaining candidate, we can
probe all cells in this column and all linked cells using n+m queries to verify that indeed
PtrFcn(x) = 1. J

2.6 Completing the Proof of Theorem 1
The last ingredient that we need to complete the proof of Theorem 1 is the concept of resilient
functions [12].

I Definition 11. The function φ : {0, 1}n → {0, 1}m is t-resilient for some 1 ≤ t < n if for
any set S ⊆ [n] of |S| ≤ t coordinates and any assignment of values for the inputs {xi}i∈S,
when the values {xi}i∈[n]\S are set uniformly at random then φ(x) is uniformly distributed
in {0, 1}m.
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We use the following existence result on resilient functions that was established by Chor
et al. [12].

I Theorem 12 (Chor et al. [12]). For every large enough n, there is a function φ : {0, 1}n →
{0, 1}m that is n

3 -resilient and satisfies m ≥ 0.08n.

We use resilient functions to bound the query complexity of functions via the following
lemma.

I Lemma 13. Fix a finite set X of cardinality |X | = 2` for some integer ` ≥ 1 and let
φ : {0, 1}N → X be an N

3 -resilient function. Then for every function f : Xm → {0, 1} and
every ε ≥ 0,

Rε(f ◦ φ) = Θ(N · Rε(f)) and Rε(f ◦ φ) = Θ(N · Rε(f)).

Proof. The upper bounds follow immediately from the observation that if A is a randomized
algorithm that computes f with ε-error, then we can define a algorithm B that computes
f ◦ φ with the same error by simulating A and querying the N bits to observe the value φ(x)
to return to each query.

For the lower bounds, let A be a randomized algorithm that computes f ◦ φ with error at
most ε. We define an algorithm B for computing f that simulates A in the following way.
For the first N

3 queries to a cell, B answers the queries with uniformly random variables in
{0, 1}. On a query to the (N3 + 1)-th bit of a cell, B queries the value v of the corresponding
cell in x. It then draws a value z in φ−1(v) uniformly at random among all values that agree
with the N

3 bits output so far. The current query and all further queries to bits of that cell
are then answered using z. Once A terminates, B returns A’s output and terminates as well.

The correctness of B follows directly from the correctness of A. Furthermore, on any input
for which A makes q queries, B makes at most q/(N/3) queries since N/3 distinct queries of
A are required for each query that B eventually makes to x. Thus both the average-case
and worst-case query complexities of B are bounded by 3/N times the corresponding query
complexities of A. J

We are now ready to complete the proof of the separation theorem.

Proof of Theorem 1. Fix m = n = 2` − 1 for any integer ` ≥ 1 so that |Γ| = 2`(2`−1)+`+1 is
a power of 2. Fix a C

3 -resilient function φ : {0, 1}C → Γ for some C ≤ 12.5 log |Γ| and define
the function EncFcn = PtrFcn ◦ φ. By Lemmas 13 and 10,

Rε(EncFcn) = O
(
C(n log 1

ε +m)
)

= O
(
Cn log 1

ε

)
.

In particular, setting ε = 1
3 we obtain R(EncFcn) = O(Cn).

Using Lemma 13, 9, and 8, we obtain the chain of inequalities

Rε(EncFcn) = Ω
(
C · Rε(PtrFcn)

)
= Ω

(
C · R2ε(BlueRed)

)
= Ω

(
Cn · R2ε(GapID)

)
.

By Lemma 7, when ε > 2−m = 2−n this implies that

Rε(EncFcn) = Ω
(
Cn log 1

ε

)
= Ω

(
log 1

ε · R(EncFcn)
)
.

Theorem 1 is obtained by noting that EncFcn is a function on N = O(mn|Γ|) = O(n3 logn)
variables. J
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3 Strong Direct Sum Theorem

We establish Theorem 2 by proving a corresponding direct sum result in the distribu-
tional model and applying a Yao minimax principle for algorithms that err and abort with
bounded probability.

We introduce the model of algorithms that can abort in Section 3.1, where we also relate
this model to the average query complexity setting of randomized algorithms and establish a
Yao minimax principle. In Section 3.2, we establish the main technical result, a strong direct
sum theorem for distributional complexity. We complete the proof of Theorem 2 itself in
Section 3.3 and the proofs of Corollaries 3 and 4 are completed in Section 3.4.

3.1 Algorithms That Can Abort
We consider randomized algorithms that are allowed to err and abort. In this setting, an
algorithm outputs ⊥ instead of giving a valid output when it chooses to abort. Let Dµ

δ,ε(f)
and Rδ,ε(f) denote the distributional and randomized query complexities of f when the
algorithm aborts with probablity at most δ and errs with probability at most ε.

Randomized query complexity in the setting where algorithms can abort with constant
probability δ is asymptotically equivalent to the average randomized query complexity.

I Proposition 14. For every function f : {0, 1}n → {0, 1}, every 0 ≤ ε < 1
2 and every

0 < δ < 1,

δ · Rδ,ε(f) ≤ Rε(f) ≤ 1
1−δ · Rδ,(1−δ)ε(f).

Proof. For the first inequality, let A be a randomized algorithm that computes f with ε
error and has expected query complexity q. Let B be the randomized algorithm B that
simulates A except that whenever A tries to make more than q/δ queries, it aborts. The
algorithm B also computes f with error at most ε, and it has worst-case query complexity
q/δ. Furthermore, by Markov’s inequality, B aborts with probability at most δ.

For the second inequality, let B be a randomized algorithm with query complexity q that
computes f with error probability at most (1− δ)ε and abort probability at most δ. Let A
be the randomized algorithm that simulates B until that algorithm does not abort, then
outputs the same value. The error probability of B conditioned on it not aborting is at most
(1−δ)ε

1−δ = ε, so the algorithm A also errs with probability at most ε, and its expected query
complexity is q(1 + δ + δ2 + · · · ) = q

1−δ . J

Yao’s minimax principle can be adapted for the setting of algorithms that abort as follows.

I Lemma 15. For any α, β > 0 such that α+ β ≤ 1, we have

max
µ

Dµ
δ/α,ε/β(f) ≤ Rδ,ε(f) ≤ max

µ
Dµ
αδ,βε(f).

Proof. We handle the initial inequality (i.e., the easy direction) first. Fix a q-query random-
ized algorithm A achieving Rδ,ε(f). By the guarantee of A, we have that for any input x, A
aborts with probability at most δ and errs with probabiltiy at most ε. Let 1δ(x) and 1ε(x)
be indicator variables for the events that A aborts on x and A errs on x respectively. Then,
we have ER[1δ(x)] ≤ δ and similarly ER[1ε(x)] ≤ ε when the expectation is taken over the
randomness R of the algorithm A. Next, fix any input distribution µ and let X ∼ µ. It
follows that

E
R

[
E
X

[1δ(X)]
]

= E
X

[
E
R

[1δ(X)]
]
≤ δ and E

R

[
E
X

[1ε(X)]
]

= E
X

[
E
R

[1ε(X)]
]
≤ ε.
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Using Markov’s inequality twice, we have

Pr
R

[
E
X

[1δ(X)] > δ/α
]
< α and Pr

R

[
E
X

[1ε(X)] > ε/β
]
< β.

By a union bound, there exists a setting of the random stringR such that both E[1δ(X)] ≤ δ/α
and E[1ε(X)] ≤ ε/β. Fixing this R gives a q-query deterministic algorithm that aborts with
probability at most δ/α and errs with probability at most ε/β, hence Dµ

δ/α,ε/β(f) ≤ Rδ,ε(f).
For the second inequality, let c : = maxµ Dµ

αδ,βε(f). Consider a two-player, zero-sum game
where player 1 selects a c-query deterministic algortihm A for f , player 2 selects an input
x, and player 1 is paid −ε if A(x) aborts, −δ if A(x) errs, and 0 otherwise. Note that
each mixed strategy for player 1 corresponds to a randomized algorithm and each mixed
strategy for player 2 corresponds to an input distribution µ. By our choice of c, it follows
that for any mixed strategy for player 2, player 1 can obtain payoff −ε(αδ)− δ(βε) ≥ −εδ.
By the minimax theorem, it follows that there is a mixed strategy for player 1 (i.e., a
c-query randomized algorithm A) that provides the same payoff for every choice of player
2. Finally, note that A aborts with probability at most δ and errs with probability at most
ε; otherwise, the payoff would be less than −εδ ≤ −εδ(α + β). We’ve shown a c-query
randomized algorithm that aborts w/probability at most δ and errs w/probability at most ε,
hence Rδ,ε(f) ≤ c = maxµ Dµ

αδ,βε(f). J

3.2 Strong Direct Sum for Distributional Complexity
We prove a slightly more precise variant of Lemma 5.

I Lemma 16. For every function f : {0, 1}n → {0, 1}, every distribution µ on {0, 1}n, and
every 0 ≤ δ, ε ≤ 1

4 ,

Dµk

δ,ε(f
k) = Ω

(
k ·Dµ

1
10 +4δ+4ε, 48ε

k

(f)
)
.

Proof. Let A be a deterministic algorithm with query complexity q that computes fk with
error probability at most ε and abort probability at most δ when the input x = (x(1), . . . , x(k))
is drawn from µk. Then conditioned on A not aborting, it outputs the correct value of fk
with probability at least 1− ε

1−δ ≥ 1− 2ε and

1− 2ε ≤ Pr
x∼µk

[
A(x) = fk(x)

∣∣ A(x) 6= ⊥
]

=
∏
i≤k

Pr
x∼µk

[
A(x)i = f(x(i))

∣∣∣ A(x)<i = fk(x)<i,A(x) 6= ⊥
]
.

This implies that at least 2
3k indices i ∈ [k] satisfy

Pr
x∼µk

[
A(x)i 6= f(x(i))

∣∣∣ A(x)<i = fk(x)<i,A(x) 6= ⊥
]
≤ 12ε

k
, (6)

otherwise the product in the product in the previous inequality would be less than (1 −
12ε/k)k/3 ≤ e−4ε < 1− 2ε, contradicting the lower bound on this product.

For each i ≤ k, let qi(x) denote the number of queries that A makes to x(i) on input x.
The query complexity of A guarantees that for each input x,

∑
i≤k qi(x) ≤ q. Therefore,∑

i≤k Ex∼µk [qi(x)] ≤ q and at least 2
3k indices i ∈ [k] satisfy

E
x∼µk

[qi(x)] ≤ 3q
k
. (7)
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Thus, some index i∗ ∈ [k] satisfies both (6) and (7). Fix such an index i∗. For inputs y ∈ µk
and x ∈ µ, write y(i∗←x) := (y(1), . . . , y(i∗−1), x, y(i∗+1), . . . , y(k)) to be the input obtained
by replacing y(i∗) with x in y. With this notation, the two conditions (6) and (7) satisfied
by i∗ can be rewritten as

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x))i∗ 6= f(x)

∣∣∣ A(y(i∗←x))<i∗ = fk(y(i∗←x))<i∗ ,A(y(i∗←x)) 6= ⊥
]]
≤ 12ε

k

and

E
y∼µk

[
E
x∼µ

[
qi∗(y(i∗←x))

]]
≤ 3q

k
.

The correctness of A also guarantees that

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x)) = ⊥

]]
≤ δ

and

E
y∼µk

[
Pr
x∼µ

[
A(y(i∗←x))<i∗ 6= fk(y(i∗←x))<i∗)

∣∣∣ A(y(i∗←x)) 6= ⊥
]]
≤ ε.

Therefore, by Markov’s inequality, there exists an input z ∈ {0, 1}n×k such that

Pr
x∼µ

[
A(z(i∗←x)) = ⊥

]
≤ 4δ,

Pr
x∼µ

[
A(z(i∗←x))<i∗ 6= fk(z(i∗←x))<i∗

∣∣∣ A(z(i∗←x)) 6= ⊥
]
≤ 4ε,

Pr
x∼µ

[
A(z(i∗←x))i∗ 6= f(x)

∣∣∣ A(z(i∗←x))<i∗ = fk(z(i∗←x)),A(z(i∗←x)) 6= ⊥
]
≤ 48ε

k
, and

E
x∼µ

[
qi∗(z(i∗←x))

]
≤ 12q

k
.

Let A′ be the deterministic algorithm that computes f(x) by simulating A on the input
z(i∗←x) with two additions:
1. If A attempts to query more than 120q

k bits of x, A′ aborts, and
2. When A terminates, the algorithm A′ first verifies that the output generated by A satisfies
A(z(i∗←x))≤i∗ = fk(z(i∗←x)). If so A′ returns the value A(z(i∗←x))i∗ ; if not, A′ aborts.

The algorithm A′ has query complexity at most 120q
k and, by the conditions satisfied by z, it

aborts with probability at most 1
10 + 4δ + 4ε and errs with probability at most 48ε

k when
x ∼ µ. J

3.3 Proof of Theorem 2
We now complete the proof of Theorem 2. Fix δ = 1

40 . By Proposition 14 and the second
inequality of Lemma 15,

R 96ε
k

(f) ≤ 2 R 1
2 ,

48ε
k

(f) ≤ 2 R 1
5 +4δ+4ε, 48ε

k
(f) ≤ 2 max

µ
Dµ

1
10 +2δ+2ε, 24ε

k

(f).

Let µ∗ denote a distribution where the maximum is attained. By Lemma 16,

Dµ∗

1
10 +2δ+2ε, 24ε

k

(f) = O

(
1
k
·D(µ∗)k

δ
2 ,
ε
2

(fk)
)
.
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Using the first inequality of Lemma 15 we then obtain

D(µ∗)k
δ
2 ,
ε
2

(fk) ≤ max
ν

Dν
δ
2 ,
ε
2
(fk) ≤ Rδ,ε(fk).

Combining these inequalities and applying Proposition 14 once more yields

R 96ε
k

(f) ≤ O
( 1
k · Rδ,ε(fk)

)
≤ O

( 1
k · Rε(fk)

)
.

Theorem 2 follows from the identity R ε
k

(f) = Θ
(
R 96ε

k
(f)
)
obtained from the standard success

amplification trick. J

3.4 Proof of Corollaries 3 and 4
Corollary 3 is obtained as a direct consequence of Theorems 1 and 2.

Proof of Corollary 3. The upper bound is via the universal bound (3). For the matching
lower bound, let f : {0, 1}n → {0, 1} be a function that satisfies the condition of Theorem 1.
By Theorem 2, the randomized communication complexity of fk satisfies

R(fk) ≥ R(fk) = Ω
(
k · R 1

3k
(f)
)

By Theorem 1,

R 1
3k

(f) = Ω
(
R(f) · log k

)
as long as k ≤ 2( n

logn )1/3
. Combining those inequalities yields R(fk) = Ω

(
k log k ·R(f)

)
, as

we wanted to show. J

The proof of Corollary 4 uses the following randomized query-to-communication lifting
theorem of Göös, Pitassi, and Watson [17].

I Theorem 17 (Göös, Pitassi, Watson). Define Indm : [m]×{0, 1}m → {0, 1} to be the index
function mapping (x, y) to yx and fix m = n256. For every f : {0, 1}n → {0, 1},

Rcc(f ◦ Indm) = R(f) ·Θ(logn)

and

Rcc(fk ◦ Indm) = R(fk) ·Θ(logn).

I Remark 18. The statement of Theorem 17 in [17] only mentions the first identity explicitly.
However, as discussed in their Section II, the theorem statement holds for functions with any
finite range.2 Therefore, the theorem holds for the function fk as well as f .

Proof of Corollary 4. By Corollary 3, there exists a function f : {0, 1}n → {0, 1} which
satisfies R(fk) = Θ(k log k · R(f)). Combining this result with Theorem 17, we obtain

Rcc((f ◦ Indm)k
)

= Rcc(fk ◦ Indm
)

= R(fk) ·Θ(logn)
= Θ(k log k · R(f) · logn)
= Θ(k log k) · Rcc(f ◦ Indm). J

2 In fact, their theorem also holds in even more general settings such as when f is a partial function or a
relation, for example.
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Abstract

A frontier open problem in circuit complexity is to prove PNP 6⊂ SIZE[nk] for all k; this is a necessary
intermediate step towards NP 6⊂ P/poly. Previously, for several classes containing PNP, including
NPNP, ZPPNP, and S2P, such lower bounds have been proved via Karp-Lipton-style Theorems: to
prove C 6⊂ SIZE[nk] for all k, we show that C ⊂ P/poly implies a “collapse” D = C for some larger
class D, where we already know D 6⊂ SIZE[nk] for all k.

It seems obvious that one could take a different approach to prove circuit lower bounds for PNP

that does not require proving any Karp-Lipton-style theorems along the way. We show this intuition
is wrong: (weak) Karp-Lipton-style theorems for PNP are equivalent to fixed-polynomial
size circuit lower bounds for PNP. That is, PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly

implies PH ⊂ i.o.-PNP
/n).

Next, we present new consequences of the assumption NP ⊂ P/poly, towards proving similar results
for NP circuit lower bounds. We show that under the assumption, fixed-polynomial circuit lower
bounds for NP, nondeterministic polynomial-time derandomizations, and various fixed-polynomial
time simulations of NP are all equivalent. Applying this equivalence, we show that circuit lower
bounds for NP imply better Karp-Lipton collapses. That is, if NP 6⊂ SIZE[nk] for all k, then
for all C ∈ {⊕P, PP, PSPACE, EXP}, C ⊂ P/poly implies C ⊂ i.o.-NP/nε for all ε > 0. Note that
unconditionally, the collapses are only to MA and not NP.

We also explore consequences of circuit lower bounds for a sparse language in NP. Among other
results, we show if a polynomially-sparse NP language does not have n1+ε-size circuits, then MA ⊂
i.o.-NP/O(log n), MA ⊂ i.o.-PNP[O(log n)], and NEXP 6⊂ SIZE[2o(m)]. Finally, we observe connections
between these results and the “hardness magnification” phenomena described in recent works.
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30:2 Circuit Lower Bounds and Karp-Lipton Theorems

1 Introduction

Let C be a complexity class containing NP. A longstanding method for proving fixed-
polynomial circuit lower bounds for functions in C, first observed by Kannan [25], applies
versions of the classical Karp-Lipton Theorem in a particular way:
1. If NP 6⊂ P/poly, then SAT ∈ NP ⊂ C does not have polynomial-size circuits.
2. If NP ⊂ P/poly, then by a “collapse” theorem, we have PH ⊆ C. But for every k, there is

an f ∈ PH that does not have nk-size circuits, so we are also done.

Such collapse theorems are called Karp-Lipton Theorems, as they were first discovered by
Karp and Lipton [26] in their pioneering work on complexity classes with advice. The general
theme of such theorems is a connection between non-uniform and uniform complexity:

“C has (non-uniform) polynomial-size circuits implies a collapse of (uniform) complexity
classes.”

Over the years, Karp-Lipton Theorems have been applied to prove circuit lower bounds for
the complexity classes NPNP [25], ZPPNP [6, 27], S2P [9, 10], PP [37, 1]1, and Promise-MA
and MA/1 [33].2 Other literature on Karp-Lipton Theorems include [38, 12, 13].

When one first encounters such a lower bound argument, the non-constructivity of the
result (the two uncertain cases) and the use of a Karp-Lipton Theorem looks strange.3 It
appears obvious that one ought to be able to prove circuit lower bounds in a fundamentally
different way, without worrying over any collapses of the polynomial hierarchy. It is easy to
imagine the possibility of a sophisticated combinatorial argument establishing a lower bound
for PNP functions (one natural next step in such lower bounds) which has nothing to do with
simulating PH more efficiently, and has no implications for it.

PNP Circuit Lower Bounds are Equivalent to Karp-Lipton Collapses to PNP. We show
that, in a sense, the above intuition is false: any fixed-polynomial-size circuit lower bound
for PNP would imply a Karp-Lipton Theorem collapsing PH all the way to PNP. (There are
some technicalities: the PNP simulation uses small advice and only works infinitely often, but
we believe these conditions can potentially be removed, and they do not change the moral
of our story.) We find this result surprising; it shows that in order to prove a circuit lower
bound for PNP, one cannot avoid proving a Karp-Lipton Theorem for PNP in the process. A
Karp-Lipton Theorem is both necessary and sufficient for such lower bounds.

I Theorem 1 (PNP Circuit Lower Bounds are Equivalent to a Karp-Lipton Collapse to PNP).
PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂ i.o.-PNP

/n ).

One direction of Theorem 1 follows immediately from the classical lower bound paradigm
described above. In particular, assuming PNP ⊂ SIZE[nk] for some k and assuming NP ⊂
P/poly =⇒ PH ⊂ i.o.-PNP

/n we have

PH ⊂ i.o.-PNP
/n ⊆ i.o.-SIZE[O(n)k],

1 Both Vinodchandran and Aaronson’s proofs of PP 6⊂ SIZE[nk] use the Karp-Lipton-style theorem
“PP ⊂ P/ poly then PP = MA”, which follows from [28]. Aaronson shows further that “PP ⊂ P/ poly
then PPP = MA”. From there, one can directly construct a function in PPP without nk-size circuits.

2 Santhanam used the Karp-Lipton-style theorem “PSPACE ⊂ P/poly implies PSPACE = MA” to prove
lower bounds against Promise-MA and MA with one bit of advice.

3 Note Cai and Watanabe [11] found a constructive proof for NPNP.
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which contradicts known fixed-polynomial lower bounds for PH. The interesting direction is
the converse, showing that proving lower bounds against PNP implies proving a Karp-Lipton
collapse to PNP that is sufficient for the lower bound.

NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses. After observing The-
orem 1, a natural question is whether such a theorem holds for NP circuit lower bounds
as well:

Does NP 6⊂ SIZE[nk] for all k imply a Karp-Lipton Collapse to NP?

While we have not yet been able to prove this under the hypothesis NP ⊂ P/ poly as above,
we can show it for stronger hypotheses. Another class of Karp-Lipton Theorems (used
in circuit lower bounds for PP [37, 1] and Promise-MA [33]) give stronger collapses under
hypotheses like PSPACE ⊂ P/poly: for any class C which is one of NEXP [24], EXPNP ([7]
and [5]), EXP and PSPACE [5], PP [28] and ⊕P [23], we have:

If C ⊂ P/ poly then C ⊆ MA.

We show how NP circuit lower bounds can be used to derandomize MA. In fact, under the
hypothesis NP ⊂ P/ poly, we prove an equivalence between NP circuit lower bounds, fast
Arthur-Merlin simulations of NP, and nondeterministic derandomization of Arthur-Merlin
protocols.

To state our results, we first define a variation of the “robust simulation” which was
originally introduced in [17]. For a complexity class C and a language L, we say L is in
c-r.o.-C for a constant c, if there is a language L′ ∈ C such that there are infinitely many m’s
such that for all n ∈ [m,mc], L′ agrees with L on inputs of length n.4 (See Section 2.1 for
formal definitions.)

I Theorem 2. Assuming NP ⊂ P/poly, the following are equivalent:
1. NP is not in SIZE[nk] for all k.
2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.

That is, Arthur-Merlin games with O(1) rounds and small advice can be simulated “c-
robustly often” in NP with modest advice, for all constants c.5

3. NP does not have nk-size witnesses for all k.
That is, for all k, there is a language L ∈ NP, a poly-time verifier V for L, and infinitely
many xn ∈ L such that V (xn, ·) has no witness of circuit complexity at most nk.

4. For all k and d, there is a polynomial-time nondeterministic PRG with seed-length O(logn)
and n bits of advice against nk-size circuits d-robustly often.6

5. NP is not in AMTIME(nk) for all k.
6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.
7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

That is, under NP ⊂ P/ poly, the tasks of fixed-polynomial lower bounds for NP, lower
bounds for (NP ∩ coNP)/nε, uniform lower bounds on simulating NP within AM, and
derandomizing AM in NP are all equivalent.

4 The original definition of L ⊆ r.o.-C requires that there is a single language L′ ∈ C such that for all c
there are infinitely many m’s such that for all n ∈ [m, mc], L′ agrees with L on inputs of length n.

5 See the Preliminaries for a definition of “c-robustly often”. Intutively, it is a mild strengthening of
“infinitely often”.

6 See the Preliminaries for formal definitions.
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We recall another type of Karp-Lipton collapse was shown by [4]: NP ⊂ P/poly implies
AM = MA. An intriguing corollary of Theorem 2 is that fixed-polynomial lower bounds for
NP would improve this collapse, from MA to r.o.-c-NP/nε for all c:

I Corollary 3 (NP Circuit Lower Bounds Equivalent to a Karp-Lipton Collapse of AM to NP).
NP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ AM is in r.o.-c-NP/nε for all c).

Another consequence of Theorem 2 is that NP circuit lower bounds imply better Karp-
Lipton collapses from MA down to NP:

I Theorem 4 (NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses). Let C ∈
{⊕P,PSPACE,PP,EXP}. Suppose NP 6⊂ SIZE[nk] for all k. Then for all ε > 0, (C ⊂
P/poly =⇒ C ⊂ i.o.-NP/nε). In particular, polynomial-size circuits for any C-complete
language L can be constructed in NP infinitely often, with nε advice.

I Remark 5. By “circuits for L can be constructed in NP infinitely often”, we mean that
there is a nondeterministic poly-time algorithm A such that, for infinitely many n, A on
input 1n outputs a circuit Cn for Ln on at least one computation path, and on all paths
where such a Cn is not output, A outputs reject.

Consequences of Weak Circuit Lower Bounds for Sparse Languages in NP. Theorem 2
shows that assuming NP ⊂ P/poly, fixed-polynomial lower bounds for NP imply AM = MA ⊆
i.o.-NP/nε . This is also the reason that we can only show collapses to i.o.-NP/nε in Theorem 4.
It is interesting to ask whether the nε advice in the simulation can be eliminated or reduced.
In the following, we show that an n1.00001-size circuit lower bound for a polynomially-sparse
language in NP would imply an advice reduction, along with other interesting consequences.

I Theorem 6 (Consequences of Weak Circuit Lower Bounds for Polynomially-Sparse NP
Languages). Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP without n1+ε-size
circuits. Then MA ⊂ i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂ SIZE[2δ·n] for some
δ > 0 (which implies NP 6⊂ SIZE[nk] for all k).

