
8th Conference on Algebra and
Coalgebra in Computer Science

CALCO 2019, June 3–6, 2019, London, United Kingdom

Edited by

Markus Roggenbach
Ana Sokolova

LIPIcs – Vo l . 139 – CALCO 2019 www.dagstuh l .de/ l ip i c s

Editors

Markus Roggenbach
Swansea University, UK
m.roggenbach@swansea.ac.uk

Ana Sokolova
University of Salzburg, Austria
ana.sokolova@cs.uni-salzburg.at

ACM Classification 2012
Theory of computation → Models of computation; Theory of computation → Modal and temporal logics;
Theory of computation → Algebraic semantics; Theory of computation → Categorical semantics; Theory
of computation → Quantum computation theory; Software and its engineering → Specification languages

ISBN 978-3-95977-120-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-120-7.

Publication date
November, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CALCO.2019.0

ISBN 978-3-95977-120-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:m.roggenbach@swansea.ac.uk
mailto:sokolova.ana@gmail.com
https://www.dagstuhl.de/dagpub/978-3-95977-120-7
https://www.dagstuhl.de/dagpub/978-3-95977-120-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.CALCO.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-120-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CALCO 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Markus Roggenbach and Ana Sokolova . 0:vii

Conference Organization
. 0:ix–0:x

Invited Papers

Matching µ-Logic: Foundation of K Framework
Xiaohong Chen and Grigore Roşu . 1:1–1:4

From Equational Specifications of Algebras with Structure to Varieties of Data
Languages

Stefan Milius . 2:1–2:5

Principles of Natural Language, Logic, and Tensor Semantics
Mehrnoosh Sadrzadeh . 3:1–3:4

Coinduction: Automata, Formal Proof, Companions
Damien Pous . 4:1–4:4

Regular Papers

Ω-Automata: A Coalgebraic Perspective on Regular ω-Languages
Vincenzo Ciancia and Yde Venema . 5:1–5:18

Tree Automata as Algebras: Minimisation and Determinisation
Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and
Alexandra Silva . 6:1–6:22

Coalgebraic Geometric Logic
Nick Bezhanishvili, Jim de Groot, and Yde Venema . 7:1–7:18

Coinduction in Flow: The Later Modality in Fibrations
Henning Basold . 8:1–8:22

Causal Unfoldings
Marc de Visme and Glynn Winskel . 9:1–9:18

A Coalgebraic Perspective on Probabilistic Logic Programming
Tao Gu and Fabio Zanasi . 10:1–10:21

Sequencing and Intermediate Acceptance: Axiomatisation and Decidability of
Bisimilarity

Astrid Belder, Bas Luttik, and Jos Baeten . 11:1–11:22

On Terminal Coalgebras Derived from Initial Algebras
Jiří Adámek . 12:1–12:21

Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot
Paul Blain Levy and Sergey Goncharov . 13:1–13:17

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Decomposing Comonad Morphisms
Danel Ahman and Tarmo Uustalu . 14:1–14:19

The Axiom of Choice in Cartesian Bicategories
Filippo Bonchi, Jens Seeber, and Paweł Sobociński . 15:1–15:17

Linear-Time Graph Algorithms in GP 2
Graham Campbell, Brian Courtehoute, and Detlef Plump . 16:1–16:23

Tool Paper

Hybridisation of Institutions in HETS
Mihai Codescu . 17:1–17:10

Regular Papers

Nominal String Diagrams
Samuel Balco and Alexander Kurz . 18:1–18:20

A Diagrammatic Approach to Quantum Dynamics
Stefano Gogioso . 19:1–19:23

Tool Paper

CARTOGRAPHER: A Tool for String Diagrammatic Reasoning
Paweł Sobociński, Paul W. Wilson, and Fabio Zanasi . 20:1–20:7

Preface

This volume contains the proceedings of the 8th Conference on Algebra and Coalgebra in
Computer Science (CALCO), held at University College London, London, UK, from June 3 to
June 6, 2019. CALCO took place under the auspices of IFIP WG 1.3 “Foundations of System
Specification”. Local organizers were Philipa Gardner, Emanuele D’Osualdo, Alexandra Silva,
and Fabio Zanasi. Henning Basold was publicity chair. CALCO was co-located with the
conference Mathematical Foundations of Programming Semantics (MFPS).

At the conference were four invited talks, by Stefan Milius, Damien Pous, Grigore Rosu,
and Mehrnoosh Sadrzadeh. Damien Pous and Mehrnoosh Sadrzadeh were joint invited
speakers for CALCO and MFPS, and the invited talk by Damien Pous was accompanied by a
special session on Coinduction organized by Damien with invited talks by Chung-Kil Hur and
Andrei Popescu. There were further 20 contributed talks, of which 14 were full papers, 2 tool
papers, and 6 early ideas. Areas covered included Automata, Logics, Causality, Behaviour,
Categories, Graphs, and Strings. This volume collects abstracts for the four invited talks, the
peer reviewed full papers, and the peer reviewed tool papers. Further details on CALCO are
featured on the conference website (https://www.coalg.org/calco-mfps-2019/calco/).

CALCO 2019 received submissions from Argentina, Australia, Czechia, Egypt, France,
Germany, Iceland, Italy, Japan, the Netherlands, Norway, Slovenia, Switzerland, the United
Kingdom, and the United States. In total, there were 30 submissions, of which 21 were full
papers, 2 were tool papers and 7 were early ideas submissions.

CALCO is a high-level, bi-annual conference formed by joining the forces and reputations
of CMCS (the International Workshop on Coalgebraic Methods in Computer Science), and
WADT (the Workshop on Algebraic Development Techniques). It provides a forum to present
and discuss results of theoretical nature on the mathematics of algebras and coalgebras, the
way these results can support methods and techniques for software development, as well
as experience reports concerning the transfer of the resulting technologies into industrial
practice. Typical topics of interest include:

Abstract models and logics
Algebraic and coalgebraic semantics
Corecursion in programming languages
Algebraic and coalgebraic methods in software and systems engineering
Specialised models and calculi
String diagrams and network theory
System specification and verification
Tools supporting algebraic and coalgebraic methods
Quantum computing with algebra and coalgebra

CALCO can look back on a proud history: previous CALCO editions took place in Swansea
(Wales, 2005), Bergen (Norway, 2007), Udine (Italy, 2009), Winchester (UK, 2011), Warsaw
(Poland, 2013), Nijmegen (The Netherlands, 2015) and Ljubljana (Slovenia, 2017).

This volume first presents abstracts of the four invited talks, followed by the contributed
papers and tool papers in the order they were presented at the conference. We hope that
reading the contributions in this volume will be as inspirational as listening to the talks was
in June 2019 in London.
October 2019

Ana Sokolova
Markus Roggenbach

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.coalg.org/calco-mfps-2019/calco/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Steering Committee

Filippo Bonchi, University of Pisa, Italy
Marcello Bonsangue, Leiden University, The Netherlands
Corina Cîrstea, University of Southampton, United Kingdom
Andrea Corradini, University of Pisa, Italy
José Fiadeiro, University of Dundee, United Kingdom
Ichiro Hasuo, National Institute of Informatics, Japan
Rolf Hennicker, Ludwig-Maximilians-Universität München, Germany
Bart Jacobs, Radboud University Nijmegen, The Netherlands
Bartek Klin, Warsaw University, Poland
Hans-Jörg Kreowski, Universität Bremen, Germany
Alexander Knapp, Universität Augsburg, Germany
Alexander Kurz, Chapman University, USA
Marina Lenisa, University of Udine, Italy
Stefan Milius (co-chair), Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
Larry Moss, Indiana University, United States
Till Mossakowski, Otto-von-Guericke-Universität Magdeburg, Germany
Fernando Orejas, Technical University of Catalonia, Spain
Dirk Pattinson, Australian National University, Australia
Leila Ribeiro, Universidade Federal do Rio Grande do Sul, Brazil
Markus Roggenbach (co-chair), Swansea University, United Kingdom
Grigore Ros,u, University of Illinois at Urbana-Champaign, United States
Alexandra Silva, University College London, United Kingdom

Program Committee

Filippo Bonchi, University of Pisa, Italy
Corina Cirstea, University of Southampton, United Kingdom
Bob Coecke, University of Oxford, United Kingdom
José Luiz Fiadeiro, Royal Holloway University of London, United Kingdom
Daniel Gaina, Kyushu University, Japan
Sergey Goncharov, University of Erlangen-Nürnberg, Germany
Ichiro Hasuo, National Institute of Informatics, Japan
Chris Heunen, University of Edinburgh, United Kingdom
Helle Hvid Hansen, Delft University of Technology, The Netherlands
Magne Haveraaen, University of Bergen, Norway
Bart Jacobs, Radboud University Nijmegen, The Netherlands
Bartek Klin, Warsaw University, Poland
Alexander Knapp, Universität Augsburg, Germany
Ekaterina Komendantskaya, Heriot-Watt University, United Kingdom
Barbara König, Universität Duisburg-Essen, Germany
Clemens Kupke, University of Strathclyde, United Kingdom
Alexander Kurz, Chapman University, US
Narciso Martí-Oliet, Universidad Complutense Madrid, Spain
8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Conference Organization

Larry Moss, Indiana University, US
Till Mossakowski, Otto-von-Guericke-Universität Magdeburg, Germany
Peter Ölveczky, University of Oslo, Norway
Dirk Pattinson, Australian National University, Australia
Daniela Petrisan, University Paris Diderot, France
Carlos Gustavo Lopez Pombo, Universidad de Buenos Aires, Argentina
Damien Pous, CNRS, France
Markus Roggenbach (PC co-chair), Swansea University, United Kingdom
Jurriaan Rot, Radboud University Nijmegen, The Netherlands
Pierre-Yves Schobbens, University of Namur, Belgium
Lutz Schröder, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
Ana Sokolova (PC co-chair), University of Salzburg, Austria
Ionuţ Ţuţu, Royal Holloway, United Kingdom / Romanian Academy, Romania
Fabio Zanasi, University College London, United Kingdom

Additional Reviewers

Mihai Codescu
David Frutos Escrig
Brendan Fong
Lorenzo Gheri
Håkon Gylterud
Gerco van Heerdt
Alexandre Madeira
Dan Marsden
Robin Piedeleu
John Power
David Sprunger
Lars Stoltenow
Henning Urbat
Niels van der Weide
Uwe Wolter

Matching µ-Logic: Foundation of K Framework
Xiaohong Chen
University of Illinois at Urbana-Champaign, USA
http://fsl.cs.illinois.edu/~xchen
xc3@illinois.edu

Grigore Roşu
University of Illinois at Urbana-Champaign, USA
http://fsl.cs.illinois.edu/~grosu
grosu@illinois.edu

Abstract
K framework is an effort in realizing the ideal language framework where programming languages
must have formal semantics and all languages tools are automatically generated from the formal
semantics in a correct-by-construction manner at no additional costs. In this extended abstract,
we present matching µ-logic as the foundation of K and discuss some of its applications in defining
constructors, transition systems, modal µ-logic and temporal logic variants, and reachability logic.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Matching µ-logic, Program verification, Reachability logic

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.1

Category Invited Paper

1 Introduction

In an ideal language framework, all programming languages must have formal semantics
and all language tools are automatically generated from the formal semantics in a correct-
by-construction manner at no additional costs. K framework (www.kframework.org) is an
almost 20-year continuous effort in realizing the ideal language framework. Many real-world
languages such as C [5], Java [1], JavaScript [9] as well as the emerging blockchain languages
such as EVM [6], have had their formal semantics successfully defined in K and language tools
such as parsers, interpreters, and deductive verifiers have been automatically generated by K.

In terms of program verification, K adopts a language-independent approach that is
different from the classic language-specific approaches such as Hoare-style verification [7],
where different languages have different program logics and thus different verifiers. Instead,
the current K implementation uses matching logic [10] to specify static structures of programs
and reachability logic [11] to reason about dynamic reachability properties for all languages.
Formal semantics are given as theories in these logics, so their fixed and thus language-
independent proof systems achieve semantic-based program verification for all languages [4].

As its name suggests, reachability logic can only express reachability properties, which
limits K to verifying, for instance, liveness properties, which are beyond reachability logic
but can naturally be expressed in temporal logics such as linear temporal logic (LTL) or
computation tree logic (CTL). To overcome this limitation, we recently proposed matching
µ-logic [2], which is a powerful logic that subsumes not only matching logic and reachability
logic, but also first-order logic with least fixpoints, modal µ-logic, many variants of temporal
logics, dynamic logic, and others (see Fig. 1). This demonstrates that matching µ-logic can
serve as the uniform foundation of an ideal language framework.

Here we only present matching µ-logic by examples and show its application in specifying
and reasoning about constructors, transition systems, and reachability. For more details
see [2, 3].

© Xiaohong Chen and Grigore Roşu;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 1; pp. 1:1–1:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://fsl.cs.illinois.edu/~xchen
mailto:xc3@illinois.edu
http://fsl.cs.illinois.edu/~grosu
mailto:grosu@illinois.edu
https://doi.org/10.4230/LIPIcs.CALCO.2019.1
www.kframework.org
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Matching µ-Logic: Foundation of K Framework

Figure 1 Many popular logics can be defined in matching µ-logic as theories and notations [2]; the
current K implementation (denoted as the node labeled “K”) is so far the best effort in implementing
reachability logic reasoning and will eventually be lifted to the same level as matching µ-logic.

2 Matching µ-Logic Examples

Preliminaries and basic examples

Matching logic (the version without µ) is a variant of many-sorted first-order logic (FOL)
which makes no distinction between functions and predicates but uses symbols to uniformly
build patterns that can represent static structures, dynamic properties, and logic constraints.
Matching µ-logic extends matching logic with the least fixpoint µ-binder as in modal µ-
logic [8], which can build inductive patterns to represent inductive and co-inductive data
structures and recursive properties and logical constraints.

Intuitively speaking, a pattern evaluates to the set of elements matching it. For example:
x, called an element variable, is matched by exactly one element x;
X, called a set variable, is matched by any set X of elements;
succ(x) is matched by the successor(s) of x; here succ is a symbol that builds structures;
∃x.succ(x) is matched by the successor of some x, i.e., all successors;
zero ∨ ∃x.succ(x) is matched by either zero or successors;
> ≡ ∃x.x is matched by x for some x, i.e., everything; ⊥ ≡ ¬> is matched by nothing;
list(x) is matched by all linked lists in the heap starting at pointer x; list is also a symbol;
list(x) ∧ prime(x), same as above but with prime x;
µN .zero ∨ succ(N) is matched by all natural numbers zero, succ(zero), succ(succ(zero)),
. . . ; this is because the µ-binder denotes the least set N w.r.t. set containment such that
N = zero ∨ succ(N); in other words, N is the least set closed under zero and succ.

Constructors

The last example above µN .zero ∨ succ(N) that is matched by all natural numbers can be
easily generalized to deal with any constructor set C = {ci | ci is a constructor of arity ni},
where the pattern µD.

∨
ci∈C ci(D, . . . ,D︸ ︷︷ ︸

ni times

) evaluates to the least set that is closed under all

constructors in C, yielding the set of all terms generated by C.

X. Chen and G. Roşu 1:3

Transition systems and temporal logics

A transition system (S,R) is a pair of a state set S and a transition relation R ⊆ S × S. In
matching µ-logic, transition systems can be captured by one unary symbol • called one-path
next (we write •ϕ instead of •(ϕ)) with the intended interpretation that •ϕ is matched by
all predecessors of those matching ϕ:

· · · s
R−→ s′ R−→ s′′ · · · // states

••ϕ •ϕ ϕ // patterns

In other words, a state matches •ϕ iff it has one next state that matches ϕ. Its dual all-path
next ◦ϕ ≡ ¬•¬ϕ is matched by those states whose next states all match ϕ (see Fig. 2).

We can define patterns that represent more complex dynamic properties. For example,
•> is matched by all non-terminal states;
◦⊥ is matched by all terminal states;
♦ϕ ≡ µX .ϕ ∨ •X is matched by all states that eventually reach ϕ on some path;
�ϕ ≡ νX .ϕ∧◦X is matched by all states that always stay in ϕ on all paths; ν-binder is the
dual of µ-binder that builds greatest fixpoints instead of least fixpoints, defined as usual:
νX .ϕ ≡ ¬µX .¬ϕ[¬X/X] where_[_/_] is the standard capture-avoiding substitution;
WF ≡ µX .◦X is matched by all states that are well-founded, i.e., have no infinite paths.

Figure 2 One/All-path next.

We point out that the above definitions are standard definitions in modal µ-logic. Since,
as is well known, modal µ-logic subsumes many variants of temporal logic such as LTL and
CTL and that matching µ-logic subsumes modal µ-logic (see [2, Section VII]), there is no
surprise that matching µ-logic also subsumes LTL and CTL. What is interesting is that
it only requires a few natural and intuitive axioms to faithfully capture LTL and CTL in
matching µ-logic, as summarized below:

Target logic Assumption on traces Axioms required in matching µ-logic
Modal µ-logic Any traces, no assumptions No axioms
Infinite-trace LTL Infinite and linear traces (Inf) + (Lin)
Finite-trace LTL Finite and linear traces (Fin) + (Lin)
CTL Infinite traces (Inf)

where (Inf) is the pattern/axiom •> stating that all states are non-terminal states, (Fin) is
the pattern/axiom WF ≡ µX .◦X stating that all states are well-founded, and (Lin) is the
pattern/axiom •X → ◦X enforcing the linear paths: X holds on one next state implies X
holds on all next states.

In conclusion, modal µ-logic is the empty theory over a unary symbol • that contains no
axioms. Adding (Inf) yields precisely CTL. Adding (Inf) yields precisely infinite-trace LTL
and replacing (Inf) with (Fin) yields finite-trace LTL. Therefore, matching µ-logic over the
one-path next symbol • gives a playground for defining variants of temporal logics.

CALCO 2019

1:4 Matching µ-Logic: Foundation of K Framework

Reachability logic

Our last example is to define reachability properties ϕ⇒ ϕ′, called reachability rules [11], in
matching µ-logic using the one-path next symbol. Here, ϕ and ϕ′ are matching logic patterns
not containing µ that are matched by program configurations. The semantics of ϕ⇒ ϕ′ is
that for every configuration γ that matches ϕ, either it reaches some configuration γ′ that
matches ϕ′ in finitely many steps, or it is not well-founded. In other words, reachability is
like a “weak” eventuality statement that applies to only well-founded states. This suggests to
define the derived construct “weak eventually” ♦wψ ≡ νX .ψ∨•X, which is like the definition
of the normal eventually ♦ψ but replacing µ by ν, and define ϕ⇒ ϕ′ ≡ ϕ→ ♦wϕ

′. We can
prove that ♦wψ = ♦ψ ∨ ¬WF, i.e., it indeed captures the semantics of (partial correctness)
reachability, and thus our definition of reachability logic is faithful.

3 Conclusion

In this extended abstract, we presented matching µ-logic as the foundation of K and discussed
some of its applications to defining constructors, transition systems, modal µ-logic and
temporal logic variants, and finally reachability logic.

References
1 Denis Bogdănaş and Grigore Roşu. K-Java: A complete semantics of Java. In Proceedings

of the 42nd Symposium on Principles of Programming Languages (POPL’15), pages 445–456.
ACM, 2015.

2 Xiaohong Chen and Grigore Roşu. Matching µ-logic. In Proceedings of the 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS’19), 2019.

3 Xiaohong Chen and Grigore Roşu. Matching µ-logic. Technical report, University of Illinois
at Urbana-Champaign, 2019. URL: http://hdl.handle.net/2142/102281.

4 Andrei Ştefănescu, Daejun Park, Shijiao Yuwen, Yilong Li, and Grigore Roşu. Semantics-based
program verifiers for all languages. In Proceedings of the 2016 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’16), pages 74–91. ACM, 2016.

5 Chris Hathhorn, Chucky Ellison, and Grigore Roşu. Defining the undefinedness of C. In
Proceedings of the 36th annual ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’15), pages 336–345. ACM, 2015.

6 Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues, Philip Daian,
Dwight Guth, Brandon Moore, Yi Zhang, Daejun Park, Andrei Ştefănescu, and Grigore
Roşu. KEVM: A complete semantics of the Ethereum virtual machine. In Proceedings of
the 2018 IEEE Computer Security Foundations Symposium (CSF’18). IEEE, 2018. URL:
http://jellopaper.org.

7 C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

8 Dexter Kozen. Results on the propositional µ-calculus. In Proceedings of the 9th International
Colloquium on Automata, Languages and Programming (ICALP’82), pages 348–359. Springer,
1982.

9 Daejun Park, Andrei Ştefănescu, and Grigore Roşu. KJS: A complete formal semantics of
JavaScript. In Proceedings of the 36th annual ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’15), pages 346–356. ACM, 2015.

10 Grigore Roşu. Matching logic. Logical Methods in Computer Science, 13(4):1–61, 2017.
11 Grigore Roşu, Andrei Ştefănescu, Ştefan Ciobâcă, and Brandon M. Moore. One-path reachab-

ility logic. In Proceedings of the 28th Symposium on Logic in Computer Science (LICS’13),
pages 358–367. IEEE, 2013.

http://hdl.handle.net/2142/102281
http://jellopaper.org

From Equational Specifications of Algebras with
Structure to Varieties of Data Languages
Stefan Milius
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
mail@stefan-milius.eu

Abstract
This extended abstract first presents a new category theoretic approach to equationally axiomatizable
classes of algebras. This approach is well-suited for the treatment of algebras equipped with additional
computationally relevant structure, such as ordered algebras, continuous algebras, quantitative
algebras, nominal algebras, or profinite algebras. We present a generic HSP theorem and a sound
and complete equational logic, which encompass numerous flavors of equational axiomizations
studied in the literature. In addition, we use the generic HSP theorem as a key ingredient to obtain
Eilenberg-type correspondences yielding algebraic characterizations of properties of regular machine
behaviours. When instantiated for orbit-finite nominal monoids, the generic HSP theorem yields a
crucial step for the proof of the first Eilenberg-type variety theorem for data languages.

2012 ACM Subject Classification Theory of computation → Equational logic and rewriting; Theory
of computation → Formal languages and automata theory

Keywords and phrases Birkhoff theorem, Equational logic, Eilenberg theorem, Data languages

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.2

Category Invited Paper

Funding Supported by Deutsche Forschungsgemeinschaft (DFG) under project MI 717/5-2.

1 Equations and Algebras with Structure

A key tool in the algebraic theory of data structures is their specification by operations
(constructors) and equations that they ought to satisfy. Birkhoff’s celebrated HSP theorem [7]
states that a class of algebras over a signature Σ is a variety (i.e. closed under homomorphic
images, subalgebras, and products) iff it is axiomatizable by equations s = t between Σ-terms.
Birkhoff also introduced a complete deduction system for reasoning about equations.

In algebraic approaches to the semantics of programming languages and computational
effects, it is often natural to study algebras whose underlying sets are equipped with
additional computationally relevant structure and whose operations preserve that structure.
An important line of research thus concerns extensions of Birkhoff’s theory of equational
axiomatization beyond ordinary Σ-algebras. On the syntactic level, this requires to enrich
Birkhoff’s notion of an equation in ways that reflect the extra structure. For example,
Bloom [8] and Adámek et al. [1, 2] established versions of the HSP theorem for ordered
algebras and continuous ones, respectively, along with complete deduction systems. Here, the
role of equations s = t is taken over by inequations s ≤ t. Recently, Mardare, Panangaden and
Plotkin [19,20] presented an HSP theorem for quantitative algebras and a complete deduction
system. In the quantitative setting, equations s =ε t are equipped with a non-negative real
number ε, interpreted as “s and t have distance at most ε”. Varieties of nominal algebras
were studied by Gabbay [15] and Kurz and Petrişan [18]. Here, the appropriate syntactic
concept involves equations s = t with constraints on the support of their variables. Finally,
Reiterman [29] as well as Eilenberg and Schützenberger [13] showed that pseudovarieties
(i.e. classes of finite algebras closed under homomorphic images, subalgebras and finite

© Stefan Milius;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 2; pp. 2:1–2:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@stefan-milius.eu
https://doi.org/10.4230/LIPIcs.CALCO.2019.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Equations, Algebras, and Data Languages

products) can be axiomatized by so-called profinite equations or, equivalently, by sequences
of ordinary equations (si = ti)i<ω, interpreted as “all but finitely many of the equations
si = ti hold”.

We propose a general category theoretic framework that allows to study equationally
specified classes of algebras with extra structure in a systematic way. Our overall goal is to
isolate the domain-specific part of any theory of equational axiomatization from its generic
core. Our framework is parametric in the following data:

a category A with a factorization system (E ,M);
a full subcategory A0 ⊆ A ;
a class Λ of cardinal numbers;
a class X ⊆ A of objects.

Here, A is the category of algebras under consideration (e.g. ordered algebras, quantitative
algebras, nominal algebras). Varieties are formed within A0, and the cardinal numbers in
Λ determine the arities of products under which the varieties are closed. Thus, the choice
A0 = finite algebras and Λ = finite cardinals corresponds to pseudovarieties, and A0 = A

and Λ = all cardinals to varieties. The crucial ingredient of our setting is the parameter
X , which is the class of objects over which equations are formed. Typically, X is chosen
to be some class of freely generated algebras in A . Equations are modeled as E -quotients
e : X � E (more generally, filters of such quotients) with domain X ∈X .

The choice of X reflects the desired expressivity of equations in a given setting, and it
determines the type of quotients under which equationally axiomatizable classes are closed.
More precisely, in our category theoretic framework a variety is defined to be a subclass of
A0 closed under EX -quotients, M -subobjects, and Λ-products, where EX is a subclass of E

derived from X . Due to its parametric nature, this concept of a variety is widely applicable
and turns out to specialize to many interesting cases. The main result is the

I General HSP Theorem [22]. A subclass of A0 forms a variety if and only if it is axio-
matizable by equations.

In addition, we introduce a generic deduction system for equations, based on two simple
proof rules for equations e : X � E, and establish a

I General Completeness Theorem [22]. The generic deduction system for equations is
sound and complete.

The above two theorems can be seen as the generic building blocks of the model theory of
algebras with structure. They form the common core of numerous Birkhoff-type results and
give rise to a systematic recipe for deriving concrete HSP and completeness theorems.

2 Varieties of Data Languages

Since the above results also cover Reiterman-type results (via the choice of X as free algebras
over finite sets) the General HSP Theorem yields a key tool for a generic algebraic language
theory. In this theory one studies formal languages and other types of behaviours of finite
machines (e.g. weighted languages, infinite words, trees, cost functions) in terms of algebraic
structures that recognize them. As a prime example, regular languages can be described
purely algebraically as the languages recognized by finite monoids, and a celebrated result
by McNaughton, Papert, and Schützenberger [21, 33] asserts that a regular language is
definable in first-order logic if and only if its syntactic monoid is aperiodic (i.e. it satisfies
the equation xn+1 = xn for sufficiently large n). As an immediate application, this algebraic

S. Milius 2:3

characterization yields an effective procedure for deciding first-order definability. The first
systematic approach to correspondence results of this kind was initiated by Eilenberg [14]
who proved that varieties of languages (i.e. classes of regular languages closed under the set-
theoretic boolean operations, derivatives, and homomorphic preimages) correspond bijectively
to pseudovarieties of monoids. Inspired by Eilenberg’s work, over the past four decades
numerous further variety theorems were discovered for regular languages [16, 24, 27, 36],
treating notions of varieties with modified closure properties, but also for machine behaviors
beyond finite words, including weighted languages over a field [30], infinite words [25, 38],
words on linear orderings [5, 6], ranked trees [4], binary trees [32], and cost functions [12].
Recent research [3, 9] has focused on generic approaches and has culminated in Salamanca’s
work [31] and our General Eilenberg Theorem that covers all of the above ones as special
instances [37]. Its proof is based on two key ingredients: (1) duality in order to establish a
correspondence between (profinite) equational theories and varieties of recognizable languages
and (2) a generic Reiterman-type correspondence to pseudovarieties.

Varieties of
languages

Eilenberg Theorem
∼=

Duality
∼=

Equational
theories

Reiterman Theorem
∼=

Pseudovarieties
of algebras

That duality plays an important role for Eilenberg-type correspondences has been es-
tablished by Gehrke, Grigorieff and Pin [16]. The duality based proofs in [31, 37] yield a
blueprint for new correspondences of this kind. For example, it allows to obtain the first
Eilenberg-type correspondence for data languages [22]. Such languages are of significant
interest in recent years, driven by practical applications in various areas of computer science,
including efficient parsing of XML documents or software verification. Mathematically,
data languages are modeled using nominal sets (see e.g. [26]). Over the years, several
machine models for handling data languages of different expressive power have been proposed;
see [34,35] for a comprehensive survey. Here we focus on languages recognized by orbit-finite
nominal monoids. They form an important subclass of the languages accepted by Francez
and Kaminski’s finite memory automata [17] (which are expressively equivalent to orbit-finite
automata in the category of nominal sets [11]) and have been characterized by a fragment of
monadic second-order logic over data words called rigidly guarded MSO [28]. In addition,
Bojańczyk [10] and Colcombet, Ley and Puppis [28] established nominal versions of the
McNaughton-Papert-Schützenberger theorem and showed that the first-order definable data
languages are precisely the ones recognizable by aperiodic orbit-finite monoids. It is therefore
natural to ask whether an Eilenberg-type theorem can be developed for data languages, and
we answer this question affirmatively:

I Nominal Eilenberg Theorem [23]. Varieties of data languages correspond bijectively to
pseudovarieties of nominal monoids.

Here, the notion of a pseudovariety of nominal monoids is as expected: a class of orbit-finite
nominal monoids closed under quotient monoids, submonoids, and finite products. In contrast,
the notion of a variety of data languages requires two extra conditions unfamiliar from other
Eilenberg-type correspondences, most notably a technical condition called completeness. Like
the original Eilenberg theorem, its nominal version gives rise to a generic relation between
properties of data languages and properties of nominal monoids. For instance, the aperiodic
orbit-finite monoids form a pseudovariety, and the first-order definable data languages form
a variety, and thus the equivalence of these concepts can be understood as an instance of the
nominal Eilenberg correspondence.

CALCO 2019

2:4 Equations, Algebras, and Data Languages

It should be pointed out that the Nominal Eilenberg Theorem requires new techniques
and cannot be obtained as a mere instance of the previous General Eilenberg Theorem, since
the latter is based on working with algebraic-like base categories (which excludes nominal
sets) and the recognition by finite structures. However, our approach can be seen as an
indication of the robustness of the key ideas behind the duality-based methodology for
algebraic recognition and the guidance they provide towards future applications and results.

References
1 J. Adámek, A. H. Mekler, E. Nelson, and J. Reiterman. On the logic of continuous algebras.

Notre Dame J. Formal Logic, 29(3):365–380, 1988.
2 Jiři Adámek, Evelyn Nelson, and Jan Reiterman. The Birkhoff Variety Theorem for continuous

algebras. Algebra Universalis, 20(3):328–350, 1985.
3 Jiří Adámek, Stefan Milius, Robert S.R. Myers, and Henning Urbat. Generalized Eilenberg

Theorem: Varieties of Languages in a Category. ACM Trans. Comput. Log., 20(1):3:1–3:47,
2019.

4 J. Almeida. On pseudovarieties, varieties of languages, filters of congruences, pseudoidentities
and related topics. Algebra Universalis, 27(3):333–350, 1990.

5 N. Bedon and O. Carton. An Eilenberg theorem for words on countable ordinals. In Proc.
LATIN’98, volume 1380 of LNCS, pages 53–64. Springer, 1998.

6 N. Bedon and C. Rispal. Schützenberger and Eilenberg theorems for words on linear orderings.
In Proc. DLT’05, volume 3572 of LNCS, pages 134–145. Springer, 2005.

7 Garret Birkhoff. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society, 10:433—-454, 1935.

8 Stephen L. Bloom. Varieties of ordered algebras. J. Comput. Syst. Sci., 2(13):200–212, 1976.
9 M. Bojańczyk. Recognisable languages over monads. In I. Potapov, editor, Proc. DLT’15,

volume 9168 of LNCS, pages 1–13. Springer, 2015. arXiv:1502.04898.
10 Mikołaj Bojańczyk. Nominal Monoids. Theory of Computing Systems, 53(2):194–222, 2013.
11 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets.

Log. Methods Comput. Sci., 10(3:4):44 pp., 2014.
12 L. Daviaud, D. Kuperberg, and J.-É. Pin. Varieties of Cost Functions. In N. Ollinger and

H. Vollmer, editors, Proc. STACS 2016, volume 47 of LIPIcs, pages 30:1–30:14. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

13 S. Eilenberg and M. P. Schützenberger. On pseudovarieties. Advances Math., 10:413–418,
1976.

14 Samuel Eilenberg. Automata, Languages, and Machines Vol. B. Academic Press, 1976.
15 Murdoch J. Gabbay. Nominal algebra and the HSP theorem. Journal of Logic and Computation,

19:341–367, 2009.
16 Mai Gehrke, Serge Grigorieff, and Jean-Éric Pin. Duality and equational theory of regular

languages. In Proc. ICALP’08, Part II, volume 5126 of LNCS, pages 246–257. Springer, 2008.
17 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoret. Comput. Sci.,

134(2):329–363, 1994.
18 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical

Structures in Computer Science, 20(2):285–318, 2010.
19 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative Algebraic Reasoning.

In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’16, pages 700–709. ACM, 2016.

20 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. On the axiomatizability of
quantitative algebras. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005102.

http://arxiv.org/abs/1502.04898
https://doi.org/10.1109/LICS.2017.8005102

S. Milius 2:5

21 Robert McNaughton and Seymour A. Papert. Counter-Free Automata (M.I.T. Research
Monograph No. 65). The MIT Press, 1971.

22 Stefan Milius and Henning Urbat. Equational Axiomatization of Algebras with Structure. In
Mikołaj Bojańczyk and Alex Simpson, editors, Proc. Foundations of Software Science and
Computation Structures (FoSSaCS), volume 11425 of Lecture Notes Comput. Sci. (ARCoSS),
pages 400–417, 2019.

23 Stefan Milius and Henning Urbat. Varietes of Data Languages. In Proc. 46th International
Colloquium on Automata, Languages, and Programming (ICALP), volume 132 of LIPIcs,
pages 130:1–130:14, 2019. (Full version available online at arXiv:1903.08053). doi:10.4230/
LIPIcs.ICALP.2019.130.

24 J.-É. Pin. A variety theorem without complementation. Russ. Math., 39:80–90, 1995.
25 J.-É. Pin. Positive varieties and infinite words. In LATIN 98, volume 1380 of LNCS, pages

76–87. Springer, 1998.
26 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

University Press, 2013.
27 L. Polák. Syntactic semiring of a language. In J. Sgall, A. Pultr, and P. Kolman, editors, Proc.

MFCS’01, volume 2136 of LNCS, pages 611–620. Springer, 2001.
28 Gabriele Puppis, Thomas Colcombet, and Clemens Ley. Logics with rigidly guarded data

tests. Log. Methods Comput. Sci., 11(3:10):56 pp., 2015.
29 J. Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14(1):1–10, 1982.
30 C. Reutenauer. Séries formelles et algèbres syntactiques. J. Algebra, 66:448–483, 1980.
31 Julian Salamanca. Unveiling Eilenberg-type Correspondences: Birkhoff’s Theorem for (finite)

Algebras + Duality, February 2017. arXiv:1702.02822.
32 S. Salehi and M. Steinby. Tree algebras and varieties of tree languages. Theor. Comput. Sci.,

377(1-3):1–24, 2007.
33 Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Inform. and

Control, 8:190–194, 1965.
34 Thomas Schwentick. Automata for XML – A survey. J. Comput. System Sci., 73(3):289–315,

2007.
35 Luc Segoufin. Automata and Logics for Words and Trees over an Infinite Alphabet. In

Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of
the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, pages 41–57, 2006.

36 H. Straubing. On logical descriptions of regular languages. In S. Rajsbaum, editor, LATIN
2002 Theor. Informatics, volume 2286 of LNCS, pages 528–538. Springer, 2002.

37 Henning Urbat, Jiří Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg Theorems for
Free. In Kim G. Larsen, Hans L. Bodlaender, and Jean-François Raskin, editors, Proc. 42nd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2017),
volume 83 of LIPIcs. Schloss Dagstuhl, 2017. EATCS Best Paper Award.

38 T. Wilke. An Eilenberg Theorem for ∞-Languages. In Proc. ICALP’91, volume 510 of LNCS,
pages 588–599. Springer, 1991.

CALCO 2019

https://arxiv.org/abs/1903.08053
https://doi.org/10.4230/LIPIcs.ICALP.2019.130
https://doi.org/10.4230/LIPIcs.ICALP.2019.130
http://arxiv.org/abs/1702.02822

Principles of Natural Language, Logic, and Tensor
Semantics
Mehrnoosh Sadrzadeh
School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
mehrnoosh.sadrzadeh@qmul.ac.uk

Abstract
Residuated monoids model the structure of sentences. Vectors provide meaning representations for
words. A functorial mapping between the two is obtained by lifting the vectors to tensors. The
resulting sentence representations solve similarity, disambiguation and entailment tasks.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Computing
methodologies → Natural language processing; General and reference → Experimentation

Keywords and phrases Residuated Monoids, Vector Space Semantics, Corpora of Textual Data,
Sentence Similarity and Disambiguation

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.3

Category Invited Paper

Funding Royal Academy of Engineering Industrial Fellowship Scheme IF S1718\63, Royal Society
International Exchange Award IE161631

1 The Algebra of Grammatical Types

A partially ordered monoid is called residuated and is denoted by (M, ·, 1,≤,→,←), whenever
for b, c ∈ M we have c · c → b ≤ b and b ← c · c ≤ b. Given a set of basic types B and a
vocabulary Σ, a monoid grammar is the tuple (T (B), Σ,D, {s}), wherein T (B) is a residuated
monoid generated over B and D ⊆ Σ × T (B) is a type assignment to the vocabulary. A
string of words w1w2 · · ·wn is grammatical in a monoid grammar, whenever for (wi, ti) ∈ D,
we have t1 · t2 · · · · · tn ≤ s, where s is an element of B and stands for the type of a sentence.

As an example, consider the vocabulary Σ = {men,dogs, cute, kill} and the type dictionary
D = {(men, n), (dogs, n), (cute, n ← n), (kill, (n → s) ← n)}. The sentence “men kill cute
dogs” is grammatical, since we have

n · ((n→ s)← n) · (n← n) · n ≤ n · ((n→ s)← n) · n ≤ n · (n→ s) ≤ s

2 Tensor Semantics

Suppose W is a vector space with a set of fixed orthonormal basis {bi}i. Elements of W are
vectors

∑
i cibi and elements of W ⊗ · · · ⊗W︸ ︷︷ ︸

n

are tensors Ti1i2···in
=

∑
i1i2···in

Ci1i2···in
bi1 ⊗

bi2 ⊗ · · · ⊗ bin
. The action of a tensor on another tensor is called tensor contraction and is

defined as Ti1i2···in
Tinin+1···in+k

= Ti1i2···in+1···in+k
∈W ⊗ · · · ⊗W︸ ︷︷ ︸

n+k−1

.

We develop a mapping F between a monoid grammar and the tensor powers of W . To
basic types t ∈ B, we assign W , i.e., F(t) := W ; to words w with basic types t we assign
elements of W , i.e., F(w) := Ti ∈W . To complex types, we assign tensors of W as follows

F(t1 · t2) = F(t1 → t2) = F(t1 ← t2) := F(t1)⊗F(t2)
© Mehrnoosh Sadrzadeh;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 3; pp. 3:1–3:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mehrnoosh.sadrzadeh@qmul.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Natural Language Logic and Tensor Semantics

Words with complex types are assigned elements of the tensor spaces of their types, that
is, F(w) = Ti1i2···in

∈ W ⊗ · · · ⊗W︸ ︷︷ ︸
n

. Given a grammatical sentence w1w2 · · ·wn, its tensor

meaning is defined as the tensor contraction of the tensor semantics of its words, that is,
F(w!w2 · · ·wn) := F(w1)F(w2) · · · F(wn).

As an example, suppose we assign vectors T dogs
k and T men

j in W to men and dogs, the
matrix T cute

lk in W ⊗W to cute and the cube T kill
ijk in W ⊗W ⊗W to kill. The meaning of

“men kill cute dogs” is computed via the following contraction of tensors T men
j T kill

ijl T cute
lk T dog

k .
Recall that when we have a fixed set of orthonormal basis, Tij

∼= Tji.

3 Implementation on Corpora of Textual Data

Given a corpus of text, e.g. the English Wikipedia, a set of target words T and a set of
context words C, a vector space W is created over C. In this vector space, each target word
has a vector, where each ci is (a function of) the number of times w occurred with each basis
vector in a neighbourhood window, e.g. 5 words to the left or right. As an example, suppose
C = {blood, grave, dead} and T = {vampire, zombie, butterfly} and the following vectors

T zombie
i = (17, 13, 10) T vampire

i = (15, 9, 8) T butterfly
i = (0, 1, 3)

Words that have complex types are modelled as tensors. The tensors are learnt by first
building vector representations for phrases containing the words, then learning a tensor whose
contraction with the tensors of other words in the phrase provides a reasonable approximation
for the vector of the phrase. For example, in order to learn a matrix for the adjective green,
we first build vectors for all the adjective-noun phrases with green as adjective, e.g. for green
grass, green dress, green space. Machine learning algorithms such as least squared distance
are employed to learn an approximation for T green

ij such that

T green grass
i ∼ T green

ij T grass
j T green dress

i ∼ T green
ij T dress

j T green space
i ∼ T green

ij T space
j

Once the grammatical structure of a language is modelled in a monoid grammar and word
vectors and tensors have been built for its vocabulary, tensor contraction is applied to obtain
vector representations for its sentences. The cosine distances between these representations
provide a measure of sentence similarity and are applied to paraphrasing and disambiguation
tasks. For paraphrasing, one builds vectors for sentences such as “man shut doors”, “gentleman
closed eyes”, “programme faces difficulty”, “project hits problem” and uses their distances to
decide that the latter two are more similar than the former two. For disambiguation, one
builds vectors for sentences such as “man drew sword”, “man sketched sword”, “man pulled
sword” to decide whether drew means sketched or pulled.

4 History and References

Similar to programming languages, natural languages have different characteristic features
such as morphology, phenology, syntax, semantics, and pragmatics. Formal structures
have been used to study these features and indeed ideas are shared between natural and
programming semantics communities. An example is the setting of Context Free Grammars,
introduced by Chomsky to analyse the grammatical structure of English [4] and subsequently
applied to other languages and programming languages. The first algebraic approaches
to natural language go back to the work of Ajdukiewicz [1], where structures similar to
groups were used to provide a functional interpretation for grammatical types. These systems

M. Sadrzadeh 3:3

were later refined with a noncommutative multiplication by Bar-Hillel [2] and then Lambek
developed a residuated monoid semantics and a cut-free sequent calculus for them [15]. The
expressive powers of these two systems were proven equivalent by Pentus [20].

The vector space semantics of natural language is motivated by the distributional semantic
ideas of Firth [8] and Harris [12], who argued that words that occur in the same contexts
have similar meanings. These models were both implemented in Information Retrieval [27]
and applied to Natural Language Processing [24].

Encoding a model of grammar in vector space semantics to obtain vector representations
for sentences was an open problem until recently. In 2007 Clark and Pulman showed how
a context free parse tree of a sentence can be assigned a tensor semantics by taking the
Kronecker products of the vectors of the words therein and the symbolic vectors of their
grammatical roles [5]. It was not clear, however, how to build vectors for grammatical
roles. Between 2008 and 2011, with Clark, Coecke, and Preller we showed that if one uses
Lambek’s pregroup grammars [16, 23] one obtains a functorial semantics in the compact
closed category of finite dimensional vector spaces and linear maps [6, 22]. Later with Coecke
and Grefenstette, we showed how residuated monoid grammars also get a functorial semantics
via the translation between a residuated monoid and a pregroup [7]. More recently, I showed
how one can get by without using category theory and still be able to express this semantics
using the language of tensor contraction [25]; this is via the F mapping that I have tried to
spell out in this abstract.

Starting from 2011, we have implemented and experimented with the tensor models on
large corpora of textual data in similarity, disambiguation, and entailment tasks and showed
that in each case there is a tensor model that outperforms the vector models[10, 11, 13, 19,
14, 26]. The method that we have described here and which is used to learn the tensors was
introduced by Baroni and Zamparelli for adjectives [3] and later extended to verbs [9, 21].
Maillard and Clark [17] showed how one can use neural networks and the Skipgram algorithm
of Mikolov [18] to obtain much better results. In work in progress with Clark and Wijnholds,
we are extending these models to arbitrary tensors.

References
1 K. Ajdukiewicz. Die syntaktische Konnexitat. Studia Philosophica, 1:1–27, 1935.
2 Y. Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language, 29:47–58,

1953.
3 M. Baroni and R. Zamparelli. Nouns are vectors, adjectives are matrices: Representing

adjective-noun constructions in semantic space. In Conference on Empirical Methods in
Natural Language Processing, Cambridge, MA, 2010.

4 Noam Chomsky. Three models for the description of language. IRE Transactions on Informa-
tion Theory, 2:113–124, 1956.

5 Stephen Clark and Stephen Pulman. Combining Symbolic and Distributional Models of
Meaning. In Proceedings of the AAAI Spring Symposium on Quantum Interaction, pages
52–55, 2007.

6 B. Coecke, M. Sadrzadeh, and S. Clark. Mathematical Foundations for Distributed Composi-
tional Model of Meaning. Lambek Festschrift. Linguistic Analysis, 36:345–384, 2010.

7 Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh. Lambek vs. Lambek: Functorial
vector space semantics and string diagrams for Lambek calculus. Annals of Pure and Applied
Logic, 164(11):1079–1100, 2013. Special issue on Seventh Workshop on Games for Logic and
Programming Languages.

8 J.R. Firth. A Synopsis of Linguistic Theory 1930–1955. In Studies in Linguistic Analysis.
Longmans, 1957.

CALCO 2019

3:4 Natural Language Logic and Tensor Semantics

9 E. Grefenstette, G. Dinu, Y. Zhang, M. Sadrzadeh, and M. Baroni. Multi-Step Regression
Learning for Compositional Distributional Semantics. In 10th International Conference on
Computational Semantics, Postdam, 2013.

10 E. Grefenstette and M. Sadrzadeh. Experimental Support for a Categorical Compositional
Distributional Model of Meaning. In Proceedings of Conference on Empirical Methods in
Natural Language Processing, pages 1394–1404, 2011.

11 Edward Grefenstette and Mehrnoosh Sadrzadeh. Concrete Models and Empirical Evaluations
for the Categorical Compositional Distributional Model of Meaning. Computational Linguistics,
41:71–118, 2015.

12 Z.S. Harris. Distributional structure. Word, 1954.
13 D. Kartsaklis and M. Sadrzadeh. Prior Disambiguation of Word Tensors for Constructing

Sentence Vectors. In Proceedings of Conference on Empirical Methods in Natural Language
Processing, 2013.

14 Dimitri Kartsaklis, Nal Kalchbrenner, and Mehrnoosh Sadrzadeh. Resolving Lexical Ambiguity
in Tensor Regression Models of Meaning. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics, Baltimore, MD, USA, Volume 2: Short Papers,
pages 212–217, 2014.

15 J. Lambek. The mathematics of sentence structure. American Mathematics Monthly, 65, 1958.
16 J. Lambek. Type grammars revisited. In proceedings of LACL 97, volume 1582 of Lecture

Notes in Artificial Intelligence. Springer Verlag, 1997.
17 Jean Maillard and Stephen Clark. Learning adjective meanings with a tensor-based skip-gram

model. In Proceedings of the Nineteenth Conference on Computational Natural Language
Learning, pages 327–331, 2015.

18 Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119, 2013.

19 Dmitrijs Milajevs, Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Matthew Purver. Evaluating
Neural Word Representations in Tensor-Based Compositional Settings. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, pages 708–719.
Association for Computational Linguistics, 2014.

20 Mati Pentus. Lambek Grammars Are Context Free. In In Proceedings of the Eighth Annual
IEEE Symposium on Logic in Computer Science, pages 429–433. IEEE Computer Society
Press, 1993.

21 Tamara Polajnar, Luana Fagarasan, and Stephen Clark. Reducing dimensions of tensors in
type-driven distributional semantics. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1036–1046, 2014.

22 A. Preller and M. Sadrzadeh. Bell States and Negative Sentences in the Distributed Model of
Meaning. In P. Selinger B. Coecke, P. Panangaden, editor, Electronic Notes in Theoretical
Computer Science, Proceedings of the 6th Workshop on Quantum Physics and Logic, volume
270, pages 141–153, 2010.

23 Anne Preller and Joachim Lambek. Free compact 2-categories. Mathematical Structures in
Computer Science, 17:309–340, 2007.

24 H. Rubenstein and J.B. Goodenough. Contextual Correlates of Synonymy. Communications
of the ACM, 8(10):627–633, 1965.

25 M. Sadrzadeh. Unifying the Mathematics of Natural Language Grammar and Data. London
Mathematical Society News Letter, pages 25–31, 2018.

26 Mehrnoosh Sadrzadeh, Dimitri Kartsaklis, and Esma Balkır. Sentence entailment in composi-
tional distributional semantics. Annals of Mathematics and Artificial Intelligence, 82(4):189–
218, 2018.

27 G. Salton, A. Wong, and C. S. Yang. A Vector Space Model for Automatic Indexing. Commun.
ACM, 18:613–620, 1975.

Coinduction: Automata, Formal Proof,
Companions
Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
http://perso.ens-lyon.fr/damien.pous/
Damien.Pous@ens-lyon.fr

Abstract
Coinduction is a mathematical tool that is used pervasively in computer science: to program and
reason about infinite data-structures, to give semantics to concurrent systems, to obtain automata
algorithms. We present some of these applications in automata theory and in formalised mathematics.
Then we discuss recent developments on the abstract theory of coinduction and its enhancements.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Coinduction, Automata, Coalgebra, Formal proofs

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.4

Category Invited Paper

Funding This work has been funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157).

Induction and coinduction

Induction and coinduction are used in two main ways in computer science: to define datatypes
and compute with those, and to define predicates and reason about them. The former can be
presented using category theory: inductive datatypes such as natural numbers, lists, or trees
can be modelled as initial algebras, while coinductive datatypes such as streams, infinite
trees, automata, or labelled transitions systems can be modelled as final coalgebras. In
contrast, we use lattice theory for predicates: inductive predicates such as reachability or
derivability in a proof system are presented as least fixpoints while coinductive predicates
such as divergence, bisimilarity, or language equivalence, are presented as greatest fixpoints.

When doing a proof by induction, one has to be careful about two things: 1/ choosing
an appropriate induction principle (e.g., simple induction, rank-2 induction, or course of
value induction), and 2/ choosing a strong enough invariant. We shall see that the very same
observation applies with coinduction.

Automata algorithms

Take for instance algorithms for checking language equivalence of finite deterministic automata.
Language equivalence can be characterised as a greatest fixpoint, so that it can be checked
using a coinductive algorithm: start from a relation consisting of the pair of initial states,
and widen this relation until it becomes a bisimulation [5]. This iterative process corresponds
to point 2/ above: we iteratively refine an initial guess until we get a proper invariant. Such
an algorithm can be made more efficient by choosing a more powerful coinduction principle,
e.g., bisimulations up to equivalence, or bisimulations up to congruence for non-deterministic
automata; this is point 1/ above.

© Damien Pous;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 4; pp. 4:1–4:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-1220-4399
http://perso.ens-lyon.fr/damien.pous/
mailto:Damien.Pous@ens-lyon.fr
https://doi.org/10.4230/LIPIcs.CALCO.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Coinduction: Automata, Formal Proof, Companions

Formal proofs and equational theories

Coinduction can be used for many automata algorithms, which in turn can be used in the
context of formal proofs, to improve automation and delegate administrative steps to the
computer. Indeed, several equational theories can be decided by characterising them in terms
of language equivalence. The key example is that of Kleene algebra: this (quasi)equational
theory admits binary relations and formal languages as free models [13, 15, 4], and is decidable
in PSpace using automata algorithms. Therefore, proof obligations corresponding to this
fragment can be discharged automatically in proof assistants [6], using so-called reflexive
tactics. Another important theory is that of Kleene algebra with tests (KAT) [14], which can
be decided using automata on guarded strings. This was used successfully to reason about
while programs and flowchart schemes in the Coq proof assistant [18].

Other theories include Kleene algebra with converse [3, 10], Kleene allegories [7, 17], and
concurrent Kleene algebra [8]. Those respectively require working with downward-closed
languages, languages of graphs, and languages of partially ordered multisets (pomsets) [20].
Decidability can be obtained by designing appropriate automata models, and by character-
ising language equivalence as a greatest fixpoint (a coinductive predicate). In some cases,
completeness can be obtained by reasoning about this greatest fixpoint [9]. Those various
results are technically involved, so that formalising them in a proof assistant in order to
extend the aforementioned reflexive tactics would require an important work.

Theory of enhanced coinduction in complete lattices

For predicates, the theory of coinduction can be expressed in complete lattices, starting
from Knaster-Tarski’s theorem [12, 25]: every monotone function b in a complete lattice
admits a greatest fixpoint νb. Enhancements, or up-to techniques, have been studied by
Sangiorgi [23, 24]. Given a function b, the idea is to find other functions b′ that are easier to
use, and such that νb′ = νb. A recent proposal [19] consists in using the function b′ = bt,
where t, the companion of b is the largest function f such that fb ≤ bf . This simple idea
greatly simplifies the whole theory: the companion is a closure operator and it intuitively
contains all potential enhancements. It moreover makes it possible present coinductive proofs
on the fly, without needing to announce the invariant upfront – a important feature when it
comes of formalisation in proof assistants [11].

Theory of enhanced coinduction in category theory

Streams of real numbers form the final coalgebra for the functor BX = R × X. This
observation makes it possible to define streams corecursively: it suffices to provide a coalgebra
for B. The constant streams, the stream nat of natural numbers, and the pointwise addition
of streams can be defined in this way. Note that for nat, one has to define a coalgebra
that provides not only nat, but also all its suffixes; this is point 2/ above: one has to
provide a strong enough invariant. In slightly more involved situations, one has to use a
stronger corecursion principle (point 1/ above). This the case for the convolution product,
whose natural definition builds on addition [22]. A standard solution[16, 1] consists in
using distributive laws λ : FB ⇒ BF , and such techniques were recently implemented in
Isabelle/HOL [2]. Given the aforementioned situation in complete lattices, one can naturally
ask whether there exists a “largest” such distributive law, a companion T for B [21]. If it
exists, the companion is a monad; if B preserves the codensity monad of its final sequence,
then the companion is that codensity; this is the case for polynomial functors, and in this
case the companion can be characterised in terms of causal algebras on the final coalgebra.
An intriguing open question is whether the finite powerset functor admits a companion.

D. Pous 4:3

References
1 F. Bartels. On generalised coinduction and probabilistic specification formats. PhD thesis,

CWI, Amsterdam, April 2004.
2 Jasmin Christian Blanchette, Aymeric Bouzy, Andreas Lochbihler, Andrei Popescu, and

Dmitriy Traytel. Friends with Benefits - Implementing Corecursion in Foundational Proof
Assistants. In ESOP, volume 10201 of LNCS, pages 111–140. Springer, 2017. doi:10.1007/
978-3-662-54434-1_5.

3 S. L. Bloom, Z. Ésik, and G. Stefanescu. Notes on equational theories of relations. Algebra
Universalis, 33(1):98–126, 1995. doi:10.1007/BF01190768.

4 Maurice Boffa. Une remarque sur les systèmes complets d’identités rationnelles. Informatique
Théorique et Applications, 24:419–428, 1990. URL: http://archive.numdam.org/article/
ITA_1990__24_4_419_0.pdf.

5 Filippo Bonchi and Damien Pous. Checking NFA equivalence with bisimulations up to
congruence. In POPL, pages 457–468. ACM, 2013. doi:10.1145/2429069.2429124.

6 Thomas Braibant and Damien Pous. Deciding Kleene Algebras in Coq. LMCS, 8(1):1–16,
2012. doi:10.2168/LMCS-8(1:16)2012.

7 Paul Brunet and Damien Pous. Petri automata for Kleene allegories. In LICS, pages 68–79.
ACM, 2015. doi:10.1109/LICS.2015.17.

8 Paul Brunet, Damien Pous, and Georg Struth. On decidability of Concurrent Kleene Algebra.
In CONCUR, volume 85 of LIPIcs, pages 24:1–24:16. Schloss Dagstuhl, 2017. doi:10.4230/
LIPIcs.CONCUR.2017.28.

9 Amina Doumane and Damien Pous. Completeness for identity-free Kleene Lattices. In
CONCUR, volume 118 of LIPIcs, pages 18:1–18:17. Schloss Dagstuhl, 2018. doi:10.4230/
LIPIcs.CONCUR.2018.18.

10 Z. Ésik and L. Bernátsky. Equational properties of Kleene algebras of relations with conversion.
Theoretical Computer Science, 137(2):237–251, 1995. doi:10.1016/0304-3975(94)00041-G.

11 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The power of parameterization
in coinductive proof. In POPL, pages 193–206. ACM, 2013. doi:10.1145/2429069.2429093.

12 B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Société Polonaise de
Mathématiques, 6:133–134, 1928.

13 D. Kozen. A Completeness Theorem for KLeene Algebras and the Algebra of Regular Events.
Information and Computation, 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

14 D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427–443, May 1997. doi:10.1145/256167.256195.

15 Daniel Krob. A Complete System of B-Rational Identities. In ICALP, volume 443 of LNCS,
pages 60–73. Springer, 1990. doi:10.1007/BFb0032022.

16 Marina Lenisa, John Power, and Hiroshi Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. Electronical Notes in Computer Science,
33:230–260, 2000. doi:10.1016/S1571-0661(05)80350-0.

17 Yoshiki Nakamura. Partial derivatives on graphs for Kleene allegories. In LiCS, pages 1–12.
IEEE, 2017. doi:10.1109/LICS.2017.8005132.

18 Damien Pous. Kleene Algebra with Tests and Coq tools for while programs. In ITP, volume
7998 of LNCS, pages 180–196. Springer, 2013. doi:10.1007/978-3-642-39634-2_15.

19 Damien Pous. Coinduction all the way up. In LICS, pages 307–316. ACM, 2016. doi:
10.1145/2933575.2934564.

20 Damien Pous. On the positive calculus of relations with transitive closure. In STACS, volume 96
of LIPIcs, pages 3:1–3:16. Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.STACS.2018.3.

21 Damien Pous and Jurriaan Rot. Companions, Codensity, and Causality. In FoSSaCS, volume
10203 of LNCS. Springer, 2017. Extended version at https://arxiv.org/abs/1712.08526.
doi:10.1007/978-3-662-54458-7_7.

22 Jan J. M. M. Rutten. A coinductive calculus of streams. Math. Struct. in Comp. Sci.,
15(1):93–147, 2005. doi:10.1017/S0960129504004517.

CALCO 2019

https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/978-3-662-54434-1_5
https://doi.org/10.1007/BF01190768
http://archive.numdam.org/article/ITA_1990__24_4_419_0.pdf
http://archive.numdam.org/article/ITA_1990__24_4_419_0.pdf
https://doi.org/10.1145/2429069.2429124
https://doi.org/10.2168/LMCS-8(1:16)2012
https://doi.org/10.1109/LICS.2015.17
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.4230/LIPIcs.CONCUR.2017.28
https://doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://doi.org/10.4230/LIPIcs.CONCUR.2018.18
https://doi.org/10.1016/0304-3975(94)00041-G
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/BFb0032022
https://doi.org/10.1016/S1571-0661(05)80350-0
https://doi.org/10.1109/LICS.2017.8005132
https://doi.org/10.1007/978-3-642-39634-2_15
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.4230/LIPIcs.STACS.2018.3
https://arxiv.org/abs/1712.08526
https://doi.org/10.1007/978-3-662-54458-7_7
https://doi.org/10.1017/S0960129504004517

4:4 Coinduction: Automata, Formal Proof, Companions

23 D. Sangiorgi. On the Bisimulation Proof Method. Math. Struct. in Comp. Sci., 8:447–479,
1998. doi:10.1017/S0960129598002527.

24 Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

25 A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applications. Pacific Journal of
Mathematics, 5(2):285–309, June 1955.

https://doi.org/10.1017/S0960129598002527

Ω-Automata: A Coalgebraic Perspective on
Regular ω-Languages
Vincenzo Ciancia
Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” - Consiglio Nazionale delle Ricerche,
Pisa, Italy
vincenzo.ciancia@isti.cnr.it

Yde Venema
Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands
https://staff.fnwi.uva.nl/y.venema/
y.venema@science.uva.nl

Abstract
In this work, we provide a simple coalgebraic characterisation of regular ω-languages based on
languages of lassos, and prove a number of related mathematical results, framed into the theory of a
new kind of automata called Ω-automata. In earlier work we introduced Ω-automata as two-sorted
structures that naturally operate on lassos, pairs of words encoding ultimately periodic streams
(infinite words). Here we extend the scope of these Ω-automata by proposing them as a new kind of
acceptor for arbitrary streams. We prove that Ω-automata are expressively complete for the regular
ω-languages. We show that, due to their coalgebraic nature, Ω-automata share some attractive
properties with deterministic automata operating on finite words, properties that other types of
stream automata lack. In particular, we provide a simple, coalgebraic definition of bisimilarity
between Ω-automata that exactly captures language equivalence and allows for a simple minimization
procedure. We also prove a coalgebraic Myhill-Nerode style theorem for lasso languages, and use
this result, in combination with a closure property on stream languages called lasso determinacy, to
give a characterization of regular ω-languages.

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory;
Theory of computation → Automata over infinite objects

Keywords and phrases ω-automata, regular ω-languages, coalgebra, streams, bisimilarity

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.5

Acknowledgements The authors wish to thank Oded Maler and Ludwig Staiger for useful discussions
about right congruences and characterisations of ω-regularity.

1 Introduction

The theory of finite automata, seen as devices for classifying (possibly) infinite structures [11],
combines a rich mathematical theory, dating back to the seminal work of Büchi, Rabin, and
others, with a wide range of applications, in areas related to the verification and synthesis of
systems that are not supposed to terminate. This applies in particular to automata operating
on streams (infinite words): stream automata (or ω-automata), see [15] for a comprehensive
reference. Stream automata can be classified in terms of their acceptance conditions (e.g.
parity, Muller, Büchi), and come in deterministic, nondeterministic and alternating variants.
With the exception of the weaker deterministic Büchi automata, these models all recognize
the same class of stream languages (or ω-languages), viz., the regular ones.

Our perspective on stream automata and regular ω-languages will be coalgebraic. Univer-
sal Coalgebra [17] is a mathematical, category-based theory of evolving state-based systems
such as streams, (infinite) trees, Kripke models, (probabilistic) transition systems, and
many others. This approach combines simplicity with generality and wide applicability:

© Vincenzo Ciancia and Yde Venema;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 5; pp. 5:1–5:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vincenzo.ciancia@isti.cnr.it
https://staff.fnwi.uva.nl/y.venema/
mailto:y.venema@science.uva.nl
https://doi.org/10.4230/LIPIcs.CALCO.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Ω-Automata

many features, including input, output, nondeterminism, probability, and interaction, can
easily be encoded in the coalgebra type, which is formally an endofunctor T on some base
category C (often Set, the category with sets as objects and functions as arrows). When it
comes to the coalgebraic perspective on automata theory, the standard deterministic finite
automata (DFAs) operating on finite words have been recognized as paradigmatic examples
of coalgebras [16]: Standard coalgebraic concepts such as final coalgebras and bisimulations,
feature very naturally in the theory of DFAs. For instance, language equivalence between
DFA states is captured exactly by the notion of bisimilarity, an observation yielding both a
coinductive procedure to decide language equivalence and an elegant method for minimizing
automata; states of the final coalgebra also represent equivalence classes of the celebrated
Myhill-Nerode theorem. These observations naturally raise the question whether automata
operating on streams admit an attractive coalgebraic presentation as well.

Exactly this problem was addressed in our earlier paper [9]. Based on the well-known
characterization of regular ω-languages by their ultimately periodic (UP) fragment, we
focused on finite representations of UP streams called lassos: a lasso is a pair (u, v) of a finite
word u and a finite nonempty word v, representing the UP stream uvω. This approach built
on the work of Calbrix, Nivat & Podelski [7], who introduced certain DFAs operating on
finite words of the form u$v, where $ is a special symbol separating the spoke u from the loop
v of a lasso. The contribution of [9] was threefold. First, we introduced two-sorted automata
operating on lassos directly, and we showed that these lasso automata share some nice
properties with standard DFAs. Second, we presented these lasso automata as coalgebras, for
a functor Ω on the category Set2 of two-sorted sets with two-sorted functions. And third, we
identified two properties, coherence and circularity, that characterize those Ω-coalgebras of
which the recognized lasso language correspond to the UP fragment of a regular ω-language.

Where our discussion in [9] stayed at a fairly abstract level, and we only considered
acceptance of lassos, the current paper shows how to make concrete use of Ω-coalgebras1
as automata operating on arbitrary streams. For this purpose, we introduce a new kind of
stream automaton by defining an Ω-automaton as a circular and coherent lasso automaton,
and endowing these structures with a suitable notion of acceptance for streams.

Contribution

The technical results that we prove on these Ω-automata include the following:
we prove that the property of being an Ω-automaton is decidable; that is, we show that
it is decidable whether a given lasso automaton is circular and coherent (Theorem 18);
we show that, with respect to expressive power, Ω-automata exactly capture the regular
ω-languages (Theorem 22 and Corollary 24);
we show that for Ω-automata, the natural (and coalgebraic) notion of bisimilarity exactly
captures language equivalence (Theorem 25), and
as a corollary we obtain a simple and natural minimization procedure for Ω-automata
(Theorem 28), which is an instance of the well-known coalgebraic partition refinement;
we prove a Myhill-Nerode theorem for lassos (Theorem 34), which is closely related to
the work of Maler & Staiger [14], but has a coalgebraic component involving the final
Ω-coalgebra;
as a corollary of this, we give a new characterization of regular ω-languages (Theorem 37).

1 In fact, the automata that we consider in this paper are a simplification of the ones defined in [9], see
Remark 3. All results proved in [9] also apply in this setting, with only trivial modifications to the
proofs.

V. Ciancia and Y. Venema 5:3

Combining these observations with the results obtained in [9], we find that Ω-automata
share many of the attractive properties of DFAs: bisimulation captures language equival-
ence and can be used for a minimization procedure, regular ω-languages correspond to
the finitely generated subcoalgebras of the final coalgebra, Boolean operations (including
complementation) on regular ω-languages can be implemented by straighforward operations
on Ω-coalgebras, etc. This is in sharp contrast to the setting of standard devices such as
Büchi or parity automata, where to the best of our knowledge no satisfactory notion of
bisimilarity between automata has been defined.

The main point of this article, then, lies not so much in the above list of individual
contributions, but in the picture we obtain by putting all technical results (from this paper
and from [9]) together. The emerging picture shows that stream automata and (regular)
ω-languages do fit in a coherent coalgebraic framework, and one that shares many of the
attractive properties of DFAs and regular languages of finite words.

Related work. In between the publication of [9] and this work, some relevant results on
coalgebraic interpretations of stream automata appeared in the literature. The research line
of [20, 19] follows the so-called Kleisli approach to trace semantics of coalgebras. Here a
system is a coalgebra in the Kleisli category associated with some monad T that encodes
the branching style exhibited by the system. In such a Kleisli category the homsets are
often equipped with a natural order relation, and the authors use this fact to characterize
the behaviour of parity-style automata as an arrow that is a solution of some hierarchical
equation system over this order. Proving the effectiveness of their definition, the authors are
able to capture not only regular ω-languages, but also various forms of so-called ω-regular
behavioural equivalences of a labelled graph, including infinite trace semantics, tree languages,
and systems with both non-deterministic and probabilistic branching. In [6] similar results
are developed for systems with so-called internal moves and the corresponding notion of
weak bisimilarity.

Attractive about this perspective is the modularity of the coalgebraic approach, which
permits results to be generalised to various interpretations of the notion “(ω-regular) beha-
viour”, and its clear link to the research area of process calculi and the categorical modelling
of their behavioural equivalences; however, such abstract representations are not directly
exploitable for the verification of properties related to such equivalences. In contrast, our
approach is framed in the logical-algorithmic view of automata, and therefore aimed at simple,
finite representations, and algorithms such as minimization (see Section 4.4) or Boolean
operations (defined in [9], including complementation) that are also a typical ingredient of
model checkers. This does not mean that our presentation lacks generality; for instance,
changing the base category is an interesting possibility to explore (consider e.g. [8], defining a
class of nominal omega-regular languages, notably also characterised by a form of ultimately
periodic behaviour, see Theorem 7 therein).

To mention some closely related work in a different direction, a well-known algorithmic
application in language theory is automata learning [1]. It is noteworthy that, in fact, a
class of finite-state machines [2], similarly inspired by [14], has been used by Angluin and
Fisman for learning ω-regular languages [3], and exploited by an independent group in a tool
that obtained best-in-class results in terms of computational efficiency [12]. We believe that
the coalgebraic perspective brings in some unique improvements on its own; for instance,
minimization and Myhill-Nerode style theorems are a standard consequence of the theory;
furthermore, the theory of coalgebras opens up to the possibility of generalising the presented
constructions, and derive new ones (more on this in the Conclusions).

CALCO 2019

5:4 Ω-Automata

2 Preliminaries

Assuming that the reader is familiar with the theory of automata operating on (in)finite
words [15], we fix some notation and terminology.

Given sets X,Y and Z, we define Y X as the function space of maps from X to Y , and
using currying we may identify the sets ZX×Y and (ZY)X .

Throughout this paper we fix a finite alphabet C consisting of symbols or colors. We
write C∗ (C+) for the set of finite (respectively, finite nonempty) words over C. The empty
word is denoted as ε, and the length of a word u as |u|. With ω denoting the set of natural
numbers, Cω is the collection of streams (infinite words) over C. The binary operation of
concatenation between finite and (in)finite words is denoted by juxtaposition. For u ∈ C+,
we let uω denote the stream that repeats u ω many times, and for (vi)i∈ω in C+ we write ~v
for the stream v0v1 · · · . A stream α is ultimately periodic if it is of the form uvω for some
u ∈ C∗ and v ∈ C+. A language is a set of finite words; an ω-language or stream language is
a set of streams. The ultimately periodic fragment UP(L) of a stream language L is the set
of its ultimately periodic members.

A transition function on a set X is a map of the form ρ : X × C → X (or, equivalently,
ρ : X → XC). Given such a map, we inductively define the functions ρ̂ : X × C∗ → X and
ρ◦ : X × C∗ → PX by putting ρ̂(x, ε) := x, ρ̂(x, cu) := ρ̂(ρ(x, c), u), resp. ρ◦(x, ε) := ∅,
ρ◦(x, cu) := {ρ(x, c)} ∪ ρ◦(ρ(x, c), u). In words, ρ̂(p, u) denotes the state reached by a
transition system after, starting at state p, it has processed the word u; and ρ◦(p, u) is the
set of states passed along the way, after leaving p. We often write x c−→ρ y for ρ(x, c) = y and
x

u=⇒ρy for ρ̂(x, u) = y, omitting the subscript if ρ is understood.
Our concept of an automaton will not include an initial state; rather, we define an

initialized or pointed automaton to be a pair (A, a) such that a is a state of the automaton
A. Given a transition map ρ : X × C → X, a state x ∈ X, and a stream α, we let Inf (x, α)
denote the set of states in X traversed infinitely often when following α starting from x.
A (deterministic) parity automaton is a triple P = (P, ρ,Π) such that P is a finite set of
states, ρ : P × C → P is a transition map, and Π : P → ω is a priority function. An
initialized parity automaton (P, p) accepts a stream α if max(Π[Inf (p, α)]) is even. The sets
of words/nonempty words/streams recognized by an initialized automaton (A, a) (of the
appropriate kind) are denoted as L(A, a)/L+(A, a)/Streams(A, a). We shall generally use the
symbol B for acceptance. A stream language is regular if it is recognized by some initialized
parity automaton.

3 Ω-coalgebras as lasso automata

3.1 Basics
As mentioned in the introduction, regular stream languages are determined by their ultimately
periodic fragments. This motivates our interest in finite representations of ultimately periodic
streams: lassos.

I Definition 1. A lasso is a pair (u, v) ∈ C∗ ×C+, representing the stream uvω. The words
u and v are respectively the spoke and loop of the lasso. We call two lassos (u0, v0) and
(u1, v1) bisimilar, notation: (u0, v0) ↔ (u1, v1), if they represent the same stream, i.e., if
u0v

ω
0 = u1v

ω
1 .

Continuing the program of Calbrix, Nivat & Podelski [7] in a coalgebraic direction, in [9]
we introduced Ω-coalgebras as automata operating on lassos.

V. Ciancia and Y. Venema 5:5

I Definition 2. An Ω-coalgebra is a structure A = (P,X, ρ, ξ, σ, F) such that P and X are
sets of spoke and loop states, respectively; both ρ : P → PC and ξ : X → XC are transition
functions; σ : P → XC is the switch map; and F ⊆ X is a set of accepting states. A lasso
automaton is a finite Ω-coalgebra.

The loop automaton of A is the DFA A` := (P] X,σ:ξ, F), where σ:ξ : (P] X) →
(P]X)C is defined as σ on P and as ξ on X. For p ∈ P , we define Loop(p) as the set of
finite words accepted by (A`, p).

Think of A = (P,X, ρ, ξ, σ, F) as a spoke part (P, ρ) and a loop part (X, ξ, F) that are
connected by the switch function σ : P × C → X. Clearly this “loop part” is a DFA in its
own right, just like “the” loop automaton A`; observe that (X, ξ, F) is a subautomaton of
the loop automaton A`, and that by construction, any initialized automaton (A`, p) with
p ∈ P will accept nonempty words only.
I Remark 3. In fact, Definition 2 is a simplification of the one given in [9], where the switching
function has type σ : P → X, and the loop part is a finite automaton designed to operate on
nonempty words.
I Remark 4. Although the main point of the paper is to show how stream automata nicely fit
a coalgebraic framework and our entire approach is coalgebraic in spirit, we decided to keep
the categorical machinery at a minimum. The coalgebraic definition is phrased as follows.
Our base category is Set2, the category of two-sorted sets with two-sorted functions. For
the definition of the endofunctor Ω : Set2 → Set2, it will be convenient to use the functors
EC := (−)C and DC := 2 × (−)C of, respectively, (C-)transition functions and (C-)DFAs.
Now, given an object (X0, X1) in Set2, we define

Ω(X0, X1) := (ECX0 × ECX1,DCX1).

For the action of Ω on arrows, consider a pair f = (f0, f1) of functions fi : Xi → Yi, then
Ωf is the pair of functions (ECf0 × ECf1,DCf1). With this definition, the Ω-coalgebras
of Definition 2 and 6 are coalgebras for the functor Ω indeed; to see this, observe that a
coalgebra for the functor Ω consists of two sets X0 and X1, and three maps h : X0 → XC

0 ,
h′ : X0 → XC

1 , and h′′ : X1 → 2×XC
1 . An Ω-coalgebra (P,X, ρ, ξ, σ, F) is rendered in such

a form by letting X0 = P , X1 = X, h = ρ, h′ = ξ, and deriving h′′ from σ and F . As the
construction is similar to that of [9], we leave the details as an exercise for the reader.

I Definition 5. Where A = (P,X, ρ, ξ, σ, F) is an Ω-coalgebra, and p ∈ P is a spoke state,
we say that a lasso (u, v) is accepted by A at p, notation: A, p B (u, v), if σ̂:ξ(ρ̂(p, u), v)) ∈ F ,
and we write Lassos(A, p) to denote the lasso language recognized by (A, p), that is, the set
of all lassos accepted by Lassos(A, p). Finally, a lasso language is called regular if it is the
language recognized by a pointed finite Ω-coalgebra, i.e., a lasso automaton.

Intuitively, an Ω-coalgebra operates on a lasso (u, v) by first processing the spoke u, then
switching to the loop automaton and processing the loop v. It accepts the lasso iff the
resulting state is accepting. That is, (A, p) accepts (u, v) iff v ∈ Loop(ρ̂(p, u)).

I Definition 6. Let A = (P,X, ρ, ξ, σ, F) and A′ = (P ′, X ′, ρ′, ξ′, σ′, F ′) be two Ω-coalgebras.
An Ω-morphism from A to A′ is a pair h = (h0, h1) of maps h0 : P → P ′, h1 : X → X ′ such
that, for all p ∈ P, x ∈ X and c ∈ C we have
(M1) h0(ρ(p, c)) = ρ′(h0p, c),
(M2) h1(ξ(x, c)) = ξ′(h1x, c),
(M3) h1(σ(p, c)) = σ′(h0p, c), and

CALCO 2019

5:6 Ω-Automata

(M4) x ∈ F iff h1x ∈ F ′.
We usually write h for hi.

A spoke state p of A generates a subcoalgebra Ap of A that is based on the sets of spoke
and loop states that are reachable from p (in the obvious sense, using ρ, σ, and ξ).

As a manifestation of the coalgebraic nature of our structures, we discuss below how
the natural concept of equivalence induced by Ω-morphisms can be captured by a notion of
bisimilarity.

I Definition 7. A bisimulation between two Ω-coalgebras A and A′ is a pair Z = (Z0, Z1)
of relations Z0 ⊆ P × P ′, Z1 ⊆ X ×X ′ such that, for all (p, p′) ∈ Z0 and (x, x′) ∈ Z1, and
all c ∈ C we have
(B1) (ρ(p, c), ρ′(p′, c)) ∈ Z0,
(B2) (ξ(x, c), ξ′(x′, c)) ∈ Z1,
(B3) (σ(p, c), σ′(p′, c)) ∈ Z1, and
(B4) x ∈ F iff x′ ∈ F ′.

Two pointed coalgebras (A, p) and (A′, p′) are bisimilar, notation: A, p ↔ A′, p′, if there
is a bisimulation linking p and p′.

The following characterization of bisimilarity using morphisms holds for a wide range of
coalgebras; in coalgebraic terms, it says that for the functor Ω, the notions of bisimilarity
and behavioral equivalence coincide. The proposition follows from categorical properties of
the functor Ω, but also has a straightforward direct proof.

I Proposition 8. Let (A, p) and (A′, p′) be pointed Ω-coalgebras. Then (A, p) ↔ (A′, p′) iff
there is a Ω-coalgebra B and Ω-morphisms h : A→ B and h′ : A′ → B such that hp = h′p′.

The following proposition on bisimilarity will be needed later on; we omit the proof which
follows a routine coalgebra argument.

I Proposition 9. Let A and A′ be two Ω-coalgebras. Then
(1) the collection of bisimulations between A and A′ forms a complete lattice, of which the

join is given by union;
(2) the relation ↔ itself is the largest bisimulation between A and A′;
(3) if A = A′, the relation ↔ is an equivalence relation.

The key observation is that bisimilarity exactly captures lasso equivalence. This was first
shown in [9]; by looking at the explicit definition of bisimilarity given in Definition 7, the
proof is a simple extension to the two-sorted setting of the classical result that in classical
DFAs operating on finite words, bisimilarity coincides with language equivalence (see [16]).

I Fact 10. [9] Any pair of pointed Ω-coalgebras (A, p) and (A′, p′) satisfy

A, p ↔ A′, p′ iff Lassos(A, p) = Lassos(A′, p′). (1)

I Example 11. Fixing the alphabet C = {a, b}, we define the Ω-coalgebra A = (P,X, ρ, ξ, σ, F)
where P = {1, 2, 3}, X = {4, 5, 6}, ρ = {(1, a) 7→ 1, (1, b) 7→ 2, (2, a) 7→ 1, (2, b) 7→ 3, (3, a) 7→
2, (3, b) 7→ 3}, ξ = {(4, a) 7→ 4, (4, b) 7→ 6, (5, b) 7→ 5, (5, a) 7→ 6, (6, a) 7→ 6, (6, b) 7→ 6},
σ = {(p, a) 7→ 4, (p, b) 7→ 5} for each p ∈ P , and F = {4, 5}. By construction, for all p ∈ P ,
we have Lassos(A, p) = {(u, v) | u ∈ C? ∧ v ∈ ({a+} ∪ {b+})}. Consider the Ω-coalgebra
A′ = ({1}, X, ρ′, σ′, ξ, F), where ρ′ and σ′ are the restriction of ρ and σ, respectively, to the
singleton {1}. By Fact 10, A, 1↔ A, 2↔ A, 3. The situation is witnessed by the Ω-morphism
h : A→ A′, which identifies all the states in P by mapping them to the state 1. Furthermore,
for all p ∈ P , we have A, p↔ A′, 1.

V. Ciancia and Y. Venema 5:7

3.2 From parity automata to lasso automata
Given a Büchi automaton B, Calbrix, Nivat & Podelski [7] constructed a DFA recognizing
the finite-word language {u$v | B B uvω}, where $ is a new symbol (i.e., not in C). Here we
give a similar construction for parity automata.

I Definition 12. Let P = (P, ρ,Π) be a parity automaton and let p be a state of P. The DFA
Xp := (X, ξ, Fp) is based on the state space X := (P ×N)P , where N := Ran(Π) is the range
of Π. To define its transition map ξ, consider an arbitrary state t ∈ X and think of t as the
pairing of t0 : P → P and t1 : P → N . Now define

ξ(t)(c) := λq.
(
ρ(t0q, c) , max(t1q,Π(ρ(t0q, c)))

)
For the set Fp of accepting states, define, for an arbitrary state t ∈ X, the sequence (pti)i∈ω
by putting pt0 := p, pti+1 := t0pti, and put

Fp := {t ∈ X | max(t1[Inf ((pti)i∈ω)]) is even },

where Inf ((pti)i∈ω) is the set of p ∈ P occurring as pti for infinitely many i. Finally, we define
spI ∈ X as the initial state spI := λq.(q, 0).

Intuitively, the initialized DFA (Xp, spI) consumes a word v by following it in parallel,
starting from each state of P. Moreover, in each of these parallel runs the automaton collects
the maximum priority of the traversed states. This explains the carrier and the transition
map of the automaton Xp. For its set of accepting states, first note that Fp is the only part
of Xp depending on p. The idea behind its definition is that for a word v ∈ C+, the state
t := ξ̂(spI , v) encodes essential information on the run (P, p) on the stream vω. In particular,
we have pti = ρ̂(p, vi), for all i. Analyzing the way in which the map t1 : P → N keeps
track of maximal priorities along finite runs, we may then show that max(t1[Inf ((pti)i∈ω)])
corresponds to the maximal priority that one encounters in the run of (P, p) on vω.

The key observation on this automaton is that (Xp, spI) recognizes the looping language
of (P, p), that is, for all v ∈ C+:

(Xp, spI) accepts v iff (P, p) accepts vω.

I Definition 13. Let P = (P, ρ,Π) be a parity automaton. Recalling that by definition, P
is finite, we define the lasso automaton AP := (P,X, ρ, ξ, σ, F) by letting (X, ξ, F) be the
coproduct (disjoint union) of the family {Xp | p ∈ P} of DFAs, and putting σ(p, c) := ξ(spI , c).

I Fact 14. [9] Let (P, p) be an initialized parity automaton. For any lasso (u, v) ∈ C∗×C+:

(AP, p) accepts (u, v) iff (P, p) accepts uvω. (2)

I Example 15. Using the alphabet C = {a, b}, consider the parity automaton P = (P, ρ,Π)
where P and ρ come from Example 11, and Π = {1 7→ 0, 3 7→ 0, 2 7→ 1}. It is easily
seen that, no matter what the initial state is, the language accepted by the automaton is
{α ⊆ Cω | ∃i ∈ ω.∃c ∈ C.∀j ≥ i.αi = c}, that is, those streams that have a tail consisting
of an infinite repetition of one symbol. The reader should note that there is no single-state
parity automaton accepting the same language, as a single-state automaton may either accept
Cω or the empty language. However, either by direct construction, or by Fact 14, for all
p ∈ P , it can be shown that AP, p↔ A′, 1, where A′ comes from Example 11, in turn.

CALCO 2019

5:8 Ω-Automata

3.3 Coherence & Circularity
The language recognized by a lasso automaton (A, p) does not necessarily correspond to
the ultimately periodic fragment of a regular ω-language. A necessary condition for the
latter is that Lassos(A, p) is invariant under lasso bisimilarity: (u, v)↔ (u′, v′) implies that
(u, v) ∈ Lassos(A, p) iff (u′, v′) ∈ Lassos(A, p). In [9] we proved that this condition is also
sufficient, and we characterized it by the properties of coherence and circularity.

I Definition 16. A regular language L is circular if v ∈ L ⇔ vk ∈ L, for all k > 0 and
v ∈ C+. An initialized DFA (A, a) is circular if L(A, a) is circular. A lasso automaton A is
circular if each Loop(p) is circular, and coherent if cu ∈ Loop(p)⇔ uc ∈ Loop(ρ(p, c)), for
every spoke state p, u ∈ C∗ and c ∈ C.

I Fact 17. [9] For any lasso automaton A = (P,X, ρ, ξ, σ, F) the following are equivalent:
(1) ∀p ∈ P . Lassos(A, p) = {(u, v) | uvω ∈ L} for some regular ω-language L;
(2) ∀p ∈ P . Lassos(A, p) is bisimulation invariant;
(3) A is circular and coherent.

Motivated by Fact 17, in the sequel we will largely confine our attention to circular and
coherent lasso automata. This explains the importance of the following result.

I Theorem 18. It is decidable whether a given lasso automaton is circular and coherent.

Finally, we note that by Fact 10, the class of circular and coherent lasso automata is
closed under taking surjective Ω-morphisms.

4 Ω-automata

In this section, we look at Ω-automata as acceptors of streams. As we shall see, this notion
of acceptance coincides with the one of parity automata (Theorem 22) and is invariant
under Ω-morphisms (Theorem 23). The main goal of this section is to show that, unlike the
standard types of stream automata, Ω-automata admit a natural notion of bisimilarity that
exactly captures language equivalence (Theorem 25). Finally, as a corollary of these results
we obtain a simple and natural minimization procedure for Ω-automata (Theorem 28).

4.1 Ω-coalgebras as stream automata
In the previous section we saw that a lasso language corresponds to the ultimately periodic
fragment of a regular ω-language if and only if it is the language recognized by an initialized,
circular and coherent lasso automaton. This suggests that circular and coherent Ω-coalgebras
might be used directly as stream automata, and inspires the following definition.

I Definition 19. An Ω-automaton is a circular and coherent lasso automaton.

Following ideas in Calbrix, Nivat & Podelski [7], we now define acceptance of streams.

I Definition 20. Let A = (P,X, ρ, ξ, σ, F) be an Ω-automaton, and let q be a spoke state of
A. We say that a stream α is accepted by (A, q), notation: (A, q) B α, if there are a finite
word u, a sequence (vi)i∈ω of finite, non-empty words, a state p ∈ P and an accepting state
z ∈ F such that α = u~v, q u=⇒ρ p and p vi=⇒ρ p, p

vi=⇒σ:ξ z for each i ∈ ω. The set of streams
accepted by an initialized Ω-automaton (A, p) is denoted as Streams(A, p).

V. Ciancia and Y. Venema 5:9

I Remark 21. Where this notion of acceptance may seem somewhat odd at first sight, it can
be related to that of well-known stream automata. A successful run of (A, q) on a stream α

consists of
a run of the spoke part of A on a (finite) initial segment u of α (i.e., α = uβ for some
stream β), leading to a spoke state p, followed by
an infinite run of the product structure of (P, ρ) and A` on the remaining stream β, where
for some accepting state z ∈ F , the product automaton infinitely often makes a silent
step from (p, z) to (p, p):

(p, p) v0=⇒ρ×(σ:ξ) (p, z) ε
; (p, p) v1=⇒ρ×(σ:ξ) (p, z) ε

; (p, p) v1=⇒ρ×(σ:ξ) · · ·

Based on this observation, it is not difficult to show (but rather tedious to spell out in detail)
that Ω-automata can be seen as rather special Büchi automata, where the nondeterminism is
restricted to (1) a unique jump from an initial part of the automaton to a final part, and (2)
some very specific silent steps. From this perspective, that is, with Ω-automata taken as a
subclass of Büchi automata with silent steps, it is remarkable that the theory of Ω-automata
is so well-behaved when we consider bisimilarity etc. This good behavior may be explained
by the observation that seen as lasso automata, Ω-coalgebra are completely deterministic.

4.2 Adequacy
The following theorem states that, when it comes to recognizing stream languages, Ω-automata
are as least as expressive as more standard models like parity automata.

I Theorem 22 (Adequacy). Let (P, q) be an initialized deterministic parity automaton. Then
Streams(P, q) = Streams(AP, q).

4.3 Language equivalence as bisimilarity
I Theorem 23 (Invariance). Let h : A→ A′ be an Ω-morphism between two Ω-automata.

Streams(A, q) = Streams(A′, hq) (3)

for any spoke state q of A.

I Corollary 24. Let (A, q) be an Ω-automaton. Then Streams(A, q) is an ω-regular language
and Lassos(A, q) = {(u, v) | uvω ∈ Streams(A, q)}.

The next result shows that, unlike well-known types of stream automata such as Büchi,
Muller or parity automata, Ω-automata share a fundamental property with deterministic
automata operating on finite words.

I Theorem 25 (Language equivalence as bisimilarity). Let (A, q) and (A′, q′) be two initialized
Ω-automata. Then

A, q ↔ A′, q′ iff Streams(A, q) = Streams(A′, q′). (4)

I Example 26. Continuing from Example 15, observe that the Ω-coalgebras A and A′ are
actually circular and coherent, and therefore Ω-automata. The stream language that these
coalgebras accept, from any initial state, is the same as the one accepted by the parity
automaton P, from any initial state. However, in the realm of Ω-automata, by virtue of
the associated notion of bisimilarity, there is a canonical representative for the class of all
pointed Ω-automata accepting the stream language of P (from any state, as they all accept

CALCO 2019

5:10 Ω-Automata

the same language). It should not be difficult to guess that the canonical representative is
(A′, 1), up-to isomorphism. A formal proof needs just to show that the three states in X
accept different languages (of finite words). In Section 4.4 we shall discuss computation of
such a representative by partition refinement.

4.4 Minimal Ω-automaton
The minimization problem for stream automata is much harder than that for deterministic
finite automata operating on finite words. In particular, regular ω-languages generally do not
have a unique minimal automaton [18], and to the best of our knowledge, nice minimization
procedures are only available for restricted classes of automata [18, 13].

This is different in the setting of Ω-automata. As a corollary of Theorem 25 we obtain
a simple and natural minimization procedure for Ω-automata, linking the final coalgebra
to the minimal automaton: Theorem 28. A partition refinement algorithm is a standard
consequence of the coalgebraic framework (see [9] for a more detailed explanation).

I Definition 27. Let A = (P,X, ρ, ξ, σ, F) be an Ω-automaton, and recall from Proposition 8
that ↔ is an equivalence relation on P and on X. We denote the equivalence class of a state
a with a. Since ↔ is itself a bisimulation relation, the following is a correct definition of an
Ω-coalgebra structure on the ↔-cells:

ρ(p) := ρp,

ξ(x) := ξx,

σ(p)(c) := σ(p)(c), for all c,
F := {x | x ∈ F}.

We denote the resulting Ω-automaton by A/↔.

The following theorem shows that A/↔ is a minimal automaton recognizing the languages
of A.

I Theorem 28. Let (A, p) be an initialized Ω-automaton, with L := Streams(A, p). Then
(1) Streams(A/↔, p) = L;
(2) For any initialized Ω-automaton (A′, p′) such that Streams(A′, p′) = L, there is an

Ω-morphism h : A′p′ → A/↔ such that h(p′) = p.

In passing we note that the Theorems 22 and 28 yield a minimization procedure for
parity automata (and other standard stream automata) as well; this procedure transforms
any parity automaton, not into a minimal parity automaton, but into a canonically obtained
minimal Ω-automaton.

I Example 29. Continuing from Example 26, the Ω-coalgebra A′ is, up to isomorphism, the
minimal representative of the coalgebra A. Note that the three states {1, 2, 3} are quotiented
by the unique morphism h (from Example 11).

5 A final Ω-coalgebra and a Myhill-Nerode Theorem

5.1 Final Ω-coalgebra
In the theory of Universal Coalgebra, an important role is played by final coalgebras. Recall
that an object z is final in a category C if for every object there is a unique arrow to z.
Final coalgebras do not exist for every functor, but when they exist, they usually encode a

V. Ciancia and Y. Venema 5:11

natural notion of behavior related to the functor. For instance, in the theory of DFAs, a final
coalgebra is provided by the ‘language automaton’, in which the states are languages (of
finite words), the transition structure is given by the derivatives (Lc := {u ∈ C∗ | cu ∈ L}),
and a language/state is accepting iff it contains the empty word. This language coalgebra
has many nice properties and can be used to prove many fundamental properties of regular
languages [16]. In this section we will see that the category of Ω-coalgebras admits a final
coalgebra, and we will use this coalgebra to give a Myhill-Nerode theorem for regular lasso
languages, and a related characterization for regular ω-languages.

I Definition 30. With defining

Z0 := P(C∗ × C+),
Z1 := PC∗,
ζ0(L, c) := {(u, v) ∈ C∗ × C+ | (cu, v) ∈ L},
ζ1(M, c) := {v ∈ C∗ | cv ∈M},
σ(L, c) := {v ∈ C∗ | (ε, cv) ∈ L},
F := {M ∈ PC∗ | ε ∈ F},

we obtain the Ω-coalgebra Z := (Z0, Z1, ζ0, ζ1, σ, F).

Observe that the loop part of this Ω-coalgebra is given by the final coalgebra for DFAs
that we just mentioned; in particular, its carrier is based on the set of all languages of finite
words. The carrier of the spoke part is given by the set P(C∗ × C+) of all lasso languages.
The exact relation of this Ω-coalgebra with the set of all stream languages remains to be
investigated in more detail, but note that the relation of lasso determinacy (Definition 35)
will play an important role here.

A very useful property of the structure Z is that any lasso language L coincides with the
set of lassos that it accepts, seen as a state of Z.

I Theorem 31. Let L be a lasso language. Then for any lasso (u, v) we have

Z, L B (u, v) iff (u, v) ∈ L. (5)

As a corollary, the relation ↔ restricts to the identity relation on Z.

I Theorem 32. Z is final in the category of Ω-coalgebras and Ω-morphisms. That is, for
every Ω-coalgebra A there is a unique Ω-morphism h : A→ Z.

5.2 A Myhill-Nerode Theorem for lasso languages
Rutten provided a nice coalgebraic perspective on the Myhill-Nerode theorem for regular
languages of finite words, identifying the congruence classes of the Myhill-Nerode equivalence
relation with states in the final coalgebra [16]. A similar result holds for lasso languages.

I Definition 33. Let L be a lasso language. Define the equivalence relation ≡0 on C∗ such
that u0 ≡0 u1 iff for all lassos (u, v) it holds that (u0u, v) ∈ L ⇐⇒ (u1u, v) ∈ L. Define a
family of binary relations ≡[u] on C+, indexed by the set of ≡0-cells, such that v0 ≡[u] v1 iff
for all w ∈ C∗, u0, u1 ∈ [u] we have (u0, v0w) ∈ L ⇐⇒ (u1, v1w) ∈ L. Finally, let

(u0, v0) ≡L (u1, v1) iff u0 ≡0 u1 and v0 ≡[ui] v1

define a relation ≡L on lassos.

CALCO 2019

5:12 Ω-Automata

It is obvious that ≡L is an equivalence relation, and here we have arrived at our coalgebraic
Myhill-Nerode theorem for lassos. It refers to the generated subcoalgebra of a state/language
L in the final coalgebra, see Definition 6. Recall that a lasso language is regular if it is the
set of all lassos that are accepted by a pointed lasso automaton.

I Theorem 34. The following are equivalent, for any lasso language L:
(1) L is regular;
(2) L generates a finite subcoalgebra in Z;
(3) the relation ≡L has finite index.

5.3 A characterization theorem for stream languages
Attempts at finding congruences that characterise ω-regularity date back to the earliest works
in the theory of ω-languages, such as Arnold [4], who isolates the syntactic congruence of a
regular ω-regular language L ⊆ Cω as the coarsest congruence on C∗ that recognizes L (in
some precisely defined manner). An interesting open question was to identify a congruence
which is of finite index if and only if a given stream language is regular. Maler and Staiger [14]
approached this problem via so-called families of right congruences (FORCs), and proved
that a stream language L is ω-regular if and only if there exists a finite FORC that recognises
it. Furthermore, the paper identified a necessary and sufficient characterisation of those
regular ω-languages that are accepted by a minimal state automaton, derived from Arnold’s
syntactic congruence.

While moving in a similar direction, we are able to simplify the matter somewhat. The
definition of our lasso relation ≡L is reminiscent to that of a FORC, as it is dependent
on equivalence classes of a right congruence on finite words.2 Using the relation ≡L, we
were able to provide an exact characterisation of regular ω-languages. Our characterization,
Theorem 37, involves a property, lasso determinacy, that is somewhat related to (but not
the same as) Arnold’s saturation property. One may also look at lasso determinacy as an
infinitary version of the pumping property of regular languages of finite words.

I Definition 35. A stream language L is lasso determined, or has the property LD, if for
every infinite sequence (vi)i∈ω of nonemtpy words there is an infinite set Y ⊆ ω such that

~v ∈ L ⇐⇒ (v0 · · · vj)(vj+1 · · · vk)ω ∈ L.

for all j, k ∈ Y with j < k.

It is not difficult to verify that all regular ω-languages are lasso determined. The following
property justifies the terminology.

I Proposition 36. Let L,L′ be two stream languages with the property LD. If Lassos(L) =
Lassos(L′) then L = L′.

I Theorem 37. The following are equivalent, for any stream language L:
(1) L is regular;
(2) L is lasso determined and Lassos(L) generates a finite subcoalgebra in Z;
(3) L is lasso determined and the relation ≡L has finite index.

2 However, ≡L does not exactly correspond to a FORC as it lacks the condition v0 ≡[ui] v1 =⇒ u0v0 ≡0
u1v1.

V. Ciancia and Y. Venema 5:13

6 Conclusions

The main point of this paper was to argue that (a slight variation of) the two-sorted lasso
automaton we introduced in [9] provides an interesting framework for recognizing regular
stream languages as well. For this purpose, we presented Ω-automata as the class of finite,
circular and coherent lasso automata, and we defined a notion of acceptance for streams.
Throughout the paper we used the fact that these structures are coalgebras for an endofunctor
Ω on the category Set2 of two-sorted sets and functions. The advantage of this coalgebraic
presentation of stream automata is that bisimilarity and minimization are easily obtained
using the general theory of Universal Coalgebra. Using another standard feature of the
coalgebraic framework, namely, final coalgebras, we proved a Myhill-Nerode theorem for
lasso automata that extends the basic framework of Rutten [16] to lassos. Then, involving a
property we called lasso determinacy, we obtained a characterization of regular ω-languages.
These results provide additional motivation for and in some sense complete the work of Maler
& Staiger [14] on two-sorted congruences.

Of the many interesting directions to take from here we mention a few. First, not only Ω-
automata but in particular the objects they operate on (lassos, streams) admit a very simple
and natural coalgebraic presentation. It would be interesting to explore and exploit this
connection further – in particular, we are interested in truly coalgebraic characterizations of
regular ω-languages. In a subsequent publication we hope to report on such a characterization,
which reveals the coalgebraic nature of the property of lasso determinacy and involves a
pumping property for lasso languages. Second, a very interesting and useful coalgebraic
concept is that of coinduction. This definition and proof principle has many applications in
the theory of DFAs. It would be worthwhile to find and study manifestations of coinduction
in the world of stream automata as well, also patterned after [20, 19, 6]. Third, given the
two-sorted nature of our framework, it seems natural to explore its connections with the
theory of Wilke algebras [21]. Finally, recent work on coalgebraic automata learning [5] could
shed further light on the link between our framework and the research line on learning of
omega-regular languages; a first step in this direction would be a mathematically precise
comparison between the automata model presented in [2] and our coalgebraic variant.

Using Category Theory for modelling abstract notions entails the possibility to generalise
results by changing the base category that is used. In this respect, our paper can be used as
a starting point for further development of nominal omega-regular languages [8]. Finally, it
would be interesting to study our work from the categorical perspective of [20, 19, 6]. As a
starting point one could try to rephrase our acceptance definition for streams (Definition 20)
in the approach of [19].

References

1 Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, Elsevier, 1987. doi:10.1016/0890-5401(87)90052-6.

2 Dana Angluin, Udi Boker, and Dana Fisman. Families of dfas as acceptors of ω-regular
languages. Logical Methods in Computer Science, Volume 14, Issue 1, February 2018. doi:
10.23638/LMCS-14(1:15)2018.

3 Dana Angluin and Dana Fisman. Learning regular omega languages. In Algorithmic Learn-
ing Theory, volume 8776 of Lecture Notes in Computer Science, pages 125–139. Springer
International Publishing, 2014. doi:10.1007/978-3-319-11662-4_10.

4 André Arnold. A syntactic congruence for rational ω-languages. Theoretical Computer Science,
39:333–335, Elsevier, 1985. doi:10.1016/0304-3975(85)90148-3.

CALCO 2019

http://dx.doi.org/10.1016/0890-5401(87)90052-6
http://dx.doi.org/10.23638/LMCS-14(1:15)2018
http://dx.doi.org/10.23638/LMCS-14(1:15)2018
http://dx.doi.org/10.1007/978-3-319-11662-4_10
http://dx.doi.org/10.1016/0304-3975(85)90148-3

5:14 Ω-Automata

5 Simone Barlocco, Clemens Kupke, and Jurriaan Rot. Coalgebra learning via duality. In
Foundations of Software Science and Computation Structures, volume 11425 of Lecture Notes
in Computer Science, pages 62–79. Springer International Publishing, 2019. doi:10.1007/
978-3-030-17127-8_4.

6 Tomasz Brengos. A coalgebraic take on regular and omega-regular behaviour for systems
with internal moves. In International Conference on Concurrency Theory, volume 118 of
LIPIcs, pages 25:1–25:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:
10.4230/LIPIcs.CONCUR.2018.25.

7 Hugues Calbrix, Maurice Nivat, and Andreas Podelski. Ultimately periodic words of rational
ω-languages. In Mathematical Foundations of Programming Semantics, volume 802 of Lecture
Notes in Computer Science, pages 554–566. Springer, 1993. doi:10.1007/3-540-58027-1_27.

8 Vincenzo Ciancia and Matteo Sammartino. A class of automata for the verification of
infinite, resource-allocating behaviours. In Trustworthy Global Computing, volume 8902 of
Lecture Notes in Computer Science, pages 97–111. Springer Berlin Heidelberg, 2014. doi:
10.1007/978-3-662-45917-1_7.

9 Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In Coalgebraic Methods
in Computer Science, volume 7399 of Lecture Notes in Computer Science, pages 90–108.
Springer, 2012. doi:10.1007/978-3-642-32784-1_6.

10 Szilárd Fazekas. Powers of regular languages. In Volker Diekert and Dirk Nowotka, editors,
Developments in Language Theory, volume 5583 of Lecture Notes in Computer Science, pages
221–227. Springer, 2009. doi:10.1007/978-3-642-02737-6_17.

11 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logic, and Infinite Games, volume
2500 of Lecture Notes in Computer Science. Springer, 2002.

12 Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu. A novel learning algorithm for büchi
automata based on family of dfas and classification trees. In Tools and Algorithms for the
Construction and Analysis of Systems, Part I, volume 10205 of Lecture Notes in Computer
Science, pages 208–226, 2017. doi:10.1007/978-3-662-54577-5_12.

13 Christof Löding. Efficient minimization of deterministic weak ω-automata. Information
Processing Letters, 79:105–109, Elsevier, 2001. doi:10.1016/S0020-0190(00)00183-6.

14 Oded Maler and Ludwig Staiger. On syntactic congruences for ω-languages. Theoretical
Computer Science, 183:93–112, Elsevier, 1997. doi:10.1007/3-540-56503-5_58.

15 Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups, Logic and
Games. Elsevier, 2004.

16 J. Rutten. Automata and coinduction (an exercise in coalgebra). In International Conference
on Concurrency Theory, Lecture Notes in Computer Science, pages 194–218. Springer, 1998.
doi:10.1007/BFb0055624.

17 J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–80,
Elsevier, 2000. doi:10.1016/S0304-3975(00)00056-6.

18 Ludwig Staiger. Finite-state ω-languages. Journal of Computer and System Sciences, 27:434–
448, Elsevier, 1983. doi:10.1016/0022-0000(83)90051-X.

19 Natsuki Urabe and Ichiro Hasuo. Categorical büchi and parity conditions via alternating
fixed points of functors. In Coalgebraic Methods in Computer Science, Revised Selected
Papers, volume 11202 of Lecture Notes in Computer Science, pages 214–234. Springer, 2018.
doi:10.1007/978-3-030-00389-0_12.

20 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace semantics for buechi
and parity automata. In International Conference on Concurrency Theory, volume 59 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:15, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CONCUR.2016.24.

21 Thomas Wilke. An algebraic theory for regular languages of finite and infinite words.
International Journal of Algebra and Computation, 03(04):447–489, 1993. doi:10.1142/
S0218196793000287.

http://dx.doi.org/10.1007/978-3-030-17127-8_4
http://dx.doi.org/10.1007/978-3-030-17127-8_4
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.25
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.25
http://dx.doi.org/10.1007/3-540-58027-1_27
http://dx.doi.org/10.1007/978-3-662-45917-1_7
http://dx.doi.org/10.1007/978-3-662-45917-1_7
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1007/978-3-642-02737-6_17
http://dx.doi.org/10.1007/978-3-662-54577-5_12
http://dx.doi.org/10.1016/S0020-0190(00)00183-6
http://dx.doi.org/10.1007/3-540-56503-5_58
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1016/0022-0000(83)90051-X
http://dx.doi.org/10.1007/978-3-030-00389-0_12
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24
http://dx.doi.org/10.1142/S0218196793000287
http://dx.doi.org/10.1142/S0218196793000287

V. Ciancia and Y. Venema 5:15

A Proofs

Proof of Theorem 18. Let A be lasso automaton. Decidability of coherence is straightfor-
ward, since it can be checked in terms of the equivalence of various pairs of initialized DFAs
that can easily be constructed from the loop automaton of A.

For circularity, it suffices to consider initialized DFAs. A routine argument shows that a
language is circular iff Pow(L) = L = Root(L), where the power and root of L are defined
by Pow(L) := {uk | u ∈ L, k ≥ 1} and Root(L) := {u | uk ∈ L for some k ≥ 1}. The
decidability of the equation, L = Pow(L), was established by Fazekas [10].

The problem, whether L(A, a) = Root(L(A, aI)) for a given initialized DFA (A, aI),
can be solved by first defining an initialized DFA (A′, i) that accepts Root(L) and then
checking language equivalence with L. So consider a DFA (A, δ, F) and a state aI ∈ A.
Let A′ := (AA, θ, G) be the DFA where θ is given pointwise: θ(f, c) := λa.δ(fa, c). For the
definition of G, define, for an arbitrary g ∈ AA, the set Ag := {gnaI | n ≥ 1} – since A is
finite, this set can be computed in at most |A| steps. Put G := {g ∈ AA | Ag ∩ F 6= ∅}.

Let u an arbitrary finite word, and define gu := θ̂(i, u). By construction we obtain for
all a ∈ A that gua = δ̂(a, u), so that Agu

= {δ̂(aI , un) | n ≥ 1}. Now consider the following
chain of equivalences:

A′, i B u iff gu = θ̂(i, u) ∈ G (definition of acceptance)
iff Agu

∩ F 6= ∅ (definition G)

iff δ̂(aI , uk) ∈ F, some k ≥ 1 (Agu
= {δ̂(aI , un) | n ≥ 1})

iff uk ∈ L = L(A, aI), some k ≥ 1 (definition of acceptance)
iff u ∈ Root(L) (definition Root)

From this it follows that L(A′, i) = Root(L(A, aI)), as required. J

Proof of Theorem 22. Let P = (P, ρ,Π) be a parity automaton, let AP = (P,X, ρ, ξ, σ, F)
be its associated lasso automaton, and let N denote the range of Π. Fix a state q ∈ P .

For the inclusion Streams(P, q) ⊆ Streams(AP, q), assume that P, q B α for some stream
α. Without loss of generality we may assume that α can be split as α = u~v, such that, with
p := ρ̂(q, u), we have p vi=⇒ρ p and Inf (q, α) = ρ◦(p, vi), for each i ∈ ω. Define vij := vi · · · vj−1
for i, j ∈ ω with i < j. It follows by construction of AP that

σ̂:ξ(p, vij) ∈ F for each i, j with i < j. (6)

Note that the equivalence relation on ω< = {(i, j) ∈ ω2 | i < j} given by (i, j) ∼ (k, l) if
σ̂:ξ(p, vij) = σ̂:ξ(p, vkl), has finite index. It then follows by Ramsey’s Theorem that there is
an infinite subset Y ⊆ ω, and a unique z ∈ F such that σ̂:ξ(p, vij) = z, for each pair i, j ∈ Y
with i < j.

Enumerate Y = {k0, k1, . . .} with k0 < k1 < · · · , and define u′ := v0k0 , for each i ∈ ω,
wi := vkiki+1 . It is obvious from these definitions that

α = uu′ ~w. (7)

In addition, we claim that

q
uu′==⇒ρ p (8)

and that

p
wi=⇒ρ p and p wi=⇒σ:ξ z, for all i ∈ ω. (9)

CALCO 2019

5:16 Ω-Automata

For the proof of (8) and (9), observe that p
vj=⇒ρ p for each j, so that we find p u′=⇒ρ p and

p
wi=⇒ρ p for each i on the basis of u′ and each wi being finite concatenations of vj ’s. From

this we immediately obtain the first statement in (9), but also (8) because q u=⇒ρ p
u′=⇒ρ p.

The remaining, second, statement in (9) follows directly from the assumption on z and the
definition of the wj .

Finally, it follows directly from (7), (8) and (9) that α is accepted by (AP , q).
For the inclusion Streams(AP, q) ⊆ Streams(P, q), assume that (AP, q) accepts some given

stream α. Then by definition we can split this stream as α = u~v, and find states p ∈ P and
t ∈ F such that q u=⇒ρ p and p vi=⇒ρ p, p

vi=⇒σ:ξ t for each i ∈ ω. Fix some i ∈ ω. By definition of
AP it follows from p

vi=⇒σ:ξ t that spI
vi=⇒ξ t in Xp, where Xp, spI and ξ are as in Definition 12. But

since it is straightforward to verify from p
vi=⇒ρ p that ρ◦(p, vi) consists of all states traversed

on the cycle p vi=⇒ρ p, it follows that t ∈ (P × N)P satisfies t(p) = (p,max(Π[ρ◦(p, vi)])).
Since t is accepting it follows that max(Π[ρ◦(p, vi)]) is even. Since this holds for each i ∈ ω,
it easily follows that (P, q) accepts α. J

Proof of Theorem 23. Fix A = (P,X, ρ, ξ, σ, F) and A = (P ′, X ′, ρ′, ξ′, σ′, F ′), and let
h : A→ A′ be an Ω-morphism. The proof of the inclusion Streams(A, q) ⊆ Streams(A′, q′) is
routine and left to the reader.

For the opposite inclusion, assume that (A′, hq) accepts some stream α. Let u, (vi)i∈ω,
p′ ∈ P ′ and z′ ∈ F ′ bear witness to this fact, in the sense that α = u~v, hq u=⇒ρ′ p

′ and
p′

vi=⇒ρ′ p′, p′
vi=⇒σ′:ξ′ z′ for each i ∈ ω.

Define p0 := ρ̂(q, u) and pi+1 := ρ̂(pi, vi) for i > 0. Observe that hpi = p′ for all i ∈ ω.
Since P is finite, so is the set Q := {pi | i ∈ ω}, and hence, some element p of Q is traversed
infinitely often in the path p0

v0=⇒ρ p1
v1=⇒ρ p2 · · · . In other words, there is an infinite subset

K = {k0, k1, . . .} ⊆ ω with k0 < k1 < . . . such that p0
v0···vk0−1======⇒ρ p and p

vki
···vki+1−1

========⇒ρ p

for all i ∈ ω. Define u′ := v0 · · · vk0−1 and wi := vki
· · · vki+1−1, then we have α = uu′ ~w,

q
uu′==⇒ρ p and p wi=⇒ρ p, for each i ∈ ω.
Define, for i < j ∈ ω, the word wij := wi · · ·wj−1 and the state zij := σ̂:ξ(p, wij).

By Ramsey’s Theorem there must be an infinite set N ⊆ ω and a single element z ∈ X
such that zij = z for all i, j ∈ N . Note that hzij = z′ for all i, j ∈ N , since h is an
Ω-morphism. Write N = {n0, n1, . . .} with n0 < n1 < · · · , and define u′′ := w0 · · ·wn0−1 and
si := wni · · ·wni+1−1, then clearly we have

α = uu′u′′~s. (10)

Second, we claim that

q
uu′u′′====⇒ρ p. (11)

To see this, note that u′′ is a finite concatenation of wi’s. Since p
wi=⇒ρ p for each i, it follows

that p u′′==⇒ρ p, and hence we obtain (11) from q
uu′==⇒ρ p

u′′==⇒ρ p. In addition, we have

p
si=⇒ρ p and p si=⇒σ:ξ z, for all i ∈ ω. (12)

Here the first statement follows from each si being a finite concatenation of wj ’s, and the
second is by assumption on z.

Finally, the fact that A, q B α is immediate from (10), (11) and (12). J

Proof of Corollary 24. It follows from Fact 17 that there is an initialized parity auto-
maton (P, p) such that Lassos(A, q) = Lassos(P, p), and from Fact 14 that Lassos(P, p) =

V. Ciancia and Y. Venema 5:17

Lassos(AP, p). From this it is immediate that Lassos(A, q) = Lassos(AP, p), and so Fact 10
yields that A, q ↔ AP, p. Then we may derive by Proposition 8 and Theorem 23 that
Streams(A, q) = Streams(AP, p), and so by Theorem 22 we find that Streams(A, q) =
Streams(P, p). This immediately gives that Streams(A, q) is regular, and gathering our
findings we obtain that Lassos(Streams(A, q)) = Lassos(Streams(P, p)) = Lassos(P, p) =
Lassos(A, q). J

Proof of Theorem 25. The direction from left to right is immediate by Proposition 8 and
Theorem 23. The opposite direction follows from Corollary 24 and Fact 10. J

Proof of Theorem 28. The first part of the theorem is immediate by the fact that the
quotient map from A to A/↔ is an Ω-morphism. For part 2, assume that Streams(A′, p′) = L.
Then by Theorem 25 we have that A, p↔ A′, p′, so that a routine argument shows that every
state in A′p′ is bisimilar to some state in A. This yields a natural map h from A′p′ to A/↔
such that h(p′) = p. We leave it for the reader to verify that this map is an Ω-morphism. J

Proof of Theorem 32. With A = (P,X, ρ, ξ, σ, F), define the maps h0 : P → P(C∗ × C+)
and h1 : X → PC∗ by putting

h0(p) := Lassos(A, p),
h1(x) := L((X, ξ, F), x).

It is a routine exercise to verify that this is an Ω-morphism. For uniqueness, let h′ : A→ Z
be an Ω-morphism. Then for every spoke state p of A we find that hp = Lassos(A, p) =
Lassos(Z, h′p) = h′p. J

Proof of Theorem 34. We confine ourselves to a sketch. The equivalence of (1) and (2) is a
direct consequence of the Theorems 31 and 32, so it suffices to show that (2) ⇔ (3).

For this purpose, fix a lasso language L. We first show that, for any pair of words u0, u1:

u0 ≡ u1 iff ζ̂0(L, u0) = ζ̂0(L, u1). (13)

Second, for all words u and pairs of nonempty words v0, v1, with Lu := ζ̂0(L, u)(= {(u′v) |
(uu′, v) ∈ L}) we can prove:

v0 ≡[u] v1 iff σ̂:ζ1(Lu, v0) = σ̂:ζ1(Lu, v1) (14)

By the previous two steps we may conclude that (u0, v0) ≡ (u1, v1) if and only if, starting
from L in the spoke part of Z, consuming either u0 or u1 takes us to the same state L′, and
from L′, consuming either v0 or v1, takes us to the same state L′′ in the loop part of Z. Now
let YL be the set of spoke states reachable from L, and for M ∈ YL, let Y ′M be the set of
loop states reachable from M . It then follows by the above observation that the equivalence
classes of ≡L are in one-to-one correspondence with the set

⊎
M∈YL

M . This suffices to prove
that ≡L has finite index iff L generates a finite subcoalgebra in Z. J

Proof of Proposition 36. Fix a stream α = ~v. By lasso determinacy of L there is an infinite
set Y ⊆ ω as in the definition. Write Y = {n0, n1, . . .} with n0 < n1 < · · · . Define
w0 := v0 · · · vn0 and wi+1 := vni+1 · · · vni+1 . Then α = ~w and for all j, k ∈ ω with j < k we
have

α ∈ L ⇐⇒ (w0 · · ·wj)(wj+1 · · ·wk)ω ∈ L (15)

CALCO 2019

5:18 Ω-Automata

Now by the LD property of L′ there is an infinite set Y ′ ∈ ω as in the definition. Take any
two elements j, k ∈ Y ′ with j < k. Then we have

α ∈ L′ ⇐⇒ (w0 · · ·wj)(wj+1 · · ·wk)ω ∈ L′ (16)

It is then immediate by (15), (16) and the assumption Lassos(L) = Lassos(L′) that

α ∈ L ⇐⇒ α ∈ L′.

Since α was arbitrary, this shows that L = L′. J

Proof of Theorem 37. The equivalence of (2) and (3) is immediate by Theorem 34, and the
implication from (1) to (2/3) follows from the same result, together with the observation
that regular ω-languages are lasso-determined.

For the remaining implication (2/3 ⇒ 1), assume (2), and let L′ be the stream language
accepted by the pointed Ω-coalgebra (Z,Lassos(L)). It follows that Lassos(L) = Lassos(L′),
and since L′, being regular, is lasso-determined, Proposition 36 implies L = L′, which
immediately yields the regularity of L. J

Tree Automata as Algebras:
Minimisation and Determinisation
Gerco van Heerdt
University College London, United Kingdom
gerco.heerdt@ucl.ac.uk

Tobias Kappé
University College London, United Kingdom
tkappe@cs.ucl.ac.uk

Jurriaan Rot
University College London, United Kingdom
Radboud University, Nijmegen, The Netherlands
jrot@cs.ru.nl

Matteo Sammartino
University College London, United Kingdom
m.sammartino@ucl.ac.uk

Alexandra Silva
University College London, United Kingdom
alexandra.silva@ucl.ac.uk

Abstract
We study a categorical generalisation of tree automata, as algebras for a fixed endofunctor endowed
with initial and final states. Under mild assumptions about the base category, we present a general
minimisation algorithm for these automata. We then build upon and extend an existing generalisation
of the Nerode equivalence to a categorical setting and relate it to the existence of minimal automata.
Finally, we show that generalised types of side-effects, such as non-determinism, can be captured by
this categorical framework, leading to a general determinisation procedure.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases tree automata, algebras, minimisation, determinisation, Nerode equivalence

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.6

Funding This work was partially supported by the ERC Starting Grant ProFoundNet (grant code
679127), a Leverhulme Prize (PLP–2016–129) and a Marie Curie Fellowship (grant code 795119).

1 Introduction

Automata have been extensively studied using category theory, both from an algebraic and a
coalgebraic perspective [26, 6, 43, 40]. Categorical insights have enabled the development of
generic algorithms for minimisation [4], determinisation [45], and equivalence checking [15].

A fruitful line of work has focussed on characterising the semantics of different types of
automata as final coalgebras. The final coalgebra contains unique representatives of behaviour,
and the existence of a minimal automaton can be formalised by a suitable factorisation
of the map from a given automaton into the final coalgebra. Algorithms to compute the
minimal automaton can be devised based on the final sequence, which yields procedures
resembling classical partition refinement [32, 18]. Unfortunately, bottom-up tree automata do
not fit the abstract framework of final coalgebras.1 This impeded the application of abstract

1 The language semantics of top-down tree automata represented as coalgebras is given in [30], based on
a transformation to bottom-up tree automata. In this paper, we focus on bottom-up automata only.

© Gerco van Heerdt, Tobias Kappé, Jurriaan Rot, Matteo Sammartino, and Alexandra Silva;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0669-6865
mailto:gerco.heerdt@ucl.ac.uk
https://orcid.org/0000-0002-6068-880X
mailto:tkappe@cs.ucl.ac.uk
mailto:jrot@cs.ru.nl
https://orcid.org/0000-0003-1456-2242
mailto:m.sammartino@ucl.ac.uk
https://orcid.org/0000-0001-5014-9784
mailto:alexandra.silva@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Tree Automata as Algebras: Minimisation and Determinisation

algorithms for minimisation, determinisation, and equivalence. We embrace the categorical
algebraic view on automata due to Arbib and Manes [8] to study bottom-up tree automata
(Section 3). This algebraic approach is also treated in detail by Adámek and Trnková [6],
who, among other results, give conditions under which minimal realisations exist (see also [3])
and constructions to determinise partial and non-deterministic bottom-up tree automata.
However, generic algorithms for minimisation, and a more abstract and uniform picture of
determinisation, have not been studied in this context.

The contributions of this paper are three-fold. First, we explore the notion of cobase to
devise an iterative construction for minimising tree automata, at the abstract level of algebras,
resembling partition refinement (Section 4). The notion of cobase is dual to that of base [11],
which plays a key role in reachability of coalgebras [46, 10] and therefore in minimisation
of automata. Second, we study a different characterisation of minimality via the Nerode
equivalence, again based on work of Arbib and Manes [8], and provide a generalisation using
monads that allows to treat automata with equations (Section 5). Third, we extend bottom-
up tree automata to algebras in the Kleisli category of a monad, which enables us to study
tree automata enriched with side-effects and derive an associated determinisation procedure
(Section 6). We demonstrate the generality of our approach by applying it both to classical
examples – deterministic, non-deterministic, and multiplicity/weighted tree automata – and
to a novel kind of tree automata, namely nominal tree automata.

2 Preliminaries

We assume basic knowledge of category theory. Throughout this paper, we fix a category C.

Monads. A monad on C is a triple (T, η, µ) consisting of an endofunctor T on C and two
natural transformations: a unit η : Id ⇒ T and a multiplication µ : T 2 ⇒ T , which satisfy
the compatibility laws µ ◦ ηT = idT = µ ◦ Tη and µ ◦ µT = µ ◦ Tµ.

