
Approximation, Randomization,
and Combinatorial Optimization.
Algorithms and Techniques

APPROX/RANDOM 2019, September 20–22, 2019,
Massachusetts Institute of Technology, Cambridge, MA, USA

Edited by

Dimitris Achlioptas
László A. Végh

LIPIcs – Vo l . 145 – APPROX/RANDOM 2019 www.dagstuh l .de/ l ip i c s

Editors

Dimitris Achlioptas
UC Santa Cruz, California, USA
optas@soe.ucsc.edu

László A. Végh
London School of Economics and Political Science, London, UK
L.Vegh@lse.ac.uk

ACM Classification 2012
Mathematics of computing; Theory of computation

ISBN 978-3-95977-125-2

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-125-2.

Publication date
September, 2019

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
https://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.APPROX-RANDOM.2019.0

ISBN 978-3-95977-125-2 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:optas@soe.ucsc.edu
mailto:L.Vegh@lse.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-125-2
https://www.dagstuhl.de/dagpub/978-3-95977-125-2
https://portal.dnb.de
https://creativecommons.org/licenses/by/3.0/legalcode
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.0
https://www.dagstuhl.de/dagpub/978-3-95977-125-2
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Christel Baier (TU Dresden)
Mikolaj Bojanczyk (University of Warsaw)
Roberto Di Cosmo (INRIA and University Paris Diderot)
Javier Esparza (TU München)
Meena Mahajan (Institute of Mathematical Sciences)
Dieter van Melkebeek (University of Wisconsin-Madison)
Anca Muscholl (University Bordeaux)
Luke Ong (University of Oxford)
Catuscia Palamidessi (INRIA)
Thomas Schwentick (TU Dortmund)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

APPROX/RANDOM 2019

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Dimitris Achlioptas and László A. Végh . 0:xi

APPROX

The Query Complexity of Mastermind with `p Distances
Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda 1:1–1:11

Tracking the `2 Norm with Constant Update Time
Chi-Ning Chou, Zhixian Lei, and Preetum Nakkiran . 2:1–2:15

Submodular Optimization with Contention Resolution Extensions
Benjamin Moseley and Maxim Sviridenko . 3:1–3:17

Prepare for the Expected Worst: Algorithms for Reconfigurable Resources Under
Uncertainty

David Ellis Hershkowitz, R. Ravi, and Sahil Singla . 4:1–4:19

Streaming Hardness of Unique Games
Venkatesan Guruswami and Runzhou Tao . 5:1–5:12

On Strong Diameter Padded Decompositions
Arnold Filtser . 6:1–6:21

Max-Min Greedy Matching
Alon Eden, Uriel Feige, and Michal Feldman . 7:1–7:23

Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues
Gary L. Miller, Noel J. Walkington, and Alex L. Wang . 8:1–8:19

Improved 3LIN Hardness via Linear Label Cover
Prahladh Harsha, Subhash Khot, Euiwoong Lee, and Devanathan Thiruvenkatachari 9:1–9:16

Dynamic Pricing of Servers on Trees
Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Łukasz Jeż . 10:1–10:22

Approximating the Norms of Graph Spanners
Eden Chlamtáč, Michael Dinitz, and Thomas Robinson . 11:1–11:22

Conditional Hardness of Earth Mover Distance
Dhruv Rohatgi . 12:1–12:17

Single-Elimination Brackets Fail to Approximate Copeland Winner
Reyna Hulett . 13:1–13:20

Routing Symmetric Demands in Directed Minor-Free Graphs with Constant
Congestion

Timothy Carpenter, Ario Salmasi, and Anastasios Sidiropoulos 14:1–14:15

Rainbow Coloring Hardness via Low Sensitivity Polymorphisms
Venkatesan Guruswami and Sai Sandeep . 15:1–15:17

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Syntactic Separation of Subset Satisfiability Problems
Eric Allender, Martín Farach-Colton, and Meng-Tsung Tsai . 16:1–16:23

Malleable Scheduling Beyond Identical Machines
Dimitris Fotakis, Jannik Matuschke, and Orestis Papadigenopoulos 17:1–17:14

On the Cost of Essentially Fair Clusterings
Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner,
Daniel R. Schmidt, and Melanie Schmidt . 18:1–18:22

The Maximum Exposure Problem
Neeraj Kumar, Stavros Sintos, and Subhash Suri . 19:1–19:20

Small Space Stream Summary for Matroid Center
Sagar Kale . 20:1–20:22

Improved Bounds for Open Online Dial-a-Ride on the Line
Alexander Birx, Yann Disser, and Kevin Schewior . 21:1–21:22

Improved Online Algorithms for Knapsack and GAP in the Random Order Model
Susanne Albers, Arindam Khan, and Leon Ladewig . 22:1–22:23

Fast and Deterministic Approximations for k-Cut
Kent Quanrud . 23:1–23:20

Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder
Per Austrin and Aleksa Stanković . 24:1–24:17

Robust Appointment Scheduling with Heterogeneous Costs
Andreas S. Schulz and Rajan Udwani . 25:1–25:17

Collapsing Superstring Conjecture
Alexander Golovnev, Alexander S. Kulikov, Alexander Logunov, Ivan Mihajlin, and
Maksim Nikolaev . 26:1–26:23

Improved Algorithms for Time Decay Streams
Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou 27:1–27:17

Approximation Algorithms for Partially Colorable Graphs
Suprovat Ghoshal, Anand Louis, and Rahul Raychaudhury . 28:1–28:20

Towards Optimal Moment Estimation in Streaming and Distributed Models
Rajesh Jayaram and David P. Woodruff . 29:1–29:21

The Complexity of Partial Function Extension for Coverage Functions
Umang Bhaskar and Gunjan Kumar . 30:1–30:21

Almost Optimal Classical Approximation Algorithms for a Quantum
Generalization of Max-Cut

Sevag Gharibian and Ojas Parekh . 31:1–31:17

Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint
Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and
Nabil H. Mustafa . 32:1–32:21

Robust Correlation Clustering
Devvrit, Ravishankar Krishnaswamy, and Nived Rajaraman . 33:1–33:18

Contents 0:vii

RANDOM

Counting Independent Sets and Colorings on Random Regular Bipartite Graphs
Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao . 34:1–34:12

The Expected Number of Maximal Points of the Convolution of Two 2-D
Distributions

Josep Diaz and Mordecai Golin . 35:1–35:14

On a Connectivity Threshold for Colorings of Random Graphs and Hypergraphs
Michael Anastos and Alan Frieze . 36:1–36:10

Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases
Matthew Fahrbach and Dana Randall . 37:1–37:20

Lifted Multiplicity Codes and the Disjoint Repair Group Property
Ray Li and Mary Wootters . 38:1–38:18

Think Globally, Act Locally: On the Optimal Seeding for Nonsubmodular
Influence Maximization

Grant Schoenebeck, Biaoshuai Tao, and Fang-Yi Yu . 39:1–39:20

Direct Sum Testing: The General Case
Irit Dinur and Konstantin Golubev . 40:1–40:11

Fast Algorithms at Low Temperatures via Markov Chains
Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins,
James Stewart, and Eric Vigoda . 41:1–41:14

Deterministic Approximation of Random Walks in Small Space
Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan 42:1–42:22

Two-Source Condensers with Low Error and Small Entropy Gap via
Entropy-Resilient Functions

Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma 43:1–43:20

Efficient Average-Case Population Recovery in the Presence of Insertions and
Deletions

Frank Ban, Xi Chen, Rocco A. Servedio, and Sandip Sinha . 44:1–44:18

Improved Pseudorandom Generators from Pseudorandom Multi-Switching
Lemmas

Rocco A. Servedio and Li-Yang Tan . 45:1–45:23

Unconstraining Graph-Constrained Group Testing
Bruce Spang and Mary Wootters . 46:1–46:20

Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1
Ioannis Z. Emiris, Vasilis Margonis, and Ioannis Psarros . 47:1–47:13

Improved Strong Spatial Mixing for Colorings on Trees
Charilaos Efthymiou, Andreas Galanis, Thomas P. Hayes, Daniel Štefankovič, and
Eric Vigoda . 48:1–48:16

(Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing
Domagoj Bradac, Sahil Singla, and Goran Zuzic . 49:1–49:21

APPROX/RANDOM 2019

0:viii Contents

Testing Odd Direct Sums Using High Dimensional Expanders
Roy Gotlib and Tali Kaufman . 50:1–50:20

A Lower Bound for Sampling Disjoint Sets
Mika Göös and Thomas Watson . 51:1–51:13

Approximating the Noise Sensitivity of a Monotone Boolean Function
Ronitt Rubinfeld and Arsen Vasilyan . 52:1–52:17

Connectivity of Random Annulus Graphs and the Geometric Block Model
Sainyam Galhotra, Arya Mazumdar, Soumyabrata Pal, and Barna Saha 53:1–53:23

A Local Stochastic Algorithm for Separation in Heterogeneous Self-Organizing
Particle Systems

Sarah Cannon, Joshua J. Daymude, Cem Gökmen, Dana Randall, and
Andréa W. Richa . 54:1–54:22

The Large-Error Approximate Degree of AC0

Mark Bun and Justin Thaler . 55:1–55:16

String Matching: Communication, Circuits, and Learning
Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar 56:1–56:20

Efficient Black-Box Identity Testing for Free Group Algebras
V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay 57:1–57:16

The Maximum Label Propagation Algorithm on Sparse Random Graphs
Charlotte Knierim, Johannes Lengler, Pascal Pfister, Ulysse Schaller, and
Angelika Steger . 58:1–58:15

Samplers and Extractors for Unbounded Functions
Rohit Agrawal . 59:1–59:21

Successive Minimum Spanning Trees
Svante Janson and Gregory B. Sorkin . 60:1–60:16

Simple Analysis of Sparse, Sign-Consistent JL
Meena Jagadeesan . 61:1–61:20

Streaming Coreset Constructions for M-Estimators
Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus 62:1–62:15

Pairwise Independent Random Walks Can Be Slightly Unbounded
Shyam Narayanan . 63:1–63:19

Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave
Distributions

Zongchen Chen and Santosh S. Vempala . 64:1–64:12

Exploring Differential Obliviousness
Amos Beimel, Kobbi Nissim, and Mohammad Zaheri . 65:1–65:20

Thresholds in Random Motif Graphs
Michael Anastos, Peleg Michaeli, and Samantha Petti . 66:1–66:19

Contents 0:ix

Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary
Conditions

Antonio Blanca, Reza Gheissari, and Eric Vigoda . 67:1–67:19

On List Recovery of High-Rate Tensor Codes
Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and
Shashwat Silas . 68:1–68:22

Approximate F2-Sketching of Valuation Functions
Grigory Yaroslavtsev and Samson Zhou . 69:1–69:21

Streaming Verification of Graph Computations via Graph Structure
Amit Chakrabarti and Prantar Ghosh . 70:1–70:20

Approximate Degree, Secret Sharing, and Concentration Phenomena
Andrej Bogdanov, Nikhil S. Mande, Justin Thaler, and Christopher Williamson . . 71:1–71:21

Improved Extractors for Recognizable and Algebraic Sources
Fu Li and David Zuckerman . 72:1–72:22

APPROX/RANDOM 2019

Preface

This volume contains the papers presented at the 22nd International Conference on Ap-
proximation Algorithms for Combinatorial Optimization Problems (APPROX’2019) and
the 23rd International Conference on Randomization and Computation (RANDOM’2019),
which took place concurrently at the at Massachusetts Institute of Technology, USA during
September 20–22, 2019.

APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally difficult problems, and was the 22nd in
the series. RANDOM is concerned with applications of randomness to computational and
combinatorial problems, and was the 23rd in the series. Prior to 2003, APPROX took place
in Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), and Rome (2002),
while RANDOM took place in Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva
(2000), Berkeley (2001), and Harvard (2002). Since 2003, APPROX and RANDOM have been
collocated, taking place in Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona
(2006), Princeton (2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011),
Boston (2012), Berkeley (2013), Barcelona (2014), Princeton (2015), Paris (2016), Berkeley
(2017), and Princeton (2018).

Topics of interest for APPROX and RANDOM are: approximation algorithms, hardness
of approximation, small space, sub-linear time and streaming algorithms, online algorithms,
approaches that go beyond worst case analysis, distributed and parallel approximation,
embeddings and metric space methods, mathematical programming methods, spectral
methods, combinatorial optimization, algorithmic game theory, mechanism design and
economics, computational geometric problems, approximate learning, design and analysis of
randomized algorithms, randomized complexity theory, pseudorandomness and derandom-
ization, random combinatorial structures, random walks/Markov chains, expander graphs
and randomness extractors, probabilistic proof systems, random projections and embed-
dings, error-correcting codes, average-case analysis, smoothed analysis, property testing, and
computational learning theory.

The volume contains 33 contributed papers, selected by the APPROX Program Committee
out of 66 submissions, and 39 contributed papers, selected by the RANDOM Program
Committee also out of 66 submissions. We would like to thank all of the authors who
submitted papers, the invited speakers, the members of the Program Committees, and the
external reviewers. We are grateful for the guidance of the steering committees: Klaus
Jansen, Samir Khuller, and Monaldo Mastrolili for APPROX, and Oded Goldreich, Cris
Moore, Anup Rao, Omer Reingold, Dana Ron, Ronitt Rubinfeld, Amit Sahai, Ronen Shaltiel,
Alistair Sinclair, and Paul Spirakis for RANDOM.

September 2019

Dimitris Achlioptas and László A. Végh

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Program Committees

APPROX
Nima Anari Stanford University
Kristóf Bérczi Eötvös University, Budapest
Deeparnab Chakrabarty Dartmouth College
Karthekeyan Chandrasekaran University of Illinois, Urbana-Champaign
Michael Dinitz Johns Hopkins University
Leah Epstein University of Haifa
Samuel Fiorini Université libre de Bruxelles
Swati Gupta Georgia Institute of Technology
Bundit Laekhanukit Shanghai University of Finance and Economics
Joseph Seffi Naor Technion
Huy Lê Nguyễn Northeastern University
Kanstantsin Pashkovich University of Ottawa
Barna Saha University of Massachusetts Amherst
Bruce Shepherd University of British Columbia
David B. Shmoys Cornell University
He Sun University of Edinburgh
László A. Végh (chair) London School of Economics and Political Science

RANDOM
Dimitris Achlioptas (chair) University of California Santa Cruz/Google
Nikhil Bansal Eindhoven/Centrum Wiskunde & Informatica
Paul Beame University of Washington
Ivona Bezakova Rochester Institute of Technology
Klim Efremenko Ben Gurion University
Uri Feige Weizmann Institute of Science
Anna Gilbert University of Michigan
Subhash Khot New York University
Antonina Kolokova Memorial University of Newfoundland
Ravi Kumar Google
Or Meir University of Haifa
Prasad Raghavendra University of California Berkeley
Noga Ron-Zewi University of Haifa
Sofya Raskhodnikova Boston University
C. Seshadhri University of California Santa Cruz
Devavrat Shah Massachusetts Institute of Technology
Christian Sohler Technical University of Dortmund/Google
Kunal Talwar Google
Thomas Vidick California Institute of Technology
Jan Vondrak Stanford University
David Woodruff Carnegie Mellon University

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Subreviewers

Raghavendra Addanki
David Adjiashvili
Saba Ahmadi
Matthew Aldridge
Zeyuan Allen-Zhu
Itai Arad
Sepehr Assadi
Ainesh Bakshi
Coulter Beeson
Amos Beimel
Erika Bérczi-Kovács
Amey Bhangale
Marcin Bienkowski
Jaroslaw Blasiok
Andrej Bogdanov
Jakub Bulín
Mark Bun
Gruia Calinescu
Bastien Cazaux
Deepayan Chakrabarti
Parinya Chalermsook
Hsien-Chih Chang
Arkadev Chattopadhyay
Eshan Chattopadhyay
Lin Chen
Eden Chlamtáč
Gil Cohen
Daniel Dadush
Anindya De
Ilias Diakonikolas
Kashyap Dixit
Benjamin Doerr
Carola Doerr
Dean Doron
Talya Eden
Ahmed El Alaoui
Hossein Esfandiari
Yaron Fairstein
Vitaly Feldman
Larkin Flodin
Kyle Fox
Tom Friedetzky
Alan Frieze
Mehrdad Ghadiri
Prantar Ghosh

Dion Gijswijt
Sasha Golovnev
David Gosset
Vineet Goyal
Catherine Greenhill
Benoit Groz
Heng Guo
Guru Guruganesh
Nick Harvey
Jan Hladky
Pavel Hrubes
Zhiyi Huang
Sungjin Im
Nikita Ivkin
Klaus Jansen
Rajesh Jayaram
T.S. Jayram
Matthew Jenssen
Shaofeng Jiang
John Kallaugher
Pritish Kamath
Michael Kapralov
Thomas Kesselheim
Sanjeev Khanna
Guy Kindler
Tamás Király
Ilan Komargodski
Swastik Kopparty
Guy Kortsarz
Michal Koucky
Grigorios Koumoutsos
Lukasz Kowalik
Andrei Krokhin
Janardhan Kulkarni
Marvin Künnemann
Adam Kurpisz
Hung Le
Euiwoong Lee
Reut Levi
Xin Li
Jason Li
Andre Linhares
Michael Litvak
Tianyu Liu
Kuikui Liu

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Subreviewers

Zephyr Lucas
Vivek Madan
Péter Madarasi
Konstantin Makarychev
Yury Makarychev
Pasin Manurangsi
Jannik Matuschke
Colin McDiarmid
Andrew McGregor
Raghu Meka
Dor Minzer
Matthias Mnich
Sidhanth Mohanty
Michael Molloy
Dana Moshkovitz
Marcin Mucha
Wolfgang Mulzer
Cameron Musco
Christopher Musco
Viswanah Nagarajan
Yasamin Nazari
Maryam Negahbani
Alantha Newman
André Nusser
Zeev Nutov
Izhar Oppenheim
Ramesh Krishnan S. Pallavoor
Katarzyna Paluch
Dömötör Pálvölgyi
Denis Pankratov
Pan Peng
Will Perkins
Manish Purohit
Kent Quanrud
Shijin Rajakrishnan
Oded Regev
Robert Robere
Dana Ron
Atri Rudra
Sushant Sachdeva
Rishi Saket

Mohammad Salavatipour
Laura Sanita
Rahul Santhanam
Richard Santiago
Jonathan Scarlett
Frans Schalekamp
Aaron Schild
Melanie Schmidt
Grant Schoenebeck
Sahil Singla
D Sivakumar
Noah Stephens-Davidowitz
Sebastian Stiller
Warut Suksompong
Ohad Talmon
Li-Yang Tan
Justin Thaler
Vera Traub
Luca Trevisan
Madhur Tulsiani
Frank Vallentin
Kasturi Varadarajan
Nithin Varma
Sergei Vassilvitskii
Ben Lee Volk
Hoa Vu
David Wajc
Yipu Wang
Justin Ward
Omri Weinstein
Andreas Wiese
Christopher Williamson
David Williamson
Peter Winkler
Anthony Wirth
Eitan Yaakobi
Hiroki Yanagisawa
Kostas Zampetakis
Luca Zanetti
Samson Zhou
Stanislav Živný

List of Authors

Rohit Agrawal (59)
John A. Paulson School of Engineering
and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA

Susanne Albers (22)
Technical University of Munich, Germany

Eric Allender (16)
Rutgers University, Piscataway, NJ 08854, USA

Michael Anastos (36, 66)
Carnegie Mellon University,
Pittsburgh PA 15213, USA

V. Arvind (57)
Institute of Mathematical Sciences (HBNI),
Chennai, India

Per Austrin (24)
KTH Royal Institute of Technology,
Stockholm, Sweden

Frank Ban (44)
UC Berkeley, Berkeley, CA, USA

Amos Beimel (65)
Dept. of Computer Science,
Ben-Gurion University, Israel

Avraham Ben-Aroya (43)
The Blavatnik School of Computer Science,
Tel-Aviv University, Tel Aviv, Israel

Ioana O. Bercea (18)
School of Electrical Engineering,
Tel-Aviv University, Israel

Umang Bhaskar (30)
Tata Institute of Fundamental Research,
Mumbai, India

Alexander Birx (21)
Institute of Mathematics and Graduate School
CE, TU Darmstadt, Germany

Antonio Blanca (67)
Department of Computer Science and
Engineering, Pennsylvania State University, USA

Andrej Bogdanov (71)
Department of Computer Science and
Engineering, Chinese University of Hong Kong;
Institute for Theoretical Computer Science and
Communications, Hong Kong

Domagoj Bradac (49)
Department of Mathematics, Faculty of Science,
University of Zagreb, Croatia

Vladimir Braverman (27, 62)
Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Mark Bun (55)
Boston University, Boston, MA, USA

Sarah Cannon (54)
Claremont McKenna College,
Claremont, CA, USA

Timothy Carpenter (14)
Dept. of Computer Science & Engineering,
The Ohio State University, Columbus, OH, USA

Amit Chakrabarti (70)
Dartmouth College, Hanover, NH, USA

Abhranil Chatterjee (57)
Institute of Mathematical Sciences (HBNI),
Chennai, India

Xi Chen (44)
Columbia University, New York, NY, USA

Zongchen Chen (41, 64)
School of Computer Science, Georgia Institute of
Technology, Atlanta, USA

Eden Chlamtáč (11)
Ben Gurion University of the Negev,
Beersheva, Israel

Chi-Ning Chou (2)
School of Engineering and Applied Sciences,
Harvard University,
Cambridge, Massachusetts, USA

Gil Cohen (43)
The Blavatnik School of Computer Science,
Tel-Aviv University, Tel Aviv, Israel

Ilan Reuven Cohen (10)
TU Eindhoven, The Netherlands;
CWI, Amsterdam, The Netherlands

Rajit Datta (57)
Chennai Mathematical Institute, Chennai, India

Joshua J. Daymude (54)
Computer Science, CIDSE,
Arizona State University, Tempe, AZ, USA

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5563-7402
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.22
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.16
https://orcid.org/0000-0001-5475-6522
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.36
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.66
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.57
https://orcid.org/0000-0001-8217-0158
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.43
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.30
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.67
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.71
https://orcid.org/0000-0002-8058-7782
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.49
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.55
https://orcid.org/0000-0001-6510-4669
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.14
https://orcid.org/0000-0003-3633-9180
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.70
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.57
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.64
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.2
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.43
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.57
https://orcid.org/0000-0001-7294-5626
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Authors

Devvrit (33)
BITS Pilani, Goa Campus, Goa, India

Josep Diaz (35)
Department of CS, UPC, Barcelona, Spain

Michael Dinitz (11)
Johns Hopkins University, Baltimore, MD, USA

Irit Dinur (40)
The Weizmann Institute of Science,
Rehovot, Israel

Yann Disser (21)
Institute of Mathematics,
TU Darmstadt, Germany

Dean Doron (43)
Department of Computer Science,
University of Texas at Austin, USA

Alon Eden (7, 10)
Tel-Aviv University, Israel

Charilaos Efthymiou (48)
Department of Computer Science,
University of Warwick, UK

Ioannis Z. Emiris (47)
Department of Informatics &
Telecommunications, National & Kapodistrian
University of Athens, Greece;
ATHENA Research & Innovation Center, Greece

Matthew Fahrbach (37)
School of Computer Science,
Georgia Institute of Technology, Atlanta,
Georgia, USA

Martín Farach-Colton (16)
Rutgers University, Piscataway, NJ 08854, USA

Uriel Feige (7)
Weizmann Institute of Science, Rehovot, Israel

Dan Feldman (62)
Department of Computer Science,
University of Haifa, Israel

Michal Feldman (7)
Tel Aviv University, Israel;
Microsoft Research, Herzlyia, Israel

Manuel Fernández V (1)
Computer Science Department,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

Amos Fiat (10)
Tel Aviv University, Israel

Arnold Filtser (6)
Ben Gurion University of the Negev,
Beersheva, Israel

Dimitris Fotakis (17)
School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

Alan Frieze (36)
Carnegie Mellon University,
Pittsburgh PA 15213, USA

Andreas Galanis (41, 48)
Department of Computer Science,
University of Oxford, Oxford, UK

Sainyam Galhotra (53)
University of Massachusetts Amherst, USA

Sevag Gharibian (31)
University of Paderborn, Germany;
Virginia Commonwealth University,
Richmond, VA, USA

Reza Gheissari (67)
Courant Institute of Mathematical Sciences,
New York University, USA

Prantar Ghosh (70)
Dartmouth College, Hanover, NH, USA

Suprovat Ghoshal (28)
Indian Institute of Science, Bangalore, India

Leslie Ann Goldberg (41)
Department of Computer Science,
University of Oxford, Oxford, UK

Mordecai Golin (35)
CSE Department, Hong Kong UST

Alexander Golovnev (26, 56)
Harvard University, Cambridge, MA, USA

Konstantin Golubev (40)
D-MATH, ETH Zurich, Switzerland

Roy Gotlib (50)
Bar-Ilan University, Ramat Gan, Israel

Martin Groß (18)
School of Business and Economics,
RWTH Aachen, Germany

Venkatesan Guruswami (5, 15)
Computer Science Department,
Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA, USA, 15213

Cem Gökmen (54)
Georgia Institute of Technology,
Atlanta, GA, USA

https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.33
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.35
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.40
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.43
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.7
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.47
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.37
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.16
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.7
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.7
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.1
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6
https://orcid.org/0000-0001-6864-8960
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.36
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.53
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.31
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.67
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.70
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.28
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://orcid.org/0000-0002-1260-6574
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.35
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.56
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.40
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.50
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://orcid.org/0000-0001-7926-3396
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.15
https://orcid.org/0000-0001-9446-6052
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54

Authors 0:xix

Mika Göös (51, 56)
Institute for Advanced Study,
Princeton, NJ, USA

Prahladh Harsha (9)
School of Technology and Computer Science,
Tata Institute of Fundamental Research,
Mumbai, India

Thomas P. Hayes (48)
Department of Computer Science,
University of New Mexico,
Albuquerque, NM, USA

David Ellis Hershkowitz (4)
Carnegie Mellon University,
Pittsburgh, PA, USA

Chien-Chung Huang (32)
DI ENS, École Normale supérieure,
Université PSL, Paris, France;
CNRS, Paris, France

Reyna Hulett (13)
Department of Computer Science,
Stanford University, CA, USA

Meena Jagadeesan (61)
Harvard University,
Cambridge, Massachusetts, USA

Svante Janson (60)
Department of Mathematics, Uppsala University,
PO Box 480, SE-751 06 Uppsala, Sweden

Rajesh Jayaram (29)
Carnegie Mellon University,
Pittsburgh, PA, USA

Łukasz Jeż (10)
University of Wrocław, Poland

Sagar Kale (20)
EPFL, Lausanne, Switzerland

Tali Kaufman (50)
Bar-Ilan University, Ramat Gan, Israel

Arindam Khan (22)
Indian Institute of Science, Bangalore, India

Subhash Khot (9)
Department of Computer Science,
Courant Institute of Mathematical Sciences,
New York University, USA

Samir Khuller (18)
Department of Computer Science,
Northwestern University, Evanston, USA

Charlotte Knierim (58)
ETH Zurich, Switzerland

Swastik Kopparty (68)
Department of Mathematics and
Department of Computer Science,
Rutgers University, NJ, USA

Ravishankar Krishnaswamy (33)
Microsoft Research, Bengaluru, India

Alexander S. Kulikov (26)
Steklov Institute of Mathematics at
St. Petersburg,
Russian Academy of Sciences, Russia

Aounon Kumar (18)
Department of Computer Science,
University of Maryland, College Park, USA

Gunjan Kumar (30)
Tata Institute of Fundamental Research,
Mumbai, India

Neeraj Kumar (19)
Department of Computer Science,
University of California, Santa Barbara, USA

Leon Ladewig (22)
Technical University of Munich, Germany

Harry Lang (27, 62)
MIT CSAIL, Cambridge, MA, USA

Euiwoong Lee (9)
Department of Computer Science,
Courant Institute of Mathematical Sciences,
New York University, USA

Zhixian Lei (2)
School of Engineering and Applied Sciences,
Harvard University,
Cambridge, Massachusetts, USA

Johannes Lengler (58)
ETH Zurich, Switzerland

Fu Li (72)
Department of Computer Science,
University of Texas at Austin, USA

Ray Li (38)
Department of Computer Science,
Stanford University, CA, USA

Chao Liao (34)
Shanghai Jiao Tong University, China

Jiabao Lin (34)
Shanghai University of Finance and Economics,
China

Alexander Logunov (26)
St. Petersburg State University, Russia

APPROX/RANDOM 2019

https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.51
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.56
https://orcid.org/0000-0002-2739-5642
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.4
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://orcid.org/0000-0001-8877-1659
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.13
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.61
https://orcid.org/0000-0002-9680-2790
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.60
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.29
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.20
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.50
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.22
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.33
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.30
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.19
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.22
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.2
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.72
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.38
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.34
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.34
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26

0:xx Authors

Anand Louis (28)
Indian Institute of Science, Bangalore, India

Pinyan Lu (34)
Shanghai University of Finance and Economics,
China

Nikhil S. Mande (71)
Department of Computer Science,
Georgetown University, USA

Zhenyu Mao (34)
Shanghai University of Finance and Economics,
China

Vasilis Margonis (47)
Department of Informatics &
Telecommunications, National & Kapodistrian
University of Athens, Greece

Mathieu Mari (32)
DI ENS, École Normale supérieure,
Université PSL, Paris, France

Claire Mathieu (32)
CNRS, Paris, France

Jannik Matuschke (17)
Research Center for Operations Management,
KU Leuven, Belgium

Arya Mazumdar (53)
University of Massachusetts Amherst, USA

Peleg Michaeli (66)
School of Mathematical Sciences,
Tel Aviv University, Israel

Ivan Mihajlin (26)
University of California, San Diego, CA, USA

Gary L. Miller (8)
Carnegie Mellon University,
Pittsburgh, PA, USA

Joseph S. B. Mitchell (32)
Stony Brook University,
Stony Brook, NY 11794, USA

Benjamin Moseley (3)
Tepper School of Business, Carnegie Mellon
University, Pittsburgh, PA, USA;
Relational AI, Berkeley CA, USA

Partha Mukhopadhyay (57)
Chennai Mathematical Institute, Chennai, India

Jack Murtagh (42)
School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA

Nabil H. Mustafa (32)
Université Paris-Est, Laboratoire d’Informatique
Gaspard-Monge, ESIEE Paris, France

Preetum Nakkiran (2)
School of Engineering and Applied Sciences,
Harvard University,
Cambridge, Massachusetts, USA

Shyam Narayanan (63)
Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA

Maksim Nikolaev (26)
St. Petersburg State University, Russia

Kobbi Nissim (65)
Dept. of Computer Science,
Georgetown University, Washington, D.C., USA

Soumyabrata Pal (53)
University of Massachusetts Amherst, USA

Orestis Papadigenopoulos (17)
Department of Computer Science,
The University of Texas at Austin, USA

Ojas Parekh (31)
Sandia National Laboratories,
Albuquerque, New Mexico, USA

Will Perkins (41)
Department of Mathematics, Statistics, and
Computer Science,
University of Illinois at Chicago, Chicago, USA

Samantha Petti (66)
School of Mathematics,
Georgia Institute of Technology,
Atlanta, Georgia, USA

Pascal Pfister (58)
ETH Zurich, Switzerland

Ioannis Psarros (47)
Institute of Computer Science,
University of Bonn, Germany

Kent Quanrud (23)
Department of Computer Science,
University of Illinois at Urbana-Champaign,
USA

Nived Rajaraman (33)
IIT Madras, Chennai, India

Dana Randall (37, 54)
School of Computer Science,
Georgia Institute of Technology,
Atlanta, Georgia, USA

R. Ravi (4)
Carnegie Mellon University,
Pittsburgh, PA, USA

Rahul Raychaudhury (28)
Indian Institute of Science, Bangalore, India

https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.28
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.34
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.71
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.34
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.47
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://orcid.org/0000-0002-7463-3279
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.53
https://orcid.org/0000-0002-2695-4609
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.66
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.8
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://orcid.org/0000-0001-8162-017X
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.3
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.57
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.2
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.63
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.53
https://orcid.org/0000-0003-2164-0202
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.31
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://orcid.org/0000-0001-8281-8161
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.66
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.47
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.23
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.33
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.37
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.4
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.28

Authors 0:xxi

Daniel Reichman (56)
Department of Computer Science,
Princeton University, NJ, USA

Omer Reingold (42)
Computer Science Department,
Stanford University, Stanford, CA USA

Nicolas Resch (68)
Department of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA, USA

Andréa W. Richa (54)
Computer Science, CIDSE,
Arizona State University, Tempe, AZ, USA

Thomas Robinson (11)
Ben Gurion University of the Negev,
Beersheva, Israel

Dhruv Rohatgi (12)
MIT, Cambridge, Massachusetts, USA

Noga Ron-Zewi (68)
Department of Computer Science,
University of Haifa, Israel

Ronitt Rubinfeld (52)
CSAIL at MIT, Cambridge, MA, USA;
Blavatnik School of Computer Science at
Tel Aviv University, Israel

Daniela Rus (62)
MIT CSAIL, Cambridge, MA, USA

Clemens Rösner (18)
Institute of Computer Science,
University of Bonn, Germany

Barna Saha (53)
University of California, Berkeley, USA

Ario Salmasi (14)
Dept. of Computer Science & Engineering,
The Ohio State University, Columbus, OH, USA

Sai Sandeep (15)
Carnegie Mellon University,
Pittsburgh, PA, USA

Shubhangi Saraf (68)
Department of Mathematics and Department of
Computer Science, Rutgers University, NJ, USA

Ulysse Schaller (58)
ETH Zurich, Switzerland

Kevin Schewior (21)
Institut für Informatik,
Technische Universität München,
Garching, Germany

Daniel R. Schmidt (18)
Institute of Computer Science,
University of Cologne, Germany

Melanie Schmidt (18)
Institute of Computer Science,
University of Bonn, Germany

Grant Schoenebeck (39)
University of Michigan, Ann Arbor, USA

Andreas S. Schulz (25)
Technische Universität München, Germany

Rocco A. Servedio (44, 45)
Columbia University, New York, NY, USA

Igor Shinkar (56)
School of Computing Science,
Simon Fraser University, Burnaby, BC, Canada

Aaron Sidford (42)
Management Science & Engineering,
Stanford University, Stanford, CA USA

Anastasios Sidiropoulos (14)
Dept. of Computer Science,
University of Illinois at Chicago, USA

Shashwat Silas (68)
Department of Computer Science,
Stanford University, CA, USA

Sahil Singla (4, 49)
Princeton University, Princeton, NJ, USA;
Institute for Advanced Study,
Princeton, NJ, USA

Sandip Sinha (44)
Columbia University, New York, NY, USA

Stavros Sintos (19)
Duke University, Durham, NC, USA

Gregory B. Sorkin (60)
Department of Mathematics, The London
School of Economics and Political Science,
Houghton Street, London WC2A 2AE, England

Bruce Spang (46)
Stanford University, CA, USA

Aleksa Stanković (24)
KTH Royal Institute of Technology,
Stockholm, Sweden

Angelika Steger (58)
ETH Zurich, Switzerland

James Stewart (41)
Department of Computer Science,
University of Oxford, Oxford, UK

APPROX/RANDOM 2019

https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.56
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.52
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.53
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.14
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.15
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21
https://orcid.org/0000-0001-7381-912X
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://orcid.org/0000-0001-6878-0670
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.39
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.25
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.56
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.14
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://orcid.org/0000-0002-8800-6479
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.4
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.49
https://orcid.org/0000-0002-2592-175X
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.19
https://orcid.org/0000-0003-4935-7820
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.60
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.46
https://orcid.org/0000-0002-8416-8665
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41

0:xxii Authors

Subhash Suri (19)
Department of Computer Science,
University of California, Santa Barbara, USA

Maxim Sviridenko (3)
Yahoo Research, New York, NY, USA

Amnon Ta-Shma (43)
The Blavatnik School of Computer Science,
Tel-Aviv University, Tel Aviv, Israel

Li-Yang Tan (45)
Department of Computer Science,
Stanford University, Palo Alto, CA, USA

Biaoshuai Tao (39)
University of Michigan, Ann Arbor, USA

Runzhou Tao (5)
Institute for Interdisciplinary
Information Sciences,
Tsinghua University, Beijing, China 100084

Justin Thaler (55, 71)
Georgetown University, Washington, DC, USA

Devanathan Thiruvenkatachari (9)
Department of Computer Science,
Courant Institute of Mathematical Sciences,
New York University, USA

Meng-Tsung Tsai (16)
National Chiao Tung University,
Hsinchu, Taiwan

Rajan Udwani (25)
Columbia University, New York, NY, USA

Enayat Ullah (27)
Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Salil Vadhan (42)
School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA

Arsen Vasilyan (52)
CSAIL at MIT, Cambridge, MA, USA

Santosh S. Vempala (64)
School of Computer Science,
Georgia Institute of Technology, USA

Eric Vigoda (41, 48, 67)
School of Computer Science,
Georgia Institute of Technology, Atlanta, USA

Noel J. Walkington (8)
Carnegie Mellon University,
Pittsburgh, PA, USA

Alex L. Wang (8)
Carnegie Mellon University,
Pittsburgh, PA, USA

Thomas Watson (51)
University of Memphis, TN, USA

Christopher Williamson (71)
Department of Computer Science
and Engineering,
Chinese University of Hong Kong, Hong Kong

David P. Woodruff (1, 29)
Computer Science Department,
Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA

Mary Wootters (38, 46)
Departments of Computer Science and Electrical
Engineering, Stanford University, CA, USA

Grigory Yaroslavtsev (69)
Indiana University, Bloomington, IN, USA;
The Alan Turing Institute, London, UK

Taisuke Yasuda (1)
Department of Mathematics,
Carnegie Mellon University,
Pittsburgh, Pennsylvania, USA

Fang-Yi Yu (39)
University of Michigan, Ann Arbor, USA

Mohammad Zaheri (65)
Dept. of Computer Science,
Georgetown University, Washington, D.C., USA

Samson Zhou (27, 69)
School of Informatics, Computing, and
Engineering, Indiana University,
Bloomington, IN, USA

David Zuckerman (72)
Department of Computer Science,
University of Texas at Austin, USA

Goran Zuzic (49)
Department of Computer Science,
Carnegie Mellon University,
Pittsburgh, PA, USA

Daniel Štefankovič (48)
Department of Computer Science,
University of Rochester, NY, USA

https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.19
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.3
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.43
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://orcid.org/0000-0003-4098-844X
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.39
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.55
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.71
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.16
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.25
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.52
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.64
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.67
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.8
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.8
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.51
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.71
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.1
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.29
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.38
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.46
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.69
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.1
https://orcid.org/0000-0002-3697-8807
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.39
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.69
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.72
https://orcid.org/0000-0002-9322-6329
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.49
https://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48

The Query Complexity of Mastermind with `p
Distances
Manuel Fernández V
Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
manuelf@andrew.cmu.edu

David P. Woodruff
Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
dwoodruf@cs.cmu.edu

Taisuke Yasuda
Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
yasuda.taisuke1@gmail.com

Abstract
Consider a variant of the Mastermind game in which queries are `p distances, rather than the usual
Hamming distance. That is, a codemaker chooses a hidden vector y ∈ {−k,−k + 1, . . . , k − 1, k}n

and answers to queries of the form ‖y− x‖p where x ∈ {−k,−k + 1, . . . , k − 1, k}n. The goal is to
minimize the number of queries made in order to correctly guess y.

In this work, we show an upper bound of O
(
min
{

n, n log k
log n

})
queries for any real 1 ≤ p <∞ and

O(n) queries for p = ∞. To prove this result, we in fact develop a nonadaptive polynomial time
algorithm that works for a natural class of separable distance measures, i.e., coordinate-wise sums of
functions of the absolute value. We also show matching lower bounds up to constant factors, even
for adaptive algorithms for the approximation version of the problem, in which the problem is to
output y′ such that ‖y′ − y‖p ≤ R for any R ≤ k1−εn1/p for constant ε > 0. Thus, essentially any
approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors.
Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker
answers queries with any q = (1± ε)‖y− x‖p, there is no query efficient algorithm.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Design and analysis of algorithms

Keywords and phrases Mastermind, Query Complexity, `p Distance

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.1

Category APPROX

Funding David P. Woodruff : Part of this work was done while visiting Google as well as the Simons
Institute for the Theory of Computing. D. Woodruff would also like to thank partial support from
the Office of Naval Research (ONR) grant N00014-18-1-2562.

Acknowledgements We thank Flavio Chierichetti and Ravi Kumar for helpful discussions, as well
as the anonymous reviewers for helpful feedback.

1 Introduction

Mastermind is a game played between two players, the codemaker and the codebreaker. In
the 1970 original 4-position 6-color version of the game, the codemaker chooses 4 colored
pegs, each taking one of 6 colors, and the codebreaker tries to guess the codemaker’s 4 pegs
by making queries to the codemaker by taking a guess at the sequence of the codemaker’s
4 colored pegs. These guesses are answered by two numbers, the number of pegs guessed
that are in the right position and the right color, indicated by black pegs, and the additional
number of pegs of the right color but in the wrong position, indicated by white pegs.

© Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 1; pp. 1:1–1:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuelf@andrew.cmu.edu
mailto:dwoodruf@cs.cmu.edu
mailto:yasuda.taisuke1@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 The Query Complexity of Mastermind with `p Distances

Ever since, this game and its generalizations and variants have been studied by many
computer scientists. The original version was completely characterized by [7], who showed
upper and lower bounds of 5 queries for deterministic strategies. The n-position k-color
generalization of the game was studied in [4], which sparked a line of research that lead to
progressive improvement in upper and lower bounds for this problem, both in the original
version of the game as well as in related variants of the game [2]. As these variants are not
the focus of this work, we refer the reader to the expositions of [5, 2] for more details on
this literature.

Note that in the variant that the codebreaker only receives the black peg answers, the
problem can be phrased as guessing a hidden vector based on Hamming distance queries. One
can then consider many variants of the Mastermind game in which the codebreaker guesses
the codemaker’s hidden vector based on other distance queries. For instance, motivated by
the theory of black-box complexity, [1] recently studied the variant where the distance is the
length of the longest common prefix with respect to an unknown permutation. In recreational
mathematics, the `1 distance case has been studied under the name of “digit-distance” [6].
In this work, we study the case of `p distance queries. That is, the codemaker chooses a
hidden vector y ∈ {−k,−k + 1, . . . , k − 1, k}n and answers to queries of the form ‖y− x‖p
where x ∈ {−k,−k + 1, . . . , k − 1, k}n.

1.1 Our contributions
On the algorithmic side, we present Theorem 9, in which we develop a very general nonadaptive
algorithm that works for any separable distance measure, i.e., the distance between x,y ∈ Rn
is given by f(x−y) where f(x) =

∑n
i=1 gi(|xi|). When we apply this to the case of gi(x) = xp

for any constant real 1 ≤ p <∞, i.e., when f is the (p-th power of the) `p norm, we obtain a
polynomial time algorithm making O

(
min

{
n, n log k

logn

})
queries. For p =∞, we give a simple

algorithm achieving O(n) queries. We also give lower bounds for any adaptive algorithm that
match our upper bounds up to constant factors, for any constant integer 1 ≤ p <∞ (Theorem
11) and for p =∞ (Theorem 12). In fact, our lower bounds are for a weaker problem, the
problem of outputting an approximation y′ such that its distance from the true hidden vector
y is at most ‖y′ − y‖p ≤ R, whenever the approximation radius satisfies R ≤ k1−εn1/p

(where we think of n1/p = 1 when p =∞) for constant ε > 0. Thus, approximation for this
problem is hard, in the sense that finding the point exactly is optimal up to constant factors,
even when the approximation radius is as large as k1−εn1/p.

Our main algorithmic technique for obtaining Theorem 9 is a judicious application of a
generalization of the Fourier-based detecting matrix construction of [3]. Our lower bounds
are simply obtained by counting the number of lattice points in an `p ball.

Finally, we consider a noisy version of the above problem, where the codemaker is allowed
to answer queries with any answer that is within (1± ε)‖y− x‖p. For this variant, we show
that any algorithm must make Ω(exp(ε2Θ(kpn))) queries in Theorem 13. That is, there is
no query efficient algorithm for this problem.

2 Preliminaries

2.1 Notation
I Definition 1 (`p norm). Let 1 ≤ p ≤ ∞. Then, we endow Rn with the `p norm ‖·‖p,
given by

‖x‖p :=
(

n∑
i=1
|xi|p

)1/p

(1)

M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:3

if p <∞ and

‖x‖∞ := nmax
i=1
|xi| (2)

if p =∞.

IDefinition 2 (Weight of binary vector). Let a ∈ {0, 1}ν . Then, wt(a) is the number of 1s in a.

I Definition 3 (Even-odd decomposition). Let h : R→ R be any function. Then, the even-odd
decomposition of h is given by

heven(x) := h(x) + h(−x)
2

hodd(x) := h(x)− h(−x)
2 .

(3)

It is easy to see that h = heven+hodd and that heven(−x) = heven(x) and hodd(−x) = −hodd(x)
for all x ∈ R.

2.2 Bshouty’s detecting matrix
We very briefly review the construction of the detecting matrix of [3], as we build off of this
result for our algorithms.

I Definition 4 (Detecting matrix [3]). A (d1, d2, . . . , dn)-detecting matrix is a {0, 1}-matrix
such that for every u,v ∈

∏n
i=1{0, 1, . . . , di − 1} with u 6= v, we have Mu 6= Mv.

The theorem we use is the following:

I Theorem 5 (Bshouty detecting matrix, Theorem 4/Corollary 5 of [3]). Let 1 < d1 ≤ d2 ≤
· · · ≤ dn where d1 + d2 + · · ·+ dn = d. There is a (d1, d2, . . . , dn)-detecting matrix M of size
s× n where

s(log s− 4) ≤ 2n log d
n
. (4)

Furthermore, for u ∈
∏n
i=1{0, 1, . . . , di − 1}, there is a polynomial time algorithm for

recovering u given Mu.

We will only sketch the main idea behind the construction of the matrix and the decoding
algorithm, and refer the reader to [3] for the proof of the bounds and the correctness.

2.2.1 Fourier representation [3]
We consider the Fourier basis on real-valued functions defined on the Boolean hypercube
{−1,+1}ν , i.e., the basis

B :=
{
χa(x) :=

∏
ai=1

xi

∣∣∣∣∣a ∈ {0, 1}ν
}
⊆ {f : {−1,+1}ν → R}. (5)

It is known that B is an orthonormal basis, and thus any f : {−1,+1}ν → R can be uniquely
represented as

f(x) =
∑

a∈{0,1}s
f̂(a)χa(x) (6)

APPROX/RANDOM 2019

1:4 The Query Complexity of Mastermind with `p Distances

where f̂(a) is the Fourier coefficient of χa given by

f̂(a) = 1
2ν

∑
x∈{−1,+1}ν

f(x)χa(x). (7)

Using the fast Fourier transform, all the coefficients f̂(a) can be found from the values
of f(x), x ∈ {−1,+1}ν , and ordered according to lexicographic order of a ∈ {0, 1}ν in
time O(ν2ν).

2.2.2 Detecting matrix construction
The overall idea is as follows. We choose s as in equation (4) and ν := log2 s. Then, we
view column vectors in Rs with s = 2ν rows as enumerations of the values of functions
f : {−1,+1}ν → R. That is, for x ∈ {−1,+1}ν , the xth row of the column vector representing
f is f(x). We then view our detecting matrix M ∈ {0, 1}s×n as a family of n {0, 1}-valued
functions defined on {−1,+1}ν and Mu as a linear combination of functions from this
family, where the coefficients of the linear combination are specified by the unknown vector
u ∈

∏n
i=1{0, 1, . . . , di − 1}. The n functions of M have a special structure in the Fourier

basis, so that there is an efficient iterative algorithm for recovering the coordinates of u in
batches from the Fourier coefficients of the function Mu.

We iteratively construct columns of M as follows. For each a ∈ {0, 1}ν , we will choose `a
more columns to construct, so that in the end, we have

∑
a∈{0,1}ν `a = n columns.

Suppose that columns 1 through r have already been constructed. Let a ∈ {0, 1}ν and
choose an integer `a such that

dr+1dr+2 . . . dr+`a ≤ 2wt(a)

dr+1dr+2 . . . dr+`adr+`a+1 > 2wt(a)−1.
(8)

We then construct `a more columns of M so that the ith new function ga,i has Fourier
coefficient of χa as

ĝa,i(a) = dr+1dr+2 . . . dr+i/2wt(a) (9)

and the Fourier coefficient of χb for any b > a (in the usual ordering on the Boolean
hypercube) as

ĝa,i(b) = 0. (10)

The way we choose the column functions ga,i to have these properties is described in [3].

2.2.3 Decoding algorithm
We now show how to efficiently decode Mu. Essentially, we will decode `a of the entries of u
at a time, subtract them off, and recurse.

Note that column vector Mu is the enumeration of the values of a linear combination
f of the ga,i functions from above, where the row corresponding to x ∈ {−1,+1}ν is f(x).
Then, using the fast Fourier transform, we find all the Fourier coefficients f̂(z) for z ∈ {0, 1}ν
and search for a maximal a ∈ {0, 1}ν such that f̂(a) 6= 0. For such an a, one can prove that
its Fourier coefficient in f is

f̂(a) = 1
2wt(a) (λr+1 + λr+2dr+1 + λr+3dr+1dr+2 + · · ·+ λr+`a+1dr+1dr+2 . . . dr+`a) (11)

M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:5

where r is the number of columns inM before the columns corresponding to a, and λr+i = ur+i
(for sake of matching the notation in [3]). Since λr+i ∈ {0, 1, . . . , dr+i − 1} for all i ∈ [`a], we
can recover all of the λr+i. Then, these coefficients can be subtracted off and we can recurse
on the remaining entries of u.

In our Theorem 9, we will modify the above algorithm to allow for non-integer values for
the λr+i, as long as they are bounded and well-separated (to be made precise later).

3 Algorithms

We now describe our upper bounds. As a warm up, we start with algorithms for `1, `2, and
`∞. These will introduce some tricks that we exploit in our coordinate-wise sums algorithm.
Then, we combine these tricks along with a modification of the Bshouty detecting matrix
algorithm described above to obtain Theorem 9.

3.1 Algorithms for `1, `2, and `∞

Our algorithms will be based around the idea of applying the Bshouty detecting matrix M
to the hidden vector y. This can be most straightforwardly applied in the case of `2, by
expanding squared distances (equation (12)).

I Theorem 6 (Algorithm for `2 queries). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖2. Then, there
is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. By first making the query with the 0 vector, we may find the norm ‖y‖2 of the
unknown vector. Now suppose we query for ‖x− y‖2. Note then that

〈x,y〉 =
‖x‖22 + ‖y‖22 − ‖x− y‖22

2 (12)

so we can compute the inner product between x and y. Thus by taking n queries to be the n
standard basis vectors x = ei for i ∈ [n], we can always recover y in n+ 1 queries. To obtain
s = O

(
n log k
logn

)
for k ≤ n, we can take our query vectors x to be the rows of the detecting

matrix of Theorem 4/Corollary 5 of [3] and recover y by using the decoding algorithm as
described in the proof. We thus conclude as desired. J

As shown above, if we can simulate computing inner products with binary vectors in O(1)
queries each, then we get an O(n) algorithm by querying with the standard basis vectors or
O
(
n log k
logn

)
by using [3]. For `1, we take a similar approach. This time, the way we extract

the inner product is quite different from the case of `2. This technique turns out to be much
more flexible, and will allow us to generalize the result to coordinate-wise sums.

I Theorem 7 (Algorithm for `1 queries). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖1. Then, there
is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. We will just show how to compute inner products in O(1) queries, since the rest
follows as in the `2 case. Let τ ∈ {0, 1}n be any binary vector and consider the sign vector
σ ∈ {±1}n with σi = (−1)τi+1. Then for σi ∈ {±1} and −k ≤ yi ≤ k, we have that

|kσi − yi| =
∣∣kσi − σ2

i yi
∣∣ = |k − σiyi| = k − σiyi. (13)

APPROX/RANDOM 2019

1:6 The Query Complexity of Mastermind with `p Distances

Thus,

‖kσ − y‖1 =
n∑
i=1
|kσi − yi| =

n∑
i=1

k − σiyi = kn− σ · y (14)

so we may compute the quantity σ · y = kn−‖kσ − y‖1. We may then compute the desired
inner product with binary vectors as τ · y = (σ · y + 1n · y)/2. J

To conclude the section, we show an O(n) algorithm for `∞ queries. This turns out to be
optimal, as we show later.

I Theorem 8 (Algorithm for `∞ queries). Let y ∈ {−k,−k+ 1, . . . , k− 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖∞. Then, there
is a polynomial time algorithm that recovers y in s = O(n) queries.

Proof. For each i ∈ [n], we make the query q+
i = ‖kei − y‖∞ and q−i = ‖−kei − y‖∞. Note

that yi = 0 if and only if these two are both equal to k. If yi > 0, then q−i = k + yi > k and
if yi < 0, then q+

i = k − yi > k. Thus, with these two queries, we can determine yi. Thus,
we recover y in O(n) queries. J

3.2 Algorithm for coordinate-wise sums
In the previous section, we obtained polynomial time algorithms with tight query complexity
for `1 and `2 by simulating inner product computations between y and binary vectors. We
now generalize these ideas to an algorithm for any query given by sums along the coordinates.
This in particular includes all (p-th powers of) `p norms, even for p not an integer.

I Theorem 9 (Algorithm for coordinate-wise sums). Let y ∈ {−k,−k + 1, . . . , k − 1, k}n be
an unknown vector, and suppose that we receive answers to s queries of the form f(y− x),
where f(x) =

∑n
i=1 gi(|xi|). For each i ∈ [n], define the function hi(x) = gi(k − x) and

consider the even-odd decomposition hi = (hi)even + (hi)odd (see Definition 3). Also consider
the following quantities:

Mmin
i := min

x∈{−k,−k+1,...,k−1,k}
(hi)odd(x)

Mmax
i := max

x∈{−k,−k+1,...,k−1,k}
(hi)odd(x)

∆i := min
x1,x2∈{−k,−k+1,...,k−1,k}

x1 6=x2

|(hi)odd(x1)− (hi)odd(x2)|

∆ :=
n

min
i=1

∆i

di :=
⌈
Mmax
i −Mmin

i

∆

⌉
+ 1

(15)

If ∆ > 0, then there is a polynomial time algorithm that recovers y with s =

O

(
min

{
n,

log
∏n

i=1
di

logn

})
queries.

Proof. Let heven and hodd be the functions that apply (hi)even and (hi)odd on the ith co-

ordinate, respectively. We will show that we can recover hodd(y) in O
(

min
{
n,

log
∏n

i=1
di

logn

})
queries. Note that since minni=1 ∆i > 0, (hi)odd is injective for each i and thus we can recover
y from hodd(y) in polynomial time using a lookup table for the values of (hi)odd.

M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:7

3.2.1 Inner products with binary vectors
We first show that we can compute the inner product between hodd(y) and any binary vector
τ ∈ {0, 1}n. To do this, consider the sign vector σ ∈ {±1}n with σi = (−1)τi+1. Note
that for σi ∈ {±1} and −k ≤ yi ≤ k, we have |kσi − yi| = |k − σiyi| = k − σiyi. Then, by
querying vectors of the form x = kσ, we obtain

f(kσ − y) =
n∑
i=1

gi(k − σiyi) =
n∑
i=1

hi(σiyi). (16)

Then using the even/oddness of (hi)even/(hi)odd, we have

n∑
i=1

hi(σiyi) =
(

n∑
i=1

(hi)even(yi)
)

+
(

n∑
i=1

σi(hi)odd(yi)
)

= 1n ·heven(y)+σ ·hodd(y). (17)

Note also that by querying for k1n and −k1n, we also obtain

f(k1n − y) + f(−k1n − y)
2 =

n∑
i=1

(hi)even(yi) = 1n · heven(y)

f(k1n − y)− f(−k1n − y)
2 =

n∑
i=1

(hi)odd(yi) = 1n · hodd(y).
(18)

Using these, we may compute τ · hodd(y) = 1
2 (σ + 1n) · hodd(y) and thus we are able to

compute dot products of arbitrary binary vectors with hodd(y). At this point, we can obtain
O(n) queries just by taking the binary vectors to be the standard basis vectors, so we focus

on obtaining an algorithm making at most O
(

log
∏n

i=1
di

logn

)
queries.

3.2.2 Modification of the Bshouty detecting matrix decoding [3]
Recall the detecting matrix of [3] for integer vectors in

∏n
i=1{0, 1, . . . , di − 1} for di ∈ N

for i ∈ [n]. If hodd(y) took integer values, then we could just directly use this theorem to
conclude with the desired query complexity. However, this is not true of hodd(y), and so we
need to show how to modify the [3] construction to handle our setting.

We first shift and scale our vector hodd(y). Let Mmin be the vector with Mmin
i in the ith

coordinate. Note that we can easily compute τ ·Mmin. Thus, we are able to compute dot
products of arbitrary binary vectors with the vector (hodd(y)−Mmin). By dividing by ∆,
we have dot products of arbitrary binary vectors with 1

∆
(
hodd(y)−Mmin). We now define

this as

ϕi(y) := 1
∆
(
(hi)odd(y)−Mmin

i

)
ϕ(y) := 1

∆
(
hodd(y)−Mmin) (19)

Note then that 0 ≤ ϕi ≤ di−1 (see equation (15)) and that y1 6= y2 =⇒ |ϕ(y1)− ϕ(y2)| ≥ 1.
Now consider the detecting matrix construction of Theorem 4 in [3]. Recall that we may

extract the Fourier coefficient of χa for some maximal a in our unknown vector ϕ(y) viewed
as a function, which gives us

λr+1 + λr+2dr+1 + λr+3dr+1dr+2 + · · ·+ λr+`a+1dr+1dr+2 . . . dr+`a (20)

APPROX/RANDOM 2019

1:8 The Query Complexity of Mastermind with `p Distances

which in our case we set λj = ϕj(yj). Now let X :=
∏r+`a+1
j=r+1 ϕj({−k,−k + 1, . . . , k − 1, k})

be the image of our original points in a subset of `a + 1 coordinates starting at r + 1 under
the corresponding ϕj . Consider the function ψ : X → R+ defined via

ψ(z) =
`a∑
i=0

zi+1

i∏
j=1

dr+j . (21)

It is easy to see that when we endow X with the lexicographical ordering, then ψ is increasing.
Thus, given the Fourier coefficient as in equation (20), we can do binary search on the at most
kn values in X to extract the values λr+i in time O(n log k). Given this step of recovering `a
of the coordinates, we can proceed as in the rest of [3] by subtracting these coordinates of
the unknown vector and recursing. Hence, we conclude that we may recover ϕ(y) efficiently
and thus h(y), as claimed. J

3.2.3 Reconstruction with `p queries
As a corollary of the above result, we obtain an algorithm for recovering y ∈ {−k,−k +
1, . . . , k − 1, k}n from s = O

(
min

{
n, n log k

logn

})
distance queries in `p.

I Corollary 10 (Algorithm for `p queries). Let y ∈ {−k,−k+ 1, . . . , k− 1, k}n be an unknown
vector, and suppose that we receive answers to s queries of the form ‖x− y‖p for p a constant.
Then, there is a polynomial time algorithm that recovers y in s = O

(
min

{
n, n log k

logn

})
queries.

Proof. We are in the setting to use Theorem 9, with gi(x) = xp for all i ∈ [n] and
hodd(x) = 1

2 ((k − x)p − (k + x)p). Recall that we have efficient algorithms with the desired
guarantees when p ∈ {1, 2} so we dismiss these cases. In the remaining range of p, we just
need to compute

∏n
i=1 di.

Note that

h′odd(x) = −p2
(
(k − x)p−1 + (k + x)p−1) < 0 (22)

on x ∈ [−k, k] so hodd is decreasing on this interval. Then, (2k)p/2 = hodd(−k) ≥ hodd(x) ≥
hodd(k) = −(2k)p/2. Furthermore, note that

h′′odd(x) = p(p− 1)
2

(
(k − x)p−2 − (k + x)p−2). (23)

If p > 2, then this is negative on x ≥ 0, so |h′odd(x)| is smallest at x = 0 and thus
|h′odd(x)| ≥ |h′odd(0)| = pkp−1 for all x. If 1 < p < 2, then this is positive on x ≥ 0, so
|h′odd(x)| is smallest at x = k and thus |h′odd(x)| ≥ |h′odd(k)| = (p/2)(2k)p−1 for all x. In
either case, we have that ∆ = Ω(pkp−1) and the range is Mmax −Mmin = O(kp) and thus
di = O((Mmax −Mmin)/∆) = O(k). Thus, the query complexity is

O

(
min

{
n,

log
∏n
i=1 di

logn

})
= O

(
min

{
n,
n log k
logn

})
(24)

as desired. J

4 Lower Bounds

In this section, we complement our algorithms with matching lower bounds, for integer p.
Our lower bounds work even for the problem of approximating the hidden vector and for
adaptive randomized algorithms with constant success probability.

M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:9

I Theorem 11 (Lower bound for integer `p). Let 1 ≤ p < ∞ be a constant integer and
let R ∈ (0, kn1/p] be an approximation radius. Suppose there exists an algorithm A such
that for all unknown vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n, A outputs a vector y′ ∈
{−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖p ≤ R (25)

in s possibly adaptive `p queries with probability at least 2/3 over the algorithm’s random
coin tosses. Then

s = Ω
(
n log(kn1/p/R)

log k + logn

)
. (26)

In particular, if R ≤ k1−εn1/p for some constant ε > 0, then

s = Ω
(

n log k
log k + logn

)
, (27)

which is Ω
(
n log k
logn

)
if k < n and Ω(n) if k ≥ n.

Proof. By Yao’s minimax principle [9], it suffices to show the lower bound for all deterministic
algorithms A that correctly approximates a uniformly random y ∈ {−k,−k+1, . . . , k−1, k}n
with probability at least 2/3.

Note that each query ‖x− y‖pp results in a nonnegative integer that is at most (2k)pn.
Thus, there are at most ((2k)pn+ 1)s possible sequences of answers. Now let Q be the set
of all sequence of answers that A can observe, and for each sequence of answers q ∈ Q, let
Sq denote the set of vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n such that the deterministic
algorithm A observes q on input y. Then, Sq partitions the unknown vectors y into |Q|
disjoint sets. Then, the probability that |Sq| has size at most 1

100
(2k+1)n
|Q| is

Pr
y

(
|Sq| ≤

1
100

(2k + 1)n

|Q|

)
=

∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

Pr
y

(A queries the sequence q)

=
∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

|Sq|
(2k + 1)n

≤
∑
q∈Q

|Sq|≤ 1
100

(2k+1)n
|Q|

1
100

(2k + 1)n

|Q|
1

(2k + 1)n

≤
∑
q∈Q

1
100|Q| = 1

100 .

(28)

Thus with probability at least 99/100, |Sq| has size at least 1
100

(2k+1)n
|Q| .

Note that by [8], the volume of a unit `p ball is 2nΓ(1 + 1/p)n/Γ(1 + n/p), so the volume
of a ball of radius R in `p is

V := Rn2nΓ(1 + 1/p)n

Γ(1 + n/p) =
(

Θ
(

R

n1/p

))n
. (29)

Now suppose that q is a sequence of queries such that |Sq| > 2V and let z be the output of
the deterministic algorithm A on the sequence of queries q. Then, at most V of the points

APPROX/RANDOM 2019

1:10 The Query Complexity of Mastermind with `p Distances

in S can be in the `p ball of radius R centered at z. Thus, with probability at least 1/2 over
the random hidden vector y, we output a point z such that ‖z− y‖p ≥ R. Thus, if

1
100

(2k + 1)n

|Q|
> 2V, (30)

then our probability of success is at most 1/2 + 1/100 and thus we do not have a correct
algorithm. Thus, it must be that

1
100

(2k + 1)n

|Q|
≤ 2V =⇒ (2k + 1)n

200V ≤ |Q| ≤ ((2k)pn+ 1)s. (31)

Rearranging, we have that

s ≥
log (2k+1)n

200V
log((2k)pn+ 1) = Ω

(
n log(kn1/p/R)

log k + logn

)
, (32)

as claimed. J

For p =∞, we have a lower bound of Ω(n) regardless of k.

I Theorem 12 (Lower bound for `∞). Let R ∈ (0, k] be an approximation radius. Suppose
there exists an algorithm A such that for all unknown vectors y ∈ {−k,−k+ 1, . . . , k−1, k}n,
A outputs a vector y′ ∈ {−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖∞ ≤ R (33)

in s possibly adaptive `∞ queries with probability at least 2/3 over the algorithm’s random
coin tosses. Then

s = Ω
(
n log(k/R)

log k

)
. (34)

In particular, if R ≤ k1−ε for a constant ε > 0, then s = Ω(n).

Proof. By the same argument as the finite `p case, we use Yao’s minimax principle to reduce
the argument to a lower bound for all deterministic algorithms A on uniformly random inputs
y succeeding with probability at least 2/3. Furthermore, by the same partition argument as
before, we have that |Sq| is at least 1

100
(2k+1)n
|Q| with probability at least 99/100.

The volume of an `∞ ball of radius R is (2R)n, so as before, we must have

1
100

(2k + 1)n

|Q|
≤ 2(2R)n. (35)

When p =∞, there are only (2k + 1)s possible sequences of answers, so we instead have the
bound

(2k + 1)n

(2R)n ≤ 200(2k + 1)s (36)

By rearranging, we obtain the bound s = Ω
(
n log(k/R)

log k

)
as desired. J

M. Fernandez V, D. P. Woodruff, and T. Yasuda 1:11

4.1 Lower bound for the noisy problem
Finally, we show that in the noisy version of the problem, i.e., the setting where the codemaker
is allowed to answer the queries x with any q = (1± ε)‖y− x‖p, there is no good algorithm.

I Theorem 13 (Lower bound for the noisy problem). Let 1 ≤ p < ∞ be a constant and
let 0 < R < kn1/p be an approximation radius. Suppose there exists an algorithm A
such that for all unknown vectors y ∈ {−k,−k + 1, . . . , k − 1, k}n, A outputs a vector
y′ ∈ {−k,−k + 1, . . . , k − 1, k}n such that

‖y′ − y‖p ≤ R (37)

in s possibly adaptive (1 ± ε)-noisy `p queries, i.e., answers with adversarially chosen
qx = (1± ε)‖y− x‖p, with probability at least 2/3 over the algorithm’s random coin tosses.
Then

s = Ω
(
exp
(
ε2Θ(kpn)

))
. (38)

Proof. By Yao’s minimax principle, we can take the algorithm to be deterministic by taking
our hidden vector y to be drawn uniformly from {−k,−k + 1, . . . , k − 1, k}n. Now fix any
query x ∈ {−k,−k + 1, . . . , k − 1, k}n and let µ = Ez

(
‖x− z‖pp

)
= Θ(kpn). Then by

Chernoff bounds,

Pr
y

(∣∣∣‖x− y‖pp − µ
∣∣∣ ≥ εµ) ≤ 2 exp

(
−ε2µ

)
. (39)

Thus, if the number of queries s is less than exp
(
ε2Θ(kpn)

)
/200, then by the union bound

over the s queries, with probability at least 99/100 over the choice of y, the codemaker can
just return Ez

(
‖x− z‖pp

)
for any query x. Thus, the deterministic codebreaker algorithm

sees the same sequence of answers with probability at least 99/100 and so the algorithm
cannot be correct. Hence, we conclude that s = Ω(exp

(
ε2Θ(kpn)

)
). J

References
1 Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen,

and Kurt Mehlhorn. The query complexity of a permutation-based variant of Mastermind.
Discrete Applied Mathematics, 2019.

2 Aaron Berger, Christopher Chute, and Matthew Stone. Query complexity of mastermind
variants. Discrete Mathematics, 341(3):665–671, 2018.

3 Nader H. Bshouty. Optimal Algorithms for the Coin Weighing Problem with a Spring Scale.
In COLT 2009 - The 22nd Conference on Learning Theory, Montreal, Quebec, Canada, June
18-21, 2009, 2009. URL: http://www.cs.mcgill.ca/%7Ecolt2009/papers/004.pdf#page=1.

4 Vasek Chvátal. Mastermind. Combinatorica, 3(3):325–329, 1983. doi:10.1007/BF02579188.
5 Benjamin Doerr, Carola Doerr, Reto Spöhel, and Henning Thomas. Playing Mastermind With

Many Colors. J. ACM, 63(5):42:1–42:23, 2016. doi:10.1145/2987372.
6 David Ginat. Digit-distance Mastermind. The Mathematical Gazette, 86(507):437–442, 2002.
7 Donald E. Knuth. The computer as a master mind. Journal of Recreational Mathematics,

9:1–6, 1977.
8 Xianfu Wang. Volumes of generalized unit balls. Mathematics Magazine, 78(5):390–395, 2005.
9 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.

In Proceedings of the 18th Annual IEEE Symposium on Foundations of Computer Science,
pages 222–227. IEEE, 1977.

APPROX/RANDOM 2019

http://www.cs.mcgill.ca/%7Ecolt2009/papers/004.pdf#page=1
https://doi.org/10.1007/BF02579188
https://doi.org/10.1145/2987372

Tracking the `2 Norm with Constant Update Time
Chi-Ning Chou
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
http://cnchou.github.io
chiningchou@g.harvard.edu

Zhixian Lei
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
zhixianlei@seas.harvard.edu

Preetum Nakkiran
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
http://preetum.nakkiran.org
preetum@cs.harvard.edu

Abstract
The `2 tracking problem is the task of obtaining a streaming algorithm that, given access to a stream
of items a1, a2, a3, . . . from a universe [n], outputs at each time t an estimate to the `2 norm of the
frequency vector f (t) ∈ Rn (where f (t)

i is the number of occurrences of item i in the stream up to
time t). The previous work [Braverman-Chestnut-Ivkin-Nelson-Wang-Woodruff, PODS 2017] gave
a streaming algorithm with (the optimal) space using O(ε−2 log(1/δ)) words and O(ε−2 log(1/δ))
update time to obtain an ε-accurate estimate with probability at least 1 − δ. We give the first
algorithm that achieves update time of O(log 1/δ) which is independent of the accuracy parameter
ε, together with the nearly optimal space using O(ε−2 log(1/δ)) words. Our algorithm is obtained
using the Count Sketch of [Charilkar-Chen-Farach-Colton, ICALP 2002].

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Streaming algorithms, Sketching algorithms, Tracking, CountSketch

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.2

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.06479.

Funding Chi-Ning Chou: Supported by NSF awards CCF 1565264 and CNS 1618026.
Zhixian Lei: Supported by NSF awards CCF 1565264 and CNS 1618026.
Preetum Nakkiran: Work supported in part by a Simons Investigator Award, NSF Awards CCF
1565641 and CCF 1715187, and the NSF Graduate Research Fellowship Grant No. DGE1144152.

Acknowledgements The authors wish to thank Jelani Nelson for invaluable advice throughout the
course of this research. We also thank Mitali Bafna and Jarosław Błasiok for useful discussion and
thank Boaz Barak for many helpful comments on an earlier draft of this article. We are also grateful
to reviewers’ comments.

1 Introduction

The streaming model considers the following setting. One is given a list a1, a2, . . . , am ∈ [n]
as input where we think of n as extremely large. The algorithm is only allowed to read the
input once in a stream and the goal is to answer some predetermined queries using space of
size logarithmic in n. For each i ∈ [n] and time t ∈ [m], define f (t)

i = |{1 ≤ j ≤ t : aj = i}|
as the frequency of i at time t. Many classical streaming problems are concerned with
approximating statistics of f (m) such as the distinct element problem (i.e., ‖f (m)‖0). One of

© Chi-Ning Chou, Zhixian Lei, and Preetum Nakkiran;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 2; pp. 2:1–2:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cnchou.github.io
mailto:chiningchou@g.harvard.edu
mailto:zhixianlei@seas.harvard.edu
http://preetum.nakkiran.org
mailto:preetum@cs.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.2
https://arxiv.org/abs/1807.06479
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Tracking the `2 Norm with Constant Update Time

the most well-studied problems is the one-shot `2 estimation problem where the goal is to
estimate ‖f (m)‖22 within multiplicative error (1± ε) and had been achieved by the seminal
AMS sketch by Alon et al. [1].

We consider a streaming algorithm A that maintains some logarithmic space and outputs
an estimation σt at the tth step of the computation. A achieves `2 (ε, δ)-tracking if for every
input stream a1, a2, . . . , am ∈ [n]

Pr
[
∃t∈[m]

∣∣σt − ‖f (t)‖22
∣∣ > ε∆t

]
≤ δ

where the “normalization factor” ∆t differs between strong tracking and weak tracking. For
(ε, δ)-strong tracking, ∆t = ‖f (t)‖22 is the norm squared of the frequency vector up to the time
t, while for (ε, δ)-weak tracking, ∆t = ‖f (m)‖22 is the norm squared of the overall frequency
vector. Note that strong tracking implies weak tracking and weak tracking implies one-shot
approximation. In this work, we focus on `2 tracking via linear sketching, where we specify a
distribution D on matrices Π ∈ Rk×n, and maintain a sketch vector at time t as f̃ (t) , Πf (t).
Then the estimate σt is defined as ‖f̃ (t)‖22. The space complexity of A is the number of
machine words1 required by A. The update time complexity of A is the time to update σt,
in terms of number of arithmetic operations.

Both weak tracking and strong tracking have been studied in different context [11, 5, 4]
and the focus of this paper is on the update time complexity. Specifically, we are interested
in the dependency of update time on the approximation factor ε. The state-of-the-art result
prior to our work is by Braverman et al. [4] showing that AMS provides weak tracking with
O(ε−2 log(1/δ)) update time and O(ε−2 log(1/δ)) words of space.

Apart from tracking, there have been several sketching algorithms for one-shot approxim-
ation that have faster update time. Dasgupta et al. [8] and Kane and Nelson [16] showed
that sparse JL achieves Oδ(ε−1) 2 update time for `2 one-shot approximation. Charikar,
Chen, and Farach-Colton [6] designed the CountSketch algorithm for the heavy hitter prob-
lem and Thorup and Zhang [23] showed that it achieve Oδ(1) update time for `2 one-shot
approximation.

Update time

Unlike the space complexity in streaming model, there have been less studies in the update
time complexity though it is of great importance in applications. For example, the packet
passing problem [21] requires the `2 estimation in the streaming model with input arrival
rate as high as 7.75× 106 packets 3 per second. Thorup and Zhang [24] improved the update
time from 182 nanoseconds to 50 nanoseconds and made the algorithm more practical.

While some streaming problems have algorithms with constant update time (e.g., distinct
elements [19] and `2 estimation [24]), some other important problems do not (`p estimation
for p 6= 2 [17], heavy hitters problems4 [6, 7], and tracking problems [4]). Larsen et al. [22]
systematically studies the update time complexity and showed lower bounds against heavy
hitters, point query, entropy estimation, and moment estimation in the non-adaptive turnstile
streaming model. In particular, they show that O(ε−2)-space algorithms for `2 estimation of
vectors over Rn, with failure probability δ, must have update time roughly Ω(log(1/δ)/

√
logn).

Note that their lower bound does not depend on ε.

1 Following convention, we assume the size of a machine word is at least Ω(max(logn, logm)) bits.
2 Oδ(·) is the same as the usual big O notation except treating δ as a constant.
3 Each packet has 40 bytes (320 bits).
4 There is a memory and update time tradeoff for heavy hitter from space O(ε−2 log(n/δ)) to O(ε−2(n/δ))

to get constant update time. However, achieving constant update time and logarithmic space simultan-
eously is unknown.

C.-N. Chou, Z. Lei, and P. Nakkiran 2:3

Space lower bounds

For one-shot estimation of the `2 norm, Kane et al. [20] showed that Θ(ε−2 logm+ log logn)
bits of space are required, for any streaming algorithm. This space lower bound is tight due
to the AMS sketch. However, this only applies in the constant failure probability regime.

In the regime of sub-constant failure probability δ, known tight lower-bounds on Distribu-
tional JL [15, 14] imply that Ω(ε−2 log(1/δ)) rows are necessary for the special case of linear
sketching algorithms. 5 For linear sketches, this lower bound on number of rows is equivalent
to a lower bound on the words of space.

For the regime of faster update time, Kane and Nelson [16] shows that CountSketch-type
of constructions (with the optimal Ω(ε−2 log(1/δ)) rows) require sparsity i.e. number of
non-zero elements Ω̃(ε−1 log(1/δ)) 6 per column to achieve distortion ε and failure probability
δ. But, this does not preclude a sketch with suboptimal dependency on δ in the number of
rows from having constant sparsity, for example a sketch with Ωδ(ε−2) rows and constant
sparsity – indeed, this is what CountSketch achieves. Note that in our setting, we can boost
constant-failure probability to arbitrarily small failure probability by taking medians of
estimators.7 Thus, we may be able to bypass the lower-bounds for linear sketches.

To summarize the situation: for constant failure probability, it is only known that linear
sketches require dimension Ω(ε−2), and it is not known if super-constant sparsity is required
for tracking with this optimal dimension. In particular, it was not known how to achieve say
(ε, O(1))-weak tracking for `2, with O(ε−2) words of space and constant update time.

Our contributions

In this paper, we show that there is a streaming algorithm with O(log(1/δ)) update time
and space using O(ε−2 log(1/δ)) words that achieves `2 (ε, δ)-weak tracking.

I Theorem 1 (informal). For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream
over [n] with frequencies f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2
(ε, δ)-weak tracking with space using O(ε−2 log(1/δ)) words and O(log(1/δ)) update time.

Further, by applying a standard union bound argument in Lemma 13, the same algorithm
can achieve `2 strong tracking as well.

I Corollary 2. For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream over
[n] with frequencies f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2 (ε, δ)-
strong tracking with O(ε−2 log(1/δ) log logm) words and O(log(1/δ) log logm) update time.

The algorithm in the main theorem is obtained by running O(log(1/δ)) many copies of
CountSketch and taking the median.

The main techniques used in the proof are the chaining argument and Hansen-Wright
inequality which are also used in [4] to show the tracking properties of AMS. However, direct
applications of these tools on the CountSketch algorithm would not give the desired bounds
due to the sparse structure of the sketching matrix. To overcome this issue, we have to dig
into the structure of sketching matrix of CountSketch. We will compare the difference between
our techniques and that in [4] after presenting the proof of Theorem 1 (see Remark 12).

5 Note that an (ε, δ)-weak tracking via linear sketch defines a distribution over matrices that satisfies the
Distributional JL guarantee, with distortion (1± ε) and failure probability δ.

6 Ω̃(·) is the same as the Ω(·) notation by ignoring extra logarithmic factor.
7 This is not immediate for weak tracking.

APPROX/RANDOM 2019

2:4 Tracking the `2 Norm with Constant Update Time

The rest of the paper is organized as follows. Some preliminaries are provided in Section 2.
In Section 3, we prove our main theorem showing that CountSketch with O(ε−2) rows achieves
`2 (ε, O(1))-weak tracking with constant update time. As for the `2 strong tracking, we
discuss some upper and lower bounds in Section 4. In Section 5, we discuss some future
directions and open problems.

2 Preliminaries

In the following, n ∈ N denotes the size of the universe, k denotes the number of rows
of the sketching matrix, t denotes the time, and m denote the final time. We let [n] =
{1, 2, . . . , n} and use Õ(·) and Ω̃(·) to denote the usual O(·) and Ω(·) with some extra
poly-logarithmic factor.

The input of the streaming algorithm is a list a1, a2, . . . , am ∈ [n]. For each i ∈ [n] and
time t ∈ [m], define f (t)

i = |{1 ≤ j ≤ t : aj = i}| as the frequency of i at time t. The one-shot
`2 approximation problem is to produce an estimate for ‖f (m)‖22 with (1± ε) multiplicative
error and success probability at least 1− δ for ε > 0 and δ ∈ (0, 1).

2.1 `2 tracking
Here, we give the formal definition of `2 tracking for sketching algorithm.

I Definition 3 (`2 tracking). For any ε > 0, δ ∈ (0, 1), and n,m ∈ N. Let f (1), f (2), . . . , f (m)

be the frequency of an insertion-only stream over [n] and f̃ (1), f̃ (2), . . . , f̃ (m) be its (random-
ized) approximation produced by a sketching algorithm. We say the algorithm provides `2
(ε, δ)-strong tracking if

Pr
[
∃t∈[m],

∣∣∣‖f̃ (t)‖22 − ‖f (t)‖22
∣∣∣ > ε‖f (t)‖22

]
≤ δ.

We say the algorithm provides `2 (ε, δ)-weak tracking if

Pr
[
∃t∈[m],

∣∣∣‖f̃ (t)‖22 − ‖f (t)‖22
∣∣∣ > ε‖f (m)‖22

]
≤ δ.

Note that the difference between the two tracking guarantee is that in strong tracking we
bound the deviation of the estimate from the true norm squared by ε‖f (t)‖22 while in the
weak tracking we bound this deviation by ε‖f (m)‖22.

2.2 AMS sketch and CountSketch
Alon et al. [1] proposed the seminal AMS sketch for `2 approximation in the streaming model.
In AMS sketch, consider Π ∈ Rk×n where Πj,i = σj,i/

√
k and σj,i is i.i.d. Rademacher for

each j ∈ [m], i ∈ [n]. When k = O(ε−2), AMS sketch approximates `2 norm within (1± ε)
multiplicative error. Note that the update time of AMS sketch is k since the matrix Π is dense.

Charikar, Chen, and Farach-Colton [6] proposed the following CountSketch algorithm
for the heavy hitter problem and Thorup and Zhang [23] showed that CountSketch is also
able to solve the `2 approximation. Here, consider Π ∈ Rk×n where we denote the ith
column of Π as Πi for each i ∈ [n]. Πi is defined as follows. First, pick j ∈ [k] uniformly
and set Πj,i to be an independent Rademacher. Next, set the other entries in Πi to be
0. Note that unlike AMS sketch, the normalization term in CountSketch is 1 since there is
exactly one non-zero entry in each column. [6] showed that CountSketch provides one-shot `2
approximation with O(ε−2) rows.

C.-N. Chou, Z. Lei, and P. Nakkiran 2:5

I Lemma 4 ([6, 23]). Let ε > 0, δ ∈ (0, 1), and n ∈ N. Pick k = Ω(ε−2δ−1), we have for
any x ∈ Rn,

Pr
Π

[
|‖Πx‖22 − ‖x‖22| > ε‖x‖22

]
≤ δ.

Implement CountSketch in logarithmic space

Previously, we defined CountSketch using uniformly independent randomness, which requires
space Ω(nk). However, one could see that in the proof of Theorem 8 we actually only need
8-wise independence. Thus, the space required can be reduced to O(logn) for each row. It
is well known that CountSketch with k rows can be implemented with 8-wise independent
hash family using O(k) words. We describe the whole implementation in Appendix A
for completeness.

2.3 ε-net for insertion-only stream
In our analysis, we will use the following existence of a small ε-net for insertion-only streams.

I Definition 5 (ε-net). Let S ⊆ Rn be a set of vectors. For any ε > 0, we say E ⊆ Rn
is an ε-net for S with respect to `2 norm if for any x ∈ S, there exists y ∈ E such that
‖x− y‖2 ≤ ε.

I Lemma 6 ([5]). Let {x(t)}t∈[m] be an insertion-only stream. For any ε > 0, there exists a
size

(
1 + ε−2 · ‖x(m)‖2

)
ε-net for {x(t)}t∈[m] with respect to `2 norm. Moreover, the elements

in the net are all from {x(t)}t∈[m].

Proof Sketch. The idea is to use a greedy algorithm, by scanning through the stream from
the beginning and adding an element x(t) into the net if there does not already exist an
element in the net that is ε-close to x(t). J

2.4 Concentration inequalities
Our analysis crucially relies on the following Hanson-Wright inequality [10].

I Lemma 7 (Hanson-Wright inequality [10]). For any symmetric B ∈ Rn×n, σ ∈ {±1}n
being independent Rademacher vector, and integer p ≥ 1, we have

‖σ>Bσ − Eσ[σ>Bσ]‖p ≤ O (√p‖B‖F + p‖B‖) = O(p‖B‖F),

where ‖X‖p is defined as E[|X|p]1/p and ‖ · ‖F is the Frobenius norm.

Note that the only randomness in σ>Bσ − Eσ[σ>Bσ] is the Rademacher vector σ.

3 CountSketch with O(ε−2) rows provides `2 weak tracking

In this section we will show that CountSketch with O(ε−2) rows provides (ε, O(1))-weak
tracking.

I Theorem 8 (CountSketch with O(ε−2) rows provides `2 weak tracking). For any ε > 0,
δ ∈ (0, 1), and n ∈ N. Pick k = Ω(ε−2δ−1). For any insertion-only stream over [n] with
frequency f (1), f (2), . . . , f (m), the CountSketch algorithm with k rows provides `2 (ε, δ)-weak
tracking.

APPROX/RANDOM 2019

2:6 Tracking the `2 Norm with Constant Update Time

I Remark. Note that for linear sketches, the dependency of number of rows on ε is tight
in Theorem 8. This is implied by known lower-bounds on Distributional JL [15, 14], which
imply lower-bounds on one-shot `2 approximation.
I Remark. Recall that the number of rows in linear sketches is proportional to the number
of words needed in the algorithm.

Using the standard median trick, we can run O(log(1/δ)) copies of CountSketch with
k = O(ε−2) in parallel and output the median. With this, Theorem 8 immediately gives the
following corollary with better dependency on δ.

I Corollary 9. For any ε > 0, δ ∈ (0, 1), and n ∈ N. For any insertion-only stream over [n]
with frequency f (1), f (2), . . . , f (m), there exists a streaming algorithm providing `2 (ε, δ)-weak
tracking with k = O(ε−2 log(1/δ)) rows and update time O(log(1/δ)).

The proof of Theorem 8 uses the Dudley-like chaining technique similar to other tracking
proofs [4]. However, direct application of the chaining argument would not suffice and we
have to utilize the structure of the sketching matrix of CountSketch (see Remark 12 for
comparison). We will prove Theorem 8 in Subsection 3.1.

3.1 Proof of Theorem 8
In this subsection, we give a formal proof for our main theorem. Let us start with some
notations for CountSketch. Recall that for any i ∈ [n], the ith column of Π is defined by
(i) picking j ∈ [k] uniformly and set Πj,i to be a Rademacher random variable and (ii) set
the other entries in Πi to be 0. Denote Πj,i = σj,iηj,i, where σj,i is a Rademacher random
variable, and ηj,i is the indicator for choosing the jth row in the ith column. Note that there
is exactly one non-zero entry in each column and the probability distribution is uniform.
The approximation error of Π for a vector x ∈ Rn is denoted as γ(x) :=

∣∣‖Πx‖22 − ‖x‖22
∣∣. To

show weak tracking, it suffices to upper bound the supremum of γ(f (t)).

EΠ sup
t∈[m]

γ(f (t)) = EΠ sup
t∈[m]

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22
∣∣∣. (1)

The first observation8 is that one can rewrite the error γ(x) as follows.

γ(x) =
∣∣x>Π>Πx− x>x

∣∣ =
∣∣σ>Bη,xσ − x>x

∣∣ =
∣∣σ>B̃η,xσ∣∣ ,

where σ ∈ {−1, 1}n is an independent Rademacher random vector and for any i, i′ ∈ [n],

(B̃η,x)i,i′ =
{

xixi′ , i 6= i′ and ∃j ∈ [k], ηj,i = ηj,i′ = 1
0, else.

Note that the diagonals of B̃η,x are all zero as follow.

B̃η,x =

0 x1x2〈Π1,Π2〉 · · · x1xn〈Π1,Πn〉

x2x1〈Π2,Π1〉 0 · · · x2xn〈Π2,Πn〉
...

...
. . .

...
xnx1〈Πn,Π1〉 xnx2〈Πn,Π2〉 · · · 0

 .

8 Note that the matrix B̃x we are using is different from the matrix used in the previous analysis of [4].
This difference is crucial since the matrix of [4] does not work for CountSketch.

C.-N. Chou, Z. Lei, and P. Nakkiran 2:7

For convenience, for any matrix B ∈ Rn×n, we overload the notation γ by denoting γ(B) =
σ>Bσ. That is, γ(B̃η,x) = γ(x). One benefit of writing `2 weak tracking error into the above
quadratic form is that Hanson-Wright inequality (see Lemma 7) is now applicable.

The lemma below shows that the expectation of the weak tracking error is upper bounded
by the Frobenius norm of B̃η,f(m) .

I Lemma 10. Let {f (t)}t∈[m] be the frequencies of an insertion-only stream. We have

E

[
sup
t∈[m]

γ(f (t)) | η
]

= O(‖B̃η,f(m)‖F).

The proof of Lemma 10 uses the Dudley-like chaining argument. For the smooth of
presentation, we postpone the details to Subsection 3.2. Next, the following lemma shows
that for any vector x ∈ Rn, with high probability, ‖B̃η,x‖F = O(‖x‖22/

√
k).

I Lemma 11. For any δ ∈ (0, 1) and x ∈ Rn,

Pr
[
‖B̃η,x‖F >

√
2‖x‖22√
δ · k

]
≤ δ

2 .

Lemma 11 has similar flavor as Lemma 4. The proof can be found in Subsection 3.2.
Finally, Theorem 8 is an immediate corollary of Lemma 10 and Lemma 11. Here we provide
a proof for completeness.

Proof of Theorem 8. Recall that to prove Theorem 8, it suffices to show that with prob-
ability at least 1 − δ over η, supt∈[m] γ(f (t)) ≤ ε. From Lemma 10, for a fixed η, we have
Pr
[
supt∈[m] γ(f (t)) > C1‖B̃η,f(m)‖F

]
≤ δ/2 for some constant C1 > 0. Next, from Lemma 11,

we have ‖B̃η,f(m)‖F ≤ ‖f (m)‖22 ·k−1/2 ·δ−1/2 with probability at least 1−δ/2 over the random-
ness in η for some constant C2 > 0. Pick m ≥ C1C2 · ε−2 · δ−1, we have
Pr
[
supt∈[m] γ(f (t)) > ε‖f (m)‖22

]
≤ δ and complete the proof. J

3.2 Proof of the two key lemmas
In this subsection, we provide the proofs for Lemma 10 and Lemma 11. Let us start
with Lemma 10 which shows that the tracking error can be upper bounded by the Frobenius
norm of B̃η,f(m) .

Proof of Lemma 10. Recall that we define B̃η,x such that γ(x) = σ>B̃η,xσ where σ is 8-wise
independent Rademacher random vector. An important trick here is that we think of fixing9
η in the following.

The starting point of chaining argument is constructing a sequence of ε-nets with expo-
nentially decreasing error for {B̃η,f(t)}t∈[m]. Note that here {B̃η,f(t)}t∈[m] are matrices but
one can view it as a vector and apply Lemma 6 where `2 norm for a vector becomes Frobenius
norm for a matrix. Namely, for any non-negative integer `, let Tη,` be the (‖B̃η,f(m)‖F /2`)-net
for {B̃η,f(t)}t∈[m] under Frobenius norm where |Tη,`| ≤ 1 + 22`. Note that here we fixed η
first and then constructed the nets. Thus, for each t ∈ [m], one can rewrite B̃η,f(t) into a
chain as follows.

B̃η,f(t) = B
(t)
η,0 +

∞∑
`=1

B
(t)
η,` −B

(t)
η,`−1, (2)

9 We do this by conditioning on η.

APPROX/RANDOM 2019

2:8 Tracking the `2 Norm with Constant Update Time

where B(t)
η,` ∈ Tη,` and ‖B̃η,f(t) − B(t)

η,`‖F ≤ 2−` · ‖B̃η,f(m)‖F . Moreover, from Equation 2
we have

E sup
t∈[m]

γ(f (t)) ≤ E sup
t∈[m]

γ(B(t)
η,0) +

∞∑
`=1

E sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1). (3)

To bound the first term of Equation 3, observe that Tη,0 = {B̃η,f(1)} where B̃η,f(1) is
the all zero matrix. Namely, the first term of Equation 3 is zero. As for the second term
of Equation 3, we apply the chaining argument as follows. For any positive integer `, denote
A` = {B(t)

η,` −B
(t)
η,`−1}t∈[m]. Note that from the construction of ε-net in Lemma 6, we have

|A`| ≤ 2|Tη,`| ≤ 22`+2 by triangle inequality.

E

[
sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1)

]
=
∫ ∞

0
Pr
[

sup
A∈A`

γ(A) > u

]
du

≤ u∗` +
∫ ∞
u∗

`

Pr
[

sup
A∈A`

γ(A) > u

]
du, (4)

where u∗` > 0 will be chosen later. For any A ∈ A` and integer p ≥ 2, by Markov’s inequality
and Hanson-Wright inequality, we have

Pr[γ(A) > u] ≤ E[γ(A)p]
up

=
‖σ>Aσ‖pp

up
≤
(
C · √p‖A‖F + C · p‖A‖

)p
up

for some constant C > 0. Note that the randomness here is only in σ and thus we
can apply the Hanson-Wright inequality. Let R` = supA∈A`

(
C · √p‖A‖F + C · p‖A‖

)
≤

C ′p·‖B̃η,f(m)‖F ·2−` for some C ′ > 0. The last inequality holds because of ‖·‖ ≤ ‖·‖F and the
choice of ε-net. Now, choose u∗` = 2S` ·R` where S` will be decided later, Equation 4 becomes

E

[
sup
t∈[m]

γ(B(t)
η,` −B

(t)
η,`−1)

]
≤ u∗` +

∫ ∞
u∗

`

|A`| ·
R`

p

up
du (5)

≤ 2S`R` + |A`| ·
R`

p

(2S`R`)p−1

≤ 2S`C ′p · ‖B̃η,f(m)‖F ·2−` + |A`| ·
C ′p · ‖B̃η,f(m)‖F

Sp−1
`

·2−`

where the second term of Equation 5 is due to union bound. Now, Equation 3 becomes

E sup
t∈[m]

γ(f (t)) ≤
∞∑
`=1

2S`C ′p · ‖B̃η,f(m)‖F ·2−` + |A`| ·
C ′p · ‖B̃η,f(m)‖F

Sp−1
`

·2−`

≤ ‖B̃η,f(m)‖F ·

(∞∑
`=1

2C ′pS` · 2−` + 2`C ′p
Sp−1
`

)
. (6)

Choose S` = 23`/4 and p ≥ 4, the summation term in Equation 6 can thus be upper
bounded by a constant. We conclude that

E sup
t∈[m]

γ(f (t)) = O(‖B̃η,f(m)‖F).

Note that this also means that 8-wise independence suffices and thus the sketching matrix
can be efficiently stored (see Appendix A for more details). J

C.-N. Chou, Z. Lei, and P. Nakkiran 2:9

Next, we prove Lemma 11 which upper bounds the expectation of ‖B̃η,x‖ for any x ∈ Rn.

Proof of Lemma 11. We first show that Eη‖B̃η,x‖2F ≤
‖x‖4

2
k and the lemma immediately

holds due to Markov’s inequality.
Let 1ii′ be the indicator for whether there exists j ∈ [k] such that ηij = ηi′j = 1. Note

that for i 6= i′, E[1ii′] = 1/k and the only randomness here is in η.

E‖B̃η,x‖2F = E
∑

i,i′∈[n]

(B̃η,x)2
i,i′ = E

∑
(i,i′)∈[n]2, i 6=i′

x2
ix

2
i′1ii′

= 1
k

∑
(i,i′)∈[n]2, i 6=i′

x2
ix

2
i′ ≤

‖x‖42
k

,

where the last inequality is by Cauchy-Schwarz. Note that 8-wise independence is sufficient
in the above argument. J

I Remark 12. Here, let us briefly compare the difference between our techniques and that
in [4]. There are two key observations on the structure of the sketching matrix of CountSketch.
First, we observe that the Frobenius norm of Π>Π is dominated by its diagonal and thus
removing the diagonal would give us a more accurate analysis on the contribution from
the off-diagonal term. However, removing the diagonal of Π>Π destroys the symmetric
structure and thus the standard ε-net argument (e.g., in [4]) would not work. To overcome
this, we observe that one can directly construct ε-net for the matrix obtained by removing
the diagonal from Π>Π. Combining these two observations and standard chaining argument,
we are able to show that CountSketch provides `2 weak tracking.

4 Strong tracking of AMS sketch and CountSketch

In this section, we are going to discuss the strong tracking of AMS sketch and CountSketch.
We start with a standard reduction from weak tracking to strong tracking via union bound.
This gives us an O(logm) blow-up in the dependency on δ. Next, we show that this is
essentially tight for both AMS sketch and CountSketch up to a logarithmic factor.

I Lemma 13 (folklore). For any ε > 0, δ ∈ (0, 1), and n,m ∈ N. If a linear sketch provides
(ε, δ) weak tracking for length m inputs having value from [n], then it also provides (2ε, δ′)
strong tracking where δ′ = min{1, (logm) · δ}.

Proof. See Subsection B.1 for details. J

From Lemma 13, we immediate have the following corollaries.

I Corollary 14. For any ε > 0 and δ ∈ (0, 1), AMS sketch with O
(
ε−2(log logm+ log(1/δ))

)
rows provides `2 (ε, δ)-strong tracking.

I Corollary 15. For any ε > 0 and δ ∈ (0, 1), CountSketch with O
(
ε−2δ−1 logm

)
rows

provides `2 (ε, δ)-strong tracking.

I Remark. After applying median trick on CountSketch, the dependency of the number
of rows on δ becomes O(log(1/δ)) and thus O

(
ε−2(log logm+ log(1/δ))

)
rows suffices to

achieve `2 (ε, δ)-strong tracking.
In the following, we are going to show that the above two upper bounds are essentially

tight for these two algorithms.

APPROX/RANDOM 2019

2:10 Tracking the `2 Norm with Constant Update Time

I Theorem 16. There exists constants C > 0 such that for any ε ∈ (0, 0.1) and δ ∈ (0, 1),
there exists N0 ∈ N such that if k < C ·

(
log logm

log(1/ε) + log(1/δ)
)
and N0 ≤ n ≤ m, then fully

independent AMS sketch with k rows does not provide `2 (ε, δ)-strong tracking.

That is, AMS sketch requires Ω̃
(
ε−2(log logm+ log(1/δ))

)
rows to achieve `2 (ε, δ)-strong

tracking. Interestingly, the hard instance for AMS sketch to achieve strong tracking is simply
the stream consisting all distinct elements. See Subsection B.2 for details.

I Theorem 17. There exists a constant C > 0 such that for any ε ∈ (0, 0.5), and δ ∈ (0, 1),
there exists N0 ∈ N such that if k ≤ C · ε−2δ−1 logm

log(1/ε) and N0 ≤ n ≤ O(logm), then
CountSketch with k rows does not provide `2 (ε, δ)-strong tracking.

That is, CountSketch requires Ω̃(ε−2δ−1 logm) rows to achieve `2 (ε, δ)-strong tracking. The
hard instance for CountSketch is more complicated than that of AMS sketch. See Subsec-
tion B.3 for details.

5 Conclusion

In this work, we showed that CountSketch provides `2 weak tracking with update time having
no dependence on the error parameter ε. We also give almost tight `2 strong tracking lower
bounds for AMS sketch and CountSketch.

An immediate open problem after this work would be tracking `p with faster update time
for 0 < p < 2. The `p estimation problem had been solved by Indyk [12] via p-stable sketch
and was proven to provide weak tracking by Błasiok et al. [3]. However, same as AMS sketch,
the p-stable sketch is dense and has update time Ω(ε−2). Nevertheless, Kane et al. [18] gave a
space-optimal algorithm for `p estimation problem with update time O(log2(1/ε) log log(1/ε)).
It would be interesting to see if their algorithm also provides `p weak tracking.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29. ACM, 1996.

2 Andrew C Berry. The accuracy of the Gaussian approximation to the sum of independent
variates. Transactions of the american mathematical society, 49(1):122–136, 1941.

3 Jaroslaw Blasiok, Jian Ding, and Jelani Nelson. Continuous Monitoring of l_p Norms in
Data Streams. In LIPIcs-Leibniz International Proceedings in Informatics, volume 81. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

4 Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P Woodruff. BPTree: An `2 heavy hitters algorithm using constant memory. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 361–376. ACM, 2017.

5 Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, and David P Woodruff. Beating
CountSketch for heavy hitters in insertion streams. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pages 740–753. ACM, 2016.

6 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. In International Colloquium on Automata, Languages, and Programming, pages
693–703. Springer, 2002.

7 Graham Cormode and Shan Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005.

C.-N. Chou, Z. Lei, and P. Nakkiran 2:11

8 Anirban Dasgupta, Ravi Kumar, and Tamás Sarlós. A sparse Johnson-Lindenstrauss transform.
In Proceedings of the forty-second ACM symposium on Theory of computing, pages 341–350.
ACM, 2010.

9 Carl-Gustaf Esseen. On the Liapounoff limit of error in the theory of probability. Almqvist &
Wiksell Stockholm, 1942.

10 David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms
in independent random variables. The Annals of Mathematical Statistics, 42(3):1079–1083,
1971.

11 Zengfeng Huang, Wai Ming Tai, and Ke Yi. Tracking the Frequency Moments at All Times.
arXiv preprint, 2014. arXiv:1412.1763.

12 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

13 Tadeusz Inglot and Teresa Ledwina. Asymptotic optimality of new adaptive test in regression
model. Annales de l’Institut Henri Poincare (B) Probability and Statistics, 42(5):579–590,
2006.

14 T. S. Jayram and David P. Woodruff. Optimal Bounds for Johnson-Lindenstrauss Transforms
and Streaming Problems with Subconstant Error. ACM Trans. Algorithms, 9(3):26:1–26:17,
June 2013. doi:10.1145/2483699.2483706.

15 Daniel Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit Johnson-Lindenstrauss
families. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 628–639. Springer, 2011.

16 Daniel M Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the
ACM (JACM), 61(1):4, 2014.

17 Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 745–754. ACM, 2011.

18 Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 745–754. ACM, 2011.

19 Daniel M Kane, Jelani Nelson, and David P Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 41–52. ACM, 2010.

20 Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 1161–1178. Society for Industrial and Applied
Mathematics, 2010.

21 Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan Chen. Sketch-based change
detection: methods, evaluation, and applications. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement, pages 234–247. ACM, 2003.

22 Kasper Green Larsen, Jelani Nelson, and Huy L Nguyên. Time lower bounds for nonadaptive
turnstile streaming algorithms. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pages 803–812. ACM, 2015.

23 Mikkel Thorup and Yin Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In SODA, volume 4, pages 615–624, 2004.

24 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications to
linear probing and second moment estimation. SIAM Journal on Computing, 41(2):293–331,
2012.

APPROX/RANDOM 2019

http://arxiv.org/abs/1412.1763
https://doi.org/10.1145/2483699.2483706

2:12 Tracking the `2 Norm with Constant Update Time

A Implementation of CountSketch

Here, we present the implementation of CountSketch for the completeness. Note that the
construction is standard and not new.

Algorithm 1 Constructing CountSketch.

1: k ←
⌈
c
ε2

⌉
for some constant c > 0.

2: f̃ ∈ Zk vector with initial value 0.
3: Sample h : [n]→ [k] from a 8-wise independent hash family.
4: Sample g : [n]→ {±1} from a 8-wise independent hash family.
5: for t = 1, 2, . . . ,m do
6: On input at = i, set f̃h(i) = f̃h(i) + g(i).

Note that both h and g can be stored in space O(logn + log(1/ε)) and be evaluated
in O(1) many arithmetic operations. f̃ can be stored in space O(ε−2 logm) bits. For the
convenience of analysis, we define the sketching matrix Π ∈ {0,±1}k×n of CountSketch by
Πh(i),i = g(i) for all i ∈ [n].

B Proofs for strong tracking

B.1 From weak tracking to strong tracking
After applying union bound on all points t = 1, 2, . . . ,m, a streaming algorithm provides `2
(ε, δ)-approximation also provides `2 (ε, δ′)-strong tracking where δ′ = min{1,mδ}. However,
the blow-up in δ is m, which is undesirable. The following lemma shows that with a more
delicate union bound argument, the reduction from weak tracking to strong tracking only
has O(logm) blow-up in δ. Note that the lemma is a folklore and we provide a proof
for completeness.

Proof. Let {f (t)}t∈[m] be the frequency of an insertion-only stream and let {f̃ (t)}t∈[m] be its
(randomized) approximations produced by the linear sketch. Let w = blogmc+1 and ti = 2i−1
for each i ∈ [w]. Note that for each i ∈ [w] and ti−1 < t ≤ ti, 1

2‖f
(ti)‖22 ≤ ‖f (t)‖22 ≤ ‖f (ti)‖22.

Define the event

Ei :=
{
‖f̃ (ti)‖22 − ‖f (ti)‖22| > ε‖f (ti)‖22

}
.

Observe that for each ti−1 < t ≤ ti, |‖f̃ (t)‖22 − ‖f (ti)‖22| > 2ε · ‖f (t)‖22 would imply ¬Ei.
Namely, ¬ ∪i∈[w] Ei implies strong tracking.

By the `2 (ε, δ)-weak tracking property of the streaming algorithm, for each i ∈ [w], we
have Pr [Ei] ≤ δ and thus Pr[∪i∈[w]Ei] ≤ wδ. We conclude that the streaming algorithm
provides `2 (2ε, wδ)-strong tracking. J

B.2 Strong tracking lower bound for AMS sketch
The hard instance is simply the stream of all distinct elements, i.e., it = t for all t ∈ [m].

Proof of Theorem 16. Consider the stream of all distinct elements as the hard instance,
i.e., it = t for all t ∈ [m]. Thus, ‖f (t)‖22 = t and ‖Πf (t)‖22 =

∑
i∈[k]

(∑
j∈[t] Πi,j

)2
for all

t ∈ [m].

C.-N. Chou, Z. Lei, and P. Nakkiran 2:13

Define a sequence of time {tj} as follows. t0 = 0 and tj =
∑
i∈[j] ∆i where ∆i = d10/εei.

Pick ` and m properly such that t` ≤ m. Some quick facts about the choice of parameters
here: (i) |tj −∆j | ≤ ε

5 · tj . (ii) ` = Θ(logm
log(1/ε)).

To show AMS sketch does not provide (ε, δ)-strong tracking for ε ∈ (0, 0.1) and δ ∈
(0, 1), it suffices to show that with probability at least δ there exists j ∈ [`] such that
‖Πf (tj)‖22 − tj > (1 + ε) · tj .

For the convenience of the analysis, for any i ∈ [k] and j ∈ [`], let X(tj)
i =

∑tj
s=tj−1+1 Πi,s

which is the sum of ∆j independent Rademacher random variables divided by
√
k. Also let

Zj =
∑
i∈[k](X

(tj)
i)2. Note that E[Zj] = ∆j/

√
k and

‖Πf (tj)‖22 =
∑
i∈[k]

∑
j′∈[j]

X
(tj′)
i

2

= Zj +
∑
i∈[k]

 ∑
j′∈[j−1]

X
(tj′)
i

2

+ 2
∑
i∈[k]

〈X(tj)
i ,

∑
j′∈[j−1]

X
(tj′)
i 〉. (7)

Define an event Ej := {Zj ≥ (1+2ε) ·E[Zj]} for each j ∈ [`]. Observe that when conditioning
on ∩j′∈[j−1]¬Ej′ , the second term of Equation 7 is bounded by O(tj−1) and the third term
is bounded by O(

√
tj−1Zj) due to Cauchy-Schwarz. By the choice of parameters, both term

can be bounded by 0.1tj . Furthermore, Ej implies ‖Πf (tj)‖22 − tj > (1 + ε) · tj . Note that
Ej is independent to E1, . . . , Ej−1. The following lemma lower bound the probability of Ej
to happen.

I Lemma 18. There exists a constant c > 0 such that Pr[Ej] ≥ e−cε
2k for any j =

Ω(log log k).

Proof of Lemma 18. From the seminal Berry-Esseen theorem [2, 9], we know that when
tj = eΩ(k) = Ω(logm

δ) then X(tj) is point-wisely e−Ω(k)-close to a normal distribution with
zero mean and variance ∆j . That is, kZj

∆j
is also point-wisely e−Ω(k)-close to a chi-square

distribution χ2
∆j

with mean ∆j and ∆j degree of freedom10.
Inglot and Ledwina [13] showed that the tail of chi-square random distribution can be

lower bounded as Pr[χ2
k ≥ (1 + 2ε) · k] ≥ 1

2e
−ε2k/10 when k large enough. Combine with the

Berry-Esseen theorem, we have Pr[Ej] ≥ e−cε
2k for some constant c > 0. J

Note that as {Zj}j∈[`] are mutually independent, the events {Ej}j∈[`] are also mutually
independent. That is,

Pr
[
∃t ∈ [m],

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22
∣∣∣ > 2ε‖f (t)‖22

]
≥ Pr

[
∪j∈[`]Ej

]
≥ 1−

∏
j∈[`]

Pr [¬Ej | ¬Ej′ , ∀j′ ∈ [j − 1]]

≥ 1−
(

1− e−cε
2k
)`
≥ `e−cε

2k.

J

Namely, there exists another constant C > 0 such that if k < Cε−2
(

log logm
log(1/ε) + log(1/δ)

)
≤

1
c ε
−2 log `

δ . Thus, AMS sketch does not provide (ε, δ)-strong tracking for all ε ∈ (0, 0.1).

10Recall that a chi-square random variable of d degree of freedom is equivalent to the sum of d squares of
the standard normal random variable.

APPROX/RANDOM 2019

2:14 Tracking the `2 Norm with Constant Update Time

B.3 Strong tracking lower bound for CountSketch
To prove Theorem 17, we are going to construct a stream such that any CountSketch does
not provide strong tracking. Let’s start from some observation. For any i 6= i′ ∈ [n]
and a > 0, let x = a(ei + ei′) such that ‖x‖22 = 2a2. Now, observe that If Πi = Πi′ ,
then we have ‖Πx‖22 = 4a2. If Πi = −Πi′ , then we have ‖Πx‖22 = 0. Note that in both
cases, the approximation ‖Πx‖22 and the correct answer ‖x‖22 has a huge gap 2a2, i.e.,∣∣‖Πx‖22 − ‖x‖22

∣∣ ≥ ‖x‖22.
With the above observation, one can see that a collision (either Πi = Πi′ or Πi = −Πi′)

is a sufficient condition for an estimation error. As a result, to show CountSketch does not
provide strong tracking, it suffices to show the following two things: (i) there will be some
collision with constant probability and (ii) construct a stream such that once a collision
happens, the estimation error is large.

Note that (ii) is very specific to tracking since unlike `2 estimation which only cares
about the final estimation, we need to keep track of the estimation at any time. Thus, to
show the impossibility of tracking, we have to show that the estimation fails at least once at
some point.

Proof of Theorem 17. Let n be the number of elements and k be the number of rows of
CountSketch. Let ∆ = d100/εe and w = d1/εe. For any j ∈ [`], define tj =

∑
j′∈[j] ∆j′+1 =

∆j+1−∆1

∆−1 and the stream at time tj as follows.

f (tj) =

∆, . . . ,∆︸ ︷︷ ︸
w

,∆2, . . . ,∆2︸ ︷︷ ︸
w

,∆j , . . . ,∆j︸ ︷︷ ︸
w

, 0, . . . , 0

 .

We have ‖f (tj)‖22 =
∑
j′∈[j] w ·∆2j′+1 = w·∆2j+2−w·∆2

∆2−1 . Note that one can easily complete
rest of the stream {f (t)}t∈[m] for any m ≥ t`. Note that here we can pick ` = Θ(logm

log(1/ε)).
Define the event Ej := {‖Πf (tj)‖22−‖f (tj)‖22 > ε ·‖f (tj)‖22}. To show that CountSketch

does not provide w2 (ε, δ)-strong tracking, it suffices to prove Pr[∪j∈[`]Ej] > δ. The following
lemma lower bounds the probability of single Ej .

I Lemma 19. For each j ∈ `, we have Pr[Ej | ¬ ∪j′∈[j] Ej′] ≥ 1
10kε2 .

Proof. First, let f̄ (tj) = f (tj)− f (tj−1) for each j ∈ ` where we define f (0) = 0. Observe that

‖Πf (tj)‖22 − ‖f (tj)‖22 = ‖Πf̄ (tj) + Πf (tj−1)‖22 − ‖f̄ (tj) + f (tj−1)‖22
= ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 + ‖Πf (tj−1)‖22 − ‖f (tj−1)‖22
+ 2〈Πf̄ (tj),Πf (tj−1)〉 − 2〈f̄ (tj), f (tj−1)〉.

Further, condition on ¬ ∪j′∈[j−1] Ej′ , we have ‖f (tj−1)‖22, ‖Πf (tj−1)‖22, |〈Πf̄ (tj),Πf (tj−1)〉|,
and |〈f̄ (tj), f (tj−1)〉| are all at most (ε/10) · ‖f (tj)‖22 by the choice of ∆. Namely,

‖Πf (tj)‖22 − ‖f (tj)‖22 ≥ ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 −
ε

2 · ‖f
(tj)‖22. (8)

I Lemma 20. Pr
[
‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 > 3ε · ‖f (tj)‖22

]
> 1

10kε2 .

C.-N. Chou, Z. Lei, and P. Nakkiran 2:15

Proof. Let us consider the columns of Π that correspond to the non-zero entries of f̄ (tj). That
is, column ∆ ·(j−1)+1 to ∆ ·j. Note that once there are exactly one collision happens among
these columns and the both the value are the same, then ‖Πf̄ (tj)‖22 − ‖f̄ (tj)‖22 > 3ε · ‖f (tj)‖22.
The probability of the above to happen is at least the following.

1
2 ·

k ·
(
w
2
)
· (k − 1) · (k − 2) · · · (k − w + 2)

kw
≥ w2

5k >
1

10kε2 . J

Now, Lemma 19 immediately follows from Equation 8 and Lemma 20. J

Let us wrap up the proof of Theorem 17 as follows.

Pr
[
∃t ∈ [m],

∣∣∣‖Πf (t)‖22 − ‖f (t)‖22 > ε‖f (t)‖22
∣∣∣] ≥ Pr

[
∪j∈[`]Ej

]
=
∏
j∈[`]

Pr
[
Ej | ¬ ∪j′∈[j−1] Ej′

]
≥
(

1− 1
10kε2

)`
≥ 1− `

kε2
.

By the choice of parameters, the last quantity would be greater than δ and thus CountS-
ketch with k ≤ C · ε−2δ−1 log(m)

log(1/ε) rows does not provide `2 (ε, δ)-strong tracking. J

APPROX/RANDOM 2019

Submodular Optimization with Contention
Resolution Extensions
Benjamin Moseley
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
Relational AI, Berkeley CA, USA
moseleyb@andrew.cmu.edu

Maxim Sviridenko
Yahoo Research, New York, NY, USA
sviri@oath.com

Abstract
This paper considers optimizing a submodular function subject to a set of downward closed constraints.
Previous literature on this problem has often constructed solutions by (1) discovering a fractional
solution to the multi-linear extension and (2) rounding this solution to an integral solution via a
contention resolution scheme. This line of research has improved results by either optimizing (1) or (2).

Diverging from previous work, this paper introduces a principled method called contention
resolution extensions of submodular functions. A contention resolution extension combines the
contention resolution scheme into a continuous extension of a discrete submodular function. The
contention resolution extension can be defined from effectively any contention resolution scheme. In
the case where there is a loss in both (1) and (2), by optimizing them together, the losses can be
combined resulting in an overall improvement. This paper showcases the concept by demonstrating
that for the problem of optimizing a non-monotone submodular subject to the elements forming an
independent set in an interval graph, the algorithm gives a .188-approximation. This improves upon
the best known 1

2e ' .1839 approximation.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Submodular, Optimization, Approximation Algorithm, Interval Scheduling

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.3

Category APPROX

Funding Benjamin Moseley: Supported in part by a Google Research Award, a Yahoo Research
Award and NSF Grants CCF-1830711, CCF-1824303, and CCF-1733873.

1 Introduction

Submodular function maximization has numerous applications and there has been a rich
theory developed on the topic. See [9] for pointers to relevant work. In this problem, the
input consists of a universe of n elements U and a submodular set function f : 2U → R+. A
function is submodular if for all sets A,B ⊆ U where A ⊆ B and any element e ∈ U \B it is
the case that f(A ∪ {e})− f(A) ≥ f(B ∪ {e}) + f(B).1 Submodular functions are a general
class of functions that capture the concept of diminishing returns. Natural occurrences
of submodular functions include the cut function [8] and the coverage function [3]. Due
to their generality, submodular functions capture many common objective functions. For
example, submodular functions are frequently used in machine learning for problems such as
document summarization [18], exemplar clustering [12], influence in social networks [13] and
other problems [15].

1 Equivalently, a function is submodular if for all sets A,B ⊆ U it is the case that f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).

© Benjamin Moseley and Maxim Sviridenko;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8162-017X
mailto:moseleyb@andrew.cmu.edu
mailto:sviri@oath.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Submodular Optimization with Contention Resolution Extensions

The submodular maximization problem is to select a set S maximizing f(S) such that
S ∈ I where I is a family of sets of feasible solutions. The set I is usually assumed to be
downward closed.2 The set of feasible solutions I is defined based on the constraints of the
given problem. Prior work has focused on two cases. In one, the function f is additionally
assumed to be monotone and in the other the function f is non-monotone. A submodular
function is monotone if f(S ∪ {e}) ≥ f(S) for all S ⊆ U and e ∈ U . The function f is said
to be non-monotone if there is no monotonicity restriction.

Optimizing a submodular function subject to classes of downward closed constraints has
been extensively studied [7, 11, 4, 1, 10]. The most widely considered classes of constraints
are a cardinality constraint [3], matroid constraints [17], knapsack constraints [16], and
interval constraints [9]. Through this line of research, a general algorithmic method has
emerged. The method consists of two parts. (1) Find a fractional solution to the multilinear
extension, and then (2) use a contention resolution scheme or techniques like pipage rounding
[5] to round the fractional solution to a feasible integral solution. The multilinear extension
is an extension of a discrete submodular set function f to the fractional continuous setting.
This algorithmic method is general enough to give strong results for numerous problems,
including the best known results for monotone and non-monotone submodular maximization
under a single matroid constraint [3, 7, 1].

Several past works have focused on optimizing either steps (1) or (2) to improve state-
of-the-art methods. Generally, past work has focused on improving (1), the procedure to
construct a fractional solution. This is because [6] gave general methods for converting
fractional solutions to the multilinear extension to an integral solution. The algorithm
typically used in (1) is the continuous greedy algorithm and its variants [2, 4, 19, 11, 7].

The Multi-Linear Extension, Continuous Greedy, and Contention Resolution Schemes.
Let F be the multilinear extension of f . The multilinear extension F is a continuos
function that extends f to the fractional domain [0, 1]|U |. The input to F is a vector x where
0 ≤ xi ≤ 1 for all i. Let S contain each element U with probability xi. The value of F (x)
is E[f(S)]. It is important to note that S may not be in I. Past work uses the continuous
greedy framework to discover a vector x such that F (x) is close to the optimal solution.
Then, this is rounded to an integral solution using a contention resolution scheme C(x). The
idea is to first construct the set S at random, as is done in the computation of F (x). Then
some elements from S are dropped to find a set S′ ⊆ S such that S′ ∈ I. Key is showing
that E[f(S′)] is close to F (x), and thereby bounding E[f(S′)] by the optimal solution.

The continuous greedy algorithm iteratively builds a fractional solution x. The
algorithm adds a small fractional amount x∗ of some elements to x such that it greedily
increases F (x + x∗). Past work has focused on the optimizing the greedy choice of x∗.

This line of work has mostly focused on optimizing (1). This is due to (1) is being the
core part of the algorithm where there is loss in the approximation factor. In many cases
though, there is additionally loss when performing (2) as well [6, 9].

Contention Resolution Extensions. As mentioned, past work has focused on optimizing (1)
and (2) in isolation. This paper for the first time considers optimizing (1) and (2) together to
combine the losses in the two procedures and show overall improved results. Our main results
are enabled by a principled algorithmic method called contention resolution extensions, going
beyond optimizing the multi-linear extension.

2 A set I is said to be downward closed if S ∈ I implies S′ ∈ I for all S′ ⊆ S.

B. Moseley and M. Sviridenko 3:3

The framework takes as input a (randomized) contention resolution scheme C(x). The
contention resolution scheme takes as input a fractional solution and returns a feasible
integral solution. Past work constructs x and then produces the final solution using C only
in the last step. Instead, this paper uses C to construct x. At each step the new method
greedily selects a small fractional amount of each element x∗ to maximize the expected value
of C(x + x∗). When the algorithm terminates, it simply returns C(x) for the final vector x
computed. In this way, the algorithm’s greedy choices at each step are closely connected to
the final solution that the algorithm will return.

Improved results can be shown using this framework because the loss in step (1) and (2)
can be combined in the analysis. Further, the loss in the contention resolution scheme is
optimized over in each step, allowing the algorithm to converge to a fractional solution that
is chosen directly to optimize the final solution.

1.1 Applications of the Contention Resolution Extension Framework
This paper shows how contention resolution extensions can be used to improve state-of-the-art
results for optimizing submodular functions.

The paper considers the problem of optimizing a submodular function over independent
sets in an interval graph. In this problem, each element is associated with an interval.
The goal is to select a set of intervals that do not intersect to maximize a non-monotone
submodular function. The best known previous result is a 1

2e ' .1839-approximation [9].

I Theorem 1. For any non-monotone submodular function where f(∅) = 0 there is a
.188-approximation algorithm for maximizing the function subject to an interval constraint.

Overview of the Improved Analysis. To describe how our analysis improves over previous
work, first consider the unified continuous greedy algorithm of [11]. Let C be a contention
resolution scheme and OPT denote the value of the optimal solution. As discussed, the
algorithm greedily builds a fractional solution x. At each step, an amount x∗ is added to x
where x∗ contains a small amount of some of the elements. Past analysis of the continuous
greedy framework proves that in each step F (x) increases by an amount proportional to
(1− ||x||∞)OPT. That is, the incremental improvement of F (x) at each step is proportional
to OPT multiplied by an amount that depends on the most any element is fractionally
selected in x. The analysis crucially relies on a bound on ||x||∞ at each step. The algorithm
arrives at the final solution using C on the vector x at the end of the continuous greedy
procedure. For many contention resolution schemes, the expected value of the solution
returned is bounded by F (x) multiplied by the minimum probability an element is not
discarded by the contention resolution scheme.

Following the above, notice that improving the bound on ||x||∞ in each step will improve
the overall analysis. Our algorithmic framework will allow us to achieve better bounds on
||x||∞. In particular, we know that the final solution returned is obtained by running C,
which increases the probability that an element is not included in the final solution. If
somehow the probability an element is discarded by C could be incorporated into each step
of the algorithm to ensure ||x||∞ is small, then this would improve the overall analysis.

Our algorithm uses C at each step in the continuous process of constructing x. In
particular, by using C there is less of a chance an element is selected. For this reason, the
analysis effectively gets a tighter bound on ||x||∞, resulting in an overall improved analysis.

A challenge in this approach is that no prior analysis has considered optimizing C(x) and
have always used F (x). Consequently, our analysis introduces new techniques for optimizing
over contention resolutions extensions.

APPROX/RANDOM 2019

3:4 Submodular Optimization with Contention Resolution Extensions

2 Preliminaries

Let f be a non-monotone submodular function. The input to the problem is a universe of
n elements S. The goal is to select a set of elements S′ ⊆ I such that f(S′) is maximized
where I is a set of feasible solution sets. Let fR(S′) := f(R ∪ S′) − f(R) be the value of
adding elements in the set S′ to the set R. In this paper it is assumed that f(∅) = 0.

The paper considers a hereditary set system defined by independent sets in interval
graphs. In this problem, each element i ∈ U is an interval (si, di]. A set S′ is in I if no two
intervals in S′ intersect.

The analysis framework in this paper builds on previous submodular optimization work.
The next lemma follows from the contention resolution framework of [6]. It is not proven
explicitly, but follows from the proof in the paper. Consider a contention resolution scheme
that takes as input a set S′ and returns a set D(S′) ⊆ S′. The scheme is said to be monotonic
if the probability an element i ∈ D(S′′) is only greater than the probability i ∈ D(S′) for
S′′ ⊆ S′ and {i} ∈ S′′.

I Theorem 2 ([6]). Let S′ be a set constructed using a randomized procedure. Consider
a deterministic monotonic contention resolution scheme that given a set S′ of elements
constructs a set D(S′) ⊆ S′ such that Pr[i ∈ D(S′) | i ∈ S′] ≥ c for all S′ and i. Further,
there exists an ordering of elements e1, e2, . . . in D(S′) such that fe1,e2,...ei({ei+1}) > 0 for
all 0 ≤ i < |D(S′)|. Then it is the case that cE[f(S′)] ≤ E[f(D(S′))].

The following lemma is implied by a well known relationship between the Lovasz extension
and multilinear extension of submodular functions. See [9] and [20]. We prove this here for
completeness.

I Theorem 3. Let f be a non-negative submodular function with f(∅) = 0. Fix any set O.
Let R be a set of elements constructed at random where element i is in R with probability pi.
Say that pi ≤ α for all i /∈ O. It is the case that E[f(R ∪O)] ≥ (1− α)f(O).

Proof. Let pi be the probability that i is in R for i /∈ O and let pi = 1 for i ∈ O. Consider
ordering all of the intervals so that p1 ≥ p2 ≥ . . . ≥ pn. For notational convienience, assume
pn+1 = 0. Recall that for any sets S′ and S′′ we set fS′(S′′) = f(S′ ∪ S′′)− f(S′). In the
following [k] is the set {1, 2, . . . , k}. Let R′ = R ∪O in the following. We see the following.

E[f(R′)] = f(∅) +
n∑
k=1

E[f(R′ ∩ [k])− f(R′ ∩ [k − 1])]

=
n∑
k=1

E[fR′∩[k−1](R′ ∩ {k})] ≥
n∑
k=1

E[f[k−1](R′ ∩ {k})] [f(∅) = 0 and submodularity]

=
n∑
k=1

pkf[k−1](k) =
n∑
k=1

pk(f([k])− f([k − 1])) =
n∑
k=1

(pk − pk+1)f([k])

≥ (1− α)f(O) [f is positive and pi ≤ (1− α) for all i /∈ O by assumption] J

3 Non-Monotone Function Subject to an Interval Constraint

In this section, we consider the problem of optimizing a non-monotone submodular function
f subject to an interval scheduling constraint. In this problem, there is a set S of possible
intervals (si, di]. We note that the intervals do not contain their starting point. This is

B. Moseley and M. Sviridenko 3:5

simply for notational purposes and is without loss of generality. A set S′ of intervals is
feasible (in I) if no two intersect and the goal is to maximize f(S′). It is said that two
intervals intersect if they both include a common point.

The algorithm maintains a vector y of size n. Let yi denote the ith entry in the vector.
Intuitively, one can think of the entry yi as the probability of selecting interval i. The
vector y will be chosen such that the following holds. Fix any point t. It is the case that∑

i:t∈(si,di] y
i ≤ 1. That is, the total weight of intervals intersecting point t is at most one.

The Function F (y). The function F is defined as follows. A set R of intervals is selected
by choosing each interval i with probability yi. The function F (y) = E[f(R)]. This function
is the multi-linear extension. Notice that R may not be in the set of feasible solutions I.

The Function G(y). The function G is constructed similarly to F , but it removes additional
intervals from R to get a set D(R). The value of G(y) is set to E[f(D(R))]. Intervals are
removed from R so that D(R) forms a feasible solution. In this way, G acts as a contention
resolution scheme. Each interval i in R is added to D(R) if there is no other interval in R
that intersects the start point si of i. This function is a contention resolution extension3 of
the set function f(S). Notice that the set D(R) is a feasible solution.

Formally, each interval i is in R with probability yi. Given R let D(R) = {i ∈ R | ∀j ∈
R, si /∈ (sj , dj]}. Set G(y) = E[f(D(R))].

The Algorithm. The algorithm works as follows. The algorithm continuously optimizes
G. At time t a vector yt has been constructed. Let δ be very small, 1

poly(n) . The algorithm
initializes yt+δ to yt and then increases some of the entires. Pseudocode can be found in
Algorithm 1. In the following description, for any vector v let v + 1i denote the vector v
except that the coordinate of i is fixed to 1.

Separately for each element i, the algorithm finds the value of γi =
∑
S′⊆S Pr[R =

S′]f(D(S′ ∪ {i})), equivalently the value of G(yt + 1i). This can be estimated to high
accuracy following sampling techniques used in previous work [6, 9, 7] and for ease of
explanation we assume that it can be computed exactly. Let βi := δe−y

i
t(1 − yit) and

wi = βi(γi − G(yt)) = βi(G(yt + 1i) − G(yt)). The value of wi is precisely the change in
G(yt) if yit is increased to 1 and then scaled by βi.

The algorithm finds a maximum weight independent set I over all intervals where an
interval i is given weight wi. It is well known that such a solution can be found in polynomial
time using dynamic programming [14]. For each interval i ∈ I, yit+δ is increased by an
additive βi.

The procedure can stop at any time t where 0 ≤ t ≤ 1.4 When the procedure stops,
the final solution is produced by constructing D(R) as in the description of G. This set is
returned as the solution. This is a feasible solution by construction and the expected value
of the algorithm’s solution will be G(yt).

3 We note that this is not the only contention resolution extension and there are other natural contention
resolution schemes that could be used.

4 One could stop at t > 1 so long as the contention resolution scheme constructs a feasible solution. This
did not result in improvement in our analysis.

APPROX/RANDOM 2019

3:6 Submodular Optimization with Contention Resolution Extensions

Algorithm 1 Computing yt+δ from yt.

1: for i ∈ U do
2: γi ← G(yt + 1i)
3: βi ← δe−y

i
t(1− yit)

4: wi ← βi(γi −G(yt)) / / = βi(G(yt + 1i)−G(yt))
5: end for
6: Give each interval i a weight of wi. Using these weights, find a maximum weight subset

of intervals I that do not intersect.
7: for i ∈ U do
8: if i ∈ I then
9: yit+δ = yit + βi
10: else
11: yit+δ = yit
12: end if
13: end for
14: Output yt+δ

3.1 Analysis

Let O denote the intervals in a fixed optimal solution. For each interval i, let Ei be the set
of intervals at or before si that intersect i and let i be in Ei. The analysis begins by showing
that any single interval is selected with at most a small probability.

I Lemma 4. The maximum value an entry in yt can have is α(t) := 100(e37t/100−1)
100e37t/100−63 + 2δ ≤

1− e−t + 2δt for any 0 ≤ t ≤ 1.

Proof. In each step, an interval i chosen to be in I has its probability of selection increased
by the algorithm. This increase is at most δ(1− yit)e−y

i
t at time t. In the worst case, yit is

increased at each time step t. The proof will assume that this is the case for element i. For
all yit ≤ 1, from convexity of e−yit we derive,

e−y
i
t ≤ 1− (1− e−1)yit ≤ 1− 0.63yit.

We now define a function ρi(t) which is a piecewise linear version of yit over times t. Define
the function ρi(t) for any integer j ≥ 2 and t ∈ [0, 1] as follows: for each t ∈ [(j − 1)δ, jδ]
let ρi(t) = δ

∑j−2
τ=0(1− yiτδ)(1− 0.63yiτδ) + (t− (j − 1)δ)(1− yi(j−1)δ)(1− 0.63yi(j−1)δ). Set

ρi(0) = 0. Obviously yiτδ ≤ ρi(t) when t ≤ τδ and yi(τ+1)δ ≤ y
i
τδ + δ for all τ . Moreover,

dρi(t)
dt

= (1− yi(j−1)δ)(1− 0.63yi(j−1)δ) ≤ (1− yijδ + δ)(1− 0.63yijδ + δ)

≤ (1− ρi(t))(1− 0.63ρi(t)) + 4δ

Consider setting up a new function α(t) where α(0) = 0 and dα
dt = (1−α(t))(1−0.63α(t))+

4δ. Solving this differential equation gives that α(t) = 100(e37t/100−1)
100e37t/100−63 + 4δt. We know that

ρi(0) = α(0) = 0. The function α(t) is continuous and the function ρ(t) is piecewise linear.
Further, for any 0 ≤ t ≤ 1 whenever ρi(t) = α(t) the derivative of α(t) is larger than ρi(t).
This gives that ρi(t) ≤ α(t) for all 0 ≤ t ≤ 1.

Thus, we have that yit ≤ ρi(t) ≤ α(t) for all 0 ≤ t ≤ 1, proving the lemma. J

B. Moseley and M. Sviridenko 3:7

We will begin by relating the functions G and F . To do this, we will use Theorem 2.
This theorem requires that we bound the probability an interval in R is in D(R). We do this
in the following lemma.

I Lemma 5. For any time 0 ≤ t ≤ 1 it is the case that Pr[i ∈ D(R) | i ∈ R] = Pr[R∩ (Ei \
{i}) = ∅] ≥ e−(t−yit) ≥ e−t.

Proof. Fix an interval i = (si, di]. If this interval is in R, then the only reason it is not
in D(R) is because there is another interval j ∈ R such that j intersects the start point
of i. That is if j ∈ Ei ∩ R and j 6= i then in this case i will not be in D(R); otherwise, if
R ∩ (Ei \ {i}) = ∅ then i is in D(R) when i ∈ R. Thus, it suffices to bound the probability
any interval is sampled to be in R which intersects si. The probability no interval in Ei \ {i}
is sampled is

∏
j 6=i,si∈(sj ,dj](1 − y

j
t) ≥ e−t+y

i
t . Where the inequality follows from the fact

that
∑
j:si∈(sj ,dj] y

j
t ≤ t for any step of the algorithm, i.e. any time t where 0 ≤ t ≤ 1. J

Now we show two key lemmas. The first shows a relationship between G and F .

I Lemma 6. G(y) ≥ 1
etF (y) for all vectors y.

Proof. We utilize Theorem 2. First notice that the procedure to construct D(R) in the
definition of G is a monotonic scheme. This is because the probability an interval is in D(R)
only decreases if intervals are added to R. Lemma 5 and Theorem 2 give the lemma. J

The next lemma is the key technical lemma that bounds the increase in the G at each
step of the algorithm.

I Lemma 7. It is the case that G(yt+δ) ≥ (1− δ)G(yt) + δ
etE

[∑
i∈O (f(R ∪ {i})− f(R))

]
−

O(n2δ2)f(O) for all t ≤ ln 2− δ.

We defer the proof of the lemma and first show how this can be used to construct our
result. Using the previous two lemma, we can bound the total increase in the function by
the optimal solution.

I Lemma 8. It is the case that G(yt+δ) ≥ (1− δ)G(yt) + δ
et ((1− α(t)) f(O)− etG(yt))−

O(n2δ2)f(O) for all t ≤ ln 2− δ.

Proof. Lemma 7 says that G(yt+δ) ≥ (1 − δ)G(yt) + δ
etE[

∑
i∈O f(R ∪ {i}) − f(R)] −

O(n2δ2)f(O). By definition, E[f(R)] = F (yt) and Lemma 6 states that F (yt) ≤ etG(yt).
This gives the following. The first inequality follows from submodularity.

(1− δ)G(yt) + δ

et
E[
∑
i∈O

f(R ∪ {i})− f(R)]−O(n2δ2)f(O)

≥ (1− δ)G(yt) + δ

et
E[f(R ∪O)− f(R)]−O(n2δ2)f(O)

≥ (1− δ)G(yt) + δ

et
(
E[f(R ∪O)]− etG(yt)

)
−O(n2δ2)f(O). (1)

Notice that E[f(R∪O)] ≥ (1−α(t))f(O) by Theorem 3 because Lemma 4 gives that the
maximum probability any interval is in R is bounded by α(t). Combining this with equation
(1) gives the lemma. J

Using the two above lemmas, we can show our main result.

APPROX/RANDOM 2019

3:8 Submodular Optimization with Contention Resolution Extensions

Proof of Theorem 1. Lemma 8 states that G(yt+δ) ≥ (1− δ)G(yt) + δ
et ((1− α(t))f(O)−

etG(yt)) − O(n2δ2)f(O) wherever t ≤ ln 2 − δ. This implies that G(yt+δ) − G(yt) ≥
−2δG(yt) + δ

et ((1− α(t))f(O))−O(n2δ2)f(O) for t ≤ ln 2− δ.
By choosing δ to be sufficiently small, G(yt+δ) can be bounded using a differential

equation. Consider a function g(t) where g(0) = 0 and for any t ∈ [(j − 1)δ, jδ] it is the case
that

g(t) = δ

j−2∑
τ=0

(
−2G(yτδ) + f(O)

eτδ
(1− α(τδ))

)
+(t− (j − 1)δ)

(
−2G(y(j−1)δ) + f(O)

e(j−1)δ (1− α((j − 1)δ))
)
.

Inductively, notice that G(yt) +O(n2δ2 · tδ)f(O) ≥ g(t) for any t divisible by δ and t less
than ln 2 − δ. Further, dgdt = −2G(y(j−1)δ) + f(O)

e(j−1)δ (1 − α((j − 1)δ)) ≥ −2g(t) + f(O)
et (1 −

α(t))− 2δf(O). Consider a new function h(t) where h(0) = 0 and dh
dt = −2h(t) + f(O)

et (1−
α(t))− 2δf(O). Solving this differential equation results in h(.54) > .188f(O)5. Note that
.54 ≤ ln 2− δ for sufficiently small δ.

We know that h(0) = g(0) = 0. We also know that h(t) is a continuous function and
g(t) is piecewise linear. Further, for any 0 ≤ t ≤ 1 whenever h(t) = g(t) the derivative of
g(t) is only larger than that of h(t). Thus, we have that h(t) ≤ g(t) for all t. Knowing that
g(t) ≤ G(yt) + O(n2δ2 t

δ)f(O) ≤ G(yt) + O(n2δ)f(O) for t ≤ lnn − δ, it is the case that
.188f(O) < h(.54) ≤ g(.54) ≤ G(y.54) +O(n2δ)f(O), proving the theorem for δ ≤ 1

n3 . J

It only remains to prove Lemma 7. The proof can be found in Section 4.

4 Proof of Lemma 7

For this section, let y be the current solution computed by our algorithm at some fixed stage
t. Throughout the section all lemmas and proofs will assume that t ≤ ln 2− δ, an assumption
in the statement of Lemma 7. Let v be a vector equal to yt+δ − yt. For simplicity, we drop
the index t and throughout this section we only focus on stage t and drop the index t in yt.
We want to bound G(y+ v). Throughout this section, let I be the intervals in the support of
v. These are the elements the algorithm chooses in the independent set and whose variables
get increased. Let O be the intervals in the optimal solution.

Let S be the set of all intervals. Let R be the random set of intervals chosen according
to y where every interval is sampled independently. Formally, for each interval i draw a
number ri uniformly at random from [0, 1] and let i be in R if ri < yi. Let Ei denote the
event yi < ri ≤ yi + βi. Intuitively, Ei is the event that i would not be in R if yi is used for
the sampling, but would have if yi was increased by βi. For i ∈ I this is the event i was
chosen in the computation of G(y + v), but not G(y).

For any set S′, let D(S′) contain the intervals from S′ chosen according to the algorithm
that is used in G. That is D(S′) is constructed from S′ by only adding an interval j ∈ S′ to
be in D(S′) if there is no other interval in S′ with earlier start point that also intersects j.

We would like to bound G(y + v) by quantities involving O and G(y). Let E(I ′) denote
the event that Ei occurs for all i ∈ I ′ and Ei does not occur for any i ∈ I \ I ′ and recall
that Pr[Ei] = βi = δ(1− yi)eyi , the amount the algorithm would increase yi if i ∈ I. It will

5 This was verified using a differential equation solving software from Mathematica and independently
verified using numerical evaluation.

B. Moseley and M. Sviridenko 3:9

be useful to first bound the probability that R = S′ for some S′. To do this, the following
lemmas bound the probability of either an interval being in R or R = S′ depending on the
events Ei. The claim isn’t difficult and the proof is deferred to the appendix.

B Claim 9. For any i ∈ I it is the case that Pr[i ∈ R | Ei] = Pr[i∈R]
1−βi ≥ Pr[i ∈ R] and

Pr[i /∈ R | Ei] ≥ (1 − βi)Pr[i /∈ R] when t ≤ ln 2 − δ. Further, for any i ∈ I and any
set S′ ⊆ S it is the case that Pr[S′ = R | E({i})] ≥ Pr[R = S′|Ei]

∏
j∈I,j 6=i(1 − βj) when

t ≤ ln 2− δ.

Intuitively, the next claim relates the probability R would be the same set if intervals are
drawn randomly using y or y + v.

B Claim 10. Fix any set S′ ⊆ S. It is the case that Pr[R = S′ and E(∅)] ≥ (1 −∑
i∈I\S′

βi
1−yi)Pr[R = S′].

Proof. Notice that for any i ∈ I, it is the case that Pr[i ∈ R and E(∅)] = Pr[i ∈ R] and
Pr[i /∈ R and E(∅)] = Pr[i /∈ R]− βi = Pr[i /∈ R](1− βi

1−yi). The last equality follows from
Pr[i /∈ R] = 1− yi by definition. Knowing that elements are sampled independently, we have
the following. The first equality follows since elements are sampled independently. The three
terms break up the cases on if an elements is not in I, is in I ∩ S′ or is in I and not S′.

Pr[R = S′ and E(∅)]
= Pr[R \ I = S′ \ I]

∏
i∈I∩S′

Pr[i ∈ R and E(∅)]
∏

i∈I\S′
Pr[i /∈ R and E(∅)]

= Pr[R = S′]
∏

i∈I\S′
(1− βi

1− yi) ≥ (1−
∑
i∈I\S′

βi
1− yi)Pr[R = S′].

The second equality follows from the observation at the beginning of the proof of the
lemma. C

The next lemma bounds G(y + v) by G(y). Intuitively, the first term says that if Ei does
not occur for any i then G(y+ v) is the same as G(y). The second term captures the case for
Ei occurs for exactly one i ∈ O. Finally, the probability that Ei occurs for more than one i is
very small (proportional to δ2) so this effect is negligible. The proof is deferred to Section 5.

I Lemma 11. It is the case that, G(y+v) ≥ (1−
∑
i∈I βi)G(y)+

∑
i∈I
∑
S′⊆S\{i} βiPr[R =

S′ | Ei]f(D(S′ ∪ {i}))−O(n2δ2f(O)).

Next it is observed that the choice of the set I allows us to swap the terms in the
expression in the previous lemma by the optimal solution O.

I Lemma 12. G(y+ v) ≥ (1−
∑
i∈O βi)G(y) +

∑
i∈O

∑
S′⊆S\{i} βiPr[R = S′ | Ei]f(D(S′ ∪

{i}))−O(n2δ2f(O))

Proof. Consider the value of

∑
i∈I

βi

 ∑
S′⊆S\{i}

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))−G(y)

 .

This equals

∑
i∈I

βi

 ∑
S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′ ∪ {i}))−G(y)

 .

APPROX/RANDOM 2019

3:10 Submodular Optimization with Contention Resolution Extensions

This is equal to the following since elements are sampled independently

∑
i∈I

βi

∑
S′⊆S

Pr[R = S′]f(D(S′ ∪ {i}))−G(y)

 =
∑
i∈I

wi.

By definition, this is only greater than
∑
i∈O wi. Reversing the above steps for O and

combining with Lemma 11 gives the lemma. J

Our remaining goal is to bound part of the expression from the prior lemma,∑
S′⊆S\{i}

∑
i∈O

βiPr[R = S′ | Ei]f(D(S′ ∪ {i})) +
∑
i∈O

βiG(y).

Recall that Ei is the set of intervals starting earlier than i that intersect i and also the
interval i itself. The intervals in Ei \ {i} are the intervals, which if they are sampled to be
in R then i will not be in D(R). Let Bi be the set containing intervals that start during
interval i and also i. The following fact will be useful for applying submodularity.

I Lemma 13. For any set S′ ⊆ S consider {S′ \Bi}i∈O, a collection of subsets of S′. It is
the case that every interval in S′ appears in exactly |O| − 1 sets in this collection. Further,
each interval in S appears in exactly one set Bi.

Proof. To show the lemma, it suffices to show that every interval in S appears in exactly
one set Bi for some i ∈ O. Indeed, we may assume that the intervals in O span the entire
time horizon (adding dummy intervals as needed). Then, an interval j ∈ S can only be in
Bi if j starts during i. Knowing that O cannot have two intervals that overlap, we have
the lemma. J

The next lemma is a technical lemma. The purpose is to take an expression f(D(S′) \Bi)
depending on a set S′ and Bi for i ∈ O and bound it by an expression depending on f(D(S′))
without Bi inside the function input. The lemma follows from submodularity and the
previous lemma.

I Lemma 14. Fix any set S′ ⊆ S. It is the case that
δf(D(S′)) ≥

∑
i∈O βi (f(D(S′))− f(D(S′) \Bi)).

Proof. Consider the term
∑
i∈O βi(f(D(S′))− f(D(S′) \Bi)). We will remove all negative

terms as they only makes the expression smaller. Let O′ be all i where f(D(S′))− f(D(S′) \
Bi) > 0. The lemma follows if we prove that f(D(S′)) ≥

∑
i∈O′(f(D(S′))− f(D(S′) \Bi))

because this implies δf(D(S′)) ≥ δ
∑
i∈O′(f(D(S′))−f(D(S′)\Bi)) ≥

∑
i∈O′ βi(f(D(S′))−

f(D(S′) \Bi)) knowing that βi ≤ δ and all terms are positive.
Now it is established that f(D(S′)) ≥

∑
i∈O′(f(D(S′))−f(D(S′)\Bi)), which follows by

submodularity. Indeed, let A0 = D(S′) \ ∪i∈O′Bi. Arbitrarily order the sets B1, B2, . . . B|O′|
and let Ai = Ai−1 ∪ (Bi ∩D(S′)) for 1 ≤ i ≤ |O′|. By submodularity,

∑
i∈O′(f(D(S′)) −

f(D(S′) \ Bi)) ≤
∑
i∈O′(f(Ai) − f(Ai−1)) = f(D(S′)) − f(A0) ≤ f(D(S′)). The equality

follows from the function being positive and the inequality from submodularity. J

Assuming Ei occurs, the purpose of the following lemma is to separate the cases where at
least one interval in Ei is in R and the other where no interval in Ei is in R. Intuitively, if
no interval in Ei is in R then i will be in D(R) otherwise i will not. In either case, when Ei
occurs the interval i ensures no interval in Bi is in D(R) and the lemma bounds the cost of
removing Bi by applying Lemma 14. The proof is deferred to Section 6.

B. Moseley and M. Sviridenko 3:11

I Lemma 15. It is the case that,

G(y + v) ≥ (1− δ)G(y) +∑
S′⊆S

Pr[R = S′ | Ei]
∑

i∈O,S′∩Ei=∅

βi(f(D(S′) \Bi ∪ {i})− f(D(S′) \Bi))−O((nδ)2f(O)).

Our goal now is to bound the second term in the previous lemma by showing this following.
This shows that the second term is at least δ

et multiplied by the expected value of adding
each element of O to R individually.

I Lemma 16.
∑
S′⊆S Pr[R = S′ | Ei]

∑
i∈O,S′∩Ei=∅ βi(f(D(S′)\Bi∪{i})−f(D(S′)\Bi)) ≥

δ
et

∑
S′⊆S Pr[R = S′]

∑
i∈O fS′(i)

Before we prove the lemma, we show how this can be used to complete the proof of
Lemma 7.

Proof of Lemma 7. By combining lemmas 15 and 16 we have the following.

G(y + v) ≥ (1− δ)G(y) + δ

et

∑
S′⊆S

Pr[R = S′]
∑
i∈O

fS′(i)−O((nδ)2f(O))

≥ (1− δ)G(y) + δ

et
E[
∑
i∈O

fR(i)]−O((nδ)2f(O))

This completes the proof. J

It only remains to prove Lemma 16.

Proof of Lemma 16. Consider the term
∑
S′⊆S Pr[R = S′ | Ei]

∑
i∈O,S′∩Ei=∅ βi(f(D(S′) \

Bi ∪ {i})− f(D(S′) \Bi)). Rearranging the summations and using the definition of fS′(i)
this is equal to

∑
i∈O

∑
S′⊆S,S′∩Ei=∅Pr[R = S′ | Ei]βifD(S′)\Bi(i). We know that for any

set S′ ⊆ S if S′ ∩ Ei = ∅ then S′ ⊆ (S \ Ei). Using this, the term is equal to the following.∑
i∈O

∑
S′⊆(S\Ei)

βiPr[R = S′ | Ei]fD(S′)\Bi(i)

=
∑
i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei and R ∩ Ei = ∅ | Ei]fD(S′)\Bi(i)

To see why the previous equality holds, notice that R = S′ if and only if S′ = R \ Ei and
R ∩ Ei = ∅ for S′ ⊆ (S \ Ei). Now we continue to lower bound this expression.∑

i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei | Ei]Pr[R ∩ Ei = ∅ | Ei]fD(S′)\Bi(i)

[Definition of R implies independence]
=

∑
i∈O

∑
S′⊆(S\Ei)

βiPr[S′ = R \ Ei]Pr[R ∩ (Ei \ {i}) = ∅]fD(S′)\Bi(i)

[Definition of Ei]

≥
∑
i∈O

∑
S′⊆(S\Ei)

βi
et−yi

Pr[S′ = R \ Ei]fD(S′)\Bi(i) [Lemma 5]

= δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)Pr[R = S′ \ Ei]fD(S′)\Bi(i) [Definition of βi] (2)

APPROX/RANDOM 2019

3:12 Submodular Optimization with Contention Resolution Extensions

Notice that 1 =
∑
E⊆Ei Pr[R ∩ Ei = E | i /∈ R] because the right hand side captures all

the events in a probability distribution. Further, fix an element i ∈ O and notice that for any
set S′ ⊆ (S \Ei) and any set E ⊆ Ei it is the case that Pr[S′ = R \Ei] ·Pr[R∩Ei = E | i /∈
R] = Pr[R = S′ ∪ E | i /∈ R]. This follows for two reasons. One is because elements are
sampled independently. The other is because Pr[S′ = R \Ei] = Pr[S′ = R \Ei | i /∈ R] since
i ∈ Ei and the independence of sampling elements. Using these facts, the following holds.

(2) = δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)Pr[S′ = R \ Ei]fD(S′)\Bi(i)
∑
E⊆Ei

Pr[R ∩ Ei = E | i /∈ R]

= δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)fD(S′)\Bi(i)
∑
E⊆Ei

Pr[R = S′ ∪ E | i /∈ R]

[Independence]

≥ δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)fS′\Bi(i)
∑
E⊆Ei

Pr[R = S′ ∪ E | i /∈ R]

[Submodularity]

≥ δ

et

∑
i∈O

∑
S′⊆(S\Ei)

(1− yi)
∑
E⊆Ei

f(S′∪E)\{i}(i)Pr[R = S′ ∪ E | i /∈ R]

[Submodularity and i ∈ Bi]

= δ

et

∑
i∈O

∑
S′⊆(S\{i})

(1− yi)fS′\{i}(i)Pr[R = S′ | i /∈ R]

= δ

et

∑
i∈O

∑
S′⊆(S\{i})

fS′\{i}(i)Pr[R = S′]

[(1− yi) = Pr[i /∈ R] and definition of conditional probability]

= δ

et

∑
i∈O

∑
S′⊆S

fS′(i)Pr[R = S′] [fS′(i) = 0 if i ∈ S′]

J

5 Proof of Lemma 11

This section is devoted to proving Lemma 11.
Consider G(y + v). The value of G(y + v) is equal to

∑
S′⊆S

∑
I′⊆I Pr[R = S′ and

E(I ′)]f(D(S′ ∪ I ′)). This is equal to the following by breaking this into cases. This is a
partitioning of the event space by definition of E(I ′).∑

S′⊆S

Pr[R = S′ and E(∅)]f(D(S′))

+
∑
i∈I

∑
S′⊆S

Pr[R = S′ and E({i})]f(D(S′ ∪ {i}))

+
∑

I′⊆I,|I′|≥2

∑
S′⊆S

Pr[R = S′ and E(I ′)]f(D(S′ ∪ {i}))

Knowing that f is positive, this is greater than the following.∑
S′⊆S

Pr[R = S′ and E(∅)]f(D(S′)) (3)

+
∑
i∈I

∑
S′⊆S

Pr[R = S′ and E({i})]f(D(S′ ∪ {i})) (4)

B. Moseley and M. Sviridenko 3:13

The proof bounds these two terms separately. First consider (3). Using Claim 10 this is
greater than

∑
S′⊆S(1−

∑
i∈I\S′

βi
1−yi)Pr[R = S′]f(D(S′)) = G(y)−

∑
i∈I

βi
1−yi

∑
S′⊆S\{i}

Pr[R = S′]f(D(S′)). The definition of βi gives that this is equal to G(y)−
∑
i∈I βi

∑
S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I y

ie−y
i

δ
∑
S′⊆S\{i}Pr[R = S′]f(D(S′)). We will establish that

this is only greater than (1−
∑
i∈I βi)G(y). Consider the last term.∑

i∈I
yie−y

i

δ
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))

=
∑
i∈I

yie−y
i

δ
∑

S′⊆S\{i}

Pr[R \ {i} = S′]Pr[i /∈ R]f(D(S′))

=
∑
i∈I

yie−y
i

(1− yi)δ
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

=
∑
i∈I

yiβi
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

By definition of the algorithm wi
βi

= E[f(D(R ∪ {i})) − f(D(R))] =
∑
S′⊆S Pr[R =

S′](f(D(S′ ∪ {i}))− f(D(S′))) =
∑
S′⊆S\{i}Pr[R = S′](f(D(S′ ∪ {i}))− f(D(S′))) > 0 for

all i ∈ I. The last equality follows since a term is 0 if i is in S′. Since elements are sampled
independently, this gives that the previous term is only less than the following.∑

i∈I
yiβi

∑
S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′))

≤
∑
i∈I

yiβi
∑

S′⊆S\{i}

Pr[R \ {i} = S′]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′ ∪ {i}]f(D(S′ ∪ {i})) [Note that Pr[i ∈ R] = yi]

Now we use this to bound (3). (3) is greater than or equal to the following.

G(y)−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I

yie−y
i

δ
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))

≥ G(y)−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′]f(D(S′))−
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′ ∪ {i}]f(D(S′ ∪ {i}))

= (1−
∑
i∈I

βi)G(y)

It remains to bound (4). Using conditional probability, this can be bounded as follows.∑
i∈I

Pr[E({i})]
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

Pr[Ei]
∏

j∈I,j 6=i
Pr(Ej)

∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∏

j∈I,j 6=i
(1− βj)

∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

≥
∏
i∈I

(1− βi)
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

≥ (1−
∑
i∈I

βi)
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

APPROX/RANDOM 2019

3:14 Submodular Optimization with Contention Resolution Extensions

Knowing that βi ≤ δ, this is greater than
∑
i∈I βi

∑
S′⊆S Pr[R = S′|E({i})]f(D(S′ ∪

{i}))−O(δ2n2f(O)).
Now we know that,∑

i∈I

βi
∑
S′⊆S

Pr[R = S′|E({i})]f(D(S′ ∪ {i}))

=
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|Ei and Ej for j 6= i)]f(D(S′ ∪ {i})) [Def. of E({i})]

≥
∑
i∈I

βi
∏

j∈I,j 6=i

(1− βj)
∑
S′⊆S

Pr[R = S′|Ei)]f(D(S′ ∪ {i})) [Claim 9 and independence]

≥
∑
i∈I

βi
∑
S′⊆S

Pr[R = S′|Ei)]f(D(S′ ∪ {i}))− |I|δ2f(O)

≥
∑
i∈I

βi
∑

S′⊆S\{i}

Pr[R = S′|Ei)]f(D(S′ ∪ {i}))− |I|δ2f(O)

The last line follows since if Ei occurs then R does not contain i. Putting this all together
gives the lemma.

6 Proof of Lemma 15

This section is devoted to proving Lemma 15.
Consider the following expression. Lemma 12 gives the following.

G(y + v) ≥
∑
S′⊆S

∑
i∈O

βiPr[R = S′ | Ei]f(D(S′ ∪ {i})) (5)

+(1−
∑
i∈O

βi)G(y). (6)

We see that (5) equals the following.∑
i∈O

βi

(∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))

+
∑

S′⊆S,S′∩Ei 6=∅

Pr[R = S′ | Ei]f(D(S′ ∪ {i}))
)

By definition of G, for any set S′ ⊆ S it is the case that D(S′ ∪ {i}) includes i only if
S′ includes no interval in Ei \ {i}. We also know that for any j ∈ S′ it is the case that
j ∈ D(S′ ∪{i}) if and only if j ∈ D(S′) and j /∈ Bi. Using these two facts, the previous term
is equal to the following.∑

i∈O
βi

(∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]f(D(S′) \Bi ∪ {i}))

+
∑

S′⊆S,S′∩Ei 6=∅

Pr[R = S′ | Ei]f(D(S′) \Bi)
)

This is equal to the following.∑
i∈O

βi

(∑
S′⊆S,S′∩Ei=∅

Pr[R = S′ | Ei]
(
f(D(S′) \Bi ∪ {i}))− f(D(S′) \Bi)

)

+
∑
S′⊆S

Pr[R = S′ | Ei]f(D(S′) \Bi)
)

B. Moseley and M. Sviridenko 3:15

We focus on bounding
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \Bi) along with (6). The

rest of the expression is carried to the end of the proof. First we establish a bound on∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \Bi) in the following claim and then it is combined

with (6). The purpose of the following claim is to remove the conditioning on Ei.

B Claim 17.
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \ Bi) =

∑
i∈O βi

∑
S′⊆S Pr[R =

S′]f(D(S′) \Bi).

Proof. First note that Pr[R = S′ | Ei] > 0 if and only if i /∈ S′. Thus we have that the left
hand side is equal to

∑
i∈O βi

∑
S′⊆S\{i}Pr[R = S′ | Ei]f(D(S′)\Bi). Using the definition of

conditional probability and the definition of Ei this is equal to∑
i∈O βi

∑
S′⊆S\{i}

Pr[R\{i}=S′ and Ei]
Pr[Ei] f(D(S′) \ Bi). By independence, this equals∑

i∈O βi
∑
S′⊆S\{i}Pr[R \ {i} = S′]f(D(S′) \ Bi) =

∑
i∈O βi

∑
S′⊆S\{i}Pr[R \ {i} =

S′]f(D(S′) \ Bi)(Pr[i ∈ R] + Pr[i /∈ R]) =
∑
i∈O βi

∑
S′⊆S\{i}(Pr[R = S′] + Pr(R =

S′ ∪ {i}))f(D(S′) \Bi).
We know that for any S′ ⊆ S \ {i} it is the case that f(D(S′) \Bi) = f(D(S′ ∪ {i}) \Bi)

because Bi is the set of intervals that are not in the contention resolution scheme if i is
input and also i is in Bi. Using this, we have that the previous expression is equal to∑
i∈O βi

∑
S′⊆S\{i}(Pr[R = S′]f(D(S′) \ Bi) + Pr(R = S ∪ {i})f(D(S′ ∪ {i}) \ Bi)) =∑

i∈O βi
∑
S′⊆S Pr[R = S′]f(D(S′) \Bi). C

Going back to
∑
i∈O βi

∑
S′⊆S Pr[R = S′ | Ei]f(D(S′) \ Bi) with the expansion of (6)

using the definition of G and the previous claim, we have the following.

∑
i∈O

βi
∑
S′⊆S

Pr[R = S′]f(D(S′) \Bi) + (1−
∑
i∈O

βi)
∑
S′⊆S

Pr[R = S′]f(D(S′))

We apply Lemma 14 for each term S′ to get that this is greater than the following.

(1− δ)
∑
S′⊆S

Pr[R = S′]f(D(S′)) = (1− δ)G(y)

The above gives that G(y + v) ≥ (1− δ)G(y) +
∑
i∈O βi

∑
S′⊆S,S′∩Ei=∅Pr[R = S′ | Ei](

f(D(S′) \Bi ∪ {i}))− f(D(S′) \Bi)
)
, giving the lemma.

7 Conclusion

This paper introduces the approach of using contention resolution extensions to optimize a
submodular function subject to a set of constraints. This algorithmic approach can be used
to improve the best known result when the constraints correspond to independent sets in an
interval graph. The next direction is to determine if this approach can be used to improve
on the best known approximation for other submodular optimization problems.

APPROX/RANDOM 2019

3:16 Submodular Optimization with Contention Resolution Extensions

References
1 Niv Buchbinder and Moran Feldman. Constrained Submodular Maximization via a Non-

symmetric Technique. CoRR, abs/1611.03253, 2016. arXiv:1611.03253.
2 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Submodular

Set Function Subject to a Matroid Constraint (Extended Abstract). In IPCO, pages 182–196,
2007.

3 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

4 Chandra Chekuri, T. S. Jayram, and Jan Vondrák. On Multiplicative Weight Updates for
Concave and Submodular Function Maximization. In ITCS, pages 201–210, 2015.

5 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent Randomized Rounding
via Exchange Properties of Combinatorial Structures. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 575–584, 2010.

6 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Function Maximization
via the Multilinear Relaxation and Contention Resolution Schemes. SIAM J. Comput.,
43(6):1831–1879, 2014.

7 Alina Ene and Huy L Nguyen. Constrained Submodular Maximization: Beyond 1/e. In FOCS,
2016.

8 Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing Non-monotone Submodular
Functions. SIAM J. Comput., 40(4):1133–1153, 2011.

9 Moran Feldman. Maximization Problems with Submodular Objective Functions. PhD thesis,
Technion - Israel Institute of Technology, 2013.

10 Moran Feldman, Christopher Harshaw, and Amin Karbasi. Greed Is Good: Near-Optimal
Submodular Maximization via Greedy Optimization. In Proceedings of the 30th Conference on
Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 758–784,
2017.

11 Moran Feldman, Joseph Naor, and Roy Schwartz. A Unified Continuous Greedy Algorithm
for Submodular Maximization. In FOCS, pages 570–579, 2011.

12 Ryan Gomes and Andreas Krause. Budgeted Nonparametric Learning from Data Streams. In
ICML, pages 391–398, 2010.

13 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the Spread of Influence through
a Social Network. Theory of Computing, 11:105–147, 2015.

14 Jon Kleinberg and Eva Tardos. Algorithm Design. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2005.

15 Matt J. Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q. Weinberger, and
Yixin Chen. Feature-Cost Sensitive Learning with Submodular Trees of Classifiers. In AAAI,
pages 1939–1945, 2014.

16 Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing
Nonmonotone Submodular Functions under Matroid or Knapsack Constraints. SIAM J.
Discrete Math., 23(4):2053–2078, 2010.

17 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular Maximization over Multiple
Matroids via Generalized Exchange Properties. Math. Oper. Res., 35(4):795–806, 2010.

18 Hui Lin and Jeff A. Bilmes. Multi-document Summarization via Budgeted Maximization of
Submodular Functions. In Human Language Technologies: Conference of the North American
Chapter of the Association of Computational Linguistics, Proceedings, June 2-4, 2010, Los
Angeles, California, USA, pages 912–920, 2010.

19 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In STOC, pages 67–74, 2008.

20 Jan Vondrák. Symmetry and Approximability of Submodular Maximization Problems. SIAM
J. Comput., 42(1):265–304, 2013.

http://arxiv.org/abs/1611.03253

B. Moseley and M. Sviridenko 3:17

A Omitted Proofs

Proof of Claim 9. By definition Pr[i ∈ R | Ei] = Pr[i∈R]
1−βi . To see the other part of the

claim, by definition of Ei it is the case that Pr[i /∈ R | Ei] = (1−yi−βi)
1−βi and (1 − βi)Pr[i /∈

R] = (1 − βi)(1 − yi). For all βi ∈ [0, 1) it is the case that (1−yi−βi)
1−βi ≥ (1 − βi)(1 − yi) if

0 ≤ yi ≤ 1−βi
2 . Finally, 0 ≤ yi ≤ 1−δ

2 ≤ 1−βi
2 when t ≤ ln 2−δ. This is because t ≤ ln 2−δ by

assumption and Lemma 4 states that any entry in y is at most 1− e−t ≤ 1− e−(ln 2−δ) ≤ 1−δ
2 .

Now consider the second part of the lemma. Recall that E({i}) is the event where Ei
occurs as well as Ej for all j ∈ I where j 6= i. We have the following.

Pr[S′ = R | E({i})] = Pr[S′ = R and E({i})]
Pr[E({i})]

By independence this equals the following.
Pr[S′ \ I = R \ I]

Pr[E({i})] Pr[{i} ∩ S′ = {i} ∩R and Ei]
∏

j∈I,j∈S′,j 6=i

Pr[j ∈ R and Ej]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R and Ej]

By independence we know that Pr[E({i})] = Pr[Ei]
∏
j∈I,j 6=i Pr[Ej]. Using this and

conditional probability, the prior term is equal to the following.
Pr[S′ \ I = R \ I]

Pr[Ei]
Pr[{i} ∩ S′ = {i} ∩R and Ei]

∏
j∈I,j∈S′,j 6=i

Pr[j ∈ R | Ej]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R | Ej]

The first argument shown in the lemma gives that this is at least the following. This
argument allows us to remove the conditioning on Ej .∏

j 6=i,j∈I

(1− βj)
Pr[S′ \ I = R \ I]

Pr[Ei]
Pr[{i} ∩ S′ = {i} ∩R and Ei]

∏
j∈I,j∈S′,j 6=i

Pr[j ∈ R]

·
∏

j∈I,j /∈S′,j 6=i

Pr[j /∈ R]

Using independence, this is equal to the following.∏
j 6=i,j∈I

(1− βj)
Pr[S′ = R and Ei]

Pr[Ei]

Finally, conditional probability gives the following.∏
j 6=i,j∈I

(1− βj)Pr[S′ = R | Ei]

C

APPROX/RANDOM 2019

Prepare for the Expected Worst: Algorithms for
Reconfigurable Resources Under Uncertainty
David Ellis Hershkowitz
Carnegie Mellon University, Pittsburgh, PA, USA
dhershko@cs.cmu.edu

R. Ravi
Carnegie Mellon University, Pittsburgh, PA, USA
ravi@andrew.cmu.edu

Sahil Singla
Princeton University, Princeton, NJ, USA
Institute for Advanced Study, Princeton, NJ, USA
singla@cs.princeton.edu

Abstract
In this paper we study how to optimally balance cheap inflexible resources with more expensive,
reconfigurable resources despite uncertainty in the input problem. Specifically, we introduce the
MinEMax model to study “build versus rent” problems. In our model different scenarios appear
independently. Before knowing which scenarios appear, we may build rigid resources that cannot
be changed for different scenarios. Once we know which scenarios appear, we are allowed to rent
reconfigurable but expensive resources to use across scenarios. Although computing the objective in
our model might seem to require enumerating exponentially-many possibilities, we show it is well
estimated by a surrogate objective which is representable by a polynomial-size LP. In this surrogate
objective we pay for each scenario only to the extent that it exceeds a certain threshold. Using this
objective we design algorithms that approximately-optimally balance inflexible and reconfigurable
resources for several NP-hard covering problems. For example, we study variants of minimum
spanning and Steiner trees, minimum cuts, and facility location. Up to constants, our approximation
guarantees match those of previously-studied algorithms for demand-robust and stochastic two-stage
models. Lastly, we demonstrate that our problem is sufficiently general to smoothly interpolate
between previous demand-robust and stochastic two-stage problems.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Packing and covering problems; Theory of computation → Routing and
network design problems; Theory of computation → Facility location and clustering; Theory of
computation → Rounding techniques

Keywords and phrases Approximation Algorithms, Optimization Under Uncertainty, Two-Stage
Optimization, Expected Max

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.4

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1811.11635.

Funding David Ellis Hershkowitz: Supported in part by NSF grants CCF-1527110, CCF-1618280,
CCF-1814603, CCF-1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.
R. Ravi: Supported in part by the U. S. Office of Naval Research award N00014-18-1-2099, and the
U. S. NSF award CCF-1527032.
Sahil Singla: Supported in part by Schmidt Foundation and NSF awards CCF-1319811, CCF-1536002,
and CCF-1617790.

© David Ellis Hershkowitz, R. Ravi, and Sahil Singla;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 4; pp. 4:1–4:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dhershko@cs.cmu.edu
mailto:ravi@andrew.cmu.edu
mailto:singla@cs.princeton.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.4
https://arxiv.org/abs/1811.11635
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Prepare for the Expected Worst

1 Introduction

Optimizing for reconfigurable resources under uncertainty formalizes the challenges of balan-
cing expensive, flexible resources with cheap, inflexible ones. For example, such optimization
problems formalize the challenges in “build versus rent” problems. Concretely, consider the
algorithmic challenges faced by an Internet service provider (ISP). An ISP must provide
content to its customers while balancing between rigid and reconfigurable resources. In
particular, it can build out its own network – a rigid resource – or choose to support traffic
on a competitor’s network – a flexible resource – at a marked up premium. This latter
resource is reconfigurable since an ISP can change which edges in a competitor’s network
it uses at any given time. To minimize the additional load on its network, the competitor
charges the ISP for the maximum extra bandwidth it must support at any given moment.
Furthermore, an ISP only has probabilistic knowledge of where customer demands will occur:
Based on where previous demands have occurred an ISP estimates future demands, but it
does not exactly know the future demands. If a demand occurs which the ISP’s network
cannot service, it must use the competitor’s network to support it. Thus, an ISP balances
rigid and flexible resources in the face of uncertainty, and pays for the cost of its own network
plus the cost of supporting the expected maximum traffic routed on its competitor’s network.

In this paper, we introduce the MinEMax model to study the algorithmic challenges
associated with optimizing reconfigurable resources under uncertainty. In our model we are
given a set of scenarios that might occur. In the preceding example these scenarios were
the sets of possible demands. We think of problems in our model as being divided between
a first stage where we “build” rigid resources and a second stage where we “rent” flexible
resources. In particular, in the first stage we can build non-reconfigurable resources without
knowing which scenarios occur. In the second stage, each scenario independently realizes
according to its specified Bernoulli probability, and we can rent reconfigurable resources at an
increased cost to use among any of our scenarios. For instance, in the preceding example the
ISP first built its own network and then, once it learned where demands occurred, it could
rent bandwidth to support different demands over time. In fact, this example is exactly our
MinEMax Steiner tree problem. Thus, the objective we minimize is the first stage cost plus
the expected maximum cost of additional reconfigurable resources required for any realized
scenario; hence the name of our model.

Since every scenario is an independent Bernoulli, there are exponentially-many ways
in which scenarios realize. It is not even clear how to efficiently compute the expected
second-stage cost. Nonetheless, we provide techniques to simplify and reason about the
MinEMax cost, and therefore solve various MinEMax problems.

The primary contributions of our work are as follows.
1. We introduce the MinEMax model for optimization of reconfigurable resources under

uncertainty.
2. We show that, although evaluating the MinEMax objective function may seem difficult,

a MinEMax problem can be approximately reduced to a “TruncatedTwoStage” problem
whose objective is representable by an LP.

3. Armed with 2, we adapt various rounding techniques to give approximation algorithms
for a variety of two-stage MinEMax problems including spanning and Steiner trees, cuts,
and facility location problems.

4. Lastly, we show that the MinEMax model captures the commonly studied two-stage
models for optimization under uncertainty: the stochastic and demand-robust models. We
even show that it generalizes a “Hybrid” problem that interpolates between these models.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:3

1.1 Related Work

Significant work has been done in two-stage optimization under uncertainty. The two most
commonly studied models are the stochastic model [22, 15, 24] and the demand-robust
model [9, 4, 14, 13]. In the stochastic two-stage model a probability distribution is given
over scenarios and our objective is the expected total cost. In the demand-robust two-stage
model we are given scenarios and our objective is the cost of the worst-case scenario given
our first stage solution.

Another related model is Distributionally robust optimization (DRO) [23, 12, 8, 5]. In
DRO we are given a distribution along with a ball of “nearby” distributions, and we must
pay the worst-case expectation over all these distributions. Similarly to our model, DRO
generalizes both the stochastic and demand-robust two-stage models. Our model can be seen
as a “flip” of the DRO model: while the DRO model takes the worst-case over distributions
our model takes a distribution over worst cases. Like DRO, our model is also sufficiently
general to capture stochastic and demand-robust optimization. A recent result [20] – which
shows that approximation algorithms are possible in DRO – complements our approximation
algorithms in MinEMax.

A well studied measure for risk-aversion from stochastic programming is conditional value
at risk (CVaR) [1]. Roughly, CVaR gives the average cost in the worst-case case α tail of a
distribution. A notable recent work in CVaR presents a data-driven approach to two-stage
risk aversion [18]. Theorem 1 in their work is reminiscent of our reduction of MinEMax
to Hybrid; this theorem shows that their objective can be reformulated as a combination
of the CVaR cost and the worst-case distribution. We emphasize that while CVaR might
appear similar to the TruncatedTwoStage metric studied in this work, these two metrics are
distinct and not readily comparable. Two salient differences are: (1) the threshold in the
TruncatedTwoStage objective is the minimizing threshold while in CVaR the threshold is
fixed, and (2) the TruncatedTwoStage objective sums up the truncated cost over a set of
Bernoulli random variables whereas CVaR takes a truncated average cost with respect to a
single distribution. Moreover, to the best of our knowledge, CVaR has not been studied in
the context of approximation algorithms.

Several additional models for optimization under uncertainty – some of which even
interpolate between stochastic and demand-robust – have also been studied. A series of
papers [26, 25, 27] examined various models of two-stage optimization that capture risk-
aversion. Notably, the model of [27] interpolates between stochastic and demand-robust while
also accommodating black-box distributions. Other papers (e.g., [15]) studied algorithms for
stochastic optimization given access to black-box distributions. There has also been work on
two-stage stochastic models in which – as in our model – independent stochastic outcomes
factor prominently. For example, Immorlica et al. [17] study a two-stage stochastic model in
which each “client” activates independently and the realized scenario consists of all activated
clients. The primary difference between their model and ours is that for us entire scenarios –
rather than clients – activate independently. Moreover, reconfigurability of resources is not
factored in their model.

Lastly, in our reduction from MinEMax to TruncatedTwoStage, we make use of a bound
which has appeared before in other settings [19, 21, 6, 11]. For example, [6] use this bound
to tightly estimate the optimum value in an optimization problem where the cost function is
random and only marginal distributions for the coefficients of the cost function are known.
Unlike our work, these works do not design approximation algorithms for two-stage problems.

APPROX/RANDOM 2019

4:4 Prepare for the Expected Worst

1.2 Models
We now formally define our new MinEMax model and the prior models that we generalize.
We study two-stage covering problems, defined as follows.

1.2.1 Two-Stage Covering
Let U be the universe of clients (or demand requirements), and let X be the set of elements
that we can purchase. Every scenario S1, S2, . . . , Sm is a subset of clients. Let sol(Ss)
for s ∈ [m] denote the sets in 2X which are feasible to cover scenario Ss. In covering
problems if A ⊆ B and A ∈ sol(Ss), then B ∈ sol(Ss). We are also given a cost function
cost : 2X × 2X → R. For a given a specification of cost, scenarios, clients, and feasibility
constraints, we must find a set of elements X1 ⊆ X to be bought in the first stage, and a set
of elements X(s)

2 ⊆ X to be bought in the second stage s.t. X1 ∪X(s)
2 ∈ sol(Ss) for every s.

Our goal is to find a solution of minimal cost where the cost of a solution is discussed below.
This paper makes the common assumption that cost is linear, i.e., cost(X1, X

(s)
2) equals

cost(∅, X(s)
2) + cost(X1, ∅) for any X1, X

(s)
2 ⊆ 2X . Let X2X2X2 := (X(1)

2 , . . . , X
(m)
2); throughout

the paper a bold variable denotes a vector.
We now describe and discuss how different cost functions yield different two-stage

covering models.

1.2.2 Prior Models
In the demand-robust two-stage covering model the cost of solution (X1,X2X2X2) is the maximum
cost over all the scenarios:

costRob(X1,X2X2X2) := max
s∈[m]

{
cost(X1, X

(s)
2)
}
. (1)

In the stochastic two-stage covering model we are given a probability distribution D
over m scenarios with which exactly one of them realizes; i.e.

∑
s∈[m]D(s) = 1. The cost of

solution (X1,X2X2X2) is the expected cost:

costStoch(X1,X2X2X2) := Es∼D[cost(X1, X
(s)
2)]. (2)

1.2.3 Our New MinEMax Model
In the MinEMax two-stage covering model we are given probabilities p = {p1, . . . , pm} with
which each scenario independently realizes. The cost of solution (X1,X2X2X2) is the expected
maximum cost among the realized scenarios:

costEMax(X1,X2X2X2) := EA∼p

[
max
s∈A

{
cost(X1, X

(s)
2)
}]

(3)

where A contains each s independently w.p. ps. To avoid confusion, we reiterate that
unlike the stochastic model, in MinEMax multiple scenarios may simultaneously appear in A
because each of them independently realizes. We shall assume without loss of generality that∑
s ps ≥ 1 throughout this paper since one can always ensure this without affecting solutions

to the problem by adding dummy scenarios of cost 0 and probability 1.
As a concrete example of these models, consider the following star covering problem.

We are given a star graph with root r and leaves v1, . . . , vm. Each edge ei = (r, vi) can be
purchased in the first stage at cost ci and in the second stage at an inflated cost σ · ci for
σ > 1. Our goal is to connect r to an unknown vertex vs with minimum total two-stage cost.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:5

One Stage

r
v1

3

v2

2
v3

4
v4

9

(a) If scenario to be
covered is known to be v1,
problem is trivial.

Stochastic

r
v1

3
0

v2

2
.3 v3

4
.6

v4
9

.1

2n
d
St
ag
e r

v1
6

v2

4
v3

v4
18

1s
t
St
ag
e

(b) Exactly one scenario
realizes according to a
probability distribution.

Demand Robust

r
v1

3

v2

2
v3

4
v4

9

2n
d
St
ag
e r

v1
6

v2

4
v3

8
v4

1s
t
St
ag
e

(c) Given first stage soln.,
adversary chooses costli-
est scenario.

MinEMax
r

v1
3

.1

v2

2
.8 v3

4
.3

v4
9

1

2n
d
St
ag
e r

v1
6

v2 v3

v4
18

1s
t
St
ag
e

(d) Given first stage soln.,
adversary chooses costli-
est realized scenario.

Figure 1 Star graph MinEMax for m = 4. Green edges: edges bought by solution. ei labeled
by its cost in each stage for σ = 2. Non-opaque second-stage node: realized scenario. Blue square:
probability of scenario. Dashed red nodes: nodes chosen by an adversary.

In particular, vs is only revealed after we purchase our first-stage edges, X1, at which point
we must purchase es in a second stage at cost σ · cs if es was not already purchased in the
first stage. In all three models we initially buy some set of edges. In the stochastic version of
this problem a single vs then appears according to a distribution and we must pay to connect
vs if we have not already. In the demand-robust version of this problem, vs is always chosen
so as to maximize our second stage cost. However, in our MinEMax version of this problem
several vs appear and we must pay for a budget of reconfigurable edge resources to be reused
for every vs. See Figure 1 for an illustration.

1.3 Technical Results and Intuition
We now discuss our technical results. As earlier noted, capturing the MinEMax objective
seems challenging: scenarios may realize in exponentially-many ways and so even computing
the objective seems computationally infeasible. We solve this issue by showing that to solve
a MinEMax problem, PEMax, it suffices to solve its TruncatedTwoStage version, PTrunc. A
TruncatedTwoStage problem is identical to a MinEMax problem but the cost of a solution
(X1,X2X2X2) is its truncated sum:

costTrunc(X1,X2X2X2) := minB
[
B +

∑
s∈[m] ps · (cost(X1, X

(s)
2)−B)+

]
. (4)

We will later see that PTrunc can be represented by an LP and, therefore, can be efficiently ap-
proximated by various rounding techniques. The following theorem shows that to approximate
a MinEMax problem, it suffices to consider its TruncatedTwoStage version.

I Theorem 1. Let PEMax be a MinEMax problem and let PTrunc be its TruncatedTwoStage
version. An α-approximation algorithm for PTrunc is a

(
α

1−1/e

)
-approximation algorithm

for PEMax.

The main observation we use to show this theorem is that a set of expensive scenarios with
large total probability mass dominates the cost of a given MinEMax solution. We illustrate
this observation with an example. Let (X1,X2X2X2) be a solution for a MinEMax problem. Now
WLOG let cost(X1, X

(s)
2) ≥ cost(X1, X

(s+1)
2) for all s, i.e., the sth scenario is more expensive

than the (s + 1)th scenario for our solution. Let M := [k] be the indices of the first k
scenarios such that

∑
s≤k ps is large; say, at least 1. Let the border B := cost(X1, X

(k)
2) be

the cost of the least expensive scenario with an index in M . Because there is a great deal of

APPROX/RANDOM 2019

4:6 Prepare for the Expected Worst

probability mass among scenarios in M we know that with large probability some scenario
in M will always appear. Whenever a scenario of cost less than B appears we know that
with good probability something in M has also appeared of greater cost. Thus, as far as the
expected max is concerned, a scenario that costs less than B can be ignored. Lastly, while it
is not immediately clear how to represent costTrunc function in an LP, we show using a simple
convexity argument how this can accomplished.

Next, we design approximation algorithms for two-stage covering problems in the
MinEMax model.

I Theorem 2. For two-stage covering problems there exist polynomial-time approximation
algorithms with the following guarantees.1

MinEMax Problem Steiner tree UFL MST Min-cut k-center

Approximation 30
1−1/e

8
1−1/e

O(logn+ logm) 4
1−1/e

O(1)

Our earlier Theorem 1 demonstrated that to solve a MinEMax problem, PEMax, we need
to only solve its TruncatedTwoStage version, PTrunc. While it is not clear how to represent
PEMax with an LP, PTrunc can be represented with an LP. Furthermore, by adapting previous
two-stage optimization rounding techniques to the TruncatedTwoStage setting, we are able to
approximately solve the TruncatedTwoStage versions of uncapacitated facility location (UFL),
Steiner tree, minimum spanning tree (MST), and min-cut. We defer details on min-cut to
the full version of our paper.

We use different techniques to give an approximation algorithm for k-center. The intuition
for our k-center proof is similar to that of Theorem 1: Truncated costs approximate MinEMax
cost. However, for k-center we truncate more aggressively. Rather than truncating costs of
scenarios, we truncate distances in the input metric. To do this, we draw on methods of
Chakrabarty and Swamy [7].2

It is also worth noting that Anthony et al. [4] proved hardness of approximation for a
two-stage k-center problem. In particular, they show stochastic k-center where scenarios
consist of multiple clients is as hard to approximate as dense k-subgraph. Thus, since our
MinEMax model generalizes the stochastic model, we restrict our attention in k-center to
scenarios consisting of single clients; otherwise our problem would be prohibitively hard to
approximate. Since our scenarios consist of single clients the stochastic and demand-robust
versions of the k-center problem we solve correspond to k-median and k-center respectively.
We defer details on our k-center results to the full version of our paper.

Our last theorem shows that MinEMax generalizes the stochastic and demand-robust
models as well as a Hybrid model which smoothly interpolates between stochastic and
demand-robust optimization.

I Theorem 3. An α-approximation for a two-stage covering algorithm in the MinEMax
model implies an α-approximation for the corresponding two-stage covering problem in the
stochastic, demand-robust, and Hybrid models.

We defer a formal definition and discussion of the Hybrid model as well as the intuition and
proof for Theorem 3 to the full version of our paper. As a corollary of Theorems 2 and 3,
we immediately recover polynomial-time approximations for Hybrid MST, UFL, Steiner tree
and min-cut.3

1 The O(1) in the k-center approximation is roughly 57.
2 We also note here that, unlike the previous problems we study, the cost function in k-center is not linear

as described in §1.2.
3 Though not k-center since its cost function is not linear.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:7

M(X1,X2X2X2)

.4

cost(X1, X
(1)
2) ≥

.4

cost(X1, X
(2)
2) ≥

.3

cost(X1, X
(3)
2) ≥

.6

cost(X1, X
(4)
2) ≥

.7

cost(X1, X
(5)
2) ≥

1

cost(X1, X
(6)
2) ≥

.2

cost(X1, X
(7)
2)

Figure 2 M(X1,X2X2X2). B(X1,X2X2X2) = cost(X1, X
(3)
2). Red circles: scenarios in M(X1,X2X2X2). Green

circles: all other scenarios. Numbers in circles: probabilities. Scenarios arranged left to right in
descending order of cost(X1, X

(s)
2).

2 Reducing MinEMax to TruncatedTwoStage

In this section, we demonstrate a technique to simplify both computing and reasoning about
costEMax by reducing a MinEMax problem to a TruncatedTwoStage problem with only a small
loss in the approximation factor. Specifically, we show the following theorem.

I Theorem 1. Let PEMax be a MinEMax problem and let PTrunc be its TruncatedTwoStage
version. An α-approximation algorithm for PTrunc is a

(
α

1−1/e

)
-approximation algorithm

for PEMax.

As earlier noted, we show this by observing that a set of expensive scenarios with “large”
total probability mass dominates the cost of a given MinEMax solution.

We begin by observing that the expected max of a set of independent random variables is
approximately bounded by the most expensive of these random variables whose probabilities
sum to 1. We remark that this result can be seen to follow from results regarding the
“correlation gap” [2, 3] which show a similar bound where instead of max we have any
sub-modular function. We give a different proof in §A for completeness that we find simpler
in our setting where we consider the max and not any sub-modular function.

I Lemma 4. Let YYY = {Y1, . . . , Ym} be a set of independent Bernoulli r.v.s, where Ys is 1
with probability ps, and 0 otherwise. Let vs ∈ R≥0 be a value associated with Ys. WLOG
assume vs ≥ vs+1 for s ∈ [m− 1]. Let b = min{a :

∑a
s=1 ps ≥ 1}. Then(

1− 1
e

)(
vb +

∑
s

ps · (vs − vb)+
)
≤ EYYY

[
max
s
{Ys · vs}

]
≤ vb +

∑
s

ps · (vs − vb)+,

where x+ := max{x, 0}.

For a given solution (X1,XXX2) to MinEMax, Lemma 4 yields a computationally tractable
form of costEMax. Specifically, let our scenarios be indexed such that cost(X1, X

(s)
2) ≥

cost(X1, X
(s+1)
2) and let b be the smallest positive integer such that

∑b
s=1 ps ≥ 1. We define

the following terms analogous to those in the lemma (see Figure 2 for an illustration):

M(X1,XXX2) := [b] and B(X1,XXX2) := cost(X1, X
(b)
2). (5)

Notice that
∑
s∈M(X1,X2X2X2) ps < 2. Now, by letting B(X1,X2X2X2) be vb in Lemma 4, we can

approximate costEMax(X1,X2X2X2). However, we would like to estimate costEMax(X1,XXX2) within
an LP where (X1,XXX2) are variables since our algorithms are LP based. Unfortunately, it is
not clear how to capture vb in an LP and so it is not clear how to directly use Lemma 4 to
estimate costEMax(X1,XXX2) within an LP.

APPROX/RANDOM 2019

4:8 Prepare for the Expected Worst

For this reason, we derive an even simpler form of the above approximation of the
expected max which can be computed using an LP. In particular, we show that the expected
max is approximately the costTrunc objective. We remind the reader that, as per Eq.(4),
costTrunc(X1,X2X2X2) := minB[B +

∑
s∈[m] ps · (cost(X1, X

(s)
2) − B)+]. The following lemma

shows that the B achieving the minimum in costTrunc(X1,X2X2X2) is B(X1,X2X2X2) and therefore
shows that costTrunc is a good approximation of costEMax.

I Lemma 5. Let (X1,X2X2X2) be a solution to a TruncatedTwoStage or MinEMax problem.
We have

B(X1,X2X2X2) = arg min
B

[
B +

∑
s∈[m]

ps · (cost(X1, X
(s)
2)−B)+

]
,

where the arg min takes the largest B minimizing the relevant quantity.

Proof Sketch. The rough idea of the proof is to show that B+
∑
s ps(cost(X1, X

(s)
2 −B)+ is

convex in B and that B(X1,X2X2X2) is a local minimum. In particular, imagine that B is currently
set at B(X1,X2X2X2) and consider what happens to B +

∑
s ps(cost(X1, X

(s)
2 −B)+ if we shift

B to be smaller. Recall that we have at least one probability mass across elements which are
larger than B by definition of B(X1,X2X2X2). Thus, when we shift B to be smaller, B decreases
slower than

∑
s ps(cost(X1, X

(s)
2 − B)+ increases and so B +

∑
s ps(cost(X1, X

(s)
2 − B)+

becomes larger overall. The case when B is made larger is symmetric. The full proof is
available in §A. J

Using Lemma 4 and Lemma 5, it is easy to show the following two lemmas. These lemmas
– proved in §A – upper and lower bound the MinEMax cost of a solution with respect to its
TruncatedTwoStage solution respectively.

I Lemma 6. For feasible solution (X1,XXX2) of any PEMax we have, costEMax(X1,XXX2) ≤
costTrunc(X1,XXX2).

I Lemma 7. Let PEMax be a MinEMax problem and PTrunc be its truncated version. Let
(E1,E2E2E2) and (T1,T2T2T2) be optimal solutions to PEMax and PTrunc respectively. We have that
costTrunc(T1,T2T2T2) ≤

(
1

1−1/e

)
costEMax(E1,E2E2E2).

The preceding lemmas allow us to conclude that an α-approximation algorithm for
a TruncatedTwoStage problem is an O(α)-approximation algorithm for the corresponding
MinEMax problem.

Proof of Theorem 1. Let (T̂1, T̂2̂T2̂T2) be the solution returned by an α-approximation algorithm
for PTrunc. Let (E1,E2E2E2) and (T1,T2T2T2) be the optimal solutions to PEMax and PTrunc respect-
ively. By Lemma 6 we have costEMax(T̂1, T̂2̂T2̂T2) ≤ costTrunc(T̂1, T̂2̂T2̂T2). Since (T̂1, T̂2̂T2̂T2) is an α-
approximation we have this is at most α · costTrunc(T1,T2T2T2). Applying Lemma 7 this is at
most

(
α

1−1/e

)
costEMax(E1,E2E2E2). Since any solution that is feasible for PTrunc is also feasible

for PEMax, we conclude that (T̂1, T̂2̂T2̂T2) is a feasible solution for PEMax with cost in PEMax at
most

(
α

1−1/e

)
costEMax(E1,E2E2E2), giving our theorem. J

3 Applications to Linear Two-Stage Covering Problems

In this section we give an O(logn+ logm)-approximation algorithm for MinEMax MST and
O(1) approximation algorithms for MinEMax Steiner tree, MinEMax facility location, and
MinEMax min-cut. Our algorithms are LP based. To derive our algorithms we use our

D. E. Hershkowitz, R. Ravi, and S. Singla 4:9

reduction from §2 to transform a MinEMax problem into a TruncatedTwoStage problem with
only a small constant loss in the approximation factor. This transformation allows us to
adapt existing LP rounding techniques in which every scenario has a rounding cost close to
its fractional cost [22, 15, 24] to solve our TruncatedTwoStage problems and, therefore, our
MinEMax problems.

We first give two general techniques to solve a TruncatedTwoStage problem.

3.1 General Techniques

Our first technique is to represent costTrunc as an LP objective. For this technique we need to
extend the definition of costTrunc from an integral solution (X1,X2X2X2) to a fractional solution
(x1,x2x2x2). To do so, in each of our problems we locally define cost(x1, x

(s)
2) for fractional

solution (x1, x
(s)
2) to scenario s and let costTrunc(x1,x2x2x2) be defined similarly to the integral

case, i.e. for fractional (x1,x2x2x2),

costTrunc(x1,x2x2x2) := min
B

[
B +

∑
s

ps(cost(x1, x2(s))−B)+
]
. (6)

Given a minimization LP, it is easy to see that by introducing an additional variable
to represent B and additional variables to represent (cost(x1, x2(s))−B)+ for every s, we
can represent costTrunc(x1,x2x2x2) in an LP. For cleanliness of exposition, when we write our
LPs we omit these additional variables and simply write our objective as “costTrunc(x1,x2x2x2).”
Moreover, even though some of our LPs have an exponential number of constraints, we rely
on the existence of efficient separation oracles for these LPs. It is easy to verify that this
holds even after one introduces the additional variables needed to represent costTrunc(x1,x2x2x2).

We also extendM and B from the integral case as defined in §2 to the fractional case in the
following natural way. Given a fractional solution (x1,x2x2x2) and a cost function on fractional
solutions, cost, WLOG let our scenarios be indexed such that cost(x1, x

(s)
2) ≥ cost(x1, x

(s+1)
2).

Let b be the smallest positive integer such that
∑b
s=1 ps ≥ 1. For fractional (x1,x2x2x2), we define

M(x1,xxx2) := [b] (7)

B(x1,xxx2) := min
s∈M(x1,xxx2)

cost(x1, x
(s)
2). (8)

I Remark 8. It is easy to verify that the proof of Lemma 5 also holds for costTrunc(x1,x2x2x2) for
fractional (x1,x2x2x2). We will therefore invoke it on fractional (x1,x2x2x2), even though it is stated
only for integral (X1,X2X2X2).

Our second technique is a generic rounding technique for TruncatedTwoStage problems.
Several past works in two-stage optimization show that it is possible to round an LP solution
such that the resulting integral solution has cost roughly the same as the fractional solution
for every scenario. We prove the following lemma to make use of such rounding algorithms.

I Lemma 9. Let PTrunc be a TruncatedTwoStage problem. Let (X1,X2X2X2) and (Y1,Y2Y2Y2) be
integral or fractional solutions to PTrunc. If for every scenario s we have cost(X1, X

(s)
2) ≤

c · cost(Y1, Y
(s)
2) then

costTrunc(X1,X2X2X2) ≤ c · costTrunc(Y1,Y2Y2Y2).

APPROX/RANDOM 2019

4:10 Prepare for the Expected Worst

Proof. We have

costTrunc(X1,X2X2X2) = min
B

[
B +

∑
s

ps · (cost(X1, X
(s)
2)−B)+)

]
(9)

≤ c ·B(Y1,Y2Y2Y2) +
∑
s

ps · (cost(X1, X
(s)
2)− c ·B(Y1,Y2Y2Y2))+) (10)

≤ c ·B(Y1,Y2Y2Y2) +
∑
s

ps · (c · cost(Y1, Y
(s)
2)− c ·B(Y1,Y2Y2Y2))+) (11)

= c ·

(
B(Y1,Y2Y2Y2) +

∑
s

ps · (cost(Y1, Y
(s)
2)−B(Y1,Y2Y2Y2))+)

)
(12)

= c · costTrunc(Y1,Y2Y2Y2) (13)

where Eq.(10) is by letting B = c ·B(Y1,Y2Y2Y2), Eq.(11) is by cost(X1, X
(s)
2) ≤ c · cost(Y1, Y

(s)
2)

and Eq.(13) is by Lemma 5. J

3.2 Steiner Tree
In this section we give a

(
30

1−1/e

)
-approximation for MinEMax rooted Steiner tree.

I Definition 10 (MinEMax Rooted Steiner tree). We are given a graph G = (V,E), a root
r ∈ V , a cost ce for each edge e. We are also given scenarios S1, . . . , Sm ⊆ V , each with an
associated probability ps and an inflation factor σs > 0. We must find a first stage solution
X1 ⊆ E and a second-stage solution for every scenario, X(j)

2 ⊆ E. A solution is feasible if for
every s we have X1 ∪X(s)

2 connects {r} ∪ Ss. The cost for scenario s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2) :=

∑
e∈X1

ce + σs ·
∑

e∈X(s)
2

ce. (14)

The total cost we pay for (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp

[
maxs∈A{cost(X1, X

(s)
2)}

]
.

Our algorithm is based on an LP rounding algorithm of Gupta et al. [16] for two-stage
stochastic Steiner tree. Roughly, we use Lemma 9 to argue that the first stage solution for
every optimal TruncatedTwoStage solution is, up to small constants, a tree rooted at r. This
structural property allows us to write an LP that approximately captures TruncatedTwoStage
Steiner tree. Gupta et al. [16] showed that this LP can be rounded s.t. every scenario has
a good cost. We then combine this rounding with Lemma 9 to derive an approximation
algorithm for TruncatedTwoStage Steiner tree, which is sufficient for approximating MinEMax
Steiner tree by Theorem 1.

We begin by arguing that up to small constants, the optimal first stage solution is a tree
rooted at r.

I Lemma 11. There exists an integral solution (X̂1, X̂2X̂2X̂2) to TruncatedTwoStage Steiner tree
s.t. G[X̂1] is a tree rooted at r and costTrunc(X̂1, X̂2X̂2X̂2) ≤ 2 · costTrunc(O1,O2O2O2), where (O1,O2O2O2)
is the optimal solution to TruncatedTwoStage Steiner tree.

Proof. Lemma 4.1 of Dhamdhere et al. [9] shows that given (O1,O2O2O2) it is possible to modify
it to a feasible solution (X̂1, X̂2X̂2X̂2) such that G[X̂1] is a tree rooted at r and cost(X̂1, X̂

(s)
2) ≤ 2 ·

cost(O1, O
(s)
2) for every s. It follows by Lemma 9 that costTrunc(X̂1, X̂2X̂2X̂2) ≤ 2·costTrunc(O1,O2O2O2).

J

D. E. Hershkowitz, R. Ravi, and S. Singla 4:11

We now describe how to formulate an LP that leverages the structural property in
Lemma 11. In particular, this indicates that as one gets closer to r, one must fractionally
buy edges to a greater and greater extent. This constraint can be captured in an LP.
Specifically, every node in a scenario (a.k.a. terminal) is the source of one unit of flow
that is ultimately routed to r; this flow follows a path whose fractional “first stage-ness” is
monotonically increasing.

More formally, we copy each edge e = {u, v} into two directed edges (u, v) and (v, u).
Let ~e be either one of these directed edges. Next, for each such directed edge ~e and every
terminal in t ∈

⋃
s Ss, we define variables r1(t, ~e) and r(s)

2 (t, ~e) for every s to represent how
much t is connected to r by e in the first stage and in scenario s, respectively. Also, for
undirected edge e, define variables x1(e) and x(s)

2 (e) to stand for how much we buy e in the
first stage and scenario s, respectively. For fractional (x1,x2x2x2), we define

costTrunc(x1, x
(s)
2) :=

∑
e

ce · x1(e) + σs · ce · x2(e),

which as described by Eq.(6) also defines costTrunc(x1,xxx2). Letting δ−(v) and δ+(v) stand
for all directed edges going into and out of v, respectively. The following is our LP.

min costTrunc(x1,x2x2x2) (ST LP)

s.t.
∑

~e∈δ+(v)

r1(t, ~e) + r
(s)
2 (t, ~e) =

∑
~e∈δ−(v)

r1(t, ~e) + r
(s)
2 (t, ~e) ∀s, t ∈ Ss, v 6∈ {t, r}

∑
~e∈δ+(t)

r1(t, ~e) + r
(s)
2 (t, ~e)−

∑
~e∈δ−(t)

r1(t, ~e) + r
(s)
2 (t, ~e) ≥ 1 ∀s, t ∈ Ss

∑
~e∈δ−(v)

r1(t, ~e) ≤
∑

~e∈δ+(v)

r1(t, ~e) ∀s, t ∈ Ss, v 6∈ {t, r}

r1(t, ~e) ≤ x1(e); r(s)
2 (t, ~e) ≤ x(s)

2 (e) ∀s, t ∈ Ss, ~e
r, x1,x2x2x2 ≥ 0

Notably, the third family of constraints enforces that terminal t is serviced by the first
stage more and more as one moves closer to the root. The characteristic vector of (X̂1, X̂2X̂2X̂2) as
described in Lemma 11 gives a feasible solution to ST LP. As a result, Lemma 11 demonstrates
that ST LP has nearly optimal objective as stated in the following corollary.

I Corollary 12. Let (x1,x2x2x2) be the optimal solution of ST LP. We have costTrunc(x1,x2x2x2) ≤
2 ·costTrunc(O1,O2O2O2), where (O1,O2O2O2) is the optimal solution to TruncatedTwoStage Steiner tree.

Proof. Let (x̂1, x̂2x̂2x̂2) be the characteristic vector of (X̂1, X̂2X̂2X̂2) from Lemma 11. Fix an arbitrary
terminal t. Let P2 for terminal t be the shortest path from t to X̂1 in G[X̂2]. Let ut be the
sink of P2 and let P1 be the shortest path from ut to r in G[X̂1]. Notice that (x̂1, x̂2x̂2x̂2) along
with r2 which sends one unit of flow from t to ut along P2 and r1 which sends one unit of flow
from ut to r along P1 for every t is a feasible solution to ST LP. Moreover, notice that cost of
this solution is costTrunc(x̂1,x2x2x2) = costTrunc(X1,X2X2X2) ≤ 2 · costTrunc(O1,O2O2O2) by Lemma 11. J

Previous work of Gupta et al. [16] shows that it is possible to round a fractional solution
of ST LP such that every scenario has a good cost.

I Lemma 13 ([16]). A fractional solution (x1,x2x2x2) to ST LP can be rounded in polynomial
time to a feasible integral solution (X1,X2X2X2) s.t. cost(X1, X

(s)
2) ≤ 15 ·cost(x1, x

(s)
2) for every s.

APPROX/RANDOM 2019

4:12 Prepare for the Expected Worst

Since Corollary 12 gives ST LP has a good optimal solution, we can round ST LP such
that every scenario has a low cost. Now Lemma 9 tells us that such a rounding preserves the
cost of a solution for TruncatedTwoStage optimization. This gives the following theorem.

I Theorem 14. MinEMax Steiner tree can be
(

30
1−1/e

)
-approximated in polynomial time.

Proof. Our algorithm first solves ST LP to get fractional solution (x1,x2x2x2). Next, we apply
Lemma 13 to round (x1,x2x2x2) in polynomial time to give (X1,X2X2X2) as our solution. Thus,
we have

costTrunc(X1,X2X2X2) ≤ 15 · costTrunc(x1,x2x2x2) (by Lemma 9, Lemma 13)
≤ 30 · costTrunc(O1,O2O2O2), (by Corollary 12)

where (O1,O2O2O2) is the optimal TruncatedTwoStage Steiner tree solution. This implies we have
a 30-approximation algorithm for TruncatedTwoStage Steiner tree. Now by Theorem 1, we
have a

(
30

1−1/e

)
-approximation for MinEMax Steiner tree.

Lastly, each of our subroutines has a polynomial runtime by previous lemmas, and so we
conclude that our algorithm has a polynomial runtime. J

3.3 Uncapacitated Facility Location

In this section we give a polynomial-time
(

8
1−1/e

)
-approximation algorithm for MinEMax

uncapacitated facility location (UFL).

I Definition 15 (MinEMax UFL). We are given a set of facilities F and a set of clients
D with a metric cij specifying the distances between every client j and facility i. We are
also given scenarios S1, . . . , Sm ⊆ D, where in scenario Ss client j has demand dsj ∈ {0, 1}4,
and a probability ps for each scenario. Facility i’s opening cost is f1,i in the first stage and
f

(s)
2,i in scenario Ss. These opening costs can be ∞, which indicates the facility cannot be

opened. A feasible solution consists of a set of first and second stage facilities (X1,X2X2X2) s.t.
X1 ∪

⋃
sX

(s)
2 6= ∅. The cost for scenario s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2) :=

∑
i∈X1

f1,i +
∑
i∈X(s)

2

f
(s)
2,i +

∑
j∈Ss

min
i∈X1∪X(s)

2

cij .

The total cost of solution (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp
[
maxs∈A{cost(X1, X

(s)
2)}

]
.

Our algorithm is based on the work of Ravi and Sinha [22] on two-stage stochastic
UFL. This work shows how to round an LP such that every scenario has a “good” cost
after rounding. Applying Lemma 9 to this rounding gives an algorithm that approximates
TruncatedTwoStage UFL, which by Theorem 1 is sufficient to approximate MinEMax UFL.

We use the following LP. Variable z(s)
ij corresponds to whether client j is served by facility

i in scenario s. Variables x1(i) and x(s)
2 (i) corresponds to whether facility i is opened in the

first stage or scenario s, respectively. For a fractional solution (x1,x2x2x2), we define

cost(x1, x
(s)
2) :=

∑
i∈F

[
x1(i) · f1,i + x

(s)
2 (i) · f (s)

2,i +
∑
j∈D

ẑ
(s)
ij · cij

]
,

4 This easily generalizes to more demand.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:13

where ẑ(s)
ij is the natural fractional assignment given fractional facilities (x1, x

(s)
2); namely,

one that sends clients to their nearest fractionally opened facilities. As described by Eq.(6),
this definition of cost(x1, x

(s)
2) defines costTrunc(x1,xxx2) for fractional (x1,x2x2x2), which allows us

to define our LP.

min costTrunc(x1,x2x2x2) (UFL LP)

s.t.
∑
i∈F

z
(s)
ij ≥ d

(s)
j ∀j ∈ D,∀s

z
(s)
ij ≤ x1(i) + x

(s)
2 (i) ∀i ∈ F,∀j ∈ D,∀s

0 ≤ x1,x2x2x2, zzz

Note that an integral solution to the above LP is a feasible solution for MinEMax UFL. Ravi
and Sinha showed how to round this LP.

I Lemma 16 (Theorem 2, Lemma 1 in [22]). Given a fractional solution (x1,x2x2x2) to UFL LP,
it is possible to round it to integral (X1,X2X2X2) in polynomial-time s.t. for every scenario s we
have cost(X1, X

(s)
2) ≤ 8 · cost(x1, x

(s)
2).

We now give our approximation algorithm for MinEMax UFL.

I Theorem 17. MinEMax UFL can be
(

8
1−1/e

)
-approximated in polynomial time.

Proof. Our algorithm starts by solving UFL LP to get a fractional (x1,x2x2x2). Next, round
(x1,x2x2x2) using Lemma 16 to integral (X1,X2X2X2). Return (X1,X2X2X2).

Let (O1,O2O2O2) be the optimal integral solution to the TruncatedTwoStage instance of
our problem and let (o1, o2o2o2) be its corresponding characteristic function. By definition,
costTrunc(o1, o2o2o2) = costTrunc(O1,O2O2O2). Now using Lemma 9 and Lemma 16 it follows that

costTrunc(X1, X2) ≤ 8 · costTrunc(x1,x2x2x2).

Since (o1, o2o2o2) feasible for UFL LP, we get

costTrunc(X1, X2) ≤ 8 · costTrunc(o1, o2o2o2) = 8 · costTrunc(O1,O2O2O2).

Thus, our algorithm is an 8-approximation for TruncatedTwoStage UFL. Applying Theorem 1
gives a

(
8

1−1/e

)
-approximation for MinEMax UFL.

Lastly, notice that our algorithm is trivially polynomial-time. J

3.4 MST
In this section we give a randomized polynomial-time algorithm which with high probability
has expected cost O(logn + logm) times the optimal MinEMax minimum spanning tree
(MST) on an n-node graph with m different scenarios.

I Definition 18 (MinEMax MST). We are given a graph G = (V,E) where |V | = n, a
set of m scenarios S1, . . . Sm where each scenario Ss has an associated second-stage cost
function cost(s)

2 : E → Z+ and a probability ps. We are also given a first-stage cost function,
cost1 : E → Z+. We must provide a first stage solution X1 ⊆ E and a solution X(s)

2 ⊆ E for
every scenario s, which is feasible if G[X1 ∪X(s)

2] spans V for every s. The cost for scenario
s in solution (X1,X2X2X2) is

cost(X1, X
(s)
2) :=

∑
e∈X1

cost1(e) +
∑

e∈X(s)
2

cost(s)
2 (e). (15)

The total cost for solution (X1,X2X2X2) is costEMax(X1,X2X2X2) := EA∼ppp
[
maxs∈A{cost(X1, X

(s)
2)}

]
.

APPROX/RANDOM 2019

4:14 Prepare for the Expected Worst

Our algorithm is based on the work of Dhamdhere et al. [10] on two-stage stochastic
MST. They give a rounding technique that produces integral solutions where every scenario
has a cost close to the fractional cost. Using this rounding, and applying Lemma 9, we get an
approximation algorithm for TruncatedTwoStage MST, which by Theorem 1 is also sufficient
to approximate MinEMax MST.

Notice that since MinEMax generalizes two-stage robust optimization, our MinEMax result
gives a O(logn+ logm) approximation for two-stage robust MST as a corollary. To the best
of our knowledge, this is the first non-trivial algorithm for two-stage robust MST.

Our algorithm is based on an LP. We have m+ 1 variables for each edge e, namely x1(e)
and x(s)

2 (e) for s ∈ [m] indicating if we take e in the first stage and in the second stage for
scenario s, respectively. For a fractional solution (x1,x2x2x2), we define

cost(x1, x
(s)
2) :=

∑
e

x1(e) · cost1(e) + x
(s)
2 (e) · cost2(e), (16)

which as described in Eq.(6), defines costTrunc(x1,xxx2) for fractional (x1,x2x2x2). Letting δ(S) be
all edges with exactly one endpoint in S ⊆ V . The following is our LP.

min costTrunc(x1,x2x2x2) (MST LP)

s.t.
∑
e∈δ(S)

(
x1(e) + x

(s)
2 (e)

)
≥ 1 ∀∅ ⊂ S ⊂ V, s ∈ [m]

x1,x2x2x2 ≥ 0

Note that an integral solution to MST LP is a feasible solution for the TruncatedTwoStage
MST problem as a set of edges with at least one edge leaving every cut is a spanning tree.5
Also, although this LP has super-polynomial constraints, it is easy to obtain an efficient
separation by solving min-cut; see Dhamdhere et al. [10].

We need the following result of Dhamdhere et al. [10] to round MST LP such that every
scenario has a low cost.

I Lemma 19 ([10]). It is possible to randomly round a feasible fractional solution (x1,x2x2x2)
to MST LP to an integral solution (X1,X2X2X2) in polynomial time s.t. with probability at least
1− 1

mn2 for every scenario s we have E[cost(X1, X
(s)
2)] ≤ cost(x1, x

(s)
2) · (40 logn+ 16 logm).

Here the expectation is taken over the randomness of our rounding and m is the number
of scenarios.

We can now design our approximation algorithm for MinEMax MST.

I Theorem 20. There exists a randomized polynomial-time algorithm that with probability
at least 1− 1

mn2 in expectation O(logn+ logm)-approximates MinEMax MST where n = |V |
and m is the number of scenarios.

Proof. Our algorithm starts by following MST LP to get a fractional solution (x1,x2x2x2). Next,
apply Lemma 19 to round (x1,x2x2x2) to an integral solution (X1,X2X2X2). Return (X1,X2X2X2).

Next consider the cost of (X1,X2X2X2). Let (O1,O2O2O2) be the optimal integral solution to
our TruncatedTwoStage MST problem and let (o1, o2o2o2) be the corresponding characteristic
vector. Notice that (o1, o2o2o2) is a feasible solution to MST LP. Moreover, it is easy to

5 If such a solution has any cycles it is not necessarily an MST, though one can always delete an edge
from such a cycle and improve the cost of the solution.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:15

verify that costTrunc(o1, o2o2o2) = costTrunc(O1,O2O2O2). Taking expectations over the randomness
of our algorithm and applying Lemma 9 and Lemma 19, we have with probability at least
1− 1

mn2 that

E[costTrunc(X1,X2X2X2)] ≤ (40 logn+ 16 logm) · costTrunc(o1, o2o2o2)
= (40 logn+ 16 logm) · costTrunc(O1,O2O2O2).

Thus, with probability at least 1− 1
mn2 our algorithm’s expected TruncatedTwoStage cost is

within (40 logn+ 16 logm) of the cost of the optimal TruncatedTwoStage MST solution. We
conclude by Theorem 1 that with high probability in expectation our algorithm O(logn+
logm)-approximates MinEMax MST.6

Our algorithm is trivially polynomial-time by the separability of our LP and Lemma 19.
J

References
1 Carlo Acerbi and Dirk Tasche. Expected shortfall: a natural coherent alternative to value at

risk. Economic notes, 31(2):379–388, 2002.
2 Shipra Agrawal, Yichuan Ding, Amin Saberi, and Yinyu Ye. Price of correlations in stochastic

optimization. Operations Research, 60(1):150–162, 2012.
3 Saeed Alaei. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many

buyers. SIAM Journal on Computing (SICOMP), 43(2):930–972, 2014.
4 Barbara M. Anthony, Vineet Goyal, Anupam Gupta, and Viswanath Nagarajan. A Plant

Location Guide for the Unsure. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2008.

5 D. Bertsimas, D. Brown, and C. Caramanis. Theory and Applications of Robust Optimization.
SIAM Review, 53(3):464–501, 2011.

6 Dimitris Bertsimas, Karthik Natarajan, and Chung-Piaw Teo. Probabilistic combinatorial
optimization: Moments, semidefinite programming, and asymptotic bounds. SIAM Journal
on Optimization, 15(1):185–209, 2004.

7 Deeparnab Chakrabarty and Chaitanya Swamy. Interpolating between k-Median and k-
Center: Approximation Algorithms for Ordered k-Median. In Proceedings of the International
Colloquium on Automata, Languages and Programming (ICALP), pages 29:1–29:14, 2018.

8 Erick Delage and Yinyu Ye. Distributionally Robust Optimization Under Moment Uncertainty
with Application to Data-Driven Problems. Operations Research, 58(3):595–612, 2010.

9 Kedar Dhamdhere, Vineet Goyal, R. Ravi, and Mohit Singh. How to Pay, Come What May:
Approximation Algorithms for Demand-Robust Covering Problems. In Proceedings of the
Symposium on the Foundations of Computer Science (FOCS), pages 367–378, 2005.

10 Kedar Dhamdhere, R Ravi, and Mohit Singh. On two-stage stochastic minimum spanning
trees. In Proceedings of International Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 321–334, 2005.

11 Anulekha Dhara and Karthik Natarajan. On the polynomial solvability of distributionally
robust k-sum optimization. Optimization Methods and Software, 32(4):738–753, 2017.

12 Joel Goh and Melvyn Sim. Distributionally Robust Optimization and Its Tractable Approx-
imations. Operations Research, 58(4-part-1):902–917, 2010.

13 Daniel Golovin, Vineet Goyal, Valentin Polishchuk, R. Ravi, and Mikko Sysikaski. Im-
proved approximations for two-stage min-cut and shortest path problems under uncertainty.
Mathematical Programming, 149(1):167–194, February 2015.

6 Although Theorem 1 and Lemma 9 do not explicitly account for an expectation taken over the randomness
of an algorithm, it is easy to verify that the such an expectation does not affect these results.

APPROX/RANDOM 2019

4:16 Prepare for the Expected Worst

14 Anupam Gupta, Viswanath Nagarajan, and R Ravi. Thresholded covering algorithms for
robust and max-min optimization. Automata, Languages and Programming, pages 262–274,
2010.

15 Anupam Gupta, Martin Pal, R Ravi, and Amitabh Sinha. Boosted sampling: approximation
algorithms for stochastic optimization. In Proceedings of the Symposium on the Theory of
Computing (STOC), pages 417–426, 2004.

16 Anupam Gupta, R Ravi, and Amitabh Sinha. An edge in time saves nine: LP rounding
approximation algorithms for stochastic network design. In Proceedings of the Symposium on
the Foundations of Computer Science (FOCS), pages 218–227, 2004.

17 Nicole Immorlica, David Karger, Maria Minkoff, and Vahab S Mirrokni. On the costs and
benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization
problems. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 691–700, 2004.

18 Ruiwei Jiang and Yongpei Guan. Risk-averse two-stage stochastic program with distributional
ambiguity. Operations Research, 66(5):1390–1405, 2018.

19 TL Lai and Herbert Robbins. Maximally dependent random variables. Proceedings of the
National Academy of Sciences, 73(2):286–288, 1976.

20 Andre Linhares and Chaitanya Swamy. Approximation Algorithms for Distributionally-Robust
Stochastic Optimization with Black-Box Distributions. In Proceedings of the Symposium on
the Theory of Computing (STOC), 2019.

21 Isaac Meilijson and Arthur Nádas. Convex majorization with an application to the length of
critical paths. Journal of Applied Probability, 16(3):671–677, 1979.

22 R Ravi and Amitabh Sinha. Hedging uncertainty: Approximation algorithms for stochastic
optimization problems. In Proceedings of International Conference on Integer Programming
and Combinatorial Optimization (IPCO), pages 101–115, 2004.

23 Herbert Scarf. A Min-Max Solution of an Inventory Problem. Studies in the Mathematical
Theory of Inventory and Production, pages 201–209, 1958.

24 David B. Shmoys and Chaitanya Swamy. An Approximation Scheme for Stochastic Linear
Programming and Its Application to Stochastic Integer Programs. Journal of the ACM
(JACM), 53(6):978–1012, November 2006.

25 Anthony Man-Cho So, Jiawei Zhang, and Yinyu Ye. Stochastic combinatorial optimization
with controllable risk aversion level. Mathematics of Operations Research, 34(3):522–537, 2009.

26 Aravind Srinivasan. Approximation algorithms for stochastic and risk-averse optimization. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1305–1313,
2007.

27 Chaitanya Swamy. Risk-averse stochastic optimization: probabilistically-constrained models
and algorithms for black-box distributions. In Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1627–1646, 2011.

A Deferred Proofs of §2

I Lemma 4. Let YYY = {Y1, . . . , Ym} be a set of independent Bernoulli r.v.s, where Ys is 1
with probability ps, and 0 otherwise. Let vs ∈ R≥0 be a value associated with Ys. WLOG
assume vs ≥ vs+1 for s ∈ [m− 1]. Let b = min{a :

∑a
s=1 ps ≥ 1}. Then(

1− 1
e

)(
vb +

∑
s

ps · (vs − vb)+
)
≤ EYYY

[
max
s
{Ys · vs}

]
≤ vb +

∑
s

ps · (vs − vb)+,

where x+ := max{x, 0}.

D. E. Hershkowitz, R. Ravi, and S. Singla 4:17

Proof. We begin by showing the lower bound on EA∼YYY [maxs∈A vs]. Let M := [b]. Consider
the new set of probabilities

p′s =
{

1−
∑
s<b ps if s = b

ps otherwise
(17)

and let YYY ′ be the corresponding Bernoulli r.v.s. Notice that
∑
s∈M p′s = 1.

Since p′s ≤ ps, clearly we have that EA∼YYY [maxs∈A vs] ≥ EA∼YYY ′ [maxs∈A vs]. Thus, we
will focus on lower bounding EA∼YYY ′ [maxs∈A vs]. The probability that no element of M is in
A when drawn from YYY ′ is∏

s∈M
(1− p′s) ≤ e

−
∑

s∈M
p′s = 1

e

because 1− x ≤ e−x and
∑
s∈M p′s = 1. It follows that

EA∼YYY
[

max
s∈A

vs

]
≥ EA∼YYY ′

[
max
s∈A

vs

]
≥
(

1− 1
e

)
EA∼YYY ′

[
max
s∈A

vs | at least 1 element from M in A
]

≥
(

1− 1
e

)
EA∼YYY ′

[
max
s∈A

vs | exactly 1 element from M in A
]

=
(

1− 1
e

) ∑
s∈M

vs
p′s∑
i∈M p′s

=
(1− 1/e

1

) ∑
s∈M

p′svs

where the last line follows since
∑
s∈M p′s = 1.

Thus, we have that

EA∼YYY
[

max
s∈A

vs

]
≥
(

1− 1
e

) ∑
s∈M

p′svs

=
(

1− 1
e

)∑
s∈M

p′s

(
(vs − vb)+ + vb

)
(by vs ≥ vb for s ∈M)

≥
(

1− 1
e

)(
vb +

∑
s∈M

p′s

(
(vs − vb)+

)) (
by 1 =

∑
s∈M

p′s

)

≥
(

1− 1
e

)(
vb +

∑
s∈M

ps

(
(vs − vb)+

)) (
by (vb − vb)+ = 0

)
=
(

1− 1
e

)(
vb +

∑
s

ps

(
(vs − vb)+

))
(by vs > vb iff s ∈M)

which gives our lower bound.
We now show the upper bound. Recall x+ := max(x, 0). Notice that we have for any t,

max(x, y) ≤ t+ (x− t)+ + (y − t)+. (18)

In particular, Eq. (18) follows because the RHS in each of the following cases is always
≥ max{x, y}.

if t ≥ max{x, y} we get t for the RHS.
if t ≥ x and t < y we get t+ y− t = y = max{x, y} for the RHS; the symmetric case also
holds.
if t < x and t < y we get t+ x− t+ y − t = x+ y − t ≥ max{x, y} for the RHS.

APPROX/RANDOM 2019

4:18 Prepare for the Expected Worst

It is easy to verify that this holds for a max of more than two inputs; i.e. for a set S of reals
we have max(S) ≤ t+

∑
s∈S(s− t)+. Thus, we have

EA∼YYY
[

max
s∈A

vs

]
≤ EA∼YYY

[
vb +

∑
s∈A

(vs − vb)+
]

= vb + EA∼YYY
[∑
s∈A

(vs − vb)+
]

(19)

= vb + EA∼YYY
[∑
s∈A∩M

(vs − vb)+ +
∑

s∈A\M

(vs − vb)+
]

(20)

= vb + EA∼YYY
[∑
s∈A∩M

(vs − vb)+
]

(21)

= vb + EA∼YYY
[∑
s∈A∩M

(vs − vb)
]

(22)

= vb +
∑
s∈M

ps · (vs − vb) (23)

= vb +
∑
s

ps · (vs − vb)+, (24)

where Eq.(19) is by Eq.(18), Eq.(21) is by vs > vb iff s ≤ b, Eq.(22) is by vs ≥ vb for s ∈M
and Eq.(24) is by vs > vb iff s ∈M . This is exactly the desired upper bound. J

I Lemma 5. Let (X1,X2X2X2) be a solution to a TruncatedTwoStage or MinEMax problem.
We have

B(X1,X2X2X2) = arg min
B

[
B +

∑
s∈[m]

ps · (cost(X1, X
(s)
2)−B)+

]
,

where the arg min takes the largest B minimizing the relevant quantity.

Proof. To clear our notation we let B̄ := B(X1,X2X2X2), cs := cost(X1, X
(s)
2) and M̄ :=

M(X1,X2X2X2). Let f(B) := B +
∑
s∈[m] ps · (cs − B)+. We argue that B̄ is the largest

global minimum of f by showing that for any ε > 0 we know that f(B̄) < f(B̄ + ε) and
f(B̄) ≤ f(B̄ − ε).

We begin by noting that for any reals a ≤ b we have

a+ − b+ ≥ a− b (25)

by casing on which of a and b are larger than 0.
Let M̂ := {s ∈ M̄ : cs > B̄}. Notice that

∑
s∈M̂ ps < 1. For fixed and arbitrary ε > 0

consider the relative values of f(B̄) and f(B̄ + ε). We have

f(B̄ + ε)− f(B̄) = ε+
∑
s∈[m]

ps ·
(
(cs − B̄ − ε)+ − (cs − B̄)+)

= ε+
∑
s∈M̂

ps ·
(
(cs − B̄ − ε)+ − (cs − B̄)+) , (26)

where Eq.(26) follows since for s 6∈ M̂ we have cs ≤ B̄ and so
(
(cs − B̄ − ε)+ − (cs − B̄)+) = 0

for s 6∈ M̂ . Now noticing that for every s we have (cs − B̄ − ε) ≤ (cs − B̄), applying (25) to
(26) gives

f(B̄ + ε)− f(B̄) ≥ ε+
∑
s∈M̂

ps · (−ε) = ε

1−
∑
s∈M̂

ps

 > 0,

where the last inequality uses
∑
s∈M̂ ps < 1. Thus, we have f(B̄ + ε) > f(B̄).

D. E. Hershkowitz, R. Ravi, and S. Singla 4:19

Now consider the relative values of f(B̄) and f(B̄ − ε). We have

f(B̄ − ε)− f(B̄) = −ε+
∑
s

ps ·
(
(cs − B̄ + ε)+ − (cs − B̄)+)

≥ −ε+
∑
s∈M̄

ps ·
(
(cs − B̄ + ε)+ − (cs − B̄)+) (27)

≥ −ε+
∑
s∈M̄

ps ·
(
(cs − B̄ + ε)− (cs − B̄)

)
(28)

≥ ε
(

1−
∑
s∈M̄

ps

)
≥ 0 (29)

where Eq.(27) is by (cs − B̄ + ε)+ ≥ (cs − B̄)+, Eq.(28) is by cs ≥ B̄ for s ∈ M̄ and Eq.(29)
is by

∑
s∈M̄ ps ≥ 1. Thus, for any ε > 0 we know that f(B̄) < f(B̄+ ε) and f(B̄) ≤ f(B̄− ε).

It follows that, not only is B̄ a global minimum of f but it is the largest global minimum.
The lemma follows immediately. J

I Lemma 6. For feasible solution (X1,XXX2) of any PEMax we have, costEMax(X1,XXX2) ≤
costTrunc(X1,XXX2).

Proof. We have

costEMax(X1,X2X2X2) = EA[max
s∈A
{cost(X1, X

(s)
2)}] (30)

≤ B(X1,X2X2X2) +
∑
s

ps ·
(

cost(X1, X
(s)
2)−B(X1,X2X2X2)

)+
(31)

= costTrunc(X1,XXX2) (32)

where Equation (31) is by Lemma 4 and Equation (32) is by Lemma 5. J

I Lemma 7. Let PEMax be a MinEMax problem and PTrunc be its truncated version. Let
(E1,E2E2E2) and (T1,T2T2T2) be optimal solutions to PEMax and PTrunc respectively. We have that
costTrunc(T1,T2T2T2) ≤

(
1

1−1/e

)
costEMax(E1,E2E2E2).

Proof. We have that

costTrunc(T1,T2T2T2)
≤ costTrunc(E1,E2E2E2) (by (T1,T2T2T2) minimizes costTrunc)

= min
B

[
B +

∑
s

ps · (cost(E1, E
(s)
2)−B)+

]
≤ B(E1,E2E2E2) +

∑
s

ps · (cost(E1, E
(s)
2)−B(E1,E2E2E2))+

≤
(

1
1− 1/e

)
EA[max

s∈A
{cost(E1, E

(s)
2)}] (by Lemma 4)

=
(

1
1− 1/e

)
costEMax(E1,E2E2E2). J

APPROX/RANDOM 2019

Streaming Hardness of Unique Games
Venkatesan Guruswami
Computer Science Department, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA, USA, 15213
venkatg@cs.cmu.edu

Runzhou Tao1

Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China 100084
trz15@mails.tsinghua.edu.cn

Abstract
We study the problem of approximating the value of a Unique Game instance in the streaming model.
A simple count of the number of constraints divided by p, the alphabet size of the Unique Game,
gives a trivial p-approximation that can be computed in O(logn) space. Meanwhile, with high
probability, a sample of Õ(n) constraints suffices to estimate the optimal value to (1 + ε) accuracy.
We prove that any single-pass streaming algorithm that achieves a (p− ε)-approximation requires
Ωε(
√
n) space. Our proof is via a reduction from lower bounds for a communication problem that

is a p-ary variant of the Boolean Hidden Matching problem studied in the literature. Given the
utility of Unique Games as a starting point for reduction to other optimization problems, our strong
hardness for approximating Unique Games could lead to downstream hardness results for streaming
approximability for other CSP-like problems.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory
of computation → Streaming models

Keywords and phrases Communication complexity, CSP, Fourier Analysis, Lower bounds, Streaming
algorithms, Unique Games

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.5

Category APPROX

Funding Venkatesan Guruswami: Research supported in part by NSF grants CCF-1422045 and
CCF-1526092.
Runzhou Tao: Most of this work was done during a visit by the author to Carnegie Mellon University.

1 Introduction

The Unique Games (UG) problem is a type of constraint satisfaction problem on a graph.
Given an alphabet [p] = {0, 1, . . . , p− 1} and a graph G = (V,E), we need to find a label
assignment x : V → [p]. The constraint on an edge (u, v) ∈ E is specified described by a
permutation πuv : [p]→ [p] and we want to find the assignment to maximize the number of
equations πuv(xu) = xv that are satisfied. This maximum possible value over all possible
assignments is called the optimal value of the UG instance. Simply picking a random
assignments satisfies a fraction 1/p of the constraints in expectation, giving a trivial factor p
approximation algorithm to the optimal value of any instance. More sophisticated algorithms
based on semidefinite programming give better approximation guarantees [1], but even on
almost-satisfiable instances where the optimal value is a (1− ε) fraction of the total number
of constraints, the algorithm satisfies only a fraction ≈ p−ε/2 of the constraints. Under
Khot’s celebrated Unique Games conjecture [11], this guarantee cannot be improved [12],

1 Now affiliated with Columbia University, New York, USA.

© Venkatesan Guruswami and Runzhou Tao;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 5; pp. 5:1–5:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7926-3396
mailto:venkatg@cs.cmu.edu
mailto:trz15@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Streaming Hardness of Unique Games

and the conjecture further implies optimal hardness results for a host of problems. In terms
of proven hardness results (under say the standard assumption that P 6= NP), we know that
Unique Games does not admit any constant factor approximations [3], and in an exciting
recent line of work this was also established on instances that have optimum value close to a
fraction 1/2 [2, 15].

To shed further light on the (difficulty of the) Unique Games problem from a different
angle, in this work, we consider the Unique Games problem in the streaming model of
computation. The constraints are assumed to arrive one-by-one in a single pass. The
algorithm is only given a limited amount of memory, so cannot store the entire instance as it
passes by. The goal of the algorithm is to estimate the optimal value of the Unique Games
instance. That is, it must output a value T which is a lower bound on the optimum number
of constraints that can be satisfied, and which is at most an approximation factor f from the
optimum. In recent years, numerous algorithms and hardness for problems in the streaming
model have been developed, and this work address the important Unique Games problem
from the streaming perspective.

The simple-minded algorithm which simply counts the number of constraints and outputs
a 1/p fraction of it as a valid estimate for every instance (by virtue of the random assign-
ment algorithm), and delivers a factor p approximation. This algorithm can obviously be
implemented in the streaming model using O(logn) space. Meanwhile, if we are given Õ(n)
space, we can sample a random Õ(n)-size subset of constraints and the answer of sampled
unique game gives us an arbitrarily close approximation for the original stream.2 A natural
question which arises, and which motivates this work, is thus: can we do better than the
trivial factor p approximation in polylogarithmic space?

In a beautiful work, Kapralov, Khanna, and Sudan [9] showed that the problem of
Max-CUT, which is a special case of the Unique Games problem with alphabet size 2, does
not admit an approximation better than the trivial factor 2 in o(

√
n) space in the streaming

model where the edges arrive one-by-one. On the other hand, a recent work [7] showed that
for the Max 2CSP problem (arbitrary Boolean arity two constraints) and Max-DICUT (the
analog of Max-CUT on directed graphs), one can in fact beat the trivial factor 4 algorithm
(that outputs 1/4’th the number of constraints, which is the expected value of a random
assignment), and achieve a ≈ 5/2-approximation using O(logn) space. The status of the
streaming approximability of Unique Games over larger alphabet sizes was not addressed
and remained open until our work.

1.1 Our Result

We show that for Unique Games with alphabet size p, a single-pass streaming algorithm
requires at least Ω̃(

√
n) space to have any chance of delivering a better estimate than the

trivial factor p approximation. In particular, we cannot beat the trivial constraint-counting
algorithm in the worst-case in polylogarithmic space.

I Theorem 1. Let p ≥ 2 be an integer and ε > 0 be a small constant. Any streaming
algorithm giving (p− ε)-approximation for Unique Games with alphabet size p with success
probability at least 9/10 over its internal randomness must use cp,ε

√
n space, for some positive

constant cp,ε that depends only on p, ε.

2 Note that We do not place any computational restriction on the algorithm, only on the amount of space
it may use. Also, since we are talking about sub-linear space, we do not focus on finding an approximate
solution, but only outputting an estimate of the optimal value. Since our focus in on lower bounds, this
only makes our technical result stronger.

V. Guruswami and R. Tao 5:3

Furthermore, the hardness holds for distinguishing between satisfiable instances and those
for which at most a fraction (1/p+ε) of the constraints can be satisfied by any assignment, and
when the Unique Games constraints are linear (of the form xu+xv = αuv over integers mod p).

1.2 Proof Structure
In our proof, we first introduce in Section 3, a communication problem called the p-ary
Hidden Matching problem, which is a p-ary variant of the (Boolean) Hidden Matching
problem proposed by Gavinsky et al.[4] and first used for streaming lower bounds by Verbin
and Yu in [16]. The (distributional) p-ary Hidden Matching problem is a two-party one-way
communication problem where Alice holds a random p-ary vector x ∈ Znp and Bob holds a
random matching of size r = αn (for some suitable α ∈ (0, 1)) and a vector w ∈ Zrp. Alice
must send one message to Bob, based on which he must distinguish between two distributions
on the inputs. In both distributions x is uniformly random, and M is a random matching of
the prescribed size. In the YES distribution, we set we = xu + xv for each e = (u, v) in the
matching (i.e., w = Mx where M ∈ {0, 1}αn×n is the incidence matrix of the matching); in
the NO distribution, w is uniformly random. We prove a communication lower bound of this
problem using Fourier-analytic methods, which is similar to [8].

The vector w and the matching in the p-ary Hidden Matching problem can be seen as a
description of some Unique Game constraints xu + xv = we. Of course each such instance
individually is trivially always satisfiable. We can construct hard instances of Unique Game by
combining together O(1/ε2) independent copies of the random matching and corresponding
w. In the YES case, we let w be according to the same (random) x, so that the constraints
can be satisfied by x. In the NO case, the various choices of w are random and independent.
This implies that every assignment x ∈ Znp is close in performance to a random assignment,
and thus satisfies only ≈ 1/p of the constraints, by concentration bounds.

We prove that a low-space streaming algorithm cannot distinguish between these dis-
tributions, which then implies Theorem 1. To prove this indistinguishability result, we
give a reduction from the p-ary Hidden Matching problem. The proof is a classical hy-
brid argument since the streaming instance can be seen as a “multi-stage” version of the
communication problem.

1.3 Differences from [9]
Our approach heavily borrows from the Max-CUT streaming lower bound from of Kapralov,
Khanna, and Sudan [9]. Compared to their work, we only prove Theorem 1 for a worst-case
arrival order of constraints, whereas the Max-CUT hardness result is shown even for a
random arrival order for the edges. At each stage, instead a matching, Kapralov et. al. used
a sub-critical random Erdös-Rényi graph with edge probability ≈ α/n. If the parameter α is
sufficiently small, the graph obtained by putting together edges from all the stages is close
in distribution to a random graph. As a result the arrival of edges in a random order does
not help the streaming algorithm. For the analysis of each stage, they use a communication
problem called the Boolean Hidden Partition problem that is variant of the Boolean Hidden
Matching problem, since they have to work with Erdös-Rényi graphs rather than random
matchings. This requires changes to some components in the proof outline of [4, 16].

Our communication problem still concerns matchings (rather than sub-critical Erdös-
Rényi graphs), though we allow for (components of) x,w to take values from Zp instead of
Boolean values. By using Fourier analysis over the group Zp instead of Z2, we are able to
adapt the communication lower bound of [4].

APPROX/RANDOM 2019

5:4 Streaming Hardness of Unique Games

It remains an interesting question to prove a streaming hardness for Unique Games similar
to Theorem 1 for the case of random arrival order of constraints.

2 Preliminaries

Let Zp = {0, 1, . . . , p− 1} be the ring with addition and multiplication modulo p. (We do not
assume that p is a prime.) Fourier analysis over Znp plays a key role in our proof. Consider
the space of functions Znp → C. We define the inner product and 2-norm in it by

〈f, g〉 = 1
pn

∑
x∈Znp

f(x)g(x) ‖f‖2
2 = 〈f, f〉 = 1

pn

∑
x∈Znp

|f(x)|2

The Fourier transform of f is a function f̂ : Znp → C defined by

f̂(z) = 〈f, χz〉 = 1
pn

∑
x∈Znp

f(x)ωz·x

where χz : Znp → C is the character χz(x) = ωz·x with “·” being the scalar product and
ω = e2πi/p being the primitive p’th root of unity. For z ∈ Znp , we denote by |z| the number
of nonzero entries in z.

In our later proof, we use the following two lemmas concerning Parseval’s identity and
hypercontractivity.

I Lemma 2 (Parseval). For every function f : Znp → C, we have

‖f‖2
2 =

∑
z∈Znp

|f̂(z)|2.

I Lemma 3 (Hypercontractivity Theorem, [13]). For function f ∈ L2(Znp), if 1 < q < 2 and
0 ≤ ρ ≤

√
q − 1(1/p)1/q−1/2, we have∥∥Tρf∥∥2 ≤‖f‖q

where Tρ is the operator defined by Tρf(x) =
∑
z∈Znp

f̂(z)ρ|z|χz(x).

Using the above theorem, we can derive an estimate on the sum of Fourier coefficients
weighted by its support size.

I Lemma 4. For a set A ⊆ Znp and let f be its indicator function and let |z| denote the
number of non-zero coordinates of z ∈ Znp . Then for every δ ∈ [0, 1/p], we have

∑
z∈Znp

δ|z||f̂(z)|2 ≤
(
|A|
pn

)2/(1+pδ)
.

Proof. Let ρ =
√
q − 1(1/p)1/2 ≤

√
q − 1(1/p)1/q−1/2, then q = 1 + pρ2. By the hypercon-

tractivity theorem, we know that∥∥Tρf∥∥2 ≤‖f‖1+pρ2

Meanwhile, we have
∥∥Tρf∥∥2

2 =
∑
z∈Znp

ρ2|z||f̂(z)|2. Taking the square of the equation
above and setting δ = ρ2 will get our desired result. J

V. Guruswami and R. Tao 5:5

3 p-ary Hidden Matching

In this section, we analyze a two-party (distributional) one-way communication problem,
defined as follows.

p-ary Hidden Matching problem. Alice gets a random vector x ∈ Znp . Bob gets a random
α-partial matching G (i.e., a matching of size αn on {1, 2, . . . , n}) and a vector w ∈ Zαnp .
Let M ∈ {0, 1}αn×n be the incidence matrix of G, i.e., Mev = 1 if v is an endpoint of e and
0 otherwise. There are two choices for the distribution of w, distinguishing which is the
communication problem.

In the YES distribution w is correlated with x as w = Mx (arithmetic done in Zp);
in the NO distribution, w is uniformly random in Znp (and thus independent of x).

Alice must send a message to Bob, based on which Bob needs to distinguish distribution
w belongs to. Formally, Bob must output Yes or No (based on Alice’s message and his
input w), and we say a protocol achieves advantage ε if the difference in probability of Bob
outputting Yes differs under the Yes and No distributions by at least ε. The following shows
that Alice needs to send at least Ω(

√
n) bits for Bob to achieve constant advantage.

I Theorem 5. For α ∈ (0, 1/4], any protocol that achieves advantage ε > 0 for the p-ary
Hidden Matching problem requires at least Ω(ε

√
n) bits of communication from Alice to Bob.