One step in the proof of Theorem 6 is a form of hardness condensation (as termed by
Impagliazzo [21]) for sparse NP languages. The goal of hardness condensation [8, 22] is that,
given a function f on n input bits with complexity S, we want to construct a function f̃
on `� n input bits that still has complexity roughly S. We show how a hard S(n)-sparse
language in NTIME[T (n)] can be “condensed” in a generic way, based on the sparsity S(n).
We can efficiently build a PRG from the harder condensed function.

Theorem 6 shows how a very weak lower bound (n1+ε) for a sparse language L ∈ NP
would imply an exponential-size lower bound for NE (note, the converse is easy to show). This
is reminiscent of a recent line of work [32, 31, 29] on “hardness magnification” phenomena,
showing that seemingly weak circuit lower bounds for certain problems can in fact imply
strong circuit lower bounds which are out of reach of current proof techniques.

At a high level, the hardness magnification results in the above-cited papers show how
weak lower bounds on “compression problems” can imply strong complexity class separations.
These compression problems have the form: given a string, does it have a small efficient
representation? As an example, in the Minimum Circuit Size Problem for size S(m)� 2m,
denoted as MCSP[S(m)], we are given a truth table of length N = 2m and want to know if
the function has a circuit of size at most S(m). As an example of hardness magnification,
McKay, Murray, and Williams [29] show that, if there is an ε > 0 such that MCSP[2m/ log?m]
is not in SIZE[N1+ε], then NP 6⊂ P/poly. Thus a very weak circuit size lower bound for
MCSP[2m/ log?m] would imply a super-polynomial lower bound for SAT!



L. Chen, D.M. McKay, C.D. Murray, and R. R. Williams 30:5

Sparsity Alone Implies a Weak Hardness Magnification. We identify a simple property of
all efficient compression problems which alone implies a (weak) form of hardness magnification:
the sparsity of the underlying language. For any compression problem on length-N strings
where we ask for a length-`(N) representation (think of `(N) ≤ no(1)), there are at most 2`(N)

strings in the language. Scaling up the sparsity of Theorem 6, we show that non-trivial circuit
lower bounds for any NP problem with subexponential sparsity already implies longstanding
circuit lower bounds. In fact, we have an equivalence:

I Theorem 7. NEXP 6⊂ P/poly if and only if there exists an ε > 0 such that for every
sufficiently small β > 0, there is a 2nβ -sparse language L ∈ NTIME[2nβ ] without n1+ε-size
circuits.

It follows that an n1+ε-size circuit lower bound for MCSP[2m/ log?m] implies NEXP 6⊂
P/poly. We remark while the lower bound consequence here is much weaker than the
consequences of prior work [32, 31, 29] (only NEXP 6⊂ P/poly, instead of NP 6⊂ P/poly),
the hypothesis has much more flexibility: Theorem 7 allows for any sparse language in
NTIME[2no(1) ], while the MCSP problem is in NTIME[n1+o(1)].7

Finally, we observe that Theorem 7 is similar in spirit to the Hartmanis-Immerman-
Sewelson theorem [20] which states that there is a polynomially-sparse language in NP \ P
if and only if NE 6= E. Theorem 7 can be interpreted as a certain optimized, non-uniform
analogue of Hartmanis-Immerman-Sewelson theorem, in a different regime of sparsity.

Organization of the Paper. In Section 2, we introduce the necessary preliminaries for this
paper. In Section 3, we prove that fixed-polynomial circuit lower bounds for PNP is equivalent
to a (weak) Karp-Lipton theorem for P. In Section 4, we prove our equivalence theorem
for NP circuit lower bounds, fast simulations of NP, and nondeterministic polynomial-time
derandomization, under the hypothesis NP ⊂ P/ poly. In Section 5, we show how our
equivalence theorem implies that fixed polynomial circuit lower bounds for NP implies better
Karp-Lipton theorems for higher complexity classes. In Section 6, we prove the consequences
of weak circuit lower bounds for sparse NP languages. Finally, in Section 7, we discuss some
interesting open questions stemming from this work.

2 Preliminaries

We assume basic knowledge of complexity theory (see e.g. [3, 19] for excellent references).
Here we review some notation and concepts that are of particular interest for this paper.

Notation. All languages considered are over {0, 1}. For a language L, we define Ln :=
{0, 1}n ∩ L. For s : N→ N, SIZE[s(n)] is the class of languages decided by an infinite circuit
family where the nth circuit in the family has size at most s(n). ⊕P is the closure under
polynomial-time reductions of the decision problem Parity-SAT: Given a Boolean formula, is
the number of its satisfying assignments odd?

For a deterministic or nondeterministic class C and function a(n), C/a(n) is the class of
languages L such that there is an L′ ∈ C and function f : N→ {0, 1}? with |f(n)| ≤ a(n) for
all x, such that L = {x | (x, f(|x|)) ∈ L′}. That is, the advice string f(n) can be used to
solve all n-bit instances within class C. For “promise” classes C such as MA and AM, C/a(n)
is defined similarly, except that the promise of the class is only required to hold when the
correct advice f(n) is provided.

7 We remark that these results are not directly related to hardness magnification for NC1-complete
problems [2, 15], as the problems studied in these works are clearly not sparse.
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2.1 Infinitely Often and Robust Simulations
In this section, let C be a class of languages. Here we recall infinitely often and robust
simulations, the latter of which was first defined and studied in [17]. Robust simulations
expand on the notion of “infinitely often” simulations. A language L ∈ i.o.-C (infinitely often
C ), if there is a language L′ in C such that there are infinitely many n such that Ln = L′n.
A language L ∈ r.o.-C (robustly often C ), if there is a language L′ in C such that for all
k ≥ 1, there are infinitely many n such that Lm = L′m for all m ∈ [n, nk]. In this case, we
say L′ r.o.-computes L.

c-Robust Simulations. We consider a parameterized version of the robust simulation
concept which is useful for stating our results. Let c ≥ 1 be an integer constant. We say
a language L ∈ c-r.o.-C (c-robustly often C ) if there is an L′ ∈ C and infinitely many n
such that Lm = L′m for all m ∈ [n, nc]. In this case, we say L′ c-r.o.-computes L. Note that
L ∈ r.o.-C implies L ∈ c-r.o.-C for all c, but the converse is not necessarily true.

More generally, a property P (n) holds c-robustly often (c-r.o.-) if for all integers k, there
are infinitely many m’s such that P (n) holds for all n ∈ [m,mc].

2.2 Non-deterministic Pseudo-Random Generators
Let w(n), s(n) : N → N, and let C be a class of functions. We say a function family G,
specified by Gn : {0, 1}w(n) × {0, 1}s(n) → {0, 1}∗ ∩ {⊥}, is a nondeterministic PRG against
C if for all sufficiently large n and all C ∈ C , the following hold:

For all y ∈ {0, 1}w(n), either Gn(y, z) 6= ⊥ for all z’s (such a y is called good), or
Gn(y, z) = ⊥ for all z’s (a bad y).
There is at least one good y ∈ {0, 1}w(n).
Suppose y ∈ {0, 1}w(n) is good, C has m input bits, and |Gn(y, z)| ≥ m for all z. Then∣∣∣∣ Pr

z∈{0,1}s(n)
[C(Gn(y, z)) = 1]− Pr

z∈{0,1}m
[C(z) = 1]

∣∣∣∣ < 1/n.

As usual, if C takes less than |Gn(y, z)| inputs, C(Gn(y, z)) corresponds to feeding C
with the first m bits of Gn(y, z).

Usually we are only interested in the seed length parameter s(n) and the running time
T (n) of the PRG Gn as a function of n. To be concise, we say G is a T (n)-time NPRG of
seed length s(n) against C .

We say G is a i.o.-NPRG or r.o.-NPRG, if it only fools functions in C infinite often or
robustly often.

2.3 Circuit Complexity of Strings and Pseudorandom Generators
For a circuit C on ` inputs, we define the truth-table of C, denoted tt(C) ∈ {0, 1}2` , to be
the evaluation of C on all possible inputs sorted in lexicographical order. For every string
y, let 2` be the smallest power of 2 such that 2` > |y|. We define the circuit complexity of
y, denoted as CC(y), to be the circuit complexity of the `-input function defined by the
truth-table y102`−|y|−1. We will use the following strong construction of pseudorandom
generators from hard functions:
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I Theorem 8 (Umans [36]). There is a constant g and a function G : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ such that, for all s and Y satisfying CC(Y ) ≥ sg, and for all circuits C of size s,∣∣∣∣ Pr

x∈{0,1}g log |Y |
[C(G(Y, x)) = 1]− Pr

x∈{0,1}s
[C(x) = 1]

∣∣∣∣ < 1/s.

Furthermore, G is computable in poly(|Y |) time.

Fortnow-Santhanam-Williams [18]. A work related to this paper is that of Fortnow,
Santhanam, and Williams, who proved the equivalences NP 6⊂ SIZE[nk] for all k ⇐⇒
PNP[nk] 6⊂ SIZE[nc] for all k, c and AM 6⊂ SIZE[nk] for all k ⇐⇒ MA 6⊂ SIZE[nk] for all k.
We use intermediate results of theirs in our equivalence theorems (see the citations).

3 PNP Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to
PNP

In this section we prove Theorem 1 (restated below).

I Reminder of Theorem 1. PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂
i.o.-PNP

/n ).

We begin with a lemma on the simulation of poly-time functions with an NP oracle.
Essentially it says that if functions with an NP oracle always output strings of low circuit
complexity, then we can simulate PNP extremely efficiently in the polynomial hierarchy. This
is similar in spirit to Fortnow, Santhanam, and Williams’ result that PNP ⊂ SIZE[nk] implies
NP ⊆ MATIME(nO(k)) [18]; our result is more complex in that we simulate all of PNP.

I Lemma 9. Suppose there is a k such that for all FPNP functions f , the circuit complexity
of f(x) is at most |x|k for all but finite many x. Then PNP ⊆ Σ3TIME[nO(k)].

Proof. Let L ∈ PNP be a language which can be computed by a 3-SAT oracle machine M
in nc time, for a constant c. Without loss of generality, we may assume M is a single-tape
machine.

The FPNP Function fsol. Consider the following FPNP function fsol:

FPNP function fsol for printing assignments to all satisfiable oracle queries

Given an input x, simulate the 3-SAT oracle machine M running on the input x.
On the i-th step, if M makes an oracle query ψ (ψ is a 3-SAT instance) and ψ is
satisfiable, call the NP oracle multiple times to construct a satisfying assignment for
ψ, and print it. Letting m be the length of the assignment (note that m ≤ nc), we
print nc + 1−m additional ones.
Otherwise, print nc + 1 zeros on the i-th step.

In the following we always assume n is sufficiently large. For all x with |x| = n, by
assumption we know the string fsol(x) has an nk size circuit. Let ψ be a 3-SAT query made
on i-th step which is satisfiable; ψ has a satisfying assignment corresponding to a sub-string of
fsol(x) starting from the position (i− 1) · (nc + 1) + 1, and therefore has circuit complexity at
most O(nk) ≤ nk+1. In particular, we can define a circuit Ei(j) := fsol(x)((i−1) ·(nc+1)+j)
whose truth table encodes a SAT assignment to ψ.
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The FPNP Function fhistory. Next, we define a function FPNP function fhistory, which prints
the computation history of M . More precisely, we can interpret fhistory(x) as a matrix
cell(x) ∈ Σnc×nc , such that cell(i, j) represents the state of the j-th cell of the working tape
before the i-th step, and Σ is a constant-size alphabet which represents all possible states of
a cell. From our assumption, for an x with |x| = n, we know that fhistory(x) has an nk-size
circuit.

The Algorithm. Now we are ready to describe a Σ3 algorithm for L running in nO(k) time.
At a high level, the algorithm first guesses two circuits Chistory and Csol, whose truth-tables are
supposed to represent fhistory(x) and fsol(x), it tries to verify that these circuits correspond
to a correct accepting computation of M on x. The whole verification can be done in
Π2TIME[nO(k)], utilizing the fact that M is making 3-SAT queries. The formal description
of the algorithm is given below.

A Σ3TIME[nO(k)] algorithm for L

(1) Given an input x, guess two nk-size circuits Chistory and Csol where the truth-table
of Chistory is intended to be fhistory(x)), and the truth-table of Csol is intended to be
fsol(x). Let cell ∈ Σnc×nc be the matrix (tableau) corresponding to the truth-table
of Chistory.

(2) We check that Chistory is consistent and accepting, assuming its claimed answers to
oracle queries are correct. In particular, we universally check over all (i, j) ∈ [nc]×[nc]
that cell(i, j) is consistent with the contents of cell(i−1, j−1), cell(i−1, j), cell(i, j+1)
when i > 1, whether it agrees with the initial configuration when i = 1, and whether
M is in an accept state when i = nc.

(3) We check that the claimed answers to oracle queries in Chistory are correct. For
convenience, we assume the query string always starts at the leftmost position on
the tape. We universally check over all step i ∈ [nc]:

If there is no query at the i-th step, we accept.
(A) Let ψ be the 3-SAT query. If the claimed answer in Chistory for ψ is yes, we examine

the corresponding sub-string of tt(Csol), and check universally over all clauses in
ψ that it is satisfied by the corresponding assignment in tt(Csol) (accepting if the
check passes and rejecting if it fails).

(B) If the claimed answer in Chistory for ψ is no, we universally check over all nk+1-size
circuits D that tt(D) is not an assignment to ψ, by existentially checking that
there is a clause in ψ which is not satisfied by tt(D).

Running Time. It is straightforward to see that the above is a Σ3TIME[nO(k)] algorithm.

Correctness. When x ∈ L, there are Csol and Chistory such that tt(Csol) and (Chistory) corres-
pond to fsol(x) and fhistory(x), so all of the checks pass and the above algorithm accepts x.

Let x /∈ L. We want to show that all possible nk-size circuits for Chistory and Csol will be
rejected. Assume for contradiction that there are circuits Chistory and Csol that can pass the
whole verification. By our checks in step (2) of the algorithm, Chistory is consistent and ends
in accept state; therefore, at least one answer to its oracle queries is not correct. Suppose the
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first incorrect answer occurs on the i-th step. Since Chistory is consistent and all queries made
before the i-th are correctly answered, the i-th query ψ is actually the correct i-th query
made by machine M on the input x.

Therefore, if the correct answer to ψ is yes but Chistory claims it is no, case (B) will not be
passed, as there is always a satisfying assignment that can be represented by the truth-table
of an nk+1-size circuit. Similarly, if Chistory incorrectly claims the answer is yes, then case
(A) cannot be passed, as ψ is unsatisfiable. J

We are now ready to prove Theorem 1.

Proof of Theorem 1. Suppose (1) PNP does not have SIZE[nk] circuits for any fixed k and
(2) NP ⊂ P/poly. By assumption (2), we have that for every c, Σ3TIME[nc] ⊂ SIZE[nO(c)].
Therefore, applying (1), PNP 6⊆ Σ3TIME[nc] for every c. By the contrapositive of Lemma 9,
for every k there is a PNP function B that for infinitely many x of length n, the circuit
complexity of B(x) is greater than nk. In other words, B(x) outputs the truth tables of hard
functions on infinitely many x.

Assumption (2) also implies a collapse of the polynomial hierarchy to ZPPNP [27]. By
(2), we also have ZPPNP ⊂ P/poly, so every ZPPNP algorithm A has polynomial-size circuits,
and thus by standard hardness-to-PRG constructions (e.g., Theorem 8) there is a fixed k
such that a string of circuit complexity at least nk can be used to construct a PRG that
fools algorithm A on inputs of length n. As shown above, there is a function B in PNP that
can produce such strings on infinitely many inputs x. If the inputs x that make B produce
high complexity strings are given as advice, then the ZPPNP algorithm A can be simulated
in PNP

/n : first, call B on the advice x to generate a hard function, produce a PRG of seed
length O(logn) with the hard function, then simulate A on the input and the pseudorandom
strings output by the PRG, using the NP oracle to simulate the NP oracle of A. Thus we
have ZPPNP ⊂ i.o.-PNP/n.

Finally, we note that the n bits of advice can be reduced to nε bits for any desired ε > 0.
For every k > 0, we can find an FPNP function that outputs a string of circuit complexity
greater than nk. Setting k′ = k/ε, we can use an nε-length input as advice, and still get a
function that is hard enough to derandomize ((nε)k′ = (nε)k/ε = nk). J

4 An Equivalence Theorem Under NP ⊂ P/poly

In this section we prove Theorem 2 together with several applications.
First, we need a strong size lower bound for a language in (MA ∩ coMA)/1. The proof is

based on a similar lemma in a recent work [14] (which further builds on [30, 33]). We present
a proof in Appendix A for completeness.

I Lemma 10 (Implicit in [14]). For all constants k, there is an integer c, and a language
L ∈ (MA ∩ coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

SIZE(Ln) > nk, or
SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

We also need the following two simple lemmas.

I Lemma 11. NP is not in SIZE[nk] for all k iff NP/n is not in SIZE[nk] for all k.
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Proof. The ⇒ direction is trivial. For the ⇐ direction, suppose NP is in SIZE[nk] for an
integer k. Let L ∈ NP/n, and M and {αn}n∈N be its corresponding nondeterministic Turing
machine and advice sequence. Let p(n) be a polynomial running time upper bound of M on
inputs of length n.

Now, we define a language L′ such that a pair (x, α) ∈ L′ if and only if |x| = |α| and M
accepts x with advice bits set to α in p(|x|) steps. Clearly, L′ ∈ NP from the definition, so it
has an nk-size circuit family. Fixing the advice bits to the actual αn’s in the circuit family,
we have an nO(k)-size circuit family for L as well. This completes the proof. J

I Lemma 12 (Theorem 14 [18]). Let k be an integer. If NP ⊂ P/poly and all NP verifiers
have nk-size witnesses, then NP ⊆ MATIME[nO(k)] ⊂ SIZE[nO(k)].

Proof. Assume all NP verifiers have nk-size witnesses. By guessing circuits for the wit-
nesses to PCP verifiers, it follows that NP ⊆ MATIME[nO(k)] [18]. Furthermore, we have
MATIME[nO(k)] ⊂ NTIME[nO(k)]/nO(k) ⊂ SIZE[nO(k)]. The last step follows from the as-
sumption that NP ⊂ P/poly (and therefore SAT ∈ SIZE[nc] for a constant c). J

Now, we are ready to prove our equivalence theorem (restated below).

I Reminder of Theorem 2. Assuming NP ⊂ P/poly, the following are equivalent:
1. NP is not in SIZE[nk] for all k.
2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.
3. NP does not have nk-size witnesses for all k.8
4. For all k and d, there is a poly-time nondeterministic PRG with n bits of advice against

nk-size circuits d-robustly often.9
5. NP is not in AMTIME(nk) for all k.
6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.
7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

Proof. We prove the following directions to show equivalence.
(2) ⇒ (1). Suppose (2) holds. For all k, let L and c be the MA/1 language and the
corresponding constant c guaranteed by Lemma 10. By (2) and the fact that MA/1 ⊆ AM/1,
there is an NP/n language L′ such that for infinitely many n’s, L′ agrees with L on inputs
with length in [n, n2c].

Let τ = dlog(n)e. By the condition of Lemma 10, we know that for at least one ` ∈ [n, n2c],
we have SIZE(L′`) ≥ `k. Since there are infinitely many such n, we conclude that L′ is not in
SIZE[nk]. Since k can be an arbitrary integer, it further implies that NP/n is not in SIZE[nk]
for all k, and hence also NP is not in SIZE[nk] for all k by Lemma 11.

(1) ⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k.
Then, by Lemma 12, NP ⊂ SIZE[nO(k)].

(3) ⇒ (4). This more-or-less follows directly from standard hardness-to-pseudorandomness
constructions [36]. More specifically, for all integers k and d and ε > 0, there is a language
L ∈ NP without ngkd/ε-size witnesses. Equivalently, there is a poly-time verifier V for L,
such that there are infinitely many x ∈ L such that for all y with V (x, y) = 1, it follows
CC(y) ≥ |x|gkd/ε.

8 See the statement of Theorem 2 in the introduction for the definition of nk-size witnesses.
9 See the Preliminaries for a full definition of nondeterministic PRG and d-robustly often.
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For such an x ∈ L with |x| = m, we can guess a y such that V (x, y) = 1 and apply
Theorem 8 to construct a poly-time nondeterministic PRG with seed length O(logm), which
works for input length n ∈ [m1/ε,md/ε] and against nk-size circuits. Note that advice length
is |x| = m ≤ nε.

(4) ⇒ (2). First, under the assumption that NP ⊂ P/poly, we have the collapse AM/1 =
MA/1 [4]. So it suffices to show that MA/1 ⊂ c-r.o.-NP/nε for all ε > 0 and integers d.

Let L ∈ MA/1. That is, for a constant k, there is an nk-time algorithm A(x, y, z, α) with
one bit of advice αn, such that

x ∈ L⇒ there is a y of |x|k length such that Prz[A(x, y, z, αn) = 1] ≥ 2/3.
x /∈ L⇒ for all y of |x|k length, Prz[A(x, y, z, αn) = 1] ≤ 1/3.

Fixing the x, y, αn, we can construct a circuit Cx,y,αn(z) := A(x, y, z, αn) of size n2k in
n2k time.

Now, by (4), for all d, there is a poly-time NPRG G with seed length O(logn) and advice
length nε such that there are infinitely many m’s such that for all n ∈ [m,md], Gn fools
n2k-size circuits.

Applying Gn to fool Cx,y,αn directly, we have a language L′ ∈ NP/nε such that there are
infinitely many m such that L′ agrees with L on all input lengths in [m,md]. This completes
the proof since d can be made arbitrarily large.

(5) ⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k.
By Lemma 12, it follows that NP ⊆ MATIME[nO(k)] ⊆ AMTIME[nO(k)].

(1) ⇒ (5). Again, we prove the contrapositive. We have NP ⊆ AMTIME[nO(k)] ⊂
NTIME[nO(k)]/nO(k) ⊂ SIZE[nO(k)]. The last step follows from the assumption that NP ⊆
P/poly (and therefore SAT ∈ SIZE[nc] for a constant c).

(6) ⇒ (1). (NP ∩ coNP)/nε is not in SIZE[nk] for all k and ε > 0 implies NP/n is not in
SIZE[nk] for all k, which in turn implies NP is not in SIZE[nk] for all k by Lemma 11.

(4) ⇒ (7). This follows similarly as the direction from (4) to (2).

(7) ⇒ (6). This follows similarly as the direction from (2) to (1). Note that [4] also implies
(MA ∩ coMA)/1 = (AM ∩ coAM)/1 under the assumption NP ⊂ P/poly. J

5 NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses

Now we show a corollary of Theorem 2 that NP circuit lower bounds imply better Karp-Lipton
collapses.

I Reminder of Theorem 4. Let C ∈ {⊕P,PSPACE,PP,EXP}. Suppose NP 6⊂ SIZE[nk] for
all k. Then for all ε > 0, (C ⊂ P/poly =⇒ C ⊂ i.o.-NP/nε). In particular, polynomial-size
circuits for any C-complete language can be constructed in NP on infinitely many input lengths
with nε advice.

Proof of Theorem 4. We first prove it for ⊕P. Suppose for all k, NP 6⊂ SIZE[nk] and
⊕P ⊂ P/poly.

First, note that BPP⊕P ⊂ P/poly, implying PH ⊂ P/poly by Toda’s theorem [34]. Therefore,
by Theorem 2 together with our assumption, we have MA ⊂ c-r.o.-NP/nε for all ε > 0
and integers c. In particular, MA ⊂ i.o.-NP/nε for all ε > 0. Now it suffices to show that
⊕P ⊂ P/poly =⇒ ⊕P ⊆ MA.

Let Π be the random self-reducible and downward self-reducible ⊕P-complete language
in [23]. By our assumption that ⊕P ⊂ P/poly, Π has a poly-size circuit family.

CCC 2019



30:12 Circuit Lower Bounds and Karp-Lipton Theorems

Then we can guess-and-verify these circuits in MA. We first existentially guess a circuit
Ck for Π on every input length k = 1, . . . , n. C1 can be verified in constant time, and each
successive circuit can be verified via random downward self-reducibility: given a circuit of
length m that computes Πm exactly, a circuit of length m+ 1 can be checked on random
inputs to verify (with high probability) its consistency with Πm+1 (which is computable
using the downward self-reducibility and the circuit for Πm). Then we can apply the random
self-reducibility to construct an exact circuit for Πm+1 from Cm+1 with high probability, as
we already know Cm+1 approximates Πm+1 very well. Therefore, with high probability, we
can guess-and-verify a circuit for Πn via a poly-time MA computation. This puts ⊕P ⊆ MA.
Combining that with MA ⊂ i.o.-NP/nε for all ε > 0, we can conclude that ⊕P ⊂ i.o.-NP/nε
for all ε > 0.

To construct a circuit for Πn in i.o.-NP/nε , note that by Theorem 6, for all k, we have an
i.o.-NPRG fooling nk-size circuits. We can pick k to be a sufficiently large integer, and use
the i.o.-NPRG to derandomize the above process. This turns out to be more subtle than one
might expect.

Construction of poly-size circuits of Πn in i.o.-NP/nε . Let d be a sufficiently large
constant. Since we only aim for an i.o.-construction, we can assume that our i.o.-NPRG
works for the parameter n, and fools all nd-size circuits. Also, suppose we have SIZE(Πn) ≤ nc
for all n and a constant c.

We say a circuit C γ-approximates a function f , if C(x) = f(x) for at least a γ fraction
of the inputs.

Again, suppose we already constructed the circuits C1, C2, . . . , Ck for Π1,Π2, . . . ,Πk.
This time we cannot guarantee Ci exactly computes Πi. Instead, we relax the condition a bit
and ensure that Ci (1− 4/n)-approximates Πi for all i ∈ [k]. Clearly, we can check C1 ≡ Π1
directly so this can be satisfied when k = 1.

We now show how to construct an approximate circuit for Πk+1. First, using the random
self-reducibility of Π and the circuit Ck approximating Πk, there is an oracle circuit E of size
poly(n), which takes two inputs x with |x| = k and r with |r| = poly(n), such that for all x,

Pr
r

[
ECk(x, r) = Πk(x)

]
≥ 1− 1/2n.