I Example 2.1. The triple (Pf , {−},
⋃

) is a monad on Set, where Pf is the finite powerset
functor , {−} is the singleton operation, and

⋃
is union of sets. Another example is the

multiplicity monad (MF, e,m) for a field F, where MF is the functor sending a set X to
MFX = {ϕ : X → F | ϕ has finite support}. An element ϕ can be seen as a formal finite sum∑
i sixi, where each xi has multiplicity si. The unit e sends x to 1x and the multiplication

is mX(
∑
i siϕi)(x) =

∑
i si · ϕi(x), where · is the field multiplication.

Algebras and Varietors. We fix a functor Σ : C → C and write Alg(Σ) for the category
of Σ-algebras. Throughout this paper, we assume that Σ is a varietor [6], i.e., that the
forgetful functor U : Alg(Σ) → C admits a left adjoint F : C → Alg(Σ). The varietor Σ
induces a monad (Σ�, η, µ) on C, where Σ� = UF . Given an object X of C, we refer to
FX = (Σ�X,αX) as the free Σ-algebra over X. The free Σ-algebra satisfies the following:
for every Σ-algebra Q and every morphism x : X → UQ of C, there is a unique Σ-algebra
morphism x] : (Σ�X,αX)→ Q with U(x]) ◦ ηX = x.

I Example 2.2. A functor is finitary if it preserves filtered colimits. Any finitary Set
functor is a varietor: free algebras over a set X can be obtained as a colimit of a transfinite
sequence [2, 28]. A polynomial functor on Set is a functor inductively defined by P := id |
A | P1 × P2 |

∐
i∈I Pi where A is any constant functor. Polynomial functors are finitary and

therefore varietors.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:3

3 Tree automata, categorically

In this section we start our categorical investigation of (bottom-up) tree automata. We first
discuss a general notion of automaton over an endofunctor Σ due to Arbib and Manes [8]
and then discuss how this notion can be instantiated to obtain various kinds of automata.

I Definition 3.1 (Σ-tree automaton). A Σ-tree automaton over objects I and O in C is a
tuple (Q, δ, i, o) such that (Q, δ) is a Σ-algebra and i : I → Q and o : Q→ O are morphisms
of C. The objects I and O are referred to as the input object and output object respectively.
A homomorphism from an automaton (Q, δ, i, o) to an automaton (Q′, δ′, i′, o′) is a Σ-algebra
homomorphism h : Q→ Q′ (i.e., δ′ ◦ Σh = h ◦ δ) such that h ◦ i = i′ and o′ ◦ h = o.

Throughout this paper, we fix input and output objects I and O respectively. If Σ is clear
from the context we sometimes refer to a Σ-tree automaton simply as an automaton.

A language (over Σ) is a morphism L : Σ�I → O. In the context of an automaton
A = (Q, δ, i, o), we can think of U(i]) : Σ�I → Q, induced by the free Σ-algebra FI on I,
as the reachability map, telling us which state is reached by parsing an element of the free
algebra over I. We will write rchA (or rch if A is obvious) for U(i]). The language of A is
the morphism L(A) : Σ�I → O in C given by L(A) = o ◦ rchA.

I Example 3.2 (Deterministic bottom-up tree automata). Let us see how Σ-tree automata
can capture deterministic bottom-up tree automata. We first recall some basic concepts.

A ranked alphabet is a finite set of symbols Γ, where each γ ∈ Γ is equipped with an
arity ar(γ) ∈ N. A frontier alphabet is a finite set of symbols I. The set of Γ-trees over
I, denoted TΓ(I), is the smallest set such that I ⊆ TΓ(I), and for all γ ∈ Γ we have that
t1, . . . , tar(γ) ∈ TΓ(I) implies (γ, t1, . . . , tar(γ)) ∈ TΓ(I). In other words, TΓ(I) consists of finite
trees with leaves labelled by symbols from I and internal nodes labelled by symbols from Γ;
the number of children of each internal node matches the arity of its label.

A ranked alphabet Γ gives rise to a polynomial signature endofunctor Σ: Set→ Set given
by ΣX =

∐
γ∈ΓX

ar(γ). A deterministic bottom-up tree automaton is a Σ-tree automaton
A = (Q, δ, i, o) where Q is finite, Σ is a signature endofunctor, and O = 2. Here Q is the
set of states, i : I → Q is the initial assignment, o : Q→ 2 is the characteristic function of
final states, and for each γ ∈ Γ we have a transition function δγ = δ ◦ κγ : Qar(γ) → Q. The
language L(A) is the set of all Γ-trees t such that (o ◦ δ̂)(t) = 1, where δ̂ : TΓ(I)→ Q extends
δ to trees by structural recursion:

δ̂(`) = i(`) (` ∈ I) δ̂(γ, t1, . . . , tk) = δγ(δ̂(t1), . . . , δ̂(tk))

In other words, L(A) contains the trees that evaluate to a final state. The map δ̂ above is
the transpose i] in the relevant adjunction between Set and Alg(Σ), where the left adjoint
sends a set I to the Σ-algebra with carrier TΓ(I) and the obvious structure map.

3.1 Nominal tree automata
To show the versatility of our definition, we instantiate it in the category Nom of nominal
sets and equivariant functions. This results in a notion of nominal tree automaton – along
the lines of nominal automata theory [13] – which, as we shall see below, provides a useful
model for languages of trees with variables and variable binding. We first recall some basic
notations of nominal set theory [41]. Let A be a countable set of atoms, and let Sym(A) be
the associated symmetry group, consisting of all permutations on A. A nominal set is a pair
(X, ·) of a set X and a function · : Sym(A)×X → X forming a left action of Sym(A) on X.

CALCO 2019

6:4 Tree Automata as Algebras: Minimisation and Determinisation

Each x ∈ X is required to have finite support, i.e., there must exist a finite A ⊆ A such that
for all π ∈ Sym(A), if π is equal to idA when restricted to A, then π · x = x. The minimal
such A is denoted supp(x), and can be understood as the set of “free” names of x. Given
x ∈ X, its orbit is the set {π · x | π ∈ Sym(A)}. We say that a nominal set X is orbit-finite
whenever it has finitely many orbits. An equivariant function f : (X, ·)→ (Y, ·) is a function
X → Y that respects permutations, i.e., f(π · x) = π · f(x).

Polynomial functors in Nom support additional operations [20], such as the name abstrac-
tion functor [A] : Nom→ Nom, which “binds” a name in the support. For instance, if x ∈ X,
then 〈a〉x ∈ [A]X, with supp(〈a〉x) = supp(x) \ {a}. The element 〈a〉x should be thought of
as an equivalence class up to α-conversion w.r.t. the binder 〈a〉. We can then define tree
automata for parsing trees with binders. Consider for instance Σλ : Nom→ Nom given by

ΣλX = X ×X︸ ︷︷ ︸
appl

+ [A]X︸ ︷︷ ︸
lambda

describing the syntax of the λ-calculus [21]. This functor is finitary [20], which implies the
existence of free algebras. Fixing I = A, the carrier of the free Σλ-algebra over I consists
of parse trees for λ-terms (up to α-conversion) with variables in A. We can then define
automata parsing these trees as A = (Q, δ, i, o), where

Q is a nominal set;
δ consists of two equivariant functions δappl : Q×Q→ Q and δlambda : [A]Q→ Q;
i : A→ Q is an equivariant function, selecting states for parsing variables;
o : Q→ 2 is an equivariant characteristic function of final states, which implies that if a
state is final, so are all the states in its orbit.

The reachability function is the equivariant function given by

rchA(t) =


i(t) if t ∈ A
δappl(rchA(t1), rchA(t2)) if t = (t1, t2)
δlambda(〈a〉rchA(t′)) if t = 〈a〉t′.

The most interesting case is the last one: in order to parse the α-equivalence class 〈a〉t′, we
first parse any tree t′ such that 〈a〉t′ is in the class, and then we take the resulting state up
to α-conversion w.r.t. 〈a〉. Note that L(A) is equivariant, i.e., invariant under permutations
of atoms. Thus A recognises λ-trees up to bijective renamings of variables.

4 Minimisation

In this section we define a construction that allows to minimise a given tree automaton. We
start with a few basic preliminary notions related to quotients and factorisation systems.

Factorisations. An (E ,M)-factorisation system on C consists of classes of morphisms E
andM, closed under composition with isos, such that for every morphism f in C there exist
e ∈ E and m ∈M with f = m ◦ e, and we have a unique diagonal fill-in property.

We list a few properties of factorisation systems. First, both E andM are closed under
composition. Furthermore, if g ◦ f ∈ E and f ∈ E , then g ∈ E . Lastly, if E consists of
epimorphisms, then it is closed under cointersections, i.e., wide pushouts of epimorphisms [5].
A functor Σ is said to preserve E-cointersections if it preserves wide pushouts of epimorphisms
in E . In that case, for an epimorphism e, if e ∈ E then Σe is again an epimorphism.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:5

Quotients. Define by ≤ the order on morphisms with common domain given by f ≤ g iff
∃h.g = h ◦ f . This induces an equivalence relation on such morphisms. A quotient of an
object X is an epimorphism q : X � X ′ identified up to the equivalence, i.e., an equivalence
class. We denote by Quot(X) the class of all quotients of X. The underlying category C is
said to be cowellpowered if Quot(X) is a set for every X. In that case, if C is cocomplete,
Quot(X) forms a complete lattice, with the order given by ≤, and the least upper bound
(join) given by cointersection. We denote by QuotE(X) the set of quotients of X that are in
E . (This is well-defined because E is closed under isomorphisms.)

I Assumption 4.1. Throughout this section, C is cocomplete and cowellpowered. Moreover,
we fix an (E ,M)-factorisation system in C, where E contains epimorphisms only.

I Remark 4.2. The category Set is cocomplete and cowellpowered, and so is Nom introduced
in Section 3.1. In general, the existence of an (epi, strong mono)-factorisation system already
follows from C being cocomplete and cowellpowered [16]. Allowing a more general choice of
factorisation system will be useful in Section 5, where we work with a different E .

Let (Q, δ) be a Σ-algebra. A quotient algebra is a Σ-algebra (Q′, δ′) together with a
quotient q : Q � Q′ in E that is an algebra homomorphism. Given a Σ-tree automaton
(Q, δ, i, o), a quotient automaton is a Σ-tree automaton (Q′, δ′, i′, o′) together with a quotient
q : Q� Q′ in E that is a homomorphism of automata.

I Definition 4.3 (Minimisation). The minimisation of a Σ-tree automaton (Q, δ, i, o) is a
quotient automaton (Qm, δm, im, om), q : Q � Qm, such that for any quotient automaton
(Q′, δ′, i′, o′), q′ : Q� Q′ of (Q, δ, i, o) there exists a (necessarily unique) automaton homo-
morphism h : Q′ � Qm such that h ◦ q′ = q.

Minimisation is called minimal reduction in [6]. Note that the morphism h in the definition
of minimisation is in E , since q′ and q are. In the sequel, we sometimes refer to a quotient
q : Q� Qm as the minimisation if there exist δm, im, om turning (Qm, δm, im, om), q into the
minimisation of (Q, δ, i, o).

I Definition 4.4. A Σ-tree automaton A is said to be reachable if the associated reachability
map rch is in E. It is minimal if it is reachable and for every reachable Σ-tree automaton A′
s.t. L(A) = L(A′) there exists a (necessarily unique) homomorphism from A′ to A.

The above definition of minimality relies on reachability; a more orthogonal (but equivalent)
definition of minimality is explored in Section 4.2.

We conclude with a few observations on the connection between minimisation and
minimality, treated in detail in [6]. We say Σ admits minimisation of reachable automata if
every reachable automaton over Σ has a minimisation.

I Lemma 4.5. An automaton A is minimal iff it is the minimisation of (Σ�I, αI , ηI ,L(A)).

I Lemma 4.6. The functor Σ admits minimisation of reachable automata if and only if a
minimal automaton exists for every language over Σ. In that case, if A is reachable, then
the minimisation of A is minimal.

Proof. For the equivalence, the implication left to right follows from Lemma 4.5. For the
converse, one readily shows that the minimisation of an automaton A is given by the minimal
automaton accepting L(A). The second statement holds by uniqueness of minimisations. J

CALCO 2019

6:6 Tree Automata as Algebras: Minimisation and Determinisation

4.1 Minimisation via the cobase
We show how to compute the minimisation of a given automaton (Q, δ, i, o) using the so-called
cobase [11]. This is the dual of the base, which is used in [10, 46] for reachability of coalgebras.
The cobase allows us to characterise the minimisation as the greatest fixed point of a certain
monotone operator on QuotE(Q), which is a complete lattice by Assumption 4.1.

I Definition 4.7. Let f : ΣX → Y be a morphism. The (E)-cobase of f (if it exists) is the
greatest quotient q ∈ QuotE(X) such that there exists a morphism g with g ◦ Σq = f .

A concrete instance of the cobase will be given below in Example 4.11. The cobase can be
computed as the join of all quotients satisfying the relevant condition, provided that the
functor preserves cointersections.

I Theorem 4.8 (Existence of cobases). Suppose Σ: C→ C preserves E-cointersections. Then
every map f : ΣX → Y has an E-cobase, given by the cointersection∨

{q ∈ QuotE(X) | ∃g. g ◦ Σq = f} .

Proof. For E the class of all epis, the dual is shown in [10, 46]. The proof goes through in
the current, more general setting, using that E is closed under cointersections. J

I Remark 4.9. A Set functor preserves cointersections iff it is finitary [6]. In particular,
this is the case for polynomial functors. For Nom functors we can use that, in general, a
functor preserves cointersections if it is finitary and preserves reflexive coequalisers [6]. These
conditions hold for polynomial Nom functors introduced in Section 3.1, because they preserve
sifted colimits [34], which include filtered colimits and reflexive coequalisers.

We now define an operator on quotients of the state space of an automaton, which
characterises the minimisation of an automaton and gives a way of computing it. To
this end, given a Σ-algebra (Q, δ) and a quotient q : Q � Q′ ∈ QuotE(Q), define the
quotient Θδ(q) : Q � Θδ(Q′) as the cobase of q ◦ δ. This defines a monotone operator
Θδ : QuotE(Q)→ QuotE(Q) that has the following important property (see [10, 46]):

I Lemma 4.10. Suppose Σ preserves E-cointersections. For any Σ-algebra (Q, δ), a quotient
q : Q � Q′ in QuotE(Q) satisfies q ≤ Θδ(q) iff there is an algebra structure δ′ : ΣQ′ → Q′

turning q into an algebra homomorphism.

The operator Θδ allows us to quotient the transition structure of the automaton. In order
to obtain the minimal automaton, we incorporate the output map o : Q → O into the
construction of a monotone operator based on Θδ. For technical convenience, we assume
that this map is an element of QuotE(Q).2 The relevant monotone operator for minimisation
is Θδ ∧ o (where the meet ∧ is taken pointwise in QuotE(Q)).

I Example 4.11. Let Σ: Set → Set be a polynomial functor induced by signature Γ. We
first spell out what the cobase means concretely in this case and then study the operator Θδ

in more detail. Since Σ is an endofunctor on Set, the cobase of a map f : ΣX → Y is the
largest quotient q ∈ QuotE(X) such that for all t, t′ ∈ ΣX:

if Σq(t) = Σq(t′), then f(t) = f(t′) .

2 This is not a real restriction: one can just pre-process the automaton by factorising o, i.e., keeping only
those outputs actually occurring in the automaton.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:7

This means that for every γ ∈ Γ with k = ar(γ), and any x1, . . . , xk, y1, . . . yk, we have that

q(x1) = q(y1) . . . q(xk) = q(yk)
f(κγ(x1, . . . , xk)) = f(κγ(y1, . . . , yk))

or equivalently that for all x1, . . . , xk and x′i with 1 ≤ i ≤ k we have

q(xi) = q(x′i)
f(κγ(x1, . . . , xi−1, xi, xi+1, . . . , xk)) = f(κγ(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk))

Suppose (Q, δ, i, o) is an automaton. For q ∈ Quot(Q), we have q ≤ Θδ(q) ∧ o iff
for all x, x′ ∈ Q: if q(x) = q(x′), then o(x) = o(x′); and
for all γ ∈ Γ with k = ar(γ), and x1, . . . , xk and x′i with 1 ≤ i ≤ k we have

q(xi) = q(x′i)
q(δγ(x1, . . . , xi−1, xi, xi+1, . . . , xk)) = q(δγ(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk))

A partition q with the above two properties is known as a forward bisimulation [25].

I Theorem 4.12. Suppose Σ preserves E-cointersections. Let (Q, δ, i, o) be an automaton,
where o ∈ QuotE(Q). Then gfp(Θδ ∧ o) is the minimisation of (Q, δ, i, o).

Proof. Denote the quotient gfp(Θδ ∧ o) by qm : Q� Qm. Thus qm ≤ Θδ(qm) and qm ≤ o,
hence (using Lemma 4.10) there exist δm, om turning qm into an automaton homomorphism
from (Q, δ, i, o) to (Qm, δm, qm ◦ i, om). We show that this is the minimisation of (Q, δ, i, o).

To this end, let (Q′, δ′, i′, o′), q′ : Q � Q′ be a quotient automaton of (Q, δ, i, o). By
Lemma 4.10 we get q′ ≤ Θδ(q′), and since o′ ◦ q′ = o we have q′ ≤ o, hence q′ ≤ Θδ(q′) ∧ o.
Thus q′ ≤ gfp(Θδ ∧ o), i.e., there is a quotient h : Q′ � Qm such that h ◦ q′ = qm. It only
remains to show that h is a homomorphism of automata. First, since q′ ∈ E and Σ preserves
E-cointersections, Σq′ is an epimorphism. Combined with the fact that q′ and qm are algebra
homomorphisms and that h ◦ q′ = qm, it easily follows that h is an algebra homomorphism.
To see that it preserves the output, we have om ◦ h ◦ q′ = om ◦ qm = o = o′ ◦ q′; hence, since
q′ is epic, we get om ◦h = o′. For preservation of the input, we have h ◦ i′ = h ◦ q′ ◦ i = qm ◦ i,
where the first step holds because q′ is a homomorphism of automata. J

The above characterisation of minimisation of an automaton (Q, δ, i, o) gives us two ways
of constructing it by standard lattice-theoretic computations. First, via the Knaster-Tarski
theorem, we obtain it as the join of all post-fixed points of Θδ ∧ o, which, by Lemma 4.10,
amounts to the join of all quotient algebras respecting the output map o. That corresponds to
the construction in [6]. Second, and perhaps most interestingly, we obtain the minimisation
of (Q, δ, i, o) by iterating Θδ ∧ o, starting from the top element > of the lattice QuotE(Q).
The latter construction is analogous to the classical partition refinement algorithm: Starting
from > corresponds to identifying all states as equivalent (or in other words, starting from
the coarsest equivalence class of states). Every iteration step of Θδ ∧ o splits the states that
can be distinguished successively by just outputs, trees of depth 1, trees of depth 2, etc.
If the state space is finite, this construction terminates, yielding the minimisation of the
original automaton by Theorem 4.12.

4.2 Simple automata
We defined an automaton to be minimal if it is reachable and satisfies a universal property
w.r.t. reachable automata accepting the same language. It is also interesting to ask whether

CALCO 2019

6:8 Tree Automata as Algebras: Minimisation and Determinisation

there is another property that, together with reachability, implies minimality, but is not itself
dependent on reachability [9]. Here we propose precisely such a condition.

I Definition 4.13. An automaton (Q, δ, i, o) is called simple if for every quotient automaton
(Q′, δ′, i′, o′) the associated quotient q : Q� Q′ is an isomorphism.

The result below asserts that minimal automata are precisely the automata that are simple
and reachable. It can be seen as a refinement (and dual) of [10, Theorem 17], computing the
reachable part of a coalgebra. One of the implications makes use of Theorem 4.12, so we
assume that Σ preserves E-cointersections.

I Proposition 4.14. Suppose Σ preserves E-cointersections. Let (Q, δ, i, o) be an automaton
with o ∈ E, and let (Q′, δ′, i′, o′), q : Q� Q′ be a quotient automaton. Then (Q′, δ′, i′, o′) is
simple if and only if it is the minimisation of (Q, δ, i, o).

Proof. By Theorem 4.12, the minimisation of (Q, δ, i, o) exists. We denote it by qm : Q� Qm
and its associated automaton structure by (Qm, δm, im, om).

Suppose (Q′, δ′, i′, o′) is simple. Since Qm is the minimisation of Q and Q′ is a quotient
automaton of Q, there exists a homomorphism of automata h : Q′ � Qm. Since Q′ is simple,
this homomorphism is an iso.

Conversely, suppose (Q′, δ′, i′, o′) is the minimisation of (Q, δ, i, o) and consider any
quotient automaton Q′′ of Q′, witnessed by some q′ : Q′ � Q′′. Then Q′′ is also a quotient
automaton of Q, via q′ ◦ q. Because Q′ is the minimisation of Q, there exists k : Q′′ → Q′

such that k ◦ q′ ◦ q = q. Thus k ◦ q′ = id, using that q is an epi. Since q′ ◦ k ◦ q′ = q′ and q′ is
an epi as well, we also have q′ ◦ k = id. Hence q′ is an iso, as needed. J

I Corollary 4.15. If Σ preserves E-cointersections, then an automaton A = (Q, δ, i, o) with
o ∈ E is minimal if and only if it is simple and reachable.

Proof. First, suppose that A is minimal. By Lemma 4.5, we know that A is the minimisation
(and, in particular, a quotient) of (Σ�I, αI , ηI ,L(A)). In that case, A is reachable, and thus,
since o ∈ E , we have L(A) ∈ E . By Proposition 4.14, we conclude that A is simple.

Conversely, let A be simple and reachable. By reachability, A is a quotient automaton
of (Σ�I, αI , ηI ,L(A)); also, L(A) = o ◦ rch ∈ E . Proposition 4.14 then tells us that A is the
minimisation of (Σ�I, αI , ηI ,L(A)); by Lemma 4.5 we conclude that A is minimal. J

5 Nerode equivalence

We now show a generalised Nerode equivalence from which the minimal automaton can
be constructed. Most of this section is based upon the work by Arbib and Manes [8],
whose construction was further studied and refined by Anderson et al. [7] and Adámek
and Trnková [6]. We make a significant improvement in generality by phrasing the central
equivalence definition (Definition 5.5) in terms of an arbitrary monad, which unlike the
previous cited work allows applications to algebras satisfying a fixed set of equations. A
monad generalisation of the Myhill-Nerode theorem appears in [12], which confines itself to
categories of sorted sets and does not characterise the equivalence as an object.

The abstract construction in this section does not require the varietor Σ. Instead, we
focus on the monad Σ� induced by its adjunction and generalise by fixing an arbitrary
monad (T, η, µ) in C. Let F a U : C � EM(T) be the adjunction with its category of
(Eilenberg-Moore) algebras. Given a C-morphism f : X → UY for X in C and Y in EM(T),
we write f] : FX → Y for its adjoint transpose. We can then use a generalised version of the
automata defined in Section 3.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:9

I Definition 5.1 (T -automaton). A T -automaton is a tuple (Q, δ, i, o), where (Q, δ) is a T -
algebra and i : I → Q and o : Q→ O are morphisms in C. A homomorphism from (Q, δ, i, o)
to (Q′, δ′, i′, o′) is a T -algebra homomorphism h : (Q, δ) → (Q′, δ′) such that h ◦ i = i′ and
o′ ◦ h = o.

The reachability map of a T -automaton A = (Q, δ, i, o) is given by rchA = U(i]) : TI → Q

and is therefore the unique T -algebra homomorphism (TI, µ) → (Q, q) preserving initial
states, taking ηI : I → TI to be the initial state selector of TI. The language of A is given
by L(A) = o ◦ rchA : TI → O.

The Σ-tree automata defined in Section 3 are recovered using the following fact: the
category of Σ-algebras is isomorphic to EM(T) for T the free Σ-algebra monad Σ�.
I Remark 5.2. In Set, we may even add equations to the signature [36, Chapter VI.8,
Theorem 1]. For Nom, this follows from the treatment of [34], giving a standard universal
algebraic presentation of algebras over Nom. Indeed, results in this section apply to nominal
tree automata, unless explicitly stated. For brevity we therefore focus on examples in Set.

I Assumption 5.3. In this section we will need the class E to be the reflexive regular epis.3

The next lemma will be used in proving our main theorems.

I Lemma 5.4. Suppose T maps reflexive coequalisers to epimorphisms. If i : B → UC is
such that U(i]) reflexively coequalises q1, q2 : A → TB in C, then i] reflexively coequalises
q]1, q

]
2 : FA→ FB.

Before defining an abstract Nerode equivalence, we recall the classical definition for
languages of words. Given a language L : A∗ → 2, the equivalence R ⊆ A∗ ×A∗ is defined as

R = {(u, v) ∈ A∗ ×A∗ | ∀w ∈ A∗. L(uw) = L(vw)}.

In this setting, I = 1 and O = 2. A function Q × A → Q corresponds to an algebra for
the monad T = (−) × A∗, whose unit and multiplication are defined using the unit and
multiplication of the monoid A∗. If p1, p2 : R → A∗ ∼= 1× A∗ are the projections, we note
that R is defined to be the largest relation making the following diagram commute.

R×A∗ 1×A∗ ×A∗

1×A∗

1×A∗ ×A∗ 1×A∗ 2

p2×id

p1×id

µ

L
µ L

This leads to an abstract definition, using a limit4 to generalise what it means to be maximal.

I Definition 5.5 (Nerode equivalence). Given a language L : TI → O and an object R with
morphisms p1, p2 : R → TI, we say that (R, p1, p2) is the Nerode equivalence of L if the
diagram below on the left commutes and for all objects S with a reflexive pair q1, q2 : S → TI

3 In a regular category, (reflexive regular epi, mono) forms a factorisation system in the same way (regular
epi, mono) does, though one should note that the theory in this section does not actually need a
factorisation system; the instantiation of E is only invoked to obtain the right notion of reachability.

4 Note that it is not exactly a limit, as the defining property works with cones under T .

CALCO 2019

6:10 Tree Automata as Algebras: Minimisation and Determinisation

such that the diagram in the middle commutes there is a unique morphism u : S → R making
the diagram on the right commute.

TR TTI

TI

TTI TI O

Tp2

Tp1

µ

L
µ L

TS TTI

TI

TTI TI O

Tq2

Tq1

µ

L
µ L

S

TI R TI

q1
u

q2

p1 p2

To show the versatility of our definition, we briefly explain a different example where the
language is a set of words. This example cannot be recovered from the original definition by
Arbib and Manes [8].

I Example 5.6 (Syntactic congruence). Let T be the free monoid or list monad (−)∗ so that
EM(T) is the category of monoids, I = A, and O = 2. Given a language L : A∗ → 2, the
Nerode equivalence as defined above is then the largest relation R ⊆ A∗ ×A∗ such that

n ∈ N (u1, v1), . . . , (un, vn) ∈ R
L(u1 · · ·un) = L(v1 · · · vn) .

Equivalently, R is the largest relation such that

(u, v) ∈ R w, x ∈ A∗

L(wux) = L(wvx) ,

which is precisely the syntactic congruence of the language.

We can show that the Nerode equivalence in Set exists, as long as the monad is finitary.
To define it concretely, we use the following piece of notation. For any set X and x ∈ X,
denote by 1x : 1→ X the constant x function, assuming no ambiguity of the set involved.

I Proposition 5.7. For C = Set and T any finitary monad, every language L : TI → O has
a Nerode equivalence given by

R = {(u, v) ∈ TI × TI | L ◦ µ ◦ T [idTI , 1u] = L ◦ µ ◦ T [idTI , 1v] : T (TI + 1)→ O}

with the corresponding projections p1, p2 : R→ TI.

The definition of R above states that u, v ∈ TI are related iff the elements of TI formed
by putting either u or v in any context and then applying µ have the same value under L. A
context is an element of T (TI + 1), where 1 = {�} denotes a hole where either u or v can
be plugged in. In the tree automata literature, such contexts, although restricted to contain
a single instance of �, are used in algorithms for minimisation [25] and learning [44, 19].
Unfortunately, the characterisation of Proposition 5.7 does not directly extend to Nom,
because the functions 1x are not, in general, equivariant. We leave this for future work.

Below we show that, under a few mild assumptions, the abstract equivalence is in fact
a congruence: it induces a T -automaton, which moreover is minimal. Intuitively, given a
language L : TI → O that has a Nerode equivalence, we use the equivalence to quotient the
T -automaton (FI, η, L). We first need a technical lemma.

I Lemma 5.8. If C has coproducts, then for any Nerode equivalence (R, p1, p2) there exists
a unique T -algebra structure u : TR → R making p1 and p2 T -algebra homomorphisms
(R, u)→ (TI, µ) that have a common section.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:11

I Theorem 5.9. If C has coproducts and reflexive coequalisers and T preserves reflexive
coequalisers, then for every language that has a Nerode equivalence there exists a minimal
T -automaton accepting it.

Proof. Let L : TI → O be the language with Nerode equivalence (R, p1, p2) and c : T →M

the coequaliser of p1 and p2 in C. By Lemma 5.8 there exists a T -algebra structure on R
making p1 and p2 T -algebra homomorphisms into (TI, µ) that have a common section. Since
T preserves reflexive coequalisers, they are lifted by U , and we have a morphismm : TM →M

making (M,m) a T -algebra such that c is a T -algebra homomorphism (TI, µ) → (M,m).
Since the diagram below on the left commutes and c coequalises p1 and p2, there is a unique
morphism oM rendering the diagram on the right commutative.

R TI

TR TTI TI

TI TTI

TI O

p2

η

p1

1

1

η 2
Tp2

Tp1

3

µ

L
η

2 µ

L

1 naturality of η
2 monad law
3 Nerode equivalence

TI M

O

c

L
oM

(1)

Choosing iM = c ◦ η : I → M , we obtain a T -automatonM = (M,m, iM , oM). Note that
U(i]M) = c, so c is the reachability map ofM. Hence, we find that L(M) = L by (1). The
morphism c coequalises the reflexive pair (p1, p2) by definition, soM is reachable.

To see thatM is minimal, consider any reachable T -automaton A = (Q, δ, i, o) such that
L(A) = L. Reachability amounts to the reachability map rch : TI → UQ being the reflexive
coequaliser of a pair of morphisms q1, q2 : S → TI. From commutativity of

TS TTI

TQ TI

Q

TTI TI O

Tq2

Tq1

1 µT rch

δ

2

2 L

rch

o

3

3

T rch

µ

rch

L

1 rch coequalises q1 and q2
2 rch is a T -algebra homomorphism
3 L(A) = L

we obtain by the Nerode equivalence property a unique morphism v : S → R making the
diagram below on the left commute.

S

TI R TI

q1
v

q2

p1 p2

S TI

R

TI M

q2

v

q1 c

p2

p1

c

Extending this with c, the coequaliser of p1 and p2, gives the commutative diagram on the
right. Recall that U(i]M) = c. We now find

i]M ◦ q
]
1 = (U(i]M) ◦ q1)

]
= (c ◦ q1)] = (c ◦ q2)] = (U(i]M) ◦ q2)

]
= i]M ◦ q

]
2.

Here the first and last equality apply a general naturality property of the adjunction. Since
rch = U(i]) is the reflexive coequaliser of q1 and q2, i] is the reflexive coequaliser of q]1 and

CALCO 2019

6:12 Tree Automata as Algebras: Minimisation and Determinisation

q]2 by Lemma 5.4. We then obtain a unique T -algebra homomorphism h : (Q, δ)→ (M,m)
making the diagram below on the left commute.

FI Q

(M,m)

i]

i]
M

h

TI Q

Q M O

rch

Lcrch (1)
1

o

h oM

I

TI

Q M

η

i

iM

2

3

rch c

h

1 L(A) = L

2 definition of rch
3 definition of iM

From commutativity of the other diagrams we find oM ◦ h = o (using that rch is epi) and
h ◦ i = iM . Thus, h is a T -automaton homomorphism A → M. To see that it is unique,
note that any T -automaton homomorphism h′ : A → M is a T -algebra homomorphism
(Q, δ)→ (M,m) such that h′ ◦ i = iM . It is then not hard to see that h′ ◦ i] = (h′ ◦ i)] = i]M .
We conclude that h′ = h by the uniqueness property of h satisfying h ◦ i] = i]M . J

I Remark 5.10. We briefly discuss the conditions of the above theorem in the specific case of
C = Set with T a finitary monad. This includes the setting of tree automata in Set, as a
monad on Set is finitary if and only if EM(T) is equivalent to the category of algebras for a
signature modulo equations. Proposition 5.7 shows that all Nerode equivalences exist here.
Furthermore, Lack and Rosickỳ [35] observe that an endofunctor on Set is finitary if and
only if it preserves sifted colimits, of which reflexive coequalisers form an instance.

To conclude this section we show that the converse of the previous theorem also holds,
using the existence of kernel pairs rather than coproducts. We need a technical lemma first.

I Lemma 5.11. If q1, q2 : A→ TB is a reflexive pair in C, then so is (q]1, q
]
2) in EM(T).

I Theorem 5.12. If C has kernel pairs and reflexive coequalisers and T preserves reflexive
coequalisers, then every language that has a minimal T -automaton has a Nerode equivalence.

Proof. LetM = (M, δM , iM , oM) be a minimal T -automaton and p1, p2 : K → TI the kernel
pair of its reachability map rch : FI →M . We claim that K together with p1 and p2 forms
the Nerode equivalence of L(M). To see this, note that the diagram below on the left
commutes.

TK TTI

TM TI

M

TTI TI O

Tp2

Tp1

1 µT rch

δM

2

2 L(M)

rch

oM

3

3

T rch

µ

rch

L(M)

1 kernel pair
2 rch is a T -algebra homomorphism
3 definition of L(M)

TS TTI

TI

TTI TI O

Tq2

Tq1

µ

L(M)
µ L(M)

Now if S with q1, q2 : S → TI is any reflexive pair making the diagram on the right commute,
we let c : TI → Q be the coequaliser of U(q]1) and U(q]2), noting that this is a reflexive pair by
Lemma 5.11. Then since T preserves reflexive coequalisers, they are lifted by U , meaning that
there exists a unique T -algebra structure δ : TQ → Q making c : FI → (Q, δ) a T -algebra
homomorphism that is the coequaliser of q]1 and q]2. We also have L(M)◦U(q]1) = L(M)◦U(q]2)
by commutativity of the diagram on the right, so with c coequalising U(q]1) and U(q]2) there
is a unique morphism o : Q → O such that o ◦ c = L(M). Setting i = c ◦ ηI , we have a

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:13

T -automaton (Q, δ, i, o) with reachability map U(i]) = c that accepts the language L(M).
ByM being minimal there exists a unique T -automaton homomorphism h : (Q, δ, i, o)→M.
Then the diagram below on the left commutes.

S TI

TS

Q

TI M

q2

η

q1 rch
c

U(q]2)

U(q]1) 1

h

2

2
rch

c

1 c coequalises U(q]1) and U(q]2)
2 uniqueness of reachability maps

S

TI K TI

q1
u

q2

p1 p2

By p1 and p2 being the kernel pair of rch there exists a unique morphism u : S → K making
the diagram on the right commute. J

6 Tree automata with side-effects

We extend tree automata with various side-effects, covering as examples non-deterministic,
weighted, and non-deterministic nominal automata. The key insight is to view them as
algebras in the Kleisli category of a monad S. We first recall some basic notions.

Kleisli category. Every monad (S, η, µ) has an associated Kleisli category K̀ (S), whose
objects are those of C and whose morphisms X •→ Y are morphisms X → SX in C. Given
such morphisms f : X •→ Y and g : Y •→ Z, their (Kleisli) composition g ◦ f is defined
as µZ ◦ Sg ◦ f in C. The Kleisli adjunction J a V : C � K̀ (S) is given by JX = X,
J(f : X → Y) = ηY ◦ f and V Y = SY , V (f : X •→ Y) = µY ◦ Sf .

I Example 6.1. The category K̀ (Pf) has morphisms X → PfY , which are finitely-branching
relations, and Kleisli composition is relational composition. We have that J maps a function
to its graph, and V maps X to PfX and a relation R : X •→ Y to the function

λU ⊆ X.{y | ∃x ∈ U : (x, y) ∈ R}.

The category K̀ (MF) has morphisms X →MFY that are matrices over F indexed by X and
Y (equivalently, linear maps between the corresponding free vector spaces), and composition
is matrix multiplication. The left adjoint J maps a function f : X → Y to the matrix
Jf [x, f(x)] = 1, for x ∈ X, and 0 elsewhere, and the right adjoint V maps a matrix X •→ Y

to the corresponding linear functionMFX →MFY .

Given an endofunctor Σ on C, a functor Σ̂ : K̀ (S) → K̀ (S) is an extension of Σ if the
following diagram commutes:

C C

K̀ (S) K̀ (S)
J

Σ

J

Σ̂

Extensions are in bijective correspondence with distributive laws λ : ΣS ⇒ SΣ [39], which
are natural transformations satisfying certain axioms. Explicitly, we have Σ̂X = ΣX and
f : X •→ Y (a morphism X → SY in C) is mapped to λY ◦ Σf : ΣX → SΣY , seen in K̀ (S).

In [23, Lemma 2.4] it is shown that a canonical distributive law in Set always exists in
case Σ is polynomial and S is a commutative monad [31].

CALCO 2019

6:14 Tree Automata as Algebras: Minimisation and Determinisation

I Example 6.2. For Σ a polynomial Set endofunctor, the canonical distributive law λ : ΣPf ⇒
PfΣ can be directly defined as follows: λX(u) = {v ∈ ΣX | (v, u) ∈ img(〈Σp1,Σp2〉)}, where
p1 and p2 are the left and right projections of the membership relation ∈X ⊆ X × PfX.

The multiplicity monad (MF, e,m) admits a distributive law λ : ΣMF ⇒MFΣ, induct-
ively defined as follows, where ⊗ is the Kronecker product:

λid = idMF λA = eA λΣ1×Σ2 = ⊗ ◦ (λΣ1 × λΣ2) λqi∈IΣi = [MF(κi) ◦ λΣi]i∈I

We can now define our notion of tree automaton with side-effects.

I Definition 6.3 ((Σ, S)-tree automaton). Given a monad S, and Σ̂ : K̀ (S)→ K̀ (S) extend-
ing a functor Σ on C, a (Σ, S)-tree automaton is a Σ̂-tree automaton, i.e., a tuple (Q, δ, i, o),
where (Q, δ) is a Σ̂-algebra and i : I •→ Q and o : Q •→ O are morphisms in K̀ (S).

I Example 6.4.
1. Let Γ be a signature, and let Σ be its signature functor. Then the extension of Σ to
K̀ (Pf) is obtained via the distributive law of Example 6.2, namely Σ̂X = ΣX and

Σ̂(f : X •→ Y)(κγ(x1, . . . , xar(γ))) = {(κγ(y1, . . . , yar(γ))) | yj ∈ f(xj) for 1 ≤ j ≤ ar(γ)}

for γ ∈ Γ. Non-deterministic tree automata are (Σ,P)-tree automata (Q, δ, i, o) with
O = 1, the singleton set. In fact, we have that δ :

∐
γ∈ΓQ

ar(γ) •→ Q is a family of relations
δγ ⊆ Qar(γ)×Q; by the same token, i ⊆ I ×Q relates the frontier alphabet with (possibly
several) states, and o ⊆ Q× 1 ∼= Q is the set of final states.

2. Let Γ be a signature, and let Σ be its signature functor. The extension of Σ to K̀ (MF) is
obtained via the distributive law of Example 6.2. Explicitly, Σ̂X = ΣX and Σ̂(f : X •→ Y)
maps κγ(x1, . . . , xar(γ)) to the vector [κγ(vz)]z∈Y ar(γ) such that vz is the z-th component
of f(x1)⊗ · · · ⊗ f(xar(γ)), for γ ∈ Γ. A multiplicity tree automaton [29] is a (Σ,MF)-tree
automaton (Q, δ, i, o) with I = O = 1. In fact, we have that δγ is the transition matrix
Qar(γ) •→ Q in F|Q|ar(γ)×|Q|; similarly, i : 1 •→ Q is the initial weight vector in F1×|Q|,
and o : Q •→ 1 is the final weight vector in F|Q|×1. Intuitively, δγ maps an ar(γ)-tuple
of elements of Q to a linear combination over Q. We note that we can go beyond
fields and consider (Σ,MS)-tree automata for a semiring S, encompassing weighted tree
automata [17].

3. The nondeterministic version of the automata defined in Section 3.1 can be obtained
via the monad Pω : Nom → Nom, mapping a nominal set to the nominal set of its
finitely-supported, orbit-finite subsets.5 This is analogous to non-deterministic nominal
automata [13]. We note that K̀ (Pω) is precisely the category of nominal sets and
(orbit-finitely branching) equivariant relations and that Σλ extends to relations just as
a set endofunctor – the distributive law is defined as the one for Pf of Example 6.2,
where all the maps are equivariant. A nondeterministic nominal Σλ-tree automaton is a
(Σλ,Pω)-tree automaton (Q, δ, i, o) with O = 1, the one-element nominal set with trivial
group action. We have that i and the components of δ are equivariant relations. For
instance, δlambda ⊆ [A]Q×Q, and o is an equivariant subset of Q.

We now study language semantics of (Σ, S)-tree automata. Languages are defined via free
algebras (see Section 3). It turns out that the free algebras in Alg(Σ) and Alg(Σ̂) are closely
related. To see this, we use the following result, which follows from [24, Theorem 2.14].

5 This is the finitary version of the powerset functor in Nom.

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:15

I Lemma 6.5. Let Σ: C→ C be a functor, S : C→ C a monad, and Σ̂ : K̀ (S)→ K̀ (S) an
extension of Σ. Let λ : ΣS ⇒ SΣ be the corresponding distributive law.

Then the Kleisli adjunction J a V : C� K̀ (S) lifts to an adjunction in: J a V

Alg(Σ) Alg(Σ̂)

C K̀ (S)

J

⊥
V

J

⊥
V

J(Q, δ : ΣQ→ Q) = (Q, J(δ) : Σ̂Q •→ Q)

V (Q, γ : Σ̂Q •→ Q)= (SQ, V (γ) ◦ λQ : ΣSQ→ SQ)

From Lemma 6.5, and using that free algebras can be obtained as colimits of transfinite
sequences [2, 28], it follows that any free Σ-algebra (Σ�X,αX) is mapped by the left adjoint
J to a free Σ̂-algebra with the same carrier. Concretely, given a Σ̂-algebra (Q, δ) and a
morphism i : I •→ Q, a (unique) morphism rch : Σ�I → SQ makes the diagram on the left
commute in C iff it makes the diagram on the right commute in K̀ (S):

ΣΣ�I Σ�I I Σ̂Σ�I Σ�I I

ΣSQ SQ Σ̂Q Q

α

Σrch rch

η

i

J(Σ�I,α)
•

Σ̂rch• rch•

Jη
•

i
•

V (Q,δ) δ•

(2)

Note that the adjoint transpose of rch is the same morphism, seen in K̀ (S). The functor V
can be viewed as a determinisation construction for (Σ, S)-tree automata.

I Definition 6.6. Given an (Σ, S)-tree automaton (Q, δ, i, o), let δ : ΣS(Q)→ S(Q) be the
algebra structure of V (Q, δ), i.e., (S(Q), δ) = V (Q, δ), and o = V (o). The Σ-tree automaton
(SQ, δ, i, o) is called the determinisation of (Q, δ, i, o).

The following shows correctness of this determinisation construction, using the correspondence
in (2), and provides a concrete description of the language semantics of (Σ, S)-tree automata.

I Corollary 6.7. Let (Q, δ, i, o) be a (Σ, S)-tree automaton. Then L(SQ, δ, i, o) = L(Q, δ, i, o).

We conclude this section with some example instantiations of determinisation, and of how
they can be used to compute languages.

I Example 6.8.
1. The determinisation of a (Σ,Pf)-tree automaton (Q, δ, i, o) is

δγ(X1, . . . , Xk) =
⋃

x1∈X1,...,xk∈Xk

δγ(x1, . . . , xk) o(X) =
⋃
x∈X

o(x)

for γ ∈ Γ with k = ar(γ), and X1, . . . , Xk, X finite subsets of Q. This definition precisely
corresponds to the usual determinisation of bottom-up tree automata (see e.g. [22]). The
reachability function is then given by

rch(t) =


i(t) if t ∈ I⋃
x1∈rch(t1)

...
xk∈rch(tk)

δγ(x1, . . . , xk) if t = (γ, x1, . . . , xk), k = ar(γ).

Using Corollary 6.7, we have that the language of (Q, δ, i, o) is

L(Q, δ, i, o)(t) =
⋃

s∈rch(t)

o(s).

CALCO 2019

6:16 Tree Automata as Algebras: Minimisation and Determinisation

That is: a tree t is accepted by (Q, δ, i, o) whenever there is a final state among those
reached by parsing t.

2. The determinisation of a (Σ,MF)-tree automaton is given by

δγ(ϕ1, . . . , ϕk) = (ϕ1 ⊗ · · · ⊗ ϕk) • δγ o(ϕ) = ϕ • o

where γ ∈ Γ and ar(γ) = k; also, ⊗ is the Kronecker product and • is matrix multiplication.
Explicitly, δγ takes a k-tuple of vectors over Q and turns it into a vector ϕ over k-tuples
of states via the distributive law (defined as the Kronecker product, see Example 6.2),
i.e., ϕ(q1, . . . , qk) = ϕ1(q1) · · ·ϕk(qk), for q1, . . . , qk ∈ Q. The result is then multiplied by
the matrix δγ to compute the successor vector.
Similarly, the reachability function becomes

rch(t) =
{
i(t) if t ∈ I
(rch(t1)⊗ · · · ⊗ rch(tk)) • δγ if t = (γ, t1, . . . , tk), k = ar(γ).

Hence we obtain the language L(Q, δ, i, o)(t) = rch(t) • o, which corresponds to the
language semantics given in [29].

3. The case of (Σλ,Pω)-tree automata is completely analogous to point 1. For instance,

δlambda(X) =
⋃
x∈X

δlambda(x)

for X a finitely supported orbit-finite subset of [A]Q.

7 Future work

The algorithmic side of the iterative minimisation construction presented in Section 4
is left open. For classical tree automata there exist sophisticated variants of partition
refinement [25, 1], akin to Hopcroft’s classical algorithm. A generalisation to the current
algebraic setting is an interesting direction of research, for which a natural starting point
would be to try and integrate in our setting the efficient coalgebraic algorithm presented
in [18].

Further, we characterised the minimal automaton as the greatest fixed point of a monotone
function, recovering the notion of forward bisimulations as its post-fixed points (although it
is perhaps more natural to think of these as congruences). This characterisation suggests an
integration with up-to techniques [42, 14, 15], which have, to the best of our knowledge, not
been applied to tree automata. In particular, we are interested in applying these algorithms
to decide equivalence of series-parallel rational and series-rational expressions [38].

Since completeness of Kleene Algebra is connected to minimality of deterministic finite
automata [33], we wonder whether a completeness proof can be recovered using automata as
presented in this paper. In particular, our abstract framework might allow us to transpose
such a proof to settings such as Bi-Kleene Algebra [37] or Concurrent Kleene Algebra [27].

References
1 Parosh Aziz Abdulla, Johanna Högberg, and Lisa Kaati. Bisimulation Minimization

of Tree Automata. Int. J. Found. Comput. Sci., 18(4):699–713, 2007. doi:10.1142/
S0129054107004929.

2 Jiří Adámek. Free algebras and automata realizations in the language of categories.
Commentationes Mathematicae Universitatis Carolinae, 15(4):589–602, 1974. URL: http:
//eudml.org/doc/16649.

https://doi.org/10.1142/S0129054107004929
https://doi.org/10.1142/S0129054107004929
http://eudml.org/doc/16649
http://eudml.org/doc/16649

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:17

3 Jiří Adámek. Realization theory for automata in categories. J. Pure and Appl. Algebra,
9(2):281–296, 1977. doi:10.1016/0022-4049(77)90071-8.

4 Jiří Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and Alexandra
Silva. A Coalgebraic Perspective on Minimization and Determinization. In FoSSaCS, pages
58–73, 2012. doi:10.1007/978-3-642-28729-9_4.

5 Jiří Adámek, Horst Herrlich, and George Strecker. Abstract and concrete categories: The joy
of cats, volume 17 of Reprints in Theory and Applications of Categories. TAC, 2006.

6 Jiří Adámek and Vera Trnková. Automata and algebras in categories. Kluwer, 1989.
7 Brian D.O. Anderson, Michael A. Arbib, and Ernest G. Manes. Foundations of system theory:

finitary and infinitary conditions, volume 115 of Lecture Notes in Econ. and Math. Syst.
Springer, 1976.

8 Michael A. Arbib and Ernest G. Manes. Machines in a category: An expository introduction.
SIAM review, 16(2):163–192, 1974.

9 Michael A. Arbib and Ernest G. Manes. Adjoint machines, state-behavior machines, and
duality. Journal of Pure and Applied Algebra, 6(3):313–344, 1975.

10 Simone Barlocco, Clemens Kupke, and Jurriaan Rot. Coalgebra Learning via Duality. In
FoSSaCS, pages 62–79, 2019. doi:10.1007/978-3-030-17127-8_4.

11 Alwin Blok. Interaction, observation and denotation. Master’s thesis, ILLC Amsterdam, 2012.
12 Mikołaj Bojańczyk. Recognisable languages over monads. In DLT, pages 1–13. Springer, 2015.
13 Mikolaj Bojańczyk, Bartek Klin, and Slawomir Lasota. Automata theory in nominal sets.

Logical Methods in Computer Science, 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.
14 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. A general account of

coinduction up-to. Acta Inf., 54(2):127–190, 2017. doi:10.1007/s00236-016-0271-4.
15 Filippo Bonchi and Damien Pous. Hacking nondeterminism with induction and coinduction.

Commun. ACM, 58(2):87–95, 2015. doi:10.1145/2713167.
16 Francis Borceux. Handbook of Categorical Algebra, volume 1 of Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 1994. doi:10.1017/CBO9780511525858.
17 Björn Borchardt and Heiko Vogler. Determinization of Finite State Weighted Tree Automata.

Journal of Automata, Languages and Combinatorics, 8(3):417–463, 2003.
18 Ulrich Dorsch, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Efficient Coalgebraic

Partition Refinement. In CONCUR, pages 32:1–32:16, 2017. doi:10.4230/LIPIcs.CONCUR.
2017.32.

19 Frank Drewes and Johanna Högberg. Query learning of regular tree languages: How to avoid
dead states. Theory of Computing Systems, 40(2):163–185, 2007.

20 Marcelo P. Fiore. Discrete Generalised Polynomial Functors (Extended Abstract). In ICALP,
pages 214–226, 2012.

21 Murdoch James Gabbay and Aad Mathijssen. Nominal (Universal) Algebra: Equational Logic
with Names and Binding. J. Log. Comput., 19(6):1455–1508, 2009. doi:10.1093/logcom/
exp033.

22 Amaury Habrard and José Oncina. Learning Multiplicity Tree Automata. In ICGI, volume
4201 of Lecture Notes in Computer Science, pages 268–280. Springer, 2006.

23 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic Trace Semantics via Coinduction.
Logical Methods in Computer Science, 3(4), 2007. doi:10.2168/LMCS-3(4:11)2007.

24 Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Inf. Comput., 145(2):107–152, 1998. doi:10.1006/inco.1998.2725.

25 Johanna Högberg, Andreas Maletti, and Jonathan May. Backward and forward bisimulation
minimization of tree automata. Theoretical Computer Science, 410(37):3539–3552, 2009.
doi:10.1016/j.tcs.2009.03.022.

26 William M. Holcombe. Algebraic Automata Theory. Cambridge University Press, 1982.
27 Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. Concurrent Kleene Al-

gebra: Free Model and Completeness. In ESOP, pages 856–882, 2018. doi:10.1007/
978-3-319-89884-1_30.

CALCO 2019

https://doi.org/10.1016/0022-4049(77)90071-8
https://doi.org/10.1007/978-3-642-28729-9_4
https://doi.org/10.1007/978-3-030-17127-8_4
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1007/s00236-016-0271-4
https://doi.org/10.1145/2713167
https://doi.org/10.1017/CBO9780511525858
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.4230/LIPIcs.CONCUR.2017.32
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.2168/LMCS-3(4:11)2007
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1016/j.tcs.2009.03.022
https://doi.org/10.1007/978-3-319-89884-1_30
https://doi.org/10.1007/978-3-319-89884-1_30

6:18 Tree Automata as Algebras: Minimisation and Determinisation

28 Gregory M. Kelly. A unified treatment of transfinite constructions for free algebras, free
monoids, colimits, associated sheaves, and so on. Bull. Austr. Math. Soc., 22(1):1–83, 1980.
doi:10.1017/S0004972700006353.

29 Stefan Kiefer, Ines Marusic, and James Worrell. Minimisation of Multiplicity Tree Automata.
Logical Methods in Computer Science, 13(1), 2017.

30 Bartek Klin and Jurriaan Rot. Coalgebraic trace semantics via forgetful logics. Logical Methods
in Computer Science, 12(4), 2016. doi:10.2168/LMCS-12(4:10)2016.

31 Anders Kock. Monads on symmetric monoidal closed categories. Arch. der Math., 21(1):1–10,
1970. doi:10.1007/BF01220868.

32 Barbara König and Sebastian Küpper. Generic Partition Refinement Algorithms for Coalgebras
and an Instantiation to Weighted Automata. In Theory Comput. Syst., pages 311–325, 2014.
doi:10.1007/978-3-662-44602-7_24.

33 Dexter Kozen. A Completeness Theorem for Kleene Algebras and the Algebra of Regular
Events. Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

34 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Mathematical
Structures in Computer Science, 20(2):285–318, 2010. doi:10.1017/S0960129509990399.

35 Stephen Lack and Jiří Rosickỳ. Notions of Lawvere theory. Appl. Categ. Struct., 19(1):363–391,
2011.

36 Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer, 2013.
37 Michael R. Laurence and Georg Struth. Completeness Theorems for Bi-Kleene Algebras

and Series-Parallel Rational Pomset Languages. In RAMiCS, pages 65–82, 2014. doi:
10.1007/978-3-319-06251-8_5.

38 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theoretical Computer Science, 237(1):347–380, 2000. doi:10.1016/S0304-3975(00)00031-1.

39 Philip S. Mulry. Lifting Theorems for Kleisli Categories. In MFPS, pages 304–319, 1993.
doi:10.1007/3-540-58027-1_15.

40 Jean Éric Pin. Mathematical Foundations of Automata Theory. Version of March 13, 2019.
41 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge

University Press, 2013.
42 Damien Pous and Davide Sangiorgi. Advanced Topics in Bisimulation and Coinduction, chapter

Enhancements of the coinductive proof method. Cambridge University Press, 2011.
43 Jan J. M. M. Rutten. Automata and Coinduction (An Exercise in Coalgebra). In CONCUR,

pages 194–218, 1998. doi:10.1007/BFb0055624.
44 Yasubumi Sakakibara. Learning context-free grammars from structural data in polynomial

time. Theoretical Computer Science, 76(2-3):223–242, 1990.
45 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gener-

alizing determinization from automata to coalgebras. Logical Methods in Computer Science,
9(1), 2013. doi:10.2168/LMCS-9(1:9)2013.

46 Thorsten Wißmann, Stefan Milius, Shin-ya Katsumata, and Jérémy Dubut. A Coalgebraic
View on Reachability. arXiv e-prints, January 2019. arXiv:1901.10717.

A Proofs for Section 5

In the proofs below, we will use the following basic adjunction properties, in particular for
the adjunction F a U : C� EM(T) with adjoint transpose (−)]:

The transpose f] : FA→ B for f : A→ UB in C can be defined as f] = y ◦ Tf , where y
is the T -algebra structure on Y .
For all f : X → UY and g : UY → UZ in C we have U(g]) ◦ Tf = U((g ◦ f)]).
We have U(η]X) = idTX .

We need the following additional lemmas in the proofs below.

https://doi.org/10.1017/S0004972700006353
https://doi.org/10.2168/LMCS-12(4:10)2016
https://doi.org/10.1007/BF01220868
https://doi.org/10.1007/978-3-662-44602-7_24
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1017/S0960129509990399
https://doi.org/10.1007/978-3-319-06251-8_5
https://doi.org/10.1007/978-3-319-06251-8_5
https://doi.org/10.1016/S0304-3975(00)00031-1
https://doi.org/10.1007/3-540-58027-1_15
https://doi.org/10.1007/BFb0055624
https://doi.org/10.2168/LMCS-9(1:9)2013
http://arxiv.org/abs/1901.10717

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:19

I Lemma A.1. If f : A→ B and h : A→ C in EM(T) are such that there exists g : UB →
UC in C with g ◦ f = h and Tf is an epi, then g is a T -algebra homomorphism B → C.

Proof. Let α : TA→ A, β : TB → B, and γ : TC → C be the respective T -algebra structures
on A, B, and C. By commutativity of

TA TB

A TC

TB B C

Tf

Th
α

Tf

Tg

hf γ

β g

and Tf being an epi, we directly conclude that g is a T -algebra homomorphism B → C. J

I Lemma A.2. Given a language L and q1, q2 : S → TI making the diagram below on the
left commute, the diagram on the right commutes.

TS TTI

TI

TTI TI O

Tq2

Tq1

µ

L
µ L

TTS TTTI TTI

TTTI TI

TTI TI O

TTq2

TTq1

Tµ

µ

Tµ L
µ L

Furthermore, if (q1, q2) is a reflexive pair, then so is (µI ◦ Tq1, µI ◦ Tq2).

Proof. We extend the assumption to the following commutative diagram.

TTS TTTI TTI

TS TTI

TTTI TTI TI

TTI TI O

TTq2

µ

TTq1

1

1

Tµ

µ

µ
Tq2

Tq1
µ

2

Tµ

µ

µ
L

µ
2

L

1 naturality of µ
2 monad law

As for reflexivity, (µI ◦ Tq1, µI ◦ Tq2) is the composition of the reflexive pairs (µI , µI) and
(Tq1, T q2). J

I Lemma 5.4. Suppose T maps reflexive coequalisers to epimorphisms. If i : B → UC is
such that U(i]) reflexively coequalises q1, q2 : A → TB in C, then i] reflexively coequalises
q]1, q

]
2 : FA→ FB.

Proof. For k ∈ {1, 2} we have U(i] ◦ q]k) ◦ ηA = rch ◦ U(q]k) ◦ ηA = rch ◦ qk, so by U(i])
coequalising q1 and q2 we have i] ◦ q]1 = i] ◦ q]2. If a T -algebra homomorphism f : TB → Z is
such that f ◦ q]1 = f ◦ q]2, then

Uf ◦ q1 = Uf ◦ U(q]1) ◦ ηA = Uf ◦ U(q]2) ◦ ηA = Uf ◦ q2,

which because U(i]) coequalises q1 and q2 yields a unique function u : UC → UZ such that
u◦ rch = f . Remains to show that u is a T -algebra homomorphism. Note that since U(i]) is a
reflexive coequaliser, TU(i]) is an epi by assumption on T . Precomposing u with U(i]) yields
the T -algebra homomorphism f , so by TU(i]) being an epi and Lemma A.1 we conclude u is
a T -algebra homomorphism C → Z. Reflexivity of the pair follows from Lemma 5.11. J

CALCO 2019

6:20 Tree Automata as Algebras: Minimisation and Determinisation

I Proposition 5.7. For C = Set and T any finitary monad, every language L : TI → O has
a Nerode equivalence given by

R = {(u, v) ∈ TI × TI | L ◦ µ ◦ T [idTI , 1u] = L ◦ µ ◦ T [idTI , 1v] : T (TI + 1)→ O}

with the corresponding projections p1, p2 : R→ TI.

Proof. For each subset X ⊆ R, we define pX : R→ TI by

pX(r) =
{
p1(r) if r 6∈ X
p2(r) if r ∈ X.

We have Tp1 = Tp∅ by definition. Consider any t ∈ TR and let a finite E ⊆ R with inclusion
map e : E → R and t′ ∈ TE be such that T (e)(t′) = t. These exist because T is finitary. We
will show by induction on E that

(L ◦ µ ◦ Tp∅)(t) = (L ◦ µ ◦ TpE)(t). (3)

The case where E = ∅ is clear, so assume E = E′ ∪ {z} with z 6∈ E′ and (3) holds when E′
is substituted for E. We fix the singleton 1 = {�} and define d : R→ TI + 1 by

d(r) =


(κ1 ◦ p1)(r) if r 6∈ E
(κ1 ◦ p2)(r) if r ∈ E′

κ2(�) if r = z,

where κ1 and κ2 are the coproduct injections. By this definition, we have [idTI , 1p1(z)]◦d = pE′

and [idTI , 1p2(z)] ◦ d = pE , so

(L ◦ µ ◦ Tp∅)(t) = (L ◦ µ ◦ TpE′)(t) (induction hypothesis)
= (L ◦ µ ◦ T ([idTI , 1p1(z)] ◦ d))(t)
= (L ◦ µ ◦ T ([idTI , 1p2(z)] ◦ d))(t) (definition of R)
= (L ◦ µ ◦ TpE)(t),

thus concluding the proof of (3). Now Tp1 = Tp∅ by definition and

TpE(t) = T (pE ◦ e)(t′) = T (p2 ◦ e)(t′) = Tp2(t),

from which we find that (L◦µ◦Tp1)(t) = (L◦µ◦Tp∅)(t) = (L◦µ◦TpE)(t) = (L◦µ◦Tp2)(t).
As this argument works for any t ∈ TR, we have L ◦ µ ◦ Tp1 = L ◦ µ ◦ Tp2.

Now consider any set S with q1, q2 : S → TI making

TS TTI

TI

TTI TI O

Tq2

Tq1

µ

L
µ L

(4)

commute, and assume q1 and q2 have a common section j : TI → S. We define u : S → R by
u(s) = (q1(s), q2(s)). To see that this is indeed an element of R, note that for k ∈ {1, 2},

L ◦ µ ◦ T [idTI , 1qk(s)] = L ◦ µ ◦ T [idTI , qk ◦ 1s]
= L ◦ µ ◦ T [qk ◦ j, qk ◦ 1s] (section)
= L ◦ µ ◦ Tqk ◦ T [j, 1s],

G. van Heerdt, T. Kappé, J. Rot, M. Sammartino, and A. Silva 6:21

and therefore L ◦ µ ◦ T [idTI , 1q1(s)] = L ◦ µ ◦ T [idTI , 1q2(s)] follows from (4). By definition, u
is the unique map making the diagram below commute.

S

TI R TI

q1
u

q2

p1 p2

J

I Lemma 5.8. If C has coproducts, then for any Nerode equivalence (R, p1, p2) there exists
a unique T -algebra structure u : TR → R making p1 and p2 T -algebra homomorphisms
(R, u)→ (TI, µ) that have a common section.
Proof. Let L : TI → O be a language with Nerode equivalence (R, p1, p2). Then (p1, p2)
is a reflexive pair by the Nerode equivalence property, since (idTI , idTI) is a reflexive pair
trivially satisfying the Nerode equivalence condition. We apply Lemma A.2 to obtain from
the Nerode equivalence property a unique morphism r : TR→ R making the diagram below
commute.

TTI TR TTI

TTI R TI

µ

Tp1 Tp2

r µ

p1 p2

(5)

We need to show that (R, r) is a T -algebra. The first commutative diagram below shows
that r ◦ ηR preserves p1 and p2, so since idR also does this we must have r ◦ ηR = idR by the
uniqueness property of the Nerode equivalence.

R

TI TI

TTI TR TTI

TI R TI

p1 p2

η

η

2

1

η

2

1

µ (5)

Tp1 Tp2

r
µ(5)

p1 p2

1 monad law
2 naturality of η
3 naturality of µ

TTTI TTR TTTI

TTI TR TTI

TI R TI

Tµ (5)

TTp1 TTp2

Tr Tµ(5)

µ (5)

Tp1 Tp2

r µ(5)
p1 p2

TTTI TTR TTTI

TTI TTI TR TTI TTI

TI R TI

Tµ
µ 3

TTp1 TTp2

µ Tµ
µ3

µ

1

µ (5)

Tp1 Tp2

r
µ

1

(5) µ

p1 p2

As for the other two, we use a double application of Lemma A.2 to see that the pair
(µ ◦Tµ ◦TTp1, µ ◦Tµ ◦TTp2) satisfies the Nerode equivalence conditions. Commutativity of
the two diagrams then shows that both r ◦ Tr and r ◦ µ are the unique map commuting with
the pairs (µ ◦ Tµ ◦ TTp1, µ ◦ Tµ ◦ TTp2) and (p1, p2), so they must be equal and (TR, r) is
a T -algebra.

It remains to show that p1 and p2 have a common section in EM(T). To this end, note that
([ηI , idTI], [ηI , idTI]) is a reflexive pair trivially satisfying the Nerode equivalence condition.
Thus, we obtain by the Nerode equivalence property a unique morphism u : I + TI → R

making

I + TI

TI R TI

[η,id]
u

[η,id]

p1 p2

CALCO 2019

6:22 Tree Automata as Algebras: Minimisation and Determinisation

commute. Then for k ∈ {1, 2},

pk ◦ (u ◦ κ1)] = (pk ◦ u ◦ κ1)] = (pk ◦ [ηI , idTI])] = η]I = id(TI,µ). J

I Lemma 5.11. If q1, q2 : A→ TB is a reflexive pair in C, then so is (q]1, q
]
2) in EM(T).

Proof. Assume j : TB → A is the common section of q1 and q2. Then, for k ∈ {1, 2},

q]k ◦ (ηA ◦ j ◦ ηB)] = U((U(q]k) ◦ ηA ◦ j ◦ ηB)
]
) = U((qk ◦ j ◦ ηB)]) = U(η]B) = idTB . J

Coalgebraic Geometric Logic
Nick Bezhanishvili
Institute of Logic, Language and Computation, University of Amsterdam, The Netherlands
n.bezhanishvili@uva.nl

Jim de Groot
Department of Engineering and Computer Science, The Australian National University,
Canberra, Australia
jim.degroot@anu.edu.au

Yde Venema
Institute of Logic, Language and Computation, University of Amsterdam, The Netherlands
y.venema@uva.nl

Abstract
Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the
language of propositional geometric logic. Models for this logic are based on coalgebras for an
endofunctor T on some full subcategory of the category Top of topological spaces and continuous
functions. We compare the notions of modal equivalence, behavioural equivalence and bisimulation
on the resulting class of models, and we provide a final object for the corresponding category.
Furthermore, we specify a method of lifting an endofunctor on Set, accompanied by a collection of
predicate liftings, to an endofunctor on the category of topological spaces.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Coalgebra, Geometric Logic, Modal Logic, Topology

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.7

Related Version A report version of the paper is available at https://arxiv.org/abs/1903.08837.1

Acknowledgements The authors want to express their gratitude to the anonymous referees for many
constructive and helpful comments.

1 Introduction

Propositional geometric logic arose at the interface of (pointfree) topology, logic and theoret-
ical computer science as the logic of finite observations [1, 28]. Its language is constructed from
a set of proposition letters by applying finite conjunctions and arbitrary disjunctions, these
being the propositional operations preserving the property of finite observability. Through
an interesting topological connection, formulas of geometric logic can be interpreted in the
frame of open sets of a topological space. Central to this connection is the well-known
adjunction between the category Frm of frames and frame morphisms and the category Top
of topological spaces and continuous maps, which restricts to several interesting Stone-type
dualities [15].

Coalgebraic logic is a framework in which generalised versions of modal logics are developed
parametric in the signature of the language and a functor T ∶ C→ C on some base category
C. With classical propositional logic as base logic, two natural choices for the base category
are Set, the category of sets and functions, and Stone, the category of Stone spaces and
continuous functions, i.e. the topological dual to the algebraic category of Boolean algebras.

1 The presented material originates from the master’s thesis of the second author, supervised by the first
and third author [11].

© Nick Bezhanishvili, Jim de Groot, and Yde Venema;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.bezhanishvili@uva.nl
https://orcid.org/0000-0003-1375-6758
mailto:jim.degroot@anu.edu.au
mailto:y.venema@uva.nl
https://doi.org/10.4230/LIPIcs.CALCO.2019.7
https://arxiv.org/abs/1903.08837
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Coalgebraic Geometric Logic

Coalgebraic logic for endofunctors on Set has been well investigated and still is an active
area of research, see e.g. [8, 20]. In this setting, modal operators can be defined using the
notion of relation lifting [22] or predicate lifting [23]. Coalgebraic logic in the category of
Stone coalgebras has been studied in [19, 13, 9], and there is a fairly extensive literature on
the design of a coalgebraic modal logic based on a general Stone-type duality (or adjunction),
see for instance [7] and references therein.

In this paper we investigate some links between coalgebraic logic and geometric logic.
That is, we shall use methods from coalgebraic logic to introduce modal operators to the
language of geometric logic, with the intention of studying interpretations of these logics
in certain topological coalgebras. Note that extensions of geometric logic with the basic
modalities ◻ and ◇, which are closely related to the topological Vietoris construction, have
received much attention in the literature, see [28] for some early history. A first step towards
developing coalgebraic geometric logic was taken in [27], where a method is explored to lift
a functor on Set to a functor on the category KHaus of compact Hausdorff spaces, and
the connection is investigated between the lifted functor and a relation-lifting based “cover”
modality.

Our aim here is to develop a framework for the coalgebraic geometric logics that arise if
we extend geometric logic with modalities that are induced by appropriate predicate liftings.
Guided by the connection between geometric logic and topological spaces, we choose the
base category of our framework to be Top itself, or one of its full subcategories such as Sob
(sober spaces), KSob (compact sober spaces) or KHaus (compact Hausdorff spaces). On this
base category C we then consider an arbitrary endofunctor T which serves as the type of
our topological coalgebras. Furthermore, we shall see that if we want our formulas to be
interpreted as open sets of the coalgebra carrier, we need the predicate liftings that interpret
the modalities of the language to satisfy some natural openness condition. Summarizing,
we shall study the coalgebraic geometric logic induced by (1) a functor T ∶ C→ C, where C
is a full subcategory of Top, and (2) a set Λ of open predicate liftings for T. As running
examples we take the combination of the basic modalities for the Vietoris functor, and that
of the monotone box and diamond modalities for various topological manifestations of the
monotone neighborhood functor on Set. The structures providing the semantics for our
coalgebraic geometric logics are the T-models consisting of a T-coalgebra together with a
valuation mapping proposition letters to open sets in the coalgebra carrier.

The main results that we report on here are the following:

In Section 4, we construct a final object in the category of T-models, where T is an
endofunctor on Top which preserves sobriety and admits a Scott-continuous, characteristic
geometric modal signature.

After that, in Section 5 we adapt the method of [17], in order to lift a Set-functor together
with a collection of predicate liftings to an endofunctor on Top. We obtain the Vietoris
functor and monotone functor on KHaus as restrictions of such lifted functors.

Finally, in Section 6 we transfer the notion of Λ-bisimilarity from [10, 2] to our setting,
and we compare this to geometric modal equivalence, behavioural equivalence and Aczel-
Mendler bisimilarity. Our main finding is that on the categories Top, Sob and KSob, the
first three notions coincide, provided Λ and T meet some reasonable conditions.

We finish the paper with listing some questions for further research.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:3

2 Preliminaries

We briefly fix notation and review some preliminaries.

Categories and functors

We use a bold font for categories. We assume familiarity with the following categories:
Set is the category of sets and functions;
Top is the category of topological spaces and continuous functions;
KHaus and Stone are the full subcategories of Top whose objects are compact Hausdorff
spaces and Stone spaces respectively;
BA is the category of Boolean algebras and Boolean algebra homomorphisms.

Categories can be connected by functors. We use a sans serif font for functors. In particular,
the following functors are regularly used in this paper:

U ∶ Top → Set is the forgetful functor sending a topological space to its underlying set.
The functor U restricts to every subcategory of Top, in which case we shall abuse notation
and also call it U;
P ∶ Set→ Set and P̆ ∶ Setop → Set are the covariant and contravariant powerset functor
respectively;
Q ∶ Setop → BA sends a set to its Boolean powerset algebra and a function to the inverse
image map viewed as morphism in BA;
Ω ∶ Top→ Set sends a topological space to the set of opens.

More categories and functors will be defined along the way. We use the symbol ≡ for
categorical equivalence.

Coalgebra

Let C be a category and T an endofunctor on C. A T-coalgebra is a pair (X,γ) where X is
an object in C and γ ∶X → TX is a morphism in C. A T-coalgebra morphism between two
T-coalgebras (X,γ) and (X ′,γ′) is a morphism f ∶ X → X ′ in C satisfying γ′ ○ f = Tf ○ γ.
The collection of T-coalgebras and T-coalgebra morphisms forms a category, which we shall
denote by Coalg(T). The category C is called the base category of Coalg(T).

I Example 1 (Kripke frames). The category of Kripke frames and bounded morphisms is
isomorphic to Coalg(P) [20].

I Example 2 (Monotone neighbourhood frames). Let D ∶ Set→ Set be the functor given on
objects by DX = {W ⊆ PX ∣ if a ∈W and a ⊆ b then b ∈W}, for X a set. For a morphism
f ∶ X → X ′ define Df ∶ DX → DX ′ ∶ W ↦ {a′ ∈ PX ′ ∣ f−1(a′) ∈ W}. Then the category of
monotone frames a bounded morphisms is isomorphic to Coalg(D) [6, 12, 13].

Coalgebraic logic for Set-coalgebras

Let T be a Set-functor and Φ a set of proposition letters. A T-model is a triple (X,γ,V) where
(X,γ) is a T-coalgebra and V ∶ Φ→ PX is a valuation of the proposition letters. An n-ary
predicate lifting for T is a natural transformation λ ∶ P̆n → P̆ ○T, where P̆n denotes the n-fold
product of the contravariant powerset functor. A predicate lifting is called monotone if for all
setsX and subsets a1, . . . ,an, b ⊆X we have λX(a1, . . . ,ai, . . . ,an) ⊆ λX(a1, . . . ,ai∪b, . . . ,an).
For a set Λ of predicate liftings for T, define the language ML(Λ) by

ϕ ∶∶= p ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ♡λ(ϕ1, . . . ,ϕn),

CALCO 2019

7:4 Coalgebraic Geometric Logic

where p ∈ Φ and λ ∈ Λ is n-ary. The semantics of ϕ ∈ ML(Λ) on a T-model X = (X,γ,V) is
given recursively by JpKX = V (p), Jϕ1 ∧ ϕ2KX = Jϕ1KX ∩ Jϕ2KX, J¬ϕKX =X ∖ JϕKX, and

J♡λ(ϕ1, . . . ,ϕn)KX = γ−1(λ(Jϕ1KX, . . . , JϕnKX)),

where p ∈ Φ and λ ranges over Λ.

I Example 3 (Kripke models). Consider for P-models the predicate liftings λ◻,λ◇ ∶ P̆→ P̆○P
given by λ◻X(a) = {b ∈ PX ∣ b ⊆ a} and λ◇X(a) = {b ∈ PX ∣ b ∩ a ≠ ∅}. Then λ◻ and λ◇ yield
the usual Kripke semantics of ◻ and ◇.

I Example 4 (Monotone neighbourhood frames). Monotone neighbourhood models are
precisely D-models, where D is the functor defined in Example 2. The usual semantics for
the box and diamond in this setting can be obtained from the predicate liftings given by

λ◻X(a) = {W ∈ DX ∣ a ∈W}, λ◇X(a) = {W ∈ DX ∣X ∖ a ∉W}. (1)

We refer to [20] for many more examples of coalgebraic logic for Set-functors.

Frames and spaces

A frame is a complete lattice F in which for all a ∈ F and S ⊆ F we have a ∧⋁S = ⋁{a ∧ s ∣
s ∈ S}. A frame homomorphism is a function between frames that preserves finite meets and
arbitrary joins. For a, b ∈ F we say that a is well inside b, notation: a 0 b, if there is a c ∈ F
such that c ∧ a = � and c ∨ b = ⊺. An element a ∈ F is called regular if a = ⋁{b ∈ F ∣ b 0 a}
and a frame is called regular if all of its elements are regular. The negation of a ∈ F is
defined as ∼a = ⋁{b ∈ F ∣ a ∧ b = �} and we have a 0 b iff ∼a ∨ b = ⊺. A frame is said to be
compact if ⋁S = ⊺ implies that there is a finite subset S′ ⊆ S such that ⋁S′ = ⊺. Frames can
be presented by generators and relations, and any presentation by generators and relations
presents a unique frame. For details see [15, 28].
I Remark 5. We will regularly define a frame homomorphism f ∶ F → F ′ from a frame F
presented by ⟨G,R⟩ to some frame F ′. It then suffices to give an assignment f ′ ∶ G → F ′

such that whenever x = x′ is a relation in R, f(x) = f(x′) in F .
The collection of open sets of a topological space X forms a frame, denoted opnX . A

continuous map f ∶ X → X ′ induces opnf = f−1 ∶ opnX ′ → opnX and with this definition opn
is a contravariant functor Top→ Frm. A frame is called spatial if it isomorphic to opnX for
some topological space X .

A point of a frame F is a frame homomorphism p ∶ F → 2, where 2 = {⊺,�} is the
two-element frame. Let ptF be the collection of points of F endowed with the topology
{ã ∣ a ∈ F}, where ã = {p ∈ ptF ∣ p(a) = ⊺}. For a frame homomorphism f ∶ F → F ′

define ptf ∶ ptF ′ → ptF by p ↦ p ○ f . The assignment pt defines a contravariant functor
Frm→ Top. A topological space that arises as the space of points of a lattice is called sober.
The sobrification of a topological space X is pt(opnX).

We denote by Sob and KSob the full subcategories of Top whose objects are sober spaces
and compact sober spaces, respectively. Where Frm is the category of frames and frame
homomorphisms, SFrm, KSFrm and KRFrm are the full subcategories of Frm whose objects
are spatial frames, compact spatial frames and compact regular frames, respectively. The
functor Z ∶ Frm → Set is the forgetful functor sending a frame to the underlying set, and
restricts to every subcategory of Frm. Note that Ω = Z ○ opn.

I Fact 6. The functor pt is a right adjoint to opn. This adjunction restricts to the duality
SFrm ≡ Sobop, which in turn restricts to KSFrm ≡ KSobop and KRFrm ≡ KHausop.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:5

For a more thorough exposition of frames and spaces, and a proof of the statements in
Fact 6 we refer to section C1.2 of [16]. We explicitly mention one isomorphism which is part
of this duality, for we will encounter it later on.
I Remark 7. Let X be a sober space. Then Fact 6 entails that there is an isomorphism
X → pt(opnX). This isomorphism sends x to px, where px ∶ opnX → 2 is the point given by
px(a) = ⊺ iff x ∈ a, for all x ∈ X and a ∈ ΩX .

3 Logic for topological coalgebras

Although not all of our results can be proved for every full subcategory of Top, we will give
the basic definitions in full generality. To this end, we let C be some full subcategory of Top
and define coalgebraic logic over base category C. In particular C = KHaus and C = Sob will
be of interest. Throughout this section T is an arbitrary endofunctor on C. Recall that Φ is
an arbitrary but fixed set of proposition letters. We commence with defining the topological
version of a predicate lifting, called an open predicate lifting.

I Definition 8. An open predicate lifting for T is a natural transformation

λ ∶ Ωn → Ω ○T.

An open predicate lifting is called monotone in its i-th argument if for every X ∈ C and
all a1, . . . ,an, b ∈ ΩX we have λX (a1, . . . ,ai, . . . ,an) ⊆ λX (a1, . . . ,ai ∪ b, . . . ,an), and mono-
tone if it is monotone in every argument. It is called Scott-continuous in its i-th argu-
ment if for every X and every directed set A ⊆ ΩX we have λX (a1, . . . ,⋃A, . . . ,an) =
⋃b∈A λX (a1, . . . , b, . . . ,an) and Scott-continuous if it is Scott-continuous in every argument.

A collection of open predicate liftings for T is called a geometric modal signature for
T. A geometric modal signature for a functor T is called monotone if every open predicate
lifting in it is monotone, Scott-continuous if every predicate lifting in it is Scott-continuous,
and characteristic if for every topological space X in C the collection {λX (a1, . . . ,an) ∣ λ ∈
Λ n-ary,ai ∈ ΩX} is a sub-base for the topology on TX .

I Remark 9. Using the fact that for any two (open) sets a, b the set {a,a ∪ b} is directed, it
is easy to see that Scott-continuity implies monotonicity.

Scott-continuity will play a rôle in Section 4, where it is used to show that the collection
of formulas modulo (semantic) equivalence is a set, rather than a proper class.

Let S be the Sierpinski space, i.e. the two-element set 2 = {0, 1} topologised by {∅,{1}, 2}.
For a topological space X and a ⊆ UX let χa ∶ X → S be the characteristic map (i.e. χa(x) = 1
iff x ∈ a). Note that χa is continuous if and only if a ∈ ΩX . Analogously to predicate liftings
for Set-functors [25, Proposition 43], one can classify n-ary predicate liftings as open subsets
of TSn. This elucidates the analogy with predicate liftings for Set-functors.

I Proposition 10. Suppose S ∈ C, then there is a bijective correspondence between n-ary
open predicate liftings and elements of ΩTSn. This correspondence is given as follows:
To an open predicate lifting λ assign the set λSn(π−1

1 ({1}), . . . ,π−1
n ({1})) ∈ ΩTSn, where

πi ∶ Sn → S be the i-th projection, and conversely, for c ∈ ΩTSn define λc ∶ Ωn → ΩT by
λcX (a1, . . . ,an) = (T⟨χa1 , . . . ,χan⟩)−1(c).

I Definition 11. The language induced by a geometric modal signature Λ is the collection
GML(Λ) of formulas defined by the grammar

ϕ ∶∶= ⊺ ∣ p ∣ ϕ1 ∧ ϕ2 ∣ ⋁
i∈I

ϕi ∣ ♡λ(ϕ1, . . . ,ϕn),

CALCO 2019

7:6 Coalgebraic Geometric Logic

where p ranges over the set Φ of proposition letters, I is some index set and λ ∈ Λ is n-ary.
Abbreviate � ∶= ⋁∅. We call a formula in GML(Λ) finitary if it does not involve any infinite
disjunctions.

The language GML(Λ) is interpreted in so-called geometric T-models.

I Definition 12. A geometric T-model is a triple X = (X ,γ,V) where (X ,γ) is a T-coalgebra
and V ∶ Φ→ ΩX is a valuation of the proposition letters. A map f ∶ X → X ′ is a geometric
T-model morphism from (X ,γ,V) to (X ′,γ′,V ′) if f is a coalgebra morphism between the
underlying coalgebras and f−1 ○ V ′ = V . The collection of geometric T-models and geometric
T-model morphisms forms a category, which we denote by Mod(T).

The semantics of ϕ ∈ GML(Λ) on such a model X = (X ,γ,V) is given recursively by

J⊺KX =X, JpKX = V (p), Jϕ ∧ ψKX = JϕKX ∩ JψKX, J⋁
i∈I

ϕiKX = ⋃
i∈I

JϕiKX,

J♡λ(ϕ1, . . . ,ϕn)KX = γ−1(λX (Jϕ1KX, . . . , JϕnKX)).

We write X,x
 ϕ iff x ∈ JϕKX. Two states x and x′ are called modally equivalent if they
satisfy the same formulas, notation: x ≡Λ x

′.

The following proposition shows that morphisms preserve truth. Its proof is similar to
the proof of theorem 6.17 in [26].

I Proposition 13. Let Λ be a geometric modal signature for T. Let X = (X ,γ,V) and
X′ = (X ′,γ′,V ′) be geometric T-models and let f ∶ X→ X′ be a geometric T-model morphism.
Then for all ϕ ∈ GML(Λ) and x ∈ X we have X,x
 ϕ iff X′, f(x)
 ϕ.

We state the notion of behavioural equivalence for future reference.

I Definition 14. Let X = (X ,γ,V) and X′ = (X ′,γ′,V ′) be two geometric T-models and
x ∈ X , x′ ∈ X ′ two states. We say that x and x′ are behaviourally equivalent in Mod(T)
(x ≃Mod(T) x

′) if there exists a cospan X Y X′f f ′ in Mod(T) such that f(x) = f ′(x′).

As an immediate consequence of Proposition 13 we find that behavioural equivalence
implies modal equivalence. Let us give some concrete examples of functors.

I Example 15 (Trivial functor). Let 2 = {0, 1} be topologised by {∅,{0, 1}} (the trivial
topology). Define the functor F ∶ Top → Top by FX = 2 for every X ∈ Top and Ff = id2,
the identity map on 2, for every continuous function f . This is clearly a functor. Consider
the open predicate lifting λ ∶ Ω→ Ω ○ F given by λX (a) = U2 for all a ∈ ΩX . For a F-model
X = (X ,γ,V) we then have X,x
 ♡λϕ iff γ(x) ∈ λ(JϕKX) iff JϕKX ∈ ΩX . So ♡λ = ⊺.

Next we have a look at the Vietoris functor on KHaus. Coalgebras for this functor have
also been studied in [3].

I Example 16 (Vietoris functor). For a compact Hausdorff space X , let VkhX be the collection
of closed subsets of X topologised by the subbase

�a ∶= {b ∈ VkhX ∣ b ⊆ a}, ⟐a ∶= {b ∈ VkhX ∣ a ∩ b ≠ ∅},

where a ranges over ΩX . For a continuous map f ∶ X → X ′ define Vkhf ∶ VkhX → VkhX ′

by Vkhf(a) = f[a]. If X is compact Hausdorff, then so is VkhX [21, Theorem 4.9], and if
f ∶ X → X ′ is a continuous map between compact Hausdorff spaces, then Vkhf is well defined
and continuous [19, Lemma 3.8], so Vkh defines an endofunctor on KHaus.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:7

Let X = (X ,γ,V) be a Vkh-model. The natural transformation λ◻ defined by

λ◻X ∶ ΩX → Ω(VkhX) ∶ a↦ {b ∈ VkhX ∣ b ⊆ a},

where X ∈ Top, is such that X,x
 ♡λ◻ϕ iff X,x
 ◻ϕ (with the usual interpretation of ◻).
Similarly λ◇X ∶ ΩX → Ω ○ VkhX , given by λ◇X (a) = ⟐a, yields the usual semantics of the
diamond modality.

The functor defined in the next example generalises the monotone functor on Stone [13].

I Example 17 (Monotone functor). For a compact Hausdorff space X , let DkhX be the
collection of sets W ⊆ PX such that u ∈W iff there exists a closed c ⊆ u such that every open
superset of c is in W . Endow DkhX with the topology generated by the subbase

}a ∶= {W ∈ DkhX ∣ a ∈W}, }a ∶= {W ∈ DkhX ∣X ∖ a ∉W},

where a ranges over ΩX . For continuous functions f ∶ X → X ′ define Dkhf ∶ DkhX → DkhX ′ ∶
W ↦ {a ∈ PX ∣ f−1(a) ∈ W}. It is proven in the report version of the current paper [4]
that this defines an endofunctor on KHaus which naturally extends the monotone functor
on Stone [13, 9]. The open predicate liftings λ◻,λ◇ ∶ Ω → ΩT defined by λ◻X (a) = }a and
λ◇X (a) = }a yield the usual box and diamond semantics of monotone modal logic [12].

In Section 6 it turns out to be useful to have a slightly stronger notion of open predicate
liftings, called strong open predicate liftings, as this allows us to prove that behavioural
equivalence implies so-called Λ-bisimilarity. Whereas the action of open predicate liftings is
defined only on open subsets, a strong open predicate lifting acts on every subset of elements
of a topological space. Recall that U ∶ Top→ Set is the forgetful functor.

I Definition 18. A strong open predicate lifting for T ∶ C → C is a natural transformation
µ ∶ (P̆ ○U)n → P̆ ○U ○T such that for all X ∈ C and a1, . . . ,an ∈ ΩX the set λX (a1, . . . ,an) is
open in TX . Monotonicity of strong open predicate liftings is defined in the standard way.

We call an open predicate lifting (from Definition 11) strong if it is the restriction of some
strong open predicate lifting and strongly monotone if it is the restriction of a monotone
strong open predicate lifting.

Evidently, every strong open predicate lifting restricts to an open predicate lifting, and
it is only this weaker notion of open predicate lifting that has an effect on the semantics.
Our notion of strong open predicate lifting is similar to the notion of a topological predicate
lifting for endofunctors on Stone, which were introduced in [9].

I Example 19. The predicate lifting corresponding to the box modality from Example 16
is strong, for it is the restriction of µ ∶ U → U ○ Vkh given by µX (u) = {b ∈ VkhX ∣ b ⊆ u}.
Likewise, all other predicate liftings from Examples 15, 16 and 17 are strong as well.

We devote the remainder of this section to investigating strong open predicate liftings.
Recall from Example 15 that 2 denotes the two-element set with the trivial topology.
We claim that natural transformations µ ∶ (P̆ ○ U)n → P̆ ○ U ○ T correspond one-to-one
with elements of P̆UT2, provided 2 ∈ C: To a natural transformation µ associate the set
µ2(p−1

1 ({1}), . . . ,p−1
n ({1})), where pi ∶ 2n → 2 denotes the i-th projection. Conversely, for

c ∈ P̆UT2 define µc by µcX (a1, . . . ,an) = (T⟨χ′a1
, . . . ,χ′an

⟩)−1(c), where X is a topological
space, a ⊆ UX and χ′a ∶ X → 2 is the characteristic map. Note that χ′a is continuous regardless
of whether a is open or not, hence T acts on all χ′a. Details of the bijection are left to the
reader.

CALCO 2019

7:8 Coalgebraic Geometric Logic

I Proposition 20. Let T be an endofunctor on C and suppose that C contains the spaces 2
and S. Let s ∶ S → 2 be the identity map and let c ∈ P̆UT2n. The natural transformation µc
is a strong open predicate lifting if and only if (Tsn)−1(c) ⊆ TSn is open.

Proof. We give the proof for the case n = 1, the general case being similar. Left to right
follows from the fact that {1} is open in S, hence µcS({1}) = (Tχ′

{1})−1(c) = (Ts)−1(c) must
be open in TS. For the converse, let X be a topological space and a ∈ ΩX . We need to show
that µcX (a) is open. Since a is open, the characteristic map χa ∶ X → S is continuous and
hence χ′a = s ○ χa. We have

µcX (a) = (Tχ′a)−1(c) (definition of µc)
= (T(s ○ χa))−1(c) (χ′a = s ○ χa)
= (Ts ○Tχa)−1(c) (definition of functors)
= (Tχa)−1 ○ (Ts)−1(c). (definition of inverse)

Since Tχa is continuous and (Ts)−1(c) is assumed to be open in TS, the set µcX (a) is open
in TX . J

The following proposition gives two sufficient conditions on T for its open predicate liftings
to be strong. For a full subcategory C of Top let preC denote the category of topological
spaces in C and (not necessarily continuous) functions.

I Proposition 21. Let T be an endofunctor on C and suppose 2,S ∈ C.
1. If T preserves injective functions then every open predicate lifting for T is strong.
2. If T extends to preC, then every open predicate lifting for T is strong.

Proof. For the first item, let c ∈ ΩTSn determine the n-ary open predicate lifting λc. Since sn
is injective, by assumption Tsn is as well, and hence c = (UTsn)−1((UTsn)[c]). Proposition
20 now implies that µ(UTsn

)[c] is a strong open predicate lifting. It is easy to see that
µ(UTsn

)[c] extends λc, hence the latter is strong.
For the second item we show that, under the assumption, T preserves injective functions.

Let f ∶ X → Y be an injective function in C, then there exists a (not necessarily continuous)
function g ∶ Y → X satisfying g ○ f = idX . Then Tg ○ Tf = T(g ○ f) = T idX = idTX , so Tf
has a (set-theoretic) left-inverse, hence is injective. J

Monotone open predicate lifting for an endofunctor on KHaus are always strong:

I Proposition 22. Let T be an endofunctor on KHaus and Λ a monotone geometric modal
signature for T. Then Λ is strongly monotone.

Proof. Let λ ∈ Λ. We need to show that λ is the restriction of some strong monotone
predicate lifting. Define

λ̃X ∶ P̆nUX → P̆UTX ∶ (b1, . . . , bn) ↦ ⋂{λX (a1, . . . ,an) ∣ ai ∈ ΩX and ai ⊇ bi}.

Monotonicity of λX ensures λ̃X (a) = λX (a) for all a ∈ ΩX and λ̃ is monotone by construction.
So we only need to show that λ̃ is indeed a strong open predicate lifting, i.e. a natural
transformation P̆nUX → P̆UTX . We assume λ to be unary, the general case being similar.

For a continuous map f ∶ X → X ′ between compact Hausdorff spaces we need to show
that λ̃X ○ f−1 = (Tf)−1 ○ λ̃X ′ . Since, by naturality of λ, the right hand side is equal to
⋂{λX (f−1(a′)) ∣ a′ ∈ ΩX ′ and b′ ⊆ a′}, it suffices to show

⋂{λX (c) ∣ c ∈ ΩX and f−1(b′) ⊆ c} = ⋂{λX (f−1(a′)) ∣ a′ ∈ ΩX ′ and b′ ⊆ a′}. (2)

N. Bezhanishvili, J. de Groot, and Y. Venema 7:9

If a′ is an open superset of b′ then clearly f−1(b′) ⊆ f−1(a′). So every element in the
intersection of the right hand side is contained in the one on the left hand side and therefore
we have ⊆ in (2). For the converse, suppose c ∈ ΩX and f−1(b′) ⊆ c. Then the set
a′ = X ′ ∖ f[X ∖ c] is open, contains b′, and satisfies f−1(b′) ⊆ f−1(a′) ⊆ c. Therefore
λX (f−1(a′)) is one of the elements in the intersection on the left hand side of (2). Since
λX (f−1(a′)) ⊆ λX (c) this shows “⊇” in (2). J

4 A final model

We construct a final model in Mod(T) for a functor T where either T is an endofunctor on
Sob, or T is an endofunctor on Top which preserves sobriety. This assumption need not be
problematic: If a functor on Top does not preserve sobriety we can look at its sobrification.
Topological functors which arise as lifts from set functors using the procedure in Section 5
automatically preserve sobriety.

I Assumption. Throughout this section, fix an endofunctor T on Top which preserves
sobriety, and a Scott-continuous characteristic geometric modal signature Λ for T. Recall
that Φ is a set of proposition letters.

I Definition 23. Call two formulas ϕ and ψ equivalent in Mod(T) with respect to Λ,
notation: ϕ ≡T,Λ ψ, if X,x
 ϕ iff X,x
 ψ for all X ∈ Mod(T) and x ∈ X. Denote the
equivalence class of ϕ in GML(Λ) by [ϕ]. Let E = E(T, Λ, Φ) be the collection of formulas
modulo ≡T,Λ.

Recall that a finitary formula is one which does not involve arbitary disjunctions.

I Lemma 24 (Normal form). Under the assumption, every formula is equivalent to a formula
of the form ⋁i∈I ϕi, where all the ϕi are finitary formulas.

Proof. The proof proceeds by induction on the complexity of the formula. Suppose ϕ = ϕ1∨ϕ2.
By induction we may assume that ϕ1 ≡T,Λ ⋁i∈I ψi and ϕ2 ≡T,Λ ⋁j∈J ψj , where all the
ψi and ψj are finitary, and we have ϕ ≡T,Λ ⋁i∈I∪J ψi, as desired. If ϕ = ϕ1 ∧ ϕ2, then
ϕ ≡T,Λ (⋁i∈I ψi) ∧ (⋁j∈J ψj) ≡T,Λ ⋁(i,j)∈I×J ψi ∧ ψj . Lastly, suppose ϕ = ♡λ(⋁i∈I ψi), where
all the ψi are finitary. Then we have ⋁i∈I ψi = ⋁{⋁i∈I′ ψi ∣ I ′ ⊆ I finite} and by construction
the set {J⋁i∈I′KX ∣ I ′ ⊆ I, I ′ finite} is directed for every T-model X = (X ,γ,V). Hence by
Scott-continuity of λ we obtain

λX (J⋁
i∈I

ψiKX) = λX (⋃{J⋁
i∈I′

ψiKX ∣ I ′ ⊆ I finite}) = ⋃{λX (J⋁
i∈I′

ψiKX ∣ I ′ ⊆ I finite}.

Therefore ϕ ≡T,Λ ⋁{♡λ(⋁i∈I ψi) ∣ I ′ ⊆ I finite}, i.e. ϕ is equivalent to an arbitrary disjunction
of finitary formulas. The case for n-ary modalities is similar. This proofs the lemma. J

I Corollary 25. The collection E from Definition 23 is a set.

Proof. This follows immediately from Lemma 24 and the fact that the collection of finitary
formulas is a set. J

I Definition 26. Define disjunction and arbitrary conjunction on E by [ϕ] ∧ [ψ] ∶= [ϕ ∧ ψ]
and ⋁i∈I[ϕi] ∶= [⋁i∈I ϕi]. It is easy to check that E is a frame.

Set L = opn ○ T ○ pt ∶ Frm→ Frm. This functor restricts to an endofunctor on SFrm which
is dual to the restriction of T to Sob. Since Λ is characteristic, the frame LE is generated

CALCO 2019

7:10 Coalgebraic Geometric Logic

by {λX ([̃ϕ1], . . . , [̃ϕn]) ∣ λ ∈ Λ,ϕi ∈ GML(Λ)}. Define an L-algebra structure δ ∶ LE→ E on
generators by

δ ∶ LE→ E ∶ λptE([̃ϕ1], . . . , [̃ϕn]) ↦ [♡λ(ϕ1, . . . ,ϕn)].

To show that δ is well defined it suffices to verify that the images of the generators of E
satisfy the same relations that they satisfy in LE. We refer to the the report version of the
current paper for details. The dual of E will be the topological space underlying the final
model in Mod(T):

I Definition 27. Set Z ∶= ptE and let ζ ∶ Z → TZ be the composition

ptE pt(LE) pt(opn(T(ptE))) T(ptE),ptδ k−1
T(ptE)

where kT(ptE) ∶ T(ptE) → pt(opn(T(ptE))) is the isomorphism given in Remark 7. Together
with the valuation VZ ∶ Φ→ ΩZ ∶ p↦ [̃p], the triple Z = (Z, ζ,VZ) forms a T-model.

For an object Γ ∈ Z, the element (ptδ)(Γ) is the completely prime filter

F = {λ(ϕ̃1, . . . , ϕ̃n) ∈ pt(opn(T(ptE))) ∣ [♡λ(ϕ1, . . . ,ϕn)] ∈ Γ}

in pt(opn(T(ptE))). The element ζ(Γ) is the unique element in T(ptE) corresponding to
F under the isomorphism kT(ptE). By definition of kT(ptE), this is the unique element in
the intersection of {λptE([̃ϕ1], . . . , [̃ϕn]) ∣ [♡λ(ϕ1, . . . ,ϕn)] ∈ Γ}. Moreover, it follows from
the definition of kT(ptE) that [♡λ(ϕ1, . . . ,ϕn)] ∉ Γ implies ζ(Γ) ∉ λptE([̃ϕ1], . . . , [̃ϕn]). The
following lemma follows from the previous discussion and a straightforward induction. Both
Lemma 28 and Proposition 29 are proven in detail in the report version of this paper.

I Lemma 28 (Truth lemma). For all Γ ∈ Z we have Z, Γ
 ϕ iff [ϕ] ∈ Γ.

I Proposition 29. For every geometric T-model X = (X ,γ,V) the map thX ∶ X → Z given
by x↦ {[ϕ] ∈ E ∣ X,x
 ϕ} is a T-model morphism.

The developed theory results in the following theorem.

I Theorem 30. Let T be a sobriety-preserving endofunctor on Top and Λ a Scott-continuous
characteristic geometric modal signature for T. Then Z = (Z, ζ,VZ) is final in Mod(T).

Proof. Proposition 29 states that for every geometric T-model X = (X ,γ,V) there exists a
T-coalgebra morphism thX ∶ X→ Z, so we only need to show that this morphism is unique.
Let f ∶ X→ Z be any coalgebra morphism. Then by Proposition 13 and Lemma 28 we have
[ϕ] ∈ f(x) iff Z, f(x)
 ϕ iff X,x
 ϕ for all x ∈ X , hence f = thX. J

I Theorem 31. Under the assumptions of Theorem 30, we have ≡Λ = ≃Mod(T).

Proof. If x and x′ are behaviourally equivalent, then they are modally equivalent by Propos-
ition 13. Conversely, if they are modally equivalent, then thX(x) = thX′(x′) by construction,
so they are behaviourally equivalent. J

I Remark 32. If T is an endofunctor on Sob rather than Top, the same procedure yields a
final model in Mod(T). In particular, T need not be the restriction of a Top-endofunctor.
However, if T is an endofunctor on KSob or KHaus the procedure above does not guarantee
a final coalgebra in Mod(T); indeed the state space Z of the final coalgebra Z we construct
need not be compact sober or compact Hausdorff. Of course, there may be a different way
to attain similar results for KSob or KHaus. We leave this as an interesting open question.
In Theorem 51 we prove an analog of Theorem 31 for endofunctors on KSob.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:11

5 Lifting functors from Set to Top

In [18, Section 4] the authors give a method to lift a Set-functor T ∶ Set → Set, together
with a collection of predicate liftings Λ for T, to an endofunctor on Stone. We adapt their
approach to obtain an endofunctor T̂Λ on Top. In this section the notation ⋁↑ is used for
directed joins, i.e. joins over directed sets. To define the action of T̂Λ on a topological space
X we take the following steps:
Step 1. Construct a frame ḞΛX of the images of predicate liftings applied to the open sets

of X (viewed simply as subsets of T(UX));
Step 2. Quotient ḞΛX with a suitable relation that ensures ⋁↑b∈Bλ(b) = λ(⋁↑B) whenever

λ is monotone;
Step 3. Employ the functor pt ∶ Frm→ Top to obtain a (sober) topological space.
This is the content of Definitions 33, 35 and 37. Recall that U ∶ Top→ Set is the forgetful
functor and that Q is the contravariant functor sending a set to its Boolean powerset algebra.

I Definition 33. Let T ∶ Set→ Set be a functor and Λ a collection of predicate liftings for
T. We define a contravariant functor ḞΛ ∶ Top→ Frm. For a topological space X let ḞΛX be
the subframe of Q(T(UX)) generated by the set

{λUX (a1, . . . ,an) ∣ λ ∈ Λ n-ary, a1, . . . ,an ∈ ΩX}.

That is, we close this set under finite intersections and arbitrary unions in Q(T(UX)). For a
continuous map f ∶ X → X ′ let ḞΛf ∶ ḞΛX ′ → ḞΛX be the restriction of Q(T(Uf)) to ḞΛX ′.

I Lemma 34. The assignment ḞΛ defines a contravariant functor.

Proof. We need to show that ḞΛ is well defined on morphisms and that it is functorial.
To show that the action of ḞΛ on morphisms is well-defined, it suffices to show that
(ḞΛf)(λUX (a′1, . . . ,a′n)) ∈ ḞΛ(X) for all generators λUX (a′1, . . . ,a′n) of ḞΛX ′, because frame
homomorphisms preserve finite meets and all joins. This holds by naturality of λ:

(ḞΛf)(λUX ′(a1, . . . ,an)) = (Tf)−1(λUX ′(a1, . . . ,an)) = λUX (f−1(a1), . . . , f−1(an)).

By continuity of f we have f−1(ai) ∈ ΩX so the latter is indeed in ḞΛX . Functoriality of ḞΛ
follows from functoriality of Q ○T ○U. J

I Definition 35. Let Λ be a collection of predicate liftings for a set functor T. For X ∈ Top,
let F̂ΛX be the quotient of ḞΛX with respect to the congruence ∼ generated by

⋁↑b∈Bλ(a1, . . . ,ai−1, b,ai+1, . . . ,an) ∼ λ(a1, . . . ,ai−1,⋁↑B,ai+1, . . . ,an)

for all ai ∈ ΩX , B ⊆ ΩX directed, and λ ∈ Λ monotone in its i-th argument. Write
qX ∶ ḞΛX → F̂ΛX for the quotient map and [x] for the equivalence class in F̂ΛX of an
element x ∈ ḞΛX . For a continuous function f ∶ X → X ′ define F̂Λf ∶ F̂ΛX ′ → F̂ΛX ∶
[λUX (a1, . . . ,an)] ↦ [ḞΛ(λUX (a1, . . . ,an))].

Quotienting by the congruence from Definition 35 ensures that the lifted versions of
monotone predicate liftings are Scott-continuous, see Proposition 43 below.

I Lemma 36. The assignment F̂Λ defines a contravariant functor.

CALCO 2019

7:12 Coalgebraic Geometric Logic

Proof. We need to prove functoriality of F̂Λ and that F̂Λf is well defined for every continuous
map f ∶ X → X ′. In order to show that F̂Λ is well defined, it suffices to show that ḞΛf is
invariant under the congruence ∼. If f ∶ X → X ′ is a continuous, then

⋁↑b′∈B(ḞΛf)(λUX ′(a′1, . . . ,a′i−1, b′,a′i+1, . . . ,a′n))
= ⋁↑b′∈B(Tf)−1(λUX ′(a′1, . . . ,a′i−1, b′,a′i+1, . . . ,a′n))
= ⋁↑b′∈BλUX (f−1(a′1), . . . , f−1(a′i−1), f−1(b′), f−1(a′i+1), . . . , f−1(a′n))
∼ λUX (f−1(a′1), . . . , f−1(a′i−1), f−1(⋁↑B), f−1(a′i+1), . . . , f−1(a′n))
= ḞΛf(λUX (a′1, . . . ,a′i−1,⋁↑B,a′i+1, . . . ,a′n))

so ḞΛf is invariant under the congruence. In the ∼-step we use the fact that {f−1(b′) ∣ b′ ∈ B}
is directed in ΩX . Functoriality of F̂Λf follows from functoriality of Q ○T ○U. J

We are now ready to define the topological Kupke-Kurz-Pattinson lift of a functor on
Set together with a collection of predicate liftings, to a functor on Top.

I Definition 37. Define the topological Kupke-Kurz-Pattinson lift (KKP lift for short) of T
with respect to Λ to be the functor

T̂Λ = pt ○ F̂Λ.

This is a functor Top→ Top and since pt lands in Sob it restricts to an endofunctor on Sob.

Let us put our theory into action. For details see the report version of the current paper.

I Example 38 (The monotone functor). Recall the monotone functor D on Set and the
corresponding set of predicate liftings Λ = {λ◻,λ◇} from Examples 2 and 4. It can be seen
that the topological KKP lift D̂Λ of D with respect to Λ restricts to Dkh.

I Example 39 (The Vietoris functor). Likewise, one can show that, when restricted to KHaus,
the topological KKP lift of P with respect to the usual box and diamond lifting coincides
with the Vietoris functor from Example 16.

I Example 40. Not every endofunctor on Top can be obtained as the lift of a Set-functor
with respect to a (cleverly) chosen set of predicate liftings in the sense of Definition 37. A
trivial counterexample is the functor F ∶ Top→ Top from Example 15. For every topological
space X we have FX = 2, which is not a T0 space, hence not a sober space. Therefore F does
not preserve sobriety, while every lifted functor automatically preserves sobriety. Thus F is
not the lift of a Set-functor.

We describe how to lift a predicate lifting to an open predicate lifting. Recall that
Z ∶ Frm→ Set is the forgetful functor which sends a frame to its underlying set.

I Definition 41. Let Λ be a collection of predicate liftings for a functor T ∶ Set → Set. A
predicate lifting λ ∶ P̆n → P̆ ○T in Λ induces an open predicate lifting λ̂ ∶ Ωn → Ω ○ T̂ for T̂ via

ΩnX Z(ḞΛX) Z(F̂ΛX) Ω(pt(F̂ΛX)) = Ω(T̂X).λUX ZqX ZkF̂ΛX

By λUX we actually mean the restriction of λUX to ΩnX ⊆ P̆(UX). The map kFX is the
frame homomorphism given by a ↦ {p ∈ pt(FΛX) ∣ p(a) = 1}. Then Λ̂ ∶= {λ̂ ∣ λ ∈ Λ} is a
geometric modal signature for T̂Λ.

I Lemma 42. The assignment λ̂ is a natural transformation.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:13

Proof. For a continuous function f ∶ X → X ′ the following diagram commutes in Set:

ΩnX ′ Z(ḞΛX ′) Z(F̂ΛX ′) Ω(pt(F̂ΛX ′))

ΩnX Z(ḞΛX) Z(F̂ΛX) Ω(pt(F̂ΛX))

(f−1
)

n

λUX ′ ZqX ′

(Tf)−1 (Tf)−1

ZkF̂ΛX ′

Ω(pt((Tf)−1
))

λUX ZqX ZkF̂ΛX

Commutativity of the left square follows from naturality of λ, commutativity of the middle
square follows from the proof of Lemma 36 and commutativity of the right square can be
seen as follows: let a′1, . . . ,a′n ∈ ΩX ′, then

Ω(pt((Tf)−1)) ○ZkFΛX ′(λUX ′(a′1, . . . ,a′n))
= {q ∈ pt(FΛX) ∣ q ○ (Tf)−1(λUX ′(a′1, . . . ,a′n)) = 1}
= ZkFΛX ((Tf)−1(λUX ′(a′1, . . . ,a′n))).

So λ̂ is an open predicate lifting. J

The nature of the definitions of T̂Λ and Λ̂ yields the following desirable results.

I Proposition 43. 1. Let T ∶ Set→ Set be a functor and Λ a collection of predicate liftings
for T. Then Λ̂ is characteristic for T̂Λ.

2. If λ ∈ Λ are monotone, then λ̂ ∈ Λ̂ is Scott-continuous.

Proof. Let X be a topological space. For the first item, we need to show that the collection

{λ̂(a1, . . . ,an) ∣ λ ∈ Λ n-ary,ai ∈ ΩX} (3)

forms a subbase for the topology on T̂ΛX . An arbitrary nonempty open set of T̂ΛX is of the
form x̃ = {p ∈ pt(F̂ΛX) ∣ p(x) = 1}, for x ∈ F̂ΛX . An arbitrary element of F̂ΛX is the equival-
ence class of an arbitrary union of finite intersections of elements of the form λUX (a1, . . . ,an),
for λ ∈ Λ and a1, . . . ,an ∈ ΩX . So we may write x = ⋃i∈I(⋂j∈Ji

[λi,jUX (ai,j1 , . . . ,ai,jni,j
)]) for

some index set I, finite index sets Ji, λi,j ∈ Λ and open sets ai,jk ∈ ΩX . We get

x̃ = ⋃
i∈I

(⋂
j∈Ji

[λi,jUX (ai,j1 , . . . ,ai,jni,j
)]

:
) = ⋃

i∈I

(⋂
j∈Ji

λ̂i,jX (ai,j1 , . . . ,ai,jni,j
)).

The second equality follows from Definition 41. This shows that the open sets in (3) indeed
form a subbase for the open sets of T̂ΛX .

The second item follows immediately from the definitions. J

6 Bisimulations

This section is devoted to bisimulations and bisimilarity between coalgebraic geometric
models. We compare two notions of bisimilarity, modal equivalence (Definition 12) and
behavioural equivalence (Definition 14). Again, where C is be a full subcategory of Top and
T an endofunctor on C, we give definitions and propositions in this generality where possible.
When necessary, we restrict our scope to particular instances of C.

I Definition 44. Let X = (X ,γ,V) and X′ = (X ′,γ′,V ′) be two geometric T-models. Let
B ⊆ X ×X be a relation such that, equipped with the subspace topology, it is in C and
let π ∶ B → X ,π′ ∶ B → X ′ be projections. Then B is called an Aczel-Mendler bisimulation

CALCO 2019

7:14 Coalgebraic Geometric Logic

between X and X′ if for all (x,x′) ∈ B we have x ∈ V (p) iff x′ ∈ V ′(p), and there exists
a transition map β ∶ B → TB that makes π and π′ coalgebra morphisms. Two states
x ∈ UX ,x′ ∈ UX ′ are called bisimilar if there is some Aczel-Mendler bisimulation linking
them, notation x - x′.

It follows from Proposition 13 that bisimilar states satisfy the same formulas. Furthermore,
it easily follows by taking pushouts that Aczel-Mendler bisimilarity implies behavioural
equivalence. If moreover T preserves weak pullbacks, the converse holds as well [24].

However, we do not wish to make this assumption on topological spaces, since few functors
seem to preserve weak pullbacks. For example, the Vietoris functor does not preserve weak
pullbacks [5, Corollary 4.3] and neither does the monotone functor from Definition 17. (To
see the latter statement, consider the example given in Section 4 of [13] and equip the sets
in use with the discrete topology.) Therefore we define Λ-bisimulations for Top-coalgebras
as an alternative to Aczel-Mendler bisimulations. This notion is an adaptation of ideas in
[2, 10]. Under some conditions on Λ, Λ-bisimilarity coincides with behavioural equivalence.

In the next definition we need the concept of coherent pairs: If X and X ′ are two sets
and B ⊆X ×X ′ is a relation, then a pair (a,a′) ∈ PX ×PX ′ is called B-coherent if B[a] ⊆ a′
and B−1[a′] ⊆ a. For details and properties see section 2 in [14].

I Definition 45. Let T be an endofunctor on C, Λ a geometric modal signature for T and
X = (X ,γ,V) and X′ = (X ′,γ′,V ′) two geometric T-models. A Λ-bisimulation between X

and X′ is a relation B ⊆ UX ×UX ′ such that for all (x,x′) ∈ B, all p ∈ Φ and all tuples of
B-coherent pairs of opens (ai,a′i) ∈ ΩX ×ΩX ′ we have

x ∈ V (p) iff x′ ∈ V ′(p) (4)
γ(x) ∈ λX (a1, . . . ,an) iff γ′(x′) ∈ λX ′(a′1, . . . ,a′n). (5)

Two states are called Λ-bisimilar if there is a Λ-bisimulation linking them, notation: x -Λ x
′.

We give an alternative characterisation of (5) to elucidate the connection with [2].
I Remark 46. Let B ⊆ X ×X ′ be a relation endowed with the subspace topology and let
π ∶ B → X and π′ ∶ B → X ′ be projections. Then (a,a′) ∈ ΩX × ΩX ′ is B-coherent iff
π−1(a) = (π′)−1(a′).

Let P be the pullback of the cospan ΩX ΩB ΩX ′Ωπ Ωπ′ in Frm and let p ∶ P →
X and p′ ∶ P → X ′ be the corresponding projections. Then the B-coherent pairs are precisely
(p(x),p′(x)), where x ranges over P . It follows from the definitions that equation (5) holds
for all B-coherent pairs if and only if

Ωπ ○Ωγ ○ λX ○ pn = Ωπ′ ○Ωγ′ ○ λX ′ ○ (p′)n,

where λ is n-ary.
As desired, Λ-bisimilar states satisfy the same formulas.

I Proposition 47. Let T be an endofunctor on C and Λ a geometric modal signature for T.
Then -Λ ⊆ ≡Λ.

Proof. Let B be a Λ-bisimulation between geometric T-models X and X′, and suppose xBx′.
Using induction on the complexity of the formula, we show that X,x
 ϕ iff X′,x′
 ϕ for
all ϕ ∈ GML(Λ). The propositional case is by definition, and ∧ and ⋁ are routine. Suppose
X,x
 ♡λ(ϕ1, . . . ,ϕn), then γ(x) ∈ λX (Jϕ1KX, . . . , JϕnKX). By the induction hypothesis
(JϕiKX, JϕiKX

′) is B-coherent for all i. Then γ′(x′) ∈ λX ′(Jϕ1KX
′
, . . . , JϕnKX

′) since B is a
Λ-bisimulation, hence X′,x′
 ♡λ(ϕ1, . . . ,ϕn). The converse is proven symmetrically. J

N. Bezhanishvili, J. de Groot, and Y. Venema 7:15

The proof of the next proposition is similar to [2, Proposition 20].

I Proposition 48. Let T be an endofunctor on C and Λ a geometric modal signature for T.
Then - ⊆ -Λ.

We know by now that Λ-bisimilarity implies modal equivalence. Furthermore, if T is
an endofunctor on Top which preserves sobriety, modal equivalence implies behavioural
equivalence. In order to prove a converse, i.e. that behavioural equivalence implies Λ-
bisimilarity, we need to assume that the geometric modal signature is strong.

Recall that two elements x,x′ in two models are behaviourally equivalent in Mod(T),
notation: ≃Mod(T), if there exist morphisms f , f ′ in Mod(T) such that f(x) = f ′(x′).

I Proposition 49. Let Λ a strongly monotone geometric modal signature for T ∶ C→ C and
let X = (X ,γ,V) and X′ = (X ′,γ′,V ′) be two geometric T-models. Then ≃Mod(T) ⊆ -Λ.

Proof. Suppose x and x′ are behaviourally equivalent. Then there are some geometric
T-model Y = (Y,ν,VY) and T-model morphisms f ∶ X → Y and f ′ ∶ X′ → Y such that
f(x) = f ′(x′). We will show that

B = {(u,u′) ∈X ×X ′ ∣ f(u) = f ′(u′)}. (6)

is a Λ-bisimulation B linking x and x′.
Clearly xBx′. It follows from Proposition 13 that u and u′ satisfy precisely the same

formulas whenever (u,u′) ∈ B. Suppose λ ∈ Λ is n-ary and for 1 ≤ i ≤ n let (ai,a′i) be a
B-coherent pair of opens. Suppose uBu′ and γ(u) ∈ λX (a1, . . . ,an). We will show that
γ′(u′) ∈ λX ′(a′1, . . . ,a′n). The converse direction is similar. By monotonicity and naturality
of λ we obtain

γ(u) ∈ λX (a1, . . . ,an) ⊆ λX (f−1(f[a1]), . . . , f−1(f[an])) = (Tf)−1(λY(f[a1], . . . , f[an])),

so (Tf)(γ(u)) ∈ λY(f[a1], . . . , f[an]). (The f[ai] need not be open in Y, but since λ is
strong, λY(f[a1], . . . , f[an]) is defined.) Because f and f ′ are coalgebra morphisms and
f(u) = f ′(u′) we have (Tf)(γ(u)) = ν(f(u)) = ν(f ′(u′)) = (Tf ′)(γ′(u′)). Finally, we get

γ′(u′) ∈ (Tf ′)−1(λY(f[a1], . . . , f[an]))
= λX ′((f ′)−1(f[a1]), . . . , (f ′)−1(f[an])) (naturality of λ)
= λX ′(B[a1], . . . ,B[an]) (strong monotonicity of λ)
⊆ λX ′(a′1, . . . ,a′n). (coherence of (ai,a′i)) J

I Remark 50. If C = KHaus in the proposition above, then Proposition 22 allows us to drop
the assumption that Λ be strong.

Let T be an endofunctor on Top and let Λ be a geometric modal signature for T. The
following diagram summarises the results from Propositions 47 and 49 and Theorem 31. The
arrows indicate that one form of equivalence implies the other. Here (1) holds if T preserves
weak pullbacks, (2) is true when Λ is Scott-continuous and characteristic and T preserves
sobriety, and (3) holds when Λ is strongly monotone. Note that the converse of (2) always
holds, because morphisms preserve truth (Proposition 13).

- -Λ ≡Λ ≃Mod(T)

(2)

(1)

(3)

(7)

CALCO 2019

7:16 Coalgebraic Geometric Logic

As stated in the introduction we are not only interested in endofunctors on Top, but also
in endofunctors on full subcategories of Top, in particular KHaus.

The implications in the diagram hold for endofunctors on Sob as well (use Remark 32).
Moreover, with some extra effort it can be made to work for endofunctors on KSob as well.
In order to achieve this, we have to redo the proof for the bi-implication between modal
equivalence and behavioural equivalence. This is the content of the following theorem.

I Theorem 51. Let T be an endofunctor on KSob, Λ a Scott-continuous characteristic
geometric modal signature for T and X = (X ,γ,V) and X′ = (X ′,γ′,V ′) two geometric
T-models. Then ≡Λ = ≃Mod(T).

Proof. If x and x′ are behaviourally equivalent then they are modally equivalent by Proposi-
tion 13. The converse direction can be proved using similar reasoning as in Section 4. The
major difference is the following: We define an equivalence relation ≡2 on GML(Λ) by ϕ ≡2 ψ

iff JϕKX = JψKX and JϕKX
′ = JψKX

′
. (Note that X and X′ are now fixed.) That is, ϕ ≡2 ψ iff ϕ

and ψ are satisfied by precisely the same states in X and X′ (compare Definition 23). The
frame E2 ∶= GML(Λ)/≡2 can then be shown to be a compact frame and hence Z2 ∶= ptE2 is
a compact sober space. The remainder of the proof is analogous to the proof of Theorem 31.
A detailed proof can be found in [11, Theorem 3.34]. J

We summarise the results for Top and two of its full subcategories:

I Theorem 52. Let T be an endofunctor on Top, Sob or KSob and Λ a Scott-continuous
characteristic strongly monotone geometric modal signature for T. If x and x′ are two states
in two geometric T-models, then

x -Λ x
′ iff x ≡Λ x

′ iff x ≃Mod(T) x
′.

For coalgebras over base category KHaus we have:

I Theorem 53. Let T be an endofunctor on KHaus which is the restriction of an endofunctor
S on Sob or KSob and let Λ be a Scott-continuous characteristic monotone geometric modal
signature for S (hence for T). Then x -Λ x

′ iff x ≡Λ x
′.

Both the Vietoris functor Vkh and the monotone functor Dkh, together with their respective
open predicate liftings for box and diamond, satisfy the premises of this theorem.

7 Conclusion

We have started building a framework for coalgebraic geometric logic and we have investigated
examples of concrete functors. There are still many unanswered and interesting questions.
We outline possible directions for further research.

Modal equivalence versus behavioural equivalence From Theorem 52 we know that modal
equivalence and behavioural equivalence coincide in Mod(T) if T is an endofunctor on
KSob, Sob or an endofunctor on Top which preserves sobriety. A natural question is
whether the same holds when T is an endofunctor on KHaus.

When does a lifted functor restrict to KHaus? We know of two examples, namely the
powerset functor with the box and diamond lifting, and the monotone functor on Set
with the box and diamond lifting, where the lifted functor on Top restricts to KHaus.
It would be interesting to investigate whether there are explicit conditions guaranteeing
that the lift of a functor restricts to KHaus. These conditions could be either for the
Set-functor one starts with, or the collection of predicate liftings for this functor, or both.

N. Bezhanishvili, J. de Groot, and Y. Venema 7:17

Bisimulations In [2] the authors define Λ-bisimulations (which are inspired by [10]) between
Set-coalgebas. In this paper we define Λ-bisimulations between C-coalgebras. A similar
definition yields a notion of Λ-bisimulation between Stone-coalgebras, where the inter-
pretants of the proposition letters are clopen sets, see [11, Definition 2.19]. This raises
the question whether a more uniform treatment of Λ-bisimulations is possible, which
encompasses all these cases.