The proof of the above lemma is the main result of this section. Our proof closely follows
the structure of [4], from which the main difference is that our proof has to work for the
p-ary case.

Before we embark on the proof, we need some more lemmas. We begin with an application
of hypercontractivity to bound the Fourier mass at any level.

I Lemma 6. For a set A ⊆ Znp with size at least pn/2c and let f be its indicator function
and let |z| denote the number of non-zero coordinates of z ∈ Znp . Then for every k ≤ 4c
we have

p2n

|A|2
∑
|z|=k

|f̂(z)|2 ≤
(

4
√

2pc
k

)k
.

Proof. By Lemma 4, given some constant 0 ≤ δ ≤ 1/p, we have

p2n

|A|2
∑
|z|=k

|f̂(z)|2 ≤ p2n

|A|2
1
δk

∑
z∈Znp

δ|z||f̂(z)|2

≤ p2n

|A|2
1
δk

(
|A|
pn

)2/(1+pδ)

= 1
δk

(
pn

|A|

)2pδ/(1+pδ)

≤ 1
δk

(
pn

|A|

)2pδ
.

Choosing δ = k/4cp will give our desired result. J

We also need a combinatorial lemma about counting of some matchings.

APPROX/RANDOM 2019

5:6 Streaming Hardness of Unique Games

I Lemma 7. Let G be a uniformly random α-partial matching and M be its incidence matrix.
If x ∈ Znp has |x| = k for some even3 k, then

Pr
G

[∃z ∈ Zαnp s.t.MT z = x] ≤
(
αn

k/2

)/(
n

k

)
.

Proof. We know that the total number of all α-partial matchings of n vertices is
n!/(2αn(αn)!(n− 2αn)!). And if there exists some z such that MT z = x, then G must have
exactly k/2 edges between those vertices v with xv 6= 0. There are k!/(2k/2(k/2)!) number of
ways to choose those edges. Also, we need to choose αn− k/2 edges amongst those v whose
xv = 0, which we have (n− k)!/(2n−k(αn− k/2)!(n− 2αn)!) ways to do. Combining them
together leads to the lemma. J

From the lemmas above, we can derive an important result in our proof.

I Lemma 8. Let A ⊆ Znp be of size at least pn/2c for some c ≥ 1, G be a uniformly random
α-partial matching for some 0 < α ≤ 1/4 and M be its incidence matrix. There exists a
constant γ independent of n, c and α, such that for all ε > 0, if c ≤ γε

√
n/α then

EM [‖pM − U‖tvd] ≤ ε,

where pM (w) = |{x ∈ A |Mx = w}/|A| is the distribution of w in the YES case when x is
uniformly random in A.

Proof. To show that EM [‖pM − U‖tvd] ≤ ε, we can start by bounding the Fourier coefficients
of pM . In fact they are closely related to f̂ (where recall that f is the indicator function for
membership in the set A):

p̂M (z) = 1
pαn

∑
w∈Zαnp

pM (z)ω−w·z

= 1
|A|pαn

p−1∑
k=0

ω−k|{x ∈ A|(Mx) · z = k}|

= 1
|A|pαn

p−1∑
k=0

ω−k|{x ∈ A|x · (MT z) = k}|

= 1
|A|pαn

∑
x∈A

ω−x·(M
T z)

= pn

|A|pαn
f̂(MT z)

From the bound of Fourier coefficients, we can give a bound on squared total variation
distance

EM [‖pM − U‖2
tvd] ≤ p

2αnEM [‖pM − U‖2
2]

= p2αnEM

 ∑
z∈Zαnp \{0αn}

|p̂M (z)|2

= p2n

|A|2
EM

 ∑
z∈Zαnp \{0αn}

|f̂(MT z)|2

3 We note that if |x| is odd, then there can be no z such that MT z = x.

V. Guruswami and R. Tao 5:7

by Cauchy-Schwarz inequality, Parseval equality and the bound above. Since there is at most
one z ∈ Zαnp such that x = MT z for given x, we have

= p2n

|A|2
EM

 ∑
x∈Znp\{0n}

|f̂(x)|2|{z ∈ Zαnp |x = MT z}|

= p2n

|A|2
∑

x∈Znp\{0n}

Pr
M

[∃z ∈ Zαnp s.t. MT z = x]|f̂(x)|2

≤ p2n

|A|2
2αn∑

k=2,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2.

We then split the sum into two parts k < 4c and k ≥ 4c. For k < 4c, using (n/k)k ≤
(
n
k

)
≤

(en/k)k, we have

p2n

|A|2
4c−2∑

k=2,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2 ≤
4c−2∑

k=2,keven

(2eαn/k)k/2

(n/k)k

(
4
√

2pc
k

)k
(using Lemma 6)

≤
4c−2∑

k=2,keven

(
64eγ2ε2p2

k

)k/2

,

which is at most ε2/2 when γ is sufficiently small. For k ≥ 4c note that
∑
x |f̂(x)|2 = |A|/pn

by Parseval and
(
αn
k/2
)/(

n
k

)
is decreasing for even k ≤ 2αn, we have

p2n

|A|2
2αn∑

k=4c,keven

(
αn
k/2
)(

n
k

) ∑
|x|=k

|f̂(x)|2 ≤ 2c
(
αn
2c
)(

n
4c
)

≤ 2c
(

8cαe
n

)2c

≤
(

8
√

2eγε
√
α/n

)2c
≤ ε2/2.

The last inequality holds because n ≥ 1 and c ≥ 1, and we let γ be a sufficiently small constant.
Thus, in total we have EM [‖pM − U‖2

tvd] ≤ ε2, which means by Jensen EM [‖pM − U‖tvd] ≤ ε.
J

From the lemma above, we can prove the communication lower bound of p-ary Hidden
Matching problem.

Proof of Theorem 5. By fixing the randomness of the protocol, we can assume without
loss of generality that the protocol is deterministic . Fix ε > 0 to a small constant and let
c = γε

√
n/α. Consider any protocol that communicates at most C = c− log(1/ε) bits. In the

protocol, Alice’s message gives an partition of Znp into 2C subsets. We call the sets with size
εpn/2C = pn/2c be “large sets”, then for a uniformly random x ∈ Znp , with probability 1− ε,
x belongs to a large set. When x is in a large set, by Lemma 8, Bob can get an advantage of
at most ε. Together with the advantage from small sets, the overall advantage Bob can get
is at most O(ε), which completes the proof. J

APPROX/RANDOM 2019

5:8 Streaming Hardness of Unique Games

4 Reduction to Streaming Algorithm for Unique Games

In this section, we will prove Theorem 1. Towards this end, we will describe a pair of
distributions, Y and N, where Y is supported on satisfiable instances of Unique Games, and
N is supported with high probability on instances where at most ≈ 1/p fraction of constraints
can be satisfied. We will then establish, via reduction from the p-ary Hidden Matching
communication problem, that any low-space streaming algorithm cannot distinguish between
these distributions, thus establishing Theorem 1.

4.1 Input distributions
We construct the above-mentioned distributions in a “multi-stage” way (using k stages)
based on the YES and NO distributions (defined at the beginning of Section 3) for p-ary
Hidden Matching. First we independently sample k α-partial matchings on n vertices a The
Unique Games instance graph G will be the union of these matchings. It will thus have n
vertices and kαn edges (we allow multiple edges should they be sampled). We next specify
the Unique Games constraints, which will be two-variable linear equations, one for each edge.

In the Y distribution, we sample a random z ∈ Znp uniformly. We let the constraint on
edge (u, v) of G be xu + xv = zu + zv.
In the N distribution, for each edge (u, v) of G, we let the constraint be xu + xv = q for
a random q ∈ Zp, independently chosen for each edge.

For instances sampled in the Y distribution, the best solution is obviously xu = zu for
all u ∈ [n], which satisfies all the constraints. For the N distribution, we can use Chernoff
bounds to upper bound the value of the optimal solution.

I Lemma 9. Let 0 < ε < 1. If k = Cp log p/(αε2) for some large constant C > 0, then for a
Unique Games instance sampled from the N distribution, the optimal fraction of satisfiable
constraints is at most (1 + ε)/p with high probability.

Before we proceed to the proof, we first state the Chernoff bound for negatively correlated
random variables.

I Lemma 10 ([14]). Let X1, . . . , Xn be negatively correlated Bernoulli random variables and
X = X1 + · · ·+Xn. Then we have

Pr[X ≥ (1 + ε)E[X]] ≤ exp(−E[X]ε2/3).

Proof of Lemma 9. Fix an assignment x ∈ Znp . For 1 ≤ ` ≤ k, let X(`)
ij be the indicator of

the following event: “in the `-th stage, the edge (i, j) is included in the α-partial matching
and is satisfied by the assignment x.” Then, S =

∑
`,i,j X

(`)
ij , summed over 1 ≤ `k, and

1 ≤ i < j ≤ n, is the random variable counting the number of constraints satisfied by
the assignment x. Note that E[S] = kαn/p is the expected number of constraints by the
assignment x. And we know that each X(`)

ij is a Bernoulli random variable with probability
of equaling 1 being 2αn/(pn(n− 1)).

We first claim that these random variables are negatively correlated. In fact, edges in
different stages are independent. For edges in the same stage `, consider that we know that
random variables X(`)

i1j1
, X

(`)
i2j2

, . . . , X
(`)
itjt

have value 1, and a vertex pair (i0, j0). If i0 or j0 is
occurred in some is or js, then X(`)

i0j0
must be 0. Otherwise the conditional expectation of

X
(`)
i0j0

is 2(αn− t)/(p(n− t)(n− 1− t)), which is less than the unconditional expectation of
2αn/(pn(n− 1)). In all cases we have E[X(`)

i0j0
| X(`)

i1j1
= X

(`)
i2j2

= · · · = X
(`)
itjt

= 1] ≤ E[X(`)
i0j0

],
which in turn means negative correlation.

V. Guruswami and R. Tao 5:9

Thus, by Chernoff bound for negatively random variables, we know that

Pr[S ≥ (1 + ε)kαn/p] ≤ exp(−ε2kαn/3p) = p−Cn/3 ≤ p−2n.

The proof is now complete by a union bound over all pn candidate assignments. J

4.2 Reduction from p-ary Hidden Matching
Note that each stage of constraints in the Unique Games instance corresponds to the p-ary
Hidden Matching problem, with the Y distribution (resp. N distribution) coinciding with
the YES distribution (NO distribution) of the Hidden Matching problem. Using this, we
can link the hardness of the two problems via a hybrid argument. Recall that we say that a
decision algorithm distinguishes between two distributions D1 and D2 with advantage η if it
accepts samples from one distribution with probability at least η more than those from the
other distribution.

I Lemma 11. Suppose there exists a streaming algorithm ALG using c bits of memory that
can achieve advantage 1/4 in distinguishing between instances from the Y and N distributions
of Unique Games instances. Then there exists a protocol with c bits of communication for
the p-ary Hidden matching problem with advantage Ω(1/k) in distinguishing between YES
and NO distributions.

We now prepare for the proof of Lemma 11. Our proof follows along the lines of a similar
argument in [9]. In the execution of ALG on instances from the Y and N distributions, let the
memory after receiving the i-th stage constraints be SYi and SNi respectively. Thus SYi , SNi
are random variables in {0, 1}c. Without loss of generality, we assume that SY0 = SN0 = 0.

We now define the notion of an informative index, as in [9].

I Definition 12 (Informative index). An index j ∈ {0, . . . , k − 1} is said to be δ-informative
for δ > 0 if∥∥∥SYj+1 − SNj+1

∥∥∥
tvd
≥
∥∥∥SYj − SNj ∥∥∥

tvd
+ δ

We now show the existence of a Ω(1/k)-informative index for any streaming algorithm that
distinguishes between Y and N distributions.

I Lemma 13. Suppose a streaming algorithm ALG uses c bits of memory and distinguishes
the Y and N distributions with advantage 1/4. Then the algorithm has a Ω(1/k)-informative
index.

Proof. At first,
∥∥SY0 − SN0 ∥∥tvd = 0; at the end of the algorithm, since advantage is at least

1/4,
∥∥SYk − SNk ∥∥tvd must be at least some constant C. Let j be the first index such that∥∥∥SYj+1 − SNj+1

∥∥∥
tvd
≥ C(j + 1)/k, then j is a C/k-informative index. J

Let j∗ be a Ω(1/k)-informative index of a streaming algorithm ALG. Using ALG, we
can devise a communication protocol for the p-ary Hidden Matching problem as follows.

1. Suppose Alice holds as input a random string x ∈ Znp . She samples j∗ random α-partial
matchings and feeds the streaming algorithm UG constraints for the first j∗ stages that
follow the Y distribution with the setting z = x.

2. Alice sends the memory contents of ALG after j∗ stages to Bob.

APPROX/RANDOM 2019

5:10 Streaming Hardness of Unique Games

3. Bob samples an α-partial matching and gives constraints xu + xv = we for e = (u, v)
according to his w. He then continues running ALG on these constraints as the (j∗+1)’th
stage.
Let the memory Bob gets be s.

4. Let the resulting memory distribution under the two cases (depending on w’s distribution)
be S̃YES and S̃NO. (Note that these distribution can be computed by Bob since ALG
is known.)
Bob outputs 1 if Pr[S̃YES = s] ≥ Pr[S̃NO = s], and otherwise 0.

The above completes the description of the reduction. Before we analyze it and proceed
to the proof of Lemma 11, we need the following fact about the statistical (total variation)
distance between random variabls.

I Lemma 14 (Claim 6.5, [9]). Let X,Y be two random variables and W be independent of
(X,Y). Then for any function f , we have∥∥f(X,W)− f(Y,W)

∥∥
tvd
≤‖X − Y ‖tvd .

Proof of Lemma 11. We argue that the above protocol for p-ary Hidden Matching achieves
the claimed advantage of Ω(1/k) in distinguishing between YES and NO distributions.

Let f be the function that maps the memory after stage j∗ and constraints of stage
(j∗ + 1) to the memory after stage (j∗ + 1). Thus we have S̃YES = SYj∗+1 = f(SYj , CY) and
S̃NO = f(SYj , CN), where CY , CN be the constraints Bob generated in both cases. We also
know that SNj∗+1 = f(SNj , CN).

By Lemma 14, we know that∥∥∥S̃NO − SNj∗+1

∥∥∥
tvd

=
∥∥∥f(SYj∗ , CN)− f(SNj∗ , CN)

∥∥∥
tvd
≤
∥∥∥SYj∗ − SNj∗

∥∥∥
tvd

.

Hence, we have∥∥∥S̃YES − S̃NO
∥∥∥
tvd
≥
∥∥∥SYj∗+1 − SNj∗+1

∥∥∥
tvd
−
∥∥∥S̃NO − SNj∗+1

∥∥∥
tvd

≥
∥∥∥SYj∗+1 − SNj∗+1

∥∥∥
tvd
−
∥∥∥SYj∗ − SNj∗

∥∥∥
tvd

≥ Ω(1/k).

The strategy in Step 4 that Bob uses distinguishes between S̃YES and S̃NO with advantage
exactly

∥∥∥S̃YES − S̃NO
∥∥∥
tvd

, which is at least Ω(1/k). This concludes the proof of Lemma 11.
J

Our main result, Theorem 1, now follows by choosing α = 1/8 and k = dCp log p/ε2e
for a large enough absolute constant C, and combining together Theorem 5, Lemma 11,
and Lemma 9.

5 Conclusion

We proved that Unique Games is hard for single-pass streaming algorithms in a strong
sense: even if the instance is perfectly satisfiable, the algorithm cannot certify that it is even
(1/p+ ε)-satisfiable, where p is the alphabet size, and ε > 0 is an arbitrary constant. Some
natural directions to extend our lower bound would be to multi-pass algorithms, and for
random arrival order of the constraints.

V. Guruswami and R. Tao 5:11

An interesting direction for future work would be to establish limitations of streaming
algorithms for other approximation problems which are only known to be “Unique Games-
hard.” An example, which partly motivated this work initially, is the Maximum Acyclic
Subgraph (MAS) problem. The MAS problem is another one of those notorious problems for
which there is a trivial algorithm that achieves approximation ratio of 2 (the algorithm is
simply to order the vertices arbitrarily, and take either all the forward-going or backward-
going edges as an acyclic subgraph with at least 1/2 the edges), and no efficient algorithm
achieving a factor (2− ε)-approximation is known for any fixed ε > 0. On the other hand,
known NP-hardness results are rather weak, but under the Unique Games conjecture, it is
known that there is no efficient (2− ε)-approximation for MAS [6, 5].

One can try to explain the difficulty of MAS in the streaming model, by proving a
result similar in spirit to the result we established for Unique Games. Specifically, given as
input a directed graph whose edges arrive one-by-one, can a low-space single-pass streaming
algorithm distinguish between the cases when the directed graph is acyclic and when it has
no acyclic subgraph with even 1/2 + ε of the edges? (The 1/2 threshold being trivial, since
any directed graph has an acyclic subgraph with 1/2 the edges.) A result of this flavor was
shown with 1/2 replaced by 7/8 in [7].

The reduction from Unique Games to (2− ε)-approximating MAS [6] and our inapprox-
imability result for UG in the streaming model gives hope to prove the desired streaming
hardness for MAS as well, by implementing the reduction in a streaming manner. Since
reductions involving CSPs are usually local, the arrival of one constraint of problem A can
be mimicked by the arrival of the constraints of problem B that implement it. The reduction
from UG to MAS (and indeed many other CSPs), however, introduces constraints between all
pairs of variables that share a constraint with a UG vertex u. So to implement it one would
need the UG streaming hardness under a “vertex arrival” model, where the graph is bipartite,
and all constraints involving a left hand side vertex arrive in sequence. We can adapt the
reduction in [6] to something local, based only on a single constraint, thereby making it more
friendly to the edge arrival model. However, this only yields a weaker hardness result that
distinguishing DAGs from graphs whose MAS has at most ≈ 3/4 edges requires Ω(

√
n) space.

Obtaining a tight streaming hardness result for MAS, and more broadly leveraging our
tight streaming hardness result for Unique Games toward streaming inapproximability results
for other optimization problems for which we have optimal reductions from Unique Games,
are interesting directions for future work. Further, given the hardness results in this work and
[9], one can ask which CSPs and related problems admit non-trivial approximate estimation
algorithms in the streaming model. Even though one might suspect that strong hardness
results should be pervasive, it seems that it is rather non-trivial to establish strong limitations
of streaming algorithms, and the algorithms for Max 2CSP in [7] suggest that there might
be more interesting cases where streaming algorithms can provide non-trivial guarantees.

In recent work [10], Kapralov and Krachun give an Ω̃(n) space lower bound on beating a
2-approximation for MAX-CUT by a single-pass streaming algorithm. A generalization of
their techniques to the p-ary case may lead to a near-tight streaming space lower bound for
Unique Games.

References
1 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms for

unique games. In Proceedings of the 38th Annual ACM Symposium on Theory of Computing,
pages 205–214, 2006.

2 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM Symposium on Theory of
Computing, pages 376–389, 2018.

APPROX/RANDOM 2019

5:12 Streaming Hardness of Unique Games

3 Uriel Feige and Daniel Reichman. On Systems of Linear Equations with Two Variables per
Equation. In Approximation, Randomization, and Combinatorial Optimization, Algorithms
and Techniques (APPROX, RANDOM), pages 117–127, 2004.

4 Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald De Wolf. Exponential
separations for one-way quantum communication complexity, with applications to cryptography.
In Proceedings of the 39th annual ACM symposium on Theory of computing, pages 516–525.
ACM, 2007.

5 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses
Charikar. Beating the Random Ordering Is Hard: Every Ordering CSP Is Approximation
Resistant. SIAM Journal on Computing, 40(3):878–914, 2011.

6 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the Random
Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph. In Proceedings of the
49th Annual IEEE Symposium on Foundations of Computer Science, pages 573–582, 2008.

7 Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming complexity
of approximating Max 2CSP and Max Acyclic Subgraph. In 20th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
8:1–8:19, 2017.

8 Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean functions. In
Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pages 68–80,
1988.

9 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approx-
imating MAX-CUT. In Proceedings of the 26 annual ACM-SIAM symposium on Discrete
Algorithms, pages 1263–1282. Society for Industrial and Applied Mathematics, 2015.

10 Michael Kapralov and Dmitry Krachun. An Optimal Space Lower Bound for Approximating
MAX-CUT. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pages 277–288, 2019.

11 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th
Annual ACM Symposium on Theory of Computing, pages 767–775, 2002.

12 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for MAX-CUT and Other 2-Variable CSPs? SIAM Journal on Computing, 37(1):319–
357, 2007.

13 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
14 Alessandro Panconesi and Aravind Srinivasan. Randomized Distributed Edge Coloring via an

Extension of the Chernoff–Hoeffding Bounds. SIAM Journal on Computing, 26(2):350–368,
1997.

15 Khot Subhash, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 592–601. IEEE, 2018.

16 Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals,
and other problems. In Proceedings of the 26 annual ACM-SIAM symposium on Discrete
Algorithms, pages 11–25, 2011.

On Strong Diameter Padded Decompositions
Arnold Filtser
Ben Gurion University of the Negev, Beersheva, Israel
arnold273@gmail.com

Abstract
Given a weighted graph G = (V,E,w), a partition of V is ∆-bounded if the diameter of each cluster
is bounded by ∆. A distribution over ∆-bounded partitions is a β-padded decomposition if every ball
of radius γ∆ is contained in a single cluster with probability at least e−β·γ . The weak diameter of a
cluster C is measured w.r.t. distances in G, while the strong diameter is measured w.r.t. distances
in the induced graph G[C]. The decomposition is weak/strong according to the diameter guarantee.

Formerly, it was proven that Kr free graphs admit weak decompositions with padding parameter
O(r), while for strong decompositions only O(r2) padding parameter was known. Furthermore, for
the case of a graph G, for which the induced shortest path metric dG has doubling dimension ddim,
a weak O(ddim)-padded decomposition was constructed, which is also known to be tight. For the
case of strong diameter, nothing was known.

We construct strong O(r)-padded decompositions for Kr free graphs, matching the state of the
art for weak decompositions. Similarly, for graphs with doubling dimension ddim we construct a
strong O(ddim)-padded decomposition, which is also tight. We use this decomposition to construct(
O(ddim), Õ(ddim)

)
-sparse cover scheme for such graphs. Our new decompositions and cover have

implications to approximating unique games, the construction of light and sparse spanners, and for
path reporting distance oracles.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Approximation algorithms analysis; Theory of computation → Random projections
and metric embeddings

Keywords and phrases Padded decomposition, Strong Diameter, Sparse Cover, Doubling Dimension,
Minor free graphs, Unique Games, Spanners, Distance Oracles

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.6

Category APPROX

Related Version https://arxiv.org/abs/1906.09783

Funding Arnold Filtser : Supported in part by ISF grant No. (1817/17) and by BSF grant No.
2015813.

Acknowledgements The author would like to thank Ofer Neiman for helpful discussions.

1 Introduction

Divide and conquer is a widely used algorithmic approach. In many distance related graph
problems, it is often useful to randomly partition the vertices into clusters, such that small
neighborhoods have high probability to be clustered together. Given a weighed graph
G = (V,E,w), a partitions is ∆-bounded if the diameter of every cluster is at most ∆. A
distribution D over partitions is called a (β, δ,∆)-padded decomposition, if every partition
is ∆-bounded, and for every vertex v ∈ V and γ ∈ [0, δ], the probability that the entire
ball BG(v, γ∆) of radius γ∆ around v is clustered together, is at least e−βγ . If G admits a
(β, δ,∆)-padded decomposition for every ∆ > 0, we say that G is (β, δ)-decomposable. If in
addition δ = Ω(1) is a universal constant, we say that G is β-decomposable. Among other

© Arnold Filtser;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 6; pp. 6:1–6:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnold273@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.6
https://arxiv.org/abs/1906.09783
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 On Strong Diameter Padded Decompositions

applications, padded decompositions have been used for multi-commodity flow [33], metric
embeddings [41, 40, 34], edge and vertex cut problems [37, 24], routing [4], near linear SDD
solvers [12], approximation algorithms [16], and many more.

The weak diameter of a cluster C ⊆ V is the maximal distance between a pair of vertices
in the cluster w.r.t. the shortest path metric in the entire graph G, i.e. maxu,v∈C dG(u, v).
The strong diameter is the maximal distance w.r.t. the shortest path metric in the induced
graph G[C], i.e. maxu,v∈C dG[C](u, v). Padded decomposition can be weak/strong according
to the provided guarantee on the diameter of each cluster. It is considerably harder to
construct padded decompositions with strong diameter. Nevertheless, strong diameter is more
convenient to use, and some applications indeed require that (e.g. for routing, spanners etc.).

Previous results on padded decompositions are presented in Table 1. General n-vertex
graphs are strongly O(logn)-decomposable [10], which is also tight. In a seminal work,
given a Kr free graph G, Klein, Plotkin and Rao [33] showed that G is weakly O(r3)-
decomposable. Fakcharoenphol and Talwar [23] improved the decomposability of Kr free
graph to O(r2) (weak diameter). Finally, Abraham et al. [5] improved the decomposition
parameter to O(r), still with weak diameter. The first result on strong diameter for Kr free
graphs is by Abraham et al. [6], who constructed decompositions with padding parameter
exponential in r. In fact, they study a somewhat weaker notion of decomposition called
separating decompositions (see Definition 16). Afterwards, in the same paper providing
the state of the art for weak diameter, Abraham et al. [5] proved that Kr free graphs
are strongly (O(r2),Ω(1

r2))-decomposable. It was conjectured [5] that Kr free graphs are
O(log r)-decomposable. However, even improving strong diameter decompositions to match
the state of the art of weak diameter remained elusive.

Another family of interest are graph with bounded doubling dimension1. Abraham, Bartal
and Neiman [2] showed that a graph with doubling dimension ddim is weakly O(ddim)-
decomposable, generalizing a result from [29]. No prior strong diameter decomposition for
this family is known.

A related notion to padded decompositions is sparse cover. A collection C of clusters is a
(β, s,∆)-sparse cover if it is strongly ∆-bounded, each ball of radius ∆

β is contained in some
cluster, and each vertex belongs to at most s different clusters. A graph admits (β, s)-sparse
cover scheme if it admits (β, s,∆)-sparse cover for every ∆ > 0. Awerbuch and Peleg [9]
showed that for k ∈ N, general n-vertex graphs admit a strong (2k − 1, 2k · n 1

k)-sparse cover
scheme. For Kr free graphs, Abraham et al. [6] constructed (O(r2), 2r(r + 1)!)-sparse cover
scheme. Busch, LaFortune and Tirthapura [15] constructed (4, f(r) · logn)-sparse cover
scheme for Kr free graphs2 .

For the case of graphs with doubling dimension ddim, Abraham et al. [4] constructed a
(2, 4ddim)-sparse cover scheme. No other tradeoff are known. In particular, if ddim is larger
than log logn, the only way to get a sparse cover where each vertex belongs to O(logn)
clusters is through [9], with only O(logn) padding.

1.1 Results and Organization
In our first result (Theorem 15 in Section 5), we prove that Kr free graphs are strongly
(O(r),Ω(1

r))-decomposable. Providing quadratic improvement compared to [5].

1 A metric space (X, d) has doubling dimension ddim if every ball of radius 2r can be covered by 2ddim

balls of radius r. The doubling dimension of a graph is the doubling dimension of its induced shortest
path metric.

2 f(r) is a function coming from the Robertson and Seymour structure theorem [42].

A. Filtser 6:3

Table 1 Summery of all known and new padding decompositions for various graph families.

Family Partition type Padding δ Reference
Previous results

General graphs Strong O(logn) Ω(1) [10]
Doubling Weak O(ddim) Ω(1) [29, 2]
Kr minor free Weak O(r3) Ω(1) [33]
Kr minor free Weak O(r2) Ω(1) [23]
Kr minor free Weak O(r) Ω(1) [5]
Kr minor free Strong exp(r) exp(−r) [6] 3
Kr minor free Strong O(r2) Ω(1

r2) [5]
Our results

Doubling Strong O(ddim) Ω(1) Corollary 9
Kr minor free Strong O(r) Ω(1

r) Theorem 15

Our second result (Corollary 9 in Section 4) is the first strong diameter padded decom-
positions for doubling graphs, which is also asymptotically tight. Specifically, we prove that
graphs with doubling dimension ddim are strongly O(ddim)-decomposable.

Both of these padded decomposition constructions are based on a technical theorem
(Theorem 4 in Section 3). Given a set of centers N , such that each vertex has a center at
distance at most ∆ and at most τ centers at distance at most 3∆ (∀v, |BG(v, 3∆)∩N | ≤ τ), we
construct a strong (O(log τ),Ω(1), 4∆)-padded decomposition. We also provide an alternative
construction for the decomposition of Theorem 4 in Appendix B. All of our decompositions
can be efficiently constructed in polynomial time. See Table 1 for a summery of results on
padded decompositions.

Our third result (Theorem 10 in Section 4) is a sparse cover for doubling graphs.
For every parameter t ≥ 1, we construct an

(
O(t), O(2ddim/t · ddim · log t)

)
-sparse cover

scheme. Note that for t = 1 we (asymptotically) obtain the result of [6]. However, we
also get the entire spectrum of padding parameters. In particular, for t = ddim we get an
(O(ddim), O(ddim · log ddim))-sparse cover scheme.

Next, we overview some of the previously known applications of strong diameter padded
decomposition, and analyze the various improvements achieved using our results. Specifically:
1. Given an instance of the unique games problem where the input graph is Kr free, Alev

and Lau [7] showed that if there exist an assignment that satisfies all but an ε-fraction
of the edges, then there is an efficient algorithm that finds an assignment that satisfies
all but an O(r ·

√
ε)-fraction. Using our padded decompositions for minor-free graphs,

we can find an assignment that satisfies all but an O(
√
r · ε)-fraction of the edges. See

Section 6.1.
2. Using the framework of Filtser and Neiman [26], given an n vertex graph, with doubling

dimension ddim, for every parameter t > 1 we construct a graph-spanner with stretch
O(t), lightness O(2 ddim

t · t · log2 n) and O(n ·2 ddim
t · logn · log Λ) edges 4. The only previous

spanner of this type appeared in [26], was based on weak diameter decompositions, had
the same stretch and lightness, while having no bound whatsoever on the number of
edges. See Section 6.2.

3 In fact [6] studied separating decompositions instead of padded (see Definition 16).
4 Lightness is the ratio between the weight of the spanner to the weight of the MST.

Λ = maxu,v∈V dG(u,v)/minu,v∈V dG(u,v) is the aspect ratio.

APPROX/RANDOM 2019

6:4 On Strong Diameter Padded Decompositions

3. Elkin, Neiman and Wulff-Nilsen [19] constructed a path reporting distance oracle for
Kr free graphs with stretch O(r2), space O(n · log Λ · logn) and query time O(log log Λ).
That is, on a query {u, v} the distance oracle returns a u − v path P of weight at
most O(r2) · dG(u, v) in O(|P | + log log Λ) time. Using our strong diameter padded
decompositions we improve the stretch to O(r), while keeping the other parameters intact.
See Appendix A.

4. We further use the framework of [19] to create a path reporting distance oracle for graphs
having doubling dimension ddim with stretch O(ddim), space O(n ·ddim log Λ) and query
time O(log log Λ). This is the first path reporting distance oracle for doubling graphs.
The construction uses our sparse covers. See Appendix A.

1.2 Related Work
Other than padded decompositions, separating decompositions have been studied. Here,
instead of analyzing the probability to cut a ball, we analyze the probability to cut an edge
[8, 36, 16, 22]. Separating decompositions been used to minimize the number of inter-cluster
edges in a partition. In particular, strong diameter version of such partitions were used for
SDD solvers [12].

Miller et al. [38] constructed strong diameter partitions for general graphs, which they
later used to construct spanners and hop-sets in parallel and distributed regimes (see also
[18]). Hierarchical partitions with strong diameter had been studied and used for constructing
distributions over spanning trees with small expected distortion [17, 1], Ramsey spanning
trees [3] and for universal Steiner trees [14]. Another type of partitions studied is when we
require only weak diameter, and in addition for each cluster to be connected [21, 25].

Padded decompositions were studied for additional graph families. Kamma and Krau-
thgamer [31] showed that treewidth r graphs are weakly O(log r + log logn)-decomposable.
Abraham et al. [5] showed that treewidth r graphs are strongly O(log r + log logn)-
decomposable and strongly (O(r),Ω(1

r))-decomposable. [5] also showed that pathwidth
r graphs are strongly O(log r)- decomposable. Finally [5] proved that genus g graphs are
strongly O(log g)-decomposable, improving a previous weak diameter version of Lee and
Sidiropoulos [35].

1.3 Technical Ideas
The basic approach for creating padded decompositions is by ball carving [10, 2]. That is,
iteratively create clusters by taking a ball centered around some vertex, with radius drawn
according to exponential distribution. The process halts when all the vertices are clustered.
Intuitively, if every vertex might join the cluster associated with at most τ centers, the
padding parameter is O(log τ). We think of these centers as threateners. This approach
worked very well for general graphs as the number of vertices is n. Similarly it also been
used for doubling graphs, where the number of threateners is bounded by 2O(ddim). However,
in doubling graphs ball carving produces only weak diameter clustering.

Our main technical contribution is a proof that the intuition above holds for strong
diameter as well. Specifically, we show that if there is a set N of centers such that each
vertex has a center at distance at most ∆, and at most τ centers at distance 3∆ (these
are the threateners), then the graph is strongly (O(log τ),Ω(1), 4∆)-decomposable. We use
the clustering approach of Miller et al. [38] with exponentially distributed starting times.
In short, in [38] clustering each center x samples a starting time δx. Vertex v joins the
cluster of the center xi maximizing δx−dG(x, v). This approach guaranteed to creates strong

A. Filtser 6:5

diameter clusters. The key observation is that if for every center y 6= xi, (δxi − dG(xi, v))−
(δy − dG(y, v)) ≥ 2γ∆, then the ball BG(v, γ∆) is fully contained in the cluster of xi. Using
truncated exponential distribution, we lower bound the probability of this event by e−γ·O(log τ).
It is the first time [38]-like algorithm is used to create padded decompositions.

In addition to the [38]-based algorithm, we also show a simpler algorithm, based on
cone carving ([17]). The cone approach, although less involved, is inherently sequential and
implies dependencies of each vertex on the entire center set. [38] algorithm can be efficiently
implemented in distributed and parallel setting. Moreover, as each vertex depends only on
centers in its local area, we are able to use the Lovász Local Lemma to create a sparse cover
from padded decompositions.

Decompositions of Kr free graphs did not use ball carving directly. Rather, they tend to
use the topological structure of the graph. We say that a cluster of G has an r-core with
radius ∆ if it contains at most r shortest paths (w.r.t. dG) such that each vertex is at distance
at most ∆ from one of these paths. [5]’s strong decomposition for Kr free graphs is based on
a partition into 1-core clusters, such that a ball with radius γ∆ is cut with probability at
most 1− e−O(γr2). This partition is the reason for their O(r2) padding parameter. Although
not stated explicitly, [5] also constructed a partition into r-core clusters, such that a ball with
radius γ∆ is cut with probability at most 1− e−O(γr). Apparently, [5] lacked an algorithm
for partitioning r-clusters. Taking a union of ∆-nets from each shortest path to the center
set N , it will follow that each vertex has at most O(r) centers in its O(∆) neighborhood.
In particular, our theorem above implies a clustering of each r-core cluster into bounded
diameter clusters. Our strong decomposition with parameter O(r) follows.

2 Preliminaries

Graphs. We consider connected undirected graphs G = (V,E) with edge weights w : E →
R≥0. We say that vertices v, u are neighbors if {v, u} ∈ E. Let dG denote the shortest path
metric in G. BG(v, r) = {u ∈ V | dG(v, u) ≤ r} is the ball of radius r around v. For a vertex
v ∈ V and a subset A ⊆ V , let dG(x,A) := mina∈A dG(x, a), where dG(x, ∅) = ∞. For a
subset of vertices A ⊆ V , let G[A] denote the induced graph on A, and let G \A := G[V \A].
The diameter of a graph G is diam(G) = maxv,u∈V dG(v, u), i.e. the maximal distance
between a pair of vertices. Given a subset A ⊆ V , the weak-diameter of A is diamG(A) =
maxv,u∈A dG(v, u), i.e. the maximal distance between a pair of vertices in A, w.r.t. to dG.
The strong-diameter of A is diam(G[A]), the diameter of the graph induced by A.

A graph H is a minor of a graph G if we can obtain H from G by edge deletions/contrac-
tions, and isolated vertex deletions. A graph family G is H-minor-free if no graph G ∈ G has
H as a minor. Some examples of minor free graphs are planar graphs (K5 and K3,3 free),
outer-planar graphs (K4 and K3,2 free), series-parallel graphs (K4 free) and trees (K3 free).

Doubling dimension. The doubling dimension of a metric space is a measure of its local
“growth rate”. A metric space (X, d) has doubling constant λ if for every x ∈ X and radius
r > 0, the ball B(x, 2r) can be covered by λ balls of radius r. The doubling dimension
is defined as ddim = log2 λ. A d-dimensional `p space has ddim = Θ(d), and every n

point metric has ddim = O(logn). We say that a weighted graph G = (V,E,w) has
doubling dimension ddim, if the corresponding shortest path metric (V, dG) has doubling
dimension ddim. The following lemma gives the standard packing property of doubling
metrics (see, e.g., [29]).

I Lemma 1 (Packing Property). Let (X, d) be a metric space with doubling dimension ddim.
If S ⊆ X is a subset of points with minimum interpoint distance r that is contained in a ball
of radius R, then |S| ≤

(2R
r

)O(ddim) .

APPROX/RANDOM 2019

6:6 On Strong Diameter Padded Decompositions

Nets. A set N ⊆ V is called a ∆-net, if for every vertex v ∈ V there is a net point x ∈ N
at distance at most dG(v, x) ≤ ∆, while every pair of net points x, y ∈ N , is farther than
dG(x, y) > ∆. A ∆-net can be constructed efficiently in a greedy manner. In particular, by
Lemma 1, given a ∆-net N in a graph of doubling dimension ddim, a ball of radius R ≥ ∆,
will contain at most

(2R
∆
)O(ddim) net points.

Padded Decompositions and Sparse Covers. Consider a partition P of V into disjoint
clusters. For v ∈ V , we denote by P (v) the cluster P ∈ P that contains v. A partition P is
strongly ∆-bounded (resp. weakly ∆-bounded) if the strong-diameter (resp. weak-diameter)
of every P ∈ P is bounded by ∆. If the ball BG(v, γ∆) of radius γ∆ around a vertex v is
fully contained in P (v), we say that v is γ-padded by P. Otherwise, if BG(v, γ∆) 6⊆ P (v),
we say that the ball is cut by the partition.

I Definition 2 (Padded Decomposition). Consider a weighted graph G = (V,E,w). A
distribution D over partitions of G is strongly (resp. weakly) (β, δ,∆)-padded decomposition if
every P ∈ supp(D) is strongly (resp. weakly) ∆-bounded and for any 0 ≤ γ ≤ δ, and z ∈ V ,

Pr[BG(z, γ∆) ⊆ P (z)] ≥ e−βγ .

We say that a graph G admits a strong (resp. weak) (β, δ)-padded decomposition scheme, if
for every parameter ∆ > 0 it admits a strongly (resp. weakly) (β, δ,∆)-padded decomposition
that can be sampled in polynomial time.

A related notion to padded decompositions is sparse covers.

I Definition 3 (Sparse Cover). A collection of clusters C = {C1, ..., Ct} is called a (β, s,∆)-
sparse cover if the following conditions hold.
1. Bounded diameter: The strong diameter of every Ci ∈ C is bounded by ∆.
2. Padding: For each v ∈ V , there exists a cluster Ci ∈ C such that BG(v, ∆

β) ⊆ Ci.
3. Overlap: For each v ∈ V , there are at most s clusters in C containing v.
We say that a graph G admits a (β, s)-sparse cover scheme, if for every parameter ∆ > 0 it
admits a (β, s,∆)-sparse cover that can be constructed in expected polynomial time.

Truncated Exponential Distributions. To create padded decompositions, similarly to pre-
vious works, we will use truncated exponential distribution. That is, exponential distribution
conditioned on the event that the outcome lays in a certain interval. The [θ1, θ2]-truncated
exponential distribution with parameter λ is denoted by Texp[θ1,θ2](λ), and the density func-
tion is: f(y) = λ e−λ·y

e−λ·θ1−e−λ·θ2 , for y ∈ [θ1, θ2]. For the [0, 1]-truncated exponential distribution
we drop the subscripts and denote it by Texp(λ); the density function is f(y) = λ e−λ·y

1−e−λ .

3 Strongly Padded Decomposition

In this section we prove the main technical theorem of this paper.

I Theorem 4. Let G = (V,E,w) be a weighted graph and ∆ > 0, τ = Ω(1) parameters.
Suppose that we are given a set N ⊆ V of center vertices such that for every v ∈ V :

Covering. There is x ∈ N such that dG(v, x) ≤ ∆.
Packing. There are at most τ vertices in N at distance 3∆, i.e. |BG(v, 3∆) ∩N | ≤ τ .

Then G admits a strongly
(
O(ln τ), 1

16 , 4∆
)
-padded decomposition that can be efficiently

sampled.

A. Filtser 6:7

We start with description of the [38] algorithm (with some adaptations), and its proper-
ties. Later, in Section 3.2 we will prove Theorem 4. An alternative construction is given
in Appendix B.

3.1 Clustering Algorithm Based on Starting Times
As we make some small adaptations, and the role of the clustering algorithm is essential, we
provide full details. Let ∆ > 0 be some parameter and let N ⊆ V be some set of centers
such that for every v ∈ V , dG(v,N) ≤ ∆. For each center x ∈ N , let δx ∈ [0,∆] be some
parameter. The choice of {δx}x∈N differs among different implementations of the algorithm.
In our case we will sample δx using truncated exponential distribution. Each vertex v will
join the cluster Cx of the center x ∈ N for which the value δx − dG(x, v) is maximized. Ties
are broken in a consistent manner 5. Note that it is possible that a center x ∈ N will join the
cluster of a different center x′ ∈ N . An intuitive way to think about the clustering process
is as follows: each center x wakes up at time −δx and begins to “spread” in a continuous
manner. The spread of all centers done in the same unit tempo. A vertex v joins the cluster
of the first center that reaches it.

B Claim 5. Every non-empty cluster Cx created by the algorithm has strong diameter at
most 4∆.

Proof. Consider a vertex v ∈ Cx. First we argue that dG(v, x) ≤ 2∆. This will already
imply that Cx has weak diameter 4∆. Let xv be the closest center to v, then dG(v, xv) ≤ ∆.
As v joined the cluster of x, it holds that δx − dG(v, x) ≥ δxv − dG(v, xv). In particular
dG(v, x) ≤ δx + dG(v, xv) ≤ 2∆.

Let I be the shortest path in G from v to x. For every vertex u ∈ I and center x′ ∈ N ,
it holds that

δ(x)− dG(u, x) = δ(x)− (dG(v, x)− dG(v, u)) ≥ δ(x′)− dG(v, x′) + dG(v, u)
≥ δ(x′)− dG(u, x′) .

We conclude that I ⊆ Cx, in particular dG[Cx](v, x) ≤ 2∆. The claim now follows. C

B Claim 6. Consider a vertex v, and let x1, x2, . . . be an ordering of the centers w.r.t.
δ(xi) − dG(v, xi). That is δ(x1) − dG(v, x1) ≥ δ(x2) − dG(v, x2) ≥ Set Υ = (δ(x1) −
dG(v, x1)) − (δ(x2) − dG(v, x2)). Then for every vertex u such that dG(v, u) < Υ

2 it holds
that u ∈ Cx1 .

Proof. For every center xi 6= x1 it holds that,

δ(x1)− dG(u, x1) > δ(x1)− dG(v, x1)− Υ
2 ≥ δ(xi)− dG(v, xi) + Υ

2 > δ(xi)− dG(u, xi) .

In particular, u ∈ Cx1 . C

3.2 Proof of Theorem 4
For every center x ∈ N , we sample δ′x ∈ [0, 1] according to Texp(λ) truncated exponential
distribution with parameter λ = 2+2 ln τ . Set δx = δ′x ·∆ ∈ [0,∆]. We execute the clustering
algorithm from Section 3.1 with parameters {δx}x∈N to get a partition P.

5 That is we have some order x1, x2, Among the centers xi that minimize δxi − dG(xi, v), v joins
the cluster of the center with minimal index.

APPROX/RANDOM 2019

6:8 On Strong Diameter Padded Decompositions

According to Claim 5, we created a distribution over strongly 4∆-bounded partitions.
Consider some vertex v ∈ V and parameter γ ≤ 1

4 . We will argue that the ball B = BG(v, γ∆)
is fully contained in P (v) with probability at least e−O(γ log τ). Let Nv be the set of centers
x for which there is non zero probability that Cx intersects B. Following the calculation in
Claim 5, each vertex joins the cluster of a center at distance at most 2∆. By triangle inequality,
all the centers in Nv are at distance at most (2 + γ)∆ ≤ 3∆ from v. In particular |Nv| ≤ τ .

Set Nv = {x1, x2, . . . } ordered arbitrarily. Denote by Fi the event that v joins the cluster
of xi, i.e. v ∈ Cxi . Denote by Ci the event that v joins the cluster of xi, but not all of the
vertices in B joined that cluster, that is v ∈ Cxi ∩B 6= B. To prove the theorem, it is enough
to show that Pr [∪iCi] ≤ 1− e−O(γ·λ). Set α = e−2γ·λ.

B Claim 7. For every i, Pr [Ci] ≤ (1− α)
(

Pr [Fi] + 1
eλ−1

)
.

Proof. As the order in Nv is arbitrary, assume w.l.o.g. that i = |Nv| and denote x = x|Nv|,
C = Ci, F = Fi, δ = δxi and δ′ = δ′xi . Let X ∈ [0, 1]|Nv|−1 be the vector where the j’th
coordinate equals δ′xj . Set ρX = 1

∆ ·
(
dG(x, v) + maxj<|Nv|

{
δxj − dG(xj , v)

})
. Note that ρX

is the minimal value of δ′ such that if δ′ > ρX , that x has the maximal value δx − dG(x, v),
and therefor v will join the cluster of x. Note that it is possible that ρX > 1. Conditioning
on the samples having values X, and assuming that ρX ≤ 1 it holds that

Pr [F | X] = Pr [δ′ > ρX] =
∫ 1

ρX

λ · e−λy

1− e−λ dy = e−ρX ·λ − e−λ

1− e−λ .

If δ′ > ρX +2γ then δ−dG(x, v) > maxj 6=i {δxi − dG(xi, v)}+2γ∆. In particular, by Claim 6
the ball B will be contained in Cx. We conclude

Pr [C | X] ≤ Pr [ρX ≤ δ′ ≤ ρX + 2γ]

=
∫ max{1,ρX+2γ}

ρX

λ · e−λy

1− e−λ dy

≤ e−ρX ·λ − e−(ρX+2γ)·λ

1− e−λ

=
(
1− e−2γ·λ) · e−ρX ·λ1− e−λ

= (1− α) ·
(

Pr [F | X] + 1
eλ − 1

)
.

Note that if ρX > 1 then Pr [C | X] = 0 ≤ (1− α) ·
(

Pr [F | X] + 1
eλ−1

)
as well. Denote by

f the density function of the distribution over all possible values of X. Using the law of total
probability, we can bound the probability that the cluster of x cuts B

Pr [C] =
∫
X

Pr [C | X] · f(X) dX

≤ (1− α) ·
∫
X

(
Pr [F | X] + 1

eλ − 1

)
· f(X) dX

= (1− α) ·
(

Pr [F] + 1
eλ − 1

)
C

A. Filtser 6:9

We bound the probability that the ball B is cut.

Pr [∪iCi] =
|Nv|∑
i=1

Pr [Ci] ≤ (1− α) ·
|Nv|∑
i=1

(
Pr [Fi] + 1

eλ − 1

)
≤
(
1− e−2γ·λ) · (1 + τ

eλ − 1

)
≤
(
1− e−2γ·λ) · (1 + e−2γ·λ) = 1− e−4γ·λ ,

where the last inequality follows as e−2γλ = e−2γλ(eλ−1)
eλ−1 ≥ e−2γλ·eλ−1

eλ−1 ≥ e
λ
2−1

eλ−1 = τ
eλ−1 .

I Remark 8. Actually we can prove a generalized version of Theorem 4. Suppose that there
is a set N of centers such that each vertex v ∈ V has at least one center at distance at
most ∆ and at most τv centers at distance 3∆. Then for every parameter λ = Ω(1), there
is a distribution over partitions with strong diameter 4∆ such that for every parameter
γ ∈ (0, 1

4), the ball around every vertex v of radius γ∆ is cut with probability at most
(1− e−2γλ)(1 + τv

eλ−1).

4 Doubling Dimension

Our strongly padded decompositions for doubling graphs are a simple corollary of Theorem 4.

I Corollary 9. Let G = (V,E,w) be a weighted graph with doubling dimension ddim. Then
G admits a strong (O(ddim),Ω(1))-padded decomposition scheme.

Proof. Fix some ∆ > 0. Let N be a ∆-net of X. According to Lemma 1, for every vertex
v, the number of net points at distance 3∆ is bounded by 2O(ddim). The corollary follows
by Theorem 4. J

Next, we construct a sparse cover scheme.

I Theorem 10. Let G = (V,E,w) be a weighted graph with doubling dimension ddim and
parameter t = Ω(1). Then G admits an

(
O(t), O(2ddim/t · ddim · log t)

)
-sparse cover scheme.

In particular, there is an (O(ddim), O(ddim · log ddim))-sparse cover scheme.

Proof. Let ∆ > 0 be the diameter parameter. Let α = θ(1) be a constant to be determined
later, set β = α · t. We will construct a

(
β,O(2ddim/t · ddim · log t), 4∆

)
-sparse cover. As ∆ is

arbitrary, this will imply
(
4β,O(2ddim/t · ddim · log t)

)
-sparse cover scheme.

The sparse cover is constructed by sampling O(2ddim/t ·ddim · log t) independent partitions
using Corollary 9 with diameter parameter ∆, and taking all the clusters from all the
partitions to the cover. The sparsity and strong diameter properties are straightforward. To
argue that each vertex is padded in some cluster we will use the constructive version of the
Lovász Local Lemma by Moser and Tardos [39].

I Lemma 11 (Constructive Lovász Local Lemma). Let P be a finite set of mutually independent
random variables in a probability space. Let A be a set of events determined by these variables.
For A ∈ A let Γ(A) be a subset of A satisfying that A is independent from the collection of
events A \ ({A} ∪ Γ(A)). If there exist an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr[A] ≤ x(A)ΠB∈Γ(A)(1− x(B)) ,

then there exists an assignment to the variables P not violating any of the events in A.
Moreover, there is an algorithm that finds such an assignment in expected time

∑
A∈A

x(A)
1−x(A) ·

poly (|A|+ |P|).

APPROX/RANDOM 2019

6:10 On Strong Diameter Padded Decompositions

Formally, recall the construction of Theorem 4 used in Corollary 9. Let N be a ∆-net,
that we will use as centers. Consider a vertex v ∈ V , and fix some sample of the starting
times {δx}x∈N . Let xv be the vertex maximizing δx − dG(x, v) and yv the second largest.
In other words, δxv − dG(xv, v) ≥ δyv − dG(yv, v) ≥ maxx∈N\{xv,yv}{δx − dG(x, v)}. Let Ψv

be the event that (δxv − dG(xv, v))− (δyv − dG(yv, v)) < 4∆
β . Recall that the event that the

ball of radius 2∆
β around v is cut contained in Ψv. Following the analysis of Theorem 4,

Pr [Ψv] ≤ 1− e−O(ddim·4·∆β/∆) = 1− 2−ddim/t, where the equality follows by an appropriate
choice of α.

Let x̂ be the closest center to v. It holds that δx̂ − dG(x̂, v) ≥ −∆, while for every center
x at distance larger that 3∆ it holds that δx − dG(x, v) ≤ −2∆. Therefore Ψv depends only
on centers at distance at most 3∆. In particular, by triangle inequality, if v and u are farther
away than 6∆, Ψv and Ψu are independent.

We take m = αm · 2
ddim
t · ddim · log t independent partitions of X using Corollary 9, for

αm = Θ(1) to be determined later. Denote by Ψi
v the event representing Ψv in the i’th

partition. Let Φv =
∧m
i=1 Ψi

v be the event that v “failed” in all the partitions. It holds that

Pr[Φv] ≤
(

1− 2−ddim/t
)m
≤ e−2−ddim/t·m = e−αm·ddim·log t .

Note that if Ψv did not occurred, then the ball of radius 2∆
β around v was contained in a

single cluster in at least one partition.
Let Y be an ∆

β -net of X. Set A = {Φv}v∈Y , to be a set of events determined by
{δix}x∈N,1≤i≤m (δix denotes δx in the i’th partition). Each event Φv might depend only on
events Φu corresponding to vertices u at distance at most 6∆ from v. By Lemma 1, Φv is
independent of all, but Γ(Φv) ≤

(
12∆
∆/β

)O(ddim)
= 2O(ddim·log t) events. For every Φv ∈ A,

set x(Φv) = p = 2−O(ddim·log t), such that maxv∈Y |Γ(v)| ≤ 1
2p . Then, for every Φv ∈ A it

holds that,

x(Φv) ·ΠB∈Γ(Φv)(1− x(B)) = p · (1− p)|Γ(Φv)| ≥ p · (1− p)
1
2p ≥ p

e
≥ Pr(Φv) ,

where the last inequality holds for large enough αm. By Lemma 11 we can efficiently find
an assignment to {δix}x∈N,1≤i≤m such that none of the events {Φv}v∈Y occurred. Under
this assumption, we argue that our sparse cover has the padding property. Consider some
vertex v ∈ V . There is a net point u ∈ Y at distance at most ∆

β from v. As the event
Φu did not occur, there is some cluster C in the cover in which u is padded. In particular
BG(v, γ∆) ⊆ BG(u, 2γ∆) ⊆ C as required.

Suppose that |V | = n, then the running time is |Y | · p
1−p · poly (|Y |+ |Y |) = poly(n). J

5 Minor Free Graphs

Our clustering algorithm is based on the clustering algorithm of [5], with a small modification.
The clustering of [5] has two steps. In the first step the graph is partitioned into r-Core
clusters (see Definition 12 bellow). While r-core clusters do not have bounded diameter,
they do have a simple geometric structure. Moreover, this clustering also has the padding
property for small balls. In the second step, each r-core cluster is partitioned into bounded
diameter sub-clusters using Theorem 4.

A. Filtser 6:11

I Definition 12 (r-Core). Given a weighted graph G = (V,E,w), we say that G has an
r-core with radius ∆, if there is a set of at most r shortest paths I1, . . . , Ir′ such that for
every v ∈ V , dG(v,∪iIi) ≤ ∆.

Given a cluster C ⊆ G, we say that C is an r-core cluster with radius ∆, if G[C] has an
r-core with radius ∆. Given a partition P of G, we say that it is an r-core partition with
radius ∆ if each cluster C ∈ P, is an r-core cluster with radius ∆.

The following theorem was proved implicitly in [5].

I Lemma 13 (Core Clustering [5]). Given a weighted graph G = (V,E,w) that excludes Kr

as a minor and a parameter ∆ > 0, there is a distribution D over r-core partitions with
radius ∆, such that for every vertex v ∈ V and γ ∈ (0,Ω(1

r)) it holds that

Pr [BG(v, γ∆) ⊆ P (v)] ≥ e−O(r·γ) .

Even though we will not provide full details of the proof of Lemma 13, we will describe
the algorithm itself and provide some intuition for the core clustering in Section 5.2. Our
clustering algorithm will be executed in two steps: first we partition the graph into core
clustering (Lemma 13) and then we partition each r-core cluster using Theorem 4.

Some historical notes: [5] presented two different algorithms for strong and weak padded
decompositions. Each of these algorithms consisted of two steps. For weak decompositions,
essentially they first partitioning the graph using r-core clustering. Secondly, instead of
partition further each cluster, they pick a net from the r-cores in all the clusters, and
iteratively grow balls around net points, ending with weak diameter guarantee. For strong
decompositions, they partition the graph into 1-core clusters (instead of r-core), ending with
a probability of only e−O(r2·γ) for a vertex x to be γ-padded.

5.1 Strong Padded Partitions for Kr Minor Free Graphs
I Lemma 14. Let G = (V,E,w) be a weighted graph that has an r-core with radius ∆. Then
G admits a strong (O(log r),Ω(1),∆)-padded decomposition.

Proof. Let I1, I2, . . . , Ir′ be the r-core of G. For each i, let Ni be a ∆
8 -net of Ii. Set

N = ∪iNi. Every vertex v ∈ V has some vertex in N at distance at most ∆
4 . Indeed, by

definition of r-core, there is x ∈ Ii such that dG(v, x) ≤ ∆
8 . Furthermore, there is a net

point y ∈ Ni at distance at most ∆
8 from x. By triangle inequality dG(v, y) ≤ ∆

4 . As Ii is a
shortest path and Ni is a ∆

8 -net, there are at most O(1) net points at distance 3
4∆ from v in

Ni. We conclude that in N there are at most O(r) net points at distance 3
4∆ from v. The

lemma now follows by Theorem 4. J

I Theorem 15. Let G = (V,E,w) be a weighted graph that excludes Kr as a minor. Then
G admits a strong

(
O(r),Ω(1

r)
)
-padded decomposition scheme.

Proof. Let ∆ > 0 be some parameter. We construct the decomposition in two steps. First
we sample an r-core partition P with radius parameter ∆ using Lemma 13. Next, for every
cluster C ∈ P, we create a partition PC using Lemma 14. The final partition is simply
∪C∈PPC , the union of all the clusters in all the created partitions. It is straightforward
that the created partition has strong diameter ∆. To analyze the padding, consider a vertex
v ∈ V and parameter 0 < γ ≤ Ω(1

r). Denote by Cv the cluster containing v in P, and by
P (v) the cluster of v in the final partition. Then,

Pr [BG(v, γ∆) ⊆ P (v)] = Pr [BG(v, γ∆) ⊆ P (v) | BG(v, γ∆) ⊆ Cv] · Pr [BG(v, γ∆) ⊆ Cv]

≥ e−O(γ·r) · e−O(γ·log r) = e−O(γ·r) ,

where we used the fact that conditioning on BG(v, γ∆) ⊆ Cv, it holds that BG(v, γ∆) =
BG[Cv](v, γ∆). J

APPROX/RANDOM 2019

6:12 On Strong Diameter Padded Decompositions

5.2 The Core Clustering Algorithm
In this section we describe the construction of the partition from Lemma 13. Afterwards,
we will provide some intuition regarding the proof. For full details, we refer to [5]. Given
two disjoint subsets A,B ⊆ V , we write A ∼ B if there exists an edge from a vertex in A to
some vertex in B.

We denote the partition created by the algorithm by S, and the clusters by {S1, S2, . . . }.
The clusters are constructed iteratively. Initially G1 = G. At step i, Gi = G \ ∪i−1

j=1Sj . For
a connected component C ∈ Gi, let K|C = {Sj | j < i ∧ C ∼ Sj} be the set of previously
created clusters with a neighbor in Ci. To create Si, pick arbitrary connected component Ci
in Gi, and a vertex xi ∈ Ci. For every neighboring cluster Sj ∈ K|Ci , pick arbitrary vertex
uj ∈ Ci such that uj has a neighbor in Sj . For each such uj , let Ij be the shortest path in
Gi from xi to uj . Let Ti be the tree created by the union of {Ij}Sj∈K|Ci

6. Sample a radius
parameter Ri using truncated exponential distribution Texp[0,1](2r). The cluster Si defined
as BGi(Ti, Ri∆), the set of all vertices at distance at most Ri∆ from Ti w.r.t. dGi . This
finishes the construction of Si. The algorithm halts when all the vertices are clustered. See
pseudo-code in Algorithm 1. See also Figure 1 for illustration of the algorithm.

Algorithm 1 Core-Partition(G,∆,r).

1: Let G1 ← G, i← 1.
2: Let S ← ∅.
3: while Gi is non-empty do
4: Let Ci be a connected component of Gi.
5: Pick arbitrary xi ∈ Ci. For each Sj ∈ K|Ci , let uj ∈ Ci be some vertex with a neighbor

in Sj .
6: Let Ti be a tree rooted at xi, consisting of shortest paths towards {uj | Sj ∈ K|Ci}.
7: Let Ri be a random variable drawn independently from the distribution Texp[0,1](2r).
8: Let Si ← BGi(Ti, Ri∆).
9: Add Si to S.

10: Gi+1 ← Gi \ Si.
11: i← i+ 1.
12: end while
13: return S.

Provided that the graph G excludesKr as a minor, for every Ci it holds that
∣∣K|Ci∣∣ ≤ r−2.

Indeed, by induction for every Sj , Sj′ ∈ K|Ci , there is an edge between Sj to Sj′ 7. Assume
for contradiction that

∣∣K|Ci∣∣ ≥ r − 1. By contracting all the internal edges in Ci and in
the clusters in K|Ci we will obtain Kr as a minor, a contradiction. It follows that for every
i, Ti is an r-core of Si. In particular, Algorithm 1 indeed produces an r-core partitions
with radius ∆.

Abraham et al. [5] called the core Ti of each cluster a skeleton. Their algorithm induce an
iterative process that creates “skeletons” and removes their Ri neighborhoods (a buffer) from
the graph. Ri was sampled according to truncated exponential distribution. They called
such an algorithm a threatening skeleton-process. In general, they consider such a process
where each Ri is drawn according to Texp[l,u](b

u−l), for 0 = l < u ≤ 1.

6 Note that there is always a way to pick {Ij}Sj∈K|Ci such that Ti will indeed be a tree.
7 To see this note that there is a path between uj to uj′ in Ci. Therefore, when creating Sj′ (assuming
j < j′), it was the case that Sj ∈ K|Cj′ . In particular Tj′ contains a vertex with neighbor in Sj .

A. Filtser 6:13

(1) (2)

(4) (5)

(3)

(6)

Figure 1 The figure illustrates the 6 first steps in Algorithm 1. Here G is the (weighted) grid
graph. Note that G excludes K5 as a minor. In step (4), G4 is the graph induced by all the vertices
not colored in blue, orange or red. G4 has a single connected component C4. The green vertex defined
as x4. K|Ci consist of 3 clusters S1, S2, S3 colored respectively by blue, orange and red. T4 is a tree
rooted in x4 colored in bold green, that consist of 3 shortest paths. Each of S1, S2, S3 has a leaf of T4

as a neighbor. R4 is chosen according to Texp[0,1](10). The new cluster S4, colored in green, consist
of all vertices in C4 at distance at most R4∆ from T4 w.r.t. dG4 .

Let γ > 0 be a padding parameter, fix some vertex z ∈ V and set Bz = BG(z, γ∆). We
say that a skeleton Ti threatens z if dGi(z, Ti) ≤ (u+γ)∆, in other words, if there is a positive
probability that some vertex of Bz joins Ci. Let Jz = {Ti | dGi(z, Ti) ≤ (u+ γ)∆} be the
set of threatening skeletons. To bound the probability that Bz is cut, [5] first bound the
expected number of threatening skeletons. A key lemma in [5] is that if we guaranteed that
for every i, |K|Ci | ≤ s, and sample each radius Ri from Texp[l,u](b

u−l) for b = 2s, it holds that

E[|Jz|] ≤ 3e(2s+1)·(1+γ/u) .

In a second key lemma, [5] argued that the probability that Bz is cut by a threatening
skeleton-process, provided that τ = E[|Jz|], is at most

(1− e−2bγ/(u−l))
(

1 + τ

eb − 1

)
.

In our case, as G is Kr free, thus we can pick s = r − 2. In Algorithm 1 we used the
parameters l = 0, u = 1 and b = 2r. Therefore E[|Jz|] ≤ 3e(2r+1)·(1+γ). Assuming that
γ = O(1

r), we conclude that the probability that Bz is cut is at most

(
1− e−4rγ)(1 + 3e(2r+1)·(1+γ)

e2r − 1

)
= O(rγ) .

In particular, the probability that Bz is padded is at least 1−O(rγ) = e−O(rγ).

APPROX/RANDOM 2019

6:14 On Strong Diameter Padded Decompositions

6 Applications

In this section we present some applications of stochastic decompositions. Some applications
are using a weaker type of decomposition called separating decompositions. The difference
being that padding decompositions bound the probability for a ball to be cut, while separating
decompositions bound the probability of an edge to be cut.

I Definition 16 (Separating Decomposition). A distribution D over partitions of a graph G
is strongly (resp. weakly) (β,∆)-separating decomposition if every P ∈ supp(D) is strongly
(resp. weakly) ∆-bounded and for every pair u, v ∈ V , Pr[P (v) 6= P (u)] ≤ β · dG(u,v)

∆ .

Note that in contrast to padding decomposition, there is no upper bound δ on the distance
between u to v. Nevertheless, we argue that padded decompositions imply separating ones.

I Lemma 17. Let G = (V,E,w) be a weighted graph with a strongly (β, δ,∆)-padded
decomposition D such that δ ≥ 1

β . Then D is also a strongly (β,∆)-separating decomposition.

Proof. Let v, u ∈ V be a pair of vertices. If dG(u, v) ≥ ∆
β , then obviously Pr[P (v) 6= P (u)] ≤

1 ≤ β · dG(u,v)
∆ . Thus we can assume dG(u, v) ≤ ∆

β ≤ δ∆. Set γ = dG(u,v)
∆ . It holds that

Pr[P (v) = P (u)] ≥ Pr [BG (v, γ∆) ⊆ P (v)] ≥ e−βγ ≥ 1− βγ .

In particular, Pr[P (v) 6= P (u)] ≤ βγ = β · dG(u,v)
∆ as required. J

Applying Lemma 17 on Corollary 9 and Theorem 15 we conclude,

I Corollary 18. Let G be a weighted graph and ∆ > 0 some parameter.
If G excludes Kr as a minor, it admits an efficient strongly (O(r),∆)-separating decom-
position.
If G has doubling dimension ddim, it admits an efficient strongly (O(ddim),∆)-separating
decomposition.

6.1 Approximation for Unique Games on Minor Free Graphs
In the Unique Games problem we are give a graph G = (V,E), an integer k ≥ 1 and a set of
permutations Π = {πuv}uv∈E on [k] satisfying πuv = π−1

vu . Given an assignment x : V → [k],
the edge uv ∈ E is satisfied if πuv(x(u)) = x(v). The problem is to find an assignment
that maximizes the number of satisfied edges. The Unique Games Conjecture of Khot [32]
postulates that it is NP-hard to distinguish whether a given instance of unique games is
almost satisfiable or almost unsatisfiable. The unique games conjecture was thoroughly
studied. The conjecture has numerous implications.

Alev and Lau [7] studied a special case of the unique games problem, where the graph G
is Kr free. Given an instance (G,Π) where the optimal assignment violates ε-fraction of the
edge constrains, Alev and Lau used an LP-based approach to efficiently find an assignment
that violates at most O(

√
ε · r)-fraction. Specifically, in the rounding step of their LP, they

used strong diameter separating decompositions with parameter O(r2). Using instead our
decompositions from Corollary 18 with parameter O(r) we obtain a quadratic improvement
in the dependence on r.

I Theorem 19. Consider an instance (G,Π) of the unique games problem, where the graph
G is Kr free. Suppose that the optimal assignment violates at most an ε-fraction of the edge
constrains. There is an efficient algorithm that find an assignment that violates at most an
O(
√
ε · r)-fraction.

A. Filtser 6:15

6.2 Spanner for Graphs with Moderate Doubling Dimension
Given a weighted graph G = (V,E,w), a weighted graph H = (V,EH , wH) is a t-spanner
of G, if for every pair of vertices v, u ∈ V , dG(v, u) ≤ dH(v, u) ≤ t · dX(v, u). If in addition
H is a subgraph of G (that is EH ⊆ E and wH agrees with w on EH) then H is a graph
spanner. The factor t is called the stretch of the spanner. The number of edges |EH | is the
sparsity of the spanner. The weight of H is wH(H) =

∑
e∈EH wH(e) the sum of its edge

weights. The lightness of H is wH(H)
w(MST(G)) the ratio between the weight of the spanner to the

wight of the MST of G. The tradeoff between stretch and sparsity/lightness of spanners had
been the focus of an intensive research effort, and low stretch graph spanners were used in a
plethora of applications.

There is an extensive study of spanners for doubling metrics. Recently, for an n-vertex
graph with doubling dimension ddim, Borradaile, Le and Wulff-Nilsen [13] contrasted a graph
spanner with 1+ε stretch, ε−O(ddim) lightness and n·ε−O(ddim) sparsity (improving [43, 28, 27]).
This result is also asymptotically tight. Note that the dependency on ddim is exponential,
which is unavoidable for small, 1 + ε stretch. In cases where ddim is moderately large (say√

logn), it might be preferable to accept larger stretch in order to obtain reasonable lightness.
In a recent work, Filtser and Neiman [26], for every stretch parameter t ≥ 1, constructed

a spanner with stretch O(t), lightness O(2 ddim
t · t · log2 n) and O(n · 2 ddim

t · logn · log t)
edges. However, this spanner was not a subgraph. Most applications require a graphic
spanner. It is possible to transform [26] into a graphic spanner, but the number of edges
becomes unbounded. The spanner construction of [26] is based on a variant of separating
decompositions, where they used a weak-diameter version. If we replaced this with our
strongly padded decompositions Corollary 9, and plug this into Theorem 3 from [26], we
obtain a spanner with the same stretch to lightness ratio, but also with an additional
sparsity guarantee.

I Corollary 20. Let G = (V,E,w) be an n vertex graph, with doubling dimension ddim and
aspect ratio Λ = maxe∈E w(e)

mine∈E w(e) . Then for every parameter t > 1 there is an graph-spanner of G
with stretch O(t), lightness O(2 ddim

t · t · log2 n) and O(n · 2 ddim
t · logn · log Λ) edges.

7 Conclusion and Open Problems

In this paper we closed the gap left in [5] between the padding parameters of strong and
weak padded decompositions for minor free graphs. Our second contribution is tight strong
padded decomposition scheme for graphs with doubling dimension ddim, which we also use
to create sparse cover schemes. Some open questions remain:
1. Prove/disprove that Kr free graphs admit strong/weak decompositions with padding

parameter O(log r), as conjectured by [5].
2. The question above is already open for the more restricted family of treewidth r graphs.
3. The δ parameter: [5] constructed weak (O(r),Ω(1))-padded decomposition scheme, while

we constructed strong
(
O(r),Ω(1

r)
)
-padded decomposition scheme. It will be nice to

construct strong (O(r),Ω(1))-padded decomposition scheme. Such a decomposition will
imply a reacher spectrum of sparse covers (with o(r) stretch).

4. Sparse covers for Kr free graphs: [6] constructed (O(r2), 2r(r + 1)!)-sparse cover scheme,
while [15] constructed (4, f(r) · logn)-sparse cover scheme. An interesting open question
is to create additional sparse cover schemes. Specifically, our padded decompositions
suggest that an (O(r), g(r))-sparse cover scheme for some function g independent of n,
should be possible. Currently it is unclear how to construct such a cover. Optimally, we
would like to construct (O(1), g(r))-sparse cover scheme.

APPROX/RANDOM 2019

6:16 On Strong Diameter Padded Decompositions

References
1 I. Abraham and O. Neiman. Using Petal-Decompositions to Build a Low Stretch Spanning

Tree. SIAM Journal on Computing, 48(2):227–248, 2019. doi:10.1137/17M1115575.
2 Ittai Abraham, Yair Bartal, and Ofer Neiman. Advances in metric embedding theory. Advances

in Mathematics, 228(6):3026–3126, 2011. doi:10.1016/j.aim.2011.08.003.
3 Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey

Spanning Trees and their Applications. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 1650–1664, 2018. doi:10.1137/1.9781611975031.108.

4 Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi. Routing in Net-
works with Low Doubling Dimension. In 26th IEEE International Conference on Distrib-
uted Computing Systems (ICDCS 2006), 4-7 July 2006, Lisboa, Portugal, page 75, 2006.
doi:10.1109/ICDCS.2006.72.

5 Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops, robbers,
and threatening skeletons: padded decomposition for minor-free graphs. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
79–88, 2014. doi:10.1145/2591796.2591849.

6 Ittai Abraham, Cyril Gavoille, Dahlia Malkhi, and Udi Wieder. Strong-Diameter De-
compositions of Minor Free Graphs. Theory Comput. Syst., 47(4):837–855, 2010. doi:
10.1007/s00224-010-9283-6.

7 Vedat Levi Alev and Lap Chi Lau. Approximating Unique Games Using Low Diameter
Graph Decomposition. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, pages 18:1–18:15, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.18.

8 Baruch Awerbuch. Complexity of Network Synchronization. J. ACM, 32(4):804–823, 1985.
doi:10.1145/4221.4227.

9 Baruch Awerbuch and David Peleg. Sparse Partitions (Extended Abstract). In 31st Annual
Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume II, pages 503–513, 1990. doi:10.1109/FSCS.1990.89571.

10 Yair Bartal. Probabilistic Approximations of Metric Spaces and Its Algorithmic Applications.
In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,
Vermont, USA, 14-16 October, 1996, pages 184–193, 1996. doi:10.1109/SFCS.1996.548477.

11 Yair Bartal, Lee-Ad Gottlieb, Tsvi Kopelowitz, Moshe Lewenstein, and Liam Roditty. Fast,
precise and dynamic distance queries. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January
23-25, 2011, pages 840–853, 2011. doi:10.1137/1.9781611973082.66.

12 Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-Linear Work Parallel SDD Solvers, Low-Diameter Decomposition,
and Low-Stretch Subgraphs. Theory Comput. Syst., 55(3):521–554, 2014. doi:10.1007/
s00224-013-9444-5.

13 Glencora Borradaile, Hung Le, and Christian Wulff-Nilsen. Greedy spanners are optimal in
doubling metrics. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2371–2379,
2019. doi:10.1137/1.9781611975482.145.

14 Costas Busch, Chinmoy Dutta, Jaikumar Radhakrishnan, Rajmohan Rajaraman, and Srinivas-
agopalan Srivathsan. Split and Join: Strong Partitions and Universal Steiner Trees for Graphs.
In 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, October 20-23, 2012, pages 81–90, 2012. doi:10.1109/FOCS.2012.45.

15 Costas Busch, Ryan LaFortune, and Srikanta Tirthapura. Sparse Covers for Planar Graphs
and Graphs that Exclude a Fixed Minor. Algorithmica, 69(3):658–684, 2014. doi:10.1007/
s00453-013-9757-4.

https://doi.org/10.1137/17M1115575
https://doi.org/10.1016/j.aim.2011.08.003
https://doi.org/10.1137/1.9781611975031.108
https://doi.org/10.1109/ICDCS.2006.72
https://doi.org/10.1145/2591796.2591849
https://doi.org/10.1007/s00224-010-9283-6
https://doi.org/10.1007/s00224-010-9283-6
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.18
https://doi.org/10.1145/4221.4227
https://doi.org/10.1109/FSCS.1990.89571
https://doi.org/10.1109/SFCS.1996.548477
https://doi.org/10.1137/1.9781611973082.66
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1137/1.9781611975482.145
https://doi.org/10.1109/FOCS.2012.45
https://doi.org/10.1007/s00453-013-9757-4
https://doi.org/10.1007/s00453-013-9757-4

A. Filtser 6:17

16 Gruia Călinescu, Howard J. Karloff, and Yuval Rabani. Approximation Algorithms
for the 0-Extension Problem. SIAM J. Comput., 34(2):358–372, 2004. doi:10.1137/
S0097539701395978.

17 Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-Stretch Spanning
Trees. SIAM J. Comput., 38(2):608–628, 2008. doi:10.1137/050641661.

18 Michael Elkin and Ofer Neiman. Efficient Algorithms for Constructing Very Sparse Spanners
and Emulators. ACM Trans. Algorithms, 15(1):4:1–4:29, November 2018. doi:10.1145/
3274651.

19 Michael Elkin, Ofer Neiman, and Christian Wulff-Nilsen. Space-efficient path-reporting
approximate distance oracles. Theor. Comput. Sci., 651:1–10, 2016. doi:10.1016/j.tcs.2016.
07.038.

20 Michael Elkin and Seth Pettie. A Linear-Size Logarithmic Stretch Path-Reporting Distance
Oracle for General Graphs. ACM Trans. Algorithms, 12(4):50:1–50:31, 2016. doi:10.1145/
2888397.

21 Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-Cohen,
and Kunal Talwar. Vertex Sparsifiers: New Results from Old Techniques. SIAM J. Comput.,
43(4):1239–1262, 2014. doi:10.1137/130908440.

22 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.1016/j.
jcss.2004.04.011.

23 Jittat Fakcharoenphol and Kunal Talwar. An Improved Decomposition Theorem for Graphs
Excluding a Fixed Minor. In Approximation, Randomization, and Combinatorial Optim-
ization: Algorithms and Techniques, 6th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Computer Science, RAN-
DOM 2003, Princeton, NJ, USA, August 24-26, 2003, Proceedings, pages 36–46, 2003.
doi:10.1007/978-3-540-45198-3_4.

24 Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved Approximation
Algorithms for Minimum Weight Vertex Separators. SIAM J. Comput., 38(2):629–657, 2008.
doi:10.1137/05064299X.

25 Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. Relaxed Voronoi: A Simple Frame-
work for Terminal-Clustering Problems. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 10:1–10:14, 2019.
doi:10.4230/OASIcs.SOSA.2019.10.

26 Arnold Filtser and Ofer Neiman. Light Spanners for High Dimensional Norms via Stochastic
Decompositions. In 26th Annual European Symposium on Algorithms, ESA 2018, August
20-22, 2018, Helsinki, Finland, pages 29:1–29:15, 2018. doi:10.4230/LIPIcs.ESA.2018.29.

27 Arnold Filtser and Shay Solomon. The Greedy Spanner is Existentially Optimal. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago,
IL, USA, July 25-28, 2016, pages 9–17, 2016. doi:10.1145/2933057.2933114.

28 Lee-Ad Gottlieb. A Light Metric Spanner. In IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 759–772,
2015. doi:10.1109/FOCS.2015.52.

29 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded Geometries, Fractals,
and Low-Distortion Embeddings. In 44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, Proceedings, pages 534–543, 2003.
doi:10.1109/SFCS.2003.1238226.

30 David S. Johnson. The NP-Completeness Column: An Ongoing Guide. J. Algorithms,
8(2):285–303, 1987. doi:10.1016/0196-6774(87)90043-5.

31 Lior Kamma and Robert Krauthgamer. Metric Decompositions of Path-Separable Graphs.
Algorithmica, 79(3):645–653, 2017. doi:10.1007/s00453-016-0213-0.

APPROX/RANDOM 2019

https://doi.org/10.1137/S0097539701395978
https://doi.org/10.1137/S0097539701395978
https://doi.org/10.1137/050641661
https://doi.org/10.1145/3274651
https://doi.org/10.1145/3274651
https://doi.org/10.1016/j.tcs.2016.07.038
https://doi.org/10.1016/j.tcs.2016.07.038
https://doi.org/10.1145/2888397
https://doi.org/10.1145/2888397
https://doi.org/10.1137/130908440
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1007/978-3-540-45198-3_4
https://doi.org/10.1137/05064299X
https://doi.org/10.4230/OASIcs.SOSA.2019.10
https://doi.org/10.4230/LIPIcs.ESA.2018.29
https://doi.org/10.1145/2933057.2933114
https://doi.org/10.1109/FOCS.2015.52
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/10.1016/0196-6774(87)90043-5
https://doi.org/10.1007/s00453-016-0213-0

6:18 On Strong Diameter Padded Decompositions

32 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 767–775, 2002. doi:10.1145/509907.510017.

33 Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 682–690, 1993.
doi:10.1145/167088.167261.

34 Robert Krauthgamer, James R. Lee, Manor Mendel, and Assaf Naor. Measured Descent: A
New Embedding Method for Finite Metrics. In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 434–443, 2004.
doi:10.1109/FOCS.2004.41.

35 James R. Lee and Anastasios Sidiropoulos. Genus and the Geometry of the Cut Graph.
In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 193–201, 2010. doi:10.1137/1.
9781611973075.18.

36 Nathan Linial and Michael E. Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. doi:10.1007/BF01303516.

37 Jiri Matoušek. Lectures on discrete geometry. Springer-Verlag, New York, 2002. doi:
10.1007/978-1-4613-0039-7.

38 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved Parallel Algorithms
for Spanners and Hopsets. In Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages
192–201, 2015. doi:10.1145/2755573.2755574.

39 Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J.
ACM, 57(2):11:1–11:15, 2010. doi:10.1145/1667053.1667060.

40 Yuri Rabinovich. On average distortion of embedding metrics into the line and into L1. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, June 9-11, 2003,
San Diego, CA, USA, pages 456–462, 2003. doi:10.1145/780542.780609.

41 Satish Rao. Small distortion and volume preserving embeddings for planar and Euclidean
metrics. In Proceedings of the fifteenth annual symposium on Computational geometry, SCG
’99, pages 300–306, New York, NY, USA, 1999. ACM. doi:10.1145/304893.304983.

42 Neil Robertson and Paul D. Seymour. Graph Minors. XVI. Excluding a non-planar graph. J.
Comb. Theory, Ser. B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)00042-X.

43 Michiel H. M. Smid. The Weak Gap Property in Metric Spaces of Bounded Doubling
Dimension. In Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on the Occasion of
His 60th Birthday, pages 275–289, 2009. doi:10.1007/978-3-642-03456-5_19.

A Path Reporting Distance Oracles

Given a weighted graph G = (V,E,w), a distance oracle is a data structure that supports
distance queries between pairs u, v ∈ V . The distance oracle has stretch t, if for every query
{u, v}, the estimated distance est(u, v) is within dG(u, v) and t ·dG(u, v). The studied objects
are stretch, size the query time. An additional requirement that been recently studied [20] is
path reporting: in addition to distance estimation, the distance oracle should also return a
path of the promised length. In this case, we say that distance oracle has query time q, if
answering a query when the reported path has m edges, takes q +O(m) time.

Path reporting distance oracles were studied for general graphs [20, 19]. For the special
case of graphs excluding Kr as a minor, Elkin, Neiman and Wulff-Nilsen [19] constructed a
path reporting distance oracles with stretch O(r2), space O(n · log Λ · logn) and query time
O(log log Λ), where Λ = maxu,v dG(u,v)

minu,v dG(u,v) is the aspect ratio. For this construction they used the
strongly padded decomposition of [5] (in fact strong-diameter sparse covers). Implicitly, given

https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/167088.167261
https://doi.org/10.1109/FOCS.2004.41
https://doi.org/10.1137/1.9781611973075.18
https://doi.org/10.1137/1.9781611973075.18
https://doi.org/10.1007/BF01303516
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1145/1667053.1667060
https://doi.org/10.1145/780542.780609
https://doi.org/10.1145/304893.304983
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1007/978-3-642-03456-5_19

A. Filtser 6:19

a graph G that admits a strong (β, s)-sparse cover scheme, [19] constructs a path reporting
distance oracle with stretch β, size O(n · s · logβ Λ) and query time O(log log Λ). Following
similar arguments to [19] 8, our padded decompositions from Theorem 15 implies that every
Kr free graph admits a strong (O(r), O(logn))-sparse cover scheme. We conclude:

I Corollary 21. Given an n-vertex weighted graph G = (V,E,w) which excludes Kr as a
minor, with aspect ratio Λ , there is a path reporting distance oracle with stretch O(r), space
O(n · logr Λ · logn) and query time O(log log Λ).

It is interesting to mention that Busch et al. [15] constructed a (4, O(f(r) logn)) sparse
cover scheme for Kr free graphs, where f(r) is an extremely large function of r. Using
the framework of [19], it will imply a path reporting distance oracle with stretch 4, space
O(n · log Λ · f(r)) and query time O(log log Λ). The value of f(r) is larger that a square of
the constant from the Robertson and Seymour structure theorem [42]. In particular, an
estimation by Johnson [30] implies that f(r) is larger than 2 ⇑ (2 ⇑ (2 ⇑ (r/2)) + 3) 9. This
value is so big, that the [15]-based oracle is completely impractical already for quite small
values of r.

For the case of graphs with doubling dimension ddim, we constructed the first strong-
diameter sparse covers. Plugging our Theorem 10 into the framework of [19], we obtain the
first path reporting distance oracle for doubling graphs. The only relevant previous distance
oracle for doubling metrics is by Bartal et al. [11]. However, they focused on the 1 + ε-stretch
regime, where inherently the oracle size has exponential dependency on ddim.

I Corollary 22. Given an n-vertex weighted graph G = (V,E,w) with doubling dimension
ddim and aspect ratio Λ, for every parameter t ≥ Ω(1), there is a path reporting distance
oracle with stretch O(t), space O(n · 2ddim/t · ddim · log Λ) 10 and query time O(log log Λ).

In particular, there is a path reporting distance oracle with stretch O(ddim), space
O(n · ddim · log Λ) and query time O(log log Λ).

B Proof of Theorem 4 using Cones

We will prove a Theorem 4 with slightly weaker parameters. Specifically we will construct a
strongly

(
O(ln τ), 1

32 , 4∆
)
-padded decomposition.

Order the vertices in N = {x1, x2, . . . } arbitrarily. For every center xi ∈ N , sample δi ∈
[0, 1] according to Texp(λ) truncated exponential distribution with parameter λ = 2 + 2 ln τ .
Set Ri = δi ·∆ ∈ [0,∆]. The clustering algorithm is executed in an iterative manner. We
denote by S the set of unclustered vertices, which are also called active vertex. Initially
S = V . As long as there is an active center S ∩ N 6= ∅, pick active center xi ∈ N with
minimal index and create the cluster

Ci =
{
v ∈ S | dG[S](v, xi)− dG[S](v,N ∩ S) ≤ Ri

}
.

This procedure halts when all the centers are clustered. See Algorithm 2 for pseudo code.

B Claim 23. For a vertex v ∈ G let xv ∈ N be the closest center, and let Iv be the shortest
path from v to xv. Then if some vertex of Iv is clustered, so do v.

8 Taking O(logn) independent copies and using union bound,
9 2 ⇑ t denotes an exponential tower of t 2’s. That is 2 ⇑ 0 = 1 and 2 ⇑ t = 22⇑(t−1).
10This is assuming Λ > log t, otherwise simply using an arbitrary shortest path tree will provide a distance

oracle with stretch O(log t).

APPROX/RANDOM 2019

6:20 On Strong Diameter Padded Decompositions

Algorithm 2 Partition-To-Cones(G = (V,E,w),N ,∆,τ).

1: Let S ← V , S ← ∅.
2: Order the vertices in N = x1, x2, . . . arbitrarily.
3: for i = 1 to |N | do
4: if xi ∈ S then
5: Sample Ri independently from the distribution Texp(2 + 2 ln τ).
6: Ci ← ∅
7: for all v ∈ S do
8: if dG[S](v, xi)− dG[S](v,N ∩ S) ≤ Ri then
9: Add v to Ci.

10: end if
11: end for
12: S ← S \ Ci
13: Add Ci to S.
14: end if
15: end for
16: return S.

Proof. Suppose that u ∈ Iv joined the cluster of xj while the set of active vertices were S
(in particular Iv ⊆ S). Then

dG[S](v, xj) ≤ dG[S](v, u) + dG[S](u, xj)
≤ dG[S](v, u) + dG[S](u, xv) +Rj = dG[S](v, xv) +Rj . C

I Corollary 24. All vertices are clustered.

Proof. The vertex v will be clustered at the first time some vertex from Iv is clustered. As
xv itself necessarily clustered, the corollary follows. J

B Claim 25. Every cluster has strong diameter 4∆.

Proof. Suppose that at the time we constructed Ci the set of active vertices was S. Let
v ∈ Ci, and xv ∈ N the closest center to v. As v joined Ci and was active, all the vertices in
Iv the shortest path from v to xv were active as well. Therefore,

dG[S](v, xi) ≤ dG[S](v, xv) +Ri ≤ 2∆ .

Let I be the shortest path from v to xi in G[S]. We argue that all the vertices on I also
joined Ci. Indeed, consider u ∈ I. Then

dG[S](u, xi) = dG[S](v, xi)− dG[S](v, u)
≤ dG[S](v,N ∩ S) +Ri − dG[S](v, u) ≤ dG[S](u,N ∩ S) +Ri .

It follows that dG[Ci](v, xi) ≤ 2∆. In particular Ci has strong diameter bounded by 4∆. C

Consider some vertex v ∈ V and parameter γ ≤ 1
8 . We will argue that the ball

B = BG(v, γ∆) is fully contained in P (v) with probability at least 2−O(γ log τ), in other words
that v is γ

4 -padded. Let Nv be the set of centers xi for which there is a non zero probability
that Ci intersects B. Following the calculation in Claim 25, each vertex joins the cluster of a
center at distance at most 2∆. By triangle inequality, all the centers in Nv are at distance at
most (2 + γ)∆ ≤ 3∆ from v. In particular |Nv| ≤ τ .

A. Filtser 6:21

For xi, denote by Fi the event that some vertex of B joins the cluster Ci for the first
time. I.e. B ∩Ci 6= ∅ and for all j < i, B ∩Cj = ∅. Denote by Ci the event that Fi occurred
and B is cut by Ci. Note that for every xi /∈ Nv, Fi = Ci = ∅. To prove the theorem, it is
enough to show that Pr [∪iCi] ≤ 1− e−O(γ·λ). Set α = e−4γ·λ.

B Claim 26. For every i, Pr [Ci] ≤ (1− α)
(

Pr [Fi] + 1
eλ−1

)
.

Proof. Let S ⊂ V be the set of active vertices at the beginning of round i. If B ∪ {xi} 6⊆ S
then Pr[Ci] = 0 and we are done. Let ρS be the minimal value of δi such that if δi ≥ ρS ,
some vertex of B joins Ci. Formally ρS = 1

∆ ·minu∈B{dG[S](u, xi) − dG[S](u,N ∩ S)}. If
ρS > 1, then Pr[Ci] = 0 and we are done, thus we assume ρS ≤ 1. Conditioning on S, it
holds that

Pr [Fi | S] = Pr [δi ≥ ρS] =
∫ 1

ρS

λ · e−λy

1− e−λ dy = e−ρS ·λ − e−λ

1− e−λ

Let v′ ∈ B some vertex that joins Ci if δi = ρS . Then for every u ∈ B it holds that

dG[S](u, xi) ≤ dG[S](v′, xi) + 2γ∆ ≤ dG[S](v′, N ∩ S) + ρS ·∆ + 2γ∆
≤ dG[S](u,N ∩ S) + (ρS + 4γ) ·∆ .

Therefore, if δi ≥ ρS + 4γ, the entire ball B will be contained in Ci. We conclude,

Pr [Ci | S] ≤ Pr [ρS ≤ δi < ρS + 4γ]

=
∫ max{1,ρS+4γ}

ρS

λ · e−λy

1− e−λ dy

≤ e−ρS ·λ − e−(ρS+4γ)·λ

1− e−λ

=
(
1− e−4γ·λ) · e−ρS ·λ1− e−λ

= (1− α) ·
(

Pr [Fi | S] + 1
eλ − 1

)
.

By the low of total probability, we can remove the conditioning on S. Denote by f the
density function of the distribution over all possible choices of S. It holds that,

Pr [Ci] =
∫
S

Pr [Ci | S] · f(S) dS

≤ (1− α) ·
∫
S

(
Pr [Fi | S] + 1

eλ − 1

)
· f(S) dS

= (1− α) ·
(

Pr [Fi] + 1
eλ − 1

)
. C

We bound the probability that the ball B is cut,

Pr [∪iCi] =
∑
xi∈Nv

Pr [Ci] ≤ (1− α) ·
∑
xi∈Nv

(
Pr [Fi] + 1

eλ − 1

)
≤
(
1− e−4γ·λ) · (1 + τ

eλ − 1

)
≤
(
1− e−4γ·λ) · (1 + e−4γ·λ) = 1− e−8γ·λ ,

where the last inequality follows as e−4γλ = e−4γλ(eλ−1)
eλ−1 ≥ e−4γλ·eλ−1

eλ−1 ≥ e
λ
2−1

eλ−1 = τ
eλ−1 .

APPROX/RANDOM 2019

Max-Min Greedy Matching
Alon Eden
Tel Aviv University, Israel
alonarden@gmail.com

Uriel Feige
Weizmann Institute of Science, Rehovot, Israel
uriel.feige@weizmann.ac.il

Michal Feldman
Tel Aviv University, Israel
Microsoft Research, Herzlyia, Israel
michal.feldman@cs.tau.ac.il

Abstract
A bipartite graph G(U, V ;E) that admits a perfect matching is given. One player imposes a
permutation π over V , the other player imposes a permutation σ over U . In the greedy matching
algorithm, vertices of U arrive in order σ and each vertex is matched to the highest (under π) yet
unmatched neighbor in V (or left unmatched, if all its neighbors are already matched). The obtained
matching is maximal, thus matches at least a half of the vertices. The max-min greedy matching
problem asks: suppose the first (max) player reveals π, and the second (min) player responds with
the worst possible σ for π, does there exist a permutation π ensuring to match strictly more than a
half of the vertices? Can such a permutation be computed in polynomial time?

The main result of this paper is an affirmative answer for these questions: we show that there
exists a polytime algorithm to compute π for which for every σ at least ρ > 0.51 fraction of the
vertices of V are matched. We provide additional lower and upper bounds for special families of
graphs, including regular and Hamiltonian graphs. Our solution solves an open problem regarding the
welfare guarantees attainable by pricing in sequential markets with binary unit-demand valuations.

2012 ACM Subject Classification Theory of computation → Computational pricing and auctions;
Mathematics of computing → Matchings and factors

Keywords and phrases Online matching, Pricing mechanism, Markets

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.7

Category APPROX

Related Version https://arxiv.org/pdf/1803.05501.pdf

Funding Alon Eden: Partially supported by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122,
the Israel Science Foundation (grant number 317/17), and the Blavatnik family foundation.
Uriel Feige: Partially supported by the Israel Science Foundation (grant No. 1388/16).
Michal Feldman: Partially supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122, the Israel
Science Foundation (grant number 317/17), and the Blavatnik family foundation.

Acknowledgements A substantial part of this work was conducted in Microsoft Research, Herzlyia.
We are grateful to Amos Fiat and Sella Nevo for numerous discussions that contributed significantly
to the ideas presented in this paper. We also thank Robert Kleinberg for helpful discussions.

© Alon Eden, Uriel Feige, and Michal Feldman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 7; pp. 7:1–7:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alonarden@gmail.com
mailto:uriel.feige@weizmann.ac.il
mailto:michal.feldman@cs.tau.ac.il
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.7
https://arxiv.org/pdf/1803.05501.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Max-Min Greedy Matching

1 Introduction

Given a bipartite graph G(U, V ;E), where U and V are the sets of vertices and E ∈ U ×V is
the set of edges, a matching M ⊂ E is a set of edges such that every vertex is incident with
at most one edge of M . For simplicity of notation, for every n we shall only consider the
following class of bipartite graphs, that we shall refer to as Gn. For every G(U, V ;E) ∈ Gn
it holds that |U | = |V | = n and that E contains a matching of size n (and hence G has a
perfect matching). All results that we will state for Gn hold without change for all bipartite
graphs that have a matching of size n (and arbitrarily many vertices).

Karp, Vazirani and Vazirani [12] introduced the online bipartite matching problem. This
setting can be viewed as a game between two players: a maximizing player who wishes
the resulting matching to be as large as possible, and a minimizing player who wishes the
matching to be as small as possible. First, the minimizing player chooses G(U, V ;E) in
private (without the maximizing player seeing E), subject to G ∈ Gn. Thereafter, the
structure of G is revealed to the maximizing player in n steps, where at step j (for 1 ≤ j ≤ n)
the set N(uj) ⊂ V of vertices adjacent to uj is revealed. At every step j, upon seeing N(uj)
(and based on all edges previously seen and all previous matching decisions made), the
maximizing player needs to irrevocably either match uj to a currently unmatched vertex in
N(uj), or leave uj unmatched.

There is much recent interest in the online bipartite matching problem and variations
and generalizations of it, as such models have applications for allocation problems in certain
economic settings, in which buyers (vertices of U) arrive online and are interested in purchasing
various items (vertices of V). A prominent example of such an application is online advertising;
for more details, see for example the survey by Mehta [17]. The new problems are both
theoretically elegant and practically relevant.

Max-Min Greedy Matching

We study a setting related to online bipartite matching, that we call Max-Min Greedy
matching. Our setting is also a game between a maximizing player and a minimizing player.
The bipartite graph G(U, V ;E) ∈ Gn is given upfront. Upon seeing G the maximizing player
chooses a permutation π over V . Upon seeing G and π, the minimizing player chooses a
permutation σ over U . The combination of G, π and σ define a unique matching MG[σ, π]
that we refer to as the greedy matching. It is the matching produced by the greedy matching
algorithm in which vertices of U arrive in order σ and each vertex u ∈ U is matched to the
highest (under π) yet unmatched v ∈ N(u) (or left unmatched, if all N(u) is already matched).

The matching MG[σ, π] has several additional equivalent definitions. For example,
MG[σ, π] is the matching produced by the greedy matching algorithm in which vertices
of V arrive in order π and each vertex v ∈ V is matched to the highest (earliest in arrival
order under σ) yet unmatched u ∈ N(v) (or left unmatched, if all N(v) is already matched).
Also, MG[σ, π] is the unique stable matching in G (in the sense of [9]), if the preference order
of every vertex u ∈ U over its neighbors is consistent with π, and the preference order of
every vertex v ∈ V over its neighbors is consistent with σ.

Let ρ[G] = 1
n maxπ minσ[|MG[σ, π]|], and let ρ = minG∈Gn [ρ[G]]. It is easy to see that

ρ ≥ 1
2 . In fact, to ensure a matching of size n/2, the max player need not work hard.

Since every greedy matching is a maximal matching, for every permutation π the obtained
matching is of size at least n/2. The question we study in this work is whether the max
player can ensure a matching of size strictly greater than n/2; that is, whether ρ is strictly
greater than 1

2 .

A. Eden, U. Feige, and M. Feldman 7:3

For an upper bound on ρ, it was observed by Cohen Addad et al. [4] that ρ ≤ 2/3. To
show this, they observe that in the 6-cycle graph, depicted in Figure 1, no permutation π can
guarantee to match more than two vertices in the worst case. Indeed, suppose (without loss
of generality) that π = (v3, v2, v1). For σ = (u1, u3, u2), u1 is matched to v2, u3 is matched
to v3, and u2 is left unmatched, resulting in a matching of size 2.

Figure 1 For every permutation π there exists a permutation σ that matches only 2 of the 3
vertices. Thick edges are in the matching; gray vertices are unmatched.

1.1 Our Results

Our main result resolves the open problem in the affirmative:

I Theorem (main theorem). It holds that ρ ≥ 1
2 + 1

86 > 0.51. Moreover, there is a polyno-
mial time algorithm that given G(U, V ;E) produces a permutation π over V satisfying the
above bound.

The significance of this result is that 1/2 is not the optimal answer. We believe that
further improvements are possible. In fact, for Hamiltonian graphs we show that ρ ≥ 5

9
(see Section 6).

The proof method is quite involved; it is natural to ask whether simpler approaches may
work. In what follows we specify three natural attempts that all fail.

Failed attempt 1: random permutation

A first attempt would be to check whether a random permutation π obtains the desired result
(in expectation). The performance of a random permutation is interesting for an additional
reason: it is the performance in scenarios where the graph structure is unknown to the
designer. Unfortunately, there exists a bipartite graph G, even one where all vertices have
high degree, for which a random permutation matches no more than a fraction 1/2 + o(1) of
the vertices (see Section 4).

In contrast, we show that in the case of Hamiltonian graphs a random permutation
guarantees a competitive ratio strictly greater than 1/2 (Section 4). A similar proof approach
applies to regular graphs as well.

I Theorem (random permutation). There is some ρ0 >
1
2 such that for every Hamiltonian

graph G ∈ Gn, regardless of n, a random permutation π results in ρ ≥ ρ0. Similarly, there is
some constant ρ0 >

1
2 such that for every d-regular graph G, regardless of d, n, a random

permutation π results in ρ ≥ ρ0.

APPROX/RANDOM 2019

7:4 Max-Min Greedy Matching

Failed attempt 2: iterative upgrading

A second attempt would be to iteratively “upgrade” unmatched vertices, with the hope
that the iterative process will reach a state where many vertices will be matched. That
is, in every iteration consider the worst order σ for the current permutation π and move
all unmatched vertices (in the matching induced by (π, σ)) to be ranked higher in π. This
algorithm is similar to the k-pass Category Advice algorithm of [1], but with the difference
that in [1] σ remains unchanged throughout the k iterations. In [1] it was shown that in their
setting, the fraction of matched vertices approaches 2

1+
√

5 ' 0.619 as k grows. In contrast,
in Appendix B we show that in our setting this process can go on for logn iterations before
reaching a permutation that matches more than a half of the vertices. This fact gives some
indication that establishing a proof using this operator might be difficult.

Failed attempt 3: degree-based ranking

A third attempt would be to give preference to vertices with lower degrees, as they would
have fewer opportunities to be matched to incoming vertices of U . Consider a graph with
multiple copies of the subgraph (u1, v1), (u2, v2), (u1, v2) along with two additional vertices
ua, ub (and their partners va, vb). If we connect all vertices of type v1 to ua and ub, we get
that their degree is 3, while the degree of vertices of type v2 is 2. If π is chosen according to
the degree, vertices of type v2 will be ranked higher than vertices of type v1. In this case, if
σ orders the vertices of type u1 first, they will be matched to vertices of type v2, leaving the
vertices of type v1 unmatched. The resulting matching will therefore be of size (1/2 + o(1))n.

Why is this model interesting mathematically?

The setting of max-min greedy matching is easy to state. The problem of getting a ratio
better than half turns out to be deceptively difficult. As discussed above, several natural
approaches fail to achieve this. The problem remained open for quite some time, despite
attempts to solve it. Indeed, the solution that we find is not simple; it involves taking the best
of four algorithms. However, these algorithms are not unrelated. They all share a unifying
theme that involves a clean combinatorial property, referred to as a maximal path cover (see
Section 2). This theme enabled us to break the barrier of half, but interesting problems
remain open, such as whether the bound of 2/3 can be achieved. We hope that the progress
made in this work will motivate and enable further improvement in this interesting problem.

1.2 Additional Results
We further establish lower and upper bounds for regular graphs.

I Theorem (regular graphs). For d-regulars bipartite graphs, ρ ≥ 5
9 −O(1√

d
). On the other

hand, for every integer d ≥ 1, there is a regular graph Gd of even degree 2d such that
ρ(Gd) ≤ 8

9 .

An additional natural problem is to find the best permutation π, given a graph G. We
suspect that this is a difficult computational problem. However, the special case of determining
whether there is a perfect π (a permutation on V that for every permutation σ leads to a
perfect matching) does have a polynomial time algorithm (proof appears in Section 5).

I Proposition 1. There is a polynomial time algorithm that given a graph G ∈ Gn determines
whether G has a perfect π, and if so, outputs a perfect π.

A. Eden, U. Feige, and M. Feldman 7:5

1.3 Application to Resource Allocation and Pricing

Various problems related to online bipartite matching are closely related to problems that
attract attention in the algorithms community. Gaining better understanding of the max-min
greedy matching problem sheds light on more general problems, some of which are still open.
In what follows we elaborate on an application to a pricing problem.

Feldman et al. [8] study the design of pricing mechanisms for allocation of items in
markets. The basic setting is a matching market, where vij is the value of agent i for item
j, and every agent can receive at most a single item. The seller assigns prices to items,
and agents arrive in an adversarial order (after observing the prices), each purchasing an
(arbitrary) item that maximizes their utility (defined as value minus price). It is shown that,
given a weighted bipartite graph (with agents on one side, items of the other side, and weight
vij for the edge between agent i and item j), one can set item prices that guarantee at least
half of the optimal welfare for any arrival order. The last result holds in much more general
settings, namely settings where buyers have submodular valuations over bundles of items 1,
and even in a Bayesain settings, where the seller knows only the (product) distribution from
which agent valuations are drawn, but not their realizations.

In the Bayesian setting no item prices can guarantee better than half of the optimal welfare
in the worst case. A natural question is whether this ratio can be improved in scenarios
where the designer knows the realized values of the buyers from the outset 2. Concretely, do
there exist item prices that guarantee strictly more than half the optimal welfare, for any
arrival order σ? Not only has this question been open for general combinatorial auctions
with submodular valuations, it has been open even for unit-demand buyers, and even if all
individual values are in {0, 1} (henceforth referred to as binary unit demand valuations).
In the latter setting, pricing is equivalent to imposing a permutation over the items, hence
the max-min greedy matching is a precise formulation for the pricing problem in binary
unit-demand settings.

An equivalent scenario is one where in each step the “items player” offers an item, and
the “buyers player”, upon seeing the item, allocates the item to one of the buyers who wants
the item (if there is any), and that buyer leaves. The items player is non-adaptive (plays
blindfolded, without seeing which buyers remain3). The size of the matching that can be
guaranteed by the items player is equivalent to the max-min greedy matching problem.

Yet an additional equivalent formulation of the problem is one where the permutation π
is imposed over the buyers rather than over the items. The buyers then arrive in the order
of π, each taking an arbitrary item she wants. One can verify that the size of the matching
that can be guaranteed by an ordering over the buyers is equivalent to the max-min greedy
matching problem.

1 A valuation is said to be submodular if for every two sets S, T , v(S) + v(T) ≥ v(S ∪ T) + v(S ∩ T),.
2 The full information assumption is sensible in repeated markets or in markets where the stakes are high

and the designer may invest in learning the demand in the market before setting prices.
3 We note that when the items player is adaptive (chooses the next item based on what happened in

the past), the items player can ensure a perfect matching. This is done as follows: in each step, find a
minimal tight set of items, and offer an arbitrary item from that set. Here, a set of items is tight if the
number of buyers that want items in the set is equal to the size of the set.

APPROX/RANDOM 2019

7:6 Max-Min Greedy Matching

1.4 Relation to Previous Work

Relation to online bipartite matching

The Max-Min Greedy Matching problem is a nonstandard version of online problems. In the
standard online matching problem [12], the algorithm designer has control over the matching
algorithm, but has no control over the arrival order of clients (vertices). Our setting can
model a situation in which the designer (the maximizing player) has full control over the
arrival order of clients (it knows which “items” in U each “client” in V wants, and it chooses π
based on this knowledge), but no control over the matching algorithm (the minimizing player
can choose the worst possible match in every step, effectively resulting in a permutation σ).

Karp et al. [12] introduced the Ranking algorithm which has a 1− 1/e competitive ratio
in the online bipartite matching setting. Translating this algorithm to our Max-Min Greedy
setting, it amounts to simply selecting π at random, and then the minimizing player selects σ
after seeing π. We show that there are bipartite graphsG ∈ Gn for which with high probability
over the random choice of π, there is a choice of σ resulting in MG[σ, π] ≤ 1/2 + o(1). Karp
et al. [12] also showed that no algorithm for online bipartite matching has a competitive
ratio better than 1− 1/e+ o(1). This was shown by exhibiting a distribution over “difficult”
graphs. Each graph in the support of this distribution has a unique perfect matching,
and consequently (see Proposition 3), there is a permutation π in the Max-Min Greedy
setting that ensures that all vertices are matched (regardless of σ). Hence neither the lower
bounds nor the upper bounds known for the online matching model give useful bounds in
the Max-Min Greedy model.

There are additional known results for online bipartite matching. For d-regular graphs,
Cohen and Wajc [3] present a random algorithm that obtains 1−O(

√
log d/

√
d) in expectation,

and a lower bound of 1−O(1/
√
d). This is in contrast to our Theorem 12 that shows that

ρ is bounded away from 1 even when d is arbitrarily large. For general bipartite graphs,
under random (rather than adversarial) arrival order, the deterministic greedy algorithm
gives 1− 1/e, and no deterministic algorithm can obtain more than 3/4 [10]. Ranking (which
is a randomized algorithm) obtains at least 0.696 of the optimal matching [15] and at most
0.727 [11]. No random algorithm can obtain more than 0.823 [16].

Relation to pricing mechanisms

Our work is also related to the recent body of literature on pricing mechanisms. Motivated
by the fact that in real-life situations one is often willing to trade optimality for simplicity,
the study of simple mechanisms has gained a lot of interest in the literature on algorithmic
mechanism design. One of the simplest forms of mechanisms is that of posted price mechan-
isms, where prices are associated with items and agents buy their most preferred bundles as
they arrive. Pricing mechanisms have many advantages: they are simple, straightforward,
and allow for asynchronous arrival and departure of buyers. Various forms of posted price
mechanisms for welfare maximization have been proposed for various combinatorial settings
[8, 5, 14, 6]. These mechanisms are divided along several axes, such as item vs. bundle
pricing, static vs. dynamic pricing, and anonymous vs. personalized pricing. For any market
with submodular valuations, one can obtain 1/2 of the optimal welfare by static, anonymous
item prices [8]. Until the present paper, no better results than 1/2 were known even for
markets with unit-demand valuations with {0, 1} individual values. For a market with m
identical items, there exists a pricing scheme that obtains at least 5/7− 1/m of the optimal
welfare for submodular valuations [6].

A. Eden, U. Feige, and M. Feldman 7:7

2 Proof of Main Result

The graph G(U, V ;E) with |U | = |V | = n has a perfect matching M in which ui ∈ U is
matched with vi ∈ V for every 1 ≤ i ≤ n. For a given i, we refer to ui and vi as partners
of each other. Given a set S ⊂ V , the set of neighbors of S is denoted as N(S) (where
necessarily N(S) ⊂ U). In this section we prove our main result.

I Theorem 2. Given a bipartite graph G(U, V ;E) with a perfect matching {(ui, vi)}, there
exists a permutation π that guarantees that the greedy matching will be of size at least 22

43n,
regardless of σ. Moreover, there is a polynomial time algorithm that chooses π with such
a guarantee.

Our proof approach is as follows. We shall first associate with G an auxiliary directed
graph that we refer to as the spoiling graph H(V,D). This notion by itself is not new – similar
notions appeared also in previous related work. The new aspect related to the spoiling graph
and the key to our approach is a notion of a maximal path cover. Given a maximal path
cover of the spoiling graph (which as we show in Proposition 4, can be found in polynomial
time), we partition the set V of vertices into four classes, depending on their roles in the
maximal path cover. The classes are V1 (singleton vertices), S (start vertices of paths),
T (end vertices of paths), and I (intermediate vertices of paths). By considering several
carefully chosen orders among the classes of vertices, and also of vertices within the classes,
we obtain four possible candidate permutations for π, denoted π1, π2, π3, π4. We show that
for every bipartite graph with a perfect matching, at least one of these permutations, if used
as π, guarantees that the greedy matching will be of size at least 22

43n, for every σ. Put in
other words, if for each of {π1, π2, π3, π4} there is a permutation over U for which the greedy
matching is smaller than 22

43n, this would imply (using properties listed in Lemma 5) that
the path cover giving rise to these permutations was not maximal.

We now proceed to define the spoiling graph. Given G(U, V ;E), consider a directed graph
H(V,D) whose vertices are the set V , and whose set D of directed edges (arcs) is defined as
follows: (vi, vj) ∈ D iff (uj , vi) ∈ E. We refer to H(V,D) as the spoiling graph for G, because
arc (vi, vj) ∈ D allows for the possibility that edge (uj , vi) ∈ E is chosen into a matching
M ′ in G, spoiling for vj the possibility (offered by M) of being matched to uj . Note that
this spoiling effect may materialize in a (σ, π) matching only if vi is ranked higher than vj in
π. Hence the spoiling graph conveys information that may be relevant to the choice of π.

As an example of the information that can be derived from the spoiling graph, consider
the following proposition (whose proof can be also obtained as a special case of a result given
in [4] and [13] for the more general case of Gross Substitutes valuations).

I Proposition 3. If G has a unique perfect matching, then ρ(G) = 1.

Proof. Let ui ∈ U and vi ∈ V be partners in the unique perfect matching M of G. We
claim that the spoiling graph H of G is a directed acyclic graph (DAG). Suppose toward
contradiction that H contains a simple directed cycle vi1 , vi2 , . . . , vi` , vi1 . This directed
cycle corresponds to the cycle ui1 , vi1 , ui2 , vi2 , . . . , ui` , vi` , ui1 in G. But removing the edges
(uij , vij), 1 ≤ j ≤ ` from M and adding the edges (uij , vij+1) to M (where `+ 1 = 1) yields
a different perfect matching, contradicting the uniqueness of M .

Since H is a DAG, we can topologically sort its vertices and choose a permutation π such
that earlier vertices in the topological order have a lower rank in π. This ensures that for
every directed edge (v, w) in H, v’s partner will never prefer w over v. Thus, every vertex
chooses its partner in M upon arrival. J

APPROX/RANDOM 2019

7:8 Max-Min Greedy Matching

We now proceed to define the notion of a maximal path cover. A directed path P (whose
length is denoted by |P |) in H is a sequence of |P | vertices (say, v1, . . . , v|P |) such that
(vi, vi+1) ∈ D for all 1 ≤ i ≤ |P | − 1. A single vertex is a path of length 1. A path cover of
H is a collection of vertex disjoint directed paths that covers all vertices in V . We consider
the following operations that can transform a given path cover to a different one:

1. Path merging: Two paths can be merged into one longer path if H(V,D) has an arc from
the end of one path to the start of the other path.

2. Path unbalancing: Consider any two paths P and P ′ with 1 < |P | ≤ |P ′|, let vs and vt
denote the first and last vertices of P , and let v′s and v′t denote the first and last vertices
of P ′. If (vs, v′s) ∈ D we may remove vs from P and append it at the beginning of P ′.
Likewise, if (v′t, vt) ∈ D we may remove vt from P and append it at the end of P ′.

3. Rotation: if there is a path P (say, vs, . . . , vt) such that (vt, vs) ∈ D, we may add the arc
(vt, vs) to P (obtaining a cycle), and then remove any other single arc from the resulting
cycle to get a path P ′. Observe that P ′ and P have the same vertex set, but they differ
in their starting vertex along the cycle vs, . . . , vt, vs.

A path cover is maximal if no path merging operation and no path unbalancing can
be applied to it, and furthermore, this continues to hold even after performing any single
rotation operation.

I Proposition 4. Given a bipartite graph G(U, V ;E) with a perfect matching {(ui, vi)}, a
maximal path cover in the associated spoiling graph H(V,D) can be found in O(n2) time.

Proof. Start with the trivial path cover in which each vertex of V forms a path of length 1,
and perform arbitrary path merging and path unbalancing operations (some of which are
preceded by a single rotation operation) until no longer possible. The process must end
within O(n2) operations, because each path merging and each path unbalancing operation
increases the sum of squares of the lengths of the paths, and the sum of squares of the lengths
is at most n2. J

Given a maximal path cover of H (where p denotes the number of paths in the path
cover), sort the paths in order of increasing lengths, breaking ties arbitrarily. Hence 1 ≤
|P1| ≤ |P2| ≤ . . . ≤ |Pp|. We consider the following classes of vertices of V :

1. Singleton vertices V1. These are the vertices that belong to paths of length 1 in the given
maximal path cover. Let k = |V1| denote the number of singleton vertices. Observe that
|Pk| = 1 and |Pk+1| > 1.

2. Other vertices V2 = V \ V1. We partition V2 into three subclasses of vertices:

a. Start vertices S. These are the starting vertices of those paths that have length larger
than 1. The start vertex of path j, for k < j ≤ p, is denoted by sj .

b. End vertices T . These are the end vertices of those paths that have length larger
than 1. The end vertex of path j, for k < j ≤ p, is denoted by tj .

c. Intermediate vertices I = V2 \ (S ∪ T).

I Lemma 5. The classes of vertices listed above have the following properties:
1. There are no arcs in H between vertices of V1. Hence no vertex of V1 can be a spoiler

vertex for another vertex in V1.
2. There are no arcs in H from vertices of V1 to vertices in S. Hence no vertex of V1 can

be a spoiler vertex for a vertex in S.

A. Eden, U. Feige, and M. Feldman 7:9

3. There are no arcs in H from vertices of T to vertices in V1. Hence no vertex of T can be
a spoiler vertex for a vertex in V1.

4. For i 6= j, there are no arcs in H from any vertex ti ∈ T to any vertex sj ∈ S. Hence no
vertex of T can be a spoiler vertex for a vertex in S, unless they both belong to the same
path in the given maximal path cover.

5. (si, sj) 6∈ D for any si, sj ∈ S with i < j. Hence si cannot be a spoiler vertex for sj if
i < j.

6. (tj , ti) 6∈ D for any ti, tj ∈ S with i < j. Hence tj cannot be a spoiler vertex for ti if
i < j.

7. If for some sj ∈ S and tj ∈ T (where sj and tj are start and end vertices of the same
path Pj) it holds that (tj , sj) ∈ D, then there are no arcs from (T \ {tj}) ∪ V1 to any of
the vertices of Pj, and likewise, no arcs from sk+1, . . . , sj−1 to any of the vertices of Pj.

Proof. All properties follow from the maximality of the path cover. Properties 1,2,3 and
4 hold because otherwise one could perform a path merging operation. Properties 5 and 6
hold because otherwise one could perform a path unbalancing operation. Property 7 holds
because otherwise one could perform a rotation operation for path Pj , followed either by
a path merging operation (if there is an arc from (T \ {tj}) ∪ V1 to any of the vertices of
Pj) or a path unbalancing operation (if there is an arc from sk+1, . . . , sj−1 to any of the
vertices of Pj). J

We now introduce additional notation. Considering only the arcs in D leading from V2
to V1, we let M21 denote the maximum matching among these arcs. In our analysis we shall
consider three parameters:

1. ε1: its value is such that k =
(1

2 − ε1
)
n (recall that k = |V1| is the number of singleton

paths in the maximal path cover). Observe that ε1 might be negative.
2. ε2: its value is such that p = k + ε2n =

(1
2 − ε1 + ε2

)
n (recall that p is the total number

of paths in the maximal path cover). Necessarily, ε2 ≥ 0.
3. ε3: its value is such that |M21| =

(1
2 − ε3

)
n. Necessarily, ε3 ≥ 0.

Given the above classes of vertices, we consider four possible candidate permutations for
π (denoted π1, π2, π3, π4, see below for details). Given some permutation π, we shall use the
notation ρ(π) to denote the fraction of vertices guaranteed to be matched under π. This
fraction will be expressed as a function of the parameters ε1, ε2 and ε3, and we will show
that regardless of the value of these parameters, there must be some π with ρ(π) ≥ 22

43 .
The following four lemmas present the four candidate permutations for π along with their

corresponding guarantees. Whenever unspecified, the order within a set of vertices can be
arbitrary; e.g., for two sets of vertices X,Y , π = X,Y means that the set X precedes Y and
the order within X, as well as the order within Y , is arbitrary.

I Lemma 6. For G and π1 = V2, V1,

ρ(π1) ≥ 1
n

(
|V1|+

|V2|
2 − |M21|

2

)
= 1

2 −
ε1
2 + ε3

2 .

Proof. Let σ be an arbitrary permutation over U . Let m denote the number of vertices in V2
that are matched to vertices in U1, where U1 is the set of partners of V1. Then m ≤ |M21|. Of
the |V2| −m vertices of V2 not matched to vertices in U1, at least half are matched (because
for every unmatched vertex from this set, its partner must be matched to a different vertex
from this set). In addition, all those vertices of V1 whose partner is not matched to V2 are
matched, because of property 1 of Lemma 5. Hence the total number of vertices matched is
at least m+ |V2|−m

2 + |V1| −m ≥ |V1|+ |V2|
2 −

|M21|
2 , as desired. J

APPROX/RANDOM 2019

7:10 Max-Min Greedy Matching

I Lemma 7. For G and π2 = V1, V2,

ρ(π2) ≥ 2
3 −

1
3(ε1 + ε3).

Proof. Let σ be an arbitrary permutation over U . All vertices in V1 are matched because
of property 1 of Lemma 5. As to the vertices in V2, observe that |N(V2)| ≥ |V2|+ |M21|, as
the set N(V2) includes the |V2| partners of V2, plus at least |M21| additional neighbors in
U1 (due to the matching M21). Moreover, if x vertices are removed from V2, the number of
remaining neighbors is at least |V2|+ |M21| − 2x, because each vertex of V2 contributed at
most two neighbors to the lower bound that we provided on the number of neighbors.

Let x denote the number of vertices in V2 matched under (π, σ). Then the size of the
matching is |V1|+ x, the number of unmatched vertices in V2 is |V2| − x, and they have at
least |V2|+ |M21| − 2x neighbors which have to be matched. Since the number of matched
vertices at each side is the same, we have that |V1|+ x ≥ |V2|+ |M21| − 2x.

We get that

3x ≥ |V2|+ |M21| − |V1| = n

(
1
2 + ε1

)
+ n

(
1
2 − ε3

)
− n

(
1
2 − ε1

)
=

(
1
2 + 2ε1 − ε3

)
n.

Therefore, the size of the matching is at least

|V1|+ x ≥
(

1
2 − ε1

)
n+

(
1
6 + 2ε1

3 −
ε3
3

)
n =

(
2
3 −

1
3(ε1 + ε3)

)
n. J

I Lemma 8. For G and π3 = tp, . . . , tk+1, V1, sk+1, . . . , sp, I,

ρ(π3) ≥ 2p− k
n

= 1
2 − ε1 + 2ε2.

Proof. In π3, we refer to the vertices of T ∪ V1 ∪ S as the prefix of π3, and to the vertices
of I as the suffix. Lemma 5 implies that within the prefix, the only arcs of H that go from
an earlier vertex to a later vertex are of the form (tj , sj) (for a path Pj that can undergo a
rotation). We claim that regardless of σ, all the prefix will be matched. As the length of this
prefix is 2p− k, this will prove the lemma.

It remains to prove the claim. Suppose first that in the above prefix there are no arcs
of H that go from an earlier vertex to a later vertex. Then earlier vertices in this prefix
cannot be spoiling vertices for later vertices. Hence indeed, regardless of σ, all the prefix will
be matched.

Suppose now that in the prefix of π3 there are arcs of H that go from an earlier vertex
to a later vertex. As noted above, such an arc would be of the form (tj , sj). We need to
show that even if tj acts as a spoiling vertex for sj under π3 and σ, the vertex sj will still be
matched. Consider the path Pj , and let us rename its vertices as x1, . . . , x` (where previously
we used sj = x1 and tj = x`). We wish to show the x1 would be matched even if x` is
matched to the partner of x1. The path Pj implies that the partner of x2 is a neighbor of
x1 in G. Hence x1 will be matched if no vertex preceding x1 = sj in π3 is matched to the
partner of x2. By property 7 of Lemma 5, there is no arc in H from any of the vertices
T ∪ V1 ∩ {sk+1, . . . , sj−1} \ {tj} to x2, and consequently none of them can be matched to
the partner of x2. As to tj = x`, it might be a neighbor of the partner of x2 (in fact, it could
be that ` = 2), but we already assumed that tj is matched to the partner of x1, and hence it
is not matched to the partner of x2. Hence no vertex preceding x1 = sj in π3 is matched to
the partner of x2, and hence sj will be matched. J

A. Eden, U. Feige, and M. Feldman 7:11

Let Ve (Vo, respectively) denote those vertices of S ∪ I that are at even (odd, respectively)
distance from the beginning of their respective path. Observe that S ⊂ Ve.

I Lemma 9. For G and π4 = tp, . . . , tk+1, V1, Vo, Ve,

ρ(π4) ≥ 5
9 −

p

9n = 1
2 + ε1

9 −
ε2
9 .

Proof. Observe that |Ve| ≥ |Vo|, because in every path (of length above 1) the vertices
alternate in entering Ve and Vo, and start with Ve. Observe also that every vertex v ∈ Ve
contributes two distinct neighbors to N(Ve): the partner of v, and the partner of the vertex
that follows v on its path (note that the vertex that follows v is not in Ve). Likewise, every
vertex v ∈ Vo contributes two distinct neighbors to N(Vo).

Regardless of σ, all p vertices of T and V1 are matched, as in Lemma 8. For a given σ, let
no be the number of vertices matched in Vo and let ne be the number of vertices matched in
Ve. Then, |Vo| − no, the number of unmatched vertices in Vo, satisfies 2(|Vo| − no) ≤ p+ no,
because the neighbors of the unmatched vertices in Vo need to be matched to earlier vertices
in T ∪ V1 ∪ Vo. Likewise, |Ve| − ne, the number of unmatched vertices in Ve, satisfies
2(|Ve| − ne) ≤ p+ no + ne. Adding two times the first inequality and three times the second
we get that 4|Vo| + 6|Ve| − 4no − 6ne ≤ 5p + 5no + 3ne. Using |Vo| + |Ve| = n − p and
|Ve| ≥ |Vo|, we can replace 4|Vo|+ 6|Ve| by 5(n− p), implying that 9(p+ no + ne) ≥ 5n− p,
as desired. J

We can now prove Theorem 2.

Proof. Observe that ρ(G) ≥ maxi∈[1,4][ρ(πi)].

By Lemma 6 we have: ρ(π1) ≥ 1
2 −

ε1
2 + ε3

2 .

By Lemma 7 we have: ρ(π2) ≥ 2
3 −

1
3(ε1 + ε3).

By Lemma 8 we have: ρ(π3) ≥ 1
2 − ε1 + 2ε2.

By Lemma 9 we have: ρ(π4) ≥ 1
2 + ε1

9 −
ε2
9 .

Taking a weighted average of the lower bounds provided by the four lemmas, with weights
2
43 ,

3
43 ,

2
43 ,

36
43 , respectively, results in a weighted average of 22

43 . Hence regardless, of the
values of ε1, ε2 and ε3, at least one of the lemmas gives ρ(G) ≥ 22

43 . For ε1 = 19
86 , ε2 = 10

86 and
ε3 = 21

86 , none of the lemmas implies a bound better than 1
2 + 1

86 = 22
43 .

The above analysis leads to a polynomial time algorithm for finding π that ensures ρ(G) ≥
22
43 . A maximal path cover of H(V,D) can be found in polynomial time by Proposition 4.
Thereafter, the sets V1, S, T , Ve and Vo can easily be determined, and likewise, the values of
ε1 and ε2 can be easily computed. A maximum matching M21 (from V2 to V1 in H) can be
computed in polynomial time using any standard algorithm for maximum bipartite matching.
Thereafter, ε3 can be easily computed. Given the values ε1, ε2 and ε3, one can determine which
of π1, π2, π3 or π4 provides a higher lower bound on ρ, and use that permutation as π. J

3 Regular Graphs

In this section we consider the case where G(U, V ;E) is a d-regular bipartite graph with 2n
vertices. Given that such graphs have d edge disjoint perfect matchings, one can hope to
achieve higher values for ρ for these graphs.

APPROX/RANDOM 2019

7:12 Max-Min Greedy Matching

3.1 Positive Result
The following known proposition (see for example [18]) establishes a lower bound on ρ, as a
function of d. A proof is provided for completeness.

I Proposition 10. For every d-regular graph G ∈ Gn, it holds that ρ[G] ≥ d
2d−1 .

Proof. Since the greedy algorithm produces a maximal matching, it suffices to show that
every maximal matching in a d-regular graph has size at least d

2d−1n. To see this, let S ⊂ U
and T ⊂ V be the sets of unmatched nodes in an arbitrary maximal matching, and suppose
|S| = |T | = (1− α)n. The nodes in S, T must form an independent set. Consider the size of
the edge set connecting S and V \ T . On the one hand, this size equals (1− α)nd (since all
edges from S go to V \ T); on the other hand, this size is at most αn(d− 1) (since at least
one edge from each node in V \ T goes to U \ S). Thus, (1− α)nd ≤ αn(d− 1), implying
that α ≥ d/(2d− 1). Hence we have that |MG[σ, π]| ≥ d

2d−1n, for every π. J

Remark: For every d there exists a d-regular graph with a perfect matching that admits
a maximal matching of size d

2d−1n. Suppose that n = 2d− 1, and consider a d-regular graph
where |S| = |T | = d− 1 for some S ⊂ U, T ⊂ V , every node in U \ S is connected to a single,
different node in V \ T , and to all d− 1 nodes in T , and every node in V \ T is connected to
a single, different node in U \ S, and to all d− 1 nodes in S. The perfect matching between
U \ S and V \ T is a maximal matching of size d

2d−1n.
The lower bound of Proposition 10 approaches 1

2 from above as d grows. The following
theorem shows that there exists some permutation π that ensures that the fraction of matched
vertices approaches 5/9. This is a direct corollary from Lemma 9 and a theorem in [7].

I Corollary 11. For d-regulars bipartite graphs, ρ ≥ 5
9 −O(1√

d
).

Proof. Theorem 3 in [7] shows that every n-vertex d-regular graph has a path cover (referred
to as a linear forest) with p = O(n√

d
) paths. By Lemma 9, ρ(G) ≥ 5

9 −O(1√
d
). J

Remarks.
1. For small d, the bound of ρ ≥ d

2d−1 which holds for every maximal matching is stronger
than the bound in Corollary 11.

2. The proof of Corollary 11 extends to graphs that are nearly d-regular, by using Theorem 5
from [7].

3. For d-regular graphs, conjectures mentioned in [7] combined with our proof approach
suggest that ρ ≥ 5

9 −O(1
d).

3.2 Negative Result
The following example shows that even in a regular graph with arbitrarily high degree, there
may be no permutation π that ensures to match more than a fraction 8/9 of the vertices.

I Theorem 12. For every integers d, t ≥ 1, there is a regular bipartite graph Gd,t of even
degree 2d and n = 3dt vertices on each side such that ρ(Gd,t) ≤ 8

9 .

Proof. Consider a regular bipartite graph G(U, V ;E) with even degree 2d, and 3d vertices
on each side. To define the edge set, let U = U1 ∪ U2 ∪ U3 with each Ui of cardinality d, and
similarly V = V1 ∪ V2 ∪ V3 with each Vi of cardinality d. For every i 6= j, we have a complete
bipartite graph between Ui and Vj , and for every i, there are no edges between Ui and Vi.

A. Eden, U. Feige, and M. Feldman 7:13

Let π be an arbitrary permutation over V , let S be the first 2d vertices in π, and let T be
the last d vertices. Let i be such that |Vi ∩ T | is largest (breaking ties arbitrarily). Without
loss of generality we may assume that i = 3, and then |V3 ∩ T | ≥ d/3. Hall’s condition
implies that there is a perfect matching between U1 ∪U2 and S (and more generally, between
U1 ∪ U2 and any 2d vertices from V). Hence one can choose a permutation σ over U whose
first 2d vertices are U1 ∪ U2 that will match the vertices of S one by one. Thereafter, the
vertices of T ∩ V3 will remain unmatched.

To get the graph Gd,t claimed in the theorem, take t disjoint copies of G(U, V ;E)
above. J

4 Random Permutation

In this section we consider scenarios in which the maximizing player is unaware of the graph
structure. In such scenarios, the best she can do is impose a random permutation over the
vertices in V .

We first show that there exists a graph G ∈ Gn for which a random permutation does not
match significantly more than a half of the vertices, even if every vertex has a high degree.

I Proposition 13. There exists a bipartite graph G(U, V ;E) ∈ Gn such that a random
permutation gets ρ(G) = 1

2 + o(1) almost surely.

Proof. Consider the graph G(U, V ;E), where U = (U1, U2), V = (V1, V2), and each of
U1, U2, V1, V2 is of size n/2. The set of edges constitutes of a perfect matching between U1
and V1, a perfect matching between U2 and V2, and a bi-clique between U1 and V2. Let π
be a random permutation. With high probability, for each vertex v1 ∈ V1, except for ∼

√
n

such vertices, we can associate a unique vertex v2 ∈ V2 that precedes v1 in π. Let S ⊆ V1
denote this set. Consider an arrival order σ in which agents in U1 arrive first, with a vertex
u1j preceding a vertex u1j′ if π(v2j) < π(v2j′). Every vertex in U1 such that its neighbor in
V1 (according to the perfect matching) belongs to S will be matched to the corresponding
vertex in V2. Therefore, all but ∼

√
n vertices of V1 remain unmatched, and the size of the

matching is n(1/2 + o(1)), whereas OPT = n. J

In the above example, if the vertices of V with degree 1 are placed in the prefix of π, then
the obtained matching is optimal. This might suggest that prioritizing low degree vertices in
π (and randomizing within sets of vertices of comparable degrees) leads to good performance.
However, the example above can be transformed into one where all vertices in V have the
same degree. To see this, consider a graph where vertices are partitioned into sets of perfect
matchings of size

√
n, {(U11, V11), . . . , (U1

√
n, V1

√
n), (U21, V21), . . . , (U2

√
n, V2

√
n)}. Each V1i

is also connected in a bi-clique to U2i, and in addition, there are sets U ′, V ′ of size
√
n each

connected to the vertices of the other side to balance out the degrees. A similar argument
shows that in this graph, a random permutation performs badly as well.

In contrast to the last examples, in some classes of graphs, a random permutation
guarantees to match a fraction of the vertices that is bounded away from a half. This is
the case, for example, in Hamiltonian graphs. The formal statement and proof are deferred
to Section 6.

5 Finding a perfect π

A permutation π over V is said to be perfect if for every permutation σ over U , |MG[σ, π]| = n.
A vertex v ∈ V is good with respect to a set of vertices S ⊂ V if there is no matching between
N(v) and S. Given permutation π over V , let π(v) be the set of vertices preceding v in π.

APPROX/RANDOM 2019

7:14 Max-Min Greedy Matching

I Observation 14. π is perfect if and only if every vertex v ∈ V is good with respect to π(v).

Proof. Suppose there exists a vertex v ∈ V that is not good. Then, consider a permutation σ
where the vertices in N(v) are placed first, in an order corresponding to the rank (according
to π) of their partners in the perfect matching between N(v) and π(v). In such a σ, v will
not be matched. Now suppose that all vertices in V are good. Then, for every σ, for every
v ∈ V , there exists a vertex u ∈ U that is not matched to a vertex in π(v); therefore v will
surely be matched. J

We present an algorithm that finds a perfect π if one exists, and claims that no such π
exists otherwise.

Checking whether vi is good can be done in polynomial time by running a maximum
matching algorithm on N(vi) and Si.

An algorithm for finding a perfect π.
1. Let S1 = V .
2. In iteration i = 1, . . . , n:

a. Find an arbitrary good vertex vi ∈ Si with respect to Si \ {vi}, and place it in rank
n− i+ 1 in π.

b. Set Si+1 = Si \ {vi}.

I Lemma 15. If there exists a perfect π, then the algorithm is guaranteed to find a good vi
in every iteration i.

Proof. Consider some perfect permutation π (not necessarily the one produced by our
algorithm), and the suffix Vi−1 = vi−1, vi−2, . . . , v1 of vertices chosen in the first i − 1
iterations of the algorithm (of course, there must be a good v1 at the first iteration, otherwise
there is no perfect π). Let π′ be the permutation that places vi−1, vi−2, . . . , v1 as the lowest
ranked vertices in the same order as the algorithm picked them, and places all other vertices
of V \ Vi−1 in a higher rank than Vi−1 according to their internal order in π.

Since every vj , 1 ≤ j ≤ i − 1, is good with respect to V \ {v1, . . . , vj}, then clearly
vj is good with respect to π′(vj) (since π′(vj) = V \ {v1, . . . , vj}). Now consider a vertex
v ∈ V \ Vi−1. This vertex is good with respect to π(v), and since π′(v) ⊆ π(v), it is clear
that v is good with respect to π′(v). It follows that π′ is perfect as well.

Let v′i be the vertex ranked in position n− i+ 1 in π′. Since π′ is perfect, this vertex is
good with respect to π′(v′i). But since π′(v′i) ∪ {v′i} is exactly the set Si in iteration i, it is
guaranteed that the algorithm can find a good vi in this iteration. J

Let π be the permutation computed by the algorithm. Since every vertex v is good with
respect to π(v), it follows from Observation 14 that π is perfect, and Proposition 1 follows.

6 Hamiltonian Bipartite Graphs

In this section we establish two results about Hamiltonian graphs. First, we show that
ρ ≥ 5

9 . Note that, since for the case of a Hamiltonian graph there exists a path cover using
only a single path (i.e., p = 1), Lemma 9 directly implies that ρ ≥ 5

9 −
1

9n . Theorem 16
improves this bound to 5/9. Second, we show that for Hamiltonian graphs, even a random
permutation π ensures a ratio that is bounded away from 1

2 (this is in contrast to general
graphs, see Section 4).

I Theorem 16. For every Hamiltonian graph G, it holds that ρ ≥ 5
9 .

A. Eden, U. Feige, and M. Feldman 7:15

Proof. Consider a Hamiltonian graph G and a Hamiltonian cycle u1, v1, u2, v2, . . . , un, vn, u1
that traverses through its vertices. Let Vo = {vi : i = 2`+ 1, ` ∈ N, i ≤ n} be the set of
odd labeled vertices of the cycle, and Ve = V \ Vo.

We first claim that if the number of vertices is even (|Vo| = |Ve| = n
2), then π = Ve, Vo

(and in fact, also π = Vo, Ve) ensures that ρ ≥ 5/9. Let ne (respectively, no) be the number
of vertices of Ve (respectively, Vo) matched in MG[σ, π] defined using π = (Ve, Vo) and an
arbitrary σ. Similar to the proof of Lemma 9, it is easy to see that each vertex in Ve
contributes two distinct neighbors to N(Ve), and each vertex in Vo contributes two distinct
neighbors to N(Vo) (the difference from the proof of Lemma 9 is that this property also holds
for v1 ∈ Vo and vn ∈ Ve, and this follows because v1 and vn contribute u1 to N(Vo) and
N(Ve), respectively). The number of unmatched vertices in Vo, namely |Vo| − no, satisfies

2(|Vo| − no) ≤ no,

because the neighbors of the unmatched vertices in Vo must be matched to vertices in Vo,
as they precede the vertices in Ve in π. Likewise, the number of unmatched vertices in Ne,
namely |Ve| − ne, satisfies

2(|Ve| − ne) ≤ ne + no.

Adding two times the first inequality and three times the second, we get

4|Vo|+ 6|Ve| ≤ 9(no + ne) ⇒
5
9 · n ≤ no + ne.

As |V | = n and |MG[σ, π]| = no + ne, this implies that ρ ≥ 5
9 .

We now handle the case where n is odd. Lemma 9 ensures that 5
9 · n−

1
9 of the vertices

are matched by π4 when the path cover is of a single path. If 5
9 · n−

1
9 is not integral, then

d 5
9 · n−

1
9e is at least

5
9 · n, thus ρ ≥

5
9 . Therefore, it only remains to handle the case where

5
9 · n−

1
9 is integral; namely where n = 18`+ 11 for some integer `. In this case, we show

that π = Ve, Vo ensures that |M [σ, π]| > 5
9 · n for every σ. Since n = 18`+ 11, it holds that

|Vo| = 9`+ 6 and |Ve| = 9`+ 5. As in the case where n is even, every vertex in Ve contributes
two distinct neighbors to N(Ve). As for Vo, every vertex in Vo \ {v1, vn} also contributes two
distinct neighbors to N(Vo), and v1 and vn contribute (together) to N(Vo) three additional
distinct vertices (since they share a vertex along the Hamiltonian cycles). Using the same
reasoning as before, it follows that

2(|Ve| − ne) ≤ ne ⇒ 18`+ 10 ≤ 3 · ne ⇒ ne ≥ 6`+ 31
3 .

Since ne is integral, this implies that

ne ≥ 6`+ 4. (1)

Again, for |Vo| − no we have 2(|Vo| − no)− 1 ≤ no + ne. Rearranging gives us

ne + 3no ≥ 18`+ 11.

Adding twice Inequality (1) to the last inequality yields

ne + no ≥ 10`+ 61
3 > 10`+ 61

9 = 5
9 · |V |,

which implies ρ > 5
9 . This concludes the proof. J

APPROX/RANDOM 2019

7:16 Max-Min Greedy Matching

Next, we show that for the case of a Hamiltonian graph, a random permutation yields a
ρ > 1/2.

I Theorem 17. Consider choosing a permutation π uniformly at random. For every Hamilto-
nian graph G, it holds that Eπ[minσ[|MG[σ, π]|]] > 0.5012.

We explain the proof approach here, and present the full details in Appendix A.

Proof Approach

We first provide a high level overview of our proof approach.
A permutation π (over V) is said to be safe for a set S ⊂ V if for every permutation σ

(over U) the greedy process matches at least one vertex in S (i.e., no σ leaves all vertices in S
unmatched). Fix some constant ε. In order to establish that ρ ≥ (1/2 + ε), we need to show
that there exists a permutation π that is safe for every set S of size (1/2− ε)n. Our proof
approach is the following: we show that for a permutation π chosen uniformly at random,
the expected number (expectation taken over choice of π) of sets of size (1/2− ε)n for which
pi is unsafe is smaller than 1. This implies that there exists a permutation π that is safe for
all sets of size (1/2− ε)n, as desired.

First, we define a collection of sets that can potentially remain unmatched (“bad” sets).
Let Bε denote the set of all sets S ⊂ U of size (1/2− ε)n such that there exists a permutation
π that is unsafe for S.

Second, for a given set S and permutation π we identify a sufficient condition for π to
be safe for S. Let S′ ⊂ S be the lowest αn vertices in S (according to π), let v′ be the last
vertex in S′ (i.e., the vertex with rank αn in S′), and let P be the set of vertices in V − S′
that precede v′ in π. We claim that if the size of P is smaller than the size of N(S′) (the
neighbors of S′), then π is safe for S. To see this, assume by way of contradiction that π
is unsafe for S′. This implies that every vertex in N(S′) is matched to a vertex in V − S′.
Since there are strictly less than |N(S′)| vertices in V − S′ that precede v′, at least one of
the vertices in N(S′) must be matched to a vertex higher than v′. But, this vertex has a
neighbor in S′ with lower rank, contradicting the greedy process.

We now proceed by establishing the following three lemmas:
Few bad sets lemma: the size of Bε is at most nB = nB(ε).
Expansion lemma: given a set S ⊂ V and parameters α, β, the probability (over a random
choice of π) that the lowest αn vertices in S have less than βn neighbors is at most
p = p(α, β).
Good order lemma: given a set S ⊂ V and parameters α, β, the probability (over a
random choice of π) that the (αn)th lowest vertex in S is higher than βn vertices in V \S
is at most q = q(α, β).

The three lemmas are combined as follows. For a given set S, due to the sufficient
condition identified above, it follows from the union bound that the probability that a
uniformly random permutation π is unsafe for S is at most p+ q. Applying the union bound
once more over all bad sets (at most nB sets, as implied by the few bad sets lemma), implies
that the probability that a uniformly random permutation π is unsafe for some set of size
(1/2− ε)n is at most nB(p+ q). Thus, to conclude the proof, it remains to find parameters
such that nB(p+ q) < 1.

The good order lemma is independent of the graph structure. In contrast, the expansion
lemma and the few bad sets lemma rely heavily on the structure of the graph. As it turns
out, Hamiltonian graphs have properties that enable us to establish the two lemmas with
good parameters.

A. Eden, U. Feige, and M. Feldman 7:17

References
1 Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. On Conceptually Simple Algorithms

for Variants of Online Bipartite Matching. In Approximation and Online Algorithms - 15th
International Workshop, WAOA 2017, Vienna, Austria, September 7-8, 2017, Revised Selected
Papers, pages 253–268, 2017. doi:10.1007/978-3-319-89441-6_19.

2 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of edge dominating set
problems. J. Comb. Optim., 11(3):279–290, 2006. doi:10.1007/s10878-006-7908-0.

3 Ilan Reuven Cohen and David Wajc. Randomized Online Matching in Regular Graphs. In
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 960–979, 2018. doi:10.1137/
1.9781611975031.62.

4 Vincent Cohen-Addad, Alon Eden, Michal Feldman, and Amos Fiat. The Invisible Hand of
Dynamic Market Pricing. In Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, Maastricht, The Netherlands, July 24-28, 2016, pages 383–400, 2016.
doi:10.1145/2940716.2940730.

5 Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Posted Prices,
Smoothness, and Combinatorial Prophet Inequalities. CoRR, abs/1612.03161, 2016. arXiv:
1612.03161.

6 Tomer Ezra, Michal Feldman, Tim Roughgarden, and Warut Suksompong. Pricing Identical
Items. CoRR, abs/1705.06623, 2017. arXiv:1705.06623.

7 Uriel Feige, R. Ravi, and Mohit Singh. Short Tours through Large Linear Forests. In
Integer Programming and Combinatorial Optimization - 17th International Conference, IPCO
2014, Bonn, Germany, June 23-25, 2014. Proceedings, pages 273–284, 2014. doi:10.1007/
978-3-319-07557-0_23.

8 Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial Auctions via Posted
Prices. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 123–135, 2015.
doi:10.1137/1.9781611973730.10.

9 David Gale and L. S. Shapley. College Admissions and the Stability of Marriage. American
Math. Monthly, 69:9–15, 1962.

10 Gagan Goel and Aranyak Mehta. Online Budgeted Matching in Random Input Models with
Applications to Adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’08, pages 982–991, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347189.

11 Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online Bipartite Matching with
Unknown Distributions. In Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, STOC ’11, pages 587–596, New York, NY, USA, 2011. ACM. doi:
10.1145/1993636.1993715.

12 R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An Optimal Algorithm for On-line Bipartite
Matching. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of
Computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM. doi:10.1145/
100216.100262.

13 Renato Paes Leme and Sam Chiu-wai Wong. Computing Walrasian Equilibria: Fast Algorithms
and Structural Properties. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 632–651, 2017. doi:10.1137/1.9781611974782.42.

14 Brendan Lucier. An economic view of prophet inequalities. SIGecom Exchanges, 16(1):24–47,
2017. doi:10.1145/3144722.3144725.

15 Mohammad Mahdian and Qiqi Yan. Online Bipartite Matching with Random Arrivals: An
Approach Based on Strongly Factor-revealing LPs. In Proceedings of the Forty-third Annual
ACM Symposium on Theory of Computing, STOC ’11, pages 597–606, New York, NY, USA,
2011. ACM. doi:10.1145/1993636.1993716.

APPROX/RANDOM 2019

https://doi.org/10.1007/978-3-319-89441-6_19
https://doi.org/10.1007/s10878-006-7908-0
https://doi.org/10.1137/1.9781611975031.62
https://doi.org/10.1137/1.9781611975031.62
https://doi.org/10.1145/2940716.2940730
http://arxiv.org/abs/1612.03161
http://arxiv.org/abs/1612.03161
http://arxiv.org/abs/1705.06623
https://doi.org/10.1007/978-3-319-07557-0_23
https://doi.org/10.1007/978-3-319-07557-0_23
https://doi.org/10.1137/1.9781611973730.10
http://dl.acm.org/citation.cfm?id=1347082.1347189
http://dl.acm.org/citation.cfm?id=1347082.1347189
https://doi.org/10.1145/1993636.1993715
https://doi.org/10.1145/1993636.1993715
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/100216.100262
https://doi.org/10.1137/1.9781611974782.42
https://doi.org/10.1145/3144722.3144725
https://doi.org/10.1145/1993636.1993716

7:18 Max-Min Greedy Matching

16 Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. Online Stochastic Matching:
Online Actions Based on Offline Statistics. Mathematics of Operations Research, 37(4):559–573,
2012. URL: http://www.jstor.org/stable/23358636.

17 Aranyak Mehta. Online Matching and Ad Allocation. Foundations and Trends in Theoretical
Computer Science, 8(4):265–368, 2013. doi:10.1561/0400000057.

18 Joseph Naor and David Wajc. Near-Optimum Online Ad Allocation for Targeted Advertising.
In Proceedings of the Sixteenth ACM Conference on Economics and Computation, EC ’15,
Portland, OR, USA, June 15-19, 2015, pages 131–148, 2015. doi:10.1145/2764468.2764482.

A Full Proof of Theorem 17

Throughout this section we use H(·) to denote the binary entropy function; i.e., given a
constant p ∈ (0, 1), H(p) = −p log2 p− (1− p) log2(1− p).

I Fact 18 (Stirling’s Approximation). As n→∞,

n! = (1 + o(1))
√

2πn
(n
e

)n
.

Using Stirling’s Approximation, one can derive the following bound.

I Fact 19. For n and k = pn for some constant p ∈ (0, 1),(
n

k

)
= 2(H(p)+o(1))n, (2)

where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function.

We first establish the good order lemma, which is independent of the graph structure.

I Lemma 20 (Good order lemma). Let α < β < 1, ρ = 1
2 + ε for some ε > 0 and ρ̄ = 1− ρ

such that β
α > ρ

ρ̄ . Let S ⊂ V be a set of size ρ̄n. The probability that in a random
permutation π there are at least βn vertices of V \ S before αn vertices from S is at most
2−(H(α+β)−H(αρ̄)ρ̄−H(βρ)ρ−o(1))n.

Proof. We first analyze the case that in the first (α+ β)n vertices in π there are exactly αn
vertices from S. The number of possibilities for this case is

(
ρ̄n
αn

)(
ρn
βn

)
.

Let β′ = β+x and α′ = α−x. By the conditions on α, β and ε, we have that β′

α′ ≥
β
α ≥

ρ
ρ̄ .

Therefore,

β′ρ̄ ≥ α′ρ⇒ β′ρ̄− α′β′ ≥ α′ρ− α′β′ ⇒ (ρ̄− α′)
α′

· β′

(ρ− β′) ≥ 1

⇒ (ρ̄n− α′n+ 1)
α′n

· β′n+ 1
(ρn− β′n) ≥ 1 ⇐⇒

(
ρ̄n
α′n

)(
ρn
β′n

)(
ρ̄n

α′n−1
)(

ρn
β′n+1

) > 1.

It follows that
(
ρ̄n
αn

)(
ρn
βn

)
>

(
ρ̄n
α′n

)(
ρn
β′n

)
for every α′ < α and β′ > β such that α+ β = α′ + β′.

Therefore, the probability to have at most αn vertices from S in the first (α+ β)n vertices
in π is at most

αn ·
(
ρ̄n
αn

)(
ρn
βn

)(
n

(α+β)n
) = 2(H(αρ̄)ρ̄+H(βρ)ρ+o(1))n

2(H(α+β)+o(1))n

= 2−(H(α+β)−H(αρ̄)ρ̄−H(βρ)ρ−o(1))n,

where the first equality follows Fact 19. J

http://www.jstor.org/stable/23358636
https://doi.org/10.1561/0400000057
https://doi.org/10.1145/2764468.2764482

A. Eden, U. Feige, and M. Feldman 7:19

Let ρ = 1
2 + ε for some constant ε > 0, ρ̄ = 1− ρ = 1

2 − ε. The next lemma will be used
in order to prove the few bad sets lemma and the expansion lemma. It uses the existence a
Hamiltonian cycle in the graph in order to claim that most sets will have a large number of
neighbors. Therefore, a random set will have a large expansion. In addition, there will be
few sets of size (1

2 − ε)n with less than (1
2 + ε)n neighbors (i.e., a few bad sets).

I Lemma 21. Let α ∈ (0, 1/2) and β ∈ (α, 1) be two constants such that δ = β − α < α/2.
The number of sets S of size αn where |N(S)| ≤ βn is at most 2(αH(δα)+(1−α)H(δ

(1−α))+o(1))n.

Proof. Consider a Hamiltonian cycle that traverses through the graph’s vertices H =
(v1, u1, v2, u2, . . . , vn, un, v1), where {vi}i∈[n] = V and {ui}i∈[n] = U . Let S be some set of
vertices from V of cardinality ρn. Note that in the cycle H, each vertex v of S has two
neighbors, where one of these neighbors is joined with an adjacent vertex from V in the
cycle. Therefore, the number of neighbors of a sequence of k consecutive vertices of V in H
is k + 1. Thus, the set N(S) is of size αn plus the number of consecutive blocks of vertices
from V chosen.

We bound the number of ways to pick at most δn consecutive blocks of vertices from V .
We first bound the number of ways to pick exactly δn such blocks. In this case, the αn chosen
elements have to be within δn blocks. The number of ways to partition αn elements to δn
noen empty blocks is

(
αn−1
δn−1

)
. After deciding the number of elements in each block, we need

to figure out their location along the Hamiltonian cycle. (1− α)n elements reside outside of
the blocks of chosen αn elements. We need to chose the location of the first block in H (for
which there are n possibilities), and then the number of element between each block, where
two blocks are separated by at least one element. The latter is equivalent to splitting (1−α)n
elements into δn non empty bins, for which there are

((1−α)n−1
δn−1

)
possibilities. Overall, there

are n
(
αn−1
δn−1

)((1−α)n−1
δn−1

)
such possibilities4.

For δ′ < δ, one can similarly devise the bound of n
(
αn−1
δ′n−1

)((1−α)n−1
δ′n−1

)
which is smaller

than n
(
αn−1
δn−1

)((1−α)n−1
δn−1

)
by our conditions on α and δ. Overall, we can bound the number

of ways to pick at most δn consecutive blocks of vertices from V by

δn2
(
αn− 1
δn− 1

)(
(1− α)n− 1

δn− 1

)
< δn2

(
αn

δn

)(
(1− α)n

δn

)
= 2o(1)n · 2(H(δα)+o(1))αn · 2(H(δ

(1−α))+o(1))(1−α)n

= 2(αH(δα)+(1−α)H(δ
(1−α))+o(1))n,

where the first equality follows Fact 19. J

The expansion and few bad sets lemmas are obtained as direct corollaries of Lemma 21.

I Lemma 22 (Few bad sets Lemma for Hamiltonian graphs). Let ε be a constant such that
ε < 0.1. The number of bad sets in any Hamiltonian graph is at most

|Bε| ≤ 2(ρ̄H(2ε
ρ̄)+ρH(2ε

ρ)+o(1))n.

4 Notice there’s some over-counting in this argument, but this bound suffices for our purpose.

APPROX/RANDOM 2019

7:20 Max-Min Greedy Matching

Proof. Notice that if a set S of size ρ̄n = (1
2 − ε)n has more than ρn neighbors, it cannot

be left unmatched, since at least one of it’s neighbors will could not be matched to V \
S. A direct application of Lemma 21 yields that the number of such sets is at most
2(ρ̄H(2ε

ρ̄)+ρH(2ε
ρ)+o(1))n. J

We note that this lemma is not true for general graphs. An example of a graph that
admits 2n/4 bad sets is given in the full version.

I Lemma 23 (Expansion Lemma for Hamiltonian graphs). Consider a set S ⊂ V of size ρ̄n
and parameters α, β. The probability that the lowest αn vertices in S have less than βn

neighbors is at most

2
(
−H(αρ̄)+αH(δα)+(1−α)H(δ

(1−α))+o(1)
)
ρ̄n
.

Proof. Consider a set S of size ρ̄n, and the first αn vertices in S in a random permutation.
This set is just a random subset of S of size αn. The number of choices of such subset is(

ρ̄n

αn

)
= 2(H(αρ̄)+o(1))ρ̄n.

Notice that we can apply Lemma 21 for with set S, even though S is just a subset of
V , because the same proof applies only with respect to a subset of vertices in one side of
a Hamiltonian graph. Therefore, the number of subsets of size αn of S with at most βn
neighbors is at most

2(αH(δα)+(1−α)H(δ
(1−α))+o(1))ρ̄n.

Combining the above, we get that the probability that a random set of αn vertices of S have
at most βn neighbors is at most

2(−H(αρ̄)+αH(δα)+(1−α)H(δ
(1−α))+o(1))ρ̄n. J

Now that we have established the three lemmas we are ready to prove Theorem 17.

Proof of Theorem 17. Setting ε = 0.0012, α = 0.245 and β = 0.3675 (and ρ = 1
2 + ε,

ρ̄ = 1− ρ), we get that these parameters satisfy the conditions for Lemmas 20, 23 and 22.
Applying Lemma 22, we get that the size of Bε is at most nB ≤ 20.044n. Applying

Lemma 23, we get that the probability that the lowest αn vertices of a set of size ρ̄n have less
than βn neighbors is at most p ≤ 2−0.86n. Applying Lemma 20, we get that the probability
that for a set S of size ρ̄n the αnth vertex in a random π comes after βn vertices of V − S is
at most q ≤ 2−0.45n. Combining these three, we get that the probability there exists a set of
size ρ̄n unmatched by a random π is at most nB(p+ q) < 1, therefore, there must be a π
that matches at least one vertex in each set of size ρ̄n, and the proof follows. J

This proof approach can be also used to show that a random permutation guarantees to
match more than a half of the vertices in every regular graph. On the other hand, Theorem 24
in Section C shows that one cannot hope to get ρ > 3/4 with a random permutation in
regular graphs.

A. Eden, U. Feige, and M. Feldman 7:21

Figure 2 An iterative process where unmatched vertices are given priority. In every iteration
thick edges are in the matching; gray vertices are unmatched.

B Iterative Process

A natural approach for establishing the existence of a good permutation π is the following
iterative process of “upgrading” unmatched vertices. Given a permutation π : V → [n] and a
permutation σ : U → [n], let M [π, σ] be the result of the greedy matching where vertices in
U arrive in order σ (from low to high) and each vertex u ∈ U is matched to its lowest (under
π) neighbor (or left unmatched if all its neighbors are already matched).

Fix an arbitrary permutation π1 on V , and let σ1 be a permutation on U minimizing
the greedy matching5. Let M1 = M [π, σ] be the result of the greedy matching under
permutations σ and π. If |M1|/n is some constant greater than 1/2, then terminate with
permutation π1. Otherwise, partition V into the set VL1 of unmatched vertices (L for low,
as they will be placed low in the next iteration, and also for losers, or leftovers) and the set
VH1 of matched vertices (H for high, as they will be placed high in the next iteration, and
also for hitters, or happy).

Consider now a permutation π2 in which VL1 precedes VH1 (preserving the internal order
between vertices in VL1 and similarly between vertices in VH1), and let σ2 be a permutation
on U minimizing the resulting greedy matching. Let M2 = M [π2, σ2]. If |M2|/n is some
constant greater than 1/2, then terminate with permutation π2. Else, partition V into the set
VL2 of unmatched vertices and the set VH2 of matched vertices, and consider a permutation
π3 in which VL2 precedes VH2 (preserving internal orders). Continue this iterative process
until the obtained permutation πk ensures a matching greater than a half.

The intuition behind this approach is that the unmatched vertices need some “help” in
order to be matched, and we provide this help in the form of prioritizing them over their
mates. One might hope that this process will reach a good permutation within a constant
number of iterations. Unfortunately, we show an example where the process goes through
logn iterations before it first obtains a permutation ensuring a matching that exceeds n/2.

5 It is unclear whether σ1 can be computed in polynomial time. The related problem of computing a
minimum maximal matching in bipartite graphs is known to be NP-hard [2]. However, here we consider
the existential problem.

APPROX/RANDOM 2019

7:22 Max-Min Greedy Matching

The construction of the graph is inductive. The base is G0(U0, V0;E0), with two vertices
u, v and a single edge between them. For every i = 1, 2, . . ., Gi(Ui, Vi;Ei) is such that
|Ui| = |Vi| = 2i; it is obtained by taking two (disjoint) copies of Gi−1, with additional edges
of the form (uj , vj) for every uj from one copy of Gi−1 to vj in the second copy of Gi−1. An
example of G3 is presented in Figure 2(a). The iterative process is depicted in Figure 2(a)-(d).
In all iterations preceding the last one, exactly n/2 vertices are matched in the worst σ.

C Additional Results

The following theorem shows that one cannot hope to get ρ > 3/4 with a random permutation
in regular graphs.

I Theorem 24. For every ε > 0 and sufficiently large d, there are d-regular graphs G for
which a random permutation π results in ρ ≤ 3

4 + ε.

Proof. Consider a d-regular bipartite graph G(U, V ;E), where d is very large, there is a
balanced bipartite independent set (S, T) of size 1−ε

2 n, and conditioned on that, G is random.
Let Q (a random variable) be the set of first 1+ε

2 n vertices under the random permutation π.
Then, E[|T ∩ (V \Q)|] = (1−ε

2)2n ' 1
4n. W.h.p. there will be a perfect matching between Q

and U \ S. Hence one can choose a permutation σ over U that matches all of U \ S to Q.
But then the vertices T ∩ (V \Q) will remain unmatched. J

We also establish a few impossibility results for regular graphs of low degree.

I Theorem 25. The following hold:
There exists a 3-regular bipartite graph G for which ρ(G) = 5

7 .
There exists a 4-regular bipartite graph G for which ρ(G) = 10

13 .

The proof relies on graphs induced by projective planes. A projective plane consists of a
set of lines and a set of points, where (among other properties) every two lines intersect in a
single point and every two points are incident to a single line. A projective plane induces a
bipartite graph G(U, V ;E), where every vertex u ∈ U corresponds to a point in the plane,
every vertex v ∈ V corresponds to a line, and there exists an edge between u and v if the
point corresponding to u is incident to the line corresponding to v.

Proof. For the first result, we show that ρ = 5
7 for the bipartite graph induced by the

Fano plane. The Fano plane is a projective plane consisting of 7 points and 7 lines, with 3
points on every line and 3 lines through every point. Consider the 3-regular bipartite graph
G(U, V ;E) induced by the Fano plane. Let N(V ′) denote the neighbors of a set V ′ ∈ V .
For every set V ′ ∈ V such that |V ′| = 2, it holds that |N(V ′)| = 5. We show below that
for every such V ′ there exists a perfect matching between N(V ′) and V \ V ′. Hence one
can choose a permutation σ over U whose first 5 vertices are N(V ′) that will match the
vertices of V \ V ′ one by one. Thereafter, the vertices of V ′ will remain unmatched. By
Hall’s condition, it suffices to show that for every set U ′ ⊂ N(V ′) such that |U ′| ≤ 5 it holds
that |N(U ′)| ≥ |U ′| + 2 (so that Hall’s condition applies with respect to the set V \ V ′).
Indeed, for every set U ′ of size 1, |N(U ′)| = 3, for every set U ′ of size ≥ 2, |N(U ′)| ≥ 6, and
for every set U ′ of size 5, |N(U ′)| = 7. It follows that ρ(G) = 5/7.

The second result follows a similar argument. It is known that there exists a projective
plane consisting of 13 points and 13 lines, with 4 points on every line and 4 lines through every
point. We claim that ρ = 10

13 for the bipartite graph G(U, V ;E) induced by this projective
plane. By the properties of a projective plane, for every set V ′ ∈ V such that |V ′| = 3, it

A. Eden, U. Feige, and M. Feldman 7:23

holds that |N(V ′)| ∈ {9, 10}. We show below that for every such V ′ there exists a perfect
matching between N(V ′) (and possibly an additional vertex u in case |N(V ′)| = 9) and V \V ′.
Hence one can choose a permutation σ over U whose first 10 vertices are N(V ′) (possibly
with the additional vertex) that will match the vertices of V \ V ′ one by one. Thereafter, the
vertices of V ′ will remain unmatched. By Hall’s condition, it suffices to show that for every
set U ′ ⊂ N(V ′) such that |U ′| ≤ 10 it holds that |N(U ′)| ≥ |U ′|+ 3 (so that Hall’s condition
applies with respect to the set V \ V ′). Indeed, for every set U ′ of size 1, |N(U ′)| = 4, for
every set U ′ of size ≥ 2, |N(U ′)| ≥ 7, for every set U ′ of size ≥ 5, |N(U ′)| ≥ 11, and for
every set U ′ of size ≥ 9, |N(U ′)| = 13, It follows that ρ(G) = 10/13. J

APPROX/RANDOM 2019

Hardy-Muckenhoupt Bounds for Laplacian
Eigenvalues
Gary L. Miller
Carnegie Mellon University, Pittsburgh, PA, USA
glmiller@cs.cmu.edu

Noel J. Walkington
Carnegie Mellon University, Pittsburgh, PA, USA
noelw@cmu.edu

Alex L. Wang
Carnegie Mellon University, Pittsburgh, PA, USA
alw1@cs.cmu.edu

Abstract
We present two graph quantities Ψ(G,S) and Ψ2(G) which give constant factor estimates to the
Dirichlet and Neumann eigenvalues, λ(G,S) and λ2(G), respectively. Our techniques make use of a
discrete Hardy-type inequality due to Muckenhoupt.

2012 ACM Subject Classification Mathematics of computing → Spectra of graphs; Mathematics of
computing → Approximation algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Hardy, Muckenhoupt, Laplacian, eigenvalue, effective resistance

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.8

Category APPROX

Funding Gary L. Miller : Supported partially by NSF Grants CCF–1637523 AitF.
Noel J. Walkington: Supported by NSF Grants DMS–1418991 and DMREF–1729478.
Alex L. Wang: Supported partially by NSF Grants CCF–1637523 AitF.

Acknowledgements We would like to thank Timothy Chu for many helpful discussions.

1 Introduction

Possibly one of the most important constants of a graph is λ2, the fundamental eigenvalue of
its graph Laplacian. In computer science, this quantity is used to analyze the mixing time
of random walks [14], Markov chains [16], the convergence of Laplacian solvers [11, 18, 20],
the performance of spectral clustering [22] and more. The quantity λ2 is also important in
other domains: in quantum mechanics it is related to the uncertainty principles [13], and in
numerical analysis arises in the analysis of partial differential equations [2]. As such, it is
often necessary to give analytic estimates of this quantity.

In this paper we reexamine an inequality originating with the work of Hardy [9] and
show its connection to the eigenvalues of the graph Laplacian. Using this tool, we provide an
alternative to Cheeger’s inequality and give a 4-approximation of λ2 in a general setting.

Let G = (V,E) be a connected graph and let µ ∈ RV>0 and κ ∈ RE>0 be functions on
the vertices and edges respectively. We will think of our graphs as spring mass systems
where vertex v has mass µv and edge e has spring constant κe. The Laplacian matrix is
defined as L = D−A where D is the weighted diagonal degree matrix and A is the weighted

© Gary L. Miller, Noel J. Walkington, and Alex L. Wang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 8; pp. 8:1–8:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:glmiller@cs.cmu.edu
mailto:noelw@cmu.edu
mailto:alw1@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

adjacency matrix. Let M be the diagonal mass matrix. Then, the generalized eigenvalues
of L with respect to M have a nice interpretation. Specifically, solutions of the generalized
eigenvalue problem

Lx = λMx

correspond to modes of vibration of the associated spring mass system. When the spring
mass system is connected, λ2 is the fundamental mode of vibration1. In this paper we will
refer to λ2 as the Neumann eigenvalue to emphasize the implicit boundary assumptions. For
an introduction to spring mass systems and the Laplacian, see chapter 5 of [21].

Another interpretation of the weighted graph comes from electrical systems. In this
interpretation, we will treat κe as the conductance of edge e and 1

κe
as its resistances. In

this paper we will go back and forth between these two interpretations and will refer to κe
as either a conductance or a spring constant.

The following result, known as Cheeger’s inequality, can be traced back to [1, 4, 5]. Define
the isoperimetric constant2 of G to be

Φ(G) = min
A

{ ∑
e∈E(A,Ā) κe

min(µ(A), µ(Ā))

∣∣∣∣∣A, Ā 6= ∅

}
.

Here, and in the rest of the paper, Ā denotes the complement of A
Then in the case of the normalized Laplacian (i.e, when µv = dv, the degree of v), we

can bound λ2 by

λ2

2 ≤ Φ ≤
√

2λ2, or equivalently, Φ2

2 ≤ λ2 ≤ 2Φ.

It is well known that both sides of the bound are tight up to constants (see [6] for simple
examples). Thus we see that Φ fails to give good control over λ2 when both quantities
are small.

In this paper, we introduce the Neumann content, Ψ2(G), of a graph G (see Section 6 for
a formal definition).

Ψ2(G) ≈ min
A,B

{
κ(A,B)

min(µ(A), µ(B))

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}

where κ(A,B) is the effective resistance between the sets A and B. When B = A, it can
be shown that κ(A,A) =

∑
e∈E(A,A) κe, thus the Neumann content can be thought of as a

relaxation of the isoperimetric constant. We will show that Ψ2(G) gives a constant factor
estimate of λ2 even in a much more general setting.

Along the way, we will consider another eigenvalue problem, which we refer to as the
Dirichlet problem (see Section 2). This is a variant of the Laplacian eigenvalue problem
where we hold a particular boundary set of vertices, S, to zero. In this setting, we will define
the Dirichlet content, Ψ(G,S), which allows us to estimate the Dirichlet eigenvalue.

Specifically, we will prove the following theorems.

1 The quantity λ2 is referred to in the literature under various names: the algebraic connectivity, the
Fiedler value, the fundamental eigenvalue, etc.

2 The quantity Φ is often referred to as the conductance of the graph or the Cheeger constant. In
this paper we will refer to Φ as the isoperimetric constant and reserve the term conductance for the
conductance of an edge.

G. L. Miller, N. J. Walkington, and A. L. Wang 8:3

I Theorem 1. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S) be
the Dirichlet eigenvalue and let Ψ(G,S) be the Dirichlet content of (G,S). Then

Ψ
4 ≤ λ ≤ Ψ.

I Theorem 2. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let Ψ2(G) be the Neumann content of G. Then,

Ψ2

4 ≤ λ2 ≤ Ψ2.

It can be shown that the constants in both of these theorems are optimal. In particular,
there exist nondegenerate weighted graphs (with and without boundary) for which λ(G,S) =
Ψ(G,S) and λ2(G) = Ψ2(G). This shows that the constant 1 in the upper bound is optimal.
There also exist sequences of nondegenerate weighted graphs (with and without boundary)
for which λ(G,S)

Ψ(G,S) →
1
4 and λ2(G)

Ψ2(G) →
1
4 . This shows that the constant 1

4 in the lower bound is
optimal. See Appendex A for these constructions.
I Remark 3. The proof strategy we apply is general and the theorems can be extended to
the p-Laplacian3 for 1 < p <∞. The proofs for the case of a general p are almost identical
to the proofs for the case of p = 2, which we present in this paper, and thus will be omitted.
More specifically, with the appropriate definitions for the Dirichlet and Neumann p-contents,
both theorem statements above will hold after replacing the 4 in the denominator of the
lower bound with pqp/q, where q is the Hölder dual of p. The constants in this setting are
also optimal.

1.1 Related work
A very recent independent paper [19] introduced a quantity ρ(G) specifically in the case of
the normalized Laplacian, i.e., when µv = dv. In this setting, the Neumann content Ψ2(G)
is equivalent to the definition of ρ(G) up to constant factors: Ψ2

2 ≤ ρ ≤ Ψ2. In [19], it is
proved that

ρ

25600 ≤ λ2 ≤ 2ρ.

This is a special subcase of our Theorem 35 with weaker constants.
The application of the Hardy-Muckenhoupt inequality to estimating the Dirichlet eigen-

value was noted in [15]. In that paper, the authors showed how to bound the Dirichlet
eigenvalue on an infinite path graph by the (infinite path analogue of) Ψ. Specifically,

Ψ
4 ≤ λ ≤ 2Ψ.

This is a special subcase of our Theorem 28 with weaker constants.
In contrast with the above related work, we can show that our constants are optimal (see

Appendix A).
Other methods for estimating λ2 have been proposed. A method for lower bounding

λ2 based on path embeddings is presented in [7, 8, 10]. In this method, a graph with
known eigenstructure is embedded into a host graph. Then the fundamental eigenvalue
of the host graph can be estimated in terms of the eigenstructure of the embedded graph
and the “distortion” of the embedding. For a review of path embedding methods, see the
introduction in [8].

3 We refer the curious reader to [3] for basic background on this topic.

APPROX/RANDOM 2019

8:4 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

1.2 Roadmap
In section 2, we set notation and discuss background related to weighted graphs, Laplacians,
the eigenvalue problems, interpreting graphs as electrical networks, and minimum energy
extensions. In section 3, we introduce Muckenhoupt’s weighted Hardy inequality. In section
4, we introduce the Hardy quantity and the Dirichlet content and show how Muckenhoupt’s
result can be used to bound the Dirichlet eigenvalue on a path graph. In section 5, we extend
the bounds on the Dirichlet eigenvalue from path graphs to arbitrary graphs. Finally in
section 6, we introduce the two-sided Hardy quantity and the Neumann content and extend
the bounds on the Dirichlet eigenvalue on a graph to the Neumann eigenvalue on a graph.

2 Preliminaries

2.1 Miscellaneous notation
For A ⊆ V , we denote by A the complement of A in V .

2.2 Vertex and edge weighted graphs
We collect some definitions and notation we will use related to weighted graphs.

I Definition 4. A weighted graph is G = (V,E, µ, κ) where (V,E) forms an undirected graph,
µ ∈ RV≥0 and κ ∈ RE>0. We call µv the mass of vertex v and κe the conductance4 of edge e.

I Definition 5. A weighted graph with boundary is a pair (G,S) where G is a weighted graph
and S ⊆ V is a proper nonempty subset of the vertices.

We will make the following assumptions on our graphs. This will ensure that the
appropriate eigenvalue quantities exist and are nonzero.

I Definition 6. A nondegenerate weighted graph is a weighted graph G = (V,E, µ, κ) where
(V,E) forms a connected graph, |V | ≥ 2, and µ ∈ RV>0.

I Definition 7. A nondegenerate weighted graph with boundary is a weighted graph with
boundary (G,S) where every connected component of G contains some s ∈ S,

∣∣S∣∣ ≥ 1, and
µv > 0 for all v ∈ S.

For notational simplicity, we extend µ to subsets of vertices, µ(A) =
∑
v∈A µv.

2.3 Laplacians
I Definition 8. Let G be a weighted graph. Define dv =

∑
(u,v)∈E κ(u,v) to be the degree of

vertex v. Let D be the diagonal degree matrix Dv,v = dv. Let A ∈ RV×V be the adjacency
matrix of G, i.e. Au,v = κ(u,v) if (u, v) ∈ E and 0 otherwise. Then the Laplacian matrix
corresponding to G is

L = D −A.

4 As we are dealing with spring mass systems, perhaps it would be better to refer to these quantities
as spring constants and compliances. Nonetheless, we have chosen to refer to these quantities as
conductances and resistances as this is the terminology most commonly found in the spectral graph
theory literature.

G. L. Miller, N. J. Walkington, and A. L. Wang 8:5

Note that the quadratic form associated with L is

x>Lx =
∑

(u,v)∈E

κ(u,v)(xu − xv)2.

I Definition 9. Let G be a weighted graph. The mass matrix corresponding to G is the
diagonal matrix M(G) where Mv,v = µv.

2.4 The generalized Laplacian eigenvalue problem
I Definition 10. Let G be a nondegenerate weighted graph. Let λ1 ≤ λ2 ≤ · · · ≤ λ|V | be the
generalized eigenvalues of L with respect to M . We refer to λ2 as the Neumann eigenvalue
of G, denoted λ2(G) and we refer to an associated eigenvector as a Neumann eigenvector.

Nondegeneracy ensures that λ2(G) exists as |V | ≥ 2 and λ2(G) > 0 by connectivity.
We state a version of the Courant-Fischer min-max theorem. This will allow us to give

variational characterizations of eigenvalues.

I Theorem 11 (Courant-Fischer). Let A,B ∈ Rn×n be symmetric matrices and suppose
B � 0. Let λ1 ≤ · · · ≤ λn be the ordered generalized eigenvalues of A with respect to B. Let
k ∈ [n] and let S denote a subspace of Rn. Then,

λk = min
S

max
x

{
x>Ax

x>Bx

∣∣∣∣dim(S) = k, x ∈ S, x 6= 0
}
.

Furthermore, suppose v1, . . . , vk−1 are orthogonal eigenvectors corresponding to λ1, . . . , λk−1
then

λk = min
x

{
x>Ax

x>Bx

∣∣∣∣ x>Bvi = 0, ∀i ∈ [k − 1]
x 6= 0

}
and x is a generalized eigenvector with eigenvalue λk if and only if x is a minimizer of this
second expression.

Noting that 1, the all ones vector, is a generalized eigenvector of L with respect toM with
eigenvalue 0, we may apply the Courant-Fischer theorem to get a variational characterization
of the Neumann eigenvalue and its eigenvectors.

I Lemma 12. Let G be a nondegenerate weighted graph. Then

λ2(G) = min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x>M1 = 0, x 6= 0
}
.

Furthermore, x is a Neumann eigenvector of G if and only if x is a minimizer in this
optimization problem.

The expression x>Lx
x>Mx

plays a large role in our analysis. This quantity is known as the
Rayleigh quotient.

We will also consider the Laplacian eigenvalue problem on weighted graphs with boundaries.
This corresponds to fixing the value of x at the boundary to zero.

I Definition 13. Let (G,S) be a nondegenerate weighted graph with boundary. Let LS be
the submatrix of L associated with the complement of S and let MS be the corresponding
submatrix of M . Let λ1 ≤ λ2 ≤ · · · ≤ λ|S| be the generalized eigenvalues of

LSx = λMSx.

APPROX/RANDOM 2019

8:6 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

We refer to λ1 as the Dirichlet eigenvalue of (G,S), denoted λ(G,S). Let x ∈ RS be
an associated eigenvector and extend it to RV by zeros. We will refer to x ∈ RV as a
Dirichlet eigenvector.

Nondegeneracy ensures that λ(G,S) exists as
∣∣S∣∣ ≥ 1 and λ(G,S) > 0 by connectivity.

Again by Courant-Fischer, we can give a variational characterization of the Dirichlet
eigenvalue.

I Lemma 14. Let (G,S) be a nondegenerate weighted graph with boundary. Then,

λ(G,S) = min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}
.

Furthermore, x is a Dirichlet eigenvalue if and only if x is a minimizer in this optimization
problem.

Note that the masses of vertices s ∈ S play no role in either characterization. We will often
neglect to assign masses to vertices in the boundary when convenient.

2.5 Graphs as electrical networks
Given a weighted graph G, we can think of its edges as electrical conductors where edge e
has conductance κe. Thinking of x ∈ RV as an assignment of voltages to the vertices of our
electrical network, we have that

x>Lx =
∑

(u,v)∈E

κ(u,v)(xu − xv)2

is the power dissipated in our system. Drawing inspiration from physics, we define the
effective resistance between two sets of vertices in terms of the minimum power required to
maintain a unit voltage drop.

I Definition 15. Let G be a weighted graph and let A,B ⊆ V be disjoint nonempty sets such
that there exists a path between a and b for some a ∈ A and b ∈ B. The effective resistance
between A and B, denoted R(A,B), and the effective conductance between A and B, denoted
κ(A,B), are the quantities such that

1
R(A,B) = κ(A,B) = min

x∈RV

{
x>Lx

∣∣x�A = 0, x�B = 1
}
.

The quantity on the right is well-defined as x>Lx is continuous and without loss of generality,
we may optimize over x ∈ [0, 1]V , a compact set. Then, by the connectivity assumption,
κ(A,B) ∈ (0,∞). Thus, R(A,B) is also well-defined.

If A = {a} is a single element, we will opt to write R(a,B) instead of the more cumbersome
R({a} , B). Similarly we will write R(A, b) or R(a, b) where appropriate.

I Remark 16. When A = {a} and B = {b} are singleton sets, this definition agrees with the
standard definition R(a, b) = χa,bL

+χa,b. In general, we can define R(A,B) in a different
way. Consider contracting all vertices in A to a single vertex vA and all vertices to a single
vertex vB. Then R(A,B) is the effective resistance between vA and vB in the new graph.
This is the definition given in [19].

G. L. Miller, N. J. Walkington, and A. L. Wang 8:7

2.6 Splitting edges and minimum energy extensions
Let G be a weighted graph. At times, we will split edges using vertices with zero mass. This
can be done without affecting the variational quantities5.

I Lemma 17. Let αi > 0 such that
∑k
i=1 αi = 1. Let κ > 0 and let κi = κ/αi. Let y0, yk ∈ R

be fixed. Then

min
y1,...,yk−1

k∑
i=1

κi(yi − yi−1)2 = κ(yk − y0)2.

Furthermore, the unique optimum is achieved by y∗i = y0 +
(∑i

j=1 αj

)
(yk − y0).

Proof. Note that
∑k
i=1 κi(yi − yi−1)2 is a strictly convex function as y0 and yk are fixed.

Thus if suffices to show that y∗ is a local optimum. Differentiating with respect to yj and
evaluating at y∗,

∂

∂yj

(
k∑
i=1

κi(yi − yi−1)2

)
y=y∗

= 2
(
κj(y∗j − y∗j−1)− κj+1(y∗j+1 − y∗j)

)
= 2

(
κ

αj
αj −

κ

αj+1
αj+1

)
(yk − y0) = 0.

Then y∗ is the unique minimizer achieving objective value
k∑
i=1

κi(y∗i − y∗i−1)2 = κ(yk − y0)2
k∑
i=1

αi = κ(yk − y0)2. J

Let G be a weighted graph and consider an edge (a, b) of conductance κ in G. Given
αi > 0 summing to 1, we can split the edge (a, b) into k edges by inserting k− 1 new vertices,
removing the edge (a, b), and inserting edges (a, c1), (c1, c2), . . . , (ck−1, b) with conductances
according to the lemma. We will assign µ′(v) = 0 for all newly added vertices. Let this new
weighted graph be G′ = (V ′, E′, µ′, κ′).

I Definition 18. Let G be a weighted graph and let G′ be a weighted graph constructed from
G by splitting edges using the procedure described above. Let x ∈ RV . The minimum energy
extension of x to V ′ is the vector y given by

y = arg min
y∈RV ′

{
y>L′y

∣∣ y�V = x
}
.

Then by the above lemma it is immediate that miny∈RV ′
{
y>L′y

∣∣ y�V = x
}

= x>Lx.
Thus, as µ′(v) = 0 for all v ∈ V ′ \ V , we have,

min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y>M1 = 0, y 6= 0
}

= min
x∈RV

{
miny∈RV ′

{
y>L′y

∣∣ y�V = x
}

x>Mx

∣∣∣∣∣x>M1 = 0, x 6= 0
}

= min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x>M1 = 0, x 6= 0
}
.

5 In fact, this can be done without affecting the eigenvalue quantities provided they exist. However,
proving this requires more set up than is given in this paper.

APPROX/RANDOM 2019

8:8 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

Similarly, if S is a proper nonempty subset of V , then

min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, y 6= 0
}

= min
x∈RV

{
miny∈RV ′

{
y>L′y

∣∣ y�V = x
}

x>Mx

∣∣∣∣∣x�S = 0, x 6= 0
}

= min
x∈RV

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}
.

I Definition 19. Let G be a nondegenerate weighted graph and let G′ be a weighted graph
constructed from G using the procedure described above. The Neumann eigenvalue of G′ is

λ2(G′) = min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y>M1 = 0, y 6= 0
}
.

A vector y is a Neumann eigenvector of G′ if y is a minimizer of this optimization problem.

I Definition 20. Let (G,S) be a nondegenerate weighted graph with boundary and let G′
be a weighted graph constructed from G using the procedure described above. The Dirichlet
eigenvalue of (G′, S) is

λ(G′, S) = min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, y 6= 0
}

A vector y is a Dirichlet eigenvector of (G′, S) if y is a minimizer of this optimization
problem.

3 Muckenhoupt’s weighted Hardy inequality

The following theorem, due6 to Muckenhoupt [17], relates the L2(R≥0, κ) norm of a function
and the L2(R≥0, µ) norm of the “running integral” of the function.7 In other words, this
theorem characterizes the boundedness of the Hardy operator. In this paper we will refer to
this inequality as Muckenhoupt’s weighted Hardy inequality (see [12] for a more thorough
account of the development and history of the Hardy inequality).

I Theorem 21 (Muckenhoupt 1972). Let µ, κ be measurable functions from R≥0 to R>0. Let
C be the smallest (possibly infinite) constant such that for all f ∈ L1

loc(R≥0),∫ ∞
0

µ(x)
(∫ x

0
f(t) dt

)2
dx ≤ C

∫ ∞
0

κ(x)f(x)2 dx.

Let

B = sup
r>0

(∫ ∞
r

µ(x) dx
)(∫ r

0

1
κ(x) dx

)
.

Then B ≤ C ≤ 4B. In particular, C is finite if and only if B is finite.

6 A similar theorem may have been known previous to Muckenhoupt. Indeed [17] cites the work of
Tomaselli and Artola, however we were unable to obtain copies of these papers.

7 The original theorem deals more generally with Lp norms and Borel measures – see [17].

G. L. Miller, N. J. Walkington, and A. L. Wang 8:9

We will state and prove a finite, discrete version of the above inequality in the following
section. Our proof will be stated in the language of graph Laplacians but closely follows the
structure of [15, 17] and is only included for completeness.

We first sketch, non-rigorously, why this theorem may be useful. Suppose we have a
differentiable function g satisfying g(0) = 0. Then taking f = d

dxg, and rearranging the
above theorem, we have that

1
C
≤
∫∞

0 κ(x)g′(x)2 dx∫∞
0 µ(x)g(x)2 dx

≈
∑∞
i=1 κi(gi − gi−1)2∑∞

i=1 µig
2
i

.

Note that the right hand side is the Rayleigh quotient of the Laplacian of a weighted infinite
path graph (cf. Lemma 14 above). Then minimizing over g, we have that 1/C corresponds
to a Dirichlet eigenvalue and the bound B ≤ C ≤ 4B allows us to estimate this eigenvalue.

4 The Dirichlet problem on path graphs

Throughout this section, let P = (V,E, µ, κ) be a weighted path graph. Let the vertices
be numbered {v0, v1, . . . , vN} for some N ≥ 1 and let the boundary set be S = {v0}. Let
the edges be E = {(vi, vi−1) | i ∈ [N]} and let edge (vi, vi−1) have conductance κi > 0. Let
vertex vi have mass µi > 0.

It is immediate that (G,S) is a nondegenerate weighted graph with boundary.

4.1 The Hardy quantity and the Dirichlet content
Let A ⊆ V \ S be a set of vertices disjoint from the boundary. Consider the graph consisting
of two vertices vS , vA. Let vA have mass µ(A) and let the edge (vS , vA) has conductance
κ(S,A). Then the Dirichlet eigenvalue of this two node system with boundary set {vS} is
given by κ(S,A)

µ(A) . We will define the Dirichlet content of G, Ψ(G), to be the minimum such
quantity over choices of A and, for historical reasons, we will define the Hardy quantity to
be H = Ψ−1.

I Definition 22. Let (G,S) be a nondegenerate weighted graph with boundary. The Dirichlet
content of (G,S), denoted Ψ(G,S), is

Ψ(G,S) = min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}
.

I Definition 23. Let (G,S) be a nondegenerate weighted graph with boundary. The Hardy
quantity of (G,S), denoted H(G,S), is H(G,S) = Ψ(G,S)−1, i.e.

H(G,S) = max
A⊆V

{R(S,A)µ(A) |A 6= ∅, A ∩ S = ∅} .

In a path graph, it suffices to optimize over tail sets. This gives us a second characterization
of H (and thus Ψ) on path graphs.

I Lemma 24. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
Ak = {vi | i ≥ k} be the tail set beginning at vk. Then

H(P, v0) = max
1≤k≤N

R(v0, Ak)µ(Ak).

Proof. Let A ⊆ V \ S. Let k = min {i | vi ∈ A} be the minimum element in A. Then
R(S,A) = R(S,Ak) and µ(Ak) ≥ µ(A) thus R(S,Ak)µ(Ak) ≥ R(S,A)µ(A). J

APPROX/RANDOM 2019

8:10 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

For a path graph, we have the following closed form expression for the resistance between v0
and Ak. This is a consequence of Lemma 17.

I Lemma 25. In a weighted path graph, R(v0, Ak) =
∑k
i=1

1
κi
.

4.2 Bounding the Dirichlet eigenvalue

I Theorem 26. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
λ(P, v0) be the Dirichlet eigenvalue and let H(P, v0) be the Hardy quantity of (P, v0). Then,

1
4H ≤ λ ≤

1
H
.

We reiterate that the below proof has been known since [17] and is included only for
completeness.

Proof. We begin by proving the upper bound. Note that if x�A = 1, then x>Mx ≥ µ(A)
for any A ⊆ V \ S. Applying this bound to λ, we note that the numerator of the Rayleigh
quotient becomes an effective conductance term.

λ = min
x

{
x>Lx

x>Mx

∣∣∣∣x0 = 0, x 6= 0
}

≤ min
1≤k≤N

min
x

{
x>Lx

x>Mx

∣∣∣∣x0 = 0, x�Ak
= 1
}

≤ min
1≤k≤N

1
µ(Ak) min

x

{
x>Lx

∣∣x0 = 0, x�Ak
= 1
}

= min
1≤k≤N

κ(S,Ak)
µ(Ak)

= H−1.

We turn to the lower bound. Begin by rewriting xi as a sum of differences in the
denominator. Let αj > 0 to be fixed later. We apply Cauchy-Schwarz,

n∑
i=1

µix
2
i =

n∑
i=1

µi

 i∑
j=1

(xj − xj−1)
(
κj
αj

)1/2(
αj
κj

)1/2
2

≤
n∑
i=1

µi

 i∑
j=1

(xj − xj−1)2 κj
αj

 i∑
j=1

αj
κj

 .

Let yj =
(∑j

i=1
1
κi

)1/2
and y0 = 0. We will pick8 αj = κj(yj − yj−1). Thus, plugging in

this choice of αj , noticing the telescoping sum and reversing the order of summation,

8 This choice ensures that Cauchy-Schwarz is tight when x = y and corresponds to the intuition that the
true eigenvector is “close to” y.

G. L. Miller, N. J. Walkington, and A. L. Wang 8:11

. . . ≤
n∑
i=1

µi

 i∑
j=1

(xj − xj−1)2 κj
αj

 yi

=
n∑
j=1

κj(xj − xj−1)2 1
αj

n∑
i=j

µiyi

≤

 n∑
j=1

κj(xj − xj−1)2

 max
1≤j≤n

1
αj

n∑
i=j

µiyi

 .

It remains to bound the final term. Note that yj = R(v0, Aj)1/2 ≤ H1/2µ(Ak)−1/2. Then,

n∑
i=j

µiyi ≤ H1/2
n∑
i=j

µi

(
n∑
k=i

µk

)−1/2

.

Note that if A, a ≥ 0, then a(A+a)−1/2 ≤ 2
(
(A+ a)1/2 −A1/2). Indeed, this holds by noting

that (A+ ta)1/2 is concave: a(A+ a)−1/2 = d
dt

(
2(A+ ta)1/2)

t=1 ≤ 2
(
(A+ a)1/2 −A1/2).

Then, taking A =
∑n
k=i+1 µk and a = µi in this inequality, we get

n∑
i=j

µiyi ≤ 2H1/2

n−1∑
i=j

(
µ(Ai)1/2 − µ(Ai+1)1/2

)
+ µ(An)1/2

= 2H1/2µ(Aj)1/2.

We will use the inequality once more. This time, take A =
∑j−1
k=1

1
κk

and a = 1
κj
. Then,

αj = κj(yj − yj−1)

= κj

(
(A+ a)1/2 −A1/2

)
≥ κj

(a
2 (A+ a)−1/2

)
= 1

2R(v0, Aj)−1/2.

Finally,

max
1≤j≤n

1
αj

n∑
i=j

µiyi ≤ 4H1/2 max
1≤j≤n

(µ(Aj)R(v0, Aj))1/2

≤ 4H.

Rearranging completes the proof. J

The following theorem follows as a corollary.

I Theorem 27. Let (P, v0) be a nondegenerate weighted path graph with boundary. Let
λ(P, v0) be the Dirichlet eigenvalue and let Ψ(P, v0) be the Dirichlet content of (P, v0). Then,

Ψ
4 ≤ λ ≤ Ψ.

APPROX/RANDOM 2019

8:12 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

5 The Dirichlet problem on general graphs

5.1 Bounding the Dirichlet eigenvalue

I Theorem 28. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S)
be the Dirichlet eigenvalue and let H(G,S) be the Hardy quantity of G. Then

1
4H ≤ λ ≤

1
H
.

The proof of the upper bound in the graph case is the same as the proof of the upper bound
in the path case. To prove the lower bound, we split edges by inserting zero mass vertices.
We then treat the new graph as a path graph.

Proof. The upper bound follows immediately.

λ = min
x

{
x>Lx

x>Mx

∣∣∣∣x�S = 0, x 6= 0
}

≤ min
A⊆V, x

{
x>Lx

x>Mx

∣∣∣∣A 6= ∅, A ∩ S = ∅, x�S = 0, x�Ak
= 1
}

≤ min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}

= H−1.

We turn to the lower bound. We construct a new weighted graph G′ = (V ′, E′, µ′, κ′)
from G as follows. Let x be a Dirichlet eigenvector corresponding to λ(G,S). Without loss
of generality x is nonnegative. Let 0 = l0 < · · · < lN be the distinct values of x. For each
edge (a, b) ∈ E such that xa = li < li+1 < lj = xb, split e into j − i segments such that in
the minimum energy extension of x, the new vertices on e take on all intermediate values
li+1, . . . , lj−1. This is possible by Lemma 17 and the discussion following it. Let y be the
minimum energy extension of x.

Let ṽi = {v ∈ V ′ | yv = li}, let Ãk = {v ∈ V ′ | yv ≥ lk}. Let κ̃i =
∑
u∈ṽi, v∈ṽi−1

κ′(u,v) be
the conductance between ṽi and ṽi−1. Let µ̃i = µ′(ṽi). Note that S ⊆ ṽ0. Then,

λ(G,S) = λ(G′, S)

= min
y∈RV ′

{
y>L′y

y>M ′y

∣∣∣∣ y�S = 0, x 6= 0
}

= min
z∈RN

{∑N
i=1 κ̃i(zi − zi−1)2∑N

i=1 µ̃iz
2
i

∣∣∣∣∣ z0 = 0, z 6= 0
}
.

Equality in the last line follows by taking zi = li. Then note that the objective function in
the final optimization problem is the Rayleigh quotient of a nondegenerate weighted path
graph with boundary with vertices ṽi, conductances κ̃i, and boundary set ṽ0. Then applying
the lower bound of Theorem 26.

G. L. Miller, N. J. Walkington, and A. L. Wang 8:13

λ(G,S) ≥ 1
4 min

1≤k≤N

minz∈RN

{∑n
i=1 κ̃i(zi − zi−1)2

∣∣∣ z0 = 0, z�{k,...,N} = 1
}

∑N
i=k µ̃i

≥ 1
4 min

1≤k≤N

miny∈RV ′
{
y>L′y

∣∣ y�S = 0, y�Ãk
= 1
}

µ′
(
Ãk
)

= 1
4 min

1≤k≤N

κ′
(
S, Ãk

)
µ′
(
Ãk
)

≥ 1
4 min
A′⊆V ′

{
κ′(S,A′)
µ′(A′)

∣∣∣∣A′ 6= ∅, A′ ∩ S = ∅
}
.

Note that for any A′ ⊆ V ′, we can take A = A′ ∩ V . For this choice of A, we have
µ(A) = µ′(A′) and κ′(S,A′) ≥ κ(S,A). Thus,

λ(G,S) ≥ 1
4 min
A⊆V

{
κ(S,A)
µ(A)

∣∣∣∣A 6= ∅, A ∩ S = ∅
}

= 1
4H . J

The following theorem follows as a corollary.

I Theorem 29. Let (G,S) be a nondegenerate weighted graph with boundary. Let λ(G,S)
be the Dirichlet eigenvalue and let Ψ(G,S) be the Dirichlet content of G. Then

Ψ
4 ≤ λ ≤ Ψ.

6 The Neumann problem on general graphs

Throughout this section, let G = (V,E, µ, κ) be a nondegenerate weighted graph.

6.1 The two-sided Hardy quantity and the Neumann content
Let A,B ⊆ V be disjoint nonempty sets. Consider the graph consisting of two vertices
vA, vB where vertex vA has mass µ(A), vertex vB has mass µ(B) and the edge (vA, vB) has
conductance κ(A,B) > 0. Then the Neumann eigenvalue of this two node system is given by

κ(A,B)
(µ(A)−1+µ(B)−1)−1 . We will define the Neumann content of G, Ψ2(G), to be the minimum
such quantity over choices of A and B. For historical reasons, we will define the two-sided
Hardy quantity to be H2 = Ψ−1

2 .

I Definition 30. Let G be a nondegenerate weighted graph. The Neumann content of G,
denoted Ψ2(G), is

Ψ2(G) = min
A,B⊆V

{
κ(A,B)

(µ(A)−1 + µ(B)−1)−1

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}
.

I Definition 31. Let G be a nondegenerate weighted graph. The two-sided Hardy quantity
of G, denoted H2(G), is H2(G) = Ψ2(G)−1, i.e.,

H2 = max
A,B⊆V

{
R(A,B)

µ(A)−1 + µ(B)−1

∣∣∣∣A,B 6= ∅, A ∩B = ∅
}
.

APPROX/RANDOM 2019

8:14 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

6.2 Bounding the Neumann eigenvalue
In this section we show how to extend the bounds on the Dirichlet eigenvalue to the Neumann
eigenvalue.

We will bound the Neumann eigenvalue by applying Courant-Fischer to a carefully chosen
two-dimensional subspace. In particular, we will split our graph into two parts sharing a
common boundary. We will then take our two-dimensional subspace to be the linear span of
solutions to the Dirichlet problem on either side of this boundary.

Let f ∈ RV such that f takes both positive and negative values. We will write this
concisely as ±f /∈ RV≥0. We will “pinch” the graph at the zero level set of f to create a new
weighted graph G′ = (V ′, E′, µ′, κ′): for every edge (u, v) ∈ E such that fu < 0 < fv, insert
a new vertex s such that the minimum energy extension of f assigns f(s) = 0. Let µ′(s) = 0.

Abusing notation we will also let f ∈ RV
′ be the minimum energy extension of f to

V ′. Let F0 = {v ∈ V ′ | fv = 0}, let F≥0 = {v ∈ V ′ | fv ≥ 0} and F≤0 = {v ∈ V ′ | fv ≤ 0}.
Similarly define F>0, F<0 and note that G′ has no edges between F>0 and F<0. For A,B ⊆ V ,
let A <f B if fa < fb for all a ∈ A, b ∈ B.

We have the following lemma regarding the optimal “pinch.”

I Lemma 32. Let G be a nondegenerate weighted graph. Let f ∈ RV take both positive and
negative values. Then (G′, F≥0) and (G′, F≤0) are both nondegenerate weighted graphs with
boundary and

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}
.

Proof. Let R denote the quantity on the right hand side.
We begin by showing that λ2(G) ≤ R. Let f ∈ RV take both positive and negative

values. Note that λ2(G) = λ2(G′). It is easy to see that (G′, F≥0) and (G′, F≤0) are both
nondegenerate weighted graphs with boundaries. Let y, z ∈ RV

′ be Dirichlet eigenvectors with
Dirichlet eigenvalues λ(G′, F≥0) and λ(G′, F≤0) respectively. Note that supp(L′y) ⊆ F≤0
and that z�F≤0

= 0, thus z>L′y = 0. Noting that there exists some nonzero x ∈ span(y, z)
such that x>M ′1 = 0,

λ2(G) = λ2(G′)

= min
x∈RV ′

{
x>L′x

x>M ′x

∣∣∣∣x>M ′1 = 0, x 6= 0
}

≤ max
x∈span(y,z)

x>L′x

x>M ′x

= max
(α,β)6=0

α2y>L′y + β2z>L′z

α2y>M ′y + β2z>M ′z

= max (λ(G′, F≥0), λ(G′, F≤0)) .

Next we show that R ≤ λ2(G). We will exhibit a choice of f taking both positive and
negative values such that λ(G′, F≥0), λ(G′, F≤0) ≤ λ2(G). This will additionally imply that
the minimum is achieved.

Let x be a Neumann eigenvector of G. As x 6= 0 and x>M1 = 0, it is clear that x
takes both positive and negative values. We will pick f = x. Abusing notation, also let
x ∈ RV

′ be the minimum energy extension of x to V ′. Note that x�F0 = 0. Let y = min(x, 0)
and z = max(x, 0) where min and max are taken element wise. Note that L′y agrees with
L′x = λ2(G)M ′x on the support of y and that y agrees with x on the support of y. Thus

G. L. Miller, N. J. Walkington, and A. L. Wang 8:15

y>L′y = λ2(G)y>M ′x = λ2(G)y>M ′y. Then,

λ(G′, F≥0) ≤ y>L′y

y>M ′y

= λ2(G).

Similarly, λ(G′, F≤0) ≤ λ2(G). J

We will need the two following technical lemmas regarding summing resistances.

I Lemma 33. Let G be a nondegenerate weighted graph. Let A,B ⊆ V be disjoint nonempty
subsets. Let f ∈ RV

′ such that A ⊆ F<0 and B ⊆ F>0. Then

R′(A,F≥0) +R′(F≤0, B) ≤ R′(A,B).

Proof. Let

κA = κ′(A,F≥0) = min
y

{
y>L′y

∣∣∣ y�A = 1, y�F≥0
= 0
}

and let y be the minimizer. Similarly define κB and let z be its minimizer. Note that
supp(L′y) ⊆ F≤0 and z�F≤0

= 0, i.e, z>L′y = 0.
Let α = κA

κA+κB
. Note that (1−α)y−αz assigns 1−α to vertices in A and −α to vertices

in B. Thus

1
R′(A,B) ≤ ((1− α)y − αz)>L′((1− α)y − αz)

= (1− α)2κA + α2κB

= κAκB
κA + κB

= 1
R′(A,F≥0) +R′(F≤0, B) .

Rearranging terms completes the proof. J

I Lemma 34. Let G be a nondegenerate weighted graph. Let A,B ⊆ V be disjoint nonempty
subsets. For any α ∈ (0, 1), there exists some f ∈ RV with A ⊆ F<0 and B ⊆ F>0 such that

κ′(A,F≥0) = κ(A,B)
α

and κ′(B,F≤0) = κ(A,B)
1− α .

Proof. Let

κ(A,B) = min
x

{
x>Lx

∣∣x�A = 0, x�B = 1
}

and let x be the minimizer. Define f = x− α1 and take y = min(f, 0), where the minimum
and maximum is element-wise. Note that L′y agrees with Lx on the support of y. By
optimality of x, for v ∈ A \ (A ∪B), we have 0 = ∂

∂xv
(x>Lx) = 2 (Lx)v. Then,

APPROX/RANDOM 2019

8:16 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

κ′(A,F≥0) ≤ y>L′y

α2

=
∑
v∈supp(y) yv(Lx)v

α2

=
∑
v∈A(−Lx)v

α

= x>Lx

α

= κ(A,B)
α

.

Similarly, κ′(B,F≤0) ≤ κ(A,B)
(1−α) . Then both inequalities must hold with equality by Lemma 33.

J

We are now ready to prove the following theorem.
I Theorem 35. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let H2(G) be the two-sided Hardy quantity of G. Then

1
4H2

≤ λ2 ≤
1
H2

.

Proof. Both the upper and lower bound will follow the same template: we will apply the
pinch point characterization, apply Theorem 28 to each Dirichlet problem, and reorder the
minima.

The upper bound is,

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}

≤ min
f

min
A,B

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A <f 0 <f B, A,B 6= ∅
}

= min
A,B

min
f

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A,B 6= ∅, A <f 0 <f B
}
.

The lower bound is,

λ2(G) = min
f

{
max (λ(G′, F≥0), λ(G′, F≤0))

∣∣±f /∈ RV≥0
}

≥ 1
4 min

f
min
A,B

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A <f 0 <f B, A,B 6= ∅
}

= 1
4 min
A,B

min
f

{
max

(
κ′(A,F≥0)
µ(A) ,

κ′(B,F≤0)
µ(B)

) ∣∣∣∣A,B 6= ∅, A <f 0 <f B
}
.

It remains to understand the following quantity for disjoint nonempty A,B ⊆ V .

min
f

{
max

(
κ′(A,F0)
µ(A) ,

κ′(B,F0)
µ(B)

) ∣∣∣∣±f /∈ RV≥0, A <f 0 <f B, A,B 6= ∅
}

(1)

Let α = κ′(A,B)
κ(A,F≥0) . Then by lemma 33, for all f , we have κ′(B,F≤0) ≥ κ(A,B)/(1− α).

On the other hand, by lemma 34, there exists some f for which we get equality. Thus,

(1) = κ(A,B) min
α∈(0,1)

max
(

1
µ(A)α,

1
µ(B)(1− α)

)
= κ(A,B)

(µ(A)−1 + µ(B)−1)−1 .

Taking the minimum over A,B completes the proof. J

G. L. Miller, N. J. Walkington, and A. L. Wang 8:17

The following theorem follows as a corollary.

I Theorem 36. Let G be a nondegenerate weighted graph. Let λ2(G) be the Neumann
eigenvalue and let Ψ2(G) be the Neumann content of G. Then,

Ψ2

4 ≤ λ2 ≤ Ψ2.

7 Conclusion and future work

In this paper we introduced the Dirichlet and Neumann contents for nondegenerate weighted
graphs (with and without boundary) and showed that these quantities can be related to the
Dirichlet and Neumann eigenvalues (Theorems 28 and 35). We believe that these quantities
are natural as evidenced by the simplicity of the corresponding proofs. An open question is
whether it is possible to develop approximation algorithms based on these new inequalities
as opposed to Cheeger’s inequality. Such algorithms would be able to exploit the tighter
bounds provided by our theorems under a more general setting of weights. We are hopeful
that this open question will be answered affirmatively.

References
1 Noga Alon and Vitali D Milman. λ1, isoperimetric inequalities for graphs, and superconcen-

trators. Journal of Combinatorial Theory, Series B, 38(1):73–88, 1985.
2 Ivo Babuška and John E Osborn. Finite element-Galerkin approximation of the eigenvalues

and eigenvectors of selfadjoint problems. Mathematics of computation, 52(186):275–297, 1989.
3 Thomas Bühler and Matthias Hein. Spectral clustering based on the graph p-Laplacian. In

Proceedings of the 26th Annual International Conference on Machine Learning, pages 81–88.
ACM, 2009.

4 Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. In Proceedings of
the Princeton conference in honor of Professor S. Bochner, 1969.

5 Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain random
walks. Transactions of the American Mathematical Society, 284(2):787–794, 1984.

6 Shayan Oveis Gharan. Lecture 12: Introduction to Spectral Graph Theory, Cheeger’s inequality.
Lecture Notes, May 2016.

7 Stephen Guattery, F. Thomson Leighton, and Gary L. Miller. The Path Resistance Method
For Bounding The Smallest Nontrivial Eigenvalue Of A Laplacian. Combinatorics, Probability
& Computing, 8(5), 1999.

8 Stephen Guattery and Gary L. Miller. Graph Embedding and Laplacian Eigenvalues. SIAM
J. Matrix Anal. Appl., 21(3):703–723, 2000.

9 G.H. Hardy, Karreman Mathematics Research Collection, J.E. Littlewood, G. Pólya, D.E.
Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library. Cambridge University
Press, 1952. URL: https://books.google.com/books?id=t1RCSP8YKt8C.

10 Nabil Kahale. A semidefinite bound for mixing rates of Markov chains. Random Structures &
Algorithms, 11(4):299–313, 1997.

11 Ioannis Koutis, Gary L. Miller, and Richard Peng. A Nearly-m logn Time Solver for SDD
Linear Systems. In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS ’11, pages 590–598, Washington, DC, USA, 2011. IEEE Computer
Society. Available at arXiv:1102.4842. doi:10.1109/FOCS.2011.85.

12 Alois Kufner, Lech Maligranda, and Lars-Erik Persson. The prehistory of the Hardy inequality.
The American Mathematical Monthly, 113(8):715–732, 2006.

13 Gyu Eun Lee. Stability of matter. GSO Seminar, UCLA, 2017.

APPROX/RANDOM 2019

https://books.google.com/books?id=t1RCSP8YKt8C
https://arxiv.org/abs/1102.4842
https://doi.org/10.1109/FOCS.2011.85

8:18 Hardy-Muckenhoupt Bounds for Laplacian Eigenvalues

14 László Lovász et al. Random walks on graphs: A survey. Combinatorics, Paul erdos is eighty,
2(1):1–46, 1993.

15 Laurent Miclo. An example of application of discrete Hardy’s inequalities. Markov Process.
Related Fields, 5(3):319–330, 1999.

16 Bojan Mohar. Some applications of Laplace eigenvalues of graphs, pages 225–275. Springer
Netherlands, Dordrecht, 1997. doi:10.1007/978-94-015-8937-6_6.

17 Benjamin Muckenhoupt. Hardy’s inequality with weights. Studia Mathematica, 44(1):31–38,
1972.

18 Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2nd edition, 2003. Available at: http://www-users.cs.
umn.edu/~saad/toc.pdf.

19 Aaron Schild. A Schur Complement Cheeger Inequality. arXiv preprint, 2018. arXiv:
1811.10834.

20 D. Spielman and S. Teng. Nearly Linear Time Algorithms for Preconditioning and Solving
Symmetric, Diagonally Dominant Linear Systems. SIAM Journal on Matrix Analysis and
Applications, 35(3):835–885, 2014. Available at arXiv:cs/0607105. doi:10.1137/090771430.

21 Gilbert Strang. Linear algebra and its applications. Thomson, Brooks/Cole, Belmont,
CA, 2006. URL: http://www.amazon.com/Linear-Algebra-Its-Applications-Edition/dp/
0030105676.

22 Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

A Constants in Theorems 28 and 35 are sharp

In this appendix we give constructions of nondegenerate weighted graphs (with and without
boundary) that show that the constants in our Theorems 28 and 35 are optimal.

We begin with the Dirichlet case. It is clear that the upper bound is achieved by any
nondegenerate weighted graph with boundary (G,S) such that

∣∣S∣∣ = 1. In this case

Ψ(G,S) = κ(S, S)
µ(S)

= λ(G,S).

We turn to the lower bound. Let n ∈ N and let N = nen. Consider the path graph P
with vertices V = {v0, v1, . . . , vN} where vi has mass

µi =
{

1
i(i+1) 1 ≤ i ≤ N − 1
1
N i = N

and the usual path edges. Let κ = 1 for every edge and let v0 be the boundary set. We
compute the Dirichlet content of (P, v0).

Ψ(P, v0) = min
1≤k≤N

κ(v0, vk)∑N
i=k µi

= min
1≤k≤N

1/k
1/k

= 1.

We next show that λ(P, v0) ≤ 1
4 + o(1). Consider the assignment

xi =
{

0 0 ≤ i ≤ n− 1,
√
i−
√
n− 1 n− 1 ≤ i.

https://doi.org/10.1007/978-94-015-8937-6_6
http://www-users.cs.umn.edu/~ saad/toc.pdf
http://www-users.cs.umn.edu/~ saad/toc.pdf
http://arxiv.org/abs/1811.10834
http://arxiv.org/abs/1811.10834
http://arxiv.org/abs/cs/0607105
https://doi.org/10.1137/090771430
http://www.amazon.com/Linear-Algebra-Its-Applications-Edition/dp/0030105676
http://www.amazon.com/Linear-Algebra-Its-Applications-Edition/dp/0030105676

G. L. Miller, N. J. Walkington, and A. L. Wang 8:19

Then

λ(P, v0) ≤ x>Lx

x>Mx
.

We can bound the numerator above by

x>Lx =
N∑
i=1

(xi − xi−1)2

=
N∑
i=n

(
√
i−
√
i− 1)2

≤
N∑
i=n

(
1

2
√
i− 1

)2

= 1
4

N∑
i=n

1
i− 1

= 1
4

(
N∑
i=n

1
i

)
+O(1).

We can bound the denominator below by

x>Mx =
N∑
i=1

µix
2
i

=
N∑
i=n

µi

(√
i−
√
n− 1

)2

=
N−1∑
i=n

1
i(i+ 1)

(
i+ (n− 1)− 2

√
i(n− 1)

)
+ 1
N

(√
N −

√
n− 1

)2

=
N−1∑
i=n

1
i(i+ 1)

(
i+ (n− 1)− 2

√
i(n− 1)

)
+O(1)

=
(

N∑
i=n

1
i

)
+
(
N−1∑
i=n

(n− 1)
i(i+ 1)

)
− 2

(
N−1∑
i=n

√
n− 1√
i(i+ 1)

)
+O(1)

=
(

N∑
i=n

1
i

)
+O(1).

Finally, noting that
∑N
i=n 1/i ≥

∫ N
n
t−1 dt = ln(nen/n) = n diverges to infinity with n, we

have that λ(P, v0) = 1
4 + o(1). We conclude that the constants in Theorem 28 are optimal.

The same construction and a simple symmetry argument shows that the constants in
Theorem 35 are optimal.

APPROX/RANDOM 2019

Improved 3LIN Hardness via Linear Label Cover
Prahladh Harsha
School of Technology and Computer Science, Tata Institute of Fundamental Research,
Mumbai, India
http://www.tcs.tifr.res.in/~prahladh/
prahladh@tifr.res.in

Subhash Khot
Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, USA

Euiwoong Lee
Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, USA

Devanathan Thiruvenkatachari
Department of Computer Science, Courant Institute of Mathematical Sciences,
New York University, USA

Abstract

We prove that for every constant c and ε = (logn)−c, there is no polynomial time algorithm that
when given an instance of 3-LIN with n variables where an (1 − ε)-fraction of the clauses are
satisfiable, finds an assignment that satisfies atleast (1

2 + ε)-fraction of clauses unless NP ⊆ BPP.
The previous best hardness using a polynomial time reduction achieves ε = (log logn)−c, which is
obtained by the Label Cover hardness of Moshkovitz and Raz [J. ACM, 57(5), 2010] followed by
the reduction from Label Cover to 3-LIN of Håstad [J. ACM, 48(4):798–859, 2001].

Our main idea is to prove a hardness result for Label Cover similar to Moshkovitz and Raz
where each projection has a linear structure. This linear structure of Label Cover allows us to
use Hadamard codes instead of long codes, making the reduction more efficient. For the hardness of
Linear Label Cover, we follow the work of Dinur and Harsha [SIAM J. Comput., 42(6):2452–2486,
2013] that simplified the construction of Moshkovitz and Raz, and observe that running their
reduction from a hardness of the problem LIN (of unbounded arity) instead of the more standard
problem of solving quadratic equations ensures the linearity of the resultant Label Cover.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases probabilistically checkable proofs, PCP, composition, 3LIN, low soundness
error

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.9

Category APPROX

Funding Prahladh Harsha: Supported in part by the DIMACS/Simons Collaboration in Crypto-
graphy through NSF grant #CNS-1523467 (while the author was visiting Rutgers University and
DIMACS) and the Swarnajayanti Fellowship.
Subhash Khot: Supported by the NSF Award CCF-1422159, the Simons Collaboration on Algorithms
and Geometry and the Simons Investigator Award.
Euiwoong Lee: Supported in part by the Simons Collaboration on Algorithms and Geometry.
Devanathan Thiruvenkatachari: Supported by same sources as Subhash Khot.

© Prahladh Harsha, Subhash Khot, Euiwoong Lee, and Devanathan Thiruvenkatachari;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 9; pp. 9:1–9:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2739-5642
http://www.tcs.tifr.res.in/~prahladh/
mailto:prahladh@tifr.res.in
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Improved 3LIN Hardness via Linear Label Cover

1 Introduction

In this paper, we study the 3-LIN problem. An instance of 3-LIN consists of a set of n
variables over F2 and a set of m equations that contain at most three variables each, and the
goal is to find an assignment to the n variables that satisfies the most number of equations.1
If the given set of linear equations admits an assignment that satisfies every equation, then
one such assignment can be found in polynomial time by Gaussian elimination. However, the
general problem of finding the most of number of equations is NP-hard when the instance
does not admit a satisfying assignment, and a large amount of research has been done on the
limit of polynomial time approximation algorithms.

Assigning random values to variables satisfies exactly half the equations in expectation,
giving a 1/2-approximation algorithm. Håstad and Venkatesh [7] achieved an approximation
factor of 1/2 + 1/O(

√
m), which was improved by Khot and Naor [10] to 1/2 +O(

√
logn/n).

From the hardness side, there are strong hardness results even when the instance is almost-
satisfiable. For 1 ≥ c > s > 0, let Gap 3-LIN(c, s) denote the problem of distinguishing
whether the given instance of 3-LIN is at least c-satisfiable or at most s-satisfiable. Håstad’s
classic hardness results [6] show the following.

I Theorem 1.1 ([6]). The following hardness results for Gap 3-LIN hold.
1. For any constant ε > 0, Gap 3-LIN(1− ε, 1/2 + ε) is NP-hard.
2. There exists a constant c > 0 such that for ε = 1/(logn)c, there is no polynomial time

algorithm that solves Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ DTIME[nO(log logn)].

Håstad’s results are proved by giving the reduction from Label Cover to 3-LIN. Label
Cover is a common starting point for hardness results, and we define the optimization
problem below.

I Definition 1.2 (Label Cover). An instance of Label Cover contains a regular bipartite
multi- graph G = (A,B,E) and two finite sets ΣA and ΣB, where |ΣA| ≥ |ΣB |. Every vertex
in A is supposed to get a label in ΣA, and every vertex in B is supposed to get a label in ΣB.
For each edge e ∈ E there is a projection πe : ΣA → ΣB. Given a labeling to the vertices
of the graph, i.e., functions φA : A→ ΣA and φB : B → ΣB, an edge e = (a, b) ∈ E is said
to be “satisfied” if πe(φA(a)) = φB(b). For 1 ≥ c > s > 1, Gap Label Cover(c, s) is the
problem if distinguishing whether the given instance of Label Cover is at least c-satisfiable
or at most s-satisfiable.

Håstad’s theorem can be stated in terms of reduction from Gap Label Cover(1, δ) as
follows.

I Theorem 1.3 ([6]). For every ε ∈ (0, 1) and positive integer `, there exists a δ = poly(ε)
and a poly(n, 2`, 21/ε)-time reduction from n-sized instances of Gap Label Cover(1, δ) with
label size ` to Gap 3-LIN(1− ε, 1/2 + ε).

When [6] was published, the hardness of Label Cover was achieved by the PCP
theorem [2, 1] and parallel repetition [13]. More precisely, Gap Label Cover(1, ε) with
label size poly(1/δ) was NP-hard under poly(nlog 1/δ)-time reductions. The two results
of Håstad stated in Theorem 1.1 follow from this hardness of Gap Label Cover and
Theorem 1.3 by setting δ to be an arbitrarily small constant and 1/logn respectively. Since

1 This maximization version is also known as Max 3-LIN in the literature.

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:3

achieving a subconstant soundness for Label Cover by parallel repetition requires a
superpolynomial blowup in the instance size, ε > 0 could not be taken to subconstant under
polynomial time reductions. Later in a celebrated paper, Moshkovitz and Raz [12] gave an
improved hardness of Label Cover that achieves sub-constant error under polynomial time
reductions. Their main result can be stated as follows.

I Theorem 1.4 ([12, Theorem 11]). For every n, and every δ > 0 (that can be any func-
tion of n), 3-SAT on inputs of size n can be reduced to Gap Label Cover(1, δ) when
Label Cover instance has n1+o(1) · poly(1/δ) vertices and |ΣA| ≤ exp(poly(1/δ)), |ΣB | ≤
poly(log 1/δ).

A corollary of the above result, obtained by combining it with Håstad’s reduction from
Theorem 1.3, is that given a system of linear equations, it is NP-hard to distinguish between
cases where 1 − o(1) fraction of equations are satisfied vs at most 1/2 + o(1) fraction are
satisfied, where the o(1) term is 1/(log logn)−Ω(1).

I Theorem 1.5 ([12]). There exists some constant c > 0 such that for ε = 1/(log logn)c,
Gap 3-LIN(1− ε, 1/2 + ε) is NP-hard.

Later, an improved parallel repetition by Dinur and Steurer [4] allowed c to be an arbitrary
constant.

The above route prove hardness of 3-LIN is restricted by the large size of the alphabet
in the resulting Label Cover instance in Theorem 1.4. Quantitatively, the alphabet size
is exponential in poly(1/ε). The fact that the long code in Håstad’s reduction has size
exponential in the alphabet size restricts ε = 1/(log logn)O(1).

Our main contribution for 3-LIN is to bring ε in the above result down to 1/(logn)c for any
constant c, while keeping the size of the reduced instance polynomial (albeit the reduction
becomes randomized).

I Theorem 1.6 (Main). For any constant c > 0 and ε = 1/(logn)c, there is no polynomial
time algorithm for Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ BPP.

We get around the above alphabet barrier by starting with a reduction that would make
the resulting Label Cover linear, and use Hadamard codes instead of long codes. Since
the Hadamard code keeps the reduction size polynomial in the alphabet size, we can take
ε = 1/(logn)Ω(1). A similar idea was previously used by Khot [8]. We define Linear Label
Cover as follows.

I Definition 1.7 (Linear Label Cover). A Linear Label Cover is a special case of
Label Cover where the alphabets are of the form ΣA = Fa2 ,ΣB = Fb2 where a, b are natural
numbers. Each projection π : Fa2 → Fb2 is affine in the sense that π(x) = αx + β for some
α ∈ Fb×a2 , β ∈ Fb2. For 1 ≥ c > s > 0, the Gap Linear Label Cover(c, s) is defined
similarly to Gap Label Cover(c, s).

We prove the following hardness result for Linear Label Cover, which may be of
independent interest.

I Theorem 1.8 (Hardness of Linear Label Cover). For any constant c > 0, for δ = 1/(logn)c,
there is no polynomial time algorithm for Gap Linear Label Cover(1−δ, δ) unless NP ⊆
BPP, when Label Cover instance has poly(n) vertices and |ΣA| = poly(n), |ΣB | =
polylog(n).

We remark that if the above theorem can be further strengthened to obtain δ = 1/nc (i.e.,
a linear version of the Sliding Scale conjecture), then this leads to near-optimal hardness of
3-LIN (i.e, Gap 3-LIN(1− ε, 1/2 + ε) is hard for ε = 1/poly(n)) [11].

APPROX/RANDOM 2019

9:4 Improved 3LIN Hardness via Linear Label Cover

1.1 Proof Ideas
Our main technical contribution is Theorem 1.8 for Linear Label Cover, essentially
proving a linear analogue of the Moshkovitz-Raz PCP [12] followed by the Dinur-Steurer
parallel repetition [4]. The proof is given through a long sequence of reductions. We split
them in 3 major steps.
1. Interestingly, the starting point of our reduction is again the hardness of (not necessarily

linear) Label Cover proved by Moshkovitz and Raz [12] augmented by Dinur and
Steurer [4], proving NP-hardness of Gap Label Cover(1, 1/logc n) for any c > 0, while
keeping the reduction size and the alphabet size polynomial. In Section 2, we give a
randomized reduction from this Label Cover to Gap LIN(1− 1/logc n, 0.9). This style
of reduction appeared previous from Label Cover to Closest Vector Problem [9].
Note that the standard proof of the PCP theorem encodes 3-SAT (or Circuit SAT) by
solving quadratic equations over F2, and this is essentially the only place that needs where
nonlinearity occurs. Our hardness result for solving linear equations with completeness
very close to (but not exactly) 1 allows us to follow previous PCP constructions that will
ensure linearity of the Label Cover instance in the subsequent steps.

2. To prove the hardness of Linear Label Cover given the above hardness of LIN, we
closely follow the steps of Dinur and Harsha [3], who gave a simpler and modular proof
of [12]. The two basic building blocks in their proof are robust PCPs and decodable
PCPs. Robust PCPs are PCPs where in the soundness case, for any proof and most
random choices of the verifier, not only are the local views non-accepting, but they
are also very far from any accepting string. It is indeed equivalent to Label Cover.
Using our previous hardness for LIN as the starting point and following the standard
robust PCP construction (e.g., low-degree extension and sum-check protocol), we can
prove a polynomial time reduction to Linear Label Cover(1− 1/ logc n, 1/ logc n) for
any c > 1, but the alphabet size will be always exp(logc0 n) for some c0 > 1, which is
superpolynomial.

3. The second building block, decodable PCP, is similar to robust PCP with the additional
requirement that the prover is given a position i in the original string and supposed to
output the value of the ith position if the given proof is a honest encoding of a valid
original string. The main idea of Dinur and Harsha [3] is to iteratively compose a robust
PCP with a suitable decodable PCP, where the composed PCP is another robust PCP
that consists of a decodable PCP for each constraint of the original robust PCP. This
iteratively reduces the query complexity and the alphabet size of the robust PCP, which
is related to the alphabet size of the equivalent Label Cover instance. This iterative
composition is interleaved and preprocessed by technical operations that reduce the
alphabet size of the robust PCP and make it regular.
Once these two building blocks are linear, the operations of [3] can be used verbatim in
our construction. Our main observation is that every step of this construction preserves
(1) the robust completeness 1−δ for some δ = 1/polylog(n), and (2) the linearity, which were
not issues in [3]. In Section 3, we introduce the basic building blocks and these operations,
and show how they preserve robust completeness and linearity. These iterative operations
will eventually reduce the alphabet size of the Linear Label Cover polynomial, proving
Theorem 1.8.
After the hardness of Linear Label Cover is proved, we give a reduction from Linear

Label Cover with the above parameters to 3-LIN with the required parameters. We do
this by composing with the Hadamard Code to get a (1− ε) vs (1/2 + ε) NP-hardness result
for 3LIN. Similar PCP constructions based on Hadamard codes were presented in [8]. Details
of this step can be found in Section 4.

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:5

2 Reduction to System of Linear Equations

In this section, we first prove the hardness of approximate solving linear equations over large
fields, where each equation can involve as many variables as possible. It will serve as the
starting point towards proving hardness of Linear Label Cover.

I Theorem 2.1. For any constant c > 0, ε = 1/(logn)c, Gap LIN(1 − 1/(logn)c, 0.9) is
NP-hard under polynomial time randomized reductions.

Proof. The proof starts from the following hardness of Label Cover, which is obtained by
combining the main result of Moshkovitz and Raz [12] with the parallel repetition of Dinur
and Steurer [4].

I Theorem 2.2 ([12, 4]). For any constant c > 0, for δ = 1/(logn)c, Gap Label Cover(1, δ)
is NP-hard when the Label Cover instance satisfies |ΣA|, |ΣB | ≤ |A|+ |B|.

Let G = (A,B,E), ΣA, ΣB , and {πe}e∈E be an instance of Label Cover. We show a
reduction to LIN over F2 where

If all Label Cover edges are satisfiable, at least (1 − 1
|ΣA|) fraction of equations are

satisfiable.
If at most δ fraction of Label Cover edges are satisfiable, at most (1− 1

(δ|ΣA|)) fraction
of equations are satisfiable.

For each vertex v ∈ ΣA ∪ΣB and possible label ` on the Label Cover instance, we have a
variable xv,` in the LIN instance. Let n = |A||ΣA|+ |B||ΣB | = poly(|A|+ |B|) be the number
of variables. Consider the following four kinds of equations. Recall that every arithmetic is
performed over F2.

(1)
∑
`∈ΣA

xv,` = 1 ∀v ∈ A

(2)
∑
`∈ΣB

xv,` = 1 ∀v ∈ B

(3)
∑

r:πuv(r)=`

xv,r = xu,` ∀(u, v) ∈ E,∀` ∈ ΣB

(4) xv,` = 0 ∀(v, `) ∈ A× ΣA

In our final LIN instance, we treat (1), (2), and (3) as hard constraints that need to be
always satisfied, and find x that always satisfies all hard constraints and as many constraints
in (4) as possible. Also note that in (4), we only consider vertices in A.

This is equivalent to the usual LIN problem with hard constraints by folding. Formally,
let V be the set of assignments that satisfy (1), (2), and (3). If V is empty, we can
conclude that the Label Cover instance is unsatisfiable. Otherwise, there exist c ∈ N and
linearly independent vectors y0, . . . , yc ∈ F(A×ΣA)∪(B×ΣB)

2 such that V = {y0 +
∑c
i=1 yizi :

z1, . . . , zc ∈ F2}. This gives an one-to-one correspondence between Fc2 and V , so we can treat
z1, . . . , zc as the variables of LIN and write the fourth constraints xv,` = 0 in terms of z,
which gives an instance of LIN without hard constraints.

Completeness

If the Label Cover instance is satisfiable, xv,` = 1 if and only if v is assigned with ` gives
an assignment that satisfies (1), (2), and (3), and violates one equation in (4) for each v ∈ A.

APPROX/RANDOM 2019

9:6 Improved 3LIN Hardness via Linear Label Cover

Soundness

Let x be an assignment that satisfies (1), (2), and (3). For v ∈ A∪B, let Lv := {` : xv,` = 1}.
Since (1) and (2) require

∑
` xv,` = 1 for every v ∈ A ∪B, Lv is not empty for every v.

Consider the randomized strategy for Label Cover where each v ∈ A ∪B is assigned
with a uniform random label from Lv independently. For (u, v) ∈ E with u ∈ A, v ∈ B, by
(3), xv,` = 1 for some ` ∈ ΣB implies that there exists r ∈ ΣA with πuv(r) = ` such that
xu,r = 1. This implies (u, v) is satisfied with probability at least 1

|Lu| by the randomized
strategy. Then the expected fraction of the Label Cover constraints satisfied by the
strategy is at least

Eu∈A

[
1
|Lu|

]
>

1
Eu∈A[|Lu|]

.

Therefore, if at most δ fraction of Label Cover constraints are simultaneously satisfiable,
we can conclude that

δ >
1

Eu∈A[|Lu|]
⇔ Eu∈A[|Lu|] >

1
δ
.

So in total, at least 1
(δ|ΣA|) fraction of equations are violated.

Gap Amplification

We have a hardness of LIN over F2 where the completeness value is at least 1− 1
|ΣA| and

the soundness value is at most 1− 1
(δ|ΣA|) . Consider a new system of linear equations where

we sample m linear equations independently, where each new equation randomly chooses
δ · |ΣA| old equations and takes a random linear combination of them. In the completeness
case, at least an (1−O(δ)) fraction of new equations can be satisfied by a good assignment
to old equations.

In the soundness case, fix an assignment to n possible variables. (There are 2n of them.)
It satisfies at most an 1 − 1

(δ|ΣA|) fraction of old equations. Note that if a new equation
chooses an old equation not satisfied by the assignment, it is satisfied with probability exactly
1/2. Therefore, the expected number of new equations satisfied by this fixed assignment is
at most

m ·
((

1− 1
(δ|ΣA|)

)δ·|ΣA| + 1
2

)
≤ m ·

(
1
e

+ 1
2

)
≤ 0.87m.

For a given c ∈ N, let δ = 1/logc n. By taking sufficiently large m = O(n), we can apply
the Chernoff and union bound to conclude that no assignment satisfies more than a 0.9
fraction of new equations. So we reduce from Label Cover to Gap LIN(1 − O(δ), 0.9),
which finishes the proof. J

We remark that the sampling performed above is the only step in our reduction involving
randomization.

3 Reduction to Linear Label Cover

In this section, we show for any c > 0, unless NP ⊆ BPP, there is no polynomial time
algorithm for Gap Linear Label Cover(1− ε, ε) with ε = 1/(logn)c, proving Theorem 1.8.

The construction we employ is almost identical to that of Dinur and Harsha [3], except
that the basic building blocks (robust PCP and decodable PCP) try to prove (almost)
satisfiability of linear equations instead of standard quadratic equations. They are introduced
in Sections 3.1 and 3.2.

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:7

After constructing the building blocks, the result of [3] is proved by iterative composition
of them followed by technical steps including alphabet and degree reduction. Our main
observation in this part is that each of the steps in the construction preserves linearity so
that the final Label Cover instance produced also has a liear structure. We present them
in Section 3.3 and Section 3.4. Finally, Section 3.5 shows how to combine all these steps to
prove Theorem 1.8.

3.1 Robust PCPs
In this subsection, we define robust PCPs. For two strings x, y of the same length n, let
agr(x, y) denote the relative agreement of the strings x, y, defined as

agr(x, y) := Pr
i∈[n]

[xi = yi]

If S is a set of strings, agr(x, S) is defined as maxy∈S{agr(x, y)}.

I Definition 3.1 (Robust PCPs). For functions r, q,m, a, s : N→ N and c, δ : N→ [0, 1], a
verifier V is a robust probabilistically checkable proof (robust PCP) system for a promise
problem L = (LYES, LNO) with randomness complexity r, query complexity q, proof length m,
alphabet size a, robust completeness c, and robust soundness error δ if V is a probabilistic
polynomial-time algorithm that behaves as follows: On input x of length n and oracle access
to a proof string π ∈ Σm(n) over the (proof) alphabet Σ where |Σ| = a(n), V reads the input x,
tosses at most r = r(n) random coins, and generates a sequence of locations I = (i1, . . . , iq) ∈
[m]q(n) and a predicate f : Σq → {0, 1}, which satisfy the following properties.
Robust Completeness. If x ∈ LYES then there exists π such that

E
(I,f)

[agr(πI , f−1(1))] > c. (1)

Robust Soundness. If x ∈ LNO then for every π,

E
(I,f)

[agr(πI , f−1(1))] 6 δ, (2)

where the distribution over (I, f) is determined by x and the random coins of V .
We say that V is linear if Σ = Fb2 for some b and for every f , the accepting sets of the
predicate f , i.e., f−1(1), forms an affine subspace of Σq = Fbq2 over the field F2.

Robust completeness and soundness must be contrasted with (regular) completeness and
soundness of standard PCP verifiers in which the expression for completeness and soundness
given in (1) and (2) respectively are replaced as follows:

Completeness: Pr
I,f

[f(πI) = 1] > c,

Soundness: Pr
I,f

[f(πI) = 1] 6 δ.

In fact, this is the only difference between the above definition and the standard definition
of a PCP system. The robust soundness states that not only does the local view violate the
local predicate f , but in fact has very little agreement with any of the satisfying assignments
of f (and thus is a strengthening of standard robustness). Robust completeness on the other
hand is a weakening of standard completeness.

APPROX/RANDOM 2019

9:8 Improved 3LIN Hardness via Linear Label Cover

Another crucial aspect of robust PCP is its equivalence to Label Cover. Namely,
existence of robust PCP for L with parameters r, q,m, a, s, c, δ is equivalent to existence of a
reduction from L to Gap Label Cover(c, δ) where |A| = 2r, |B| = m, |ΣA| ≤ aq, |ΣB | = a
and each v ∈ A has degree q. See Lemma 2.5 of [3]. Also note that the definition of linearity
is equivalent in robust PCP and Label Cover.

I Theorem 3.2 (Robust PCP, Analog of [3, Theorem 6.4]). There exist constants b1, b2 > 0,
c0 > 1 such that for any c > c0 and ε = 1/logc n, Gap LIN(1 − ε, 0.9) with n variables
has a linear robust verifier with robust completeness 1− ε, robust soundness error ε, query
complexity 1/εb1 , proof length poly(n), randomness complexity O(logn), and proof alphabet
size at most 1/εb2 .

Equivalently, there is a (deterministic) polynomial time reduction from Gap LIN(1−ε, 0.9)
to Gap Linear Label Cover(1 − ε, ε), where the Label Cover instance has poly(n)
veritces, |ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB | ≤ 1/εb2 , and each v ∈ A has degree 1/εb1 .

The proof of this theorem is identical to that of [3, Theorem 6.4] and omitted here. The
only difference is Gap LIN(1 − ε, 0.9) with 1/ε = logO(c) n instead of standard quadratic
equations when performing the low degree-extension and the sum-check protocol. The
theorem follows by observing that all the operations are linear and hence the final predicate
is also linear. The completeness of the robust PCP is dictated by the completeness value in
Theorem 2.1.

Combining this reduction with the randomized reduction from Theorem 2.1, we obtain
the following theorem (which is a more formal version of Theorem 1.8).

I Theorem 3.3 (Hardness of Linear Label Cover). There exist constants b1, b2 > 0, c0 > 1
such that for any c > c0 and ε = 1/logc n, unless NP ⊆ BPP, there is no polynomial
time algorithm for Gap Linear Label Cover(1− ε, ε) where the Label Cover instance
has poly(n) veritces, |ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB | ≤ 1/εb2 , and each v ∈ A has
degree 1/εb1 .

3.2 Decodable PCPs
We now discuss the decodable PCP (dPCP), which differs from a PCP in that it has a
decoder as opposed to a verifier. A decoder is similar to a verifier in that it checks whether a
string is in the given language or not by probabilistically checking a small number of positions
in the proof, but it is additionally supposed to return the ith position of the original string
for given i.

For Σ = Fa2 for some a ∈ N, let LINΣ denote the problem of solving linear equations
where an instance consists of k variables that can have a value from Σ, and a system of
linear equations C on k · a variables over F2 canonically represented by the k variables over
Σ. It is equivalent to LIN over F2 on k · a variables, except that we consider each block of a
variables as one variable that can take a value from Σ. We define a decoder for LINΣ below.

I Definition 3.4 (Decoder for LINΣ). Let Σ = Fa2 and σ = Fb2 for some a and b. A
decoder for LINΣ over a proof alphabet σ with parameters m, q, r : N→ N is a probabilistic
polynomial-time algorithm D. It is given a system of linear equations C on n variables over
Σ, and an index j ∈ [n] as input, and oracle access to a proof π of length m(n) over proof
alphabet σ. It tosses r = r(n) random coins and generates (1) a sequence of q = q(n) locations
I = (i1, . . . , iq) and (2) a (local decoding) function f : σq → Σ∪{⊥}. D is called linear if for
every f , P := f−1(Σ) is an affine space of σq = (Fqb

2) and f : P → Σ is an affine function
over the base field F2.

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:9

Now we define a dPCP for LINΣ. The dPCP in [3] is defined for Circuit SAT, whereas
ours is for LINΣ. Note that unlike in [3], the dPCP we will construct does not imply any
computational hardness, because it only proves whether the given system of linear equations
is perfectly satisfiable or not, which is a computationally easy problem. The key point is
it proves the system is satisfiable using a proof which is in some sense “locally decodable”.
The dPCP will then be composed with the previous linear robust PCP, which is a system of
linear equations with imperfect completeness, to reduce the query complexity.

I Definition 3.5 (Decodable PCPs for LINΣ). For functions δ : N→ [0, 1] and L : N→ N,
we say that a PCP decoder D is a decodable probabilistically checkable proof (dPCP) system
for LINΣ with perfect completeness, soundness δ and list size L if the following completeness
and soundness properties hold for every system of linear equations C on n variables over Σ.

Completeness. For any y ∈ Σn that satisfies every equation in C, there exists a proof π ∈ σm,
also called a decodable PCP, such that

Pr
j,I,f

[f(πI) = yj] = 1,

where j ∈ [n] is chosen uniformly at random and I, f are distributed according to C, j,
and the verifier’s random coins.

Soundness. For any π ∈ σm, there is a list of 0 6 ` 6 L strings y1, . . . , y`, where each yi
satisfies all equations in C, such that

Pr
j,I,f

[f(πI) /∈ {⊥, y1
j , . . . , y

`
j}] 6 δ.

Robust soundness. We say that D is a robust dPCP system for LINΣ with robust soundness
error δ, if the soundness criterion above can be strengthened to the following robust
soundness criterion,

E
j,I,f

[agr(πI ,BAD(f))] 6 δ,

where

BAD(f) := {w ∈ σq : f(w) /∈ {⊥, y1
j , . . . , y

`
j}}.

The dPCP result we use is the following.