Also, by the downward self-reducibility of Π, there is an oracle machine D of poly(k) size,
such that DΠk(z) = Πk+1(z) for all z.

Now, consider the following circuit G(x, r) for computing Πk+1: the circuit simulates
DΠk , while answering all queries w to Πk using ECk(w, r). For each input x ∈ {0, 1}k+1,
let w1, w2, . . . , wpoly(n) be all queries to Πk made by running D on the input x assuming
all answers are correct, we can see that if ECk(wj , r) = Πk(wj) for all these wj ’s, then
G(x, r) = Πk+1(x). Therefore, we have

Pr
r

[G(x, r) = Πk+1(x)] ≥ 1− poly(n)/2n,

for all x ∈ {0, 1}k+1.
Now, we guess a circuit Ck+1 of size (k + 1)c which is supposed to compute Πk+1. By an

enumeration of all possible seeds to our NPRG, we can estimate the probability

pgood := Pr
x∈{0,1}k+1

Pr
r

[G(x, r) = Ck+1(x)].

within 1/n in poly(n) time, as the expression [G(x, r) = Ck+1(x)] has a poly(n) size circuit
with inputs being x and r. Let our estimation be pest. We have |pgood − pest| ≤ 1/n.
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Putting the above together, we have∣∣∣∣ Pr
x∈{0,1}k+1

[Πk+1(x) = Ck+1(x)]− pgood

∣∣∣∣ ≤ poly(n)/2n.

We reject immediately if our estimation pest < 1− 2/n (note that if Ck+1 is the correct
circuit, pgood would be larger than 1− poly(n)/2n > 1− 1/n, and therefore pest > 1− 2/n).
So after that, we can safely assume that Ck+1 (1− 4/n)-approximates Πk+1.

Therefore, at the end we have an nc-size circuit Cn which (1−4/n)-approximates Πn, and
we try to recover an exact circuit for Πn from Cn by exploiting the random self-reducibility
of Πn again. Note that there is an oracle circuit E(x, r), which takes two inputs x with
|x| = n and r with |r| = poly(n) such that for all x,

Pr
r

[ECn(x, r) = Πn(x)] ≥ 2/3.

Now, we generate ` = nO(1) strings r1, r2, . . . , r` by enumerating all seeds to the NPRG.
We construct our final circuit C to be the majority of ECn(x, rj) for all j ∈ [`]. It is
not hard to see that C computes Πn exactly, as our inputs {rj}j∈[`] fool the expression[
ECn(x, r) = Πn(x)

]
for all x ∈ {0, 1}n.

For the case of PP and PSPACE, one can implement the above procedure in the same way,
using the corresponding random self-reducible and downward self-reducible PP-complete and
PSPACE-complete languages (Permanent and the PSPACE-complete language in [35]).

For the case of EXP, note that EXP ⊂ P/poly =⇒ EXP = PSPACE, so we can proceed
the same way as for PSPACE (since EXP = PSPACE, PSPACE-complete languages are also
EXP-complete). J

6 Consequence of Weak Circuit Lower Bounds for Sparse Languages
in NP

Now, we are ready to prove the consequences of weak circuit lower bounds for sparse NP
languages. We first need the following lemma.

I Lemma 13 (Hardness Verification from Circuit Lower Bounds for Sparse NTIME[T (n)]
Languages). Let Sckt(n), Ssparse(n), T (n) : N → N be time constructible functions. Suppose
there is an Ssparse(n)-sparse language L ∈ NTIME[T (n)] without (n · Sckt(n))-size circuits.
Then there is a procedure V such that:

V takes a string z of length n · Ssparse(n) as input and an integer ` ≤ Ssparse(n) as advice.
V runs in O(Ssparse(n) · T (n)) nondeterministic time.
For infinitely many n, there is an integer `n ≤ Ssparse(n) such that V (z, `n) accepts exactly
one string z, and z has circuit complexity Ω(Sckt(n)/ logSsparse(n)).

Proof. Let L be the NTIME[T (n)] language in the assumption. Let N = n · Ssparse(n). We
define a string ListLn ∈ {0, 1}N as the concatenation of all x ∈ Ln in lexicographical order,
together with additional zeros at the end to make the string have length exactly N .

Now define a function fn on m = logdN + 1e bits, with truth-table ListLn102m−N .
We claim that SIZE(Ln) ≤ O(SIZE(fn) ·n · log(Ssparse(n))). To determine whether x ∈ Ln,

it would suffice to perform a binary search on the list ListLn . We construct a circuit
for Ln which performs binary search using fn. First, we hard-wire the length of the list
` := |Ln| ≤ Ssparse(n) into our circuit for Ln so that the binary search can begin with the
correct range. A binary search on List(Ln) takes O(logSsparse(n)) comparisons, and each
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comparison requires O(n) calls to fn (to print the appropriate string). It is easy to see
that the circuit size required for the binary search is dominated by the total cost of the
comparisons; this proves the claim.

From the assumption, we know that for infinitely many n, Ln has no circuit of size
n · Sckt(n). By our upper bound on the circuit size of Ln, it follows that on the same set of
n, the function fn has circuit complexity at least Ω(Sckt(n)/ logSsparse(n)).

Now, we construct an algorithm V that only accepts the string fn = ListLn102m−N . We
first need the integer ` = |Ln| as the advice. Given a string Y of length N , we check that Y
contains exactly ` distinct inputs in {0, 1}n in lexicographical order with the correct format,
and we guess an O(T (n))-length witness for each input to verify they are indeed all in L.
It is easy to see that V runs in O(Ssparse(n) · T (n)) nondeterministic time, which completes
the proof. J

I Remark 14. Note that the advice integer ` can be calculated directly with an NP oracle by
doing a binary search for `, which takes O(logSsparse(n)) NP-oracle calls. That is, one can
also use a PNP[O(logSsparse(n))] verifier without advice bits in the statement of Lemma 13.

I Remark 15. As mentioned in the introduction, the above proof can be seen as a type
of hardness condensation for all sparse NTIME[T (n)] languages. The goal of hardness
condensation [8, 22] is that, given a hard function f on n input bits with complexity S, we
want to construct a function f̃ on `� n input bits that still has complexity roughly S. The
above proof shows any hard sparse language in NTIME[T (n)] can be “condensed” into a
function representing its sorted yes-instances.

Combing Lemma 13 with Theorem 8, we obtain a construction of an i.o.-NPRG.

I Corollary 16 (NPRG from lower bounds against sparse NTIME[T (n)] languages). Under the
circuit lower bound assumption of Lemma 13, there is an i.o.-NPRG G with the properties:

G has O(logSsparse(n) + logn) seed length.
G takes O(logSsparse(n)) bits of advice.
G runs in Ssparse(n) · T (n) + poly(n · Ssparse(n)) time.
G fools circuits of size at most (Sckt(n)/ logSsparse(n))Ω(1).

Now we are ready to prove Theorem 6.

I Reminder of Theorem 6. Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP
without n1+ε-size circuits. Then MA ⊂ i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂
SIZE[2δ·n] for some δ > 0 (which implies NP 6⊂ SIZE[nk] for all k).

Proof. First, by Corollary 16 and setting Sckt(n) = nε, Ssparse(n) = nc and T (n) = poly(n),
there is an i.o.-NPRG with seed length O(logn) which takes O(logn) bits of advice, runs in
poly(n) time, and fools circuits of size nΩ(ε) = nΩ(1). Note that we can simply scale it up to
make it fool circuits of size nk for any k, with only a constant factor blowup on seed length
and advice bits and a polynomial blowup on the running time.

Applying the i.o.-NPRG to arbitrary Merlin-Arthur computations, we conclude MA ⊂
i.o.-NP/O(logn). Similarly, MA ⊆ i.o.-PNP[O(logn)] follows from Remark 14.

Now we show NE 6⊂ SIZE[2δ·n] for some δ > 0. By Lemma 13, there is a nondeterministic
algorithm running in poly(n) time, given αn = c logn bits of advice, guess and verify a string
of length nc+1 which has circuit complexity at least nε/2, for infinitely many n. We say these
infinitely many n are good n.
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Next, we define the following language L ∈ NE: Given an input of length m. It treats the
first ` = m/4c bits a binary encoded integer n ≤ 2`. Then it treats the next c logn input bits
a as the advice, and tries to guess-and-verify a string z which passes the verification procedure
in Lemma 13 with advice a and parameter n, and then it treats the next (c+ 1) · logn input
bits as an integer i ∈ [nc+1], and accepts if and only zi = 1.

First, it is easy to verify L ∈ NE, as the algorithm runs in poly(n) = 2O(`) = 2O(m)

nondeterministic time. For the circuit complexity of L, we know that for the good n, on
inputs of length of m = 4 · c · dlogne, if we fix the first m/4c bits to represent the integer n,
and next c logn bit to the actual advice αn, L would compute the hard string of length nc+1

on the next (c+ 1) · logn bits. Therefore, SIZE(Lm) ≥ nε ≥ 2Ω(m) for infinitely many m’s,
which completes the proof. J

Finally, we prove Theorem 7.

I Reminder of Theorem 7. NEXP 6⊂ P/poly if and only if there is an ε > 0 such that for all
sufficiently small β > 0, there is a 2nβ -sparse language L ∈ NTIME[2nβ ] without n1+ε-size
circuits.

Proof. (⇒) This direction is easy to prove using standard methods. Suppose NEXP 6⊂ P/poly;
this also implies NE 6⊂ P/poly. Therefore, there is a language L ∈ NTIME[2n] that does not
have n2/β-size circuits. Define a padded language L′ = {x10|x|1/β−1|x ∈ L}. It is easy to see
that L′ ∈ NTIME[2mβ ], by running the NE algorithm for L on its first n = O(mβ) input bits.
From the circuit lower bound on L, it follows that L′ does not have n2/β = m2-size circuits.

(⇐) First, by Impagliazzo-Kabanets-Wigderson [24], if for every ε and integer k, there is
an i.o.-NPRG with seed length nε, nε advice bits, and 2nε running time that fools nk-size
circuits, then NEXP 6⊂ P/poly.

Setting Sckt(n) = nε, Ssparse(n) = 2nβ and T (n) = 2nβ in Corollary 16, there is an
i.o.-NPRG with seed length O(nβ), takes O(nβ) bits of advice, and runs in 2O(nβ) time that
fools circuits of size nΩ(ε/β) = nε

′ for ε′ > 0. By setting m = nε
′/k, we obtain an i.o.-NPRG

with seed/advice length O(mβ·k/ε′) and running time 2O(mβ·k/ε
′
), which fools circuits of size

mk. Therefore, by [24], it follows that NEXP 6⊂ P/poly. J

7 Open Problems

We conclude with three interesting open questions stemming from this work.

1. Are fixed-polynomial circuit lower bounds for NP equivalent to a Karp-Lipton collapse of
PH to NP?
Formally, is NP 6⊂ SIZE[nk] for all k equivalent to (NP ⊂ P/poly =⇒ PH ⊂ i.o.-NP/n)?
Recall we showed that similar Karp-Lipton-style collapses do occur, assuming NP circuit
lower bounds (e.g., (PSPACE ⊂ P/poly =⇒ PSPACE ⊂ i.o.-NP/n)), and we showed that
NP 6⊂ SIZE[nk] implies a type of collapse of AM into NP.

2. It is also a prominent open problem to prove that ZPPNP
tt 6⊂ SIZE[nk] for some constant

k [16] (that is, prove lower bounds for ZPP with nonadaptive queries to an NP oracle).
Is this lower bound equivalent to a Karp-Lipton collapse of PH?
The difficulty is that, assuming ZPPNP

tt 6⊂ SIZE[nk], it appears that we may obtain a good
simulation of BPPNP

tt , but we presently have no Karp-Lipton Theorem collapsing PH to
BPPNP

tt (indeed, lower bounds for this class are also open). Furthermore, [16] observe
that NP ⊂ P/poly does imply the (small) collapse BPPNP

tt = ZPPNP
tt ; it is unclear how a

circuit lower bound against ZPPNP
tt would aid a further collapse.
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3. In light of our Theorem 7, is it possible to show interesting hardness magnification results
for non-sparse versions of MCSP (say, MCSP[2m/m2])?
Currently, we only know hardness magnification results when the circuit size parameter
is 2o(m) [32, 31, 29].
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A Almost Almost-everywhere (MA ∩ coMA)/1 Circuit Lower Bounds

Here we provide a proof for Lemma 10 for completeness. The proof is based on a similar
lemma from [14].

A.1 Preliminaries
A crucial ingredient of the proof is a PSPACE-complete language [35] satisfying strong
reducibility properties, which is also used in the fixed-polynomial lower bounds for MA/1
and promiseMA [33], and the recent new witness lemmas for NQP and NP [30].

We first define these reducibility properties.

I Definition 17. Let L : {0, 1}∗ → {0, 1} be a language, we define the following properties:
L is downward self-reducible if there is a constant c such that for all sufficiently large
n, there is an nc size uniform oracle circuit A such that for all x ∈ {0, 1}n, ALn−1(x) =
Ln(x).
L is paddable, if there is a polynomial time computable projection Pad (that is, each
output bit is either a constant or only depends on 1 input bit), such that for all integers
1 ≤ n < m and x ∈ {0, 1}n, we have x ∈ L if and only if Pad(x, 1m) ∈ L, where
Pad(x, 1m) always has length m.
L is same-length checkable if there is a probabilistic polynomial-time oracle Turing
machine M with output in {0, 1, ?}, such that, for any input x,
M asks its oracle queries only of length |x|.
If M is given L as an oracle, then M outputs L(x) with probability 1.
M outputs 1− L(x) with probability at most 1/3 no matter which oracle is given to it.

We call M an instance checker for L.

I Remark 18. Note that the paddable property implies that SIZE(Ln) is non-decreasing.

The following PSPACE-complete language is given by [33] (modifying a construction of
Trevisan and Vadhan [35]).

I Theorem 19 ([33, 35]). There is a PSPACE-complete language LPSPACE which is paddable,
downward self-reducible, and same-length checkable.

We also need the following folklore theorem which is proved by a direct diagonalization
against all small circuits.

I Theorem 20. Let n ≤ s(n) ≤ 2o(n) be space-constructible. There is a universal constant c
and a language L ∈ SPACE[s(n)c] that SIZE(Ln) > s(n) for all sufficiently large n.

A.2 Definitions
We need the following convenient definition of an MA∩ coMA algorithm, which simplifies the
presentation.

I Definition 21. A language L is in MA ∩ coMA, if there is a deterministic algorithm
A(x, y, z) (which is called the predicate) such that:

A takes three inputs x, y, z such that |x| = n, |y| = |z| = poly(n) (y is the witness while
z is the collection of random bits), runs in O(T (n)) time, and outputs an element from
{0, 1, ?}.
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(Completeness) There exists a y such that

Pr
z

[A(x, y, z) = L(x)] ≥ 2/3.

(Soundness) For all y,

Pr
z

[A(x, y, z) = 1− L(x)] ≤ 1/3.

I Remark 22. (MA ∩ coMA) languages with advice are defined similarly, with A being an
algorithm with the corresponding advice.

Note that by above definition, the semantic of (MA ∩ coMA)/1 is different from MA/1 ∩
coMA/1. A language in (MA∩coMA)/1 has both an MA/1 algorithm and a coMA/1 algorithm,
and their advice bits are the same. While a language in MA/1 ∩ coMA/1 can have an MA/1
algorithm and a coMA/1 algorithm with different advice sequences.

A.3 Proof for Lemma 10

Now we are ready to prove Lemma 10 (restated below).

I Reminder of Lemma 10. For all constants k, there is an integer c, and a language
L ∈ (MA ∩ coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

SIZE(Ln) > nk, or
SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

Proof. Let LPSPACE be the language specified by Theorem 19. By Theorem 20, there is an
integer c1 and a language Ldiag in SPACE(nc1), such that SIZE(Ldiag

n ) ≥ nk for all sufficiently
large n. By the fact that LPSPACE is PSPACE-complete, there is a constant c2 such that Ldiag

n

can be reduced to LPSPACE on input length nc2 in nc2 time. We set c = c2.

The Algorithm. Let τ ∈ N be sufficiently large. We also let b to be a constant to be
specified later. Given an input x of length n = 2τ and let m = nc, we first provide an
informal description of the (MA∩ coMA)/1 algorithm which computes the language L. There
are two cases:
1. When SIZE(LPSPACE

m ) ≤ nb. That is, when LPSPACE
m is easy. In this case, on inputs of

length n, we guess-and-verify a circuit for LPSPACE
m of size nb and use that to compute

Ldiag
n .

2. Otherwise, we know LPSPACE
m is hard. Let ` be the largest integer such that

SIZE(LPSPACE
` ) ≤ nb. On inputs of length m1 = m+ `, we guess-and-verify a circuit for

LPSPACE
` and compute it (that is, compute LPSPACE

` on the first ` input bits while ignoring
the rest).

Intuitively, the above algorithm computes a hard function because either it computes
the hard language Ldiag

n on inputs of length n, or it computes the hard language LPSPACE
` on

inputs of length m1. A formal description of the algorithm is given in Algorithm 1, while an
algorithm for setting the advice sequence is given in Algorithm 2. It is not hard to see that a
yn can only be set once in Algorithm 2.

CCC 2019
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Algorithm 1: The MA ∩ coMA algorithm.
1 Given an input x with input length n = |x|;
2 Given an advice bit y = yn ∈ {0, 1};
3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc0 ≤ n;
5 Let m0 = nc0;
6 Let ` = n−m0;
7 if y = 0 then
8 Output 0 and terminate
9 if n is a power of 2 then

10 (We are in the case that SIZE(LPSPACE
m ) ≤ nb.);

11 Compute z in nc time such that Ldiag
n (x) = LPSPACE

m (z);
12 Guess a circuit C of size at most nb;
13 Let M be the instance checker for LPSPACE

m ;
14 Flip an appropriate number of random coins, let them be r;
15 Output MC(z, r);
16 else
17 (We are in the case that SIZE(LPSPACE

m0
) > nb0 and ` is the largest integer such that

SIZE(LPSPACE
` ) ≤ nb0.);

18 Let z be the first ` bits of x;
19 Guess a circuit C of size at most nb0;
20 Let M be the instance checker for LPSPACE

` ;
21 Flip an appropriate number of random coins, let them be r;
22 Output MC(z, r);

Algorithm 2: The algorithm for setting advice bits.
1 All yn’s are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;
4 Let m = nc;
5 if SIZE(LPSPACE

m ) ≤ nb then
6 Set yn = 1;
7 else
8 Let ` = max{` : SIZE(LPSPACE

` ) ≤ nb};
9 Set ym+` = 1;
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The Algorithm Satisfies the MA ∩ coMA Promise. We first show the algorithm satisfies
the MA∩ coMA promise (Definition 21). The intuition is that it only tries to guess-and-verify
a circuit for LPSPACE when it exists, and the properties of the instance checker (Definition 17)
ensure that in this case the algorithm satisfies the MA ∩ coMA promise. Let y = yn, there
are three cases:
1. y = 0. In this case, the algorithm computes the all zero function, and clearly satisfies the

MA ∩ coMA promise.
2. y = 1 and n is a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE

m ) ≤
nb for m = nc. Therefore, at least one guess of the circuit is the correct circuit for LPSPACE

m ,
and on that guess, the algorithm outputs Ldiag

n (x) = LPSPACE
m (z) with probability at least

2/3, by the property of the instance checker (Definition 17).
Again by the property of the instance checker, on all possible guesses, the algorithm
outputs 1−Ldiag

n (x) = 1−LPSPACE
m (z) with probability at most 1/3. Hence, the algorithm

correctly computes Ldiag
n on inputs of length n, with respect to Definition 21.

3. y = 1 and n is not a power of 2. In this case, from Algorithm 2, we know that
SIZE(LPSPACE

` ) ≤ nb0. Therefore, at least one guess of the circuit is the correct circuit for
LPSPACE
` , and on that guess, the algorithm outputs LPSPACE

` (z) (z = z(x) is the first ` bits
of x) with probability at least 2/3, by the property of the instance checker (Definition 17).
Again by the property of the instance checker, on all possible guesses, the algorithm
outputs 1 − LPSPACE

` (z) with probability at most 1/3. Hence, the algorithm correctly
computes LPSPACE

` (z(x)) on inputs of length n, with respect to Definition 21.

The Algorithm Computes a Hard Language. Next we show that the algorithm indeed
computes a hard language as stated. Let τ be a sufficiently large integer, n = 2τ , and m = nc.
According to Algorithm 2, there are two cases:

SIZE(LPSPACE
m ) ≤ nb. In this case, Algorithm 2 sets yn = 1. And by previous analyses, we

know that Ln computes the hard language Ldiag
n , and therefore SIZE(Ln) > nk.

SIZE(LPSPACE
m ) > nb. Let ` be the largest integer such that SIZE(LPSPACE

` ) ≤ nb. By
Remark 18, we have 0 < ` < m.
Note that SIZE(LPSPACE

`+1 ) ≤ (`+ 1)d · SIZE(LPSPACE
` ) for a universal constant d, because

LPSPACE is downward self-reducible. Therefore,

SIZE(LPSPACE
` ) ≥ SIZE(LPSPACE

`+1 )/(`+ 1)d ≥ nb/md ≥ nb−c·d.

Now, on inputs of length m1 = m + `, we have ym1 = 1 by Algorithm 2 (note that
m1 ∈ (m, 2m) as ` ∈ (0,m)). Therefore, Lm1 computes LPSPACE

` , and

SIZE(Lm1) = SIZE(LPSPACE
` ) ≥ nb−c·d.

We set b such that nb−cḋ ≥ (2m)k ≥ mk
1 (we can set b = cd + 3 · ck), which completes

the proof. J
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Abstract
An important class of problems in logics and database theory is given by fixing a first-order
property ψ over a relational structure, and considering the model-checking problem for ψ. Recently,
Gao, Impagliazzo, Kolokolova, and Williams (SODA 2017) identified this class as fundamental
for the theory of fine-grained complexity in P, by showing that the (Sparse) Orthogonal Vectors
problem is complete for this class under fine-grained reductions. This raises the question whether
fine-grained complexity can yield a precise understanding of all first-order model-checking problems.
Specifically, can we determine, for any fixed first-order property ψ, the exponent of the optimal
running time O(mcψ ), where m denotes the number of tuples in the relational structure?

Towards answering this question, in this work we give a dichotomy for the class of ∃k∀-quantified
graph properties. For every such property ψ, we either give a polynomial-time improvement over
the baseline O(mk)-time algorithm or show that it requires time mk−o(1) under the hypothesis that
MAX-3-SAT has no O((2− ε)n)-time algorithm. More precisely, we define a hardness parameter
h = H(ψ) such that ψ can be decided in time O(mk−ε) if h ≤ 2 and requires time mk−o(1) for
h ≥ 3 unless the h-uniform HyperClique hypothesis fails. This unveils a natural hardness
hierarchy within first-order properties: for any h ≥ 3, we show that there exists a ∃k∀-quantified
graph property ψ with hardness H(ψ) = h that is solvable in time O(mk−ε) if and only if the
h-uniform HyperClique hypothesis fails. Finally, we give more precise upper and lower bounds
for an exemplary class of formulas with k = 3 and extend our classification to a counting dichotomy.
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1 Introduction

One of the most expressive problems in complexity theory is the model-checking problem for
first-order definable properties over relational structures. Any such property can be written
as a formula of the form

(Q1x1) . . . (Qkxk)φ(x1, . . . , xk),

whereQi ∈ {∃,∀}, φ is an arbitrary Boolean formula defined over an arbitrary set of predicates
and the relational structure is given by explicitly listing all tuples defining the predicates.
This problem encompasses, e.g., the hugely diverse set of constraint satisfaction problems and
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it is fundamental for database theory as query evaluation problem over relational structures.
In this context, the relational structure is a relational database and the first-order definable
property corresponds to queries to the database, see, e.g., [9] for an overview.

Given its expressiveness, it is no surprise that the complexity of this problem has been
extensively studied under various angles: Among others, one distinguishes between the
combined complexity (where both the first-order property and the relational structure are
part of the input) and the data complexity (where the first-order property is fixed and the
input only contains the relational structure) [54]. After classical works covered various aspects
of these complexities (see, e.g., [31, 10, 30, 44]), later research turned towards parameterized
analyses of such problems, see, e.g., [55, 37, 50] and the overview in [40, Section 4.3]. In this
work, we pursue an even finer-grained complexity analysis of the data complexity of bounded-
variable formulas, which capture a rich complexity landscape of low-degree polynomial-time
problems [58, 41].

Consider the following examples for first-order properties, where the relational structure
consists of the binary edge relation E(x, x′) over vertices in V , defining an (undirected)
graph G:

Triangle: (∃x1 ∈ V ) (∃x2 ∈ V ) (∃x3 ∈ V ) (E(x1, x2) ∧ E(x2, x3) ∧ E(x3, x1))
(determine whether G contains a triangle)
TwinFree: (∀x1 ∈ V ) (∀x2 ∈ V ) (∃x3 ∈ V ) (E(x1, x2) ∨ (E(x1, x3) 6↔ E(x2, x3)))
(determine whether G contains no adjacent vertices x1, x2 sharing the same neighborhood)

Such properties are called graph properties. Another example for a graph property (although
we do not call the binary relation “edges” in this case) is a version of the Hitting Set
problem, in which we are given an explicitly represented set family S = {S1, . . . , Sn} over
some universe U . The explicit representation here is a list of tuples fulfilling the relation
s ∈ Si, i ∈ {1, . . . , n}:

HittingSet: (∃H ∈ S) (∀S ∈ S) (∃u ∈ U) (u ∈ H ∧ u ∈ S)
(determine whether there is some input set H that hits all (other) input sets)

A simple baseline algorithm solves the model-checking problem for any first-order formula
in prenex normal form with (k + 1) quantifiers in time O(mk), where m denotes the size of
the relational structure (i.e., the number of tuples satisfying the relations). This has recently
been improved to mk/2Ω(

√
logm) [41]. However, we can surpass this bound significantly

for specific formulas. In particular, TwinFree has a simple O(m)-time algorithm [42]
and Triangle can be solved in time O(m

2ω
ω+1 ) = O(m1.41) [12] (where ω ≤ 2.373 denotes

the matrix multiplication exponent), while for HittingSet we do not know of any faster
algorithm than the m2/2Ω(

√
logm)-solution of Gao et al. [41] (in fact, this barrier has been

used as a hardness assumption in its own right [6]). This raises the question: How can we
determine the constant cψ > 0 in the optimal running time mcψ±o(1) for specific formulas ψ?
In particular, when is a close-to-baseline time mk±o(1) the best possible?