Modalities and finite observations Geometric logic is generally introduced as the logic of
finite observations, and this explains the choice of connectives (∧, ⋁ and, in the first-order
version, ∃). We would like to understand to which degree modalities can safely be added
to the base language, without violating the (semantic) intuition of finite observability.
Clearly there is a connection with the requirement of Scott-continuity (preservation of
directed joins), and we would like to make this connection precise, specifically in the
topological setting.

References
1 S. Abramsky. Domain Theory and the Logic of Observable Properties. PhD thesis, University

of London, 1987.
2 Z. Bakhtiari and H.H. Hansen. Bisimulation for Weakly Expressive Coalgebraic Modal Logics.

In 7th Conference on Algebra and Coalgebra in Computer Science, CALCO 2017, June 12-16,
2017, Ljubljana, Slovenia, pages 4:1–4:16, 2017. doi:10.4230/LIPIcs.CALCO.2017.4.

3 G. Bezhanishvili, N. Bezhanishvili, and J. Harding. Modal compact Hausdorff spaces. Journal
of Logic and Computation, 25(1):1–35, 2015. doi:10.1093/logcom/exs030.

4 N. Bezhanishvili, J. de Groot, and Y. Venema. Coalgebraic Geometric Logic, 2019. arXiv:
1903.08837.

5 N. Bezhanishvili, G. Fontaine, and Y. Venema. Vietoris bisimulations. Journal of Logic and
Computation, 20(5):1017–1040, 2010.

6 B.F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
7 L.-T. Chen and A. Jung. On a Categorical Framework for Coalgebraic Modal Logic. Electronic

Notes in Theoretical Computer Science, 308:109–128, 2014.
8 C. Cirstea, A. Kurz, D. Pattinson, L. Schröder, and Y. Venema. Modal logics are coalgebraic.

In S. Abramsky, E. Gelenbe, and V. Sassone, editors, Visions of Computer Science, BCS
International Academic Research Conference (BCS 2008), pages 129–140. British Computer
Society, 2008.

9 S. Enqvist and S. Sourabh. Bisimulations for coalgebras on Stone spaces. Journal of Logic
and Computation, 28(6):991–1010, 2018. doi:10.1093/logcom/exy001.

10 D. Gorín and L. Schröder. Simulations and Bisimulations For Coalgebraic Modal Logics.
In R. Heckel and S. Milius, editors, 5th Conference on Algebra and Coalgebra in Computer
Science, CALCO 2013, pages 253–266. Springer, 2013.

11 J. de Groot. Coalgebraic geometric logic. Master’s thesis, University of Amsterdam, available
at https://esc.fnwi.uva.nl/thesis/centraal/files/f2119048545.pdf.

12 H.H. Hansen. Monotonic modal logics, 2003. Master’s thesis, Institute for Logic, Language
and Computation, University of Amsterdam.

13 H.H. Hansen and C. Kupke. A coalgebraic Perspective on Monotone Modal Logic. Electronic
Notes in Theoretical Computer Science, 106:121–143, 2004.

14 H.H. Hansen, C. Kupke, and E. Pacuit. Neighbourhood structures: bisimilarity and basic
model theory. Logical Methods in Computer Science, 5(2), April 2009.

15 P.T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1982.

16 P.T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium. Number v. 2 in
Oxford Logic Guides. Clarendon Press, 2002.

CALCO 2019

https://doi.org/10.4230/LIPIcs.CALCO.2017.4
https://doi.org/10.1093/logcom/exs030
http://arxiv.org/abs/1903.08837
http://arxiv.org/abs/1903.08837
https://doi.org/10.1093/logcom/exy001

7:18 Coalgebraic Geometric Logic

17 C. Kupke, A. Kurz, and D. Pattinson. Algebraic Semantics for Coalgebraic Logics. Electronic
Notes in Theoretical Computer Science, 106:219–241, 2004. Proceedings of the Workshop on
Coalgebraic Methods in Computer Science (CMCS).

18 C. Kupke, A. Kurz, and D. Pattinson. Ultrafilter Extensions for Coalgebras. In J. Luiz Fiadeiro,
N. Harman, M. Roggenbach, and J. Rutten, editors, Algebra and Coalgebra in Computer
Science, pages 263–277, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

19 C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoretical Computer Science,
327(1):109–134, 2004. Selected Papers of CMCS ’03. doi:10.1016/j.tcs.2004.07.023.

20 C. Kupke and D. Pattinson. Coalgebraic semantics of modal logics: An overview. Theoretical
Computer Science, 412(38):5070–5094, 2011. CMCS Tenth Anniversary Meeting.

21 E. Michael. Topologies on spaces of subsets. Transactions of the American Mathematical
Society, 71:152–182, 1951.

22 L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96(1):277–317, 1999. doi:
10.1016/S0168-0072(98)00042-6.

23 D. Pattinson. Coalgebraic modal logic: soundness, completeness and decidability of local
consequence. Theoretical Computer Science, 309(1):177–193, 2003.

24 J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249((1)):3–80, 2000.

25 L. Schröder. Expressivity of Coalgebraic Modal Logic: The Limits and Beyond. In V. Sassone,
editor, Foundations of Software Science and Computational Structures, pages 440–454, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

26 Y. Venema. Coalgebra and Modal Logic, 2017. Course notes. ILLC, UvA. URL: https:
//staff.science.uva.nl/y.venema/teaching/ml/notes/cml-2017.pdf.

27 Y. Venema, S. Vickers, and J. Vosmaer. Generalized powerlocales via relation lifting. CoRR,
abs/1202.3264, 2012.

28 S.J. Vickers. Topology via Logic. Cambridge University Press, New York, NY, USA, 1989.

https://doi.org/10.1016/j.tcs.2004.07.023
https://doi.org/10.1016/S0168-0072(98)00042-6
https://doi.org/10.1016/S0168-0072(98)00042-6
https://staff.science.uva.nl/y.venema/teaching/ml/notes/cml-2017.pdf
https://staff.science.uva.nl/y.venema/teaching/ml/notes/cml-2017.pdf

Coinduction in Flow: The Later Modality in
Fibrations
Henning Basold
CNRS, ENS de Lyon, France
LIACS – Leiden University, The Netherlands
h.basold@liacs.leidenuniv.nl

Abstract
This paper provides a construction on fibrations that gives access to the so-called later modality,
which allows for a controlled form of recursion in coinductive proofs and programs. The construction
is essentially a generalisation of the topos of trees from the codomain fibration over sets to arbitrary
fibrations. As a result, we obtain a framework that allows the addition of a recursion principle
for coinduction to rather arbitrary logics and programming languages. The main interest of using
recursion is that it allows one to write proofs and programs in a goal-oriented fashion. This enables
easily understandable coinductive proofs and programs, and fosters automatic proof search.

Part of the framework are also various results that enable a wide range of applications: trans-
portation of (co)limits, exponentials, fibred adjunctions and first-order connectives from the initial
fibration to the one constructed through the framework. This means that the framework extends any
first-order logic with the later modality. Moreover, we obtain soundness and completeness results,
and can use up-to techniques as proof rules. Since the construction works for a wide variety of
fibrations, we will be able to use the recursion offered by the later modality in various context. For
instance, we will show how recursive proofs can be obtained for arbitrary (syntactic) first-order
logics, for coinductive set-predicates, and for the probabilistic modal µ-calculus. Finally, we use the
same construction to obtain a novel language for probabilistic productive coinductive programming.
These examples demonstrate the flexibility of the framework and its accompanying results.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Coinduction, Fibrations, Later Modality, Recursive Proofs, Up-to techniques,
Probabilistic Logic, Probabilistic Programming

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.8

Related Version https://arxiv.org/abs/1802.07143

Funding Henning Basold: This work has been funded by the European Research Council (ERC)
under the EU’s Horizon 2020 programme (CoVeCe, grant agreement No 678157), and was supported
by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Invest-
issements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

1 Introduction

Recursion is one of the most fundamental notions in computer science and mathematics, be
it as the foundation of computability, or to define and reason about structures determined
by repeated constructions. In this paper, we will focus on the use of recursion as a method
for coinductive proofs and coinductive programming.

Usually, coinductive programming is presented by means of coiteration schemes and coin-
duction as bisimulation proof principle. Coiteration schemes are a syntactic implementation of
coalgebras and their coinductive extension to a homomorphism into the final coalgebra [32, 48].
The bisimulation proof principle, on the other hand, asserts that bisimilarity implies equality
in the final coalgebra [29, 36, 60]. There are, however, also different approaches that break
with this dogma. In coinductive programming, guarded recursion [5, 6, 16, 50, 52], and sets of
recursive equations [1, 33, 61] have been used to construct elements of final coalgebras and of
coinductive types. On the side of proofs and semantics, several improvements of coinduction

© Henning Basold;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 8; pp. 8:1–8:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7610-8331
mailto:h.basold@liacs.leidenuniv.nl
https://doi.org/10.4230/LIPIcs.CALCO.2019.8
https://arxiv.org/abs/1802.07143
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Coinduction in Flow

have been suggested: simplification of invariants [63] via up-to techniques [19, 54, 58] and
the companion [11, 55, 56], incremental techniques [38, 51], games [53, 65], and basic cyclic
proofs for stream equality [57]. In this paper, we will focus on guarded recursion because it
can be widely applied, and because it leads to clean proof and programming methods.

A concrete appearance of coinduction can be found in the modal µ-calculus Lµ [46, 20]
and its quantitative interpretations [39] pLµ or Łµ [49] in form of Park’s rule, which assert
that if ψ → ϕ[ψ/X], then ψ → νX.ϕ. This rule says that an implication with a greatest fixed
point as conclusion can be proven by showing that ψ is an invariant for ϕ. Kozen [46] gave
an axiomatisation of Lµ based on this rule, and its dual, that turned out to be complete [75].
Thus, this axiomatisation is expressive, but often difficult to use in practice, let alone for
proof search. It should be noted that Lµ is decidable if it is interpreted in classical logic.
The goal of this work is, however, to develop techniques that can also be used to obtain
(constructive) proof objects and can be applied to more general logics. Thus, our focus will
be on improving the axiomatisation of Lµ and of coinductive proofs in general.

Coming back to Park’s rule, we often find ourselves having to prove ψ → νX.ϕ for a
formula ψ, which is not an invariant. We are then required to find an invariant ψ′, such that,
ψ → ψ′. Finding such an invariant can be difficult in general and it does not fit common
practice. Instead, it would be preferable if we could incrementally construct the proof for
ψ → νX.ϕ rather than guessing an invariant ψ′. Such an incremental construction leads
to a recursive proof methodology for coinductive proofs. As such incremental methods are
valuable in any theory that is based on coiteration or coinduction schemes, we set out in this
paper to replace invariant guessing by a general iterative programming and proof method.

The proposed iterative method will be given in form of a framework that introduces
recursion into coinductive proofs and programs, while preserving soundness and termination.
This framework is centred around the so-called later modality [52], which allows for us to
control the use of recursion and thereby avoid the introduction of non-termination and
inconsistencies. The later modality has been successfully used in the context of semantics [16,
72], programming [5, 6, 50], and reasoning [23, 14]. Ultimately, we generalise the work of
Birkedal et al. [16] on the topos of trees to arbitrary fibrations with the effect of much wider
applicability to, for example, quantitative reasoning and probabilistic programming.

In the case of Lµ, we extend the logic with the later modality as a new logical connective.
Given a formula ϕ, we thus obtain a formula Iϕ. This formula should be read as “later ϕ”,
which allows us to formulate that knowledge varies over time. The later modality comes
with three crucial axioms: ϕ → Iϕ (next), I(ϕ → ψ) → Iϕ → Iψ (monotonicity), and
(Iϕ→ ϕ)→ ϕ (fixed point or Löb). It is the Löb rule that introduces recursion into the
logic, and it should be read as “if we can prove ϕ from the assumption that ϕ holds later,
then ϕ holds at any time”. However, the assumption Iϕ introduced by the Löb rule cannot
be used directly. We need one final axiom for that: ϕ[I νX.ϕ/X]→ νX.ϕ (step). These
axioms can be combined to obtain recursive proofs, as we will show later. As an appetiser,
the reader may have a look already at Figure 3 on Page 15.

The reader may have noticed that the first three axioms, next, monotonicity and Löb,
are independent of the logic at hand. Only the step axiom makes use of the structure of
formulas. This observation is what enables the topos of trees and the framework presented
here to work. More precisely, we will start with a given fibration p : E→ B and construct a
new fibration ←−p : ←−E →←−B out of it. This fibration will have, under mild conditions, the later
modality as a map of fibrations (B,I) on it. The next and Löb axioms correspond then to
certain morphisms in ←−E, while monotonicity says that I is a strong functor. From a logical
perspective, it is more natural to consider another fibration p : E→ B over the same base
category as the initial fibration. In this fibration, we will not only have access to the later
modality and its axioms, but also to quantifiers that are present in the original fibration p.

H. Basold 8:3

E E ←−E

B ←−B

KE

p
LE

p

I

I

R ←−p

I

KB

LB

B

` `

`

where
E ←−E

B ←−B

p

I

←−p

KB

Figure 1 Relation between p (base logic), ←−p (all chains in p) and p (chains with constant index).

Contributions. Apart from the applications to the probabilistic modal µ-calculus and to
probabilistic programming, the technical contributions of this paper are as follows. Given a
fibration p and a well-ordered class I, we let ←−E be the category of Iop-indexed chains in E,
that is, functors σ : Iop → E. The fibration ←−p is given by post-composition with p and thus
maps a chain to the chain of its indices given by p. On this fibration, we construct the later
modality and find all its good properties. We then restrict our attention to the fibration
p : E→ B, which consists only of chains with constant index. In other words, p is given by
the change-of-base (pullback) along the functor KB : B→←−B that maps I ∈ B to the chain
that is equal to I at every position. This is indicated in the right diagram in Figure 1. The
diagram on the left summarises the most important ingredients of the framework:

the later modality is a map of fibrations I : p→ p and (B,I) : ←−p →←−p with a natural
transformation next : Id⇒ I (Theorem 16 and Theorem 17);
←−p and p are fibred Cartesian closed categories and feature the Löb rule as morphism
löbσ : σIσ → σ that fulfils a unique solution condition (Theorem 20 and Theorem 27);
fixed points of so-called locally contractive functors on ←−p and p (Theorem 31);
the final chain construction of final coalgebras via a locally contractive functor (The-
orem 34) and up-to techniques as proof rules (Theorem 35);
if B has Iop-limits, then there is an adjunction KB a LB between B and ←−B, and an
adjunction I a R between E and ←−E (Theorem 19);
fibred Iop-limits in p give a fibred adjunction KE a LE between E and E (Theorem 19);
if p is a first-order fibration, then p is a first-order fibration and LE preserves truth of first-
order formulas if disjunction, existentials and equality preserve Iop-limits (Theorem 41).

Particularly interesting is that p is a first-order fibration, in other words, models first-order
logic. This result can be restricted to any subset of connectives, which allows us to extend
any logic with the later modality and its axioms. The adjunction between p and p shows
then that this yields a sound and complete axiomatisation of coinductive predicates. We
leverage this generality to devise a novel proof system for the probabilistic modal µ-calculus
and a language for productive probabilistic programming with coinductive types.

Another interesting aspect of the diagram is that one of the central results used by
Hasuo et al. [35] (Lem. 3.5) appears here as the composition LE ◦R : ←−E → E. In fact, the
results in [35] tell us under which conditions we can use the finite ordinals ω as index I to
obtain a sound and complete proof system for coinductive predicates.

Organisation. The framework is introduced in the following steps. First, we provide in
Section 2 a brief overview over fibrations, coinductive predicates and well-founded induction.
Next, we describe in Section 3 the chain fibrations ←−p and p, construct the later modality
and give some basic results. Section 4 is devoted to show that functor fibrations are fibred
Cartesian closed and to the Löb rule. In Section 5 we construct fixed points of so-called

CALCO 2019

8:4 Coinduction in Flow

locally contractive functors, both, on the whole fibration and on the fibres. Moreover, we
show how the final chain arises as locally contractive functor, and how this leads to the
proof rule “step” that we saw above. This allows us also to obtain proof rules on the final
chain for compatible up-to techniques. As promised, we prove in Section 6 that p is a
first-order fibration. Furthermore, we give the adjunctions from Figure 1 that relate the
various fibrations. The flexibility of the framework is then demonstrated by providing a
recursive proof system for probabilistic Lµ and a language for guarded recursive probabilistic
programming in Section 7. We conclude with a few remarks and future work in Section 8.

Related Work. To a large part, the present paper generalises the work of Birkedal et al. [16]
from the codomain fibration Set→ → Set of sets to arbitrary fibrations. That [16] was so
restrictive is not so surprising, as the intention there was to construct models of programming
languages, rather than applying the developed techniques to proofs. Going beyond the
category of sets also means that one has to involve much more complicated machinery to
obtain exponential objects, see Section 4. Later, Bizjak et al. [17] extended the techniques
from [16] to dependent type theory, thereby enabling reasoning by means of recursive proofs
in a syntactic type theory. However, also this is a very specific setting, which rules out the
main examples that we are interested in here. Similarly, also the parameterised coinduction
in categories [51] and in lattices [38] is too restrictive, as they only apply to, respectively,
propositional and to set-theoretic settings. It might be possible to develop parameterised
coinduction in the setting of fibrations by using the companion [11, 55, 56], but we leave this
question for another time. Recursion is also central to cyclic proof systems [21, 24, 26, 64].
These are particularly useful in settings that require proofs by induction or coinduction
because cyclic proof systems ease proofs enormously compared to the invariant-based method
of (co)induction schemes. Nothing comes for free though: In this case checking proofs
becomes more difficult, as the correctness conditions are typically global for a proof tree and
not compositional. For the same reason, also soundness proofs are often rather complex. The
framework we study here gives rise to proof rules that require no further global condition
on proofs, which straightforwardly yields proof checking [8] and soundness. Higher-order
recursion has also been studied in other categorical settings like topos theory [47, 40] or
monoidal categories [30, 34]. Unfortunately, these neither apply to our examples of interest,
nor do they provide the logical results and constructions that appear in this paper.

Finally, in the realm of algorithmic proofs, circular proofs have been used to automatically
prove identities of streams [57]. Else, computer-supported coinduction is usually limited to
proof checking [31, 18, 25]. There have been limited approaches to combine coinduction with
resolution [66]. In [10], we were able to go beyond the state of the art by extending uniform
proofs to coinduction and using the framework presented in this paper as logical foundation.
This shows that the framework of this paper paves the way for algorithmic proof search.

2 Preliminaries

We begin by recalling the terminology of fibrations, coalgebras, coinductive predicates,
and well-founded induction. Moreover, we discuss examples that underlie the motivating
applications of this paper.

2.1 Fibrations
One of the central notions used in this paper are fibrations [13, 41, 71], as they are an elegant
way of capturing (typed) variables in a (higher-order) predicate logic.

H. Basold 8:5

I Definition 1. Let p : E→ B be a functor, where E is called the total category and B the
base category. A morphism f : A→ B in E is said to be Cartesian over u : I → J , provided
that i) pf = u, and ii) for all g : C → B in E and v : pC → I with pg = u ◦ v there is a
unique h : C → A such that f ◦ h = g. For p to be a fibration, we require that for every
B ∈ E and u : I → pB in B, there is a cartesian morphism f : A→ B over u. Finally, a
fibration is cloven, if it comes with a unique choice for A and f , in which case we denote A
by u∗B and f by uB, as displayed in the diagram in Figure 2. y

C

u∗B B E

pC

I pB B

g

!h
uB

ppg

v
u

Figure 2 Cartesian Lifting in a Fibration p.

On cloven fibrations, we can define for each u : I → J in B a functor, the reindexing
along u, as follows. Let us denote by EI the category having objects A with p(A) = I and
morphisms f : A → B with p(f) = idI . We call EI the fibre above I and the morphisms
in EI vertical. The assignment of u∗B to B for a cloven fibration can then be extended
to a functor u∗ : EJ → EI . Moreover, one can show that there are natural isomorphisms
id∗I ∼= IdEI and (v ◦ u)∗ ∼= u∗ ◦ v∗ subject to some coherence conditions.

For a fibration p : E → B and a functor F : C → B, we can form a new fibration
F ∗(p) : F ∗(E) → C by pulling p back along F , see [41]. The fibration F ∗(p) is said to be
obtained by change-of-base. Given another fibration q : D→ A, a map of fibrations p→ q is
a pair (F,G) of functors F : A → B and G : D → E, with p ◦ G = F ◦ q and such that G
preserves Cartesian morphisms. This means in particular for u : I → J and A ∈ EJ that
for G(u∗A) ∼= (Fu)∗(GA). Finally, the fibration p is said to have fibred ♦ (certain limits,
colimits, exponentials, etc.), if every fibre has ♦ and reindexing preserves these.

Let C be a Cartesian closed category. We denote for f : Y → X by pfq : 1→ XY the code
of f . Recall [45] that a functor F : C→ C is strong if there is natural family of morphisms
stFX,Y : XY → FXFY , s.t. stFX,Y ◦ pfq = pFfq. A map of fibrations (F,G) : p→ p is strong
if both F and G are strong, and p stG = stF .

As the definition of fibrations and the associated notions are fairly abstract, let us give a
few examples. There are five examples that we shall use to illustrate different aspects of the
theory: predicates over sets, quantitative predicates, syntactic logic, the codomain fibration
over the category of sets, and categories as trivial fibrations. The codomain fibration will
allow us to recover later the topos of trees. We begin with the simplest example, namely
that of predicates. Despite its simplicity, it is already quite useful because it allows us to
reason about predicates and relations for arbitrary coalgebras in Set.

I Example 2 (Predicates). The fibration Pred → Set of predicates has as objects in its
total category Pred predicates (P ⊆ X) over a set X. Each fibre PredX has a final object
1X = (X ⊆ X) and the fibred binary products are given by intersection. We note that fibred
constructions, like the above products, are preserved by a change-of-base, see [41, Lem. 1.8.4].
Hence, one can also apply the results in this paper to, for example, the fibration of (binary)
relations Rel→ Set, which is given by pulling Pred→ Set back along the diagonal functor
δ : Set→ Set with δ(I) = I × I. y

CALCO 2019

8:6 Coinduction in Flow

Often, one is not just interested in merely logical predicates, but rather wants to analyse
quantitative aspects of system. Such predicates will be the foundation for the probabilistic
µ-calculus. The following example extends the predicate fibration from Example 2 to
quantitative predicates, which will give us a convenient setting to reason about quantitative
properties.

I Example 3. We define the category of quantitative predicates qPred as follows.

qPred =
{
objects: pairs (X, δ) with X ∈ Set and δ : X → [0, 1]
morphisms: f : (X, δ)→ (Y, γ) if f : X → Y in Set and δ ≤ γ ◦ f

It is easy to show that the first projection qPred→ Set gives rise to a cloven fibration, for
which the reindexing functors are given for u : X → Y by u∗(Y, γ) =

(
X,λx. γ(u(x))

)
. For

brevity, let us refer to an object (X, δ) in qPredX just by its underlying valuation δ. One
readily checks that in qPred fibred products can be defined by (δ × γ)(x) = min{δ(x), γ(x)}
and coproducts as maximum. Fibred final objects are given by the constantly 1 valuation. y

The original motivation for the work presented in this paper was to abstract away from
the details that are involved in constructing a syntactic logic for a certain coinductive relation
in [9]. In [9], the author developed a first-order logic that features the later modality to
reason about program equivalences. This logic was given in a very pedestrian way, since the
syntax, proof system and models were constructed from scratch. The proofs often involved
phrases along the lines of “true because this is an index-wise interpretation of intuitionistic
logic”. In the following example, we show how a first-order logic can be presented as a
fibration, which allows us to apply the framework to a syntactic logic.

I Example 4 (Syntactic Logic). Suppose we are given a typed calculus, for example the
simply typed λ-calculus or even the category Set of sets, and a first-order logic, in which
the variables range over the types of the calculus. More precisely, let Γ be a context with
Γ = x1 : A1, . . . , xn : An, where the xi are variables and the Ai are types of the calculus. We
write then Γ
 t : A if t is a term of type A in context Γ, Γ
 ϕ if ϕ is formula with variables
in Γ, and Γ ` ϕ if ϕ is provable in the given logic. This allows us to form a fibration as
follows. First, we define C to be the syntactic category that has context Γ as objects and
tuples t of terms as morphisms ∆→ Γ with ∆
 ti : Ai. Next, we let L be the category that
has pairs (Γ, ϕ) with Γ
 ϕ as objects, and a morphism (∆, ψ)→ (Γ, ϕ) in L is given by a
morphism t : ∆ → Γ in C if ∆ ` ψ → ϕ[t], where ϕ[t] denotes the substitution of t in the
formula ϕ. The functor p : L → C that maps (Γ, ϕ) to Γ is then easily seen to be a cloven
fibration, see for example [41]. Let us assume that the logic also features a truth formula >,
conjunction ∧ and implication →, which are subject to the usual proof rules of intuitionistic
logic. We note that p has fibred finite products given by > and conjunction. y

As promised, the setup of Birkedal et al. [16], the topos of trees, can be recovered as an
instance of our framework.

I Example 5 (Codomain Fibration). Let Set→ be the arrow category over the category of
sets and functions. This category has maps as objects and commuting squares as morphisms.
The functor cod: Set→ → Set that sends a map to its codomain is a fibration, in which
reindexing is given by taking pullbacks, see [41]. y

The final example will allow us to apply the framework of this paper to any category.

I Example 6 (Trivial Fibration). Let 1 be the final category with one object ∗ and only the
identity on ∗. Then any category C can be seen as fibration ! : C → 1, such that fibred
products etc. are normal products. y

H. Basold 8:7

2.2 Coalgebras and Coinductive Predicates
Let us now introduce the second central notion of this paper: coinductive predicates. For
that, we first need the notion of coalgebra [2, 42, 43, 60, 62].

I Definition 7. Let F : C → C be a functor. A coalgebra is a morphism c : X → FX.
Given coalgebras c : X → FX and d : Y → FY , a homomorphism from c to d is a morphism
h : X → Y with Fh ◦ c = d ◦ h. We can form a category CoAlg(F) of coalgebras and their
homomorphisms and we call a final object in this category a final coalgebra. y

Coinductive predicates are easiest introduced by taking for a moment a more abstract
perspective. Recall that we introduced fibrations as a way to talk abstractly about predicates,
relations etc. Now we use this view to define coinductive predicates over a given coalgebra
for an arbitrary notion of predicate.

I Definition 8. Let p : E→ B be a cloven fibration and F : B→ B an endofunctor. We say
that a functor G : E → E is a lifting of F , if p ◦ G = F ◦ p. A G-invariant in a coalgebra
c : X → FX in B is a (c∗ ◦G)-coalgebra in EX . Further, a G-coinductive predicate in c is
a final (c∗ ◦G)-coalgebra. We often denote the carrier of the G-coinductive predicate in c by
ν(c∗ ◦G), see [35]. A compatible up-to technique for c∗ ◦G is a functor T : E→ E with a
natural transformation T ◦ c∗ ◦G⇒ c∗ ◦G ◦ T , see [19, 59]. y

Let us illustrate the notion of coinductive predicate in an example.

I Example 9. In this example, we show how the semantics of the modalities of the prob-
abilistic modal µ-calculus (pLµ) can be modelled as liftings. Given a set X, we say that a
function ρ : X → [0, 1] to the unit interval is a (finitely supported) probability distributions
on X, if the support supp ρ = {x | ρ(x) 6= 0} is finite and

∑
x∈ supp(ρ) ρ(x) = 1. One can then

define a functor D : Set→ Set that maps a set to the set of all probability distributions on
X. An (unlabelled) Segala system [69] or probabilistic transition system (PTS) is a coalgebra
for the functor S given by S = P ◦ D, in which states have non-deterministic transitions
into probability distributions. We can now give liftings S� and S♦ of S to qPred, which
correspond to the box and diamond modality, respectively, of pLµ:

S�(δ : X → [0, 1])(D ∈ S(X)) =
∧
d∈D

∑
x∈ supp d

δ(x) · d(x)

S♦(δ : X → [0, 1])(D ∈ S(X)) =
∨
d∈D

∑
x∈ supp d

δ(x) · d(x)

Suppose now that we have a PTS c : X → S(X) at hand, then c∗ ◦ S� : qPredX → qPredX
yields the expected semantics of the box modality [49]. y

2.3 Well-Founded Induction
The final basic ingredient of this paper is well-founded induction. We will use a rather general
form that is based on classes, rather than sets.

I Definition 10. Let A be a class and < a binary relation on A. We say that the relation <
is well-founded, if the well-founded induction principles holds for all P ⊆ A: If for all α ∈ A
we have that (∀β < α. β ∈ P) =⇒ α ∈ P , then ∀α ∈ A.α ∈ P .

Given a well-founded order, we can form as usual a category from the induced partial
order ≤ with α ≤ β if α < β or α = β. Typical examples, to which the presented framework

CALCO 2019

8:8 Coinduction in Flow

applies, are the set ω of finite ordinals with the successor relation; the set of ordinals below
any limit ordinal with their usual order; and the class of all ordinals Ord.

Recall that ordinals can be constructed as zero, successor and limit ordinals. We say that
I is a classical ordinal category1, if every α ∈ I is either zero, a successor or a limit.

3 Descending Chains in Fibrations

It is well-known that a final coalgebra of a functor F , hence also coinductive predicates,
can be constructed as limits of αop-chains for some limit ordinal α if such limits exist and
are preserved by F [2, 3, 7]. This observation is essential to the proof approach given
in this paper, as we rely on the fact that maps into a coinductive predicate, thus proofs,
can alternatively be given as maps into this αop-chain. In the following, we introduce the
necessary machinery to leverage this fact.

More specifically, we build from a given fibration a new fibration of descending chains.
In this fibration, we will be able to construct the final chain as a fixed point of a certain
functor on descending chains, see Section 5.1. It should be noted though that the fibration
of descending chains allows the construction of fixed points of many more functor, so called
locally contractive functors. Thus, the reasoning power of the built fibration extends beyond
coinductive predicates as fixed points of, e.g., contravariant functors do also exist, cf. [16, 15].

The fibration of descending chains will then admit recursive proofs for coinductive
predicates and will also feature all propositional connectives and quantifiers that are present
in the fibration that we started with, see Section 6. This allows us to extend any (higher-order)
logic with recursive proofs for coinductive predicates.

3.1 Categories of Diagrams
Before we analyse the final chain of a functor, we introduce general diagrams and establish
properties of these. We fix an index category I and let [I,C] for a category C be the category
of functors from I to C, also called the category of I-indexed diagrams in C. Given a
functor F : C → D, we define a functor [I, F] : [I,C] → [I,D] on categories of diagrams
by [I, F] (σ) = F ◦ σ. Since [I,−] preserves composition of functors and applies to natural
transformations, we obtain a strict 2-functor [I,−] : Cat → Cat. We use this to define
for a morphism f : X → Y in C, a morphism [I, f] : KX ⇒ KY in [I,C] where KX is the
constant functor sending any object in I to X: Note that there is a natural transformation
Kf : KX ⇒ KY , which is given by Kf,i = f . Thus, we can put [I, f] = [I,Kf].

The assignment of diagrams and lifting functors not only preserves 2-structure, but also
fibrational structure.

I Lemma 11. The functor [I,−] extends to an endomap of the fibration Fib→ Cat.

Also adjunctions are preserved in the transition to diagrams.

I Lemma 12. If F : C→ D and G : D→ C with F a G, then [I, F] a [I, G].

3.2 Descending Chains and the Later Modality
In this section, we extend the development in [16] to fibrations. We will give some intuition
for the later modality and prove some basic results.

1 We use the term “classical” here because in classical set theory, as opposed to constructive set theory,
every ordinal is given in this way.

H. Basold 8:9

I Assumption 13. In the remainder of the paper, we assume that the category I is induced
by a well-founded class I.

In the construction of final coalgebras, one considers Iop-indexed diagrams, which give
rise to a functor Cat→ Cat with
←−−
(−) = [Iop,−] , (1)

as in the previous section. The category of descending chains in C is then the category←−C, the objects of which we denote by σ, τ, . . . More explicitly, σ ∈ ←−C assigns as a functor
σ : Iop → C to each α ∈ I an object σα ∈ C, and to each pair α and β with β ≤ α a
morphism σ(β ≤ α) : σα → σβ in C. A morphism in←−C is a natural transformation f : σ ⇒ τ ,
in other words, a family of morphisms fα : σα → τα with τ(β ≤ α) ◦ fα = fβ ◦ σ(β ≤ α).

From Lemma 11 we get that the functor ←−p : ←−E → ←−B, given by post-composition, is a
fibration. The reindexing functors in this fibration will we denoted by u#. Since (co)limits
are constructed point-wise in functor categories, the fibration ←−p inherits (co)limits from p.
We obtain another fibration by change-of-base along the constant chain functor KB : B→←−B
that sends an object I ∈ B to the constant chain KB

I : Iop → B as in the diagram on the
right in Figure 1.

We note the following result, which allows us to apply, for example, Lemma 12 and The-
orem 27 to functors between fibres.

I Lemma 14. We have that EI
∼=
←−EI
∼=
←−EKB(I).

Many constructions in this paper require only limits over a bounded part of Iop.

I Definition 15. Let J be a category and denote for i ∈ J by i ↓ J the coslice category under
i. We say that C has bounded J-limits, if for every i ∈ J all (i ↓ J)-limits exist in C.

As an example, we have for I = ω and n ∈ N that n ↓ ωop = (ω/n)op = nop, where n is
the set of all k ≤ n. Hence, n ↓ ωop is finite and bounded ωop-limits are finite limits.

With this definition, we can now introduce the later modality, which is the central
construction that underlies the recursive proofs that we develop in this paper.

I Theorem 16. Suppose that p has fibred bounded Iop-limits. There are functors B : ←−B→←−B
and I : ←−E →←−E given on objects by

(B c)α = lim
β<α

cα and (Iσ)α = lim
β<α

σα,

together with natural transformations nextB : Id⇒ B and next : Id ⇒ I. The pair (B,I)
forms a map of fibrations ←−p →←−p and we have ←−p (next) = nextB. Moreover, I preserves
fibred finite limits. Finally, if I is a classical ordinal category, then I has a left-adjoint J.

We note that because I : ←−E →←−E maps σ ∈ ←−Ec to Iσ ∈
←−EB c, we can define a restricted

version Ic : ←−Ec →
←−Ec of the later modality that leaves the index chain untouched by putting

Ic = (nextBc)# ◦I .

Moreover, there is a vertical natural transformation nextc : Id⇒ Ic, and Ic has a left-adjoint
if I is classical and if p is a bifibration.

Another special case is obtained for the chains with constant index.

I Theorem 17. The later modality is a strong fibred functor I : p→ p with a vertical natural
transformation next : Id⇒ I, that is, p(next) = id.

CALCO 2019

8:10 Coinduction in Flow

Since the intention is to use Theorem 17 to extend a logic, let us present the results
as proof rules. The first rule is given by the strength of I, the second rule is given by
composition with next, and the last rule for product preservation comes from the isomorphism
in Theorem 16. This last rule can be applied in both directions, hence the indicated by
double lines.

monσ,τ : στ → IσI τ
f : τ → σ

nextσ ◦ f : τ → Iσ
f : τ → (Iσ)× (Iσ′)

f̌ : τ → I(σ × σ′)
The following assumption ensures that the above proof rules are available throughout the

remainder of this paper.

I Assumption 18. p is cloven with fibred finite limits and fibred bounded Iop-limits.

So far, we have established the fibrations and the later modality in the overview diagram in
Figure 1. What remains are the adjunctions that relate the fibrations, cf. [41, Exercise 1.8.8].

I Theorem 19. If E has fibred Iop-limits, then KE : E→ E has a fibred right adjoint LE,
given by LE(σ) = limα∈I σα. If B has Iop-limits, then KB : B → ←−B and I : E → ←−E have
right adjoints LB and R, given by LB(c) = limα∈I cα and R = π#, where πβ : limα∈I cα → cβ
are the limit projections and (−)# is reindexing in ←−p .

4 Cartesian Closure and the Löb Rule

Up to this point, we have only shown the existence of the next and monotonicity rule that we
used in the example in the introduction. What is missing is the recursion given in form of the
Löb rule. The goal of this section is to establish the recursion mechanism by utilising so-called
Löb induction, which is based on the later modality that we introduced in Section 3.2. To
state and prove the Löb induction, we need exponential objects in our fibration ←−p : ←−E →←−B
of chains. In the first part of this section, we show how to construct these from exponential
objects in p : E→ B. The second part is the devoted to establishing the Löb rule.

4.1 Fibred Cartesian Closure of Diagrams
A fibred Cartesian closed category (fibred CCC) is a fibration p : E→ B in which every fibre
is Cartesian closed and reindexing preserves this structure, see [41, Def. 1.8.2]. In a fibred
CCC we can model in particular implication, which is what we will need to formulate the
Löb rule below. Given a fibred CCC, we show now that the fibration of diagrams is also a
fibred CCC. Since the construction of exponential objects in categories of diagrams does not
depend on working with a well-founded index category, we will formulate the results in this
section for an arbitrary index category I, like we did in Section 3.1.

Let S : Iop× I→ C be a functor. The end of S is an object
∫
i∈I S(i, i) in C together with

a universal extranatural transformation π :
∫
i∈I S(i, i)→ S. This means that π is a family of

morphisms indexed by objects in I, such that the diagram below commutes for all u : i→ j.∫
i∈I S(i, i) S(j, j)

S(i, i) S(i, j)

πj

πi S(u,id)

S(id,u)

Given another extranatural transformation α : X → S there is a unique f : X →
∫
i∈I S(i, i)

with πi ◦ f = αi for every i ∈ I. It is well-known that ends can be computed as certain limits
in C. By analysing carefully the necessary limits, we obtain the following result.

H. Basold 8:11

I Theorem 20. Let I be a category and p : E→ B a cloven fibration that has fibred equalisers,
fibred exponents and fibred bounded I-products. Then [I, p] : [I,E]→ [I,B] is again a fibred
CCC. The exponential object of F,G ∈ [I,E]U is given by

(
GF
)
(i) =

∫
v : i→j

(
U(v)∗G(j)

)U(v)∗ F (j)
.

I Assumption 21. In the remainder we additionally assume that p : E→ B is a fibred CCC,
has fibred equalisers and fibred bounded I-products.

From Assumption 21, we get that ←−p is a fibred CCC. Since change-of-base also preserves
fibred exponentials, the fibration p that we obtained by pulling ←−p back along the constant
chain functor in Section 3.2 is also a fibred CCC, see [41, Lem. 1.8.4] and [71].

I Example 22. Fibred exponentials exist in PredX with QP = {x ∈ X | x ∈ P =⇒ x ∈ Q}.
The fibration ←−−−Pred consists then of descending chains of predicates. This means that if
σ ∈

←−−−PredX , then σ is a chain with σ0 ⊇ σ1 ⊇ · · · . Note now that each fibre PredX is a
complete lattice, hence equalisers are trivial and (bounded) limits are just given as (bounded)
infima. Hence, Theorem 20 applies and we obtain that←−−−Pred is a fibred CCC. Since equalisers
are trivial, it is easy to see that the exponential for σ, τ ∈ PredX can be defined as follows.

(τσ)n =
⋂

m≤n
τσmm

Since fibred exponentials are preserved by a change-of-base, see [41, Lem. 1.8.4], they also
exist in the fibration of relations Rel→ Set and the associated fibration ←−−Rel→←−−Set. y

I Example 23. Recall that we defined in Example 3 a category of quantitative predicates.
We note that this fibration is a fibred CCC with exponents given by

(δ ⇒ γ)(x) =
{

1, δ(x) ≤ γ(x)
γ(x), otherwise

.

Again, each fibre qPredX is a complete lattice and so ←−−−−qPred is a fibred CCC for any I. y

I Example 24. In Example 4, we defined a fibration p : L → C for a first-order logic
with conjunction and implication. From the implication we obtain that p is a fibred CCC.
Moreover, since each fibre is a pre-order, equalisers are again trivial. If I is the poset ω of
finite ordinals, then p is a fibred CCC. Explicitly, for chains ϕ,ψ of formulas in pA above a
type A, the exponent ψ ⇒ ϕ in ←−p is given by a finite conjunction:

(ψ ⇒ ϕ)n =
∧
m≤n

ψm → ϕm. y

I Example 25. The trivial fibration is a fibred CCC if and only if C is Cartesian closed. In
this case, the end formula reduces to

(
GF
)
(i) =

∫
v : j→iG(j)F (j) for G,F : Iop → C. y

4.2 The Löb Rule
One purpose of the later modality is that it allows us to characterise maps in ←−p , so-called
contractive maps, of which we can construct fixed points.

I Definition 26. A map f : τ × σ → σ in ←−Ec is called g-contractive if g : τ ×Ic σ → σ with
f = g ◦ (id×nextσ). We call s : τ → σ a fixed point or solution for f , if s = f ◦ 〈id, s〉. y

CALCO 2019

8:12 Coinduction in Flow

We can now show that there is a operator in ←−p that allows us to construct fixed points.

I Theorem 27. For every σ ∈ ←−Ec there is a unique morphism löbcσ : σIc σ → σ in ←−Ec, such
that for all g-contractive maps f the map löbcσ ◦ λg is a solution for f . From this we obtain
every for σ ∈ EX a unique morphism löbσ : σIσ → σ that solves any contractive map in EX .

I Proposition 28. The morphisms löbc and löb are dinatural transformations.

From Theorem 27, we obtain the Löb proof rule. This rule allows us to introduce recursion
into proofs, by giving us the proof goal σ as an assumption guarded by the later modality.

f : τ ×Ic σ → σ

löbcσ ◦ λf : τ → σ
with löbcσ ◦ λf = f ◦ (id×nextσ) ◦ 〈id, löbcσ ◦ λf〉

5 Locally Contractive Functors and Coinduction

One of the central notions of Birkedal et al. [16] is that of locally contractive functors. Such
functors admit fixed points in the topos of trees and are closed under various constructions
like composition and products. Locally contractive functors are used in [16] as a different way
of solving recursive domain equations, which is where the name “synthetic domain theory”
comes from. In this section, we restate the definition of contractive functors, and generalise
the fixed point construction and the closure properties to the fibrations ←−p and p.

In the following, we use the natural transformation compX,Y,Z : XY × ZX → ZY that
composes internal morphisms. We will refer to the isomorphism Iσ×I τ → I(σ× τ) as δI.

I Definition 29. A functor F : ←−C → ←−C is called locally contractive if F is strong, there
is a natural transformation CFσ,τ : I(στ) → FσFτ with stFσ,τ = CFσ,τ ◦ nextστ , and fulfils
CFσ,σ ◦Ipidq = pidq and comp◦(CFσ,τ ×CFγ,σ) = CFγ,τ ◦I comp◦δI. A lifting (F,G) : ←−p →←−p
is locally contractive if (F,G) is strong, F and G are locally contractive and ←−p CG = CF .

The next theorem records the essential closure properties of locally contractive functors.

I Theorem 30. Let F,G : C→ C be functors. If F or G is locally contractive, then F ◦G
is; if F and G are locally contractive, then F ×G is. Both, (B,I) : ←−p →←−p and I : p→ p

are locally contractive. The constant functor λτ. σ is locally contractive for any σ ∈ ←−E.

The proof of the following theorem proceeds in the same way as the one given in [16]
by first establishing for all α ∈ I and β < α that a locally contractive functor G maps any
β-isomorphism f to an α-isomorphism Gf above the corresponding α-iso F (←−p f). An α-
isomorphism is thereby a morphism f : σ → τ , such that for all β ≤ α all fβ are isomorphisms.

I Theorem 31. Any locally contractive lifting (F,G) has a unique fixed point in ←−E.

In Section 7, we will need the following version on fibres for the semantics of pLµ.

I Theorem 32. For any c ∈ ←−B and locally contractive functor F : ←−Ec →
←−Ec a unique fixed

point of F exists in ←−Ec. Consequently, also locally contractive functors on EX for X ∈ B
have unique fixed points by using that EX

∼=
←−EKB(X).

5.1 The Final Chain and Up-To Techniques
Having laid the ground work, we come to the objects of interest: coinductive predicates. The
following definition captures the usual construction of the final chain. Recall that

←−−
(−) is a

functor Fib→ Fib. Thus, from Φ: EI → EI , we obtain ←−Φ : EI → EI by Lemma 14. The
functor ←−Φ applies thereby Φ point-wise to chains.

H. Basold 8:13

I Definition 33. Given a functor Φ: EI → EI , we define the final chain of Φ to be the fixed
point ν(I←−Φ) of the locally contractive functor I ◦←−Φ.

We can now construct an adjunction between Φ-invariants and coalgebras for I←−Φ, cf. [44].
This is a slightly more expressive version of the usual construction of final coalgebras.

I Theorem 34. Suppose Φ: EI → EI preserves Iop-limits. Then the adjunction KE a LE

lifts to an adjunction K̂E a L̂E between the categories CoAlg(Φ) and CoAlg
(
I
←−Φ
)
of Φ- and

I
←−Φ-coalgebras. This gives νΦ ∼= L̂E(ν(I←−Φ)), where ν(I←−Φ) is the unique fixed point of I←−Φ.

Theorem 34 will play a central role in recursive proofs, as it allows us to express maps
into νΦ in terms of maps into ν(I←−Φ), and it allows us to unfold the final chain and thereby
to make progress in a proof. Just as important as unfolding is the ability to reason inside
syntactic contexts, use transitivity of relations etc. in a proof. Such properties are captured
by up-to techniques, see Definition 8.

I Theorem 35. Let T and Φ be functors EI → EI . If there is a natural transformation
ρ : TΦ⇒ ΦT , then there is a map ρ̂ : ←−T ν

(
I
←−Φ
)
→ ν

(
I
←−Φ
)
in EI .

I Remark 36. Pous and Rot [56] prove a result similar to Theorem 35, namely that a
monotone function T on a complete lattice is below the companion of Φ if and only if there
is a map ←−T ν

(
I
←−Φ
)
→ ν

(
I
←−Φ
)
. This is equivalent to Theorem 35 because the companion is

compatible. y

From Theorems 19, 34 and 35 we obtain the following proof rules, where the first initialises
a proof by moving from a coinductive predicate to the final chain.

KA−→ ν
(
I
←−Φ
)

A−→ νΦ

f : τ → I←−Φ
(
νI
←−Φ
)

f : τ → νI
←−Φ

ρ : TΦ⇒ ΦT f : τ →←−T ν
(
I
←−Φ
)

←−ρ ◦ f : τ → ν
(
I
←−Φ
)

The last result in this section, recorded here for completeness, allows us to obtain
compatible up-to techniques on fibres from global up-to techniques.

I Proposition 37. Let (F,G) : p → p be a map of fibrations, c : I → FI a coalgebra in B,
and T : E→ E a lifting of the identity IdE. Define Φ := c∗ ◦G : EI → EI to be the predicate
transformer associated to c, see Definition 8. If there is a vertical natural transformation
ρ : TG⇒ GT , then there is a vertical natural transformation ρc : TΦ⇒ ΦT .

6 Chains in First-Order Fibrations

The goal of this section is to show that the fibration p : E→ B of Iop-chains with constant
index is a first-order fibration (FO fibration) if p : E→ B is an FO fibration. This allows us
to construct out of a given FO logic another FO logic that features the later modality.

6.1 Products, Coproducts and Quantifiers for Descending Chains
Because of Lemma 14, we can apply many construction easily point-wise to chains with
constant index. For instance, we can lift products and coproducts in the following sense.

I Theorem 38. If for u : I → J in B the coproduct
∐
u : EI → EJ along u exists, then the

coproduct
∐
u : EI → EJ along u is given by

←−−∐
u. Similarly, the product

∏
u along u is

←−−∏
u.

CALCO 2019

8:14 Coinduction in Flow

I Example 39. Both Pred and qPred to have products and coproducts along any function
in Set. For instance, products in qPred along functions u : X → Y are given by∏

u
(δ : X → [0, 1])(y) = inf{δ(x) | x ∈ X,u(x) = y}.

In a syntactic logic, Example 4, one has that L → C products and coproducts along projections
(Γ, x : A) → Γ are universal and existential quantification over A, respectively. Arbitrary
(co)products can then be defined in terms of the equality relation in the logic, cf. [41]. By
Theorem 38, all these products and coproducts lift to the fibrations of descending chains. y

Let us denote for I ∈ B the later modality on EI by II . We can then establish the
following essential properties about the interaction of the later modalities and (co)products,
which are analogue to those in [16, Thm. 2.7]. This theorem allows one to distribute in
proofs quantifiers over the later modality.

I Theorem 40. The following holds for fibred products and coproducts in p.
There is an isomorphism IJ ◦

∏
u
∼=
∏
u ◦II .

There is a natural transformation ι :
∐
u ◦II ⇒ IJ ◦

∐
u. Moreover, if u is inhabited,

that is, has a section v : J → I, then ι has a section ιv.

For u : I → J in B, we can present the central results of this section as proof rules:

f : τ → u∗ σ

f̌ :
∐
u τ → σ

f : τ →
∐
u(II σ)

ι ◦ f : τ → IJ(
∐
u σ)

f : u∗ τ → σ

f̌ : τ →
∏
u σ

f : τ → IJ(
∏
u σ)

f̌ : τ →
∏
u(II σ)

6.2 First Order Fibration of Descending Chains
As the name suggests, a first-order fibration models first-order logic with equality. Such an
FO fibration is a fibration p : E→ B, which is a fibred pre-ordered lattice and fibred CCC,
and has products and coproducts, which satisfy the Beck-Chevalley and Frobenius conditions,
along all morphisms in B, see [41, Def. 4.2.1] for details. We now show that not only is the
fibration of constant-index chains in p an FO fibration, but is also strongly related to p.

I Theorem 41. If p : E→ B is an FO fibration, then p : E→ B is as well an FO fibration.
Furthermore, if the fibred coproducts and coproducts along morphisms preserve Iop-limits,
then LE : E→ E preserves all the FO structure except for implication. For implication, truth
is preserved, i.e., for all σ, τ ∈ EI there is a morphism L(στ)→ LσLτ . If τ = KE

X for some
X ∈ EI , then this morphism is an isomorphism. Finally, KE is a fully faithful functor.

That preservation of exponentials fails can be seen by taking σ, τ ∈ [ωop,PredN] to be
τn = N \ {1, . . . , n} and σn = {0}. Then L(στ) = {0} but LσLτ = N.

7 Examples

In this section, we show the framework in action. Specifically, we show how a novel proof
system for the probabilistic modal µ-calculus pLµ can be obtained, and we show a language
and its semantics for probabilistic productive coinductive programming.

7.1 Recursive Proofs for the Probabilistic Modal µ-Calculus
The probabilistic modal µ-calculus pLµ has exactly the same syntax as the modal µ-calculus
Lµ. However, formulas are interpreted as probability distributions [39]. We extend the

H. Basold 8:15

(Pr)
I γ, ψ ` ψ assumption
I γ, ψ ` ϕ(ψ)

ϕ positive + (Next)
I γ, ψ ` ϕ(Iψ)

(Pr)
I γ, ψ ` I(ψ → νX.ϕ(X))

(Mon)
I γ, ψ ` Iψ → I νX.ϕ(X)

ϕ positive
I γ, ψ ` ϕ(I νX.ϕ(X))

(Step)
I γ, ψ ` νX.ϕ(X)

(→-I)
I γ ` γ (Löb)` γ

Figure 3 ϕ(X) positive in X, ψ Lµ-formula, γ = ψ → νX.ϕ(X) with assumption ψ → ϕ(ψ).

coinductive fragment of pLµ here with the later modality and thereby obtain the following
formulas over sets At and Var of propositional variables P and fixed point variables X:

ϕ,ψ ::= P | P | X | > | ⊥ | νX.ϕ | Iϕ | �ϕ | ♦ϕ | ϕ u ψ | ϕ t ψ | ϕ→ ψ,

where X must occur positively in ϕ when forming νX.ϕ. Given a formula ϕ with no or one
free variable2 X, a Segala system c : Q→ S(Q) and an interpretation I : Q→ qPredAt, we
use Theorem 30 to define a locally contractive functor 〈[ϕ]〉 : PrednQ → PredQ with n = 0, 1,
where we only display the interesting cases. The remaining cases are given in Appendix A.

〈[P]〉 = K(I(P)) 〈[X]〉 = I 〈[νX.ϕ]〉 = ν〈[ϕ]〉 〈[�ϕ]〉 = c# ◦
←−
S� ◦ 〈[ϕ]〉

This definition and the previous development gives us that the following rules are sound for
this interpretation, where double lines are rules that can be used in both directions.

∆ ` ϕ[I νX.ϕ/X]
(Step)

∆ ` νX.ϕ
∆ ` ϕ (Next)∆ ` Iϕ

∆ ` I(ϕ→ ψ)
(Mon)∆ ` Iϕ→ Iψ

∆,Iϕ ` ϕ (Löb)∆ ` ϕ
∆ ` �Iϕ
∆ ` I�ϕ

∆ ` ♦Iϕ
∆ ` I♦ϕ

+ normal, intuitionistic modal logic

In Figure 3, we show how Park’s rule can be proven from these rules. Theorem 41 gives us
that these rules are sound and their semantics are complete for the standard semantics of
formulas that only have constant premises, i.e. pure modal formulas, in implications.

Let us make two final remarks about this example. First, note that the implication is
an internalisation of the ordering on quantitative predicates and thus has, a priori, nothing
to do with probabilities. In particular, we have 〈[P]〉 6= 〈[P → ⊥]〉. Second, the proof rules
give rise to a constructive and recursive proof system for pLµ. This is insofar interesting, as
that the completeness proof for Kozen’s axiomatisation for Lµ is non-constructive, and a
non-probabilistic version of the above presented proof system may give new insights, cf. [27].
Also an analogous version of our cut-free proof system for Horn clause theories [10] may shed
new light on cut-free proofs for (p)Lµ, cf. [4].

7.2 Probabilistic Productive Coinductive Programming
In this last example, we show how one can obtain a new programming language for higher-order
probabilistic programming with coinductive types, in which all programs are terminating.

2 We restrict ourselves to this case for simplicity. Supporting several variables is a direct generalisation.

CALCO 2019

8:16 Coinduction in Flow

This is in contrast to the language provided in [74], where full recursion is essential to
coinductive programming. Full recursion introduces, however, non-terminating and non-
productive programs, which makes reasoning about programs unnecessarily difficult [73],
especially in the probabilistic setting. As such, the total programming language, which we
are about to introduce, provides us with coinductive, probabilistic types, while retaining the
good properties of terminating and productive programs.

The essential ingredient are so-called quasi-Borel spaces that were introduced by Heunen
et al. [37] as a setting for higher-order probabilistic programming. In particular, the category
qBS of quasi-Borel spaces and their morphisms is (co)complete and Cartesian closed,
see [37, 74] for details. From the framework, we obtain that qBS = [ωop,qBS] is as well a
(co)complete CCC with later modality and Löb rule. This allows us to provide a probabilistic
higher-order programming language with coinductive types.

This language has types and terms that are given in Appendix B. One coinductive example
given in [74] is that of a random walk, which produces a stream of random positions for a
given standard deviation σ. We may define the type Rω of R-valued streams as fixed point
type by Rω = fixX.R × IX. A random walk can be produced by the following guarded
recursive program RW : R→ R→ Rω, where normal〈ρ, σ〉 draws from a normal distribution
with expected value ρ and standard deviation σ.

RW = λσ. fix f : I(R→ Rω). λx. in 〈x, f ~ next (normal 〈x, σ〉)〉

The details of how the above types and terms can be interpreted in qBS are given in
Appendix B. Since qBS is complete, we thus obtain an interpretation of the types and terms
in qBS, which corresponds to the expected final coalgebra semantics, see Theorem 34.

8 Conclusion and Future Work

In this paper, we have established a framework that allows us to reason about coinductive
predicates in many cases by using recursive proofs. At the heart of this approach sits the
so-called later modality, which comes from provability logic [12, 68, 70] but was later used
to obtain guarded recursion in type theories [5, 6, 17, 52] and in domain theory [15, 16].
This modality allows us to control the recursion steps in a proof without having to invoke
parity or similar conditions [22, 28, 64, 67], as we have seen in the examples in Section 7.
Moreover, even though Birkedal et al. [16] obtained similar results, their framework is
limited to Set-valued presheaves, while our results are applicable in a much wider range of
situations. In particular, we were able to devise a novel probabilistic programming language
that guarantees productivity on coinductive types.

So what is there left to do? For once, we have not touched upon how to automatically
extract a syntactic logic and models from the fibration ←−L → ←−C obtained in Example 24.
This would subsume and simplify much of the development in [9]. Next, we only proved
the existence of quantifiers that range over fixed domains. It would be useful to extend this
construction to indexed domains to, for example, obtain Kripke models abstractly. However,
such a construction would be similar to that of exponents in Theorem 20 and thus quite
involved. At the same time, also a category theoretical analysis of the delayed implication
in [23] is needed. Also a closer analysis of the relation to proof systems obtained through
parameterised coinduction, the companion or cyclic proof systems may shed some light
on the strength of the proof approach presented in this paper. Such an analysis requires
to understand how the causal proofs that the presented framework and the companion
support [56], and parameterised coinduction are related. Finally, after a few first step into

H. Basold 8:17

the direction of proof search for coinductive Horn clause theories in [10], the results of the
present paper need to be applied to obtain proof search procedures for other logics and
theories.

References
1 Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. Copatterns: Pro-

gramming Infinite Structures by Observations. In POPL’13, pages 27–38. ACM, 2013.
doi:10.1145/2429069.2429075.

2 Jiří Adámek, Stefan Milius, and Lawrence S. Moss. Introduction to Category Theroy, Algebras
and Coalgebra. A monograph in preparation, 2010. URL: http://www.tu-braunschweig.de/
Medien-DB/iti/survey_full.pdf.

3 Jiŕı Adámek and Vera Trnková. Initial Algebras and Terminal Coalgebras in Many-Sorted
Sets. MSCS, 21(2):481–509, 2011. doi:10.1017/S0960129510000502.

4 Bahareh Afshari and Graham E. Leigh. Cut-Free Completeness for Modal Mu-Calculus. In Proc.
of LICS’17, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005088.

5 Andrew W. Appel, Paul-André Melliès, Christopher D. Richards, and Jérôme Vouillon. A
Very Modal Model of a Modern, Major, General Type System. In POPL, pages 109–122.
ACM, 2007. doi:10.1145/1190216.1190235.

6 Robert Atkey and Conor McBride. Productive Coprogramming with Guarded Recursion. In
ICFP, pages 197–208. ACM, 2013. doi:10.1145/2500365.2500597.

7 Michael Barr. Terminal Coalgebras in Well-Founded Set Theory. TCS, 114(2):299–315, 1993.
doi:10.1016/0304-3975(93)90076-6.

8 Henning Basold. Code Repository, 2018. URL: https://perso.ens-lyon.fr/henning.
basold/code/.

9 Henning Basold. Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic. PhD
Thesis, Radboud University, 2018. URL: https://hdl.handle.net/2066/190323.

10 Henning Basold, Ekaterina Komendantskaya, and Yue Li. Coinduction in Uniform: Foundations
for Corecursive Proof Search with Horn Clauses. In ESOP’19, volume 11423 of LNCS. Springer,
2019. arXiv:1811.07644.

11 Henning Basold, Damien Pous, and Jurriaan Rot. Monoidal Company for Accessible Functors.
In CALCO 2017, volume 72 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017. doi:10.4230/LIPIcs.CALCO.2017.5.

12 Lev D. Beklemishev. Parameter Free Induction and Provably Total Computable Functions.
TCS, 224(1-2):13–33, 1999. doi:10.1016/S0304-3975(98)00305-3.

13 Jean Bénabou. Fibered Categories and the Foundations of Naive Category Theory. Journal
of Symbolic Logic, 50(1):10–37, 1985. doi:10.2307/2273784.

14 Lars Birkedal, Alěs Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters, and Andrea
Vezzosi. Guarded Cubical Type Theory: Path Equality for Guarded Recursion. In CSL 2016,
volume 62 of LIPIcs, pages 23:1–23:17. Schloss Dagstuhl, 2016. doi:10.4230/LIPIcs.CSL.
2016.23.

15 Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional Type Theory with Guarded Recursive
Types qua Fixed Points on Universes. In LICS, pages 213–222. IEEE Computer Society, 2013.
doi:10.1109/LICS.2013.27.

16 Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First
Steps in Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. LMCS,
8(4), 2012. doi:10.2168/LMCS-8(4:1)2012.

17 Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars
Birkedal. Guarded Dependent Type Theory with Coinductive Types. In FoSSaCS, volume
9634 of LNCS, pages 20–35. Springer, 2016. arXiv:1601.01586.

18 Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler, Lorenz Panny, Andrei
Popescu, and Dmitriy Traytel. Truly Modular (Co)Datatypes for Isabelle/HOL. In Gerwin

CALCO 2019

https://doi.org/10.1145/2429069.2429075
http://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
http://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://doi.org/10.1017/S0960129510000502
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1016/0304-3975(93)90076-6
https://perso.ens-lyon.fr/henning.basold/code/
https://perso.ens-lyon.fr/henning.basold/code/
https://hdl.handle.net/2066/190323
http://arxiv.org/abs/1811.07644
https://doi.org/10.4230/LIPIcs.CALCO.2017.5
https://doi.org/10.1016/S0304-3975(98)00305-3
https://doi.org/10.2307/2273784
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.4230/LIPIcs.CSL.2016.23
https://doi.org/10.1109/LICS.2013.27
https://doi.org/10.2168/LMCS-8(4:1)2012
http://arxiv.org/abs/1601.01586

8:18 Coinduction in Flow

Klein and Ruben Gamboa, editors, Proceedings of ITP 2014, volume 8558 of LNCS, pages
93–110. Springer, 2014. doi:10.1007/978-3-319-08970-6_7.

19 Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. Coinduction Up-to in a
Fibrational Setting. In LICS ’14, pages 20:1–20:9. ACM, 2014. doi:10.1145/2603088.2603149.

20 Julian C. Bradfield and Colin Stirling. Modal Mu-Calculi. In Handbook of Modal Logic, pages
721–756. Elsevier, 2006.

21 James Brotherston. Cyclic Proofs for First-Order Logic with Inductive Definitions. In Bernhard
Beckert, editor, Proceedings of TABLEAUX 2005, volume 3702 of Lecture Notes in Computer
Science, pages 78–92. Springer, 2005. doi:10.1007/11554554_8.

22 James Brotherston and Alex Simpson. Complete Sequent Calculi for Induction and Infinite
Descent. In Proceedings of LICS 2007, pages 51–62. IEEE Computer Society, 2007. doi:
10.1109/LICS.2007.16.

23 Ranald Clouston and Rajeev Goré. Sequent Calculus in the Topos of Trees. In Andrew M.
Pitts, editor, Proc. of FoSSaCS 2015, volume 9034 of LNCS, pages 133–147. Springer, 2015.
doi:10.1007/978-3-662-46678-0_9.

24 J. Robin B. Cockett. Deforestation, Program Transformation, and Cut-Elimination. Electr.
Notes Theor. Comput. Sci., 44(1):88–127, 2001. doi:10.1016/S1571-0661(04)80904-6.

25 The Coq Development Team. The Coq Proof Assistant Reference Manual. Technical report,
LogiCal Project, 2012. Version 8.4. URL: http://coq.inria.fr.

26 Christian Dax, Martin Hofmann, and Martin Lange. A Proof System for the Linear Time
µ-Calculus. In S. Arun-Kumar and Naveen Garg, editors, Proceedings of FSTTCS 2006,
volume 4337 of LNCS, pages 273–284. Springer, 2006. doi:10.1007/11944836_26.

27 Amina Doumane. On the Infinitary Proof Theory of Logics with Fixed Points. PhD Thesis,
Université Paris Diderot, 2017.

28 Jérôme Fortier and Luigi Santocanale. Cuts for Circular Proofs: Semantics and Cut-Elimination.
In CSL, pages 248–262, 2013. doi:10.4230/LIPIcs.CSL.2013.248.

29 Clément Fumex, Neil Ghani, and Patricia Johann. Indexed Induction and Coinduction,
Fibrationally. In Proc. of CALCO ’11, volume 6859 of Lecture Notes in Computer Science,
pages 176–191. Springer, 2011. doi:10.1007/978-3-642-22944-2_13.

30 Sergey Goncharov and Lutz Schröder. Guarded Traced Categories. In Christel Baier and
Ugo Dal Lago, editors, Proc. of FOSSACS’18, volume 10803 of LNCS, pages 313–330. Springer,
2018. doi:10.1007/978-3-319-89366-2_17.

31 Programming Logic group on Agda. Agda Documentation. Technical report, Chalmers and
Gothenburg University, 2015. Version 2.4.2.5. URL: http://wiki.portal.chalmers.se/
agda/.

32 Tatsuya Hagino. A Typed Lambda Calculus with Categorical Type Constructors. In Category
Theory in Computer Science, Lecture Notes in Computer Science, pages 140–157. Springer,
1987. doi:10.1007/3-540-18508-9_24.

33 Helle Hvid Hansen, Clemens Kupke, and Jan Rutten. Stream Differential Equations: Specific-
ation Formats and Solution Methods. LMCS, 13(1), 2017. doi:10.23638/LMCS-13(1:3)2017.

34 Masahito Hasegawa. On Traced Monoidal Closed Categories. Mathematical Structures in
Computer Science, 19(2):217–244, 2009. doi:10.1017/S0960129508007184.

35 Ichiro Hasuo, Kenta Cho, Toshiki Kataoka, and Bart Jacobs. Coinductive Predicates and Final
Sequences in a Fibration. Electronic Notes in Theoretical Computer Science, 298:197–214,
November 2013. doi:10.1016/j.entcs.2013.09.014.

36 Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational
Setting. Information and Computation, 145:107–152, 1997. doi:10.1006/inco.1998.2725.

37 Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A Convenient Category for
Higher-Order Probability Theory. In Proc. of LICS’17, pages 1–12. IEEE Computer Society,
2017. doi:10.1109/LICS.2017.8005137.

https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1145/2603088.2603149
https://doi.org/10.1007/11554554_8
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1007/978-3-662-46678-0_9
https://doi.org/10.1016/S1571-0661(04)80904-6
http://coq.inria.fr
https://doi.org/10.1007/11944836_26
https://doi.org/10.4230/LIPIcs.CSL.2013.248
https://doi.org/10.1007/978-3-642-22944-2_13
https://doi.org/10.1007/978-3-319-89366-2_17
http://wiki.portal.chalmers.se/agda/
http://wiki.portal.chalmers.se/agda/
https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.23638/LMCS-13(1:3)2017
https://doi.org/10.1017/S0960129508007184
https://doi.org/10.1016/j.entcs.2013.09.014
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1109/LICS.2017.8005137

H. Basold 8:19

38 Chung-Kil Hur, Georg Neis, Derek Dreyer, and Viktor Vafeiadis. The Power of Parameterization
in Coinductive Proof. In Proc. of POPL’13, POPL ’13, pages 193–206. ACM, 2013. doi:
10.1145/2429069.2429093.

39 Michael Huth and Marta Z. Kwiatkowska. Quantitative Analysis and Model Checking. In Proc.
of LICS’97, pages 111–122. IEEE Computer Society, 1997. doi:10.1109/LICS.1997.614940.

40 J Martin E Hyland. The Effective Topos. In Studies in Logic and the Foundations of
Mathematics, volume 110, pages 165–216. Elsevier, 1982.

41 Bart Jacobs. Categorical Logic and Type Theory. Number 141 in Studies in Logic and the
Foundations of Mathematics. North Holland, Amsterdam, 1999.

42 Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and Observation.
Number 59 in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2016. doi:10.1017/CBO9781316823187.

43 Bart Jacobs and Jan Rutten. A Tutorial on (Co)Algebras and (Co)Induction. EATCS Bulletin,
62:62–222, 1997.

44 Henning Kerstan, Barbara König, and Bram Westerbaan. Lifting Adjunctions to Coalgebras
to (Re)Discover Automata Constructions. In Marcello M. Bonsangue, editor, Revised Selected
Papers of CMCS’14, volume 8446 of LNCS, pages 168–188. Springer, 2014. doi:10.1007/
978-3-662-44124-4_10.

45 Anders Kock. Strong Functors and Monoidal Monads. Archiv der Mathematik, 23(1):113–120,
1972.

46 Dexter Kozen. Results on the Propositional µ-Calculus. Theor. Comput. Sci., 27:333–354,
1983. doi:10.1016/0304-3975(82)90125-6.

47 F William Lawvere. Diagonal Arguments and Cartesian Closed Categories. In Category
Theory, Homology Theory and Their Applications II, pages 134–145. Springer, 1969.

48 Nex Paul Mendler. Inductive Types and Type Constraints in the Second-Order Lambda Cal-
culus. Ann. Pure Appl. Logic, 51(1-2):159–172, 1991. doi:10.1016/0168-0072(91)90069-X.

49 Matteo Mio and Alex Simpson. Łukasiewicz (µ)-calculus. Fundam. Inform., 150(3-4):317–346,
2017. doi:10.3233/FI-2017-1472.

50 Rasmus Ejlers Møgelberg. A Type Theory for Productive Coprogramming via Guarded
Recursion. In CSL-LICS, pages 71:1–71:10. ACM, 2014. doi:10.1145/2603088.2603132.

51 Lawrence S. Moss. Parametric Corecursion. Theoretical Computer Science, 260:139–163, 2001.
52 Hiroshi Nakano. A Modality for Recursion. In LICS, pages 255–266. IEEE Computer Society,

2000. doi:10.1109/LICS.2000.855774.
53 Damian Niwinski and Igor Walukiewicz. Games for the µ-Calculus. TCS, 163(1&2):99–116,

1996. doi:10.1016/0304-3975(95)00136-0.
54 Damien Pous. Complete Lattices and Up-To Techniques. In Zhong Shao, editor, APLAS’07,

volume 4807 of LNCS, pages 351–366. Springer, 2007. doi:10.1007/978-3-540-76637-7_24.
55 Damien Pous. Coinduction All the Way Up. In Martin Grohe, Eric Koskinen, and Natarajan

Shankar, editors, Proceedings of LICS ’16, pages 307–316. ACM, 2016. doi:10.1145/2933575.
2934564.

56 Damien Pous and Jurriaan Rot. Companions, Codensity, and Causality. In Proceedings of
FOSSACS 2017, 2017. doi:10.1007/978-3-662-54458-7_7.

57 Grigore Roşu and Dorel Lucanu. Circular Coinduction: A Proof Theoretical Founda-
tion. In CALCO, volume 5728 of LNCS, pages 127–144. Springer, 2009. doi:10.1007/
978-3-642-03741-2_10.

58 Jurriaan Rot. Enhanced Coinduction. PhD, University Leiden, Leiden, 2015.
59 Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous, Jan Rutten, and Alexandra

Silva. Enhanced Coalgebraic Bisimulation. MSCS, 27(7):1236–1264, 2017. doi:10.1017/
S0960129515000523.

60 Jan Rutten. Universal Coalgebra: A Theory of Systems. TCS, 249(1):3–80, 2000. doi:
10.1016/S0304-3975(00)00056-6.

CALCO 2019

https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1145/2429069.2429093
https://doi.org/10.1109/LICS.1997.614940
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/978-3-662-44124-4_10
https://doi.org/10.1007/978-3-662-44124-4_10
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0168-0072(91)90069-X
https://doi.org/10.3233/FI-2017-1472
https://doi.org/10.1145/2603088.2603132
https://doi.org/10.1109/LICS.2000.855774
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/978-3-540-76637-7_24
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1007/978-3-662-54458-7_7
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1007/978-3-642-03741-2_10
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1017/S0960129515000523
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/S0304-3975(00)00056-6

8:20 Coinduction in Flow

61 Jan Rutten. Behavioural Differential Equations: A Coinductive Calculus of Streams, Automata,
and Power Series. TCS, 308(1-3):1–53, 2003. doi:10.1016/S0304-3975(02)00895-2.

62 Jan Rutten. The Method of Coalgebra: Exercises in Coinduction. CWI, Amsterdam, February
2019. URL: http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-28550.

63 Davide Sangiorgi. On the Bisimulation Proof Method. Mathematical Structures in Computer
Science, 8(5):447–479, 1998.

64 Luigi Santocanale. A Calculus of Circular Proofs and Its Categorical Semantics. In FoSSaCS,
pages 357–371, 2002. doi:10.1007/3-540-45931-6_25.

65 Luigi Santocanale. µ-Bicomplete Categories and Parity Games. RAIRO - ITA, 36(2):195–227,
2002. doi:10.1051/ita:2002010.

66 Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-Logic Programming: Extending
Logic Programming with Coinduction. In Lars Arge, Christian Cachin, Tomasz Jurdzinski,
and Andrzej Tarlecki, editors, Proc. of ICALP’07, volume 4596 of LNCS, pages 472–483.
Springer, 2007. doi:10.1007/978-3-540-73420-8_42.

67 Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Proceedings of
FoSSaCS’17, LNCS, 2017. doi:10.1007/978-3-662-54458-7_17.

68 Craig Smoryński. Self-Reference and Modal Logic. Universitext. Springer-Verlag, 1985.

69 Ana Sokolova. Probabilistic Systems Coalgebraically: A Survey. TCS, 412(38):5095–5110,
2011. doi:10.1016/j.tcs.2011.05.008.

70 Robert M. Solovay. Provability Interpretations of Modal Logic. Israel Journal of Mathematics,
25(3):287–304, 1976. doi:10.1007/BF02757006.

71 Thomas Streicher. Fibred Categories à La Jean Bénabou. arXiv:math.CT/1801.02927, 2018.
arXiv:1801.02927.

72 Kasper Svendsen, Filip Sieczkowski, and Lars Birkedal. Transfinite Step-Indexing: Decoupling
Concrete and Logical Steps. In Peter Thiemann, editor, Proc. of ESOP’16, volume 9632 of
LNCS, pages 727–751. Springer, 2016. doi:10.1007/978-3-662-49498-1_28.

73 D. A. Turner. Elementary Strong Functional Programming. In Pieter H. Hartel and Marinus J.
Plasmeijer, editors, Proceedings of FPLE’95, volume 1022 of LNCS, pages 1–13. Springer,
1995. doi:10.1007/3-540-60675-0_35.

74 Matthijs Vákár, Ohad Kammar, and Sam Staton. A Domain Theory for Statistical Probabilistic
Programming. PACMPL, 3(POPL):36:1–36:29, 2019. arXiv:1811.04196.

75 Igor Walukiewicz. On Completeness of the Mu-Calculus. In Proceedings of LICS ’93, pages
136–146. IEEE Computer Society, 1993. doi:10.1109/LICS.1993.287593.

A Interpretation of the Probabilistic Modal µ-Calculus

Given a formula ϕ with no or one free variable X, a Segala system c : Q → S(Q) and an
interpretation I : Q→ qPredAt, we use Theorem 30 to define a locally contractive functor
〈[ϕ]〉 : PrednQ → PredQ with n = 0, 1, where ♥Q = >Q,∧Q, . . . are the corresponding fibred
connectives in qPredQ:

〈[P]〉 = K(I(P)) 〈[P]〉 = K(1− I(P)) 〈[Xk]〉 = I ◦ πk
〈[>]〉 = >Q 〈[⊥]〉 = ⊥Q 〈[νX.ϕ]〉 = ν〈[ϕ]〉

〈[Iϕ]〉 = I ◦ 〈[ϕ]〉 〈[�ϕ]〉 = c# ◦
←−
S� ◦ 〈[ϕ]〉 〈[♦ϕ]〉 = c# ◦

←−
S♦ ◦ 〈[ϕ]〉

〈[ϕ u ψ]〉 = 〈[ϕ]〉 ∧Q 〈[ψ]〉 〈[ϕ t ψ]〉 = 〈[ϕ]〉 ∨Q 〈[ψ]〉 〈[ϕ→ ψ]〉 = 〈[ϕ]〉 ⇒Q 〈[ψ]〉

https://doi.org/10.1016/S0304-3975(02)00895-2
http://persistent-identifier.org/?identifier=urn:nbn:nl:ui:18-28550
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1051/ita:2002010
https://doi.org/10.1007/978-3-540-73420-8_42
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1016/j.tcs.2011.05.008
https://doi.org/10.1007/BF02757006
http://arxiv.org/abs/1801.02927
https://doi.org/10.1007/978-3-662-49498-1_28
https://doi.org/10.1007/3-540-60675-0_35
http://arxiv.org/abs/1811.04196
https://doi.org/10.1109/LICS.1993.287593

H. Basold 8:21

B Types and Terms for Guarded Probabilistic Programming

Type, context and term formation rules for guarded probabilistic programming:

X ∈ ∆
∆
 X : Ty

∆
 A : Ty
∆
 IA : Ty

∆, X
 A : Ty X appears under I in A
∆
 fixX.A : Ty

∆
 R : Ty
∆
 A : Ty ∆
 B : Ty

∆
 A×B : Ty
∆
 A : Ty ∆
 B : Ty

∆
 A→ B : Ty

· Ctx
Γ Ctx x 6∈ Γ ∆
 B : Ty

Γ Ctx

x : A ∈ Γ
Γ ` x : A

Γ ` t : A
Γ ` next t : IA

Γ ` t : I(A→ B) Γ ` s : IA
Γ ` t~ s : IB

Γ, x : IA ` t : A
Γ ` fix x. t : A

Γ ` t : A[fixX.A/X]
Γ ` in t : fixX.A

Γ ` t : fixX.A
Γ ` out t : A[fixX.A/X]

Γ, x : A ` t : B
Γ ` λx. t : A→ B

Γ ` t : A→ B Γ ` s : A
Γ ` t s : B

Γ ` t : A Γ ` s : B
Γ ` 〈t, s〉 : A×B

Γ ` t : A×B
Γ ` fst t : A

Γ ` t : A×B
Γ ` snd t : B

a ∈ Q
Γ ` a : R Γ ` normal : R× R→ R

Before we come to the semantics, let us single out values. This will simplify the denota-
tional semantics, as values need to be embedded into the monad ←−P that we will use to model
the probabilistic effects of the language.

v, w, u ::= x | a | 〈v, w〉 | in v | λx. t

We denote by TmΓ
A the terms of type A in context Γ and by ValΓA the values of type A.

Let P : qBS→ qBS be the strong probability monad on quasi-Borel spaces, see [74]. As
monads lift easily point-wise to descending chain, we get a strong monad←−P on←−−−qBS with unit
←−η and bind operator ←−�=. Note that the unit and multiplication of the monad lift point-wise,
while the strength needs to be defined through the unique mapping property of the end that we
used to construct exponentials in←−−−qBS. In qBS, we also find the normal distribution given as
morphism N : R×R→ P (R). This gives us a morphism K(N) : K(R)×K(R)→←−P (K(R)),
which we will use below. Next, we need a natural transformation ι : I←−P ⇒←−P I, which is
given by ισ,0 = 1 ∼= P0 P !−→ P1 and ισ,n+1 = idPσn .

The interpretation of types, context, values and terms over ←−−−qBS is then given as follows.

J∆
 A : TyK :←−−−qBS∆ →
←−−−qBS

JΓ CtxK ∈
←−−−qBS

J−Kval : ValΓA →
←−−−qBS(JΓK, JAK)

J−K : TmΓ
A →

←−−−qBS
(
JΓK,
←−
P JAK

)

CALCO 2019

8:22 Coinduction in Flow

JXK = πX JIAK = I ◦JAK

JfixX.AK = νJAK JRK = K(R)

JA×BK = JAK× JBK JA→ BK = JAK⇒
←−
P JBK

J·K = 1 JΓ, x : AK = JΓK× JAK

JxKval = πx JaKval = λγ.K(a)
J〈v, w〉Kval = 〈JvKval, JwKval〉 Jin vKval = ξ−1 ◦ JvKval

Jλx. tKval = λJtK

JvK γ =←−η JAK(JvKval γ) Jnext tK γ =←−P (nextJAK)(JtK γ)

Jt~ sK γ = JtK γ←−�= λf. JsK γ←−�= λx.mon f x Jfix x. tK γ = löb
(
λx. ι(x)←−�= λy. JtK (γ, y)

)
Jin tK γ =←−P (ξ−1)(JtK γ) Jout tK γ =←−P (ξ)(JtKγ)

JnormalK γ = λK(N) Jt sK γ = JtK γ←−�= λf. JsK γ←−�= λx. f x

J〈t, s〉K γ = JtK γ←−�= λx. JsK γ←−�= λy. η(x, y) Jfst tK γ =←−P (π1)(JtK γ)

Jsnd tK γ =←−P (π2)(JtK γ)

Causal Unfoldings
Marc de Visme
Univ Lyon, ENS de Lyon, CNRS, UCB Lyon 1, LIP, France

Glynn Winskel
Computer Laboratory, University of Cambridge, UK

Abstract
In the simplest form of event structure, a prime event structure, an event is associated with a unique
causal history, its prime cause. However, it is quite common for an event to have disjunctive causes
in that it can be enabled by any one of multiple sets of causes. Sometimes the sets of causes may be
mutually exclusive, inconsistent one with another, and sometimes not, in which case they coexist
consistently and constitute parallel causes of the event. The established model of general event
structures can model parallel causes. On occasion however such a model abstracts too far away
from the precise causal histories of events to be directly useful. For example, sometimes one needs
to associate probabilities with different, possibly coexisting, causal histories of a common event.
Ideally, the causal histories of a general event structure would correspond to the configurations of its
causal unfolding to a prime event structure; and the causal unfolding would arise as a right adjoint
to the embedding of prime in general event structures. But there is no such adjunction. However, a
slight extension of prime event structures remedies this defect and provides a causal unfolding as a
universal construction. Prime event structures are extended with an equivalence relation in order
to dissociate the two roles, that of an event and its enabling; in effect, prime causes are labelled
by a disjunctive event, an equivalence class of its prime causes. With this enrichment a suitable
causal unfolding appears as a pseudo right adjoint. The adjunction relies critically on the central
and subtle notion of extremal causal realisation as an embodiment of causal history.

2012 ACM Subject Classification Theory of computation → Concurrency

Keywords and phrases Event Structures, Parallel Causes, Causal Unfolding, Probability

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.9

Acknowledgements Thanks to the anonymous referees. Thanks to Simon Castellan, Pierre Clair-
ambault, Ioana Cristescu, Mai Gehrke, Jonathan Hayman, Tamas Kispeter, Jean Krivine, Martin
Hyland and Daniele Varacca for discussions, advice and encouragement; to ENS Paris for supporting
Marc de Visme’s internship; and to the ERC for Advanced Grant ECSYM.

1 Introduction

Work on probabilistic distributed strategies based on event structures brought us face to
face with a limitation in existing models of concurrent computation, and in particular with
the theory of event structures as it had been developed. In order to adequately express
certain intuitively natural, optimal probabilistic strategies, it was necessary to simultaneously
support: probability on event structures with opponent moves, itself rather subtle; parallel
causes, in which an event may be enabled in several distinct but compatible ways; and a
hiding operation crucial in the composition of strategies. The difficulties did not show up in
the less refined development of nondeterministic strategies; there the simplest form of event
structure, prime event structures, sufficed. The “obvious” remedy, to base strategies on more
general event structures, which do support parallel causes, failed to support probability and
hiding adequately. The problems and a solution are documented in the article [7].

That work uncovered a central construction, which we here call the causal unfolding
of a model with parallel causes. It is based on the notion of extremal causal realisation
and attendant prime extremal realisation which plays a role analogous to that of complete

© Marc de Visme and Glynn Winskel;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CALCO.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Causal Unfoldings

prime in distributive orders. Both concepts deserve to be better known and are expanded on
comprehensively with full proofs here. As will shortly be explained more fully, intuitively, a
prime extremal realisation is a finite partial order expressing a minimal causal history for
an event to occur, even in the presence of several parallel causes for the event. Extremal
realisations provide us with a way to unfold a model supporting parallel causes (general event
structures – Section 2.2, or equivalence families – Section 3) into a structure describing all
its causal histories – its causal unfolding. As is to be hoped, the unfolding will be a form of
right adjoint giving the causal unfolding and extremal realisations a categorical significance.

To give an idea of prime extremal realisations of events we give a short, necessarily
informal, preview of two examples from the paper. The simplest concerns a general event
structure comprising three events a, b and d where d can occur once a or b have occurred
and where all events can occur together. The events a and b constitute parallel causes of the
event d. We can picture the situation in the diagram:

d

OR

a

0 44<

b

aaj

Here there are two minimal causal histories associated with the occurrence of the event d,
viz. d after a, and d after b :

d d

and
a

_LLR

b

_LLR

These will be the prime extremal realisations associated with the occurrence of d. But this
example is deceptively simple. To add a level of difficulty, consider the general event structure

d

c
AND

_LLR

OR

a

J??I

6 66@

b

sUU^

�^^h

which portrays an event d enabled through the occurrence of all of the events a, b and c but
where c is enabled by either a or b. This time the two minimal causal histories associated
with the occurrence of the event d, one after c caused by a, and the other after c caused by
b, give rise to the two prime extremal realisations:

d

c

_LLR

a

_LLR

b

pTT\
and d

c

_LLR

a

NBBJ

b

_LLR

There are also more subtle “non-injective” prime extremal realisations in which the same
event of a general event structure occurs in several different ways – see Example 13, though
these have been ruled out in our application to strategies with parallel causes [7].

The new adjunction, with its right adjoint the causal unfolding, supplies a missing link in
the landscape of models for concurrency [15]. The adjunction connects models with parallel
causes, such as general event structures, to those based on partial orders of events. It does
this through the introduction of a simple, new model which is based on prime event structures
extended with an equivalence relation on their sets of events.

M. de Visme and G. Winskel 9:3

In systems with parallel causes it is often necessary to associate probabilities with
causal histories, and the causal unfolding provides a suitable structure on which to do this
systematically [7]. Outside probability, there is a similar need for causal unfoldings, for
example, when reversible computing encounters parallel causes [3, 4], and in extracting
biochemical pathways, forms of causal history in biochemical systems where parallel causes
are rife [5].

2 Event structures and their maps

We briefly review two well-established forms of event structure and explain the absence of
an adjunction associated with the embedding of prime into general event structures. It is
through such an adjunction one might otherwise have thought to find a causal unfolding
of general event structures to prime event structures. The absence motivates a new model
based on prime event structures with an equivalence relation. (We refer the reader to [13, 14]
in particular for background and intuitions.)

2.1 Prime event structures

A prime event structure comprises (E,≤,Con), consisting of a set E of events which are
partially ordered by ≤, the causal dependency relation, and a non-empty consistency relation
Con consisting of finite subsets of E. The relation e′ ≤ e expresses that event e causally
depends on the previous occurrence of event e′. Write [X] for the ≤-down-closure of a subset
of events X. That a finite subset of events is consistent conveys that its events can occur
together by some stage in the evolution of the process. Together the relations satisfy several
axioms:

[e] = {e′ | e′ ≤ e} is finite, for all e ∈ E,
{e} ∈ Con, for all e ∈ E,
X ⊆ Y ∈ Con =⇒ X ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

A configuration is a, possibly infinite, set of events x ⊆ E which is: consistent, X ⊆
x and X is finite implies X ∈ Con ; and down-closed, [x] = x. It is part and parcel of prime
event structures that an event e is associated with a unique causal history [e].

Prime event structures have a long history. They first appeared in describing the patterns
of event occurrences that occurred in the unfolding of a (1-safe) Petri net [10]. As their
configurations, ordered by inclusion, form a Scott domain, prime event structures provided
an early bridge between the semantic theories of Dana Scott and Carl Petri; one early result
being that a confusion-free Petri net unfolded to a prime event structure with configurations
taking the form of a concrete domain, as defined by Kahn and Plotkin. Generally, the
configurations of a countable prime event structure ordered by inclusion coincide with the
dI-domains of Berry – distributed Scott domains which satisfy a finiteness axiom [14]. The
domains of configuration of a prime event structure had been characterised earlier in [10] as
prime algebraic domains, Scott domains with a subbasis of complete primes.1

1 A complete prime in an order which supports least upper bounds
⊔

X of compatible subsets X is an
element p such that p v

⊔
X implies p v x for some x ∈ X. In the configurations of a prime event

structure the complete primes are exactly those configurations [e] for an event e.

CALCO 2019

9:4 Causal Unfoldings

2.2 General event structures
A general event structure [13, 14] permits an event to be caused disjunctively in several
ways, possibly coexisting in parallel, as parallel causes. A general event structure comprises
(E,Con,`) where E is a set of events, the consistency relation Con is a non-empty collection
of finite subsets of E, and the enabling relation ` is a relation in Con× E such that

X ⊆ Y ∈ Con =⇒ X ∈ Con , and
Y ∈ Con & Y ⊇ X & X ` e =⇒ Y ` e .

A configuration is a subset x of E which is: consistent, X ⊆fin x =⇒ X ∈ Con; and secured,
∀e ∈ x∃e1, · · · , en ∈ x. en = e & ∀i ≤ n.{e1, · · · , ei−1} ` ei . We write C∞(E) for the
configurations of E and C(E) for its finite configurations. (For illustrations of small general
event structure see, for instance, Example 1 and E0 of Example 12.)

An event e being enabled in a configuration has been expressed through the existence of
a securing chain e1, · · · , en, with en = e, within the configuration. The chain represents a
complete enabling of e in the sense that every event in the chain is itself enabled by earlier
members of the chain. Just as mathematical proofs are most usefully viewed not merely as
sequences, so later complete enablings expressed more generally as partial orders – “causal
realisations” – will play a central role.

A map f : (E,Con,`)→ (E′,Con′,`′) of general event structures is a partial function
f : E ⇀ E′ such that

∀X ∈ Con . fX ∈ Con′ ,
∀X ∈ Con, e1, e2 ∈ X. f(e1) = f(e2) (both defined) =⇒ e1 = e2 , and
∀X ∈ Con, e ∈ E. X ` e & f(e) is defined =⇒ fX `′ f(e) .

Maps compose as partial functions. Write G for the category of general event structures.
W.r.t. a family of subsets F , a subset X of F is compatible (in F), written X ↑, if there

is y ∈ F such that x ⊆ y for all x ∈ X; we write x ↑ y for {x, y}↑. Say a subset is finitely
compatible iff every finite subset is compatible.

We can now characterise those families of configurations arising from a general event
structure [14]. A family of configurations comprises a non-empty family F of sets such that
if X ⊆ F is finitely compatible in F then

⋃
X ∈ F ; and if e ∈ x ∈ F there is a securing

chain e1, · · · , en = e in x such that {e1, · · · , ei} ∈ F for all i ≤ n.2 Its events are elements of
the underlying set

⋃
F . A map between families of configurations from A to B is a partial

function f :
⋃
A⇀

⋃
B between their events such that fx ∈ B if x ∈ A and any event of fx

arises as the image of a unique event of x. Maps compose as partial functions. Write Fam
for the category of families of configurations.

Characterisations of the orders obtained from the configurations of a general event
structure can be found in [13].3

2 The latter condition is equivalent to: (i) if e ∈ x ∈ F there is a finite x0 ∈ F s.t. e ∈ x0 ∈ F and (ii)
(coincident-freeness) for distinct e, e′ ∈ x, there is y ∈ F with y ⊆ x s.t. e ∈ y ⇐⇒ e′ 6∈ y.

3 Complete irreducibles are the customary generalisation of complete primes to nondistributive orders such
as those of configurations of general event structures ordered by inclusion [13]. A complete irreducible
in an order which supports least upper bounds

⊔
X of compatible subsets X is an element r such that

r =
⊔

X implies r = x for some x ∈ X. In the configurations of a general event structure the complete
irreducibles are exactly those minimal configurations which contain an event e. A forewarning: only in
very special circumstances will prime extremal realisations – the generalisation of complete prime of
this paper – coincide with complete irreducibles – see Example 12.

M. de Visme and G. Winskel 9:5

2.3 A coreflection and non-coreflection
There is a forgetful functor G → Fam taking a general event structure to its family of
configurations. It has a left adjoint, which constructs a canonical general event structure
from a family: given A, a family of configurations with underlying events A, construct a
general event structure (A,Con,`) with X ∈ Con iff X ⊆fin y, for some y ∈ A; and with
X ` a iff a ∈ A, X ∈ Con and a ∈ y ⊆ X ∪ {a}, for some y ∈ A.

The above yields a coreflection4

Fam > 33 Grr

of families of configurations in general event structures. It cuts down to an equivalence
between families of configurations and replete general event structures. A general event
structure (E,Con,`) is replete iff

∀e ∈ E ∃X ∈ Con. X ` e , ∀X ∈ Con∃x ∈ C(E). X ⊆ x and
X ` e =⇒ ∃x ∈ C(E). e ∈ x & x ⊆ X ∪ {e} .

A map of prime event structures is a map of their families of configurations. Write E for
the category of prime event structures. (A map in E need not preserve causal dependency;
when it does and is total it is called rigid.)

There is an obvious “‘inclusion”’ functor E → Fam fully and faithfully embedding the
category of prime event structures in the category of families of configurations and so in
general event structures. We might expect the functor E → Fam to be the left adjoint of a
coreflection

E > 22 Fam
?

ss
> 33 G ,rr

so yielding a composite right adjoint G → E which unfolds a general event structure to a
prime event structure [14, 15]. However under reasonable assumptions this cannot exist, as
the following example indicates.

I Example 1. Consider a general event structure comprising three events a, b and d with
all subsets consistent and minimal enablings ∅ ` a, b and {a} ` d and {b} ` d. Imagine
concurrent treatments a and b of two doctors which sadly lead to the death d of the patient.

d

OR

a

0 44<

b

aaj

As its unfolding it is hard to avoid a prime event structure with events and causal dependency
a < da and b < db – the event da representing “death by a” and the event db “death by b” –
with the counit of the adjunction collapsing da and db to the common event d. (If we are
to apportion blame to the doctors we shall need the probabilities of da and db given a and
b [11].) In order for the counit to be a map we are forced to make {da, db} inconsistent. This
is one issue: why should death by one doctor’s treatment be in conflict with death by the
other’s – they could be jointly responsible? But even more damningly the tentative counit
fails the universal property required of it! Consider another prime event structure with three
events comprising a < d and b < d (“death due to both doctors’ treatments”). The obvious

4 A coreflection is an adjunction where the left adjoint is full and faithful, or equivalently the unit is iso.

CALCO 2019

9:6 Causal Unfoldings

map to the family of configurations of the general event structure – the identity on events –
fails to factor uniquely through the putative counit: d can be sent to either da or db; the
event “death by both doctors” can be sent to either “death by a” or “death by b.” This raises
the second issue: if we are to obtain the required universal property we have to regard these
two maps as essentially the same.

The two issues raised in the example suggest a common solution: to enrich prime event
structures with equivalence relations. This will allow a broader class of maps, settling the
first issue, and introduce an equivalence on maps, settling the second. The causal unfolding
of the “doctors example” will be very simple and comprise the prime event structure a < da
and b < db with da and db equivalent events; with all events consistent. In general the
construction of the unfolding is surprisingly involved; causal histories can be much more
intricate than in the simple example.

3 Events with an equivalence, categories E≡ and Fam≡

We build causal unfoldings in a new model, based on the obvious extension to events with
an equivalence relation. A (prime) event structure with equivalence (an ese) is a structure

(P,≤,Con,≡)

where (P,≤,Con) satisfies the axioms of a prime event structure and ≡ is an equivalence
relation on P . The intention is that the events of P represent prime causes while the
≡-equivalence classes of P represent disjunctive events: p in P is a prime cause of the event
{p}≡. Notice there may be several prime causes of the same event and that these may be
parallel causes in the sense that they are consistent with each other and causally independent.

The extension by an equivalence relation on events is accompanied by an extension to
families of configurations. An equivalence-family (ef) is a family of configurations A with
an equivalence relation ≡A on its underlying set A =def

⋃
A (with no further axioms).

Equivalence-families are the most general model we shall consider; they support parallel
causes and, later, a causal unfolding.

Let (A,≡A) and (B,≡B) be ef’s, with respective underlying sets A and B. A map
f : (A,≡A)→ (B,≡B) is a partial function f : A ⇀ B which preserves ≡, if a1 ≡A a2 then
either both f(a1) and f(a2) are undefined or both defined with f(a1) ≡B f(a2), such that

x ∈ A =⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2) =⇒ a1 ≡A a2 .

Composition is composition of partial functions. We regard two maps

f1, f2 : (A,≡A)→ (B,≡B)

as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent results, i.e. if
f1(p) is defined then so is f2(p) and f1(p) ≡Q f2(p), and if f2(p) is defined then so is f1(p)
and f1(p) ≡Q f2(p). Composition respects ≡. This yields a category of equivalence families
Fam≡; it is enriched in the category of sets with equivalence relations (also called setoids).5

Clearly from an ese (P,≡P) we obtain an ef (C∞(P),≡P) and we take a map of ese’s to be
a map between their associated ef’s. Write E≡ for the category of ese’s; it too is enriched in
the category of sets with equivalence relations. When the equivalence relations ≡ of ese’s are

5 The Appendix provides background in categories enriched in equivalence relations.

M. de Visme and G. Winskel 9:7

the identity we essentially have prime event structures and their maps. There is clearly a
full-and-faithful embedding

E≡ → Fam≡ ,

which preserves and reflects the equivalence on maps. One virtue of ese’s is that they support
a hiding operation, associated with a factorisation system [7].

We sometimes use an alternative description of their maps:

I Proposition 2. A map of ese’s from P to Q is a partial function f : P ⇀ Q which
preserves ≡ such that
(i) for all X ∈ ConP the direct image fX ∈ ConQ and
∀p1, p2 ∈ X. f(p1) ≡Q f(p2) =⇒ p1 ≡P p2 , and

(ii) whenever q ≤Q f(p) there is p′ ≤P p such that f(p′) = q .

While an ese determines an ef, the converse, how to construct the causal unfolding of an
ef to an ese, is much less clear. To do so we follow up on the idea of Section 2.2 of basing
minimal complete enablings on partial orders. A minimal complete enabling will correspond
to a prime extremal realisation. Realisations and extremal realisations are our next topic.

4 Causal histories as extremal realisations

Extremal causal realisations formalise the notion of causal history in models with parallel
causes, viz. general event structures and the most general model of equivalence-families. They
will be the central tool in constructing the causal unfoldings of such models.

4.1 Causal realisations

Let A be a family of configurations with underlying set A. A (causal) realisation of A
comprises a partial order (E,≤), its carrier, such that the set {e′ ∈ E | e′ ≤ e} is finite for
all events e ∈ E, together with a function ρ : E → A for which the image ρx ∈ A when x is
a down-closed subset of E. We say a realisation is injective when it is injective as a function.

A map between realisations (E,≤), ρ and (E′,≤′), ρ′ is a partial surjective function
f : E ⇀ E′ which preserves down-closed subsets and satisfies ρ(e) = ρ′(f(e)) for all e ∈ E
where f(e) is defined. It is convenient to write such a map as ρ �f ρ′. Occasionally we shall
write ρ � ρ′, or the converse ρ′ � ρ, to mean there is a map of realisations from ρ to ρ′.

A map of realisations ρ �f ρ′ factors into a “projection” followed by a total map

ρ �f1
1 ρ0 �f2

2 ρ′ ,

where ρ0 stands for the realisation (E0,≤0), ρ0 where E0 = {e ∈ E | f(e) is defined} is the
domain of definition of f ; ≤0 is the restriction of ≤; f1 is the inverse relation to the inclusion
E0 ⊆ E; and f2 : E0 → E′ is the total part of function f . We are using �1 and �2 to signify
the two kinds of maps. Notice that �1-maps are reverse inclusions. Notice too that �2-maps
are exactly the total maps of realisations. Total maps ρ �f2 ρ′ are precisely those functions
f from the carrier of ρ to the carrier of ρ′ which preserve down-closed subsets and satisfy
ρ = ρ′f .

CALCO 2019

9:8 Causal Unfoldings

4.2 Extremal realisations
Let A be a configuration family with underlying set A. We shall say a realisation ρ is extremal
when ρ �f2 ρ′ implies f is an isomorphism, for any realisation ρ′; it is called prime extremal
when it in addition has a top element, i.e. its carrier contains an element which dominates all
other elements in the carrier. Intuitively, an extremal realisation is a most economic causal
history associated with its image, a configuration of A; it is extremal in being a realisation
with minimal causal dependencies.

Any realisation in A can be coarsened to an extremal realisation.

I Lemma 3. For any realisation ρ there is an extremal realisation ρ′ with ρ �f2 ρ′.

Proof. The category of realisations with total maps has colimits of total-order diagrams.
A diagram d from a total order (I,≤) to realisations, comprises a collection of total maps
of realisations di,j : d(i)→ d(j) when i ≤ j s.t. di,i is always the identity map and if i ≤ j
and j ≤ k then di,k = dj,k ◦ di,j . We suppose each realisation d(i) has carrier (Ei,≤i) with
d(i) : Ei → A. We construct the colimit realisation of the diagram as follows.

The elements of the colimit realisation consist of equivalence classes of elements of the
disjoint union E =def

⊎
i∈I Ei under the equivalence

(i, ei) ∼ (j, ej) ⇐⇒ ∃k ∈ I. i ≤ k & j ≤ k & di,k(ei) = dj,k(ej) .

Consequently we may define a function ρE : E → A by taking ρE({ei}∼) = ρi(ei). Because
every di,j is a surjective function, every equivalence class in E has a representative in Ei for
every i ∈ I. Moreover, for any e ∈ E there is k ∈ I s.t.

{e′ ∈ E | e′ ≤E e} = {{e′k}∼ | e
′
k ≤k ek} ,

where e = {ek}∼, so is finite. It follows that ρE is a realisation. The maps fi : ρi �2 ρE ,
where i ∈ I, given by fi(ei) = {ei}∼ form a colimiting cocone.

Suppose ρ is a realisation. Consider all total-order diagrams d from a total order (I,≤)
to realisations starting from ρ with di,j not an isomorphism if i < j. Amongst them, by
Zorn’s lemma, there is a maximal diagram w.r.t. extension. From the maximality of the
diagram its colimit is necessarily extremal. In more detail, construct a colimiting cocone
fi : d(i) �2 ρE , i ∈ I, with the same notation as above. By maximality of the diagram some
fk must be an isomorphism; otherwise we could extend the diagram by adding a top element
to the total order and sending it to ρE . If j should satisfy k < j then fj ◦ dk,j = fk so
f−1
k ◦ fj ◦ dk,j = idEk

. It would follow that dk,j is injective, as well as surjective, it being a
total map of realisations, and consequently that dk,j is an isomorphism – a contradiction.
Hence k is the maximum element in (I,≤). If the colimit were not extremal we could again
adjoin a new top element above k thus extending the diagram – a contradiction. J

For example, as a corollary, a countable configuration of a family of configurations
always has an injective extremal realisation. By serialising the countable configuration,
a1 ≤ a2 ≤ · · · ≤ an ≤ · · · , where {a1, · · · , an} ∈ A for all n, we obtain an injective
realisation ρ. By Lemma 3 we can coarsen ρ to an extremal realisation ρ′ with ρ �f2 ρ′. As
ρ = ρ′f the surjective function f is also injective, so a bijection, ensuring that the extremal
realisation ρ′ is injective.

The following rather technical lemma and corollary are crucial.

I Lemma 4. Assume (R,≤), ρ, (R0,≤0), ρ0 and (R1,≤1), ρ1 are realisations.

M. de Visme and G. Winskel 9:9

(i) Suppose f = ρ �f1
1 ρ0 �f2

2 ρ1. Then there are maps so that f = ρ �g2
2 ρ′ �g1

1 ρ1:

ρ

f1

��

g2 // ρ′

g1

��
ρ0

f2 // ρ1

(ii) Suppose ρ �f1
1 ρ0 where R0 is not a down-closed subset of R. Then there are maps so

that f1 = ρ �g2
2 ρ′ �g1

1 ρ0 with g2 not an isomorphism:

ρ

f1

��

g2 // ρ′

g1
��

ρ0

Proof.
(i) Construct the realisation (R′,≤′), ρ′ as follows. Define

R′ = (R \R0) ∪R1

where w.l.o.g. we assume the sets R \ R0 and R1 are disjoint. Define g2 : R → R′ to
act as the identity on elements of R \R0 and as f2 on elements of R0.
When b ∈ R \R0, define

a ≤′ b iff ∃a0 ∈ R. a0 ≤ b & g2(a0) = a .

When b ∈ R1, define

a ≤′ b iff a ∈ R1 & a ≤1 b .

To see ≤′ is a partial order observe that reflexivity and antisymmetry follow directly
from the corresponding properties of ≤ and ≤1. Transitivity requires an argument by
cases. For example, in the most involved case, where

c ≤′ a with a ∈ R1 and a ≤′ b with b ∈ R \R0

we obtain

c ≤1 a and a0 ≤ b

for some a0 ∈ R0 with f2(a0) = a. As f2 is surjective and preserves down-closed
subsets,

c0 ≤0 a0 and a0 ≤ b

for some c0 ∈ R0 with f2(c0) = c. Consequently, c0 ≤ b with g2(c0) = c, making c ≤′ b,
as required for transitivity.
Define ρ′ to act as ρ on elements of R \R0 and as ρ1 on elements of R1. Then ρ = ρ′g2
directly. We check ρ′ preserves down-closed subsets, so is a realisation. Let b ∈ R′. If
b ∈ R1 then ρ′[b]′ = ρ1[b]1 ∈ A. If b ∈ R \R0 then ρ′[b]′ = ρg2[b] is the image under ρ
of the down-closed subset g2[b], so in A. Because f2 preserves down-closed subsets so
does g2. We already have ρ = ρ′g2, making g2 a map of realisations ρ �g2

2 ρ′. Define
g1 : R′ ⇀ R1 to be the reverse of the inclusion R1 ⊆ R′. Because ρ1 is the restriction
of ρ′ to R1, g1 is a map of realisations ρ′ �g1

1 ρ1. By construction f = g1g2.

CALCO 2019

9:10 Causal Unfoldings

(ii) This follows from the construction of (R′ ≤′), ρ′ used in (i) but in the special case where
f2 is the identity map (with R0 = R1). Then R′ = R but ≤′ 6=≤ as there is e ∈ R0 with
[e]0 ([e] ensuring that [e]′ = [e]0 6= [e]. J

I Corollary 5. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and there is ρ0 s.t. f : ρ �1
ρ0 ∼= ρ′. Moreover, the carrier R0 of ρ0 is a down-closed subset of the carrier R of ρ, with
order the restriction of that on R.

Proof. Directly from Lemma 4. Assume ρ is extremal and ρ �f ρ′. We can factor f into
ρ �f1

1 ρ0 �f2
2 ρ′. From (i), if ρ0 were not extremal nor would ρ be – a contradiction; hence

f2 is an isomorphism. From (ii), the carrier R0 of ρ0 has to be a down-closed subset of the
carrier R of ρ, as otherwise we would contradict the extremality of ρ. J

It follows that if ρ is extremal and ρ �f ρ′ then ρ′ is extremal and the inverse relation
g =def f

−1 is an injective function preserving and reflecting down-closed subsets, i.e. g[r′] =
[g(r′)] for all r′ ∈ R′. In other words:

I Corollary 6. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and the inverse g =def f
−1

is a rigid embedding from the carrier of ρ′ to the carrier of ρ such that ρ′ = ρg.

I Lemma 7. Let (R,≤), ρ be an extremal realisation. Then
(i) if r′ ≤ r and ρ(r) = ρ(r′) then r = r′;
(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′. Here [r) =def [r] \ {r}.

Proof.
(i) Suppose r′ ≤ r and ρ(r) = ρ(r′). By Corollary 6, we may project to [r] to obtain an

extremal realisation ρ0 : [r] → A. Suppose r and r′ were unequal. We can define a
realisation as the restriction of ρ0 to [r). The function from [r] to [r) taking r to r′ and
otherwise acting as the identity function is a map of realisations from the realisation
ρ0 and clearly not an isomorphism, showing ρ0 to be non-extremal – a contradiction.
Hence r = r′, as required.

(ii) Suppose [r) = [r′) and ρ(r) = ρ(r′). Projecting to [{r, r′}] we obtain an extremal
realisation. If r and r′ were unequal there would be a non-isomorphism map to the
realisation obtained by projecting to [r], viz. the map from [{r, r′}] to [r] sending r′ to
r and fixing all other elements. J

In fact, by modifying condition (i) in the lemma above a little we can obtain a char-
acterisation of extremal realisations – though not strictly necessary for the rest of of the
paper:

I Lemma 8. Let (R,≤), ρ be a realisation. Then ρ is extremal iff
(i) if X ⊆ [r), with X down-closed and r ∈ R, and ρ(X ∪ {r}) ∈ A then X = [r); and
(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.

Proof. “Only if” : Assume ρ is extremal. We have already established (ii) in Lemma 7. To
show (i), suppose X is down-closed and X ⊆ [r) in R with ρ(X ∪ {r}) ∈ A. By Corollary 6,
we may project to [r] to obtain an extremal realisation ρ0 : [r]→ A. Modify the restricted
order [r] to one in which r′ ≤ r iff r′ ∈ X ∪ {r}, and is otherwise unchanged. The same
underlying function ρ0 remains a realisation, call it ρ′0, on the modified order. The identity
function gives us a map f : ρ0 �2 ρ

′
0 which is an isomorphism between realisations iff X = [r).

“If” : Assume (i) and (ii). Suppose f : ρ �2 ρ
′, where R′, ρ′ is a realisation. We show f is

M. de Visme and G. Winskel 9:11

injective and order-preserving. As f is presumed to be surjective and to preserve down-closed
subsets we can then conclude it is an isomorphism.

To see f is injective suppose the contrary that f(r1) = f(r2) for r1 6= r2. W.l.o.g. we
may suppose r1 and r2 are minimal in the sense that

r′1 6= r′2 & r′1 ≤ r1 & r′2 ≤ r2 & f(r′1) = f(r′2) =⇒ r′1 = r1 & r′2 = r2 .

Define r′ =def f(r1) = f(r2). Then

[r′] ⊆ f [r1] & [r′] ⊆ f [r2] .

Furthermore, as only r′ can be the image of r1 and r2 under the function f ,

[r′) ⊆ f [r1) & [r′) ⊆ f [r2) .

It follows that

[r′) ⊆ f [r1) ∩ f [r2) = f([r1) ∩ [r2))

where the equality is a consequence of the minimality of r1, r2. Taking X =def [r1) ∩ [r2) we
have (fX) ∪ {r′} is down-closed in R′. Therefore

ρ(X ∪ {r1}) = ρ′f(X ∪ {r1}) = ρ′(fX ∪ {r′}) ∈ A .

By condition (i), X = [r1). Similarly, X = [r2), so [r1) = [r2). Obviously ρ(r1) = ρ′f(r1) =
ρ′f(r1) = ρ(r2), so we obtain r1 = r2 by (ii) – a contradiction, so f is injective.

We now check that f preserves the order. Let r ∈ R. Define

X =def [{r1 ≤ r | f(r1) < f(r)}] ,

where the square brackets signify down-closure in R. Then X is down-closed in R by definition
and X ⊆ [r). We have [f(r)] ⊆ f [r] whence

fX = f [r] ∩ [f(r)) = [f(r)) .

Therefore fX ∪ {f(r)} is down-closed in R′, so

ρ(X ∪ {r}) = ρ′f(X ∪ {r}) = ρ′(fX ∪ {f(r)}) ∈ A .

Hence X = [r), by (i). It follows that

r1 < r =⇒ r1 ∈ X =⇒ f(r1) < f(r) in R′ .

This shows that f preserves the order on R. J

I Lemma 9. There is at most one map between extremal realisations.

Proof. Let (R,≤), ρ and (R′,≤′), ρ′ be extremal realisations. Let f, f ′ : ρ → ρ′ be maps
with converse relations g and g′ respectively. We show the two functions g and g′ are equal,
and hence so are their converses f and f ′. Suppose otherwise that g 6= g′. Then there is an
≤-minimal r′ ∈ R′ for which g(r′) 6= g′(r′) and g[r′) = g′[r′). Hence [g(r′)) = [g′(r′)) and
ρ(g(r′)) = ρ′(r′) = ρ(g′(r′)). As ρ is extremal, by Lemma 7(ii) we obtain g(r′) = g′(r′) – a
contradiction. J

CALCO 2019

9:12 Causal Unfoldings

Hence extremal realisations of A under � form a preorder. The order of extremal
realisations has as elements isomorphism classes of extremal realisations ordered according
to the existence of a map between representatives of isomorphism classes. Alternatively, we
could take a choice of representative from each isomorphism class and order these according
to whether there is a map from one to the other. Recall a prime extremal realisation
is an extremal realisation with a top element, i.e. when its carrier contains an element
which dominates all other elements in the carrier. The following is a direct corollary of
Proposition 14 in the next section.

I Proposition 10. The order of extremal realisations of a family of configurations A forms
a prime-algebraic domain [10] with complete primes the prime extremal realisations.

The proofs of the following observations are straightforward consequences of the definitions.
They emphasise that prime extremal realisations are a generalisation of complete primes.

I Proposition 11. Let (A,≤A,ConA) be a prime event structure. For an extremal realisation
(R,≤R), ρ of C∞(A), the function ρ : R → ρR is an order isomorphism between (R,≤R)
and the configuration ρR ∈ C∞(A) ordered by the restriction of ≤A. The function taking
an extremal realisation (R,≤R), ρ to the configuration ρR is an order isomorphism from the
order of extremal realisations of C∞(A) to the configurations of A; prime extremal realisations
correspond to complete primes of C∞(A).

A configuration x ∈ F , of a family of configurations F , is irreducible iff there is a
necessarily unique e ∈ x such that ∀y ∈ F , e ∈ y ⊆ x implies y = x. Irreducibles coincide
with complete (join) irreducibles w.r.t. the order of inclusion. It is tempting to think of
irreducibles as representing minimal complete enablings. But, as sets, irreducibles both (1)
lack sufficient structure: in the formulation we are led to, of minimal complete enablings as
prime extremal realisations, several prime realisations can have the same irreducible as their
underlying set; and (2) are not general enough: there are prime realisations whose underlying
set is not an irreducible. We conclude with examples illustrating the nature of extremal
realisations; it is convenient to describe families of configurations by general event structures.

I Example 12. This example shows that prime extremal realisations do not correspond to
irreducible configurations. First, we show a general event structure E0 (all subsets consistent)
with irreducible configuration {a, b, c, d} and two (injective) prime extremals E1 and E2 with
tops d1 and d2 which both have the same irreducible configuration {a, b, c, d} as their image.
The lettering indicates the functions associated with the realisations, e.g. events d1 and d2
in the partial orders map to d in the general event structure.

E0 E1 E2 F0 F1

d

c

AND
_LLR

OR

a

J??I

5 66?

b

tUU_

	__h d1

c1

_LLR

a

_LLR

b

qTT]
d2

c2

_LLR

a

MAAJ

b

_LLR

d

c

AND
_LLR

OR

a

J??I

b

tUU_

	__h d1

c1

_LLR

a

_LLR

b

qTT]

On the other hand there are prime extremal realisations of which the image is not an
irreducible configuration. Consider the general event structure F0. The prime extremal F1
describes a situation where d is enabled by b and c, and c is enabled by a. It has image the
configuration {a, b, c, d} which is not irreducible, being the union of the two incomparable
configurations {a} and {b, c, d}.

M. de Visme and G. Winskel 9:13

I Example 13. It is possible to have extremal realisations in which an event depends on
an event of the family having been enabled in two distinct ways, as in the following prime
extremal realisation, on the left; it is clearly not injective.

f f

AND

d

MAAJ

e

qTT]

d

E<<G

e

yWWb

c1

_LLR

c2

_LLR

c

< 99C�[[f

OR

a

_LLR

b

_LLR

a

C;;F

b

zXXb

The extremal describes the event f being enabled by d and e where they are in turn enabled
by different ways of enabling c. We assume all subsets consistent.

5 The causal unfolding: an adjunction from E≡ to Fam≡

Furnished with the concept of extremal realisation, we can now exhibit an adjunction
(precisely, a very simple case of biadjunction or pseudo adjunction) from E≡, the category of
ese’s, to Fam≡, the category of equivalence families. The left adjoint I : E≡ → Fam≡ is the
full and faithful functor which takes an ese to its family of configurations with the original
equivalence.

The right adjoint, the causal unfolding, er : Fam≡ → E≡ is defined on objects as follows.
Let A be an equivalence family with underlying set A. Define er(A) = (P,ConP ,≤P ,≡P)
where

P consists of a choice from within each isomorphism class of the prime extremals p of A –
we write top(p) for the image of the top element in A;
Causal dependency ≤P is � on P ;
X ∈ ConP iff X ⊆fin P and top [X]P ∈ A – the set [X]P is the ≤P -downwards closure of
X, so equal to {p′ ∈ P | ∃p ∈ X. p′ � p};
p1 ≡P p2 iff p1, p2 ∈ P and top(p1) ≡A top(p2).

I Proposition 14. The configurations of P , ordered by inclusion, are order-isomorphic to
the order of extremal realisations: an extremal realisation ρ corresponds, up to isomorphism,
to the configuration {p ∈ P | p � ρ} of P ; conversely, a configuration x of P corresponds to
an extremal realisation top : x→ A with carrier (x,�), the restriction of the order of P to x.

Proof. It will be helpful to recall, from Corollary 6, that if ρ �f ρ′ between extremal
realisations, then the inverse relation f−1 is a rigid embedding of (the carrier of) ρ′ in (the
carrier of) ρ; so ρ′ � ρ stands for a rigid embedding. Suppose x ∈ C∞(P). Then x determines
an extremal realisation

θ(x) =def top : (x,�)→ A .

The function θ(x) is a realisation because each p in x is, and extremal because, if not, one of
the p in x would fail to be extremal, a contradiction. Clearly ρ′ � ρ implies θ(ρ′) ⊆ θ(ρ).
Conversely, it is easily checked that any extremal realisation ρ : (R,≤) → A defines a
configuration {p ∈ P | p � ρ}. If x ⊆ y in C∞(P) then φ(x) � φ(y). It can be checked that
θ and φ are mutual inverses, i.e. φθ(x) = x and θφ(ρ) ∼= ρ for all configurations x of P and
extremal realisations ρ. J

CALCO 2019

9:14 Causal Unfoldings

From the above proposition we see that the events of er(A) correspond to the order-
theoretic completely-prime extremal realisations [10]. This justifies our use of the term
“prime extremal” for extremal with top element.

The component of the counit of the adjunction εA : I(er(A))→ A is given by the function

εA(p) = top(p) .

It is a routine check to see that εA preserves ≡ and that any configuration x of P images
under top to a configuration in A, moreover in a way that reflects ≡.

I Theorem 15. Let A ∈ Fam≡. For all f : I(Q) → A in Fam≡, there is a map h : Q →
er(A) in E≡ such that f = εA ◦ I(h), i.e. so the diagram

A I(er(A))εAoo

I(Q)
f

cc

I(h)

OO

commutes. Moreover, if h′ : Q→ er(A) is a map in E≡ s.t. f ≡ εA ◦ I(h′), i.e. the diagram
above commutes up to ≡, then h′ ≡ h.

Proof. Let Q = (Q,ConQ,≤Q,≡Q) be an ese and f : I(Q) → A a map in Fam≡. We
shall define a map h : Q → er(A) s.t. f = εAh. (As here, in the proof we shall elide the
composition symbol ◦, and I on maps which it leaves unchanged.)

We define the map h : Q→ er(A) by induction on the depth of Q. The depth of an event
in an event structure is the length of a longest ≤-chain up to it – so an initial event has
depth 1. We take the depth of an event structure to be the maximum depth of its events.
(Because of our reliance on Lemma 3, we use the axiom of choice implicitly.)

Assume inductively that h(n) defines a map from Q(n) to er(A) where Q(n) is the
restriction of Q to depth below or equal to n such that f (n) the restriction of f to Q(n)

satisfies f (n) = εAh
(n). (In particular, Q(0) is the empty ese and h(0) the empty function.)

Then, by Proposition 14, any configuration x of Q(n) determines an extremal realisation
ρx : h(n)x→ A with carrier (h(n)x,�).

Suppose q ∈ Q has depth n + 1. If f(q) is undefined take h(n+1)(q) to be undefined.
Otherwise, note there is an extremal realisation ρ[q) with carrier (h[q),�). Extend ρ[q) to a
realisation ρ>[q) with carrier that of ρ[q) with a new top element > adjoined, and make ρ>[q)
extend the function ρ[q) by taking > to f(q). By Lemma 3, there is an extremal realisation
ρ such that ρ>[q) �2 ρ. Because ρ[q) is extremal, ρ �1 ρ[q), so ρ only extends the order of ρ[q)
with extra dependencies of >. (For notational simplicity we identify the carrier of ρ with
the set h[q) ∪ {>}.) Project ρ to the extremal with top >. Define this to be the value of
h(n+1)(q). In this way, we extend h(n) to a partial function h(n+1) : Q(n+1) → er(A) such that
f (n+1) = εAh

(n+1). To see that h(n+1) is a map we can use Proposition 2. By construction
h(n+1) satisfies property (ii) of Proposition 2 and the other properties are inherited fairly
directly from f via the definition of er(A).

Defining h =
⋃
n∈ω h

(n) we obtain a map h : Q→ er(A) such that f = εAh.
Suppose h′ : Q→ er(A) is a map s.t. f ≡ εAh

′. Then, for any q ∈ Q,

top(h′(q)) = εAh
′(q) ≡A f(q) = εAh(q) = top(h(q)) ,

so h′(q) ≡P h(q) in er(A). Thus h′ ≡ h. J

M. de Visme and G. Winskel 9:15

The theorem does not quite exhibit a traditional adjunction, because the usual cofreeness
condition specifying an adjunction is weakened to only having uniqueness up to ≡. However
the condition it describes does specify an exceedingly simple case of a pseudo adjunction (or
biadjunction) between 2-categories – a set together with an equivalence relation (a setoid)
is a very simple example of a category. As a consequence, whereas the usual cofreeness
condition allows us to extend the right adjoint to arrows, so obtaining a functor, in this case
following that same line will only yield a pseudo functor er as right adjoint: thus extended,
er will only preserve composition and identities up to ≡.

The map (P,≡)→ er(C∞(P),≡) which takes p ∈ P to the realisation with carrier ([p],≤),
the restriction of the causal dependency of P , with the inclusion function [p] ↪→ P is an
isomorphism; recall from Proposition 11 that the configurations of a prime event structure
correspond to its extremal realisations. Such maps furnish the components of the unit of the
pseudo adjunction:

E≡
I

> 22 Fam≡
er

ss

I Example 16. On the right we show a general event structure (all subsets consistent) and
on its left its causal unfolding to an ese under er ; the unfolding’s events are the prime
extremals.6

d1 d2 d

c1

OO

c2

OO

c
AND
OO

OR

a

OO

GG

b

OO

WW

a

EE

;;

b

YY

cc

6 Unfolding general event structures

Recall G is the category of general event structures. We obtain a pseudo adjunction from E≡
to G via an adjunction from Fam≡ to G. The right adjoint fam : G → Fam≡ is most simply
described. Given (E,Con,`) in G it returns the equivalence family (C∞(E),=) in Fam≡
comprising the configurations together with the identity equivalence between events that
appear within some configuration; the partial functions between events that are maps in G
are automatically maps in Fam≡ – the action of fam on maps.