I Theorem 3.6 (dPCP, Analog of [3, Theorem 6.5]). There exist constants α, γ > 0 such
that for every δ > n−α and input alphabet size Σ of size at most nγ, LINΣ has a linear
robust decodable PCP system with perfect completeness, robust soundness error δ > 0 and
list size L 6 2/δ, query complexity n1/8, proof alphabet σ of size nγ, proof length poly(n),
and randomness complexity O(logn).

The proof of this theorem is identical to that of [3, Theorem 6.5], except that the initial
starting point is LINΣ instead of Circuit SATΣ. Since the starting point is linear and
all transformations are linear, the final object is also linear. The perfect completeness is
also maintained. As mentioned before, the dPCP constructed here does not imply any
computational hardness unlike in [3].

3.3 Composition
After having building blocks, Dinur and Harsha [3] show how to compose those blocks
iteratively to reduce the query complexity and the alphabet size. Each composition involves
several other operations including alphabet and degree reductions. While the soundness
analyses for them are already proved in [3], we show that all of their operations preserve
linearity and robust completeness.

APPROX/RANDOM 2019

9:10 Improved 3LIN Hardness via Linear Label Cover

Efficient Composition ([3, Theorem 4.2])

In the composition, given a regular robust linear PCP verifier V and a robust linear PCP
decoder D, the composed verifier V ′ expects a decodable PCP for each constraint of V .
Recall that the linearity of V is equivalent to the fact that each constraint of V is a system
of linear equations over F2, which is exactly what D expects. An informal description of the
composed verifier is as follows:

1. Randomly choose a location i of the proof for V . Let C1, . . . , CD be the constraints of V
containing the location.

2. Using a (ε, ε2)-sampler ([D], [D], E) and a random s ∈ [D], choose a subset S ⊆ {1, . . . , D}
and run the inner PCP decoder D for each Cj with j ∈ S to decode the ith symbol in
the original proof.

3. Accept if all the values returned by the PCP decoders are the same.

For the second step above, we use (ε, ε2)-samplers given in [5]. Theorem 4.2 of [3] shows
the soundness of the composed verifier V ′, yielding Table 1 below (Table 4.2 in [3]).

Table 1 Parameters for Composition.

V D V ′

proof alphabet Σ σ σ

randomness complexity R r logM + r + logD
query complexity Q q 4/ε4 · q

proof degree D d d

proof length M m 2R ·m
robust soundness error ∆ δ ∆L + 4Lε+ δ

list size - L -

We check this composition preserves robust completeness and linearity.
Linearity: Linearity (over F2) is preserved if both V and D are linear, since the only
additional check we perform is to check whether the returned values are equal.
Robust completeness: Suppose that there exists a proof Π for V that achieves the robust
completeness of at least 1 − ξ. Recall that the composed verifier expects, for each
constraint of the outer PCP, a satisfying assignment encoded by the inner dPCP. The
proof for the composed verifier is the concatenation of all these encodings. Consider the
proof to the composed verifier constructed by the honest encoding of the assignment that
achieves the robust completeness for the outer PCP verifier. We will show that this proof
achieves robust completeness 1− ξ.
Let i be a proof location in the outer PCP and C1, . . . , CD be the constraints involving i.
Furthermore, let ξi be the fraction of these constraints violated by the proof. Since Π is
at least (1− ξ)-robustly complete, we have Ei[ξ] ≤ ξ. For each sample s chosen in the
sampler, let ξi,s be the fraction of constraints in S (chosen by sampler) that are violated.
By regularity of sampler, we have Es[ξi,s] ≤ ξi.
A local view of the composed verifier (corresponding to i, s and the inner dPCP ran-
domness) comprises of the concatenation of the local views of the dPCP encodings
corresponding to the constraints in S. Since the the inner dPCP has perfect completeness
we have the following. Whenever the constraint is satisfied, the corresponding inner
dPCP’s encodings satisfies all constraints while we have no guarantee when the constraint
is not satisfied. Since for each (i, s), the fraction of violated constraints is ξi,s, we have

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:11

that at least (1−ξi,s)-fraction of the local inner views corresponding to (i, s) are satisfying
and furthermore they all decode to the same Π(i). Hence, the local view of the composed
verifier corresponding to (i, s) is at least (1− ξi,s)-close to a satisfying view. Hence, the
robust completeness of this honest proof is at least Ei,s[1− ξi,s] ≥ 1− ξ.

3.4 Label Cover Operations
After the composition, the alphabet reduction step is applied to ensure that the alphabet
size is polynomial in the query complexity and the inverse of the soundness. Also, since the
basic robust PCP given in Theorem 3.2 is not necessarily regular, we also need to show how
to make the initial robust PCP regular. This subsection introduces various such operations
and explains why they preserve robust completeness and linearity.

Degree Reduction ([3, Theorem 5.1])

Given an instance of Label Cover G = (A,B,E), the degree reduction makes the instance
right-regular by appropriately duplicating right vertices and each edge exactly the same
number of times. Theorem 5.1 of [3] ensures that by increasing robust soundness by 4µ
additively, we can ensure that the right degree is 4/µ4 for all right vertices. We check that
this operation preserves linearity and robust completeness.

Linearity: Linearity is obviously preserved, because there is no change in the constraint.
Robust completeness: Since each edge is duplicated the same number of times, robust
completeness does not decrease.

Alphabet Reduction ([3, Theorem 5.5])

Given an instance of Label Cover G = (A,B,E) where ΣA and ΣB are the alphabet set of
the left (bigger) side and the right (smaller) side respectively, the alphabet reduction replaces
ΣB by a smaller set σ by finding a suitable linear code C : ΣB → σk and replacing each
vertex b ∈ B by k vertices b1, . . . , bk. Then assigning x ∈ ΣB to b corresponds to assigning
(C(x))i to b1, . . . , bi. Theorem 5.5 of [3] ensures that if C has a relative distance 1− η3, this
operation increases robust soundness by at most 3η additively. We check that this operation
preserves linearity and robust completeness.

Linearity: Linearity over F2 is preserved if the code C : ΣB → σk is linear with σ = F2a

as the base field for some a ∈ N. The code used in Remark 5.4 of [3] is already linear.
Robust completeness: If an edge (a, b) of the original Label Cover instance is preserved
and the new instance follows the honest encoding, all k edges of the new instance
corresponding to (a, b) will be satisfied. Therefore, robust completeness cannot decrease.

Flip Sides ([3, Section 5.3])

Given an instance of Label Cover G = (A,B,E) where each right vertex b ∈ B has
degree d, the flip side is achieved by flipping A and B, and assigning each v ∈ B a label
from Σd

A, which is supposed to denote the assignments to its neighbors in the original
instance. If v ∈ B has u1, . . . , ud ∈ A as neighbors, (v, ui) in the new instance is satisfied
(i) if the label (a1, . . . , ad) ∈ Σd

A for v has b ∈ ΣB such that the label pair (ai, b) satisfies
the edge (ui, v) in the old instance, and (ii) if ai is equal to the label assigned to ui. This
obviously does not change the robust soundness. We check that it also preserves linearity
and robust completeness.

APPROX/RANDOM 2019

9:12 Improved 3LIN Hardness via Linear Label Cover

Table 2 Sequence of steps to regularize the Label Cover instance. * denotes irregular instances
where the number denotes the average degree.

Label Cover I Degree Flip Degree Alphabet
(Robust PCPs) Red. (→ d) Red. (→ d) Red. (→ σ)
left vertices n n mDB mDB mDB

(randomness)

right vertices m mDB n nDAd nDAdk

(proof length)

left degree D∗A dD∗A d d2 d2k

(query complexity)

right degree D∗B d DAd
∗ d d

(proof degree)

left alphabet ΣA ΣA Σd
A Σd

A Σd
A

(# accepting conf.)

right alphabet ΣB ΣB ΣA ΣA σ

(proof alphabet)

soundness error δ δ + 4µ δ + 4µ δ + 8µ δ + 8µ+ 3η
(rob. soundness error)

rob. completeness 1− ξ 1− ξ 1− ξ 1− ξ 1− ξ
(rob. completeness)

Linearity: Linearity is preserved, because for each v ∈ B, the set of (a1, ..., ad) satisfying
(i) above is an affine subspace of (ΣA)d, and the new constraint is merely a projection.
Robust completeness: Cannot decrease since if v ∈ B was assigned b ∈ ΣB in the original
instance, it can be assigned (a1, . . . , ad) ∈ ΣA such that (i) π(ui,v)(ai) = b, and (ii) ai was
assigned to ui if (ui, v) was satisfied in the original instance.

We use a combination of the above 3 operations to get a regular Label Cover instance,
as shown below.

Given an ε > 0, by using (O(ε), O(ε2))-samplers in the composition and doing the above
operations with η = O(ε), d = O(1/ε4), distance 1−O(ε3), |σ| = O(1/ε6), k = O(1/ε6)·|Σ′| ≤
O(1/ε6) · q|Σ|, we can deduce the following lemma.

I Lemma 3.7 ([3, Lemma 5.7]). For all ε : N→ [0, 1], suppose L has a robust linear PCP
verifier V with randomness complexity r, query complexity q, proof length m, average proof
degree DB, robust completeness c, robust soundness error δ over a proof alphabet Σ. Then L
has a regular reduced linear robust PCP verifier, which we shall denote by regularε(V) with

randomness complexity logm+ logDB,
query complexity O(q log |Σ|/ε14),

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:13

proof length O(q22r log |Σ|/ε10),
proof degree O(1/ε4),
proof alphabet σ of size at most O(1/ε6),
robust completeness c,
and robust soundness δ + ε.

3.5 Putting things together
Finally we prove Theorem 1.8 on the hardness of Linear Label Cover. Let c > 0 be an
arbitrary constant. Let D be the PCP decoder from Theorem 3.6 and V be the robust PCP
from Theorem 3.2 with robust completeness 1− δ with δ = logc n, robust soundness error
ε = 1/logc0 n for some c0 > 1, query complexity 1/εO(1), randomness complexity O(logn) and
proof length poly(n).
I Lemma 3.8 ([3, Lemma 6.6]). Let D, V, ε, δ be as defined above and set εi = (ε)1/3i .
There exist constants c0, c1, c3 > 0 such that for every i > 0 as long as εi < c0, the following
holds. Gap LIN(1− δ, 0.9) has a regular linear robust PCP verifier Vi with query complexity
1/εc1i , robust completeness 1− δ, robust soundness error 2εi, proof alphabet Σi of size c3/εi6,
randomness complexity O(logn) and proof length poly(n).
Proof. The proof is similar to [3], and is a sequence of compositions. We start with the
regularized robust verifier given by applying the sequence of steps given in Section 3.4 to
the robust PCP verifier given in Theorem 3.2. In each subsequent step, we compose the
robust verifier obtained in the previous step with a dPCP, and apply the alphabet reduction
(Theorem 5.5 of [3]) to reduce the size of the alphabet to c3/ε6

i+1. All the parameters remain
the same as in [3], and we only need to focus on the two additional properties we need,
linearity and robust completeness.

Recall that a PCP with robust completeness 1− δ, when composed with a dPCP with
perfect completeness, yields a composed PCP with robust completeness 1− δ. In each step
the inner PCP decoder has perfect completeness, therefore the robust completeness of the
composed PCP is preserved. Recall that the alphabet reduction step also doesn’t affect the
perfect completeness.

Linearity is also preserved because all basic components are linear and all steps (e.g.,
composition, alphabet reduction, and regularization) preserve linearity as previously discussed.

J

The above lemma shows that we can iteratively reduce the query complexity until some
absolute constant while maintaining the soundness and the alphabet size polynomial in the
query complexity.(And the total size of the instance always remains polynomial in n.) Only
a constant number of iterations is needed until (proof alphabet size)(query complexity), an
upper bound on the size of alphabet in the equivalent Label Cover instance, becomes
polynomial in n. This proves our main Theorem 1.8 for Linear Label Cover.

Proof of Theorem 1.8. Set i from Lemma 3.8 so that

(proof alphabet size)(query complexity) = (c3/ε6
i)1/εc1

i = exp
(

1
εc1i
· log

(c3
ε6
i

))
≤ poly(n).

This ensures that εi = 1/logc4 n for some c4 > 0. Using the equivalence between Label
Cover and robust PCP, we have a hardness of Label Cover where the number of vertices
and the size of label are bounded by poly(n), and the completeness is at least 1− 1/logc n,
the soundness is 1/logc4 n. Applying the parallel repetition of [4] O(c/c4) times to reduce the
soundness to 1/logc n finishes the proof. J

APPROX/RANDOM 2019

9:14 Improved 3LIN Hardness via Linear Label Cover

4 Reduction from Linear Label Cover to 3LIN

In this section, we prove our main Theorem 1.6 for 3-LIN. Recall that Theorem 3.3
shows a randomized polynomial reduction from 3-SAT to Gap Linear Label Cover(1−
logc n, logc n) for any constant c > 0, where the number of vertices as well as the number of
labels are bounded by a polynomial. Therefore, the following theorem finishes the proof of
Theorem 1.6. The main idea is to use Hadamard codes instead of long codes using the fact
that the Label Cover instance is linear. A similar argument was used in [8].

I Lemma 4.1. There is a polynomial time reduction from Gap Linear Label Cover(1−
δ, s) to Gap 3-LIN(1− δ, 1/2 +

√
s/2), where the size of the 3-LIN instance is polynomial in

the number of vertices and the size of label in the Label Cover instance.

Proof. Let G = (A,B,E), ΣA, ΣB , {πe}e∈E be an instance of Gap Linear Label Cover
(1− δ, s). Moreover, since the label cover is linear, let the labels to left hand side vertices
come from F`2 and the right hand side vertices from Fr2, and the mapping on each edge is an
affine mapping. Our reduction is described by the following test.

Test

Consider an edge (u, v). The labels x ∈ F`2, y ∈ Fr2 corresponding to the vertices have to
satisfy x = Ay + b.
From the proof, we randomly sample the Hadamard code of x at location α, and that of
y at locations β and β + γ, where γ = AT · α.
Check if 〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉 = 〈α, b〉

Completeness

In the completeness case, if the labels x, y satisfy the edge in the Linear Label Cover,
then we can see that the test will pass.

〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈ATα, y〉
=〈α, b〉

Therefore, if 1− δ edges are satisfiable in the linear Label Cover, at least 1− δ fraction of
3LIN constraints are satisfied.

Soundness

Consider the case where at most s fraction of edges can be satisfied for any labeling in the
Linear Label Cover. Let the Hadamard code encoding function for the left vertices be L
and right vertices be R. Consider their Fourier transforms,

L(α) =
∑
x

L̂(x)χx(α)

R(β) =
∑
y

R̂(y)χy(β)

P. Harsha, S. Khot, E. Lee, and D. Thiruvenkatachari 9:15

Let’s fix an edge, and analyze the probability that the test will accept. We switch to a -1,+1
notation for convenience.

Pr[Test accepts] = Pr
α,β

[〈α, x〉+ 〈β, y〉+ 〈β +ATα, y〉+ 〈α, b〉 = 0]

= Pr
α,β

[(−1)〈α,x〉+〈β,y〉+〈β+ATα,y〉+〈α,b〉 = 1]

=
1 + Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
2

Consider the expectation on the right hand side of the above equation.

Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
(3)

6
∑
x,y

L̂(x)R̂(y)2Eα,β

[
χx(α)χy(β)χz(β +ATα)(−1)〈α,b〉

]
6

∑
x,y,x=Ay+b

L̂(x)R̂(y)2

6
√ ∑
x,y,,x=Ay+b

R̂(y)2
√ ∑
x,y,x=Ay+b

L̂(x)2R̂(y)2

In the above equation, the first term is bounded by 1, and therefore,

(3) 6
√ ∑
x,y,,x=Ay+b

L̂(x)2R̂(y)2

Consider a random assignment where a left vertex gets a label x with probability L̂(x)2

and a right vertex gets a label y with probability R̂(y)2. The probability that such a random
assignment would satisfy the edge, and therefore the expected fraction of edges satisfied,
is exactly∑

x,y,x=Ay+b
L̂(x)2R̂(y)2

If at most s fraction of edges can be satisfied by any assignment, then

s >
∑

x,y,x=Ay+b
L̂(x)2R̂(y)2 > (2 · Pr[Test accepts]− 1)2

or

Pr[Test accepts] 6 1
2 +
√
s

2

Therefore, the expected fraction of 3LIN constraints satisfied is at most 1
2 +

√
s

2 . J

References
1 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–555, May 1998.
(Preliminary version in 33rd FOCS, 1992). doi:10.1145/278298.278306.

2 Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization
of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary version in 33rd FOCS, 1992).
doi:10.1145/273865.273901.

APPROX/RANDOM 2019

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901

9:16 Improved 3LIN Hardness via Linear Label Cover

3 Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decodable
PCPs. SIAM J. Comput., 42(6):2452–2486, 2013. (Preliminary version in 51st FOCS, 2009).
doi:10.1137/100788161.

4 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proc. 46th ACM
Symp. on Theory of Computing (STOC), pages 624–633, 2014. doi:10.1145/2591796.2591884.

5 Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling. In
Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation, volume 6650 of LNCS, pages 302–332. Springer, 2011.
doi:10.1007/978-3-642-22670-0_24.

6 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
(Preliminary version in 29th STOC, 1997). doi:10.1145/502090.502098.

7 Johan Håstad and Srinivasan Venkatesh. On the advantage over a random assignment.
Random Structures Algorithms, 25(2):117–149, 2004. (Preliminary version in 34th STOC,
2002). doi:10.1002/rsa.20031.

8 Subhash Khot. Improved Inaproximability Results for MaxClique, Chromatic Number and
Approximate Graph Coloring. In Proc. 42nd IEEE Symp. on Foundations of Comp. Science
(FOCS), pages 600–609, 2001. doi:10.1109/SFCS.2001.959936.

9 Subhash Khot. Inapproximability Results for Computational Problems on Lattices. In
Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm - Survey and Ap-
plications, Information Security and Cryptography, pages 453–473. Springer, 2010. doi:
10.1007/978-3-642-02295-1_14.

10 Subhash Khot and Assaf Naor. Linear Equations Modulo 2 and the L1 Diameter of Convex
Bodies. SIAM J. Comput., 38(4):1448–1463, 2008. (Preliminary version in 48th FOCS, 2007).
doi:10.1137/070691140.

11 Dana Moshkovitz. The Projection Games Conjecture and the NP-Hardness of lnn-
Approximating Set-Cover. Theory Comput., 11:221–235, 2015. (Preliminary version in
15th APPROX, 2012). doi:10.4086/toc.2015.v011a007.

12 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM, 57(5), 2010.
(Preliminary version in 49th FOCS, 2008). doi:10.1145/1754399.1754402.

13 Ran Raz. A Parallel Repetition Theorem. SIAM J. Comput., 27(3):763–803, June 1998.
(Preliminary version in 27th STOC, 1995). doi:10.1137/S0097539795280895.

https://doi.org/10.1137/100788161
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1145/502090.502098
https://doi.org/10.1002/rsa.20031
https://doi.org/10.1109/SFCS.2001.959936
https://doi.org/10.1007/978-3-642-02295-1_14
https://doi.org/10.1007/978-3-642-02295-1_14
https://doi.org/10.1137/070691140
https://doi.org/10.4086/toc.2015.v011a007
https://doi.org/10.1145/1754399.1754402
https://doi.org/10.1137/S0097539795280895

Dynamic Pricing of Servers on Trees
Ilan Reuven Cohen
TU Eindhoven, The Netherlands
CWI, Amsterdam, The Netherlands
ilanrcohen@gmail.com

Alon Eden
Tel Aviv University, Israel
alonarden@gmail.com

Amos Fiat
Tel Aviv University, Israel
fiat@tau.ac.il

Łukasz Jeż
University of Wrocław, Poland
lje@cs.uni.wroc.pl

Abstract

In this paper we consider the k-server problem where events are generated by selfish agents, known
as the selfish k-server problem. In this setting, there is a set of k servers located in some metric
space. Selfish agents arrive in an online fashion, each has a request located on some point in the
metric space, and seeks to serve his request with the server of minimum distance to the request. If
agents choose to serve their request with the nearest server, this mimics the greedy algorithm which
has an unbounded competitive ratio. We propose an algorithm that associates a surcharge with
each server independently of the agent to arrive (and therefore, yields a truthful online mechanism).
An agent chooses to serve his request with the server that minimizes the distance to the request plus
the associated surcharge to the server.

This paper extends [9], which gave an optimal k-competitive dynamic pricing scheme for the
selfish k-server problem on the line. We give a k-competitive dynamic pricing algorithm for the
selfish k-server problem on tree metric spaces, which matches the optimal online (non truthful)
algorithm. We show that an α-competitive dynamic pricing scheme exists on the tree if and only
if there exists α-competitive online algorithm on the tree that is lazy and monotone. Given this
characterization, the main technical difficulty is coming up with such an online algorithm.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of compu-
tation → Algorithmic mechanism design

Keywords and phrases Online algorithms, Online mechanisms, k-server problem, Online pricing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.10

Category APPROX

Funding Ilan Reuven Cohen: Partially supported by the ERC consolidator grant 617951.
Alon Eden: Partially supported by the European Research Council under the European Unions
Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122, by the
Israel Science Foundation (grant numbers 317/17 and 1841/14).
Amos Fiat: Partially supported by the Israel Science Foundation (grant number 1841/14).
Łukasz Jeż: Partially supported by Polish National Science Centre grant 2016/22/E/ST6/00499.

© Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Łukasz Jeż;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 10; pp. 10:1–10:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilanrcohen@gmail.com
mailto:alonarden@gmail.com
mailto:fiat@tau.ac.il
mailto:lje@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Dynamic Pricing of Servers on Trees

1 Introduction

Online algorithms were designed to deal with cases where the input arrives piecemeal over
time and consists of a sequence of events. Problems such as paging, online matching, online
scheduling, etc., are all examples of such problems.

This paper, belongs to a thread of recent research where events are selfish and the goal is
to set surcharges on the various decisions that can be made by the agent with some desirable
goal in mind such as minimizing social cost, makespan, completion time, flow time, sum of
completion times, etc. (See Section 1.1 for some examples.) The prices may change over time,
but must be known to the selfish agent upon arrival so that the agent can make an informed
decision. Truthfulness is immediate in such settings, the agent gets asked no questions and
therefore cannot lie about anything. The agent simply takes the utility maximizing (disutility
minimizing) option available.

Specifically, in the dynamic pricing scheme for the k-server problem that we consider, the
mechanism sets a surcharge on each server prior to an arrival of the next request. The agent
that issues the request greedily chooses the server which minimizes the distance between the
server and request plus the surcharge for the server. Note that the mechanism may update
the surcharge of the servers based on past requests.

This paper extends the dynamic pricing results obtained for the k-server problem in [9]
and deals with servers on a tree rather than restricted to a line. Although the basic idea is
the same: use dynamic pricing to “nudge” selfish agents to act as though they were under
the control of a centralized online algorithm, the tree metric is much more challenging to
deal with than the line.

We show that any α-competitive online algorithm on the tree that is simultaneously (i)
lazy: moves at most one server and (ii) monotone: the set of points served by server (if
non-empty) is contiguous and includes the server location, can be converted into a dynamic
posted pricing scheme for the selfish k-server problem on the tree with a competitive ratio of
α. These properties were defined and in fact proved for the line [9], but they extend naturally
to trees; cf. Section 2.2 for formal definitions. Thus, the main challenge in this paper is to
give a k-competitive k-server algorithm for the tree that is lazy and monotone.

In the work of Cohen et al. [9], the main idea for obtaining an algorithm with those
properties on a line is to run a simulation of the Double Cover (DC) algorithm and serve
each request (at point) r with a server that is adjacent to r (i.e., there are no intermediate
servers on its path to r) and that can be matched to a simulated Double Cover server which
serves r in a min cost matching. This maintains the competitive ratio and ensures laziness
and monotonicity. Generalizing this idea to trees is not immediate. In particular, choosing
an arbitrary server adjacent to the request which can also be matched to a simulated server
in a min cost matching results in non-monotonicity, which cannot be priced. This means
that one needs a deeper understanding of the tree topology in deciding which of the servers
is to serve the request (We explain this in detail in Section 2.2).

1.1 Related Work

1.1.1 Dynamic Pricing Schemes and Online Mechanisms
Lavi and Nisan [18] initiated the study of competitive analysis of incentive compatible online
auctions. In particular, they give an incentive compatible on-line auction for many identical
items with a tight competitive ratio. They consider both revenue and social welfare targets.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:3

Awerbuch, Azar, and Myerson [1] give a general scheme that produces posted prices
for general combinatorial auctions, with a competitive ratio equal to the logarithm of the
ratio between highest and lowest prices, times the underlying competitive ratio for the
combinatorial auction.

Although not explicitly stated as a pricing scheme, [14] effectively gives a dynamic pricing
scheme for 2 servers in any metric space. Dynamic pricing was used in the context of packets
with values and deadlines [12] with the goal of maximizing social welfare. Dynamic subsidies
were introduced in [6] in the context selfish agents and facility locations. In [9] selfish agent
versions were introduced for metrical task systems [4], for the k-server problem [19] on the
line, and for metrical matching [15] on the line, and appropriate dynamic pricing schemes
were described for reducing social cost. Dynamic pricing for scheduling selfish agents on
related machines to minimize makespan were studied in [11]. In [13] dynamic prices were
used to give a good approximation to the maximal flow time. In [10] dynamic prices were
used to approximate the sum of weighted completion times. Many problems and extensions
remain open.

1.1.2 The k-server problem
The k-server problem was introduced by Manasse et al. [19] as a far reaching generalization
of various online problems. The best-studied of those is the paging (caching) problem, which
corresponds to k-server problem on a uniform metric space. Sleator and Tarjan [20] gave
several k-competitive algorithms for paging and proved that this is the best possible ratio for
any deterministic algorithm.

The famous k-server conjecture of Manasse et al. [19] hypothesizes that the k-server
problem is no harder in other metric spaces, i.e., that k is the optimal ratio for deterministic
algorithms in general metrics. A lower bound of k holds in any metric space of at least
k + 1 points [19], and a nearly matching upper bound of 2k − 1 was given for the Work
Function Algorithm (WFA) by Koutsoupias and Papadimitriou [17], which remains the best
known algorithm for general metrics. The conjecture has been settled (exactly) for several
special metrics. In particular, Chrobak et al. [7] gave an elegant k-competitive algorithm for
the line metric, called Double Coverage (DC), which was later extended and shown to be
k-competitive for all tree metrics [8]. Additionally, Bartal and Koutsoupias have shown that
WFA is k-competitive for the line, the star, and all metric spaces with k + 2 points [3].

Moreover, Bansal et al. [2] have recently shown that the exact competitive ratio of the
DC algorithm, which we simulate by dynamic pricing scheme, when it uses k servers but the
offline optimum uses only h ≤ k servers is k(h+1)

k+1 . (For such setting, the general lower bound
is k

k−h+1 [19], which is matched only for the special case of paging [20].)
Most results on the k-server problem can be found in the survey by Koutsoupias [16]. Due

to our focus, we ignore the randomized variant, on which there is significant recent progress [5].

1.2 Roadmap to this Paper
The next section, Section 2 gives the model and sufficient condition to give of competitive
pricing algorithms on trees. We show that any algorithm that is lazy and monotone can be
used to derive a dynamic pricing scheme, and that a dynamic pricing scheme implies that
such an algorithm must exist. Section 3 gives an algorithm that is clearly lazy and monotone,
but it remains to show that all points on the tree are associated with some server, i.e., that
the algorithm is well defined. This is shown in Section 4. In Section D (in the Appendix) we
show that the algorithm of Section 3 can be implemented in polynomial time. The Appendix
also contains full proofs of various claims.

APPROX/RANDOM 2019

10:4 Dynamic Pricing of Servers on Trees

2 The Model and Preliminaries

2.1 The Selfish k-server problem
In this problem, there is a set of k-servers located in some metric space defined by an
undirected weighted tree T = (V,E,w). A sequence of selfish requests σ = 〈σ1, σ2, . . . , 〉
arrives online, where each request is issued at some point in the metric space. Before an
arrival of each request, a dynamic pricing scheme sets a surcharge (price) on each server,
and the arriving request chooses to be served by the server s that minimizes the sum of the
distance of s from the request and the surcharge on s; the server s is then moved to the
request. The dynamic pricing scheme’s objective is to minimize the total distance moved
by all servers.

Formally, given a request sequence σ = 〈σ1, σ2, . . . , σT 〉, each of the requests must be
served by one of the k servers, let ` = 〈`1, `2, . . . , `T 〉 denote the solution sequence, where
`i ∈ {1, . . . , k} is the index of the server which serves the i-th request. Define the event prefix
σ≺t to be the sequence of events up to but not including event t: σ≺t = 〈σ1, σ2, . . . , σt−1〉 .
The servers location after request t is: si(σ≺t+1) = si(σ≺t) for i 6= `t and s`t

(σ≺t+1) = σt.
Let si(σ≺1) denote the initial server location.

The cost of serving σ by the solution sequence ` is

COST(σ, `) =
T∑

t=1
dist(σt, s`t

(σ≺t)).

In the selfish setting, the server that serves the request σt in step t is chosen so as to
minimize the distance of σt to the server’s current location plus the surcharge function
c : σ≺t × {1, . . . , k} 7→ R+ (i.e., c depends only on past events). The chosen server is:

`c
t ∈ arg mini dist

(
σt, si(σ≺t)

)
+ c(σ≺t, i).

Let `c = 〈`c
1, . . . , `

c
t〉 be the (solution) sequence of server indices chosen by the selfish

requests σ, and let `∗ = 〈`∗1, . . . , `∗t 〉 be the servers that minimize the total cost for σ. A
pricing scheme c is α-competitive if for any σ:

COST(σ, `c)
COST(σ, `∗) ≤ α.

2.2 A Sufficient Condition for Competitive Pricing Algorithms on trees
In this paper, we focus on tree metrics, where given a weighted tree T = (V,E,w), we define
a tree metric space to include the vertices of T along with all points along the edges of T
(see Fig. 3a in Appendix A). Given two points a, b ∈ T , we denote by P[a, b] the [unique]
path between a and b including both endpoints. We use dist(a, b) to denote the distance
between a and b defined by the metric. We also use P(a, b] to denote the path from a to b
that is open at a and closed at b.

We avoid reasoning about prices by describing how any online algorithm of a certain form
can be converted into a dynamic pricing scheme that nudges the [upcoming] selfish agent do
exactly as the online algorithm.

We use the following two properties. We say that an online algorithm is
1. lazy if it moves at most one server.
2. monotone if a server i, located at si, serves a point p, then it also serves all the points

along the path P[si, p].

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:5

The following lemma shows that any algorithm that satisfies the above properties can be
translated into a dynamic pricing scheme with the same competitive ratio. We sketch the
proof below for a “degenerate” case, and we defer the full proof to Appendix C.

I Lemma 1. Given a lazy and monotone online algorithm for the k-server problem on tree
metrics, with a competitive ratio of α, there is a dynamic pricing scheme for the k-server
problem on tree metrics, with the same competitive ratio.

Proof sketch. Just before the arrival of some request σt (and after serving σ≺t), every server
s has an associated subtree Ts of points such that for every point p ∈ Ts if the next request
were made at p, then s would serve it; we say that s is responsible for Ts (breaking ties
lexicographically in case multiple servers are at a request’s location). These subtrees partition
the whole tree metric, i.e., they are disjoint and their union is the entire tree.

First, we set the price for servers for which Ts = ∅ at ∞. Next, we observe that when
setting the surcharges it is sufficient to consider just the endpoints of the subtrees. We say
that two non-empty subtrees, Ts and Ts′ , are touching at an endpoint p if there is no server
s′′ such that in the paths from s to p and from s′ to p in T contain a point q(6= p) ∈ Ts′′ .
Note that there may be many mutually touching subtrees.

Consider a maximal collection of non-empty subtrees Ts1 , Ts2 , . . . , Tsk
, which pairwise

touch at an endpoint p. (Clearly, p belongs to one of those subtrees.) The key observation
is that a selfish agent requesting service at p must be indifferent between choosing any of
the servers s1, . . . , sk. This induces a set of linear equations giving the difference in the
surcharges, c(si)− c(sj),

dist(si, p) + c(si) = dist(sj , p) + c(sj) for all 1 ≤ i < j ≤ k
⇒ c(si)− c(sj) = dist(sj , p)− dist(si, p) for all 1 ≤ i < j ≤ k. (1)

The relationship of subtrees “touching” can itself be described as a tree, so the equations
above (1) can all be simultaneously satisfied. Any solution gives the prices we need. J

The above argument is incomplete, as when subtrees touch at tree vertices, or at at a
server’s location, the selfish request may deviate from the prescribed behavior of the algorithm.
This issue can be treated easily by “nudging” the subtrees to avoid these phenomena. More
on this in Appendix C.

How to find a lazy and monotone algorithm

Any non-lazy algorithm can be trivially transformed into a lazy algorithm simply by delaying
the motion of a server that is not serving a request. However, this may result in a server serving
a non-empty set of points that does not include its location, contradicting monotonicity.
Rather than simply following the simulation, we do as in [9]1, one may move any server
matched to the simulated server in a min cost matching – this is guaranteed to preserve
the competitive ratio. We show below that monotonicity can be preserved by choosing an
appropriate matching. Given an online algorithm A and a set of requests σ, let cost(A, σ) be
the cost of A for serving σ.

I Lemma 2 ([9], Lemma 4.3). Let ON be an online algorithm, let on≺t
i be the location of

server i after ON serves requests σ≺t, and let LAZY be an algorithm that serves request σt by
the server ` which is matched to σt in an arbitrary min-cost matching between {on≺t+1

i }i∈[k]
and s≺t, where the latter is a vector of locations of LAZY’s servers after serving σ≺t. Then
cost(LAZY, σ≺t) ≤ cost(ON, σ≺t) for every t.

1 Originally shown for the line, but the proof works for any metric space, which we show in Appendix B
for completeness.

APPROX/RANDOM 2019

10:6 Dynamic Pricing of Servers on Trees

The above lemma suggests a natural approach to find an algorithm with the desired
properties. The approach is to simulate an algorithm that does not satisfy these properties (in
our case, the Double Cover algorithm discussed in Section 2.4), and whenever the simulated
algorithm serves the request with one of its simulated servers, choose a real server that is
matched to the simulated server in a min-cost matching. While this solution produces a lazy
algorithm with the same competitive ratio, it is not a-priori clear if such a server can be
chosen in a way that results in a monotone algorithm. We show that for the Double Cover
algorithm, this can indeed be done.

2.3 Characterization of min-cost matching on trees
We now give a full characterization of min-cost matchings on trees. As mentioned, the
matching between two sets of points P and Q (|P | = |Q|) in a tree metric T is more involved
than in a line, as given a point p ∈ P , there can be multiple points in Q local to p that can be
matched to p in a min-cost matching between P and Q. Figure 1 contains a simple example.

In order to characterize the min-cost matching we use the following definition to “cut” a
tree T at point x to two trees: Tx(p), T x(p), where p ∈ Tx(p). Formally,

I Definition 3. Given a tree T and two distinct points p, x ∈ T , let Tx(p) be the subtree that
contains p and does not contain x when splitting T into two subtrees at point x. Let T x(p)
be T \ Tx(p).

We define the lowest common ancestor of two points p and q in the tree when rooted at
point r.

I Definition 4. The lowest common ancestor of two points p, q with respect to a point
r, as LCAr(p, q) = argmaxx∈T {dist(x, r) : x ∈ P(p, r) ∩ P(q, r)}.

The following Lemma gives necessary and sufficient conditions for a point p ∈ P to be
matched to q ∈ Q in some min cost matching.

I Lemma 5. Let P and Q be two sets of points in T such that |P | = |Q|, and let p ∈ P
and q ∈ Q. Then there exists a min-cost matching M : P → Q that matches p to q if and
only if the following holds – when considering every point x 6= q on the path from p to q,∣∣T x(q) ∩ P

∣∣ > ∣∣T x(q) ∩Q
∣∣.

The following structural lemma is used in our proofs (we defer both proofs to Appendix E).

I Lemma 6. Let P , Q be two sets of points in T (|P | = |Q|). For points q, r ∈ T , let Tr(q)
be a sub-tree such that |Tr(q) ∩ P | > |Tr(q) ∩Q|. Then there exists p ∈ Tr(q) ∩ P such that
for all x ∈ P(p, r) ,

∣∣T x(r) ∩ P
∣∣ > ∣∣T x(r) ∩Q

∣∣.
2.4 The Double Cover algorithm
In order to achieve an optimal deterministic bound, our surcharge algorithm simulates the
Double Cover (DC) algorithm on trees [8]. In [8], the following was shown.

I Theorem 7 ([8]). The Double Cover algorithm is k-competitive.

The algorithm roughly works as follows: When a request is issued at some point r, move
all the servers that “see” r (have no other server on the path to r) at the same speed until
either (i) a server d is blocked by another server c that moves towards r, in which case d
no longer “sees” r and will cease moving towards r (and all servers that see r will continue
moving towards r), or (ii) a server d reached r’s position, in which case, the servers stop
moving, and d serves r.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:7

We use the following notation throughout the paper. The locations of the Double Cover
servers, dci(σ≺t) ∈M , i = 1, . . . , k, determine the “area of responsibility” for every Double
Cover server: should some request occur at point p ∈ M , there is at least one server i at
dci(σ≺t) that will be used by the Double Cover algorithm to serve the request at p. If the
time t and requests σ≺t = σ1, . . . , σt−1 are fixed, we can simplify notation as follows:

si = si(σ≺t), i = 1, . . . , k,
S = 〈s1, . . . , sk〉

dci = dci(σ≺t),
DC = 〈dc1, . . . , dck〉

dci(r) = dci(σ≺tr) r ∈ T,
DC(r) = 〈dc1(r), . . . , dck(r)〉.

In [9], we showed that for the line metric, exactly one of the two adjacent real servers
to the request can be matched to the simulated server at the request (Lemma 4.2 in [9]).
Moreover, if we use DC on the line as ON, serving the request σt using the adjacent real
server that is matched to σt recovers monotonicity (Lemma 4.4 in [9]). For the case where
the underlying metric is a tree, this is much more involved, as there can be multiple adjacent
real servers that can be matched to σt in a min cost matching, and choosing the wrong one
might result in a violation of monotonicity, as shown in Figure 1. In Section 3, we define a
binary relation �r on pairs of servers that can serve a request at point r such that if i �r j,
then server i cannot cause a monotonicity issue with respect to server j (more on that in
the relevant section). Since �r is a strict order(see Lemma 15), there exists a server that is
maximal with respect to �r, and using this server would not cause monotonicity issue.

The following property on the movement of the double cover servers on trees that is used
to prove the correctness of our algorithm.

I Lemma 8. For any DC server dci, and any point r ∈ T : If dci does not serve the request
at r(dci(r) 6= r), then for any p /∈ Tr(dci) we have P[dci, dci(p)] ⊆ P[dci, dci(r)].

Proof. Consider the trail of a DC server moving in response to a request. Observe that
every point along the trail was closer to the (former) location of the DC server than to the
(former) location of any other DC server. That is:

For all dcj , r ∈ T, for every q ∈ P(dcj , dcj(r)], dist(dcj , q) < dist(dcz, q) for all z 6= j. (2)

Let dcj(r, t) be the position of server j after a movement of at most t units for a request
r, or the maximum movement the server can make if it is blocked before moving t unites. Let
tj(r) be the distance traversed by dcj for the request r, i.e., tj(r) = dist(dcj , dcj(r)). Since
p /∈ Tr(dci), the following holds:

For all dcj ∈ Tr(dci), t′ ≤ tj(r) : P[dcj , dcj(p, t′)] ⊆ P[dcj , dcj(r, t′)]. (3)

We will prove that ti(p) ≤ ti(r) and by (3) the condition holds. Let b be the DC server
that blocks i, i.e. dcb(r, ti(r)) ∈ P(dci(r, ti(r)), r), and let y = dcb(r, ti(r)).

Case 1: dcb ∈ Tr(dci) and tb(p) ≥ ti(r). By (3), dcb(p, ti(r)) = y ∈ P(dci(p, ti(r)), p), so dcb

block dci at ti(r) when the request is at p.
Case 2: dcb ∈ Tr(dci) and tb(p) < ti(r). Let dc` the server which blocked dcb, by (2) we

have dc`(p, tb(p)) /∈ P(dcb, y). Hence, dc`(p, tb(p)) ∈ P(y, p) ⊆ P(dci(p, tb(p)), p) so dc`

block dci at tb(p) < ti(r) when the request is at p.
Let x = LCAp(r, dcb) and txb = dist(tb, x). Note that if dcb /∈ Tr(dci) then txb ≤ ti(r).

APPROX/RANDOM 2019

10:8 Dynamic Pricing of Servers on Trees

Case 3: dcb /∈ Tr(dci) and tb(p) ≥ txb . Hence, dcb(p, txb) = x and x ∈ P(r, p) ⊆ P(dci(p, txb), p)
so dcb blocks dci at txb ≤ ti(r) when the request is at p.

Case 4: dcb /∈ Tr(dci) and tb(p) < txb . Let dc` the server which blocked dcb. By (2),
dc`(p, tb(p)) /∈ P(dcb, x) hence dc`(p, tb(p)) ∈ P(x, p) ⊆ P(dci(p, txb), p) so dc` blocks dci

at tb(p) < ti(r) when the request is at p. J

3 An Algorithm for Dynamic Pricing on Trees

We now present a lazy and monotone k-competitive algorithm. This is a “new” (optimal)
algorithm for the k-server problem on trees. As mentioned, our goal is to find a region
for each server, such that for any request in the region, there exists a min cost matching
which matches the server to the dc server at the request (after the movement of the dc
servers). Note that, for some requests more than one server can be matched to the request.
Figure 1 contains a simple example. Moreover, the figure shows that the naïve approach
that matches an arbitrary min-cost server to the DC server serving the request produces
non-monotonicity. We need to select the real server to move more carefully – this is the
purpose of the precedence relation, �r.

Recall the the definition of a lowest common ancestor (LCA) (Definition 4). We now
define the precedence relation that is used to determined which of the servers in the min-cost
matching to the DC server that serves the request can be used to serve the request. Roughly
speaking, a server i precedes server j with respect to point r (i �r j) if, when inspecting the
LCA of i and j with respect to point r, there is a DC server ` that comes from j’s subtree
and leaves the LCA towards r. The intuition behind this definition is as follows. Suppose we
choose j as the server that serves r (when j is in the min-cost matching to the DC server
that serves r). If the request is at a point r′ further away from r, DC server ` might not
leave the LCA, preventing server j from being in a min-cost matching to the DC server that
serves the request at r′, which might result in non-monotonicity. This situation is exactly
the one depicted in Figure 1.

I Definition 9. We say that server i �r j (i has higher priority than j with respect to r) if
(i) LCAr(si, sj) 6= sj, and (ii) there exists some DC server ` such that:

LCAr(si, sj) ∈ P[dc`, dc`(r)] and dc` ∈ TLCAr(si,sj)(sj).

I Definition 10. We define

MC(r) = {` : ∃ min-cost matchingM : S→ DC(r) such thatM(s`) = r}

to be the set of servers that can be matched to the DC server serving the next request
located at r.

Accordingly, we define:

I Definition 11. A point r ∈ T is `-colorable for some server `:
1. ` ∈ MC(r).
2. There is no server j such that j ∈ MC(r) and j �r `.

The intuition behind the above definition is that Property 1 ensures that the conditions
for Lemma 2 hold and thus the algorithm is k-competitive. Finally, Property 2 ensures that
the algorithm is monotone and well-defined, as we will show. See Figure 2 in Section A for
illustrations of the various definitions made above.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:9

Algorithm 1 The Monotone Regions algorithm (see Fig. 3 in Appendix A) for illustration.

Input: A tree metric T , initial servers locations 〈s1(∅), . . . sk(∅)〉 ∈ Mk, and an online
sequence of requests σ ∈ T ∗.

1. After serving σ≺t, before the current request σt is revealed:
a. Initialize the forest F 0 ← T

b. For i = 1, . . . , k:
i. Ci ← {p ∈ F i−1 : p is i-colorable}

Ci is the set of points that are i-colorable in the current forest F i−1.
ii. Ri ← { p ∈ Ci : for all q ∈ P(p, si), q ∈ Ci }

Ri is the monotone region of Ci around the location of server i.
iii. F i ← F i−1 \Ri

Fi is the remaining forest after removing Ri.
2. Let σt be the current request, and let ` ∈ [k] be the server such that σt ∈ R`

Serve σt with server `
dct+1 ← DC(dct, σt)

Our algorithm is described in Algorithm 1. We remark that it is not obviously poly-time.
In particular, it may not be clear how Ri’s can be computed efficiently. However, we describe
how to implement the algorithm in poly-time in Appendix D.

We say that our algorithm is well defined if for every sequence σ≺t, for every point x ∈ T ,
there exists a server i such that x ∈ Ri.

I Theorem 12. There exists a dynamic pricing scheme for the selfish k-server problem on
trees with an optimal competitive ratio of k.

Proof. Assuming Algorithm 1 is lazy, monotone and well defined, it can be simulated by a
pricing scheme by Lemma 1 and it is k-competitive by Lemma 2, because a point r ∈ T is
served by server ` only if r is in R`, and therefore r is `-colorable, which implies ` ∈ MC(r).
The algorithm laziness follows by definition and the monotonicity of the algorithm follows by
step 1(b)ii of Algorithm 1, since the region contains only points p such that all other points
on the path from p to the server are also in the region of the server2. To conclude the proof,
Lemma 13 below implies the algorithm is well-defined. J

4 Algorithm 1 is Well Defined

In this section, we show that Algorithm 1 is well defined, i.e. that every point in the tree
would be in some server’s region, concluding the proof of Theorem 12. To help the reader
in following this section, various figures, depicting important lemmas of this section, are
presented in Figure 4 of Section A.

I Lemma 13 (Well-Defined Lemma). For any sequence σ, Algorithm 1 is well-defined.

2 We note that Ci itself might not be continuous, and therefore, step 1(b)ii is needed in order to ensure
monotonicity.

APPROX/RANDOM 2019

10:10 Dynamic Pricing of Servers on Trees

Figure 1 In order to maintain double cover’s (DC) competitive ratio, we want to serve each
request with a real server that “sees” the request (has no intermediate real servers along the path to
the request), and is matched to a DC server that serves the request in a min cost matching between
the real servers and the simulated DC servers. Unfortunately, choosing an arbitrary real server that
is matched to the DC server might violate monotonicity. In the figure above DC servers are depicted
by squares, namely a, b, c, and real servers by circles, namely 1, 2, 3. Figure I depicts the initial
configuration. We consider two possible locations of the next request, r, p. If the next request is at r,
depicted in Figure II, then after the DC servers move, server a which served the request can either
be matched to the green(2) server (Figure IV), or to the blue(1) server (Figure V) in the min-cost
matching. If one chooses to serve the request with the blue(1) server, then it violates monotonicity.
This is since if the next request in the initial configuration is on p (Figure III) instead, then the
unique min-cost matching matches the green(2) server to server b. Finally, note that in the initial
configuration r is not blue(1) colorable. According to Definition 11, properties 1 and 2 hold for the
blue(1) server, but property 3 does not since (2) ∈ MC(r) and (2) �r (1) (DC server a traverses
LCAr(1, 2) and “arrives” from the blue(1) server subtree).

We use the following observation:

I Observation 14 (See Figure 4a). From the definition, we observe that for every r, p, q in
T (r 6= p):
(1) For q ∈ Tr(p), we have: x ∈ Tr(p) ⇐⇒ r /∈ P[x, q].
(2) For q /∈ Tr(p), we have: x ∈ Tr(p)⇒ r ∈ P[x, q].

In order to prove Lemma 13, we first show that the relation �r is a strict partial order.

I Lemma 15. �r is a strict partial order relation for every r ∈ T .

Proof. In order to show that �r is a strict partial order relation, we need to show it is
irreflexive and transitive. (Note that these two properties imply asymmetry.) Since it is clear
that �r is irreflexive (LCAr(sj , sj) = sj for every r ∈ T and j), we show that it is transitive.

Assume that i �r j and j �r `, we prove that i �r `. Let Li,j = LCAr(si, sj) and Lj,` =
LCAr(sj , s`) and Li,` = LCAr(si, s`). Let dci,j and dcj,` be the respective dc servers which
order the servers, i.e., Li,j ∈ P [dci,j , dci,j(r)] and dci,j ∈ TLi,j (sj), and Lj,` ∈ P [dcj,`, dcj,`(r)]
and dcj,` ∈ TLj,`

(s`).
Case 1. Li,j ∈ P[Lj,`, r], hence Li,` = Li,j and TLi,j (sj) = TLi,j (s`), and therefore Li,` ∈
P[dci,j , dci,j(r)] and dci,j ∈ TLi,`

(s`). By Definition 9 i �r `.
Case 2. Lj,` ∈ P[Li,j , r], hence Li,` = Lj,` and therefore Li,` ∈ P[dcj,`, dcj,`(r)] and dcj,` ∈

TLi,`
(s`). By Definition 9 i �r `. J

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:11

This allows us to conclude that every point in the tree T is colorable by some server.

I Corollary 16. For any r ∈ T , there exist j such that r is j-colorable.

Proof. Consider a point r ∈ T . Recall that MC(r) is the set of servers the can be matched
to r in a min-cost matching between S and DC(r). Since �r is a strict order relation (by
Lemma 15), there is a server ` ∈ MC(r) that is maximal with respect to �r in MC(r), i.e.,
such that for every server j ∈ MC(r), j �r `. Hence, there is a server ` for which Properties 1
and 2 of `-colorability hold. J

A subtree T̃ is fully-colorable if for any point p ∈ T̃ there exists a server ` such that
p is `-colorable and s` ∈ T̃ . Since Algorithm 1 preserves monotonicity, it follows that a
server would color points only in the subtree containing this server. Therefore, in order to
prove that Algorithm 1 is well-defined we need to show that not only the original tree T is
fully-colorable (Corollary 16), but also that every T̃ ∈ F i−1 is fully-colorable as well.

For the sake of proving this property (Corollary 22), we characterize properties of the
min-cost matching MC(p) and the relation �p. First, we now show that for any server ` the
region in which ` is in the min-cost matching is monotone.

I Lemma 17 (See Figure 4b). For any server ` and two points r, p in T such that p /∈ Tr(s`),
the following holds – if ` ∈ MC(p) then ` ∈ MC(r).

Proof. We will show that for any point x ∈ P[s`, r], if dcj(r) ∈ Tx(s`) then dcj(p) ∈ Tx(s`):
First, we observe that dcj(r) 6= r (dcj does not serve request at r), since r /∈ Tx(s`) and

dcj(r) ∈ Tx(s`). Then, we observe that dcj ∈ Tx(s`), since P(dcj(r), x) ⊆ P(dcj , x). By
Lemma 8, we have P [dcj , dcj(p)] ⊆ P [dcj , dcj(r)], since x /∈ P(dcj , dcj(r)) (dcj(r) ∈ Tx(s`)),
we have x /∈ P(dcj , dcj(p)) and we have dcj(p) ∈ Tx(si).

We get that for every x in P[s`, r], if dcj(r) ∈ Tx(s`), then dcj(p) ∈ Tx(s`), which
implies |Tx(s`) ∩ dc(p)| ≥ |Tx(s`) ∩ dc(r)|. Since ` ∈ MC(p), for any x ∈ P[s`, r] we have
|Tx(s`) ∩ S| > |Tx(s`) ∩ dc(p)|. Which together yields that the condition of Lemma 5 hold
also for dc(r), and therefore ` ∈ MC(r). J

Which yields the following lemma which will be used to prove Lemma 21.

I Lemma 18 (See Figure 4c). For any two servers b, ` and a points x in T such that
b ∈ MC(x) and s` /∈ Tx(sb) we have for any p ∈ P(sb, x) that ` /∈ MC(p).

Proof. Assume towards a contradiction that there exists p ∈ P(sb, x) such that ` ∈ MC(p).
Consider a point y ∈ P(x, p) which isn’t a tree vertex, and in which at most a single DC
server will arrive if the request is issued at this point (there exists such a point due to the
continuity of the metric space). According to Lemma 17, `, b ∈ MC(y).

Therefore, by Lemma 6 we have:

|Ty(sb) ∩ DC(y)| < |Ty(sb) ∩ S| , and
|Ty(s`) ∩ DC(y)| < |Ty(s`) ∩ S| .

Since y is not a tree node, T = Ty(s`) ∪ Ty(sb) ∪ {y}. Moreover, there is at most one
DC(y) server at y (by y’s selection), so overall there are more real servers than DC(y) servers,
a contradiction. J

The following is an important property of the strict partial order �r.

I Lemma 19 (See Figure 4d). For any two servers `, j, a point r such that sj ∈ Tr(s`), and
any point p /∈ Tr(s`): If j �p `, then j �r `.

APPROX/RANDOM 2019

10:12 Dynamic Pricing of Servers on Trees

Proof. First, since sj ∈ Tr(s`) then LCAr(s`, sj) ∈ Tr(s`), therefore we have that
LCAr(s`, sj) = LCAp(s`, sj). Second, j �p ` therefore there exists dci such that dci ∈
TLCAp(s`,sj)(s`), and LCAp(s`, sj) ∈ P[dci, dci(p)]. Clearly, if the request is on r and dci

serves point r then LCAr(s`, sj) ∈ P [dci, dci(r)]. If dci does not serves point r, by Lemma 8
we have P [dci, dci(p)] ⊆ P [dci, dci(r)], and again LCAr(s`, sj) ∈ P [dci, dci(r)]. In either case
LCAr(s`, sj) ∈ P[dci, dci(r)] and by Definition 9 we have j �r `. J

We now prove the main technical lemma used in proving that the algorithm is monotone.
The lemma roughly shows the following. Let r ∈ T be some point that is ` colorable by some
server `, and let j be another server on the “same side” of ` with respect to r. Let p be a
point on the other side of ` and j with respect to r. The lemma states that if p is j-colorable,
then it is also `-colorable (see Figure 4e for a visual depiction).

The significance of this lemma is the following – suppose r is a point that the algorithm
decided should be served by some server ` (which obviously means r is `-colorable). Since
we want our algorithm to be monotone, this immediately disconnects all the points further
away from r from the servers that are on the same side as ` with respect to r. This would be
a problem if there was such a point p that can be served only by servers on the same side as
`, but not ` itself. The lemma basically shows this situation cannot happen.

I Lemma 20 (See Figure 4e). For any two servers `, j and two points r, p in T such that
sj , s` ∈ T r(p): If r is `-colorable and p is j-colorable, then p is `-colorable.

Proof. Assume for contradiction that p is not `-colorable. We consider the following cases
Case 1. ` ∈ MC(p). By the definition of `-colorable, we have that there is a server i

such that i ∈ MC(p) and i �p `. If si ∈ T r(p), then by Lemma 17, i ∈ MC(r),
and by Lemma 19, i �r `, Hence r is not `-colorable, a contradiction. Otherwise,
si ∈ Tr(p). Let x = LCAp(s`, si). Note that r ∈ P[s`, p], r ∈ P[sj , p] and r /∈ P[si, p] by
Observation 14. We get that P[si, p] ∩ P[s`, p] = P[si, p] ∩ P[r, p] = P[si, p] ∩ P[sj , p],
hence LCAp(sj , si) = LCAp(s`, si) = x. In addition, Tx(s`) = Tx(r) = Tx(sj), and since
i �p ` we get i �p j by Definition 9. Recall that, i ∈ MC(p), therefore p not j-colorable,
a contradiction.

Case 2. ` /∈ MC(p). By Lemma 5, there exists a point x on the path from s` to p such that
|Tx(s`) ∩ S| ≤ |Tx(s`) ∩ DC(p)| . (4)

Let x be the closest point to r for which (4) holds. Since j ∈ MC(p), by Lemma 5,
for every point y on the path from sj to p, |Ty(sj) ∩ S| > |Ty(sj) ∩ DC(p)|, and hence,
x ∈ P [s`, LCA(s`, sj)] ⊆ P [s`, r]. Moreover, since r is `-colorable, ` ∈ MC(r), so Lemma 5
implies that
|Tx(s`) ∩ S| > |Tx(s`) ∩ DC(r)| . (5)

Therefore, combining (4) and (5) yields |Tx(s`) ∩ DC(r)| < |Tx(s`) ∩ DC(p)|, and there
must be a server dca such that dca ∈ Tx(s`) and dca(r) /∈ Tx(s`) ⇒ x ∈ P[dca, dca(r)].
In addition, we have∣∣T x(r) ∩ S

∣∣ > ∣∣T x(r) ∩ DC(p)
∣∣ , (6)

since x is the closest point to p for which (4) holds. Combining (4) and (6) yields that
in T̂ = T x(r) \ Tx(s`) we have

∣∣∣T̂ ∩ S
∣∣∣ > ∣∣∣T̂ ∩ DC(p)

∣∣∣. Notice that for every b 6= a such
that dcb ∈ T x(r), we have that dcb(r) ∈ T x(r) since only a single DC server can cross
point x. Since

∣∣∣T̂ ∩ DC(p)
∣∣∣ =

∣∣∣T̂ ∩ DC
∣∣∣, by Lemma 8, we get

∣∣∣T̂ ∩ DC(p)
∣∣∣ =

∣∣∣T̂ ∩ DC(r)
∣∣∣.

Therefore,
∣∣∣T̂ ∩ S

∣∣∣ > ∣∣∣T̂ ∩ DC(r)
∣∣∣, and Lemma 6 implies that there exists si ∈ T̂ such

that for all z ∈ P[si, x], we have
|Tz(si) ∩ S| > |Tz(s`) ∩ DC(r)| . (7)

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:13

In addition, (7) holds also for z ∈ (x, r) by (5), hence, i ∈ MC(r). Moreover, since
x = LCAr(si, s`), x ∈ P[dca, dca(r)] and dca ∈ Tx(s`), we also have i �r `, which
combined with i ∈ MC(r) is a contradiction to r being `-colorable. J

The main lemma to show the property fully-colorable is the following:

I Lemma 21. For a fully-colorable sub-tree T̃ , let r, p ∈ T̃ be two points and ` a server in T̃
such that p /∈ Tr(s`). If we have that

r is `-colorable, and
for all servers a such that sa ∈ T̃ where p is a-colorable, we have sa ∈ Tr(s`),

then for any x ∈ P(r, p], x is `-colorable.

Proof. First, by Lemma 20 we have that p is `-colorable as well. Assume for the purpose
of contradiction that it is not true, let x ∈ P(r, p) be the closet point to p such that x is
not `-colorable. Since T̃ is fully-colorable, there exists a server b, such that sb ∈ T̃ and x
is b-colorable. Note that, if sb ∈ Tr(s`), then sb, s` ∈ T r(x), and since r is `-colorable, by
Lemma 20, x is ` colorable, a contradiction. Let L = LCAr(p, sb)
Case 1. One of the following two holds: (i) x /∈ P(sb, s`), (ii) x = L. In this case, sb, s` ∈

T x(p) and x is b-colorable. Therefore, by Lemma 20, p is b-colorable, a contradiction.
Case 2. x ∈ P(sb, s`), and x 6= L, which implies s` /∈ Tx(sb), and b ∈ MC(x) (since x is

b-colorable). Therefore, by Lemma 18, we have ` /∈ MC(y) for any y ∈ P(sb, x), however
since x 6= L, there exist z ∈ P(x, sb)∩P(x, p), on one hand z is `-colorable (by our choice
of x), on the other hand ` /∈MC(z) (since z ∈ P(sb, x)), a contradiction. J

The above lemma implies the following corollary, yielding that Algorithm 1 is well-defined.

I Corollary 22. For a fully-colorable subtree T̃ , and i a server such that si ∈ T̃ , then for all
subtrees T̂ ∈ T̃ \Ri we have that T̂ is fully-colorable tree.

Proof. Let p be the point in T̂ for which this does not hold, since T̃ is fully-colorable, let
j be the server such that sj ∈ T̃ and p is j-colorable. Let r = argminx{dist(p, x) : x ∈
P(si, p) ∩ Ri} be the closest point to p in Ri. Observe that r /∈ P(sj , si) since otherwise
P(sj , p) ⊆ P(sj , r) ∪ P(r, p), where P(sj , r) ∩ Ri = ∅ and P(r, p) ∩ Ri = ∅. Therefore,
P(sj , p)∩Ri = ∅, and thus sj ∈ T̂ , a contradiction. Hence, by Observation 14(1), sj ∈ Tr(si).
Finally, By Lemma 21, the entire P(r, p) is i-colorable, a contradiction for p /∈ Ri. J

Using this corollary, we can now prove the Well-Defined Lemma.

Proof of Well-Defined Lemma [Lemma 13]. In order for Algorithm 1 to be well-defined,
each point in T should be in the R` region of some server `. We will show that each subtree
T̃ ∈ F i after iteration i in the run of the algorithm execution is fully-colorable. The initial
tree, T is fully-colorable by Corollary 16. After each iteration i, every subtree in F i is
fully-colorable by Corollary 22 (Note that, Ri is a subregion of a single subtree of F i−1).
Therefore, eventually a sub-tree would contain a single server and it is fully-colored by this
server, which yields that F k = ∅ as needed. J

APPROX/RANDOM 2019

10:14 Dynamic Pricing of Servers on Trees

References
1 Baruch Awerbuch, Yossi Azar, and Adam Meyerson. Reducing Truth-telling Online Mechanisms

to Online Optimization. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 503–510, New York, NY, USA, 2003. ACM. doi:
10.1145/780542.780616.

2 Nikhil Bansal, Marek Eliás, Lukasz Jez, Grigorios Koumoutsos, and Kirk Pruhs. Tight Bounds
for Double Coverage Against Weak Adversaries. Theory Comput. Syst., 62(2):349–365, 2018.
doi:10.1007/s00224-016-9703-3.

3 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theor. Comput. Sci., 324(2-3):337–345, 2004. doi:10.1016/j.tcs.
2004.06.001.

4 Allan Borodin, Nathan Linial, and Michael E. Saks. An Optimal On-Line Algorithm for
Metrical Task System. J. ACM, 39(4):745–763, 1992. doi:10.1145/146585.146588.

5 Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, James R. Lee, and Aleksander Madry. k-
server via multiscale entropic regularization. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 3–16, 2018. doi:10.1145/3188745.3188798.

6 Niv Buchbinder, Liane Lewin-Eytan, Joseph (Seffi) Naor, and Ariel Orda. Non-Cooperative
Cost Sharing Games via Subsidies. Theor. Comp. Sys., 47(1):15–37, July 2010. doi:10.1007/
s00224-009-9197-3.

7 Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New Results on
Server Problems. SIAM J. Discrete Math., 4(2):172–181, 1991. doi:10.1137/0404017.

8 Marek Chrobak and Lawrence L. Larmore. An Optimal On-Line Algorithm for k-Servers on
Trees. SIAM J. Comput., 20(1):144–148, 1991. doi:10.1137/0220008.

9 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Lukasz Jez. Pricing Online Decisions:
Beyond Auctions. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 73–91. SIAM, 2015. doi:10.1137/1.9781611973730.7.

10 Alon Eden, Michal Feldman, Amos Fiat, and Tzahi Taub. Truthful Prompt Scheduling for
Minimizing Sum of Completion Times. In 26th Annual European Symposium on Algorithms,
ESA 2018, August 20-22, 2018, Helsinki, Finland, pages 27:1–27:14, 2018. doi:10.4230/
LIPIcs.ESA.2018.27.

11 Michal Feldman, Amos Fiat, and Alan Roytman. Makespan Minimization via Posted Prices. In
Proceedings of the 2017 ACM Conference on Economics and Computation, EC ’17, Cambridge,
MA, USA, June 26-30, 2017, pages 405–422, 2017. doi:10.1145/3033274.3085129.

12 Amos Fiat, Yishay Mansour, and Uri Nadav. Efficient contention resolution protocols for
selfish agents. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 179–188. SIAM, 2007. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283403.

13 Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Clifford Stein. Minimizing Maximum Flow
Time on Related Machines via Dynamic Posted Pricing. In Kirk Pruhs and Christian Sohler,
editors, 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017,
Vienna, Austria, volume 87 of LIPIcs, pages 51:1–51:10. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.51.

14 Sandy Irani and Ronitt Rubinfeld. A Competitive 2-Server Algorithm. Inf. Process. Lett.,
39(2):85–91, 1991. doi:10.1016/0020-0190(91)90160-J.

15 Bala Kalyanasundaram and Kirk Pruhs. Online Weighted Matching. J. Algorithms, 14(3):478–
488, 1993. doi:10.1006/jagm.1993.1026.

16 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, 2009.
doi:10.1016/j.cosrev.2009.04.002.

https://doi.org/10.1145/780542.780616
https://doi.org/10.1145/780542.780616
https://doi.org/10.1007/s00224-016-9703-3
https://doi.org/10.1016/j.tcs.2004.06.001
https://doi.org/10.1016/j.tcs.2004.06.001
https://doi.org/10.1145/146585.146588
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1007/s00224-009-9197-3
https://doi.org/10.1007/s00224-009-9197-3
https://doi.org/10.1137/0404017
https://doi.org/10.1137/0220008
https://doi.org/10.1137/1.9781611973730.7
https://doi.org/10.4230/LIPIcs.ESA.2018.27
https://doi.org/10.4230/LIPIcs.ESA.2018.27
https://doi.org/10.1145/3033274.3085129
http://dl.acm.org/citation.cfm?id=1283383.1283403
http://dl.acm.org/citation.cfm?id=1283383.1283403
https://doi.org/10.4230/LIPIcs.ESA.2017.51
https://doi.org/10.1016/0020-0190(91)90160-J
https://doi.org/10.1006/jagm.1993.1026
https://doi.org/10.1016/j.cosrev.2009.04.002

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:15

17 Elias Koutsoupias and Christos H. Papadimitriou. On the k-Server Conjecture. J. ACM,
42(5):971–983, 1995. doi:10.1145/210118.210128.

18 Ron Lavi and Noam Nisan. Competitive Analysis of Incentive Compatible On-line Auctions.
In Proceedings of the 2Nd ACM Conference on Electronic Commerce, EC ’00, pages 233–241,
New York, NY, USA, 2000. ACM. doi:10.1145/352871.352897.

19 Mark S. Manasse, Lyle A. McGeoch, and Daniel Dominic Sleator. Competitive Algorithms for
Server Problems. J. Algorithms, 11(2):208–230, 1990. doi:10.1016/0196-6774(90)90003-W.

20 Daniel Dominic Sleator and Robert Endre Tarjan. Amortized Efficiency of List Update and
Paging Rules. Commun. ACM, 28(2):202–208, 1985. doi:10.1145/2786.2793.

A Figures

Figure 2 Servers and DC servers are denoted by numbers and letters respectively. Points on
the tree are said to be colorable by some set of servers. Colorability of a point r is determined
by simulating the double cover (DC) algorithm for a request at r. When DC processes a request,
multiple DC servers move towards the request, and one or more arrive to serve it. Imagine a server
were to look along the tree towards r when the DC servers were in motion in response to a request
at r. Such a server may see a trail left by (at most one) DC server in motion towards r. Different
servers may see trails of different DC servers. Two servers see the same trails beyond (above) their
lowest common ancestor (when the tree is rooted at r) but for a DC server that traverses their lowest
common ancestor, they may observe different trails. We say that server i has higher priority than
server j with respect to r, if the trail of the DC server that traverses the lowest common ancestor of
i and j is contained in the trail seen by server j (of the same DC server). On the left the movement
of the DC servers relative to the real server positions is depicted. On the right, all paths from real
servers to r are depicted, with dashed lines indicating vertices seen by more than one real server.
In this example, 1 �r 3 since that trail that server 1 sees of DC server a is contained in the trail
that server 3 sees of DC server a. Similarly, 2 �r 3 (because of a), 5 �r 4 (because of c), and
4, 5 �r 1, 2, 3 (because of b). Notice that �r is not defined for all pairs of servers; For example,
both 1 �r 2 and 2 �r 1. Subsequent to the motion of the DC servers, there are several min cost
matching between real servers and DC servers. In one such matching server 1 is matched to server b,
in another such min matching server 2 is matched to server b, in a third such min matching server 3
is matched to server b. Therefore, MC(r) = {1, 2, 3}. Since 1 �r 2, 3 �r 2, 2 �r 1 and 3 �r 1. We
get that r is 1, 2-colorable. r is not 3-colorable since 1 �r 3.

APPROX/RANDOM 2019

https://doi.org/10.1145/210118.210128
https://doi.org/10.1145/352871.352897
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1145/2786.2793

10:16 Dynamic Pricing of Servers on Trees

(a) A tree metric. (b) Servers’ locations s≺t.

(c) DC servers’ locations dc≺t with boundary
points B≺t. (d) The critical tree graph T≺t

c .

(e) The coloring of the tree as produced by
ColorRegion. Notice that the tree is colored irre-
spective of the next request.

(f) When (next) request σt occurs, it is serviced
by the server in whose region it is located.

Figure 3 Key ingredients for Algorithm 1.

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:17

(a) Observation 14.

(b) Lemma 17.

(c) Lemma 18. (d) Lemma 19.

(e) Lemma 20.

Figure 4 A visual depiction of the lemmas used in order to prove the Well-Defined Lemma.

Figure 5 Issues with the naïve pricing algorithm. In the example on the left, the range served
by the blue server has the blue server on its left end. The open interval up to the blue server is
served by the green server. By setting the surcharges as in the naïve algorithm, a selfish request
(the next request) in the blue zone is indifferent between moving the green and blue servers, so we
have no guarantee that selfish agents emulate the online algorithm. The figure on the right shows a
similar problem where the green and blue regions touch, and, again, by setting the prices naïvely,
selfish agents may choose to move either the green or the blue agent in response to a request. In
both cases, a solution to this problem is to break the tie by “pushing” the boundary between the
green and blue regions slightly “away” from the blue region. See Figure 6 for details.

APPROX/RANDOM 2019

10:18 Dynamic Pricing of Servers on Trees

B Proof of Lemma 2

Proof of Lemma 2. Given two sets of points P,Q such that |P | = |Q|, let w(P,Q) be the
weight of the min-cost matching between P and Q.

Let costt(LAZY) and costt(ON) be the respective cost of algorithms LAZY and ON when
serving request σt. We show that for every t,

costt(LAZY) + ∆Φ ≤ costt(ON), (8)

for a non-negative potential function Φ = w(S, on), where S and on are the current locations
of the servers of LAZY and ON respectively. To prove (8), it suffices to consider the moves of
ON and LAZY independently, in this order.

Fix some min-cost matching M : S → on. We keep M fixed as ON moves its servers.
Clearly, when ON moves a server ` by distance d, the cost ofM does not increase by more
than d. Hence, the same holds for the min-cost matching. Thus Φ increases by at most d,
and (8) holds.

Once ON is done with its moves, we analyze the move of LAZY. Note that at this point
σt ∈ on, i.e., ON has one of its servers at σt. LetM′ be the updated min-cost matching after
ON moves, and let `′ be some server of LAZY that is matched to σt. Upon the move of `′ to
σt, the cost ofM′ is decreased by dist(s`′ , σt). Since the cost of the min-cost matching after
`′ moves is no bigger than that ofM′, Φ decreases by at least dist(s`′ , σt) as well, which is
exactly costt(LAZY). Therefore, costt(LAZY) + ∆Φ ≤ 0, and (8) holds. J

C Full Argument for Lemma 1

The proof sketch of Lemma 1 shows that one can set surcharges where for the incoming agent
there exists a server that minimizes the distance + surcharge and this is the same server that
the algorithm would choose. Whenever this server can be matched (in a min cost matching)
to the DC server that served the request, Lemma 2 implies that the competitive ratio achieved
is optimal. This is enough for a truthful online algorithm with optimal competitive ratio if we
can break ties for the agent. However, our goal is to let the agents break ties for themselves.

We first notice the are two scenarios where an agent can have more than one disutility
minimizing server – (i) either the transition between the responsibility area of server j and
adjacent server i is the location of server i (left side of Figure 5). In this case, setting prices
using Equation (1) will result in both server i and server j being the disutility minimizing
servers for the responsibility area of agent i. (ii) the responsibility area of agent i contains a
tree vertex x from which starts the responsibility area of agent j (right side of Figure 5, i is
blue and j is green). In this case, if a request is made in the responsibility area of agent i
but on the other side of x than server i itself (i.e., in T x(si)), then both server i and server j
are the disutility minimizing servers for this request.

To resolve this issue, we “nudge” the responsibility area of agent i slightly to the direction
of the responsibility area of agent j by an exponentially decreasing tiny ε (see Figure 6). We
inspect the proof of Lemma 2 to see why this does not change the competitive ratio. Since
we do not necessarily use the server that minimizes the min cost matching at the nudged
areas, Equation (8) does not hold if the request is in the nudged area. We notice though that
this equation is violated by at most kε. To see this, we first move ON to the request. Using
the same argument as in Lemma 2, we see that Equation (8) still holds after doing this.

We now move LAZY. Assume LAZY moves some server `′. If the request would have been
in the border between two responsibility areas before the nudge, then the cost of the min
cost matching would have decreased by at least dist(s`′ , σt) and this would have paid for the

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:19

Figure 6 Modifying the regions for which the DC servers are responsible by pushing their
boundaries away from real servers and tree vertices. This prevents indifference between different
real servers except for isolated points. The boundaries are pushed by small amounts such that even
their sum over all regions and all steps is arbitrarily small, thus having no effect on the competitive
ratio. See Appendices B and C for the full argument, which uses a potential function.

cost of moving `′. We notice that if the location of a request in DC moves by ε, the locations
of all servers change by at most ε. Therefore, using the same matching in the nudged area
as we would have used in the border before the nudge increases the cost of the min cost
matching by at most kε. Hence, moving `′ decreases the cost of the min cost matching by at
least dist(s`′ , σt)− kε, violating Equation (8) by at most kε.

As we can let ε exponentially decay (say by a factor of two at each step t), summing
Equation (8) for all t’s yields that the cost of LAZY is at most 2kε larger than the cost of
ON. As ε is arbitrarily small, so is the difference between LAZY and ON, which thus have
the same competitive ratio.

D Implementation in Polynomial Time

Algorithm 1 as defined in Section 3 is continuous in the sense that every point is considered
when deciding which set of points should be in the region Ri of some server i. In this secion,
we show that one can discretize the metric space in a way that only polynomially many
points (in the number of servers and vertices of the tree) are considered when determining
the regions of each server.

Consider a point p ∈ T , such that there exist 1 ≤ i < j ≤ k such that

dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)

(where ‖ denotes concatenation), then p is called a boundary point. That is, a boundary
point is a point for which, if a request occurs in p, two DC servers will serve the request.
Define the set of all boundary points for Double Cover just before event t arrives (see Fig. 3c
in Appendix A):

B≺t =
{
p | ∃1 ≤ i < j ≤ k such that dci(σ≺t ‖ p) = dcj(σ≺t ‖ p)

}
.

I Definition 23. Given a tree metric T = (V,E, dist), a set of requests σ≺t, and the current
locations of the servers S≺t, we define the critical tree graph T≺t

c by subdividing the edges
of the tree (V,E) at all the server locations and boundary points, and retaining the distance
function dist, see Fig. 3 in Appendix A. Formally:

APPROX/RANDOM 2019

10:20 Dynamic Pricing of Servers on Trees

Define the vertex set of the critical tree graph T≺t
c to be the set V ≺t

c , the union of the
following point sets on the tree metric

Vertices of the tree T .
Server locations

{
S≺t

`

}
`=1,...,k

.

The set of boundary points B≺t.
The edge set of T≺t

c is denoted by E≺t
c . There is an edge (p, q) ∈ E≺t

c (where p ∈ V ≺t
c

and q ∈ V ≺t
c) if p and q lie along the same edge of T , and there is no intermediate point

r ∈ V ≺t
c between them. The weight of the edge (p, q) ∈ E≺t

c is the distance between p and
q in the tree metric T .

The intuition behind the critical graph is that the vertices of the graph are exactly the
points in the metric space where the sets of valid colors ({` : p is `-colorable}) change.

I Lemma 24. Let e = {v1, v2} be some edge of T≺t
c , and let ` be some server such that

v1 ∈ P[s`, v2] and v1 is `-colorable. The edge e is `-colorable iff there exists some point p
along the edge, excluding the endpoints, such that ` ∈ MC(p).

Proof. By definition, if e is `-colorable, then for every p along the edge, p is `-colorable, and
therefore, ` ∈ MC(p).

Now assume that there exists some p along the edge e such that ` ∈ MC(p). Since there
exists some min-cost matching such that s` is matched to the DC server that serves p, and
since p cannot be a vertex of T , by Lemma 5,

|Tp(s`) ∩ S| > |Tp(s`) ∩ DC(p)| . (9)

Since there are no servers and no tree vertices along edge e, for every point q ∈ P [v1, v2] \
{v1, v2},

|Tq(s`)| = |Tp(s`)| . (10)

For a given q ∈ P[v1, v2] \ {v1, v2} let

d1(q) = |Tq(v1) ∩ DC(q)| (= |Tq(s`) ∩ DC(q)|)

be the set of DC servers in the subtree containing v1 when splitting T at point q after serving
a request at q. Let i be the index of the DC server that serves all the requests along the
edge e, excluding its endpoints (there must be a unique such DC server since there are no
boundary points along e). Notice that for every j 6= i, P [dcj , dcj(q)]∩P [v1, v2] \ {v1, v2} = ∅.
Otherwise, there would have been a point q along e which is closer to server j than server i,
which implies the existence of a boundary point along e.

Since there are no tree vertices along e, we get that for every q, q′ ∈ P[v1, v2] \ {v1, v2},
d1(q) = d1(q′). Therefore, for every such point q,

|Tq(s`) ∩ DC(q)| = d1(q) = d1(p) = |Tp(s`) ∩ DC(p)| . (11)

Combining (9), (10) and (11) yields that for every q ∈ P[v1, v2] \ {v1, v2}, |Tq(s`) ∩ S| >
|Tq(s`) ∩ DC(q)| . Therefore,

∣∣T q(s`) ∩ S
∣∣ < ∣∣T q(s`) ∩ DC(q)

∣∣, and there exists some point
q′ ∈ P[q, v2] such that∣∣T q′(s`) ∩ S

∣∣ ≤ ∣∣T q′(s`) ∩ DC(q)
∣∣⇒ ∣∣T q′(q) ∩ S

∣∣ ≤ ∣∣T q′(q) ∩ DC(q)
∣∣ .

Since there are no servers in P[p, v2] (there are no servers along every edge e of T≺t
c),

for every server j such that sj ∈ Tq(v2), q′ is on the path from sj to q, and by Lemma 5,
j /∈ MC(q). By definition, this implies that for every point q along edge e, and every j such

I. R. Cohen, A. Eden, A. Fiat, and Ł. Jeż 10:21

that sj ∈ T v2(q), q is not j-colorable. Since by Corollary 16 every point is colorable by
some server, we get that for every q along e, q is `′-colorable by some server `′ such that
s`′ ∈ T q(v2) ⇒ s`′ ∈ T v1(v2). By Lemma 20, since v1 is `-colorable, we get that every q
along the edge e is `-colorable, which implies that e is `-colorable, as desired. J

I Lemma 25. Let e be some edge {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′.

There exists i ∈ {j, j′} such that all points in P[v, v′] \ {v, v′} are i-colorable which can be
determined by inspecting a single point in P[v, v′] \ {v, v′}.

Proof. consider some edge e = {v, v′} ∈ E≺t
c such that color(v) = j and color(v′) = j′. Let

p be a point between v and v′. By Corollary 16, it is colorable by some server `. Since there
are no servers along x, ` must be located either in T v(p) or in T v′(p). Assume without loss
of generality that ` ∈ T v(p). By Lemma 20, p is j-colorable, which implies that j ∈ MC(p).
By Lemma 24, x is j-colorable. J

I Lemma 26. Determining Ri at every iteration i in Step 1b of Algorithm 1 can be done in
polynomial time.

Proof. Consider the graph T≺t
c . This graph has at most 2k − 1 + |V | vertices – k servers, at

most k− 1 boundary points, and |V | original vertices. The boundary points can of course be
computed in polynomial time. Consider iteration i of Step 1b of Algorithm 1. To determine
Ri, one can start at si, which is obviously in Ri, and then expend Ri using any tree traversal
algorithm (that runs in linear time) on T≺t

c . The traversal does not go further down the tree
if the vertex/edge currently considered is not i-colorable.

To check if a point r ∈ T is i-colorable can be done in poly-time: Computing MC(r) can
be done in poly-time using the characterization in Lemma 5. Therefore, property 1 can
immediately be checked. For Property 2, one should consider each server j ∈ MC(r), and
check that j ⊀r i, which again can be done in poly-time.

From the above, it is clear that determining whether a vertex in T≺t
c is i-colorable can be

done in poly-time. As for an edge, by Lemma 25, checking whether the edge is i-colorable
can be done by inspecting an arbitrary point in the edge, and checking whether this point
is i-colorable, which again, can be done in poly-time. Therefore, the tree-traversal can be
made in poly-time, and so does determining Ri. J

E Missing Proofs of Section 4

Proof of Lemma 5. ⇐: Let p ∈ P and q ∈ Q be two points such that there exists a point
x ∈ P(p, q) such that

∣∣T x(q) ∩ P
∣∣ ≤ ∣∣T x(q) ∩Q

∣∣ and let M : P → Q be a matching such
thatM(p) = q. Since p is matched to a server in Tx(q),

∣∣T x(q) ∩ P − {p}
∣∣ < ∣∣T x(q) ∩Q

∣∣,
and there must be a server p̂ ∈ Tx(q) ∩ P that is matched to a server q̂ ∈ T x(q) ∩ Q. Let
y = LCAx(p̂, q). Since p̂ and q are both in Tx(q), y 6= x. Consider the matchingM′ in which
p is matched to q̂, p̂ is matched to q, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃). We have

dist(p, q) + dist(p̂, q̂) = dist(p, x) + dist(x, y) + dist(y, q) +
dist(p̂, y) + dist(y, x) + dist(x, q̂)

> dist(p, x) + dist(x, q̂) + dist(p̂, y) + dist(y, q)
≥ dist(p, q̂) + dist(p̂, q),

where that first equality is due to the fact that the path from x to y is contained in both
the path from p to q and the path from q̂ to p̂, the first strict inequality is due to dropping
non-zero terms, and the last inequality follows from the triangle inequality. Therefore,M′ is
a matching of a strictly smaller cost than that ofM, andM cannot be a min-cost matching.

APPROX/RANDOM 2019

10:22 Dynamic Pricing of Servers on Trees

⇒: Assume that the condition holds for p, q, letM be a matching. Let x = LCAq(p,M(p)).
Case 1. x 6= q, therefore

∣∣T x(q) ∩ P
∣∣ > ∣∣T x(q) ∩Q

∣∣. Hence, there exists p̂ ∈ T x(q) s.t.
M(p̂) /∈ T x(q). Let q̂ = M(p̂), and q′ = M(p). Note that dist(p, q′) = dist(p, x) +
dist(x, q′) and dist(p̂, q̂) = dist(p̂, x) + dist(x, q̂). Consider the matchingM′ in which p is
matched to q̂, p̂ is matched to q′, and for every p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).

dist(p, q̂) + dist(p̂, q′) ≤ dist(p, x) + dist(x, q̂) + dist(p̂, x) + dist(x, q′)
= dist(p, q′) + dist(p̂, q̂),

where the inequality is by the triangle inequality. Therefore, M′ is also a min-cost
matching. Let x′ = LCAq(p,M′(p)) then dist(p, x′) > dist(p, x) since x′ /∈ T x(q), therefore
we can repeat this process until x = q (Case 2).

Case 2. x = q, hence P(p, q) ⊆ P(p,M(p)). Let q̂ =M(p) and let p̂ be such that q =M(p̂).
Consider the matchingM′ in which p is matched to q, p̂ is matched to q̂, and for every
p̃ ∈ P \ {p, p̂},M′(p̃) =M(p̃).

dist(p, q) + dist(p̂, q̂) = dist(p, q̂)− dist(q, q̂) + dist(p̂, q̂)
≤ dist(p, q̂) + dist(p̂, q)

where the last inequality is by the triangle inequality. Therefore, M′ is also min cost
matching andM′(p) = q as needed. J

Proof of Lemma 6. Let v be the closest vertex to r in Tr(q) (recall that r 6∈ Tr(q), so v 6= r).
If there exists p ∈ P [v, r) ∩ P , let p ∈ P [v, r) ∩ P be the closest such point to r. In this case,
the condition holds for p since for all x ∈ P(p, r), T x(r) ∩ P = Tr(q) ∩ P .

If there is no such p, then∣∣(T v(r)− {v}) ∩ P
∣∣ = |Tr(q) ∩ P | > |Tr(q) ∩Q| ≥

∣∣(T v(r)− {v}) ∩Q
∣∣ .

By the pigeonhole principle, there exists v′ ∈ T v(r) such that |Tv(v′) ∩ P | > |Tv(v′) ∩Q|.
Therefore, by repeating above process, we find p̂ ∈ P ∩ Tv(v′) for which the condition holds
for all x ∈ P(p̂, v). Since the condition holds for every x ∈ P(v, r) (as T x(r)∩P = Tr(q)∩P),
the lemma follows. J

Approximating the Norms of Graph Spanners
Eden Chlamtáč
Ben Gurion University of the Negev, Beersheva, Israel

Michael Dinitz
Johns Hopkins University, Baltimore, MD, USA

Thomas Robinson
Ben Gurion University of the Negev, Beersheva, Israel

Abstract
The `p-norm of the degree vector was recently introduced by [Chlamtáč, Dinitz, Robinson ICALP ’19]
as a new cost metric for graph spanners, as it interpolates between two traditional notions of cost
(the sparsity `1 and the max degree `∞) and is well-motivated from applications. We study this from
an approximation algorithms point of view, analyzing old algorithms and designing new algorithms
for this new context, as well as providing hardness results. Our main results are for the `2-norm and
stretch 3, where we give a tight analysis of the greedy algorithm and a new algorithm specifically
tailored to this setting which gives an improved approximation ratio.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Spanners, Approximations

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.11

Category APPROX

Funding Eden Chlamtáč : Supported in part by ISF grant 1002/14.
Michael Dinitz: Supported in part by NSF awards CCF-1464239 and CCF-1535887.
Thomas Robinson: Supported in part by ISF grant 1002/14.

1 Introduction

Graph spanners are subgraphs which approximately preserve distances: given a graph
G = (V,E) (possibly with lengths on the edges), a subgraph H of G is a t-spanner of G if
dG(u, v) ≤ dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V , where dG denotes shortest-path distances
in G (and dH in H). The value t is called the stretch of the spanner.

There have been two traditional ways of studying spanners. The first way is to study
universal tradeoffs that can be achieved in all graphs between the stretch and some notion
of the “cost” of a spanner, particularly the sparsity [2] or the weight [8]. The second is to
study the optimization problem arising from fixing the stretch and trying to optimize the
“cost” for the particular given graph. These two lines of work are highly complementary,
and have proceeded in parallel. So there is now an extensive line of work on tradeoffs and
approximation algorithms for sparsity (total number of edges) and, to a lesser extent, the
maximum degree, which are two of the oldest and most well-studied notions of cost.

However, both of these objective functions have drawbacks. If we optimize the sparsity
we might end up with a small number of very large degree nodes, which can be a problem for
many applications (particularly in distributed systems where the degree is usually related to
some notion of “load” on a node). On the other hand, if we try to minimize the maximum
degree then we get the opposite problem. If it is unavoidable for there to be some node of
large degree d, the maximum degree objective allows us to make every other vertex also of
degree d, with no change in the objective function. Since the whole point of using spanners
is to get a more compact representation of the graph, this is a significant issue.

© Eden Chlamtáč, Michael Dinitz, and Thomas Robinson;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Approximating the Norms of Graph Spanners

In order to remedy these drawbacks, [10] recently proposed a new objective function: the
`p norm of the degree vector. Given a spanner H, we can define ‖H‖p to be the `p-norm of
the n-dimensional vector in which the coordinate corresponding to a node v contains the
degree of v in H. Then ‖H‖1 is just (twice) the total number of edges, and ‖H‖∞ is precisely
the maximum degree. Thus the `p-norm is an interpolation between these two classical
objectives. Moreover, for 1 < p < ∞, this notion of cost has the properties that we want:
it encourages low-degree nodes rather than high-degree nodes, but if high-degree nodes are
unavoidable it still encourages the rest of the nodes to be as low-degree as possible. These
properties, of interpolating between the average and the maximum, are why the `p-norm
has appeared as a popular objective for a variety of problems, ranging from clustering (the
famous k-means problem [17, 19]), to scheduling [6, 5, 1], to covering [16].

The focus of [10] was on universal guarantees rather than approximation algorithms,
although they made interesting and suggestive observations about approximation algorithms.
In particular, they showed that for stretch 3 and the `2-norm, the greedy algorithm performs
better than would be expected from its behavior in `1 and `∞ (see Section 1.1 for more
discussion). In this paper we focus on approximation algorithms, particularly for the
special case pointed out by [10] – stretch 3 and the `2-norm. We precisely characterize the
performance of the greedy algorithm, showing that it does even better than was claimed
in [10]. We then design a new algorithm which is specialized to this setting and which, when
combined with the greedy algorithm, gives the best known approximation.

1.1 Background on `p-Norm Spanners
We will be concerned with the following problem.
I Definition 1. In the Minimum `p-Norm t-Spanner problem we are given an (unweighted)
graph G = (V,E) and are asked to find the t-spanner H of G which minimizes ‖H‖p.

In this paper we will focus on Minimum `2-Norm 3-Spanner, although many of our
techniques can be extended to other stretch values and `p norms.

Recall the classical greedy algorithm for finding t-spanners in undirected graphs: we add
edges to the spanner as long as they do not close a cycle of length at most t + 1. In the
weighted setting, edges are sorted by non-decreasing order of weight, and added as long as
they are not already t-spanned. Here, we focus only on the unweighted setting.

In [10], the authors gave the following tight universal bounds on the `2 norm of a 3-spanner:
I Theorem 2 ([10]). Given an n-vertex connected unweighted undirected graph G:
1. There exists a 3-spanner H of G with ‖H‖2 ≤ min{O(n), ‖G‖2}, and the greedy algorithm

returns such a spanner.
2. Any 3-spanner H of G must satisfy ‖H‖2 ≥ max{

√
n, Ω̃(

√
‖G‖2)}.

This immediately implies the following approximation guarantees:
I Corollary 3. Given an n-vertex unweighted graph G, the greedy algorithm gives an O(

√
n)-

approximation for Minimum `2-Norm 3-Spanner.
I Corollary 4. Given an n-vertex unweighted graph G, the greedy algorithm gives an
Õ(n/

√
‖G‖2)-approximation for Minimum `2-Norm 3-Spanner.

Corollary 3 is the strongest approximation guarantee, as a function of n, that follows
from the universal bounds in Theorem 2. However, unlike in the `1 and `∞ case, the authors
of [10] showed that such tight universal upper and lower bounds do not give a tight analysis
of the approximation guarantee for `2. In particular, the authors showed that the greedy
algorithm actually gives a slightly better O(n63/128)-approximation.

E. Chlamtáč, M. Dinitz, and T. Robinson 11:3

1.2 Our Results and Techniques
We begin in Section 2 by giving a new analysis of the greedy algorithm, improving on the
O(n63/128) bound from [10].

I Theorem 5. Given an n-vertex unweighted graph G, the greedy algorithm gives an Õ(n3/7)-
approximation for Minimum `2-Norm 3-Spanner.

We also show that this analysis is tight, i.e., there are graphs in which greedy is an
Ω̃(n3/7)-approximation. Thus we resolve the question raised by [10] on the performance of
the greedy algorithm for the `2-norm and stretch 3.

Interestingly, despite the fact that greedy is purely combinatorial, we analyze it via a
constant-size linear program: we show that the problem of finding the worst-case approxima-
tion ratio of the greedy algorithm reduces to solving a single LP. To do this, we decompose
the input graph into a small collection of nearly-biregular subgraphs. For any such subgraph,
this LP has variables describing degree and size parameters in the relevant portion of the
greedy spanner and an optimal spanner (and thus has constant size). The objective function
in the LP captures the ratio of the upper bound on the `2-norm of a greedy spanner to an
optimal spanner for any of these subgraphs. We find an optimal solution to this LP, thus
giving a tight bound on the approximation ratio.

We then go beyond previously proposed algorithms to give a new algorithm which is
specialized to the case of the `2-norm and stretch 3. First we rewrite the standard flow-based
LP for spanners (from [12]) to have an `p-norm objective, which leaves it as a convex (rather
than linear) program which is polynomial-time solvable via Ellipsoid. We then give two new
rounding algorithms, one of which is essentially the algorithm used in [9] for the `∞-norm
objective, but with different parameters and a different objective, and thus a different analysis.
Our second new algorithm draws independent random values for every edge and vertex in the
graph, and includes an edge e if these values satisfy one of three conditions relating to the
solution of the convex relaxation. Similar ideas have been used for stretch 3 and 4 with the
`1-objective [12, 7, 13], but this is the first algorithm (to the best of our knowledge) which
combines vertex and edge random sampling.

While it is common to trade off two different algorithms at the parameter setting
where they have the same approximation ratio (e.g., as was done in the `1-objective for
spanners [12, 7]), this is not what we do. Instead, the most important question is correctness:
we carefully parameterize these algorithms so that every edge is spanned in the combined
algorithm. Proving that this combined algorithm does yield a 3-spanner, and analyzing its
approximation ratio, is surprisingly complex and takes up the bulk of this paper. In the end,
we prove the following theorem.

I Theorem 6. There is a polynomial-time algorithm for Minimum `2-Norm 3-Spanner
with approximation ratio Õ(‖G‖5/16

2).

Finally, trading our new algorithm off with the greedy guarantee of Corollary 4, we
immediately get our strongest approximation guarantee as a function of n:

I Corollary 7. Trying both the algorithm of Theorem 6 and the greedy algorithm and returning
the better of the two gives an Õ(n5/13)-approximation.

In light of all of these upper bound results, a natural question is whether Minimum
`2-Norm 3-Spanner is also hard to approximate. This is also important because strong
hardness results are known for both the `1 and `∞ norms. Strong hardness of approximation
for the `1-norm in directed graphs has been known since [18, 15] (where strong means

APPROX/RANDOM 2019

11:4 Approximating the Norms of Graph Spanners

the same hardness that is known for the famous Label Cover problem, i.e., hard to
approximate better than 2log1−ε n for arbitrarily small constant ε), and this was recently
extended to undirected graphs by [11] by proving hardness for instances of Label Cover
with some extra structure. For the `∞-norm objective, the techniques of [18, 15, 11] were
significantly extended in both the directed and undirected settings by [9] in order to prove
similar hardness bounds.

It is not hard to see that if we attempt to use the hardness results for `1 or `∞ as a
“black box” then we will not be able to prove anything useful, simply because the hardness
results are subpolynomial (with respect to n) and thus changing the norm loses the entire
hardness. In fact, the hardness reduction used in the `1 case [11] does not seem to work
for the `2-norm, since it relies on adding many low-degree nodes to amplify the hardness.
On the other hand, we show that if we use the `∞ hardness reduction of [9] (with slightly
different parameters), which amplifies hardness by adding a small number of high-degree
nodes, we can prove a similar hardness bound.

I Theorem 8. Unless NP ⊆ BPTIME(2polylog(n)), for any constant ε > 0 there is no
polynomial-time algorithm that can approximate Minimum `2-Norm 3-Spanner better
than 2log1−ε n.

At a very high level, this is obtained by re-analyzing the reduction of [9] more carefully.
In [9], since they cared only about the maximum degree, it was not necessary to analyze the
(many) nodes with smaller degrees. Moreover, some of the key arguments in [9] are false in
the context of the `2-norm: there is an argument that we can change the optimal solution to
be “canonical” without affecting the `∞ norm, but in the `2-norm there is an effect. So we
need to instantiate the reduction with different parameters, perform a more detailed analysis,
and replace some key steps with more refined arguments. This all significantly complicates
the analysis. Since our main focus is on algorithms rather than hardness, we defer the proof
to Appendix A.

2 Greedy

Here, we improve over the the analysis in [10] and give a nearly tight (up to polylogarithimic
factors) analysis of the greedy algorithm. We give only a high-level overview here, and defer
many of the details to the full version of the paper. We show the following:

I Theorem 9. Given an n-vertex unweighted graph G, the greedy algorithm gives an Õ(n3/7)-
approximation for the minimum `2-norm 3-spanner.

This can be seen to be tight by considering the following graph: Let T be a tree of depth
3, where the root has n4/7 children, all level 1 nodes have n2/7 children, and all level 2 nodes
have n1/7 children (so the number of leaves is n). Now let G be the graph created by taking
T and adding an edge between the root and every leaf. Clearly, T is a 3-spanner of G with
‖T‖2 = O(n4/7). However, the greedy algorithm could start by taking all the edges from the
root to the leaves of T , right away creating a subgraph with `2-norm at least n.

Our analysis will decompose the graph into a small number of well structured subgraphs,
and analyze the behavior of the greedy algorithm on each part. The condition on each
subgraph is the following.

I Definition 10. We say a graph (L,R,E) with vertex set L∪R is nearly bi-regular if there
exist integers dL, dR such that every vertex u ∈ L has |Γ(u)∩R| ∈ [dL/6, dL] and every vertex
v ∈ R has |Γ(v) ∩ L| ∈ [dR/(6 log |R|), dR].

E. Chlamtáč, M. Dinitz, and T. Robinson 11:5

We use standard regularization techniques to give the following decomposition (the proof
is deferred to the full version).

I Lemma 11. Given an undirected graph G = (V,E) with |V | = n, there exist O(log3 n)
subgraphs Hi = (Li, Ri, Ei) of G such that the edge sets {Ei} are a partition of E, and each
Hi is nearly bi-regular.

To analyze the performance of the greedy algorithm on each subgraph in the above
partition, we use a specific constant size linear program, similar to the linear program used
for the universal lower bound in [10], but with a different objective function: finding the
worst-case ratio between the `2-norm of the greedy algorithm and an optimal spanner. The
linear program assumes that an optimal set of paths of length ≤ 3 that span the edges of any
biregular graph Hi has a fairly regular structure. In particular, it assumes that the union
of such an extremal set of paths is a four layered graph such that the subgraph induced
on every two subsequent layers is bipartite and biregular. Such a graph can be succinctly
described by the cardinalities of the different layers and the degrees of the bipartite graphs
connecting every two consecutive layers. A pruning argument shows that this assumption is
without loss of generality, up to a polylogarithmic factor in the `2 norm.

We solve this linear program and show that the example graph described after Theorem 5
gives a feasible solution with value n3/7, for which there is a dual solution giving the
complementary bound. This linear program, its optimal solution, and its connection to the
performance of the greedy algorithm are all given in the full version. Here we only mention
the conclusion:

I Lemma 12. Let H be an N-vertex nearly bi-regular graph, and let P be a graph (not
necessarily a subgraph) which spans every edge in E by a path of length at most 3. Then we
have min{N, ‖H‖2}/‖P‖2 = Õ(N3/7).

We can now prove our main theorem for this section.

Proof of Theorem 9. Let {Hi} be the partition of G into O(log3 n) subgraphs given in
Lemma 11, and letNi be the number of vertices inHi. IfH is a spanner returned by the greedy
algorithm, we know by Theorem 2 that for each i, we have ‖H ∩Hi‖2 = min{O(Ni), ‖Hi‖2}.
Choose an i0 that maximizes this expression. Then we have ‖H‖2 ≤

∑
i ‖H ∩ Hi‖2 =

O(log3 n) ·min{Ni0 , ‖Hi0‖2}.
On the other hand, letting P be an optimal 3-spanner of G, we know in particular that

P spans the edges in Hi0 . And so our approximation ratio is bounded by

‖H‖2
‖P‖2

≤ O(log3 n) min{Ni0 , ‖Hi0‖2}
‖P‖2

= Õ(N3/7
i0

) by Lemma 12

= Õ(n3/7). J

3 LP-Based Rounding

We now turn to algorithms based on rounding LP relaxations. In particular, we analyze
the performance of the linear programming relaxation (though with a different objective
function) suggested by [12, 9] for Minimum `1 3-Spanner and Minimum `∞ 3-Spanner,
respectively. Focusing on `2, we consider the following convex program, noting that it is only
the objective function which is nonlinear:

APPROX/RANDOM 2019

11:6 Approximating the Norms of Graph Spanners

min

∑
v∈V

(∑
e∼v

xe

)2
1/2

s.t.
∑

p:u v,|p|≤3

yp = 1 ∀(u, v) ∈ E (1)

xe ≥
∑

p:u v,|p|≤3
p3e

yp ∀(u, v), e ∈ E (2)

xe, yp ≥ 0 ∀e, p (3)

While the objective function is not linear, it is convex, and so this LP can be efficiently
solved by standard techniques (e.g., the Ellipsoid Method). Let us briefly see why this is a
relaxation. In the intended (integral) solution, for every edge e ∈ E, xe is an indicator for
whether e appears in our spanner. Thus the objective function describes the `2 norm of our
spanner. Furthermore, for every edge (u, v) we can pick a unique path p of length at most 3
between u and v in our spanner, and set yp = 1, while setting yp′ = 0 for every other path p′
between u and v. This is clearly a feasible solution.

3.1 Independent Edge Sampling
Given an optimum solution to the linear program, consider the following simple rounding
algorithm, which slightly generalizes the rounding suggested in [9], parametrized by a constant
α ∈ (0, 1):

Edge-Round(α): Independently add each edge e ∈ E to the spanner with probability xαe .

One part of our rounding algorithm will use this rounding for a specific value of α, though
it will not necessarily return a spanner. We would like to bound the `2 norm of the subgraph
returned by this algorithm. For our anlalysis of this and other rounding algorithms, we will
need the following standard Chernoff bound (cf. [14], Theorem 1.1):

I Theorem 13. Let X =
∑n
i=1Xi, where Xi are independently distributed in [0,1]. Then

for all t > 2eE[X], we have Prob[X > t] ≤ 2−t.

We have the following bound on the `p-norm of the subgraph returned by Algorithm
Edge-Round:

I Lemma 14. Let H be the output of Edge-Round(α). Then with probability at least
1− 2logn−log2 n, we have ‖H‖2 ≤ log2(n)‖G‖1−α2 LPα.

Proof. First note that for every vertex v ∈ V the expected degree of v in H is

E [dH(v)] =
∑
e∼v

xαe ≥ 1,

where the inequality follows since the xe’s support a flow of 1 from v to any neighbor. Thus,
by Theorem 13, and taking a union bound over all vertices, we have that with probability at
least 1− n2− log2 n all vertices v ∈ V satisfy

E [dH(v)] ≤ log2 n ·
∑
e∼v

xαe

≤ log2 n · dG(v)1−α

(∑
e∼v

xe

)α
. (by Hölder’s inequality)

E. Chlamtáč, M. Dinitz, and T. Robinson 11:7

Thus if we define vectors f, g as fv = dG(v)2(1−α) and gv = (dLP(v))2α, then we get

‖H‖22 ≤ log4 n
∑
v∈V

dG(v)2(1−α)(dLP)2α

= log4 n f · g
≤ log4 n ‖f‖1/(1−α)‖g‖1/α (by Hölder’s inequality)

= log4 n

(∑
v∈V

dG(v)2

)1−α(∑
v∈V

(dLP(v))2

)α
= log4 n‖G‖2(1−α)

2 LP2α J

The above lemma on its own does not give a clear approximation guarantee. However,
when combined with the known lower bounds on OPT, we can get the following bound:1

I Lemma 15. Let H be the output of Edge-Round(α). Then with probability at least
1− 2logn−log2 n, we have ‖H‖2 = Õ

(
‖G‖(1−α)/2

2

)
·OPT.

Proof. With the stated probability, by Lemma 14 we have

‖H‖2 ≤ log2 n‖G‖1−α2 LPα ≤ log2 n‖G‖1−α2 OPTα = log2 n

(
‖G‖2
OPT

)1−α
·OPT

≤ log2 n

(
‖G‖2

Ω̃(
√
‖G‖2)

)1−α

·OPT,

where the final inequality is from the lower bound in Theorem 2, which proves the lemma. J

3.2 A New Rounding Algorithm
We now present a new rounding algorithm for the same linear programming relaxation,
which we have designed specifically for the `2-norm, and which gives our best approximation
guarantee (when traded off with the greedy algorithm).

In fact, we will round our LP solution by trying two different algorithms, and returning
the union of the edge sets returned by the two algorithms. We will show that every edge will
be spanned by at least one of the two algorithms with high probability. Our first algorithm
is simply Edge-Round(3/7).

Algorithm 1 Edge-Round(3/7).

Independently add each edge e ∈ E to the spanner with probability x3/7
e .

Lemma 15 directly implies that with high probability this algorithm returns a subgraph
with `2 norm at most OPT · Õ(‖G‖2/72), which is even better than our final guarantee (see
Lemma 17). However, it is not guaranteed to return a valid spanner.

Our second algorithm takes a different approach. We balance the need in our objective
function for both few edges overall and low degrees for individual vertices by simultaneously
limiting which vertices can buy edges and what edges they can buy.

1 In [9], it was shown that this algorithm gives a 3-spanner for α = 1/3, which already gives an Õ(‖G‖1/3
2)-

approximation via Lemma 15. However, this is weaker than our final Õ(‖G‖5/16
2) guarantee.

APPROX/RANDOM 2019

11:8 Approximating the Norms of Graph Spanners

Algorithm 2 Edge/Vertex Sampling.

For every vertex v ∈ V , and for every edge e ∈ E, independently sample uniformly
random variables z−v ∈R [0, 1], z+

v ∈R [0, 1], and ze ∈R [0, 1].
For every edge e = (u, v) ∈ E, add e to the spanner if at least one of the following three
conditions holds:
1. ze ≤ x1/4

e and z−v ≤ x
1/4
e .

2. z−u ≤ x
1/4
e and z+

v ≤ x
1/4
e .

3. z+
u ≤ x

1/4
e and ze ≤ x1/4

e .

I Remark 16. The algorithm is formulated for directed graphs. If the graph is undirected,
run the algorithm on the directed graph where every original edge is considered with both
possible orientations.

Both showing that these algorithms give a good approximation, and showing that together
they give a valid 3-spanner, requires a technically involved argument. We separate these two
arguments in the next two subsections.

In Section 3.2.2, we will show that every edge has a probability of Ω(1/polylogn) of being
spanned by at least one of the two algorithms. Thus, the complete algorithm will be

For some constant c > 0, run both Algorithm 1 and Algorithm 2 O(logc n) times, and
output the union of all the edges chosen by either algorithm over the various iterations.

Thus, for an approximation guarantee of Õ(f), it suffices to show that the probability
that either algorithm returns a subgraph with `2 norm greater than Õ(OPT · f) is at most
O(1/ logc n) for some sufficiently large constant c > 0. This approximation guarantee (for
f = ‖G‖5/16

2) is given in Section 3.2.1.

3.2.1 Approximation guarantee
As mentioned earlier, Lemma 15 implies that Algorithm 1 returns a subgraph with `2 norm
at most OPT · Õ(‖G‖2/72) with probability at least 1− 2−(1−o(1)) log2 n. This is in fact better
than our final approximation guarantee, so we will focus now on Algorithm 2.

We give the following upper bound on the `2 norm of the subgraph given by Algorithm 2.

I Lemma 17. For any b = b(n) > 1, Algorithm 2 outputs a graph with `2 norm at most
OPT · Õ(b1/2‖G‖5/16

2) with probability at least 1− exp(−Ω(log2 n))− 1/b.

Proof. We will bound the contribution to the `2 norm of every kind of edge added by the
algorithm. In particular, we define the three corresponding edge sets

E1 =
{

(u, v) ∈ E | z(u,v) ≤ x
1/4
(u,v), z

−
v ≤ x

1/4
(u,v)

}
E2 =

{
(u, v) ∈ E | z−u ≤ x

1/4
(u,v), z

+
v ≤ x

1/4
(u,v)

}
E3 =

{
(u, v) ∈ E | z+

u ≤ x
1/4
(u,v), z(u,v) ≤ x

1/4
(u,v)

}
Now consider the various degrees defined by these edge sets:

d1(u) = |{v ∈ V | (u, v) ∈ E1}| d2(v) = |{u ∈ V | (u, v) ∈ E1}|
d3(u) = |{v ∈ V | (u, v) ∈ E2}| d4(v) = |{u ∈ V | (u, v) ∈ E2}|
d5(u) = |{v ∈ V | (u, v) ∈ E3}| d6(v) = |{u ∈ V | (u, v) ∈ E3}|

E. Chlamtáč, M. Dinitz, and T. Robinson 11:9

To bound the `2 norm of the subgraph returned by the algorithm, we bound each of∑
u∈V (di(u))2 seperately for each i ∈ [6]. However, we only analyze the contribution for

i = 1 and i = 3. The analysis for i = 6 is identical to the analysis for i = 1, and the analysis
for i ∈ {2, 4, 5} is essentially identical to the analysis for i = 3.

Let us start by analyzing
∑
u∈V (d1(u))2. Note that for every u ∈ V , d1(u) is a sum of

independent Bernoulli random variables with success probabilities

Prob[z(u,v) ≤ x
1/4
(u,v)] · Prob[z−v ≤ x

1/4
(u,v)] = x

1/2
(u,v).

Thus, individual degrees behave exactly as in Edge-Round(1/2). Therefore, the proof of
Lemma 15 (which did not use any property of the correlation between different degrees)
shows that with high probability the total contribution to the `2 norm from these degrees is
at most OPT · Õ(‖G‖1/42) (which is even smaller than our claim).

Now let us analyze the contribution from the d3 degrees. First, for every vertex u ∈ V ,
let us define

Γ̂(u) :=
{
v ∈ V | (u, v) ∈ E, z+

v ≤ x
1/4
(u,v)

}
.

Note, as before, that |Γ̂(u)| is a sum of independent Bernoulli random variables with
probabilities x1/4

(u,v), and so with high probability, using Hölder’s inequality, we have

|Γ̂(u)| ≤ log2 n ·
∑

v:(u,v)∈E

x1/4
u,v ≤ log2 n · dG(u)3/4dLP(u)1/4.

We will also need to bound (in expectation and with high probability) the following expression:

E

 ∑
v∈Γ̂(u)

x
1/4
(u,v)

 =
∑

v:(u,v)∈E

x
1/2
(u,v)

≤ dG(u)1/2dLP(u)1/2 (by Cauchy-Schwarz).

This is not a sum of Bernoulli random variables, but it is a sum of independent random
variables distributed in [0, 1], where the expectation of the sum is at least 1, so we can use
Theorem 13 and get that with probability at least 1− 2− log2 n we have∑

v∈Γ̂(u)

x
1/4
(u,v) ≤ log2 n · dG(u)1/2dLP(u)1/2.

Suppose we have sampled the z+ variables, so the sets Γ̂(u) are fixed and the two bounds
on Γ̂(u) above hold for all u ∈ V . Note that this high probability event is completely
independent of the z− variables. Conditioned on this event, for every u ∈ V , (d3(u))2

is a random variable distributed in [0, |Γ̂(u)|2] that depends only on z−u . The expected
contribution from a single vertex u ∈ V is

E[(d3(u))2] =
∑

v1,v2∈Γ̂(u)

Prob[z−u ≤ x
1/4
(u,v1), z

−
u ≤ x

1/4
(u,v2)]

≤
∑

v1∈Γ̂(u)

∑
v2∈Γ̂(u)

x
1/4
(u,v2)

= |Γ̂(u)| ·
∑

v∈Γ̂(u)

x
1/4
(u,v)

≤ log4 n · dG(u)5/4dLP(u)3/4 by our bounds on Γ̂(u)

APPROX/RANDOM 2019

11:10 Approximating the Norms of Graph Spanners

Thus, by Markov’s inequality, with probability at least 1− 1/b we have∑
u∈V

E[d3(u)2] ≤ b log4 n ·
∑
u∈V

dG(u)5/4d
3/4
LP

≤ b log4 n‖(dG(u)5/4)u∈V ‖8/5‖dLP(u)3/4‖8/3 by Hölder’s inequality

= b log4 n

(∑
u∈V

dG(u)2

)5/8(∑
u∈V

dLP(u)2

)3/8

= b log4 n · LP3/4‖G‖5/42

≤ b log4 n ·OPT3/4‖G‖5/42

≤ b polylog(n) ·OPT3/4 · OPT5/4

‖G‖5/82
· ‖G‖5/42 by Theorem 2

= Õ(b‖G‖5/82) ·OPT2

Thus the contribution of the d3 degrees to the `2 norm is at most Õ(
√
b‖G‖5/16

2) · OPT,
as claimed. J

3.2.2 Correctness

We will use the following regularization lemma (simplified form of Lemma 2.6 in [9]):

I Lemma 18. There exists a constant C > 0 such that for any vertices u, v ∈ V and set P
of paths from u to v of length at most 3 such that

∑
p∈P yp = 1, there exists a subset P ′ ⊆ P

satisfying the following conditions.
For some 1 ≤ k ≤ 3, all paths in P ′ have length k.
There exists some y0 > 0 such that every path p ∈ P ′ has weight yp ∈ [y0, 2y0]. Further-
more, 1 ≥ y0|P ′| ≥ 1/(logC n).
If k = 3, then all the paths in P ′ are tuples in E1 × E2 × E3 for some pairwise disjoint
collection of edge sets E1, E2, E3 ⊂ E.
If k = 3, then there exist positive integers dL, dR such that:

For every edge e1 ∈ E1, the number of paths in P ′ which include e1 is in the range
[dL, dL logC n]. Note that this gives |E1| ≤ |P ′|/dL ≤ 1/(dLy0).
Every edge e2 ∈ E2 participates in exactly one path in P ′.
For every edge e3 ∈ E3, the number of paths in P ′ which include e3 is in the range
[dR, dR logC n]. Note that this gives |E3| ≤ |P ′|/dR ≤ 1/(dRy0).

Note that given a solution to our LP relaxation, for every edge (u, v) ∈ E there does exist
such a set of paths P , and so there exists a set of paths P ′ of length k as in the lemma. If
k = 1, this is just the edge (u, v) which then has LP value y(u,v) ≥ 1/(logC n), and will be
added by Algorithm 1 w.p. Ω̃(1). It is also easy to see that Algorithm 1 will span (u, v) if
k = 2. Indeed, we have:

I Lemma 19. Let P ′ be a set of paths of length k for an edge (u, v) ∈ E as in Lemma 18.
Then if k = 2, then w.p. Ω̃(1) at least one of these paths will be added by Algorithm 1.

Proof. Since the paths in P ′ are of length 2, they are also edge disjoint. By the capacity
constraints, every edge e in these paths must have LP value xe ≥ y0. Thus, the probability
that at least one path in P ′ will be added by Algorithm 1 is bounded by

E. Chlamtáč, M. Dinitz, and T. Robinson 11:11

Prob[Some path in P ′ is added] = 1−
∏
p∈P ′

Prob[P’ is not added]

= 1−
∏

p=(e1,e2)∈P ′
(1− Prob[e1 is added]Prob[e2 is added])

≥ 1−
∏
p∈P ′

(
1−

(
y

3/7
0

)2
)

= 1−
(

1− y6/7
0

)|P ′|
≥ 1− exp

(
−y6/7

0 |P ′|
)

≥ 1− exp
(

1/ logC n
)

= Ω̃(1),

where the last inequality follows from the fact that y6/7
0 |P ′| ≥ y0|P ′| ≥ 1/ logC n. J

Thus it remains to deal with edges for which P ′ is a set of paths of length 3. We will show
that every such edge is spanned with probability Ω(1) by either Algorithm 1 or Algorithm
2, depending on the parameters dL, dR from Lemma 18. In both cases, we show that the
relevant algorithm adds a large number of paths from P ′ in expectation, and that outside
some easy special cases, the number of paths added is (at least mildly) concentrated around
the expectation by Chebyshev’s inequality. The following lemma describes the correctness
property of Algorithm 1.

I Lemma 20. Let (u, v) ∈ E be an edge and P ′ be a set of paths of length 3 as in Lemma 18
with corresponding parameters y0, dL, dR. Then if max{dL, dR} ≥ y

−2/3
0 / logC

′
n for some

constant C ′ > 0, Algorithm 1 will add at least one path in P ′ with probability Ω̃(1).

Proof. First, consider the case where dL = Ω̃(1/y0). In this case, every edge e1 = (u, u′) ∈ E1
that participates in any path in P ′ has LP value xe1 = Ω̃(1). Thus, such an edge is added
by Algorithm 1 w.p. Ω̃(1). Moreover, there are Ω̃(1/y0) paths of length 2 from u′ to v with
LP value at least y0 (suffixes of paths in P ′ starting with e1), and by Lemma 19, w.p. Ω̃(1)
Algorithm 1 will add at least one of these, and this event is independent of e1 being added.
Thus, in this case the lemma follows. The lemma follows similarly when dR = Ω̃(1/y0).

Assume therefore that for some arbitrarily large constant C ′′ > 0 we have

dL, dR ≤ 1/(y0 logC
′′
n). (4)

Now assume w.l.o.g. that dL > dR. Thus, by our assumption, we have

dL ≥ y−2/3
0 / logC

′
n. (5)

Consider the case where (dL ≤)dLdR ≤ y
−2/3
0 logC

′′
n, which in particular implies dR ≤

logC
′′+C′ n. In this case define a new set of paths P ′′ ⊆ P ′ by taking for every edge e3 ∈ E3

a single path in P ′ containing e3. Note that |P ′′| ≥ |P ′|/(dR logC n). Since |E1| ≤ |P ′|/dL
and every edge in E1 participates in at most dL logC n paths in P ′, this implies that at least
|P ′|/(2dLdR log2C n) edges in E1 each participate in at least dL/(2dR logC n) paths in |P ′′|.
Let E′1 ⊆ E1 be this set of edges. So we have

|E′1| ≥
|P ′|

2dLdR log2C n
≥ 1

2dLdRy0 log3C n
≥ 1

2y1/3
0 log3C+C′′ n

.

APPROX/RANDOM 2019

11:12 Approximating the Norms of Graph Spanners

Now, for every e1 ∈ E′1, denote by P ′′(e1) the set of paths in P ′′ containing e1. By definition of
E′1, for every such e1 we have |P ′′(e1)| ≥ dL/(2dR logC n). Note that by capacity constraints
we have xe1 ≥ dLy0 ≥ y1/3

0 / logC
′
n. Thus, as in the proof of Lemma 19, the probability that

at least one path in P ′′(e1) is added is bounded by

Prob[Some path in P ′′(e1) is added]

= Prob[e1 is added] ·

1−
∏

p∈P ′′(e1)

(1− Prob[p \ e1 is added])

≥ (dLy0)3/7

(
1− (1− y6/7

0)|P
′′(e1)|

)
≥ y1/7

0 log−3C′/7 n
(

1− (1− y6/7
0)dL/(2dR logC n)

)
≥ y1/7

0 log−3C′/7 n
(

1− (1− y6/7
0)y

−2/3
0 /(2 logC+C′′−C′ n)

)
≥ y1/7

0 log−3C′/7 n
(

1− exp(−y4/21
0 /(2 logC+C′′−C′ n))

)
= Ω̃(y1/3

0)

By definition of P ′′, the paths in P ′′(e1) are completely edge disjoint from the paths in
P ′′(e′1) for any e1, e

′
1 ∈ E′1. Thus, there is a probability of Ω̃(y1/3

0) that at least one path
in P ′′(e1) is added, and these are independent events for the different edges e1 ∈ E′1. By
our bound on |E′1|, there are Ω̃(y−1/3

0) such edges, and so the probability that at least one
of them will contribute a path in P ′′ to the spanner is at least Ω̃(1). This concludes our
analysis of the case where dLdR ≤ y−2/3

0 logC
′′
n. From this point on, we assume that

dLdR ≥ y−2/3
0 logC

′′
n (6)

Now define new LP values for E1 ∪ E2 ∪ E3 as follows:

x′e =

dLy0 if e ∈ E1
y0 if e ∈ E2
dRy0 if e ∈ E3.

Then by capacity constraints, for every edge e ∈ E1 ∪E2 ∪E3, we have xe ≥ x′e. Consider an
algorithm that adds edges e ∈ E1 ∪ E2 ∪ E3 independently with probability (x′e)3/7 instead
of x3/7

e . Clearly, the probability that Algorithm 1 adds at least one path from P ′ is at least
the probability that the algorithm with modified LP values does so. Let us now analyze
the probability that the modified algorithm adds at least one path from P ′, and denote by
Y the number of paths from P ′ added by the modified algorithm. We start by analyzing
the expectation of Y . By definition of the modified algorithm, every path p ∈ P ′ is added
with probability

Prob[p is added] = (dLy0)3/7y
3/7
0 (dRy0)3/7 = (dLdR)3/7y

9/7
0 .

Since |P ′| = y−1
0 /(logc n) for some c ∈ [0, C], for an appropriate choice of C ′′, the expected

number of paths added by the modified algorithm satisfies

E[Y] = |P ′|(dLdR)3/7y
9/7
0

= log−c n · (dLdR)3/7y
2/7
0 (7)

≥ log3C′′/7−c n by (6)

≥ log1+c/2+3C/2 n,

E. Chlamtáč, M. Dinitz, and T. Robinson 11:13

where the last inequality follows if we choose, say,

C ′′ = 7/3 + 7c/2 + 7C/2.

Thus, the expected number of paths in P ′ added is (relatively) large. However, since the
paths in P ′ are not disjoint, this does not guarantee that at least one path will be added with
probability Ω̃(1). To show this, we need to show concentration. As in [9], we use Chebyshev’s
inequality, which guarantees that Prob[Y = 0] < 1

2 as long as

Var[Y] = E[Y 2]− (E[Y])2 <
1
8(E[Y])2. (8)

To show that (8) holds, consider the contribution of edge-disjoint versus non-edge-disjoint
paths:

E[Y 2] =
∑

p1,p2∈P ′
Prob[p1 and p2 are added]

=
∑

p1,p2∈P ′
p1∩p2 6=∅

Prob[p1 and p2 are added] +
∑

p1,p2∈P ′
p1∩p2=∅

Prob[p1 is added]Prob[p2 is added]

≤
∑

p1,p2∈P ′
p1∩p2 6=∅

Prob[p1 and p2 are added] +
∑

p1,p2∈P ′
Prob[p1 is added]Prob[p2 is added]

=
∑

p1,p2∈P ′
p1∩p2 6=∅

Prob[p1 and p2 are added] + E[Y]2

Thus, to show (8), it suffices to bound the contribution from pairs of non-edge-disjoint paths.
These fall into three categories: pairs of identical paths, pairs sharing only the first edge
(in E1), and pairs sharing only the third edge (in E3). The contribution from paths in the
first category is at most∑

p1=p2∈P ′
Prob[p1 and p2 are added] = E[Y] = o(E[Y]2). (since E[Y] > logn)

The analysis for the second and third categories is identical, so let us focus only on pairs of
paths sharing only the first edge. These pairs contribute

∑
e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

Prob[p1 and p2 are added] =
∑

e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

(dLy0)3/7y
6/7
0 (dRy0)6/7

=
∑

e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

d
3/7
L d

6/7
R y

15/7
0

≤ |E1|(dL logC n)2 · d3/7
L d

6/7
R y

15/7
0

≤ 1
dLy0

· (log2C n)d17/7
L d

6/7
R y

15/7
0

= (log2C n)d10/7
L d

6/7
R y

8/7
0

≤ (log2C−4C′′/7 n)d6/7
L d

6/7
R y

4/7
0 (by (4))

= log2C+2c−4C′′/7 n · E[Y]2 (by (7))

= log−4/3 n · E[Y]2

Thus, all three categories contribute at most o(E[Y]2), and this concludes the proof. J

APPROX/RANDOM 2019

11:14 Approximating the Norms of Graph Spanners

Finally, we examine edges that will be spanned by Algorithm 2. Note that the trade-off
between the two algorithms has nothing to do with the approximation guarantee. In fact, at
the parameter threshold between the two algorithms (where max{dL, dR} ≈ y

−2/3
0), both

algorithms either give or could be easily modified to give a better approximation than ‖G‖5/16
2 .

The reason for trading off the two algorithms is that beyond the threshold, Algorithm 2 will
still give a large number of spanning paths for each edge in expectation, but in reality will
only span such an edge with very low probability (in which event it will span it with many
paths). The following lemma gives the parameter regime for edges spanned by Algorithm 2.

I Lemma 21. Let (u, v) ∈ E be an edge and P ′ be a set of paths of length 3 as in Lemma 18
with corresponding parameters y0, dL, dR. Then there exists a constant C ′ > 0 such that if
dL, dR ≤ y−2/3

0 / logC
′
n, Algorithm 2 will add at least one path in P ′ with probability Ω̃(1).

Proof. First consider the case where dLdR ≤ logC
′′
n for some constant C ′′ > 0. This is an

easy special case, but also the tight case of our entire analysis. In this case, define a new set
of paths P ′′ ⊆ P ′ by taking for every edge e3 ∈ E3 a single path in P ′ containing e3, and then
out of these, choosing for every edge e1 ∈ E1 used in these paths a single path containing e1.
Note that |P ′′| ≥ |P ′|/ log2C+C′′ n, and all the paths in P ′′ are edge disjoint. For any path
p = (u, u′, v′, v) ∈ P ′′, we can bound the probability that p is added by Algorithm 1 by

Prob[p is added] ≥ Prob[z(u,u′) ≤ x1/4
(u,u′)] · Prob[z−u′ ≤ x

1/4
(u,u′), x

1/4
(u′,v′)]

· Prob[z+
v′ ≤ x

1/4
(u′,v′), x

1/4
(v′,v)] · Prob[z(v,v′) ≤ x1/4

(v,v′)]

≥ Prob[z(u,u′) ≤ y1/4
0] · Prob[z−u′ ≤ y

1/4
0] · Prob[z+

v′ ≤ y
1/4
0] · Prob[z(v,v′) ≤ y1/4

0]
= y0.

Since the paths in P ′′ are completely edge-disjoint, and share no interior vertices, the above
events are independent for the various paths, and so the probability that at least one path in
P ′′ is added is at least

1− (1− y0)|P
′′| ≥ 1− exp(−y0|P ′′|) ≥ 1− exp(−y0|P ′|/ log2C+C′′ n)

≥ 1− exp(−1/ log3C+C′′ n) = Ω̃(1).

Now consider the remaining case. That is, assume from now on that

dLdR ≥ logC
′′
n. (9)

As in the proof of Lemma 20, consider the result of running Algorithm 2 with LP values
{x′e} as defined in that proof. As before, modifying the LP values in such a way can only
decrease the probability that one of the paths in P ′ will be chosen. Let Y be the following
set of paths, added by Algorithm 2 using the modified LP values:

Y =
{

(u, u′, v′, v) ∈ P ′ |
(
z(u,u′) ≤ (x′(u,u′))1/4

)
∧
(
z−u′ ≤ (x′(u,u′))1/4, (x′(u′,v′))1/4

)
∧
(
z+
v′ ≤ (x′(u′,v′))1/4, (x′(v′,v))1/4

)
∧
(
z(v,v′) ≤ (x′(v,v′))1/4

)}
Since dL, dR ≥ 1, the probability that a single path p ∈ P ′ is added to Y is exactly

(dLy0)1/4 ·min{(dLy0)1/4, y
1/4
0 } ·min{y1/4

0 , (dRy0)1/4} · (dRy0)1/4 = (dLdR)1/4y0.

E. Chlamtáč, M. Dinitz, and T. Robinson 11:15

Since |P ′| = y−1
0 /(logc n) for some c ∈ [0, C], for an appropriate choice of C ′′, the expected

number of paths added by the modified algorithm satisfies

E[Y] = |P ′|(dLdR)1/4y0 = log−c n · (dLdR)1/4 (10)

≥ logC
′′−c n by (9)

≥ logn,

where the last inequality follows if we choose C ′′ = 1 + c.
As before, it is not enough to show that the expected number of paths is large, we also

need to show concentration. As in the proof of Lemma 20, it suffices to show that∑
p1,p2∈P ′
p1∩p2 6=∅

Prob[p1, p2 ⊆ Y] = o
(
(E[Y])2) .

These pairs of non-edge-disjoint paths fall into three categories: pairs of identical paths, pairs
sharing only the first edge (in E1), and pairs sharing only the third edge (in E3). As before,
the contribution from identical paths is E[Y] = o((E[Y])2) (where the final bound follows
since E[Y] ≥ logn). Since the analysis for the second and third categories is essentially the
same, we focus on pairs of paths sharing only the first edge. These pairs contribute∑

e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

Prob[p1, p2 ⊆ Y] =
∑

e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

(dLy0)1/4y
1/4
0 y

1/2
0 (dRy0)1/2

=
∑

e1∈E1

∑
p1,p2∈P ′

p1∩p2={e1}

d
1/4
L d

1/2
R y

3/2
0

≤ 1
dLy0

· (dL logC n)2 · d1/4
L d

1/2
R y

3/2
0

= (log2C n)d5/4
L d

1/2
R y

1/2
0

≤ (log2C−3C′/4 n)d1/2
L d

1/2
R (since dL ≤ y−2/3

0 / logC′ n)

= log2C+2c−3C′/4 n · E[Y]2 (by (10))

≤ log−3/4 n · E[Y]2,

where the final bound follows if we choose C ′ ≥ 1 + 8C/3 + 8c/3. Thus, all three categories
contribute at most o(E[Y]2), and this concludes the proof. J

4 Generalizations and Open Questions

While we provided approximation and hardness bounds for Minimum `2-Norm 3-Spanner,
the true approximability still remains open. Perhaps more interesting, though, is the question
of the more general Minimum `p-Norm k-Spanner problem. Some of our techniques
easily extend to this more general setting, but some do not. The linear-programming based
framework we use to analyze the greedy algorithm should basically work for other values of
p and k, but the details become more complicated.

Recall that our strongest approximation algorithm (from Section 3) is a careful tradeoff
between greedy, independent edge sampling (Edge-Round), and a combined vertex and edge
sampling (Algorithm 2). Independent edge sampling (Edge-Round) can also be analyzed
for other values of p and k, where the right α to use depends on the value of k (indeed,
this is the main technique used by [9] for p = ∞, and correctness for other values of k

APPROX/RANDOM 2019

11:16 Approximating the Norms of Graph Spanners

follows directly from [9]). Our more tailored algorithm (Algorithm 2), which combines edge
and vertex sampling, seems harder to generalize for larger values of k. Algorithm 2 is a
generalization of the ideas used for k = 3, 4 in the `1 case (due to [12, 7, 13]), and it is a
fascinating open question to extend these techniques to larger stretch values. For stretch
k = 3 and other values of p, Algorithm 2 can be reanalyzed with appropriate parameters
and seems to give nontrivial guarantees. In general, designing and analyzing approximation
algorithms for other values of p and k remains an exciting challenge which may require new
algorithmic ideas.

With respect to hardness, our results in Appendix A already include other values of
p. For larger stretch values, the basic construction can be extended by including “outer
paths” in the same way as has been done for many other spanner hardness results ([15, 9]
in particular).

References
1 Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation Schemes

for Scheduling. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’97, 1997.

2 Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On sparse
spanners of weighted graphs. Discrete Comput. Geom., 9(1):81–100, 1993. doi:10.1007/
BF02189308.

3 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–555, May 1998.
doi:10.1145/278298.278306.

4 Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization
of NP. J. ACM, 45(1):70–122, January 1998. doi:10.1145/273865.273901.

5 Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-Norm Approximation
Algorithms. In Martti Penttonen and Erik Meineche Schmidt, editors, Algorithm Theory —
SWAT 2002, 2002.

6 Nikhil Bansal and Kirk Pruhs. Server Scheduling in the Lp Norm: A Rising Tide Lifts All
Boat. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing,
STOC ’03, pages 242–250, 2003.

7 Piotr Berman, Arnab Bhattacharyya, Konstantin Makarychev, Sofya Raskhodnikova, and
Grigory Yaroslavtsev. Approximation algorithms for spanner problems and Directed Steiner
Forest. Inf. Comput., 222:93–107, 2013. doi:10.1016/j.ic.2012.10.007.

8 Barun Chandra, Gautam Das, Giri Narasimhan, and José Soares. New Sparseness Results on
Graph Spanners. In Proceedings of the Eighth Annual Symposium on Computational Geometry,
SCG ’92, pages 192–201, New York, NY, USA, 1992. ACM. doi:10.1145/142675.142717.

9 Eden Chlamtáč and Michael Dinitz. Lowest-Degree k-Spanner: Approximation and Hardness.
Theory of Computing, 12(15):1–29, 2016. doi:10.4086/toc.2016.v012a015.

10 Eden Chlamtáč, Michael Dinitz, and Thomas Robinson. The Norms of Graph Spanners. In
Proceedings of the 46th International Colloquium Conference on Automata, Languages, and
Programming, ICALP ’19, 2019.

11 Michael Dinitz, Guy Kortsarz, and Ran Raz. Label Cover Instances with Large Girth and
the Hardness of Approximating Basic k-Spanner. ACM Trans. Algorithms, 12(2):25:1–25:16,
December 2015. doi:10.1145/2818375.

12 Michael Dinitz and Robert Krauthgamer. Directed Spanners via Flow-based Linear Programs.
In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC
’11, pages 323–332, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993680.

13 Michael Dinitz and Zeyu Zhang. Approximating Low-stretch Spanners. In Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages
821–840, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics. URL:
http://dl.acm.org/citation.cfm?id=2884435.2884494.

https://doi.org/10.1007/BF02189308
https://doi.org/10.1007/BF02189308
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/273865.273901
https://doi.org/10.1016/j.ic.2012.10.007
https://doi.org/10.1145/142675.142717
https://doi.org/10.4086/toc.2016.v012a015
https://doi.org/10.1145/2818375
https://doi.org/10.1145/1993636.1993680
http://dl.acm.org/citation.cfm?id=2884435.2884494

E. Chlamtáč, M. Dinitz, and T. Robinson 11:17

14 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.
org/gb/knowledge/isbn/item2327542/.

15 Michael Elkin and David Peleg. The Hardness of Approximating Spanner Problems. Theor.
Comp. Sys., 41(4):691–729, December 2007. doi:10.1007/s00224-006-1266-2.

16 Daniel Golovin, Anupam Gupta, Amit Kumar, and Kanat Tangwongsan. All-Norms and
All-Lp-Norms Approximation Algorithms. In FSTTCS, volume 2 of LIPIcs, pages 199–210.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

17 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Com-
putational Geometry, 28(2):89–112, 2004. Special Issue on the 18th Annual Symposium on
Computational Geometry - SoCG2002. doi:10.1016/j.comgeo.2004.03.003.

18 Guy Kortsarz. On the Hardness of Approximating Spanners. Algorithmica, 30(3):432–450,
2001. doi:10.1007/s00453-001-0021-y.

19 S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, March 1982. doi:10.1109/TIT.1982.1056489.

20 Ran Raz. A Parallel Repetition Theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:
10.1137/S0097539795280895.

A Hardness Results

Since the analysis is simpler in the directed setting, we follow [9] and begin with it. We will
also prove hardness for the more general `p-norm version, and hardness when p = 2 will
follow as a corollary. First, though, we give some notation and background necessary for
the reduction.

A.1 Background: Min-Rep and Spanner Hardness
Our hardness bounds rely on the Min-Rep problem. In Min-Rep we are given a bipartite
graph G = (A,B,E) where A is partitioned into groups A1, A2, . . . , Ar and B is partitioned
into groups B1, B2, . . . , Br, with the additional property that every set Ai and every set Bj
has the same size (which we will call |Σ| due to its connection to the alphabet of a 1-round
2-prover proof system). This graph and partition induces a new bipartite graph G′ called
the supergraph in which there is a vertex ai for each group Ai and similarly a vertex bj for
each group Bj . There is an edge between ai and bj in G′ if there is an edge in G between
some node in Ai and some node in Bj . A node in G′ is called a supernode, and similarly an
edge in G′ is called a superedge.2

A REP-cover is a set C ⊆ A ∪B with the property that for all superedges {ai, bj} there
are nodes a ∈ Ai ∩ C and b ∈ Bj ∩ C where {a, b} ∈ E. We say that {a, b} covers the
superedge {ai, bj}. The goal is to construct a REP-cover of minimum size.

For any fixed constant ε > 0, we say that an instance of Min-Rep is a YES instance
if OPT = 2r (i.e. a single node is chosen from each group) and is a NO instance if
OPT ≥ 2log1−ε nr. We will sometimes refer to the hardness gap (in this case 2log1−ε n)
as the soundness s, due to the connection between Min-Rep and proof systems. The following
theorem is due to Kortsarz [18] (the polynomial relations between the parameters are implicit
rather than explicit in his proof, but are straightforward to verify since the instances used
in [18] are obtained by parallel repetition [20] applied to instances of 3SAT-5 which have a
constant gap [4, 3]).

2 Rather than G being the graph and G′ being the supergraph, sometimes G′ is referred to as the graph
and G is called the label-extended graph.

APPROX/RANDOM 2019

http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1007/s00224-006-1266-2
https://doi.org/10.1016/j.comgeo.2004.03.003
https://doi.org/10.1007/s00453-001-0021-y
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895

11:18 Approximating the Norms of Graph Spanners

I Theorem 22 ([18]). Unless NP ⊆ DTIME(2polylog(n)), for any constant ε > 0 there is no
polynomial-time algorithm that can distinguish between YES and NO instances of Min-Rep.
This is true even when the graph and the supergraph are regular, and both the supergraph
degree and |Σ| are polynomial in the soundness.

A.2 Directed Hardness
A.2.1 Reduction
We first consider the directed setting (note that here the “degree” in the degree vector is
the sum of the in-degree and the out-degree). Suppose we are given a Min-Rep instance
G̃ = (A,B, Ẽ) with associated supergraph G′ = (U, V,E′) from Theorem 22. For any vertex
w ∈ U ∪ V we let Γ(w) denote its group. So Γ(u) ⊆ A for u ∈ U , and Γ(v) ⊆ B for v ∈ V .
Similarly, for a ∈ A∪B, we let Γ−1(a) be the unique w ∈ U ∪V such that a ∈ Γ(w). We will
assume without loss of generality that G′ is regular with degree dG′ and G̃ is regular with
degree d

G̃
. Our reduction will also use a special bipartite regular graph H = (X,Y,EH),

which will simply be the directed complete bipartite graph with |X| = |Y |. Let dH denote
the degree of a node in H, so dH = |X| = |Y | (later when we move to the undirected
setting H will not just be the complete bipartite graph). We will set all of these values to
(dG′ + |Σ|+ 1)p/(p−1) (for the undirected setting we will set dH to this value, but |X| = |Y |
will be larger).

Our instance G = (VG, EG) of Minimum `p-Norm 3-Spanner will be a combination of
these three graphs. The four sets of vertices are

V Lout = U ×X V Rout = V × Y
V Lin = A× EH V Rin = B × EH .

The actual vertex set VG of our instance G will be V Lout ∪ V Rout ∪ V Lin ∪ V Rin . Defining the
edge set is a little more complex, as there are a few different types of edges. We first create
outer edges, which are incident on outer nodes:

Eout = {((u, x), (v, y)) : u ∈ U ∧ v ∈ V ∧ x ∈ X ∧ y ∈ Y ∧ {u, v} ∈ E′ ∧ (x, y) ∈ EH}.

Note that if we fix x and y the corresponding outer edges form a copy of the supergraph G′.
Thus these edges essentially form |EH | copies of the supergraph.

We also have inner edges, which correspond to |EH | copies of the Min-Rep instance (note
that unlike the supergraph copies, these copies are vertex disjoint):

Ein = {((a, e), (b, e)) : a ∈ A ∧ b ∈ B ∧ e ∈ EH ∧ {a, b} ∈ Ẽ}.

We will now add connection edges, i.e., edges that connect some of the outer nodes to
some of the inner nodes. Let

ELcon = {((u, x), (a, (x, y))) : u ∈ U ∧ a ∈ Γ(u) ∧ x ∈ X ∧ (x, y) ∈ EH}, and
ERcon = {((b, (x, y)), (v, y)) : v ∈ V ∧ b ∈ Γ(v) ∧ y ∈ Y ∧ (x, y) ∈ EH}.

In other words, the outer node (u, x) (resp. (v, y)) is connected to the inner nodes in its
group in each copy of G̃ that corresponds to an EH edge that involves x (resp. y).

Finally, for technical reasons we need to add group edges internally in each group in each
copy of G̃: let ELgroup = {((a, e), (a′, e)) : e ∈ EH ∧ a, a′ ∈ A ∧ Γ−1(a) = Γ−1(a′)}, and let
ERgroup = {((b, e), (b′, e)) : e ∈ EH ∧ b, b′ ∈ B ∧ Γ−1(b) = Γ−1(b′)}.

Our final edge set is the union of all of these, namely EG = Eout ∪ Ein ∪ ELcon ∪ ERcon ∪
ELgroup ∪ ERgroup.

E. Chlamtáč, M. Dinitz, and T. Robinson 11:19

A.2.2 Analysis
We first consider the YES case. We can use almost the same spanner as was used to prove
the equivalent lemma in [9] (Lemma 3.3). Unfortunately, since in [9] only the maximum
degree mattered, they did not need to optimize the degrees of non-extremal vertices, while
we do. So we actually use a slightly sparser spanner construction.

I Lemma 23. If G̃ is a YES instance of Min-Rep, then there is a 3-spanner S of G with
‖S‖p ≤ 3dH(|U ||X|+ |V ||Y |)1/p

Proof. Since G̃ is a YES instance, for each u ∈ U there is some f(u) ∈ Γ(u) and for each
v ∈ V there is some f(v) ∈ Γ(v) so that {f(u), f(v)} ∈ Ẽ for all {u, v} ∈ E′. Our spanner
S the connection edges suggested by the REP-cover: for every u ∈ U and x ∈ X and
(x, y) ∈ EH , it contains the connection edge ((u, x), (f(u), (x, y))). Similarly, for every v ∈ V
and y ∈ Y and (x, y) ∈ EH , it contains the connection edge ((f(v), (x, y)), (v, y)). It also
contains a star of group edges centered at the chosen node in every group: for every u ∈ U
and e ∈ EH and a ∈ Γ(u) it includes the group edges ((f(u), e), (a, e)) and ((a, e), (f(u), e)),
and for every v ∈ V and e ∈ EH and b ∈ Γ(v) it includes the group edges ((f(v), e), (b, e))
and ((b, e), (f(v), e)). Finally, it contains the appropriate inner edges: for every {u, v} ∈ E′
with u ∈ U and v ∈ V and every e ∈ EH , we add the inner edge ((f(u), e), (f(v), e)).

This is precisely the spanner from [9, Lemma 3.3] but with fewer group edges (we include
stars in each group, while [9, Lemma 3.3] included all group edges). It is easy to verify that
this change does not affect the correctness of the spanner: all edges in G not in S are still
spanned. So we rely on [9, Lemma 3.3] for correctness.

So we just need to analyze ‖S‖p. To do this, we can just count the degrees in S of
each type of nodes. There are |U ||X| + |V ||Y | outer nodes, each of which has degree at
most dH in S. For the inner nodes, we divide into those that are chosen (those that are
(f(u), e) or (f(v), e) for some u or v in U ∪ V) and those that are not. There are at most
|EH |(|A| + |B|) inner nodes which are not chosen, and in S they all have degree 2 (an
incoming and outgoing group edge from the node in the same group that is chosen). There
are at most |EH |(|U |+ |V |) inner nodes which are chosen, each of which has degree in S of
at most |Σ|+ dG′ + 1 (the group edges, inner edges, and connection edges that it is incident
with respectively). Putting all this together, we get that

‖S‖p ≤ ((|U ||X|+ |V ||Y |) · dpH
+ |EH |(|A|+ |B|) · 2p + |EH |(|U |+ |V |)(|Σ|+ dG′ + 1)p)1/p

≤ ((|U ||X|+ |V ||Y |) · dpH + 2|EH |(|U |+ |V |)(|Σ|+ dG′ + 1)p)1/p

≤ (3(|U ||X|+ |V ||Y |) · dpH)1/p

≤ 3dH(|U ||X|+ |V ||Y |)1/p,

where we have used our setting of dH and the fact that |A|+ |B| = (|U |+ |V |)|Σ|. J

Now we analyze the NO setting.

I Lemma 24. If G̃ is a NO instance of Min-Rep, then every 3-spanner S of G has ‖S‖p ≥
sdH(|U ||X|+ |V ||Y |)1/p.

Proof. Suppose for the sake of contradiction that this is false. Let S be a 3-spanner of G with
‖S‖p < sdH(|U ||X|+ |V ||Y |)1/p. For every outer node (u, x) in V Lout and edge (x, y) ∈ EH ,
let dx,yout(u, x) be the number of outer edges in S that are incident on (u, x) and have the other

APPROX/RANDOM 2019

11:20 Approximating the Norms of Graph Spanners

endpoint of the form (v, y) for some v ∈ V . Similarly, for every outer node (v, y) in V Rout and
edge (x, y) ∈ EH , let dx,yout(v, y) be the number of outer edges in S that are incident with
(v, y) and have the other endpoint of the form (u, y). For every outer node (u, x) in V Lout and
edge (x, y) ∈ EH , let dx,ycon(u, x) be the number of connection edges in S that are incident
with (u, x) and have the other endpoint of the form (a, (x, y)) for some a ∈ Γ(u). Similarly,
for every outer node (v, y) in V Rout and edge (x, y) ∈ EH , let dx,ycon(v, y) be the number of
connection edges in S that are incident with (v, y) and have the other endpoint of the form
(b, (x, y)) for some b ∈ Γ(v).

Now with this notation in hand, the fact that ‖S‖p ≤ sdH(|U ||X|+|V ||Y |)1/p implies that

∑
(x,y)∈EH

(∑
u∈U

((dx,yout(u, x))p + (dx,ycon(u, x))p) +
∑
v∈V

((dx,yout(v, y))p + (dx,ycon(v, y))p)
)

≤ (sdH)p(|U ||X|+ |V ||Y |)

Now a simple application of Hölder’s inequality gives us the following.

∑
(x,y)∈EH

(∑
u∈U

(dx,yout(u, x) + dx,ycon(u, x)) +
∑
v∈V

(dx,yout(v, y) + dx,ycon(v, y))
)

≤ (sdH)(|U ||X|+ |V ||Y |) (Hölder’s inequality)
≤ 2sdH(|U ||X|) (H and G′ are both balanced)
≤ |EH |2s|U | (H is regular with degree dH)
≤ |EH |s(|U |+ |V |) (G′ is balanced)

Thus averaging now implies that there is some (x, y) ∈ EH such that∑
u∈U

(dx,yout(u, x) + dx,ycon(u, x)) +
∑
v∈V

(dx,yout(v, y) + dx,ycon(v, y)) ≤ s(|U |+ |V |) (11)

Fix this (x, y). We create a set C1(u) ⊆ Γ(u) for each u ∈ U by adding all a ∈ Γ(u) such
that there is a connection edge ((u, x), (a, (x, y))) which contributes to dx,ycon(u, x). Similarly,
we create a set C1(v) ⊆ Γ(v) for each v ∈ V by adding all b ∈ Γ(v) such that there is a
connection edge ((b, (x, y)), (v, y)) which contributes to dx,ycon(v, y).

Now we create similar sets for the outer edges. For each u ∈ U we create a set C2(u) ⊆ Γ(u)
and for each v ∈ V we create a set C2(v) as follows. For every outer edge ((u, x), (v, y)) in S
(i.e., every outer edge which contributes to dx,yout(u) + dx,yout(v)), we pick an arbitrary a ∈ Γ(u)
and b ∈ Γ(v) such that {a, b} ∈ Ẽ and add a to C2(u) and b to C2(v).

Let C(u) = C1(u) ∪ C2(u) for all u ∈ U , and let C(v) = C1(v) ∪ C2(v) for all v ∈ V . Let
C = (∪u∈UC(u))) ∪ (∪v∈V C(v)). Clearly by construction we know that

|C| ≤
∑
u∈U

((dx,yout(u, x)) + (dx,ycon(u, x))) +
∑
v∈V

((dx,yout(v, y)) + (dx,ycon(v, y)))

≤ s(|U |+ |V |). (by (11))

Now we claim that C is a valid REP-cover. This will prove the lemma, since it will
imply that S is not a NO instance, giving a contradiction and thus implying that no such
S can exist. To see that C is a REP-cover, consider an arbitrary superedge {u, v} ∈ E′.
It is not hard to see (and was proved in [9]) that the only way that S can span the outer
edge ((u, x), (v, y)) is to either include that edge in S or include a canonical path between
the endpoints: a path which uses a connection edge to get to some (a, (x, y)), then an inner

E. Chlamtáč, M. Dinitz, and T. Robinson 11:21

edge to get to some (b, (x, y)), then a connection edge to get to (v, y). If the outer edge is
included in S, then when we constructed C2(u) and C2(v) we explicitly added some a ∈ Γ(u)
and b ∈ Γ(v) that cover {u, v}. Otherwise S spans the outer edge using a canonical path,
which from the construction of C1(u) and C1(v) means that there is some a, b ∈ C which
covers {u, v}. Thus C is a REP-cover, which proves the lemma. J

Now we can prove our hardness bound using these lemmas.

I Theorem 25. Unless NP ⊆ DTIME(2polylog(n)), for any constant ε > 0 and p ≥ 1 there
is no polynomial-time algorithm that can approximate Minimum `p-Norm 3-Spanner in
directed graphs better than 2(p−1

3p−1)1−ε log1−ε n.

Proof. Lemmas 23 and 24, together with Theorem 22, imply that under the complexity
assumption, there is no polynomial-time algorithm with approximation ratio better than

sdH(|U ||X|+ |V ||Y |)1/p

3dH(|U ||X|+ |V ||Y |)1/p = s

3 .

The only thing that remains is to argue about the increase in the size: the n in the value
of s is really |A|+ |B|, while our graph G is larger. But it is not too much larger: the number
of vertices in G is |VG| = |U ||X|+ |V ||Y |+ |A||EH |+ |B||EH | = O(n(|Σ|+ dG′)2p/(p−1)) ≤
O(n1+ 2p

p−1) = O(n(3p−1)/(p−1)). Thus the overall hardness that we obtain is
s

3 = 1
32log1−ε n = 1

32log1−ε(N(p−1)/(3p−1)) = 1
32(p−1

3p−1)1−ε log1−εN .

The extra 1/3 factor can be absorbed by using a smaller ε. J

Our claimed hardness theorem for p = 2, the directed version of Theorem 8, is a corollary
of this theorem for p = 2.

A.3 Undirected Hardness
We extend the directed hardness to the undirected setting in the same way that it was
extended for LDkS in [9]. First, we start with a slightly different Min-Rep instance with
some useful extra properties (from [11] instead of from [18], and with some extra analysis
from [9]). Then we combine it with a graph H which is the finite projective plane of degree
dH = (dG′+ |Σ|+1)p/(p−1), which is a graph of girth 6 with |X| = |Y | = d2

H . Then we further
subsample G to ensure that there are no cycles of length less than 5 consisting of outer edges
(some were introduced via the way we combined G̃ with H). All of this is necessary in order
to ensure that in any 3-spanner of G, the only ways of spanning an outer edge are through
the outer edge itself or through a canonical path (and in particular, there is no way to span
it using just other outer edges).

We give a sketch of the analysis and proof here, since it is simply re-analyzing the
construction of [9] using the ideas from the previous section. It is straightforward to prove
the analog of Lemma 23, since we use the same spanner suggested by the existence of a good
REP-cover and analyze all degrees in the same way. This implies that in a YES instance,
there will be a k-spanner S with ‖S‖p ≤ O((|U ||X|+ |V ||Y |)1/p · dH).

The NO setting is more difficult to analyze, since it requires arguing directly about the
subsampling process. But if we follow the analysis in [9] but with the notation from the
previous section, we get that in a NO instance,∑

u∈U
(dx,yout(u, x) + dx,ycon(u, x)) +

∑
v∈V

(dx,yout(v, y) + dx,ycon(v, y)) ≥ s1/8(|U |+ |V |)

APPROX/RANDOM 2019

11:22 Approximating the Norms of Graph Spanners

for every {x, y} ∈ EH . This is the equivalent of Equation (11) but as a direct proof rather
than by contradiction. Then as in the directed case, we can combine these to get the following
theorem (the dependence on p is slightly worse since the graph that we build is larger due to
using the finite projective plane rather than the complete bipartite graph).

I Theorem 26. Unless NP ⊆ BPTIME(2polylog(n)), for any constant ε > 0 and p ≥ 1 there
is no polynomial-time algorithm that can approximate Minimum `p-Norm 3-Spanner better
than 2(p−1

4p−1)1−ε log1−ε n.

Theorem 8 is now a corollary of this theorem when p = 2.

Conditional Hardness of Earth Mover Distance
Dhruv Rohatgi
MIT, Cambridge, Massachusetts, USA
drohatgi@mit.edu

Abstract
The Earth Mover Distance (EMD) between two sets of points A,B ⊆ Rd with |A| = |B| is
the minimum total Euclidean distance of any perfect matching between A and B. One of its
generalizations is asymmetric EMD, which is the minimum total Euclidean distance of any matching
of size |A| between sets of points A,B ⊆ Rd with |A| ≤ |B|. The problems of computing EMD
and asymmetric EMD are well-studied and have many applications in computer science, some of
which also ask for the EMD-optimal matching itself. Unfortunately, all known algorithms require at
least quadratic time to compute EMD exactly. Approximation algorithms with nearly linear time
complexity in n are known (even for finding approximately optimal matchings), but suffer from
exponential dependence on the dimension.

In this paper we show that significant improvements in exact and approximate algorithms
for EMD would contradict conjectures in fine-grained complexity. In particular, we prove the
following results:

Under the Orthogonal Vectors Conjecture, there is some c > 0 such that EMD in Ω(clog∗ n)
dimensions cannot be computed in truly subquadratic time.
Under the Hitting Set Conjecture, for every δ > 0, no truly subquadratic time algorithm can
find a (1 + 1/nδ)-approximate EMD matching in ω(logn) dimensions.
Under the Hitting Set Conjecture, for every η = 1/ω(logn), no truly subquadratic time algorithm
can find a (1 + η)-approximate asymmetric EMD matching in ω(logn) dimensions.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness

Keywords and phrases Earth Mover Distance, Hardness of Approximation, Fine-Grained Complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.12

Category APPROX

Acknowledgements I want to thank Piotr Indyk and Arturs Backurs for numerous helpful discussions
and guidance. I am also grateful to an anonymous reviewer for pointing towards Theorem 2 and
its proof.

1 Introduction

In the Earth Mover Distance (EMD) problem, we are given two sets A and B each with n
vectors in Rd, and want to find the minimum cost of any perfect matching between A and B,
where an edge between a ∈ A and b ∈ B has cost ‖a− b‖2.

In a harder variant of the problem (“EMD matching”), we want to actually find a perfect
matching with the optimal cost. This is a special case of the geometric transportation problem,
in which each vector of A has a positive supply and each vector of B has a positive demand,
and the goal is to find an optimal “transportation map”, i.e., match each unit of supply with
a unit of demand while minimizing the total distance, summed over all units of supply.

A more general variant of the EMD problem (with an analogous extension to arbitrary
supplies/demands) allows for the possibility that |A| < |B|, and requires the map from A to
B to be an injection. We refer to this variant as the asymmetric EMD problem.

© Dhruv Rohatgi;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:drohatgi@mit.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Conditional Hardness of Earth Mover Distance

Earth Mover Distance is a discrete analogue of the Monge-Kantorovich metric for proba-
bility measures, which has connections to various areas of mathematics [26]. Furthermore,
computing distance between probability measures is an important problem in machine learn-
ing [23, 20, 7, 13] and computer vision [22, 10, 25], to which Earth Mover Distance is often
applied. To provide a few specific examples, computing geometric transportation cost has
applications in image retrieval [22], where asymmetric EMD allows the distance to deal with
occlusions and clutter. In computer graphics, computing the actual transportation map is
useful for interpolation between distributions, though the metric may be non-Euclidean [10].

For the exact geometric transportation problem, the best known algorithm simply formu-
lates the problem in terms of minimum cost flow, yielding a runtime of O(n2.5 · polylog(U))
where U is the total supply (assuming that d is subpolynomial in n) [18, 19]. Even for EMD,
the best known algorithm follows directly from the general graph algorithms for maximum
matching in O(m

√
n) time [14].

The situation is better for approximation algorithms. There has been considerable work
on both estimating the transportation cost [15, 6] and computing the actual map [24, 3, 5]
in time nearly linear in n but exponential in dimension d. Most recently, it was shown [17]
that there is an O(nε−O(d) log(U)O(d) log2 n) time algorithm which outputs a transportation
map with cost at most (1 + ε) times the optimum. This algorithm is very efficient when the
dimension d is constant or nearly constant, and when ε is not too small – say, constant or
O(1/polylog(n)). However, when d = ω(logn), the algorithm is not guaranteed to find even
a constant-factor approximation in quadratic time.

Despite considerable progress on improving the algorithms for geometric matching prob-
lems over the last two decades, little is known about lower bounds on their computational
complexity. In particular, we do not have any evidence that a running time of the form
O(n · poly(d, logn, 1/ε)) is not achievable. This is the question we address in this paper.

1.1 Our Results
In this paper we provide evidence that geometric transportation problems in high-dimensional
spaces cannot be solved in (truly) subquadratic time. This applies to both exact and
approximate variants of the problem, and even in the special case of unit supplies. In
particular we show a conditional quadratic hardness for the exact EMD problem, as well as the
approximate variant of EMD when the (approximately) optimal matching must be reported.

Our hardness results are based on two well-studied conjectures in fine-grained complexity:
Orthogonal Vectors Conjecture and Hitting Set Conjecture (see [29] for a comprehensive
survey).

1.1.1 Exact EMD and Orthogonal Vectors Conjecture
The Orthogonal Vectors (OV) problem takes as input two sets A,B ⊆ {0, 1}d(n) where
|A| = |B| = n and asks whether there are some vectors a ∈ A and b ∈ B such that a · b = 0.
The popular Orthogonal Vectors Conjecture hypothesizes that in sufficiently large dimensions,
the obvious quadratic time algorithm for OV is nearly optimal:

I Orthogonal Vectors Conjecture. Let d(n) = ω(logn). For every constant ε > 0, no
randomized algorithm can solve d(n)-dimensional OV in O(n2−ε) time.

A plethora of problems have been shown to have nontrivial lower bounds under the
Orthogonal Vectors Conjecture; often these lower bounds are essentially tight (e.g. [1, 2, 8,
11, 28]; see [29] for a comprehensive survey). It is known that if the conjecture fails, then
the Strong Exponential Time Hypothesis (SETH) fails as well [27], providing evidence for
hardness of OV, and by extension of these problems to which OV can be reduced.

D. Rohatgi 12:3

Our first result shows that EMD in “nearly constant” dimension is hard to compute
exactly in truly subquadratic time, under the Orthogonal Vectors Conjecture:

I Theorem 1. There is a constant c > 0 under which the following holds. If there exists
ε > 0 and d(n) = Ω(clog∗ n) such that EMD on O(logn)-bit vectors in d(n) dimensions can
be computed in O(n2−ε) time, then the Orthogonal Vectors Conjecture is false.

Using techniques similar to those for the above theorem, we also address a question raised
in [9] about the complexity of the maximum/minimum weighted assignment problem when
the weight matrix has low rank. The minimum weighted assignment problem is defined as
follows: given an n × n weight matrix which determines a complete bipartite graph, find
the cost of the minimum weight perfect matching. Motivated by the observation that the
problem can be solved in O(n logn) time if the weight matrix is rank-1, it is asked whether
there is an O(nr2 logn) time algorithm for rank-r matrices [9]. We can answer this question
in the negative, under the Orthogonal Vectors Conjecture. In fact, we can show something
stronger (see Appendix A for the proof):

I Theorem 2. There is a constant c > 0 under which the following holds. If there exists
ε > 0 and r(n) = Ω(clog∗ n) such that the minimum assignment problem with rank-r weight
matrices can be solved in O(n2−ε) time, then the Orthogonal Vectors Conjecture is false.

1.1.2 Approximate EMD and the Hitting Set Conjecture
The second conjecture on which we base some of our results is hardness of the Hitting Set
(HS) problem. This problem, similar to OV, takes two sets of vectors A,B ⊆ {0, 1}d as input,
and asks whether there exists some a ∈ A such that a · b 6= 0 for every b ∈ B.

I Hitting Set Conjecture. Let d(n) = ω(logn). For every constant ε > 0, no randomized
algorithm can solve d(n)-dimensional HS in O(n2−ε) time.

It is known that HS reduces to OV, but the reverse reduction is unknown, so the Hitting
Set Conjecture is “stronger” than the Orthogonal Vectors Conjecture [2]. The Hitting Set
Conjecture has been used to prove conditional hardness of the Radius problem in sparse
graphs [2]. The utility of the Hitting Set problem in conditional hardness results comes
from the difference between its “∃∀” logical structure and the “∃∃” logical structure of the
Orthogonal Vectors problem, which makes it more natural for some types of problems.

Under the Hitting Set Conjecture, we prove hardness of approximation for the EMD
matching problem (in which we want to find the optimal or nearly-optimal matching).
Simultaneously we obtain stronger hardness of approximation for asymmetric EMD matching.

I Theorem 3. For any δ > 0 and d(n) = ω(logn), if (1 + 1/nδ)-approximate EMD matching
can be solved in d(n) dimensions in truly subquadratic time, then the Hitting Set conjecture
is false.

I Theorem 4. For any d(n) = ω(logn) and η = 1/ω(logn), if (1 + η)-approximate asym-
metric EMD matching can be solved in d(n) dimensions in truly subquadratic time, then the
Hitting Set Conjecture is false.

Finally, motivated by the question of how hard Hitting Set really is, compared to
Orthogonal Vectors, we generalize the result that Hitting Set reduces to Orthogonal Vectors
by finding a set of approximation problems that lie between Orthogonal Vectors and Hitting
Set in difficulty. For a positive integer function k(n) ≤ n/2, we define the (k, 2k)-Find-OV

APPROX/RANDOM 2019

12:4 Conditional Hardness of Earth Mover Distance

OV

Closest Pair

Exact EMD

[12]

(a) Structure of Theorem 1.

HS

Approx
Find-OV

Approx
MOM

Approx EMD

(b) Structure of Theorem 3.

Figure 1 Summary of reductions.

problem: given two sets A,B ⊆ {0, 1}d(n) with |A| = |B| = n and the guarantee that there
exist at least 2k orthogonal pairs between A and B, find k pairs {(ai, bi)}ki=1 such that
ai · bi = 0 for every i.

We prove the following theorem in Appendix C.

I Theorem 5. Let k(n) ≤ n/2. If (k, 2k)-Find-OV can be solved in truly subquadratic time,
then the Hitting Set conjecture is false.

See Figure 1 for an overview of the structure of our main results (Theorems 1 and 3
respectively; the proof of Theorem 4 has the same structure as the latter). We provide the
remaining definitions of the relevant problems in the next section.

2 Preliminaries

Before diving into the reductions, we formally define the remainder of the problems which
we’re studying. Each problem we study takes sets of vectors as input, so one parameter of a
problem is the dimension d, which is a function of the input size n. That is, every function
d : N→ N defines a d(n)-dimensional EMD problem, and a d(n)-dimensional OV problem,
and so forth. We gloss over this choice of d in the subsequent definitions.

2.1 Earth Mover Distance
The Earth Mover Distance (EMD) problem is defined as follows: given two sets A,B ⊆ Rd(n)

with |A| = |B|, find

min
π:A→B

∑
a∈A
‖a− π(a)‖2

where π is a bijection. We’ll restrict our attention to the special cases where A,B ⊆ Zd(n)

with polynomially bounded entries (for hardness of exact EMD) and A,B ⊆ {0, 1}d(n) (for
hardness of approximate EMD).

We can define the asymmetric EMD problem as above, except we relax the constraint
|A| = |B| = n to |A| ≤ |B| = n, and require π to be a injection rather than a bijection.

D. Rohatgi 12:5

The EMD matching problem is the variant of the EMD problem in which the desired
output is the optimal matching π. Similarly we can define the asymmetric EMD matching
problem. An algorithm “solves” EMD matching (or its asymmetric variant) up to a certain
additive or multiplicative factor if the cost of the bijection it outputs differs from the optimal
cost by at most that additive or multiplicative factor.

2.2 Variants of Orthogonal Vectors
The reduction from Hitting Set to approximate EMD matching will go through the variants
of OV defined next.

The Maximum Orthogonal Matching (MOM) problem is defined as follows: given two
sets A,B ⊆ {0, 1}d(n), with |A| ≤ |B| = n, find an injection π : A→ B which maximizes

|{a ∈ A | a · π(a) = 0}|.

And the Find-OV problem is defined as follows: given two sets A,B ⊆ {0, 1}d(n) with
|A| = |B| = n, find the set S ⊆ A of vectors a ∈ A such that there exists some b ∈ B with
a · b = 0. An algorithm solves Find-OV up to an additive error of t if it returns a set S′ ⊆ S
for which |S′| ≥ |S| − t.

2.3 Relevant prior work
We will apply the following theorem from [12] to our low-dimensional hardness result of
exact EMD:

I Theorem 6 ([12]). Assuming OVC, there is a constant c > 0 such that Bichromatic `2-
Closest Pair in clog∗ n dimensions requires n2−o(1) time, with vectors of O(logn) bit entries.

3 Exact EMD in low dimensions

To prove hardness of the exact EMD problem under the Orthogonal Vectors Conjecture, we
reduce to the bichromatic closest pairs problem, and then apply Theorem 6 due to [12]. The
intuition for the reduction is as follows: given two sets A and B of n vectors, we’d like to
augment set A with n − 1 copies of a vector that is equidistant from all of B, and much
closer to B than A is. Similarly, we’d like to augment set B with n− 1 copies of a vector
that is equidistant from all of A, and much closer to A than B is. If this were possible, then
the minimum cost matching between the augmented sets would only match one pair of the
original sets: the desired closest pair.

Unfortunately, it is in general impossible to find a vector equidistant from n vectors in
d � n dimensions. But this can be circumvented by embedding the vectors in a slightly
higher-dimensional space, and adjusting coordinates in the “free” dimensions to ensure that
an equidistant vector exists. So long as the free dimensions used to adjust set A are disjoint
from the free dimensions used to adjust set B, the inner products between A and B are
unaffected, and the distances change in an accountable way.

Since we are working in the `2 norm, we will need the following simple lemma which
shows that any integer can be efficiently decomposed as a sum of a constant number of
perfect squares.

I Lemma 7. For any ρ > 0 and any positive integer m, there is an O(mρ) time algorithm
to decompose m as a sum of O(log 1/ρ) perfect squares.

APPROX/RANDOM 2019

12:6 Conditional Hardness of Earth Mover Distance

Proof. Here is the algorithm: repeatedly find the largest square which does not push the
total above m, until the remainder does not exceed O(mρ/2). Then compute the minimal
square decomposition for the remainder by dynamic programming.

The first, greedy phase takes O(polylog(m)) time and finds O(log 1/ρ) perfect squares
which sum to some m′ with m−mρ/2 ≤ m′ ≤ m. The second, dynamic programming phase
takes O(mρ) time (even naively). By Lagrange’s four-square theorem, a decomposition of
m−m′ into at most four perfect squares is found. J

Now we describe the main reduction of this section. We’ll use a shorthand notation
to define vectors more concisely: for example, axbycz refers to an (x+ y + z)-dimensional
vector with value a in the first x dimensions, b in the next y dimensions, and c in the next
z dimensions.

I Theorem 8. Let d = d(n) ≤ n be a dimension, and let k > 0 be a constant. There is a
constant c = c(k) for which the following holds. Suppose that there is an algorithm which
computes the `2 earth mover distance between sets A′, B′ ⊆ [1, n16k]2d+2c+2 of size n in
O(n2−ε) time. Then bichromatic closest pair between sets A,B ⊆ [1, nk]d of size n can be
computed in O(n2−ε) time as well.

Proof. Set ρ = 1/(16k), and let c = O(log 1/ρ) be the constant in Lemma 7 for the number
of perfect squares in a decomposition. Let A and B be two sets of vectors from {1, . . . , nk}d.
Let N = n16k. Our goal is to compute

min
a∈A,b∈B

‖a− b‖2 .

We can assume without loss of generality that ‖a‖2
2 and ‖b‖2

2 are odd for all a ∈ A and b ∈ B:
for instance, we can replace each vector z = (z1, . . . , zd) by (2z1, . . . , 2zd, 1).

We construct sets A′ and B′ of (2d + 2c + 2)-dimensional vectors as follows. Let
u = 0d(10c)0c+10d (parentheses for clarity). Let v = Nd0c+1(10c)0d. Add n− 1 copies of u
to B′ and add n− 1 copies of v to A′. For each a ∈ A, add the following vector to A′, where
we’ll define vector adja ∈ Zc+1 later:

a′ = f(a) = 0d(adja)0c+1a.

Similarly, for each b ∈ B, add the following vector to B′, where we’ll define adjb ∈ Zc+1 later:

b′ = g(b) = Nd0c+1(adjb)b.

Now pick any a ∈ A. We’ll construct adja so that the following equalities are both
satisfied:

‖a′ − u‖2
2 = n4kd2 = ‖adja‖

2
2 .

Define the first element adja(0) = (‖a‖2
2 + 1)/2. Since ‖a‖2

2 ≤ n2kd, we can then use
Lemma 7 to find c integers adja(1), . . . , adja(c) so that ‖adja‖

2
2 = n4kd2. Furthermore,

‖a′ − u‖2
2 = ‖adja − 10c‖2

2 + ‖a‖2
2

= ‖adja‖
2
2 − 2 · adja(0) + 1 + ‖a‖2

2

= n4kd2.

For each b ∈ B, we can similarly construct adjb so that ‖b′ − v‖2
2 = ‖adjb‖

2
2 = n4kd2.

D. Rohatgi 12:7

We claim that

EMD(A′, B′) = 2(n− 1)n2kd+ min
a∈A,b∈B

√
N2d+ 2n4kd2 + ‖a− b‖2

2.

To prove this claim, notice that ‖u− v‖2 ≥ N
√
d and ‖a′ − b′‖2 ≥ N

√
d for every

a′ ∈ A′ \ {v} and b′ ∈ B′ \ {u}, whereas ‖a′ − u‖2 � N
√
d/n and ‖b′ − v‖ � N

√
d/n. This

means that the optimal matching between A′ and B′ will minimize the number of (u, v)
and (a′, b′) edges. Hence, exactly one element of A′ \ {v} will be matched to an element
in B′ \ {u}. So if M denotes this optimal matching, and x′ = f(x) ∈ A′ is matched with
y′ = g(y) ∈ B′, then the cost of M is

cost(M) =

 ∑
a′∈A′\{v,x′}

‖a′ − u‖2 +
∑

b′∈B′\{u,y′}

‖b′ − v‖2

+ ‖x′ − y′‖2

= 2(n− 1)n2kd+
√
N2d+ ‖adjx‖

2
2 +

∥∥adjy∥∥2
2 + ‖x− y‖2

2

= 2(n− 1)n2kd+
√
N2d+ 2n4kd2 + ‖x− y‖2

2.

The claim follows. So the algorithm is simply: run the EMD algorithm on (A′, B′) and use
the computed matching cost to find the closest pair distance, according to the above formula.

The time complexity of constructing A′, B′ is O(n5/4d1/8), dominated by computing a
square decomposition for each vector. Since A′ and B′ are sets of O(n) vectors in Z2d+2c+2

with entries bounded by max(N,n2kd) ≤ n16k, the EMD between A′ and B′ can be computed
in O(n2−ε) time. Thus, the overall algorithm takes O(n2−ε) time. J

Theorem 1 follows from the above reduction and Theorem 6.

4 Approximate EMD under the Hitting Set Conjecture

In this section we prove hardness of approximation for the EMD matching problem when
the approximately optimal matching must be reported. Note that the techniques from
the previous section do not immediately generalize to this scenario, since the reduction in
Theorem 8 is not approximation-preserving. A multiplicative error of 1 + ε in the EMD
algorithm would induce an additive error of Õ(εn16k) in the closest pair algorithm, due to
the large integers constructed in the reduction. A bucketing scheme, to ensure that the
diameter of the input point set is within a constant factor of the closest pair, could eliminate
the dependence on the values of the input coordinates, yielding a multiplicative error of
only 1 + Õ(εn).

However, (1 + ε)-approximate closest pair is only quadratically hard for ε = o(1) [21]; for
any constant ε > 0, there is a subquadratic (1 + ε)-approximation algorithm [16, 4]. Thus,
the above arguments would only yield (1 + Õ(1/n))-approximate hardness. Furthermore, the
factor of n loss intuitively feels intrinsic to the approach of reducing from closest pair, since
the EMD is the sum of n distances. Thus, a different approach seems necessary if we are to
achieve hardness for ε = ω(1/n).

Our method broadly consists of two steps. First, we show that EMD can encode
orthogonality, by reducing approximate Maximum Orthogonal Matching (the problem of
reporting a maximum matching in the implicit graph with an edge for each orthogonal pair)
to approximate EMD matching. Second, we show that approximate Maximum Orthogonal
matching can solve an instance (A,B) of Hitting Set by finding an orthogonal pair (a, b) for
every a ∈ A if possible, even if the set of orthogonal pairs does not constitute a matching.

APPROX/RANDOM 2019

12:8 Conditional Hardness of Earth Mover Distance

We start by proving that asymmetric EMD matching reduces to EMD matching for the
appropriate choices of error bounds. The reduction pads the smaller set of vectors A with
a vector that is equidistant from the opposite set B, so that its contribution to the earth
mover distance can be accounted for. Of course, it is first necessary to transform the vectors
so that an equidistant vector exists.

I Lemma 9. Suppose that (1+ε)-approximate EMD matching in D dimensions can be solved
in T (n,D) time. Then (1 + ε)-approximate asymmetric EMD matching in d dimensions can
be solved with an additional additive factor of nε

√
d in T (n, 2d) time.

Proof. Let A,B ⊆ {0, 1}d with |A| ≤ |B|. Define sets A′, B′ ⊆ {0, 1}2d by mapping a ∈ A
to the vector

(a1, . . . , ad, 1− a1, . . . , 1− ad)

and similarly mapping b ∈ B to

(b1, . . . , bd, 1− b1, . . . , 1− bd).

Then add |B| − |A| copies of the zero vector to A′.
Now |A′| = |B′|, so we can run the approximate EMD algorithm on A′ and B′ to find

some bijection π : A′ → B′ such that∑
a′∈A′

‖a′ − π(a′)‖2 ≤ (1 + ε)EMD(A′, B′).

Each vector b′ ∈ B′ has ‖b′‖2
2 = d, so the distance from the zero vector to each match is

exactly
√
d. And for any a ∈ A and b ∈ B which map to a′ ∈ A′ and b′ ∈ B′,

‖a′ − b′‖2
2 = 2 ‖a− b‖2

2 .

Hence, the cost of π is∑
a′∈A′

‖a′ − π(a′)‖2 = (|B| − |A|)
√
d+
√

2 ·
∑
a∈A
‖a− π(a)‖2

and the optimal cost is

EMD(A′, B′) = (|B| − |A|)
√
d+
√

2 · EMD(A,B).

It follows that∑
a∈A
‖a− π(a)‖2 ≤

ε√
2

(|B| − |A|)
√
d+ (1 + ε)EMD(A,B),

which is the stated error bound. J

Next, we reduce approximate Maximum Orthogonal Matching to approximate asymmetric
EMD matching. The general idea, given input sets (A,B), is to deform A and B so that
orthogonal pairs (a, b) are mapped to pairs (a′′, b′′) with distance d0, and all other pairs are
mapped to pairs with distance at least d1 > d0. Then add |A| auxiliary vectors to B, each
with distance exactly d1 from all vectors in A. Thus, in an optimal matching, each vector of
A is either matched with an orthogonal vector at distance d0, or some vector with distance
exactly d1. This introduces a nonlinearity, ensuring that in the additive matching cost, an

D. Rohatgi 12:9

orthogonal pair’s contribution is not “cancelled out” by the contribution of a pair with dot
product 2, for instance. A similar trick was used by [8] in the context of edit distance, another
“additive” metric.

The following simple lemma will be useful:

I Lemma 10. There are maps φ1, φ2 : {0, 1}d → {0, 1}3d such that for any a, b ∈ {0, 1}d,

φ1(a) · φ2(b) = d− (a · b).

Furthermore, the maps can be evaluated in O(d) time.

Proof. Each dimension expands into three dimensions as follows:

ai 7→ (φ1(a)3i, φ1(a)3i+1, φ1(a)3i+2) = (ai, 1− ai, 1− ai)

bi 7→ (φ2(b)3i, φ2(b)3i+1, φ2(b)3i+2) = (1− bi, bi, 1− bi).

Then for each i,
3i+2∑
j=3i

φ1(a)jφ2(b)j = ai(1− bi) + (1− ai)bi + (1− ai)(1− bi) = 1− aibi.

Summing over i = 1, . . . , d we get φ1(a) · φ2(b) = d− (a · b) as desired. J

I Lemma 11. Suppose that (1 + ε)-approximate asymmetric EMD in D dimensions can
be solved with an additional additive factor of nε

√
D in T (n,D) time. Then the Maximum

Orthogonal Matching problem in d dimensions can be solved up to an additive factor of
O(nεd) in T (2n, 12d+ 1) time.

Proof. Let A,B ⊆ {0, 1}d with |A| ≤ |B| = n. Define A′, B′ ⊆ {0, 1}3d by A′ = φ1(A) and
B′ = φ2(B), where φ1, φ2 are as defined in Lemma 10.

Let d′ = 3d for convenience. Now we construct sets A′′, B′′ ⊆ {0, 1}4d′+1 as follows,
starting from sets A′ and B′. We add 2d′ dimensions to ensure that ‖a′′‖2

2 = ‖b′′‖2
2 = d′

for every a′′ ∈ A′′ and b′′ ∈ B′′ without changing the inner products. Add another d′ + 1
dimensions, extending each a′′ ∈ A′′ so that a′′3d′+1 = 1 and a′′i = 0 otherwise; and extend
each b′′ ∈ B′′ so that b′′3d′+2 = 1 and b′′i = 0 otherwise. Finally augment B′′ with |A| copies
of the vector v ∈ {0, 1}4d′+1 with 3d′ zeros followed by d′ + 1 ones.

Notice that for every a ∈ A and b ∈ B corresponding to some a′′ ∈ A′′ and b′′ ∈ B′′,

‖a′′ − b′′‖2
2 = ‖a′′‖2

2 + ‖b′′‖2
2 − 2a′′ · b′′ = 2(d′ + 1)− 2a′′ · b′′ = 2a · b+ 4d+ 2,

and

‖a′′ − v‖2
2 = 2(d′ + 1)− 2a′′ · v = 4d+ 4.

Now we run the approximate asymmetric EMD matching algorithm on A′′ and B′′,
yielding an injection π : A′′ → B′′ such that∑

a′′∈A′′
‖a′′ − π(a′′)‖2 ≤ |B

′′|ε
√

4d′ + 1 + (1 + ε)EMD(A′′, B′′).

For each a′′ ∈ A′′, if ‖a′′ − π(a′′)‖2
2 > 4d+4, then we can set π(a′′) = v, preserving injectivity

and decreasing the cost of the matching. Therefore every edge has cost either
√

4d+ 2 or√
4d+ 4. In particular, if there are m orthogonal pairs in the matching, the total cost is∑
a′′∈A′′

‖a′′ − π(a′′)‖2 = m
√

4d+ 2 + (|A| −m)
√

4d+ 4.

APPROX/RANDOM 2019

12:10 Conditional Hardness of Earth Mover Distance

By the same argument as above, the minimum cost matching is obtained by maximizing
the number of orthogonal pairs. If the maximum possible number of orthogonal pairs in a
matching is mOPT, then

EMD(A′′, B′′) = mOPT
√

4d+ 2 + (|A| −mOPT)
√

4d+ 4.

Substituting these expressions into the approximation guarantee and solving, we get that
m ≥ mOPT −O(εnd) as desired. J

In the above lemma we assumed that we are given an algorithm for asymmetric EMD
matching which has both a multiplicative error of 1 + ε and an additive error of nε

√
d, since

this is the error introduced by the reduction to (symmetric) EMD. However, we are also
interested in the hardness of (1 + ε)-approximate asymmetric EMD matching in its own
right. Removing the additive error from the hypothesized algorithm in Lemma 11 directly
translates to an improved Maximum Orthogonal Matching algorithm, with an additive error
of O(ε|A|d) instead of O(εnd), where n = |A|+ |B|:

I Lemma 12. Suppose that there is an algorithm which solves (1+ε)-approximate asymmetric
EMD matching in T (|A| + |B|, d) time, where the input is A,B ⊆ {0, 1}d. Then the
Maximum Orthogonal Matching problem can be solved up to an additive error of O(ε|A|d) in
T (2n, 12d+ 1) time.

Now we could reduce OV to approximate Maximum Orthogonal Matching. The proof of
the following theorem is given in Appendix B for completeness.

I Theorem 13. Let d = ω(logn). Under the Orthogonal Vectors Conjecture, for any
ε > 0 and δ ∈ (0, 1), (1 + 1/nδ)-approximate EMD matching in {0, 1}d cannot be solved in
O(n2δ−ε) time.

However, Theorem 13 does not prove quadratic hardness for any approximation factor
larger than (1 + 1/n), and in fact breaks down completely for (1 + 1/

√
n)-approximate

EMD matching.
Instead, we reduce Hitting Set to approximate Maximum Orthogonal Matching, through

approximate Find-OV. These two problems are structurally similar; the technical difficulty is
that Find-OV may require finding many orthogonal pairs even when the largest orthogonal
matching may be small, in which case applying the Maximum Orthogonal Matching algorithm
would result in little progress. We resolve this with the following insight: if many vectors
in set A are orthogonal to at least one vector in set B but there is not a large orthogonal
matching, then some vector in set B is orthogonal to many vectors in A. But these vectors
can be found efficiently by sampling.

In the proof of the following theorem we formalize the above idea.

I Theorem 14. Let d = d(n) be a dimension. Suppose that the Maximum Orthogonal
Matching problem can be solved up to an additive error of E(|A|, |B|) in O(n2−εpoly(d))
time, where the input is A,B ⊆ {0, 1}d. Then for any (sufficiently small) α > 0 there is
some γ > 0 such that Find-OV can be solved with high probability up to an additive error of
E(|A|, 2|B|1+α) in O(n2−γpoly(d)) time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. Let α > 0 be a constant we choose later. We
may safely assume that α < 1. Let the degree of a vector a ∈ A, denoted d(a), be the number
of b ∈ B which are orthogonal to a. The algorithm for Find-OV consists of three steps:

D. Rohatgi 12:11

1. For every a ∈ A, sample n1−α/4 vectors from B to get an estimate d̂(a) of d(a). Mark
and remove the vectors for which d̂(a) ≥ nα/2.

2. Next, for every b ∈ B, sample n1−α/2 vectors from A to get an estimate d̂(b) of d(b). Let
Blarge ⊆ B be the set of vectors for which d̂(b) ≥ nα. For each b ∈ Blarge, iterate over A
and mark and remove each a ∈ A for which a · b = 0. Now remove Blarge from B.

3. Run the Maximum Orthogonal Matching algorithm on the remaining set A, and the
multiset consisting of 2nα copies of each remaining b ∈ B. This produces a set of pairs
(ai, bi) where ai · bi = 0. Output the union of {ai}i and the set of all vectors marked and
removed from A in the previous steps.

In the first step, a Chernoff bound shows that with high probability, every vector for
which d(a) ≥ 2nα/2 is marked and removed. Now summing over the remaining vectors,∑

a∈A
d(a) =

∑
b∈B

d(b) ≤ 2n1+α/2.

In the second step, with high probability Blarge contains no b ∈ B for which d(b) ≤ 1
2n

α,
by a Chernoff bound on each such b ∈ B. Therefore |Blarge| ≤ 4n1−α/2. Furthermore, with
high probability Blarge contains every b ∈ B for which d(b) ≥ 2nα.

So after the first two steps, every remaining vector b ∈ B has degree at most 2nα. Suppose
there are t vectors a ∈ A with positive degree, and t′ of these are found in the first two steps.
Then by the degree bound, the remaining t− t′ vectors inject into 2nα copies of B. Therefore
there is an orthogonal matching of size at least t− t′. By the approximation guarantee of
the Maximum Orthogonal Matching algorithm, we find an orthogonal matching of size at
least t− t′ − 2n(1+α)δ in step 3. Overall, we find at least t− 2n(1+α)δ vectors with positive
degree, which gives the desired approximation guarantee.

The time complexity is O((n2−α/4 + n(2−ε)(1+α))poly(d)). This is subquadratic in n for
sufficiently small α. J

As the final step of the reduction, we show that approximate Find-OV can solve Hitting
Set. Note that exact Find-OV obviously solves Hitting Set. It’s also clear that Find-OV with
an additive error of n1−ε solves Hitting Set: simply run Find-OV, and then exhaustively
check the remaining unpaired vectors of A – unless there are more than n1−ε unpaired vectors,
in which case there must be a hitting vector.

To reduce Hitting Set to Find-OV with additive error of Θ(n), the essential idea is simply
to repeatedly run Find-OV on the remaining unpaired vectors. If the Find-OV algorithm
has an additive error of n/2, then given an input A,B with no hitting vector, the algorithm
will find orthogonal pairs for at least n/2 vectors of A. Naively, we’d like to recurse on the
remaining half of A. Unfortunately, the set B cannot similarly be halved, so the error bound
in the next step would not be halved. Thus, the algorithm might make no further progress.

The workaround is to duplicate every unpaired vector of A before recursing. If n/2
orthogonal pairs are found but every vector of A has been duplicated once, then matches
are found for at least n/4 distinct vectors. This suffices to terminate the recursion in
O(logn) steps.

I Theorem 15. Suppose that Find-OV in d dimensions can be solved up to additive error of
n/2 in T (n, d) time. Then Hitting Set in d dimensions can be solved in O((T (n, d)+nd) logn)
time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. Our hitting set algorithm consists of
t = dlogne+ 1 phases. Initialize R1 = A.

APPROX/RANDOM 2019

12:12 Conditional Hardness of Earth Mover Distance

In phase i ≥ 1, run Find-OV on (2i−1Ri, B), where 2iRi is the multiset with 2i copies of
each vector in Ri. Let P ⊆ A be the output multiset and let P ′ be the corresponding set
(removing duplicates). Set Ri+1 = Ri \ P ′. If |Ri+1| > n/2i, report failure (i.e. there is a
hitting vector). Otherwise, proceed to the next phase. If phase t is complete, report success
(i.e. no hitting vector).

Suppose that the algorithm reports success. Then after phase t, we have Rt+1 ≤ n/2t < 1.
Then for every a ∈ A there was some phase i in which a was removed from Ri, and therefore
was orthogonal to some b ∈ B. So there is no hitting vector.

Suppose that the algorithm reports failure in phase i. Then |Ri| ≤ n/2i−1 and |Ri+1| >
n/2i, so |P ′| < n/2i. Therefore |P | ≤ 2i−1|P ′| < n/2. By the Find-OV approximation guar-
antee, not every element of Ri is orthogonal to an element of B. So there is a hitting vector.

The time complexity is dominated by O(logn) applications of Find-OV on inputs of
size O(n), along with O(nd) extra processing in each phase. Thus, the time complexity is
O((T (n, d) + nd) logn). J

The next theorem shows that hardness for approximate EMD matching (conditioned on
the Hitting Set Conjecture) follows from chaining together the above reductions.

I Theorem 16. If there are any ε, δ > 0 such that (1+1/nδ)-approximate EMD matching can
be solved in O(n2−ε) time for some dimension d = ω(logn), then the Hitting Set Conjecture
is false.

Proof. Fix d = ω(logn), and assume without loss of generality that d(n) is polylogarithmic.
Let ε, δ > 0 and suppose that (1+1/nδ)-approximate EMD matching can be solved in O(n2−ε)
time. Then (1 + 1/nδ)-approximate asymmetric EMD can be solved with an additional
additive error of n1−δ

√
d with the same time complexity, by Lemma 9. Hence, the Maximum

Orthogonal Matching problem can be solved with an additive error of n1−δd in the same
time, by Lemma 11.

Applying Theorem 14 with parameter α = δ, we get a randomized algorithm for Find-OV
with an additive error of O(n1−δ2

d1+δ) and time complexity O(n2−γ) for some γ > 0. For
sufficiently large n, the error is at most n/2. Thus, we can apply Theorem 15 to get a
randomized algorithm for Hitting Set with time complexity Õ(n2−γ), which contradicts the
Hitting Set Conjecture. J

Furthermore, we obtain stronger hardness of approximation for asymmetric EMD matching:

I Theorem 17. Let d = ω(logn) and η = 1/ω(logn). If there is a truly subquadratic
(1 + η)-approximation algorithm for asymmetric EMD matching in d dimensions, then the
Hitting Set Conjecture is false.

Proof. Fix d′ = ω(logn) and η = 1/ω(logn) and ε > 0. Suppose that there is an O(n2−ε)
time algorithm which achieves a (1 + η) approximation for asymmetric EMD matching in
d′ dimensions. Set d = min(d′,

√
(logn)/η). Since Rd embeds isometrically in Rd′ , the

algorithm also achieves a (1 + η) approximation for asymmetric EMD in d dimensions.
By Lemma 12, the Maximum Orthogonal Matching problem can be solved up to an

additive error of O(η|A|d) in O(d) dimensions and O(n2−ε) time. By Theorem 14 there is
some γ > 0 such that Find-OV can be solved up to an additive error of O(ηnd) in O(d)
dimensions and O(n2−γ) time. By choice of d we have ηnd = o(n), so for sufficiently large n
the algorithm achieves additive error of at most n/2. Therefore by Theorem 15, Hitting Set
can be solved in O(d) dimensions and Õ(n2−ε) time. Since d = ω(logn), this contradicts the
Hitting Set Conjecture. J

D. Rohatgi 12:13

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight Hardness Results

for LCS and Other Sequence Similarity Measures. In Proceedings of the 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science (FOCS), FOCS ’15, pages 59–78,
Washington, DC, USA, 2015. IEEE Computer Society. doi:10.1109/FOCS.2015.14.

2 Amir Abboud, Virginia Vassilevska Williams, and Joshua Wang. Approximation and Fixed
Parameter Subquadratic Algorithms for Radius and Diameter in Sparse Graphs. In Proceedings
of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16,
pages 377–391, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=2884435.2884463.

3 Pankaj K. Agarwal, Kyle Fox, Debmalya Panigrahi, Kasturi R. Varadarajan, and Allen
Xiao. Faster Algorithms for the Geometric Transportation Problem. In Boris Aronov and
Matthew J. Katz, editors, 33rd International Symposium on Computational Geometry (SoCG
2017), volume 77 of Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–
7:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.SoCG.2017.7.

4 Josh Alman, Timothy M. Chan, and Ryan Williams. Polynomial Representations of Threshold
Functions and Algorithmic Applications. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 467–476, October 2016. doi:10.1109/FOCS.2016.57.

5 Jason Altschuler, Jonathan Weed, and Philippe Rigollet. Near-linear Time Approximation
Algorithms for Optimal Transport via Sinkhorn Iteration. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, NIPS’17, pages 1961–1971, USA,
2017. Curran Associates Inc. URL: http://dl.acm.org/citation.cfm?id=3294771.3294958.

6 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
Algorithms for Geometric Graph Problems. In Proceedings of the Forty-sixth Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 574–583, New York, NY, USA, 2014.
ACM. doi:10.1145/2591796.2591805.

7 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint, 2017.
8 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic

Time (Unless SETH is False). In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’15, pages 51–58, New York, NY, USA, 2015. ACM. doi:
10.1145/2746539.2746612.

9 Amitabh Basu. Open Problem: Maximum weighted assignment problem. In Workshop:
Combinatorial Optimization, Oberwolfach Report 50/2018, page 44, 2018. doi:10.4171/OWR/
2018/50.

10 Nicolas Bonneel, Michiel van de Panne, Sylvain Paris, and Wolfgang Heidrich. Displacement
Interpolation Using Lagrangian Mass Transport. ACM Transactions on Graphics, 30(6):158:1–
158:12, December 2011. doi:10.1145/2070781.2024192.

11 Karl Bringmann and Marvin Kunnemann. Quadratic Conditional Lower Bounds for String
Problems and Dynamic Time Warping. In Proceedings of the 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science (FOCS), FOCS ’15, pages 79–97, Washington,
DC, USA, 2015. IEEE Computer Society. doi:10.1109/FOCS.2015.15.

12 Lijie Chen. On the Hardness of Approximate and Exact (Bichromatic) Maximum Inner
Product. In Proceedings of the 33rd Computational Complexity Conference, CCC ’18, pages
14:1–14:45, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.CCC.2018.14.

13 Rémi Flamary, Marco Cuturi, Nicolas Courty, and Alain Rakotomamonjy. Wasserstein
Discriminant Analysis. Machine Learning, 107(12):1923–1945, December 2018. doi:10.1007/
s10994-018-5717-1.

14 John Hopcroft and Richard Karp. An n5/2 Algorithm for Maximum Matchings in Bipartite
Graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

APPROX/RANDOM 2019

https://doi.org/10.1109/FOCS.2015.14
http://dl.acm.org/citation.cfm?id=2884435.2884463
https://doi.org/10.4230/LIPIcs.SoCG.2017.7
https://doi.org/10.4230/LIPIcs.SoCG.2017.7
https://doi.org/10.1109/FOCS.2016.57
http://dl.acm.org/citation.cfm?id=3294771.3294958
https://doi.org/10.1145/2591796.2591805
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.4171/OWR/2018/50
https://doi.org/10.4171/OWR/2018/50
https://doi.org/10.1145/2070781.2024192
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.1007/s10994-018-5717-1
https://doi.org/10.1007/s10994-018-5717-1
https://doi.org/10.1137/0202019

12:14 Conditional Hardness of Earth Mover Distance

15 Piotr Indyk. A Near Linear Time Constant Factor Approximation for Euclidean Bichromatic
Matching (Cost). In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, pages 39–42, Philadelphia, PA, USA, 2007. Society for Industrial and
Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1283383.1283388.

16 Piotr Indyk and Rajeev Motwani. Approximate Nearest Neighbors: Towards Removing
the Curse of Dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM. doi:
10.1145/276698.276876.

17 Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning for
the Geometric Transportation Problem. In Gill Barequet and Yusu Wang, editors, 35th
International Symposium on Computational Geometry (SoCG 2019), volume 129 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 15:1–15:14, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SoCG.2019.15.

18 Yin Tat Lee and Aaron Sidford. Path Finding II: An Õ(m
√
n) Algorithm for the Minimum

Cost Flow Problem. arXiv preprint, 2013. arXiv:1312.6713.
19 Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving Linear

Programs in Õ(Vrank) Iterations and Faster Algorithms for Maximum Flow. In Proceedings of
the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, FOCS ’14, pages
424–433, Washington, DC, USA, 2014. IEEE Computer Society. doi:10.1109/FOCS.2014.52.

20 Jonas Mueller and Tommi Jaakkola. Principal Differences Analysis: Interpretable Characteriza-
tion of Differences Between Distributions. In Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’15, pages 1702–1710, Cambridge,
MA, USA, 2015. MIT Press. URL: http://dl.acm.org/citation.cfm?id=2969239.2969429.

21 Aviad Rubinstein. Hardness of Approximate Nearest Neighbor Search. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages
1260–1268, New York, NY, USA, 2018. ACM. doi:10.1145/3188745.3188916.

22 Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. The Earth Mover’s Distance as a Metric
for Image Retrieval. International Journal of Computer Vision, 40(2):99–121, November 2000.
doi:10.1023/A:1026543900054.

23 Roman Sandler and Michael Lindenbaum. Nonnegative Matrix Factorization with Earth
Mover’s Distance Metric for Image Analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(8):1590–1602, August 2011. doi:10.1109/TPAMI.2011.18.

24 R. Sharathkumar and Pankaj K. Agarwal. A Near-linear Time ε-approximation Algorithm for
Geometric Bipartite Matching. In Proceedings of the Forty-fourth Annual ACM Symposium
on Theory of Computing, STOC ’12, pages 385–394, New York, NY, USA, 2012. ACM.
doi:10.1145/2213977.2214014.

25 Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas Guibas. Convolutional Wasserstein Distances: Efficient Optimal
Transportation on Geometric Domains. ACM Transactions on Graphics, 34(4):66:1–66:11,
July 2015. doi:10.1145/2766963.

26 Cédric Villani. Topics in optimal transportation. Number 58 in Graduate Studies in Mathe-
matics. American Mathematical Society, 2003.

27 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005. Automata, Languages and Programming:
Algorithms and Complexity (ICALP-A 2004). doi:10.1016/j.tcs.2005.09.023.

28 Ryan Williams. On the Difference Between Closest, Furthest, and Orthogonal Pairs: Nearly-
linear vs Barely-subquadratic Complexity. In Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’18, pages 1207–1215, Philadelphia, PA,
USA, 2018. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=3174304.3175348.

29 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, 2018.

http://dl.acm.org/citation.cfm?id=1283383.1283388
https://doi.org/10.1145/276698.276876
https://doi.org/10.1145/276698.276876
https://doi.org/10.4230/LIPIcs.SoCG.2019.15
http://arxiv.org/abs/1312.6713
https://doi.org/10.1109/FOCS.2014.52
http://dl.acm.org/citation.cfm?id=2969239.2969429
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1109/TPAMI.2011.18
https://doi.org/10.1145/2213977.2214014
https://doi.org/10.1145/2766963
https://doi.org/10.1016/j.tcs.2005.09.023
http://dl.acm.org/citation.cfm?id=3174304.3175348
http://dl.acm.org/citation.cfm?id=3174304.3175348

D. Rohatgi 12:15

A Hardness of Low-Rank Minimum Weighted Assignment

The methods we used to prove hardness of exact EMD in low dimensions can be adapted
to prove hardness of minimum weighted assignment with low-rank weight matrices, under
the Orthogonal Vectors Conjecture. In particular, we show in the following theorem that
bichromatic closest pair in d dimensions can be reduced to minimum weighted assignment
with a rank-O(d) weight matrix. The reduction algorithm uses the same input transformation
as Theorem 8, and then solves minimum weighted assignment on the matrix M with entries
Mij =

∥∥A′i −B′j∥∥2
2, where A

′ and B′ are the transformed input sets. The key is that M has
rank O(d), and its minimum weight assignment encodes the squared closest pair distance of
the input – just as the EMD of the transformed input in Theorem 8 encoded the closest pair
distance of the input.

I Theorem 18. Fix a dimension d = d(n) ≤ n, and let ε > 0. Suppose that there is an
algorithm which solves minimum weighted assignment in O(n2−ε) time, if the weight matrix
has rank at most O(d). Then bichromatic closest pair in d dimensions can be solved in
O(n2−ε) time.

Proof. Let A and B be two sets of n vectors in d dimensions, with entries in {1, . . . , nk} for
some constant k > 0. Apply the transformation described in Theorem 8 to construct sets
A′, B′ ∈ {0, . . . , n16k}2d+2c+2 where c is as defined in the proof of the theorem. Define

SQEMD(A′, B′) = min
σ:A′→B′

∑
a′∈A′

‖a′ − σ(a′)‖2
2

where σ ranges over all bijections from A′ to B′. Since ‖u− v‖2
2 ≥ N2d and ‖a′ − b′‖2

2 ≥ N2d

for every a′ ∈ A′\{v} and b′ ∈ B′\{u}, whereas ‖a′ − u‖2
2 � N2d/n and ‖b′ − v‖2

2 � N2d/n,
the optimal matching σ minimizes the number of (u, v) and (a′, b′) edges. In particular,
exactly one element of A′ \ {v} is matched to an element of B′ \ {u}. Thus, paralleling the
proof of Theorem 8, we get

SQEMD(A′, B′) = 2(n− 1)n4kd2 +
(
N2d+ 2n4kd2 + min

a∈A,b∈B
‖a− b‖2

2

)
.

Hence, to compute the bichromatic closest pair distance between A and B, it suffices to
compute SQEMD(A′, B′). Representing A′ and B′ as n× (2d+ 2c+ 2) matrices, let M be
the n× n matrix defined by Mij =

∥∥A′i −B′j∥∥2
2. Then observing that

Mij =
2d+2c+2∑
k=1

(A′ik −B′jk)2 =
2d+2c+2∑
k=1

(A′ik)2 +
2d+2c+2∑
k=1

(B′jk)2 − 2
2d+2c+2∑
k=1

A′ikB
′
jk,

we can write M as the sum of 2d + 2c + 4 rank-1 matrices, so rank(M) ≤ 2d + 2c + 4.
So by assumption, the minimum weight perfect matching in the complete bipartite graph
determined byM can be found in O(n2−εpoly(d)) time. But the cost of the optimal matching
is precisely SQEMD(A′, B′). J

Applying Theorem 6 completes the proof of Theorem 2.

B Proof of Theorem 13

The theorem follows immediately from the reduction from Maximum Orthogonal Matching
to EMD matching shown in section 4, and this next proposition.

APPROX/RANDOM 2019

12:16 Conditional Hardness of Earth Mover Distance

I Proposition 19. Suppose the Maximum Orthogonal Matching problem can be solved up
to an additive factor of nδ in O(nγ) time where δ < 1/2. Then OV can be solved in
O(nγ/(1−δ)) time.

Proof. Let A,B ⊆ {0, 1}d with |A| = |B| = n. We construct multisets A′ and B′ which
consist of 2nδ/(1−δ) copies of each a ∈ A, and 2nδ/(1−δ) copies of each b ∈ B, respectively. We
then run our approximate Maximum Orthogonal Matching algorithm on A′ and B′. If any
orthogonal pair is found, we return it; otherwise we return that there is no orthogonal pair.

Since |A′| = |B′| = 2n1/(1−δ), the time complexity of this algorithm is O(nγ/(1−δ)). It is
clear that if A and B have no orthogonal pair, then A′ and B′ have no orthogonal pair, so
the algorithm correctly returns “no pair”.

Suppose that there are a ∈ A and b ∈ B with a · b = 0 but the algorithm returns “no
pair”. Then the matching found by the algorithm had no orthogonal pairs. However, there
is a matching consisting of 2nδ/(1−δ) pairs. Since |B′|δ < 2nδ/(1−δ), this contradicts the
approximation guarantee of the Maximum Orthogonal Matching algorithm. J

C Hardness of (k, 2k)-Find-OV

The (k, 2k)-Find-OV problem provides some sense of the relative “powers” of the Orthogonal
Vectors Conjecture and the Hitting Set Conjecture, as well as another example of how
the Hitting Set Conjecture can be used to explain hardness of approximation problems.
Reducing from OV, we get the following hardness result, and it is not clear how to make any
improvement. Note that this proof extends to the (1, 2k)-Find-OV problem, for which this
lower bound is tight, due to a random sampling algorithm.

I Proposition 20. Fix δ ∈ (0, 1). Assuming OVC, any algorithm for (nδ, 2nδ)-Find-OV
requires Ω(n2−δ−o(1)) time.

Proof. Suppose that there exists an O(n2−δ−ε) time algorithm find for (nδ, 2nδ)-Find-OV.
Here is an algorithm for OV: given sets A,B ⊆ {0, 1}d with |A| = |B| = n, duplicate each
a ∈ A and each b ∈ B exactly 2nδ/(2−δ) times. If the original number of orthogonal pairs was
r, then the new number is 4rn2δ/(2−δ). For r ≥ 1, this exceeds 2(n · 2nδ/(2−δ))δ, so applying
find yields a positive number of orthogonal vectors if and only if r > 0. It’s easy to check
that the time complexity is subquadratic. J

On the other hand, under the Hitting Set Conjecture, we can obtain quadratic hardness.
When k = n/2, hardness follows from Theorem 15, but it holds in greater generality. In
particular, we provide a proof of conditional hardness for k =

√
n, and it extends naturally

to any k = nγ for γ ∈ (0, 1). The proof takes inspiration from the reduction from Hitting Set
to OV [2], with a few extra twists.

I Theorem 21. If the (
√
n, 2
√
n)-Find-OV problem can be solved in O(n2−ε) time for some

ε > 0, then Hitting Set can be solved in O(n2−δ) time for some δ > 0.

Proof. Let find be the presupposed algorithm for (
√
n, 2
√
n)-Find-OV. Set α = ε/7. Let

A,B ⊆ {0, 1}d with |A| = |B| = n. Without loss of generality, assume that no vector is
all-zeroes. Here is an algorithm:
1. For each a ∈ A, randomly sample n1−α vectors from B. If any of these is orthogonal to a,

mark a and remove it from A, replacing it with an all-ones vector.
2. Set k = n1/3−α. Partition A into sets A1, . . . , Ak of approximately equal size, and

similarly partition B into sets B1, . . . , Bk. For each pair (Ai, Bj):

D. Rohatgi 12:17

a. Apply find to (Ai, Bj).
b. If the output is not

√
n/k orthogonal pairs, then continue to the next pair (Ai, Bj).

c. Otherwise, suppose that the output is {(am, bm)}
√
n/k

m=1 . For each vector a ∈ {am}
√
n/k

m=1 ,
mark a and remove it from Ai (and from A), replacing it with an all-ones vector.

d. Go to (a).
3. If the number of unmarked input vectors exceeds 2n1−3α/2, return “NO” and exit.
4. For each a ∈ A, if a is not the all-ones vector, iterate over all b ∈ B, and mark a if any

b ∈ B is orthogonal.
5. Return “YES” if every vector originally in A is now marked, and “NO” otherwise.
We claim that this algorithm solves Hitting Set in strongly subquadratic time. Correctness
is relatively simple: a vector a ∈ A is only marked by the above algorithm if some b ∈ B
is found for which a · b = 0. Thus, if some a ∈ A is a hitting vector for B, then it is never
marked, so the algorithm returns “NO”.

Conversely, suppose that every a ∈ A is orthogonal to some b ∈ B. Then the number
of unmarked input vectors in Step 3 is at most the number of remaining orthogonal pairs.
But each (Ai, Bj) contains at most 2

√
n/k orthogonal pairs after Step 2 finishes, so the

number of remaining orthogonal pairs in Step 3 is at most k2(2
√
n/k) = 2n1−3α/2. Thus,

the algorithm continues to Step 4. Every a ∈ A which has not been marked by the end of
Step 2 is tested against every b ∈ B in Step 4. Therefore every vector is marked, so the
algorithm returns “YES”.

Turning to time complexity, Step 1 takes O(n2−α) time. The complexity of Step 2 is
dominated by the calls to find. For each pair (Ai, Bj) there is at most one call to find for
which the output is not

√
n/k orthogonal pairs. Hence, there are k2 = n2/3−2α such “failed”

calls. To bound the number of “successful” calls to find, for which the output is
√
n/k

orthogonal pairs, note that after Step 1, with high probability each a ∈ A is orthogonal
to at most n2α vectors b ∈ B, so the total number of orthogonal pairs is at most n1+2α.
Each successful call eliminates

√
n/k = n1/3+α/2 orthogonal pairs, so there are at most

n2/3+3α/2 successful calls. This bound dominates the bound on failed calls. Each call takes
time O((n/k)2−ε), so the time complexity of Step 2 is asymptotically

n(2
3 +α)(2−ε)n

2
3 + 3α

2 = n2− ε
6−

ε2
7 .

Step 3 takes negligible time. Finally, in Step 4, there are at most 2n1−3α/2 vectors a ∈ A
which are not the all-ones vector (since each of these is unmarked), so the complexity is
O(n2−3α/2).

Hence, the overall time complexity is bounded by O(n2−ε/7). J

APPROX/RANDOM 2019

Single-Elimination Brackets Fail to Approximate
Copeland Winner
Reyna Hulett
Department of Computer Science, Stanford University, CA, USA
rmhulett@stanford.edu

Abstract
Single-elimination (SE) brackets appear commonly in both sports tournaments and the voting theory
literature. In certain tournament models, they have been shown to select the unambiguously-strongest
competitor with optimum probability. By contrast, we reevaluate SE brackets through the lens of
approximation, where the goal is to select a winner who would beat the most other competitors in a
round robin (i.e., maximize the Copeland score), and find them lacking. Our primary result establishes
the approximation ratio of a randomly-seeded SE bracket is 2−Θ(

√
log n); this is underwhelming

considering a 1
2 ratio is achieved by choosing a winner uniformly at random. We also establish that

a generalized version of the SE bracket performs nearly as poorly, with an approximation ratio of
2−Ω(4

√
log n), addressing a decade-old open question in the voting tree literature.

2012 ACM Subject Classification Theory of computation → Solution concepts in game theory;
Mathematics of computing → Approximation algorithms

Keywords and phrases Voting theory, mechanism design, query complexity, approximation

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.13

Category APPROX

Funding Supported in part by an NSF Graduate Research Fellowship under grant DGE-1656518.

Acknowledgements I want to thank Benjamin Plaut and Mary Wootters for many helpful discussions.

1 Introduction

The round robin and the single-elimination bracket are two common formats for sporting
competitions. In a round robin, every competitor plays against every other competitor once.
The outcome of a round robin can be represented as a tournament graph, a directed complete
graph where an edge from A to B means A defeats B. A single-elimination bracket can
be represented by a balanced binary tree with the leaves labeled by a permutation of the
competitors. Each internal node is then labeled with the winner of a game between the two
children of that node, with the root node indicating the overall winner. (For simplicity, assume
no ties, deterministic game outcomes, and n = 2m competitors for some integer m ≥ 2.)

A round robin effectively gives us complete information; we learn the outcome of all
(
n
2
)

possible games. However, it is not immediately clear how to translate this into a single winner
unless one competitor beats every other competitor (known as a Condorcet winner). There
are various possible solution concepts – such as the Slater set, the uncovered set, and the top
cycle – but we will focus on the (far more popular) Copeland solution. Each competitor’s
Copeland score equals its out-degree in the tournament graph, i.e., the number of other
competitors it defeats. This gives us a natural, quantitative measure of competitor strength;
thus the Copeland winner(s), or Copeland set, is the competitor(s) with the maximum
Copeland score.

An SE bracket leaves no such ambiguity in determining a unique winner. It also requires
fewer games, and each game has higher stakes, which may explain the popularity of this
format! But what are we trading off in exchange for these desirable qualities? Can we still
expect a strong competitor to win? We will address this question by considering how well SE
brackets approximate the maximum Copeland score, for both worst-case and random seeding.

© Reyna Hulett;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 13; pp. 13:1–13:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8877-1659
mailto:rmhulett@stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.13
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Single-Elimination Brackets Fail to Approximate Copeland Winner

1.1 Related Work

A slightly different version of this question is long resolved. Namely, that line of work assumes
the game outcomes are probabilistic but there exists an unambiguously strongest competitor
(who beats every other competitor with probability > 1/2). Competition formats can then
be evaluated based on their probability of selecting this strongest competitor, relative to the
number of games or rounds played. This evaluation criteria has variously been referred to
as “predictive power” or “effectiveness” [12, 1, 14]. Under certain models in this setting, a
balanced SE bracket has the highest predictive power of any competition format with at most
n− 1 games [12]. However, the predictive power of any knockout format (where a competitor
is eliminated after a single loss) will in general be sub-constant in the number of competitors.
This is one motivation for evaluating formats based on the expected “strength” of the winner,
rather than just the (vanishing) probability of selecting a single strongest competitor.

The question of seeding an SE bracket has also received significant attention in the
probabilistic setting, both in terms of designing a fair seeding [21] and manipulating the
seeding to help a particular competitor [14, 20] – in general, it is NP-hard to find a seeding
which maximizes a given competitor’s win probability. Perhaps surprisingly, it is even
NP-hard to determine whether there exists a winning seeding for a given competitor with
deterministic game outcomes [2], although many special cases have been identified where a
polynomial time algorithm exists [19, 16, 18, 17, 2, 10, 9]. We ignore questions of seeding
in the present work, considering only worst-case and random seeding. However, it is worth
noting that a winning seeding does exist for any Copeland winner [19].

Finding or approximating the Copeland winner(s) of a tournament graph with determinis-
tic game outcomes has been studied more generally, although not specifically for SE brackets.
Finding the whole Copeland set requires all

(
n
2
)
games to be played in the worst-case [4, 7].

If we only wish to select a single Copeland winner, that still requires at least
(
n
2
)
− 2 games

(for odd n) [7]. By contrast, finding the Condorcet winner (or determining none exists)
requires only 2n − blognc − 2 games to be played [3, 13]. The number of games required
to approximate the Copeland winner is not well studied, but it is known that finding a
competitor with Copeland score exactly k ≤ (n− 1)/2 requires Θ(nk) games to be played in
the worst-case [3].

The most direct predecessor of the present work concerns approximating the Copeland
winner using a broad category of tournament formats known as voting trees, which include
SE brackets. Whereas an SE bracket corresponds to a balanced binary tree with n leaves,
a voting tree can be any binary tree with any number of leaves (the same competitor can
label multiple leaves). For n ≤ 7 competitors, there exists a voting tree which can select
a Copeland winner, but not so for 8 or more competitors [15]. However, voting trees can
approximate the maximum Copeland score, with an approximation ratio of 2/3 [8], although
this result is non-constructive. The best-known upper bound on the approximation ratio
achievable by voting trees is 3/4 [5, 6]. The situation changes slightly if, instead of a single
voting tree, we are allowed to specify a distribution over voting trees. For instance, we could
consider a randomly-seeded SE bracket. In this case, we want the expected Copeland score of
the winner to approximate the maximum Copeland score. Naturally, the 2/3 lower bound
still applies, but the best-known upper bound for randomized voting trees is 5/6 [5]. In
additional, for randomized voting trees there is a constructive lower bound with certain
nice properties which obtains an approximation ratio approaching 1/2 [5]. The relevant
paper concludes by conjecturing that SE brackets, or certain sizes of balanced voting trees
more generally, may be able to obtain good approximation ratios, although they note “[t]he
analysis of this type of randomization is closely related to the theory of dynamical systems,
and we expect it to be rather involved” [5]. We answer this conjecture in the negative.

R. Hulett 13:3

It is worth noting that randomly-seeded single-elimination brackets have previously been
assumed to select “strong” winners. The probability of a competitor winning such a bracket
has variously been referred to as “a natural notion of player strength” [10], and proposed as
a way to select a winner from a tournament graph [11]. This makes it especially surprising
that SE brackets fail to approximate the maximum Copeland score.

1.2 Contributions
We divide our contributions into three primary categories.

In Section 3, we analyze SE brackets with worst-case seeding. Although it will be
straightforward to see that they achieve an approximation ratio of only logn

n−2 , we provide
context for this result by calculating the query complexity (number of games that must be
played) to approximate the maximum Copeland score with a given approximation ratio. We
argue that, for worst-case seeding, SE brackets can actually be considered optimal among
formats with at most n− 1 games satisfying a basic fairness criterion, in close analogy to the
work of [12]. Additionally, our results suggest a “single-elimination into round robin” format
as an optimal generalization of SE brackets to more than n games.

Our main result is described in Section 4. Namely, we establish that the approximation
ratio of a randomly-seeded SE bracket is 2−Θ(

√
logn). (For comparision, this is not as bad as

the worst non-zero approximation ratio Θ(1
n) but is worse than, say, Θ(1

logn).) A central
lemma used in this proof is based on a result of [5], although we have to redo their analysis
more precisely for our purposes. Essentially, we consider a class of tournament graphs where
the competitors fall into three categories: “weak”, “mediocre”, and “strong”. We construct a
randomized distribution over such tournament graphs, which allows us to use the lemma to
show that “weak” competitors usually win the corresponding SE brackets. Additionally, we
show that most of the probability mass concentrates on tournament graphs where the “weak”
competitors really do have low Copeland score, and thus there exists a specific tournament
graph with low approximation ratio. We obtain the corresponding lower bound on the
approximation ratio by showing that sufficiently low-scoring competitors are few in number
and likely to be eliminated early in an SE bracket.

Finally, in Section 5, we reuse the aforementioned lemma to upper-bound the approxi-
mation ratio of all randomly-seeded, balanced voting trees of sufficient size as 2−Ω(4

√
logn).

This refutes the hope expressed in [5] that carefully choosing the size of a balanced voting
tree could result in a good approximation ratio.

2 Preliminaries

Let S = {1, . . . , n = 2m} be a set of competitors. A tournament graph, or just tournament, on
S is a directed complete graph where S is the vertex set. For any two competitors c1, c2 ∈ S,
c1 6= c2, the corresponding edge is directed from the winner to the loser in a hypothetical
game between the two. If c1 is the winner, we say c1 beats c2, or c1 → c2. Note that this
implies there are no ties, and the game outcomes are deterministic, i.e., if c1 → c2, then c1
beats c2 always. We use T (n) to denote the set of all tournaments on n competitors.

Given a tournament graph T , the Copeland score of a competitor c is the out-degree
of the corresponding vertex, i.e., d+(c) = |{s ∈ S | c → s}|. The Copeland winner(s) of a
tournament is the competitor(s) with the highest Copeland score. If some competitor has
Copeland score n− 1, she is called the Condorcet winner.

APPROX/RANDOM 2019

13:4 Single-Elimination Brackets Fail to Approximate Copeland Winner

We will be considering various competition formats, which are (deterministic or random-
ized) algorithms that query edges of the tournament graph by running games between pairs
of competitors, and return a single winner. For a competition format F , the query complexity
is the worst-case number of games played under F . For a given set of n competitors S, we
also define the approximation ratio for the maximum Copeland score as

min
T∈T (n)

E[d+(F (T))]
maxs∈S d+(s)

where F (T) denotes the winner of tournament T under format F (possibly randomized).
A single-elimination bracket is a competition format represented by a balanced binary

tree with n = 2m leaves labeled by a permutation or seeding of the competitors. For each
level of the tree, moving up from the leaves – that is, for each round of the bracket – for each
internal node, it labels the node with the winner of a game between the node’s two children.
The root node’s label indicates the winner. We will analyze both worst-case seeding (i.e.,
the deterministic competition format with an arbitrary labeling of the leaves) and random
seeding (i.e., the randomized competition format where a random permutation of competitors
is chosen to label the leaves).

3 Deterministic Approximation of Copeland Winner

We first consider how well SE brackets with worst-case seeding approximate the Copeland
winner, and for comparison, we establish the deterministic query complexity required for
any competition format with a given approximation ratio. This reveals that SE brackets
require significantly more games than the optimal query complexity. However, in Section 3.1,
we reanalyze the query complexity of approximation subject to a basic fairness constraint,
the “Condorcet property.” Under this constraint, SE brackets actually achieve optimal query
complexity, and can be generalized into an asymptotically optimal “single-elimination into
round robin” format for more than n− 1 games.

We begin by calculating the approximation ratio of SE brackets.

I Theorem 1. The single-elimination bracket on n = 2m competitors achieves a deterministic
approximation ratio of exactly logn

n−2 for the maximum Copeland score.

Proof. Observe that (1) the SE winner must have a Copeland score of at least logn, since
she must beat one competitor per level for logn levels, and (2) if a Condorcet winner exists,
he must be the SE winner, or conversely, a non-SE-winner has Copeland score at most n− 2.
Taken together, these observations imply that the approximation ratio of the SE bracket is
at least logn

n−2 .
Now, we construct a tournament graph showing that the approximation ratio is at most

logn
n−2 . Consider any tournament graph G on n− 1 competitors with a Condorcet winner, c.
Let the nth competitor be s. Fix any seeding for the bracket. In order to win the bracket, s
must defeat logn competitors, whose identities are fully determined by the graph G and the
seeding. Thus we may assume s defeats exactly this set of logn competitors, loses to every
other competitor, and wins the bracket. By construction, s has Copeland score logn and the
maximum Copeland score is (at least) n− 2, so the approximation ratio is (at most) logn

n−2 ,
as desired. J

In order to evaluate how good or bad this approximation ratio is, we will consider how
well an arbitrary competition format can approximate the maximum Copeland score, trading
off against the total number of games played. This can be thought of as the query complexity

R. Hulett 13:5

of approximation. I.e., if we are allowed arbitrary and adaptive “queries”, how many games
must be played (outcomes queried) to find a competitor with at least 0 < r ≤ 1 times the
maximum Copeland score?

I Theorem 2. The deterministic query complexity to find a competitor with at least 0 < r ≤ 1
times the maximum Copeland score in a tournament on n vertices is Θ(max(1, rn)2).

Proof. We will use the fact that, for any tournament on n vertices, the maximum Copeland
score M lies in [n−1

2 , n − 1], i.e., between the average Copeland score and the maximum
possible.

The upper bound is simple: to obtain an approximation ratio r, pick an arbitrary
n′ = min(2dr(n− 1)e, n) competitors, and query all games within this sub-tournament. If
n′ = n, you find the true Copeland winner, so the approximation ratio is 1 ≥ r. Otherwise,
n′ = 2dr(n− 1)e, so the average Copeland score within this sub-tournament is 2dr(n−1)e−1

2 =
dr(n− 1)e − 1

2 . The maximum Copeland score within this sub-tournament is at least the
average score rounded up, so at least dr(n − 1)e ≥ r(n − 1) ≥ rM , as desired. The total
number of games played is at most(

2dr(n− 1)e
2

)
≤ 2drne2 = O(max(1, rn)2).

For the lower bound, we will define a simple adversarial strategy for answering the queries:
when two competitors are queried, give the win to whichever has fewer wins so far, breaking
ties arbitrarily. The competitor c returned by the optimal algorithm must have been shown
to beat at least k = d r(n−1)

2 e distinct other competitors, since any un-queried game could
be a loss for c. Now, because of the adversary’s strategy, when the algorithm discovers the
ith win for c, it must be beating a competitor which already had i− 1 wins queried. Thus,
counting the number of wins for c and for the k competitors she defeats, the algorithm must
have queried at least

k +
k∑
i=1

(i− 1) = k(k + 1)
2 ≥

⌈
r(n− 1)

2

⌉2
÷ 2 = Ω(max(1, rn)2)

games. J

As a sanity check, we know that finding a competitor with maximum Copeland score
requires at least

(
n
2
)
− 2 games to be played (for odd n) [4], and indeed plugging in r = 1 we

get a query complexity of Θ(n2).
Numerically, SE brackets do not look very good at this point! The sub-tournament strategy

described above can obtain the same approximation ratio r = logn
n−2 in only Θ(log2 n)� n− 1

games. Conversely, if we allow ourselves n − 1 games, we should be able to obtain an
approximation ratio of Θ(1√

n
)� logn

n−2 .
Of course, this sub-tournament strategy is a deeply unsatisfying format for any kind of

competition or election. 64 teams qualify for March Madness; should we suggest the NCAA
just pick 12 at random and then play a round robin?

3.1 “Fair” Deterministic Approximation
There are multiple reasons why we might prefer an SE bracket over this strange sub-
tournament round robin, but the most glaring is fairness. An SE bracket may be more or
less “fair” depending on how the competitors are seeded, but at least it doesn’t eliminate a
majority of the competitors from the get-go.

APPROX/RANDOM 2019

13:6 Single-Elimination Brackets Fail to Approximate Copeland Winner

In this section, we will investigate the complexity of approximation restricted to Condorcet
competition formats. That is, if one competitor beats every other competitor in the underlying
tournament graph (i.e., if there is a Condorcet winner) then he must be chosen as the winner
of the competition. This is only a slightly stronger requirement than insisting that no
competitor be eliminated a priori, since it specifies an intuitively obvious win condition.
Additionally, this “Condorcet property” is well-studied in voting theory, has previously been
described for tournaments under the name “unbiasedness” [12], and is closely related to the
concept of “admissibility” from the voting tree literature [5]. Clearly, the SE bracket is a
Condorcet competition format, while the sub-tournament round robin discussed above is not.

As a warm-up, observe that any Condorcet format must query at least n − 1 game
outcomes. This holds because every competitor except the winner must have been observed
to lose at least one game; otherwise, a non-winner could violate the Condorcet property.
Thus if we want to obtain an approximation ratio of logn

n−2 for the maximum Copeland score,
the SE bracket is optimal among Condorcet competition formats. In fact, the following
result implies that SE brackets achieve the optimal approximation ratio among all Condorcet
formats with exactly n− 1 games.

I Theorem 3. The deterministic query complexity, restricted to Condorcet competition
formats, to find a competitor with at least 0 < r ≤ 1 times the maximum Copeland score in a
tournament on n = 2m ≥ 4 vertices is n−1 if r ≤ logn

n−2 or n−1+Θ(max(1, r(n−2)− logn)2)
otherwise.

Proof. As noted above, n−1 games are required for any Condorcet format, so when r ≤ logn
n−2 ,

the desired approximation ratio is achieved in the optimal n− 1 games by an SE bracket.
For the remainder of the proof, we consider r > logn

n−2 .
The upper bound is similar to the sub-tournament round robin approach from Theorem 2,

except that we use a partial single-elimination bracket to select the competitors for the
sub-tournament. Define δ = max(1, r(n− 2)− logn). If δ ≥ n

8 , then we simply run a round
robin on all n competitors and return the Copeland winner. This is clearly a Condorcet
format, achieves approximation ratio 1 ≥ r, and requires

(
n
2
)
≤ n2

2 = n− 1 +O(δ2) games.
Otherwise, we will play the first logn− dlog δe − 3 rounds of a single-elimination bracket,

then run a round robin among the remaining 2dlog δe+3 competitors and return a competitor
with highest number of wins. Observe that this is a Condorcet format, and it returns a
competitor with Copeland score at least logn− dlog δe − 3 + 2dlog δe+2 ≥ logn+ 2dlog δe ≥
logn+ δ ≥ r(n− 2). Therefore, we obtain an r-approximation of the maximum Copeland
score, because either (1) there is a Condorcet winner, she wins the tournament, and the ratio
is 1 ≥ r, or (2) there is no Condorcet winner, so the maximum Copeland score is M ≤ n− 2.
Finally, the number of games played is less than

n− 1 +
(

8δ
2

)
= n− 1 +O(δ2).

For the lower bound, we will reuse the adversarial strategy from Theorem 2: whenever
a query is made, the winner of the game will be whichever competitor has fewer wins so
far, with ties broken arbitrarily. Suppose the competitor c chosen as the winner of the
competition has had k wins queried. Because of the adversary’s strategy, these k competitors
must have already had 0, 1, 2, . . . , k − 1 wins (out-edges), respectively, at the time they were
beaten. In fact, the same logic extends to these k competitors and their wins, etc., forming a
cascade of 2k vertices. However, these 2k vertices need not necessarily be distinct competitors
(except the top k + 1, which must). Moreover, every vertex except the winner must have at

R. Hulett 13:7

least one in-edge (otherwise it could be a Condorcet winner), so the number of vertex-reuses
in this cascade is at most the query complexity less n− 1, since every reuse increases the
in-degree of some vertex by 1.

We would like to lower-bound the query complexity in terms of n; to do this, we will
initially frame it as lower-bounding n in terms of the query complexity, for fixed k. Let
i ∈ R≥0 be such that the total number of games played will be n− 1 + di(i+ 1)/2e. Since k
is fixed, we need a cascade of 2k vertices; however di(i+ 1)/2e can be “reuses.” Note that if
a vertex is reused, it and its children appear only once in the resulting cascade. Any valid
reuse can be captured by “erasing” a sub-tree, with the interpretation that the dangling edge
that led to that sub-tree now points somewhere else. However, none of the top k + 1 vertices
can be erased in this way, since they must be distinct. (Other vertices can be erased and
have their edges pointed to one of these vertices, however.)

Thus, to lower-bound n, we can equivalently upper-bound the number of vertices erased
with di(i+ 1)/2e reuses, since there need to be at least enough distinct vertices to constitute
all the non-erased vertices in the cascade. How can we maximize the number of vertices
erased? The top two layers (top k + 1 vertices) cannot be erased, so the optimal strategy is
to erase vertices from the layer directly below, in order of decreasing size of their sub-trees,
since it always removes more vertices to erase the root of a sub-tree than any of its children.
In particular, we would first erase the 3rd level sub-tree of size 2k−2, then the two sub-trees
of size 2k−3, then the three sub-trees of size 2k−4, etc. For ease of accounting, let us assume
we remove all the 3rd-level sub-trees of size at least 2k−die−1. Observe that this comes to
1 + 2 + · · ·+ die ≥ di(i+ 1)/2e reuses. We need to erase at least 2k − n vertices from the
cascade, so

2k − n ≤ 2k−2 + 2× 2k−3 + · · ·+ die × 2k−die−1

= 2k−die−1
(

2die−1 + 2× 2die−2 + · · ·+ die × 20
)

= 2k−die−1
(

2die+1 − die − 2
)

= 2k − (die+ 2)2k−die−1

logn ≥ log(die+ 2) + k − die − 1
die ≥ k − logn+ log(die+ 2)− 1 ≥ k − logn.

Note that this means any Condorcet competition format using n− 1 + di(i+ 1)/2e games
returns a winner with at most k ≤ logn+ die wins queried. What does this mean for our
approximation ratio? By the pigeonhole principle, there is some non-winner with no more
than 1 +

⌊
di(i+1)/2e

n−1

⌋
losses queried. Thus the maximum Copeland score could be as high as

M ≥ n− 2−
⌊
di(i+1)/2e

n−1

⌋
. In particular, observe that if only n− 1 games are played, then

i = 0 and r = k
M ≤

logn
n−2 . This confirms that for r > logn

n−2 , n− 1 + Ω(1) games are required,
implying SE brackets achieve the optimal approximation ratio for Condorcet formats with
n− 1 games.

We have essentially calculated a bound on the approximation ratio in terms of i, but we
want to turn this into an asymptotic bound on query complexity for a given approximation
ratio. Assuming 0 < i ≤ n− 1 (since we can only have

(
n
2
)
games in total), we have

APPROX/RANDOM 2019

13:8 Single-Elimination Brackets Fail to Approximate Copeland Winner

r ≤ logn+ die
n− 2−

⌊
di(i+1)/2e

n−1

⌋
r(n− 2)− logn ≤ r

⌊
di(i+ 1)/2e

n− 1

⌋
+ die

(r(n− 2)− logn)2 ≤
(
r

⌊
di(i+ 1)/2e

n− 1

⌋
+ die

)2

≤ di(i+ 1)/2e2
(

1
n− 1 + die

di(i+ 1)/2e

)2

≤ di(i+ 1)/2e2
(

1
n− 1 + min

(
1, 2
i

))2

≤ di(i+ 1)/2e2
(

2 min
(

1, 2
i

))2

≤ 4 di(i+ 1)/2e
(
i(i+ 1)

2 + 1
)

min
(

1, 4
i2

)
≤ 16 di(i+ 1)/2e .

Thus the query complexity is at least

n− 1 + di(i+ 1)/2e ≥ n− 1 + 1
16(r(n− 2)− logn)2 = n− 1 + Ω(max(1, r(n− 2)− logn)2)

as desired. J

Interestingly, this implies that a “single-elimination into round robin” format achieves
asymptotically optimal query complexity, with very simple structure. The initial single-
elimination rounds could still benefit from seeding (to make stronger competitors more likely
to survive the early rounds), while the round-robin phase ensures the eventual winner is
reasonably strong, regardless of any manipulation in the seeding. Both single-elimination
and round robin are common formats for sporting competitions, but they are rarely if ever
employed together in this order.

In the following section, we move on to analyze SE brackets with random seeding (rather
than worst-case). Note, however, that coming up with a good randomized approximation of
the Copeland winner is much easier than the deterministic case considered above. In fact, we
can achieve an approximation ratio of r = 1

2 with a query complexity of zero – the average
Copeland score is n−1

2 , so simply returning a random competitor achieves this objective!
This makes it especially surprising that randomly-seeded SE brackets cannot even achieve a
constant approximation of the maximum Copeland score.

4 SE Brackets Fail to Approximate Copeland Winner

In this section, we prove our main result: the approximation ratio of SE brackets for the
maximum Copeland score is 2−Θ(

√
logn).

To obtain our upper bound on the approximation ratio, we consider tournament graphs
consisting of 3 groups (“components”) of competitors: a small set of “strong” competitors,
a small set of “weak” competitors, and a majority of “mediocre” competitors. We assume
every strong competitor beats every mediocre competitor, who beats every weak competitor;
however, the weak beat the strong (a related concept has been analyzed under the term
“choking” [10]). Note that the weak competitors will have low Copeland scores, while the
strong have high scores. The idea is that, even though weak competitors have low scores,

R. Hulett 13:9

they can beat the strongest competitors in the tournament and thus come out on top. In
fact, the key observation follows one made in Theorem 5 of [5]: as the depth of a balanced
bracket grows, the likely winner oscillates between these three components.

The construction of this upper bound is similar to the proof of Theorem 5 in [5], with
a few key differences. First, they consider a tournament with only a single “strong” and a
single “weak” competitor, and label each leaf of the bracket independently and uniformly at
random. Since an SE bracket must be labeled with a random permutation of the competitors,
we instead have to construct a distribution over tournament graphs with varying numbers
of strong and weak competitors in order to simulate each leaf being labeled independently.
Because of this, even after showing that a “weak” competitor is likely to win the bracket,
we have to prove this still holds when we restrict our distribution to tournaments where
the “weak” competitors really have low Copeland score, and thus there exists some specific
tournament graph where the SE bracket has a poor approximation ratio.

Second, [5] shows that the winner of a bracket oscillates between these three components,
but does not establish the rate of oscillation. Because we need to show a weak competitor is
likely to win after precisely logn rounds, we have to repeat their analysis with significant
additional bookkeeping.

The result of this bookkeeping is the following lemma, analogous to Lemma G.1 from
[5]. Roughly, it says: Suppose after some number of rounds of an SE bracket, practically all
the remaining competitors come from the “strong” component. Nevertheless, after a specific
number of additional rounds, practically all the remaining competitors will come from the
“weak” component. Furthermore, the “weak” competitors continue to dominate for many
rounds before the oscillation repeats. The proof consists of analyzing a simple recursive
formula for the likelihood of a “strong”, “mediocre”, or “weak” player winning an SE bracket
after k rounds, in order to give painstaking bounds on the magnitude and rate of oscillation
of these probabilities.

The rather lengthy and unenlightening proof has been relegated to the appendix.

I Lemma 4. Let S be a set of competitors partitioned into three components C1, C2, C3
such that every member of component Ci beats every member of component C(i mod 3)+1. Fix
probabilities p(0)

i summing to 1, and let p(k)
i denote the probability that a member of component

Ci wins a balanced bracket of height k where each leaf is labeled independently according to
p

(0)
i . If for some K ∈ N and 0 < ε ≤ 2−10, ε2 ≤ p

(K)
3 ≤ ε and ε ≤ p

(K)
1 ≤ 2ε, then there

exists K + log(1
ε) ≤ K ′ ≤ K + 3 log(1

ε) and ε2 log(1
ε) ≤ δ ≤ εlog(1

ε)/4 such that δ2 ≤ p(K′)
2 ≤ δ

and δ ≤ p
(K′)
3 ≤ 2δ. Furthermore, if ε ≤ 2−75 then for any K ′′ ∈ [K ′,K ′ + 25 log(1

ε)],
p

(K′′)
2 , p

(K′′)
3 ≤ εlog(1

ε)/25 .

We are now ready to prove our upper bound on the approximation ratio for SE brackets.

I Theorem 5. The approximation ratio of a randomly-seeded single-elimination bracket on
n = 2m competitors for the maximum Copeland score is O(2−

√
log(n)/7).

Proof. For any n = 2m with logn ≥ 212, pick 0 < δ ≤ 2−18 such that 7 log2 1
δ ≤ logn ≤

8 log2 1
δ . Define a distribution over tournaments D(n, δ), with p(0)

s = p
(0)
w = δ, p

(0)
m = 1− 2δ.

D(n, δ) is supported over tournaments of size n with three (possibly empty) components
s,m,w where s beats m, m beats w, and w beats s. Internally each component is a regular
tournament, meaning the difference between the maximum and minimum Copeland scores is
1 or 0. For any fixed size of the components, summing to n, the weight of the corresponding
tournament in D(n, δ) is equal to the probability that those fixed sizes are achieved by
assigning each of n competitors independently to a component according to p(0)

s , p
(0)
m , p

(0)
w .

APPROX/RANDOM 2019

13:10 Single-Elimination Brackets Fail to Approximate Copeland Winner

We will now analyze the winner of a bracket where each leaf is labeled independently with
a component according to p(0)

s , p
(0)
m , p

(0)
w . Observe that this is equivalent to choosing a random

tournament according to D(n, δ) and then labeling n leaves with a random permutation of
the competitors. In particular, for any given tournament graph in D(n, δ), every permutation
of the competitors appears with equal probability.

Letting C1 = s, C2 = m, and C3 = w we apply Lemma 4. Since 0 < δ ≤ 2−10 and
δ2 ≤ p

(0)
w ≤ δ ≤ p

(0)
s ≤ 2δ, we obtain that (δ′)2 ≤ p

(K)
m ≤ δ′ ≤ p

(K)
w ≤ 2δ′ for some

δ2 log(1
δ) ≤ δ′ ≤ δlog(1

δ)/4 and log(1
δ) ≤ K ≤ 3 log(1

δ). We apply Lemma 4 once more, now
with C1 = w,C2 = s, and C3 = m and starting from K, to find that a weak competitor wins
with overwhelming probability after K ′ rounds, with

0 ≤ K ′ ≤ K + 3 log(1
δ′

) ≤ 3 log(1
δ

) + 6 log2(1
δ

).

We will use the final part of Lemma 4 to increase this to a bracket of depth logn. Observe
that no more than 8 log2(1

δ), but more than 0, additional rounds are required. Furthermore,
note that

δ′ ≤ δlog(1
δ)/4 ≤ 2−182/4 < 2−75

as required for this part of the lemma. Finally, the number of additional rounds required is
at most

8 log2(1
δ

) ≤ 25 log(1
δ′

)

and thus by Lemma 4, after logn rounds we have

p(logn)
s , p(logn)

m ≤ δ′ log(1
δ′)/2

5
≤ 2− log2(2log2(δ)/4)/25

= 2−(log2(δ)/4)2)/25
= 2− log4(δ)/29

so also p(logn)
3 ≥ 1− 2× 2− log4(δ)/29 .

We have established the winning probability of a “weak” competitor, over distribution
D(n, δ). However, some tournaments with non-zero weight in the distribution have “weak”
competitors with high Copeland score (those in which either the weak or strong component is
large). Next, we bound the probability that this happens in order to establish a distribution
D′(n, δ), where a “weak” competitor still wins almost always and the weak competitors all
have low Copeland score.

First, we separate out the high-scoring weak and low-scoring weak cases from D(n, δ),
where Pr[w] represents the probability of a weak competitor winning:

Pr[w] = Pr[w : |w|, |s| < 10δn] Pr[|w|, |s| < 10δn]+
Pr[w : |w| or |s| ≥ 10δn] Pr[|w| or |s| ≥ 10δn]

Rearranging,

Pr[w wins : |w|, |s| < 10δn]
≥ Pr[w wins : |w|, |s| < 10δn] Pr[|w|, |s| < 10δn]
= Pr[w wins]− Pr[w wins : |w| or |s| ≥ 10δn] Pr[|w| or |s| ≥ 10δn]

≥ 1− 2× 2− log4(δ)/29
− Pr[|w| or |s| ≥ 10δn]

≥ 1− 2× 2− log4(δ)/29
− Pr[|s| ≥ 10δn]− Pr[|w| ≥ 10δn]

≥ 1− 2× 2− log4(δ)/29
− 2e− 9δn

3 := p

using the Chernoff bound Pr[|C| ≥ 10δn] ≤ e− 9δn
3 (since the expectation of |w|, |s| is δn).