1.1 Complete Problem: (Sparse) k-OV
Remarkable progress to this question has been made by Gao, Impagliazzo, Kolokolova, and
Williams [41]. In the sense of admitting polynomial improvements over the O(mk)-baseline,
they identified the following problem as complete for the class of model-checking problems for
(k+1)-quantifier formulas: (here, the input is a (k+1)-partite graph G = (X1]· · ·]Xk]Y,E))

Sparse k-OV: (∃x1 ∈ X1) . . . (∃xk ∈ Xk) (∀y ∈ Y ) (E(x1, y) ∨ . . . ∨ E(xk, y))
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More precisely, Gao et al. show that Sparse k-OV has an O(mk−ε)-time algorithm for
some constant ε > 0 if and only if for all (k + 1)-quantifier formulas in prenex normal form,
the model-checking problem can be solved in time O(mk−ε′) for some constant ε′ > 0. This
identifies Sparse k-OV as one of the hardest problems in this class of problems.

Note that Sparse k-OV is a sparsely represented variant1 of the following problem:

I Problem 1 (k-OV). Given k sets of 0-1 vectors A1, . . . , Ak ⊆ {0, 1}d, where |Ai| = n,
determine whether there is a tuple a1 ∈ A1, . . . , ak ∈ Ak such that

∏k
i=1 ai[`] = 0 for

all ` ∈ [d].

It is conjectured that for any constant k, k-OV cannot be solved in time O(nk−ε poly(d))
for any constant ε > 0, which is called the k-OV conjecture. Assuming this lower bound only
for k = 2 is known simply as OV conjecture – this has been used as a hardness assumption
for a number of conditional lower bounds in the quadratic-time regime [52, 18, 8, 13, 4, 20,
14, 6, 19, 21, 59, 2]. Likewise, the stronger k-OV conjecture has found uses to derive further
polynomial-time lower bounds of different degree [51, 4, 1, 15, 48].

For almost a decade, the main support for the k-OV hypothesis was given by a reduction by
Williams [57] using the so-called split-and-list technique to show that the Strong Exponential
Time Hypothesis [45] implies the k-OV hypothesis. Only recently, Abboud et al. [5] show
that the OV hypothesis is also implied by the weighted k-Clique hypothesis. Interestingly,
the work by Gao et al. [41] gives additional evidence, as they show that existence of an
O(nk−ε poly(d))-time algorithm for k-OV for constant ε > 0 is equivalent to the existence
of an O(mk−ε′)-time model-checking algorithm for all (k + 1)-quantifier formulas in prenex
normal form for some constant ε′ > 0. The study of first-order properties is thus tightly
connected to the study of hardness and structure within P. In particular, our aim is to
understand which properties make a first-order formula expressive enough to capture the
hardest model-checking problems, i.e., Sparse k-OV, and which properties make a first-order
formula easier to evaluate.

1.2 Classification à la Schaefer
Our questions ask for fine-grained analogues of classical results in computational complexity
theory. Specifically, consider the case of Boolean constraint satisfaction problems (CSPs). As
each Boolean CSP is in NP, Cook’s theorem establishes that every CSP reduces to 3-SAT.
Schaefer’s Theorem [53] proves a dichotomy for reductions in the reverse direction: Assuming
P 6= NP, every Boolean CSP either is polynomial-time solvable or requires superpolynomial
time via a reduction from 3-SAT.

Translated to our setting, where first-order properties correspond to the class NP, Gao
et al. give an analogue of Cook’s Theorem: They give a fine-grained reduction from the
model-checking problem of any (k + 1)-quantifier first-order formula to Sparse k-OV. This
raises the question:

Can we give a dichotomy analogous to Schaefer’s classification, i.e.,
for each such formula either give an O(mk−ε)-time algorithm or show “Sparse

k-OV-hardness”?

1 To see the correspondence, let the vertex sets Xi, i ∈ {1, . . . , k} represent the vector sets Ai, let Y
denote the dimensions {1, . . . , d} and let the binary relation E(xi, y) with xi ∈ Xi and y ∈ Y hold
if and only if xi[y] = 1. We call this representation sparse as the relational structure only lists the
1-entries of the k-OV instance.
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Our aim in this work is to initiate the investigation of such fine-grained classifications
into hardest and easier first-order properties. Note that in the case of CSPs over finite
domains, this line of research proved to be an effort requiring four decades of research in
complexity, logic and algebra (see e.g., [34] for an early overview and the surveys [32, 25]
for an introduction to the algebraic approach). In particular, after Schaefer’s classification
of the Boolean domain, Feder and Vardi raised the dichotomy conjecture that such a
dichotomy also exists for CSPs over arbitrary finite domains [38, 39]. After a series of works
developing an algebraic view on CSPs [47, 46, 26], and classifications of larger classes of
CSPs (e.g., [43, 22, 23]), only very recently, Bulatov [24] and Zhuk [60] could finally resolve
the conjecture.

Given the close connection to CSPs, we do not expect a full dichotomy for bounded-
quantifier first-order properties to be within immediate reach of current techniques – thus,
we focus on expressive fragments first. In particular, we focus on formulas with the quantifier
structure ∃k∀, as it is the quantifier structure of the known complete problem Sparse k-OV
(in fact, under a nondeterministic variant of SETH, ∃k∀ and the symmetric ∀k∃ are the
only quantifier structure containing complete problems for first-order properties [28]). Note
also that this quantifier structure is analogous to the quantifier structure for CSP solvability
(existential quantifiers for variable assignments and a universal quantifier to check that all
constraints are satisfied; this correspondence is best illustrated by Williams’ split-and-list
reduction from CNF satisfiability to OV [57]). We leave the remaining quantifier structures
(analogous to the classification of quantified CSPs [53, 35, 34]) to be addressed in future work.

1.3 Further Related Work
Note that related work in database theory gives further flavors of fine-grained dichotomies
for first-order properties: For the related setting of query enumeration, Bagan, Durand and
Grandjean [16] classify each acyclic conjunctive query as either admitting constant-delay
enumeration following linear-time precomputation or as hard under the assumption that
Boolean matrix multiplication requires superquadratic time. This classification was recently
extended to incorporate functional dependencies between attributes [27]. Further work gives
fine-grained dichotomies under the OMv and OV hypotheses for dynamic databases [17].

1.4 Our Results
Our main result is a dichotomy for ∃k∀-quantified formulas over graphs under a plausible
assumption about the complexity of MAX-3-SAT. Formally, ∃k∀-quantified first-order graph
properties are formulas of the form

ψ = (∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y), (1)

where φ is an arbitrary Boolean formula defined over the atoms E(v, v′) with v, v′ ∈
{x1, . . . , xk, y} and v 6= v′. Let MC(ψ) denote the corresponding model-checking problem:
Check whether ψ holds for a given a (k + 1)-partite2 graph with vertex parts X1, . . . , Xk, Y .

I Theorem 1 (Dichotomy). For any ∃k∀-quantified graph property ψ, deciding MC(ψ) either
requires time mk−o(1) under the assumption that MAX-3-SAT has no O((2 − ε)n)-time
algorithm for any ε > 0, or we give an O(mk−ε)-time algorithm for some ε > 0.

2 A discussion on this assumption follows in Section 2.
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In fact, we base our hardness results even on the weaker 3-uniform HyperClique
assumption as introduced in [5, 49]. Formally, the h-uniform HyperClique hypothesis
states for any parameter h ≥ 3:

I Hypothesis (h-uniform HyperClique). For no ε > 0 and k ≥ h + 1, there is an
O(nk−ε)-time algorithm for detecting a k-clique in h-uniform hypergraphs.

We defer a discussion of the plausibility of the MAX-3-SAT and h-uniform HyperClique
hypotheses to Section 2.2 and the detailed treatment in [49, Section 7].

Beyond Theorem 1, we gain deeper insights into the complexity landscape of first-order
graph properties. In particular, we expose a fine-grained hardness hierarchy purely depending
on a hardness parameter h = H(ψ) which we define below (illustrated in Figure 1): if
h = k, then a lower bound of mk−o(1) can be derived from the k-OV conjecture, and thereby
from SETH. On the other extreme, if h ≤ 2, we give O(mk−ε)-time algorithms (for some
ε > 0) – here, the difference between hardness 1 and 2 is precisely whether or not fast matrix
multiplication techniques are likely to be necessary. For the remaining cases of 3 ≤ h < k,
we can derive a lower bound of mk−o(1) under the 3-uniform HyperClique conjecture.
In fact, we obtain increasing levels of hardness, as the lower bound for hardness-h formulas
follows from the h-uniform HyperClique conjecture.

For the definition of our hardness parameter, it turns out that the decisive information is
given by the atoms E(xi, y) for some existentially quantified variable xi and the universally
quantified y. Specifically, consider the formula φ0 obtained by setting all atoms E(xi, xj), 1 ≤
i < j ≤ k in φ to false. Observe that we can view φ0 as a Boolean function {0, 1}k → {0, 1}
which maps the values (E(x1, y), . . . , E(xk, y)) to a truth value. The hardness h of ψ is
then given by the following hardness parameter H(φ0). To state its definition, we need the
following notation: For a propositional formula f(z1, . . . , zk) and an index set I ⊆ [k], an
I-restriction of f is a formula obtained from f after substituting all variables zi, i ∈ I, by
constant values from {0, 1}.

I Definition 2. We call a propositional formula f(z1, . . . , zk) h-hard, 0 ≤ h ≤ k, if, for any
index set I ∈

( [k]
k−h
)
, there exists some I-restriction of f with exactly one falsifying assignment.

Further define the hardness H(ψ) as the maximum number h for which ψ is h-hard (for
constant-valued f , we set H(f) = 0).

Intuitively, H(f) is the largest arity k such that whenever we fix an arbitrary subset of all
but k variables, we can still obtain a “k-OV-like” function (a function with only a single
falsifying assignment) as a restriction.

The following theorem is a fine-grained version of our dichotomy in Theorem 1.

I Theorem 3 (Hardness levels). For a first-order property ψ as in (1), let φ0 : {0, 1}k → {0, 1}
denote the formula obtained from φ by replacing all occurrences of E(xi, xj) by false. We
call H(ψ) := H(φ0) the hardness of ψ. For h = H(ψ), it holds that

If h ≤ 1, then MC(ψ) is decidable in time O(mk−ε) for some ε > 0 combinatorially3.
If h ≤ 2 < k, then MC(ψ) is decidable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, MC(ψ) cannot be decided by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-Clique hypothesis4 is false.)

3 Informally, by combinatorial algorithms we mean algorithms that do not rely on algebraic methods like
fast matrix multiplication [3].

4 The combinatorial k-Clique hypothesis as stated in, e.g., [3, 49] postulates that – even though an
O(n

ω
3 k)-time algorithm is known for k-Clique – no such polynomial improvement over the naïve O(nk)

solution can be achieved by a combinatorial algorithm.
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Figure 1 Visualizes the hardness of MC(ψ) for ∃k∀-quantified graph properties ψ of hardness
h = H(ψ). The green-hatched areas designate instances that allow polynomial improvements over
the baseline algorithm, while the red regions turn out to be provably hard.

If 3 ≤ h ≤ k, then MC(ψ) cannot be decided in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.
If h = k, then MC(ψ) cannot be decided in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

Note that under the plausible assumption that h-uniform HyperClique gets strictly
harder for increasing arity h, our classification exposes increasing levels of hardness within
the first-order graph properties. This claim is substantiated by the following observation
(whose proof is deferred to the full version of the paper).

I Proposition 4. Let h ≥ 3. There exist k > h, ε > 0, and an ∃k∀ graph property ψ of
hardness h that can be decided in time O(mk−ε) if and only if the h-uniform HyperClique
hypothesis fails.

To give a specific illustration of our results, consider the first-order property TwinFree.
By negating the formula, we obtain an equivalent graph property as in (1) where φ0 is the
constant false formula. As such, our classification yields that TwinFree is decidable in time
O(m2−ε) (in fact, it is even decidable by an O(m)-time algorithm [42]).

Another interesting family of examples is the following k-Not-All-Equal Problem.

I Example 5. Let NAE(z1, . . . , zk) be falsified only by the all-zero or all-one assignment.
The k-Not-All-Equal (k-NAE) problem is given by the query

(∃x1 ∈ X1) . . . (∃xk ∈ Xk) (∀y ∈ Y ) NAE(E(x1, y), . . . , E(xk, y)).

It is easy to check that H(k-NAE) = k − 1. Thus, by Theorem 3,
2-NAE is decidable in time O(m2−ε) for some ε > 0.
(In fact, we give an O(m)-time algorithm.)
3-NAE is decidable in time O(m3−ε) for some ε > 0 using fast matrix multiplication,
k-NAE takes time mk−o(1) for any k > 3 unless the (k − 1)-uniform HyperClique
hypothesis fails.

Finally, we extend our results and discuss further directions in Section 7: In particular,
we extend Theorem 3 to a counting dichotomy. Furthermore, we give tighter bounds on the
running time exponent for properties that admit polynomial improvements over the baseline,
using k = 3 as a case study.
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1.5 Outline
After setting up notation and detailing the hardness assumptions used in this work in
Section 2, we give a technical overview of our proof and introduce our main algorithmic
tools in Section 3. Following the outline described in Section 3, we prove our main result in
Sections 4, 5 and 6. Finally, we discuss our extensions and give an outlook for future work in
Section 7. The proofs of our extensions are deferred to the full version of this paper.

2 Preliminaries

Let us clarify some notation first. For a non-negative integer k, let [k] := {1, . . . , k}. By ] we
denote the disjoint union of sets and for any set I, by

(
I
k

)
we address the set of all k-element

subsets of I. For a 0-1 vector x, we write x̄ for the complement of x and ‖x‖ to denote the
Hamming weight (that is, the `1-norm) of x. Occasionally, we apply bit-wise binary operations
to vectors understood as component-wise application. We further employ the Iverson bracket
notation, that is, we write [P ] to denote the truth value of a proposition P . Let f(z1, . . . , zk)
be a propositional formula and let I ⊆ [k]. For any assignment α : I → {0, 1}, we write f |α
to denote the formula obtained from f after substituting zi by αi, for all i ∈ I. Finally, by
ω ≤ 2.373 we denote the exponent of matrix multiplication.

2.1 Model-Checking
A relational structure consists of n objects and predicates of arbitrary arity relating these
objects. These predicates are explicitly given as lists of records; let m denote the total
number of such facts. Without loss of generality we assume n ≤ O(m) by ignoring objects
not occurring in any relation. A first-order property is given by a quantified formula

(Q1x1) . . . (Qkxk)φ(x1, . . . , xk),

where each quantifier Qi ∈ {∃,∀} ranges over all objects of the relational structure. The
proposition φ is allowed to contain Boolean connectives and its atoms are given by predicates
relating the quantified objects. The problem MC(ψ) of checking whether a fixed first-order
property ψ holds on a given sparse structure is called the model-checking problem (or query
evaluation problem) for ψ.

In this paper, we consider a fragment that we call ∃k∀-quantified graph properties: Here
the input is a (k+ 1)-partite graph G = (X1 ] · · · ]Xk ]Y,E) and the task is to model-check
the fixed formula

ψ = (∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y),

where φ is an arbitrary Boolean formula formed from a single edge predicate E of arity 2
(i.e., the atoms of φ are of the form E(v, v′) with v, v′ ∈ {x1, . . . , xk, y}). We assume the
edge predicate to be symmetric (i.e., G to be a symmetric graph). We adopt the convention
that xi (respectively y) ranges over Xi (respectively Y ) and therefore omit to explicit state
membership xi ∈ Xi when it is clear from the context. Borrowing the notation from the
definition of Sparse OV, we let d := |Y | denote the number of objects in the range of the
universally quantified variable. Since MC(ψ) is solvable in time O(m) for k ≤ 2, we assume
throughout the paper that k ≥ 2.

Let us explicitly highlight a subtle point: An alternative natural formalization of graph
properties would be to omit the assumption that the given graph is (k+1)-partite. This alters
the flavor of model-checking problems slightly: While all of our upper bounds would also
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hold for this alternative formulation (by replicating the vertex set), the assumption cannot
be neglected for the lower bounds. In fact, there exist examples of first-order properties
that we prove hard if each quantifier ranges over its own part, and which turn out as easy if
instead each quantifier ranges over the whole vertex set.5 We leave open an investigation of
this alternative formulation for future work.

2.2 Hardness Assumptions
We briefly collect the hardness assumptions used in our classification result.

I Hypothesis (k-OV). For no k and ε > 0, k-OV on n vectors with dimension d can be
solved in time O(nk−ε poly d).

The fastest known algorithm solves k-OV in time n2−Ω(1/ log(d/ logn)) [7, 29]. On the hardness
side, the k-OV hypothesis is implied by SETH [57], the weighted k-Clique hypothesis [5],
and the hypothesis that not all (k + 1)-quantifier first-order properties can be solved in time
O(mk−ε) [41]. We remark that we use the moderate-dimensional k-OV hypothesis here (in
fact, SETH even implies a stronger version postulating hardness just above logarithmic
dimension).

The most important hypothesis for this work concerns the HyperClique problem: Given
an h-uniform hypergraph H, the h-uniform k-HyperClique problem asks to find vertices
v1, . . . , vk ∈ V (H) so that any size-h subset of {v1, . . . , vk} is contained in E(H). This gives
rise to the following hypothesis for any h ≥ 3.

I Hypothesis (h-uniform HyperClique). For no ε > 0 and k ≥ h + 1, there is an
O(nk−ε)-time algorithm for h-uniform k-HyperClique.

The restriction h ≥ 3 is indeed essential: The 2-uniform k-HyperClique problem – i.e., the
k-Clique problem on ordinary graphs – is known to admit faster solutions. Lincoln et al. [49]
provides a detailed analysis on why to believe that the h ≥ 3 case should be significantly
harder: As a main argument, any improvement over the O(nk)-time k-Clique algorithm
traces back to fast matrix multiplication, however, Strassen-like algebraic techniques can
provably not be applied to the HyperClique setting [49]. Moreover, there is a reduction
from MAX-3-SAT to h-uniform k-HyperClique (h ≥ 3), showing that the h-uniform
HyperClique conjecture is entailed by the following MAX-3-SAT hypothesis, which is the
simplest justification for our hardness results.

Specifically, consider the MAX-3-SAT problem, which asks, given a 3-SAT instance, to
find an assignment maximizing the number of satisfied clauses.

I Hypothesis (MAX-3-SAT). For all ε > 0, MAX-3-SAT cannot be solved in time
O((2− ε)n).

The currently fastest known algorithm for MAX-3-SAT runs in time 2n−o(n) [11]. This
assumption implies both the 3-uniform k-HyperClique [49] and the OV [5] hypotheses,
and thus provides the currently easiest barrier for algorithmic improvements upon formulas
that we classify as hard.

5 Consider the property ψ = (∃x1 ∈ V ) . . . (∃xk ∈ V ) (∀y ∈ V )
∨k

i=1 E(xi, y), which is equivalent to the
k-Dominating Set problem. It is easy to see that MC(ψ) can be decided in time O(mk−1): For any
solution (x1, . . . , xk), there must exist one “heavy” vertex xi dominating at least n/k vertices y. However,
there can be at most O(m/n) many such vertices xi. It is feasible to explicitly enumerate all heavy
vertices and solve the remaining k-quantifier problem in O(nk−2m) time using the baseline algorithm.
The total running time is O(m/n · nk−2m) = O(mk−1). However, if the quantifiers of ψ range over
separate sets X1, . . . , Xk, Y , then deciding MC(ψ) requires time mk−o(1) (Theorem 3).
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3 Technical Overview

To prove our result, we introduce the following type of ∃k∀-quantified graph properties, in
which we interpret the input graph G = (V = (X1 ] · · · ] Xk ] Y ), E) as sets of vectors
X1, . . . , Xk, by setting the entry xi[y] ∈ {0, 1} to be 1 if and only if the edge (xi, y) is present
in G, i.e, xi[y] =

[
E(xi, y)

]
(for any xi ∈ Xi, i ∈ [k], and y ∈ Y ). For any Boolean function

φ : {0, 1}k → {0, 1}, we define the corresponding Vector Problem VP(φ)

(∃x1 ∈X1) . . . (∃xk ∈ Xk) (∀y ∈ Y )φ(x1[y], . . . , xk[y]).

Intuitively, Vector Problems are a proper subclass of ∃k∀-quantified graph properties, since
the latter additionally considers the edges E(xi, xj). Note that Sparse k-OV coincides with
VP(φ) for φ(z1, . . . , zk) =

∨k
i=1 z̄i; in particular, this function only has a single falsifying

assignment.
We prove our main dichotomy (Theorems 1 and 3) by first proving an analogous dichotomy

for Vector Problems (see Theorem 6) and then showing an equivalence between Vector
problems and general ∃k∀-quantified graph properties (see Theorem 7).

For the first step, we show that the complexity of a Vector Problem VP(φ) is determined
by the parameter H(φ) as defined in Definition 2:

I Theorem 6. Let φ be a k-variable formula of hardness h = H(φ).
If h ≤ 1, then VP(φ) is decidable in time O(mk−1) combinatorially.
If h ≤ 2 < k, then VP(φ) is decidable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, VP(φ) cannot be decided by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-clique hypothesis is false.)
If 3 ≤ h ≤ k, then VP(φ) cannot be solved in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.
If h = k, then VP(φ) cannot be solved in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

This result is established as follows (see Figure 1 for an illustration). On the algorithmic
side, we show that:

1. For any 2-variable formula φ of hardness 1, VP(φ) can be solved in time O(m) (Sec-
tion 4.1).

2. For any 3-variable formula φ of hardness 2, VP(φ) can be solved in time O(m3−ε) for
some ε > 0 (Section 4.2). This is our technically most demanding contribution, for which
we introduce a framework of Constrained Triangle problems solvable in subcubic time
(Section 3.1).

3. These algorithms can be lifted to higher number of variables k (Section 4.3). The idea is
to brute force over all but 2 or 3 variables and to apply the algorithms above. However,
these algorithms are not directly applicable, since the brute-forcing step does not reduce
to solving a single VP(φ) instance, but to solving a mixture of VP(φi) instances for
a constant number of formulas φ1, . . . , φ`. To overcome this issue, we consider Hybrid
Vector Problems VP(Φ) for a set of formulas Φ and show that our algorithms from above
apply whenever max{H(φ) | φ ∈ Φ} ≤ 1 or 2, respectively. This extension to Hybrid
Vector Problems is made possible by the generality of our Constrained Triangle framework
that allows for a surprisingly simple combination of constraints for different formulas.

On the hardness side, for any k-variable hardness-h formula φ, we give a fine-grained reduc-
tion from finding a k′-clique in h-uniform hypergraphs to the model-checking problem for φ,
where k′ is a sufficiently large constant. Intuitively (and somewhat oversimplified), the vari-
ables x1, . . . , xk choose a k-clique in a k-partite hypergraph and the (∀y)φ(x1[y], . . . , xk[y])-
part verifies that (x1, . . . , xk) indeed forms a clique. To this end, y ranges over the non-edges
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of the hypergraph and verifies that the vertices v1, . . . , vh of such a non-edge are not included
in x1, . . . , xk. Specifically, let J denote the parts containing v1, . . . , vk. Then by our hardness
definition, we find a way to assign values to xi[y] for all xi ∈ Xi with i ∈ [k] \ J such that we
can exclude exactly the vertices v1, . . . , vh by finding suitable values for xi[y] for all i ∈ Xi

with i ∈ J . The proof is given in Section 5.

In the second step, we extend our classification from Vector Problems to all ∃k∀ graph
properties by the following equivalence.

I Theorem 7. Let ψ = (∃x1) . . . (∃xk) (∀y)φ(x1, . . . , xk, y) be an ∃k∀ graph property and
let φ0 denote the formula φ after substituting each predicate E(xi, xj) by false.

If MC(ψ) is decidable in time T (m), then VP(φ0) is decidable in time O(T (m)).
If VP(φ0) is decidable in time O(mk−ε) for some ε > 0, then MC(ψ) is decidable in time
O(mk−ε′) for some ε′ > 0.

For an intuition for the proof of the non-trivial direction from general properties to Vector
Problems, let us call (x1, . . . , xk) a solution if (∀y ∈ Y )φ(x1, . . . , xk, y) holds. We reduce
the problem of detecting a solution (x1, . . . , xk) such that for some 1 ≤ i < j ≤ k, the edge
E(xi, xj) is present to the problem of counting triangles in a (sparse) graph. The remaining
solutions almost correspond to solutions of the Vector Problem φ0 – however, we need to
additionally ensure that no edge E(xi, xj) is present in such a solution. We overcome this
technical issue using a counting argument that there are few solutions with at least one edge
E(xi, xj) present.

Theorems 1 and 3 then follow by combining Theorem 6 and 7.

3.1 Constrained Triangles Framework
Let us detail our main algorithmic tool in advance. We develop a convenient framework to
detect triangles subject to an arbitrary combination of some well-behaved constraints. We
achieve subcubic-time algorithms by employing fast matrix multiplication in combination
with a careful constraint-specific analysis.

The problem of detecting three pairwise adjacent vertices in a tripartite graph G =
(V1 ] V2 ] V3, E), is referred to as Triangle. It serves us as a combinatorial intermediate
problem that immediately benefits from the significantly improved running time of fast matrix
multiplication over the O(n3)-time naïve approach. However, Triangle is of relatively little
expressiveness as the only way to encode information into a Triangle instance is to customize
the edge set E. We therefore strengthen Triangle by allowing certain constraints to further
restrict the set of feasible solutions (v1, v2, v3). Specifically, we make use of two types
of constraints:

Sum: For edge weights w : E → Z, where
∑
e∈E |w(e)| ≤ O(n2), and a target t ∈ Z, we

require that w(v1, v2) + w(v2, v3) + w(v3, v1) = t.
Equal: For edge weights w : E → Z, we require that w(v1, v2) = w(v1, v3).