For the effect of the left adjoint col : Fam≡ → G on objects, define the collapse

col(A) =def (E,Con,`)

where
E = A≡, the equivalence classes of events in A =def

⋃
A ;

X ∈ Con iff X ⊆fin y≡ =def {{a}≡ | a ∈ y}, for some y ∈ A ; and
X ` e iff e ∈ E, X ∈ Con and e ∈ y≡ ⊆ X ∪ {e}, for some y ∈ A.

It follows that y≡ is a configuration of col(A) whenever y ∈ A. From this it is easy to see
that col(A) is a replete general event structure.

Let (A,≡) ∈ Fam≡. Assume that A has underlying set A. The unit of the adjunction is
defined to have typical component ηA : (A,≡)→ fam(col(A,≡)) given by ηA(a) = {a}≡ . It
is easy to check that ηA is a map in Fam≡.

6 See [6] for further examples of the causal unfolding including an inductive characterisation in 5.2.2.

CALCO 2019

9:16 Causal Unfoldings

I Theorem 17. Suppose that B = (B,ConB ,`B) ∈ G and that g : (A,≡)→ (C∞(B),=) is
a map in Fam≡. Then, there is a unique map k : col(A,≡)→ B in G such that the diagram

(A,≡) ηA//

g
''

fam(col(A,≡))

fam(k)
��

(C∞(B),=)

commutes.

Proof. The map k : col(A,≡)→ B is given as the function k(e) = g(a) where e = {a}≡ . It
is easily checked to be a map in G and moreover to be the unique map from col(A,≡) to B
making the above diagram commute. J

Theorem 17 determines an adjunction:

Fam≡
col
> 33 G

fam
rr

The construction col automatically extends from objects to maps; maps in Fam≡ preserve
equivalence so collapse to functions preserving equivalence classes. The counit of the
adjunction has components εE : col((C∞(E),=)) → E which send singleton equivalence
classes {e} to e. The counit is an isomorphism at precisely those general event structures E
which are replete, so cuts down to a reflection from the subcategory of replete general event
structures into equivalence families.

Composing

E≡
I

> 22 Fam≡
er

ss

col
> 33 G

fam
rr

we obtain a pseudo adjunction

E≡ > 33 G .ss

Its right adjoint constructs the causal unfolding of a general event structure.
The composite pseudo adjunction from E≡ to G cuts down to a reflection, in the sense

that the counit is a natural isomorphism, when we restrict to the subcategory of G where
all general event structures are replete. Then the right adjoint provides a pseudo functor
embedding replete general event structures (and so families of configurations) in ese’s.7

7 We deal with a possible source of confusion. There is an obvious “inclusion” functor from the category of
prime event structures E to the category E≡: it extends an event structure with the identity equivalence.
Regarding E≡ as a plain category, so dropping the enrichment by equivalence relations, the “inclusion”
functor E ↪→ E≡ has a right adjoint, viz. the forgetful functor which given an ese (E,≡) produces the
event structure E by dropping the equivalence. The adjunction is a coreflection because the inclusion
functor is full. Might not this coreflection compose with the pseudo adjunction from E≡ to G to produce
a pseudo adjunction from E to G? No. Clearly the coreflection is not enriched in equivalence relations;
the natural bijection of the coreflection cannot respect the equivalence on maps. For this reason the two
different forms of adjunction do not compose to yield a pseudo adjunction from E to G.

M. de Visme and G. Winskel 9:17

7 Conclusion

This concludes the construction of causal unfoldings of (very general) equivalence-families,
and so, in particular, general event structures. In applications it has been useful to cut down
the unfolding to subcategories. In particular, while the category of event structures with
equivalence, E≡, does have bipullbacks (in which commutations and uniqueness are only up
to the equivalence ≡ on maps) it doesn’t always have the pseudo pullbacks or pullbacks,
used in defining the composition of strategies [2, 1]. However, an important subcategory
does: define EDC to be the subcategory of E≡ with objects, event structures with disjunctive
causes (edc’s), satisfying

p1, p2 ≤ p & p1 ≡ p2 =⇒ p1 = p2 .

In an edc an event cannot causally depend on two distinct prime causes of a common
disjunctive event, and so rules out realisations such as that mentioned in Example 13. EDC
provides a suitable foundation for probabilistic strategies with parallel causes and is handily
related by adjunctions to general and prime event structures [7].

References
1 Simon Castellan, Pierre Clairambault, and Glynn Winskel. Symmetry in concurrent games.

In Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014. ACM, 2014.

2 Pierre Clairambault, Julian Gutierrez, and Glynn Winskel. The Winning Ways of Concurrent
Games. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 2012.

3 Ioana Cristescu. Operational and denotational semantics for the reversible pi-calculus. PhD
thesis, PPS, Université Paris Diderot, 2015.

4 Ioana Cristescu, Jean Krivine, and Daniele Varacca. Rigid families for CCS and the pi-
Calculus. In International Colloquium on Theoretical Aspects of Computing ICTAC, 12th ed.
Cali, Colombia, 2015.

5 Vincent Danos, Jerome Feret, Walter Fontana, Russell Harmer, Jonathan Hayman, Jean
Krivine, Chris Thompson-Walsh, and Glynn Winskel. Graphs, Rewriting and Pathway
Reconstruction for Rule-Based Models. In FSTTCS 2012, volume 18 of LIPIcs, pages 276–288.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012.

6 Marc de Visme. Cambridge Internship Report, ENS Paris. Available from Glynn Winskel’s
homepage http://www.cl.cam.ac.uk/∼gw104/mdv-report.pdf, 2015.

7 Marc de Visme and Glynn Winskel. Strategies with Parallel Causes. In CSL 2017, volume 82
of LIPIcs. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

8 G. M. Kelly. Basic concepts of enriched category theory. LNM 64. CUP, 1982.
9 Y. Kinoshita and J. Power. Category theoretic structure of setoids. TCS, 546, 2014.

10 Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. Petri Nets, Event Structures and
Domains. TCS, 13:85–108, 1981.

11 Judea Pearl. Causality. CUP, 2013.
12 John Power. 2-Categories. BRICS Notes Series NS-98-7, 1998.
13 Glynn Winskel. Events in computation. Edinburgh University, 1980. PhD thesis, Edinburgh.
14 Glynn Winskel. Event Structures. In Advances in Petri Nets, LNCS 255, 1986.
15 Glynn Winskel and Mogens Nielsen. Models for concurrency. In Samson Abramsky and Dov

Gabbay, editors, Semantics and Logics of Computation. OUP, 1995.

CALCO 2019

9:18 Causal Unfoldings

A Equiv-enriched categories

Here we explain in more detail what we mean when we say “enriched in the category of
sets with equivalence relations” and employ terms such as “enriched adjunction,” “pseudo
adjunction” and “pseudo pullback.” The classic text on enriched categories is [8], but for this
paper the articles [9] and [12] provide short, accessible introductions to the notions we use
from Equiv-enriched categories and 2-categories, respectively.

Equiv is the category of equivalence relations. Its objects are (A,≡A) comprising a set A
and an equivalence relation ≡A on it. Its maps f : (A,≡A)→ (B,≡B) are total functions
f : A→ B which preserve equivalence.

We shall use some basic notions from enriched category theory [8]. We shall be concerned
with categories enriched in Equiv, called Equiv-enriched categories, in which the homsets
possess the structure of equivalence relations, respected by composition [9]. This is the
sense in which we say categories are enriched in (the category of) equivalence relations. We
similarly borrow the concept of an Equiv-enriched functor between Equiv-enriched categories
for a functor which preserves equivalence in acting on homsets. An Equiv-enriched adjunction
is a usual adjunction in which the natural bijection of the adjunction preserves and reflects
equivalence.

Because an object in Equiv can be regarded as a (very simple) category, we can regard
Equiv-enriched categories as (very simple) 2-categories to which notions from 2-categories
apply [12].

A pseudo functor between Equiv-enriched categories is like a functor but the usual laws
only need hold up to equivalence. A pseudo adjunction (or biadjunction) between 2-categories
permits a weakening of the usual natural isomorphism between homsets, now also categories,
to a natural equivalence of categories. In the special case of a pseudo adjunction between
Equiv-enriched categories the equivalence of homset categories amounts to a pair of ≡-
preserving functions whose compositions are ≡-equivalent to the identity function. With
traditional adjunctions, by specifying the action of one adjoint solely on objects, we determine
it as a functor; with pseudo adjunctions we can only determine it as a pseudo functor – in
general a pseudo adjunction relates two pseudo functors. Pseudo adjunctions compose in
the expected way. An Equiv-enriched adjunction is a special case of a 2-adjunction between
2-categories and a very special case of pseudo adjunction. In Section 6 we compose an
Equiv-enriched adjunction with a pseudo adjunction to obtain a new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks and bipullbacks from 2-categories
to Equiv-enriched categories which is highly relevant to the companion paper [7] in which we
use pullbacks and pseudo pullbacks to compose strategies with parallel causes. Let f : A→ C

and g : B → C be two maps in an Equiv-enriched category. A pseudo pullback of f and g
is an object D and maps p : D → A and q : D → B such that f ◦ p ≡ g ◦ q which satisfy
the further property that for any D′ and maps p′ : D′ → A and q′ : D′ → B such that
f ◦ p′ ≡ g ◦ q′, there is a unique map h : D′ → D such that p′ = p ◦ h and q′ = q ◦ h;
note the insistence on the last two equalities, rather than just equivalences. There is an
obvious weakening of pseudo pullbacks to the situation in which the uniqueness is replaced
by uniqueness up to ≡ and the equalities by ≡ – these are simple special cases of bilimits
called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks whereas right adjoints in a
pseudo adjunction are only assured to preserve bipullbacks.

A Coalgebraic Perspective on Probabilistic Logic
Programming
Tao Gu
University College London, London, UK
tao.gu.18@ucl.ac.uk

Fabio Zanasi
University College London, London, UK
http://www.zanasi.com/fabio/
f.zanasi@ucl.ac.uk

Abstract
Probabilistic logic programming is increasingly important in artificial intelligence and related fields
as a formalism to reason about uncertainty. It generalises logic programming with the possibility of
annotating clauses with probabilities. This paper proposes a coalgebraic perspective on probabilistic
logic programming. Programs are modelled as coalgebras for a certain functor F, and two semantics
are given in terms of cofree coalgebras. First, the cofree F-coalgebra yields a semantics in terms
of derivation trees. Second, by embedding F into another type G, as cofree G-coalgebra we obtain
a “possible worlds” interpretation of programs, from which one may recover the usual distribution
semantics of probabilistic logic programming.

2012 ACM Subject Classification Theory of computation; Theory of computation → Logic

Keywords and phrases probabilistic logic programming, coalgebraic semantics, distribution semantics

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.10

Funding Fabio Zanasi: partial support from epsrc grant n. EP/R020604/1.

Acknowledgements Fabio Zanasi acknowledges support from epsrc grant n. EP/R020604/1. The
authors thank Alessandro Facchini for useful pointers to the literature, and the anonymous reviewers
for the useful comments and feedback.

1 Introduction

Probabilistic logic programming (PLP) [23, 5, 25] is a family of approaches extending the
declarative paradigm of logic programming with the possibility of reasoning about uncer-
tainty. This has been proven useful in various applications, including bioinformatics [6, 22],
robotics [27] and the semantic web [29].

The most common version of PLP – on which for instance ProbLog is based [6], the
probabilistic analogue of Prolog – is defined by letting clauses in programs to be annotated
with mutually independent probabilities. As for the interpretation, distribution semantics [25]
is typically used as a benchmark for the various implementations of PLP, such as pD, PRISM
and ProbLog [24]. In this semantics, the probability of refuting a goal in a program is
obtained as a sum of the probabilities of the possible worlds (sets of clauses) in which the goal
is refutable. The distribution semantics is particularly interesting because it is compatible
with the encoding of Bayesian networks as probabilistic logic programs [24], thus indicating
that PLP can be effectively employed for Bayesian reasoning.

The main goal of this work is to present a coalgebraic perspective on PLP and its distribution
semantics. We first consider the case of ground programs, that is, those without variables.
Our approach is based on the observation – inspired by the coalgebraic treatment of “pure”
logic programming [16] – that ground programs are in 1-1 correspondence with coalgebras

© Tao Gu and Fabio Zanasi;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tao.gu.18@ucl.ac.uk
http://www.zanasi.com/fabio/
mailto:f.zanasi@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 A Coalgebraic Perspective on Probabilistic Logic Programming

for the functorMprPf , whereMpr is the finite multiset functor on [0, 1] and Pf is the finite
powerset functor. We then provide two coalgebraic semantics for ground PLP.

The first interpretation J−K is in terms of execution trees called stochastic derivation trees,
which represent parallel SLD-derivations of a program on a goal. Stochastic derivation
trees are the elements of the cofreeMprPf -coalgebra on a given set of atoms At, meaning
that any goal A ∈ At can be given a semantics in terms of the corresponding stochastic
derivation tree by the universal property map J−K to the cofree coalgebra.
The second interpretation 〈〈−〉〉 recovers the usual distribution semantics of PLP. This
requires some work, as expressing probability distributions on the possible worlds needs a
different coalgebra type. We introduce distribution trees, a tree-like representation of the
distribution semantics, as the elements of the cofree D≤1PfPf -coalgebra on At, where
D≤1 is the sub-probability distribution monad. In order to characterise 〈〈−〉〉 as the map
given by universal property of distribution trees, we need a canonical extension of PLP

to the setting of D≤1PfPf -coalgebras. This is achieved via a “possible worlds” natural
transformationMprPf ⇒ D≤1PfPf .

In the second part of the paper we recover the same framework for arbitrary probabilistic
logic programs, possibly including variables. The encoding of programs as coalgebras is
subtler. The space of atoms is now a presheaf indexed by a “Lawvere theory” of terms
and substitutions. The coalgebra map can be defined in different ways, depending on the
substitution mechanism on which one wants to base resolution. For pure logic programs,
the definition by term matching is the best studied, with [17] observing that moving from
sets to posets is required in order for the corresponding coalgebra map to be well-defined
as a natural transformation between presheaves. A different route is taken in [3], where
the problem of naturality is neutralised via “saturation”, a categorical construction which
amounts to defining resolution by unification instead of term-matching.

In developing a coalgebraic treatment of PLP with variables, we follow the saturation route,
as it also allows to recover the term-matching approach, via “desaturation” [3]. This provides
a cofree coalgebra semantics J−K for arbitrary PLP programs, as a rather straightforward
generalisation of the saturated semantics of pure logic programs. On the other hand, extending
the ground distribution semantics 〈〈−〉〉 to arbitrary PLP programs poses some challenges: we
need to ensure that, in computing the distribution over possible worlds associated to each
sub-goal in the computation, each clause of the program is “counted” only once. This is
solved by tweaking the coalgebra type of the distribution trees for arbitrary PLP programs,
so that some nodes are labelled with clauses of the program. Thanks to this additional
information, the term-matching distribution semantics of an arbitrary PLP goal is computable
from its distribution tree.

In light of the coalgebraic treatment of pure logic programming [16, 17, 2, 3], the
generalisation to PLP may not appear so surprising. In fact, we believe its importance is
two-fold. First, whereas the derivation semantics J−K is a straight generalisation of the pure
setting, the distribution semantics 〈〈−〉〉 is genuinely novel, and does not have counterparts
in pure logic programming. Second, a paper dedicated to establishing the foundations of
coalgebraic PLP is a necessary preliminary step for a number of interesting applications:

as mentioned, reasoning in Bayesian networks can be seen as a particular case of PLP,
equipped with the distribution semantics. Our coalgebraic perspective thus readily applies
to Bayesian reasoning, paving the way for combination with recent works [11, 12, 4]
modelling belief revision, causal inference and other Bayesian tasks in algebraic terms.
the combination of logic programming and probabilities comes in different flavours [24]:
the more abstract viewpoint offered by coalgebra may provide a unifying perspective on

T. Gu and F. Zanasi 10:3

these approaches, as well as a formal connection with seemingly related languages such
as weighted logic programming [8] and Bayesian logic programming [13].
the coalgebraic treatment of pure logic programming has been used as a formal justific-
ation [19, 14] for coinductive logic programming [15, 9]. Coinduction in the context of
probabilistic logic programs is, to the best of our knowledge, a completely unexplored
field, for which the current paper establishes semantic foundations.

We leave the exploration of these venues as follow-up work.

2 Preliminaries

Signature, Terms, and Categories. A signature Σ is a set of function symbols, each
equipped with a fixed finite arity. Throughout this paper we fix a signature Σ, and a
countably infinite set of variables Var = {x1, x2, . . . }. The Σ-terms over Var are defined as
usual. A context is a finite set of variables {x1, x2, . . . , xn}. With some abuse of notation,
we shall often use n to denote this context. We say a Σ-term t is compatible with context n
if the variables appearing in t are all contained in {x1, . . . , xn}.

We are going to reason about Σ-terms categorically using Lawvere theories. First, we
will use Ob(C) to denote the set of objects and C[C,D] for the set of morphisms C → D in
a category C. A C-indexed presheaf is a functor F : C→ Sets. C-indexed presheaves and
natural transformations between them form a category SetsC. Recall that the (opposite)
Lawvere Theory of Σ is the category Lop

Σ with objects the natural numbers and morphisms
Lop

Σ [n,m] the n-tuples 〈t1, . . . , tn〉, where each ti is a Σ-term in context m. For modelling
logic programming, it is convenient to think of each n ∈ Ob(Lop

Σ) as representing the context
〈x1, . . . , xn〉, and a morphism 〈t1, . . . , tn〉 : n→ m as the substitution transforming Σ-terms
in context n to Σ-terms in context m by replacing each xi with ti. We shall also refer to Lop

Σ
morphisms simply as substitutions (notation θ, τ, σ, . . .).

Logic programming. We now recall the basics of (pure) logic programming, and refer the
reader to [20] for a more systematic exposition. An alphabet A consists of a signature Σ,
a set of variables Var , and a set of predicate symbols {P1, P2, . . . }, each with a fixed arity.
Given an n-ary predicate symbol P in A, and Σ-terms t1, . . . , tn, P (t1 · · · tn) is called an
atom over A. We use A,B, . . . to denote atoms. Given an atom A in context n, and a
substitution θ = 〈t1, . . . , tn〉 : n→ m, we write Aθ for substitution instance of A obtained by
replacing each appearance of xi with ti in A. For convenience, we also use {B1, . . . , Bk}θ
as a shorthand for {B1θ, . . . , Bkθ}. Given two atoms A and B (over A), a unifier of A and
B is a pair 〈σ, τ〉 of substitutions such that Aσ = Bτ . Term matching is a special case of
unification, where σ is the identity substitution. In this case we say that τ matches B with
A if A = Bτ .

A (pure) logic program L consists of a finite set of clauses C in the form H ← B1, . . . , Bk,
where H,B1, . . . , Bk are atoms. H is called the head of C, and B1, . . . , Bk form the body of
C. We denote H by Head(C), and {B1, . . . , Bk} by Body(C). A goal is simply an atom. Since
one can regard a clause H ← B1, . . . , Bk as the logic formula B1 ∧ · · · ∧ Bk → H, we say
that a goal G is derivable in L if there exists a derivation of G with empty assumption using
the clauses in L.

The central task of logic programming is to check whether a goal G is provable (or
refutable as in some literature) in a program L, in the sense that some substitution instance
of G is derivable in L. The key algorithm for this task is SLD-resolution, see e.g. [20]. We
use the notation L ` G to mean that G is provable in L.

CALCO 2019

10:4 A Coalgebraic Perspective on Probabilistic Logic Programming

Probabilistic logic programming. We now recall the basics of PLP; the reader may consult [7,
6] for a more comprehensive introduction. A probabilistic logic program P based on a logic
program L assigns a probability label r to each clause C in L, denoted as Label(C). One may
also regard P as a set of probabilistic clauses of the form r :: C, where C is a clause in L, and
each clause C is assigned a unique probability label r in P. We also refer to r :: C simply as
clauses.

I Example 1. As our leading example we introduce the following probabilistic logic program
Pal. It models the scenario of Mary’s house alarm, which is supposed to detect burglars, but
it may be accidentally triggered by an earthquake. Mary may hear the alarm if she is awake,
but even if the alarm is not sounding, in case she experiences an auditory hallucination
(paracusia). The language of Pal includes 0-ary predicates Alarm, Eearthquake, Burglary, and
1-ary predicates Wake(−), Hear_alarm(−) and Paracusia(−), and signature Σal = {Mary0}
consisting of a constant. We do not have variables here, so Pal is a ground program. For
readability we abbreviate Mary as M in the program.

0.01 :: Earthquake ← 0.01 :: Paracusia(M) ←
0.2 :: Burglary ← 0.6 :: Wake(M) ←
0.5 :: Alarm ← Earthquake 0.8 :: Hear_alarm(M) ← Alarm, Wake(M)
0.9 :: Alarm ← Burglary 0.3 :: Hear_alarm(M) ← Paracusia(M)

As a generalisation of the pure case, in probabilistic logic programming one is interested
in the probability of a goal G being refutable in a program P. There are potentially multiple
ways to define such probability – in this paper we focus on the distribution semantics [7].

The probability of refuting a goal is computed in the distribution semantics as follows.
Given a probabilistic logic program P = {p1 :: C1, . . . , pn :: Cn}, let |P| be its underlying
pure logic program, namely |P| = {C1, . . . , Cn}. A sub-program L of |P| is a logic program
consisting of a subset of the clauses in |P|. This justifies using P(|P|) to denote the set of
all sub-programs of |P|, and using L ⊆ |P| to denote that L is a sub-program of P. The
central concept of the distribution semantics is that P determines a distribution µP over the
sub-programs P(|P|): for any L ∈ P(|P|), µP(L) :=

∏
Ci∈L pi

∏
Cj∈|P|\L(1 − pj). The value

µP(L) is called the probability of the sub-program L. For an arbitrary goal G ∈ At, the success
probability PrP(G) of G w.r.t. program P is then defined as the sum of the probabilities of
all the sub-programs of P in which G is refutable:

PrP(G) :=
∑

|P|⊇L`G

µP(L) =
∑

|P|⊇L`G

(
∏
Ci∈L

pi
∏

Cj∈|P|\L

(1− pj)) (1)

Intuitively one can regard every clause in P as an event, then every sub-program L can be
seen as a possible world, and µP is a distribution over the possible worlds.

I Example 2. For the program Pal, consider the goal Hear_alarm(M). By definition (1), we
can compute its success probability PrPal(Hear_alarm(M)), and the result is 0.091102896.

3 Ground case

In this section we introduce a coalgebraic semantics for ground probabilistic logic program-
ming, i.e. for those programs where no variable appears. Our approach consists of two parts.
First, in Subsection 3.1, we represent PLP logic programs as coalgebras and their executions
as a final coalgebra semantics (Subsection 3.2) – this is a straight generalisation of the
coalgebraic treatment of pure logic programs given in [16]. Next, in Subsection 3.3 we show

T. Gu and F. Zanasi 10:5

how to represent the distribution semantics in terms as a final coalgebra, via a transformation
of the coalgebra type of logic programs. Appendix A shows how the probability of a goal is
effectively computable from the above representation.

3.1 Coalgebraic Representation of PLP

A ground program will be represented as a coalgebra for the composite MprPf : Sets →
Sets of the finite probability functor Mpr : Sets → Sets and the finite powerset functor
Pf : Sets → Sets. The definition of Mpr deserves some further explanation. It can be
seen as the finite multiset functor based on the commutative monoid ([0, 1], 0,∨), where
a∨ b := 1− (1−a)(1− b). That is to say, on objects,Mpr(A) is the set of all finite probability
assignments ϕ : A→ [0, 1] with a finite support supp(ϕ) := {a ∈ A | ϕ(a) 6= 0}. For ϕ with
support {a1, . . . , ak} and values ϕ(ai) = ri, it will often be convenient to use the standard
notation ϕ =

∑k
i=1 riai or ϕ = r1a1 + · · ·+ rkak, where the purely formal “+” here should

not be confused with the addition in R. On morphisms,Mpr(h : A→ B) maps
∑k
i=1 riai to∑k

i=1 rih(ai).
Fix a ground probabilistic logic program P on a set of ground atoms At. The definition of

P can be encoded as anMprPf -coalgebra p : At→Mpr(Pf (At)), as follows. Given A ∈ At,

p(A) : Pf (At) → [0, 1]

{B1, . . . , Bn} 7→

{
r if r :: A← B1, . . . , Bn is a clause in P
0 otherwise.

Or, equivalently, p(A) :=
∑

(r::A←B1,...,Bn) ∈ P
r{B1, . . . , Bn}.

I Example 3. Consider program Pal from Example 1. The set of ground atoms Atal is
{Alarm,Earthquake, Burgary,Wake(M),Paracusia(M),Hear_alarm(M)}. Here are some values
of the corresponding coalgebra pal : Atal →MprPfAtal:

pal(Hear_alarm(M)) = 0.8{Alarm,Wake(M)}+ 0.3{Paracusia(M)} pal(Earthquake) = 0.01{}

I Remark 4. One might wonder why not simply adopt Pf (Pf (−)× [0, 1]) as the coalgebra
type for PLP. Note that this encoding would not have 1− 1 correspondence with ground PLP

programs: a clause C ∈ Pf (At) may be associated with different probabilities in [0, 1], which
violates the standard definition of PLP programs.

3.2 Derivation Semantics
In this section we are going to construct the final At×MprPf (−)-coalgebra, thus providing
a semantic interpretation for probabilistic logic programs based on At.

Before the technical developments, we give an intuitive view on the semantics that the
final coalgebra is going to provide. We shall represent each goal as a stochastic derivation
tree in the final coalgebra. These trees are the probabilistic version of and-or derivation trees,
which represent parallel SLD-resolutions in pure logic programming [10].

I Definition 5 (Stochastic derivation trees). Given a ground PLP program P and a ground
atom A, the stochastic derivation tree for A in P is the possibly infinite tree T such that:
1. Every node is either an atom-node (labelled with an atom A′ ∈ At) or a clause-node

(labelled with •). They appear alternatingly in depth, in this order. The root is an
atom-node labelled with A.

CALCO 2019

10:6 A Coalgebraic Perspective on Probabilistic Logic Programming

2. Each edge from an atom-node to its (clause-)children is labelled with a probability value.
3. Suppose s is an atom-node with label A′. Then for every clause r :: A′ ← B1, . . . , Bk in

P, s has exactly one child t, the edge s→ t is labelled with r, and t has exactly k children
labelled with B1, . . . , Bk, respectively.

The final coalgebra semantics J−Kp for a program P will map a goal A to the stochastic
derivation tree representing all possible SLD-resolutions of A in P.

I Example 6. Continuing Example 1, JHear_alarm(M)Kpal is the stochastic derivation
tree below. The subtree highlighted in red represents one of the successful refutations
of Hear_alarm(M) in pal: indeed, note that a single child is selected for each atom-node
A (corresponding to a clause matching A), all children of any clause-node are selected
(corresponding to the atoms in the body of the clause), and the subtree has clause-nodes as
leaves (all atoms are proven).

Hear_Alarm(M)0.8 0.3

• •

Alarm0.5 0.9 Wake(M)
0.6

Paracusia(M)
0.01

• • • •

Earthquake
0.01

Burglary
0.2

• •

(2)

Any such subtree describes a refutation, but does not yield a probability value to be associated
to a goal – this is the remit of the distribution semantics, see Example 10 below.

In the remaining part of the section, we construct the cofree coalgebra forMprPf via
a so-called terminal sequence [28], and obtain J−Kp from the resulting universal property.
We report the steps of the terminal sequence as they are instrumental in showing that the
elements of the cofree coalgebra can be seen as stochastic derivation trees.

I Construction 7. The terminal sequence for the functor At ×MprPf (−) : Sets → Sets
consists of sequences of objects {Xα}α∈Ord and arrows {δαβ : Xα → Xβ}β<α∈Ord constructed
by the following inductive definitions:

Xα :=


At α = 0
At×MprPf (Xξ) α = ξ + 1
lim{δχξ | ξ < χ < α} α is limit

δαβ :=


π1 α = 1, β = 0
idAt ×MprPf (δξ+1

ξ) α = β + 1 = ξ + 2
the limit projections α is limit, β < α

universal map to Xβ β is limit, α = β + 1

I Proposition 8. The terminal sequence for the functor At×MprPf (−) converges to a limit
Xγ such that Xγ

∼= Xγ+1.

Proof. We need to verify the assumptions of [28, Corollary 3.3]. It is well-known that
Pf is ω-accessible, and Mpr has the same property, see e.g. [26, Prop. 6.1.2]. Because
accessibility is defined in terms of colimit preservation, it is clearly preserved by composition,
and thusMprPf is also accessible. It remains to check that it preserves monics. ForMpr,
given any monomorphism i : C → D in Sets, suppose Mpr(i)(ϕ) = Mpr(i)(ϕ′) for some
ϕ,ϕ′ ∈ Mpr(C). Then for any d ∈ D, Mpr(i)(ϕ)(d) = Mpr(i)(ϕ′)(d). If we focus on the
image i[C], then there is an inverse function i−1 : i[C]→ C, andMpr(i)(ϕ) =Mpr(i)(ϕ′)
implies that ϕ(i−1(d)) = ϕ′(i−1(d)) for any d ∈ i[C]. But this simply means that ϕ = ϕ′. As

T. Gu and F. Zanasi 10:7

the same is true for Pf and the property is preserved by composition, we have thatMprPf
preserves monics. We can then conclude by [28, Corollary 3.3] that the terminal sequence for
At×MprPf converges to the cofreeMprPf -coalgebra on At. J

Note that Xγ+1 is defined as At × MprPf (Xγ), and the above isomorphism makes
Xγ → At×MprPf (Xγ) the final At×MprPf -coalgebra – or, in other words, cofreeMprPf -
coalgebra on At. As for the tree representation of the elements of Xγ , recall that elements of
the cofree PfPf -coalgebra on At can be seen as and-or trees [16]. By replacing the first Pf
withMpr, effectively one adds probability values to the edges from and-nodes to or-nodes
(which are edges from atom-nodes to or-nodes in our stochastic derivation trees), as in (2).
Thus stochastic derivation trees as in Definition 5 are elements of Xγ . The action of the
coalgebra map ∼=: Xγ → At ×MprPf (Xγ) is best seen with an example: the tree T in
(2) (an element of Xγ) is mapped to the pair 〈Hear_alarm(M), ϕ〉, where ϕ is the function
Pf (Xγ)→ [0, 1] assigning 0.8 to the set consisting of the subtrees of T with root Alarm and
with root Wake(M), 0.3 to the singleton consisting to the subtree of T with root Paracusia(M),
and 0 to any other finite set of trees.

With all the definitions at hand, it is straightforward to check that J−Kp mapping A ∈ At
to its stochastic derivation tree in p makes the following diagram commute

At
J−Kp //

<id,p>
��

Xγ

∼=��
At×MprPf (At)

id×MprPf (J−Kp) // At×MprPf (Xγ)

and thus by uniqueness it coincides with the At×MprPf -coalgebra map provided by the
universal property of the final At×MprPf -coalgebra Xγ → At×MprPf (Xγ).

3.3 Distribution Semantics
This section gives a coalgebraic definition of the usual distribution semantics of probabilistic
logic programming. As in the previous section, before the technical developments we gather
some preliminary intuition. Recall from Section 2 that the core of the distribution semantics
is the probability distribution over the sub-programs (sets of clauses) of a given program P.
These sub-programs are also called (possible) worlds, and the distribution semantics of a
goal is the sum of the probabilities of all the worlds in which it is refutable.

In order to code this information as elements of a final coalgebra, we need to present it
in tree-shape. Roughly speaking, we form a distribution over the sub-programs along the
execution tree. This justifies the following notion of distribution trees.

I Definition 9 (Distribution trees). Given a PLP program P and an atom A, the distribution
tree for A in P is the possibly infinite tree T satisfying the following properties:
1. Every node is exactly one of the three kinds: atom-node (labelled with an atom A ∈ At),

world-node (labelled with ◦), clause-node (labelled with •). They appear alternatingly in
this order in depth. The root is an atom-node labelled with A.

2. Every edge from an atom-node to its (world-)children is labelled with a probability value,
and they sum up to one.

3. Suppose s is an atom-node labelled with A′, and C = {C1, . . . , Cm} is the set of all the
clauses in P whose head is A′. Then s has 2m children, each standing for a subset
X of C. If a child t stands for X, then the edge s → t is labelled with probability∏
C∈X Label(C) ·

∏
C′∈C\X(1− Label(C′)) – recall that Label(C) is the probability labelling

CALCO 2019

10:8 A Coalgebraic Perspective on Probabilistic Logic Programming

C. Also, t has exactly |X| children, each standing for a clause C ∈ X. If a child u stands
for C = r :: A′ ← B1, . . . , Bk, then u has k children, labelled with B1, . . . , Bk respectively.

Comparing distribution trees with stochastic derivation trees (Definition 5) , one can
observe the addition of another class of nodes, representing possible worlds. Moreover, the
possible worlds associated with an atom-node (a goal) must form a probability distribution –
as opposed to stochastic derivation trees, in which probabilities labelling parallel edges do
not need to share any relationship. An example of the distribution tree associated with a
goal is provided in the continuation of our leading example (Examples 1 and 6).

I Example 10. In the context of Example 1, the distribution tree of Hear_alarm(M) is
depicted below, where we use grey shades to emphasise sets of edges expressing a probability
distribution. Also, note the ◦s with no children, standing for empty worlds.

Hear alarm(M)
<latexit sha1_base64="KG/vMAz7WWr7xBwrSbIdzPXOp3g=">AAACAHicbVC7SgNREJ2N7/hatbCwWXxAbMJuLLQM2NgICkaFJITZm1m95O6De2fFsKTxV2wsFLH1M+z8G28SC40eGDicM8PMnDBT0rDvfzqlqemZ2bn5hfLi0vLKqru2fmnSXAtqiFSl+jpEQ0om1GDJiq4zTRiHiq7C3vHQv7ojbWSaXHA/o3aMN4mMpEC2UsfdbDHds4mKE0Ld6qBCHVdO9wcdd8ev+iN4f0nwTXbq0zDCWcf9aHVTkceUsFBoTDPwM24XqFkKRYNyKzeUoejhDTUtTTAm0y5GDwy8Pat0vSjVthL2RurPiQJjY/pxaDtj5Fsz6Q3F/7xmztFRu5BJljMlYrwoypXHqTdMw+tKTYJV3xIUWtpbPXGLGgXbzMo2hGDy5b/kslYNDqq1c5vG7jgNmIct2IYKBHAIdTiBM2iAgAE8wjO8OA/Ok/PqvI1bS873zAb8gvP+Bfi0lo8=</latexit>

Paracusia(M)
<latexit sha1_base64="DUsPFkc/QprGaMrHptJeS3MAJho=">AAAB/nicbVBNS8NAEN34WetXVDx5WaxCvZSkCnosePEiVLAf0Iay2W7apZtN2J2IJRT8K148KOLV3+HNf+OmzUFbHww83pthZp4fC67Bcb6tpeWV1bX1wkZxc2t7Z9fe22/qKFGUNWgkItX2iWaCS9YADoK1Y8VI6AvW8kfXmd96YErzSN7DOGZeSAaSB5wSMFLPPuwCewQdpHWiCE00J+Xbs0nPLjkVZwq8SNyclFCOes/+6vYjmoRMAhVE647rxOClRAGngk2K3USzmNARGbCOoZKETHvp9PwJPjVKHweRMiUBT9XfEykJtR6HvukMCQz1vJeJ/3mdBIIrL+UyToBJOlsUJAJDhLMscJ8rRkGMDSFUcXMrpsMsBzCJFU0I7vzLi6RZrbjnlerdRal2ksdRQEfoGJWRiy5RDd2gOmogilL0jF7Rm/VkvVjv1sesdcnKZw7QH1ifPzmvlYw=</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Paracusia(M)
<latexit sha1_base64="DUsPFkc/QprGaMrHptJeS3MAJho=">AAAB/nicbVBNS8NAEN34WetXVDx5WaxCvZSkCnosePEiVLAf0Iay2W7apZtN2J2IJRT8K148KOLV3+HNf+OmzUFbHww83pthZp4fC67Bcb6tpeWV1bX1wkZxc2t7Z9fe22/qKFGUNWgkItX2iWaCS9YADoK1Y8VI6AvW8kfXmd96YErzSN7DOGZeSAaSB5wSMFLPPuwCewQdpHWiCE00J+Xbs0nPLjkVZwq8SNyclFCOes/+6vYjmoRMAhVE647rxOClRAGngk2K3USzmNARGbCOoZKETHvp9PwJPjVKHweRMiUBT9XfEykJtR6HvukMCQz1vJeJ/3mdBIIrL+UyToBJOlsUJAJDhLMscJ8rRkGMDSFUcXMrpsMsBzCJFU0I7vzLi6RZrbjnlerdRal2ksdRQEfoGJWRiy5RDd2gOmogilL0jF7Rm/VkvVjv1sesdcnKZw7QH1ifPzmvlYw=</latexit>

0.06
<latexit sha1_base64="YCYNrh6eJCR+l0zw82Ra1CrPEJg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxUUZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8GOjUw=</latexit>

0.56
<latexit sha1_base64="OPaUUInWZ7WtM0szfv5m2EWtNIE=">AAAB63icbVDLSsNAFL3xWeur6tLNYBVchaQ+lwU3LivYB7ShTKaTdujMJMxMhBL6C25cKOLWH3Ln3zhps9DWAxcO59zLvfeECWfaeN63s7K6tr6xWdoqb+/s7u1XDg5bOk4VoU0S81h1QqwpZ5I2DTOcdhJFsQg5bYfju9xvP1GlWSwfzSShgcBDySJGsMklz7267leqnuvNgJaJX5AqFGj0K1+9QUxSQaUhHGvd9b3EBBlWhhFOp+VeqmmCyRgPaddSiQXVQTa7dYrOrDJAUaxsSYNm6u+JDAutJyK0nQKbkV70cvE/r5ua6DbImExSQyWZL4pSjkyM8sfRgClKDJ9Ygoli9lZERlhhYmw8ZRuCv/jyMmnVXP/CrT1cVuunRRwlOIYTOAcfbqAO99CAJhAYwTO8wpsjnBfn3fmYt644xcwR/IHz+QPJJ41R</latexit>

0.14
<latexit sha1_base64="3mrePS38LAq+zzqRIz9tzopwVa4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ll+Y1itea63AFonfkFqUKA1rH4NRjFJBZWGcKx13/cSE2RYGUY4nVcGqaYJJlM8pn1LJRZUB9ni1jm6tMoIRbGyJQ1aqL8nMiy0nonQdgpsJnrVy8X/vH5qotsgYzJJDZVkuShKOTIxyh9HI6YoMXxmCSaK2VsRmWCFibHxVGwI/urL66RTd/1rt/7QqDUvijjKcAbncAU+3EAT7qEFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QPAC41L</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit>

0.99
<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit>

0.4
<latexit sha1_base64="weY42Ijnrlku/of/HZcjlgNsa8M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4Ckkt6LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0U0wESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrn/lVu6r5dp5HkcBTuEMLsGHa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBQUI0Q</latexit>

0.6
<latexit sha1_base64="VMRsbfERpHIYdFI8lI1yjT2bUCA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV9Vjw4rGi/YA2lM120y7dbMLuRCilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUykMet63s7K6tr6xWdgqbu/s7u2XDg4bJsk043WWyES3Qmq4FIrXUaDkrVRzGoeSN8Ph7dRvPnFtRKIecZTyIKZ9JSLBKFrpwXOvuqWy53ozkGXi56QMOWrd0lenl7As5gqZpMa0fS/FYEw1Cib5pNjJDE8pG9I+b1uqaMxNMJ6dOiFnVumRKNG2FJKZ+ntiTGNjRnFoO2OKA7PoTcX/vHaG0U0wFirNkCs2XxRlkmBCpn+TntCcoRxZQpkW9lbCBlRThjadog3BX3x5mTQqrn/hVu4vy9XTPI4CHMMJnIMP11CFO6hBHRj04Rle4c2Rzovz7nzMW1ecfOYI/sD5/AFTWI0S</latexit> 0.99

<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.99
<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit> 0.99

<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>0.8

<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit> Earthquake

<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

0.05
<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit> 0.05

<latexit sha1_base64="NXltlD8xkGuS5rydE/TN2AF/J1M=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxURZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8AKjUs=</latexit>

0.45
<latexit sha1_base64="lHffAMkQSWT70qUSA/cDw3WzQ6c=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4Ckmt6LHgxWMF+wFtKJvtpl26uwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTDjTxvO+nbX1jc2t7dJOeXdv/+CwcnTc1nGqCG2RmMeqG2JNOZO0ZZjhtJsoikXIaSec3OV+54kqzWL5aKYJDQQeSRYxgk0ueW79elCpeq43B1olfkGqUKA5qHz1hzFJBZWGcKx1z/cSE2RYGUY4nZX7qaYJJhM8oj1LJRZUB9n81hm6sMoQRbGyJQ2aq78nMiy0norQdgpsxnrZy8X/vF5qotsgYzJJDZVksShKOTIxyh9HQ6YoMXxqCSaK2VsRGWOFibHxlG0I/vLLq6Rdc/0rt/ZQrzbOizhKcApncAk+3EAD7qEJLSAwhmd4hTdHOC/Ou/OxaF1zipkT+APn8wfGHo1P</latexit>

0.99
<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit> 0.99

<latexit sha1_base64="FBkDzQT6/O1y8FMRcLATgDxBy9g=">AAAB63icbVBNS8NAEJ34WetX1aOXxSp4CkkVtLeCF48V7Ae0oWy2m3bp7ibsboQS+he8eFDEq3/Im//GTZuDtj4YeLw3w8y8MOFMG8/7dtbWNza3tks75d29/YPDytFxW8epIrRFYh6rbog15UzSlmGG026iKBYhp51wcpf7nSeqNIvlo5kmNBB4JFnECDa55Ln1+qBS9VxvDrRK/IJUoUBzUPnqD2OSCioN4Vjrnu8lJsiwMoxwOiv3U00TTCZ4RHuWSiyoDrL5rTN0YZUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjKdsQ/OWXV0m75vpXbu3huto4L+IowSmcwSX4cAMNuIcmtIDAGJ7hFd4c4bw4787HonXNKWZO4A+czx/Tx41Y</latexit>

0.01
<latexit sha1_base64="LqHKD+DhmNgYtShNIunNdeLTkHc=">AAAB63icbVDLSgMxFL3xWeur6tJNsAquykwVdFlw47KCfUA7lEyaaUOTzJBkhDL0F9y4UMStP+TOvzHTzkJbD4QczrmXe+8JE8GN9bxvtLa+sbm1Xdop7+7tHxxWjo7bJk41ZS0ai1h3Q2KY4Iq1LLeCdRPNiAwF64STu9zvPDFteKwe7TRhgSQjxSNOic0lr+b5g0rVfXPgVeIXpAoFmoPKV38Y01QyZakgxvR8L7FBRrTlVLBZuZ8alhA6ISPWc1QRyUyQzXed4QunDHEUa/eUxXP1d0dGpDFTGbpKSezYLHu5+J/XS210G2RcJallii4GRanANsb54XjINaNWTB0hVHO3K6Zjogm1Lp6yC8FfPnmVtOs1/6pWf7iuNs6LOEpwCmdwCT7cQAPuoQktoDCGZ3iFNyTRC3pHH4vSNVT0nMAfoM8fufqNRw==</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>0.8

<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.2
<latexit sha1_base64="fO/MKjfP4d5nx2U/+RB9iG8LAKQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LFbBU0iqoMeCF48V7Qe0oWy2k3bpZhN2N0Ip/QlePCji1V/kzX/jts1BWx8MPN6bYWZemAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hodua3nlBpnshHM04xiOlA8ogzaqz04LnVXrniud4cZJX4OalAjnqv/NXtJyyLURomqNYd30tNMKHKcCZwWupmGlPKRnSAHUsljVEHk/mpU3JulT6JEmVLGjJXf09MaKz1OA5tZ0zNUC97M/E/r5OZ6CaYcJlmBiVbLIoyQUxCZn+TPlfIjBhbQpni9lbChlRRZmw6JRuCv/zyKmlWXf/Srd5fVWpneRxFOIFTuAAfrqEGd1CHBjAYwDO8wpsjnBfn3flYtBacfOYY/sD5/AFNSI0O</latexit>

0.4
<latexit sha1_base64="weY42Ijnrlku/of/HZcjlgNsa8M=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4Ckkt6LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6G0U0wESrNkCu2WBRlkmBCZn+TvtCcoRxbQpkW9lbChlRThjadog3BX355lTQrrn/lVu6r5dp5HkcBTuEMLsGHa6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBQUI0Q</latexit>

0.6
<latexit sha1_base64="VMRsbfERpHIYdFI8lI1yjT2bUCA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV9Vjw4rGi/YA2lM120y7dbMLuRCilP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLUykMet63s7K6tr6xWdgqbu/s7u2XDg4bJsk043WWyES3Qmq4FIrXUaDkrVRzGoeSN8Ph7dRvPnFtRKIecZTyIKZ9JSLBKFrpwXOvuqWy53ozkGXi56QMOWrd0lenl7As5gqZpMa0fS/FYEw1Cib5pNjJDE8pG9I+b1uqaMxNMJ6dOiFnVumRKNG2FJKZ+ntiTGNjRnFoO2OKA7PoTcX/vHaG0U0wFirNkCs2XxRlkmBCpn+TntCcoRxZQpkW9lbCBlRThjadog3BX3x5mTQqrn/hVu4vy9XTPI4CHMMJnIMP11CFO6hBHRj04Rle4c2Rzovz7nzMW1ecfOYI/sD5/AFTWI0S</latexit>

0.24
<latexit sha1_base64="a7Vj152FKyaZdBiqEI72qAMQ0Lc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1xrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0aZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URLdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjqdgQ/NWX10mn7vrXbv2hUWteFHGU4QzO4Qp8uIEm3EML2kBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfBkI1M</latexit>

In the literature, the distribution semantics usually associates with a goal a single probability
value (1), rather than a whole tree. However, given the distribution tree it is straightforward
to compute such probability. The subtree highlighted in red above describes a refutation of
Hear_alarm(M) with probability 0.000001296 (= the product of all the probabilities in the
subtree). The sum of all the probabilities associated to such “refutation” subtrees yields the
usual distribution semantics (1) – the computation is shown in detail in Appendix A.

In the remainder of this section, we focus on the coalgebraic characterisation of distribution
trees and the associated semantics map. Our strategy will be to introduce a novel coalgebra
type D≤1PfPf , such that distribution trees can be seen as elements of the cofree coalgebra.
Then, we will provide a natural transformation Mpr ⇒ D≤1Pf , which can be used to
transforms stochastic derivation trees into distribution trees. Finally, composing the universal
properties of these cofree coalgebras will yield the desired distribution semantics.

We begin with the definition ofD≤1Pf . This is simply the compositeD≤1Pf : Sets→ Sets,
where D≤1 is the sub-probability distribution functor. Recall that D≤1 maps X to the set of
sub-probability distributions with finite supports on X (i.e., convex combinations of elements
of X whose sum is less or equal to 1), and acts component-wise on functions.
I Remark 11. Note that we cannot work with full probabilities here, since a goal may not
match any clause. In such a case there is no world in which the goal is refutable and its
probability in the program is 0.

The next step is to recover distribution trees as the elements of the D≤1PfPf -cofree
coalgebra on At. This goes via a terminal sequence, similarly to the case ofMprPf in the
previous section. The terminal sequence for At×D≤1PfPf (−) : Sets→ Sets is constructed
as the one for At×MprPf (−) : Sets→ Sets (Construction 7), with D≤1Pf replacingMpr.

T. Gu and F. Zanasi 10:9

I Proposition 12. The terminal sequence of At × D≤1PfPf (−) converges at some limit
ordinal χ, and (λχ+1

χ)−1 : Yχ → At×D≤1PfPfYχ is the final At×D≤1PfPf coalgebra.

Proof. As for Proposition 8, by [28, Cor. 3.3] it suffices to show that D≤1Pf is accessible and
preserves monos. Both are simple exercises; in particular, see [1] for accessibility of D≤1. J

The association of distribution trees with elements of Yχ is suggested by the type
At×D≤1PfPf . Indeed, At×D≤1 is the layer of atom-nodes, labelled with elements of At and
with outgoing edges forming a sub-probability distribution; the first Pf is the layer of world-
nodes; the second Pf is the layer of clause-nodes. The coalgebra map Yχ → At×D≤1PfPfYχ
associates a goal to subtrees of its distribution trees, analogously to the coalgebra structure
on stochastic derivation trees in the previous section.

The last ingredient we need is a translation of stochastic derivation trees into distribution
trees. We formalise this as a natural transformation pw :Mpr ⇒ D≤1Pf . The naturality of
pw can be checked with a simple calculation.

I Definition 13. The “possible worlds” natural transformation pw : Mpr ⇒ D≤1Pf is
defined by pwX : ϕ 7→

∑
Y⊆supp(ϕ) rY Y , where each rY =

∏
y∈Y ϕ(y)·

∏
y′∈supp(ϕ)\Y (1−ϕ(y′)).

In particular, when supp(ϕ) is empty, pwX(ϕ) = 0.

Now we have all the ingredients to characterise the distribution semantics coalgebraically,
as the morphism 〈〈−〉〉p : At→ Yχ defined by the following diagram, which maps A ∈ At to
its distribution tree in p.

At

〈〈−〉〉p

**J−Kp //

<idAt,p>

��

Xγ
! //

∼=

��

Yχ

∼=

��

At×MprPfAt
idAt×MprPf (J−Kp)

//

idAt×pwPf (At)

��

At×MprPfXγ

idAt×pwPf Xγ

��
At×D≤1PfPfAt

idAt×D≤1PfPf (J−Kp)
// At×D≤1PfPfXγ

idAt×D≤1PfPf (!)
// At×D≤1PfPfYχ

(3)

Note the use of pw to extend probabilistic logic programs and stochastic derivation trees
to the same coalgebra type as distribution trees. Then the distribution semantics 〈〈−〉〉p
is uniquely defined by the universal property of the final At × D≤1PfPf -coalgebra. By
uniqueness, it can also be computed as the composite ! ◦ J−Kp, that is, first one derives
the semantics J−Kp, then applies the translation pw to each level of the resulting stochastic
derivation tree, in order to turn it into a distribution tree.

4 General Case

We now generalise our coalgebraic treatment to arbitrary probabilistic logic programs and
goals, possibly including variables. The section has the same structure as the one devoted to
the ground case. First, in Subsection 4.2, we give a coalgebraic representation for general PLP,
and equip it with a final coalgebra semantics in terms of stochastic derivation trees. Next, in
Subsection 4.3, we study the coalgebraic representation of the distribution semantics. We
begin by introducing our leading example – an extension of Example 1.

I Example 14. We tweak the ground program of Example 1. Now it is not just Mary that
may hear the alarm, but also her neighbours. There is a small probability that the alarm

CALCO 2019

10:10 A Coalgebraic Perspective on Probabilistic Logic Programming

rings because someone passes too close to Mary’s house. However, we can only estimate the
possibility of paracusia and being awake for Mary, not the neighbours. The revised program,
which by abuse of notation we also call Pal, is based on an extension of the language in
Example 1: we add a new 1-ary function symbol Neigh1 to the signature Σal, and a new
1-ary predicate PassBy(−) to the alphabet. Note the appearance of a variable x.

0.01 :: Earthquake ← 0.5 :: Alarm ← Earthquake
0.2 :: Burglary ← 0.9 :: Alarm ← Burglary
0.6 :: Wake(Mary) ← 0.1 :: Alarm ← PassBy(x)

0.01 :: Paracusia(Mary) ← 0.3 :: Hear_alarm(x) ← Paracusia(x)
0.8 :: Wake(Neigh(x)) ←Wake(x) 0.8 :: Hear_alarm(x) ← Alarm, Wake(x)

As we want to maintain our approach a direct generalisation of the coalgebraic semantics [3]
of pure logic programs, the derivation semantics J−K for PLP will represent resolution by
unification. This means that, at each step of the computation, given a goal A, one seeks
substitutions θ, τ such that Aθ = Hτ for some head H of a clause in the program. As
a roadmap, we anticipate the way this computation is represented in terms of stochastic
derivation trees (Definition 20 below), with a continuation of our leading example.

I Example 15. In the context of Example 14, the tree for JHear_alarm(x)KPal is (partially)
depicted below. Compared to the ground case (Example 6), now substitutions applied on
the goal side appear explicitly as labels. We abbreviate Neigh as N and Mary as M.

Hear alarm(x)
<latexit sha1_base64="hJ+KifK8TTcAGh5rlLSCc56QZK4=">AAACAHicbVA9SwNBEN2LXzF+nVpY2BxGITbhLgpaCjYpFYwGciHMbeZ0yd4Hu3NiONL4V2wsFLH1Z9j5b9zEKzTxwcDjvRlm5gWpFJpc98sqzc0vLC6Vlysrq2vrG/bm1rVOMsWxxROZqHYAGqWIsUWCJLZThRAFEm+CwfnYv7lHpUUSX9EwxW4Et7EIBQcyUs/e8QkfSId5E0H5PZCgotrD4ahnV926O4EzS7yCVFmBi5796fcTnkUYE5egdcdzU+rmoEhwiaOKn2lMgQ/gFjuGxhCh7uaTB0bOgVH6TpgoUzE5E/X3RA6R1sMoMJ0R0J2e9sbif14no/C0m4s4zQhj/rMozKRDiTNOw+kLhZzk0BDgSphbHX4HCjiZzComBG/65Vly3ah7R/XG5XH1bL+Io8x22R6rMY+dsDPWZBesxTgbsSf2wl6tR+vZerPef1pLVjGzzf7A+vgG3wqWeg==</latexit>

Wake(M)
<latexit sha1_base64="RMwtJPevQRvJfhNBt5nerulxYxI=">AAAB+XicbVDLSgNBEJyNrxhfqx69DEYhXsJuFPQY8OJFiGAekIQwO+lNhsw+mOkNhiV/4sWDIl79E2/+jZNkD5pY0FBUddPd5cVSaHScbyu3tr6xuZXfLuzs7u0f2IdHDR0likOdRzJSLY9pkCKEOgqU0IoVsMCT0PRGtzO/OQalRRQ+4iSGbsAGofAFZ2iknm13EJ5Q+2mTjaB0fzHt2UWn7MxBV4mbkSLJUOvZX51+xJMAQuSSad12nRi7KVMouIRpoZNoiBkfsQG0DQ1ZALqbzi+f0nOj9KkfKVMh0rn6eyJlgdaTwDOdAcOhXvZm4n9eO0H/ppuKME4QQr5Y5CeSYkRnMdC+UMBRTgxhXAlzK+VDphhHE1bBhOAuv7xKGpWye1muPFwVq2dZHHlyQk5JibjkmlTJHamROuFkTJ7JK3mzUuvFerc+Fq05K5s5Jn9gff4AOKmTSQ==</latexit> Paracursia(M)

<latexit sha1_base64="9CK9lk7QeEc6nYby/xUAPdK/z44=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AV6qbMVEGXBTduhAr2AW0pmTTThmYyQ3JHLGMX/oobF4q49Tfc+Tdm2llo64HA4ZxzuTfHiwTX4DjfVm5peWV1Lb9e2Njc2t6xd/caOowVZXUailC1PKKZ4JLVgYNgrUgxEniCNb3RVeo375nSPJR3MI5YNyADyX1OCRipZx90gD2A9pMaUYTGJkhKN6eTnl10ys4UeJG4GSmiDLWe/dXphzQOmAQqiNZt14mgmxAFnAo2KXRizSJCR2TA2oZKEjDdTab3T/CJUfrYD5V5EvBU/T2RkEDrceCZZEBgqOe9VPzPa8fgX3YTLqMYmKSzRX4sMIQ4LQP3uWIUxNgQQhU3t2I6TIsAU1nBlODOf3mRNCpl96xcuT0vVo+zOvLoEB2hEnLRBaqia1RDdUTRI3pGr+jNerJerHfrYxbNWdnMPvoD6/MHFKCWCA==</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

PassBy(N(M))
<latexit sha1_base64="FfJ5Ri6QnBT4geJpm+dUGbGTmpU=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AV2k2ZqYIui27cKBVsLbRDyaSZNjTzIMkIw1DwV9y4UMSt3+HOvzGdzkJbDwQO59ybnBw34kwqy/o2CkvLK6trxfXSxubW9o65u9eWYSwIbZGQh6LjYkk5C2hLMcVpJxIU+y6nD+74auo/PFIhWRjcqySijo+HAfMYwUpLffOg52M1kl7axFJeJpXbyk21OumbZatmZUCLxM5JGXI0++ZXbxCS2KeBIlzf1LWtSDkpFooRTielXixphMkYD2lX0wD7VDppFn+CTrQyQF4o9AkUytTfGyn2pUx8V09mYee9qfif142Vd+GkLIhiRQMye8iLOVIhmnaBBkxQoniiCSaC6ayIjLDAROnGSroEe/7Li6Rdr9mntfrdWblxnNdRhEM4ggrYcA4NuIYmtIBACs/wCm/Gk/FivBsfs9GCke/swx8Ynz8M/ZTJ</latexit>

PassBy(N(x))
<latexit sha1_base64="FdN3XJcG2sBC0E7rzpxR+t5LPVY=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2AV2k2ZqYIui25cSQXbCu1QMmmmDc08SDLiMBT8FTcuFHHrd7jzb0yns9DWA4HDOfcmJ8eNOJPKsr6NwtLyyupacb20sbm1vWPu7rVlGAtCWyTkobh3saScBbSlmOL0PhIU+y6nHXd8NfU7D1RIFgZ3Komo4+NhwDxGsNJS3zzo+ViNpJc2sZSXSeWm8litTvpm2apZGdAisXNShhzNvvnVG4Qk9mmgCNc3dW0rUk6KhWKE00mpF0saYTLGQ9rVNMA+lU6axZ+gE60MkBcKfQKFMvX3Rop9KRPf1ZNZ2HlvKv7ndWPlXTgpC6JY0YDMHvJijlSIpl2gAROUKJ5ogolgOisiIywwUbqxki7Bnv/yImnXa/ZprX57Vm4c53UU4RCOoAI2nEMDrqEJLSCQwjO8wpvxZLwY78bHbLRg5Dv78AfG5w9OqpT0</latexit>

PassBy(M)
<latexit sha1_base64="7Tyyu52E0+gkbrsyMgZQOwtpazM=">AAAB+3icbVDLSsNAFL3xWesr1qWbYBXqpiRV0GXRjRuhgn1AG8pkOmmHTiZhZiKGkF9x40IRt/6IO//GaZqFth4YOJxz78yZ40WMSmXb38bK6tr6xmZpq7y9s7u3bx5UOjKMBSZtHLJQ9DwkCaOctBVVjPQiQVDgMdL1pjczv/tIhKQhf1BJRNwAjTn1KUZKS0OzMgiQmkg/bSEpr5Pa3Vk2NKt23c5hLROnIFUo0BqaX4NRiOOAcIWZvqbv2JFyUyQUxYxk5UEsSYTwFI1JX1OOAiLdNM+eWadaGVl+KPThysrV3xspCqRMAk9P5kkXvZn4n9ePlX/lppRHsSIczx/yY2ap0JoVYY2oIFixRBOEBdVZLTxBAmGl6yrrEpzFLy+TTqPunNcb9xfV5klRRwmO4Bhq4MAlNOEWWtAGDE/wDK/wZmTGi/FufMxHV4xi5xD+wPj8AZgtlAw=</latexit>

PassBy(y)
<latexit sha1_base64="KpHdlgaM45VI2b5o172jTqSek88=">AAAB+3icbVC7TsMwFL0pr1JeoYwsFgWpLFVSkGCsYGEsEn1IbVQ5rtNadR6yHUQU5VdYGECIlR9h429w0wzQciRLR+fcax8fN+JMKsv6Nkpr6xubW+Xtys7u3v6BeVjtyjAWhHZIyEPRd7GknAW0o5jitB8Jin2X0547u537vUcqJAuDB5VE1PHxJGAeI1hpaWRWhz5WU+mlbSzlTVJPzrORWbMaVg60SuyC1KBAe2R+DcchiX0aKML1NQPbipSTYqEY4TSrDGNJI0xmeEIHmgbYp9JJ8+wZOtPKGHmh0CdQKFd/b6TYlzLxXT2ZJ1325uJ/3iBW3rWTsiCKFQ3I4iEv5kiFaF4EGjNBieKJJpgIprMiMsUCE6XrqugS7OUvr5Jus2FfNJr3l7XWaVFHGY7hBOpgwxW04A7a0AECT/AMr/BmZMaL8W58LEZLRrFzBH9gfP4A2zWUOA==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit> x �� x

<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

Earthquake
<latexit sha1_base64="VZRVLgZ5CzI+ZxBfVuYCYuG/wB4=">AAAB/HicbVDLSsNAFJ3UV62vaJduglVwVZIq6LIggssK9gFtKJPpTTt08nDmRgyh/oobF4q49UPc+TdO2yy09cCFwzn3ztx7vFhwhbb9bRRWVtfWN4qbpa3tnd09c/+gpaJEMmiySESy41EFgofQRI4COrEEGngC2t74auq3H0AqHoV3mMbgBnQYcp8zilrqm+UewiMqP7umEkf3CR3DpG9W7Ko9g7VMnJxUSI5G3/zqDSKWBBAiE1SprmPH6Gb6Rc4ETEq9REFM2ZgOoatpSANQbjZbfmKdaGVg+ZHUFaI1U39PZDRQKg083RlQHKlFbyr+53UT9C/djIdxghCy+Ud+IiyMrGkS1oBLYChSTSiTXO9qsRGVlKHOq6RDcBZPXiatWtU5q9Zuzyv14zyOIjkkR+SUOOSC1MkNaZAmYSQlz+SVvBlPxovxbnzMWwtGPlMmf2B8/gCd05VM</latexit>

Burglary
<latexit sha1_base64="UK9uvLscBD+D+L4eOApRQnSdJPs=">AAAB+nicbVBNS8NAEN3Ur1q/Uj16WayCp5JUQY9FLx4r2A9oQ9lsN+3SzSbsTtQQ+1O8eFDEq7/Em//GbZuDtj4YeLw3w8w8PxZcg+N8W4WV1bX1jeJmaWt7Z3fPLu+3dJQoypo0EpHq+EQzwSVrAgfBOrFiJPQFa/vj66nfvmdK80jeQRozLyRDyQNOCRipb5d7wB5BB9lVooaCqHTStytO1ZkBLxM3JxWUo9G3v3qDiCYhk0AF0brrOjF4GVHAqWCTUi/RLCZ0TIasa6gkIdNeNjt9gk+MMsBBpExJwDP190RGQq3T0DedIYGRXvSm4n9eN4Hg0su4jBNgks4XBYnAEOFpDnjAFaMgUkMIVdzciumIKELBpFUyIbiLLy+TVq3qnlVrt+eV+nEeRxEdoiN0ilx0geroBjVQE1H0gJ7RK3qznqwX6936mLcWrHzmAP2B9fkDHXqUdQ==</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.8
<latexit sha1_base64="NAxZyIUyWuzKqArKvBeKP2oSDgA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSp4CkkV7LHgxWNF+wFtKJvtpl262YTdiVBKf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXplIY9LxvZ219Y3Nru7BT3N3bPzgsHR03TZJpxhsskYluh9RwKRRvoEDJ26nmNA4lb4Wj25nfeuLaiEQ94jjlQUwHSkSCUbTSg+dWe6Wy53pzkFXi56QMOeq90le3n7As5gqZpMZ0fC/FYEI1Cib5tNjNDE8pG9EB71iqaMxNMJmfOiUXVumTKNG2FJK5+ntiQmNjxnFoO2OKQ7PszcT/vE6GUTWYCJVmyBVbLIoySTAhs79JX2jOUI4toUwLeythQ6opQ5tO0YbgL7+8SpoV179yK/fX5dp5HkcBTuEMLsGHG6jBHdShAQwG8Ayv8OZI58V5dz4WrWtOPnMCf+B8/gBWYI0U</latexit>

0.5
<latexit sha1_base64="V1kkhuGPhiMmGH+ZeD87U/3V4FI=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgKiRV0WXBjcsK9gFNKJPppB06mYSZiVBCf8ONC0Xc+jPu/BsnaRbaemDgcM693DMnSDhT2nG+rcra+sbmVnW7trO7t39QPzzqqjiVhHZIzGPZD7CinAna0Uxz2k8kxVHAaS+Y3uV+74lKxWLxqGcJ9SM8FixkBGsjeV6E9USFmWNfz4f1hmM7BdAqcUvSgBLtYf3LG8UkjajQhGOlBq6TaD/DUjPC6bzmpYommEzxmA4MFTiiys+KzHN0bpQRCmNpntCoUH9vZDhSahYFZrLIuOzl4n/eINXhrZ8xkaSaCrI4FKYc6RjlBaARk5RoPjMEE8lMVkQmWGKiTU01U4K7/OVV0m3a7qXdfLhqtM7KOqpwAqdwAS7cQAvuoQ0dIJDAM7zCm5VaL9a79bEYrVjlzjH8gfX5A4nPkUI=</latexit>

0.9
<latexit sha1_base64="1l1LlAIfvkJaZ8W15cPmPpQFAaU=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgKiRVUHcFNy4r2Ac0oUymk3boZBJmJkIJ/Q03LhRx68+482+cpFlo64GBwzn3cs+cIOFMacf5tipr6xubW9Xt2s7u3v5B/fCoq+JUEtohMY9lP8CKciZoRzPNaT+RFEcBp71gepf7vScqFYvFo54l1I/wWLCQEayN5HkR1hMVZo59Ox/WG47tFECrxC1JA0q0h/UvbxSTNKJCE46VGrhOov0MS80Ip/OalyqaYDLFYzowVOCIKj8rMs/RuVFGKIyleUKjQv29keFIqVkUmMki47KXi/95g1SHN37GRJJqKsjiUJhypGOUF4BGTFKi+cwQTCQzWRGZYImJNjXVTAnu8pdXSbdpu5d28+Gq0Tor66jCCZzCBbhwDS24hzZ0gEACz/AKb1ZqvVjv1sditGKVO8fwB9bnD4/jkUY=</latexit>

0.1
<latexit sha1_base64="93jDpD1qxB7qCXQxuuOqSAwSCwQ=">AAAB83icbVDLSsNAFL3xWeur6tLNYBVchaQKuiy4cVnBPqAJZTKdtEMnkzAPoYT+hhsXirj1Z9z5N07TLLT1wMDhnHu5Z06Ucaa05307a+sbm1vblZ3q7t7+wWHt6LijUiMJbZOUp7IXYUU5E7Stmea0l0mKk4jTbjS5m/vdJyoVS8WjnmY0TPBIsJgRrK0UBAnWYxXnnuvPBrW653oF0CrxS1KHEq1B7SsYpsQkVGjCsVJ938t0mGOpGeF0Vg2MohkmEzyifUsFTqgK8yLzDF1YZYjiVNonNCrU3xs5TpSaJpGdLDIue3PxP69vdHwb5kxkRlNBFodiw5FO0bwANGSSEs2nlmAimc2KyBhLTLStqWpL8Je/vEo6Dde/chsP1/XmeVlHBU7hDC7Bhxtowj20oA0EMniGV3hzjPPivDsfi9E1p9w5gT9wPn8Ag7uRPg==</latexit>

0.3
<latexit sha1_base64="naXh/lIh2rhxnIVor4Xsa4i2VYA=">AAAB83icbVDLSsNAFL2pr1pfUZduBqvgKiStoMuCG5cV7AOaUCbTSTt0MgkzE6GE/oYbF4q49Wfc+TdO0yy09cDA4Zx7uWdOmHKmtOt+W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3i383hOViiXiUc9SGsR4LFjECNZG8v0Y64mKctdpzod23XXcAmideCWpQ4n20P7yRwnJYio04VipgeemOsix1IxwOq/5maIpJlM8pgNDBY6pCvIi8xxdGmWEokSaJzQq1N8bOY6VmsWhmSwyrnoL8T9vkOnoNsiZSDNNBVkeijKOdIIWBaARk5RoPjMEE8lMVkQmWGKiTU01U4K3+uV10m04XtNpPFzXWxdlHVU4g3O4Ag9uoAX30IYOEEjhGV7hzcqsF+vd+liOVqxy5xT+wPr8AYbFkUA=</latexit>

0.3
<latexit sha1_base64="naXh/lIh2rhxnIVor4Xsa4i2VYA=">AAAB83icbVDLSsNAFL2pr1pfUZduBqvgKiStoMuCG5cV7AOaUCbTSTt0MgkzE6GE/oYbF4q49Wfc+TdO0yy09cDA4Zx7uWdOmHKmtOt+W5WNza3tnepubW//4PDIPj7pqiSThHZIwhPZD7GinAna0Uxz2k8lxXHIaS+c3i383hOViiXiUc9SGsR4LFjECNZG8v0Y64mKctdpzod23XXcAmideCWpQ4n20P7yRwnJYio04VipgeemOsix1IxwOq/5maIpJlM8pgNDBY6pCvIi8xxdGmWEokSaJzQq1N8bOY6VmsWhmSwyrnoL8T9vkOnoNsiZSDNNBVkeijKOdIIWBaARk5RoPjMEE8lMVkQmWGKiTU01U4K3+uV10m04XtNpPFzXWxdlHVU4g3O4Ag9uoAX30IYOEEjhGV7hzcqsF+vd+liOVqxy5xT+wPr8AYbFkUA=</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

(4)

Resolution by unification as above will be implemented in two stages. The first step is
devising a map for term-matching. Assuming that the substitution instance Aθ of a goal A
is already given, we define p performing term-matching of Aθ in a given program P:

p(Aθ) : {B1τi, . . . , Bkτi}i∈I⊆N 7→


r (r :: H ← B1, . . . , Bk) ∈ P and

I contains all i s.t. Aθ = Hτi

0 otherwise.
(5)

Intuitively, one application of such map is represented in a tree structure as Example 15
by the first two layers of the subtree rooted at θ. The reason why the domain of p(A) is
a countable set {B1τi, . . . , Bkτi}i∈I⊆N of instances of the same body B1, . . . , Bk is that the
same clause may match a goal with countably many different substitutions τi. For example
in the bottom part of (4) there are countably infinite substitutions τi matching the head of
Alarm ← PassBy(x) to the goal Alarm, substituting x with Mary,Neigh(Mary),Neigh(x),

T. Gu and F. Zanasi 10:11

This will be reflected in the coalgebraic representation of PLP (see (7) below) by the use of
the countable powset functor Pc.

In order to model arbitrary unification, the second step is considering all substitutions
θ on the goal A such that a term-matcher for Aθ exists. There is an elegant categorical
construction [3] packing together these two steps into a single coalgebra map. We will
present it in subsection 4.1, and then use it to present the derivation semantics anticipated
by Example 15 (Section 4.2). Finally we will give a coalgebraic view on the distribution
semantics for PLP (Section 4.3).

4.1 Coalgebraic Representation of PLP

Towards a categorification of general PLP, the first concern is to account for the presence of
variables in atoms. This is standardly done by letting the space of atoms on an alphabet A
be a presheaf At : Lop

Σ → Sets rather than a set. Here the index category Lop
Σ is the opposite

Lawvere Theory of Σ (see Section 2). For each n ∈ Ob(Lop
Σ), At(n) is defined as the set of

A-atoms in context n. Given a n-tuple θ = 〈t1, . . . , tn〉 ∈ Lop
Σ [n,m] of Σ-terms in context m,

At(θ) : At(n)→ At(m) is defined by substitution, namely At(θ)(A) = Aθ, for any A ∈ At(n).
As observed in [17] for pure logic programs, if we naively try to model our specification

(5) for p as a coalgebra on At, we run into problems: indeed p is not a natural transformation,
thus not a morphism between presheaves. Intuitively, this is because the existence of a
term-matching for a goal A does not necessarily imply the existence of a term-matching
for its substitution instance Aσ. For pure logic programs, this problem can be solved in at
least two ways. First, [17] relaxes naturality by changing the base category of presheaves
from Sets to Poset. We take here the second route, namely give a “saturated” coalgebraic
treatment of PLP, generalising the modelling of pure logic programs proposed in [3]. This
approach has the advantage of letting us work with Sets-based presheaves, and be still able
to recover term-matching via a “desaturation” operation – see [3] and Appendix B.

The Saturation Adjunction. To this aim, we briefly recall the saturated approach from [3].
The central piece is the adjunction U a K on presheaf categories, as on the left below.

SetsLop
Σ

U
++

⊥ Sets|L
op
Σ |

K

jj

|Lop
Σ |
� � ι //

F
��

Lop
Σ

K(F)||
Sets

(6)

Here |Lop
Σ | is the discretisation of Lop

Σ , i.e. all the arrows but the identities are dropped. The
left adjoint U is the forgetful functor, given by precomposition with the obvious inclusion
ι : |Lop

Σ | → Lop
Σ . U has a right adjoint K = Ranι : Sets|L

op
Σ | → SetsLop

Σ , which sends every
presheaf F : |Lop

Σ | → Sets to its right Kan extension along ι, as in the rightmost diagram
in (6). The definition of K can be computed [21] as follows:

on objects F ∈ Ob(SetsLop
Σ), the presheaf K(F) : Lop

Σ → Sets is defined by letting K(F)(n)
be the product K(F)(n) =

∏
θ∈Lop

Σ [n,m] F(m), where m ranges over Ob(Lop
Σ). Intuitively,

every element inK(F)(n) is a tuple with index set
⋃
m∈Ob(Lop

Σ) Lop
Σ [n,m], and its component

at index θ : n → m is an element in F(m). We follow the convention of [3] and write
ẋ, ẏ, . . . for such tuples, and ẋ(θ) for the component of ẋ at index θ.
With this convention, given an arrow σ ∈ Lop

Σ [n, n′], K(F)(σ) is defined by pointwise
substitution as the mapping of the tuple ẋ to the tuple 〈ẋ(θ ◦ σ)〉θ : n′→m.
On arrows, given a morphism α : F→ G in Sets|L

op
Σ |, K(α) is a natural transformation

K(F)→ K(G) defined pointwisely as K(α)(n) : ẋ 7→ 〈αm(ẋ(θ))〉θ : n→m.

CALCO 2019

10:12 A Coalgebraic Perspective on Probabilistic Logic Programming

It is also useful to record the unit η : 1 → KU of the adjunction U a K. Given a
presheaf F : Lop

Σ → Sets, ηF : F→ KUF is a natural transformation defined by ηF(n) : x 7→
〈F(θ)(x)〉θ : n→m.

Saturation in PLP. We now come back to the question of the coalgebra structure on the
presheaf At modelling PLP. First, we are now able to represent p in (5) as a coalgebra map.
The aforementioned naturality issue is solved by defining it as a morphism in Sets|L

op
Σ | rather

than in SetsLop
Σ , thus making naturality trivial. The coalgebra p will have the following type

p : UAt→ M̂prP̂cP̂fUAt (7)

where (̂·) is the obvious extension of Sets-endofunctors to Sets|L
op
Σ |-endofunctors, defined by

functor precomposition. With respect to the ground case, note the insertion of P̂c, the lifting
of the countable powerset functor, in order to account for the countably many instances of a
clause that may match the given goal (cf. the discussion below (5)).

I Example 16. Our program Pal (Example 14) is based on Atal : Lop
Σal
→ Sets. Some

of its values are Atal(0) = {Mary,Neigh(Mary),Neigh(Neigh(Mary)), . . . } and Atal(1) =
{x,Mary,Neigh(x),Neigh(Mary), . . . }. Part of the coalgebra pal modelling the program Pal is
as follows (cf. the tree (4)).

(pal)0(Hear_alarm(Mary)) = 0.8{{Alarm,Wake(Mary)}}+ 0.3{{Parasusia(Mary)}}
(pal)1(Alarm) = 0.5{{Earthquake}}+ 0.9{{Burglary}}

+ 0.1{{PassBy(Mary)}, {PassBy(Neigh(Mary))}, {PassBy(Neigh(x))}, . . . }

The universal property of the adjunction (6) gives a canonical “lifting” of p to a
KM̂prP̂cP̂fU-coalgebra p] on At, performing unification rather than just term-matching:

p] := At ηAt−−→ KUAt Kp−−→ KM̂prP̂cP̂fUAt (8)

where η is the unit of the adjunction, as defined above. Spelling it out, p] is the mapping

p]n : A ∈ At(n) 7→ 〈pm(Aθ)〉θ : n→m .

Intuitively, p]n retrieves all the unifiers 〈θ, τ〉 of A and head H in P: first, we have Aθ ∈ At(m)
as a component of the saturation of A by ηAt; then we term-match H with Aθ by Kpm.
I Remark 17. Note that the parameter n ∈ Ob(Lop

Σ) in the natural transformation p] fixes
the pool {x1, . . . , xn} of variables appearing in the atoms (and relative substitutions) that are
considered in the computation. Analogously to the case of pure logic programs [17, 3], it is
intended that such n can always be chosen “big enough” so that all the relevant substitution
instances of the current goal and clauses in the program are covered – note the variables
occurring therein always form a finite set, included in {x1, . . . , xm} for some m ∈ N.

4.2 Derivation Semantics
Once we have identified our coalgebra type, the construction leading to the derivation
semantics J−Kp] for general PLP is completely analogous to the ground case. One can define
the cofree coalgebra for KM̂prP̂cP̂fU(−) by terminal sequence, similarly to Construction 7.
For simplicity, henceforth we denote the functor KM̂prP̂cP̂fU(−) by S.

I Construction 18. The terminal sequence for At×S(−) : SetsLop
Σ → SetsLop

Σ consists of a
sequence of objects Xα and morphisms δβα : Xβ → Xα, for α < β ∈ Ord, defined analogously
to Construction 7, with p] and S replacing p andMprPf .

T. Gu and F. Zanasi 10:13

This terminal sequence converges by the following lemma.

I Proposition 19. S is accessible, and preserves monomorphisms.

Proof. Since both properties are preserved by composition, it suffices to show that they
hold for all the component functors. For M̂pr, P̂c and P̂f , they follow from accessibility
and mono-preservation of Mpr, Pc and Pf (see Proposition 8), as (co)limits in presheaf
categories are computed pointwise. For K and U , these properties are proven in [3]. J

Therefore the terminal sequence for At×S(−) converges at some limit ordinal, say γ, yielding
the final At× S(−)-coalgebra Xγ

∼=−→ At× S(Xγ). The derivation semantics is then defined
J−Kp] : At→ Xγ by universal property, as on the right.

At
J−K

p] //

〈idAt,p
]〉
��

Xγ

∼=
��

At× S(At)
idAt×J−K

p]

// At× S(Xγ)

(9)

A careful inspection of the terminal sequence constructing Xγ allows to infer a representation
of its elements as trees, among which we have those representing computations by unification
of goals in a PLP program. We call these stochastic saturated derivation trees, as they extend
the derivation trees of Definition 5 and are the probabilistic variant of saturated and-or trees
in [3]. Using (9) one can easily verify that JAK is indeed the stochastic saturated derivation
tree for a given goal A. Example 15 provides a pictorial representation of one such tree.

I Definition 20 (Stochastic saturated derivation trees). Given a probabilistic logic program P,
a natural number n and an atom A ∈ At(n). The stochastic saturated derivation tree for A
in P is the possibly infinite tree T satisfying the following properties:
1. There are four kinds of nodes: atom-node (labelled with an atom), substitution-node

(labelled with a substitution), clause-node (labelled with •), instance-node (labelled with
�), appearing alternatively in depth in this order. The root is an atom-node with label A.

2. Each clause-node is labelled with a probability value.
3. Suppose an atom-node s is labelled with A′ ∈ At(n′). For every substitution θ : n′ → m′,

s has exactly one (substitution-node) child t labelled with θ. For every clause r :: H ←
B1, . . . , Bk in P such that H matches A′θ (via some substitution), t has exactly one
(clause-)child u, and edge t → u is labelled with r. Then for every substitution τ such
that A′θ = Hτ and B1τ, . . . , Bkτ ∈ At(m′), u has exactly one (instance-)child v. Also
v has exactly |{B1τ, . . . , Bkτ}|-many (atom-)children, each labelled with one element in
{B1τ, . . . , Bkτ}.

4.3 Distribution Semantics
In this section we conclude by giving a coalgebraic perspective on the distribution semantics
〈〈−〉〉 for general PLP. Mimicking the ground case (Section 3.3), this will be presented as an
extension of the derivation semantics, via a “possible worlds” natural transformation. Also in
the general case, we want to guarantee that a single probability value is computable for a given
goal A from the corresponding tree 〈〈A〉〉 in the final coalgebra – whenever this probability

CALCO 2019

10:14 A Coalgebraic Perspective on Probabilistic Logic Programming

is also computable in the “traditional” way (see (1)) of giving distribution semantics to
PLP. In this respect, the presence of variables and substitutions poses additional challenges,
for which we refer to Appendices A and B. In a nutshell, the issue is that the distribution
semantics counts the use of a clause in the program at most once, independently from how
many times that clause is used again in the computation. To account for this aspect in our
tree representation, we need to give enough information to determine which clause is used at
each step of the computation, so that a second use can be easily detected. Note that neither
our saturated derivation trees, nor a “naive” extension of them to distribution trees, carry
such information: what appears in there is only the instantiated heads and bodies, but in
general one cannot retrieve A from a substitution θ and the instantiation Aθ. This is best
illustrated via a simple example.

I Example 21. Consider the following program, based on the signature Σ = {a0} and two
1-ary predicates P , Q. It consists of two clauses:

0.5 :: P (x1)← Q(x1) 0.5 :: P (x1)← Q(x2)

The goal P (a) matches the head of both clauses. However, given the sole information of the
next goal beingQ(a), it is impossible to say whether the first clause has been used, instantiated
with x1 7→ a, or the second clause has been used, instantiated with x1 7→ a, x2 7→ a.

This observation motivates, as intermediate step towards the distribution semantics, the
addition of labels to clause-nodes in derivation trees, in order to make explicit which clause
is being applied. From the coalgebraic viewpoint, this just amounts to an extension of the
type of the term-matching coalgebra:

p̃ : UAt→ M̂pr(P̂cP̂fUAt× (UAt× UP̂fAt)).

Note the insertion of (−)× (UAt×UP̂fAt), which allows us to indicate at each step the head
(UAt) and the body (UP̂fAt) of the clause being used, its probability label being already
given by M̂pr. More formally, for any n and atom A ∈ At(n), we define1

p̃n(A) : 〈{B1τi, . . . , Bkτi}i∈I⊆N, 〈H, {B1, . . . , Bk}〉〉 7→

{
r (r ::H←B1, . . . , Bk) ∈ P, Hτi = A

0 otherwise

As in the case of p in (7), we can move from term-matching to unification by using the
universal property of the adjunction U a K, yielding p̃] : At → KM̂pr(P̂cP̂fUAt × (UAt ×
UP̂fAt)). For simplicity henceforth we denote the functor KM̂pr(P̂cP̂fU(−)×(UAt×P̂fUAt))
by R.

We are now able to conclude our characterisation of the distribution semantics. The
“possible worlds” transformation pw : Mpr ⇒ D≤1Pf (Definition 13) yields a natural trans-
formation p̂w : M̂pr → D̂≤1P̂f , defined pointwise by pw. We can use p̂w to translate R into
the functor KD̂≤1P̂f (P̂cP̂fU(−)× (UAt× P̂fUAt)), abbreviated as O, which is going to give
the type of saturated distribution trees for general PLP programs.

1 As noted in Remark 17, instantiating p̃ to some n ∈ Ob(Lop
Σ) fixes a variable context {x1, . . . , xn} both

for the goal and the clause labels. In practice, because the set of clauses is always finite, it suffices to
chose n “big enough” so that the variables appearing in the clauses are included in {x1, . . . , xn}.

T. Gu and F. Zanasi 10:15

As a simple extension of the developments in Section 4.2, we can construct the cofree
R-coalgebra Φ

∼=−→ At×R(Φ) via a terminal sequence. Similarly, one can obtain the cofree
O-coalgebra Ψ

∼=−→ At × O(Ψ). By the universal property of Ψ, all these ingredients get
together in the definition of the distribution semantics 〈〈−〉〉

p̃]
for arbitrary PLP programs p̃]

At

〈〈−〉〉
p̃]

))!Φ //

<idAt,p̃
]>

��

Φ !Ψ //

∼=
��

Ψ

∼=

��

At×RAt
idAt×R(!Φ) //

idAt×Kp̂w
��

At×RΦ

idAt×Kp̂w
��

At×OAt
idAt×O(!Φ) // At×OΦ

idAt×O(!Ψ) // At×OΨ

where !Φ and !Ψ are given by the evident universal properties, and show the role of the cofree
R-coalgebra Φ as an intermediate step. The layered construction of final coalgebras Ψ and Φ,
together with the above characterisation of 〈〈−〉〉

p̃]
, allow to conclude that the distribution

semantics for the program p̃] maps a goal A to its saturated distribution tree 〈〈A〉〉
p̃]
, as

formally defined below.

I Definition 22 (Saturated distribution tree). The saturated distribution tree for A ∈ At(n)
in P is the possibly infinite T satisfying the following properties based on Definition 20:

1. There are five kinds of nodes: in addition to the atom-, substitution-, clause- and instance-
nodes, there are world-nodes. The world-nodes are children of the substitution-nodes, and
parents of the clause nodes. The root and the order of the rest nodes are the same as in
Definition 20, condition 1. The clause-nodes are now labelled with clauses of P.

2. Suppose s is an atom node labelled with A′ ∈ At(n′), and t is a substitution-child of s
labelled with θ : n′ → m. Let C be the set of all clauses C such that Head(C) matches A′θ.
Then t has 2|C| world-children, each representing a subset X of C. If a child u represents
subset X, then the edge t → u has probability label

∏
C∈X Label(C) ·

∏
C′∈C\X Label(C′).

Also u has |X| clause-children, one for each clause C ∈ X, labelled with the corresponding
clause. The rest for clause-nodes and instance-nodes are the same as in Definition 20,
condition 3.

I Remark 23. Note that, in principle, saturated distribution trees could be defined coal-
gebraically without the intermediate step of adding clause labels. This is to be expected:
coalgebra typically captures the one-step, “local” behaviour of a system. On the other hand,
as explained, the need for clause labels is dictated by a computational aspect involving the
depth of distribution trees, that is, a “non-local” dimension of the system.

We conclude with the pictorial representation of the saturated distribution tree of a goal in
our leading example.

CALCO 2019

10:16 A Coalgebraic Perspective on Probabilistic Logic Programming

I Example 24. In the context of Example 14, the tree 〈〈Hear_alarm(x)〉〉 capturing the
distribution semantics of Hear_alarm(x) is (partially) depicted as follows. Note the presence
of clauses labelling the clause-nodes.

Hear alarm(x)
<latexit sha1_base64="hJ+KifK8TTcAGh5rlLSCc56QZK4=">AAACAHicbVA9SwNBEN2LXzF+nVpY2BxGITbhLgpaCjYpFYwGciHMbeZ0yd4Hu3NiONL4V2wsFLH1Z9j5b9zEKzTxwcDjvRlm5gWpFJpc98sqzc0vLC6Vlysrq2vrG/bm1rVOMsWxxROZqHYAGqWIsUWCJLZThRAFEm+CwfnYv7lHpUUSX9EwxW4Et7EIBQcyUs/e8QkfSId5E0H5PZCgotrD4ahnV926O4EzS7yCVFmBi5796fcTnkUYE5egdcdzU+rmoEhwiaOKn2lMgQ/gFjuGxhCh7uaTB0bOgVH6TpgoUzE5E/X3RA6R1sMoMJ0R0J2e9sbif14no/C0m4s4zQhj/rMozKRDiTNOw+kLhZzk0BDgSphbHX4HCjiZzComBG/65Vly3ah7R/XG5XH1bL+Io8x22R6rMY+dsDPWZBesxTgbsSf2wl6tR+vZerPef1pLVjGzzf7A+vgG3wqWeg==</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

Hear alarm(x) � Alarm, Wake(x)
<latexit sha1_base64="EutX3SIyAQS7rLvDy3Dw8ZONNXo=">AAACInicbVDLSgMxFM34rPVVdekmWAQFKTMqqLuKmy4r2Ad0SrmT3tHQzGRIMmoZ+i1u/BU3LhR1Jfgxpo+FWg8EDufcy805QSK4Nq776czMzs0vLOaW8ssrq2vrhY3NupapYlhjUkjVDECj4DHWDDcCm4lCiAKBjaB3MfQbt6g0l/GV6SfYjuA65iFnYKzUKZz5gbzHbuZHYG50mFUQlN8BASrau9+nvsDQgFLyjp4PtQPagB5aZzDoFIpuyR2BThNvQopkgmqn8O53JUsjjA0ToHXLcxPTzkAZzgQO8n6qMQHWg2tsWRpDhLqdjSIO6K5VujSUyr7Y0JH6cyODSOt+FNjJUZK/3lD8z2ulJjxtZzxOUoMxGx8KU0GNpMO+aJcrZEb0LQGmuP0rZTeggBnbat6W4P2NPE3qhyXvqHR4eVws00kdObJNdsge8cgJKZMKqZIaYeSBPJEX8uo8Os/Om/MxHp1xJjtb5Becr29x2qQR</latexit>

Hear alarm(x) � Paracusia(x)
<latexit sha1_base64="r+NH/YjOp+F4HS9kbC0DFyoG7d0=">AAACIHicbVBNS8NAFNz4WetX1aOXxSLUS0lUqEfBi8cKthWaEl62L7q4yYbdjbaE/hQv/hUvHhTRm/4at20OWh1YGGbe4+1MmAqujet+OnPzC4tLy6WV8ura+sZmZWu7rWWmGLaYFFJdhaBR8ARbhhuBV6lCiEOBnfD2bOx37lBpLpNLM0yxF8N1wiPOwFgpqDT8UA6wn/sxmBsd5ecIyg9AgIprgwPqC4wMKCXvaRMUsExzsPpoFFSqbt2dgP4lXkGqpEAzqHz4fcmyGBPDBGjd9dzU9HJQhjOBo7KfaUyB3cI1di1NIEbdyycBR3TfKn0aSWVfYuhE/bmRQ6z1MA7t5CTHrDcW//O6mYlOejlP0sxgwqaHokxQI+m4LdrnCpkRQ0uAKW7/StnNuAhjOy3bErzZyH9J+7DuHdUPL46rp7Soo0R2yR6pEY80yCk5J03SIow8kCfyQl6dR+fZeXPep6NzTrGzQ37B+foGxVGj1Q==</latexit>

Hear alarm(x) � Alarm, Wake(x)
<latexit sha1_base64="EutX3SIyAQS7rLvDy3Dw8ZONNXo=">AAACInicbVDLSgMxFM34rPVVdekmWAQFKTMqqLuKmy4r2Ad0SrmT3tHQzGRIMmoZ+i1u/BU3LhR1Jfgxpo+FWg8EDufcy805QSK4Nq776czMzs0vLOaW8ssrq2vrhY3NupapYlhjUkjVDECj4DHWDDcCm4lCiAKBjaB3MfQbt6g0l/GV6SfYjuA65iFnYKzUKZz5gbzHbuZHYG50mFUQlN8BASrau9+nvsDQgFLyjp4PtQPagB5aZzDoFIpuyR2BThNvQopkgmqn8O53JUsjjA0ToHXLcxPTzkAZzgQO8n6qMQHWg2tsWRpDhLqdjSIO6K5VujSUyr7Y0JH6cyODSOt+FNjJUZK/3lD8z2ulJjxtZzxOUoMxGx8KU0GNpMO+aJcrZEb0LQGmuP0rZTeggBnbat6W4P2NPE3qhyXvqHR4eVws00kdObJNdsge8cgJKZMKqZIaYeSBPJEX8uo8Os/Om/MxHp1xJjtb5Becr29x2qQR</latexit>

Hear alarm(x) � Paracusia(x)
<latexit sha1_base64="r+NH/YjOp+F4HS9kbC0DFyoG7d0=">AAACIHicbVBNS8NAFNz4WetX1aOXxSLUS0lUqEfBi8cKthWaEl62L7q4yYbdjbaE/hQv/hUvHhTRm/4at20OWh1YGGbe4+1MmAqujet+OnPzC4tLy6WV8ura+sZmZWu7rWWmGLaYFFJdhaBR8ARbhhuBV6lCiEOBnfD2bOx37lBpLpNLM0yxF8N1wiPOwFgpqDT8UA6wn/sxmBsd5ecIyg9AgIprgwPqC4wMKCXvaRMUsExzsPpoFFSqbt2dgP4lXkGqpEAzqHz4fcmyGBPDBGjd9dzU9HJQhjOBo7KfaUyB3cI1di1NIEbdyycBR3TfKn0aSWVfYuhE/bmRQ6z1MA7t5CTHrDcW//O6mYlOejlP0sxgwqaHokxQI+m4LdrnCpkRQ0uAKW7/StnNuAhjOy3bErzZyH9J+7DuHdUPL46rp7Soo0R2yR6pEY80yCk5J03SIow8kCfyQl6dR+fZeXPep6NzTrGzQ37B+foGxVGj1Q==</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

x �� M
<latexit sha1_base64="pHTYmEddskmK0GogNqx6FG6dnCw=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LbtwIFewD2lAm00k7dDIJMxOxhuKvuHGhiFv/w51/4zTNQlsPDBzOuZc59/gxZ0o7zrdVWFpeWV0rrpc2Nre2d+zdvaaKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHV1G/dU6lYJO70OKZeiAeCBYxgbaSefdANsR6qIH1AhsVKR+hm0rPLTsXJgBaJm5My5Kj37K9uPyJJSIUmHCvVcZ1YeymWmhFOJ6VuomiMyQgPaMdQgUOqvDRLP0EnRumjIJLmCY0y9fdGikOlxqFvJrOs895U/M/rJDq49FIm4kRTQWYfBQlH5sZpFajPJCWajw3BRDKTFZEhlphoU1jJlODOn7xImtWKe1ap3p6Xa8d5HUU4hCM4BRcuoAbXUIcGEHiEZ3iFN+vJerHerY/ZaMHKd/bhD6zPH30DlSU=</latexit>

x �� N(x)
<latexit sha1_base64="GX0hsBLaOHTV0Neuy6xv0m10oOE=">AAACAHicbVC7SgNBFL0bXzG+Vi0sbAajEJuwGwUtAzZWEsE8IFnC7GQ2GTL7YGZWEpZt/BUbC0Vs/Qw7/8bJZgtNPDBwOOde5p7jRpxJZVnfRmFldW19o7hZ2tre2d0z9w9aMowFoU0S8lB0XCwpZwFtKqY47USCYt/ltO2Ob2Z++5EKycLgQU0j6vh4GDCPEay01DePej5WI+klE6RZJFWI7iqT87Rvlq2qlQEtEzsnZcjR6JtfvUFIYp8GinAsZde2IuUkWChGOE1LvVjSCJMxHtKupgH2qXSSLECKzrQyQF4o9AsUytTfGwn2pZz6rp7Mzl30ZuJ/XjdW3rWTsCCKFQ3I/CMv5kjHnLWBBkxQovhUE0wE07ciMsICE6U7K+kS7MXIy6RVq9oX1dr9Zbl+mtdRhGM4gQrYcAV1uIUGNIFACs/wCm/Gk/FivBsf89GCke8cwh8Ynz82TJYN</latexit>

x �� x
<latexit sha1_base64="qoxox0bZ672lFIt25LZmMyWcZBU=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1gFVyWpgi4LblxWsA9oQ5lMJ+3QySTMTKQ1FH/FjQtF3Pof7vwbp2kW2npg4HDOvcy5x485U9pxvq3Cyura+kZxs7S1vbO7Z+8fNFWUSEIbJOKRbPtYUc4EbWimOW3HkuLQ57Tlj25mfuuBSsUica8nMfVCPBAsYARrI/Xso26I9VAF6RgZFisdofG0Z5edipMBLRM3J2XIUe/ZX91+RJKQCk04VqrjOrH2Uiw1I5xOS91E0RiTER7QjqECh1R5aZZ+is6M0kdBJM0TGmXq740Uh0pNQt9MZlkXvZn4n9dJdHDtpUzEiaaCzD8KEo7MjbMqUJ9JSjSfGIKJZCYrIkMsMdGmsJIpwV08eZk0qxX3olK9uyzXTvM6inAMJ3AOLlxBDW6hDg0g8AjP8Apv1pP1Yr1bH/PRgpXvHMIfWJ8/vlqVUA==</latexit>

. . .
<latexit sha1_base64="/I6fBNgKIFLNVKT94ae25iSA75A=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9lFEj2SePGIiYAJIOmWLjR0u5v2rYZs+B9ePGiMV/+LN/+NZdmDgpM0mcx7kzcdP5bCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNlGiGW+xSEb63qeGS6F4CwVKfh9rTkNf8o4/uZ7PO49cGxGpO5zGvB/SkRKBYBSt9NALKY5NkPaGEZrZoFxxq24Gskq8nFQgR3NQ/rJGloRcIZPUmK7nxthPqUbBJJ+VeonhMWUTOuJdSxUNuemnWeoZObPKkASRtk8hydTfjpSGxkxD325mKZdnc/G/WTfB4KqfChUnyBVbHAoSSTAi8wrIUGjOUE4toUwLm5WwMdWUoS2qZEvwlr+8Stq1qndRrd3WK416XkcRTuAUzsGDS2jADTShBQw0PMMrvDlPzovz7nwsVgtO7jmGP3A+fwAu5ZLp</latexit>

Alarm
<latexit sha1_base64="xciZpOOCKM7kFjIeZkpnPNq01V4=">AAAB9XicbVDLTgJBEJz1ifhCPXqZiCaeyC6a6BHjxSMm8kgAyezQCxNmdjczvSrZ8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYykMuu63s7S8srq2ntvIb25t7+wW9vbrJko0hxqPZKSbPjMgRQg1FCihGWtgypfQ8IfXE7/xANqIKLzDUQwdxfqhCARnaKX7NsITmiC9kkyrcbdQdEvuFHSReBkpkgzVbuGr3Yt4oiBELpkxLc+NsZMyjYJLGOfbiYGY8SHrQ8vSkCkwnXR69ZieWKVHg0jbCpFO1d8TKVPGjJRvOxXDgZn3JuJ/XivB4LKTijBOEEI+WxQkkmJEJxHQntDAUY4sYVwLeyvlA6YZRxtU3obgzb+8SOrlkndWKt+eFyvHWRw5ckiOyCnxyAWpkBtSJTXCiSbP5JW8OY/Oi/PufMxal5xs5oD8gfP5AxVWkss=</latexit> ...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

...
<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

Paracusia(N(x))
<latexit sha1_base64="b4tSFQDSyjWOdfxvhRLEsGyVLQc=">AAACAXicbVDLSsNAFL3xWesr6kZwM1iFdlOSKuiy4MaVVLAPaEOZTCft0MmDmYlYQt34K25cKOLWv3Dn3zhJs9DWAxcO59zLvfe4EWdSWda3sbS8srq2Xtgobm5t7+yae/stGcaC0CYJeSg6LpaUs4A2FVOcdiJBse9y2nbHV6nfvqdCsjC4U5OIOj4eBsxjBCst9c3Dno/VSHpJAwtMYslw+ab8UKlM+2bJqloZ0CKxc1KCHI2++dUbhCT2aaAIx1J2bStSToKFYoTTabEXSxphMsZD2tU0wD6VTpJ9MEWnWhkgLxS6AoUy9fdEgn0pJ76rO7N7571U/M/rxsq7dBIWRLGiAZkt8mKOVIjSONCACUoUn2iCiWD6VkRGaRRKh1bUIdjzLy+SVq1qn1Vrt+el+kkeRwGO4BjKYMMF1OEaGtAEAo/wDK/wZjwZL8a78TFrXTLymQP4A+PzB8lHllk=</latexit> ...

<latexit sha1_base64="D3ORMLZ8+YTNeGi5y2O8b+8VrKM=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5LUgi4LblxWsA9oQplMJ+3QSSbM3BRq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vmBIngGhzn2yptbe/s7pX3KweHR8dV++S0q2WqKOtQKaTqB0QzwWPWAQ6C9RPFSBQI1gumd0u/N2NKcxk/wjxhfkTGMQ85JWCkoV31IgITHWbebCRBL4Z2zak7OfAmcQtSQwXaQ/vLG0maRiwGKojWA9dJwM+IAk4FW1S8VLOE0CkZs4GhMYmY9rM8+AJfGmWEQ6nMiwHn6u+NjERaz6PATOYx172l+J83SCG89TMeJymwmK4OhanAIPGyBTziilEQc0MIVdxkxXRCFKFguqqYEtz1L2+SbqPuXtcbD81aq1nUUUbn6AJdIRfdoBa6R23UQRSl6Bm9ojfryXqx3q2P1WjJKnbO0B9Ynz+Eg5Oa</latexit>

0.14
<latexit sha1_base64="3mrePS38LAq+zzqRIz9tzopwVa4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ll+Y1itea63AFonfkFqUKA1rH4NRjFJBZWGcKx13/cSE2RYGUY4nVcGqaYJJlM8pn1LJRZUB9ni1jm6tMoIRbGyJQ1aqL8nMiy0nonQdgpsJnrVy8X/vH5qotsgYzJJDZVkuShKOTIxyh9HI6YoMXxmCSaK2VsRmWCFibHxVGwI/urL66RTd/1rt/7QqDUvijjKcAbncAU+3EAT7qEFbSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QPAC41L</latexit>

0.24
<latexit sha1_base64="a7Vj152FKyaZdBiqEI72qAMQ0Lc=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LFbBU0hqQY8FLx4r2A9oQ9lsN+3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5YcKZNp737ZQ2Nre2d8q7lb39g8Oj6vFJR8epIrRNYh6rXog15UzStmGG016iKBYhp91wepf73SeqNIvlo5klNBB4LFnECDa55Ln1xrBa81xvAbRO/ILUoEBrWP0ajGKSCioN4Vjrvu8lJsiwMoxwOq8MUk0TTKZ4TPuWSiyoDrLFrXN0aZURimJlSxq0UH9PZFhoPROh7RTYTPSql4v/ef3URLdBxmSSGirJclGUcmRilD+ORkxRYvjMEkwUs7ciMsEKE2PjqdgQ/NWX10mn7vrXbv2hUWteFHGU4QzO4Qp8uIEm3EML2kBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfBkI1M</latexit>

0.56
<latexit sha1_base64="OPaUUInWZ7WtM0szfv5m2EWtNIE=">AAAB63icbVDLSsNAFL3xWeur6tLNYBVchaQ+lwU3LivYB7ShTKaTdujMJMxMhBL6C25cKOLWH3Ln3zhps9DWAxcO59zLvfeECWfaeN63s7K6tr6xWdoqb+/s7u1XDg5bOk4VoU0S81h1QqwpZ5I2DTOcdhJFsQg5bYfju9xvP1GlWSwfzSShgcBDySJGsMklz7267leqnuvNgJaJX5AqFGj0K1+9QUxSQaUhHGvd9b3EBBlWhhFOp+VeqmmCyRgPaddSiQXVQTa7dYrOrDJAUaxsSYNm6u+JDAutJyK0nQKbkV70cvE/r5ua6DbImExSQyWZL4pSjkyM8sfRgClKDJ9Ygoli9lZERlhhYmw8ZRuCv/jyMmnVXP/CrT1cVuunRRwlOIYTOAcfbqAO99CAJhAYwTO8wpsjnBfn3fmYt644xcwR/IHz+QPJJ41R</latexit>

0.06
<latexit sha1_base64="YCYNrh6eJCR+l0zw82Ra1CrPEJg=">AAAB63icbVDLSgMxFL1TX7W+qi7dBKvgqsxUUZcFNy4r2Ae0Q8mkmTY0yQxJRihDf8GNC0Xc+kPu/Bsz01lo64GQwzn3cu89QcyZNq777ZTW1jc2t8rblZ3dvf2D6uFRR0eJIrRNIh6pXoA15UzStmGG016sKBYBp91gepf53SeqNIvko5nF1Bd4LFnICDaZ5Nbd62G1Zr8caJV4BalBgdaw+jUYRSQRVBrCsdZ9z42Nn2JlGOF0XhkkmsaYTPGY9i2VWFDtp/muc3RulREKI2WfNChXf3ekWGg9E4GtFNhM9LKXif95/cSEt37KZJwYKsliUJhwZCKUHY5GTFFi+MwSTBSzuyIywQoTY+Op2BC85ZNXSadR9y7rjYerWvOsiKMMJ3AKF+DBDTThHlrQBgITeIZXeHOE8+K8Ox+L0pJT9BzDHzifP8GOjUw=</latexit>

Wake(N(x))
<latexit sha1_base64="MmtLlOiShqOsfULrNeBQ+ky/yJs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBKvQbkpSBV0W3LiSCvYBbSiT6aQdOpmEmYkYQv0VNy4UceuHuPNvnKZZaOuBgcM593LPHC9iVCrb/jYKa+sbm1vF7dLO7t7+gXl41JFhLDBp45CFouchSRjlpK2oYqQXCYICj5GuN72e+90HIiQN+b1KIuIGaMypTzFSWhqa5UGA1ET6aRdNSfW2+lirzYZmxa7bGaxV4uSkAjlaQ/NrMApxHBCuMENS9h07Um6KhKKYkVlpEEsSITxFY9LXlKOASDfNws+sM62MLD8U+nFlZervjRQFUiaBpyezqMveXPzP68fKv3JTyqNYEY4Xh/yYWSq05k1YIyoIVizRBGFBdVYLT5BAWOm+SroEZ/nLq6TTqDvn9cbdRaV5mtdRhGM4gSo4cAlNuIEWtAFDAs/wCm/Gk/FivBsfi9GCke+U4Q+Mzx/Cd5QW</latexit>

References
1 Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic system types.

Theor. Comput. Sci., 327(1-2):3–22, 2004. doi:10.1016/j.tcs.2004.07.019.
2 Filippo Bonchi and Fabio Zanasi. Saturated semantics for coalgebraic logic programming.

In Algebra and Coalgebra in Computer Science - 5th International Conference, CALCO
2013, Warsaw, Poland, September 3-6, 2013. Proceedings, pages 80–94, 2013. doi:10.1007/
978-3-642-40206-7_8.

3 Filippo Bonchi and Fabio Zanasi. Bialgebraic semantics for logic programming. Logical
Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:14)2015.

4 Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Ohad Kammar. Bayesian inversion by
ω-complete cone duality. In 27th International Conference on Concurrency Theory, CONCUR
2016, August 23-26, 2016, Québec City, Canada, pages 1:1–1:15, 2016. doi:10.4230/LIPIcs.
CONCUR.2016.1.

5 Eugene Dantsin. Probabilistic logic programs and their semantics. In A. Voronkov, editor,
Logic Programming, pages 152–164, Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

6 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 2468–2473, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=1625275.1625673.

7 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A probabilistic prolog and
its application in link discovery. In Proceedings of the 20th International Joint Conference
on Artifical Intelligence, IJCAI’07, pages 2468–2473, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=1625275.1625673.

8 Didier Dubois, Lluas Godo, and Henri Prade. Weighted logics for artificial intelligence : an
introductory discussion. International Journal of Approximate Reasoning, 55(9):1819–1829,
2014. Weighted Logics for Artificial Intelligence. doi:10.1016/j.ijar.2014.08.002.

9 Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya. Coinductive logic
programming and its applications. In Véronica Dahl and Ilkka Niemelä, editors, Logic
Programming, pages 27–44, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

10 Gopal Gupta and Vítor Santos Costa. Optimal implementation of and-or parallel prolog. Future
Generation Computer Systems, 10(1):71–92, 1994. PARLE ’92. doi:10.1016/0167-739X(94)
90052-3.

https://doi.org/10.1016/j.tcs.2004.07.019
https://doi.org/10.1007/978-3-642-40206-7_8
https://doi.org/10.1007/978-3-642-40206-7_8
https://doi.org/10.2168/LMCS-11(1:14)2015
https://doi.org/10.4230/LIPIcs.CONCUR.2016.1
https://doi.org/10.4230/LIPIcs.CONCUR.2016.1
http://dl.acm.org/citation.cfm?id=1625275.1625673
http://dl.acm.org/citation.cfm?id=1625275.1625673
https://doi.org/10.1016/j.ijar.2014.08.002
https://doi.org/10.1016/0167-739X(94)90052-3
https://doi.org/10.1016/0167-739X(94)90052-3

T. Gu and F. Zanasi 10:17

11 Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference by string diagram surgery. In
Foundations of Software Science and Computation Structures - 22nd International Conference,
FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2019, Proceedings, 2019. URL: http://arxiv.org/abs/1811.08338.

12 Bart Jacobs and Fabio Zanasi. The logical essentials of bayesian reasoning. In Joost-Peter Ka-
toen Gilles Barthe and Alexandra Silva, editors, Probabilistic Programming. Cambridge
University Press, Cambridge, 2019. URL: http://arxiv.org/abs/1804.01193.

13 Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory and tool. In
Introduction to Statistical Relational Learning, pages 291–322. MIT Press; Cambridge, 2007.
URL: https://lirias.kuleuven.be/retrieve/86539.

14 Ekaterina Komendantskaya and Yue Li. Productive corecursion in logic programming. TPLP,
17(5-6):906–923, 2017. doi:10.1017/S147106841700028X.

15 Ekaterina Komendantskaya and Yue Li. Towards coinductive theory exploration in horn clause
logic: Position paper. In Proceedings 5th Workshop on Horn Clauses for Verification and
Synthesis, HCVS 2018, Oxford, UK, 13th July 2018., pages 27–33, 2018. doi:10.4204/EPTCS.
278.5.

16 Ekaterina Komendantskaya, Guy McCusker, and John Power. Coalgebraic semantics for parallel
derivation strategies in logic programming. In Algebraic Methodology and Software Technology
- 13th International Conference, AMAST 2010, Lac-Beauport, QC, Canada, June 23-25, 2010.
Revised Selected Papers, pages 111–127, 2010. doi:10.1007/978-3-642-17796-5_7.

17 Ekaterina Komendantskaya and John Power. Coalgebraic semantics for derivations in logic
programming. In Algebra and Coalgebra in Computer Science - 4th International Conference,
CALCO 2011, Winchester, UK, August 30 - September 2, 2011. Proceedings, pages 268–282,
2011. doi:10.1007/978-3-642-22944-2_19.

18 Ekaterina Komendantskaya and John Power. Logic programming: Laxness and saturation. J.
Log. Algebr. Meth. Program., 101:1–21, 2018. doi:10.1016/j.jlamp.2018.07.004.

19 Ekaterina Komendantskaya, John Power, and Martin Schmidt. Coalgebraic logic programming:
from semantics to implementation. J. Log. Comput., 26(2):745–783, 2016. doi:10.1093/
logcom/exu026.

20 John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987. doi:
10.1007/978-3-642-83189-8.

21 Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
Graduate Texts in Mathematics, Vol. 5.

22 Søren Mørk and Ian Holmes. Evaluating bacterial gene-finding hmm structures as probabilistic
logic programs. Bioinformatics, 28(5):636–642, 2012. doi:10.1093/bioinformatics/btr698.

23 Raymond Ng and V.S. Subrahmanian. Probabilistic logic programming. Information and
Computation, 101(2):150–201, 1992. doi:10.1016/0890-5401(92)90061-J.

24 Fabrizio Riguzzi and Terrance Swift. Probabilistic logic programming under the distribution
semantics, 2014.

25 Taisuke Sato. A statistical learning method for logic programs with distribution semantics. In
Logic Programming, Proceedings of the Twelfth International Conference on Logic Programming,
Tokyo, Japan, June 13-16, 1995, pages 715–729, 1995.

26 Alexandra Silva. Kleene coalgebra. Phd thesis, CWI, Amsterdam, The Netherlands, 2010.
27 Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT Press,

Cambridge, Mass., 2005.
28 James Worrell. Terminal sequences for accessible endofunctors. Electronic Notes in Theoretical

Computer Science, 19:24–38, 1999. CMCS’99, Coalgebraic Methods in Computer Science.
doi:10.1016/S1571-0661(05)80267-1.

29 Riccardo Zese. Probabilistic Semantic Web: Reasoning and Learning. IOS Press, Amsterdam,
The Netherlands, The Netherlands, 2017.

CALCO 2019

http://arxiv.org/abs/1811.08338
http://arxiv.org/abs/1804.01193
https://lirias.kuleuven.be/retrieve/86539
https://doi.org/10.1017/S147106841700028X
https://doi.org/10.4204/EPTCS.278.5
https://doi.org/10.4204/EPTCS.278.5
https://doi.org/10.1007/978-3-642-17796-5_7
https://doi.org/10.1007/978-3-642-22944-2_19
https://doi.org/10.1016/j.jlamp.2018.07.004
https://doi.org/10.1093/logcom/exu026
https://doi.org/10.1093/logcom/exu026
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1007/978-3-642-83189-8
https://doi.org/10.1093/bioinformatics/btr698
https://doi.org/10.1016/0890-5401(92)90061-J
https://doi.org/10.1016/S1571-0661(05)80267-1

10:18 A Coalgebraic Perspective on Probabilistic Logic Programming

A Computability of the Distribution Semantics (Ground Case)

Computing with distribution trees. As a justification for our tree representation of the
distribution semantics, we claimed that the probability PrP(A) associated with a goal (see
(1)) can be straightforwardly computed from the corresponding distribution tree 〈〈A〉〉p. This
appendix supplies such an algorithm. Note this serves just as a proof of concept, without
any claim of efficiency compared to pre-existing implementations. In the sequel we fix a
ground PLP program P with atoms At, a goal A ∈ At and the distribution tree T for A in P
(Definition 9). First, we may assume that T does not contain loop (which implies that T is
finite). Indeed, in the ground case loops only results from multiple appearance of an atom in
some path, which can be easily detected. We can prune the subtrees of T rooted by atoms
that already appeared at an earlier stage: this does not affect the computation of PrP(A),
and it makes T finite. Next, we introduce the concept of deterministic subtree. Basically a
deterministic subtree selects one world-node at each stage. Recall that every clause-node
in T represents a clause in |P|, whose head is the label of its atom-grandparent, and body
consists of the labels of its atom-children.

I Definition 25. A subtree S of T is deterministic if (i) it contains exactly one child
(world-node) for each atom-node and all children for other nodes, and (ii) for any distinct
atom-nodes s, t in S with the same label, s and t have their clause-grandchildren representing
the same clauses.

The idea is that S describes a computation in which the choice of a possible world (i.e., a
sub-program of P) associated to any atom B appearing during the resolution is uniquely
determined. Because of this feature, each deterministic subtree uniquely identifies a set of
sub-programs of P, and together the deterministic subtrees of T form a partition over the set
of these sub-programs (see Proposition 27 below).

Since T is finite, it is clear that we can always provide an enumeration of its deterministic
subtrees. We can now present our algorithm, in two steps. First, Algorithm 1 computes the
probability associated with a deterministic subtree. Second, Algorithm 2 computes PrP(A)
by summing up the probabilities found by Algorithm 1 on all the deterministic subtrees of T
which contains a refutation of A. Below we write label(s→ t) for the probability labelling
the edge from s to t.

Algorithm 1 Compute probability of a deterministic subtree.
Input: A deterministic subtree S of T
Output: The probability of S

1: probList = []
2: for atom-node s in S do
3: if s has child then
4: probList += label(s→ child(s))
5: if probList == [] then
6: return 0
7: else prob = product of values in probList
8: return prob

T. Gu and F. Zanasi 10:19

Algorithm 2 Compute probability of a goal.
Input: The distribution tree T of A in P
Output: The success probability PrP(A)

1: probSuc = 0
2: for deterministic subtree S of T do
3: if S refutes A then
4: probSuc += Algorithm 1(S)
5: return probSuc

The above procedure terminates because T is finite and every for-loop is finite. We now
focus on the correctness of the algorithm.

Correctness. As mentioned, a world-node in a deterministic subtree can be seen as a choice
of clauses: one chooses the clauses represented by its clause-children, and discards the clauses
represented by its “complement” world. For correctness, we make this precise, via the
following definition.

I Definition 26. Given a clause C in P, a deterministic subtree S of T , a world-node t and
its atom-parent s in S, we say t accepts C if Head(C) = label(s) and there is a clause-child
of t that represents C; t rejects C if Head(C) = label(s) but no clause-child of t represents C.
We say S accepts (rejects) C if there exists a world-node t in S accepts (rejects) C.

Note that Definition 25, condition (ii) prevents the existence of world-nodes t, t′ in S such
that t accepts C and t′ rejects C. Thus the notion that S accepts (rejects) C is well-defined.
We denote the set of clauses accepted and rejected by S by Acc(S) and Rej(S), respectively.
Then we can define the set SubProg(S) of sub-programs represented by S as

SubProg(S) := {L ⊆ |P| | ∀C ∈ Acc(S), C ∈ L;∀C′ ∈ Rej(S), C′ /∈ L} (10)

We will prove the correctness of the algorithm through the following basic observations on
the connection between deterministic subtrees and the sub-programs they represent:

I Proposition 27. Suppose S is a deterministic subtree of the distribution tree T of A.
1. {SubProg(S) | S is deterministic subtree of T } forms a partition of P(P).
2. Either L ` A for all L ∈ SubProg(S) or L 6` A for all L ∈ SubProg(S).
3.

∑
L∈SubProg(S) PrP(L) =

∏
ri∈S ri, where the ris are all the probability labels appearing in

S (on the atom-node→ world-node edges).

Proof.
1. Given any two distinct deterministic subtrees, there is an atom-node s such that the

subtrees include distinct world-child of s. So by (10) the sub-programs they represent do
not share at least one clause. Moreover, given a sub-program L, one can always identify a
deterministic subtree S such that L ∈ SubProg(S), as follows: given the A-labelled root
of T , select the world-child w of A representing the (possibly empty) set X of all clauses
in L whose head is A; then select the children (if any) of w, and repeat the procedure.

2. Note that a sub-program L ∈ SubProg(S) refutes the goal A iff S contains a successful
refutation of A, and the latter property is independent of the choice of L.

CALCO 2019

10:20 A Coalgebraic Perspective on Probabilistic Logic Programming

3. We refer to
∏
ri∈S ri as the probability of the deterministic subtree S. For each sub-

program L ∈ SubProg(S), its probability can be written as

PrP(L) =
∏

C∈Acc(S)

Label(C) ·
∏

C′∈Rej(S)

(1− Label(C′)) · PrP\(Acc∪Rej)(L \ Acc(S)) (11)

Note that SubProg(S) can also be written as {X ∪ Acc(S) | X ⊆ P \ (Acc(S) ∪ Rej(S))},
so ∑

L∈SubProg(S)

PrP\(Acc∪Rej)(L \ Acc(S)) = 1. (12)

Applying equation (12) to the sum of (11) over all L ∈ SubProg(S), we get∑
L∈SubProg(S)

PrP(L) =
∏

C∈Acc(S)

Label(C) ·
∏

C′∈Rej(S)

(1− Label(C′)) (13)

For each world-node t and its atom-parent s, we can use the terminology in Definition 26,
and express label(s→ t) (see Definition 9) as

label(s→ t) =
∏

t accepts C
Label(C) ·

∏
t rejects C′

(1− Label(C′)). (14)

Applying (14) to the whole deterministic subtree S, we obtain∑
L∈SubProg(S)

PrP(L)(13)=
∏

C∈Acc(S)

Label(C) ·
∏

C′∈Rej(S)

(1− Label(C′))

Def.26=
∏

(world-node t in S)

[
∏

t accepts C
Label(C) ·

∏
t rejects C′

(1− Label(C′))]

(14)=
∏
ri∈S

ri

If we say two world-nodes t and t′ are equivalent if their clause-children represent exactly the
same clauses in P, then the

∏
(world-node t in S) in the above calculation visits every world-node

exactly once modulo equivalence. J

We can now formulate the success probability of A as follows

PrP(A) =
∑

|P|⊇L`A

PrP(L) (Prop.27,1&2)=
∑
S`A

∑
L∈SubProg(S)

PrP(L)

(13)=
∑
S`A

[
∏

C∈Acc(S)

Label(C) ·
∏

C′∈Rej(S)

(1− Label(C′))] (Prop.27,3)=
∑
S`A

∏
ri∈S

ri

In words, this is exactly Algorithm 2: we sum up the probabilities of all deterministic subtrees
S of the distribution tree T which contain a proof of A.

B Computability of the Distribution Semantics (General Case)

Computability of the distribution semantics for arbitrary PLP programs relies on the substitu-
tion mechanism employed in the resolution. This aspect deserves a preliminary discussion.
Traditionally, logic programming has both the theorem-proving and problem-solving per-
spectives [18]. From the problem-solving perspective, the aim is to find a refutation of the
goal ← G, which amounts to finding a proof of some substitution instance of G. From

T. Gu and F. Zanasi 10:21

the theorem-proving perspective, the aim is to search for a proof of the goal G itself as an
atom. The main difference is in the substitution mechanism of resolution: unification for
the problem-solving and term-matching for the theorem-proving perspective. We will first
explore computability within the theorem-proving perspective. As resolution tehrein is by
term-matching, the probability PrTM

P (A) of proving a goal A in a PLP program P is formulated
as PrTM

P (A) :=
∑

|P|⊇L⇒A
PrP(L), where L⇒ A means that A is derivable in the sub-program

L (not to be confused with L ` A, which stands for some substitution instance of A being
derivable in L, see (1)).

In our coalgebraic framework, the distribution semantics for general PLP programs is
represented on “saturated” trees, in which computations are performed by unification.
However, following [3], one can define the TM (Term Matching) distribution tree of a goal
A in a program P by “desaturation” of the saturated distribution tree for A in P. The
coalgebraic definition, for which we refer to [3], applies pointwise on the saturated tree the
counit εUAt : UKUAt → UAt of the adjunction U a K (cf. (6)). The TM distribution tree
which results from “desaturation” can be described very simply: at each layer of the starting
saturated distribution tree, one prunes all the subtrees which are not labelled with the identity
substitution id := x1 7→ x1, x2 7→ x2, In this way, the only remaining computation are
those in which resolution only applies a non-trivial substitution on the clause side, that is, in
which unification is restricted to term-matching.