R. Hulett 13:11

Let D′(n, δ) equal D(n, δ) restricted to tournaments where |w|, |s| < 10δn. A weak
competitor wins the SE bracket on a tournament graph drawn from D′(n, δ) with probability
at least p.

Finally, we observe that the Copeland score of any member of the weak component of
any tournament with non-zero support on D′(n, δ) is less than 3

210δn (consisting of less than
10δn edges to the strong component and less than 10δn/2 edges within the weak component).
Thus the expected Copeland score of the winner of a randomly-seeded SE bracket over a
tournament drawn from D′(n, δ) is less than

p
30δn

2 + (1− p)(n− 1)

≤ 15δn+ 2n× 2− log4(δ)/29
+ 2ne−3δn;

recall logn ≤ 8 log2(1
δ), so δ ≤ 2−

√
log(n)/8:

≤ 15× 2logn−
√

log(n)/8 + 2n× 2− log4(2−
√

log(n)/8)/29
+ 2ne−3×2logn−

√
log(n)/8

≤ 15× 2logn−
√

log(n)/8 + 2n× 2−(
√

log(n)/8)4/29
+ 2ne−3×2log(n)/2

≤ 15× 2logn−
√

log(n)/8 + 2× 2logn−(
√

log(n)/8)4/29
+ 2ne−3

√
n

≤ 15× 2logn−
√

log(n)/8 + 2× 2logn−
√

log(n)/8 + 2

This implies that some individual tournament with non-zero support on D′(n, δ) achieves
expected Copeland score at most O(2logn−

√
log(n)/8). Thus the approximation ratio is

O(2−
√

log(n)/8), completing the proof. J

In fact, the upper bound shown above is “nearly” tight, as the following theorem estab-
lishes.

I Theorem 6. The approximation ratio of a randomly-seeded single-elimination bracket on
n = 2m competitors for the maximum Copeland score is Ω(2−

√
2 logn).

Proof. For any k < n, at most 2k competitors in the tournament can have Copeland score
less than k – otherwise, the average score amongst these competitors alone would be at least
(2k+1)−1

2 = k, a contradiction. If k is sufficiently small, it becomes quite likely that these few
competitors will be eliminated early in a randomly-seeded SE bracket.

We will capture this idea by union-bounding over the probability that an individual
competitor c with Copeland score d+(c) < k survives

⌊
log(nk)

⌋
+ 1 rounds. Each round, c

must face one of the < k competitors he can beat (not including those he has already beaten)
– even assuming every other competitor he can beat advances. Therefore,

Pr
(
c survives

⌊
log
(n
k

)⌋
+ 1 rounds : d+(c) < k

)
≤
blog(nk)c∏
i=0

k − i− 1
n
2i − 1

≤
blog(nk)c∏
i=0

2i k
n

≤ 2
log(n

k
)(log(n

k
)+1)

2

(
k

n

)log(nk)+1

=
(
k

n

)−1−log(n
k

)
2

(
k

n

)log(nk)+1
=
(
k

n

) log(n
k

)+1
2

APPROX/RANDOM 2019

13:12 Single-Elimination Brackets Fail to Approximate Copeland Winner

Even if we assume that every one of these low-scoring competitors wins with the probability
calculated above, and contributes nothing to the expected Copeland score of the SE winner,
we still know that the remaining probability belongs to competitors with Copeland score at
least k. Thus,

E[d+(winner)] ≥ k

1− 2k
(
k

n

) log(n
k

)+1
2

 .

Let us plug in k = n2−
√

2 logn = 2logn−
√

2 logn. Then,

E[d+(winner)] ≥ 2logn−
√

2 logn

(
1− 2× 2logn−

√
2 logn

(
2−
√

2 logn
)√2 logn+1

2

)

≥ 2logn−
√

2 logn
(

1− 2× 2logn−
√

2 logn × 2− logn−
√

logn
2

)
≥ 2logn−

√
2 logn

(
1− 2−3

√
logn

2 +1
)

≥ n
(

2−
√

2 logn − 2−5
√

logn
2 +1

)
≥ n2−

√
2 logn−1

which establishes that the approximation ratio is Ω(2−
√

2 logn), as desired. J

Taken together, these bounds establish that the approximation ratio of randomly-seeded
SE brackets for the maximum Copeland score is 2−Θ(

√
logn).

5 Balanced Voting Trees Fail to Approximate Copeland Winner

In this section, we derive an upper bound on the approximation ratio for the maximum
Copeland score of a generalized version of SE brackets from the voting tree literature. Recall
that a voting tree is any binary tree with leaves labeled by the n competitors. The randomized
perfect voting tree of depth k (k-RPT) is a class of voting trees introduced by [5], consisting
of a balanced binary tree of depth k, with each leaf labeled uniformly at random from the set
of n competitors. The k-RPT is similar to an SE bracket, except (1) the number of leaves
may be larger (or smaller) than the number of competitors, and (2) the random seeding
process does not require every competitor to appear on the leaves. However, as noted by [5],
as k grows, the probability of any competitor not appearing on the leaves vanishes.

[5] established that, for infinitely many k, the k-RPT has an approximation ratio of
O(1/n) for the maximum Copeland score – essentially the worst possible! However, they
left open the question of whether, for some carefully chosen k = f(n), the k-RPT might
achieve a good approximation ratio. We certainly shouldn’t expect the approximation ratio
to be as low as O(1/n) for every k, since technically the 1-RPT corresponds to randomly
choosing a winner and so has approximation ratio 1

2 , while the (logn)-RPT is closely related
to the SE bracket which has a ratio of 2−Θ(

√
logn). However, we can at least show that the

approximation ratio of a k-RPT for any k ≥ logn is sub-constant.

I Theorem 7. The approximation ratio of the k-RPT with k ≥ logn is O(2− 4
√

logn/4)

Proof. We use the same tournament structure as in the previous section, with strong,
mediocre, and weak components s,m,w. Because the labeling of leaves in a k-RPT is
uniformly random, there is no need to define a distribution over such tournaments; the
components have fixed proportions p(0)

s , p
(0)
m , p

(0)
w to be specified later.

R. Hulett 13:13

We again make repeated use of Lemma 4. In this setting, however, we do not have
arbitrary control over ε, the probability of a competitor being weak; it must initially be some
integer multiple of 1/n. Thus we will first establish, for any sufficiently small ε, an infinite set
of ranges for which the probability of a weak competitor winning must be high. We will then
argue that for sufficiently large n, we can vary ε = `/n enough that these ranges collectively
cover every k ≥ logn.

Let ε0 ≤ 2−26 equal p(0)
w , i.e., it will represent the fraction of competitors that are weak;

note that this satisfies the requirement ε0 ≤ 2−10 for Lemma 4. Each time we apply Lemma 4,
we will obtain a new εi, so for instance, ε1 ∈ [2−2 log2(ε0), 2− log2(ε0)/4]. We claim that

log εi ∈
[
−22i−1

(
log 1

ε0

)2i

,−
(

1
4

)2i−1(
log 1

ε0

)2i
]

We can verify this by induction – it clearly holds for i = 0. Assume it holds for i− 1. By
Lemma 4,

log εi ∈
[
−2 log2(1

εi−1
),−1

4 log2(1
εi−1

)
]

∈

−2
(
−22i−1−1

(
log 1

ε0

)2i−1)2

,−1
4

(
−
(

1
4

)2i−1−1(
log 1

ε0

)2i−1)2
∈

[
−2× 22i−2

(
log 1

ε0

)2i

,−1
4

(
1
4

)2i−2(
log 1

ε0

)2i
]
,

as desired.
Let ti be the step (bracket depth) at which the ith application of Lemma 4 begins, t0 = 0.

Note that p(ti)
w is high when i mod 3 = 2. We claim that

ti+1 ∈
[
log(1

εi
), 4 log(1

εi
)
]
.

The lower bound is immediate from Lemma 4 because the ith oscillation takes at least log(1
εi

)
steps. The upper bound we again prove inductively; for t1 it likewise holds directly from
Lemma 4. Assuming it holds for ti, and since log εi ∈ [−2 log2(εi−1),− 1

4 log2(εi−1)],

ti+1 ≤ ti + 3 log(1
εi

)

≤ 4 log(1
εi−1

) + 3 log(1
εi

)

≤ 4
√

4 log(1
εi

) + 3 log(1
εi

)

≤ 4 log(1
εi

)

where the last line holds because log(1
εi

) ≥ log(1
ε0

) ≥ 26 by assumption.
Next, recall that by Lemma 4, the two smaller probabilities at ti+1 sum to at most 3εi+1.

If we allow this sum to increase slightly, say to εi, we can go additional steps beyond ti+1.
Specifically, knowing the probability at most doubles each time step, for any t ≤ 1

8 log2(1
εi

)
we have

APPROX/RANDOM 2019

13:14 Single-Elimination Brackets Fail to Approximate Copeland Winner

log
(
2t × 3εi+1

)
≤ t− 1 + log(εi+1)

≤ 1
8 log2(1

εi
)− 1− 1

4 log2(1
εi

)

≤ − log(1
εi

)

where the last line holds because log(1
εi

) ≥ log(1
ε0

) ≥ 26. Removing the logarithm, the above
implies that for any t ≤ 1

8 log2(1
εi

), the two smaller probabilities at time ti+1 still sum to at
most εi at time ti+1 + btc. Also, for t = 1

8 log2(1
εi

), observe that

ti+1 ≤ 4 log(1
εi

) ≤ 2
(

2 log 1
ε0

)2i

ti+1 + btc ≥ log(1
εi

) + 1
8 log2(1

εi
)− 1

≥ 1
8 log2(1

εi
) ≥ 2

(
log(1/ε0)

4

)2i+1

.

Thus for any ε0 ≤ 2−26 and i ∈ N, we have established an interval on which the largest
probability is at least 1− εi. In particular, whenever i+ 1 = 2 (mod 3), this gives an interval
on which a weak competitor wins with overwhelming probability.

Next, we want to show that, for any sufficiently large n, these intervals can be made to
cover every depth k ≥ logn, even with the limitation that ε0 must equal `/n for some ` ∈ N.
In fact, we claim that letting ` take on values 1, 2, . . . ,

⌈
2logn− 4

√
logn/4

⌉
:= L covers every

k ≥ logn for any n sufficiently large that
⌈
2logn− 4

√
logn/4

⌉
/n ≤ 2−26 – this is necessary to

ensure that ε0 ∈ [1/n, L/n] will be at most 2−26 as assumed above.
First, let us verify that the lowest k contained in one of these intervals is sufficiently

small. k will be smallest when i is small (i+ 1 = 2) and when ε0 is large (ε0 = L/n). Thus
the first interval will start at

2
(

2 log n
L

)2
≤ 2

(
log(2

4
√

logn/4)
)2

=
√

logn/8� logn,

so indeed our overlapping intervals start below k = logn.
Next, we need to establish that for a fixed i, the adjacent intervals with ε0 = `/n, ε0 =

(`− 1)/n overlap. That is, the lower bound of the later interval needs to be below the upper
bound of the earlier. I.e., we require

2
(

2 log(n

`− 1)
)2
≤ 2

(
log(n

`
)/4
)4

25 log(n

`− 1) ≤ log2(n
`

)

and indeed,

25 log(n

`− 1) ≤ 25
(

1 + log n
`

)
≤ log2(n

`
)

where the final inequality holds because log(n`) ≥ 26.

R. Hulett 13:15

Finally, we will show that the latest interval for i, ε0 = 1/n, overlaps with the earliest
interval for i+ 3, ε0 = L/n, and thus that there is no gap between intervals where a weak
competitor can win with high probability. We require

2
(

2 log n
L

)2i+3

≤ 2
(

logn
4

)2i+1

(
2 log n

L

)4
≤ logn

4
and indeed,(

2 log n
L

)4
≤
(

2 4
√

logn/4
)4

= logn
16 <

logn
4

as desired.
Having shown that a weak competitor can win with overwhelming probability for suffi-

ciently large n and any k ≥ logn, we can upper-bound the expected Copeland score of the
winner as

E[d+(winner)] ≤ (1−εi)(`+`/2)+εi(n−1) ≤ L+L/2+L

n
(n−1) ≤ 3L = 3

⌈
2logn− 4

√
logn/4

⌉
.

Equivalently, the approximation ratio of any k-RPT is O(2− 4
√

logn/4). J

Interestingly, although this bound holds for all k ≥ logn, significantly tighter bounds
can be obtained for certain k by the same method. In particular, the bound is made much
looser by increasing the size of the weak component up to L/n, which is only necessary when
trying to cover every possible k. When the weak component has size 1/n, we recover the
O(1/n) approximation ratio of [5]. Without matching lower bounds, it is unclear to what
extent this oscillating approximation ratio is real versus an artifact of the proof method.
Regardless, this upper bound settles the question of whether any k-RPT can obtain a decent
approximation ratio.

6 Conclusion

In this work, we establish that randomly-seeded single-elimination brackets are surprisingly
bad at approximating the maximum Copeland score, as is a generalized version of SE
brackets from the voting theory literature, the k-RPT. However, we show that SE brackets
have optimal approximation ratio for worst-case/deterministic seeding among Condorcet
competition formats.

Despite their sub-constant approximation ratio, single-elimination brackets are widely
used; perhaps quirks of their occurrence in practice could improve the approximation
ratio? For instance, one could consider the impact of seeding based on some measure of
competitor ability, or investigate whether SE brackets perform better on tournament graphs
generated from some random model. Alternatively, one could investigate other existing
competition formats (e.g., double-elimination, Swiss-system) to see if they better approximate
the Copeland winner.

References
1 Micah Adler, Peter Gemmell, Mor Harchol-Balter, Richard M. Karp, and Claire Kenyon.

Selection in the Presence of Noise: The Design of Playoff Systems. In Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, pages 564–572. Society
for Industrial and Applied Mathematics, 1994. URL: http://dl.acm.org/citation.cfm?id=
314464.314650.

APPROX/RANDOM 2019

http://dl.acm.org/citation.cfm?id=314464.314650
http://dl.acm.org/citation.cfm?id=314464.314650

13:16 Single-Elimination Brackets Fail to Approximate Copeland Winner

2 Haris Aziz, Serge Gaspers, Simon Mackenzie, Nicholas Mattei, Paul Stursberg, and Toby
Walsh. Fixing a Balanced Knockout Tournament. In Proceedings of the 28th AAAI Conference
on Artificial Intelligence, AAAI’14, pages 552–558. AAAI Press, 2014. URL: http://dl.acm.
org/citation.cfm?id=2893873.2893960.

3 Ramachandran Balasubramanian, Venkatesh Raman, and G Srinivasaragavan. Finding Scores
in Tournaments. Journal of Algorithms, 24(2):380–394, 1997. doi:10.1006/jagm.1997.0865.

4 Palash Dey. Query Complexity of Tournament Solutions. Proceedings of the 31st AAAI
Conference on Artificial Intelligence, pages 2992–2998, 2017. URL: https://aaai.org/ocs/
index.php/AAAI/AAAI17/paper/view/14180.

5 Felix Fischer, Ariel D. Procaccia, and Alex Samorodnitsky. On Voting Caterpillars: Approx-
imating Maximum Degree in a Tournament by Binary Trees. In Ulle Endriss and Paul W.
Goldberg, editors, Proceedings of the 2nd International Workshop on Computational Social
Choice, pages 253–264, 2008.

6 Felix Fischer, Ariel D. Procaccia, and Alex Samorodnitsky. A New Perspective on Imple-
mentation by Voting Trees. Random Structures & Algorithms, 39(1):59–82, 2011. doi:
10.1002/rsa.20336.

7 Dishant Goyal, Varunkumar Jayapaul, and Venkatesh Raman. Elusiveness of Finding Degrees.
In Daya Gaur and N.S. Narayanaswamy, editors, Algorithms and Discrete Applied Mathematics,
pages 242–253, Cham, 2017. Springer International Publishing.

8 Sean Horan. Implementation of Majority Voting Rules, 2013.
9 Michael Kim, Warut Suksompong, and Virginia Vassilevska Williams. Who Can Win a

Single-Elimination Tournament? SIAM Journal on Discrete Mathematics, 31(3):1751–1764,
2017. doi:10.1137/16M1061783.

10 Michael Kim and Virginia Vassilevska Williams. Fixing Tournaments for Kings, Chokers, and
More. Proceedings of the 24th International Joint Conference on Artificial Intelligence, pages
561–567, 2015. URL: https://www.ijcai.org/Proceedings/15/Papers/085.pdf.

11 Justin Kruger and Stéphane Airiau. Refinements and Randomised Versions of Some
Tournament Solutions. In Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’17, pages 1584–1586. IFAAMS, 2017. URL: http:
//dl.acm.org/citation.cfm?id=3091125.3091370.

12 Willi Maurer. On Most Effective Tournament Plans With Fewer Games than Competitors.
The Annals of Statistics, 3(3):717–727, 1975. URL: http://www.jstor.org/stable/2958441.

13 Ariel D. Procaccia. A Note on the Query Complexity of the Condorcet Winner Problem.
Information Processing Letters, 108(6):390–393, 2008. doi:10.1016/j.ipl.2008.07.012.

14 Dmitry Ryvkin. The Predictive Power of Noisy Elimination Tournaments. CERGE-EI Working
Papers wp252, The Center for Economic Research and Graduate Education - Economics
Institute, Prague, March 2005. doi:10.2139/ssrn.849225.

15 Sanjay Srivastava and Michael A. Trick. Sophisticated Voting Rules: the Case of Two
Tournaments. Social Choice and Welfare, 13(3):275–289, June 1996. doi:10.1007/BF00179232.

16 Isabelle Stanton and Virginia Vassilevska Williams. Manipulating Single-Elimination Tour-
naments in the Braverman-Mossel Model. In Ulle Endriss Edith Elkind and Jérôme Lang,
editors, Proceedings of the IJCAI-2011 Workshop on Social Choice and AI, pages 87–92, 2011.

17 Isabelle Stanton and Virginia Vassilevska Williams. Manipulating Stochastically Generated
Single-Elimination Tournaments for Nearly All Players. In Ning Chen, Edith Elkind, and Elias
Koutsoupias, editors, Internet and Network Economics, pages 326–337, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

18 Isabelle Stanton and Virginia Vassilevska Williams. Rigging Tournament Brackets for Weaker
Players. In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, pages 357–364. IJCAI/AAAI, 2011. doi:10.5591/978-1-57735-516-8/
IJCAI11-069.

http://dl.acm.org/citation.cfm?id=2893873.2893960
http://dl.acm.org/citation.cfm?id=2893873.2893960
https://doi.org/10.1006/jagm.1997.0865
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14180
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14180
https://doi.org/10.1002/rsa.20336
https://doi.org/10.1002/rsa.20336
https://doi.org/10.1137/16M1061783
https://www.ijcai.org/Proceedings/15/Papers/085.pdf
http://dl.acm.org/citation.cfm?id=3091125.3091370
http://dl.acm.org/citation.cfm?id=3091125.3091370
http://www.jstor.org/stable/2958441
https://doi.org/10.1016/j.ipl.2008.07.012
https://doi.org/10.2139/ssrn.849225
https://doi.org/10.1007/BF00179232
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-069
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-069

R. Hulett 13:17

19 Virginia Vassilevska Williams. Fixing a Tournament. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence, AAAI’10, pages 895–900. AAAI Press, 2010. URL:
http://dl.acm.org/citation.cfm?id=2898607.2898751.

20 Thuc Vu, Alon Altman, and Yoav Shoham. On the Agenda Control Problem for Knock-
out Tournaments. In Ulle Endriss and Paul W. Goldberg, editors, Proceedings of the 2nd
International Workshop on Computational Social Choice, pages 415–426, 2008.

21 Thuc Vu and Yoav Shoham. Fair Seeding in Knockout Tournaments. ACM Transactions
on Intelligent Systems and Technology, 3(1):9:1–9:17, October 2011. doi:10.1145/2036264.
2036273.

A Proof of Lemma 4

I Lemma 4. Let S be a set of competitors partitioned into three components C1, C2, C3
such that every member of component Ci beats every member of component C(i mod 3)+1. Fix
probabilities p(0)

i summing to 1, and let p(k)
i denote the probability that a member of component

Ci wins a balanced bracket of height k where each leaf is labeled independently according to
p

(0)
i . If for some K ∈ N and 0 < ε ≤ 2−10, ε2 ≤ p

(K)
3 ≤ ε and ε ≤ p

(K)
1 ≤ 2ε, then there

exists K + log(1
ε) ≤ K ′ ≤ K + 3 log(1

ε) and ε2 log(1
ε) ≤ δ ≤ εlog(1

ε)/4 such that δ2 ≤ p(K′)
2 ≤ δ

and δ ≤ p
(K′)
3 ≤ 2δ. Furthermore, if ε ≤ 2−75 then for any K ′′ ∈ [K ′,K ′ + 25 log(1

ε)],
p

(K′′)
2 , p

(K′′)
3 ≤ εlog(1

ε)/25 .

Proof. Since we have labeled each leaf independently, the two children of a node are
independent, so we can easily calculate p(k)

i recursively. For all k ≥ 0,

p
(k+1)
i =

(
p

(k)
i

)2
+ 2p(k)

i p
(k)
(i mod 3)+1 = p

(k)
i

(
p

(k)
i + 2p(k)

(i mod 3)+1

)
.

We will proceed by phases. Phase 1 will be the time during which p(k)
2 shrinks to 1/2; phase

2 will extend from there to the time when p(k)
2 shrinks to less than p(k)

3 (this will be K ′);
and phase 3 will be the additional 25 log(1

ε) steps after K ′.

Phase 1. Let K1 > K be the first step for which p(k)
1 + p

(k)
3 > 1/2. Such a step must exist

because for K ≤ k < K1, p(k)
1 + p

(k)
3 ≤ 1/2, and thus

p
(k+1)
3 = p

(k)
3

(
p

(k)
3 + 2p(k)

1

)
≤ p(k)

3 ≤ ε,

i.e., p(k)
3 is weakly decreasing on this interval. Thus also,

p
(k+1)
1 = p

(k)
1

(
p

(k)
1 + 2p(k)

2

)
= p

(k)
1 (1− p(k)

3 + p
(k)
2) ≥ p(k)

1 (1.5− ε) ≥ p(k)
1
√

2

for k in this interval, since p(k)
1 +p(k)

3 ≤ 1/2 implies p(k)
2 ≥ 1/2, and since ε ≤ 2−10 < 1.5−

√
2.

Therefore, p(k)
1 is increasing by at least a constant factor every step, and so eventually

p
(k)
1 + p

(k)
3 will exceed 1/2. Note also that p(k+1)

i ≤ 2p(k)
i for all i, k, so p(k)

1 is increasing by
at least a factor of

√
2 and at most a factor of 2 on this interval.

This leads to the following observations about phase 1:
1. ε2(k−K)/2 ≤ p(k)

1 ≤ ε2k−K+1 for any k ∈ [K,K1]
2. ε2

(
ε2(K1−K+3)/4)K1−K ≤ p(K1)

3 ≤ ε
(
ε2(K1−K+5)/2)K1−K

3. log(1
ε)− 3 ≤ K1 −K ≤ 2 log(1

ε)
Observation 1 follows directly from our initial assumption on p(K)

1 and the bounds on the
factor by which it increases each step.

APPROX/RANDOM 2019

http://dl.acm.org/citation.cfm?id=2898607.2898751
https://doi.org/10.1145/2036264.2036273
https://doi.org/10.1145/2036264.2036273

13:18 Single-Elimination Brackets Fail to Approximate Copeland Winner

Observation 2 can be shown via observation 1 and our initial assumptions as follows,
using the fact that 0 ≤ p(k)

3 ≤ p(k)
1 on this interval.

p
(K1)
3 = p

(K)
3

t=K1−1∏
t=K

(
p

(t)
3 + 2p(t)

1

)

p
(K)
3

t=K1−1∏
t=K

2p(t)
1 ≤p

(K1)
3 ≤ p(K)

3

t=K1−1∏
t=K

3p(t)
1

p
(K)
3

t=K1−K−1∏
t=0

2p(K)
1 2t/2 ≤p(K1)

3 ≤ p(K)
3

t=K1−K−1∏
t=0

3p(K)
1 2t

p
(K)
3

(
2p(K)

1

)K1−K
2(K1−K−1)(K1−K)/4 ≤p(K1)

3 ≤ p(K)
3

(
3p(K)

1

)K1−K
2(K1−K−1)(K1−K)/2

ε2
(
ε2(K1−K+3)/4

)K1−K
≤p(K1)

3 ≤ ε
(
ε2(K1−K+5)/2

)K1−K

Finally, observation 3 is obtained from observation 1 based on how long it would take for
p

(k)
1 to get to 1/2 (or rather in the range [1/2 − ε, 1]). Specifically, plugging in k = K1 to

observation 1 and taking the log of both sides:

log ε+ K1 −K
2 ≤ log p(K1)

1 ≤ log ε+K1 −K + 1

log p(K1)
1 − log ε− 1 ≤K1 −K ≤ 2 log p(K1)

1 − 2 log ε

log(1
2 − ε)− log ε− 1 ≤K1 −K ≤ 2 log 1− 2 log ε

log(1
ε

)− 3 ≤K1 −K ≤ 2 log(1
ε

)

Phase 2. Let K2 > K1 be the first step for which p(k)
3 > p

(k)
2 . We claim that K ′ = K2 is

as required in the statement of the lemma.
To show that such a step must exist, note that at step K1, we have 1/4 < p

(K1)
2 < 1/2,

p
(K1)
3 ≤ ε, and therefore p(K1)

1 > 1/2− ε. Furthermore, since p(k)
3 ≤ p(k)

2 on this interval, for
K1 ≤ k < K2,

p
(k+1)
1 = p

(k)
1

(
p

(k)
1 + 2p(k)

2

)
= p

(k)
1

(
1− p(k)

3 + p
(k)
2

)
≥ p(k)

1

i.e., p(k)
1 is weakly increasing. In particular,

p
(K1+1)
1 = p

(K1)
1

(
p

(K1)
1 + 2p(K1)

2

)
≥ (1/2− ε)(1/2− ε+ 1/4) > 0.6 > 1/2.

Thus for every step after the first, p(k)
3 is increasing by a factor of p(k)

3 +2p(k)
1 > 1.2, while p(k)

2
is multiplied by a factor of p(k)

2 + 2p(k)
3 = 1− p(k)

1 + p
(k)
3 < 1, and they will eventually cross.

We make the following observations about phase 2:

1.
(1

4
)2k−K1

≤ p(k)
2 ≤

(1
2
)2k−K1−1

for any k ∈ [K1 + 1,K2]
2. 1.5k−K1−2p

(K1)
3 ≤ p(k)

3 ≤ 2k−K1p
(K1)
3 for any k ∈ [K1 + 2,K2]

3. log log(1
ε) ≤ K2 −K1 ≤ log(1

ε)

R. Hulett 13:19

Observation 1 follows from the fact that 1
4 ≤ p

(K1)
2 ≤ 1

2 and p(K1)
3 ≤ ε ≤ 2−10. Recall

that no probability can more than double in a single step. Thus

p
(K1+1)
2 ≤ p(K1)

2

(
p

(K1)
2 + 2p(K1)

3

)
≤ 1

2

(
1
2 + 2−9

)
≤ 0.251

p
(K1+2)
2 ≤ p(K1+1)

2

(
p

(K1+1)
2 + 2p(K1+1)

3

)
≤ 0.251(0.251 + 2−8) ≤ 0.064

p
(K1+3)
2 ≤ p(K1+2)

2

(
p

(K1+2)
2 + 2p(K1+2)

3

)
≤ 0.064(0.064 + 2−7) ≤ 0.0046.

Therefore, since p(k+1)
2 = p

(k)
2

(
p

(k)
2 + 2p(k)

3

)
, we have for any k ≥ K1 + 3,

(
p

(k)
2

)2
≤p(k+1)

2 ≤ 3
(
p

(k)
2

)2

(
1
4

)2k−K1

≤p(k+1)
2 ≤ (3× 0.0046)2k−K1−3

≤
(

1
2

)2k−K1−1

.

Since p(k)
2 is decreasing we have p(k)

3 ≤ p(k)
2 ≤ 1

8 for K1 + 2 ≤ k ≤ K2. Thus p(k)
3 increases

by at most a factor of 2, and at least a factor of 2p(k)
1 which is at least 1.5 after the first two

steps. (p(k)
3 may decrease by a factor no smaller than 1 − ε in the first step, but the next

step more than cancels this out.) This yields observation 2.
Observation 3 we’ll just show by plugging in the given values for K2−K1 into the bounds

for p(k)
2 and p(k)

3 and showing that they either must have, or must not have crossed by the
given time.

First let us verify that after another log(1
ε) steps it must be the case that p(k)

3 > p
(k)
2 .

Specifically, if we assume that K1 + log(1
ε) < K2, we obtain the following contradiction:

p
(K1+log(1

ε))
3 ≥ 1.5log(1

ε)−2p
(K1)
3 ≥ 1.5log(1

ε)−2ε2
(
ε2(K1−K+3)/4

)K1−K

≥ 1.5log(1
ε)−2ε2

(
ε

(
1
ε

)1/2
23/4

)2 log(1
ε)

=
(

2
3

)2(3
2

)log(1
ε)
εlog(1

ε)+223 log(1
ε)/2

>

(
1
2

)log(1
ε)(log(1

ε)+2)
>

(
1
2

)1/2ε
≥ p(K1+log(1

ε))
2

since 1/2ε > log2(1
ε) + 2 log(1

ε) for ε ≤ 2−7. This establishes the upper bound on K2 −K1.
To establish that K2 −K1 ≥ log log(1

ε), we need to show that after that many steps, it
still holds that p(k)

3 ≤ p(k)
2 .

p
(K1+log log(1

ε))
3 ≤ 2log log(1

ε)p
(K1)
3 ≤ 2log log(1

ε)+2ε
(
ε2(log(1

ε)−3+5)/2
)log(1

ε)−3

= log(1
ε

)ε
(

2ε1/2
)log(1

ε)−3

= 1
8 log(1

ε
)εlog(1

ε)/2−3/2

≤ εlog(1
ε)/4 ≤

(
1
4

)log(1
ε)
≤ p(K1+log log(1

ε))
2

where the last line holds for ε ≤ 2−10. Thus phase 2 must proceed for more than
log log(1

ε) steps.

APPROX/RANDOM 2019

13:20 Single-Elimination Brackets Fail to Approximate Copeland Winner

Note also that observation 3 (together with observation 3 of phase 1) implies that
K + log(1

ε) ≤ K ′ ≤ K + 3 log(1
ε), as required.

Finally, we need to establish that there exists a δ as required in the statement of the
lemma. If p(K′−1)

3 ≤ p(K′)
2 ≤ p(K′)

3 , let δ = p
(K′)
3 . Then trivially δ ≤ p(K′)

3 ≤ 2δ and also

δ2 ≤ δ/2 ≤ p(K′−1)
3 ≤ p(K′)

2 ≤ p(K′)
3 = δ

since δ ≤ 1/2. Otherwise, p(K′)
2 < p

(K′−1)
3 ; in this case, let δ = p

(K′−1)
3 . Again trivially,

δ ≤ p(K′)
3 ≤ 2δ. Additionally,

δ2 =
(
p

(K′−1)
3

)2
≤
(
p

(K′−1)
2

)2
≤ p(K′)

2 ≤ p(K′−1)
3 = δ.

Now to lower-bound δ, using observations 2 and 3, we have

2δ ≥ p(K′)
3 ≥ 1.5log log(1

ε)−2p
(K1)
3

≥
(

2
3

)2
log(1

ε
)1/2ε2

(
ε2(2 log(1

ε)+1)/4
)2 log(1

ε)

≥
(

2
3

)2
log(1

ε
)1/2εlog(1

ε)+3/2 ≥ 2ε2 log(1
ε)

δ ≥ ε2 log(1
ε)

where the penultimate line holds for ε ≤ 2−4.
As for an upper bound:

δ ≤ p(K′)
3 ≤ p(K1)

3 2log(1
ε)

≤ ε
(
ε2(log(1

ε)−3+5)/2
)log(1

ε)−3
2log(1

ε)

=
(

2ε1/2
)log(1

ε)−3
= 2−3ε(log(1

ε)−5)/2 ≤ εlog(1
ε)/4

where the last line holds for ε ≤ 2−10. Thus we have shown that K ′ = K2 is as required in
the statement of the lemma.

Phase 3. Finally, we want to establish that p(k)
3 and p(k)

2 stay relatively small for 25 log(1
ε)

steps past K ′, provided ε is small enough. In particular, we know that p(K′)
3 > p

(K′)
2 , and

that no probability can more than double at each time step. Thus

p
(K′+t)
3 , p

(K′+t)
2 ≤ 2tp(K′)

3 ≤ 2t
(

2ε1/2
)log(1

ε)−3

= 2t−3ε(log(1
ε)−5)/2

≤ εlog(1
ε)/25

where the last line holds if

2t−3ε−5/2 ≤ ε−(24−1) log(1
ε)/25

t− 3− 5
2 log(ε) ≤ (24 − 1) log2(ε)/25

t ≤ 24 − 1
25 log2(ε) + 5

2 log(ε) + 3

In particular, since we want this to hold up to t = 25 log(1
ε), ε ≤ 2−75 suffices. This completes

the proof. J

Routing Symmetric Demands in Directed
Minor-Free Graphs with Constant Congestion
Timothy Carpenter
Dept. of Computer Science & Engineering, The Ohio State University, Columbus, OH, USA
carpenter.454@osu.edu

Ario Salmasi
Dept. of Computer Science & Engineering, The Ohio State University, Columbus, OH, USA
salmasi.1@osu.edu

Anastasios Sidiropoulos
Dept. of Computer Science, University of Illinois at Chicago, USA
sidiropo@uic.edu

Abstract
The problem of routing in graphs using node-disjoint paths has received a lot of attention and a
polylogarithmic approximation algorithm with constant congestion is known for undirected graphs
[Chuzhoy and Li 2016] and [Chekuri and Ene 2013]. However, the problem is hard to approximate
within polynomial factors on directed graphs, for any constant congestion [Chuzhoy, Kim and Li 2016].

Recently, [Chekuri, Ene and Pilipczuk 2016] have obtained a polylogarithmic approximation
with constant congestion on directed planar graphs, for the special case of symmetric demands.
We extend their result by obtaining a polylogarithmic approximation with constant congestion on
arbitrary directed minor-free graphs, for the case of symmetric demands.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Routing, Node-disjoint, Symmetric demands, Minor-free graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.14

Category APPROX

Funding This work was supported by NSF under CAREER award 1453472 and grant CCF 1815145.

1 Introduction

Routing in graphs along disjoint paths is a fundamental problem with numerous applications
in various domains [1, 2, 3, 23, 24]. Disjoint path problems have been well-studied in both
the directed and undirected setting, and it is known that the directed formulations of these
problems are generally more difficult to approximate [14, 11]. The recent work of [5, 6] has
brought to light a more tractable formulation of the directed version of these problems by
considering routing symmetric demand pairs with constant congestion.

Two of the most well-known and studied disjoint path problems are the node-disjoint
paths problem (NDP) and the edge-disjoint paths problems (EDP). In these problems, the
goal is to connect a set of node pairs through node- or edge-disjoint paths in an undirected
graph. It is known that the decision version of NDP is NP-complete [20], and it has been
shown to be fixed parameter tractable [26]. But there remain gaps in our understanding of
their approximability. For both EDP and NDP on n-node graphs, the state of the art is
an O(

√
n)-approximation [9], [22]. For planar graphs, a slightly better bound of Õ(n9/19)-

approximation is known [13]. Even for the case of the grid, only a Õ(n1/4)-approximation for
NDP is known [12]. For hardness of approximation, it is known that both NDP and EDP
are 2Ω

(√
logn

)
-hard to approximate, unless all problems in NP have algorithms with running

time nlogn [14].
© Timothy Carpenter, Ario Salmasi, and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:carpenter.454@osu.edu
mailto:salmasi.1@osu.edu
mailto:sidiropo@uic.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Routing Symmetric Demands in Directed Minor-Free Graphs

Progress has been made on relaxed versions of these problems. One such relaxation
is the all-or-nothing flow problem (ANF), where a subsetM′ ⊆ M is routed if there is a
feasible multicommodity flow routing one unit of flow for each pair inM′. Poly-logarithmic
approximations are known for ANF [8, 7]. Another relaxation is to allow some small constant
congestion on the nodes or edges. For this relaxation, poly-logarithmic approximations have
been obtained for EDP with congestion 2 [15], and for NDP with congestion O(1) [4].

It is natural to extend the study of disjoint path problems to directed graphs. However,
these problems are known to be significantly harder on directed graphs. Even the case
of ANF with constant congestion c allowed has an nΩ(1/c) inapproximability bound [11].
However, a more tractable case is found by considering symmetric demand pairs. The study
of maximum throughput routing problems in directed graphs with symmetric demand pairs
began in [5]. In this setting the graph G is directed, and routing a source-destination pair
(si, ti) requires finding a path from si to ti and a path from ti to si. We let Sym-Dir-ANF
be the analogue of ANF, and Sym-Dir-NDP be the analogue of NDP in this setting. A
poly-logarithmic approximation for Sym-Dir-ANF is obtained in [5]. Subsequently, in [6] a
randomized poly-logarithmic approximation with constant congestion on planar graphs for
Sym-Dir-NDP is obtained.

1.1 Our contribution
We consider the problem of routing symmetric demands along node-disjoint paths in directed
graphs. We refer to this problem as Sym-Dir-NDP. Letting G = (V,E) be a directed
graph with unit node capacities andM = {(s1, t1), . . . , (sk, tk)} ⊆ V × V be a set of source-
destination pairs, we say that (G,M) is an instance of Sym-Dir-NDP. Routing a pair
(si, ti) requires finding a path from si to ti, and from ti to si. A solution to an instance of
Sym-Dir-NDP is a routing strategy maximizing the number of pairs routed through disjoint
paths. We refer to a solution having congestion ζ, if no vertex is used in more than ζ paths.
Our contribution generalizes the result from [6] from the class of directed planar graphs to
arbitrary directed minor-free graphs. We now formally state our results and briefly highlight
the methods used. Our main result is the following.

I Theorem 6. Let G be an H-minor free graph. There is a polynomial time randomized
algorithm that, with high probability, achieves an Ω

(
1

h7
√
h log5/2(n)

)
-approximation with

congestion 5 for Sym-Dir-NDP instances in G, where h is an integer dependent only on H.

The approximation algorithm in this theorem is obtained by extending the algorithm
of [6]. For an instance (G, {(s1, t1), . . . , (sk, tk)}) of Sym-Dir-NDP, we say that the set
T = {s1, . . . , sk} ∪ {t1, . . . , tk} is the set of terminals. Speaking broadly, the algorithm
obtained in Theorem 6 consists of the following steps.
1. Using a multicommodity flow based LP relaxation and the well-linked decomposition of

[6], reduce to an instance in which the terminals T are α-well-linked for a fixed constant α.
2. Find a large routing structure connected to a large proportion of the terminals.
3. Use the routing structure to connect a large number of the source-destination pairs.
From here on, we shall refer to the routing structure as the crossbar. The reduction we use
in Step 1 allows us to reduce an instance of Sym-Dir-NDP to an instance on an Eulerian
graph of small maximum degree, and where the terminals are α-well-linked. This comes at
the cost of then having a randomized algorithm for the original instance. This reduction
comes from [6], and while there it is used for planar graphs, we were fortunate in that it

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:3

can also be used for general graphs. The routing scheme of Step 3 is also thanks to [6], and
relies on a similar crossbar construction. Our main contribution to this line of research is in
finding an appropriate crossbar construction for Step 2.

To build our crossbar, we would ideally find a “flat” grid minor so that some constant
fraction of the terminal pairs can be routed along node-disjoint paths to the interface of
the grid minor (a “flat” grid minor is one in which the grid minor is connected with the
rest of the graph only through the outer face). Then we would have the following sets of
node-disjoint paths along which to route the terminal pairs: the paths from the terminals to
the interface, the paths from terminals to terminals implied by the node-well-linked property
of the terminals, the concentric cycles of the grid minor, and the paths connecting the
outermost and innermost cycles of the grid minor. From these, just as in [6] we can construct
a routing scheme with congestion 5. To find a suitable flat grid minor, we combine results of
[10] and [28] to show that flat grid minors of a suitable size can be found. We then show that
if for the flat grid minor produced we cannot route a large enough fraction of the terminals to
the interface then there exists some vertex which can be eliminated from the graph without
destroying a potential solution to the problem. Thus, we find and test flat grid minors until
one suitable to be used in the crossbar is found.

2 Notation and Preliminaries

We now introduce some notation and definitions that are used throughout the paper.

Directed and undirected graphs

From any directed graph G we can obtain an undirected graph GUN as follows. We set
V (GUN) = V (G) and E(GUN) = {{u, v} : (u, v) ∈ E(G) ∨ (v, u) ∈ E(G)}. We refer to GUN

as the underlying undirected graph of G.

Flat subgraphs

We say that a planar subgraph H of an undirected graph G is flat if there exists a planar
drawing Φ of H such that for any {u, v} ∈ E(G), with u ∈ V (H) and v ∈ V (G) \ V (H), we
have that u is on the outer face of Φ.

Well-linked sets

Let G be a directed (resp. undirected) graph. A set X ⊆ V (G) is node-well linked in G if
for any two disjoint subsets Y,Z ⊂ X of equal size, there exist |Y | node-disjoint directed
(resp. undirected) paths from Y to Z, such that each vertex in Y is the start of exactly one
path, and each vertex in Z is the end of exactly one path. For some α ∈ (0, 1), we say that
X is α-node well-linked if for any two disjoint subsets Y,Z ⊂ X of equal size, there exist |Y |
directed (resp. undirected) paths from Y to Z such that no vertex is in more than 1/α of
these paths; In other words, we allow a node congestion of 1/α for these paths.

Directed and undirected treewidth

For a directed graph G, we will denote by dtw(G) the directed treewidth of G, and we
will denote by tw(GUN) the (undirected) treewidth of GUN. Directed treewidth is a global
connectivity measure introduced in [19, 25], and just as undirected treewidth is defined by
the minimum width tree decomposition, directed treewidth is defined by the minimum size of

APPROX/RANDOM 2019

14:4 Routing Symmetric Demands in Directed Minor-Free Graphs

what is termed an arboreal decomposition. Instead of providing the full definitions of directed
and undirected treewidth here, we only ask the reader to make a note of the following two
important facts:

If G is an Eulerian directed graph with max degree ∆, then tw(GUN) ≤ dtw(G) =
O(∆ · tw(GUN)) [19].
If a directed graph G contains an α-well-linked set X, then dtw(G) = Ω(α|X|) [25].

Clique-sums

Let G1 and G2 be two graphs. A clique-sum of G1 and G2 is any graph that is obtained by
identifying a clique in G1 with a clique of the same size in G2, and then possibly removing
some edges in the resulting shared clique. An h-clique-sum, or h-sum for short, is a clique-sum
where the identified cliques have at most h vertices.

Nearly-embeddable and minor-free graphs

We say that a graph is (a, g, k, p)-nearly embeddable if it is obtained from a graph of Euler
genus g by adding a apices and k vortices of pathwidth p. We say that a graph is h-nearly
embeddable if it is (a, g, k, p)-nearly embeddable for some a, g, k, p ≤ h. The following is
implicit in [27].

I Theorem 1 (Robertson and Seymour [27]). Let H be any graph. Every H-minor-free graph
can be obtained by at most h-clique-sums of graphs that are h-nearly embeddable graphs,
where h is a non-negative integer dependent on H.

Note that the result of the above theorem is existential. Demaine, Hajiaghayi, and
Kawarabayashi in [16] provide an algorithm to compute this decomposition in polynomial
time, for any fixed minor H.

3 The Algorithm for Minor-Free Graphs

We first use the following result of [6] to reduce the problem to the case of Eulerian graphs
with small degrees. Note that this result is stated for planar graphs in [6], but the proof does
not use planarity, and thus can be stated for general graphs.

I Lemma 2 (Chekuri, Ene & Pilipczuk [6]). Suppose that there is a polynomial time algorithm
for Ω(1)-node-well-linked instances of Sym-Dir-NDP in directed Eulerian graphs of maximum
degree ∆ that achieves a β(∆)-approximation with congestion c. Then there is a polynomial
time randomized algorithm that, with high probability, achieves a β(O(log2 k)) · O(log6 k)-
approximation with congestion c for arbitrary instances of Sym-Dir-NDP in directed graphs,
where k is the number of pairs in the instance.

Now we describe how to construct the crossbar in minor-free graphs, assuming that we are
given a m×m flat grid minor Γ, for some large enough m, and a family of λm node-disjoint
paths connecting the set of terminals and the interface of Γ, for some constant λ. The
following is our main technical result, which is similar to the one in [6] for planar graphs.
We use here a generalized notion of enclosed for flat grids in non-planar graphs. Let H be a
directed graph with a flat grid minor η. Let uout be an arbitrary vertex not contained in η.
Let C be some cycle contained within η. We say a vertex u is enclosed by C if all paths in
HUN from u to uout intersect C. We now find the desired concentric cycles in G. The proof
is deferred to Section 4.

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:5

Figure 1 An example for case (1) of Theorem 3. The red paths are the node disjoint paths in
P +, going from Y + to the innermost of the concentric cycles, and the blue paths correspond to the
node disjoint paths in P−, going from Y − to the innermost of the concentric cycles.

I Theorem 3. Let G be a directed minor-free graph of maximum in-degree of at most ∆.
Let X be an α-node-well-linked set in G with |X| = Ω

(
∆2

α

)
. Let m = Ω

(
α|X|
β

)
, where β is

a non-negative number dependent on G. Suppose that we can find a m×m flat grid minor
Γ of GUN, and a family of λm node-disjoint paths connecting X and the interface of Γ in
GUN, for some 0 < λ ≤ 1. One can in polynomial time find a set of Ω

(
α|X|
β∆

)
concentric

directed cycles going in the same direction w.r.t. a planar embedding of Γ (all clockwise or
counter-clockwise), sets Y +, Y − ∈ X with |Y +| = |Y −| = Ω

(
α2|X|
β∆2

)
, and families P+ and

P− of node-disjoint paths such that one of the following holds.
(1) None of the cycles enclose any vertex of Y + ∪ Y −, the family P+ consists of |Y +|

node-disjoint paths from Y + to the innermost cycle, and the family P− consists of |Y −|
node-disjoint paths from the innermost cycle to Y − (See Figure 1).

(2) All cycles enclose Y + ∪ Y −, the family P+ consists of |Y +| node-disjoint paths from
|Y +| to the outermost cycle, and the family P− consists of |Y −| node-disjoint paths from
the outermost cycle to Y −.

In order to obtain such a crossbar, we need to find a flat grid minor of large enough
size. The following Lemma provides us the desired flat grid minor, and the proof is deferred
to Section 6.2.

I Lemma 4. Let H be any graph and let G be an H-minor-free directed graph with treewidth
t. Let X be an α-node-well-linked set in G with |X| = Ω

(
∆2

α

)
. One can in polynomial

time find a r × r flat grid minor Γ in GUN, with r = Ω
(

t
h7
√
h log5/2(n)

)
, and a family of r

node-disjoint paths connecting X and the interface of Γ, where h is an integer dependent
only on the structure of H.

Once we obtain a crossbar as described above, we can route a large subset of terminal pairs.

I Lemma 5. Given the crossbar described in Theorem 3, one can get an O
(

∆2

βα3

)
-approxima-

tion algorithm with congestion 5 for Sym-Dir-NDP in instances for which the input graph is
minor-free and Eulerian with maximum in-degree ∆, the set of terminals is α-node-well-linked
for some α ≤ 1, and β is dependent only on H.

Proof. By applying the same routing scheme as in the one in [6], we get the desired result. J

APPROX/RANDOM 2019

14:6 Routing Symmetric Demands in Directed Minor-Free Graphs

Now we are ready to state the main result of this paper.

I Theorem 6. Let G be a H-minor-free graph. There is a polynomial time randomized
algorithm that, with high probability, achieves an Ω

(
1

h7
√
h log5/2(n)

)
-approximation with

congestion 5 for Sym-Dir-NDP instances in G, where h is an integer dependent only on H.

Proof. This is immediate by Lemmas 2, 4, 5, and Theorem 3. J

4 The Crossbar Construction

In this section we discuss the construction of the crossbar stated in Theorem 3. Before we
give the proof of this Theorem we establish some auxiliary facts. Throughout this subsection,
we assume that we are given the input of Theorem 3.

I Lemma 7. One can in polynomial time find an integer r = Ω
(
α|X|
β

)
and a sequence of

node-disjoint concentric undirected cycles C1, C2, . . . , Cr in GUN, with C1 being the outermost
and Cr being the innermost cycle.

Proof. Let t be the treewidth of GUN. Since X is α-node-well-linked in G, X is also α-node-
well-linked in GUN. Thus, t = Ω (α|X|). Let Γ be a flat m×m grid minor of GUN, as given
in the input of Theorem 3. By losing a constant factor, we can construct a flat sub-divided
r × r wall in GUN, with r = Ω

(
α|X|
β

)
. Let C1 be the outermost cycle of Γ, and for each

i ∈ {2, . . . , r}, let Ci be the outermost cycle of Γ \ ∪1≤j<iV (Ci). J

As in [6], for a vertex set Q ⊆ V (GUN), a vertex v /∈ Q, and an integer ` ≥ 2∆, we say that
a vertex set S is a (v,Q, `)-isle if v ∈ S, GUN[S] is connected, S ∩Q = ∅, and |NGUN(S)| ≤ `.
Let C1, . . . , Cr be the sequence of node-disjoint concentric undirected cycles in GUN obtained
from Lemma 7. We set isles Sout and S in by choosing an arbitrary vertex vout in C1, and an
arbitrary vertex vin in Cr. Letting ` = br/(4∆ + 2)c, then Sout is the (vout, X, `)-isle and S in

is the (vin, X, `)-isle obtained. We also need that Sout and S in are separated by many cycles.
For this, we use the following Lemma of [6], the proof of which is slightly modified.

I Lemma 8. The isle Sout does not contain any vertex that is enclosed by C`+1, and the isle
S in does not contain any vertex that is not strictly enclosed by Cr−`.

Proof. The proofs for S in and Sout are symmetrical, so we focus on the case of Sout. Assume
that Sout contains a vertex enclosed by C`+1, and we will find a contradiction. Since
vout ∈ Sout, Sout is connected in GUN, and Γ is a flat wall, it must be that Sout contains a
vertex from every cycle Ci, 1 ≤ i ≤ `+ 1. Since |NGUN(Sout)| ≤ `, for some 1 ≤ i ≤ `+ 1 we
have that V (Ci) is completely contained in Sout. However, there are r > ` vertex-disjoint
paths in GUN connecting Ci with X. Thus, either Sout ∩X 6= ∅ or |NGUN(Sout)| > `, both of
which are contradictions. J

We are almost ready to prove the main result of this section. We will make use of the
following Lemma, which is implicit in [6]. Note that sets S′in and S′out, the concentric cycles
C ′1, . . . , C

′
r′ , and integers r′ and ∆′ in the next Lemma are defined for a planar graph G′ as

described in [6].

I Lemma 9. Let G′ be an Eulerian, planar directed graph, with sets S′in, S′out separated
by concentric cycles C ′1, . . . , C ′r′ , and let `′ = br′/(4∆′ + 2)c, where ∆′ is the the maximum
in-degree of G′. Then one can in polynomial time find d`′/2e node-disjoint directed concentric

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:7

Figure 2 Maintaining an Eulerian graph with bounded degree.

cycles, all going in the same direction (all clockwise or all counter-clockwise), such that all
vertices of S′in are strictly enclosed by the innermost cycle, and all vertices of S′out are not
enclosed by the outermost cycle, or vice versa, with the roles of S′in and S′out swapped.

We will use Lemma 9 to find concentric cycles in minor-free graphs. We first generalize
the notion of enclosed for flat grids in non-planar graphs. Let H be a directed graph with
a flat grid minor η. Let uout an arbitrary vertex not contained in η. Let C be some cycle
contained within η. We say a vertex u is enclosed by C if all paths in HUN from u to uout

intersect C. We now find the desired concentric cycles in G.

I Lemma 10. One can in polynomial time find d`/2e node-disjoint directed concentric cycles
in G, all going in the same direction (all clockwise or all counter-clockwise), such that all
vertices of S in are enclosed by the innermost cycle, and all vertices of Sout are not enclosed
by the outermost cycle, or vice versa, with the roles of S in and Sout swapped.

Proof. We proceed by creating G′ from G as follows. Let

Z = {v ∈ V (G) : v ∈ V (C1) or v is not in the component of G \ V (C1) containing C2} .

Let G′ = G/Z, i.e. G′ is the graph created by identifying all vertices in Z to a single vertex
z. Since G is Eulerian, G′ is also Eulerian. Furthermore, we can delete any self-loops on z,
and G′ is still Eulerian. Since C1, . . . , Cr are contained within a flat grid minor of G, G′ is
therefore a planar graph. The only impediment to directly applying Lemma 9 is that the
in-degree δ of z might be greater than ∆. We can eliminate this by replacing z with a path
P of length δ, with edges directed both ways between adjacent vertices. We then connect
the vertices formerly connected to z to vertices in P , maintaining the planarity of G′. Then,
to restore G′ as an Eulerian graph, for the vertices in P with an imbalance between in- and
out-degree we can create a new edge (See Figure 2).

After these modifications, G′ is an Eulerian, planar digraph with maximum in-degree ∆.
Let S′in = S in and S′out = (Sout ∩ V (G′)) ∪ {z}. We now apply Lemma 9 using G′, S′in, and
S′out to find d`/2e node-disjoint directed concentric cycles, all going in the same direction,
and all vertices of S′in are strictly enclosed by the innermost cycle, and all vertices of S′out are
not enclosed by the outermost cycle. Clearly, each of these cycles exists in G, all vertices of
S in are strictly enclosed by the innermost cycle, and all vertices of Sout are not enclosed by
the outermost cycle. J

We are now ready to obtain the proof of Theorem 3.

Proof of Theorem 3. By Lemma 10, we can finish the construction of the crossbar with the
same argument as in [6]. J

APPROX/RANDOM 2019

14:8 Routing Symmetric Demands in Directed Minor-Free Graphs

Figure 3 Decomposition of the grid minor.

5 Graphs of Bounded Genus

In this section we describe an algorithm to construct a flat grid minor Γ of large enough
size in graphs of bounded genus. The following is implicit in the work of Chekuri and
Sidiropoulos [10].

I Lemma 11. Let G be an undirected graph of Euler genus g ≥ 1, with treewidth t ≥ 1. There
is a polynomial time algorithm that computes a r′×r′-grid as a minor, with r′ = Ω

(
t

g3 log5/2 n

)
.

Furthermore, the algorithm does not require a drawing of G as part of the input.

We need to find a flat grid minor for our purpose. Thomassen in [28] shows that if a graph
of genus g contains a m×m-grid as a minor, then it contains a k × k flat grid minor, where
m > 100k√g. With some minor modifications, we can use this result to obtain the following.

I Lemma 12. Let G be an undirected graph of Euler genus g ≥ 1, and let H be a m×m
grid minor of G. Let k < m

100√g be an integer. Then one can compute a k× k flat grid minor
of G in polynomial time.

Proof. Thomassen in [28] shows that in order to find the desired flat grid minor, it is enough
to construct a family of pairwise disjoint subgraphs Q1, Q2, · · · , Q2g+2 of H, satisfying the
following conditions.
(1) Each Qi is a k × k sub-grid of H.
(2) For any i, j with 1 ≤ i < j ≤ 2g + 2, we have the following. If xi and xj are on the

outer cycles of Qi and Qj respectively, and they have neighbors yi ∈ V (H) \ V (Qi)
and yj ∈ V (H) \ V (Qj) respectively, then H has a path Pij from xi to xj such that

V (Pij) ∩
(2g+2⋃
r=1

V (Qr)
)

= {xi, xj}.

Since we have m > 100k√g, this construction can be easily done as shown in Figure 3, and
thus one of the Qi’s is flat, as desired. J

I Lemma 13. Let G be an undirected graph of Euler genus g ≥ 1, with treewidth t ≥ 1.
There exists a polynomial time algorithm that computes a r × r-grid as a minor, with
r = Ω

(
t

g3√g log5/2 n

)
. Moreover, the algorithm does not require a drawing of G as part of

the input.

Proof. This is immediate by Lemmas 11 and 12. J

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:9

Note that computing a large grid minor in the graph is not enough. We need to make
sure that a large number of terminals can reach the interface of the grid minor. The following
Lemma will provide for us the desired grid minor. The proof of this Lemma is deferred
to Appendix A.

I Lemma 14. Let F be some minor-closed family of graphs, let α ≤ 1, and β > 0. Suppose
that there exists a polynomial-time algorithm which given, some G′ ∈ F and some α-node-well-
linked set X ′ in G′, outputs some r′ × r′ flat grid minor Γ′ in G′, for some r′ = Ω(α|X ′|/β).
Then there exists a polynomial-time algorithm which, given some G ∈ F and some α-
node-well-linked set X in G, outputs some r × r flat grid minor Γ in G, for some integer
r = Ω(α|X|/β), and a family of λr node-disjoint paths in G connecting X to the interface of
Γ, for some constant 0 < λ < 1.

I Lemma 15. Let G be an undirected graph of genus g, and let α ≤ 1. Let X be an α-node-
well-linked set in G. One can, in polynomial time, find some r × r flat grid minor Γ in G,
for some integer r = Ω

(
α|X|

g3√g log5/2 n

)
, and a family of λr node-disjoint paths connecting X

and the interface of Γ, for some 0 < λ ≤ 1.

Proof. This is immediate by combining Lemmas 13 and 14. J

Now by Lemmas 2, 5, and 15 we get the following result.

I Theorem 16. Let G be a graph of genus g. There is a polynomial time randomized algorithm
that, with high probability, achieves an Ω

(
1

g3√g log5/2(n)

)
-approximation with congestion 5

for Sym-Dir-NDP instances in G.

6 Minor Free Graphs

In this section we present the flat grid minor construction for minor-free graphs. We first
consider the problem on nearly embeddable graphs, and we extend our solution to arbitrary
minor-free graphs by dealing with sums of constant size.

6.1 Nearly Embeddable Graphs
In this subsection we work on nearly embeddable graphs. First we reduce the problem to the
case of zero apices.

I Lemma 17 (Reduction to (0, g, k, p)-nearly embeddable graphs). Suppose that there is a
polynomial time algorithm for Sym-Dir-NDP in (0, g, k, p)-nearly embeddable graphs that
achieves a β-approximation with congestion c. Then there is a polynomial time algorithm
for Sym-Dir-NDP in (a, g, k, p)-nearly embeddable graphs that achieves a β/a-approximation
with congestion c.

Proof. Let G be an (a, g, k, p)-nearly embeddable graph, and suppose that we are given a
Sym-Dir-NDP instance M = {s1t1, · · · , smtm} in G. Let A ⊆ V (G) be the set of apices
in G. Let G′ = G \ A. Clearly, G′ is a (0, g, k, p)-nearly embeddable graph. Let M ′ ⊆ M

be the subset of source-terminal pairs that do not intersect A. M ′ forms a Sym-Dir-NDP
instance in G′, and thus we can get a β-approximation solution S′ with congestion c. Since
|M | ≤ |M ′|+ a, we have that S′ is a β/a-approximation solution with congestion c for M in
G, as desired. J

APPROX/RANDOM 2019

14:10 Routing Symmetric Demands in Directed Minor-Free Graphs

Next we provide an algorithm for Sym-Dir-NDP in (0, g, k, p)-nearly embeddable graphs.
Let G be an (0, g, k, p)-nearly embeddable graph, and let S be the bounded genus subgraph
of G on the surface; that is, S is obtained from G by deleting all vortices. Let X ⊆ V (G) be
the set of terminals. Note that by using Lemma 2 we can reduce the problem to the case
where X is α-well-linked for some α ≤ 1. The following is implicit in [17].

I Lemma 18 (Demaine and Hajiaghayi [17]). Let t ≥ 1 be the treewidth of GUN, and let t′ be
the treewidth of SUN. Then we have t′ ≥ t

(p+k)3 .

I Lemma 19. One can in polynomial time find a r × r flat grid minor Γ in GUN,with
r = Ω

(
t

g3√g(p+k)3 log5/2 n

)
.

Proof. By Lemma 18 we have that the treewidth of SUN is at least t
(p+k)3 . SUN is a graph

of Euler genus g, and thus by Lemma 13 we get the desired result. J

I Lemma 20. One can in polynomial time find some r × r flat grid minor Γ in GUN, for
some integer r = Ω

(
t

g3√g(p+k)3 log5/2 n

)
, and a family of r node-disjoint paths connecting X

and the interface of Γ.

Proof. This is immediate by Lemmas 19 and 14. J

Now by combining Lemmas 2, 3, 20, the crossbar construction and routing scheme in
Section 4, we get the following result.

I Lemma 21. Let G be a (0, g, k, p)-nearly embeddable graph. There is a polynomial
time randomized algorithm that, with high probability, achieves an Ω

(
1

g3√g(p+k)3 log5/2 n

)
-

approximation with congestion 5 for Sym-Dir-NDP instances in G.

I Theorem 22. Let G be a (a, g, k, p)-nearly embeddable graph. There is a polynomial
time randomized algorithm that, with high probability, achieves an Ω

(
1

ag3√g(p+k)3 log5/2 n

)
-

approximation with congestion 5 for Sym-Dir-NDP instances in G.

Proof. This follows immediately by Lemmas 21 and 17. J

6.2 Dealing with h-sums

In this subsection we are going to prove Lemma 4. Let G be a minor-free graph, with
treewidth t. Let X ⊆ V (G) be the set of terminals. The following is implicit in [18].

I Lemma 23 ([18]). Let G1, G2 be two undirected graphs, and let G3 be an h-sum of G1 and
G2 for some integer h > 0. Let t1, t2, and t3 be the treewidth of G1, G2, and G3 respectively.
Then we have t3 ≤ max{t1, t2}.

We are now ready to prove our result for computing flat grid minors in minor-free graphs.

Proof of Lemma 4. By using Theorem 1, we get a decomposition of GUN into h-sums of
h-nearly-embeddable graphs. By Lemma 23, we have that at least one summand G′ has
treewidth at least t. Now G′ is a h-nearly-embeddable graph with treewidth t, and thus by
Lemma 20 we get the desired flat grid minor. J

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:11

References
1 Alok Aggarwal, Amotz Bar-Noy, Don Coppersmith, Rajiv Ramaswami, Baruch Schieber,

and Madhu Sudan. Efficient Routing and Scheduling Algorithms for Optical Networks. In
Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94,
pages 412–423, Philadelphia, PA, USA, 1994. Society for Industrial and Applied Mathematics.

2 B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. On-line Admission Control and
Circuit Routing for High Performance Computing and Communication. In Proceedings of
the 35th Annual Symposium on Foundations of Computer Science, FOCS ’94, pages 412–423,
Washington, DC, USA, 1994. IEEE Computer Society.

3 Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. Existence and Construction of Edge-Disjoint
Paths on Expander Graphs. SIAM Journal on Computing, 23(5):976–989, 1994.

4 Chandra Chekuri and Alina Ene. Poly-logarithmic Approximation for Maximum Node Disjoint
Paths with Constant Congestion. In Proceedings of the Twenty-fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’13, pages 326–341, Philadelphia, PA, USA, 2013.
Society for Industrial and Applied Mathematics.

5 Chandra Chekuri and Alina Ene. The all-or-nothing flow problem in directed graphs with
symmetric demand pairs. Mathematical Programming, 154(1):249–272, December 2015.

6 Chandra Chekuri, Alina Ene, and Marcin Pilipczuk. Constant Congestion Routing of Sym-
metric Demands in Planar Directed Graphs. In 43rd International Colloquium on Automata,
Languages, and Programming (ICALP 2016), Leibniz International Proceedings in Informatics
(LIPIcs), pages 7:1–7:14, 2016.

7 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. The All-or-nothing Multicom-
modity Flow Problem. In Proceedings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, STOC ’04, pages 156–165, New York, NY, USA, 2004. ACM.

8 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity Flow, Well-
linked Terminals, and Routing Problems. In Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, STOC ’05, pages 183–192, New York, NY, USA, 2005.
ACM.

9 Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√

n) approximation and
integrality gap for disjoint paths and unsplittable flow. Theory of Computing, 2:2006, 2006.

10 Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for Euler genus
and related problems. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 167–176. IEEE, 2013.

11 Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna, and Kunal Talwar. Hardness of
Routing with Congestion in Directed Graphs. In Proceedings of the Thirty-ninth Annual ACM
Symposium on Theory of Computing, STOC ’07, pages 165–178, New York, NY, USA, 2007.
ACM.

12 Julia Chuzhoy and David H. K. Kim. On Approximating Node-Disjoint Paths in Grids. In
Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2015), volume 40 of Leibniz International Proceedings in Informatics (LIPIcs), pages 187–211,
Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

13 Julia Chuzhoy, David HK Kim, and Shi Li. Improved approximation for node-disjoint paths
in planar graphs. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pages 556–569. ACM, 2016.

14 Julia Chuzhoy, David HK Kim, and Rachit Nimavat. New hardness results for routing on
disjoint paths. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 86–99. ACM, 2017.

15 Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint paths
with congestion 2. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
pages 233–242. IEEE, 2012.

APPROX/RANDOM 2019

14:12 Routing Symmetric Demands in Directed Minor-Free Graphs

16 Erik D Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In Foundations of Computer
Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages 637–646. IEEE, 2005.

17 Erik D Demaine and MohammadTaghi Hajiaghayi. Linearity of grid minors in treewidth with
applications through bidimensionality. Combinatorica, 28(1):19–36, 2008.

18 Erik D Demaine, MohammadTaghi Hajiaghayi, Naomi Nishimura, Prabhakar Ragde, and
Dimitrios M Thilikos. Approximation algorithms for classes of graphs excluding single-crossing
graphs as minors. Journal of Computer and System Sciences, 69(2):166–195, 2004.

19 Thor Johnson, Neil Robertson, P.D. Seymour, and Robin Thomas. Directed Tree-Width.
Journal of Combinatorial Theory, Series B, 82(1):138–154, 2001.

20 R M Karp. On the complexity of combinatorial problems. Networks, 5:45–68, 1975.
21 Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for

minimum planarization (almost). In Foundations of Computer Science (FOCS), 2017 IEEE
58th Annual Symposium on, pages 779–788. IEEE, 2017.

22 Stavros G Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using greedy
algorithms and packing integer programs. In International Conference on Integer Programming
and Combinatorial Optimization, pages 153–168. Springer, 1998.

23 D. Peleg and E. Upfal. Constructing disjoint paths on expander graphs. Combinatorica,
9(3):289–313, September 1989.

24 Prabhakar Raghavan and Eli Upfal. Efficient Routing in All-optical Networks. In Proceedings
of the Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC ’94, pages
134–143, New York, NY, USA, 1994. ACM.

25 B. Reed. Introducing Directed Tree Width. Electronic Notes in Discrete Mathematics, 3(Sup-
plement C):222–229, 1999. 6th Twente Workshop on Graphs and Combinatorial Optimization.

26 N. Robertson and P.D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995.

27 Neil Robertson and Paul D Seymour. Graph minors. XVI. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003.

28 Carsten Thomassen. A simpler proof of the excluded minor theorem for higher surfaces.
Journal of Combinatorial Theory, Series B, 70(2):306–311, 1997.

A Missing Proofs

Proof of Lemma 14. Let t be the treewidth of G. Since X is α-node-well-linked in G, we
have that t = Ω(α|X|). Let Γ0 be an r′ × r′ flat grid minor in G, for some r′ = Ω(α|X|/β).
If there is a family of λr0 node-disjoint paths connecting X and the the interface of Γ0, then
we are done. Otherwise, we will find an irrelevant vertex; that is a vertex v ∈ V (G) such that
deleting v from G does not affect the well-linkedness of X. Therefore, we can delete v from
G, and recursively call the process for finding flat grid minors, until we get the desired one.

Suppose that there is not a family of λr0 node-disjoint paths connecting X and the
interface of Γ0. First we find a r′0×r′0 sub-grid Γ′0 of Γ0 such that r′0 = O(r0) and Γ′0 contains
at most λr0

α terminals. For any minor H of G, and for every v ∈ V (H), let η(v) ⊆ V (G)
be the subset of vertices in G corresponding to v. Let also XH = X ∩ η(H). Since there
is not a family of λr0 node-disjoint paths connecting X and the interface of Γ0, we can
find a cut C ⊆ E(G) in G, separating XΓ0 and the interface of Γ0, with |C| < λr0. Now
let A1, A2, . . . , Am be the connected components of G \ C that contain vertices of XΓ0 (See
Figure 4). We may assume w.l.o.g. that |V (A1)| ≥ |V (A2)| ≥ . . . ≥ |V (Am)|. Now let
Y, Z ⊂ X be two disjoint subsets of X of equal size such that XA1 ⊂ Y and XAi

⊂ Z for any
i ∈ {2, 3, . . . ,m}. Since X is α-node-well-linked, there exist a family P of |Y | paths from Y

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:13

Figure 4 The connected components of G \ C in Γ′0.

to Z such that no vertex is in more than 1/α of these paths. However, we have XA1 ⊂ Y and
XAi

⊂ Z for any i ∈ {2, 3, . . . ,m}, and thus we have |V (XA2)∪ . . .∪V (XAm
)| ≤ |C| 1α <

λr0
α .

Therefore, we can find a r0
4 ×

r0
4 sub-grid Γ′0 of Γ0 such that Γ′0 does not intersect XA1 , and

moreover there are at most λr0
α number of terminals in η(Γ′0).

If there is a family of λr′0 node-disjoint paths connecting X and the interface of Γ′0, then
we are done. Otherwise, we find an irrelevant vertex. We use a similar technique as in [21].
Let Γ′′0 be the r′′0 × r′′0 sub-grid of Γ′0 obtained by deleting the first and last r′0/4 rows and
columns of Γ′0. By the construction, we know that Γ′′0 contains at most λr0

α terminals. We
may assume w.l.o.g. that r′0 is a power of 2, and thus r′′0 is a power of 2 as well. We construct a
hierarchical partitioning of Γ′′0 into smaller sub-grids as follows. For every i, j ∈ {1, 2, . . . , r′′0},
let vi,j be the vertex in the i’th row and j’th column of Γ′′0 . For any i, j, h ∈ {1, 2, . . . , r′′0}, let

Hi,j,h =
min{i+h,r′′0 }⋃

a=max{1,i−h−1}

min{j+h,r′′0 }⋃
b=max{1,j−h−1}

{va,b}.

We also define `(Hi,j,h) = 2h. For every q ∈ {0, 1, . . . , log r′′0}, we define two partitions of Γ′′0
into q × q sub-grids as follows. Let

Hq,1 =
r′′0 /2

q+1⋃
i=0

r′′0 /2
q+1⋃

j=0
{H(i2q+1, j2q+1, 2q)},

and

Hq,2 =
r′′0 /2

q+1⋃
i=0

r′′0 /2
q+1⋃

j=0
{H(i2q+1 + 2q, j2q+1 + 2q, 2q)}.

Let H =
log r′′0⋃
q=0

2⋃
i=1
Hq,i. For every H ∈ H, let w(H) be the number of terminals in η(H).

Let also w(Γ′′0) be the number of terminals in η(Γ′′0). We say that some H ∈ H is dense
if w(H) ≥ `(H)/100. Let δ(Γ′′0) be the interface of Γ′′0 . We say that some v ∈ V (Γ′′0) is
good if v is not contained in any dense H ∈ H, and there is no terminals in η(v). First we

APPROX/RANDOM 2019

14:14 Routing Symmetric Demands in Directed Minor-Free Graphs

Figure 5 Sets Cq.

show that there exists a good vertex in Γ′′0 . We count the number of vertices in Γ′′0 that
are contained in at least one dense H ∈ H. Let Hq,j ∈ H for some q ∈ {0, . . . , log r′′0} and
j ∈ {1, 2}, and let H ∈ Hq,j . H is dense if and only if w(H) ≥ `(H)/100 = 2q+1/100. We
know that w(Γ′′0) ≤ r′′0/10000, and thus if 2q+1 > r′′0/100, then there are no dense H ∈ Hq,j .
Now suppose that 2q+1 ≤ r′′0/100, and thus q < log r′′0 − 7. Let i ∈ {8, . . . , log r′′0}, and let
q = log r′′0 − i. Let H ′ ∈ Hq,1. We have that `(H ′) = 2q+1 = r′′0/2i−1. In order for H ′ to be
dense it must be that w(H ′) ≥ `(H)

100 = r′′0
100·2i−1 . Note that we have w(Γ′′0) ≤ r′′0/10000, and

therefore there can be at most 2i−1/100 dense H ′ ∈ Hq,1. With a similar argument, we can
show that there can be at most 2i−1/100 dense H ′ ∈ Hq,2. Now we have∣∣∣∣∣ ⋃

H∈H:H is dense
H

∣∣∣∣∣ ≤ 2 ·
log r′′0∑
i=8

(
r′′0

2i−1

)2
· 2i−1

100

= (r′′0)2

50 ·
log r′′0∑
i=8

1
2i−1

<
(r′′0)2

50 .

This means that there exist at least 49(r′′0)2

50 vertices in Γ′′0 that are not contained in any dense
H ∈ H, and since there are at most r′′0/10000 terminals in η(Γ′′0), there must exist a good
vertex in Γ′′0 , as desired. Furthermore, this vertex can be found in polynomial time. Let
v ∈ V (Γ′′0) be a good vertex.

We claim that vertices in η(v) are irrelevant. For every q ∈ {0, 1, . . . , log r′′0} and
i ∈ {1, 2}, let Hq,i ∈ Hq,i be a sub-grid that contains v. By the construction, for every
q ∈ {0, 1, . . . , log r′′0}, we have that either dΓ′′0 (v, δ(Hq,1)) ≥ 2q−1 or dΓ′′0 (v, δ(Hq,2)) ≥ 2q−1.
Let Bq ∈ {Hq,1, Hq,2} be such that dΓ′′0 (v, δ(Bq)) ≥ 2q−1. For every q ∈ {1, . . . , log r′′0}, let
Cq = Bq \Bq−1, and let also Clog r′′0 +1 = V (Γ′0) \ V (Γ′′0) (See Figure 5).

Let Y,Z ⊂ X be two disjoint subsets of X of equal size. Since X is α-node well-linked,
we know that there exists a family P of |Y | paths from Y to Z such that no vertex is in
more than 1/α of these paths. If none of these paths use v, then we are done. Otherwise, we
try to re-route these paths to obtain a new family P ′ of paths, such that no path is using

T. Carpenter, A. Salmasi, and A. Sidiropoulos 14:15

v, and no vertex is in more than 1/α of the paths in P ′. First we look at the paths P ∈ P
with both endpoints outside of Γ′0; that is the endpoints of P do not belong to η(Γ′0). Let
P∗ ⊆ P be the set of all such paths. We re-route them in a way such that they do not
intersect η(Γ′′0). Note that by the construction, at most λr′0 of paths in P∗ can intersect
η(Γ′0). For these paths, we can re-route their intersection with η(Γ′0) in η(Γ′0) \ η(Γ′′0), and
thus they will not intersect η(Γ′′0). Now let P∗∗ ⊆ P be the set of paths with one endpoint
outside of η(Γ′0), and one endpoint inside of η(Γ′0). Let P = (a1, a2, . . . , ap) ∈ P∗∗, where
a1 /∈ η(Γ′0) and ap ∈ η(Γ′0). Let af ∈ V (P) be the first intersection of P and η(Γ′0); that is
f ∈ {1, 2, . . . , p} is the minimum number such that af ∈ η(Γ′0). Let P ′ = (af , . . . , ap). We
replace P with P ′ in P. Note that again there are at most λr′0 such paths in P. Now we
are only dealing with paths with both endpoints in η(Γ′0). For all such paths, we use an
inductive argument to re-route them. For any i, j ∈ {1, 2, . . . , log r′′0 + 1}, let Pi,j ⊆ P be the
paths with one endpoint in η(Ci), and the other endpoint in η(Cj). By the construction, for
any i ∈ {1, 2, . . . , log r′′0 + 1}, we know that there are at most 2i/20 terminals in η(Ci), and
thus |Pi,i| ≤ 2i/20. For all such paths, we can re-route them such that they stay inside Ci.
We start with Plog r′′0 +1,log r′′0 +1, and re-route all these paths such that they only use vertices

in Clog r′′0 +1. Again, by the construction, we have that

∣∣∣∣∣log r′′0⋃
j=1
Plog r′′0 +1,j

∣∣∣∣∣ ≤ r′′0/10. For all

P ∈
log r′′0⋃
j=1
Plog r′′0 +1,j , similar to the paths in P∗∗, we can replace them with paths with one

endpoint on the boundary of Clog r′′0 , and recursively follow the same argument for paths

with both endpoints in η
(

log r′′0⋃
j=1

Cj

)
and so on. Therefore, by applying the same re-routing

pattern, we can get a new set of paths P ′ such that no path uses vertex v, as desired.
Now let G1 = G \ v. Since v is an irrelevant vertex in G, we have that X is α-node-

well-linked in G1, and thus we have that the treewidth of G1 is Ω(α|X|). Therefore, we can
find a r′1 × r′1 flat grid minor Γ1 in G1, for some r′1 = Ω

(
α|X|
β

)
. If there exists a family of

λr′1 node-disjoint paths connecting X and the interface of Γ1, we are done. Otherwise, we
recursively follow the same approach to find an irrelevant vertex v1 in G1, and let G2 = G1\v1
and so on. This recursive call stops in O(n) steps, because for each i ≥ 1, Gi is a graph
of treewidth α|X|. Therefore, for some j ≥ 1, we can find a rj × rj flat grid minor Γj
of Gj , for some rj = Ω

(
α|X|
β

)
, such that there exists a family of λrj node-disjoint paths

connecting X and the interface of Γj . Note that Γj is also a flat grid minor of G, and this
completes the proof. J

APPROX/RANDOM 2019

Rainbow Coloring Hardness via Low Sensitivity
Polymorphisms
Venkatesan Guruswami
Carnegie Mellon University, Pittsburgh, PA, USA
guruswami@cmu.edu

Sai Sandeep
Carnegie Mellon University, Pittsburgh, PA, USA
spallerl@andrew.cmu.edu

Abstract
A k-uniform hypergraph is said to be r-rainbow colorable if there is an r-coloring of its vertices
such that every hyperedge intersects all r color classes. Given as input such a hypergraph, finding
a r-rainbow coloring of it is NP-hard for all k ≥ 3 and r ≥ 2. Therefore, one settles for finding a
rainbow coloring with fewer colors (which is an easier task). When r = k (the maximum possible
value), i.e., the hypergraph is k-partite, one can efficiently 2-rainbow color the hypergraph, i.e.,
2-color its vertices so that there are no monochromatic edges. In this work we consider the next
smaller value of r = k− 1, and prove that in this case it is NP-hard to rainbow color the hypergraph
with q := d k−2

2 e colors. In particular, for k ≤ 6, it is NP-hard to 2-color (k − 1)-rainbow colorable
k-uniform hypergraphs.

Our proof follows the algebraic approach to promise constraint satisfaction problems. It proceeds
by characterizing the polymorphisms associated with the approximate rainbow coloring problem,
which are rainbow colorings of some product hypergraphs on vertex set [r]n. We prove that any
such polymorphism f : [r]n → [q] must be C-fixing, i.e., there is a small subset S of C coordinates
and a setting a ∈ [q]S such that fixing x|S = a determines the value of f(x). The key step in our
proof is bounding the sensitivity of certain rainbow colorings, thereby arguing that they must be
juntas. Armed with the C-fixing characterization, our NP-hardness is obtained via a reduction from
smooth Label Cover.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases inapproximability, hardness of approximation, constraint satisfaction, hyper-
graph coloring, polymorphisms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.15

Category APPROX

Related Version A full version of the paper is available at [18], https://eccc.weizmann.ac.il/
report/2019/094/.

Funding Research supported in part by NSF grants CCF-1422045, CCF-1526092, and CCF-1814603.

Acknowledgements We thank Amey Bhangale, Joshua Brakensiek, Jakub Opršal, and Xinyu Wu
for useful discussions. We would also like to thank anonymous reviewers for helpful comments.

1 Introduction

Graph and hypergraph coloring are one of the most studied problems in Graph Theory and
Theoretical Computer Science. Even though there is a simple algorithm to check if a given
graph is 2-colorable or not, checking if a 3-uniform hypergraph can be colored with two colors
so that no hyperedge is monochromatic is one of the classic NP-hard problems. This raises the
question of identifying if 2-coloring is easy on special hypergraphs of interest. For example,
if a k-uniform hypergraph is k-partite, i.e., the vertices can be partitioned into k parts so

© Venkatesan Guruswami and Sai Sandeep;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guruswami@cmu.edu
mailto:spallerl@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.15
https://eccc.weizmann.ac.il/report/2019/094/
https://eccc.weizmann.ac.il/report/2019/094/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

that every hyperedge intersects each part, then there are simple algorithms to properly color
the hypergraph with two colors. Suppose we know that a k-uniform hypergraph is promised
to be k − 1-partite, can we color it with two colors?

An equivalent way to formulate this question is in terms of rainbow coloring. A k-uniform
hypergraph is said to be r-rainbow colorable if there is a coloring of vertices with r colors such
that all the r colors appear in every edge. Unlike usual coloring, rainbow coloring becomes
harder as we have more colors. Note that r-partiteness is the same thing as r-rainbow
colorability. As mentioned above, a k-uniform hypergraph that is promised to be k-rainbow
colorable can be efficiently colored with two colors. One big hammer approach for this is
to use semidefinite programming and find a unit vector for each vertex such that the sum
of the vectors in each edge sum to zero, and then use random hyperplane rounding. But
the 2-coloring can also be performed by a simple random walk algorithm – start with an
arbitrary coloring, and as long as there is a monochromatic edge, pick an arbitrary one
and flip the color of a random vertex in it. This process will converge to a 2-coloring in a
quadratic number of iterations with high probability [26].

If we relax the k-rainbow colorability assumption slightly to that of (k − 1)-rainbow
colorability, there are no known efficient algorithms for 2-coloring. It is tempting to conjecture
that in fact this task is hard (in fact, even if we are allowed c colors for any constant c; this
was shown assuming the V Label Cover conjecture in [9]). If we relax the rainbow colorability
assumption further, Austrin, Bhangale, and Potukuchi proved that it is NP-hard to 2-color a
k-uniform hypergraph when it is promised to be (k − 2

√
k)-rainbow colorable [2]. They also

showed that it is NP-hard to 2-color a 4-uniform hypergraph even if it is 3-rainbow colorable.
In this work, we focus on hardness results for the (k − 1)-rainbow colorable case, as this
promise is the closest to k-partiteness which makes 2-coloring easy. While we can’t show
hardness of 2-coloring, we show that rainbow coloring with dk−2

2 e colors is hard. Formally,
our main result is the following.

I Theorem 1. Fix an integer k ≥ 4. Given a k-uniform hypergraph that is promised to be
(k − 1)-rainbow colorable, it is NP-hard to rainbow color it with dk−2

2 e colors.

As a corollary, we also get the following, which extends the similar result of [2] for the
k = 4 case (their techniques did not generalize beyond the 4-uniform case).

I Theorem 2. For k ≤ 6, given a k-uniform hypergraph that is promised to be ()k−1)-rainbow
colorable, it is NP hard to 2-color it.

1.1 Techniques
There have been broadly three lines of attack on proving hardness for graph and hypergraph
coloring problems.

1. The first line of work gives reductions from Label Cover analyzed using Fourier-analytic
techniques of the sort originally pioneered by Håstad [19]. Early applications of this
method showed strong hardness results for coloring 2-colorable hypergraphs of low
uniformity with any constant number of colors [15, 20, 22, 31]. This approach, augmented
with the invariance principle of [28] and some of its extensions such as [13,27,33], was used
to prove further hardness results for hypergraph coloring [5, 16] and strong conditional
hardness results for graph coloring [13]. These methods usually also prove a stronger
statement about finding independent sets in the graphs or hypergraphs. For rainbow

V. Guruswami and S.Sandeep 15:3

coloring, it is proved in [16] by combining together many of these techniques that a (k/2)-
rainbow colorable k-uniform hypergraph cannot be colored with any constant number of
colors in polynomial time unless P = NP.

2. A less extensive line of work proceeds via combinatorial gadgets that are analyzed using
ideas based on the chromatic number of Kneser graphs and similar results. The first
exemplar of this approach was the hardness of O(1)-coloring 2-colorable 3-uniform hyper-
graphs shown in [14]. Unlike the analytic results for 4-uniform hypergraphs mentioned
above, this result does not show hardness of finding large independent sets. (This was
later shown in [23] using the analytic approach, albeit under the d-to-1 conjecture.) A
few recent results have revived this combinatorial approach, by re-deriving and improving
some previous hardness results for hypergraph coloring using simpler proofs [3, 6].

3. The third and most recent line of work adapts the universal algebraic method behind
the complexity classification of constraint satisfaction problems that culminated in
the resolution of the Feder-Vardi CSP dichotomy conjecture [11,35]. Here, the coloring
problem is viewed as a Promise Constraint Satisfaction Problem (PCSP), and its associated
“polymorphisms” are then analyzed. 1 In the cases when the polymorphisms are severely
limited, one can show hardness via a reduction from Label Cover. The approach to
study PCSP using polymorphisms originated in [4] and was used to show hardness results
for graph and hypergraph coloring in [8]. The algebraic theory was further developed
significantly in [12] leading among other results to a proof of NP-hardness of 5-coloring
3-colorable graphs. Recently, [24] and [34] used topological ideas to make further progress.

In this work, we follow the algebraic approach to prove Theorem 1. In fact, our main
motivation is to understand Promise CSPs better. A promise CSP (defined formally in Sec-
tion 2) is a relaxation of the traditional CSP where one is allowed to find an assignment
that satisfies a relaxed version of the predicates underlying the CSP. Approximate graph
coloring with more colors than the promised chromatic number is a quintessential example
of a promise CSP. Rainbow coloring with fewer colors also naturally falls in this framework.
As proved in [10,12], as with normal CSP, the complexity of a promise CSP is captured by
its associated polymorphisms. Polymorphisms (defined formally in Section 2) of a PCSP
are ways to combine multiple solutions of an instance satisfying the stronger predicate to
obtain a solution to the instance satisfying the weaker predicate. The high-level principle
behind the algebraic approach is that the problem should be easy when it has a rich enough
set of polymorphisms that include functions with strong symmetries, and hard when all its
polymorphisms are somehow skewed and lack symmetries. This has been fully established
for CSPs – when there are polymorphisms which obey weak near-unanimity, the CSP is
polytime solvable, and otherwise NP-complete.2 The hardness part of this dichotomy is
easier and was known for a while [25]; the much harder algorithmic part was established only
recently in [11,35].

For promise CSPs, which form a much richer class, our current understanding is rather
limited, for both the algorithmic and hardness sides. It is not clear (to even conjecture)
what kind of lack in symmetries in the polymorphisms might dictate hardness, and how one
might show the corresponding hardness. A simple (but rather limited) sufficient condition

1 The proof in [13] also implicitly studies polymorphisms and proves that they must have a small number of
coordinates with sizeable influence and thus are not too symmetric. This influence-type characterization
interfaces better with Unique Games or other highly structured forms of Label Cover.

2 For the case of Boolean CSPs, the CSP is hard iff all polymorphisms are essentially at most unary, i.e.,
either the dictator function, its complement or a constant function.

APPROX/RANDOM 2019

15:4 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

for hardness is when all the polymorphisms are dictators that depend on a single coordinate.
In [4], it has been proved that if all the polymorphisms of a PCSP are juntas3, then the
PCSP is NP-hard. This is the basis of the hardness results for (2 + ε)-SAT [4] and 3-coloring
graphs that admit a homomorphism to Ck for any fixed odd integer k [24]. The recent
hardness of 5-coloring 3-colorable graphs in [12] proceeds by showing that the absence of
arity 6 polymorphisms with the so-called Olšák symmetry implies NP-hardness, and then
verifying that 3 vs. 5-coloring lacks such polymorphisms.

It turns out that the polymorphisms of rainbow coloring can have Olšák symmetries and
be non-juntas. We will get around this by proving that these polymorphisms are C-fixing
in the sense that there exists a constant number of coordinates and an assignment to them
such that if we fix these coordinates to the assignment, the value of the function is fixed.
This is also studied as certificate complexity in Boolean function analysis [1]. We then prove
that if the polymorphisms of a PCSP are C-fixing, then the PCSP is NP-hard.

In order to prove that the polymorphisms have low certificate complexity, we use the
connection between sensitivity and certificate complexity of functions. These two ways
of characterizing the complexity of functions are well studied in the context of Boolean
functions. It is worth emphasizing that for our purposes, all we need is to show that low
sensitivity (even sensitivity 2 suffices) implies constant certificate complexity, and thus we
are not interested in optimal gaps between sensitivity and certificate complexity. The famous
sensitivity vs. block sensitivity conjecture [29] states that these two parameters are in fact
polynomially related. In one of the earliest works related to this problem, Simon [32] proved
that certificate complexity is at most exponential in sensitivity. We extend this to larger
domains and then use it to prove that the polymorphisms that we study have low certificate
complexity. We remark that in a striking breakthrough, Huang [21] recently proved the
sensitivity vs block sensitivity conjecture for Boolean domains.

The second step is to then use the C-fixing property to show NP-hardness of the PCSP.
This is done by the usual paradigm of reducing from Label Cover using polymorphism tests
(better known as long code tests) of functions associated with vertices of the Label Cover
instance. A more structured form of the C-fixing property where the C variables are fixed to
the same value, is used in [10] to show NP-hardness of certain Boolean PCSPs. However, in
order to prove NP-hardness using our more general notion of C-fixing, we end up needing
stronger properties of the Label Cover instance. As a result, our reduction is from the smooth
Label Cover problem that was introduced and shown to be NP-hard in [22], and has found
many applications in inapproximability since.

A natural question is to understand how far we can push these techniques. Our NP
hardness reduction from smooth Label Cover works when the polymorphisms of the PCSP
in hand are C-fixing for some constant C. As k increases, the polymorphisms of PCSP of
2-coloring a k-uniform hypergraph that is promised to be (k− 1)-rainbow colorable get richer.
When k is at most 6, the polymorphisms are C-fixing. At k = 7, we show that there is a
polymorphism that is not C-fixing for any constant C. In fact, one would need C to be
linear in the arity of polymorphisms which also rules out using smooth Label Cover with
very strong soundness.

1.2 Prior work on rainbow coloring and related problems
Various notions of approximate coloring with rainbow colorability guarantees have been
studied in the literature. Bansal and Khot [5] prove that when the input hypergraph
is promised to be almost k-rainbow colorable, it is Unique Games hard to color it with

3 A C-junta is a function that depends on at most C inputs.

V. Guruswami and S.Sandeep 15:5

O(1) colors. Sachdeva and Saket [30] establish NP-hardness of O(1) coloring a k-uniform
hypergraph when it is promised to be almost (k/2)-rainbow colorable. This was extended
by Guruswami and Lee [16] to perfectly (k/2)-rainbow colorable hypergraphs. Guruswami
and Saket [17] prove similar results assuming stronger forms of rainbow colorability in the
completeness case. In [2], Austrin, Bhangale, and Potukuchi proved that it is NP-hard to
2-color a k-uniform hypergraph when it is promised to be (k−2

√
k)-rainbow colorable. On the

other hand, when the hypergraph is promised to be (k−
√
k)-rainbow colorable, Bhattiprolu,

Guruswami and Lee [7] give algorithms to color the hypergraph with two colors that miscolors
at most k−Ω(k) fraction of edges; this beats the 2k+1 fraction achieved by random coloring that
is the best possible for general 2-colorable hypergraphs [19]. Brakensiek and Guruswami [9]
put forth a problem called V label cover (to possibly serve as a perfect completeness variant
surrogate for Unique games), and under its conjectured inapproximability proved that it is
hard to color a k-uniform (k − 1)-rainbow colorable hypergraph with O(1) colors.

A related notion of hypergraph coloring is strong coloring where we color a k-uniform
hypergraph with s > k colors such that in any edge, all the k vertices are colored with
distinct colors. Brakensiek and Guruswami [8] prove that it is NP-hard to 2-color a k-uniform
hypergraph that is promised to be strongly colorable with d 3k

2 e colors. Assuming the V
Label Cover conjecture, it is hard to O(1)-color k-uniform hypergraphs with strong chromatic
number at most k +

√
k [9].

1.3 Outline
We start with a few notations and definitions in Section 2. In Section 3, we study polymorph-
isms of rainbow coloring. We first prove a result on sensitivity and certificate complexity and
use it to prove properties of polymorphisms of the PCSP that we are studying. Then, we use
these in Section 4 to prove NP hardness. Finally, we conclude in Section 5 by mentioning
some open questions.

2 Preliminaries

2.1 Notations
We use [n] to denote the set {1, 2, . . . , n}. Vectors are represented using bold face letters.
We abuse the notation of k-ary relation A to use it both as a set A ⊆ [q]k and indicator
function A : [q]k → {0, 1}.

2.2 PCSP and Polymorphisms
We will now formally define CSP, PCSP, and Polymorphisms.

I Definition 3 (CSP). Given a k ary relation A : [q]k → {0, 1} over [q], the Constraint
Satisfaction problem associated with A takes input as a set of variables V = {a1, a2, . . . , an}
which are to be assigned values from [q]. There are m constraints (e1, e2, . . . , em) each
consisting of ei = ((ei)1, (ei)2, . . . , (ei)k) ⊆ V k that indicate that the corresponding assignment
should belong to A. The problem is to check if we can satisfy all the constraints or not.

In general, we can have multiple relations A1, A2, . . . , Am, and different constraints can
use different relations. We denote such a CSP by CSP(A1, A2, . . . , Am).

Promise CSP (PCSP) is a gap or promise version of CSP. Here, we have a pair of relations
such that one is a relaxed form of other and given a CSP instance, and the objective is to
decide if there is a satisfying assignment from stronger relation or we cannot even satisfy

APPROX/RANDOM 2019

15:6 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

the CSP using the relaxed relation. One canonical example of PCSP is the promise graph
coloring: Given a graph G, distinguish between the case that G can be 3-colored versus G
cannot even be colored with five colors. We can formally define PCSP as below:

I Definition 4 (Promise CSP). In the promise CSP problem, we have a set of pairs of
relations (A1, B1), (A2, B2), . . . , (Am, Bm) such that for every i, Ai is a subset of [q1]ki and
Bi is a subset of [q2]ki . Furthermore, there is a homomorphism h : [q1]→ [q2] such that, for
all i, x ∈ Ai implies h(x) ∈ Bi for all x ∈ [q1]ki . Given a CSP(A1, A2, . . . , Am) instance,
the goal is to distinguish between the two cases:
1. There is a solution to the instance assigning values from [q1] that satisfies every contraint

when viewed as CSP(A1, A2, . . . , Am).
2. There is no solution to the instance assigning values from [q2] that satisfies every constraint

when viewed as CSP(B1, B2, . . . , Bm).
We now turn our attention towards rainbow coloring which is the PCSP that we study in
this paper. In RAINBOW(k, r, q) problem, the input is a k-uniform hypergraph. The goal is
to distinguish between the cases when the hypergraph is rainbow colorable with r colors and
when it cannot be rainbow colorable with q colors. More formally, we can define the problem
as below:

I Definition 5 (RAINBOW(k, r, q)). In the RAINBOW(k, r, q) promise CSP, q ≤ r ≤ k, we
have the relation pair (A,B) defined as follows:

A : [r]k → {0, 1} : A(x1, x2, . . . , xk) = 1 if and only if {x1, x2, . . . , xk} = [r].
B : [q]k → {0, 1} : B(y1, y2, . . . , yk) = 1 if and only if {y1, y2, . . . , yk} = [q].

Note that we need q, r to be at most k since we cannot rainbow color a k-uniform hypergraph
with more than k colors. We also need the condition that q ≤ r for the promise problem
to make sense: If the hypergraph is r rainbow colorable, we can infer that it is already
q < r rainbow colorable too. Thus, the promise problem is to identify if the hypergraph is
r rainbow colorable or it cannot even be rainbow colorable with q colors. Furthermore, in
this paper we will be only dealing with near perfect completeness case when hypergraph is
(k − 1)-partite i.e. r = k − 1.

Associated with every promise CSP, there are polymorphisms. Polymorphisms capture
the symmetries in the PCSP. They are ways in which we combine solutions to obtain new
solutions that are still valid.

I Definition 6 (Polymorphisms). For a PCSP problem (A,B), A : [q1]k → {0, 1}, B : [q2]k →
{0, 1}, a polymorphism is a function f from [q1]n → [q2], where n is the arity of the
polymorphism that satisfies the property (f(v1), f(v2), . . . , f(vk)) ∈ B for all (v1, v2, . . . , vk)
such that for all i ∈ [n], ((v1)i, (v2)i, . . . , (vk)i) ∈ A.

In the above, we defined polymorphisms for a single relation PCSP. When the PCSP has
multiple relations, the polymorphism should satisfy the above property for all the relations.
Informally, the arity n polymorphisms are precisely the functions f : [q1]n → [q2] such that
for every k × n matrix M with elements from [q1] whose columns are satisfying tuples of A,
the k tuple obtained by applying f to the rows of M should be in B. We refer the reader
to [10,12] for a detailed introduction to PCSP and various examples of polymorphisms.

We now direct our attention to polymorphisms of RAINBOW(k, r, q). By definition,
the polymorphisms of hypergraph coloring PCSPs turn out to be colorings of certain
tensor product hypergraphs. Fix n to be arity of the polymorphisms. We can infer that
the polymorphisms of RAINBOW(k, r, q) are proper q-rainbow colorings of the following
k-uniform hypergraph RHn(k, r):

V. Guruswami and S.Sandeep 15:7

The vertex set of hypergraph is the set V = [r]n.
A k element set {v1,v2, . . . ,vk}, where each vi ∈ [r]n is an edge if and only if for every
j ∈ [n], the set {(v1)j , (v2)j , . . . , (vk)j} is equal to [r].

That is, a set of k vectors from [r]n forms an edge if in the matrix obtained by plugging
these vectors as rows, all the r elements from [r] occur in every column.

2.3 Complexity measures of functions
Finally, we define the notions of sensitivity and C-fixing of functions.

I Definition 7 (Sensitivity at x). For a function f : [r]n → [q], and an input x ∈ [r]n, the
sensitivity of f at x, denoted by S(f,x) is defined as the number of coordinates i such that
changing x at i can change the value of f i.e. S(f,x) =

∣∣{i ∈ [n]|∃a : f(x) 6= f(x : xi ← a)}
∣∣.

I Definition 8 (Sensitivity). The sensitivity of a function f : [r]n → [q], denoted by S(f) is
defined as the maximum sensitivity of f over all x in [r]n i.e. S(f) = maxx S(f,x).

I Definition 9 (C-fixing). A function f from [r]n to [q] is said to be C-fixing for some integer
C if there exists a set S = {s1, s2, . . . , sC} ⊆ [n] and a vector α ⊆ [r]n such that f(x) = c

whenever xsi
= αsi

for all integers 1 ≤ i ≤ C, for some fixed c ∈ [q].

3 Polymorphisms

In this section, we will analyze the properties of polymorphisms of rainbow coloring. In order
to do so, we will prove that low sensitivity implies low certificate complexity. Using this, we
will establish that the polymorphisms for RAINBOW(k, k− 1, dk−2

2 e) are C-fixing. Along the
way, we will study rainbow colorings of various hypergraphs related to RHn(k, r). Finally, we
will show that our techniques cannot prove hardness of RAINBOW(7, 6, 2) by presenting a
polymorphism that is not C-fixing for any constant C.

3.1 Sensitivity vs certificate complexity
We extend a lemma of [32] that proves that if a function has low sensitivity then the function
is C fixing, to larger domains. The proof is along the same lines as the original proof.

I Lemma 10. Let f : [r]n → [q] be a function with sensitivity s, and let b ∈ [q] such that
f−1(b) is non empty. Then,

∣∣f−1(b)
∣∣ ≥ rn−s.

Proof. Fix s, and induct on n. The case n = s is trivial. Let x ∈ [r]n be such that f(x) = b.
Since s < n, there is a coordinate in x that is not sensitive. Without loss of generality, let it
be 1, and let x = (x1,y). As the first coordinate is not sensitive for x, we can conclude that
f(α,y) = b for all α ∈ [r].

Consider the set of functions gi : [r]n−1 → [q], gi(u) = f(i,u), i ∈ [r]. Note that for each
such gi, the set g−1

i (b) is non-empty. In addition, for every i ∈ [r], sensitivity of gi is at
most the sensitivity of f . Thus, by induction, we know that each such gi has at least rn−1−s

elements u in [r]n−1 such that gi(u) = b. Note that every such u gives f(i,u) = b. By
combining over all is, we can conclude that there are at least r · rn−1−s = rn−s elements
x ∈ [r]n such that f(x) = b. J

I Lemma 11. Let f : [r]n → [q] be a function with sensitivity s < n/2. Then, it is C-fixing
for C = s(r − 1)r2s+1.

APPROX/RANDOM 2019

15:8 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

Proof. We will actually prove a stronger statement that f is a C-junta. Let A denote the
set of coordinates with non-zero influence in f i.e. the coordinates that are sensitive for some
input. Our goal is to upper bound the cardinality of A.

For a function f : [r]n → [q], let the set of sensitive edges E(f) be defined as the set of
pairs of elements x,y ∈ [r]n such that f(x) 6= f(y), and x,y differ on exactly one coordinate.
From the sensitivity bound on f , we can deduce that

|E(f)| ≤ s(r − 1)rn (1)

Fix an arbitrary coordinate i ∈ A. There are elements x,y ∈ [r]n such that xi = α, yi =
β, α 6= β, f(x) 6= f(y), and x,y differ only in ith coordinate. Define a function g : [r]n−1 →
{0, 1} as g(z) is 1 if and only if f(α, z) = f(x), and f(β, z) = f(y) where we use the notation
(α, z) to denote the vector in [r]n obtained by inserting α in ith position to z ∈ [r]n−1.
Now, since f(α, z) and f(β, z) are both sensitive to at most s coordinates, g(z) is sensitive
to at most 2s coordinates. Also note that g−1(1) is non-empty. Thus, by Lemma 10, we
can conclude that |g−1(1)| is at least rn−1−2s. In other words, each sensitive coordinate
contributes at least rn−2s−1 edges to E(f). Thus, we can conclude that

|E(f)| ≥ |A|rn−2s−1 (2)

Combining Equation (1) and Equation (2), we get

|A| ≤ s(r − 1)r2s+1 (3)

which proves the required claim. J

3.2 Low sensitivity polymorphisms of rainbow coloring
We now turn our attention towards our main goal in this section: to show that polymorphisms
of RAINBOW(k, k − 1, q) are C-fixing for q = dk−2

2 e. As we have already mentioned earlier,
the polymorphisms of rainbow coloring themselves are rainbow colorings of certain tensor
product hypergraphs. To be precise, the n-ary polymorphisms of RAINBOW(k, r, q) are
precisely q-rainbow colorings of RHn(k, r). Thus our new goal is to prove that for any integer
q ≥ 2, any q-rainbow coloring of RHn(2q + 2, 2q + 1) is a C-fixing function.

In order to achieve this, we will first define certain hypergraphs similar to RHn(k, r).

I Definition 12. Hn(r, s) = (V,E) is a r-uniform hypergraph where the vertex set V is equal
to [r]n. A set of vectors (u1,u2, . . . ,ur) is an edge if and only if
1. In every coordinate i ⊆ [n], at least r− 1 elements occur i.e.

∣∣∣⋃j(uj)i∣∣∣ ≥ r− 1 ∀i ∈ [n].

2. All the r elements occur in at least n− s coordinates i.e.
∣∣∣⋃j(uj)i∣∣∣ = r for at least n− s

choices of i in [n].
The reason behind studying these hypergraphs is that the q-rainbow colorings of RHn(2q +
2, 2q + 1) are very closely related to q-rainbow colorings of Hn(2q + 1, c) for any absolute
constant c. In fact if we can prove that q-rainbow colorings of Hn(2q + 1, c) are C-fixing, it
implies that q-rainbow colorings of RHn(2q + 2, 2q + 1) are max(C, c)-fixing. This is formally
proved in Lemma 16. Thus our modified objective is to argue that q-rainbow colorings of
Hn(2q + 1, c) are C-fixing. In order to do so, we inductively relate q-rainbow colorings of
Hn(t, c) and Hn(t− 1, c− 1). As a base case, we have the following lemma:

I Lemma 13. For all integers q ≥ 2 and n ≥ 1, the hypergraph Hn(2q − 1, 1) cannot be
rainbow colored with q colors.

V. Guruswami and S.Sandeep 15:9

Proof. We will use induction on q. For the case q = 2, rainbow coloring with 2 colors is the
same as proper coloring the hypergraph with 2 colors. The fact that Hn(3, 1) cannot be two
colored follows from [2] (Lemma 3.2 with d = 3).

Suppose for contradiction that f is a valid q-rainbow coloring of Hn(2q − 1, 1). Let
r = 2q − 1 denote the uniformity of the hypergraphs. Consider the set of r vectors in [r]n :
{
⋃
i∈[r](i, i, . . . , i)}. As there are at most q < r colors, some two elements of this set should

have same f value. Without loss of generality, let f(r−1, r−1, . . . , r−1) = f(r, r, . . . , r) = c

for some c ∈ [q]. Consider the (r − 2)-uniform hypergraph H = Hn(r − 2, 1). Note that
every edge in H together with u = (r − 1, r − 1, . . . , r − 1) and v = (r, r, . . . , r) forms an
edge in Hn(r, 1). Thus, all the q − 1 colors in [q] \ {c} occur in every edge of coloring of
Hn(r − 2, 1) using f . This implies that we can get a a valid (q − 1)-rainbow coloring of
Hn(r−2 = 2(q−1)−1, 1) by restricting f to [r−2]n, and replacing the color c using arbitrary
color from [q] \ {c}. However, by the induction hypothesis, such a coloring cannot exist, and
thus we have arrived at a contradiction. J

Now, we will use this to argue about q-rainbow colorings of Hn(2q + 1, 3) via q-rainbow
colorings of Hn(2q, 2). Consider the hypergraph Hn(2q, 2). A trivial way to q-rainbow color
this hypergraph is to pick a coordinate i ∈ [n], and partition the set [2q] into q disjoint sets of
size two, let’s say A1, A2, . . . , Aq and assign the value p ∈ [q] to f(x) for x = (x1, x2, . . . , xn)
if and only if xi ∈ Ap. It turns out that this is the only way to q-rainbow color Hn(2q, 2).
We prove it in the lemma below:

I Lemma 14. Let f be a q-rainbow coloring of Hn(r = 2q, 2). Then, there exists an index
i ∈ [n], sets A1, A2, . . . , Aq ⊆ [r] mutually disjoint and each of size 2, such that f(x) = j iff
xi ∈ Aj.

Proof. First we will prove that the sensitivity of f is at most 1. Let x = (x1, x2, . . . , xn)
be an arbitrary vector in [r]n. Consider a (r − 1)-uniform hypergraph H(x) defined on
([r] \ {x1})× ([r] \ {x2})× . . .× ([r] \ {xn}). We add a r− 1 vector set as edge of H(x) if and
only if it has at most one coordinate where there are missing elements i.e. all the [r] \ {xi}
occur in all but one coordinate i, and in that coordinate, at most one value is missing.

Note that H(x) is isomorphic to Hn(2q − 1, 1). From Lemma 13, we know that H(x)
cannot be rainbow colored with q colors. Thus, when we view f as a coloring of H(x), there
is an edge that has a color missing. Let it be denoted by e = (y1,y2, . . . ,yr−1). Let j be
the coordinate where there is a missing element in e. If there is no coordinate with a missing
element, j can be arbitrary. Without loss of generality, let color 1 ⊆ [q] be missing in e. Note
that {x} ∪ e is an edge of Hn(r, 1), and thus an edge of Hn(r, 2) as well. Since f is a proper
q-rainbow coloring of Hn(2q, 2), we can conclude that f(x) = 1. In fact, we can actually
deduce something stronger. Let y ∈ [r]n such that x and y differ on exactly one coordinate
j′ ∈ [r]n, j′ 6= j. Note that {y} ∪ e is also a valid edge of Hn(2q, 2) since it has at most two
coordinates where there are missing elements i.e. j′ and j. Thus, f(y) = 1 = f(x). Thus,
for every x, in except for one coordinate, changing the value of the coordinate preserves the
value of x. In other words, the sensitivity of f is at most 1.

Using this, we will now prove that f is a dictator. Let i be an influential coordinate of f
i.e. there exists x,y ∈ [r]n differing only in ith coordinate such that f(x) 6= f(y). We claim
that f(u) = f(x) for all u = (u1, u2, . . . , un) ∈ [r]n such that ui = xi, and f(u) = f(y) if
ui = yi. We will prove this by induction on the number of coordinates in which x and u
differ excluding i. Since f has sensitivity at most 1, the only sensitive coordinate of x and y
is i. Thus, for any u differing only in one coordinate from x (other than i) such that ui = xi
or yi will have corresponding f value. Suppose that the statement holds for all u differing
from x in t coordinates excluding i.

APPROX/RANDOM 2019

15:10 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

Now, let u differ from x in t+ 1 coordinates excluding i. We can find v ∈ [r]n,w ∈ [r]n
such that v and x differ in t coordinates excluding i, vi = xi; w and y differ in t coordinates
excluding i, wi = yi, and one of v and w differs from u in at most one coordinate. By the
induction hypothesis, f(v) = f(x), f(w) = f(y). Since v and w differ in a single coordinate
i, i is the only sensitive coordinate of v and w. Thus, f(u) is equal to either f(v) or f(w)
depending on ui = xi or yi. This completes the inductive proof.

To complete the proof that f is a dictator, we will use this to show that there cannot be
two influential coordinates. Suppose that there are two influential coordinates i and j. From
the previous argument, we can infer that there are assignments i1, i2, j1, j2 ∈ [r] such that
assigning these to corresponding coordinates fixes the value of f . Also note that assigning i
as i1 and i2 fixes f to different values. Similarly, assigning j as j1 and j2 fixes f to different
values. This gives rise to contradiction since if we set coordinate i to i1, f should be fixed
irrespective of j is equal to j1 or j2. Thus, there can be only one influential coordinate for f ,
or in other words, f is a dictator.

Let p be the dictator coordinate of f i.e. there exists a function g : [r] → [q] such
that f(x) = g(xp). From the definition of the hypergraph Hn(r, 2), for every j ∈ [r],
the set {

⋃
i g(xi)} \ {g(xj)} should be equal to [q]. This proves that there exists sets

A1, A2, . . . , Aq ⊆ [r] each of size two, and mutually disjoint such that g(α) = j if and only if
α ∈ Aj , which proves the required claim. J

We finish the chain of inductive arguments by proving a key property of q-rainbow
colorings of Hn(2q + 1, 3).

I Lemma 15. Let f : [2q + 1]n → [q] be a q-rainbow coloring of Hn(r = 2q + 1, 3). Then,
there exists an index i ∈ [n], and α ∈ [r] such that S(f,x) ≤ 2 for all x ∈ [r]n such that
xi = α.

Proof. Let x = (x1, x2, . . . , xn) ∈ [r]n be an arbitrary vector in [r]n. Similar to the previous
lemma, we define the complement hypergraph associated with x. Consider a (r − 1)-uniform
hypergraph H(x) defined on ([r] \ {x1})× ([r] \ {x2})× . . .× ([r] \ {xn}). We add a r − 1
vector set as edge of H(x) if and only if it has at most two coordinates where there are
missing elements i.e. all the [r] \ {xi} occur in all but two coordinates i, and in these two
coordinates, at least r − 2 values occur. Note that H(x) is isomorphic to Hn(r − 1, 2).

We can view f : [2q + 1]n → [q] as a q-coloring of H(x). If f is not a valid q-rainbow
coloring of H(x), by the same argument as in Lemma 14, we can deduce that S(f,x) ≤ 2. If
f is a valid q-rainbow coloring of H(x), we will use the properties proved in Lemma 14. Let
us define a function g : [r]n → [n] ∪ {⊥} such that for a vector x ∈ [r]n,
1. If f is a valid q-rainbow coloring of H(x), then Lemma 14 implies that there exists a

coordinate i ∈ [n] such that f is a dictator in ith coordinate in H(x). In this case, set
g(x) = i.

2. If f is not a valid q-rainbow coloring of H(x), let g(x) = ⊥.

First, we will prove that there exists an index i ∈ [n] such that g(x) ∈ {i,⊥} for all
x ∈ [r]n. Suppose g(x) = i ∈ [n], and g(y) = j ∈ [n] where x,y ∈ [r]n and i 6= j. Since
g(x) = i, there exist sets S1, S2, . . . , Sn ⊆ [r] such that f is a dictator on ith coordinate in
S = S1 × S2 × . . .× Sn ⊆ [r]n. In particular, there is a subset A ⊆ Si such that |A| = 2, and
f(x), x ∈ S, is equal to 1 if and only if xi ∈ A. Similarly, there exist sets T1, T2, . . . , Tn ⊆ [r]
such that f is a dictator on jth coordinate in T = T1 × T2 × . . .× Tn ⊆ [r]n. There exists a
subset B ⊆ Tj such that |B| = 2, and f(x),x ∈ T is equal to c 6= 1 if and only if xj ∈ B for
some c ∈ [q]. Combining the both, let Ui = Si ∩ Ti, |Ui| ≥ r − 2∀ i ∈ [n]. We can deduce

V. Guruswami and S.Sandeep 15:11

that f is a dictator in both i and j coordinates in U = U1 × U2 × . . . × Un. This implies
that f is a constant function in U . Recall that there are two assignments in Si that make f
equal to 1 and two assignments in Tj that make f equal to c 6= 1. Thus, f(x′) is equal to 1
for some x′ ∈ U and f(y′) = c 6= 1 for some y′ ∈ U . This contradicts the fact that f is a
constant function in U . Thus, there exists an index i ∈ [n] such that g(x) is either equal to i
or is equal to ⊥ for all x ∈ [r]n. Without loss of generality let that be the first coordinate i.e.
for all x ∈ [r]n, g(x) ∈ {1,⊥}.

Consider the case when g(x) = ⊥ for every x ∈ [r]n. In this case, we know that S(f,x) ≤ 2
for all x ∈ [r]n. In particular, we can set α arbitrary and say that S(f,x) ≤ 2 whenever
x1 = α. So we are only left with the case when there exists a x ∈ [r]n such that g(x) = 1. We
will now prove that there exists α ∈ [r] such that g(x) = ⊥ whenever x1 = α, thus proving
the required sensitivity bound.

Suppose for contradiction that for every α ∈ [r], there exists x ∈ [r]n such that x1 = α, and
g(x) = 1. Consider a pair u,v ∈ [r]n such that u1 = α, v1 = β 6= α and g(u) = g(v) = 1. Let
u = (u1, u2, . . . , un), Si = [r]\{ui} and f is dictator on 1st coordinate in S = S1×S2×. . .×Sn.
There is a function h1 : S1 → [q] such that f(x) = h1(x1) if x ∈ S and |h−1

1 (c)| = 2 ∀c ∈ [q].
Similarly, let v = (v1, v2, . . . , vn), Ti = [r] \ {vi} and f is dictator on first coordinate in
T = T1 × T2 × . . .× Tn. There is a function h2 : T1 → [q] such that f(x) = h2(x1) if x ∈ T
and |h−1

2 (c)| = 2 ∀c ∈ [q]. Let Ui = Si ∩ Ti. Note that U = U1 × U2 × . . . Un is non empty
and f is dictator on 1st coordinate in U as well. Note that |Ui| ≥ r − 2 for all i ∈ [n]. Thus,
we can conclude that if γ ∈ U1, then h1(γ) = h2(γ).

Applying this to all pairs u,v such that g(u) = g(v) = 1, we can infer that there exists
a function h : [r] → [q] that satisfies the property that for all x ∈ [r]n such that g(x) = 1,
let x = (x1, x2, . . . , xn), Si = [r] \ {xi}, S = S1 × S2 × . . . × Sn, then f(y) = h(y1) for
all y ∈ S. As r = 2q + 1 > 2q, there exists b ∈ [q] such that |h−1(b)| ≥ 3. Let γ ∈ [r]
be such that h(γ) 6= b. From our assumption that for every α ∈ [r] there exists x ∈ [r]n
such that g(x) = 1 and x1 = α, there exists u ∈ [r]n such that u1 = γ and g(u) = 1.
Now, let u = (u1, u2, . . . , un), Si = [r] \ {ui}, S = S1 × S2 × . . . × Sn, and we know that
f(x) = h(x1) if x ∈ S, and

∣∣h−1(c)∩S1
∣∣ = 2 ∀c ∈ [q]. However, this contradicts the fact that

h(u1) = h(γ) 6= b, and |h−1(b)| = 3. Thus, there exists α ∈ [r] such that g(x) = ⊥ for all
x ∈ [r]n such that x1 = α. J

Finally, we will use the previous hypergraph coloring properties to argue about polymorphisms
of rainbow coloring.

I Lemma 16. There exist constant C = C(q) independent of n such that every f : [2q+1]n →
[q] that is an n-ary polymorphism of RAINBOW(2q+ 2, 2q+ 1, q) i.e. f is a proper q-rainbow
coloring of RHn(2q + 2, 2q + 1) is C-fixing.

Proof. Let r = 2q + 1. Let f : [r]n → [q] be a polymorphism of RAINBOW(2q + 2, 2q + 1, q).
We can view f as a q-rainbow coloring of Hn(r, 3) as the vertex set of RHn(r + 1, r) and of
Hn(r, 3) is equal to [r]n. If it is not a valid q-rainbow coloring, there is an edge in which not
all q colors appear. Let that edge be e = (v1,v2, . . . ,vr} and c ∈ [q] be a missing color in
{f(v1), f(v2), . . . , f(vr)}. Since this edge is part of Hn(r, 3), except for 3 values of i, for all
other i, the set

(
(v1)i, (v2)i, . . . , (vr)i

)
is equal to [r]. Let the missing coordinates be the

set S = {i1, i2, i3}. Now consider an element u of [r]n such that it has missing values of e
in S. From the definition of RHn(r + 1, r), we can deduce that the set e ∪ u is an edge of
RHn(r + 1, r). Since f is a valid q-rainbow coloring of RHn(r + 1, r), f(u) is equal to c. Note
that this should hold irrespective of what values u has in coordinates outside S. This proves
that f is C-fixing with C = 3.

APPROX/RANDOM 2019

15:12 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

On the other hand if f is a valid q-rainbow coloring of Hn(r, 3), using Lemma 15, we can
deduce that there exists an index i ∈ [n], and α ∈ [r] such that S(f,x) ≤ 2 whenever xi = α.
Now, we can consider a function g : [r]n−1 → [q] which on an input y ∈ [r]n−1, is equal to
f(x),x = y, xi ← α ∈ [r]n i.e. we first insert α in ith position to y and then apply f . Note
that g has sensitivity at most 2. From Lemma 11, we can conclude that g is C-fixing for
C = 2(r − 1) · r5. In other words, g is fixed by assigning values to a set of C indices. This
implies that f is also C ′ = C + 1-fixing since we can first assign ith index to α, then use
C-fixing property of g. J

3.3 High sensitivity polymorphism of RAINBOW(7, 6, 2)

We show that there exists a function f : [6]n → {0, 1} that is a polymorphism of RAIN-
BOW(7, 6, 2) that is not C-fixing for any constant C. We start with a dictator but add just
enough noise such that the function still remains being a polymorphism, but it is no longer
C-fixing. Let wt(x) denote the number of i ∈ [n], i > 1 such that xi = 1. Let S ⊆ [6]n denote
the set of x ∈ [6]n such that wt(x) > 2n

3 . Let h : [6]n → {0, 1} be noise function defined
below. For a given x ∈ [6]n, we define f(x) as follows:
1. If x /∈ S

a. If x1 ≤ 3, f(x) = 0
b. Else, f(x) = 1

2. Else f(x) = h(x).

A choice of noise function that works is inverting the original function: h(x) is defined as 1 if
and only if x1 ≤ 3.

I Proposition 17. The function f : [6]n → {0, 1} defined above is a polymorphism of
RAINBOW(7, 6, 2) and it is not C-fixing for any C < n

3 .

Proof. Any polymorphism of RAINBOW(7, 6, 2) is a proper 2-rainbow coloring of RHn(7, 6).
Recall that rainbow coloring with two colors is the same as standard hypergraph coloring
with two colors.
Polymorphism. In any set of 7 vectors E in [6]n such that all the 6 elements occur in all

the coordinates, at most two vectors can be in S. This is because, in any set of three
vectors in S, there exists a coordinate in which all three values are equal to 1. Thus, there
are vectors x /∈ S with x1 ≤ 3 and vector y /∈ S such that y1 ≥ 3 in E, which together
ensures that E is not monochromatic.

C-fixing. Suppose that there exists a set T = {t1, t2, . . . , tm} ⊆ [n] and (α1, α2, . . . ,

αm) ⊆ [6]m such that f(x) = b for all x such that xi = αi for all 1 ≤ i ≤ m, for
some fixed b ∈ {0, 1}. We will prove that |T | ≥ n

3 . Suppose for contradiciton that |T | < n
3 .

First, if 1 /∈ T , we can set all coordinates outside T to be equal to β 6= 1, and in this
case f(x) = x1, which cannot be fixed if 1 /∈ T . Thus 1 ∈ T . Next, if all the coordinates
outside T are all equal to 1, then f(x) is equal to noise function, which is different from
the case when the rest are equal to β 6= 1. Thus, if f is indeed a C-fixing function, for
the C-fixing assignment, the value of f should be independent of the assignment to the
coordinates outside T . However, that is not the case as the value of f changes when we
set all the coordinates outside T to be 1 or β 6= 1. J

V. Guruswami and S.Sandeep 15:13

4 NP-Hardness

In this section, we will use the properties of polymorphisms proved so far to argue about NP
hardness of rainbow coloring PCSP. We will prove the below theorem:

I Theorem 18. Suppose that there exists a constant C such that for all integers n ≥ 1, every
n-ary polymorphism of RAINBOW(k, k − 1, q) is C-fixing. Then, the corresponding decision
problem RAINBOW(k, k − 1, q) is NP hard.

Before delving into the proof of Theorem 18, we first mention that this theorem together
with Lemma 16 implies Theorem 1. In Lemma 16, we have proved that for every q ≥
2, the polymorphisms of RAINBOW(2q + 2, 2q + 1, q) are C-fixing. This fact combined
with Theorem 18 implies that RAINBOW(2q + 2, 2q + 1, q) is NP hard for every q ≥ 2. This
already proves Theorem 1 when k is even. When k is odd, we can combine Lemma 14
and Lemma 16 to prove that the polymorphisms of RAINBOW(k = 2q+ 1, 2q, q) are C-fixing.
We can combine this with Theorem 18 to prove Theorem 1 when k is odd.

The rest of this section is dedicated to proving Theorem 18. Like various other hardness
of approximation results, we will use the standard label cover with long code framework. We
reduce smooth label cover introduced in [22] to rainbow coloring PCSP. First we define Label
Cover problem below:

I Definition 19 (Label Cover). In an instance of Label Cover problem, we are given a tuple
(G = (L,R,E),Σ,Π) where
1. G is a bipartite multi graph between vertex sets L and R
2. Each vertex in G has to be assigned a label from Σ
3. For each edge e = (u, v) ∈ E, there is a projection constraint Πe from u to v that is a

function from Σ to itself. This corresponds to a constraint between u and v.
A labelling of graph is a function σ : L ∪R→ Σ that assigns a label to each vertex of G. A
labelling σ is said to satisfy constraint Πe if and only if Πe(σ(u)) = σ(v).

We refer to L and R as left and right vertices respectively. We are now ready to define Gap
Label Cover.

I Definition 20 ((1, εLC) Gap Label Cover). In (1, εLC) Gap Label Cover, we are given
a Label Cover instance (G = (L,R,E),Σ,Π), and the goal is to distinguish between the
following two cases:
1. There is a labelling σ : G→ Σ that satisfies all the constraints.
2. No labelling can satisfy εLC fraction of constraints.
As mentioned earlier, we need stronger properties of the Label Cover instance that we are
starting with. One such property is smoothness.

I Definition 21 (Smoothness). A Label Cover instance (G = (L,R,E),Σ,Π) is said to be
(J, ε)− smooth if for any vertex u ∈ L and a set of labels S ⊆ Σ, |S| ≤ J , over a uniformly
random neighbor v ∈ R, Pr(

∣∣⋃
s∈S Πu,v(s)

∣∣ < |S|) ≤ ε.
The following is a special case of Theorem 1.17 in [33].

I Theorem 22. For every ε, εLC > 0 and J ∈ Z+, there exists n = n(ε, εLC , J) such that
(1, εLC) Gap Label Cover with |Σ| = n that is promised to be (J, ε)-smooth is NP hard.

We now prove Theorem 18.

APPROX/RANDOM 2019

15:14 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

Reduction. We start with (1, εLC) Gap Label Cover instance (G = (L,R,E),Σ,Π) that is
promised to be (C, ε)-smooth, for ε and εLC to be set later, and output a PCSP instance.
The reduction described here is the same as the general one from Label Cover to PCSP in
e.g. [12]. Let n denote the label size n = |Σ|. For each vertex v ∈ L ∪ R, we add a set of
nodes Kv of size [k − 1]n, indexed by n length vectors. We add two types of constraints:
1. Coloring constraints: Inside every vertex of the Label Cover instance, we add the following

constraints among the [k − 1]n nodes. We add the constraint that the promise relation
should be satisfied in the set T of k nodes {x1,x2, . . . ,xk} in [k− 1]n, if for every i ∈ [n],
the set {

⋃
j(xj)i} has cardinality k − 1.

2. Equality constraints: For every constraint Πe : u→ v of the Label Cover, we add a set of
equality constraints between nodes x ∈ Ku, y ∈ Kv if for all i ∈ [n], xi = yΠe(i).

Note that the Coloring constraints give rise to rainbow colorings of k-uniform hypergraphs. It
is yet unclear how we can justify adding equality constraints. One way to handle the equality
constraints is to have a single node for all the vertices corresponding to equality constraint.
However, this fails if we want to add a coloring constraint that involves two copies of the
same vertex. A neater way to get around this is to argue that adding equality constraints
does not change the set of polymorphisms, and thus the hardness of the predicate remains
the same with or without equality constraints. This simple fact is proved in e.g. [10, 12].

Completeness. If the label cover instance is satisfiable, then PCSP instance that is being
output can be satisfied by assignment from [k− 1]. Suppose σ : L∪R→ Σ is a labeling that
satisfies all the constraints of the Label Cover. For every vertex x ∈ Ku corresponding to
the vertex u ∈ L ∪R, we can assign the value xσ(u). In other words, in every long code, we
are assigning corresponding dictator function. The coloring constraints are defined precisely
such that this assignment satisfies the constraints. The equality constraints also follow since
the labeling σ satisfies all the constraints of the Label Cover.

Soundness. If the Label Cover is not εLC satisfiable, we need to show that there is no
assignment of the PCSP instance in [q] that satisfies all the constraints. Taking contrapositive,
if there is an assignment in [q] to PCSP instance that satisfies all the constraints, then we will
prove that there is an assignment to the Label Cover instance that can satisfy a c fraction of
constraints, for an absolute constant c. Taking εLC < c, we can arrive at a contradiction,
thus proving that there is no assignment in [q] to PCSP that satisfies all the constraints.

Let fv : [k − 1]n → [q] denote the assignment to the PCSP instance that satisfies all the
constraints for v ∈ L ∪ R. From the coloring constraints, we can infer that fv is a n-ary
polymorphism of RAINBOW(k, k−1, q). Thus, it is C-fixing for a constant C independent of n.

For every vertex v ∈ L ∪ R of the Label Cover instance, we will assign a set of labels
A(v) ⊆ [n]. For vertices v in L, A(v) is the C-fixing set. Since the Label Cover instance is
smooth, we will only consider the constraints where all these labels go to distinct labels on
the right under projections. We can set the smoothness parameter ε to be 0.1 for example,
and we will be left with 9

10 fraction of original constraints. We will prove that there is an
assignment that satisfies a c fraction of these constraints, for an absolute constant c, which
will prove the original soundness claim. Thus in all the remaining constraints, the set of labels
in A(v) go to distinct labels on the right. Thus, for a vertex v ∈ R, each constraint (u, v)
gives rise to C coordinates Πu,v(A(u)). Note that these C coordinates are in fact C-fixing
for v for every constraint (u, v). For a given v ∈ R, there are several such C-fixing sets. Let
the set of these C-fixing sets be denoted by B(v) = {S1, S2, . . .} where each Si ⊆ [n] is a
C-fixing set of fv. Now we define A(v) for v ∈ R to be the set of union of an arbitrary fixed
maximal disjoint sets in B(v).

V. Guruswami and S.Sandeep 15:15

In order to prove that there is a good labeling to the Label Cover, we assign a label to
every vertex v from A(v) uniformly at random and prove that it satisfies a constant fraction
of constraints with non-zero probability. We will, in fact, show that the random assignment
satisfies a constant fraction of constraints in expectation. We prove this in two steps. First,
we show that for every constraint (u, v) of the Label Cover, there exists x ∈ A(u), y ∈ A(v)
such that Πu,v(x) = y. This follows from the definitions of A(v) : suppose the projection of
A(u) is disjoint from A(v). In that case, we can add the projection of A(u) to A(v) to get a
larger set in v, which contradicts the fact that A(v) is the maximal such union of disjoint
projections. This implies that the uniformly random labelling satisfies each constraint (u, v)
of Label Cover with probability at least 1

|A(u)||A(v)| .
To complete the proof, we need to bound the sizes of A(v). As we have already mentioned,

for v ∈ L, |A(v)| ≤ C. We bound the size of A(v) for vertices v in R using the below lemma.

I Lemma 23. Suppose f : [k − 1]n → q is a polymorphism of RAINBOW(k, k − 1, q). Let
A1, A2, . . . , At be mutually disjoint subsets of [n] such that each of them is a C-fixing set of
f . Then, t < k.

Proof. First note that all the Ais should fix f to the same value in [q] since otherwise, the
vector u ∈ [k − 1]n that has all the fixing sets in Ais is forced to be equal to multiple colors
in [q] at the same time. Let all the Ais be C-fixing with respect to value b ∈ [q] i.e. for
each i ∈ [t], there exists an assignment to Ai such that if the value of x in Ai is equal to
the assignment, then the value of f(x) is equal to b irrespective of values of coordinates
outside Ai. If t ≥ k, we can find y1,y2, . . .yk such that all [k − 1] occur in every coordinate,
and yi has the fixing assignment of Ai. This implies that f(yi) = b for all i. However,
note that {y1,y2, . . . ,yk} is an edge of RHn(k, k − 1), and thus if f is a polymorphism of
RAINBOW(k, k− 1, q), all the [q] elements should occur in {f(y1), f(y2), . . . , f(yk)}. This is
a contradiction since for all i, f(yi) = b. J

From the lemma, we can infer that the cardinality of A(v) for v ∈ R is at most kC. Combining
this with the above, we can deduce that there is an assignment that satisfies 1

kC2 fraction of
constraints, which is a constant fraction of constraints, independent of n.

5 Conclusion

In this paper, we have proved that given a k-uniform hypergraph that is promised to be
(k− 1)-rainbow colorable, it is NP hard to rainbow color it with dk−2

2 e colors. As a corollary,
we can deduce that for k ≤ 6, it is NP hard to 2-color a k-uniform hypergraph that is promised
to be (k − 1)-rainbow colorable. An immediate question is whether RAINBOW(7, 6, 2) is NP
hard. It would be interesting to get an efficient algorithm though we believe it is unlikely.
In Section 3.3, we have provided a polymorphism of RAINBOW(7, 6, 2) that is not C-fixing.
The polymorphisms for this PCSP also have other symmetries (in the form of identities)
discussed in [12].

However, it should be noted the polymorphism that we have given in Section 3.3 is very
far from symmetric, it seems that we should decode to the unique special coordinate. What
we are missing here is a characterization of lack of symmetries that works well with Label
Cover to give NP-hardness. We believe that resolving the hardness of this particular PCSP
can shed light on identifying criteria for lack of symmetries that imply hardness, beyond
C-fixing. Another direction to explore is whether we can further strengthen the completeness
in our result. More concretely, given a k-rainbow colorable k-uniform hypergraph, can we
efficiently rainbow color it with 3 colors?

APPROX/RANDOM 2019

15:16 Rainbow Coloring Hardness via Low Sensitivity Polymorphisms

References
1 Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity Versus Certificate

Complexity of Boolean Functions. In Proceedings of the 11th International Computer Science
Symposium on Computer Science — Theory and Applications - Volume 9691, CSR 2016, pages
16–28, 2016. doi:10.1007/978-3-319-34171-2_2.

2 Per Austrin, Amey Bhangale, and Aditya Potukuchi. Improved Inapproximability of Rainbow
Coloring. CoRR, abs/1810.02784, 2018.

3 Per Austrin, Amey Bhangale, and Aditya Potukuchi. Simplified inpproximability of hypergraph
coloring via t-agreeing families. CoRR, abs/1904.01163, 2019. arXiv:1904.01163.

4 Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2+ε)-Sat Is NP-hard. SIAM J.
Comput., 46(5):1554–1573, 2017. doi:10.1137/15M1006507.

5 Nikhil Bansal and Subhash Khot. Inapproximability of Hypergraph Vertex Cover and Applic-
ations to Scheduling Problems. In Automata, Languages and Programming, 37th International
Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part I, pages
250–261, 2010. doi:10.1007/978-3-642-14165-2_22.

6 Amey Bhangale. NP-hardness of coloring 2-colorable hypergraph with poly-logarithmically
many colors. In 45th International Colloquium on Automata, Languages, and Programming,
pages 15:1–15:11, 2018.

7 Vijay V. S. P. Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Approxim-
ate Hypergraph Coloring under Low-discrepancy and Related Promises. In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, AP-
PROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, pages 152–174, 2015.
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.152.

8 Joshua Brakensiek and Venkatesan Guruswami. New Hardness Results for Graph and Hyper-
graph Colorings. In 31st Conference on Computational Complexity, CCC 2016, May 29 to
June 1, 2016, Tokyo, Japan, pages 14:1–14:27, 2016. doi:10.4230/LIPIcs.CCC.2016.14.

9 Joshua Brakensiek and Venkatesan Guruswami. The Quest for Strong Inapproximability
Results with Perfect Completeness. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017,
Berkeley, CA, USA, pages 4:1–4:20, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.4.

10 Joshua Brakensiek and Venkatesan Guruswami. Promise Constraint Satisfaction: Structure
Theory and a Symmetric Boolean Dichotomy. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 1782–1801, 2018. doi:10.1137/1.9781611975031.117.

11 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 319–330, 2017. doi:10.1109/FOCS.2017.37.

12 Jakub Bulín, Andrei A. Krokhin, and Jakub Oprsal. Algebraic approach to promise constraint
satisfaction. CoRR, abs/1811.00970, 2018. STOC 2019, to appear. arXiv:1811.00970.

13 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate Coloring.
SIAM J. Comput., 39(3):843–873, 2009.

14 Irit Dinur, Oded Regev, and Clifford D. Smyth. The Hardness of 3-Uniform Hypergraph
Coloring. Combinatorica, 25(5):519–535, 2005. doi:10.1007/s00493-005-0032-4.

15 Venkatesan Guruswami, Johan Håstad, and Madhu Sudan. Hardness of Approximate Hyper-
graph Coloring. SIAM J. Comput., 31(6):1663–1686, 2002. doi:10.1137/S0097539700377165.

16 Venkatesan Guruswami and Euiwoong Lee. Strong Inapproximability Results on Bal-
anced Rainbow-Colorable Hypergraphs. Combinatorica, 38(3):547–599, 2018. doi:10.1007/
s00493-016-3383-0.

17 Venkatesan Guruswami and Rishi Saket. Hardness of Rainbow Coloring Hypergraphs. In 37th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2017, December 11-15, 2017, Kanpur, India, pages 33:33–33:15, 2017.
doi:10.4230/LIPIcs.FSTTCS.2017.33.

https://doi.org/10.1007/978-3-319-34171-2_2
http://arxiv.org/abs/1904.01163
https://doi.org/10.1137/15M1006507
https://doi.org/10.1007/978-3-642-14165-2_22
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.152
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.4
https://doi.org/10.1137/1.9781611975031.117
https://doi.org/10.1109/FOCS.2017.37
http://arxiv.org/abs/1811.00970
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1137/S0097539700377165
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.33

V. Guruswami and S.Sandeep 15:17

18 Venkatesan Guruswami and Sai Sandeep. Rainbow coloring hardness via low sensitivity
polymorphisms. Electronic Colloquium on Computational Complexity (ECCC), 2019. URL:
https://eccc.weizmann.ac.il/report/2019/094/.

19 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

20 Jonas Holmerin. Vertex cover on 4-regular hyper-graphs is hard to approximate within 2-
epsilon. In Proceedings on 34th Annual ACM Symposium on Theory of Computing, pages
544–552, 2002.

21 Hao Huang. Induced subgraphs of hypercubes and a proof of the Sensitivity Conjecture. arXiv
preprint, 2019. arXiv:1907.00847.

22 Subhash Khot. Hardness results for coloring 3-colorable 3-uniform hypergraphs. In The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings., pages
23–32. IEEE, 2002.

23 Subhash Khot and Rishi Saket. Hardness of Finding Independent Sets in 2-Colorable and
Almost 2-Colorable Hypergraphs. In Proceedings of the 25th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1607–1625, 2014.

24 Andrei A. Krokhin and Jakub Oprsal. The complexity of 3-colouring H-colourable graphs.
arXiv preprint, 2019. arXiv:1904.03214.

25 Miklós Maróti and Ralph McKenzie. Existence theorems for weakly symmetric operations.
Algebra universalis, 59(3):463–489, December 2008. doi:10.1007/s00012-008-2122-9.

26 Colin McDiarmid. A Random Recolouring Method for Graphs and Hypergraphs. Combinatorics,
Probability and Computing, 2(3):363–365, 1993. doi:10.1017/S0963548300000730.

27 Elchanan Mossel. Gaussian Bounds for Noise Correlation of Functions. Geometric and
Functional Analysis, 19:1713–1756, 2010.

28 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Annals of Mathematics, 171:295–341, 2010.

29 N. Nisan. CREW PRAMs and decision trees. In Proceedings of the Twenty-first Annual
ACM Symposium on Theory of Computing, STOC ’89, pages 327–335. ACM, 1989. doi:
10.1145/73007.73038.

30 Sushant Sachdeva and Rishi Saket. Optimal Inapproximability for Scheduling Problems via
Structural Hardness for Hypergraph Vertex Cover. In Proceedings of the 28th Conference on
Computational Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages
219–229, 2013. doi:10.1109/CCC.2013.30.

31 Rishi Saket. Hardness of Finding Independent Sets in 2-Colorable Hypergraphs and of
Satisfiable CSPs. In Proceedings of the 29th IEEE Conference on Computational Complexity,
pages 78–89, 2014.

32 Hans-Ulrich Simon. A tight Ω(loglog n)-bound on the time for parallel RAMs to compute
nondegenerated boolean functions. In Foundations of Computation Theory, pages 439–444.
Springer Berlin Heidelberg, 1983.

33 Cenny Wenner. Circumventing d-to-1 for Approximation Resistance of Satisfiable Predicates
Strictly Containing Parity of Width at Least Four. Theory of Computing, 9(23):703–757, 2013.

34 Marcin Wrochna and Stanislav Zivny. Improved hardness for H-colourings of G-colourable
graphs. arXiv preprint, 2019. arXiv:1907.00872.

35 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 331–342, 2017. doi:10.1109/FOCS.2017.38.

APPROX/RANDOM 2019

https://eccc.weizmann.ac.il/report/2019/094/
https://doi.org/10.1145/502090.502098
http://arxiv.org/abs/1907.00847
http://arxiv.org/abs/1904.03214
https://doi.org/10.1007/s00012-008-2122-9
https://doi.org/10.1017/S0963548300000730
https://doi.org/10.1145/73007.73038
https://doi.org/10.1145/73007.73038
https://doi.org/10.1109/CCC.2013.30
http://arxiv.org/abs/1907.00872
https://doi.org/10.1109/FOCS.2017.38

Syntactic Separation of Subset Satisfiability
Problems
Eric Allender
Rutgers University, Piscataway, NJ 08854, USA
allender@cs.rutgers.edu

Martín Farach-Colton
Rutgers University, Piscataway, NJ 08854, USA
farach@cs.rutgers.edu

Meng-Tsung Tsai
National Chiao Tung University, Hsinchu, Taiwan
mtsai@cs.nctu.edu.tw

Abstract
Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the
time complexity for certain problems, so that the hardness results match long-standing algorithmic
results. In this paper, we consider a syntactically defined class of problems, and give conditions for
when problems in this class require strongly exponential time to approximate to within a factor of
(1− ε) for some constant ε > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus
when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics,
computational geometry, and graph theory. Our hardness results also match the best known
algorithmic results for these problems.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Syntactic Class, Exponential Time Hypothesis, APX, PTAS

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.16

Category APPROX

Funding Eric Allender : This research was supported in part by NSF grant CCF 1514164.
Martín Farach-Colton: This research was supported in part by NSF grants CCF 1637458, CNS
1408782, IIS 1541613, and NIH grant 1U01CA198952-01.
Meng-Tsung Tsai: This research was supported in part by the Ministry of Science and Technology
of Taiwan under contract MOST grant 107-2218-E-009-026-MY3.

1 Introduction

Variants of the Exponential Time Hypothesis (ETH) [30, 31] have been used to derive lower
bounds that match long-standing upper bounds for several important problems. In particular,
the Strong Exponential Time Hypothesis (SETH) has been used to study the fine-grained
complexity of problems in P [46, 47, 1, 14, 8], and the Gap Exponential Time Hypothesis
(Gap-ETH) [21, 40] was used to study inapproximability [17, 22]. In this paper, we consider a
syntactically-defined class of problems, defined below, and give conditions for when problems
in this class require strongly exponential time to approximate to within a factor of (1− ε) for
some constant ε > 0, assuming Gap-ETH, versus when they admit a PTAS. Our hardness
results also match the best known algorithmic results for these problems. Our class includes a
rich set of problems from additive combinatorics, computational geometry, and graph theory.

© Eric Allender, Martín Farach-Colton, and Meng-Tsung Tsai;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 16; pp. 16:1–16:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:allender@cs.rutgers.edu
mailto:farach@cs.rutgers.edu
mailto:mtsai@cs.nctu.edu.tw
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Syntactic Separation of Subset Satisfiability Problems

Let L = {`1(x), `2(x), . . . , `k(x)} be a finite set of homogeneous linear functions in Z[x]
on the same set of variables x = (x1, x2, . . . , xr). We define a function `(x) to be True at a
if `(a) 6= 0. Otherwise, it is False at a. For any set S and integer r, let

D(S, r) := {(x1, x2, . . . , xr) ∈ Sr : xi 6= xj if i 6= j for all i, j ∈ [1, r]},

that is, the set of permutations over all subsets of S of size r.

Subset-CSAT(L). Define L∗(x) =
∧
`∈L `(x). Given a set S of n integers, find a largest

T ⊆ S so that for each r-tuple a = (a1, a2, . . . , ar) ∈ D(T, r), L∗ is True at a.1

Subset-DSAT(L). Define L+(x) =
∨
`∈L `(x). Given a set S of n integers, find a largest

T ⊆ S so that for each r-tuple a = (a1, a2, . . . , ar) ∈ D(T, r), L+ is True at a.1

Many problems can be encoded as one of these two problem types [35, 51, 23, 54, 20,
29, 42, 24, 2, 25], some of which are known to be APX-hard, some of which are known to
be NP-hard, and some of which have no known hardness result. The best known exact
algorithms for each of them take strongly exponential time, i.e. 2Ω(n) time. Our main results
are Theorem 2 and Theorem 3, below, which can be used to show that all these problems
are strongly APX-hard, where we define a problem X to be strongly APX-hard if there
exists a size-preserving PTAS (SPTAS) reduction from Max-3SAT to X. A SPTAS
reduction is a PTAS reduction whose output has “size”2 O(n) for any input of size n.

Consequently, given Gap-ETH (Conjecture 1), X cannot be (1 − δ)-approximated in
subexponential time for a sufficiently small constant δ > 0. To simplify the reductions shown
in the subsequent sections, we may restrict the instances of Max-3SAT as was done in [22].
That is, we make use of the observation in footnote 5 of [40], so that we may assume that
there is some constant ∆ such that no variable of the formula appears in more than ∆ clauses,
and hence there are only O(n) clauses, where n is the number of variables.

I Conjecture 1 (Gap-ETH [21, 40]). There exist constants ε, c > 0 so that no algorithm can
distinguish a satisfiable 3SAT formula from those that cannot have more than (1− ε)-fraction
of clauses being simultaneously satisfied in 2cn time where n denotes the number of variables
in the input instance.

Our results are:

I Theorem 2. Let L be a finite set of homogeneous linear functions whose coefficients
are in Z.
(i) If L contains only functions with 1 or 2 variables, then Subset-CSAT(L) admits a

PTAS and can be exactly solved in 2O(nc) time for some constant c < 1.
(ii) Otherwise, Subset-CSAT(L) is strongly APX-hard.

We observe here that it is necessary to limit our attention to hardness of approximation
to within a constant factor. The problems we consider can easily be approximated to within
a superconstant factor in 2o(n) time. Thus strong APX-hardness differs from other hardness
of approximation notions (which do not rely on strongly-exponential runtimes), for which
it is interesting to consider larger approximation factors. We observe further that not all
problems in case (i) are easy to compute exactly, nor are all problems in case (ii) hard to

1 We assume that |T | ≥ r to avoid degenerate cases, which can be identified in O(nr) time.
2 The size parameter is determined by problems: typically the number of variables in a formula or the

number of nodes in a graph.

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:3

approximate to within a constant factor. An example problem for the former is finding a
maximum independent set for c-far unit-disk graphs, an NP-hard problem [41, 56]. We defer
the discussions to Appendix A. As for the latter, if all terms in L have positive sign, then a
linear-time 1/2-approximation algorithm exists. Moreover, the constant c of case (i) depends
on the coefficients of functions in L and the inapproximability constant of case (ii) depends
on the number of variables of L.

We need some notions for the next result. We say an r × k matrix M is strongly full
rank if k ≤ r and every k × k submatrix of M is full rank. Let v1,v2, . . . ,vk be vectors of
the same dimensionality, and let M = (v1|v2| . . . |vk) be the matrix where Mij = vj[i]. We
call M the aggregation of v1,v2, . . . ,vk. We say a vector space is in general position if
it has a set of basis vectors whose aggregation is strongly full rank.

I Theorem 3. Let L be a finite set of homogeneous linear functions whose coefficients are in
Z. For each Subset-DSAT(L), if the solutions to

∨
`∈L `(x) = False form a vector space

in general position and has dimension at least 2 (hence x is a vector of at least 3 variables),
then Subset-DSAT(L) is strongly APX-hard.

Applications. We show how to apply Theorem 2 and Theorem 3 to extend previous hardness
results.

(1) Max-General: Given a set S of n points in R2, find a largest T ⊆ S so that T contains
no three distinct colinear points, i.e. finding a largest subset in general position. This
problem is known to be APX-hard [25].

Here we show how to extend the APX-hardness result simply by encoding Max-
General as a Subset-CSAT(L) problem for some L. Let S = {(a, a3) : a ∈ Q} for
any set Q of integers. It is known [28] that Q has no three distinct integers that sum to
0 if and only if S has no three distinct colinear points. Therefore,

Subset-CSAT(LGP := {`(x, y, z) = x+ y + z})

can be reduced to Max-General by a linear-time reduction. Together with Theorem 2,
one has that Max-General is strongly APX-hard.

Note that Subset-CSAT(LGP) can be interpreted as the Max-3SUM problem, and
Max-General is a typical example of a Max-3SUM-hard problem. More examples
can be found in Section 3.

(2) Max-GolombRuler: Given a set S of n integers in Z, find a largest T ⊆ S so that T
has |T |2 distinct pairwise sums. This problem is known to be NP-hard to approximate
to within an additive constant c > 0 [42].

We show how to improve the above inapproximability by encoding Max-GolombRuler
as a Subset-CSAT(L) problem for some L. Observe that S has fewer than |S|2 distinct
pairwise sums if and only if either there exist four distinct numbers a, b, c, d ∈ S so that
a + b = c + d, or there exist three distinct numbers a, b, c ∈ S so that a + b = 2c. To
remove the fewest elements from S so that neither of the two cases hold is the same
as solving

Subset-CSAT(LGR := {`1(x, y, z, w) = x+ y − z − w, `2(x, y, z, w) = x+ y − 2z}).

Hence, by Theorem 2, Max-GolombRuler is strongly APX-hard.

APPROX/RANDOM 2019

16:4 Syntactic Separation of Subset Satisfiability Problems

(3) Max-C3-Free: Given an undirected graph, find a largest node-induced subgraph (in
terms of the number of nodes) that contains no cycle of length 3, i.e. a triangle. This
problem is known to be NP-hard [35].

We show how to extend the NP-hardness result by encoding Max-C3-Free as a
Subset-CSAT(L) problem for some L with a restricted input S̄. We restrict S̄ to be
a set such that for every six distinct integers a1, a2, . . . , a6 ∈ S̄, there are at most two
triples summing to 0. We construct an undirected graph G = (V,E) as follows. Initially,
V ← ∅, E ← ∅. For each a ∈ S̄, add va to V . For each triple a, b, c ∈ S̄ summing to
0, add edges {va, vb}, {vb, vc}, {va, vc} to E. Given this construction, G has a C3-free
node-induced subgraph of k nodes if and only if

Subset-CSAT(LC3 := {`(x, y, z) = x+ y + z}) with input S̄

has output of size k, which is strongly APX-hard as shown in Corollary 15. Hence,
Max-C3-Free is strongly APX-hard.

(4) Max-kAP-Free for each k ≥ 3: Given two integers n and m, decide whether there
exists a subset of S = {1, 2, . . . , n} of size at least m so that the subset contains no k
distinct integers that form a k-term arithmetic progression. The tally representation
of YES-instances of this problem defines a sparse language, which cannot be NP-
complete unless P = NP [45]. An analogous situation also arises in other problems, such
as in lattice problems in statistical physics (survey in [57]) or in determining Ramsey
numbers (survey in [49]). More generally, if we assume ETH, no optimization problem
that has 2o(n/ logn) feasible instances can be strongly APX-hard. We refer readers to
Section 7 for more discussion.

The current best algorithms for Max-kAP-Free [29, 24, 2] rely on branch-and-bound
and have to invoke many Max-kAP-Free subproblems, that is, with an arbitrary
S ⊆ {1, 2, . . . , n}. A hardness result for the subproblem would suggest the limit of
solving Max-kAP-Free by branch-and-bound algorithms. We show that it is strongly
APX-hard.

We encode Max-kAP-Free as

Subset-DSAT(LkAP := {`i(x1, x2, . . . , xk) = xi − 2xi+1 + xi+2 : i ∈ [1, k − 2]})

where |LkAP| = k − 2 and set v1 = (1, 3, . . . , 2k − 1), v2 = (2, 4, . . . , 2k) as two basis
vectors in the solution space of

∨
`∈LkAP

`(x). Because M = (v1|v2) is strongly full rank,
by Theorem 3 we are done.

Our Techniques. We outline the techniques used in the proofs of Theorem 2 and Theorem 3.
Both the algorithmic and the hardness results rely on Turán’s Theorem [55, 53]. As originally
stated, Turán’s Theorem [55] said that for every n-node undirected simple graph G, if G has
no clique of r + 1 nodes for an integer r ≥ 2, then G has no more than (1− 1/r)n2/2 edges.
In our proofs, when we refer to “Turán’s Theorem”, we refer to the second formulation of
Turán’s Theorem [53], that is:

I Theorem 4 (Turán’s Theorem [55, 53]). Every n-node m-edge undirected simple graph has
an independent set of size at least n2

n+2m .

We now describe our approach, and the role Turán’s Theorem plays in obtaining our
results.

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:5

(1) Our Algorithmic Results: Let L2− be any finite set that contains only homogeneous
linear functions with 1 or 2 variables, with coefficients in Z. In Theorem 2, we claim
that Subset-CSAT(L2−) admits a PTAS and can be solved exactly in 2O(nc) time for
some constant c < 1.

To obtain a PTAS or an exact algorithm for Subset-CSAT(L2−), we reduce it to
finding a maximum independent set for the graph class G that contains all subgraphs
of c-nearest neighborhood graphs, defined in [26, 43], for some constant c. By a
generalization of Lipton and Tarjan’s algorithm [36], Max Independent Set for G can
be solved efficiently. Lipton and Tarjan show how to approximate the Max Independent
Set for planar graphs by exploiting the fact that every planar graph has a node separator
of size O(n1/2) whose removal partitions the graph into two balanced disconnected
subgraphs. Their algorithm can be generalized to any graph class H that satisfies all the
following properties:

For every graph H in H, any subgraph of H is a graph in H.
Every h-node graph H in H has a node separator of size O(hc) for some constant
c < 1, whose removal partitions H into two balanced disconnected subgraphs, and
the separator can be found in time polynomial in h.
Every h-node H in H has an independent set of size Ω(h).
In Section 2, we will see that G satisfies all the above properties, and we generalize

Lipton and Tarjan’s algorithm for any graph class that fulfills all the required properties.
We remark that Lipton and Tarjan [36] use the Four Color Theorem [6, 7] to prove the
last property for planar graphs. However, since G contains non-planar graphs, we need to
replace the Four Color Theorem with Turán’s Theorem to show the last property for G.

(2) Our Hardness Results: If a finite set L of homogeneous linear functions satisfies the
condition for case (2) of Theorem 2 (resp. Theorem 3), then Subset-CSAT(L) (resp.
Subset-DSAT(L)) is strongly APX-hard.

We show the hardness results by a reduction that maps from problem instances of
Max Independent Set for sparse large-girth graphs to those of Subset-CSAT(L)
or Subset-DSAT(L), so that if the former problem instance has an independent set of
size k, then the latter problem instance has an output set of size f(k) for some function
f . The existence of the hardness reduction is secured by a probabilistic proof based on
the Schwartz-Zippel Lemma [48, 58] as well as some tricks that prohibit the polynomials
indicating the probability of desired events from vanishing, that is, that the desired
events never happened.

Since all of our claims are applied to deterministic algorithms, we show how to
derandomize the probabilistic construction by noting that the construction still works
even when the random variables are constant-wise independent. We then use a standard
technique to derandomize algorithms that use constant-wise independent random vari-
ables [37, 38]. Then, we prove that the reduction is approximation-preserving, again by
Turán’s Theorem.

We complete the proof by showing that Max Independent Set is strongly APX-
hard even for sparse large-girth graphs.

Related Work. Our strong APX-hardness results apply to Max-rSUM and to some similar
problems, which can be viewed as replacing the sum function with more general functions. A
similar generalization from rSUM problems [32, 16] to a wider class of problems has also
been found useful in studies of the time complexity of rSUM-hard problems in P, because
the sum function may be not sufficient to encode an rSUM-hard problem but a more general
function may [10].

APPROX/RANDOM 2019

16:6 Syntactic Separation of Subset Satisfiability Problems

We present a class of optimization problems that are strongly APX-hard because of a
simple syntactic criterion. In that respect, there is some similarity to prior work on the
MaxOnes problem. In [34], syntactic criteria were presented for certain MaxOnes problems,
that imply APX-hardness. Related topics were also discussed in [9, 33]. Our results are
not closely related to [9, 33, 34]; the full version of our paper will compare and contrast our
results in more detail.

Paper Organization. In Section 2, we show the algorithmic results. Then, in Section 3,
we exhibit our main techniques by proving the strong APX-hardness of a simple case
Max-3SUM, implying strong APX-hardness for a list of Max-3SUM-hard problems via
previously-known approximation-preserving reductions from 3SUM-hardness. In Section 4
and Section 5, we generalize the techniques used in Section 3 to prove Theorem 2. We prove
Theorem 3 in Section 6, and relate strong APX-hardness to the density of languages in
Section 7. Then, in Appendix A, we reduce the maximum independent set problem for some
intersection graphs to the 2-variate case of Theorem 2 part (ii). In Appendix B, we prove the
strong APX-hardness of some problems, which are used as source problems for the hardness
reductions used in Sections 3 to 6. Finally, we give an inapproximability constant for each
intractable problem in our syntactically-defined class in Appendix C.

2 Algorithmic Results

In this section, we prove the algorithmic results stated in Theorem 2, that is, for any finite
set L2− that contains only functions with 1 or 2 variables, Subset-CSAT(L2−) admits a
PTAS and can be exactly solved in 2O(nc) time for some constant c < 1. Some of these
problems are known to be NP-hard; see Appendix A. If L2− contains a homogeneous linear
function with 1 variable, then it suffices to remove 0 from S. Thus, in what follows, we
consider Subset-CSAT(L2) where L2 is a finite set of homogeneous linear functions with
precisely 2 variables. Note that every `(x) ∈ L2 still has r input variables, but only 2 of the
r variables are used.

Given a problem Subset-CSAT(L2), we construct an undirected simple graph GL2 =
(V,E) where V = {va : a ∈ S} and

E = {(va, vb) : `(x) = 0 when xi = a, xj = b for some i 6= j ∈ [1, r], `(x) ∈ L2}.

Because L2 contains only linear functions with 2 variables, finding a maximum independent
set for GL2 is equivalent to solving Subset-CSAT(L2). In what follows, we show that GL2 is
a subgraph of some c-nearest neighborhood graph (Lemma 6), defined below, and show
that Max Independent Set for the graph class that consists of subgraphs of c-nearest
neighborhood graphs admits a PTAS and can be solved exactly in subexponential time
(Theorem 7). We assume that the underlying point set of c-nearest neighborhood graphs (or
subgraphs of c-nearest neighborhood graphs) is given. This assumption holds for our case
because the c-nearest neighborhood graphs used in our proofs are induced by a point set,
and their subgraphs are induced by a subset of the same point set.

I Definition 5 (c-nearest neighborhood graphs [26]). Given a set P of points in Rd, the
c-nearest neighborhood graph of P is a graph GP = (V,E) whose V = {va : a ∈ P} and

E = {(va, vb) ∈ V 2 : a is the i-th nearest neighbor of b for some i ≤ c},

where ties are broken arbitrarily.

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:7

I Lemma 6. GL2 is a subgraph of some cL2-nearest neighborhood graph of an n-point set
PL2 in ZdL2 for some constants cL2 , dL2 .

Proof. We construct the n-point set PL2 by projecting each va ∈ V (GL2) into a point in
Zt+2 for some constant t ≥ 0 as follows. Define

DL2 = {d : d is prime and d divides c, where c is a coefficient of some `(x) ∈ L2}
= {d1, d2, . . . , dt} where t := |DL2 |.

Since L2 is a finite set and each `(x) ∈ L2 has constant coefficients, t is a constant. Given
DL2 , for each va ∈ V (GL2) we write a as the unique factorization

a = (d1)a1 · · · (dt)at(−1)at+1at+2 where at+1 ∈ {0, 1}, at+2 > 0 and d - at+2 for all d ∈ DL2 ,

based on which we map va into the point pa := (a1, a2, . . . , at+2) for each va ∈ V (GL2).
Since each `(x) ∈ L2 has constant coefficients with prime divisors in DL2 , if `(x) = 0

when we set xi = a and xj = b for some i 6= j ∈ [1, r], then at+2 = bt+2 and ai − bi = O(1)
for each i ∈ [1, t+ 1]. This yields that for every (va, vb) ∈ E(GL2) the Euclidean distance
between their associated points pa, pb is a constant, i.e. ||pa − pb||2 is a constant.

Let C = max(va,vb)∈E(G),i∈[1,t+2] |ai − bi|. Then, for every edge (va, vb) ∈ E(GL2), pa is
the i-th nearest neighbor of pb for some i ≤ (2C + 1)t+2, and vice versa. By setting

cL2 = (2C + 1)t+2 and dL2 = t+ 2,

we are done. J

I Theorem 7. Max Independent Set for H admits a PTAS and can be solved exactly in
subexponential time, where H is any graph class that satisfies all the following properties.
(a) For every graph H in H, any subgraph of H is a graph in H.
(b) Every h-node graph H in H has a node separator of size O(hc) for some constant c < 1,

whose removal partitions H into two balanced disconnected subgraphs, and the separator
can be found in time polynomial in h.

(c) Every h-node H in H has an independent set of size α(H) = Ω(h).

Proof. We show this by generalizing Lipton and Tarjan’s algorithm for Max Independent
Set on planar graphs, whose approximate version has the following pseudocode:

Input: an h-node undirected simple graph H ∈ H

1 Find a node separator C of size O(h/sε) whose removal partitions H into
disconnected subgraphs H1, H2, . . . ,Ht, each of which has fewer than s nodes,
where s ∈ (1, h) is a function of h and ε is some constant > 0;

2 Compute a maximum independent set Ii in Hi for each i ∈ [1, t] by exhaustive search;

Output: I1 ∪ I2 ∪ · · · ∪ It

We need to argue that such a node separator C exists, given the properties of H. We
initialize a computation tree T as follows. Initially, T has only a root node, associated with
H. Then, if there exists a leaf node a ∈ T associated with a graph Ha that has more than s
nodes, we find a node separator Ca to partition Ha into two balanced disconnected subgraphs
Ha1 and Ha2 . Such a Ca must exist by Properties (a) and (b). Then we link a with two child
nodes, a1 and a2, whose associated graphs are Ha1 and Ha2 . Finally, each leaf node in T has
fewer than s nodes. We let the subgraphs associated with leaf nodes in T be H1, H2, . . . ,Ht,
and let the union of separators found during the construction of T be C.

APPROX/RANDOM 2019

16:8 Syntactic Separation of Subset Satisfiability Problems

By Property (b), C can be constructed in time polynomial in h. The following shows why
the size of C is O(h/sε) for some constant ε > 0. We label each node a ∈ T with a height
t(a), i.e. the maximum length among all a-to-descendant-leaf paths. Let si for i ≥ 1 be the
lower bound on |Ha| for all a ∈ T with height i. Since the found separator Ca partitions
graph Ha into two balanced subgraphs, both of which have a constant fraction of the nodes
in Ha, one can set s1 = s and si = ∆si−1 for some constant ∆ > 1. The total number of
nodes in the separators associated with of all nodes in T with height i is thus

∑
a∈T ,t(a)=i

|Ca| ≤ δ

 ∑
a∈T ,t(a)=i

|Ha|1−ε
 ≤ δ h

sεi

where δ is a constant determined in Property (b) and the last inequality holds due to Hölder’s
inequality. Putting it all together, we get

|C| =
∑
a∈T
|Ca| ≤ δ

∞∑
i=1

h

(∆i−1s)ε = O

(
h

sε

)
.

To devise a polynomial-time approximation algorithm, we set s = log h. Thus, the
exhaustive search in Step 2 can be done in polynomial time. By the maximality of Ii, we
have α(H) ≤

∑
i∈t |Ii| + O(h/ logε h). Together with α(H) = Ω(h) due to Property (c),∑

i∈t |Ii| = (1− o(1))α(H), yielding a (1− o(1))-approximation algorithm.
To devise a subexponential-time exact algorithm, we set s = hδ for some constant

δ ∈ (0, 1). Thus, the separator C has size O(h1−δε). Then we try all possible independent
sets IC of C, to be included in the output independent set, in O(h22h1−δε) time. For each
IC , we remove the neighbor nodes of IC in H1, H2, . . . ,Ht. Then, we exhaustively search for
a maximum independent set in the rest of Hi for each i ∈ [1, t]. These exhaustive searches
can be done in O(h32hδ) time. As a result, IC ∪ I1 ∪ · · · ∪ It is a maximum independent set
for some IC , and this exact algorithm takes

O(h52h
δ+h1−δε

)

time, which is subexponential for any constant δ ∈ (0, 1). J

It remains to show that the graph class G that consists of subgraphs of c-nearest neigh-
borhood subgraphs for some constant c satisfies all the properties listed in Theorem 7. It
is clear that Property (a) holds for G. It was shown in [26] that for any h-point set P , GP
has a node separator of size O(c1/dh1−1/d) whose removal partitions GP into two balanced
disconnected subgraphs. Moreover, such a node separator can be computed deterministically
in O(ch log c+h log h) time. For any resulting subgraph H of GP , whose nodes are associated
with a point set P ′ ⊆ P , one can construct the supergraph GP ′ of H and use the node
separator of GP ′ as the node separator for H. Analogously, the size of the node separator
and the running time to find it match the requirement. Thus, Property (b) holds for G. Since
any h-node subgraph of c-nearest neighborhood graphs have O(h) edges for any constant c,
by Turán’s Theorem, Property (c) holds.

3 Hardness of Max-3SUM

In this section, we prove the hardness of Subset-CSAT(L3S := {`(x, y, z) = x+ y+ z}) and
defer a proof for the general case in Theorem 2 to Section 4. The proof of the hardness of
approximating Subset-CSAT(L3S) will serve as intuition for the general case. The hardness
of Subset-CSAT(L3S) implies the hardness of the maximization version of numerous
3SUM-hard problems whose hardness reductions satisfy the following observation.

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:9

IObservation 8. There are many rSUM-hard decision problems P whose hardness reductions
can be directly restated as SPTAS reductions from Max-rSUM to Max-P.

Examples [28, 11, 13] include:
Max-General: Given S ⊂ R2, find a largest T ⊆ S so that T contains no three colinear
points. This is one of the applications mentioned in Section 1.
Max-δ∆-Free: Given S ⊂ R2, find a largest T ⊆ S so that T contains no three distinct
points that form a triangle with area less than δ, for any fixed constant δ.
Max-3AP-Free: Given S ⊂ Z, find a largest T ⊆ S so that T contains no three distinct
integers that form an arithmetic progression. A more general case Max-kAP-Free for
each k > 3 needs the hardness results shown in Section 6. We note here that a subset
containing no 4-term arithmetic progressions may have 3-term arithmetic progressions,
so the hardness of Max-3AP-Free does not immediately imply the hardness of Max-
kAP-Free for each k > 3, whose proof relies on another system Subset-DSAT(L) for
some L whose |L| = k − 2.
Max-3L1P : Given S, a set of lines in R2, find a largest T ⊆ S so that T contains no
three distinct lines that intersect at a point.

NP-hardness. We claim the existence of a polynomial-time many-one reduction from
instances of Max Independent Set to instances of Subset-CSAT(L3S). Let n-node
m-edge graph G = (V,E) be an instance of Max Independent Set. We need a mapping
f from V ∪ E to a set S of n + m integers so that G has an independent set of size k iff
Subset-CSAT(L3S) with input S has output of size k + m. We show that such a set S
exists by the probabilistic method [5] and show how to construct S deterministically in time
polynomial in n, using derandomization [37, 38].

I Lemma 9. Subset-CSAT(L3S) is NP-hard.

Proof. To implement a mapping f : V ∪E → S, we will use an n-order superposable set
w.r.t. the function `(x, y, z) = x+ y + z ∈ L3S , which we define as follows. For any set B of
n integers X1, X2, . . . , Xn, we define the auxiliary set A` induced by B and ` to be

{Yij : `(Xi, Xj , Yij) = 0, i, j ∈ [1, n], i < j}.

We say B is an n-order superposable set if A` contains only integers, |B ∪A`| = n+
(
n
2
)
, and

for every three distinct integers a1, a2, a3 ∈ B ∪ A`, `(a1, a2, a3) = 0 only if {a1, a2, a3} =
{Xi, Xj , Yij} for some i, j ∈ [1, n], i < j.

Given the superposable set B, one can realize a mapping f : V ∪E → S, where f(vi) = Xi

for each vi ∈ V and f({vi, vj}) = Yij for each {vi, vj} ∈ E. The following lemma will establish
that the image set S and graph G preserve the relation required in the many-one reduction.

I Lemma 10. An n-node m-edge graph G = (V,E) has an independent set of size k iff
Subset-CSAT(L3S) with input S = f(V ∪ E) has output of size k +m.

Proof.
(⇒) For each independent set I of G, I ∪ E corresponds to a set T = {f(a) : a ∈ I ∪ E}, a

subset of S. Since I is an independent set, for every edge {vi, vj}, the two integers f(vi),
f(vj) are not simultaneously contained in T . By the definition of a superposable set, T is
a valid output for Subset-CSAT(L3S) with input S since it does not contain all three
of f(vi), f(vj), f({vi, vj}), for each pair of i, j ∈ [1, n], i < j.

APPROX/RANDOM 2019

16:10 Syntactic Separation of Subset Satisfiability Problems

(⇐) Let T be a valid output for Subset-CSAT(L3S) with input S. For each edge {vi, vj} ∈
E, if both f(vi), f(vj) ∈ T , then f({vi, vj}) /∈ T because T is a valid output. In that
case, one can modify T by replacing f(vi) with f({vi, vj}). Such a modification does
not change the size of T but reduces the number of pairs of f(vi), f(vj) in T whose
corresponding nodes vi, vj are adjacent in G. One can repeat the change until no such
f(vi), f(vj) pair exists in T . Hence, G has an independent set of size at least k. J

Let Rp(n) be a set of n integers X1, X2, . . . , Xn sampled uniformly at random from the
universe U = Zp, for some prime p. In Lemma 11, we prove that, for sufficiently large
p, Rp(n) is a superposable set with positive probability. We choose Zp to facilitate the
derandomization. However, if a set is superposable under Zp, then it is superposable under
Z. After the construction, we use this superposable set under Z.

I Lemma 11. The probability that Rp(n) is an n-order superposable set is 1−O(n6/p).

Proof. We note that for any pair of different linear polynomials, assigning an integer sampled
uniformly at random from a universe U to each variable in the polynomials makes the two
polynomials equal in Zp with probability peq = 1/|U |, by a simple version of the Schwartz-
Zippel Lemma [48, 58]. Here U = Zp and 1/|U | = 1/p. In subsequent sections, we will
replace U with another set and will rely more heavily on the Schwartz-Zippel Lemma.

To show B = Rp(n) is superposable, we consider the two probabilities:

Pr
[
|B ∪A`| < n+

(
n

2

)]
≤

∑
Xi,Xj∈B

peq +
∑

Xi∈B,Yij∈A`

peq +
∑

Yij ,Yi′j′∈A`

peq = O(n4/p)

and

Pr [`(a1, a2, a3) = 0 for some {a1, a2, a3} /∈ Γ] ≤
∑

a1,a2,a3∈B∪A`

peq = O(n6/p),

where Γ := {{Xi, Xj , Yij} : i, j ∈ [n], i < j}. We are done by applying the Union bound to
the two failure probabilities. J

Observe that a fully random assignment to the variables of the polynomials is not necessary
to make the two polynomials equal with probability as small as 1/p. Instead, since L3S
contains only `(x, y, z) = x + y + z, if the variables X1, X2, . . . , Xn are assigned 6-wise-
independently, the probability peq is still 1/p. This observation yields a polynomial-time
construction of the superposable set, as follows.

I Lemma 12. One can construct an n-order superposable set in time polynomial in n.

Proof. Exhaustively explore the polynomial-size probability space of 6-wise independence to
find the superposable set, which is known to exist [37, 38]. J

We complete the proof of Lemma 9 by combining Lemmas 10, 11, and 12. J

Strong APX-hardness. In the NP-hardness reduction, we have presented a mapping
f : V ∪ E → S, so that every n-node m-edge graph G has an independent set of size k iff
Subset-CSAT(L3S) with input S has output of size k+m. In order to demonstrate the strong
APX-hardness of Subset-CSAT(L3S), it suffices to restrict the Max Independent Set
problem to sparse graphs. Thus we will give an SPTAS reduction from Max Independent
Set for sparse graphs, which is strongly APX-hard (Lemma 24), to Subset-CSAT(L3S).

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:11

I Lemma 13. There is an SPTAS reduction from Max Independent Set for sparse graphs
to Subset-CSAT(L3S).

Proof. We use the same reduction as in the proof of Lemma 9, which has the property
that independent sets of size k correspond to a solution of Subset-CSAT(L3S) with size
≥ k +m. But by Turán’s Theorem, we have that any sparse graph has an independent set
of size Ω(m). Thus any solution that approximates Subset-CSAT(L3S) to within a factor
of (1− ε) for some constant ε > 0 maps to a solution that approximates Max Independent
Set for sparse graphs to within a factor of (1−O(ε)). It is easy to verify that the size of the
output of the reduction is linear in the size of the input. J

By Lemma 13 and Lemma 24, we get:

I Theorem 14. Subset-CSAT(L3S) is strongly APX-hard.

The above SPTAS reduction is based on the hardness of Max Independent Set for
sparse graphs (Lemma 24), which specifies additional structure on the input set S for Subset-
CSAT(L3S). Our reduction still works if the graph class is replaced with another graph
class G, as long as every n-node graph in G has O(n) edges and has an independent set of
size Ω(n), and Max Independent Set for G is strongly APX-hard. Such a replacement is
useful for proving further hardness results. For example, by Lemma 25 and Turán’s Theorem,
the source problem of the reduction used in the proof of Theorem 14 can be replaced with
Max Independent Set for triangle-free sparse graphs. This yields the following corollary.

I Corollary 15. Subset-CSAT(L3S) with input S, in which for every 6 distinct integers,
there are at most two triples summing to 0, is strongly APX-hard.

4 Hardness of Subset-CSAT(LSr)

We generalize the hardness result of Subset-CSAT(L3S) in Section 3 to Subset-CSAT(LSr)
where LSr := {`(x) = c · x}, and `(x) is any linear function with coefficients c ∈ (Z \ {0})r,
for any r ≥ 3.

Here we extend the definition of n-order superposable set for any r-variate homogeneous
linear function `(x). Let t := r − 3. For any set

B = {Xi : i ∈ [1, n]} ∪ {Xijk : i, j ∈ [1, n], i < j, k ∈ [1, t]}

of n+ t
(
n
2
)
integers, we define the auxiliary set A` induced by B and ` to be

A` = {Yij : `(Xi, Xj , Xij1, . . . , Xijt, Yij) = 0, i, j ∈ [1, n], i < j}.

Let Γ = {Sij := {Xi, Xj , Xij1, . . . , Xijt, Yij} : i, j ∈ [1, n], i < j}. We say B is an n-order
superposable set if A` contains only integers, |B ∪ A`| = n + (t + 1)

(
n
2
)
, and for every r

distinct integers a1, a2, . . . , ar ∈ B ∪A`, `(a1, a2, . . . , ar) = 0 only if {a1, a2, . . . , ar} ∈ Γ.
Let G = (V,E) be a problem instance of Max Independent Set for sparse graphs.

Given the superposable set B, we define a mapping f : V ∪E → 2B∪A` , where f(vi) = {Xi}
for each vi ∈ V and f({vi, vj}) = {Xij1, . . . , Xijr, Yij} for each {vi, vj} ∈ E. As in the proof
of Lemma 9, if an n-order superposable set B can be constructed in time polynomial in n,
then Subset-CSAT(LSr) is NP-hard. Moreover, the hardness-reduction is approximation-
preserving for `(x) simply by replacing (1−O(ε)) with (1−O(rε)) in the proof of Lemma 13.
Hence, Lemma 16 immediately follows by constructing B in polynomial-time.

APPROX/RANDOM 2019

16:12 Syntactic Separation of Subset Satisfiability Problems

I Lemma 16. Subset-CSAT(LSr) is strongly APX-hard.

Proof. Recall that `(x) = c · x =
∑r
i=1 cixi where ci ∈ Z \ {0} for each i ∈ [1, r], and

t := r − 3. Let m = `cm(c1, c2, . . . , cr). We construct an n-order superposable set B by
sampling Xi for each i ∈ [1, n] and Xijk for i, j ∈ [1, n], i < j, k ∈ [1, t] from the universe
U = Zp∩mZ for some prime p. We choose the universe U in this way because no matter what
the sampled values of Xi’s and Xijk’s are, they make all Yij ’s integral. Before the sampling
is performed, each Xi, Xijk in B can be seen as an independent random variable and each
Yij in A` can be seen as some linear combination of these independent random variables.

We show that the sampled B is an n-order superposable set with positive probability
by bounding the probabilities of following bad events. Let E1 indicate the event that
|B ∪ A`| < n+ (t+ 1)

(
n
2
)
. We claim that Pr [E1] = nc/(p/m) for some constant c > 0. To

see this, we note that every two distinct random variables a1, a2 ∈ B ∪ A` are different
linear combinations of the random variables in {X1, X2, . . . , Xn}. Since X1, X2, . . . , Xn are
sampled independently from U , Pr [a1 = a2] = 1/(p/m). Together with the Union bound,
the claimed bound for Pr [E1] holds.

Let E2 indicate the event that `(a1, a2, . . . , ar) = 0 for some {a1, . . . , ar} /∈ Γ. We claim
that for every r distinct integers in B ∪ A`, `(a1, a2, . . . , ar) cannot be a zero function if
(a1, a2, . . . , ar) /∈ Γ. We express ak for each k ∈ [1, r] as a linear combination of the random
variables in B. To make `(a1, a2, . . . , ar) a zero function, each variable in B either does not
appear or appear more than once in ak’s expressions, for all k ∈ [1, r]. This observation
implies that if an Xijk in B for some i, j ∈ [n], i < j, k ∈ [1, t] appears in the r expressions
and `(a1, a2, . . . , ar) is a zero function, then Xi, Xj , Xij1, . . . , Xijt, Yij also appear in the r
expressions. Hence, in this case, {a1, a2, . . . , ar} ∈ Γ.

The remaining case is that Xijk does not appear in any of the r expressions. In this case,
to make `(a1, a2, . . . , ar) a zero function, the only possible case happens when r = 3 and
{a1, a2, a3} = {Yij , Yjk, Yik} for some i, j, k ∈ [n], i < j < k. However,

`(a1, a2, a3) = c1

(
c1Xi + c2Xj

−c3

)
+ c2

(
c1Xj + c2Xk

−c3

)
+ c3

(
c1Xi + c2Xk

−c3

)
cannot be a zero function because Xj ’s coefficient is non-zero, or

`(a1, a2, a3) = c1

(
c1Xi + c2Xj

−c3

)
+ c2

(
c1Xi + c2Xk

−c3

)
+ c3

(
c1Xj + c2Xk

−c3

)
cannot be a zero function unless (c1, c2, c3) = (∆,−∆,∆) for some ∆ 6= 0, which can be
avoided by sorting the variables in ` by their coefficients. The same argument works when
(a1, a2, a3) equals other permutations of (Yij , Yjk, Yik). Hence, the claim is true. There are a
polynomial number of non-zero linear functions `(a1, a2, . . . , ar) that cannot be zeroed by
the random assigned values of Xi, Xijk for i, j ∈ [1, n], i < j, k ∈ [1, t]. Therefore the failure
rate is nc/(p/m) for some constant c > 0.

Given the bounds on failure probability, the randomly sampled B is an n-order su-
perposable set with positive probability by picking p polynomially large in n. After a
derandomization step similar to that in Lemma 12, we have B constructed in deterministic
polynomial time. J

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:13

5 Hardness of Subset-CSAT(Lr)

We extend the hardness result of Subset-CSAT(LSr) to

Subset-CSAT(Lr := {`1(x), `2(x), . . . , `k(x)}),

where `i(x) ∈ Z[x] for each i ∈ [1, k], x = (x1, x2, . . . , xr), and at least one `i(x) uses at least
3 of the r input variables. Showing the strong APX-hardness of Subset-CSAT(Lr) proves
Theorem 2.

We begin by defining a canonical representation for the `i(x)’s. Observe that

Subset-CSAT({`1(x, y, z, w) = x+ y − z, `2(x, y, z, w) = y + w − x})

equals Subset-CSAT({`(x, y, z, w) = x+y−z}), which also equals Subset-CSAT({`(x, y, z) =
δ(x + y − z)}) for any constant δ 6= 0, because in the definition of Subset-CSAT(L), we
assume that the output has size at least r. Let Coef(`i(x)) be the multi-set of coefficients in
`i(x). We say that `i(x) and `j(x) are in the same equivalence class if Coef(`i(x)) = {δc :
c ∈ Coef(`j(x))} for some non-zero constant δ. Thus, we can remove redundant functions in
L, if any, by removing `i(x) from L if `i(x) and `j(x) are from the same equivalence class,
for some j < i. Given the succinct representation of L, let `∗(x) be the `i(x) in L that has
the largest number of variables. If there is a tie, then pick any of them.

I Lemma 17. Consider an r-variate homogeneous linear function `∗(x) where r ≥ 3, and
an r′-variate homogeneous linear function `(x) where r′ ≤ r. Let t := r − 3. Then for any
constant ε > 0 there exists a randomized algorithm that constructs with probability at least
1−ε an n-order superposable set B = {Xi : i ∈ [1, n]}∪{Xijk : i, j ∈ [n], i < j, k ∈ [1, t]} and
the auxiliary set A`∗ = {Yij : `(Xi, Xj , Xij1, . . . , Xijt, Yij) = 0, i, j ∈ [1, n], i < j} induced by
B and `∗, so that for every r distinct integers in B ∪A`∗ , `(a1, a2, . . . , ar′) = 0 only if either
of the following two cases applies:

r′ = r and {a1, a2, . . . , ar′} = {Xi, Xj , Xij1, . . . , Xijt, Yij},
r′ = r = 3 and {a1, a2, a3} = {Ys1s2 , Ys2s3 , Ys1s3} for some 1 ≤ s1 < s2 < s3 ≤ n.

Proof. Set each element in B to be a random variable, and therefore each element in A`∗ is
a linear combination of r − 1 random variables and none of them in the linear combination
has coefficient 0. To make `(x) a zero function by setting r′ distinct variables from (B ∪A`∗),
it is necessary that each variable in B either does not appear among any of the r′ picked
variables or appears in at least two of them, noting that Xi is considered to “appear” in Xi

and Yij for any j ∈ [1, n]. There are two cases. If Xijk for some i < j, i, j ∈ [n], k ∈ [1, t] is
one of the r′ picked variables, then `(x) is zero only if the r′ picked variables are exactly
Xi, Xj , Xij1, . . . , Xijt, Yij . Otherwise, for every i < j, i, j ∈ [n], k ∈ [1, t], Xijk is not picked
as one of the r′ variables. In this case, to make `(x) zero it is necessary that t = 0 (or
equivalently r = 3), r′ = r, and the r′ picked variables are either Xi, Xj , Yij for some i, j ∈ [n]
or Ys1s2 , Ys2s3 , Ys3s1 for some 1 ≤ s1 < s2 < s3 ≤ n.

Therefore, if we let B = Rp(n), then the probability that `(a1, a2, . . . , ar′) = 0 for some
a1, a2, . . . , ar′ other than the two given ones (the only cases that may make `(x) as a zero
function) is 1/p. By the Union bound over all possible r′ distinct values from B ∪ A`∗ in
which there are O(n2) elements, we get the success probability of our random assignment is
at least 1− n2r′/p. Picking a sufficiently large p completes the proof. J

We apply Lemma 17 to each `(x) in the succinct representation of L, take the Union
bound over the failure probabilities, by the aforementioned derandomization step, we get:

APPROX/RANDOM 2019

16:14 Syntactic Separation of Subset Satisfiability Problems

I Lemma 18. For any set Lr(x) of r-variate homogeneous linear functions, if the function
`∗(x) in L(x) that uses the largest number of variables is r′-variate for some r′ ≥ 3, let
t := r′ − 3, there exists a deterministic polynomial-time algorithm that can construct an
n-order superposable set B = {Xi : i ∈ [1, n]} ∪ {Xijk : i, j ∈ [n], i < j, k ∈ [1, t]} w.r.t. `∗
and the auxiliary set A`∗ = {Yij : `∗(Xi, Xj , Xij1, . . . , Xijt, Yij)} induced by B and `∗ so that∧
`∈L `(a1, a2, . . . , ar) evaluates to False only if either of the two following cases applies:

{a1, a2, . . . , ar} = {Xi, Xj , Xij1, . . . , Xijt, Yij},

r = 3 and {a1, a2, a3} = {Xij , Xjk, Xik}.

Proof of Theorem 2. Given Lemma 18, one can reuse the many-one reduction mentioned
previously, but restrict the input graph to be triangle-free (i.e. girth ≥ 3), so that a1, a2, a3 in
the second case of Lemma 18 cannot simultaneously appear in the set S, i.e. the input of the
reduction target. By Lemma 25, the maximum independent set problem for sparse graphs of
girth ≥ 3 is strongly APX-hard, implying that Subset-CSAT(Lr) is strongly APX-hard. J

6 Hardness of Subset-DSAT(L∨)

In this section, we will show the strong APX-hardness of

Subset-DSAT(L∨ := {`1(x), `2(x), . . . , `k(x)}),

where `i(x) ∈ Z[x] for each i ∈ [1, k], x = (x1, x2, . . . , xr), and the solutions to
∨
`∈L `(x) =

False form a vector space in general position and has dimension d at least 2. That is, we
prove Theorem 3.

To prove Theorem 3 for d = r − 1, one can use the proof of Theorem 2. For d < r − 1 in
general, the number of dependent random variables induced by the superposable set B is no
longer 1, thus requiring the solution set of to be in general position. We need to modify the
definition of the superposable set w.r.t. such a χL∨(x), as described below.

Proof of Theorem 3. For any n-node, m-edge graph G = (V,E) that has m = O(n) and
girth at least r + 1, we construct a set B of independent random variables and an auxiliary
set AχL∨ so that

B = {Xi : i ∈ V } ∪ {Xijk : (i, j) ∈ E, i < j, k ∈ [1, d− 2]}, and

AχL∨ = {Yij1, . . . , Yij(r−d) : χL∨
(
Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)

)
= 0,

(i, j) ∈ E, i < j},
where the solution space of χL∨(x) = 0 is in general position and has dimension d ≥ 2.
Hence, for every (i, j) ∈ E, i < j,

(
Yij1, Yij2, . . . , Yij(r−d)

)
is unique.

Here we define the Yijk explicitly. Let v1,v2, . . . ,vd be a set of basis vectors (column
vectors) in Zr of the solution set of χL∨(x) = 0. Let A be the aggregation of v1,v2, . . . ,vd
where A = (v1|v2| · · · |vd). Let Q be the square matrix composed of the upper d rows of A.
By the definition of general position, A is strongly full rank, Q is full rank, and thus z is
uniquely defined by

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:15

Qz =

Xi

Xj

Xij1
...

Xij(d−2)

 , and we set Az = A

Q−1

Xi

Xj

Xij1
...

Xij(d−2)

 =

Xi

Xj

Xij1
...

Xij(d−2)
Yij1
...

Yij(r−d)

.

Thus, each of Yij1, . . . , Yij(r−d) is a nontrivial linear combination of Xi, Xj , Xij1, . . . , Xij(d−2).
Note that AQ−1 is also strongly full rank, yielding that any nontrivial linear combination
of d variables from the set

{
Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)

}
cannot be a zero

function. We are ready to prove that B is superposable w.r.t. E, that is:

I Lemma 19. For any distinct a1, a2, . . . , ar ∈ B ∪ AχL∨ , χL∨(a1, a2, . . . , ar) is a zero
function only if {a1, a2, . . . , ar} = {Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some
(i, j) ∈ E, i < j.

Proof. If {a1, a2, . . . , ar} ⊆ {Xi : i ∈ [1, n]}, then χL∨(a1, a2, . . . , ar) cannot be a zero
function because the Xi’s are independent variables and each Xi appears at most once in
any linear function `j(x) that comprises χL∨ . Thus, to zero χL∨(a1, a2, . . . , ar) we may
assume that

ap ∈ Sij := {Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some p ∈ [1, r], (i, j) ∈ E, i < j.

Say ap appears in some homogeneous linear function `q(x) that comprises χL∨ . In order to
make χL∨(a1, . . . , ar) a zero function, one must make `q(x) a zero function. We disprove
the possibility of making `q(x) zeroed as follows. If `q(x) picks ≥ d variables from Sij , then
each of a1, . . . , ar can be represented by a linear combination of random variables in Sij . In
other words, {a1, . . . , ar} ⊆ (Sij ∪ {Xi, Xj}) because d ≥ 2. If `q(x) picks d − 1 variables
from Sij , then to make `q(x) zeroed, `q(x) needs to pick two variables aw and az where
aw is from Sik ∪ {Xi} and az is from Sj` ∪ {Xj}. Note that k 6= ` because G has girth
r + 1 ≥ d+ 2 ≥ 4. This would lead to a contradiction since if we solve the system by the
d − 1 variables from Sij as well as aw, then az can be represented by linear combination
of variables from Sij ∪ Sik ∪ {Xi}, contradicting that az ∈ Sj`, ` 6= k, and d ≥ 2. If `q(x)
picks ≤ d− 2 variables from Sij , since the rest of variables can be partitioned into subsets,
each of which sum to a multiple of Xi, or a multiple of Xj , but not a linear combination of
Xi and Xj due to G having girth at least r + 1, therefore `q(x) cannot be zeroed since this
effectively picks ≤ d variables from Sij ∪ {Xi, Xj}. J

Lastly, the exact construction of the superposable set is similar to that in Theorems 2. By
Lemma 19 and the Swartz-Zippel Lemma, we know that sampling {Xi : i ∈ [1, n]} ∪ {Xijk :
(i, j) ∈ E, i < j, k ∈ [1, d − 2]} uniformly at random from (det(Q)Z)n+(d−2)m yields a
superposable set with positive probability. We pick every Xi and Xijk as multiples of det(Q)
to ensure that all dependent variables Yijk’s are in Z. Then, after derandomization using
techniques for constant-wise independence, the construction takes time polynomial in n.
Setting g = r+1, we know that Subset-DSAT(L∨) is strongly APX-hard by Lemma 25. J

APPROX/RANDOM 2019

16:16 Syntactic Separation of Subset Satisfiability Problems

An implication of Theorem 3 is the strong APX-hardness of finding the maximum-
cardinality k-term AP-free subset S for any fixed k ≥ 3, noting that S may contain elements
that form an i-term arithmetic progression for i < k but not i ≥ k. This problem can be
encoded as

Subset-DSAT(LkAP := {`i(x1, x2, . . . , xk) = xi − 2xi+1 + xi+2 : i ∈ [1, k − 2]}),

and the solution set of
∑
`(x)∈KkAP

`2(x) = 0 contains the plane

(x1, x2, . . . , xk) = α(1, 3, . . . , 2k − 1) + β(2, 4, . . . , 2k) for constant α, β ∈ R.

Therefore,

M =

1 2
3 4
...

...
2k − 1 2k

 in which every 2× 2 submatrix
[
2i− 1 2j − 1

2i 2j

]

is full rank. By Theorem 3, we get:

I Corollary 20. Finding a maximum-cardinality k-term AP-free subset of a given integral
set S for any fixed k ≥ 3 is strongly APX-hard.

Sharpness of d ≥ 2. Not every problem in the class Subset-DSAT(L) is hard to approxi-
mate. If the solution set of χ(x) =

∑
`(x)∈L `

2(x) is a point3, then it suffices to remove an
integer in the set S that coincides with the coordinate of the point. If it is a line, for example
α(1, 2, 4, 8) for α ∈ R, then a greedy algorithm can solve this case in P by removing the last
coordinate for every tuple of 4 integers that are multiples of (1, 2, 4, 8).

7 A Sparsity Bound, Assuming ETH

Define a sparse language as one where there are nO(1) length-n Yes-instances. Mahaney’s
theorem [39, 45] states that if P 6= NP, then there is no NP-hard sparse language. Buhrman
and Hitchcock prove a stronger (optimal) bound from a stronger hypothesis [15]: if PH
doesn’t collapse, then there is no NP-hard set with 2no(1) length-n Yes-instances. If one
assumes ETH, then an even stronger bound holds for strongly APX-hard problems.

I Theorem 21. If X is an optimization problem such that X has 2o(n/ logn) strings of length
n, then X cannot be strongly APX-hard unless ETH fails.

Proof. This proof is based on the proof of Mahaney’s theorem presented in [45]. Assume
that X is strongly APX-hard, and we will present a subexponential-time algorithm to solve
3SAT. Let

L = {(ϕ, a) : ϕ has a satisfying assignment a′ lexicographically smaller than a}.

L is in nondeterministic linear time, and hence by [19] there is a reduction g of L to 3SAT
such that, on input (ϕ, a) of size n, g(ϕ, a) is a 3CNF formula with O(n logn) variables, each
of which appears in O(1) clauses.

3 0 must be a solution of χ(x) because the `i(x)’s are homogeneous.

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:17

Since X is strongly APX-hard, there is a function f such that, for any 3CNF formula ψ
of size n, f(ψ) has size O(n), where f yields the SPTAS reduction from Max-3SAT to X.

Consider any satisfiable formula ϕ with n variables; let aϕ be its lexicographically smallest
satisfying assignment. Hence, (ϕ, a) ∈ L if and only if a ≥ aϕ, lexicographically.

We now present an algorithm for finding aϕ that runs in subexponential time. (If the
algorithm fails to find a satisfying assignment, then ϕ is not satisfiable.) We start with
a search space of size 2n. Let C = 2o(n) be greater than the number of strings in X of
length m = O(n logn), where the output of the reduction g(ϕ, a) has length m. Find C

assignments a1, . . . , aC that are evenly spaced among the current search space, and compute
zi = f(g(ϕ, ai)) for 1 ≤ i ≤ C.

If there are i < j such that zi = zj , then g(ϕ, ai) is in 3SAT iff g(ϕ, aj) is, and thus aϕ
does not lie in the segment (ai, aj], and thus we can reduce the size of our search space by a
factor of 1/C.

Otherwise, there are C distinct elements zi of the form f(g(ϕ, ai)), which is greater than
the number of relevant elements of X that can be in the range of f . Thus at least one of
the formulae g(ϕ, ai) must be unsatisfiable, since f maps it to an infeasible instance of X.
But if any formula g(ϕ, ai) is unsatisfiable, it follows that g(ϕ, a1) is unsatisfiable, and hence
aϕ does not lie in the segment [0n, a1], and thus again we can reduce the size of our search
space by a factor of 1/C.

We now repeat the process with a new set of C checkpoints. As in [45], the bookkeeping
that is necessary to keep track of the current search space and to compute the new checkpoints
does not get too complicated, and after a small number of iterations the entire search space
is of size at most C, at which point we can check directly in subexponential time if any of
the remaining assignments satisfies ϕ.

This algorithm can thus determine if ϕ is satisfiable or not, which is at least as hard as
solving 3SAT. J

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular Conjectures Imply Strong Lower

Bounds for Dynamic Problems. In Proceedings of the 2014 IEEE 55th Annual Symposium on
Foundations of Computer Science, FOCS, pages 434–443, Washington, DC, USA, 2014. IEEE
Computer Society. doi:10.1109/FOCS.2014.53.

2 Tanbir Ahmed, Janusz Dybizbanski, and Hunter S. Snevily. Unique Sequences Containing No
k-Term Arithmetic Progressions. Electr. J. Comb., 20(4):P29, 2013.

3 M. Ajtai, P. Erdös, J. Komlós, and E. Szemerédi. On Turán’s theorem for sparse graphs.
Combinatorica, 1(4):313–317, 1981.

4 M. Ajtai, J. Komlós, and E. Szemerédi. A Dense Infinite Sidon Sequence. European Journal
of Combinatorics, 2(1):1–11, 1981.

5 Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.
6 K. Appel and W. Haken. Every planar map is four colorable. Part I: Discharging. Illinois

Journal of Mathematics, 21(3):429–490, September 1977.
7 K. Appel, W. Haken, and J. Koch. Every planar map is four colorable. Part II: Reducibility.

Illinois Journal of Mathematics, 21(3):491–567, September 1977.
8 Arturs Backurs and Piotr Indyk. Edit Distance Cannot Be Computed in Strongly Subquadratic

Time (Unless SETH is False). SIAM J. Comput., 47(3):1087–1097, 2018. doi:10.1137/
15M1053128.

9 Brenda S. Baker. Approximation Algorithms for NP-complete Problems on Planar Graphs. J.
ACM, 41(1):153–180, January 1994.

APPROX/RANDOM 2019

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128

16:18 Syntactic Separation of Subset Satisfiability Problems

10 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic Algorithms for Algebraic 3SUM. Discrete & Computational Geometry,
61(4):698–734, 2019. doi:10.1007/s00454-018-0040-y.

11 Gill Barequet and Sariel Har-Peled. Polygon Containment and Translational Min-Hausdorff-
Distance Between Segment Sets are 3Sum-hard. Int. J. Comput. Geometry Appl., 11(4):465–474,
2001.

12 Piotr Berman and Marek Karpinski. On Some Tighter Inapproximability Results (Extended
Abstract). In 26th International Colloquium in Automata, Languages and Programming
(ICALP), pages 200–209, 1999.

13 Prosenjit Bose and Stefan Langerman. Weighted Ham-Sandwich Cuts. In Discrete and
Computational Geometry, Japanese Conference, JCDCG, Revised Selected Papers, pages 48–53,
2004.

14 Karl Bringmann. Why Walking the Dog Takes Time: Frechet Distance Has No Strongly
Subquadratic Algorithms Unless SETH Fails. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pages 661–670, 2014.

15 Harry Buhrman and John M. Hitchcock. NP-hard sets are exponentially dense unless coNP ⊆
NP/poly. In Proceedings of the 23rd Annual IEEE Conference on Computational Complexity,
(CCC), pages 1–7. IEEE Computer Society, 2008. doi:10.1109/CCC.2008.21.

16 Jean Cardinal, John Iacono, and Aurélien Ooms. Solving k-SUM Using Few Linear Queries.
In 24th Annual European Symposium on Algorithms, ESA, pages 25:1–25:17, 2016.

17 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From Gap-ETH to FPT-Inapproximability: Clique,
Dominating Set, and More. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 743–754, 2017.

18 Miroslav Chlebík and Janka Chlebíková. Approximation Hardness for Small Occurrence
Instances of NP-hard Problems. In 5th Italian Conference on Algorithms and Complexity
(CIAC), pages 152–164. Springer, 2003.

19 Stephen A. Cook. Short Propositional Formulas Represent Nondeterministic Computations.
Inf. Process. Lett., 26(5):269–270, 1988. doi:10.1016/0020-0190(88)90152-4.

20 Carlos Cotta, Iván Dotú, Antonio J. Fernández, and Pascal Van Hentenryck. A Memetic
Approach to Golomb Rulers. In Proceedings of the 9th International Conference on Parallel
Problem Solving from Nature, PPSN, pages 252–261, Berlin, Heidelberg, 2006. Springer-Verlag.

21 Irit Dinur. Mildly exponential reduction from gap 3SAT to polynomial-gap label-cover.
Electronic Colloquium on Computational Complexity (ECCC), 23:128, 2016.

22 Irit Dinur and Pasin Manurangsi. ETH-hardness of approximating 2-CSPs and directed
Steiner network. In 9th Innovations in Theoretical Computer Science Conference, ITCS, pages
36:1–36:20, 2018.

23 Apostolos Dollas, William T. Rankin, and David Mccracken. New Algorithms for Golomb
Ruler Derivation and Proof of the 19 Mark Ruler. IEEE Transactions on Information Theory,
44:379–382, 1998.

24 J. Dybizbański. Sequences containing no 3-term arithmetic progressions. Elec. J. of Comb.,
19(2):15–19, 2012.

25 David Eppstein. Forbidden Configurations in Discrete Geometry. Cambridge University Press,
2018.

26 David Eppstein, Gary L. Miller, and Shang-Hua Teng. A Deterministic Linear Time Algorithm
for Geometric Separators and its Applications. Fundam. Inform., 22(4):309–329, 1995. doi:
10.3233/FI-1995-2241.

27 S. Fajtlowicz. The independence ratio for cubic graphs. In 8th Southeastern Conf. on
Combinatorics, Graph Theory, and Computing, pages 273–277. LSU, 1977.

28 Anka Gajentaan and Mark H. Overmars. On a Class of O(N2) Problems in Computational
Geometry. Comput. Geom. Theory Appl., 5(3):165–185, October 1995.

https://doi.org/10.1007/s00454-018-0040-y
https://doi.org/10.1109/CCC.2008.21
https://doi.org/10.1016/0020-0190(88)90152-4
https://doi.org/10.3233/FI-1995-2241
https://doi.org/10.3233/FI-1995-2241

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:19

29 William I. Gasarch, James Glenn, and Clyde P. Kruskal. Finding large 3-free sets I: The small
n case. J. Comput. Syst. Sci., 74(4):628–655, 2008.

30 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? J. Comput. Syst. Sci., 63(4):512–530, December 2001. doi:
10.1006/jcss.2001.1774.

32 Allan Grønlund Jørgensen and Seth Pettie. Threesomes, Degenerates, and Love Triangles. J.
ACM, 65(4):22:1–22:25, 2018. doi:10.1145/3185378.

33 Sanjeev Khanna and Rajeev Motwani. Towards a Syntactic Characterization of PTAS. In
28th Annual ACM Symposium on Theory of Computing (STOC), pages 329–337. ACM, 1996.

34 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The Approximability
of Constraint Satisfaction Problems. SIAM J. Comput., 30(6):1863–1920, December 2001.

35 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980.

36 Richard J. Lipton and Robert Endre Tarjan. Applications of a Planar Separator Theorem.
SIAM J. Comput., 9(3):615–627, 1980. doi:10.1137/0209046.

37 Michael Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM
J. Comput., 15(4):1036–1053, 1986.

38 Michael Luby and Avi Wigderson. Pairwise Independence and Derandomization. Found.
Trends Theor. Comput. Sci., 1(4):237–301, August 2006.

39 Stephen R. Mahaney. Sparse Complete Sets of NP: Solution of a Conjecture of Berman and
Hartmanis. J. Comput. Syst. Sci., 25(2):130–143, 1982. doi:10.1016/0022-0000(82)90002-2.

40 Pasin Manurangsi and Prasad Raghavendra. A Birthday Repetition Theorem and Complexity
of Approximating Dense CSPs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP, pages 78:1–78:15, 2017. doi:10.4230/LIPIcs.ICALP.2017.78.

41 Nimrod Megiddo and Kenneth J. Supowit. On the Complexity of Some Common Geometric
Location Problems. SIAM J. Comput., 13(1):182–196, 1984.

42 Christophe Meyer and Periklis A. Papakonstantinou. On the Complexity of Constructing
Golomb Rulers. Discrete Appl. Math., 157(4):738–748, February 2009.

43 Gary L. Miller, Shang-Hua Teng, William Thurston, and Stephen A. Vavasis. Separators
for Sphere-packings and Nearest Neighbor Graphs. J. ACM, 44(1):1–29, January 1997.
doi:10.1145/256292.256294.

44 Owen J. Murphy. Computing Independent Sets in Graphs with Large Girth. Discrete Appl.
Math., 35(2):167–170, January 1992.

45 Mitsunori Ogiwara and Osamu Watanabe. On Polynomial-Time Bounded Truth-Table Re-
ducibility of NP Sets to Sparse Sets. SIAM J. Comput., 20(3):471–483, 1991.

46 Mihai Pătraşcu and Ryan Williams. On the Possibility of Faster SAT Algorithms. In Proceedings
of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages
1065–1075, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.

47 Liam Roditty and Virginia Vassilevska Williams. Fast Approximation Algorithms for the
Diameter and Radius of Sparse Graphs. In Proceedings of the Forty-fifth Annual ACM
Symposium on Theory of Computing, STOC, pages 515–524, New York, NY, USA, 2013. ACM.
doi:10.1145/2488608.2488673.

48 J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. J.
ACM, 27(4):701–717, October 1980.

49 Pascal Schweitzer. Problems of unknown complexity – Graph isomorphism and Ramsey theoretic
numbers. PhD thesis, Universität des Saarlandes, 2009.

50 James B. Shearer. A note on the independence number of triangle-free graphs. Discrete
Mathematics, 46(1):83–87, 1983.

APPROX/RANDOM 2019

https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3185378
https://doi.org/10.1137/0209046
https://doi.org/10.1016/0022-0000(82)90002-2
https://doi.org/10.4230/LIPIcs.ICALP.2017.78
https://doi.org/10.1145/256292.256294
https://doi.org/10.1145/2488608.2488673

16:20 Syntactic Separation of Subset Satisfiability Problems

51 Stephen W. Soliday, Abdollah Homaifar, and Gary L. Lebby. Genetic Algorithm Approach to
the Search for Golomb Rulers. In Proceedings of the 6th International Conference on Genetic
Algorithms, pages 528–535, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.
URL: http://dl.acm.org/citation.cfm?id=645514.658082.

52 William Staton. Some Ramsey-Type Numbers and the Independence Ratio. Transactions of
the American Mathematical Society, 256:353–370, 1979.

53 T. Tao and V. H. Vu. Additive Combinatorics. Cambridge University Press, 2009.
54 Jorge Tavares, Francisco B. Pereira, and Ernesto Costa. Understanding the role of insertion

and correction in the evolution of Golomb rulers. In Proceedings of the IEEE Congress on
Evolutionary Computation, CEC, pages 69–76, 2004. doi:10.1109/CEC.2004.1330839.

55 Pál Turán. Egy gráfelméleti szélsőérték feladatról. Matematikai és Fizikai Lapok, 48:436–452,
1941.

56 D. W. Wang and Yue-Sun Kuo. A Study on Two Geometric Location Problems. Inf. Process.
Lett., 28(6):281–286, 1988.

57 D. J. A. Welsh. The Computational Complexity of Some Classical Problems from Statistical
Physics. In In Disorder in Physical Systems, pages 307–321. Clarendon Press, 1990.

58 Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation (ISSAC), pages 216–226.
Springer, 1979.

A Reducing Some MIS Problems to Subset-CSAT(L)

We reduce the problem of finding a maximum independent set for c-far unit-disk graphs to
Subset-CSAT(L) for some 2-variable L. A unit disk graph G is an intersection graph of unit
disks in the plane. We say a unit-disk graph is c-far if for each pair of disks the Euclidean
distance between their centers does not fall within the interval [0, c) ∪ (2, 2 + c) for some
constant c > 0. It is known that the maximum independent set problem remains NP-hard
for c-far unit-disk graphs [41, 56], even when the locations of disks are given.

I Theorem 22. There exists a polynomial-time many-one reduction from finding a maximum
independent set for c-far unit-disk graphs to Subset-CSAT(L) for some 2-variable L.

Proof. The reduction comes as follows. Let D = {d1, d2, . . . , dn} be the set of the n disks and
let x(di) and y(di) denote the x- and y-coordinate of disk di for each i ∈ [1, n]. We discretize
the locations of disks in D so that x(di) and y(di) for all i ∈ [1, n] are mapped to multiples
of ε where ε is set as c/6. Observe that, if two disks intersect before the discretization,
then their distance is in the range [4c/6, 2 + 2c/6]; if two disks do not intersect before the
discretization, then their distance now falls within [2 + 4c/6,∞). If we enlarge the radius
of all disks from 1 to 1 + 3c/12, then the discretization does not alter whether two disks
intersect or not. In other words, if two disks intersect, then the center of one disk is located
at one of the O(1/ε2) discretized coordinates surrounding the center of the other.

Consequently, if we map each disk di to an integer 2x(di)/ε3y(di)/ε, noting that the
exponents are integers for each i ∈ [1, n], and set

Ludisk = {`(a, b) = 2r13r2a−2r33r4b : ε
√

(r1 − r3)2 + (r2 − r4)2 < 2+c/2, r1, r2, r3, r4 ∈ N},

then it is clear that Subset-CSAT(Ludisk) is a restatement of finding a maximum independent
set for c-far unit-disk graphs. J

Combining Theorem 22 and Theorem 2, we get:

I Corollary 23. Finding a maximum independent set for c-far unit-disk graphs admits a
PTAS.

http://dl.acm.org/citation.cfm?id=645514.658082
https://doi.org/10.1109/CEC.2004.1330839

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:21

We remark here that one can have a result analogous to Corollary 23 for c-far intersection
graphs whose underlying shape is a unit symmetric convex set. This result is not as general
as for ordinary intersection graphs because c-farness implies that all nodes in the intersection
graph have a constant degree.

B Initial Hardness Results

Our hardness proofs are based on the strong APX-hardness of Max Independent Set for
sparse large-girth graphs, which can be shown by the following chain of reductions.

Let Max-3SAT-∆ be the subproblem of Max-3SAT so that there exists a constant
∆ such that no variables of the formula appears in more than ∆ clauses. Let Max-IS be
the maximum independent set problem. In what follows, we will show that Max-3SAT-∆
≤SPTAS Max-IS for sparse graphs ≤SPTAS Max-IS for sparse large-girth graphs.

I Lemma 24. Max Independent Set for sparse graphs, i.e. with a linear number of
edges, is strongly APX-hard.

Proof. Let I3SAT be an instance of Max-3SAT-∆. We assume that I3SAT has n variables
and m clauses, and each clause in I3SAT has exactly 3 literals. Otherwise, one can duplicate
some literal in each of the 1-literal and 2-literal clauses. Given I3SAT, we construct a graph
G = (V,E) as IMIS as follows. For each i ∈ [1,m], we add three nodes vi1 , vi2 , vi3 to V , link
each pair of the three nodes with an edge, and label vi1 , vi2 , vi3 with the corresponding literal
in the i-th clause. Then, for every pair of nodes in V , if their labels are literals which are
negations of each other, then link an edge between them. Consequently, G has 3m nodes
and at most 3m + 9

(∆
2
)
n = O(m) edges. It can be checked that I3SAT can have t clauses

simultaneously satisfied if and only if IMIS has an independent set of size t. Moreover, the
problem instances have size linear to each other. This gives a SPTAS reduction. J

I Lemma 25. For every constant c ≥ 3, Max Independent Set for sparse graphs of girth
≥ c is strongly APX-hard.

Proof. Let Is (resp. Is,g≥c) be an instance of Max Independent Set for sparse graphs
(resp. Max Independent Set for sparse graphs of girth ≥ c). One can map Is to Is,g≥c
by replacing each edge (va, vb) with a path from va to vb with 2c internal nodes, as shown
in [44]. Hence, Is,g≥c has girth ≥ 6c+ 3, and Is has an independent set t if and only if Is,g≥c
has an independent set of size t+ cm. Every (1 − ε)-approximation for Is,g≥c determines
that Is,g≥c has an independent set of size (1− ε)(t+ cm), which corresponds to Is having an
independent set of size (1− ε)t− εcm = (1−O(ε))t, where the equality holds because c is a
constant and t = Ω(n) = Ω(m) by Turán’s Theorem. Moreover, the problem instances have
size linear to each other. This gives a SPTAS reduction. J

C Inapproximability Constants

Lastly, for each problem in the syntactically-defined class that does not admit a PTAS, we
determine an inapproximability constant 1− ε, so that it cannot be (1− ε)-approximated
unless P = NP. We use the facts that Max Independent Set on 3-regular graphs cannot
be approximated to within the constant C3 = 139/140 + ε for any constant ε > 0 [12], and
Max Independent Set on 3-regular triangle-free graphs can not be approximated to within
the constant C3∆ = 1422/1432 + ε for any constant ε > 0 [18].

APPROX/RANDOM 2019

16:22 Syntactic Separation of Subset Satisfiability Problems

We first apply Lemma 13 to bound an inapproximability constant 1 − δr based on C3
and then replace the use of Turán’s Theorem in Lemma 13 with the AKS Theorem [4] and
Staton’s result [52] to bound the claimed inapproximability constant 1− εr based on C3∆.

Since Max Independent Set on 3-regular graphs cannot be approximated to within
C3, from Lemma 13 we have following theorem:

I Lemma 26. For every homogeneous, r-variate (r ≥ 3), linear function `(x), Subset-
CSAT({`(x)}) cannot be approximated to within any constant factor larger than 1− δr in
polynomial time unless P = NP, where δr = 1−C3

7+6(r−3) .

Simply replacing C3 with C3∆ cannot increase δr because C3 < C3∆ and such a replace-
ment in Lemma 26 makes δr smaller. Instead, we replace the use of Turán’s Theorem,
which applies to general graphs, with the AKS Theorem (see Theorem 27), which works for
triangle-free graphs. In [3, 50], the constant in the big-Omega notation in AKS Theorem
is bounded above by 1/100 and 1/8, respectively. Though the size of an independent set
guaranteed by the AKS theorem is asymptotically larger than that of Turán theorem, it is
numerically smaller when d = 3.

I Theorem 27 (AKS Theorem [4]). Every d-regular triangle-free graph has an independent
set of size Ω(n log d/d).

Note that the constant in the big-Omega notation is universal for every d. For a particular
value of d the constant can be larger. In particular, in [52] Staton shows that every 3-regular
triangle-free graph has an independent set of size 5m/21, which is more than the m/6
guaranteed by Turán’s theorem. The constant 5/21 is tight due to Fajtlowicz [27]. Based on
this improved guarantee of the size of an independent set, we obtain the following result.

I Lemma 28. For each homogeneous, r-variate, linear function `(x), Subset-CSAT({`(x)})
cannot be approximated to within any constant factor larger than 1− εr in polynomial time
unless P = NP, where εr = 1− 1−C3∆

5.2+4.2(r−3) .

Lemma 28 and the proof of Theorem 2 together imply that:

I Theorem 29. Let L be a finite set of homogeneous linear functions whose coefficients
are in Z. If L contains a homogeneous r-variate linear function `(x) for some r ≥ 3, then
Subset-CSAT(L) cannot be approximated to within any constant factor larger than 1− εr
in polynomial time unless P = NP, where εr = 1− 1−C3∆

5.2+4.2(r−3) .

To obtain the inapproximability constants for Subset-DSAT(L), we need Lemma 30.

I Lemma 30. Max Independent Set for graphs whose maximum degree ≤ 3 and girth
≥ g cannot be approximated to within any constant factor larger than 1− εg in polynomial
time unless P = NP, where εg < 1

140(6d(g−3)/6e+1) .

Proof. We prove this by giving a PTAS reduction from Max Independent Set for 3-regular
graphs G3r = (V3r, E3r) to Max Independent Set for graphs Gg+ = (Vg+ , Eg+) of girth
≥ g. We obtain Gg+ from G3r by replacing each edge in E3r with a path of length 2t+ 1
(t ∈ Z), connecting 2t new nodes. Hence, the smallest cycle in Gg+ is 3 + 6t. We pick
t = d(g − 3)/6e so that Gg+ has no cycle of length < g.

It is known [44] that Gg+ has an independent set of size t|E3r| + k iff G3r has an
independent set of size k. Every (1− ε)-approximation algorithm for Max Independent
Set of Gg+ can find an independent set of size (1− ε)(t|E3r|+ k), which corresponds to an

E. Allender, M. Farach-Colton, and M.-T. Tsai 16:23

independent set of size (1− ε)k− εt|E3r| ≥ (1− (6t+ 1)ε)k in G3r, where the last inequality
follows from the fact that k ≥ |E3r|/6 for every 3-regular graph, due to Turán’s Theorem [53].

Based on [12], Max Independent Set for 3-regular graphs cannot be approximated to
within 1− ε3r for any ε3r < 1/140. Thus, ε cannot be less than 1

140(6t+1) = 1
140(6d(g−3)/6e+1) .

J

In the proof of Theorem 3, the girth g is set as r + 1, where r denotes |x|. Hence, we get:

I Theorem 31. Let L be a finite set of homogeneous linear functions whose coefficients are
in Z. For each Subset-DSAT(L), if the solutions to

∨
`∈L `(x) = False form a vector

space in general position and has dimension at least 2, then Subset-DSAT(L) cannot be
approximated to within any constant factor larger than 1− εr in polynomial time unless P =
NP, where εr = 1

140(6d(r−2)/6e+1) .

APPROX/RANDOM 2019

Malleable Scheduling Beyond Identical Machines
Dimitris Fotakis
School of Electrical and Computer Engineering, National Technical University of Athens, Greece
https://www.softlab.ntua.gr/~fotakis/
fotakis@cs.ntua.gr

Jannik Matuschke
Research Center for Operations Management, KU Leuven, Belgium
https://sites.google.com/view/jannikmatuschke/
jannik.matuschke@kuleuven.be

Orestis Papadigenopoulos
Department of Computer Science, The University of Texas at Austin, USA
http://www.cs.utexas.edu/~papadig/
papadig@cs.utexas.edu

Abstract

In malleable job scheduling, jobs can be executed simultaneously on multiple machines with the
processing time depending on the number of allocated machines. Jobs are required to be executed
non-preemptively and in unison, in the sense that they occupy, during their execution, the same
time interval over all the machines of the allocated set. In this work, we study generalizations of
malleable job scheduling inspired by standard scheduling on unrelated machines. Specifically, we
introduce a general model of malleable job scheduling, where each machine has a (possibly different)
speed for each job, and the processing time of a job j on a set of allocated machines S depends on
the total speed of S for j. For machines with unrelated speeds, we show that the optimal makespan
cannot be approximated within a factor less than e

e−1 , unless P = NP . On the positive side, we
present polynomial-time algorithms with approximation ratios 2e

e−1 for machines with unrelated
speeds, 3 for machines with uniform speeds, and 7/3 for restricted assignments on identical machines.
Our algorithms are based on deterministic LP rounding and result in sparse schedules, in the sense
that each machine shares at most one job with other machines. We also prove lower bounds on
the integrality gap of 1 + ϕ for unrelated speeds (ϕ is the golden ratio) and 2 for uniform speeds
and restricted assignments. To indicate the generality of our approach, we show that it also yields
constant factor approximation algorithms (i) for minimizing the sum of weighted completion times;
and (ii) a variant where we determine the effective speed of a set of allocated machines based on the
Lp norm of their speeds.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Scheduling algorithms

Keywords and phrases malleable, jobs, moldable, machines, unrelated, uniform, parallel, speeds,
approximation, scheduling

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.17

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.11016.

Acknowledgements Part of this work was carried out while the authors participated in the program
“Real-Time Decision Making” at the Simons Institute for the Theory of Computing, Berkeley, CA.

© Dimitris Fotakis, Jannik Matuschke, and Orestis Papadigenopoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6864-8960
https://www.softlab.ntua.gr/~fotakis/
mailto:fotakis@cs.ntua.gr
https://orcid.org/0000-0002-7463-3279
https://sites.google.com/view/jannikmatuschke/
mailto:jannik.matuschke@kuleuven.be
https://orcid.org/0000-0003-2164-0202
http://www.cs.utexas.edu/~papadig/
mailto:papadig@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.17
https://arxiv.org/abs/1903.11016
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Malleable Scheduling Beyond Identical Machines

1 Introduction

Since the late 60s, various models have been proposed by researchers [7, 8] in order to capture
the real-world aspects and particularities of multiprocessor task scheduling systems, i.e.,
large collections of identical processors able to process tasks in parallel. High performance
computing, parallel architectures, and cloud services are typical applications that motivate
the study of multiprocessor scheduling, both theoretical and practical. An influential model is
Rayward-Smith’s unit execution time and unit communication time (UET-UCT) model [22],
where each parallel job is partitioned into a set of tasks of unit execution time and these
tasks are subject to precedence constraints modeled by a task graph. The UET-UCT model
and its generalizations have been widely studied and a large number of (approximation)
algorithms and complexity results have been proposed [10, 20].

However, the UET-UCT model mostly focuses on task scheduling and sequencing, and
does not account for the amount of resources allocated to each job, thus failing to capture
an important aspect of real-world parallel systems. Specifically, in the UET-UCT model, the
level of granularity of a job (that is, the number of smaller tasks that a job is partitioned
into) is decided a priori and is given as part of the input. However, it is common ground in
the field of parallel processing that the unconditional allocation of resources for the execution
of a job may jeopardize the overall efficiency of a multiprocessor system. A theoretical
explanation is provided by Amdahl’s law [1], which suggests that the speedup of a job’s
execution can be estimated by the formula 1

(1−p)+ p
s
, where p is the fraction of the job that

can be parallelized and s is the speedup due to parallelization (i.e., s can be thought as the
number of processors).

Malleable Scheduling. An interesting alternative to the UET-UCT model is that of malle-
able1 job scheduling [5, 24]. In this setting, a set J of jobs is scheduled on a setM of parallel
machine(-s), while every job can be processed by more than one machines at the same time
(i.e., by partitioning the job into tasks). In order to quantify the effect of parallelization,
the processing time of a job j ∈ J is determined by a function fj : N→ R+

2 depending on
the number of allocated machines. Moreover, every job must be executed non-preemptively
and in unison, i.e. having the same starting and completion time on each of the allocated
machines. Thus, if a job j is assigned to a set of machines S starting at time τ , all machines
in S are occupied with job j during the interval [τ, τ + fj(|S|)]. It is commonly assumed that
the processing time function of a job exhibits two useful and well-motivated properties:

For every job j ∈ J , the processing time fj(s) is non-increasing in the number of
machines.3
The total work of the execution of a job j on s machines, that is the product s · fj(s), is
non-decreasing in the number of machines.

The latter property, known as monotonicity of a malleable job, is justified by Brent’s law [3]:
One cannot expect superlinear speedup by increasing the level of parallelism. A great
deal of theoretical results have been published on scheduling malleable jobs according to
the above model (and its variants) for the objective of minimizing the makespan, i.e., the
completion time of the last finishing job, or other standard objectives (see, e.g., [6] and the
references therein).

1 Malleable scheduling also appears as moldable, while sometimes the two terms refer to slightly different
models.

2 We denote by R+ (resp. Z+) the set of non-negative reals (resp. integers).
3 This property holds w.l.o.g., as the system always has the choice not to use some of the allocated

machines.

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:3

Although malleable job scheduling represents a valiant attempt to capture real-world
aspects of massively parallel processing, the latter exhibits even more complicated charac-
teristics. Machine heterogeneity, data locality and hardware interconnection are just a few
aspects of real-life systems that make the generalization of the aforementioned model neces-
sary. In modern multiprocessor systems, machines are not all identical and the processing
time of a job not only depends on the quantity, but also on the quality of the set of allocated
machines. Indeed, different physical machines may have different capabilities in terms of
faster CPUs or more efficient cache hierarchies. Moreover, the above heterogeneity may be
job-dependent, in the sense that a specific machine may be faster when executing a certain
type of jobs than another (e.g., memory- vs arithmetic-intensive applications [21]). Finally,
the execution of a job on specific combinations of machines may also yield additional benefit
(e.g., machines that are local in terms of memory hierarchy).

Our Model: Malleable Scheduling on Unrelated Machines. Quite surprisingly, no results
exist on scheduling malleable jobs beyond the case of identical machines, to the best of our
knowledge, despite the significant theoretical and practical interest in the model. In this
work, we extend the model of malleable job scheduling to capture more delicate aspects
of parallel job scheduling. In this direction, while we still require our jobs to be executed
non-preemptively and in unison, the processing time of a job j ∈ J becomes a set function
fj(S), where S ⊆M is the set of allocated machines. We require that processing times are
given by a non-increasing function, in the set function context, while additional assumptions
on the scalability of fj are made, in order to capture the diminishing utility property implied
by Brent’s law.

These assumptions naturally lead to a generalized malleable job setting, where processing
times are given by non-increasing supermodular set functions fj(S), accessed by value
queries. We show that makespan minimization in this general setting is inapproximable
within O(| J |1−ε) factors (unless P = NP , see Section 4.3). The general message of the
proof is that unless we make some relatively strong assumptions on processing times (in the
form e.g., of a relatively smooth gradual decrease in the processing time, as more machines
are allocated), malleable job scheduling (even with monotone supermodular processing times)
can encode combinatorial problems as hard as graph coloring.

Thus, inspired by (standard non-malleable) scheduling models on uniformly related
and unrelated machines, we introduce the notion of speed-implementable processing time
functions. For each machine i and each job j there is a speed si,j ∈ Z+ that quantifies the
contribution of machine i to the execution of job j, if i is included in the set allocated to
j. For most of this work, we assume that the total speed of an allocated set is given by an
additive function σj(S) =

∑
i∈S si,j (but see also Section 4.1, where we discuss more general

speed functions based on Lp-norms). A function is speed-implementable if we can write
fj(S) = fj(σj(S)) for some function fj : R+ → R+. Again, we assume oracle access to the
processing time functions.4

The notion of speed-implementable processing times allows us to quantify the fundamental
assumptions of monotonicity and diminishing utility in a clean and natural way. More
specifically, we make the following two assumptions on speed-implementable functions:
1. Non-increasing processing time. For every job j ∈ J , the processing time fj(s) is

non-increasing in the total allocated speed s ∈ R+.
2. Non-decreasing work. For every job j ∈ J , the work fj(s) · s is non-decreasing in the

total allocated speed s ∈ R+.

4 For convenience, we use the identifier fj for both functions. Since their arguments come from disjoint
domains, it is always clear from the context which one is meant.

APPROX/RANDOM 2019

17:4 Malleable Scheduling Beyond Identical Machines

The first assumption ensures that allocating more speed cannot increase the processing time.
The second assumption is justified by Brent’s law, when the increase in speed coincides with
an increase in the physical number of machines, or by similar arguments for the increase
of the total speed of a single physical machine (e.g., memory access, I/O bottleneck [21]
etc.). We remark that speed-implementable functions with non-increasing processing times
and non-decreasing work do not need to be convex, and thus, do not belong to the class of
supermodular functions.

In this work, we focus on the objective of minimizing the makespan Cmax = maxj∈J Cj ,
where Cj the completion time of job j. We refer to this setting as the problem of scheduling
malleable jobs on unrelated machines. To further justify this term, we present a pseudopoly-
nomial transformation of standard scheduling on unrelated machines to malleable scheduling
with speed-implementable processing times (see the full version of this reading). The reduc-
tion can be rendered polynomial by standard techniques, preserving approximation factors
with a loss of 1 + ε.

1.1 Related Work
The problem of malleable job scheduling on identical machines has been studied thoroughly
for more than three decades. For the case of non-monotonic jobs, i.e., jobs that do not
satisfy the monotonic work condition, Du and Leung [5] show that the problem is strongly
NP-hard for more than 5 machines, while in terms of approximation, Turek, Wolf and Yu [24]
provided the first 2-approximation algorithm for the same version of the problem. Jansen
and Porkolab [13] devised a PTAS for instances with a constant number of machines, which
was later extended by Jansen and Thöle [15] to a PTAS for the case that the number of
machines is polynomial in the number of jobs.

For the case of monotonic jobs, Mounié, Rapine and Trystram [19] propose a 3
2 -approxima-

tion algorithm, improving on the
√

3-approximation provided by the same authors [18].
Recently, Jansen and Land [12] gave an FPTAS for the case that |M | ≥ 8| J |/ε. Together
with the approximation scheme for polynomial number of machines in [12], this implies a
PTAS for scheduling monotonic malleable jobs on identical machines.

Several papers also consider the problem of scheduling malleable jobs with preemption
and/or under precedence constraints [2, 14, 17]. An interesting alternative approach to the
general problem is that of Srinivasa, Prasanna, and Musicus [23], who consider a continuous
version of malleable tasks and develop an exact algorithm based on optimal control theory
under certain assumptions on the processing time functions. While the problem of malleable
scheduling on identical machines is very well understood, this is not true for malleable
extensions of other standard scheduling models, such as unrelated machines or the restricted
assignment model. We attempt to close this gap by introducing and investigating malleable
scheduling with speed-implementable processing time functions.

A scheduling model similar to malleable tasks is that of splittable jobs. In this regime,
jobs can be split arbitrarily and the resulting parts can be distributed arbitrarily on different
machines. For each pair of job j and machine i, there is a setup time sij and a processing
time pij . If a fraction xij ∈ (0, 1] of job j is to be scheduled on machine i, the load that is
incurred on the machine is sij + pijxij . Correa et al. [4] provide an (1 + ϕ)-approximation
algorithm for this setting (where ϕ is the golden ratio), which is based on an adaptation
of the classic LP rounding result by Lenstra, Shmoys, and Tardos [16] for the traditional
unrelated machine scheduling problem. We remark that the generalized malleable setting
considered in this paper also induces a natural generalization of the splittable setting beyond
setup times, when dropping the requirement that jobs need to be executed in unison. As

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:5

in [4], we provide a rounding framework based on a variant of the assignment LP from [16].
However, the fact that processing times are only given implicitly as functions in our setting
makes it necessary to very carefully choose the coefficients of the assignment LP in order to
ensure a constant integrality gap. Furthermore, because jobs have to be executed in unison,
we employ a more sophisticated rounding scheme in order to better utilize free capacity on
different machines.

1.2 Contribution and Techniques
At the conceptual level, we introduce the notion of malleable jobs with speed-implementable
processing times. Hence, we generalize the standard and well-studied setting of malleable job
scheduling, in a direct analogy to fundamental models in scheduling theory (e.g., scheduling
on uniformly related and unrelated machines). This new and much richer model gives rise
to a large family of unexplored packing problems that may be of independent interest. All
omitted proofs can be found in the full version of this paper (see https://arxiv.org/abs/
1903.11016).

From a technical viewpoint, we investigate the computational complexity and the approx-
imability of this new setting. To the best of our understanding, standard techniques used
for makespan minimization in the setting of malleable job scheduling on identical machines,
such as the two-shelve approach (as used in [19, 24]) and area charging arguments, fail to
yield any reasonable approximation guarantees in our more general setting. This intuition is
supported by the following hardness of approximation result.

I Theorem 1. For any ε > 0, there is no (e
e−1 − ε)-approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines, unless P = NP .

Note that the lower bound of e
e−1 is strictly larger than the currently best known

approximation factor of 1.5 for malleable scheduling on identical machines.
Our positive results are based on a linear programming relaxation, denoted by [LP(C)]

and described in Section 2. This LP resembles the assignment LP for the standard setting
of non-malleable scheduling [16]. However, in order to obtain a constant integrality gap we
distinguish between “small” jobs that can be processed on a single machine (within a given
target makespan), and “large” jobs that have to be processed on multiple machines. For the
large jobs, we carefully estimate their contribution to the load of their allocated machines.
Specifically, we introduce the notion of critical speed and use the critical speed to define the
load coefficients incurred by large jobs on machines in the LP relaxation by proportionally
distributing the work volume according to machine speeds. For the rounding, we exploit the
sparsity of our relaxation’s extreme points (as in [16]) and generalize the approach of [4], in
order to carefully distinguish between jobs assigned to a single machine and jobs shared by
multiple machines.

I Theorem 2. There exists a polynomial-time 2e
e−1 -approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines.

An interesting corollary is that for malleable job scheduling on unrelated machines, there
always exists an approximate solution where each machine shares at most one job with some
other machines. We also get improved approximation guarantees for the special cases of
restricted assignment and uniform speeds, respectively, by exploiting the special structure of
the processing time functions.

APPROX/RANDOM 2019

https://arxiv.org/abs/1903.11016
https://arxiv.org/abs/1903.11016

17:6 Malleable Scheduling Beyond Identical Machines

I Theorem 3. There exists a polynomial-time 7
3 -approximation algorithm for the problem

of scheduling malleable jobs on restricted identical machines (i.e., si,j ∈ {0, 1} for all i ∈M
and j ∈ J).

I Theorem 4. There exists a polynomial-time 3-approximation algorithm for the problem of
scheduling malleable jobs on uniform machines (i.e., si,j = si for all i ∈M and j ∈ J).

All our approximation results imply corresponding upper bounds on the integrality gap of
the linear programming relaxation [LP(C)]. Based on an adaptation of a construction in [4],
we show a lower bound of 1 + ϕ ≈ 2.618 on the integrality gap of [LP(C)] for malleable job
scheduling on unrelated machines, where ϕ is the golden ratio. For the cases of restricted
assignment and uniformly related machines, respectively, we obtain an integrality gap of 2.

Moreover, we extend our model and approach in two directions. First, we consider a
setting where the effective speed according to which a set S of allocated machines processing
a job j is given by the Lp-norm σ

(p)
j (S) =

(∑
i∈S(si,j)p

)1/p of the corresponding speed
vector. In practical settings, we tend to prefer assignments to relatively small sets of physical
machines, so as to avoid delays related to communication, memory access, and I/O (see
e.g., [21]). By replacing the total speed (i.e., the L1-norm) with the Lp-norm of the speed
vector for some p ≥ 1, we discount the contribution of additional machines (especially of
smaller speeds) towards processing a job j. Thus, as p increases, we give stronger preference
to sparse schedules, where the number of jobs shared between different machines (and the
number of machines sharing a job) are kept small. Interestingly, our general approach is
robust to this generalization and results in constant approximation factors for any p ≥ 1.
Asymptotically, the approximation factor is bounded by p

p−ln p + p

√
p

ln p and our algorithm
smoothly converges to the algorithm of [16] as p tends to infinity. For the extreme case where
we use the L∞-norm, our setting becomes identical to standard scheduling on unrelated
machines and we recover the algorithm of [16], achieving an approximation ratio of 2. These
results are discussed in Section 4.1.

In another direction, we combine our approach for makespan minimization with standard
techniques employed for the objective of total weighted completion time,

∑
j∈J wjCj , and

obtain a constant factor approximation for minimizing the total weighted completion time for
malleable job scheduling on unrelated machines. These results are discussed in Section 4.2.

Trying to generalize malleable job scheduling beyond the simple setting of identical ma-
chines, as much as possible, we believe that our setting with speed-implementable processing
times lies on the frontier of the constant-factor approximability regime. We show a strong
inapproximability lower bound of O(| J |1−ε) for the (far more general) setting where the
processing times are given by a non-increasing supermodular set functions. These results
are discussed in Section 4.3. An interesting open question is to characterize the class of
processing time functions for which malleable job scheduling admits constant factor (and/or
logarithmic) approximation guarantees.

2 The general rounding framework

In this section, we provide a high-level description of our algorithm. We construct a
polynomial-time ρ-relaxed decision procedure for malleable job scheduling problems. This
procedure takes as input an instance of the problem as well as a target makespan C and either
asserts correctly that there is no feasible schedule of makespan at most C, or returns a feasible
schedule of makespan at most ρC. It is well-known that a ρ-relaxed decision procedure can

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:7

be transformed into a polynomial-time ρ-approximation algorithm [11] provided that one
can compute proper lower and upper bounds to the optimal value of size polynomial in the
size of the input.

Given a target makespan C, let γj(C) := min{q ∈ Z+ | fj(q) ≤ C} be the critical speed
of job j ∈ J . Moreover, we define for every i ∈M the sets J+

i (C) := {j | f(si,j) ≤ C} and
J−i (C) := J\J+

i (C) to be the set of jobs that can or cannot be processed by i alone within
time C, respectively. Note that γj(C) can be computed in polynomial-time given oracle
access to fj by performing binary search. When C is clear from the context, we use the
short-hand notation γj , J+

i , and J
−
i instead. The following technical fact is equivalent to

the non-decreasing work property and is used throughout the proofs of this paper:

I Fact 5. Let f be a speed-implementable processing time function satisfying the properties
of our problem. Then for every speed q ∈ R+ we have that:
1. f(αq) ≤ 1

αf(q) for every α ∈ (0, 1), and
2. f(q′) ≤ q

q′ f(q) for every q′ ≤ q.
The following feasibility LP is the starting point of the relaxed decision procedures we

construct in this work:

[LP(C)]:
∑
i∈M

xi,j = 1 ∀j ∈ J (1)

∑
j∈J+

i

fj(si,j)xi,j +
∑
j∈J−

i

fj(γj)γj
si,j

xi,j ≤ C ∀i ∈M (2)

xi,j ≥ 0 ∀j ∈ J , i ∈M (3)

In the above LP, each variable xi,j can be thought as the fraction of job j that is
assigned to machine i. The equality constraints (1) ensure that each job is fully assigned
to a subset of machines, while constraints (2) impose an upper bound to the load of every
machine. As we can prove, the above formulation is feasible for any C that is greater than
the optimal makespan.

I Proposition 6. For every C ≥ OPT, where OPT is the makespan of an optimal schedule,
[LP(C)] has a feasible solution.

Proof. Fix a schedule of makespan OPT and let Sj ⊆M be the set of machines allocated
to a job j in that schedule. For every i ∈ M,j ∈ J set xi,j = si,j

σj(Sj) if i ∈ Sj and xi,j = 0,
otherwise. We show that x is a feasible solution to [LP (C)]. Indeed, constraints (1) are
satisfied since

∑
i∈M xi,j =

∑
i∈Sj

si,j
σj(Sj) = 1 for all j ∈ J . For verifying that constraints

(2) are fulfilled, let j ∈ J and i ∈ Sj . If j ∈ J+
i then fj(si,j)xi,j = fj(si,j) si,j

σj(Sj) ≤ fj(Sj),
using Fact 5. If j ∈ J−i then fj(γj)γj

si,j
xi,j = fj(γj)γj

σj(Sj) ≤
σj(Sj)fj(Sj)

σj(Sj) ≤ fj(Sj), again using Fact
5 and the fact that σj(Sj) ≥ γj . Therefore for any i ∈ M we obtain:

∑
j∈J+

i
fj(si,j)xi,j +∑

j∈J−
i

fj(γj)γj
si,j

xi,j ≤
∑
j∈J|i∈Sj fj(Sj) ≤ OPT ≤ C. J

Assuming that C ≥ OPT, let x be an extreme point solution to [LP(C)]. We create the
assignment graph G(x) with nodes V := J ∪M and edges E := {{i, j} ∈ M×J | xi,j > 0},
i.e., one edge for each machine-job pair in the support of the LP solution. Notice that G(x)
is bipartite by definition. Furthermore, since [LP(C)] is structurally identical to the LP
of unrelated machine scheduling [16], the choice of x as an extreme point guarantees the
following sparsity property:

APPROX/RANDOM 2019

17:8 Malleable Scheduling Beyond Identical Machines

i1

j1

i2

j2

j3

i3 i4

i5

T (j3)

p(j3)

Figure 1 A properly oriented pseudo-
tree with indegree at most 1 for each
node.

θ

g(θ) = σj(Sj(θ))

γ
j f
j (γ

j)
(α+2θ−2)C

∫ 1

0
g(θ)dθ =

∑
i∈T (j)

si,j(1−
`i
C

)

0 1

Figure 2 Volume argument for select-
ing a subset of the children machines in
the proof of Proposition 10.

I Proposition 7 ([16]). For every extreme point solution x of [LP(C)], each connected
component of G(x) contains at most one cycle.

As a graph with at most one cycle is either a tree or a tree plus one edge, the connected
components of G(x) are called pseudotrees and the whole graph is called a pseudoforest. It is
not hard to see that the edges of an undirected pseudoforest can always be oriented in a way
that every node has an in-degree of at most one. We call such a G(x) a properly oriented
pseudoforest. Such an orientation can easily be obtained by first orienting the edges on the
unique cycle (if it exists) consistently so as to obtain a directed cycle and, then, by orienting
all remaining edges away from that cycle (see Figure 1).