This prepares us to introduce Constrained Triangle problems in an inductive fashion: As
the base case, Triangle is viewed as a Constrained Triangle problem. In addition, for
any Constrained Triangle problem ∆ and any constraint C ∈ {Sum,Equal}, by ∆[C] we
understand the Constrained Triangle problem which is – on top of all constraints restricting
∆ – constrained by C. We remark that each constraint features its own weight function
(which is given as part of the input), so in particular an instance of the Constrained Triangle
problem Triangle[C1] · · · [Cr] is equipped with r weight functions corresponding to the
respective Sum and Equal constraints Ci.
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Arguably, Constrained Triangle problems seem to be a convenient “interface” to the
algorithmic power of fast matrix multiplication, as we can specifically tailor constraints
in the desired manner. Indeed, even subject to any constant number of Sum and Equal
constraints, finding triangles remains subcubic.

I Lemma 8. Let ∆ be a Constrained Triangle problem. Then ∆ can be decided in time
O(n3−ε) for some ε > 0.

The proof of Lemma 8 is by induction on the structure of ∆; we consider the three possible
cases below in Fact 1, Lemma 9 and Lemma 10. A crucial observation which we will exploit
often, is that for any Constrained Triangle problem ∆, given (v1, v2, v3), we can test in
constant time whether (v1, v2, v3) is a solution of ∆.

By applying fast (Boolean) matrix multiplication, it is well-known that Triangle is
decidable in subcubic time:

I Fact 1. Triangle is decidable in time O(nω).

This settles the induction base. In the following two lemmas, we assume efficient algorithms
for ∆ and aim to find algorithms for ∆[Sum] and ∆[Equal], respectively.

We focus on ∆[Sum] first. Note that the restriction
∑
e∈E |w(e)| ≤ O(n2) is indeed

necessary: For unbounded weights, the problem of finding an exact-weight triangle is not
known and in fact conjectured not to be decidable significantly faster than O(n3) [56].
Nevertheless, under this condition we achieve an efficient ∆[Sum] algorithm:

I Lemma 9. If ∆ is decidable in time O(n3−ε) for some ε > 0, then ∆[Sum] is decidable in
time O(n3−ε′) for some ε′ > 0.

Proof. We call an edge large-weight if its weight exceeds nδ in absolute value (where δ is yet
to be fixed) and small-weight otherwise. Our first step is to eliminate all large-weight edges.
By assumption, since

∑
e∈E |w(e)| ≤ O(n2), there can be at most O(n2/nδ) = O(n2−δ) many

such edges. Thus, it is feasible to enumerate all large-weight edges (xi, xj) and all vertices x`
in the remaining part X`, for all distinct i, j, `. For each triple considered in that way, we
explicitly check that

(xi, xj , x`) forms a triangle, and
(xi, xj , x`) satisfies all constraints of ∆, and
w(xi, xj) + w(xj , x`) + w(x`, xi) = t.

Since all these tests run in constant time, this whole step takes time O(n2−δ · n) = O(n3−δ).
We accept if a solution was found, and otherwise continue by safely removing all large-weight
edges from the graph.

So from now on, we can assume that all remaining edges are small-weight. For any
combination of weights w12, w23, w31 ∈ {−nδ, . . . , nδ} summing exactly to t, we create a ∆
instance that only includes edges (vi, vj) of the weight w(vi, vj) = wij . We proceed to solve
all these instances and report if a solution was found. By construction, any solution to an
instance created in that way satisfies all constraints of ∆ and the additional Sum constraint.

Solving a single ∆ subinstance takes time O(n3−ε) by assumption. There are O(n2δ)
many combinations of weights w12, w23, w31 ∈ {−nδ, . . . , nδ} with w12 + w23 + w31 = t, so
we need time O(n2δ · n3−ε) = O(n3+2δ−ε) to solve all instances. By setting δ := ε

3 , the
claim follows. J

I Lemma 10. If ∆ is decidable in time O(n3−ε) for some ε > 0, then ∆[Equal] is decidable
in time O(n3−ε′) for some ε′ > 0.
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Proof. For any vertex v1 ∈ V1, we define degi(v1) as the number of edges of weight i incident
to v1. First, we enumerate all edges (v1, v3), and if degw(v1,v3)(v1) ≤ n1−δ (where δ is a
parameter to be chosen later), then enumerate all edges (v1, v2) of the same weight w(v1, v3).
When finding a triple (v1, v2, v3) forming a triangle and fulfilling all constrained imposed by ∆,
we accept. Otherwise, we can safely remove all edges (v1, v3) where degw(v1,v3)(v1) ≤ n1−δ.
We can similarly remove all edges (v1, v2) with degw(v1,v2)(v1) ≤ n1−δ. So we can assume
that for all weights i, and all vertices v1, degi(v1) is either 0 or at least n1−δ. This step takes
time O(n2 · n1−δ) = O(n3−δ).

Since each vertex v1 is incident to at most n edges, each v1 can be incident to edges of at
most n/n1−δ = nδ different weights; we denote these weights by wv1

1 , . . . , w
v1
nδ

in an arbitrary
order. Our strategy is as follows: We create nδ many ∆ instances, where the i-th instance
contains, for each vertex v1, only those edges incident to v1 which are of weight wv1

i . Notice
that in each instance, all edges incident to one fixed v1 are of the same weight, even though
edges incident to different v1’s are in general of different weights. In this way, we can now
simultaneously search for all triangles (v1, v2, v3) satisfying ∆’s constraints and satisfying
w(v1, v2) = w(v1, v3) = wv1

i . Solving all instances takes time O(nδ · n3−ε) = O(n3+δ−ε),
under the assumption that ∆ can be solved in time O(n3−ε).

In total, the running time is bounded by O(n3−δ + n3+δ−ε), which is subcubic, namely
O(n3− ε2 ), for δ := ε

2 . J

4 Algorithmic Results

In this section, we show the algorithmic part of Theorem 6. In particular, we show that for
an k-variable hardness-h formula φ the Vector Problem VP(φ) is easy if k = 2 and h ≤ 1
(Section 4.1), or if k = 3 and h ≤ 2 (Section 4.2). In fact, for both scenarios, we demonstrate
how to solve the following more general version of Vector Problems that discriminates among
dimensions in such a way that we can assert different formulas φ for different dimensions.

For a set of k-variable formulas Φ, and given a sparse structure over the vertex set
X1 ] . . .]Xk ]Y , where each dimension y ∈ Y is associated to a formula φy ∈ Φ, the Hybrid
Vector Problem VP(Φ) is to check

(∃x1 ∈X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φy(x1[y], . . . , xk[y]).

Our hardness notion is generalized to sets of formulas Φ by H(Φ) := max{H(φ) : φ ∈ Φ}.
(Observe that we could equivalently define Hybrid Vector Problems as Vector Problems
tolerating a multi-valued unary predicate on Y .)

4.1 Algorithms for k = 2
We first introduce a useful tool: partition refinement [42]. There exists a (simple) data
structure which, once initialized with a universe U , explicitly maintains a partition

⊎
P P of

U . It supports an operation Refine(S) that splits each part P into P ∩ S and P \ S and
runs in time O(|S|). In addition, we can always query, for each universe element u ∈ U , its
current part P (with u ∈ P ) and iterate over all elements in P in time O(|P |).

I Lemma 11. Let Φ be a set of 2-variable formulas of hardness H(Φ) ≤ 1. Then VP(Φ) is
decidable in time O(m).

Proof. Let φ ∈ Φ. We first prove that VP(φ) is linear-time decidable, and later show the
same for VP(Φ). Since we consider k = 2 variables, we have a function φ : {0, 1}2 → {0, 1}.
We exhaustively discriminate all possible shapes of φ:
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Case 0: φ has 0 or 4 satisfying assignments. Then VP(φ) is constantly rejecting or ac-
cepting and trivially decidable.

Case 1: φ has 1 satisfying assignment. Then φ is of the shape φ(z1, z2) = φ1(z1) ∧ φ2(z2).
Deciding VP(φ) is equivalent to asserting the satisfiability of (∃x1) (∀y)φ1(x1[y]) and
(∃x2) (∀y)φ2(x2[y]) separately, which we do by removing all vectors x1 and x2 violating
(∀y)φ1(x1[y]) and (∀y)φ2(x2[y]), respectively. Focus on the former problem: We first
precompute all values ‖x1‖ by iterating over the edge set once. Then we exclude all
vectors x1 with ‖x1‖ < d in case that φ1(z1) = z1 or ‖x1‖ > 0 in case that φ1(z1) = z̄1.
In the remaining cases φ1(z1) = true and φ1(z1) = false we keep all or no vectors x1,
respectively.

Case 2: φ has 2 satisfying assignments.
Case 2a: φ(z1, z2) = (z1↔ z2). Our algorithm relies on the partition refinement tech-

nique: Initialize the partition refinement structure with U = X1 ]X2. Then, for each
y ∈ Y , invoke Refine(N(y)), where N(y) ⊆ X1 ]X2 denotes the neighborhood of y. We
claim two vectors x1 and x2 lie in the same partition if and only if (∀y)x1[y]↔ x2[y].
Indeed, assume that x1 and x2 are equal (as vectors). Then for any dimension y ∈ Y , we
have x1 ∈ N(y) if and only if x2 ∈ N(y). Hence, there exists no entry y ∈ Y separating
x1 from x2. On the other hand, if x1[y]↔ x2[y] does not hold for some y ∈ Y , then
x1 ∈ N(y) but x2 6∈ N(y) (or vice versa), so N(y) splits any part containing both x1 and
x2. This approach takes time

∑
y∈Y O(|N(y)|) = O(m) for the refinement steps and time∑

P O(|P |) ≤ O(n) (where P ranges over all parts) to ultimately check whether some
pair (x1, x2) was not separated.

Case 2b: φ(z1, z2) = z1 ⊕ z2. Our goal is to reduce to the Case 2a by transforming all
vectors x1, x2 into x′1, x′2 in such a way that we have x1[y]⊕x2[y] if and only if x′1[y]↔x′2[y],
for all y ∈ Y . The naive way to achieve this is to negate all vectors x2 ∈ X2; however, we
then potentially increase the total number of 1-entries inordinately, so that we do not
obtain an O(m)-time algorithm. We circumvent this issue as follows. Let us call a vector
x heavy if ‖x‖ > d/2, and light otherwise. Observe that in any solution (x1, x2), we must
have that precisely one of x1 and x2 is heavy (assuming without loss of generality that d
is odd). Now, assign x′i := xi if xi is light and x′i := x̄i otherwise. Then, for any solution
(x1, x2), where, say, x1 is heavy, (x′1, x′2) = (x̄1, x2) is a solution of VP(x′1↔x′2). The other
direction is not immediate as there could exist light vectors x1, x2 with x′1 = x1 = x2 = x′2.
To avoid these false positives, we introduce a fresh dimension y with x′1[y] = [x1 is heavy]
and x′2[y] = [x2 is light], for all vectors x1, x2. In doing so, we achieve that for any
solution (x′1, x′2) exactly one of the vectors x1, x2 is heavy.
It remains to bound the running time of the complementations. Since there exist at most
O(m/d) heavy vectors, and complementing a single vector takes time O(d), this step
takes time O(m/d · d) = O(m). Furthermore, notice that m cannot increase by replacing
heavy vectors with light ones.

Case 3: φ has 3 satisfying assignments. Then φ would have exactly one falsifying assign-
ment, so it would have hardness 2. Since φ has hardness at most 1 by assumption, this
case cannot occur.

To arrive at an algorithm solving the hybrid problem, we take a close look at the preceding
arguments: Either VP(φ) reduces to an instance of VP(z1↔ z2) over the original vertex set
(Case 2) or we remove certain vertices and accept if afterwards both parts X1 and X2 are
still non-empty (Cases 0 and 1). In the same way, we can solve the Hybrid Vector Problem
VP(Φ): For all formulas φ ∈ Φ falling into the latter category, we identify and remove all bad
vertices x1 and x2. Then, for all remaining φ ∈ Φ, we invoke the reduction to VP(z1↔ z2)
and concatenate all vectors corresponding to the same vertex xi. Finally, it remains to solve
the combined VP(z1↔ z2) instance as shown in Case 2a. J
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4.2 Algorithms for k = 3
Next, we will show that, for k = 3, any Vector Problem of hardness at most 2 reduces to a
Constrained Triangle problem ∆. The reduction is always of the following form: Given a
VP(φ) instance G with vertices V (G) = X1 ]X2 ]X3 ] Y , the corresponding Constrained
Triangle instance is a graph G′ over the vertex set V (G′) = X1 ]X2 ]X3. Moreover, we
wish to satisfy that, for all (x1, x2, x3):

(∀y)φ(x1[y], x2[y], x3[y])⇐⇒ (x1, x2, x3) is a solution of ∆ on G′.

To this end, the following sections describe how to encode φ by Equal and Sum constraints
step-by-step. More precisely, each constraint “covers” a pair of falsifying assignments
of φ. Let (α1, β1), . . . , (αr, βr) be pairs of falsifying assignments of φ containing each
falsifying assignment at least once. Then we reduce VP(φ) to a Constrained Triangle
problem ∆ = Triangle[C1] · · · [Cr] with Ci ∈ {Equal,Sum} such that for all i and for all
(x1, x2, x3):

(∀y) (x1[y], x2[y], x3[y]) 6∈ {αi, βi} ⇐⇒ (x1, x2, x3) satisfies the constraint Ci.

Note that we indeed need the restriction H(φ) ≤ 2, since we can only cover the falsifying
assignments of φ by pairs (αi, βi) if φ does not have exactly one falsifying assignment.

Recall that in Section 3.1, we measured the complexity of Constrained Triangles in terms
of the number of vertices n. By viewing G′ as a graph of m vertices (by potentially adding
isolated nodes), we obtain algorithms whose running time solely depends on m. Furthermore,
in the special case of Sum constraints, we thereby allow a total edge weight of up to O(m2)
instead of O(n2).

4.2.1 Equal Constraints
We start by covering falsifying assignments α, β of Hamming distance 2 using Equal
constraints.

I Lemma 12. Let α, β ∈ {0, 1}3 be of Hamming distance 2. In time Õ(m2), we can determine
the edge weights of an Equal constraint C such that (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β} holds
if and only if (x1, x2, x3) satisfies C.

Proof. Let α = (α1, α2, α3) and β = (β1, β2, β3). Without loss of generality, we assume that
α equals β exactly in the first position. An Equal constraint is employed as follows by
choosing each weight to be a dimension-d bit-vector (for the moment). Let w(x1, x2)[y] := 1
if and only if (x1[y], x2[y]) = (α1, α2) and analogously let w(x1, x3)[y] := 1 if and only if
(x1[y], x3[y]) = (β1, β3).

Let y be arbitrary. It is easy to check that we have w(x1, x2)[y] 6= w(x1, x3)[y] if and only
if (x1[y], x2[y], x3[y]) ∈ {α, β}. Indeed, suppose that 1 = w(x1, x2)[y] 6= w(x1, x3)[y] = 0. By
our choice of w(x1, x2), we must have x1[y] = α1 and x2[y] = α2. But w(x1, x3)[y] = 0, hence
x3[y] = β̄3 = α3. In summary: (x1[y], x2[y], x3[y]) = α. Symmetrically, 0 = w(x1, x2)[y] 6=
w(x1, x3)[y] = 1 entails (x1[y], x2[y], x3[y]) = β. The converse direction is immediate.

However, computing the vectors w(x1, xi) explicitly would take time O(m3), since there
are O(m2) weights and each vector is of dimension d = O(m). We therefore employ the
following succinct computation and compression:
1. Compute all weights w(x1, xi), i = 2, 3, stored in run-length encoding. That is, for each

weight w(x1, xi) we store a sequence of numbers RLE(w(x1, xi)) := `1`2 · · · `r indicating
the positions of 0-1 alternations in w(x1, xi), i.e., w(x1, xi) = 0`1 1`2 · · · 0`r−1 1`r written
as a bit-string.
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2. Interpret the run-length encoded weight vectors as strings, sort these strings to combine
equal weight vectors, and replace every weight vector by its rank in the resulting sorted
sequence. This replaces each weight vector by a number in {0, . . . , O(m2)} so that two
edges share the same label if and only if their weights are equal.

To implement the first step, we identify Y with [d] in an arbitrary order. Fix some i = 2, 3 and
some edge (x1, xi) and let a 0-1 alternation occur at y, i.e. w(x1, xi)[y] 6= w(x1, xi)[y+1]. We
observe that, for any choice of α, β, at least one of the entries x1[y], xi[y], x1[y+1] or xi[y+1]
is 1. Thus, it is feasible to explicitly consider all “event points” y with x1[y] = 1 or xi[y] = 1
in increasing order. Whenever an alternation is detected at w(x1, xi)[y − 1] or w(x1, xi)[y]
we appropriately append the run-length encoding of w(x1, xi). For a fixed pair (x1, xi), this
approach takes time O(‖x1‖ + ‖xi‖). In total, we obtain time

∑
x1,xi

O(‖x1‖ + ‖xi‖) =
O(n2 +m2) = O(m2). By the same argument, it follows that the total length of all run-length
encoding

∑
x1,xi

|RLE(w(x1, xi))| is bounded by O(m2).
In spirit, the proof ends here. However, in requiring the edge labels of Equal constraints

to be integers instead of arbitrary objects (here, vectors in run-length encoding), we did not
have to worry about the bit-size of the edge weights in Section 3.1. So our second step is to
associate all vectors w(x1, xi) with integers in {0, . . . , O(m2)}. We interpret each run-length
encoded weight RLE(w(x1, xi)) := `1`2 · · · `r as a string of length r over alphabet Σ = [d].
We sort these strings, which leaves all equal weights as contiguous intervals in the sorted
sequence. Finally, we replace each weight by its rank in this sorted sequence (i.e., by the
number of distinct weights preceding it in the sorted sequence). It is well-known that M
strings of total length N over an alphabet of size poly(N) can be sorted in time Õ(N) using
tries. This yields time Õ(m2) in our application. J

4.2.2 Sum Constraints
It remains to cover falsifying assignments α, β of odd Hamming distance, for which we will
use Sum constraints. We start with some useful observations.

We aim to check whether some vectors (x1, . . . , xk) satisfy (∀y)φ(x1[y], . . . , xk[y]). Say φ
is falsified only by the all-ones input. Then, clearly, it is sufficient to check that there exists
no vertex y connected to all vertices x1, . . . , xk – we call such a configuration a [k]-star. More
generally, by an I-star, I ⊆ [k], we understand a subgraph centered at a vertex y ∈ Y such
that all edges (xi, y), i ∈ I, are present. Notice that, for any vectors (x1, . . . , xk), ‖

∧
i∈I xi‖

exactly counts the number of I-stars. So, in the above example of φ, we can decide whether
(∀y) (x1[y], . . . , xk[y]) by checking whether the number of [k]-stars ‖

∧k
i=1 xi‖ equals zero.

But what about other formulas φ? For each falsifying assignment α ∈ {0, 1}k, the obvious
generalization is to require ‖

∧k
i=1 x

αi
i ‖ = 0; here, and for the remainder of this section, we

write x1 := x and x0 := x̄. The following observations suggest how to transform an arbitrary
expression of this form into a linear combination of terms ‖

∧
i∈I xi‖ without complemented

occurrences:

I Observation 1. For all vectors x, x′, ‖x ∧ x̄′‖ = ‖x‖ − ‖x ∧ x′‖.

By induction, we obtain the following generalization:

I Observation 2. For all vectors x, x1, . . . , xk, ‖x∧
∧k
i=1 x̄i‖ =

∑
I⊆[k](−1)|I|‖x∧

∧
i∈I xi‖.

Thus, if we could precompute the number of I-stars ‖
∧
i∈I xi‖, then we could efficiently test

whether (∀y)φ(x1[y], . . . , xk[y]) holds:
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I Observation 3. Given vertices (x1, . . . , xk) and the number of I-stars ‖
∧
i∈I xi‖ for all

I ⊆ [k], for any formula φ we can decide in constant time whether (∀y)φ(x1[y], . . . , xk[y]).

As an example, consider the 3-Not-All-Equal problem VP(NAE), where NAE(x1, x2, x3)
has two falsifying assignments: 111 and 000. Equivalently, we could require that the triple
(x1, x2, x3) satisfies ‖x1 ∧ x2 ∧ x3‖ = 0 and ‖x̄1 ∧ x̄2 ∧ x̄3‖ = 0. By Observation 2, the second
equation is rewritten in an inclusion-exclusion fashion as

d− ‖x1‖ − ‖x2‖ − ‖x3‖+ ‖x1 ∧ x2‖+ ‖x1 ∧ x3‖+ ‖x2 ∧ x3‖ − ‖x1 ∧ x2 ∧ x3‖ = 0

(here, d = ‖
∧
i∈∅ xi‖).

However, even though we can efficiently determine all values ‖
∧
i∈I xi‖ in time O(m|I|),

computing ‖
∧k
i=1 xi‖ is infeasible if we want to beat the baseline algorithm. Therefore,

our next algorithm makes use of another trick: When combining two equations – as in the
NAE example – we can sometimes exploit cancellations to decide instances without actually
computing ‖

∧k
i=1 xi‖: Because the Hamming weight of all vectors is always non-negative,

instead of testing ‖x1∧x2∧x3‖ = 0 and ‖x̄1∧ x̄2∧ x̄3‖ = 0, we can equivalently test whether
‖x1∧x2∧x3‖+‖x̄1∧ x̄2∧ x̄3‖ = 0. By expanding ‖x̄1∧ x̄2∧ x̄3‖ as above, the ‖x1∧x2∧x3‖
term cancels and it suffices to know the numbers of all I-stars, for I ( [3].

I Lemma 13. Let α, β ∈ {0, 1}3 be of odd Hamming distance. In time O(m2), we can
determine the edge weights of a Sum constraint C such that (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β}
holds if and only if (x1, x2, x3) satisfies C.

Proof. Let α = (α1, α2, α3) and β = (β1, β2, β3). Without loss of generality, we may assume
that, for some i∗ ∈ {1, 3}, αi 6= βi for all i ≤ i∗ and αi = βi for all i > i∗.

As argued before, any triple (x1, x2, x3) satisfies (∀y) (x1[y], x2[y], x3[y]) 6∈ {α, β} if and
only if (x1, x2, x3) satisfies ‖xα1

1 ∧ x
α2
2 ∧ x

α3
3 ‖ = ‖xβ1

1 ∧ x
β2
2 ∧ x

β3
3 ‖ = 0. Since both sides of

the left equation are always non-negative, we can equivalently demand that their sum be
zero. This condition simplifies to:

0 = ‖xα1
1 ∧ x

α2
2 ∧ x

α3
3 ‖+ ‖xβ1

1 ∧ x
β2
2 ∧ x

β3
3 ‖

= ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

xαii )‖+ ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

x̄αii )‖

= ‖(
∧
i>i∗

xαii ) ∧ (
∧
i≤i∗

xαii )‖+
∑
I⊆[i∗]

(−1)|I|‖(
∧
i>i∗

xαii ) ∧ (
∧
i∈I

xαii )‖ Observation 2

=
∑
I([i∗]

(−1)|I|‖(
∧
i>i∗

xαii ) ∧ (
∧
i∈I

xαii )‖. i∗ is odd

Notice that (possibly after applying Observation 2 again to get rid of complemented occur-
rences) this expression is a weighted sum of values d, ‖x1‖, ‖x2‖, ‖x3‖, ‖x1 ∧ x2‖, ‖x1 ∧ x3‖
and ‖x2 ∧ x3‖. In particular, the problematic term ‖x1 ∧ x2 ∧ x3‖ canceled in the equation
above due to i∗ being an odd number. In summary, we can express the above constraint by
0 =

∑
I([3] λI‖

∧
i∈I xi‖ for some constants λI .

It is easy to compute the values ‖
∧
i∈I xi‖ for all I ( [3]: ‖

∧
i∈∅ xi‖ = d is a constant

and each number ‖xi‖ is obtained by once enumerating all edges between Xi and Y . Any
value ‖xi ∧ xj‖ is determined in time O(m2) by iterating over all pairs of edges between Xi

and Y , and between Xj and Y , respectively. Finally, we annotate each edge of the Sum
constraint accordingly. To this end, each edge (xi, xj) is labeled with the contribution of
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‖xi ∧ xj‖ and additionally, we distribute the node-weights ‖x1‖, ‖x2‖ and ‖x3‖ to the edges:

w(x1, x2) := λ{1,2}‖x1 ∧ x2‖+ λ{1}‖x1‖,
w(x2, x3) := λ{2,3}‖x2 ∧ x3‖+ λ{2}‖x2‖,
w(x3, x1) := λ{3,1}‖x3 ∧ x1‖+ λ{3}‖x3‖.

The target t is set to −λ∅d.
It is left to show that

∑
e∈E |w(e)| ≤ O(m2) as in the definition of Sum. It is clear that

‖x1‖, ‖x2‖ and ‖x3‖ only account for O(m). Each edge (xi, y) contributes to at most m
values ‖xi∧xj‖, thus

∑
xi,xj

‖xi∧xj‖ ≤ O(m2). The values λI are fixed constants depending
only on α, β. J

4.2.3 Combined Algorithm for k = 3

By combining the previous reductions from VP(φ) to Constrained Triangle problems, we
find the desired algorithm for 3-variable Vector Problems of hardness at most 2:

I Lemma 14. Let Φ be a set of 3-variable formulas of hardness H(Φ) ≤ 2. Then VP(Φ) is
decidable in time O(m3−ε) for some ε > 0 using fast matrix multiplication.

Proof. Let φ ∈ Φ. Given an VP(φ) instance, we can obtain an equivalent Constrained
Triangle formulation by covering each pair of falsifying assignments by an Equal or Sum
constraint using Lemmas 12 and 13 (any pair of distinct 3-variable assignments is either of
Hamming distance 2 or of odd Hamming distance).