Computability of term-macthing distribution semantics. One may compute the success
probability PrTM

P (A) in P from the TM distribution tree of A in P. The computation goes
similarly to Algorithm 2 : the problem amounts to calculating the probabilities of those
deterministic subtrees of the distribution tree which prove the goal. We confine ourselves to
some remarks on the aspects that require extra care, compared to the ground case.
1. The probability PrTM

P (A) is not computable in whole generality. It depends on whether
one can decide all the proofs of A in the pure logic program |P|, and there are various
heuristics in logic programming for this task.

2. It is still possible to decide whether a subtree is deterministic, but the algorithm in the
general case is a bit subtler, as it is now possible that two different goals match the same
clause (instantiated in two different ways).

3. When calculating the probability of a deterministic subtree in the TM distribution tree,
multiple appearances of a single clause (possibly instantiated with different substitutions)
should be counted only once. In order to ensure this one needs to be able to identify
which clause is applied at each step of the computation described by the distribution
trees: this is precisely the reason of the addition of the clause labels in the coalgebra type
of these trees, as discussed in Section 4.3.

We conclude by briefly discussing the problem-solving perspective, in which resolution is
based on arbitrary unification rather than just term-matching. In standard SLD-resolution,
computability relies on the possibly of identifying the most general unifier between a goal and
the head of a given clause. This can be done also within saturated distribution trees, since
saturation supplies all the unifiers, thus in particular the most general one. This means that,
on principle, one may compute the distribution semantics based on most general unification
from the saturated distributed tree associated with a goal, with similar caveats as the ones
we described for the term-matching case. However, the lack of a satisfactory coalgebraic
treatment of most general unifiers [3] makes us privilege the theorem-proving perspective
discussed above, for which desaturation provides an elegant categorical formalisation. This
is also in line with the series of works [17, 19] on coalgebraic (pure) logic programming, all
based on term-matching as substitution mechanism.

CALCO 2019

Sequencing and Intermediate Acceptance:
Axiomatisation and Decidability of Bisimilarity
Astrid Belder
Eindhoven University of Technology, Eindhoven, The Netherlands

Bas Luttik
Eindhoven University of Technology, Eindhoven, The Netherlands

Jos Baeten
CWI, Amsterdam, The Netherlands
University of Amsterdam, Amsterdam, The Netherlands

Abstract
The Theory of Sequential Processes includes deadlock, successful termination, action prefixing,
alternative and sequential composition. Intermediate acceptance, which is important for the
integration of classical automata theory, can be expressed through a combination of alternative
composition and successful termination. Recently, it was argued that complications arising from
the interplay between intermediate acceptance and sequential composition can be eliminated by
replacing sequential composition by sequencing. In this paper we study the equational theory of the
recursion-free fragment of the resulting process theory modulo bisimilarity, proving that it is not
finitely based, but does afford a ground-complete axiomatisation if a unary auxiliary operator is
added. Furthermore, we prove that bisimilarity is decidable for processes definable by means of a
finite guarded recursive specification over the process theory.

2012 ACM Subject Classification Theory of computation → Process calculi

Keywords and phrases Sequencing, Sequential composition, Bisimilarity, Axiomatisation, Decidabil-
ity

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.11

Acknowledgements We thank the anonymous reviewers for their elaborate reviews.

1 Introduction

Successful termination has been a source of controversy from the early days of process algebra.
The process theory CCS [18] does not make the distinction between deadlock and successful
termination at all. The process theory ACP [9] does make the distinction semantically, but,
although it includes a constant denoting deadlock, it does not, in its original formulation,
include a constant denoting the successfully terminated process. Only later proposals were
made for including such a constant [1, 24].

From a concurrency-theoretic perspective, including a constant 1 for successful termination
raises philosophical questions without clear-cut answers. For instance, what is the behaviour
of a process a.1 + 1 that may non-deterministically choose between performing the action a
and successfully terminating? Can it perform the action a at all? Is it successfully terminated
even when it can still perform activity? And what does it mean to sequentially compose
a.1 + 1 with the process b.1? Can (a.1 + 1) · b.1 do a b immediately or should it wait until
a.1 + 1 has performed the a?

In the classical theory of automata and formal languages, the constant 1 has a more
accepted status. The algebras of regular expressions and µ-regular expressions include a
constant 1 denoting the language consisting of the empty string. Without the inclusion of
the constant, the correspondence between regular expressions and finite automata [16], and
the correspondence between µ-regular expressions and pushdown automata [17, 21] would be

© Astrid Belder, Bas Luttik, and Jos Baeten;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CALCO.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Sequencing and Intermediate Acceptance

lost. Finite automata and pushdown automata are endowed with an acceptance predicate
separate from the transition relation defined on states, and hence they admit intermediate
acceptance: states may at the same time satisfy the acceptance predicate and have outgoing
transitions.

The research presented in this paper is part of a larger project in which we are trying
to explore and strengthen connections between the classical theory of automata and formal
languages and concurrency theory [3, 4, 5, 6], with the aim to establish a unified theory. Our
aim for such a unified theory motivates us to study process algebras including a constant for
successful termination.

The operational semantics for sequential composition in the presence of a constant 1
denoting successful termination (see, e.g., [2]) prescribes that the sequential composition
(a.1 + 1) · b.1 may perform the b transition immediately, on grounds that a.1 + 1 satisfies
the termination predicate. We refer to this phenomenon as transparency. In the presence
of recursion, transparency leads to considerable expressiveness; for instance, it facilitates
the specification of unboundedly branching behaviour (cf. Example 1 below). Recently,
we proposed a revised operational semantics for sequential composition that leads to a
different interplay between successful termination and sequential composition [7]. The revised
operational rules closely resembles the rules of the sequencing operator proposed by Bloom
[10], although his theory does not distinguish between deadlock and successful termination.
We shall, in this paper, reserve sequential composition (denoted by ·) for the operator with
the operational semantics as described in [2] and use sequencing (denoted by ;) for the
operator with the revised operational semantics.

Under the sequencing interpretation, the process (a.1 + 1) ; b.1 cannot perform the
b-transition immediately (no transparency); first, the left argument of the sequencing op-
erator must execute until no further activity is possible. The effect of replacing sequential
composition by sequencing indirectly changes the interpretation of the constant 1: it no
longer refers to the option to terminate, but rather signals acceptance. For instance, the
process (a.1 + 1) ; (b.1 + 1) is in an accepting state since both a.1 + 1 and b.1 + 1 are
accepting; the process a.1 ; (b.1 + 1) on the other hand is not in an accepting state.

Replacing sequential composition by sequencing has advantages and disadvantages for
the integration of automata theory and concurrency theory. A disadvantage is that language
equivalence is not a congruence for sequencing (see Remark 5 at the end of Section 2). As was
shown in [7], advantages are that, in the theory with sequencing every context-free behaviour
can be simulated by a pushdown automaton up to strong bisimilarity, while this is not the
case in the theory with sequential composition, and that every executable processes can be
specified, up to divergence-preserving branching bisimilarity, in a process theory without
recursion but with a first-order recursive nesting operation.

In this paper, we continue the investigation of the theory of sequential processes with
sequencing instead of sequential composition.

First, we consider the equational theory of the recursion-free fragment modulo bisimilarity.
We prove that the equational theory is not finitely based (i.e., does not admit a finite
equational axiomatisation). Then, we introduce an auxiliary unary operator and prove that,
using this auxiliary operator the ground equational theory (i.e., the set of all valid equations
without variables) admits a finite axiomatisation. And finally we present arguments for the
conjecture that, even with the auxiliary operator, the full equational theory (i.e., the set of
all valid equations with variables) is not finitely based.

Then, we prove that bisimilarity is decidable for processes definable by means of a guarded
recursive specification in the theory with sequencing. To this end, we consider the seminal
proof by Christensen, Hüttel and Stirling that bisimilarity is decidable for the theory of

A. Belder, B. Luttik, and J. Baeten 11:3

sequential processes without intermediate acceptance [13], and observe that several crucial
properties needed in their argument fail in a setting with intermediate acceptance. Our
contribution is then to show that, when a form of redundant intermediate acceptance is
eliminated from recursive specifications, then these properties are restored and the proof
ideas of [13] apply to establish decidability.

This paper is organised as follows: In Section 2 we introduce the Theory of Sequential
Processes with sequential composition replaced by sequencing, illustrating the difference
between the two operators with an example. In Section 3, we consider the equational
theory of the recursion-free fragment. In Section 4, we establish decidability of bisimilarity
for processes definable by means of a guarded recursive specification over the Theory of
Sequential Processes with sequencing instead of sequential composition. In Section 5 we
present some conclusions. For elaborate proofs of the results claimed in this article we refer
to the first author’s MSc thesis [8].

2 Sequential Processes

In this section we present the Theory of Sequential Processes adopting the revised operational
semantics for sequential composition proposed in [7]. To emphasise that the operational
semantics for sequential composition deviates from that in [2], we shall refer to it by the
term sequencing and denote it by ; instead of by ·, reserving · for the variant of sequential
composition in [2].

Let A be a set of actions, symbols denoting atomic events, and let P be a finite set of
process identifiers. The sets A and P serve as parameter of the process theory TSP;(A,P)
that we shall introduce below. The set of process expressions associated with TSP;(A,P) is
generated by the following grammar (a ∈ A, X ∈ P):

p ::= 0 | 1 | a.p | p+ p | p ; p | X .

The constants 0 and 1 respectively denote the deadlocked (i.e., inactive but not successfully
terminated) process and the successfully terminated process. For each a ∈ A there is a unary
action prefix operator a._. The binary operators + and ; denote alternative composition
and sequencing, respectively. We adopt the convention that a._ binds strongest and + binds
weakest. For a (possibly empty) sequence p1, . . . , pn we inductively define

∑n
i=1 pi = 0 if

n = 0 and
∑n
i=1 pi = (

∑n−1
i=1 pi) + pn if n > 0. The symbol ; is often omitted when writing

process expressions. In particular, if α ∈ P∗, say α = X1 · · ·Xn, then α denotes the process
expression inductively defined by α = 1 if n = 0 and α = (X1 · · ·Xn−1) ;Xn if n > 0. We
denote by |α| the length of the sequence.

A recursive specification over TSP;(A,P) is a mapping ∆ from P to the set of process
expressions associated with TSP;(A,P). The idea is that the process expression p associated
with a process identifier X ∈ P by ∆ defines the behaviour of X. We prefer to think of ∆ as
a collection of defining equations X def= p, exactly one for every X ∈ P . We shall, throughout
the paper, presuppose a recursive specification ∆ defining the process identifiers in P, and
we shall usually simply write X def= p for ∆(X) = p. Note that, by our assumption that P is
finite, ∆ is finite too.

We associate behaviour with process expressions by defining, on the set of process
expressions, a unary acceptance predicate ↓ (written postfix) and, for every a ∈ A, a
binary transition relation a−→ (written infix), by means of the transition system specification
presented in Fig. 1. We write p a9 for “there does not exist p′ such that p a−→ p′” and p9
for “p a9 for all a ∈ A”. Furthermore, when w ∈ A∗, say w = a1 . . . an, then we write p w→−→ p′

CALCO 2019

11:4 Sequencing and Intermediate Acceptance

a.p
a−→ p

p
a−→ p′

p+ q
a−→ p′

q
a−→ q′

p+ q
a−→ q′

p
a−→ p′ X

def= p

X
a−→ p′

1↓
p↓

(p+ q)↓
q↓

(p+ q)↓
p↓ X

def= p

X↓

p↓ q↓
(p ; q)↓

p
a−→ p′

p ; q a−→ p′ ; q
p↓ p9 q

a−→ q′

p ; q a−→ q′

Figure 1 Operational semantics for TSP;(A).

if there exist p0, . . . , pn such that p = p0, pi−1
ai−→ pi (1 ≤ i ≤ n) and pn = p′. Also, we

write p −→ p′ for there exists a ∈ A such that p a−→ p′. Similarly, we write p →−→ p′ for there
exists w ∈ A∗ such that p w→−→ p′ and say that p′ is reachable from p.

It is well-known that transition system specifications with negative premises may not
define a unique transition relation that agrees with provability from the transition system
specification [15, 11, 14]. Indeed, in [7] it was already pointed out that the transition system
specification in Fig. 1 gives rise to such anomalies, e.g., if ∆ includes for X the defining
equation X def= X ; a.1 + 1. For then, on the one hand, if X 9, according to the rules for
sequencing and recursion we find that X a−→ 1, while on the other hand, the transition
X

a−→ 1 is not provable from the transition system specification.
We remedy the situation by restricting our attention to guarded recursive specifications,

i.e., we require that every occurrence of a process identifier in the definition of some (possibly
different) process identifier occurs within the scope of an action prefix. If ∆ is guarded, then
it is straightforward to prove that the mapping S from process expressions to natural numbers
inductively defined by S(1) = S(0) = S(a.p) = 0, S(p1 +p2) = S(p1 ;p2) = S(p1) +S(p2) + 1,
and S(X) = S(p) if (X def= p) ∈ ∆ gives rise to a so-called stratification S′ from transitions
to natural numbers defined by S′(p a−→ p′) = S(p) for all a ∈ A and process expressions p
and p′. In [15] it is proved that whenever such a stratification exists, then the transition
system specification defines a unique transition relation that agrees with provability in the
transition system specification.

The operational rules in Fig. 1 deviate from the operational rules for the process theory
TSP(A) discussed in [2] in only two ways: to get the rules for TSP(A), the symbol ; should
be replaced by ·, and the negative premise p9 should be removed from the right-most rule
for sequencing. The replacement of ; by · is, of course, insignificant; the removal of the
negative premise p9, however, does have a significant impact. The negative premise ensures
that a sequencing can only proceed to execute its second argument when its first argument
not only satisfies the acceptance predicate, but also cannot perform any further activity. The
semantic difference between ; and · is illustrated in the following example.

I Example 1. Consider the recursive specification

X
def= a.(XY) + b.1 Y

def= c.1 + 1 .

Depending on whether we interpret the concatenation of process identifiers as sequential
composition (·) or sequencing (;), we obtain the transition system shown in Fig. 2 with or
without the dashed c-transitions. Note that, under the ·-interpretation, the phenomenon
of transparency plays a role: from Y n we have c-transitions to every Y k with k < n, by

A. Belder, B. Luttik, and J. Baeten 11:5

X XY XY 2 XY n−1 XY n

1 Y Y 2 Y n−1 Y n

a a a

b b b b b

ccc

c

c

c

c
c

c

c

Figure 2 The difference between ; and ·.

executing the c-transition of the kth occurrence of Y , thus skipping the first k−1 occurrences
of Y . This behaviour is prohibited by the negative premise in the rule for ;, for, since Y c−→ 1,
none of the occurrences of Y can be skipped.

I Remark 2. As Fig. 2 illustrates, the use of sequential composition (as opposed to sequencing)
in guarded recursive specifications may give rise to an unbounded reachable branching degree
(i.e., there need not be an upper bound on the branching degrees of states reachable from
some particular state). As far as we know, this is the only process algebra without an
operator for parallel composition that facilitates communication between parallel components
that gives rise to unboundedly branching behaviour. It is this kind of behaviour that, e.g.,
cannot be exhibited by the transition system associated with a pushdown automaton [3].

We proceed to define when two process expressions are behaviourally equivalent.

I Definition 3. A binary relation R on the set of process expressions associated with
TSP;(A,P) is a bisimulation iff R is symmetric and for all p and q such that (p, q) ∈ R:
1. If p a−→ p′, then there exists a term q′, such that q a−→ q′, and (p′, q′) ∈ R.
2. If p↓, then q↓.
Process expressions p and q are bisimilar (notation: p ↔ q) iff there exists a bisimulation R
such that (p, q) ∈ R.

The operational rules presented in Fig 1 are in the so-called panth format from which it
immediately follows that bisimilarity is a congruence [23].

I Proposition 4. The relation ↔ is a congruence for TSP;(A,P).

I Remark 5. Note that language equivalence is not a congruence for the sequencing operator:
a.b.1+a.1 and a.(b.1+1) have the same language {ab, a}, but the language of (a.b.1+a.1);c.1
is {abc, ac} and the language of a.(b.1 + 1) ; c.1 is {abc}.

3 Equational theory

In this section we shall consider TSP;(A, ∅), i.e., the recursion-free fragment of the Theory
of Sequential Processes. Let us abbreviate TSP;(A, ∅) by TSP;(A).

For the purpose of concisely expressing equational properties, we shall use variables from
some countably infinite set V of variables. (These variables should be thought of as ranging
over process expressions, and should not be confused with process identifiers.) The set of
TSP;(A)-terms is generated by the following grammar (a ∈ A, x ∈ V):

t ::= 0 | 1 | a.t | t+ t | t ; t | x .

CALCO 2019

11:6 Sequencing and Intermediate Acceptance

A TSP;(A)-term is closed if it does not contain variables. Note that the set of closed TSP;(A)-
terms coincides with the set of process expressions associated with TSP;(A, ∅) in the previous
section. A closed substitution is a mapping σ from variables to process expressions. If t is a
TSP;(A)-term and σ is a closed substitution, then we denote by σ(t) the process expression
obtained by replacing every occurrence of a variable x in t by σ(x).

Let t and u be TSP;(A)-terms; an expression of the form t = u is called a TSP;(A)-
equation. A TSP;(A)-equation t = u is valid if σ(t)↔ σ(u) for every closed substitution σ.
The equational theory of TSP;(A) is the set of all valid TSP;(A)-equations.

Let E be a set of valid equations and let t = u be a TSP;(A)-equation. We shall write
E ` t = u if t = u can be derived from the equations in E by means of the rules of equational
logic. We wish to characterise the equational theory of TSP;(A) by giving a finite collection
E of valid TSP;(A)-equations such that E ` t = u for every valid TSP;(A)-equation t = u.
Such a collection E is then referred to as a finite basis for the equational theory of TSP;(A);
we say that an equational theory is finitely based if there exists a finite basis for it.

We shall prove two fundamental results pertaining to the equational theory of TSP;(A).
First, we shall establish that there does not exist a finite basis for the equational theory of
TSP;(A). Second, we shall prove that when an auxiliary operator is added, then the resulting
ground equational theory (consisting only of all valid TSP;(A)-equations without variables)
is finitely based. At the end of Section 3.2 we shall conclude with presenting some evidence
for a conjecture that, even with the auxiliary operator added, the full equational theory
(consisting of all valid TSP;(A)-equations with variables) is not finitely based.

3.1 TSP;(A) is not finitely based
A central axiom of the theory of TSP(A) of [2] is the axiom (x+ y) · z = x · z + y · z, which
expresses that sequential composition distributes from the right over alternative composition.
For sequencing, the axiom is no longer valid in general as the following example illustrates.

I Example 6. Consider the process expressions

p ≡ (a.1 + 1) ; b.1 and q ≡ a.1 ; b.1 + 1 ; b.;1 .

(We write ≡ for syntactic equality of TSP;(A)-terms and reserve = to express TSP;(A)-
equations.) Note that, one the one hand, since a.1 + 1 a−→ 1, we have that p b9. On the
other hand, since 1↓ and 1 9, we do have that 1 ; b.1 b−→ 1 and hence q b−→ 1. It follows
that p and q are not bisimilar.

Note that, a fortiori, we have that p↔ a.1 ;b.1. That the first argument of the sequencing
operator satisfies the acceptance predicate has no effect, because the second argument of the
sequencing operator does not satisfy the acceptance predicate. Thus, if the second argument
of sequencing does not satisfy the acceptance predicate, then a 1-summand in the first
argument is redundant.

We shall prove that the redundancy of 1 at the left-hand side of sequencing cannot be
finitely axiomatised without using an auxiliary operator. To this end, let us fix ã, b̃ ∈ A and
consider the following infinite collection of valid equations (n ∈ N):

(ã.1 + 1) ;
n∑
i=1

b̃.(b̃.1 + 1)i = ã.1 ;
n∑
i=1

b̃.(b̃.1 + 1)i . (en)

(For every natural number i process expression p, pi denotes the iterated sequencing of p,
inductively defined by p0 = 1 and pi+1 = pi ; p.)

A. Belder, B. Luttik, and J. Baeten 11:7

Each of these equations expresses the redundancy of the occurrence of 1 in the subexpres-
sion ã.1 + 1 on the left-hand side of the equation. For this redundancy it is important that
the right-hand side of the sequencing operator, i.e., the process expression

∑n
i=1 b̃.(b̃.1 + 1)i,

does not satisfy the acceptance predicate, since it is a summation of b̃-prefixes without
1-summand. That the number of summands is n will be used in our argument that (en),
for sufficiently large n ∈ N, cannot be derived from a particular finite collection of valid
equations. Instead of referring to the notion of number of summands, it is more convenient
to refer to the notion of width that we shall now define.

I Definition 7. The width of a process expression p, written as width(p), is the cardinality
of the set {p′ | p a−→ p′, for some a ∈ A}. We extend the notion of width to TSP;(A)-terms
by defining, for all TSP;(A)-terms t, that width(t) = width(σ0(t)) where σ0 denotes the
closed substitution that maps all variables to 0.

Note that variables do not contribute to the width of a TSP;(A)-term.
Suppose that E is a finite set of valid equations, and let n ∈ N exceed the maximum of

the widths of all subterms occurring in the equations in E. To prove that (en) cannot be
derived from E, we define a predicate Ψn on TSP;(A)-terms that is satisfied by the left-hand
side (en), but not by the right-hand side, and that is maintained by equational derivations
from E.

I Definition 8. Let p be a process expression. For every n ∈ N, we define that Φn(p) holds
iff p ≡ p1 ;p2 such that p1 ↔ ã.1 + 1 and p2 ↔

∑n
i=1 b̃.(b̃.1 + 1)i. For every n ∈ N, we define

Ψn(p) iff p ↔ (ã.1 + 1) ;
∑n
i=1 b̃.(b̃.1 + 1)i and p has a summand p1 ; p2 such that one of the

following cases holds:
1. Φn(p1 ; p2).
2. p1 ↔ 1 and Ψn(p2).
3. Ψn(p1) and p2 ↔ 1.
The predicate Φn formalises a property satisfied by the left-hand side of (en), but not by
the right-hand side. The property Φn is, however, not preserved by equational derivations
due to certain trivial syntactic manipulations involving, e.g., the idempotence of +, 0 being
a neutral element for + and 1 being a left- and right neutral element for sequencing (see
Table 1 below). The definition of Ψn takes such syntactic manipulations into account. Note
that the definition of Ψn is with recursion on the syntactic structure; it is well-defined since
in the last two cases of its definition it is evaluated on a proper subterm.

In general, bisimilarity does not preserve width as defined above, but it does hold that
if p ↔ q and there exist process expressions p1, . . . , pn such that p a−→ pi and pi ↔ pj
implies i = j for all 1 ≤ i, j ≤ n, then width(q) ≥ n. Note that the process expression∑n
i=1 b̃.(b̃.1 + 1)i has this property. We exploit it to argue that if t is a TSP;(A)-term such

that width(t) < n and σ is a closed substitution such that σ(t) ↔
∑n
i=1 b̃.(b̃.1 + 1)i, then

necessarily t has a variable summand, say x, such that σ(x) b̃−→. This means that with
a minor modification of σ, we obtain a substitution ϑ(σ,x) such that ϑ(σ,x)(t)↓. We define
ϑ(σ,x) as follows:

ϑ(σ,x)(y) =
{
σ(y) + 1 if y = x

σ(y) otherwise.

The following lemma essentially applies this idea in a slightly more general situation, where
σ(t) satisfies Ψn.

CALCO 2019

11:8 Sequencing and Intermediate Acceptance

I Lemma 9. Let t be a TSP;(A)-term and let n be a natural number such that width(t′) < n

for every subterm t′ of t. If Ψn(σ(t)) for some closed substitution σ, then there is a variable
x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

Proof. See the proof of Lemma 35 in Appendix A. J

The following lemma establishes the converse of Lemma 9.

I Lemma 10. Let t be a TSP;(A)-term, let x be a variable, and let σ be a closed substitution.
If σ(t) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→, then

Ψn(σ(t)).

Proof. See the proof of Lemma 40 in Appendix A. J

The following theorem states that if E is a set of valid equations and n exceeds the
maximum of the widths of all subterms of the equations in E, then equational derivations
from E preserve Ψn.

I Theorem 11. Let E be a finite set of valid TSP;(A)-equations, and let n be a natural
number such that for each axiom t = u ∈ E, for each subterm t′ of t and each subterm u′

of u, width(t′) < n and width(u′) < n. Furthermore, let p and q be closed TSP;(A)-terms
such that E ` p = q. It then holds that if Ψn(p), then Ψn(q).

Proof. The proof is by induction on a derivation of the equation p = q from E. So, we
distinguish cases, according to the last rule used in this derivation, and assume that for each
derivation of p′ = q′ that is a sub-derivation of the derivation of p = q, if Ψn(p′) then Ψn(q′)
(IH). Here we only consider the most interesting case in which the derivation consists of a
substitution instance of an axiom in E.

If p = q is a substitution instance of an axiom in E, then there exist TSP;(A)-terms t and
u and a closed substitution σ such that σ(t) = p, σ(u) = q and t = u ∈ E. If Ψn(p), then
Ψn(σ(t)) and thus σ(t)↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Since t = u is sound with respect

to bisimilarity, σ(u)↔ σ(t)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Furthermore, by Lemma 9,

there must be some variable x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→ p for
some closed TSP;(A)-term p. Hence, since ϑ(σ,x)(t)↔ ϑ(σ,x)(u), also ϑ(σ,x)(u)↓. Then, since
σ(u) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and ϑ(σ,x)(u)↓, by Lemma 10, we conclude that

Ψn(σ(u)) holds, and thus Ψn(q) holds. J

We use Theorem 11 to prove that the equational theory of TSP;(A) is not finitely based
by showing that no set E of valid TSP;(A)-equations can be a finite basis. To this end, let
E be a finite set of valid TSP;(A)-equations. Then, since E has finitely many equations and
the terms occurring on both sides of these equations each have finitely many subterms, there
exists n ∈ N that exceeds the widths of all these subterms. By Theorem 11 we have that
whenever E ` p = q and Ψn(p), then also Ψn(q); it follows that E 0 (en). Since (en) is a
valid TSP;(A)-equation, it follows that E is not a finite basis for the equational theory of
TSP;(A). Thus, we obtain the following corollary.

I Corollary 12. There does not exist a finite basis for TSP;(A).

A. Belder, B. Luttik, and J. Baeten 11:9

3.2 Ground-completeness with an auxiliary operator
By the ground equational theory of TSP;(A) we mean the set of all valid TSP;(A)-equations
without variables. Note that, since the equations (en) do not include variables and the
predicate Ψn is defined on process expressions, it immediately follows from Theorem 11 that
the ground equational theory of TSP;(A) is not finitely based either. We proceed to extend
TSP;(A) with a unary auxiliary operator NT and show that ground equational theory of the
extension TSP;

NT(A) is finitely based.
The syntax of TSP;

NT (A) consists of the syntax of TSP;(A) with the unary operation NT
added; this operation can be used both in the construction of process expressions associated
with TSP;

NT(A) and of TSP;
NT(A)-terms. Intuitively, NT (p) denotes the non-terminating

part of p; for example, NT (a.p) = a.p and NT (a.p+ 1) = a.p.

p
a−→ p′

NT (p) a−→ p′

Figure 3 The operational rule for NT .

The operational rule for NT is presented in Figure 3. The rule is in the panth format, so
bisimilarity is a congruence also for the extended theory. Furthermore, from [22, Theorem
3.9] it follows that TSP;

NT (A) is an operational conservative extension of TSP;(A), meaning
that TSP;(A) process expressions have the same operational semantics in the extended theory
TSP;

NT(A).

Table 1 A finite basis for the ground equational theory of TSP;
NT (A).

x+ y = y + x A1
x+ (y + z) = (x+ y) + z A2
x+ x = x A3

(x ; y) ; z = x ; (y ; z) A5
x+ 0 = x A6
0 ; x = 0 A7
x ; 1 = x A8
1 ; x = x A9
a.x ; y = a.(x ; y) A10

NT(x+ y) ; z = NT(x) ; z + NT(y) ; z A11
(a.x+ y + 1) ; NT(z) = (a.x+ y) ; NT(z) A12
(a.x+ y + 1) ; (z + 1) = (a.x+ y) ; (z + 1) + 1 A13

NT(0) = 0 NT1
NT(1) = 0 NT2
NT(a.x) = a.x NT3
NT(x+ y) = NT(x) + NT(y) NT4

Table 1 presents a finite collection of valid TSP;
NT(A)-equations. It includes the well-

known axioms A1–3 and A5–10 adapted from TSP(A) (see [2]). Note, however, that the
axiom A4, which in TSP(A) expresses distributivity from the right of sequencing over

CALCO 2019

11:10 Sequencing and Intermediate Acceptance

alternative composition, has been omitted since it is not valid. It has been replaced by axiom
A11, which, intuitively, expresses that sequencing distributes from the right over alternative
composition only if the alternative composition does not satisfy the acceptance predicate.
Axioms A12 and A13 allows us to eliminate redundant occurrences of 1 at the left-hand side
of sequencing. Finally, axioms NT1–4 express the interaction of NT with the constants 0
and 1, action prefix and alternative composition.

For detailed proofs that the axioms in Table 1 are valid we refer to [8]. We shall,
henceforth, write TSP;

NT(A) ` t = u if the TSP;
NT(A)-equation t = u can be derived from

the axioms in Table 1 using the rules of equational logic. To prove that the axioms in Table 1
constitute a finite basis for the ground equational theory of TSP;

NT (A), we use the following
elimination theorem.

I Theorem 13. For every process expression p associated with TSP;
NT(A) there exists a

process expression q without occurrences of ; and NT such that TSP;
NT (A) ` p = q.

In [2, Theorem 4.4.12] it is proved that axioms A1–3 and A6 constitute a finite basis for
the ground equational theory of BSP(A), which is obtained from TSP;

NT(A) by removing ;
and NT . Hence, we get the following corollary from Theorem 13.

I Corollary 14. The axioms in Table 1 constitute a finite basis for the ground equational
theory of TSP;

NT(A).

The axioms in Table 1 do not constitute a finite basis for the full equational theory of
TSP;

NT(A). For example, it is easy to see that the valid equation NT(NT (x)) = NT(x)
cannot be derived from TSP;

NT (A). We proceed to argue that, although the ground equational
theory of TSP;

NT(A) is finitely based, the full equational theory of TSP;
NT(A) is not; the

argument will be very similar to the argument showing that TSP;
NT (A) is not finitely based.

Consider the equation:

(x+ 1) ; x = x ; x . (1)

To see that it is valid, note that the symmetric closure of the relation

R = {((p+ 1) ; p, p ; p), (p, p) | p a TSP;
NT(A) process expression}

is a bisimulation relation.
Recall the equations (en) used in Section 3.1 to show that the equational theory of

TSP;(A) is not finitely based. For the redundancy of the 1-summand in the left-hand side
of the sequencing operator it is essential that the left-hand side also admits a transition
while the right-hand side does not satisfy the acceptance predicate. Equation (1) above
does not satisfy this property for every closed substitution. Nevertheless, the 1-summand
is redundant, due to the fact that x appears in both arguments of the sequencing operator.
The idea can be generalised, resulting in the infinite collection of valid equations n ∈ N):

(x+ 1) ;
n∑
i=1

(x ; (a.1 + 1)i) = x ;
n∑
i=1

(x ; (a.1 + 1)i) . (e′n)

Similarly to the equations (en) used in Section 3.1, the size of the right hand side of this
equation is not bounded. We conjecture that by similar reasoning as used in Section 3.1 it
can be argued that there does not exist a finite set of valid TSP;

NT (A)-equations from which
the equations e′n can be derived for all n ∈ N.

A. Belder, B. Luttik, and J. Baeten 11:11

4 Decidability

Christensen, Hüttel and Stirling have established that bisimilarity is decidable for processes
definable by means of a guarded recursive BPA specification [13], where BPA can be thought
of as TSP;(A) without intermediate acceptance. Our goal in this section is to extend that
decidability result to TSP;(A). Our proof closely follows the presentation of the decidability
proof for BPA in [12], and we shall focus on the extension and skip over parts that are
similar.

The starting point is the presupposed TSP;(A,P) recursive specification ∆, which is
finite since we have assumed that P is finite. The decision problem we wish to solve is: Given
any two process expressions p and q does it hold that p ↔ q? We shall first recall a few
standard observations to simplify the formulation of the decision problem.

The first observation is that we may assume, without loss of generality, that p and q are
both process identifiers. For if not then we could first solve the decision problem for process
identifiers, and then decide p↔ q by considering TSP;(A,P ′), where P ′ is P with two new
process identifiers X and Y added and ∆′ is ∆ with the two extra defining equations X def= p

and Y def= q, and determine whether X ↔ Y .
The second observation is that we may assume, again without loss of generality, that ∆

is in so-called Greibach Normal Form (GNF): for every defining equation (X def= p) ∈ ∆ we
have that

p ≡
n∑
i=1

ai.αi(+1) . (2)

Here we assume that n ∈ N (recall our convention that the empty summation denotes 0),
αi ∈ P∗, and (+1) denotes an optional 1-summand. We refer to [8] for the description of an
effective procedure that associates with every recursive specification ∆ over TSP;(A,P) a set
P ′ ⊇ P and a recursive specification ∆′ over TSP;(A,P ′) in GNF such that for all X,Y ∈ P
we have that X ↔ Y with respect to ∆ if, and only if, X ↔ Y with respect to ∆′. The
advantage of assuming that ∆ is in GNF is that then every process expression reachable (by
following the transition relation) from a process identifier associated with TSP;(A,P) is an
element of P∗.

The third observation is that it is semi-decidable whether p 6↔ q. This is a straightforward
consequence of the well-known fact that for image-finite transition systems there is a stratified
characterisation of bisimilarity; see [8] for such a characterisation taking the acceptance
predicate into account. Therefore, to solve the aforementioned decision problem, it suffices
to argue that bisimilarity is semi-decidable.

The argument presented in [12] to show that bisimilarity is semi-decidable for BPA then
proceeds by showing that process identifiers X and Y are bisimilar if, and only if, there
exists a finite bisimulation base1 that contains the pair (X,Y), and that it is semi-decidable
whether a finite binary relation on P∗ is a bisimulation base. It then follows that X ↔ Y is
semi-decidable: enumerate all finite binary relations on P∗ containing the pair (X,Y) and
check, in parallel, whether one of them is a bisimulation base.

We adapt the definition of bisimulation base, originally from [13], to our setting with an
acceptance predicate. It uses the following auxiliary notation: if R is a binary relation on P∗,

1 Note that a bisimulation base is a bisimulation up to congruence with respect to the operation of
concatenation on finite sequences of process identifiers [20].

CALCO 2019

11:12 Sequencing and Intermediate Acceptance

then we denote by R≡ the least equivalence relation that contains R and all pairs (αα′, ββ′)
whenever it contains the pairs (α, β) and (α′, β′).

I Definition 15. A binary relation R on P∗ is a bisimulation base if, and only if, R is
symmetric and for all pairs (α, β) ∈ R and all a ∈ A, it holds that:

if α a−→ α′, then β a−→ β′ for some β′ such that α′ R≡ β′; and
if α ↓, then β ↓.

Our goal will be to show that there exists a finite bisimulation base R such that α R≡ β
if, and only if, α↔ β for all α, β ∈ P∗. The argument relies on a partitioning of the set of
process identifiers into normed and unnormed process identifiers.

I Definition 16. Let p be a TSP;(A,P) process expression. The norm n(p) of p is the
length of a shortest transition sequence from p to a process expression bisimilar to 1 if such
a sequence exists, and ∞ otherwise, i.e.,

n(p) = min
(
{|w| | ∃p′. p w→−→ p′ ∧ p′ ↔ 1} ∪ {∞}

)
.

A process expression p is normed if n(p) <∞; otherwise it is unnormed. We denote by Pn
the set of all normed process identifiers and by Pu the set of all unnormed process identifiers.

In the case of BPA, which does not have intermediate acceptance, the following three
properties hold for all sequences of process identifiers α, β and γ:
1. if α is unnormed, then αβ ↔ α;
2. |α| ≤ n(α); and
3. if α, β and γ are normed, then αγ ↔ βγ implies α↔ β.
These properties are crucial for pruning the cardinality of the bisimulation base. The following
example illustrate that neither of these properties holds in our setting with intermediate
acceptance:

I Example 17. Consider the following recursive specification in GNF:

X
def= a.Y WZ + a.Y W + a.ZZ + a.UV Z

def= b.1 V
def= 0

Y
def= b.1 + 1 U

def= b.U + 1 W
def= 0 + 1

Then we have that U is unnormed, but UV 6↔ U since U↓ whereas UV 6↓, refuting the first
property. Furthermore, |YWZ| = 3 > 2 = n(YWZ), refuting the second property. And
finally YWZ ↔ ZZ, but YW 6↔ Z, refuting the third property.

Note that the sequences used in Example 17 to refute the properties above all suffer from
some form of redundant intermediate acceptance.

Violation of the first property can only be due to the presence of a process identifier that
is bisimilar to 1. Note that, in a recursive specification in GNF, a process identifier X is
bisimilar to 1 if, and only if, (X def= 0 + 1) ∈ ∆; let us call such a process identifier a 1-
identifier. Whether some process identifier is a 1-identifier can easily be decided. Furthermore,
occurrences of 1-identifiers can simply be eliminated from the right-hand sides of defining
equations of other process identifiers. Thus, it remains to solve the decision problem for
recursive specifications in GNF without 1-identifiers.

Our main contribution in the remainder of this section will be the notion of Acceptance
Irredundant Greibach Normal Form (AIGNF), a special variant of GNF that precludes
redundant intermediate acceptance from sequences reachable from process identifiers. We

A. Belder, B. Luttik, and J. Baeten 11:13

shall prove that it is enough to solve the decision problem for recursive specifications in
AIGNF and then show that the argument for the existence of a finite bisimulation base of
[13] works for such recursive specifications.

4.1 Acceptance Irredundant Greibach Normal Form
We partition the set of process identifiers P into sets P↓ = {X ∈ P | X↓} and P6↓ = {X ∈ P |
X 6↓}. Furthermore, we define the set P 6↓ of hereditarily non-terminating process identifiers
as the largest subset of P 6↓ such that for all X ∈ P 6↓ we have that if (X def= p) ∈ ∆ and Y is
a process identifier occurring in p, then Y ∈ P 6↓. The set P 6↓ can be computed iteratively:
start with P ′ = P 6↓ and in every iteration remove from P ′ all process identifiers X such that
(X def= p) ∈ ∆ and p has an occurrence of some process identifier Y with Y 6∈ P ′ until a fixed
point is reached (i.e., nothing can be removed from P ′ anymore). We shall say that α ∈ P∗
is acceptance irredundant if α ∈ P∗6↓P 6↓P∗↓ ∪ P∗↓ .

I Definition 18. A recursive specification ∆ is in Acceptance Irredundant Greibach Normal
Form (AIGNF) if for every defining equation (X def= p) ∈ ∆ we have that p ≡ 0 or

p ≡
n∑
i=1

ai.αi(+1) ,

with n ∈ N+ and each αi acceptance irredundant.

The following example illustrates how a recursive specification in GNF and without
1-identifiers can be transformed into AIGNF.

I Example 19. Consider the following recursive specification in GNF:

X
def= a.Y Z + a.Y + a.ZZ + a.UV Z

def= b.1

Y
def= b.1 + 1

As Z 6↓, the intermediate acceptance of Y in a.Y Z is redundant. We cannot simply remove
it from the definition of Y , however, since in a.Y the intermediate acceptance of Y is not
redundant. Instead, we introduce a fresh variable Ȳ , that is defined as Y but without the
intermediate acceptance. Then, we replace all occurrences of Y of which the intermediate
acceptance is redundant with Ȳ , resulting in:

X
def= a.Ȳ Z + a.Y + a.ZZ + a.UV Z

def= b.1

Y
def= b.1 + 1 Ȳ

def= b.1

The idea explained in the preceding example can be exploited to prove the following
proposition.

I Proposition 20. For every recursive specification ∆ over TSP;(A,P) in GNF without
1-identifiers there exist P ′ ⊇ P and a recursive specification ∆′ in AIGNF over TSP;(A,P ′)
such that for all X,Y ∈ P we have that X ↔ Y with respect to ∆ if, and only if, X ↔ Y

with respect to ∆′.

Let α ∈ P∗; we say that α is ∆-reachable if there exists X ∈ P such that X →−→ α. If ∆ is
in AIGNF, then it can be shown that all ∆-reachable sequences are acceptance irredundant.
Hence, for recursive specifications in AIGNF we now get the three properties needed for the
proof that there exists a finite bisimulation base.

CALCO 2019

11:14 Sequencing and Intermediate Acceptance

I Proposition 21. If ∆ is in AIGNF, then for all acceptance irredundant sequences α, β, γ:
1. if α is unnormed, then αβ ↔ α;
2. |α| ≤ n(α); and
3. if α, β and γ are normed, then αγ ↔ βγ implies α ↔ β.

Proof. See Appendix B. J

4.2 The existence of a finite bisimulation base
By the first item of Proposition 21, we can, without loss of generality, assume that all
sequences of variables appearing in the right-hand sides of the defining equations in our
presupposed recursive specification ∆ in AIGNF are elements of P∗n ∪ P∗nPu. Then all ∆-
reachable sequences will not only be acceptance irredundant, but also elements of P∗n ∪P∗nPu.

The definition of the finite bisimulation base relies on decomposing sequences.

I Definition 22. A pair (Xα, Y β) satisfying Xα ↔ Y β is decomposable if X and Y are
normed, and there exists γ such that

X →−→ γ, X ↔ Y γ and γα ↔ β; or
Y →−→ γ, Y ↔ Xγ and γβ ↔ α.

Two pairs (Xα, Y β) and (Xα′, Y β′) are distinct if α 6↔ α′ or β 6↔ β′. A crucial step towards
a finite bisimulation base consists of establishing that a relation containing all indecomposable
pairs (Xα, Y β), where Xα, Y βP∗n ∪ P∗nPu are acceptance irredundant sequences such that
Xα↔ Y β is necessarily finite.

For the definition of a finite bisimulation base we now need just one more definition,
which allows us to choose appropriate candidates among non-distinct indecomposable pairs.

I Definition 23. The finite prefix norm nf (α) of α is defined as follows:

nf (α) = max({n(β) | n(β) <∞ and α = βγ for some γ}).

The pre-order � on pairs is defined as:
(α1, α2) � (β1, β2) iff max(nf (α1), nf (α2)) ≤ max(nf (β1), nf (β2)).

In the following two lemmas, adapted from [12, Lemmas 28 and 29], a relaxed form of
cancellation is established for ∆-reachable sequences of process identifiers.

I Lemma 24. If α ↔ γα and β ↔ γβ for some γ 6↔ 1 and acceptance irredundant γα and
γβ, then α ↔ β.

Using this result, we will show a form of cancellation for (potentially unnormed) acceptance
irredundant sequences, if αγ ↔ βγ for infinitely many non-bisimilar γ.

I Lemma 25. Let α, β ∈ P∗. If for infinitely many non-bisimilar γ ∈ P∗ such that αγ and
βγ are acceptance irredundant it holds that αγ ↔ βγ, then α ↔ β.

The following lemma is an adaptation of [12, Lemma 32] to our setting.

I Lemma 26. For all X,Y ∈ P, every set R of the form

{(Xα, Y β) | Xα, Y β ∈ P∗n ∪ P∗nPu acceptance irredundant sequences,
Xα ↔ Y β, and (Xα, Y β) indecomposable}

and contains only distinct pairs must be finite.

A. Belder, B. Luttik, and J. Baeten 11:15

We now have everything in place to prove the main result of this section.

I Theorem 27. Let R1 = {(X,α) | X ∈ Pn, α ∈ Pn such that X ↔ α}, and let R2 be the
largest relation of the form

{(Xα, Y β) | Xα, Y β ∈ P∗n ∪ P∗nPu are acceptance irredundant,
Xα ↔ Y β, and (Xα, Y β) indecomposable}

containing only distinct pairs and minimal elements with respect to �. Then the symmetric
closure R of R1 ∪ R2 is finite and satisfies α R≡ β if and only if α ↔ β for all acceptance
irredundant sequences α, β ∈ P∗n ∪ P∗nPu.

Proof. Since ∆ is in AIGNF, we have |α| ≤ n(α). Hence, since X is normed and n(X) = n(α)
we have |α| ≤ n(X), and thus α has a finite maximum length. Hence, there can only be
finitely many such α as P is finite. If follows that R1 is finite. Furthermore, by Lemma 26,
R2 is finite. So R is finite. Hence, since ↔ is a congruence for TSP;(A), we have R≡ ⊆ ↔.
It remains to show is that R≡ ⊇ ↔. We prove by induction on � that Xα ↔ Y β implies
Xα

R≡ Y β, for all acceptance irredundant sequences Xα, Y β ∈ P∗n ∪ P∗nPu.
Suppose that (Xα, Y β) is decomposable, then X,Y ∈ Pn and, without loss of generality,
assume that X →−→ γ such that X ↔ Y γ and γα↔ β. Then, nf (γα) < nf (Y γα) = nf (Xα)
and nf (β) < nf (Y β), so (γα, β) ≺ (Xα, Y β). Furthermore, since X →−→ γ, Xα →−→ γα and
thus γα ∈ P∗n ∪ P∗nPu and γα is acceptance irredundant. Moreover, since Y β ∈ P∗n ∪ P∗nPu,
Y β is acceptance irredundant and Y ∈ Pn, it follows that β ∈ P∗n∪P∗nPu and β is acceptance
irredundant, and hence by induction γα R≡ β. Finally, since γα is acceptance irredundant, γ
is acceptance irredundant, and therefore Y γ is acceptance irredundant. Hence, (X,Y γ) ∈ R1

and thus Xα R≡ Y γα R≡ Y β.
Now, suppose that (Xα, Y β) is not decomposable. Then (Xα′, Y β′) ∈ R2 for some

α′ ↔ α and β′ ↔ β with (α′, β′) � (α, β). We distinguish three cases.
If X,Y ∈ Vn, then (α, β), (α′, β′) ≺ (Xα, Y β), so (α, α′), (β, β′) ≺ (Xα, Y β). Hence, by
induction α R≡ α′ and β R≡ β′, so Xα R≡ Xα′RY β′ R≡ Y β.
If X ∈ Vn and Y ∈ Vu, then since β ≡ X1 . . . Xn for some n ≥ 0 and Y Xi

R≡ Y

for each 0 ≤ i ≤ n, we find Y β
R≡ Y . Furthermore, nf (α′) ≤ nf (α) < nf (Xα), so

(α, α′) ≺ (Xα, Y). Hence, by induction α
R≡ α′, and since (Xα′, Y) ∈ R2 we find

Xα
R≡ Xα′

R≡ Y
R≡ Y β. A symmetric argument applies for the case when X ∈ Vu and

Y ∈ Vn.
If X,Y ∈ Vu, then since α ≡ X1 . . . Xn for some n ≥ 0 and XXi

R≡ X for each 0 ≤ i ≤ n,
we find Xα

R≡ X. Similarly, we find Y β
R≡ Y and thus since (X,Y) ∈ R2, we derive

Xα
R≡ X R≡ Y R≡ Y β. J

It follows from Theorem 27 that bisimilarity is semi-decidable, and since also non-bisimilarity
is semi-decidable, we obtain the following corollary.

I Corollary 28. Bisimilarity is decidable for all processes definable by means of a finite
guarded recursive specification over TSP;(A,P).

5 Conclusion

We have considered a variant of the Theory of Sequential Processes proposed in [7] in which
sequential composition is replaced by sequencing. The distinguishing feature of the resulting
process theory is that it includes the notion of intermediate acceptance relevant for the

CALCO 2019

11:16 Sequencing and Intermediate Acceptance

theory of automata and formal languages, without also including the complications that
arise from transparency. (We should mention here that the variant of successful termination
considered by Aceto and Hennessy in [1] also does not lead to transparency, but in their
theory a non-deterministic choice successfully terminates only if both arguments successfully
terminate, and hence it does not have intermediate acceptance.)

We have presented a finite axiomatisation of the ground equational theory of the recursion-
free fragment of the Theory of Sequential Processes using the auxiliary operator NT and
proved that a finite axiomatisation without auxiliary operators does not exist.

Processes definable by means of a finite guarded recursive specification over TSP;(A)
may rightfully be referred to as context-free processes. Indeed, the language of a process
definable by means of a finite guarded recursive specification is context-free, and for every
context-free language there is a process definable by a finite guarded recursive specification
over TSP;(A) with that language. In [7] it was already proved that every context-free process
is bisimilar to a pushdown process. Here we have proved that bisimilarity is decidable for all
context-free processes, extending the seminal result of Christensen, Hüttel and Stirling [13]
with intermediate acceptance.

It follows from the work of Moller [19] that not every pushdown process is context-free.
We conjecture that extending TSP;(A) with propositional signals suffices to facilitate the
definability of all pushdown processes. This will be the topic of a forthcoming paper.

Another interesting remaining open problem is whether bisimilarity is also decidable for
the variant of the Theory of Sequential Processes discussed in [2]. In [8] it is argued that
properties 2 and 3 of Proposition 21 do not hold in this case, and it seems considerably more
difficult to deal with the ensuing complications.

References
1 Luca Aceto and Matthew Hennessy. Termination, Deadlock, and Divergence. J. ACM,

39(1):147–187, 1992. doi:10.1145/147508.147527.
2 Jos C. M. Baeten, Twan Basten, and Michel Reniers. Process algebra: equational theories of

communicating processes, volume 50. Cambridge University Press, 2010.
3 Jos C. M. Baeten, Pieter J. L. Cuijpers, Bas Luttik, and P. J. A. van Tilburg. A Process-

Theoretic Look at Automata. In Farhad Arbab and Marjan Sirjani, editors, Proceed-
ings of FSEN 2009, volume 5961 of LNCS, pages 1–33. Springer, 2009. doi:10.1007/
978-3-642-11623-0_1.

4 Jos C. M. Baeten, Pieter J. L. Cuijpers, and P. J. A. van Tilburg. A Context-Free Process as
a Pushdown Automaton. In Franck van Breugel and Marsha Chechik, editors, Proceedings
of CONCUR 2008, volume 5201 of LNCS, pages 98–113. Springer, 2008. doi:10.1007/
978-3-540-85361-9_11.

5 Jos C. M. Baeten, Bas Luttik, Tim Muller, and Paul van Tilburg. Expressiveness modulo
bisimilarity of regular expressions with parallel composition. Mathematical Structures in
Computer Science, 26(6):933–968, 2016. doi:10.1017/S0960129514000309.

6 Jos C. M. Baeten, Bas Luttik, and Paul van Tilburg. Reactive Turing machines. Inf. Comput.,
231:143–166, 2013. doi:10.1016/j.ic.2013.08.010.

7 Jos C. M. Baeten, Bas Luttik, and Fei Yang. Sequential Composition in the Presence of
Intermediate Termination (Extended Abstract). In Kirstin Peters and Simone Tini, editors,
Proceedings of EXPRESS/SOS 2017, volume 255 of EPTCS, pages 1–17, 2017. doi:10.4204/
EPTCS.255.1.

8 Astrid Belder. Decidability of bisimilarity and axiomatisation for sequential pro-
cesses in the presence of intermediate termination. Master’s thesis, Eindhoven Univer-
sity of Technology, 2018. Available from https://research.tue.nl/en/studentTheses/
decidability-of-bisimilarity-and-axiomatisation-for-sequential-pr.

https://doi.org/10.1145/147508.147527
https://doi.org/10.1007/978-3-642-11623-0_1
https://doi.org/10.1007/978-3-642-11623-0_1
https://doi.org/10.1007/978-3-540-85361-9_11
https://doi.org/10.1007/978-3-540-85361-9_11
https://doi.org/10.1017/S0960129514000309
https://doi.org/10.1016/j.ic.2013.08.010
https://doi.org/10.4204/EPTCS.255.1
https://doi.org/10.4204/EPTCS.255.1
https://research.tue.nl/en/studentTheses/decidability-of-bisimilarity-and-axiomatisation-for-sequential-pr
https://research.tue.nl/en/studentTheses/decidability-of-bisimilarity-and-axiomatisation-for-sequential-pr

A. Belder, B. Luttik, and J. Baeten 11:17

9 Jan A. Bergstra and Jan Willem Klop. Process Algebra for Synchronous Communication.
Information and Control, 60(1-3):109–137, 1984. doi:10.1016/S0019-9958(84)80025-X.

10 Bard Bloom. When is Partial Trace Equivalence Adequate? Formal Asp. Comput., 6(3):317–
338, 1994. doi:10.1007/BF01215409.

11 Roland N. Bol and Jan Friso Groote. The Meaning of Negative Premises in Transition System
Specifications. J. ACM, 43(5):863–914, 1996. doi:10.1145/234752.234756.

12 Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification on Infinite
Structures. In J.A. Bergstra, A.J. Ponse, and S.A. Smolka, editors, Handbook of Process
Algebra, pages 545–623. Elsevier, 2001.

13 Søren Christensen, Hans Hüttel, and Colin Stirling. Bisimulation Equivalence is Decidable
for All Context-Free Processes. Inf. Comput., 121(2):143–148, 1995. doi:10.1006/inco.1995.
1129.

14 Rob J. van Glabbeek. The meaning of negative premises in transition system specifications II.
J. Log. Algebr. Program., 60-61:229–258, 2004. doi:10.1016/j.jlap.2004.03.007.

15 Jan Friso Groote. Transition System Specifications with Negative Premises. Theor. Comput.
Sci., 118(2):263–299, 1993. doi:10.1016/0304-3975(93)90111-6.

16 Stephen C. Kleene. Representation of Events in Nerve Nets and Finite Automata. Automata
Studies, pages 3–41, 1956.

17 Hans Leiß. Towards Kleene Algebra with Recursion. In Egon Börger, Gerhard Jäger, Hans
Kleine Büning, and Michael M. Richter, editors, Proceedings of CSL ’91, volume 626 of LNCS,
pages 242–256. Springer, 1991. doi:10.1007/BFb0023771.

18 R. Milner. Communication and Concurrency. Prentice Hall, Englewood Cliffs, 1989.
19 Faron Moller. Infinite Results. In Ugo Montanari and Vladimiro Sassone, editors, Proceedings

of CONCUR ’96, volume 1119 of Lecture Notes in Computer Science, pages 195–216. Springer,
1996. doi:10.1007/3-540-61604-7_56.

20 Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof method. In
Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisimulation and Coinduction,
number 52 in Cambridge Tracts in Theoretical Computer Science, pages 233—-289. Cambridge
University Press, 2012.

21 Peter Thiemann. Partial Derivatives for Context-Free Languages - From µ-Regular Ex-
pressions to Pushdown Automata. In Javier Esparza and Andrzej S. Murawski, edit-
ors, Proceedings of FOSSACS 2017, volume 10203 of LNCS, pages 248–264, 2017. doi:
10.1007/978-3-662-54458-7_15.

22 Chris Verhoef. A General Conservative Extension Theorem in Process Algebra. In Ernst-
Rüdiger Olderog, editor, Proceedings of PROCOMET’94, volume A-56 of IFIP Transactions,
pages 149–168. North-Holland, 1994.

23 Chris Verhoef. A Congruence Theorem for Structured Operational Semantics with Predicates
and Negative Premises. Nord. J. Comput., 2(2):274–302, 1995.

24 Jos L. M. Vrancken. The Algebra of Communicating Processes With Empty Process. Theor.
Comput. Sci., 177(2):287–328, 1997. doi:10.1016/S0304-3975(96)00250-2.

A Proofs of Lemmas 9 and 10

In this appendix we shall provide proofs for Lemmas 9 and 10, restated below as Lemmas 35
and 40. For the formulation of our arguments, it is convenient to associate behaviour to
TSP;(A)-terms with variables. We assume an extended syntax in which a constant x̄ added
for every variable x and include the following operational rule to the operational semantics
presented in Figure 1:

x
x−→ x̄

.

CALCO 2019

https://doi.org/10.1016/S0019-9958(84)80025-X
https://doi.org/10.1007/BF01215409
https://doi.org/10.1145/234752.234756
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1006/inco.1995.1129
https://doi.org/10.1016/j.jlap.2004.03.007
https://doi.org/10.1016/0304-3975(93)90111-6
https://doi.org/10.1007/BFb0023771
https://doi.org/10.1007/3-540-61604-7_56
https://doi.org/10.1007/978-3-662-54458-7_15
https://doi.org/10.1007/978-3-662-54458-7_15
https://doi.org/10.1016/S0304-3975(96)00250-2

11:18 Sequencing and Intermediate Acceptance

The resulting collection of operational rules is used to derive transitions of TSP;(A)-terms
(with variables). A transition of a TSP;(A)-term t may then either result in another TSP;(A)-
term, or, if it is due to the transition of a variable, it may result in a term in a syntax extended
with the constant x̄: For every variable x, we inductively define the set of TSP;(A, x̄)-terms
as follows:
1. the constant x̄ is a TSP;(A, x̄)-term; and
2. if t1 is a TSP;(A, x̄)-term and t2 is a TSP;(A)-term, then t1 ; t2 is a TSP;(A, x̄)-term.
If t is a TSP;(A, x̄)-term and p is a closed TSP;(A)-term, then by t[x̄ := p] we denote the
TSP;(A)-term obtained by replacing x̄ by p. While every variable can now “take a step”, we
do not let this contribute to the width of a term, so width(x) = 0 for every variable x.

I Lemma 29. Let t be a TSP;(A)-term.
1. If t a−→ t′ for some action a, then t′ is a TSP;(A)-term.
2. If t x−→ t′ for some variable x, then t′ is a TSP;(A, x̄)-term.

We would like to establish a relationship between transitions from t and transitions from
σ(t), where σ is a closed substitution. However, we cannot yet fully express that a transition
originates from a substitution in a variable. For example, consider the TSP;(A)-term t ≡ x ;y
and the closed substitution σ, where σ(x) = 1 and σ(y) = a.1. Clearly, σ(t) = 1 ; a.1 and
hence σ(t) a−→ 1. However, we cannot express that this a-transition originates from the
substitution in y, as t y9. To be able to express this, we define the following substitution.

I Definition 30. Given a substitution σ and variable x, the substitution µσx is defined as:

µσx(y) =
{
y if y = x

σ(y) otherwise.

Referring to the example preceding Definition 30, note that µσy(t) y−→ ȳ and σ(y) a−→ 1.
We can establish several useful relationships between σ(t) and µσx(t).

I Lemma 31. Let t be a TSP;(A)-term, σ a closed substitution, x a variable, p a closed
TSP;(A)-term and a an action such that σ(x) a−→ p. Then:
1. if σ(t) 6↓, then µσx(t) 6↓ ;
2. if σ(t) 9, then µσx(t) 9 ;
3. if σ(t) 9 and σ(t) ↓, then µσx(t) ↓.

In the following lemma it is proven that if t contains a subterm t2 such that width(σ(t2)) >
width(t2), then one of the actions that can be executed by σ(t2) must come from a substitution
in some variable x.

I Lemma 32. Let t be a TSP;(A)-term and σ a closed substitution. If width(σ(t)) > width(t),
then there must exist an action a, closed TSP;(A)-terms p and p′, a TSP;(A, x̄)-term t′, and
a variable x such that σ(t) a−→ p, µσx(t) x−→ t′, σ(x) a−→ p′ and p ≡ σ(t′[x̄ := p′]).

I Lemma 33. Let t be a TSP;(A)-term, x a variable and σ a closed substitution. Then:
1. if t ↓, then σ(t) ↓;
2. if σ(t) ↓, then ϑ(σ,x)(t) ↓;
3. if ϑ(σ,x)(µσx(t)) ↓, then ϑ(σ,x)(t)↓.

Using these properties we show that given a term t, variable x and substitution σ as
described above, ϑ(σ,x)(t)↓ indeed holds.

A. Belder, B. Luttik, and J. Baeten 11:19

I Lemma 34. Let t be a TSP;(A)-term, let x be a variable, and let σ be a substitution. If
there exist a TSP;(A, x̄)-term t′ and a closed TSP;(A)-term p such that t x−→ t′, σ(x) a−→ p

and σ(t′[x̄ := p]) ↓, then ϑ(σ,x)(t)↓.

By utilizing the results from Lemma 32 and Lemma 34, we show that given a TSP;(A)-
term t and substitution σ, if Ψn(σ(t)) holds, then t must contain some variable x such that
ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

I Lemma 35. Let t be a TSP;(A)-term and let n be a natural number such that width(t′) < n

for every subterm t′ of t. If Ψn(σ(t)) for some closed substitution σ, then there is a variable
x such that ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→.

Proof. We proceed with induction on the structure of t.

If t ≡ 0, t ≡ 1 or t ≡ a.t′ for some action a and TSP;(A)-term t′, then σ(t) cannot have
a summand of the form t1 ; t2, so Ψn(σ(t)) does not hold for any substitution σ. Hence
the implication vacuously holds.
Let t ≡ y for some variable y, and suppose that Ψn(σ(t)) holds for some closed substitution
σ. Then clearly from Ψn(σ(t)) it follows that Ψn(σ(y)). Furthermore, since t y−→ ȳ and
since σ(ȳ[ȳ := 1]) ≡ 1, we have that σ(ȳ[ȳ := 1]) ↓. Hence, by Lemma 34, we have that
ϑ(σ,y)(t)↓ and thus x = y.
Let t ≡ t1 + t2 for some TSP;(A)-terms t1 and t2. If Ψn(σ(t)), then either σ(t1) or
σ(t2) must contain a summand p such that one of the three cases of the definition of
Ψn applies. We proceed to consider the case that p is a summand of σ(t1); the proof
in the case that p is a summand of σ(t2) proceeds analogously. Note that, since p ↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), we find that σ(t1) ã−→ p′ with p′ ↔

∑n
i=1(b̃.1 ; (b̃.1 + 1)i).

Moreover, since σ(t1) is a summand of σ(t) and also σ(t)↔ (ã.1+1);
∑n
i=1(b̃.1;(b̃.1+1)i),

we find that σ(t1)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and hence Ψn(σ(t1)). Since every

subterm of t1 is a subterm of t, we also have that width(t′) < n for every subterm t′ of t1.
Therefore, we may now apply the induction hypothesis to conclude that either Ψn(σ(x))
or σ(x) b−→, and ϑ(σ,x)(t1)↓; clearly, from the latter it follows that ϑ(σ,x)(t)↓.
Let t ≡ t1 ; t2 for some TSP;(A)-terms t1 and t2, and suppose that Ψn(σ(t)). Then,
considering the definition of Ψn, one of the following three cases must apply:
1. If Φn(σ(t1) ; σ(t2)), then σ(t1) ↔ ã.+1 and σ(t2) ↔

∑n
i=1(b̃.1 ; (b̃.1 + 1)i). Then

σ(t2) b̃−→ (b̃.1 + 1)i for all 1 ≤ i ≤ n. Clearly, if i 6= j, then (b̃.1 + 1)i 6↔ (b̃.1 + 1)j ,
so width(σ(t2)) ≥ n > width(t2). It follows by Lemma 32 that there exist an action
a, closed TSP;(A)-terms p and p′, a TSP;(A, x̄)-term t′ and a variable x such that
σ(t2) a−→ p, µσx(t2) x−→ t′, σ(x) a−→ p′ and p ≡ σ(t′[x̄ := p′]). Clearly, we must
have a = b̃ and p ↔ (b̃.1 + 1)i for some 1 ≤ i ≤ n. To see that ϑ(σ,x)(t)↓, note that,
since σ(t1) ↔ ã.1 + 1, we have that σ(t1) ↓ and hence ϑ(σ,x)(t1)↓. Moreover, since
σ(t′[x̄ := p′])↔ (b̃.1 + 1)i, we find that σ(t′[x̄ := p′]) ↓, and hence, by Lemma 34, we
get that ϑ(σ,x)(µσx(t2))↓. Finally, by Lemma 33(3), we conclude that ϑ(σ,x)(t2)↓ and
thus ϑ(σ,x)(t)↓

2. If σ(t1)↔ 1 and Ψn(σ(t2)), then since every subterm of t2 is a subterm of t we find
that width(t′2) < n for all subterms t′2 of t2. Hence, by the induction hypothesis, for
some variable x we have that either Ψn(σ(x)) or σ(x) b̃−→ and, moreover, ϑ(σ,x)(t2)↓.
From σ(t1) ↔ 1 it follows that σ(t1) ↓, so, by Lemma 33(2), ϑ(σ,x)(t1)↓, and hence
ϑ(σ,x)(t)↓.

CALCO 2019

11:20 Sequencing and Intermediate Acceptance

3. If Ψn(σ(t1)) and σ(t2)↔ 1, then the proof that ϑ(σ,x)(t)↓ is analogous to the previous
case. J

We have established that if Ψn(σ(t)) holds for some substitution σ and TSP;(A)-term t

such that width(t′) < n for each subterm t′ of t, then t must confirm to certain properties.
Now, for any term u such that t ↔ u, these properties must be valid as well. Hence, it
remains to show is that if u contains these properties, then Ψn(σ(u)) must hold as well. This
is shown in Lemma 40. In order to prove this result, some useful properties are established
in Lemma 36 to Lemma 39.

I Lemma 36. Let p and q be closed TSP;(A)-terms and suppose that p ↔ q. Then
depth(p) = depth(q).

Proof. Assume that p↔ q and, for the sake of contradiction, suppose that depth(p) = n and
depth(q) = m, for some n > m. Then, by definition, p −→n p′ and since p ↔ q, q −→n q′,
such that p′ ↔ q′. Clearly, since n > m, this contradicts depth(q) = m. Hence, we conclude
depth(p) = depth(q). J

I Lemma 37. For all closed TSP;(A)-terms p1 and p2, if p1 ; p2 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i,

then one of the following cases must hold:
1. p1 ↔ 1 and p2 ↔ ã.1 ;

∑n
i=1 b̃.(b̃.1 + 1)i; or

2. p1 ↔ ã.1 and p2 ↔
∑n
i=1 b̃.(b̃.1 + 1)i; or

3. p1 ↔ ã.1 + 1 and p2 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i; or

4. p1 ↔ ã.1 ;
∑n
i=1 b̃.(b̃.1 + 1)i and p2 ↔ 1.

I Lemma 38. For any TSP;(A)-term t, variable x and closed substitution σ, if σ(t) 6↓ and
ϑ(σ,x)(t)↓, then t contains x.

Proof. Let t be a TSP;(A)-term, x a variable and σ a closed substitution such that σ(t) 6↓
and ϑ(σ,x)(t)↓. Now suppose t does not contain x. Then, by the definition of ϑ(σ,x),
ϑ(σ,x)(t) ≡ σ(t), which means that if σ(t) 6↓ we should also have ϑ(σ,x)(t) 6↓. Since this
contradicts ϑ(σ,x)(t)↓, we conclude t must contain x. J

I Lemma 39. For any TSP;(A)-term t, variable x and closed substitution σ, if t contains x
and σ(x) a1...an−→ p for some sequence of actions a1...an and closed TSP;(A)-term p, then
1. either σ(t) −→∗ p′ a1...an−→ p′′, for some p′ and p′′,
2. or σ(t) −→∗ p′, for some p′ such that p′ ↔ 0.

Proof. Let t be a TSP;(A)-term, x a variable and σ a closed substitution such that t contains
x and σ(x) a1...an−→ p for some sequence of actions a1...an and closed TSP;(A)-term p. It can
then be proved with induction on the structure of t that one of the two cases of the lemma
must hold. J

I Lemma 40. For any TSP;(A)-term t, variable x and closed substitution σ, if σ(t) ↔

(ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b̃−→, then Ψn(σ(t)).

Proof. Let t be a TSP;(A)-term, x a variable and let σ be closed substitution such that
σ(t) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), ϑ(σ,x)(t)↓ and either Ψn(σ(x)) or σ(x) b−→. We

prove by induction on the structure of t that Ψn(σ(t)) must hold.
If t ≡ 0 or t ≡ 1, then σ(t) 6↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), hence, the implication

vacuously holds.

A. Belder, B. Luttik, and J. Baeten 11:21

If t ≡ a.t′, then ϑ(σ,x)(t)6↓ which contradicts ϑ(σ,x)(t)↓, hence, the implication vacuously
holds.
If t ≡ y for some variable y, then since σ(t)↔ (ã.1+1);

∑n
i=1(b̃.1;(b̃.1+1)i), we must have

σ(t) 6↓. Moreover, since ϑ(σ,x)(t)↓, by Lemma 38, σ(t) contains x, thus we must have y ≡ x.

Now suppose σ(x) b̃−→, then σ(t) b̃−→, contradicting σ(t)↔ (ã.1+1);
∑n
i=1(b̃.1;(b̃.1+1)i).

Hence, it must be the case that Ψn(σ(x)) holds and thus also Ψn(σ(t)) holds.
Suppose t ≡ t1 + t2 and suppose that the lemma holds for t1 and t2 (IH). Since σ(t)↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i), we have σ(t) 6↓ and thus both σ(t1) 6↓ and σ(t2) 6↓.

Moreover, since ϑ(σ,x)(t)↓ either ϑ(σ,x)(t1)↓ or ϑ(σ,x)(t2)↓. Without loss of generality

assume ϑ(σ,x)(t1)↓. Then, by Lemma 38, t1 must contain x. Since either σ(x) b̃−→ or
Ψn(σ(x)) and thus σ(x) ã−→, by Lemma 39, either σ(t1) −→∗ q1

a−→ for some action a
and closed TSP;(A)-term q1, or σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that
q2 ↔ 0. The second case clearly contradicts σ(t)↔ (ã.1+1);

∑n
i=1(b̃.1;(b̃.1+1)i). Hence,

it must be the case that σ(t1) −→∗ q1
ã−→. Since σ(t1) is able to execute an action and

σ(t1) is a summand of σ(t), we must have σ(t1) a−→ p such that p↔
∑n
i=1(b̃.1 ; (b̃.1+1)i).

Hence, we must have σ(t1)↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), and thus by the induction

hypothesis we conclude Ψn(σ(t1)), and since σ(t1) is a summand of σ(t) also Ψn(σ(t)).
Suppose t ≡ t1 ; t2 and suppose that the lemma holds for t1 and t2 (IH). Since σ(t) =
σ(t1 ; t2) = σ(t1) ; σ(t2), we have σ(t1) ; σ(t2)↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and thus

by Lemma 37, one of the following cases must hold:

1. If σ(t1) ↔ 1 and σ(t2) ↔ (ã.1 + 1) ;
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then, by the induction

hypothesis, Ψn(σ(t2)). Moreover, since σ(t1) ↔ 1, by case 2 of Ψn we conclude
Ψn(σ(t)).

2. If σ(t1) ↔ ã.1 and σ(t2) ↔
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then σ(t1) 6↓. Moreover, since

ϑ(σ,x)(t)↓ we must have ϑ(σ,x)(t1)↓, and thus by by Lemma 38, t1 must contain x. We
distinguish two cases.
If Ψn(σ(x)), then σ(x) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and, by Lemma 39,

either σ(t1) −→∗ q1
ã−→ q′1

b̃−→ q′′1 for some closed TSP;(A)-terms q1, q′1 and q′′1 , or
σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that q2 ↔ 0. Both cases clearly
contradict σ(t1)↔ ã.1.
If σ(x) b−→, then, by Lemma 39, either σ(t1) −→∗ q1

b̃−→ for some closed TSP;(A)-
term q1, or σ(t1) −→∗ q2 for some closed TSP;(A)-term q2 such that q2 ↔ 0. Again,
both cases contradict σ(t1) ↔ ã.1, hence the case where σ(t1) ↔ ã.1 and σ(t2) ↔
(ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) can never occur.

3. If σ(t1) ↔ ã.1 + 1 and σ(t2) ↔
∑n
i=1(b̃.1 ; (b̃.1 + 1)i), then clearly Φn(σ(t1) ; σ(t2))

and thus, by case 1 of Ψn we conclude Ψn(σ(t)).
4. If σ(t1) ↔ (ã.1 + 1) ;

∑n
i=1(b̃.1 ; (b̃.1 + 1)i) and σ(t2) ↔ 1, then, by the induction

hypothesis, Ψn(σ(t1)). Moreover, since σ(t2) ↔ 1, by case 3 of Ψn we conclude
Ψn(σ(t)). J

B Proof of Proposition 21

The three properties of Proposition 21 are proved below as Lemmas 45, 46 and 47. Throughout
this appendix it will be assumed that ∆ is in AIGNF.

Let us first establish that then all ∆-reachable sequences are acceptance irredundant.

CALCO 2019

11:22 Sequencing and Intermediate Acceptance

I Lemma 41. For every sequence α ∈ P∗6↓, if α
a−→ α′, then α′ ∈ P∗6↓.

I Lemma 42. For every acceptance irredundant sequence αβ, we have that either α ∈ P∗6↓
and β ∈ P∗6↓P 6↓P∗↓ , or α ∈ P

∗
6↓P6↓P↓

∗ ∪ P↓∗ and β ∈ P∗↓ .

Using the previous lemma, we show that acceptance irredundant sequences maintain their
shape when executing an action.

I Lemma 43. If α is acceptance irredundant and α a−→ α′, then α′ is acceptance irredundant.

I Corollary 44. If ∆ is in AIGNF, then all ∆-reachable sequences are acceptance irredundant.

I Lemma 45. Suppose that ∆ is in AIGNF and let α, β ∈ P∗. If αβ is acceptance irredundant
and α is unnormed, then αβ ↔ α.

Proof. We prove that the relation

R = {(α, αβ) | αβ is acceptance irredundant and α is unnormed}

is a bisimulation relation.
If α a−→ α′, then αβ

a−→ α′β and since α is unnormed, so is α′. Moreover, since αβ
is acceptance irredundant, we have by Lemma 43 that α′β is acceptance irredundant and
hence (α′, α′β) ∈ R. Furthermore, if α↓, then α ∈ P↓∗, hence, since αβ is acceptance
irredundant, we have β ∈ P↓∗ and thus αβ↓. A symmetric argument applies for the cases
where αβ a−→ α′β and αβ↓. J

I Lemma 46. Suppose that ∆ is in AIGNF. Then for all acceptance irredundant sequences
α we have |α| ≤ n(α).

Proof. If α contains an unnormed process identifier, then clearly α is unnormed hand hence
|α| ≤ n(α) =∞. So, suppose that α is normed. Then all process identifiers in α are normed
and must have a defining equation of the shape

∑n
i=1 ai.αi(+1) for some n ∈ N+ with αi

acceptance irredundant. Since every variable must be able to execute at least one action, the
norm of each variable must be greater or equal than 1. Hence, in this case also |α| ≤ n(α). J

I Lemma 47. Suppose that ∆ is in AIGNF and let αγ, βγ ∈ P∗ be acceptance irredundant.
If α, β and γ are normed, then αγ ↔ βγ implies α ↔ β.

Proof. It suffices to prove that

R = {(α, β) | ∃γ. αγ ↔ βγ and αγ, βγ are acceptance irredundant}

is a bisimulation relation.
Suppose α a−→ α′, then βγ a−→ δ such that δ ↔ α′γ. We distinguish two cases.

If β a−→ β′ and δ = β′γ, then since αγ and βγ are acceptance irredundant, by Lemma
43, α′γ and β′γ are acceptance irredundant and therefore (α′, β′) ∈ R.
If β↓, β 9 , γ a−→ γ′ and δ = γ′, then n(βγ) = n(γ) < n(αγ), contradicting αγ ↔ βγ.
Hence, in this case the implication vacuously holds.

Moreover, if α↓, then α ∈ P↓∗ and since αγ is acceptance irredundant also γ ∈ P↓∗. Hence,
we have αγ↓ and thus βγ↓ and β↓. A symmetric argument applies for the cases where
β

a−→ β′ and β↓. J

On Terminal Coalgebras Derived from Initial
Algebras
Jiří Adámek
Department of Mathematics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Czech Republic
j.adamek@tu-bs.de

Abstract
A number of important set functors have countable initial algebras, but terminal coalgebras are
uncountable or even non-existent. We prove that the countable cardinality is an anomaly: every set
functor with an initial algebra of a finite or uncountable regular cardinality has a terminal coalgebra
of the same cardinality.

We also present a number of categories that are algebraically complete and cocomplete, i.e.,
every endofunctor has an initial algebra and a terminal coalgebra.

Finally, for finitary set functors we prove that the initial algebra µF and terminal coalgebra νF
carry a canonical ultrametric with the joint Cauchy completion. And the algebra structure of µF
determines, by extending its inverse continuously, the coalgebra structure of νF .

2012 ACM Subject Classification Theory of computation → Categorical semantics

Keywords and phrases terminal coalgebras, initial algebras, algebraically complete category, finitary
functor, fixed points of functors

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.12

Funding Jiří Adámek: Supported by the Grant Agency of the Czech Republic under the grant
19-00902S.

Acknowledgements The referees helped improving the presentation of this paper by numerous
valuable suggestions.

1 Introduction

Initial algebras for endofunctors are important in formal semantics and the theory of recursive
domain equations. Further, for state based systems represented as coalgebras, Rutten [11]
demonstrated that the terminal coalgebra formalizes behavior of states. If we work in the
category of cpo’s as our base category, and if the given endofunctor is locally continuous,
then Smyth and Plotkin proved in [12] that the initial algebra coincides with the terminal
coalgebra. That is, the underlying objects are equal, and the structure maps are inverse to
each other.

Is there a connection between initial algebras µF and terminal coalgebras νF for set
functors F , too? In the case where F preserves limits of ωop-chains, νF carries a canonical
structure of a metric space and, whenever F∅ 6= ∅, this is the Cauchy completion of µF as its
subspace, as proved by Barr [8]. But what can we say about general set functors? There are
cases where µF is countable and νF is uncountable (e.g. FX = A×X + 1, with µF = A∗

and νF = A∞) or νF does not exist:

I Example 1 (see [4]). The following set functor F has a countable initial algebra but no
terminal coalgebra:

FX = {M ⊆ X ; card M 6= ℵ0}.
© Jiří Adámek;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 12; pp. 12:1–12:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:j.adamek@tu-bs.de
https://doi.org/10.4230/LIPIcs.CALCO.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 On Terminal Coalgebras Derived from Initial Algebras

To a function f : X → Y it assigns the function Ff turning M ⊆ X to f [M] if f restricted
to M is monic or M is finite, else to ∅. Its initial algebra is that of the finite power-set
functor (consisting of all hereditarily finite sets).

We are going to prove that the cardinal ℵ0 is the only exception: whenever a set functor
has a nonempty initial algebra of a finite or uncountable regular cardinality, then it has
a terminal coalgebra of the same cardinality. See the Terminal-Coalgebra Theorem in
Section 4. We also prove that the existence of a fixed point FX ' X of an uncountable
regular cardinality implies that the set functor F has a terminal coalgebra. This corresponds
well with the result of [15] that every set functor with a fixed point has an initial algebra.

On the way to proving these results we present a number of categories that are algebraically
complete and cocomplete. The concept of algebraic completeness, due to Freyd [9], means
that every endofunctor has an initial algebra. But Freyd did not present any examples. It may
seem that there are no “natural” examples since, as proved in [4], an algebraically complete
category cannot be complete, unless it is equivalent to a preordered class. However, we prove
that for every uncountable, regular cardinal λ the category Set≤λ of sets of cardinality at
most λ is algebraically complete and cocomplete. That is, every endofunctor F has both
µF and νF . For λ > ℵ1 (the first uncountable cardinal) the category Nom≤λ of nominal
sets of cardinality at most λ is also algebraically complete and cocomplete. Analogously, the
category K-Vec≤λ of vector spaces of dimension at most λ, for any field K with |K| < λ,
is algebraically complete and cocomplete. Finally, if G is a group, consider the category
G-Set of sets with an action of G. For every group with 2|G| < λ the category G-Set≤λ
of G-sets of cardinality at most λ is algebraically complete and cocomplete. These results
require assuming the Generalized Continuum Hypothesis.

Returning to metric structures on terminal coalgebras, we prove that for finitary set
functors F with F∅ 6= ∅ the initial algebra and terminal coalgebra carry a canonical ultrametric
such that the Cauchy completions of µF and νF coincide. And the coalgebra structure of
νF is determined by the algebra structure ι of µF : it is the unique continuous extension of
ι−1 to νF . This complements the above result of Barr [8].

2 Algebraically Cocomplete Categories

For a number of categories K we prove that the full subcategory K≤λ on objects of power at
most λ is algebraically cocomplete. Power is a cardinal we introduce as follows:

I Definition 2. An object is called connected if it is non-initial and is not a coproduct of
two non-initial objects. An object is said to have power λ if it is a coproduct of λ connected
objects, but not of less than λ ones.

I Example 3. In Set, connected objects are the singleton sets, and power of a set X is
its cardinality |X|. In the category K-Vec of vector spaces over a field K the connected
spaces are those of dimension one, and power means dimension. In the category SetS of
many-sorted sets the connected objects are those with precisely one element (in all sorts
together), and the power of X = (Xs)s∈S is simply |

∐
s∈S

Xs|. A nominal set is connected in

the category Nom of nominal sets and equivariant maps iff it consists of a single orbit.

I Definition 4. A category K is said to have width w(K) if it has coproducts, every object
is a coproduct of connected objects, and w(K) is the smallest cardinal such that
(a) K has at most w(K) connected objects up to isomorphism, and
(b) given an object K of power α ≥ w(K), all quotients of K have power at most α, and

there exist at most α morphisms from a connected object to K.

J. Adámek 12:3

I Example 5.
(1) Set has width 1. More generally, SetS has width |S|. Indeed, in Example 3 we have seen

that the number of connected objects up to isomorphism is |S|, and (b) clearly holds.
(2) K-Vec has width |K|+ ℵ0. Indeed, the only connected object, up to isomorphism, is

K. For a space X of dimension α the number of morphisms from K to X is |X|. If K
is infinite, then α ≥ |K| implies |X| = α (and |K| = |K|+ ℵ0). For K finite, the least
cardinal λ such that |X| ≤ α holds for every α-dimensional spaces X with α ≥ λ is ℵ0
(= |K|+ ℵ0).

(3) The category Nom of nominal sets has width ℵ0.
(4) For every nontrivial finite group G the category G-Set of sets with an action of the

group has width ℵ0. For infinite groups the width of G-Set is at most λ if 2|G| ≤ λ.
For the proof of (3) and (4) see the Appendix.

We now present some technical results serving for the proof of Theorem 13 below. The
following lemma is based on ideas of Trnková [14].

I Lemma 6. Let a commutative square

A
a1

~~}}}}}}}}
a2

 AAAAAAAA

B1

b1 AAAAAAAA B2

b2~~}}}}}}}}

B

be given in a category A. This is an absolute pullback, i.e., a pullback preserved by all
functors with domain A, provided that (1) b1 and b2 are split monomorphisms, and (2) there
exist morphisms b̄1 : B → B1 and ā2 : B2 → A satisfying

b̄1b1 = id , ā2a2 = id, and a1ā2 = b̄1b2. (2.1)

Proof. The given square is a pullback since given a commutative square

b1c1 = b2c2 for ci : C → Bi

there exists a unique c with ci = ai · c (i = 1, 2). Uniqueness is clear since a2 is split monic.
Put c = ā2 · c2. Then c1 = a1c follows from b1 being monic:

b1c1 = b1b̄1b1c1 b̄1b1 = id
= b1b̄1b2c2 b1c1 = b2c2

= b1a1ā2c2 b̄1b2 = a1ā2

= b1a1c c = ā2c2

And c2 = a2c follows from b2 being monic:

b2c2 = b1c1

= b1a1c c1 = a1c

= b2a2c b1a1 = b2a2

For every functor F with domain A the image of the given square satisfies the analogous
conditions: Fb1 and Fb2 are split monomorphisms and F b̄1, F ā2 verify (2.1). Thus, the
image is an (absolute) pullback, too. J

CALCO 2019

12:4 On Terminal Coalgebras Derived from Initial Algebras

I Corollary 7 (See [14]). Every set functor preserves nonempty finite intersections.

Indeed if A in Lemma 6 is nonempty, choose an element t ∈ A and define b̄1 and ā2 by

b̄1(x) =
{
y if b1(y) = x

a1(t) if x /∈ b1[B1]

and

ā2(x) =
{
y if a2(y) = x

t if x /∈ a2[A]

It is easy to see that (2.1) holds.

I Remark 8.
(a) We recall that for an infinite cardinal λ the cofinality is the smallest cardinal µ such

that λ is a join of a µ-chain of smaller cardinals. And λ is regular if it is equal to its
cofinality. The first non-regular cardinal is ℵω =

∨
n<ω ℵn .

(b) For a set X of infinite cardinality λ a collection of subsets of cardinality λ is called almost
disjoint if the intersection of arbitrary two distinct members has cardinality smaller than
λ.
Tarski [13] proved that for every set X of infinite regular cardinality λ there exists an
almost disjoint collection Yi ⊆ X (i ∈ I) with |I| > λ. The argument is quite simple.
Using the Maximality Principle (also known as Zorn’s Lemma), we see that a maximum
almost disjoint collection exists on X. Assuming that it has at most λ members, we
derive a contradiction. We can index that collection by ordinals i < λ. Given an almost
disjoint collection (Yi)i<λ, the following sets Zi = Yi −

⋃
j<i Yj for i < λ are clearly

pairwise disjoint and, since λ is reguar, they have cardinality λ. We can find a choice set
Z∗ ⊆ X. From |Z∗ ∩ Zi| = 1 it follows that |Z∗ ∩ Yi| < λ for every i < λ, thus, we can
add Z∗ to the given collection. This contradicts the maximality.

(c) Given an element t ∈ X there exists a maximum almost disjoint collection Yi, i ∈ I,
with t ∈ Yi for all i ∈ I. Indeed, take any maximum collection (Yi)i∈I and use Yi ∪ {t}
instead of Yi (for i ∈ I).

I Notation 9. Let K be a category of width w(K). For every infinite cardinal λ > w(K) we
denote by K≤λ the full subcategory of K on objects of power at most λ.

Our main technical tool is the following

I Proposition 10. Let F be an endofunctor of K≤λ and X =
∐
i∈I

Xi an object of K with

all Xi connected and |I| = λ. Every morphism b : B → FX, with B of power less than λ,
factorizes through Fc for a coproduct injection c : C → X where C =

∐
j∈J

Xj and |J | < λ.

The proof can be found in the Appendix.

I Proposition 11. Let λ be an uncountable regular cardinal. Every coalgebra for an endo-
functor of K≤λ is a colimit of a λ-filtered diagram of coalgebras on objects of powers smaller
than λ.

J. Adámek 12:5

Proof. Let β : B → FB be a coalgebra. Express B =
∐
i∈I

Bi where Bi are connected and

|I| = λ (the case |I| < λ is trival). For every set J ⊆ I with |J | < λ we are going to prove
that there exists a set J ⊆ J ′ ⊆ I with |J ′| < λ such that the summand

uJ′ : BJ′ =
∐
i∈J′

Bi → B

carries a subcoalgebra. That is, there exists βJ′ : BJ′ → FBJ′ for which uJ′ is a homomorph-
ism. This proves the proposition: the diagram of all subcoalgebras of (B, β) on summands of
less than λ components is clearly λ-filtered. And its canonical colimit is (B, β). This follows
from the fact that colimits of coalgebras are formed on the level of the underlying category.

For every set J ⊆ I with |J | < λ we are to present a set J ⊆ J ′ ⊆ I with |J ′| < λ such that
βj′ exists. Put J ′ =

⋃
n<ω Jn for the following ω-chain of sets Jn ⊆ I with |Jn| < λ. First,

J0 = J . Given Jn, define Jn+1 as follows. For every subset L ⊆ J denote by uL :
∐
i∈L

Bi → B

the coproduct injection. Given j ∈ Jn, apply Proposition 10 to X = B and

b = Bj
u{j}−−−−→ B

β−−→ FB.

There exists a set L(j) ⊆ J with |L(j)| < λ such that the morphism β ·u{j} factorizes through
FuL(j). Consequently, for the set Ln =

⋃
j∈Jn L(j) we see that β · uJn factorizes through

FuLn . That is, there exists a morphism βn :
∐
i∈Jn

Bi →
∐
i∈Ln

Bi with FuLn · βn = β · uJn .

Define Jn+1 = Jn ∪ Ln , then |Jn+1| < λ+
∐
j∈J

λ ≤ λ+ λ2 = λ.

Thus, for the union J ′ =
⋃
Jn we get |J ′| < λ because λ is uncountable and regular, there-

fore |
∐
n<ω

Jn| < λ. And uJ′ carries the following subcoalgebra βJ′ :
∐
j∈J′

Bj → F
(∐
j∈J′

Bj
)
:

Given j ∈ J ′ let n be the least number with j ∈ Jn. Denote by w : Bj →
∐
i∈Jn

Bi and

v :
∐
i∈Ln

Bi →
∐
j∈J′

Bj the coproduct injections. Then the j-th component of β′ is the following

composite

Bj
w−→
∐
i∈Jn

Bi
βn−−→ F

(∐
i∈Ln

Bi
) Fv−−→ F

(∐
i∈J′

B
)

To prove that the following square

∐
j∈J′

Bj
βJ′ //

uJ′

��

F
(∐
j∈J′

Bj
)

FuJ′

��∐
i∈I

Bi
β

// F
(∐
i∈I
Bi
)

commutes, consider the components for j ∈ J ′ separately. The upper passage yields, since
uJ′ · v = uLn :

∐
i∈Ln

Bi →
∐
i∈I
Bi, the result

FuJ′ · (Fv · βn · w) = FuLn · βn · w = β · uJn · w .

The lower passage yields the same result. J

CALCO 2019

12:6 On Terminal Coalgebras Derived from Initial Algebras

I Remark 12.
(a) Every ordinal α is considered as the set of all smaller ordinals. In particular ℵ0 is the

set of all natural numbers, and ℵ1 the set of all countable ordinals.
(b) For cardinals λ and µ the power λµ is cardinality of the set of all functions from µ to λ.
(c) If an infinite cardinal λ has cofinality µ, then λµ > λ, see [10], Corollary 1.6.4.
(d) Recall the General Continuum Hypothesis (GCH) which states that for every infinite

cardinal λ the successor cardinal is 2λ.

Under GCH every infinite regular cardinal λ fulfils λµ = λ for all cardinals 1 ≤ µ < λ .

See Theorem 1.6.17 in [10].

I Theorem 13. Assume GCH. If K is a cocomplete and cowellpowered category of width
w(K), then K≤λ is algebraically cocomplete for all uncountable regular cardinals λ > w(K).

Proof. Let F be an endofunctor of K≤λ. Form a collection ai : Ai → FAi (i ∈ I) representing
all coalgebras of F on objects of power less than λ (up to isomorphism of coalgebras). We
have |I| ≤ λ . Indeed, for every cardinal n < λ let In ⊆ I be the subset of all i with Ai having
power n. Given i ∈ In, for every component b : B → Ai of Ai we know, since λ > w(K), that
there are at most λ morphisms from B to FAi (recalling that FAi has power at most λ), see
(b) in Definition 4. Thus there are at most n · λ = λ morphisms from Ai to FAi. And the
number of objects Ai with n components is at most w(K)n < λn = λ (see Remark 12(d)).
Thus, there are at most λ indexes in In. Since I =

⋃
n<λ

In, this proves |I| ≤ λ2 = λ.

Consequently A =
∐
i∈I

Ai is an object of K≤λ. We have the coalgebra structure α : A→

FA of a coproduct of (Ai, αi) in CoalgF . Let e : A → T be the wide pushout of all
homomorphisms in CoalgF with domain (A,α) carried by epimorphisms of K. Since K is
cocomplete and cowellpowered, and since the forgetful functor from CoalgF to K creates
colimits, this means that we form the corresponding pushout in K and get a unique coalgebra
structure τ : T → FT making e a homomorphism:∐

Ai
α //

e

��

F (
∐
Ai)

Fe

��
T

τ
// FT

The power of T is at most λ since T is a quotient of A, see (b) in Definition 4. We are going
to prove that (T, τ) is a terminal coalgebra.

For every coalgebra β : B → FB with B having power less than λ there exists a unique
homomorphism into (T, τ). Indeed, the existence is clear: compose the isomorphism that
exists from (B, β) to some (Ai, αi) , the i-th coproduct injection of (A,α) and the above
homomorphism e. To prove uniqueness, observe that by definition of (T, τ), this coalgebra has
no nontrivial quotient: every homomorphism with domain (T, τ) whose underlying morphism
is epic in K is invertible. Given homommorphisms u, v : (B, β)→ (T, τ)

B
β //

v

��
u

��

FB

Fu
��
Fv
��

T
τ //

q

��

FT

Fq

��
Q //___ FQ

J. Adámek 12:7

form their coequalizer q : T → Q in K. Then Q carries the structure of a coalgebra making q
a homomorphism. Thus, q is invertible, proving u = v.

From Proposition 11 we deduce that the same holds for all coalgebras, thus (T, τ) is
terminal. J

3 Algebraically Complete Categories

All the concrete categories proved to be algebraically cocomplete above turn out to be
algebraically complete, too. Moreover, General Continuum Hypothesis need not be assumed
for this result.
I Remark 14. In this remark we assume that, for a given ordinal λ, all (co)limits mentioned
below exist. We denote by 0 the intial object and by 1 the terminal one.
(a) Recall from [1] the initial-algebra λ-chain of an endofunctor F : its objects F i0 for all

ordinals i ≤ λ+ 1 and its connecting morphisms wij : F i0→ F j0 for all i ≤ j ≤ λ+ 1
are defined by transfinite recursion as follows: F 00 = 0, F i+10 = F (F i0), and F j0 =
colim
i<j

F i0 for limit ordinals j ≤ λ. Analogously: w01 : 0→ F0 is unique, wi+1,j+1 = Fwij ,
and wij (i < j) is a colimit cocone for every limit ordinal j ≤ λ.

(b) The initial-algebra chain converges at λ if the connecting map wλ,λ+1 is invertible. In
that case we get the initial-algebra

µF = Fλ0

with the algebra structure ι = w−1
λ,λ+1

(c) In particular, if F preserves colimits of λ-chains for a limit ordinal λ, then µF = Fλ0.
(d) Dually, the terminal-coalgebra λ-chain has objects F i1 (for i ≤ λ + 1) with F 01 = 1,

F i+11 = F (F i1) and F j1 = lim
i<j

F i0 for limit ordinals j ≤ λ. Its connecting morphisms

are denoted by vij (i ≥ j). If F preserves limits of λop-chains, then νF = Fλ1. This was
explicitly formulated by Barr [8].

(e) We say that a set functor F preserves inclusion if given a subset Y of X, then FY is a
subset of FX, and for the inclusion map i : Y → X also Fi is the inclusion map . It
follows that F preserves monomorphisms.

For every set functor F there exists a set functor G preserving inclusion and having the
same initial-algebra chain as F for all infinite ordinals. Moreover, F and G coincide on all
nonempty sets and functions and if F∅ 6= ∅, then G∅ 6= ∅. See [7, Theorem III.4.5] and[4,
Remark 3]. We call G the Trnková hull of F .
I Remark 15. Let λ be an infinite regular cardinal. We recall from [6] that an object A of a
category K is called λ-presentable if its hom-functor K(A,−) preserves λ-filtered colimits.
This means that if a λ-filtered diagram D has a colimit cocone bi : Bi → X(i ∈ I), then
for every morphism a : A→ X (i) a factorization through bi exists for some i ∈ I and (ii)
given two factorizations u, v : A → Bi with a = bi · u = bi · v, some connecting morphism
d : Bi → Bj of D fulfils d · u = d · v.

A category K is called locally λ-presentable if it is cocomplete and has a small full
subcategory D consisting of λ-presentable objects whose closure under λ-filtered colimits
is all of K. This implies that every object X is a canonical colimit of the diagram of all
morphisms a : A→ X with A ∈ D. More precisely, of the λ-filtered diagram

DX : D
/
X → D , DX(A, a) = A .

In the case λ = ℵ0 we speak about locally finitely presentable categories.

CALCO 2019

12:8 On Terminal Coalgebras Derived from Initial Algebras

I Definition 16 (See [5]). A strictly locally λ-presentable category is a locally λ-presentable
category in which every morphism b : B → A with B λ-presentable has a factorization
b = b′ · f · b for some morphisms b′ : B′ → A and f : A→ B′ with B′ also λ-presentable.

I Examples 17 (See [5]).
(a) The categories Set, K-Vec and G-Set, where G is a finite group, are strictly locally

finitely presentable.
(b) Nom is strictly locally ℵ1-presentable.
(c) SetS is strictly locally λ-presentable for infinite λ > |S|.
(d) Given an infinite group G, the category G-Set is strictly locally λ-presentable if λ > 2|G|.

I Definition 18. A category K has strict width w(K) if it has width w(K), coproduct
injections are monic, and every connected object is λ-presentable for λ = w(K) + ℵ0.

I Example 19.
(1) The category SetS has strict width |S|+ ℵ0, since connected objects (see Example 3)

are finitely presentable.
(2) K-Vec has strict width |K|+ ℵ0: the only connected object K is finitely presentable.
(3) G-Set has strict width at most 2|G| + ℵ0.
(4) Nom has strict width ℵ0.

I Lemma 20. If a category has strict width w(K), then for every infinite regular cardinal
λ ≥ w(K) its λ-presentable objects are precisely those of power less than λ.

Proof. If X is λ-presentable and X =
∐
i∈I

Xi with connected objects Xi, then in case

card I < λ we have nothing to prove. And if card I ≥ λ, form the λ-filtered diagram of
all coproducts

∐
j∈J

Xj where J ranges over subsets of I with card J < λ. Since K(X,−)

preserves this colimit, there exists a factorization of idX through one of the colimit injections
v :

∐
j∈J

Xj →
∐
i∈I

Xi. Now v is monic (by the definition of strict width) and split epic, hence

it is an isomorphism. Thus, X '
∐
j∈J

Xj has power at most card J < λ.

Conversely, if X has power less than λ, then it is λ-presentable because every coproduct
of less than λ objects which are λ-presentable is λ-presentable. J

I Remark 21. In every locally λ-presentable category K all hom-functors of λ-presentable
objects collectively reflect λ-filtered colimits. That is, given a λ-filtered diagram D with
objects Di (i ∈ I), then a cocone ci : Di → C of D is a colimit iff for every λ-presentable
object Y the following holds: (i) every morphism f : Y → C factorizes through some ci
and (ii) given two such factorizations u, v : Y → C, ci · u = ci · v, there exists a connecting
morphism d : Di → Dj of D with d · u = d · v. This is proved for λ = ℵ0 in [5, Lemma 2.7],
the general case is completely analogous.

I Theorem 22. Let K be a strictly locally α-presentable category with a strict width. Then
K≤λ is algebraically complete for every cardinal λ ≥ max(α,w(K)).

Proof. Following Remark 14, it is sufficient to prove that K≤λ has colimits of i-chains for all
limit ordinals i ≤ λ, and every endofunctor of K≤λ preserves colimits of λ-chains.

(1) K≤λ has for every limit ordinal i ≤ λ colimits of i-chains (Bj)j<i. In fact, let X be the
colimit of that chain in K, then we verify that X has power at most λ. Indeed, each Bj
is a coproduct of at most λ connected objects, thus,

∐
j<i

Bj is a coproduct of at most

i · λ = λ connected objects. The same holds for X, since it is a quotient of
∐
j<i

Bj .

J. Adámek 12:9

(2) For every endofunctor F of K≤λ and every λ-chain Bi (i < λ) in K≤ we prove that F
preserves the colimit

X = colim
i∈I

Bi (with cocone bi : Bi → X, i < λ).

Let us choose a small subcategory D of K as in Remark 15. We verify that the functor
B : λ → D

/
X given by i 7→ (Bi, bi) is cofinal, i.e., for every object (A, a) of D

/
X (a)

there exists a morphism of D
/
X into some (Bi, bi) and (b) given a pair of morphisms u,

v : (A, a) → (Bi, bi), there exists j ≥ i with u and v merged by the connecting morphism
bij : Bi → Bj of our chain. Indeed, since A is λ-presentable, the morphism a : A→ colim

i<λ
Bi

factorizes through bi for some i < λ. And since u, v above fulfil bi · u = bi · v (= a), some
connecting morphism bij also merges u and v, see Remark 15.

Consequently, in order to prove that F preserves the colimit X = colimBi, it is sufficient
to verify that it preserves the colimit of the codomain restriction D′X : D

/
X → K≤ of DX

(see Remark 15). Indeed, since B : λ→ D
/
X is cofinal, the colimits of the diagrams F ·D′X

and (FBi)i<λ coincide. We apply Remark 21 and verify the conditions (i) and (ii) for the
cocone Fa : FA → FX of F · DX (in K). Thus FX = colimF · DX in K which implies
FX = colimFD′X in K≤λ.

Ad (i) Given a morphism f : Y → FX with Y λ-presentable, then Y has power less than
λ, thus, by Proposition 10 there exists a coproduct injection c : C → X with C λ-presentable
such that f factorizes through Fc (which is a member of our cocone).

Ad (ii) Let u, v : Y → FA, with A λ-presentable, fulfil Fa · u = Fa · v. We are to find a
connecting morphism

h : (A, a)→ (B, b) in D
/
X with Fh · u = Fh · v.

By the strictness of K, since A is λ-presentable, for a : A → X there exist morphisms
b : B → X and f : X → B with B λ-presentable and a = b · f · a. It is sufficient to put
h = f · a : A→ B . Then h is a morphism of D/X since b · h = a, and Fa · u = Fb · v implies
Fh · u = Fh · v, as desired. J

I Example 23.
(1) For every uncountable regular cardinal λ the category Set≤λ is algebraically complete

(by Theorem 22) and, assuming GCH, algebraically cocomplete (by Theorem 13). The
former was already proved in [3], Example 14, using an entirely different method.

(2) The category Set≤ℵ0 of countable sets is algebraically complete, but not algebraically
cocomplete. Indeed, the restriction Pf of the finite power-set functor to it does not have
a terminal coalgebra. Assuming that a (countable) terminal coalgebra T is given, we find
a contradiction as follows. For every subset A of N denote by CA the tree with root rA
obtained from an infinite path by adding, for every number n ∈ A, a leaf of height n+ 1.
These trees are, as coalgebras for Pf , clearly pairwise non-bisimilar. Consequently, the
unique homomorphisms hA : CA → T have the property that the elements hA(rA) are
pairwise distinct. This is the desired contradiction: T is countable, but the number of
all A’s is uncountable.

I Example 24. Let λ be an uncountable regular cardinal. The following categories are
algebraically complete and, assuming GCH, algebraically cocomplete:
(a) SetS≤λ whenever λ > |S|,
(b) K-Vec≤λ whenever λ > |K|,

CALCO 2019

12:10 On Terminal Coalgebras Derived from Initial Algebras

(c) Nom≤λ whenever λ > ℵ1, and
(d) G-Set≤λ for groups G with λ > 2|G|.

This follows from Theorems 13 and 22.

4 Terminal Coalgebras Derived from Initial Algebras

In this section we prove that a set functor F with a non-empty initial algebra of regular
cardinality λ (see Remark 12) has a terminal coalgebra of the same cardinality λ – with one
exception: λ = ℵ0. We first formulate a fixed-point theorem.

A fixed point of an endofunctor F is an object X isomorphic to FX.

I Theorem 25 (The Fixed-Point Theorem). Assume GCH. A set functor with a nonempty fixed
point of a finite or regular uncountable cardinality λ has a terminal coalgebra of cardinality
at most λ.

Proof.
(1) Without loss of generality we can assume F∅ = ∅. Indeed, otherwise we prove the

theorem for the Trnková hull G, see Remark 14. The terminal coalgebras for F and G
are the same.
F restricts to an endofunctor F0 of Set≤λ. Indeed, if A is a fixed point with |A| = λ

, then every object Y 6= ∅ of Set≤λ is a split subobject of A, hence, FY is a split
subobject of FA, proving that |FY | ≤ |FA| = λ . We know from Theorem 13 that F0 has
a terminal coalgebra. We prove that this is also terminal for F . For that, it is sufficient
to prove every coalgebra for F is a colimit of coalgebras for F0 in CoalgF .

(2) Suppose that λ is finite. Then we verify that the terminal coalgebra is obtained as the
limit of the following ωop-chain

1 !←− F1 F !←−−− F 21 F 21←−−−− · · ·

Indeed, since by (1) we have |Fn1| ≤ λ for all n, there exists k ≤ λ such that some
infinite set A ⊆ N fulfils |Fn1| = k for every n ∈ A . Observe that the connecting
maps of our chain are all epic. Hence, given n ≥ m in A, the connecting map from Fn1
to Fm1 is invertible: it is monic due to |Fn1| = |Fm1|. Thus, the limit of the cofinal
subchain Fn1 (n ∈ A) is absolute, since this subchain consists of isomorphisms. Hence,
the original chain also has an absolute limit. This implies by Remark 14(d), that lim

n<ω
Fn1

is a terminal coalgebra of F . It has k ≤ λ elements.
(3) From now on we assume that λ is uncountable. For every coalgebra α : A → FA and

every subset b : B ↪→ A with |B| < λ a subset b′ : B′ ↪→ A exists which contains b, fulfils
|B′| < λ, and carries the structure β′ : B′ → FB′ of a subcoalgebra (i.e., b′ : (B′, β′)→
(A,α) is a coalgebra homomorphism). This is proved precisely as Proposition 11. It then
follows that the diagram of all subcoalgebras of (A,α) on less then λ elements (and all
coalgebra homomorphisms carried by inclusion maps) has the canonical λ-filtered colimit
(A,α) in CoalgF . Indeed, the forgetful functor U from CoalgF to Set creates colimits,
and A is (in Set) a canonical λ-filtered colimit of all subsets of less than λ elements. The
subdiagram of all subalgebras of less than λ elements is cofinal in the above diagram,
hence, it also has the canonical colimit A. And U creates that colimit. J

J. Adámek 12:11

I Example 26. None of the assumptions of the Fixed-Point Theorem can be left out, as we
now demonstrate.

(1) Assuming the negation of the Continuum Hypothesis, i.e. ℵ1 < 2ℵ0 , we present a set
functor F with the fixed point ℵ1 (the set of all countable ordinals) which has no terminal
coalgebra. Define F on objects by

FX = X × ℵ1 + {Y ⊆ X; |Y | > ℵ1 or Y = ∅} .

For every morphism f : X → X ′ the left-hand summand of Ff is f × idℵ1 , and the
right-hand one is given by Ff(∅) = ∅ andFf(Y) = f [Y] if f restricted to Y is monic,
else ∅.
Then ℵ1 is a fixed point of F : Fℵ1 = ℵ1 ×ℵ1 + {∅} ∼= ℵ1. But assuming that a terminal
coalgebra τ : νF → F (νF) exists, we derive a contradiction. It is clear that every fixed
point of F has power ℵ1, thus |νF | = ℵ1.
For every function ϕ : N → ℵ1 define a coalgebra Aϕ = (N, αϕ) for F as follows: αϕ
maps n to the element (n+ 1, ϕ(n)) of the left-hand summand of FX. We have a unique
coalgebra homomorphism hϕ : Aϕ → νF . Since τ · hϕ = Fhϕ · αϕ, for every n ∈ N we
get

τ
(
hϕ(n)

)
= Fhϕ

(
n+ 1, ϕ(n)

)
=
(
hϕ(n+ 1), ϕ(n)

)
. (4.1)

We conclude that the elements hϕ(0) ∈ νF for all ϕ : N→ ℵ1 are pairwise distinct:
assuming hϕ(0) = hϕ′(0), we prove ϕ = ϕ′ . Indeed, it is sufficient to verify that
hϕ(n) = hϕ′(n) by induction on n. This is trivial, the induction hypothesis yields, due
to (4.1),

(
hϕ(n+ 1), ϕ(n)

)
=
(
hϕ′(n+ 1), ϕ′(n)

)
, and the left-hand components prove

hϕ(n+ 1) = hϕ′(n+ 1).
This is a desired contradiction: all elements hϕ(0) ∈ T form a set of power at most
|T | = ℵ1, but all ϕ : N→ ℵ1 form a set of power |ℵN1 | ≥ 2ℵ0 > ℵ1.

(2) For the non-regular uncountable cardinal ℵω =
∨
n<ω ℵn we present a set functor F

with the fixed point ℵω not having a terminal coalgebra. Since by Remark 12(b) we
have |ℵNω| > ℵω, this is completely analogous to the preceding example: put FX =
X × ℵω + {Y ⊆ X; |Y | > ℵω or Y = ∅} .

(3) The Fixed-Point Theorem does not hold for ℵ0, see Example 1.

I Theorem 27 (The Terminal-Coalgebra Therorem). Assume GCH. If a set functor F has
a nonempty initial algebra of a finite or regular uncountable cardinality, then it also has a
terminal coalgebra of the same cardinality. Shortly:

µF ' νF .

Proof. In [7], Theorem 3.10, it is proved that the existence of µF implies that the initial-
algebra chain F i0 (i ∈ Ord), see Remark 14, converges, thus µF = F ρ0 for some ordinal ρ.
Without loss of generality we assume ρ ≥ ω. Put λ = |µF |.

By the Fixed-Point Theorem we have a terminal coalgebra τ : T → FT with |T | ≤ λ. The
algebra (T, τ−1) yields, as proved in [1], a unique cocone αi : F i0→ T of the initial-algebra
chain satisfying αi+1 = τ−1 · Fαi for every ordinal i. To prove |T | ≥ λ, we verify that αi is
monic for all ordinals i ≥ ω. Thus |T | ≥ |F i0| for all i, proving |T | ≥ |F ρ0| = λ.

Let F preserve monomorphisms. Then all αi (i ∈ Ord) are monic. This is easily seen by
transfinite induction, since α0 : ∅ → A is monic, and αi+1 = τ−1 · Fαi is monic whenever
αi is.

CALCO 2019

12:12 On Terminal Coalgebras Derived from Initial Algebras

For a functor F not preserving monomorphisms we have F∅ 6= ∅, since all nonempty
monomorphisms split. We apply the result of Remark 14(e) that the Trnková hull is a
monic-preserving set functor G which coincides with F on all nonempty sets (and functions)
and whose initial-algebra chain is, from the ordinal ω onwards, the same as that for F . Thus,
µG ' µF . We also have νG ' νF since, due to F∅ 6= ∅ 6= G∅, F and G have the same
coalgebras. J

I Example 28.
(a) For set functors with countable initial algebras nothing can be deduced about the

terminal coalgebras. As we have seen in Example 1, νF need not exist. And for
every infinite cardinal λ there exists a set functor with a terminal coalgebra such that
|µF | = ℵ0 and |νF | > λ . Define F as the following subfunctor of the functor of
Example 1:

FX = PfX + {M ⊆ X;ℵ0 < |M | ≤ λ} .

This functor has a terminal coalgebra because it preserves colimits of λ+-chains (see
Remark 14). And νF is uncountable. Indeed, Pf has an uncountable terminal coalgebra:
the argument is as in Example 23(2). Since Pf is a subfunctor of F , the terminal-
coalgebra chain of Pf is also a subfunctor of the terminal-coalgebra chain of F , from
which we conlcude |νPf | ≤ |νF |.
Furthermore, µF ∼= µPf is countable. And for every uncountable fixed point X ' FX
we clearly have X ' {M ⊆ X; |M | = λ}, therefore |X| = |X|λ from which it follows, by
Remark 12, that |X| > λ. Hence, |νF | > λ.

(b) For many-sorted sets the Terminal-Coalgebra Theorem does not hold. Indeed, given
any cardinal λ there is an endofunctor F of Set×Set that fulfils: µF exists and has λ
elements, but νF does not exist. Put

F (X,Y) =
{

(∅, λ) if X = ∅,
(X,λ+ PY) else.

Given a morphism (f, g) : (X,Y)→ (X ′, Y ′) withX nonempty, put F (f, g) = (f, id+Pg).
It is easy to see that the initial algebra of F is (∅, λ). If F would have a terminal coalgebra
νF = (A,B), then A = ∅ (since otherwise (A,B) is not a fixed point of F). But for
any coalgebra α : (X,Y)→ (X,λ+ PY), with X 6= ∅, no morphism into (∅, B) exists, a
contradiction.

(c) Moreover, for every pair λµ ≤ λν of infinite cardinals there exists an endofunctor F of
Set×Set with µF of λµ elements and νF of λν elements. On objects put F (X,Y) =
(∅, λµ) if X = ∅, else (1, λµ) To every morphism F assigns the (obvious) inclusion map.

Both the initial-algebra chain and the terminal-coalgebra chain converge in one step and
yield µF = (∅, λµ) and νF = (1, λν) .

5 Finitary Set Functors

In the preceding section we have established, for some set functors F , an isomorphism
µF ' νF. But that concerned only the underlying sets! In the generality of that section,
nothing can be derived about the relationship of the algebra structure ι : F (µF)→ µF and
the coalgebra structure τ : νF → F (νF). For finitary set functors F (i.e., those preserving
filtered colimits) with F∅ 6= ∅ we can say more. Firstly, µF and νF exist, and µF (considered
as a coalgebra via ι−1) is a subcoalgebra of νF . Second, there is a canonical ultrametric on
νF , such that for the metric subspace µF we prove that

J. Adámek 12:13

(a) µF and νF share the same Cauchy completion,
and

(b) ι determines τ as the unique continuous extension of ι−1.

This generalizes the result of Barr [8] that, in case F moreover preserves limits of
ωop-chains, νF is the Cauchy completion of µF .

I Proposition 29 (µF as a subcoalgebra of νF). If a set functor F has a terminal coalgebra,
then it also has an initial algebra carried by a subset µF ⊆ νF such that the inclusion map
m : µF ↪→ νF is the unique coalgebra homomorphism, i.e., τ ·m = Fm · ι−1.

Proof.
(1) Assume first that F preserves monomorphisms. There exists a unique cocone of the

initial-algebra chain with codomain νF , mi : F i0→ νF (i ∈ Ord) determined by the
condition below:

mi+1 ≡ F (F i0) Fmi−−−−→ F (νF) τ−1

−−−−→ νF (i ∈ Ord) .

Easy transfinite induction verifies that mi is monic for every i. Since νF has only a set
of subobjects, there exists an ordinal λ such that all mi with i ≥ λ represent the same
subobject. Thus the commutative triangle below

Wλ

wλ,λ+1 //

mλ !!DDDDDDDD FWλ

mλ+1||xxxxxxxx

νF

implies that wλ,λ+1 is invertible. Consequently, the following algebra

F (Fλ0)
w−1
λ,λ+1−−−−−−→ Fλ0

is initial, see Remark 14.
For the monomorphism mλ : Fλ0→ νF put

µF = mλ[Fλ0] ⊆ νF .

Choose an isomorphism r : µF → Fλ0 such that m = mλ · r : µF → νF is the inclusion
map. Then there exists a unique algebra structure ι : F (µF) → µF for which r is an
isomorphism of algebras:

r : (µF, ι) ∼−−→ (Fλ0, w−1
λ,λ+1) .

The following commutative diagram

µF
ι−1

//

r

��

F (µF)

Fr

��
Fλ0

wλ,λ+1 //

mλ

��

F (Fλ0)

mλ+1

xxqqqqqqqqqqqqqqqq

Fmλ

��
νF

τ
// F (νF)

proves that m = mλ · r is the unique coalgebra homomorphism, as required.

CALCO 2019

12:14 On Terminal Coalgebras Derived from Initial Algebras

(2) Let F not preserve monomorphisms. Therefore F∅ 6= ∅. Our proposition holds for
the Trnková hull G of Remark 14(e). Since F and G agree an all nonempty sets and
F∅ 6= ∅ 6= G∅, they have the same terminal coalgebras. Since the initial algebra of
G is, as we have just seen, obtained via the initial-algebra chain, and F has from ω

onwards the same initial-algebra chain, F and G have the same initial algebras. Thus,
our proposition holds for F too. J

The fact that every set functor with a terminal coalgebra has an initial algebra was proved
in [15]. Our proof above uses ideas of that paper.

Next we recall the behaviour of the terminal-coalgebra chain, see Remark 14, for finitary
set functors:

I Theorem 30 (Worrell [16]). For every finitary set functor F the terminal-coalgebra chain
converges at ω + ω: νF = Fω+ω1. Moreover, every connecting morphism vi,ω (i ≥ ω) is
monic.

I Remark 31.
(a) Consequently, νF is a canonical subset of Fω1 = lim

n<ω
Fn1. And this endows νF with

a canonical ultrametric, as our next lemma explains. Recall that a metric d is called
an ultrametric if for all elements x, y, z the triangle inequality can be strengthened to
d(x, z) ≤ max(d(x, y), d(y, z)).

(b) For every set functor F there exists a unique morphism ū : Fω0→ Fω1 with ū · wn,ω =
vω,n · Fn1 (where ! : 0→ 1 is unique). See [2], Lemma 2.4.

(c) The homomorphism m of Proposition 29 fulfils ū = vω+ω,ω ·m.
Indeed, since F is finitary, we have µF = Fω0 and ι = w−1

ω,ω+1. Thus m being a coalgebra
homomorphism states precisely that

v−1
ω+ω+1,ω+1 ·m = Fm · wω,ω+1

or, m = vω+ω+1,ω+ω ·Fm·wω,ω+1. The squares defining ū in Remark 31(b) thus commute
when ū is substituted by vω+ω,ω ·m (= vω+ω+1,ω · Fm · wω,ω+1). That is, we claim that

vω,n
[
vω+ω+1,ω · Fm · wω,ω+1

)
· wn,ω = Fn!

This is clear for n = 0. If this holds for n, i.e., if

vω+ω+1,n · Fm · wn,ω+1 = Fn! ,

then it also holds for n+ 1: just apply F to that equation. Thus, ū = vω+ω ·m.

I Lemma 32. Every limit L of an ωop-chain in Set carries a complete ultrametric: assign
to t 6= s in L the distance 2−n where n is the least natural number with pn(t) 6= pn(s) for the
limit projections pn.

Proof. Let ln : L→ An (n ∈ N) be a limit cone. For the above function

d(x, y) = 2−n

where ln(x) 6= ln(y) and n is the least such number we see that d is symmetric. It satisfies
the ultrametric inequality

d(x, z) ≤ max
(
d(x, y), d(y, z)

)
for all x, y, z ∈ L .

J. Adámek 12:15

This is obvious if the three elements are not pairwise distinct. If they are, the inequality
follows from the fact that if ln separates two elements, then so do all lm with m ≥ n.

It remains to prove that the space Fω1 is complete. Given a Cauchy sequence xr ∈ L
(r ∈ N), for every k ∈ N there exists r(k) ∈ N with

d(xr(k), xn) < 2−k for every n ≥ r(k) .

Choose r(k)’s to form an increasing sequence. Then d(xr(k), xr(k+1)) < 2−k, i.e., lk(xr(k)) =
lk(xr(k+1)). Therefore, the elements yk = lk(xr(k)) are compatible: we have ak+1(yk+1) = yk
for all k ∈ N. Consequently, there exists a unique y ∈ L with lk(y) = yk for all k ∈ N. That
is, d(y, xr(k)) < 2−k. Thus, y is the desired limit:

y = lim
k→∞

xr(k) implies y = lim
n→∞

xn . J

We conclude that for a finitary set functor both νF and µF carry a canonical ultrametric:
νF as a subspace of Fω1 via vω+ω,ω : νF → Fω1, and µF as a subspace of νF via m.
Or, equivalently, a subspace of Fω1 via ū, see Remark 31. Given t 6= s in νF we have
d(t, s) = 2−n for the least n ∈ N with vω+ω,n(t) 6= vω+ω,n(s).

I Notation 33. Given a finitary set functor F with F∅ 6= ∅, choose an element p : 1→ F∅.
This defines the following morphisms for every n ∈ N:

en = ū · wn+1,ω · Fnp : Fn1→ Fω1.

We also put rn = en · vω,n : Fω1→ Fω1.

I Observation 34. Denote by! : ∅ → 1 the unique map. For every n ∈ N we have
(a) vn,n+1 · Fn+1! · Fnp = idFn1.

This is obvious for n = 0. The induction step just applies F to the given square.
(b) vω,n · en = idFn1 . Indeed, in the following diagram

Fn1 Fnp // Fn+10
wn+1,ω //

Fn+1!

((PPPPPPPPPPPP Fω0 ū // Fω1

vω,n

��

vω,n+1wwooooooooooo

Fn+11
vn+1,n

''PPPPPPPPPPPP

Fn1 Fn1

the upper right-hand part commutes by the definition of ū, see Remark 31(b), the
left-hand one does by (a), and the lower right-hand triangle is clear.

(c) vω,n · rn = vω,n . This follows from (b): precompose it with vω,n.

I Theorem 35. For a finitary set functor F with F∅ 6= ∅ the Cauchy completions of the
ultrametric spaces µF and νF coincide. And the algebra structure ι determines the coalgebra
structure τ as the unique continuous extension of ι−1.

Proof.
(1) Assume first that F preserves inclusion, see Remark 14(e).

(a) We prove that the subset ū = vω+ω,ω · m : µF → Fω1 of Remark 31(b) is dense
in Fω1, thus, the complete space Fω1 is a Cauchy completion of both ū[µF] and
vω+ω,ω[νF].

CALCO 2019

12:16 On Terminal Coalgebras Derived from Initial Algebras

For every x ∈ Fω1 the sequence rn(x) lies in the image of en · vω,n which, in view of
the definition of en, is a subset of the image of ū. And we have x = limn→∞ rn(x)
because Observation 34 (c) yields vω,n(x) = vω,n(rn(x)). Thus d

(
x, rn(x)

)
<

2−n for all n ∈ N.
(b) We have ultrametric subspaces µF and νF of Fω1, hence, the bijections

F (µF) ι−−→ µF and νF
τ−−→ F (νF)

make also F (µF) and F (νF) ultrametric spaces. The continuous map ι−1 has at
most one continuous extension to νF , since µF is dense in νF (even in Fω1). And
τ is such an extension: it is not only continuous, it is an isometry. And it extends
ι−1 by Proposition 29: choose an inclusion map m with τ ·m = Fm · ι−1. Since Fm
is an inclusion map, τ is an extension of ι−1.

(2) Once we have established (a) and (b) for inclusion-preserving finitary functors, it holds
for all finitary functors F . Indeed, use the Trnková hull G that agrees with F on all
nonempty set and functions with G∅ 6= ∅ provided that F∅ 6= ∅ , see Remark 14(e).
Consequently, the coalgebras for F and G coincide. And the initial-algebra chains
coincide for infinite ordinals, in particular Fω0 = Gω0, that is, F and G have the same
initial algebra. J

I Example 36.
(1) For the set functor FX = X × Σ + 1 (of dynamic systems with inputs from Σ and

deadlock states) the terminal coalgebra is obtained in ω steps, since F preserves limits
of ωop-sequences. It can be described as the coalgebra νF = Σ∞ of all finite and infinite
words over Σ. The distance of distinct words u and v is 2−n for the largest n such that
u and v have the same prefix of length n.
The initial algebra Σ∗ is dense in Σ∞: every infinite word is the limit of the sequence of
its finite prefixes. The algebra structure ι : Σ∗ × Σ + 1→ Σ∗ is given by concatenation
on the left-hand summand, and the empty word on the right-hand one. Its inverse
has a unique continuous extension to Σ∞ assigning to every nonempty word u the pair
(head(u), tail(u)). This is indeed the coalgebra structure of νF .