Now fix a properly oriented G(x) with set of oriented edges Ē. For j ∈ J , we define
p(j) ∈ M to be its unique parent-machine (if it exists) and T (j) = {i ∈ M | (j, i) ∈ Ē} to
be the set of children-machines of j, respectively. Notice, that for every machine i, there
exists at most one j ∈ J such that i ∈ T (j). The decision procedures we construct in this
paper are based, unless otherwise stated, on the following scheme:

Algorithm: Given a target makespan C:
1. If [LP(C)] is feasible, compute an extreme point solution x of [LP(C)] and construct a

properly oriented G(x). (Otherwise, report that C < OPT.)
2. A rounding scheme assigns every job j ∈ J either only to its parent machine p(j), or to

the set of its children-machines T (j) (see Section 3).
3. According to the rounding, every job j ∈ J that has been assigned to T (j) is placed at

the beginning of the schedule (these jobs are assigned to disjoint sets of machines).
4. At any point a machine i becomes idle, it processes any unscheduled job j that has been

rounded to i such that i = p(j).

3 Rounding schemes

In each of the following rounding schemes, we are given as an input an extreme point solution
x of [LP(C)] and a properly oriented pseudoforest G(x) = (V, Ē).

3.1 A simple 4-approximation for unrelated machines
We start from the following simple rounding scheme: For each job j, assign j to its parent-
machine p(j) if xp(j),j ≥ 1

2 , or else, assign j to its children-machines T (j). Formally,
let J (1) := {j ∈ J | xp(j),j ≥ 1

2} be the sets of jobs that are assigned to their parent-
machines and J (2) := J \J (1) the rest of the jobs. Recall that we first run the jobs

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:9

in J (2) and then the jobs in J (1) as described at the end of the previous section. For
i ∈ M, define J (1)

i := {j ∈ J (1) | p(j) = i} and J
(2)
i := {j ∈ J (2) | i ∈ T (j)} as the

sets of jobs in J (1) and J (2), respectively, that get assigned to i (note that |J (2)
i | ≤ 1,

as each machine gets assigned at most one job as a child-machine). Furthermore, let
`i :=

∑
j∈J+

i
∩J (1) fj(si,j)xi,j +

∑
j∈J−

i
∩J (1) fj(γj) γj

si,j
xi,j be the fractional load incurred by

jobs in J (1) on machine i in the LP solution x.

I Proposition 8. Let i ∈M. Then
∑
j∈J (1)

i

fj({i}) ≤ 2`i.

Proof. Let j ∈ J (1)
i . Since xi,j ≥ 1

2 by definition of J (1), we get fj(si,j) ≤ 2fj(si,j)xi,j .
Furthermore, if j ∈ J−i then fj(si,j)xi,j ≤ fj(γj) γjsi,j xi,j by Fact 5 and the fact that si,j < γj .
Thus, by summing up over all jobs in J (1)

i and then applying constraints (2), we get

∑
j∈J(1)

i

fj({i}) ≤ 2

 ∑
j∈J(1)

i
∩J+

i

fj(si,j)xi,j +
∑

j∈J(1)
i
∩J−

i

fj(γj)γj
si,j

xi,j

 ≤ 2`i. J

I Proposition 9. Let j ∈ J (2). Then fj(T (j)) ≤ 2C.

Proof. If there is a machine i ∈ T (j) with j ∈ J+
i , then fj(T (j)) ≤ fj({i}) ≤ C. So we

can assume that j ∈ J−i for all i ∈ T (j). Hence constraints (2) imply fj(γj) γj
si,j

xi,j ≤ C

for all i ∈ T (j). Summing these constraints yields
∑
i∈T (j)

fj(γj)
C γjxi,j ≤ σj(T (j)). Using

the fact that fj(γj) ≤ C by definition of γj and
∑
i∈T (j) xi,j >

1
2 because j ∈ J (2), we get

σj(T (j)) ≥ 1
2γj

fj(γj)
C . This implies fj(T (j)) ≤ 2C by Fact 5. J

Clearly, the load of any machine i ∈M in the final schedule is the sum of the load due to
the execution of J (1), plus the processing time of at most one job of J (2). By Proposition 8
and 9, it follows that any feasible solution of [LP(C)] can be rounded in polynomial-time
into a feasible schedule of makespan at most 4C.

3.2 An improved 2e
e−1 ≈ 3.163-approximation for unrelated machines

In the simple rounding scheme described above, it can be the case that the overall makespan
improves by assigning some job j ∈ J (2) only to a subset of the machines in T (j). This
happens because some machines in T (j) may have significantly higher load from jobs of J (1)

than others, but job j will incur the same additional load to all machines it is assigned to.
We can improve the approximation guarantee of the rounding scheme by taking this effect

into account and filtering out children-machines with a high load. Define J (1) and J (2) as
before. Every job in j ∈ J (1) is assigned to its parent-machine p(j), while every job j ∈ J (2)

is assigned to a subset of T (j) as follows.
For j ∈ J (2) and θ ∈ [0, 1] define Sj(θ) := {i ∈ T (j) | 1 − `i

C ≥ θ}. Choose θj so as
to minimize 2(1 − θj)C + fj(θj) (note that this minimizer can be determined by trying
out at most |T (j)| different values for θj). We then assign each job in j ∈ J (2) to the
machine set Sj(θj).

By Proposition 8, we know that the total load of each machine i ∈M due to the execution
of jobs from J (1) is at most 2`i. Recall that there is at most one j ∈ J (2) with i ∈ T (j).
If i /∈ Sj(θj), then load of machine i bounded by 2`i ≤ 2C. If i ∈ Sj(θj), then the load of
machine i is bounded by

max
i′∈Sj(θj)

{
2`i′ + fj(Sj(θj))

}
≤ 2(1− θj)C + fj(Sj(θj)), (4)

APPROX/RANDOM 2019

17:10 Malleable Scheduling Beyond Identical Machines

where the inequality comes from the fact that 1 − `i′
C ≥ θj for all i′ ∈ Sθj . The following

proposition gives an upper bound on the RHS of (4) as a result of our filtering technique
and proves Theorem 2.

I Proposition 10. For each j ∈ J (2), there is a θ ∈ [0, 1] with 2(1−θ)C+fj(Sj(θ)) ≤ 2e
e−1C.

Proof. Define α := 2e
e−1 . We show that there is a θ ∈ [0, 1] with σj(Sj(θ)) ≥ γjfj(γj)

(α+2θ−2)C .
Then fj(Sj(θ)) ≤ (α+ 2θ − 2)C by Fact 5, implying the lemma.

Define the function g : [0, 1] → R+ by g(θ) := σj(Sj(θ)). It is easy to see g is non-
increasing integrable and that∫ 1

0
g(θ)dθ =

∑
i∈T (j)

si,j(1−
`i
C

).

See Figure 2 for an illustration.
Now assume by contradiction that g(θ) <

γjfj(γj)
(α+2θ−2)C for all θ ∈ [0, 1]. Note that

`i + γjfj(γj)
si,j

xi,j ≤ C for every i ∈ T (j) by constraints (2) and the fact that γjfj(γj)
si,j

≤ fj(si,j)
for all i such that j ∈ J+

i . Hence
fj(γj)γj

C xi,j ≤ si,j(1− `i
C) for all i ∈ T (j). Summing over

all i ∈ T (j) and using the fact that
∑
i∈T (j) xi,j ≥

1
2 because j ∈ J (2) we get

fj(γj)γj
2C ≤

∑
i∈T (j)

si,j(1−
`i
C

) =
∫ 1

0
g(θ)dθ < fj(γj)γj

C

∫ 1

0

1
α+ 2θ − 2dθ,

where the last inequality uses the assumption that g(θ) < γjfj(γj)
(α+2θj−2)C for all θ ∈ [0, 1].

By simplifying the above inequality, we get the contradiction

1 <
∫ α

α−2

1
λ
dλ = ln(α

α− 2) = 1. J

By the above analysis, our main result for the case of unrelated machines follows.

I Theorem 2. There exists a polynomial-time 2e
e−1 -approximation algorithm for the problem

of scheduling malleable jobs on unrelated machines.

I Remark 11. We can slightly improve the above analysis by optimizing the threshold of
assigning a job to the parent. This optimization gives a slightly better approximation

guarantee of α = infβ∈(0,1)

{
e

1
β
−1

β(e
1
β
−1−1)

}
≈ 3.14619.

3.3 A (7/3)-approximation for restricted identical machines
We are able to provide an algorithm of improved approximation guarantee for the special
case of restricted identical machines: Each job j ∈ J is associated with a set of machines
Mj ⊆M, such that si,j = 1 for i ∈Mj and si,j = 0, otherwise.

Given a feasible solution to [LP(C)] and a properly oriented G(x), we define the sets
J (1) := {j ∈ J | xp(j),j = 1} and J (2) := J \J (1). The rounding scheme for this special
case can be described as follows: (a) Every job j ∈ J (1) is assigned to p(j) (which is the
only machine in G(x) that is assigned to j). (b.i) Every job of j ∈ J (2) such that |T (j)| = 1
or |T (j)| ≥ 3 is assigned to the set T (j) of its children-machines. (b.ii) For every job of
j ∈ J (2) such that |T (j)| = 2, the algorithm schedules the job to the subset S ⊆ T (j) that
results in the minimum makespan over T (j). Notice that for |T (j)| = 2 there are exactly
three such subsets. As usual, the jobs of J (2) are placed at the beginning of the schedule,
followed by the jobs of J (1).

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:11

I Theorem 3. There exists a polynomial-time 7
3 -approximation algorithm for the problem

of scheduling malleable jobs on restricted identical machines (i.e., si,j ∈ {0, 1} for all i ∈M
and j ∈ J).

3.4 A 3-approximation for uniform machines
We prove an algorithm of improved approximation guarantee for the special case of uniform
machines, i.e., every machine has a unique speed si such that si,j = si for all j ∈ J . Given a
target makespan C, we say that a machine i is j-fast for a job j ∈ J if j ∈ J+

i , while we say
that i is j-slow if j ∈ J−i . As opposed to the previous cases, the rounding for the uniform case
starts by transforming the feasible solution of [LP(C)] into another extreme point solution
that satisfies a useful structural property, as described in the following proposition.

I Proposition 12. There is an extreme point solution x of [LP(C)] that satisfies the following
property: For each j ∈ J there is at most one j-slow machine i ∈M such that xi,j > 0 and
xi,j′ > 0 for some job j′ 6= j. Furthermore, this machine, if it exists, is the slowest machine
that j is assigned to.

Let x be an extreme point solution of [LP(C)] that satisfies the property of Proposition 12
and let G(x) a properly oriented pseudoforest. By the above proposition, each job j has at
most three types of assignments in G(x): (i) j-fast machines Fj , (ii) exclusive j-slow machines
Dj , i.e. j-slow machines that are completely assigned to j, and (iii) at most one shared
j-slow machine ij (which is the slowest machine that j is assigned to).

We now describe the rounding scheme for the special case of uniform machines. For any
job j ∈ J in any order: (a) If xp(j),j ≥ 1

2 then j is assigned to its parent-machine p(j),
otherwise (b) j is assigned to a subset S ⊆ T (j). In the second case, the subset S is chosen
according to the following rule: (b.i) If Fj 6= ∅, then assign j to any i ∈ Fj , else (b.ii) if
σj(Dj) ≥ γjfj(γj)

3C , then assign j only to the machines of Dj (but not to the shared ij). In
any other case, (b.iii) j is assigned to Dj ∪ {ij}.

I Theorem 4. There exists a polynomial-time 3-approximation algorithm for the problem of
scheduling malleable jobs on uniform machines (i.e., si,j = si for all i ∈M and j ∈ J).

4 Model extensions and discussion

4.1 Sparse allocations via p-norm regularization
In the model of speed-implementable processing time functions that we study in the previous
sections, each function fj(S) depends on the total additive speed, yet is oblivious to the
actual number of allocated machines. However, the overhead incurred by the synchronization
of physical machines naturally depends on their number and we therefore need to take into
account both the total speed and the cardinality of the machine set allocated to a job. In
this section, we model the impact of the number of machines through the notion of effective
speed. In this setting, every job j is associated with a speed regularizer pj ≥ 1, while the
total speed of a set S ⊆M is given by: σ(pj)

j (S) =
(∑

i∈S s
pj
i,j

) 1
pj . For simplicity, we assume

that every job has the same speed regularizer, p = pj ,∀j ∈ J .
Clearly, the choice of p controls the effect of the cardinality of a set to the resulting

speed of an allocation, given that as p increases a sparse set has higher effective speed
than a non-sparse set of the same total speed. Notice that for p = 1 we return to the
standard case of additive speeds, while for p → ∞, parallelization is no longer helpful

APPROX/RANDOM 2019

17:12 Malleable Scheduling Beyond Identical Machines

as limp→∞ σ
(p)
j (S) = maxi∈S{si,j}. As before, the processing time functions satisfy the

standard properties of malleable scheduling, i.e., fj(s) is non-increasing while fj(s) · s is
decreasing. For simplicity of presentation we assume that all jobs have the same regularizer p,
but we comment on the case of job-dependent regularizers at the end of this section.

Quite surprisingly, we can easily modify the algorithms of the previous section in order to
capture the above generalization. Given a target makespan C, we start from a new feasibility
program [LP(p)(C)], which is given by constraints (1),(3) of [LP(C)], combined with:∑

j∈J+
i

fj(si,j)xi,j +
∑
j∈J−

i

fj(γj)
(
γj
si,j

)p
xi,j ≤ C ∀i ∈M (5)

Note that J+
i , J

−
i , and γj(C) are defined exactly as before, and that the only difference

between [LP(C)] and [LP(p)(C)] is that we replace the coefficient γj
si,j

with
(
γj
si,j

)p
in

constraints (2) of the former. It can be shown that for every C ≥ OPT , where OPT is the
makespan of an optimal schedule, [LP(p)(C)] has a feasible solution.

The algorithm for this case is similar to the one of the standard case (see Section 3.1),
having [LP (p)(C)] as a starting point. Moreover, the rounding scheme is a parameterized
version of the simple rounding of Section 3.1, with the difference that the threshold parameter
β ∈ [0, 1] (i.e., the parameter that controls the decision of assigning a job j to either p(j) or
T (j)) is not necessarily 1

2 . In short, given a pseudoforest G(x), the rounding scheme assigns
any job j to p(j) if xp(j),j ≥ β, or to T (j), otherwise.

By similar arguments as in Propositions 8,9, it can be proved that the makespan of
the produced schedule is at most

(
1
β + 1

(1−β)1/p

)
C. Therefore, the algorithm can initially

compute a threshold β ∈ [0, 1] that minimizes the above theoretical bound. Clearly, for p = 1
the minimizer of the expression is β = 1/2, yielding the 4-approximation of the standard
case, while for p→ +∞ one can verify that β → 1 and:

lim
p→+∞

inf
β∈[0,1]

(
1
β

+ 1
(1− β)1/p

)
= 2.

As expected, for the limit case where p→ +∞, our algorithm converges to the well-known
algorithm by Lenstra et al. [16] given that our problem becomes non-malleable. By using
the standard approximation β = 1− ln p

p for p ≥ 2, we can prove the following theorem.

I Theorem 13. Any feasible solution of [LP(p)(C)] for p ≥ 2 can be rounded in polynomial-
time into a feasible schedule of makespan at most

(
p

p−ln p + p

√
p

ln p

)
C.

Note that an analogous approach can handle the case where jobs have different regularizers,
with the approximation ratio for this scenario determined by the smallest regularizer that
appears in the instance (note that the approximation factor is always at most 4).

4.2 Minimizing the ∑j∈J wjCj objective
The LP-based nature of our algorithms allows the design of efficient O(1)-approximation
algorithms for the objective of minimizing the sum of weighted completion times, i.e.,∑
j∈J wjCj , employing the standard technique of interval-indexed formulations [9]. In this

setting, every job j ∈ J is associated with a weight wj ∈ Z≥0 and the objective is to compute
a feasible schedule of minimum

∑
j∈J wjCj , where Cj the completion time of job j. In

the malleable setting, the approximation guarantee of our algorithm for the
∑
j∈J wjCj

objective depends on the approximation guarantee of the underlying makespan problem.

D. Fotakis, J. Matuschke, and O. Papadigenopoulos 17:13

I Theorem 14. There exists a O(ρ)-approximation algorithm for the problem of malleable
scheduling minimizing the

∑
j∈J wjCj objective, where ρ the approximation ratio of the best

rounding scheme of [LP (C)].

4.3 Supermodular processing time functions
In this paper we concentrated our study on speed-implementable processing time functions.
However, the general definition of malleable scheduling given in Section 1 leaves room for
many other possible variants of the problem with processing times given by monotone non-
increasing set functions. One natural attempt of capturing the assumption of non-decreasing
workload is to assume that for each job j ∈ J the corresponding processing time function fj
is supermodular, i.e.,

fj(T ∪ {i})− fj(T) ≥ fj(S ∪ {i})− fj(S)

for all S ⊆ T ⊆M and i ∈M\T . The interpretation of this assumption is that the decrease
in processing time when adding machine i diminishes the more machines are already used
for job j (note that the terms on both sides of the inequality are non-positive because fj is
non-increasing). For this setting, which we refer to as generalized malleable scheduling with
supermodular processing time functions, we derive a strong hardness of approximation result.

I Theorem 15. There is no |J |1−ε-approximation for generalized malleable scheduling with
supermodular processing time functions, unless P = NP .

References
1 G. M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. IEEE Solid-State Circuits Society Newsletter, 12(3):19–20, Summer 2007.
2 J. Blazewicz, M. Y. Kovalyov, M. Machowiak, D. Trystram, and J. Weglarz. Preemptable

Malleable Task Scheduling Problem. IEEE Trans. Comput., 55(4):486–490, April 2006.
3 R. P. Brent. The Parallel Evaluation of General Arithmetic Expressions. J. ACM, 21(2):201–

206, April 1974.
4 J. Correa, A. Marchetti-Spaccamela, J. Matuschke, L. Stougie, O. Svensson, V. Verdugo, and

J. Verschae. Strong LP formulations for scheduling splittable jobs on unrelated machines.
Mathematical Programming, 154(1-2):305–328, 2015.

5 J. Du and J. Leung. Complexity of Scheduling Parallel Task Systems. SIAM Journal on
Discrete Mathematics, 2(4):473–487, 1989.

6 P. Dutot, G. Mounié, and D. Trystram. Scheduling Parallel Tasks: Approximation Algorithms.
In Joseph T. Leung, editor, Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, chapter 26, pages 26–1–26–24. CRC Press, 2004.

7 M. Garey and R. Graham. Bounds for Multiprocessor Scheduling with Resource Constraints.
SIAM Journal on Computing, 4(2):187–200, 1975.

8 R. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal on Applied
Mathematics, 17(2):416–429, 1969.

9 L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein. Scheduling to Minimize Average
Completion Time: Off-Line and On-Line Approximation Algorithms. Math. Oper. Res.,
22(3):513–544, August 1997.

10 C. Hanen and A. Munier. An approximation algorithm for scheduling dependent tasks on m
processors with small communication delays. Discrete Applied Mathematics, 108(3):239–257,
2001.

APPROX/RANDOM 2019

17:14 Malleable Scheduling Beyond Identical Machines

11 D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling
problems: Theoretical and practical results. In 26th Annual Symposium on Foundations of
Computer Science, FOCS ’85, pages 79–89, October 1985.

12 K. Jansen and F. Land. Scheduling Monotone Moldable Jobs in Linear Time. In 2018 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC,
Canada, May 21-25, 2018, pages 172–181, 2018.

13 K. Jansen and L. Porkolab. Linear-Time Approximation Schemes for Scheduling Malleable
Parallel Tasks. Algorithmica, 32(3):507–520, March 2002.

14 K. Jansen and H. Zhang. An Approximation Algorithm for Scheduling Malleable Tasks Under
General Precedence Constraints. ACM Trans. Algorithms, 2(3):416–434, July 2006.

15 Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM
Journal on Computing, 39(8):3571–3615, 2010.

16 J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46(1):259–271, January 1990.

17 Konstantin Makarychev and Debmalya Panigrahi. Precedence-Constrained Scheduling of Mal-
leable Jobs with Preemption. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
823–834, 2014.

18 G. Mounié, C. Rapine, and D. Trystram. Efficient Approximation Algorithms for Scheduling
Malleable Tasks. In Proceedings of the Eleventh Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’99, Saint-Malo, France, June 27-30, 1999, pages 23–32, 1999.

19 G. Mounié, C. Rapine, and D. Trystram. A 3/2-Approximation Algorithm for Scheduling
Independent Monotonic Malleable Tasks. SIAM J. Comput., 37(2):401–412, 2007.

20 C. H. Papadimitriou and M. Yannakakis. Towards an Architecture-independent Analysis of
Parallel Algorithms. SIAM J. Comput., 19(2):322–328, April 1990.

21 D. A. Patterson and J. L. Hennessy. Computer Organization and Design, Fifth Edition: The
Hardware/Software Interface. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2013.

22 V. J. Rayward-Smith. UET Scheduling with Unit Interprocessor Communication Delays.
Discrete Appl. Math., 18(1):55–71, November 1987.

23 G. N. Srinivasa Prasanna and B. R. Musicus. Generalised Multiprocessor Scheduling Using
Optimal Control. In Proceedings of the Third Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’91, pages 216–228, New York, NY, USA, 1991. ACM.

24 J. Turek, J. L. Wolf, and P. S. Yu. Approximate Algorithms Scheduling Parallelizable Tasks. In
Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’92, pages 323–332, New York, NY, USA, 1992. ACM.

On the Cost of Essentially Fair Clusterings
Ioana O. Bercea
School of Electrical Engineering
Tel Aviv University, Israel
ioana@cs.umd.edu

Martin Groß
School of Business and Economics
RWTH Aachen, Germany
martin.gross@mailbox.org

Samir Khuller
Department of Computer Science
Northwestern University, Evanston, USA
samir.khuller@northwestern.edu

Aounon Kumar
Department of Computer Science
University of Maryland, College Park, USA
aounon@umd.edu

Clemens Rösner
Institute of Computer Science
University of Bonn, Germany
roesner@cs.uni-bonn.de

Daniel R. Schmidt
Institute of Computer Science
University of Cologne, Germany
schmidt@informatik.uni-koeln.de

Melanie Schmidt
Institute of Computer Science
University of Bonn, Germany
melanieschmidt@uni-bonn.de

Abstract
Clustering is a fundamental tool in data mining and machine learning. It partitions points into
groups (clusters) and may be used to make decisions for each point based on its group. However,
this process may harm protected (minority) classes if the clustering algorithm does not adequately
represent them in desirable clusters – especially if the data is already biased.

At NIPS 2017, Chierichetti et al. [18] proposed a model for fair clustering requiring the rep-
resentation in each cluster to (approximately) preserve the global fraction of each protected class.
Restricting to two protected classes, they developed both a 4-approximation for the fair k-center
problem and a O(t)-approximation for the fair k-median problem, where t is a parameter for the
fairness model. For multiple protected classes, the best known result is a 14-approximation for fair
k-center [40].

We extend and improve the known results. Firstly, we give a 5-approximation for the fair k-center
problem with multiple protected classes. Secondly, we propose a relaxed fairness notion under which
we can give bicriteria constant-factor approximations for all of the classical clustering objectives
k-center, k-supplier, k-median, k-means and facility location. The latter approximations are achieved
by a framework that takes an arbitrary existing unfair (integral) solution and a fair (fractional) LP
solution and combines them into an essentially fair clustering with a weakly supervised rounding
scheme. In this way, a fair clustering can be established belatedly, in a situation where the centers
are already fixed.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Facility location and clustering; Theory of computation → Rounding
techniques; Theory of computation → Unsupervised learning and clustering

Keywords and phrases approximation, clustering, fairness, LP rounding

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.18

Category APPROX

Related Version arXiv:1811.10319 [cs.DS]

Acknowledgements The authors would like to thank Sorelle Friedler for useful discussions related
to the topic of fairness. The first author’s work was done while a Ph.D. student at the University
of Maryland.

© Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 18; pp. 18:1–18:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ioana@cs.umd.edu
mailto:martin.gross@mailbox.org
mailto:samir.khuller@northwestern.edu
mailto:aounon@umd.edu
mailto:roesner@cs.uni-bonn.de
https://orcid.org/0000-0001-7381-912X
mailto:schmidt@informatik.uni-koeln.de
mailto:melanieschmidt@uni-bonn.de
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.18
https://arxiv.org/abs/1811.10319
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 On the Cost of Essentially Fair Clusterings

1 Introduction

Suppose we are to reorganize school assignments in a big city. Given a long list of children
starting school next year and a short list of all available teachers, the goal is to assign the
students-to-be to (public) schools such that the maximum distance to the school is small.
The school capacity is given by the number of its teachers: For each teacher, s students
can be admitted. This challenge is in fact an instance of the capacitated (metric) k-center
problem. So using a k-center algorithm, you obtain a solution. However, by chance you
notice an odd occurrence: One school has a huge excess of boys, while another has a surplus
of girls. From previous assignment iterations, you remember that the schools prefer more
balanced classes.

Thus a new challenge arises: Assign the children such that the ratio is (approximately)
1:1 between boys and girls, and minimize the maximum distance under this condition.1 This
can be modeled by the following combinatorial optimization problem: Given a point set, half
of the points are red, the other half is blue. Compute a clustering where each cluster has an
equal number of red and blue points, and minimize the maximum radius.

In this form, our example is a special case of the fair k-center problem, as proposed by
Chierichetti et al. [18] in the context of maintaining fairness in unsupervised machine learning
tasks. Their model is based on the concept of disparate impact [39] (and the p%-rule). The
input points are assumed to have a binary sensitive attribute modeled by two colors, and
discrimination based on this attribute is to be avoided. Since preserving exact balance in
each cluster may be very costly or even be impossible2, the idea is to ensure that at least 1/t
of the points of each cluster are of the minority color, where t is a parameter. A cluster with
this property is called fair, and the fairness constraint can now be added to any clustering
problem, giving rise to fair k-center, fair k-median, etc. Chierichetti et al. [18] develop a
4-approximation for a special case of fair k-center and a (t+

√
3 + ε)-approximation for one

case of fair k-median.
The fair clustering model as proposed by Chierichetti et al. [18] can also be used to

incorporate other aspects into our school assignment example: For example, we might want
to mitigate effects of gentrification or segregation. For these use cases, we need multiple
colors. Then, in each cluster, the ratio between the number of points with one specific
color and the total number of points shall be in some given range. If the allowed range is
[0.20, 0.25] for red points, we require that in each cluster, at least a fifth and at most a fourth
of the points are red. This models well established notions of fairness (statistical parity,
group fairness), which require that each cluster exhibits the same compositional makeup as
the overall data with respect to a given attribute. One downside of this notion is that a
malicious user could create an illusion of fairness by including proxy points: If we wanted to
create an boy-heavy school in our above example, we could still achieve the desired parity
by assigning only girls that are very unlikely to attend. Thus, instead of enforcing equal
representation in the above sense, one could also ask for equal opportunity as proposed by
Hardt et al. [24] for the case where we take binary decisions (i.e., k = 2) and have access
to a labeled training set. This approach, however, raises the philosophical question if this
equality of opportunity is a sufficient condition for the absence of discrimination. Rather
than delving into this complex and much debated issue in this algorithmic paper, we refer to

1 Or, incorporating the capacities, ensure that the teacher:boys:girls ratio is 1: s
2 :

s
2 .2 Imagine a point set with 49 red and 51 blue points: This cannot at all be divided into true subsets with

exactly the same ratio.

I. O. Bercea et al. 18:3

the excellent surveys by Romei and Ruggieri [39] and Z̆liobaitė et al. [43] that systematically
discuss different forms of discrimination and how they can be detected. We assume that it is
the intent of the user to achieve a truly fair solution.

Finding fair clusterings turns out to be an interesting challenge from the point of view of
combinatorial optimization. As other clustering problems with side constraints, it loses the
property that points can be assigned locally. But while many other constraint problems at
least allow polynomial algorithms that assign points to given centers optimally, we show that
even this restricted problem is NP-hard in the case of fair k-center.

Chierichetti et al. [18] tackle fair clustering problems by a two-step procedure: First, they
compute a micro clustering into so-called fairlets, which are groups of points that are fair and
cannot be split further into true subsets that are also fair. Secondly, representative points
of the fairlets are clustered by an approximation algorithm for the unconstrained problem.
Consider the special case of a point set with 1:1 ratio of red and blue points. Then a fairlet is
a pair of one red and one blue point, and a good micro clustering can be found by computing
a suitable bipartite matching between the two color classes.

The problem of computing good fairlets gets increasingly difficult when considering more
general variants of the problem. For multiple colors and the special case of exact ratio
preservation (i.e., for all colors, the allowed range for its ratio is one specific number), the
fairlet computation problem can be reduced to a capacitated clustering problem. This is used
in [40] to obtain a 14 and 15-approximation for fair k-center and k-supplier with multiple
colors and exact ratio preservation.

We give an extensive overview of the existing results and further the fairlet approach in
order to explore its applicability for different variants of fair clustering in the Appendix of
the full version [13]. Two major issues arise: Firstly, capacitated clustering is not solved for
all clustering objectives; indeed, finding a constant-factor approximation for k-median is a
long-standing open problem. Secondly, (even for k-center) it is unclear how fairlets even look
like when we have multiple colors and want to allow ranges for the ratios. In this situation,
subsets of very different size and composition may satisfy the desired ratio.

A different approach is to combine an LP relaxation of the constrained problem with a
solution of the unconstrained problem. This approach is not specific for fair clustering; its
general idea was for example used by Chakrabarty and Swamy [15] for the minimum latency
facility location problem. Finding a reasonably good solution to the unconstrained problem
is usually the easiest task with such an approach. Although finding a good formulation of
the constrained problem as a linear program can be challenging, the main problem in such
approaches is to combine the two solutions into a new solution whose cost can be bound
using the quality of the two original solutions. We use such an approach. We start with a
set of centers, i.e., a solution to the unconstrained problem. Then we build an LP to find a
(fractional) fair solution, and use weakly supervised LP rounding to obtain the final integral
fair solution. We use this method to prove the following statements.

I Theorem 1. There exists a 5 and 7-approximation for the fair k-center and k-supplier
problem which preserves ratios exactly.

I Theorem 2. Given any set of centers S, there exists an assignment φ′ : which is essentially
fair and incurs a cost that is linear in the cost S induces on the unconstrained problem and
the cost of an optimal fractional fair clustering of P , for all objectives k-center, k-supplier,
k-median, k-means, and facility location.

APPROX/RANDOM 2019

18:4 On the Cost of Essentially Fair Clusterings

I Corollary 3. There exists an essentially fair 3/5/3.488/4.675/62.856-approximation for
the fair k-center/k-supplier/facility location/k-median/k-means problem.

Here, essentially fair refers to our notion of bicriteria approximation: A cluster C is
essentially fair if there exists a fractional fair cluster C ′, such that for each color h the
number of color h points in C differ by at most 1 from the mass of color h points in C ′.
So this is a small additive fairness violation. After the publication of our results on arXiv
(Nov 2018), we have learned that in independent research, Bera et al. [12] find algorithms
in a similar model as our essentially fair clustering model and achieve results similar to
Corollary 3, for which they provide an almost identical analysis in their arXiv paper (Jan
2019). Theorem 1 is not affected.

We prove Theorem 2 and Corollary 3 in Section 2. Here the unconstrained starting
solution can be any solution and we say our algorithm is a black-box approximation. We
use the given integral solution to guide our rounding of a fractional solution to an LP that
incorporates fairness. The proof of Theorem 1 can be found in Section 3. It is more involved
as we cannot use a black-box approach, and instead need to find a suitable set of centers (a
suitable integral solution) and have to adjust the weakly supervised rounding procedure.

Our results have two advantages. Firstly, we get results for a wide range of clustering
problems, and these results improve previous results. For example, we get a 5-approximation
for the fair k-center problem with exact ratio preservation, where the best known guarantee
was 14. All our bicriteria results work for multiple colors and approximate ratio preservation,
a case for which no previous algorithm was known. As for the quality of the guarantees,
compare the 4.675-approximation for essentially fair k-median clusterings with the best
previously known Θ(t)-approximation, which is only applicable to the case of two colors.
Notice that a similar result can not be achieved by using bicriteria approximation algorithms
for capacitated clustering. The reduction from capacitated clustering only works when the
capacities are not violated.

Secondly, the black-box approach has the advantage that fairness can be established
belatedly, in a situation where the centers are already given. [21, 44]. Consider our school
example and notice that the location of the schools cannot be chosen. Our result says
that if we are alright with essentially fair clusterings, we get a clustering which is not
much more expensive than a fair clustering where the centers were chosen with the fairness
constraint at hand.

Related work

Using k centers to cluster points while minimizing a certain objective function has a long
history in terms of results and applications. For the k-center problem in general metric
spaces, the 2-approximations developed by Gonzalez [22] and Hochbaum and Shmoys [25]
were shown to be tight by Hsu and Nemhauser [26]. The k-supplier problem can be 3-
approximated [25], which is also tight. Facility location can be 1.488-approximated [35],
which is very close to the known APX-hardness of 1.463 for the problem [23]. For k-median,
a recent breakthrough has led to a 2.675-approximation [38, 14], while the best hardness
result lies below two [27]. The gap between best upper and lower bound is even larger for
k-means, where a 6.357-approximation is the best known [4], and the newest hardness result
is marginally above 1 [8, 32].

The k-center problem allows for constant-factor approximations for many useful constraints
such as capacity constraints [11, 19, 28], lower bounds on the size of each cluster [3, 6] or
allowing for outliers [16, 20]. This is also true for facility location and capacities [2, 7, 10],
uniform lower bounds [5, 42], and outliers [16]. Much less is known for k-median and k-means.

I. O. Bercea et al. 18:5

True constant-factor approximations so far exist only for the outlier constraint [17, 31]. A
major problem for obtaining constant factor approximations is that the natural LP has an
unbounded integrality gap, which is also true for the LP with fairness constraints. Bicriteria
approximations are known that either violate the capacity constraints [34, 36, 37] or the
cardinality constraint [1].

A clustering problem where the points have a color was considered by Li, Yi and Zhang [33].
They provided a 2-approximation for a constraint called diversity, which allows at most one
point per color in each cluster.

The fairness constraint has been introduced by Chierichetti et al. [18]. They show a
4-approximation for the fair k-center problem with two color classes, where one color class
contains t-times as many points as the other, for some integer t. Rösner and Schmidt gave
a 14-approximation algorithm for k-center in the extended case with arbitrary many color
classes. For the fair k-median problem with two color classes, where one color class contains
t-times as many points as the other, for some integer t, Chierichetti et al. [18] also give
a Θ(t)-approximation. Backurs et al. [9] give an O(d · log(n))-approximation for a more
general version of the fair k-median problem with two color classes, where a problem instance
consists of n points in Rd. For k-means the only known approximation algorithm only works
for two color classes, which each contain exactly half of the points. Schmidt et al. [41] give
a 32.875-approximation for this case. In parallel to our research, Bera et al. [12] have also
extended the fairness model to multiple colors and approximate fairness preservation. Their
model additionally allows for an overlap of the protected classes. They achieve results similar
to Corollary 3.

Recent work of Kleindessner et al. [30] considers the fairness constraints in the context of
spectral clustering. Fair data summarization was considered by Kleindessner et al. [29] who
imposed the fairness constraint on the cluster centers alone. Specifically, they solve k-center
instances with the added constraint that the chosen centers must satisfy an input distribution
on the colors (i.e. out of the chosen centers, ki must belong to color class i, where ki is given
as part of the input). While this formulation is useful for data summarization (when only
the centers are reported), it is not guaranteed to lead to fair clusters overall. They propose a
5-approximation algorithm for the case of two color classes. When there are m color classes,
they obtain a (3 · 2m − 1)-approximation.

Preliminaries

Points and locations

We are given a set of n points P and a set of potential locations L. We allow L to be infinite
(when L = Rd). The task is to open a subset S ⊆ L of the locations and to assign each
point in P to an open location via a mapping φ : P → S. We refer to the set of all points
assigned to a location i ∈ S by P (i) := φ−1(i). The assignment incurs a cost governed by a
semi-metric d : (P ∪ L)× (P ∪ L)→ R≥0 that fulfills a β-relaxed triangle inequality

d(x, z) ≤ β(d(x, y) + d(y, z)) for all x, y, z ∈ P ∪ L (1)

for some β ≥ 1. Additionally, we may have opening costs fi ≥ 0 for every potential location
i ∈ L or a maximum number of centers k ∈ N.

APPROX/RANDOM 2019

18:6 On the Cost of Essentially Fair Clusterings

Colors and fairness

We are also given a set of colors Col := {col1, . . . , colg}, and a coloring col : P → Col that
assigns a color to each point j ∈ P . For any set of points P ′ ⊆ P and any color colh ∈ Col
we define colh(P ′) = {j ∈ P ′ | col(j) = colh} to be the set of points colored with colh in P ′.
We call rh(P ′) := |colh(P ′)|

|P ′| the ratio of colh in P ′. If an implicit assignment φ is clear from
the context, we write colh(i) to denote the set of all points of a color colh ∈ Col assigned to
an i ∈ S, i.e., colh(i) = colh(P (i)).

A set of points P ′ ⊆ P is exactly fair if P ′ has the same ratio for every color as P , i.e., for
each colh ∈ Col we have rh(P ′) = rh(P). We say that P ′ is (`, u)-fair or just fair for some
` = (`1, . . . , `g) and u = (u1, . . . , ug), if we have rh(P ′) ∈ [`h, uh] for every color colh ∈ Col.

In our fair clustering problems, we want to preserve the ratios of colors found in P in our
clusters. We distinguish two cases: exact preservation of ratios, and relaxed preservation of
ratios. For the exact preservation of ratios, we ask that all clusters are exactly fair, i.e., P (i)
is fair for all i ∈ S.

For the relaxed preservation of ratios, we are given the lower and upper bounds ` = (`1 =
p1

1/q
1
1 , . . . , `g = pg1/q

g
1) and u = (u1 = p1

2/q
1
2 , . . . , ug = pg2/q

g
2) on the ratio of colors in each

cluster and ask that all clusters are (`, u)-fair. The exact case is a special case of the relaxed
case where we set `h = uh = rh(P) for every color colh ∈ Col.

Essentially fair clusterings are defined below (see Definition 6).

Objectives

We consider fair versions of several classical clustering problems. An instance is given by
I := (P,L, col, d, f, k, `, u), and our goal is to choose a solution (S, φ) according to one of the
following objectives.

k-center and k-supplier: minimize the maximum distance between a point and its
assigned location: min maxj∈P d(j, φ(j)). In these problems, we have f ≡ 0 and d is a
metric. Furthermore, in k-center, L = P , whereas in k-supplier , L 6= P is some finite set.
k-median: minimize

∑
j∈P d(j, φ(j)), d is a metric, f ≡ 0 and L ⊆ P .

k-means: minimize
∑
j∈P d(j, φ(j)), where P ⊆ Rm for some m ∈ N, L = Rm and

d(x, y) = ||y − x||2 is a semi-metric for β = 2 and f ≡ 0.
facility location: minimize

∑
j∈P d(j, φ(j)) +

∑
i∈S fi, where k = n, d is a metric and

L is a finite set.

The fair assignment problem

For all the objectives above, we call the subproblem of computing a cost-minimal fair
assignment of points to given centers the fair assignment problem. We show the following
theorem in Section A.

I Theorem 4. Finding an α-approximation for the fair assignment problem for k-center for
α < 3 is NP-hard.

(I)LP formulations for fair clustering problems
Let I = (P,L, col, d, f, k, `, u) be a problem instance for a fair clustering problem. We
introduce a binary variable yi ∈ {0, 1} for all i ∈ L that decides if i is opened, i.e. yi =
1 ⇔ i ∈ S. Similarly, we introduce binary variables xij ∈ {0, 1} for all i ∈ L, j ∈ P with
xij = 1 if j is assigned to i, i.e. φ(j) = i. All ILP formulations have the inequalities

I. O. Bercea et al. 18:7

(2)
∑
i∈L

xij = 1 ∀j ∈ P saying that every point j is assigned to a center, the inequalities

(3) xij ≤ yi ∀i ∈ L, j ∈ P ensuring that if we assign j to i, then i must be open, and the
integrality constraints (4) yi, xij ∈ {0, 1} ∀i ∈ L, j ∈ P . We may restrict the number of open
centers to k with (5)

∑
i∈L yi ≤ k. For k-center and k-supplier, the objective is commonly

encoded in the constraints of the problem, and the (I)LP has no objective function. The
idea is to guess the optimum value τ . Since there is only a polynomial number of choices
for τ , this is easily done. Given τ , we construct a threshold graph Gτ = (P ∪ L,Eτ) on the
points and locations, where a connection between i ∈ L and j ∈ P is added iff i and j are
close, i.e., {i, j} ∈ Eτ ⇔ d(i, j) ≤ τ . Then, we ensure that points are not assigned to centers
outside their range:

xij = 0 for all i ∈ L, j ∈ P, {i, j} /∈ Eτ (6)

For the remaining clustering problems, we pick the adequate objective function from the
following three (let dij := d(i, j)):

min
∑

i∈L,j∈P
xijdij (7) min

∑
i∈L,j∈P

xijd
2
ij (8) min

∑
i∈L,j∈P

xijdij +
∑
i∈L

yifi (9)

We now have all necessary constraints and objectives. For k-center and k-supplier, we use
inequalities (2)-(6), no objective, and define the optimum to be the smallest τ for which the
ILP has a solution. We get k-median and k-means by combining inequalities (2)-(5) with (7)
and (8), respectively, and we get facility location by combining (2)-(4) with the objective (9).
LP relaxations arise from all ILP formulations by replacing (4) by yi, xij ∈ [0, 1] for all
i ∈ L, j ∈ P . To create the fair variants of the ILP formulations, we add fairness constraints
modeling the upper and lower bound on the balances.

`h
∑
j∈P

xij ≤
∑

col(pj)=colh

xij ≤ uh
∑
j∈P

xij for all i ∈ L, h ∈ Col (10)

Although very similar to the canonical clustering LPs, the resulting LPs become much
harder to round even for k-center with two colors. We show the following in Section B.

I Lemma 5. There is a choice of non-trivial fairness intervals such that the integral-
ity gap of the LP-relaxation of the canonical fair clustering ILP is Ω(n) for the fair k-
center/k-supplier/k-median/facility location problem. The integrality gap is Ω(n2) for the
fair k-means problem.

Essential fairness

For a point set P ′, massh(P ′) = |colh(P ′)| is the mass of color colh in P ′. For a possibly
fractional LP solution (x, y), we extend this notion to massh(x, i) :=

∑
j∈colh(P) xij . We

denote the total mass assigned to i in (x, y) by mass(x, i) =
∑
j∈P xij . With this notation,

we can now formalize our notion of essential fairness.

I Definition 6 (Essential fairness). Let I be an instance of a fair clustering problem and let
(x, y) be an integral, but not necessarily fair solution to I. We say that (x, y) is essentially
fair if there exists a fractional fair solution (x′, y′) for I such that ∀i ∈ L:

bmassh(x′, i)c ≤ massh(x, i) ≤ dmassh(x′, i)e ∀colh ∈ Col (11)
and bmass(x′, i)c ≤ mass(x, i) ≤ dmass(x′, i)e. (12)

APPROX/RANDOM 2019

18:8 On the Cost of Essentially Fair Clusterings

2 Essential fair clusterings via black-box approximation

For essentially fair clustering, we give a powerful framework that employs approximation
algorithms for (unfair) clustering problems as a black-box and transforms their output into an
essentially fair solution. In this framework, we start by computing an approximate solution
for the standard variant of the clustering problem at hand. Next, we solve the LP for the fair
variant of the clustering problem. Now we have an integral unfair solution, and a fractional
fair solution. Our final and most important step is to combine these two solutions into an
integral and essentially fair solution. It consists of two conceptual sub-steps: Firstly, we show
that it is possible to find a fractional fair assignment to the centers of the integral solution
that is sufficiently cheap. Secondly, we round the assignment. This last sub-step introduces
the potential fairness violation of one point per color per cluster.

We show that this approach yields constant-factor approximations with fairness violation
for all mentioned clustering objectives. The description will be neutral whenever the
objective does not matter. Thus, descriptions like the LP mean the appropriate LP for the
desired clustering problem. When the problem gets relevant, we will specifically discuss
the distinctions. Notice that for all clustering problems defined in Section 1, P and L are
finite except for k-means. However, for the k-means problem, we can assume that L = P

if we accept an additional factor of 2 in the approximation guarantee. Thus, we assume in
the following that L and P are finite sets. Indeed, we even assume at least L ⊆ P for all
problems except k-supplier and facility location.

2.1 Step 1: Obtaining a fair solution with integral y

In the first step, we assume that we are given two solutions. Let (xLP , yLP) be an optimal
solution to the LP. This solution has the property that the assignments to all centers are fair,
however, the centers may be fractionally open and the points may be fractionally assigned to
several centers. Let cLP be the objective value of this solution. For k-supplier and k-center,
it is the smallest τ for which the LP is feasible, for the other objectives, it is the value of the
LP. We denote the cost of the best integral solution to the LP by c∗. We know that cLP ≤ c∗.

Let (x̄, ȳ) be any integral solution to the LP that may violate fairness, i.e., inequality (10),
and let c̄ be the objective value of this solution. We think of (x̄, ȳ) as being a solution of an
α-approximation algorithm for the standard (unfair) clustering problem for some constant α.
Since the unconstrained version can only have a lower optimum cost, we then have c̄ ≤ α · c∗.

Our goal is now to combine (xLP , yLP) and (x̄, ȳ) into a third solution, (x̂, ŷ), such that
the cost of (x̂, ŷ) is bounded by O(cLP + c̄) ⊆ O(c∗). Furthermore, the entries of ŷ shall be
integral. The entries of x̂ may still be fractional after step 1.

Let S be the set of centers that are open in (x̄, ȳ). For all j ∈ P , we use φ̄(j) to denote
the center in S closest to j, i.e., φ̄(j) = arg mini∈S d(j, i) (ties broken arbitrarily). Notice
that the objective value of using S with assignment φ̄ for all points in P is at most c̄, since
assigning to the closest center is always optimal for the standard clustering problems without
fairness constraint.

Depending on the objective, L is a subset of P or not, i.e., φ̄ is not necessarily defined
for all locations in L. We then extend φ̄ in the following way. Let i ∈ L\P be any center,
and let j∗ be the closest point to it in P . Then we set φ̄(i) := φ̄(j∗), i.e., i is assigned to the
center in S which is closest to the point in P which is closest to i. Finally, let C̄(i) = φ̄−1(i)
be the set of all points and centers assigned to i by φ̄. We show the following lemma.

I. O. Bercea et al. 18:9

I Lemma 7. Let (xLP , yLP) and (x̄, ȳ) be two solutions to the LP, where (x̄, ȳ) may violate
inequality (10), but is integral. Then the solution defined by ŷ := ȳ and

x̂ij :=
∑

i′∈C̄(i)

xLPi′j for all i ∈ S, j ∈ P, x̂ij := 0 for all i /∈ S, j ∈ P.

satisfies inequality (10), ŷ is integral, and the cost ĉ of (x̂, ŷ) is bounded by cLP + c̄ for
k-center, by 2 · cLP + c̄ for k-supplier, k-median, and facility location, and by 12 · cLP + 8 · c̄
for k-means.

Proof. Recall that for k-center and k-supplier, speaking of the cost of an LP solution is a
bit sloppy; we mean that (x̂, ŷ) is a feasible solution in the LP with threshold ĉ.

The definition of (x̂, ŷ) means the following. For every (fractional) assignment from a
point j to a center i′, we look at the cluster with center i = φ̄(i′) to which i′ is assigned
to by φ̄. We then transfer this assignment to i. So from the perspective of i, we collect
all fractional assignments to centers in C̄(i) and consolidate them at i. Notice that the
(fractional) number of points assigned to i after this process may be less than one since (x̄, ȳ)
may include centers that are very close together.

Since that ŷ is simply ȳ it is integral as well and has the same number of centers, thus
ŷ also satisfies (5) if the problem uses it. Next, we observe that (x̂, ŷ) satisfies fairness,
i.e., respects (10). This is true because (xLP , yLP) satisfies them, and because we move all
assignment from a center i′ to the same center φ̄(i′). This transferring operation preserves
the fairness. Inequality (3) is true because we only move assignments to centers that are
fully open in (x̄, ȳ), i.e., the inequality cannot be violated as long as (2) is true (which it
is for (xLP , yLP) since it is a feasible LP solution). Equality (2) is true for (x̂, ŷ) since all
assignment of j is moved to some fully open center. Thus (x̂, ŷ) is a feasible solution for the
LP. It remains to show that ĉ is small enough, which depends on the objective.

k-median and k-means. We start by showing this for k-median (where the distances are
a metric, i.e., β = 1 in the β-triangle inequality (1)) and k-means (where the distances are a
semi-metric with β = 2). We observe that here, the cost of (x̂, ŷ) is

ĉ =
∑
j∈P

∑
i∈L

x̂ijd(i, j) =
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(i, j).

Now fix i ∈ L, i′ ∈ C̄(i) and j ∈ P arbitrarily. By the β-relaxed triangle inequality,
d(i, j) ≤ β · d(i′, j) + β · d(i′, i). Furthermore, we know that i′ ∈ C̄(i), i.e., φ̄(i′) = i and
d(i′, i) ≤ d(i′, φ̄(j)). We can use this to relate d(i′, i) to the cost that j pays in (x̄, ȳ):

d(i′, i) ≤ d(i′, φ̄(j)) ≤ β · d(j, i′) + β · d(j, φ̄(j)).

Adding this up yields∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(i, j)

≤
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

(β + β2)xLPi′j d(i′, j) +
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

β2 · xLPi′j d(j, φ̄(j))

=(β + β2) · cLP + β2 · c̄.

For β = 1 (k-median), this is 2cLP + c̄, for β = 2 (k-means), we get 12cLP + 8c̄

Facility location. For facility location, we have to include the facility opening costs. We

APPROX/RANDOM 2019

18:10 On the Cost of Essentially Fair Clusterings

open the facilities that are open in (x̄, ȳ), which incurs a cost of
∑
i∈L ȳifi. The distance

costs are the same as for k-median, so we get a total cost of∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

2xLPi′j d(i′, j) +
∑
j∈P

∑
i∈L

∑
i′∈C̄(i)

xLPi′j d(j, φ̄(j)) +
∑
i∈L

ȳifi ≤ 2cLP + c̄.

k-center and k-supplier. For the k-center and k-supplier proof, we again fix i ∈ L,
i′ ∈ C̄(i) and j ∈ P arbitrarily and use that d(i, j) ≤ d(i, i′) + d(i′, j). Now for k-center, we
know that d(i, i′) ≤ c̄ since i′ ∈ C̄(i), and we know that d(i′, j) ≤ cLP for all j where xLPij
is strictly positive. Thus, if x̂ij is strictly positive, then d(i, j) ≤ c̄ + cLP . For k-supplier,
we have no guarantee that d(i, i′) ≤ c̄ since i′ is not necessarily an input point. Instead,
i′ ∈ C̄(i) means that the point j′ in P which is closest to i′ is assigned to i by x̄. Since j′ is
the closest to i′ in P , we have d(i′, j′) ≤ d(i′, j). Furthermore, since j′ ∈ C̄(i), d(i, j′) ≤ c̄.
Thus, we get for k-supplier that

d(i, j) ≤ d(i, i′) + d(i′, j) ≤ d(i, j′) + d(i′, j′) + d(i′, j) ≤ c̄+ 2 · cLP . J

2.2 Step 2: Rounding the x-variables
For rounding the x-variables, we need to distinguish between two cases of objectives. Let
j ∈ P be a point that is fractionally assigned to some centers Lj ⊆ L.

First, we have objectives where we can transfer mass from an assignment of j to i′ ∈ Lj to
an assignment of j to i′′ ∈ Lj without modifying the objective. We say that such objectives
are reassignable (in the sense that we can reassign j to centers in Lj without changing the
cost). k-center and k-supplier have this property.

Second, we have objectives where the assignment cost is separable, i.e., where the distances
influence the cost via a term of the form

∑
i∈L,j∈P cij · xij for some cij ∈ R≥0. We call such

objectives separable. Facility location, k-median and k-means fall into the this category.

I Lemma 8. Let (x, y) be an α-approximate fractional solution for a fair clustering problem
with the property that all yi, i ∈ L are integral. Then we can obtain an α-approximative integral
solution (x′, y′) with an additive fairness violation of at most one in time O(poly(|S|+ |P |)),
with S := {i ∈ L | yi ≥ 1} being the set of locations that are opened in (x, y).

Proof. We create our rounded α-approximate integral solution (x′, y′) by min-cost flow
computations. We begin by constructing a min-cost flow instance which depends on our
starting solution (x, y) as well as on the objective of the problem we are studying.

We define a min-cost flow instance (G = (V,A), c, b) (also see Figure 1) with unit capacities
and costs c on the edges as well as balances b on the nodes. We begin by defining a graph
Gh = (V h, Ah) for every color h ∈ Col with

V h := V hS ∪ V hP , V hS :=
{
vhi | i ∈ S

}
, V hP :=

{
vhj | j ∈ colh(P)

}
,

Ah :=
{

(vhj , vhi) | i ∈ S, j ∈ colh(P) : xij > 0
}
,

as well as costs ch by cha := cij for a = (vhj , vhi) ∈ Ah, i ∈ S, j ∈ colh(P) and balances bh by
bhv := 1 if v ∈ V hP and bhv := −bmassh(x, i)c if v = vhi ∈ V hS . We use the graphs Gh to define
G = (V,A) by

V :={t} ∪ VS ∪
⋃

h∈Col

V h, VS := {vi | i ∈ S}

A :=
⋃

h∈Col

Ah ∪
{

(vhi , vi) | i ∈ S, h ∈ Col : massh(x, i)− bmassh(x, i)c > 0
}

∪ {(vi, t) | i ∈ S : mass(x, i)− bmass(x, i)c > 0} ,

I. O. Bercea et al. 18:11

together with costs c of ca := cha for a ∈ Ah and 0 otherwise, and balances b of bv := bhv if
v ∈ V h for some h ∈ Col, bv := −Bi if v = vi ∈ VS and bt := −B with Bi = bmass(x, i)c −∑
h∈Colbmassh(x, i)c and B := |P | −

∑
i∈Sbmass(x, i)c.

Separable objectives – k-median and k-means

We observe that:
1. B and Bi are integers for all i ∈ S, and so are all capacities, costs and balances.

Consequently, there are integral optimal solutions for the min-cost flow instance (G, c, b),
2. (x, y) induces a feasible solution for (G, c, b), by defining a flow x in G as follows:

xa :=

xij if a = (vhj , vhi) ∈ Ah, j ∈ P, i ∈ S,
massh(x, i)− bmassh(x, i)c if a = (vhi , vi) ∈ A, h ∈ Col, i ∈ S,
mass(x, i)− bmass(x, i)c if a = (vi, t) ∈ A, i ∈ S.

Since (x, y) is a fractional solution, x satisfies capacity and non-negativity constraints
because xij ∈ [0, 1] for all i ∈ L, j ∈ P and massh(x, i) − bmassh(x, i)c,mass(x, i) −
bmass(x, i)c ∈ [0, 1] for all i ∈ S and colh ∈ Col as well. We have flow conservation since
the fractional solution needs to assign all points, and the flow of the edges (vhi , vi) and
(vi, t) as well as the demand of vi and t are chosen in such a way that we have flow
conservation for all the other nodes as well.

3. Integral solutions x to the min-cost flow instance (G, c, b) induce an integral solution
(x̄, y) to the original clustering problem by setting x̄ij := xa for a = (vhj , vhi) ∈ Ah if
j ∈ colh(P), i ∈ S. Since the flow x is integral, this gives us an integral assignment of all
points to centers which have been opened, since y was already integral before this step.
This incurs the additive fairness violation of at most one, since every i ∈ S is guaranteed
by our balances to have at least bmassh(x, i)c points of color h ∈ Col and at least
bmass(x, i)c points in total assigned to it. Since there is at most one outgoing arc of unit
capacity (vhi , vi) and (vi, t) for an i ∈ S if massh(x, i) − bmassh(x, i)c > 0, we have at
most dmassh(x, i)e points of color colh and dmass(x, i)e total points assigned to i.

Together, this yields that computing a min-cost flow x̂ for (G, c, b) followed by applying the
third observation to x̂ yields a solution (x̂, y) to the clustering with an additive fairness
violation of at most one.

Since (x, y) was inducing the fractional solution x with cost(x) = cost(x, y) to the min-cost
flow instances, and cost(x) ≥ cost(x̂) by construction we have cost(x̂, y) ≤ cost(x, y).

Reassignable objectives – k-center and k-supplier

In the case of reassignable objectives, we do not have to care about costs, as long as the
reassignments happen to centers in Lj for all points j ∈ P . We essentially use the same
strategy as before, but instead of a min cost flow problem we solve the transshipment problem
(G = (V,A), b) with unit capacities on the edges and balances b on the nodes. Notice that the
three observations from the previous case apply here as well, and reassignability guarantees
that the cost does not increase. J

Lemmas 7 and 8 then lead directly to Theorem 2, or, in more detail, to:

I Theorem 9. Black-box approximation for fair clustering gives essentially fair solutions
with a cost of cLP + c̄ for k-center, 2cLP + c̄ for k-supplier, k-median and facility location,
and 12cLP + 8c̄ for k-means where cLP is the cost of an optimal solution to the fair LP
relaxation and c̄ is the cost of the given solution.

APPROX/RANDOM 2019

18:12 On the Cost of Essentially Fair Clusterings

We know that cLP is not more expensive than an optimal solution to the fair clustering
problem. If we use an α-approximation to obtain the unfair clustering solution, we have that
c̄ is at most α times the cost of an optimal solution to the fair clustering problem. Currently,
the best known approximation factors are 2 for k-center [22, 25], 3 for k-supplier [25], 1.488
for facility location [35], 2.675 for k-median [14, 38] and 6.357 for k-means [4], which yields
Corollary 3.

Nodes for:

P

c1 c2 c3
S, h

S

t t

b-values

−B

−Bi

−bmassh(x, i)c

1

Figure 1 Example for the graph G used in the rounding of the x-variables.
Bi = bmass(x, i)c −

∑
h∈Col

bmassh(x, i)c and B = |P | −
∑

i∈S
bmass(x, i)c.

3 True approximations for fair k-center and k-supplier

We now extend our weakly supervised rounding technique for k-center and k-supplier in
the case of the exact fairness model. We replace the black-box algorithm with a specific
approximation algorithm, and then achieve true approximations for the fair clustering
problems by informed rounding of the LP solution.

3.1 5-Approximation Algorithm for k-center
In this section, we consider the fair k-center problem with exact preservation of ratios and
without any additive fairness violation.

We give a 5-approximation for this variant. The algorithm begins by choosing a set of
centers. In contrast to Section 2 we do not use an arbitrary algorithm for the standard
k-center problem but specifically look for nodes in the threshold graph Gτ = (P,Eτ) where
Eτ = {(i, j) | i 6= j ∈ P, d(i, j) ≤ τ} that form a maximal independent set S in G2

τ . Here Gtτ
denotes the graph on P that connects all pairs of nodes which are connected by a path of
length at most t in Gτ and we denote the edge set of Gtτ by Etτ . As we use the following
procedure independent for each connected component of Gτ , we will in the description and
the following proofs of the procedure assume that Gτ is a connected graph. The procedure
uses the approach by Khuller and Sussmann [28] (procedure AssignMonarchs) to find S
which ensures the following property: There exists a tree T spanning all the nodes in S and
two adjacent nodes in T are exactly distance 3 apart in Gτ . The procedure begins by choosing
an arbitrary vertex r ∈ P , called root, into S and marking every node within distance 2 of r
(including itself). Until all the nodes in P are marked, it chooses an unmarked node u that
is adjacent to a marked node v and marks all nodes in the distance two neighborhood of u.
Observe that u is exactly at distance 3 from a node u′ ∈ S chosen earlier that caused v to
get marked. Thus the run of the procedure implicitly defines the tree T over the nodes of

I. O. Bercea et al. 18:13

S. In case Gτ is not a connected graph this procedure is run on each connected component
and the set S has the following property: There exists a forest F such that F reduced to a
connected component of Gτ is a tree T spanning all the nodes of S inside of that connected
component and two adjacent nodes in T are exactly distance 3 apart in Gτ .

In the next phase, we make use of some structure that feasible solutions with exact
preservation of the ratios must have.

I Observation 10. Let m ∈ N be the smallest integer such that for each color h ∈ Col we
have rh(P) = qh

m for some qh ∈ N. Then for each cluster P (i) in a fair clustering C of P with
exact preservation of ratios, there exists a positive integer i′ ∈ N≥1 such that P (i) contains
exactly i′ · qh points with color h for each color h ∈ Col and i′ ·m total points. Thus every
cluster must have at least qh points of color h for each color h ∈ Col.

We use Observation 10 and the fixed set of centers S to obtain the following adjusted LP
for the fractional fair k-center problem.∑

i∈S
xij = 1, ∀j ∈ P (13)∑

j∈colh(P)

xij = rh(P)
∑
j∈P

xij ∀i ∈ S (14)

∑
j∈colh(P)
(i,j)∈E2

τ

xij ≥ qh ∀i ∈ S, ∀h ∈ Col (15)

xij = 0 ∀i ∈ S, j ∈ P with (i, j) /∈ E3
τ (16)

0 ≤ xij ≤ 1 ∀i ∈ S, j ∈ P (17)

Here inequality (15) ensures that each cluster contains at least qh points of color h. Let
Sopt be the set of centers in the optimal solution and let φopt : P → Sopt be the optimal
fair assignment. For the correct guess τ , every center i ∈ S has a distinct center in Sopt
which is at most distance one away from i in Gτ . Therefore, there exists qh points of each
color h within distance two of i. This ensures that inequality (15) is satisfiable for the right
guess τ . And since, every center in Sopt is within distance two of some i ∈ S, there exists a
fair assignment of points in P to centers in S within distance three. Thus the above LP is
feasible for the right τ .

Now for the final phase, the algorithm rounds a fractional solution for the above assignment
LP to an integral solution of cost at most 5τ in a procedure motivated by the LP rounding
approach used by Cygan et al. in [19] for the capacitated k-center problem. Let β(i) denote
the children of node i ∈ S in the tree T . Starting from the leaf nodes we recursively define
quantities Γ(i) and δ(i), ∀i ∈ S as follows:

Γ(i) =
⌊∑

j∈col1(P) xij +
∑
i′∈β(i) δ(i′)

q1

⌋
q1

δ(i) =
∑

j∈col1(P)

xij +
∑
i′∈β(i)

δ(i′)− Γ(i)

For a leaf node i in the tree T we have β(i) = ∅, then Γ(i) denotes the amount of color
1 points assigned to i rounded down to the nearest multiple of q1, while δ(i) denotes the
remaining amount. The idea is to reassign the remainder to the parent of i. Then for a
non leaf i′ Γ(i′) denotes the amount of color 1 points assigned to i′ plus the remainder that
all children of i′ want to reassign to i′ rounded down to the nearest multiple of q1, while

APPROX/RANDOM 2019

18:14 On the Cost of Essentially Fair Clusterings

δ(i′) again denotes the remainder. Since by definition of q1 the total number of points in
col1(P) must be an integer multiple of q1, Γ(r) also denotes the the amount of color 1 points
assigned to r plus the remainder that all children of r want to reassign to r and δ(r) = 0.

Also note that Γ(i) is always a positive integer multiple of q1 for any i, and δ(i) is always
non-negative and less than q1.

One can think of the xij variables as encoding flow from a vertex j to a node i ∈ S.
We call it a color h flow if j has color h. We will re-route these flows (maintaining the
ratio constraints) such that ∀i ∈ S, j ∈ col1(P) xij is equal to Γ(i) which is an integral
multiple of q1.

I Lemma 11. There exists an integral assignment of all vertices with color 1 to centers in
S in G5

τ that assigns Γ(i) vertices with color 1 to each center i ∈ S.

Proof. Construct the following flow network: Take sets col1(P) and S to form a bipartite
graph with an edge of capacity one between a vertex j ∈ col1(P) and a center i ∈ S if and
only if (i, j) ∈ E5

τ . Connect a source s with unit capacity edges to all vertices in col1(P)
and each center i ∈ S with capacity Γ(i) to a sink t. We now show a feasible fractional flow
of value |col1(P)| in this network. For each leaf node i in T which is not the root, assign
Γ(i) amount of color 1 flow from the total incoming color 1 flow

∑
j∈col1(P) xij from vertices

that are at most distance three away from i in Gτ and propagate the remaining δ(i) amount
of color 1 flow, coming from distance two vertices, upwards to be assigned to the parent of
node i. This is always possible because by definition δ(i) < q1 and constraint (15) ensures
that every center has at least q1 amount of color 1 flow coming from distance two vertices.
For every non-leaf node i, assign Γ(i) amount of incoming color 1 flow from distance five
vertices (including the color 1 flows propagated upwards by its children) and propagate δ(i)
amount of color 1 flow from distance two vertices (possible due to constraint (15)). Thus
every center has Γ(i) amount of color 1 flow passing through it and it is easy to verify that
the value of the total flow in the network is |col1(P)|. Since the network only has integral
capacities, there exists an integral max-flow of value |col1(P)|. J

I Lemma 12. For any reassignment of a color 1 flow, there exists a reassignment of color
h-flow between the same centers for all h ∈ Col \ {1}, such that the resulting fractional
assignment of the vertices satisfies the fairness constraints at each center.

Proof. Say f1 amount of color 1 flow is reassigned from center i1 to another center i2.
Reassign fh = rh · f1/r1 amount of color h flow from i1 to i2 for each color h ∈ Col \ {1}.
This is possible as constraint (14) implies that the amount of color h points assigned to i1
must be equal to rh

r1
times the amount of color 1 points assigned to i1 and f1 must be less

than the amount of color 1 points assigned to i1. It is easy to verify that the ratios at i1
and i2 remain unchanged as by construction the ratio of the reassigned flows is equal to the
original ratio. J

From Lemmas 11 and 12 we can say that there is a fair fractional assignment within distance
5τ such that all the color 1 assignments are integral and every center i has Γ(i) color 1
vertices assigned to it. Since this assignment is fair the total incoming color h flow at each
center must be Γ(i) qhq1

which are integers for every center i ∈ S and every color h ∈ Col.

I Lemma 13. There exists an integral fair assignment in G5
τ .

Proof. Construct a flow network for color h vertices similar to the one in lemma 11: Take
sets colh(P) and S to form a bipartite graph with an edge of capacity one between a vertex
j ∈ colh(P) and a center i ∈ S if and only if (i, j) ∈ E5

τ . Connect a source s with unit

I. O. Bercea et al. 18:15

capacity edges to all vertices in colh(P) and each center i ∈ S with capacity Γ(i) rhr1
to a

sink t. The above fractional assignment in G5
τ gives a flow for the above network. Since the

network only consists of integral demands and capacities, there is an integral max-flow which
gives the assignment for the color h vertices. J

I Theorem 14. There exists a 5-approximation for the fair k-center problem with exact
preservation of ratios.

Proof. Follows from Lemmas 11, 12 and 13 J

3.2 7-approximation for k-suppliers
We adapt the algorithm in Section 3.1 to work for the k-suppliers model to give a 7-
approximation for the variant with exact preservation of ratios. In the k-suppliers model, we
are not allowed to open centers anywhere in P . Instead, we are provided a set L of potential
locations to open centers. The procedure closely resembles the k-center algorithm: construct
a bipartite threshold graph Gτ = (P ∪ L,Eτ) where Eτ = {(i, j) | i ∈ L, j ∈ P, d(i, j) ≤ τ}.
Choose a root vertex r ∈ P into S and mark all vertices in P that are within distance two.
Until all vertices in P are marked, choose an unmarked vertex u ∈ P that is distance two
away from a marked vertex and mark all vertices in the distance two neighborhood of u.
Note that, since Gτ is bipartite, no two vertices in P are adjacent. The vertex u is exactly
at distance four from a vertex u′ ∈ S chosen earlier. This process of selecting vertices in
S defines a tree T over them with the property that adjacent vertices in T are exactly at
distance four of each other in Gτ . Since we apply the procedure separately for each of the
connected components of the threshold graph, we may safely assume that Gτ is connected.

Let us now temporarily open one center at each vertex in S and make the following
observations for the k-suppliers case:
1. Observation 10 still holds.
2. The corresponding LP is the same as the k-center LP, except it has E4

τ in place of E3
τ in

constraint (16). This ensures the feasibility of the LP since every location in L is at most
distance three away from some vertex in S. (Note that in case Gτ is not connected, it
can happen that some locations in L are not connected to any point and therefore more
than distance three away from some vertex in S, but since they are not connected to any
point we can safely ignore them, as they cannot be part of the optimal solution.)

3. Lemma 11 with G6
τ instead of G5

τ holds. The extra distance of one is introduced because
the distance between a child vertex and its parent vertex in T is four instead of three.

4. Lemma 12 holds as it is and Lemma 13 holds when G5
τ is replaced with G6

τ .

Thus we have a distance six fair assignment to centers in S. However, this is not a valid
solution for k-suppliers as S ⊆ P and we are allowed to open centers only in L. So, we
move each of these temporary centers to a neighboring location in L to obtain a distance
seven assignment.

References
1 Karen Aardal, Pieter L. van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algorithms

for hard capacitated k-facility location problems. European Journal of Operational Research,
242:358–368, 2015. doi:10.1016/j.ejor.2014.10.011.

2 Ankit Aggarwal, Anand Louis, Manisha Bansal, Naveen Garg, Neelima Gupta, Shubham Gupta,
and Surabhi Jain. A 3-approximation algorithm for the facility location problem with uniform
capacities. Mathematical Programming, 141:527–547, 2013. doi:10.1007/s10107-012-0565-4.

APPROX/RANDOM 2019

https://doi.org/10.1016/j.ejor.2014.10.011
https://doi.org/10.1007/s10107-012-0565-4

18:16 On the Cost of Essentially Fair Clusterings

3 Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krishnaram Kenthapadi,
Samir Khuller, and An Zhu. Achieving anonymity via clustering. ACM Transactions on
Algorithms, 6:49:1–49:19, 2010. doi:10.1145/1798596.1798602.

4 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better Guarantees
for k-Means and Euclidean k-Median by Primal-Dual Algorithms. In Chris Umans, editor,
Proceedings of the 58th IEEE Symposium on Foundations of Computer Science (FOCS 2017),
pages 61–72. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.15.

5 Sara Ahmadian and Chaitanya Swamy. Improved Approximation Guarantees for Lower-
Bounded Facility Location. In Thomas Erlebach and Giuseppe Persiano, editors, 10th Inter-
national Workshop on Approximation and Online Algorithms (WAOA 2012), volume 7846 of
Lecture Notes in Computer Science (LNCS), pages 257–271. Springer Berlin Heidelberg, 2012.
doi:10.1007/978-3-642-38016-7_21.

6 Sara Ahmadian and Chaitanya Swamy. Approximation Algorithms for Clustering Problems
with Lower Bounds and Outliers. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 69:1–69:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. doi:
10.4230/LIPIcs.ICALP.2016.69.

7 Hyung-Chan An, Mohit Singh, and Ola Svensson. LP-based algorithms for capacitated facility
location. SIAM Journal on Computing, 46:272–306, 2017. doi:10.1137/151002320.

8 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In Lars Arge and János Pach, editors, 31st
International Symposium on Computational Geometry (SoCG 2015), volume 34 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 754–767. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.SOCG.2015.754.

9 Arturs Backurs, Piotr Indyk, Krzysztof Onak, Baruch Schieber, Ali Vakilian, and Tal Wagner.
Scalable Fair Clustering. CoRR, abs/1902.03519, 2019. arXiv:1902.03519.

10 Manisha Bansal, Naveen Garg, and Neelima Gupta. A 5-Approximation for Capacitated
Facility Location. In Leah Epstein and Paolo Ferragina, editors, Algorithms – ESA 2012,
volume 7501 of Lecture Notes in Computer Science (LNCS), pages 133–144. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-33090-2_13.

11 Judit Bar-Ilan, Guy Kortsarz, and David Peleg. How to Allocate Network Centers. Journal of
Algorithms, 15:385–415, 1993. doi:10.1006/jagm.1993.1047.

12 Suman K. Bera, Deeparnab Chakrabarty, and Maryam Negahbani. Fair Algorithms for
Clustering. CoRR, abs/1901.02393, 2019. arXiv:1901.02393.

13 Ioana O. Bercea, Martin Groß, Samir Khuller, Aounon Kumar, Clemens Rösner, Daniel R.
Schmidt, and Melanie Schmidt. On the cost of essentially fair clusterings. CoRR,
abs/1811.10319, 2018. arXiv:1811.10319.

14 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
Improved Approximation for k-Median and Positive Correlation in Budgeted Optimization.
ACM Transactions on Algorithms, 13:23:1–23:31, 2017. doi:10.1145/2981561.

15 Deeparnab Chakrabarty and Chaitanya Swamy. Facility location with client latencies: LP-
based techniques for minimum-latency problems. Math. Oper. Res., 41(3):865–883, 2016.
doi:10.1287/moor.2015.0758.

16 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
facility location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the
Twelfth Annual Symposium on Discrete Algorithms (SODA 2001), pages 642–651, 2001. URL:
http://dl.acm.org/citation.cfm?id=365411.365555.

17 Ke Chen. A constant factor approximation algorithm for k-median clustering with outliers. In
Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2008), pages 826–835. SIAM, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347173.

https://doi.org/10.1145/1798596.1798602
https://doi.org/10.1109/FOCS.2017.15
https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.4230/LIPIcs.ICALP.2016.69
https://doi.org/10.1137/151002320
https://doi.org/10.4230/LIPIcs.SOCG.2015.754
http://arxiv.org/abs/1902.03519
https://doi.org/10.1007/978-3-642-33090-2_13
https://doi.org/10.1006/jagm.1993.1047
http://arxiv.org/abs/1901.02393
http://arxiv.org/abs/1811.10319
https://doi.org/10.1145/2981561
https://doi.org/10.1287/moor.2015.0758
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=1347082.1347173
http://dl.acm.org/citation.cfm?id=1347082.1347173

I. O. Bercea et al. 18:17

18 Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair Clustering
Through Fairlets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach,
Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017 (NIPS 2017), pages 5036–5044, 2017. URL: http://papers.nips.cc/paper/
7088-fair-clustering-through-fairlets.

19 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers with
non-uniform hard capacities. In Venkatesan Guruswami, editor, 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2012), pages 273–282. IEEE Computer Society,
2012. doi:10.1109/FOCS.2012.63.

20 Marek Cygan and Tomasz Kociumaka. Constant Factor Approximation for Capacitated
k-Center with Outliers. In Ernst W. Mayr and Natacha Portier, editors, 31st International
Symposium on Theoretical Aspects of Computer Science (STACS 2014), Leibniz International
Proceedings in Informatics (LIPIcs), pages 251–262. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014. doi:10.4230/LIPIcs.STACS.2014.251.

21 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science
2012 (ITCS 2012), pages 214–226. ACM, 2012. doi:10.1145/2090236.2090255.

22 Teofilo F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. Theoretical
Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

23 Sudipto Guha and Samir Khuller. Greedy Strikes Back: Improved Facility Location Algorithms.
Journal of Algorithms, 31:228–248, 1999. doi:10.1006/jagm.1998.0993.

24 Moritz Hardt, Eric Price, and Nati Srebro. Equality of Opportunity in Supervised Learning.
In Advances in Neural Information Processing Systems 29 (NIPS 2016), pages 3315–3323,
2016.

25 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986. doi:10.1145/5925.5933.

26 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1:209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

27 Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach for facility
location problems. In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on
Theory of Computing (STOC 2002), pages 731–740. ACM, 2002. doi:10.1145/509907.510012.

28 Samir Khuller and Yoram J. Sussmann. The Capacitated K-Center Problem. SIAM Journal
on Discrete Mathematics, 13:403–418, 2000. doi:10.1137/S0895480197329776.

29 Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-Center Clustering
for Data Summarization. CoRR, abs/1901.08628, 2019. arXiv:1901.08628.

30 Matthäus Kleindessner, Samira Samadi, Pranjal Awasthi, and Jamie Morgenstern. Guarantees
for Spectral Clustering with Fairness Constraints. CoRR, abs/1901.08668, 2019. arXiv:
1901.08668.

31 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median and
k-means with outliers via iterative rounding. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2018), pages 646–659. ACM, 2018. doi:10.1145/3188745.3188882.

32 Euiwoong Lee, Melanie Schmidt, and John Wright. Improved and simplified inapproximability
for k-means. Information Processing Letters, 120:40–43, 2017. doi:10.1016/j.ipl.2016.11.
009.

33 Jian Li, Ke Yi, and Qin Zhang. Clustering with Diversity. In Samson Abramsky, Cyril
Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis, editors,
Automata, Languages and Programming (ICALP 2010), volume 6198 of Lecture Notes in
Computer Science (LNCS), pages 188–200. Springer Berlin Heidelberg, 2010. doi:10.1007/
978-3-642-14165-2_17.

APPROX/RANDOM 2019

http://papers.nips.cc/paper/7088-fair-clustering-through-fairlets
http://papers.nips.cc/paper/7088-fair-clustering-through-fairlets
https://doi.org/10.1109/FOCS.2012.63
https://doi.org/10.4230/LIPIcs.STACS.2014.251
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1145/509907.510012
https://doi.org/10.1137/S0895480197329776
http://arxiv.org/abs/1901.08628
http://arxiv.org/abs/1901.08668
http://arxiv.org/abs/1901.08668
https://doi.org/10.1145/3188745.3188882
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1016/j.ipl.2016.11.009
https://doi.org/10.1007/978-3-642-14165-2_17
https://doi.org/10.1007/978-3-642-14165-2_17

18:18 On the Cost of Essentially Fair Clusterings

34 Shanfei Li. An Improved Approximation Algorithm for the Hard Uniform Capacitated k-
median Problem. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher
Moore, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 325–338. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.325.

35 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013. doi:10.1016/j.ic.2012.01.007.

36 Shi Li. Approximating capacitated k-median with (1 + ε)k open facilities. In Robert Krau-
thgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2016), pages 786–796. SIAM, 2016. doi:10.1137/1.9781611974331.ch56.

37 Shi Li. On Uniform Capacitated k-Median Beyond the Natural LP Relaxation. ACM
Transactions on Algorithms, 13:22:1–22:18, 2017. doi:10.1145/2983633.

38 Shi Li and Ola Svensson. Approximating k-Median via Pseudo-Approximation. SIAM Journal
on Computing, 45:530–547, 2016. doi:10.1137/130938645.

39 Andrea Romei and Salvatore Ruggieri. A multidisciplinary survey on discrimination analysis.
The Knowledge Engineering Review, 29:582–638, 2014. doi:10.1017/S0269888913000039.

40 Clemens Rösner and Melanie Schmidt. Privacy Preserving Clustering with Constraints. In
Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018), volume
107 of Leibniz International Proceedings in Informatics (LIPIcs), pages 96:1–96:14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ICALP.2018.96.

41 Melanie Schmidt, Chris Schwiegelshohn, and Christian Sohler. Fair Coresets and Streaming
Algorithms for Fair k-Means Clustering. CoRR, abs/1812.10854, 2018. arXiv:1812.10854.

42 Zoya Svitkina. Lower-bounded facility location. ACM Transaction on Algorithms, 6:69:1–69:16,
2010. doi:10.1145/1824777.1824789.

43 Indrė Z̆liobaitė, Faisal Kamiran, and Toon Calders. Handling Conditional Discrimination.
In Proceedings of the 2011 IEEE 11th International Conference on Data Mining, ICDM ’11,
pages 992–1001. IEEE Computer Society, 2011. doi:10.1109/ICDM.2011.72.

44 Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning Fair
Representations. In Sanjoy Dasgupta and David McAllester, editors, Proceedings of the 30th
International Conference on Machine Learning (ICML 2013), volume 28 of Proceedings of
Machine Learning Research, pages 325–333. PMLR, 2013. URL: http://proceedings.mlr.
press/v28/zemel13.html.

A NP-hardness of the fair assignment problem for k-center

In this section, we reduce the Exact Cover by 3-sets to the fair assignment problem for
k-center. The input to the Exact Cover by 3-sets problem is a ground set U of elements and
a family F of subsets such that each set has exactly three elements from U . The objective is
to find a set cover such that each element is included in exactly one set. For example, let
U = {a, b, c, d, e, f},F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}} be an instance. The set
{A,C} is an exact cover. We call the problem of computing a cost-minimal fair assignment
of points to given centers the fair assignment problem. It exists once for every objective
listed above. Even for k-center, the fair assignment problem is NP-hard. This can be shown
by a reduction from Exact Cover by 3-sets, a variant of set cover. The input is a ground set
U of elements and a family F of subsets such that each set has exactly three elements from
U . The objective is to find a set cover such that each element is included in exactly one set.
For example, let U = {a, b, c, d, e, f},F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}} be an
instance. The set {A,C} is an exact cover.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.325
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1137/1.9781611974331.ch56
https://doi.org/10.1145/2983633
https://doi.org/10.1137/130938645
https://doi.org/10.1017/S0269888913000039
https://doi.org/10.4230/LIPIcs.ICALP.2018.96
http://arxiv.org/abs/1812.10854
https://doi.org/10.1145/1824777.1824789
https://doi.org/10.1109/ICDM.2011.72
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html

I. O. Bercea et al. 18:19

F A B C

U
a b c d e f

A

T

Figure 2 Example for the reduction from Exact Cover with 3-sets to the fair assignment problem
for k-center, with U = {a, b, c, d, e, f} and F = {A = {a, b, c}, B = {b, c, d}, C = {d, e, f}}.

For an instance U ,F of the exact cover problem, we construct an unweighted graph,
which then translates to an input for the fair assignment problem for k-center by assigning
distance 1 to each edge and using the resulting graph metric. The vertices consist of U , F
and two sets defined below, A and F . We start by adding an edge between all e ∈ U and
any A ∈ F iff e ∈ A. We assign color red to the vertices from F and blue to those from U .
Then we construct a set A which contains three auxiliary blue vertices for each vertex in F .
These are exclusively connected to their corresponding vertex in F . Then we construct a
set T of |U|/3 red vertices.3 and connect each vertex in T to every vertex in F . Finally, we
open a center at each vertex in F . The construction is shown in Figure 2. Observe that the
distance between an element e ∈ U and an open center at A ∈ F in this construction is 1
iff e ∈ A, and otherwise, it is 3: If e /∈ A, then there is no edge between e and A, and since
there are no direct connections between the centers, the minimum distance between e and
another open center is 3.

I Lemma 15. If there exists an exact cover, there exists a fair assignment of cost 1 where
the red:blue ratio is 1:3 for each cluster.

Proof. Assign each red vertex A ∈ F and the three auxiliary blue vertices connected to it
to the center at A. If A is in the exact cover, assign the three blue vertices representing its
elements and one red vertex from T to the center at A. It is straightforward to verify that
this assignment is fair and assigns every vertex to some center to which it is connected via a
direct edge. J

I Lemma 16. If there exists a fair assignment where red:blue = 1:3 for all clusters of cost
less than 3, there exists an exact cover.

Proof. For A ∈ F , the red vertex at A and the three auxiliary blue vertices attached to it
must be assigned to the center at A as this is the only center within distance less than 3.
Also, no center can have more than two red vertices assigned to it because there are only six
blue vertices in distance less than 3 of any center. Therefore, each red vertex in T must be
assigned to a distinct center and each such center A will have exactly three blue vertices
from U assigned to it which correspond to the elements in the set that A represents. Thus,
the sets corresponding to the centers that have two red vertices assigned to them form an
exact cover for U . J

3 Note that if |U| is not a multiple of three, it cannot have an exact cover, so we can assume that |U| is a
multiple of three.

APPROX/RANDOM 2019

18:20 On the Cost of Essentially Fair Clusterings

B Integrality gap of the canonical clustering LP

We show that any integral fair solution needs large clusters to implement awkward ratios of
the input points. This allows us to derive a non-constant integrality gap for the canonical
clustering LP.

I Lemma 17. Let P be a point set with r red and r − 1 blue points and let k ≥ 1. If the
ratio of red points rred(Ci) is at most r−k+1

2r−2k+1 for each cluster Ci, then any fair solution can
have at most k clusters.

Proof. Consider a solution with k′ > k clusters. Since we have more red points there must
be at least one cluster Ci that contains more red points than blue points. The ratio of red
points rred(Ci) of this cluster is minimized if the solution contains k′ − 1 clusters with one
blue and one red point, and one cluster with the remaining r − k′ blue and r − k′ + 1 red
points. However,

r − k′ + 1
2r − 2k′ + 1 >

r − k + 1
2r − 2k + 1

Since the highest ratio of red points in any other solution can only be higher, the claim
follows. J

We remark that Lemma 17 is not true for essentially fair solutions.
The canonical fair clustering ILP consists of (2)–(6) and (10). In the k-median/facility

location case and in the k-means case, let write OPTF for the optimum value of its LP
relaxation and and let us call the value of an optimum integral solution OPTI . We then
define the integrality gap of the ILP as OPTI/OPTF . In the k-center case, the ILP does
not have an objective function, but we can define its integrality gap in the following sense:
If τI , τF is the smallest τ such that the LP-relaxation has a feasible integral or fractional
solution, respectively, then we define the integrality gap as τI/τF .

I Lemma 5. There is a choice of non-trivial fairness intervals such that the integral-
ity gap of the LP-relaxation of the canonical fair clustering ILP is Ω(n) for the fair k-
center/k-supplier/k-median/facility location problem. The integrality gap is Ω(n2) for the
fair k-means problem.

r1 b1 r2 bi−1 ri bi ri+1 br−1 rr

i−1
r−1

r−i
r−1

i
r−1

Figure 3 Integrality gap example.

Proof. Consider the input points P lying on a line, as shown in Figure 3. Specifically, we
have r red points {r1, r2, . . . , rr} that alternate with r− 1 blue points {b1, b2, . . . , br−1}. The
distance between consecutive points is 1.

We require that the ratio of the red points of each cluster is between 0 and (r−1)/(2r−3)
and set k = r − 1. The input ratio r/(2r − 1) of the red points lies in the interior of this
interval as

r

2r − 1 <
r − 1
2r − 3 ⇐⇒ 2r2 − 3r < 2r2 − 3r + 1,

and thus our input is well-defined and the fairness relaxation is non-trivial. We then ask for
a clustering of P with at most k centers that respects the fairness constraints.

I. O. Bercea et al. 18:21

Consider the following feasible solution for the LP-relaxation. The solution opens a center
at each of the r− 1 = k blue points and assigns the blue point to itself and the red points on
each side in the following way: for each 1 ≤ i ≤ r − 1, assign ri to bi by a fraction of r−i

r−1
and for each 2 ≤ i ≤ r assign ri to bi−1 a fraction of i−1

r−1 . Each red point is fully assigned in
this way. We also get that in a cluster around some fixed bi, the total assignment coming
from red points is r

r−1 and the assignment coming from blue points is 1; thus, each cluster
has a ratio of red points of

r
r−1

1 + r
r−1

=
r
r−1
2r−1
r−1

= r

2r − 1 .

We therefore respect the balance requirements.
However, as (r − 1)/(2r − 3) = (r − k′ + 1)/(2r − 2k′ + 1) for k′ = 2, by Lemma 17 any

integral solution satisfying the ratio requirement can at most open two centers.

In the k-center case, the fractional solution has a radius of 1 and the integral solution
has a radius of at least b(r − 1)/2c = Ω(n). The k-center problem is a special case of
the k-supplier problem; thus, the integrality gap for the k-supplier problem can only be
larger.
In the k-median case, the fractional solution has a cost of O(n): The blue points incur
no cost and each red point ri contributes (r− i)/(r− 1) · 1 + (i− 1)/(r− 1) · 1 = 1 to the
objective function. Since the optimum integral solution can have at most two centers, it
has to contain one cluster spanning at least br/2c consecutive points. This incurs a cost
of at least 2 ·

∑br/4c−1
j=1 j = Ω(n2).

In the facility location case, we observe that we can open at most two facilities in a fair
integral solution. Hence, the analysis for the k-median case carries over (even if we set
all opening costs to zero).
In the k-means case, each red point ri incurs a cost of (r−i)/(r−1)·12+(i−1)/(r−1)·12 = 1
in the fractional solution; the blue points again incur no cost as they are chosen as centers.
However, the integral solution now has a cost of at least 2 ·

∑br/4c−1
j=1 j2 = Ω(n3). J

This integrality gap yields a lower bound on the quality guarantee of any LP-rounding
approach for this ILP. Thus, Lemma 5 implies that no fair constant factor approximation can
be achieved by rounding the canoncial fair clustering ILP. The counterexample in 5 breaks
down in the essential fairness model.

C Facts about the k-means cost function

We use some well-known facts about the k-means function when extending our results for
k-median to k-means. The first one is that squared distances satisfy a relaxed triangle
inequality:

I Lemma 18. It holds for all x, y, z ∈ Rd that

||x− z||2 ≤ 2||x− z||2 + 2||z − y||2.

The next lemma is also a folklore statement which can be extremely useful. It implies
that the best 1-means is always the centroid of a point set, and has further consequences,
like Lemma 20 which we state below, a fact which is also commonly used in approximation
algorithms for the k-means problem.

APPROX/RANDOM 2019

18:22 On the Cost of Essentially Fair Clusterings

I Lemma 19. For any P ⊂ Rd, and z ∈ Rd,∑
x∈P
||x− z||2 =

∑
x∈P
||x− µ(P)||2 + |P | · ||µ(P)− z||2,

where µ(P) = 1
|P |
∑
x∈P x is the centroid of P .

One corollary of Lemma 19 is that the optimum cost of the best discrete solution is not
much more expensive than the best choice of centers from Rd.

I Lemma 20. Let P ⊂ Rd be a set of point in the Euclidean space, and let S∗ ⊂ Rd be a set
of k points that minimizes the k-means objective, i.e., it minimizes∑

x∈P
min
c∈S
||x− c||2

over all choices of S ⊂ Rd with |S| = k. Furthermore, let Ŝ be the set of centers that
minimizes the k-means objective over all choices of S ⊂ P with |S| = k, i.e., the best choice
of centers from P itself. Then it holds that∑

x∈P
min
c∈Ŝ
||x− c||2 ≤

∑
x∈P

min
c∈S∗

||x− c||2.

Thus, restricting the set of centers to the input point set increases the cost of an optimal
solution by a factor of at most 2.

The Maximum Exposure Problem
Neeraj Kumar
Department of Computer Science, University of California, Santa Barbara, USA
neeraj@cs.ucsb.edu

Stavros Sintos
Duke University, Durham, NC, USA
ssintos@cs.duke.edu

Subhash Suri
Department of Computer Science, University of California, Santa Barbara, USA
suri@cs.ucsb.edu

Abstract
Given a set of points P and axis-aligned rectangles R in the plane, a point p ∈ P is called exposed if
it lies outside all rectangles in R. In the max-exposure problem, given an integer parameter k, we
want to delete k rectangles from R so as to maximize the number of exposed points. We show that
the problem is NP-hard and assuming plausible complexity conjectures is also hard to approximate
even when rectangles in R are translates of two fixed rectangles. However, if R only consists of
translates of a single rectangle, we present a polynomial-time approximation scheme. For general
rectangle range space, we present a simple O(k) bicriteria approximation algorithm; that is by
deleting O(k2) rectangles, we can expose at least Ω(1/k) of the optimal number of points.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases max-exposure, PTAS, densest k-subgraphs, geometric constraint removal,
Network resilience

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.19

Category APPROX

Funding Work by Kumar and Suri is supported by NSF under Grant CCF-1814172. Work by Sintos
is supported by NSF under grants CCF-15-13816, CCF-15-46392, and IIS-14-08846, by ARO grant
W911NF-15-1-0408, and by Grant 2012/229 from the U.S.-Israel Binational Science Foundation.

1 Introduction

Let S = (P,R) be a geometric set system, also called a range space, where P is a set of
points and each R ∈ R is a collection of subsets of P , also called a range. We are primarily
interested in range spaces defined by a set of points in two dimensions and ranges defined by
axis-aligned rectangles. We say that a point p ∈ P is exposed if no range in R contains p.
The max-exposure problem is defined as follows: given a range space (P,R) and an integer
parameter k ≥ 1, remove k ranges from R so that a maximum number of points are exposed.
That is, we want to find a subfamily R∗ ⊆ R with |R∗| = k, so that the number of exposed
points in the (reduced) range space (P,R \R∗) is maximized.

The max-exposure problem arises naturally in many geometric coverage settings. For
instance, if points are the location of clients, and ranges are coverage of some facilities in the
plane, then exposed points are those not covered by any facility. The max-exposure problem
in this case gives a worst-case bound on the number of clients that can be exposed if an
adversary disables k facilities. Similarly, in distributed sensor networks, ranges correspond
to sensing zones, points correspond to physical assets being monitored by the network,
and the max-exposure problem computes the number of assets exposed when k sensors
are compromised.

© Neeraj Kumar, Stavros Sintos, and Subhash Suri;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:neeraj@cs.ucsb.edu
mailto:ssintos@cs.duke.edu
mailto:suri@cs.ucsb.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.19
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 The Maximum Exposure Problem

More broadly, the max-exposure problem is related to the densest k-subgraph problem in
hypergraphs. In the densest k-subhypergraph problem, we are given a hypergraph H = (X,E),
and we want to find a set of k vertices with a maximum number of induced hyperedges. In
general hypergraphs, finding k-densest subgraphs is known to be (conditionally) hard to
approximate within a factor of n1−ε, where n is the number of vertices. The max-exposure
problem is equivalent to the densest k-subhypergraph problem on a dual hypergraph, the
vertex set X corresponds to the ranges R, and set of edges E of the dual hypergraph
correspond to the set of points P . In the rest of the paper, we will use n = |R| for the
number of ranges in R and m = |P | to be the number of points. We show that if the range
space is defined by convex polygons, then the max-exposure problem is just as hard as the
densest k-subhypergraph problem. However, for ranges defined by axis-aligned rectangles,
one can achieve much better approximation. In particular, we obtain the following results.

We show that the max-exposure problem is NP-hard and assuming the dense vs random
conjecture to be true, it is also hard to approximate better than a factor of O(n1/4) even
if the range space is defined by only two types of rectangles in the plane. (For range
space defined by convex polygons, we show that max-exposure is equivalent to densest
k-subhypergraph problem, which is hard to approximate within O(n1−ε)).
When ranges are defined by translates of a single rectangle, we give a polynomial-time
approximation scheme (PTAS) for max-exposure. The PTAS stands in sharp contrast to
the inapproximability of ranges defined by two types of rectangles. Moreover, as an easy
consequence of this result, we obtain a constant approximation when the ratio of longest
and smallest side of rectangles in R is bounded by a constant. However, we do not know
if max-exposure with translates of a single rectangle can be solved in polynomial time or
is NP-hard.
For ranges defined by arbitrary rectangles, we present a simple greedy algorithm that
achieves a bicriteria O(k)-approximation. No such approximation is possible for general
hypergraphs. If rectangles in R have a bounded aspect ratio, the approximation improves
to O(

√
k).

Related Work. Coverage and exposure problems have been widely studied in geometry
and graphs. In the classical set cover problem, we want to select a subfamily of k sets
that cover the maximum number of items (points) [14, 17]. For the set cover problem, the
classical greedy algorithm achieves a factor logn approximation on the number of sets needed
to cover all the items, or factor (1 − 1/e) approximation on the number of items covered
by using exactly k sets. Similarly, in geometry, the art gallery problems explore coverage
of polygons using a minimum number of guards. Unlike coverage problems where greedy
algorithms deliver reasonably good approximation, the exposure problems turn out to be
much harder. Specifically, choosing k sets whose union is of minimum size is much harder
to approximate with a conditional inapproximability of O(n1−ε) where n is the number
of elements and O(m1/4−ε) where m is the number of sets [10]. This so-called min-union
problem is essentially the densest k-subgraph problem on hypergraphs [9]. The densest
k-subgraph problem for graphs has a long history [15, 3, 2, 6]. The classical coverage
problems have been extensively studied for geometric set systems and significantly better
approximation bounds have been achieved for them [1, 7, 20]. Several other variations such
as the set multi-cover problem [8, 12] where each input point needs to be covered by more
than one set have also been studied. Also closely related to max-exposure is the geometric
constraint removal problem [4, 13], where given a set of ranges, the goal is to expose a path

N. Kumar, S. Sintos, and S. Suri 19:3

between two given points by deleting at most k ranges (a path is exposed if it lies in the
exterior of all ranges). Even for simple shapes such as unit disks (or unit squares) [5, 19], no
PTAS is known for this problem.

The remainder of the paper is organized as follows. In Section 2, we discuss our hardness
results followed by the bicriteria O(k)-approximation in Section 3. In Section 4, we study the
case when R consists of translates of a fixed rectangle and describe a PTAS for it. Finally, in
Section 5, we use these ideas to obtain a bicriteria O(

√
k)-approximation when aspect ratio

of rectangles in R is bounded by a constant.

2 Hardness of Max-Exposure

We show that max-exposure problem for geometric ranges is both NP-hard and inapproximable
within a polynomial factor, under some well known hardness conjectures. In particular, we
first show that the densest k-subgraph on bipartite graphs (bipartite-DkS) can be easily
reduced to the max-exposure problem. In the bipartite-DkS problem, we are given a bipartite
graph G = (A,B,E), an integer k, and we want to compute a set of k vertices such that the
induced subgraph on those k vertices has the maximum number of edges. Given an instance
G = (A,B,E) of bipartite-DkS, we will construct a max-exposure instance as follows.

Let R1 = [0, ε] × [0, n] be a thin vertical rectangle and R2 = [0, n] × [0, ε] be a thin
horizontal rectangle. For each vertex vi ∈ A, we create a copy Ri of R1, and place it such
that its lower-left corner is at (i, 0). Similarly, for each vertex vj ∈ B, we create a copy Rj of
R2, and place it such that its lower-left corner is at (0, j). These |A|+ |B| rectangles create
a checkerboard arrangement, with |A| × |B| cells of intersection. For each edge (vi, vj) ∈ E,
we place a single point in the cell corresponding to intersection of Ri and Rj . It is now easy
to see that G has a k-subgraph with m∗ edges if and only if we can expose m∗ points in
this instance by removing k-rectangles: the removed rectangles are exactly the k vertices
chosen in the graph, and each exposed point corresponds to the edge included in the output
subgraph. (See also Figure 1.)

I Lemma 1. The max-exposure problem is at least as hard as bipartite-DkS.

Since bipartite-DkS is known to be NP-hard [16], we have the following.

I Theorem 2. Max-exposure problem with axis-aligned rectangles is NP-hard.

2.1 Hardness of Approximation
The construction in the preceding proof shows that max-exposure with rectangles is at least
as hard as bipartite-DkS problem. Moreover, the geometric construction uses translates of
only two rectangles R1, R2. In the following, we show that even with such a restricted range
space, the problem is also hard to approximate. To that end we prove that bipartite-DkS
cannot be approximated better than a factor O(n1/4), where n is the number of vertices in
this graph. More precisely, if the densest subgraph over k vertices has m∗ edges, it is hard
to find a subgraph over k vertices that contains at least Ω(m∗/n1/4−ε) edges in polynomial
time. This hardness of approximation is conditioned on the so-called dense vs random
conjecture [10] being true. Roughly speaking, we are given a graph G, constants 0 < α, β < 1,
and a parameter k, and we want to distinguish between the following two cases.
1. (Random) G = G(n, p) where p = nα−1, that is, G has average degree approximately nα.
2. (Dense) G is adversarially chosen so that the densest k-subgraph of G has average

degree kβ .

APPROX/RANDOM 2019

19:4 The Maximum Exposure Problem

Figure 1 Reducing bipartite-DkS to
max-exposure with axis-aligned rect-
angles.

A

B

a

b

c

d

e
a

b

c

d

e

A

B

Figure 2 Reducing densest k-subhypergraph prob-
lem to max-exposure. Hypergraph vertices A, B shown
as convex ranges.

The conjecture states that for all 0 < α < 1, sufficiently small ε > 0, and for all k ≤
√
n, one

cannot distinguish between the dense and random cases in polynomial time (w.h.p), when
β ≤ α− ε.

In order to obtain hardness guarantees using the above conjecture, one needs to find
the “distinguishing ratio” r, that is the least multiplicative gap between the optimum
solution for the problem on the dense and random instances. If there exists an algorithm
with an approximation factor significantly smaller than r, then we would be able to use
it to distinguish between the dense and random instances, thereby refuting the conjecture.
We obtain the following result for densest k-subgraph problem on bipartite graphs. (See
Appendix A.1 for a proof.)

I Lemma 3. Assuming that dense vs random conjecture is true, the densest k-subgraph
problem on bipartite graphs is hard to approximate better than a factor O(n1/4) of optimum.

Using the same construction as in Lemma 1, we obtain the following.

I Corollary 4. Assuming the dense vs random conjecture, max-exposure with axis-aligned
rectangles is hard to approximate better than a factor O(n1/4) of optimum.

Hardness of Max-exposure with Convex Polygons

If the range space (P,R) consists of convex polygons, the max-exposure problem is equivalent
to the densest k-subhypergraph problem for general hypergraphs. A max-exposure instance
(P,R) naturally corresponds to a hypergraph H = (R, P) whose vertices are the ranges and
the edges correspond to points and are defined by the containment relationship. Clearly, the
densest k-subhypergraph corresponds to the set of k ranges deleting which exposes maximum
number of points. For the other direction, we have the following lemma. (See also Figure 2.)

I Lemma 5. Given a hypergraph H = (X,E), one can construct a max-exposure instance
with convex ranges R and points P such that the densest k-subhypergraph of H corresponds
to a solution of max-exposure.

Proof. For each edge e ∈ E of the hypergraph, add a point pe ∈ P . We place all the points
of P in convex position. Let v ∈ X be a vertex and Ev be the set of hyperedges adjacent to
v. Then for every v ∈ X, we add a convex polygon Rv ∈ R such that the corners of Rv is
precisely the point set Ev. Note that this is possible since points of P are in convex position.
It is easy to see that in order to include an edge e (expose pe), we must include all vertices
in Ev, which corresponds to removing all polygons corresponding to vertices in Ev. J

N. Kumar, S. Sintos, and S. Suri 19:5

3 A Bicriteria O(k)-approximation Algorithm

In this section, we present a simple approximation algorithm for the max-exposure problem
that achieves bicriteria O(k)-approximation for range spaces defined by arbitrary axis-aligned
rectangles. Specifically, if the optimal number of points exposed is m∗, the algorithm picks a
subset of k2 rectangles such that the number of points exposed is at least m∗/ck, for some
constant c. In fact, the results hold for any polygonal range with O(1) complexity.

This bicriteria approximation should be contrasted with the fact that no such approxima-
tion is possible for for the densest k-subhypergraph problem: that is, one cannot compute
a set of O(kb) vertices for any constant b such that the number of edges in the induced
subhypergraph is at least optimal. Thus the geometric properties of the range space have a
significant impact on the problem complexity. In particular, if R consists of rectangle ranges,
we show that the following strategy picks a subset of αk ranges such that the number of
points exposed is at least αm∗/ck2, for a parameter 1 ≤ α ≤ k and constant c that will be
fixed later. Choosing α = k gives us the claimed bound.

Our algorithm is essentially greedy. We divide the points into maximal equivalence classes,
where each class is the maximal subset of points belonging to the same subset of ranges. We
define R(p) as the set of ranges that contain a point p ∈ P , and remove all points that are
contained in more than k ranges, since they can be never exposed in the optimal solution.
Therefore, without loss of generality, we can assume that |R(p)| ≤ k for all points p ∈ P .

Algorithm 1 Greedy-Bicriteria.

1. Partition P into a set G of groups where each group Gi ∈ G is an equivalence class of
points that are contained in the same set of ranges. That is, for any p ∈ Gi, p′ ∈ Gj , we
have R(p) = R(p′) if i = j and R(p) 6= R(p′), otherwise.

2. Sort the groups in G by decreasing order of their size |Gi| and select the first α groups.
Return m′ =

∑
1≤i≤α |Gi| as the number of points exposed.

Observe that every point p ∈ Gi is contained in the same set of ranges Ri = R(p) and
|Ri| ≤ k. Therefore, the total number of ranges that we remove is at most αk. It remains to
show that the number of points exposed m′ is at least αm∗/ck2.

I Lemma 6. Let m′ be the number of points exposed by the algorithm Greedy-Bicriteria,
and let m∗ be the optimal number of exposed points, Then, m′ ≥ αm∗/ck2.

Proof. Consider the optimal set R∗ of k ranges that are deleted, and let P ∗ be the set of
exposed points. We partition the set of points P ∗ into groups G∗ as before, such that each
group G∗i ∈ G∗ is identified by the range set R∗i = R(p), for any p ∈ G∗i . Since P ∗ ⊆ P , we
must have that G∗ ⊆ G. This holds because for every group G∗i ∈ G∗ there must be a group
Gi ∈ G such that R∗i = Ri. Moreover since P ∗ is the maximum set of points that can be
exposed, we must have that G∗i = Gi. Finally, we note that the number of groups |G∗| is
bounded by the number of cells in the arrangement of ranges in R∗ which is at most ck2 for
some fixed constant c, for all O(1)-complexity ranges.

If the groups in G are arranged by decreasing order of their sizes, we have that

m∗ =
∑

1≤i≤|G∗|

|G∗i | ≤
∑

1≤i≤|G∗|

|Gi| ≤
∑

1≤i≤ck2

|Gi| ≤
ck2

α

∑
1≤i≤α

|Gi| = ck2

α
·m′ J

APPROX/RANDOM 2019

19:6 The Maximum Exposure Problem

The parameter α can be tuned to improve the approximation guarantee with respect to
one criterion (say the number of exposed points) at the cost of other. With α = k, the
algorithm exposes at least Ω(m∗/k) by removing k2 ranges. If the range space R consists of
pseudodisk of bounded-ply (no point in the plane is incident to more than a constant number
ρ of pseudodisks), then the algorithm Greedy-Bicriteria achieves an O(ρ) approximation.
This holds because the number of cells in an arrangement of k pseudodisks with depth at
most ρ is O(ρk) [11].

4 A PTAS for Unit Square Ranges

We have seen that max-exposure is hard to approximate even if the ranges are translates
of two types of rectangles. We now describe an approximation scheme when the ranges are
translates of a single rectangle. In this case, we can scale the axes so that the rectangle
becomes a unit square without changing any point-rectangle containment. Therefore, we can
assume that our ranges are all unit squares. The problem is non-trivial even for unit square
ranges, and as a warmup we first solve the following special case: all the points lie inside a
unit square. We develop a dynamic programming algorithm to solve this case exactly, and
then use it to design an approximation for the general set of points.

4.1 Exact Solution in a Unit Square
We are given a max-exposure instance consisting of unit square ranges R and a set of points
P in a unit square C. Without loss of generality, we can assume that the lower left corner of
C lies at origin (0, 0) and all ranges in R intersect C. We classify the ranges in R to be one
of the two types: (See also Figure 3).

Type-0 : Unit square ranges that intersect x = 0.
Type-1 : Unit square ranges that intersect x = 1.

(A unit square range coincident with both x = 0 and x = 1 is assumed to be Type-0).
We draw two parallel horizontal lines `0 : y = 0 and `1 : y = 1 coincident with bottom and
top horizontal sides of C respectively. We say that a range R ∈ R is anchored to a line ` if
it intersects `. Note that every R ∈ R is anchored to exactly one of `0 or `1. (When R is
coincident with both `0 and `1, we say that it is anchored to `0). Moreover, for the rest of
our discussion, let x = xi be a vertical line and define Pi ⊆ P to be the set of points that
have x-coordinate at least xi. Similarly, define Ri ⊆ R to be the set of ranges that have at
least one corner to the right of x = xi. That is a range R ∈ Ri either intersects x = xi or
lies completely to the right of it.

`1

`0

C

Figure 3 Max-exposure in a unit square C.
Type 0 ranges are drawn with solid lines, Type 1
ranges are dash-dotted.

p

`0

`1

p′

R
R′

d(R′, `0)

Figure 4 An example of closer relation-
ship. Point p is closer to `1 than p′. R is
closer to `0 than R′.

N. Kumar, S. Sintos, and S. Suri 19:7

In order to gain some intuition, we will first consider the following two natural dynamic
programming formulations for the problem.

DP-template-0. Suppose that the points in P are ordered by their increasing x-coordinates
and let xi be the x-coordinate of the ith point pi. We define a subproblem as S(i, k′,Rd)
which represents the maximum number of points in Pi that can be exposed by removing k′
ranges from the set Ri \ Rd. If we define x0 = 0, then S(0, k, ∅) gives the optimal number of
exposed points for our problem.

Let ki = |R(pi) \ Rd| be the number of ranges of Ri \ Rd that contain pi. Then, we can
can express the subproblems at i in terms of subproblems at i+ 1 as follows.

S(i, k′,Rd) = max
{
S(i+ 1, k′ − ki, Rd ∪R(pi)) + 1 expose pi
S (i+ 1, k′, Rd) otherwise

Roughly speaking, at x = xi which is the event corresponding to a point pi ∈ P , we have
two choices : expose pi or do not expose pi. If we expose pi, we pay for deleting the ranges in
Ri \ Rd that contain pi and mark them as deleted by adding to the deleted range set Rd.
Moreover, since we only delete ranges from Ri \ Rd, we can assume that Rd = Rd ∩Ri at
each xi. It is easy to see that this correctly computes the optimal number of exposed points.
However, there is one complication: a priori it is not clear how to bound the number of range
subset Rd used by this dynamic program. We later argue that the geometry of range space
for Type-0 ranges allows us to use only a polynomial number of choices.

DP-template-1. An alternative approach is to consider both point and begin-range events.
That is, x = xi is either incident to a point pi ∈ P or to the left vertical side of a range
Ri ∈ R. Then, we can define a subproblem by the tuple S(i, k′, Pf) which represents the
maximum number of points in (Pi \ Pf) that can be exposed by removing k′ ranges in Ri. If
we define x0 = 0, then S(0, k, ∅) gives the optimal number of exposed points. Let P (Ri) ⊆ P
be the set of points contained in the range Ri, then we have the following recurrence.

S(i, k′, Pf) = max
{
S(i+ 1, k′ − 1, Pf) delete range Ri
S(i+ 1, k′, Pf ∪ P (Ri)) otherwise

(event x = xi was beginning of a range Ri ∈ Ri)

= max
{
S(i+ 1, k′, Pf) if pi ∈ Pf , cannot expose pi
S(i+ 1, k′, Pf) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi ∈ Pi)

In the above formulation, at each begin-range event for some Ri ∈ Ri, we have two choices:
delete Ri or do not delete Ri. If Ri was deleted, we reduce the budget k′ by one. Otherwise,
if Ri was not deleted, we can never expose the points in P (Ri), and therefore we add P (Ri)
to the forbidden point set Pf . The correctness of the dynamic program follows from the fact
that for every point pi, all the ranges containing it must begin before x = xi, and we expose
pi only if those ranges were deleted. Finally, since we only expose points in Pi \ Pf , we can
assume that Pf = Pf ∩ Pi at each xi. Again, it is not obvious how many different subsets
Pf are needed by the dynamic program. However, we will later show that by keeping track
of polynomial number of sets Pf , we can solve max-exposure with Type-1 ranges.

APPROX/RANDOM 2019

19:8 The Maximum Exposure Problem

We note that the Type-0 and Type-1 ranges may superficially seem symmetric but once
we fix the order of computing subproblems, they become structurally different. Therefore, we
would need slightly different techniques to handle each type. For the ease of exposition, we
present dynamic programs for Type-0 and Type-1 ranges separately and finally combine them.

We first define the following ordering relations that will be useful. Let ` be a horizontal
line, and let d(p, `) denote the orthogonal distance of p ∈ P from `. If p, p′ ∈ P are two
points, we say that p is closer to ` than p′ if d(p, `) < d(p′, `). Similarly, for a range R ∈ R
that is anchored to `, let d(R, `) be the vertical distance inside the unit square C between
` and the side of R parallel to `. If R,R′ ∈ R are two ranges, we say that R is closer (or
equivalently R′ is farther) from ` if both R,R′ are anchored to ` and d(R, `) < d(R′, `).
(See Figure 4.)

4.1.1 Max-exposure with Type-0 Ranges

Recall that Type-0 ranges intersect the vertical lines x = 0 and are anchored to either `0
or `1. We will apply the formulation discussed in DP-template-0. The key challenge here
is to bound the number of possible deleted range sets Rd. Towards that end, we make the
following claim.

I Lemma 7. Let q0, q1 be the two exposed points strictly to the left of x = xi that are closest
to `0 and `1 respectively. Then our dynamic program only needs to consider the set of deleted
ranges Rd = R(q0) ∪R(q1) at x = xi conditioned on q0, q1.

Proof. Observe that since R consists of Type-0 ranges, every range in Ri must intersect
the vertical line x = xi. Suppose we partition Ri into ranges R0

i that are anchored to `0
and R1

i that are anchored to `1. Let P ′ ⊆ P be the set of all exposed points strictly to the
left of x = xi. Observe that for all p ∈ P ′, any range R ∈ R0

i that contains p must also
contain q0. Therefore, we must have R0

i ∩ R(p) ⊆ R0
i ∩ R(q0), for all p ∈ P ′. Similarly,

R1
i ∩ R(p) ⊆ R1

i ∩ R(q1), for all p ∈ P ′. Hence,
⋃
p∈P ′ Ri ∩ R(p) = R(q0) ∪ R(q1). Recall

that Rd is precisely the set of ranges at x = xi that contain any exposed point to the left of
x = xi, so we have Rd = R(q0) ∪R(q1). J

Therefore, if our dynamic program remembers the exposed points q0, q1, then we can compute
the deleted range set Rd = R(q0) ∪R(q1) at x = xi. There are O(m2) choices for the pair
q0, q1, so the number of possible sets Rd is also O(m2). We can therefore identify our
subproblems by the tuple S(i, k′, q0, q1) which represents the maximum number of exposed
points with x-coordinates xi or higher using k′ rectangles from the set Ri \ Rd. With
ki = |R(pi) \ Rd|, we obtain the following recurrence:

S(i, k′, q0, q1) = max
{
S (i+ 1, k′ − ki, closer(pi, q0), closer(pi, q1)) + 1 expose pi
S (i+ 1, k′, q0, q1) otherwise

where the function closer(pi, q0) returns whichever of pi, q0 is closer to `0, and closer(pi, q1)
returns whichever of pi, q1 is closer to `1. The optimal solution is given by S(0, k, q∗0 , q∗1),
where q∗0 = (0, 1) and q∗1 = (0, 0) are two artificial points with R(q∗0) = R(q∗1) = ∅ (not
contained in any range). The base case is defined by the vertical line x = 1 and is initialized
with zeroes for all q0, q1 and k′ ≥ 0. Any subproblem with k′ < 0 has value −∞.

N. Kumar, S. Sintos, and S. Suri 19:9

4.1.2 Max-exposure with Type-1 Ranges
Next we consider the case when we only have Type-1 ranges in R. Unfortunately in this
case, our previous dynamic program does not work and we need to remember a different set
of parameters. More precisely, we will apply the formulation discussed in DP-template-1,
and bound the number of possible forbidden point sets Pf .

I Lemma 8. Let Q0, Q1 be two ranges that begin to the left of x = xi and were not
deleted. Moreover, Q0 is anchored to and is farthest from `0. Similarly Q1 is anchored
to and is farthest from `1 (Figure 5). Then the forbidden point set at x = xi is given by
Pf = P (Q0) ∪ P (Q1), where P (Q) is the set of points contained in range Q.

Proof. Recall that the set Ri consists of ranges that have at least one corner to the right of
the vertical line x = xi. Since we are dealing with Type-1 ranges, every range that begins to
the left of x = xi lies in Ri. Now let R′ ⊆ Ri be the set of ranges that begin to the left of
x = xi and were not deleted. Recall that Pi is the set of points in P that have x-coordinate xi
or higher. Now consider any range R ∈ R′. Observe that if R was anchored to `0, then every
point of Pi that lies in R also lies in Q0. Otherwise, if R was anchored to `1, every point of Pi
that lies in R also lies in Q1. Therefore, we must have

⋃
R∈R′ (Pi ∩P (R)) = P (Q0)∪P (Q1).

Recall that Pf was precisely the set of points in Pi contained in ranges that begin to the left
of x = xi and were not deleted. Therefore, we have that Pf = P (Q0) ∪ P (Q1). J

`0

`1

xi

Q1

Q0

Figure 5 Undeleted ranges Q0 and
Q1 farthest from `0 and `1 respectively.

R1

R2

p1

R

R′

p

p′
p2

p3

(a) (b)

Figure 6 Remembering one of R1, R2 in (a) or one
of p1, p2 in (b) is not sufficient.

Therefore, if our dynamic program remembers the ranges Q0 and Q1, we can compute
the forbidden point set Pf = P (Q0) ∪ P (Q1) at x = xi. Since there are O(n2) choices for
the pair Q0, Q1, the number of possible sets Pf is also O(n2). We can now identify the
subproblems by the tuple S(i, k′, Q0, Q1) which represents the maximum number of points
in Pi \ Pf that are exposed by deleting k′ ranges that begin on or after x = xi. This gives us
the following recurrence.

S(i, k′, Q0, Q1) =

max

S(i+ 1, k′ − 1, Q0, Q1) delete range Ri
S(i+ 1, k′, farther(Ri, Q0), Q1) otherwise, Ri is not deleted and anchored to `0

S(i+ 1, k′, Q0, farther(Ri, Q1)) otherwise, Ri is not deleted and anchored to `1

(event x = xi was beginning of a range Ri ∈ R)

max
{
S(i+ 1, k′, Q0, Q1) if pi ∈ Pf , cannot expose pi
S(i+ 1, k′, Q0, Q1) + 1 otherwise, expose pi
(otherwise, event x = xi was a point pi ∈ P)

APPROX/RANDOM 2019

19:10 The Maximum Exposure Problem

Here, farther(Ri, Q0) returns whichever of Ri, Q0 is farther from `0; and farther(Ri, Q1)
returns whichever of Ri, Q1 is farther from `1. The optimal solution is given by P (0, k,Q∗0, Q∗1),
where Q∗0, Q∗1 are two artificial ranges of zero-width : Q∗0 is anchored to `0 and is defined
by corners (0, 0) and (0, 1); similarly, Q∗1 is anchored to `1 and is defined by corners
(0, 1) and (1, 1).

I Remark 9. We note that remembering constant number of exposed points q0, q1 or a
constant number of undeleted ranges Q1, Q2 by themselves cannot solve both Type-0 and
Type-1 ranges. For instance, in Figure 6(a) with Type-0 ranges, if R1, R2 were both not
deleted but we remembered one of them, then we will incorrectly expose one of p, p′. Similarly
in Figure 6(b) with Type-1 ranges, if p1, p2 were both exposed but we only remembered one
of them, we will pay for one of the ranges R,R′ again when we expose p3. However, since the
previous dynamic programs for Type-0 and Type-1 ranges express subproblems at event i in
terms of subproblems at event i+ 1, we can easily combine them with minor adjustments.

4.1.3 Combining them together

In the following, we combine the dynamic programs for Type-0 and Type-1 ranges to obtain
a dynamic program for max-exposure in a unit square C. We will need a couple of changes.
First, the events at x = xi are now defined by either a point pi ∈ P or beginning of a
Type-1 range Ri. Next, the deleted range set Rd at x = xi will only consist of Type-0 ranges
and is defined as Rd = Ri0 ∩ (R(q0) ∪ R(q1)) where Ri0 ⊆ Ri is the set of Type-0 ranges
that intersect the vertical line x = xi, The forbidden point set Pf = P (Q0) ∪ P (Q1) stays
the same. Here q0, q1, Q0, Q1 are same as defined before. The subproblems represent the
maximum number of points in Pi \Pf that can be exposed by deleting k′ ranges from Ri \Rd.
If ki = |R(pi) \ Rd|, then we obtain the following combined recurrence.

S(i, k′, q0, q1, Q0, Q1) =

max

S(i+ 1, k′, q0, q1, Q0, Q1) if pi ∈ Pf , cannot expose pi
S(i+ 1, k′, q0, q1, Q0, Q1) choose to not expose pi
S(i+ 1, k′ − ki, q0, q1, Q0, Q1) + 1 otherwise, expose pi

(event x = xi was a point pi ∈ Pi)

max

S(i+ 1, k′ − 1, q0, q1, Q0, Q1) delete Type-1 range Ri
S(i+ 1, k′, q0, q1, farther(Ri, Q0), Q1) Ri not deleted and anchored to `0

S(i+ 1, k′, q0, q1, Q0, farther(Ri, Q1)) Ri not deleted and anchored to `1

(event x = xi was beginning of a Type-1 range Ri ∈ Ri)

The optimal solution is given by S(0, k, q∗0 , q∗1 , Q∗0, Q∗1). The correctness of the above
formulation follows from the fact that when we choose to expose pi, we are guaranteed that
all Type-1 ranges in R(pi) have already been deleted, and the expression ki only charges for
Type-0 ranges containing pi. As for the running time, for each event x = xi, we compute
O(kn2m2) entries and computing each entry takes constant time. Since there are O(n+m)
events, we obtain the following.

I Lemma 10. Given a set P of m points in a unit square C and a set of n unit square
ranges R, we can compute their max-exposure in O(k(n+m)n2m2) time.

N. Kumar, S. Sintos, and S. Suri 19:11

4.2 A Constant Factor Approximation
We now use the preceding algorithm to solve the max-exposure problem for general set of
points and unit square ranges within a factor 4 of optimum. In particular, we compute a set
of 4k ranges in R such that the number of points exposed in P by deleting them is at least
the optimal number of points. Suppose we embed the ranges R on a uniform unit-sized grid
G, and define C as the collection of all cells in G that contain at least one point of P . We
have the following approximation algorithm.

Algorithm 2 DP-Approx.

1. Apply Lemma 10 to solve max-exposure locally in every cell Ci ∈ C for all 0 ≤ ki ≤ k.
Call this a local solution denoted by local(P (Ci),R(Ci), ki), where P (Ci) ⊆ P is the set
of points contained in cell Ci and R(Ci) is the set of ranges intersecting Ci.

2. Process cells in C in any order C1, C2, . . . , Cg, and define global(i, k′) as the maximum
number of points exposed in the cells Ci through Cg using k′ ranges. Combine local
solutions to obtain global(i, k′) as follows.

global(i, k′) = max
0≤ki≤k′

global(i+ 1, k′ − ki) + local(P (Ci), R(Ci), ki)

3. Return global(1, 4k) as the number of exposed points.

We have the following lemma. (See Section A.2 in the Appendix for a proof.)

I Lemma 11. If P ∗ ⊆ P is the optimal set of exposed points, then global(1, 4k) ≥ |P ∗|, that
is , the algorithm DP-Approx achieves a 4-approximation and runs in O(k(n + m)n2m2)
time.

4.3 Towards a PTAS
We now consider the max-exposure instance in a horizontal strip of unit width. That is, all
points in P lie in a horizontal strip bounded by lines `0, `1 and R consists of unit square
ranges. Suppose, we subdivide the strip into unit square cells C1, C2, . . . , Cr ∈ C ordered
from left to right. We make the following simple observation.

CjCj−1

`b

`t

Figure 7 Max-exposure instance in a strip. Cj−1, Cj ∈ C are two consecutive cells.

I Lemma 12. Let R ∈ R be a unit square range and Cj−1 be the first cell from left which it
intersects. Then the only other cell that R can intersect is Cj. Moreover, R is Type-1 with
respect to Cj−1 and Type-0 with respect to Cj. (See Figure 7.)

Observe that the set of points exposed in cell Cj will also depend on the set of Type-0
objects of Cj that were already deleted in Cj−1. So we need to ensure that we do not double
count the set of ranges that were already deleted in Cj−1. To do this, we again use a dynamic

APPROX/RANDOM 2019

19:12 The Maximum Exposure Problem

program similar to that for max-exposure within a cell where we express the subproblems at
x = xi in terms of subproblems to the right of x = xi. However, there are some important
differences in how we define our subproblems. First, events at a vertical line x = xi are one
of three types:
1. cell-boundary: x = xi is coincident with left-boundary of a cell Cj ∈ C,
2. begin-range: x = xi is coincident with left-vertical side of a range Ri ∈ R
3. point: x = xi is incident to an input pi ∈ P
Moreover for a given cell Cj , in addition to the points q0, q1, and ranges Q0, Q1, we will
also need to remember two additional ranges : L0 (anchored to `0) and L1 (anchored to
`1) that begin in Cj−1, were not deleted and are farthest from `0, `1 respectively. For the
sake of clarity, we will use Z0 = (q0, Q0, L0) to denote the triplets corresponding to `0 and
Z1 = (q1, Q1, L1) to denote the triplets corresponding to `1.

Suppose x = xi lies in the cell Cj . Then we show that the set of deleted ranges Rd
consisting of Type-0 ranges in Cj , and the set of forbidden points Pf can be uniquely
identified using the triples Z0, Z1.

Deleted Type-0 range-set Rd Let Rj−1 be the set of ranges that begin in cell Cj−1,
and therefore are Type-1 with respect to Cj−1. Suppose we define L>0 ⊆ Rj−1 to
be the set consisting of ranges anchored to `0 and farther from `0 than L0. Similarly,
L>1 ⊆ Rj−1 consists of ranges anchored to `1 and farther from `1 than L1. Then, we
define Rd = (R(q0) ∪R(q1) ∪ L>0 ∪ L>1).
Forbidden point-set Pf We define Pf = (P (L0) ∪ P (L1) ∪ P (Q0) ∪ P (Q1)).

Finally, we say that a range R dominates another range R′, if both R,R′ begin in the
same cell Cj and R′ ∩ Cj ⊆ R ∩ Cj . That is, R completely contains the part of R′ that lies
in cell Cj . Note that the key difference from earlier formulations is that at a begin-range
event for a Type-1 range Ri in cell Cj , we choose to ignore Ri if it is dominated by ranges
Q0 or Q1, because the points of Ri contained in Cj already lie in the forbidden set Pf . With
ki = |R(pi) \ Rd|, we obtain the following recurrence.

S(i, k′, Z0, Z1) = S(i+ 1, k, U(Z0, Cj), U(Z1, Cj))
(event x = xi is left-boundary of cell Cj)

max

S(i+ 1, k′, Z1, Z2) if pi ∈ Pf , cannot expose pi
S(i+ 1, k′, Z1, Z2) otherwise, choose to not expose pi
S(i+ 1, k′ − ki, Z1, Z2) + 1 otherwise, expose pi

(otherwise, event x = xi was a point pi in cell Cj)

max

S(i+ 1, k′, Z0, Z1) if either Q0 or Q1 dominates Ri, ignore Ri
S(i+ 1, k′ − 1, Z0, Z1) otherwise, delete Type-1 range Ri
S(i+ 1, k′, U(Z0, Ri), Z1) otherwise if Ri is not deleted and anchored to `0

S(i+ 1, k′, Z0, U(Z1, Ri)) otherwise, Ri is not deleted and anchored to `1

(otherwise, event x = xi was beginning of a Type-1 range Ri in cell Cj.)

The function U(Z, E) used above is defined as follows. Roughly speaking, it updates the
triplets Z ∈ {Z0, Z1} based on the event E and returns an updated triplet. We have the
following three cases.

For a cell-boundary event Cj , if we have Z0 = (q0, Q0, L0), the function U(Z0, Cj) =
(q∗0 , Q∗0, Q0). Similarly, U(Z0, Cj) = (q∗1 , Q∗1, Q1). This corresponds to resetting the
points q0, q1, rectangles Q0, Q1 for the current cell Cj , and remembering the rectangles
L0, L1 from the previous cell Cj−1.

N. Kumar, S. Sintos, and S. Suri 19:13

For a point event pi, we have U(Z0, pi) = (closer(pi, q0), Q0, L0) and similarly U(Z1, pi) =
(closer(pi, q1), Q1, L1). Recall that the function closer(pi, q0) returns whichever of pi, q0
is closer to `0, and closer(pi, q1) returns whichever of pi, q1 is closer to `1.
Finally for a begin-rectangle event Ri, we have U(Z0, Ri) = (q0, farther(Ri, Q0), L0) and
U(Z1, Ri) = (q1, farther(Ri, Q1), L1). Recall that the function farther(Ri, Q0) returns
whichever of Ri, Q0 is farther from `0, and farther(Ri, Q1) returns whichever of Ri, Q1 is
farther from `1.

The optimal solution is given by W (0, k, Z∅0 , Z∅1) where Z∅0 = (q∗0 , Q∗0, Q∗0) and
Z∅1 = (q∗1 , Q∗1, Q∗1). In order to establish the correctness of the above formulation, we make
the following claim.

I Lemma 13. Let P ∗ ⊆ P be the optimal set of exposed points. Then, for every point pi ∈ P ∗,
we count the range R ∈ R(pi) towards the total number of deleted ranges exactly once.

Proof. We begin by noting that R intersects at most two cells : Cj−1 as a Type-0 range
and Cj as a Type-1 range. It suffices to show that we count R towards the total number of
deleted ranges in exactly one of these two cells. Alternatively, it suffices to show that we
count R in cell Cj if and only if we have not already counted R in Cj−1. Recall that we can
only count for R in Cj−1 by deleting it at a begin-range event. Moreover, we can only count
for R in Cj when a point pi 6∈ Pf that lies in cell Cj is exposed. Without loss of generality,
assume that R is anchored to `0. The case when R is anchored to `1 is symmetric.

We first consider the easy case when R was not deleted in Cj−1. Observe that since R
is Type-0 with respect to Cj , similar to the earlier cases, the terms R(q0) ∪ R(q1) in the
expression for Rd will correctly charge for R in cell Cj .

CjCj−1

`0

R1

R3

R2

L0

Figure 8 Three cases for the proof: R1 ∈ L>0, and R2, R3 6∈ L>0. R2 begins before L0 and R3

begins after L0.

Now, we move to the second case where we are currently in cell Cj and we have already
counted R by deleting it at a begin-range event in cell Cj−1. In this case, we show that we
will not count R again in Cj . More precisely, we show that if R contains a point p that lies
in cell Cj but is not contained in the forbidden point set Pf , then the deleted range set Rd
contains R, and therefore the expression ki = R(p) \ Rd will not charge for R again. We
have three cases.
1. R ∈ L>0. This case is straightforward as Rd contains all ranges in L>0.
2. R 6∈ L>0 and R begins before L0. This case is not possible because any point that is

contained in (R ∩ Cj) is also contained in L0. This holds because R and L0 have the
same width, so if R begins before L0 in Cj−1, it must end before L0 in Cj . Since every
point contained in L0 is contained in the forbidden set Pf , we must have p ∈ Pf which is
a contradiction. (See Figure 8 with R = R2.)

3. R 6∈ L>0 and R begins after L0. This case is also not possible because if this were true
L0 would have dominated R. Therefore, we would have ignored R in Cj−1 and would
not have deleted it. (See Figure 8 with R = R3.) J

APPROX/RANDOM 2019

19:14 The Maximum Exposure Problem

I Lemma 14. The restricted max-exposure instance such that all points in P lie within a
unit-width horizontal strip bounded by lines `0, `1 and R consists of unit squares can be solved
in O(k(n+m)n4m2) time, where m = |P | and n = |R|.

Using similar ideas as Lemma 11, the above lemma readily gives a 2-approximation for
max-exposure. More precisely, we can embed the input instance on to a unit-sized grid
as before, but instead of solving max-exposure in a cell, we use the above algorithm to
solve max-exposure locally in a row of the grid. Since each range R ∈ R can intersect at
most two rows, R is split into two sub-ranges R1, R2 contained in at most two rows. Since
these new sub-ranges in two different rows are disjoint, there exists an optimal solution with
2k sub-ranges. Therefore, if we have already computed the local solutions for each row i,
using the algorithm DP-Approx we can compute global(1, 2k) which exposes at least optimal
number of points using at most 2k ranges.

I Corollary 15. There exists a 2-approximation algorithm for max-exposure with unit square
ranges running in O(k(n+m)n4m2) time.

Generalizing to h anchor lines. The dynamic program for max-exposure in a horizontal
strip bounded by two anchor lines `0, `1 can be generalized to the case when we have h anchor
lines `1, `2, . . . , `h. However, there is a minor technical change required. Observe that for a
given anchor line `i, there can be points and anchored ranges on either side of `i. Therefore,
we will need to remember the closest exposed points and the farthest undeleted ranges on
both sides of `i. So for each anchor line `i, we will need the triplet Z+

i = (q+
i , Q

+
i , L

+
i) for

points and ranges above `i and the triplet Z−i = (q−i , Q
−
i , L

−
i) for points and ranges below `i.

The dynamic program will now need to remember at most 4h ranges and 2h points which
gives a running time of O(k(n+m)n4hm2h). If we denote a collection of h consecutive anchor
lines by a bundle of width h, then we have the following.

I Lemma 16. Max-exposure in a bundle of width h can be solved in O(k(n + m)n4hm2h)
time.

4.4 An (1 + ε)-Approximation Algorithm
We are now ready to describe our PTAS for the problem. Suppose the anchor lines correspond
to the horizontal lines of the uniform unit-sized grid G. Since we have already solved
max-exposure exactly for h consecutive rows in G, we can now apply standard shifting
techniques [18] to obtain an (1 + ε)-approximation. If P ∗ is the optimal set of exposed points,
then we show how to compute a set of (1 + ε)k ranges deleting which will expose at least
|P ∗| points. Note that using similar ideas, it is also possible to expose at least (1− ε)|P ∗|
points by deleting exactly k ranges (See Appendix B).

Suppose that anchor lines `1, `2, . . . , `z are ordered by increasing y-coordinates. We define
a bundle Bj to be a set of h consecutive anchor lines, identified by the lowest index anchor
`j . We also define bundle-set to be a sequence of consecutive bundles, identified by the index
of the lowest bundle. For instance the bundle B1 comprises of anchor lines `1 through `h
(inclusive). And the bundle-set B1 comprises of bundles B1, Bh, B2h, . . . Bdz/he. The lines
`1, `h, . . . , `dz/he form the bundle boundaries ∂B1 of bundle-set B1.

For each bundle Bj ∈ B1, we can use the dynamic program from Lemma 16 to solve
max-exposure locally. Using the exact solution for each bundle as local solution, we can use
the algorithm DP-Approx (from Section 4.2) to combine them into a global solution for the

N. Kumar, S. Sintos, and S. Suri 19:15

bundle-set B1 given by P (B1) = global(1, (k + k/h)). We repeat this for each bundle-set Bi
for all i ∈ {1, 2, . . . , h}, and return the point set P (Bi) that has maximum cardinality over
all i ∈ {1, 2, . . . , h}.

It remains to show that this achieves a good approximation. To see this, we observe
that the only ranges that may be double counted are the ones that are anchored to bundle
boundaries of ∂Bi. In the following, we show that this number is a small fraction of the
optimum solution. (Proof in Appendix A.3.)

I Lemma 17. The bundle boundaries ∂Bi, ∂Bj for any two bundle-set Bi,Bj are disjoint,
and therefore the set of ranges anchored to lines in ∂Bi are also disjoint. Then, there exists
a bundle-set Bmin such that the number of ranges of the optimal solution anchored to lines in
∂Bmin is at most k/h.

Choosing ε = 1/h gives us a set of (1+ ε)k objects such that the number of points exposed
by selecting these objects is at least the optimum number of points.

I Theorem 18. There exists an (1 + ε)-approximation algorithm for max-exposure with unit
square ranges running in O(k(n+m)n4/εm2/ε) time.

5 Extensions and Applications

In this section, we discuss some extensions and applications of our the results from previous
section. We say that the range family R consists of fat rectangles if every range R ∈ R is
a rectangle of bounded aspect ratio. Moreover, we say that R consists of similar and fat
rectangles, if ranges in R are rectangles and the ratio of the largest to the smallest side in
R is constant. We show that if R consists of similar and fat rectangles, one can achieve a
constant approximation. Moreover, if R consists of fat rectangles one can achieve a bicriteria
O(
√
k)-approximation.

5.1 Approximation for Similar and Fat Rectangles
Let a, b be the length of smallest and largest sides of rectangles in R such that b/a = c is
constant. Then we can modify the input instance as follows. Replace each range R ∈ R by
tiling it with at most c2 squares of sidelength a such that the area occupied by R and its
replacements are the same. Now, we have a modified set of ranges R′ consisting of squares
that have the same sidelength. Consider the optimal solution with k ranges R∗ that exposes
m∗ points. It is easy to see that the set R∗ corresponds to at most c2k ranges in the modified
instance, and therefore deleting c2k ranges from R′ exposes at least m∗ points. Therefore,
we can run the polynomial-time 2-approximation algorithm (Corollary 15) to obtain a set of
at most 2c2k ranges that expose at least m∗ points.

I Theorem 19. Given a set of points P , a set of rectangle ranges R such that the ratio of
largest to smallest side in R is bounded by a constant, then there exists a polynomial time
O(1)-approximation algorithm for max-exposure.

5.2 Approximation for Fat Rectangles
We now consider the case when rectangles in R have bounded aspect ratio. That is for all
rectangles R ∈ R, the ratio of its two sides is bounded by a constant c. We transform the
input ranges R to obtain a modified set of ranges R′ as follows. For each rectangle R ∈ R,
let x be the length of the smaller side of R. Then we replace R by at most dce squares each
of sidelength x. If m∗ is the optimal number of points exposed by deleting k ranges from R,

APPROX/RANDOM 2019

19:16 The Maximum Exposure Problem

then there exists a set of O(k) ranges in R′ deleting which will expose at least m∗ points.
Observe that the set R′ consists of square ranges, of possibly different sizes. Therefore, if we
can obtain an f -approximation for square ranges, we can easily obtain O(f)-approximation
with fat rectangles.

5.2.1 A Bicriteria O(
√
k)-approximation for Squares

We will describe an approximation algorithm for the case when the set of ranges R consists
of axis-aligned squares. We achieve an approximation algorithm in three steps. First, we
partition the point set by assigning them to one of the input squares. Next, we solve the
problem exactly for a fixed square. Finally, we combine these solutions to achieve a good
approximation to the optimal solution.

We define A : P → R to be a function that assigns a point in P to exactly one range in
R. If R(pi) is the set of squares that contain pi, then A(pi) is the smallest square in R(pi).
This assignment scheme ensures the following property.

I Lemma 20. Let R ∈ R be a square and let P (R) = A−1(R) be the set of points assigned
to it. Moreover, let R′ ⊆ R be the set of squares that intersect R and contain at least one
point in P (R). Then, every square R′ ∈ R′ must have sidelength bigger than that of R, and
therefore contains at least one corner of R.

Now suppose we fix a square R, and consider a restricted max-exposure instance with the
set of its assigned points P (R). Since, ranges that contain a point in P (R) are all bigger then
R, this case is essentially the same as points inside a unit square, and therefore Lemma 10 can
be easily extended to solve it exactly. This gives us the following algorithm. Here 1 ≤ α ≤ k
is a parameter.

Algorithm 3 Greedy-Squares.

1. For every square R ∈ R, apply Lemma 10 over the point set P (R) to expose the maximum
set of points P (R, k) ⊆ P (R) by deleting k ranges.

2. Order squares in R by decreasing |P (R, k)| values, and pick the set S ⊆ R of first α
squares. Return

⋃
R∈S P (R, k) as the set of exposed points.

I Lemma 21. Let m∗ be the optimal number of points exposed using k squares, then algorithm
Greedy-Squares computes a set of at most αk squares that expose at least αm∗/k points.

For α =
√
k, the above algorithm achieves a bicriteria O(

√
k)-approximation. Since an

f -approximation for square ranges gives an O(f)-approximation for fat rectangles, we obtain
the following.

I Theorem 22. Given a set of points P and a set of ranges R consisiting of rectangles of
bounded aspect ratio, then one can obtain a bicriteria O(

√
k)-approximation for max-exposure

in polynomial time.

6 Conclusion

In this paper, we introduced the max-exposure problem over the range space (P,R) and
presented approximation algorithms for rectangle range spaces. We showed that the problem
is hard to approximate even when R consists of two types of rectangles, and therefore focused

N. Kumar, S. Sintos, and S. Suri 19:17

on the complexity of the problem for the case when R consists of translates of a single
rectangle. We show that in this case, the geometry of ranges can be exploited to obtain a
PTAS. A natural question to consider is how does the complexity of the problem change
with more general shapes. In particular, does there exist a constant approximation when R
consists of axis-aligned squares?

References
1 P. K Agarwal and J. Pan. Near-linear algorithms for geometric hitting sets and set covers. In

Proceedings of 30th SoCG, page 271. ACM, 2014.
2 S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense

instances of NP-hard problems. Journal of computer and system sciences, 58(1):193–210, 1999.
3 Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily finding a dense subgraph.

Journal of Algorithms, 34(2):203–221, 2000.
4 S. Bandyapadhyay, N. Kumar, S. Suri, and K. Varadarajan. Improved Approximation Bounds

for the Minimum Constraint Removal Problem. In Proceedings of 21st APPROX, pages
2:1–2:19, 2018.

5 S. Bereg and D. G. Kirkpatrick. Approximating Barrier Resilience in Wireless Sensor Networks.
In Proceedings of 5th ALGOSENSORS, pages 29–40, 2009.

6 A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan. Detecting high
log-densities: an O(n1/4) approximation for densest k-subgraph. In Proceedings of the 42nd
STOC, pages 201–210. ACM, 2010.

7 H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension.
Discrete & Computational Geometry, 14(4):463–479, 1995.

8 C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the set multi-cover problem in geometric
settings. ACM Transactions on Algorithms (TALG), 9(1):9, 2012.

9 E. Chlamtac, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca. The Densest k-
Subhypergraph Problem. In Proceedings of 19th APPROX, pages 6:1–6:19, 2016.

10 E. Chlamtáč, M. Dinitz, and Y. Makarychev. Minimizing the union: Tight approximations for
small set bipartite vertex expansion. In Proceedings of the 28th SODA, pages 881–899, 2017.

11 K. L. Clarkson and P. W. Shor. Application of Random Sampling in Computational Geometry,
II. Discrete & Computational Geometry, 4:387–421, 1989.

12 M. Cygan, F. Grandoni, S. Leonardi, M. Mucha, M. Pilipczuk, and P. Sankowski. Approx-
imation Algorithms for Union and Intersection Covering Problems. In Proceedings of 31st
FSTTCS, page 28, 2011.

13 E. Eiben, J. Gemmell, I. Kanj, and A. Youngdahl. Improved results for minimum constraint
removal. In Proceedings of 32nd AAAI Conference on Artificial Intelligence, 2018.

14 U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

15 U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica, 29(3):410–
421, 2001.

16 U. Feige and M. Seltser. On the Densest K-subgraph Problems. Technical report, Weizmann
Institute of Science, Jerusalem, Israel, 1997.

17 R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Information processing letters, 12(3):133–137, 1981.

18 D. S. Hochbaum and W Maass. Approximation schemes for covering and packing problems in
image processing and VLSI. Journal of the ACM (JACM), 32(1):130–136, 1985.

19 M. Korman, M. Löffler, R. I. Silveira, and D. Strash. On the complexity of barrier resilience
for fat regions and bounded ply. Comput. Geom., 72:34–51, 2018.

20 N. H. Mustafa, R. Raman, and S. Ray. Settling the APX-hardness status for geometric set
cover. In Proceedings of 55th FOCS, pages 541–550. IEEE, 2014.

APPROX/RANDOM 2019

19:18 The Maximum Exposure Problem

A Missing Proofs

A.1 Proof of Lemma 3
Given a graph G′ = (V ′, E′) sampled from one of the dense or random instances, we first
construct a bipartite graph G = (A,B,E) as follows. For every vertex v ∈ V ′, we add a vertex
va to A and vb to B. Now for every edge e = (u, v) ∈ E′, we add the pair of edges e1 = (ua, vb)
and e2 = (va, ub) to E. That is, every edge e ∈ E′ is mapped to two copies e1, e2 ∈ E and
we can define par(e1) = par(e2) = e. Similarly, we define par(ua) = par(ub) = u. We say
that G is dense if the underlying graph G′ was sampled from the dense case, otherwise we
say that G is random.

Consider a set of k∗ = 2k vertices in G. If G came from the dense case, there must be a
set of 2k vertices that have 2kβ+1 edges between them. So the number of edges in dense
case m∗d ≥ 2kβ+1. Otherwise, we are in the random case. Consider the optimal set of 2k
vertices V ∗ and let E∗ be the set of edges in the induced subgraph G[V ∗]. Now consider the
corresponding set of vertices Vp = {par(v) | v ∈ V ∗} of the original graph G′ and the set of
edges Ep in the induced subgraph G′[Vp]). We have that |Vp| ≤ |V ∗| = 2k and |Ep| ≥ |E∗|/2
because for each edge e = (u, v) ∈ E∗, we will have the edge par(e) = (par(u), par(v)) ∈ Ep.
We can now bound the number of edges Ep over 2k vertices in the random case to be
Õ(max(2k, 4k2nα−1)) w.h.p, and therefore the optimum number of edges in the random case
is m∗r = |E∗| ≤ 2|Ep| = Õ(max(k, k2nα−1)) w.h.p.

Choosing k = n1/2, α = 1
2 , β = 1

2 − ε, gives us m
∗
r = Õ(n1/2) w.h.p. and m∗d = Ω̃(n 3−2ε

4).
Suppose, we could approximate this problem within a factor O(n1/4−ε), then in the dense
case, the number of edges computed by this approximation algorithm is Ω̃(n 1+ε

2) which is
strictly more than the maximum possible edges in the random case. Therefore, we would be
able to distinguish between dense and random cases, and thereby refuting the conjecture for
these values of α, β and k.

A.2 Proof of Lemma 11

Figure 9 Embedding a max-exposure instance with unit square ranges on a unit-sized grid.
Optimal solution in each grid cell can be computed exactly using Lemma 10.

Consider the optimal set of ranges R∗ ⊆ R. Observe that each range R ∈ R∗ intersects
at most four grid cells. Let Ri = R ∩ Ci be the rectangular region defined by intersection
of R and Ci. Clearly, there are at most four regions Ri for each R ∈ R∗ and therefore 4k
in total. At this point, the regions in cell Ci are disjoint from regions in some other cell
Cj ∈ C. Therefore, optimal solution exposes |P ∗| points over a set of cells C∗ such that the
set R∗ has at most 4k disjoint components in the cells C∗. Since we can solve the problem
exactly for each cell and can combine them using the above dynamic program, we have that
global(1, 4k) ≥ |P ∗| and we achieve a 4-approximation.

N. Kumar, S. Sintos, and S. Suri 19:19

For the running time, we observe that solving max-exposure locally in a cell Ci takes
O(k(ni +mi)n2

im
2
i) time, where ni is the number of ranges that intersect Ci and mi is the

number of points in P that lie in Ci. Summed over all cells, we get the following bound.∑
i

k(ni +mi)n2
im

2
i ≤ k

∑
i

(ni +mi)
∑
i

n2
i

∑
i

m2
i

≤ k(n+m) (
∑
i

ni)2 (
∑
i

mi)2 = O(k(n+m)n2m2)

Once the local solutions are computed, the dynamic program that merges them into a global
solution has O(k|C|) subproblems and computing each subproblem takes O(k) time. Recall
that every cell in C contains at least one point, so |C| ≤ n and the merge step takes an
additional O(k2n) time.

A.3 Proof of Lemma 17
Let R∗ ⊆ R be the optimal set of ranges, and let R∗i ⊆ R∗ be the set of ranges anchored to
lines in ∂Bi. Since

⋃
i∈{1,...h} ∂Bi is the set of all anchor lines, we have⋃

i∈{1,...h}

R∗i = R∗ =⇒
∑

i∈{1,...h}

|R∗i | = k

=⇒
∑

i∈{1,...h}

|R∗min| ≤ k =⇒ |R∗min| ≤ k/h

A.4 Proof of Lemma 21
It is easy to see that the number of squares is at most αk. To show the bound on number of
points exposed, consider the optimal solution R∗ and let the optimal set of points exposed
by R∗ to be P ∗. We will now use the same assignment procedure A∗ : P ∗ → R∗ to assign
points in P ∗ to a square in R∗. That is, A∗(pi) is the smallest square in R∗ that contains pi.
We claim that A∗(pi) = A(pi) for all pi ∈ P ∗ since every square that contains pi lies in R∗.
Moreover, let P ∗(R) denote the set of points of P ∗ assigned to R.

Let m∗ be the optimal number of points that are exposed, and m′ be the number of
points exposed by the algorithm. Now assume that the squares in R are ordered such that
|P (Ri, k)| ≥ |P (Rj , k)| for all i < j. Then, we have the following.

m∗ =

∣∣∣∣∣ ⋃
R∈R∗

P ∗(R)

∣∣∣∣∣ =
∑
R∈R∗

|P ∗(R)|

≤
∑

1≤i≤k
|P (Ri, k)| ≤ k

α

∑
1≤i≤α

|P (Ri, k)|

= k

α
m′

B PTAS for Unit Square Ranges on Number of Exposed Points

Given a set of points P , unit square ranges R, we will now show that the PTAS for unit
square ranges can be modified so that we can compute a set of k ranges that expose at
least (1− ε) fraction of the maximum possible number of points. For simplicity we assume
that h is odd. The basic setup is the same: we have the anchor lines `1, `2, . . . , `z that

APPROX/RANDOM 2019

19:20 The Maximum Exposure Problem

are unit distance apart. However, there is one important change, we will only use the
odd-numbered lines `1, `3, . . . , `h, `h+2, . . . , `z to define bundles. For instance, the bundle
B1 now consists of the anchor lines `1, `3, . . . , `h, while the bundle-set B1 now comprises of
bundles B1, Bh, B2h, . . . , Bz/h. Same as before, the lines `1, `h, . . . , `z/h form the boundary
∂B1. We have the following algorithm.

Algorithm 4 PTAS-Exposed-Points.

1. Assign each point p ∈ P to the closest line among l1, l3, . . . lz.
2. For each i ∈ {1, 3, . . . , h}, process bundle set Bi as follows.

Let Pi be the set of points assigned to anchor lines lj ∈ ∂Bi, boundaries of Bi.
Using the exact algorithm for each bundle B ∈ Bi as local solutions, we run the
algorithm DP-Approx (from Section 4.2) over the point set P \ Pi to obtain global
solutions given by global(1, k). Let P (Bi) be the set of exposed points returned by
DP-Approx.

3. Return the set P (Bi) that has maximum cardinality over all i ∈ {1, 3, . . . , h}.

Clearly, the number of ranges used by the above algorithm is k. It remains to show that
the number of points m′ exposed by the algorithm is also close to m∗, the optimal number
of exposed points. Let P ∗ ⊆ P be the optimal set of exposed points.

I Lemma 23. The bundle boundaries ∂Bi, ∂Bj for any two bundle-set Bi,Bj are disjoint,
and therefore the set of points assigned to lines in ∂Bi are also disjoint. Then, there exists a
bundle-set Bmin such that the number of points of P ∗ assigned to its boundaries ∂Bmin is at
most 2m∗

h−1 .

Proof. let P ∗i ⊆ P ∗ be the set of points in P ∗ that are assigned to lines in boundaries ∂Bi
of some bundle Bi. Since

⋃
i∈{1,3,...,h} ∂Bi is the set of all anchor lines to which we assign

points, we have⋃
i∈{1,3,...h}

P ∗i = P ∗ =⇒
∑

i∈{1,3...h}

|P ∗i | = m∗

=⇒
∑

i∈{1,3,...h}

|P ∗min| ≤ m∗ =⇒
(
h− 1

2

)
|P ∗min| ≤ m∗

=⇒ |P ∗min| ≤
2m∗

h− 1 J

Observe that for the bundle-set Bmin, we may have removed Pmin points, but the remaining
set P \Pmin consists at least m∗− 2m∗

h−1 = (1− 2
h−1)m∗ points of the optimal set P ∗. Moreover,

observe that we have removed points that are within a unit distance on either side of anchor line
`j ∈ ∂Bmin, the set of ranges deleted in each bundle are disjoint from another. Therefore, the
value P (Bmin) returned by the algorithm DP-Approx exposes at least P \Pmin = (1− 2

h−1)m∗
points by deleting k ranges. If we set h = 2/ε+ 1 we have the following result.

I Theorem 24. There exists an (1− ε)-approximation on the number of exposed points for
max-exposure with unit-square ranges running in k(nm)O(1/ε) time.

Small Space Stream Summary for Matroid Center
Sagar Kale
EPFL, Lausanne, Switzerland
sagar.kale@epfl.ch

Abstract
In the matroid center problem, which generalizes the k-center problem, we need to pick a set of
centers that is an independent set of a matroid with rank r. We study this problem in streaming,
where elements of the ground set arrive in the stream. We first show that any randomized one-pass
streaming algorithm that computes a better than ∆-approximation for partition-matroid center
must use Ω(r2) bits of space, where ∆ is the aspect ratio of the metric and can be arbitrarily large.
This shows a quadratic separation between matroid center and k-center, for which the Doubling
algorithm [7] gives an 8-approximation using O(k)-space and one pass. To complement this, we give
a one-pass algorithm for matroid center that stores at most O(r2 log(1/ε)/ε) points (viz., stream
summary) among which a (7 + ε)-approximate solution exists, which can be found by brute force, or
a (17 + ε)-approximation can be found with an efficient algorithm. If we are allowed a second pass,
we can compute a (3 + ε)-approximation efficiently.

We also consider the problem of matroid center with z outliers and give a one-pass algorithm
that outputs a set of O((r2 + rz) log(1/ε)/ε) points that contains a (15 + ε)-approximate solution.
Our techniques extend to knapsack center and knapsack center with z outliers in a straightforward
way, and we get algorithms that use space linear in the size of a largest feasible set (as opposed to
quadratic space for matroid center).

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Facility location and clustering; Mathematics of computing → Matroids and greedoids

Keywords and phrases Streaming Algorithms, Matroids, Clustering

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.20

Category APPROX

Related Version A full version of the paper is available at http://arxiv.org/abs/1810.06267.

Funding This work was supported by ERC Starting Grant 335288-OptApprox.

Acknowledgements I thank Ashish Chiplunkar for his contributions, Maryam Negahbani for discus-
sions, and anonymous reviewers for helpful comments.

1 Introduction

In the k-center problem, the input is a metric, and we need to select a set of k centers that
minimizes the maximum distance between a point and its nearest center. Matroid center is
a natural generalization of k-center, where, along with a metric over a set, the input also
contains a matroid of rank r over the same set. We then need to choose a set of centers that is
an independent set of the matroid that minimizes the maximum distance between a point and
its nearest center. Then k-center is rank-k-uniform-matroid center. Examples of clustering
problems where the set of centers needs to form an independent set of a partition matroid
arise in content distribution networks (see Hajiaghayi et al. [16] and references therein). A
partition matroid constraint can also be used to enforce fairness conditions such as having
kM centers of type M and kW centers of type W. As another example, say the input points
lie in a euclidean space, and we are required to output linearly independent centers, then

© Sagar Kale;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 20; pp. 20:1–20:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sagar.kale@epfl.ch
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.20
http://arxiv.org/abs/1810.06267
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Small Space Stream Summary for Matroid Center

this is the linear-matroid center problem. Studying a combinatorial optimization problem in
the streaming model is worthwhile not only in its own right, but also because it can lead to
discovery of much faster algorithms1.

In the streaming model, the input points arrive in the stream, and we are interested
in designing algorithms that use space sublinear in the input size. We study the matroid
center problem in the streaming model. By a clean reduction from the index problem, we
first show that any randomized one-pass streaming algorithm that computes a better than
∆-approximation for matroid center must use Ω(r2) bits of space, where ∆ is the aspect
ratio of the metric (ratio of the largest distance to the smallest distance between two points),
which can be arbitrarily large. Since the Doubling algorithm [7] gives an 8-approximation
for k-center in one pass over the stream by storing at most k points, we get a quadratic
separation between matroid center and k-center. We then give a one-pass algorithm that
computes a (7 + ε)-approximation using a stream summary of O(r2 log(1/ε)/ε) points. The
algorithm maintains an efficiently-updatable summary, and runs a brute-force step when the
end of the stream is reached. We can replace the brute-force step by an efficient algorithm to
get a (17 + ε)-approximation. Alternatively, using a second pass, we can (efficiently) compute
a (3 + ε)-approximation. Our algorithms assume only oracle accesses to the metric and to
the matroid.

In k-center or matroid center, even very few rogue points can wreck up the solution,
which motivates the outlier versions where we can choose up to z points that our solution
will not serve. McCutchen and Khuller [28] give a one-pass (4 + ε)-approximation algorithm
for k-center with z outliers that uses space O(kz log(1/ε)/ε). Building on their ideas, we
give a (15 + ε)-approximation one-pass algorithm for matroid center with z outliers, using
a brute-force search through the summary as the last step, and a (51 + ε)-approximation
algorithm if we want an efficient implementation in the last step.

To the best of our knowledge, matroid center problems have not been considered in
streaming. Chen, Li, Liang, and Wang [11] give an offline 3-approximation algorithm for
matroid center and a 7-approximation algorithm for the outlier version; this approximation
ratio is improved to 3 by Harris et al. [19]. These algorithms are not easily adaptable to
the streaming setting if we are allowed only one pass, though, our two-pass algorithm for
matroid center may be thought of as running multiple copies of Chen et al.’s 3-approximation
algorithm. We mention that optimization problems over matroid or related constraints have
been studied before in streaming [2, 3, 10].

The Doubling algorithm [7] gives an 8-approximation for k-center. Guha [15], using
his technique of “stream-strapping”, improves this to 2 + ε. We use the stream-strapping
technique in this paper to reduce space-usage of our algorithms as well. Known streaming
algorithms for k-center problems do not extend to the matroid center problems. Indeed, the
gap between the space complexities of k-center and matroid center, exhibited by our lower
bound, warrants the need for new ideas.

1 This is demonstrated by Chakrabarti and Kale [3] who give streaming algorithms for submodular
maximization problems that make only 2|E| total submodular-oracle calls (Õ(|E|) total time) and
achieve constant-factor approximations, where E is the ground set. On the other hand earlier fastest
algorithms were greedy and potentially could make Ω(|E|2) oracle calls. Trivially, |E| oracle calls are
needed for any non-trivial approximation.

S. Kale 20:3

1.1 Techniques
At the heart of many algorithms for k-center is Gonzalez’s [13] furthest point heuristic that
gives a 2-approximation. It first chooses an arbitrary point and adds it to the current set
C of centers. Then it chooses a point that is farthest from C and adds it to C. This is
repeated until C has k centers. Let CE be the set of centers returned by this algorithm,
and let p be the point that is farthest from CE . Then d(p, CE) is the cost of the solution,
whereas the set CE ∪ {p} of size k + 1 acts as a certificate that an optimum solution must
have cost at least d(p, CE)/2. This can be easily implemented in streaming if we are given a
“guess” τ of OPT, i.e., the cost of an optimum solution. When we see a new point e in the
stream, we add it to C if d(e, C) > 2τ . Assuming that we know the aspect ratio ∆, we can
do this for 2 log1+ε ∆ guesses of OPT to get a (2 + ε)-approximation as follows. Let R be the
distance between first two points in the stream. Then maintain the set C as described above
for guesses τ ∈ {R/∆, (1 + ε)R/∆, (1 + ε)2R/∆, . . . , R∆}. The stream-strapping technique
reduces the number of active guesses to O(log(1/ε)/ε).

In extending this to matroid center, the biggest challenge is deciding which point to make
a center. In a solution to k-center, if we replace a point by another point that is very close to
it, then the cost can change only slightly, whereas if we do the same in a solution to matroid
center, the solution might just become infeasible. Therefore, if we maintain a set C as earlier,
it might quickly lose its independence in the matroid. The idea is to store, for each of the
at most r points c ∈ C, a maximal independent set Ic of points close to c; here, by close
we mean close in terms of the guess τ . This way, we store at most r2 + r points. Storing a
maximal independent set for each point in C may seem wasteful, but our lower bound shows
that it is necessary. Our first algorithmic insight is to show that this idea works for a correct
guess. We show that if each optimum center s is in the span of an independent set Ic for a c
that is close to s, then we can recover an independent set of small cost from the summary⋃
c∈CE

Ic. And as our second insight, we show how to extend the stream-strapping approach
to reduce the number of active guesses, which helps us reduce the space usage. These ideas
naturally combine with those of McCutchen and Khuller [28] and help us design an algorithm
for matroid center with z outliers, but it is nontrivial to prove that the combination of these
ideas works.

Knapsack center

In the knapsack center problem, each point e has a non-negative weight w(e), and the goal is
to select a set C of centers that minimizes the maximum distance between a point and its
nearest center subject to the constraint that

∑
c∈C w(c) 6 B, where B is the budget. The

k-center problem is a special case with unit weights and B = k. In the streaming setting,
our algorithms for matroid center and matroid center with outliers can be extended to get
constant approximations using space proportional to the size of a largest feasible set, i.e.,
max{|S| :

∑
e∈S w(e) 6 B}. As described earlier, we maintain a set C of potential centers

using the guess τ , and for each potential center c, we also maintain a smallest weight point,
say sc, in its vicinity. Then, in the end, the summary {sc : c ∈ C} contains a good solution.
This idea works because replacing a center by a nearby point with a smaller weight does
not affect the feasibility in the knapsack setting (which could destroy independence in the
matroid setting).

1.2 Related Work
The k-center problem was considered in the ’60s [17, 18]. It is NP-hard to achieve a factor
of better than 2 [23], and polynomial-time 2-approximation algorithms exist [13, 21]. As
mentioned earlier, Chen et al. [11] give a 3-approximation algorithm for matroid center

APPROX/RANDOM 2019

20:4 Small Space Stream Summary for Matroid Center

and a 7-approximation algorithm for the outlier version, and this approximation ratio is
improved to 3 by Harris et al. [19]. Motivated by applications in content distribution networks,
the matroid median problem is considered as well [16, 25]. The problem of k-center with
outliers was first studied by Charikar et al. [8] who gave a 3-approximation algorithm. The
approximation ratio was recently improved to 2 by Chakrabarty et al. [4]. We mention the
work of Lattanzi et al. [26] that considers hierarchical k-center with outliers.

For knapsack center, a 3-approximation was given by Hochbaum and Shmoys [22]. For
the outlier version of knapsack center, very recently, Chakrabarty and Negahbani [5] gave
the first non-trivial approximation (a 3-approximation).

Streaming

Charikar et al. [9] and Guha et al. [14] consider k-median with and without outliers in
streaming. Guha [15] gives a (2 + ε)-approximation one-pass algorithm for k-center that
uses O(k log(1/ε)/ε) space, and McCutchen and Khuller [28] give a (4 + ε)-approximation
one-pass algorithm for k-center with z outliers that uses O(kz log(1/ε)/ε) space. The special
cases of 1-center (or, the minimum enclosing ball problem) and 2-center in euclidean spaces
have been considered [29, 24, 20] and better approximation ratios than the general k-center
problem are known in streaming. Correlation clustering is studied in streaming by Ahn et
al. [1]. Cohen-Addad et al. [12] give streaming algorithms for k-center in the sliding windows
model, where we want to maintain a solution for only some number of the most recent points
in the stream. Guha [15] also gives a space lower bound of Ω(n) for one-pass algorithms
that give a better than 2 approximation for (even the special case of) 1-center by a simple
reduction from index, where n is the number of points.

k-center in different models

Chan et al. [6] consider k-center in the fully dynamic adversarial setting, where points can be
added or deleted from the input, and the goal is to always maintain a solution by processing
the input updates quickly. Malkomes et al. [27] study distributed k-center with outliers.

1.3 Organization of the Paper
We define the model and the problems in Section 2. Section 3 is on the lower bound. In
Section 4, we give our important algorithmic ideas and discuss our algorithm for matroid
center, and then in Section 5, we discuss the outlier version. In Appendix A, we give the
improved space bounds.

2 Preliminaries

A matroid M is a pair (E, I), where E is a finite set and is called the ground set of the
matroid, and I is a collection of subsets of E that satisfies the following axioms:
1. ∅ ∈ I,
2. if J ∈ I and I ⊆ J , then I ∈ I, and
3. if I, J ∈ I and |I| < |J |, then there exists e ∈ J \ I such that I ∪ {e} ∈ I.
If a set A ⊆ E is in I, then it is called an independent set of the matroid M, otherwise
it is called a dependent set. A singleton dependent set is called a loop. Rank of a set A,
denoted by rank(A), is the size of a maximal independent set within A; note that rank is a
well-defined function because of the third axiom, which is called the exchange axiom. Clearly,

S. Kale 20:5

for A ⊆ B, rank(A) 6 rank(B). Rank of a matroid is the size of a maximal independent set
within E. Span of a set A, denoted by span(A), is the largest set that contains A and has the
same rank as A (it can be shown that such a set is unique). We will also use submodularity
of the rank function, i.e., for A,B ⊆ E,

rank(A ∪B) + rank(A ∩B) 6 rank(A) + rank(B) . (1)

A matroid (E, I) is a partition matroid if there exists a partition {E1, E2, . . . , Ep} of E
and nonnegative integers `1, `2, . . . , `p, such that I = {A ⊆ E : ∀i ∈ [p], |A ∩Ei| 6 `i}. We
say that `i is the capacity of part Ei. Observe that the rank of the matroid is

∑p
i=1 `i.

A metric d over E is a (distance) function d : E × E → R+ that satisfies the following
properties for all e1, e2, e3 ∈ E:
1. d(e1, e2) = 0 if and only if e1 = e2,
2. d(e1, e2) = d(e2, e1), and
3. d(e1, e3) 6 d(e1, e2) + d(e2, e3); this property is called the triangle inequality.
We sometimes call elements in E points. For a point e and a positive number α, the closed ball
of radius α around e, denoted by B(e, α), is the set {x ∈ E : d(e, x) 6 α}. We overload d by
defining d(e,A) := minx∈A d(e, x) for e ∈ E and A ⊆ E. The aspect ratio ∆ of a metric is the
ratio of the largest distance to the smallest in the metric, i.e., maxx,y d(x, y)/minx,y d(x, y).

The input for the matroid center problem is a matroidM = (E, I) of rank r and a metric
d over E. The goal is to output an independent set S such that its cost maxe∈E d(e, S) is
minimized. We are interested in algorithms that assume oracle (or black-box) accesses to
the matroid and the metric. The algorithm can ask the matroid oracle whether a set is
independent or not, and it can ask the metric oracle (or distance oracle) what the distance
between given two points is. In the streaming model, elements of E arrive one by one, and
we want to design an algorithm that uses small (sublinear in the input) space. The algorithm
can query the oracles only with the elements of E. If the algorithm queries an oracle with
an element not in E, then we say that it fails. A streaming algorithm can only remember a
small part of the input, and the aforementioned restriction disallows plausible learning about
forgotten elements indirectly from oracle calls. Also, an algorithm cannot just enumerate
elements of E on the fly without looking at the stream, because it does not know the names
of the elements in advance.

The input for matroid center with z outliers is also a matroidM = (E, I) and a metric d
over E, but the goal is to output an independent set whose cost is computed with respect to
|E| − z closest points. Formally, cost of a set S is min{α ∈ R+ : |E \ (

⋃
s∈SB(s, α))| 6 z}.

We denote by OPT the cost of an optimum solution of the instance in the context.

3 Space Lower Bound for One Pass Matroid Center

We show that Ω(r2) space is required to achieve better than ∆-approximation for a one-
pass algorithm for matroid center. We reduce from the communication problem of index.
This reduction is based on the simple reduction for the maximum-matching-size problem:
see Figure 1. In indexN , Alice holds an N -bit string and Bob holds an index I ∈ [N]; Alice
sends a message to Bob, who has to determine the bit at position I. It is known that Alice
has to send a message of size at least (1−H2(3/4))N > 2N/11 for Bob to output correctly
with a success probability of 3/4, where H2 is the binary entropy function.

APPROX/RANDOM 2019

20:6 Small Space Stream Summary for Matroid Center

u

v

CAVB VA CB

Figure 1 If we have a one-pass streaming algorithm that computes the size of a maximum
matching of a k vertex bipartite graph using o(k2) space, then we can solve indexN using o(N)
communication, which would be a contradiction. Alice and Bob agree on a bijection from [N] to
the edges of a complete bipartite graph Kk,k and construct a graph G as follows. If `th bit is 1,
Alice adds the corresponding edge (shown in solid red). If the index corresponds to the edge {u, v}
(shown as a dotted orange edge), Bob adds a new perfect matching between all but vertices u and v

and 2k − 2 new vertices (shown as dashed black edges). Alice runs the matching-size estimation
algorithm and sends the memory contents to Bob, who continues running it and computes the
output. By design, if the index is 1, then maximum-matching-size is 2k − 1, otherwise it is 2k − 2,
and an exact algorithm can distinguish between the two cases.

3.1 Reduction from Index to Partition-Matroid Center
We prove the following theorem.

I Theorem 1. Any one-pass algorithm for partition-matroid center that outputs a better
than ∆-approximation with probability at least 3/4 must use at least r2/24 bits of space.

Proof. Assume, towards a contradiction, that there exists a one-pass algorithm for partition-
matroid center that outputs a better than ∆-approximation using at most r2/24 bits of
space. Then we use it to solve the index problem. Given an input for index, Alice and
Bob first construct a bipartite graph G just as described in Figure 1. Then they construct
a partition-matroid center instance based on G. Before formalizing the construction, we
emphasize that the metric does not correspond to the graph metric given by G, but each
edge in G will become a point in the metric. The vertex set they use is union of four sets
CA, VA, each of size q, and CB , VB, each of size q − 1. Alice constructs a subset of edges
between CA and VA based on her N -bit string, so we use N = q2. We say that these edges
are owned by Alice. If the index that Bob holds corresponds to an edge {u, v} with u ∈ CA
and v ∈ VA, he adds a perfect matching M between CA \ {u} and VB and a perfect matching
M ′ between VA \ {v} and CB . The edges in M ∪M ′ are owned by Bob.

To each u ∈ CA ∪ CB , we associate a cluster C(u) of at most q points in the metric that
we will construct, and to each v ∈ VA ∪VB , we associate a part P (v) in the partition matroid
with capacity 1. Thus, rank of the matroid r = 2q − 1 because |VA ∪ VB | = 2q − 1. By our
design, no two clusters will intersect and no two parts will intersect, i.e., C(u)∩C(u′) = ∅ for
u 6= u′, and P (v)∩P (v′) = ∅ for v 6= v′. The metric is as follows. Any two points in the same
cluster are a unit distance apart and any two points in two different clusters are distance ∆
apart. This trivially forms a metric, because the clusters are disjoint. For each u ∈ CA, Bob
adds a point p(u) in the cluster C(u), so that it is nonempty. Add P ′ := {p(u) : u ∈ CA}
as a part in the partition matroid with capacity 0, so no p(u) can be a center. For each
edge {u, v} in G with u ∈ CA ∪ CB and v ∈ VA ∪ VB , whoever owns that edge adds a point
p({u, v}) that goes in cluster C(u) and part P (v). Now, Alice runs the partition-matroid

S. Kale 20:7

center algorithm on the points she constructed. She can do this because she knows the metric
and the part identity of each point, so she can simulate the distance and matroid oracles.
Note that if the algorithm expects an explicit description of the partition matroid, Alice can
also send along with each point the identity of the part to which it belongs and the capacity
of the part (which is always 1 for her points). She then sends the memory contents to Bob,
who continues running the algorithm on his points and computes the cost of the output. We
note that Bob can also simulate the distance and matroid oracles. Any point he does not
own corresponds to a red edge, and using the identity of that edge, he can figure out the
part and cluster to which the point belongs.

Now we prove the correctness of the reduction. Say Bob holds the index corresponding
to the edge {u, v}, where u ∈ CA and v ∈ VA. If the index is 1, then {u, v} exists in the
graph, then opening centers at points corresponding to edges in M ∪M ′ ∪ {u, v} satisfies
the partition matroid constraint and also for each u ∈ CA ∪ CB , we have a center opened in
C(u), so the cost is 1. Let the index be 0. We want to show that there is no independent
set of cost less than ∆. For a contradiction, assume there is such an independent set. Now,
recall that p(u) cannot be a center, so it has to be served by some center in C(u), otherwise
the cost will be ∆. Let p(u) be served by some p({u, v′}) for v′ 6= v. Then p({v′, w}), where
{v′, w} ∈M ′, cannot be a center, because both p({u, v′} and p({v′, w}) belong to the part
P (v′) with capacity 1. The point p({v′, w}) is the lone point in its cluster, and since it
cannot be a center, the cost is ∆. If the algorithm is better than ∆-approximation, then Bob
can distinguish between these two cases, and thus, solve indexN using communication at
most r2/24 6 4q2/24 = N/6 bits, which is a contradiction. J

After seeing the lower bound, a remark is in order. The difficulty in designing an algorithm
is as follows. Even if we know that one center must lie in a ball of small radius centered
at a known point, we do not know which points in that ball to store so as to recover an
independent set of the matroid.

4 Matroid Center

Our algorithm for matroid center can be seen as a generalization of the algorithm by
Hochbaum and Shmoys for k-center [21] adapted to the streaming setting. We first quickly
describe the algorithm for k-center. Given an upper bound τ on the optimum cost, the
algorithm stores a set C of up to k pivots such that distance between any two pivots is more
than 2τ . When the algorithm sees a new point e in the stream such that distance between e
and any pivot is more than 2τ , it makes e a pivot. The size of C cannot exceed k in this
way, because τ is an upper bound on the optimum cost, so no two pivots are served by a
single optimum center. Also, any other point is within distance 2τ of some pivot. In the end,
the algorithm designates all pivots as centers. In generalizing this to matroid center, one
obvious issue is that the set C of pivots constructed as above may not be an independent set
for the given general matroid2. What we do know is that there has to be an optimum center
within distance τ of each pivot. Formally, for c ∈ C, there exists sc such that d(c, sc) 6 τ

and {sc : c ∈ C} is an independent set. For each pivot c, we maintain an independent set Ic
of nearby points. We prove that it is enough to have each sc be spanned by some Ic′ to get a
good solution within

⋃
c∈C Ic. Algorithm 1 gives a formal description.

2 This is precisely why we call points in C “pivots” rather than “centers” in this paper.

APPROX/RANDOM 2019

20:8 Small Space Stream Summary for Matroid Center

Note that in Algorithm 1 if we try to add e to Ic under the condition that d(e, c) 6 τ ,
then we may miss spanning some sc. This will happen if d(sc, C) ∈ (τ, 2τ], where C is the
set of pivots when sc arrived. Using the condition d(e, c) 6 τ works if each sc arrives after c
though (we use it in the second pass of our two-pass algorithm).

Algorithm 1 One pass algorithm for matroid center.
1: function MatroidCenter(τ ,flag)
2: Initialize pivot-set C ← ∅.
3: for each point e in the stream do
4: if there is a pivot c ∈ C such that d(e, c) 6 2τ (pick arbitrary such c) then
5: if Ic ∪ {e} is independent then
6: Ic ← Ic ∪ {e}.
7: else if |C| = r then . We cannot have more pivots than the rank.
8: Abort. . Because C ∪ {e} acts as a certificate that the guess is incorrect.
9: else

10: C ← C ∪ {e}. . Make e a pivot.
11: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
12: if flag = “brute force” then
13: Find an independent set C ′B in

⋃
c∈C Ic such that d(c, C ′B) 6 5τ for c ∈ C.

14: If such C ′B does not exist, then abort, else return C ′B .
15: return EfficientMatroidCenter(5τ , C, (Ic)c∈C , M) (given in Algorithm 6

in Appendix B).

First, we quickly bound the space usage.

I Lemma 2. In any call to MatroidCenter, we store at most r2 + r points.

Proof. The check on Line 7 ensures that |C| 6 r. For each pivot c, the size of its independent
set Ic is at most r, hence the total number of points stored is at most r2 + r. J

Consider a call to MatroidCenter with τ > OPT. Let CE be the set of pivots at the end
of the stream. As alluded to earlier, for an optimum independent set I∗, the following holds:
for each c ∈ CE , there exists sc ∈ I∗ such that d(c, sc) 6 τ , and also sc 6= sc′ for c 6= c′,
because d(c, c′) > 2τ . Now, we prove the following structural lemma that we need later.

I Lemma 3. Let I1, . . . , It and S = {s1, . . . , su} be independent sets of a matroid such that
there is an onto function f : [u] → [t] with the property that si is in the span of If(i) for
i ∈ [u]. Then there exists an independent set B such that |B ∩ Ij | > 1 for j ∈ [t].

Proof. For each ` ∈ {0, 1, . . . , u}, we construct an independent set S` such that |S`| = u,
|S` ∩ If(j)| > 1 for j 6 `, and s`+1, . . . , su ∈ S`, then Su is our desired set B. Start with
S0 = S, and assume that we have constructed S0, S1, . . . , S`−1. If s` ∈ If(`), we are done,
so let s` /∈ If(`), then we claim that rank((S`−1 \ {s`}) ∪ If(`)) > u. To see this, observe
that rank(S`−1) = u, so by monotonicity of the rank function, rank(S`−1 ∪ If(`)) > u, but
s` ∈ span(If(`)), so removing s` from S`−1 ∪ If(`) would not reduce its rank. We now give a
formal argument for completeness. We have (If(`)∪{s`})∪((S`−1\{s`})∪If(`)) = S`−1∪If(`),
and (If(`) ∪ {s`}) ∩ ((S`−1 \ {s`}) ∪ If(`)) = If(`). By submodularity of the rank function
(see (1) in Section 2), we have

rank(S`−1 ∪ If(`)) + rank(If(`)) 6 rank(If(`) ∪ {s`}) + rank((S`−1 \ {s`}) ∪ If(`)) .

S. Kale 20:9

Let q = rank(If(`)). Since s` ∈ span(If(`)), we have rank(If(`) ∪ {s`}) = q and the above
inequality gives

u+ q 6 q + rank((S`−1 \ {s`}) ∪ If(`)) ,

which proves the claim. Now, rank(S`−1 \ {s`}) = u − 1 < rank((S`−1 \ {s`}) ∪ If(`)),
therefore there exists a ∈ If(`) such that S` := (S`−1 \ {s`}) ∪ {a} is independent by the
exchange axiom. J

I Lemma 4 (Small stream summary for matroid center). Consider a call to MatroidCenter
with τ > OPT. Then there exists an independent set B ⊆

⋃
c∈CE

Ic such that d(e,B) 6 7τ
for any point e and d(c,B) 6 5τ for any pivot c ∈ CE.

Proof. For c ∈ CE , denote by sc the optimum center that serves it, so d(c, sc) 6 τ . Let
c′ ∈ CE be such that we tried to add sc to Ic′ either on Line 6 or on Line 11; note that c′
may not be the same as c if we added it on Line 6. For an x ∈ I∗, let a(x) ∈ CE denote
the pivot whose independent set Ia(x) we tried to add x to. Either we succeeded, in which
case x ∈ Ia(x), or we failed, in which case x ∈ span(Ia(x)). In any case, by Lemma 3, for
A := {Ia(x) : x ∈ I∗} there exists an independent set B such that |I ∩B| > 1 for all I ∈ A.

Now, we will bound the cost of B. See Figure 2. Consider any point e in the stream. Let
c(e) ∈ CE be such that d(e, c(e)) 6 2τ ,
sc(e) be the optimum center that serves c(e), so d(c(e), sc(e)) 6 τ ,
a(sc(e)) ∈ CE be the pivot whose independent set we tried to add sc(e), so d(sc(e), a(sc(e)))
is at most 2τ ,
c′(e) be an arbitrary point in Ia(sc(e))∩B, so d(a(sc(e)), c′(e)) 6 2τ because c′(e) ∈ Ia(sc(e)).

Then by triangle inequality, d(e,B) is at most

d(e, c′(e)) 6 d(e, c(e))+d(c(e), sc(e))+d(sc(e), a(sc(e)))+d(a(sc(e)), c′(e)) 6 2τ+τ+2τ+2τ ,

which is 7τ ; this proves the first part of the lemma.
For any c ∈ CE , we can bound d(c,B) in a similar way. Let sc be the optimum center

that serves c, and similarly define a(sc) to be the pivot such that d(sc, a(sc)) 6 2τ . Also, let
c′ be the point in B such that d(asc

, c′) 6 2τ . This gives that d(c,B) 6 d(c, c′) 6 5τ . J

e
2τ

c(e)
τ sc(e)

2τ a(sc(e))
2τ

c′(e)

Figure 2 To see how to bound the cost of the independent set B, let e be any point in the stream,
c(e) ∈ CE be the pivot close to e, sc(e) be the optimum center that covers c(e), a(sc(e)) ∈ CE be
the pivot close to sc(e), and c′(e) be a point in B that covers a(sc(e)).

Before proving our main theorem, we need the following guarantee on the efficient offline
3-approximation algorithm denoted by EfficientMatroidCenter. This algorithm is based
on the offline algorithm for matroid center by Chen et al. [11]. We give it as input α = 5τ ,

APPROX/RANDOM 2019

20:10 Small Space Stream Summary for Matroid Center

the set CE of pivots, their independent sets (Ic)c∈CE
, and the underlying matroidM with

the promise on the input that there is an independent set B ⊆
⋃
c∈CE

Ic such that for c ∈ CE ,
it holds that d(c,B) 6 5τ = α.

I Theorem 5. If EfficientMatroidCenter does not fail, then it outputs a set C ′ such that
d(c, C ′) 6 3α for each c ∈ CE. If the input promise holds, then EfficientMatroidCenter
does not fail.

Proof. This theorem is proved as Theorem 22 in the appendix. See Appendix B. J

Now we prove the main result.

I Theorem 6. There is an efficient (17 + ε)-approximation one-pass algorithm for matroid
center that stores at most 2(r2 + r) log(1+ε/17) ∆ points. With a brute force algorithm, one
can get a (7 + ε)-approximation.

Proof. The algorithm is as follows. Let δ be the distance between the first two points. Then
for 2 log1+ε/17 ∆ guesses τ of OPT starting from δ/∆ to δ∆, we run MatroidCenter(τ ,
flag). We return the set of centers returned by the instance corresponding to the smallest
guess τ . Lemma 2 gives the desired space bound.
Case 1. flag = “brute force”.

Suppose the algorithm returned C ′B. Lemma 4 guarantees that for τ ∈ [OPT, (1 +
ε/17) OPT), the algorithm will not abort. Then, by the check on Line 14, cost of C ′B is
at most 7τ 6 (7 + ε) OPT.

Case 2. flag = “efficient algorithm”.
Let the algorithm returned C ′. Theorem 5 guarantees that for τ ∈ [OPT, (1+ε/17) OPT),
the algorithm will not abort. By Theorem 5 for any c ∈ CE , we have d(c, C ′) 6 15τ .
Since we forget only the points within distance 2τ of CE , we get that for any point e in
the stream, d(e, C ′) 6 17τ 6 (17 + ε) OPT. J

We make some remarks.

I Remark 7. We do need to know the rank of the matroid (or an upper bound), otherwise
we cannot control the space usage. The instances run using a very small guess may store a
very large number of pivots without the check on Line 7.

I Remark 8. We can decrease the space usage to O(r2 log(1/ε)/ε) points using the parallel-
ization ideas of Guha [15]. To make the ideas work, we do need some properties of matroids.
We give the details in Appendix A.

I Remark 9. By running
(|E|

2
)
guesses, EfficientMatroidCenter can be used to get an

offline 3-approximation algorithm for a more general version of matroid center, where the
cost is computed with respect to a subset CE of E and any point in E can be a center.

4.1 Extension to Knapsack Center
Recall that in the knapsack center problem, each point e has a non-negative weight w(e),
and the goal is to select a set C of centers that minimizes the maximum distance between a
point and its nearest center subject to the constraint that

∑
c∈C w(c) 6 B, where B is the

budget. We modify Algorithm 1 slightly to give an algorithm for knapsack center using space
r factor smaller than the matroid case, where, in this case, r is the size of a largest feasible
set. We make sure that all Ic variables are singletons, so the algorithm stores at most 2r
points. Instead of the if condition on Line 5, we replace the point x in Ic by e if w(x) > w(e).

S. Kale 20:11

This idea works because replacing a point by a nearby point with a smaller weight does
not affect the feasibility in the knapsack setting (which could destroy independence in the
matroid setting). Let CE be the set of pivots at the end of the stream. By almost the same
argument as in the proof of Lemma 4, we get the following.

I Lemma 10. Let τ > OPT. Then there exists a feasible set K ⊆
⋃
c∈CE

Ic such that
d(e,K) 6 7τ for any point e and d(c,K) 6 5τ for any pivot c ∈ CE.

For the efficient version, we then use the 3-approximation algorithm by Hochbaum and
Shmoys [22].

I Theorem 11. There is an efficient (17+ε)-approximation one-pass algorithm for knapsack
center that stores at most 4r log(1+ε/17) ∆ points, where r is the size of a largest feasible set.
With a brute force algorithm, one can get a (7 + ε)-approximation.

4.2 An Efficient Two Pass Algorithm
This algorithm is a streaming two-pass simulation of the offline 3-approximation algorithm of
Chen et al. [11] for matroid center. We describe the algorithm and give the analysis below.

In our one-pass algorithm, i.e. Algorithm 1, say we are promised that for any pivot c,
the optimum center that serves it appears after c. Then it is enough to try to add e to
Ic whenever d(e, c) 6 τ ; we call this a modified check. Let CE be the set of pivots in the
end, then (Ic)c∈CE

form a partition such that if we pick one point from each Ic to get set
B, we can serve each point in CE using B with cost at most τ . With the modified check,
for c, c′ ∈ CE such that c 6= c′, the optimum points sc and sc′ that serve them are also
different because d(c, c′) > 2τ . Now, sc ∈ span(Ic) due to the promise that sc arrived after c,
and Lemma 3 gives us the required independent set B. We then define a partition matroid
MC with partition (Ic)c∈CE

and capacities 1 and solve the matroid intersection problem on
Mc andM restricted to

⋃
c∈CE

Ic and get the output C ′. Existence of B guarantees that
|C ′| = |CE |, thus we are able to serve all points in CE at a cost of τ . Since the points we
forget are within distance 2τ of CE , our total cost is at most 3τ by triangle inequality. We
can get rid of the assumption that sc arrives after c by having a second pass through the
stream. We give a formal description in Algorithm 2.

As in the one-pass algorithm, we run 2 log1+ε/3 ∆ guesses τ of OPT. We return the
set of centers returned by the instance corresponding to the smallest guess. For τ ∈
[OPT, (1 + ε/3) OPT), the algorithm will not abort due to existence of the independent set
B (which we argued earlier). This gives us the following theorem.

I Theorem 12. There is an efficient (3 + ε)-approximation two-pass algorithm for matroid
center that stores at most 2(r2 + r) log(1+ε/3) ∆ points.

5 Matroid Center with Outliers

We first present a simplified analysis of McCutchen and Khuller’s algorithm [28] for k-center
with z outliers. This abstracts their ideas and sets the stage for the matroid version that we
will see later.

5.1 McCutchen and Khuller’s Algorithm
As usual, we start with a guess τ for the optimum cost. The algorithm maintains a set C of
pivots such that |B(c, 2τ)| > z + 1 for any c ∈ C, so the optimum has to serve at least one
of these nearby points. (Recall that B(e, α) = {x ∈ E : d(e, x) 6 α}.) When a new point

APPROX/RANDOM 2019

20:12 Small Space Stream Summary for Matroid Center

Algorithm 2 Two pass algorithm for matroid center.
1: function MatroidCenter2p(τ)
2: C ← ∅.
3: for each point e in the stream do . First pass.
4: if d(e, C) > 2τ then
5: C ← C ∪ {e}.
6: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
7: for each point e in the stream do . Second pass.
8: if ∃c ∈ C such that d(e, c) 6 τ (there can be at most one such c) then
9: if Ic ∪ {e} is independent then
10: Ic ← Ic ∪ {e}.
11: Let MC = (

⋃
c∈C Ic, IC) be a partition matroid with partition {Ic : c ∈ C} and

capacities 1.
12: LetM′ be the matroidM restricted to

⋃
c∈C Ic.

13: C ′ ← matroid-intersection(MC ,M′)
14: if |C ′| < |C| then
15: Return fail with C as certificate.
16: Return C ′.

arrives, it is ignored if it is within distance 4τ of C. Otherwise it is added to the set F of
“free” points. As soon as the size of F reaches (k − |C|+ 1)z + 1, we know for sure that, for
a correct guess, the optimum will have to serve the free points with at most k − |C| clusters,
and one of those clusters will have more than z points by the generalized pigeonhole principle.
Hence, there must exist a free point that has at least z other points within distance 2τ in F ,
because its cluster diameter is at most 2τ . This gives us a new pivot c ∈ F with its support
points. We remove those points in F that are within distance 4τ of c and continue to the
next element in the stream. In the end, we will be left with at most (k−|C|+ 1)z free points,
and they are served by at most k− |C| optimum centers. On these remaining free points, we
run an offline 2-approximation algorithm for (k − |C|)-center with z outliers, e.g., that of
Chakrabarty et al.[4]. Algorithm 3 gives a formal description. We note that we do not need
the sets Ac for c ∈ C in the algorithm, but we need them in the analysis.

Let us bound the space usage first. The variable C contains at most k pivots, otherwise
we abort on Section 5.1, and Section 5.1 make sure that the variable F contains at most
(k + 1)z + 1 points. In total, we store at most (k + 1)z + 1 points at any moment.

I Lemma 13. For τ > OPT, k-center-z-outliers(τ) stores at most (k + 1)z + 1 points,
and the cost of C ′ returned by k-center-z-outliers(τ) is at most 4τ .

Proof. Let CE be the set of pivots and FE be the set of free points when the stream ended,
and let |CE | = `E . We claim that for any c 6= c′, where c, c′ ∈ CE , e ∈ Ac, and e′ ∈ Ac′ , we
have d(e, e′) > 2τ . We now prove this claim. Assume without loss of generality that c was
made a pivot before c′ by the algorithm. So points within distance 4τ of c were removed
from F . Any point that existed in F after this removal, in particular e′, must be farther
than 4τ from c. This implies that

4τ < d(c, e′) 6 d(c, e) + d(e, e′), and d(e, e′) > 2τ ,

because d(c, e) 6 2τ . Now, we know that for c ∈ CE , there exists xc ∈ Ac that has to be
served by an optimum center, say sc, because |Ac| > z, so not all of the points in Ac can be
outliers. By the earlier claim, for c 6= c′, we have d(xc, xc′) > 2τ implying that sc 6= sc′ and

S. Kale 20:13

Algorithm 3 McCutchen and Khuller’s algorithm [28] for k-center with z outliers.
1: function k-center-z-outliers(τ)
2: Pivot-set C ← ∅, free-point set F ← ∅, and `← 0.
3: for each point e in the stream do
4: if d(e, C) > 4τ then
5: F ← F ∪ {e}.
6: if |F | = (k − `+ 1)z + 1 then . there is a new pivot among the free points;
7: Let c ∈ F be s.t. |B(c, 2τ) ∩ F | > z + 1 . such c exists for a correct guess.
8: If such c does not exist, then abort.
9: C ← C ∪ {c}.
10: F ← F \B(c, 4τ).
11: Ac ← {c}∪ arbitrary subset of B(c, 2τ) \ {c} of size z.
12: `← `+ 1.
13: If ` = k + 1, then abort. . guess is wrong.
14: CF ← 2-approx for (k− `)-center with z outliers on F by an efficient offline algorithm.
15: return C ′ ← C ∪ CF .

`E 6 k. Also note that none of these optimum centers can serve a point in FE , because by
triangle inequality

d(sc, FE) > d(c, FE)− d(c, xc)− d(xc, sc) > 4τ − 2τ − τ = τ

for c ∈ CE . This shows that all but z points in FE have to be served by at most k − `E
optimum centers with cost at most τ . For each of these optimum centers, there exists a free
point in FE within distance τ . So there exists a set BF of k− `E points in FE , such that BF
covers all but at most z points of FE with cost 2τ . So a 2-approximation algorithm recovers
k− `E centers with cost at most 4τ . Observing that we only forget points in the stream that
are within distance 4τ of some pivot in CE finishes the proof. J

By running k-center-z-outliers(τ) for at most O(log(1/ε)/ε) geometrically-increasing
active guesses, we get the (4 + ε)-approximation algorithm for k-center with z outliers. This
analysis is based on that of McCutchen and Khuller [28].

5.2 Matroid Center with Outliers
It is now possible to naturally combine the ideas used for matroid center and those used for
k-center with z outliers to develop an algorithm for matroid center with z outliers.

Whenever the free-point set becomes large enough, we create a pivot c and an independent
set Ic to which we try to add all free points within distance 4τ of c. We do the same for
a new point e in the stream that is within distance 4τ of some pivot c ∈ C, i.e., we try to
add it to Ic keeping Ic independent in the matroid. Otherwise d(e, C) > 4τ , so we make it a
free point. The structural property of matroids that we proved as Lemma 3 then enables
us to show that

⋃
c∈C Ic and the set of free points make a good summary of the stream.

See Algorithm 4 for a formal description. Here, we note that we do not need the sets Ac
for c ∈ C in the algorithm if flag is set to “brute force”, but we need them in the analysis
in any case.

Let CE be the set of pivots and FE be the set of free points when the stream ended, and
let `E = |CE |.

APPROX/RANDOM 2019

20:14 Small Space Stream Summary for Matroid Center

Algorithm 4 One-pass algorithm for matroid center with outliers.
1: function matroid-center-z-outliers(τ , flag)
2: Pivot-set C ← ∅, free-point set F ← ∅, and `← 0.
3: for each point e in the stream do
4: if ∃c ∈ C such that d(e, c) 6 4τ then
5: If Ic ∪ {e} is independent, then Ic ← Ic ∪ {e}.
6: else
7: F ← F ∪ {e}.
8: if |F | = (r − `+ 1)z + 1 then
9: Let c ∈ F be s. t. |B(c, 2τ) ∩ F | > z + 1 (if not, we guessed wrong, so abort).
10: C ← C ∪ {c}.
11: Ac ← {c} and if {c} is not a loop, Ic ← {c}, else Ic ← ∅.
12: `← `+ 1 (if ` becomes r + 1 here, we guessed wrong, so abort).
13: for each x ∈ F ∩B(c, 4τ) do
14: F ← F \ {x}.
15: If Ic ∪ {x} is independent, then Ic ← Ic ∪ {x}.
16: If |Ac| 6 z, then Ac ← Ac ∪ {x}.
17: if flag = “brute force” then
18: Find an independent set C ′B in F ∪

⋃
c∈C Ic by brute force such that cost of C ′B

is 6 11τ with respect to C and 6 9τ with respect to all but at most z points of F .
19: If such C ′B does not exist, abort, else return C ′B .
20: if flag = “efficient” then
21: Run the offline 3-approximation algorithm by Harris et al. [19] for matroid center

with z outliers to get an independent set C ′ of centers in F ∪
⋃
c∈C(Ac ∪ Ic) such that

cost of C ′ is 6 47τ with respect to C and 6 45τ with respect to all but z points of F .
22: If such C ′ does not exist, abort, else return C ′.

I Lemma 14 (Small summary for matroid center with outliers). For τ > OPT, Algorithm 4
stores at most O(r2 + rz) points, and there exists an independent set B ⊆ FE ∪

⋃
c∈CE

Ic
such that cost of B is at most 15τ ; also d(c,B) 6 11τ for any pivot c ∈ CE, and B covers
all but at most z points of FE with cost at most 9τ .

Proof. Let I∗ be an optimum independent set of centers. By the same argument as in the
proof of Lemma 13, the following claim is true. For any c 6= c′, where c, c′ ∈ CE , e ∈ Ac, and
e′ ∈ Ac′ , we have d(e, e′) > 2τ . Now, we know that for c ∈ CE , there exists xc ∈ Ac that has
to be served by an optimum center, say sc, because |Ac| > z. By the earlier claim, for c 6= c′,
we have d(xc, xc′) > 2τ implying that sc 6= sc′ and `E 6 r. Let I∗CE

= {sc : c ∈ CE} be the
set of optimum centers that serve some xc ∈ Ac for c ∈ CE . None of the optimum centers
in I∗CE

can serve a point in FE , because d(sc, FE) > τ for c ∈ CE . This shows that all but
z points in FE have to be served by at most r − `E optimum centers with cost at most τ .
Since |Ic| 6 r for any c in the variable C, size of

⋃
c∈C Ic is always bounded by r2. Also, the

check on the size of F ensures that |F | 6 (r + 1)z + 1, so total number of points stored is at
most O(r2 + rz) at any moment.

When we first process a new point e in the stream, we either try to add it to some Ic
or to F . If e is never removed from F , then e ∈ FE , otherwise, we try to add it to some Ic.
The same argument applies to any x ∈ I∗, so if x /∈ FE , then we did try to add it to some Ic.
For an x ∈ I∗ \ FE , let a(x) ∈ CE denote the pivot whose independent set Ia(x) we tried to
add x to.

S. Kale 20:15

By Lemma 3, for A := {Ia(x) : x ∈ I∗ \ FE} ∪ {{x} : x ∈ I∗ ∩ FE}, there exists an
independent set B such that |I ∩B| > 1 for all I ∈ A. Since for x ∈ I∗ ∩ FE the singleton
{x} ∈ A, the set B must contain {x}. For a free point e served by an optimum center s
such that we tried to add s to some Ic, we have that d(e,B) 6 d(e, s) + d(s, c) + d(c,B) 6
τ+4τ+4τ = 9τ , which means that B serves all but z points of FE with cost at most 9τ . Now,
we claim that for any point e in the stream, d(e,B) 6 15τ . We just saw that if e ∈ FE is
served by an optimum center, then d(e,B) 6 9τ , so assume that e /∈ FE , that means there is
a c ∈ CE such that d(e, c) 6 4τ ; denote this c by c(e). See Figure 3. Let sc(e) be the optimum
center that serves an xc(e) ∈ Ac(e) (recall that such a point exists because |Ac(e)| > z). So
d(c(e), sc(e)) 6 3τ , and a(sc(e)) ∈ CE was the pivot such that d(sc(e), a(sc(e))) 6 4τ . Let
c′(e) be an arbitrary point in Ia(sc(e)) ∩B, whose existence is guaranteed by the property of
B. We have d(a(sc(e)), c′(e)) 6 4τ , because c′(e) ∈ Ia(sc(e)). Then by triangle inequality,

d(e,B) 6 d(e, c′(e))
6 d(e, c(e)) + d(c(e), xc(e)) + d(xc(e), sc(e)) + d(sc(e), a(sc(e))) + d(a(sc(e)), c′(e))
6 4τ + 2τ + τ + 4τ + 4τ = 15τ ,

hence, cost of B is at most 15τ .
For any c ∈ CE , we can bound d(c,B) in a similar way. Let sc be the optimum center

that serves an xc ∈ Ac. Define a(sc) to be the pivot such that d(sc, a(sc)) 6 4τ . Also, let
c′ be the point in B such that d(asc

, c′) 6 4τ . This gives that d(c,B) 6 d(c, c′) 6 11τ . We
already established that B covers all but at most z points of FE with cost at most 9τ . The
proof is now complete. J

e
4τ

c(e)
2τ
xc(e)

τ sc(e) 4τ
a(sc(e))

4τ
c′(e)

Figure 3 To see how to bound the cost of the independent set B, let e be any point in the stream,
c(e) ∈ CE be the pivot close to e, xc(e) be the point in the support Ac(e) of c(e) that an optimum
center serves, sc(e) be the optimum center that serves xc(e), a(sc(e)) ∈ CE be the pivot close to
sc(e), and c′(e) be a point in B that covers a(sc(e)).

I Theorem 15. There is an efficient (51 + ε)-approximation one-pass algorithm for matroid
center with z outliers that stores at most O((r2 + rz) log ∆/ε) points. With a brute force
algorithm, one can get a (15 + ε)-approximation.

APPROX/RANDOM 2019

20:16 Small Space Stream Summary for Matroid Center

Proof. We run O(log ∆/ε) parallel copies of matroid-center-z-outliers(τ , flag) and
return the output of the copy for the smallest unaborted guess. We claim that the copy
corresponding to guess τ ′ ∈ [OPT, (1 + ε/50) OPT), call it I(τ ′), will not abort. Denote
by CE , FE , and (Ic)c∈CE

contents of the corresponding variables in I(τ ′) at the end of the
stream (we will not abort mid-stream because τ ′ > OPT).

By Lemma 14, FE ∪
⋃
c∈CE

Ic contains a solution that has cost 11τ ′ with respect CE and
9τ ′ with respect to all but at most z of FE . These checks can be performed by the brute
force algorithm. Since any instance for guess τ forgets only those points within distance 4τ
of its pivots, the brute force algorithm outputs a (15 + ε)-approximation.

By Lemma 14, there exists a solution of cost 6 15τ ′, and the efficient 3-approximation
algorithm for matroid center with z outliers will return a solution C ′ with cost at most
45τ ′. Note that C ′ has to cover at least one point from Ac for each c ∈ CE , hence
d(c, C ′) 6 47τ ′. Since we forget points only within distance 4τ ′ of CE , we get the desired
approximation ratio. J

References

1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.
Correlation Clustering in Data Streams. In Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, pages 2237–2246,
2015.

2 Ashwinkumar Badanidiyuru Varadaraja. Buyback problem: approximate matroid intersection
with cancellation costs. In Proceedings of the 38th international colloquium conference on
Automata, languages and programming - Volume Part I, ICALP’11, pages 379–390, 2011.

3 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: match-
ings, matroids, and more. Mathematical Programming, 154(1):225–247, 2015. doi:10.1007/
s10107-015-0900-7.

4 Deeparnab Chakrabarty, Prachi Goyal, and Ravishankar Krishnaswamy. The Non-Uniform k-
Center Problem. In 43rd International Colloquium on Automata, Languages, and Programming,
ICALP 2016, pages 67:1–67:15, 2016.

5 Deeparnab Chakrabarty and Maryam Negahbani. Generalized Center Problems with Outliers.
In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018),
volume 107, pages 30:1–30:14, 2018.

6 T-H. Hubert Chan, Arnaud Guerqin, and Mauro Sozio. Fully Dynamic k-Center Clustering.
In Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 579–587, 2018.

7 Moses Charikar, Chandra Chekuri, Tomás Feder, and Rajeev Motwani. Incremental Clustering
and Dynamic Information Retrieval. In Proc. 29th Annual ACM Symposium on the Theory of
Computing, STOC ’97, pages 626–635, 1997.

8 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
Facility Location Problems with Outliers. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01, pages 642–651, 2001.

9 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better Streaming Algorithms for
Clustering Problems. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of
Computing, STOC ’03, pages 30–39. ACM, 2003.

10 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming Algorithms for Submodular
Function Maximization. In Proc. 42nd International Colloquium on Automata, Languages and
Programming, pages 318–330, 2015.

11 Danny Z. Chen, Jian Li, Hongyu Liang, and Haitao Wang. Matroid and Knapsack Center
Problems. Algorithmica, 75(1):27–52, May 2016.

https://doi.org/10.1007/s10107-015-0900-7
https://doi.org/10.1007/s10107-015-0900-7

S. Kale 20:17

12 Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-Center in
Sliding Windows. In 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55, pages 19:1–19:12, 2016.

13 Teofilo F. Gonzalez. Clustering to Minimize the Maximum Intercluster Distance. Theor.
Comput. Sci., 38:293–306, 1985.

14 S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan. Clustering data streams:
Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515–528,
May 2003.

15 Sudipto Guha. Tight Results for Clustering and Summarizing Data Streams. In Proc. 12th
International Conference on Database Theory, ICDT ’09, pages 268–275, 2009.

16 MohammadTaghi Hajiaghayi, Rohit Khandekar, and Guy Kortsarz. Budgeted Red-blue
Median and Its Generalizations. In Proceedings of the 18th Annual European Conference on
Algorithms: Part I, ESA’10, pages 314–325. Springer-Verlag, 2010. URL: http://dl.acm.org/
citation.cfm?id=1888935.1888972.

17 S. L. Hakimi. Optimum Locations of Switching Centers and the Absolute Centers and Medians
of a Graph. Oper. Res., 12(3):450–459, June 1964. doi:10.1287/opre.12.3.450.

18 S. L. Hakimi. Optimum Distribution of Switching Centers in a Communication Network
and Some Related Graph Theoretic Problems. Oper. Res., 13(3):462–475, June 1965. doi:
10.1287/opre.13.3.462.

19 David G. Harris, Thomas Pensyl, Aravind Srinivasan, and Khoa Trinh. A Lottery Model for
Center-Type Problems with Outliers. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM, pages 10:1–10:19, 2017.
doi:10.4230/LIPIcs.APPROX-RANDOM.2017.10.

20 Behnam Hatami and Hamid Zarrabi-Zadeh. A Streaming Algorithm for 2-Center with Outliers
in High Dimensions. Comput. Geom., 60:26–36, 2017.

21 Dorit S. Hochbaum and David B. Shmoys. A Best Possible Heuristic for the k-Center Problem.
Math. Oper. Res., 10(2):180–184, May 1985. doi:10.1287/moor.10.2.180.

22 Dorit S. Hochbaum and David B. Shmoys. A Unified Approach to Approximation Algorithms
for Bottleneck Problems. J. ACM, 33(3):533–550, May 1986. doi:10.1145/5925.5933.

23 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209–215, 1979. doi:10.1016/0166-218X(79)90044-1.

24 Sang-Sub Kim and Hee-Kap Ahn. An improved data stream algorithm for clustering. Compu-
tational Geometry, 48(9):635–645, 2015. doi:10.1016/j.comgeo.2015.06.003.

25 Ravishankar Krishnaswamy, Amit Kumar, Viswanath Nagarajan, Yogish Sabharwal, and
Barna Saha. The Matroid Median Problem. In Proceedings of the Twenty-second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1117–1130, 2011.

26 Silvio Lattanzi, Stefano Leonardi, Vahab Mirrokni, and Ilya Razenshteyn. Robust Hierarchical
k-Center Clustering. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS ’15, pages 211–218, 2015.

27 Gustavo Malkomes, Matt J Kusner, Wenlin Chen, Kilian Q Weinberger, and Benjamin Moseley.
Fast Distributed k-Center Clustering with Outliers on Massive Data. In Advances in Neural
Information Processing Systems 28, pages 1063–1071. Curran Associates, Inc., 2015.
URL: http://papers.nips.cc/paper/5997-fast-distributed-k-center-clustering-
with-outliers-on-massive-data.pdf.

28 Richard Matthew McCutchen and Samir Khuller. Streaming Algorithms for k-Center Clustering
with Outliers and with Anonymity. In Proc. 11th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, pages 165–178, 2008.

29 Hamid Zarrabi-Zadeh and Asish Mukhopadhyay. Streaming 1-Center with Outliers in High
Dimensions. In Proceedings of the 21st Annual Canadian Conference on Computational
Geometry, Vancouver, British Columbia, Canada, August 17-19, 2009, pages 83–86, 2009.

APPROX/RANDOM 2019

http://dl.acm.org/citation.cfm?id=1888935.1888972
http://dl.acm.org/citation.cfm?id=1888935.1888972
https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/opre.13.3.462
https://doi.org/10.1287/opre.13.3.462
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.10
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1145/5925.5933
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1016/j.comgeo.2015.06.003
http://papers.nips.cc/paper/5997-fast-distributed-k-center-clustering-with-outliers-on-massive-data.pdf
http://papers.nips.cc/paper/5997-fast-distributed-k-center-clustering-with-outliers-on-massive-data.pdf

20:18 Small Space Stream Summary for Matroid Center

A Handling the Guesses

We extend the ideas of Guha [15] and McCutchen and Khuller [28] to run O(log(1/ε)/ε)
active guesses. Although, to make this idea work for matroids, we do need a property
of matroids (see Lemma 16). The way to do this is to start with a lower bound R on
the optimum and spawn instances, which we call original instances, I(τ) for guesses τ =
R,R(1 + ε), . . . , R(1 + ε)β = Rα/ε, for some α that depends on the basic algorithm that
we use, e.g., for matroid center, we will use α = 2 + ε. When a guess τ ′ fails, we replace
an instance I = I(τ) for τ 6 τ ′ with a new instance, which we call its child instance,
IN = I(τ(1 + ε)β). In the new instance IN , we treat the summary that we maintained for
I(τ) as the initial stream. Since the new guess in IN is about 1/ε times larger than the
old guess in I, the distance between a point that we forgot and the summary stored by I is
about ε times the new guess. Therefore, the cost analysis does not get much affected for a
correct guess. If we forgot an optimum center, a nearby point in the summary can act as
its replacement. This statement is obvious for a uniform matroid, because all points are
treated the same way within the matroid, but it is not true for general matroids; in fact, as
exhibited by our lower bound, it is not true even for partition matroids. So with each point
in the summary, we pass to the new instance an independent set Io. The following simple
lemma shows that if an optimum center x is in the span of Io, and if we construct Ic for a
new pivot c such that Io ⊆ span(Ic), then Ic also spans the optimum center.

I Lemma 16. Let I and J be independent sets of a matroid such that J ⊆ span(I). If
e ∈ span(J), then e ∈ span(I).

Proof. Let rank(I) = q. Towards a contradiction, let rank(I∪{e}) = q+1. Since J ⊆ span(I),
rank(I ∪ J) = q. Now, e ∈ span(J), so rank(I ∪ J ∪ {e}) = q, i.e., rank(I ∪ {e}) 6 q, which
gives us the desired contradiction. J

A.1 A Smaller Space Algorithm for Matroid Center
We modify the function MatroidCenter(τ ,flag) from earlier to accept a starting stream
and an independent set for each point in the starting stream: MatroidCenter(τ , Co,
(Jco

)co∈Co
,flag). Before processing any new points in the stream we process the points in

Co as follows. When processing a co ∈ Co, if d(co, C) 6 2τ , try to add points in Jco to
Ic. Otherwise create a new pivot c in C and initialize Ic = Jco

. Once Co is processed, we
continue with the stream and work exactly as in MatroidCenter(τ). We give complete
pseudocode in Algorithm 5.

For an instance I(τ) let Co(τ) be the initial summary and J (τ) be the collection of
independent sets that we passed to it, and let E(τ) be the part of the actual stream that it
processed. Also, let I(τo) be the instance for τo = ετ/(2 + ε) from which I(τ) was spawned.

I Lemma 17. Let e be a point that arrived before the substream E(τ). Then e has a
nearby representative ρe ∈ Co(τ) such that d(e, ρe) 6 ετ and also the independent set Jρe

corresponding to ρe spans e.

Proof. We prove this claim by induction on the number of ancestors. For an original instance,
the claim holds trivially, because no point arrived before. Otherwise, there are two cases:
either e ∈ E(τo) or e arrived before E(τo). If e ∈ E(τo), then by the logic of the algorithm,
there exists a(e) ∈ Co(τ) such that d(e, a(e)) 6 2τo = 2ετ/(2 + ε) 6 ετ , and also we tried

S. Kale 20:19

Algorithm 5 One pass algorithm for matroid center with smaller space.
1: Let R be the minimum distance for some two points in the first r+ 1 points in the stream.
2: for τ ∈ {R,R(1 + ε), . . . , R(1 + ε)β = (2 + ε)R/ε} in parallel do
3: MatroidCenter(τ , ∅, ∅).
4: if an instance with guess τ is aborted then
5: for all active I(τ ′) with guess τ ′ 6 τ , current pivots Co, and independent sets

(Jco)co∈Co do
6: Replace it with the child instance MatroidCenter(τ ′(1+ε)β , Co, (Jco

)co∈Co
,

flag).
7: Return the set C ′ of centers returned by the active instance with the smallest guess.
8:
9: function MatroidCenter(τ , Co, (Jco

)co∈Co
, flag)

10: C ← ∅.
11: for each point co in Co do
12: if ∃c ∈ C such that d(co, c) 6 2τ (pick arbitrary such c if there are several) then
13: for eo ∈ Jco

do
14: if Ic ∪ {eo} is independent then
15: Ic ← Ic ∪ {eo}.
16: else
17: C ← C ∪ {co}.
18: Ico

← Jco
.

19: # Processing of the old pivots finished, continue with the actual stream.
20: for each point e in the stream do
21: if there is a pivot c ∈ C such that d(e, c) 6 2τ (pick arbitrary such c) then
22: if Ic ∪ {e} is independent then
23: Ic ← Ic ∪ {e}.
24: else if |C| = r then . We cannot have more pivots than the rank.
25: Abort. . Because C ∪ {e} acts as a certificate that the guess is incorrect.
26: else
27: C ← C ∪ {e}. . Make e a pivot.
28: If {e} is not a loop, Ie ← {e}, else Ie ← ∅.
29: if flag = “brute force” then
30: Find an independent set C ′B in

⋃
c∈C Ic such that d(c, C ′B) 6 (5 + 2ε)τ for c ∈ C.

31: If such C ′B does not exist, then abort, else return C ′B .
32: return EfficientMatroidCenter((5 + 2ε)τ , C, (Ic)c∈C ,M).

to add e to Ia(e) (that became Ja(e) for the next instance I(τ)). Otherwise, by induction
hypothesis, there is a point e′ ∈ Co(τo) such that d(e, e′) 6 ετo and Je′ spans e. Now, let
ρe′ ∈ Co(τ) be such that d(e′, ρe′)) 6 2τo (such ρe′ must exist by logic of the algorithm).
Using triangle inequality and the above inequality that d(e, e′) 6 ετo, we get

d(e, ρe′) 6 d(e, e′) + d(e′, ρe′) 6 ετo + 2τo = (2 + ε)τo = (2 + ε) ετ

(2 + ε) = ετ .

Moreover, in the instance I(τo), we tried to add all points in Je′ to Iρe′ , so by Lemma 16, e ∈
span(Iρe′) (see that Iρe′ became Jρe′ for the next instance I(τ)), which proves the claim. J

APPROX/RANDOM 2019

20:20 Small Space Stream Summary for Matroid Center

I Theorem 18. There is an efficient ((17 + 7ε)(1 + ε))-approximation one-pass algorithm
for matroid center that stores at most O(r2 log(1/ε)/ε) points. With a brute force algorithm,
one can get a ((7 + 3ε)(1 + ε))-approximation.

Proof. Space usage is easy to analyze. At any time, we have at most O(log1+ε(1/ε)) =
O(log(1/ε)/ε) active instances and each instance stores at most O(r2) points.

Consider the instance I(τ ′) for which we returned on Line 7 in Algorithm 5, and suppose
the outputs were C ′ or C ′B (depending on “flag”). We note that some active copy will return,
because τ cannot keep on increasing indefinitely. E.g., consider τ larger than the maximum
distance between any two points. Let CE be the contents of the variable C in I(τ ′) at the
end of the stream. Then we know that costs of C ′B and C ′ are at most (5 + 2ε)τ ′ and
(15 + 6ε)τ ′ with respect to CE due to the check that we do on Line 31 and by Theorem 5 for
EfficientMatroidCenter. By Lemma 17, any point that arrived before E(τ ′) is within
distance ετ ′ of Co(τ ′), and each point in Co(τ ′) is within distance 2τ ′ of CE , which shows
that costs of C ′B and C ′ are at most (7 + 3ε)τ ′ and (17 + 7ε)τ ′ with respect to the whole
stream (by triangle inequality). Next, we show that τ ′ 6 (1 + ε) OPT, and that will finish
the proof.

Consider the guess τ ∈ (OPT, (1 + ε) OPT]. If τ was never active, that means τ ′ 6 OPT,
and we are done. Otherwise, τ was active, and we will prove that it was not aborted.
Since τ 6 OPT, we will not abort mid-stream in I(τ), so let CE be the set of pivots at
the end of the stream in I(τ). We will show that there is an independent set B such that
cost of B with respect to CE is at most (5 + 2ε)τ . By Line 31 and by Theorem 5 for
EfficientMatroidCenter, this would imply that I(τ) cannot abort.

From here on, the proof follows that of Lemma 4. Let c ∈ CE . Denote by sc the optimum
center that serves it, so d(c, sc) 6 τ . If sc ∈ E(τ), then sc ∈ span(Ic′) for some c′ ∈ CE and
d(sc, c′) 6 2τ . Otherwise, sc arrived before E(τ). Let ρsc be the representative of sc whose
existence is guaranteed by Lemma 17, so d(sc, ρsc

) 6 ετ . Then let c′ ∈ CE be such that
d(ρsc , c

′) 6 2τ and Jρsc
is spanned by Ic′ . Thus, by triangle inequality

d(sc, c′) 6 d(sc, ρsc
) + d(ρsc

, c′) 6 ετ + 2τ = (2 + ε)τ , (2)

and by Lemma 16, sc is spanned by Ic′ . Denote by A the collection of such Ic′ ’s. Now,
by Lemma 3, there exists an independent set B such that |I ∩B| > 1 for all I ∈ A. Pick cp
from Ic′ ∩B. Either cp ∈ E(τ) or it arrived before. In any case, again using Lemma 17, we
have d(cp, c′) 6 (2 + ε)τ (we use this below), and

d(c, sc) 6 τ , because sc is the optimum center that covers c,
d(sc, c′) 6 (2 + ε)τ , by Inequality (2), and
d(c′, cp) 6 (2 + ε)τ .

Thus, by triangle inequality, d(c,B) 6 (5 + 2ε)τ . So I(τ) will not abort. This finishes
the proof. J

Reducing the space usage for matroid center with z outliers can be done by naturally
combining the techniques above and those in Section 5.2. We define a similar overloading
matroid-center-z-outliers(τ , Co, (Jco

)co∈Co
, Fo, flag), where Fo contains the set of free

points in I(τo) when it aborted and this function was called with the updated guess τ . We
skip the details and state the following theorem without proof.

I Theorem 19. There is an efficient (51 + ε)-approximation one-pass algorithm for matroid
center with z outliers that stores at most O((r2 + rz) log(1/ε)/ε) points. With a brute force
algorithm, one can get a (15 + ε)-approximation.

S. Kale 20:21

A.2 Extension to Knapsack Center
In Section 4.1, we saw how to modify Algorithm 1 to get an algorithm for knapsack center
that stores at most 2r points, where r is the size of a largest feasible set. Using the same
idea, algorithms for two-pass matroid center, matroid center with outliers, and smaller space
matroid center, which are Algorithms 2, 4 and 6, can be extended to the knapsack center
without losing the approximation ratio and with a space r factor smaller than the matroid
case. For the outlier version of knapsack center, to get an efficient algorithm, we use the
3-approximation algorithm by Chakrabarty and Negahbani [5]. So we get the following
theorems, where r is the size of a largest feasible set.

I Theorem 20. There is an efficient (17+ε)-approximation one-pass algorithm for knapsack
center that stores at most O(r log(1/ε)/ε) points. With a brute force algorithm, one can get
a (7 + ε)-approximation.

I Theorem 21. There is an efficient (51+ε)-approximation one-pass algorithm for knapsack
center with z outliers that stores at most O(rz log(1/ε)/ε) points. With a brute force algorithm,
one can get a (15 + ε)-approximation.

B An Implementation of Efficient Matroid Center

We now give an implementation of EfficientMatroidCenter. The input consists of α,
CE , X, such that CE ⊆ X, and the underlying matroidM defined over X. Furthermore,
the promise is that there is an independent set B ⊆ X such that for each c ∈ CE , we have
d(c,B) 6 α. Our implementation is based on the algorithm of Chen et al. [11] for matroid
center. We show that it outputs a set C ′ such that, assuming the promise, d(c, C ′) 6 3α
for c ∈ CE .

Algorithm 6 Efficient algorithm for matroid center based on the algorithm by [11].
1: function EfficientMatroidCenter(α, CE , X,M)
2: Initialize: C ← ∅.
3: while there is an unmarked point e in CE do
4: C ← C ∪ {e}, Be ← B(e, α) ∩X, and mark all points in B(e, 2α) ∩ CE .
5: Let MC = (∪c∈CBc, IC) be a partition matroid with partition {Bc : c ∈ C} and

capacities 1.
6: LetM′ be the matroidM restricted to ∪c∈CBc.
7: C ′ ← matroid-intersection(MC ,M′)
8: if |C ′| < |C| then
9: Return fail.
10: Return C ′.

I Theorem 22. If EfficientMatroidCenter does not fail, then it outputs a set C ′ such
that d(c, C ′) 6 3α for each c ∈ CE. If the input promise holds, then EfficientMatroid-
Center does not fail.

Proof. In this proof, we refer by C the contents of the variable C after the while loop ended,
and let cE be any arbitrary point in CE . Define the function Marker : CE → C such that
Marker(cE) ∈ C is the “marker” of cE , i.e., we marked cE when processing Marker(cE).
In the end, all cE ’s are marked, so Marker is a valid function. By the logic on Line 4, we
have that

d(cE ,Marker(cE)) 6 2α . (3)

APPROX/RANDOM 2019

20:22 Small Space Stream Summary for Matroid Center

Let EfficientMatroidCenter does not fail, then |C ′| > |C| and C ′ satisfies the
partition matroid constraint ofMC . By definition ofMC , rank(MC) = |C|, hence |C ′| 6 |C|,
which implies that |C ′| = |C|. Therefore, for each c ∈ C, the set C ′ must contain exactly
one element in B(c, α) and d(c, C ′) 6 α, in particular, d(Marker(cE), C ′) 6 α. This, triangle
inequality, and Inequality (3) gives

d(cE , C ′) 6 d(cE ,Marker(cE)) + d(Marker(cE), C ′) 6 2α+ α = 3α ,

which proves the first part of the statement of the lemma. We prove the second part next.
Assume that the promise holds. Then let B be the set such that cost of B is at most α

with respect to CE , in particular, with respect to C. For c ∈ C, define Coverer(c) ∈ B to be
an arbitrarily chosen “coverer” of c, i.e.,

d(c,Coverer(c)) 6 α . (4)

Then the set B′ := {Coverer(c) : c ∈ C} is a subset of B, so it is independent in M.
Now, for c, c′ ∈ C, such that c 6= c′, we have Coverer(c) 6= Coverer(c′) by Inequality (4)
because d(c, c′) > 2α. This implies that |B′| = |C|. Next, Coverer(c) ∈ B′ ∩ Bc for each
c ∈ C, hence the set B′ is also independent in MC . Therefore B′ ∈ MC ∩ M′, and
matroid-intersection returns an independent set of size |C|, i.e., it does not fail. J

I Remark 23. By running
(|X|

2
)
guesses, EfficientMatroidCenter can be used to get an

offline 3-approximation algorithm for a more general version of matroid center, where the
cost is computed with respect to a subset CE of X and any point in X can be a center.

Improved Bounds for Open Online Dial-a-Ride on
the Line
Alexander Birx
Institute of Mathematics and Graduate School CE, TU Darmstadt, Germany
birx@gsc.tu-darmstadt.de

Yann Disser
Institute of Mathematics, TU Darmstadt, Germany
disser@mathematik.tu-darmstadt.de

Kevin Schewior
Institut für Informatik, Technische Universität München, Garching, Germany
kschewior@gmail.com

Abstract
We consider the open, non-preemptive online Dial-a-Ride problem on the real line, where trans-
portation requests appear over time and need to be served by a single server. We give a lower
bound of 2.0585 on the competitive ratio, which is the first bound that strictly separates online
Dial-a-Ride on the line from online TSP on the line in terms of competitive analysis, and is the
best currently known lower bound even for general metric spaces. On the other hand, we present an
algorithm that improves the best known upper bound from 2.9377 to 2.6662. The analysis of our
algorithm is tight.

2012 ACM Subject Classification Theory of computation → Online algorithms; Mathematics of
computing → Combinatorial optimization

Keywords and phrases dial-a-ride on the line, elevator problem, online algorithms, competitive
analysis, smartstart, competitive ratio

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.21

Category APPROX

Related Version A full version of the paper is available at http://arxiv.org/abs/1907.02858.

Funding Alexander Birx: This work was supported by the “Excellence Initiative” of the German
Federal and State Governments and the Graduate School CE at TU Darmstadt.
Yann Disser : This work was supported by the “Excellence Initiative” of the German Federal and
State Governments and the Graduate School CE at TU Darmstadt.
Kevin Schewior : Supported by the DAAD within the PRIME program using funds of BMBF and
the EU Marie Curie Actions.

1 Introduction

We consider the online Dial-a-Ride problem on the line, where transportation requests
appear over time and need to be transported to their respective destinations by a single
server. More precisely, each request is of the form σi = (ai, bi; ri) and appears in position
ai ∈ R along the real line at time ri ≥ 0 and needs to be transported to position bi ∈ R.
The server starts at the origin, can move at unit speed, and has a capacity c ∈ N∪ {∞} that
bounds the number of requests it can carry simultaneously. The objective is to minimize the
completion time, i.e., the time until all requests have been served. In this paper, we focus
on the non-preemptive and open setting, where the former means that requests can only be
unloaded at their destinations, and the latter means that we do not require the server to
return to the origin after serving all requests.

© Alexander Birx, Yann Disser, and Kevin Schewior;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 21; pp. 21:1–21:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:birx@gsc.tu-darmstadt.de
mailto:disser@mathematik.tu-darmstadt.de
mailto:kschewior@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.21
http://arxiv.org/abs/1907.02858
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Improved Bounds for Open Online Dial-a-Ride on the Line

We aim to bound the competitive ratio of the problem, i.e., the smallest ratio any online
algorithm can guarantee between the completion time of its solution compared to an (offline)
optimum solution that knows all requests ahead of time. To date, the best known lower
bound of 2.0346 on this ratio was shown by Bjelde et al. [5], already for online TSP, where
ai = bi for all requests (i.e., requests only need to be visited). The best known upper bound
of 2.9377 was achieved by the Smartstart algorithm [4].

Our results. Our first result is an improved lower bound for online Dial-a-Ride on the
line. Importantly, since the bound of roughly 2.0346 was shown to be tight for online TSP [5],
our new bound is the first time that Dial-a-Ride on the line can be strictly separated from
online TSP in terms of competitive analysis. In addition, our bound is the currently best
known lower bound even for general metric spaces. Specifically, we show the following.

I Theorem 1.1. Let ρ ≈ 2.0585 be the second largest root of the polynomial 4ρ3−26ρ2+39ρ−5.
There is no (ρ− ε)-competitive algorithm for open, non-preemptive (c <∞) online Dial-a-
Ride on the line for any ε > 0.

Our construction is a non-trivial variation of the construction achieving roughly 2.0346 for
online TSP [5]. This construction is comprised of an initial request, a first stage consisting in
turn of different iterations, and a second stage. We show that, by using a proper transportation
requests as initial requests, we can adapt a single iteration of the first stage as well as the
second stage to achieve the bound of roughly 2.0585 in the Dial-a-Ride setting.

Our second result is an improved algorithm SmarterStart for online Dial-a-Ride on
the line. This algorithm improves the waiting strategy of the Smartstart algorithm, which
was identified as a weakness in [4]. We show that this modification improves the competitive
ratio of the algorithm and give a tight analysis. Specifically, we show the following.

I Theorem 1.2. The competitive ratio of SmarterStart is (roughly) 2.6662.

The general idea of SmarterStart is to improve the tradeoff between the case when the
algorithm waits before starting its final schedule and the case when it starts the final schedule
immediately. Our modification of Smartstart significantly improves the performance in
the former case, while only moderately degrading the performance in the latter case. Overall,
this results in an improved worst-case performance.

Related Work. The online Dial-a-Ride problem has received considerable attention in the
past (e.g. [1, 4, 5, 6, 9, 13]). Table 1 gives an overview of the currently best known bounds
on the line for open online Dial-a-Ride and its special case open online TSP.

The following results are known for closed online Dial-a-Ride: For general metric
spaces, the competitive ratio is exactly 2, both for online Dial-a-Ride as well as online
TSP [1, 3, 9]. On the line, a better upper bound is known only for online TSP, where the
competitive ratio is exactly (9 +

√
17)/8 ≈ 1.6404 [3, 5]. The best known lower bound for

closed, non-preemptive Dial-a-Ride on the line is 1.75 [5].
When the objective is to minimize the maximum flow time, on many metric spaces

no online algorithm can be competitive [15, 16]. Hauptmeier et al. [12] showed that a
competitive algorithm is possible if we restrict ourselves to instances with “reasonable” load.
Yi and Tian [18] considered online Dial-a-Ride with deadlines, where the objective is to
maximize the number of requests that are served in time. Other interesting variants of online
Dial-a-Ride where destinations of requests are only revealed upon their collection were
studied by Lipmann et al. [17] as well as Yi and Tian [19].

A. Birx, Y. Disser, and K. Schewior 21:3

Table 1 Overview of the best known bounds for online Dial-a-Ride on the line (top), and online
Dial-a-Ride on general metric spaces (bottom). Results are split into the non-preemptive case
(with c <∞), the preemptive case, and the TSP-case, where source and destination of each request
coincide. Bold results are original, all other results follow immediately.

open closed
lower bound upper bound lower bound upper bound

lin
e

non-preemptive 2.0585 (Thm 1.1) 2.6662 (Thm 1.2) 1.75 [5] 2
preemptive 2.04 2.41 [5] 1.64 2

TSP 2.04 [5] 2.04 [5] 1.64 [3] 1.64 [5]

ge
ne

ra
l non-preemptive 2.0585 (Thm 1.1) 3.41 [14] 2 2 [1, 9]

preemptive 2.04 3.41 2 2
TSP 2.04 2.5 [3] 2 [3] 2 [3]

For an overview of results for the offline version of Dial-a-Ride on the line, see [8].
Without release times, Gilmore and Gomory [10] and Atallah and Kosaraju [2] gave a polyno-
mial time algorithm for closed, non-preemptive Dial-a-Ride on the line with capacity c = 1.
Guan [11] showed that the closed, non-preemptive problem is hard for c = 2, and Bjelde
et al. [5] extended this result for any finite capacity c ≥ 2 in both the open and the closed
variant. Bjelde et al. [5] also showed that the problem with release times is already hard
for finite c ≥ 1 in both variants, and Krumke [14] gave a 3-approximation algorithm for the
closed variant. The complexity for the case c = ∞ remains open. For closed, preemptive
Dial-a-Ride on the line without release times, Atallah and Kosaraju [2] gave a polynomial
time algorithm for c = 1 and Guan [11] for c ≥ 2. Charikar and Raghavachari [7] presented
approximation algorithms for the closed case without release times on general metric spaces.

2 General Lower Bound

In this section, we prove Theorem 1.1. Let c <∞ and Alg be a deterministic online algorithm
for open online Dial-a-Ride. Let ρ ≈ 2.0585, be the second largest root of the polynomial
4ρ3 − 26ρ2 + 39ρ− 5. We describe a request sequence σρ such that Alg(σρ) ≥ ρOpt(σρ).

We first give a high-level description of our construction disregarding many technical
details. Our construction is based on that in [5] for the TSP version of the problem. That
construction consists of two stages: After an initial request (1, 1; 1) (assuming w.l.o.g. Alg’s
position at time 1 is at most 0), the first stage starts. This stage consists of a loop, which
ends as soon as two so-called critical requests are established. The second stage consists of
augmenting the critical requests by suitable additional ones to show the desired competitive
ratio. A single iteration of the loop only yields a lower bound of roughly 2.0298, but as the
number of iterations approaches infinity one can show the tight bound of roughly 2.0346
in the limit.

In the Dial-a-Ride setting, we show a lower bound of roughly 2.0585 using the same
general structure but only a single iteration. Our additional leeway stems from replacing the
initial request (1, 1; 1) with c initial requests of the form (1, δ; 1) where δ > 1: At the time
when an initial request is loaded, we show that w.l.o.g. all c requests are loaded and then
proceed as we did when (1, 1; 1) was served. In the new situation, the algorithm has to first
deliver the c initial requests to be able to serve additional requests. For the optimum, the
two situations however do not differ, because in the new situation there will be an additional

APPROX/RANDOM 2019

21:4 Improved Bounds for Open Online Dial-a-Ride on the Line

request to the right of δ later anyway. Interestingly, this leeway turns out to be sufficient not
only to create critical requests (w.r.t. a slightly varied notion of criticality) for a competitive
ratio of larger than 2.0298 but even strictly larger than 2.0346. The second stage has to
be slightly adapted to match the new notion of criticality. It remains unclear how to use
multiple iterations in our setting.

We start by making observations that will simplify the exposition. Consider a situation
in which the server is fully loaded. First note that it is essentially irrelevant whether we
assume that the server, without delivering any of the loaded requests, can still serve requests
(ai, bi; ti) for which ai = bi: If it can, we simply move ai and bi by ε > 0 apart, forbidding
the server to serve it before delivering one of the loaded requests first. Therefore, we assume
for simplicity that, when fully loaded, the server has to first deliver a request before it can
serve any other one. We note that, in our construction, the above idea can be implemented
without loss, not even in terms of ε.

The latter discussion also motivates restricting the space of considered algorithms: We
call Alg eager if it, when fully loaded with requests with identical destinations, immediately
delivers these requests without detour. It is clear that we can transform every algorithm Alg′

into an eager algorithm Alg′eager by letting it deliver the requests right away, waiting until
Alg′ would have delivered them, and then letting it continue like Alg′. Since Alg′ cannot
collect or serve other requests while being fully loaded, we have Alg′eager(σ) ≤ Alg′(σ) for
every request sequence σ.

I Observation 2.1. Every algorithm for online Dial-a-Ride can be turned into an eager
algorithm with the same competitive ratio.

Thus, we may assume that Alg is eager. We now consider the second stage and then
design a first stage to match the second stage. Suppose we have two requests σR = (tR, tR; tR)
and σL = (−tL,−tL, tL) with tL ≤ tR to the right and to the left of the origin, respectively.
We assume that Alg serves σR first at some time t∗ ≥ (2ρ− 2)tL + (ρ− 2)tR. Now suppose
we could force Alg to serve σL directly after σR, even if additional requests are released.
Then we could just release the request σR∗ = (tR, tR, 2tL + tR) and we would have

Alg(σρ) = t∗ + 2tL + 2tR ≥ 2ρtL + ρtR = ρOpt(σρ),

since Opt can serve the three requests in time 2tL + tR by serving σL first. In fact, we
will show that we can force Alg into this situation (or a worse situation) if the requests
σR = (tR, tR; tR) and σL = (−tL,−tL, tL) satisfy the following properties. To describe the
trajectory of a server, we use the notation “move(a)” for the tour that moves the server from
its current position with unit speed to the point a ∈ R.

I Definition 2.2. We call the last two requests σR = (tR, tR; tR) and σL = (−tL,−tL, tL)
of a request sequence with 0 < tL ≤ tR critical for Alg if the following conditions hold:
(i) Both tours move(−tL)⊕move(tR) and move(tR)⊕move(−tL) serve all requests presented

until time tR.
(ii) Alg serves both σR and σL after time tR and Alg’s position at time tR lies between

tR and −tL.
(iii) If Alg serves σR before σL, it does so no earlier than tR∗ := (2ρ− 2)tL + (ρ− 2)tR.
(iv) If Alg serves σL before σR, it does so no earlier than tL∗ := (2ρ− 2)tR + (ρ− 2)tL.
(v) It holds that tR

tL
≤ 4ρ2−30ρ+50
−8ρ2+50ρ−66 .

A. Birx, Y. Disser, and K. Schewior 21:5

I Lemma 2.3. If there is a request sequence with two critical requests for Alg, we can
release additional requests such that Alg is not (ρ− ε)-competitive on the resulting instance
for any ε > 0.

Definition 2.2 differs from [5, Definition 5] only in property (v), which is tR

tL
≤ 2 in the

original paper. Lemma 2.3 has been proved in [5, Lemma 6] for request sequences that satisfy
the properties of [5, Definition 5], however, a careful inspection of the proof of [5, Lemma 6]
shows that the statement of Lemma 2.3 also holds for request sequences that only satisfy (v)
instead of t

R

tL
≤ 2. For a detailed proof, see Appendix A. Thus, our goal is to construct a

request sequence σρ that satisfies all properties of Definition 2.2.
The remaining part of this section focusses on establishing critical requests. There are no

requests released until time 1. Without loss of generality, we assume that Alg’s position
at time 1 is pos (1) ≤ 0 (the other case is symmetric). Here and throughout, we let pos (t)
denote the position of Alg’s server at time t. Now, let

δ := 3ρ2 − 11
−3ρ3 + 15ρ− 4

and let c initial requests σR(j) = (1, δ; 1) with j ∈ {1, . . . , c} appear. These are the only requests
appearing in the entire construction with a starting point differing from the destination. We
make a basic observation on how Alg has to serve these requests.1

I Lemma 2.4. Alg cannot collect any of the requests σR(j) before time 2. If Alg collects
the requests after time ρδ − (δ − 1) or serves c′ < c requests before loading the remaining
c− c′, it is not (ρ− ε)-competitive.

We hence may assume that Alg loads all c requests σR(j) at the same time. Let tL ∈
[2, ρδ− (δ−1)) be the time Alg loads the c requests σR(j). We start the first stage and present
a variant of a single iteration of the construction in [5]: We let the request σL = (−tL,−tL; tL)
appear and define the function

`(t) = (4− ρ) · t− (2ρ− 2) · tL,

which can be viewed as a line in the path-time diagram. Because of ρ > 2, we have
`(tL) = (6− 3ρ)tL < 0 < pos

(
tL
)
, i.e., Alg’s position at time tL is to the right of the line `.

Thus, Alg crosses the line ` before it serves σL. Let tR be the time Alg crosses ` for the
first time and let the request σR = (tR, tR; tR) appear. Assume Alg crosses the line ` and
serves σR before σL. Then it does not serve σR before time

tR + |`(tR)− tR| = (2ρ− 2)tL + (ρ− 2)tR = tR∗ . (1)

Now assume Alg crosses ` at time tR ≥ 3ρ−5
7−3ρ t

L and serves σL before σR. Then it does not
serve serve σL before time

tR + |`(tR)− (−tL)| = (5− ρ)tR − (2ρ− 3)tL

≥ (2ρ− 2)tR + (7− 3ρ)3ρ− 5
7− 3ρt

L − (2ρ− 3)tL

= (2ρ− 2)tR + (ρ− 2)tL = tL∗ . (2)

The following lemma shows that the two requests cannot be served before these respective
times by establishing that indeed tR ≥ 3ρ−5

7−3ρ t
L.

1 The full proof and other omitted proofs can be found at http://arxiv.org/abs/1907.02858.

APPROX/RANDOM 2019

http://arxiv.org/abs/1907.02858

21:6 Improved Bounds for Open Online Dial-a-Ride on the Line

I Lemma 2.5. Alg can neither serve σL before time tL∗ nor can it serve σR before time tR∗ .