The hybrid problem VP(Φ) is now solved by rephrasing each subproblem VP(φ), φ ∈ Φ,
as a Constrained Triangle problem Triangle[Cφ1 ] · · · [Cφrφ ] with Cφi ∈ {Equal,Sum}, and
by “stacking” all constraints. Since Φ = {φ1, . . . , φ`} is of constant size, we are left to solve an
instance of Triangle[Cφ1

1 ] · · · [Cφ1
rφ1

] · · · [Cφ`1 ] · · · [Cφ`rφ` ]. Lemma 8 yields an O(m3−ε)-time
algorithm for some ε > 0 for any constant number of adjunct Equal and Sum constraints. J

4.3 Algorithms for Arbitrary k

For large k, we will tackle Vector Problems by first brute-forcing over a number of variables
before solving the remaining k′ = 2 or k′ = 3 problem. To this end, we establish the following
lemmas in order to lift fast algorithms from fewer quantifiers to more quantifiers:

I Lemma 15. Let φ be a k-variable formula. Then, for any k′ ≤ k, there exists some
I ′ ∈

( [k]
k−k′

)
such that for any I ′-restriction φ′ of φ we have H(φ′) ≤ H(φ).

Proof. Let h = H(φ). The statement is clear for k′ ≤ h, so suppose h < k′ ≤ k. From
H(φ) < h + 1, it follows by definition that there exists some I ∈

( [k]
k−h−1

)
such that any

I-restriction φ′ of φ has not exactly one falsifying assignment. Choose an arbitrary I ′ ∈
(

I
k−k′

)
and let φ′ be any I ′-restriction of φ. Then any (I \ I ′)-restriction of φ′ has not exactly one
falsifying assignment. Hence, H(φ′) < k′ − |I \ I ′| = k′ − (k − h− 1) + (k − k′) = h+ 1 and
thus H(φ′) ≤ h = H(φ). J

I Lemma 16 (Lifting). Let k′ ≤ k, let φ be a k-variable formula and let Φ′ contain all
k′-variable formulas φ′ of hardness H(φ′) ≤ H(φ). If VP(Φ′) is decidable in time T (m),
then VP(φ) is decidable in time O(mk−k′T (m)).
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Proof. The idea is to appropriately brute-force over k − k′ variables x1, . . . , xk−k′ and use
the VP(Φ′) algorithm to decide the remaining instance. Here, it is crucial that we can indeed
solve the Hybrid Vector Problem! This is because we have to specialize φ to the values of the
brute-forced vectors (x1, . . . , xk−k′), however, in general (x1[y], . . . , xk−k′ [y]) takes different
values for different y’s, so we have to instantiate φ “per dimension”. This leads to queries
allowing several formulas φy – exactly as permitted by Hybrid Vector Problems.

More formally, by Lemma 15, there exists some index set I ′ of size k − k′, such that any
I ′-restriction φ′ of φ satisfies H(φ′) ≤ H(φ). By interchanging the order of the existential
variables, we can assume that I ′ = {1, . . . , k − k′}. Our first step is to enumerate all nk′−k
choices for the first k − k′ variables (x1, . . . , xk−k′); fix such a tuple (x1, . . . , xk−k′). It
remains to solve the problem

(∃xk−k′+1) . . . (∃xk) (∀y)φy(xk−k′+1[y], . . . , xk[y]),

where φy denotes the I ′-restriction of φ(x1[y], . . . , xk[y]) in which all occurrences of x1[y], . . . ,
xk−k′ [y] are fixed as specified by the brute-forced vectors x1, . . . , xk−k′ . In other words, we
are left to solve a Hybrid Vector Problem over the formula set

⋃
y{φy}. Recall that φy is an

I ′-restriction of φ, and therefore, as guaranteed by Lemma 15, H(φy) ≤ H(φ). Thus φy ∈ Φ′,
by the definition of Φ′. By the assumption that we can solve VP(Φ′) in time T (m), the total
running time is O(nk−k′T (m)), which is bounded by O(mk−k′T (m)). J

By the Lifting Lemma, we conclude the following consequences of Lemma 11 and Lemma 14.
This concludes the algorithmic part of Theorem 6.

I Corollary 17. Let φ be a k-variable formula of hardness H(φ) ≤ 1. Then VP(φ) is
decidable in time O(mk−1).

I Corollary 18. Let φ be a k-variable formula of hardness H(φ) ≤ 2 < k. Then VP(φ) is
decidable in time O(mk−ε) for some ε > 0 using fast matrix multiplication.

5 Hardness Results

In this section, we prove the hardness part of Theorem 6, see Lemmas 19 and 20, below.
Let φ be a k-variable formula with exactly one falsifying assignment, or equivalently, let φ

be of hardness H(φ) = k. The model-checking query (∃x1) . . . (∃xk) (∀y)φ(x1[y], . . . , xk[y]) –
that is, VP(φ) – is equivalent to the k-Orthogonal Vectors problem with respect to polynomial
improvements over the O(mk)-time baseline algorithm as shown by Gao et al. [41] (the
authors of [41] refer to Vector Problems of hardness k as Basic Problems). This shows the
k-OV hardness part of Theorem 6:

I Lemma 19 ([41, Lemma 1.1, Lemma 5.1]). Let H(φ) = k. If VP(φ) is decidable in time
O(mk−ε) for some ε > 0, then k-OV is decidable in time O(nk−ε′ poly d) for some ε′ > 0.

It remains to show the HyperClique hardness. Recall that given a k-partite h-uniform
hypergraph (V1 ] . . .]Vk, E), the h-uniform k-HyperClique problem asks to find vertices
(v1, . . . , vk) ∈ V1 × . . .× Vk, so that any h vertices in {v1, . . . , vk} form a hyperedge in E.

I Lemma 20. Let φ be a k-variable formula and let 2 ≤ h ≤ H(φ). If VP(φ) is decidable
in time O(mk−ε) for some ε > 0, then the h-uniform HyperClique hypothesis fails.

For h ≥ 3, Lemma 20 shows the hardness part of Theorem 6. Moreover, the special case
h = 2 is also informative: The 2-uniform k-HyperClique problem is simply the k-Clique
problems on ordinary graphs. It is well-known that k-Clique can be solved in time O(nωk3 )



K. Bringmann, N. Fischer, and M. Künnemann 31:19

using fast matrix multiplication. However, no combinatorial solution which is significantly
faster than the O(nk)-time exhaustive search approach is known. The combinatorial k-
Clique hypothesis speculates that no polynomial improvement is possible without relying
on algebraic methods [3], which in turn, confirms the need to fall back on fast matrix
multiplication in Lemma 14.

Proof. We will fix k′ = k′(k, h, ε) later such that k divides k′. Given an h-uniform
k′-HyperClique instance G′, we can assume that G′ is k′-partite by copying the ver-
tex set k′ times and by keeping only edges spanned between distinct copies. So let
V (G′) = V ′1,1 ] . . . ] V ′1,k′/k ] . . . ] V

′
k,1 ] . . . ] V ′k,k′/k. We proceed in a split-and-list fashion:

First, we split V (G′) into the k parts V ′i := V ′i,1 ] . . . ] V ′i,k′/k. Then, for i = 1, . . . , k, we let
Xi ⊆ V ′i,1 × . . .× V ′i,k′/k be all tuples of vertices that form an h-uniform clique in G′. We
refer to the elements of Xi as bundles. Let Y ⊆

(
V (G′)
h

)
contain all non-edges of G′. We say a

vertex bundle xi ∈ Xi avoids a non-edge y ∈ Y if not all vertices in y∩V ′i are contained in xi.
Our next step is to assign the entries xi[y], for all xi ∈ Xi and y ∈ Y . Let y =

{v1, . . . , vh} ∈ Y and collect all indices J = {j : vi ∈ V ′j for some i ∈ [h]}. Since φ is of
hardness H(φ) ≥ h, it holds for all index sets I of size at least k − h that there exists an
I-restriction φ′ of φ having exactly one falsifying assignment. Picking I = [k] \J , there exists
an I-restriction φ′ = φ|α, for some α : I → {0, 1}, such that φ′ is falsified only by a single
assignment β : J → {0, 1}. For all i ∈ I and all vectors xi ∈ Xi, we define xi[y] := αi. For all
j ∈ J and all vectors xj ∈ Xj , we define xj [y] := β̄j if xj avoids y, and xj [y] := βj otherwise.

We claim that there exists a tuple of vectors (x1, . . . , xk) with (∀y ∈Y )φ(x1[y], . . . , xk[y])
if and only if G′ contains a k′-hyperclique. Suppose there exists some k′-hyperclique
(v1,1, . . . , v1,k′/k, . . . , vk,1, . . . , vk,k′/k) in G′. Since each tuple (vi,1, . . . , vi,k′/k) by itself forms
a hyperclique, we have that xi := (vi,1, . . . , vi,k′/k) ∈ Xi. We aim to prove that (x1, . . . , xk)
satisfies φ(x1[y], . . . , xk[y]) for all y ∈ Y . Let y ∈ Y be arbitrary, and let J, I, α and β as
above. After plugging in all values xi[y] = αi for i ∈ I, there remains only one falsifying
assignment of φ(x1[y], . . . , xk[y]), given by β. Since we started from a hyperclique, xj must
avoid y for some j ∈ J , and thus xj = β̄j for some j ∈ J . The vectors (x1, . . . , xk) thus
satisfy φ(x1[y], . . . , xk[y]), for any y. The converse argument is essentially symmetric. This
finishes the correctness proof.

Finally, we turn to the running time analysis. Observe that |Xi| ≤ O(nk′/k) for all i and
|Y | ≤ O(nh). Furthermore, constructing the Xi’s and Y takes time O(nk′/k). Assigning
the entries xi[y] takes time O(

∑
i |Xi| · |Y |) = O(nk′/k+h). In particular, it follows that the

number of edges is bounded by m ≤ O(nk′/k+h). By assumption, solving VP(φ) is in time
O(mk−ε) for some ε > 0. Hence, in total we solve h-uniform k′-HyperClique in time
O(n(k′/k+h)(k−ε)). By setting k′ ≥ hk2/ε this is bounded by O(nk′−hε), contradicting the
h-uniform HyperClique hypothesis. J

We remark that for h = k, Lemma 20 can also be derived in an alternative way: Abboud et
al. [5] show that the k-OV hypothesis is implied by the h-uniform HyperClique hypothesis
for all h ≥ 3. So all we need to do is combine Lemma 19 with that reduction:

I Lemma 21 ([5]). If k-OV is decidable in time O(nk−ε poly d) for some ε > 0, then, for
any h, the h-uniform HyperClique hypothesis fails.

This finishes the proof of Theorem 6.
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6 Equivalence of Vector Problems and ∃k∀ Graph Properties

This section is devoted to proving that Vector Problems VP(φ) capture the core difficulty of
model-checking ∃k∀ graph properties. Specifically, we will prove Theorem 7, which together
with Theorem 6 proves Theorems 1 and 3.

I Theorem 7 (Restated). Let ψ = (∃x1) . . . (∃xk) (∀y)φ(x1, . . . , xk, y) be an ∃k∀ graph
property and let φ0 denote the formula φ after substituting each predicate E(xi, xj) by false.

If MC(ψ) is decidable in time T (m), then VP(φ0) is decidable in time O(T (m)).
If VP(φ0) is decidable in time O(mk−ε) for some ε > 0, then MC(ψ) is decidable in time
O(mk−ε′) for some ε′ > 0.

Recall that ∃k∀ graph properties are strictly more general than Vector Problems in the sense
that graph properties are sensitive to edges E(xi, xj). We will continue to interchangeably
interpret the xi’s as vertices and vectors depending on the context. For the remainder of
this section, let ψ, φ and φ0 be as in Theorem 7.

We start by demonstrating the following preliminary lemma:

I Lemma 22. Given a set of two-element subsets ∅ 6= I ⊆
([k]

2
)
, we say that vertices

(x1, . . . , xk) respect I if for any i < j we have E(xi, xj) if and only if {i, j} ∈ I. We
can compute the values ‖

∧k
i=1 xi‖ for all vectors (x1, . . . , xk) respecting I in time O(mk− 1

2 ).

Proof. Since I is non-empty, there exists at least some element {i, j} ∈ I. We start by
brute-forcing over all k− 2 vectors x`, ` 6∈ {i, j}. As in the statement, we only care about the
combinations that respect I. In the same manner, we only keep the vertices xi, xj consistent
with I. In particular, for all xi, xj overcoming this step, (xi, xj) indeed forms an edge. It is
enough to compute ‖xi ∧ xj‖ for these (xi, xj) in time O(m 3

2 ), because thereby we achieve
a total running time of O(nk−2m

3
2 ) = O(mk− 1

2 ). In other words, we are left to count, for
each pair (xi, xj), the number of triangles containing (xi, xj) in the remaining graph with
partitions Xi, Xj and Y . For the sake of completeness, we proceed to sketch the well-known
procedure of counting triangles in sparse tripartite graphs [12].

We call a vertex heavy if it is of degree at least mδ (where δ is yet to be fixed), and
light otherwise. All light vertices can be eliminated as follows: Enumerate all edges {u, v}
and if v is light, then further iterate over all edges {v, w} such that u, v and w stem from
different partitions. Remember each triangle found in that manner and remove all light
vertices afterwards. This step accounts for O(m ·mδ) = O(m1+δ) time.

The remaining graph consists only of heavy vertices, and, since there are only m edges, at
most O(m/mδ) = O(m1−δ) such. We may apply the naïve algorithm by explicitly considering
each triple of vertices. This step takes time O(m3(1−δ)), so in total the algorithm runs in
time O(m1+δ +m3(1−δ)). The claim follows by setting δ := 1

2 .
We remark that using fast matrix multiplication to solve the instance including only heavy

vertices, we can achieve a slightly faster algorithm running in total time O(mk−2+ 2ω
ω+1 ). J

Proof of Theorem 7. The first part is easy to see: The Vector Problem VP(φ0) constitutes
a special case of model-checking ψ.

So let us focus on the second part. For a set I ⊆
([k]

2
)
, let φI denote φ after substituting

each predicate E(xi, xj) by true if {i, j} ∈ I and by false otherwise. In particular, φ∅ = φ0.
Furthermore, we define

ψI := (∃x1) . . . (∃xk)


 ∧
{i,j}∈([k]

2 )
E(xi, xj)↔

[
{i, j} ∈ I

] ∧ (∀y)φI(x1[y], . . . , xk[y])

 .
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Then clearly ψ =
∨
I⊆([k]

2 ) ψI . So we can check the satisfiability of ψ by separately model-
checking all properties ψI .

We claim that model-checking ψI for any I 6= ∅ is in time O(mk− 1
2 ): Observation 3 shows

how to test, for a fixed tuple (x1, . . . , xk) and given the values ‖
∧
j∈J xj‖ for all J ⊆ [k],

whether it holds that (∀y)φI(x1[y], . . . , xk[y]). We thus start by precomputing all values
‖
∧
j∈J xj‖ for all sets J ( [k]. To this end, enumerate all |J |-tuples of edges between Xj

and Y , j ∈ J ; this step takes time O(mk−1). Using Lemma 22 we can further precompute
‖
∧
j∈[k] xj‖ for all vertices (x1, . . . , xk) respecting I in time O(mk− 1

2 ). Together, we now
know ‖

∧
j∈J xj‖ for all J and all vertices (x1, . . . , xk) respecting I. Hence, it suffices to

enumerate all vertices (x1, . . . , xk) respecting I and to test as in Observation 3 whether
(∀y)φI(x1[y], . . . , xk[y]) holds (this check takes constant time). Since there are at most
O(mk−1) many tuples (x1, . . . , xk) respecting I, the running time is dominated by O(mk− 1

2 ).
It remains to find a model-checking procedure for ψ∅, i.e., for I = ∅. Note that MC(ψ∅)

is not directly equivalent to VP(φ∅), since an arbitrary solution (x1, . . . , xk) of φ∅ does not
necessarily meet the condition that none of the edges (xi, xj) are present. The following
reduction enforces this constraint.

Consider a given MC(ψ∅) instance G over the vertex partitions X1, . . . , Xk and Y and
let δ > 0 be a parameter to be fixed later. We call a vertex xi heavy if it is of degree ≥ mδ,
and light otherwise. The first step is to eliminate all heavy vertices; there can exist at most
O(m/mδ) = O(m1−δ) many such vertices. By interchanging the order of the existential
quantifiers, we can always assume that x1 is heavy and solve the remaining problem over
X2, . . . , Xk in time O(mk−1) using the model-checking baseline algorithm. If a solution
(x1, . . . , xk) is found in that manner, we accept. It thus takes time O(mk−δ) to safely remove
all heavy vertices.

Next, partition each set Xi into several groups Xi,1, . . . , Xi,g such that the total degree
of all vectors is bounded by mδ ≤

∑
xi∈Xi,j deg(xi) ≤ 2mδ, for all groups Xi,j , except for

possibly the last non-empty groups. This is implemented by greedily inserting vectors into
Xi,j until its total degree exceeds mδ. As each vector inserted in that way is light, we can
overshoot by at most mδ. It follows that g ≤ O(m/mδ) = O(m1−δ).

We assume that VP(φ0) = VP(φ∅) is decidable in time O(mk−ε) for some ε > 0. Then
we continue as follows:

1. For all combinations (j1, . . . , jk) ∈ [g]k, solve the Vector Problem VP(φ∅) with input
X1,j1 , . . . , Xk,jk . If we find a solution, we call (j1, . . . , jk) a successful combination.

2. If there are more than mk−1 successful combinations, we accept.
3. Otherwise, for any successful combination (j1, . . . , jk), solve MC(ψ∅) using the baseline

algorithm on X1,j1 , . . . , Xk,jk and accept iff one of these invocations accepted.

We claim the above algorithm is correct. First of all, any solution (x1, . . . , xk) of MC(ψ∅)
is also a solution of VP(φ∅). It is therefore safe to only consider those subinstances in step 3
for which we received a positive output in step 1. It remains to argue why step 2 is correct.
How many tuples (x1, . . . , xk) can be solutions of VP(φ∅) but not of MC(ψ∅)? At most
mnk−2 ≤ mk−1, since at least one edge (xi, xj) must exist for any such tuple. Thus, if
we witness > mk−1 solutions of VP(φ∅), among these there exists at least one solution of
MC(ψ∅) by guarantee.

Finally, let us bound the running time of the above algorithm. Recall that removing
heavy vertices accounts for O(mk−δ) time. In step 1, the VP(φ∅) algorithm is applied gk =
O(mk−δk) times on instances of size O(mδ), which takes time O(mk−δk+δ(k−ε)) = O(mk−δε).
Step 3 becomes relevant only if there are at most mk−1 successful combinations. For any
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such combination, the model-checking baseline algorithm takes time O((mδ)k) = O(mδk). In
total, our running time is O(mk−δ + mk−δε + mk−1+δk). By picking δ so that 0 < δ < 1

k ,
the claim follows.

This finishes the proof of Theorem 7, and thus completes the proof of our main result. J

7 Extensions and Outlook

Beyond our results of Theorems 1 and 3, we discuss several natural directions for extensions,
present first results along these lines and give open problems for future work. In particular,
we extend our results to a counting dichotomy and investigate the optimal exponent of
low-complexity properties.

7.1 Determining the Optimal Exponent for Low-Complexity Properties
For the optimal exponent cψ for any ∃k∀-quantified graph property ψ, Theorems 1 and 3
establish either a (conditionally) tight value of cψ = k or an upper bound of cψ < k. This
begs the question: Can we obtain the (conditionally) exact value on cψ also in the latter case?

As an interesting exemplary case, we study Vector Problems (∃x1 ∈X1) (∃x2 ∈X2) (∃x3 ∈
X3) (∀y ∈ Y )φ(x1[y], x2[y], x3[y]) where φ is symmetric, i.e., φ(x1, x2, x3) is invariant under
interchanging the variables’ order. Equivalently, φ is symmetric if its output depends only
on the number of 1-inputs. We therefore identify a 3-variable symmetric formula with its
symmetric type, a zero-based length-4 string t ∈ {0,1}4 where ti = 1 exactly if φ holds true
on all inputs of i 1’s and (3− i) 0’s.

For symmetric formulas φ, we find a more immediate criterion to read off the hardness
H(φ). Namely, H(φ) equals the maximum number h, such that 1h0 or 01h is a substring6
of φ’s symmetric type (and H(φ) = 0 if neither constitutes a substring).

I Theorem 7. Let φ(x1, x2, x3) be symmetric. The complexity of VP(φ) is as stated in
Table 1.

We prove Theorem 7 in the full version of this paper. As detailed there (and illustrated by
Table 1), already in this exemplary case some interesting gaps remain and offer potential
starting points for future work.

7.2 Counting Classification
For first-order graph properties with our quantifier structure ∃k∀, it is natural to ask if
we can count the number of its witnesses. Specifically, for a given property ψ = (∃x1 ∈
X1) . . . (∃xk ∈Xk) (∀y ∈ Y )φ(x1, . . . , xk, y), we might ask to output the number of tuples
(x1, . . . , xk) such that (∀y)φ(x1, . . . , xk, y) holds (instead of merely detecting existence of at
least one such tuple) – we call this problem the counting model-checking problem #MC(ψ).
Especially in the context of database queries, one often would like to report this number
or even enumerate all such tuples. Indeed, related work [36] considers such questions for
more general quantifier structures, but under other restrictions on the formulas and when
the running time is measured in terms of the number of objects n rather than m.

Note that the analogous question for Boolean constraint satisfaction properties is resolved:
For every Boolean CSP, we can either count the number of solutions in polynomial-time, or
this task is #P-complete [33]. In our case, this dichotomy is a surprisingly simple consequence
of our techniques. In particular, we achieve the same dichotomy as for the decision version.

6 A contiguous sequence of characters within φ’s symmetric type
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Table 1 Lists all symmetric 3-variable formulas φ and the complexities of the respective Vector
Problems VP(φ).

hardness H(φ) symmetric type of φ upper bound lower bound

0 0000 trivial trivial
0 1111 trivial trivial

1 0001, 1000 O(m) Ω(m)
1 0010, 0100 O(m2) Ω(m)
1 0101, 1010 O(m2) m2−o(1) under 3-XOR
1 1001 O(m) Ω(m)

2 0011, 1100 O(mω) mω−o(1) under k-Clique
2 0110 Õ(m

3+ω
2 ) mω−o(1) under k-Clique

2 1011, 1101 O(m
9+ω

4 ) mω−o(1) under k-Clique

3 0111, 1110 m3/2Ω(
√

log m) m3−o(1) under 3-OV

I Theorem 7. Let ψ be an ∃k∀ graph property of hardness h = H(ψ).

If h ≤ 1, then #MC(ψ) is solvable in time O(mk−ε) for some ε > 0 combinatorially.

If h ≤ 2 < k, then #MC(ψ) is solvable in time O(mk−ε) for some ε > 0 using fast matrix
multiplication. (Furthermore, #MC(ψ) cannot be solved by a combinatorial O(mk−ε)-time
algorithm unless the combinatorial k-Clique hypothesis is false.)

If 3 ≤ h ≤ k, then #MC(ψ) cannot be solved in time O(mk−ε) for any ε > 0 unless the
h-uniform HyperClique hypothesis fails.

If h = k, then #MC(ψ) cannot be solved in time O(mk−ε) for any ε > 0 unless the k-OV
hypothesis fails.

We defer the proof of this theorem to the full version of this paper.

7.3 Open Problems

Among the natural remaining challenges is, first and foremost, the following: Can we
generalize or strengthen our dichotomy to larger fragments of first-order properties?

Specifically, one direction is to extend our results beyond graph properties: Allowing
more than a single predicate or allowing a single predicate of higher arity already yields
further very expressive classes. While our algorithmic techniques conveniently generalize,
unfortunately, they do not yet seem to be sufficient to establish a complete dichotomy.

A second direction is to investigate other quantifier structures than ∃k∀ (and the equivalent
∀k∃). Note that establishing such a dichotomy might require different plausible hardness
assumptions than the ones used in this work – in particular, it follows from the work of
Carmosino et al. [28] that any such hardness assumption must have a lower nondeterministic
and co-nondeterministic complexity than its deterministic complexity.

Finally, it is interesting to explore whether Proposition 4 can be strengthened: In
particular, assume that for some hardness level h ≥ 3, there is an algorithm that allows us
to detect a k-clique in h-uniform hypergraphs in time O(nk−ε) for all k ≥ h + 1. Can we
then solve all hardness-h ∃k∀ graph properties in time O(mk−ε′)?
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Abstract
We study the role of perfect completeness in probabilistically checkable proof systems (PCPs) and
give a way to transform a PCP with imperfect completeness to one with perfect completeness,
when the initial gap is a constant. We show that PCPc,s[r, q] ⊆ PCP1,s′ [r + O(1), q + O(r)] for
c− s = Ω(1) which in turn implies that one can convert imperfect completeness to perfect in linear-
sized PCPs for NP with a O(logn) additive loss in the query complexity q. We show our result by
constructing a “robust circuit” using threshold gates. These results are a gap amplification procedure
for PCPs, (when completeness is not 1) analogous to questions studied in parallel repetition [22]
and pseudorandomness [15] and might be of independent interest.

We also investigate the time-complexity of approximating perfectly satisfiable instances of 3SAT
versus those with imperfect completeness. We show that the Gap-ETH conjecture without perfect
completeness is equivalent to Gap-ETH with perfect completeness, i.e. MAX 3SAT(1−ε, 1−δ), δ > ε

has 2o(n) algorithms if and only if MAX 3SAT(1, 1 − δ) has 2o(n) algorithms. We also relate
the time complexities of these two problems in a more fine-grained way to show that T2(n) ≤
T1(n(log logn)O(1)), where T1(n), T2(n) denote the randomized time-complexity of approximating
MAX 3SAT with perfect and imperfect completeness respectively.
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1 Introduction

The PCP theorem [3] was a breakthrough result that proved that NP has proofs that can be
verified using just O(1) bits and constant probability of error, with a minimal blow-up in the
size of the proof. The theorem led to a flurry of activity in getting the best set of parameters:
the soundness, proof size and queries. These PCP constructions were instrumental in showing
optimal hardness of approximation results for a host of problems like k-SAT and 3LIN [18].
Despite this progress, many important questions remain wide open, for instance: Do there
exist linear-sized PCPs for NP, with constant queries and constant soundness? Hence we
believe it is important to understand the role of all the parameters in PCPs for NP and we
focus our attention on the completeness of these proof systems.