(2) For the finite power-set functor Pf the initial algebra can be described as µPf =
all finite extensional trees (where trees are considered up to isomorphism), see [16].
Recall that a tree is called extensional if for every node x the maximum subtrees of x are
pairwise non-isomorphic. And it is called strongly extensional if it has no nontrivial tree
bisimulation; for finite trees these two concepts are equivalent. Worrell proved in [16]
that the terminal coalgebra νPf consists of all finitely branching strongly extensional
trees, whereas Pωf consists of all strongly extensional trees. The metric on Pωf 1 assigns
to trees t 6= s the distance d(t, s) = 2−n, where n is the least number with ∂nt 6= ∂ns.
Here ∂nt is the extensional tree obtained from t by cutting it at level n and forming the
extensional quotient of the resulting tree.

The algebraic structure ι : Pf (µPf)→ Pf assigns to a set {t1, . . . , tn} of finite trees the
tree-tupling (consisting of a new root and n maximum subtrees t1, . . . , tn). The coalgebraic
structure τ : νPf → Pf (νPf) assigns to a tree t ∈ νPf the finite set of its maximum subtrees.
This is indeed a continuous extension of ι−1.

6 Conclusions and Open problems

Whereas a set functor is known to have an initial algebra iff it has a fixed point, for terminal
coalgebras fixed points are not sufficient in general. However, we have proved that a non-
empty fixed point of a finite or regular cardinality λ implies that a terminal coalgebra exists

J. Adámek 12:17

and has at most λ elements – with a single exception, λ = ℵ0. From this fixed-point result we
have derived that every set functor F with a nonempty initial algebra µF whose cardinality
is finite or regular uncountable has a terminal coalgebra νF ∼= µF .

We have also presented a number of categories that are algebraically complete and
cocomplete, i.e., every endofunctor has a terminal coalgebra and an initial algebra. Examples
include (for sufficiently large regular cardinals λ) the category Set≤λ of sets of power at
most λ, Nom≤λ of nominal sets of power at most λ, K-Vec≤λ of vector spaces of dimension
at most λ, and G-Set≤λ of G-sets (where G is a group) of power at most λ.

All these results assumed the General Continuum Hypothesis. It is an open question
what could be proved without this assumption. Another question is whether the above
relationship νF ∼= µF can, under suitable side conditions, be proved for more general base
categories than Set.

For finitary set functors F with F∅ 6= ∅ we have presented a sharper result: both µF and
νF carry a canonical ultrametric and these two spaces have the same Cauchy completion.
Moreover, by inverting the algebra structure of µF we obtain the coalgebra structure of νF
as the unique continuous extension.

References

1 J. Adámek. Free algebras and automata realizations in the language of categories. Comment.
Math. Univ. Carolinae, 15:589–602, 1974.

2 J. Adámek. Final coalgebras are ideal completions of initial algebras. J. Logic Comput.,
12:217–242, 2002.

3 J. Adámek and V. Koubek. Least fixed point of a functor. J. Comput. System Sciences,
19:163–168, 1979.

4 J. Adámek and V. Koubek. On the greatest fixed point of a set functor. Theoret. Comput.
Sci., 150:57–75, 1995.

5 J. Adámek, S. Milius, L. Sousa, and T. Wissmann. On finitary functors and finitely presentable
algebras. CoRR, 2019. arXiv:1902.05788.

6 J. Adámek and J. Rosický. Locally presentable and accessible categoreis. Cambridge University
Press, 1994.

7 J. Adámek and V. Trnková. Automata and Algebras in Categories. Kluwer Acad. Publ.,
London, 1990.

8 M. Barr. Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci., 114:299–315,
1993.

9 P. Freyd. Algebraically complete categories. Lecture Notes in Math., 1488:95–104, 1970.
10 T. Jech. Set theory. Academic Press, 1978.
11 J. Rutten. Universal coalgebra. Theoret. Comput. Sci., 249:3–80, 2000.
12 M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equations.

SIAM J. Comput., 11:761–788, 1982.
13 A. Tarski. Sur la de composition des ensembles en sous-ensembles prèsque disjoint. Fund.

Math., 14:205–2015, 1929.
14 V. Trnková. On descriptive classification of set-functors I., II. Comment. Math. Univ. Carolinae,

12:143–175 and 345–357, 1971.
15 V. Trnková, J. Adámek, V. Koubek, and J. Reiterman. Free algebras, input processes and

free monads. Comment. Math. Univ. Carolinae, 15:589–602, 1974.
16 J. Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci., 338:184–199,

2005.

CALCO 2019

12:18 On Terminal Coalgebras Derived from Initial Algebras

A Full proofs

PROOF OF EXAMPLES 5 (3) and (4).
(1) For 5(4) recall that objects of G-Set are pairs (X, ·) where X is a set and · is a function

from G×X to X such that

h(gx) = (hg)x for h, g ∈ G and x ∈ X ,

and

ex = x for x ∈ X (e neutral in G) .

An important example is given by any equivalence relation ∼ on G which is equivariant,
i.e., fulfils

g ∼ g′ ⇒ hg ∼ hg′ for all g, g′, h ∈ G .

Then the quotient set G/ ∼ is a G-set (of equivalence classes [g]) w.r.t. the action
g[h] = [gh]. This G-set is clearly connected.

(2) Let (X, ·) be a G-set. For every element x ∈ X we obtain a subobject of (X, ·) on the set

Gx = {gx; g ∈ G} (the orbit of x) .

The equivalence on G given by

g ∼ g′ iff gx = g′x

is equivariant, and the G-sets Gx and G/∼ are isomorphic. Moreover, two orbits are
disjoint or equal: given gx = hy, then x = (g−1h)y, thus, Gx = Gy.

(3) Every object (X, ·) is a coproduct of at most |X| connected objects: if X0 is a choice
class of the equivalence x ≡ y iff Gx = Gy, then

X =
∐
x∈X0

Gx .

(4) The number of connected objects, up to isomorphism, is at most 2|G| + ℵ0. Indeed, it
follows from the above that the connected objects are represented by precisely all G/∼
where ∼ is an equivariant equivalence relation. If |G| = β then we have at most ββ
equivalence relations. For β infinite, this is equal to 2|G|, for β finite, this is smaller than
2|G| + ℵ0.

(5) The number of morphisms from G/∼ to an object (X, ·) is at most |X| ≤ max(α, 2|G|+ℵ0)
where α = |X0| in (3) above. Indeed, every morphism p is determined by the value
x0 = p([e]) since p([g]) = p(g[e]) = g · x0 holds for all [g] ∈ G/∼.

(6) Finally, for 5(3)the proof is completely analogous: in (2) each orbit Sf (A)
/
∼ ' Sf (A)x is

a nominal set. And the number of all such orbits up to isomorphism is ℵ0, see Lemma A1
in [5]. In (5) we have |X| ≤ α · ℵ0 = α for all α ≥ ℵ0. J

PROOF OF PROPOSITION 10. It is sufficient to prove this in case X has power precisely
λ (otherwise put c = idX). And we can assume that B is connected. In the general case we
have B =

∐
k∈K

Bk with |K| < λ, and find for each k a summand ck : Ck → X corresponding

to the k-th component of b. Then we let c : C → X be the least summand containing each
ck. (C has power less than λ since each Ck does and |K| < λ.)

J. Adámek 12:19

Since λ > w(K), in the coproduct of λ connected objects representing X at least one,
say R, must appear λ times. Thus X has the form

X =
∐
λ

R+X0

for objects R and X0, with R connected. Let X̄0 be the coproduct of the same components
as in X0, but each taken precisely once. Thus

(a) X̄0 has power at most w(K), and
(b) we have a coproduct injection

m : X̄0 → X0

which has an (obvious) splitting

m̂ : X0 → X̄0 , m̂ ·m = id .

Put

Y =
∐
λ

R+ X̄0

and for every set M ⊆ λ put

YM =
∐
M

R+ X̄0 .

(c) By Remark 8(b) we can choose t ∈ λ and an almost disjoint collection of sets Mk ⊆ λ,
k ∈ K, with

t ∈Mk , |Mk| = λ and |K| > λ .

Consider the following square of coproduct injections for any pair k, l ∈ K:

YMl∩Mk

ak

zzuuuuuuuuu
al

$$HHHHHHHHH

YMk

bk $$IIIIIIIIII
YMl

blzzuuuuuuuuuu

Y

This is an absolute pullback. Indeed, it obviously commutes. And bk and bl are split
monomorphisms: define

b̄k : Y → YMk

as identity on the summand X̄0, whereas the i-th copy of R is sent to copy i, if i ∈Mk, and
to copy t else. Then

b̄kbk = id .

Analogously for bl. Next define

āl : YMl
→ YMk∩Ml

CALCO 2019

12:20 On Terminal Coalgebras Derived from Initial Algebras

as identity on the summand X̄0, whereas the i-th copy of R is sent to copy i, if i ∈Mk, and
to copy t else. Then clearly

ākal = id and akāl = b̄kbl .

Thus, the above square is an absolute pullback by Lemma 6.

(d) We are ready to prove that for a connected object B every morphism

b : B → FX

has the required factorization. For every k ∈ K since |Mk| = λ we have an isomorphism

yk : Y =
∐
λ

R+ X̄0 −→
∐
Mk

R+ X̄0 = YMk

which composed with bk : YMk
→ Yλ yields an endomorphism

zk = bk · yk : Y → Y .

We use (b) above and precompose zk with m̃ = id +m̂ : X → Y to get the following morphisms

B
b−−→ FX

Fm̃−−−→ FY
Fzk−−−−→ FY (k ∈ K) .

They are not pairwise distinct because |K| > λ, whereas FY has at most λ components
(since F is an endofunctor of K≤λ) so that (b) in Definition 4 implies that K(B,FY) has
cardinality at most λ. Choose k 6= l in K with

Fzk · Fm̃ · b = Fzl · Fm̃ · b . (A.1)

Compare the pullbacks Z of zk and zl and YMk∩Ml
of bk and bl:

Z

p

���
�
�
�

pk

}}||||||||||||
pl

!!BBBBBBBBBBBB

Y

yk

��

YMk∩Ml

ak

~~|||||||||||
al

 AAAAAAAAAAA
Y

yl

��
YMk

bk

!!BBBBBBBBBBB
YMl

bl

~~|||||||||||

Yλ

Since yk and yl are isomorphisms, the connecting morphism p between the above pullbacks is
an isomorphism, too. We know that |Mk ∩Ml| < λ since Mk, Ml are of our almost disjoint
family, thus the object

C = YMk∩Ml
=

∐
Mk∩Ml

R+ X̄0

has less than λ summands, as required. And, due to (c), the pullback of zk and zl is absolute.
The equality (A.1) thus implies that Fm̃ · b factorizes through Fpk:

J. Adámek 12:21

B

h

���
�

�
�

�
�

�
�

�
�

b

��
FX

Fm̃

��
FZ

Fpk

// FY

F [id +m]

OO

Fzk //
Fzl

// FY

Consequently, from m̂m = id we obtain

b = Fm̃ · Fpk · h = Fm̃ · Fpk · Fp−1 · Fp · h .

Thus, for the coproduct injection

c ≡ m̃ · pk · p−1 : C → X ,

we get the desired factorization b = Fc · (Fp · h). J

CALCO 2019

Coinductive Resumption Monads: Guarded
Iterative and Guarded Elgot
Paul Blain Levy
University of Birmingham, UK
P.B.Levy@cs.bham.ac.uk

Sergey Goncharov
FAU Erlangen-Nürnberg, Germany
Sergey.Goncharov@fau.de

Abstract
We introduce a new notion of “guarded Elgot monad”, that is a monad equipped with a form of
iteration. It requires every guarded morphism to have a specified fixpoint, and classical equational
laws of iteration to be satisfied. This notion includes Elgot monads, but also further examples of
partial non-unique iteration, emerging in the semantics of processes under infinite trace equivalence.

We recall the construction of the “coinductive resumption monad” from a monad and endofunctor,
that is used for modelling programs up to bisimilarity. We characterize this construction via a
universal property: if the given monad is guarded Elgot, then the coinductive resumption monad is
the guarded Elgot monad that freely extends it by the given endofunctor.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Axiomatic semantics

Keywords and phrases Guarded iteration, guarded monads, coalgebraic resumptions

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.13

Funding Sergey Goncharov: Support by Deutsche Forschungsgemeinschaft (DFG) under project
GO 2161/1-2 is gratefully acknowledged.

1 Introduction

The study of monads for effects has developed in numerous directions since it was initiated
in [18]. We make two contributions to this research area. Firstly we give a new notion of
“guarded Elgot monad” – a monad equipped with a form of iteration – that includes a variety
of examples. Secondly, we give a universal property for one of these examples, the so-called
“coinductive resumption monad”. We shall explain these contributions separately.

1.1 Monads and Iteration
Monads. Let us recall the basic ideas of monads for effects, where the base category is Set.
A monad T on Set, presented in “Kleisli triple” form, consists of three things.

For each set X, a set TX, of which an element represents a “computation” that may
perform various computational effects and may return an element of X.
For each set X, a map ηX : X → TX. For x ∈ X, the image ηX(x) represents a “pure
computation” that just returns x.
For any map f : X → TY , we have a map f? : TX → TY . For p ∈ TX, the image
f?(p) represents a “sequenced computation” that first executes p and then, if this returns
x ∈ X, proceeds to execute f(x) ∈ TY .

These must satisfy three equations, as described in [18]. A map X → TY is called a Kleisli
map, and these form the Kleisli category, denoted Kl(T). It inherits coproducts from Set.

© Paul Blain Levy and Sergey Goncharov;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 13; pp. 13:1–13:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0864-1876
mailto:P.B.Levy@cs.bham.ac.uk
https://orcid.org/0000-0001-6924-8766
mailto:Sergey.Goncharov@fau.de
https://doi.org/10.4230/LIPIcs.CALCO.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

Monads for printing. We give (in outline) some example monads for computations that
print characters. Let A be an alphabet, i.e. a set of characters. We write A? (resp. Aω, A6ω)
for the set of finite sequences (resp. infinite sequences, finite and infinite sequences). Here
are our examples.

The monad X 7→ A? ×X represents computations that print several characters and then
return a value.
The monad X 7→ A? ×X +A6ω represents such computations, but also computations
that continue forever and never return. The latter includes computations that print
finitely many characters and then diverge (i.e. hang), and also computations that print
infinitely many characters.
The monad X 7→ A? ×X + Aω represents computations that may return or continue
forever, but in the latter case are required to be “productive”, i.e. keep printing.

For our next series of examples, write P+X for the set of nonempty subsets of X. The
following are monads for nondeterministic printing computations.

X 7→ P+(A? ×X)
X 7→ P+(A? ×X +A6ω)
X 7→ P+(A? ×X +Aω)

A nondeterministic printing computation has terminating traces in A?×X, divergences in A?
and infinite traces in Aω. (A similar arrangement has been used in CSP semantics [21].)
The above monads identify computations that are infinite trace equivalent, i.e. that have the
same terminating traces, divergences and infinite traces.

Iterative computations. Given a Kleisli map f : X → Y + X, we would like to form a
Kleisli map f† : X → Y where, for x ∈ X, the image f†(x) represents the following “iterative
computation”. First it executes f(x) ∈ T (Y + X). That may return inl y, in which case
the iterative computation returns y, or it may return inr x′, in which case the computation
represented by f(x′) ∈ T (Y +X) is executed, and so forth. Can we form f† for our example
monads?

For the monad X 7→ A?×X +A6ω, we can form f†, since the monad is able to represent
infinite computations.
For the monad X 7→ P+(A? ×X +A6ω), f† is formed analogously.
For the monad X 7→ A? ×X +Aω, we can form f†, provided f is guarded. That means
that for all x ∈ X, the image f(x) ∈ A? × (X + Y) + Aω is not of the form inl(ε, inlx′)
for some x′ ∈ X. This condition ensures that f†(x) represents a productive computation,
because an iterative call is possible only after at least one character has been printed.
For the monad P+(A? × X + Aω), f† is formed analogously. Here the guardedness
requirement is that, for all x ∈ X, the image f(x) ∈ P+(A? × (X + Y) +Aω) does not
contain inl(ε, inr x′) for any x′ ∈ X.

These four examples motivate the first contribution of the paper, viz. the notion of a guarded
Elgot monad. This consists of a monad on a co-Cartesian category C (i.e. category with
finite coproducts), equipped with two additional structures. Firstly a guardedness predicate,
that tells us when a Kleisli map f : X → Y + Z is guarded in the right summand. When
this condition holds, we write f : X → Y 〉〉Z. Secondly, a guarded Conway operator that
associates to each map f : X → Y 〉〉X a Kleisli map f† : X → Y . Each of these structures

P.B. Levy and S. Goncharov 13:3

guarded Elgot

Elgot guarded iterative

ω-continuous completely iterative

Figure 1 Connections between classes of monads with iteration.

must satisfy some conditions that we shall stipulate. In particular, for f : X → Y 〉〉X, we
require f† to be a fixpoint of f , i.e. a Kleisli map g : X → Y such that

X Y +X

Y

g

f

[id,g]

commutes in the Kleisli category.
Although the above four examples are all guarded Elgot monads, they are significantly

different.
The guarded Elgot monads X 7→ A?×X +A6ω and X 7→ P+(A?×X +A6ω) are special
because every Kleisli map f : X → Y +Z is deemed to be guarded in the right summand.
So, for every Kleisli map f : X → Y + X, we can form f†. We call these simply Elgot
monads. (They are called “complete Elgot monads” in [7].)
The guarded Elgot monad X 7→ A? ×X +Aω is special because, for each map f : X →
Y 〉〉X, the map f† is the unique fixpoint of f . We call this a guarded iterative monad [10].
For A 6=, the guarded Elgot monad X 7→ P+(A? ×X +Aω) is neither Elgot nor guarded
iterative. (This is proved in Example 20(5) below). So it illustrates the need for the new,
more general notion of guarded Elgot monad.

As noted in [10], every monad can be regarded as guarded iterative, by saying that a
Kleisli map f : X → Y + Z is “vacuously” guarded in the right summand when it factorizes
via inr : Z → Y + Z.

1.2 Resumption Monads
Let us write µγ.Fγ for an initial algebra of F , and νγ.Fγ for a final coalgebra. We note the
following.

The set A? ×X can be written µγ.(X +Hγ), where H is the endofunctor Y 7→ A× Y .
The set A? ×X +Aω can be written νγ.(X +Hγ).
The set A? ×X +A6ω can be written νγ.Maybe(X +Hγ), where Maybe Y def= Y + 1.

More generally, given a monad T and endofunctor H on a co-Cartesian category C, we form
two monads:

the inductive resumption monad Tµ
H sending X 7→ µγ. T (X +Hγ), provided these initial

algebras exist [6]
the coinductive resumption monad Tν

H sending X 7→ νγ. T (X +Hγ), provided these final
coalgebras exist [20].

CALCO 2019

13:4 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

For example, with C = Set, let T be the countable nonempty powerset monad and let
H : Y 7→ A × Y . Then these monads represent countably nondeterministic printing com-
putations modulo bisimilarity. Here, the difference between Tµ

H and Tν
H is that the former

represents only computations that eventually return a value, whereas the latter represents
also computations that continue forever (but are productive).

For another class of examples, let (B(a))a∈A be a “signature”, i.e. family of sets, and
let H be the endofunctor Y 7→

∑
a∈A Y

B(a). Again let T be the countable nonempty
powerset monad. In this case the monads Tµ

H and Tν
H represent countably nondeterministic

computations that perform I/O. Such a computation can print an element a ∈ A and then
pause; if the user then enters an element of B(a), the computation resumes. This is the
reason for the name “resumption monad”. The printing example is the special case where
B(a) is singleton for all a ∈ A.

As the above examples illustrate, these monads provide a natural way of combining an
endofunctor (representing I/O) with a monad (representing other effects, e.g. nondeterminism).
So one may ask of each monad: can it be characterized via a universal property?

This has been done for Tµ
H in [15]. We recall this result, but present it a little differently,

using the notion of free extension (defined in full generality in Definition 2 below).

1.3 Free Extensions
To explain the notion of free extension, we give a well-known example: the polynomial ring
R[X0, X1]. This is the free extension of the ring R by the set {0, 1}. That means that we
have a function and ring homomorphism

{0, 1} R[X0, X1] R
X−

(here X− reads as a map sending i ∈ {0, 1} to Xi) that are universal: for any function and
ring homomorphism

{0, 1} S R
g h

there is a unique mediating homomorphism

{0, 1} R[X0, X1] R

S

X−

g h

We can now describe the result of [14] as follows: the monad Tµ
H is a free extension of T

by H. This means that we have a natural transformation and monad morphism

H Tµ
H Tβ ρ

that are universal.
The second contribution of this paper is the following analogous result. If T is a guarded

Elgot monad, then Tν
H is also guarded Elgot, and moreover it is the free extension, among

guarded Elgot monads, of T by H. This means that – in a suitable sense we shall define –
we have a guarded natural transformation and guarded Elgot monad morphism

H Tν
H Tβ ρ

that are universal. This in turn gives a universal property for the two special cases simply
by varying the notion of guardedness in which our result is parametric.

P.B. Levy and S. Goncharov 13:5

If T is Elgot, then Tν
H is Elgot, and therefore it is the free extension, among Elgot monads,

of T by H. This result appeared (with a considerably more complex proof) in [9].
If T is guarded iterative (as noted above, any monad can be so regarded), then Tν

H is
guarded iterative [10], and therefore it is the free extension, among guarded iterative
monads, of T by H. A similar result – using “two-sided ideals” rather than guardedness
predicates – was given in [19, Corollary 4.6], generalizing [16].

In general, a free extension of an initial object is a free object. (This is Proposition 4 below.)
For example, the ring Z of integers is initial among all rings, so Z[X0, X1] is a free ring on
the set {0, 1}. This gives some more special cases.

The identity monad is initial among all monads. So IdµH is a free monad on H.
The identity monad is initial among all guarded iterative monads, and among all guarded
Elgot monads. So IdνH is a free guarded iterative monad, and a free guarded Elgot monad,
on H. With H = Id this yields Capretta’s delay monad νγ. -- +γ used for modeling
partiality in intensional type theory [5].
On Set, the Maybe monad is initial among all Elgot monads. This is true, more generally,
on any hyperextensive category [1]. So MaybeνH is a free completely Elgot monad on H.
This was previously shown in [9].

It is also worth noting that free extensions can also be described as coproducts with free
objects. (This is Proposition 5 below). For example, the free extension of a ring R by the set
{0, 1} can be described as the coproduct of R and the free ring on {0, 1}. This formulation
is used in [14, 13, 19, 9] and indeed we provide a coproduct characterization in this style
in Corollary 29 below. We take the view, however, the characterization in terms of free
extensions is more primitive, since it does not require the free object to exist.

2 Preliminaries

In this paper we work in co-Cartesian categories, which are categories with finite coproducts.
We fix selected coproduct co-spans X inl−→ X+Y inr←−− Y and initial objects 0 with [] : 0→ X

denoting the initial morphisms. We do not generally assume extensiveness, in particular, the
injections inl and inr need not be monic.

In a category C, we denote by |C| the associated class of objects and by C(X,Y) the set of
morphisms from X to Y . We occasionally omit indexes at natural transformation components
to improve readability. For a functor F : C → C, we denote by (νF, out : νF → FνF)
the final F -coalgebra. Whenever possible, we use bold letters, e.g. T, for monads, to
emphasize the distinction with the underlying functor T . A monad T over C induces
a Kleisli category Kl(T) with |Kl(T)| = |C| and Kl(T)(X,Y) = C(X,TY). We make
free use of the well-known fact that for a co-Cartesian C and a monad T on C, the Kleisli
category Kl(T) is again co-Cartesian with the coproduct co-spans X η inl−−→ T (X+Y) η inr←−−− Y

and [(T inl)f, (T inr)g] : X+Y → T (X ′+Y ′) being the coproduct of morphisms f : X → TX ′

and g : Y → TY ′.
Unless stated otherwise, all diagrams we present are supposed to commute.

3 Free Extensions

We recall the following standard notion, see e.g. [3, Section 7.7].

I Definition 1 (Bimodules). For categories C and D, a bimodule O : C |→D consists of the
following data:

a family of sets (O(X,Y))X∈|C|,Y ∈|D|, where g ∈ O(X,Y) is called an O-morphism
g : X → Y ;

CALCO 2019

13:6 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

each g : X → Y can be composed with a C-map f : X ′ → X or D-map h : Y → Y ′.
For g : X → Y , f ′ : X ′′ → X ′, f : X ′ → X, h′ : Y ′ → Y ′′, h : Y → Y ′ we must have the
following:

g idX = g (h′ h)g = h′ (h g) h (g f) = (h g) f
idY g = g g (f f ′) = (g f) f ′

For example: the bimodule Set → Ring in which O(X,Y) is the set of functions from
the set X to the ring Y . This bimodule can be seen as arising from the forgetful functor
Ring→ Set.

Bimodules C |→D correspond to functors Cop×D → Set. They are also called distributors
or profunctors (but some authors reverse the direction). For the rest of the section, let
O : C |→D be a bimodule.

I Definition 2 (Free Extensions). Let A ∈ |C| and B ∈ |D|. A free extension of B by A
consists of V ∈ |D| and e : A→ V and f : B → V , such that, for all X ∈ |D| and g : A→ X

and h : B → X, there is a unique k : V → X such that

A V B

X

e

g k

f

h

I Definition 3 (Free Objects). Let A ∈ |C|. A free object on A consists of V ∈ |D| and
e : A→ V , such that, for all X ∈ |D| and g : A→ X, there is a unique k : V → X such that

A V

X

e

g k

I Proposition 4. Let 0D be an initial object in D. For any A ∈ |C|, a free object on A

corresponds to a free extension of 0D by A. The bijection sends (V , e) to

A V 0D.e []

I Proposition 5. Let A ∈ |C| and B ∈ |D|. Let (W,d) be a free object on A. Then a
coproduct of W and B corresponds to a free extension of B by A. The bijection sends (V , e, f)
to

A W V B.d e f

4 Guardedness on Monads

In this section, let K be a co-Cartesian category. The typical example is K = Kl(T), where T
is a monad on a co-Cartesian category C.

4.1 Guardedness Predicates
The following notion is slightly adapted from [10].

P.B. Levy and S. Goncharov 13:7

I Definition 6 (Guardedness, Guarded Monads). A guardedness predicate on K provides
for all objects X,Y, Z a subset K•(X,Y, Z) ⊆ K(X,Y + Z). We write f : X → Y 〉〉Z for
f ∈ K•(X,Y, Z) and say that f is guarded (in the right summand). The following conditions
are required:

(trv) f : X → Y

inlf : X → Y 〉〉Z
(par) f : X → V 〉〉W g : Y → V 〉〉W

[f, g] : X + Y → V 〉〉W

(cmp) f : X → Y 〉〉Z g : Y → V 〉〉W h : Z → V +W

[g, h]f : X → V 〉〉W

A category equipped with a guardedness predicate is called guarded category. A monad T
on C is a guarded monad if K = Kl(T) is a guarded category under the coproducts inherited
from C.

We write “let f : X → Y 〉〉Z” as an abbreviation for “let f be a map X → Y + Z be a map
such that f : X → Y 〉〉Z”.

Intuitively, a morphism f : X → Y 〉〉Z represents a program flow with inputs in X and
outputs in Y and in Z, where the latter part of the output is guarded in the sense that every
portion of the program flow from X to Z runs through a guard. The notion of guard here is
implicit and depends on the specific model. The axioms of guardedness abstractly capture
properties of guards: (trv) states that if all the output goes to Y then f : X → Y + Z is
(vacuously) guarded in Z; (par) states that guardedness jointly depends on all inputs; finally,
(cmp) states that if the program flow branches then every branch leading to the guarded
output must hit a guard at least once, specifically, h : Z → V +W need not be guarded in
W , because h receives the input from f , which ensures guarded already.

The distinction between Definition 6 and the corresponding definition in [10] is precisely
determined by the choice of the notion of coproduct: in op. cit. coproducts are treated up to
isomorphisms, while here we work with selected coproducts. The original axiomatization of
guardedness additionally involved a weakening rule, which turned out to be derivable from
the above three [8]. Let us summarize this and other consequences of the axioms. We will
need the following convention.

I Notation 7. Let us use the notation f : X → Y 〉〉Y1 〉〉 . . . 〉〉Yn, for f : X → (. . . (Y + Y1) +
. . .) + Yn meaning that σ f : X → Y 〉〉Y1 + . . . + Yn where σ is the obvious associativity
isomorphism (. . . (Y + Y1) + . . .) + Yn → Y + (Y1 + (. . .+ Yn) . . .).

I Proposition 8. Let K be a guarded category.
1. For all objects V,W ∈ |K|, we have [] : 0→ V 〉〉W .
2. Let f : X → Y 〉〉Z. For u : X ′ → X and g : Y → Y ′ and h : Z → Z ′ we have

(g + h)fu : X ′ → Y ′ 〉〉Z ′.
3. (Weakening) If f : X → Y 〉〉Z 〉〉W then f : X → Y + Z 〉〉W .
It is often useful to speak of guardedness in particular summands:

we say that f : X → Y + Z is inr-guarded if f : X → Y 〉〉Z;
we say that f : X → Y + Z is inl-guarded if X f−→ Y + Z ∼= Z + Y is inr-guarded;
we say that f : X → Y is id-guarded if X f−→ Y ∼= 0 + Y is inr-guarded.

Two guardedness predicates are especially important.

CALCO 2019

13:8 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

I Proposition 9 (Greatest and Least Guardedness Predicates).
1. The greatest guardedness predicate on K says that, for every map f : X → Y + Z, we

have f : X → Y 〉〉Z.
2. The least guardedness predicate on K says that, for f : X → Y + Z, f : X → Y 〉〉Z iff

there is a map g : X → Y such that f factors as X g−→ Y
inl−→ Y + Z (such g need not be

unique, since it does not follow from our running premises that coproduct injections are
monic).

We say that K is totally guarded when equipped with the largest guardedness predicate, and
vacuously guarded when equipped with the smallest.

I Example 10. Here are some examples of guardedness predicates for K = Kl(T) with T
being a monad on Set.
1. Let T be the following monad: T∅ = ∅ and TX = 1 if X 6= ∅, under vacuous guardedness.

Now, the unique morphism 1→ T (1 + 1) = 1 is inl-guarded and inr-guarded, because it
factors through 1 = T1 T inr−−−→ T (1 + 1) = 1 and through 1 = T1 T inl−−→ T (1 + 1) = 1. But
1→ T (1 + 1) = 1 does not factor through ∅ = T∅ T []−−→ T (1 + 1) = 1, and hence it is not
id-guarded. This example show that guardedness in two summands does not necessarily
imply guardedness in their union.

2. Let P+ be the non-empty powerset monad. For f : X → P+(Y + Z), say f : X → Y 〉〉Z
when for every x ∈ X, the set f(x) contains at least one element of the form inl y.

3. Let D+ be the countable probability distribution monad:

D+X =
{
d : X → [0, 1] |

∑
d = 1

}
.

We put f : X → Y 〉〉Z if for every x ∈ X, f(x)(inl y) > 0 for at least one y ∈ Y .
4. For a set A, let TX = A? ×X be a writer monad whose monad structure is induced by

the monoid structure of A?. For f : X → A? × (Y + Z), say f : X → Y 〉〉Z when, for
every x ∈ X, if f(x) = (m, inr z) then m 6= ε.

5. Following Section 1.1, let A be again an arbitrary set and let TX = P+(A? ×X +Aω).
This yields a monad for nondeterministic programs that print characters in A, giving
semantics that records the (successful) finite and infinite traces. The monad structure
is obtained from the fact that A? is a monoid and Aω is a left A?-module. For f : X →
P+(A? × (Y + Z) + Aω), say f : X → Y 〉〉Z when, for every x ∈ X, if (m, inr z) ∈ f(x)
then m 6= ε. Intuitively, as in the previous example, a program denoting f is prohibited
from returning a value through Z without first printing a character.

I Definition 11 (Guarded Natural Transformations and Monad Morphisms).
1. Let T and S be guarded monads on C. A monad morphism ρ : T→ S is guarded when the

functor Kl(ρ) : Kl(T)→ Kl(S) preserves guardedness. Explicitly: for f : X → T (Y + Z),
if f : X → Y 〉〉Z in Kl(T) then X f−→ T (Y + Z) ρY+Z−−−−→ S(Y + Z) is guarded X → Y 〉〉Z
in Kl(S).

2. Let H be an endofunctor and T a guarded monad on C. A natural transformation
σ : H → T is guarded when for all X ∈ |C|, σX : HX → TX is id-guarded.

4.2 Guarded Iteration
We now consider when guarded morphisms can be iterated in the sense of Section 1.1. The
most straightforward case is the following:

P.B. Levy and S. Goncharov 13:9

I Definition 12 (Guarded Iterative Categories). K is guarded iterative if every f : X → Y 〉〉X
has a unique fixpoint f† : X → Y of the map [id, --] f : K(X,Y)→ K(X,Y).

I Lemma 13. In any guarded category, if f : X → Y 〉〉Z 〉〉X and g : X → Y is a fixpoint of
[id, --] f then g : X → Y 〉〉Z.

I Definition 14 (Conway Iteration). A guarded Conway (iteration) operator on K associates
to each f : X → Y 〉〉X a fixpoint f† : X → Y of the map [id, --] f , satisfying the following
principles:

naturality: for f : X → Y 〉〉X and g : Y → Z we have ((g + id)f)† = gf†;
dinaturality: ([inl, h] g)† = [id, ([inl, g]h)†] g for g : X → Y 〉〉Z and h : Z → Y 〉〉X or
g : X → Y + Z and h : Z → Y 〉〉X;
codiagonal: ([id, inr] f)† = f†† for f : X → Y 〉〉X 〉〉X.

Note that in the codiagonal equation, f†† must exist by Lemma 13.
I Remark 15. Guarded Conway operators are direct generalizations of standard (total)
Conway operators [2, 22], which arise under the total notion of guardedness. It was observed
by Hyland and Hasegawa [12, 11] that Conway operators are equivalent to monoidal trace
operators under ⊗ = + (modulo the duality of + and ×). The connection between Conway
operators and traces extends to a connection between guarded Conway operators and guarded
traces [8]. In the total case, it is known that the axioms of Conway operators are incomplete
wrt nontrivial models of iteration, e.g. the category of pointed complete partial orders [22].
This led Bloom and Ésik to completing the axiomatization of iteration by an infinite set of
axioms called commutative identities [2]. These identities are instance of a single versatile
quasi-equational uniformity principle, which holds true in all non-pathological models.
Let J : C → K be a functor, where C and K are guarded and have the same objects, and J is
identity-on-objects and strictly preserves co-Cartesian structure.

I Definition 16 (Uniformity). A guarded Conway operator −† on K is uniform (wrt J) when
for K-maps f : X → Y 〉〉X and g : Z → Y 〉〉Z and C-map h : Z → X,

Z Y + Z

X Y +X

g

Jh Y+Jh
f

⇒
Z Y

X

g†

Jh
f†

I Proposition 17. [10] An operation sending every f ∈ K•(X,Y, Z) to a fixpoint f† ∈
K(X,Y) is guarded Conway uniform iff it satisfies naturality, codiagonal and uniformity. In
other words, dinaturality is derivable.

I Proposition 18. Let K be guarded iterative. Then f 7→ f† is a guarded Conway operator
and uniform wrt IdK.

Proof. Except for uniformity wrt IdK, the proof is in [10, Theorem 17]. Let us verify the
missing case of uniformity. Suppose that f (Jh) = J(id + h) g for suitable f , g and h. Now,
[id, f†(Jh)] g = [id, f†] J(id + h)g = [id, f†] fJh, meaning that f†(Jh) satisfies the fixpoint
equation for g†. Therefore, f†(Jh) = g†. J

I Definition 19. Let T be a guarded monad, i.e. a monad with a guardedness predicate on
Kl(T). We say that T is
1. a guarded iterative monad if Kl(T) is a guarded iterative category;
2. a guarded Elgot monad if Kl(T) has a guarded Conway operator f 7→ f†, which is uniform

wrt the obvious functor C → Kl(T);

CALCO 2019

13:10 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

3. an Elgot monad when it is totally guarded and a guarded Elgot monad.
Note that for an Elgot monad T, T0 must always be inhabited because T supports (unpro-
ductive) divergence ⊥ = (η inr : 1→ T (0 + 1))†.

I Example 20. Let us revisit Example 10.
1. Every monad under vacuous guardedness can be equipped with an iteration operator and

is thus guarded iterative. Concretely, since f : X → Y 〉〉X implies that

f =
(
X

g−→ TY
T inl−−→ T (Y +X)

)
for a suitable g, f† = [η, f†]? (T inl)g = g. For Example 10 (1), therefore f† = !: X →
TY = 1 if Y 6= ∅ and f† = [] : ∅→ ∅ if Y = ∅, and thus X = ∅.

2. The powerset monad P is Elgot, because its Kleisli category (the category of relations) is
enriched over complete partial orders, and hence supports f† as a least fixpoint of [η, --]?f .
This is inherited by P+ by restriction along the inclusion P+ ↪→ P. Explicitly, in the
Kleisli category of P+, for a guarded map f : X → Y 〉〉X, the map f† : X → Y sends x
to the set{

y ∈ Y | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1. x = x0 ∧ f(x0) 3 inr x1 ∧ . . . ∧ f(xn) 3 inl y
}
.

In this style of semantics we thus do not register the possibility of divergence i.e. whether
there is a sequence (x0, x1, . . .) ∈ Xω such that ∀i ∈ N. f(xi) 3 inr xi+1. As a result, P+

is guarded Elgot.
3. Unlike its cousin, the countable subdistribution monad DX =

{
d : X → [0, 1] |

∑
d ≤

1
}
, D+ is not Elgot (because D+0 = 0). However, as in the previous clause, it is guarded

Elgot. Specifically, we obtain a guarded Conway operator for D+ by first restricting
from the corresponding total guarded iteration operator for D, calculated as a least fixed
point, and then normalizing (guardedness ensures it is not zero) to obtain a distribution.
Thus we do not record the probability of divergence. To see the need for normalization,
consider the guarded Kleisli map f : N→ 1 〉〉N where f(n) gives inl ? with probability

1
2n + 2 =

(
1

2n+1

)
/

(
1
2 + 1

2n

)
and inr(n+ 1) with probability

1− 1
2n + 2 = 2n + 1

2n + 2 =
(

1
2 + 1

2n+1

)
/

(
1
2 + 1

2n

)
.

Iterating f from 0 gives the probability 1/2n+2 of the transition sequence

0→ 1→ · · · → n→ ?

So the probability of eventually reaching ? is 1/2.
4. The writer monad TX = A? ×X does not support guarded iteration for the guardedness

predicate defined in Example 10 (4) and for non-trivial A. For example, no x : 1 →
T1∼=A? satisfies the fixpoint equation x = ax for any a ∈ A. This can be remedied by
extending TX to A? ×X +M were M is an inhabited left A?-module, e.g. M = 1 (the
initial one), or M = Aω (the final one).

5. The monad TX = P+(A? ×X +Aω) for finite and infinite traces from Example 10 (5)
supports the following iteration operator. For a guarded Kleisli map f : X → Y 〉〉X, the

P.B. Levy and S. Goncharov 13:11

map f† : X → TY sends x to the following set:{
inl(m0 + · · ·+mn−1 +m, y) | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1.

x0 = x

∧f(x0) 3 inl(m0, inr x1) ∧ . . . ∧ f(xn−1) 3 inl(mn−1, inr xn)
∧f(xn) 3 inl(m, inl y)

}
∪
{

inr(m0 + · · ·+mn−1 +m) | ∃n ∈ N, (x0, . . . , xn) ∈ Xn+1.

x0 = x

∧f(x0) 3 inl(m0, inr x1) ∧ . . . ∧ f(xn−1) 3 inl(mn−1, inr xn)
∧f(xn) 3 inrm

}
∪
{

inr(m0 +m1 + · · ·) | ∃(x0, . . .) ∈ Xω.

x0 = x ∧ ∀i ∈ N. f(xi) 3 inl(mi, inr xi+1)
}
.

This captures three possible scenarios (separated by the ∪ operator):
the fixpoint f†(x) is unfolded n times resulting in an output of y ∈ Y ; the actions
m0, . . . ,mn−1,m ∈ A? are collected along the run and concatenated;
the fixpoint f†(x) is unfolded n times and then hits an infinite tracem ∈ Aω; as a result,
f†(x) does not yield a value from Y , but it yields an infinite tracem0+. . .+mn−1+m ∈
Aω where m0, . . . ,mn−1 ∈ A? are collected along the run;
the fixpoint f†(x) is unfolded infinitely many times without ever reaching Y ; this yields
an infinite trace m0 +m1 + . . . ∈ Aω computed by concatenating the traces mi ∈ A?,
which are collected along the run. The guardedness assumption on f is crucial here,
because it ensure that each mi is non-empty and hence the above infinite sum does
indeed produce an infinite trace.

The resulting iteration operator is properly partial, and is computed neither as a least
fixpoint nor as a unique fixpoint, even though the guardedness relation we postulate is
the one standardly used in process algebra and guaranteeing uniqueness of fixpoint under
strong bisimilarity [17]. The separating example is x = ax + 1, which has besides the
canonical solution x = a? + aω the solution x = a?, ignoring the infinite trace.

5 The Coinductive Resumption Monad

In this section, we present our main technical contribution, stating that guarded Elgotness
extends along the coalgebraic resumption monad transformer. It proves to be technically
more advantageous to work more generally with parametrized guarded Elgot monads, which
extend Uustalu’s parametrized monads [23].

I Definition 21 (Parametrized Guarded Elgot Monads). A parametrized guarded Elgot
monad is a functor from a co-Cartesian category C to the category of guarded Elgot monads
over C. Equivalently (by uncurrying), a parametrized guarded Elgot monad is a bifunctor
: C × C → C, such that each -- #W is a guarded Elgot monad, and for every f : W →W ′,
-- #f is a guarded Elgot monad morphism.

Since every monad is a guarded Elgot monad under vacuous guardedness, parametrized
guarded Elgot monads include all parametrized monads.

The main example of a parametrized guarded Elgot monad is as follows.

I Example 22. Given a guarded Elgot monad T and an endofunctor H on the same co-
Cartesian category C, X#Y = T (X+HY) defines a parametrized guarded Elgot monad, with

CALCO 2019

13:12 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

the guardedness predicate defined as follows: for f : X → T ((Y + Z) +HW), f : X → Y 〉〉Z
in Kl(−#W) iff

X
f−→ T ((Y + Z) +HW)∼= T ((Y +HW) + Z) is inr-guarded in Kl(T).

We use the same Kleisli style notation for parametrized guarded Elgot monads as for the
non-parametrized ones. Let us record the identities, directly implied by Definition 21, and
which we use in the subsequent calculations.

(ηX,Y : X → Z #W)? = idX#W : X #W → X #W,

(f : Y → Z #W)?(ηX,Y : X → X #W) = f : X → Z #W,

(f : Y → Z #W)?(g : X → Y #W)? = (f?g)? : X #W → Z #W,

(X # (h : W →W ′)) (ηX,W : X → X #W) = ηX,W ′ : X → X #W ′,

(Y # (h : W →W ′)) (f : X → Y #W)? =
((Y # h)f)?(Y # h) : X #W → Y #W ′,

(Y # (h : W →W ′)) (f : X → (Y +X) #W)† = ((Y # h) f)† : X → Y #W ′.

The first three equations here are the monad laws for -- #W and the last three equations
express the fact that -- #h is a guarded Elgot monad morphism.

For the rest of the section we fix a parametrized guarded Elgot monad # and assume
that the final coalgebras z#X = νγ.X # γ exist for all X ∈ |C|. The following properties
of z# are previously shown by Uustalu [23].

I Proposition 23.
1. For every f : X → z#Y there is a unique f6 : z#X → z#Y such that

z#X X # z#X

z#Y Y # z#Y

out

f6 ((out f)#f6)?

out

2. given f : X → Y # z#(X + Y), there is unique g : X → z#Y , such that

X Y # z#(Y +X)

z#Y Y # z#Y

f

g Y#[ην , g]6

out

3. z# forms a monad, whose unit η# at X is

X X # z#X z#X.
η inl out-1

The Kleisli extension of f : X → z#Y is f6.

5.1 Transferring Guarded Elgotness
We proceed to transfer iteration from # to z#.

I Definition 24. z# is guarded as follows: f : X → Y 〉〉Z when the composite

X
f−→ z#(Y + Z) out−−→ (Y + Z) # z#(Y + Z)

is inr-guarded.

See [10] for a proof that this constitutes a guardedness predicate.

P.B. Levy and S. Goncharov 13:13

Note that when # is totally guarded then so is z#. Using Definition 24, for every
f : X → z#(Y + X), we define ♦ f = (out f)† : X → Y # z#(Y + X). The idea of this
operator is as follows. Computing the iteration of f : X → z#(Y +X) w.r.t. z# amounts to
forming out f : X → (Y +X) # z#(Y +X) first, which reveals two occurrences of X that
must be iterated away. The first one occurs at the guarded position of the parametrized
monad, and hence we can eliminate it by applying the iteration operator of -- #z#(Y +X) –
this is precisely the task of ♦. The remaining second position of X occurs under z#, and
can be eliminated by using the finality property of the latter.

I Theorem 25. z# is a guarded Elgot monad with the iteration operator (--)‡ characterized
as follows: for f : X → Y 〉〉X, f‡ : X → z#Y is the unique morphism satifsying

X Y # z#(Y +X)

z#Y Y # z#Y

♦ f

f‡ Y#[ην ,f‡]6

out

Proof. Let us verify the relevant laws. Recall that by Proposition 17, we need not verify
dinaturality.

fixpoint is already shown in [10];
naturality: given f : X → Y 〉〉X, g : Y → z#Z, let us denote by h the morphism
[(z# inl) g, ην inr] : Y +X → Z 〉〉X, First we show that

♦(h6f) = ((Z # z# inl) out g)?(Y # h6)♦ f. (1)

Indeed,

♦(h6f) = (out h6f)† // definition of ♦
= ((outh)?(Y # h6) out f)†

= ((Z # z# inl) out g)?((Y # h6) out f)† // naturality of (--)†

= ((Z # z# inl) out g)?(Y # h6)♦ f.

Then

out g6f‡ = (out g)?(Y # g6) (Y # [ην , f‡]6)♦ f // definition of (--)‡

= (out g)?(Y # (g6[ην , f‡]6))♦ f
= (out g)?

(
Y # [ην , g6f‡]6[(z# inl) g, ην inr]6

)
♦ f

= (out g)?
(
Y # [ην , g6f‡]6h6)♦ f

= (Z # [ην , g6f‡]6) ((Z # z# inl) out g)?(Y # h6)♦ f // (1)
= (Z # [ην , g6f‡]6) ♦(h6f).

This entails the requisite equality (h6f)‡ = g6f‡, by the uniqueness property of (h6f)‡.
codiagonal: let f : X → Y 〉〉X 〉〉X. It suffices to check that

out f‡‡ = (Y # [ην , f‡‡]6) ♦(z#[id, inr] f)

CALCO 2019

13:14 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

The proof runs as follows:

out f‡‡ = (Y # [ην , f‡‡]6) ♦ f‡ // definition of (--)‡

= (Y # [ην , f‡‡]6) (out f‡)† // definition of ♦
= (Y # [ην , f‡‡]6) (((Y +X) # [ην , f‡]6) ♦ f)† // definition of (--)‡

= (Y # [ην , f‡‡]6[ην , f‡]6) (out f)††

= (Y # [[ην , f‡‡], [ην , f‡‡]6f‡]6) (out f)††

= (Y # [[ην , f‡‡], f‡]6) (out f)†† // fixpoint for (--)‡

= (Y # [ην , f‡‡]6z#[id, inr]) (out f)††

= (Y # [ην , f‡‡]6) (Y # z#[id, inr])
(([id, inr] # z#((Y +X) +X)) out f)† // codiagonal for (--)†

= (Y # [ην , f‡‡]6) (([id, inr] # z#[id, inr]) out f)†

= (Y # [ην , f‡‡]6) (out z#[id, inr]f)†

= (Y # [ην , f‡‡]6) ♦(z#[id, inr]f) // definition of ♦

uniformity: assume f : X → Y 〉〉X, g : Z → Y 〉〉Z, h : Z → X and f h = z#(id + h) g.
The latter entails (out f)h = ((id + h) # z#(id + h)) out g, hence, by uniformity of (--)†,

(out f)† h = ((Y # z#(id + h)) out g)†. (2)

We then have

out f‡ h = (Y # [ην , f‡]6) (♦ f)h // definition of (--)‡

= (Y # [ην , f‡]6) (out f)† h // definition of ♦
= (Y # [ην , f‡]6) ((Y # z#(id + h)) out g)† // (2)
= (Y # [ην , f‡h]6) (out g)†

= (Y # [ην , f‡h]6) ♦ g. // definition of ♦

We thus obtained that f‡h satisfies the fixpoint equation for g‡, hence f‡h = g‡. J
Recall that T νH = z# for X # Y = T (X +HY).

I Corollary 26. Given a guarded Elgot monad T, then Tν
H is also guarded Elgot with the

requisite structure obtained from the parametrized guarded Elgot monad X#Y = T (X+HY).

5.2 Free Extensions of Guarded Elgot Monads
We proceed to apply the results of the previous section under X # Y = T (X +HY).

I Lemma 27. Let T be a guarded monad.
1. The natural transformation

HX
η inr(Hην)−−−−−−→ T (X +HT νHX) out-1

−−→ T νHX

is guarded.
2. The natural transformation

TX
T inl−−→ T (X +HT νHX) out-1

−−→ T νHX

is a guarded Elgot monad morphism.

P.B. Levy and S. Goncharov 13:15

Proof. The first clause is obvious by definition. For the second clause, we need to check that
the relevant morphism preserves guarded iteration, that is, given f : X → Y 〉〉X, we need to
show that

out-1(T inl) f† = (out-1(T inl) f)‡.

By definition of (--)‡, equivalently, we prove the equation

(T inl) f† = T (id + [ην , (T inl) f†]6)♦(out-1(T inl) f).

Indeed,

T (id + [ην , (T inl) f†]6)♦(out-1(T inl) f)
= T (id + [ην , (T inl) f†]6) (T (inl +id) f)† // definition of ♦
= T (id + [ην , (T inl) f†]6) (T inl) f† // naturality
= (T inl) f,

as desired. J

I Theorem 28. In the category of guarded Elgot monads, Tν
H , provided it exists, is a free

extension of T by H in the sense of Definition 2, that is, for every guarded Elgot monad S, a
guarded Elgot monad morphism ξ : T→ S and a guarded natural transformation σ : H → S,
there exists a guarded Elgot monad morphism ζ : Tν

H → S uniquely characterized by the
following commutative diagram

T T (Id +HT νH) T νH T (Id +HT νH) H

S

T inl

ξ

out-1

ζ

out-1 η inrHην

σ

in the obvious category of natural transformations. Concretely, every ζX : T νHX → SX has
the form

(
T νHX

ξ out−−−→ S(X +HT νHX) [η inl, (S inr)σ]?−−−−−−−−−→ S(X + T νHX)
)†.

Proof. By Lemma 27 the candidate monad morphism T→ Tν
H and the candidate natural

transformation H → Tν
H are guarded. The trickiest part of the claim is the fact that Tν

H

is indeed a guarded Elgot monad, which is shown in Theorem 25. Let us verify that ζ is a
guarded monad morphism. Suppose that f : X → T νH(Y +X) is inr-guarded and show that
ζ f : X → S(Y +X) is inr-guarded. We have

ζ f = [η, ζ]?[η inl, (S inr)σ]? ξ out f // fixpoint
= [η, ζ?σ]? ξ out f,

which can be presented as

X
out f−−−→T ((Y +X) +HT νH(Y +X))∼= T ((Y +HT νH(Y +X)) +X)

[[η inl,ζ?σ],η inr]?−−−−−−−−−−→S(Y +X).

The composite morphism in the upper row is inr-guarded by definition. We will be done
by (cmp) if we show that the morphism [η inl, ζ?σ] occurring in the lower row is inr-guarded.
By (trv) and (par) this amounts to showing that ζ?σ : HT νH(Y + X) → S(Y + X) is

CALCO 2019

13:16 Coinductive Resumption Monads: Guarded Iterative and Guarded Elgot

inr-guarded. Indeed, σ is id-guarded by definition, hence ζ?σ is id-guarded by (cmp), which
weakens to inr-guardedness by Proposition 8.

The remaining calculations are the same as in previous work [9, Theorem 8.3] where the
analogous statement was shown in the unguarded case. J

Note that the initial guarded Elgot monad is the identity monad under vacuous guardedness.
Using Proposition 5 we obtain

I Corollary 29. Given a guarded Elgot monad T and an endofunctor H, Tν
H is the coproduct,

in the category of guarded Elgot monads, of T and νγ. (-- +Hγ), provided the latter exists.

6 Conclusions and Further Work

We introduced guarded Elgot monads as a common generalization of Elgot monads and
guarded iterative monads previously studied in the literature. We propose to use them as
a yardstick for analyzing sophisticated notions of iteration when the iteration operator is
neither total nor a unique solution of the corresponding fixpoint equation. Situations of
this kind indeed occur in practice, e.g. in process semantics wrt infinite trace equivalence
(Example 20 (5)). Moreover, guarded Elgotness tends to propagate along monad transformers,
which leads to further examples. We explored one such monad transformer, receiving as an
input a monad T and a functor H and returning a monad Tν

H of possibly non-terminating
processes under strong bisimilarity, with side-effects by T and with actions by H. Our main
theorem shows that for a guarded Elgot monad T, Tν

H is canonically guarded Elgot, and
more specifically it can be characterized as a free extension of T by H in the category of all
guarded Elgot monads.

The monad transformer T 7→ Tν
H is particularly important because the semantic domain

it generates is subject to (coalgebraic) strong bisimilarity, which is arguably the finest
semantic equivalence on processes. We thus hope to obtain further interesting generic process
equivalences, most importantly infinite trace equivalence, in a principled fashion, as quotients
of Tν

H under suitably defined iteration-congruences. We plan to explore connections between
the outlined approach to characterizing process equivalences and universal characterizations
of such equivalences, such as the final coalgebra characterization of finite trace equivalence
given in [4].

References
1 J. Adámek, R. Börger, S. Milius, and J. Velebil. Iterative algebras: How iterative are they?

Theory Appl. Cat., 19:61–92, 2008.
2 Stephen Bloom and Zoltán Ésik. Iteration theories: the equational logic of iterative processes.

Springer, 1993.
3 F. Borceux. Handbook of Categorical Algebra 1. Cambridge University Press, 1994.
4 N. Bowler, P.B. Levy, and G.D. Plotkin. Initial algebras and final coalgebras consisting of

nondeterministic finite trace strategies. In Proceedings, 34th Conference on the Mathematical
Foundations of Programming Semantics, volume 341 of ENTCS, pages 23–44, 2018.

5 Venanzio Capretta. General recursion via coinductive types. Log. Meth. Comput. Sci., 1(2),
2005.

6 Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to modularity in denotational
semantics. In Category Theory and Computer Science, CTCS 1993, 1993.

7 Sergey Goncharov, Stefan Milius, and Christoph Rauch. Complete Elgot Monads and Coal-
gebraic Resumptions. In Mathematical Foundations of Programming Semantics, MFPS 2016,
volume 325 of ENTCS, pages 147–168. Elsevier, 2016.

P.B. Levy and S. Goncharov 13:17

8 Sergey Goncharov and Lutz Schröder. Guarded Traced Categories. In Christel Baier and
Ugo Dal Lago, editors, Proc. 21th International Conference on Foundations of Software Science
and Computation Structures (FoSSaCS 2018), volume 10803 of LNCS, pages 313–330. Springer,
2018.

9 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Julian Jakob. Unguarded Recursion
on Coinductive Resumptions. Logical Methods in Computer Science, 14(3), 2018.

10 Sergey Goncharov, Lutz Schröder, Christoph Rauch, and Maciej Piróg. Unifying Guarded
and Unguarded Iteration. In Javier Esparza and Andrzej Murawski, editors, Foundations of
Software Science and Computation Structures, FoSSaCS 2017, volume 10203 of LNCS, pages
517–533. Springer, 2017.

11 Masahito Hasegawa. Models of Sharing Graphs: A Categorical Semantics of Let and Letrec.
Springer, 1999.

12 Masihito Hasegawa. Recursion from Cyclic Sharing: Traced Monoidal Categories and Models
of Cyclic Lambda Calculi. In Typed Lambda Calculi and Applications, TLCA 1997, volume
1210 of LNCS, pages 196–213. Springer, 1997.

13 Martin Hyland, Paul Levy, Gordon Plotkin, and John Power. Combining algebraic effects
with continuations. Theoret. Comput. Sci., 375(1-3):20–40, 2007.

14 Martin Hyland, Gordon Plotkin, and John Power. Combining Computational Effects: Com-
mutativity & Sum. In TCS’02, volume 223, pages 474–484. Kluwer, 2002.

15 Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. Theoret.
Comput. Sci., 357(1-3):70–99, 2006.

16 Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,
196(1):1–41, 2005.

17 R. Milner. Communication and concurrency. Prentice-Hall, 1989.
18 Eugenio Moggi. Notions of Computation and Monads. Inf. Comput., 93:55–92, 1991.
19 Maciej Piróg and Jeremy Gibbons. The Coinductive Resumption Monad. In Mathematical

Foundations of Programming Semantics, MFPS 2014, volume 308 of ENTCS, pages 273–288,
2014.

20 Maciej Piróg and Jeremy Gibbons. Monads for Behaviour. In Mathematical Foundations of
Programming Semantics, MFPS 2013, volume 298 of ENTCS, pages 309–324, 2015.

21 A. W. Roscoe. Unbounded nondeterminism in CSP. Technical Report PRG-67, Oxford
University Computing Laboratory, July 1988. in Two papers on CSP, Also appeared in
Journal of Logic and Computation, Vol 3, No 2 pp131-172 (1993). URL: http://www.cs.ox.
ac.uk/people/bill.roscoe/publications/28.ps.

22 Alex Simpson and Gordon Plotkin. Complete axioms for categorical fixed-point operators. In
Logic in Computer Science, LICS 2000, pages 30–41, 2000.

23 Tarmo Uustalu. Generalizing Substitution. ITA, 37(4):315–336, 2003.

CALCO 2019

http://www.cs.ox.ac.uk/people/bill.roscoe/publications/28.ps
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/28.ps

Decomposing Comonad Morphisms
Danel Ahman
Faculty of Physics and Mathematics, University of Ljubljana, Slovenia
danel.ahman@fmf.uni-lj.si

Tarmo Uustalu
Department of Computer Science, Reykjavik University, Iceland
Dept. of Software Science, Tallinn University of Technology, Estonia
tarmo@ru.is

Abstract
The analysis of set comonads whose underlying functor is a container functor in terms of directed
containers makes it a simple observation that any morphism between two such comonads factors
through a third one by two comonad morphisms, whereof the first is identity on shapes and the
second is identity on positions in every shape. This observation turns out to generalize into a much
more involved result about comonad morphisms to comonads whose underlying functor preserves
Cartesian natural transformations to itself on any category with finite limits. The bijection between
comonad coalgebras and comonad morphisms from costate comonads thus also yields a decomposition
of comonad coalgebras.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Categorical semantics

Keywords and phrases container functors (polynomial functors), container comonads, comonad
morphisms and comonad coalgebras, cofunctors, lenses

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.14

Funding Danel Ahman: This material is based upon work supported by the Air Force Office of
Scientific Research under award number FA9550-17-1-0326.
Tarmo Uustalu: Supported by the Icelandic Research Fund project grant no. 196323-051 and the
Estonian Ministry of Education and Research institutional research grant no. IUT33-13.

Acknowledgements We thank our anonymous reviewers for very useful remarks.

1 Introduction

Containers of Abbott et al. [1] are a representation of a wide class of set functors (that
one can use as parameterized datatypes) in terms of shapes and positions. Those set
functors that enjoy this representation are called container functors. In joint work with
Chapman [3], we found that container functors with a comonad structure can be characterized
as interpretations of containers with corresponding additional structure, which we called
directedness. In a directed container, every position in a shape determines another shape
(its subshape), every shape has a designated root position, and positions in a subshape can
be translated to the original shape. Remarkably, as we only noticed later [5], the category
of directed containers is equivalent to the opposite of the category of small categories and
cofunctors. Cofunctors were introduced by Aguiar [2]; they send objects from the target
category to the source category, but maps from the source category to the target category.

Motivated by this equivalence, in this paper, we first show that an analogue of the full
image factorization of functors holds for directed container morphisms: any directed container
morphism decomposes into two whereby the first is identity on shapes and the second is
identity on positions in every shape. Since the interpretation functor from the category of
directed containers to the category of set comonads is fully-faithful, this immediately gives
also a factorization of container comonad morphisms.

© Danel Ahman and Tarmo Uustalu;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 14; pp. 14:1–14:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6595-2756
mailto:danel.ahman@fmf.uni-lj.si
https://orcid.org/0000-0002-1297-0579
mailto:tarmo@ru.is
https://doi.org/10.4230/LIPIcs.CALCO.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Decomposing Comonad Morphisms

Then we ask if a similar decomposition is possible for general comonads on general
categories. We show that only pullbacks and a terminal object (i.e., finite limits) are needed
in order to formulate suitable substitutes for the notions of identity-on-shapes container
morphism and identity-on-positions-in-every-shape container morphism for general natural
transformations, and to obtain the factorization of general comonad morphisms.

That this decomposition is possible at this level of generality is nice, we find, since an
alternative would have been to switch from containers to polynomials [7, 8]. At the basic
level, containers and polynomials can be considered each other’s notational variants, but the
concepts of polynomials and polynomial functors scale to general categories with pullbacks
[18]. However, already the definition of the polynomial analogue of the concept of directed
container is complicated (we spelled it out in [3]), not to speak of the definition of the
interpretation functor for it, or any proofs, so they are not the easiest to work with. The
shapely types of Jay and Cockett [12, 11] are a lighter concept, but we did not need even
those for our purpose.

The paper is organized as follows. In Section 2, we review containers and directed
containers, including the equivalence of the category of directed containers to the opposite of
the category of small categories and cofunctors. In Section 3, we describe our factorization
of directed container morphisms or, which is the same, container comonad morphisms. In
Section 4, we generalize this factorization to categories with finite limits. In Section 4 we
also apply our results to the factorization of comonad coalgebras. We sum up in Section 5.

2 Preliminaries: containers and directed containers

We begin with a review of containers [1] and directed containers [3]. As noted above, containers
are a representation for a certain class of set functors. Directed containers characterize, by
additional structure on containers, those container functors that carry comonad structure.1

A container comprises a set S (of shapes) and, for any shape s : S, a set P s (of positions
in shape s). A directed container is a container (S, P) equipped with three maps
↓ : (Σs : S. P s)→ S (the subshape corresponding to a position in a shape),
o : Πs:S . P s (the root position in a given shape), and
⊕ : Πs:S . (Σp : P s. P (s ↓ p))→ P s (translation of a position in a position’s subshape)

satisfying the following five equations:

s ↓ os = s s ↓ (p ⊕s p′) = (s ↓ p) ↓ p′

p ⊕s os↓p = p os ⊕s p = p (p ⊕s p′) ⊕s p′′ = p ⊕s (p′ ⊕s↓p p′′)

The 4th and 5th equations type because the 1st and 2nd hold. We note that the data and
equations of a directed container are like those of a set, a monoid, and a right action of the
monoid on the set, modulo the presence of the “minor” (subscripted) arguments and the
dependent typing. In particular, if P s, os, and p ⊕s p′ do not actually depend on s, then we
indeed have a set, a monoid, and a right action of the monoid.

A container (S, P) defines a set functor JS, P Kc = D, called its interpretation, by

DX = Σs : S. P s⇒ X

1 In what follows, subscript arguments of operations are “minor” arguments that can typically be inferred
from the subsequent arguments. We generally write → for homsets, and ⇒ for internal homs (exponential
objects). In this and the next section, where we work in Set, this plays no role, but we still use the
notation for conceptual clarity.

D. Ahman and T. Uustalu 14:3

Given a directed container structure (↓, o,⊕) on (S, P), D obtains a comonad structure:

εX (s, v) = v os δX (s, v) = (s, λp. (s ↓ p, λp′. v (p ⊕s p′)))

We call the comonad JS, P, ↓, o,⊕Kdc = (D, ε, δ) the interpretation of (S, P, ↓, o,⊕).
Any comonad structure (ε, δ) on a set functor D that is the interpretation of some

container (S, P) (i.e., DX = Σs : S. P s⇒ X) arises from a directed container structure
(↓, o,⊕) on (S, P). In fact, directed container structures on (S, P) and comonad structures on
D are in a bijection. Given a comonad structure (ε, δ), the corresponding directed container
structure is defined by

os = εP s (s, id) s ↓ p = fst (snd (δP s (s, id)) p) p ⊕s p′ = snd (snd (δP s (s, id)) p) p′

The following are some most prominent examples of directed containers with the corres-
ponding comonads:

Taking S to be any set, P s = 1, s ↓ ∗ = s, os = ∗, ∗ ⊕s ∗ = ∗, we get the coreader
comonad defined by DX = S ×X ∼= Σs : S. 1⇒ X, ε (s, x) = x, δ (s, x) = (s, (s, x)).
Taking S to be any set, P s = S, s ↓ s′ = s′, os = s, s′ ⊕s s′′ = s′′, we get the
costate comonad (also called the array comonad [16]) defined by DX = S × (S ⇒ X) ∼=
Σs : S. S ⇒ X, ε (s, v) = v s, δ (s, v) = (s, λs′.(s′, v)).
Choosing S = 1, P ∗ = N, ∗ ↓ i = ∗, o∗ = 0, i ⊕∗ j = i + j, we obtain the streams-
with-suffixes comonad defined by DX = Xω ∼= Σs : 1.N ⇒ X, ε (x0, x1, . . .) = x0,
δ (x0, x1, . . .) = ((x0, x1, . . .), (x1, x2, . . .), . . .).
Choosing S = N, P n = [0..n], n ↓ i = s − i, on = 0, i ⊕n j = i + j gives us the
nonempty-lists-with-suffixes comonad defined by DX = X+ ∼= Σn : N. [0..n] ⇒ X,
ε (x0, x1, . . . , xn) = x0, δ (x0, x1, . . . , xn) = ((x0, x1, . . . , xn), (x1, x2, . . . , xn), . . . , (xn)).
Take S to be the set of all bars where a bar (through the binary fan) is a finite set b of
lists over 2 = {0, 1} such that any stream over 2 has exactly one prefix in b. Take P b to
be the set of all lists u over 2 that are a prefix of some list w in b. (A bar cuts a finite
binary tree out of the infinite binary tree by establishing the positions of its leaves). Let
b ↓ u = {v | u · v ∈ b}, ob = (), u ⊕b v = u · v (the empty list resp. concatenation of lists).
This gives us the labelled-finite-binary-trees comonad. The counit extracts the label of
the root node of the given tree. The comultiplication replaces the label of each node with
the subtree rooted by that node.

Other useful examples of directed containers are obtained by constructions corresponding
to the coproduct and product of two comonads, the cofree comonad on a functor, and
compatible compositions of comonads (for all these, there are corresponding constructions of
directed containers) and zipper datatypes (for those, there is a construction, called focussing,
of turning any container (S, P) into a directed container whose shape set is Σs : S. P s, i.e.,
its shapes are shapes of the given container together with a focus position) [3, 4].

A morphism between two containers (S, P) and (S′, P ′) is given by maps t : S → S′

(the shape map) and q : Πs:S . P
′ (t s) → P s (the position map). A morphism between

two directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) is a morphism (t, q) between the
underlying containers satisfying the following equations

t (s ↓ qs p) = t s ↓′ p os = qs o′t s qs p ⊕s qs↓qs p p
′ = qs (p ⊕′t s p′)

CALCO 2019

14:4 Decomposing Comonad Morphisms

Analogously to the interpretation of containers, a morphism (t, q) between containers (S, P)
and (S′, P ′) defines a natural transformation Jt, qKc = τ between their interpretations
JS, P Kc = D and JS′, P ′Kc = D′ (the interpretation of (t, q)) by

τX(s, v) = (t s, v ◦ qs)

Also, analogously to the interpretation of directed containers, if (t, q) is a morphism between
directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′), then τ is a comonad morphism
between JS, P, ↓, o,⊕Kdc =(D, ε, δ) and JS′, P ′, ↓′, o′,⊕′Kdc =(D′, ε′, δ′); we define Jt, qKdc =τ .

Any natural transformation τ between the interpretations D and D′ of two containers
(S, P) and (S′, P ′) is an interpretation of a unique container morphism, namely (t, q) where

t s = fst (τP s(s, id)) qs p = snd (τP s(s, id)) p

Furthermore, if τ is a comonad morphism between the interpretations (D, ε, δ) and (D′, ε′, δ′)
of two directed containers (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′), then (t, q) is a directed con-
tainer morphism interpreting to τ .

Some examples of directed container morphisms are the following:

Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the costate comonad
for S and coreader comonad for S, respectively. Take t s = s, qs∗ = s. This corresponds
to the comonad morphism τX : S × (S ⇒ X)→ S ×X defined by τ (s, v) = (s, v s).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the streams comonad, respectively. Take t n = ∗ and qn i = min (i, n). This
corresponds to the comonad morphism τX : X+ → Xω defined by τ (x0, x1, . . . , xn) =
(x0, x1, . . . , xn, xn, . . .) (i.e., nonempty lists are padded out to streams).
Let both (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed container for the nonempty
lists comonad. Let t n = n ÷ 2 and qn i = 2 ∗ i. This corresponds to the comonad
morphism τ (x0, x1, . . . , xn) = (x0, x2, . . . , x2∗(n÷2)) (i.e., every other element of a given
nonempty list is dropped).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the labelled finite binary trees comonad. Let t n = {w ∈ 2∗ | |w| = n} and
qn u = |u|. This corresponds to the comonad morphism sending a nonempty list xs to
a labelled finite binary tree whose list of labels along any path is xs (so all paths have
same length).
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the labelled finite
binary trees comonad and nonempty lists comonad. Let t b be the length of the unique
prefix in b of the stream 0ω, i.e., the unique n such that 0n ∈ b. Let qb i = 0i. This
directed container morphism (t, q) then represents the comonad morphism that maps a
labelled finite binary tree to the non-empty list of labels along its leftmost path.

Containers and container morphisms form a monoidal category Cont (with a suitable
container composition monoidal structure), and the interpretation of containers is a fully-
faithful monoidal functor from Cont to [Set,Set] (with the functor composition monoidal
structure). Analogously, directed containers and directed container morphisms form a category
DCont, and the interpretation of directed containers is fully-faithful functor from DCont to
Comonad(Set). In fact, DCont is isomorphic to the category Comonoid(Cont) and is
the pullback in CAT of U : Comonad(Set)→ [Set,Set] along J−Kc : Cont→ [Set,Set].

In a sequel [5] to the first directed container work [3], we related directed containers to
small categories. It turns out that directed containers are in a bijection up to isomorphism

D. Ahman and T. Uustalu 14:5

with small categories. Specifically, given a directed container (S, P, ↓, o,⊕), the corresponding
small category is obtained as follows. The set of objects is S. The set of maps with domain
s : S is P s, which means that the total set of maps is P̄ = Σs : S. P s and the domain of a
map (s, p) : P̄ is src p = s. The codomain of a map (s, p) : P̄ is tgt p = s ↓ p. The identity
map on an object s is ids = (s, os) and the 1st directed container equation ensures that its
codomain is s ↓ os = s, as required. A map (s, p) can only be composed with a map (s′, p′), if
s ↓ p = s′, in which case the composition is (s, p); (s′, p′) = (s, p ⊕s p′). By the 2nd directed
container equation the codomain of this map is s ↓ (p ⊕s p′) = (s ↓ p) ↓ p′, as required. The
3rd to the 5th equations then ensure that composition is unital and associative.

Of the above examples, the coreader comonad for S corresponds to the free category on
a set of objects S, i.e., the discrete category (the only maps are the identity maps for every
object). The costate comonad for S corresponds to the cofree category on a set of objects S,
i.e., the codiscrete category (there is exactly one map between any two objects).

Although directed containers are in a bijection up to isomorphism with small categories,
the category of directed containers is not equivalent to the category of small categories.
The reason is that directed container morphisms are nothing like functors between small
categories. Instead, they correspond to what Aguiar [2] has termed cofunctors, but with the
source and target categories swapped.

A cofunctor between small categories (S′, P̄ ′, src′, tgt′, id′, ;′) and (S, P̄ , src, tgt, id, ;) is
given by two maps t : S → S′ (the object map) and q̄ : (Σs : S.Σp : P̄ ′. t s = src p)→ P̄ (the
morphism map) satisfying src (q̄ (s, p)) = s and the following equations:

t (tgt (q̄ (s, p))) = tgt′ p ids = q̄ (s, id′t s) q̄ (s, p) ; q̄ (tgt (q̄ (s, p)), p′) = q̄ (s, p ;′ p′)

While a functor maps objects and maps of the source category to those in the target category,
a cofunctor’s object map is from the target category to the source category, but the morphism
map is still from the source to the target category.2

The category DCont of directed containers is equivalent to the opposite category of the
category ←−−Cat of small categories and cofunctors. Given a directed container morphism (t, q),
the corresponding cofunctor is (t, q̄) where q̄ is defined by q̄ (s, (t s, p)) = (s, qs p).

Container functors with a monad structure can be also characterized in terms of additional
structure on containers. This structure, studied by us [17] under the name of mnd-containers,
is very different from directed containers. Mnd-containers can be seen as a version of
nonsymmetric operads where operations may have infinite arities, arguments places of
operations are identified nominally rather than positionally and arguments may be discarded
and duplicated in composition.

3 Decomposing directed container morphisms

We now show that every morphism between two (directed) containers admits a natural
factorization through a third (directed) container, an idea we promote to general functors
and comonads in the next section.

It is almost immediate that every container morphism between two containers factorizes
through a container with the shapes of the first and positions of the second container.

2 A cofunctor looks a bit like a split opcleavage, but is not one. Before we learned about Aguiar’s
terminology, we spoke of a “relative split pre-opcleavage”. See [6] for more discussion on this matter.

CALCO 2019

14:6 Decomposing Comonad Morphisms

I Proposition 1. Given two containers C = (S, P), C ′ = (S′, P ′), a morphism h = (t, q)
between them factorizes through a third container C∗ as below

C
h1
//

h

��
C∗

h2
// C ′

with the properties that
h1 : C → C∗ is identity on shapes and
h2 : C∗ → C ′ is identity on positions in every shape.

Proof. We define C∗ = (S∗, P ∗) where S∗ = S, P ∗ s = P ′ (t s). I.e., C∗ has the shapes of
the first, but positions of the second container. The corresponding container morphisms are
defined as h1 = (t1, q1) and h2 = (t2, q2) where t1 s = s, q1

s p = qs p, t2 s = t s, q2
s p = p. J

At the level of functors and natural transformations, this is to say that a natural
transformation (Σs : S. P s⇒ −)→ (Σs : S′. P ′ s⇒ −), which we know must always be of
the form λ(s, v). (t s, v ◦ qs), always factors through the functor Σs : S. P ′ (t s)⇒ −.

Considerably more interestingly, this proposition can be strengthened to a factorization
of any directed container morphism, in other words, of any morphism between two container
comonads.

I Proposition 2. If, in the situation of Proposition 1, C and C ′ come with directed container
structures (↓, o,⊕) resp. (↓′, o′,⊕′), and h is a directed container morphism, then C∗ also
carries a directed container structure, and h1, h2 are directed container morphisms.

Proof. We define the directed container structure on C∗ as s ↓∗ p = s ↓ qsp, o∗s = o′ts,
p ⊕∗s p′ = p ⊕′ts p′. It is straightforward to verify that these data obey the laws a directed
container:

s ↓∗ o∗s = s ↓ qso′ts = s ↓ os = s

s ↓∗ (p ⊕∗s p′) = s ↓ qs(p ⊕′ts p′) = s ↓ (qsp ⊕s qs↓qspp
′)

= (s ↓ qsp) ↓ qs↓qspp
′ = (s ↓∗ p) ↓ qs↓∗pp′ = (s ↓∗ p) ↓∗ p′

o∗s ⊕∗s p = o′ts ⊕′ts p = p

p ⊕∗s o∗s↓∗p = p ⊕′ts o′t(s↓∗p) = p ⊕′ts o′t(s↓qsp) = p ⊕′ts o′ts↓′p = p

(p ⊕∗s p′) ⊕∗s p′′ = (p ⊕′ts p′) ⊕′ts p′′ = p ⊕′ts (p′ ⊕′ts↓′p p′′)
= p ⊕′ts (p′ ⊕′t(s↓qsp) p

′′) = p ⊕∗s (p′ ⊕∗s↓qsp p
′′) = p ⊕∗s (p′ ⊕∗s↓∗p p′′)

That h1 and h2 satisfy the directed container morphism laws is also straightforward. J

Let us now see what this means on our examples of directed container morphisms.

Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the streams comonad respectively. Recall that we considered the directed
container morphism given by t n = ∗ and qn i = min (i, n). This directed container
morphism factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N,
P ∗ n = N, n ↓∗ i = n − min (i, n), o∗n = 0, i ⊕∗n j = i + j. This corresponds to
the comonad defined by D∗X = N × Xω ∼= Σn : N.N ⇒ X, ε∗ (n, (x0, x1, . . .)) =
x0, δ∗ (n, (x0, x1, . . .)) = (n, ((n, (x0, x1, . . .)), (n− 1, (x1, x2, . . .)), . . . , (0, (xn, xn+1, . . .)),

D. Ahman and T. Uustalu 14:7

(0, (xn+1, xn+2, . . .)), . . .)). It may be helpful to think of elements of this type as streams
with a trusted initial segment: in the datastructure (n, (x0, x1, . . .)), the elements
(x0, x1, . . . , xn) are trusted.
Let both (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed container for the nonempty
lists comonad. Let us consider t n = n ÷ 2 and qn i = 2 ∗ i. This directed container
morphism factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N,
P ∗ n = [0..n ÷ 2], n ↓∗ i = n − 2 ∗ i, o∗n = 0, i ⊕∗n j = i + j. This corresponds to the
comonad defined by D∗X = 2×X+ ∼= Σn : N. [0..n÷2]⇒ X, ε∗ (b, (x0, x1, . . . , xm)) = x0,
δ∗ (b, (x0, x1, . . . , xm)) = (b, (b, (x0, x1, . . . , xm)), (b, (x1, . . . , xm)), . . . , (b, (xm))). Here
the thinking is that to recover n from m = n÷ 2, one has to also know the parity b of n.
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the nonempty lists
comonad and the labelled finite binary trees comonad. Let t n = {w ∈ 2∗ | |w| = n}
and qn u = |u|. This directed container morphism factors through the directed container
(S∗, P ∗, ↓∗, o∗,⊕∗) defined by S∗ = N, P ∗ n = {u ∈ 2∗ | |u| ≤ n}, n ↓∗ u = n − |u|,
o∗n = () and u ⊕∗n v = u · v. This is the comonad of labelled perfectly balanced binary
trees.
Let (S, P, ↓, o,⊕) and (S′, P ′, ↓′, o′,⊕′) be the directed containers for the labelled finite
binary trees comonad and nonempty lists comonad. Let t b be the length of the unique
prefix in b of the stream 0ω, i.e., the unique n such that 0n ∈ b. Let qb i = 0i. The direc-
ted container morphism (t, q) factors through the directed container (S∗, P ∗, ↓∗, o∗,⊕∗)
defined by S∗ = “bars”, P ∗ b = [0..t b], b ↓∗ i = {v | 0i · v ∈ b}, o∗b = 0, i ⊕∗b j = i + j.
This is a comonad of finite binary trees labelled along the leftmost path only. The counit
extracts the label of the root node of the given tree. The comultiplication replaces the
label of each node on the leftmost path with the subtree rooted by that node.

That the above-described factorization of container comonad morphisms should be possible
is curious and by no means “granted”. Strengthening the factorization of Proposition 1 to
morphisms between container monads, for instance, does not work: the middle container
functor is generally not a monad and the two natural transformations are not monad
morphisms. Indeed, should C, C ′ be mnd-containers in the sense of [17], C∗ will in general
not be a mnd-container. For it to be one, from the given operations • : (Σs : S. P s⇒ S)→ S

and •′ : (Σs : S′. P ′ s⇒ S′)→ S′ (the shape maps for the multiplications of the corresponding
monads), we would need to produce an operation •∗ : (Σs : S. P ′ (t s)⇒ S)→ S (the shape
map for the multiplication of a hypothetical middle monad). To define such an operation •∗
in terms of •, we would need a way to turn a given function v : P ′ (t s)→ S into a function
v′ : P s→ S, but we cannot, since we cannot invert qs : P ′ (t s)→ P s. To define •∗ in terms
of •′ we would need to be able to convert a given shape s : S′ into a shape s′ : S, but we
cannot invert t : S → S′ in general.

Let us also note that, in the light of the equivalence of DCont and (←−−Cat)op, our
factorization of directed container morphisms is reminiscent of the full image factorization
of functors [15]. In fact, it was the full image factorization that first lead us to the above
factorization of directed container morphisms. Specifically, given a functor F : C → D, its full
image is the category imF with as objects the objects of C, and as morphisms X → Y the
morphisms FX → FY of D. The full image of F also comes with two functors: F : C → imF

that acts as identity on objects and as F on morphisms, and F : imF → D that acts as F on
objects and as identity on morphisms. As such, F is the analogue of h1 and F the analogue
of h2 in the factorization of a directed container morphism h, as defined above. In the next
section, we will see that we are indeed dealing with an analogue of full image factorization
for cofunctors.

CALCO 2019

14:8 Decomposing Comonad Morphisms

Given a container C ′ = (S′, P ′), a coalgebra structure with carrier S of JC ′Kc is a map
γ : S → Σs : S′. P ′ s ⇒ S, which splits into t : S → S′ and q : Πs:S . P

′ (t s) → S. These
are exactly the data of a container morphism from the costate container for S to C ′. If
E′ = (S′, P ′, ↓′, o′,⊕′) is a directed container, then γ is a coalgebra of the container comonad
JE′Kdc iff t, q satisfy t (qs p) = t s ↓′ p, s = qs o′ts, qqsp p

′ = qs (p ⊕′ts p′). These laws coincide
with those of a directed container morphism from the costate directed container for S to E′.

Hence the factorization of morphisms between container functors (comonads) immediately
gives us a factorization of container functor (comonad) coalgebra structures: a functor
(comonad) coalgebra structure γ : S → Σs : S′. P ′ s ⇒ S given by (t, q) factors as a
composition of a functor (comonad) coalgebra structure γ∗ : S → Σs : S. P ′ (t s)⇒ S given
by (idS , q) and a natural transformation (comonad morphism) given by (t, λs. idP ′(ts)).

4 Decomposing general comonad morphisms

We now proceed to showing that the observations we made about morphisms between
container comonads on Set hold about general comonads on general categories, under some
assumptions. Specifically, they hold for comonad morphisms to comonads whose underlying
functor preserves Cartesian natural transformations to itself on any category C with finite
limits. For this, we first need to generalize identity-on-shapes and identity-on-positions-in-
every-shape directed container morphisms to general comonad morphisms.

For an endofunctor D, which we think of as a datatype, we proceed from the idea that
the shape of a datastructure in DX is its image under D!X in D1, which we treat as the
object of shapes of D. A natural transformation φ : D → D′ between two datatypes can
thus be considered bijective as a shape map if φ1 : D1→ D′1 is an isomorphism.

We avoid introducing any objects of positions. We just think of a natural transformation
ψ : D∗ → D′ as bijective as a position map for any shape in D∗1 and its image under ψ1 in
D′1 if ψ is Cartesian, i.e., if all its naturality squares

D∗X
D∗f ��

ψX // D′X
D′f��

D∗Y
ψY

// D′Y

are pullbacks. This is motivated by the following considerations. In the presence of a
terminal object 1, it is sufficient (while trivially necessary) for Cartesianness of ψ that just
the naturality squares for maps !X : X → 1, i.e.,

D∗X
D∗!X ��

ψX // D′X
D′!X��

D∗1
ψ1

// D′1

are pullbacks (cf. [14, Sec. 3.2]), because then, for any f : X → Y , both the bottom square
and outer square in the following diagram are pullbacks, and hence so is the top square,
which is the naturality square for f :

D∗X
D∗f

''

D∗!X))

ψX // D′X
D′f

''

D′!X))

D∗Y
D∗!Y��

ψY // D′Y
D′!Y��

D∗1
ψ1

// D′1

D. Ahman and T. Uustalu 14:9

In the case of C = Set, the naturality square for !X being a pullback means that D∗X is
isomorphic to the set of pairs (s, xs) : D∗1×D′X such that ψ1 s = D′ !X xs, i.e., a shape s
for D∗ together with a datastructure xs in D′X whose shape is the image of s under the
shape map ψ1. Since the map ψX is, up to this isomorphism, just the 2nd projection, and it
is also natural in X, it must send datastructures in D∗X to datastructures in D′X linearly,
i.e., without discarding or duplicating any data (elements of X) contained in them.

We need to work with endofunctors preserving Cartesian natural transformations to
themselves. We say that an endofunctor D′ preserves Cartesian natural transformations to
D′ 3 if, for any endofunctor D and Cartesian natural transformation τ : D → D′, the natural
transformation with components D′τX : D′DX → D′D′X is also Cartesian. This may sound
like a peculiar concept but was also needed by Kelly in his work on clubs and datatypes [14,
Prop. 3.1]. Container functors have this property since they preserve arbitrary pullbacks.

We first show that natural transformations factorize as expected in the above sense.

I Theorem 3 (cf. [14, Sec. 3.2]). Given a category C with finite limits and two endofunctors
D and D′, a natural transformation τ from D to D′ admits a factoring through a third
endofunctor D∗, as depicted here,

DX
φX

//

τX

""
D∗X

ψX

// D′X

with the properties that
φ1 : D1→ D∗1 is an isomorphism and
ψ : D∗ → D′ is Cartesian.

Proof. For any X, we construct D∗X together with ψX : D∗X → D′X and πX : D∗X → D1
as a pullback. Further, we construct φX : DX → D∗X as a unique map to this pullback.

DX
φX

##

D!X

$$

τX

""
C

B

D∗X
ψX //

πX

��
A

D′X

D′!X

��
D1

τ1
// D′1

The latter construction presupposes commutation of the outer square above, which is
immediate by the naturality of τ . Note that B gives us the desired factorization of τ .

For any f : X → Y , we construct the map D∗f : D∗X → D∗Y as a unique map to the
pullback D∗Y :

D∗X
D∗f

##

πX

$$

ψX //

D

E

D′X
D′f

��
D∗Y

ψY //

πY

��
A

D′Y

D′!Y

��
D1

τ1
// D′1

3 More precisely, composition with D′ from the left preserves them. The terminology is from Garner [9].

CALCO 2019

14:10 Decomposing Comonad Morphisms

This presupposes the commutativity of the outer square, which follows straightforwardly
from A and uniqueness of maps to 1. We omit the identity and composition preservation
proofs – these follow straightforwardly from idD∗X and D∗g ◦D∗f satisfying the same unique
map properties as D∗ idX and D∗(g ◦ f).

The naturality square of φ for a map f : X → Y follows from both paths in it satisfying
the properties of the unique map to the pullback D∗Y in the diagram

DX

$$

Df //

φX

��

DY

φY

��

τY

��
B

D∗X
D∗f //

πX --

E

D∗Y
ψY //

πY

��
A

D′Y

D′!Y

��
D1

τ1
// D′1

The commutativity of the outer square above follows from C , the naturality of τ , and
uniqueness of maps to 1.

The naturality of ψ and π are just D and E .
To show that φ1 : D1 → D∗1 is an isomorphism, we prove π1 : D∗1 → D1 to be its

inverse. That the equation π1 ◦ φ1 = idD1 holds is proved as follows:

D1

D!1

""

φ1

""
C D∗1

π1

��
D1

The equation φ1 ◦ π1 = idD∗1 holds because both sides satisfy the properties of the unique
map to the pullback D∗1 in the diagram

D∗1
π1

��

π1 //

##

D1
τ1

��
D1

D!1 ((

D∗1

π1

��

ψ1 //

A

D′1

D′!1
��

D1
τ1
// D′1

where the outer square commutes because D!1 = idD1 and D′!1 = idD′1. Indeed, φ1 ◦ π1
makes the two triangles above commute as follows:

D∗1
π1

""
D1

φ1

""

τ1

D!1

$$

B

C D∗1
π1

��

ψ1

// D′1

D1

D. Ahman and T. Uustalu 14:11

And so does idD∗1:

D∗1
π1

��

π1 //

A

D1 τ1

D1

D!1 ((

D∗1
π1

��

ψ1

// D′1
D′!1 ++

D′1

D1
Finally, we must show that ψ is Cartesian, i.e., that the naturality squares

D∗X
D∗!X ��

ψX // D′X
D′!X��

D∗1
ψ1

// D′1

for !X : X → 1 are pullbacks. This follows from D∗X being a pullback if we replace the node
D1 by D∗1, which we know to be isomorphic:

D∗X

πX

��

ψX //

D∗!X

��

A

E

D′X

D′!X

��
D1 τ1 //

φ1vv

∼=

D′1

D∗1

π1

55

ψ1

==

B

J

Next we establish that not only do natural transformations factorize, but comonad
morphisms do as well.
I Theorem 4. If, in the situation of Theorem 3, D′ preserves Cartesian natural transform-
ations to D′, both D and D′ carry a comonad structure, and τ is a comonad morphism,
then the constructed functor D∗ also carries a comonad structure, and φ and ψ are comonad
morphisms.
Proof. We define the counit ε∗ straightforwardly by

ε∗X = D∗X
ψX // D′X

ε′X // X

We construct the comultiplication δ∗ as a unique map to D∗D∗X as a pullback obtained
by pasting three pullbacks (of those, the right upper one is a pullback because D′ preserves
Cartesian natural transformations to D′):

D∗X

πX

��

ψX //

δ∗X

**

F

G

D′X

δ′X

**
D1

δ1))

D∗D∗X

D∗πX

��

ψD∗X //

ψ Cart.

D′D∗X

D′πX E

$$

D′D∗!X��

D′ψX //
ψ Cart.

D′D′X

D′D′!X��
DD1

φD1))

D′D∗1
D′π1��

D′ψ1 //

π1iso

D′D′1

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1

CALCO 2019

14:12 Decomposing Comonad Morphisms

This presupposes that the outer square above commutes, which is proved as follows:

D∗X

πX

��

ψX //

A

D′X

D′!X

��

δ′X

))
δ′ nat.D1

δ1 ''

τ1 //

τ pres. comul.
D′1

δ′1

((

D′D′X

D′D′!X

��

DD1

φD1
((

τD1

&&B

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1

Next, we prove comonad laws for D∗. The counital laws ε∗D∗X ◦ δ∗X = idD∗X = D∗ε∗X ◦ δ∗X
hold because all three sides satisfy the properties of a unique map to the pullback D∗X:

D∗X
ψX

&&

πX

$$
D∗X

πX

��

ψX //

A

D′X

D′!X

��
D1

τ1
// D′1

For idD∗X , the two triangles above commute trivially. That they also commute for
ε∗D∗X ◦ δ∗X is proved as follows:

D∗X

πX

��

ψX //

δ∗X

$$
FG

D′X

δ′X

%%

D′ l. coun.D1
δ1

##
DD1

φD1

$$

τD1

--

εD1

00

D l. coun.

D∗D∗X

D∗πX

��

ψD∗X

%%
ψ nat.D∗D1
ψD1

%%
B

D′D∗X

D′πX

��

D′ψX //

ε′D∗X

%%
ε′ nat.

ε′ nat.

D′D′X

ε′
D′X

$$
D′D1

ε′D1 %%

τ pres. coun.

D∗X

πX

��

ψX

// D′X

D1

D. Ahman and T. Uustalu 14:13

And that they also commute for D∗ε∗X ◦ δ∗X is proved as follows:

D∗X

πX

��

ψX //

δ∗X

$$

F

G

D′X

δ′X

��

D1
δ1

##

D r. coun.

D′ r. coun.DD1
φD1

$$
Dε1

��
φ nat.

D∗D∗X

D∗πX

��

ψD∗X //

D∗ψX

%%
A ψ nat.

D′D∗X

D′ψX

%%
D1

φ1

%%

D∗D1
D∗τ1

%%
D∗ε1

##

τ p. cu.

D∗D′X

D∗D′!X

��

D∗ε′X

%%
ε′ nat.

D′D′X

D′ε′X $$

φ1 iso

D∗D′1

D∗ε′1
��

D∗X
D∗!X

yy
πX

��

ψX

//

π nat.
��

D′X

D∗1 π1 // D1

The coassociativity law δ∗D∗X ◦ δ∗X = D∗δ∗X ◦ δ∗X holds because both sides satisfy the
properties of a unique map to D∗D∗D∗X as a pullback obtained by pasting together four
pullbacks (of those, the middle and the right upper one are pullbacks since D′ preserves
Cartesian natural transformations to D′):

D∗X

πX

��

ψX //

&&

D′X
δ′X // D′D′X

D′δ′X

''

D1

δ1

��
DD1

δD1

��

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X//

ψ Cart.

D′D∗D∗X

D′D∗πX

��

D′ψD∗X//

ψ Cart.

D′D′D∗X

D′D′πX E

%%

D′D′D∗!X
��

D′D′ψX//

ψ Cart.
D′D′D′X

D′D′D′!X
��

DDD1

φDD1 %%

D′D′D∗1

D′D′π1
��

D′D′ψ1 //

π1 iso

D′D′D′1

D∗DD1
D∗φD1

// D∗D∗D1
ψD∗D1

// D′D∗D1
D′ψD1

// D′D′D1
D′D′τ1

// D′D′D′1

CALCO 2019

14:14 Decomposing Comonad Morphisms

That δ∗D∗X ◦ δ∗X satisfies the two triangles in the above diagram is verified as follows:

D∗X

πX

��

ψX //
δ∗X

%%
F

G

D′X
δ′X

##

δ′X

''
D′ coass.

D1

δ1

��

D∗D∗X

D∗πX

��

ψD∗X //
δ∗

D∗X

&&
F

δ∗ nat.

D′D∗X
D′ψX //
δ′

D∗X

''
δ′ nat.

D′D′X
δ′

D′X

''

D′D′X

D′δ′X
��

DD1

δD1

��

φD1

%%

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X

// D′D∗D∗X
D′ψD∗X

// D′D′D∗X
D′D′ψX

// D′D′D′X

DDD1

φDD1 ,,

φ pres. comul.

D∗D1
δ∗D1

''
D∗DD1

D∗φD1

// D∗D∗D1

(This uses that φ preserves comultiplication, which is proved below.)
That also D∗δ∗X ◦ δ∗X satisfies the same diagrams is checked as follows:

D∗X

πX

��

ψX //
δ∗X

$$
F

G

D′X
δ′X

&&

D coass.

D1

δ1

��

δ1

��

D∗D∗X

D∗πX

��

ψD∗X //
D∗δ∗X

%%
ψ nat.

G

D′D∗X
D′ψX //

D′δ∗X

&&
F

D′D′X

D′δ′X
��

DD1

δD1 ((

DD1

Dδ1

��

φD1

$$
φ nat.

D∗D∗D∗X

D∗D∗πX

��

ψD∗D∗X

// D′D∗D∗X
D′ψD∗X

// D′D′D∗X
D′D′ψX

// D′D′D′X

DDD1

φDD1 $$

D∗D1

D∗δ1
��

D∗DD1
D∗φD1

// D∗D∗D1

That ψ is a comonad morphism is straightforward. Indeed, the counit preservation law
holds by the definition of ε∗ while equation F is the comultiplication preservation law.

It remains to prove that φ is also a comonad morphism.
The counit preservation law ε∗ ◦ φ = ε is proved as follows:

DX

εX

''

φX //

τX

@@D∗X
ψX // D′X

ε′X

ww

B

τ pr. cu.

X

The comultiplication preservation law δ∗X ◦ φX = D∗φX ◦ φDX ◦ δX holds because both

D. Ahman and T. Uustalu 14:15

the left-hand and right-hand sides satisfy the properties of a unique map to D∗D∗X:

DX

D!X

��

τX //

++

D′X

δ′X

++
D1

δ1))

D∗D∗X

D∗πX

��

ψD∗X //

ψ Cart.
D′D∗X

D′πX E

%%

D′D∗!X��

D′ψX //
ψ Cart.

D′D′X

D′D′!X��
DD1

φD1 **

D′D∗1
D′π1��

D′ψ1 //

π1iso
D′D′1

D∗D1
ψD1

// D′D1
D′τ1

// D′D′1

That δ∗X ◦ φX satisfies the two triangles in the above diagram is verified as follows:

DX

D!X
**

τX

))
φX

'' B
C D∗X

δ∗X
((πX��

ψX //

F

G

D′X
δ′X
((

D1
δ1 ��

D∗D∗X

D∗πX

��

ψD∗X

// D′D∗X
D′ψX

// D′D′X

DD1

φD1 ((
D∗D1

That D∗φX ◦ φDX ◦ δX also satisfies the same two triangles is checked as follows:

DX

D!X

��

τX //
δX

''

δ nat.

D′X
δ′X

��

τ pres. comul.
DDX

DD!X

��

φDX

((

τDX

&&B

φ nat.

D1

δ1 ''

D∗DX

D∗D!X

##

D∗φX

))

ψDX //

ψ nat.
D′DX

D′φX

))

D′τX

''B

DD1

φD1
))

D∗D∗X

D∗πX

��

ψD∗X

// D′D∗X
D′ψX

// D′D′XC

D∗D1

J

Let us briefly compare the situation of Theorem 4 with the full image factorization of
functors discussed in Section 3. Given a functor F : C → D, the category imF , together with
the associated functors F and F , arises as in the following pullback diagram in Cat:

C
F

))

!C ((

F

((imF
F //

��

D
!D��

codisc(C0)
codisc(F0)

// codisc(D0)

where codisc(C0) is the codiscrete category on the set of objects of C (the cofree category).
The arrows !C and !D are the unique identity-on-objects functors.

CALCO 2019

14:16 Decomposing Comonad Morphisms

We are dealing with the following pullback diagram in Comonad(C):

D
φ

**

〈D!,ε〉 **

τ

((
D∗

ψ //

��
D′

〈D′!,ε′〉��
D1×−

τ1×−
// D′1×−

This is obtained from the first diagram in the proof of Theorem 3, read as a diagram in
[C, C] rather than C, by replacing the constant functors D1 and D′1 by the corresponding
cofree comonads (the coreader comonads for D1 and D′1). The special case for container
comonads is, in the view of the equivalence of DCont and (←−−Cat)op, an analogue of full image
factorization for cofunctors: a pushout diagram in ←−−Cat involving discrete categories.

We do not prove it here, but the factorization asserted in Theorem 3 is unique up to a
unique natural isomorphism (cf. [14, Sec. 3.2]). The factorization of Theorem 4 is unique
up to a unique isomorphism of comonads. Thus in fact we have factorization systems on
[C, C] and on the full subcategory of Comonad(C) given by underlying functors preserving
Cartesian natural transformations to themselves. The “epis” of these factorization systems
are natural transformations resp. comonad morphisms φ such that φ1 is an isomorphism; the
“monos” are Cartesian natural transformations resp. comonad morphisms.

We conclude by specializing the above results to the factorization of functor coalgebras
and comonad coalgebras. This uses the costate functor and costate comonad.

I Proposition 5. In a Cartesian closed category C, given an object S, the functor DS =
S × (S ⇒ −) (the costate functor for S) carries a comonad structure (the costate comonad).

Proof. Immediate from the fact that DS is defined as the composition of the adjoint
functors S × − and S ⇒ −. Accordingly, the counit and comultiplication εS and δS are
constructed from the counit and unit of the adjunction: εSX = evS,X : S × (S ⇒ X) → X,
δSX = S × coevS,S⇒X : S × (S ⇒ X)→ S × (S ⇒ (S × (S ⇒ X))). J

Coalgebras of functors (resp. comonads) are the same as natural transformations (resp.
comonad morphisms) from the costate functor (resp. comonad). This result is analogous to
the well-known result about algebras of functors (resp. monads) and natural transformations
(resp. monad morphisms) to the continuation functor (resp. monad) [13, 10].

I Proposition 6.
1. In a Cartesian closed category C, given a strong functor D′, there is a bijection between

maps from S to D′S and natural transformations from DS to D′.
2. If D′ is a comonad, the same bijection restricts to a bijection between comonad coalgebras

of D′ with carrier S and comonad morphisms from DS to D′.

Proof (sketch). We use that tensorially strong functors are internally functorial. We con-
struct the bijection as follows.

Given a map γ : S → D′S, we define a natural transformation τ : DS → D′ by

τX = S × (S ⇒ X)
γ×ifuncD′

S,X // D′S × (D′S ⇒ D′X)
evD′S,D′X // D′X

If D′ is a comonad and γ satisfies the laws of a comonad coalgebra structure, then τ

satisfies the laws of a comonad morphism.

D. Ahman and T. Uustalu 14:17

Given a natural transformation τ : DS → D′, we define a map γ : S → D′S by

γ = S
〈idS ,!S〉 // S × 1 S×iidS // S × (S ⇒ S) τS // D′S

If D′ is a comonad and τ satisfies the laws of a comonad morphism, then γ satisfies the
laws of a comonad coalgebra structure.

The two transformations are mutual inverses. J

Using what we have learned about the costate functor and costate comonad, we obtain a
decomposition of functor coalgebras and comonad coalgebras.

I Theorem 7.
1. Given a Cartesian closed finitely complete category C, a strong functor D′ preserving

Cartesian natural transformations to D′, and a map γ : S → D′S, then γ admits a
factoring through the object D∗S for another functor D∗, as depicted below

S
γ∗
//

γ

&&
D∗S

ψS

// D′S

with the properties that
D∗! ◦ γ∗ : S → D∗1 is an isomorphism and
ψ : D∗ → D′ is Cartesian.

2. If D′ is a comonad and γ is a comonad coalgebra structure, then D∗ is a comonad, γ∗ is
a comonad coalgebra structure and ψ is a comonad morphism.

Proof (sketch). This is a corollary of Theorems 3, 4 and the last two propositions.
The given map γ : S → D′S induces a natural transformation τ : DS → D′. From

this, we get a functor D∗ and two natural transformations φ : DS → D∗ and ψ : D∗ → D′,
whereby φ1 : DS1→ D∗1 is an isomorphism and ψ is Cartesian. We construct γ∗ : S → D∗S

as the composition φS ◦ (S × iidS) ◦ 〈idS , !S〉. The map D∗! ◦ γ∗ is an isomorphism thanks to
commutation of the diagram

S ∼=

〈idS ,!S〉//

γ∗

**
S × 1 S×iidS //

∼= **

S × (S ⇒ S)
DS !��

φS // D∗S

D∗!��
S × (S ⇒ 1) φ1

∼=
// D∗1

J

5 Conclusion

We have demonstrated that two observations about comonads that are immediate for
container comonads on Set also hold more generally for comonads whose underlying functor
preserves Cartesian natural transformations to itself on any finitely complete category. These
observations concern shapes and positions (in terms of comonad morphisms being bijective
on shapes or bijective on positions between corresponding pairs of shapes), and demonstrate
that comonads generally, not just container comonads, are usefully analyzed in terms of
shapes and positions and exhibit noteworthy properties expressible in these terms.

CALCO 2019

14:18 Decomposing Comonad Morphisms

In other work [6], we have shown that container comonad coalgebras and container
comonad morphisms can be seen as generalized asymmetric (i.e., server-client) lenses, which
are a device for keeping a client’s view of a database in synch with the master copy at a
server. Shapes in the two directed containers are states of the two databases, positions are
updates. The factorization results presented in this paper say that such lenses factorize into
two lenses, whereof the first is identity on states and the second is identity on updates for
every state.

References
1 Michael Abbott, Thorsten Altenkirch, and Neil Ghani. Containers: Constructing Strictly

Positive Types. Theor. Comput. Sci., 342(1):3–27, 2005. doi:10.1016/j.tcs.2005.06.002.
2 Marcelo Aguiar. Internal Categories and Quantum Groups. PhD thesis, Cornell University,

1997. URL: http://www.math.cornell.edu/~maguiar/thesis2.pdf.
3 Danel Ahman, James Chapman, and Tarmo Uustalu. When Is a Container a Comonad? Log.

Methods Comput. Sci., 10(3), 2014. article 14. doi:10.2168/lmcs-10(3:14)2014.
4 Danel Ahman and Tarmo Uustalu. Distributive Laws of Directed Containers. Progress in

Informatics, 10:3–18, 2013. doi:10.2201/niipi.2013.10.2.
5 Danel Ahman and Tarmo Uustalu. Directed Containers as Categories. In Robert Atkey

and Neil Krishnaswami, editors, Proc. of 6th Wksh. on Mathematically Structured Functional
Programming, MSFP 2016 (Eindhoven, Apr. 2016), volume 207 of Electron. Proc. in Theor.
Comput. Sci., pages 89–98. Open Publishing Assoc., 2016. doi:10.4204/eptcs.207.5.

6 Danel Ahman and Tarmo Uustalu. Taking Updates Seriously. In Romina Eramo and Michael
Johnson, editors, Proc. of 6th Wksh. on Mathematically Structured Functional Programming,
MSFP 2016 (Eindhoven, Apr. 2016), volume 1827 of CEUR Wksh. Proc., pages 59–73. RWTH
Aachen, 2017. URL: http://ceur-ws.org/Vol-1827/paper11.pdf.

7 Nicola Gambino and Martin Hyland. Wellfounded Trees and Dependent Polynomial Functors.
In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors, Revised Selected Papers
from Int. Wksh. on Types for Proofs and Programs, TYPES 2003 (Torino, Apr./May 2003),
volume 3085 of Lect. Notes in Comput. Sci., pages 210–225. Springer, 2004. doi:10.1007/
978-3-540-24849-1_14.

8 Nicola Gambino and Joachim Kock. Polynomial Functors and Polynomial Monads. Math.
Proc. Cambridge Philos. Soc., 154(1):153–192, 2013. doi:10.1017/s0305004112000394.

9 Richard Garner. Double Clubs. Cahiers de Topologie et Géométrie Différentielle Catégoriques,,
47(4):261–316, 2006. URL: http://www.numdam.org/item?id=CTGDC_2006__47_4_261_0.

10 Martin Hyland, Paul B. Levy, Gordon Plotkin, and John Power. Combining Algebraic Effects
with Continuations. Theor. Comput. Sci., 375(1–3):20–40, 2007. doi:10.1016/j.tcs.2006.
12.026.

11 C. Barry Jay. A Semantics for Shape. Sci. Comput. Program., 25(2–3):251–283, 1995.
doi:10.1016/0167-6423(95)00015-1.

12 C. Barry Jay and J. Robin B. Cockett. Shapely Types and Shape Polymorphism. In Donald
Sannella, editor, Proc. of 5th European Symp. on Programming Languages and Systems,
ESOP ’94 (Edinburgh, Apr. 1994), volume 788 of Lect. Notes in Comput. Sci., pages 302–316.
Springer, 2004. doi:10.1007/3-540-57880-3_20.

13 G. Max Kelly. A Unified Treatment of Transfinite Constructions for Free Algebras, Free
monoids, Colimits, Associated Sheaves, and So on. Bull. Austral. Math. Soc., 22(1):1–83, 1980.
doi:10.1017/s0004972700006353.

14 G. Max Kelly. On Clubs and Data-Type Constructors. In Michael P. Fourman, Peter T.
Johnstone, and Andrew M. Pitts, editors, Applications of Categories in Computer Science,
volume 177 of London. Math. Soc. Lect. Note Series, pages 163–190. Cambridge Univ. Press,
1992. doi:10.1017/cbo9780511525902.010.

https://doi.org/10.1016/j.tcs.2005.06.002
http://www.math.cornell.edu/~maguiar/thesis2.pdf
https://doi.org/10.2168/lmcs-10(3:14)2014
https://doi.org/10.2201/niipi.2013.10.2
https://doi.org/10.4204/eptcs.207.5
http://ceur-ws.org/Vol-1827/paper11.pdf
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1007/978-3-540-24849-1_14
https://doi.org/10.1017/s0305004112000394
http://www.numdam.org/item?id=CTGDC_2006__47_4_261_0
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/0167-6423(95)00015-1
https://doi.org/10.1007/3-540-57880-3_20
https://doi.org/10.1017/s0004972700006353
https://doi.org/10.1017/cbo9780511525902.010

D. Ahman and T. Uustalu 14:19

15 nLab authors. Full Image. nLab entry, revision 5, April 2016. URL: http://ncatlab.org/
nlab/revision/full%20image/5.

16 John Power and Olha Shkaravska. From Comodels to Coalgebras: State and Arrays. Electron.
Notes Theor. Comput. Sci., 106:297–314, 2004. doi:10.1016/j.entcs.2004.02.041.

17 Tarmo Uustalu. Container Combinatorics: Monads and Lax Monoidal Functors. In Mohammad
Reza Mousavi and Jiří Sgall, editors, Proc. of 2nd IFIP WG 1.8 Int. Conf. on Topics in
Theoretical Computer Science, TTCS 2017 (Tehran, Sept. 2017), volume 10608 of Lect. Notes
in Comput. Sci., pages 91–105. Springer, 2017. doi:10.1007/978-3-319-68953-1_8.

18 Mark Weber. Polynomials in Categories with Pullbacks. Theor. Appl. Categ., 30(16):533–598,
2015. URL: http://www.tac.mta.ca/tac/volumes/30/16/30-16abs.html.

CALCO 2019

http://ncatlab.org/nlab/revision/full%20image/5
http://ncatlab.org/nlab/revision/full%20image/5
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1007/978-3-319-68953-1_8
http://www.tac.mta.ca/tac/volumes/30/16/30-16abs.html

The Axiom of Choice in Cartesian Bicategories
Filippo Bonchi
University of Pisa, Italy

Jens Seeber
IMT School for Advanced Studies Lucca, Italy

Paweł Sobociński
University of Southampton, UK

Abstract
We argue that cartesian bicategories, often used as a general categorical algebra of relations, are
also a natural setting for the study of the axiom of choice (AC). In this setting, AC manifests itself
as an inequation asserting that every total relation contains a map. The generality of cartesian
bicategories allows us to separate this formulation from other set-theoretically equivalent properties,
for instance that epimorphisms split. Moreover, via a classification result, we show that cartesian
bicategories satisfying choice tend to be those that arise from bicategories of spans.

2012 ACM Subject Classification Theory of computation → Categorical semantics; Theory of
computation → Logic

Keywords and phrases Cartesian bicategories, Axiom of choice, string diagrams

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.15

Introduction

Cartesian bicategories were introduced by Carboni and Walters [8] as a categorical algebra of
relations and an alternative to Freyd and Scedrov’s allegories [14]1. In recent years they have
been receiving renewed attention by researchers interested in string-diagrammatic languages.
Indeed, thanks to the compact closed structure induced by Frobenius bimonoids, cartesian
bicategories have proved to be an appropriate mathematical playground for compositional
studies of different kinds of feedback systems. For instance, signal flow graphs [21], which
are circuit-like specifications of linear dynamical systems, form a cartesian bicategory [3].
Moreover, the fact that cartesianity only holds laxly makes them able to serve as “resource-
sensitive” syntax, as outlined in [4], where free cartesian bicategories were proposed as a
resource-sensitive generalisation of Lawvere theories.

Free cartesian bicategories were also used in [5], where we showed that their algebraic
presentation can be seen as an equational characterisation of well-known logical preorders,
namely those arising from query inclusion of conjunctive queries (aka regular logic). The
deep relationship between cartesian bicategories and regular logic – already alluded to in [8] –
was also recently touched upon by Fong and Spivak [11].

In cartesian bicategories, it is important to distinguish between arbitrary morphisms –
which can be thought of as relations – and a certain class of morphisms called maps, which can
be thought of as functions. A fundamental result [8, Theorem 3.5] states that, for a cartesian
bicategory B satisfying the property of functional completeness, (i) the subcategory of maps
(denoted by MapB) is regular and (ii) the category of relations over the category of maps
(Rel(MapB)) is biequivalent to B. Unfortunately, this beautiful result is not relevant for

1 RFC Walters referred to the modular law of allegories as a formica mentale, a “complication which pre-
vents thought” (http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.
html).

© Filippo Bonchi, Jens Seeber, and Paweł Sobociński;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CALCO.2019.15
http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.html
http://rfcwalters.blogspot.com/2009/10/categorical-algebras-of-relations.html
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 The Axiom of Choice in Cartesian Bicategories

free cartesian bicategories: for instance the categories obtained by the algebraic presentations
in [4] and [5] do not arise from the Rel(·) construction.

For this reason in [5], we needed to rely on an alternative construction Span∼ that we
believe is of independent interest. First, it requires less structure of the underlying category:
while Rel(·) requires a regular category, Span∼ requires merely the presence of weak pullbacks.
Second, while in the category of sets and functions both constructions yield the usual category
of relations, as we shall see, there are important cases in which they differ.

Our main contribution is an analogue of the aforementioned result for Span∼, namely
that Span∼MapB is biequivalent to B. In this setting, Carboni and Walters’ functional
completeness can be relaxed to a weaker condition that we call having enough maps, but an
additional assumption is necessary: B has to satisfy the axiom of choice. Indeed, our main
result (Theorem 30) asserts that a cartesian bicategory B with enough maps satisfies the
axiom of choice if and only if B is biequivalent to Span∼MapB.

This characterisation motivates a closer look at the axiom of choice, one of the best
known – and most controversial – axioms of set theory [16]. It has many ZF-equivalent
formulations, some requiring only very basic concepts. One is:

Every total relation contains a map.

Our starting observation is that this condition is natural to state in the language of cartesian
bicategories. Another way of viewing our main result is, therefore, a characterisation of
cartesian bicategories with enough maps that satisfy the axiom of choice as precisely those
that arise via the Span∼ construction.

Given the innovations of topos theory [19] in foundations of mathematics, the question
of whether or not to accept the axiom of choice is nowadays less absolute (and therefore
less heated). Indeed, if a topos is a mathematical “universe”, then it holds in some and
not in others, thus accepting/rejecting choice turns from a philosophical question into a
practical matter. Interpreting choice inside a category does not need the full power of the
internal language of a topos – it suffices if the category in question captures basic properties
of relations. Cartesian bicategories can therefore be seen as an amusing setting for the study
of the axiom of choice. Indeed, the advantage of a weaker language is a finer grained analysis:
e.g. we shall see that properties well-known to be equivalent to choice in ZF (e.g. surjective
functions split) are different as properties of cartesian bicategories.

Structure of the paper. We start by giving an overview of a few important concepts of
cartesian bicategories in Section 1. In Section 2 we define the axiom of choice in cartesian
bicategories, the property of “having enough maps” and discuss ramifications of this, including
a useful characterisation. In Section 3 we introduce the Span∼ construction and prove several
useful results that are necessary for showing the classification theorem in Section 4. In
Section 5, we compare the constructions Rel(C) and Span∼C and show that they coincide if
regular epis split in C.

We would like to thank Aleks Kissinger and the team behind TikZiT, which was used to
create the diagrams in this paper.

1 Cartesian bicategories

We start by recalling the notion of cartesian bicategory [8]. We will often use string
diagrams [23] as a graphical notation for morphisms: given a symmetric monoidal category B
with monoidal product ⊗ and monoidal unit I, a wire X denotes idX , the identity for an

tikzit.github.io

F. Bonchi, J. Seeber, and P. Sobociński 15:3

arbitrary object X of B, while a box X R Y denotes an arbitrary morphism R : X → Y of
B; for R : X → Y and S : Y → Z, the composition R;S : X → Z is depicted as X R Y ZS ;

for R : X → Y and S : Z →W , R⊗S : X⊗Z → Y ⊗W is depicted as
X R Y

Z S W
; symmetries

σ : X ⊗Y → Y ⊗X are drawn as
X

Y

Y

X
; the identity for I as an empty diagram . When

clear from the context, we will avoid labelling wires.

I Definition 1. A cartesian bicategory is a symmetric monoidal category B enriched over
the category of posets. Every object X ∈ B is equipped with morphisms

X : X → X ⊗X and X : X → I

such that
X and X form a cocommutative comonoid, that is they satisfy

X = X
X = X X X= X=

X and X have right-adjoints X and X respectively, that is

X

≤X X ≤

X

X

X≤X X X ≤

The Frobenius law holds, that is

X

X

X

X

X ==

Each morphism R : X → Y is a lax comonoid homomorphism, that is

R

Y

X

R

R

≤

Y

Y

X ≤R XYX

The choice of comonoid on every object is coherent with the monoidal structure2 in the
sense that

X

=
Y

X⊗Y

X

Y

=

X

X

Y

Y

X⊗Y

A morphism of cartesian bicategories is a monoidal functor preserving the ordering and the
chosen monoids and comonoids.

2 In the original definition of [8] this property is replaced by requiring the uniqueness of the comonoid/-
monoid. However, as suggested in [22], coherence seems to be the property of primary interest.

CALCO 2019

15:4 The Axiom of Choice in Cartesian Bicategories

The archetypal example of a cartesian bicategory is the category of sets and relations Rel,
with cartesian product of sets, hereafter denoted by ×, as monoidal product and 1 = {•} as
unit I. To be precise, Rel has sets as objects and relations R ⊆ X × Y as arrows X → Y .
Composition and monoidal product are defined as expected:

R;S = {(x, z) | ∃y s.t. (x, y) ∈ R and (y, z) ∈ S},

R⊗ S = {
(
(x1, x2) , (y1, y2)

)
| (x1, y1) ∈ R and (x2, y2) ∈ S}.

For each set X, the comonoid structure is given by the diagonal function X → X ×X and
the unique function X → 1, considered as relations. That is X = {

(
x, (x, x)

)
|x ∈ X}

and X = {(x, •) |x ∈ X}. Their right adjoints are given by their opposite relations:
X = {

(
(x, x), x

)
|x ∈ X} and X = {(•, x) |x ∈ X}. The reader can easily check

that the four inequalities are satisfied and that, moreover, the Frobenius law holds. The
right adjoints also enjoy an additional property that holds in any cartesian bicategory.

I Lemma 2. X and X form a commutative monoid, that is

X = X
X = X X X= X=

To appreciate the property that every morphism is a lax-comonoid homomorphism, it is
useful to spell out its meaning in Rel: in the first inequality, the left and the right-hand side
are, respectively, the relations

{
(
x, (y, y)

)
| (x, y) ∈ R} and {

(
x, (y, z)

)
| (x, y) ∈ R and (x, z) ∈ R}, (1)

while in the second inequality, they are the relations

{(x, •) | ∃y ∈ Y s.t. (x, y) ∈ R} and {(x, •) |x ∈ X}. (2)

It is immediate to see that the two left-to-right inclusions hold for any relation R ⊆ X × Y ,
while the right-to-left inclusions hold exactly when R is a function: a relation which is single
valued and total3. This observation justifies the following definition.

I Definition 3. Let R be a morphism in a cartesian bicategory. We call R

single valued if R≤
R

R

; total if R≤ ;

injective if R≤
R

R

; surjective if R≤ .

By translating the last two inequalities in Rel, similarly to what we have shown in (1)
and (2), the reader can immediately check that these correspond to the usual properties of
injectivity and surjectivity for relations. Moreover, since the converses of these inequalities
hold in cartesian bicategories, the four inequalities are actually equalities.

3 Requiring every morphism to be a comonoid homomorphism would make ⊗ the categorical product [13]
and thus the whole category would be cartesian. Ensuring just lax-comonoid homomorphism makes ⊗
a certain kind of bi-limit, called in [8], bi-product. This fact explains the name cartesian bicategory.

F. Bonchi, J. Seeber, and P. Sobociński 15:5

We can characterise all the notions of Definition 3 equivalently in terms of opposite
morphisms Rop which are defined for any morphism R as follows:

R R:=

I Proposition 4. Let R be a morphism in a cartesian bicategory.

RR ≤ iff R is single valued. ≤ R R iff R is total.
RR ≤ iff R is injective. ≤ R R iff R is surjective.

In particular, R is surjective iff Rop is total and R is injective iff Rop is single valued.

Proof. We show the proofs for single valued and total. The proofs for injectivity and
surjectivity are analogous. The last statement follows from the others and the fact that
(Rop)op = R

Let R be single valued. Then

R R R

R

= ≤
R

≤ =

Conversely, if RR ≤ , then by the Frobenius law one gets

R

R

=
R

R

and from there

R

R ≤

R

R R ≤

R

R=

Let R be total. Then

R R R

R

= ≥
R

≥ =

Conversely, if ≤ R R , then

R≤ ≤R R

J

I Definition 5. A map in a cartesian bicategory is a morphism f that is a comonoid
homomorphism, i.e. is single valued and total.

We will write f to denote a map f and f for its opposite. Note that we use
lower-case letters for maps and upper-case for arbitrary morphisms. Following the analogy
with Rel, we will often call arbitrary morphisms of a cartesian bicategory relations.

The original treatment of cartesian bicategories in [8] introduces maps as those morphisms
that admit a right-adjoint. We show below that this amounts to the same notion.

CALCO 2019

15:6 The Axiom of Choice in Cartesian Bicategories

I Proposition 6. A morphism f is a map if and only if it has a right adjoint – a
morphism R such that fR ≤ and ≤ f R . In that case, necessarily

R = f .

Proof. If f is a map, then f is a right-adjoint by Proposition 4.
On the other hand, if f has a right-adjoint R, then it is a map since

f

f

f≤≤
f

f

≤f R

R

R

f

f

f

and

f≤ ≤f R

Therefore, f is indeed a map and R = f by uniqueness of adjoints. J

The identity is a map, and maps are easily shown to be closed under composition, so they
constitute a category.

I Definition 7. Given a cartesian bicategory B, we define its category of maps, Map(B) to
have the same objects of B and as morphism the maps of B.

By the following proposition, the ordering of B becomes trivial when restricted to maps.

I Proposition 8. Let f, g be maps such that f ≤ g. Then f = g.

Proof. Since f ≤ g , also f ≤ g . Therefore

g ≤ gf f ≤ gf g f≤ J

We have seen that Rel is source of intuition for cartesian bicategories. There are many
other similar examples; for instance LinRel, the category of linear relations of vector spaces
where the monoidal product is the direct sum of vector spaces. Nevertheless, there are
examples of cartesian bicategories that are significantly different, e.g. in which – concretely
speaking – the monoidal product does not act as cartesian product on the underlying sets.