Proof. Since Alg is eager, it delivers the c requests σR(j) without waiting or detour, i.e., we
have pos

(
tL + (δ − 1)

)
= δ. Furthermore, we have

`(tL + (δ − 1)) = (4− ρ)(tL + (δ − 1))− (2ρ− 2)tL

= (6− 3ρ)tL + (4− ρ)(δ − 1)

≤ (6− 3ρ)(ρδ − (δ − 1)) + (4− ρ)(δ − 1)

= 3ρ4 − 18ρ3 + 3ρ2 + 50ρ− 14
3ρ3 − 15ρ+ 4

ρ < 2.06
< δ = pos

(
tL + (δ − 1)

)
,

i.e., Alg’s position at time tL + (δ − 1) is to the right of `. The earliest possible time Alg
crosses ` is the solution of

`(tR) = (4− ρ)tR − (2ρ− 2)tL = pos
(
tL + (δ − 1)

)
+ tL + (δ − 1)− tR,

which is tR = 2ρ−1
5−ρ t

L + 2δ−1
5−ρ . The inequality(

3ρ− 5
7− 3ρ −

2ρ− 1
5− ρ

)
tL = 3ρ2 + 3ρ− 18

3ρ2 − 22ρ+ 35 t
L

≤ 3ρ2 + 3ρ− 18
3ρ2 − 22ρ+ 35(ρδ − (δ − 1)))

= 3ρ3 + 6ρ2 − 15ρ− 18
3ρ4 − 15ρ3 − 15ρ2 + 79ρ− 20

= 2δ − 1
5− ρ ,

implies that we have

tR ≥ 3ρ− 5
7− 3ρt

L. (3)

Because of inequality (1) Alg does not serve σR before tR∗ and because of the inequalities
(3) and (2) it does not serve σL before time tL∗ . J

In fact, also the other properties of critical requests are satisfied.

I Lemma 2.6. The requests σR and σL of the request sequence σρ are critical.

Proof. We have to show that the requests σR and σL of the request sequence σρ satisfy
the properties (i) to (v) of Definition 2.2. The release time of every request is equal to its
starting position, thus every request can be served/loaded immediately once its starting
position is visited and (i) of Definition 2.2 is satisfied. At time tR Alg has not served σR,
because for that it would have needed to go right from time 0 on; it has not served σL either,
because during the period of time [tL, tR] Alg and σL were on different sides of `. This
establishes the first part of (ii) of Definition 2.2. Furthermore at time tR Alg is at position
pos

(
tR
)

= (4− ρ)tR − (2ρ− 2)tL with

−tL ≤ (4− ρ)tR − (2ρ− 2)tL ≤ tR

Therefore, the second part of (ii) of Definition 2.2 is satisfied as well.

A. Birx, Y. Disser, and K. Schewior 21:7

Lemma 2.5 shows that (iii) and (iv) of Definition 2.2 are satisfied. It remains to show
that property (v) is satisfied. For this we need to examine the release time tR of σR. The
time tR is largest if Alg tries to avoid crossing the line ` for as long as possible, i.e., it
continues to move right after serving the requests σR(j). Then, we have pos (t) = 1− tL + t

for t ∈ [tL, tR] and tR is the solution of

1− tL + tR = (4− ρ)tR − (2ρ− 2)tL.

Thus, in general, we have tR ≤ 2ρ−3
3−ρ t

L + 1
3−ρ , i.e.,

tR

tL
≤ 2ρ− 3

3− ρ + 1
(3− ρ)tL

tL≥2
≤ 4ρ− 5

6− 2ρ . (4)

For property (v), we need tR

tL
≤ 4ρ2−30ρ+50
−8ρ2+50ρ−66 . This is satisfied if

4ρ− 5
6− 2ρ ≤

4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66 ,

which is equivalent to

4ρ3 − 26ρ2 + 39ρ− 5 ≥ 0,

which is true by definition of ρ. J

Together with Lemma 2.3, this completes the proof of Theorem 1.1.

3 An Improved Algorithm

One of the simplest approaches for an online algorithm to solve Dial-a-Ride is the following:
Always serve the set of currently unserved requests in an optimum offline schedule and ignore
all new incoming request while doing so. Afterwards, repeat this procedure with all ignored
unserved requests until no new requests arrive. This simple algorithm that is often called
Ignore [1] has a competitive ratio of exactly 4 [4, 14]. The main weakness of Ignore is
that it always starts its schedule immediately. Ascheuer et al. showed that it is beneficial
if the server waits sometimes before starting a schedule and introduced the Smartstart
algorithm [1], which has a competitive ratio of roughly 2.94 [4].

We define L(t, p, R) to be the smallest makespan of a schedule that starts at position p at
time t and serves all requests in R ⊆ σ after they appeared (i.e., the schedule must respect
release times). For the description of online algorithms, we denote by t the current time and
by Rt the set of requests that have appeared until time t but have not been served yet.

The algorithm Smartstart is given in Algorithm 1. Essentially, at time t, Smartstart
waits before starting an optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, p, Rt′)

Θ− 1

}
, (5)

where p is the current position of the server and Θ > 1 is a parameter of the algorithm that
scales the waiting time. Importantly, like Ignore, Smartstart ignores incoming requests
while executing a schedule.

Birx and Disser identified that Smartstart’s waiting routine defined by inequality (5)
has a critical weakness [4, Lemma 4.1]. It is possible to lure the server to any position q in
time q+ ε for every ε > 0. Roughly speaking, a request σ1 = ((Θ− 1)ε, (Θ− 1)ε; (Θ− 1)ε) is

APPROX/RANDOM 2019

21:8 Improved Bounds for Open Online Dial-a-Ride on the Line

Algorithm 1 Smartstart.

p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, pj , Rt)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

released first and then for every i ∈ {2, . . . , qε} a request σi = (iε, iε; iε) follows. The schedule
to serve the request σ1 is started at time ε and finished at time 2ε. The schedule to serve
the request at position iε is not started earlier than time

L(iε, (i− 1)ε, {σi})
Θ− 1 = |(i− 1)ε− iε|

Θ− 1 = ε

Θ− 1 . (6)

This time is (depending on the choice of Θ) later than the current time iε for every i ≥ 2.
Thus there is no waiting time for any schedule except the first one and the server reaches
position q at time q+ε. We see that the request sequence to lure the server away heavily uses
that inequality (5) relies on Smartstart’s current position p, when computing the waiting
time. Thus, we modify the waiting routine of Smartstart to avoid luring accordingly.
Denote by σ≤t the set of requests that have been released until time t.

Algorithm 2 SmarterStart.

p1 ← 0
for j = 1, 2, . . . do

while current time t < L(t, 0, σ≤t)/(Θ− 1) do
wait

tj ← t

Sj ← optimal offline schedule serving Rt starting from pj
execute Sj
pj+1 ← current position

The improved algorithm SmarterStart is given in Algorithm 2. At time t, it waits
before starting an optimal schedule to serve all available requests at time

min
t′≥t

{
t′ ≥ L(t′, 0, σ≤t′)

Θ− 1

}
. (7)

Again, Θ > 1 is a parameter of the algorithm that scales the waiting time. In contrast to
Smartstart, the waiting time is dependent on the length of the optimum offline schedule
serving all requests appeared until the current time and starting from the origin. This
guarantees that the server cannot be forced to reach any position q before time q/(Θ− 1)
since we always have L(t, 0, σ≤t) > q if σ≤t contains a request with destination in position q.

Whenever we need to distinguish the behavior of SmarterStart for different values
of Θ > 1, we write SmarterStartΘ to make the choice of Θ explicit. The length of
SmarterStart’s trajectory is denoted by SmarterStart(σ). Note that the schedules used
by Ignore, Smartstart and SmarterStart are NP-hard to compute for 1 < c <∞, see [5].

A. Birx, Y. Disser, and K. Schewior 21:9

We let N ∈ N be the number of schedules needed by SmarterStart to serve σ. The j-th
schedule is denoted by Sj , its starting time by tj , its starting point by pj , its ending point
by pj+1, and the set of requests served in Sj by σSj

. For convenience, we set t0 = p0 = 0.

3.1 Upper Bound for SmarterStart
We show the upper bound of Theorem 1.2. The completion time of SmarterStart is

SmarterStart(σ) = tN + L(tN , pN , σSN
). (8)

First, observe that, for all 0 ≤ t ≤ t′, p, p′ ∈ R, and R ⊆ σ, we have

L(t, p, R) ≥ L(t′, p, R), (9)
L(t, p, R) ≤ |p− p′|+ L(t, p′, R), (10)

L(t, 0, σ≤t) ≤ L(t, 0, σ) ≤ L(0, 0, σ) ≤ Opt(σ). (11)

Similar to [4], we distinguish between two cases, depending on whether or not SmarterStart
waits after finishing schedule SN−1 and before starting the final schedule SN . If the algorithm
SmarterStart waits, the starting time of schedule SN is given by

tN = 1
Θ− 1L(tN , 0, σ≤tN), (12)

otherwise, we have

tN = tN−1 + L(tN−1, pN−1, σSN−1). (13)

We start by giving a lower bound on the starting time of a schedule. It was shown in [4]
that the schedule Sj of Smartstart is never started earlier than time |pj+1|

Θ . This changes
slightly for SmarterStart.1

I Lemma 3.1. Algorithm SmarterStart does not start schedule Sj earlier than time |pj+1|
Θ−1 ,

i.e., we have tj ≥ |pj+1|
Θ−1 .

Using Lemma 3.1, we can give an upper bound on the length of SmarterStart’s
schedules, which is an essential ingredient in our upper bounds. The following lemma is
proved similarly to [4, Lemma 3.2], which yields an upper bound of (1 + Θ

Θ+2)Opt(σ) for
the length of every schedule Sj of Smartstart.1

I Lemma 3.2. For every schedule Sj of SmarterStart, we have

L(tj , pj , σSj
) ≤

(
1 + Θ− 1

Θ + 1

)
Opt(σ).

Proof sketch. To proof the claim we have to show the two inequalities

L(tj , pj , σSj) ≤ Opt(σ) + |pj | and L(tj , pj , σSj) ≤ 2Opt(σ)− 2 |pj |Θ− 1 . (14)

This implies

L(tj , pj , σSj)
(14)
≤ min

{
Opt(σ) + |pj |, 2Opt(σ)− 2

Θ− 1 |pj |
}

≤
(

1 + Θ− 1
Θ + 1

)
Opt(σ),

since the minimum above is largest for |pj | = Θ−1
Θ+1Opt(σ). J

APPROX/RANDOM 2019

21:10 Improved Bounds for Open Online Dial-a-Ride on the Line

The following proposition uses Lemma 3.2 to provide an upper bound for the competitive
ratio of SmarterStart, in the case that SmarterStart does have a waiting period before
starting the final schedule.

I Proposition 3.3. In case SmarterStart waits before executing SN , we have

SmarterStart(σ)
Opt(σ) ≤ f1(Θ) := 2Θ2 −Θ + 1

Θ2 − 1 .

Proof. Assume SmarterStart waits before starting the final schedule. Lemma 3.2 yields
the claimed bound:

SmarterStart(σ) (8)= tN + L(tN , pN , σSN
)

(12)= 1
Θ− 1L(tN , 0, σ≤tN) + L(tN , pN , σSN

)

(11)
≤ 1

Θ− 1Opt(σ) + L(tN , pN , σSN
)

Lem. 3.2
≤

(
1

Θ− 1 + 1 + Θ− 1
Θ + 1

)
Opt(σ)

= 2Θ2 −Θ + 1
Θ2 − 1 Opt(σ). J

In comparison, the upper bound for the competitive ratio of Smartstart, in case
Smartstart has a waiting period before starting the final schedule is 2Θ2+2Θ

Θ2+Θ−2Opt(σ) [4,
Proposition 3.2]. Note that SmarterStart’s bound is better than Smartstart’s bound
for Θ > 1.

It remains to examine the case that the algorithm SmarterStart has no waiting period
before starting the final schedule. For this we use two lemmas from [4] originally proved
for Smartstart, which are still valid for SmarterStart since they give bounds on the
optimum offline schedules independently of the waiting routine.

By x− := min{0,mini=1,...,n{ai},mini=1,...,n{bi}} we denote the leftmost position that
needs to be visited by the server and by x+ := max{0,maxi=1,...,n{ai},maxi=1,...,n{bi}} the
rightmost. We denote by ySj

− the leftmost and by ySj

+ the rightmost position that occurs
in the requests σSj

. Note that ySj

− and ySj

+ need not lie on different sides of the origin, in
contrast to x−/+.

I Lemma 3.4 (Lemma 3.4, Full Version of [4]). Let Sj with j ∈ {1, . . . , N} be a schedule of
SmarterStart. Moreover, let Opt(σ) = |x−|+ x+ + y for some y ≥ 0. Then, we have

L(tj , 0, σSj) ≤ |min{0, ySj

− }|+ max{0, ySj

+ }+ y.

I Lemma 3.5 (Lemma 3.6, Full Version of [4]). Let Sj with j ∈ {1, . . . , N} be a schedule of
SmarterStart. Moreover, let |x−| ≤ x+ and Opt(σ) = |x−| + x+ + y for some y ≥ 0.
Then, for every point p that is visited by Sj we have

p ≤ |pj |+ |pj − pj+1|+ y − |min{0, ySj

− }|.

Using the bounds established by Lemma 3.4 and Lemma 3.5, we can give an upper bound
for the competitive ratio of SmarterStart if the server is not waiting before starting the
final schedule.

I Proposition 3.6. If SmarterStart does not wait before executing SN , we have

SmarterStart(σ)
Opt(σ) ≤ f2(Θ) := 3Θ2 + 3

2Θ + 1 .

A. Birx, Y. Disser, and K. Schewior 21:11

Proof. Assume algorithm SmarterStart does not have a waiting period before the last
schedule, i.e., SmarterStart starts the final schedule SN immediately after finishing SN−1.
Without loss of generality, we assume |x−| ≤ x+ throughout the entire proof by symmetry.

First of all, we notice that we may assume that SmarterStart executes at least
two schedules in this case. Otherwise either the only schedule has length 0, which would
imply Opt(σ) = SmarterStart(σ) = 0, or the only schedule would have a positive length,
implying a waiting period. Let σOpt

SN
be the first request of σSN

that is served by Opt and
let aOpt

N be its starting point and rOpt
N be its release time. We have

SmarterStart(σ) (8)= tN + L(tN , pN , σSN
)

(13)= tN−1 + L(tN−1, pN−1, σSN−1) + L(tN , pN , σSN
)

tN ≥ rOpt
N

≤ tN−1 + L(tN−1, pN−1, σSN−1) + L(rOpt
N , pN , σSN

). (15)

Since Opt serves all requests of σSN
after time rOpt

N , starting with a request with starting
point aOpt

N , we also have

Opt(σ) ≥ rOpt
N + L(rOpt

N , aOpt
N , σSN

). (16)

Furthermore, we have

rOpt
N > tN−1 (17)

since otherwise σOpt
SN
∈ σSN−1 would hold. This gives us

SmarterStart(σ)
(15)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + L(rOpt

N , pN , σSN
)

(10)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |
+L(rOpt

N , aOpt
N , σSN

)
(16)
≤ tN−1 + L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |
+Opt(σ)− rOpt

N

(17)
< L(tN−1, pN−1, σSN−1) + |aOpt

N − pN |+ Opt(σ) (18)
(10)
≤ |pN−1|+ L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
Lem. 3.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ).
(19)

We have

Opt(σ) ≥ tN−2 + |aOpt
N − pN |, (20)

because Opt has to visit both aOpt
N and pN after time tN−2: It has to visit aOpt

N to collect
σOpt
SN

and it has to visit pN to deliver some request of σSN−1 . Using the above inequalitiy,
we get

SmarterStart(σ)
(19)
< (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
(20)
≤ 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ− 2)tN−2. (21)

APPROX/RANDOM 2019

21:12 Improved Bounds for Open Online Dial-a-Ride on the Line

In the case Θ ≥ 2, we have

SmarterStart(σ)
(21)
< 2Opt(σ) + L(tN−1, 0, σSN−1) + (Θ− 2)tN−2

(11)
≤ (Θ + 1)Opt(σ)

Θ ≥ 2
≤ 3Θ2 + 3

2Θ + 1 Opt(σ).

Thus, we may assume Θ < 2. Similarly as in inequality (21), we get

SmarterStart(σ)
(19)
< (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + |aOpt

N − pN |+ Opt(σ)
(20)
≤ ΘOpt(σ) + L(tN−1, 0, σSN−1) + (2−Θ)|aOpt

N − pN |
(7)
≤ ΘOpt(σ) + (Θ− 1)tN−1 + (2−Θ)|aOpt

N − pN |

≤ (2Θ− 1)Opt(σ) + (2−Θ)|aOpt
N − pN |, (22)

where the last inequality follows, because there exists a request in σ with release date later
than tN−1. This means the claim is shown if we have

|pN − aOpt
N | ≤ Opt(σ)− Θ− 1

2Θ + 1Opt(σ) (23)

since then we have

SmarterStart(σ)
(22)
< (2Θ− 1)Opt(σ) + (2−Θ)|aOpt

N − pN |
(23)
≤ (2Θ− 1)Opt(σ) + (2−Θ)

(
1− Θ− 1

2Θ + 1

)
Opt(σ)

= 3Θ2 + 3
2Θ + 1 Opt(σ).

Therefore, we may assume in the following that

|pN − aOpt
N | > Opt(σ)− Θ− 1

2Θ + 1Opt(σ). (24)

Let Opt(σ) = |x−|+ x+ + y for some y ≥ 0. By definition of x− and x+ we have

|pN − aOpt
N |+ y ≤ Opt(σ). (25)

In the case that Opt visits position pN before it collects σOpt
SN

, we have

|aOpt
N − pN |+ |pN | ≤ Opt(σ). (26)

Similarly, if Opt collects σOpt
SN

before it visits position pN for the first time, we have

Opt(σ) ≥ rOpt
N + |aOpt

N − pN |
(17)
> tN−1 + |aOpt

N − pN |
Lem. 3.1
≥ |pN |

Θ− 1 + |aOpt
N − pN |

Θ < 2
≥ |pN |+ |aOpt

N − pN |.

A. Birx, Y. Disser, and K. Schewior 21:13

Thus, inequality (26) holds in general. To sum it up, we may assume that

max{y, |pN |, tN−2}
(24),(25),(26),(20)

<
Θ− 1
2Θ + 1Opt(σ) (27)

holds. In the following, denote by ySN−1
− the leftmost starting or ending point and by ySN−1

+
the rightmost starting or ending point of the requests in σSN−1 . We compute

SmarterStart(σ)
(18)
< L(tN−1, pN−1, σSN−1) + |pN − aOpt

N |+ Opt(σ)
(26)
< L(tN−1, pN−1, σSN−1) + 2Opt(σ)− |pN |
(9)
≤ |pN−1|+ L(tN−1, 0, σSN−1) + 2Opt(σ)− |pN |

Lem. 3.1
≤ (Θ− 1)tN−2 + L(tN−1, 0, σSN−1) + 2Opt(σ)− |pN |

Lem. 3.4
≤ (Θ− 1)tN−2 + max{0, |ySN−1

− |}+ max{0, ySN−1
+ }+ y

+2Opt(σ)− |pN |. (28)

Obviously, position ySN−1
+ is visited by SmarterStart in schedule SN−1. Therefore, ySN−1

+
is smaller than or equal to the rightmost point that is visited by SmarterStart during
schedule SN−1, which gives us

y
SN−1
+

Lem. 3.5
≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1

− |}. (29)

On the other hand, because of |x−| ≤ x+, we have Opt(σ) ≥ 2|x−| + x+, which implies
y ≥ |x−|. By definition of x− and y

SN−1
− , we have |x−| ≥ max{0, |ySN−1

− |}. This gives
us y ≥ max{0, |ySN−1

− |} and

0 ≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1
− |}. (30)

To sum it up, we have

max{0, ySN−1
+ }

(29),(30)
≤ |pN−1|+ |pN−1 − pN |+ y −max{0, |ySN−1

− |}. (31)

The inequality above gives us

SmarterStart(σ)
(28)
< (Θ− 1)tN−2 + max{0, |ySN−1

− |}+ max{0, ySN−1
+ }

+y + 2Opt(σ)− |pN |
(31)
≤ (Θ− 1)tN−2 + |pN−1|+ |pN−1 − pN |+ 2y + 2Opt(σ)− |pN |

≤ (Θ− 1)tN−2 + |pN−1|+ |pN−1|+ |pN |+ 2y + 2Opt(σ)− |pN |
Lem. 3.1
≤ (Θ− 1)tN−2 + 2(Θ− 1)tN−2 + 2y + 2Opt(σ)

(27)
≤ (3Θ− 3) Θ− 1

2Θ + 1Opt(σ) + 2 Θ− 1
2Θ + 1Opt(σ) + 2Opt(σ)

= 3Θ2 + 3
2Θ + 1 Opt(σ). J

In comparison, the upper bound for the competitive ratio of Smartstart in case it does
not have a waiting period before starting the final schedule is Θ + 1− Θ−1

3Θ+3Opt(σ) [4, Propo-
sition 3.4]. Note that SmarterStart’s bound is slightly worse than Smartstart’s bound
for Θ > 1.47. However, in combination with the bound of Proposition 3.3, SmarterStart
has a better worst-case than Smartstart.

APPROX/RANDOM 2019

21:14 Improved Bounds for Open Online Dial-a-Ride on the Line

I Theorem 3.7. Let Θ∗ be the largest solution of f1(Θ) = f2(Θ), i.e.,

3Θ∗2 + 3
2Θ∗ + 1 = 2Θ∗2 −Θ∗ + 1

Θ∗2 − 1 .

Then, SmarterStartΘ∗ is ρ∗-competitive with ρ∗ := f1(Θ∗) = f2(Θ∗) ≈ 2.6662.

Proof. According to Proposition 3.3 and Proposition 3.6, if it exists,

Θ∗ = argmin
Θ>1

{max{f1(Θ), f2(Θ)}}

is the parameter for SmarterStart with the smallest upper bound. We note that f1 is
strictly decreasing for Θ > 1 and that f2 is strictly increasing for Θ > 1. Therefore, if an
intersection point of f1 and f2 that is larger than 1 exists, then this is at Θ∗. Indeed, the
intersection point exists, which is the largest solution of

3Θ2 + 3
2Θ + 1 = 2Θ2 −Θ + 1

Θ2 − 1 .

The resulting upper bound for the competitive ratio is

ρ∗ = f1(Θ∗) = f2(Θ∗) ≈ 2.6662. J

3.2 Lower Bound for SmarterStart
We show the lower bound of Theorem 1.2. In this section, we explicitly construct instances
that demonstrate that the upper bounds given in the previous section are tight for certain
ranges of Θ > 1, in particular for Θ = Θ∗ (as in Theorem 3.7). Further, we show that choices
of Θ > 1 different from Θ∗ yield competitive ratios worse than ρ∗ ≈ 2.67. Together, this
implies that ρ∗ is exactly the best possible competitive ratio for SmarterStart.1

I Proposition 3.8. Let 1 < Θ < 2. For every sufficiently small ε > 0, there is a set of
requests σ such that SmarterStart waits before starting the final schedule and such that
the inequality

SmarterStart(σ)
Opt(σ) ≥ 2Θ2 −Θ + 1

Θ2 − 1 − ε

holds, i.e., the upper bound established in Proposition 3.3 is tight for Θ ∈ (1, 2).

Proof sketch. Let ε > 0 with ε < Θ
Θ+1 and ε′ = Θ+1

2Θ ε. The request sequence σ = {σ1, σ2}
with

σ1 = (1, 1; 0) and σ2 = (− 1
Θ− 1 + ε′, 1; 1

Θ− 1 + ε′)

achieves the desired result. J

I Proposition 3.9. Let 1
2 (1 +

√
5) ≤ Θ ≤ 2. For every sufficiently small ε > 0 there is a set

of requests σ such that SmarterStart immediately starts SN after SN−1 and such that

SmarterStart(σ)
Opt(σ) ≥ 3Θ2 + 3

2Θ + 1 − ε,

i.e., the upper bound established in Proposition 3.6 is tight for Θ ∈ [1
2 (1+

√
5), 2] ≈ [1.6180, 2].

A. Birx, Y. Disser, and K. Schewior 21:15

Proof sketch. Let ε > 0 with ε < 1
4 (5Θ2−9Θ+4

2Θ+1) and ε′ = 2Θ+1
5Θ2−9Θ+4ε. The request sequence

σ = {σ1, σ2} with

σ1 = (1, 1; 0),

σ
(1)
2 =

(
2 + 1

Θ− 1 − 2ε′, 2 + 1
Θ− 1 − 2ε′; 1

Θ− 1 + ε′
)
,

σ
(2)
2 =

(
− 1

Θ− 1 ,−
1

Θ− 1 ; 1
Θ− 1 + ε′

)
,

σ3 =
(

3
(Θ− 1)2 − ε

′,
3

(Θ− 1)2 − ε
′; 3

(Θ− 1)2 + 2
Θ− 1

)
achieves the desired result. J

Recall that the optimal parameter Θ∗ established in Theorem 3.7 is the only positive,
real solution of the equation

3Θ2 + 3
2Θ + 1 = 2Θ2 −Θ + 1

Θ2 − 1 ,

which is Θ∗ ≈ 1.7125. Therefore, according to Proposition 3.8 and Proposition 3.9 the
parameter Θ∗ lies in the range where the upper bounds of Propositions 3.3 and 3.6 are both
tight. It remains to make sure that for all Θ that lie outside of this range the competitive
ratio of SmarterStartΘ is larger than ρ∗ ≈ 2.6662.1

I Lemma 3.10. Let Θ > 2. There is a set of requests σΘ>2 such that

SmarterStart(σΘ>2)
Opt(σΘ>2) > ρ∗ ≈ 2.6662.

Figure 1 shows the upper and lower bounds that we have established. Theorem 1.2 now
follows from Theorem 3.7 combined with Propositions 3.8 and 3.9, as well as Lemma 3.10.

Proof of Theorem 1.2. We have shown in Proposition 3.8 that the upper bound

SmarterStart(σ)
Opt(σ) ≤ f1(Θ) = 2Θ2 −Θ + 1

Θ2 − 1

established in Proposition 3.3 for the case, where SmarterStart waits before starting the
final schedule, is tight for all Θ ∈ (1, 2). Furthermore, we have shown in Proposition 3.9 that
the upper bound

SmarterStart(σ)
Opt(σ) ≤ f2(Θ) = 3Θ2 + 3

2Θ + 1

established in Proposition 3.6 for the case, where SmarterStart does not wait before
starting the final schedule, is tight for all Θ ∈ (1

2 (1 +
√

5), 2]. Since Θ∗ ≈ 1.71249 lies in
those ranges, the competitive ratio of SmarterStartΘ∗ is indeed exactly ρ∗.

It remains to show that for every Θ > 1 with Θ 6= Θ∗ the competitive ratio is larger.
First, according to Lemma 3.10, the competitive ratio of SmarterStart with parameter
Θ ∈ (2,∞) is larger than ρ∗. By monotonicity of f1, every function value in (1,Θ∗) is
larger than f1(Θ∗) = ρ∗. Thus, the competitive ratio of SmarterStart with parameter
Θ ∈ (1,Θ∗) is larger than ρ∗, since f1 is tight on (1,Θ∗) by Proposition 3.8. Similarly, by
monotonicity of f2, every function value in (Θ∗, 2] is larger than f2(Θ∗) = ρ∗. Thus, the
competitive ratio of SmarterStart with parameter Θ ∈ (Θ∗, 2] is larger than ρ∗, since f2
is tight on (Θ∗, 2] by Proposition 3.9. J

APPROX/RANDOM 2019

21:16 Improved Bounds for Open Online Dial-a-Ride on the Line

1 2 3 4
2

3

4

f1 f2

g1
g2

Θ∗ ≈ 1.71

ρ∗ ≈ 2.67

scaling paramter Θ

co
m
pe

tit
iv
e
ra
tio

ρ

Figure 1 Overview of our bounds for SmarterStart. The functions f1 (green) / f2 (red) are
upper bounds for the cases where SmarterStart waits / does not wait before starting the final
schedule, respectively. The upper bounds are drawn solid in the domains where they are tight for
their corresponding case. The functions g1 and g2 (blue) are general lower bounds.

References

1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online Dial-a-Ride Problems:
Minimizing the Completion Time. In Proceedings of the 17th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), pages 639–650, 2000.

2 Mikhail J. Atallah and S. Rao Kosaraju. Efficient Solutions to Some Transportation Problems
with Applications to Minimizing Robot Arm Travel. SIAM Journal on Computing, 17(5),
1988.

3 G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms for the On-Line
Travelling Salesman. Algorithmica, 29(4):560–581, 2001.

4 A. Birx and Y. Disser. Tight analysis of the Smartstart algorithm for online Dial-a-Ride on the
line. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer
Science (STACS), 2019. Full version: https://arxiv.org/abs/1901.04272.

5 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight Bounds for Online TSP
on the Line. In Proceedings of the 28th Annual Symposium on Discrete Algorithms (SODA),
pages 994–1005, 2017.

6 Michiel Blom, Sven O. Krumke, Willem E. de Paepe, and Leen Stougie. The Online TSP
Against Fair Adversaries. INFORMS Journal on Computing, 13(2):138–148, 2001.

7 Moses Charikar and Balaji Raghavachari. The Finite Capacity Dial-A-Ride Problem. In
Proceedings of the 39th Annual Symposium on Foundations of Computer Science (FOCS),
pages 458–467, 1998.

8 Willem E. de Paepe, Jan Karel Lenstra, Jiri Sgall, René A. Sitters, and Leen Stougie. Computer-
Aided Complexity Classification of Dial-a-Ride Problems. INFORMS Journal on Computing,
16(2):120–132, 2004.

9 Esteban Feuerstein and Leen Stougie. On-line Single-server Dial-a-ride Problems. Theoretical
Computer Science, 268(1):91–105, 2001.

A. Birx, Y. Disser, and K. Schewior 21:17

10 Paul C. Gilmore and Ralph E. Gomory. Sequencing a One State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, 12(5):655–679, 1964.

11 D. J. Guan. Routing a Vehicle of Capacity Greater Than One. Discrete Applied Mathematics,
81(1-3):41–57, 1998.

12 Dietrich Hauptmeier, Sven Oliver Krumke, and Jörg Rambau. The Online Dial-a-Ride Problem
Under Reasonable Load. In Proceedings of the 4th Italian Conference on Algorithms and
Complexity (CIAC), pages 125–136, 2000.

13 Patrick Jaillet and Michael R. Wagner. Generalized Online Routing: New Competitive Ratios,
Resource Augmentation, and Asymptotic Analyses. Operations Research, 56(3):745–757, 2008.

14 Sven O. Krumke. Online Optimization Competitive Analysis and Beyond, 2001. Habilitation
thesis.

15 Sven O. Krumke, Willem E. de Paepe, Diana Poensgen, Maarten Lipmann, Alberto Marchetti-
Spaccamela, and Leen Stougie. On Minimizing the Maximum Flow Time in the Online
Dial-a-ride Problem. In Proceedings of the Third International Conference on Approximation
and Online Algorithms (WAOA), pages 258–269, 2006.

16 Sven O. Krumke, Luigi Laura, Maarten Lipmann, Alberto Marchetti-Spaccamela, Willem
de Paepe, Diana Poensgen, and Leen Stougie. Non-abusiveness Helps: An O(1)-Competitive
Algorithm for Minimizing the Maximum Flow Time in the Online Traveling Salesman Prob-
lem. In Proceedings of the 5th International Workshop on Approximation Algorithms for
Combinatorial Optimization (APPROX), pages 200–214, 2002.

17 Maarten Lipmann, Xiwen Lu, Willem E. de Paepe, Rene A. Sitters, and Leen Stougie. On-Line
Dial-a-Ride Problems Under a Restricted Information Model. Algorithmica, 40(4):319–329,
2004.

18 Fanglei Yi and Lei Tian. On the Online Dial-a-ride Problem with Time-windows. In Proceedings
of the 1st International Conference on Algorithmic Applications in Management (AAIM),
pages 85–94, 2005.

19 Fanglei Yi, Yinfeng Xu, and Chunlin Xin. Online Dial-a-ride Problem with Time-windows
Under a Restricted Information Model. In Proceedings of the 2nd International Conference on
Algorithmic Aspects in Information and Management (AAIM), pages 22–31, 2006.

A Proof of Lemma 2.3

In this section we prove Lemma 2.3. The proof is almost identical to the proof of [5, Lemma 6].
Since there are however several parts where inequalities change slightly, we decided to present
the full proof here.

I Lemma 2.3. If there is a request sequence with two critical requests for Alg, we can
release additional requests such that Alg is not (ρ− ε)-competitive on the resulting instance
for any ε > 0.

Let the requests σL and σR be critical. Furthermore, let p0 ∈ {tL, tR} be the starting
position of the request σ0 ∈ {σL, σR} that is served first by Alg and let p1 ∈ {tL, tR} be the
starting position of the request σ1 ∈ {σL, σR} that is not served first by Alg. By properties
(iii) and (iv) of Definition 2.2, Alg cannot serve σ0 before time (2ρ − 2)|p1|+ (ρ − 2)|p0|.
Thus, we have

Alg(σρ) ≥ (2ρ− 2)p1 + (ρ− 2)p0 + |p0 − p1| = (2ρ− 1)|p1|+ (ρ− 1)|p0|. (32)

We have equality in inequality (32) if Alg serves σ0 the earliest possible time and then
moves directly to position p1. However, in general Alg does not need to do this and instead
can wait. At time t ≥ max{|p0|, |p1|}, we have Alg(σρ) ≥ t + |pos (t) − p0| + |p0 − p1| if
Alg still has to serve σ0 and Alg(σρ) ≥ t+ |pos (t)− p1| if σ0 is served and only σ1 is left

APPROX/RANDOM 2019

21:18 Improved Bounds for Open Online Dial-a-Ride on the Line

to be served. We want to measure the delay of Alg at a time t ≥ max{|p0|, |p1|}, i.e. the
difference between the time Alg needs at least to serve both requests σ0 and σ1 and the
time (2ρ− 1)|p1|+ (ρ− 1)|p0|. We define for t ≥ max{|p0|, |p1|} the function

delay(t) :=

t+ |pos (t)− p0| − (ρ− 2)|p0| − (2ρ− 2)|p1| if σ0 is not served at t,
t+ |pos (t)− p1| − (ρ− 1)|p0| − (2ρ− 1)|p1| if σ0 is served at t, but σ1 not,
undefined otherwise.

We make the following observation about delay.

I Observation A.1. Let t ≥ max{|p0|, |p1|} be a time at which σ1 is not served yet. The
earliest time Alg can serve σ1 is (2ρ− 1)|p1|+ (ρ− 1)|p0|+ delay(t).

I Lemma A.2. There is a W ≥ 0 with

delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= W

Proof. Because of property (ii) of Definition 2.2, at time max{|p0|, |p1|} neither σ0 nor σ1
has been served by Alg yet. Since Alg serves σ1 after σ0, the request σ1 is not served before
time max{|p0|, |p1|} + |p0| + |p1| ≥ 2|p1| + |p0|, i.e, delay(2p1 + p0) is defined. Because of
properties (iii) and (iv) of Definition 2.2, σ0 is not served before time (2ρ−2)|p1|+(ρ−2)|p0|.
Thus, for t ≥ (2ρ− 2)p1 + (ρ− 2)p0, we have delay(t) ≥ 0. We have

2p1 + p0
Def 2.2 (v)
≥ 2p1 + (3− ρ)−8ρ2 + 50ρ− 66

4ρ2 − 30ρ+ 50 |p1|+ (ρ− 2)|p0|

2 < ρ < 2.5
> (2ρ− 2)|p1|+ (ρ− 2)|p0|, (33)

i.e. delay(2p1 + p0) ≥ 0. If delay(2p1 + p0) = 0, we have W = 0 and are done. Otherwise, by
inequality (33), we have delay(2p1 + p0) > 0. Note that Alg needs to serve σ1 at some point
to be (ρ−ε)-competitive. LetW ∗ be chosen such that Alg serves σ1 at time 2|p1|+ |p0|+W∗

ρ−1 .
Therefore delay(2|p1|+ |p0|+ W∗

ρ−1 − ε
′) is defined for some sufficiently small ε′ ≤ |p1|. We

define the function

f(W) := delay
(

2|p1|+ |p0|+
W

ρ− 1

)
−W.

Note that f is continuous and we have f(0) > 0. If

delay
(

2|p1|+ |p0|+
W ∗

ρ− 1 − ε
′
)
≤ W ∗

ρ− 1 − ε
′ ρ>1
< W ∗ − (ρ− 1)ε′,

we have f(W ∗ − (ρ− 1)ε′) < 0 and we find W in the interval (0,W ∗ − (ρ− 1)ε′]. Otherwise,
we have

delay
(

2|p1|+ |p0|+
W ∗

ρ− 1 − ε
′
)
>

W ∗

ρ− 1 − ε
′.

By Observation A.1 Alg has not served σ1 at time

(2ρ− 1)|p1|+ (ρ− 1)|p0|+
W ∗

ρ− 1 − ε
′ ρ>2,ε′≤|p1|

> 2|p1|+ |p0|+
W ∗

ρ− 1 .

This is a contradiction to the fact, that W ∗ was chosen such that Alg serves σ1 at time
2|p1|+ |p0|+W∗

ρ−1 . J

A. Birx, Y. Disser, and K. Schewior 21:19

I Lemma A.3. Let W ≥ 0 with

delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= W.

Alg serves σ0 no later than time 2|p1|+ |p0|+ W
ρ−1 .

Proof. Assume we have

2|p1|+ |p0|+
W

ρ− 1 ≥ (2ρ− 2)|p1|+ (ρ− 2)|p0|+W. (34)

Then, by definition of W and Observation A.1, Alg can serve σ1 at time

(2ρ−1)|p1|+(ρ−1)|p0|+delay
(

2|p1|+ |p0|+
W

ρ− 1

)
= (2ρ−1)|p1|+(ρ−1)|p0|+W. (35)

Because of inequality (34), this can only be the case if Alg serves σ0 no later than time

(2ρ−1)|p1|+(ρ−1)|p0|+W−|p1|−|p0| = (2ρ−2)|p1|+(ρ−2)|p0|+W
(34)
≤ 2|p1|+|p0|+

W

ρ− 1 .

Thus, it remains to show inequality (34). Because of property (i) of Definition 2.2 all requests
can be served the tours move(p0)⊕move(p1) and move(p1)⊕move(p0). By inequality 35,
we have Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W . Thus, if we have

Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W > (ρ− ε)(2|p1|+ |p0|) ≥ (ρ− ε)Opt(σρ),

Alg is not (ρ− ε)-competitive. Therefore, we may assume

(2ρ− 1)|p1|+ (ρ− 1)|p0|+W ≤ (ρ− ε)(2|p1|+ |p0|),

and thus

W ≤ (ρ− ε)(2|p1|+ |p0|)− (2ρ− 1)|p1| − (ρ− 1)|p0|
= (1− 2ε)|p1|+ (1− ε)|p0|
< |p1|+ |p0|. (36)

Inequality (34) now is equivalent to the inequality

2|p1|+ |p0| − ((2ρ− 2)|p1|+ (ρ− 2)|p0|)
1− 1

ρ−1
= (ρ− 1)(4− 2ρ)

ρ− 2 |p1|+
(ρ− 1)(3− ρ)

ρ− 2 |p0|

Def 2.2 (v)
≥ |p0|+ (2− 2ρ)|p1|

+(−ρ2 + 3ρ− 1)(−8ρ2 + 50ρ− 66)
(ρ− 2)(4ρ2 − 30ρ+ 50) |p1|

≥ |p0|+
5ρ3 − 36ρ2 + 86ρ− 67
2ρ3 − 19ρ2 + 55ρ− 50 |p1|

2 < ρ < 2.5
> |p0|+ |p1|
(36)
> W

if we solve inequality (34) for W . J

APPROX/RANDOM 2019

21:20 Improved Bounds for Open Online Dial-a-Ride on the Line

Now we have all ingredients to proof Lemma 2.3.

Proof of Lemma 2.3. Let W ≥ 0 with delay(2|p1| + |p0| + W
ρ−1) = W . We present the

request

σ+
0 = (p+

0 , p
+
0 ; t+0) :=

(
p0 + sgn(p0) W

ρ− 1 , p0 + sgn(p0) W

ρ− 1 ; 2|p1|+ |p0|+
W

ρ− 1

)
and distinguish two cases.

Case 1: At time t+0 , Alg is at least as close to p1 as to p+
0 or it serves σ1 before

σ+
0 . In this case, we do not present additional requests. By Lemma A.3, Alg has served

σ0 at time t+0 or before and by Observation A.1 it does not serve σ1 earlier than time
(2ρ− 1)|p1|+ (ρ− 1)|p0|+W . Thus, we have

Alg(σρ) ≥ (2ρ− 1)|p1|+ (ρ− 1)|p0|+W + |p1|+ |p0|+
W

ρ− 1

≥ ρ
(

2|p1|+ |p0|+
W

ρ− 1

)
= ρOpt(σρ).

Case 2: At time t+0 , Alg is closer to p+
0 than to p1 and it serves σ+

0 first. We assume
that the offline server continues moving away from the origin after serving σ+

0 at time p+
0 .

Then, the position of the offline serve at time t ≥ |p1| is sgn(p0)t+ 2p1. We denote by

M(t) := sgn(p0)t+ 3p1

2

the midpoint between the current position of the offline server and the position p1. Note
that the time M−1(p), when the midpoint is at position p is given by

M−1(p) := |2p− 3p1|.

We again distinguish two cases

Case 2.1: Alg does not serve σ+
0 until time M−1(p+

0). In this case, we do not present
additional requests. Since we are in Case 2, neither σ+

0 nor σ1 is served at time M−1(p+
0).

Thus, we have

Alg(σρ) ≥ M−1(p+
0) + |p+

0 |+ |p1|
= |2p+

0 − 3p1|+ |p+
0 |+ |p1|

= |2p0 + 2sgn(p0) W

ρ− 1 − 3p1|+ |p0|+
W

ρ− 1 + |p1|

= 3|p0|+ 4|p1|+ 3 W

ρ− 1
2 < ρ < 2.5

> ρ|p0|+ 2ρ|p1|+ 3 W

ρ− 1

> ρ

(
|p0|+ 2|p1|+

W

ρ− 1

)
= ρOpt(σρ).

A. Birx, Y. Disser, and K. Schewior 21:21

Case 2.2: Alg serves σ+
0 before time M−1(p+

0). By definition of W , the delay function
is defined for time p+

0 , hence Alg has not served σ1 before time p+
0 . Since Alg is to the right

of the midpoint M(p+
0) at time p+

0 , there is a first time tmid at which M(tmid) = pos (tmid).
We present the request

σ++
0 = (p++

0 , p++
0 ; t++

0) := (sgn(p0)tmid + 2p1, sgn(p0)tmid + 2p1; tmid).

Note that Alg is at the midpoint between p++
0 and p1 and thus, both tours move(p++

0)⊕
move(p1) and move(p1)⊕move(p++

0) incur identical costs for Alg. We have

Alg(σρ) ≥ tmid + 3
(
|sgn(p0)tmid + 2p1 − p1|

2

)
= 5tmid + 3|p1|

2
We have Opt(σρ) = tmid, i.e., if we want to show

Alg(σρ) ≥
5tmid + 3|p1|

2 ≥ ρtmid = ρOpt(σρ) (37)

Inequality (37) is equivalent to

(5− 2ρ)tmid ≥ 3|p1|. (38)

Since 2ρ < 2.5, the coefficient (5 − 2ρ) of tmid is positive. Thus we may assume tmid is
minimal to show the inequality (38). By assumption, σ+

0 is already served at time tmid.
Hence, tmid is minimum if, starting at time t+0 at position pos

(
t+0
)
, Alg serves σ+

0 and then
moves towards the origin. Then, tmid is the solution of the equation

sgn(p0)t+0 + |pos
(
t+0
)
− p+

0 |+ p+
0 − sgn(p0)tmid = sgn(p0)tmid + 3p1

2 . (39)

Because of Lemma A.3, the request σ0 is already served at time t+0 . Furthermore, since the
position of σ1 has not been visited yet at time t+0 , we have sgn(p0)pos

(
t+0
)
> sgn(p0)p1, i.e.,

|pos
(
t+0
)
− p1| = sgn(p0)(pos

(
t+0
)
− p1) > 0

and thus, because of −sgn(p0)p1 = |p1|, we get

delay(t+0) = t+0 + |pos
(
t+0
)
− p1| − (ρ− 1)|p0| − (2ρ− 1)|p1|

= t+0 + sgn(p0)pos
(
t+0
)
− sgn(p0)p1 − (ρ− 1)|p0| − (2ρ− 1)|p1|

= t+0 + sgn(p0)pos
(
t+0
)

+ |p1| − (ρ− 1)|p0| − (2ρ− 1)|p1|. (40)

Solving equation (40) for sgn(p0)pos
(
t+0
)
gives

sgn(p0)pos
(
t+0
)

= delay
(

2|p1|+ |p0|+
W

ρ− 1

)
− W

ρ− 1
+(ρ− 2)|p0|+ (2ρ− 4)|p1|

= W − W

ρ− 1 + (ρ− 2)|p0|+ (2ρ− 4)|p1|

= ρ− 2
ρ− 1W + (ρ− 2)|p0|+ (2ρ− 4)|p1| (41)

ρ < 3
<

W

ρ− 1 + (ρ− 2)|p0|+ (2ρ− 4)|p1|

Def 2.2 (v)
≤ W

ρ− 1 +
(

(ρ− 2) + (2ρ− 4) 4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66

)
|p0|

1.9 < ρ < 4.3
<

W

ρ− 1 + |p0|

sgn(p0) = sgn(p+
0)

= sgn(p0)p+
0 .

APPROX/RANDOM 2019

21:22 Improved Bounds for Open Online Dial-a-Ride on the Line

Thus, we have

|pos
(
t+0
)
− p+

0 | = sgn(p0)(p+
0 − pos

(
t+0
)
) > 0 (42)

Using inequality (42) and plugging inequality (41) into inequality (39) gives us

sgn(p0)tmid = 1
3(2sgn(p0)t+0 + 2|pos

(
t+0
)
− 2p+

0 |+ 2p+
0 − 3p1)

(42)= 1
3(2sgn(p0)t+0 + 2sgn(p0)p+

0 − 2sgn(p0)pos
(
t+0
)

+ 2p+
0 − 3p1)

= 1
3

(
−7p1 + 6p0 + (6sgn(p0))W

ρ− 1 − 2sgn(p0)pos
(
t+0
))

(41)= 1
3

(
−(15− 4ρ)p1 + (10− 2ρ)p0 + (10− 2ρ)sgn(p0)W

ρ− 1

)
(43)

Note that we also used sgn(p0) = sgn(p+
0) = −sgn(p1). Multiplying equality (43) with sgn(p0)

gives us

tmid = 1
3

(
(15− 4ρ)|p1|+ (10− 2ρ)|p0|+

(10− 2ρ)W
ρ− 1

)
. (44)

By substituting (44) into (38) and noting that it is hardest to satisfy, when W = 0, we get

|p0|
|p1|
≤ 4ρ2 − 30ρ+ 50
−8ρ2 + 50ρ− 66 ,

which is true due to Definition 2.2 (v). J

Improved Online Algorithms for Knapsack and
GAP in the Random Order Model
Susanne Albers
Technical University of Munich, Germany
albers@in.tum.de

Arindam Khan
Indian Institute of Science, Bangalore, India1

arindamkhan@iisc.ac.in

Leon Ladewig
Technical University of Munich, Germany
ladewig@in.tum.de

Abstract
The knapsack problem is one of the classical problems in combinatorial optimization: Given a set
of items, each specified by its size and profit, the goal is to find a maximum profit packing into a
knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision,
if the current item is packed or discarded forever, must be done immediately and irrevocably upon
arrival. We study the online variant in the random order model where the input sequence is a
uniform random permutation of the item set.

We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the
current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our
algorithm is based on two new insights: We introduce a novel algorithmic approach that employs
two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In
addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem.

The generalized assignment problem (GAP) includes, besides the knapsack problem, several
important problems related to scheduling and matching. We show that in the same online setting,
applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for
GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06
[Kesselheim et al. SIAM J. Comp. 47(5)].

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Online algorithms, knapsack problem, random order model

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.22

Category APPROX

Funding Work supported by the European Research Council, Grant Agreement No. 691672.

1 Introduction

Many real-world problems can be considered resource allocation problems. For example,
consider the loading of cargo planes with (potential) goods of different weights. Each item
raises a certain profit for the airline if it is transported; however, not all goods can be loaded
due to airplane weight restrictions. Clearly, the dispatcher seeks for a maximum profit packing
fulfilling the capacity constraint. This example from [24] illustrates the knapsack problem:
Given a set of n items, specified by a size and a profit value, and a resource (called knapsack)
of fixed capacity, the goal is to find a subset of items (called packing) with maximum total

1 A part of this work was done when the author was at Technical University of Munich.

© Susanne Albers, Arindam Khan, and Leon Ladewig;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:albers@in.tum.de
mailto:arindamkhan@iisc.ac.in
mailto:ladewig@in.tum.de
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.22
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Online Knapsack and GAP in the Random Order Model

profit and whose total size does not exceed the capacity. Besides being a fundamental and
extensively studied problem in combinatorial optimization, knapsack problems arise in many
and various practical settings. We refer the readers to textbooks [24, 35] and to the surveys
of previous work in [14,19] for further references.

In the generalized assignment problem (GAP) [35], resources of different capacities are
given, and the size and the profit of an item depend on the resource to which it is assigned.
The GAP includes many prominent problems, such as the (multiple) knapsack problem [13],
weighted bipartite matching [28], AdWords [36], and the display ads problem [17]. Further
applications of GAP are outlined in the survey articles [11,41].

We study online variants of the knapsack and GAP problems. Here, n items are presented
sequentially, and the decision for each item must be made immediately upon arrival. In
fact, many real-world optimization problems occur as online problems, as often decisions
must be made under uncertain conditions. For example, consider the introducing logistics
example, if the airline needs to answer customer requests immediately without knowing
future requests. The online knapsack problem has been studied in particular in the context
of online auctions [9, 45].

Typically, the performance measure for online algorithms is the competitive ratio, which
is defined as the ratio between the values of the algorithmic solution and an optimal offline
solution for a worst-case input. It can be shown that, even for the knapsack problem, the
general online setting admits no algorithms with bounded competitive ratio [34,45]. However,
most hardness results are based on a worst-case input presented in adversarial order. In the
random order model, the performance of an algorithm is evaluated for a worst-case input,
but the adversary has no control over the input order; the input sequence is drawn uniformly
at random among all permutations. This model is known from the secretary problem [15,31]
and its generalizations [7, 12,18]; it has been successfully applied to other online problems,
for example, scheduling and packing [1,16,20,25,27,39], graph problems [8,26,33], facility
location [37], budgeted allocation [38], and submodular welfare maximization [30].

1.1 Related Work
Online knapsack problem. The problem was first studied by Marchetti-Spaccamela and
Vercellis [34], who showed that no deterministic online algorithm for this problem can obtain
a constant competitive ratio. Moreover, Chakrabarty et al. [45] demonstrated that this fact
cannot be overcome by randomization.

Given such hardness results, several relaxations have been introduced and investigated.
Most relevant to our work are results in the random order model. Introduced as the secretary
knapsack problem [6], Babaioff et al. developed a randomized algorithm of competitive ratio
1/(10e) < 1/27. Kesselheim et al. [27] achieved a significant improvement by developing a
(1/8.06)-competitive randomized algorithm for the generalized assignment problem. Finally,
Vaze [43] showed that there exists a deterministic algorithm of competitive ratio 1/(2e) <
1/5.44, assuming that the maximum profit of a single item is small compared to the profit of
the optimal solution.

Apart from the random order model, different further relaxations have been considered.
Marchetti-Spaccamela and Vercellis [34] studied a stochastic model wherein item sizes and
profits are drawn from a fixed distribution. Lueker [32] obtained improved bounds in this
model. Chakrabarty et al. [45] studied the problem when the density (profit-size ratio)
of each item is in a fixed range [L,U]. Under the further assumption that item sizes are
small compared to the knapsack capacity, Chakrabarty et al. proposed an algorithm of
competitive ratio ln(U/L) + 1 and provided a lower bound of ln(U/L). Another branch of

S. Albers, A. Khan, and L. Ladewig 22:3

research considers removable models, where the algorithm can remove previously packed items.
Removing such items can incur no cost [22,23] or a cancellation cost (buyback model, [4,5,21]).
Recently, Vaze [44] considered the problem under a (weaker) expected capacity constraint.
This variant admits a competitive ratio of 1/4e.

Online GAP. Since all hardness results for online knapsack also hold for online GAP,
research focuses on stochastic variants or modified online settings. Currently, the only result
for the random order model is the previously mentioned (1/8.06)-competitive randomized
algorithm proposed by Kesselheim et al. [27]. To the best of our knowledge, the earliest
paper considering online GAP is due to Feldman et al. [17]. They obtained an algorithm
of competitive ratio tending to 1− 1/e in the free disposal model. In this model, the total
size of items assigned to a resource might exceed its capacity; in addition, no item consumes
more than a small fraction of any resource. A stochastic variant of online GAP was studied
by Alaei et al. [2]. Here, the size of an item is drawn from an individual distribution that is
revealed upon arrival of the item, together with its profit. However, the algorithm learns the
actual item size only after the assignment. If no item consumes more than a (1/k)-fraction
of any resource, the algorithm proposed by Alaei et al. has competitive ratio 1− 1/

√
k.

Online packing LPs. In contrast to GAP, general packing LPs describe problems where
requests can consume more than one resource. The study of online packing LPs was initiated
by Buchbinder and Naor [10] in the adversarial model. In several papers [1, 16, 27, 39]
it has been shown that the random order model admits (1 − ε)-competitive algorithms
assuming large capacity ratios, i.e., when the capacity of any resource is large compared to
the maximum demand for it. Most recently, Kesselheim et al. [27] showed that there is a
(1− ε)-competitive algorithm if B = Ω((log d)/ε2), where B is the capacity ratio and d is
the column sparsity (the maximum number of resources occurring in a single column).

1.2 Our Contributions
As outlined above, for online knapsack and GAP in the adversarial input model, nearly
all previous works attain constant competitive ratios at the cost of either (a) imposing
structural constraints on the input or (b) significantly relaxing the original online model.
Therefore, we study both problems in the random order model, which is less pessimistic than
the adversarial model but still considers worst-case instances without further constraints on
the item properties. For the knapsack problem, our main result is the following.

I Theorem 1.1. There exists a (1/6.65)-competitive randomized algorithm for the online
knapsack problem in the random order model assuming n→∞.

One challenge in the design of knapsack algorithms is that the optimal packing can have, on
a high level, at least two different structures. Either there are few large items, constituting
the majority of the packing’s profit, or there are many small such items. Previous work [6,27]
is based on splitting the input according to item sizes and then employing algorithms tailored
for these restricted instances. However, the algorithms from [6,27] choose a single item type
via an initial random choice, and then pack items of that type exclusively. In contrast, our
approach considers different item types in distinct time intervals, rather than discarding
items of a specific type in advance. More precisely, we develop algorithms AL and AS which
are combined in a novel sequential approach: While large items appearing in early rounds are
packed using AL, algorithm AS is applied to pack small items revealed in later rounds. We
think that this approach may be helpful for other problems in similar online settings as well.

APPROX/RANDOM 2019

22:4 Online Knapsack and GAP in the Random Order Model

The proposed algorithm AL deals with the knapsack problem where all items consume
more than 1/3 of the capacity (we call this problem 2-KS). The 2-KS problem is closely
related to the k-secretary problem [29] for k = 2. We also develop a general framework that
allows to employ any algorithm for the 2-secretary problem to obtain an algorithm for 2-KS.
As a side product, we obtain a simple (1/3.08)-competitive deterministic algorithm for 2-KS
in the random order model. For items whose size is at most 1/3 of the resource capacity, we
give a simple and efficient algorithm AS . Here, a challenging constraint is that AL and AS
share the same resource, so we need to argue carefully that the decisions of AS are feasible,
given the packing of AL from previous rounds.

Finally, we show that the proposed sequential approach also improves the current best
result for GAP [27] from competitive ratio 1/8.06 to 1/6.99.

I Theorem 1.2. There exists a (1/6.99)-competitive randomized algorithm for the online
generalized assignment problem in the random order model assuming n→∞.

For this problem we use the algorithmic building blocks AL, AS developed in [26,27]. However,
we need to verify that AL, an algorithm for edge-weighted bipartite matching [26], satisfies
the desired properties for the sequential approach. We point out that the assignments of
our algorithm differ structurally from the assignments of the algorithm proposed in [27].
In the assignments of the latter algorithm, all items are either large or small compared to
the capacity of the assigned resource. In our approach, both situations can occur, because
resources are managed independently.

Roadmap. We focus on the result on the knapsack problem (Theorem 1.1) in the first
chapters of this paper. For this purpose, we provide elementary definitions in Section 2.
Our main technical contribution is formally introduced in Section 3: Here, we describe an
algorithmic framework performing two algorithms AL, AS sequentially. In Sections 4 and 5,
we design and analyze the algorithms AL and AS for the knapsack problem. Finally, in
Section 6 we describe how the sequential approach can be applied to GAP. Due to space
constraints, some proofs are deferred to Appendix A (knapsack) and to Appendix B (GAP).

2 Preliminaries

Let [n] := {1, . . . , n}. Further, let Q≥0 and Q>0 denote the set of non-negative and positive
rational numbers, respectively.

Knapsack problem. We are given a set of items I = [n], each item i ∈ I has size si ∈ Q>0
and a profit (value) vi ∈ Q≥0. The goal is to find a maximum profit packing into a knapsack
of size W ∈ Q>0, i.e., a subset M ⊆ I such that

∑
i∈M si ≤W and

∑
i∈M vi is maximized.

W.l.o.g. we can assume si ≤ W for all i ∈ I. In the online variant of the problem, in each
round ` ∈ [n] a single item i is revealed together with its size and profit. The online algorithm
must decide immediately and irrevocably whether to pack i. We call an item visible in round
` if it arrived in round ` or earlier.

Random order performance. We analyze the performance of algorithms in the random
order model. Given a worst case input I, the order in which I is presented is drawn uniformly
at random from the set of all permutations. For an algorithm A, its competitive ratio is
defined as E [A(I)] /OPT(I), where A(I) and OPT(I) denote the profits of the solutions
of A and an optimal offline algorithm, respectively. Here, the expectation is taken over

S. Albers, A. Khan, and L. Ladewig 22:5

Algorithm 1 Sequential approach.

Input :Random permutation π of n items in I, a knapsack of capacity W ,
parameters c, d ∈ (0, 1) with c < d, algorithms AL, AS .

Output :A feasible (integral) knapsack packing.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items;
if cn+ 1 ≤ ` ≤ dn then

Pack π(`) iff AL packs πL(`);
if dn+ 1 ≤ ` ≤ n then

Pack π(`) iff AS packs πS(`) and the remaining capacity is sufficiently large.

all permutations and random choices of the algorithm. As above, we slightly overload the
notation and also use A as a random variable for the profit of the solution returned by an
algorithm A.

We classify items as large or small, depending on their size compared to W and a
parameter δ ∈ (0, 1) to be determined later.

I Definition 2.1. We say an item i is δ-large if si > δW and δ-small if si ≤ δW . Whenever
δ is clear from the context, we say an item is large or small for short. Based on the given
item set I, we define two modified item sets IL and IS, which are obtained as follows:

IL: Replace each small item by a large item of profit 0
IS: Replace each large item by a small item of profit 0.

Therefore, IL only contains large items and IS only contains small items. We can assume
that no algorithm packs a zero-profit item, thus any algorithmic packing of IL or IS can be
turned into a packing of I having the same profit. Let OPT, OPTL, and OPTS be the total
profits of optimal packings for I, IL, and IS , respectively. A useful upper bound for OPT is

OPT ≤ OPTL + OPTS . (1)

3 Sequential Approach

A common approach in the design of algorithms for secretary problems is to set two phases: a
sampling phase, where all items are rejected, followed by a decision phase, where some items
are accepted according to a decision rule. Typically, this rule is based on the information
gathered in the sampling phase. We take this concept a step further: The key idea of our
sequential approach is to use a part of the sampling phase of one algorithm as decision phase
of another algorithm, which itself can have a sampling phase. This way, two algorithms are
performed in a sequential way, which makes better use of the entire instance. We combine
this idea with using different strategies for small and large items.

Formally, let AL and AS be two online knapsack algorithms and IL and IS be the item
sets constructed according to Definition 2.1. Further, let 0 < c < d < 1 be two parameters
to be specified later. Our proposed algorithm samples the first cn rounds; during this time
no item is packed. From round cn+ 1 to dn, the algorithm considers large items exclusively.
In this interval we follow the decisions of AL. After round dn, the algorithm processes only
small items and follows the decisions of AS . However, it might be the case that an item
accepted by AS cannot be packed because the knapsack capacity is exhausted due to the
packing of AL in earlier rounds. Note that all rounds 1, . . . , dn can be considered as the

APPROX/RANDOM 2019

22:6 Online Knapsack and GAP in the Random Order Model

Algorithm 2 Algorithm AL for large items.

Input :Random permutation of n (1/3)-large items, a knapsack of capacity W ,
parameters c, d ∈ (0, 1) with c < d.

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round.
if ` ≤ cn then

Sampling phase – discard all items.
Let v∗ be the maximum profit seen up to round cn.
if cn+ 1 ≤ ` ≤ dn then

Pack the first two items of profit higher than v∗, if feasible.
if ` > dn then

Discard all items.

sampling phase for AS . A formal description is given in Algorithm 1. Here, for a given
input sequence π of I, let πL and πS denote the corresponding sequences from IL and IS ,
respectively. Note that π is revealed sequentially and πL, πS can be constructed online. For
any input sequence π, let π(`) denote the item at position ` ∈ [n].

In the final algorithm we set the threshold for small items to δ = 1/3 and use Algorithm 1
with parameters c = 0.42291 and d = 0.64570. Under the assumption n→∞ we can assume
cn, dn ∈ N. We next give a high-level description of the proof of Theorem 1.1.

Proof of Theorem 1.1. Let A be Algorithm 1 and AL, AS be the algorithms developed
in Sections 4 and 5. In the next sections we prove the following results (see Lemmas 4.7
and 5.5): The expected profit from AL in rounds cn+ 1, . . . , dn is at least 1

6.65 OPTL, and
the expected profit from AS in rounds dn+ 1, . . . , n is at least 1

6.65 OPTS . Together with
inequality (1), we obtain

E [A] ≥ E [AL] + E [AS] ≥ 1
6.65 OPTL + 1

6.65 OPTS ≥
1

6.65 OPT . J

The order in which AL and AS are arranged in Algorithm 1 follows from two observations.
Algorithm AS is powerful if it samples roughly (2/3)n rounds; a part of this long sampling
phase can be used as the decision phase of AL, for which a shorter sampling phase is
sufficient. Moreover, the first algorithm should either pack high-profit items, or should leave
the knapsack empty for the following algorithm with high probability. The algorithm AL we
propose in Section 4 has this property (see Lemma 4.8). In contrast, if AS would precede
AL, the knapsack would be empty at the beginning of AL with very small probability, in
which case we would not benefit from AL.

Finally, note that better algorithms and parameterizations for the respective sub-problems
exist (see Lemma 4.6 and [27]). However, for the overall performance we need algorithms
AL and AS that perform well evaluated in the sequential framework.

4 Large Items

The approach presented in this section is based on the connection between the online knapsack
problem under random arrival order and the k-secretary problem [29]. In the latter problem,
the algorithm can accept up to k items and the goal is to maximize the sum of their profits.
The k-secretary problem generalizes the classical secretary problem [15, 31] and is itself a
special case of the online knapsack problem under random arrival order (if all knapsack items
have size W/k).

S. Albers, A. Khan, and L. Ladewig 22:7

Table 1 Definition of packing types A-M. We use set notation {i, j} if i and j can be packed in
any order, and tuple notation (i, j) if the packing order must be as given.

type content constraint on j probability pX

A {1, 2} - p12 + p21

B {1, 3} - p13 + p31

C {2, 3} - p23 + p32

D (1, j) - p1

E (2, j) - p2

F (3, j) - p3

G (4, j) - p4

H (1, j) j 6= 2 p1 − p12

I (1, j) j 6= 3 p1 − p13

J (2, j) j 6= 1 p2 − p21

K (2, j) j 6= 3 p2 − p23

L (3, j) j 6= 1 p3 − p31

M (3, j) j 6= 2 p3 − p32

In our setting, each large item consumes more than δ = 1/3 of the knapsack capacity. We
call this problem 2-KS, since at most two items can be packed completely. Therefore, any
2-secretary algorithm can be employed to identify high-profit items and pack them if feasible.
Although this idea applies to any δ and corresponding k, the approach seems stronger for
small k: Intuitively, the characteristics of k-KS and k-secretary deviate with growing k, while
1-KS is exactly 1-secretary. Furthermore, the k-secretary problem is for k = 2 rather well
studied [3, 12], while the exact optimal competitive ratios for k ≥ 3 are still unknown.

In the following, let AL be Algorithm 2. This is an adaptation of the algorithm single-
ref developed for the k-secretary problem in [3]. As discussed above, 2-secretary and 2-KS
are similar, but different problems. Therefore, in our setting it is not possible to apply the
existing analysis from [3] or from any other k-secretary algorithm directly.

Assumption. For this section we assume that all profits are distinct. This is without loss of
generality, as ties can be broken by adjusting the profits slightly, using the items’ identifiers.
Further, we assume v1 > v2 > . . . > vn and say that i is the rank of item i.

4.1 Packing Types
As outlined above, in contrast to the 2-secretary problem, not all combinations of two
knapsack items can be packed completely. Therefore, we analyze the probability that AL
selects a feasible set of items whose profit can be bounded from below. We restrict our
analysis to packings where an item i ∈ {1, 2, 3, 4} is packed as the first item and group such
packings into several packing types A-M defined in the following. Although covering more
packings might lead to further insights into the problem and to a stronger result, we expect
the improvement to be marginal.

Let pX be the probability that AL returns a packing of type X ∈ {A, . . . ,M}. In addition,
let pi for i ∈ [n] be the probability that AL packs i as the first item. Finally, let pij for
i, j ∈ [n] be the probability that AL packs i as the first item and j as the second item.

In a packing of type A, the items 1 and 2 are packed in any order. Therefore, pA = p12+p21.
The types B and C are defined analogously using the items {1, 3} and {2, 3}, respectively. In
a packing of type D, the item 1 is accepted as the first item, together with no or any second

APPROX/RANDOM 2019

22:8 Online Knapsack and GAP in the Random Order Model

cn+1

a

dn

i

kSampling

Item

Pos.

Figure 1 Input sequence considered in Lemma 4.2. The gray dashed slots represent items of rank
greater than a.

item j. This happens with probability pD = p1. Accordingly, we define types E,F, and G
using the items 2,3, and 4, respectively. Finally, for each item i ∈ {1, 2, 3}, we introduce two
further packing types. For i = 1, types H and I characterize packings where the first accepted
item is 1, the second accepted item j is not 2 (type H) and not 3 (type I), respectively.
Therefore, we get pH = p1 − p12 and pI = p1 − p13. Packing types J-K and L-M describe
analogous packings for i = 2 and i = 3, respectively. Table 1 shows all packing types A-M
and their probabilities expressed by pi and pij .

The packing types defined above allow to describe all packings where a specific item
i ∈ {1, 2, 3, 4} is packed as the first item, without covering the same packing multiple times.
For example, packing types A and D (with j = 2) both include the packing (1, 2); however,
we can consider the disjoint packing types A and H.

4.2 Acceptance Probabilities of Algorithm 2
In the following we compute the probabilities pi and pij from Table 1 as functions of c and d.
Throughout the following proofs, we denote the position of an item i in a given permutation
with pos(i) ∈ [n]. Further, let a be the maximum profit item from sampling.

We think of the random permutation as being sequentially constructed. The fact given
below follows from the hypergeometric distribution and becomes helpful in the proofs of
Lemmas 4.2 and 4.3.

I Fact 4.1. Suppose there are N balls in an urn from which M are blue and N −M red.
The probability of drawing K blue balls without replacement in a sequence of length K is
h(N,M,K) :=

(
M
K

)
/
(
N
K

)
.

In the first lemma, we provide the probabilities pi for i ∈ [4] assuming n→∞.

I Lemma 4.2. Assuming n→∞, it holds that

pi =

c ln d

c i = 1
c
(
ln d

c − d+ c
)

i = 2
c
(
ln d

c − 2(d− c) + 1
2 (d2 − c2)

)
i = 3

c
(
ln d

c − 3(d− c) + 3
2 (d2 − c2)− 1

3 (d3 − c3)
)

i = 4 .

Proof. We construct the random permutation by drawing the positions for items sequentially,
starting with the items i and a. For any position k ≥ cn + 1, the permutation fulfills
pos(i) = k and pos(a) ≤ cn with probability 1

n
cn
n−1 = c

n−1 . Next, we draw the remaining
k − 2 items for the slots up to position k. Since i is packed as the first item, all previous
items (except for a) must have rank greater than a (see Figure 1). As these items are drawn
from the remaining n− 2 items (of which n− a have rank greater than a), the probability
for this step is h(n− 2, n− a, k− 2) according to Fact 4.1. Using the law of total probability
for k ∈ {cn+ 1, . . . , dn} and a ∈ {i+ 1, . . . , n} we obtain

pi = c

n− 1

dn∑
k=cn+1

n∑
a=i+1

h(n− 2, n− a, k − 2) = c

n− 1

dn∑
k=cn+1

1(
n−2
k−2
) n∑
a=i+1

(
n− a
k − 2

)
.

S. Albers, A. Khan, and L. Ladewig 22:9

We can simplify this term further by observing

n∑
a=i+1

(
n− a
k − 2

)
=
n−i−1∑
a=0

(
a

k − 2

)
=
(
n− i
k − 1

)
.

Therefore, pi = c
n−1

∑dn
k=cn+1

(
n−i
k−1
)
/
(
n−2
k−2
)
.

Asymptotics. It holds that

lim
n→∞

(
n−i
k−1
)(

n−2
k−2
) = lim

n→∞

(n− i)!
(n− 2)!

(n− k)!
(n− i− k + 1)!

1
k − 1 = (n− k)i−1

ni−2
1
k
.

Hence, lim
n→∞

pi = (c/ni−1)
∑dn
k=cn+1 f(k) where f(k) := (n−k)i−1/k. Since f is monotonically

decreasing in k, we have
∫ dn+1
cn+1 f(k) dk ≤

∑dn
k=cn+1 f(k) ≤

∫ dn
cn

f(k) dk . Let F be a function
such that

∫ b
a
f(k) dk = F (b) − F (a) for 0 < a < b. As it holds that lim

n→∞
F (dn + 1) −

F (dn) = lim
n→∞

F (cn + 1) − F (cn) = 0, the above bounds are asymptotically tight, i.e.,

lim
n→∞

∑dn
k=cn+1 f(k) = F (dn)− F (cn). Below we give functions F for i ∈ [4].

i f(k) F (k) F (dn)− F (cn)

1 1
k

ln k ln d
c

2 n−k
k

n ln k − k n ln d
c
− dn + cn

3 (n−k)2

k
n2 ln k − 2nk + k2

2 n2 ln d
c
− 2n(dn− cn) + d2n2−c2n2

2

4 (n−k)3

k
n3 ln k − 3n2k + 3

2 nk2 − k3

3 n3 ln d
c
− 3n3(d− c) + 3

2 n3(d2 − c2)− 1
3 n3(d3 − c3)

The claims follow by multiplying the respective terms with c/ni−1. J

Next, we analyze the probabilities pij for i 6= j and i, j ∈ [3]. The next lemma deals with
the cases where j = i+ 1.

I Lemma 4.3. For n→∞ it holds that

p12 = c

(
d− c ln d

c
− c
)
,

p23 = c

(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

The proof of Lemma 4.3 is technically similar to the proof of Lemma 4.2 and thus deferred
to Appendix A. It remains to analyze the probabilities p13, p31, p21, and p32. Interestingly,
they all reduce to the two probabilities considered in Lemma 4.3. The following two lemmas
should be intuitively clear from the description of Algorithm 2. For completeness, we give
formal proofs in Appendix A.

I Lemma 4.4. For any two items i and j it holds that pij = pji.

I Lemma 4.5. For any three items i < k < j it holds that pij = pkj.

Therefore, we have p13 = p23 by Lemma 4.5 and p31 = p13, p21 = p12, and p32 = p23 by
Lemma 4.4.

APPROX/RANDOM 2019

22:10 Online Knapsack and GAP in the Random Order Model

4.3 Analysis
Let T be the set of items in the optimal packing of IL. This set may contain a single item,
may be a two-item subset of {1, 2, 3}, or may be a two-item subset containing an item j ≥ 4.
In the following we analyze the performance of Algorithm 2 for each case.

Single-item case. Let case 1 be the case where T = {1}. In case 1, E [AL] ≥ pD OPTL.

Two-item cases. In cases 2–4, we consider packings of the form T = {i, j} with 1 ≤ i <

j ≤ 3. We define cases 2, 3, and 4 as T = {1, 2}, T = {1, 3}, and T = {2, 3}, respectively.
We want to consider all algorithmic packings whose profit can be bounded in terms of
OPTL = vi + vj . For this purpose, for each case 2-4 we build three groups of feasible packing
types, according to whether the profit of a packing is OPTL, at least vi, or in the interval
(vi, vj]. We ensure that no packing is counted multiple times by (a) choosing appropriate
packing types and (b) grouping these packing types in a disjoint way, according to their
profit. Let αw be the probability that the algorithm returns the optimal packing in case
w ∈ {2, 3, 4}. It holds that α2 = pA, α3 = pB, and α4 = pC. In addition, let βw be the
probability that an item k ≤ i is packed as the first item in case w ∈ {2, 3, 4}. We have
β2 = pH, β3 = pI, and β4 = pD + pK. Finally, let γw be the probability that an item k with
i < k ≤ j is packed as the first item in case w ∈ {2, 3, 4}. It holds that γ2 = pJ, γ3 = pE + pL,
and γ4 = pM.

Finally, we define case 5 as T = {i, j} with i ≥ 1, j ≥ 4, and i < j. In this case, note
that packings of type D contain an item of value at least vi, and packings of type E, F, and
G contain an item of value at least vj . Hence, we can slightly abuse the notation and set
α5 = 0, β5 = pD, and γ5 = pE + pF + pG, such that it holds that

E [AL] ≥ αw(vi + vj) + βwvi + γwvj in case w ∈ {2, 3, 4, 5} .

To bound this term against OPTL = vi + vj , consider the following two cases: If βw ≥ γw,
we obtain from Chebyshev’s sum inequality βwvi + γwvj ≥ 1

2 (βw + γw) (vi + vj). If βw < γw,
we trivially have βwvi + γwvj > βw(vi + vj). Thus, we obtain

E [AL] ≥
(
αw + min

{
βw + γw

2 , βw

})
OPTL in case w ∈ {2, 3, 4, 5} . (2)

The competitive ratio of AL is the minimum over all cases 1-5. We obtain the following
two lemmas. If the algorithm is allowed to use the entire input sequence (d = 1), AL has a
competitive ratio of 1/3.08.

I Lemma 4.6. With c = 0.23053 and d = 1, algorithm AL satisfies E [AL] ≥ 1
3.08 OPTL.

Note that 2-KS includes the secretary problem (case 1); thus, no algorithm for 2-KS can
have a better competitive ratio than 1/e < 1/2.71. In the final algorithm we set d < 1 to
benefit from AS . The next lemma has already been used to prove Theorem 1.1 in Section 3.

I Lemma 4.7. With c = 0.42291 and d = 0.64570, algorithm AL satisfies E [AL] ≥
1

6.65 OPTL.

Proof of Lemmas 4.6 and 4.7. For the overall competitive ratio, we build the minimum
over all cases. According to inequality (2), the competitive ratios for the two-item cases
depend on βw ≥ γw or βw < γw. However, for the parameter pairs (c, d) = (0.23053, 1) from

S. Albers, A. Khan, and L. Ladewig 22:11

Table 2 Competitive ratios of Algorithm 2 for the parameters from Lemmas 4.6 and 4.7 in
different cases. Bold values indicate the minimum over all cases and thus the competitive ratio.

two-item cases

c d case 1 case 2 case 3 case 4 case 5

Lemma 4.6 0.23053 1 0.33827 0.34898 0.32705 0.32705 0.32471
Lemma 4.7 0.42291 0.64570 0.17897 0.15039 0.16033 0.16033 0.16231

Lemma 4.6 and (c, d) = (0.42291, 0.64570) from Lemma 4.7 we have βw ≥ γw for any case
w ∈ {2, 3, 4, 5}. This follows from a technical lemma provided in Appendix A (Lemma A.1).
Hence, inequality (2) simplifies to E [AL] ≥

(
αw + βw+γw

2

)
OPTL in case w ∈ {2, 3, 4, 5}.

Using the definitions of pX from Table 1 and the symmetry property of Lemma 4.4 we get

E [AL] /OPTL ≥

p1 case 1
p12 + (p1 + p2)/2 case 2
p13 + (p1 + p2 + p3)/2 case 3
p23 + (p1 + p2 + p3)/2 case 4
(p1 + p2 + p3 + p4)/2 case 5 .

(3)

Note that the algorithm attains the same competitive ratio in case 3 and 4, since p13 = p23.
Table 2 shows the competitive ratios for all five cases obtained from Equation (3). For the
overall competitive ratio, we have

E [AL] ≥ min
{
p1, p12 + p1 + p2

2 , p23 + p1 + p2 + p3

2 ,
p1 + p2 + p3 + p4

2

}
OPTL .

Hence, the competitive ratios are 0.32471 ≥ 1/3.08 and 0.15039 ≥ 1/6.65 for Lemma 4.6 and
Lemma 4.7, respectively. J

Recall that in Algorithm 1, we can only benefit from AS if AL has not filled the knapsack
completely. Thus, the following property is crucial in the final analysis.

I Lemma 4.8. With probability of at least c/d, no item is packed by AL.

Proof. Fix any set of dn items arriving in rounds 1, . . . , dn. The most profitable item v∗

from this set arrives in the sampling phase with probability c/d. If this event occurs, no item
in rounds cn+ 1, . . . , dn beats v∗ and AL will not select any item. J

We finally note that our approach from Section 4.1 provides a general framework to obtain
algorithms for 2-KS using secretary algorithms with two choices. Although stronger algorithms
than Algorithm 2 exist for the 2-secretary objective [3,12] and similar objectives [40,42], it is
not clear if they would improve the performance of the overall algorithm. More sophisticated
algorithms may use weaker thresholds to accept the first item, which decreases the probability
considered in Lemma 4.8. This, in turn, reduces the expected profit gained from AS , as
described above.

5 Small Items

For small items, we use solutions for the fractional problem variant and obtain an integral
packing via randomized rounding. This approach has been applied successfully to packing
LPs [27]; however, for the knapsack problem it is not required to solve LP relaxations in each

APPROX/RANDOM 2019

22:12 Online Knapsack and GAP in the Random Order Model

round (as in [27]). Instead, here, we build upon solutions of the classical greedy algorithm,
which is well-known to be optimal for the fractional knapsack problem. Particularly, this
algorithm is both efficient in running time and easy to analyze.

We next formalize the greedy solution for any set T of items. Let the density of an item
be the ratio of its profit to its size. Consider any list L containing the items from T ordered
by non-increasing density. We define the rank ρ(i) of item i as its position in L and σ(l) as
the item at position l in L. Thus, σ(l) = ρ−1(l) denotes the l-th densest item. Let k be such
that

∑k−1
i=1 sσ(i) < W ≤

∑k
i=1 sσ(i). The fraction of item i in the greedy solution α is now

defined as

αi =

1 if ρ(i) < k(
W −

∑k−1
i=1 sσ(i)

)
/si if ρ(i) = k

0 else ,

i.e., we pack the k − 1 densest items integrally and fill the remaining space by the maximum
feasible fraction of the k-th densest item. Let OPT(T) and OPT∗(T) denote the profits
of optimal integral and fractional packings of T , respectively. It is not hard to see that α
satisfies

∑
i∈T αivi = OPT∗(T) ≥ OPT(T) and

∑
i∈T αisi = W .

5.1 Algorithm
The algorithm AS for small items, which is formally defined in Algorithm 3, works as follows.
After a sampling phase of dn rounds, in each round ` ≥ dn+ 1 the algorithm computes a
greedy solution x(`) for IS(`). Here, IS(`) denotes the subset of IS revealed up to round `.
The algorithm packs the current online item i with probability x(`)

i . However, generally, this
can only be done if the remaining capacity of the knapsack is at least δW ≥ si.

Note that in case of an integral coefficient x(`)
i ∈ {0, 1}, the packing step is completely

deterministic. Moreover, in any greedy solution x(`), there is at most one item i with
fractional coefficient x(`)

i ∈ (0, 1). Therefore, in expectation, there is only a small number of
rounds where the algorithm actually requests randomness.

I Observation 5.1. Let X denote the number of rounds where Algorithm 3 packs an item
with probability xi ∈ (0, 1). It holds that E [X] ≤ ln(1/d) ≤ 0.44.

Proof. Consider any round ` and let x(`) be the greedy knapsack solution computed by
Algorithm 3. By definition of x(`), at most one of the ` visible items has a fractional coefficient
x

(`)
i ∈ (0, 1). The probability that this item i arrives in round ` is 1/` in a random permutation.

Let X` be an indicator variable for the event that Algorithm 3 packs an item at random in
round `. By the above argument, we have Pr [X` = 1] ≤ 1/`. Since Algorithm 3 selects items
starting in round dn+1, we obtain E [X] =

∑n
`=dn+1 E [X`] ≤

∑n
`=dn+1

1
` ≤ ln 1

d ≤ 0.44 . J

Note that Algorithm 2 and the sequential approach (Algorithm 1) are deterministic algorithms.
Therefore, our overall algorithm requests randomness in expectation in less than one round.

5.2 Analysis
Let α be the greedy (offline) solution for IS and set ∆ = 1

1−δ . Recall that in round dn+ 1,
the knapsack might already have been filled by AL with large items in previous rounds. For
now, we assume an empty knapsack after round dn and define this event as ξ. In the final
analysis, we will use the fact that Pr [ξ] can be bounded from below, which is according
to Lemma 4.8.

S. Albers, A. Khan, and L. Ladewig 22:13

Algorithm 3 Algorithm AS for small items.

Input :Random permutation of n (1/3)-small items, a knapsack of capacity W ,
parameter d ∈ (0, 1).

Output :A feasible (integral) packing of the knapsack.
Let ` be the current round and i be the online item of round `.
if ` ≤ dn then

Sampling phase – discard all items.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be the greedy solution for IS(`).
if the remaining capacity is at least δW then

Pack i with probability x(`)
i .

I Lemma 5.2. Let i ∈ IS and Ei(`) be the event that the item i is packed by AS in round `.
For ` ≥ dn+ 1, it holds that Pr [Ei(`) | ξ] ≥ 1

nαi(1−∆ ln `
dn).

Proof. In a random permutation, item i arrives in round ` with probability 1/n. In round
` ≥ dn+ 1, the algorithm decides to pack i with probability x(`)

i . Note that the rank of item
i in IS(`) is less or equal to its rank in IS . According to the greedy solution’s definition,
this implies x(`)

i ≥ αi. Finally, the δ-small item i can be packed successfully if the current
resource consumption X is at most (1− δ)W . In the following, we investigate the expectation
of X to give a probability bound using Markov’s inequality at the end of this proof.

Let Xk be the resource consumption in round k < `. By assumption, the knapsack is
empty after round dn, we have X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in

round k. The set Q can be seen as uniformly drawn from all k-item subsets and any item
j ∈ Q is the current online item of round k with probability 1/k. The algorithm packs any
item j with probability x(k)

j , thus

E [Xk] =
∑
j∈Q

Pr [j occurs in round k] sjx(k)
j = 1

k

∑
j∈Q

sjx
(k)
j ≤ W

k
,

where the last inequality holds because x(k) is a feasible solution for a knapsack of sizeW . By
the linearity of expectation and the previous equation, the expected resource consumption up
to round ` is E [X] =

∑`−1
k=dn+1 E [Xk] ≤

∑`−1
k=dn+1

W
k ≤W ln `

dn . Using Markov’s inequality,
we obtain finally

Pr [X < (1− δ)W] = 1−Pr [X ≥ (1− δ)W] ≥ 1− E [X]
(1− δ)W ≥ 1−∆ ln `

dn
. J

Using Lemma 5.2 we easily obtain the total probability that a specific item will be packed.

I Lemma 5.3. Let i ∈ IS and Ei be the event that the item i is packed by AS. It holds that
Pr [Ei | ξ] ≥ αi

(
(1− d)(1 + ∆)−∆ ln 1

d

)
.

Proof. Summing the probabilities from Lemma 5.2 over all rounds ` ≥ dn+ 1 gives

Pr [Ei | ξ] =
n∑

`=dn+1
Pr [Ei(`) | ξ] ≥

n∑
`=dn+1

1
n
αi

(
1−∆ ln `

dn

)

= 1
n
αi

(
n− dn−∆

n∑
`=dn+1

ln `

dn

)
= αi

(
1− d− ∆

n

n∑
`=dn+1

ln `

dn

)
.

APPROX/RANDOM 2019

22:14 Online Knapsack and GAP in the Random Order Model

Since ln `
dn is monotonically increasing in `, we can bound the last sum by the corresponding

integral:
n∑

`=dn+1
ln `

dn
≤
∫ n+1

`=dn+1
ln `

dn
d` = (n+1) ln n+ 1

dn
−(n+1)−(dn+1) ln dn+ 1

dn
+(dn+1) .

This implies limn→∞
∆
n

∑n
`=dn+1 ln `

dn ≤ ∆
(
ln 1

d − 1 + d
)
. Rearranging terms gives the

claim. J

The following lemma bounds the expected profit of the packing of AS , assuming ξ.

I Lemma 5.4. It holds that E [AS | ξ] ≥
(
(1− d)(1 + ∆)−∆ ln 1

d

)
OPTS.

Proof. Let β = (1− d)(1 + ∆)−∆ ln 1
d . By Lemma 5.3, the probability that an item i gets

packed is Pr [Ei | ξ] ≥ αiβ. Therefore,

E [AS | ξ] =
∑
i∈IS

Pr [Ei | ξ] vi ≥
∑
i∈IS

αiβvi ≥ βOPTS . J

The conditioning on ξ can be resolved using Lemma 4.8. Thus we obtain the following lemma,
which is the second pillar in the proof of Theorem 1.1 and concludes this section.

I Lemma 5.5. With c = 0.42291 and d = 0.64570, we have E [AS] ≥ 1
6.65 OPTS.

Proof. By Lemma 4.8, the probability for an empty knapsack after round dn is Pr [ξ] ≥ c
d .

Thus, from Lemma 5.4 with ∆ = 1
1−1/3 = 3

2 , we obtain

E [AS] = Pr [ξ] E [AS | ξ] = c

d

(
5
2(1− d)− 3

2 ln 1
d

)
OPTS ≥

1
6.65 OPTS . J

6 Extension to GAP

In this section we show that the sequential approach introduced in Section 3 can be easily
adapted to GAP, yielding a (1/6.99)-competitive randomized algorithm. We first define the
problem formally.

GAP. We are given a set of items I = [n] and a set of resources R = [m] of capacities
Wr ∈ Q>0 for r ∈ R. If item i ∈ I is assigned to resource r ∈ R, this raises profit (value)
vi,r ∈ Q≥0, but consumes si,r ∈ Q>0 of the resource’s capacity. The goal is to assign each
item to at most one resource such that the total profit is maximized and no resource exceeds
its capacity. We call the tuple (vi,r, si,r) an option of item i and w.l.o.g. assume that options
for all resources exist. This can be ensured by introducing dummy options with vi,r = 0. In
the online version of the problem, in each round an item is revealed together with its set
of options. The online algorithm must decide immediately and irrevocably, if the item is
assigned. If so, it has to specify the resource according to one of its options.

Again, we construct restricted instances IL and IS according to the following definition,
which generalizes Definition 2.1. Let δ ∈ (0, 1).

I Definition 6.1. We call an option (vi,r, si,r) δ-large if si,r > δWr and δ-small if si,r ≤ δWr.
Whenever δ is clear from the context, we say an option is large or small for short. Based on
a given instance I for GAP, we define two modified instances IL and IS which are obtained
from I as follows.

IL: Replace each small option (vi,r, si,r) by the large option (0,Wr).
IS: Replace each large option (vi,r, si,r) by the small option (0, δ).

S. Albers, A. Khan, and L. Ladewig 22:15

Thus, IL only contains large options and IS only contains small options. However, by
construction no algorithm will assign an item according to a zero-profit option. We define
OPT, OPTL, and OPTS accordingly. Note that the inequality OPT ≤ OPTL + OPTS holds
also for GAP.

The sequential framework of Algorithm 1 can be adapted in a straightforward manner
by replacing terms like packing with assignment to resource r. Here, we set the threshold
parameter to δ = 1/2. In the following subsections, we specify algorithms AL and AS for
(1/2)-large and (1/2)-small options, respectively.

6.1 Large Options
If each item consumes more than one half of a resource, no two items can be assigned to this
resource. Thus, we obtain the following matching problem.

Edge-weighted bipartite matching problem. Given a bipartite graph G = (L ∪R,E) and
a weighting function w : E → Q≥0, the goal is to find a bipartite matching M ⊆ E such
that w(M) :=

∑
e∈M w(e) is maximal. In the online version, the (offline) nodes from R and

the number n = |L| are known in advance, whereas the nodes from L are revealed online
together with their incident edges. In the case of GAP, L is the set of items, R is the set
of resources, and the weight of an edge e = {l, r} is w(e) = vl,r, i.e., the profit gained from
assigning item l to resource r.

Under random arrival order, Kesselheim et al. [26] developed an optimal (1/e)-competitive
algorithm for this problem. Adapting this algorithm to the sequential approach with
parameters c and d leads to the following algorithm AL: After sampling the first cn nodes,
in each round ` the algorithm computes a maximum edge-weighted matching M (`) for the
graph revealed up to this round. Let l ∈ L be the online vertex of round `. If l is matched in
M (`) to some node r ∈ R, we call e(`) = {l, r} the tentative edge of round `. Now, if r is still
unmatched and ` ≤ dn, the tentative edge is added to the matching.

A formal description of this algorithm is given in Appendix B.1. The proof of the
approximation guarantee relies mainly on the following two lemmas; for completeness, we
give the proofs from [26] in Appendix B.1. The first lemma shows that the expected weight
of any tentative edge can be bounded from below.

I Lemma 6.2 ([26]). In any round `, the tentative edge (if it exists) has expected weight
E
[
w(e(`))

]
≥ 1

n OPTL.

However, we only gain the weight of the tentative edge e(`) = {l, r} if it can be added
to the matching, i.e., if r has not been matched previously. The next lemma bounds the
probability for this event from below.

I Lemma 6.3 ([26]). Let ξ(r, `) be the event that the offline vertex r ∈ R is unmatched after
round `. It holds that Pr [ξ(r, `)] ≥ cn

` .

Using Lemmas 6.2 and 6.3, we can bound the competitive ratio of AL in the following
lemma. Note that we obtain the optimal algorithm from [26] for c = 1/e and d = 1.

I Lemma 6.4. For n→∞, it holds that E [AL] ≥ c ln d
c OPTL.

Proof. Let A` be the gain of the matching weight in round `. As the tentative edge
e(`) = {l, r} can only be added if r has not been matched in a previous round, we have
E [A`] = E

[
w(e(`))

]
Pr [ξ(r, `)] for the event ξ(r, `) from Lemma 6.3. Therefore, from

APPROX/RANDOM 2019

22:16 Online Knapsack and GAP in the Random Order Model

Lemmas 6.2 and 6.3 we have E [A`] ≥ 1
n OPTL cn

` = c
` OPTL. Summing over all rounds from

cn+ 1 to dn yields

E [AL] =
dn∑

`=cn+1
E [A`] ≥

(
c

dn∑
`=cn+1

1
`

)
OPTL ≥ c ln dn+ 1

cn+ 1 OPTL .

Here, in the last step we used the fact
∑dn
`=cn+1

1
` ≥

∫ dn+1
cn+1

1
` d` = ln dn+1

cn+1 . The claim follows
by limn→∞ ln dn+1

cn+1 = ln d
c . J

6.2 Small Options
For δ-small options we use the LP-based algorithm AS from [27, Sec. 3.3]. On a high level,
this algorithm works as follows: After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal fractional solution for the instance revealed so far and uses
the coefficients as probabilities for an integral assignment. In Appendix B.2 we prove the
following lemma, where ∆ = 1

1−δ .

I Lemma 6.5. For n→∞, it holds that E [AS] ≥ c
d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS.

Note that we obtain basically the same competitive ratio as in Lemma 5.4. Since Lemma 6.5
already addresses possible resource consumption due to assignments made by AL in earlier
rounds, the factor c/d arises (see Lemma 6.3).

6.3 Proof of Theorem 1.2
Finally, we prove our main theorem for GAP.

Proof of Theorem 1.2. We set the threshold between large and small options to δ = 1/2
and consider Algorithm 1 with the algorithms AL and AS as defined previously. By
Lemma 6.4, the expected gain of profit in rounds cn + 1, . . . , dn is E [AL] ≥ c ln d

c OPTL.
Further, we gain E [AS] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS with ∆ = 2 in the following

rounds, according to Lemma 6.5. For parameters c = 0.5261 and d = 0.6906, we obtain
c ln d

c ≥
c
d

(
3(1− d)− 2 ln 1

d

)
and thus, using OPTL + OPTS ≥ OPT,

E [AL] + E [AS] ≥ c

d

(
3(1− d)− 2 ln 1

d

)
(OPTL + OPTS) ≥ 1

6.99 OPT . J

References
1 Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. A Dynamic Near-Optimal Algorithm for Online

Linear Programming. Operations Research, 62(4):876–890, 2014.
2 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The Online Stochastic Gen-

eralized Assignment Problem. In Proc. 16th International Workshop on Approximation,
Randomization, and Combinatorial Optimization and 17th International Workshop on Ran-
domization and Computation (APPROX/RANDOM), pages 11–25, 2013.

3 Susanne Albers and Leon Ladewig. New results for the k-secretary problem. Unpublished
manuscript, 2018.

4 Moshe Babaioff, Jason Hartline, and Robert Kleinberg. Selling banner ads: Online algorithms
with buyback. In Fourth Workshop on Ad Auctions, 2008.

5 Moshe Babaioff, Jason D. Hartline, and Robert D. Kleinberg. Selling ad campaigns: online
algorithms with cancellations. In Proc. 10th ACM Conference on Electronic Commerce (EC),
pages 61–70, 2009.

S. Albers, A. Khan, and L. Ladewig 22:17

6 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. A Knapsack Secretary
Problem with Applications. In Proc. 10th International Workshop on Approximation, Random-
ization, and Combinatorial Optimization and 11th International Workshop on Randomization
and Computation (APPROX/RANDOM), pages 16–28, 2007.

7 Moshe Babaioff, Nicole Immorlica, David Kempe, and Robert Kleinberg. Matroid Secretary
Problems. Journal of the ACM, 65(6):35:1–35:26, 2018.

8 Bahman Bahmani, Aranyak Mehta, and Rajeev Motwani. A 1.43-Competitive Online Graph
Edge Coloring Algorithm in the Random Order Arrival Model. In Proc. 21st Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 31–39, 2010.

9 Christian Borgs, Jennifer T. Chayes, Nicole Immorlica, Kamal Jain, Omid Etesami, and
Mohammad Mahdian. Dynamics of bid optimization in online advertisement auctions. In
Proc. 16th International Conference on World Wide Web (WWW), pages 531–540, 2007.

10 Niv Buchbinder and Joseph Naor. Online Primal-Dual Algorithms for Covering and Packing.
Math. Oper. Res., 34(2):270–286, 2009.

11 Dirk G. Cattrysse and Luk N. Van Wassenhove. A survey of algorithms for the generalized
assignment problem. European Journal of Operational Research, 60(3):260–272, 1992.

12 T.-H. Hubert Chan, Fei Chen, and Shaofeng H.-C. Jiang. Revealing Optimal Thresholds
for Generalized Secretary Problem via Continuous LP: Impacts on Online K -Item Auction
and Bipartite K -Matching with Random Arrival Order. In Proc. 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1169–1188, 2015.

13 Chandra Chekuri and Sanjeev Khanna. A Polynomial Time Approximation Scheme for the
Multiple Knapsack Problem. SIAM Journal on Computing (SICOMP), 35(3):713–728, 2005.

14 Henrik I. Christensen, Arindam Khan, Sebastian Pokutta, and Prasad Tetali. Approximation
and online algorithms for multidimensional bin packing: A survey. Computer Science Review,
24:63–79, 2017.

15 Eugene B Dynkin. The optimum choice of the instant for stopping a Markov process. Soviet
Mathematics, 4:627–629, 1963.

16 Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S. Mirrokni, and Clifford Stein.
Online Stochastic Packing Applied to Display Ad Allocation. In Proc. 18th Annual European
Symposium on Algorithms (ESA), pages 182–194, 2010.

17 Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. Online
Ad Assignment with Free Disposal. In Proc. 5th International Workshop Internet and Network
Economics (WINE), pages 374–385, 2009.

18 P.R. Freeman. The secretary problem and its extensions: A review. International Statistical
Review/Revue Internationale de Statistique, pages 189–206, 1983.

19 Waldo Gálvez, Fabrizio Grandoni, Sandy Heydrich, Salvatore Ingala, Arindam Khan, and
Andreas Wiese. Approximating Geometric Knapsack via L-Packings. In Proc. 58th IEEE
Annual Symposium on Foundations of Computer Science (FOCS), pages 260–271, 2017.

20 Oliver Göbel, Thomas Kesselheim, and Andreas Tönnis. Online Appointment Scheduling in
the Random Order Model. In Proc. 23rd Annual European Symposium on Algorithms (ESA),
pages 680–692, 2015.

21 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Online Unweighted Knapsack Problem with
Removal Cost. Algorithmica, 70(1):76–91, 2014.

22 Xin Han, Yasushi Kawase, and Kazuhisa Makino. Randomized algorithms for online knapsack
problems. Theoretical Computer Science, 562:395–405, 2015.

23 Kazuo Iwama and Shiro Taketomi. Removable Online Knapsack Problems. In Proc. 29th
International Colloquium on Automata, Languages and Programming (ICALP), pages 293–305,
2002.

24 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
25 Claire Kenyon. Best-Fit Bin-Packing with Random Order. In Proc. 7th Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

APPROX/RANDOM 2019

22:18 Online Knapsack and GAP in the Random Order Model

26 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An Optimal Online
Algorithm for Weighted Bipartite Matching and Extensions to Combinatorial Auctions. In
Proc. 21st Annual European Symposium on Algorithms (ESA), pages 589–600, 2013.

27 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. Primal Beats Dual
on Online Packing LPs in the Random-Order Model. SIAM J. Comput., 47(5):1939–1964,
2018.

28 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-Line Algorithms for Weighted
Bipartite Matching and Stable Marriages. Theoretical Computer Science, 127(2):255–267,
1994.

29 Robert D. Kleinberg. A multiple-choice secretary algorithm with applications to online auctions.
In Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 630–631,
2005.

30 Nitish Korula, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online Submodular Welfare
Maximization: Greedy Beats 1/2 in Random Order. SIAM J. Comput., 47(3):1056–1086, 2018.

31 Denis V Lindley. Dynamic programming and decision theory. Applied Statistics, pages 39–51,
1961.

32 George S. Lueker. Average-Case Analysis of Off-Line and On-Line Knapsack Problems. J.
Algorithms, 29(2):277–305, 1998.

33 Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing LPs. In Proc. 43rd Annual ACM Symposium on
Theory of Computing (STOC), pages 597–606, 2011.

34 Alberto Marchetti-Spaccamela and Carlo Vercellis. Stochastic on-line knapsack problems.
Mathematical Programming, 68:73–104, 1995.

35 Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Inc., New York, NY, USA, 1990.

36 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. AdWords and
generalized online matching. Journal of the ACM, 54(5):22, 2007.

37 Adam Meyerson. Online Facility Location. In Proc. 42nd IEEE Annual Symposium on
Foundations of Computer Science (FOCS), pages 426–431, 2001.

38 Vahab S. Mirrokni, Shayan Oveis Gharan, and Morteza Zadimoghaddam. Simultaneous
approximations for adversarial and stochastic online budgeted allocation. In Proc. 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1690–1701, 2012.

39 Marco Molinaro and R. Ravi. The Geometry of Online Packing Linear Programs. Math. Oper.
Res., 39(1):46–59, 2014.

40 ML Nikolaev. On a generalization of the best choice problem. Theory of Probability & Its
Applications, 22(1):187–190, 1977.

41 Temel Öncan. A Survey of the Generalized Assignment Problem and Its Applications.
Information Systems and Operational Research INFOR, 45(3):123–141, 2007.

42 Mitsushi Tamaki. Recognizing both the maximum and the second maximum of a sequence.
Journal of Applied Probability, 16(4):803–812, 1979.

43 Rahul Vaze. Online knapsack problem and budgeted truthful bipartite matching. In Proc.
IEEE Conference on Computer Communications (INFOCOM) 2017, pages 1–9, 2017.

44 Rahul Vaze. Online Knapsack Problem Under Expected Capacity Constraint. In Proc. IEEE
Conference on Computer Communications (INFOCOM) 2018, pages 2159–2167, 2018.

45 Yunhong Zhou, Deeparnab Chakrabarty, and Rajan M. Lukose. Budget Constrained Bidding
in Keyword Auctions and Online Knapsack Problems. In Proc. 4th International Workshop
Internet and Network Economics (WINE), pages 566–576, 2008.

S. Albers, A. Khan, and L. Ladewig 22:19

cn+1 l

a

dn

i

k

j

Sampling

Item

Pos.

Figure 2 Input sequence considered in Lemma 4.3. The gray dashed slots represent items of rank
greater than a.

A Missing Proofs for the Knapsack Result

Proof of Lemma 4.3. Let i ∈ [n− 1] and j = i+ 1. The proof follows the same structure as
the proof of Lemma 4.2. Again, we construct the permutation by drawing the positions for
items i, j, a first and afterwards all remaining items with position up to pos(j). Fix positions
k = pos(i) and l = pos(j). Again, pos(a) ≤ cn must hold by definition of a. The probability
that a random permutation satisfies these three position constraints is β := 1

n
1

n−1
cn
n−2 . All

remaining items up to position l must have rank greater than a (see Figure 2). Thus we
need to draw l − 3 items from a set of n− 3 remaining items, from which n− a have rank
greater than a. This happens with probability h(n− 3, n− a, l − 3). Using the law of total
probability for cn+ 1 ≤ k < l ≤ dn and a ∈ {j + 1, . . . , n}, we obtain

pij = β

dn−1∑
k=cn+1

dn∑
l=k+1

n∑
a=j+1

h(n− 3, n− a, l − 3)

= β

dn−1∑
k=cn+1

dn∑
l=k+1

1(
n−3
l−3
) n∑
a=j+1

(
n− a
l − 3

)
= β

dn−1∑
k=cn+1

dn∑
l=k+1

(
n−j
l−2
)(

n−3
l−3
) ,

where in the last step we used the equality
∑n
a=j+1

(
n−a
l−3
)

=
∑n−j−1
a=0

(
a
l−3
)

=
(
n−j
l−2
)
.

We next consider the asymptotic setting n → ∞. For this purpose, we define Q(l) =(
n−j
l−2
)
/
(
n−3
l−3
)
. For (i, j) = (1, 2) we have Q(l) =

(
n−2
l−2
)
/
(
n−3
l−3
)

= n−2
l−2 . The sum

∑dn
l=k+1

n−2
l−2

converges to n ln dn
k for n → ∞. Further, lim

n→∞

∑dn−1
k=cn+1 n ln dn

k = n (F (dn)− F (cn)) for
F (x) := x ln dn

x + x. Hence,

lim
n→∞

p12 = lim
n→∞

βn

(
dn ln dn

dn
+ dn− cn ln dn

cn
− cn

)
= c

(
d− c ln d

c
− c
)
.

In the case (i, j) = (2, 3) it holds that Q(l) =
(
n−3
l−2
)
/
(
n−3
l−3
)

= n−l
l−2 and we have

lim
n→∞

∑dn
l=k+1

n−l
l−2 = n ln dn

k − dn + k. Let F (x) := nx
(
ln dn

x − d+ 1
)

+ x2

2 . Again, by
bounding the sum by the corresponding integral we obtain

lim
n→∞

dn∑
k=cn+1

n ln dn
k
− dn+ k

= F (dn)− F (cn)

= dn2
(

ln dn
dn
− d+ 1

)
+ d2n2

2 − cn2
(

ln dn
cn
− d+ 1

)
− c2n2

2

= n2
(
−d2 + d+ d2

2 − c ln d
c

+ cd− c− c2

2

)
= n2

(
d− c ln d

c
− c− d2

2 + cd− c2

2

)
.

Multiplying the last term with lim
n→∞

β = c/n2 gives the claim for p23. J

APPROX/RANDOM 2019

22:20 Online Knapsack and GAP in the Random Order Model

Proof of Lemma 4.4. Suppose i is accepted first and j is accepted as the second item in
the input sequence π. Consider the sequence π′ obtained from π by swapping i with j. Since
j and i are the first two elements beating the best sampling item in π′, Algorithm 2 will
select j and i on input π′. Hence, the number of permutations must be the same for both
events, which implies the claim. J

Proof of Lemma 4.5. The argument is similar to the proof of Lemma 4.4. Consider any
input sequence π where i is selected first and j second. We know that the best item a from
sampling has profit va < vj < vi and thus any item k with i < k < j must occur after j.
Let π′ be the sequence obtained from π by swapping i with k. Now, i is behind k and j,
thus Algorithm 2 will accept k and j. Again, this proves pij = pkj since the numbers of
corresponding permutations are equal. J

The next lemma is used in the proof of Lemma 4.7 to show that for the given lists of
parameters, we have βw ≥ γw.

I Lemma A.1. Let f(x) = 2 ln x− 6x+ 2x2 − x3

3 . For parameters c,d with f(c) ≥ f(d) it
holds that βw ≥ γw where 2 ≤ w ≤ 5.

Proof. The function f is chosen in a way that f(c) ≥ f(d) is equivalent to β5 ≥ γ5. This
can be verified easily, using β5 = pD = p1, γ5 = pE + pF + pG = p2 + p3 + p4, and Lemma 4.2.
Therefore, the claim for w = 5 holds by assumption. For 2 ≤ w ≤ 4, the claims follow
immediately from f(c) ≥ f(d) and the symmetry property of Lemma 4.4:

β2 = pH = p1 − p12 = p1 − p21 ≥ p2 − p21 = pJ = γ2

β3 = pI = p1 − p13 = p1 − p31 ≥ p2 + p3 − p31 = pE + pL = γ3

β4 = pD + pK = p1 + p2 − p23 ≥ p1 − p32 ≥ p3 − p32 = pM = γ4 . J

B Missing Proofs for the GAP Result

B.1 Large Options

Algorithm 4 Algorithm for edge-weighted bipartite matching from [26] (extended by our
parameters c, d).

Input :Offline vertex set R, number of online vertices n = |L|,
parameters c, d ∈ (0, 1) with c < d.

Output :Matching M .
Set M = ∅.
Let ` be the current round and l be the online vertex of round `.
if 1 ≤ ` ≤ cn then

Sampling phase – do not add any edge.
if cn+ 1 ≤ ` ≤ dn then

Let M (`) be a maximum-weight matching for the graph in round `.
Let e(`) ∈M (`) be the edge incident to l.
if M ∪ e(`) is a matching then

Add e(`) to M .
if ` > dn then

Do not add any edge.

S. Albers, A. Khan, and L. Ladewig 22:21

Proof of Lemma 6.2. Let e(`) be the tentative edge of round ` and let Q ⊆ L with |Q| = ` be
the set of visible vertices from this round. Since each vertex from Q has the same probability
of 1/` to arrive in round `, we have

E
[
w(e(`))

]
=

∑
e={l,r}∈M(`)

Pr [l arrives in round `]w(e) = 1
`
w(M (`)) . (4)

Let M∗ = M (n) be a maximum weight (offline) matching and M∗Q = {e = {l, r} ∈M∗ | l ∈
Q}. We have w(M (`)) ≥ w(M∗Q), since M (`) is an optimal and M∗Q a feasible matching for
the graph revealed in round `. As Q can be seen as uniformly drawn among all `-element
subsets, each vertex l has probability `/n to be in Q. It follows

E
[
w(M (`))

]
≥ E

[
w(M∗Q)

]
=

∑
e={l,r}∈M∗

Pr [l ∈ Q]w(e) = `

n
w(M∗) . (5)

Combining (4) and (5) concludes the proof. J

Proof of Lemma 6.3. In each round k, the vertex r can only be matched if it is incident to
the tentative edge e(k) ∈M (k) of this round, i.e., e(k) = {l, r} where l ∈ L is the online vertex
of round k. As l can be seen as uniformly drawn among all k visible nodes (particularly,
independent from the order of the previous k − 1 items), l has probability 1/k to arrive in
round k. Consequently, r is not matched in round k with probability 1− 1/k. This argument
applies to all rounds cn+ 1, . . . , `. Therefore,

Pr [ξ(r, `)] ≥
∏̀

k=cn+1
1− 1

k
=

∏̀
k=cn+1

k − 1
k

= cn

`
. J

B.2 Small Options
For δ-small options we use the LP-based algorithm from [27, Sec. 3.3] and analyze it within
our algorithmic framework. In order to make this paper self-contained, we give a linear
program for GAP (LP 1), the algorithm, and its corresponding proofs.

maximize
∑
i∈IS
r∈R

vi,rxi,r

subject to
∑
i∈IS

si,rxi,r ≤Wr ∀r ∈ R

∑
r∈R

xi,r ≤ 1 ∀i ∈ IS

xi,r ∈ {0, 1} ∀(i, r) ∈ IS ×R (LP 1)

Let AS be Algorithm 5. After a sampling phase of dn rounds, in each round ` the
algorithm computes an optimal solution x(`) of the relaxation of LP 1 for IS(`). Here, IS(`)
denotes the instance of small options revealed so far. Now, the decision to which resource
the current online item i is assigned, if at all, is made by randomized rounding using x(`):
Resource r ∈ R is chosen with probability x(`)

i,r and the item stays unassigned with probability
1−

∑
r∈R x

(`)
i,r . Note that it is only feasible to assign the item to the chosen resource if its

remaining capacity is at least δWr.

APPROX/RANDOM 2019

22:22 Online Knapsack and GAP in the Random Order Model

Algorithm 5 GAP algorithm for small options from [27, Sec. 3.3].

Input :Random order sequence of small options,
parameter d ∈ (0, 1).

Output : Integral GAP assignment.
Let ` be the current round and i be the online item of round `.
if 1 ≤ ` ≤ dn then

Sampling phase – do not assign any item.
if dn+ 1 ≤ ` ≤ n then

Let x(`) be an optimal fractional solution of LP 1 for IS(`).
Choose a resource r (possibly none), where r has probability x(`)

i,r .
if the remaining capacity of r is at least δWr then

Assign i to r.

To analyze Algorithm 5, we consider the gain of profit in round ` ≥ dn+ 1, denoted by
A`. For this purpose, let i(`) be the item of that round and r(`) the resource chosen by the
algorithm. Now, it holds that E [A`] = E

[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)], where

in the first term, the expectation is over the item arriving in round ` and the resource chosen
by the algorithm. The latter term only depends on the resource consumption of r(`) in earlier
rounds. In the next two lemmas we give lower bounds for both terms.

I Lemma B.1 ([27, Sec. 3.3]). For any round ` ≥ dn+1, it holds that E
[
vi(`),r(`)

]
≥ 1

n OPTS.

Proof. The proof is similar to Lemma 6.2. As we consider a fixed round `, we write i and r
instead of i(`) and r(`) for ease of presentation. Further, we write v(α) :=

∑
j∈IS

∑
s∈R αj,svj,s

for the profit of a fractional assignment α.
Fix any set Q of ` visible items in round `. Let x(n) be an optimal (offline) solution to

the relaxation of LP 1. Further, let x(n)|Q denote the restriction of x(n) to the items in
Q, i.e., (x(n)|Q)j,s = x

(n)
j,s if j ∈ Q and (x(n)|Q)j,s = 0 if j /∈ Q. Since x(n)|Q is a feasible

and x(`) is an optimal solution for Q, we have E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
. As in a random

permutation each item has the same probability of `/n to be in Q, it holds that

E
[
v(x(`))

]
≥ E

[
v(x(n) |Q)

]
=
∑
j∈IS

∑
s∈R

Pr [j ∈ Q]x(n)
j,s vj,s = `

n
v(x(n)) = `

n
OPTS . (6)

Similarly, each item from Q is the current online item i with probability 1/`. The resource s,
to which an item j gets assigned, is determined by randomized rounding using x(`)

j,s. Therefore
we get

E [vi,r] =
∑
j∈Q

∑
s∈R

Pr [j = i, s = r] vj,s =
∑
j∈Q

∑
s∈R

1
`
x

(`)
j,svj,s = 1

`
v(x(`)) . (7)

Combining (6) and (7) gives the claim. J

Hence, by the previous lemma the expected gain of profit in each round is a (1/n)-fraction
of OPTS , supposing the remaining resource capacity is large enough. The probability for
the latter event is considered in the following lemma. Here, a crucial property is that we
deal with δ-small options. Let ∆ = 1

1−δ .

I Lemma B.2. For any round ` ≥ dn + 1, we have Pr
[
i(`) can be assigned to r(`)] ≥

c
d

(
1−∆ ln `

dn

)
.

S. Albers, A. Khan, and L. Ladewig 22:23

Proof. Let ξ be the event that no item is assigned to r after round dn. Note that ξ does
not necessarily hold, since AL might already have assigned items to r in earlier rounds. By
Lemma 6.3, Pr [ξ] ≥ c

d . Therefore, it remains to show Pr
[
i(`) can be assigned to r(`) | ξ

]
≥

1−∆ ln `
dn .

For this purpose, assume that ξ holds and let X denote the resource consumption of r
after round `− 1. Further, let Xk be the resource consumption of r in round k < `. We have
X =

∑`−1
k=dn+1Xk. Let Q be the set of k visible items in round k. The set Q can be seen

as uniformly drawn from all k-item subsets and any item j ∈ Q is the current online item
of round k with probability 1/k. Now, the algorithm assigns any item j to resource r with
probability x(k)

j,r , thus

E [Xk] =
∑
j∈Q

Pr [j occurs in round k] sj,rx(k)
j,r = 1

k

∑
j∈Q

sj,rx
(k)
j,r ≤

Wr

k
, (8)

where the last inequality follows from the capacity constraint for resource r in LP 1. By
linearity of expectation and inequality (8), the expected resource consumption up to round `
is thus

E [X] =
`−1∑

k=dn+1
E [Xk] ≤

`−1∑
k=dn+1

Wr

k
≤Wr ln `

dn
. (9)

Now, since i(`) is δ-small, X < (1 − δ)Wr implies X + si(`),r(`) ≤ Wr in which case the
assignment is feasible. Using (9) and Markov’s inequality, we obtain

Pr [X < (1− δ)Wr] = 1−Pr [X ≥ (1− δ)Wr] ≥ 1− E [X]
(1− δ)Wr

≥ 1−∆ ln `

dn
. J

Now, the bound on the competitive ratio of AS from Lemma 6.5 follows.

Proof of Lemma 6.5. We add the expected profits in single rounds using Lemmas B.1
and B.2.

E [AS] =
n∑

`=dn+1
E [A`] =

n∑
`=dn+1

E
[
vi(`),r(`)

]
Pr
[
i(`) can be assigned to r(`)

]
≥

n∑
`=dn+1

1
n

OPTS
c

d

(
1−∆ ln `

dn

)
= c

dn

(
n∑

`=dn+1
1−∆ ln `

dn

)
OPTS

= c

dn

(
n− dn−∆

n∑
`=dn+1

ln `

dn

)
OPTS .

Since `
dn is monotone increasing in `, we have

∑n
`=dn+1 ln `

dn ≤
∫ n+1
dn+1 ln `

dn d` and this integral
evaluates to (n+1) ln n+1

dn+1−(n+1)−(dn+1) ln dn+1
dn +(dn+1). For n→∞, this approaches

n ln 1
d − n+ dn. Hence, we have lim

n→∞
E [AS] ≥ c

d

(
(1 + ∆)(1− d)−∆ ln 1

d

)
OPTS . J

APPROX/RANDOM 2019

Fast and Deterministic Approximations for k-Cut
Kent Quanrud
Department of Computer Science, University of Illinois at Urbana-Champaign, USA
http://www.kentquanrud.com
quanrud2@illinois.edu

Abstract
In an undirected graph, a k-cut is a set of edges whose removal breaks the graph into at least k
connected components. The minimum weight k-cut can be computed in nO(k) time, but when
k is treated as part of the input, computing the minimum weight k-cut is NP-Hard [18]. For
poly(m,n, k)-time algorithms, the best possible approximation factor is essentially 2 under the
small set expansion hypothesis [37]. Saran and Vazirani [46] showed that a

(
2− 2

k

)
-approximately

minimum weight k-cut can be computed via O(k) minimum cuts, which implies a Õ(km) randomized
running time via the nearly linear time randomized min-cut algorithm of Karger [27]. Nagamochi
and Kamidoi [42] showed that a

(
2− 2

k

)
-approximately minimum weight k-cut can be computed

deterministically in O
(
mn+ n2 log n

)
time. These results prompt two basic questions. The first

concerns the role of randomization. Is there a deterministic algorithm for 2-approximate k-cuts
matching the randomized running time of Õ(km)? The second question qualitatively compares
minimum cut to 2-approximate minimum k-cut. Can 2-approximate k-cuts be computed as fast as
the minimum cut – in Õ(m) randomized time?

We give a deterministic approximation algorithm that computes (2 + ε)-minimum k-cuts in
O
(
m log3 n/ε2) time, via a (1 + ε)-approximation for an LP relaxation of k-cut.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Network optimization; Theory of computation → Linear programming; Theory of
computation → Streaming, sublinear and near linear time algorithms; Theory of computation →
Routing and network design problems

Keywords and phrases k-cut, multiplicative weight updates

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.23

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.07143.

Funding Work on this paper is partly supported by NSF grant CCF-1526799.

Acknowledgements The author thanks Chandra Chekuri for introducing him to the problem and
providing helpful feedback, including pointers to the literature for rounding the LP. The author
thanks Chao Xu for pointers to references. The author thanks the anonymous reviewers for their
helpful comments.

1 Introduction

Let G = (V,E) be an undirected graph with m edges and n vertices, with positive edge
capacities given by c : E → R>0. A cut is a set of edges C ⊆ E whose removal leaves G
disconnected. For k ∈ N, a k-cut is a set of edges C ⊆ E whose removal leaves G disconnected
into at least k components. The capacity of a cut C is the sum capacity c(C) =

∑
e∈C ce of

edges in the cut. The minimum k-cut problem is to find a k-cut C of minimum capacity c(C).
The special case k = 2, which is to find the minimum cut, is particularly well-studied. The

minimum cut can be computed in polynomial time by fixing a source s and computing the
minimum s-t cut (via s-t max-flow) for all choices of t. Nagamochi and Ibaraki [39, 40, 41]
and Hao and Orlin [22] improved the running time to Õ(mn) which, at the time, was as fast

© Kent Quanrud;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.kentquanrud.com
mailto:quanrud2@illinois.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.23
https://arxiv.org/abs/1807.07143
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Fast and Deterministic Approximations for k-Cut

as computing a single maximum flow. A randomized edge contraction algorithm by Karger
and Stein [28] finds the minimum cut with high probability in Õ

(
n2) time; this algorithm

is now a staple of graduate level courses on randomized algorithms. Karger [27] gave a
randomized algorithm based on the Tutte–Nash-Williams theorem [50, 44] that computes the
minimum weight cut with high probability in Õ(m) time. The best deterministic running
time for minimum cut is currently O

(
mn+ n2 log n

)
, by Stoer and Wagner [48]. Computing

the minimum capacity cut deterministically in nearly linear time is a major open problem.
Recently, Kawarabayashi and Thorup [30] made substantial progress on this problem with a
deterministic nearly linear time algorithm for computing the minimum cardinality cut in an
unweighted simple graph. This algorithm was simplified by Lo, Schmidt, and Thorup [35],
and a faster algorithm was obtained by Henzinger, Rao, and Wang [24]. For capacitated
graphs, a (2 + ε)-approximate minimum cut can be computed in O

((
m log n+ n log2 n

)
/ε
)

deterministic time by an algorithm of Matula [38] (as observed by Karger [26]).

The general case k > 2 is more peculiar. Goldschmidt and Hochbaum [18] showed that
for any fixed k, finding the minimum k-cut is polynomial time solvable, but when k is part of
the input, the problem is NP-Hard. The aforementioned randomized contraction algorithm of
Karger and Stein [28] computes a minimum k-cut with high probability in Õ

(
n2(k−1)) time.

Thorup [49] gave a deterministic algorithm that also leverages the Tutte–Nash-Williams
theorem [50, 44] and runs in Õ

(
mn2k−2) time; this approach was recently refined to improve

the running time to Õ
(
mn2k−3) deterministic time [10] and O

(
n(1.981+o(1))k) randomized

time [21] (where the o(1) goes to zero as k increases). There are slightly faster algorithms for
particularly small values of k [34] and when the graph is unweighted [20]. As far as algorithms
with running times that are polynomial in k are concerned, Saran and Vazirani [46] showed that
a
(
2− 2

k

)
-approximate k-cut can be obtained by O(k) minimum cut computations. By the

aforementioned min-cut algorithms, this approach can be implemented in Õ(km) randomized
time, Õ(kmn) time deterministically, and Õ(km) time deterministically in unweighted graphs.
Alternatively, Saran and Vazirani [46] showed that the same approximation factor can be
obtained by computing a Gomory-Hu tree and taking the k lightest cuts. The Gomory-Hu tree
can be computed in n maximum flow computations, and the maximum flow can be computed
deterministically in Õ

(
mmin

{
m1/2, n2/3} log U

)
time for integer capacities between 1 and U

[17]. This gives a Õ
(
mnmin

{
m1/2, n2/3} log U

)
deterministic time (2− 2/k)-approximation

for minimum k-cut, which is faster than Õ(kmn) for sufficiently large k. (There are faster
randomized algorithms for maximum flow [33, 36], but these still lead to slower randomized
running times than Õ(km) for k-cut.) An LP based 2-approximation was derived by Naor
and Rabani [43], and a combinatorial 2-approximation was given by Ravi and Sinha [45]
(see also [1]), but the running times are worse than those implied by Saran and Vazirani
[46]. The best deterministic algorithm in the poly(m,n, k) regime is due to Nagamochi and
Kamidoi [42], who compute

(
2− 2

k

)
-approximately minimum k-cuts in O

(
mn+ n2 log n

)
deterministic time. The constant factor of 2 is believed to be essentially the best possible.
Manurangsi [37] showed that under the small set expansion hypothesis, for any fixed ε > 0,
one cannot compute a (2− ε)-approximation for the minimum k-cut in poly(k,m, n) time
unless P = NP .

The state of affairs for computing 2-approximate minimum k-cuts in poly(m,n, k)-time
parallels the status of minimum cut. The fastest randomized algorithm is an order of
magnitude faster than the fastest deterministic algorithm, while in the unweighted case the
running times are essentially equal. A basic question is whether there exists a deterministic
algorithm that computes a 2-approximation in Õ(km) time, matching the randomized
running time. As Saran and Vazirani’s algorithm reduces k-cut to k minimum cuts, the gap

K. Quanrud 23:3

between the deterministic and randomized running times for k-cut is not only similar to,
but a reflection of, the gap between the deterministic and randomized running times for
minimum cut. An Õ(m) deterministic algorithm for minimum cut would close the gap for
2-approximate k-cut as well.

A second question asks if computing a 2-approximate k-cut is qualitatively harder than
computing the minimum cut. There is currently a large gap between the fastest algorithm
for minimum cut and the fastest algorithm for 2-approximate minimum k-cut. Can one
compute 2-approximate minimum k-cuts as fast as minimum cuts – in Õ(m) randomized
time? Removing the linear dependence on k would show that computing 2-approximate
k-cuts is as easy as computing a minimum cut.

1.1 The main result

We make progress on both of these questions with a deterministic and nearly linear time
(2 + ε)-approximation scheme for minimum k-cuts. To state the result formally, we first
introduce an LP relaxation for the minimum k-cut due to Naor and Rabani [43].

min
∑
e

cexe over x : E → R

s.t.
∑
e∈T

xe ≥ k − 1 for all spanning trees T,

0 ≤ xe ≤ 1 for all edges e.

(L)

The feasible integral solutions of the LP (L) are precisely the k-cuts in G. The main
contribution of this work is a nearly linear time approximation scheme for (L).

I Theorem 1. In O
(
m log3(n)/ε2

)
deterministic time, one can compute an (1 + ε)-multiplica-

tive approximation to (L).

The integrality gap of (L) is known to be (2− 2/n) [43, 4]. Upon inspection, the rounding
algorithm can be implemented in O(m log n) time, giving the following nearly linear time
(2 + ε)-approximation scheme for k-cut.

I Theorem 2. For sufficiently small ε > 0, there is a deterministic algorithm that computes
a k-cut with total capacity at most (2 + ε) times the optimum value to (L) in O

(
m log3(n)/ε2

)
time.

The algorithm should be compared with the aforementioned algorithms of Saran and
Vazirani [46], which computes a

(
2− 2

k

)
-approximation to the minimum k-cut in Õ(km)

randomized time (with high probability), and of Nagamochi and Kamidoi [42], which computes
a
(
2− 2

k

)
-approximate minimum k-cut in O

(
mn+ n2 log n

)
deterministic time. At the cost

of a (1 + ε)-multiplicative factor, we obtain a deterministic algorithm with nearly linear
running time for all values of k. The approximation factor converges to 2, and we cannot
expect to beat 2 under the small set expansion hypothesis [37]. Thus, Theorem 2 gives a
tight, deterministic, and nearly linear time approximation scheme for k-cut. Theorem 2
leaves a little bit of room for improvement: the hope is for a deterministic algorithm that
computes (2− o(1))-approximate minimum k-cuts in Õ(m) time. Based on Theorem 2, we
conjecture that such an algorithm exists.

APPROX/RANDOM 2019

23:4 Fast and Deterministic Approximations for k-Cut

1.2 Overview of the algorithm

We give a brief sketch of the algorithm, for the sake of informing subsequent discussion on
related work in Section 1.3. A more complete description of the algorithm begins in earnest
in Section 2.

The algorithm consists of a nearly linear time approximation scheme for the LP (L), and
a nearly linear time rounding scheme. The approximation scheme for solving the LP extends
techniques from recent work [6], applied to the dual of an indirect reformulation of (L). The
rounding scheme is a simplification of the rounding scheme by Chekuri et al. [4] for the more
general Steiner k-cut problem, which builds on the primal-dual framework of Goemans and
Williamson [15].

The first step is to obtain a (1 + ε)-multiplicative approximation to the LP (L). Here a
(1 + ε)-multiplicative approximation to the LP (L) is a feasible vector x of cost at most a
(1 + ε)-multiplicative factor greater than the optimum value.

The LP (L) can be solved exactly by the ellipsoid method, with the separation oracle
supplied by a minimum spanning tree (abbr. MST) computation, but the running time is
a larger polynomial than desired. From the perspective of fast approximations, the LP
(L) is difficult to handle because it is an exponentially large mixed packing and covering
problem, with exponentially many covering constraints alongside upper bounds on each edge.
Fast approximation algorithms for mixed packing and covering problems (e.g. [53, 8]) give
bicriteria approximations that meet either the covering constraints or the packing constraints
but not both. Even without consideration of the objective function, it is not known how to
find feasible points to general mixed packing and covering problems in time faster than via
exact LP solvers. Alternatively, one may consider the dual of (L), as follows. Let T denote
the family of spanning trees in G.

max (k − 1)
∑
T

yT −
∑
e∈E

ze over y : T → R and z : E → R

s.t.
∑
T3e

yT ≤ ce + ze for all edges e,

yT ≥ 0 for all spanning trees T ∈ T ,
ze ≥ 0 for all edges e.

This program is not a positive linear program, and the edge potentials z ∈ RE≥0 are difficult
to handle by techniques such as [53, 6, 8]. It was not known, prior to this work, how to
obtain any approximation to (L) (better than its integrality gap) with running time faster
than the ellipsoid algorithm.

Critically, we consider the following larger LP instead of (L). Let F denote the family of
all forests in G.

min
∑
e

cexe over x : E → R

s.t.
∑
e∈F

xe ≥ |F |+ k − n for all forests F ∈ F ,

xe ≥ 0 for all edges e ∈ E.

(C)

(C) is also an LP relaxation for k-cut. In fact, (C) is equivalent to (L), as one can verify
directly (see Lemma 5 below). (C) is obtained from (L) by adding all the knapsack covering
constraints [2], which makes the packing constraints (xe ≤ 1 for each edge e) redundant.

K. Quanrud 23:5

Although the LP (C) adds exponentially many constraints to the original LP (L), (C)
has the advantage of being a pure covering problem. Its dual is a pure packing problem,
as follows.

maximize
∑
F∈F

(|F |+ k − n)yF over y : F → R

s.t.
∑
F3e

yF ≤ ce for all edges e ∈ E,

yF ≥ 0 for all forests F ∈ F .

(P)

The above LP packs forests into the capacitated graph G where the value of a forest F
depends on the number of edges it contains, |F |. The objective value |F |+ k − n of a forest
F is a lower bound on the number of edges F contributes to any k-cut. Clearly, we need
only consider forests with at least n− k + 1 edges.

To approximate the desired LP (C), we apply the MWU framework to the above LP
(P), which generates (1± ε)-multiplicative approximations to both (P) and its dual, (C).
Implementing the MWU framework in nearly linear time is not immediate, despite precedent
for similar problems. In the special case where k = 2, the above LP (P) fractionally packs
spanning trees into G. A nearly linear time approximation scheme for k = 2 is given in
previous work [6]. The general case with k > 2 is more difficult for two reasons. First, the
family of forests that we pack is larger than the family of spanning trees. Second, (P) is a
weighted packing problem, where the coefficients in the objective depends on the number of
edges in the forest. When k = 2, we need only consider spanning trees with n−1 edges, so all
the coefficients are 1 and the packing problem is unweighted. The heterogeneous coefficients
in the objective create technical complications in the MWU framework, as the Lagrangian
relaxation generated by the framework is no longer solved by a MST. In Section 2, we give
an overview of the MWU framework and discuss the algorithmic complications in greater
depth. In Section 3 and Section 4, we show how to extend the techniques of [6] with some
new observations to overcome these challenges and approximate the LP (P) in nearly the
same time as one can approximately pack spanning trees. Ultimately, we obtain the following
deterministic algorithm for approximating the LP (P).

I Theorem 3. In O
(
m log3(n)/ε2

)
deterministic time, one can compute (1± ε)-multiplicative

approximations to (P), (C) and (L).

The second step, after computing a fractional solution x to (L) with Theorem 3, is to
round x to a discrete k-cut. The rounding step is essentially that of Chekuri et al. [4] for
Steiner k-cuts. Their case is more general than ours; we simplify their rounding scheme, and
pay greater attention to the running time. The rounding scheme is based on the elegant
primal-dual MST algorithm of Goemans and Williamson [15].

I Theorem 4. Given a feasible solution x to (C), one can compute a k-cut C with cost at
most 2(1− 1/n) times the cost of x in O(m log n) time.

Due to space constraints, Theorem 4 is deferred to Appendix A. Applying Theorem 4 to the
output of Theorem 3 gives Theorem 2.

Computing the minimum k-cut via the LP (L) has additional benefits. First, computing
a minimum k-cut with an approximation factor relative to the LP may be much stronger
than the same approximation factor relative to the original problem, as LP’s perform well in
practice. Second, the solution to the LP gives a certificate of approximation ratio, as we can
compare the rounded k-cut to the LP solution to infer an upper bound on the approximation
ratio that may be smaller than 2.

APPROX/RANDOM 2019

23:6 Fast and Deterministic Approximations for k-Cut

Lastly, we note that some data structures can be simplified at the cost of randomization
by using a randomized MWU framework instead [8]. These modifications are discussed at
the end of Section 4.

1.3 Further related results and discussion

Fixed parameter tractability

The k-cut results reviewed above were focused on either exact polynomial-time algorithms
for constant k or (2− o(1))-approximations in poly(k,m, n) time, with a particular emphasis
on the fastest algorithms in the poly(k,m, n) time regime. There is also a body of literature
concerning fixed parameter tractable algorithms for k-cut. Downey, Estivill-Castro, Fellows,
Prieto-Rodriguez, and Rosamond [12] showed that k-cut is W [1]-hard in k even for simple
unweighted graphs; W [1]-hardness implies that it is unlikely to obtain a running time of the
form f(k) poly(m,n) for any function f . On the other hand, Kawarabayashi and Thorup
[29] showed that k-cut is fixed parameter tractable in the number of edges in the cut. More
precisely, Kawarabayashi and Thorup [29] gave a deterministic algorithm that, for a given
cardinality s ∈ N, time, either finds a k-cut with at most s edges or reports that no such
cut exists in O

(
ss
O(s)

n2
)
time. The running time was improved to O

(
2O(s2 log s)n4 log n

)
deterministic time and Õ

(
2O(s) log kn2) randomized time by Chitnis, Cygan, Hajiaghayi,

Pilipczuk, and Pilipczuk [11].
Besides exact parameterized algorithms for k-cut, there is interest in approximation

ratios between 1 and 2. Xiao, Cai, and Yao [51] showed that by adjusting the reduction of
Saran and Vazirani [46] to use (exact) minimum `-cuts – instead of minimum (2-)cuts, for
any choice of ` ∈ {2, . . . , k − 1} – one can obtain

(
2− `

k +O
(
`2

k2

))
-approximate minimum

k-cuts in nO(`) time. For sufficiently small ε > 0, by setting ` ≈ εk, this gives a nO(εk) time
algorithm for (2− ε)-approximate minimum cuts.

The hardness results of Downey, Estivill-Castro, Fellows, Prieto-Rodriguez, and Rosamond
[12] and Manurangsi [37] do not rule out approximation algorithms with approximation ratio
better than 2 and running times of the form f(k) poly(m,n) (for any function f). Recently,
Gupta, Lee, and Li [19] gave a FPT algorithm that, for a particular constant c ∈ (0, 1),
computes a (2− c)-approximate k-cut in 2O(k6)Õ

(
n4) time. This improves the running time

of [51] for ε = c and k greater than some constant. Further improvements by Gupta et al.
[20] achieved a deterministic 1.81 approximation in 2O(k2)nO(1) time, and a randomized
(1 + ε)-approximation (for any ε > 0) in (k/ε)O(k)

nk+O(1) time.

Knapsack covering constraints

We were surprised to discover that adding the knapsack covering constraints allowed for
faster approximation algorithms. Knapsack covering constraints, proposed by Carr et al.
[2] in the context of capacitated network design problems, generate a stronger LP whose
solutions can be rounded to obtain better approximation factors [2, 31, 32, 3]. However, the
larger LP can be much more complicated and is usually more difficult to solve. Recent work
obtained a faster approximation scheme for approximating covering integer programs via
knapsack covering constraints, but the dependency on ε is much worse, and the algorithm
has a “weakly nearly linear” running time that suffers from a logarithmic dependency on the
multiplicative range of input coefficients [9].

K. Quanrud 23:7

Fast approximations via LP’s

Linear programs have long been used to obtain more accurate approximations to NP-
Hard problems. Recently, we have explored the use of fast LP solvers to obtain faster
approximations, including situations where polynomial time algorithms are known. In recent
work [7], we used a linear time approximation to an LP relaxation for Metric TSP (obtained
in [5]) to effectively sparsify the input and accelerate Christofides’ algorithm. While nearly
linear time approximations for complicated LP’s are surprising in and of itself, perhaps the
application to obtain faster approximations for combinatorial problems is more compelling.
We think this result is an important data point for this approach.

2 Reviewing the MWU framework and identifying bottlenecks

In this section, let ε > 0 be fixed. It suffices to assume that ε ≥ 1/ poly(n), since below this
point one can use the ellipsoid algorithm instead and still meet the desired running time.
For ease of exposition, we seek only a (1 +O(ε))-multiplicative approximation; a (1 + ε)-
multiplicative approximation with the same asymptotic running time follows by decreasing ε
by a constant factor.

2.1 k-cuts as a (pure) covering problem
As discussed above, the first (and most decisive) step towards a fast, fractional approximation
to k-cut is identifying the right LP. The standard LP (L) is difficult because it is a mixed
packing and covering problem, and fast approximation algorithms for mixed packing and
covering problems lead to bicriteria approximations that we do not know how to round. On
the other hand, extending (L) with all the knapsack cover constraints makes the packing
constraints xe ≤ 1 redundant (as shown below), leaving the pure covering problem, (C). The
LPs (L) and (C) have essentially equivalent solutions in the following sense.

I Lemma 5. Any feasible solution x ∈ RE≥0 to (L) is a feasible solution to (C). For any
feasible solution x to (C), the truncation x′ ∈ Rn≥0 defined by x′e = max{xe, 1} is a feasible
solution to both (L) and (C).

Proof. Let x be a feasible solution to (L). We claim that x is feasible in (C). Indeed, let F
be a forest, and extend F to a tree T . Then∑

e∈F
xe =

∑
e∈T

xe −
∑

e∈T\F

xe ≥ k − 1− |T \ F | = k − 1− (n− 1− |F |) = |F |+ k − n,

as desired.
Conversely, let x ∈ RE≥0 be a feasible solution to (C), and let x′ be the coordinatewise

maximum of x and 1. Since x′ ≤ 1, and the covering constraints in (L) are a subset of the
covering constraints in (C), if x′ is feasible in (C) then it is also feasible in (L). To show
that x′ is feasible in (C), let F be a forest. Let F ′ = {e ∈ F : xe > 1} be the edges in F

truncated by x′ and let F ′′ = F \ F ′ be the remaining edges. Since (a) x′e = 1 for all e ∈ F ′
and x′e = xe for all e ∈ F ′′, and (b) x covers F ′′ in (C), we have∑

e∈F
x′e =

∑
e∈F ′

x′e +
∑
e∈F ′′

x′e
(a)= |F ′|+

∑
e∈F ′′

xe
(b)
≥ |F ′|+ |F ′′|+ k − n = |F |+ k − n,

as desired. J

APPROX/RANDOM 2019

23:8 Fast and Deterministic Approximations for k-Cut

While having many more constraints than (L), (C) is a pure covering problem, for which
finding a feasible point (faster than an exact LP solver) is at least plausible. The dual of (C)
is the LP (P), which packs forests in the graph and weights each forest by the number of
edges minus (n− k). The coefficient of a forest in the objective of (P) can be interpreted as
the number of edges that forest must contribute to any k-cut.

2.2 A brief sketch of width-independent MWU
We apply a width-independent version of the MWU framework to the packing LP (P),
developed by Garg and Könemann [14] for multicommodity flow problems and generalized
by Young [52]. We restrict ourselves to a sketch of the framework and refer to previous work
for further details.

The width-independent MWU framework is a monotonic and iterative algorithm that
starts with an empty solution y = 0 to the LP (P) and increases y along forests that solve
certain Lagrangian relaxations to (P). Each Lagrangian relaxation is designed to steer y
away from packing forests that have edges that are already tightly packed. For each edge e,
the framework maintains a weight we that (approximately) exponentiates the load of edge e
w/r/t the current forest packing y, as follows:

ln(cewe) ≈
log n
ε

∑
F3e yF

ce
. (1)

The weight can be interpreted as follows. For an edge e, the value
∑

F3e
yF

ce
is the amount

of capacity used by the current packing y relative to the capacity of the edge e. We call∑
F3e

yF

ce
the (relative) load on edge e and is ≤ 1 if y is a feasible packing. The weight we

is exponential in the load on the edge, where the exponential is amplified by the leading
coefficient log n

ε . Initially, the empty solution y = ∅ induces zero load on any edge and we
have we = 1

ce
for each edge e.

Each iteration, the framework solves the following Lagrangian relaxation of (P):

maximize
∑
F∈F

(|F |+ k − n)zF over z : F → R≥0 s.t.
∑
e∈E

we
∑
F3e

zF ≤
∑
e∈E

wece. (R)

Given a (1 +O(ε))-approximate solution z to the above, the framework adds δz to y for a
carefully chosen value δ > 0 (discussed in greater detail below). The next iteration encounters
a different relaxation, where the edge weights we are increased to account for the loads
increased by adding δz. Note that the edge weights we are monotonically increasing over the
course of the algorithm.

At the end of the algorithm, standard analysis shows that the fractional forest packing
y has objective value (1−O(ε)) OPT, and that (1−O(ε))y satisfies all of the packing
constraints. The error can be made one-sided by scaling y up or down. Moreover, it can
be shown that at some point in the algorithm, an easily computable rescaling of w is a
(1 +O(ε))-relative approximation for the desired LP (C) (see for example [13, 14, 5]). Thus,
although we may appear more interested in solving the dual LP (P), we are approximating
the desired LP (C) as well.

The choice of δ differentiates this “width-independent” MWU from other MWU-type
algorithms in the literature. The step size δ is chosen small enough that no weight increases
by more than an exp(ε)-multiplicative factor, and large enough that some weight increases
by (about) an exp(ε)-multiplicative factor. The analysis of the MWU framework reveals
that 〈w, c〉 ≤ nO(1/ε) at all times. In particular, each weight can increase by an exp(ε)-
multiplicative factor at most O

(ln n
ε2

)
times, so there are at most O

(
n ln n
ε2

)
iterations total.

K. Quanrud 23:9

2.3 Two bottlenecks
The MWU framework alternates between (a) solving the relaxation (R) induced by edge
weights we and (b) updating the weights we for each edge in response to the solution to the
relaxation. As the framework requires O

(
m log n
ε2

)
iterations, both parts must be implemented

in polylogarithmic amortized time to reach the desired running time. A sublinear per-iteration
running time seems unlikely by the following simple observations.

Consider first the complexity of simply expressing a solution. Any solution z to (R) is
indexed by forests in G. A forest can have Ω(n) edges and requires Ω(n log n) bits to specify.
Writing down the index of just one forest in each of O

(
m log n
ε2

)
iterations takes O

(
mn log2 n

ε2

)
time. The difficulty of even writing down a solution to (P) is not just a feature of the MWU
framework. In general, there exists an optimal solution to (P) that is supported by at most
m forests, as m is the rank of the implicit packing matrix. Writing down m forests also
requires Ω(mn log n) bits. Thus, either on a per-iteration basis in the MWU framework or
w/r/t to the entire LP, the complexity of the output suggests a quadratic lower bound on
the running time.

A second type of bottleneck arises from updating the weights. The weights we for each
edge reflect the load induced by the packing y, per the formula (1). After computing a
solution z to the relaxation (R), and updating y ← y+ δz, we need to update the weights we
to reflect the increased load from δz. In the worst case, δz packs into every edge, requiring
us to update O(m) individual weights. At the very least, δz should pack into the edges of
at least one forest, and thus effect Ω(n) edges. Updating n edge weights in each iteration
requires O

(
mn log n

ε2

)
time.

Even in hindsight, implementing either part – solving the relaxation or updating the
weights – in isolation in sublinear time remains difficult. Our algorithm carefully plays both
parts off each other, as co-routines, and amortizes against invariants revealed by the analysis
of the MWU framework. The seemingly necessary dependence between parts is an important
theme of this work and an ongoing theme from previous work [6, 5, 9].

3 Greedily finding forests to pack in O
(
log2 n

)
amortized time

The MWU framework reduces (P) to a sequence of problems of the form (R). An important
aspect of the Lagrangian approach is that satisfying the single packing constraint in (R) is
much simpler than simultaneously satisfying all of the packing constraints in (P). With only
1 packing constraint, it suffices to (approximately) identify the best bang-for-buck forest
F and taking as much as can fit in the packing constraint. The “bang-for-buck” ratio of a
forest F is the ratio

|F |+ k − n∑
e∈F we

,

where |F | is the number of edges in F . Given a forest F (approximately) maximizing the
above ratio, we set z = γeF for γ as large as possible as fits in the single packing constraint.
Note that, when k = 2, the optimal forest is the minimum weight spanning tree w/r/t w.

We first consider the simpler problem of maximizing the above ratio over forests F with
exactly |F | = ` edges, for some ` > n− k. Recall that the MST can be computed greedily by
repeatedly adding the minimum weight edge that does not induce a cycle. Optimality of the
greedy algorithm follows from the fact that spanning trees are the bases of a matroid called
the graphic matroid. The forests of exactly ` edges are also the bases of a matroid; namely,

APPROX/RANDOM 2019

23:10 Fast and Deterministic Approximations for k-Cut

the restriction of the graphic matroid to forests of at most ` edges. In particular, the same
greedy procedure computes the minimum weight forest of ` edges. Repeating the greedy
algorithm for each choice of `, one can solve (R) in O(km log n) time for each of O

(
m log n
ε2

)
iterations.

Stepping back, we want to compute the minimum weight forest with ` edges for a range
of k − 1 values of `, and we can run the greedy algorithm for each choice of `. We observe
that the greedy algorithm is oblivious to the parameter `, except for deciding when to stop.
We can run the greedy algorithm once to build the MST, and then simulate the greedy
algorithm for any value of ` by taking the first ` edges added to the MST.

I Lemma 6. Let T be the minimum weight spanning tree w/r/t w. For any ` ∈ [n − 1],
the minimum weight forest w/r/t w with ` edges consists of the first ` minimum weight
edges of T .

Lemma 6 effectively reduces (R) to one MST computation, which takes O(m log n) time.
Repeated over O

(
m log n
ε2

)
iterations, this leads to a O

(
m2 log2 n

ε2

)
running time. As observed

previously [49, 6], the minimum weight spanning tree does not have to be rebuilt from scratch
from one iteration to another, but rather adjusted dynamically as the weights change.

I Lemma 7 (Holm, de Lichtenberg, and Thorup [25]). In O
(
log2 n

)
amortized time per

increment to w, one can maintain the MST w/r/t w.

The running time of Lemma 7 depends on the number of times the edge weights change,
so we want to limit the number of weight updates exposed to Lemma 7. It is easy to see that
solving (R) w/r/t a second set of weights w̃ that is a (1± ε)-multiplicative factor coordinate-
wise approximation of w gives a solution that is a (1± ε)-multiplicative approximation to
(R) w/r/t w. We maintain the MST w/r/t an approximation w̃ of w, and only propagate
changes from w to w̃ when w is greater than w̃ by at least a (1 + ε)-multiplicative factor.
As mentioned in Section 2, a weight we increases by a (1 + ε)-multiplicative factor at most
O
(

log n
ε2

)
times. Applying Lemma 7 to the discretized weights w̃ and amortizing against the

total growth of weights in the system gives us the following.

I Lemma 8. In O
(
m log3 n

ε2

)
total time, one can maintain the MST w/r/t a set of weights

w̃ such that, for all e ∈ E, we have w̃e ∈ (1± ε)we. Moreover, the MST makes at most
O
(
m log n
ε2

)
edge updates total.

Given such an MST T as above, and ` ∈ {n− k + 1, . . . , n− 1} we need the ` minimum
(w̃-)weight edges to form an (approximately) minimum weight forest F of ` edges. However,
the data structure of Lemma 7 does not provide a list of edges in increasing order of weight.
We maintain the edges in sorted order separately, where each time the dynamic MST replaces
one edge with another, we make the same update in the sorted list. Clearly, such a list can be
maintained in O(log n) time per update by dynamic trees. Our setting is simpler because the
range of possible values of any weight w̃e is known in advance as follows. For e ∈ E, define

We =
{

(1 + ε)i

ce
: i ∈

{
0, 1, . . . , O

(
log n
ε2

)}}
.

Then w̃e ∈ We for all e ∈ E at all times. Define L = {(e, α) : α ∈ We}. The set L represents
the set of all possible assignments of weights to edges that may arise. As mentioned above,
|L| = O

(
m log n
ε2

)
. Let B be a balanced binary tree over L, where L is sorted by increasing

K. Quanrud 23:11

order of the second coordinate w̃e (and ties are broken arbitrarily). The tree B has height
log|L| = O(logm) and can be built in O(|L|) = O

(
m log n
ε2

)
time1.

We mark the leaves based on the edges in T . Every time the MST T adds an edge e of
weight w̃e, we mark the corresponding leaf (e, w̃e) as marked. When an edge e is deleted, we
unmark the corresponding leaf. Lastly, when an edge e ∈ T has its weight increased from α

to α′, we unmark the leaf (e, α) and mark the leaf (e, α′). Note that only edges in T have
their weight changed.

For each subtree of T , we track aggregate information and maintain data structures over
the set of all marked leaves in the subtree. For a node b in B, let Lb be the set of marked
leaves in the subtree rooted at b. For each b ∈ B we maintain two quantities: (a) the number
of leaves marked in the subtree rooted at b, |Lb|; and (b) the sum of edges weights of leaves
marked in the subtree rooted at b, Wb =

∑
(e,α)∈Lb α. Since the height of B is O(log n),

both of these quantities can be maintained in O(log n) time per weight update.

I Lemma 9. In O
(
m log(n)/ε2

)
time initially and O(log n) time per weight update, one can

maintain a data structure that, given ` ∈ [n− 1], returns in O(log n) time (a) the ` minimum
weight edges of the MST (implicitly), and (b) the total weight of the first ` edges of the MST.

With Lemma 7 and Lemma 9, we can now compute, for any ` ∈ [n − 1], a (1 + ε)-
approximation to the minimum weight forest of ` edges, along with the sum weight of the
forest, both in logarithmic time. To find the best forest, then, we need only query the data
structure for each of the k − 1 integer values from n− k + 1 to n− 1. That is, excluding the
time to maintain the data structures, we can now solve the relaxation (R) in O(k log n) time
per iteration.

At this point, we still require O(km log n) time just to solve the Lagrangian relaxations
(R) generated by the MWU framework. (There are other bottlenecks, such as updating the
weights at each iteration, that we have not yet addressed.) To remove the factor of k in
solving (R), we require one final observation.

I Lemma 10. The minimum ratio subforest of T can be found by binary search.

Proof. Enumerate the MST edges e1, . . . , en−1 ∈ T in increasing order of weight. For ease
of notation, we denote w̃i = w̃ei for i ∈ [n− 1]. We define a function f : [k − 1]→ R>0 by

f(i) = i∑n−k+i
j=1 w̃j

.

For each i, f(i) is the ratio achieved by the first n− k + i edges of the MST. Our goal is to
maximize f(i) over i ∈ [k − 1]. For any i ∈ [k − 2], we have

f(i+ 1)− f(i) = i+ 1∑n−k+i+1
j=1 w̃j

− i∑n−k+i

j=1 w̃j

=
(i+ 1)

∑n−k+i

j=1 w̃j − i
∑n−k+i+1

j=1 w̃j(∑n−k+i+1
j=1 w̃j

)(∑n−k+i

j=1 w̃j

) =
∑n−k+i

j=1 w̃j − iw̃n−k+i+1(∑n−k+i+1
j=1 w̃j

)(∑n−k+i

j=1 w̃j

) .
Since the denominator

(∑n−k+i+1
j=1 w̃j

)(∑n−k+i
j=1 w̃j

)
is positive, we have f(i+1) ≤ f(i) ⇐⇒

iw̃n−k+i+1 ≥
∑n−k+i
j=1 w̃j . If iw̃n−k+i+1 ≥

∑n−k+i
j=1 w̃j for all i ∈ [k − 2], then f(1) < f(2) <

1 or even less time if we build B lazily, but constructing B is not a bottleneck

APPROX/RANDOM 2019

23:12 Fast and Deterministic Approximations for k-Cut

· · · < f(k− 1), so f(i) is maximized by i = k− 1. Otherwise, let i0 ∈ [k− 2] be the first value
of i such that f(i+ 1) ≤ f(i). For i1 ≥ i0, as (c) w̃ei is increasing in i, (d) f(i0 + 1) ≤ f(i0),
we have

n−k+i1∑
j=1

w̃j − i1wn−k+i1+1 =
n−k+i0∑

j=1

w̃j − i0w̃n−k+i1+1 +
n−k+i1∑

j=n−k+i0+1

w̃j − (i1 − i0)w̃n−k+i1+1

(c)
≤

n−k+i0∑
j=1

w̃j − i0w̃n−k+i0+1
(d)
≤ 0.

That is, f(i1+1) ≤ f(i1) for all i1 ≥ i0. Thus f consists of one increasing subsequence followed
by a decreasing subsequence, and its global maximum is the unique local maximum. J

By Lemma 10, the choice of ` can be found by calculating the ratio of O(log k) candidate
forests. By Lemma 9, the ratio of a candidate forest can be computed in O(log n) time.

I Lemma 11. Given the data structure of Lemma 9, one can compute a (1 +O(ε))-
multiplicative approximation to (R) in O(log n log k) time.

The polylogarithmic running time in Lemma 11 is surprising when considering that
solutions to (R) should require at least a linear number of bits, as discussed earlier in Section
2.3. In hindsight, a combination of additional structure provided by the MWU framework
and the LP (P) allows us to apply data structures that effectively compress the forests and
output each forest in polylogarithmic amortized time. Implicit compression of this sort also
appears in previous work [6, 5, 9].

4 Packing greedy forests in O
(
log2 n

)
amortized time

In Section 3, we showed how to solve (R) in polylogarithmic time per iteration. In this section,
we address the second main bottleneck: updating the weights w after increasing y to y + δz

per the formula (1), where z is an approximate solution to the relaxation (R) and δ > 0 is
the largest possible value such that no weight increases by more than a (1 + ε)-multiplicative
factor. As discussed in Section 2.3, this may be hard to do in polylogarithmic time when
many of the edges e ∈ E require updating.

A sublinear time weight update must depend heavily on the structure of the solutions
generated to (R). In our case, each solution z to a relaxation (R) is of the form γeF , where
eF is the indicator vector of a forest F and γ > 0 is a scalar as large as possible subject to
the packing constraint in (R). We need to update the weights to reflect the loads induced
by δz = δγeF , where δ is chosen large as possible so that no weight increases by more than
an exp(ε)-multiplicative factor. With this choice of δ, the weight update simplifies to the
following formula. Let w denote the set of weights before the updates and w′ denote the set
of weights after the updates. For a solution z = γeF , we have

w′e =

we if e /∈ F,
exp
(
εminf∈F cf

ce

)
if e ∈ F.

(2)

The weight update formula above can be interpreted as follows. Because our solution is
supported along a single forest F , the only edges whose loads are effected are those in the
forest F . As load is relative to the capacity of an edge e, the increase of the logarithm the
weight we of an edge e ∈ F is inversely proportional to its capacity. By choice of δ, the

K. Quanrud 23:13

minimum capacity edge arg minf∈F cf has its weight increased by an exp(ε) multiplicative
factor. The remaining edges with larger capacity each have the logarithm of their weight
increased in proportion to the ratio of the bottleneck capacity to its own capacity.

Simplifying the weight update formula does not address the basic problem of updating
the weights of every edge in a forest F , without visiting every edge in F . Here we require
substantially more structure as to how the edges in F are selected. We observe that although
there may be Ω(n) edges in F , we can always decompose F into a logarithmic number of
“canonical subforests”, as follows.

I Lemma 12. One can maintain, in O(log n) time per update to the MST T , a collection
of subforests CT ⊆ F such that:
(i) |CT | = O(n log n).
(ii) Each edge e ∈ T is contained in O(log n) forests.
(iii) For each ` ∈ [n − 1], the forest F consisting of the ` minimum weight edges in T

decomposes uniquely into the disjoint union of O(log n) forests in CT . The decomposition
can be computed in O(log n) time.

In fact, the collection of subforests is already maintained implicitly in Lemma 9. Recall,
from Section 3, the balanced binary tree B over the leaf set L, which consists of all possible
discretized weight-to-edge assignments and is ordered in increasing order of weight. Leaves
are marked according to the edges in the MST T , and each node is identified with the forest
consisting of all marked leaves in the subtree rooted at the node. For each ` ∈ [n− 1], the
forest F` induced by the ` minimum weight edges in T is the set of marked leaves over an
interval of L. The interval decomposes into the disjoint union of leaves of O(log n) subtrees,
which corresponds to decomposing F` into the disjoint union of marked leaves of O(log n)
subtrees of B. That is, the forests of marked leaves induced by subtrees of B gives the
“canonical forests” CT that we seek.

The following technique of decomposing weight updates is critical to previous work
[6, 5, 9]; we briefly discuss the high-level ideas and refer to previous work for complete details.

Decomposing the solution into a small number of known static sets is important because
weight updates can be simulated over a fixed set efficiently. The data structure lazy-inc,
defined in [6] and inspired by techniques by Young [53], simulates a weight update over a
fixed set of weights in such a way that the time can be amortized against the logarithm of
the increase in each of the weights. As discussed above, the total logarithmic increase in each
of the weights is bounded from above. The data structure lazy-inc is dynamic, allowing
insertion and deletion into the underlying set, in O(log n) time per insertion or deletion [5].

We define an instance of lazy-inc at each node in the balanced binary tree B. Whenever
a leaf is marked as occupied, the corresponding edge is inserted into each of O(log n) instances
of lazy-inc at the ancestors of the leaf; when a leaf is marked as unoccupied, it is removed
from each of these instances as well. Each instance of lazy-inc can then simulate a weight
update over the marked leaves at its nodes in O(1) constant time per instance, plus a total
O(log n) amortized time. More precisely, the additional time is amortized against the sum of
increases in the logarithms of the weights, which (as discussed earlier) is bounded above by
O
(
m log(n)/ε2

)
.

We also track, for each canonical forest, the minimum capacity of any edge in the forest.
The minimum capacity ultimately controls the rate at which all the other edges increase,
per (2).

Given a forest F induced by the ` minimum weight edges of T , we decompose F into the
disjoint union of O(log n) canonical subforests of T . For each subforest we have precomputed
the minimum capacity, and an instance of lazy-inc that simulates weight updates on all

APPROX/RANDOM 2019

23:14 Fast and Deterministic Approximations for k-Cut

edges in the subforest. The minimum capacity over edges in F determines the rate of increase,
and the increase is made to each instance of lazy-inc in O(1) time per instance plus O(log n)
amortized time over all instances.

I Lemma 13. Given a forest F generated by Lemma 11, one can update the edge weights
per (2) in O

(
log2 n

)
amortized time per iteration.

Note that Lemma 13 holds only for the forests output by Lemma 11. We can not
decompose other forests in G, or even other subforests of T , into the disjoint union O(log n)
subforests. Lemma 12 holds specifically for the forests induced by the ` minimum weight
edges of T , for varying values of `. This limitation highlights the importance of coupling the
oracle and the weight update: the running time in Lemma 11 for solving (R) is amortized
against the growth of the weights, and the weight updates in Lemma 13 leverage the specific
structure by which solutions to (R) are generated.

We note that the lazy-inc data structures can be replaced by random sampling in the
randomized MWU framework [8]. Here one still requires the decomposition into canonical
subforests; an efficient threshold-based sampling is then conducted at each subforest.

5 Putting things together

In this section, we summarize the main points of the algorithm and account for the running
time claimed in Theorem 3.

Proof of Theorem 3. By standard analysis (e.g., [6, Theorem 2.1]), the MWU framework
returns a (1−O(ε))-multiplicative approximation to the packing LP (P) as long as we can
approximate the relaxation (R) to within a (1−O(ε))-multiplicative factor. This slack allows
us to maintain the weight we to within a (1±O(ε))-multiplicative factor of the “true weights”
given (up to a leading constant) by (1). In particular, we only propagate a change to we
when it has increased by a (1 + ε)-multiplicative factor. Each weight we is monotonically
increasing and its growth is bounded by a mO(1

ε)-multiplicative factor, so each weight we
increases by a (1 + ε)-multiplicative factor O

(
log m
ε2

)
times.

By Lemma 11, each instance of (R) can be solved in O
(
log2 n

)
amortized time. Here

the running time is amortized against the number of weight updates, as the solution can be
updated dynamically in O

(
log2 n

)
amortized time. By Lemma 13, the weight update w/r/t

a solution generated by Lemma 11 can be implemented in O
(
log2 n

)
amortized time. Here

again the running time is amortized against the growth of the edge weights. Since there are
O
(
m log n
ε2

)
total edge updates, this gives a total running time of O

(
m log3 n

ε2

)
. J

References
1 Francisco Barahona. On the k-cut problem. Oper. Res. Lett., 26(3):99–105, 2000.
2 Robert D. Carr, Lisa Fleischer, Vitus J. Leung, and Cynthia A. Phillips. Strengthening

integrality gaps for capacitated network design and covering problems. In Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San
Francisco, CA, USA., pages 106–115. ACM/SIAM, 2000.

3 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approxima-
bility of Capacitated Network Design. Algorithmica, 72(2):493–514, 2015. Preliminary version
in IPCO 2011.

4 Chandra Chekuri, Sudipto Guha, and Joseph Naor. The Steiner k-Cut Problem. SIAM J.
Discrete Math., 20(1):261–271, 2006. Preliminary version in ICALP 2003.

K. Quanrud 23:15

5 Chandra Chekuri and Kent Quanrud. Approximating the Held-Karp Bound for Metric TSP in
Nearly-Linear Time. In 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 789–800. IEEE Computer Society,
2017.

6 Chandra Chekuri and Kent Quanrud. Near-Linear Time Approximation Schemes for some
Implicit Fractional Packing Problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 801–820. SIAM, 2017.

7 Chandra Chekuri and Kent Quanrud. Fast Approximations for Metric-TSP via Linear
Programming. CoRR, abs/1802.01242, 2018. arXiv:1802.01242.

8 Chandra Chekuri and Kent Quanrud. Randomized MWU for Positive LPs. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New
Orleans, LA, USA, January 7-10, 2018, pages 358–377. SIAM, 2018.

9 Chandra Chekuri and Kent Quanrud. On Approximating (Sparse) Covering Integer Programs.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1596–1615, 2019.

10 Chandra Chekuri, Kent Quanrud, and Chao Xu. LP relaxation and tree packing for minimum
k-cuts. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9,
2019 - San Diego, CA, USA, pages 7:1–7:18, 2019.

11 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal
Pilipczuk. Designing FPT Algorithms for Cut Problems Using Randomized Contractions.
SIAM J. Comput., 45(4):1171–1229, 2016. Preliminary version in FOCS 2012.

12 Rodney G. Downey, Vladimir Estivill-Castro, Michael R. Fellows, Elena Prieto-Rodriguez, and
Frances A. Rosamond. Cutting Up is Hard to Do: the Parameterized Complexity of k-Cut
and Related Problems. Electr. Notes Theor. Comput. Sci., 78:209–222, 2003.

13 Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Multicommodity
Flow and Other Fractional Packing Problems. In 39th Annual Symposium on Foundations
of Computer Science, FOCS ’98, November 8-11, 1998, Palo Alto, California, USA, pages
300–309. IEEE Computer Society, 1998.

14 Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for Multicommodity Flow
and Other Fractional Packing Problems. SIAM J. Comput., 37(2):630–652, 2007. Preliminary
version in FOCS 1998.

15 Michel X. Goemans and David P. Williamson. A General Approximation Technique for
Constrained Forest Problems. SIAM J. Comput., 24(2):296–317, 1995. Preliminary version in
SODA 1992.

16 Michel X. Goemans and David P. Williamson. The primal-dual method for approximation
algorithms and its applications to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems, pages 144–191. PWS Publishing Company,
Boston, MA, July 1996.

17 Andrew V. Goldberg and Satish Rao. Beyond the Flow Decomposition Barrier. J. ACM,
45(5):783–797, 1998. Preliminary version in FOCS 1997.

18 Olivier Goldschmidt and Dorit S. Hochbaum. A Polynomial Algorithm for the k-cut Problem
for Fixed k. Math. Oper. Res., 19(1):24–37, 1994. Preliminary version in FOCS 1988.

19 Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT Algorithm Beating 2-Approximation
for k-Cut. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2821–2837. SIAM,
2018.

20 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster Exact and Approximate Algorithms for
k-Cut. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018,
Paris, France, October 7-9, 2018. IEEE Computer Society, 2018.

APPROX/RANDOM 2019

http://arxiv.org/abs/1802.01242

23:16 Fast and Deterministic Approximations for k-Cut

21 Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: improving the
Karger-Stein bound. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 229–240, 2019.

22 Jianxiu Hao and James B. Orlin. A Faster Algorithm for Finding the Minimum Cut in a
Directed Graph. J. Algorithms, 17(3):424–446, 1994. Preliminary version in SODA 1992.

23 Dov Harel and Robert Endre Tarjan. Fast Algorithms for Finding Nearest Common Ancestors.
SIAM J. Comput., 13(2):338–355, 1984.

24 Monika Henzinger, Satish Rao, and Di Wang. Local Flow Partitioning for Faster Edge
Connectivity. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1919–1938.
SIAM, 2017.

25 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001. Preliminary version in STOC 1998.

26 David R. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, Stanford, CA 94305, 1994.

27 David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. Preliminary
version in STOC 1996.

28 David R. Karger and Clifford Stein. A New Approach to the Minimum Cut Problem. J. ACM,
43(4):601–640, 1996. Preliminary version in STOC 1993.

29 Ken-ichi Kawarabayashi and Mikkel Thorup. The Minimum k-way Cut of Bounded Size is
Fixed-Parameter Tractable. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160–169. IEEE
Computer Society, 2011.

30 Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic Global Minimum Cut of a Simple
Graph in Near-Linear Time. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665–674.
ACM, 2015.

31 Stavros G. Kolliopoulos and Neal E. Young. Tight Approximation Results for General Covering
Integer Programs. In 42nd Annual Symposium on Foundations of Computer Science, FOCS
2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 522–528. IEEE Computer Society,
2001.

32 Stavros G. Kolliopoulos and Neal E. Young. Approximation algorithms for covering/packing
integer programs. J. Comput. Syst. Sci., 71(4):495–505, 2005. Preliminary version in FOCS
2001.

33 Yin Tat Lee and Aaron Sidford. Path Finding Methods for Linear Programming: Solving
Linear Programs in Õ(

√
rank) Iterations and Faster Algorithms for Maximum Flow. In 55th

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 424–433. IEEE Computer Society, 2014.

34 Matthew S. Levine. Fast randomized algorithms for computing minimum {3, 4, 5, 6}-way
cuts. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
January 9-11, 2000, San Francisco, CA, USA., pages 735–742, 2000.

35 On-Hei Solomon Lo, Jens M. Schmidt, and Mikkel Thorup. Contraction-Based Sparsification
in Near-Linear Time. CoRR, abs/1810.03865, 2018. arXiv:1810.03865.

36 Aleksander Madry. Computing Maximum Flow with Augmenting Electrical Flows. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 593–602. IEEE Computer Society,
2016.

37 Pasin Manurangsi. Inapproximability of Maximum Edge Biclique, Maximum Balanced Bi-
clique and Minimum k-Cut from the Small Set Expansion Hypothesis. In 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, volume 80 of LIPIcs, pages 79:1–79:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017.

http://arxiv.org/abs/1810.03865

K. Quanrud 23:17

38 David W. Matula. A Linear Time 2 + ε Approximation Algorithm for Edge Connectivity. In
Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA., pages 500–504, 1993.

39 Hiroshi Nagamochi and Toshihide Ibaraki. Computing Edge-Connectivity in Multiple and
Capacitated Graphs. In Algorithms, International Symposium SIGAL ’90, Tokyo, Japan,
August 16-18, 1990, Proceedings, volume 450 of Lecture Notes in Computer Science, pages
12–20. Springer, 1990.

40 Hiroshi Nagamochi and Toshihide Ibaraki. A Linear-Time Algorithm for Finding a Sparse
k-Connected Spanning Subgraph of a k-Connected Graph. Algorithmica, 7(5&6):583–596,
1992.

41 Hiroshi Nagamochi and Toshihide Ibaraki. Computing Edge-Connectivity in Multigraphs and
Capacitated Graphs. SIAM J. Discrete Math., 5(1):54–66, 1992.

42 Hiroshi Nagamochi and Yoko Kamidoi. Minimum cost subpartitions in graphs. Inf. Process.
Lett., 102(2-3):79–84, 2007.

43 Joseph Naor and Yuval Rabani. Tree packing and approximating k-cuts. In Proceedings of
the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC,
USA., pages 26–27. ACM/SIAM, 2001.

44 C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. J. London Math.
Soc., 36:445–450, 1961.

45 R. Ravi and Amitabh Sinha. Approximating k-cuts using network strengths as a Lagrangean
relaxation. European Journal of Operational Research, 186(1):77–90, 2008. Preliminary version
in SODA 2002.

46 Huzur Saran and Vijay V. Vazirani. Finding k Cuts within Twice the Optimal. SIAM J.
Comput., 24(1):101–108, 1995. Preliminary version in FOCS 1991.

47 Daniel Dominic Sleator and Robert Endre Tarjan. A Data Structure for Dynamic Trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983. Preliminary version in STOC 1981.

48 Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. J. ACM, 44(4):585–591,
1997. Preliminary version in ESA 1994.

49 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 159–166. ACM, 2008.

50 W. T. Tutte. On the problem of decomposing a graph into n connected components. J. London
Math. Soc., 36:221–230, 1961.

51 Mingyu Xiao, Leizhen Cai, and Andrew Chi-Chih Yao. Tight Approximation Ratio of a
General Greedy Splitting Algorithm for the Minimum k-Way Cut Problem. Algorithmica,
59(4):510–520, 2011.

52 Neal E. Young. Sequential and Parallel Algorithms for Mixed Packing and Covering. In 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 538–546. IEEE Computer Society, 2001.

53 Neal E. Young. Nearly Linear-Time Approximation Schemes for Mixed Packing/Covering and
Facility-Location Linear Programs. CoRR, abs/1407.3015, 2014. arXiv:1407.3015.

A Rounding fractional forest packings to k-cuts

In this section, we show how to round a fractional solution x to (L) a k-cut of cost at most
twice the cost of x. The rounding scheme is due to Chekuri et al. [4] for the more general
problem of Steiner k-cuts. The rounding scheme extends the primal-dual framework of
Goemans and Williamson [15, 16]. In hindsight, we realized the primal-dual framework is
only required for the analysis, and that the algorithm itself is very simple.

APPROX/RANDOM 2019

http://arxiv.org/abs/1407.3015

23:18 Fast and Deterministic Approximations for k-Cut

We first give a conceptual description of the algorithm, called greedy-cuts. The concep-
tual description suffices for the sake of analyzing the approximation guarantee. Later, we
give implementation details and demonstrate that it can be executed in O(m log n) time.

To describe the algorithm, we first introduce the following definitions.

I Definition 14. Let F be a minimum weight spanning forest in a weighted, undirected graph,
and order the edges of F in increasing order of weight (breaking ties arbitrarily). A greedy
component of F is a connected component induced by a prefix of F . A greedy cut is a cut
induced by a greedy component of F .

Algorithm 1 A conceptual sketch of a deterministic rounding algorithm for k-cut.

greedy-cuts(G = (V,E),c,x)

// conceptual sketch
1. let E′ =

{
e ∈ E : xe ≥ n−1

2n
}

, E ← E \ E′
2. if E′ is a k-cut then return E′

3. let F be a minimum weight spanning forest in E w/r/t x w/ ` components
4. return the union of E′ and the k − ` minimum weight greedy cuts of F

The rounding algorithm is conceptually very simple and a pseudocode sketch is given
in Algorithm 1. We first take all the edges with xe > 1/2 + o(1). If this is already a k-cut,
then it is a 2-approximation because the corresponding indicator vector is ≤ (2− o(1))x.
Otherwise, we compute the minimum spanning forest F in the remaining graph, where the
weight of an edge is given by x. Letting ` be number of components of F , we compute the
k− ` minimum weight greedy cuts w/r/t F . We output the union of E′ and the k− ` greedy
cuts.

Chekuri, Guha, and Naor [4] implicitly showed that this algorithm has an approximation
factor of 2(1− 1/n). Their analysis is for the more general Steiner k-cut problem, where we
are given a set of terminal vertices T , and want to find the minimum weight set of edges
whose removal divides the graph into at least k components each containing a terminal
vertex t ∈ T . The algorithm and analysis is based on the primal-dual framework of Goemans
and Williamson [15, 16]. For the minimum weight Steiner tree problem, the primal-dual
framework returns a Steiner tree and a feasible fractional cut packing in the dual LP. The cost
of the Steiner cut packing is within a 2(1− o(1))-multiplicative factor of the corresponding
Steiner tree. Via LP duality, the Steiner tree and the cut packing mutually certify an
approximation ratio of 2(1 − o(1)). The cut packing certificate has other nice properties,
and Chekuri, Guha, and Naor [4] show that the k − 1 minimum cuts in the support of the
fractional cut packing give a 2-approximate Steiner k-cut.

For the (non-Steiner) k-cut problem, we want minimum cuts in the support of the
fractional cut packing returned by the primal-dual framework applied to minimum spanning
forests. To shorten the algorithm, we observe that (a) the primal-dual framework returns the
minimum spanning forest, and (b) the cuts supported by the corresponding dual certificate
are precisely the greedy cuts of the minimum spanning forest. Thus greedy-cuts essentially
refactors the algorithm analyzed by Chekuri et al. [4].

I Lemma 15 ([4]). greedy-cuts returns a k-cut of weight at most 2
(
1− 1

n

)
〈c, x〉.

The connection to Chekuri et al. [4] is not explicitly clear because Chekuri et al. [4] rounded
a slightly more complicated LP. The complication arises from the difficulty of solving (L)

K. Quanrud 23:19

directly for Steiner k-cut (which can be simplified by knapsack covering constraints, in
hindsight). Morally, however, their proof extends to our setting here. For the sake of
completeness, a proof of Lemma 15 is included in Appendix B.

Algorithm 2 A detailed implementation of a deterministic rounding algorithm for k-cut.

greedy-cuts(G = (V,E),c,x)

1. let E′ =
{
e ∈ E : xe ≥ n−1

2n
}

, E ← E \ E′
2. if E′ is a k-cut then return E′

3. let F be a minimum weight spanning forest in E w/r/t x w/ ` components
// Arrange the greedily induced components as subtrees of a dynamic forest
4. for each v ∈ V

A. make a singleton tree labeled by v

5. for each edge f = {u, v} ∈ F in increasing order of xf
A. let Tu and Tv be the rooted trees containing u and v, respectively.
B. make Tu and Tv children of a new vertex labeled by f

// Compute the weight of each cut induced by a greedy component.
6. let each node in the dynamic forest have value 0
7. for each edge e = {u, v} ∈ E

A. add xe to the value of every node on the u-to-root and v-to-root paths
B. let w be the least common ancestor u and v

C. subtract 2xe from the value of every node on the w to root paths
8. let v1, v2, . . . , vk−` be the k − ` minimum value nodes in the dynamic forest.

For i ∈ [k − `], let Ci be the components induced by the leaves in the
subtree rooted by vi.

9. return E′ ∪ ∂(C1) ∪ · · · ∪ ∂(Ck−`)

It remains to implement greedy-cuts in O(m log n) time. With the help of dynamic
trees [47], this can be done in a straightforward fashion. We briefly describe the full
implementation; pseudocode is given in Algorithm 2. Recall from the conceptual sketch
above that greedy-cuts requires up to k − 1 minimum greedy cuts of a minimum spanning
forest w/r/t x. To compute the value of these cuts, greedy-cuts first simulates the greedy
algorithm by processing the edges in the spanning forest in increasing order of x. The greedy
algorithm repeatedly adds an edge that bridges two greedy components. We assemble a
auxiliary forest of dynamic trees where each leaf is a vertex, and each subtree corresponds to
a greedy component induced by the vertices at the leaves of the subtree.

After building this dynamic forest, we compute the number of edges in each cut. We
associate each node in the dynamic forest with the greedy component induced by its leaves,
and given each node an initial value of 0. We process edges one at a time and add its weight
to the value of every node corresponding to a greedy component cutting that edge. Now,
an edge in the original graph is cut by a greedy component iff the corresponding subtree in
the dynamic forest does not contain both its end points as leaves. We compute the least
common ancestor of the endpoints in the dynamic forest in O(log n) time [23], and add the
weight of edge to every node between the leaves and the common ancestor, excluding the
common ancestor. Adding the weight to every node on a node-to-root path takes O(log n)
time [47] in dynamic trees. After processing every edge, we simply read off the value of each
greedy cut as the value of the corresponding node in the forest. Thus we have the following.

I Lemma 16. greedy-cuts can be implemented in O(m log n) time.

Together, Lemma 15 and Lemma 16 imply Theorem 4.

APPROX/RANDOM 2019

23:20 Fast and Deterministic Approximations for k-Cut

B Proofs for Appendix A

Chekuri et al. [4] gave a rounding scheme for the more general problem of Steiner k-cut and
the analysis extends to the rounding schemes presented here. We provide a brief sketch for
the sake of completeness as there are some slight technical gaps. The proof is simpler and
more direct in our setting because we have a direct fractional solution to (L), while Chekuri
et al. [4] dealt with a solution to a slightly more complicated LP. We note that our analysis
also extends to Steiner cuts. We take as a starting point the existence of a dual certificate
from the primal-dual framework.

I Lemma 17 ([15, 16]). Let F be a minimum spanning forest in a undirected graph G = (V,E)
weighted by x ∈ RE

′

≥0. Let C be the family of greedy cuts induced by F . Then there exists
y ∈ RC≥0 satisfying the following properties.2
(a) For each edge e ∈ E,

∑
C∈C:C3e yC ≤ xe.

(b) For each edge e ∈ F ,
∑
C∈C:C3e yC = xe.

(c) 2
(
1− 1

n

)
〈y,1〉 ≥

∑
e∈F xe.

We note that the dual variables y can be computed in O(n) time (after computing the
minimum spanning forest).

I Lemma 18 ([4]). greedy-cuts returns a k-cut with total cost ≤ 2
(
1− 1

n

)
〈c, x〉.

Proof sketch. Let y be as in Lemma 17. We first make two observations about y. First,
since xe ≤ n

2(n−1) for all e ∈ E′, we have (by property (a) of Lemma 17) that yC ≤ n
2(n−1)

for all greedy cuts C. Second, by (e) property (c) of Lemma 17 and (f) the feasibility of x
w/r/t the k-cut LP (L), we have

2
(

1− 1
n

)
〈y,1〉

(e)
≥
∑
e∈T

xe
(f)
≥ k − 1.

Let C1, . . . , Ck−1 be the k − 1 minimum greedy cuts. Now, by (g) rewriting the sum of the
k − 1 minimum greedy cuts as the solution of a minimization problem, (h) observing that
2
(
1− 1

n

)
y is a feasible solution to the minimization problem, (i) interchanging sums, and (j)

property (a) of Lemma 17, we have

k−1∑
i=1

c(Ci)
(g)= min{〈y′, c〉 : 0 ≤ y′ ≤ 1, support(y′) ⊆ support(y), and ‖y′‖1 ≥ k − 1}

(h)
≤ 2

(
1− 1

n

)
〈y, c〉 =

∑
C

yC
∑
e∈C

ce
(i)=
∑
e∈E′

ce
∑
C3e

yC
(j)
≤
∑
e∈E′

cexe,

as desired. J

2 Here we do not require property (b), but we mention it anyway because it is important in other
applications.

Global Cardinality Constraints Make
Approximating Some Max-2-CSPs Harder
Per Austrin
KTH Royal Institute of Technology, Stockholm, Sweden
austrin@kth.se

Aleksa Stanković
KTH Royal Institute of Technology, Stockholm, Sweden
aleksas@kth.se

Abstract
Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some
Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut
with cardinality constraints is UG-hard to approximate within ≈ 0.858, and that Max-2-Sat with
cardinality constraints is UG-hard to approximate within ≈ 0.929. In both cases, the previous best
hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP
(≈ 0.878 for Max-Cut, and ≈ 0.940 for Max-2-Sat).

The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also
obtain tight inapproximability for the Max-k-Vertex-Cover problem.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and completeness;
Mathematics of computing → Approximation algorithms; Theory of computation → Approximation
algorithms analysis

Keywords and phrases Constraint satisfaction problems, global cardinality constraints, semidefinite
programming, inapproximability, Unique Games Conjecture, Max-Cut, Max-2-Sat

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.24

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.04165.

Funding Research supported by the Approximability and Proof Complexity project funded by the
Knut and Alice Wallenberg Foundation.

Acknowledgements The authors thank Johan Håstad for helpful suggestions and comments on the
manuscript. We also thank anonymous reviewers for their helpful remarks.

1 Introduction

Constraint satisfaction problems (CSPs) are one of the most fundamental objects studied in
complexity theory. An instance of a CSP has a set of variables taking values over a certain
domain and a set of constraints on tuples of these variables as an input. Probably the best
known CSP is 3-Sat, in which the constraints are clauses, each clause is a disjunction of
at most three literals, and each literal is either a variable or negation of a variable. In the
satisfiability version of CSP problems, we are interested whether there is an assignment to
the variables which satisfies all the constraints. Hardness of deciding satisfiability of CSPs
is well understood, due to the dichotomy theorem [32] of Schaefer which shows that each
CSP with variables taking values in a Boolean domain is either in P or NP-complete, and
due to the more recent results of Bulatov [8] and Zhuk [35] which settle this question on
general domains.

© Per Austrin and Aleksa Stanković;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 24; pp. 24:1–24:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8217-0158
mailto:austrin@kth.se
https://orcid.org/0000-0002-8416-8665
mailto:aleksas@kth.se
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.24
https://arxiv.org/abs/1907.04165
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

Another well-studied version is the Max-CSP, which is the optimization version in which
we are interested in maximizing the number of constraints satisfied. This type of problem is
NP-hard in most cases and we typically settle with finding a good estimate of the optimal
solution, for which we rely on approximation algorithms. A common example of a constraint
satisfaction problem in this setting is Max-Cut, in which the input consists of a graph G,
and the goal is to partition the vertices into two sets such that the number of edges between
the two parts is maximized. Approximability of Max-CSPs has been a major research topic
which inspired many influential breakthroughs. One of the first surprising results was an
algorithm of Goemans and Williamson [13], which uses semidefinite programming (SDP) to
approximate the optimal solution to within a constant of αGW ≈ 0.878. The SDP approach
is also useful in approximating many other well known Max-CSPs, such as Max-3-Sat [19]
within a constant of 7/8 and Max-2-Sat [23] within αLLZ ≈ 0.9401.

On the hardness of approximation side, the first NP-hardness results are based on
the celebrated PCP theorem [1, 2] which provided a strong starting point for studying
inapproximability. For example, a direct corollary of the PCP theorem shows that the
Max-3-Sat problem cannot be approximated within 1− δ for some universal constant δ > 0.
By using the PCP theorem and parallel repetition [31] as a starting point, Håstad [17] proved
optimal inapproximability for Max-3-Sat by showing that it cannot be approximated better
than 7/8 + ε for any ε > 0.

However, despite further works relying on the similar techniques which improved our
understanding of inapproximability for several additional CSPs, the progress on closing the
gap between the best algorithm and the best hardness was at a standstill for some fundamental
problems such as Max-Cut, until the Unique Games Conjecture (UGC) was introduced by
Khot [20]. In particular, by assuming the UGC, optimality of the αGW -approximation
algorithm for Max-Cut and the αLLZ -approximation algorithm for Max-2-Sat was shown in
[21, 26] and [3], respectively. The strength of semidefinite programming for approximating
Max-CSPs was corroborated in a breakthrough result of Raghavendra [28], which showed
that assuming the UGC, a certain SDP relaxation achieves optimal approximation ratios for
all Max-CSPs.

Locality of the constraints was of crucial importance in studying CSPs and Max-CSPs
since their inception. Therefore, it is not a surprise that typical techniques fail when we work
with CSPs for which feasible assignments need to satisfy some additional global constraints,
and these problems almost always become harder. For example, while the satisfiability of a
2-Sat instance can be checked by a straightforward algorithm, Guruswami and Lee recently
showed [14] that when the satisfying assignment needs to have exactly half of its variables
set to true, this problem becomes NP-hard. Hardness of deciding satisfiability of CSPs in
which we prescribe how many variables are assigned to certain values is well understood due
to the dichotomy theorem of Bulatov and Marx [9], which shows that these problems are
either NP-hard or in P, and gives a simple classification. Another type of global constraint
is studied by Brakensiek et al. [7], who consider hardness of deciding CSPs in presence of
modular constraints, which restrict cardinality of values in an assignment modulo a natural
number M .

In this paper we are interested in optimization variants of CSPs with global cardinality
constraints, i.e., constraints which specify the number of occurrences of each value from the
domain in the assignment. We refer to these problems as CC-Max-CSPs. It is not hard to see
that these problems are at least as hard to approximate as their unconstrained counterparts.
CC-Max-CSPs have been actively studied in the past. For example the Max-Bisection
problem, i.e., Max-Cut where the two partitions need to be of the same size, has been of

P. Austrin and A. Stanković 24:3

a particular interest, with a series of papers [12], [34],[16], [11], [30] obtaining improved
approximation algorithms, until the most recent result which achieves an approximation ratio
of 0.8776 [4], which is only ≈ 10−3 below the UG-hardness bound αGW . The state-of-the-art
algorithm [30] for the more general CC-Max-Cut problem achieves an approximation ratio
of αcccut ≈ 0.858. Another related CC-Max-CSP actively studied is CC-Max-2-Sat, and its
monotone variant (a version in which negated literals are not allowed) Max-k-VC1. The
best algorithm [30] up to date for general CC-Max-2-Sat achieves an approximation ratio of
αcc2sat, where αcc2sat ≈ 0.929, which improved on a series of increasingly stronger algorithms
presented in [33], [6], and [18]. Manurangsi [25] showed that it is UG-hard to approximate
Max-k-VC within a factor αAKS ≈ 0.944 (note that this is slightly larger than the hardness
of αLLZ ≈ 0.940 for general Max-2-Sat).

Yet another well-studied CC-Max-CSP is the Densest k-Subgraph (Max-k-DS) problem,
in which we are given a graph and the objective is to find a maximally dense induced
subgraph on k vertices. Analogously to the Max-k-VC problem, Max-k-DS can be viewed
as the monotone CC-Max-2-And problem. Max-k-DS is qualitatively very different from
the previously discussed problems. It is not known to be approximable within a constant
factor, and is in fact known to be hard to approximate to within almost polynomial factors
assuming the Exponential Time Hypothesis [24], or to within any constant factor assuming
the Small-Set Expansion Hypothesis [29].

Obtaining tight approximability results for CC-Max-CSPs presents an important research
topic. Qualitatively, it is also interesting to determine whether adding a cardinality constraint
to a non-trivial Max-CSP makes approximation strictly harder. For example, we know that
CC-Max-2-Sat is as hard as Max-2-Sat, but it is still conceivable that they are equally hard.
In particular, it would be interesting to answer the following question:

“Can CC-Max-2-Sat be approximated within αLLZ?”

So far the only result in this direction comes from [4] which shows that the “bisection
version” (where the cardinality constraint is that exactly half of the variables must be set to
true) of CC-Max-2-Sat can be approximated within αLLZ . However, the approach taken in
that algorithm does not immediately extend to handle general cardinality constraints. A
similar question arises for the CC-Max-Cut problem, but here even the basic Max-Bisection
problem is not known to be approximable within the Max-Cut constant αGW ≈ 0.878. As far
as we are aware, prior to this paper, the only examples of cardinality-constrained Max-CSPs
being harder than their unconstrained counterparts were examples where the unconstrained
version is easy (e.g. unconstrained Max-k-VC is monotone Max-2-Sat, and unconstrained
Max-k-DS is monotone Max-2-And, which are both trivial).

Our Results

In this paper, we answer the above question negatively, by giving improved UG-hardness
results for CC-Max-Cut and Max-k-VC.

I Theorem 1. For every ε > 0, CC-Max-Cut is UG-hard to approximate within βcccut + ε,
where βcccut ≈ 0.858.

I Theorem 2. For every ε > 0, Max-k-VC is UG-hard to approximate within βccvc + ε, where
βccvc ≈ 0.929.

1 Max-k-VC is an abbreviation for maximum k vertex cover, in which we are given a graph and the task
is to select a subset of k vertices covering as many of the edges as possible.

APPROX/RANDOM 2019

24:4 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

0.0 0.2 0.4 0.6 0.8 1.0
0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

0.0 0.2 0.4 0.6 0.8 1.0
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Figure 1 Hardness ratio (red) vs. approximation constant (blue) as a function of cardinality
constraint q for CC-Max-Cut (left), as well as Max-k-VC (right). We also use × to highlight the
approximation ratio known for Max-Bisection on the left plot, while × represents the optimal
approximation constant for the CC-Max-2-Sat problem in the special case q = 1/2.

Note that since CC-Max-Cut and Max-k-VC are special cases of CC-Max-2-Lin and CC-Max-
2-Sat respectively, the corresponding hardness results apply to the latter problems as well.

The constants βccvc and βcccut are calculated numerically and their estimated values match
the constants αcc2sat and αcccut, which are the approximation ratios for corresponding problems
achieved by the algorithm of Raghavendra and Tan [30]. We provide even stronger evidence
that these constants match each other, by showing that βccvc and βcccut are calculated as minima
of the same functions used for calculating their counterparts αccvc and αcccut, but over a slightly
more restricted domain.

Moreover, in Section 3 we give refined statements of Theorem 1 and Theorem 2 which
describe inapproximability of these problems as a function of the cardinality constraint
q ∈ (0, 1), which specifies the fraction of variables that need to be set to true. For now, we
provide a visualization of these results in Figure 1.

Overview of proof ideas

The main observation behind the hardness results is that the reduction used to prove hardness
of approximation for the Independent Set and Vertex Cover problems in bounded degree
graphs [5] gives very strong soundness guarantees. In particular it shows that in the “no”
case of the reduction, all induced subgraphs of the graph contain many edges, which in turn
gives useful upper bounds on the number of edges cut by a bipartition of a given size, or the
number of edges covered by a subgraph. This is also how [25] obtained the previous hardness
of ≈ 0.944 for Max-k-VC. Thus our results use essentially the same reduction as [5] (which
is in turn similar to the reduction for Max-Cut [21]). Note however that even though the
graph produced by that reduction has a small vertex cover in the “yes” case, using that small
vertex cover is not necessarily the best solution for the Max-k-VC problem on the graph. In
particular for q < 1/2, it makes more sense to instead use the large independent set as the
Max-k-VC solution in the yes case (the intuition being that since it is independent, it covers
many edges relative to its size).

Another difference is that we have somewhat greater flexibility in choosing the noise
distribution of our “dictatorship test” (the key component of essentially all UG-hardness
results) The reason is that for Independent Set/Vertex Cover, the reduction needs “perfect
completeness”, i.e., in the “yes” case it needs to produce graphs with large independent

P. Austrin and A. Stanković 24:5

sets/small vertex covers, whereas for e.g. Max-k-VC we are perfectly happy with graphs
where there are sets of size k covering many, but not necessarily all, edges. This increased
flexibility turns out to improve the hardness ratios for some range of the cardinality constraint
q. For example, for the CC-Max-Cut problem with q = 1/2, this allows us to recover the
αGW -hardness for the Max-Bisection problem using the same reduction. However, at q
further away from 1/2, and in particular at the local minima in Figure 1, it turns out that
this flexibility does not help. Thus in the global minimum at q ≈ 0.365 for Max-k-VC,
the reduction outputs a graph with a large independent set containing a q fraction of the
vertices, and choosing that independent set is the optimal solution for the Max-k-VC instance.
Similarly, at the local minimum with q > 1/2, the optimal solution to the Max-k-VC instance
in the yes case is to pick an actual vertex cover of size q, and this point of the curve
corresponds exactly to the hardness of 0.944 from [25].

Organization

This paper is organized as follows. In Section 2 we fix the notation, recall some well-
known facts, and formally introduce the problems of interest. In Section 3 we give our
improved inapproximability results. In Section 4 we give a brief overview of the algorithm
of Raghavendra and Tan [30] in order to observe that the hardness ratios we get match
the approximation ratios of the algorithm. Finally, in Section 5 we propose some possible
directions for future research.

2 Preliminaries

2.1 Notational Conventions
In this paper we work with undirected (multi)graphs G = (V,E). For a set S ⊆ V of vertices
we use Sc to denote its complement Sc = V \S, and write U tV for a disjoint union of sets U
and V . The graphs are both edge and vertex weighted and the weights of vertices and edges
are given by functions w : V → [0, 1], and w : E → [0, 1]. For subsets S ⊆ V and K ⊆ E we
interpret w(S) and w(K) as the sum of weights of vertices contained in S and edges in K,
respectively. Furthermore, weights are normalized so that w(V) = w(E) = 1 and the weight
of each vertex equals half the weight of all edges adjacent to it. Therefore, the weights of
edges and vertices can be interpreted as probability distributions, and sampling a vertex
with probability equal to its weight is the same as sampling an edge and then sampling one
of its endpoints with probability 1/2. For S, T ⊆ V , we write w(S, T) for the total weight of
edges from E which have one endpoint in S, and other in T . Note that, since we work with
undirected graphs, the order of endpoints is not important, and therefore w(S, T) = w(T, S).
In other words, the weight of an edge e = (u, v) contributes to w(S, T) if either (u, v) ∈ T ×S
or (u, v) ∈ S × T . We also have the identity

w(S, V) = w(S) + 1
2w(S, Sc). (1)

The set of all neighbours of a vertex v including v is denoted by N(v), and the set of all
neighbours of a set S ⊆ V including S is denoted by N(S). Let us also introduce the following
definition.

I Definition 3. A graph G is (q, ε)-dense if every subset S ⊆ V with w(S) = q satisfies
w(S, S) ≥ ε.

APPROX/RANDOM 2019

24:6 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

We use φ(x) = 1√
2π e
−x2/2 to denote the density function of a standard normal random

variable, and Φ(x) =
∫ x
−∞ φ(y)dy to denote its cumulative distribution function (CDF).

We also work with bivariate normal random variables, and to that end introduce the
following function.

I Definition 4. Let ρ ∈ [−1, 1], and consider two jointly normal random variables X,Y with

mean 0 and covariance matrix Cov(X,Y) =
[
1 ρ

ρ 1

]
. We define Γρ : [0, 1]2 → [0, 1] as

Γρ(x, y) = Pr
[
X ≤ Φ−1(x) ∧ Y ≤ Φ−1(y)

]
.

We also write Γρ(x) = Γρ(x, x). We have the following basic lemma (for a proof see
Appendix A of [4]).

I Lemma 5. For every ρ ∈ [−1, 1], and every x, y ∈ [0, 1], we have

Γρ(x, y) = Γρ(1− x, 1− y)− 1 + x+ y.

2.2 Problem Definitions
This paper is concerned with Max-Cut, Max-2-Lin, Max-2-Sat, and Max-k-VC problems with
cardinality constraints. Let us give the definitions of these problems as integer optimization
programs now. In these definitions instead of {0, 1} we represent Boolean domain as {−1, 1},
and for that reason instead of cardinality constraint q we consider a balance constraint
r = 1− 2q.

I Definition 6. An instance F of the cardinality constrained Max-2-Lin (CC-Max-2-Lin)
problem with balance constraint r ∈ (−1, 1) over variables X = {x1, . . . , xn} taking values in
{−1, 1} is given by the following integer optimization program

max
∑

(i,j)=e`∈E

1 + P`xixj
2 ,

s.t.
∑
i∈V

xi = nr,

where P` ∈ {−1, 1} and the term (1+P`xixj)/2 corresponds to the XOR constraint xixj = P`.
In case P` = −1 for all `, the integer optimization program is an instance of CC-Max-
Cut problem.

I Definition 7. An instance F of the cardinality constrained Max-2-Sat (CC-Max-2-Sat)
problem with balance constraint r ∈ (−1, 1) over variables X = {x1, . . . , xn} taking values in
{−1, 1} is given by the following integer optimization program

max
∑

(i,j)=e`∈E

3 + P 1
` xi + P 2

` xj + P 3
` xixj

4 ,

s.t.
∑
i∈V

xi = nr,

where (P 1
` , P

2
` , P

3
`) ∈ {(−1,−1,−1), (1,−1, 1), (−1, 1, 1), (1, 1,−1)} corresponds to one of

the four possible clauses

xi ∨ xj , ¬xi ∨ xj , xi ∨ ¬xj , ¬xi ∨ ¬xj .

In case (P 1
` , P

2
` , P

3
`) = (−1,−1,−1) for all `, the integer optimization program is an instance

of Max-k-VC problem.

P. Austrin and A. Stanković 24:7

The objective in the problems given by Definitions 6 and 7 is to find an assignment
z : X → {−1, 1} which satisfies a (hard) global cardinality constraint and maximizes the
number of satisfied soft constraints represented by the objective function. For an assignment
z that satisfies global constraint of an instance F we use Valz(F) to denote the value of the
objective function under the assignment z. Furthermore, we use

OptVal(F) = max
z : X→{−1,1}∑
x∈X

z(x)=rn

Valz(F)

to denote the maximum value of the objective function over all assignments z satisfying the
cardinality constraint.

The starting point of the hardness results in this paper is the Unique Games problems,
which is defined as follows.

I Definition 8. A Unique Games instance Λ = (U ,V, E ,Π, [L]) consists of an unweighted
bipartite multigraph (U t V, E), a set Π = {πe : [L] → [L] | e ∈ E and πe is a bijection}
of permutation constraints, and a set [L] of labels. The value of Λ under the assignment
z : U t V → [L] is the fraction of edges satisfied, where an edge e = (u, v), u ∈ U , v ∈ V is
satisfied if πe(z(u)) = z(v). We write Valc(Λ) for the value of Λ under z, and Opt(Λ) for
the maximum possible value over all assignments z.

The Unique Games Conjecture [20] can be formulated as follows ([22], Lemma 3.4).

I Conjecture 9 (Unique Games Conjecture). For every constant γ > 0 there is a sufficiently
large L ∈ N, such that for a Unique Games instance Λ = (U ,V, E ,Π, [L]) with a regular
bipartite graph (U t V, E), it is NP-hard to distinguish between

Opt(Λ) ≥ 1− γ,
Opt(Λ) ≤ γ.

2.3 Analysis of Boolean Functions
One of the ubiquitous tools in the hardness of approximation area is Fourier analysis of
Boolean functions. We now recall some of the well-known facts which are used in the paper.
For a more detailed study, we refer to [27].

For q ∈ [0, 1] and n ∈ N we write πq : {0, 1} → [0, 1] for the probability distribution
given by πq(1) = q, πq(0) = 1 − q. We also write π⊗nq for the probability distribution on
n-bit strings x ∈ {0, 1}n where each bit is distributed according to πq, independently. We
use L2(π⊗nq) to denote the space of random variables f : {0, 1}n → R over the probability
space

(
{0, 1}n, P ({0, 1}n), π⊗nq

)
, and interpret E[f] and Var[f] as expectation and variance

of f(X) when the X is drawn from π⊗nq . Depending on context, the elements of L2(π⊗nq)
will be interpreted as functions as well.

Let us now introduce some of the common objects used in the study of Boolean functions.

I Definition 10. Consider a function f ∈ L2(π⊗nq) and i ∈ {1, . . . , n}. The influence Inf i[f]
of the i-th argument on f is defined as

Inf i[f] = Ex∼π⊗nq [Varx̃i∼πq [f(x1, . . . , xi−1, x̃i, xi+1, . . . , xn)]].

Minimal correlation between two q-biased bits is max(−q/(1 − q),−(1 − q)/q). For
notational convenience, let us introduce the function κ which assigns to each value q ∈ (0, 1)
an interval I ⊆ (−1, 0) as

κ(q) =

[−q/(1− q), 0), if q < 1/2,
(−1, 0), if q = 1/2,
[−(1− q)/q, 0), if q > 1/2.

APPROX/RANDOM 2019

24:8 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

I Definition 11. For a fixed x ∈ {0, 1}, q ∈ (0, 1) and ρ ∈ κ(q) we write y ∼ Nρ(x) to indicate
that y is a ρ-correlated copy of x. In particular each bit yi is equal to 1 with probability
q + ρ(1− q) if xi = 1, and yi = 1 with probability q − ρq when xi = 0, independently.

I Definition 12. Consider q ∈ (0, 1) and ρ ∈ κ(q). The noise operator Tρ : L2(π⊗nq) →
L2(π⊗nq) is defined as

Tρf(x) = Ey∼Nρ(x)[f(y)].

The following lemma gives a useful bound on the number of influential variables of Tρf .

I Lemma 13. Consider q ∈ (0, 1), a function f ∈ L2(π⊗nq), and ρ ∈ κ(q). Then, for any
τ > 0 we have that

|{i ∈ [n] | Inf i[Tρf] ≥ τ}| ≤ Var[f]
τe ln(1/|ρ|) .

For a proof we refer to Lemma 3.4 of [15]. We also need to introduce the notion of noise
stability, defined as follows.

I Definition 14. Let q ∈ (0, 1), ρ ∈ κ(q) and f ∈ L2(π⊗nq). The noise stability of function f
at ρ is defined as

Sρ = E[f · Tρf].

Let us also recall the following variant of the “Majority is Stablest” theorem in the form
that appeared in [5], and which follows from Theorem 3.1 in [10].

I Theorem 15. Let q ∈ (0, 1) and ρ ∈ κ(q). Then for any ε > 0, there exist τ > 0 and δ > 0
such that for every function f ∈ L2(π⊗nq), f : {−1, 1}n → [0, 1] that satisfies

max
i∈[n]

Inf i[T1−δf] ≤ τ,

we have

Sρ(f) ≥ Γρ(E[f])− ε.

3 Hardness Reduction

In this section we give our main hardness reduction. As discussed in the introduction, it is a
generalization of the reduction of Theorem III.1 from [5].

I Theorem 16. For every q ∈ (0, 1), ε > 0, and ρ ∈ κ(q), there exists a γ > 0 and a reduction
from Unique Games instances Λ = (U ,V, E ,Π, [L]) to weighted multigraphs G = (V,E) with
the following properties:

Completeness: If Opt(Λ) ≥ 1 − γ, then there is a set S ⊆ V such that w(S) = q and
w(S, Sc) ≥ 2q(1− q)(1− ρ)− 2γ.
Soundness: If Opt(Λ) ≤ γ, then for every r ∈ [0, 1], G is (r,Γρ(r)− ε)-dense.

Moreover, the running time of the reduction is polynomial in |U|, |V|, |E|, and exponential in L.

Proof. Let ν : {0, 1}2 → [0, 1] be the probability distribution over two ρ-correlated q-biased
bits. In other words, letting t = (q − q2)(1− ρ), we have

ν(0, 0) = 1− q − t, ν(0, 1) = ν(1, 0) = t, ν(1, 1) = q − t.

P. Austrin and A. Stanković 24:9

Let us now describe how the multigraph G can be constructed from Λ. We define the
vertex set of G to be V = V × {0, 1}L = {(v, x) | v ∈ V, x ∈ {0, 1}L}. In particular, for every
vertex v ∈ V we create 2L vertices of G, which we identify with L-bit strings in {0, 1}L. We
also write vx for a vertex (v, x) of the graph G. The weights of vertices in G are given by

w(vx) = 1
|V|

π⊗Lq (x). (2)

The edges of G are constructed in the following way. For every u ∈ U , and for every two
v1, v2 ∈ N(u), we create an edge between vertices vx1 , v

y
2 with weight

1
|U|D2 ν

⊗L(x ◦ πe1 , y ◦ πe2), where e1 = (u, v1), e2 = (u, v2).

Expressed formally, the edge set E is

E = {(ex1 , e
y
2) | e1 = (u, v1), e2 = (u, v2), u ∈ U , v1, v2 ∈ V, x, y ∈ {0, 1}L}.

Since the marginal of the distribution ν over either the first or the second argument is a
q-biased distribution on {0, 1}L, the weight of all edges adjacent to a vertex vx equals two
times the weight of the vertex vx. Furthermore, it is trivial to check that w(V) = w(E) = 1.
The number of vertices in G is |V|2L, and the number of edges is |U|D22L, so the construction
is indeed polynomial in |U|, |V| and |E|.

Let us now prove completeness and soundness.
Completeness: Since Opt(Λ) ≥ 1 − γ, there is a labeling z : U t V → [L] such that

Valz(Λ) ≥ 1− γ. Consider a set S given by

S = {vx ∈ V | xz(v) = 1}.

The weight of the set S is obviously q. Let us consider a set consisting of pairs of edges in E
which have a common vertex in U , i.e. the set

Ê = {(e1, e2) ∈ E × E | e1 = (u, v1), e2 = (u, v2), u ∈ U , v1, v2 ∈ V},

and its subset Êgood consisting of edge pairs which are satisfied under the assignment z, or
formally

Êgood = {(e1, e2) ∈ Ê | e1 = (u, v1), e2 = (u, v2), z(u) = π−1
e1

(z(v1)) = π−1
e2

(z(v2))},

Since at least fraction 1− γ of edges in E are satisfied under z, at least fraction (1− γ)2 of
edge pairs in Ê is satisfied under z, i.e. |Êgood| ≥ (1−γ)2|Ê|. For every (e1, e2) ∈ Êgood, e1 =
(u, v1), e2 = (u, v2), the edges between S and Sc created through the pair of edges (e1, e2)
have the total weight of

1
|U|D2 Pr

(x,y)∼ν⊗L

[
(x ◦ πe−1

1
)z(v1) 6= (y ◦ πe−1

2
)z(v2)

]
= 1
|U|D2 Pr

(x,y)∼ν⊗L

[
xz(u) 6= yz(u)

]
= 1
|U|D2 (ν(0, 1) + ν(1, 0)) = 1

|U|D2 2t.

Therefore, we have w(S, Sc) ≥ 2t(1− γ)2 ≥ 2q(1− q)(1− ρ)− 2γ.
Soundness: Let us assume by contradiction that G is not (r,Γρ(r)− ε)-dense, and

therefore that there is a set S ⊆ V of weight w(S) = r for which w(S, S) < Γρ(r)− ε. For
each v ∈ V , let us define a function Sv ∈ L2(π⊗Lq) to be the indicator function of S restricted

APPROX/RANDOM 2019

24:10 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

to the vertex v. In particular, we have that Sv(x) = 1 if and only if vx ∈ S. Furthermore,
for all u ∈ U let us define Su ∈ L2(π⊗Lq) as

Su(x) = E
e=(u,v),
v∈N(u)

[Sv(x ◦ π−1
e)].

We have that

w(S, S) = E
u∈U,

e1=(u,v1),e2=(u,v2)
v1,v2∈N(u)

[
E

(x,y)∼ν⊗L
[Sv1(x ◦ π−1

e1
)Sv2(y ◦ π−1

e2
)]
]

= E
u∈U,

(x,y)∼ν⊗L

 E
e1=(u,v1),e2=(u,v2)

v1,v2∈N(u)

[Sv1(x ◦ π−1
e1

)Sv2(y ◦ π−1
e2

)]

= E
u∈U

[
E

(x,y)∼ν⊗L
[Su(x)Su(y)]

]
= E
u∈U

[
E

x∼π⊗Lq
[Su(x)TρSu(x)]

]
= E
u∈U

[Sρ(Su)].

Let us define µu = Ex∼π⊗Lq [Su(x)], and remark that due to regularity of Λ we have
Eu∈U [Su] = r. We claim that there is a set U ′ ⊆ U , |U ′| ≥ ε|U|/2 such that for every
u ∈ U ′ we have Sρ(Su) < Γρ(µu)− ε/2. Otherwise, we reach a contradiction by noticing that

Γρ(r)− ε > w(S, S) = E
u∈U

[Sρ(Su)] ≥ (1− ε/2)
(

E
u∈U

[Γρ(µu)]− ε/2
)

≥ E
u∈U

[Γρ(µu)]− ε ≥ Γρ(r)− ε,

where in the last inequality we used the fact that Γρ is convex.
By Theorem 15 there is τ > 0 and δ > 0 such that for every u ∈ U ′ there is a significant

coordinate i ∈ [L] for which Inf i[T1−δSu] ≥ τ . For each u ∈ U ′ and for its significant
coordinate i, by using the fact that Inf i is convex and Markov’s inequality we conclude that
for at least τ/2 of v ∈ N(u) we have

Infπe(i)[T1−δSv] ≥ τ/2, e = (u, v).

For each v ∈ V let [L]v ⊆ [L] denote a set of labels defined by

[L]v = {i ∈ [L] | Inf i[T1−δSv] ≥ τ/2}.

By Lemma 13 we have that |[L]v| ≤ 2
τe ln(1/(1−δ)) . Let us now pick an assignment z : U tV →

[L] of Λ using the following randomized procedure. For each v ∈ V, pick i ∈ [L]v randomly,
and set z(v) = i. If [L]v = ∅, we pick i ∈ [L] randomly. Then, for each u ∈ U , we set z(u) = i

for the i that maximizes the number of edges satisfied. From the previous discussion we
conclude that this labeling satisfies Ω

(
ετ4 ln2(1/(1− δ))

)
of constraints of Λ in expectation.

But since this constant does not depend on γ this would be a contradiction if we started
with a sufficiently small γ. J

3.1 Hardness for CC-Max-Cut
Now that we have proven Theorem 16, it is straightforward to prove the following theorem
which gives a hardness result of CC-Max-Cut.

P. Austrin and A. Stanković 24:11

I Theorem 17. For any q ∈ (0, 1) and ρ ∈ κ(q) it is UG-hard to approximate CC-Max-Cut
with cardinality constraint q within βcccut(q, ρ) + ε where ε > 0 is arbitrary small and βcccut(q, ρ)
is given by

βcccut(q, ρ) = 1− Γρ(q)− Γρ(1− q)
2(q − q2)(1− ρ) .

Proof. By Theorem 16 there exists a family of multigraphs G = (V,E) for which it is
UG-hard to decide between the following two statements:

There is a set S ⊆ V,w(S) = q, such that w(S, Sc) ≥ 2q(1− q)(1− ρ)− 2γ.
For any r ∈ [0, 1] and every set T ⊆ V,w(T) = r we have w(T, T) ≥ Γρ(r)− ε.

The second statement implies that for any S ⊆ V,w(S) = q, we have w(S, Sc) = w(V, V)−
w(S, S)− w(Sc, Sc) ≤ 1− Γρ(q)− Γρ(1− q) + 2ε. Therefore, by setting γ sufficiently small
this shows UG-hardness of approximating CC-Max-Cut with cardinality constraint q within

1− Γρ(1− q)− Γρ(q)
2q(1− q)(1− ρ) + 2ε,

where ε > 0 is arbitrarily small. This reduction yields a weighted graph, which can be
easily converted into an unweighted multigraph, using e.g. a simple reduction from Step 1 of
Theorem 4.1. in [5]. J

3.2 Hardness for Max-k-VC
Next we give the hardness result for Max-k-VC.

I Theorem 18. Consider q ∈ (0, 1) and let ρ ∈ κ(q). Then, it is UG-hard to approximate
Max-k-VC with cardinality constraint q within βccvc(q, ρ) + ε where ε > 0 is arbitrary small
and βccvc(q, ρ) is given by

βccvc(q, ρ) = 1− Γρ(1− q)
q(1 + (1− q)(1− ρ)) .

Proof. As we have shown in Theorem 16, there is a family of multigraphs G = (V,E) for
which it is UG-hard to decide between the following two statements:

There is a set S ⊆ V,w(S) = q, such that w(S, Sc) ≥ 2q(1− q)(1− ρ)− 2γ.
For any r ∈ [0, 1] and every set T ⊆ V,w(T) = r we have w(T, T) ≥ Γρ(r)− ε.

By (1), the first item implies that w(S, V) = q(1 + q(1 − q)(1 − ρ)) − γ. The second
statement implies that for any S ⊆ V,w(S) = q, we have w(S, V) = w(V, V)− w(Sc, Sc) ≤
1 − Γρ(1 − q) + ε. Therefore, by letting γ → 0 this shows UG-hardness of approximating
Max-k-VC with cardinality constraint q within

1− Γρ(1− q)
q(1 + (1− q)(1− ρ)) + ε,

where ε > 0 is arbitrarily small. As in the CC-Max-Cut case, this reduction yields a weighted
graph, which can be converted into an unweighted multigraph by using the reduction
from [5]. J

3.3 Hardness as a Function of the Cardinality Contraint
As we have concluded in Theorems 17 and 18, it is UG-hard to approximate CC-Max-Cut
and Max-k-VC with cardinality constraint q ∈ (0, 1) to within

βcccut(q) = inf
ρ∈κ(q)

βcccut(q, ρ), βccvc(q) = inf
ρ∈κ(q)

βccvc(q, ρ),

APPROX/RANDOM 2019

24:12 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

respectively. For a fixed q it is not clear for which ρ the functions βcccut(q, ·) and βccvc(q, ·)
are minimized. For the plots of the inapproximability curves in Figure 1, the optimization
over ρ was done numerically. Interestingly, numerical calculations show that the worst-case
value of the cardinality constraint q < 1/2 (the value of q at which the hardness ratio meets
the approximation ratio) is the same for Max-k-VC and CC-Max-Cut, and in particular
its value is q∗ ≈ 0.365. The value of the correlation parameter ρ for which this worst-case
hardness is achieved is extremal, i.e., ρ = −q∗/(1− q∗) ≈ −0.575. However, the local minima
at q > 1/2 in the two curves do not occur at the same value of q. For CC-Max-Cut the
curve is symmetric around 1/2 and the minimum occurs at 1− q∗ ≈ 0.635, but for the less
symmetric Max-k-VC problem it occurs at ≈ 0.574.

Furthermore, for all q ≤ q∗ and also for q > 1/2 greater than the respective local minimum,
the ρ minimizing both βcccut(q, ρ) and βccvc(q, ρ) is the minimum value of κ(q). On the other
hand, when q is close to 1/2, the best choice of ρ does not equal min κ(q). For example, when
q = 1/2, the hardness we obtain for CC-Max-Cut is the same as for the Max-Cut problem,
attained using the value ρ ≈ −0.689.

4 Approximation Algorithm

In this section we recall the algorithm of Raghavendra and Tan [30], somewhat reformulated
in order to obtain explicit expressions for the approximation ratios that match the hardness
results we obtain. We keep the exposition at a high level and skip over certain technical
details, and refer the reader interested in the details to [30] or the follow-up work [4].

In order to find a good approximation for NP-hard integer optimization problems given
in Definitions 6 and 7 we use semidefinite programming (SDP) relaxations. In particular,
we extend the domain of variables {xi}ni=1 from {0, 1} to vectors on an n-sphere, which we
denote by vi ∈ Sn. We also introduce a vector v0 ∈ Sn which represents the value false
(corresponding value is 1 in the integer program). Then, we replace xi by the scalar product
〈v0, vi〉 and xixj with 〈vi, vj〉. For example, the semidefinite relaxation of the CC-Max-Cut
program is given as

max
∑

(i,j)=e`∈E

1− 〈vi, vj〉
2 ,

s.t.
∑
i∈V
〈vi, v0〉 = rn.

Furthermore, since |xi − xj | ≤ |xi − xk|+ |xk − xj |, we also demand from the vectors vi
to satisfy the triangle inequalities ‖vi − vj‖2

2 ≤ ‖vi − v0‖2
2 + ‖v0 − vj‖2

2. In order to relax the
notation we define µi = 〈v0, vi〉, ρij = 〈vi, vj〉, and write triangle inequalities as

µi + µj + ρij ≥ −1, µi − µj − ρij ≥ −1,
−µi + µj − ρij ≥ −1, −µi − µj + ρij ≥ −1.

The triples (µ1, µ2, ρ) satisfying triangle inequalities will be called configurations. We denote
the set of all configurations as Conf ⊆ [−1, 1]3. We can solve a semidefinite program up
to desired accuracy in polynomial time. Then, the main challenge is finding a rounding
algorithm which translates the vectors {vi}ni=0 back to {−1, 1} so that they satisfy the
balance constraint, and such that the rounding does not incur a big loss in the objective
value. Raghavendra and Tan used a randomized rounding procedure, which rounds vectors

P. Austrin and A. Stanković 24:13

{vi}ni=0 to ±1 integers {yi}ni=1 in the following way. First, let us define wi = vi − µiv0, and
let2 wi = wi/‖wi‖. Then, we draw a vector g from the Gaussian distribution N (0, In+1) and
set the values of yi as

yi =
{

1 if 〈g, wi〉 ≥ Φ−1 (1−µi
2
)
,

−1 otherwise.

It is trivial to check that E[yi] = µi, so we have E
[
n∑
i=1

yi

]
= rn, and therefore the solution

{yi}ni=1 satisfies the balance constraint in expectation. Furthermore, as shown in [30], using
additional levels of the Lasserre hierarchy we can guarantee that with probability 1 − δ
the sampled solution {yi}ni=1 is O(δ)-far away from satisfying the balance constraint, where
δ > 0 can be chosen arbitrarily small. Therefore, we can change the values of at most O(δ)n
variables yi to get a solution yi exactly satisfying the balance constraint, while losing only
an additional small factor O(δ) in the objective value. Thus, it is sufficient to show that the
objective value of the yi’s is large.

Consider now the SDP relaxation for any of the integer programs F given in either
Definition 6 or Definition 7, and let SDPVal(F) be the optimal value of the SDP relaxation
for the instance F . We have that SDPVal(F) ≥ OptVal(F). Finally, let us define RndVal(F)
to be the expectation of the value of the objective function after randomized rounding
procedure. The analysis of the approximation ratio for the algorithm boils down to proving
RndVal(F) ≥ α SDPVal(F), where α is a constant that depends on the problem of interest.
The way to calculate α is to look at the loss incurred by rounding at each constraint. Let us
now show how this can be done for the CC-Max-Cut problem.

The expected value of each constraint 1−xixj
2 after rounding the SDP solution of CC-

Max-Cut problem is 1−E[yiyj]
2 , and therefore at each constraint the loss factor incurred by

rounding is given as

1−E
[
yiyj

]
2 · 1

(1− 〈vi, vj〉)/2
.

Thus, in order to calculate the approximation ratio, we need to bound this expression
from below. Let us first note that

E[y1y2] = 4Γρ
(

1− µ1

2 ,
1− µ2

2

)
+ µ1 + µ2 − 1,

where ρ is given as

ρ = ρ− µ1µ2√
1− µ2

1
√

1− µ2
2
.

Then, the approximation ratio is lower bounded by the quantity αcccut defined as the solution
of the optimization problem

αcccut = min
(µ1,µ2,ρ)∈Conf

2− 4Γρ
(1−µ1

2 , 1−µ2
2
)
− µ1 − µ2

1− ρ .

2 We assume that ‖wi‖ 6= 0, since we can introduce a small perturbation to the values vi without affecting
the objective value too much.

APPROX/RANDOM 2019

24:14 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

Computing αcccut is a hard global optimization problem, and therefore we resort to numerical
computations to estimate it (we remark that the same approach is taken for a similar function
in [23] and [3]). Extensive numerical experiments show that the minimum is attained at
µ1 = µ2 = µ, while the ρ is on the boundary of the polytope Conf , ρ = −1 + 2|µ|. More
precisely, the minimum is attained at µ ≈ 0.27, and ρ ≈ −0.575, and it has a value of
approximately 0.858.

Assuming that the minimum is attained at the configuration of the form (µ, µ,−1+2µ), µ >
0, constant αcccut can be found as the minimum of a function

1− 2Γρ
(1−µ

2 , 1−µ
2
)
− µ

1− µ ,

where µ ∈ (0, 1). If we introduce q = (1− µ)/2, we can reexpress this function as

αcccut(q) = 2q − 2Γρ (q)
2q = 1− Γρ (q)− Γρ (1− q)

2q , q ∈ (0, 1/2),

where in the last equality we used Lemma 5. Furthermore, ρ = −q/(1− q). Similar analysis
for CC-Max-2-Lin shows that the approximation ratio is the minimal value of the same
function.

Straightforward calculations show that βcccut(q,−q/(1− q)) from Theorem 17 equals the
value of αcccut(q). Therefore, under the (mild) assumption that worst-case configurations
indeed take the special form as explained above, our hardness result is sharp and the algorithm
for CC-Max-Cut of Raghavendra and Tan is optimal on general instances of CC-Max-Cut /
CC-Max-2-Lin.

In completely analogous way, we can conclude that the approximation ratio for CC-
Max-2-Sat and Max-k-VC problems can be calculated as the minimum of the following
function

αcc2sat(q) = 1− Γρ(1− q)
2q , q ∈ (0, 1/2),

where ρ = −q/(1 − q). Numerical experiments show that αcc2sat ≈ 0.929, and that the
minimum is attained at q ≈ 0.365.

Again we have that the corresponding hardness expression from Theorem 18 satisfies
βccvc(q,−q/(1− q)) = αcc2sat(q), implying (under the assumption on worst-case configurations)
that the algorithm for CC-Max-2-Sat of Raghavendra and Tan is optimal.

5 Conclusion and Some Open Questions

We studied some of the cardinality constrained 2-CSPs, and assuming the Unique Games
Conjecture derived hardness results which show that approximation ratios achieved by the
algorithm described in [30] are optimal for CC-Max-2-Sat (and its special case Max-k-VC)
and CC-Max-2-Lin (and its special case CC-Max-Cut). It would be interesting to derive
UG-hardness for related CC-Max-CSPs of arity 2, most interestingly for the Max-k-DS
problem. While super-constant hardness for Max-k-DS is currently known under the closely
related Small-Set Expansion Hypothesis [29], it is not yet known whether the UGC implies
hardness of Max-k-DS.

We also think it would be valuable to study whether we can achieve better approxima-
tion ratios or derive stronger hardness results for CC-Max-2-CSP with fixed values of the
cardinality constraint q. Can the hardness curves of Theorem 17 and Theorem 18 depicted
in Figure 1 be matched algorithmically for every q?

P. Austrin and A. Stanković 24:15

Another interesting research direction would be to come up with hardness results for some
other well-know Max-CSPs like Max-3-Sat, or even more ambitiously to extend the results of
Raghavendra [28] and obtain tight hardness for all cardinality-constrained Max-CSPs.

References
1 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof

Verification and Hardness of Approximation Problems. In 33rd Annual Symposium on Found-
ations of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October 1992, pages 14–23,
1992. doi:10.1109/SFCS.1992.267823.

2 Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs; A New Characterization of
NP. In 33rd Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania,
USA, 24-27 October 1992, pages 2–13, 1992. doi:10.1109/SFCS.1992.267824.

3 Per Austrin. Balanced max 2-sat might not be the hardest. In Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007,
pages 189–197, 2007. doi:10.1145/1250790.1250818.

4 Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better Balance by Being Biased:
A 0.8776-Approximation for Max Bisection. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 277–294, 2013. doi:10.1137/1.9781611973105.21.

5 Per Austrin, Subhash Khot, and Muli Safra. Inapproximability of Vertex Cover and Independent
Set in Bounded Degree Graphs. Theory of Computing, 7(1):27–43, 2011. doi:10.4086/toc.
2011.v007a003.

6 Markus Bläser and Bodo Manthey. Improved Approximation Algorithms for Max-2SAT
with Cardinality Constraint. In Algorithms and Computation, 13th International Symposium,
ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, Proceedings, pages 187–198,
2002. doi:10.1007/3-540-36136-7_17.

7 Joshua Brakensiek, Sivakanth Gopi, and Venkatesan Guruswami. CSPs with Global Modular
Constraints: Algorithms and Hardness via Polynomial Representations. Electronic Colloquium
on Computational Complexity (ECCC), 26:13, 2019. URL: https://eccc.weizmann.ac.il/
report/2019/013.

8 Andrei A. Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 319–330, 2017. doi:10.1109/FOCS.2017.37.

9 Andrei A. Bulatov and Dániel Marx. The complexity of global cardinality constraints. Logical
Methods in Computer Science, 6(4), 2010. doi:10.2168/LMCS-6(4:4)2010.

10 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional Hardness for Approximate Coloring.
SIAM J. Comput., 39(3):843–873, 2009. doi:10.1137/07068062X.

11 Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidefinite programs.
J. Algorithms, 60(1):1–23, 2006. doi:10.1016/j.jalgor.2004.11.003.

12 Alan M. Frieze and Mark Jerrum. Improved Approximation Algorithms for MAX k-CUT and
MAX BISECTION. Algorithmica, 18(1):67–81, 1997. doi:10.1007/BF02523688.

13 Michel X. Goemans and David P. Williamson. .879-approximation algorithms for MAX
CUT and MAX 2SAT. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, pages 422–431, 1994.
doi:10.1145/195058.195216.

14 Venkatesan Guruswami and Euiwoong Lee. Complexity of Approximating CSP with
Balance / Hard Constraints. Theory Comput. Syst., 59(1):76–98, 2016. doi:10.1007/
s00224-015-9638-0.

15 Venkatesan Guruswami, Rajsekar Manokaran, and Prasad Raghavendra. Beating the Ran-
dom Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph. In 49th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA, USA, pages 573–582, 2008. doi:10.1109/FOCS.2008.51.

APPROX/RANDOM 2019

https://doi.org/10.1109/SFCS.1992.267823
https://doi.org/10.1109/SFCS.1992.267824
https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1137/1.9781611973105.21
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.4086/toc.2011.v007a003
https://doi.org/10.1007/3-540-36136-7_17
https://eccc.weizmann.ac.il/report/2019/013
https://eccc.weizmann.ac.il/report/2019/013
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.2168/LMCS-6(4:4)2010
https://doi.org/10.1137/07068062X
https://doi.org/10.1016/j.jalgor.2004.11.003
https://doi.org/10.1007/BF02523688
https://doi.org/10.1145/195058.195216
https://doi.org/10.1007/s00224-015-9638-0
https://doi.org/10.1007/s00224-015-9638-0
https://doi.org/10.1109/FOCS.2008.51

24:16 Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

16 Eran Halperin and Uri Zwick. A unified framework for obtaining improved approximation
algorithms for maximum graph bisection problems. Random Struct. Algorithms, 20(3):382–402,
2002. doi:10.1002/rsa.10035.

17 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
doi:10.1145/502090.502098.

18 Thomas Hofmeister. An Approximation Algorithm for MAX-2-SAT with Cardinality Con-
straint. In Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary,
September 16-19, 2003, Proceedings, pages 301–312, 2003. doi:10.1007/978-3-540-39658-1_
29.

19 Howard J. Karloff and Uri Zwick. A 7/8-Approximation Algorithm for MAX 3SAT? In 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami Beach, Florida,
USA, October 19-22, 1997, pages 406–415, 1997. doi:10.1109/SFCS.1997.646129.

20 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 767–775, 2002. doi:10.1145/509907.510017.

21 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal Inapproximability
Results for MAX-CUT and Other 2-Variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.
doi:10.1137/S0097539705447372.

22 Subhash Khot and Oded Regev. Vertex Cover Might be Hard to Approximate to within 2-ε.
In 18th Annual IEEE Conference on Computational Complexity (Complexity 2003), 7-10 July
2003, Aarhus, Denmark, page 379, 2003. doi:10.1109/CCC.2003.1214437.

23 Michael Lewin, Dror Livnat, and Uri Zwick. Improved Rounding Techniques for the MAX
2-SAT and MAX DI-CUT Problems. In Integer Programming and Combinatorial Optimization,
9th International IPCO Conference, Cambridge, MA, USA, May 27-29, 2002, Proceedings,
pages 67–82, 2002. doi:10.1007/3-540-47867-1_6.

24 Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest k-
subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 954–961, 2017.
doi:10.1145/3055399.3055412.

25 Pasin Manurangsi. A Note on Max k-Vertex Cover: Faster FPT-AS, Smaller Approxim-
ate Kernel and Improved Approximation. In 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, pages 15:1–15:21, 2019.
doi:10.4230/OASIcs.SOSA.2019.15.

26 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295–341, 2010.
doi:10.4007/annals.2010.171.295.

27 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL:
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-
complexity-computer-algebra-and-computational-g/analysis-boolean-functions.

28 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/1374376.1374414.

29 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Leonard J. Schulman, editor, Proceedings of the 42nd ACM Symposium on Theory of
Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 755–764.
ACM, 2010. doi:10.1145/1806689.1806792.

30 Prasad Raghavendra and Ning Tan. Approximating CSPs with global cardinality constraints
using SDP hierarchies. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 373–387,
2012. URL: http://portal.acm.org/citation.cfm?id=2095149&CFID=63838676&CFTOKEN=
79617016, doi:10.1137/1.9781611973099.33.

https://doi.org/10.1002/rsa.10035
https://doi.org/10.1145/502090.502098
https://doi.org/10.1007/978-3-540-39658-1_29
https://doi.org/10.1007/978-3-540-39658-1_29
https://doi.org/10.1109/SFCS.1997.646129
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1109/CCC.2003.1214437
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.4230/OASIcs.SOSA.2019.15
https://doi.org/10.4007/annals.2010.171.295
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1806689.1806792
http://portal.acm.org/citation.cfm?id=2095149&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095149&CFID=63838676&CFTOKEN=79617016
https://doi.org/10.1137/1.9781611973099.33

P. Austrin and A. Stanković 24:17

31 Ran Raz. A Parallel Repetition Theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:
10.1137/S0097539795280895.

32 Thomas J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, pages 216–226, New York, NY,
USA, 1978. ACM. doi:10.1145/800133.804350.

33 Maxim Sviridenko. Best Possible Approximation Algorithm for MAX SAT with Cardinality
Constraint. Algorithmica, 30(3):398–405, 2001. doi:10.1007/s00453-001-0019-5.

34 Yinyu Ye. A .699-approximation algorithm for Max-Bisection. Math. Program., 90(1):101–111,
2001. doi:10.1007/PL00011415.

35 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 331–342, 2017. doi:10.1109/FOCS.2017.38.

APPROX/RANDOM 2019

https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1145/800133.804350
https://doi.org/10.1007/s00453-001-0019-5
https://doi.org/10.1007/PL00011415
https://doi.org/10.1109/FOCS.2017.38

Robust Appointment Scheduling with
Heterogeneous Costs
Andreas S. Schulz
Technische Universität München, Germany
andreas.s.schulz@tum.de

Rajan Udwani
Columbia University, New York, NY, USA
rudwani@alum.mit.edu

Abstract
Designing simple appointment systems that under uncertainty in service times, try to achieve both
high utilization of expensive medical equipment and personnel as well as short waiting time for
patients, has long been an interesting and challenging problem in health care. We consider a robust
version of the appointment scheduling problem, introduced by Mittal et al. (2014), with the goal of
finding simple and easy-to-use algorithms. Previous work focused on the special case where per-unit
costs due to under-utilization of equipment/personnel are homogeneous i.e., costs are linear and
identical. We consider the heterogeneous case and devise an LP that has a simple closed-form
solution. This solution yields the first constant-factor approximation for the problem. We also find
special cases beyond homogeneous costs where the LP leads to closed form optimal schedules. Our
approach and results extend more generally to convex piece-wise linear costs.

For the case where the order of patients is changeable, we focus on linear costs and show that
the problem is strongly NP-hard when the under-utilization costs are heterogeneous. For changeable
order with homogeneous under-utilization costs, it was previously shown that an EPTAS exists. We
instead find an extremely simple, ratio-based ordering that is 1.0604 approximate.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Discrete optimization; Theory of computation → Scheduling algorithms

Keywords and phrases Appointment scheduling, approximation algorithms, robust optimization

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.25

Category APPROX

Funding Andreas S. Schulz: Alexander von Humboldt Foundation (with funds from BMBF)
Rajan Udwani: ONR Grant N00014-17-1-2194, NSF Grant CMMI 1636046

Acknowledgements The authors would like to thank James B. Orlin for helpful discussions.

1 Introduction

Consider the problem of scheduling appointments in service operations where customers are
served sequentially by a single server. Service times of customers are uncertain, and we wish
to assign time slots for serving the customers in advance. An important practical setting
where this problem arises everyday is in health care services, where there are numerous
instances that require efficient scheduling of appointments, such as scheduling outpatient
appointments in primary care and specialty clinics, scheduling surgeries for operating rooms,
or appointments for MRI scans. Often in these settings the order in which patients undergo
the procedure is known in advance. Then a day before the procedures, a hospital manager
determines planned start times and how much time to allot to each procedure. If the manager
allots too small an interval to a procedure, it could easily go overtime and delay the next
procedure. The inconvenience and costs resulting from such a delay are referred to as the

© Andreas S. Schulz and Rajan Udwani;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 25; pp. 25:1–25:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.s.schulz@tum.de
mailto:rudwani@alum.mit.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Robust Appointment Scheduling with Heterogeneous Costs

overage cost for that procedure. On the contrary, if the manager assigns a very large interval,
then the procedure will likely end much sooner. In this case the hospital incurs an underage
cost as the equipment and personnel may be left idle until the scheduled start of the next
procedure. We would like to design an appointment schedule that can achieve the desired
trade-off between overage and underage costs.

In an influential survey on outpatient scheduling, Cayirli and Veral [6] concluded that the
“biggest challenge for future research will be to develop easy-to-use heuristics”. Traditionally,
most models for the problem are stochastic in nature and assume distributional knowledge
of the uncertain service times. While such models are very powerful, estimating distributions
accurately can require large amounts of data. There are many settings where such data is
in fact available but, in applications related to health care appointment scheduling there
is evidence (ref. [17, 18, 8]) that the amount of data available by surgery types, let alone
by surgery types and surgeons, is extremely limited. Moreover, computing an objective
function that involves finding the expectation of a high dimensional non-linear function can
be computationally burdensome. Further, Mak et al. [18] and Mittal et al. [20] point out
that methods proposed for solving stochastic models often use sophisticated subroutines,
such as submodular function minimization and Monte-Carlo techniques, that may not always
be practical. Robust optimization (e.g., [4, 5, 3]) offers an alternative framework to address
uncertainty that avoids distributional assumptions. Instead, it uses deterministic uncertainty
sets and performs a worst-case analysis w.r.t. to the uncertainty. This addresses the problems
arising out of insufficient data and often these models are more tractable.1 Indeed, for the
case of appointment scheduling, Mittal et al. [20] introduced the following robust formulation
for the problem.

Referring to the procedures/services in any given context simply as “jobs”, in the robust
appointment scheduling problem we are given n jobs with uncertain service times {ti}.
Assume that the time ti for job i can be anything in the range [pi − δ̂i, pi + δi]. The range
is known to us but the value of ti can be chosen adversarially. Our task is to propose an
appointment start time for each job. A job will be available to process after this start
time and jobs will be served in order of increasing index i. The order in which jobs are
processed is fixed a priori. Due to uncertainty in service times, a job may have to wait to be
processed after its appointed start time. The overage cost incurred per unit of wait is given
by oi ≥ 0. Similarly, ui ≥ 0 is the per-unit underage cost associated with job i. Given a set
of appointment start times, an adversary chooses the worst possible instantiation of service
durations ti i.e., one that maximizes the overall overage/underage cost. We seek start times
to minimize this worst case total cost.

Mittal et al. [20] found closed-form optimal solutions for the special case of homogeneous
underage costs i.e., ui = u for all jobs i. We study more general cases2, where a direct
generalization of their solution can be arbitrarily bad. Our central goal here is to find simple,
easy to implement, and theoretically well founded algorithms. In the following we summarize
our contributions and discuss closely related work.

1 Sometimes at the expense of being too conservative.
2 Arguably, just as processing times and uncertainty vary across procedures, so can personnel and

equipment. Thus, in general the per-unit underage costs will vary across procedures. Moreover, it is
also reasonable to assume that the per-unit cost changes with the amount of underage/overage. For
instance, keeping patients waiting for another unit of time becomes less and less desirable with every
unit of delay. This prompts the study of piece-wise linear overage and underage costs.

A. S. Schulz and R. Udwani 25:3

Robust Appointment Scheduling (RAS). We explore the structure of optimal appointment
schedules and find several properties that all optimal schedules must satisfy. Somewhat
surprisingly, we find that in every optimal appointment schedule, the case of all jobs underaged
as well as the case of all jobs overaged are always worst-cases for the adversary’s problem.
Casting these in the form of linear (in)equalities gives an LP, resulting in a 2-approximation.
Further simplification yields a closed-form solution to the LP that could be implemented
even on a spreadsheet. More generally, when the per-unit costs are allowed to change with
the amount of overage/underage and the cost functions are piece-wise linear and convex
(and non-decreasing), we are able to generalize these properties to obtain a 2-approximation
for the problem via solving a min-cost flow problem on a graph with convex piece-wise
linear arc costs.

Previously, Mittal et al. [20] examined the special case of identical underage costs and,
quite remarkably, found a closed-form optimal solution in that case. While their analysis
was tailored for the special case, our different approach allows us to characterize exactly
when such a result holds, and we discover more general conditions under which there exists a
closed-form optimal solution to the problem. We also show a similar extension for the case
of convex piece-wise linear costs, where we give a simple iterative algorithm that gives an
optimal allocation under additional assumptions on the cost functions.

Robust Appointment Scheduling and Ordering (RASO). While the order of patients is
often fixed in advance, there are instances where patient order is flexible and simultaneously
part of the decision making [6]. When underage costs are identical, Mittal et al. [20]
established a key connection between RASO and the theory of scheduling jobs on a single
machine to minimize the sum of a weighted nonlinear (concave) cost function of the completion
times [19, 12, 25]. Focusing on the special case, we exploit this connection further to give an
extremely practical ratio based ordering policy, inspired by Smith’s rule [24]. We call it the
Customized-Smith rule (short C-Smith) and show that it is 1.0604-approximate. Further, we
find an algorithm that is as good as C-Smith on every instance, but is also locally optimal
w.r.t. pairwise swaps of neighboring jobs. Previously, Mittal et al. [20] showed that using the
EPTAS for the related min-sum scheduling problem given by Stiller and Wiese [25], yields an
EPTAS for RASO. The runtime of the EPTAS scales as O(21/ε7

n), and its implementation
complexity makes it hard to use in practice. Mittal et al. [20] offered Smith’s rule as a
practical alternative, with approximation ratio 1.137 due to a result in Höhn and Jacobs [12].
Finally, for the general case (arbitrary underage costs), we show the problem is strongly NP
hard. We also briefly discuss the inefficacy of list ordering heuristics for the problem and
give a heuristic with a matching lower bound.

Other related work. The existing literature on appointment scheduling is quite diverse and,
in addition to the robust model we discussed above, includes numerous results on stochastic
optimization models, queueing models, as well as distributionally robust optimization models.
We only give a very brief review here and refer the reader to [6] for a broad overview of
the challenges in scheduling appointment systems in health care, and to [18, 20] for more
comprehensive surveys on past work. Starting with more recent work, Jiang et al. [14]
consider a distributionally robust model and propose a MINLP formulation that can handle
random no-shows. Mak et al. [18] consider a distributionally robust model given marginal
moments for job durations, and formulate the problem as a tractable conic program. For the
case of flexible job order, they show that under certain assumptions a simple variance based
ordering can be optimal. Prior to [18], Kong et al. [16] first considered a distributionally

APPROX/RANDOM 2019

25:4 Robust Appointment Scheduling with Heterogeneous Costs

robust formulation but with cross-moments as opposed to marginal moments. They formulate
the problem as a copostive cone program and propose a tractable SDP relaxation. Wang [26]
modeled the problem using a queueing model where the processing times of the jobs are i.i.d.
exponential and new jobs may be released over time. Wang [27] generalized the model to
allow for different mean processing times for jobs. In a different direction, the problem was
modeled as a two-stage stochastic linear program in Denton and Gupta [8]. For this problem,
Robinson and Chen [23] compute near-optimal solutions using a Monte-Carlo integration
technique. Kaandorp and Koole [15] considered a local search algorithm and proved that it
converges to an optimal solution. Another stochastic model was introduced by Green et al.
[11]. They considered the problem of outpatient appointment scheduling with emergency
services and modeled it as a dynamic stochastic control problem. In highly influential work,
Begen and Queyranne [2] considered a discrete stochastic model (where job durations are
integer random variables with finite support). They showed that the problem reduces to an
instance of submodular function minimization, under certain assumptions on the per-unit
costs. Begen et al. [1] extended the idea, proving a similar result for a data-driven discrete
stochastic model. Ge et al. [10] further extended the result of Begen and Queyranne [2], to
the setting of convex piece-wise linear per-unit costs.