We investigate the question that can imperfect completeness help to get better PCPs?
The size versus query tradeoff in PCPs has been extensively studied: A long line of work
culminated in a PCP [11] with O(npolylog n) size and O(1) queries. On the other hand,
Ben-Sasson et al [6] achieved a linear-sized PCP with O(nε) query size for all constants
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ε > 0.1 These results are far from the conjectured O(1) queries and linear-size. We show
that one can transform any PCP with imperfect completeness and constant gap (between
soundness and completeness) to one with perfect completeness with a mild additive loss in
the number of queries. The loss in query complexity that we get in the transformation from
imperfect to perfect completeness in the latter regime (of linear-size) is inconsequential in
comparison to the query complexity of [6].

Although in current PCP constructions perfect completeness might come for free when
one does not care about the verifier’s predicate, PCPs with imperfect completeness are
very important in showing optimal hardness of approximation for problems like 3LIN [18],
where deciding satisfiability is in polytime. For other CSPs like Max 1-in-k-SAT one can
get substantially better approximation algorithms for perfectly satisfiable instances [17].
The infamous Unique games conjecture of Khot [20] asks for a PCP with unique queries
and imperfect completeness, the latter being necessary due to the tractability of satisfiable
instances of Unique games. Although the imperfect completeness in the previous cases was
necessary, in the case of CSPs like 2-to-1 games and Max k-CSP one would guess that the
same hardness of approximation results should hold with perfect completeness. Unfortunately
all the current methods [13, 10] incur a loss in completeness and it is unclear whether this is
because of the nature of the problem or due to the inefficacy of current methods. This leads
to the central question that given a CSP, how hard is it to approximate instances that are
perfectly satisfiable as compared to those that are not?

We also study this question in a fine-grained way and compare the time complexities
of approximating satisfiable versus imperfectly satisfiable instances of 3SAT. NP-hardness
results while very useful in measuring intractability with respect to poly-time algorithms, do
not imply tight or even superpolynomial lower bounds for the running time. The Exponential
Time Hypothesis (ETH) [19] states that there are no 2o(n) time algorithms for deciding
satisfiability of 3SAT. Through the equivalence between PCPs and gap problems, using
state of the art PCPs [11, 7] there is a reduction from a 3SAT instance on n variables to a
Gap-3SAT instance with O(npolylog n) variables. This proves that under ETH, Gap-3SAT
does not have O(2n/ logc(n)) algorithms for some fixed c, whereas Gap-3SAT has eluded
even 2o(n) algorithms. To get around precisely this gap, the Gap-ETH hypothesis was
proposed [12, 21]. Gap-ETH states that Gap-3SAT does not have 2o(n) algorithms. This
hypothesis has led to several tight inapproximability results [9, 14, 8, 1] with respect to
the running time required. We study the role of perfect completeness in Gap-ETH, where
Gap-ETH without perfect completeness is the hypothesis that there are no 2o(n) algorithms
for Gap-3SAT without perfect completeness.

Gap amplification is in itself an important problem studied in the context of parallel
repetition [23], error reduction and pseudorandomness [15]. We study this problem in PCPs
and show a way to transform any PCP into a one-sided error one. Similar questions of gap
amplification when completeness is not 1, have been studied for parallel repetition [22], but
these results incur a huge blow-up in the alphabet, which soon becomes Ω(1) and cannot
be applied to get perfect completeness in PCPs. These techniques in parallel repetition
have been used in quantum computation, to show instances of multi-player games with
large separation between the entangled and classical value and amplification of entangled
games [22, 4].

1 This particular construction is non-uniform. To our knowledge no explicit PCPs with o(n) query
complexity, constant soundness and linear size are known.
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1.1 Our contributions
PCPs without perfect completeness

We show a way to boost the completeness of PCPs which makes the completeness 1. Our
results go via the construction of “robust circuits” for the approximate threshold function on
n bits. These circuits are of depth O(logn), fan-in O(1) and size O(n), and use successive
layers of threshold gates to boost the fraction of ones in inputs that have large Hamming
weight, while maintaining the fraction of ones in other inputs below a certain threshold. The
circuits are tolerant to some form of adversarial corruptions and this property allows us to
prove the soundness of the new PCP. Our main theorem is the following:

I Theorem 1. Let c, s ∈ (0, 1), s < c be constants then there exists a constant s′ ∈ (0, 1)
depending only on c, s such that,

PCPc,s[r, q] ⊆ PCP1,s′ [r, q +Os,c(r)]

furthermore if the original proof size was n then the final proof size in n+O(2r).

Note that in the above theorem, one can prove inclusion in a PCP class, with arbitrary
constant s′′ (instead of a fixed constant s′) by applying derandomized serial repetition
(PCP1,s′ [r, q] ⊆ PCP1,s′′ [r,O(q)] with same proof size). This does not blow up the size of
the PCP and the query complexity only increases by a constant factor.

As a corollary we show that linear-sized PCPs for NP with imperfect completeness, can
be converted to a linear-sized PCPs with perfect completeness and q + O(logn) queries.
Current PCP constructions with constant rate and alphabet have query complexity nΩ(1)[6],
so we show that for improving upon this, it is enough to get linear sized PCPs with imperfect
completeness and better query complexity.

We also consider the notion of “randomized reduction between PCPs”, defined below.
Bellare et al [5] considered the notion of a randomized reduction R between two promise
problems given by sets (A1, B1) and (A2, B2). A randomized polynomial time reduction R
from promise problems (A1, B1) ≤R (A2, B2) with error probability p satisfies:
1. if x ∈ A1 then w.p. ≥ 1− p, R(x) ∈ A2.
2. if x ∈ B1 then w.p. ≥ 1− p, R(x) ∈ B2.

This notion naturally extends to PCP complexity classes. We give a randomized reduction
between PCP classes with imperfect and perfect completeness.

I Theorem 2. Let c, s ∈ (0, 1), s < c be constants then there exists a constant s′ ∈ (0, 1)
depending only on c, s such that,

PCPc,s[r, q] ≤R PCP1,s′ [r, q +Os,c(log r)]

with probability 1− 2−Ω(r). Furthermore if the original proof size was n then the final proof
size in n+O(2r).

Gap-ETH without perfect completeness

We study the relation between time complexities of approximating satisfiable instances
of MAX 3SAT versus that of approximating unsatisfiable instances. We first show the
equivalence of the Gap-ETH conjecture with perfect and imperfect completeness. We
formally state the Gap-ETH conjecture below:
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I Conjecture 1 (Gap Exponential-Time Hypothesis (Gap-ETH) [12, 21]). For some constants
δ, ε > 0, no algorithm can, given a 3-SAT formula φ on n variables and m = O(n) clauses,
solve the decision problem MAX 3-SAT(1, 1− ε) in O(2δn) time.

There are many versions of the Gap-ETH conjecture that one can consider. Many works study
the randomized Gap-ETH conjecture which says that there are not even any randomized
algorithms that can decide Max 3-SAT(1, 1− ε). We show the following theorem:

I Theorem 3. If there exists a randomized (with no false positives) 2o(n) time algorithm
for MAX 3SAT(1, 1− γ) for all constant γ > 0 then there exists a randomized(with no false
positives) 2o(n) time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε > 0.

Algorithms with no false positives are interesting as a) Randomized SAT (not MAX-SAT)
algorithms can be modified to have no false positives by self-reduction b) some of the hardness
results from Gap-ETH go through reductions which do not produce false positives [8]. This
allows us to compose without losing in hardness by assuming Gap-ETH with one sided error.
This was also the notion considered by Applebaum [2] to give hardness of Gap-ETH. As the
original Gap-ETH hypothesis [12, 21] talks about deterministic algorithms we would prefer
to get a deterministic reduction between these two problems.

We can get more fine-grained results relating the time-complexities of MAX 3SAT with
perfect and imperfect completeness using the Theorem 2 stated earlier.

I Corollary 4. If there exists a T (n) time algorithm for MAX 3SAT(1, 1− δ) for all δ > 0
then there exists a T (n(log logn)O(1)) time randomized algorithm for MAX 3SAT(1− ε, 1−γ)
for all ε, γ, 0 < ε < γ.

1.2 Previous work
Bellare et al [5] also studied the problem transforming probabilistically checkable proofs with
imperfect completeness to those with perfect completeness. Their techniques do not yield
any inclusions for PCP classes. They proved the following randomized reduction between
PCP classes:

PCPc,s[r, q] ≤R PCP1,rs/c[r, qr/c]

For constant c and r = ω(1), they lose a multiplicative factor of r in the soundness, which
makes the theorem non-trivial only when s = o(1).

2 Preliminaries

Throughout the paper we follow this notation:

Notation

Thrδ(xi1 , . . . , xir ) = threshold at δ-fraction taken on the set of bits {xi1 , . . . , xir}. We also
use Thrδ(x|S) to mean that the threshold is with respect to the bits of x restricted to S ⊆ [n]
and sometimes drop the x and δ to use Thr(S), when the input/fraction being used is clear
from context. exp(x) refers to ex. For a string x ∈ {0, 1}n, let x̄ = 1

n

∑
i xi, denote the

average number of 1’s in x.
MAX k-CSP(c, s) - the promise problem of deciding whether there exists an assignment

satisfying more than c-fraction clauses or every assignment satisfies at most s fraction of
clauses. When the CSP is a 3SAT instance, it is denoted by MAX 3SAT(c, s).

Firstly we discuss some standard probability bounds like the Chernoff bound and the
Lovász local lemma.
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2.1 Chernoff Bounds
1. Multiplicative Chernoff bound 1: Let X = 1

nXi, where X1, . . . , Xn are random variables
in {0, 1}, with E[X] = µ. Then for all δ ≥ 1,

Pr[X > (1 + δ)µ] ≤ exp(−Ω(δµ))

for δ ≤ 1,

Pr[X > (1 + δ)µ] ≤ exp(−δ2µ/3))

Pr[X < (1− δ)µ] ≤ exp(−δ2µ/2))

2. Multiplicative Chernoff bound 2: Let X = 1
nXi, where X1, . . . , Xn are random variables

in {0, 1}, with E[X] = µ. Then for all δ ≥ 2,

Pr[X > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤ exp(−Ω(δ(log(1/δ))µ)).

I Lemma 5 (Lovász local lemma). Let E1, E2, . . . , En with Pr[Ei] = 1 be events such that
any Ei is independent of all but d other events. Then if pe(d+ 1) ≤ 1 then

Pr
[⋂

Ei

]
≥ (1− 1/d)n

Let us now define probabilistic proof systems. Firstly, we define the notion of an
(r, q)-restricted verifier: For integer valued functions r(·) and q(·), a verifier is said to be
(r, q)-restricted if on every input of length n, it tosses at most r(n) coins and queries the
proof in at most q(n) bits non-adaptively.

I Definition 6 (PCP). For integer-valued functions r(·), q(·) and functions c(·), s(·) mapping
to [0, 1], the class PCPc,s[r, q] consists of all languages for which there exists an (r, q)-restricted
non-adaptive verifier V with the following properties:
1. Completeness: For all x ∈ L, there exists a proof π such that V π(x) accepts with probability

at least c (over the coin tosses of V ).
2. Soundness: For all x /∈ L, for all proofs π, V π(x) accepts with probability at most s.

We now go to the notion of averaging samplers. Averaging samplers are used to deran-
domize the process of random sampling to estimate the average number of ones in a string
x = {0, 1}n, see survey of [16]. We use the following sampler therein:

I Lemma 7. The expander sampler with parameters (δ, ε,N) is an expander graph on N

vertices, such that the neighbors of a vertex i, specify a sample Si ⊆ [N ]. The set family
satisfies the following properties:
1. For all i, |Si| = 1

δε2

2. For every Si the number of sets Sj which intersect with it are O
( 1
δ2ε4

)
.

3. For any string x ∈ {0, 1}N , Pr
S∼ES(δ,ε,N)

[|(x|S) − x| > ε] ≤ δ, where (x|S) denotes the

average of x taken over the positions specified by S.

We analyse the standard expander sampler given above and prove that one can get a
sampler with the following properties. In the appendix, we provide a detailed proof.

I Theorem 8 (Sampler). For all constants ε, δ, γ, there exists a constant C such that, there
is a set family S(ε, δ, γ,N) = (Si)N/2i=1 on [N ] with the following properties:
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1. For any string x ∈ {0, 1}N , Pr
S∼S

[|(x|S)− x| > ε] ≤ δ.
2. For all η < (1 − γ)/2, for any string x ∈ {0, 1}N , where x ≥ 1 − η, we get that,

Pr
S∼S

[(x|S) < γ] ≤ η/2.
3. For all i, |Si| = C = Oε,δ,γ(1).
4. The number of sets in S is N/2.

3 PCPs without perfect completeness

In this section we prove that PCPs with imperfect completeness can be converted to ones
with perfect completeness with a mild blow-up in queries.

3.1 Reductions with minimal Query Blow-up
We first show a reduction that preserves the randomness complexity while losing an additive
factor in the queries.

I Reminder of Theorem 1. For all constants c, s ∈ (0, 1), s < c, there exists a constant
s′ ∈ (0, 1), such that for all integer-valued functions r(·), q(·), the following is true:

PCPc,s[r, q] ⊆ PCP1,s′ [r, q +Os,c(r)].

Furthermore if the original proof size was n, then the final proof size will be n+O(2r).
For notational simplicity we will prove that:

PCP9/10,6/10[r, q] ⊆ PCP1,9/10[r, q +O(r)],

with proof size n+O(2r). All constants that follow are universal constants, although in full
generality, they only depend on c, s that we have fixed to (9/10, 6/10).

The rest of this section is devoted to the proof of this theorem. The main idea here is
to build a “robust circuit” of small depth, using threshold gates of small fan-in, over the
proof oracle of the original PCP. We then ask the new prover to provide the original proof
and along with that, also ask for what each gate in the circuit evaluates to, when provided
the original clause evaluations as input. As discussed earlier, the circuit boosts the fraction
of ones in every layer, for inputs x that satisfy x ≥ 9/10, while maintaining the fraction of
ones for inputs that satisfy x ≤ 7/10. We need to do this boosting step by step so that the
fan-in does not blow up, and also need to use threshold gates that take “random” subsets of
inputs from the previous layer, so that the ones in the input get distributed across all the
gates. We get rid of the random subsets, by using any standard sampler over the gates of
the previous layer.

Let us now describe the circuit more formally. Later we will give a way to get complete
PCPs from incomplete ones using this circuit.

Description of Circuit Γm(·):
The circuit has d = logm layers, L1, . . . , Ld, with layer i composed of wi = m/2i
gates denoted by Li1, . . . , Liwi . The zeroth layer L0 is the m inputs to the circuit.
Every gate L(i+1)j is a threshold gate Thr0.8. Let the set family given by the
sampler from Theorem 8 on wi nodes with parameters S(1/10, 6/10, 8/10, wi) =
(S(i+1)j)

wi+1
j=1 . Let L(i+1)j = Thr0.8(Li|S(i+1)j

). By property 3 of expander sampler
fan-in = |S(i+1)j | = O(1).

We now use this circuit to give our main reduction.
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Proof of Theorem 1. Let L ⊆ {0, 1}∗ be a language in PCP9/10,6/10[r, q] via the proof
system P = (Π, Q), where Π and Q denote the proof and the set of queries. We can now use
the equivalence between MAX q-CSP(c, s) and PCPs, to get a set of clauses C = {C1, . . . , Cm}
of width q, for m = 2r, such that L ≤ MAX q-C(9/10, 6/10). (When y ∈ L, then there
exists an assignment x, such that 9/10-fraction of the clauses when evaluated on x output 1,
whereas when y /∈ L, for every assignment x, at most 6/10 of the clauses evaluate to 1.)

To prove the theorem, we will give a new proof system P ′ = (Π′, Q′) for L, that has
perfect completeness and soundness equal to 9/10. We will transform P using the circuit
Γm(·) described above, to get P ′. We consider the circuit Γm(C1(Π), . . . , Cm(Π)) and ask
the new prover to give one bit for every gate of the circuit. More precisely, we ask the new
prover to give bits of Π (interpreted as an assignment x ∈ {0, 1}n for the MAX q-CSP: C)
and in addition gives bits for every layer in the circuit Γm:

`i = {`i1, . . . , `iwi
},∀i ∈ {0, 1, . . . , d}.

These bits are supposed to correspond to a correct evaluation of the circuit Γm when
given (C1(x), . . . , Cm(x)) (Π = x) as input. That is, ideally the prover should give us,
`0j = Cj(x),∀j ∈ [m] and `(i+1)j = L(i+1)j(`i),∀i ∈ [d], j ∈ wi, where L(i+1)j(`i) denotes the
gate L(i+1)j evaluated on the output bit vector `i of the previous layer. We probabilistically
test this using a new set of queries Q′, described below.

Verifier Checks (Q′). For notational simplicity in describing the queries of the new verifier,
we will do the following. For each layer i (that has m/2i gates), consider 2i copies of the
set of gates Li, and let this new set be denoted by L′i1, . . . , L′im with corresponding proof
bits by `′i = {`′i1, . . . , `′im} and each gate having its set of inputs (S′i1, . . . , S′im). Note
that this duplication of bits/gates is only for description of the queries, and the prover
will only give m/2i bits for every layer i.
Intuitively, we will check whether every gate is correct with respect to its immediate inputs
(from the layer below it) and whether the final gate (on the topmost layer) evaluates to 1.
To do so, the verifier tosses logm random coins and on random string j ∈ [m], it checks
whether the following is true:

Q′j := (Cj(x) ?= `′0j) ∧ (L′1j(`0) ?= `′1j) . . . ∧ (L′dj(`d−1) ?= `′dj) ∧ `′dj ,

where the clause (L′ij(`i−1) ?= `′ij) outputs 1 iff (L′ij(`i−1) equals `′ij). As explained earlier,
each of the clauses, checks whether the gate L′ij is correct, with respect to its input layer
`(i−1). Notice here that each check Qj , checks one gate in every layer and furthermore
these checks are uniform across a layer, i.e. every gate in a layer is checked with the same
probability.
To perform the check above, we query the proof bits `i−1|S′

ij
, making a constant number

of queries, since the fanin of every gate is a fixed constant, i.e. Lij has fanin |S′ij | = O(1).
We then evaluate the threshold gate Lij on these bits and take the ∧ across the layers.
The check (Cj(x) ?= `′0j) needs to query q queries to x, hence the total number of queried
proof bits is q +O(logm) = q +O(r). Further note that the randomness complexity of
the verifier remains the same as before i.e. = r = logm.
We now prove the completeness and soundness of the protocol P ′.

Completeness. If the original proof system P had completeness 9/10, then there exists
a proof Π = x which satisfies 9/10 of the clauses C. The new prover can give us the
bit vectors, x and in addition the evaluations of the circuit Γ(C1(x), . . . , Cm(x)), i.e.
x, `0 := (Cj(x))mj=1 and `i := (Lij(`i−1))mj=1.
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In Lemma 9, we prove that, `i ≥ 1− 2−i

10 . Since d = logm and the number of gates on
level d is O(1), we get that the fraction of 1s in zd is ≥ 1 − 1/m, which gets rounded
to 1, since there is only one gate in the topmost layer. Since every query Q′j checks the
consistency of a set of gates and if the bit `dj = 1, we get completeness equals 1.

Soundness. If the original proof system P had soundness 6/10, then for all proofs Π that
the prover might give, Π satisfies ≤ 6/10 of the clauses C. Let Π′ = (x, `0, . . . , `d) be the
proof provided by the new prover.
Let z0 := (Cj(x))mj=1 and zi+1 := (L(i+1)j(`i))wi

i=1 be the true local evaluations. Note
here that, zi+1 is the evaluation bits of layer Li+1 evaluated on the bits that the prover
provides in the previous layer, `i. By the soundness of P we get that x satisfies at most
6/10 of C which means that z0 ≤ 6/10.
Now we have two cases:
1. The prover provided the bit vectors `i such that they agree with the true evaluations

zi in most places, i.e.

∀i, Pr
j∼[wi]

[`ij 6= zij ] ≤ 1/10.

Hence we have that `0 ≤ z0 + 1/10 ≤ 7/10. Lemma 10 gives us that for `i ≤ 7/10,
Li+1(`i) ≤ 6/10 and therefore zi+1 ≤ 6/10. Hence we get that by induction, for all
i, zi ≤ 6/10 and `i ≤ 7/10, and more importantly `d ≤ 7/10. Recall that our verifier
checks are uniform over the every layer, and since `dj = 1 is required for verifier’s jth
check, Qj to succeed, we get that soundness is ≤ 7/10.

2. There exists a layer i ∈ {0, . . . , d} such that:

Pr
j∼[wi]

[`ij 6= zij ] > 1/10.

Since zij ’s are the correct evaluations, the above implies that, the prover’s proof will
fail the local checks in 1/10-fraction of the gates of layer i. Since the verifier checks
are uniform over the gates of every layer, (i.e. they check the gate of each layer with
the same probability), the verifier checks the incorrect gates with probability at least
1/10. Hence the soundness in this case is ≤ 9/10.

Note that one of these cases has to occur, hence the overall soundness is the maximum of
the two cases, i.e. ≤ 9/10.

Proof Length. Every layer Li has width m/2i. Thus the total number of gates in the circuit
is m+m/2 + . . . = O(m) = O(2r). Since Π′ consists of the original proof appended with
the circuit evaluations, the proof length is n+O(2r). J

We now complete the proofs of completeness and soundness in Theorem 1.

I Lemma 9 (Completeness). Let y0 ∈ {0, 1}m be such that y0 ≥ 9/10. Let yi ∈ {0, 1}wi

denote the output string of layer i, when C is evaluated with the zeroth layer set to y0. Then
we have that for all i, yi satisfies yi ≥ 1− 2−i

10 .

Proof. We will prove the lemma by induction on i. Note that the base case i = 0, holds
trivially. Now consider the (i+ 1)th layer of the circuit and the gates L(i+1)j that take as
input the set S(i+1)j corresponding to the expander sampler on wi bits. By the induction
hypothesis we have that yi is such that yi ≥ 1− 2−i

10 . By the expander sampler property 2
with parameters (1/10, 6/10, 8/10, wi) we get that,

Pr
j∼[wi+1]

[L(i+1)j(yi) = Thr(yi|S(i+1)j
) = 0] ≤ Pr

j∼[wi+1]
[(yi|S(i+1)j

) < 0.8] ≤
(

1
2

)(
2−i

10

)
.
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Which directly implies

Pr
j∼[wi+1]

[L(i+1)j(yi) = 1] ≥ 1− 2−i−1

10 ⇔ yi+1 ≥ 1− 2−i−1

10

which completes the induction. J

I Lemma 10 (Soundness). Let yi ∈ {0, 1}wi denote an instantiation of the output gates of
layer i with yi ≤ 7/10. Let yi+1 = Li+1(yi) denote the output of layer i+ 1 when evaluated
on the string yi. Then we have that yi+1 satisfies yi+1 ≤ 6/10.

Proof. Recall that in the circuit, the gate L(i+1)j took as input the set S(i+1)j corres-
ponding to the sampler on wi bits. By the expander sampler property 1, with parameters
(1/10, 6/10, 8/10, wi) we get that, for any string yi ∈ {0, 1}wi with yi ≤ 7/10:

Pr
j∼[wi+1]

[|(yi|S(i+1)j
)− 7/10| > 1/10] ≤ Pr

j∼[wi+1]
[L(i+1)j(yi) = Thr(yi|S(i+1)j

) = 1] ≤ 6/10

which directly implies yi+1 ≤ 6/10 completing the proof.
J

Theorem 1 implies the following transformation from linear sized PCPs with imperfect
completeness to linear sized PCPs with perfect completeness.

I Corollary 11. If NP ⊆ PCP9/10,6/10[logn+O(1), q] then NP ⊆ PCP1,9/10[logn+O(1), q+
O(logn)].

4 Randomized reductions between PCPs

In this section we prove that PCPs with imperfect completeness can be reduced using
randomness to ones with perfect completeness with a lesser blow-up in queries compared to
Section 3. We construct a circuit similar to the one in the previous section, but this time we
use a randomized circuit to get better parameters and show that our reduction works with
high probability. This is our main theorem:

I Reminder of Theorem 2. For all constants c, s ∈ (0, 1), s < c, there exists a constant
s′ ∈ (0, 1), such that for all integer-valued functions r(·), q(·), the following is true:

PCPc,s[r, q] ≤R PCP1,s′ [r, q +Os,c(log r)].

Furthermore if the original proof size was n, then the final proof size will be n+O(2r).

For notational simplicity we will prove that:

PCP9/10,6/10[r, q] ≤R PCP1,9/10[r, q +O(log r)],

with proof size n+O(2r). All constants that follow are universal constants, although in full
generality, they only depend on c, s that we have fixed to (9/10, 6/10).

This immediately implies the following corollary using the query reduction2 result
by Dinur [11],

2 This result reduces queries to a constant but blows-up the proof size.
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I Corollary 12. If there exists a T (n) time algorithm for MAX 3SAT(1, 1− δ) for all δ > 0
then there exists a T (n(log logn)O(1)) time randomized algorithm for MAX 3SAT(1− ε, 1−γ)
for all ε, γ, 0 < ε < γ.

The rest of this section is devoted to the proof of theorem 2. The main idea as in
Theorem 1 is to build a “robust circuit” of small depth, using threshold gates of small fan-in,
over the proof oracle of the original PCP. We then ask the new prover to provide the original
proof and along with that, also ask for what each gate in the circuit evaluates to, when
provided the original clause evaluations as input. As discussed earlier, the circuit boosts
the fraction of ones in every layer, for inputs x that satisfy x ≥ 9/10, while maintaining the
fraction of ones for inputs that satisfy x ≤ 7/10. We need to do this boosting step by step so
that the fan-in does not blow up, and also need to use threshold gates that take random
subsets of inputs from the previous layer, so that the ones in the input get distributed across
all the gates.

Let us now describe the circuit more formally. Later we will give a way to get complete
PCPs from incomplete ones using this circuit.

Description of Circuit Γm(·):
The circuit has d = log logm layers, L1, . . . , Ld, with layer i composed of wi = m/2i
gates denoted by Li1, . . . , Liwi

. The zeroth layer L0 is the m inputs to the circuit.
Every gate Lij is a threshold gate Thr0.8. A gate Lij takes as inputs a random set
of f gates from the previous layer Li−1, i.e. we pick a uniformly random set Sij of
size f , (sampled with replacement) from [m/2i−1] and connect gate Lij with gates
L(i−1)k,∀k ∈ Sij .