I Example 9. Recall that a prop is a strict symmetric monoidal category where the objects
are the natural numbers and monoidal product on objects is addition. The prop ERel of
equivalence relations [25, 12, 9, 10, 6] (also called the prop of corelations) has objects natural
numbers, where n ∈ N is thought of as the finite set {0, . . . , n− 1}. A morphism n→ m is
an equivalence relation on n+m. Composition of an equivalence relation on n+m with one
on m+ o is given by taking the smallest equivalence relation they generate on n+m+ o and
restricting it to n+ o. Monoidal product is given by disjoint union.

Another important example is the prop PERel of partial equivalence relations. These
are symmetric and transitive, but not necessarily reflexive, and have been used in the study
of the semantics of higher order λ-calculi [17, 24] and quantum computations [18, 15]. In
PERel a morphism n→ m is a partial equivalence relation on n+m; composition similar
to that in ERel, taking the smallest induced partial equivalence relation. Again ⊗ is given
by disjoint union. See [25, Definitions 2.52 and 2.63] for additional details.

Both ERel and PERel carry the structure of cartesian bicategories after taking into
consideration their posetal enrichment. Here the ordering ≤ is the opposite of set inclusion:
R ≤ S iff R ⊇ S. Note that for PERel, we need some extra care. We consider partial

F. Bonchi, J. Seeber, and P. Sobociński 15:7

equivalence relations R,S : n→ m as equivalence relations R̄, S̄ over (n+m)∪{⊥} and then
take R ≤ S iff R̄ ⊇ S̄. In particular, notice that the completely undefined partial equivalence
relation is represented by the chaotic relation on (n+m) ∪ {⊥}, and is thus – according to
this ordering – the least element in its homset.

To define the comonoid structure it is enough to consider 1, since for arbitrary n it
is forced by coherence (Definition 1). For both ERel and PERel : 1 → 2 is the
equivalence relation equating all the elements of the set 1 + 2 and : 1 → 0 equates
the single element of the set 1. The monoid structure : 2→ 1 and : 0→ 1 is
defined in a similar way.

In order to illustrate what maps are in these categories, it is convenient to write [i]R for
the set {j | (i, j) ∈ R}. Both in ERel and PERel a morphism R : n→ m is

total iff for all i, j ∈ n, (i, j) ∈ R implies i = j, and (3)

single valued iff for all i ∈ m, either [i]R = ∅ or there is j ∈ n such that (i, j) ∈ R. (4)

Thus is single valued but not total; is total but not single valued. In PERel,
the undefined relation 0→ 1, hereafter denoted ⊥ , is both total and single valued.

2 Choice in Cartesian bicategories

One of the many equivalent formulations of the axiom of choice in set theory is

Every total relation contains a map.

In a total relation every element in the domain is related to at least one element in the
codomain. A map is obtained by choosing, for each element in the domain, exactly one
related element in the codomain. This can be stated in the language of cartesian bicategories.

I Definition 10 (Choice). Let B be a cartesian bicategory. We say that B satisfies the axiom
of choice (AC), or that B has choice, iff the following holds for any morphism R : X → Y :

R≤ (R is total) implies ∃ map f : X → Y such that f ≤ R (AC)

Observe that the converse implication holds in any cartesian bicategory.

I Lemma 11. If f ≤ R then R≤ .

Proof. Obvious, since if S is total and S ≤ R, then R is total: R S ≥≥ .
J

I Example 12.
The usual axiom of choice implies that Rel satisfies (AC).
ERel is an example of a cartesian bicategory that does not satisfy (AC). Recall from
Example 9 that the ordering is the reverse of inclusion. Therefore, for (AC) to hold
would mean that every equivalence relation that satisfies (3) could be included in one
that satisfies both (3) and (4). Now consider : 0→ 1. As seen in Example 9, it is
total, but not single valued. Since equivalence relations have to be reflexive, this is also
the only morphism of type 0→ 1: clearly AC fails here.
Interestingly, PERel does satisfy (AC). For example, : 0 → 1 is included, as an
equivalence relation over (0 + 1) ∪ {⊥}, in ⊥ .

CALCO 2019

15:8 The Axiom of Choice in Cartesian Bicategories

Another common formulation of the axiom of choice in set theory is the assertion that
every surjective function π : X → Y splits, namely, there exists a function ρ : Y → X such
that ρ ; π = idY . A standard categorification of the notion of surjectivity is the notion of
epi(morphism): π is epi iff π ; f = π ; g entails f = g. In order to clarify the picture and
justify our Definition 10 we will now investigate epimorphisms in cartesian bicategories.

I Lemma 13. Let π be a map in a cartesian bicategory B. Then π is an epi
in B if and only if it is surjective.

Proof. Let π be an epi in B. Since π is a map, by Proposition 4, ≤ π π

and therefore

= π ππ =

Since π is epi, π = so π is total, hence π is surjective
by Proposition 4.

Assume π is surjective. Then ππ = by Proposition 4. If now R,S

are morphisms such that Rπ = Sπ , then

π Rπ = π Sπ=R = S J

I Lemma 14. Surjective maps split in any cartesian bicategory with choice.

Proof. Let π : X → Y be a surjective map. Therefore, πop : Y → X is a total relation, so by
(AC) there is a map g : Y → X such that

g ≤ π

Now we have

πg ≤ ππ ≤

and since both the left hand side and the right hand side of that inequality are maps, we
have by Proposition 8 that g ; π = idY . J

2.1 Cartesian bicategories with enough maps
The converse of Lemma 14 does not hold in general. The reason is that a general cartesian
bicategory might not have enough maps to “cover” all its morphisms in a suitable sense. In
order to prove the converse, we need to assume a saturation property.

I Definition 15. We say a cartesian bicategory has enough maps if for every morphism
R : X → I there is a map f : Z → X such that

=R f

The intuition for this notion is the following: a morphism R : X → I can be considered
as a predicate on X. Then having enough maps ensures the existence of a function f that
picks out the subset of X where R holds.

F. Bonchi, J. Seeber, and P. Sobociński 15:9

I Example 16. The description above shows that Rel has enough maps. Also ERel and
PERel have both enough maps. We briefly describe the construction for ERel, the one for
PERel is similar. For any morphism R : n → 0 in ERel, take e to be the number of the
equivalence classes of R. Choose a total ordering for these equivalence classes, so that for
each i ∈ e = {0, . . . e − 1}, we denote by Ri the i-th equivalence class of R. Then, define
f : e→ n as the equivalence on e+ n

R ∪ {(i, j) | i ∈ e and j ∈ Ri} ∪ {(i, j) | j ∈ e and i ∈ Rj}.

It is immediate to see that f satisfies (3) and (4) and that =R f .

I Remark 17. A similar property, functional completeness, was already considered in [8].
The important difference is that we don’t require f to be mono. Ours is a more general
notion: every functionally complete cartesian bicategory also has enough maps.

I Lemma 18. If a cartesian bicategory has enough maps, then for every morphism R : X → Y ,
there are maps f : Z → X and g : Z → Y such that

R = f g

We call this a comap-map factorisation of R.

Proof. Since there are enough maps, there is a map h : Z → X ⊗ Y such that

=
R

h

Let = hf and = hg , then

=h
g

f

h
∗=

h

h

=

where the step marked ∗ uses coherence of the comonoid and the fact that h is a map.
Therefore we have

=R =

R

g

f

f g=

J

I Proposition 19. A cartesian bicategory with enough maps satisfies (AC) iff surjective
maps split.

Proof. By Proposition 14, it suffices to prove that (AC) holds if surjective maps split. So let
R : X → Y be a total relation and take a comap-map factorisation R = f g with
maps f, g. Since R is total,

= f g = f

so f is surjective. Since surjective maps split, there exists a map h that is a pre-inverse of f ,
so h ; f = id. Then

h ≤ h f f = f

and therefore R=f gh g ≤ , so R contains a map. J

CALCO 2019

15:10 The Axiom of Choice in Cartesian Bicategories

3 The Span∼ construction

In [5], we used a construction that, for any category with finite limits, gives rise to a
cartesian bicategory. Since it plays a key role in our main result (Theorem 30), we recall the
construction and extend it to arbitrary categories with finite products and weak pullbacks.

We start by recalling the standard notion of bicategory of spans.

I Definition 20 (Span). Let C be a finitely complete category. A span from X to Y is a pair
of arrows X ← A→ Y in C. A morphism α : (X ← A→ Y)⇒ (X ← B → Y) is an arrow
α : A→ B in C s.t. the diagram below commutes. Spans X ← A→ Y and X ← B → Y are
isomorphic if α is an isomorphism. For X ∈ C, the identity span is X idX←−− X idX−−→ X. The
composition of X ← A

f−→ Y and Y g←− B → Z is X ← A×f,g B → Z, obtained by taking
the pullback of f and g. This data defines the bicategory [1] Span(C): the objects are those
of C, the arrows are spans and 2-cells are homomorphisms. Finally, Span(C) has monoidal
product given by the product in C, with unit the final object 1 ∈ C.

A

X Y

B

α

To avoid the complications of non-associative composition, it is common to consider a
category of spans, where isomorphic spans are equated: let Span≤C be the monoidal category
that has isomorphism classes of cospans as arrows. Note that, when going from bicategory
to category, after identifying isomorphic arrows it is usual to simply discard the 2-cells.
Differently, we consider Span≤C to be locally preordered with (X ← A → Y) ≤ (X ←
B → Y) if there exists a morphism α : (X ← A → Y) ⇒ (X ← B → Y). It is an easy
exercise to verify that this (pre)ordering is well-defined and compatible with composition
and monoidal product. Note that, in general, ≤ is a genuine preorder: i.e. it is possible that
(X → A← Y) ≤ (X → B ← Y) ≤ (X → A← Y) without the cospans being isomorphic.

Since Span≤C is preorder enriched, rather than poset enriched, it is not a cartesian
bicategory. However, one can transform a preorder enriched category into a poset enriched
one with a simple construction: for Span≤C, one first defines ∼=≤ ∩ ≥, namely (X ←
A → Y) ∼ (X ← B → Y) iff there exists α : (X ← A → Y) ⇒ (X ← B → Y) and
β : (X ← B → Y)⇒ (X ← A→ Y), and then one takes equivalence classes of morphisms of
Span≤C modulo ∼. It is worth observing that pullbacks are no longer necessary to compose
∼-equivalence classes of spans: weak pullbacks are sufficient, since non-isomorphic weak
pullbacks of the same cospan all belong to the same ∼-equivalence class.

I Definition 21 (Span∼). Let C be a category with finite products and weak pullbacks. The
posetal category Span∼C has the same objects as C and as morphisms ∼-equivalence classes
of spans. The order is defined as in Span≤C. Composition is given by weak pullbacks in C.
Identities, monoidal product and unit are as in Span(C).

Like in Rel, the comonoid structure is given for any object X by the diagonal and final
morphism in C: X is the span X ← X → X ×X and X is X ← X → 1.

I Proposition 22. Let C be a category with finite products and weak pullbacks. Then Span∼C
is a cartesian bicategory.

Proof. For X we take the span X ×X ← X → X and for X we take 1← X → X.

F. Bonchi, J. Seeber, and P. Sobociński 15:11

With this information, one has only to check that the inequalities in Definition 1 hold:
each of them is witnessed by a commutative diagrams in C. As an example, we illustrate

X≤X X . The left hand side is the span X
idX←−− X

idX−−→ X. The right
hand side is the composition of X idX←−− X

!−→ 1 and 1 !←− X
idX−−→ X. Since the product

X
π1←− X ×X π2−→ X is a pullback of X !−→ 1 !←− X, the composition turns out to be exactly

the span X
π1←− X × X π2−→ X. Now the diagonal ∆: X → X × X makes the following

diagram in C commute. Therefore ∆ witnesses the inequality X≤X X .

X

X X

X ×X

idX

∆

idX

π1 π2

J

The following is a characterisation of Span∼C maps: a span X ← A→ Y is a map iff it is
∼-equivalent to X idX←−− X f−→ Y for some f in C. Moreover it is surjective iff f is a split epi.

I Proposition 23. Let C be a category with finite products and weak pullbacks. Then
Map(Span∼C) ∼= C and surjective maps in Span∼C are exactly split epis in C.

Proof. Since C has finite products, it is endowed with a cartesian monoidal structure. This
means in particular that = g for all g in C.

Let F : C → Span∼C be the identity on objects and mapping a morphism f : X → Y to
the span X idX←−− X f−→ Y . It is easy to check that F is a monoidal functor.
Since every morphism in C is a comonoid homomorphism, F factors as C F ′

−→ Map(Span∼C)→
Span∼C. To conclude that F ′ is an isomorphism, it is enough to show that every Span∼C
map is the ∼-equivalence class of some span X idX←−− X f−→ Y .

Now, if X f←− Z g−→ Y is a map in Span∼C, in particular

f g≤ = f

Therefore, by Definition of the ordering in Span∼C, there is a morphism h : X → Z such that

X

X

Z

idX

h

f

commutes, and therefore
X

X Y

Z

idX

h

h;g

f g

.

The two spans are thus equal in Span∼C, since they are both maps.

We can now prove the second part of the proposition. If π : X → Y is a map in C such
that F (π) is surjective in Span∼C, then we have

≤ π and therefore there is ι : Y → X such that
Y

Y

X

idY

ι

π

so π is a split epi. The converse direction is obvious. J

I Proposition 24. Span∼C has enough maps.

CALCO 2019

15:12 The Axiom of Choice in Cartesian Bicategories

Proof. In a cartesian bicategory, for all R : X → I we have R ≤ X . In the special
case when R is a map g : X → I, by Proposition 8, it holds that g = X . Now take a
morphism R : X → I in Span∼C. By definition, R is a span X f←− A g−→ I. Observe that by
Proposition 23, both f and g are maps in Span∼C. Therefore g = X and Span∼C has
enough maps. J

By Proposition 19, the two propositions above entail the following.

I Corollary 25. Span∼C satisfies (AC).

I Example 26. Let FinSet be the category with natural numbers as objects and as morph-
isms functions (as in Example 9, natural numbers are regarded as finite sets). The category
Span∼FinSetop = Cospan∼FinSet satisfies (AC) by Corollary 25. This category is particu-
larly relevant for different reasons. First, it is the cartesian bicategory on one object (see [5,
Theorem 31]) or, using the terminology in [4], it is the Carboni-Walters category freely
generated by the empty Frobenius theory. Moreover, after forgetting its posetal enrichment,
it is the PROP Frob of special Frobenius bimonoids which appears to be of fundamental
importance in several works (e.g. in [20, 2]). Finally, the cartesian bicategory of equivalence
relations, ERel from Example 9, can be obtained as quotient of Cospan∼FinSet: to pass
from cospans to equivalence relations, it suffices to equate

= .

Since ERel does not satisfy (AC), by Corollary 25, there is no category C, such that
ERel is Span∼C. Instead, PERel can be put in Span∼ form: it is Span∼FinSetop

p =
Cospan∼FinSetp for FinSetp being defined as FinSet but with partial functions as morph-
isms. Indeed, as we will see in the next section, any cartesian bicategory with enough maps
that satisfies (AC) arises from the Span∼ construction.

4 Characterising cartesian bicategories with choice

In this section, we prove our characterisation result (Theorem 30). First, we observe that (AC)
allows us to construct maps witnessing certain inequalities.

I Lemma 27. Let B be a cartesian bicategory with choice and

A

B C

D

f g

h k

a diagram of maps such that f g h k≤ . Then there is a map ω : A→ D (called
witness) such that the following diagram commutes.

A

B C

D

f

ω

g

h k

F. Bonchi, J. Seeber, and P. Sobociński 15:13

Proof. Consider R : A→ D given by

f h

g k

=R

One readily checks that f h≤R and g k≤R .
R is total, since

f h

g k

f k

g

h

= ≥
f g

g

f

≥
g

g

≥

so by the axiom of choice, there is a map ω ≤ R. This satisfies

ω h ≤ f hh ≤ fR h≤

and

ω k ≤ g kk ≤ gR k≤

and since both side are maps we have equality by Proposition 8. J

I Lemma 28. Let B be a cartesian bicategory and consider the following diagram in MapB.

A

B C

D

f g

h k

(5)

1. f g ≤ h k if and only if (5) commutes.
2. If B has choice and f g = h k , then (5) is a weak pullback.
3. If B has choice and enough maps then f g = h k iff (5) is a weak pullback.

Proof. 1. If the diagram commutes, then

f g ≤ f g k k = f f h k ≤ h k

Conversely, if f g ≤ h k , then

g k ≤ f g kf ≤ f k kh ≤ f h

and since both sides are maps, they are equal by Proposition 8.
2. Let now B satisfy (AC) and f g = h k . We want to show that (5) is a weak

pullback. Given a commutative diagram of solid arrows below,

T

A

B C

D

ω
b c

f g

h k

we need to construct the dotted arrow. By Lemma 28.1, we get

f g=h kb c ≤

and therefore by Lemma 27 we get ω : T → A as desired.

CALCO 2019

15:14 The Axiom of Choice in Cartesian Bicategories

3. Let now B have also enough maps and let (5) be a weak pullback. By Lemma 28.1, it
suffices to prove that ≤ f gh k . By Lemma 18, take = β γh k

to be a factorisation with β : T → B and γ : T → C. By Lemma 28.1, the external square
of the following diagram commutes.

T

A

B C

D

αβ γ

f g

h k

Since (5) is a weak pullback, there is α : T → A making the above commute. With this
we get

≤ f gh k = β γ = f α α g J

By the third point of the above lemma and Lemma 18 we immediately get the following.

I Corollary 29. Let B be a cartesian bicategory with enough maps and choice. Then Map(B)
has weak pullbacks given by the comap-map factorisation.

We can now state our main result.

I Theorem 30. Let B be a cartesian bicategory with enough maps. B satisfies (AC) if and
only if there is a category C with products and weak pullbacks such that B ∼= Span∼C. More
precisely, (AC) holds if and only if there exists a functor F : Span∼Map(B)→ B that is an
isomorphism.

Proof. By Corollary 25, Span∼Map(B) satisfies (AC), so if there is an isomorphism F also
B satisfies (AC).

Now assume that B has enough maps and satisfies (AC). Since every morphism in Map(B)
is a comonoid homomorphism, Map(B) is a cartesian monoidal category and hence has finite
products, see [8, Theorem 1.6]. It furthermore has weak pullbacks by Corollary 29. We define
F : Span∼Map(B)→ B to be the identity on objects and mapping a span X f←− Z g−→ Y into
the composite fop ; g in B. To prove that F preserves the ordering, observe that if

C

A B

D

f g

α

h k

is a commutative diagram in Map(B), then

≤ h kf g = h α α k

That F indeed preserves composition follows from the weak pullback being given by comap-
map factorisation (Corollary 29). The functor F is identity-on-objects and full by Lemma 18.
By Lemma 27, the functor reflects the ordering. Therefore it is faithful, hence an equivalence.

J

F. Bonchi, J. Seeber, and P. Sobociński 15:15

5 Related work

Another common example of cartesian bicategories, considered in [8], is the category of
relations of a regular category. The following definitions can be found in [7].

I Definition 31. Let C be a category. A kernel pair of a morphism f : X → Y is a pair of
p1, p2 : P → X such that the diagram below is a pullback. An epimorphism is regular if it is
the coequaliser of some pair of morphisms. C is regular if it has finite limits, coequalisers of
kernel pairs and regular epis are stable under pullback.

P X

X Y

p1

p2 f
f

Regular categories admit a well-behaved factorisation system, where every morphism
factors as a regular epi followed by a mono. The factorisation is used to define the cartesian
bicategory of relations of a regular category.

I Definition 32. Given a regular category C, let Rel(C) be the category with the same
objects as C and morphisms X → Y jointly mono spans, i.e. spans X f←− A

g−→ Y such
that the induced map A

〈f,g〉−−−→ X × Y is mono. For an arbitrary span, X f←− A
g−→ Y ,

its image is the jointly mono span given by taking the regular epi-mono factorisation of
A
〈f,g〉−−−→ X × Y . The composition of two jointly mono spans is given by first composing

them as spans via pullback and then taking the image of the resulting span. The identity
X → X is given by the jointly mono span X

idX←−− X
idX−−→ X. Similar to Span∼C, the

categorical product of C induces a monoidal product on Rel(C). Furthermore, the ordering is
defined as for Span∼C: (X ← A→ Y) ≤ (X ← B → Y) if there exists a morphism of spans
α : (X ← A→ Y)⇒ (X ← B → Y).

Since Rel(C) is a cartesian bicategory [8, Example 1.4], it is important to compare the
Rel(C) and Span∼C constructions. In general the two do not coincide. To see this, it is
enough to take FinSetop: Rel(FinSetop) is ERel which, as discussed in Example 26, is a
proper quotient of Span∼FinSetop. This is an instance of a more general fact:

I Proposition 33. There is a full monoidal functor F : Span∼C → Rel(C) given by mapping
a span to its image.

The proof of the above and the following statements can be found in the Appendix.

I Lemma 34. Rel(C) has enough maps.

I Proposition 35. Span∼C ∼= Rel(C) if and only if (AC) holds in Rel(C).

It is known that surjective maps in Rel(C) are precisely regular epis in C, see [8, Theorem
3.5]. Using Proposition 19, we have the following.

I Corollary 36. Span∼C ∼= Rel(C) iff regular epis split in C.

References
1 Jean Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,

pages 1–77. Springer, 1967.
2 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Re-

writing modulo symmetric monoidal structure. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 710–719. ACM, 2016.

CALCO 2019

15:16 The Axiom of Choice in Cartesian Bicategories

3 Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Pawel Sobocinski. Refinement for signal
flow graphs. In 28th International Conference on Concurrency Theory (CONCUR 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

4 Filippo Bonchi, Dusko Pavlovic, and Pawel Sobocinski. Functorial Semantics for Relational
Theories. CoRR, abs/1711.08699, 2017. arXiv:1711.08699.

5 Filippo Bonchi, Jens Seeber, and Pawel Sobocinski. Graphical Conjunctive Queries. In Dan
Ghica and Achim Jung, editors, 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018), volume 119 of Leibniz International Proceedings in Informatics (LIPIcs), pages
13:1–13:23, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CSL.2018.13.

6 Roberto Bruni and Fabio Gadducci. Some algebraic laws for spans (and their connections
with multirelations). In Proc. RelMiS 2001, ENTCS, volume 44, 2001.

7 Carsten Butz. Regular categories and regular logic. BRICS Lecture Series LS-98-2, 1998.
8 Aurelio Carboni and Robert FC Walters. Cartesian bicategories I. Journal of pure and applied

algebra, 49(1-2):11–32, 1987.
9 Brandon Coya and Brendan Fong. Corelations are the prop for extraspecial commutative

Frobenius monoids. Theory and Applications of Categories, 32(11):380–395, 2017.
10 Brendan Fong. The Algebra of Open and Interconnected Systems. PhD thesis, University of

Oxford, 2016.
11 Brendan Fong and David I Spivak. Graphical Regular Logic. arXiv preprint arXiv:1812.05765,

2018.
12 Brendan Fong and Fabio Zanasi. Universal Constructions for (Co)Relations: categories,

monoidal categories, and props. Logical Methods in Computer Science, Volume 14, Issue 3,
September 2018. doi:10.23638/LMCS-14(3:14)2018.

13 Thomas Fox. Coalgebras and cartesian categories. Communications in Algebra, 4(7):665–667,
1976.

14 Peter J Freyd and Andre Scedrov. Categories, allegories, volume 39. Elsevier, 1990.
15 Ichiro Hasuo and Naohiko Hoshino. Semantics of higher-order quantum computation via

geometry of interaction. Annals of Pure and Applied Logic, 168(2):404–469, 2017.
16 Horst Herrlich. Axiom of choice. Springer, 2006.
17 Bart Jacobs. Categorical logic and type theory, volume 141. Elsevier, 1999.
18 Bart Jacobs and Jorik Mandemaker. Coreflections in algebraic quantum logic. Foundations of

physics, 42(7):932–958, 2012.
19 Peter T Johnstone. Sketches of an elephant: A topos theory compendium, volume 2. Oxford

University Press, 2002.
20 Stephen Lack. Composing props. Theory and Applications of Categories, 13(9):147–163, 2004.
21 Samuel J Mason. Feedback theory-some properties of signal flow graphs. Proceedings of the

IRE, 41(9):1144–1156, 1953.
22 E. Patterson. Knowledge Representation in Bicategories of Relations. ArXiv e-prints, June

2017. arXiv:1706.00526.
23 Peter Selinger. A survey of graphical languages for monoidal categories. In New structures for

physics, pages 289–355. Springer, 2010.
24 Thomas Streicher. Semantics of type theory: correctness, completeness and independence

results. Springer Science & Business Media, 2012.
25 Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. PhD thesis, Ecole

Normale Supérieure de Lyon, 2015.

http://arxiv.org/abs/1711.08699
https://doi.org/10.4230/LIPIcs.CSL.2018.13
https://doi.org/10.23638/LMCS-14(3:14)2018
http://arxiv.org/abs/1706.00526

F. Bonchi, J. Seeber, and P. Sobociński 15:17

A Proof of Section 5

Proof of Proposition 33. F preserves the ordering, because of the universal property of
the image. Therefore F is well-defined, since equivalent spans in Span∼C are mapped to
isomorphic spans in Rel(C). It is easily verified that F preserves identities and composition.
Since monos and regular epis are closed under product, F preserves the monoidal structure.
Finally, F is full because any jointly monic span is its own image. J

Proof of Lemma 34. By [8, Theorem 3.5], Rel(C) is functionally complete (see Remark
17). J

Proof of Proposition 35. If Span∼C ∼= Rel(C), then Rel(C) satisfies (AC) by Corollary 25.
If on the other hand, Rel(C) satisfies (AC), then, since it has enough maps, Proposition 19
guarantees that surjective maps split. Now surjective maps in Rel(C) are regular epis in C
([8, Theorem 3.5]), hence the latter split in C. We prove that in that case F – defined and
shown to be full in Proposition 33 – is furthermore faithful, for which it suffices to show
that it reflects the ordering. So let A f←− B g−→ C and A f ′

←− B′ g
′

−→ C be spans such that the
image of the first is included in the image of the second under F . Assume without loss of
generality that A is terminal, which we can achieve by bending the input around to the right.
Let B π−→ J

ι−→ C be a regular epi-mono factorisation of g and likewise for g′. Then there is a
morphism α : J → J ′

B J C

B′ J ′

π

α

ι

π′ ι′

Since π′ is regular epi, it splits by the preceding observation, and thus there is β : B → B′

such that

B C

B′
β

g

g′
.

It follows that the inclusion between the spans holds in Span∼C. J

CALCO 2019

Linear-Time Graph Algorithms in GP 2
Graham Campbell
Department of Computer Science, University of York, United Kingdom
https://gjcampbell.co.uk/
gjc510@york.ac.uk

Brian Courtehoute
Department of Computer Science, University of York, United Kingdom
https://www.cs.york.ac.uk/people/brianc
bc956@york.ac.uk

Detlef Plump
Department of Computer Science, University of York, United Kingdom
https://www-users.cs.york.ac.uk/det/
detlef.plump@york.ac.uk

Abstract
GP2 is an experimental programming language based on graph transformation rules which aims to
facilitate program analysis and verification. However, implementing graph algorithms efficiently in a
rule-based language is challenging because graph pattern matching is expensive. GP2 mitigates
this problem by providing rooted rules which, under mild conditions, can be matched in constant
time. In this paper, we present linear-time GP2 programs for three problems: tree recognition,
binary directed acyclic graph (DAG) recognition, and topological sorting. In each case, we show the
correctness of the program, prove its linear time complexity, and also give empirical evidence for the
linear run time. For DAG recognition and topological sorting, the linear behaviour is achieved by
implementing depth-first search strategies based on an encoding of stacks in graphs.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Graph transformation, rooted graph programs, GP2, linear-time algorithms,
depth-first search, topological sorting

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.16

1 Introduction

Rule-based graph transformation was established as a research field in the 1970s and has
since then been the subject of countless articles. While many of these contributions have a
theoretical nature (see the monograph [8] for a recent overview), there has also been work on
languages and tools for executing and analysing graph transformation systems.

Languages based on graph transformation rules include AGG [18], GReAT [1], GROOVE
[10], GrGen.Net [13], Henshin [3] and PORGY [9]. This paper focuses on GP2 [14], an
experimental graph programming language which aims to facilitate formal reasoning on
programs. The language has a simple formal semantics and is computationally complete
in that every computable function on graphs can be programmed [15]. Research on graph
programs has provided, for example, a Hoare-calculus for program verification [16, 17] and a
static analysis for confluence checking [12].

A challenge for the design and implementation of graph transformation languages is to
narrow the performance gap between imperative and rule-based graph programming. The
bottleneck for achieving fast graph transformation is the cost of graph matching. In general,
matching the left-hand graph L of a rule within a host graph G requires time size(G)size(L)

(which is polynomial since L is fixed). As a consequence, linear-time imperative graph
algorithms may be slowed down to polynomial time when they are recast as rule-based graph
programs.

© Graham Campbell, Brian Courtehoute, and Detlef Plump;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6767-2747
https://gjcampbell.co.uk/
mailto:gjc510@york.ac.uk
https://orcid.org/0000-0002-7736-4852
https://www.cs.york.ac.uk/people/brianc
mailto:bc956@york.ac.uk
https://orcid.org/0000-0002-1148-822X
https://www-users.cs.york.ac.uk/det/
mailto:detlef.plump@york.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Linear-Time Graph Algorithms in GP 2

To mitigate this problem, GP2 supports rooted graph transformation which was first
proposed by Dörr [7]. The idea is to distinguish certain nodes as roots and to match roots in
rules with roots in host graphs. Then only the neighbourhood of host graph roots needs to
be searched for matches, allowing, under mild conditions, to match rules in constant time.
In [5], fast rules were identified as a class of rooted rules that can be applied in constant
time if host graphs have a bounded node degree and contain a bounded number of roots.

The condition of a bounded number of host graph roots can be satisfied by requiring
unrooted input graphs and using in loops only rules that do not increase the number of roots.
This simply means that no such rule must have more roots in its right-hand side than in its
left-hand side. (A refined condition considers the “root balance” of all rules in a loop body
simultaneously.) The condition that host graphs must have a bounded node degree depends
on the application domain of a program. For example, traffic networks or digital circuits can
be considered as graphs of bounded degree.

The first linear-time graph problem implemented by a GP2 program with fast rules was
2-colouring. In [6] it is shown that this program colours connected graphs of bounded degree
in linear time. The compiled program even matches the speed of Sedgewick’s textbook C
program [19] on grid graphs of up to 100,000 nodes.

In this paper, we continue to provide evidence that rooted graph programs can rival the
time complexity of graph algorithms (on bounded-degree graphs) in conventional programming
languages. We present three new case studies: recognition of trees, recognition of binary
DAGs, and topological sorting of acyclic graphs. Each of these problems is solvable in linear
time with algorithms in imperative languages. For each problem, we present a GP2 program
with fast rules, show its correctness, and prove its linear time complexity on graphs of bounded
node degree. We also give empirical evidence for the linear run time by presenting benchmark
results for graphs of up to 100,000 nodes in various graph classes. For DAG recognition
and topological sorting, the linear behaviour is achieved by implementing depth-first search
strategies based on an encoding of stacks in host graphs.

It is worth noting that rooted rules per se are not a blueprint for imitating algorithms
in imperative languages. This is because GP2 intentionally does not provide access to the
graph data structure of its implementation. As a consequence, for example, currently there
seems to be no way of traversing arbitrary disconnected graphs with GP2 in linear time.

2 The Graph Programming Language GP 2

This section briefly introduces GP2, a non-deterministic language based on graph-transfor-
mation rules, first defined in [14]. Up-to-date versions of the syntax and semantics of GP2
can be found in [4]. The language is implemented by a compiler generating C code [6].

2.1 Graphs, Rules and Programs

GP2 programs transform input graphs into output graphs, where graphs are directed and
may contain parallel edges and loops. Both nodes and edges are labelled with lists consisting
of integers and character strings. This includes the special case of items labelled with the
empty list which may be considered as “unlabelled”.

The principal programming construct in GP2 consist of conditional graph transformation
rules labelled with expressions. For example, the rule i0_push in Figure 6 has two formal
parameters of type list, a left-hand graph and a right-hand graph which are specified
graphically, and a textual condition starting with the keyword where.

G. Campbell, B. Courtehoute, and D. Plump 16:3

The small numbers attached to nodes are identifiers, all other text in the graphs consist
of labels. Parameters are typed but in this paper we only need the most general type list
which represents lists with arbitrary values.

Besides carrying expressions, nodes and edges can be marked red, green or blue. In
addition, nodes can be marked grey and edges can be dashed. For example, rule i0_push in
Figure 6 contains red and blue nodes and a blue edge. Marks are convenient, among other
things, to record visited items during a graph traversal and to encode auxiliary structures in
graphs. The programs in the following sections use marks extensively.

Rules operate on host graphs which are labelled with constant values (lists containing
integers and character strings). Formally, the application of a rule to a host graph is
defined as a two-stage process in which first the rule is instantiated by replacing all variables
with values of the same type, and evaluating all expressions. This yields a standard rule
(without expressions) in the so-called double-pushout approach with relabelling [11]. In the
second stage, the instantiated rule is applied to the host graph by constructing two suitable
pushouts. We refer to [4] for details and only give an equivalent operational description of
rule application.

Applying a rule L ⇒ R to a host graph G works roughly as follows: (1) Replace the
variables in L and R with constant values and evaluate the expressions in L and R, to
obtain an instantiated rule L̂ ⇒ R̂. (2) Choose a subgraph S of G isomorphic to L̂ such
that the dangling condition and the rule’s application condition are satisfied (see below). (3)
Replace S with R̂ as follows: numbered nodes stay in place (possibly relabelled), edges and
unnumbered nodes of L̂ are deleted, and edges and unnumbered nodes of R̂ are inserted.

In this construction, the dangling condition requires that nodes in S corresponding to
unnumbered nodes in L̂ (which should be deleted) must not be incident with edges outside
S. The rule’s application condition is evaluated after variables have been replaced with the
corresponding values of L̂, and node identifiers of L with the corresponding identifiers of S.
For example, the condition indeg(1) = 0 of rule i0_push in Figure 6 requires that node g(1)
has no incoming edges, where g(1) is the node in S corresponding to 1.

A program consists of declarations of conditional rules and procedures, and exactly
one declaration of a main command sequence, which is a distinct procedure named Main.
Procedures must be non-recursive, they can be seen as macros. We describe GP2’s main
control constructs.

The call of a rule set {r1, . . . , rn} non-deterministically applies one of the rules whose
left-hand graph matches a subgraph of the host graph such that the dangling condition and
the rule’s application condition are satisfied. The call fails if none of the rules is applicable
to the host graph.

The command if C then P else Q is executed on a host graph G by first executing C

on a copy of G. If this results in a graph, P is executed on the original graph G; otherwise,
if C fails, Q is executed on G. The try command has a similar effect, except that P is
executed on the result of C’s execution.

The loop command P ! executes the body P repeatedly until it fails. When this is the
case, P ! terminates with the graph on which the body was entered for the last time. The
break command inside a loop terminates that loop and transfers control to the command
following the loop.

In general, the execution of a program on a host graph may result in different graphs,
fail, or diverge. The operational semantics of GP2 defines a semantic function which maps
each host graph to the set of all possible outcomes. See, for example, [15].

CALCO 2019

16:4 Linear-Time Graph Algorithms in GP 2

2.2 Rooted Programs
The bottleneck for efficiently implementing algorithms in a language based on graph trans-
formation rules is the cost of graph matching. In general, to match the left-hand graph L of a
rule within a host graph G requires time polynomial in the size of L [5, 6]. As a consequence,
linear-time graph algorithms in imperative languages may be slowed down to polynomial
time when they are recast as rule-based programs.

To speed up matching, GP2 supports rooted graph transformation where graphs in rules
and host graphs are equipped with so-called root nodes. Roots in rules must match roots in
the host graph so that matches are restricted to the neighbourhood of the host graph’s roots.
We draw root nodes using double circles. For example, in the rule prune of Figure 2, the
node labelled y in the left-hand side and the single node in the right-hand side are roots.

A conditional rule 〈L⇒ R, c〉 is fast if (1) each node in L is undirectedly reachable from
some root, (2) neither L nor R contain repeated occurrences of list, string or atom variables,
and (3) the condition c contains neither an edge predicate nor a test e1=e2 or e1!=e2 where
both e1 and e2 contain a list, string or atom variable.

Conditions (2) and (3) will be satisfied by all rules occurring in the following sections; in
particular, we neither use the edge predicate nor the equality tests. For example, the rules
prune and push in Figure 2 are fast rules.

I Theorem 1 (Complexity of matching fast rules [5]). Rooted graph matching can be imple-
mented to run in constant time for fast rules, provided there are upper bounds on the maximal
node degree and the number of roots in host graphs.

When analysing the time complexity of rules and programs, we assume that these are
fixed. This is customary in algorithm analysis where programs are fixed and running time is
measured in terms of input size [2, 20]. In our setting, the input size is the size of a host
graph. The implementation of GP2 does match fast rooted rules in constant time [6].

3 Recognising Trees

A tree is a graph containing a node from which there is a unique directed path to each node
in the graph. It is easy to see that it is possible to generate the collection of all trees by
inductively adding new leaf nodes to the discrete graph of size one. Thus, given an input
graph, if we prune leaf nodes as long as possible and end up with the discrete graph of size
one, then the start graph must have been a tree. Figure 1 is an implementation of this idea
in GP2.

Main = not_empty; prune!; if Check then fail
Check = {two_nodes, has_loop}

not_empty(a,x,y:list) prune(a,x,y:list)

x ⇒ x
1 1

x y ⇒ x
1 1

a

two_nodes(x,y:list) has_loop(a,x:list)

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1a a

Figure 1 The GP2 program is-tree-slow.

G. Campbell, B. Courtehoute, and D. Plump 16:5

I Definition 2 (Tree recognition specification). The tree recognition specification is as follows.
Input: An arbitrary labelled graph with every node coloured grey, no root nodes, and no
other marks.
Output: Fail if and only if the input is not a tree.

I Theorem 3 (Correctness of is-tree-slow). The program is-tree-slow fulfills the tree
recognition specification.

Proof. Similar to the proof of Theorem 7. J

I Proposition 4 (Termination of prune!). prune! terminates after at most |VG| steps.

Proof. If G⇒ H, then |VG| > |VH |. Suppose there were an infinite sequence of derivations
G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an infinite descending chain of natural numbers
|VG0 | > |VG1 | > |VG2 | > · · ·, which contradicts the well-ordering of N. The last part is
immediate since there are only VG natural numbers less than VG. J

I Theorem 5 (Complexity of is-tree-slow). Given an input graph of bounded degree,
is-tree-slow will terminate in quadratic time with respect to the number of nodes in the
input graph.

Proof. Clearly not_empty and Check run in linear time. Unfortunately prune is not a fast
rule, and so it takes linear time to find a match. Finding a match for prune takes linear time
and so by Proposition 4, prune! terminates in quadratic time. J

Unfortunately, our program does not run in linear time due to our rules not being such
that we have constant time matching. We need to modify the program so that we can always
perform a match in constant time. Figure 2 is a refined implementation, using root nodes.
We will see that this program is not only correct, but always terminates in linear time.

Main = init; Reduce!; if Check then fail
Reduce = {prune, push}
Check = {two_nodes, has_loop}

init(x:list) two_nodes(x,y:list) has_loop(a,x:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1a a

prune(a,x,y:list) push(a,x,y:list)

x y ⇒ x
1 1

a
x y ⇒ x y
1 2 1 2

a a

Figure 2 The GP2 program is-tree.

I Proposition 6 (Correctness of Reduce!). Let G be a rooted input tree and G⇒∗Reduce H.
Then, either |VH | = 1 or H is not in normal form.

Proof. By Lemma 17, |VH | ≥ 1. If |VG| = 1, then G is in normal form. Otherwise, either
the root node has no children, or it has at least one grey child. In the first case, prune must
be applicable, and in the second, push. Suppose G ⇒∗Reduce H. If |VH | = 1, then H is in
normal form by the proof to Lemma 17. Otherwise, by Lemma 16 H is a tree and |VH | > 1.
Now, the root-node in H (Lemma 17) must have a non-empty neighbourhood. If it has
no children, then prune must be applicable. Otherwise, push must be applicable, since by
Corollary 19, there must be a grey node child. So H is not in normal form. J

CALCO 2019

16:6 Linear-Time Graph Algorithms in GP 2

I Theorem 7 (Correctness of is-tree). The program is-tree fulfills the tree recognition
specification.

Proof. The init rule will fail if the input graph is empty, otherwise, it will make exactly
one node rooted. The Reduce! step derives the singleton discrete graph if and only if the
input was a tree (Proposition 6 and Lemma 16). Finally, by Lemma 17, Reduce! cannot
derive the empty graph, so it is sufficient for Check to test if there is more than one node, or
a loop edge. J

I Proposition 8 (Termination of Reduce!). Reduce! terminates after at most 2|VG| steps.

Proof. Let #G be the number of nodes, and �G be the number of grey nodes. If G⇒prune H,
then #G > #H and �G > �H. If G ⇒push H then #G = #H and �G > �H. Suppose
there were an infinite sequence of derivations G0 ⇒ G1 ⇒ G2 ⇒ · · ·, then there would be an
infinite descending chain of natural numbers #G0 +�G0 > #G1 +�G1 > #G2 +�G2 > · · ·,
which contradicts the well-ordering of N. To see the last part, notice that �G ≤ #G for all
graphs G, so the result is immediate since there are only 2#G natural numbers less than
2#G. J

I Theorem 9 (Complexity of is-tree). Given an input graph of bounded degree, is-tree
will terminate in linear time with respect to the number of nodes in the input graph.

Proof. Clearly init and Check run in linear time. Since push and prune are fast rules, they
take only constant time (Theorem 1), and then by Proposition 8, Reduce can only be applied
a linear number of times. Thus, Reduce! terminates in linear time too. J

(a) Star Graph. (b) Grid Graph.

(c) Binary Tree. (d) Linked List.

Figure 3 Types of Graph.

We have performed empirical benchmarking to verify the complexity of the program,
testing it with Linked Lists, Binary Trees, Grid Graphs, and Star Graphs (Figure 3). Star
Graphs are not of bounded degree, so we saw quadratic time complexity as expected. The
other graphs are of bounded degree, thus we observed linear time complexity (Figure 4).

4 Recognising Binary DAGs

A directed acyclic graph (DAG) is a graph containing no directed cycles. A DAG is binary if
each of its nodes has an outdegree of at most two.

G. Campbell, B. Courtehoute, and D. Plump 16:7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

0.5

1

1.5

2

2.5

3

3.5

4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Star Graph
Linked List

(a) Star Graphs and Linked Lists.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
·105

0
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Linked List
Grid Graph
Binary Tree

(b) Bounded Degree Input Graphs.

Figure 4 Measured performance of is-tree.

Main = try SearchIndeg0Nodes then (if nonempty_stack then skip else fail;
ReduceIndeg0Nodes); if anything then fail

nonempty_stack (x:list) anything (x:list)

x ⇒ x
1 1

x ⇒ x
1 1

Figure 5 The GP2 Program is-bin-dag.

SearchIndeg0Nodes and ReduceIndeg0Nodes are defined in Subsection 4.1. The idea
behind recognising connected binary DAGs is as follows. First, using SearchIndeg0Nodes,
all indegree-0 nodes of the input graph are identified. Then, in ReduceIndeg0Nodes, if any
indegree-0 nodes have been found, one of them is deleted, and all of its children that become
a new indegree-0 node get designated as such. This is repeated until no indegree-0 nodes are
left. Every time an indegree-0 node is checked, the number of its children are checked as
well. If there are any leftover nodes (i.e. nodes that never had indegree-0 in the execution),
then there were no directed cycles, and the input graph is a DAG.

I Theorem 10 (Correctness of is-bin-dag). The program is-bin-dag fulfills the following
specification.

Input: A connected graph G with grey unrooted nodes and unmarked edges.
Output: The empty graph if G is a binary DAG, and failure otherwise.

Proof. If G is the empty graph, a DAG, SearchIndeg0Nodes fails by Proposition 11,
anything does not match, and the output is the empty graph. So assume G is non-empty.

If G has no indegree-0 nodes, SearchIndeg0Nodes succeeds by Proposition 11 and does
not mark ny nodes blue. So nonempty_stack will not match, and fail will be invoked. So
assume G has indegree-0 nodes.

Then Propositions 11 and 12 can be applied to deduce the following. SearchIndeg0Nodes
succeeds, nonempty_stack matches, then ReduceIndeg0Nodes gets applied. If G is a binary
DAG, the host graph becomes the empty graph, anything will not match, and the output is
the empty graph. If G is not a binary DAG, there’s failure, or a non-empty graph which
results in failure since anything is matched. J

CALCO 2019

16:8 Linear-Time Graph Algorithms in GP 2

4.1 Correctness of Procedures
The proof of Theorem 10 depends upon the correctness of the procedures SearchIndeg0Nodes
and ReduceIndeg0Nodes. We will now give their definitions and prove their correctness.

SearchIndeg0Nodes, as seen in Figure 6, is an undirected modification of depth first
search (DFS) as implemented by Bak and Plump [5] [4], with a few key differences. Using
DFS ensures that each node is visited. The blue nodes linked with blue edges are a GP2
implementation of stacks. The top of the stack is the only blue root, making it accessible
in constant time. The rules with bidirectional edges (a GP2 construct) in Figure 6 are
semantically equivalent to a non-deterministic rule set call of two distinct variations of that
rule with directed edges. The edges in the right and left hand side of these rules have the
same orientation.

SearchIndeg0Nodes = init; (i0_forward!; try i0_push else (try i0_stack);
try i0_back_red else (try i0_back_blue else break))!

init (x:list) i0_forward (a,x,y:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

a a

i0_push (x,y:list) i0_stack (x:list)

x y ⇒ x y
1 2 1 2

where indeg(1)=0

x ⇒ x
1 1

where indeg(1)=0

i0_back_red (a,x,y:list) i0_back_blue (a,x,y:list)

x y ⇒ x y
1 2 1 2

a a
x y ⇒ x y
1 2 1 2

a a

Figure 6 The SearchIndeg0Nodes procedure.

⇒ ⇒ ⇒ ⇒ ⇒∗

⇓

⇐∗⇐⇐⇐∗⇐

Figure 7 Example execution of SearchIndeg0Nodes.

Between the forward and back steps lies the command sequence try i0_push else (try
i0_stack). Its purpose is to push the node currently visited by the DFS if it has indegree-0.
If the stack is nonexistent, there are no blue nodes, and i0_push fails. So the program tries
to apply i0_stack, turning the node into the initial stack element (if its indegree is 0). After

G. Campbell, B. Courtehoute, and D. Plump 16:9

the stack has been created, i0_push will always be applicable for indegree-0 nodes.
Since the current node may be marked blue by the stack operations after the previous

command sequence has been executed, the back step needs to account for that. Hence the
program first tries to apply i0_back_red, and if that fails, it tries to apply i0_back_blue,
an alternate version considering a blue current node. In the latter case, the blue node is
rooted since we want to keep accessing the top of the stack in constant time.

I Proposition 11 (Correctness of SearchIndeg0Nodes). The procedure SearchIndeg0Nodes
fulfills the following specification.

Input: A connected graph G with grey unrooted nodes and unmarked edges.
Output: If G is the empty graph, then failure. Otherwise, G with all non-indegree-0
nodes marked red, at most one of which is a root; indegree-0 nodes marked blue; and the
blue nodes connected via newly created blue edges, forming a linked list, of which the head
(no incoming blue edges) is a root.

Proof. If G is empty, init cannot match, causing failure. Otherwise, the output conditions
are satisfied by Lemmata 21 and 22. J

The absence of a red root in the output is an edge case caused by init being applied to
an indegree-0 node. Because then, either i0_stack or i0_push will be the last rule that is
applied, and the red root becomes a blue root.

The procedure ReduceIndeg0Nodes starts by trying to apply unroot to get rid of any
red roots left over by SearchIndeg0Nodes. Then it enters the loop Reduce!. The blue root
in each iteration shall be called the “top root”. First, the program checks whether the top
root has more than two children, i.e. whether its outdegree is greater than three, since the
blue stack edge needs to be taken into account. If there are too many, the fail statement is
invoked.

nontrivial_stack checks whether the stack has more than one element. If it does not,
add_bottom artificially adds a node to the bottom of the stack, in order for the following
rules to still match.

Next is a non-deterministic choice of rules that cover every case of the number of children
the top root has, and how many of those are indegree-0 nodes. In each case, they pop the
top root, and push the children that would have indegree 0 after the deletion. pop! serves
to pop childless indegree-0 nodes for as long as there are any.

I Proposition 12 (Correctness of ReduceIndeg0Nodes). Let G be a connected graph with
red non-indegree-0 nodes containing at most one root, and blue indegree-0 nodes that are
connected with blue edges forming a path graph. The blue node with no incoming blue edges
is a root. If G minus the blue edges is a binary DAG, ReduceIndeg0Nodes yields the empty
graph. Otherwise, it yields a non-empty graph.

Proof sketch. First consider the case of G minus the blue edges being a binary DAG. Assume,
for the sake of a contradiction, that the output of ReduceIndeg0Nodes contains a node v.
By Lemmata 24 and 25, v cannot have been an indegree-0 node when ignoring blue edges at
any point during execution. Furthermore, v must have a parent that never was an indegree-0
node ignoring blue edges, because otherwise it would have been marked blue by one of the
rule set call rules. The same argument can then be applied to the parent’s parent, and so on
indefinitely. Since the input is finite however, two of these ancestors must be equal, meaning
that there is a cycle. This contradicts the input minus the blue edges being a DAG.

Next, assume G is not a DAG. Then it has a directed cycle consisting of consecutive
nodes v1, v2,. . . vn. None of these nodes have indegree 0 ignoring blue edges, so they are

CALCO 2019

16:10 Linear-Time Graph Algorithms in GP 2

ReduceIndeg0Nodes = try unroot; Reduce!; pop!; try final_pop
Reduce = if too_many_children then fail; if nontrivial_stack then skip
else add_bottom; {two_of_two, one_of_two, none_of_two, one_of_double,
none_of_double, one_of_one, none_of_one }; pop!

unroot (x:list) nontrivial_stack (x,y:list) add_bottom (x:list)

x ⇒ x
1 1

x y ⇒ x y
1 2 1 2

x ⇒ x
1 1

pop (x,y:list) two_of_two (a,b,x,y,z,t:list)

x y ⇒ y
1 1

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)=1 and indeg(2)=1

final_pop (x:list)

x ⇒ ∅

one_of_two (a,b,x,y,z,t:list) none_of_two (a,b,x,y,z,t:list)

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)=1

x t

y z

⇒
t

y z

0

1 2

0

1 2

a b

where indeg(1)>1 and indeg(2)>1

one_of_double (a,b,x,y,t:list) none_of_double (a,b,x,y,t:list)

x t

y
⇒

t

y

0

1

0

1

ba

where indeg(1)=2

x t

y
⇒

t

y

0

1

0

1

ba

where indeg(1)>2

one_of_one (a,x,y,t:list) none_of_one (a,x,y,t:list)

x t

y
⇒

t

y

0

1

0

1

a

where indeg(1)=1

x t

y
⇒

t

y

0

1

0

1

a

where indeg(1)>1

too_many_children (x:list)

x ⇒ x
1 1

where outdeg(1)>3

Figure 8 The ReduceIndeg0Nodes procedure.

⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒∅

Figure 9 Example execution of ReduceIndeg0Nodes.

G. Campbell, B. Courtehoute, and D. Plump 16:11

never matched by the rule set call rules that would mark them blue. Since there are no
rules that delete red nodes (only rules that mark them blue), v1, v2,. . . vn never get deleted.
Thus the output is non-empty. Failure cannot occur since every rule and procedure of
ReduceIndeg0Nodes is either preceded by try or followed by !.

Now assume that G minus the blue edges is a DAG but is not binary. Consider a node v

of G with no incoming unmarked edges, which exists since G minus the blue edges is a DAG.
The aim is to show that, if v has more than two children (excluding blue edges), then the
output is non-empty. By Lemma 24, v gets marked blue at some point of the execution. This
can only happen in the rule set call rules. Assume v has just been marked blue by one of these
rules. We can also assume that v is rooted since, by Lemma 25, every blue node gets deleted
at some point, which can only happen in one of the rule set call rules or in pop. The case of
it happening in pop shall be discarded since that would mean v has no children (disregarding
blue edges). Back in the execution right after execution of one of the rule set call rules, since
pop! cannot fail, the loop Reduce! enters its next iteration. The procedure tries to apply
too_many_children to the blue root. If v has more than two children (disregarding blue
edges), it succeeds, and the fail statement is invoked, terminating the loop Reduce!. Since
v has children, both pop and final_pop do not get applied, for the dangling condition is
not satisfied. So the output contains v and is therefore non-empty. J

4.2 Performance
We will show that our binary DAG recognition program always terminates in linear time,
given a connected input graph of bounded degree. We have also included empirical evidence
for this.

I Theorem 13 (Complexity of is-bin-dag). Given a connected input graph of bounded
degree, the program is-bin-dag terminates in linear time.

Proof. The Main procedure of is-bin-dag contains no loops. SearchIndeg0Nodes termin-
ates in linear time by Lemma 20.

Now consider ReduceIndeg0Nodes. By Lemma 23, the procedure terminates. All of its
rules are fast, and are hence applied in constant time by Theorem 1 (the input is assumed
to have bounded degree, and form the input specification, the fact that unroot removes a
red root if it is present, and the fact that all the other rules conserve the number of roots,
there are at most two roots in the host graph at any given point of the execution). So it
is enough to show that each of the constantly many rules gets applied a linear number of
times. unroot and final_pop get applied at most once since they are not inside loops. By
the proof of Lemma 23, add_bottom gets applied at most twice, and each rule set call rule as
well as pop at most |VG|+ 2 times. too_many_children and nontrivial_stack can only
get reapplied if the rule set call does not fail, which can only happen at most |VG|+ 2 times.
Hence ReduceIndeg0Nodes terminates in linear time.

nonempty_stack matches in constant time by Theorem 1 since it is a fast rule. anything
also matches in constant time since any node is a valid match. J

In order to support the linear time complexity of is-bin-dag, performance will be
measured on two graph classes, one consisting of binary DAGs, and the other of non-DAGs.

Consider the following class of binary DAGs. For n ≥ 1, the grid chain GC(n) consists of
n grids of size n× n, joint by the nodes of indegree and outdegree 1 in order to form a chain.
This class was chosen for having an unbounded number of indegree-0 nodes, meaning that
the implemented stack is relatively large.

CALCO 2019

16:12 Linear-Time Graph Algorithms in GP 2

(a) Grid Chain GC(3). (b) Sun Graph SG(6).

Figure 10 Input Graph Classes.

Now consider the following class of non-DAGs. For n ≥ 3, the sun graph SG(n) consists
of a directed cycle of n nodes, each of which has an an additional neighbour connected by an
incoming edge. The reason for using this class is, in addition to half the nodes having indegree
0, the other half are part of the cycle, and therefore never get deleted by ReduceIndeg0Nodes.
This causes an unbounded amount of nodes to be left over.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0
5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Grid Chain
Sun Graph

Figure 11 Measured performance of is-bin-dag.

5 Topological Sorting

Given a DAG G, a topological sorting is a total order (an antisymmetric, transitive, and
connex binary relation) < on VG, the set of nodes of G, such that for each edge of source
u and target v, u < v (topological property). Topological sortings cannot exist for graphs
containing directed cycles, since there is no way to define a total order on the nodes of a cycle
such that the topological property is satisfied. Furthermore, every DAG has a topological
sorting.

There are two commonly used linear-time algorithms for finding a topological sorting
[20, 19]. One seeks out indegree-0 nodes, adds them to the total order, deletes them, and
repeats this process until all nodes have been added to the order. The other traditional
algorithm, which is used as the basis for the program top-sort, traverses the graph using
depth first search (DFS). Upon completion of a node in that DFS, that node is added as the
new minimum element of the total order. Note that our DFS will be directed, in the sense
that the direction of the edges needs to be respected in order to get a topological sorting in
the end. However, this is not enough since that would only visit the nodes reachable from
the initially rooted node, which is not necessarily the entire input graph. Hence an operation
is needed that efficiently finds an unvisited node once the directed DFS gets stuck.

G. Campbell, B. Courtehoute, and D. Plump 16:13

Searching for an unvisited node with a simple rule application will not work because
overall it may need to be applied a linear number of times, with single matches requiring
linear time. Instead, once the program top-sort runs out of unvisited nodes, it uses a second
DFS that ignores edge orientation to find a node that has not been sorted yet, and then
continues the SortNodes DFS on said node. The DFS applications that look for unsorted
nodes attach red loops to visited nodes in order to visit any node only once. In this way, the
amortized cost of all undirected DFS applications will be linear.

5.1 The Program

Main = init; SearchUnsortedNodes
SearchUnsortedNodes = ((try unsorted then SortNodes; search_forward)!;
try search_back else break)!
SortNodes = (sort_forward!; try sort_back_push else (try sort_back_stack
else (try red_push else red_stack; break)))!

init (x:list) unsorted (x:list)

x ⇒ x
1 1

x ⇒ x
1 1

search_forward (a,x,y:list) search_back (a,x,y:list)

x y ⇒ x y
1 2 1 2

where not edge(2,2)

a a
x y ⇒ x y
1 2 1 2

a a

sort_forward (a,x,y:list) red_stack (x:list)

x y ⇒ x y
1 2 1 2

a a x ⇒ x
0 1 0 1

red_push (x,y:list) sort_back_stack (a,x,y:list)

x

y
⇒

x

y

1 1

0 2 0 2

x y

⇒
x y

1 2 1 2

0 0

a a

sort_back_push (a,x,y,z:list)

x y

z

⇒
x y

z

1 2 1 2

0 3 0 3

a a

Figure 12 The GP2 program top-sort.

We give the GP2 implementation of topological sorting in Figure 12 and show its
correctness. We have added the restriction that the input graph must be connected since in
the current version of GP2, there is no known way to implement a DFS that is linear-time
for graphs with an unbounded number of connected components. We have also included an
example execution of the program in Figure 13.

CALCO 2019

16:14 Linear-Time Graph Algorithms in GP 2

⇒ ⇒∗ ⇒ ⇒ ⇒∗

⇓

∗⇐∗⇐∗⇐∗⇐⇐

Figure 13 Example execution of top-sort.

The subgraph induced by the blue edges is a path graph, or linked list, containing all the
nodes from the input graph. So the binary relation < on the set of nodes defined by u < v if
there is a path of blue edges from u to v is a total order, which is a necessary property for a
topological sorting. Similarly to the SearchIndeg0Nodes procedure descibed in Subsection
4.1, the blue nodes and edges implement a stack. However, this time the top of the stack is
denoted with a green root pointing towards it with a green edge in order not to interfere
with a DFS in SortNodes.

The program starts by rooting an input node and endowing it with a red loop, as well as
creating an unmarked, unlabelled root that is disconnected from the rest of the graph. This
root will point to the top of the stack, and shall hence be called the “pointer”.

SearchUnsortedNodes is a DFS implementation that seeks out a node that has not been
visited by SortNodes yet. Instead of using a red mark to designate a node as visited, it uses
a red loop. Since the input is assumed to be a DAG, it has no loops. This leaves the use of
marks to the DFS in SortNodes. So in order for the forward step to only match unvisited
neighbours of the root, a predicate to forbid loops is needed. The “any” mark ensures that
colour does not matter. Right before each application of the forward step, unsorted tests
whether the current root has been visited by SortNodes yet, i.e. whether it is grey. At the
same time, said root is initialised for SortNodes by being marked red.

Next, SortNodes is applied. It performs a DFS with directed edges. Similarly to
SearchIndeg0Nodes from Section 4, it pushes the current root onto the stack during its
back step. sort_back_push is applied when the stack has at least one element, otherwise
sort_back_stack creates the stack. The pointer being green represents the stack being
non-empty. The break statement is preceded by try red_push else red_stack, since when
the back step can no longer be applied, the current root is still pushed onto the stack. Again,
two rules are needed to cover the cases of the stack being empty or not. Because of the
repeated application of the back step, the root ends up where it was at the beginning of
SortNodes, meaning that the DFS of SearchUnsortedNodes can resume undisturbed.

I Theorem 14 (Correctness of top-sort). The program top-sort fulfills the following
specification.

Input: A connected DAG G with no roots whose nodes are all marked grey, and whose
edges are unmarked.

G. Campbell, B. Courtehoute, and D. Plump 16:15

Output: G with additional blue edges that define a topological ordering on VG. The nodes
of G are marked blue and each have a red loop. One of these nodes is rooted. Furthermore,
there is an additional unlabelled green root node with an outgoing green edge pointing to a
node with no incoming blue edges.

Proof sketch. None of the rules of try unsorted then SortNodes modify red looped edges
(used by the DFS). Also, after application of SortNodes, the red root remains at the same
place, and the same edges remain dashed. One can check that SearchUnsortedNodes visits
every node of its input graph.

SearchUnsortedNodes applies SortNodes to each of these visited nodes that are marked
grey, say v, and implements a stack on Desc(v) (Definition 27), defining a topological sorting
(Lemma 28). Clearly, the subgraph induced by the union of all these descendant graphs is
just the output graph. So the concatenation of their topological sortings is a topological
sorting of the entire output graph. J

The additional constructs in the output graph, apart from the blue edges, are needed for
the execution of the program. One could define a linear-time cleanup procedure to remove
these constructs. The green root and its outgoing edge can be deleted in constant time, since
access to roots is constant. Similarly, the blue rooted node can be unrooted in constant time.
A DFS can be used to remove the red loops or unmark all the nodes in linear time.

5.2 Performance
Finally, we show that, given a valid input graph of bounded degree, our topological sorting
program will always terminate in linear time.

I Theorem 15 (Complexity of top-sort). Given a connected DAG of bounded degree with
only grey unrooted nodes whose edges are unmarked as an input, the program top-sort
terminates in linear time.

Proof sketch. First, let us give an upper bound to the number of applications of each rule.
init is applied exactly once. Since init is the only rule having an unmarked root in its
right hand side, and the input has no unmarked roots, red_stack and sort_back_stack
can be matched at most once (in total). unsorted and sort_forward reduce the number
of grey nodes by one. Since all the other rules conserve the number of grey nodes, and the
input graph has |VG| grey nodes, they can be applied at most |VG| times in total. Similarly,
search_forward (and init) reduce the number of nodes with no red looped edge by one. So
they can also only be applied at most |VG| times in total. red_push and sort_back_push
(as well as red_stack and sort_back_stack) are the only rules not to conserve the number
of blue nodes, and reduce the number of non-blue nodes by exactly one. Since the input
graph has no blue nodes, they can be applied at most |VG| times in total. One can check
that search_back is applied an at most linear amount of times, since SortNodes conserves
the number of dashed edges by Lemma 29.

init is the only rule to increase the number of roots, specifically by two. All the other
rules conserve the number of roots. So since the input graph has no roots, there is a constant
number of roots at any point during the execution of top-sort.

The only rules that are not fast are init due to the lack of roots, and search_forward
due to the edge predicate. So by Theorem 1, all the other rules can be matched in constant
time since the input has bounded degree. init is matched in constant time since it matches
any input node. As for search_forward, since the input has bounded degree and the

CALCO 2019

16:16 Linear-Time Graph Algorithms in GP 2

rules cannot create an unbounded number of edges incident to a single node, the predicate
edge(2,2) only has to check a constant number of incident edges.

Since each rule is matched a linear number of times in constant time, and the program
terminates by Lemma 26, top-sort terminates in linear time. J

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·105

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of nodes in input

Ex
ec
ut
io
n
tim

e
(s
)

Figure 14 Measured performance of top-sort on grid chains.

In order to support the linear time complexity of top-sort, we make use of the grid
chains from Subsection 4.2. They are DAGs, the type of graph top-sort is meant to be used
on. Furthermore, they have an unbounded number of indegree-0 nodes. Since indegree-0
nodes are unreachable from any other node, and SortNodes can only visit nodes reachable
from the red root it is called on, SortNodes will have to be applied at least once for each
indegree-0 node, i.e. an unbounded number of times. Thus these input graphs can adequately
illustrate the linearity of top-sort. Figure 14 is a plot of the program timings, demonstrating
linear time complexity.

6 Conclusion

The polynomial cost of graph matching is the performance bottleneck for languages based on
standard graph transformation rules. GP 2 mitigates this problem by providing rooted rules
which under mild conditions can be matched in constant time. We presented rooted GP2
programs for three graph algorithms: tree recognition, connected binary DAG recognition,
and topological sorting. The programs were proved to be correct and to run in linear time
on graphs of bounded node degree. The proofs demonstrate that graph transformation
rules provide a convenient and intuitive abstraction level for formal reasoning on graph
programs. We also gave empirical evidence for the linear run time of the programs, by
presenting benchmark results for graphs of up to 100,000 nodes in various graph classes. For
DAG recognition and topological sorting, the linear behaviour was achieved by implementing
depth-first search strategies based on an encoding of stacks in graphs.

In future work, we intend to investigate for more graph algorithms whether and under
what conditions their time complexity in conventional programming languages can be reached
in GP2. The more involved the data structures of those algorithms are, the more challenging
will be the implementation task. This is because in GP2, the internal graph data structure
is (intentionally) hidden from the programmer and hence any data structures used by an
algorithm need to be encoded in host graphs. A simple example for this is the encoding of
stacks as linked lists in the programs for DAG recognition and topological sorting.

G. Campbell, B. Courtehoute, and D. Plump 16:17

Additional future work is the automated refinement of programs, adding root nodes in
order to improve matching performance. It is highly non-obvious how to do this in general,
or what refinement tactics could be used. It is possible that DFS can provide a framework
for combining procedures in an efficient way.

The three programs in this paper and also the 2-colouring program of [6] need host graphs
of bounded node degree in order to run in linear time. A topic for future work is therefore to
find a mechanism that allows to overcome this restriction. Clearly, such a mechanism will
require to modify GP2 and its implementation.

References
1 Aditya Agrawal, Gabor Karsai, Sandeep Neema, Feng Shi, and Attila Vizhanyo. The design

of a language for model transformations. Software and System Modeling, 5(3):261–288, 2006.
doi:10.1007/s10270-006-0027-7.

2 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

3 Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer.
Henshin: Advanced Concepts and Tools for In-Place EMF Model Transformations. In Model
Driven Engineering Languages and Systems (MODELS 2010), volume 6394 of Lecture Notes
in Computer Science, pages 121–135. Springer, 2010. doi:10.1007/978-3-642-16145-2_9.

4 Christopher Bak. GP2: Efficient Implementation of a Graph Programming Language. PhD
thesis, Department of Computer Science, University of York, 2015. URL: http://etheses.
whiterose.ac.uk/12586/.

5 Christopher Bak and Detlef Plump. Rooted Graph Programs. In Proc. International Workshop
on Graph Based Tools (GraBaTs 2012), volume 54 of Electronic Communications of the EASST,
2012. doi:10.14279/tuj.eceasst.54.780.

6 Christopher Bak and Detlef Plump. Compiling Graph Programs to C. In Proc. International
Conference on Graph Transformation (ICGT 2016), volume 9761 of LNCS, pages 102–117.
Springer, 2016. doi:10.1007/978-3-319-40530-8_7.

7 Heiko Dörr. Efficient Graph Rewriting and its Implementation, volume 922 of Lecture Notes
in Computer Science. Springer, 1995. doi:10.1007/BFb0031909.

8 Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph and Model
Transformation. Monographs in Theoretical Computer Science. Springer, 2015. doi:
10.1007/978-3-662-47980-3.

9 Maribel Fernández, Hélène Kirchner, Ian Mackie, and Bruno Pinaud. Visual Modelling
of Complex Systems: Towards an Abstract Machine for PORGY. In Proc. Computability
in Europe (CiE 2014), volume 8493 of Lecture Notes in Computer Science, pages 183–193.
Springer, 2014. doi:10.1007/978-3-319-08019-2_19.

10 Amir Hossein Ghamarian, Maarten de Mol, Arend Rensink, Eduardo Zambon, and Maria
Zimakova. Modelling and analysis using GROOVE. International Journal on Software Tools
for Technology Transfer, 14(1):15–40, 2012. doi:10.1007/s10009-011-0186-x.

11 Annegret Habel and Detlef Plump. Relabelling in Graph Transformation. In Proc. International
Conference on Graph Transformation (ICGT 2002), volume 2505 of Lecture Notes in Computer
Science, pages 135–147. Springer, 2002. doi:10.1007/3-540-45832-8_12.

12 Ivaylo Hristakiev and Detlef Plump. Checking Graph Programs for Confluence. In Software
Technologies: Applications and Foundations – STAF 2017 Collocated Workshops, Revised
Selected Papers, volume 10748 of Lecture Notes in Computer Science, pages 92–108. Springer,
2018. doi:10.1007/978-3-319-74730-9_8.

13 Edgar Jakumeit, Sebastian Buchwald, and Moritz Kroll. GrGen.NET - the expressive,
convenient and fast graph rewrite system. International Journal on Software Tools for
Technology Transfer, 12(3–4):263–271, 2010. doi:10.1007/s10009-010-0148-8.

CALCO 2019

https://doi.org/10.1007/s10270-006-0027-7
https://doi.org/10.1007/978-3-642-16145-2_9
http://etheses.whiterose.ac.uk/12586/
http://etheses.whiterose.ac.uk/12586/
https://doi.org/10.14279/tuj.eceasst.54.780
https://doi.org/10.1007/978-3-319-40530-8_7
https://doi.org/10.1007/BFb0031909
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-319-08019-2_19
https://doi.org/10.1007/s10009-011-0186-x
https://doi.org/10.1007/3-540-45832-8_12
https://doi.org/10.1007/978-3-319-74730-9_8
https://doi.org/10.1007/s10009-010-0148-8

16:18 Linear-Time Graph Algorithms in GP 2

14 Detlef Plump. The Design of GP 2. In Proc. Workshop on Reduction Strategies in Rewriting
and Programming (WRS 2011), volume 82 of Electronic Proceedings in Theoretical Computer
Science, pages 1–16, 2012. doi:10.4204/EPTCS.82.1.

15 Detlef Plump. From Imperative to Rule-based Graph Programs. Journal of Logical and
Algebraic Methods in Programming, 88:154–173, 2017. doi:10.1016/j.jlamp.2016.12.001.

16 Christopher M. Poskitt and Detlef Plump. Hoare-style verification of graph programs. Funda-
menta Informaticae, 118(1-2):135–175, 2012. doi:10.3233/FI-2012-708.

17 Christopher M. Poskitt and Detlef Plump. Verifying Monadic Second-Order Properties
of Graph Programs. In Proc. International Conference on Graph Transformation (ICGT
2014), volume 8571 of Lecture Notes in Computer Science, pages 33–48. Springer, 2014.
doi:10.1007/978-3-319-09108-2_3.

18 Olga Runge, Claudia Ermel, and Gabriele Taentzer. AGG 2.0 — new features for specifying
and analyzing algebraic graph transformations. In Proc. Applications of Graph Transformations
with Industrial Relevance (AGTIVE 2011), volume 7233 of Lecture Notes in Computer Science,
pages 81–88. Springer, 2012. doi:10.1007/978-3-642-34176-2_8.

19 Robert Sedgewick. Algorithms in C. Part 5: Graph Algorithms. Addison-Wesley, third edition,
2002.

20 Steven Skiena. The Algorithm Design Manual. Springer, second edition, 2008. doi:10.1007/
978-1-84800-070-4.

A Appendix: Proofs

This appendix consists of lemmata and proofs omitted from the main sections.

A.1 Tree Recognition Lemmata
By rooted input graph, we mean an arbitrary labelled GP2 input graph with every node
coloured grey, exactly one root node, and no additional marks. That is, a valid input graph
after init has been applied. By rooted input tree, we mean an rooted input graph that is a
tree. In this appendix, we give the proofs of the lemmata needed to support Proposition
6 and Theorem 7 from Section 3. Note that an equivalent characterisation of a tree is a
non-empty connected graph without undirected cycles such that every node has at most one
incoming edge.

I Lemma 16. If G is a tree and G ⇒∗Reduce H, then H is a tree. If G is not a tree and
G⇒Reduce! H, then H is not a tree.

Proof. Clearly, the application of push preserves structure. Suppose G is a tree. prune is
applicable if and only the second node is matched against a leaf node, due to the dangling
condition. Upon application, the leaf node and its incoming edge is removed. Clearly the
result graph is still a tree. If G is not a tree and prune is applicable, then we can see the
properties of not being a tree are preserved. That is, if G is not connected, H is certainly
not connected. If G had parallel edges, due to the dangling condition, they must exist in
G \ g(L), so H has parallel edges. Similarly, cycles are preserved. Finally, if G had a node
with incoming degree greater than one, then H must too, since the node in G that is deleted
in H had incoming degree one, and the degree of all other nodes is preserved. So, we have
shown Reduce is structure preserving, and then by induction, so is Reduce!. J

I Lemma 17. If G is a rooted input graph and G⇒∗Reduce H, then H has exactly one root
node. Moreover, there is no derivation sequence that derives the empty graph.

https://doi.org/10.4204/EPTCS.82.1
https://doi.org/10.1016/j.jlamp.2016.12.001
https://doi.org/10.3233/FI-2012-708
https://doi.org/10.1007/978-3-319-09108-2_3
https://doi.org/10.1007/978-3-642-34176-2_8
https://doi.org/10.1007/978-1-84800-070-4
https://doi.org/10.1007/978-1-84800-070-4

G. Campbell, B. Courtehoute, and D. Plump 16:19

Proof. In each application of prune or push, the number of root nodes is invariant since
the LHS of each rule must be matched against a root node in the host graph, so the other
non-roots can only be matched against non-roots, and so the result holds by induction. To
see that the empty graph cannot be derived, notice that each derivation reduces #G by at
most one, and no rules are applicable when #G = 1. J

I Lemma 18. If G is a rooted input graph and G⇒∗Reduce H. Then, every blue node in H

either has a blue child or a root-node child.

Proof. As there are no blue nodes, G satisfies this. We now proceed by induction. Suppose
G ⇒∗Reduce H ⇒Reduce H ′ where H satisfies the condition. If prune is applicable, we
introduce no new blue nodes. Additionally, any blue parents of the node 1 are preserved.
Finally, if push is applied, then the new blue node has a root-node child, and the blue nodes
in H ′ \ h(R) have the same children. So H ′ satisfies the condition. J

I Corollary 19. Let G be a rooted input tree and G⇒∗Reduce H. Then the root-node in H

has no blue children.

Proof. By Lemma 17, H has exactly one root node, and by Lemma 18, all chains of blue
nodes terminate with a root-node. If said root-node were to have a blue child, then we would
have a cycle, which contradicts that H is a tree (Lemma 16). J

A.2 Binary DAG Recognition Lemmata
In this appendix, we give the proofs of the lemmata needed to support Propositions 11, 12,
and Theorem 13 from Section 4.

I Lemma 20 (Complexity and Partial Correctness of SearchIndeg0Nodes). Given a connected
input graph G with grey unrooted nodes an unmarked edges, SearchIndeg0Nodes terminates,
and the subgraph H induced by the edges that have been dashed during the execution is a
spanning tree. Furthermore, if G has bounded degree, the procedure terminates in linear time.

Proof sketch. Similar to the proofs in those given by Bak and Plump [5] [4]. J

I Lemma 21. Given a non-empty connected input graph G with grey unrooted nodes an
unmarked edges, at any point of the execution of SearchIndeg0Nodes, there is at most one
red root.

Proof sketch. init introduces a red root, and is only applied once and in the beginning.
The other rules that do not preserve red roots are i0_push, i0_stack and i0_back_blue. If
either i0_push or i0_stack are applied, the red root vanishes. Subsequently, i0_back_red
cannot be applied. If i0_back_blue then gets applied the red root is reintroduced, conserving
the existence of a red root within the iteration of the loop. If i0_back_blue does not get
applied, the break statement is invoked and the procedure terminates. J

I Lemma 22. Given a non-empty connected input graph G with grey unrooted nodes and
unmarked edges, SearchIndeg0Nodes outputs G where all the indegree-0 nodes (and only
those) are marked blue and connected with blue edges forming a path graph. The blue node
with no incoming blue edge is rooted.

Proof sketch. If G has no indegree-0 nodes, then the lemma is trivially satisfied. So assume
G has at least one.

CALCO 2019

16:20 Linear-Time Graph Algorithms in GP 2

By Lemma 20, SearchIndeg0Nodes visits all nodes. Every node in the output graph is
marked red or blue. Blue nodes can only come from indegree-0 nodes matched by i0_push
or i0_back_blue.

Since the right hand side of each rule only contains red and blue nodes, every node is
marked either red or blue. The only rules that introduce a blue mark are i0_push and
i0_back_blue, and they turn a red root into a blue root. These rules only get applied if the
indegree of said red node is 0. Furthermore, the only edges introduced by SearchIndeg0Nodes
are blue edges between two blue nodes (in i0_push), hence the indegree of a red node is
the same as its indegree in the input graph. So only indegree-0 nodes are marked blue.
Furthermore, since SearchIndeg0Nodes visits, i.e. roots every node of the input graph at
some point, all indegree-0 nodes are marked blue, and all non-indegree-0 nodes red.

All rules apart from i0_push and i0_stack preserve the structure of the subgraph
consisting of blue nodes and edges. i0_stack only is applied only if i0_push is not applicable.
But the left hand side of i0_push contains a blue root, which can only be created by itself or
i0_stack. So i0_push cannot be applied until i0_stack is applied. Since G cannot consist
of only indegree-0 nodes (which would mean G is disconnected), i0_push can always be
matched if the red root has indegree 0. If the red root does not have indegree 0, i0_stack
cannot be matched either. So the only way for these two rules to match is for i0_stack to
be matched first and only once, followed by i0_push being matched any number of times.
Thus, a blue root is created, and then, repeatedly, a new blue node gets connected to the
blue root with an outgoing blue edge, while the root moves to the newly added blue node.
This construction results in the blue nodes and edges forming a path graph where the node
with no incoming edges is a root. J

I Lemma 23 (Termination of ReduceIndeg0Nodes). Let G be a connected graph with red
non-indegree-0 nodes containing at most one root, and blue indegree-0 nodes that are connected
with blue edges forming a path graph. The blue node with no incoming blue edges is a root.

Given a G as an input, ReduceIndeg0Nodes terminates.

Proof sketch. pop can only be applied a finite number of times since it reduces the number
of nodes in the host graph. So pop! terminates. One can check that during the execution
of ReduceIndeg0Nodes, add_bottom gets applied at most twice. The rules in the rule set
call and pop reduce the number of nodes in the host graph by exactly one. So by the claim,
they can be applied at most |VG| + 2 times each. So at some point in the loop, they will
no longer be applicable. Neither will add_bottom since it can only be applied twice. So
Reduce! terminates. J

I Lemma 24. Given an input graph G as described in Lemma 23, every node that has no
incoming unmarked edges (called quasi-indegree-0 node) in some host graph of the execution
of ReduceIndeg0Nodes gets marked blue.

Proof sketch. Indeed, the input graph has all quasi-indegree-0 nodes marked blue already.
The only rules deleting edges are those from the rule set call (pop and final_pop cannot
delete unmarked edges incident to the node they delete because the dangling condition
needs to be satisfied for them to match). So these are the only rules that can create new
quasi-indegree-0 nodes. If one of said nodes has indegree 0, it gets detected by the condition
of a rule and marked blue. These rules cover each case of how many children their quasi-
indegree-0 parent can have in a binary DAG, namely one, one with two parallel edges, and
two. The case of no children is covered by pop afterwards. They also cover all cases of how
many of these children are quasi-indegree-0. So at each execution step, the newly created
quasi-indegree-0 nodes get marked blue, proving this lemma. J

G. Campbell, B. Courtehoute, and D. Plump 16:21

I Lemma 25. Given an input graph G as described in Lemma 23, every node that is marked
blue during execution of ReduceIndeg0Nodes is not present in the output.

Proof sketch. Nodes can only be marked blue if an already existing blue node is matched.
So it is enough to show that, at some point of the execution, there will be no blue nodes.
There are three potential ways to exit the loop Reduce!. The first is through the fail
statement after matching too_many_children. This will never happen since the input minus
the blue edges is binary, and every rule conserves the blue root having exactly one outgoing
blue edge. The second way is for add_bottom to fail. This can only happen when there is
no blue root. The only rule deleting a blue root is final_pop, which is only called after
termination of Reduce!. Since furthermore, the input is assumed to have a blue root, and
every other rule conserves the existence of a blue root, add_bottom is always applicable.
The third and final way to exit the loop is when none of the rules in the rule set call are
applicable. The blue root not having an element below it in the stack cannot be a reason
for that, since in that case, add_bottom would have been applied. So the current blue root
v does not have red neighbours. Since pop! has been applied in the previous iteration of
Reduce!, v was the only blue node in the previous iteration, otherwise it would have been
popped. Hence in the current iteration, add_bottom was applied, and so the only blue nodes
are v and the node created by add_bottom, say w. By Lemma 23, Reduce! terminates, so
this always happens for the given input. As established, v has no children. Neither does w

since it was created by add_bottom and there is no rule with edges incident to red nodes in
its right hand side. Thus pop deletes v, then final_pop deletes w, causing all previously
blue marked nodes to be deleted. J

A.3 Topological Sorting Lemmata
In this appendix, we give the proofs of the lemmata needed to support Theorems 14 and 15
from Section 5.

I Lemma 26 (Termination of top-sort). Given a connected DAG G with no roots, grey
nodes, and unmarked edges as an input, top-sort terminates.

Proof sketch. sort_forward! terminates since in each iteration, the number of grey nodes
decreases.

For the termination of SortNodes, consider the following lexicographical ordering >.
H1 > H2 if one of the following three statements are satisfied. H1 has more grey nodes than
H2, or they have the same number of grey nodes but H1 has more dashed edges, or they have
the same number of grey nodes and dashed edges but H1 has more red nodes. Let H1 be the
input of an arbitrary iteration of SortNodes, and H2 its output. If sort_forward is applied
any number of times, H1 > H2 since the number of grey nodes are reduced. Otherwise, if
either sort_back_push or sort_back_stack is applied, H1 > H2 since the number of grey
nodes is conserved and the number of dashed edges decreases in both rules. Otherwise, either
red_push or red_stack have to be applied, which conserve the number of grey nodes and
dashed edges, but decreases the number of red nodes. So in any case, H1 > H2. For a given
graph H1 consider how many graphs H2 satisfy H1 > H2. By definition of >, H1 gives a
(finite) upper bound on the number of grey nodes, dashed edges, and red nodes. Hence there
are only finitely many possible H2s. Since sort_forward! terminates, and each iteration of
the loop reduces the host graph with respect to <, SortNodes terminates.

Consider (try unsorted then SortNodes; search_forward)!. If search_forward
cannot be applied, the loop terminates. It is the only rule in this loop that increases the
number of looped edges in the graph. Due to its predicate, it can only add looped edge to a

CALCO 2019

16:22 Linear-Time Graph Algorithms in GP 2

node if it does not already have one. Furthermore, no rule decreases the number of looped
edges. So for an arbitrary input graph H for the loop, at most |VH | looped edges can be
added before search_forward fails. Hence the loop terminates.

Finally, consider the loop that SearchUnsortedNodes consists of. Furthermore, consider
the lexicographic ordering > defined by H1 > H2 if H2 has more nodes with looped edges
than H1, or they have the same number of nodes with looped edges but H2 has less dashed
edges than H1. By an argument similar to that made by Bak for termination of DFS [4],
SearchUnsortedNodes terminates. J

For the correctness of SortNodes, the following concepts needs to be defined. In a graph
G, a directed path from a node v to a node w is a sequence of distinct nodes v1, v2,. . . , vn

such that v1 = v and vn = w, and for each i where 1 ≤ i ≤ n− 1, there is an edge of source
vi and of target vi+1. A directed path from v to w is called grey-noded if all the nodes it
consists of, except possibly v, are marked grey.

I Definition 27 (Descendants). Given a node v in a DAG G, let its descendants DescG(v)
be defined as the subgraph of G induced by the set

{w ∈ VG | there is a directed grey-noded path from v to w} ∪ {v}.

I Lemma 28 (Correctness of SortNodes). Assume the input graph of top-sort has no blue
edges. Let G be a connected DAG with a single red root v, where the nodes of DescG(v) are
unrooted. Furthermore, let G have an additional root that is either unmarked and disconnected,
or green and connected to the rest of the graph with an outgoing green edge. Let H be the
output of SortNodes applied on G. Consider the binary relation < on nodes of DescH(v)
defined by u < w if there is a directed path from u to w, such that all of the involved edges
are blue. Then < defines a topological sorting on DescH(v) minus the blue edges.

Proof sketch. Since the input graph of top-sort has no blue edges, any that are present in
the host graph were created by rules. Whenever these rules create blue edges, they mark
the incident nodes blue. No rule removes a blue mark, so the subgraph of the host graph
induced by the blue edges always exclusively consists of blue nodes. Furthermore, every rime
a node gets marked blue, the green root points towards it. And when a new blue edge gets
created, the target node must also have the green root pointing towards it, and the source
node must be a red root. So the procedure only adds a blue edge from a non-blue to the
node that has most recently been marked blue. From this construction, we can infer that
the graph induced by the blue edges is a path graph. Furthermore, no blue looped edges are
introduced. So there can be no path from a node u to a node w and vice versa. Hence if
u < w and w < u, u and w must be equal by definition of ≤, i.e. ≤ is antisymmetric.

From the definition of <, it is clear that transitivity holds due to path concatenation
resulting in paths.

One can show that SortNodes turns every node of DescG(v) into a red root. Furthermore,
all the red roots become blue nodes incident to blue edges. So < is connex.

To show that the topological property holds, consider two nodes u and w of DescH(v),
both of which being distinct from v (v itself will be handled later). So by definition, there
is path of non-blue edges from v to u, and one from v to w. We can assume without loss
of generality that u becomes a red root before w. If there is no edge between u and w, the
topological property imposes no constraint on said pair of nodes. If there is an edge from
u to w, sort_forward gets applied again, dashing said edge and turning w into a red root.
Hence later in the execution, w gets pushed before u, ensuring that the topological property

G. Campbell, B. Courtehoute, and D. Plump 16:23

is satisfied. If there is an edge from w to u, there can be no non-blue path from u to w since
the input is a DAG. Hence u will be pushed before w, satisfying the topological property
again. As for v, any condition involving it must have it as the source node by definition of
DescH(v). Since v is pushed last, the topological property is satisfied.

J

I Lemma 29. Given an input G as described in Lemma 28, the output of SortNodes has
the same dashed edges, and the red root in the same place as G.

Proof sketch. Let v be the red root of G. During the execution of SortNodes, there is
always a path of dashed edges from v to the current red root, since sort_forward is the only
rule of SortNodes with dashed edges in its right hand side and generates a path graph of
red nodes and dashed edges, and since sort_back_stack and sort_back_push only remove
the latest node from that path graph. The only way for their encompassing loop to end
is for both of these rules not to be applicable. By the previous argument, this means that
there are no dashed edges in said path graph left, and v is the red root when SortNodes
terminates. J

CALCO 2019

Hybridisation of Institutions in HETS
Mihai Codescu
University of Bremen, Collaborative Research Center EASE, Bremen, Germany
Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
Research Group of the project PED-0494, Bucharest, Romania
codescu@uni-bremen.de

Abstract
We present a tool for the specification and verification of reconfigurable systems. The foundation
of the tool is provided by a generic method, called hybridisation of institutions, of extending an
arbitrary base institution with features characteristic to hybrid logic, both at the syntactic and the
semantic level. Automated proof support for hybridised institutions is obtained via a generic lifting
of encodings to first-order logic from the base institution to the hybridised institution. We describe
how hybridisation and lifting of encodings to first-order logic are implemented in an extension of the
Heterogeneous Tool Set in their full generality. We illustrate the formalism thus obtained with the
specification and verification of an autonomous car driving system for highways.

2012 ACM Subject Classification Software and its engineering → Specification languages; Theory
of computation → Algebraic semantics; Theory of computation → Logic and verification

Keywords and phrases hybrid logics, formal verification, institutions, reconfigurable systems

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.17

Category Tool Paper

Funding This work was partially supported by the German Research Foundation DFG, as part
of Collaborative Research Center (Sonderforschungsbereich) 1320 “EASE - Everyday Activity
Science and Engineering”, University of Bremen (http://www.ease-crc.org/) and by a grant of the
Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI - UEFISCDI,
project number PN-III-P2-2.1-PED-2016-0494, within PNCDI III.

Acknowledgements Răzvan Diaconescu had major contributions to the implementation in HETS
of his generic method of hybridisation of institutions. I wish to thank Till Mossakowski, Fabian
Neuhaus and Ionuţ Ţuţu for valuable feedback on language design and implementation issues.

1 Introduction

A reconfigurable system is one with different modes of operation, called configurations, and
with the ability to commute between them during its execution along transitions between
these modes, called reconfigurations. Such systems appear naturally in many domains,
including automobile industry, robotics and medical devices. An overview can be found in
[9]. We present H [3], a tool for the formal specification and verification of reconfigurable
systems that supports their correct and efficient development.

The mathematical foundation underlying the tool is provided by a generic construction
on institutions [8], called hybridisation, explained briefly in Sec. 2. It has the modalisation
of institutions [7] as its source; part of that work was extended to hybrid logics in [10] in
a simple form, and it took a rather complete shape in [5]. Hybridisation is done using a
two-layered approach: the base layer represents a specific logic for expressing requirements
at the configuration (static) level, in other words at the data level. This layer is treated
abstractly as an institution that can be instantiated to concrete logical formalisms that
are most adequate for the specification of the data part of particular problems. On top
of this base layer the characteristic syntactic and semantics features of hybrid logic are

© Mihai Codescu;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 17; pp. 17:1–17:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-7702-8955
mailto:codescu@uni-bremen.de
https://doi.org/10.4230/LIPIcs.CALCO.2019.17
http://www.ease-crc.org/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Hybridisation of Institutions in HETS

developed, notably a flexible choice of quantifications on nominals and/or symbols from the
base institution and various semantic constraints on the accessibility relations and on the
interpretation of symbols in possible worlds of a Kripke model of the hybridised institution
(also see [5]). While the base layer deals with the data level, the upper layer deals with
the dynamics of the configurations. The choice of hybrid logic for expressing the latter
comes naturally as it is a prominent kind of modal logic that provides adequate syntactic
capabilities – names of possible worlds, formulas that hold at named states.

The specification part of our tool is complemented by a verification part, whose foundation
is given by a general encoding of hybridised institutions into first-order logic. This encoding
follows the two-layered structure of the hybridised institutions. If a translation of the logic
used at the base level to first-order logic already exists, it is lifted to a translation of the
hybridised institution to first-order logic via a generic construction, introduced in [6]. At
this level, the semantic constraints give rise to first-order formulas. As a result, we obtain a
verification-by-translation method where a problem in a hybridised institution is translated
to first-order logic and solved there using automated first-order theorem provers.

The H tool was implemented as an extension of the Heterogeneous Tool Set (HETS) [13],
a tool for the heterogeneous multi-logic specification and modeling of software systems and
for ontology development. In all these fields, there is a large number of logics and languages
in use, each better suited for a different task or providing better support for a different aspect
of a complex system. Instead of trying to integrate the features of all these logics into a single
formalism, the paradigm of heterogeneous multi-logic specification is to integrate all logics by
means of a so-called Grothendieck construction over a graph of logics and their translations
[12, 4]. Thus, for each logic we can make use of its dedicated syntax(es) and proof tools.
The specifier has the freedom to choose the logic that suits best the problem to be solved,
offers best tool support and is most familiar with. HETS provides an implementation of this
paradigm, and also supports the verification-by-translation method. HETS has been designed
as a flexible tool: adding a new logic or a new logic translation can be done by instantiating
a class and adding the new instance to the list of known logics and translations. First-order
logic and several state-of-the-art automated provers for it are already supported by HETS.

A HETS implementation of the hybridisation method was presented in [14]. It was realized
in two directions: an implementation of the hybridisation of an extension of CASL logic with
rigid symbols (enabling user-defined sharing, when only the symbols explicitly marked as rigid
are subject to semantic constraints in the models of the hybridised institution), together with
a translation from this hybridisation to first-order logic, and a generic construction, similar
to a Grothendieck one, that appears as a single logic in HETS, used to hybridise a number of
HETS logics. No translation from this logic to first-order logic is available, and no choice
can be made on the kind of quantification and the semantic constraints that a hybridised
institution should have. In contrast, our implementation supports all variations and is fully
generic: the parameters of the hybridisation method can be specified in a declarative way
and new instances of the main Logic class of HETS are generated for each new definition
of a hybridised institution. Generating different institutions for different hybridisations is
crucial for defining comorphisms from them to first-order logic, which is also implemented in
our tool as a generic method, thus enabling proof support for each newly added hybridised
institution.

2 Institutions and their hybridisation

Institutions [8] provide a model-theoretic formalization of the concept of logical system. The
basic components of an institution are: a notion of signature, defining the non-logical symbols
in the language, a notion of logical sentence over a signature, a notion of model giving the

M. Codescu 17:3

interpretation of the symbols in a signature in some semantic domain and a satisfaction
relation between the models and the sentences of a signature. This is complemented by a
dynamic view on the language: instead of working over an arbitrary but fixed (and implicit)
signature, different signatures are related by signature morphisms, which induce translations
of sentences and reduction of models. These must be consistent with one another, which means
that no change of notation induced by a signature morphism can alter the satisfaction of
sentences. This is expressed formally by the so-called satisfaction condition. Institutions are
a formalization of the above using category theory, thus achieving a high level of abstraction
and not making unnecessary assumptions about the components of a logical system.

The hybridisation method [5] was introduced at this abstract level. Given an arbitrary base
institution I as a first parameter, it constructs a hybridised institution HI whose signatures
extend the signatures of I with nominals (for reconfigurable systems, these correspond to
names of configurations) and modalities (names of events causing reconfigurations). Signature
morphisms in I pair signature morphisms in I with mappings of nominals and of modalities.
For a signature in I, the sentences can be I-sentences over the base signature, nominals,
modal box- and diamond-sentences over modalities, retrieve sentences (meant to hold at a
given state), combinations of sentences using Boolean connectors, or quantified sentences.
The latter sentences depend on a class D of signature morphisms of HI that defines the kind
of variables that can be quantified, nominals and/or symbols from I, and forms the second
parameter of hybridisation. Models of a HI signature are Kripke structures such that each
possible world is assigned a I-model of the base signature, each nominal is interpreted as one
of the possible worlds and each modality as an accessibility relation between these worlds.
The third parameter of hybridisation is a set of logic-specific semantic constraints on the
accessibility relations and on the interpretation of symbols in possible worlds. For example,
the accessibility relation may be reflexive and transitive, as in the modal logic S4, or the
interpretation of all symbols of a certain kind may be the same in all possible worlds.

Institution comorphisms [11] capture the intuition that an institution is included or
encoded into another one. A comorphism from an institution I1 to an institution I2 maps
I1-signatures to I2-signatures along a functor Φ, Σ-sentences in I1 to Φ(Σ)-sentences in
I2 for a I1-signature Σ and I2-models of Φ(Σ) to I1-models of Σ. Again, a satisfaction
condition must hold, stating that satisfaction of sentences is not altered by change of logic.
Sometimes the cost of encoding an institution I1 into another one I2 is that I1-signatures
are mapped to I2-theories, i.e. not just signatures, but also a set of sentences over them.
These theories grow in size with the number of symbols in the original signature.

Given an institution comorphism from an institution I to the institution of multi-sorted
first-order logic FOLms, [6] introduces a generic method of lifting it to a comorphism from a
hybridisation HI of I to FOLms. A hybrid signature ∆ get translated to a FOLms-theory
(Σ, E) as follows: first the base signature is translated along the base comorphism, and we
obtain a first-order theory. This theory is extended with a new sort for states, its predicates
and function symbols get a new argument of sort state, and the sentences of the theory are
universally quantified over a variable of sort state that is introduced in all predications and
all terms. Domain predicates are introduced for each sort and state, giving the interpretation
of that sort in each world. Nominals are constants of sort state and modalities are predicates
on states. Moreover, semantic constraints get translated to sentences over this extended
signature. The reduction of a (Σ, E)-model to a ∆-model is done by taking as the set of
worlds the interpretation of the sort for states, and by keeping the interpretation of nominals
and modalities as in the first-order model. The local models are obtained for each world w by
taking the reduct along the base comorphism of the first-order model obtained by interpreting

CALCO 2019

17:4 Hybridisation of Institutions in HETS

each sort as its domain in w and each function/predicate symbol as the restriction of its
interpretation in (Σ, E) when the extra state argument is always w. Sentence translation is
done by adding an universal quantification on a variable w of sort state and then inductively
on the structure of the formula, with the base cases of nominals i being translated to i = w

and base formulas e being first translated along the base comorphism and then adding w

in the resulting first-order sentences as the extra argument of sort state. Details of the
interesting cases of box- and diamond formulas and quantification can be found in [6].

3 Hybridisation in HETS

The parameters of the generic hybridisation method are:
(1) the base institution being hybridised, using the name of a known logic in HETS or even

of one of its sublogics, written in HETS syntax as LogicName.SublogicName,
(2) the kind of symbols allowed to appear in a quantification, which can be nominal or a

kind of symbols of the base institution, referred to by its HETS name,
(3) the constraints made on the models of the hybridised institution, which can be of two

kinds: on the accessibility relations between possible worlds (reflexive, transitive etc.) or
on the interpretation of symbols of a certain kind (universes, nominals, or a kind from
the base institution) in the possible worlds.

Listing 1 shows how the hybridisation of the extension of the CASL logic with rigid symbols,
that will be used in the example in Sec. 4, is specified1: first we define HRigidCASL as the
hybridisation of RigidCASL with quantification on rigid constants and nominals. After this
definition is analyzed by HETS, it is recorded for further extensions: HRigidCASLC adds the
constraints that rigid sorts, rigid predicates and rigid total functions share the interpretation
and rigid partial functions share the domain of definition in each possible world of a model.
HETS generates for each of these two definitions a new instance of the class Logic, which
will become available for specification in HETS once the newly generated code is compiled.
The resulting logic will inherit the syntax of the base institution for declarations of base
symbols and for base sentences, and will use generic syntax for declarations of nominals and
modalities, and for hybrid sentences. Full details of the syntax are available at [2].

Listing 1 Hybridisation of RigidCASL.
newhlogic HRigidCASL =

base: RigidCASL .
quant : rigid const , nominal .

end
newhlogic HRigidCASLC =

hlogic : HRigidCASL .
constr : SameInterpretation (rigid sort), SameInterpretation (rigid op),

SameInterpretation (rigid pred), SameDomain (rigid partial) .
end

The process of lifting a comorphism to first-order logic from a base institution to its
hybridisation has only two parameters: the HETS name of the comorphism being lifted
and the name of the hybridisation of the base institution that will be the source of the
lifted comorphism. The latter is needed because a base institution admits more than one
hybridisation. Again, HETS analyses this definition and generates source code that must be
compiled to make the comorphism available for translation and proofs by translation.

1 More examples can be found at https://ontohub.org/forver.

https://ontohub.org/forver

M. Codescu 17:5

manual HP

degradedemergency

activateHP

deactivateHP

problemDetected

badSensorsRecovered

noDriverResponse

deactivateHP

activateHP

Figure 1 The modes and reconfigurations of the highway pilot.

Listing 2 Lifting the translation to first-order logic of RigidCASL to HRigidCASLC.
newhcomorphism HRigid2CASL =
basecomorphism : Rigid2CASL
sourcehlogic : HRigidCASLC
end

4 Case Study: specification and verification of a highway pilot

We now discuss the example of an autonomous driving system for passenger cars and heavy
trucks, called highway pilot (HP). The problem description is adapted from [16]. HP can only
be activated when driving on a highway. After activation, the electronic system will keep
driving the car on the highway, relying on information from radar and camera sensors. These
sensors may exhibit faults or may fail to give a correct interpretation of the surroundings,
depending on weather, traffic and road conditions. Unlike bad conditions, faults will not
disappear after some time unless the sensors are physically repaired. Faults and bad conditions
may be undetected for some time. If a fault or bad conditions are detected when HP is
on, the system will enter a so-called degraded driving mode, where a safer driving style
is adopted, typically including driving slower, and the driver is alerted that he/she should
take over driving. If the driver does not deactivate HP mode within a time limit after being
alerted, an emergency stop will be performed. If the bad conditions disappear (all unreliable
sensors become reliable) before the time limit for HP deactivation is reached and there are
no faulty sensors, the system will return to HP mode and stop alerting the driver.

The modes of the systems and the events causing changes of modes are depicted in Fig. 1.
In Listing 3 we show how they are specified, together with axioms stating that there are
no other modes, that the system can change from the manual to HP and degraded modes
and that the only transitions from the modes HP and degraded along the reconfiguration
deactivateHP are to the manual mode.

Listing 3 Modes.
nominals manual , hp , degraded , emergency
modalities activateHP , deactivateHP , problemDetected ,

noDriverResponse , badSensorsRecovered : 2

. manual \/ hp \/ degraded \/ emergency %(no_other_states)%

. @ manual : <activateHP > (hp \/ degraded) %(manual_to_hp_or_degraded)%

. not (manual \/ emergency)
=> <deactivateHP > manual /\ [deactivateHP] manual %(back_to_manual)%

CALCO 2019

17:6 Hybridisation of Institutions in HETS

We also keep track of the current state of the HP system, using a different transition
system than the one between modes. The system states are loosely specified with the help
of observers for the current speed, the current status of the sensors (working, detected bad
conditions, detected fault, undetected bad conditions, undetected faults), flags for checking
whether the driver alert is on or off and if the driver has turned the HP off and a time
counter for checking the time limit in the degraded mode. The transitions between states
are given by a non-rigid predicate step. In each mode, transitions are possible only from
the states that are valid in that mode, as defined by a non-rigid predicate isValid. Recall
that non-rigid symbols admit different interpretations in different possible worlds. Listing 4
shows the definition of valid states for the mode hp: those reached after HP was activated
from manual mode, those reached after bad sensors recovered in degraded mode and those
that are reached from a valid state in the hp mode and do not satisfy the conditions for
reconfigurations.2

Listing 4 Highway pilot mode.
. @ hp : forallH S’ : State . isValid (S’) <=> crtDeactivateTime (S’) = 0 /\

((existsH S : State . @ manual :
isValid (S) /\ step(S, S’) /\ activateHPWorkingCond (S ’))

\/ (existsH S : State . @ degraded :
isValid (S) /\ step(S, S’) /\ badSensorsRecoveredCond (S ’))

\/ (existsH S : State . @ hp :
isValid (S) /\ step(S, S’) /\
not hpDeactivated (S’) /\ not problemDetectedCond (S ’)))

%(def_isValid_hp)%

The other modes are specified in a similar way3. We can now verify that the valid states
of each mode have the expected properties. The corresponding sentence for the mode hp,
stating that all valid states have no detected faulty or unreliable sensors is shown in Listing 5.
We can prove this conjecture in HETS by translation, using the SPASS prover with a time
limit of 70 seconds on a modern machine. Proving that in every state valid in degraded
mode there is at least one faulty or unreliable sensor takes significantly more time (time limit
of 500 seconds with SPASS) and requires the introduction of a lemma. This is typical for
proofs in first-order logic, especially in the case of very large theories as the one obtained in
this case via translation.

Listing 5 Conjectures.
. forallH S : State . (@ hp : isValid (S))

=> not exists s : Sensor .
status (S, s) = detectedBad \/ status (S,s) = detectedFault

%(no_detected_problems_hp)% % implied

5 Conclusions and future work

By implementing in HETS the hybridisation method and the lifting of translations introduced
in [5, 6], we obtain a framework for specification and verification of reconfigurable systems.
Proofs are done by translation to first-order logic using the first-order provers already
integrated with HETS. Given the large variety of hybrid institutions that can be specified,
this is often the only tool support available. An interesting enterprise would be to implement

2 Note that forallH and existsH are the universal and existential quantifiers introduced via hybridisation;
their semantics does not always subsume that of quantification in the base logic, see [5].

3 The complete specification of the HP system is available under https://ontohub.org/forver/hp.dol.

https://ontohub.org/forver/hp.dol

M. Codescu 17:7

a generic parameterized prover for hybrid logics, possibly following the ideas of [1], and
to make it available in HETS for each generated hybridised institution. The results of [15]
hold for a restricted form of hybridisation, without quantifications on nominals and with no
constraints on models and therefore cannot be applied in our setting.

References

1 D. Găină. Birkhoff style calculi for hybrid logics. Formal Asp. Comput., 29(5):805–832, 2017.
doi:10.1007/s00165-016-0414-y.

2 M. Codescu and R. Diaconescu. Hspec language definition. URL: http://imar.ro/~diacon/
forver/Hdef.pdf.

3 M. Codescu and R. Diaconescu. The H system. http://imar.ro/~diacon/forver/forver.
html.

4 R. Diaconescu. Grothendieck Institutions. Applied Categorical Structures, 10(4):383–402, 2002.
doi:10.1023/A:1016330812768.

5 R. Diaconescu. Quasi-varieties and initial semantics for hybridized institutions. J. Log.
Comput., 26(3):855–891, 2016. doi:10.1093/logcom/ext016.

6 R. Diaconescu and A. Madeira. Encoding hybridized institutions into first-order logic. Mathem-
atical Structures in Computer Science, 26(5):745–788, 2016. doi:10.1017/S0960129514000383.

7 R. Diaconescu and P. S. Stefaneas. Ultraproducts and possible worlds semantics in institutions.
Theor. Comput. Sci., 379(1-2):210–230, 2007. doi:10.1016/j.tcs.2007.02.068.

8 J. A. Goguen and R. M. Burstall. Institutions: Abstract Model Theory for Specification
and Programming. Journal of the Association for Computing Machinery, 39:95–146, 1992.
doi:10.1145/147508.147524.

9 A. Madeira, R. Neves, L. Soares Barbosa, and M. A. Martins. A method for rigorous design
of reconfigurable systems. Sci. Comput. Program., 132:50–76, 2016. doi:10.1016/j.scico.
2016.05.001.

10 M. A. Martins, A. Madeira, R. Diaconescu, and L. Soares Barbosa. Hybridization of Institutions.
In CALCO, volume 6859 of Lecture Notes in Computer Science, pages 283–297. Springer, 2011.
doi:10.1007/978-3-642-22944-2_20.

11 J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceedings, Logic Colloquium,
1987, pages 275–329. North-Holland, 1989.

12 T. Mossakowski. Comorphism-based Grothendieck logics. In K. Diks and W. Rytter, editors,
Mathematical foundations of computer science, volume 2420 of Lecture Notes in Computer
Science, pages 593–604. Springer Verlag, London, 2002. doi:10.1007/3-540-45687-2_49.

13 T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O. Grumberg
and M. Huth, editors, TACAS 2007, volume 4424 of Lecture Notes in Computer Science, pages
519–522. Springer, Heidelberg, 2007. doi:10.1007/978-3-540-71209-1_40.

14 R. Neves, A. Madeira, M. A. Martins, and L. Soares Barbosa. Hybridisation at Work. In
R. Heckel and S. Milius, editors, CALCO 2013, volume 8089 of Lecture Notes in Computer
Science, pages 340–345. Springer, 2013. doi:10.1007/978-3-642-40206-7_28.

15 R. Neves, A. Madeira, M. A. Martins, and L. Soares Barbosa. Proof theory for hybrid(ised)
logics. Sci. Comput. Program., 126:73–93, 2016. doi:10.1016/j.scico.2016.03.001.

16 M. Nyberg. Safety analysis of autonomous driving using semi-Markov processes. In Stein
Haugen, Anne Barros, Coen van Gulijk, Trond Kongsvik, and Jan Erik Vinnem, editors,
Safety and Reliability–Safe Societies in a Changing World, pages 781–788. CRC Press, 2018.
doi:10.1201/9781351174664-97.

CALCO 2019

https://doi.org/10.1007/s00165-016-0414-y
http://imar.ro/~diacon/forver/Hdef.pdf
http://imar.ro/~diacon/forver/Hdef.pdf
http://imar.ro/~diacon/forver/forver.html
http://imar.ro/~diacon/forver/forver.html
https://doi.org/10.1023/A:1016330812768
https://doi.org/10.1093/logcom/ext016
https://doi.org/10.1017/S0960129514000383
https://doi.org/10.1016/j.tcs.2007.02.068
https://doi.org/10.1145/147508.147524
https://doi.org/10.1016/j.scico.2016.05.001
https://doi.org/10.1016/j.scico.2016.05.001
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/3-540-45687-2_49
https://doi.org/10.1007/978-3-540-71209-1_40
https://doi.org/10.1007/978-3-642-40206-7_28
https://doi.org/10.1016/j.scico.2016.03.001
https://doi.org/10.1201/9781351174664-97

17:8 Hybridisation of Institutions in HETS

A Implementation

In this appendix we give an overview of how the hybridisation method was implemented
in HETS. We have made some simplifications and changes of the actual names used in the
HETS source code to ease understanding.

A.1 Adding a new logic in HETS

HETS has an abstract interface for logics, in the form of a Haskell multiparameter type class
with functional dependencies, called Logic. The parameters are types for the constituents
of a logic: its identifier, its signatures and signature morphisms, its symbols of signatures
with their kinds, its low-level, human readable syntax in the form of basic specifications for
theories, lists of symbols for convenient use during structuring and symbol maps for signature
morphisms, its sublogics and its proof trees. Being a type class, Logic provides a list of
methods that must be provided for each particular choice of the parameter types in order
to obtain a new instance of the type class. These include, among others, composition of
signature morphisms, parsers, printers, static analysis of basic specifications, symbol lists
and symbol maps, sentence translation along signature morphisms, various operations on
signatures and signature morphisms. The functional dependency between the type logic
identifier and all other types is used to determine the missing types and thus the correct
instance of a function in the type class. This means that all methods in the class Logic take
as first argument the logic identifier, and this determines the logic uniquely.

To sketch an example, propositional logic has as identifier a singleton type, called
Propositional. Types must be provided for its constituents: signatures are sets of names
(implemented in HETS using the datatype Id) of propositional symbols, signature morphisms
are maps between these sets, where we also store the source and the target signature for each
morphism, and so on.

Listing 6 Signatures in propositional logic.
newtype PropSign = PropSign {items :: Set Id}

The type class Logic contains a method for union of signatures: signature_union ::
lid -> sign -> sign -> Result sign, where the type Result a is a polymorphic type
with variable a used for dealing with errors (the union of signature may not give a legal
signature for each institution). We must provide an implementation of this method for
propositional logic, and this will be done as a method signatureUnion :: PropSign ->
PropSign -> Result PropSign. Then we must provide an instance declaration for the
types for components of propositional logic where we say how the methods of the type class
are implemented.

Listing 7 Propositional logic.
instance Logic -- the type class

Propositional -- the logic identifier
...
PropSign -- the type of signatures
PropMorphism
...

where
...
signature_union Propositional = signatureUnion
...

M. Codescu 17:9

To sum up, adding a new logic in HETS requires creating a new instance of the Logic class,
and this is achieved by defining types for the constituents of that logic and by implementing
the methods of the Logic class for these types.

A.2 Generic implementation of hybridisation in HETS
The first step is to define the generic types for the constituents of a hybridised institution.
We used type variables for the parts that come from the base institution. For example, the
type of hybrid signatures is presented in Listing 8.

Listing 8 Hybrid signatures.
data HSign sig = HSign {

baseSig :: sig ,
noms :: Set Id ,
mods :: Set Id}

where the variable sig stands for the base signatures. Then we need to implement the
methods of the Logic class over these generic types. Typically this will require that the
corresponding method in the base institution is involved, and we need to make it accessible.
This is achieved by giving as an argument the logic identifier of the base institution and
imposing the condition that the type variables that appear in the generic types introduced
at the first step will be instantiated with the corresponding types from the base institution.
For example the method for union of hybrid signatures presented in Listing 9 will have to
make the union of the base signatures. We add the requirement that the argument for the
type variable sig is the type of signatures of the base institution, as recorded in the Haskell
context of the method sigUnion. The identifier baseLid allows us to properly identify the
Logic instance of the base institution, and thus signature_union baseLid will invoke the
implementation of signature union in the base institution, for the base signatures of the
hybrid signatures that we want to unite. Then we unite the sets of nominals and modalities,
respectively, and return the result.

Listing 9 Union of hybrid signatures.
sigUnion :: (Logic baseLid ... sig ...)

=> baseLid -> HSign sig -> HSign sig -> Result (HSign sig)
sigUnion baseLid hsig1 hsig2 = do

usig <- signature_union baseLid (baseSig hsig1) (baseSig hsig2)
let uNoms = Set.union (noms hsig1) (noms hsig2)

uMods = Set.union (mods hsig1) (mods hsig2)
return $ HSign usig uNoms uMods

As a result of these two steps, we obtain generic types for hybrid institutions and generic
implementations of the methods in the Logic class for these types. Let us assume we want
to extend HETS with the hybridisation of propositional logic, with no quantification and no
semantic constraints on models. This is written as in Listing 10.

Listing 10 Hybridisation of propositional logic.
newhlogic HProp =

base: Propositional .
end

When HETS analyzes this definition, it generates a new instance of the Logic class, whose
component type for signatures is HSign PropSign, and similarly for the other component
types of a logic. The instance declaration in Listing 11 states that the implementation of
signature union for the new logic HProp is given by the method sigUnion introduced in

CALCO 2019

17:10 Hybridisation of Institutions in HETS

Listing 9. It uses partial application: the methods on both sides of the equal sign take as
arguments two hybrid signatures. HProp is the unique value of the singleton type HProp
generated as a logic identifier for the new hybridised logic that we want to define.

Listing 11 Logic instance for hybrid propositional logic.
instance Logic

HProp
...
(HSign PropSign)
...

where
...
signature_union HProp = sigUnion Propositional
...

Nominal String Diagrams
Samuel Balco
Department of Informatics,University of Leicester, United Kingdom
https://gdlyrttnap.pl
sb782@leicester.ac.uk

Alexander Kurz
Department of Computer Science, Chapman University, Orange California, USA
akurz@chapman.edu

Abstract
We introduce nominal string diagrams as string diagrams internal in the category of nominal sets.
This requires us to take nominal sets as a monoidal category, not with the cartesian product, but with
the separated product. To this end, we develop the beginnings of a theory of monoidal categories
internal in a symmetric monoidal category. As an instance, we obtain a notion of a nominal PROP
as a PROP internal in nominal sets. A 2-dimensional calculus of simultaneous substitutions is an
application.

2012 ACM Subject Classification Software and its engineering → General programming languages;
Theory of computation → Models of computation; Theory of computation → Logic; Mathematics of
computing

Keywords and phrases string diagrams, nominal sets, separated product, simultaneous substitutions,
internal category, monoidal category, internal monoidal categories, PROP

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.18

Acknowledgements We are greatful to Fredrik Dahlqvist, Giuseppe Greco, Samuel Mimram, Drew
Moshier, Alessandra Palmigiano, David Pym, Mike Shulman, Pawel Sobocinski, Thomas Streicher,
Georg Struth, Apostolos Tzimoulis and Fabio Zanasi for discussions on the topic of this paper.

1 Introduction

One reason for the success of string diagrams, see [19] for an overview, can be formulated by
the slogan “only connectivity matters” [4, Sec.10.1]. Technically, this is usually achieved by
ordering input and output wires and using their ordinal numbers as implicit names. We write
n = {1, . . . n} to denote the set of n numbered wires and f : n→ m for diagrams f with n
inputs and m outputs. The approach of using order to implicitly name wires is particularly
convenient for the generalisations of Lawvere theories known as PROPs [16]. In particular,
the paper on composing PROPs [13] has been influential [2, 3].

On the other hand, if only connectivity matters, it is natural to consider a formalisation
of PROPs in which wires are not ordered. Thus, instead of ordering wires, we fix a countably
infinite set N of “names” a, b, . . ., on which the only supported operation or relation is
equality. Mathematically, this means that we work internally in the category of nominal sets
introduced by Gabbay and Pitts [8, 18]. In the remainder of the introduction, we highlight
some of the features of this approach.

Partial commutative vs total symmetric tensor. One reason why ordered names are
convenient is that the tensor ⊕ is given by the categorical coproduct (addition) in the
skeleton F of the category of finite sets. Even though n⊕m = m⊕ n on objects, the tensor
is not commutative but only symmetric, since the canonical arrow n⊕m→ m⊕ n is not the
identity.

© Samuel Balco and Alexander Kurz;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 18; pp. 18:1–18:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://gdlyrttnap.pl
mailto:sb782@leicester.ac.uk
mailto:akurz@chapman.edu
https://doi.org/10.4230/LIPIcs.CALCO.2019.18
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Nominal String Diagrams

On the other hand, in the category nF of finite subsets of N (which is equivalent to F as
an ordinary category), there is a commutative tensor A]B given by union of disjoint sets.
The feature that makes commutativity possible is that] is partial with A]B defined if and
only if A ∩B = ∅.

While it would be interesting to develop a general theory of partially monoidal categories,
our approach in this paper is based on the observation that the partial operation] : nF×nF→
nF is a total operation] : nF ∗ nF→ nF where ∗ is the separated product of nominal sets
[18].

Symmetries disappear in 3 dimensions. From a graphical point of view, the move from
ordered wires to named wires corresponds to moving from planar graphs to graphs in 3
dimensions. Instead of having a one dimensional line of inputs or outputs, wires are now
sticking out of a plane [12]. As a benefit there are no wire-crossings, or, more technically,
there are no symmetries to take care of. This simplifies the rewrite rules of calculi formulated
in the named setting. For example, rules such as

=

are not needed anymore. For more on this compare Figs 3 and 4.

Example: Simultaneous Substitutions. Substitutions [a 7→b] can be composed sequentially
and in parallel as in

[a7→b] ; [b 7→c] = [a7→c] [a7→b]] [c7→d] = [a7→b, c7→d].

We call] the tensor, or the monoidal or vertical or parallel composition. Semantically,
the simultaneous substitution on the right-hand side above, will correspond to the function
f : {a, c} → {b, d} satisfying f(a) = b and f(c) = d. Importantly, parallel composition of
simultaneous substitutions is partial. For example, [a7→b]] [a 7→c] is undefined, since there is
no function {a} → {b, c} that maps a simultaneously to both b and c.

The advantages of a 2-dimensional calculus for simultaneous substitutions over a 1-
dimensional calculus are the following. A calculus of substitutions is an algebraic repres-
entation, up to isomorphism, of the category nF of finite subsets of N . In a 1-dimensional
calculus, operations [a7→b] have to be indexed by finite sets S

[a7→b]S : S ∪ {a} → S ∪ {b}

for sets S with a, b /∈ S. On the other hand, in a 2-dimensional calculus with an explicit
operation] for set union, indexing with subsets S is unnecessary. Moreover, while the
swapping

{a, b} → {a, b}

S. Balco and A. Kurz 18:3

in the 1-dimensional calculus needs an auxiliary name such as c in [a7→c]{b} ; [b7→a]{c} ; [c 7→a]{b}
it is represented in the 2-dimensional calculus directly by

[a7→b]] [b 7→a]

Finally, while it is possible to write down the equations and rewrite rules for the 1-dimensional
calculus, it does not appear as particularly natural. In particular, only in the 2-dimensional
calculus, will the swapping have a simple normal form such as [a7→b]] [b 7→a] (unique up to
commutativity of]).

Overview. In order to account for partial tensors, Section 3 develops the notion of a
monoidal category internal in a monoidal category. Section 4 is devoted to examples, while
Section 5 introduces the notion of a nominal PROP and Section 6 shows that the categories
of ordinary and of nominal PROPs are equivalent.

2 Setting the Scene: String Diagrams and Nominal Sets

We review some of the terminology but need to refer to the literature for details.

2.1 String Diagrams and PROPs
String diagrams are a 2-(or higher)-dimensional notation for monoidal categories [12]. Their
algebraic theory can be formalised by PROPs as defined by MacLane [15]. There is also the
weaker notion by Lack [13], see Remark 2.9 of Zanasi [22] for a discussion.

A PROP (products and permutation category) is a symmetric strict monoidal category,
with natural numbers as objects, where the monoidal tensor ⊕ is addition. Moreover,
PROPs, along with strict symmetric monoidal functors, that are identities on objects, form
the category PROP. A PROP contains all bijections between numbers as they can be be
generated from the symmetry (twist) σ : 1⊕ 1→ 1⊕ 1 and from the parallel composition ⊕
and sequential composition ; (which we write in diagrammatic order). We denote by σn,m
the canonical symmetry n⊕m→ m⊕ n. Functors between PROPs preserve bijections.

PROPs can be presented in algebraic form by operations and equations as symmetric monoidal
theories (SMTs) [22].

An SMT (Σ, E) has a set Σ of generators, where each generator γ ∈ Σ is given an arity
m and co-arity n, usually written as γ : m→ n and a set E of equations, which are pairs of
Σ-terms. Σ-terms can be obtained by composing generators in Σ with the unit id : 1→ 1
and symmetry σ : 2 → 2, using either the parallel or sequential composition (see Fig 1).
Equations E are pairs of Σ-terms with the same arity and co-arity.
Given an SMT 〈Σ, E〉, we can freely generate a PROP, by taking Σ-terms as arrows, modulo

the equations stating that, together with id, the compositions ; and ⊕ form monoids
the equations of Fig 2
the equations E

PROPs have a nice 2-dimensional notation, where sequential composition is horizontal
composition of diagrams, and parallel/tensor composition is vertical stacking of diagrams
(see Fig 1). We now present the SMTs of bijections B , injections I , surjections S ,

CALCO 2019

18:4 Nominal String Diagrams

γ

γ : m→ n ∈ Σ id : 1→ 1 σ : 2→ 2

t’

t’

t

t ;t s st

t : m→ n t′ : o→ p

t⊕ t′ : m+ o→ n+ p

t : m→ n s : n→ o

t ; s : m→ o

Figure 1 SMT Terms.

σ1,1 ;σ1,1 = id2 (SMT-sym)
(s ; t)⊕ (u ; v) = (s⊕ u) ; (t⊕ v) (SMT-ch)
(t⊕ idz) ;σn,z = σm,z ; (idz ⊕ t) (SMT-nat)

Figure 2 Equations of symmetric monoidal categories.

functions F , partial functions P , relations R and monotone maps M .1 The diagram
in Fig 3 shows the generators and the equations that need to be added to the empty SMT, to
get a presentation of the given theory. To ease comparison with the corresponding nominal
monoidal theories in Fig 4 later we also added on a striped background the equations for
wire-crossings that are already implied by the naturality of symmetries (SMT-nat). These
are equations that are part of the definition of a PROP in the sense of MacLane [15] but not
in the sense of Lack [13]. The right-hand equation for bijections B is (SMT-sym) and holds
in all symmetric monoidal theories. We list it here to emphasise the difference with Fig 4.