Assumptions on underage costs. Previous work on the stochastic and distributionally
robust models discussed above, often assumes an upper bound on the variation in underage
costs. Formally, consider jobs that are indexed in the order they are scheduled. So we have
jobs i ∈ {1, . . . , n},with per unit costs ui, oi. Now for instance, the result by Begen and
Queyranne [2], assumes that there exists values αi ≤ oi such that ui+1 ≤ ui + αi − αi+1
for every i ∈ [n− 1]. Descending underage costs for example, satisfy this condition. More
generally, [14, 18, 16, 10] assume that ui+1 ≤ oi + ui for every i ∈ [n− 1] (or that ui = u for
all i). In effect, these assumptions are satisfied as long as the underage costs don’t increase
too sharply.

In contrast, we give a closed form optimal allocation for instances where the ui values do
not decrease too sharply. For example, our results yield a closed form optimal solution for
the case of non-decreasing underage costs. This includes the case ui+1 ≥ ui + oi ∀i ∈ [n− 1],
converse of the condition assumed in some previous work. If the per-unit underage costs are
decreasing, we show that as long as the per-unit values are “large enough”, our LP still leads
to a closed form optimal allocation. In practical terms, it is quite possible that the underage
costs could be increasing or decreasing, preventing a direct comparison of our assumptions
with past work. In fact, for the RASO problem where one has the flexibility to choose the
order of jobs, an optimal order can have arbitrarily varying underage costs. From a technical
viewpoint, our results complement previous work, indicating that perhaps the robust model
is more tractable in instances where other models are not, and vice versa.

Overview of the paper. In Section 2, we introduce notation and formally state the problem.
We also make certain observations that simplify the problem w.l.o.g.. Then in Section 3, we
explore the appointment scheduling problem under fixed order. We first give our LP based
approximation for general underage costs in Section 3.1. And later in Section 3.2, we tighten
our LP formulation to obtain optimal closed form solutions under additional assumptions on
the costs. In Section 4, we consider the problem of jointly finding an optimal order as well as
appointment schedule (RASO). We show that the problem is NP hard in general and discuss
the limitations of a classes of simple heuristics in Section 4.1. In Section 4.2, we focus on the
ordering and scheduling problem in the special case of homogeneous underage costs. Here
we discuss some disadvantages of existing results and propose two new heuristics to tackle
some of the issues. Finally, we conclude with some open problems in Section 5.

A. S. Schulz and R. Udwani 25:5

2 Notation & Preliminaries

We start with a description of RAS, and define additional notation required for RASO in
Section 4. Recall, we have n jobs to be served in order of increasing index i ∈ {1, . . . , n}.
Service times are uncertain and modeled via a box uncertainty set: job i takes time ti
in the range [pi − δ̂i, pi + δi]. Here we assume that 0 ≤ δ̂i ≤ pi as well as δi ≥ 0, for all
jobs i. We denote by oi ≥ 0 and ui ≥ 0 the per-unit overage cost and per-unit underage
cost of job i, respectively. More generally, we represent overage and underage costs as
non-decreasing functions oi(·), ui(·) respectively. The case of constant per-unit costs is then
given by oi(x) = oi · x and ui(x) = ui · x. We would like to appoint job start times, {Ai}i,
such that every job arrives at its appointed time and is served as soon as possible after.
Given {Ai}i, consider an arbitrary instance of service times {ti}i, and let {Ci}i denote the
completion times of jobs.3 If job i is delayed and ends after the appointed start time for job
i+ 1, we incur overage cost oi(Ci −Ai+1). Similarly, if job i ends before the appointed start
time for job i+ 1, we incur underage cost ui(Ai+1 − Ci). Therefore, the cost due to job i is
max{oi(Ci −Ai+1), ui(Ai+1 − Ci)}. The RAS problem can now be stated as follows,

min
{Ai}i

(
max

ti∈[pi−δ̂i,pi+δi] ∀i∈[n]

n∑
i=1

max{oi(Ci −Ai+1), ui(Ai+1 − Ci)}
)

︸ ︷︷ ︸
Adversary’s problem, given appointment times Ai.

. (1)

The adversary’s problem in (1), finds a worst possible profile/instance of service times
T = (ti) = (t1, . . . , tn), maximizing the cost, given the schedule {Ai}i. Let c(T,A, i) =
max{oi(Ci(T)−Ai+1), ui(Ai+1−Ci(T))} denote the cost of job i given allocation {Ai}i and
time profile T . When the allocation is clear from the context, we use the shorthand c(T, i).
Let c(T) =

∑
i c(T, i) denote the total cost due to profile T . It is not difficult to see that

an optimal allocation needs to allocate at least pi − δ̂i time for job i, so we let pi − δ̂i = 0
for every job i, w.l.o.g. (also in Lemma 6 of [20]). To simplify notation henceforth, we let
service times be in the range [0,∆i], where ∆i = δ̂i + δi. Now, given appointment schedule
{Ai}i, consider equivalent variables xi that represent the duration allocated for a job. We
have, xi = Ai+1 − Ai, which is the difference between the start times of job i+ 1 and job
i. Equivalently, Ai =

∑i−1
j=1 xj for i ≥ 2 and A1 = 0, w.l.o.g. We call {xi}i, and sometimes

by abuse of terminology {Ai}i, the allocation. Note that in our model, job n is cost free
since there is no appointment succeeding it (An+1 =∞). W.l.o.g. we may assume that job n
also suffers from overage and underage based on its assigned end time (assign a dummy job
to succeed job n). Note, if ui(·) = 0, we allot a very large time slot for job i and jobs on
different sides of the slot become independent. Therefore, we let ui(·) 6= 0 for all i, w.l.o.g..
Also, if on(·) = 0 we can assume that xn = 0 and in fact ignore job n, therefore we also let
on(·) 6= 0, w.l.o.g.. To coalesce, the assumptions we have made w.l.o.g., so far:

(i) Service time for job i lies in [0,∆i]; (ii) for every i, ui(·) 6= 0 (ui > 0 in the constant
per-unit case); and (iii) on(·) 6= 0 (on > 0 in the constant per-unit case).

Finally, we say job i is underaged if it ends on or before time Ai+1, and overaged otherwise.
However, if ∆i = 0 and job i starts/ends at Ai+1, we consider it to be both overaged and
underaged (for technical reasons). Further, if job i takes time ∆i to be served, we say it
runs for maximum time. Note that if a job i is underaged in some worst-case T = (ti), then
w.l.o.g., ti = 0, as the underaged costs ui(·) are non-decreasing functions for every i (similar

3 Ci = max{Ci−1, Ai}+ ti for all i ≥ 1 with C0 = A1 = 0, w.l.o.g.

APPROX/RANDOM 2019

25:6 Robust Appointment Scheduling with Heterogeneous Costs

to Lemma 11 of [20]). Observe also that if a job i is underaged in some worst-case time
profile, and it has zero cost, then i must end at Ai+1 and take zero time. Otherwise, we have
a strictly worse case by underaging i (simply reduce the time taken by i by some small ε > 0).

Finally, let Si = {i, i+ 1, . . . , n} = {j|j ≥ i} be the subset of the last n− i+ 1 jobs in
the schedule. Let xSi denote the optimal time allocation for job i when considering only jobs
in a subset S that contains i. When S = [n] we often use shorthand xi. The next section
discusses a result from previous work and offers some intuition for our treatment of the
general case that follows subsequently in Section 3.

2.1 Closed Form Optimal Solution of Mittal et al. [20]

Consider a single job, with per unit costs u, o and maximum time ∆. If this job is alloted
time duration x, then the worst case cost is given by max{u(x), o(∆ − x)}, minimized at
x = ∆ o

o+u (recall, we assume that a dummy job always follows the last job, so the last job
incurs overage cost for delays). Mittal et al. [20] showed that for constant per-unit underage
costs, ui = u for every job i ∈ [n], this formula generalizes and the optimal allocation is given
simply by, xi = ∆i

o(i)
o(i)+u . Here o(i) is the sum

∑n
j=i oj , of the per unit overage costs of the

jobs succeeding job i. So each job is alloted a fraction of its maximum service time ∆i, with
a smaller fraction for larger values of u (to prevent large underage costs). Further, earlier
jobs are alloted a larger fraction of their maximum time to prevent a large cascade of delays
for jobs serviced later on.

Now, consider a natural generalization of this formula for heterogeneous underage costs
given by, xi = ∆i

o(i)
o(i)+ui

. Unfortunately, this can be a suboptimal allocation even for two
jobs with reasonable parameter values, and in general an arbitrarily bad approximation. For
example, consider two jobs that are almost identical except that job 2 (which is scheduled
later) has a small underage cost. Specifically, let ∆1 = ∆2 = 1 and suppose per unit
costs o1 = o2 = 1 and u1 = M ≥ 2, but u2 = 1. The allocation given by the formula
sets x1 to 2

M+2 and x2 to 1
2 . The worst case cost of this allocation is attained when both

jobs are underaged or both overaged (more on this later), and equals 2M
M+2 + 1

2 . For large
M , this value approaches 5

2 . Now instead, consider the following allocation, y1 = 0 and
y2 = ∆2

o2
o2+u2

+ ∆1
o(1)
o2+u2

= 1
2 + 1 (we show later in Section 3.2, that this is in fact an

optimal allocation). It is easily checked that the worst case cost is 3
2 for this allocation. More

generally, if we set o1 and u2 to a small value ε, the first allocation becomes arbitrarily bad.
Intuitively, this demonstrates that if jobs that are later in the order have small underage
costs, it is beneficial to allocate larger time to these later jobs to buffer for delays from earlier
jobs. When this is not the case (such as for homogeneous underage costs), it is better to
instead buffer by allocating larger fractions to jobs that are earlier in the order.

3 Robust Appointment Scheduling

3.1 Heterogeneous Per-unit Underage Costs

In this section, we focus on the case of constant per-unit costs oi, ui. The key behind our
results lies in finding useful properties satisfied by optimal allocations. Towards that end, it
will be instrumental to understand the worst cases (solutions to the adversaries’ problem)
for optimal allocations. Recall the adversary’s objective: given {Ai}i, maximize cost c(T,A)
over all possible time profiles T allowed by the uncertainty set. It turns out that for an
arbitrary allocation, there could be a unique worst-case where some jobs are overaged while

A. S. Schulz and R. Udwani 25:7

others are underaged, and for some jobs the service time ti is neither 0 nor ∆i
4. It turns out

though, that for any given allocation the adversary’s problem can be reduced to an instance
of finding longest paths on a directed acyclic graph with n+ 1 nodes [21], and therefore can
be solved in polynomial time. However, using this fact to find an optimal allocation does not
obviously lead to a tractable problem. Instead, here we shall find properties in the form of
linear inequalities that every optimal allocation satisfies. Using these, we formulate an LP
relaxation for the problem and show that an optimal solution to the LP is 2-approximate.

As a natural next step, we then look for more structure to further tighten the formulation.
Surprisingly, we find that the adversary’s problem given an optimal allocation for problem
(1) is easily solved; in every optimal allocation, ti = ∆i for every i (all jobs taking maximum
time) and ti = 0 for all i (all jobs taking zero time) are worst-cases. Combining this with
other structural insights, in Section 3.2 we propose a strengthened formulation that leads to
closed form optimal solutions under some assumptions on underage costs. In the lemmas that
follow we introduce two properties of optimal allocations, leading to the first LP formulation.

I Lemma 1. For every optimal allocation {xi}i,
∑k
j=1 xj ≤

∑k
j=1 ∆j for all k = 1, . . . , n.

Proof. Given an optimal allocation {xi}i, let δk =
∑k
j=1 xj−

∑k
j=1 ∆j , for k ∈ [n]. Suppose,

δk > 0 for some k, and let k0 be the smallest such k. Given this, notice that even if the
first k0 jobs take maximum time, job k0 can never be overaged. Therefore, decreasing xk0

decreases the underage cost of job k0 (uk0 > 0) and thus, also the worst-case cost. So the
allocation {x′i}i where, x′k0

= xk0−δk0 and x′i = xi for all other i is clearly a better allocation,
contradiction. This lemma also follows as a direct corollary of Lemma 5 stated later on. J

I Lemma 2. Given an allocation {xi}i where
∑i
j=1 xj ≤

∑i
j=1 ∆j for all i, and a time

profile T = (ti). The cost c(T) of profile T is at most
∑n
i=1 o(i)(∆i − xi) +

∑n
i=1 uixi.

Proof. For any given time profile T , job i is either underaged with c(T, i) ≤ uixi or overaged
with cost at most oi

∑
j≤i(∆j − xj). The latter follows from the fact that Ci ≤

∑
j≤i ∆j

since
∑k
j=1 xj ≤

∑k
j=1 ∆j for all k ∈ [i]. Therefore,

∑n
i=1 c(T, i) ≤

∑n
i=1 oi

∑i
j=1(∆j −xj) +∑n

i=1 uixi. Rearranging the sum we have,
∑n
i=1 oi

∑i
j=1(∆j−xj) =

∑n
j=1(∆j−xj)o(j). J

Using the above results, the following LP now gives us an extremely simple approximation
for the general problem that could be easily implemented on most systems.

LP-1: min
n∑
j=1

(uj − o(j))yj

s.t.
k∑
j=1

(yj −∆j) ≤ 0 ∀k ∈ [n]; (2)

yj ≥ 0 ∀j ∈ [n].

I Theorem 3. LP-1 is a (tight) 2-approximation, and the following is an optimal solution
to LP-1. Define mi = arg minj≥i(uj − o(j)), then for every i,

yi =
{

0 if ui − o(i) ≥ 0 or i 6= mi∑
j|mj=i ∆j otherwise.

4 This is in contrast to Lemma 9 in [20] for the special case of ui = u ∀i.

APPROX/RANDOM 2019

25:8 Robust Appointment Scheduling with Heterogeneous Costs

Proof. The proof of optimality for the proposed solution is easy to verify. To see the
guarantee let us re-write the LP-1 objective as,

min
∑
j

ujyj +
∑
j

o(j)(∆j − yj).

From constraints (2) and Lemma 2, this is an upper bound on the worst-case cost of any
feasible solution to LP-1. Let {y∗i } denote an optimal solution to the LP. Lemma 1 implies
that every optimal allocation {xi} is a feasible solution to LP-1. Further,

∑
j ujxj denotes

the cost when all jobs take zero time and
∑
j o(j)(∆j − xj) is the cost of overaging all jobs

with each job taking maximum time (∆i). Therefore, the worst-case cost of an optimal
allocation, denoted OPT , is at least max{

∑
j ujxj ,

∑
j o(j)(∆j − xj)} (we show later that

these two costs are both in fact, equal to OPT). Therefore,∑
j

ujy
∗
j +

∑
j

o(j)(∆j − y∗j) ≤
∑
j

ujxj +
∑
j

o(j)(∆j − xj) ≤ 2 OPT.

For a tight instance, consider two jobs {1, 2} with ∆1 = ε→ 0, u1 = 1/ε, o1 = 1/ε− (1+ε)
and ∆2 = u2 = o2 = 1. Therefore, u2

u2+o2
= 0.5 / u1

u1+o(1) . Consider the allocation x2 = 0.5
and x1 = ε o(1)

u1+o(1) ≈ ε/2. It is easy to see that the worst-case of the allocation is when both
jobs are underaged (overaged) and hence the cost of this allocation is u1x1 + u2x2 ≈ 1. Now,
consider the solution y2 = 0.5 + ∆1o(1)

u2+o2
≈ 1 and y1 = 0. This is an optimal solution to the

LP and the worst-case occurs when job 2 is underaged and job 1 is overaged. The worst-case
cost of this allocation is o1∆1 + u2(y2 −∆1) ≈ 2. J

Beyond Constant Per-unit Costs
Suppose instead of scalar costs oi, ui, we have non-decreasing, piece-wise linear and convex
cost functions oi(·), ui(·). Then it is easy to check that Lemma 1 still holds. Similar to
Lemma 2, we have that given an allocation {xi}i, satisfying Lemma 1, the cost c(T) for any
profile T is at most,∑

i

ui(xi) +
∑
i

oi

(∑
j≤i

(∆j − xj)
)
.

Now the problem of minimizing this objective subject to the linear constraints in LP-1, is
a min cost flow problem with arc costs given by the overage and underage cost functions.
More specifically, consider a directed graph with n+ 1 nodes and 2n edges, where there is a
directed edge from node i to node n+ 1 with cost ui(·) and an edge i→ i+ 1 with cost oi(·),
for every i ∈ [n]. Finally, there is another edge from n to n+ 1 with cost on(·). Finally, each
node i has a supply of ∆i and node n+ 1 is a sink with demand

∑
i ∆i. Given a feasible flow

in this graph, the flow on edge (i→ n+ 1) gives the time allocation for job i, and vice versa.
Now, if the costs are piece-wise linear and convex, we have from the algorithm by Pinto and
Shamir [22] for min flows with convex piece-wise linear costs, that the problem can be solved
in polynomial (in n and the maximum number of pieces in the cost functions) time. The
optimal solution to this problem is a 2-approximation, and the analysis closely resembles the
proof of Theorem 3 (details deferred to full version).

3.2 Optimal Solution to RAS for Special Cases
Let us now investigate additional properties with the goal of strengthening our LP. We start
by proving our claim from earlier – all jobs underaged (taking 0 time) and all jobs overaged
(taking maximum time) are worst-cases for optimal allocations. We break down the proof

A. S. Schulz and R. Udwani 25:9

into smaller parts. The first lemma is very useful and appears often in proofs of other lemmas.
The key insight behind the lemma is simple – when all jobs overaged is a worst-case, if the
first job is forced to start late, then the case of all jobs overaged suffers maximum increase in
cost, and is thus still a worst case.

I Lemma 4. Given an arbitrary allocation {Ai}i, where ti = ∆i for all i is a worst-case.
Recall that w.l.o.g., A1 = 0 and consider a modified problem for the adversary, where the
first job is always forced to start at a later time t0 instead of time A1 = 0. Then, T = (ti) is
also a worst-case for the modified problem.

Proof. Let T = (∆i) denote the profile for all jobs taking maximum time. When job 1 starts
at time 0, denote the cost of job i by c(0, T, i). Since T is a worst-case by assumption, we
have c(0, T) ≥ c(0, Z) for every profile Z. For the modified setting where job 1 starts at
time t > 0, we claim that c(t, Z, i) ≤ c(0, Z, i) + oit for every Z. To see this, suppose job 1
starts at 0 and consider two cases: (i) i overaged in Z and (ii) i underaged in Z. In case
(i), i will still be overaged when job 1 starts at time t and the completion time of i can
increase by at most t. In case (ii), if i is still underaged when job 1 starts at time t, we are
done. Else, i becomes overaged but the maximum overage cost is oit. Now for profile T ,
since all jobs are overaged when job 1 starts at time 0, c(t, T, i) = c(0, T, i) + oit. Therefore,
c(t, Z) ≤

∑
i(c(0, Z, i) + oit) ≤

∑
i c(0, T, i) +

∑
i oit = c(t, T). J

The next lemma says that we cannot have an optimal allocation where a certain job
is underaged (overaged) in all the worst-case time profiles. Observe that if job i is always
underaged, simply reducing the allocation xi would give a strictly better allocation, con-
tradicting optimality. Indeed, Lemmas 12 and 15 in [20] argue exactly this. However, that
argument fails if there exists a worst-case where i is underaged with zero cost (occurs when
i− 1 ends at Ai+1 and ti = 0, which we defined as a case of underage in Section 2). This
gives rise to a subtle issue that demands a more involved argument (similarly for the case of
overage). We postpone the formal proof to the full version.

I Lemma 5. Given an optimal allocation, consider an arbitrary job i. There exists a worst-
case T = (ti) where i is underaged and ti = 0, as well as a worst-case where i is overaged
(with some ti that is not necessarily ∆i).

I Lemma 6. In every optimal allocation, the case of all jobs underaged, i.e., ti = 0 for every
job i, is a worst-case.

Proof. Let {Ai}i denote an optimal allocation. Lemma 5 implies there is a worst-case where
job 1 takes zero time. We proceed via induction, assuming there is a worst-case T = (ti)
where ti = 0 for i ∈ [k] = {1, . . . , k}, i.e., all jobs in [k] are underaged. We will show there
exists a worst-case where all jobs in [k + 1] are underaged.

Suppose that k + 1 is overaged in T (otherwise we are done). Lemma 5 implies there
is a worst-case, denoted T ′ = (t′i), where job k + 1 is underaged and takes zero time. Let
Ck+1 denote the completion time of job k + 1 in T . Clearly, Ck+1 > Ak+2 and k + 1 starts
at Ak+1 in T . Similarly, let C ′k+1 denote the start/completion time of job k + 1 in T ′. Then,
C ′k+1 ≤ Ak+2. Now consider a new profile Z = (zi), formed by a combination of T and T ′. We
let zi = t′i for i ∈ [k] and zi = ti for i ∈ {k+2, . . . , n}. Since the completion times of job k are
identical in T ′ and Z, we set zk+1 = Ck+1−C ′k+1 ≤ Ck+1−Ak+1 = tk+1. Therefore, job k+1
ends at time Ck+1 in Z. Now, observe that

∑
i∈[n] c(Z, i) =

∑k
i=1 c(T ′, i) +

∑n
i=k+1 c(T, i).

Since T is a worst-case, we also have
∑k
i=1 c(T ′, i)+

∑n
i=k+1 c(T, i) ≤

∑n
i=1 c(T, i). Therefore,∑k

i=1 c(T ′, i) ≤
∑k
i=1 c(T, i). Now, consider another hybrid case Q, where jobs 1 to k are all

APPROX/RANDOM 2019

25:10 Robust Appointment Scheduling with Heterogeneous Costs

underaged and take zero time as in T and jobs k+ 2 to n are as in T ′. Job k+ 1 starts/ends
at Ak+1 in Q and hence c(T ′, k + 1) ≤ c(Q, k + 1). Combining everything,

∑
i c(T ′, i) ≤∑k

i=1 c(T, i) +
∑n
k+1 c(T ′, i) ≤

∑k
i=1 c(T, i) + c(Q, k+ 1) +

∑n
k+2 c(T ′, i) =

∑
i c(Q, i). Hence,

Q is a worst-case with jobs 1 to k + 1 all underaged. J

I Lemma 7. In every optimal allocation, the case of all jobs overaged is a worst-case.
Therefore, ti = ∆i for all i is a worst-case.

Proof. Let {Ai}i denote an optimal allocation. Observe that if there exists a worst-case
where jobs Sk = {k, . . . , n} are all overaged for some k, then there exists a worst-case where
all jobs in Sk are overaged and take maximum time. We proceed by induction and show
that if there is a worst-case where every job in Sk is overaged, then there exists a worst-case
where every job in Sk−1 is overaged. For k = n, by Lemma 5 there is a worst-case where
job n is overaged. Assume there exists a worst-case where jobs k to n are overaged, denoted
as T = (ti).

Suppose that job k − 1 is underaged in profile T (otherwise we are done). Recall that
uk−1 > 0 and tk−1 = 0, since k is underaged in T . Then, since T is a worst-case profile;
restricted to the subset Sk, the profile {ti = ∆i}i≥k is a worst-case with all jobs overaged,
for allocation {Ai}i≥k. Now, by Lemma 5 for the set of all jobs [n], there exists a worst-case
where job k − 1 is overaged, denoted T ′ = (t′i). Then, consider profile Z = (zi) with zi = t′i
for jobs in S1 − Sk−1 and zi = ∆i for i ∈ Sk−1. Z is a worst-case profile since it matches the
cost in T ′ for jobs in S1 − Sk−1, and due to Lemma 4 the total costs for jobs in Sk−1 can
only be larger than the same total in T ′. J

The following equation characterizes the worst-case cost of every optimal allocation {xi}i,

n∑
i=1

o(i)(∆i − xi) =
n∑
i=1

uixi. (3)

We can already modify LP-1 by adding the equality above. However, this property alone is
not sufficient to offer improved results even for identical underage costs. To that end, we
introduce the following technical property.

I Lemma 8. Given an optimal allocation {xi}i∈[n],

n∑
j=k

(uj + o(j))yj ≥
n∑
j=k

o(j)∆j for all k ∈ [n]. (4)

To get some intuition behind the lemma, consider the objective of minimizing
∑
i uiyi for

non-negative yi subject to the equation (3). A greedy solution that sets yi =
∑

j
∆jo(j)

ui+o(i) for
i = arg minj∈[n]

uj

uj+o(j) is optimal. Here the job with the minimum ratio ui

ui+o(i) , bears the
entire burden of the equality (3). Lemma 8 says that this can only occur when i = n and
more generally, places a lower bound on the contribution to equality (3) from values yk to
yn, for all k. The proof of the lemma is rather technical and is postponed to the full version,
along with two accompanying helper lemmas. Consider now the strengthened formulation,

A. S. Schulz and R. Udwani 25:11

LP-2: min
n∑
j=1

ujyj

s.t.
n∑
j=1

(uj + o(j))yj =
n∑
j=1

o(j)∆j (5)

n∑
j=k

(uj + o(j))yj ≥
n∑
j=k

o(j)∆j ∀k ∈ [n] (6)

k∑
j=1

(yj −∆j) ≤ 0 ∀k ∈ [n]

yj ≥ 0 ∀j ∈ [n]

Clearly, every optimal allocation is a feasible solution for the LP. However, an optimal
solution to the LP need not have all jobs underaged (or overaged) as worst-case, and hence
need not be an optimal allocation. This is demonstrated by the example used in Theorem 3,
where it is easily checked that the additional constraints given by (5) and (6) do not improve
the worst-case approximation bound from earlier. However, we show that under additional
assumptions LP-2 yields optimal allocations.

The recipe behind proving this is as follows: (i) Using the assumptions, show that there
is actually a closed-form optimal solution to the LP. (ii) Show that for this solution, all jobs
underaged and all jobs overaged are worst-cases. In particular, using this recipe for the
special case of homogeneous underage costs ui = u for every i, we find that xi = o(i)∆i

u+o(i) for
all i ∈ [n] is an optimal solution to LP-2 and an optimal allocation. More generally, we have
the following.

I Theorem 9. If ui ≤ ui+1
o(i)
o(i+1) for all i ∈ [n− 1], then the allocation given by xi = o(i)∆i

u+o(i) ,
i ∈ [n], is an optimal allocation.

This generalizes and offers a different perspective on Theorem 5 in [20] (since ui = u for
every i, implies ui ≤ ui+1

o(i)
o(i+1) for all i ∈ [n− 1]). As a direct implication of the above, we

have a closed form optimal allocation if if the underage costs are non-decreasing i.e.,

ui ≤ ui+1 ∀i ∈ [n− 1].

This includes for instance, the case of increasing underage costs where ui+1 ≥ ui + oi. As
we discussed earlier in Section 1, this complements the assumptions made in previous work,
where the common assumption is that the underage costs are not increasing too drastically
and in particular that, ui+1 ≤ ui + oi for all i ∈ [n− 1].

Next, we claim that even if ui > ui+1
o(i)
o(i+1) for some i, there may still exist an LP optimal

solution that is also an optimal allocation. This generalizes Theorem 9. A direct corollary
of the result is that if underage costs are “large enough”, we have a closed form optimal
solution even if the costs otherwise vary arbitrarily. More specifically, if the underage costs
are such that for ever pair of jobs i− l and i with ui−l > ui, we have,

ui ≥
l∑

j=1
oi−j .

Then LP-2 leads to a closed form optimal allocation.

APPROX/RANDOM 2019

25:12 Robust Appointment Scheduling with Heterogeneous Costs

I Theorem 10. Given n jobs with parameters such that for i ∈ [n], whenever i 6= mi :=
min

(
arg minj≥i uj

uj+o(j)
)
, we have umi

≥ o(i)− o(mi), then the following is both an optimal
solution to the LP and an optimal allocation,

xk =
∑
i|k=mi

∆io(i)
uk + o(k) for all k ∈ [n].

Optimal Allocation Beyond Constant Per-unit Costs
For non-decreasing, piece-wise linear and convex costs oi(·), ui(·), let oi, oi denote the largest
and smallest slope for oi(·) and, ui, ui the largest and smallest slope for ui(·). By generalizing
insights from the case of constant per-unit costs, we show that Algorithm 1 finds the
optimal allocation when ui+1 ≥ ui, for all i ∈ [n− 1]. This condition is satisfied for instance
if ui(x) = u · x for all i ∈ [n], and oi(·) is an arbitrary non decreasing, convex piece-wise
linear function. Similar to the case of constant per-unit costs, our assumption complements
assumptions made in previous work on the stochastic setting of the problem. For instance,
in the stochastic setting Ge et al. [10], gave a polynomial time algorithm for non decreasing,
piece-wise linear and convex costs when ui+1 ≤ ui + oi, for all i ∈ [n− 1].

Algorithm 1 Allocation for Non-Linear Costs.

1: for i = n to 1 do
2: ôi(x) :=

∑
j≥i

(
oj(∆i − x+

∑
k|i<k≤j(∆k − xk))− oj(

∑
k|i<k≤j(∆k − xk))

)
3: xi = argmin

x≥0
max{ui(x), oi(∆i − x) + ôi(x)}

4: Output: {xi}i

I Remark. Given two sets of jobs Sk−1 = {k− 1, . . . , n} and Sk = {k, . . . , n}. Let the output
of Algorithm 1 over set Sk−1 be {xk−1

i }, and over set Sk be {xki }. Then we have, xk−1
i = xki

for all i ∈ Sk. Also, note that the algorithm takes n iterations, each involves a minimization
of the maximum of two convex piece-wise linear functions (as ui(x) and oi(∆i−x)+ ôi(x) are
both piece-wise linear and convex in x). Therefore, each step involves finding the minimum
of a convex piece-wise linear function. Hence, the algorithm runs in polynomial time (in n
and the number of pieces in the cost functions).

4 Robust Appointment Scheduling and Ordering

So far, we assumed that jobs are given to us in fixed order and our task was to find an
optimal appointment schedule. Focusing on the case of constant per-unit costs, we now
consider the joint problem of finding an ordering and an appointment schedule such that
the resulting cost is minimized. More formally, consider a permutation π over the set [n],
that determines the order of appointments. So given an ordering π, job i is the π(i)-th
appointment in the schedule. We let Ai, Ci denote the start time and the completion time of
the i-th appointment (or the π−1(i)-th job). The joint scheduling and ordering problem can
now be stated as,

min
π:[n]→[n],{Ai}i

max
ti∈[0,∆i] ∀i

n∑
i=1

max{oπ−1(i)(Ci −Ai+1), uπ−1(i)(Ai+1 − Ci)}. (7)

A. S. Schulz and R. Udwani 25:13

Recall that under homogeneous underage costs ui = u∀i, we have a closed form solution for
the problem for fixed permutation π. Letting o(i) =

∑
j|π(j)≥π(i) oj , the objective in this

special case can be more simply stated as,

min
π:[n]→[n]

n∑
i=1

∆io(i)u
o(i) + u

.

Let us call this problem RASO-H for brevity. Mittal et al. [20] showed that RASO-H reduces
to an instance of min-sum scheduling with concave costs 1||

∑
wjf(Cj). Here given jobs j

with processing time pj , weight wj , and a concave function f(·) over completion times Cj ,
the goal is to find an ordering that achieves the following,

min
{Cj}j

n∑
j=1

wjf(Cj). (8)

Indeed, letting wj = ∆j , pj = oj and f(Cj) = uCj

Cj+u , we see that any ordering π for RASO-H
is equivalent to an order π′ in, 1||

∑
wjf(Cj). Here π′(j) = n − π(j) + 1 (i.e., orders are

reversed as we move between the two problems). This reduces RASO-H to an instance of
1||
∑
wjf(Cj), while preserving the objective value. Therefore, algorithms for 1||

∑
wjf(Cj)

can be used directly for RASO-H without any loss in guarantee. Using a result in [12], the
following rule,

Smith’s rule: Schedule jobs in the order of descending ratios wj

pj
(or ascending ratios ∆j

oj
),

is 1.137 approximate for RASO-H. In fact, there is an EPTAS for RASO-H due to the
EPTAS for 1||

∑
wjf(Cj) [25]. Howevever, the hardness of RASO with a single underage

cost, and more generally of 1||
∑
wjf(Cj), remains an intriguing open problem in scheduling

theory [25, 19, 12, 20].
In the upcoming section, we consider the general problem for which no results were

previously known. We give evidence indicating that the problem becomes much harder
without the homogeneous underage costs assumption.

4.1 RASO with General Underage Costs
We show that RASO is strongly NP-hard when there are at least two different underage
costs via a reduction from the strongly NP hard problem of min-sum scheduling on identical
parallel machines, P ||

∑
wjCj (problem SS13 in Garey and Johnson [9]). Further, we also

show that no list ordering rule (such as Smith’s rule) can be better than O(n) approximate
for the problem, ruling out the existence of “simple” approximation heuristics. We defer the
details and proofs to the full version.

To develop approximation heuristics for RASO, unlike RASO-H, we cannot rely on a
closed-form solution for the optimal allocation problem to simplify the problem. However,
we do have a closed-form solution with cost guaranteed to be within a constant factor of
the optimal due to Theorem 3. This does not immediately lead to a tractable problem,
and taking a different approach we instead consider the closed form allocation given by the
formula xi = ∆io(i)

ui+o(i) . Given order π, let o(i) =
∑
j|π(j)≥π(i) oj . For this allocation rule the

ordering problem simplifies to,

min
π:[n]→[n]

n∑
j=1

∆jo(j)uj
o(j) + uj

. (9)

APPROX/RANDOM 2019

25:14 Robust Appointment Scheduling with Heterogeneous Costs

This is equivalent to a min-sum scheduling problem of the form,

min
{Cj}j

∑
j

fj(Cj).

Here Cj is the completion time of job j which has processing time pj = oj . Functions
fj(Cj) = ∆juj

Cj

Cj+uj
are concave, but now we have a different function for each job. We

show (details in full version) that given an α approximation for 1||
∑
j fj(Cj), there is a

4αn approximation for RASO. The additional factor of 4n arises from the fact that (9)
does not represent the true objective (7). Recall that the closed form allocation formula
xj = ∆j

o(j)
o(j)+uj

, is not only suboptimal but can be arbitrarily worse than the optimal
allocation for certain orders. So it is perhaps surprising that using this allocation we can
still achieve some approximation bound. Note that for the min-sum scheduling problem,
1||
∑
fj(Cj), [7] gives a 4 + ε approximation for arbitrary fj . Using this algorithm, we have a

(16 + ε)n approximation for RASO. We also show that no heuristic that orders jobs based on
a simple ratio can beat Ω(n). Here we use the term “simple ratio” to refer to any real valued
function evaluated independently for each job, using only the job parameters (oi,∆i, ui). A
list ordering heuristic for this function then simply orders jobs in ascending or descending
order of the function values.

4.2 Homogeneous Underage Costs
In this section, we develop some easy to implement heuristics with improved approximations
for RASO-H. As we mentioned earlier, the computational complexity of RASO-H and more
generally, 1||

∑
wjf(Cj) with concave cost function f , remains open but, there is a scaling

based EPTAS for RASO-H due to the EPTAS for 1||
∑
wjf(Cj). The EPTAS is non-trivial

and not easy to implement in practice. Practical heuristics such as Smith’s rule, can be
suboptimal for RASO-H even with just two jobs. This motivates us to consider the following
heuristic,

Customized-Smith’s rule (C-Smith): Schedule jobs in ascending order of ∆i

oi(oi+u) .

This straightforward heuristic is optimal for two jobs by design, and has an approxim-
ation guarantee of β, where 1.06036 < β < 1.06043. While the order output by C-Smith is
optimal for two jobs, we could more generally seek an order that is optimal w.r.t. exchanging
the order of any two consecutive jobs. Let us call such an order locally optimal. The schedule
output by both Smith and C-Smith is not locally optimal. In fact, no list-ordering heuristic
can be locally optimal for all instances of RASO-H. To address this we introduce Algorithm
2, which outputs a locally optimal order. While not as simple as C-Smith, it is still fairly
easy to implement – at each step, it computes a new set of ratios for the remaining jobs and
picks the one with the best ratio, removing it from further consideration. However, a naive
implementation has runtime O(n2), in contrast to O(n logn) for list ordering heuristics.

We show that Algorithm 2 outputs a solution that is at least as good as C-Smith on every
instance. Thus, it is also β approximate. There exist instances for which the algorithm is not
optimal. However, we leave finding the exact guarantee of the algorithm as an open problem.

I Theorem 11. For every instance of RASO-H, Algorithm 2 outputs an order that is at
least as good as the order given by C-Smith.

The proof is deferred to the full version. It remains to show the β approximation for
C-Smith. For this analysis it will be much more convenient both for clarity as well as
notation, to focus on analyzing C-Smith for the scheduling problem 1||

∑
j wjf(Cj), where

A. S. Schulz and R. Udwani 25:15

Algorithm 2 Locally Optimal Algorithm.

1: Initialize: S = ∅, o(S) = 0
2: for i = 1 to n do
3: Find,

j = argmax
k∈[n]\S

∆k

ok(ok + o(S) + 1) .

In case of a tie, pick the job with largest overage cost.

4: π(j) = n− i+ 1, S = S ∪ {j}, o(S) = o(S) + oj

5: Output: π(.)

f(Cj) = Cju
Cj+u and wj = ∆j ,pj = oj . Note that we can let u = 1 w.l.o.g. Also recall, there is a

cost preserving bijection between orders for 1||
∑
j wjf(Cj) and RASO-H – reversing the order

when moving from one to the other. Therefore, we will show the following equivalent theorem.

I Theorem 12. For some constant β ∈ [1.06036, 06043]. scheduling jobs in descending order
of wj

pj(pj+1) is exactly β approximate for the scheduling problem 1||
∑
j wj

Cj

Cj+1 .

To prove the above theorem, we establish several intermediate results that characterize and
simplify the worst-case instance for C-Smith. First, we show that there is a worst-case
instance for C-Smith where all jobs are tied and in fact have ratio 1. This is shown via a
generalization of Lemma 3.5 in [12] (Lemma 21 in [25]). Then, we show that in the worst-case
C-Smith orders jobs in ascending order of processing times and the optimal order is the exact
reverse. Interestingly, this is the opposite of Lemma 3.6 in [12] (Proposition 20 in [25]) for
Smith’s rule, where the optimal order is ascending in pi and the worst order is descending.
Given these properties, we can formulate a non-convex optimization problem in infinitely
many variables, the optimal value of which is the approximation ratio, and every optimal
solution is a worst-case instance. To then get lower and upper bounds on the optimum
value, we utilize properties specific to our objective f(x) = x

x+1 to approximate the problem
(which has infinitely many variables) with a family of optimization problems, that while still
non-convex, have a finite number of variables. More complex objectives from the family give
a tighter upper bound on true approximation ratio, but the number of variables involved
increases. We find the global optimum to a problem in the family with five variables, and this
closely matches our lower bound. We solve such a non-convex problem to global optimality
by establishing upper and lower bounds on variables and using linear cuts, both of which
allow us to then effectively use a nonlinear globally optimal MINLP solver, Couenne [13]
(details in full version).

5 Conclusion & Open Problems

We considered the robust appointment scheduling problem with general underage costs. For
the appointment scheduling problem with fixed jobs order, we found a simple LP that gives a
2-approximation for the problem under constant per-unit costs. Then we further refined this
LP, resulting in a closed form solution for optimal allocations in special cases (generalizing
previous results in the robust model, and complementing similar results in other models).
We also showed that our results and approach extend more generally to convex piece-wise

APPROX/RANDOM 2019

25:16 Robust Appointment Scheduling with Heterogeneous Costs

linear costs. When seeking an optimal allocation for the general case using our approach,
more complications arise and it is not clear if one can still construct a linear (or convex)
program such that an optimal solution to the program is also an optimal allocation. We leave
finding an optimal solution for the general case (or showing hardness), as an open problem.

In the second setting, we considered the problem of jointly finding the optimal order
and allocation given that order for the case of constant per-unit costs. For the case of
heterogeneous underage costs, we show that the problem is strongly NP hard and no list
ordering policy can do better than Ω(n) to approximate the optimal value. We also gave a
heuristic that achieves this bound. Finding a better approximation for this setting remains
another interesting open problem. For the case of homogeneous underage costs, we designed
two simple and practical heuristics that are guaranteed to be with ≈ 1.06 of the optimal.

References
1 M. A Begen, R. Levi, and M. Queyranne. A sampling-based approach to appointment

scheduling. Operations Research, 60(3):675–681, 2012.
2 M. A Begen and M. Queyranne. Appointment scheduling with discrete random durations.

Mathematics of Operations Research, 36(2):240–257, 2011.
3 A. Ben-Tal and A. Nemirovski. Robust optimization–methodology and applications. Mathem-

atical Programming, 92(3):453–480, 2002.
4 D. Bertsimas, D. Brown, and C. Caramanis. Theory and applications of robust optimization.

SIAM Review, 53(3):464–501, 2011.
5 D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–53, 2004.
6 T. Cayirli and E. Veral. Outpatient scheduling in health care: a review of literature. Production

and Operations Management, 12(4):519–549, 2003.
7 M. Cheung, J. Mestre, D. B. Shmoys, and J. Verschae. A Primal-Dual Approximation

Algorithm for Min-Sum Single-Machine Scheduling Problems. SIAM Journal on Discrete
Mathematics, 31(2):825–838, 2017.

8 B. Denton and D. Gupta. A sequential bounding approach for optimal appointment scheduling.
IIE Transactions, 35(11):1003–1016, 2003.

9 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

10 D. Ge, G. Wan, Z. Wang, and J. Zhang. A note on appointment scheduling with piecewise
linear cost functions. Mathematics of Operations Research, 39(4):1244–1251, 2013.

11 L. V. Green, S. Savin, and B. Wang. Managing patient service in a diagnostic medical facility.
Operations Research, 54(1):11–25, 2006.

12 W. Höhn and T. Jacobs. On the performance of Smith’s rule in single-machine scheduling
with nonlinear cost. ACM Transactions on Algorithms, 11(4):25, 2015.

13 IBM and Carnegie Mellon University. Couenne, an exact solver for nonconvex MINLPs.
https://projects.coin-or.org/Couenne/, 2006.

14 R. Jiang, S. Shen, and Y. Zhang. Integer programming approaches for appointment scheduling
with random no-shows and service durations. Operations Research, 65(6):1638–1656, 2017.

15 G. C. Kaandorp and G. Koole. Optimal outpatient appointment scheduling. Health Care
Management Science, 10(3):217–229, 2007.

16 Q. Kong, C. Lee, C. Teo, and Z. Zheng. Scheduling arrivals to a stochastic service delivery
system using copositive cones. Operations Research, 61(3):711–726, 2013.

17 A. Macario. Is it possible to predict how long a surgery will last? Medscape Anesthesiology,
108(3):681–685, 2010.

18 H. Mak, Y. Rong, and J. Zhang. Appointment scheduling with limited distributional informa-
tion. Management Science, 61(2):316–334, 2014.

https://projects.coin-or.org/Couenne/

A. S. Schulz and R. Udwani 25:17

19 N. Megow and J. Verschae. Dual techniques for scheduling on a machine with varying speed.
In Automata, Languages, and Programming - 40th International Colloquium (ICALP), pages
745–756, 2013.

20 S. Mittal, A. S. Schulz, and S. Stiller. Robust appointment scheduling. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

21 J. Orlin. Personal communication, 2018.
22 Y. Pinto and R. Shamir. Efficient algorithms for minimum-cost flow problems with piecewise-

linear convex costs. Algorithmica, 11(3):256–277, 1994.
23 L. W. Robinson and R. R. Chen. Scheduling doctors’ appointments: optimal and empirically-

based heuristic policies. IIE Transactions, 35(3):295–307, 2003.
24 W. E. Smith. Various optimizers for single-stage production. Naval Research Logistics,

3(1-2):59–66, 1956.
25 S. Stiller and A. Wiese. Increasing Speed Scheduling and Flow Scheduling. In Algorithms and

Computation - 21st International Symposium (ISAAC), pages 279–290, 2010.
26 P. P. Wang. Static and dynamic scheduling of customer arrivals to a single-server system.

Naval Research Logistics, 40(3):345–360, 1993.
27 P. P. Wang. Sequencing and scheduling n customers for a stochastic server. European Journal

of Operational Research, 119(3):729–738, 1999.

APPROX/RANDOM 2019

Collapsing Superstring Conjecture
Alexander Golovnev
Harvard University, Cambridge, MA, USA

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg, Russian Academy of Sciences, Russia

Alexander Logunov
St. Petersburg State University, Russia

Ivan Mihajlin
University of California, San Diego, CA, USA

Maksim Nikolaev
St. Petersburg State University, Russia

Abstract
In the Shortest Common Superstring (SCS) problem, one is given a collection of strings, and needs
to find a shortest string containing each of them as a substring. SCS admits 2 11

23 -approximation in
polynomial time (Mucha, SODA’13). While this algorithm and its analysis are technically involved,
the 30 years old Greedy Conjecture claims that the trivial and efficient Greedy Algorithm gives
a 2-approximation for SCS.

We develop a graph-theoretic framework for studying approximation algorithms for SCS. The
framework is reminiscent of the classical 2-approximation for Traveling Salesman: take two copies of
an optimal solution, apply a trivial edge-collapsing procedure, and get an approximate solution. In
this framework, we observe two surprising properties of SCS solutions, and we conjecture that they
hold for all input instances. The first conjecture, that we call Collapsing Superstring conjecture,
claims that there is an elementary way to transform any solution repeated twice into the same
graph G. This conjecture would give an elementary 2-approximate algorithm for SCS. The second
conjecture claims that not only the resulting graph G is the same for all solutions, but that G can
be computed by an elementary greedy procedure called Greedy Hierarchical Algorithm.

While the second conjecture clearly implies the first one, perhaps surprisingly we prove their
equivalence. We support these equivalent conjectures by giving a proof for the special case where all
input strings have length at most 3 (which until recently had been the only case where the Greedy
Conjecture was proven). We also tested our conjectures on millions of instances of SCS.

We prove that the standard Greedy Conjecture implies Greedy Hierarchical Conjecture, while
the latter is sufficient for an efficient greedy 2-approximate approximation of SCS. Except for
its (conjectured) good approximation ratio, the Greedy Hierarchical Algorithm provably finds a
3.5-approximation, and finds exact solutions for the special cases where we know polynomial time
(not greedy) exact algorithms: (1) when the input strings form a spectrum of a string (2) when all
input strings have length at most 2.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Approximation algorithms analysis

Keywords and phrases superstring, shortest common superstring, approximation, greedy algorithms,
greedy conjecture

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.26

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1809.08669.

Funding Alexander Golovnev: Supported by a Rabin Postdoctoral Fellowship.

© Alexander Golovnev, Alexander S. Kulikov, Alexander Logunov, Ivan Mihajlin, and Maksim
Nikolaev;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 26; pp. 26:1–26:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.26
https://arxiv.org/abs/1809.08669
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Collapsing Superstring Conjecture

1 Introduction

The shortest common superstring problem (abbreviated as SCS) is: given a set of strings,
find a shortest string that contains all of them as substrings. This problem finds applications
in genome assembly [33, 24], and data compression [9, 8, 28]. We refer the reader to the
excellent surveys [10, 21] for an overview of SCS, its applications and algorithms. SCS
is known to be NP-hard [9] and even MAX-SNP-hard [3], but it admits constant-factor
approximation in polynomial time.

The best known approximation ratios are 2 11
23 due to Mucha [22] and 2 11

30 due to Paluch [23]
(see [12, Section 2.1] for an overview of the previous approximation algorithms and inapprox-
imability results). While these approximation algorithms use an algorithm for Maximum
Weight Perfect Matching as a subroutine, the 30 years old Greedy Conjecture [28, 30, 31, 3]
claims that the trivial Greedy Algorithm, whose pseudocode is given in Algorithm 1, is
2-approximate. Ukkonen [32] shows that for a fixed alphabet, the Greedy Algorithm can
be implemented in linear time. It should be noted that GA is not deterministic as we do
not specify how to break ties in case when there are many pairs of strings with maximum
overlap. For this reason, GA may produce different superstrings for the same input.

Algorithm 1 Greedy Algorithm (GA).
Input: set of strings S.
Output: a superstring for S.

1: while S contains at least two strings do
2: extract from S two strings with the maximum overlap
3: add to S the shortest superstring of these two strings
4: return the only string from S

I Greedy Conjecture. For any set of strings S, GA(S) constructs a superstring that is at
most twice longer than an optimal one.

Blum et al. [3] prove that the Greedy Algorithm returns a 4-approximation of SCS, and
Kaplan and Shafrir [15] improve this bound to 3.5. A slight modification of the Greedy
Algorithm gives a 3-approximation of SCS [3], and other greedy algorithms are studied from
theoretical [3, 25] and practical perspectives [26, 4].

It is known that the Greedy Conjecture holds for the case when all input strings have
length at most 3 [30, 7], and it was recently shown to hold in the case of strings of length
4 [18]. Also, the Greedy Conjecture holds if the Greedy Algorithm happens to merge strings
in a particular order [35, 19]. The Greedy Algorithm gives a 2-approximation of a different
metric called compression [30]. The compression is defined as the sum of the lengths of all
input strings minus the length of a superstring (hence, it is the number of symbols saved
with respect to a naive superstring resulting from concatenating the input strings).

Most of the approaches for approximating SCS are based on the overlap graph or the
equivalent suffix graph. The suffix graph has input strings as nodes, and a pair of nodes is
joined by an arc of weight equal to their suffix (see Section 2.1 for formal definitions of overlap
and suffix). SCS is equivalent to (the asymmetric version of) the Traveling Salesman Problem
(TSP) in the suffix graph. While TSP cannot be approximated within any polynomial time
computable function unless P = NP [27], its special case corresponding to SCS can be

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:3

approximated within a constant factor.1 We do not know the full characterization of the
graphs in this special case, but we know some of their properties: Monge inequality [20]
and Triple inequality [35]. These properties are provably not sufficient for proving Greedy
Conjecture [35, 19].

While the overlap and suffix graphs give a convenient graph structure, our current
knowledge of their properties is provably not sufficient for showing strong approximation
factors. Thus, the known approximation algorithms (including the Greedy Algorithm)
estimate the approximation ratio via the overlap graph, and also separately take into account
some string properties not represented by the overlap graph. The goal of this work is to
develop a simple combinatorial framework which captures all features of the input strings
needed for proving approximation ratios of algorithms.

1.1 Our contributions

We continue the study of the so-called hierarchical graph introduced by Golovnev et al. [13].
(See also [5] for a related notion of the superstring graph.) This graph is designed specifically
for the SCS problem, in some sense it generalizes de Bruijn graph, and it contains more
information about the input strings than just all pairwise overlaps. Given an instance of
SCS, the vertex set of the corresponding hierarchical graph is just the set of substrings of all
the input strings. For a string s and two symbols α, β, the graph contains the arcs: (s, sα)
and (βs, s). Now, every superstring of the given set of string corresponds to an Eulerian
walk in the hierarchical graph (which passes through the vertices corresponding to the input
strings), and vice versa. (See Section 2.2 for formal definition and statements.)

1.1.1 Collapsing Conjecture

We define a simple normalization procedure of a walk in the hierarchical graph: replace the
pair of arcs (αs, αsβ), (αsβ, sβ) with the pair (αs, s), (s, sβ) as long as it does not violate
connectivity of the walk. It is easy to see that such a normalization never increases the
length of the corresponding solution of SCS. First, we observe a surprising property of this
normalization procedure: if one takes any solution, doubles all of its arcs in the hierarchical
graph, and then applies the normalization procedure, then the resulting set of arcs is always
the same (i.e., it does not depend on the initial solution). Collapsing Conjecture makes this
observation formal (see Section 3). Note that this conjecture implies an extremely simple
2-approximate algorithm for Shortest Common Superstring: take any solution (for example,
write down all input strings one after another), then double each arc in the hierarchical
graph, and apply the simple normalization procedure. This procedure will result in some
superstring S. On the other hand, if one started with an optimal solution, doubled each of
its arcs, and normalized the result, then the resulting solution would have length at most
twice the length of the optimal solution. By Collapsing Conjecture, this resulting superstring
would also be S, which implies that S is a 2-approximation.

1 We remark that SCS is also a special case of TSP for costs satisfying the triangle inequaliy. This case of
TSP can be approximated within a constant factor [29], but this factor is currently much worse than
that for SCS.

APPROX/RANDOM 2019

26:4 Collapsing Superstring Conjecture

1.1.2 Greedy Hierarchical Conjecture
We also propose a simple and natural greedy algorithm for SCS in the hierarchical graph:
start from the nodes corresponding to the input strings, and greedily build an Eulerian walk
passing through all of them. While this Greedy Hierarchical Algorithm (GHA) is as simple
as the Greedy Algorithm (GA), it provably performs better in some cases. For example,
there are two well-known polynomially solvable special cases of SCS: strings of length 2 and
a spectrum of a string. While GA does not always find optimal solutions in these cases, GHA
solves them exactly (see Sections B.1 and B.2).

Greedy Hierarchical Conjecture (see Section 4) claims that the set of arcs produced by
GHA exactly matches the set of arcs from the Collapsing Conjecture: whichever initial
solution one takes, after doubling its arcs and normalization, the resulting set of arcs is
exactly the solution found by GHA. Clearly, this conjecture implies Collapsing Conjecture.
Perhaps surprisingly, we prove that the two conjectures are equivalent (see Section 5.1): if
all doubled solutions after normalization result in the same set of arcs, then this set of arcs
is the GHA solution.

The weak form of Greedy Hierarchical Conjecture claims that GHA is a 2-approximate
algorithm for SCS. We prove (see Section 5.2) that GHA is an instantiation of GA with
some tie-breaking rule. That is, there is an algorithm which always merges some pair of
strings with the longest overlap and outputs the same solution as GHA. This result has two
consequences. First, by the known results for GA, we immediately have that GHA finds
a 3.5-approximation for SCS. Second, this gives us that Greedy Conjecture implies Weak
Greedy Hierarchical Conjecture.

1.1.3 Evidence for the Conjectures
We support the Collapsing Conjecture (and the equivalent Greedy Hierarchical Conjecture)
by proving its special case and verifying it empirically. We prove the conjecture for the
special case where all input strings have length at most 3, which until recently had been
the only case where the Greedy Conjecture was proven (see Section A). Despite tesing the
conjecture on millions of datasets (both hand-crafted and generated randomly according
to various distributions), we have not found a counter-example. Note that even the Weak
Greedy Hierarchical Conjecture suffices for getting a 2-approximation for SCS, and this
conjecture is not harder to prove than the standard Greedy Conjecture. We implemented
the Greedy Hierarchical Algorithm [11], and we invite the reader to its web interface [34]
to see step by step executions of the described algorithms and to verify the conjectures on
custom datasets.

2 Definitions

2.1 Shortest Common Superstring Problem
For a string s, by |s| we denote the length of s. For strings s and t, by overlap(s, t) we
denote the longest suffix of s that is also a prefix of t. By pref(s, t) we denote the first
|s| − | overlap(s, t)| symbols of s. Similarly, suff(s, t) is the last |t| − | overlap(s, t)| symbols
of t. By pref(s) and suff(s) we denote, respectively, the first and the last |s| − 1 symbols
of s. See Figure 1 for a visual explanation. We denote the empty string by ε.

Throughout the paper by S = {s1, . . . , sn} we denote the set of n input strings. We
assume that no input string is a substring of another (such a substring can be removed from
S in the preprocessing stage). Note that SCS is a permutation problem: to find a shortest

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:5

s

t

pref(s, t)

overlap(s, t) suff(s, t)

pref(s)
suff(s)

b a a c a b b c a a c b

b c a a c b a c a a a b c a

Figure 1 Pictorial explanations of pref, suff, and overlap functions.

string containing all si’s in a given order one just overlaps the strings in this order, see
Figure 2. (This simple observation relates SCS to other permutation problems, including
various versions of the Traveling Salesman Problem.) It will prove convenient to view the SCS
problem as a problem of finding an optimum permutation. It should be noted at the same
time that the correspondence between permutations and superstrings is not one-to-one: there
are superstrings that do not correspond to any permutation. For example, the concatenation
of input strings is clearly a superstring, but it ignores the fact that neighbor strings may
have non-trivial overlaps and for this reason may fail to correspond to a permutation. Still,
clearly, any shortest superstring corresponds to a permutation of the input strtings.

si1

si2

si3

sin−1

sin

si1 suff(si1 , si2) suff(si2 , si3) suff(sin−1 , sin
)· · ·

· · ·

Figure 2 SCS is a permutation problem. The length of a superstring corresponding to a per-
mutation (si1 , . . . , sin) is |si1 | plus the sum of the lengths of suffixes of consecutive pairs of strings.
It is also equal to

∑n

i=1 |si| −
∑n−1

j=1 | overlap(sij , sij+1)|.

2.2 Hierarchical Graph
For a set of strings S, the hierarchical graph HG = (V,E) is a weighted directed graph with
V = {v : v is a substring of some s ∈ S}. For every v ∈ V, v 6= ε, the set of arcs E contains
an up-arc (pref(v), v) of weight 1 and a down-arc (v, suff(v)) of weight 0. The meaning of
an up-arc is appending one symbol to the end of the current string (and that is why it has
weight 1), whereas the meaning of a down-arc is cutting down one symbol from the beginning
of the current string. Figure 3(a) gives an example of the hierarchical graph and shows that
the terminology of up- and down-arcs comes from placing all the strings of the same length
at the same level, where the i-th level contains strings of length i. In all the figures in this
paper, the input strings are shown in rectangles, while all other vertices are ellipses.

What we are looking for in this graph is a shortest walk from ε to ε going through all the
nodes from S. It is not difficult to see that the length of a walk from ε to ε equals the length
of the string spelled by this walk. This is just because each up-arc has weight 1 and adds
one symbol to the current string. See Figure 3(b) for an example.

APPROX/RANDOM 2019

26:6 Collapsing Superstring Conjecture

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(a)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(b)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(c)

Figure 3 (a) Hierarchical graph for the dataset S = {aaa, cae, aec, eee}. (b) The walk ε→ a→
ae→ aec→ ec→ c→ ca→ a→ ε has length (or weight) 4 and spells the string aeca of length 4.
(c) An optimal superstring for S is aaaecaeee. It has length 9, corresponds to the permutation
(aaa, aec, cae, eee), and defines the walk of length 9 shown in black.

Hence, the SCS problem is equivalent to finding a shortest closed walk from ε to ε that
visits all nodes from S. Note that a walk may contain repeated nodes and arcs. The multiset
of arcs of such a walk must be Eulerian (each vertex must have the same in- and out-degree,
and the set of arcs must be connected). It will prove convenient to define an Eulerian solution
in a hierarchical graph as an Eulerian multiset of arcs D that goes through ε and all nodes
from S. Given such a solution D, one can easily recover an Eulerian cycle (that might not
be unique). This cycle spells a superstring of S of the same length as D. Figure 3(c) shows
an optimal Eulerian solution.

A solution to SCS defines a permutation (si1 , . . . , sin
) of the input strings, and this

permutation naturally gives a “zig-zag” Eulerian solution in the hierarchical graph:

ε→ si1 → overlap(si1 , si2)→ si2 → overlap(si2 , si3)→ · · · → sin
→ ε . (1)

This Eulerian solution is shown schematically in Figure 4(a). This schematic illustration is
over simplified as the shown path usually has many self-intersections. Still, this point of view
is helpful in understanding the algorithms presented later in the text. Figure 4(b) shows
an “untangled” optimal Eulerain solution from Figure 3(c): by contracting nodes with equal
labels into the same node, one gets exactly the solution from Figure 3(c).

aaa caeaec eee

aa aa ae ec ca ae ee ee

a a c e e

ε

si1 si2 si3 sin· · ·

ε

(a) (b)

Figure 4 (a) A schematic illustration of a normalized Eulerian solution. (b) Untangled optimal
Eulerian solution from Figure 3(c).

Not every Eulerian solution in the hierarchical graph has a nice zig-zag structure described
above. In the next section, we introduce a normalization procedure (that we call collapsing)
that allows us to focus on nice Eulerian solutions only.

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:7

2.3 Normalizing a Solution
In this section, we describe a natural way of normalizing an Eulerian solution D. Informally,
it can be viewed as follows. Imagine that all arcs of D form one circular thread, and
that there is a nail in every node s ∈ S corresponding to an input string. We apply
“gravitation” to the thread, i.e., we replace every pair of arcs (pref(v), v), (v, suff(v)) with
a pair (pref(v),pref(suff(v))), (pref(suff(v)), suff(v)), if there is no nail in v and if this does
not disconnect D. We call this collapsing, see Figure 5.

pref(v)

v

suff(v)

pref(suff(v))

aba

abac

bac

ba

Figure 5 Collapsing a pair of arcs is replacing a pair of dashed arcs with a pair of solid arcs:
general case (left) and example (right). The “physical meaning” of this transformation is that to
get bac from aba one needs to cut a from the beginning and append c to the end and these two
operations commute.

A formal pseudocode of the collapsing procedure is given in Algorithm 2. The pseudocode,
in particular, reveals an important exception (not covered in Figure 5): if |v| = 1, then
pref(suff(v)) is undefined and we just remove the pair of arcs (pref(v), v) and (v, suff(v)).

Algorithm 2 Collapse.
Input: hierarchical graph HG(V,E), Eulerian solution D, node v ∈ V .

1: if (pref(v), v), (v, suff(v)) ∈ D then
2: D ← D \ {(pref(v), v), (v, suff(v))}
3: if |v| > 1 then
4: D ← D ∪ {(pref(v),pref(suff(v))), (pref(suff(v)), suff(v))}

Algorithm 3, that we call Collapsing Algorithm (CA), uses the property described above
to normalize any solution. It drops down all pairs of arcs that are not needed for connectivity.
(Recall that a set of edges is called an Eulerian solution if it is connected and goes through
all initial nodes and ε.)

Algorithm 3 Collapsing Algorithm (CA).
Input: set of strings S, Eulerian solution D in HG.
Output: Eulerian solution D′ : |D′| 6 |D|

1: for level l in HG in descending order do
2: for all v ∈ V s.t. |v| = l in lexicographic order: do
3: while (pref(v), v), (v, suff(v)) ∈ D and collapsing it keeps D an Eulerian solution

do
4: Collapse(HG,D, v)
5: return D

It is easy to show (we prove this formally in Claim 2 on page 14) that any normalized
solution is of the form (1). But it is not true that every zig-zag solution of the form (1) is a
normalized solution: see Figure 6 for an example. The normalization procedure does not
just turn a solution into some standard form, but it may also decrease its length.

APPROX/RANDOM 2019

26:8 Collapsing Superstring Conjecture

ae aa ca

ae c

ε

(a)

ae aa ca

ae c

ε

(b)

Figure 6 (a) An Eulerian solution corresponding to the permutation (ae, aa, ca). (b) The solution
from (a) after normalization results in a shorter solution corresponding to the permutation (ca, aa, ae).
This example also shows that though collapsing a pair of edges is a local change in the graph, it
may drastically change the resulting superstring. In this case, it replaces a superstring aeaaca with
a shorter superstring caae.

3 Collapsing Conjecture

We are now ready to conjecture an astonishing structural property of the hierarchical graph:

Take any Eulerian solution, double every arc of it, and normalize the resulting solution;
the result is the same for all initial solutions!

For the formal statement of the conjecture we use the following notation: If U and V are two
multisets, then U t V is the multiset W such that each w ∈W has multiplicity equal to the
sum of multiplicities it has in sets U and V . Formally, the conjecture is stated as follows.

I Collapsing Conjecture. For any set of strings S and any two Eulerian solutions D1, D2
of S,

CA(S, D1 tD1) = CA(S, D2 tD2) .

Figures 7 and 8 illustrate the action of the Collapsing Algorithm for optimal and naive
solutions, respectively. Note that the resulting solutions are equal. When processing level
l > 1 nodes, the collapsing procedure does not change the total length of the solution. What
one normally sees at the beginning of the l = 1 iteration is an Eulerian solution with many
redundant pairs of arcs of the form (a, ε), (ε, a). It is exactly this stage of the algorithm
where the total length of a solution is decreased by the Collapsing Algorithm.

We have verified the conjecture on millions of datasets (both handcrafted and randomly
generated), and we invite the reader to see its visualizations and to check the conjecture
on arbitrary datasets at the webpage [34]. Moreover, we support the conjecture by proving
that it holds in the (NP-hard) special case where the input strings have length at most 3 in
Section A.

If the Collapsing Conjecture is true, then there is a simple and natural 2-approximate
algorithm for SCS: take any Eulerian solution (e.g., merge the input strings in arbitrary
order), double it, and apply the Collapsing Algorithm. Under the conjecture, this results in
the same Eulerian solution as for doubled optimal solution and hence the length of the result
is at most twice the optimal length.

4 Greedy Hierarchical Conjecture

In this section, we present one more curious property of the Collapsing Algorithm that reveals
its intricate connection to greedy algorithms. For this, we introduce the so called Greedy
Hierarchical Algorithm (GHA) that constructs an Eulerian solution in a stingy fashion, i.e.,
tries to add as few arcs as possible:

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:9

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(a)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(b)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(c)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(d)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(e)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(f)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(g)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(h)

Figure 7 Stages of applying the Collapsing Algorithm to the dataset {aaa, cae, aec, eee} and
its optimal solution. (a) We start by doubling every arc of the optimal solution from Figure 3(c).
(b) After collapsing all nodes at level l = 3. (c) After processing the node aa at level l = 2. Note
that the algorithm leaves a pair of arcs (a, aa), (aa, a) as they are needed to connect the component
{aa, aaa} to the rest of the solution. (d) After processing the ae node. The algorithm collapses all
pairs of arcs for this node as it lies in the same component as the node c. (e) After processing the
ca node. (f) After processing the ec node. (g) After processing the ee node. Note that at this point
the solution has exactly the same length as at the very beginning (at stage (a)). (h) Finally, after
collapsing all the unnecessary pairs of arcs from the level l = 1.

Proceed nodes from top to bottom. For each node, ensure that it is balanced and
connected to the rest of the solution.

This is best illustrated with an example, see Figure 9. We start constructing an Eulerian
solution D by processing the nodes at level 3. The solution D must visit all these four nodes,
so we add all incoming and outgoing arcs to D, see Figure 9(a). We then process the level 2.
The node aa is balanced, but if we skip it, it will not be connected to the rest of the solution,
so we add to D the arcs (a, aa) and (aa, a). The node ae is balanced, we do nothing for it.
The node ca is imbalanced, so we add an arc (c, ca) to D. We balance the node ec similarly.
The node ee is processed similarly to the node aa. The result of processing the second level
is shown in Figure 9(b). On the last stage we connect the nodes a, b, and c to ε to ensure
connectivity, see Figure 9(c). Hence, when processing level l, we only add arcs between
levels l and l − 1.

APPROX/RANDOM 2019

26:10 Collapsing Superstring Conjecture

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(a)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(b)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(c)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(d)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(e)

Figure 8 Stages of applying the Collapsing Algorithm to the dataset {aaa, cae, aec, eee} and
its naive solution resulting from overlapping the input strings in the same order as they are given.
(a) The solution of length 10 corresponding to the superstring aaacaeceee. (b) The doubled solution.
(c) After collapsing the l = 3 level. (d) After collapsing the l = 2 level. (e) After collapsing the
l = 1 level.

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(a)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(b)

aaa cae aec eee

aa ca ae ec ee

a c e

ε

(c)

Figure 9 (a) After processing the l = 3 level. (b) After processing the l = 2 level. Note that for
the node aa we add two lower arcs ((a, aa) and (aa, a)) since otherwise the corresponding weakly
connected component ({aa, aaa}) will not be connected to the rest of the solution. At the same
time, when processing the node ae we observe that it lies in a weakly connected component that
contains imbalanced nodes (ca and ec), hence there is no need to add two lower arcs to ae. (c) After
processing the l = 1 level. The resulting solution has length 10 and is, therefore, suboptimal
(compare it with the optimal solution shown in Figure 3(c)).

More formally, GHA first considers the input strings S. Since we assume that no s ∈ S
is a substring of another t ∈ S, there is no down-path from t to s in HG. This means
that any walk through ε and S goes through the arcs {(pref(s), s), (s, suff(s)) : s ∈ S}. The
algorithm adds all of them to the constructed Eulerian solution D and starts processing all
the nodes level by level, from top to bottom. At each level, we process the nodes in the
lexicographic order. If the degree of the current node v is imbalanced, we balance it by
adding an appropriate number of incoming (i.e., (pref(v), v)) or outgoing (i.e., (v, suff(v)))

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:11

arcs from the previous (i.e., lower) level. In the case when v is balanced, we just skip it. The
only exception when we cannot skip it is when v lies in an Eulerian component and v is the
last chance of this component to be connected to the rest of the arcs in D. (See, for example,
the vertex aa in Figure 9(a)). The pseudocode is given in Algorithm 4.

Algorithm 4 Greedy Hierarchical Algorithm (GHA).
Input: set of strings S.
Output: Eulerian solution D.

1: HG(V,E)← hierarchical graph of S
2: D ← {(pref(s), s), (s, suff(s)) : s ∈ S}
3: for level l from max{|s| : s ∈ S} downto 1 do
4: for node v ∈ V with |v| = l in the lexicographic order do
5: if |{(u, v) ∈ D : |u| = |v|+ 1}| 6= |{(v, w) ∈ D : |w| = |v|+ 1}| then
6: balance the degree of v in D by adding an appropriate number of lower arcs
7: else
8: C ← weakly connected component of v in D
9: u← the lexicographically largest string among shortest strings in C
10: if C is Eulerian, ε 6∈ C, and v = u then
11: D ← D ∪ {(pref(v), v), (v, suff(v))}
12: return D

While GHA is almost as simple as the standard Greedy Algorithm (GA), GHA has several
provable advantages over GA:
One advantage of GHA over GA is that GHA is more flexible in the following sense. On
every step, GA selects two strings and fixes tightly their order. GHA instead works to
ensure connectivity. When the resulting set D is connected, an actual order of input
strings is given by the corresponding Eulerian cycle through D. This is best illustrated
on the following toy example. For the dataset S = {ae, ea, ee}, GA might produce
a suboptimal solution aeaee if it merges the strings ae and ea at the first step. At the
same time, it is not difficult to see that GHA finds an optimal solution for S.

Another advantage of GHA is that, in contrast to GA, it solves exactly two well known
polynomially solvable special cases of SCS: when the input strings have length at most two
and when the input strings form a k-spectrum of an unknown string (that is, the input
strings constitute all k-substrings of a string). We prove this formally in Sections B.1
and B.2. Informally, this happens because for such datasets there are no connectivity
issues for GHA: for k-spectrum, after processing the highest level GHA gets a weakly
connected component; for 2-SCS, after processing the level 2, GHA gets several weekly
connected components such that different components do not share common letters and
therefore are completely independent. Figure 6(b) illustrates this: while GA may produce
a permutation (ca, ae, aa), GHA constructs an optimal permutation (ca, aa, ae).
In Section B.3, we also show a dataset where GHA produces a solution that is almost
two times longer than the optimal one.

In Section 5.2, we show that the approximation guarantee of GHA is no worse than that
of GA. Combining with the result of Kaplan and Shafrir [15], this implies immediately
that GHA is 3.5-approximate. Moreover, we prove that the standard Greedy Conjecture
implies 2-approximation of GHA, which makes it natural to study the approximation
ratio of GHA.

APPROX/RANDOM 2019

26:12 Collapsing Superstring Conjecture

Weak Greedy Hier-
archical Conjecture

Collapsing Conjecture

Greedy Conjecture

Greedy Hierarch-
ical Conjecture

CA is 2-approximate

GHA is 2-approximate

GA is 2-approximate

Figure 10 Relations between the conjectures (left), and the 2-approximate algorithms they imply
(right). Collapsing and Greedy Hierarchical Conjectures are equivalent. They imply the weak version
of the Greedy Hierarchical Conjecture, which also follows from the standard Greedy Conjecture.
Each conjecture implies that the corresponding algorithm finds a 2-approximate solution for SCS.

We are now ready to state our second conjecture: the results of the Collapsing Algorithm
and Greedy Hierarchical Algorithm coincide!

I Greedy Hierarchical Conjecture. For any set of strings S and any Eulerian solution D,

CA(S, D tD) = GHA(S) .

While the Greedy Hierarchical Conjecture implies that GHA finds a 2-approximate solution,
we separately state this weak version of the conjecture.

I Weak Greedy Hierarchical Conjecture. GHA is a factor 2 approximation algorithm for
the Shortest Common Superstring problem.

5 Relations between the Conjectures

In this section we prove some relations between the Collapsing and Greedy conjectures.
Namely, in Section 5.1 we prove the equivalence of Collapsing and Greedy Hierarchical
conjectures. In Section 5.2 we prove that the standard Greedy Conjecture implies Weak
Hierarchical Greedy Conjecutre (which is sufficient for a simple 2-approximate greedy
algorithm for SCS). Finally, it is easy to see that Greedy Hierarchical Conjecture implies
its weak version: indeed, if every doubled solution results in the solution obtained by GHA,
then GHA does not exceed twice the optimal superstring length. In Figure 10, we show
the proven relations between the conjectures, together with 2-approximate algorithm which
follow from each of the conjecture.

5.1 Equivalence of Collapsing and Greedy Hierarchical Conjectures
In this section we prove the equivalence of Collapsing Conjecture and Greedy Hierarchical
Conjecture. Recall that Collapsing Conjecture claims that for any pair of Eulerian solutions
D1 and D2 for the input strings S, we have

CA(S, D1 tD1) = CA(S, D2 tD2) .

The Greedy Hierarchical Solution extends this statement to

CA(S, D1 tD1) = GHA(S) .

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:13

Greedy Hierarchical Conjecture trivially implies Collapsing conjecture, and in order to prove
their equivalence, it suffices to show that the collapsing procedure applied to the doubled
GHA solution results in the GHA solution:

CA(S, GHA(S) tGHA(S)) = GHA(S) .

I Theorem 1. For any set of strings S,

CA(S, GHA(S) tGHA(S)) = GHA(S) .

Proof. Let us denote two copies of the GHA(S) solution by B and R, which stand for a
blue-copy and a red-copy. We will prove the theorem statement by showing that CA(R tB)
collapses all arcs of B and keeps untouched the arcs of R, as this implies that CA(R tB) =
R = GHA(S). For this, without loss of generality assume that the Collapsing Algorithm
collapses blue arcs first, that is, if for a vertex v, CA can collapse a blue pair of arcs
(pref(v), v), (v, suff(v)), it does so. Recall that CA processes vertices in the descending order
of levels (Algorithm 3, line 1). We will prove that before processing level l, all the arcs above
it (i.e., the arcs with at least one vertex at a level > l) do satisfy the desired property: all
blue arcs are collapsed, and all red arcs are untouched.

The base case trivially holds for l := max{|s| : s ∈ S}, since the set of arcs above the
level l is empty. Assume the claim is true for the level k > 0, and let us prove the claim for
the level k − 1. Note that regardless of the number of collapse operations applied to B, B
remains a set of walks: indeed, the collapse procedure keeps the balance of incoming and
outgoing arcs for each vertex. By the induction hypothesis all the blue arcs above the level k
are collapsed, so we have that if for a vertex v at level k there is an arc (pref(v), v) in B,
then there is also an arc (v, suff(v)) in B, and vice versa. Recall that CA collapses blue arcs
when possible, and since every vertex has the same number of blue incoming and outgoing
arcs, all pairs collapsed at the level k are monotone.

Now let us show that no red pair can be collapsed. Indeed, if for some vertex v at level k
there is a red pair (pref(v), v), (v, suff(v)), then by construction of GHA v is either in S or
is the last chance of the corresponding component C 3 v to be connected to the remaining
arcs in R (note that the first case is a subcase of the second one, as then C contains only one
vertex). It follows that if CA collapses such a pair of arcs, then v has no blue arcs (as they
have been collapsed before the red arcs), and all other vertices in the component C at the
level k collapsed all arcs (since v is the last vertex in C in lexicographic order). Therefore,
this pair is also the last chance of C to be connected to the rest of the arcs in R, thus, CA
cannot collapse it.

It remains to show that all blue pairs at level k are collapsed. This trivially holds because
no red pair is collapsed, and, thus, the connectivity of R t B is maintained by R. This
finishes the proof. J

5.2 Greedy Implies Greedy Hierarchical
Consider a permutation of the input strings. We say that it is a valid greedy permutation if it
can be constructed by the Greedy Algorithm: there exist n− 1 merges of the n input strings
that lead to this permutation such that at every step the two merged strings have the largest
overlap. We will prove that GHA always returns a solution which corresponds to a greedy
permutation of the input string. That is, while the standard Greedy Algorithm does not
determine how to break ties, the Greedy Hierarchical Algorithm is a specific instantiation of
the Greedy Algorithm with some tie-breaking rule.

We will use the following simple property of solutions constructed by the GHA algorithm.

APPROX/RANDOM 2019

26:14 Collapsing Superstring Conjecture

B Claim 2. Let D be an Eulerian solution constrtucted by GHA. Then D has a “zig-zag”
form as in (1).

Proof. First we prove thatD is normalized, that is, any application of the collapsing procedure
of Algorithm 2 to D will violate the property of Eulerian solution. Indeed, Algorithm 2
can only collapse pairs of arcs of the form (pref(s), s), (s, suff(s)). The Greedy Hierarchical
Algorithm adds such pairs to its solution in two cases: (i) s is an input string (line 2 of
Algorithm 4); (ii) s is the the lexicographically largest among the shortest strings in its
Eulerian component (line 11 of Algorithm 4). Now note that in the former case, the collapsing
procedure applied to s would violate the property that D must contain all input strings, and
in the latter case, the collapsing procedure would violate the connectivity property of D.

We finish the proof by showing that every normalized solution is of the form (1). Let
π = (s1, . . . , sn) be the permutation of the input strings corresponding to a normalized
Eulerian solution D. Let us follow the arcs of D in the order of the permutation π, and
let P be the set of arcs between the input strings si and si+1. We will prove that P is the
union of the sets of arcs of the paths si → overlap(si, si+1) and overlap(si, si+1) → si+1.
If P contains a pair of consecutive up- and down-arcs, that is, there exists a pair of arcs
(pref(s), s), (s, suff(s)) in P , then this pair would have been collapsed by Algorithm 2, line 2.
Therefore, the path P consists of a number of down-arcs followed by a number of up-arcs. It
remains to show that the number of down-arcs in P is d = |si|− | overlap(si, si+1)|. Note that
by the definition of overlap(·, ·), the number of down-arcs in P is at least d. On the other
hand, if the number of down-arcs in P is strictly greater than d, then both the down-path
and up-path in P contain the vertex overlap(si, si+1). This implies that the pair of arcs
(pref(s), s), (s, suff(s)) for s = overlap(si, si+1) would have been collapsed by Algorithm 2,
line 2, as it does not violate the connectivity of the solution. Therefore, the number of
down-arcs in P is exactly d, which implies that P is the path si → overlap(si, si+1) followed
by the path overlap(si, si+1)→ si+1. C

I Theorem 3. Every permutation π = (s1, . . . , sn) of the input strings constructed by GHA
is a valid greedy permutation.

Proof. Consider the following algorithm A: it starts with the sequence (s1, . . . , sn) obtained
by GHA, and at every step it merges two neighboring strings in this sequence that have the
largest overlap. It is a greedy algorithm, but instead of considering all pairwise overlaps,
it only considers overlaps of neighboring strings in the sequence. Of course, in the end,
this algorithm constructs exactly the permutation π. To show that π is a valid greedy
permutation, we show that at every iteration of A no two strings have longer overlap than
the two strings merged by A.

Consider, for the sake of contradiction, the first iteration when the algorithm A merges
some pair of neighboring strings with overlap of length k whereas there are non-neighboring
strings p and q with v = overlap(p, q), |v| > k. At this point, p is a merger of input strings
sa, sa+1, . . . , sb and q is a merger of input strings sc, sc+1, . . . , sd. Then, from the assumption
that no input string contains another input string, we have that v = overlap(p, q) =
overlap(sb, sc). Since the algorithm A merges neighboring strings in the decreasing order of
overlap lengths, we have that | overlap(sb, sb+1)| ≤ k < |v| and | overlap(sc−1, cc)| ≤ k < |v|.2

Now we consider the Eulerian solution D constructed by GHA in the hierarchical
graph. By Claim 2, D has a “zig-zag” form, thus, it contains all arcs from the path
sb → overlap(sb, sb+1) → sb+1, and all arcs from the path sc−1 → overlap(sc−1, sc) → sc.

2 In the case when sb is the last string in the solution (or sc is the first string in the solution) we think of
it being followed by ε, and | overlap(sb, ε)| = 0 < |v| still holds.

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:15

sb sc

v

(a)

sb sc

v

(b)

Figure 11 (a) In the Eulerian solution the node v = overlap(sb, sc) has a pair of lower arcs.
(b) For this reason, above v, there is an Eulerian component.

Recall that v = overlap(sb, sc), and that | overlap(sb, sb+1)| < |v| and | overlap(sc−1, sc)| < |v|.
In particular, the paths sb → overlap(sb, sb+1) and overlap(sc−1, sc)→ sc pass through the
vertex v, which implies that the vertex v in the solution D has at least one incoming arc from
the previous level and at least one outgoing arc to the previous level (see Figure 11(a)). Such
a pair of arcs in the Eulerian solution D constructed by GHA may only occur when v is the
last chance of its connected component to be connected to the rest of the solution (see line 11
of Algorithm 4). This, in turn, implies that right before the pair of arcs (pref(v), v) and
(v, suff(v)) was added to the Eulerian solution, there was an Eulerian component where v was
the lexicographically largest among all shortest nodes. This component is shown schematically
in Figure 11(b). All overlap-nodes (the nodes which are equal to overlap(si, si+1)) of this
component lie on levels > k. Note that the pair (pref(v), v) and (v, suff(v)) is added to the
solution by GHA exactly once (line 11 of Algorithm 4). Therefore, any path following the
arcs of D, after going through the arc (pref(v), v) must traverse the overlying component
containing sb and sc (as otherwise the path could not reach the overlying component). In
turn, this implies that after considering all overlaps of length |v| > k, sb and sc are already
merged into one string, so they cannot be merged at this stage. J

Theorem 3 has two immediate corollaries.

I Corollary 4. The Greedy Conjecture implies the Weak Greedy Hierarchical Conjecture: if
the Greedy Algorithm is 2-approximate, then so is the Greedy Hierarchical Algorithm.

Since every valid greedy permutation is a 3.5-approximation to the Shortest Common
Superstring problem [15], we have the following corollary.

I Corollary 5. GHA is a factor 3.5 approximation algorithm for the Shortest Common
Superstring problem.

6 Further Directions and Open Problems

The most immediate open problems are to prove the Collapsing Conjecture or the Weak
Greedy Hierarchical Conjecture.

6.1 Applications of Hierarchical Graphs
It would also be interesting to find other applications of the hierarchical graphs. We list two
such potential applications below.

APPROX/RANDOM 2019

26:16 Collapsing Superstring Conjecture

Exact algorithms. Can one use hierarchical graphs to solve SCS exactly in time (2− ε)n?
It was shown in Section 1 that the SCS problem is a special case of the Traveling
Salesman Problem. The best known exact algorithms for Traveling Salesman run in time
2n poly(| input |) [2, 14, 17, 16, 1]. These algorithms stay the best known for the SCS
problem as well. The hierarchical graphs were introduced [13] for an algorithm solving
SCS on strings of length at most r in time (2− ε)n (where ε depends only on r). Can
one use the hierarchical graph to solve exactly the general case of SCS in time (2− ε)n

for a constant ε?
Genome assembly. The hierarchical graph in a sense generalizes de Bruijn graph. The latter

one is heavily used in genome assembly [24]. Can one adopt the hierarchical graph for
this task? For this, one would need to come up with a compact representation of the
graph (as datasets in genome assembly are massive) as well as with a way of handling
errors in the input data. Cazaux and Rivals [6] propose a linear-space counterpart of the
hierarchical graph.

6.2 Optimal Cycle Covers
A superstring corresponds to a Hamiltonian path in the overlap graph, thus, a minimum-
weight cycle cover gives a natural lower bound on its length. The Greedy Conjecture claims
that a greedy solution never exceeds twice the length of an optimal solution. It is also
believed (see, e.g., [35, 19]) that the greedy solution does not exceed the length of an optimal
solution plus the length of an optimal cycle cover. This has interesting counterparts in the
hierarchical graphs.

Note that an optimal cycle cover in the overlap graph can be constructed by a straight-
forward greedy algorithm: keep taking heavy edges till the cycle cover is constructed.
The proof of correctness of this algorithm relies on the Monge inequality. Interestingly, to
construct an optimal cycle cover in the hierarchical graph, it suffices to invoke the Greedy
Hierarchical Algorithm with lines 7–11 commented out! In a sense, the Monge inequality
is satisfied in the hierarchical graph automatically as it contains more information about
input strings than just its pairwise overlaps.
As discussed in Section A, for strings of length 3 even a more general fact than Collapsing
Conjecture holds: it suffices to have double edges adjacent to input strings. One simple
way to force a particular solution to satisfy this property is to double every edge of it. At
the same time, adding a shortest cycle cover to it is guaranteed to be as good.
Hence, the more general version of the Collapsing Conjecture is the following: take any
solution, add any cycle cover to it, and collapse; the result is always the same. We tested
this stronger conjecture and did not find any counter-examples.

References
1 Eric Bax and Joel Franklin. A Finite-Difference Sieve to Count Paths and Cycles by Length.

Inf. Process. Lett., 60:171–176, 1996.
2 Richard Bellman. Dynamic Programming Treatment of the Travelling Salesman Problem. J.

ACM, 9:61–63, 1962.
3 Avrim Blum, Tao Jiang, Ming Li, John Tromp, and Mihalis Yannakakis. Linear approximation

of shortest superstrings. In STOC 1991, pages 328–336. ACM, 1991.
4 Bastien Cazaux, Samuel Juhel, and Eric Rivals. Practical lower and upper bounds for the

Shortest Linear Superstring. In SEA 2018, volume 103, pages 18:1–18:14. LIPIcs, 2018.
5 Bastien Cazaux and Eric Rivals. A linear time algorithm for Shortest Cyclic Cover of Strings.

J. Discrete Algorithms, 37:56–67, 2016.

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:17

6 Bastien Cazaux and Eric Rivals. Hierarchical Overlap Graph. arXiv preprint, 2018. arXiv:
1802.04632.

7 Bastien Cazaux and Eric Rivals. Relationship between superstring and compression measures:
New insights on the greedy conjecture. Discrete Appl. Math., 245:59–64, 2018.

8 John Gallant. String compression algorithms. PhD thesis, Princeton, 1982.
9 John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.

Comput. Syst. Sci., 20(1):50–58, 1980.
10 Theodoros P. Gevezes and Leonidas S. Pitsoulis. The shortest superstring problem, pages

189–227. Springer, 2014.
11 Collapsing Superstring Conjecture. GitHub repository.

https://github.com/alexanderskulikov/greedy-superstring-conjecture, 2018.
12 Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Approximating shortest

superstring problem using de Bruijn graphs. In CPM 2013, pages 120–129. Springer, 2013.
13 Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Solving SCS for bounded

length strings in fewer than 2n steps. Inf. Process. Lett., 114(8):421–425, 2014.
14 Michael Held and Richard M. Karp. The Traveling-Salesman Problem and Minimum Spanning

Trees. Math. Program., 1:6–25, 1971.
15 Haim Kaplan and Nira Shafrir. The greedy algorithm for shortest superstrings. Inf. Process.

Lett., 93(1):13–17, 2005.
16 Richard M. Karp. Dynamic Programming Meets the Principle of Inclusion and Exclusion.

Oper. Res. Lett., 1(2):49–51, 1982.
17 Samuel Kohn, Allan Gottlieb, and Meryle Kohn. A Generating Function Approach to the

Traveling Salesman Problem. In ACN 1977, pages 294–300, 1977.
18 Alexander S. Kulikov, Sergey Savinov, and Evgeniy Sluzhaev. Greedy conjecture for strings of

length 4. In CPM 2015, pages 307–315. Springer, 2015.
19 Uli Laube and Maik Weinard. Conditional inequalities and the shortest common superstring

problem. Int. J. Found. Comput. Sci., 16(06):1219–1230, 2005.
20 Gaspard Monge. Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie

Royale des Sciences de Paris, 1781.
21 Marcin Mucha. A tutorial on shortest superstring approximation, 2007.
22 Marcin Mucha. Lyndon Words and Short Superstrings. In SODA 2013, pages 958–972. SIAM,

2013.
23 Katarzyna Paluch. Better approximation algorithms for maximum asymmetric traveling

salesman and shortest superstring. arXiv preprint, 2014. arXiv:1401.3670.
24 Pavel A. Pevzner, Haixu Tang, and Michael S. Waterman. An Eulerian path approach to

DNA fragment assembly. Proc. Natl. Acad. Sci. U.S.A., 98(17):9748–9753, 2001.
25 Eric Rivals and Bastien Cazaux. Superstrings with multiplicities. In CPM 2018, volume 105,

pages 21:1–21:16, 2018.
26 Heidi J. Romero, Carlos A. Brizuela, and Andrei Tchernykh. An experimental comparison

of two approximation algorithms for the common superstring problem. In ENC 2004, pages
27–34. IEEE, 2004.

27 Sartaj Sahni and Teofilo Gonzalez. P-Complete Approximation Problems. J. ACM, 23:555–565,
1976.

28 James A. Storer. Data compression: methods and theory. Computer Science Press, Inc., 1987.
29 Ola Svensson, Jakub Tarnawski, and László A. Végh. A constant-factor approximation

algorithm for the asymmetric traveling salesman problem. In STOC 2018, pages 204–213.
ACM, 2018.

30 Jorma Tarhio and Esko Ukkonen. A greedy approximation algorithm for constructing shortest
common superstrings. Theor. Comput. Sci., 57(1):131–145, 1988.

31 Jonathan S. Turner. Approximation algorithms for the shortest common superstring problem.
Inf. Comput., 83(1):1–20, 1989.

APPROX/RANDOM 2019

http://arxiv.org/abs/1802.04632
http://arxiv.org/abs/1802.04632
https://github.com/alexanderskulikov/greedy-superstring-conjecture
https://github.com/alexanderskulikov/greedy-superstring-conjecture
http://arxiv.org/abs/1401.3670

26:18 Collapsing Superstring Conjecture

32 Esko Ukkonen. A linear-time algorithm for finding approximate shortest common superstrings.
Algorithmica, 5(1-4):313–323, 1990.

33 Michael S. Waterman. Introduction to computational biology: maps, sequences and genomes.
CRC Press, 1995.

34 Collapsing Superstring Conjecture. Webpage. http://compsciclub.ru/scs/, 2018.
35 Maik Weinard and Georg Schnitger. On the greedy superstring conjecture. SIAM J. Discrete

Math., 20(2):502–522, 2006.

A Proof of Collapsing Conjecture for Strings of Length 3

In this section, we show that the Collapsing Conjecture holds for the special case when input
strings have length at most three. Remarkably, this follows from a more general theorem
stated below.

I Theorem 6. Let S contain strings of length at most 3 and let L be an Eulerian solution
that for each s ∈ S contains at least two copies of arcs (pref(s), s) and (s, suff(s)). Then
CA(S, L) = GHA(S).

It is not difficult to see that the theorem indeed implies the Collapsing Conjecture: clearly,
L = D tD, where D is an Eulaerian solution, satisfies the condition. Moreover, this also
works for L = D1 tD2, where D1, D2 are arbitrary Eulerian solutions, and for L = D tCC,
where CC is a cycle cover, i.e., a set of cycles that go through all input strings. The main
difference between an Eulerian solution and a cycle cover is that the later is not required to
be connected. For this reason, any Eulerian solution is also a cycle cover (but not vice versa)
and hence an optimal cycle cover is definitely not longer than an optimal Eulerian solution:
OPT ≤ OPTCC. Hence, Theorem 6 says that the result of GHA is not just no longer than
2 ·OPT , but even no longer than OPT +OPTCC.

Before proving Theorem 6, we introduce some notation and prove two auxiliary results.
Recall that the Collapsing Algorithm processes the nodes level by level. Denote by Li an
intermediate Eulerian solution right before is starts collapsing the nodes at level i (that is,
in Li all the nodes at levels > i are already collapsed). For an arbitrary Eulerian solution U ,
by above(U, i) denote the part of U that lies above the level i: above(U, i) = {(u, v) ∈
U : |u|, |v| ≥ i}. We show that above(D, i) = above(Li, i) for every i. This is enough
since then

CA(S, L) = above(L0, 0) = above(D, 0) = GHA(S) .

I Lemma 7. Let w be a walk from u to v in an Eulerian solution with all its nodes at
levels ≤ k. Consider a single collapsing step for a node t that is either an intermediate node
of p at level k or is a node at level < k that do not belong to p. Then w is still a walk from u

to v in the resulting solution.

Proof. Indeed, if t does not belong to w, then collapsing it does not change w at all.
Otherwise t is an intermediate node of w at level k. Since w does not have any node above
level k, w goes through (pref(t), t), (t, suff(t)). Clearly, collapsing t keeps w a walk. J

I Lemma 8. Let v be a node in L2 at level 1 ≤ l ≤ 2 (i.e., l = |v|). Then there is a walk
from ε to v and a walk from ε to v in Ll that does not contain nodes at level 3.

Proof. We start by proving that there is a walk from v to ε for |v| = 2 (the existence of
a walk from ε to v is proved in a similar fashion).

http://compsciclub.ru/scs/

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:19

Consider a walk w from v to ε in L (there is such a walk as L is an Eulerian solution).
All repeated nodes in w may be removed, so one may assume that w passes through its nodes
at level 3 exactly once. Then, it is sufficient to show that each such node is collapsed.

Consider a node s of w at level 3 and a pair of arcs (pref(s), s), (s, suff(s)) ∈ w going
through it. If s is not at input string (i.e., s 6∈ S), then CA collapses this pair of arcs and
this does not disconnect w. On the other hand, if s is an input string (s ∈ S), then there are
two copies of (pref(s), s), (s, suff(s)) in L. At least one copy of this pair is collapsed in L
and therefore belongs to L2.

The statement for v with |v| = 1 follows from Lemma 7. J

Proof of Theorem 6. As discussed above, it suffices to prove that above(D, i) = above(Li, i)
for every i = 2, 1, 0.

Level i = 2. The base case i = 2 is straightforward: clearly, the Collapsing Algorithm leaves
exactly one copy of arcs (pref(s), s) and (s, suff(s)) for every s ∈ S and fully collapses all
other nodes at level 3. Then, above(L2, 2) = above(D, 2) as (pref(s), s), (s, suff(s)) for
s ∈ S are the only edges between levels 2 and 3 in D.

Level i = 1. Note that above(L2, 2) ⊆ L2 and L2 is an Eulerian cycle. Hence, above(L2, 2)
is a collection of walks. Consider such a walk w and consider two cases.
w is a closed walk. Let v be the lexicographically largest node of w at level 2. What
we want to show is that in L1 this closed walk w is connected to the rest of L1 through
a pair of arcs (pref(v), v) (v, suff(v)) only.
By Lemma 8, there is a path from v to ε in L2 and hence (v, suff(v)) ∈ L2; similarly,
(pref(v), v) ∈ L2. Since v is lexicographically largest at level 2 in w, when CA starts
processing the node v, all other nodes at level 2 in w are fully collapsed, i.e., for any
such node u, (pref(u), u) 6∈ L1 and (u, suff(u)) 6∈ L1. Moreover, CA does not collapse
the pair of arcs (pref(v), v), (v, suff(v)) as this would disconnect w from the rest of the
solution.
w is not closed. Denote by v1 and vk its first and last nodes. All other nodes of w
in above(L2, 2) are balanced. What we want to show is that in L1 the only edges
between levels 1 and 2 that connect w to the rest of the solution are (pref(v1), v1) and
(vk, suff(vk)).
We prove this for vk (for v1 is it shown similarly). By Lemma 8, there is a path from
vk to ε in L2 and hence (vk, suff(vk)) ∈ L2. The algorithm CA always works with an
Eulerian solution and hence every node is balanced at every stage (i.e., its in-degree is
equal to its out-degree). This means that (vk, suff(vk)) ∈ L1 and that all intermediate
nodes of w are not connected to level 1 nodes in L1.

Level i = 0. Note that above(L1, 1) is a collection of walks. The case of a non-closed walk
in this case is easy as it must be connected to ε directly. For this reason, we focus on
a closed walk w in above(L1, 1).
We show that for every node v of w with |v| = 1, L1 contains arcs (ε, v) and (v, ε) (recall
that for |v| = 1, pref(v) = suff(v) = ε). This suffices as then CA (when processing level
one nodes) collapses all nodes of w at level 1 except for the lexicographically largest one,
and this is exactly how w is connected to ε in D0. Below, we show that (ε, v) ∈ L1. It
then follows that (v, ε) ∈ L1 (as L1 must be Eulerian).
Lemma 8 guarantees that L1 contains a path from v to ε that does not contain nodes
at level 3. If the first arc of this path goes down to ε, then there is nothing to prove.
Hence, consider a case when the first arc goes up to a node u (and hence v = pref(u)).
The next arc then must go down to suff(u). Hence, (pref(u), u), (u, suff(u)) ∈ D1. This

APPROX/RANDOM 2019

26:20 Collapsing Superstring Conjecture

may happen in two cases only: either u is an input string (i.e., u ∈ S) or u is the last
chance of its component to be connected to the rest of the solution (i.e., exactly for this
reason GHA added these two edges to the solution). The former case is straightforward:
then there were at least two copies of the arcs (pref(u), u), (u, suff(u)) and CA collapsed
at least one copy. Let us then focus on the latter case.
Let x, y ∈ S be such that u = suff(y) and c := suff(x) = pref(y), see the picture below
(solid arcs belong to L, dashed arc belong to L2).

u

v

ε

yx

c

Note that

v = pref(u) = pref(suff(y)) = suff(pref(y)) = suff(c) .

Hence, (c, v), (v, u) ∈ L2 (resulting from collapsing at least one pair of arcs (c, y), (y, u) ∈
L). L2 also contains a pair of arcs (pref(x), suff(pref(x))), (suff(pref(x)), c). When
processing the node c, CA collapses the pair of arcs (pref(c), c), (c, v) as there is an
arc (v, u). Hence, (ε, v) ∈ L1, as required. (It may be the case that x = y. Then x = aaa,
v = {a}. Then the first pair of arcs of the considered path is a→ aa→ a and one may
just drop them.)

As a final remark, note that if a walk w ∈ above(Li, i) is connected to the rest of
a solution through some a of arcs (pref(v), v), (u, suff(u)) (v and u may coincide), then any
other balanced node in w at level i can be fully collapsed, as every such collapse, thanks
to Lemma 7, does not disconnect w or any other walk from above(Li, i) from the rest of
the solution. J

B Greedy Hierarchical Algorithm and Special Cases of SCS

B.1 Strings of Length 2
Gallant et al. [9] show that SCS on strings of length 3 is NP-hard, but SCS on strings of
length at most 2 is solvable in polynomial time. In this section we show that GHA finds
an optimal solution in this case as well. We note that the standard Greedy Algorithm does
not necessarily find an optimal solution in this case. For example, if S = {ab, ba, bb}, the
Greedy Algorithm may first merge ab and ba, which would lead to a suboptimal solution
ababb (recall also Figure 6).

First, we can assume that all input strings from S have length exactly 2. Indeed, since
we assume that no input string is a substring of another input string, all strings of length
1 are unique symbols which do not appear in other strings. Take any such si of length 1.
The optimal superstring length for S is k if and only if the optimal superstring length for
S \ {si} is k− 1. The Greedy Hierarchical Algorithm has the same behavior: In Step 2, GHA
will include the arcs (ε, si), (si, ε) in the solution, and it will never touch the vertex si again
(because it is balanced and connected to ε). Thus, si adds 1 to the length of the Greedy
Hierarchical Superstring as well. By the same reasoning, we can assume that each string of
length two is primitive, i.e., contains two distinct symbols.

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:21

When considering primitive strings S = {s1, . . . , sn} of length exactly 2, it is convenient
to introduce the following directed graph G = (V,E), where V contains a vertex for every
symbol which appears in strings from S. The graph has |E| = n arcs corresponding to n
input strings: for every string si = ab, there is an arc from a to b. It is known [9] that the
length of an optimal superstring in this case is n+ k where k is the minimum number such
that E can be decomposed into k directed paths, or, equivalently:

I Proposition 9 ([9]). Let G be the graph defined above, and let G1 = (V1, E1), . . . , Gc =
(Vc, Ec) be its weakly connected components. Then the length of an optimal superstring is

n+
c∑

i=1
max

(
1,
∑
v∈Vi

| indegree(v)− outdegree(v)|
2

)
. (2)

We will now show that in this case, GHA finds an optimal solution.

I Lemma 10. Let S = {s1, . . . , sn} be a set of strings of length at most 2, and let s be an
optimal superstring for S. Then GHA(S) returns a superstring of length |s|.

Proof. We showed above that it suffices to consider the case of n primitive strings {s1, . . . , sn}
of length exactly 2. For 1 6 i 6 n, let si = aibi, where ai 6= bi. Consider the partial greedy
hierarchical solution D after the Step 2 of the GHA algorithm: D = {(ai, aibi), (aibi, bi) :
1 6 i 6 n}. (We abuse notation by identifying the set of arcs D with the graph induced by
D.) This partial solution has n up-arcs, so its current weight is n.

Note that by the definition of the graph G above, G contains an arc (a, b) if and only
if D has the arcs (a, ab) and (ab, b) of the graph HG. Thus, the indegree (outdegree) of a
vertex a in G equals the indegree (outdegree) of the vertex a in the partial solution D. Also,
two vertices a and b of G belong to one weakly connected component in G if and only if they
belong to one weakly connected component in D. Therefore, the expression (2) in G has
the same value in the partial solution graph D. (Indeed, the vertices of D corresponding to
strings of length 2 are balanced and do not form weakly connected components.)

Now we proceed to Steps 3–11 of GHA. GHA will go through all strings of length 1, and
add | indegree(v)− outdegree(v)| arcs for each unbalanced vertex v. The Steps 8–11 ensure
that each weakly connected component adds at least a pair of arcs. Since exactly a half of
added arcs are up-arcs, we have increased the weight of the partial solution D by

c∑
i=1

max
(

1,
∑
v∈Vi

| indegree(v)− outdegree(v)|
2

)
. J

B.2 Spectrum of a String
By a k-spectrum of a string s (of length at least k) we mean a set of all substrings of s
of length k. Pevzner et al. [24] give a polynomial time exact algorithm for the case when
the input strings form a spectrum of an unknown string. We show that GHA also finds an
optimal solution in this case.

I Lemma 11. Let S = {s1, . . . , sn} be a k-spectrum of an unknown string s. Then GHA(S)
returns a superstring of length at most |s|.

Proof. Since s has n distinct substrings of length k, |s| > n + k − 1. We will show that
GHA finds a superstring of length n + k − 1. After Step 2 of GHA, the partial solution
D = {(pref(s), s), (s, suff(s)) : s ∈ S}. In particular, D is of weight n. For 1 6 i 6 k − 1,

APPROX/RANDOM 2019

26:22 Collapsing Superstring Conjecture

let ui be the first i symbols of s, and let vi be the last i symbols of s. Note that uk−1 and
vk−1 are the only unbalanced vertices of the partial solution D after Step 2: all other strings
of length k − 1 appear equal number of times as prefixes and suffixes of strings from S.
Therefore, while processing the level ` = k − 1, GHA will add one arc to each of the vertices
uk−1 and vk−1, and will not add arcs to other strings of length k − 1.

In general, while processing the level ` = i, GHA adds one up-arc to ui and one down-arc
to vi. In order to show this, we consider two cases. If ui 6= vi, then ui has an incoming arc
from the previous step and does not have outgoing arcs, therefore GHA adds an up-arc to ui

in Step 6. Similarly, GHA adds a down-arc from vi. Note that there are no other strings of
length i < k − 1 in the partial solution, so the algorithm moves to the next level. In the case
when ui = vi, we have that all vertices are balanced, but the string ui is now the shortest
string in this only connected component C of the graph. Therefore, for i > 0 we have ε 6∈ C,
and GHA adds an up- and down-arc to ui in Step 11.

We just showed that GHA solution for a k-spectrum of a string has the initial set of arcs
D = {(pref(s), s), (s, suff(s)) : s ∈ S}, and also the arcs {(ui−1, ui), (vi, vi−1) : 1 6 i 6 k− 1}.
Thus, the total number of up-arcs (and the weight of the solution) is n+ k − 1. J

B.3 Tough Dataset
There is a well-known dataset consisting of just three strings where the classical greedy
algorithm produces a superstring that is almost twice longer than an optimal one: s1 =
cc(ae)n, s2 = (ea)n+1, s3 = (ae)ncc. Since overlap(s1, s3) = 2n, while overlap(s1, s2) =
overlap(s2, s3) = 2n − 1, the greedy algorithm produces a permutation (s1, s3, s2) (or
(s2, s1, s3)). I.e., by greedily taking the massive overlap of length 2n it loses the possibility to
insert s2 between s1 and s3 and to get two overlaps of size 2n− 1. The resulting superstring
has length 4n+ 6. At the same time, the optimal superstring corresponds to the permutation
(s1, s2, s3) and has length 2n+ 8.

The algorithm GHA makes a similar mistake on this dataset, see Figure 12. When
processing the node (ea)n, GHA does not add two lower arcs to it and misses a chance to
connect two components. It is then forced to connect these two components through ε. This
example shows that GHA also does not give a better than 2-approximation for SCS.

A. Golovnev, A. S. Kulikov, A. Logunov, I. Mihajlin, and M. Nikolaev 26:23

cc(ae)n (ea)n+1(ae)ncc

cc(ae)n−1a c(ae)n (ea)ne a(ea)n(ae)nc e(ae)n−1cc

cc(ae)n−1 (ae)n (ea)n(ae)n−1cc

e(ae)n−1 a(ea)n−1

ε

cc(ae)n (ea)n+1(ae)ncc

cc(ae)n−1a c(ae)n (ea)ne a(ea)n(ae)nc e(ae)n−1cc

cc(ae)n−1 (ae)n (ea)n(ae)n−1cc

e(ae)n−1 a(ea)n−1

ε

Figure 12 Top: optimal solution for the dataset {cc(ae)n, (ea)n+1, (ae)ncc}. Bottom: solution
constructed by GHA.

APPROX/RANDOM 2019

Improved Algorithms for Time Decay Streams
Vladimir Braverman
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
vova@cs.jhu.edu

Harry Lang
MIT CSAIL, Cambridge, MA, USA
harry1@mit.edu

Enayat Ullah
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
enayat@jhu.edu

Samson Zhou
School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
samsonzhou@gmail.com

Abstract
In the time-decay model for data streams, elements of an underlying data set arrive sequentially
with the recently arrived elements being more important. A common approach for handling large
data sets is to maintain a coreset, a succinct summary of the processed data that allows approximate
recovery of a predetermined query. We provide a general framework that takes any offline-coreset
and gives a time-decay coreset for polynomial time decay functions.

We also consider the exponential time decay model for k-median clustering, where we provide a
constant factor approximation algorithm that utilizes the online facility location algorithm. Our
algorithm stores O(k log(h∆) + h) points where h is the half-life of the decay function and ∆ is the
aspect ratio of the dataset. Our techniques extend to k-means clustering and M -estimators as well.

2012 ACM Subject Classification Theory of computation→ Facility location and clustering; Theory
of computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Streaming algorithms, approximation algorithms, facility location and clus-
tering

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.27

Category APPROX

Acknowledgements This material is based upon work supported in part by the National Science
Foundation under Grant No. 1447639, by the Google Faculty Award and by DARPA grant N660001-
1-2-4014. Its contents are solely the responsibility of the authors and do not represent the official
view of DARPA or the Department of Defense.

1 Introduction

The streaming model of computation has become an increasingly popular model for processing
massive datasets. In this model, the data is presented sequentially, and the objective is
to answer some pre-defined query. The overwhelmingly large size of the dataset imposes
a number of restrictions on any algorithm designed to answer the pre-defined query. For
example, a streaming algorithm is permitted only a few passes, or in many cases, only a
single pass over the data. Moreover, the algorithm should also use space sublinear in, or even
logarithmic in, the size of the data. For more details on the background and applications of
the streaming model, [4, 45, 1] provide excellent surveys.

© Vladimir Braverman, Harry Lang, Enayat Ullah, and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@cs.jhu.edu
mailto:harry1@mit.edu
mailto:enayat@jhu.edu
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.27
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Improved Algorithms for Time Decay Streams

Informally, a coreset for a given problem is a small summary of the dataset such that the
cost of any candidate solution on the coreset is approximately the same as the cost in the
original set. Coresets have been used in a variety of problems, including generalized facility
locations [29], k-means clustering [31, 9], principal component analysis [33], and `p-regression
[24]. Coresets also have a number of applications in distributed models (see [39, 44, 6, 3],
for example). To maintain the coresets throughout the data stream, one possible approach
is the so called merge-and-reduce method, in which the multiple sets may be adjusted and
combined. Several well-known coreset constructions [37, 17] for the k-median and k-means
problems are based on the merge-and-reduce paradigm.

1.1 Motivation
Many applications discard obsolete data, choosing to favor relatively recent data to base
their queries. This motivates the time decay model, in which there exists a function w so
that the weight of the tth most recent item is w(t). Note that this is a generalization of both
the insertion-only streaming model, where w(t) = 1 for all t, and the sliding-window model,
where w(t) = 1 for the most recent W items, and w(t) = 0 for t > W . In this paper, we
study the problem of maintaining coresets over a polynomial decay model, where w(t) = 1

ts

for some parameter s > 0, and an exponential decay model, where w(t) = 2 T −t+1
h at time T

for some half-life parameter h > 0.
Although exponential decay model is well-motivated by natural phenomena that exhibit

half-life behavior, [20] notices that exponential decay and the sliding window model is often
insufficient for many applications because the decay occurs too quickly and suggests that
polynomial decay may be a reasonable alternative for some applications, such as availability
of network links. For example, consider a network link that fails at every time between 10
and 60 and a second network link that fails once at time 75. Intuitively, it seems like the
second link should be better, but under many parameters, the exponential decay model and
sliding window model will both agree that the first link is better. Fortunately, under the
polynomial decay model, events that occur near the same time have approximately the same
weight, and we will obtain some view in which the first link is preferred [40]. In practice, time
decay functions have been used in natural language understanding to give more importance
to recent utterances than the past ones [47].

Organization. The rest of the paper is organized as follows. In Section 2, we summarize
the main results of the paper and the algorithmic approaches. In Section 3, we discuss
the related work, and in Section 4, we formalize the problem and discuss the preliminaries
required. In Sections 5 and 6, we handle the polynomial and exponential decay, respectively,
in detail, wherein we present the algorithmic details as well as the complete analysis.

2 Our Contributions

We summarize our results and give a high-level idea of our approach for problems in the
polynomial and exponential decay models in the following subsections respectively. The
reader is encouraged to go through Sections 5 and 6 for details.

2.1 Polynomial decay
In the polynomial decay model, a stream of points P arrives sequentially and the weight
of the tth most recent point, denoted as w(t), is w(t) = 1

ts where s > 0 is a given constant
parameter of the decay function. We first state a theorem that shows that we can use an
offline coreset construction mechanism to give a coreset for the polynomial decay model.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:3

I Theorem 1. Given an algorithm that takes a set of n points as input and constructs an
ε-coreset of F (n, ε) points in O (nT (ε)) time, there exists a polynomial decay algorithm that
maintains an ε-coreset while storing O

(
ε−1 lognF

(
n, ε

logn

))
points and with update time

O
(
ε−1 logn F (n, ε)T (ε/ logn)

)
.

Theorem 1 applies to any time-decay problem on data streams that admits an approximation
algorithm using coresets. Among its applications are the problems of k-median and k-means
clustering,M -estimator clustering, projective clustering, and subspace approximation. We list
a few of these results in Table 1. Our result is a generalization of the vanilla merge-and-reduce
approach used to convert offline coresets to streaming counterparts. In particular, plugging
in s = 0, we get the vanilla streaming model, and the theorem recovers the corresponding
guarantees.

Table 1 Coresets for some problems in polynomial decay streams.

Problem Coreset size Offline algorithm

Metric k-median clustering O
(
s
ε3 k log k log4 n

)
[30]

Metric k-means clustering O
(
s
ε3 k log k log4 n

)
[9]

Metric M -estimator O
(
s
ε3 k log k log4 n

)
[9]

jth subspace approximation O
(
j2s
ε4 log8 n log

(logn
ε

))
[30]

Low rank approximation O
(
s
ε2 kd logn

)
[34]

Approach. A natural starting point would be to attempt to generalize existing sliding
window algorithms to time decay models. These algorithms typically use a histogram data
structure [14], in which multiple instances of streaming algorithms are started at various
points in time, one of which well-approximates the objective evaluated on the data set
represented by the sliding window. However, generalizing these histogram data structures to
time-decay models does not seem to work since the weights of all data points changes upon
each new update in time-decay model, whereas streaming algorithms typically assume static
weights for each data point.

Instead, our algorithm partitions the stream into blocks, where each block represents a
disjoint collection of data point between certain time points. Each arriving element initially
begins as its own block, containing one element. The algorithm maintains an unweighted
coreset for each block, and merges blocks (i.e corresponding coresets) as they become older.
However, at the end, each block is to be weighted according to some function, and so the
algorithm chooses to merge blocks when the weights of the blocks become “close”. Thus, a
coreset for each block will represent the set of points well, as the weights of the points in
each block do not differ by too much.

2.2 Exponential decay
We also provide an algorithm that achieves a constant approximation for k-median clustering
in the exponential decay model. Our guarantees also extend to k-means clustering and
M -estimators.

Given a set P of points in a metric space, let ∆ denote its aspect ratio i.e the ratio
between the largest and (non-zero) smallest distance between any two points in P . The
weight of the tth most recent point at time T is w(t) = 2 T −t+1

h where h > 0 is the half-life
parameter of the exponential decay function.

APPROX/RANDOM 2019

27:4 Improved Algorithms for Time Decay Streams

I Theorem 2. There exists a streaming algorithm that given a stream P of points with
exponentially decaying weights, with aspect ratio ∆ and half-life h, produces an O (1)-
approximate solution to k-median clustering. The algorithm runs in O (nk log(h∆)) time and
uses O (k log(h∆) + h) space.

Approach. Although our previous framework will work for other decay models, the algorithm
may use prohibitively large space. The intuition behind the polynomial decay approach
is that a separate coreset is maintained for each set of points that roughly have the same
weight. In other words, the previous framework maintains a separate coreset each time the
weight of the points decrease by some constant amount, so that if R is the ratio between
the largest weight and the smallest weight, then the total number of coresets stored by the
algorithm is roughly logR. In the polynomial decay model, the number of stored coresets
is O (logn), but in the exponential decay model, the number of stored coresets would be
O (n), which would no longer be sublinear in the size of the input. Hence, we require a new
approach for the exponential decay model.

Instead, we use the online facility location (OFL) algorithm of Meyerson [43] as a
subroutine to solve k-median clustering in the exponential decay model. In the online facility
location problem, we are given a metric space along with a facility cost for each point/location
that appears in the data stream. The objective is to choose a (small) number of facility
locations to minimize the total facility cost plus the service cost, where the service cost of a
point is its distance to the closest facility. For more details, please see Section 6.

Our algorithm for the exponential time decay model proceeds on the data stream, working
in phases. Each phase corresponds to an increasing “guess” for the value of the cost of the
optimal clustering. Using this guess, each phase queries the corresponding instance of OFL.
If the guess is correct, then the subroutine selects a bounded number of facilities. On the
other hand, if either the cost or the number of selected facilities surpasses a certain quantity,
then the guess for the optimal cost must be incorrect, and the algorithm triggers a phase
change. Upon a phase change, our algorithm uses an offline k-median clustering algorithm
to cluster the facility set and produces exactly k points. It then runs a new instance of OFL
with a larger guess, and continues processing the data stream.

However, there is a slight subtlety in this analysis. The number of points stored by OFL is
dependent on the weights of the point. In an exponential decay function, the ratio between
the largest weight and smallest weight of points in the data set may be exponentially large.
Thus to avoid OFL from keeping more than a logarithmic number of points, we force OFL to
terminate after seeing log(h∆) points during a phase. Furthermore, we store points verbatim
until we see k + h distinct points, upon whence we will trigger a phase change. We show
that forcing this phase change does indeed correspond with an increase in the guess of the
value for the optimal cost.

3 Related Work

The first insertion-only streaming algorithm for the k-median clustering problem was presented
in 2000 by Guha, Mishra, Motwani, and O’Callaghan [36]. Their algorithm uses O (nε) space
for a 2O(1/ε) approximation, for some 0 < ε < 1. Subsequently, Charikar et al [16] present
an O (1)-approximation algorithm for k-means clustering that uses O

(
k log2 n

)
space. Their

algorithm uses a number of phases, each corresponding to a different guess for the value of
the cost of optimal solution. The guesses are then used in the online facility location (OFL)
algorithm of [43], which provides a set of centers whose number and cost allows the algorithm

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:5

to reject or accept the guess. This technique is now one of the standard approaches for
handling k-service problems. Braverman et al [13] improve the space usage of this technique
to O (k logn). [11] and [12] develop algorithms for k-means clustering on sliding windows, in
which expired data should not be included in determining the cost of a solution.

Another line of approach for k-service problems is the construction of coresets, in particular
when the data points lie in the Euclidean space. Har-Peled and Mazumdar [37] give an
insertion-only streaming algorithm for k-medians and k-means that provides a (1 + ε)-
approximation, using space O

(
kε−d log2d+2 n

)
, where d is the dimension of the space.

Similarly, Chen [17] introduced an algorithm using O
(
k2dε−2 log8 n

)
space, with the same

approximation guarantees.
Cohen and Strauss [20] study problems in time-decaying data streams in 2003. There

are a number of results [40, 22, 21, 23] in this line of work, but the most prominent time-
decay model is the sliding window model. Datar et al [25] introduced the exponential
histogram as a framework in the sliding window for estimating statistics such as count,
sum of positive integers, average, and `p norms. This initiated an active line of research,
including improvements to count and sum [35], frequent itemsets [18, 10], frequency counts
and quantiles [2, 42], rarity and similarity [26], variance and k-medians [5] and other geometric
and numerical linear algebra problems [28, 15, 8].

4 Preliminaries

Let X be the set of possible points in a space with metric d. A weighted set is a pair
(P,w) with a set P ⊂ X and a weight function w : P → [0,∞). A query space is a tuple
(P,w, f,Q) that combines a weighted set with a set Q of possible queries and a function
f : X ×Q→ [0,∞). A query space induces a function

f̄(P,w, q) =
∑
p∈P

w(p)f(p, q).

We now instantiate the above with some simple examples.

I Example 3 (k-means). Let Q be all sets of k points in Rd, and for C ∈ Q define
f(p, C) = minc∈C d2(p, c). The k-means cost of (P,w) to C is∑

p∈P
w(p) min

c∈C
d2(p, c).

I Example 4 (k-median). Let Q be all sets of k points in Rd, and for C ∈ Q define
f(p, C) = minc∈C d(p, c). The k-median cost of (P,w) to C is∑

p∈P
w(p) min

c∈C
d(p, c).

Note that both k-median and k-means are captured in f̄(P,w,C). We now define an ε-coreset.

I Definition 5 (ε-coreset). A ε-coreset for the query space (P,w, f,Q) is a tuple (Z, u), where
Z ⊆ X is a set of points and u : Z → [0,∞) are their corresponding weights, such that for
every q ∈ Q

(1− ε)f̄(P,w, q) ≤ f̄(Z, u, q) ≤ (1 + ε)f̄(P,w, q).

An important property of coresets is that they are closed under operations like union
and composition. We formalize this below.

APPROX/RANDOM 2019

27:6 Improved Algorithms for Time Decay Streams

I Proposition 6 (Merge-and-reduce, [17]). Coresets satisfy the following two properties.
1. If S1 and S2 are ε-coresets of disjoint sets P1 and P2 respectively, then S1 ∪ S2 is an

ε-coreset of P1 ∪ P2.
2. If S1 is an ε-coreset of S2 and S2 is a δ-coreset of S3, then S1 is a ((1+ε)(1+δ)−1)-coreset

of S3.
We now define approximate triangle inequality, a property that allows us to extend our results
obtained in metric spaces to ones with semi-distance functions. In particular, this allows us
to extend results for k-median clustering to k-means and M -estimators in exponential decay
streams.

I Definition 7 (λ-approximate triangle inequality). A function d(·, ·) on a space X satisfies
the λ-approximate triangle inequality if for all x, y, z ∈ X ,

d(x, z) ≤ λ(d(x, y) + d(y, z)).

5 Polynomial Decay

We consider a time decay, wherein a point p in the stream, which arrived at time t, has
weight w(p) = (T − t+ 1)−s at time T > t, for some parameter s > 0. Equivalently, the tth
most recent element has weight t−s for some s > 0.

We present a general framework which, for given problem, takes an offline coreset
construction algorithm and adapts it to polynomial decay streams. Our technique can be
viewed as a generalization of merge-and-reduce technique of Bentley and Saxe [7]. We also
briefly discuss some applications towards that end. We start with stating our main theorem
for polynomial decay streams.

I Theorem 8. Given an offline algorithm that takes a set of n points as input and constructs
an ε-coreset of F (n, ε) points in O (nT (ε)) time, there exists a polynomial decay algorithm that
maintains an ε-coreset while storing O

(
ε−1s lognF (n, ε/ logn)

)
points and with update time

O
(
ε−1s logn F (n, ε)T (ε/ logn)

)
.

Notation. We use N to denote the set of natural numbers. We use CS-RAM to denote an
offline coreset construction algorithm, which given n points, constructs an ε-coreset in time
O (nT (ε)) and takes space F (n, ε). We abuse notation by using F (n, ε) to also refer to the
corresponding coreset.

5.1 Algorithm
We start with giving a high-level intuition of the algorithm. Given a stream of points, the
algorithm implicitly maintains a partition of the streams into disjoint blocks. A block is a
collection of consecutive points in the stream, and is represented by two positive integers
a and b as [a, b], where a represents the position of the first point in the block and b the
last point, relative to the start of the stream. Let the set of blocks be denoted by B. Our
algorithm stores points of a given block by maintaining a coreset for the points in that block.
As the stream progresses, we merge older blocks i.e. the corresponding coresets. Informally,
the merge happens when the weights of the blocks become close.

We first define a set of integer markers xi, which for a given i ∈ N, depends on the
decay parameter s and target ε. These markers dictate when to merge blocks as the stream
progresses. For a given i ∈ N, we define xi to be the minimum integer greater than or equal
to 2i such that

1− ε
(xi − 2i + 1)s ≤

1 + ε

xsi
.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:7

Equivalently, we can write
(

xi

xi−2i+1

)s
≤ 1+ε

1−ε . Note that each of the 2i points following xi
in the stream, has weight within 1+ε

1−ε times the weight of xi. Moreover, xi’s can be exactly
pre-computed from the equation and we therefore assume that these are implicitly stored by
the algorithm. Each new element in the stream starts as a new block. As mentioned before,
the blocks are represented by two integers [a, b] and the points are stored as a coreset. When
a block [a, b] reaches xi, then algorithm merges all of [xi − 2i + 1, xi] points into a single
coreset. In the end, the algorithm outputs the weighted union of the coresets of the blocks.

To visualize this, consider the integer line, and suppose that we have xi’s marked on
the positive side of the line, for example x1 = 2, x2 = 4 The tuple indices of the blocks
represent the relative position of the point in the stream, with the start being 1 and the end
point being n. At the start, the stream is on the non-positive end with the first point at
0. As the time progresses, the stream moves to the right side. Therefore, when we observe
the first element, it moves to the point 1. We then store it as a new block, represented by
[1, 1]; we also simultaneously store a coreset corresponding to it. As time progresses, a block
reaches xi for some i which can be formally expressed as a + xi ≤ n. We then merge all
blocks in the range [a, a + 2i − 1]. Note that by definition of xi, we would have observed
all these elements and also we will not merge partial blocks. We present this idea in full in
Algorithm 1 and intuition in Figure 1. We remark that when we construct coresets, we use
an offline algorithm CS-RAM which given a set of n points P and a query space (P,w, f, q)
produces an ε-coreset.

n

a+ x2

111122

a

44· · ·

Stream of elements

Figure 1 The algorithm merges blocks in each interval [a, a+ 2i − i] for a ≤ n− xi.

Algorithm 1 ε-coreset for polynomial decaying streams.

Input: Stream P , polynomial decay function w(t) = 1
ts , for some s > 0, an offline coreset

construction algorithm CS-RAM
Output: (1 + ε) coreset.
1: Initialize B = ∅
2: for each element pn of the stream do
3: Insert [n, n] into B as a new block and construct a coreset
4: for each block [a, b] ∈ B do
5: if a+ xi < n for some i then
6: Merge the blocks in [a, a+ 2i − 1] and reduce to get an ε

3 logn -coreset
7: end if
8: end for
9: end for
10: for each block [a, b] ∈ B do
11: Give the block weight u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
12: end for

APPROX/RANDOM 2019

27:8 Improved Algorithms for Time Decay Streams

5.2 Analysis
We first show that a weighted combination of blocks gives us an ε-coreset. For a block [a, b],
let the weight of the block be denoted as u(a, b). We set u(a, b) = ū where ū satisfies

1− ε
as
≤ ū ≤ 1 + ε

bs
.

The following lemma shows that any such ū produces a 3ε-coreset.

I Lemma 9. Let (Z, u) be an ε-coreset for (P,w, f,Q). Let ū : Z → [0,∞) be such that
(1− ε)u(z) ≤ ū(z) ≤ (1 + ε)u(z) for every z ∈ Z, then (Z, ū) is a 3ε-coreset for (P,w, f,Q).

Proof. Since (Z, u) is an ε-coreset for (P,w, f,Q), therefore for every q ∈ Q,

(1− ε)f̄(P,w, q) ≤ f̄(Z, u, q) ≤ (1 + ε)f̄(P,w, q)

⇐⇒ (1− ε)
∑
p∈P

w(p)f(p, q) ≤
∑
z∈Z

u(z)f(z, q) ≤ (1 + ε)
∑
p∈P

w(p)f(p, q)

⇐⇒ (1− ε)2
∑
p∈P

w(p)f(p, q) ≤
∑
z∈Z

ū(z)f(z, q) ≤ (1 + ε)2
∑
p∈P

w(p)f(p, q).

Note that for ε < 1, we have (1 − 2ε)f̄(P,w, q) ≤ (1 − ε)2f̄(P,w, q) ≤ f̄(Z, ū, q) ≤ (1 +
ε)2f̄(P,w, q) ≤ (1 + 3ε)f(P,w, q). Therefore (Z, ū) is a 3ε-coreset for (P,w, f,Q). J

Having assigned weights to the blocks, we can take the union to get the coreset of B. For
simplicity, we choose u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
in Algorithm 1. We now present a lemma that

bounds the number of blocks maintained by the algorithm.

I Lemma 10. Given a polynomial decay stream of n points as input to Algorithm 1, the
number of blocks produced is O

(
ε−1s logn

)
.

Proof. Consider any two adjacent blocks. By the definition of the xi’s, the ratio between the
weights of the oldest and youngest elements is at least (1 + ε)/(1− ε). In the full stream, the
oldest element has weight 1/ns and the youngest element has weight 1. Let B be the number of

blocks so that
(

1+ε
1−ε

)bBc
≤ ns. Solving for B, we get B ≤ s logn

log((1+ε)/(1−ε)) . We will now lower
bound the denominator using the numerical inequality ln(1+x) ≥ 2x

2+x for x > 0; equivalently
log(1 + x) ≥ c · 2x

2+x for x > 0 and c = Θ(1). We get log
(

1+ε
1−ε

)
= log

(
1 + 2ε

1−ε

)
≥ 2cε, and

therefore we have B = O
(
ε−1s logn

)
. J

We now give the proof of the main theorem for the polynomial decay model.

Proof of Theorem 8. From Proposition 6, we get that when we merge disjoint blocks, we do
not sacrifice the coreset approximation parameter ε. However, when we reduce, for instance
two ε-corsets, we get a 2ε-coreset. For n points observed in the stream, note that there
would be at most logn reduces. This follows from the fact that the size of successive blocks
increase exponentially. Therefore using an offline ε′-coreset construction algorithm CS-RAM
with ε′ = ε/3 logn, we get that merging and reducing the blocks produces an ε/3-coreset (by
Proposition 6). Finally, from Lemma 9, we get that taking a union of these blocks weighted
by u(a, b) = 1

2
(1−ε
as + 1+ε

bs

)
gives us an ε-coreset.

For the space bound, we have from Lemma 10 that the number of blocks is O
(
ε−1s logn

)
.

Since we maintain an ε/ logn coreset for each block, we get that the offline coreset construc-
tion algorithm takes space F (n, ε/ logn). Therefore, we get that the space complexity is

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:9

O
(
ε−1s lognF (n, ε/ logn)

)
. For update time, note that for n points, we have O

(
ε−1s logn

)
blocks and we use an (ε/ logn)-coreset algorithm which takes time O (F (n, ε) T (ε/ logn))
per block. We therefore get a total time of O

(
ε−1s logn F (n, ε)T (ε/ logn)

)
J

Applications. Coresets have been designed for a wide variety of geometric, numerical linear
algebra and learning problems. Some examples include k-median and k-means clustering
[17], low rank approximation [46], `p regression [19], projective clustering [27], subspace
approximation [32], kernel methods [48], Bayesian inference [38] etc. We instantiate our
framework with a few of these problems, and present the results in Table 1.

6 Exponential Decay

We now discuss another model of time decay in which the weights of previous points decay
exponentially with time. Analogous to our polynomial decay model, a point that first
appeared in the stream at time t ≤ T has weight 2 T −t+1

h at time T , where the parameter
h > 0 is the half-life of the decay function. We however consider a different viewpoint to
simplify the analysis; we maintain that the weight of a point observed at time t is fixed to be
2t/h where h > 0 is the half-life parameter. These are equivalent since the ratio of weights
between successive points is the same in both the models.

Online Facility Location. We first discuss the problem of Online Facility Location (OFL) as
our algorithm uses it as a sub-routine. The problem of facility location, given a set of points
P ⊆ X , called demands, a distance function d(·, ·) and fixed cost f > 0, conventionally called
the facility cost, asks to find a set of points C that minimizes the following objective.

min
C⊆X

∑
p∈P

min
c∈C

d(p, c) + |C| f

Informally, it seeks a set of points such that the cumulative cost of serving the demands
(known as service cost), which is d(p, c) and opening new facilities f , is minimized. Online
Facility Location is the variant of the above problem in the streaming setting, wherein the
facility assignments and service costs incurred are irrevocable. That is to say, once a point is
assigned to a facility, it cannot be reassigned to a different facility at a later point in time,
even if the newer facility is closer. A simple and popular algorithm to this problem is by
Meyerson [43], wherein upon receiving a point, it calculates its distance to the nearest facility
and flips a coin with bias equal to the distance divided by facility cost. If the outcome is
heads (or 1), it opens a new facility, otherwise the nearest point serves this demand and it
incurs a service cost, equal to the distance. From here on, we abuse notation and use OFLto
refer to the algorithm of Meyerson [43].

6.1 Algorithm
Our algorithm for exponential decaying streams is a variant of the popular k-median clustering
algorithm [13, 16], which uses OFL as a sub-routine. We first briefly discuss the algorithm of
[13] and then elucidate on how we adapt this to exponential decay streams. The algorithm
operates in phases, where in each phase it maintains a guess, denoted by L, to the lower
bound on optimal cost. It then uses this guess to instantiate the OFL algorithm of [43] on a
set of points in the stream. If the service cost of OFL grows high or the number of facilities
grows large, it infers that the guess is too low and triggers a phase change. It then increases
the guess by a factor of β (to be set appropriately) and the facilities are put back at the
start of the stream and another round of OFL is run.

APPROX/RANDOM 2019

27:10 Improved Algorithms for Time Decay Streams

Notation. We first define and explain some key quantities. The aspect ratio of a set is
defined as the ratio between the largest distance and the smallest non-zero distance between
any two points in the set. We use ∆ to denote the aspect ratio of the stream P . For simplicity
of presentation, we assume that the minimum non-zero distance between two points is at
least 1. We define W as the total weight of the first h log ∆ points in the stream divided by
the minimum weight. Suppose the stream starts at t = z, then for any h = Ω(1),

W = 1
2z/h

h log(∆+1)∑
t=z

2t/h = ∆
21/h − 1

= Θ(h∆).

For a set P ⊆ (X , d), we use OPTk(P) to denote the optimal k-median clustering cost
for the set. For two sets P and S, we use COST(P, S) to denote the cost of clustering P
with S as medians. Whenever we use OPT, it corresponds to the optimal cost of k-median
clustering of the stream seen till the point in context. We use KM-RAM to denote an offline
constant cr-approximate k-median clustering algorithm in the random access model (RAM).
Given a set of points P and a positive integer k, KM-RAM outputs (C, λ), where C is a set of
k points and λ = COST(P, C) ≤ cr · OPTk(P).

Our Algorithm. Our algorithm, inspired from [16, 13], works in phases. We however have
important differences. Each of our phases are again sub-divided into two sub-phases. In the
first sub-phase we execute OFL same as [16, 13] and after each point we check if the cost or
the number of facilities is too large. If this is indeed the case, we trigger a phase change.
However, if we read h log ∆ points in a phase, then we move on to the second sub-phase
of the algorithm. Here we simply count points and store them verbatim. Upon reading
k + h points, we trigger a phase change. The intuition for this sub-phase is that a phase
change is triggered when OPT increases by a factor of β. After h log ∆ points, subsequent
points are so heavy relative to points of the previous phase that any service cost will be
large enough to ensure OPT has increased. Therefore, we restrict the algorithm to read at
most h log ∆ + k + h points in a single phase. When we start a new phase, we cluster the
existing facility set to extract exactly k points using an off-the-shelf constant approximate
KM-RAM algorithm and continue processing the stream. We present the above idea in full in
Algorithm 2. We now state our main theorem for exponential decay streams.

I Theorem 11. There exists a streaming algorithm that given a stream P of exponen-
tial decaying points with aspect ratio ∆ and half-life h, produces an O (1)-approximate
solution to k-median clustering. The algorithm runs in O (nk log(h∆)) time and uses
O (k log(h∆) + h) space.

6.2 Analysis
We first analyze the service cost and space complexity of OFL. For the tth point in the stream
pt, the weight of pt, denoted w(pt), is w(pt) = 2t/h. The following two lemmas will establish
bounds on the service cost and number of facilities of OFL.

I Lemma 12. When OFL is run on a stream of n points with exponentially decaying weights,
with facility cost f = L

k(1+logW) where L > 0, it produces a service cost of at most 6OPTk(P)+
2L with probability at least 1/2.

Proof. The proof follows the standard analysis of Online Facility Location. Let P is the set
of points read in a phase. Instead of looking at |P | distinct points with varying weights, we
view it as repeated points of unit or minimum weight. The total number of points is therefore
at most W = Θ(h∆).

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:11

Algorithm 2 k-median clustering in exponential decay streams.

Input: k, stream P , an offline constant approximate k-median clustering algorithm KM-RAM.

1: L← 1, C ← ∅
2: while solution not found do
3: i← 0, COST← 0, f ← L

k(1 + h log ∆) .

4: while stream not ended do
5: p← next point from stream
6: q ← closest point to p in C

7: σ ←
(

min
(
w(p) · d(p, q)

f
, 1
))

8: if probability σ then .do with probability σ
9: C ← C ∪ {p}
10: else
11: COST← COST + w(p) · d(p, q)
12: w(q)← w(q) + w(p)
13: end if
14: i← i+ 1
15: if COST > γL or |C| > (γ − 1)k(1 + logW) then .cost or number of facilities too

large
16: break and raise flag .trigger phase change
17: else if i ≥ h log ∆ then .second sub-phase
18: for l = 1 to h+ k do .count points and store them verbatim
19: p← next point from stream
20: C ← C ∪ {p}
21: end for
22: break and raise flag
23: end if
24: end while
25: if flag raised then .phase change
26: (C, λ)← KM-RAM (C, k) .cluster existing facilities
27: L← max

(
βL, λ

crγ

)
28: else
29: Declare solution found
30: end if
31: (C, λ)← KM-RAM (C, k)
32: end while
Output: C,COST

We remind the reader that OPTk(P) = min
K⊆P,|K|=k

∑
p∈P min

y∈K
d(p, y) is the optimal cost

and COST(P) is the total service cost incurred by OFL. Let C∗ be the set of corresponding
facilities allocated by OPT, and c∗i ’s denote the optimum k facilities where i ∈ [k] and C∗i
the set of points from P served by the facility c∗i . Let Ai =

∑
x∈C∗

i
d(x, c∗i) be the service

cost of C∗i . We now further partition each region into rings. Let S1
i be the first ring around

c∗i that contains half the nearest points in C∗i . Formally, S1
i = arg min

K,|K|=|C∗
i |/2

∑
x∈K d(x, c∗i).

APPROX/RANDOM 2019

27:12 Improved Algorithms for Time Decay Streams

Furthermore, S2
i is the second ring around c∗i containing one-quarter of the points in C∗i

and so on. Therefore, we can inductively define Sji = arg min
K,|K|=|C∗

i |/2j

∑
x∈K\∪j−1

l=1 S
l
i
d(x, c∗i).

Note that Sji may be not be uniquely identifiable, but their existence suffices for the sake of
analysis. Let Aji =

∑
x∈Sj

i
d(x, ci) be the cost of set Sji . For a point p, use d∗p and dp for its

optimal cost and cost incurred in the algorithm respectively.
We look at two cases. In the first case, suppose each region has a facility open; let the

facility of Sji be sji . We look at the cost incurred by subsequent points arriving in this region.
Consider the set Sji and let q be a facility in Sji . A subsequent point p incurs a cost dp = d(p, q).
By triangle inequality, we have dp ≤ d∗p+d∗q . By definition of Sji , we have d∗q ≤ d∗z for any point
z ∈ Sj+1

i . We sum over all z in Sj+1
i and get d∗q ≤

Aj+1
i

|Sj+1
i |

. We therefore get dp ≤ d∗p + Aj+1
i

|Sj+1
i |

.

Summing over all points is Sji , we get COST(Sji , s
j
i) ≤ A

j
i + |S

j
i |Aj+1

i

|Sj+1
i |

= Aji +2·Aj+1
i . Summing

over all j’s, we get COST(C∗i , c∗i) ≤ 3Ai. Finally, summing over i’s, we get that in the first
case COST(P, C∗) ≤ 3OPTk(P). We now look at the second case wherein each region has
a facility open. The number of points is at most W , therefore, the number of regions is at
most k(1 + log(W)). The expected service cost incurred by a region before opening a facility
is at most f (See Fact 1, [41]). Therefore, the total service cost ≤ f k(1 + log(W)) = L.
Combining the two cases, we get that COST(P, C∗) ≤ 3OPTk(P) + L. Note that when we
store points verbatim, we do not incur any service cost. With a simple application of Markov
inequality, we get that with probability at least 1/2, COST(P, C∗) ≤ 6OPTk(P) + 2L. J

I Lemma 13. When OFL is run on a stream of n points with exponentially decaying weights,
with facility cost f = L

k(1+logW) where L > 0, the number of facilities produced is at most
(2 + 6

LOPTk(P))k(1 + logW), with probability at least 1/2.

Proof. Considering the points as repeated points of minimum weight, the total number of
points is at most W and the total number of regions is at most k(1 + logW). One facility
in each region gives us k(1 + logW) facilities. After opening a facility in a region, each
subsequent point has probability dp

f to open a facility. Therefore, the expected number
of facilities is

∑
p
dp

f . We showed in Lemma 12 that
∑
p dp ≤ 3 OPTk(P). Hence, the

expected number of facilities is at most 3OPTk(P)
f = 3OPTk(P)k(1+logW)

L . A simple application
of Markov’s inequality completes the proof. J

k-median clustering. We now state some key lemmas that will help us establish that the
algorithm produces a O (1) approximation to the k-median clustering cost. We then show
how these come together and present the detailed guarantees in Theorem 17.

I Lemma 14. At every phase change, with probability at least 1/2, OPTk(P) > L if β ≤ 2
and γ ≥ 9.

Proof. The phase change is triggered in two ways, either the cost or the number of facilities
grows large (more precisely, cost more that γL or the number of facilities greater than
(γ − 1)k(1 + logW)), or we read too many points. Let us look at the first case. Assume
that L ≥ OPTk(P), then from Lemma 12 and 13, we get that with probability at least 1/2,
COST ≤ 8L and the number of facilities is ≤ 8k(1 + logW) respectively. However with
γ ≥ 9, neither of the two conditions are met and therefore the premise that a phase change
was triggered gives us a contradiction. Hence, in the first case, we get L < OPTk(P) with
probability at least 1/2.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:13

In the other case, we store points exactly (incurring no additional cost). The only danger
in this case is performing a phase change too early (before OPT has doubled). Let OPT be
the value of OPT at the beginning of the phase, which we assume starts at time t = z. Since
points cannot be at distance greater than ∆, then

OPT ≤ ∆(1 + 21/h + . . .+ 2z/h)

≤ ∆2(z+1)/h − 1
21/h − 1

Now let OPT be the value of OPT after terminating the phase (which occurs after reading
k + h distinct points after the initial h log ∆ points of the phase). We must prove that
OPT ≥ 2OPT. Observe that after reading k + h distinct points, we must cluster at least h
points across a distance of at least 1 (since we can have at most k centers). The weights of
these points begin at 2(z+h log ∆+1)/h. Therefore,

OPT ≥ OPT +
z+h log ∆+h∑
i=z+h log ∆

2i/h

= OPT + 2(z+h log2(∆)+h)/h − 2(z+h log2(∆))/h

21/h − 1

≥ OPT + ∆
(

2(z+1)/h − 1
21/h − 1

)
≥ 2OPT,

where the second inequality follows from straightforward arithmetic. Let L′ be the value of
L in the previous phase. Thus,

OPT ≥ 2OPT > 2L′ = 2
β
L

where the second inequality holds with probability at least 1/2, as justified above. Setting
β ≤ 2 completes the proof. J

I Lemma 15. At any part in the algorithm, we have COST(P, C) ≤
(
γ + 1+crβ

β−1

)
L.

Proof. We know that the increase of COST(P, C) in the current phase is upper bounded by
the variable COST (see Algorithm 2). In a single phase, we have COST ≤ γL. Therefore,
outside the phase loop, we just need to show that it is at most 1+crβ

β−1 L. Note that it changes
only by the KM-RAM algorithm, which incurs cost of λ ≤ crγL. Suppose that it holds in the
previous phase and let L′ be the value of L in the previous phase. Then the cost outside the
loop is γL′ + 1+crβ

β−1 L′ + λ ≤ 1+crβ
β−1 L, which finishes the proof. J

I Lemma 16. With probability at least 1/2, L ≤
(

1 + 1
γ + 1+crβ

γ(β−1)

)
OPTk(P).

Let L′ and C′ denote the values of L and C in the previous phase. We condition on
the event that L′ < OPTk(P), which we know from Lemma 14 occurs with probability at
least 1/2. From the update equation of L, we either have L = βL′ or L = λ

crγ
. In the first

case, we directly get L ≤ βOPTk(P). With β ≤ 2, we get the claim of the lemma. We
now look at the second case, where we have γcrL ≤ λ ≤ crOPTk(C′) from the guarantee
of the KM-RAM algorithm. It is easy to see that OPTk(C′) ≤ OPTk(P) + COST(P, C′) by
a simple application of triangle inequality on all the points. Moreover, from Lemma 15,
we have COST(P, C′) ≤

(
γ + 1+crβ

β−1

)
L′ ≤

(
γ + 1+crβ

β−1

)
OPTk(P). Combining these, we get

L ≤
(

1
γ + 1 + 1+crβ

γ(β−1)

)
OPTk(P).

APPROX/RANDOM 2019

27:14 Improved Algorithms for Time Decay Streams

We now restate the theorem for the exponential decay model but tailored to Algorithm 2
with all the algorithmic details precisely stated.

I Theorem 17. Let P be a stream of n points with exponential decaying weights parametrized
by the half-life parameter h and let k be some positive integer. Algorithm 2 run with
β ≤ 2, γ ≥ 9,W = O (h∆) on the stream P outputs k points, which produce an O (1)
approximation to the optimal cost of k-median clustering on P with high probability. The
algorithm runs in time O (nk logW) and uses space O (k logW + h).

Proof. Combining Lemma 15 and 16, we get that

COST(P, C) ≤
(
γ + 1 + crβ

β − 1

)(
1
γ

+ 1 + 1 + crβ

γ(β − 1)

)
OPTk(P).

Setting β = 2, γ = 10 and cr = 3 gives us that COST(P, C) ≤ 40OPTk(P).
We emphasize that we give a streaming guarantee, that is, given a fixed point in the

stream, it will hold for all the points seen till then. Note that in the proofs of Lemma 14
and 16, we only need that the random event hold with probability at least 1/2 only in the
previous phase. We can therefore amplify the probability of success by running log(1/δ)
parallel instances to get the bounds to hold with probability at least 1 − δ. The space
bound of the algorithm is O (k logW + h) = O (k log(h∆) + h), which simply follows from
the condition in the algorithm that we don’t allow the number of facilities to grow beyond
O (k(1 + log(W)) combined with the fact that we store k + h points verbatim in the second
sub-phase. J

Extensions. As in [41], our algorithm can easily be extended to other distance functions
that satisfy the approximate triangle inequality (see Definition 7). In particular, we get
constant approximate algorithms for k-means clustering and M -estimators in the exponential
decay model.

References
1 Charu C. Aggarwal, editor. Data Streams - Models and Algorithms, volume 31 of Advances in

Database Systems. Springer, 2007.
2 Arvind Arasu and Gurmeet Singh Manku. Approximate Counts and Quantiles over Sliding

Windows. In Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 286–296, 2004.

3 Sepehr Assadi and Sanjeev Khanna. Randomized Composable Coresets for Matching and
Vertex Cover. In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures, (SPAA), pages 3–12, 2017.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and Issues in Data Stream Systems. In Proceedings of the Twenty-first ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 1–16, 2002.

5 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining variance
and k-medians over data stream windows. In Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 234–243,
2003.

6 Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A New Framework
for Distributed Submodular Maximization. In IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pages 645–654, 2016.

7 Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:15

8 Vladimir Braverman, Petros Drineas, Jalaj Upadhyay, David P. Woodruff, and Samson Zhou.
Numerical Linear Algebra in the Sliding Window Model. arXiv preprint, 2018. arXiv:
1805.03765.

9 Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint, 2016. arXiv:1612.00889.

10 Vladimir Braverman, Elena Grigorescu, Harry Lang, David P. Woodruff, and Samson Zhou.
Nearly Optimal Distinct Elements and Heavy Hitters on Sliding Windows. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM, pages 7:1–7:22, 2018.

11 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering on
Sliding Windows in Polylogarithmic Space. In 35th IARCS Annual Conference on Foundation
of Software Technology and Theoretical Computer Science, FSTTCS, pages 350–364, 2015.

12 Vladimir Braverman, Harry Lang, Keith Levin, and Morteza Monemizadeh. Clustering
Problems on Sliding Windows. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 1374–1390, 2016.

13 Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler, and
Brian Tagiku. Streaming k-means on well-clusterable data. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 26–40. Society for Industrial
and Applied Mathematics, 2011.

14 Vladimir Braverman and Rafail Ostrovsky. Smooth Histograms for Sliding Windows. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), October 20-23,
2007, Providence, RI, USA, Proceedings, pages 283–293, 2007.

15 Timothy M. Chan and Bashir S. Sadjad. Geometric Optimization Problems over Sliding
Windows. Int. J. Comput. Geometry Appl., 16(2-3):145–158, 2006. A preliminary version
appeared in the Proceedings of Algorithms and Computation, 15th International Symposium
(ISAAC), 2004.

16 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better streaming algorithms for
clustering problems. In Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 30–39. ACM, 2003.

17 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

18 Yun Chi, Haixun Wang, Philip S. Yu, and Richard R. Muntz. Catch the moment: maintaining
closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst., 10(3):265–294,
2006. A preliminary version appeared in the Proceedings of the 4th IEEE International
Conference on Data Mining (ICDM), 2004.

19 Kenneth L Clarkson and David P Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the forty-first annual ACM symposium on Theory of computing,
pages 205–214. ACM, 2009.

20 Edith Cohen and Martin Strauss. Maintaining time-decaying stream aggregates. In Proceedings
of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 223–233, 2003.

21 Graham Cormode, Flip Korn, and Srikanta Tirthapura. Time-decaying aggregates in out-
of-order streams. In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS, pages 89–98, 2008.

22 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-decaying sketches for sensor
data aggregation. In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC, pages 215–224, 2007.

23 Graham Cormode, Srikanta Tirthapura, and Bojian Xu. Time-Decayed Correlated Aggregates
over Data Streams. In Proceedings of the SIAM International Conference on Data Mining,
SDM, pages 271–282, 2009.

24 Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W. Mahoney.
Sampling Algorithms and Coresets for `p Regression. SIAM J. Comput., 38(5):2060–2078,
2009. A preliminary version appeared in the Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, (SODA) 2008.

APPROX/RANDOM 2019

http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1805.03765
http://arxiv.org/abs/1612.00889

27:16 Improved Algorithms for Time Decay Streams

25 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining Stream
Statistics over Sliding Windows. SIAM J. Comput., 31(6):1794–1813, 2002. A preliminary
version appeared in the Proceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2002.

26 Mayur Datar and S. Muthukrishnan. Estimating Rarity and Similarity over Data Stream
Windows. In Algorithms - ESA 2002, 10th Annual European Symposium, Proceedings, pages
323–334, 2002.

27 Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approximation
and projective clustering via volume sampling. In Proceedings of the seventeenth annual ACM-
SIAM symposium on Discrete algorithm, pages 1117–1126. Society for Industrial and Applied
Mathematics, 2006.

28 Joan Feigenbaum, Sampath Kannan, and Jian Zhang. Computing Diameter in the Streaming
and Sliding-Window Models. Algorithmica, 41(1):25–41, 2005.

29 Dan Feldman, Amos Fiat, and Micha Sharir. Coresets forWeighted Facilities and Their
Applications. In 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 315–324, 2006.

30 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC, pages
569–578, 2011.

31 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Proceedings of the 23rd ACM Symposium on Computational
Geometry (SoCG), pages 11–18, 2007.

32 Dan Feldman, Morteza Monemizadeh, Christian Sohler, and David P Woodruff. Coresets
and sketches for high dimensional subspace approximation problems. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 630–649. Society for
Industrial and Applied Mathematics, 2010.

33 Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), 2013, pages
1434–1453, 2013.

34 Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal on Computing, 45(5):1762–1792,
2016.

35 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, pages 63–72, 2002.

36 Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Clustering data
streams. In Foundations of computer science, 2000. proceedings. 41st annual symposium on,
pages 359–366. IEEE, 2000.

37 Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
291–300, 2004.

38 Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable bayesian
logistic regression. In Advances in Neural Information Processing Systems, pages 4080–4088,
2016.

39 Piotr Indyk, Sepideh Mahabadi, Mohammad Mahdian, and Vahab S. Mirrokni. Composable
core-sets for diversity and coverage maximization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS), pages 100–108,
2014.

40 Tsvi Kopelowitz and Ely Porat. Improved Algorithms for Polynomial-Time Decay and Time-
Decay with Additive Error. In Theoretical Computer Science, 9th Italian Conference, ICTCS
Proceedings, pages 309–322, 2005.

V. Braverman, H. Lang, E. Ullah, and S. Zhou 27:17

41 Harry Lang. Online Facility Location on Semi-Random Streams. arXiv preprint, 2017.
arXiv:1711.09384.

42 Lap-Kei Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In Proceedings of the Twenty-Fifth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, pages 290–297, 2006.

43 Adam Meyerson. Online facility location. In Foundations of Computer Science, 2001. Proceed-
ings. 42nd IEEE Symposium on, pages 426–431. IEEE, 2001.

44 Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized Composable Core-sets for
Distributed Submodular Maximization. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing (STOC), pages 153–162, 2015.

45 S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends in
Theoretical Computer Science, 1(2), 2005.

46 Tamas Sarlos. Improved approximation algorithms for large matrices via random projections.
In Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on,
pages 143–152. IEEE, 2006.

47 Shang-Yu Su, Pei-Chieh Yuan, and Yun-Nung Chen. How time matters: Learning time-decay
attention for contextual spoken language understanding in dialogues. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers), pages 2133–2142, 2018.

48 Yan Zheng and Jeff M Phillips. Coresets for Kernel Regression. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
645–654. ACM, 2017.

APPROX/RANDOM 2019

http://arxiv.org/abs/1711.09384

Approximation Algorithms for Partially Colorable
Graphs
Suprovat Ghoshal
Indian Institute of Science, Bangalore, India
suprovat@iisc.ac.in

Anand Louis
Indian Institute of Science, Bangalore, India
anandl@iisc.ac.in

Rahul Raychaudhury
Indian Institute of Science, Bangalore, India
rahulr@iisc.ac.in

Abstract
Graph coloring problems are a central topic of study in the theory of algorithms. We study the
problem of partially coloring partially colorable graphs. For α ≤ 1 and k ∈ Z+, we say that a
graph G = (V,E) is α-partially k-colorable, if there exists a subset S ⊂ V of cardinality |S| ≥ α|V |
such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural
property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might
be a better notion to use than k-colorability, since data arising in practice often contains various
forms of noise.

We give a polynomial time algorithm that takes as input a (1− ε)-partially 3-colorable graph G
and a constant γ ∈ [ε, 1/10], and colors a (1− ε/γ) fraction of the vertices using Õ

(
n0.25+O(γ1/2)

)
colors. We also study natural semi-random families of instances of partially 3-colorable graphs and
partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family
of instances.

2012 ACM Subject Classification Mathematics of computing → Approximation algorithms

Keywords and phrases Approximation Algorithms, Vertex Coloring, Semi-random Models

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.28

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.11631.

Funding Anand Louis: Supported in part by SERB Award ECR/2017/003296.

Acknowledgements The first author thanks Pasin Manurangsi for pointing him to the Odd Cycle
Transversal problem.

1 Introduction

Graph coloring problems are a central topic of study in the theory of algorithms [33, 17, 4, 20].
An undirected graph G = (V,E) is said to be k-colorable if there exists an assignment of
colors f : V → [k] such that f(u) 6= f(v) for each {u, v } ∈ E. For a graph G, the minimum
value of k for which it is k-colorable is called its chromatic number. Computing a 3-coloring
of a 3-colorable graph is a fundamental NP-hard problem. Efficiently computing a coloring
of a 3-colorable graph which only uses a few colors is a major open problem in the study of
algorithms. The current best known algorithm colors a 3-colorable graph on n vertices using
O(n0.199) colors [20]. We study the problem of coloring partially colorable graphs.

© Suprovat Ghoshal, Anand Louis, and Rahul Raychaudhury;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:suprovat@iisc.ac.in
mailto:anandl@iisc.ac.in
mailto:rahulr@iisc.ac.in
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.28
https://arxiv.org/abs/1908.11631
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Approximation Algorithms for Partially Colorable Graphs

I Definition 1. An undirected graph G = (V,E) is defined to be α-partially k-colorable,
denoted by α-PkC , if there exists a subset Vgood ⊂ V such that |Vgood| ≥ α |V | and the graph
induced on Vgood is k-colorable. We will call such a set Vgood the set of good vertices, and
Vbad

def= V \ Vgood the set of bad vertices.

We remark that for a given graph the partitioning of the vertex set V into Vgood and
Vbad may not be unique. In such cases, the claims we make in this paper will hold for any
such fixed partition.

It is well known that for a fixed k, the problem of determining whether a given graph is
k-colorable is an NP-hard problem [18]. Therefore, determining whether a graph belongs
to 1-PkC is an NP-hard problem, and hence, computing the largest value of α for which a
graph belongs to α-PkC is also an NP-hard problem.

Note that a graph that is (1− ε)-partially 3-colorable can have chromatic number as large
as |Vbad| = εn. Therefore, the notion of the chromatic number of the graph does not capture
the structural property (3-colorability) satisfied by most of the graph. Partial k-colorability
is a more robust stuctural property than k-colorability. Therefore, for graphs that arise in
practice, partial k-colorability might be a better notion to use than k-colorability, since data
arising in practice often contains various forms of noise; the notion of bad vertices can be
used to capture some types of noisy vertices in the graph.

Other notions of partial k-coloring

Another related notion of partial coloring is the following.

I Definition 2. An undirected graph G = (V,E) is defined to be α-partially k-colorable, if
there exists a coloring of the vertices f : V → [k] such that for at least α |E| edges {u, v },
f(u) 6= f(v).

This definition, which asks that the coloring should “satisfy” at least α fraction of the edges,
can be viewed as the edge version of partial k-colorability, whereas Definition 1 can be
viewed as the vertex version of partial k-colorability. For a fixed constant k, computing the
maximum value of α for which the input graph satisfies Definition 2 can be formulated as
a Max-2-CSP with alphabet size k; approximation algorithms for Max-2-CSPs have been
extensively studied in the literature [29, 30, 7] etc. Therefore, we focus our attention on
Definition 1.

1.1 Our Results
We give an efficient (bi-criteria) approximation algorithm for coloring partially 3-colorable
graphs.

I Theorem 3. There exists a polynomial time algorithm that takes as input a (1− ε)-P3C
graph G = (V,E) and any fixed choice of γ ∈ [ε, 1/100], and produces a set S ⊂ V such that
|S| ≤ (3ε/γ) |V | and a coloring of V \ S using Õ(n0.25+O(γ1/2)) colors1.

We point out that the above theorem gives a bi-criteria approximation guarantee which
exhibits the tradeoff between the size of the set S, and the number of colors used to color
the remaining graph G[V \ S]. In particular, setting γ =

√
ε in the above theorem gives

1 Õ(·) hides factors polylogarithmic in n.

S. Ghoshal, A. Louis, and R. Raychaudhury 28:3

us the following guarantee. Given a (1 − ε)-P3C graph, one can color (1 −
√
ε)-fraction

of its vertices using Õ(n0.25+ε1/4)-colors. Using similar techniques we can give an efficient
approximation algorithm for the partial 2-coloring setting as well. For completeness, we
formally state the result below2 :

I Proposition 4. There exists a polynomial time algorithm that takes as input a (1− ε)-P2C
graph G = (V,E) and any fixed choice of γ ∈ [ε, 1/100], and produces a set S ⊂ V such that
|S| ≤ (ε/γ) |V | and a coloring of V \ S using Õ(nCγ) colors, for some constant C > 0.

The proof of the above proposition can be found in the full version and uses exactly the
same techniques as Theorem 3. We also study a semi-random family of partially colorable
graphs α-PkCR (n, p) , which we define as follows.

I Definition 5. An instance of α-PkCR (n, p) is generated as follows.
1. Let V be a set of n vertices. Arbitrarily partition V into sets Vgood and Vbad such that
|Vgood| ≥ αn.

2. Add edges between an arbitrary number of arbitrarily chosen pairs of vertices in Vgood
such that the graph induced on Vgood is k-colorable.

3. Add edges between an arbitrary number of arbitrarily chosen pairs of vertices in Vbad.
4. Between each pair of vertices in Vgood × Vbad, independently add an edge with probability

p. We call this set of edges E0.
5. Add arbitrary number of edges between pairs of vertices of Vgood × Vbad. We call this set

of edges E1.
Output the resulting graph.

In the study of approximation algorithms for NP-hard problems, there have been many
works studying algorithms random and semi-random instances of various problems [11, 15,
21, 24, 25]. Random and semi-random instances are often good models for instances arising
in practice; designing algorithms specifically for such instances, whose performance guarantee
is significantly better than guarantees for general instances, could have more applications in
practice. Moreover, from a theoretical perspective, designing algorithms for semi-random
instances helps us to better understand what aspects of a problem make it intractable. We
study our semi-random model α-PkCR (n, p) for the same reasons. The following is our
main result.

I Theorem 6. Suppose there exists an efficient algorithm which colors a 3-colorable graph
using nθ colors. Then the following holds for all choices of ε = Ω(logn/n) and p ≥ (εθ−2)O(θ).
There exists a polynomial time algorithm that takes as input a graph G sampled from (1− ε)-
P3CR (n, p) and produces a set S such that |S| = O

(
εθ−2np−(O(1/θ))) and a coloring of

V \ S using at most nθ colors with high probability. Moreover, the algorithm runs in time
nO(1/θ)poly(n).

In particular, instantiating the above theorem with the algorithm from [20], w.h.p., we
can color (1−O(ε))n fraction of vertices with Õ(n0.199)-colors. We also study the partial
2-coloring problem in the semi-random setting. Our guarantees for this setting are as follows:

I Theorem 7. Let ε = Ω(logn/n) and p >
√
ε. Then, there exists a polynomial time

algorithm that takes as input a graph G sampled from (1 − ε)-P2CR (n, p) , and with high
probability, produces a set S ⊆ V such that |S| = O

(
εnp−2) and the induced subgraph on the

remaining vertices G[V \ S] is 2-colorable.

2 We implicitly use the algorithm in the degree reduction step of the algorithm from Theorem 3. See
Claim 18 for details.

APPROX/RANDOM 2019

28:4 Approximation Algorithms for Partially Colorable Graphs

In particular, in the above theorem the number of vertices removed is bounded by O(εn)
which is stronger than the best known bound of O(

√
logn.εn) [1] in the adversarial setting.

1.2 Related Work
3-colorable graphs. There is extensive literature on algorithms for coloring 3-colorable
graphs. Wigderson [33] gave a simple combinatorial algorithm that used O(n 1

2) colors. Blum
[9] improved the number of colors used to Õ(n 3

8). These algorithms used purely combinatorial
techniques. Karger, Motwani and Sudan [17] used semidefinite programming to develop an
algorithm, which when balanced with Wigderson’s technique [33] used Õ(n 1

4) colors. Blum
and Karger [10] improved the number of colors used to Õ(n 3

14) by combining the techniques
used in [9] and [17]. Arora, Chlamtac and Charikar [3] got the bound down to Õ(∆0.21111)
using techniques from the ARV algorithm [5], which was further improved by Chlamtac [12]
to Õ(n0.2072) using SDP hierarchies. Using new combinatorial techniques, Kawarabayashi
and Thorup improved the approximation bound to Õ(n0.2049) in [19]. Subsequently, by
combining their techniques with [12], they were able to give a approximation of Õ(n0.19996)
[20], which is the current state of the art.

Partially 2-colorable graphs. The partial 2-coloring problem, better known as Odd Cycle
Transversal (OCT) in the literature, has also been studied extensively. Formally, the setting
here is as follows. We are given a (1 − ε)-partially 2-colorable graph G = (V,E) and the
objective is to find a set S of minimum size such that G[V \ S] is 2-colorable (i.e., odd cycle
free). Yannakakis first showed that it is NP-Complete in [34]. Later, Khot and Bansal [6]
showed that OCT is hard to approximate to any constant factor, assuming the Unique Games
Conjecture. From the algorithmic side, via a reduction through the Min2CNF Deletion
problem, [16] gave a O(logn) approximation for the problem. This was later improved to
O(
√

logn) by [1] by using techniques from the Arora-Rao-Vazirani [5] algorithm for sparsest
cut. This problem has also been studied under the lens of parameterized complexity. In
[31], Reed et al. showed that OCT is fixed parameter tractable when parameterized by the
number of bad vertices, following which a sequence of works [6, 28, 23] gave algorithms with
improved running times.

Partially 3-colorable graphs. In contrast to the 3-colorable setting, there has been very
little work on coloring partially 3-colorable graph. The paper which is closest to our setting
is by Kumar, Louis and Tulsiani [22], which also addresses the partial 3-coloring problem,
albeit in a more restrictive setting. Assuming that the (1− ε)-partially 3-colorable graph has
threshold rank r and the 3-coloring on the good vertices satisfies certain psuedorandomness
properties, they give an algorithm which 3-colors 1−O(γ + ε) fraction of vertices in time
(r.n)O(r).

Graph problems in Semi-random Models. The semi-random model used in this paper is
similar to semi-random models which have been considered for the Max-Independent Set
problem [11] [15] [32] [26]. Semi-random models offer a natural way of understanding the
complexity of problems in settings which are less restrictive than worst case complexity, but
are still far from being average case. While semi-random models were first introduced for
studying graph coloring in [11], it has also subsequently been used to study several other
fundamental problems such as Unique Games [21], Graph Partitioning [24], Clustering [25], to
name a few.The problem of coloring 3-colorable graphs has also been studied in average-case
and planted models. Alon and Kahale [2] gave an efficient algorithm that finds an exact

S. Ghoshal, A. Louis, and R. Raychaudhury 28:5

3-Coloring of a random 3-Colorable graph with high probability. David and Fiege [13] studied
the complexity of finding a planted random/adversarial 3-coloring for both adversarial and
random host graphs.

1.3 Discussion and Proof Overview
Adversarial Model. The key component in most approximation algorithms for 3-coloring
involves solving a SDP relaxation of the 3-coloring problem, and followed by a randomized
rounding procedure for coloring the graph. The standard SDP relaxation for 3-coloring is
the following which was introduced in [17]:

I SDP 8 (Exact 3-Coloring SDP).

minimize 0
subject to vi · vj ≤ − 1

2 ∀{i, j} ∈ E
‖vi‖2 = 1 ∀i ∈ V

SDP 8 doesn’t optimize any objective function, it finds a feasible solution which satisfies
all the constraints of SDP. The intended solution to the above SDP is as follows. Let
σ : V → { 1, 2, 3 } be any legal coloring of G. Furthermore, let u1, u2, u3 ∈ R2 be any three
unit vectors satisfying 〈ui, uj〉 = −1/2 for every i, j ∈ {1, 2, 3}, i 6= j. We identify the vector
ui with the color i, and assign vj = uσ(j) for every j ∈ V . It can be easily verified that this
is a feasible solution to the above SDP. As is usual, while the SDP in general may not return
the above vector coloring, one can round a feasible vector coloring to color the graph using
not too many colors [17]. The approximation guarantee is usually of the form ∆c (for some
c ∈ (0, 1)), where ∆ is the maximum degree of the graph.

Since in general, one cannot hope to have a degree bound on the graph, the above step
is usually preceded by a degree reduction sub-routine. Note that if a graph is 3-colorable
(more generally k-colorable), then the graph induced on the neighbours of any vertex v is
2-colorable (more generally k − 1 colorable). Since a 2-colorable graph can be colored with 2
colors efficiently, the graph induced on any vertex and its neighbours can be colored efficiently
with 3 colors. Therefore, fixing a threshold ∆, this procedure iteratively removes vertices
(and their neighbours) having degree larger than ∆ from the graph while coloring them with
few colors, and terminates when maximum degree of the remaining graph is at most ∆. In
particular, if the degree reduction step uses f(n,∆) colors, then the total number of colors
used by the algorithm is at most f(n,∆) + ∆c. Then one can optimize the choice of ∆ for
giving the best possible approximation guarantee. This degree reduction approach and its
variants, first studied by Wigderson [33], has been subsequently used in almost all known
approximation algorithms for graph coloring

In translating the above template to the setting of partially 3-colorable graphs, we face
several immediate challenges. SDP 8 is guaranteed to return a feasible solution only for
3-colorable graphs, it might be infeasible if the graph is not 3-colorable. If we could compute
the set of good vertices then we could use SDP 8 only on the set of good vertices. However,
in general, the problem of identifying the set of good vertices is NP-hard (Fact 27). Finally,
the preprocessing steps for degree reduction rely heavily on the combinatorial structural
properties of the neighborhood of vertices in exactly 3-colorable graphs, which, in general,
may not be satisfied by partially 3-colorable graphs.

Our approach is to begin with an SDP relaxation that tries to solve both problems
together: identifying the set of bad vertices, and coloring the set of good vertices. We
introduce variables w1, w2, . . . , wn where the ith variable wi is meant to indicate if vertex

APPROX/RANDOM 2019

28:6 Approximation Algorithms for Partially Colorable Graphs

i is bad. Additionally, for every edge (i, j) ∈ E, we introduce slack variables zij which are
meant to indicate if at least one of the vertices i, j is bad. Using the slack variables we relax
the edge constraints as 〈vi, vj〉 ≤ −1/2 + (3/2)zij . Finally, we connect the edge indicator
variables with vertex indicator variables using constraints of the form zij ≤ wi+wj . Since we
want the set of bad vertices to be small, our objective function will be to minimize

∑
i∈V wi.

Our SDP relaxation is the following.

I SDP 9 (Partial 3-Coloring SDP).

minimize
∑
i∈V wi

subject to 〈vi, vj〉 ≤ −1
2 + 3

2zij ∀{i, j} ∈ E
zij ≤ wi + wj ∀{i, j} ∈ E
0 ≤ zij ≤ 1 ∀{i, j} ∈ E
0 ≤ wi ≤ 1 ∀i ∈ V
‖vi‖2 = 1 ∀i ∈ V

Since the optimal “integer solution” forms a feasible solution to the SDP relaxation,
it is easy to show that for a (1 − ε)-partially 3-colorable graph, the optimal of the above
SDP is at most εn. Therefore by Markov’s inequality, we get that for a large fraction of
i ∈ [n], the wi variables are small. Let V ′ ⊂ V be the set of vertices with small wi. Since
|V \ V ′| = O(εn), we can focus on coloring the induced subgraph G′ = G[V ′]. G′ has the
following nice property: for every edge (i, j) in G’, the corresponding edge constraint is
approximately satisfied i.e., 〈vi, vj〉 ≤ −1/2 + oε(1), where the second term goes to 0 as ε
goes to 0. We call such graphs as being approximately vector 3-colorable (See Definition 11
for a formal description). We use this property crucially in designing our preprocessing step.

We observe that the neighborhood of any vertex in an approximately vector 3-colorable
graph is approximately vector 2-colorable. Furthermore, we show that approximately vector
2-colorable graphs are short odd cycle free. Graphs having this property are known to have
large independent sets which can be found efficiently [27]. Thus one can find such large
independent sets recursively to color the neighborhood of large degree vertices using a small
number of colors.

For the randomized rounding step, we observe that hyperplane rounding based procedures
are naturally robust to small perturbations, and the arguments for analyzing the guarantees
of such procedures hold even when the edge constraints are approximately satisfied. In
particular, we can use known randomized rounding algorithm as is, while adapting the
analysis to account for the edge constraints being satisfied approximately.

Semi-random model. While the guarantees of our algorithm from the adversarial setting
also apply to the semi-random instances, here we seek to achieve the best known approximation
bounds for exactly 3-colorable graphs. We begin by describing two distinct classes of instances
which illustrate the technical challenges in designing such an algorithm.

In this setting, the adversary is free to choose G[Vbad] in a way such that it is noisy and
has large chromatic number (e.g, graphs sampled from Erdos Renyi random model). For
such instances, it is easy to see that the only way an algorithm can have good approximation
guarantees is when it can eliminate a significant fraction of from Vbad. Then, for a start,
one can hope to address this setting by first using a preprocessing step that deletes Vbad
and then running the best possible approximation algorithm on the graph induced on the
remaining vertices.

S. Ghoshal, A. Louis, and R. Raychaudhury 28:7

On the other hand, the adversary can also choose G[Vbad] in a way so that it is structurally
indistinguishable from the good subgraph G[Vgood]. For instance, suppose the good subgraph
G[Vgood] is a randomly sampled unbalanced bipartite graph, where the smaller side (which
we call VS) has size at most εn. Then the adversary can choose Vbad to be an independent
set, in which case the entire graph is 3-colorable. In particular, it is information theoretically
impossible to distinguish the set VS from Vbad, since they are both independent sets and the
edges incident on them are identically distributed. While the instances constructed here make
it difficult to identify Vgood, they are also naturally easy instances for us. In particular, these
instances are also (1− ε)-partially 2-colorable, and one can use tools for coloring partially
2-colorable graphs to color these instances with small number of colors.

However, the two cases above clearly do not cover the full range of instances that we can
encounter in our model. Therefore, we need a way to relax the above two characterizations
which allows for a seamless transition from one class of instances to other. It turns out
that we can robustly characterize both classes of instances by the number of vertex disjoint
short odd cycles present in the graph. Informally, if the number of short odd cycles is large,
then with high probability, they will show up in the neighborhood of the bad vertices, and
therefore this can be used to identify and eliminate Vbad. We can then simply run the best
known approximation algorithm on the remaining induced graph G[Vgood]. On the other
hand, if the number of short odd cycles is small, by eliminating a small fraction of vertices,
we can make the graph short odd cycle free. Finally, as discussed in the adversarial model
setting, such graphs can be colored efficiently using a small number of colors by recursively
finding large independent sets [27].

2 Preliminaries

We introduce some notation used frequently in this paper. Throughout the paper, for a
(1− ε)-partially 3-colorable graph G = (V,E), we will write V = Vgood] Vbad where Vgood
and Vbad are the set of good vertices and bad vertices as defined in Definition 1. For a
subset V ′ ⊆ V , we use G[V ′] to denote the subgraph induced on the set of vertices V ′. For a
subgraph G′ ⊆ G, we shall use vert(G′) to denote the vertex set of G′. Additionally, for any
vertex i ∈ vert(G′), we use NG′(i) denote the set of neighbors of i in the graph G′. We use
1(·) to denote the indicator function, and Õ(·) to hide terms which are polylogarithmic in
the number of vertices.

Approximate Vector Coloring

We begin by recalling the notion of vector coloring of a graph which was introduced in [17].

I Definition 10 (Vector Coloring). Given a positive integer k ∈ N, we say that a graph
G = (V,E) is k-vector colorable if there exists unit vectors v1, v2, . . . , vn ∈ Rd for some
d ∈ N which satisfy

〈vi, vj〉 ≤ −
1

k − 1 ∀ { i, j } ∈ E.

We will use the notion of approximate vector colorings of a graph, which we define as
follows.

I Definition 11 (Approximate Vector Coloring). Given a positive integer k ∈ N and a
γ > 0, we say that a graph G = (V,E) is (k, γ)-vector colorable if there exists unit vectors
v1, v2, . . . , vn ∈ Rd for some d ∈ N which satisfy

〈vi, vj〉 ≤ −
1

k − 1 + γ ∀ { i, j } ∈ E.

APPROX/RANDOM 2019

28:8 Approximation Algorithms for Partially Colorable Graphs

Observe that a graph that (k, 0) vector colorable is vector-k-colorable. We now state a couple
of lemmas which illustrate some useful properties of approximate vector colorings. In [17], it
was observed that the vector chromatic number of sub-graph induced on the neighborhood
of a vertex is strictly less than the vector chromatic number of the actual graph. In the
following lemma, we observe that this property can be extended to approximate vector
colorings as well.

I Lemma 12. Let G = (V,E) be (3, γ)-vector colorable, for some 0 < γ < 1/10. Then for
any vertex i ∈ V , the graph induced on N(i) is (2, 4γ)-vector colorable.

The next lemma says that approximately vector 2-colorable graphs cannot contain short
odd cycles.

I Lemma 13. Let G = (V,E) be a (2, γ)-vector colorable, where γ ≤ 1/16. Then G does not
contain odd cycles of length at most 1/8√γ.

The proofs of the two lemmas above can be found in Appendix B.

Coloring graphs without short odd cycles

A key combinatorial tool used in our paper is the following Ramsey theoretic result which
says that graphs without short odd cycles contain large independent sets which can be found
efficiently.

I Lemma 14 ([27]). There exists a constant ε0 ∈ (0, 1) such that for every choice of
0 < ε < ε0 the following holds. Let G = (V,E) be a graph without odd cycles of length at
most 1/ε. Then, G contains an independent set of size at least |V |1−2ε. Furthermore, there
exists a polynomial time algorithm which finds such an independent set.

Consequently, given a graph without short odd cycles, one can color it efficiently using a
small number of colors, as stated in the following corollary.

I Corollary 15. There exists a constant ε0 ∈ (0, 1) for which the following holds. Given a
graph G = (V,E) which does not contain odd cycles of length at most 1/ε where ε < ε0, there
exists a polynomial time algorithm which can compute a coloring of G using Õ(n2ε) colors.

Establishing the above corollary using Lemma 14 is straightforward, and just uses the fact
that one can keep removing large independent sets in the graph using Lemma 14, and recurse
on the remaining vertices. For the sake of completeness, we include a proof in Appendix C.

3 Approximation algorithm for General Setting

In this section, we prove our approximation guarantees in the adversarial model, as formally
stated in the following theorem:

I Theorem 16 (Theorem 3 restated). There exists a polynomial time algorithm that takes as
input a (1− ε)-P3C graph G = (V,E) and any fixed choice of γ ∈ [ε, 1/100], and produces a
set S ⊂ V such that |S| ≤ (3ε/γ) |V | and a coloring of V \ S using Õ(n0.25+O(γ1/2)) colors.

The algorithm for the above theorem is described in Algorithm 1. In the following
subsections, we prove the correctness of the above algorithm. The proof of Theorem 3 can
broken down into the analysis of steps (i),(ii) and (iii) of the Partial-3-Coloring algorithm.
Broadly, we show the following: In step (i), we show that the optimal of the SDP-P3C is

S. Ghoshal, A. Louis, and R. Raychaudhury 28:9

Algorithm 1 Partial-3-Coloring.

1 Set ∆ = n3/4;
2 Solve the Partial-3-Coloring SDP (SDP-P3C):

minimize
∑
i∈V

wi

subject to 〈vi, vj〉 ≤ −
1
2 + 3

2zij ∀{i, j} ∈ E

zij ≤ wi + wj ∀{i, j} ∈ E
0 ≤ zij ≤ 1 ∀{i, j} ∈ E
0 ≤ wi ≤ 1 ∀i ∈ V
‖vi‖2 = 1 ∀i ∈ V

(i) Thresholding:
Let S ← {i ∈ V |wi ≥ γ/3};

3 Let G′ ← G[V \ S] be the graph obtained after deleting S;
(ii) Coloring Large Degree vertices:
while ∃i ∈ G′ such that degG′(i) ≥ ∆ do

4 Color G′[{i} ∪NG′(i)] using Õ(nC
√
γ) colors using the algorithm guaranteed by

Corollary 15;
5 Remove {i} ∪NG′(i) from G′;
6 end
(iii) Coloring Low Degree vertices:
Use randomized rounding from Theorem 19 to color the remaining vertices in G′;

small (i.e., at most εn), therefore by averaging, the fraction of large w vertices is small.
Furthermore, the graph induced on the surviving vertices must satisfy the edge constraints
from the SDP with small slack γ, and therefore must be approximately vector 3-colorable.
As is usual in coloring algorithms, we first iteratively color large degree (i.e., ≥ ∆) vertices
and their neighborhoods using small number of colors until the graph has degree bounded by
∆ (Claim 18). Finally, the remaining graph is also approximately vector 3-colorable, and has
degree bounded by ∆. Therefore, using a hyperplane based randomized rounding procedure
to iteratively find large independent sets in G′, we can give a Õ(∆1/3+O(√γ)) coloring of the
remaining vertices (Theorem 19). In the following subsection, we formally prove the steps
described above.

To begin with, we first show that the thresholding step throws away at most a small
fraction of vertices.

B Claim 17 (Removing Large Slack Vertices). Let S ⊂ V be as constructed in the thresholding
step. Then |S| ≤ 3εn/γ.

We defer the proof of the above claim to Appendix A. From the above claim, the graph
G′ = G[V \ S] induced on the remaining vertices satisfies the following properties:

1. The graph G′ contains at least (1− 3ε/γ)n vertices.
2. The graph G′ is (3, γ)-vector colorable. In particular, the vectors (vi)i∈V \S themselves

are a (3, γ)-vector coloring of G′.

APPROX/RANDOM 2019

28:10 Approximation Algorithms for Partially Colorable Graphs

The second point shall be used crucially in the analysis of the remaining two steps.
The next claim bounds the number of colors used while coloring the large degree vertices
in step (ii).

B Claim 18 (Degree Reduction). In step (ii), over all the iterations of the while loop, the
algorithm uses at most (n/∆)Õ

(
nC
√
γ
)
colors, where C > 0 is a constant.

Proof. Fix any vertex i ∈ G′, and let G̃i = G′[N(i)] the graph induced on the neighborhood
of vertex i. Since the graph G′ is (3, γ)-vector colorable, using Lemma 12 we know that G̃i
is (2, 4γ)-vector colorable. Furthermore, from Lemma 13, we know that G′ does not contain
odd cycles of length at most 1/(8

√
4γ). Therefore, we can use Corollary 15 to obtain a

Õ(nC
√
γ) coloring of G̃i ∪ {i}. Finally, note that each iteration of the for loop removes and

colors at least ∆ + 1 vertices of the graph. Therefore, the total number of iterations of the
for loop is bounded by n/∆. Since in each such iteration we can color the vertex and its
neighborhood using nC

√
γ number of colors, the claim follows. C

After steps (i) and (ii), we are left with the graph G′ = (V ′, E′) which is (3, γ)-vector
colorable graph and has degree at most ∆. In particular, for every edge (i, j) ∈ E′, the
corresponding vectors satisfy 〈vi, vj〉 ≤ −1

2 + γ. Since the independent set based rounding
technique [17] [3] for coloring vector 3-colorable graphs is robust, we can still use it to round
the vector coloring of approximately 3-colorable graphs with similar guarantees, as formally
stated in the following theorem.

I Theorem 19. Let G = (V,E) be a graph with maximum degree ∆ which is (3, α)-
vector colorable. Then there exists an efficient randomized algorithm that can color it

using O
(

(ln ∆)1/2∆
3
4 +α−α2

(3
2−α)2 lnn

)
colors.

In particular, if α ≤ 1/10, then the algorithm uses at most Õ
(

(ln ∆)1/2∆ 1
3 +10α

)
, where

Õ hides polylogarithmic factors in n.

The proof of the above theorem is an extension of the proofs from [17, 3] to the setting
of approximately vector 3-colorable graphs. Due to space constraints, we skip the proof here
and provide it in the full version. Here for simplicity assume that γ ≤ 1/10. Instantiating
the above theorem with G = G′ and α = γ, we get that G′ is colored using Õ(∆1/3+10γ)
colors. Overall, the algorithm throws away at most 2ε/γ fraction of vertices in step (i).
Furthermore, it uses a total of Õ

(
(n/∆)nO(√γ) + ∆1/3+10γ) colors in steps (ii) and (iii)

respectively. Setting ∆ = n3/4 in the previous expression, we get that the algorithm uses at
most Õ(n1/4+O(√γ)) colors. This concludes the analysis of the Partial-3-Coloring algorithm
and the proof of Theorem 3.

4 Algorithm for Semi-random instances

In this section, we prove Theorem 6, which we again state here for convenience.

I Theorem 20 (Theorem 6 restated). Suppose there exists an efficient algorithm which colors
a 3-colorable graph using nθ colors. Then the following holds for all choices of ε = Ω(logn/n)
and p ≥ (εθ−2)O(θ). There exists a polynomial time algorithm that takes as input a graph G
sampled from (1− ε)-P3CR (n, p) and produces a set S such that |S| = O

(
εθ−2np−(O(1/θ)))

and a coloring of V \S using at most nθ colors with high probability. Moreover, the algorithm
runs in time nO(1/θ)poly(n).

S. Ghoshal, A. Louis, and R. Raychaudhury 28:11

Algorithm 2 P3C-Random.

1 Let A be the algorithm which can color 3-colorable graphs using nθ colors;
2 Set δ = θ/10;

{Many short odd cycles}:
3 for every vertex v ∈ V do
4 Let Gv := G[NG(v)] the subgraph induced by the neighborhood of G;
5 Greedily construct a maximal set Cv of vertex disjoint odd cycles of length at

most 1/δ in Gv;
6 end
7 Construct set S ← {v ∈ V : |Cv| ≥ 2εn};
8 Let G0 ← G[V \ S] be the graph obtained after deleting S;
9 Let σ1 be the coloring of V \ S obtained by running algorithm A on G0. Let L

denote the number of colors used by the algorithm;

{Few short odd cycles}:
10 Compute a maximal set C = {C1, C2, . . . , Cm} of vertex disjoint odd cycles in G of

length at most 1/δ using greedy algorithm;
11 Let V ′ = V \

(⋃
i∈[m] vert(Ci)

)
;

12 Use the algorithm guaranteed by Corollary 15 to give a Õ
(
n4δ) coloring σ2 of G[V ′];

{Output best coloring}:
13 if |S| ≤ εn and L ≤ nθ then
14 Output coloring σ1 of V \ S
15 end
16 else
17 Output coloring σ2 of V ′;
18 end

We begin by describing the algorithm for the semi-random setting:
The algorithm proceeds case wise depending on whether there exists many vertex disjoint

short odd cycles in G. If it does, then since Vbad is small, G[Vgood] must also contain many
vertex disjoint odd cycles. We show that these short cycles will show up in the neighborhood
of the bad vertices with high probability, which can be used to identify them. On removing
these vertices, we will be left with a 3-colorable graph. On the other hand, if the number of
short odd cycles is small, we can remove them. The remaining graph will still contain most
of the vertices and will be short odd cycle free. We can then use Lemma 14 to recover large
independent sets. Finally, since the odd cycles we consider are of length at most 1/δ, we can
work with a maximal set of vertex disjoint odd cycles, instead of the largest cardinality set
of vertex disjoint odd cycles, while only losing a factor of 1/δ in our analysis.

4.1 Correctness of the P3C-Random algorithm
Let C∗ = {C∗1 , C∗2 , . . . , C∗m∗} be a fixed largest cardinality set of vertex disjoint odd cycles of
length at most 1/δ in G[Vgood]. In particular, C∗ and consequently m∗, does not depend on
the realization of the random and adversarial edges (i.e., the E0 and E1 edges) between Vgood
and Vbad. We break our analysis into two cases depending on whether m∗ is small or large.

APPROX/RANDOM 2019

28:12 Approximation Algorithms for Partially Colorable Graphs

Case (i): m∗ > 4εn/(δp1/δ). For ease of exposition, we say that an odd cycle C in graph
G is good if it consists of only good vertices, otherwise we call it bad. The first claim
shows the set Cv must be small for good vertices.

B Claim 21. For every good vertex v ∈ V , we have |Cv| ≤ εn.

Proof. Fix a good vertex v ∈ Vgood. We claim that a good cycle C can never appear in the
neighborhood of a good vertex. For contradiction, let C be a good odd cycle appearing in
the neighborhood of v. Let G̃ = G

[
vert(C) ∪ {v}

]
be the subgraph induced on the vertex

v and the vertices from cycle C. Since G̃ ⊆ G[Vgood], the subgraph G̃ is also 3-colorable.
Hence, the neighborhood of v in the induced subgraph G̃ must be 2-colorable, and therefore
it cannot contain odd cycles, and in particular C. This gives us the contradiction.

Hence, any odd cycle which appears in the neighborhood NG(v) must be bad. Since
the number of bad vertices is bounded by εn, and the cycles in Cv are vertex disjoint, the
claim follows. C

On the other hand, with high probability, we show that |Cv| is large for all the bad
vertices.

B Claim 22. With probability at least 1− e−O(εn), every vertex v ∈ Vbad satisfies |Cv| ≥ 2εn.

Proof. Consider the subgraph G′(V,E0) consisting of edges from E0 (i.e., the randomly
distributed set of edges). Fix a bad vertex v ∈ Vbad, and let Gv = G[NG(v)] denote the
subgraph induced by the neighborhood of v. We shall first give a high probability lower bound
on the number of odd cycles from C∗ which can appear in NG(v). Recall that |C∗| = m∗. We
also point out again that the choice of C∗ is not affected by the choice of E0 and E1 edges,
and can be fixed ahead.

For every i ∈ [m∗], we define Zi := 1

(
vert(C∗i) ⊆ NG′(v)

)
to be the indicator random

variable that the ith cycle appears in the neighborhood of vertex v in the graph G′. Note
that these random variables depend only on the realization of the E0 edges. Then we have

EG[Zi] ≥ Pr
E0

[
vert(C∗i) ⊆ NG(v)

]
≥ Pr

E0

[
vert(C∗i) ⊆ NG′(v)

]
= Pr

E0

[
∀j ∈ vert(C∗i), j ∈ NG′(v)

]
≥ p|C

∗
i | ≥ p1/δ

Here the last step uses the fact that any cycle C∗i ∈ C∗ has length at most 1/δ. It follows that

EG

 ∑
i∈[m∗]

Zi

 =
∑
i∈[m∗]

EG[Zi] ≥ m∗p1/δ ≥ (4ε/δ)n (1)

Furthermore, since the cycles C∗1 , C∗2 , . . . , C∗m∗ are vertex disjoint, the corresponding
random variables Z1, Z2, . . . , Zm∗ are also independent. Therefore using Chernoff bound we
get that

Pr
G

 ∑
i∈[m∗]

Zi < (2ε/δ)n

 ≤ Pr
G

 ∑
i∈[m∗]

Zi <
1
2E
[∑
i∈[m∗]

Zi

] ≤ e−εn/4δ (2)

S. Ghoshal, A. Louis, and R. Raychaudhury 28:13

Now let C∗v = {C∗i : i ∈ [m∗], Zi = 1} be the set of cycles from C∗ which appear in
the neighborhood of v in graph G due to the E0 edges. Furthermore, let C̃v be a largest
cardinality set of vertex disjoint odd cycles of length at most 1/δ in Gv (which contains
edges from both E0 and E1). Then by definition we have |C̃v| ≥ |C∗v |. On the other hand,
by construction, the set Cv is a maximal set of such vertex disjoint odd cycles in Gv, and
therefore, it must be a δ-approximation to the largest cardinality set C̃v i.e., |Cv| ≥ δ|C̃v| (see
Proposition 26). Therefore using Equation 2, with probability at least 1− e−εn/4δ we have

|Cv| ≥ δ|C̃v| ≥ δ|C∗v | ≥ 2εn

Hence, for any fixed vertex v ∈ Vbad, w.h.p. we have |Cv| ≥ 2εn. Therefore, by a
union bound and using the lower bound on ε, we get that PrG

[
∃v ∈ Vbad : |Cv| < 2εn

]
≤

εne−εn/4δ ≤ ne−εn/8δ. C

Combining the two claims above, it follows that w.h.p. the set (V \ S) must exactly be
the set of good vertices, and therefore G[V \ S] must be 3-colorable. Hence algorithm A will
give a nθ coloring of G[V \ S].

Case (ii): m∗ ≤ 4εn/(δp1/δ). Let C = Cgood] Cbad be the partition of C into the set of
good and bad cycles respectively. Then, since Cgood is a set of vertex disjoint odd cycles of
length at most 1/δ in G[Vgood], it follows that |Cgood| ≤ |C∗| ≤ 4εn/(δp1/δ). Furthermore,
by arguments similar to the proof of Claim 21, we have |Cbad| ≤ εn. Therefore, combining
the two bounds, we have |C| ≤ 5εn/(δp1/δ). Since every cycle C ∈ C contains at most 1/δ
vertices, the total number of vertices thrown away at this step is at most 5εn/(δ2p1/δ).
Furthermore, using the maximality of C, we know that the induced subgraph G′ = G[V ′]
must be free of odd cycles of length at most 1/δ. Therefore, using Corollary 15, we can
color G′ using Õ(n2δ) colors. This concludes the analysis of case (ii).

Putting Things Together. If case (i) holds, then w.h.p., in the Many short odd cycles block
of the algorithm, the set S constructed is identical to Vbad, in which case the algorithm A
will find a nθ-coloring of G[V \ S] = G[Vgood]. In particular, this implies that the conditions
of the “if” block will be satisfied and the algorithm will return a nθ-coloring of (1 − ε)n
vertices.

On the other hand, if case (ii) holds, we know that m ≤ 5εn/(p1/δδ), and the Few short
odd cycles block deletes at most 5εn/(p1/δδ2) vertices, and colors the remaining vertices
using Õ(n2δ) colors. Then the else block of the algorithm will return a Õ(n2δ) coloring of(

1− 5εn/(p1/δδ2)
)
n vertices. Since the else block is evaluated only when the conditions of

the if block are not satisfied, it follows that in this case, the algorithm will throw away at
most max

(
εn, 5εn/(δ2p1/δ)

)
= O(εn/δ2p1/δ) vertices, and color the remaining graph with at

most max
(
nθ, Õ(n2δ)

)
= nθ colors.

Combining the two above cases gives us Theorem 6.

5 Conclusion

In this work we consider the problem of coloring partial 3-colorable graphs in adversarial
and semi-random settings. In the adversarial setting, we give an efficient approximation
algorithm which can color (1−O(εc))-fraction of vertices using Õ(n0.25+εc

′

) colors. On the
other hand, the best known approximation guarantees for 3-colorable graphs is n0.199 [20].
An obvious open question here is to achieve analogous approximation bounds for partially
3-colorable graphs as well.

APPROX/RANDOM 2019

28:14 Approximation Algorithms for Partially Colorable Graphs

One direct way to improve on our approximation bounds in the adversarial setting is
through the use of more efficient degree reduction mechanisms as typically done in the exact
3-coloring setting [10],[19, 20] using combinatorial techniques like Blum’s coloring tools [8].
However, these tools rely on fragile combinatorial properties present in 3-colorable graphs
(e.g. two vertices whose common neighborhood is not an independent set must have the same
color in any legal coloring), and as such, it is not obvious how to extend these techniques to
the setting of partially 3-colorable graphs.

In the semi-random model, we show how any efficient algorithm for exact 3-coloring that
uses nθ colors can be leveraged to obtain an efficient algorithm in this setting which uses the
same number of colors with high probability and also does not remove too many vertices.
An obvious next step would be to see if similar results can also be obtained for partially
k-colorable graphs with k > 3. Another interesting question would be to see if one can design
efficient approximation algorithms with similar guarantees, where the adversary can also
delete the randomly sampled edges.

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(sqrtlog
n)) approximation algorithms for min UnCut, min 2CNF deletion, and directed cut problems.
In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
573–581. ACM, 2005.

2 Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable graphs.
SIAM Journal on Computing, 26(6):1733–1748, 1997.

3 Sanjeev Arora and Eden Chlamtac. New approximation guarantee for chromatic number.
In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
215–224. ACM, 2006.

4 Sanjeev Arora and Rong Ge. New Tools for Graph Coloring. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques - 14th International Workshop,
APPROX 2011, and 15th International Workshop, RANDOM 2011, Princeton, NJ, USA,
August 17-19, 2011. Proceedings, pages 1–12, 2011.

5 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

6 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 453–462. IEEE, 2009.

7 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding Semidefinite Programming
Hierarchies via Global Correlation. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 472–481,
2011.

8 Avrim Blum. Some tools for approximate 3-coloring. In Proceedings [1990] 31st Annual
Symposium on Foundations of Computer Science, pages 554–562. IEEE, 1990.

9 Avrim Blum. New Approximation Algorithms for Graph Coloring. J. ACM, 41(3):470–516,
1994. doi:10.1145/176584.176586.

10 Avrim Blum and David Karger. An algorithm for 3-colorable graphs. Information Processing
Letters, 61(1):49–53, 1997. doi:10.1016/s0020-0190(96)00190-1.

11 Avrim Blum and Joel Spencer. Coloring random and semi-random k-colorable graphs. Journal
of Algorithms, 19(2):204–234, 1995.

12 Eden Chlamtac. Approximation Algorithms Using Hierarchies of Semidefinite Programming
Relaxations. 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS07),
2007. doi:10.1109/focs.2007.72.

https://doi.org/10.1145/176584.176586
https://doi.org/10.1016/s0020-0190(96)00190-1
https://doi.org/10.1109/focs.2007.72

S. Ghoshal, A. Louis, and R. Raychaudhury 28:15

13 Roee David and Uriel Feige. On the effect of randomness on planted 3-coloring models. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 77–90.
ACM, 2016.

14 Reinhard Diestel. Graph Theory, volume 173 of. Graduate texts in mathematics, page 7, 2012.
15 Uriel Feige and Joe Kilian. Heuristics for semirandom graph problems. Journal of Computer

and System Sciences, 63(4):639–671, 2001.
16 Naveen Garg, Vijay V Vazirani, and Mihalis Yannakakis. Approximate max-flow min-(multi)

cut theorems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.
17 David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidefinite

programming. Journal of the ACM (JACM), 45(2):246–265, 1998.
18 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer

computations, pages 85–103. Springer, 1972.
19 Ken-Ichi Kawarabayashi and Mikkel Thorup. Combinatorial Coloring of 3-Colorable Graphs.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, 2012. doi:10.1109/
focs.2012.16.

20 Ken-Ichi Kawarabayashi and Mikkel Thorup. Coloring 3-Colorable Graphs with Less than
n1/5 Colors. Journal of the ACM, 64(1):1–23, 2017. doi:10.1145/3001582.

21 Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique games
against a semi-random adversary: Study of semi-random models of unique games. In 2011
IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 443–452. IEEE,
2011.

22 Akash Kumar, Anand Louis, and Madhur Tulsiani. Finding Pseudorandom Colorings of
Pseudorandom Graphs. In 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2017, December 11-15, 2017, Kanpur,
India, pages 37:1–37:12, 2017.

23 Daniel Lokshtanov, NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Transactions on
Algorithms (TALG), 11(2):15, 2014.

24 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Approximation
algorithms for semi-random partitioning problems. In Proceedings of the 44th Symposium
on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012,
pages 367–384, 2012.

25 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Algorithms for
Semi-random Correlation Clustering. CoRR, abs/1406.5667, 2014. arXiv:1406.5667.

26 Theo McKenzie, Hermish Mehta, and Luca Trevisan. A New Algorithm for the Robust
Semi-random Independent Set Problem. CoRR, abs/1808.03633, 2018. arXiv:1808.03633.

27 Burkhard Monien and Ewald Speckenmeyer. Ramsey numbers and an approximation algorithm
for the vertex cover problem. Acta Informatica, 22(1):115–123, 1985.

28 NS Narayanaswamy, Venkatesh Raman, MS Ramanujan, and Saket Saurabh. LP can be a
cure for parameterized problems. In STACS’12 (29th Symposium on Theoretical Aspects of
Computer Science), volume 14, pages 338–349. LIPIcs, 2012.

29 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 245–254, 2008.

30 Prasad Raghavendra and David Steurer. How to Round Any CSP. In 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta,
Georgia, USA, pages 586–594, 2009.

31 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004.

32 Jacob Steinhardt. Does robustness imply tractability? A lower bound for planted clique in
the semi-random model. arXiv preprint, 2017. arXiv:1704.05120.

APPROX/RANDOM 2019

https://doi.org/10.1109/focs.2012.16
https://doi.org/10.1109/focs.2012.16
https://doi.org/10.1145/3001582
http://arxiv.org/abs/1406.5667
http://arxiv.org/abs/1808.03633
http://arxiv.org/abs/1704.05120

28:16 Approximation Algorithms for Partially Colorable Graphs

33 Avi Wigderson. Improving the performance guarantee for approximate graph coloring. Journal
of the ACM, 30(4):729–735, January 1983. doi:10.1145/2157.2158.

34 Mihalis Yannakakis. Node-and edge-deletion NP-complete problems. In Proceedings of the
tenth annual ACM symposium on Theory of computing, pages 253–264. ACM, 1978.

A Proof of Claim 17

We begin by showing that the optimal of SDP-P3C is at most εn. Let V = Vgood ∪ Vbad
be any partition of the vertex sets into good and bad vertices such that (a) G[Vgood] is
3-colorable and (b) |Vbad| ≤ εn. Using this partition we now construct a 2-dimensional
feasible solution (v̂, ŵ, ẑ) to SDP-P3C as follows. We set the ŵi and ẑij variables as

ŵi =
{

0, if i ∈ Vgood

1, otherwise
and ẑij =

{
0, if i, j ∈ Vgood

1, otherwise

Furthermore, we set {v̂i}i∈Vgood be a vector 3-coloring of G[Vgood], and for every i ∈ Vbad
we set v̂i = [1 0]. We quickly verify that the v̂, ŵ and the ẑ variables constructed as above
form a feasible solution to the SDP. By construction, for every i ∈ V we have ŵi ∈ [0, 1] and
‖v̂i‖2 = 1, and for every edge (i, j) ∈ E we have zij ∈ [0, 1]. Furthermore, for any edge (i, j)
we also have

ẑij = 1

(
{i ∈ Vbad} ∨ {j ∈ Vbad}

)
≤ 1

(
{i ∈ Vbad}

)
+ 1

(
{j ∈ Vbad}

)
= ŵi + ŵj

All that remains to verify is that the variables also satisfy the approximate vector coloring
constraints. We look at two cases: if i, j ∈ Vgood, then v̂i, v̂j come from the vector 3-coloring
of G[Vgood] and therefore they satisfy 〈v̂i, v̂j〉 ≤ − 1

2 ≤ −
1
2 + ẑij . On the other hand if i ∈ Vbad

or j ∈ Vbad then by construction we have ẑij = 1, and therefore 〈v̂i, v̂j〉 ≤ ‖v̂i‖‖v̂j‖ = 1 =
− 1

2 + 3
2 ẑij .

Therefore, we have established that (ẑ, ŵ, v̂) are a feasible solution for SDP-P3C. Since
by construction ŵi = 1 {i ∈ Vgood}, and the |Vbad| ≤ εn, it follows that the SDP optimal∑
i∈V wi is at most

∑
i∈V ŵi ≤ εn. Therefore, using Markov’s inequality, we get

|S| = n · Pr
i∼V

[
wi ≥ γ/3

]
≤ n ·

3
∑
i∈V wi

nγ
= 3εn

γ

B Auxiliary Lemmas

In this section we give the proofs of Lemmas 12 and 13.

B.1 Proof of Lemma 12
The proof of this lemma follows along the lines of Lemma 4.3 from [17], which says that
subgraphs induced by neighborhoods of vertices in vector 3-colorable graphs are vector
2-colorable. Without loss of generality, let NG(i) = {1, 2, . . . , r} and let {v1, v2, . . . , vr} be
the set of vectors which are a (3, γ)-vector coloring of NG(i). For every j ∈ [r], we can write
vj = v

‖
j + v⊥j where v‖j and v⊥j are the projections of vj along vi and (span(vi))⊥ respectively.

Finally, for every j ∈ [r] we define ṽj := v⊥j /‖v⊥j ‖ to be unit vector given by the projection of
vj on the subspace (span(vi))⊥. It can be easily verified that ṽ1, ṽ2, . . . , ṽr is a (2, 4γ)-vector
coloring of the graph induced on N(v). To see this, fix any j ∈ V . By construction, we
have ‖v‖j ‖ = |〈vi, vj〉| ≥ 1

2 − γ, and therefore ‖v⊥j ‖ =
√

1− ‖v‖j ‖2 ≤
√

3
4 + γ − γ2. Therefore

for any j, j′ ∈ [r] such that (j, j′) ∈ E, using the orthonormal decomposition of vj and vj′
we have

https://doi.org/10.1145/2157.2158

S. Ghoshal, A. Louis, and R. Raychaudhury 28:17

〈ṽj , ṽj′〉 =
〈

v⊥j
‖v⊥j ‖

,
v⊥j′

‖v⊥j′‖

〉
= 1
‖v⊥j ‖‖v⊥j′‖

(
〈vj , vj′〉 − 〈v‖j , v

‖
j′〉
)

= 1
‖v⊥j ‖‖v⊥j′‖

(
〈vj , vj′〉 − 〈vi, vj〉〈vi, vj′〉

)
≤ 1(

3
4 + γ − γ2

)(− 1/2 + γ −
(1

2 − γ
)2)

≤ −1 + 4γ

Since the above holds for any pair of vertices j, j′ ∈ [r] which forms an edge, the claim follows.

B.2 Proof of Lemma 13
Let v1, v2, . . . , vn be the (2, γ)-vector coloring of G. For contradiction, let C be an odd cycle
in G of length r ≤ 1/(8√γ). Without loss of generality, let C = {1, 2, . . . , r}, such that for
every i ∈ [r], the pair {i, (i mod r) + 1} forms an edge. Let r = 2k + 1. Now for any i ∈ [r],
we have −1 ≤ 〈vi, vi+1〉 ≤ −1 + γ. Since vi, vi+1 are unit vectors, we have

‖vi + vi+1‖2 = ‖vi‖2 + ‖vi+1‖2 + 2〈vi, vi+1〉 ≤ 2γ (3)

which implies that ‖vi+vi+1‖ ≤ 2√γ i.e, any consecutive pair of vectors are almost anti-podal.
Then, for any i ∈ [r] we also get that

‖vi − vi+2‖ ≤ ‖vi + vi+1‖+ ‖vi+1 + vi+2‖ ≤ 4√γ (4)

We shall now use the above observations to arrive at a contradiction. From the upper bound
on r, we have k ≤ (r − 1)/2 ≤ 1/(16√γ), and hence using Eq. 4 we get that

‖v1 − vr‖ ≤
k−1∑
j=0
‖v1+2j − v1+2(j+1)‖ ≤ 4k√γ < 1/4 (5)

But on the other hand, since v1, vr are consecutive vertices in the cycles C, we also have
〈v1, vr〉 ≤ −1+γ which implies that ‖v1−vr‖ ≥

√
4− 4γ > 1, which give us the contradiction.

C Proof of Corollary 15

Consider Algorithm IndSetColoring for coloring by iteratively finding large independent sets.

Algorithm 3 IndSetColoring.

Input: Graph G = (V,E)
1 Initialize t← 1 and G1 ← G;
2 while Gt 6= φ do
3 Let It be the independent set from Lemma 14 instantiated with Gt;
4 Set Gt+1 ← Gt \ It;
5 Update t← t+ 1;
6 end
7 Output coloring I1] I2] · · ·] It;

APPROX/RANDOM 2019

28:18 Approximation Algorithms for Partially Colorable Graphs

In the above algorithm, we use Lemma 14 to iteratively remove independent sets
I1, I2, . . . , It, where each independent set forms a color class. Let Gt = G[V \ (I1∪I2∪· · · It)]
denote the graph on the surviving vertices after t iterations. We claim that in every T = n2ε

applications of Lemma 14 at least a constant fraction of vertices are removed, i.e., for any
iteration t, we have |Vert(Gt+T)| ≤ (1− 1/21−2ε)|Vert(Gt)|.

This can be shown as follows. Let nt = |Vert(Gt)| denote the number of vertices in graph
Gt. Then, we can assume that |vert(Gt+T)| > nt/2 (otherwise we are done). Then, in T
iterations the number of vertices removed can be lower bounded by

T∑
j=1
|Ij+T | ≥

T∑
j=1
|Vert(Gt+j)|1−2ε ≥ n2ε(nt/2)1−2ε ≥ nt/2(1−2ε) (6)

where the first inequality follows from the guarantee of Lemma 14. Therefore, in Õ(n2ε)
iterations, all the vertices will be accounted for.

D Partial 2-Coloring in the Semi-random model

In this section, we give an efficient approximation algorithm for partial 2-coloring problem in
the semi-random model with tighter guarantees. The following theorem formally states our
guarantees for this setting.

I Theorem 23 (Theorem 7 restated). Let ε = Ω(logn/n) and p >
√
ε. Then, there exists a

polynomial time algorithm that takes as input a graph G sampled from (1− ε)-P2CR (n, p) ,
and with high probability, produces a set S ⊆ V such that |S| = O

(
εnp−2) and the induced

subgraph on the remaining vertices G[V \ S] is 2-colorable.

The algorithm for the above theorem (described as Algorithm 4) is quite similar to
P3C-Random algorithm, but overall, the algorithm and its analysis are much simpler. We
begin by describing the algorithm.

Algorithm 4 P2C-Random.

1 For every vertex v ∈ V , compute a greedy triangle count as follows:
2 for v ∈ V do
3 Let Gv = G[NG(v)] be the graph induced on the neighborhood of v;
4 Construct a maximal matching T (v) in Gv using greedy algorithm;
5 Set t(v)← |T (v)|;
6 end
7 Let S ← {v ∈ V : t(v) ≥ 2εn};
8 Let G0 = G[V \ S];
9 Let G1 ⊆ G be the independent set obtained using the 2-factor approximation for

Vertex Cover on G;
10 if |vert(G0)| ≥ |vert(G1)| and G0 is bipartite then
11 Output bipartite graph G0;
12 end
13 else
14 Output independent set G1;
15 end

S. Ghoshal, A. Louis, and R. Raychaudhury 28:19

The key difference here is that the algorithm uses triangles as forbidden subgraphs for
identifying bad vertices instead of neighborhoods with short odd cycles. As before, the
algorithm broadly addresses two cases depending on the size of the maximum matching in
G[Vgood]. Suppose the subgraph G[Vgood] contains a linear sized matching M . Then, for
every bad vertex v ∈ Vbad, with high probability, at least one of the matching edges from M

will appear in the neighborhood of v, which together will form a triangle, which can then be
used to identify the bad vertices. On the other hand, if the size of maximum matching in
G[Vgood] is small, then the subgraph G[Vgood] and consequently G must admit a small sized
vertex cover. Therefore, using the greedy approximation algorithm for vertex cover, we can
find a small sized vertex cover, whose complement must be a large independent set (which
is 1-colorable).

D.1 Proof of Theorem 7
Let M ⊆ G[Vgood] be a fixed matching of maximum size in G[Vgood], and let m∗ := |M |
denote the size of the maximum matching. We point out that the matching M∗ is not affected
by the realization of edges between Vgood and Vbad (i.e, the E0 and E1 edges). As before, we
break the analysis into two cases depending on whether m∗ is small or large.

Case (i): m∗ ≥ (8ε/p2)n. This case is similar to case (i) of the proof of Theorem 6. We
begin by stating and proving two lemmas which say that the greedy triangle count t(v) is
small for all the good vertices, and large for all the bad vertices.

I Lemma 24. For every good vertex v ∈ Vgood, we have t(v) ≤ εn

Proof. Fix a good vertex v ∈ Vgood, and let T (v) be a set of edges as constructed in the
algorithm. Observe that every edge (a, b) ∈ T (v) along with vertex v induces a triangle in G.
Furthermore, since G[Vgood] is bipartite (and hence triangle free), any triangle T ⊆ G must
contain at least one bad vertex. Therefore, as the vertex v is good, every edge e ∈ T (v) must
contain at least one bad vertex. Finally, we observe that the edges in T (v) are vertex disjoint,
and there are at most εn bad vertices, which together implies that t(v) = |T (v)| ≤ εn. J

I Lemma 25. With probability at least 1 − e−O(εn), for every vertex v ∈ Vbad, we have
t(v) ≥ 2εn.

Proof. Let G′ be the subgraph on G consisting of edges from E0 (i.e,. the randomly sampled
set of edges). Recall that M = {(ai, bi)}i∈[m∗] ⊆ G[Vgood] is the fixed maximum matching in
G[Vgood] of size m∗. Let Zi := 1

(
{ai, bi ∈ NG′(v)}

)
be the indicator variable for the event

that ai, bi are neighbors of v in the graph G′. Then,

EG′

 ∑
i∈[m∗]

Zi

 =
∑
i∈[m∗]

Pr
G′

[{ai, bi ∈ NG′(v)}] = m∗p2 ≥ 8εn (7)

Furthermore, since the edges in M are vertex disjoint, the random variables Z1, . . . , Zm∗ are
independent and identical. Therefore using Chernoff bound we get

Pr
G′

 ∑
i∈[m∗]

Zi ≤ 4εn

 ≤ Pr
G′

 ∑
i∈[m∗]

Zi ≤
1
2E

∑
i∈[m∗]

Zi

 ≤ e−O(εn) (8)

Let Mv = {(ai, bi) : i ∈ [m∗], Zi = 1} be the set of matching edges from M∗ appearing in
the neighborhood of v in the graph G′. Furthermore, let M̃v be a maximum matching in the
subgraph GV := G[NG(v)] induced on the neighborhood of v (which contains both E0 and E1

APPROX/RANDOM 2019

28:20 Approximation Algorithms for Partially Colorable Graphs

edges). Then, by definition we have |M̃v| ≥ |Mv|. On the other hand, by construction, the
set T (v) is a maximal matching in the induced subgraph Gv. Since a maximal matching is a
2-approximation to the maximum matching, it follows that |T (v)| ≥ |M̃v|/2 ≥ |Mv|/2 ≥ 2εn.

Therefore, for a fixed bad vertex v ∈ Vbad, with probability at least 1− e−O(εn), we have
t(v) ≥ 2εn. The claim now follows by taking a union bound over all vertices v ∈ Vbad. J

Therefore, combining Lemmas 24 and 25, we know that with probability at least 1−e−O(εn),
we have t(v) ≤ εn if and only if v ∈ Vgood. Conditioned on this event, the set S must exactly
be the set of bad vertices, in which case G[V \ S] = G[Vgood] is bipartite.

Case (ii): m∗ ≤ (8ε/p2)n. Since the size of maximum matching in G[Vgood] is at most
(8ε/p2)n, and G[Vgood] is bipartite, by König’s theorem (Theorem 2.1.1 [14]), it follows
that the minimum vertex cover of G[Vgood] has size at most (8ε/p2)n. Then G has a vertex
cover of size at most (8ε/p2)n+ εn ≤ (10ε/p2)n. Therefore, the greedy approximation
algorithm for vertex cover returns a vertex cover S′ of size at most (20ε/p2)n, and
consequently, V \ S′ will be an independent set of size at least (1− (20ε/p2))n.

Putting things together. In case (i), the algorithm throws away at most εn vertices and
returns a 2-colorable graph, with probability at least 1− e−O(εn). In case (ii), the algorithm
throws away at most O(ε/p2)n vertices, and returns an indpendent set. Combining the two
cases gives us the guarantees for Theorem 7.

E Maximal and Maximum Short Odd Cycle sets

I Proposition 26. For any graph G := (V,E), and parameter δ ∈ (0, 1) the following holds.
Let C be a maximal set of vertex disjoint odd cycles in G of length at most 1/δ, and let
C̃ be a set of largest cardinality of vertex disjoint odd cycles in G of length at most 1/δ.
Then |C| ≥ δ|C̃|.

Proof. Since C is a maximal set of vertex disjoint odd cycles of length at most 1/δ, for every
odd cycle C̃ ∈ C̃, there exists an odd cycle C ∈ C such that C ∩ C̃ 6= ∅ i.e,. C̃ is hit by C.
Now we observe that (i) the cycles in C are vertex disjoint and (ii) each cycle C ∈ C has size
at most 1/δ. Hence, it follows that any cycle C ∈ C hits at most 1/δ cycles in C̃. Since every
cycle in C̃ is hit by some cycle in C, we must have |C| ≥ |C̃|

1/δ = δ|C̃|. J

F Identifying the set of Good Vertices is NP-hard

I Fact 27. For all k ∈ N, given a graph α-partially k-colorable graph G = (V,E) it is
NP-Hard to identify a set Vgood ⊂ V of size at least αn such that G[Vgood] is k-colorable

Proof. For α = 1− 1/2n, this is exactly the k-Coloring problem which is NP-Hard [18]. J

Towards Optimal Moment Estimation in
Streaming and Distributed Models
Rajesh Jayaram
Carnegie Mellon University, Pittsburgh, PA, USA
http://rajeshjayaram.com/
rkjayara@cs.cmu.edu

David P. Woodruff
Carnegie Mellon University, Pittsburgh, PA, USA
http://www.cs.cmu.edu/~dwoodruf/
dwoodruf@cs.cmu.edu

Abstract
One of the oldest problems in the data stream model is to approximate the p-th moment ‖X‖p

p =∑n

i=1 X
p
i of an underlying non-negative vector X ∈ Rn, which is presented as a sequence of poly(n)

updates to its coordinates. Of particular interest is when p ∈ (0, 2]. Although a tight space bound
of Θ(ε−2 logn) bits is known for this problem when both positive and negative updates are allowed,
surprisingly there is still a gap in the space complexity of this problem when all updates are positive.
Specifically, the upper bound is O(ε−2 logn) bits, while the lower bound is only Ω(ε−2 + logn) bits.
Recently, an upper bound of Õ(ε−2 +logn) bits was obtained under the assumption that the updates
arrive in a random order.

We show that for p ∈ (0, 1], the random order assumption is not needed. Namely, we give an
upper bound for worst-case streams of Õ(ε−2 + logn) bits for estimating ‖X‖p

p. Our techniques
also give new upper bounds for estimating the empirical entropy in a stream. On the other hand,
we show that for p ∈ (1, 2], in the natural coordinator and blackboard distributed communication
topologies, there is an Õ(ε−2) bit max-communication upper bound based on a randomized rounding
scheme. Our protocols also give rise to protocols for heavy hitters and approximate matrix product.
We generalize our results to arbitrary communication topologies G, obtaining an Õ(ε2 log d) max-
communication upper bound, where d is the diameter of G. Interestingly, our upper bound rules out
natural communication complexity-based approaches for proving an Ω(ε−2 logn) bit lower bound for
p ∈ (1, 2] for streaming algorithms. In particular, any such lower bound must come from a topology
with large diameter.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Streaming, Sketching, Message Passing, Moment Estimation

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.29

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.05816.

Funding The authors thank the partial support by the National Science Foundation under Grant
No. CCF-1815840.

1 Introduction

The streaming and distributed models of computation have become increasingly important
for the analysis of massive datasets, where the sheer size of the input imposes stringent
restrictions on the resources available to algorithms. Examples of such datasets include
internet traffic logs, sensor networks, financial transaction data, database logs, and scientific
data streams (such as huge experiments in particle physics, genomics, and astronomy). Given

© Rajesh Jayaram and David P. Woodruff;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 29; pp. 29:1–29:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://rajeshjayaram.com/
mailto:rkjayara@cs.cmu.edu
http://www.cs.cmu.edu/~dwoodruf/
mailto:dwoodruf@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.29
https://arxiv.org/abs/1907.05816
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Towards Optimal Moment Estimation in Streaming and Distributed Models

their prevalence, there is a large body of literature devoted to designing extremely efficient
algorithms for analyzing streams and enormous datasets. We refer the reader to [4, 52] for
surveys of these algorithms and their applications.

Formally, the data stream model studies the evolution of a vector X ∈ Zn, called the
frequency vector. Initially, X is initialized to be the zero-vector. The frequency vector then
receives a stream of m coordinate-wise updates of the form (it,∆t) ∈ [n]× {−M, . . . ,M} for
some M > 0 and time step t ∈ [m]. Each update (it,∆t) causes the change Xit ← Xit + ∆t.
If we restrict that ∆t ≥ 0 for all t ∈ [m], this is known as the insertion-only model. If the
updates ∆t ∈ {−M, . . . ,M} can be both positive and negative, then this is known as the
turnstile-model. The p-th frequency moment of the frequency vector at the end of the stream,
Fp, is defined as Fp =

∑n
i=1 |Xi|p. For simplicity (but not necessity), it is generally assumed

that m,M = poly(n).
The study of frequency moments in the streaming model was initiated by the seminal

1996 paper of Alon, Matias, and Szegedy [1]. Since then, nearly two decades of research
have been devoted to understanding the space and time complexity of this problem. An
incomplete list of works which study frequency moments in data streams includes [16, 36, 6,
58, 35, 45, 12, 44, 11, 15, 11, 7, 13]. For p > 2, it is known that polynomial in n (rather than
logarithmic) space is required for Fp estimation [16, 36]. In the regime of p ∈ (0, 2], the space
complexity of Fp estimation in the turnstile model is now understood, with matching upper
and lower bounds of Θ(ε−2 log(n)) bits to obtain a (1± ε) approximation of Fp. Here, for
ε > 0, a (1± ε) approximation means an estimate F̃p such that (1− ε)Fp ≤ F̃p ≤ (1 + ε)Fp.
For insertion only streams, however, the best known lower bound is Ω(ε−2 + log(n)) [58].
Moreover, if the algorithm is given query access to an arbitrarily long string of random bits
(known as the random oracle model), then the lower bound is only Ω(ε−2). On the other
hand, the best upper bound is to just run the turnstile O(ε−2 log(n))-space algorithm.

In this work, we make progress towards resolving this fundamental problem. For p < 1,
we resolve the space complexity by giving an Õ(ε−2 + logn)1-bits of space upper bound.
In the random oracle model, our upper bound is Õ(ε−2)2, which also matches the lower
bound in this setting. Prior to this work, an Õ(ε−2 + log(n)) upper bound for Fp estimation
was only known in the restricted random-order model, where it is assumed that the stream
updates are in a uniformly random ordering [13]. Our techniques are based on novel analysis
of the behavior of the p-stable random variables used in the O(ε−2 log(n)) upper bound of
[35], and also give rise to a space optimal algorithm for entropy estimation.

We remark that Fp estimation in the range p ∈ (0, 1) is useful for several reasons. Firstly,
for p near 1, Fp estimation is often used as a subroutine for estimating the empirical entropy
of a stream, which itself is useful for network anomaly detection ([47], also see [31] and the
references therein). Moment estimation is also used in weighted sampling algorithms for data
streams [50, 42, 38] (see [23] for a survey of such samplers and their applications). Here, the
goal is to sample an index i ∈ [n] with probability |Xi|p/Fp. These samplers can be used to
find heavy-hitters in the stream, estimate cascaded norms [2, 50], and design representative
histograms of X on which more complicated algorithms are run [28, 27, 55, 29, 33, 24].
Furthermore, moment estimation for fractional p, such as p = .5 and p = .25, has been shown
to be useful for data mining [22].

1 the Õ here suppresses a single (log logn+log 1/ε) factor, and in general we use Õ and Ω̃ to hide log logn
and log 1/ε terms.

2 This space complexity is measured between updates. To read and process the Θ(log(n))-bit identity of
an update, the algorithm will use an additional O(log(n))-bit working memory tape during an update.
Note that all lower bounds only apply to the space complexity between updates, and allow arbitrary
space to process updates.

R. Jayaram and D. P. Woodruff 29:3

For the range of p ∈ (1, 2], we prove an Õ(ε−2)-bits of max-communication upper bound
in the distributed models most frequently used to prove lower bounds for streaming. This
result rules out a large and very commonly used class of approaches for proving lower bounds
against the space complexity of streaming algorithms for Fp estimation. Our approach is
based on a randomized rounding scheme for p-stable sketches. We show that our rounding
scheme can be additionally applied to design improved protocols for the distributed heavy
hitters and approximate matrix product problems. We now introduce the model in which all
the aforementioned results hold.

1.1 Multi-Party Communication
In this work, we study a more general model than streaming, known as the message passing
multi-party communication model. All of our upper bounds apply to this model, and our
streaming algorithms are just the result of special cases of our communication protocols. In
the message passing model, there are m players, each positioned at a unique vertex in a
graph G = (V,E). The i-th player is given as input an integer vector Xi ∈ Zn. The goal
of the players is to work together to jointly approximate some function f : Rn → R of the
aggregate vector X =

∑n
i=1 Xi, such as the p-th moment f(X) = Fp = ‖X‖pp =

∑n
i=1 |Xi|p.

In the message passing model, as opposed to the broadcast model of communication, the
players are only allowed to communicate with each other over the edges of G. Thus player i
can send a message to player j only if (i, j) ∈ E, and this message will only be received by
player j (and no other). At the end of the protocol, it is assumed that at least one player
holds the approximation to f(X). The goal of multi-party communication is to solve the
approximation problem using small total communication between all the players over the
course of the execution. More specifically, the goal is to design protocols that use small
max-communication, which is the total number of bits sent over any edge of G. Our protocols
hold in an even more restricted setting, known as the one-shot setting, where each player is
allowed to communicate exactly once over the course of the entire protocol.

We now observe that data streams can be modeled as a special case of one-shot multi-party
communication. Here, the graph G in question is the line graph on m vertices. If the updates
to the data stream vector are (i1,∆1), . . . , (im,∆m), then the t-th player has input Xt ∈ Zn,
where (Xt)it = ∆t and (Xt)j = 0 for j 6= it. The aggregate vector X =

∑m
i=1 Xi is just the

frequency vector at the end of the stream, and the space complexity of any algorithm is just
the max-communication used over any edge of the corresponding communication protocol.
Since we are primarily interested in insertion only streams, in this work we will consider
the non-negative data model, where Xi ∈ {0, 1, . . . ,M}n for all input vectors Xi, for some
M > 0 (as in streaming, we assume M = poly(n,m) for simplicity). Note that an equivalent
condition is that each Xi ∈ Rn≥0 such that the entries of Xi can be stored in O(logM)-bits.

We are now ready to introduce our results for moment estimation in the message passing
model. Let d be the diameter of the communication graph G. Our first result is a protocol for
Fp estimation when p ∈ (1, 2] which uses a max communication of Õ(ε−2 log d) bits. Using
similar techniques, we also obtain a (optimal for d = Θ(1)) bound of Õ(ε−2 logn log d) for
the heavy hitters problem, which is to find the coordinates of X which contribute at least
an ε fraction of the total

√
F2 = ‖X‖2 of X . For p ∈ (0, 1), we give an Õ(ε−2) upper bound

for Fp estimation. Notice that this is independent of the graph topology, and thus holds for
the line graph, where we derive our Õ(ε−2) upper bound for Fp estimation in the random
oracle streaming model. We then show how the streaming algorithm can be derandomized
to not require a random oracle, now using an optimal Õ(ε−2 + log(n))-bits of space. Our
techniques also result in an Õ(ε−2) upper bound for additively approximating the empirical
entropy of the vector X .

APPROX/RANDOM 2019

29:4 Towards Optimal Moment Estimation in Streaming and Distributed Models

Our results for p ∈ (1, 2] have interesting implications for any attempts to prove lower-
bounds for streaming algorithms that estimate Fp, which we now describe. The link between
streaming and communication complexity is perhaps one of the most fruitful sources of
space lower bounds for algorithms in computer science. Namely, nearly all lower bounds for
the space complexity of randomized streaming algorithms are derived via reductions from
communication problems. For an incomplete list of such reductions, see [58, 61, 45, 42, 46,
10, 16, 57, 48, 49, 40] and the references therein. Now nearly all such lower bounds (and all
of the ones that were just cited) hold in either the 2-party setting (G has 2 vertices), the
coordinator model, or the black-board model. In the coordinator model there are m players,
each with a single edge to a central coordinator (i.e., G is a star graph on m+ 1 vertices).
Note that the diameter d of the coordinator graph is 2. In the multi-player black-board
model, every message that is sent is written to a shared blackboard that can be read by all
players. Observe that any one-way protocol for the coordinator model immediately results
in a protocol with the same communication for the blackboard model. Namely, each player
simply writes what it would have sent to the coordinator on the blackboard, and at the
end of the protocol the blackboard contains all the information that the coordinator would
have had. For these three settings, our protocol gives an Õ(ε−2) max-communication upper
bound for Fp estimation, p ∈ (1, 2]. This completely rules out the approach for proving lower
bounds against Fp estimation in a stream via any of these three techniques. In particular,
it appears that any lower bound for Fp estimation via communication complexity in this
regime of p will need to use a graph with Ω(n) diameter, such as the line graph, without a
black-board.

The coordinator and black-board models have also been studied in many other settings
than for proving lower bounds against streaming. For instance, in the Distributed Functional
Monitoring literature [25, 63, 60, 34, 56, 37], each player is receiving a continuous stream of
updates to their inputs Xi, and the coordinator must continuously update its approximation
to f(X). The black-board model is also considered frequently for designing communication
upper bounds, such as those for set disjointness [6, 16, 30]. Finally, there is substantial
literature which considers numerical linear algebra and clustering problems in the coordinator
model [61, 20, 5, 62]. Thus, our upper bounds can be seen as a new and useful contribution
to these bodies of literature as well.

1.2 Our Contributions
As noted, the upper bounds in this paper all hold in the general multi-party message passing
model, over an arbitrary topology G. Our algorithms also have the additional property that
they are one-shot, meaning that each player is allowed to communicate exactly once. Our
protocols pre-specify a central vertex C ∈ V of G. Specifically, C will be a center of G, which
is a vertex with minimal max-distance to any other vertex. Our protocols then proceed in d
rounds, where d is the diameter of G. Upon termination of the protocols, the central vertex
C will hold the estimate of the protocol. We note that C can be replaced by any other vertex
v, and d will then be replaced by the max distance of any other vertex to v. A summary of
our results is given in Table 1.

We first formally state our general result for Fp estimation, 1 < p ≤ 2. Note that, while
we state all our results for constant probability of success, by repeating log(1/δ) times and
taking the median of the estimates, this is boosted to 1− δ in the standard way.

I Theorem 12. For p ∈ (1, 2], there is a protocol for (1± ε) approximating Fp which succeeds
with probability 3/4 in the message passing model. The protocol uses a max communication
of O(1

ε2 (log logn+ log d+ log 1/ε)) bits, where d is the diameter of G.

R. Jayaram and D. P. Woodruff 29:5

Table 1 For the communication problems above, the bounds are for the max-communication (in
bits) across any edge. For the streaming problems, the bounds are for the space requirements of the
algorithm. Here, d is the diameter of the communication network G. For all problems except point
estimation, there is a matching Ω(ε−2) lower bound. The problem of point estimation itself has a
matching Ω(ε−2 logn) lower bound for graphs with constant d.

Problem Prior best upper bound Upper Bound
(this work) Notes

Fp, 1 < p ≤ 2 O(ε−2 log(n)) [45] Õ(ε−2 log(d))
Fp, p < 1 O(ε−2 log(n))[45] Õ(ε−2)

Fp Streaming, p < 1 O(ε−2 log(n))[45] Õ(ε−2)
Entropy – Õ(ε−2)

Entropy Streaming O(ε−2 log2(n)) [21] Õ(ε−2) random oracle
Point Estimation O(ε−2 log2(n)) [18] Õ(ε−2 log(d) log(n))

Approx Matrix Prod. – Õ(1) per coordinate
of sketch

For graphs with constant diameter, such as the coordinator model, our max communication
bound of Õ(ε−2) matches the Ω(ε−2) lower bound [58, 17], which follows from a 2-player
reduction from the Gap-Hamming Distance problem. For p = 2, our total communication in
the coordinator model matches the Ω(mp−1/ε2) total communication lower bound (up to
log log(n) and log(1/ε) terms) for non-one shot protocols [60]. For one shot protocols, we
remark that there is an Ω(m/ε2) total communication lower bound for any p ∈ (0, 2] \ {1}
(see Appendix A). As discussed previously, our result also has strong implications for
streaming algorithms, demonstrating that no Ω(ε−2 logn) lower bound for Fp estimation,
p ∈ (1, 2], can be derived via the common settings of 2-party, coordinator, or blackboard
communication complexity.

Our main technique used to obtain Theorem 12 is a new randomized rounding scheme
for p-stable sketches. We next show that this randomized rounding protocol can be applied
to give improved communication upper bounds for the point-estimation problem. Here, the
goal is to output a vector X̃ ∈ Rn that approximates X well coordinate-wise. The result is
formally given below in Theorem 14.

I Theorem 14. Consider a message passing topology G = (V,E) with diameter d, where the
i-th player is given as input Xi ∈ Zn≥0 and X =

∑m
i=1 X

i. Then there is a communication
protocol which outputs an estimate X̃ ∈ Rn of X such that ‖X̃ − X‖∞ ≤ ε‖Xtail(ε−2)‖2
with probability 1 − 1/nc for any constant c ≥ 1. Here Xtail(ε−2) is X with the ε−2 largest
(in absolute value) coordinates set equal to 0. The protocol uses a max communication of
O(1

ε2 log(n)(log logn+ log d+ log 1/ε)).

For graphs with small diameter, our protocols demonstrate an improvement over the
previously best known sketching algorithms, which use space O(ε−2 log2(n)) to solve the
point estimation problem [18]. Note that there is an Ω(ε−2 logn)-max communication lower
bound for the problem. This follows from the fact that point-estimation also solves the L2
heavy-hitters problem. Here the goal is to output a set S ⊂ [n] of size at most |S| = O(ε−2)
which contains all i ∈ [n] with |Xi| ≥ ε‖X‖2 (such coordinates are called heavy hitters). The
lower bound for heavy hitters is simply the result of the space required to store the log(n)-bit
identities of all possible ε−2 heavy hitters. Note that for the heavy hitters problem alone,
there is an optimal streaming O(ε−2 log(n))-bits of space upper bound called BPTree [9].
However, BPTree cannot be used in the general distributed setting, since it crucially relies
on the sequential natural of a stream.

APPROX/RANDOM 2019

29:6 Towards Optimal Moment Estimation in Streaming and Distributed Models

Next, we demonstrate that Fp estimation for p < 1 is in fact possible with max commu-
nication independent of the graph topology. After derandomizing our protocol, this results in
a optimal streaming algorithm for Fp estimation, p < 1, which closes a long line of research
on the problem for this particular range of p [58, 35, 45, 44, 15, 13].

I Theorem 21. For p ∈ (0, 1), there is a protocol for Fp estimation in the message passing
model which succeeds with probability 2/3 and has max-communication of O(1

ε2 (log logn+
log 1/ε)).

I Theorem 22. There is a streaming algorithm for Fp estimation, p ∈ (0, 1), which outputs
a value R̃ such that with probability at least 2/3, we have that |R̃ − ‖X‖p| ≤ ε‖X‖p. The
algorithm uses O((1

ε2 (log logn+ log 1/ε) + log 1/ε
log log 1/ε logn)-bits of space. In the random oracle

model, the space is O(1
ε2 (log logn+ log 1/ε)).

The above bound matches the Ω(ε−2) max communication lower bound of [58] in the shared
randomness model, which comes from 2-party communication complexity. Moreover, our
streaming algorithm matches the Ω(logn) lower bound for streaming when a random oracle
is not allowed. As an application of our protocol for Fp estimation, p < 1, we demonstrate a
communication optimal protocol for additive approximation of the empirical Shannon entropy
H(X) of the aggregate vector X . Here, H = H(X) is defined by H =

∑n
i=1 pi log(1/pi)

where pi = |Xi|/‖X‖1 for i ∈ [n]. The goal of our protocols is to produce an estimate H̃ ∈ R
of H such that |H̃ −H| ≤ ε. Our result is as follows.

I Theorem 26. There is a multi-party communication protocol in the message passing
model that outputs a ε-additive error of the Shannon entropy H. The protocol uses a
max-communication of O(1

ε2 (log log(n) + log(1/ε))-bits.

Note that for a multiplicative approximation of the Shannon entropy, there is a Ω̃(ε−2)
lower bound [14]. For additive estimation, [43] gives a Ω(ε−2 log(n)) lower bound in the
turnstile model. Using a similar reduction, we prove a matching Ω(ε−2) lower bound
for additive ε approximation in the insertion only model (see Appendix B for the proof).
Furthermore, our protocol directly results in an Õ(ε−2)-bits of space, insertion only streaming
algorithm for entropy estimation in the random oracle model. Here, the random oracle
model means that the algorithm is given query access to an arbitrarily long string of random
bits. We note that many lower bounds in communication complexity (and all of the bounds
discussed in this paper except for the Ω(logn) term in the lower bound for Fp estimation)
also apply to the random oracle model. Previously, the best known algorithm for the insertion
only random oracle model used O(ε−2 log(n))-bits [47, 21], whereas the best known algorithm
for the non-random oracle model uses O(ε−2 log2(n))-bits (the extra factor of log(n) comes
from a standard application of Nisan’s pseudo-random generator [53]).

I Theorem 27. There is a streaming algorithm for ε-additive approximation of the empirical
Shannon entropy of an insertion only stream in the random oracle model, which succeeds
with probability 3/4. The space required by the algorithm is O(1

ε2 (log log(n) + log(1/ε)) bits.

Finally, we show how our techniques can be applied to the important numerical linear
algebraic primitive of approximate matrix product, which we now define.

I Definition 1. The multi-party approximate matrix product problem is defined as follows.
Instead of vector valued inputs, each player is given Xi ∈ {0, 1, . . . ,M}n×t1 and Yi ∈
{0, 1, . . . ,M}n×t2 , where X =

∑
iXi and Y =

∑
i Yi. Here, it is generally assumed that

n >> t1, t2 (but not required). The players must work together to jointly compute a matrix
R ∈ Rt1×t2 such that ‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F , where for a matrix A ∈ Rn×m, ‖A‖F =
(
∑n
i=1
∑m
j=1 A

2
i,j)1/2 is the Frobenius norm of A.

R. Jayaram and D. P. Woodruff 29:7

I Theorem 29. There is a protocol which outputs, at the central vertex C, a matrix R ∈ Rt1×t2
which solves the approximate communication protocol with probability 3/4 3. The max
communication required by the protocol is O

(
ε−2(t1 + t2)(log logn+ log 1/ε+ log d)

)
, where

d is the diameter of the communication topology G.

We remark that an upper bound of O
(
ε−2(t1 + t2) logn

)
was already well-known from

sketching theory [59], and our main improvement is removing the log(n) factor for small
diameter graphs, such as the coordinator model where distributed numerical linear algebra is
usually considered.

1.3 Other Related Work
As mentioned, a closely related line of work is in the distributed functional monitoring model.
Here, there are m machines connected to a central coordinator (the coordinator topology).
Each machine then receives a stream of updates, and the coordinator must maintain at all
time steps an approximation of some function, such as a moment estimation or a uniform
sample, of the union of all streams. We note that there are two slightly different models
here. One model is where the items (coordinates) being updated in the separate streams are
considered disjoint, and each time an insertion is seen it is to a unique item. This model is
considered especially for the problem of maintaining a uniform sample of the items in the
streams [25, 34, 56, 37]. The other model, which is more related to ours, is where each player
is receiving a stream of updates to a shared overall data vector X ∈ Rn. This can be seen
as a distributed streaming setting, where the updates to a centralized stream are split over
m servers, and is considered in [60, 25, 3]. For the restricted setting of one-way algorithms,
which only transmit messages from the sites to the coordinators, any such algorithm can
be made into a one-shot protocol for the multi-party message passing model. Here, each
machine just simulates a stream on their fixed input vectors Xi, and sends all the messages
that would have been sent by the functional monitoring protocol.

Perhaps the most directly related result to our upper bound for for Fp estimation, p ∈ (1, 2],
is in the distributed functional monitoring model, where Woodruff and Zhang [60] show a
O(mp−1poly(log(n), 1/ε) + mε−1 log(n) log(log(n)/ε))4 total communication upper bound.
We remark here, however, that the result of [60] is incomparable to ours for several reasons.
Firstly, their bounds are only for total communication, whereas their max communication can
be substantially larger than O(1/ε2). Secondly, while it is claimed in the introduction that
the protocols are one way (i.e., only the players speak to the coordinator, and not vice versa),
this is for their threshold problem and not for Fp estimation5. As remarked before, there is
an Ω(m/ε2) total communication lower bound for one-way protocols, which demonstrates
that their complexity could not hold in our setting (we sketch a proof of this in Appendix A).