We now use this circuit to give our main reduction.

Proof of Theorem 2. Let L ⊆ {0, 1}∗ be a language in PCP9/10,6/10[r, q] via the proof
system P = (Π, Q), where Π and Q denote the proof and the set of queries. We can now use
the equivalence between MAX q-CSP(c, s) and PCPs to get a set of clauses C = {C1, . . . , Cm}
of width q, for m = 2r, such that L ≤ MAX q-C(9/10, 6/10). (When y ∈ L, then there
exists an assignment x, such that 9/10-fraction of the clauses when evaluated on x output 1,
whereas when y /∈ L, for every assignment x, at most 6/10 of the clauses evaluate to 1.)

To prove the theorem, we will give a new proof system P ′ = (Π′, Q′) for L, that has
perfect completeness and soundness equal to 9/10. We will transform P using the circuit
Γm(·) described above, to get P ′. We consider the circuit Γm(C1(Π), . . . , Cm(Π)) and ask
the new prover to give one bit for every gate of the circuit. More precisely, we ask the new
prover to give bits of Π (interpreted as an assignment x ∈ {0, 1}n for the MAX q-CSP: C)
and in addition gives bits for every layer in the circuit Γm:

`i = {`i1, . . . , `iwi},∀i ∈ {0, 1, . . . , d}.

These bits are supposed to correspond to a correct evaluation of the circuit Γm when
given (C1(x), . . . , Cm(x)) (Π = x) as input. That is, ideally the prover should give us,
`0j = Cj(x),∀j ∈ [m] and `(i+1)j = L(i+1)j(`i),∀i ∈ [d], j ∈ wi, where L(i+1)j(`i) denotes the
gate L(i+1)j evaluated on the output bit vector `i of the previous layer. We probabilistically
test this using a new set of queries Q′, described below.

Verifier Checks (Q′). For notational simplicity in describing the queries of the new verifier,
we will do the following. For each layer i (that has m/2i gates), consider 2i copies of the
set of gates Li, and let this new set be denoted by L′i1, . . . , L′im with corresponding proof
bits by `′i = {`′i1, . . . , `′im} and each gate having its set of inputs (S′i1, . . . , S′im). Note
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that this duplication of bits/gates is only for description of the queries, and the prover
will only give m/2i bits for every layer i.
Intuitively, we will check whether every gate is correct with respect to its immediate inputs
(from the layer below it) and whether the final gate (on the topmost layer) evaluates to 1.
To do so, the verifier tosses logm random coins and on random string j ∈ [m], it checks
whether the following is true:

Q′j := (Cj(x) ?= `′0j) ∧ (L′1j(`0) ?= `′1j) . . . ∧ (L′dj(`d−1) ?= `′dj) ∧ `′dj ,

where the clause (L′ij(`i−1) ?= `′ij) outputs 1 iff (L′ij(`i−1) equals `′ij). As explained earlier,
each of the clauses, checks whether the gate L′ij is correct, with respect to its input layer
`(i−1). Notice here that each check Qj , checks one gate in every layer and furthermore
these checks are uniform across a layer, i.e. every gate in a layer is checked with the
same probability.
To perform the check above, we query the proof bits `i−1|S′

ij
, making a constant number

of queries, since the fanin of every gate is a fixed constant, i.e. Lij has fanin |S′ij | = O(1).
We then evaluate the threshold gate Lij on these bits and take the ∧ across the layers.
The check (Cj(x) ?= `′0j) needs to query q queries to x, hence the total number of queried
proof bits is q+O(log logm) = q+O(log r). Further note that the randomness complexity
of the verifier remains the same as before, = r = logm.
We now prove the completeness and soundness of the protocol P ′. Since the reduction is
randomized, this boils down to proving that, 1) Completeness: given a Max q-CSP that
was c-satisfiable, with high probability it gets mapped to a Max q′-CSP that is perfectly
satisfiable and 2) Soundness: given a Max q-CSP that was at most s-satisfiable, with
high probability it gets mapped to a Max q′-CSP that is at most s′-satisfiable.

Completeness. If the original proof system P had completeness 9/10, then there exists a
proof Π = x which satisfies 9/10 of the clauses C. The new prover can give us the bit
vectors, x and in addition the evaluations of the circuit Γ(x), i.e. x, `1 := (Cj(x))mj=1 and
`i := (Lij(`i−1))mj=1. In Lemma 13, we prove that with probability ≥ 1− 1/m1/4, `d = 1.
Since every query Q′j checks the consistency of a set of gates and if the bit `dj = 1 we get
that with probability 1− 1/m1/4 = 1− 2−Ω(r), completeness equals 1.

Soundness. We will call a circuit Γm(C) “good” if the following property holds:
For all layers i, ∀`i ∈ {0, 1}wi such that `i ≤ 7/10, the circuit is such that Li+1(`i) ≤ 6/10.
(Recall that Li+1(z) denotes the output of layer Li+1 when evaluated on the string z.)
Lemma 13 gives us that,

Pr[∀`i with `i ≤ 7/10, Li+1(`i) ≤ 6/10] ≥ 1− 2−m/2
i

Taking a union bound over the layers of the circuit, we get that,

Pr[Γm(C) is good ] = Pr[∀i,∀`i with `i ≤ 7/10, Li+1(`i) ≤ 6/10]

≥ 1− (log logm)2−m/2
d

≥ 1− 2−
√
m = 1− 2−Ω(r)

We will now show that if the randomized circuit Γm(C) is good then the new PCP is
sound. Since the circuit is good with high probability, showing this is enough to complete
the randomized reduction claimed in Theorem 2.
From now on, we will assume that the circuit is good. If the original proof system P had
soundness 6/10, then for all proofs Π that the prover might give, Π satisfies ≤ 6/10 of
the clauses C. Let Π′ = (x, `0, . . . , `d) be the proof provided by the new prover.
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Let z0 := (Cj(x))mj=1 and zi+1 := (L(i+1)j(`i))wi
i=1 be the true local evaluations. Note

here that, zi+1 is the evaluation bits of layer Li+1 evaluated on the bits that the prover
provides in the previous layer, `i. By the soundness of P we get that x satisfies at most
6/10 of C which means that z0 ≤ 6/10.
Now we have two cases:
1. The prover provided the bit vectors `i such that they agree with the true evaluations

zi in most places, i.e.

∀i, Pr
j∼[wi]

[`ij 6= zij ] ≤ 1/10.

Hence we have that `0 ≤ z0 + 1/10 ≤ 7/10. Lemma 14 gives us that for `i ≤ 7/10,
Li+1(`i) ≤ 6/10 and therefore zi+1 ≤ 6/10. Hence we get that by induction, for all
i, zi ≤ 6/10 and `i ≤ 7/10, and more importantly `d ≤ 7/10. Recall that our verifier
checks are uniform over the every layer, and since `dj = 1 is required for verifier’s jth
check, Qj to succeed, we get that soundness is ≤ 7/10.

2. There exists a layer i ∈ {0, . . . , d} such that:

Pr
j∼[wi]

[`ij 6= zij ] > 1/10.

Since zij ’s are the correct evaluations, the above implies that, the prover’s proof will
fail the local checks in 1/10-fraction of the gates of layer i. Since the verifier checks
are uniform over the gates of every layer, (i.e. they check the gate of each layer with
the same probability), the verifier checks the incorrect gates with probability at least
1/10. Hence the soundness in this case is ≤ 9/10.

Note that one of these cases has to occur, hence the overall soundness is the maximum of
the two cases, i.e. ≤ 9/10.

Proof Length. Every layer Li has width m/2i. Thus the total number of gates in the circuit
is m+m/2 + . . . = O(m) = O(2r). Since Π′ consists of the original proof appended with
the circuit evaluations, the proof length is n+O(2r). J

We now complete the proofs of completeness and soundness claims used in the proof of
Theorem 2.

I Lemma 13 (Completeness). Let y0 ∈ {0, 1}m be such that y0 ≥ 9/10. Let yi ∈ {0, 1}wi

denote the output string of layer i, when C is evaluated on y0. Then we have that with
probability ≥ 1− 1/m1/4 for all i, yi satisfies yi ≥ 1−

( 1
10
)2i

and hence yd = 1.

Notice here that the completeness 1− η increases to 1− (η)2 at each step, instead of 1− η
to 1− η/2, like it did in the previous section. This increase allows us to use only log logm
layers to get perfect completeness, albeit with high probability. Now we prove the lemma.

Proof. The theorem statement is implied by proving that with probability ≥ 1− 1/m1/4 for
all i, (1− yi+1) ≤ (1− yi)2.
We will prove the lemma by induction on i. Note that the base case i = 0, holds trivially.
Now consider the (i+ 1)th layer of the circuit and the gates L(i+1)j that take as input the
set S(i+1)j corresponding to random sets of size f from [wi].

By induction yi ≥ 1−
( 1

10
)2i

≥ .9 and .2/(1−yi) ≥ 2. For a fixed L(i+1)j , by the Chernoff
bound 2 on number of 0’s we get,

Pr[L(i+1)j(yi) = Thr.8(yi|S(i+1)j
) = 0] = Pr[Thr.2((1− yi)|S(i+1)j

) = 1]
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≤ exp(Ω((.2/(1− yi)) log((.2/(1− yi))(1− yi)f))
= exp(Ω(log((.2/(1− yi))f))
≤ (1− yi)3

for some large enough constant f .
Chernoff bound 1 over all the gates in Li+1 for the number of 0’s gives gives that,

Pr[(1−yi+1) ≥ (1−yi)2] < exp(−Ω(((1−yi)2/(1−yi)3)(1−yi)3(m/2i))) = exp(−Ω((1−yi)2(m/2i)))

As we have log logm layers m/2i > m/ logm, hence

Pr[(1− yi+1) ≥ (1− yi)2] < exp(−Ω((1− yi)2(m/ logm)))

A Markov bound over all the gates in Li+1 for the number of 0’s gives gives that,

Pr[(1− yi+1) ≥ (1− yi)2] ≤ (1− yi).

Together these bounds imply

Pr[(1− yi+1) ≥ (1− yi)2] ≤ log2(m)/
√
m.

Union bound over all logm layers gives probability ≤ (log logm) log2(m)/
√
m ≤ 1/m1/4.

Hence with probability ≥ 1− 1/m1/4, yd ≥ 1−
( 1

10
)2log log(m)

≥ 1− 1/m2. As there are ≤ m
gates at last layer this means with probability ≥ 1− 1/m1/4, yd = 1. J

I Lemma 14 (Soundness). Let yi ∈ {0, 1}wi denote an instantiation of the output gates of
layer i with yi ≤ 7/10. Let Li+1(yi) denote the output of layer i+ 1 when evaluated on the
string yi. Then with probability 1 − 2−m/2i , for all yi, Li+1(yi) satisfies Li+1(yi) ≤ 6/10.
Formally,

Pr[∀yi with yi ≤ 7/10, Li+1(yi) ≤ 6/10] ≥ 1− 2−m/2
i

.

Proof. Fix a gate L(i+1)j . Given that the fraction of 1s in layer i is at most 7/10, using
Chernoff bound 1, we get that,

Pr[Thr0.8(S(i+1)j) = 1] = Pr[
1
f

∑
k∈S(i+1)j

`ik − 7/10 > 8/10 = 7/10(1 + 1/7)] < exp(−(1/7)2(7f/10)/3) < 1/f

for large enough constant f .
By applying Chernoff bound 2 (assuming large enough f) over all gates L(i+1)j , we get

that,

Pr[Li+1(yi) > 6/10] < exp(−Ω((6f/10)(log(6f/10))(m/(f2i+1))))
= exp(−Ω((log(6f/10))(m/2i)))
< exp(−2m/2i).

for large enough constant f.
Hence a union bound over all possible 2m/2i strings yi gives that,

Pr[∃yi, Li+1(yi) > 6/10] ≤ 2m/2
i

e−2m/2i

< 2−m/2
i

. J
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5 Gap-ETH without perfect completeness

In this section we study the relation between the time complexities of the MAX 3-SAT
problem with and without perfect completeness. We show that the Gap-ETH conjecture
with and without perfect completeness is equivalent by giving an algorithm for MAX 3-
SAT without perfect completeness, that uses an algorithm for MAX 3-SAT with perfect
completeness as a subroutine and runs in 2o(n)-time iff the latter does so.

We first prove that Gap-ETH conjecture with and without perfect completeness are
equivalent for randomized algorithms with two-sided error. We show this by showing
that the Gap-ETH conjecture without perfect completeness is false if the one with perfect
completeness is false.

I Theorem 15. If there exists a randomized (two-sided error) 2o(n) time algorithm for MAX
3SAT(1, 1− γ), for all constants γ > 0, then there exists a randomized (two-sided error) 2o(n)

time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε.

We will prove the above in its contra-positive form. Suppose there is a 2o(n) algorithm
for MAX 3SAT(1, 1− γ) for all constants γ. We will then show that for all constants ε, s, δ,
there exists an algorithm for MAX 3SAT(s(1 + ε), s) with running time less than 2δn. Our
randomized algorithm for MAX 3SAT(s(1 + ε), s) will use the algorithm for satisfiable MAX
3SAT(1, 1− γ) as a subroutine and run in time less than 2δn. The following lemma forms
the crux of the proof.

I Lemma 16. For all constant s, ε > 0 there exists a large enough constant k, such that
there exists a randomized reduction from MAX 3-SAT(s(1 + ε), s) on n variables and O(n)
clause to MAX O(k)-CSP(1, 1/2) on n variables and O(n) variables, such that:

If the original instance was a NO instance, then the reduction produces an instance which
is not a NO instance with probability ≤ 2−n.
If the original instance was a YES instance, then the reduction produces a YES instance
with probability ≥ 2−n/k.

Proof. Let C = {C1, . . . , Cm} be a MAX 3SAT(s(1 + ε), s) instance. We can assume without
loss of generality, that ε < 1/100, since the result for a smaller gap implies the result for a
larger gap.

Let (Si)ni=1 be a set family in which every set Si is a random set chosen by sampling with
replacement from [m]. Consider new clauses Bi such that each clause is a threshold gate:
Bi = Thrs(1+ε/2)(C|Si

), where C denotes the vector (C1(x), . . . , Cm(x)).
Our final CSP will be over the original set of variables xi. We will have a clause for each

of the n Bi’s. For the ith clause Bi, we will find the values of all Cj such that j ∈ Si and
then verify that their threshold value is ≥ s(1 + ε/2). Our query size is 3k as we find values
for variables in k clauses each of them on 3 variables.

Soundness. For a NO instance and a fixed assignment x the fraction of clauses satisfied
by x is ≤ s. By the Chernoff bound 1, the probability that clause Bi is satisfied is
≤ exp(−(ε/2)2sk/3). The probability that at least half of the Bi’s are satisfied is at most,(
n
n/2
)
exp(−Ω(ε2skn)) which is less than exp(−2n), when k is taken to be a large enough

constant, depending only on ε, s. Therefore by a union bound, the probability that there
exists an assignment x that satisfies at least half of the Bi’s is ≤ 2nexp(−2n) ≤ 2−n.

Completeness. For a YES instance there exists an assignment x that satisfies ≥ s(1 + ε)-
fraction of the clauses. By the Chernoff bound 1 the probability that the clause Bi is
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unsatisfied is ≤ exp(−(ε/3)2sk/2) as ε < 1/100. Therefore the probability that all the
Bi’s are satisfied is (1− exp(−Ω(ε2sk)))n ≥ (1− 10/k)n which is ≥ 2−n/k when k is a
large enough constant. J

Proof of Theorem 15. The randomized algorithm for solving MAX 3SAT(s(1 + ε), s) is
as follows: We will run the reduction from Lemma 16 2n/kn2 times and then convert the
resulting MAX O(k)-CSP(1, 1/2) instances to MAX 3SAT(1, 1− γ) instances on O(k2kn)
variables and O(k2kn) clauses where γ is a constant depending on k. Then we run the 2o(n)

algorithm for MAX 3SAT(1, 1−γ) (still 2o(n) as k, γ are constants) on the resulting instances
and if any of the outputs is YES we will also output YES.

By repeating the algorithm for MAX 3SAT(1, 1− γ) poly(n) times we can assume the
the probability that the algorithm errs is ≤ 2−n2 , hence we will assume this wlog.

Pr[Error on a YES instance] ≤ Pr[Algorithm errs on one of the produced instances]

+ Pr[None of the 2n/kn2 runs produce a YES instance]

≤ 2−n
2
2n/kn2 + (1− 2−n/k)2n/kn2

≤ 2−n/2

Pr[Error on a NO instance] ≤ Pr[Algorithm errs on one of the produced instances]

+Pr[On one of the 2n/kn2 runs the output was not a NO instance]

≤ 2−n2
2n/kn2 + 2n/kn22−n

≤ 2−n/2

Total running time = 2n/kn22o(n) which for large enough k is < 2δn. This gives us the
desired contradiction. J

We now prove that in fact Gap-ETH conjecture with and without perfect completeness
are equivalent for randomized algorithms with no false positives.

I Reminder of Theorem 3. If there exists a randomized (with no false positives) 2o(n) time
algorithm for MAX 3SAT(1, 1− γ) for all constant γ > 0 then there exists a randomized(with
no false positives) 2o(n) time algorithm for MAX 3SAT(s(1 + ε), s) for all constants s, ε > 0.

As in the proof of Theorem 15, we will prove by the above by contradiction. Assume
there exists no algorithm for MAX 3SAT(s(1+ ε), s) with running time less than 2δn for some
constant δ > 0, while there is a 2o(n) algorithm for MAX 3SAT(1, 1− γ) for all constants γ.
We then give a randomized algorithm for MAX 3SAT(s(1 + ε), s) using the algorithm for
satisfiable MAX 3SAT(1, 1− γ) as a subroutine running in time less than 2δn. The following
lemma which is a stronger version of Lemma 16 with only one-sided error forms the crux
of the proof.

I Lemma 17. For all constant s, ε > 0 there exists a large enough constant k, such that
there exists a randomized reduction from MAX 3SAT(s(1 + ε), s) to MAX O(k)-CSP(1, 1/2)
with O(n) variables such that:

If the original instance was NO then the reduced instance is also a NO instance.
If the original instance was YES then the reduced instance is YES with probability ≥ 2−n/k.

Proof of Theorem 3. The randomized algorithm for solving MAX 3SAT(s(1 + ε), s) is as
follows: We will run the reduction from Lemma 17 2n/kn2 times and then convert the
resulting MAX O(k)-CSP(1, 1/2) instances to a MAX 3SAT(1, 1− γ) instances on O(k2kn)
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variables and O(k2kn) clauses where γ is a constant depending on k. Then we run the 2o(n)

algorithm for MAX 3SAT(1, 1− γ) algorithm (still 2o(n) as k, γ are constants) on them and
if any of the outputs is YES we will also output YES.

By repeating the algorithm poly(n) times we can assume the the probability that the
algorithm errs (one sided error) is ≤ 2−n2 , hence we will assume this wlog.

For a NO original instance we will always output a NO instance.

Pr[Error on a YES instance] ≤ Pr[Algorithm errs on one of the produced instances]

+ Pr[None of the 2n/kn2 runs produce a YES instance]

≤ 2−n
2
2n/kn2 + (1− 2−n/k)2n/kn2)

≤ 2−n

Total running time = 2n/kn22o(n) which for large enough k is < 2δn. This gives us the
desired contradiction. J

Proof of Lemma 17. Let C = {C1, . . . , Cm} be a MAX 3SAT(s(1 + ε), s). We can assume
without loss of generality, that ε < 1/100, since the result for a smaller gap implies the result
for a larger gap. Let the number of clauses in C be m = ρn. We will sample with repetition
from C to produce a list L of clauses of size tρn, for some t > 1. We call a list balanced if:
1. For every set S ⊆ C, |S| = sρn, each clause in S occurs in L at most s(1 + ε/3)tρn times.
2. For every set S ⊆ C, |S| = s(1 + ε)ρn, each clause in S occurs in L at least s(1 + 2ε/3)tρn

times.

It is easy to see that the probability of sampling an unbalanced list is:

Pr[L is unbalanced] ≤
(
ρn

sρn

)
exp(−ε2stρn/9) +

(
ρn

s(1 + ε)ρn

)
exp(−ε2s(1 + ε)tρn/16)

≤ exp(−10ρn),

when t is large enough and since ε < 1/100.
Let C′ be the CSP given by the set of clauses in L (repeated clauses might be present in

C). If L is balanced then the soundness of C′ is ≤ s(1+ε/3) and completeness is ≥ s(1+2ε/3).
If our list is not balanced we will reject it and output any NO instance. This can be done in
polynomial time as we can check the condition 1 by finding a set of clauses of size sρn which
occurs the most and checking that it occurs at most s(1 + ε/3)tρn in L. We can similarly
check condition 2.

Let (Si)|L|i=1 be the set family given to us by the expander sampler from Lemma 7 with
parameters ES((100/(s2ε2k)), (sε/6), |L|). Consider new clauses Bi such that each clause is
a threshold gate, i.e. Bi = Thrs(1+ε/2)(C′|Si

), where C′ denotes the vector of clauses of L.
By the sampler property |Si| ≤ k and the number of Bi’s is equal to |L| = tρn.

Our final CSP will be given by the set of clauses Bi. For the ith clause will find the values
of all C ′j such that j ∈ Si and then verify that their threshold value is ≥ s(1 + ε/2). Our
query size is 3k as we find values for variables in k clauses each of them on 3 variables.

Soundness . If L is balanced, in the NO case the soundness is ≤ s(1 + ε/3). Then we get
that,
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Pr
i

[Bi(C′) = 1] = Pr

 1
|Si|

∑
j∈Si

C′j ≥ s(1 + ε/2)


= Pr

 1
|Si|

∑
j∈Si

C′j − s(1 + ε/3) ≥ s(ε/6)


≤ 100/(s2ε2k)

where the last inequality follows from the properties of expander sampler in Lemma 7.
Now for large enough k we get 100/(s2ε2k) ≤ 1/2 hence starting from all NO instances
gives us NO instances.
If L is unbalanced we always output a NO instance.

Completeness. By the property of the expander sampler in Lemma 7, the number of query
sets that intersect with some query set Si are at most O(k2) for large enough k. As
the original instance was a YES instance there exists an x = xc which satisfies s(1 + ε)
fraction of the clauses. As each clause of list L is a random clause from the original set
of clauses, the probability that any specific Bi evaluates to 1 is ≥ 1− exp(−Ω(−ε2ks))
by the Chernoff bound for assignment xc.
As each clause of list L is a random clause from the original set of clauses, we get that the
random variables (randomness from choosing the list L, after fixing the sets Si) Bi and
Bj are independent, if two query sets Si and Sj do not intersect. As calculated above,
the probability that any clause fails is ≤ exp(−Ω(−ε2ks)). For large enough constants k,

e ·O(k2)exp(−Ω(−ε2ks)) < 1,

which allows us to apply the Lovász local lemma as given in Lemma 5. This gives us that,

Pr
L

[∧Bi(C′) = 1] ≥ (1− 1/k3)tρn ≥ 2−n/(2k).

Taking into account the case where L is unbalanced, the probability of outputting a YES
instance is ≥ 2−n/(2k) − 2−10ρn ≥ 2−n/k for large enough k. J

6 Conclusion

The reduction in Section 3 is not useful to get perfect completeness for PCPs, while
preserving their query complexity and losing some factor in the randomness complex-
ity. When the construction is composed with query reduction, it only gives us that
PCPc,s[logn+O(1), O(1)] ⊆ PCP1,s′ [logn+O(log logn), O(1)], which is anyway the blow-up
incurred in state of the art PCPs for NP [11]. Hence we pose the following problem:

I Open Problem 1. Let c, s, s′ ∈ (0, 1) with s < c be constants. Then is it true that,

PCPc,s[logn+O(1), O(1)] ⊆ PCP1,s′(logn+ o(log logn), O(1))?
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A Proof of Theorem 8

We first consider an expander sampler from Lemma 7 with parameters (ε, δ/2, N). This is
an expander graph G over N nodes, with the set family ES = (Sv)v∈[N ], where Sv = set of
neighbors of v in G. From the proof given in the sampler survey [16], one can check that if
one takes the second eigenvalue λ to be small enough, ≤ poly(ε, δ), then the following holds:

For any string x ∈ {0, 1}N ,

Pr
S∼ES

[|(x|S)− x| > ε] ≤ δ/2. (1)

Now let us see, how to achieve property (2). We use the Expander Mixing Lemma, and
show (proof deferred to later in this section) that if λ is small enough (≤ poly(γ)) then
the following holds: For all η < (1 − γ)/2, for any string x ∈ {0, 1}N , where x ≥ 1 − η,
we get that,

Pr
S∼ES

[(x|S) < γ] ≤ η/4. (2)

Taking the second eigenvalue λ less than the minimum required in both proofs above,
we get that both the above statements hold, for some λ = Oε,δ,γ(1). Note that the degree
of an expander, which is also the sample complexity, is poly(1/λ) = Oε,δ,γ(1) = C, hence
property (3) holds.

To get property (4), we arbitrarily take N/2 of the samples and define this as the set
family S given by the sampler. This hurts the probabilities in equations 1 and 2 by a factor
of at most 2 and hence we get properties (1), (2) for the new set family.

Proof of property (2). Let B ⊂ [N ] be the positions of zeros in x and let C ⊂ [N ] be the
set of vertices that have at least 1 − γ-fraction of their neighbors in B. Notice that the
vertices S in C are exactly those samples on which x|S < 1− γ, hence it is enough to bound
|C|/N = η′.

We know that |B|/N = η and let |C|/N = η′. By the Expander mixing lemma we
get that,
|E(B,C)|
|E(G)| ≤ ηη

′ + λ
√
ηη′,

where λ is the second eigenvalue of graph G. But by the property of C, we get, |E(B,C)|
|E(G)| ≥

(1− γ)η′. Combining these two we get that η′ ≤ (λ2/(1− γ − η)2)η ≤ (4λ2/(1− γ)2)η. We
can take λ to be small enough in terms of γ, to get that η′ < η/4. J
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