2.2 Nominal Sets

Let N be a countably infinite set of “names” or “atoms”. Let S be the group of finite2
permutations N → N . An element x ∈ X of a group action S × X → X is supported
by S ⊆ N if π · x = x for all π ∈ S such that π restricted to S is the identity. A group
action S×X → X such that all elements of X have finite support is called a nominal set.
We write supp(x) for the minimal support of x and say that a is fresh for x if a /∈ supp(x).
Nom for the category of nominal sets, which has as maps the equivariant functions, that is,
those functions that respect the permutation action. Our main example is the category of
simultaneous substitutions:

1 The theory of monotone maps M does not include equations involving the symmetry σ and is in fact
presented by a so-called PRO rather than a PROP. However, in this paper we will only be dealing with
theories presented by PROPs (the reason why this is the case is illustrated in the proof of Proposition 20).

2 A permutation is called finite if it is generated by finitely many transpositions.

S. Balco and A. Kurz 18:5

=

==

==

= =

==

= =

==

==

= =

=

= =

=

Figure 3 Symmetric monoidal theories (compiled from [14]).

I Example 1 (nF). We denote by nF the category of finite subsets of N with all functions.
While nF is a category, it also carries additional nominal structure. In particular, both the
set of objects and the set of arrows are nominal sets with supp(A) = A and supp(f) = A ∪B
for f : A → B. The categories of injections, surjections, bijections, partial functions and
relations are further examples along the same lines.

3 Internal monoidal categories

We introduce the notion of an internal monoidal category. Given a symmetric monoidal
category (V, I,⊗) with finite limits, we are interested in categories C, internal in V, that
carry a monoidal structure not of type C×C→ C but of type C⊗C→ C. This will allow us
to account for the partiality of] discussed in the introduction. We present our motivating
example before we give Definition 11.

I Example 2.
The symmetric monoidal (closed) category (Nom, 1, ∗) of nominal sets with the separated
product ∗ is defined as follows [18]. 1 is the terminal object, i.e. a singleton with empty
support. The separated product of two nominal sets is defined as A ∗ B = {(a, b) ∈
A×B | supp(a) ∩ supp(b) = ∅}.
The category nF of Example 1 is an internal monoidal category with monoidal operation
given by A] B = A ∪ B if A,B are disjoint and f] f ′ = f ∪ f ′ if A,A′ and B,B′ are
disjoint where f : A→ B and f ′ : A′ → B′.

(nF, ∅,]) as defined in the previous example is not a monoidal category, since], being
partial, is not an operation of type nF× nF→ nF . The purpose of this section is to define
the notion of internal monoidal category and to show that (nF, ∅,]) is an internal monoidal
category in (Nom, 1, ∗) with] of type

CALCO 2019

18:6 Nominal String Diagrams

] : nF ∗ nF→ nF.

To this end we need to extend ∗ : Nom× Nom→ Nom to

∗ : Cat(Nom)× Cat(Nom)→ Cat(Nom)

where we denote by Cat(Nom), the category of (small) internal categories in Nom. The
necessary (and standard) notation from internal categories is reviewed in Appendix A.
I Remark 3. Let C be an internal category in a symmetric monoidal category (V, I,⊗)
with finite limits. Since ⊗ need not preserve finite limits, we cannot expect that defining
(C⊗ C)0 = C0 ⊗ C0 and (C⊗ C)1 = C1 ⊗ C1 results in C⊗ C being an internal category.

Consequently, putting (C⊗ C)1 = C1 ⊗ C1 does not extend ⊗ to an operation Cat(V)×
Cat(V) → Cat(V). To show what goes wrong in a concrete instance is the purpose of the
next example.

I Example 4. Define a binary operation nF ∗ nF as (nF ∗ nF)0 = nF0 ∗ nF0 and (nF ∗ nF)1 =
nF1 ∗ nF1. Then nF ∗ nF cannot be equipped with the structure of an internal category.
Indeed, assume for a contradiction that there was an appropriate pullback (nF ∗ nF)2 and
arrow comp such that the two diagrams commute:

(nF ∗ nF)2 comp //

π1 π2

��

nF1 ∗ nF1

dom cod

��
nF1 ∗ nF1

dom
cod

// nF0 ∗ nF0

Let δxy : {x} → {y} be the unique function in nF of type {x} → {y}. Then ((δac, δbd), (δcb,
δda)), which can be depicted as

{a} δac // {c} δcb // {b}

{b}
δbd

// {d}
δda

// {a}

is in the pullback (nF ∗ nF)2, but there is no comp such that the two squares above commute,
since comp((δac, δbd), (δcb, δda)) would have to be (δab, δba), which do not have disjoint support
and therefore are not in nF1 ∗ nF1. J

The solution to the problem consists in assuming that the given symmetric monoidal
category with finite limits (V, 1,⊗) is semi-cartesian (aka affine), that is, the unit 1 is the
terminal object. In such a category there are canonical arrows natural in A and B

j : A⊗B → A×B

and we can use them to define arrows j1 : (C⊗ C)1 → C1 × C1 that give us the right notion
of tensor on arrows. From our example nF above, we know that we want arrows (f, g) to
be in (C ⊗ C)1 if dom(f) ∩ dom(g) = ∅ and cod(f) ∩ cod(g) = ∅. We now turn this into
a category theoretic definition, which, in fact, is an instace of the general and well-known
construction of pulling back an internal category C along an arrow j : X → C0 to yield
an internal category X with X0 = X and X1 the pullback of 〈domC, codC〉 along j × j, or,
equivalently, the limit in the following diagram

S. Balco and A. Kurz 18:7

X1 C1

X0 C0

X0 C0

j1

codX
domX

j

j

codC
domC

which we abbreviate to

X1
j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(1)

Next we define i : X0 → X1 as the arrow into the limit X1 given by

X0 iC◦j

%%
id

''

id

''

iX

$$
X1 j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(2)

from which one reads off

domX ◦ iX = idX0 = codX ◦ iX

Next, X2 is the pullback

X2
πX1

~~

πX2

X1

codX

X1

domX~~
X0

Recalling the definition of j1 from (1), there is also a corresponding j2 : X2 → C2 due to the
fact that the product of pullbacks is a pullback of products.

X2

πX1

}}

πX2

!!

j2 // C2

πX1

}}

πC2

!!
X1

codX !!

j1
))

X1

domX}}

j1

55C1

codC !!

C1

domC}}
X0

j // C0

(3)

CALCO 2019

18:8 Nominal String Diagrams

Recall the definition of the limit X1 from (1). Then compX : X2 → X1 is the arrow into X1

X2 compC◦j2

**
codX◦πX2

,,

domX◦πX1

,,

compX

&&
X1 j1 //

domX

��
codX

��

C1

domC

��
codC

��
X0

j
// C0

(4)

from which one reads off

domX ◦ compX = domX ◦ πX1 codX ◦ compX = codX ◦ πX2 j1 ◦ compX = compC ◦ j2

and the remaining equations compX ◦ 〈iX ◦ domX, idX1〉 = idX1 = compX ◦ 〈idX1 , iX ◦ codX〉
are also not difficult to prove.

We have seen that the pullback of an internal category C along an arrow j with codomain
C0 is an internal category:

I Proposition 5. Given an internal category C and an arrow j : X → C0 there is an internal
category X and an internal functor j : X→ C such that X0 = X and j0 = j.

Moreover, this internal category X, or rather j : X→ C, has a universal property known
as a cartesian lifting. To make this precise, we recall the notion of a fibred category, or
fibration.

I Definition 6 (Fibration [11, 20]). If P :W → V is a functor, then j : X→ C is a cartesian
lifting of j : X → PC if for all k : W → C and all h : PW → X with Pk = j ◦ h there
is a unique h : W → X such that j ◦ h = k and Ph = h. Moreover, P : W → V is called
a (Grothendieck) fibration if all j : X → PC have a cartesian lifting for all C in W. If
P :W → V is a fibration, the subcategory of W that has as arrows the arrows f such that
P f = idC is called the fibre over C.

The next lemma is a strengthening of Proposition 5.

I Lemma 7. Let V be a category with finite limits. The forgetful functor Cat(V)→ V is a
fibration.

Instantiating Lemma 7 with C × D for C and j : C0 ⊗ D0 → C0 × D0 for j : X0 → C0,
gives us the desired result that internal categories can be pulled back along arbitrary arrows
between objects-of-objects:

I Corollary 8. The arrow j : C0 ⊗ D0 → C0 × D0 lifts to a morphism of internal categories
j : C⊗ D→ C× D. Moreover, j is the cartesian lifting of j.

To show that this construction is functorial we need to use that ⊗ : V × V → V is
functorial and that j : C0⊗D0 → C0×D0 is natural in C and D. In order to lift such natural
transformations, which are arrows in the functor category VCat(V)×Cat(V), we use

I Lemma 9. If P : E → B is a fibration and A is a category, then PA : EA → BA is a
fibration.

S. Balco and A. Kurz 18:9

Instantiating the lemma with P = (−)0 : Cat(V) → V and A = Cat(V) × Cat(V), we
obtain as a corollary that lifting the tensor ⊗ : V ×V → V to ⊗ : Cat(V)×Cat(V)→ Cat(V)
is functorial:

I Theorem 10. Let (V, 1,⊗) be a (symmetric) monoidal category with finite limits in which
the monoidal unit is the terminal object. Let (−) : Cat(V) → V be the forgetful functor
from categories internal in V. Then the canonical arrow j : C0 ⊗ D0 → C0 × D0 lifts to a
natural transformation j : C⊗ D→ C× D. Moreover, (Cat(V), I,⊗) inherits from (V, 1,⊗)
the structure of a (symmetric) monoidal category with finite limits in which the monoidal
unit is the terminal object.

In this paper we only need internal monoidal categories that are strict. In the same way
as a strict monoidal category is a monoid in (Cat,1,×), an internal strict monoidal category
is a monoid in (Cat(V), I,⊗):

I Definition 11 (Internal monoidal category). Let (V, 1,⊗) be a symmetric monoidal category
with finite limits in which the monoidal unit is the terminal object and let (Cat(V), I,⊗)
be the induced symmetric monoidal category of internal categories in V. A strict internal
monoidal category C is a monoid (C,∅,�) in (Cat(V), I,⊗).

More explicitly, a strict internal monoidal category C has operations

∅ : I→ C � : C⊗ C→ C

satisfying the laws of a monoid. For example, in the category nF of finite sets of names, ∅
is the empty set and] = � is, on objects, union of disjoint sets and, on arrows, union of
functions with both disjoint domains and disjoint codomains. It follows from Remark 34
that an internal monoidal category satisfies the interchange law

(C⊗ C)2 comp×comp //

�2

��

(C⊗ C)1

�1

��
C2 comp // C1

which can also be written as

(f � f ′) ; (g � g′) = (f ; g)� (f ′; g′)

The move from × to ⊗ means that it is now possible that the right-hand side of the equation
is defined while the left-hand side is not. But, as we will see, in nominal sets, the right-hand
is always α-equivalent to one for which a left-hand side exists.

4 Examples

Before we give a formal definition of nominal PROPs and nominal monoidal theories (NMTs)
in the next section, we present as examples those NMTs that correspond to the SMTs of
Fig 3. The significant differences between Fig 3 and 4 are that wires now carry labels and
that there is a new generator ai ib which allows us to change the label of a wire.
Moreover, in the nominal setting rules for wire crossings are not needed.

CALCO 2019

18:10 Nominal String Diagrams

a x c a c= a=a a

a

x

b

c

d

x

y

w

b

a

d

c

v
=

x

a

y

b ba=

x a a=

a

b

x

d

c

a

b
d

c

x
==

a

c

b

b

c

a

a x

c

b

a

c

b

a

x

b

c

a

c

b
==

a

b

x

a b=

a

x

b

a

b
==x

xa=a

c

a

b
=

b

a

c

b

c

x

a

d

=

b

c
a

d

x

b

a

x
=ba

a

x

b

a

b
=

b

a

c
=

bx

a

c

b

x

c

a=

b

a

c

bijections nB , injections nI , surjections nS , functions nF , partial functions nP and

relations nR

Figure 4 Nominal monoidal theories.

I Theorem 12. The calculi of Fig 4 are sound and complete, that is, the categories presented
by these calculi are isomorphic the categories of finite sets of names with the respective maps.

The proof follows the same general lines as the well-known proofs for SMTs (see eg
Lafont [14]) and proceed by showing that each diagram f : A→ B can be rewritten to one
in normal form, with the normal form being a direct syntactic representation of the semantic
function/relation represented by f . The proofs for NMTs seem easier than the corresponding
proofs for SMTs due to the absence of wire crossings. For example, in the case of bijections, it
is immediate that, using the grey rules of Fig.4, every nominal diagram rewrites to a normal
form which is just a parallel composition of diagrams of the form ai ib .

5 Nominal monoidal theories and nominal PROPs

In this section, we introduce nominal PROPs as internal monoidal categories in nominal sets.
We first spell out the details of what that means in elementary terms and then discuss the
notion of diagrammatic alpha-equivalence.

5.1 Nominal monoidal theories

A nominal monoidal theory (Σ, E) is given by a nominal set Σ of generators and a nominal
set E of equations. The set of nominal generators is itself generated by a set Σo of “ordinary”
generators γ : n → m, each γ giving rise to a set of nominal generators [a〉γ〈b] : A → B

where a, b are unique lists of size n,m and whose underlying sets are A,B respecitvely. The

S. Balco and A. Kurz 18:11

nominal generators Σ are closed under permutations

π · [a〉γ〈b] : π ·A→ π ·B = [π(a)〉γ〈π(b)]. (π-def)

The set of terms is given by closing under the operations of Fig 5, which should be compared
with Fig 1.

γ : m→ n ∈ Σo
[a〉γ〈b] : A→ B ida : {a} → {a} δab : {a} → {b}

t : A→ B t′ : A′ → B′

t] t′ : A]A′ → B]B′
t : A→ B s : B → C

t ; s : A→ C

t : A→ B

(a b) t : (a b) ·A→ (a b) ·B

Figure 5 NMT Terms.

Every NMT freely generates a monoidal category internal in nominal sets by quotienting the
generated terms by:

the equations that state that id and ; obey the laws of a category
the equations stating that id∅ and] are a monoid
the equations of an internal monoidal category of Fig 6 3

the equations of permutation actions of Fig 7
the equations on the interaction of generators with bijections δ of Fig 8
the equations E

t] s = s] t (NMT-comm)
(s ; t)] (u ; v) = (s] u) ; (t] v) (NMT-ch)

Figure 6 NMT Equations of].

(a b)idx = id(a b)·x (a b)δxy = δ(a b)·x (a b)·y (a b)γ = (a b) · γ

(a b)(x] y) = (a b)x] (a b)y (a b)(x ; y) = (a b)x ; (a b)y

Figure 7 NMT Equations of the permutation actions.

For terms to form a nominal set, we need equations between permutations (not listed
here) to hold, as well as the equations of Fig 7 that specify how permutations act on terms.
All the equations presented in the figures above are routine, with the possible exception of
those of Fig 8, specifying the interaction of renamings δ with the generators [a〉γ〈b] ∈ Σ,
which we also depict in diagrammatic form:

3 The main difference with the equations in Fig 2 is that the interchange law for] is required to hold only
if both sides are defined and that the two laws involving symmetries are replaced by the commutativity
of].

CALCO 2019

18:12 Nominal String Diagrams

δab ; δbc = δac

[a〉γ〈b1, . . . , bi, . . . , bn] : A→ B] {bi}
[a〉γ〈b1, . . . , bi, . . . , bn] ; (idB] δbix) = [a〉γ〈b1, . . . , x, . . . , bn] (NMT-right)

[a1, . . . , ai, . . . , am〉γ〈b] : {ai}]A→ B

(δxai
] idA) ; [a1, . . . , ai, . . . , am〉γ〈b] = [a1, . . . , x, . . . , am〉γ〈b] (NMT-left)

Figure 8 NMT Equations of renamings.

bi x = xγ γ x γ =ai x γ

Instances of these rules can be seen in Fig 4, where they are distinguished by a striped
background.

5.2 Diagrammatic alpha-equivalence
The equations of Fig 7 and Fig 8 introduce a notion of diagrammatic alpha-equivalence, which
allows us to rename “internal” names and to contract renamings.

I Definition 13. Two terms of a nominal monoidal theory are alpha-equivalent if their
equality follows from the equations in Fig 7 and Fig 8.

Every permutation π of names gives rise to bijective functions πA : A→ π[A] = {π(a) |
a ∈ A} = π · A. Any such πA, as well as the inverse π−1

A , are parallel compositions of δab
for suitable a, b ∈ N . In fact, we have πA =

⊎
a∈A δaπ(a). We may therefore use the πA as

abbreviations in terms.

I Proposition 14. Let t : A→ B be a term of a nominal monoidal theory. The equations in
Fig 7 and Fig 8 entail that π · t = (πA)−1 ; t ;πB .

A
t //

πA

��

B

πB

��
π[A]

π·t
// π[B]

The next two corollaries show that internal names can be renamed. We call this diagram-
matic α-equivalence.

I Corollary 15. Let t : A] {c} → B] {c} be a term of a nominal monoidal theory and d be
fresh for t. Then t = (δcd] idA) ; (c d) · t ; (δdc] idB).

I Corollary 16. Let t : A → B be a term of a nominal monoidal theory. Modulo the
equations of Fig 7 and Fig 8, the support of t is A ∪B.

The last corollary shows that internal names are bound by sequential composition. Indeed,
in a composition A t→ C

s→ B, the names in C \ (A∪B) do not appear in the support of t ; s.

S. Balco and A. Kurz 18:13

5.3 Nominal PROPs

From the point of view of Section 3, a nominal PROP is an internal strict monoidal category
in (Nom, 1, ∗) that has finite sets of names as objects and at least all bijections as arrows. A
functor between nominal PROPs is an internal functor that preserves objects and bijections.
We spell this out in detail.

I Remark 17. A nominal PROP C is a small category, with a set C0 of “objects” and a
set C1 of “arrows”, defined as follows. We write ; for the sequential composition (in the
diagrammatic order) and] for the monoidal composition.

C0 is the set of finite subsets of a countably infinite set N . The permutation action is
given by π ·A = π[A] = {π(a) | a ∈ A} for all finite permutations π : N → N .
C1 contains all bijections (“renamings”) πA : A → π · A, πA(a) = π(a), for all finite
permutations π : N → N and is closed under the operation mapping an arrow f : A→ B

to π · f : π ·A→ π ·B defined as π · f = (πA)−1;f ;πB .
A] B is the union of A and B and defined whenever A and B are disjoint. This
makes (C0, ∅,]) a commutative partial monoid. On arrows, we require (C1, ∅,]) to be
a commutative partial monoid, with f] g defined whenever domf ∩ domg = ∅ and
codf ∩ codg = ∅.
The interchange law (f] f ′) ; (g] g′) = (f ; g)] (f ′ ; g′) holds whenever the left-hand side
is defined.

From this definition on can deduce the following.

I Remark 18.
A nominal PROP has a nominal set of objects and a nominal set of arrows.
The support of an object A is A and the support of an arrow f : A → B is A ∪ B.
In particular, supp(f ;g) = dom(f) ∪ cod(g). In other words, nominal PROPs have
diagrammatic alpha equivalence.
There is a category nPROP that consists of nominal PROPs together with functors that
are the identity on objects and bijections and are strict monoidal and equivariant.
Every NMT presents a nPROP. Conversely, every nPROP is presented by at least one
NMT given by all terms as generators and all equations.

6 Equivalence of nominal and ordinary string diagrams

We show that the categories nPROP and PROP are equivalent. To define translations between
ordinary and nominal monoidal theories we introduce some auxiliary notation. We denote
lists that contain each letter at most once by bold letters. If a = [a1, . . . an] is a list, then
a = {a1, . . . an}. Given lists a and a′ with a = a′ we abbreviate bijections in PROP (also
called symmetries) mapping i 7→ ai = a′j 7→ j as 〈a|a′〉. Given lists a and b of the same
length we write [a|b] =

⊎
δaibi

for the bijection ai 7→ bi in an nPROP.

I Proposition 19. For any PROP S, there is an nPROP

NOM (S)

that has for all arrows f : n→ m of S, and for all lists a = [a1, . . . an] and b = [b1, . . . bm]
arrows [a〉f〈b] ∈ NOM (S). These arrows are subject to equations

CALCO 2019

18:14 Nominal String Diagrams

[a〉f ; g〈c] = [a〉f〈b] ; [b〉g〈c] (NOM-1)
[a ++ c〉f ⊕ g〈b ++ d] = [a〉f〈b]] [c〉g〈d] (NOM-2)

[a〉id〈b] = [a|b] (NOM-3)
[a〉 〈b|b′〉 ; f 〈c] = [a|b] ; [b′〉f〈c] (NOM-4)
[a〉 f ; 〈b|b′〉 〈c] = [a〉f〈b] ; [b′|c] (NOM-5)

Proof. To show that NOM (S) is well-defined, we need to check that the equations of S are
respected. We only have space here for the most interesting case which is the naturality of
symmetries given by the last equation in Fig 2. We write am for a list of a’s of length m.

[am ++ az〉 (t⊕ idz) ;σn,z 〈bz ++ bn]
= ([am〉 t 〈xn]] [az〉 idz 〈xz]) ; [xn ++ xz〉σn,z 〈bz ++ bn] (NOM-1,2)
= ([az〉 idz 〈xz]] [am〉 t 〈xn]) ; [xn ++ xz〉σn,z 〈bz ++ bn] (NMT-comm)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz〉σn,z 〈bz ++ bn] (NOM-2)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz〉 〈xn ++ xz|xz ++ xn〉 〈bz ++ bn] (σ-def)
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xn ++ xz|xn ++ xz] ; [xz ++ xn|bz ++ bn]
= [az ++ am〉 idz ⊕ t 〈xz ++ xn] ; [xz ++ xn|bz ++ bn] (δaa = ida)
= [az ++ am〉 idz ⊕ t 〈bz ++ bn] (NOM-5)
= [am ++ az|am ++ az] ; [az ++ am〉 idz ⊕ t 〈bz ++ bn] (δaa = ida)
= [am ++ az〉 〈am ++ az|az ++ am〉 ; (idz ⊕ t) 〈bz ++ bn] (NOM-4)
= [am ++ az〉σm,z ; (idz ⊕ t) 〈bz ++ bn] (σ-def)

Note how commutativity of] is used to show that naturality of symmetries is respected. J

I Proposition 20. For any nPROP T there is a PROP

ORD(T)

that has for all arrows f : A→ B of T , and for all lists a = [a1, . . . an] and b = [b1, . . . bm]
arrows 〈a]f [b〉. These arrows are subject to equations

〈a] f ; g [c〉 = 〈a] f [b〉 ; 〈b] g [c〉 (ORD-1)
〈af ++ ag] f] g [bf ++ bg〉 = 〈af] f [bf 〉 ⊕ 〈ag] g [bg〉 (ORD-2)

〈a] id [a〉 = id (ORD-3)
〈a] [a′|b] ; f [c〉 = 〈a|a′〉 ; 〈b] f [c〉 (ORD-4)
〈a] f ; [b|c] [c′〉 = 〈a] f [b〉 ; 〈c|c′〉 (ORD-5)

Proof. To show that ORD is well-defined we need to show that the equations of an NMT
are respected. The most interesting case here is the commutativity of] since the ⊕ of SMTs
is not commutative.

S. Balco and A. Kurz 18:15

〈at ++ as] t] s [bt ++ bs〉
= 〈at] t [bt〉 ⊕ 〈as] s [bs〉 (ORD-2)
= (〈at] t [bt〉 ; id|bt|)⊕ (id|as| ; 〈as] s [bs〉) (id ; a = a = a ; id)
= (〈at] t [bt〉 ⊕ id|as|) ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-ch)
= (〈at] t [bt〉 ⊕ id|as|) ; σ|bt|,|as| ; σ|as|,|bt| ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-sym)
= σ|at|,|as| ; (id|as| ⊕ 〈at] t [bt〉) ; σ|as|,|bt| ; (id|bt| ⊕ 〈as] s [bs〉) (SMT-nat)
= σ|at|,|as| ; (id|as| ⊕ 〈at] t [bt〉) ; (〈as] s [bs〉 ⊕ id|bt|) ; σ|bs|,|bt| (SMT-nat)
= σ|at|,|as| ; ((id|as| ; 〈as] s [bs〉)⊕ (〈at] t [bt〉 ; id|bt|)) ; σ|bs|,|bt| (SMT-ch)
= σ|at|,|as| ; 〈as ++ at] s] t [bs ++ bt〉 ; σ|bs|,|bt| (id ; a = a,ORD-2)
= 〈at ++ as|as ++ at〉 ; 〈as ++ at] s] t [bs ++ bt〉 ; 〈bs ++ bt|bt ++ bs〉 (σ-def)
= 〈at ++ as] [as ++ at|as ++ at] ; s] t ; [bs ++ bt|bs ++ bt] [bt ++ bs〉 (ORD-4,5)
= 〈at ++ as] s] t [bt ++ bs〉 (δaa = ida)

Note how naturality of symmetries is used to show that the definition of ORD respects
commutativity of]. J

Having described the maps NOM and ORD and shown they are homomorphisms, we
now describe functors NOM (F) and ORD(F).

I Proposition 21. NOM : PROP → nPROP is a functor mapping an arrow of PROPs
F : S → S to an arrow of nPROPs NOM (F) : NOM (S)→ NOM (S) defined by

NOM (F)([a〉 g 〈b]) = [a〉Fg 〈b]. (NOM-F)

I Proposition 22. ORD is a functor mapping an arrow of nPROPs F : T → T to an arrow
of PROPs ORD(F) : ORD(T)→ ORD(T) defined by

ORD(F)(〈a] f [b〉) = 〈a]Ff [b〉 (ORD-F)

The next proposition has a variation in which we take PROPs in the weaker sense of
Lack [13]. Then the unit S → ORD(NOM (S)) is not an iso. To see where we need to be
careful, the next example illustrates how the commutativity of] in an nPROP translates
into the naturality of the symmetries in a PROP.

I Example 23 (Commutativity of] translates to naturality of symmetries). If S is a PROP
in the sense of Lack [13] generated by a “lollipop” λ : 0→ 1 then we can show that λ⊕ id
and (id ⊕ λ) ;σ1,1 in S are sent to the same arrow in ORD(NOM (S)), namely we can show
〈a][a〉λ⊕ id〈b, c][b, c〉 = 〈a][a〉(id ⊕ λ) ;σ1,1〈b, c][b, c〉:

〈a][a〉λ⊕ id〈b, c][b, c〉 = 〈a][〉λ〈b]] [a〉id〈c][b, c〉 (NOM-2)
= 〈a][a〉id〈c]] [〉λ〈b][b, c〉 (NMT-comm)
= 〈a][a〉id ⊕ λ〈c, b][b, c〉 (NOM-2)
= 〈a][a〉id ⊕ λ〈c, b] ; [b, c|b, c][b, c〉 (a = a ; id, δaa = ida)
= 〈a][a〉(id ⊕ λ) ; 〈c, b|b, c〉〈b, c][b, c〉 (NOM-5)
= 〈a][a〉(id ⊕ λ) ;σ1,1〈b, c][b, c〉 (σ-def)

which is an instance of (SMT-nat) and does not hold in S.

CALCO 2019

18:16 Nominal String Diagrams

As we can see from the example, the naturality of symmetries in a PROP is necessary in
order to obtain that S → ORD(NOM (S)) is an iso in the next proposition.

I Proposition 24. For each PROP S, there is an isomorphism of PROPs, natural in S,

∆ : S → ORD(NOM (S))

mapping f ∈ S to 〈a][a〉 f 〈b][b〉 for some choice of a, b.

I Proposition 25. For each nPROP T , there is an isomorphism of nPROPs, natural in T ,

NOM (ORD(T))→ T

mapping the [c〉〈a] f [b〉〈d] generated by an f : a→ b in T to [c|a] ; f ; [b|d] .

Since the last two propositions provide an isomorphic unit and counit of an adjunction,
we obtain

I Theorem 26. The categories PROP and nPROP are equivalent.

I Remark 27. If we generalise the notion of PROP from MacLane [15] to Lack [13], in other
words, if we drop equation (SMT-nat) of Fig 2 expressing the naturality of symmetries, we
still obtain an adjunction, in which NOM is left-adjoint to ORD. Nominal PROPs then are
a full reflective subcategory of ordinary PROPs. In other words, the (generalised) PROPs
that satisfy naturality of symmetries are exactly those which are nominal PROPs.

7 Conclusion

The equivalence of nominal and ordinary PROPs (Theorem 26) has a satisfactory graphical
interpretation. Indeed, comparing Figs 3 and 4 we see that both share, modulo different
labellings of wires mediated by the functors ORD and NOM , the same core of generators
and equations while the main difference lies in the equations expressing, on the one hand,
that ⊕ has natural symmetries and, on the other hand, that generators are a nominal set and
] is commutative. In fact, this can be taken as a justification of the importance of naturality,
which, informally speaking, compensates for the irrelevant detail induced by ordering names.

There are several directions for future research. First, the notion of an internal monoidal
category has been developed because it is easier to prove the basic results in general rather
than only in the special case of nominal sets. Nevertheless, it would be interesting to explore
whether there are other interesting instances of internal monoidal categories.

Second, internal monoidal categories are a principled way to build monoidal categories
with a partial tensor. For example, by working internally in the category of nominal sets with
the separated product we can capture in a natural way constraints such as the tensor f ⊕ g
for two partial maps f, g : N → V being defined only if the domains of f and g are disjoint.
This reminds us of the work initiated by O’Hearn and Pym on categorical and algebraic
models for separation logic and other resource logics, see eg [17, 9, 6]. It seems promising to
investigate how to build categorical models for resource logics based on internal monoidal
theories. In one direction, one could extend the work of Curien and Mimram [5] to partial
monoidal categories. Another question is whether there is a more general strictification result
characterising when a symmetric tensor can be replaced by a partial but commutative one.

Third, there has been substantial progress in exploiting Lack’s work on composing PROPs
[13] in order to develop novel string diagrammatic calculi for a wide range of applications,

S. Balco and A. Kurz 18:17

see eg [1, 2, 3, 22]. It will be interesting to explore how much of this technology can be
transferred from PROPs to nominal PROPs.

Fourth, various applications of nominal string diagrams could be of interest. The original
motivation for our work was to obtain a convenient calculus for simultaneous substitutions
that can be integrated with multi-type display calculi [7] and, in particular, with the multi-
type display calculus for first-order logic of Tzimoulis [21]. Another direction for applications
comes from the work of Ghica and Lopez [10] on a nominal syntax for string diagrams. In
particular, it would be of interest to add various binding operations to nominal PROPs.

References
1 John C. Baez, Brandon Coya, and Franciscus Rebro. Props in Network Theory. Theory

and Applications of Categories, 33, 2018. URL: http://www.tac.mta.ca/tac/volumes/33/
25/33-25abs.html.

2 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Rewrit-
ing Modulo Symmetric Monoidal Structure. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, pages 710–719, New York, NY, USA,
2016. ACM. doi:10.1145/2933575.2935316.

3 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The Calculus of Signal Flow Diagrams I.
Inf. Comput., 252(C):2–29, February 2017. doi:10.1016/j.ic.2016.03.002.

4 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

5 Pierre-Louis Curien and Samuel Mimram. Coherent Presentations of Monoidal Categories.
Logical Methods in Computer Science, 13(3):1–38, September 2017. doi:10.23638/LMCS-13(3:
31)2017.

6 Brijesh Dongol, Victor B. F. Gomes, and Georg Struth. A Program Construction and
Verification Tool for Separation Logic. In Mathematics of Program Construction - 12th
International Conference, MPC 2015, Königswinter, Germany, June 29 - July 1, 2015.
Proceedings, pages 137–158, 2015. doi:10.1007/978-3-319-19797-5_7.

7 Sabine Frittella, Giuseppe Greco, Alexander Kurz, Alessandra Palmigiano, and Vlasta Sikimić.
Multi-type display calculus for dynamic epistemic logic. Journal of Logic and Computation,
26(6):2017–2065, December 2014. doi:10.1093/logcom/exu068.

8 Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax with
Variable Binding. Formal Aspects of Computing, 13(3):341–363, July 2002. doi:10.1007/
s001650200016.

9 D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux. Mathematical.
Structures in Comp. Sci., 15(6):1033–1088, December 2005. doi:10.1017/S0960129505004858.

10 Dan R. Ghica and Aliaume Lopez. A structural and nominal syntax for diagrams. In Proceedings
14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen, The
Netherlands, 3-7 July 2017., pages 71–83, 2017. doi:10.4204/EPTCS.266.4.

11 Bart Jacobs. Categorical Logic and Type Theory. Studies in logic and the foundations of
mathematics. Elsevier Science, 1999.

12 André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.

13 Steve Lack. Composing PROPs. Theory and Applications of Categories, 13:147–163, 2004.
URL: http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html.

14 Yves Lafont. Towards an algebraic theory of Boolean circuits. Journal of Pure and Applied
Algebra, 184:257–310, 2003. doi:10.1016/S0022-4049(03)00069-0.

15 Saunders Mac Lane. Categories for the Working Mathematician. Springer New York, 1978.
doi:10.1007/978-1-4757-4721-8.

CALCO 2019

http://www.tac.mta.ca/tac/volumes/33/25/33-25abs.html
http://www.tac.mta.ca/tac/volumes/33/25/33-25abs.html
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://doi.org/10.23638/LMCS-13(3:31)2017
https://doi.org/10.23638/LMCS-13(3:31)2017
https://doi.org/10.1007/978-3-319-19797-5_7
https://doi.org/10.1093/logcom/exu068
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.1017/S0960129505004858
https://doi.org/10.4204/EPTCS.266.4
https://doi.org/10.1016/0001-8708(91)90003-P
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.1007/978-1-4757-4721-8

18:18 Nominal String Diagrams

16 Saunders MacLane. Categorical algebra. Bull. Amer. Math. Soc., 71(1):40–106, January 1965.
doi:10.1090/S0002-9904-1965-11234-4.

17 Peter W. O’Hearn and David J. Pym. The Logic of Bunched Implications. The Bulletin of
Symbolic Logic, 5(2):215–244, 1999. doi:10.2307/421090.

18 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2013. doi:10.1017/
CBO9781139084673.

19 P. Selinger. A Survey of Graphical Languages for Monoidal Categories, pages 289–355. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-12821-9_4.

20 Thomas Streicher. Fibred Categories à la Jean Bénabou, 1999. arXiv:arXiv:1801.02927.
21 Apostolos Tzimoulis. Algebraic and Proof-Theoretic Foundations of the Logics for So-

cial Behaviour. PhD thesis, Delft University of Technology, 2018. doi:10.4233/uuid:
e67e7724-b378-4ca3-ad4e-c40df245af5e.

22 Fabio Zanasi. Interacting Hopf Algebras- the Theory of Linear Systems. Theses, Ecole normale
supérieure de lyon - ENS LYON, October 2015. URL: https://tel.archives-ouvertes.fr/
tel-01218015.

A Some internal category theory

See eg Borceux, Handbook of Categorical Algebra, Volume 1, Chapter 8 and the nlab.

I Definition 28 (internal category). In a category with finite limits an internal category is a
diagram

A3

right //
compr //
compl //

left //
A2

π2 //
comp //
π1 //

A1
dom //

cod //
A0ioo (5)

such that

1. the “pairs of arrows”-object A2

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

is a pullback,

2. the “triple of arrows”-object A3 is a pullback

A3
right //

left
��

A2

π1

��
A2

π2 // A1

where, intuitively, left “projects out the left two arrows” and right “projects out the right
two arrows”

3. dom ◦ comp = dom ◦ π1 and cod ◦ comp = cod ◦ π2,
4. dom ◦ i = idA0 = cod ◦ i,
5. comp ◦ 〈i ◦ dom, idA1〉 = idA1 = comp ◦ 〈idA1 , i ◦ cod〉
6. comp ◦ compl = comp ◦ compr
where we use the auxiliary notation
〈i ◦ dom, idA1〉 : A1 → A2 and 〈idA1 , i ◦ cod〉 : A1 → A2 are the arrows into the pullback
A2 pairing i ◦ dom, idA1 : A1 → A1 and idA1 , i ◦ cod : A1 → A1, respectively,

https://doi.org/10.1090/S0002-9904-1965-11234-4
https://doi.org/10.2307/421090
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1007/978-3-642-12821-9_4
http://arxiv.org/abs/arXiv:1801.02927
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://doi.org/10.4233/uuid:e67e7724-b378-4ca3-ad4e-c40df245af5e
https://tel.archives-ouvertes.fr/tel-01218015
https://tel.archives-ouvertes.fr/tel-01218015
https://ncatlab.org/nlab/show/internal+category

S. Balco and A. Kurz 18:19

compl is the arrow composing the “left two arrows”

A3
π2 ◦ right

''
compl

%%

comp ◦ left

!!

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

compr is the arrow composing the “right two arrows”

A3
comp ◦ right

''

compr

%%

π1 ◦ left

!!

A2
π2 //

π1

��

A1

dom
��

A1
cod // A0

I Remark 29. 1. and 3. define A2 as the “object of composable pairs of arrows” while
4. and 5. express that the “object of arrows” A1 has identities. 2. and 5. formalise asso-
ciativity of composition. Since A2 and A3 are pullbacks, the structure is determined by
(A0, A1, dom, cod, i, comp) alone. We includedA2, A3 as well as compr , compl, right, left, π2, π1
to improve readability of the equations.

I Definition 30. A morphism f : A→ B between internal categories, an internal functor, is
a pair (f0, f1) of arrows such that the six squares (one for each of π2, comp, π1, dom, cod,
i)

A2
π2 //

comp //
π1 //

f2

��

A1
dom //

cod //

f1

��

A0ioo

f0

��
B2

π2 //
comp //
π1 //

B1
dom //

cod //
B0ioo

(6)

commute.

I Remark 31. Because B2 is a pullback f2 is uniquely determined by f1. In more detail,
if Γ→ B2 is any arrow then, because B2 is a pullback, it can be written as a pair

〈l, r〉 : Γ→ B2 (7)

of arrows l, r : Γ→ B1 and f2 is determined by f1 via

f2 ◦ 〈l, r〉 = 〈f1 ◦ l, f1 ◦ r〉 (8)

Even if f2 is not needed as part of the structure in the above definition, including f2
makes it easier to state that f1 preserves composition.
Similarly, B3 is a pullback, and there is a unique arrow f3 such that (f0, f1, f2, f3) together
make further 4 squares commute, one for each of right, compr , compl, left, see (5). We
may include f3 in the structure whenever convenient.

CALCO 2019

18:20 Nominal String Diagrams

I Definition 32. A natural transformation α : f → g between internal functors f, g : A→ B,
an internal natural transformation, is an arrow α : A0 → B1 such that, recalling (7),

dom ◦ α = f0 cod ◦ α = g0 comp ◦ 〈f1, α ◦ cod〉 = comp ◦ 〈α ◦ dom, g1〉

I Remark 33. Internal categories with functors and natural transformations form a 2-category.
We denote by Cat(V) the category or 2-category of categories internal in V. The forgetful
functor Cat(V)→ C mapping an internal category A to its object of objects A0 has both left
and right adjoints and, therefore, preserves limits and colimits. Moreover, a limit of internal
categories is computed component-wise as (limD)j = lim(Dj) for j = 0, 1, 2.
I Remark 34. A strict monoidal category can be thought of both as a monoid in the category
of categories and as a category internal in the category of monoids. To understand this in
more detail, note that both cases give rise to the diagram

A2 ×A2 comp×comp //

m2

��

A1 ×A1

dom×dom //

cod×cod
//

m1

��

A0 ×A0

m0

��
A2 comp // A1

dom //

cod
// A0

where
in the case of a monoid A in the category of internal categories, m = (m0,m1,m2) is an
internal functor A×A→ A and, using that products of internal categories are computed
component-wise, we have comp◦m2 = m1 ◦(comp×comp), which gives us the interchange
law

(f ; g) · (f ′; g′) = (f · f ′) ; (g · g′)

by using (8) with m for f and writing ; for comp and · for m1;
in the case of a category internal in monoids we have monoids A0, A1, A2 and monoid
homomorphisms i, dom, cod, comp which, if spelled out, leads to the same commuting
diagrams as the previous item.

A Diagrammatic Approach to Quantum Dynamics
Stefano Gogioso
University of Oxford, UK
stefano.gogioso@cs.ox.ac.uk

Abstract
We present a diagrammatic approach to quantum dynamics based on the categorical algebraic
structure of strongly complementary observables. We provide physical semantics to our approach
in terms of quantum clocks and quantisation of time. We show that quantum dynamical systems
arise naturally as the algebras of a certain dagger Frobenius monad, with the morphisms and tensor
product of the category of algebras playing the role, respectively, of equivariant transformations
and synchronised parallel composition of dynamical systems. We show that the Weyl Canonical
Commutation Relations between time and energy are an incarnation of the bialgebra law and we
derive Schrödinger’s equation from a process-theoretic perspective. Finally, we use diagrammatic
symmetry-observable duality to prove Stone’s proposition and von Neumann’s Mean Ergodic
proposition, recasting the results as two faces of the very same coin.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Categorical semantics

Keywords and phrases Quantum dynamics, String diagrams, Categorical algebra

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.19

Acknowledgements This publication was made possible through the support of a grant from the
John Templeton Foundation. The opinions expressed in this publication are those of the authors
and do not necessarily reflect the views of the John Templeton Foundation.

1 Introduction

It is hard to overstate the importance of quantum dynamics: in a very deep sense, it truly
makes the world go round. In computer science, more specifically, it is the driving force
behind the processes which underpin the entirety of quantum computation. Despite this
crucial role, quantum dynamics is rarely considered directly in quantum information and in
the foundations of quantum computing, being instead relegated to a lower level of abstraction.
In this work we aim to change that, bringing dynamics on a par with information and circuits
by developing a fully diagrammatic approach based on categorical algebra.

Our work fits within the framework of categorical quantum mechanics [1,2,7] and uses the
graphical calculus of string diagrams for symmetric monoidal categories [20,26]. We consider
a particularly well-behaved kind of Hopf algebras/bialgebras – closely related to compact
quantum groups [30,31] and sometimes known as interacting quantum observables [5, 10] –
arising as strongly complementary pairs of symmetric †-Frobenius algebras [9, 27]. We show
that the algebras of a certain dagger Frobenius monad [18] correspond to quantum dynamical
systems, that the morphisms between algebras correspond to equivariant transformations
and that the natural tensor product in the category of algebras corresponds to synchronised
parallel composition of dynamical systems. We further show that the dagger monoidal
structure corresponds to symmetry-observable duality between time and energy, so that
the Hamiltonian observables for quantum dynamical systems arise as the coalgebras of the
corresponding dagger Frobenius comonad.

© Stefano Gogioso;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 19; pp. 19:1–19:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7879-8145
mailto:stefano.gogioso@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.CALCO.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 A Diagrammatic Approach to Quantum Dynamics

To showcase the expressive power of our formalism, we derive some cornerstone results of
quantum dynamics in a diagrammatic fashion: the Weyl Canonical Commutation Relations,
Schrödinger’s Equation, Stone’s proposition and von Neumann’s Mean Ergodic proposition.
We use non-standard analysis [14,15] to deal with infinite-dimensional quantum systems.

2 Interacting Quantum Observables

2.1 Quantum Observables
If G is an object in a dagger symmetric monoidal category, a †-Frobenius algebra on G is a
pair of a monoid (G, ,) and a comonoid (G, ,) := (G, †, †) related by Frobenius law:

= =

(1)

A †-Frobenius algebra is quasi-special if the comultiplication is an isometry up to some
invertible scalar ξ and it is special if it is an actual isometry (i.e. ξ = 1):

= ξ†ξ

(2)

The positive scalar N := ξ†ξ is known as the normalisation factor for the algebra. Every
quasi-special †-Frobenius algebra is proportional to a special one, which we shall see shortly
to have physical significance: we use quasi-special algebras merely for reasons of notational
convenience. The cup and cap induced by a †-Frobenius algebra satisfy the snake equation:

= =

(3)

A †-Frobenius algebra is symmetric if the cup and cap it induces are symmetric:

= =

(4)

Special symmetric †-Frobenius algebras are of fundamental importance to quantum in-
formation, because they correspond exactly to quantum observables (more precisely, to
finite-dimensional C*-algebras [27]). Special commutative †-Frobenius algebras in particular
correspond to non-degenerate quantum observables, i.e. orthonormal bases. The basis vectors
are exactly the classical states |g〉 for the algebra:

g

= g g

g

= 1 g =
g†

(5)

The leftmost two equations are the copying and deleting of the classical elements, while
the rightmost equation says that classical elements are self-conjugate with respect to the

S. Gogioso 19:3

observable. More generally, quasi-special commutative †-Frobenius algebras correspond to
orthogonal bases in which all vectors have the same square norm 〈g|g〉 = N . Because of
this correspondence, we will henceforth liberally refer to quasi-special symmetric †-Frobenius
algebras as quantum observables, as customary within the categorical quantum mechanics
literature.1 We write K () for the set of classical states.

2.2 Interacting Quantum Observables
I Definition 1. Let (G, ,) be a pair of quasi-special symmetric †-Frobenius algebras on
the same system G. We say that (G, ,) is a strongly complementary pair – or a pair of
interacting quantum observables – if the following equations – the bialgebra law, the two
coherence laws and the bone law – are satisfied:

=
= = = 1

(6)

As part of the definition, we also require that the unitary map : G → G defined below – the
antipode – is self-adjoint (or equivalently self-inverse):

:= =

(7)

Interacting quantum observables automatically satisfy Hopf’s law and are thus examples of
Hopf algebras:

= =

(8)

Because we are working in a dagger symmetric monoidal category, all equations above imply
their dagger versions, so that (G, ,) is a pair of interacting quantum observables if and
only if (G, ,) is. To get some intuition as to the meaning of the defining equations, we look
at the characterisation [16,21] of the pairs with special and commutative in the category
fHilb of finite-dimensional Hilbert spaces and complex linear maps.

I Proposition 2. The pairs (G, ,) of interacting quantum observables in fHilb where
is special and commutative are exactly the group algebras C[G] for finite groups G, with
corresponding to some orthonormal basis (|g〉)g∈G labelled by the group elements, := |1G〉
and the linear extension of the multiplication of G:

g h

= g · h

(9)

1 Though the term is usually referred to special algebras, our generalisation to quasi-special maintains an
exact correspondence with observables in fHilb and hence does not change the semantics.

CALCO 2019

19:4 A Diagrammatic Approach to Quantum Dynamics

Then antipode always corresponds to the group inverse:

g

= g−1

(10)

The classical states |χ〉 for G are exactly those in the following form, where χ : G→ C is a
multiplicative character for G:

|χ〉 :=
∑
g∈G

χ(g) |g〉 (11)

If G is abelian, then the pair (G, ,) corresponds to the Pontryagin dual group G∧.

By thinking of the comonoid (,) as copying/deleting group elements and of the monoid
(,) as a “coherent”/linear version of the group multiplication and unit, the defining
equations for interacting quantum observables acquire a rather obvious meaning:
1. the bialgebra law and left coherence law say that group multiplication sends elements

which can be copied/deleted to elements which can be copied/deleted;
2. the right coherence law and the bone law say that the group unit is itself and element

which can be copied/deleted;
3. the requirement that the antipode is self-inverse is necessary to prove Hopf’s law, which

in turn implies that elements have inverses (given by the antipode itself);
4. the requirement that the antipode is self-inverse also implies that group multiplication

sends self-conjugate elements for to self-conjugate elements for and the the group
unit is itself self-conjugate for [10,16].

This means that we can think of interacting quantum observables as “coherent groups”, i.e.
groups embedded into an environment in which †-Frobenius algebras are available (e.g. in the
compact-closed complex linear context). This is consistent with the fact that such coherent
groups are particularly well-behaved examples of compact quantum groups [13,30,31] – at
least within the context of dagger compact categories of finite-dimensional vectors spaces
over a field equipped with a self-inverse automorphism (acting as conjugation).

2.3 Dagger Frobenius Monads
Given any monoid (G, ,) in a monoidal category, we can always define a monad by sending
H 7→ H⊗ G, f 7→ f ⊗ idG and considering the following multiplication and unit:

µH :=

H G G

H G

ηH :=

H

H G

(12)

The monad laws reduce to associativity and bilateral unitality for the monoid itself:

= = =

(13)

If the category is dagger monoidal and the monoid is part of a †-Frobenius algebra, then the
monad is in fact a dagger Frobenius monad [18], i.e. it satisfies the following law relating it

S. Gogioso 19:5

to the comonad induced by the comonoid (G, ,):

=

(14)

Because no ambiguity can arise, we write _⊗ to denote both the monad given by (G, ,)
and the comonad given by (G, ,). The algebras for the dagger Frobenius monad _⊗
are the morphisms α : H⊗ G → H such that:

α

=

α

α α

=

α†

=
α

(15)

In the original [18], these are referred to more specifically as FEM-algebras, for Frobenius
Eilenberg-Moore algebras. Just as the “Eilenberg-Moore/EM” qualifier is customarily dropped
for algebras of a monad, we shall here also drop the “Frobenius/FEM” qualifier for the
algebras of dagger Frobenius monads, because FEM-algebras are the natural notion in the
dagger Frobenius context.

I Proposition 3. When (G, ,) is a pair of interacting quantum observables, the right-
most condition above in the definition of algebras for the monad _⊗ can be equivalently
reformulated as follows:

α†

=
α

(16)

3 Quantum Clocks

In a very practical sense, time is ticked by clocks. If we know that a dynamical system and a
clock are synchronised, then we can know the exact state of the system without ever looking
at it, by just knowing what time the clock is displaying (assuming we know the initial state
for the system). The kinds of dynamics admissible for systems synchronised with a given
clock depend on the structure of the clock: clocks with more time states can be synchronised
with more systems. If one interprets dynamics as time-translation symmetry – the approach
that we take in this work – this means that the dynamical system has to be a representation
for whatever time-translation group is associated with the clock.

The interpretation of dynamics as time-translation symmetry may appear causally prob-
lematic: after all, what does it mean to have entanglement across time? A full discussion of
this issue would take more words than can fit in the margins of these pages, but we hope the
following will at least convince the reader that the point of view we’ve adopted might not be
as preposterous as it may at first seem.

When thinking about time, we can take two perspectives: an internal perspective –
reflecting time as dynamically experienced by those immersed in its flow – and an external
perspective – reflecting time as statically experienced by those staring at it from the outside.

CALCO 2019

19:6 A Diagrammatic Approach to Quantum Dynamics

Mathematically, the internal perspective roughly corresponds to the idea of time evolution as
the solution of differential equations: an instantaneous state is given and propagated forward
instant by instant according to the laws of dynamics. The external perspective, on the other
hand, corresponds to the idea of spacetime: everything which happens in the entire history
of a mathematical objects is already crystallised in front of the eyes of those studying it, its
evolution merely a matter of choosing and relating equal-time slices.

In the case of quantum dynamics, the external perspective amounts to thinking of
dynamical systems as static, their entire history of evolution (|ψt〉)t encoded in an entangled
state

∑
t |ψt〉⊗|t〉, where we selected a suitably large ancillary quantum system G – a quantum

clock, as we shall call it – equipped with a choice of time observable labelling the time
states |t〉. This idea was already clear in the formulation of Feynman’s clock [11,12]: therein,
the computation of the dynamics of a quantum system is reduced to the computation of the
ground state of a certain Hamiltonian, resulting precisely in the system-clock entangled state
detailed above. Causality and dynamics arise from the choice of a specific group structure
on the time states – the time-translation group – corresponding to a strongly complementary
quantum observable : the time observable chooses the time slices for the dynamical system,
the group structure relates them causally and dynamically.

For an internal observer, living inside the quantum dynamical system, the classical evolu-
tion (|ψt〉)t is indistinguishable from the external application of time-translation symmetry
to slices of definite time value |t〉: to such an internal observer, time behaves as an external
classical parameter. To an external observer, on the other hand, the difference between the
two perspectives is truly one of expressive power: taking the internal perspective forces them
to work in the time observable for the quantum clock, while taking the external perspective
allows the to freely change their point of view, yielding additional insights and more direct
proofs of canonical results.

3.1 Quantum clocks from interacting quantum observables – Take I
Here, we restrict our attention to four inter-related kinds of dynamics: discrete periodic,
discrete, continuous periodic and continuous.
1. Systems with continuous dynamics correspond to the the usual choice of time-translation

group R (continuous time).
2. Systems with continuous periodic dynamics correspond to a choice of time-translation

group in the form R/TZ for some positive period T ∈ R. They are exactly the systems
with continuous dynamics where the dynamics are periodic.

3. Systems with discrete dynamics correspond to the choice of time-translation group Z.
Sampling systems with continuous dynamics at equally spaced discrete intervals of time
yields systems with discrete dynamics. These are the systems which are effectively
synchronised with ordinary clocks (as long as we assume access to infinite time counters
which never cycle).

4. Systems with discrete periodic dynamics correspond to a choice of time-translation group
in the form ZN for some positive period N ∈ N. Sampling systems with continuous
periodic dynamics (with period T ∈ R) at equally spaced discrete intervals of time (spaced
by some positive ∆t ∈ R dividing the period T) yields systems with discrete dynamics
(with N := T/∆t). These are the systems which are effectively synchronised with ordinary
clocks having finite time counters – from 12-hour wall clocks, with their 43200 time states,
to high-precision atomic clocks.

When G is one of the time-translation groups above, a dynamical system governed by G – i.e.
one which can be synchronised with clocks having G as the associated time-translation group
– is simply a representation (Ug)g∈G of G in some appropriate category modelling the physical

S. Gogioso 19:7

context of interest. In particular, a quantum dynamical system is just a unitary representation
(Ug)g∈G of G on some Hilbert space H, with appropriate continuity requirements impose
where necessary.

The identification of quantum dynamical systems with unitary representations is the
mainstream view in quantum dynamics, but it introduces an unpleasant asymmetry between
the physical systems – which are quantum – and time – which is instead a classical parameter
external to the quantum realm. This asymmetry did not escape the attention of the founders
of quantum mechanics, and the history of attempts to quantise time is long and rife with
controversy. We refer the reader interested in such history to some very good works dedicated
specifically to the topic [4, 19,23,24]: in this work, we will instead avoid such controversies
altogether, by taking an external “static” view of quantum dynamical systems.

For the purposes of dynamics, we have seen that a clock – a physical system – can be
abstracted to a time-translation group G – an algebraic structure that it can be endowed
with. If we take an ordinary clock – the states of which are the possible instants of the
time ticks – and we quantise it, we obtain a quantum clock – the states of which are now
wavefunctions over the space of states for the original clock. In this interpretation, quantum
clocks should be quantum systems equipped with the structure of a group algebra C[G] for
the time-translation group G.

In the case G = ZN of discrete periodic dynamics we already know what to do: a
quantum clock is finite-dimensional Hilbert space G – a quantum system, living in the dagger
compact category fHilb – endowed with a pair (G, ,) of interacting quantum observables
corresponding to C[ZN] – a pair of categorical algebraic structures. Unlike classical clocks
– where a single algebraic object was needed – quantum clocks need an interacting pair of
algebraic structures: one to pin down the time states (the observable) and another one to
endow them with the ZN group structure (the observable).

3.2 Infinite-dimensional quantum systems
This approach – modelling quantum clocks using interacting quantum observables – will
work well for finite-dimensional quantum dynamical systems with discrete periodic dynamics,
which are by themselves of significant interest: they were extensively studied by Weyl [28,29]
and can be used to formalise Feynman’s clock construction [11,12,22]. However, it cannot
immediately be generalised to the other kinds of dynamics which we are interested in: the
only pairs of interacting quantum observables in the dagger symmetric monoidal category
Hilb of Hilbert spaces and continuous linear maps are the ones corresponding to finite groups.
Technically, Hilb doesn’t even have quantum observables as we defined them: an orthonormal
basis (|ei〉)∞i=1 of an infinite-dimensional separable Hilbert space is still associated with pair
of a commutative comultiplication :=

∑∞
i=1(|ei〉 ⊗ |ei〉) 〈ei| and multiplication = †

satisfying the Frobenius law – as well as an alternative equation making classical states
self-conjugate – but we have to let go of the counit and unit in the passage from finite-
to infinite-dimensional Hilbert spaces [3]. Indeed, the unit for such an algebra would have to
take the form =

∑∞
i=1 |ei〉, a vector which would have infinite norm.

In order to gain access to interacting quantum observables corresponding to infinite group
algebras, we work in a symmetric monoidal category of non-standard Hilbert spaces and
?C-linear maps known as ?Hilb [14,15], where ?C is the field of non-standard complex numbers.
The objects of ?Hilb are non-standard Hilbert spaces which are hyperfinite-dimensional, i.e.
which have orthonormal bases in the form (|ei〉)ni=1 where n ∈ ?N is a non-standard natural
number (the dimension of the non-standard Hilbert space); in particular, ?Hilb contains
symmetric monoidal sub-categories equivalent to fHilb and Hilb (up to infinitesimals). Even

CALCO 2019

19:8 A Diagrammatic Approach to Quantum Dynamics

though n may be an infinite natural, from a non-standard perspective the objects of ?Hilb are
finite-dimensional spaces: this means that ?Hilb is dagger compact, has special symmetric
†-Frobenius algebras and contains the extra strongly complementary pairs which we need to
talk about quantum dynamics.

The easiest way to work with ?Hilb is by using the Transfer Principle: if a construction
indexed by n can be made on n-dimensional Hilbert spaces for all n ∈ N, then it can be
uniquely extended to n-dimensional non-standard Hilbert spaces for all n ∈ ?N. For an
extensive introduction to non-standard analysis and the Transfer Principle we refer the reader
to Refs. [17,25]. For example, if (|ei〉)ni=1 is an orthonormal basis for an n-dimensional Hilbert
space, we can always define the unit for the associated quantum observable as =

∑n
i=1 |ei〉:

by the Transfer Principle, this means that we can also do so for an orthonormal basis
(|ei〉)ni=1 of an object of ?Hilb where n is an infinite natural. The vector =

∑n
i=1 |ei〉 has a

well-defined infinite square norm
∑n
i=1 〈ei|ei〉 = n and can be normalised to 1√

n

∑n
i=1 |ei〉 as

one would ordinarily do in a finite-dimensional Hilbert space. This latter example shows
that, when n is infinite, ?Hilb features some genuinely new quantum states: 1√

n

∑n
i=1 |ei〉 is

finite, in the sense that it has finite norm, but not near-standard, in the sense that it is not
infinitesimally close to any vector in the corresponding standard Hilbert space. These extra
states are the key to constructing the interacting quantum observables we need.

The trick to constructing quantum clocks in ?Hilb is to think of all time-translation
groups as actually discrete and periodic, at least in the non-standard sense. Consider the
abelian group ?Zω formed by the non-standard integers modulo some positive non-standard
natural ω ∈ ?N. When ω is finite, these are the usual finite cyclic groups. When ω is infinite,
however, these groups are always very large, and contain Z as a subgroup. Indeed, we can
take the following representatives for the elements of ?Zω:

?Zω :=
({
−
⌊
ω − 1

2

⌋
, ...,+

⌊ω
2

⌋}
,+, 0

)
(17)

If i, j ∈ Z then i+ j is always finite and no modular reduction ever occurs, so that addition
of i and j in ?Zω is the same as addition in Z. Now let ωuv, ωir ∈ ?R be non-infinitesimal
positive non-standard reals with ωuvωir = ω ∈ ?N and consider the following subset of ?R:

1
ωuv

?Zω :=
{

n

ωuv
∈ ?R

∣∣∣∣ n ∈ {−⌊ω − 1
2

⌋
, ...,+

⌊ω
2

⌋}}
(18)

The subset 1
ωuv

?Zω inherits the group structure of ?Zω. The uv/ir suffixes for the numbers
ωuv and ωir originate from a habit, typical of quantum field theory, to distinguish between
“infra-red” infinities – arising because space is infinitely large – and “ultra-violet” infinities –
arising because space is infinitely fine: the parameter ωuv controls how fine the subdivision
of ?R specified by 1

ωuv
?Zω is, while the parameter ωir = ω/ωuv controls how large a portion

of ?R it covers.
For different choices of parameters ωuv, ωir ∈ ?R, the discrete periodic non-standard

groups 1
ωuv

?Zω can be used to approximate all the time-translation groups which we are
interested in. In what follows, we write

(
1
ωuv

?Zω
)
fin

for the subgroup formed by the finite

elements, i.e. by those elements which are finite reals. 2 If x ∈
(

1
ωuv

?Zω
)
fin
, we write st (x)

for the unique standard real which is infinitesimally close to x.

2 Note to the reader versed in non-standard analysis: this is an external subgroup and is only used for
the purpose of connecting the non-standard groups to their standard counterparts. It is never used in
any constructions within ?Hilb.

S. Gogioso 19:9

I Proposition 4. Let ωuv, ωir ∈ ?R be non-infinitesimal positive non-standard reals such that
ω := ωuvωir ∈ ?N is integer. The time-translation groups G for discrete periodic, discrete,
continuous periodic and continuous dynamics are exactly the standard groups which can be
obtained as quotient by infinitesimals of the subgroup of finite elements of 1

ωuv
?Zω:

G = st
((

1
ωuv

?Zω

)
fin

)
(19)

More specifically, we have the following combinations:
1. if ωuv is finite and ωir is finite we obtain the discrete periodic case G = 1

st(ωuv) Zω ∼= Zω;
2. if ωuv is finite and ωir infinite we obtain the discrete case 1

st(ωuv) Z ∼= Z;
3. if ωuv is infinite and ωir is finite we obtain the continuous periodic case R/ st (ωir) Z;
4. if ωuv is infinite and ωir is infinite we obtain the continuous case R.
Hence all standard time-translation groups listed above can be approximated, up to infinites-
imals, by the subgroup of finite elements of a discrete periodic non-standard group.

3.3 Quantum clocks from interacting quantum observables – Take II
Armed with our dagger compact category ?Hilb and with approximations of our favourite
time-translation groups by discrete periodic non-standard groups, we are finally in a position
to define our quantum clocks.

I Definition 5. A quantum clock is a pair of interacting quantum observables (G, ,) in
?Hilb with special commutative, equipped with a group isomorphism (K () , ,) ∼= 1

ωuv
?Zω

for some non-infinitesimal positive ωuv, ωir ∈ ?R with ω := ωuvωir ∈ ?N. We refer to 1
ωuv

?Zω

as the time-translation group and to st
((

1
ωuv

?Zω
)
fin

)
as the associated standard time-

translation group. We refer to the classical states K () of as the (clock) time states –
which we index as |t〉 using the elements t ∈ 1

ωuv
?Zω – and to the observable as the clock

time observable.

Note that the specific choice of 1
ωuv

?Zω – i.e. the specific choice of parameters ωuv, ωir – is
part of the data of a quantum clock. We will only mention it explicitly when relevant, to
lighten the notation.

I Proposition 6. Quantum clocks with non-standard time-translation group 1
ωuv

?Zω exist for
all non-infinitesimal positive ωuv, ωir ∈ ?R with ω := ωuvωir ∈ ?N.

In the case of infinite-dimensional quantum clocks, working in the non-standard setting
gives us access to a lot of states and linear maps which would not be well-defined in the
standard setting, let alone continuous. On a quantum clock with time-translation group

1
ωuv

?Zω, for example, we can construct the following plane-wave states indexed by all
E ∈ 1

ωir
?Zω (note the switch from ωuv to ωir):

|E〉 :=
∑

t∈ 1
ωuv

?Zω

ei2π
Et
ω |t〉 (20)

In particular, we have that 〈E|t〉 = e−i2πEt. This is exactly the phase that an energy
eigenstate with energy E acquires after time t has passed. As the following result shows, this
is no coincidence: in a quantum clock (G, ,), the classical states |E〉 for always label the
possible energy values that the corresponding dynamical systems can have.

CALCO 2019

19:10 A Diagrammatic Approach to Quantum Dynamics

I Proposition 7. In a quantum dynamical system with standard time-translation group G,
the possible values for energy are always canonically labelled by the elements of the Pontryagin
dual G∧. If (G, ,) is a quantum clock with time-translation group 1

ωuv
?Zω, the classical

states for are the plane-wave states of Equation (20) and we have (K () , ,) ∼= 1
ωir

?Zω.
If G is the standard time-translation group associated to the quantum clock then:

G∧ = st
((

1
ωir

?Zω

)
fin

)
(21)

Hence the classical states of canonically label the possible energy levels for quantum
dynamical systems that can be synchronised with the clock.

When E and t are both finite – i.e. when they have direct physical significance – we can
manually check that st

(
e−i2πEt

)
yields the expected phase in the various models. In all four

cases we have st
(
e−i2πEt

)
= e−i2π st(E) st(t), with the domains of st (t) and st (E) ensuring

that the expression is well-defined under all circumstances.
1. For continuous dynamics, st (t) ∈ R and st (E) ∈ R and there are no issues.
2. For continuous periodic dynamics, st (t) ∈ R/TZ, so we need st (E) ∈ 1

T Z for the phase
to be well-defined. Indeed, 1

T Z is the standard group we obtain when ωir = T .
3. For discrete dynamics, st (t) ∈ Z and values of st (E) differing by 1 will give the exact

same phase: to have an exact correspondence, we therefore need st (E) ∈ R/Z. Indeed,
R/Z is the standard group we obtain when ωuv = 1.

4. For discrete periodic dynamics, we have st (t) ∈ Zω. This combines the requirements on
st (E) from both the previous cases: values of st (E) differing by 1 will correspond to the
same phase, and the phase is only well-defined if st (E) is divisible by ω. Indeed, the
standard group we obtain in this case (ωuv = 1 and ωir = ω) is st (E) ∈ 1

ωZω.
In light of the above, we adopt the following definition.

I Definition 8. Let (G, ,) be a quantum clock. We refer to the classical states |E〉 of
as clock energy states and to the observable as the clock energy observable.

4 Quantum Dynamical Systems

In the previous Section, we have shown that certain pairs of interacting quantum observables
in the dagger compact category ?Hilb can be used to model quantum clocks, i.e. quantum
systems with additional structure singling out certain clock time states and the desired
time-translation group structure on them. In this Section, we switch our attention to quantum
dynamical systems.

4.1 Quantum Dynamical Systems
Let (G, ,) be a quantum clock and consider an algebra α : H ⊗ G → H for the dagger
Frobenius monad _⊗ . We look at the endomorphisms αt : H → H obtained by evaluating
the algebra on clock time states |t〉:

αt :=

t

α

(22)

S. Gogioso 19:11

In terms of those endomorphisms, the defining equations for algebras take the following form:

αt

αs

= αt+s α0 = α†t
= α−t

(23)

But these are exactly the equations defining a unitary representation (αt)t of the time-
translation group! Clearly, we are off to a good start.

Algebras for the monad _⊗ form a category, with morphisms Φ : α→ β from an algebra
α : H⊗G → H to another algebra β : K⊗G → K given by the linear maps Φ : H → K which
satisfy the following equation:

α

Φ
=

Φ

β

(24)

Because the monad _⊗ is obtained from a monoid which is part of a pair (,) of interacting
quantum observables with commutative, the category of algebras has a symmetric monoidal
structure, with the tensor product α⊗ β of two algebras defined as follows:

α β

(25)

The following result shows that the category of algebras captures exactly quantum dynamical
systems, equivariant maps between them and their natural notion of composition.

I Proposition 9. Let (G, ,) be a quantum clock. The algebras α for the dagger Frobenius
monad _ ⊗ such that αt is near-standard for all t correspond to quantum dynamical
systems for the standard time-translation, i.e. strongly continuous unitary representations
(st (αt))st(t)∈G of the standard time-translation group. Morphisms between algebras correspond
to equivariant maps for the representations. Tensor product of algebras corresponds to
synchronised composition of quantum dynamical systems:

(α⊗ β)t :=

t

α β

= αt ⊗ βt

(26)

CALCO 2019

19:12 A Diagrammatic Approach to Quantum Dynamics

I Definition 10. Let (G, ,) be a quantum clock. A quantum dynamical system for the
quantum clock is an algebra for the dagger Frobenius monad _⊗ . Morphisms of algebras
will be referred to as equivariant maps between quantum dynamical systems. Tensor product
of algebras will be referred to as synchronised parallel composition of quantum dynamical
systems.

4.2 States and histories
States of a system are a static concept. In a quantum dynamical system, we are instead
more interested in the evolution of states under the dynamics:

ψ

α

(27)

For a generic dynamical system H – e.g. seen as a topological space – the evolution of a
state under the dynamics is usually written as a flow-line Ψ : R→ H, a map from the time
object to the dynamical system associating a state Ψ(t) ∈ H to each instant point t in time
(with the obvious generalisation from continuous dynamics to the other three kinds). This is
not, however, an exact correspondence in general: a given map R→ H is often not going to
be the flow-line of a state.

As we mentioned before, the traditional perspective on time in quantum dynamics is that
time is an external classical parameter, so the definition of state evolution through flow-lines
suffers from the issue described above. In our framework, on the other hand, “time” lives
inside the same category as the quantum systems it governs, incarnated into the quantum
clocks that tick it. We can exploit the additional algebraic structure available to show that
flow-lines, realised inside the category of algebras, correspond exactly to the evolutions of
states in quantum dynamical systems.

I Proposition 11. Let (G, ,) be a quantum clock and α : H ⊗ G → H be a quantum
dynamical system for it. Then is also a quantum dynamical system for it – the quantum
clock itself, governed by its own time. The morphisms of algebras Ψ : → α:

Ψ =

Ψ

α

(28)

are exactly the evolutions of states of H under the dynamics of α. We refer to such morphisms
as the histories of states.

4.3 Hamiltonians
Hamiltonians are often the very first concept that students of quantum dynamics are
introduced to, so it may be surprising that we have not mentioned them so far. The reason
for such a delay is that this work adopts a view of dynamics as time-translation symmetry,

S. Gogioso 19:13

rather than as solution of certain differential equations: our objects of primary concern are
unitary representations, not their infinitesimal generators. That said the Hamiltonian – as
the energy observable of a quantum dynamical system – is of paramount physical interest, so
we now proceed to characterise it in our framework.

In previous sections, we have considered the dagger Frobenius monad _ ⊗ (with
associated dagger Frobenius comonad _⊗) and we have seen that the algebras of _⊗
capture dynamics. We have also seen, when talking about quantum clocks, that the other
quantum observable in the interacting pair, namely , is somehow associated with energy:
one naturally wonders whether there is an algebraic connection between – which is dual to
– and Hamiltonians – which are dual to dynamics.
An alternative characterisation of a quantum observable is in terms of complete families

of projectors. A complete family of projectors (PE : H → H)E∈X is characterised by the
following equations:

PE

PF

= δE,F PE
∑
E PE = P †E

= PE

(29)

If the labels for the projectors PE are taken from the clock energy states E, as necessary for
the projectors associated with a Hamiltonian, then the equations above can be equivalently
rewritten diagrammatically as the equations for coalgebras of the dagger Frobenius comonad
_⊗ :

α†

=

α†

α†

α†

=

α†

=
α

(30)

In the literature, these are also referred to as projector-valued spectra [8]. We can give such
coalgebras an operational interpretation as coherent versions of quantum measurements: if
we feed a state |ψ〉 of H in input, we obtain in output an entangled state

∑
E PE |ψ〉 ⊗ |E〉

of H ⊗ G. Subsequently measuring G in the (|E〉)E basis yields the usual von Neumann
non-demolition measurement corresponding to the complete family of orthogonal projectors
(PE)E : if outcome E is observed, the state in H has collapsed to PE |ψ〉.

Given a quantum dynamical system α, we now show how to obtain the coalgebra for
_⊗ corresponding to its Hamiltonian. We will do so by proving Schrödinger’s Equation.
In its differential version, Schrödinger’s Equation states that if |ψE〉 is an energy eigenstate
with energy E then the evolution of |ψE〉 in a quantum dynamical system α is given by the
following equation:

i~
d

dt
αt |ψE〉 = E |ψE〉 (31)

The following exponentiated version of Schrödinger’s Equation provides the symmetry
equivalent of the usual differential equation:

αt |ψE〉 = e−i2πEt |ψE〉 (32)

where we have chosen energy and time units such that h := 2π~ = 1.

CALCO 2019

19:14 A Diagrammatic Approach to Quantum Dynamics

I Proposition 12. Let (G, ,) be a quantum clock and α : H ⊗ G → H be a quantum
dynamical system for it. Then α† : H → H ⊗ G is a coalgebra for the dagger Frobenius
comonad _⊗ , with projectors PE labelled by clock energy states |E〉:

PE :=

(α)†

E†
1
ω

(33)

Note that 1
ω = 1

N is the normalisation factor for the state |E〉. The states invariant under
projector PE satisfy Schrödinger’s Equation for energy E:

ψ

(α)† = ψ E ⇒

ψ t

α = ψ t

E†

(34)

recalling that 〈E|t〉 = e−i2πEt. Hence the projectors PE are exactly the projectors onto the
energy eigenspaces of the quantum dynamical system, so that α† is the projector-valued
spectrum for the Hamiltonian observable.

I Definition 13. Let (G, ,) be a quantum clock with time-translation group 1
ωuv

?Zω and
let α : H ⊗ G → H be a quantum dynamical system for it. The Hamiltonian for α is the
coalgebra α†. The energy eigenstates for α corresponding to clock energy E ∈ 1

ωir
?Zω are the

states |ψ〉 satisfying the following equation:

ψ

(α)† =
ψ E

(35)

The simplicity and elegance of the characterisation given above for the Hamiltonian – the
coalgebra obtained as adjoint of the algebra capturing the quantum dynamical system –
showcases the power of the coherent approach we have adopted. By quantising clocks, the
dual information about time/dynamics and energy is now held by the very same object: if
we want to switch perspective, we only need to switch observable. This form of diagrammatic
time/energy duality will make it possible, in the coming section, to derive extremely compact
diagrammatic proofs for some result of fundamental importance in quantum dynamics.

5 Cornerstone Results

In the previous Section, we have established a clear parallel between the language of quantum
dynamics and the language of algebra. In this Section, we use that parallel to re-establish
three cornerstone results of quantum dynamics in diagrammatic terms.

S. Gogioso 19:15

5.1 Weyl Canonical Commutation Relations
Traditionally, the Heisenberg Canonical Commutation Relations characterise the duality
between position and momentum observables in the differential generators picture. The
Weyl Canonical Commutation Relations characterise the corresponding duality of position
and momentum observables in the symmetry picture, by specifying a braiding relation
between the space-translation symmetry and the momentum-boost symmetry. When time is
quantised, the duality between time-translation symmetry Tt and energy-shift symmetry SE
in a quantum clock can similarly be characterised by the Weyl CCRs, as follows:

SETt = ei2πEtTtSE (36)

This can be equivalently expressed in terms of the adjoint of SE , to match the exact
formulation of our result below:

S†ETt = e−i2πEtTtS
†
E (37)

In our formalism, the Weyl CCRs are an immediate consequence of a diagrammatic axiom of
interacting quantum observables.
I Proposition 14. The Weyl CCRs for time and energy duality are an immediate consequence
of the bialgebra law:

t

E†

=

t

E†

=

t

E†

t

E†

(38)

recalling that 〈E|t〉 = e−i2πEt.

5.2 Stone’s Theorem on 1-parameter unitary groups
Stone’s Theorem on 1-parameter unitary groups is a key result in dynamics, showing that
dynamics can be uniquely reconstructed from the Hamiltonian observable. In the symmetry
picture, it can be stated as follows:

αt =
∫
G∧

e−i2πEtPEdE (39)

where G is the time-translation group, α is the quantum dynamical system and PE are the
projectors on the energy eigenspaces. We are working in the non-standard settings, so that
the integral

∫
G∧ dE is really just a sum. [25]

I Proposition 15. Stone’s Theorem is a consequence of diagrammatic time-energy duality:

t

α

=

t

α† =
∑
E PE

t

E†

(40)

recalling that 〈E|t〉 = e−i2πEt.

CALCO 2019

19:16 A Diagrammatic Approach to Quantum Dynamics

5.3 von Neumann’s Mean Ergodic Theorem
In a rather precise sense, von Neumann’s Mean Ergodic Theorem is the inverse of Stone’s
Theorem, showing that the Hamiltonian observable can be reconstructed from the dynamics.
The usual formulation of von Neumann’s Theorem only talks about the ground energy
eigenspace, but an equivalent formulation can be used to reconstruct all energy eigenspaces:

PE = 1
|G|

∫
G

ei2πEtαtdtf (41)

where G is the time-translation group, α is the quantum dynamical system and PE are
the projectors on the energy eigenspaces. By |G| we literally mean the size of G, which
is a well-defined scalar |G| = ω in the non-standard world: physically, this is the volume
ω = ωuvωir of time-energy configuration space. The equation above is the limit-free, non-
standard equivalent of the usual formulation of von Neumann’s theorem in terms of limits.
As with Stone’s Theorem before, the integral

∫
G
dt is really just a sum

∑
in the non-standard

setting.

I Proposition 16. von Neumann’s Mean Ergodic Theorem is a consequence of diagrammatic
time-energy duality:

α†

E†
1
ω

=

E

α

1
ω

= 1
|G|

∑
t αt

E

t†

(42)

recalling that 〈t|E〉 = ei2πEt.

6 Conclusions

In this work, we have presented a diagrammatic framework to reason about quantum
dynamics, using algebras and coalgebras for a monad and a comonad induced by a pair
of interacting quantum observables. We have been able to treat dynamics, both discrete
and continuous, of finite- and infinite-dimensional quantum systems, thanks to the rich
tool-set provided by hyperfinite non-standard Hilbert spaces. We have shown that our
framework yields completely straightforward diagrammatic proofs of some key results in
quantum dynamics.

In future work, we will explore the foundational and computational implications of our
new framework. Specifically, we will detail the applications to the problem of time observable
and to the formulation of Feynman’s Clock, already sketched in the author’s DPhil Thesis [13].

References
1 Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In

Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages
415–425. IEEE, 2004. doi:10.1109/LICS.2004.1319636.

2 Samson Abramsky and Bob Coecke. Categorical Quantum Mechanics. In K. Engesser,
Gabbay D. M., and Lehmann D., editors, Handbook of Quantum Logic and Quantum Structures,
pages 261–323. Elsevier, 2009. doi:10.1016/B978-0-444-52869-8.50010-4.

https://doi.org/10.1109/LICS.2004.1319636
https://doi.org/10.1016/B978-0-444-52869-8.50010-4

S. Gogioso 19:17

3 Samson Abramsky and Chris Heunen. H*-algebras and nonunital Frobenius algebras: first steps
in infinite-dimensional categorical quantum mechanics. Clifford Lectures, AMS Proceedings of
Symposia in Applied Mathematics, 71:1–24, 2012. URL: http://arxiv.org/abs/1011.6123.

4 Jeremy Butterfield. On time in quantum physics. In Heather Dyke and Adrian Bardon, editors,
A Companion to the Philosophy of Time. John Wiley & Sons Ltd, 2014.

5 Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011. doi:10.1088/1367-2630/13/4/
043016.

6 Bob Coecke, Ross Duncan, Aleks Kissinger, and Quanlong Wang. Strong complementarity
and non-locality in categorical quantum mechanics. In Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, pages 245–254. IEEE Computer Society,
2012. doi:10.1109/LICS.2012.35.

7 Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017. doi:10.1017/
9781316219317.

8 Bob Coecke and Dusko Pavlovic. Quantum measurements without sums. In G. Chen,
L. Kauffman, and S. Lamonaco, editors, Mathematics of Quantum Computing and Technology.
Taylor and Francis, 2007. URL: https://arxiv.org/abs/quant-ph/0608035.

9 Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases. Mathem-
atical Structures in Computer Science, 23(3):555–567, 2013. doi:10.1017/S0960129512000047.

10 Ross Duncan and Kevin Dunne. Interacting Frobenius Algebras are Hopf. In Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, pages 535–544. ACM,
2016. doi:10.1145/2933575.2934550.

11 Richard P Feynman. Simulating physics with computers. International journal of theoretical
physics, 21(6):467–488, 1982. doi:10.1007/BF02650179.

12 Richard P Feynman. Quantum mechanical computers. Foundations of physics, 16(6):507–531,
1986. doi:10.1007/BF01886518.

13 Stefano Gogioso. Categorical Quantum Dynamics. PhD thesis, University of Oxford, 2017.
URL: https://arxiv.org/abs/1709.09772.

14 Stefano Gogioso and Fabrizio Genovese. Infinite-dimensional Categorical Quantum Mechanics.
Electronic Proceedings in Theoretical Computer Science, 236:51–69, 2017. doi:10.4204/EPTCS.
236.4.

15 Stefano Gogioso and Fabrizio Genovese. Towards Quantum Field Theory in Categorical
Quantum Mechanics. Electronic Proceedings in Theoretical Computer Science, 266:349–366,
2018. doi:10.4204/EPTCS.266.22.

16 Stefano Gogioso and William Zeng. Generalised Mermin-type non-locality arguments. Logical
Methods in Computer Science, 15(2), 2019. URL: https://lmcs.episciences.org/5402.

17 Robert Goldblatt. Lectures on the hyperreals. An introduction to nonstandard analysis.
Springer-Verlag, 1998.

18 Chris Heunen and Martti Karvonen. Monads on dagger categories. Theory and Applications
of Categories, 31(35):1016–1043, 2016. URL: https://arxiv.org/abs/1602.04324.

19 Jan Hilgevoord. Time in quantum mechanics: a story of confusion. Studies In History
and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics,
36(1):29–60, 2005. doi:10.1016/j.shpsb.2004.10.002.

20 André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in mathematics,
88(1):55–112, 1991. doi:10.1016/0001-8708(91)90003-P.

21 Aleks Kissinger. Pictures of Processes: Automated Graph Rewriting for Monoidal Categories
and Applications to Quantum Computing. PhD thesis, University of Oxford, 2012. URL:
https://arxiv.org/abs/1203.0202.

22 Jarrod R. McClean, John A. Parkhill, and Alán Aspuru-Guzik. Feynman’s clock, a new
variational principle, and parallel-in-time quantum dynamics. Proceedings of the National
Academy of Sciences, 110(41):E3901–E3909, 2013. doi:10.1073/pnas.1308069110.

CALCO 2019

http://arxiv.org/abs/1011.6123
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1109/LICS.2012.35
https://doi.org/10.1017/9781316219317
https://doi.org/10.1017/9781316219317
https://arxiv.org/abs/quant-ph/0608035
https://doi.org/10.1017/S0960129512000047
https://doi.org/10.1145/2933575.2934550
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF01886518
https://arxiv.org/abs/1709.09772
https://doi.org/10.4204/EPTCS.236.4
https://doi.org/10.4204/EPTCS.236.4
https://doi.org/10.4204/EPTCS.266.22
https://lmcs.episciences.org/5402
https://arxiv.org/abs/1602.04324
https://doi.org/10.1016/j.shpsb.2004.10.002
https://doi.org/10.1016/0001-8708(91)90003-P
https://arxiv.org/abs/1203.0202
https://doi.org/10.1073/pnas.1308069110

19:18 A Diagrammatic Approach to Quantum Dynamics

23 Thomas Pashby. Time and quantum theory: A history and a prospectus. Studies in History
and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics,
52:24–38, 2015. doi:10.1016/j.shpsb.2015.03.002.

24 Bryan W Roberts. Time, symmetry and structure: A study in the foundations of quantum
theory. PhD thesis, University of Pittsburgh, 2012. URL: http://d-scholarship.pitt.edu/
12533.

25 Abraham Robinson. Non-standard analysis. Princeton University Press, 1974.
26 Peter Selinger. A Survey of Graphical Languages for Monoidal Categories. In Bob Coecke,

editor, New Structures for Physics, volume 813 of Lecture Notes in Physics, pages 289–355.
Springer, 2011. doi:10.1007/978-3-642-12821-9_4.

27 Jamie Vicary. Categorical formulation of finite-dimensional quantum algebras. Communications
in Mathematical Physics, 304(3):765–796, 2011. doi:10.1007/s00220-010-1138-0.

28 Hermann Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 46(1-2):1–46,
1927. doi:10.1007/BF02055756.

29 Hermann Weyl. The theory of groups and quantum mechanics. Dover Publications Inc., New
York, 1950.

30 Stanisław L. Woronowicz. Compact matrix pseudogroups. Communications in Mathematical
Physics, 111(4):613–665, 1987. doi:10.1007/BF01219077.

31 Stanisław L. Woronowicz. Compact quantum groups. Symétries quantiques (Les Houches,
1995), 845(884):98, 1998.

A Categorical Quantum Mechanics

Categorical quantum mechanics takes its roots in the seminal work [1, 2] and a detailed
treatment of the first decade of work in the field can be found in the 900+ page monograph [7].
Here we recap some fundamentals of the formalism, for the benefit of readers from different
communities who may be unfamiliar with them.

A.1 Symmetric monoidal categories

The general motivation behind the application of category-theoretic tools lies in the intuition
that the features distinguishing quantum theory from classical physics can be understood in
terms of the way quantum processes compose, sequentially and in parallel: this forms the
basis of the process-theoretic description of quantum theory. The mathematical arena for
such process-theoretic description is that of symmetric monoidal categories:

physical systems are objects;
processes between systems are morphisms;
sequential composition of processes is composition of morphisms;
parallel composition of processes is tensor product of morphisms;
the process of doing nothing to a system is the identity morphism;
the tensor product of objects is interpreted as a joint system;
the tensor unit is interpreted as a trivial system.

Of special interest in categorical quantum mechanics is the symmetric monoidal category
fHilb of finite-dimensional Hilbert spaces and complex linear maps between them (with the
tensor product of Hilbert spaces as tensor product of objects and the Kronecker product of
complex matrices as tensor product of morphisms).

Monoidal categories have a natural diagrammatic formalism – see [26] for a comprehensive
survey – in which systems/objects A are depicted as wires and processes/morphisms f : A→

https://doi.org/10.1016/j.shpsb.2015.03.002
http://d-scholarship.pitt.edu/12533
http://d-scholarship.pitt.edu/12533
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1007/s00220-010-1138-0
https://doi.org/10.1007/BF02055756
https://doi.org/10.1007/BF01219077

S. Gogioso 19:19

B are depicted as boxes.

A

A

A

B

f

(43)

Tensor product of systems is depicted by stacking the corresponding wires side-by-side
horizontally. As a convention, we draw our diagrams bottom-to-top, so that the wire(s)
corresponding to the domain of a morphism (the inputs of the process) are at the bottom
and the wire(s) corresponding to the codomain of a morphism (the outputs of the process)
are at the top, so that a generic morphism/process f : A1 ⊗ ... ⊗ An → B1 ⊗ ... ⊗ Bm is
depicted as follows:

A1

B1

An

Bm

...

...

f

inputs →

outputs →

(44)

Sequential composition g ◦ f : A→ C of two processes f : A→ B and g : B → C is depicted
by stacking the corresponding boxes vertically and connecting the output wires of f to the
input wires of g; parallel composition f ⊗ g : A⊗ C → B ⊗D of two processes f : A→ B

and g : C → D is depicted by stacking the corresponding boxes side-by-side horizontally; the
symmetry isomorphisms A⊗B → B ⊗A are depicted by a crossing of the wires:

A

C

f

g

A

B

C

D

f g

A

B

B

A

(45)

Two diagrams are considered equal if they are equal up to isotopy, keeping the (relative
ordering of the) input and output endpoints fixed: this principle is often referred to as “only
topology matters”. For example, a special case of bifunctoriality for the tensor product
holds by “sliding” the two boxes vertically (on the left), while naturality of the symmetry
isomorphism is obtained by “sliding boxes through each other” over a wire crossing (on the
right):

f

g

=

f

g f g

=
g f

(46)

Planar isotopy is sufficient for monoidal categories. For symmetric monoidal categories, on
the other hand, a little amount of 4d space is used for sliding across wire crossings.

CALCO 2019

19:20 A Diagrammatic Approach to Quantum Dynamics

A.2 States, scalars and effects
Special cases of boxes are those without any input and/or any output wires:

ψ

no inputs

a

no outputs

ξ

no inputs/outputs (47)

Boxes with no input wires are called states and they correspond to the process of producing
something in a system starting from nothing (aka the trivial system). In the category fHilb,
states correspond exactly to vectors in a Hilbert space, i.e. to kets |ψ〉. Boxes with no inputs
nor outputs are called scalars. In the category fHilb, scalars correspond to complex numbers
ξ and we will write them as floating numbers. Finally, boxes with no outputs are called
effects. In the category fHilb, effects correspond exactly to covectors in a Hilbert space,
i.e. to bras 〈a|. Effects can be though of as the process of conditioning on the outcome of
a (non-degenerate demolition) quantum measurement: applied to a state in a system, an
effect returns a complex number (the norm squared of which yields the outcome probability,
according to the Born rule).

A.3 Dagger symmetric monoidal categories
The symmetric monoidal categories of interest in categorical quantum mechanics are equipped
with an involutive op-functor, the dagger, which sends morphisms f : A→ B to morphisms
f† : B → A. In the diagrammatic formalism, the dagger is depicted as a vertical mirror
symmetry:

A1

B1

An

Bm

...

...

f 7→

B1

A1

Bm

An

...

...

f†

(48)

In the dagger symmetric monoidal category fHilb, the dagger is (chosen to be) the operation
of taking the adjoint (i.e. the conjugate transpose of matrices). In particular, the dagger
sends a state |ψ〉 to the corresponding effect 〈ψ| and vice-versa. On scalars, the dagger acts
as complex conjugation ξ† = ξ∗.

A.4 Quantum observables
Some boxes have special significance and a special notation is reserved to them. The most
important case is that of symmetric special †-Frobenius algebras := (H, , , ,): these
are depicted by coloured dots with wires connected to them – lovingly referred to as spiders
in the literature – and the axioms defining them are given in the main text.

The reason why special symmetric †-Frobenius algebras are of key interest in categorical
quantum mechanics is their correspondence in the category fHilb to quantum observables,
i.e. to finite-dimensional C*-algebras [27]. In particular, commutative special †-Frobenius
algebras – often referred to as classical structures in the literature – correspond bijectively to

S. Gogioso 19:21

orthonormal bases, where the basis vectors |g〉 in each basis are given by the classical states
for the algebra, i.e. those satisfying the Equation (5). For a given orthonormal basis (|g〉)g,
the comultiplication is obtained as :=

∑
g(|g〉 ⊗ |g〉) 〈g|, i.e. the map |g〉 7→ |g〉 ⊗ |g〉 ,

the counit as :=
∑
g 〈g|, i.e. the map |g〉 7→ 1, the multiplication and unit as their

adjoints. More generally, the orthogonal projectors p : H → H in a quantum observable can
be characterised as the central, self-adjoint, idempotent elements for the algebra.3

A.5 Dagger compact structure
In the category fHilb, each system H is equipped with a classical structure for each choice
of orthonormal basis. Each such classical structure – and more generally each symmetric
special †-Frobenius algebras on H – induces a self-duality on H through its cup and cap,
because of the snake equation (3), which holds by planar isotopy. The cup and cap are
symmetric and related by the dagger, making fHilb a dagger compact category.

A.6 Infinite-dimensional categorical quantum mechanics
The main obstacle to the extension of categorical quantum mechanics to infinite dimensions
is the disappearance of symmetric special †-Frobenius algebras: while it is true that for a
complete orthonormal basis one can still define the comultiplication =

∑∞
n=1(|n〉⊗ |n〉) 〈n|

and multiplication [3], the unit/counit would give rise to infinite-norm states =
∑∞
n=1 |n〉.

While [3] suggests it may be possible to overcome the absence of units in this context, the
non-existence of infinite group algebras – necessary to this work – is intrinsically related to
the presence of infinities and cannot be fixed directly.

Enter non-standard analysis. Because approximate units (ν) =
∑ν
n=1 |n〉 for the algebra

associated to a basis exist for all ν ∈ N, by Transfer Theorem [17,25] we can take ν to be
some infinite natural number and obtain a genuine unit =

∑ν
n=1 |n〉, multiplication, counit

and comultiplication =
∑ν
n=1(|n〉 ⊗ |n〉) 〈n| for a special commutative †-Frobenius algebra.

Moreover, by Transfer Theorem we can also formulate group algebras for all abelian groups
with ν elements. The full details can be found in [14,15] and in Section 3.5 of the author’s
DPhil thesis [13].

TL;DR: we work in the dagger compact category ?Hilb of non-standard Hilbert spaces with
dimension some non-standard natural number ν ∈ ?N: from the non-standard perspective
these spaces are finite-dimensional, so the Transfer Theorem can be used to lift many of the
structures and properties of the dagger compact category fHilb. In particular, the algebraic
manipulation of vectors, matrices and scalars in ?Hilb is analogous to that of their fHilb
counterparts. When related back to standard Hilbert spaces, however, the objects of ?Hilb
cover much more than fHilb, including both the separable infinite-dimensional Hilbert spaces
used in traditional quantum mechanics and the non-separable ones arising in quantum field
theory.

B Proofs

Proof of Proposition 3
Proof. Substitute the antipode for its definition and apply the snake equation for . J

3 See [27] for the full proof and Section 2.4.2 of the author’s DPhil thesis [13] for a summary, noting that
a left-to-right diagrammatic convention is adopted in the latter.

CALCO 2019

19:22 A Diagrammatic Approach to Quantum Dynamics

Proof of Proposition 4
Proof. If we take ωuv finite and ωir finite, then ω = N ∈ N, all elements in 1

ωuv
?Zω are finite

and taking the standard part yields 1
st(ωuv) Zω. If we take ωuv finite and ωir infinite, then the

finite elements in 1
ωuv

?Zω are those in the form 1
ωuv

Z and taking the standard part yields
1

st(ωuv) Z. If we take ωuv infinite and ωir finite, then we have the following subgroup inclusion

1
ωuv

?Zω = ωir
ω
?Zω =

{nωir
ω

∣∣∣ n ∈ ?Zω
}
< ?R/ωir

?Z (49)

All elements are finite and taking the standard part yields R/ st (ωir) Z. If we take ωir infinite
and ωuv infinite, finally, we have the following subset inclusion:

1
ωuv

?Zω =
{

n

ωuv

∣∣∣∣ n ∈ {−⌊ω − 1
2

⌋
, ...,+

⌊ω
2

⌋}}
⊂ ?R (50)

The finite elements cover the finite elements of ?R with infinitesimal mesh, hence taking the
standard part yields R. J

Proof of Proposition 6
Proof. Because ω := ωuvωir ∈ ?N, by the Transfer Principle we always have an object G
of ?Hilb with orthonormal basis (|ei〉)i∈?Zω

. Let be the special commutative †-Frobenius
algebra associated to the orthonormal basis, define to be |0〉 and to be the linear
extension of the multiplication in 1

ωuv
?Zω. Then (G, ,) is a pair of interacting quantum

observables in ?Hilb corresponding to the group algebra ?C[1
ωuv

?Zω], as we wanted. J

Proof of Proposition 7
Proof. The possible values of energy E must correspond bijectively with the possible unitary
group homomorphisms G→ C yielding the phases acquired under time-translation by energy
eigenstates. Canonically, such homomorphisms are the elements of the Pontryagin dual G∧.

Checking that the plane-waves |E〉 are the classical states for is straightforward.
Because clock time states form an orthonormal basis, we can biject the effects 〈E| with the
multiplicative characters χE : t 7→ e−i2πEt ∈ G∧. The (adjoint of the) copy condition is
multiplicativity of characters χE(t+ s) = χE(t)χE(s). The (adjoint of the) delete condition
is the condition that χE(0) = 1. The (adjoint of the) self-conjugacy condition, finally, is
unitarity of characters χE(t)† = χE(−t).

Under the identification of 〈E| with χE , it is immediate to see that acts as pointwise
multiplication of characters and that corresponds to the trivial character, so that G∧ is
obtained by taking the standard part of the finite elements in 1

ωir
?Zω. J

Proof of Proposition 9
Proof. By requiring αt to be near-standard for all t we have singled out exactly those
representations of the non-standard group which yield representations st

(
αst(t)

)
for the

corresponding standard group. The defining equations for unitary representations are already
satisfied. The defining equation for a morphism Φ : α→ β implies that Φαt = βtΦ for all t,
so that morphism of algebras give equivariant maps of representations. Synchronised parallel
composition speaks for itself. J

S. Gogioso 19:23

Proof of Proposition 11
Proof. The proof is entirely by straightforward diagrammatic manipulation, based on the
observation that Ψ is exactly the time evolution of the state Ψ(0):

Ψ =
Ψ

=

Ψ

α

(51)

J

Proof of Proposition 12
Proof. That α† is a coalgebra for _⊗ is a straightforward diagrammatic check using the
algebra equations for α and the snake equations. The fact that Schrödinger’s Equation holds
for the eigenstates of projectors is another straightforward diagrammatic check. J

Proof of Propositions 14, 15 and 16
The proofs are already essentially in the respective diagrammatic statements.

CALCO 2019

CARTOGRAPHER: A Tool for String
Diagrammatic Reasoning
Paweł Sobociński
University of Southampton, UK

Paul W. Wilson
University of Southampton, UK and University College, London, UK

Fabio Zanasi
University College London, UK

Abstract
We introduce cartographer, a tool for editing and rewriting string diagrams of symmetric monoidal
categories. Our approach is principled: the layout exploits the isomorphism between string diagrams
and certain cospans of hypergraphs; the implementation of rewriting is based on the soundness and
completeness of convex double-pushout rewriting for string diagram rewriting.

2012 ACM Subject Classification Software and its engineering → Visual languages

Keywords and phrases tool, string diagram, symmetric monoidal category, graphical reasoning

Digital Object Identifier 10.4230/LIPIcs.CALCO.2019.20

Category Tool Paper

Funding Fabio Zanasi: acknowledges support from EPSRC grant EP/R020604/1.

Acknowledgements The authors thank Aleks Kissinger for valuable discussion, and the anonymous
referees for their comments and feedback.

1 Introduction

String diagrammatic theories are increasingly important in computer science. They have
been recently been used in a number of applications, including enabling the simplification
of quantum circuits using the ZX-calculus [10], compositional descriptions of models of
concurrency such as Petri Nets [18, 6], compositional accounts of signal flow graphs in control
theory [7, 11, 1] and Bayesian reasoning [8, 14, 13]. These examples, as well as many others,
work with the language of symmetric monoidal categories (SMCs). This paper addresses the
need for tool support for symmetric monoidal theories - graphical rewriting systems of SMCs.

cartographer is a graphical editor and proof assistant for symmetric monoidal theories.
It provides a graphical string diagram editor to construct morphisms, and a prover in
which rewrite rules can be specified and executed. Further, cartographer has a firm
theoretical foundation, its rewriting backend based on recent work in the area [5, 3, 20, 4].
The goal of this paper is to motivate cartographer, explain the basic features of the
backend and the front end, and describe some of the technical challenges that were solved
in creating it. The tool and its user guide are available on the cartographer website at
http://cartographer.id/.

Our motivating example is the rewriting system in Figure 1. The intended semantic
interpretation is that of binary circuits, where each wire carries an n bit number for some
fixed n. Green nodes with two outputs copy numbers, those with no outputs discard their
input, while red nodes perform addition modulo 2n.

© Paweł Sobociński, Paul W. Wilson, and Fabio Zanasi;
licensed under Creative Commons License CC-BY

8th Conference on Algebra and Coalgebra in Computer Science (CALCO 2019).
Editors: Markus Roggenbach and Ana Sokolova; Article No. 20; pp. 20:1–20:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CALCO.2019.20
http://cartographer.id/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 CARTOGRAPHER: A Tool for String Diagrammatic Reasoning

=
=

= =

Figure 1 Example rules for binary circuits with copying (), adding (), and discarding ().

As well as the rules in Figure 1, this rewriting system implicitly uses three generators;
atomic sub-diagrams, each with some number of inputs and outputs. These are the copy
(), add (), and discard () operations. The laws of symmetric monoidal categories
permit moving generators around up to an isotopy made precise in [15, 19]. For our purposes,
it suffices to say informally that generators can be slid along wires, and moved around on
the page, but not rotated. By way of example, consider the equivalent diagrams in Figure 2.

=

Figure 2 Example of string diagrams considered equal under the laws of SMCs.

cartographer allows reasoning modulo the laws of symmetric monoidal categories.
The user can deform morphisms up to the SMC laws without making proofs unsound, and
the prover does not require (e.g. when matching the l.h.s. of a rule) the user to explicitly use
the laws of symmetric monoidal categories. Put another way, the user should not have to
“untangle” the wires of the diagram before applying a rule of some theory.

To put this into context, compare cartographer to two “competing” tools: Quan-
tomatic [17] and Globular [2] (or its more recent descendant, homotopy.io). In a sense,
cartographer sits between them: providing a more general setting than Quantomatic,
while at the same time being more focussed than Globular.

software generality geometric intuition
Quantomatic compact-closed generators can implicitly be moved and wires bent back
Cartographer symmetric monoidal generators can implicitly be moved
Globular higher categories no implicit deformations permitted

Quantomatic deals with compact closed categories, in which not only may generators be
moved, but wires may be “bent backwards”. In terms of our circuit analogy, this would allow
for feedback, e.g. as used in a simple latch. cartographer allows such feedback, but as an
explicit compact closed structure in the theory at hand, not implicitly assumed to exist by
the underlying tool. On the other hand, Globular is much more general, aiming to support
diagrammatic reasoning in higher categories. While this allows more freedom, when working
with SMCs it comes at the cost of having to explicitly use SMC laws in proofs, e.g. using the
functoriality of the monoidal product to slide two generators past each other.

Contributions

The contribution of cartographer is twofold. First, in the back end we implement an
algorithm for matching and rewriting modulo the laws of SMC based on the adequacy result
of [5]. The algorithm works with a data structure for Open Hypergraphs, which we introduce

homotopy.io

P. Sobociński, P.W. Wilson, and F. Zanasi 20:3

in this paper. Second, in the front end, we use an algorithm for the layout of these directed
acyclic open hypergraphs which behaves well under rewriting and deformation of diagrams.

2 Directed Acyclic Open Hypergraphs

The main problem of implementing rewriting modulo symmetric monoidal structure is in
finding a data structure in which equivalent terms have a single representation. For example,
the two equivalent diagrams of Figure 2 should have the same underlying representation.
Our approach is principled, because it uses the isomorphism between equivalent terms and
cospans of hypergraphs found in [5]. Starting from this result, we propose an alternative but
equivalent representation which is more convenient to work with.

We begin with an overview of the open hypergraphs of [5], and the cartographer data
structure – illustrated in Figure 3 along with the corresponding string diagram. Beginning
with the central (open) hypergraph, hyperedges are denoted , and represent the
generators of the string diagram. There are two kinds of nodes, both denoted •. Firstly
(ordered) boundary nodes, which are connected to a single wire (input or output, but not
both). Secondly, internal nodes, having exactly one input and one output wire. These
two conditions are the “monogamicity” requirement of [5], and effectively ensure that the
hypergraph corresponds to a string diagram. For full details, see [5, Definition 3.6].

In contrast, the hypergraphs of cartographer are closed, and so nodes are rendered
simply as wires, each with exactly one input and one output connection. Boundary nodes
are replaced by adding special generators to the signature of the hypergraph, s (boundary
source) and t (boundary target). Nodes are then uniquely identified by the two “ports” they
connect – a port being a specific position on the boundary of a hyperedge.

c

a c

d

c

a c

d

s t

Figure 3 From left to right: a string diagram, its open hypergraph representation with signature
Σ = {a, c, d}, and the equivalent closed hypergraph with signature Σ′ = Σ ∪ {s, t}.

I Definition 1. A k → m cartographer hypergraph (Σ, E,W) consists of:
the signature Σ, which can be thought of as the set of types of hyperedges. Each has
arity ar : Σ→ N× N, giving the number of inputs and outputs. We require that the Σ
contains boundary generators σ, τ , with ar(σ) = (0, k) and ar(τ) = (m, 0);
the set of hyperedges E, with a function typ : E → Σ that assigns types to hyperedges.
Moreover, there are boundary hyperedges {s, t} ⊆ E s.t. typ−1(σ) = {s}, typ−1(τ) = {t};
the set of wires W . Given a hyperedge e ∈ E, if ar(typ(e)) = (p, q) then we say e has
p input ports, denoted e1, e2, . . . , eq, and q output ports denoted e1, e2, . . . , eq. A wire
w ∈ W is an ordered pair (ei, f

j) of a source port ei and a target port f j , denoting a
directed connection from the ith output of e to the jth input of f .

3 Visualising and Editing Open Hypergraphs

In contrast to Quantomatic [17] which uses a force-directed layout, and Globular [2] which
has a fixed style for morphism layout, we use a layered graph drawing algorithm similar to
that of Dot [12]. Our reasons for choosing layered graph drawing are as follows. Firstly, it

CALCO 2019

20:4 CARTOGRAPHER: A Tool for String Diagrammatic Reasoning

was an aesthetic choice to represent string diagrams similarly to how they appear in the
literature. Secondly, string diagrams drawn with the layered discipline retain a closer link
with the underlying algebraic description of morphisms, since the term can by easily be
read off the string diagram in the form of a composition-of-monoidal-products. Thirdly, in
contrast to force-directed approaches, the elements of a layered graph layout do not move
around on the page, which is problematic from a user-experience perspective, because they
are harder for the user to click. Additionally, force-directed layouts can change significantly
after a rewrite rule is applied, with little control over the resulting diagram. This can be
confusing for the user, because the string diagram may look very different. Finally, using
layered hypergraphs offers a simple and intuitive way to enforce acyclicity: users may only
connect generators if the target appears to the right of the source.

Interactive Layered Graph Drawing

We briefly summarise the interactive layered graph drawing approach of cartographer.
By “interactive”, we mean to distinguish cartographer’s layout algorithm from other
layered graph drawing approaches – such as Dot’s – in which a static graph is given as
input, and positions of nodes and edges are returned. cartographer allows for the
incremental construction of hypergraphs, meaning that users begin with a blank canvas, and
add generators and connections one-by-one. We call it a layered graph drawing approach
because it uses two key ideas from those approaches: the user of layers, and of pseudonodes.

I Definition 2. Given a cartographer hypergraph (Σ, E,W) and e 6= e′ ∈ E, there is
a directed path from e to e′ if there exists a sequence (e1, . . . , en) where ei ∈ E, e1 = e,
en = e′ and for each ei, ei+1 there exist j1, j2 such that ((ei)j1 , (ei+1)j2) ∈W . A layering is
a function L : E → N such that:
(i) if there is a directed path from e to e′ then L(e) < L(e′);
(ii) for every non-boundary hyperedge e ∈ E, L(s) < L(e) < L(t).

The layering L essentially serves as the “x coordinate” of each hyperedge. The second
idea from layered graph layout is the use of pseudonodes, which are conceptually related to
the edge-points of Dixon and Kissinger’s Open Graphs [9], but used here only for layout
purposes: they prevent wires from crossing generators. For a concrete example of why this is
desirable, consider Figure 4. In the left-hand diagram, the wire from x to z passes through y
and it is not clear whether x is connected to y and y to z, or if x is directly connected to z.
Inserting pseudonodes into the graph clears up the ambiguity.

x

y

x

y

x

yz z z

Figure 4 Left, a diagram with only generators (rendered • and •), center, the same diagram after
inserting pseudonodes (rendered •), and right, the diagram as it appears with pseudonodes hidden.

The Layout Algorithm

We briefly outline the layout algorithm used in cartographer . Because the algorithm is
interactive, it takes the form of a layout state, and a number of actions that the user can
take. We model these actions as functions of the layout state.

P. Sobociński, P.W. Wilson, and F. Zanasi 20:5

The layout state is a tuple (H,G) of a hypergraph H as in definition 1, and an integer
grid G, which keeps track of the positions of generators and pseudonodes as two dimensional
vectors. Users can perform two actions on the layout state:

1. Placing a generator at a specific position on an integer grid
2. Moving a generator from one position to another
3. Connecting a source port to a target port

Moving and placing a generator is straightforward: if a generator e is moved or placed
such that it would overlap with another generator f , then f is moved down within the same
layer to make space. However, when connecting ports we must ensure that the hypergraph
H remains acyclic. This is enforced using the following constraints:

If generators e, f have layers such that L(e) ≤ L(f), then outputs of f may not be
connected to inputs of e.
If a generator f is reachable from e, then f may not be moved such that L(f) ≤ L(e).

These constraints ensure that layering respects the properties of Definition 2, preserving
acyclicity. Finally, for every operation, the set of required pseudonodes is maintained, along
with their positions in G. In particular, this means updates for any operation which changes
connectivity, or modifies the number of layers between two generators.

4 Matching, Convexity, Rewriting

As well as an interactive string diagram editor, cartographer enables diagrammatic
reasoning. A derivation consists of a series of rewrites, using a set of rules specified by the
user. A rule consists of two cartographer hypergraphs, the lhs and the rhs, with identical
boundaries. Rewriting is implemented by double-pushout rewriting of hypergraphs, with
soundness and completeness guaranteed by [5, Theorem 5.6].

Applying a rule to a string diagram consists of three steps: finding a match for the lhs a rule,
checking for convexity, and applying the rewrite rule. A match is an hypergraph embedding
(an injective, homomorphic mapping of hyperedges and nodes) of open hypergraphs, with
one subtlety: the boundary ports of the pattern match can map to non-boundary ports in
the target. cartographer builds matches incrementally by using the backtracking logic
library logict [16]. Roughly speaking, wires and generators are added to the working match
until either there are no more unmatched wires or generators, or a contradiction is reached,
in which case the search backtracks. Candidate matches are then checked for convexity [5],
which is needed for a rewrite to be valid modulo the laws of SMCs. Roughly speaking, all
directed paths that start and end in a matched region must remain within the match. Once a
convex match has been identified, the internal hyperedges of the matched region are removed
and replaced with the right hand side of the rewrite rule.

The cartographer UI shows a list of matches of rules found in the current proof term.
Users can apply rewrites by hovering over each match to see which part of the graph will be
rewritten, and then clicking to apply the rewrite.

5 Conclusions and Future Work

cartographer is still in early stages of development. We are working on:
improving the layout algorithms by adapting heuristics from other tools that work with
layered graphs;

CALCO 2019

20:6 CARTOGRAPHER: A Tool for String Diagrammatic Reasoning

more advanced features for diagrammatic reasoning, including support for structured
proofs (using e.g. user-generated Lemmas) and adapting other user-friendly features
originally developed for theorem provers and proof assistants;
higher level specification features, such as support for bang-boxes, recursive definitions,
and proof strategies;
better decoupling between the rewriting back end and the layout front end, enabling
extensions such as rewriting modulo compact closed structure.
support for rewriting without the convexity condition, which would allow rewriting
modulo a chosen Frobenius structure [5, 20]. This would be useful as symmetric monoidal
categories with a chosen Frobenius structure (also called hypergraph categories) are a
special kind of compact-closed categories, and find applications in the study of quantum
processes, dynamical systems and natural language processing, among other areas.

References
1 John Baez and Jason Erbele. Categories In Control. Theory and Applications of Categories,

30:836–881, 2015. URL: http://arxiv.org/abs/1405.6881.
2 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant for

higher-dimensional rewriting. In Leibniz International Proceedings in Informatics, volume 52,
pages 34:1–34:11, 2016. ncatlab.org/nlab/show/Globular.

3 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Soboci’nski, and Fabio Zanasi. Con-
fluence of Graph Rewriting with Interfaces. In Programming Languages and Systems - 26th
European Symposium on Programming, ESOP 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, pages 141–169, 2017. doi:10.1007/978-3-662-54434-1_6.

4 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Soboci’nski, and Fabio Zanasi. Re-
writing with Frobenius. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 165–174, 2018.
doi:10.1145/3209108.3209137.

5 Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Paweł Sobociński, and Fabio Zanasi. Re-
writing modulo symmetric monoidal structure. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science - LICS ’16, pages 710–719, New York, NY, USA,
2016. ACM Press. doi:10.1145/2933575.2935316.

6 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Soboci’nski, and Fabio Zanasi. Dia-
grammatic algebra: from linear to concurrent systems. PACMPL, 3(POPL):25:1–25:28, 2019.
URL: https://dl.acm.org/citation.cfm?id=3290338, doi:10.1145/3290338.

7 Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The Calculus of Signal Flow Diagrams I:
Linear relations on streams. Inf. Comput., 252:2–29, 2017.

8 Benjamin Cabrera, Tobias Heindel, Reiko Heckel, and Barbara König. Updating Probabilistic
Knowledge on Condition/Event Nets using Bayesian Networks. In 29th International Confer-
ence on Concurrency Theory, CONCUR 2018, September 4-7, 2018, Beijing, China, pages
27:1–27:17, 2018. doi:10.4230/LIPIcs.CONCUR.2018.27.

9 Lucas Dixon and Aleks Kissinger. Open-graphs and monoidal theories. Mathematical Structures
in Computer Science, 23(2):308–359, 2013.

10 Andrew Fagan and Ross Duncan. Optimising Clifford Circuits with Quantomatic. Electronic
Proceedings in Theoretical Computer Science, 287:85–105, January 2019. doi:10.4204/EPTCS.
287.5.

11 Brendan Fong, Paolo Rapisarda, and Paweł Sobociński. A categorical approach to open and
interconnected dynamical systems. In Thirty-first annual ACM/IEEE symposium on Logic
and Computer Science (LiCS 2016), pages 495–504, 2016. doi:10.1145/2933575.2934556.

http://arxiv.org/abs/1405.6881
http://ncatlab.org/nlab/show/Globular
http://dx.doi.org/10.1007/978-3-662-54434-1_6
http://dx.doi.org/10.1145/3209108.3209137
http://dx.doi.org/10.1145/2933575.2935316
https://dl.acm.org/citation.cfm?id=3290338
http://dx.doi.org/10.1145/3290338
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.27
http://dx.doi.org/10.4204/EPTCS.287.5
http://dx.doi.org/10.4204/EPTCS.287.5
http://dx.doi.org/10.1145/2933575.2934556

P. Sobociński, P.W. Wilson, and F. Zanasi 20:7

12 E.R. Gansner, E. Koutsofios, S.C. North, and K.-P. Vo. A technique for drawing directed
graphs. IEEE Transactions on Software Engineering, 19(3):214–230, March 1993. doi:
10.1109/32.221135.

13 Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal Inference by String Diagram Surgery.
CoRR, 2019. URL: http://arxiv.org/abs/1811.08338.

14 Bart Jacobs and Fabio Zanasi. The Logical Essentials of Bayesian Reasoning. In Joost-
Peter Katoen Gilles Barthe and Alexandra Silva, editors, Probabilistic Programming. Cambridge
University Press, Cambridge, 2019. URL: http://arxiv.org/abs/1804.01193.

15 Andre Joyal and Ross Street. The Geometry of Tensor Calculus, i. Adv. Math., 88:55–112,
1991.

16 Oleg Kiselyov, Chung-chieh Shan, Daniel P Friedman, and Amr Sabry. Backtracking, Inter-
leaving, and Terminating Monad Transformers. SIGPLAN Not., page 12, 2005.

17 Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A Proof Assistant for Diagrammatic
Reasoning. arXiv:1503.01034 [cs, math], 9195:326–336, 2015. arXiv: 1503.01034. doi:
10.1007/978-3-319-21401-6_22.

18 José Meseguer and Ugo Montanari. Petri nets are monoids. Information and Computation,
88(2):105–155, October 1990. doi:10.1016/0890-5401(90)90013-8.

19 Peter Selinger. A survey of graphical languages for monoidal categories. arXiv:0908.3347
[math], 813:289–355, 2010. arXiv: 0908.3347. doi:10.1007/978-3-642-12821-9_4.

20 Fabio Zanasi. Rewriting in Free Hypergraph Categories. In Proceedings Third Workshop on
Graphs as Models, GaM@ETAPS 2017, Uppsala, Sweden, 23rd April 2017., pages 16–30, 2017.
doi:10.4204/EPTCS.263.2.

CALCO 2019

http://dx.doi.org/10.1109/32.221135
http://dx.doi.org/10.1109/32.221135
http://arxiv.org/abs/1811.08338
http://arxiv.org/abs/1804.01193
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1007/978-3-319-21401-6_22
http://dx.doi.org/10.1016/0890-5401(90)90013-8
http://dx.doi.org/10.1007/978-3-642-12821-9_4
http://dx.doi.org/10.4204/EPTCS.263.2

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Chen
	Introduction
	Matching mu-Logic Examples
	Conclusion

	p002-Milius
	Equations and Algebras with Structure
	Varieties of Data Languages

	p003-Sadrzadeh
	The Algebra of Grammatical Types
	Tensor Semantics
	Implementation on Corpora of Textual Data
	History and References

	p004-Pous
	p005-Ciancia
	Introduction
	Preliminaries
	Omega-coalgebras as lasso automata
	Basics
	From parity automata to lasso automata
	Coherence & Circularity

	Omega-automata
	Omega-coalgebras as stream automata
	Adequacy
	Language equivalence as bisimilarity
	Minimal Omega-automaton

	A final Omega-coalgebra and a Myhill-Nerode Theorem
	Final Omega-coalgebra
	A Myhill-Nerode Theorem for lasso languages
	A characterization theorem for stream languages

	Conclusions
	Proofs

	p006-VanHeerdt
	Introduction
	Preliminaries
	Tree automata, categorically
	Nominal tree automata

	Minimisation
	Minimisation via the cobase
	Simple automata

	Nerode equivalence
	Tree automata with side-effects
	Future work
	Proofs for Section 5

	p007-Bezhanishvili
	Introduction
	Preliminaries
	Logic for topological coalgebras
	A final model
	Lifting functors from {Set} to {Top}
	Bisimulations
	Conclusion

	p008-Basold
	Introduction
	Preliminaries
	Fibrations
	Coalgebras and Coinductive Predicates
	Well-Founded Induction

	Descending Chains in Fibrations
	Categories of Diagrams
	Descending Chains and the Later Modality

	Cartesian Closure and the Löb Rule
	Fibred Cartesian Closure of Diagrams
	The Löb Rule

	Locally Contractive Functors and Coinduction
	The Final Chain and Up-To Techniques

	Chains in First-Order Fibrations
	Products, Coproducts and Quantifiers for Descending Chains
	First Order Fibration of Descending Chains

	Examples
	Recursive Proofs for the Probabilistic Modal mu-Calculus
	Probabilistic Productive Coinductive Programming

	Conclusion and Future Work
	Interpretation of the Probabilistic Modal mu-Calculus
	Types and Terms for Guarded Probabilistic Programming

	p009-DeVisme
	Introduction
	Event structures and their maps
	Prime event structures
	General event structures
	A coreflection and non-coreflection

	Events with an equivalence, categories Epsilon_equiv and Fam_equiv
	Causal histories as extremal realisations
	Causal realisations
	Extremal realisations

	The causal unfolding: an adjunction from Epsilon_equiv to Fam_equiv
	 Unfolding general event structures
	Conclusion
	Equiv-enriched categories

	p010-Gu
	Introduction
	Preliminaries
	Ground case
	Coalgebraic Representation of PLP
	Derivation Semantics
	Distribution Semantics

	General Case
	Coalgebraic Representation of PLP
	Derivation Semantics
	Distribution Semantics

	Computability of the Distribution Semantics (Ground Case)
	Computability of the Distribution Semantics (General Case)

	p011-Belder
	Introduction
	Sequential Processes
	Equational theory
	TSP^{;}(A) is not finitely based
	Ground-completeness with an auxiliary operator

	Decidability
	Acceptance Irredundant Greibach Normal Form
	The existence of a finite bisimulation base

	Conclusion
	Proofs of Lemmas 9 and 10
	Proof of Proposition 21

	p012-Adamek
	Introduction
	Algebraically Cocomplete Categories
	Algebraically Complete Categories
	Terminal Coalgebras Derived from Initial Algebras
	Finitary Set Functors
	Conclusions and Open problems
	Full proofs

	p013-Levy
	Introduction
	Monads and Iteration
	Resumption Monads
	Free Extensions

	Preliminaries
	Free Extensions
	Guardedness on Monads
	Guardedness Predicates
	Guarded Iteration

	The Coinductive Resumption Monad
	Transferring Guarded Elgotness
	Free Extensions of Guarded Elgot Monads

	Conclusions and Further Work

	p014-Ahman
	Introduction
	Preliminaries: containers and directed containers
	Decomposing directed container morphisms
	Decomposing general comonad morphisms
	Conclusion

	p015-Bonchi
	Cartesian bicategories
	Choice in Cartesian bicategories
	Cartesian bicategories with enough maps

	The Span^{} construction
	Characterising cartesian bicategories with choice
	Related work
	Proof of Section 5

	p016-Campbell
	Introduction
	The Graph Programming Language GP 2
	Graphs, Rules and Programs
	Rooted Programs

	Recognising Trees
	Recognising Binary DAGs
	Correctness of Procedures
	Performance

	Topological Sorting
	The Program
	Performance

	Conclusion
	Appendix: Proofs
	Tree Recognition Lemmata
	Binary DAG Recognition Lemmata
	Topological Sorting Lemmata

	p017-Codescu
	Introduction
	Institutions and their hybridisation
	Hybridisation in HETS
	Case Study: specification and verification of a highway pilot
	Conclusions and future work
	Implementation
	Adding a new logic in HETS
	Generic implementation of hybridisation in HETS

	p018-Balco
	Introduction
	Setting the Scene: String Diagrams and Nominal Sets
	String Diagrams and PROPs
	Nominal Sets

	Internal monoidal categories
	Examples
	Nominal monoidal theories and nominal PROPs
	Nominal monoidal theories
	Diagrammatic alpha-equivalence
	Nominal PROPs

	Equivalence of nominal and ordinary string diagrams
	Conclusion
	Some internal category theory

	p019-Gogioso
	Introduction
	Interacting Quantum Observables
	Quantum Observables
	Interacting Quantum Observables
	Dagger Frobenius Monads

	Quantum Clocks
	Quantum clocks from interacting quantum observables – Take I
	Infinite-dimensional quantum systems
	Quantum clocks from interacting quantum observables – Take II

	Quantum Dynamical Systems
	Quantum Dynamical Systems
	States and histories
	Hamiltonians

	Cornerstone Results
	Weyl Canonical Commutation Relations
	Stone's Theorem on 1-parameter unitary groups
	von Neumann's Mean Ergodic Theorem

	Conclusions
	Categorical Quantum Mechanics
	Symmetric monoidal categories
	States, scalars and effects
	Dagger symmetric monoidal categories
	Quantum observables
	Dagger compact structure
	Infinite-dimensional categorical quantum mechanics

	Proofs

	p020-Sobocinski
	Introduction
	Directed Acyclic Open Hypergraphs
	Visualising and Editing Open Hypergraphs
	Matching, Convexity, Rewriting
	Conclusions and Future Work