3 We remark that there are standard techniques to boost the probability of the matrix sketching results
to 1− δ, using a blow-up of log(δ) in the communication. See e.g. Section 2.3 of [59]

4 We remark that the poly(log(n), 1/ε) terms here are rather large, and not specified in the analysis of [60].
5 The reason for this is as follows. Their algorithm reduces Fp estimation to the threshold problem,
where for a threshold τ , the coordinator outputs 1 when the Fp first exceeds τ(1 + ε), and outputs 0
whenever the Fp is below τ(1− ε). To solve Fp estimation, one then runs this threshold procedure for
the log(mMn)/ε thresholds τ = (1 + ε), (1 + ε)2, . . . , (mMn)2 in parallel. However, the analysis from
[60] only demonstrates a total communication of O(k1−ppoly(log(n), ε−1)) for the time steps before the
threshold τ is reached. Once the threshold is reached, the communication would increase significantly,
thus the coordinator must inform all players when a threshold τ is reached so that they stop sending
messages for τ , violating the one-way property. This step also requires an additive k messages for each
of the O(ε−1 log(n)) thresholds, which results in the O(mε−1 log(n) log(log(n)ε))) term.

APPROX/RANDOM 2019

29:8 Towards Optimal Moment Estimation in Streaming and Distributed Models

The message passing model itself has been the subject of significant research interest
over the past two decades. The majority of this work is concerned with exact computation
of Boolean functions of the inputs. Perhaps the canonical multi-party problem, and one
which has strong applications to streaming, is set disjointness, where each player has a
subset Si ⊂ [n] and the players want to know if ∩mi=1Si is empty. Bar-Yossef et al. [6]
demonstrated strong bounds for this problem in the black-board model. This lower bound
resulted in improved (polynomially sized) lower bounds for streaming Fp estimation for
p > 2. These results for disjointness have since been generalized and improved using new
techniques [16, 30, 41, 8]. Finally, we remark that while most results in the multi-party
message passing model are not topology dependent, Chattopadhyay, Radhakrishnan, and
Rudra have demonstrated that tighter topology-dependent lower bounds are indeed possible
in the message passing model [19].

2 Preliminaries

Let f be a function f : Rn → R. Let G = (V,E) be a connected undirected graph with
m vertices, i.e. V = {1, . . . ,m}. In the message passing model on the graph topology G,
there are m players, each placed at a unique vertex of G, with unbounded computational
power. Player i is given as input only a vector Xi ∈ Zn, which is known as the Number
in Hand (NIH) model of communication. Let X =

∑n
i=1 Xi be the aggregate vector of the

players inputs. The goal of the players is to jointly compute or approximate the function
f(X) by carrying out some previously unanimously agreed upon communication protocol. It
is assumed that the graph topology of G is known to all players.

In this paper, we are concerned with the non-negative input model. Namely, the inputs
Xi satisfy Xi ∈ {0, 1, . . . ,M}n for all players i. Note an equivalent assumption to is that
(Xi)j ≥ 0 for all i, and that the (Xi)j ’s can be specified in O(log(M)) bits.

I Remark 2. For ease of presentation, we assume that m,M = O(nc) for some constant c.
This allows us to simplify complexity bounds and write log(nmM) = O(logn). This is a
common assumption in the streaming literature, where m corresponds to the length of the
stream. We remark, however, that all our results hold for general m,n,M , by replacing each
occurrence of n in the communication complexity with (mnM).

During execution of the protocol, a player i ∈ V is only allowed to send a message to a
player j if (i, j) ∈ E. Thus, players may only communicate directly with their neighbors in
the graph G. In contrast to the broadcast and blackboard models of communication, in the
message passing model the message sent by player i to player j is only received by player
j, and no other player. Upon termination of the protocol, at least one player must hold an
approximation of the value f(X). For the protocols considered in this paper, this player will
be fixed and specified by the protocol beforehand. We use C ∈ V to denote the distinguished
player specified by the protocol to store the approximation at the end of the execution.

Every such communication protocol in this model can be divided into rounds, where on
the j-th round some subset Sj ⊆ V of the players simultaneously send a message across one
of their edges. Although it is not a restriction in the message passing model, our protocols
satisfy the additional property that each player communicates exactly once, across one of its
edges, and that each player will receive messages from its neighbors in exactly one round.
Specifically, for each player i, there will be exactly one round j where some subset of its
neighbors send player i a message, and then player i will send a single message in round
j + 1, and never again communicate. Such protocols are called one-shot protocols.

R. Jayaram and D. P. Woodruff 29:9

The total communication cost of a protocol is the total number of bits sent in all the
messages during its execution. The max-communication of a protocol is the maximum number
of bits sent across any edge over the execution of the protocol. Communication protocols can
be either deterministic or randomized. In this paper we consider the standard public-coin
model of communication, where each player is given shared access to an arbitrarily long
string of random bits. This allows players to jointly utilize the same source of randomness
without having to communicate it.

Our protocols for Fp estimation will utilize the p-stable distribution, Dp, which we will
now introduce. For p = 2, the distribution D2 is the just standard Gaussian distribution.
Note for p < 2, the distributions have heavy tails – they decay like x−p. Thus, for p < 2, the
variance is infinite, and for p ≤ 1, the expectation is undefined.

I Definition 3. For 0 < p ≤ 2, there exists a probability distribution Dp called the p-
stable distribution. If Z ∼ Dp, p < 2, then the characteristic function of Dp is given by
E[eitZ] = e−|t|

p . For p = 2, D2 is the standard Gaussian distribution. Moreover, for any
n, and any x ∈ Rn, if Z1, . . . , Zn ∼ Dp are independent, then

∑n
i=1 Zixi ∼ ‖x‖pZ, where

Z ∼ Dp, and ∼ means distributed identically to.

Standard methods for generating p-stable random variables are discussed in [54]. Note
that all protocols in this paper will generate these variables only to precision 1/poly(n). For a
distribution Dp, we write Dn

p to denote the product distribution of Dp. Thus Z ∼ Dn
p means

Z ∈ Rn and Z1, . . . , Zn are drawn i.i.d. from Dp. For reals a, b ∈ R, we write a = (1± ε)b to
denote the containment a ∈ [(1− ε)b, (1 + ε)b]. For an integer t ≥ 0, we write [t] to denote
the set {1, 2, . . . , t}.

3 Message Passing Fp Estimation, p > 1

In this section, we provide our algorithm for Fp estimation, 1 ≤ p ≤ 2, in the message passing
model. We begin by specifying the distinguished vertex C ∈ V which will hold and output
the Fp approximation at the end of the protocol. For a vertex v ∈ G, define its eccentricity
ecc(v) = maxu∈V d(v, u), where d(v, u) is the graph distance between v, u. We then set
C ∈ V to be any vertex with minimal eccentricity. Such a vertex is known as a center of G.
We now fix a shortest path spanning tree T for G, rooted at the distinguished player C. The
spanning tree T has the property that the path between C and any vertex v ∈ V in the tree
T is also a shortest path between C and v in G. Thus the distance between C and any vertex
v ∈ V is the same in T as it is in G. The fact that the depth of T is at most d, where d is
the diameter of G, now follows naturally. Such a shortest path spanning tree T can be easily
obtained via a breath first search. First, we will need a technical Lemma about the behavior
of p-stables. To prove it, we first use the following fact about the tails of p stables, which
can be found in [54].

I Proposition 4. If Z ∼ Dp for 0 < p < 2, then Pr[|Z| ≥ λ] ≤ O(1
λp).

Also, we use the straightforward fact that ‖Xi‖pp ≤ ‖
∑m
i=1 Xi‖pp for non-negative vectors Xi

and p ≥ 1.

I Fact 5. If X1, . . . , Xm ∈ Rn are entry-wise non-negative vectors and 1 ≤ p ≤ 2, then∑m
i=1 ‖Xi‖pp ≤ ‖

∑m
i=1 Xi‖pp.

APPROX/RANDOM 2019

29:10 Towards Optimal Moment Estimation in Streaming and Distributed Models

I Lemma 6. Fix 1 ≤ p ≤ q ≤ 2, and let Z = (Z1, Z2, . . . , Zn) ∼ Dm
p . Suppose X1, . . . , Xm ∈

Rn are non-negative vectors, with X =
∑
j Xj. Then for any λ ≥ 1, if either q − p ≥ c > 0

for some constant c independent of m, or if p = 2, we have

Pr

 m∑
j=1
|〈Z,Xj〉|q ≥ Cλq‖X‖qp

 ≤ 1
λp

Otherwise, we have Pr[
∑m
j=1 |〈Z,Xj〉|q ≥ C log(λm)λq‖X‖qp] ≤ 1

λp , where C is some constant
(depending only on c in the first case).

I Corollary 7. Suppose Z = (Z1, . . . , Zm) where the Zi’s are uniform over {1,−1} and
pairwise independent, and let X1, . . . , Xm be non-negative vectors with X =

∑
j Xj. Then

for any λ ≥ 1, we have Pr[
∑m
j=1 |〈Z,Xj〉|2 ≥ λ‖X‖2

2] ≤ 1
λ

I Corollary 8. Let Z = (Z1, Z2, . . . , Zn) ∼ Dm
2 be i.i.d. Gaussian. Suppose X1, . . . , Xm ∈ Rn

are non-negative vectors, with X =
∑
j Xj. Then for any λ ≥ c log(m) for some sufficiently

large constant c, we have Pr[
∑m
j=1 |〈Z,Xj〉| ≥ λ‖X‖2

2] ≤ exp(−Cλ), where C is some
universal constant.

3.1 Randomized Rounding of Sketches
We now introduce our randomized rounding protocol. Consider non-negative integral vectors
X1, X2, . . . , Xm ∈ Zn≥0, with X =

∑n
i=1 Xi. Fix a message passing topology G = (V,E),

where each player i ∈ V is given as input Xi. Fix any vertex C that is a center of G, and let
T be a shortest path spanning tree of G rooted at C as described at the beginning of the
section. Let d be the depth of T . The players use shared randomness to choose a random
vector Z ∈ Rn, and their goal is to approximately compute 〈Z,X〉 = 〈Z,

∑m
i=1 Xi〉. The goal

of this section is to develop a d-round randomized rounding protocol, so that at the end of
the protocol the approximation to 〈Z,X〉 is stored at the vertex C.

We begin by introducing the rounding primitive which we use in the protocol. Fix ε > 0,
and let γ = (εδ/ log(nm))C , for a sufficiently large constant C > 1. For any real value r ∈ R,
let ir ∈ Z and αi ∈ {1,−1} be such that (1 + γ)ir ≤ αir ≤ (1 + γ)ir+1. Now fix pr such that:
αir = pr(1 +γ)ir+1 + (1− pr)(1 +γ)ir . We then define the rounding random variable Γ(r) by

Γ(r) =

0 if r = 0
αi(1 + γ)ir+1 with probability pr
αi(1 + γ)ir with probability 1− pr

The following proposition is clear from the construction of pr and the fact that the error
is deterministically bounded by γ|r|.

I Proposition 9. For any r ∈ R, We have E[Γ(r)] = r and Var[Γ(r)] ≤ r2γ2

We partition T into d layers, so that all nodes at distance d− t from C in T are put in
layer t. Define Lt ⊂ [n] to be the set of players at layer t in the tree. For any vertex u ∈ G,
let Tu be the subtree of T rooted at u (including the vertex u). For any player i, let Ci ⊂ [n]
be the set of children of i in the tree T . The procedure for all players j ∈ V is then given as
Algorithm 1.

R. Jayaram and D. P. Woodruff 29:11

Algorithm 1 Recursive Randomized Rounding.

Procedure for node j in layer i:
1. Choose random vector Z ∈ Rn using shared randomness.
2. Receive rounded sketches rj1 , rj2 , . . . , rjtj

∈ R from the tj children of node j in the prior
layer (if any such children exist).

3. Compute xj = 〈Xj , Z〉+ rj1 + rj2 + · · ·+ rjt ∈ R.
4. Compute rj = Γ(xj). If player j 6= C, then send rj it to the parent node of j in T . If

j = C, then output rj as the approximation to 〈Z,X〉.

For each player i in layer 0, they take their input Xi, and compute 〈Z,Xi〉. They then
round their values as ri = Γ(〈Z,Xi〉), where the randomness used for the rounding function
Γ is drawn independently for each call to Γ. Then player i sends ri to their parent in
T . In general, consider any player i at depth j > 0 of T . At the end of the j-th round,
player i will receive a rounded value r` for every child vertex ` ∈ Ci. They then compute
xi = 〈Z,Xi〉+

∑
`∈Ci

r`, and ri = Γ(xi), and send ri to their parent in T . This continues
until, on round d, the center vertex C receives r` for all children ` ∈ CC . The center C then
outputs rC = 〈Z,XC〉+

∑
`∈CC r` as the approximation.

For any player i, let Qi =
∑
u∈Ti

Xu, and yi = 〈Z,Qi〉. Then define the error ei at player
i as ei = yi − ri. We first prove a proposition that states the expectation of the error ei for
any player i is zero, and then the main lemma which bounds the variance of ei. The error
bound of the protocol at C then results from an application of Chebyshev’s inequality.

I Proposition 10. For any player i, we have E[ei] = 0. Moreover, for any players i, j such
that i /∈ Tj and j /∈ Ti, the variables ei and ej are statistically independent.

I Lemma 11. Fix p ∈ [1, 2], and let Z = (Z1, Z2, . . . , Zn) ∼ Dn
p . Then the above procedure

when run on γ = (εδ/(d log(nm)))C for a sufficiently large constant C, produces an estimate
rC of 〈Z,X〉, held at the center vertex C, such that E[rC] = 〈Z,X〉. Moreover, over the
randomness used to draw Z, with probability 1− δ for p < 2, and with probability 1− e−1/δ

for Gaussian Z, we have E[(rC − 〈Z,X〉)2] ≤ (ε/δ)2‖X‖p. Thus, with probability at least
1 − O(δ), we have |rC − 〈Z,X〉| ≤ ε‖X‖p. Moreover, if Z = (Z1, Z2, . . . , Zn) ∈ Rn where
each Zi ∈ {1,−1} is a 4-wise independent Rademacher variable, then the above bound holds
with p = 2 (and with probability 1− δ).

I Theorem 12. For p ∈ (1, 2], there is a protocol for Fp estimation which succeeds with
probability 3/4 in the message passing model, which uses a total of O(mε2 (log(log(n))+log(d)+
log(1/ε))) communication, and a max communication of O(1

ε2 (log(log(n))+log(d)+log(1/ε))),
where d is the diameter of the communication network.

3.2 Heavy Hitters and Point Estimation
In this section, we show how our randomized rounding protocol can be used to solve the L2
heavy hitters problem. For a vector X ∈ Rn, let Xtail(k) be X with the k largest (in absolute
value) entries set equal to 0. Formally, given a vector X ∈ Rn, the heavy hitters problem is to
output a set of coordinates H ⊂ [n] of size at most |H| = O(ε−2) that contains all i ∈ [n] with
|Xi| ≥ ε‖Xtail(1/ε2)‖2. Our protocols solve the strictly harder problem of point-estimation.
The point estimation problem is to output a X̃ ∈ Rn such that ‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2.
Our protocol uses the well-known count-sketch matrix S [18], which we now introduce.

APPROX/RANDOM 2019

29:12 Towards Optimal Moment Estimation in Streaming and Distributed Models

I Definition 13. Given a precision parameter ε and an input vector X ∈ Rn, count-sketch
stores a table A ∈ R`×6/ε2 , where ` = Θ(log(n)). Count-sketch first selects pairwise in-
dependent hash functions hj : [n] → [6/ε2] and 4-wise independent gj : [n] → {1,−1},
for j = 1, 2, . . . , `. Then for all i ∈ [`], j ∈ [6/ε2], it computes the following linear
function Ai,j =

∑
k∈[n],hi(k)=j gi(k)Xk, and outputs an approximation X̃ of X given by

X̃k = mediani∈[`]{gi(k)Ai,hi(k)}

Observe that the table A ∈ R`×6/ε2 can be flattened into a vector A ∈ R6`/ε2 . Given
this, A can be represented as A = SX for a matrix S ∈ R6`/ε2×n. For any i ∈ [`], j ∈ [6/ε2],
and ` ∈ [n], the matrix S is given by S(i−1)(6/ε2)+j,` = δi,j,`gj(`), where δi,j,` indicates the
event that hi(`) = j. Given SX , one can solve the point-estimation problem as described in
Definition 13 [18]. In order to reduce the communication from sending each coordinate of
SX exactly, we can use our rounding procedure to approximately compute the sketch SX ,
which will give us the following theorem.

I Theorem 14. Consider a message passing topology G = (V,E) with diameter d, where the
i-th player is given as input Xi ∈ Zn≥0 and X =

∑m
i=1 Xi. Then there is a communication

protocol which outputs an estimate X̃ ∈ Rn of X such that ‖X̃ − X‖∞ ≤ ε‖Xtail(1/ε2)‖2 with
probability 1−1/nc for any constant c ≥ 1. The protocol uses O(mε2 log(n)(log(log(n))+log(d)+
log(1/ε))) total communication, and a max communication of O(1

ε2 log(n)(log(log(n)) +
log(d) + log(1/ε))).

4 Fp Estimation for p < 1

In this section, we develop algorithms for Fp estimation for p < 1 in the message passing
model, and in the process obtain improved algorithms for entropy estimation. We begin
by reviewing the fundamental sketching procedure used in our estimation protocol. The
algorithm is known as a Morris counter [51, 26]. The algorithm first picks a base 1 < b ≤ 2,
and initializes a counter C ← 0. Then, every time it sees an insertion, it increments the
counter C ← C + δ, where δ = 1 with probability b−C , and δ = 0 otherwise (in which
case the counter remains unchanged). After n insertions, the value n can be estimated by
ñ = (bC − b)/(b− 1) + 1.

I Definition 15. The approximate counting problem is defined as follows. Each player i is
given a positive integer value xi ∈ Z≥0, and the goal is for some player at the end to hold an
estimate of x =

∑
i xi.

I Proposition 16 (Proposition 5 [26]). If Cn is the value of the Morris counter after n
updates, then E[ñ] = n, and Var[ñ] = (b− 1)n(n+ 1)/2.

I Corollary 17. If Cn is the value of a Morris counter run on a stream of n insertions
with base b = (1 + (εδ)2), then with probability at least 1 − δ, we have ñ = (1 ± ε)n with
probability at least 1− δ. Moreover, with probability at least 1− δ, the counter Cn requires
O(log log(n) + log(1/ε) + log(1/δ))-bits to store.

I Lemma 18. Given Morris counters X,Y run on streams of length n1, n2 respectively,
There is a merging procedure that produces a Morris counter Z which is distributed identically
to a Morris counter that was run on a stream of n1 + n2 insertions.

I Corollary 19. There is a protocol for F1 estimation of non-negative vectors, equivalently
for the approximate counting problem, in the message passing model which succeeds with
probability 1− δ and uses a max-communication of O((log log(n) + log(1/ε) + log(1/δ))-bits.

R. Jayaram and D. P. Woodruff 29:13

We now note that Morris counters can easily used as approximate counters for streams
with both insertions and deletions (positive and negative updates), by just storing a separate
Morris counter for the insertions and deletions, and subtracting the estimate given by one
from the other at the end.

I Corollary 20. Using two Morris counters separately for insertions and deletions, on a
stream of I insertions and D deletions, there is an algorithm, called a signed Morris counter,
which produces ñ with |ñ − n| ≤ ε(I + D), where n = I −D, with probability 1 − δ, using
space O(log log(I +D) + log(1/ε) + log(1/δ)).

Hereafter, when we refer to a Morris counter that is run on a stream which contains
both positive and negative updates as a signed Morris counter. Therefore, the guarantee of
Corollary 20 apply to such signed Morris counters, and moreover such signed Morris counters
can be Merged as in Lemma 18 with the same guarantee.

Algorithm 2 Multi-party Fp estimation protocol, p < 1.

Procedure for player j

k ← Θ(1/ε2), ε′ ← Θ(ε δ1/p

log(n/δ)), δ ← 1/(200k)
1. Using shared randomness, choose sketching matrix S ∈ Rk×n of i.i.d. p-stable random

variables, with k = Θ(1/ε). Generate S up to precision η = poly(1/(n,m,M)), so that
η−1S has integral entries.

2. For each i ∈ [k], receive signed Morris counters yj1,i, yj2,i, . . . , yjt,i from the t ∈ {0, . . . ,m}
children of node j in the prior layer.

3. Compute η−1〈Si, Xj〉 ∈ Z, where Si is the i-th row of S, and run a new signed Morris
counter C on η−1〈Si, Xj〉 with parameters (ε′, δ′).

4. Merge the signed Morris counters yj1,i, yj2,i, . . . , yjt,i, C into a counter yj,i.
5. Send the merged signed Morris counter yj,i to the parent of player j. If player j is the

root node C, then set Ci to be the estimate of the signed Morris counter yj,i, and return
the estimate η ·median { |C1|

θp
, . . . , |Ck|

θp
}, where θp is the median of the distribution Dp.

We now provide our algorithm for Fp estimation in the message passing model with p ≤ 1.
Our protocol is similar to our algorithm for p ≥ 1. We fix a vertex C which is a center of
the communication topology. We then consider the shortest path tree T rooted at C, which
has depth at most d, where d is the diameter of G. The players then choose random vectors
Si ∈ Rn for i ∈ [k], and the j-th player computes 〈Si, Xj〉, and adds this value to a Morris
counter. Each player receives Morris counters from their children in T , and thereafter merges
these Morris counters with its own. Finally, it sends this merged Morris counter, containing
updates from all players in the subtree rooted at j, to the parent of j in T . At the end, the
center C holds a Morris counter Ci which approximates

∑
j〈Si, Xj〉. The main algorithm for

each player j is given formally as Algorithm 2.

I Theorem 21. For p ∈ (0, 1), there is a protocol for Fp estimation in the message passing
model which succeeds with probability 2/3 and uses a total communication of O(mε2 (log log(n)+
log(1/ε))-bits, and a max-communication of O(1

ε2 (log log(n) + log(1/ε))-bits. The protocol
requires a total of at most d rounds, where d is the diameter of the communication topology G.

APPROX/RANDOM 2019

29:14 Towards Optimal Moment Estimation in Streaming and Distributed Models

4.1 The Streaming Algorithm for Fp Estimation, p < 1
As discussed earlier, the insertion-only streaming model of computation is a special case of
the above communication setting, where the graph in question is the line graph, and each
player receives vector Xi ∈ Rn which is the standard basis vector ej ∈ Rn for some j ∈ [n].
The only step remaining to fully generalize the result to the streaming setting is an adequate
derandomization of the randomness required to generate the matrix S. Our derandomization
will follow from the results of [45], which demonstrate that, using a slightly different estimator
known as the log-cosine estimator, the entries of each row Si can be generated with only
Θ(log(1/ε)/ log log(1/ε))-wise independence, and the seeds used to generate separate rows
of Si need only be pairwise independent. Thus, storing the randomness used to generate S
requires only O(log(1/ε)

log log(1/ε) log(n))-bits of space.
We now discuss the estimator of [45] precisely. The algorithm generates a matrix S ∈ Rk×n

and S′ ∈ Rk′×n with k = Θ(1/ε2) and k′ = Θ(1), where each entry of S, S′ is drawn from
Dp. For a given row i of S, the entries Si,j are Θ(log(1/ε)/ log log(1/ε))-wise independent,
and for i 6= i′, the seeds used to generate {Si,j}nj=1 and {Si′,j}nj=1 are pairwise independent.
S′ is generated with only Θ(1)-wise independence between the entries in a given row in
S′, and pairwise independence between rows. The algorithm then maintains the vectors
y = SX and y′ = S′X throughout the stream, where X ∈ Zn≥0 is the stream vector. Define
y′med = median{|y′i|}k

′

i=1/θp, where θp is the median of the distribution Dp ([45] discusses
how this can be approximated to (1± ε) efficiently). The log-cosine estimator R of ‖X‖p is
then given by R = y′med ·

(
− ln

(
1
k

∑k
i=1 cos

(
yi

y′
med

)))
I Theorem 22. There is a streaming algorithm for insertion only Fp estimation, p ∈ (0, 1),
outputs a value R̃ such that with probability at least 2/3, we have that |R̃− ‖X‖p| ≤ ε‖X‖p
where X ∈ Rn is the state of the stream vector at the end of the stream. The algorithm uses
O((1

ε2 (log log(n) + log(1/ε)) + log(1/ε)
log log(1/ε) log(n))-bits of space.

5 Entropy Estimation

In this section, we show how our results imply improved algorithms for entropy estimation
in the message-passing model. Here, for a vector X ∈ Rn, the Shannon entropy is given
by H =

∑n
i=1

|Xi|
‖X‖1

log(‖|X‖1
|Xi|). We follow the approach taken by [21, 47, 31, 32] for entropy

estimation in data streams, which is to use sketched of independent maximally-skewed stable
random variables. While we introduced p-stable random variables in Definition 3 as the
distribution with characteristic function E[eitZ] = e−|t|

p , we remark now that the p-stable
distribution is also parameterized by an additional skewness parameter β ∈ [−1, 1]. Up until
this point, we have assumed β = 0. In this section, however, we will be using maximally
skewed, meaning β = −1, p = 1-stable random variables. We introduce these now

I Definition 23 (Stable distribution, general). There is a distribution F (p, β, γ, δ) called
the p-stable distribution with skewness parameter β ∈ [−1, 1], scale γ, and position δ. The
characteristic function of a Z ∼ F (p, β, γ, δ) variable Z is given by:

E[e−itZ] =
{

exp
(
−γp|t|p

[
1− iβ tan(πp2)sign(t)

]
+ iδt

)
if p ∈ (0, 2] \ {1}

exp
(
−γ|t|

[
1 + iβ 2

π sign(t) log(|t|)
]

+ iδt
)

if p = 1

where sign(t) ∈ {1,−1} is the sign of a real t ∈ R. Moreover, if Z ∼ F (p, β, γ, 0) for any
β ∈ [−1, 1] and 0 < p < 2, for any λ > 0 we have Pr[|Z| > Cλ] ≤ (γλ)p, where C is some
universal constant. We refer the reader to [54] for a further discussion on the parameterization
and behavior of p-stable distributions with varying rates.

R. Jayaram and D. P. Woodruff 29:15

Algorithm 3 Entropy Estimation algorithm of [21].

Sketching algorithm for Entropy Estimation

Input: X ∈ Rn
1. Generate S ∈ Rk×n for k = Θ(1/ε2) of i.i.d. F (1,−1, π/2, 0) random variables to precision

η = 1/poly(M,n).
2. Compute SX ∈ Rk.
3. Set yi ← (SX)i/‖X‖1 for i ∈ [k]
4. Return H̃ = − log

(
1
k

∑k
i=1 e

yi

)

The algorithm of [21] is given formally as Algorithm 3. The guarantee of the algorithm is
given in Theorem 24.

I Theorem 24 ([21]). The above estimate H̃ satisfies |H̃ −H| < ε with probability at least
9/10.

I Lemma 25. Fix 0 < ε0 < ε. Let S ∈ Rk×n with k = Θ(1/ε2) be a matrix of i.i.d.
F (1,−1, π/2, 0) random variables to precision η = 1/poly(M,n). Then there is a protocol in
the message passing model that outputs Y ∈ Rk at a centralized vertex with ‖Y − SX‖∞ ≤
ε0‖X‖1 with probability 9/10. The protocol uses a total communication of O(mε2 (log log(n) +
log(1/ε0))-bits, and a max-communication of O(1

ε2 (log log(n) + log(1/ε0)))-bits.

I Theorem 26. There is a multi-party communication protocol in the message passing
model that outputs a ε-additive error of the Shannon entropy H. The protocol uses a
max-communication of O(1

ε2 (log log(n) + log(1/ε))-bits.

Since our protocol does not depend on the topology of G, a direct corollary is that we
obtain a Õ(ε−2)-bits of space streaming algorithm for entropy estimation in the random
oracle model. Recall that the random oracle model allows the streaming algorithm query
access to an arbitrarily long tape of random bits. This fact is used to store the random
sketching matrix S.

I Theorem 27. There is a streaming algorithm for ε-additive approximation of the empirical
Shannon entropy of an insertion only stream in the random oracle model, which succeeds
with probability 3/4. The space required by the algorithm is O(1

ε2 (log log(n) + log(1/ε)) bits.

6 Approximate Matrix Product in the Message Passing Model

In this section, we consider the approximate regression problem in the message passing model
over a topology G = (V,E). Here, instead of vector valued inputs, each player is given
as input two integral matrices Xi ∈ {0, 1, 2, . . . ,M}n×t1 , Yi ∈ {0, 1, 2, . . . ,M}n×t2 . It is
generally assumed that n >> t1, t2, so the matrices Xi, Yi are rectangular. Let X =

∑m
i=1 Xi

and Y =
∑
i Yi. The goal of the players is to approximate the matrix product X TY ∈ Rt1×t2 .

Specifically, at the end of the protocol one player must output a matrix R ∈ Rt1×t2 such that
‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F , where for a matrix A, ‖A‖F = (

∑
i,j A

2
i,j)1/2 is the Frobenius

norm of A.
We now describe a classic sketching algorithm which can be used to solve the approximate

regression problem. The algorithm picks a S ∈ Rk×n of i.i.d. Gaussian variables with
variance 1/k. It then computes SX and SY, and outputs (SX)TSY. The following fact
about such sketches will demonstrate correctness.

APPROX/RANDOM 2019

29:16 Towards Optimal Moment Estimation in Streaming and Distributed Models

I Lemma 28 ([43]). Fix matrices X ∈ Rn×t1 ,Y ∈ Rn×t2 and 0 < ε0. Let S ∈ Rk×n be a
matrix of i.i.d. Gaussian random variables with variance 1/k, for k = Θ(1/(δε20)). Then we
have Pr[‖X TSTSY − X TY‖F ≤ ε0‖X‖F ‖Y‖F] ≥ 1− δ. Moreover, with the same probability
we have ‖SX‖F = (1± ε0)‖X‖F and ‖SY‖F = (1± ε0)‖Y‖F

Now by Lemma 11, the central vertex C can recover a value ri,jC such that E[ri,jC] = (SX)i,j
and Var[ri,jC] ≤ ε2‖X∗,j‖2 (after setting δ sufficiently small), where X∗,j is the j-th column of
X . Thus, the central vertex can obtain a random matrix RX ∈ Rk×t1 such that E[RX] = (SX)
and E[‖RX − SX‖2

F] ≤ kε2
∑t1
j=1 ‖X∗,j‖2. Setting ε = poly(1/k) = poly(1/ε0) small enough,

we obtain E[‖RX − SX‖2
F] ≤ ε20‖X‖F . Similarly, we can obtain a RY at the central vertex C,

and output the estimate R = (RX)TRY . Utilizing the error guarantees of Lemma 11 as well
as Lemma 28, we obtain the following theorem.

I Theorem 29. Given inputs X =
∑m
i=1 Xi,Y =

∑m
i=1 Yi as described above, there is a

protocol which outputs, at the central vertex C, a matrix R ∈ Rt1×t2 such that with probability
3/4 we have ‖R−X TY‖F ≤ ε‖X‖F ‖Y‖F The max communication required by the protocol
is O

(
ε−2(t1 + t2)(log logn+ log 1/ε+ log d)

)
, where d is the diameter of the communication

topology G.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 20–29. ACM, 1996.

2 Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Streaming algorithms from
precision sampling. arXiv preprint, 2010. arXiv:1011.1263.

3 Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring without
monotonicity. In International Colloquium on Automata, Languages, and Programming, pages
95–106. Springer, 2009.

4 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Models
and issues in data stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 1–16. ACM, 2002.

5 Maria Florina Balcan, Yingyu Liang, Le Song, David Woodruff, and Bo Xie. Communication
efficient distributed kernel principal component analysis. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 725–734.
ACM, 2016.

6 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004.

7 Jarosław Błasiok, Jian Ding, and Jelani Nelson. Continuous monitoring of lp norms in data
streams. arXiv preprint, 2017. arXiv:1704.06710.

8 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan.
A tight bound for set disjointness in the message-passing model. In 2013 IEEE 54th Annual
Symposium on Foundations of Computer Science, pages 668–677. IEEE, 2013.

9 Vladimir Braverman, Stephen R Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang, and
David P Woodruff. BPTree: an L2 heavy hitters algorithm using constant memory. arXiv
preprint, 2016. arXiv:1603.00759.

10 Vladimir Braverman, Stephen R Chestnut, David P Woodruff, and Lin F Yang. Streaming
space complexity of nearly all functions of one variable on frequency vectors. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 261–276. ACM, 2016.

http://arxiv.org/abs/1011.1263
http://arxiv.org/abs/1704.06710
http://arxiv.org/abs/1603.00759

R. Jayaram and D. P. Woodruff 29:17

11 Vladimir Braverman, Jonathan Katzman, Charles Seidell, and Gregory Vorsanger. An Optimal
Algorithm for Large Frequency Moments Using O (nˆ(1-2/k)) Bits. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM
2014). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

12 Vladimir Braverman and Rafail Ostrovsky. Recursive sketching for frequency moments. arXiv
preprint, 2010. arXiv:1011.2571.

13 Vladimir Braverman, Emanuele Viola, David Woodruff, and Lin F Yang. Revisiting frequency
moment estimation in random order streams. arXiv preprint, 2018. arXiv:1803.02270.

14 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. A near-optimal algorithm for
estimating the entropy of a stream. ACM Transactions on Algorithms (TALG), 6(3):51, 2010.

15 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust Lower Bounds for
Communication and Stream Computation. Theory of Computing, 12(1):1–35, 2016.

16 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th IEEE Annual Conference
on Computational Complexity, 2003. Proceedings., pages 107–117. IEEE, 2003.

17 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication complexity
of gap-hamming-distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

18 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Automata, languages and programming, pages 784–784, 2002.

19 Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in
communication. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
pages 631–640. IEEE, 2014.

20 Jiecao Chen, He Sun, David Woodruff, and Qin Zhang. Communication-optimal distributed
clustering. In Advances in Neural Information Processing Systems, pages 3727–3735, 2016.

21 Peter Clifford and Ioana Cosma. A simple sketching algorithm for entropy estimation over
streaming data. In Artificial Intelligence and Statistics, pages 196–206, 2013.

22 Graham Cormode, Piotr Indyk, Nick Koudas, and S Muthukrishnan. Fast mining of massive
tabular data via approximate distance computations. In Proceedings 18th International
Conference on Data Engineering, pages 605–614. IEEE, 2002.

23 Graham Cormode and Hossein Jowhari. L p Samplers and Their Applications: A Survey.
ACM Computing Surveys (CSUR), 52(1):16, 2019.

24 Graham Cormode, S Muthukrishnan, and Irina Rozenbaum. Summarizing and mining inverse
distributions on data streams via dynamic inverse sampling. In Proceedings of the 31st
international conference on Very large data bases, pages 25–36. VLDB Endowment, 2005.

25 Graham Cormode, S Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. ACM Transactions on Algorithms (TALG), 7(2):21, 2011.

26 Philippe Flajolet. Approximate counting: a detailed analysis. BIT Numerical Mathematics,
25(1):113–134, 1985.

27 Phillip B Gibbons and Yossi Matias. New sampling-based summary statistics for improving
approximate query answers. In ACM SIGMOD Record, volume 27, pages 331–342. ACM, 1998.

28 Phillip B Gibbons, Yossi Matias, and Viswanath Poosala. Fast Incremental Maintenance of
Approximate Histograms. In Proceedings of the 23rd International Conference on Very Large
Data Bases, pages 466–475. Morgan Kaufmann Publishers Inc., 1997.

29 Anna C Gilbert, Yannis Kotidis, S Muthukrishnan, and Martin J Strauss. How to summarize
the universe: Dynamic maintenance of quantiles. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases, pages 454–465. Elsevier, 2002.

30 Andre Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party information.
arXiv preprint, 2009. arXiv:0902.1609.

31 Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and streaming entropy via
approximation theory. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 489–498. IEEE, 2008.

APPROX/RANDOM 2019

http://arxiv.org/abs/1011.2571
http://arxiv.org/abs/1803.02270
http://arxiv.org/abs/0902.1609

29:18 Towards Optimal Moment Estimation in Streaming and Distributed Models

32 Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Streaming algorithms for estimating
entropy. In 2008 IEEE Information Theory Workshop, pages 227–231. IEEE, 2008.

33 Ling Huang, XuanLong Nguyen, Minos Garofalakis, Joseph M Hellerstein, Michael I Jordan,
Anthony D Joseph, and Nina Taft. Communication-efficient online detection of network-
wide anomalies. In INFOCOM 2007. 26th IEEE International Conference on Computer
Communications. IEEE, pages 134–142. IEEE, 2007.

34 Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed
count, frequencies, and ranks. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 295–306. ACM, 2012.

35 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

36 Piotr Indyk and David Woodruff. Optimal approximations of the frequency moments of data
streams. In Proceedings of the thirty-seventh annual ACM symposium on Theory of computing,
pages 202–208. ACM, 2005.

37 Rajesh Jayaram, Gokarna Sharma, Srikanta Tirthapura, and David P. Woodruff. Weighted
Reservoir Sampling from Distributed Streams. In Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, SIGMOD/PODS ’19, 2019.

38 Rajesh Jayaram and David P Woodruff. Perfect lp sampling in a data stream. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 544–555. IEEE,
2018.

39 Thathachar S Jayram, Ravi Kumar, and D Sivakumar. The One-Way Communication
Complexity of Hamming Distance. Theory of Computing, 4(1):129–135, 2008.

40 Thathachar S Jayram and David P Woodruff. The data stream space complexity of cascaded
norms. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
765–774. IEEE, 2009.

41 TS Jayram. Hellinger strikes back: A note on the multi-party information complexity of
AND. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 562–573. Springer, 2009.

42 Hossein Jowhari, Mert Sağlam, and Gábor Tardos. Tight Bounds for Lp Samplers, Finding
Duplicates in Streams, and Related Problems. In Proceedings of the Thirtieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’11, pages 49–58,
New York, NY, USA, 2011. ACM. doi:10.1145/1989284.1989289.

43 Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the
ACM (JACM), 61(1):4, 2014.

44 Daniel M Kane, Jelani Nelson, Ely Porat, and David P Woodruff. Fast moment estimation in
data streams in optimal space. In Proceedings of the forty-third annual ACM symposium on
Theory of computing, pages 745–754. ACM, 2011.

45 Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of
sketching and streaming small norms. In Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms, pages 1161–1178. SIAM, 2010.

46 Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P Woodruff, and
Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for samplers and finding
duplicates in streams. arXiv preprint, 2017. arXiv:1704.00633.

47 Ping Li and Cun-Hui Zhang. A new algorithm for compressed counting with applications in
shannon entropy estimation in dynamic data. In Proceedings of the 24th Annual Conference
on Learning Theory, pages 477–496, 2011.

48 Yi Li and David P Woodruff. A tight lower bound for high frequency moment estimation with
small error. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 623–638. Springer, 2013.

49 Andrew McGregor, A Pavan, Srikanta Tirthapura, and David P Woodruff. Space-Efficient
Estimation of Statistics Over Sub-Sampled Streams. Algorithmica, 74(2):787–811, 2016.

https://doi.org/10.1145/1989284.1989289
http://arxiv.org/abs/1704.00633

R. Jayaram and D. P. Woodruff 29:19

50 Morteza Monemizadeh and David P Woodruff. 1-pass relative-error lp-sampling with applica-
tions. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms,
pages 1143–1160. SIAM, 2010.

51 Robert Morris. Counting large numbers of events in small registers. Communications of the
ACM, 21(10):840–842, 1978.

52 Shanmugavelayutham Muthukrishnan et al. Data streams: Algorithms and applications.
Foundations and Trends® in Theoretical Computer Science, 1(2):117–236, 2005.

53 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

54 J. P. Nolan. Stable Distributions - Models for Heavy Tailed Data. Birkhauser, Boston, 2018.
In progress, Chapter 1 online at http://fs2.american.edu/jpnolan/www/stable/stable.html.

55 Frank Olken. Random sampling from databases. PhD thesis, University of California, Berkeley,
1993.

56 Srikanta Tirthapura and David P Woodruff. Optimal random sampling from distributed
streams revisited. In International Symposium on Distributed Computing, pages 283–297.
Springer, 2011.

57 Omri Weinstein and David P Woodruff. The simultaneous communication of disjointness
with applications to data streams. In International Colloquium on Automata, Languages, and
Programming, pages 1082–1093. Springer, 2015.

58 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 167–175. Society for
Industrial and Applied Mathematics, 2004.

59 David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

60 David P Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pages 941–960.
ACM, 2012.

61 David P Woodruff and Qin Zhang. Distributed Statistical Estimation of Matrix Products
with Applications. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 383–394. ACM, 2018.

62 David P Woodruff and Peilin Zhong. Distributed low rank approximation of implicit functions
of a matrix. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE), pages
847–858. IEEE, 2016.

63 Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and quantiles. Algorithmica,
65(1):206–223, 2013.

A Proof Sketch of Ω(m/ε2) Lower Bound for Fp estimation in the
One-Way Coordinator Model

We now sketch the proof of the Ω(m/ε2) lower bound that was remarked upon in the
introduction. First, consider the following problem Alice is given a vector x ∈ Rt, and
bob y ∈ Rt, such that xi ≥ 0, yi ≥ 0 for all i ∈ [t]. Alice and Bob both send a message
to Eve, who must then output a (1 ± ε) approximation to ‖x + y‖p, for p ∈ (0, 2] \ {1}.
Via a reduction from the Gap-Hamming communication problem, there is a Ω(1/ε2)-bit
communication lower bound for this problem [58]. More specifically, there is a distribution
D over inputs (x, y) ∈ Rt × Rt, such that any communication protocol that solves the above
problem on these inputs correctly with probability 3/4 must send Ω(1/ε2) bits.

Now consider the one-way coordinator model, where there are m players connected via an
edge to a central coordinator. They are given inputs x1, . . . , xm, and must each send a single
message to the coordinator, who them must estimate ‖x‖p = ‖x1 +x2 + · · ·+xm‖p. Consider

APPROX/RANDOM 2019

29:20 Towards Optimal Moment Estimation in Streaming and Distributed Models

two distribution, P1, P2 over the inputs (x1, . . . , xm). In the first, two players i, j are chosen
uniformly at random, and given as inputs (x, y) ∼ D, and the rest of the players are given
the 0 vector. In P2, we draw (x, y) ∼ D, and every player is given either x or y at random.
The players are then either given input from P1 or P2, with probability 1/2 for each. In the
first case, if the two players with the input do not send Ω(1/ε2) bits, then they will not be
able to solve the estimation problem via the 2-party lower bound. However, given only their
input, the distributions P1 and P2 are indistinguishable to a given player. So the players
cannot tell if the input is from P1 or P2, so any player that gets an non-zero input must
assume they are in case P1 if they want to solve the communication problem with sufficiently
high constant probability, and send Ω(1/ε2) bits of communication. This results in Ω(m/ε2)
total communication when the input is from P2, which is the desired lower bound.

B Ω(1/ε2) Lower Bound for additive approximation of Entropy in
Insertion-Only Streams

We now prove the Ω(1/ε2)-bits of space lower bound for any streaming algorithm that
produces an approximation H̃ such that |H̃ −H| < ε with probability 3/4. Here H is the
empirical entropy of the stream vector X , namely H = H(X) = −

∑n
i=1

|Xi|
F1

log |Xi|
F1

. To
prove the lower bound, we must first introduce the GAP-HAMDIST problem. Here, there
are two players, Alice and Bob. Alice is given x ∈ {0, 1}t and Bob receives y ∈ {0, 1}t. Let
∆(x, y) = |{i | xi 6= yi}| be the Hamming distance between two binary strings x, y. Bob is
promised that either ∆(x, y) ≤ t/2−

√
t (NO instance) or ∆(x, y) ≥ t/2 +

√
t (YES instance),

and must decide which holds. Alice must send a single mesage to Bob, from which he must
decide which case the inputs are in. It is known that any protocol which solves this problem
with constant probability must send Ω(t)-bits in the worst case (i.e. the maximum number
of bits sent, taken over all inputs and random bits used by the protocol).

I Proposition 30 ([58, 39]). Any protocol which solves the GAP-HAMDIST problem with
probability at least 2/3 must send Ω(t)-bits of communication in the worst case.

We remark that while a Ω(1/ε2) lower bound is known for multiplicative-approximation
of the entropy, to the best of our knowledge there is no similar lower bound written in the
literature for additive approximation.

I Theorem 31. Any algorithm for ε-additive approximation of the entropy H of a stream, in
the insertion-only model, which succeeds with probability at least 2/3, requires space Ω(ε−2)

Proof. Given a x, y ∈ {0, 1}t instance of GAP-HAMDIST, for t = Θ(1/ε2), Alice constructs
a stream on 2t items. Let x′ be the result of flipping all the bits of x, and let x′′ = x◦0t+0t◦x′ ∈
{0, 1}2t where ◦ denotes concatenation. Define y′, y′′ similarly. Alice then inserts updates so
that the stream vector X = x′′, and then sends the state of the streaming algorithm to Bob,
who inserts his vector, so that now X = x′′ + y′′. We demonstrate that the entropy of H
differs by an additive term of at least ε between the two cases. In all cases case, we have

H = t−∆
t

log(t) + ∆
2t log(2t)

= log(t) + ∆
(

2 log(t)− log 2t
2t

)
(1)

R. Jayaram and D. P. Woodruff 29:21

We can assume t ≥ 4, and then 2 log(t) − log(2t) = C > 0, where C is some fixed value
known to both players that is bounded away from 0. So as ∆ increases, the entropy increases.
Thus in a YES instance, the entropy is at least

H ≥ log(t) + (t/2 +
√
t)C2t

= log(t) + (1/4 + 1/2
√
t)C

= log(t) + C/4 + Θ(ε) (2)

In addition, in the NO instance, the entropy is maximized when ∆ = t/2−
√
T . so we have

H ≤ log(t) + (t/2−
√
t)C2t

= log(t) + C/4−Θ(ε) (3)

Therefore, the entropy differs between YES and NO instances by at least an additive Θ(ε)
term. After sufficient rescaling of ε by a constant, we obtain our Ω(t) = Ω(1/ε2) lower
bound for additive entropy estimation via the linear lower bound for GAP-HAMDIST from
Proposition 30. J

APPROX/RANDOM 2019

The Complexity of Partial Function Extension for
Coverage Functions
Umang Bhaskar
Tata Institute of Fundamental Research, Mumbai, India
umang@tifr.res.in

Gunjan Kumar
Tata Institute of Fundamental Research, Mumbai, India
gunjan.kumar@tifr.res.in

Abstract
Coverage functions are an important subclass of submodular functions, finding applications in
machine learning, game theory, social networks, and facility location. We study the complexity of
partial function extension to coverage functions. That is, given a partial function consisting of a
family of subsets of [m] and a value at each point, does there exist a coverage function defined on all
subsets of [m] that extends this partial function? Partial function extension is previously studied
for other function classes, including boolean functions and convex functions, and is useful in many
fields, such as obtaining bounds on learning these function classes.

We show that determining extendibility of a partial function to a coverage function is NP-
complete, establishing in the process that there is a polynomial-sized certificate of extendibility.
The hardness also gives us a lower bound for learning coverage functions. We then study two
natural notions of approximate extension, to account for errors in the data set. The two notions
correspond roughly to multiplicative point-wise approximation and additive L1 approximation. We
show upper and lower bounds for both notions of approximation. In the second case we obtain
nearly tight bounds.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Coverage Functions, PAC Learning, Approximation Algorithm, Partial
Function Extension

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.30

Category APPROX

Related Version A full version of the paper is available at https://arxiv.org/abs/1907.07230.

Funding Umang Bhaskar : Supported in part by a Ramanujan fellowship and an Early Career
Research award.

1 Introduction

When can a partial function – given as a set of points from a domain, and a value at each
point – be extended to a total function on the domain, that lies in some particular class
of functions? This is the basic question of partial function extension, and is studied both
independently (such as in convex analysis) and as a recurring subproblem in many areas in
combinatorial optimization, including computational learning and property testing.

In this paper we study the computational complexity of partial function extension
for coverage functions. Coverage functions are a natural and widely-studied subclass of
submodular functions that find many applications, including in machine learning [18],
auctions [6, 19], influence maximization [8, 22], and plant location [11]. For a natural
number m, let [m] denote the set {1, 2, . . . ,m}. A set function f : 2[m] → R+ is a coverage
function if there exists a universe U of elements with non-negative weights and m sets
A1, . . . , Am ⊆ U such that for all S ⊆ [m], f(S) is the total weight of elements in ∪j∈SAj .
A coverage function is succinct if |U | is at most a fixed polynomial in m.

© Umang Bhaskar and Gunjan Kumar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 30; pp. 30:1–30:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:umang@tifr.res.in
mailto:gunjan.kumar@tifr.res.in
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.30
https://arxiv.org/abs/1907.07230
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 The Complexity of Partial Function Extension for Coverage Functions

The complexity of partial function extension has been studied earlier for other function
classes, with a number of important applications shown. For boolean functions, Boros et
al. present complexity results for extension to a large number of boolean function classes,
as well as results on approximate extension [9]. Pitt and Valiant show a direct relation
between the complexity of partial function extension problem and proper PAC-learning.
Informally, a class F of (boolean) functions on 2[m] is said to be properly PAC-learnable
if for any distribution µ on 2[m] and any small enough ε > 0, any function f∗ ∈ F can be
learned by a polynomial-time algorithm that returns a function f ∈ F with a polynomial
number of samples that differs from f∗ with probability at most ε. Pitt and Valiant show
that if partial function extension for a class F of functions is NP-hard, then the class F
cannot be PAC-learned unless NP = RP [21].1 They show computational lower bounds for
various classes of boolean functions, thereby obtaining lower bounds on the complexity for
learning these classes. In this paper, we show lower bounds on partial function extension for
coverage functions, which by this relation give lower bounds on proper PAC learning as well.
In separate work, we present results on the computational complexity of partial function
extension for submodular, subadditive, and convex functions, and show further connections
with learning and property testing [5].

Characterizing partial functions extendible to convex functions is widely studied in convex
analysis. Here a partial function is given defined on a non-convex set of points, and is
required to be extended to a convex function on the convex hull or some other convex
domain. Characterizations for extendible partial functions are given in various papers, such
as [12, 26]. This finds many applications, including mechanism design [14], decision making
under risk [20], and quantum computation [25].

Another example of the ubiquity of partial function extension is in property testing.
Given oracle access to a function f , the goal of property testing is to determine by querying
the oracle if the function f lies in some class F of functions of interest, or is far from it, i.e.,
differs from any function in F at a large number of points. Partial function extension is a
natural step in property testing, since at any time the query algorithm has a partial function
consisting of the points queried and the values at those points. If at any time the partial
function thus obtained is not extendible to a function in F , the algorithm should reject, and
should accept otherwise. Partial function extension is used to give both upper and lower
bounds for property testing [5, 23]. Partial function extension is thus a basic problem that
finds application in a wide variety of different fields.

Our Contribution

Our input is a partial function H = {(T1, f1), . . . , (Tn, fn)} with Ti ⊆ [m] and fi ≥ 0, and the
goal is to determine if there exists a coverage function f : 2[m] → R≥0 such that f(Ti) = fi
for all i ∈ [n]. This is the Coverage Extension problem. Throughout the paper we use [m]
for the ground set, n for the number of defined sets in the partial function, and D for the set
of defined sets {T1, . . . , Tn}. We also use d = maxi∈[n] |Ti| to denote the maximum size of
sets in D, and F :=

∑
i∈[n] fi.

Our first result shows that Coverage Extension is NP-hard. Interestingly, we show if there
exists a coverage function extending the given partial function then there is an extension by a
coverage function for which the size of the universe |U | is at most n. This shows that Coverage

1 Randomized Polynomial (RP) is the class of problems for which a randomized algorithm runs in
polynomial time, always answers correctly if the input is a “no” instance, and answers correctly with
probability at least 1/2 if the input is a “yes” instance.

U. Bhaskar and G. Kumar 30:3

Extension is in NP. In contrast, it is known that minimal certificates for non-extendibility
may be of exponential size [10]. Also, unlike property testing, this shows that Coverage
Extension does not become easier when restricted to succinct coverage functions.

I Theorem 1. Coverage Extension is NP-complete.

For the hardness, we show a reduction from fractional graph colouring, a problem studied
in fractional graph theory. Our hardness for extension also shows the following result for
proper learning of succinct coverage functions.

I Theorem 2. Unless RP = NP, the class of succinct coverage functions cannot be PAC-
learned (i.e., cannot be PMAC-learned with approximation factor α = 1).

These are the first hardness results for learning coverage functions based on standard
complexity assumptions. Earlier results showed a reduction from learning disjoint DNF
formulas to learning coverage functions [13], however as far as we are aware, there are no
known lower bounds for learning disjoint DNF formulas. The following theorem is shown in
the appendix.

Given the hardness result for Coverage Extension, we study approximation algorithms for
two natural optimization versions of the extension problem. In both of these problems, the
goal is to determine the distance between the given partial function and the class of coverage
functions. Based on the notion of the distance, we study the following two problems.

In Coverage Approximate Extension, the goal is to determine minimum value of α ≥ 1
such that there exists a coverage function f : 2[m] → R≥0 satisfying fi ≤ f(Ti) ≤ αfi for all
i ∈ [n].

In Coverage Norm Extension, the goal is to determine the minimum L1 distance from
a coverage function, i.e., minimize

∑
i∈[n] |εi| where εi = f(Ti)− fi for all i ∈ [n] for some

coverage function f .
The two notions of approximation we study thus roughly correspond to the two prevalent

notions of learning real-valued functions. Coverage Approximate Extension corresponds to
PMAC learning, where we look for point-wise multiplicative approximations. Coverage Norm
Extension corresponds to minimizing the L1 distance in PAC learning.

Throughout this paper, the minimum value of α in Coverage Approximate Extension
will be denoted by α∗ and minimum value of

∑
i∈[n] |εi| in Norm Extension will be denoted

by OPT . As both of these problems are generalisations of Coverage Extension, they are
NP-hard. We give upper and lower bounds for approximation for both of these problem.

I Theorem 3. There is a
(
min{d,m2/3} log d

)
-approximation algorithm for Coverage Ap-

proximate Extension. If d is a constant then there is a d-approximation algorithm.

In Coverage Norm Extension, OPT = 0 iff the partial function is extendible and hence
no multiplicative approximation is possible for OPT unless P = NP (because of Theorem 1).
We hence consider additive approximations for Coverage Norm Extension. An algorithm for
Coverage Norm Extension is called an α-approximation algorithm if for all instances (partial
functions), the value β returned by the algorithm satisfies OPT ≤ β ≤ OPT + α. We show
nearly tight upper and lower bounds on the hardness of approximation. As defined before
F =

∑
i∈[n] fi. Note that an F -approximation algorithm is trivial, since the function f = 0

is coverage and satisfies
∑
i∈[n] |f(Ti)− fi| ≤ F .

I Theorem 4. There is a (1−1/d)F -approximation algorithm for Coverage Norm Extension.
Moreover, a coverage function f can be efficiently computed such that

∑
i∈[n] |f(Ti)− fi| ≤

OPT + (1− 1/d)F .

APPROX/RANDOM 2019

30:4 The Complexity of Partial Function Extension for Coverage Functions

I Theorem 5. It is NP-hard to approximate Coverage Norm Extension by a factor α =
2poly(n,m)F δ for any fixed 0 ≤ δ < 1. This holds even when d = 2.

Our lower bound is roughly based on the equivalence of validity and membership, where
given a convex, compact set K, the validity problem is to determine the optimal value of cTx
given a vector c over all x ∈ K, while the membership problem seeks to determine if a given
point x is in K or not. The equivalence of optimization and separation is a widely used tool.
The reduction from optimization to separation is particularly useful for, e.g., solving linear
programs with exponential constraints. Our work is unusual in both the use of validity and
membership rather than optimization and separation, and because of the direction – we use
the equivalence to show hardness of the validity problem. We hope that our techniques may
be useful in future work as well.

Related Work

We focus here on work related to partial function extension and coverage functions. In a
separate paper, we study partial function extension to submodular, subadditive, and convex
functions, showing results on the complexity as well as applications to learning and property
testing [5]. Previously, Seshadri and Vondrak [23] introduce the problem of extending
partial functions to a submodular function, and note its usefulness in analyzing property
testing algorithms. For submodular functions, partial function extension is also useful in
optimization [24]. The problem of extending a partial function to a convex function is also
studied in convex analysis [26, 12]. As mentioned earlier, both characterizing extendible
partial functions, and the complexity of partial function extension has been studied for large
classes of Boolean functions [9, 21].

Chakrabarty and Huang study property testing for coverage functions [10]. Here, the
goal is to determine whether the input function (given by an oracle) is coverage or far
from coverage by querying an oracle, where distance is measured by the number of points
at which the function must be changed for it to be coverage. They show that succinct
coverage functions can be reconstructed with a polynomial number of queries and hence
can be efficiently tested. However, they conjecture that testing general coverage functions
requires 2Ω(m) queries, and prove this lower bound under a different notion of distance. They
present a particular characterization of coverage functions in terms of the W -transform that
we use as well.

There has also been interest in sketching and learning coverage functions. Badanidiyuru
et al. [1] showed that coverage functions admit a (1 + ε)-sketch, i.e., given any coverage
function, there exists a succinct coverage function (of size polynomial in m and 1/ε) that
approximates the original function within (1 + ε) factor with high probability. Feldman and
Kothari [13] gave a fully polynomial time algorithm for learning succinct coverage functions
in the PMAC model if the distribution is uniform. However, if the distribution is unknown,
they show learning coverage functions is as hard as learning polynomial size DNF formulas
for which no efficient algorithm is known.

Balkanski et al [3] study whether coverage functions can be optimized from samples. They
consider a scenario where random samples {(Si, f(Si))} of an unknown coverage function f
are provided and ask if it is possible to optimize f under a cardinality constraint, i.e., solve
maxS:|S|≤k| f(S). They prove a negative result: no algorithm can achieve approximation
ratio better than 2Ω(

√
logm) with a polynomial number of sampled points.

U. Bhaskar and G. Kumar 30:5

2 Preliminaries

As earlier, for m ∈ Z+, define [m] := {1, 2, . . . ,m}. A set function f over a ground set [m]
is a coverage function if there exists a universe U of elements with non-negative weights
and m sets A1, ..., Am ⊆ U , such that for all S ⊆ [m], f(S) is the total weight of elements in
∪j∈SAj . A coverage function is succinct if |U | is at most a fixed polynomial in m.

Chakrabarty and Huang [10] characterize coverage functions in terms of theirW -transform,
which we use as well. For a set function f : 2[m] → R≥0, the W -transform w : 2[m] \ ∅ → R
is defined as

∀S ∈ 2[m] \ ∅, w(S) =
∑

T :S∪T=[m]

(−1)|S∩T |+1f(T) . (1)

The set {w(S)|S ∈ 2[m] \ ∅} is called the set of W -coefficients of f . We can also recover the
function f from its W -coefficients.

∀T ⊆ [m], f(T) =
∑

S⊆[m]:S∩T 6=∅

w(S) . (2)

If f is a coverage function induced by the universe U and sets A1, . . . , Am, then the
W -transform w(S) is precisely the weight of the set {(∩i∈SAi) \ ∪j 6∈SAj}, and is hence
non-negative. The converse is also true. The set {S|w(S) > 0} is the called the support of
the coverage function, and the elements are exactly the elements of the universe U .

I Theorem 6 ([10]). A set function f : 2[m] → R≥0 is a coverage function iff all of its
W -coefficients are non-negative.

From Theorem 6, given a partial function H, there exists a coverage function f satisfying
f(Ti) = fi for all i ∈ [n] iff the following linear program is feasible, where the variables are
the W -coefficients w(S) for all S ∈ 2[m] \ ∅.

Extension-P:
∑

S:S∩Ti 6=∅

w(S) = fi ∀i ∈ [n] , w(S) ≥ 0 ∀S ∈ 2[m] \ ∅.

All missing proofs are in the appendix.

3 Coverage Extension and PAC-Learning

Our first observation is that there is a polynomial-sized certificate of extendibility to a
coverage function. This is obtained by observing that at a vertex of the feasible set in
Extension-P, at most n of the variables are non-zero. It is interesting to compare this with
Chakrabarty and Huang [10], who give an example to show that minimal certificates of
nonextendibility may be of exponential size.

I Proposition 7. If a partial function is extendible to a coverage function, then it is also
extendible to a coverage function with support size ≤ n. Hence, Coverage Extension is in NP.

We show the NP-hardness of Coverage Extension by reduction from fractional chromatic
number, defined as follows. Given a graph G = (V,E), a set I ⊆ V is called an independent
set if no two vertices in I are adjacent. Let I be the set of all independent sets. The fractional
chromatic number χ∗(G) of a graph G is the optimal value of the following linear program.

APPROX/RANDOM 2019

30:6 The Complexity of Partial Function Extension for Coverage Functions

χ∗(G) :=
{

min
∑
I∈I

xI :
∑

I∈I:v∈I
xI ≥ 1 ∀v ∈ V (G), 0 ≤ xI ≤ 1 ∀I ∈ I

}

Note that if xI ∈ {0, 1} then the optimal value is just the chromatic number of the graph.2

I Theorem 8 ([15]). For graph G = (V,E), there exist nonnegative weights {xI}I∈I on
independent sets such that χ∗(G) =

∑
I∈I xI and

∑
I∈I:v∈I xI = 1 ∀v ∈ V .

I Corollary 9. For graph G = (V,E) and for any value of t such that χ∗(G) ≤ t ≤ |V |,
there exist nonnegative weights {zI}I∈I on independent sets such that

∑
I∈I zI = t and∑

I∈I:v∈I zI = 1 ∀v ∈ V .

I Theorem 10 ([17]). Given graph G = (V,E) and 1 ≤ k ≤ |V |, it is NP-hard to determine
if χ∗(G) ≤ k.

We now show the NP-hardness of Coverage Extension.

Proof of Theorem 1. Since membership in NP was shown earlier, we give the reduction
from fractional chromatic number. The input is a graph G = (V,E) and 1 ≤ k ≤ |V |.

We identify [n′] with the set of vertices V , and therefore E(G) ⊆ {{i, j}|i, j ∈ [n′]}, and
any set S ⊆ [n′] can be viewed as a set of vertices. The partial function construction is as
follows. The ground set is [n′] and therefore m = n′. The partial function is defined at all
vertices, all edges, and the set consisting of all vertices. Hence D, the set of defined points for
the partial function, is {{i}|i ∈ [n′]} ∪E(G)∪ {[n′]} and |D| = n′ + |E(G)|+ 1. The value of
the partial function h at these defined sets is given by

h(S) =

1 if S = {i}, i ∈ [n′] ,
2 if S ∈ E(G) ,
k if S = {[n′]} .

Intuitively, the function h(S) can be interpreted as the (fractional) number of colours used
to colour the subset S.

We claim that χ∗(G) ≤ k iff the above partial function is extendible. Suppose χ∗(G) ≤ k.
Therefore by Corollary 9, there exist nonnegative weights {xI}I∈I such that

∑
I∈I xI = k

and
∑
I∈I:v∈I xI = 1 ∀v ∈ V (G). For all S ∈ 2[m] \ ∅, define the function w(S) as xS if

S ∈ I and 0 otherwise. Since w(S) ≥ 0, this defines the W -transform for a coverage function
g. We have, for any i ∈ [n′],

g({i}) =
∑

S:S∩{i}6=∅

w(S) =
∑

I∈I:i∈I
xI = 1 ,

for any {i, j} ∈ E(G),

g({i, j}) =
∑

S:S∩{i,j}6=∅

w(S) =
∑

I∈I:i∈I
xI +

∑
I∈I:j∈I

xI = 2

as no independent set I can contain both i and j; and finally g({[n′]}) =
∑
S:S∩{[n′]}6=∅ w(S) =∑

I∈I xI = k. Therefore g is an extension of the above partial function h.

2 The chromatic number of a graph is the minimum number of colours required to colour the vertices so
that no two adjacent vertices get the same colour.

U. Bhaskar and G. Kumar 30:7

Now suppose there is an extension, i.e., there exists w(S) ≥ 0 for all S ∈ 2[m] \ ∅ such
that for any i ∈ [n′],

∑
S:S∩{i}6=∅ w(S) = 1; for any {i, j} ∈ E(G),

∑
S:S∩{i,j}6=∅ w(S) = 2;

and finally
∑
S:S∩{[n′]}6=∅ w(S) = k. For any {i, j} ∈ E(G), we have∑

S:S∩{i,j}6=∅

w(S) =
∑

S:S∩{i}6=∅

w(S) +
∑

S:S∩{j}6=∅

w(S)−
∑

S:S⊇{i,j}

w(S) .

Therefore,
∑
S:S⊇{i,j} w(S) = 0, i.e., if w(S) > 0 then S must be an independent set. It now

follows that χ∗(G) ≤
∑
S:S∩{[n′]}6=∅ w(S) = k. J

Proper PAC-learning of Coverage functions
We now prove Theorem 2. We first recall the definition of proper PAC-learning.

I Definition 11 ([2]). An algorithm A properly PAC-learns a family of functions F , if for
any distribution µ (on 2[m]) and any target function f∗ ∈ F , and for any sufficiently small
ε, δ > 0:
1. A takes the sequence {(Si, f∗(Si))}1≤i≤l as input where l is poly(m, 1/δ, 1/ε) and the

sequence {Si}1≤i≤l is drawn i.i.d. from the distribution µ,
2. A runs in poly(m, 1/δ, 1/ε) time, and
3. A returns a function f : 2[m] → R ∈ F such that

PrS1,...,Sl∼µ
[
PrS∼µ[f(S) = f∗(S)] ≥ 1− ε

]
≥ 1− δ

We use the reconstruction algorithm for coverage functions given by Chakrabarty and
Huang [10] in our proof. Given a coverage function f as an input, this reconstruction
algorithm terminates in O(ms) steps where s is the support size of f , i.e., the number of
non-zero W -coefficients of f , and returns these non-zero W -coefficients.

Recall the reduction from fractional chromatic number to Coverage Extension (Theorem
1). Given an instance of fractional chromatic number (graph G = (V,E) and rational k′
with |V | = n′), the instance of Coverage Extension is a set of defined points D = {{i}|i ∈
[n′]} ∪ E(G) ∪ {[n′]} and a function h on D. Let k = |D| = |V |+ |E|+ 1. From Theorem 1
and Proposition 7, χ∗(G) ≤ k′ iff h is extendible to a coverage function with support size at
most k.

Let F be a family of coverage functions with support size at most k. Let ε = 1/k3 (and
hence ε < 1/|D|) and µ be a uniform distribution over {(S, h(S))|S ∈ D}. Now suppose a
(randomized) algorithm A properly PAC-learns F . We will show that in this case, we can
determine efficiently if the partial function is extendible to a coverage function, and hence
RP = NP.

Suppose the algorithm A returns a function g. If the partial function is extendible then
there exists a function in F that has the same value on samples seen by A. Therefore, if
the partial function is extendible then g(S) must be equal to h(S) for all S ∈ D (since
ε < 1/|D| and A must satisfyPrS∼D∗ [f(S) = f∗(S)] ≥ 1 − ε). We run the reconstruction
algorithm on input g. If the partial function is extendible then g must be in F and hence
the reconstruction algorithm must terminate in O(mk) steps. Further, if {w(S)}S∈S is the
output of the algorithm then (i) w(S) > 0 for all S ∈ S, (ii) |S| ≤ k (iii) the coverage function
f ′ given by the W -coefficients w′(S) = w(S) if S ∈ S and 0 otherwise is an extension of the
partial function h. Condition (iii) should hold because f ′ must be the same as g which we
have shown earlier is an extension of h.

The converse is also true – if the reconstruction algorithm terminates and (i), (ii), (iii)
hold then clearly h is extendible (by f ′). Since all the steps require polynomial time to check,
we can efficiently determine if the partial function is extendible.

APPROX/RANDOM 2019

30:8 The Complexity of Partial Function Extension for Coverage Functions

4 Coverage Approximate Extension

We now build the framework for Theorem 3. We start with the following lemma.

I Lemma 12. Given a partial function H and α ≥ 1, there is no coverage function f

satisfying fi ≤ f(Ti) ≤ αfi for all i ∈ [n] iff the following program, with variables li for all
i ∈ [n] is feasible:

−α
∑
i:li<0

fili <
∑
i:li>0

fili (3)

∑
i:S∩Ti 6=∅

li ≤ 0 ∀S ⊆ [m] (4)

Thus the optimal approximation ratio α∗ is the minimum value of α for which (3) and (4)
are not feasible together.

A natural representation of the partial function H = {(T1, f1), . . . , (Tn, fn)} is as a
weighted bipartite graph H = (A ∪ [m], E) with |A| = n, and an edge between ai ∈ A and
j ∈ [m] if the set Ti contains element j ∈ [m]. Each vertex ai ∈ A also has weight fi. Then
d = maxi |Ti| is the maximum degree of any vertex in A. For the remainder of this section,
we will use this representation of partial functions.

We use the following notation given a bipartite graph H = (A∪ [m], E). For any S ⊆ [m],
let N(S) = {v ∈ A : (v, j) ∈ E for some j ∈ S} be the set of neighbours of set S. Similarly
for set R ⊆ A, N(R) = {j ∈ [m] : (v, j) ∈ E for some v ∈ R} be the set of neighbours of
set R. For any vertex v in H, we use N(v) for N({v}). In this bipartite graph representation,
the inequality (4) is equivalent to

∑
i∈N(S) li ≤ 0 for all S ⊆ [m].

We now define a parameter κ called the replacement ratio for a partial function H.

I Definition 13. Let H = (A ∪ [m], E) be a bipartite graph with weights fv on each v ∈ A.
For v ∈ A, let Fv = {R ⊆ A \ {v} |N(R) ⊇ N(v)} be the set of all subsets of A \ {v} that
cover all the neighbours of v. We call each R ∈ Fv a replacement for v. The replacement
ratio κ is then the minimum of

∑
w∈R

fw

fv
over all vertices v ∈ A and replacements R ∈ Fv.

The proof of the upper bound in Theorem 3 will follow from the bounds on α∗ shown in
Lemma 14, 16 and 18.

I Lemma 14. For any partial function H, α∗ ≥ 1
κ .

Proof. By definition of κ, there exists a vertex v ∈ A and a replacement R for v such that∑
w∈R fw = cfv. Note that setting lw = −1 ∀w ∈ R, lv = 1 and all other lw’s to be

zero results in feasibility of the inequalities
∑
w∈N(S) lw ≤ 0 for all S ∈ 2[m] \ ∅. From the

definition of α∗ and Lemma 12, α∗
∑
w∈R fw ≥ fv, and hence α∗ ≥ 1/κ. J

Let β = min{d,m2/3}
κ . Given values {lv}v∈A on the vertices in A such that

∑
v∈N(S) lv ≤ 0

for all S ⊆ [m], we will show that β
∑
v:lv<0 fvlv ≥

∑
v:lv>0 fvlv and hence α∗ ≤ β. If lv = 0

for any vertex, we simply ignore such a vertex, since it does not affect either (4) or (3).
By scaling, we can assume that lv ∈ Z for all v ∈ A. At some point, we will use Hall’s

theorem to show a perfect matching. To simplify exposition, we replace each v ∈ A with |lv|
identical copies, each of which is adjacent to the same vertices as v. Each such new vertex v′
has lv′ = 1 if lv > 0 and lv′ = −1 if lv < 0, and fv′ = fv. Let the new bipartite graph be
H ′ = (A′ ∪ [m], E′). It is easy to check that in the new bipartite graph, the degree of vertices
in A′ and the values κ,

∑
v∈A′:lv>0 fvlv,

∑
v∈A′:lv<0 fvlv and

∑
v∈N(S) lv remain unchanged

for all S ⊆ [m].

U. Bhaskar and G. Kumar 30:9

Let N = {v ∈ A′|lv = −1} and P = {v ∈ A′|lv = 1}, and let E− be the set of edges with
one end-point in N , while E+ are the edges with one end-point in P. For any S ⊆ [m], let
N−(S) = N(S) ∩N and N+(S) = N(S) ∩ P (so N(S) = N+(S) ∪N−(S)). Finally, define
E+(S) (E−(S)) as the set of edges with one end-point in S and the other end-point in P
(P). If S = {j}, we abuse notation slightly and use N−(j), N+(j), E−(j) and E+(j). Note
that |N−(S)| ≥ |N+(S)| for all S ⊆ [m] in H ′, since in H,

∑
v∈N(S) lv ≤ 0 for all S ⊆ [m].

Our goal is to show β
∑
v∈N fv ≥

∑
v∈P fv.

I Lemma 15. Suppose for some β′ ≥ 1, β′|N−(S)| ≥
∑
j∈S |N+(j)| for all S ⊆ [m]. Then

for each vertex v ∈ P, there exists a replacement Fv ⊆ N such that each vertex in N is
contained in Fv for at most β′ vertices v ∈ P. Hence, β′

∑
v∈N fv ≥ κ

∑
v∈P fv and so

α∗ ≤ β′

κ .

Proof. By Hall’s theorem, there exists a set of edges M ⊆ E− such that (i) the degree in
M of each vertex j ∈ [m] is at least |N+(j)|, and (ii) the degree in M of each vertex v ∈ N
is at most β′. Because of (i), for each j ∈ [m] there is an injection hj from edges in E+(j)
to edges in E−(j) ∩M , i.e., each edge in E+(j) maps to a distinct edge in E−(j) ∩M .
Now for a vertex v ∈ P, consider a neighbouring vertex j ∈ N(v). Each such edge (v, j)
is in E+(j), and is hence mapped by hj to an edge in E−(j) ∩M . Let Fv be the end-
points in N of these mapped edges. That is, w ∈ Fv iff there exists j ∈ N(v) such that
(w, j) = hj(v, j). Then Fv is a replacement for v, and hence,

∑
w∈Fv fw ≥ κfv. Further,

because of (ii), and since each hj is an injection, each vertex in N is contained in Fv for at
most β′ vertices v ∈ P. Then summing the inequality

∑
w∈Fv fw ≥ κfv over all v ∈ P, we

get that β′
∑
v∈N fv ≥ κ

∑
v∈P fv as required. J

I Lemma 16. For any partial function H, α∗ ≤ d
κ .

Proof. Fix S ⊆ [m]. Since |N−(j)| ≥ |N+(j)| for all j ∈ [m],
∑
j∈S |N−(j)| ≥

∑
j∈S |N+(j)|,

and since d is the maximum degree of any vertex in A′, d|N−(S)| ≥
∑
j∈S |N−(j)|. The

proof follows from Lemma 15. J

If we can show m2/3|N−(S)| ≥
∑
j∈S |N+(j)| for all S ⊆ [m] then by Lemma 15, α∗ ≤

m2/3

κ . Unfortunately this may not be true. Let N = {v1},P = {v2}, E− = {(v1, j)|j ∈ [m]}
and E+ = {(v2, j)|j ∈ [m]}. Note that

∑
j∈[m] |N+(j)| = m whereas |N−([m])| = 1. Notice

that in this bad example, the bipartite graph contains a 4-cycle v1, j1, v2, j2, v1 where v1 ∈ N
and v2 ∈ P . We now define a subgraph called a diamond which generalises such a 4-cycle. A
diamond (vp, vn, J) of size k is a subgraph of H ′ where vp ∈ P, vn ∈ N , J ⊆ [m] (|J | = k)
such that for all j ∈ J , both (vp, j) and (vn, j) are contained in E′. Note that a 4-cycle is a
diamond of size two (and the bad example considered above is a diamond of size m).

Let kmax = ma (0 ≤ a ≤ 1) be the maximum size of any diamond in H ′.

I Lemma 17. For all S ⊆ [m], m 1+a
2 |N−(S)| ≥

∑
j∈S |N+(j)|, where ma is the size of the

largest diamond in H ′.

Proof. Recall that for all j ∈ [m], |N+(j)| ≤ |N−(j)|, hence there is an injection hj from
N+(j) to N−(j), i.e, hj maps each vertex in N+(j) to a unique vertex in N−(j). Fix S ⊆ [m]
and vertex v ∈ P, and let Sv := N(v) ∩ S be the neighbourhood of v in S. We will consider
N+(Sv) and N−(Sv), the negative and positive neighbourhoods of Sv. Note that since all
vertices in Sv are adjacent to v ∈ P , a vertex in N−(Sv) is adjacent to at most ma vertices in
Sv, by definition of a. Thus for a vertex v′ ∈ N−(Sv), there are at most ma different vertices
j ∈ Sv for which hj maps a vertex in N+(j) to v′, and hence ma|N−(Sv)| ≥

∑
j∈Sv |N

+(j)|.

APPROX/RANDOM 2019

30:10 The Complexity of Partial Function Extension for Coverage Functions

Now if there is a vertex v ∈ P such that m 1−a
2
∑
j∈Sv |N

+(j)| ≥
∑
j∈S |N+(j)| then we

are done, since

|N−(S)| ≥ |N−(Sv)| ≥
∑
j∈Sv |N

+(j)|
ma

≥
∑
j∈S |N+(j)|
m

1+a
2

.

So assume that for all v ∈ P,
∑
j∈Sv |N

+(j)| ≤
∑

j∈S
|N+(j)|

m
1−a

2
. In this case, note that by

reversing the order of summation,

∑
j∈S
|N+(j)|2 =

∑
j∈S

∑
v∈N+(j)

|N+(j)| =
∑

v∈N+(S)

∑
j∈Sv

|N+(j)| ≤ |N+(S)|
∑
j∈S |N+(j)|
m

1−a
2

.

Therefore, using the above inequality for |N+(S)|,

|N−(S)| ≥ |N+(S)| ≥ m
1−a

2

∑
j∈S |N+(j)|2∑
j∈S |N+(j)| ≥

m
1−a

2

|S|

(∑
j∈S |N+(j)

)2

∑
j∈S |N+(j)| ≥

∑
j∈S |N+(j)|
m

1+a
2

as required by the lemma. The third inequality follows from Cauchy-Schwarz. J

From Lemmas 15 and 17, if a ≤ 1/3 then α∗ ≤ m2/3

κ . Next we show this is true in general.

I Lemma 18. For any partial function H, α∗ ≤ m2/3

κ .

Proof. If kmax ≤ m1/3 then by Lemma 17 and 15, α∗ ≤ m2/3

κ . So we assume kmax > m1/3.
In this case, we pick a diamond (vp, vn, J) of size > m1/3. We remove, for all j ∈ J , the
edges (vp, j) and (vn, j). We repeat the above procedure (in the new graph) until we are left
with a bipartite graph where all diamonds are of size at most m1/3. Note that if a diamond
(vp, vn, J) of size k is removed then the degree of vn decreases by k. Hence, for a fixed vertex
vn, number of removed diamonds is at most m2/3 (as at any step we remove diamonds of size
at least m1/3). It is easy to see that after every step, |N−(S)| ≥ |N+(S)| (for all S ∈ 2[m] \∅)
still holds in the bipartite graph. Let H∗ be the bipartite graph at the end (all diamonds of
size at most m1/3).

Note that we do not remove any vertex in the above procedure. Fix vertex v ∈ P. By
Lemmas 17 and 15 with a = 1/3, there exists Fv ⊆ N such that Fv covers all neighbours
of v in H∗ and each vertex in N is contained in Fv for at most m2/3 vertices v ∈ P. Since
we have removed edges, Fv may not cover all the neighbours of v in H ′. Let v1, . . . , vs ∈ N
be the set of all vertices such that for each i ∈ [s], a diamond (v, vi, J i) was removed in a
removal step. Clearly {v1, . . . , vs}∪Fv cover all the neighbour of v in H ′. Therefore, we have∑s
i=1 fvi +

∑
w∈Fv fw ≥ κfv. Since any vi (1 ≤ i ≤ s) is a part of at most m2/3 removed

diamonds and each vertex in N is contained in Fv for at most m2/3 vertices v ∈ P , summing
the above inequality for each v ∈ P, we get m2/3∑

v∈N fv ≥ κ
∑
v∈P fv as required. J

It follows from Lemmas 14, 16 and 18 that an algorithm that returns min{d,m2/3}
κ is a

min{d,m2/3}-approximation algorithm. However, computing κ corresponds to solving a
general set cover instance, and is NP-hard. This connection however allows us to show the
following result.

I Lemma 19. Given a partial function, the replacement ratio κ can be efficiently approximated
by κ′ such that κ ≤ κ′ ≤ κ log d. If d is a constant, the replacement ratio κ can be
determined efficiently.

U. Bhaskar and G. Kumar 30:11

This completes the proof of the upper bound in Theorem 3. In the full version of the paper,
we show there exist partial functions such that (i) α∗ = 1/κ for any value of κ, and (ii)
with d =

√
m and α∗ = Ω(

√
m

κ logm). The bounds shown on α∗ thus cannot be substantially
improved.

5 Coverage Norm Extension

From Theorem 6, the Norm Extension problem can be stated as the convex program Norm-P.
It can be equivalently transformed to a linear program whose dual is Norm-D.

Norm-P: min
∑n
i=1 |εi|∑

S:S∩Ti 6=∅

w(S) = fi + εi ∀i ∈ [n]

w(S) ≥ 0 ∀S ∈ 2[m] \ ∅

Norm-D: max
n∑
i=1

fiyi

∑
i:S∩Ti 6=∅

yi ≤ 0 ∀S ∈ 2[m] \ ∅ (5)

−1 ≤ yi ≤ 1 ∀i ∈ [n] (6)
Both Norm-P and Norm-D are clearly feasible. We use OPT for the optimal value of

Norm-P (and Norm-D). As stated earlier, no multiplicative approximation is possible for
OPT unless P = NP. Therefore, we consider additive approximations for Norm Extension.

An algorithm for Norm Extension is called an α-approximation algorithm if for all instances
(partial functions), the value β returned by the algorithm satisfies OPT ≤ β ≤ OPT+α. First
we prove our upper bound in Theorem 4. Recall that d = maxi∈[n] |Ti| and F =

∑
i∈[n] fi.

As noted earlier, the function f(·) = 0 is trivially an F -approximation algorithm for Norm
Extension, since

∑
i∈[n] |f(Ti)− fi| = F .

Proof of Theorem 4. Consider the linear programs obtained by restricting Norm-P to
variables w(S) for S ∈ [m], and similarly restricting the constraints (5) in Norm-D to sets
S ∈ [m] only. They are clearly the primal and dual of each other. The optimal values of
these modified problems (say OPTR, wR and yR) can be computed in polynomial time. We
will show that OPT ≤ OPTR ≤ OPT + (1− 1/d)F for the proof of the theorem. The first
inequality is obvious, since OPTR is the optimal solution to a relaxed (dual) linear program.

For the second inequality, define yA = (yA1 , . . . , yAn) as the vector such that for all i ∈ [n],
yAi = yRi if yRi ≤ 0 and yRi /d otherwise. Then note that

OPTR =
∑
i∈[n]

fiy
R
i =

∑
i∈[n]

fiy
A
i + (1− 1/d)

∑
i:yR
i
≥0

fiy
R
i ≤

∑
i∈[n]

fiy
A
i + (1− 1/d)F , (7)

where the last inequality is because each yRi ≤ 1. We now show that yA is a feasible solution
for Norm-D, and hence

∑
i∈[n] fiy

A
i ≤ OPT . Together with (7) this completes the proof.

Clearly yA satisfies the constraints (6). We will show that yA also satisfies the constraints
(5) for all S ∈ 2[m] \∅. Consider any S ∈ 2[m] \∅. Let P = {i ∈ [n]|S∩Ti 6= ∅ and yRi > 0}
and N = {i ∈ [n]|S ∩ Ti 6= ∅ and yRi ≤ 0}. Thus P ∪ N are all sets in D that have
nonempty intersection with S. We have for any j ∈ S that

∑
i:j∈Ti y

R
i ≤ 0. Summing these

inequalities over j ∈ S, we obtain
∑
i∈P∪N |Ti ∩ S|yRi ≤ 0. Thus

∑
i∈P y

R
i + d

∑
i∈N y

R
i ≤ 0.

From the definition of yAi , we get
∑
i:S∩Ti 6=∅ y

A
i ≤ 0, as required. J

We now prove the lower bound in Theorem 4. We start with an outline of the proof.
In a nutshell, the proof shows the following reductions (for brevity, WM stands for Weak
Membership and WV for Weak Validity):

APPROX/RANDOM 2019

30:12 The Complexity of Partial Function Extension for Coverage Functions

Densest-Cut ≤p Cut WM ≤p Span WM ≡ Coverage WM ≤p Coverage WV
≤p Norm Extension .

Given a graph G = (V,E) and a positive rational M , the Densest-Cut problem asks if
there is a cut S ⊂ V such that |δ(S)|

|S| |V \S| > M . The Densest-Cut problem is known to be NP-
hard [7], and ultimately we reduce the Densest-Cut problem to the problem of approximating
the optimal value for Norm-P. We formally define the other problems later. However, to
show this reduction, we need to utilize the equivalence of optimization (or validity) over
a polytope and membership in the polytope. Typically optimization algorithms use the
equivalence of optimization and separation to show upper bounds, e.g., that a linear program
with an exponential number of constraints can be optimized. Our work is unique in that we
use the less-utilized equivalence of validity and membership; and secondly, we use it to show
hardness. In fact, since we are looking for hardness of approximation algorithms, our work is
complicated further by the need to use weak versions of this equivalence.

Given a convex and compact set K and a vector c, the Strong Validity problem, given a
vector c, is to find the maximum value of cTx such that x ∈ K (the x which obtains this
maximum is not required). In the Strong Membership problem, the goal is to determine
if a given vector y is in K or not. The Weak Validity and Weak Membership problems
are weaker versions of the Strong Validity and Strong Membership problems respectively,
formally defined later. Then Theorem 4.4.4 in [16] says that for a convex and compact body
K, there is an oracle polynomial time reduction from the Weak Membership problem for K
to the Weak Validity problem for K.

To formally state Theorem 4.4.4 from [16], which will form the basis of our reduction, we
need the following notations and definitions.

We use ||.|| for the Euclidean norm. Let K ⊆ Rn′ be a convex and compact set. A ball of
radius ε > 0 around K is defined as

S(K, ε) := {x ∈ Rn
′
| ||x− y|| ≤ ε for some y in K} .

Thus, for x ∈ Rn′ , S(x, ε) is the ball of radius ε around x. The interior ε-ball of K is
defined as

S(K,−ε) := {x ∈ K|S(x, ε) ⊆ K}

Thus S(K,−ε) can be seen as points deep inside K.

I Definition 20 ([16]). Given a vector c ∈ Qn′ , a rational number γ and a rational number
ε > 0, the Weak Validity problem is to assert either (1) cTx ≤ γ + ε for all x ∈ S(K,−ε), or
(2) cTx ≥ γ − ε for some x ∈ S(K, ε). Note that the vector x satisfying the second inequality
is not required.

I Definition 21 ([16]). Given a vector y ∈ Rn′ and δ > 0, the Weak Membership problem is
to assert either (1) y ∈ S(K, δ), or (2) y 6∈ S(K,−δ).

Intuitively, in the Weak Membership problem, it is required to distinguish between the
cases when the given point y is far from the polyhedron K (in which case, the algorithm
should return y 6∈ S(K,−δ)) and y is deep inside K (which case the algorithm should return
y ∈ S(K, δ)). If y is near the boundary of K, then either output can be returned. Our
reduction crucially uses the following result.

U. Bhaskar and G. Kumar 30:13

I Theorem 22 (Theorem 4.4.4 of [16]). Given a weak validity oracle for K ⊆ Rn′ that runs
in polynomial time and a positive R such that K ⊆ S(0, R), the Weak Membership problem
for the polyhedron K can be solved in polynomial time.

For our problem K is the polytope of linear program Norm-D.

K :=

y ∈ Rn :
∑

i:S∩Ti 6=∅

yi ≤ 0 ∀S ⊆ [m], ||y||∞ ≤ 1

 . (8)

Coverage WM ≤p Coverage WV ≤p Coverage Norm Extension

Coverage Weak Membership is the Weak Membership problem for polytope K (8). Given a
set D = {T1, . . . , Tn} (where Ti ⊆ [m]) with weights ŷi (ŷi ∈ R) associated with Ti for all
i ∈ [n] and a δ > 0, the goal in this problem is to assert either (ŷ1, . . . , ŷn) ∈ S(K, δ) or
(ŷ1, . . . , ŷn) 6∈ S(K,−δ).

Note that Coverage Norm Extension is the Strong Validity problem for K with ci = fi.
We show the following lemma (Coverage WV ≤p Coverage Norm Extension).

I Lemma 23. If there is an α = 2poly(n,m)F δ efficient approximation algorithm (for any
fixed 0 ≤ δ < 1) for Coverage Norm Extension then there is an efficient algorithm for Weak
Validity problem for K.

Theorem 22 immediately gives Coverage WM ≤p Coverage WV.

Span WM ≡ Coverage WM

In fact, we show that Coverage Weak Membership is NP-hard even for the case when |Ti| = 2
for all i ∈ [n].3 The restriction |Ti| = 2 gives us a graphical representation of the membership
problems. We first introduce some notations, which will be used in the remainder. Given a
weighted graph G = (V,E) and a set S ⊆ V , the span E+

G(S) and cut δG(S) of set S are
the set of edges with at least one endpoint and exactly one endpoint in S respectively. We
use w(E+

G(S)), w(δG(S)) and w(EG(S)) for the sum of weight of edges with at least one
endpoint, exactly one endpoint and both endpoints in S respectively. If the set S is a single
vertex v then we use v instead of {v}. If the graph G is understood from the context we
drop the subscript G.

Given a set D = {T1, . . . , Tn} (Ti ⊆ [m]) with the property that |Ti| = 2 for all i ∈ [n],
we construct a weighted graph G = (V,E) as follows: vertex set V = [m] and {i, j} ∈ E
(i, j ∈ [m]) iff there exists a Tk ∈ D such that Tk = {i, j}. The weight ŷk associated with
Tk = {i, j} is now associated to the edge {i, j}. Now the constraint

∑
i:Ti∩S 6=∅ yi ≤ 0 (in

the polyhedron K) translates to
∑
e∈E+(S) ye ≤ 0 for all S ⊆ V . Thus Coverage-Weak-

Membership for |Ti| = 2 case is equivalent to following problem, which we call Span Weak
Membership.

Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0, assert either
ŷ = (ŷe)e∈E is in S(Ks, δ) or ŷ is not in S(Ks,−δ), where

Ks =

 ∑
e∈E+(S)

ye ≤ 0 ∀S ⊆ V, ||y||∞ ≤ 1

 . (9)

3 There is a relatively easier proof for unrestricted d by reduction from Set Cover, which we show in the
full version.

APPROX/RANDOM 2019

30:14 The Complexity of Partial Function Extension for Coverage Functions

a

b

c

d

5
−7

1

−3

G = (V,E)

a

b

c

d s

t

5

−7

1

−3 −1

1

3

1

−
24

G′ = (V ′, E′)

Figure 1 Reduction from Cut Strong Membership to Span Strong Membership. The number
shown on the edges in E is the weight ye, while on edges in E′ is the product of L = 24 and
weight y′

e.

Densest-Cut ≤p Cut WM ≤p Span WM

We now show that the Span Weak Membership is NP-Hard thereby showing Coverage Weak
Membership is also NP-Hard for the restricted setting with |Ti| = 2 for all i ∈ [n]. We first
define Cut Weak Membership.

Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0, the goal in
Cut Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ is not in S(Kc,−δ)
where

Kc =

 ∑
e∈δ(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 . (10)

Note that in the Cut Weak membership problem, we have constraints
∑
e∈δ(S) ye ≤ 0

instead of
∑
e∈E+(S) ye ≤ 0 for all S.

I Lemma 24. There is a reduction from Densest-Cut to Cut Weak Membership and from
Cut Weak Membership to Span Weak Membership. Therefore, Coverage Weak Membership is
NP-hard even when d = 2.

We can now complete the proof of Theorem 5.

Proof of Theorem 5. Suppose there is an efficient α-approximation algorithm for Coverage
Norm Extension. Then by Lemma 23 there is an efficient algorithm for Weak Validity
problem for polytope K (8) and then by Theorem 22 we have an efficient algorithm for
Coverage Weak Membership. But by Lemma 24, this is not possible unless P = NP . J

We here prove Lemma 25, which is a weaker statement than Lemma 24 to convey the
main ideas. Recall that in Strong Membership problem, the goal is to decide if given
vector y is in polyhedron K. Following our nomenclature, we define the following Strong
Membership problems.

An instance of Span Strong Membership and Cut Strong Membership is given by a
weighted graph G = (V,E) with weights ŷe on the edges, and the goal is to decide if vector
y = (ye)e∈E is in Ks and Kc respectively, with Ks and Kc as defined in (9), (10).

I Lemma 25. There is a reduction from Densest-Cut to Cut Strong Membership, and from
Cut Strong Membership to Span Strong Membership.

U. Bhaskar and G. Kumar 30:15

Proof. For the second reduction, the instance of Cut Strong Membership is weighted graph
G = (V,E) with weights ye on the edges. We assume ||y||∞ ≤ 1 as otherwise clearly y 6∈ Kc.

Let L = 2|E|+ |V ||E|. We construct an instance of Span Strong Membership (see Figure
1), i.e., graph G′ = (V ′, E′) and weights y′e as follows:

V ′ = V ∪ {s, t} , E′ = E ∪ {s, t} ∪ {v, s} ∀v ∈ V , y′
e =

ye
L

if e ∈ E(G)
− 1

2L
w(δG(v)) if e = {v, s}, v 6= t

−1 if e = {s, t}.

Then ||y′||∞ ≤ 1.
Assume y 6∈ Kc, i.e., there exists S ⊆ V s.t. w(δG(S)) > 0. We need to show there

exists S′ ⊆ V ′ s.t.
∑
e∈E+(S′) y

′
e > 0. For S′ = S, L

∑
e∈E+(S′) y

′
e = w(EG(S)) +w(δG(S)) +∑

v∈S −
1
2 ·w(δG(v)) = w(EG(S)) +w(δG(S))− 1

2 · (2w(EG(S)) +w(δG(S))) = w(δG(S))
2 > 0.

Now assume y ∈ Kc, i.e., ∀S ⊆ V,w(δG(S)) ≤ 0. We need to show ∀S′ ⊆ V ′,∑
e∈E+(S′) y

′
e ≤ 0. Since y′{s,t} = −1 (and L is sufficiently large), we need to consider

only those S′ which do not contain either s or t. But we have shown that for such S′,∑
e∈E+(S′) y

′
e = w(δG(S′))

2L ≤ 0.
Now we finish the proof by giving a reduction from Densest-Cut to Cut Strong Membership.

Given an undirected graph G = (V,E) and rational M , we want to know if there exists
S ⊂ V s.t. δG(S)

|S||V \S| > M . Consider the complete graph G′ = (V,E′) where the weight of an
edge is 1−M

L if it existed in E, and is −ML otherwise (note that edges may now have positive,
negative, or zero weight). Let L′ = 2 max{M, |1−M |} be a sufficiently large quantity so that
||ŷ||∞ < 1 . It is easy to see that Lw(δG′(S)) = |δG(S)| −M |S||V \ S|. Therefore, ∃S ⊂ V
s.t. w(δG′(S)) > 0⇔ ∃S ⊂ V s.t. |δG(S)|

|S||V \S| > M . J

References
1 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and

Tim Roughgarden. Sketching valuation functions. In Proceedings of the twenty-third annual
ACM-SIAM symposium on Discrete Algorithms, pages 1025–1035. Society for Industrial and
Applied Mathematics, 2012.

2 Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 793–802, 2011.

3 Eric Balkanski, Aviad Rubinstein, and Yaron Singer. The limitations of optimization from
samples. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
pages 1016–1027. ACM, 2017.

4 Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997.

5 Umang Bhaskar and Gunjan Kumar. Partial Function Extension with Applications to Learning
and Property Testing. arXiv preprint, 2018. arXiv:1812.05821.

6 Liad Blumrosen and Noam Nisan. Combinatorial auctions. Algorithmic game theory, 267:300,
2007.

7 Paul S. Bonsma, Hajo Broersma, Viresh Patel, and Artem V. Pyatkin. The Complexity Status
of Problems Related to Sparsest Cuts. In Combinatorial Algorithms - 21st International
Workshop, IWOCA 2010, London, UK, July 26-28, 2010, Revised Selected Papers, pages
125–135, 2010.

8 Christian Borgs, Michael Brautbar, Jennifer Chayes, and Brendan Lucier. Maximizing social
influence in nearly optimal time. In Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms, pages 946–957. SIAM, 2014.

9 Endre Boros, Toshihide Ibaraki, and Kazuhisa Makino. Error-Free and Best-Fit Extensions of
Partially Defined Boolean Functions. Inf. Comput., 140(2):254–283, 1998.

APPROX/RANDOM 2019

http://arxiv.org/abs/1812.05821

30:16 The Complexity of Partial Function Extension for Coverage Functions

10 Deeparnab Chakrabarty and Zhiyi Huang. Recognizing Coverage Functions. SIAM J. Discrete
Math., 29(3):1585–1599, 2015.

11 Gerard Cornuejols, Marshall L Fisher, and George L Nemhauser. Exceptional paper—Location
of bank accounts to optimize float: An analytic study of exact and approximate algorithms.
Management science, 23(8):789–810, 1977.

12 F Dragomirescu and C Ivan. The smallest convex extensions of a convex function. Optimization,
24(3-4):193–206, 1992.

13 Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of
marginals. In Conference on Learning Theory, pages 679–702, 2014.

14 Rafael M. Frongillo and Ian A. Kash. General Truthfulness Characterizations via Convex
Analysis. In Web and Internet Economics - 10th International Conference, WINE 2014,
Beijing, China, December 14-17, 2014. Proceedings, pages 354–370, 2014.

15 Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science &
Business Media, 2013.

16 Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms and combin-
atorial optimization, volume 2. Springer Science & Business Media, 2012.

17 Subhash Khot. Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. In Proceedings 2001 IEEE International Conference on Cluster
Computing, pages 600–609. IEEE, 2001.

18 Andreas Krause, H Brendan McMahan, Carlos Guestrin, and Anupam Gupta. Robust
submodular observation selection. Journal of Machine Learning Research, 9(Dec):2761–2801,
2008.

19 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial auctions with decreasing
marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

20 Hans JM Peters and Peter P Wakker. Convex functions on non-convex domains. Economics
letters, 22(2-3):251–255, 1986.

21 Leonard Pitt and Leslie G. Valiant. Computational limitations on learning from examples. J.
ACM, 35(4):965–984, 1988.

22 Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science, pages 459–468. IEEE, 2013.

23 C. Seshadhri and Jan Vondrák. Is Submodularity Testable? Algorithmica, 69(1):1–25, 2014.
24 Donald M Topkis. Minimizing a submodular function on a lattice. Operations research,

26(2):305–321, 1978.
25 Armin Uhlmann. Roofs and convexity. Entropy, 12(7):1799–1832, 2010.
26 Min Yan. Extension of convex function. arXiv preprint, 2012. To appear in the Journal of

Convex Analysis. arXiv:1207.0944.

A Appendix

Proof of Proposition 7
Consider the polyhedron Extension-P. If the partial function is extendible, then Extension-P
is nonempty. Since the variables are non-negative, the polyhedron must have a vertex [4],
and in particular there is a vertex in which at most n variables w(S) are non-zero. This is
because the dimension of the problem is 2m, hence at a vertex at least 2m constraints must
be tight. But then at least 2m − n of constraints w(S) ≥ 0 must be tight.

Proof of Corollary 9
Consider the polytope P = {

∑
I∈I:v∈I xI = 1 ∀v ∈ V (G), 0 ≤ xI ≤ 1 ∀I ∈ I}. By

the Theorem 8, there exists x = {xI}I∈I in P such that χ∗(G) =
∑
I∈I xI . Consider

y = {yI}I∈I given by y{v} = 1 for all v ∈ V (G) and 0 otherwise. Therefore, y ∈ P and
|V (G)| =

∑
I∈I yI . Consider z = λx+ (1− λ)y where λ = |V (G)|−t

|V (G)|−χ∗(G) . Therefore, z ∈ P
and

∑
I∈I zI = λ

∑
I∈I xI + (1− λ)

∑
I∈I yI = t.

http://arxiv.org/abs/1207.0944

U. Bhaskar and G. Kumar 30:17

Proof of Lemma 12

From Theorem 6, given a partial function H and α ≥ 1, there exists a coverage function f
satisfying fi ≤ f(Ti) ≤ αfi for all i ∈ [n] iff the following linear program is feasible, where
the variables are the W -coefficients w(S) for all S ∈ 2[m] \ ∅ :

fi ≤
∑

S:S∩Ti 6=∅

w(S) ≤ αfi ∀i ∈ [n]

w(S) ≥ 0 ∀S ∈ 2[m] \ ∅.

By Farkas’ Lemma, it follows that the above linear program is feasible iff the following
linear program is infeasible, with variables yi and zi for all i ∈ [n]:

α

n∑
i=1

fiyi <

n∑
i=1

fizi (11)

∑
i:S∩Ti 6=∅

yi ≥
∑

i:S∩Ti 6=∅

zi ∀S ∈ 2[m] \ ∅ (12)

yi, zi ≥ 0.

Now we proceed towards proving the claim. Suppose li’s satisfy (4) and (3). Set yi and
zi as follows: If li ≤ 0 then let yi = −li and zi = 0. Else if li > 0 then let yi = 0 and
zi = li. It is easy to see that yi, zi ≥ 0 and li = zi − yi and hence (12) is satisfied by yi’s and
zi’s. Further, α

∑n
i=1 fiyi = α(

∑
i:li≤0 fiyi +

∑
i:li>0 fiyi) = −α

∑
i:li≤0 fili and similarly∑n

i=1 fizi =
∑
i:li>0 fili. Thus (11) is also satisfied by yi’s and zi’s.

For the other direction observe that if the vector y = (y1, .., yn), z = (z1, ..., zn) ≥ 0
satisfy (11) and (12) then wlog we can assume for any i, the minimum of yi and zi is 0
(otherwise we can decrease both yi and zi by the minimum of yi and zi, and α ≥ 1 allows
(11) to remain true). Note that

∑
i fiyi =

∑
i:yi≤zi fiyi +

∑
i:yi>zi fiyi =

∑
i:yi>zi fiyi, since

min{yi, zi} = 0 by the previous observation. Now suppose y, z ≥ 0 satisfy (11) and (12).
We thus have α

∑n
i=1 fiyi <

∑n
i=1 fizi ⇔ α

∑
yi>zi

fiyi <
∑
zi>yi

fizi. Now let li = zi − yi.
This makes both (4) and (3) true.

Proof of Lemma 19

Suppose we are given a weighted bipartite graph G = (A ∪ [m], E) with weight fv on

each v ∈ A. Recall that κ is the minimum of
∑

w∈R
fw

fv
over vertices v ∈ A and R ∈ Fv

where Fv = {R ⊆ A \ {v}|N(R) ⊇ N(v)} is the set of all R ⊆ A \ {v} that covers all the
neighbours of v.

We will use f(R) (R ⊆ A) to denote the summation
∑
v∈R fv. If d is a constant then

for each v ∈ A, we can find minimum of f(R) over all R ⊆ Fv in O(nd) time where n = |A|.
Therefore, by taking the minimum of the above minimum value over all vertices v ∈ A, we
get the value of κ. For general d, we use an approximation algorithm for Set-Cover to find,
for each vertex v ∈ A, a set R′v ∈ Fv such that f(R′v) ≤ f(Rv) log d where Rv is the optimal
set. It can be seen that κ′ = minv∈A f(R′v)

fv
has the property κ′ ≤ κ log d.

APPROX/RANDOM 2019

30:18 The Complexity of Partial Function Extension for Coverage Functions

Proof of Lemma 23
The instance of weak validity problem is given by a vector c ∈ Qn and rational numbers γ
and ε > 0. We show that there is a reduction from general Weak Validity to Weak Validity
with instances satisfying ci ≥ 0 for all i ∈ [n].

Let N = {i ∈ [n]|ci ≤ 0}. Consider a vector c′ such that c′i = 0 for i ∈ N and ci otherwise
and γ′ = γ −

∑
i∈N |ci|. If x is in S(K, ε) then clearly x̄ defined as x̄i = −1 if i ∈ N and

xi otherwise, is also in S(K, ε). If for some x in S(K, ε), we have (c′)Tx ≥ γ′ − ε then for
x̄ ∈ S(K, ε), we have cT x̄ =

∑
i∈N |ci|+ (c′)Tx ≥ γ − ε. Also if for all x ∈ S(K,−ε), we have

(c′)Tx ≤ γ′ + ε then cTx ≤
∑
i∈N |ci|+ (c′)Tx ≤ γ + ε. This shows the reduction and hence

we assume ci ≥ 0 in the instance of Weak Validity problem.
Let OPT and OPT ′ be the optimal value of Norm-P for (f1, . . . , fn) = (c1, . . . , cn)

and (f1, . . . , fn) = (Lc1, . . . , Lcn) respectively (L will be chosen later). Obviously OPT ′ =
L ·OPT . Let the approximation algorithm for Norm-P return β for instance (f1, . . . , fn) =
(Lc1, . . . , Lcn). Let C =

∑
i ci. Therefore, OPT ′ ≤ β ≤ OPT ′+2poly(n,m)(LC)δ = L ·OPT +

2poly(n,m)(LC)δ and hence β/L ≤ OPT + 2poly(n,m)(C)δ
L1−δ . We set L :=

(
2poly(n,m)(C)δ

2ε

)1/1−δ

so that 2poly(n,m)(C)δ
L1−δ = 2ε. Note that the number of bits to specify L is polynomial in

〈c〉, 〈ε〉, n,m, where 〈c〉, 〈ε〉 denote the number of bits required to represent these quantities.
Thus, OPT ≤ β/L ≤ OPT + 2ε. Now if γ + ε ≤ β/L then for the optimal solution x∗ ∈ K,
cTx∗ = OPT ≥ β

L − 2ε ≥ γ − ε. If γ + ε ≥ β/L then for all x in K (and hence S(K,−ε)),
we have cTx ≤ OPT ≤ β/L ≤ γ + ε. Since at least one of these two conditions must hold,
the conditions of weak validity problem can be correctly asserted.

Proof of Lemma 24
In the proof, for any vector y, recall that we use ||y||∞ for maxi |yi| and ||ŷ − y|| for the
Euclidean distance between ŷ and y. We will frequently use the fact that the distance of a
point x0 from the hyperplane wTx+ b = 0 is equal to |w

T x0+b|
||w|| .

Recall the definitions of Span Weak Membership, Cut Weak Membership and Densest Cut:

1. Given a weighted graph G = (V,E) with weights ŷe on the edges and δ > 0,
a. The goal in Span Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Ks, δ) or ŷ

is not in S(Ks,−δ) where

Ks =

 ∑
e∈E+(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 ,

b. The goal in Cut Weak Membership is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ
is not in S(Kc,−δ) where

Kc =

 ∑
e∈δ(S)

ye ≤ 0 ∀S ∈ 2V \ ∅, ||y||∞ ≤ 1

 .

Note that in the Cut Weak membership, we have constraints
∑
e∈δ(S) ye ≤ 0 instead of∑

e∈E+(S) ye ≤ 0 for all S.
2. In the Densest-Cut problem, given a graph G = (V,E) and a positive rational M , the

goal is to decide if there exist a set S ⊂ V s.t. |δ(S)|
|S||V \S| ≥M .

U. Bhaskar and G. Kumar 30:19

a

b

c

d

5

−7

1

−3

G = (V,E)

a

b

c

d s

t

5

−7

1

−3 −1

1

3

1

−
24

G′ = (V ′, E′)

Figure 2 Reduction from Cut-Weak-Membership to Span-Weak-Membership. The number shown
on the edges in E is the weight ye, while on edges in E′ is product of L = 48 and weight y′

e.

The Densest-Cut is known to be NP-Hard [7]. Note that |δ(S)|
|S||V \S| called the density of

cut (S, V \ S) can take values only from
{

r
s(|V |−s) |1 ≤ r ≤ |E|, 1 ≤ s ≤ |V | − 1, r, s ∈ Z+

}
.

Thus there are only polynomially many possible values of cut densities. We will use this fact
in our proof.

I Lemma 26. There is a reduction from Cut Weak Membership to Span Weak Membership.

Proof. Our goal in Cut Weak Membership, given a graph a G = (V,E) with weights ŷe on
edges and δ > 0, is to assert either ŷ = (ŷe)e∈E is in S(Kc, δ) or ŷ is not in S(Kc,−δ). If
the point ŷ violates the constraint ||y||∞ ≤ 1 of Kc then it can be asserted that ŷ is not in
S(Kc,−δ). So we assume ||ŷ||∞ ≤ 1. Given this assumption, we have w(δG(v)) ≤ |E|.

We construct an instance of Span-Weak-Membership (see Figure 2), i.e., graph G′ =
(V ′, E′), ŷ′e and δ′ as follows (the values of B and L will be set later):
V ′ = V ∪ {s, t}
E′ = E ∪ {{s, t}} ∪ {{v, s}} ∀v ∈ V ′, v 6= {s, t}

ŷ′e =

ye
L if e ∈ E
−

1
2w(δG(v))

L if e = {v, s}, v 6= t

−BL if e = {s, t}.
The value of B is set to 2|E|+ |V ||E| so that

∑
e∈E+

G′
(S) ŷ

′
e ≤

−B+|E|+1/2|V ||E|
L ≤ 0 for all S

containing either s or t. Further, L = 2B so that ||ŷ′||∞ = 1/2 where ŷ′ = (ŷ′e)e∈E′ . Finally

we choose δ′ = 1
2 min

{ √
|E|δ

2L
√
|E′|

, |E|+1/2|V ||E|√
|E′|L

, 1
2

}
.

B Claim 27. For all S ⊆ V , w(E+
G′(S)) = w(δG(S))

2L .

Proof. This is because

Lw(E+
G′(S)) = L

∑
e∈E+

G′
(S)

w′e = w(EG(S)) + w(δG(S)) +
∑
v∈S
−1

2 w(δG(v)) ,

and since w(δG(v)) counts edges in EG(S) twice and edges in δG(S) once,

Lw(E+
G′(S)) = w(EG(S)) + w(δG(S))− 1

2 · (2w(EG(S)) + w(δG(S))) = w(δG(S))
2 . C

Suppose the algorithm for Span Weak Membership asserts that the point ŷ′ is in S(Ks, δ
′).

If ŷ′ satisfies all the constraints
∑
e∈E+

G′
(S) ye ≤ 0 for all S ∈ 2V \ ∅ then the point ŷ must

satisfy all the constraints
∑
e∈δG(S) ye ≤ 0 for all S ∈ 2V \ ∅ (because by the Claim 27

APPROX/RANDOM 2019

30:20 The Complexity of Partial Function Extension for Coverage Functions

w(δG(S)) = 2L ·w(E+
G′(S))) and hence ŷ ∈ Kc . Thus ŷ ∈ S(Kc, δ). Now suppose ŷ′ violates

a constraint
∑
e∈E+

G′
(R) ye ≤ 0 for some R ∈ 2V \ ∅. Since ŷ′ ∈ S(Ks, δ

′), it is at most δ′

distance away from the hyperplanes corresponding to the violated constraints. Therefore,
we have w(E+

G′(R)) =
∑
e∈E+

G′
(R) ŷ

′
e ≤ δ′

√
|E′|. By Claim 27, w(δG(R)) ≤ 2Lδ′

√
|E′|.

Therefore, the point ŷ is at most 2Lδ′
√
|E′|√
|E|

distance from Kc. Since δ′ <
√
|E|δ

2L
√
|E′|

, so
ŷ ∈ S(Kc, δ).

Suppose the algorithm for Span Weak Membership problem asserts that the point ŷ′ is
not in S(Ks,−δ′). If ŷ′ violates a constraint

∑
e∈E+

G′
(S) ye ≤ 0 for some S ∈ 2V \ ∅ then the

point ŷ also violates
∑
e∈δG(S) ye ≤ 0 for S (by Claim 27). Hence, it can be asserted that

ŷ is not in S(Kc,−δ). So now assume that ŷ′ satisfies all the constraints
∑
e∈E+

G′
(S) ye ≤ 0

for all S ∈ 2V \ ∅. Also, as shown earlier, ŷ′ satisfies the other constraints of Ks. Since
ŷ′ is in Ks but not in S(Ks,−δ′), some y ∈ S(ŷ′, δ′) must have distance < δ′ from some
hyperplane of Ks. The distance of ŷ′ from the hyperplane

∑
e∈E+

G′
(S) ye = 0 for S containing

s or t is at least |−B+|E|+1/2|V ||E′||√
|E′|L

= |E|+1/2|V ||E′|√
|E′|L

> δ′. Also for any y ∈ S(ŷ′, δ′), we
have ||y||∞ − ||ŷ′||∞ ≤ ||y − ŷ||∞ ≤ ||y − ŷ′||. So ||y||∞ ≤ δ + 1/2 ≤ 1 for all y ∈ S(ŷ′, δ′).
Therefore, it must be the case that distance of ŷ′ from the hyperplane

∑
e∈E+

G′
(S) ye = 0

for some S ∈ 2V \ ∅ is < δ′. By Claim 27, the distance of the point ŷ from the hyperplane∑
e∈δG(S) ye = 0 is at most 2L

√
|E′|δ′√
|E|

< δ. Hence, ŷ is not in S(Kc,−δ). J

Now we finish the proof by giving reduction from Densest-Cut to Cut Weak Membership.

I Lemma 28. There is a reduction from Densest-Cut to Cut Weak Membership.

Proof. In the Densest Cut problem, a graph G = (V,E) and a positive rational M are
given and the goal is to determine if there exists a set S ⊂ V s.t. the density of the cut
(S, V \ S) is at least M , i.e., |δG(S)|

|S||V \S| ≥M . Let M = p
q for positive integers p, q. We set L to

2 max{M, |1−M |} (so that later, ||ŷ||∞ = 1/2) and t to 1
qL .

Given the graph G = (V,E) and M , the instance of Cut Weak Membership is a complete
graph G′ = (V,E′) (so |E′| = |V |(|V |−1)

2), weight ŷe on each edge e ∈ E′ such that ŷe is
1−M
L if it existed in E and −ML otherwise, and δ = 1

2 min{ 1
2 ,

t√
|E′|
}. Let ŷ = (ŷe)e∈E′ . This

defines the polytope Kc as in (10) for the instance of Cut Weak Membership.
It is easy to see that w(δG′(S)) = 1

L (|δG(S)| −M |S||V \ S|). Therefore, ∃S ⊂ V s.t.
w(δG′(S)) ≥ 0⇔ ∃S ⊂ V s.t. |δG(S)|

|S||V \S| ≥M .
Since M is equal to p

q for some p, q ∈ Z+, therefore the weight of an edge is either q−p
qL or

−p
qL . So if a cut value w(δG′(S)) is strictly positive for any S then w(δG′(S)) must be at least
1
qL = t. Similarly, if w(δG′(S)) < 0 then we have w(δG′(S)) ≤ −t.

Now suppose an algorithm for Cut Weak Membership asserts ŷ is in S(Kc, δ). Thus for
all S, w(δG′(S)) =

∑
e∈δG′ (S) ŷe ≤

√
|E′|δ. Since δ < t√

|E′|
, so it must be the case that for

all S, w(δG′(S)) ≤ 0. This implies that for all S, the cut density |δG(S)|
|S||V \S| ≤M .

Suppose the algorithm for Cut Weak Membership asserts that ŷ is not in S(Kc,−δ). If
ŷ 6∈ Kc (and since ||ŷ||∞ ≤ 1) then clearly there exists a set S such that w(δG′(S)) > 0. This
implies there is a cut (S, V \ S) with density |δG(S)|

|S||V \S| > M . Now assume ŷ is in Kc. Now for
any y ∈ S(ŷ, δ), we have ||y||∞ − ||ŷ||∞ ≤ ||y − ŷ||∞ ≤ ||y − ŷ|| ≤ δ. So ||y||∞ ≤ δ + 1/2 < 1.
So there must exist a hyperplane

∑
e∈δG′ (S) ye = 0 for some S with at most δ distance from

ŷ. Therefore, there exist a set S with 0 ≥ w(δG′(S)) ≥ −
√
|E′|δ. Since δ < t√

|E′|
, this

U. Bhaskar and G. Kumar 30:21

means w(δG′(S)) = 0 and hence density of cut (S, V \S) is M . Thus, if an algorithm for Cut
Weak Membership asserts that ŷ is not in S(Kc,−δ) then there exists a cut with density
at least M .

Therefore, assuming an efficient algorithm for Cut Weak Membership, it can be determined
if there exists a cut with density at least M or all cuts have density at most M . However,
the goal in Densest Cut is to determine if there is a cut with density ≥M or all cuts have
density strictly less than M . But since the density can take only polynomial number of
values

{
r

s(|V |−s) |1 ≤ r ≤ |E|, 1 ≤ s ≤ |V | − 1, r, s ∈ Z+

}
(as noted before), by using at most

two oracle calls to the Cut-Weak-Membership problem we can solve the original problem. J

APPROX/RANDOM 2019

Almost Optimal Classical Approximation
Algorithms for a Quantum Generalization of
Max-Cut
Sevag Gharibian
University of Paderborn, Germany
Virginia Commonwealth University, Richmond, VA, USA
sevag.gharibian@upb.de

Ojas Parekh
Sandia National Laboratories, Albuquerque, New Mexico, USA
odparek@sandia.gov

Abstract
Approximation algorithms for constraint satisfaction problems (CSPs) are a central direction of
study in theoretical computer science. In this work, we study classical product state approximation
algorithms for a physically motivated quantum generalization of Max-Cut, known as the quantum
Heisenberg model. This model is notoriously difficult to solve exactly, even on bipartite graphs, in
stark contrast to the classical setting of Max-Cut. Here we show, for any interaction graph, how
to classically and efficiently obtain approximation ratios 0.649 (anti-feromagnetic XY model) and
0.498 (anti-ferromagnetic Heisenberg XYZ model). These are almost optimal; we show that the best
possible ratios achievable by a product state for these models is 2/3 and 1/2, respectively.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Semidefinite programming; Theory of computation → Quantum complexity
theory

Keywords and phrases Approximation algorithm, Max-Cut, local Hamiltonian, QMA-hard, Heisen-
berg model, product state

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.31

Category APPROX

Funding Sevag Gharibian: NSF grants CCF-1526189 and CCF-1617710
Ojas Parekh: Laboratory Directed Research and Development program at Sandia National Laborat-
ories, a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.
Also supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Quantum Algorithms Teams program.

Acknowledgements We thank David Gosset and Mark Wilde for helpful discussions, and an an-
onymous referee for catching a technical error in an earlier version of this draft.

1 Introduction

The study of approximation algorithms for NP-complete problems is a central area of research
in theoretical computer science (see, e.g., [20, 30]). Indeed, the field has seen breakthroughs
such as the celebrated Goemans-Williamson [19] 0.878-approximation algorithm for Max-Cut,
and the PCP theorem [4, 3], which yielded a general framework for showing hardness of
approximation results. Here, an approximation algorithm A with ratio 0 < r < 1 is defined
as follows: Given an instance Π of a maximization problem with optimal value OPT, A runs
in polynomial time and outputs a value ÕPT satisfying rOPT ≤ ÕPT ≤ OPT. Focal points

© Sevag Gharibian and Ojas Parekh;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 31; pp. 31:1–31:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sevag.gharibian@upb.de
mailto:odparek@sandia.gov
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.31
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Approximation Algorithms for a Quantum Generalization of Max-Cut

of study in approximation algorithms are Boolean constraint satisfaction problems (CSPs)
such as Max-SAT and Max-Cut, in which one is roughly given a set of local constraints
acting on k ∈ O(1) bits each (out of a total of n bits), and asked to compute the largest
number of constraints which are simultaneously satisfiable.

In the quantum setting, CSPs are naturally generalized by the k-local Hamiltonian problem
(k-LH) [24]. In the latter, one is given as input an exponentially large (in the number of
qubits, n) Hermitian matrix H known as a local Hamiltonian, which has a succinct description
in terms of local “quantum clauses.” The goal is to estimate the smallest eigenvalue of H,
λmin(H), i.e. the ground state energy of H. Slightly more formally, a k-local Hamiltonian
H =

∑
S⊆[n] HS acts on n qubits in total, with each local quantum “clause” HS acting on a

constant number k of qubits denoted by subset S ⊆ [n] with |S| = k. (Thus, each HS is a
2k × 2k Hermitian matrix. Note that formally, HS implicitly denotes operator I[n]\S ⊗HS ;
this ensures dimensions match in the sum over clauses.) Quantum CSPs in which the matrices
HS are diagonal correspond to classical CSPs.

The problem k-LH is not only physically motivated (it is the problem of estimating
the energy of a quantum many-body system when cooled to near absolute zero), but also
complexity theoretically – it was the first known QMA-complete problem [24], where Quantum
Merlin Arthur (QMA) is the quantum analogue of NP. As such, k-LH has been a central
problem of study in the field of Quantum Hamiltonian Complexity (see, e.g. [28, 18] for
surveys), which (among other aims) uses tools from complexity theory to uncover the limits
and structure of physical systems in nature. In recent years, this interdisciplinary research
has led to a growing body of work on classical approximation algorithms for k-LH. It is this
direction which we pursue in this paper.

1.1 Product state algorithms and previous work
We begin by reviewing previous work on approximation algorithms for k-LH.

Mean-field or product-state algorithms

All known classical approximation algorithms for k-LH fall under the category of mean-field
or product-state algorithms. Here, the issue is that the optimal solution to a k-LH instance
may be an exponentially large quantum state |ψ〉 ∈ C2n (which would be the ground state or
eigenvector of H corresponding to its ground state energy, λmin(H)). Any classical algorithm
for approximating k-LH must hence presumably pick a reasonable succinctly representable
class of quantum states to optimize over; the simplest such class is the set of n-qubit product
states. A product state is the quantum analogue of a product distribution – the entire
2n-dimensional vector |ψ〉 is fully specified by locally giving an assignment |ψi〉 ∈ C2 to each
qubit i, i.e. |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉.

I Remark. It is crucial to note that even though product states are not entangled, they
nevertheless generalize classical bit string assignments, and are thus NP-hard to optimize
over in the worst case. Thus, even with this simplest ansatz of product states, approximating
k-LH is highly non-trivial.

Previous work for QMA-complete models

We now outline the known approximation algorithms for k-LH, which are all mean-field
algorithms. The first such work was due to Bansal, Bravyi, and Terhal [5], who gave a
classical polynomial-time approximation scheme (PTAS) for k-LH on bounded degree planar

S. Gharibian and O. Parekh 31:3

graphs. Next, Gharibian and Kempe [17] gave a PTAS for computing product-state solutions
to dense CSPs, and showed their algorithm yielded a d1−k approximation for dense k-LH
on local d-dimensional systems. Brandão and Harrow [7] then gave PTAS-es for k-LH
in three settings: Planar, dense, and low threshold rank graphs. Most recently, Bravyi,
Gosset, König, and Temme [9] gave a O(logn)-approximation algorithm for traceless 2-local
Hamiltonians. As we shall see, this last work may be viewed as complementary to ours (and
indeed, the techniques used are similar, although independently developed) – the algorithm
of [9] is more general than ours (applies to all traceless Hamiltonians) but has a non-constant
approximation ratio (O(logn) ratio). We take the complementary route: We study a more
specific model, the central quantum Heisenberg model, but in return are able to achieve
substantially stronger constant approximation ratios. Finally, Lee and Hallgren [25] obtain a
non-trivial constant-factor approximation algorithm for 2-LH when each clause is positive
semi-definite. We remark that with the exception of [5], all of these works are based on
semidefinite programs (SDP).

Previous work for Hamiltonians of “intermediate” complexity

For completeness, we also note that Bravyi [8] and Bravyi and Gosset [11] showed fully
polynomial randomized approximation schemes (FPRAS) for approximating the partition
function1 of certain ferromagnetic models, such as the ferromagnetic transverse field Ising
model (ferromagnetic TIM). In general, the TIM problem is StoqMA-complete, as shown
by Bravyi and Hastings [10]. Here, MA ⊆ StoqMA ⊆ QMA, and it is generally believed
StoqMA is strictly smaller than QMA (the former is in the Polynomial-time Hierarchy,
whereas the latter is believed not to be). Thus, such models may be thought of as being of
“intermediate” complexity.

Brief note on the quantum PCP theorem

An advantage of any mean-field classical approximation algorithm for k-LH is that it yields
negative progress on the central open question: Does a quantum PCP theorem2 hold [1, 2]?
This is because such algorithms show that a classical (i.e. NP) witness suffices to attain
certain approximation ratios for k-LH. Thus, unless NP = QMA (which is believed highly
unlikely), a quantum PCP theorem for k-LH with the same approximation ratios cannot hold.

1.2 Our results
We give classical approximation algorithms for a maximization version of the fundamental
quantum Heisenberg model, which can be thought of as a family of Hamiltonians generalizing
the NP-complete Max-Cut problem.

Maximization versus minimization

For clarity, we study the natural maximization variant of k-LH, in which one is given H and
asked to estimate its largest eigenvalue λmax(H). We study this variant for two reasons (see
also [16]): First, in the minimization setting, if λmin(H) = 0, the notion of an approximation

1 The ability to compute the partition function allows one in turn to solve k-LH.
2 Recently, the “entangled non-local games” version of the PCP theorem has been established under

randomized reductions [26]. The “hardness of approximation” version involving approximating ground
state energies of local Hamiltonians, however, which is relevant to this work, remains open.

APPROX/RANDOM 2019

31:4 Approximation Algorithms for a Quantum Generalization of Max-Cut

ratio is not well-defined, and second, the maximization setting allows us to naturally align
with classical approximation algorithms for CSPs such as Max-Cut. We remark that in
the exact setting, computing λmin(H) is equivalent in complexity to computing λmax(H)
since λmin(H) = λmax(−H) – thus, both maximization and minimization variants of k-LH
are QMA-complete. More precisely, if H is a Hamiltonian corresponding to an instance
of the (anti-ferromagnetic) quantum Heisenberg model, then we approximate the instance
λmax(mI−H), where m is the number of clauses. In terms of approximability, the complexity
of both models need not coincide. An appropriate classical analogy is the relationship of the
Ising problem on graphs, minzi∈{−1,1}

∑
ij∈E zizj , for which an O(logn)-approximation is

the best known (see, e.g., [13]) and the Max-Cut problem, maxzi∈{−1,1}
∑
ij∈E(1− zizj)/2,

for which the Goemans-Williamson 0.878-approximation is known. These problems are
equivalent from an exact optimization perspective. From an approximation perspective,
the standard quantum Heisenberg model is a generalization of the Ising problem, while the
problem we study is a generalization of Max-Cut (see Appendix A for details). We note
that Bravyi et al.’s O(logn)-approximation for traceless 2-local Hamiltonians [9] includes the
standard quantum Heisenberg model as a special case.

The quantum Heisenberg model

The Heisenberg model is fundamental to the study of magnetism, and has received attention
for at least almost a century now (e.g. the well-known Bethe ansatz of 1931 [6]). It is a
family of 2-local Hamiltonians, defined in this paper as having constraints Hij acting on
qubits i and j of the form (see Section 2 for formal definitions):

Hij = I − αXi ⊗Xj − βYi ⊗ Yj − γZi ⊗ Zj ,

for Pauli matrices X,Y, Z, and where Xi indicates X acts on qubits i. (Recall we study
maximization, i.e. estimating λmax(H).) Three important well-known special cases of this
model are: (1) the Max-Cut problem (α = β = 0, γ = 1) (in Appendix A, we sketch why this
case indeed captures Max-Cut), (2) the (anti-ferromagnetic) XY model (α = β = 1, γ = 0),
and (3) the (anti-ferromagnetic) Heisenberg model (α = β = γ = 1), which we also refer to
as the anti-ferromagnet. The latter, for example, is notoriously difficult to solve even on
bipartite graphs, in contrast to Max-Cut. The only solutions for the anti-ferromagnet we are
aware of is on the 1D chain [6] and on the complete graph (see, e.g., [14]). This notoriety is
well-deserved – when non-negative polynomial-size weights are allowed on each constraint,
both the XY model and anti-ferromagnet are QMA-hard [14, 29].

In this paper, we first show (Section 4) how to approximate the XY model and anti-
ferromagnet almost optimally. The following is an informal statement (see Theorem 6 for a
formal statement).

I Theorem 1. Let α, β, γ ∈ {0, 1}. Then, there exists a randomized, polynomial time
classical algorithm for the quantum Heisenberg model which outputs a product state solution
with ratio at least:

0.878 if α+ β + γ = 1 (equivalent to Max-Cut),
0.649 if α+ β + γ = 2 (equivalent to the XY model),
0.498 if α+ β + γ = 3 (anti-ferromagnet).

We then show in Corollary 5 that these ratios are almost optimal, in the sense that the
best approximation ratios possible for a product state solution (whether efficiently attainable
or not) to the XY model and anti-ferromagnet are at most 2/3 and 1/2, respectively. It

S. Gharibian and O. Parekh 31:5

should be noted that, in contrast, the naive “random assignment” strategy (i.e. choose the
maximally mixed state I/2n as the assignment) yields ratios of only 1/3 and 1/4 for the XY
model and anti-ferromagnet, respectively.

Next, in Section 4.1 we give two ways in which our algorithm (or a variant of it) can be
applied to a broader class of Hamiltonians:

Section 4.1.1 shows how to relax the constraint that α, β, γ ∈ {0, 1}. Specifically, we allow
a different set of parameters αij , βij , γij ∈ [−1, 1] for each edge (i, j) ∈ E. In return for
this generality, the approximation ratios we obtain are slightly weaker.
Section 4.1.2 uses a trick from entanglement theory [22, 23] to characterize the class of
models which can be reduced to the Heisenberg model via application of local unitaries,
and hence to which our algorithms apply.

1.3 Techniques

Our algorithms are based on semidefinite programming (SDP), and in particular use the
first level of a non-commutative generalization of the Lasserre SDP hierarchy. Similar
generalizations have been used previously in [7, 9]. Note that a key difference between
our approach and the previous SDP-based works of [16, 7] is that the SDPs we derive are
relaxations not just of the best attainable product state objective function value, but rather
of the true optimal value λmax(H) itself. This is why the ratios we obtain in Theorem 6
can be close to optimal for a product state ansatz. We note that a simple modification
of our SDP relaxation does give an upper bound on the NP-hard problem of finding the
best product-state solution; our techniques can be used to yield classical approximation
algorithms for this problem as well.

1.4 Open questions

Many questions in the study of approximability in the quantum setting remain open. For
example, what are the best achievable approximation ratios classically for the Heisenberg
model, and do hardness of approximation results based on the unique games conjecture yield
tight bounds as they do for Max-Cut and related classical CSPs? Can tight ratios of 2/3 and
1/2 be obtained for the XY model and anti-ferromagnet, respectively? Are there constant-
factor approximation algorithms for general k-LH (recall [9] give O(logn) approximations for
traceless 2-local Hamiltonians)? How well can one approximate “intermediate” Hamiltonian
models such as the anti-ferromagnetic TIM (recall [8, 11] approximate the ferromagnetic
TIM)? Can one optimize approximately over more general ansatzes than mean-field/product
states, such as tensor network states? Can quantum approximation algorithms provably
outperform the best classical approximation algorithms? Finally, does a quantum PCP
theorem (in the sense of “hardness of approximation for quantum CSPs”) hold? It is hoped
that the current paper will act as a step towards resolutions for some of these problems.

1.5 Organization

In Section 2, we give definitions and preliminaries. Section 3 gives upper bounds on the
power of the mean-field ansatz. Section 4 gives our approximation algorithms. Certain
technical proofs are deferred to Appendix B. Some background in basic quantum information
is assumed; see, for example, Nielsen and Chuang [27] for a standard reference.

APPROX/RANDOM 2019

31:6 Approximation Algorithms for a Quantum Generalization of Max-Cut

2 Preliminaries

2.1 Notation
Let [n] := {1, . . . , n}. The sets H(X) and D(X) denote the sets of Hermitian and density
operators acting on complex Euclidean space X . For A,B ∈ H(X), we say A � B if A−B
is positive semidefinite, i.e. A − B � 0. The spectral/operator norm of A is denoted
‖A‖∞ = tr(

√
A†A).

2.2 Physically motivated 2-local Hamiltonians
Let G = (V,E) be a simple, undirected graph with |V | = n and |E| = m. In this section, we
study physically motivated 2-local Hamiltonians H based on the quantum Heisenberg model,
H =

∑
(i,j)∈E wijHij for Hij = αXiXj + βYiYj + γZiZj (more accurately, since we are in

the setting of maximization, we use local terms as given in Equation (1)), where we consider
α, β, γ ∈ {0, 1} and wij ≥ 0. This includes QMA-hard special cases such as the quantum
Heisenberg anti-ferromagnet [14, 29]. Here, X, Y , Z are the Pauli matrices

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
,

and Xi, Yi, Zi refer to the Pauli matrices acting on the ith qubit (i.e., tensored with identity
on all other qubits).

Specifically, we consider the equivalent (in the setting of exact computation) maximization
variant where each local term is defined

Hij = I − αXiXj − βYiYj − γZiZj , (1)

and our goal is to estimate the largest eigenvalue of H =
∑

(i,j)∈E wijHij with wij ≥ 0. This
variant is clearly still QMA-hard, and includes as a special case, for example, the canonical
NP-complete problem Max-Cut, obtained up to scaling by a constant factor of 2) by setting
α = 0, β = 0, γ = 1.

We now set definitions for the rest of this paper. Let Fα,β,γ denote the set of all H with
(non-negative weighted) constraints of the form of Equation (1), with parameters α, β, γ and
on all interaction graphs G (for all n ≥ 0). For example, F0,0,1 denotes the set of all possible
Max-Cut instances with non-negative edge weights. In this paper, we refer to the family
F =

⋃
α,β,γ∈{0,1} Fα,β,γ as “the Heisenberg model”. Let SEP = conv(

⊗n
i=1 ρi | ρi ∈ D(C2))

for conv(S) the convex hull of set S, i.e. SEP is the set of fully separable quantum states
on n qubits.

3 Upper bounds on product state ratios

As quantum states on n qubits generally require exponential space to represent, a classical
approximation algorithm for estimating ground state energies must generally optimize over a
restricted class of quantum states, or an ansatz. Our ansatz in this section will be to optimize
over SEP. To formalize this, we first define the notion of a product state ratio.

Product state ratio

Let H ∈ H((C2)⊗n) be a Hermitian operator with largest eigenvalue OPT(H) = λmax(H),
and let

OPTprod(H) := max
ρ∈SEP

tr(Hρ).

S. Gharibian and O. Parekh 31:7

By convexity, the optimal ρ here is a (pure) product state. The product state ratio is
defined as OPTprod(H)/OPT(H). For the Heisenberg model in particular, for any fixed
α, β, γ ∈ {0, 1}, define

Γα,β,γ = min
H∈Fα,β,γ

OPTprod(H)
OPT(H) ,

the worst-case product state ratio over all Hamiltonians in Fα,β,γ .
By definition, Γα,β,γ yields an upper bound on the best approximation ratio achievable by

any approximation algorithm using a product state ansatz. It is thus crucial to understand
Γα,β,γ , which we now do for the Heisenberg model. For this, we first give two lemmas which
fully characterize the optimal product state ratio on a single (unit weight) edge. Note the
characterization we give is more general than how we defined the Heisenberg model here,
in that it applies for any α, β, γ ∈ R. (For clarity, the term proportional to the identity
is omitted in Lemmas 2 and 3 below, but is accounted for in the subsequent statement of
Corollary 4.) The proofs of both lemmas are deferred to Appendix B.

I Lemma 2. Let H = αX ⊗X + βY ⊗ Y + γZ ⊗ Z for α, β, γ ∈ R. Then OPTprod(H) =
‖(α, β, γ)‖∞.

I Lemma 3. Let H = αX ⊗X + βY ⊗ Y + γZ ⊗ Z for α, β, γ ∈ R. Then

OPT(H) = max(|α− β|+ γ, |α+ β| − γ).

The following corollary now follows essentially immediately by applying Lemmas 2 and 3
to a single unit weight edge of the form in Equation 1 (i.e. with an identity term).

I Corollary 4. For any α, β, γ ∈ R,

Γα,β,γ ≤
1 + max(|α|, |β|, |γ|)

1 + max(|α− β| − γ, |α+ β|+ γ) .

Proof. Combine Lemmas 2 and 3 with the following additional observation: The values
α, β, γ, as defined for Fα,β,γ , should be interpreted as −α,−β,−γ for Lemmas 2 and 3 due
to how Equation 1 is stated. As a result, the positions of the γ and −γ terms are swapped
in the result of Lemma 3. J

We thus have the following for the special case of the Heisenberg model we consider here
(i.e. α, β, γ ∈ {0, 1}).

I Corollary 5. For any α, β, γ ∈ {0, 1}, if:
α+ β + γ = 1, then Γα,β,γ = 1.
α+ β + γ = 2, then Γα,β,γ ≤ 2/3.
α+ β + γ = 3, then Γα,β,γ ≤ 1/2.

Proof. When α, β, γ ∈ {0, 1}, the bound of Corollary 4 simplifies to

Γα,β,γ ≤
2

1 + α+ β + γ
,

from which the upper bounds claimed follow. The matching lower bound for α+ β + γ = 1
is obtained since H can be mapped via local Pauli gates to H ′ ∈ F0,0,1, i.e. H ′ is diagonal in
the standard basis. Thus, product states are optimal in this case. For example, applying
local Hadamard gates to each qubit maps any H ∈ F1,0,0 to H ′ ∈ F0,0,1. (A matching lower
bound can also be obtained for α + β + γ = 3 by observing that Hij � 0, and using the
general result that any local Hamiltonian H ′ (not necessarily from the Heisenberg model)
with positive semidefinite constraints satisfies OPTprod(H ′)/OPT(H ′) ≥ 1/2 [16]. However,
unlike Theorem 6, the lower bound of [16] is not known to be efficiently achievable.) J

APPROX/RANDOM 2019

31:8 Approximation Algorithms for a Quantum Generalization of Max-Cut

4 Almost optimal product-state approximation algorithms

In Section 3, we gave upper bounds on Γα,β,γ for the Heisenberg model. In this section, we
give almost matching algorithmic lower bounds on Γα,β,γ when α + β + γ ∈ {2, 3} (recall
α + β + γ = 1 is equivalent to Max-Cut, and so Γα,β,γ = 1). Specifically, we give an
approximation algorithm which is almost optimal in the following sense: Given H ∈ Fα,β,γ ,
it outputs a product state ρprod with approximation ratio at least 0.649 and 0.498 when
α+ β+ γ equals 2 and 3, respectively, which by Corollary 5 almost matches the best possible
mean-field ratios of 2/3 and 1/2, respectively.

I Theorem 6. Let H ∈ Fα,β,γ for α, β, γ ∈ {0, 1}. There exists a randomized, polynomial-
time algorithm which obtains approximation ratios at least 0.878, 0.649 or 0.498, when
α+ β + γ equals 1, 2 or 3, respectively.

Proof. Suppose H has interaction graph G = (V,E) for |V | = n and edge weights wij ≥ 0
for (i, j) ∈ E. We first define a semidefinite programming (SDP) relaxation of OPT(H)
via the first level of the Lasserre hierarchy (see, e.g., [7] for a similar exposition for the
setting of low threshold rank graphs). We then show that applying a generalization of the
Goemans-Williamson (GW) [19, 12] rounding scheme yields the desired result.

The SDP. Each solution of the SDP relaxation will be a “moment matrix” M ∈ R3n×3n,
whose rows (resp., columns) are indexed by 2-tuples (i, k) ∈ [n] × [3] (resp., (j, l) ∈ [n] ×
[3]) such that ideally, i,j denote qubits, and k, j a choice of Pauli matrix from sequence
(σ1, σ2, σ3) = (X,Y, Z). Under this interpretation, an ideal solution M corresponds to a
density matrix ρ ∈ D((C2)⊗n), such that

M(ik, jl) = tr(ρσikσ
j
l), (2)

where σik corresponds to Pauli operator σk applied to qubit i, i.e. implicitly we have
σik ⊗ I[n]\{i}.

Let us remark about the assumption that M is real. Note that for an ideal solution (i.e.
as in Equation (2)), M is Hermitian. Indeed, for i 6= j, M(ik, jl) = M(jl, ik) ∈ R, since the
Pauli terms act on different qubits and hence commute. (A similar argument holds for i = j

and k = l.) If, however, i = j and k 6= l, then since the Pauli matrices anti-commute, we
have M(ik, jl) = −M(jl, ik), and indeed M(ik, jl),M(jl, ik) ∈ C \R (since, e.g., XY = iZ),
implying M(ik, jl)∗ = M(jl, ik) (thus M is Hermitian; here, ∗ denotes complex conjugate).
Note, however, that the case of i = j and k 6= l corresponds to linear local terms, i.e. those
of the form σik, and these are the only non-real entries of M . Since our objective function
involves only quadratic local terms (i.e. σikσ

j
l for i 6= j), we can hence eliminate entries of

M with i = j and k 6= l by replacing M with moment matrix M ′ = (M + M∗)/2, which
is real and matches M on all entries with i 6= j (as well as on i = j and k = l). The real
symmetric matrix M ′ is positive semidefinite if the Hermitian M is, and M ′ results in an
equal objective value to that of M , hence the restriction to real moment matrices is without
loss of generality.

We have thus far described the ideal solutions, M . Next, we add constraints to the SDP
to help enforce this ideal interpretation of M :
1. For all i ∈ [n], k ∈ [3], set M(ik, ik) = 1, since ideally M(ik, ik) = tr(ρσikσik) = tr(ρ) = 1.
2. For all i ∈ [n], k 6= l ∈ [3], set M(ik, il) = −M(il, ik), since distinct Pauli matrices

anti-commute.

S. Gharibian and O. Parekh 31:9

3. Set M � 0. This is since, ideally, for all s ∈ R3n, we have

sTMs =
∑
ijkl

siksjlM(ik, jl) = tr

ρ(∑
ik

sikσ
i
k

)∑
jl

sjlσ
j
l

 = tr(ρS2) ≥ 0, (3)

where S :=
∑
ik sikσ

i
k, and since ρ, S2 � 0.

Finally, the relaxed objective function is obtained by replacing each term tr(ρσikσ
j
l) with

M(ik, jl). For example, the relaxed objective function for F1,1,1 becomes
∑

(i,j)∈E wij(1−
M(i1, j1)−M(i2, j2)−M(i3, j3)).

Let us remark that our formulation is essentially the first level s = 1 of the Lasserre SDP
hierarchy. Higher levels s > 1 are obtained by considering s-local terms for the moment
matrices, i.e. M(i1k1, . . . , isks) = tr(ρσi1k1

· · ·σisks).

Rounding solutions to the SDP. Given any solution M to the SDP, we take the Cholesky
decomposition of M to obtain a set of vectors vik ∈ R3n for i ∈ [n] and k ∈ [3], such that
M(ik, jl) = vTikvjl. Since M(ik, ik) = 1, each vik is a unit vector. Now, our aim is to round
M to a product state solution ρprod = ρ1 ⊗ · · · ⊗ ρn on n qubits. Thus, writing ρi in terms
of its Bloch vector ρi = (I + ri1X + ri2Y + ri3Z)/2 each vik should be thought of as a
3n-dimensional relaxation of rik ∈ R. For any v ∈ Rp, w ∈ Rq, define operation

v ◦ w =

0 if v = 0 and w = 0
v if v 6= 0 and w = 0
w if w 6= 0 and v = 0
(vT , wT)T otherwise,

where (vT , wT)T ∈ Rp+q denotes the concatenation of v and w. Recalling that H ∈ Fα,β,γ
for α, β, γ ∈ {0, 1}, we now set

ui := (αvi1) ◦ (βvi2) ◦ (γvi3) ∈ R(α+β+γ)3n.

This yields first that wij(1− uTi uj) equals the term in the relaxed SDP objective function
for H corresponding to edge (i, j) ∈ E. For example, if H ∈ F1,1,0 (i.e. the local terms are
wij(I−XiXj−YiYj)), then ui ∈ R6n and for edge (i, j) ∈ E we haveM(i1, j1)+M(i2, j2) =
uTi uj . Second, we have ‖ui‖2 =

√
α+ β + γ.

To obtain the desired claim, define now xi = ui/‖ui‖2. We use a generalization of the
Goemans-Williamson (GW) [19] rounding procedure due to Briët, de Oliveira Filho and
Vallentin [12]. Specifically, we randomly round each xi ∈ R(α+β+γ)3n to a Bloch vector
yi ∈ Rα+β+γ as follows. Let R be a random (α + β + γ) × (α + β + γ)3n matrix, each of
whose entries is chosen independently from a standard normal distribution with mean 0 and
variance 1. Then, for each i, set

yi = Rxi/‖Rxi‖2 ∈ Rα+β+γ .

We map this to a (pure) single-qubit state ρi as follows. Let I(k) be the index in sequence
(α, β, γ) of the kth non-zero entry (if it exists), for k ∈ {1, 2, 3}. Then, set the I(k)-
th Bloch vector entry of ρi to yi,k. For example, if α = β = γ = 1, this yields ρi =
(I + yi,1X + yi,2Y + yi,3Z)/2, if α = β = 1 and γ = 0, this yields ρi = (I + yi,1X + yi,2Y)/2,
and if α = β = 0 and γ = 1, this yields ρi = (I + yi,1Z)/2 (note the subscript 1 in yi,1). For
ease of exposition, henceforth we refer to the Bloch vector for ρi as ri = (r1, r2, r3), where
the entries of ri which are not set in the rounding scheme above being implicitly set to 0.
For example, ri = (yi,1, yi,2, yi,3), ri = (yi,1, yi,2, 0), and ri = (0, 0, yi,1), respectively, in the
examples above.

APPROX/RANDOM 2019

31:10 Approximation Algorithms for a Quantum Generalization of Max-Cut

Approximation ratio. To analyze the approximation ratio obtained, note that for edge
(i, j) ∈ E, we have

wij tr(Hijρprod) = wij
4 tr(Hij(I + ri,1Xi + ri,2Yi + ri,3Zi)(I + rj,1Xj + rj,2Yj + rj,3Zj))

= wij
4 tr((I − αXiXj − βYiYj − γZiZj) ·

(I + ri,1Xi + ri,2Yi + ri,3Zi)(I + rj,1Xj + rj,2Yj + rj,3Zj))
= wij(1− αri,1rj,1 − βri,2rj,2 − γri,3rj,3)
= wij(1− yTi yj).

On the other hand, recall the SDP obtains value wij(1 − uTi uj) on edge (i, j) ∈ E. For
brevity, let F [r, uT v] denote the right hand side of Equation 12 (Lemma 10 in Appendix C).
A direct application of Lemma 10 yields E[yTi yj] = F [α+ β + γ, xTi xj]. Then, by linearity
of expectation, the expected approximation ratio is given by the expected ratio attained on
each edge, which is

1− E[yTi yj]
1− uTi uj

= 1− F [α+ β + γ, xTi xj]
1− uTi uj

= 1− F [α+ β + γ, t]
1− (α+ β + γ)t ,

where we defined t = xTi xj (note the value of F only depends on t; see Appendix C).
Numerically evaluating via Mathematica (see Appendix C for Mathematica code)

min
t∈[−1,1/(α+β+γ))

1− F [t]
1− (α+ β + γ)t ,

we obtain ratios of 0.878 (for α + β + γ = 1), 0.649 (for α + β + γ = 2), and 0.498 (for
α + β + γ = 3), respectively. Note we minimize over t ∈ [−1, 1/(α + β + γ)), since for
t ∈ [1/(α+ β + γ), 1] the ratio can only be negative (the denominator is negative, and the
numerator is in range [0, 2]). This completes the proof. J

4.1 Generalizations beyond the Heisenberg model
We defined the Heisenberg model Fα,β,γ in Section 2 as having all constraints identical with
some fixed (α, β, γ) ∈ {0, 1}3. We now show how to extend the algorithm to two more general
settings: The first will allow different choices of αij , βij , γij ∈ [1,−1] on each edge (note
the use of [1,−1] instead of {0, 1}), and the second will require that all constraints remain
identical but in exchange allows new interaction terms beyond XX, Y Y , ZZ.

4.1.1 Approximating Heisenberg models with varying Pauli weights
The approximation algorithm developed in the previous section made critical use of the fact
that α, β, γ ∈ {0, 1} for our Heisenberg model Fα,β,γ . Here, we generalize by allowing two
relaxations, captured below in the form of constraints now allowed:

Hij = wij(I − αijXiXj − βijYiYj − γijZiZj),

where αij , βij , γij ∈ [−1, 1]. The two relaxations to note are (1) αij , βij , γij ∈ [−1, 1] instead
of in {0, 1}, and (2) each edge (i, j) ∈ E may have a different choice of αij , βij , γij In this
setting, we shall use the same relaxation as Section 4, but utilize another rounding strategy.
In exchange for the added generality, the approximation ratios obtained are slightly weaker
than those of Section 4.

S. Gharibian and O. Parekh 31:11

In the theorem below, for brevity we call the sets {αij}, {βij}, {γij} parameter families.
We say a parameter family is non-zero if at least one parameter in the family is non-zero,
e.g. there exists (i, j) ∈ E such that αij 6= 0 for family {αij}.

I Theorem 7. Let H =
∑

(i,j)∈E Hij be a 2-local Hamiltonian on qubits with constraints

Hij = wij(I − αijXiXj − βijYiYj − γijZiZj),

where αij , βij , γij ∈ [−1, 1] and wij ∈ R+. There exists a randomized, polynomial-time
algorithm which obtains approximation ratio at least 0.878 (if precisely one parameter family
is non-zero), 0.609 (if precisely two parameter families are non-zero), and 0.462 (if all three
parameter families are non-zero).

Proof. We begin by mapping H to a “canonical” form.

Setup in “canonical” form. For now, assume αij , βij , γij 6= 0 (later we will get improved
ratios when some of these values are 0 for every (i, j) ∈ E). Our first observation is that
we may assume αij , βij , γij ∈ {−1, 1}. This is because any vector (αij , βij , γij) ∈ [−1, 1]3 is
a convex combination of vectors with coordinates in {−1,+1} (i.e. the former lies in the
convex hull of discrete points (x, y, z) ∈ {−1, 1}3). Thus any Hij of the above form may be
expressed as convex combination,

Hij =
4∑
k=1

wijλk(I − αij,kXiXj − βij,kYiYj − γij,kZiZj), (4)

with αij,k, βij,k, γij,k ∈ {−1, 1}, and λk ≥ 0 with
∑4
k=1 λk = 1. Notes: (1) Since we

allow multiple edges between i and j, we may include an edge for each term of the convex
combination. (2) That we require at most 4 terms λk follows from Carathéodory’s theorem,
which says that a point in Rd in the convex hull of some set P requires at most d+ 1 points
of P to express as a convex combination. (3) Our approximation ratio analysis below will
again be via expectation per edge, which by linearity of expectation yields that no loss in
approximation is incurred by writing our constraints as in Equation (4).

Rounding algorithm. We employ the same moment SDP relaxation as in Section 4, and
continue to use the terminology therein. Consider the vectors vi1, vi2, vi3 ∈ R3n corresponding
to an optimal solution of the SDP relaxation. The objective value of the relaxation is
wSDP :=

∑
(i,j)∈E wij(1 − αijvTi1vj1 − βijvTi2vj2 − γijvTi3vj3). Now suppose, without loss of

generality (any other ordering is handled analogously):

−
∑

(i,j)∈E

wijγijv
T
i3vj3 ≥ −

∑
(i,j)∈E

wijβijv
T
i2vj2 ≥ −

∑
(i,j)∈E

wijαijv
T
i1vj1,

so that∑
(i,j)∈E

wij(1− 3γijvTi3vj3) ≥ wSDP. (5)

Recall that the vi3 are unit vectors (since our SDP had constraint M(ik, ik) = 1 for all
i, k). Hence, we may view the vi3 as a feasible solution for the Max-Cut SDP relaxation of
Goemans and Williamson and consequently, use the same rounding algorithm [19]:

APPROX/RANDOM 2019

31:12 Approximation Algorithms for a Quantum Generalization of Max-Cut

1. Select a random vector r ∈ R3n with each entry independently and normally distributed
with mean 0 and variance 1.

2. Let ri = rT vi3/|rT vi3| ∈ {−1, 1}.
3. Output the product state,

∏
i

1
2 (I + riZi).

Note that since the assignment above is diagonal in the Z basis (i.e. is a standard basis
state), it lies in the null space of each XX and Y Y term of our Hamiltonian. Consequently,
our expected objective value for this assignment on our Hamiltonian is

wEXP :=
∑

(i,j)∈E

E[wij(1− γijrirj)] =
∑

(i,j)∈E

wij(1− γij2 arcsin
(
vTi3vj3

)
/π),

where the second equality follows by (1) linearity of expectation and (2) the standard analysis
of the Goemans-Williamson algorithm [19], which states that E[rirj] = 2 arcsin

(
vTi3vj3

)
/π.

Approximation ratio. We conclude by bounding the expected approximation ratio, wEXP/wSDP.
As for the analysis of the algorithm from the previous section, we need only consider the
worst-case behavior on any edge. Using (5), this is:

min
γ∈{−1,1}, t∈[−1,1]:3γt<1

1− γ2 arcsin(t)/π
1− 3γt ,

where γ represents γij , and t represents vTi3vj3. Numerically, this yields a ratio of 0.462. A
similar analysis produces an approximation ratio of 0.609 for the case when either αij = 0
for all (i, j) ∈ E, βij = 0 for all (i, j) ∈ E, or γij = 0 for all (i, j) ∈ E. We recover the
Goemans-Williamson 0.878-approximation in the case when two of these parameters are 0
for all (i, j) ∈ E. J

4.1.2 Reductions via local unitaries
We now generalize the algorithm of Section 4 in a different manner. Specifically, using a
standard trick from entanglement theory (used also in [14] in a somewhat different manner),
we may give an approximation-preserving reduction to the Heisenberg model in certain cases.
Namely, recall that any two-qubit Hermitian operator Hij can be expanded in the Pauli
basis as follows (sometimes known as the Fano form [15]), given by:

Hij = κI +
3∑
a=1

3∑
b=1

Mabσa ⊗ σb +
3∑
a=1

raσa ⊗ I +
3∑
b=1

sbI ⊗ σb, (6)

where κ,Mab, ra, sb ∈ R. The 3 × 3 real matrix M , which has no particular structure in
general (for example, it need not be diagonalizable), is called the correlation matrix in
entanglement theory.

I Theorem 8. Let H be a 2-local Hamiltonian on n qubits, and with directed interaction
graph G = (V,E), where H =

∑
(i,j)∈E wijHij for non-negative real weights wij. Assume

1. all Hij are identical with κ = r1 = r2 = r3 = s1 = s2 = s3 = 0, and
2. the correlation matrix M of Hij is an orthogonal projection (i.e. M is symmetric with

M2 = M).
Then, there exists a randomized, polynomial-time algorithm which obtains approximation
ratios at least 0.878, 0.649 or 0.498, when the rank of M equals 1, 2 or 3, respectively.
Conversely, the best possible product-state ratio (not necessarily efficiently attainable) in each
case is 1, 2/3, and 1/2, respectively.

S. Gharibian and O. Parekh 31:13

Proof. We use the approach of [22, 23] of simulating orthogonal rotations on M via local
unitary operations on Hij . Namely, due to the surjective homomorphism from SU(2) to SO(3),
if one wishes to mapM to O1MOT2 for orthogonal matrices O1 and O2, there exist single-qubit
unitaries U and V such that Ui⊗ VjHijU

†
i ⊗ V

†
j has correlation matrix O1MOT2 . Since M is

symmetric, it is diagonalizable by an orthogonal matrix O ∈ R3×3 (Corollary 2.5.14 of [21]).
Thus, there exists a single-qubit unitary U such that Ui ⊗ UjHijU

†
i ⊗ U

†
j has a diagonal

correlation matrix with eigenvalues from set {0, 1}. Since all constraints Hij are identical, it
follows that U⊗nH(U†)⊗n is a Hamiltonian in family Fα,β,γ for some α, β, γ ∈ {0, 1}. The
algorithm of Theorem 6 now yields the claimed lower bound on approximation. The claimed
upper bound on approximation follows from Corollary 5. In both cases, we are leveraging
the fact that our reduction applies only single-qubit unitary operations, and hence perfectly
preserves approximation ratios attained by product states. J

Note that Theorem 8 uses the algorithm of Section 4. If we are willing to obtain slightly
worse approximation ratios, we can relax the second requirement of Theorem 8 by instead
applying the algorithm of Section 4.1.1.

I Theorem 9. Let H be a 2-local Hamiltonian on n qubits, and with directed interaction
graph G = (V,E), where H =

∑
(i,j)∈E wijHij for non-negative real weights wij. Assume

1. all Hij are identical with κ = r1 = r2 = r3 = s1 = s2 = s3 = 0, and
2. the correlation matrix M of Hij is symmetric.
Then, there exists a randomized, polynomial-time algorithm which obtains approximation
ratios at least 0.878, 0.609 or 0.462, when the rank of M equals 1, 2 or 3, respectively.
Conversely, the best possible product-state ratio (not necessarily efficiently attainable) in each
case is 1, 2/3, and 1/2, respectively.

The proof is identical to that of Theorem 8, except we using the rounding algorithm of
Section 4.1.1 instead; we hence omit the proof.

References
1 D. Aharonov, I. Arad, Z. Landau, and U. Vazirani. The detectibility lemma and quantum gap

amplification. In Proceedings of 41st ACM Symposium on Theory of Computing (STOC 2009),
volume 287, pages 417–426, 2009.

2 Dorit Aharonov, Itai Arad, and Thomas Vidick. Guest Column: The Quantum PCP Conjecture.
SIGACT News, 44(2):47–79, June 2013. doi:10.1145/2491533.2491549.

3 S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness
of approximation problems. Journal of the ACM, 45(3):501–555, 1998. Prelim. version FOCS
’92.

4 S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. Journal
of the ACM, 45(1):70–122, 1998. Prelim. version FOCS ’92.

5 N. Bansal, S. Bravyi, and B. M. Terhal. Classical approximation schemes for the ground-
state energy of quantum and classical Ising spin Hamiltonians on planar graphs. Quantum
Information & Computation, 9(7&8):0701–0720, 2009.

6 H. Bethe. Zur Theorie der Metalle. Zeitschrift für Physik, 71(3–4):205–226, 1931.
7 F. Brandão and A. Harrow. Product-state Approximations to Quantum Ground States. In

Proceedings of the 45th ACM Symposium on the Theory of Computing (STOC 2013), pages
871–880, 2013.

8 S. Bravyi. Monte Carlo simulation of stoquastic Hamiltonians. Quantum Information &
Computation, 15(13&14):1122–1140, 2015.

APPROX/RANDOM 2019

https://doi.org/10.1145/2491533.2491549

31:14 Approximation Algorithms for a Quantum Generalization of Max-Cut

9 S. Bravyi, D. Gosset, R. Koenig, and K. Temme. Approximation algorithms for quantum
many-body problems. Available at arXiv.org e-Print quant-ph/arXiv:1808.01734, 2018. arXiv:
1808.01734.

10 S. Bravyi and M. Hastings. On complexity of the quantum Ising model. Communications in
Mathematical Physics, 349(1):1–45, 2014.

11 Sergey Bravyi and David Gosset. Polynomial-Time Classical Simulation of Quantum Ferro-
magnets. Physical Review Letters, 119:100503, September 2017. doi:10.1103/PhysRevLett.
119.100503.

12 J. Briët, F. M. de Oliveira Filho, and F. Vallentin. Grothendieck inequalities for semidefinite
programs with rank constraint. Theory of Computing, 10:77–105, 2014.

13 Moses Charikar and Anthony Wirth. Maximizing quadratic programs: Extending Grothen-
dieck’s inequality. In 45th Annual IEEE Symposium on Foundations of Computer Science,
pages 54–60. IEEE, 2004.

14 T. Cubitt and A. Montanaro. Complexity classification of local Hamiltonian problems. SIAM
Journal on Computing, 45(2):268–316, 2016.

15 U. Fano. Pairs of two-level systems. Reviews of Modern Physics, 55:855–874, 1983.
16 S. Gharibian and J. Kempe. Approximation algorithms for QMA-complete problems. Siam

Journal on Computing, 41(4):1028–1050, 2012.
17 S. Gharibian and J. Kempe. Hardness of approximation for quantum problems. In Pro-

ceedings of 39th International Colloquium on Automata, Languages and Programming (IC-
ALP 2012), pages 387–398, 2012. © 2012 Springer, www.springerlink.com. doi:10.1007/
978-3-642-31594-7.

18 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum Hamiltonian
Complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282, 2014.
doi:10.1561/0400000066.

19 M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 42:1115–1145,
1995.

20 D. Hochbaum. Approximation Algorithms for NP-Hard Problems. Wadsworth Publishing
Company, 1997.

21 R. A. Horn and C. H. Johnson. Matrix Analysis. Cambridge University Press, 1990.
22 R. Horodecki and M. Horodecki. Information-theoretic aspects of quantum inseparability of

mixed states. Physical Review A, 54(3):1838–1843, 1996.
23 R. Horodecki and P. Horodecki. Perfect correlations in the Einstein-Podolsky-Rosen experiment

and Bell’s inequalities. Physics Letters A, 210:227, 1996.
24 A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation. American Mathem-

atical Society, 2002.
25 E. Lee and S. Hallgren. Approximation of MAX-2-local Hamiltonians. To be presented at the

19th Asian Quantum Information Science Conference (AQIS), 2019.
26 A. Natarajan and T. Vidick. Low-degree testing for quantum states, and a quantum entangled

games PCP for QMA. In Proceedings of the 59th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 731–742, 2018.

27 M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, 2000.

28 T. J. Osborne. Hamiltonian complexity. Reports on Progress in Physics, 75(2):022001, 2012.
URL: http://stacks.iop.org/0034-4885/75/i=2/a=022001.

29 Stephen Piddock and Ashley Montanaro. The Complexity of Antiferromagnetic Interactions
and 2D Lattices. Quantum Information & Computation, 17(7-8):636–672, June 2017. URL:
http://dl.acm.org/citation.cfm?id=3179553.3179559.

30 V. Vazirani. Approximation Algorithms. Springer, 2001.

http://arxiv.org/abs/1808.01734
http://arxiv.org/abs/1808.01734
https://doi.org/10.1103/PhysRevLett.119.100503
https://doi.org/10.1103/PhysRevLett.119.100503
https://doi.org/10.1007/978-3-642-31594-7
https://doi.org/10.1007/978-3-642-31594-7
https://doi.org/10.1561/0400000066
http://stacks.iop.org/0034-4885/75/i=2/a=022001
http://dl.acm.org/citation.cfm?id=3179553.3179559

S. Gharibian and O. Parekh 31:15

A Max Cut as a special case of the Heisenberg model

We briefly sketch why local constraints Hij = I − Zi ⊗ Zj in the Heisenberg model yield the
NP-complete problem Max Cut. Namely, the Pauli Z operator

Z =
(

1 0
0 −1

)
is diagonal in the standard basis with eigenvalues 1 for eigenvector |0〉 and −1 for eigenvector
|1〉. It follows that Z ⊗ Z also diagonalizes in the standard basis, with eigenvectors |00〉
and |11〉 attaining eigenvalue 1 and |01〉 and |10〉 attaining eigenvalue −1. As a result,
operator I − Zi ⊗ Zj has eigenvalues 0 (with eigenspace spanned by |00〉 and |11〉) and 2
(with eigenspace spanned by |01〉 and |10〉). But this means that on each edge (i, j) ∈ E,

〈00|I − Zi ⊗ Zj |00〉 = 〈11|I − Zi ⊗ Zj |11〉 = 0, and
〈01|I − Zi ⊗ Zj |01〉 = 〈10|I − Zi ⊗ Zj |10〉 = 2.

In other words, if neighboring qubits are set to opposing standard basis states (e.g. |01〉),
then we obtain value 2 from an edge, and if the qubits are set to identical standard basis
states (e.g. |00〉), we obtain value 0 from this edge. Finally, since all local terms are diagonal
in the standard basis, the entire Hamiltonian H =

∑
(i,j)∈E Hij will also be diagonal in the

standard basis. The largest eigenvalue of H will hence be the sum of the values obtained on
each edge by the best standard basis state, which will correspond to a maximum cut in the
graph. The actual largest eigenvalue will equal twice the maximum cut on the underlying
graph (since we obtain value 2 on each cut edge, rather than 1 as for the standard Max Cut
problem).

B Proofs for Section 2

Proof of Lemma 2. Observe that for standard basis vectors |i〉, |j〉, |k〉, |l〉 ∈ C2, we have

〈ij|X ⊗X|kl〉 = (i⊕ k)(j ⊕ l), (7)
〈ij|Y ⊗ Y |kl〉 = (−1)δkl(i⊕ k)(j ⊕ l), (8)
〈ij|Z ⊗ Z|kl〉 = (−1)k⊕lδikδjl, (9)

were δij is the usual Kronecker delta. Denoting an arbitrary product state as |ψ〉 =
ac|00〉+ ad|01〉+ bc|10〉+ bd|11〉 for |a|2 + |b|2 = |c|2 + |d|2 = 1, we have

〈ψ|H|ψ〉 = α(a∗c∗bd+ acb∗d∗ + a∗d∗bc+ adb∗c∗) +
β(−a∗c∗bd− acb∗d∗ + a∗d∗bc+ adb∗c∗) +
γ(|a|2|c|2 + |b|2|d|2 − |a|2|d|2 − |b|2|c|2) (10)

= 2 Re[acb∗d∗](α− β) + 2 Re[adb∗c∗](α+ β) +
γ(|a|2|c|2 + |b|2|d|2 − |a|2|d|2 − |b|2|c|2)

≤ 2|a||b||c||d|(|α+ β|+ |α− β|) +

|γ|
∣∣∣(|a|2 − |b|2)(|c|2 − |d|2)

∣∣∣.
where the last inequality follows from the triangle inequality. Let us simplify the notation
above by assuming without loss of generality a, b, c, d ∈ R+. We may also assume without
loss of generality that a ≥ b and c ≥ d (since this maximizes the upper bound). Thus:

〈ψ|H|ψ〉 ≤ 2abcd(|α+ β|+ |α− β|) + |γ|(a2 − b2)(c2 − d2).

APPROX/RANDOM 2019

31:16 Approximation Algorithms for a Quantum Generalization of Max-Cut

Note now for any α, β ∈ R, |α+ β| + |α− β| = ||α|+ |β|| + ||α| − |β||. Assume first
|α| ≥ |β|. Then

〈ψ|H|ψ〉 ≤ 4abcd|α|+ |γ|(a2 − b2)(c2 − d2). (11)

Let p = 4abcd and q = (a2 − b2)(c2 − d2). Note p, q ≥ 0. Also, we claim p+ q ≤ 1; this will
imply 〈ψ|H|ψ〉 ≤ max(|α|, |γ|). To see this claim, note

p+ q = (ac+ bd)2 − (ad− bc)2 ≤ (ac+ bd)2 ≤ 1,

where the last inequality follows from the Cauchy-Schwarz inequality. The case of |β| ≥ |α|
follows analogously with |α| in Equation (11) replaced with |β|. We hence have 〈ψ|H|ψ〉 ≤
max(|α|, |β|, |γ|) = ‖(|α|, |β|, |γ|)‖∞.

We now show matching lower bounds, i.e. that |α|, |β|, and |γ| are attainable. Returning
to Equation (10):

For |α|: If α ≥ 0, set a = b = c = d = 1/
√

2, and if α < 0, set a = b = c = 1/
√

2 and
d = −1/

√
2.

For |β|: If β ≥ 0, set a = i/
√

2, c = i/
√

2, b = d = 1
√

2, and if β < 0, set a = −i/
√

2,
c = i/

√
2, b = d = 1

√
2.

For |γ|: If γ ≥ 0, set a = c = 1 and b = d = 0. and of γ < 0, set a = d = 1, b = c = 0.
J

Proof of Lemma 3. Denoting an arbitrary two-qubit state as |ψ〉 = a|00〉+ b|01〉+ c|10〉+
d|11〉 for |a|2 + |b|2 = |c|2 + |d|2 = 1, we have via Equations (7)-(9) that

〈ψ|X ⊗X|ψ〉 = a∗d+ ad∗ + b∗c+ bc∗,

〈ψ|Y ⊗ Y |ψ〉 = −a∗d− ad∗ + b∗c+ bc∗,

〈ψ|Z ⊗ Z|ψ〉 = |a|2 − |b|2 − |c|2 + |d|2.

Thus, 〈ψ|H|ψ〉 equals

α(2 Re(ad∗) + 2 Re(bc∗)) + β(−2 Re(ad∗) + 2 Re(bc∗)) + γ(|a|2 + |d|2 − |b|2 − |c|2)
= 2 Re[ad∗](α− β) + 2 Re[bc∗](α+ β) + (|a|2 + |d|2 − |b|2 − |c|2)γ.

Observe that since the coefficient of γ depends on only absolute values of a, b, c, d, we can
assume without loss of generality that the optimal assignment has a, b, c, d ≥ 0 and satisfies

〈ψ|H|ψ〉 = 2ad|α− β|+ 2bc|α+ β|+ (a2 + d2 − b2 − c2)γ.

By applying the Arithmetic-Geometric mean inequality, we hence have

〈ψ|H|ψ〉 ≤ (a2 + d2)|α− β|+ (b2 + c2)|α+ β|+ (a2 − b2 − c2 + d2)γ
= (a2 + d2)(|α− β|+ γ) + (b2 + c2)(|α+ β| − γ)
≤ max(|α− β|+ γ, |α+ β| − γ),

where the last statement follows since a2 + b2 + c2 + d2 = 1. The matching lower bound is
obtained as follows. To achieve |α− β|+ γ when α ≥ β, set a = d = 1/

√
2, and when α ≤ β,

set a = 1/
√

2, d = −1/
√

2. Similarly, to achieve |α+ β| − γ when α ≥ −β, set b = c = 1/
√

2,
and when α ≤ −β, set b = 1/

√
2, c = −1/

√
2. J

S. Gharibian and O. Parekh 31:17

C Lemmas and Mathematica code

In Section 4 we use the following lemma, which is stated as given in [12]. Below, 2F1(a, b; c; z)
is the hypergeometric function, defined for |z| < 1 as

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n! ,

where for n ≥ 0, we have Pochhammer symbol (x)n = Γ(x+n)/Γ(x) = x(x+1) · · · (x+n−1)
for Γ the Gamma function.

I Lemma 10 (Briët, de Oliveira Filho and Vallentin [12]). Let u, v be unit vectors in Rn and
let Z ∈ Rr×n be a random matrix whose entries are distributed independently according to
the standard normal distribution with mean 0 and variance 1. Then,

E

[
Zu

‖Zu‖2
· Zv

‖Zv‖2

]
= 2
r

(
Γ((r + 1)/2)

Γ(r/2)

)2
(u · v) 2F1

(
1/2, 1/2; r/2 + 1; (u · v)2) . (12)

Mathematica code

Below, we give the Mathematica code used to numerically calculate the approximation ratios
of Theorem 6:

g[r_] := 2/r (Gamma[(r + 1)/2]/Gamma[r/2])^2
F[r_, t_] := g[r] t Hypergeometric2F1[1/2, 1/2, r/2 + 1, t^2]
ApproxRatio[r_] := Min[Select[Table[(1 - F[r, t])/(1 - r t),

{t, -1, 1/r, 0.01}], # > 0 &]]
ApproxRatio[1]
ApproxRatio[2]
ApproxRatio[3]

The code for the approximation ratios in Section 4.1.1 is:

ApproxRatio[r_] :=
Min[Select[Flatten[Table[(1 - g 2 ArcSin[t]/Pi)/(1 - r g t),

{g, -1, 1}, {t, -1, 1, 0.01}]], # > 0 &]]
ApproxRatio[1]
ApproxRatio[2]
ApproxRatio[3]

APPROX/RANDOM 2019

Maximizing Covered Area in the Euclidean Plane
with Connectivity Constraint
Chien-Chung Huang
DI ENS, École Normale supérieure, Université PSL, Paris, France
CNRS, Paris, France
chien-chung.huang@ens.fr

Mathieu Mari
DI ENS, École Normale supérieure, Université PSL, Paris, France
mathieu.mari@ens.fr

Claire Mathieu
CNRS, Paris, France
clairemmathieu@gmail.com

Joseph S. B. Mitchell
Stony Brook University, Stony Brook, NY 11794, USA
joseph.mitchell@stonybrook.edu

Nabil H. Mustafa
Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, ESIEE Paris, France
mustafan@esiee.fr

Abstract
Given a set D of n unit disks in the plane and an integer k ≤ n, the maximum area connected subset
problem asks for a set D′ ⊆ D of size k that maximizes the area of the union of disks, under the
constraint that this union is connected. This problem is motivated by wireless router deployment
and is a special case of maximizing a submodular function under a connectivity constraint.

We prove that the problem is NP-hard and analyze a greedy algorithm, proving that it is a 1
2 -

approximation. We then give a polynomial-time approximation scheme (PTAS) for this problem with
resource augmentation, i.e., allowing an additional set of εk disks that are not drawn from the input.
Additionally, for two special cases of the problem we design a PTAS without resource augmentation.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases approximation algorithm, submodular function optimisation, unit disk graph,
connectivity constraint

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.32

Category APPROX

Related Version https://www.di.ens.fr/~mmari/content/papers/MACS.pdf

Funding Joseph S. B. Mitchell: Partially supported by the National Science Foundation (CCF-
1540890), the US-Israel Binational Science Foundation (CCF-1540890), and DARPA (Lagrange).
Nabil H. Mustafa: The work of Nabil H. Mustafa in this paper has been supported by the grant
ANR SAGA (JCJC-14-CE25-0016-01).

1 Introduction

Maximizing a submodular function1 under constraints is a classical problem in computer
science and operations research [8, 23]; the most commonly studied constraints are cardinality,
knapsack and matroids constraints. A natural constraint that has received little attention is

1 Given a set X, a function f : 2X → R is submodular if given any two subsets A, B ⊆ X, f(A) + f(B) ≥
f(A ∩B) + f(A ∪B).

© Chien-Chung Huang, Mathieu Mari, Claire Mathieu, Joseph S. B. Mitchell, and Nabil H. Mustafa;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chien-chung.huang@ens.fr
mailto:mathieu.mari@ens.fr
mailto:clairemmathieu@gmail.com
mailto:joseph.mitchell@stonybrook.edu
mailto:mustafan@esiee.fr
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.32
https://www.di.ens.fr/~mmari/content/papers/MACS.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

the connectivity constraint. In this paper, we study the following problem: given a set of
n unit disks in the plane, select a subset of k disks that maximize the area of their union,
under the constraint that this union is connected. We call this problem the Maximum Area
Connected Subset problem (MACS). Notice that the area covered by a set of disks is a
monotone submodular function.

The problem is motivated by wireless router deployment, first introduced in [14], where
the goal is to install a given number of routers to maximize the number of clients covered.
When the clients are uniformly spread in the plane, the number of clients in a region can be
approximated by the area of that region, leading to our problem.

Our Contributions

We first analyze a variant of the greedy algorithm and show that it computes a 1
2 -approxi-

mation to MACS (Theorem 3); further, the analysis is tight. In contrast, the natural
algorithm that greedily adds one disk at a time can end up with a solution with area a factor
of Ω (k) worse than the optimal solution.

To improve upon the 1
2 -approximation ratio, we turn to the resource augmentation setting

in which the algorithm is allowed to add a few additional disks that need not be drawn from
the input. We design a PTAS for the resource augmentation version of the problem using
Arora’s shifted quadtree technique (Theorem 4)2. The proof hinges on the existence of a
near-optimal solution with O (εk) additional disks and with additional structure that allows
its computation by dynamic programming.

As a corollary, we show that for two special cases of MACS we can in fact design a PTAS
without resource augmentation: i) when the Euclidean distances between centers of the input
disks are well-approximated by shortest paths in their intersection graph (Corollary 6), and
ii) when every point of the relevant region of the Euclidean plane is covered by at least one
input disk (Corollary 9).

On the other hand, via a reduction from the Rectilinear Steiner Tree problem, we show
that MACS is NP-hard (Theorem 3). We also show that MACS for the input of a set of
quadrilaterals instead of disks, the problem is APX-hard (Theorem 12). We leave open the
question whether MACS is APX-hard or admits a PTAS without resource augmentation.

Related work

Maximising a monotone submodular function under constraint(s) is a subject that has received
a large amount of attention over the years. We refer the readers to [2, 5, 6, 8, 13, 15, 23]
and the references therein. Our problem can be regarded as maximising a submodular
function under a cardinality (knapsack) constraint and a connectivity constraint. Notice that
the connectivity constraint is central to the difficulty of our problem: without connectivity
constraints, MACS admits a PTAS even in the more general case of convex pseudodisks [4].
However even without the connectivity constraint the problem remains NP-hard3.

Another motivation for studying the connectivity constraint is related to cancer genome
studies. Suppose that a vertex represents an individual protein (and associated gene), an
edge represents pairwise interactions, and each vertex has an associated set. Finding the
connected subgraph of k genes that is mutated in the largest number of samples is equivalent
to the problem of finding the connected subgraph with k nodes that maximizes the cardinality
of the union of the associated sets (see [21]).

2 We also develop an alternative algorithm using Mitchell’s m-guillotine dissection technique. See the full
version for details.

3 The reduction is from Maximum independent set problem that is NP-hard in unit-disk graphs.

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:3

In the general (non-geometric) setting, there exists a O
(

1√
k

)
-approximation algorithm

for maximizing a monotone submodular function [14]. Our results show that when the
submodular function and the connectivity are induced by a geometric configuration, the
approximation ratio can be significantly improved.

We next consider several related problems where the connectivity constraint plays an
important role. The goal of the node-cost budget problem [20] is to find a connected set of
vertices in a general graph to collect the maximum profit on the vertices while guaranteeing
the total cost does not exceed a certain budget. Notice that in this setting the submodular
function is a simple additive function of the profits. Another related problem [3] is to assign
radii to a given set of points in the plane so that the resulting set of disks is connected and
the objective is to minimize the sum of radii.

Khuller et al. [12] study the budgeted connected dominating set problem where given a
general undirected graph, the goal is to select k vertices whose induced subgraph is connected
and that maximizes the number of dominated vertices. It was pointed out to us that their
algorithm can be used to give a 1

13
(
1− 1

e

)
-approximate solution for MACS. The authors

of [10] consider the problem of selecting k nodes of an input node-weighted graph to form a
connected subgraph, with the aim of maximizing or minimizing the selected weight.

We now turn to the geometric setting. A logarithmic-factor approximation algorithm
is known [9] for the connected sensor coverage problem in which one must select at most k
sensors in the plane forming a connected communication network and covering the desired
region, where the region covered by each sensor is convex [7, 11]. A (1− ε)-approximation
algorithm in time nO(1/ε) for the maximum independent set problem on unit disk graphs
is known [17]. The authors of [16] present a constant-factor approximation algorithm for
several problems on unit disk graphs, including maximum independent set. For the geometric
set cover problem where the goal is to cover a given set of input points with a minimum
number of given disks, a PTAS is possible [18].

2 Our results

The Euclidean distance between two points x and y is denoted by ‖x− y‖. When there
is no confusion, we will refer to a point x in the plane and the unit disk centered at x
interchangeably.

I Definition 1. Given a finite set S in the plane, the unit disk intersection graph UDG(S)
is a graph on S where {x, y} ⊆ S is an edge of UDG(S) if and only if ‖x− y‖ ≤ 2.

A set S of points in the plane are connected if UDG(S) is a connected graph.

I Definition 2. The Maximum Area Connected Subset (MACS) problem is as follows.
Input: a finite set of points X ⊆ R2 and a non-negative integer k, where k ≤ |X|.
Output: a subset S ⊆ X of size at most k such that the unit-disk graph UDG(S) of S is
connected.
Goal: maximize the area of the union of the unit disks centered at the points of S.

The optimal solution of MACS on input (X, k) is denoted by OPT (X, k).

When the context is clear, we refer to OPT (X, k) as OPT, which is also used to denote
the area covered by the optimal solution; observe that OPT is trivially upper-bounded by
πk. Any S ⊆ X with |S| 6 k for which UDG(S) is connected is called a feasible solution.

We state our main results below. All omitted proofs and figures can be found in the
appendix or in the full version.

APPROX/RANDOM 2019

32:4 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

I Theorem 3 (Approximation). There exists a polynomial-time algorithm that computes a
1
2 -approximation for MACS (Algorithm 1).

With resource augmentation, we obtain a (1− ε)-approximation.
I Theorem 4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set of points
X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in
time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points,
such that UDG (S ∪ Sadd) is connected and the area of the union of the unit disks centered
at S is at least (1− ε)OPT (X, k) .

Theorem 5 can be obtained alternatively by a (deterministic) guillotine cut approach
with a faster running time. We leave that for the full version of the paper.

Let dG(x, y) denote the distance between two vertices x and y of G. A set X of points in
the plane is called α-well-distributed if UDG(X) is an α-spanner for X [19]:
I Definition 5. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

I Corollary 6. There exists a PTAS for MACS on α-well-distributed inputs, where α is a
fixed constant (Algorithm 3).

I Definition 7. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.

I Lemma 8. A pseudo-convex set X is 3.82-well-distributed.

I Corollary 9. MACS on pseudo-convex inputs admits a polynomial-time approximation
scheme.

We next turn to the hardness of MACS.
I Theorem 10 (Hardness). MACS is NP-hard.

I Definition 11. The quad-connected-cover is defined as follows.
Input: a set T of n convex quadrilaterals in the plane, and an integer k.
Output: a subset T of T of size k such that the intersection graph of T is connected.
Goal: Maximise the area covered by the union of quadrilaterals in T .

I Theorem 12. Quad-connected-cover is APX-hard.

3 Proof of Theorem 3: the Two-by-two algorithm

In the section we present a simple 1
2 -approximation for MACS based on a greedy approach:

we iteratively add two unit disks that maximize the area covered while maintaining feasibility.
Interestingly, the algorithm that adds disks one at a time is not a constant approximation
algorithm. See Figure 1 for an example. Moreover, trying all possible sets of s disks, for any
s ≥ 3, in the neighborhood of the current solution does not improve the approximation ratio.
This can be seen on Figure 2 where the first disk chosen by the algorithm is not x, but xs.

Let Bx denote the unit disk centered at x ∈ R2 and B(S) =
⋃
x∈S Bx denote their union.

The area covered by a set C ⊂ R2 is denoted by A(C). When C = B(S), its area is simply
written as A(S). Given a graph G, G [S] denotes the subgraph induced by a subset S of
vertices. A subset of the vertices of a graph is a dominating set if every vertex belongs to
the set or is adjacent to some vertex of it.

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:5

Figure 1 The greedy algorithm that adds only one connected disk maximising the marginal area
covered is not a constant factor algorithm. For any k > 0 and ε > 0, consider the above input where
O = (0, 0), and yi = (2(i− 1) + ε, 0) for all i. Then, put all x1, . . . , xk evenly spaced (by an angle
α) on a circle of radius 2 around O so that none of them intersect y2. Each light grey regions are
covered by only one disk xi so the marginal gain of adding xi to any solution is at least the area
of one of these regions, say a > 0. If ε is chosen such that A(By1 \BO) < a, then if the algorithm
starts by picking disk O, it will then choose all xj , so that the area covered by the solution is
upper-bounded by the area of a radius 3 disk, 9π, while the optimal solution (disks yi) has area πk.

One can find an example similar to Figure 2 to show that optimising the initial choice of
the first disk(s) does not improve the approximation ratio.

I Theorem 3 (Approximation). There exists a polynomial-time algorithm that computes a
1
2 -approximation for MACS (Algorithm 1).

We can assume w.l.o.g. that UDG(X) is connected; otherwise we return the maximum
value over all connected components. The execution of Algorithm 1 is divided in two phases.
An iteration belongs to the first phase as long as the current solution S is not a dominating
set in the graph UDG(X).

During the first phase, in each iteration the area covered increases by at least π. During
the second phase, since the current solution is a dominating set, any disk can be added
while keeping the solution feasible. Therefore the algorithm reduces to a standard greedy
algorithm to maximize a submodular function, and the analysis is similar to the proof that
Nemhauser’s algorithm is a

(
1− 1

e

)
-approximation for classic submodular functions.

Algorithm 1 The Two-by-two algorithm for MACS.

Input: X ⊆ R2, k ≥ 0, where X is finite and k ≤ |X|.
Output: a feasible set of size k.

1 if k is even then
2 S ← any two intersecting disks of X;
3 else
4 S ← any one disk of X;
5 while |S| 6 k − 2 do
6 {x, x′} ← arg max {A(S ∪ {x, x′}) : x, x′ ∈ X, S ∪ {x, x′} is feasible };
7 S ← S ∪ {x, x′};
8 return S;

APPROX/RANDOM 2019

32:6 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

Proof. We first analyze the even case where k = 2κ, and then we reduce the odd case to
the even one. Let Sκ = {x1, x2, . . . , x2κ} be the solution returned by the algorithm. Let
Si = {x1, . . . , x2i} be the set right before the i-th iteration and let d be the smallest integer
such that Sd is a dominating set in UDG(X). If such an integer does not exist, i.e., Sκ is
not a dominating set, then set d = κ.

B Claim 13. The area A(Sd) is at least πd.

Proof. For i < d, Si is not a dominating set. Then there exist two disks y, y′ such that
B(Si) ∩By = ∅ and S ∪ {y, y′} is connected. Adding such a pair increases the area covered
by at least A (By) = π. Since (x2i+1, x2i+2) is chosen to maximize A(Si ∪ {x, x′}) among all
feasible pairs, A(Si+1) > A(Si ∪ {y, y′}) > A(Si) + π. By induction, A(Sd) > πd. C

Note that when d = κ, Claim 13 immediately implies that A(Sκ) > OPT
2 . Also regardless of

the initial choice, the area covered by the first two disks is at least π. This observation will
be useful when we prove the case where k is odd.

B Claim 14. For all d 6 i 6 κ, A(OPT) 6 A(Si) + κ · (A(Si+1)−A(Si)) .

Proof. It is easy to check that the function A(·) satisfies the following properties for all
H ⊆ H ′ ⊆ X :

positivity: A(H) > 0.
monotonicity: A(H) 6 A(H ′).
submodularity: ∀H ′′ ⊆ X, A(H ′ ∪H ′′) 6 A(H ∪H ′′)−A(H) +A(H ′).

Let OPT = {y1, . . . , y2κ}. We have for all d 6 i 6 κ :

A(OPT) 6 A(Si ∪OPT)
= A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + . . .

+ (A(Si ∪ {y1, . . . , y2κ})−A(Si ∪ {y1, . . . , y2κ−2}))
6 A(Si) + (A(Si ∪ {y1, y2})−A(Si)) + · · ·+ (A(Si ∪ {y2κ−1, y2κ})−A(Si))
6 A(Si) + κ · (A(Si ∪ {x2i+1, x2i+2})−A(Si))
= A(Si) + κ · (A(Si+1)−A(Si)) .

The first and the second inequality respectively come from monotonicity and submodularity,
while the third one follows from the fact that for i ≥ d, (x2i+1, x2i+2) is the pair of disks
maximizing A(Si ∪ {x, x′}) among all pairs (x, x′) in X. As Sd is a connected dominating
set in X, all pairs (y2j−1, y2j) for 1 6 i 6 κ are considered. C

We can now re-write Claim 14 as

For all d 6 i 6 κ : A(Si+1) >
(

1− 1
κ

)
A(Si) + OPT

κ
.

Combined with Claim 13, simple algebra yields that for d 6 i 6 κ, we have

A(Si) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)i−d]
OPT.

Therefore, for i = κ we have

A(S) = A(Sκ) >
[

1−
(

1− d

2κ

)(
1− 1

κ

)κ−d]
OPT =

[
1− 1

2 (1 + t)
(

1− 1
κ

)κt]
OPT

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:7

Figure 2 A tight example for Algorithm 1. For any ε > 0, X contains x = (0, 0) (stripe-shaded),
xi = (2(i− 1) + iε, 0) and x′

i = ((2 + ε)i, 0) for 1 6 i 6 k (blue) and yi = (−2i− ε/2, 0) for 0 6 i 6 k

(orange). Suppose that k = 1 + 2κ is odd and the algorithm starts with S0 := {x, x}. Then the
algorithm will add {xi, x

′
i} in iteration i since it covers more additional area than {y0, y1}. The

solution returned (blue disks) covers an area of π + κ(π + f(ε)) ≈ k
2π, for some function f(·) with

limε→0 f(ε) = 0, while OPT (orange disks) covers an area kπ.

where t = κ− d
κ
∈ [0, 1]. As 1 + x 6 ex for all x ∈ R, we get

A(S) >
(

1− 1
2(1 + t)e−t

)
OPT >

(
1− 1

2e
te−t

)
OPT = 1

2OPT,

concluding the proof of the case when k is an even number.
For the odd case k = 2κ− 1: in the first iteration, instead of adding two disks to S1, we

add a single disk of X to S1. This is equivalent to adding two copies of the same disk. This
iteration belongs to the first phase, and the only properties we used in the first phase is that
each iteration adds an area of π, and keeps the solution feasible; these are clearly true for
the first iteration even with one disk. J

Figure 2 shows a tight example.

4 Proof of Theorem 4: PTAS with resource augmentation

I Theorem 4 (Resource augmentation). Let ε > 0 be a given parameter. Given a set of points
X ⊆ R2 and a non-negative integer k, there is an algorithm (Algorithm 2) that computes, in
time nO(ε−3), a subset S ⊆ X of size at most k and a set Sadd ⊆ R2 of at most εk points,
such that UDG (S ∪ Sadd) is connected and the area of the union of the unit disks centered
at S is at least (1− ε)OPT (X, k) .

We first summarise the high level ideas; the details are then presented in subsequent
sections. Let (X, k) denote an input of MACS and OPT be the optimal solution of MACS
on input (X, k). When the context is clear OPT can also denote the total area covered by
the union of the unit disks centered in points of OPT.

We start by guessing a bounding box of size Θ(k) × Θ(k) that contains OPT. Next,
another square of size L× L, where L = Θ(k), is randomly shifted so that it always contains
the bounding box. We remove all disks that are outside the square. That square is then
recursively partitioned into smaller squares until they have (large) constant size. This
hierarchical dissection induces a grid.

We remove all disks that intersect the lines of the grid. In contrast, we deploy some new
disks (Xadd) in some strategic portal positions along the lines and near the boundary of all
the smallest squares.

Next, we use dynamic programming to build a solution from the smallest squares upwards.
The difficulty lies in having to guarantee the connectivity when combining solutions from
smaller squares into larger squares using additional disks, while controlling the time complexity
and the number of disks added.

APPROX/RANDOM 2019

32:8 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

The key of our approach lies in Lemma 20, in which we argue that with constant probability,
there exists a well-structured near-optimal solution that uses at most εk additional disks.

4.1 The grid
The first step is to reduce significantly the size of the input by guessing the position of the
optimal solution.

I Lemma 15. There exists a point c ∈ X such that OPT is contained in an axis-parallel
square of side length 4k and centered in c.

Proof. For c, take any disk in OPT and recall that OPT is connected and has at most
k disks, so all the disks in OPT are contained in the square centered at c and with side
length 4k. J

Given the randomly shifted hierarchical dissection, we use the same terminology as
Vazirani [22, Chapter 11] to define the root square, the shift of the dissection, the horizontal
and vertical lines, the levels of squares and of lines of the dissection, and the portals. The
recursive dissection stops when a square has side length L0 = Θ(ε−1) (leaf square). Portals
are either at the intersection of grid lines or distributed along the grid lines (with varying
density). We make some observations here (all details and proofs are in the following section
and the appendix). First, the distance between two consecutive portals on a line at level
` is O(L/(m2`)), where m represents the density of portals on the grid. The greater this
parameter, the greater the accuracy of the solution and higher the running time. Choosing
m = Θ(ε−1 log(L/L0)) = O(ε−1 log(εk)) allows us to compute a near-optimal solution in
polynomial time.

I Observation 16. If an horizontal line of level ` crosses a vertical line of level greater than
or equal to ` then the intersection point is a horizontal portal.

We define a set P of portal disks which we position at or near the portals. If a portal
(i, j) is on exactly one line of the grid then we add the portal disk (i, j) to P. If a portal
(i, j) is at the intersection of two lines of the grid, then i) if it is a horizontal portal then we
add to P two portal disks (i, j + 2) and (i, j − 2), and ii) if it is a vertical portal then we
add to P two portal disks (i− 2, j) and (i+ 2, j).

Given a square C of the dissection, the potential portal disks of C, denoted by PC , are
the portal disks on the boundary of C.

I Observation 17. For any square, the number of potential portal disks is O(m) =
O(ε−1 log(εk)).

The border of a leaf square C, denoted as ∂C, is the set of points in C within distance 1
from C’s boundary. The remaining points of C are called the core of C, written as core(C). A
unit disk with its center in C intersects the boundary if and only if its center lies in the border.
If two disks are in the core of two different leaf squares, then they do not intersect. We refer
to the union of the core of all leaf squares as the core. In a leaf square C = [a, b]× [c, d], the
set of points formed by the boundary of the square [a + 2, b − 2] × [c + 2, d − 2] is called
the fence. We cover the fence of C by fence disks, aligned such that each corner of this
square is the center of a fence disk. See Figure 4. We denote by F the set of all fence disks
for all leaf squares. The set of portal disks and fence disks form the set of additional disks
Xadd = P ∪ F .

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:9

4.2 Detailed construction of the grid

Let L′ be the sidelength of the box given by the Lemma 15, and set X ′ be the set of points
of X lying inside this box. Let L be the smallest power of 2 greater than 2L′. The root
square is defined to be the axis-parallel L× L square with the same left-bottom corner as
the bounding-box.

A shift is an non-negative integer a smaller than or equal to L/2. We say that the root
square is shifted by a if it is translated by the vector (−a,−a). Notice that any shifted root
square contains the bounding-box.

Given a shifted root square, we can define its dissection as a recursive partitioning into
smaller squares. The L× L root square is divided into four squares of size L/2× L/2. Each
of these squares is again divided into four L/4× L/4 squares, so forth. The process stops
when the side length of a square is equal to L0 = Θ(ε−1). Let d = log (L/L0) = O (log(εk)).
We can think of this partitioning as 4-ary tree, where each node at level ` corresponds to a
L02` × L02` square and has four children corresponding to four L02`−1 × L02`−1 squares.
The root square is at level 0 and the leaf squares are at level d. Given two squares of level `
and level `′, ` > `′, we say the former is of higher level than the latter. So the leaf square is
the one with the highest level.

This dissection defines a grid composed of 2 · (2d − 1) horizontal and vertical lines of
length L. We say that a line is at level ` ∈ {1, . . . , d} if it was added on the grid to divide a
square at level l− 1 into four squares at level `. There are 2` horizontal (resp. vertical) lines
at level `. See figure 3.

Figure 3 An illustration of the grid with
d = 3. Numbers on the top and the right
are the level of the corresponding lines and
the red, orange and yellow are respectively
the example of square of the dissection at
level 1, 2 and 3.

Figure 4 The grey and white area are respectively
the core and the border. Dotted lines are from the grid
while the orange lines represent the fence and orange
disks are the fence disks. Blue points are (vertical)
portals and blue disks are portal disks.

On each horizontal line of level ` > 1, we will place a set of vertical – notice the naming
asymmetry – portals of level `, near which (not exactly on which) we will deploy the portal
disks to facilitate the connection of disks on both sides of this line. We define a set of
horizontal portals for each vertical line in an analogous manner. Notice that it is possible
that a point is both a vertical portal and a horizontal portal. Let m = O(ε−1d) be a power
of two. Along a line of level `, there are m2` + 1 portals evenly spaced so that the distance
between two neighboring portals have distance exactly L

m2` .

APPROX/RANDOM 2019

32:10 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

4.3 Dynamic program
The algorithm uses dynamic programming. The dynamic programming table is indexed by
configurations.

I Definition 18. A configuration is a 5-tuple C = [C, t, tadd, P,∼], where:
C is a square of the dissection.
0 ≤ t ≤ k is an integer, denoting the number of disks of S used by the solution inside C.
0 ≤ tadd ≤ εk is an integer, denoting the number of additional disks used by the solution
inside C.
P ⊆ PC is a subset of potential portal disks of C, those that are used by the solution.
∼ is a planar connectivity relation on P (described below), representing the connectivity
achieved so far by the part of the solution inside C.

In the following, to facilitate discussion, we will refer to portals disks as simply portals.
An equivalence relation ∼ on P is a planar connectivity relation if each equivalence class has
an associated tree with the portals at the leaves, and there exists a planar embedding of
those trees inside the square, such that the trees do not intersect.

The content of the dynamic programming table, the value of a configuration C =
[C, t, tadd, P,∼], denoted by A(C), is the maximum area that can be covered by a set S ⊆ X
of t disks in C ∩ core4, such that there is a set Sadd ⊆ Xadd of tadd additional disks such that
any p, p′ ∈ P with p ∼ p′ are in the same connected component induced by S ∪Sadd ∪P . We
say that p and p′ are connected in C. If such sets {S, Sadd, P} do not exist for configuration
C, the value A(C) is set to −∞.

4.4 Computing leaf entries of the dynamic programming
We first explain how to fill the entries of the table corresponding to the leaf squares. For
each leaf square C, we enumerate
1. all possible subsets S ⊆ X ′ ∩ core(C) of at most k0 disks, for a parameter k0 = O(ε−3)

(see Lemma 20).
2. all possible subsets Sf ⊆ F ∩ C,
3. all possible subsets P ⊆ PC , and
4. all possible planar connectivity relations ∼ on P .
We say that (S, Sf , P,∼) is a guess in C and that it is usable if one of the following two
conditions holds:
Case 1. if P = ∅, then S ∪ Sf is connected, otherwise
Case 2. every connected component of S ∪ Sf ∪ P contains at least one portal disk in P .

Each usable guess (S, Sf , P) in C corresponds to a configuration C := [C, |S|, |Sf |, P,∼],
where ∼ is the planar connectivity relation on P induced by the connected components of
S ∪ Sf ∪ P .

Several usable guesses (S, Sf , P) can potentially correspond to the same configuration C.
The value of C is computed5 as the maximum value A(S) over all such guesses S.

4 Recall that core is the union of the core(C) of all leaf squares C.
5 The area covered by the union of a set of disks is a real number that can be computed exactly. When
the desired accuracy is a fixed constant (for instance ε), one can give an approximation of this area
with the desired precision in polynomial time.

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:11

(a) the top-left configuration
is closed while other configur-
ations are empty.

(b) there is unique connected
component independent from
the outside world.

(c) Each connected component
contains a portal in P .

Figure 5 Illustration of cases (a)-(b)-(c) of point 6. in Definition 19.

4.5 Computing all entries
It remains to show how to compute the solution of a configuration, say C = [C, t, tadd, P,∼],
for a square C at level `, by combining the solutions

[
Ci, ti, tiadd, P

i,∼i
]
of the four child

squares Ci, i = 1, 2, 3, 4, at level ` + 1. Recall that connectivity relations ∼i capture the
information about connectivity in the squares Ci. Let P = {p0, . . . , ps} be the subset of
potential portal disks. We define ∼′ as the transitive closure of all ∼i: p ∼′ p′ if and
only if there exists a sequence of squares i1, . . . , is ∈ {1, 2, 3, 4} and a sequence of portals
p = p0, . . . , ps = p′ such that for all 1 6 j 6 s, pj is a common portal of P ij−1 and P ij .
Further, pj−1 and pj must be connected in Cij . We call C empty if P = ∅ and t = 0, and
closed if P = ∅ and t > 0.

We now define the notion of compatibility of configurations.

I Definition 19. Five configurations
(
C, C1, C2, C3, C4) with C = [C, t, tadd, P,∼] and

Ci = [Ci, ti, tiadd, P i,∼i] are compatible if all the following properties are satisfied.
1. all Ci have the same level and their union is the square C.
2. P =

⋃4
i=1 P

i ∩ ∂C.
3. ∼ is the restriction of the transitive closure ∼′ of

(
∼i
)

16i64 to P .
4. t = t1 + t2 + t3 + t4 and t 6 k.
5. tadd = t1add + t2add + t3add + t4add + |

⋃4
i=1 P

i \ P | and tadd 6 εk.
6. exactly one of following three conditions holds.

(a) Ci, i ∈ {1, 2, 3, 4}, is closed and all Cj, j 6= i are empty.
(b) C is closed and there is exactly one equivalence class for ∼′.
(c) all equivalence classes of ∼′ contain a portal in P .

I Remark. By condition 2, the set P of portals used by C is obtained by removing from⋃4
i=1 P

i the portals not on the border of C. Notice that these removed portals in
⋃4
i=1 P

i \P
are now counted as additional disks (in condition 5). Condition 6 attempts to capture all
possible situations – either we have a single connected component not connected to the
“outside world”, which is a feasible solution by itself, (see Condition (6a) and Condition (6b)),
or we have several connected components, each of which must be further connected to the
outside world in a later stage (see Condition (6c)). See Figure 5. Finally, it is easy to see
that if all ∼i satisfy the connectivity relation, then so does ∼.

Let a be a shift chosen uniformly at random in
{

0, L2
}
. We consider the grid associated

to this shift and the set of additional disks on this grid as defined in the previous section.
The following lemma is essential to our main theorem. Recall that P denotes the set of
portal disks and F the set of fence disks.

APPROX/RANDOM 2019

32:12 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

I Lemma 20 (Structural Lemma). Given a fixed parameter ε > 0, there exists a subset
S ⊆ core of input disks and a set Sadd ⊆ P ∪F of additional disks, such that with probability
at least 1/3,
(i) (feasibility) |S| 6 k and S ∪ Sadd is connected,
(ii) (bounded resource augmentation) |Sadd| 6 εk,
(iii) (near-optimality) A(S) > (1− ε)OPT,
(iv) (bounded local size) For each leaf square C, |C ∩ S| = O(ε−3).

Our dynamic programming aims at finding a solution satisfying all conditions of this
Structural Lemma. We show that such a solution can be computed in time nO(ε−3). The
bounded local size property ensures that we can try all possible configurations in the leaf
squares in polynomial time. We also prove that for any square, the number of different
planar connectivity relations is upper-bounded by the Catalan number of the number of
potential portal disks of the square. It follows from Observation 17 that this number is
polynomially bounded.

4.6 Proof of the structural Lemma
We construct S and Sadd from OPT in two steps. In the first step, we build sets S′ and Sadd
that satisfy properties (i)-(iii); and in the second step, we construct S ⊆ S′ by removing
some disks from S′ so as to satisfy property (iv) while maintaining the validity of the three
first properties.

4.6.1 Part 1: Construction of the set of additional disks
Fix any shift, consider its associated grid and dissection and the corresponding set of
additional disks Xadd = P ∪F . Let S′ be the union of disks in OPT that are located in the
core of a leaf square of the dissection, namely

S′ = OPT ∩ core.

Observe that S′ might be disconnected since we have removed from OPT all the disks
that were intersecting the grid. Letting border denote

⋃
C is leaf ∂(C), we show how to

replace the set of input disks OPT ∩ border by a subset Sadd ⊆ F ∪ P of additional disks.
Each leaf square [a, b]× [c, d] has an associated fence that is the boundary of the square

[a+ 2, b− 2]× [c+ 2, d− 2]. For each vertical (resp. horizontal) portal disk (x, y), we define
a connection line, which is {x} × [y − 2, y + 2] (resp. [x− 2, x+ 2]× {y}). The set of fences
and connection lines naturally partition the set of points which are at distance at most 2
from the lines of the grid into a set of rectangles R. See Figure 6. Notice that all connections
and fences are covered by the union of additional disks. Given a rectangle R ∈ R, we define
disk(R) ⊆ Xadd as the minimal set of additional disks that contain R.

We construct Sadd as the union of disk(R), over all rectangles R that intersect a disk
x ∈ OPT ∩ border.

Sadd =
⋃
{disk(R) : R ∈ R,∃x ∈ OPT ∩ border such that Bx ∩R 6= ∅}

Notice that each disk x ∈ OPT ∩ border intersects at most two rectangles. Furthermore,
such a disk does not intersect with any fence and can intersect at most one connection line.

B Claim 21. Sets S′ and Sadd are such that S′ ∪ Sadd is connected, S′ has size at most k
and with probability at least 1/3 : |Sadd| 6 O(εk) and A(S′) > (1−O(ε))OPT.

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:13

Figure 6 Dotted lines are the grid lines. The bottom and top horizontal lines have respectively
level 8 and 10, and the vertical lines from left to right have level 5, 10 and 9. Grey continuous line
are the fence, and the red ones, the connection lines. Points and blue disks are portals and portal
disks. Striped orange areas illustrate some rectangles R ∈ R, and other disks are fence disks of the
corresponding sets disk(R).

The proof is in the appendix (the argument is similar to the one of Arora [1]). We
first upper-bound the expectation of |Sadd| and A(OPT)−A(S′), and then use Markov’s
inequality. To bound the expectation of |Sadd|, we observe that the number of additional
disks added in Sadd for each disk in OPT intersecting a line at level ` is O(L/(m2`)) while
the probability that a disk intersects a line at level ` is O(2`/L).

4.6.2 Part 2: Sparsification of S′

The sets S′ ∪ Sadd obtained so far may not satisfy the last property (bounded local size). In
this section, we show how to remove some disks from S′ to guarantee this property while
still maintaining the other required properties in Lemma 20.

Suppose that there exists a leaf square C such that S′C := S′ ∩ C has size greater than
k0 := (1 + β−1)L2

0 = O(ε−3), where β = min {ε/12, 1}. Then the core of C is “overcrowded”
and we show how to construct a non-overcrowded subset maintaining connectivity while
losing only an ε/2-th fraction of the covered area.

Define a set S to be initially equal to S′. Consider each overcrowded leaf square C one
by one, and define SC = S ∩ C. Start with an empty set H and for each disk x ∈ SC , add
x in H if A(H ∪ {x})−A(H) > β. Define H = SC \H as the complement of H and then
apply Claim 22 to G = UDG(S ∪ Sadd) and D = S ∪ Sadd \H to define D′ ⊆ H. Finally
update S to (S \H) ∪D′.

B Claim 22. Let G = (V,E) be a connected graph and D a dominating set with µ connected
components. There exists a subset D′ ⊆ V \D of size at most 2(µ− 1) such that G[D ∪D′]
is connected.

Proof. Let H and H ′ be two connected components in D that minimize dG(H,H ′). Then,
dG(H,H ′) 6 3. Indeed, if dG(H,H ′) > 4, then there exists a vertex x on a shortest path
from H to H ′ that is not dominated by D. This implies that we can find two vertices that
connect H and H ′. We repeat this operation until there is only one connected component.
This requires at most 2(µ− 1) vertices. C

APPROX/RANDOM 2019

32:14 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

The following claim, together with Claim 21 ensures that sets S and Sadd built in Part 1
and Part 2 satisfy the expected properties of our structural Lemma.

B Claim 23. The constructed sets S and Sadd satisfy
(i) S ∪ Sadd is connected,
(ii) for each leaf square C, |S ∩ C| 6 k0, and
(iii) A(S) > (1− ε/2)A(S′).

This Claim might not be true if the radius of disks considered are arbitrary. The proof of
this fact follows from geometrical observations about unit disks.

Algorithm 2 PTAS for MACS with resource augmentation.

Input: X, k, ε.
Output: a real number maxi > (1− ε)OPT.

1 forall c ∈ X do
2 let B′ be the 4k × 4k square centered at c;
3 X ′ ← X ∩ B′;
4 L← the smallest power of 2 such that L > 8k;
5 forall shift a ∈ {0, . . . , L/2} do
6 Create a table tab;
7 foreach configuration C do
8 tab[C]← −∞;

/* Initialization */
9 foreach C at level d (leaf square) do

10 tab[C]← max{A(S) : (S, Sf , P) is usable and corresponds to C};
/* Fusion */

11 foreach level 0 6 i 6 d− 1 in decreasing order do
12 foreach configuration C at level i do
13 tab[C]← max

{∑4
i=1 tab[Ci] : (C, C1, C2, C3, C4) are compatible

}
;

14 return maxi = max
configuration C
for root square

tab [C];

Notice that since the root square has no potential portals (portals are only placed on
lines at level at least 1), any configuration that corresponds to the root square has only one
connected component. We can easily add information in the table so that the algorithm also
outputs the corresponding sets S and Sadd.

Notice that Algorithm 2 tries all possible shift a. Our structural Lemma 20 ensures
that there exists at least one shift such that the output satisfies all expected properties of
Theorem 4.

I Theorem 24. Algorithm 2 has a running time nO(ε−3).

The key ingredient in order to prove that our algorithm is polynomial follows from
Observation 17. We show that the number of connectivity relations of a set of O(m) portals
corresponds to its Catalan number which is polynomial when m = O(ε−1 log(εk)).

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:15

Algorithm 3 PTAS for MACS for well-distributed inputs.

Input: X an α-well-distributed input, k > 0, ε > 0.
Output: A feasible solution to MACS(X, k).

1 Choose ε′ > 0 and k′ 6 k such that (1− ε′)(1− 10(22α+ 4)ε′) > (1− ε) and
k′(1 + (22α+ 4)ε′) = k;

2 Let S, Sadd be the solution of Algorithm 2 on input (X, k′, ε′) ;
3 Let S′ be the set obtained from Sadd by Lemma 25;
4 return S ∪ S′;

5 A PTAS for well-distributed inputs

Let us recall the definition of well-distributed input.

I Definition 5. Given α > 0, a finite set X of points in the plane is called α-well-distributed
if for all x, y ∈ X, dUDG(X) (x, y) 6 dα · ‖x− y‖e.

Here d·e is the ceiling function. This ensures that the right-hand side is always at least
one. Notice that a well-distributed set is necessarily connected.

One intuitive view of a well-distributed input is to look at the shape of the “holes” of
the input, that are the different connected components of the complement of the union of
the input disks in the plane. The assumption of well-distribution means that these holes are
roughly fat.

One particular interesting case arises when there is no hole at all. We call these sets
pseudo-convex, and we prove that this is a particular case of well-distributed inputs.

I Definition 7. A set X is called pseudo-convex if the convex-hull of X is covered by the
union of the unit disks centered at points of X.

I Lemma 8. A pseudo-convex set X is 3.82-well-distributed.

Our Corollary 6 states that the restriction of MACS to well-distributed inputs admits a
PTAS. The algorithm works as follows. Given a parameter 0 < ε 6 1/2, and an input (X, k)
of MACS, we run Algorithm 2 on input (X, k′, ε′) for suitable values k′ and ε′ specified
below. Next, we transform the set of additional disks obtained into a set of input disks that
has roughly the same size while maintaining the connectivity of the solution. See Lemma
25 and Algorithm 3 for details. This algorithm naturally applies to pseudo-convex inputs
(Corollary 9).

I Lemma 25. Given an α-well-distributed input X and two finite sets S ⊆ X and Sadd ⊆ R2

such that UDG(S∪Sadd) is connected, there exists a set S′ ⊆ X of size at most (22α+4)|Sadd|
such that UDG(S∪S′) is connected. Moreover, such a set can be computed in polynomial time.

In the previous lemma, the set Sadd is not supposed to be a set of additional disks as
defined in Section 4.

Since ε′ = Θ(ε/α), the previous algorithm runs in polynomial time when ε and α are
fixed constants.

B Claim 26. The solution returned by Algorithm 3 on input (X, k, ε) is a feasible solution
to MACS(X, k) and covers an area at least (1− ε)OPT(X, k).

In order to prove this result we need to state the following “stability” property over
optimal solutions.

I Lemma 27. Let η < 1
2 . Then OPT(X, k) > (1− 10η) ·OPT(X, k(1 + η)).

APPROX/RANDOM 2019

32:16 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

References
1 Sanjeev Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman

and Other Geometric Problems. J. ACM, 45(5):753–782, September 1998. doi:10.1145/
290179.290180.

2 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

3 Erin W. Chambers, Sándor P. Fekete, Hella-Franziska Hoffmann, Dimitri Marinakis, Joseph S.B.
Mitchell, Venkatesh Srinivasan, Ulrike Stege, and Sue Whitesides. Connecting a set of circles
with minimum sum of radii. Computational Geometry, 68(1-3):62–76, January 1991. special
issue in memory of Ferran Hurtado.

4 Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoerhase. Approximation
Schemes for Geometric Coverage Problems. In ESA, volume 112 of LIPIcs, pages 17:1–17:15.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

5 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Function Maximization
via the Multilinear Relaxation and Contention Resolution Schemes. SIAM J. Comput.,
43(6):1831–1879, 2014.

6 Yuval Filmus and Justin Ward. Monotone Submodular Maximization over a Matroid via
Non-Oblivious Local Search. SIAM J. Comput., 43(2):514–542, 2014. doi:10.1137/130920277.

7 Stefan Funke, Alex Kesselman, Fabian Kuhn, Zvi Lotker, and Michael Segal. Improved
Approximation Algorithms for Connected Sensor Cover. Wirel. Netw., 13(2):153–164, April
2007. doi:10.1007/s11276-006-3724-9.

8 L. A. Wolsey G.L. Nemhauser and M.L. Fisher. An analysis of approximations for maximizing
submodular set functions - I. Mathematical Programming, 14(1):265–294, 1978.

9 Himanshu Gupta, Zongheng Zhou, Samir R. Das, and Quinyi Gu. Connected Sensor Cover:
Self-organization of Sensor Networks for Efficient Query Execution. IEEE/ACM Trans. Netw.,
14(1):55–67, February 2006. doi:10.1109/TNET.2005.863478.

10 Dorit S. Hochbaum and Anu Pathria. Node-Optimal Connected k-Subgraphs, 1994.
11 Koushik Kar and Suman Banerjee. Node Placement for Connected Coverage in Sensor

Networks, 2003.
12 Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the Optimal Neigh-

borhood: Algorithms for Budgeted and Partial Connected Dominating Set Problems. In
Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’14, pages 1702–1713, Philadelphia, PA, USA, 2014. Society for Industrial and Applied Math-
ematics. URL: http://dl.acm.org/citation.cfm?id=2634074.2634197.

13 Ariel Kulik, Hadas Shachnai, and Tami Tamir. Maximizing submodular set functions subject
to multiple linear constraints. In SODA, pages 545–554. SIAM, 2009.

14 Tung-Wei Kuo, Kate Ching-Ju Lin, and Ming-Jer Tsai. Maximizing Submodular Set Function
with Connectivity Constraint: Theory and Application to Networks. IEEE/ACM Trans. Netw.,
23(2):533–546, April 2015. doi:10.1109/TNET.2014.2301816.

15 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular Maximization over Multiple
Matroids via Generalized Exchange Properties. Math. Oper. Res., 35(4):795–806, 2010.

16 M. V. Marathe, H. Breu, H. B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics
for unit disk graphs. NETWORKS, 1995.

17 Tomomi Matsui. Approximation Algorithms for Maximum Independent Set Problems and
Fractional Coloring Problems on Unit Disk Graphs. In Jin Akiyama, Mikio Kano, and
Masatsugu Urabe, editors, Discrete and Computational Geometry, pages 194–200, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

18 Nabil H. Mustafa and Saurabh Ray. Improved Results on Geometric Hitting Set Problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

19 Giri Narasimhan and Michiel Smid. Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA, 2007.

https://doi.org/10.1145/290179.290180
https://doi.org/10.1145/290179.290180
https://doi.org/10.1137/130920277
https://doi.org/10.1007/s11276-006-3724-9
https://doi.org/10.1109/TNET.2005.863478
http://dl.acm.org/citation.cfm?id=2634074.2634197
https://doi.org/10.1109/TNET.2014.2301816

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:17

20 Yuval Rabani and Gabriel Scalosub. Bicriteria approximation tradeoff for the node-cost budget
problem. ACM Trans. Algorithms, 5(2):19:1–19:14, 2009.

21 Fabio Vandin, Eli Upfal, and Benjamin J. Raphael. Algorithms for Detecting Significantly
Mutated Pathways in Cancer. Journal of Computational Biology, 18(3):507–522, 2011.

22 Vijay V. Vazirani. Euclidean TSP, pages 84–89. Springer Berlin Heidelberg, Berlin, Heidelberg,
2003. doi:10.1007/978-3-662-04565-7_11.

23 L. Wolsey. Maximising real-valued submodular functions: primal and dual heuristics for
location problems. Mathematics of Operations Research, 7(3):410–425, 1982.

A Omitted proofs

Proof of Claim 21. Clearly |S′| 6 |OPT| 6 k. We now prove that S′ ∪ Sadd is connected.
Suppose that there exists a disk x ∈ OPT ∩ border such that OPT \ {x} is split into
several connected components. We know that x intersects only one rectangle R1 ∈ R or two
rectangles R1, R2 ∈ R. Since OPT is connected, and Bx is contained in the set U = R1 or
U = R1 ∪R2, each connected component intersects the boundary of U . Then, Bx intersects
a disk in disk(R1) or disk(R2). Therefore, OPT \ {x} ∪ disk(R1) ∪ disk(R2) is connected.
By doing so for each x ∈ OPT ∩ border, it follows that S′ ∪ Sadd is connected.

It remains to show that, under a uniform random shift a, with probability at least one
third we have |Sadd| 6 O(εk) and A(S′) = A(OPT ∩ core) > (1−O(ε))OPT. The proof
is very similar to Arora’s approach, we first upper-bound the expectation of |Sadd| and
A(OPT)−A(S′), and then use Markov inequality to conclude.

We first upper-bound the expected number of additional disks. For each x ∈ OPT
intersecting a line at level `, we have added at most two sets of additional disks associated
to rectangles with side length smaller than the distance between two consecutive portals
of this line. It follows that O(L/(m2`)) additional disks have been added to Sadd for each
disk in OPT intersecting a line of level `. This can be observed in Figure 7. Moreover, the
probability that a disk intersects a line at level ` is O(2`/L). Then,

E(|Sadd|) 6
∑

x∈OPT

d−1∑
`=0

P (x intersects exactly one line at level `)O(L

m2`)

=
∑

x∈OPT

d−1∑
`=0
O(2`

L
· L

m2`) = O(dk
m

) = O(εk)

Figure 7 OPT is represented by orange disks. Disks of OPT that intersect the grid (dotted
line) are replaced by additional disks (striped blue disks). This operation maintains the connectivity
of the set.

APPROX/RANDOM 2019

https://doi.org/10.1007/978-3-662-04565-7_11

32:18 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

We now upper-bound the expectation of A(OPT)−A(S′). First we have A(OPT)−
A(S′) 6 A(OPT ∩ border), and the probability that a point p ∈ B(OPT) is in B(OPT ∩
border) is smaller that p is at distance 2 from the lines of the grid. Therefore

E (A(OPT)−A(S′)) 6 E(A(OPT ∩ border))

6
∫
p∈B(OPT)

P (p is at distance at most 4 from the grid)dp

6
∫
p∈B(OPT)

2 · 4
L0

dp

6
8 ·OPT
L0

= O(εOPT)

By choosing the constant properly in the big O notation and using the Markov inequality,
we can show that the probability of |Sadd| > O(εk) and the probability of A(OPT)−A(S) >
O(εOPT) are both upper bounded by 1

3 . Thus, by a union bound, we conclude the proof.
C

Proof of Claim 23. For (i), we just need to argue that for each leaf square C, after H is
defined, S ∪ Sadd \H is a dominating set in UDG(S ∪ Sadd) (then the proof follows from
Claim 22). Indeed if a disk x is in H then it means that A(H ∪ {x})−A(H) < β 6 1. In
particular, it implies that there exists a disk in H ⊆ S ∪ Sadd \H that intersects x.

For (ii), observe that the size of S ∩ C is the sum of the size of the corresponding sets
H and D′ built during the “sparsification” of C. Since all disks in H increases the area
covered by at least β and are contained in a square of area L2

0, the number of disks in H
is upper-bounded by β−1L2

0. Moreover, each connected component of S ∪ Sadd \H had a
disk contained in C so that the number µ of connected component is upper-bounded by
L2

0/π < L2
0/2. Therefore |D′| < L2

0. Finally |H ∪D′| < (1 + β−1)L2
0 = k0.

For (iii), we start by observing that the union B(S′) of disks in S′ is contained in the set
B+(S), which is defined as

B+(S) := {z ∈ R2 | ∃x ∈ S such that ||z − x|| 6 1 + β}

Indeed, if there exists a point p covered by a disk x in S′ but at distance at least 1 + β

from any disk of S then adding x to S would increase the area covered by S by more that β.

Figure 8 S consists of grey disks. The boundary of B+(S) is the dotted curve. Circular sectors
are in orange while the red one represents a circular sector in B+(S).

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:19

Therefore, we have the following inclusion

B(S) ⊆ B(S′) ⊆ B+(S), (1)

and if the following geometrical claim holds, our proof of (iii) will be complete.

B Claim 28. A(B(S)) > (1− ε/2)A(B+(S))

The result follows from the fact that B(S) is a union of unit-disks. See Figure 8. The
boundary of B(S) is made of circular arcs and each of these arcs is associated with a circular
sector θi. Circular sectors intersect with other circular sectors only on the extreme points of
their corresponding arcs, thus A(∪iθi) =

∑
iA(θi).

We can associate with each circular sector θi (of a disk of radius 1) its “dilation” θ+
i which

corresponds to the same circular sector in a disk of radius 1+β. We haveA(θ+
i) = (1+β)2A(θi)

and can see that B+(S) \B(S) ⊆
⋃
i(θ

+
i \ θi). Then

A(B+(S))−A(B(S)) = A(B+(S) \B(S)) = A
(⋃

i

(θ+
i \ θi)

)
6
∑
i

A(θ+
i \ θi) =

∑
i

A(θ+
i)−A(θi)

6
∑
i

(1 + β)2A(θi)−A(θi)

6
∑
i

3βA(θi) = 3βA
(⋃

i

θi

)
6 3βA(B(S))

Therefore, A(B(S)) >
A(B+(S))

1 + 3β > (1 − ε/2)A(B+(S)). This concludes the proofs of
Claims 28 and 23. C

Proof of Theorem 24.

Size of tab. There exists 4i squares at level i so the total of squares is
∑d
i=0 4i = O(4d+1).

For any square C, the number of potential portal disks is at most 4m. To see this, observe
that if C is of level i, it is of size L/2i × L/2i. Furthermore, it is surrounded by lines of
level at most i and two adjacent portals on such a line has distance Ω(L/(m2i)).
Therefore, the number of possible sets P ⊆ PC is 24m, and for each set P of size r
the total number of planar connectivity relations is equal to the r-th Catalan number

: P (r) = 1
r − 1

(
2r
r

)
= O

(
1

m− 1

(
8m
m

))
and then by Stirling formula we get P (r) =

O(44m). To see that P (r) is the r-th Catalan number, we check that it satisfies the same
recurrence relation :

P (r) =
r∑

k=1
P (k − 1) · P (r − k) (2)

with P (0) = 1. Indeed, if k denotes the index of the first portal pk that is on the connected
component of the r-th portal disk pr, then the portal disk pi with 1 6 i 6 k − 1 cannot
be equivalent to a portal pj disk with k 6 j 6 n, and then the equivalence relation can be
restricted to the set {pi, 1 6 i 6 k − 1} and there are P (k − 1) possible distinct choices.
Next observe that since pn and pk are connected (i.e. pn ∼ pk), it is enough to count
the number of different equivalence relations in {pj , k + 1 6 j 6 r}, which is P (r − k).

APPROX/RANDOM 2019

32:20 Maximizing Covered Area in the Euclidean Plane with Connectivity Constraint

Finally, observe that k can be from 1 to r (k = r means that pr is alone in its connected
component.) We thus concludes (2). Therefore, creating tab in line 6 can be done in time
O(4d+1εk284m) = kO(1/ε).

Initialization. There exists 4d leaf squares and for each of them, we try all possible guesses.
This can be done in time nO(ε−3).

Fusion. Trying all possible combinations can be done in time kO(1/ε) J

Proof of Lemma 27. Let X be a set of points of the plane, k a positive integer and η 6
1/2 a parameter. We prove a stronger result. Given any solution feasible solution S to
MACS(X, k(1 + η)), there exists a subset S′ of S that is a feasible solution to MACS(X, k)
with value at least (1 − 10η)A(S). Obviously Lemma 27 follows when S is optimal. If
A(S) > k/3, then remove ηk disks from S without disconnecting S. For instance, consider a
spanning tree on UDG(S) and remove the nodes from the leaves to the root until you reach
the desired size. Let S′ denote the subset obtained.

A(S′) > A(S)− ηπk > (1− 3πη)A(S) > (1− 10η)A(S)

If A(S) < k/3, let I be a maximal independent set in S. We have |I|π = A(I) 6 A(S) < k

3 .
According to claim 22, there exists a connected dominating set I ⊆ D ⊆ S in S of size at
most 3|I| − 2 < k/π <

k

3 . Consider a set H ⊆ S \D of size k − |D| > 2
3k built by greedily

adding a disk h ∈ S \ (D ∪H) maximising the marginal area A(D ∪H ∪ {h})−A(D ∪H).
Since D is a connected dominating set, the set S′ := D ∪ H is connected. Since all disk
where added greedily in H, for all H ∈ S \ S′, we have

A(S′ ∪ {h})−A(S′)) 6 A(S)−A(D)
|H|

6
2A(S)
k

.
By submodularity, we deduce that A(S)−A(S′) 6 ηk · 2A(S)

3k . That implies A(S′) >
(1− 3

2η)A(S). This concludes the proof of lemma 27. J

Remark that this proof is constructive and it is easy to check that finding S′ from any given
set S can be done in polynomial time.

Proof of Lemma 25. Let us use the same notation as in the statement of Lemma 25. We
prove how to build S′ from Sadd such that |S′| 6 (22α+4)|Sadd| while preserving connectivity.

Let Y be a connected component of Sadd. We prove that we can find a set Y ′ ⊆ X of
input disks such that |Y ′| 6 (4 + 22α)|Y | and (Sadd \ Y) ∪ (S ∪ Y ′) is connected. Removing
Y might split the solution into several connected components F1, . . . , Fs. For each connected
component Fi, pick one disk xi in Fi ∩X that intersects Y .
Step 1. Each additional disk y in Y is adjacent to at most 6 disks xi. We can connect the

corresponding connected component by using 20α disks of the input. Indeed, any two
xi and xj adjacent to y has a Euclidean distance at most 4. Since X is well-distributed
their distance in UDG(X) is at most 4α. Then, we can find d4α− 1e disks in X which
connect xi and xj . In order to connect all the xi that are adjacent to y, it is sufficient
to repeat this operation 5 times, which asks at most 20α disks. We can perform this
operation for each additional disk that was not already considered. Then, in total for
this first step we need to use at most 20α|Y | disks.

C.-C. Huang, M. Mari, C. Mathieu, J. S. B. Mitchell, and N.H. Mustafa 32:21

Step 2. During step 1, we may have connected some disks xi, so that the number of
connected components has decreased. The number of connected components is s′ 6 s,
each of them corresponds to a disk xi, and without loss of generality we can assume that
the corresponding indexes are such that 1 6 i 6 s′. Let T be a spanning tree on UDG(Y).
Without loss of generality, we can suppose that indexes i are such that the sequence
(x1, . . . , xs′) correspond to a T transversal. Note that after step 1, each xi can be associated
to a different y in Y . Then, we reconnect each xi to xi+1 for 1 6 i 6 s− 1. If xi and xi+1
are respectively associated to yi and yi+1, then ||xi − xi+1|| 6 2 + 2dT (yi, yi+1) and thus
dUDG(X)(xi, xi+1) 6 dα(2 + 2dT (yi, yi+1)e. Then, we can find dα(2 + 2dT (yi, yi+1)e − 1
disks in X to connect xi and xi+1. In order to connect all xi we need to use at most

s′−1∑
i=1
dα(2 + 2dT (yi, yi+1)e − 1 6 2(s′ − 1)α+ 2

s′−1∑
i=1

dT (yi, yi+1)

input disks. Since the order corresponds to a T transversal, each edge is visited at most
twice and then

∑s′−1
i=1 dT (yi, yi+1) 6 2(|Y | − 1). Therefore the total number of disks that

were added during this second step is bounded by |Y |(4 + 2α).

We proved that there exists a subset Y ′ ⊆ X of size at most (4 + 22α)|Y | such that
(S ∪ Sadd \ Y) ∪ Y ′ is connected. By doing so for each connected component of Sadd, we get
the result claimed. J

Proof of Lemma 8. Let X be a pseudo-convex set, G its unit-disk-graph, and x and y

be any two disks in X at distance L = ‖x− y‖. We show that dG(x, y) 6 dαLe where
α = 12/π < 3.82.

If L < 2 then the two unit disks associated to x and y overlap so that dG(x, y) = 1 6 dαLe.
Otherwise suppose that L > 2. Since X is pseudo-convex, it is connected and any point in
the line segment [x, y] is covered by a disk in X. Let S = {z ∈ X | Bz ∩ [x, y] 6= ∅, ‖x− z‖ >
2 and ‖y − z‖ > 2} and let I be any maximal independent set in S ∪ {x, y}. Since S is at
distance at least 2 from x and y, we deduce that x, y ∈ I and all disks in I \ {x, y} are inside
a L × 4 rectangle and then |I| 6 4L/π. Since I is maximal, it is a dominating set in S.
Therefore, claim 22 implies that there exists a connected subset D ⊆ X such that I ⊆ D

and |D| 6 3|I| − 2 6 12L/π − 2. We deduce that dG(x, y) 6 (12L/π − 2) + 1 6 dαLe. J

Proof of Claim 26. The solution output by Algorithm 2 on input (X, k′, ε′) verifies the follow-
ing properties: S ∪ Sadd is connected, the size of S and Sadd are respectively upper-bounded
by k′ and ε′k′ and A(S) > (1− ε′)OPT(X, k′). Therefore, the set S′ given by Lemma 25
has size at most (22α+ 4)|Sadd| 6 (22α+ 4)ε′k′, and then |S ∪ S′| 6 k′ + (22α+ 4)ε′k′ 6
(1+(22α+4)ε′)k′ = k. Since S∪S′ is connected, this set is a feasible solution to MACS(X, k).

Finally, from Lemma 27 with parameter η = (22α+ 4)ε′, we get that the area covered by
this solution is

A(S ∪ S′) > A(S) > (1− ε′)OPT(X, k′) > (1− ε′)(1− 10η)OPT(X, k′(1 + η))
> (1− ε′)(1− 10(22α+ 4)ε′)OPT(X, k′(1 + (22α+ 4)ε′))
> (1− ε)OPT(X, k)

which concludes the proof. C

APPROX/RANDOM 2019

Robust Correlation Clustering
Devvrit
BITS Pilani, Goa Campus, Goa, India
devvrit.03@gmail.com

Ravishankar Krishnaswamy
Microsoft Research, Bengaluru, India
rakri@microsoft.com

Nived Rajaraman
IIT Madras, Chennai, India
nived.rajaraman@gmail.com

Abstract
In this paper, we introduce and study the Robust-Correlation-Clustering problem: given a
graph G = (V,E) where every edge is either labeled + or − (denoting similar or dissimilar pairs of
vertices), and a parameter m, the goal is to delete a set D of m vertices, and partition the remaining
vertices V \D into clusters to minimize the cost of the clustering, which is the sum of the number of
+ edges with end-points in different clusters and the number of − edges with end-points in the same
cluster. This generalizes the classical Correlation-Clustering problem which is the special case
when m = 0. Correlation clustering is useful when we have (only) qualitative information about the
similarity or dissimilarity of pairs of points, and Robust-Correlation-Clustering equips this
model with the capability to handle noise in datasets.

In this work, we present a constant-factor bi-criteria algorithm for Robust-Correlation-
Clustering on complete graphs (where our solution is O(1)-approximate w.r.t the cost while
however discarding O(1)m points as outliers), and also complement this by showing that no finite
approximation is possible if we do not violate the outlier budget. Our algorithm is very simple in
that it first does a simple LP-based pre-processing to delete O(m) vertices, and subsequently runs
a particular Correlation-Clustering algorithm ACNAlg [2] on the residual instance. We then
consider general graphs, and show (O(logn), O(log2 n)) bi-criteria algorithms while also showing a
hardness of αMC on both the cost and the outlier violation, where αMC is the lower bound for the
Minimum-Multicut problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Facility location and clustering

Keywords and phrases Correlation Clustering, Outlier Detection, Clustering, Approximation Al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.33

Category APPROX

1 Introduction

Clustering is one of the most widely used tools in various scientific disciplines (such as biology,
computer science, machine learning and operations research to name a few) due to its wide
applicability in these domains. Broadly speaking, the goal of clustering is to partition a
given dataset into a number of clusters such that data items in the same cluster are more
alike each other than data items in different clusters. In many application domains, the
data items are naturally represented as points in a metric space, and the distance between
the corresponding vectors is used as a measure of (dis)similarity. In such cases, clustering
formulations such as k-median or k-means are the de-facto standards to utilize. However,
there are also quite a few application domains where the information available to us is simply

© Devvrit, Ravishankar Krishnaswamy, and Nived Rajaraman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 33; pp. 33:1–33:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:devvrit.03@gmail.com
mailto:rakri@microsoft.com
mailto:nived.rajaraman@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.33
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Robust Correlation Clustering

whether different pairs of data items are similar or dissimilar to each other. Examples of such
settings where there is only qualitative information include data items being web-pages on
the internet, a collection of people on a social network or even a group of proteins. Motivated
by such settings, Bansal et al. [3] formulated a problem known as correlation clustering (in
fact, a similar problem was implicitly studied by Ben-Dor et al.[4] as ’Cluster Editing’).

I Problem 1 (Correlation-Clustering). We are given a complete graph G = (V,
(
V
2
)
),

and a labelling of each edge as either positive or negative, denoting whether the end vertices of
the edge are similar to each other or dissimilar. In other words, the edge set

(
V
2
)
is partitioned

into E+∪̇E− where E+ denotes the similar pairs and E− denotes dissimiliar pairs. The goal
is to compute a partition C = {C1, C2, . . . , Cr} of V (so V = ∪̇1≤i≤rCi is a disjoint union of
the Ci’s) to minimize the cost of the clustering, which is the total number of E+ edges with
end-points in different clusters and E− edges with end-points in the same cluster.

A nice modeling aspect of this problem is that the number of clusters is not specified as
part of the input, and rather, left to the algorithm. This makes it a compelling problem when
we do not have a priori knowledge of the number of clusters we seek in the final partitioning.

Since being introduced formally as an optimization problem, there have been numerous
works trying to understand the computational complexity of the problem. Bansal et al. [3]
show that the problem is APX-hard (ruling out the design of PTASes unless P=NP) and
obtain a constant-factor approximation algorithm for this problem. Subsequently, there have
been a series of works (see, e.g., the survey by Wirth [23]) getting better factors, with the
current best bound being a factor of 2.06 due to Chawla et al. [8].

Despite the simplicity and elegance of the various clustering formulations described thus
far, a significant shortcoming of most of them is that they are not robust to noisy points. For
example, the presence of a few outliers in the data set can completely change the cost and
structure of solutions obtained by running clustering algorithms for k-median, k-means, etc.
Indeed, this has prompted much recent study in the CS, ML and statistics communities of
robust versions of these problems [6, 10, 17]. Motivated by this observation, and the fact that
real-world data sets are often noisy, we investigate the robustness of correlation clustering.

I Problem 2 (Robust-Correlation-Clustering). The input to this problem is identical
to the correlation clustering instance as in Problem 1. Additionally, we are also given a
parameter m, which denotes the number of points we can discard while clustering. The goal
is to identify a set D ⊆ V of outliers of size m, and cluster the remaining points V \D to
minimize the cost of the resulting clustering, i.e., the total number of E+ edges (resp. E−
edges) in V \D with end-points in different clusters (resp. same cluster).

We note that Correlation-Clustering problem also makes sense when the edge set
E+∪E− is not the complete graph, since we often do not have complete information about the
(dis)similarity of each pair of points (it could be expensive or even impossible to obtain such
information like in the case of protein-protein interactions). Now the problem becomes much
harder, and the current best known algorithms have approximation guarantees of a factor
of O(logn). Moreover, there is an approximation-preserving reduction from the Minimum-
Multicut problem, for which the best known approximation is an O(logn) factor [5]. In
this paper, we also consider the Robust-Correlation-Clustering problem on general
graphs, analogous to the study of Correlation-Clustering in general graphs [5].

I Problem 3 (Robust-Correlation-Clustering on General Graphs). The problem is
identical to Problem 2, with the exception that the union of E+ and E− need not be

(
V
2
)
.

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:3

1.1 Our Results
Having introduced the problem, the first question we address is whether the Correlation-
Clustering objective is indeed susceptible to outliers in the dataset. That is, we seek to
understand whether the solution cost and/or structure can change a lot by the removal of a
few points in the dataset. Classical objectives such as k-median and k-means suffer from this
drawback even in the simplest of settings when we are promised that after removing some m
data-points, the optimal clustering of the remaining points would have 0 cost. In such cases,
solving k-means objective on the original instance could yield very different solutions than
the intended solution, which is the 0 cost (or perfect clustering).

Somewhat surprisingly, our first simple observation is that the correlation clustering
objective is inherently robust to an extent, at least in the case when the cost of the clustering
after removing m outliers becomes 0. We show that in this case, the optimal correlation
clustering solution and the optimal robust correlation clustering solution are structurally
identical upto O(m) points.

I Theorem 4. Consider an instance I of Robust-Correlation-Clustering on complete
graphs such that Opt(I) = 0, i.e., there exists a set D∗ ⊆ V of m vertices deleting which,
the subgraph induced by V \D∗ admits a perfect clustering C∗. Then, consider any optimal
solution C̃ to Correlation-Clustering (Problem 1). There exists a set D̃ of O(m) vertices
s.t. the cost of C̃ \ D̃1 has objective function value 0.

This theorem in fact sets apart the correlation clustering objective from other clustering
objectives such as k-means and k-median where an analogous statement to Theorem 4 does
not hold. Moreover, we believe that a similar result is true even when Opt(I) 6= 0 when
comparing the optimal solutions of the robust and non-robust problems.

Now, while this exhibits the robustness of correlation clustering w.r.t. optimal solutions,
the problem is APX-hard and hence we typically do not deal with optimal solutions. Hence,
we next consider the same question, but for approximation algorithms.

I Theorem 5. There exists an instance I of Robust-Correlation-Clustering on
complete graphs which satisfies the following properites: (a) Opt(I) = 0, i.e., there exists a
set D ⊆ V of m = O(

√
n) vertices deleting which, the subgraph induced by V \D admits a

perfect clustering, and (b) there exists a constant-factor approximately optimal solution C to
the Correlation-Clustering objective function (1), such that, for any set S of < n− 1
vertices, the cost of the clustering C \ S is still non-zero.

This then provides sufficient motivation for undertaking this study, with the main focus
of whether we can design efficient approximation algorithms for Robust-Correlation-
Clustering. Our first result in this direction is a negative result, which says that it is
in fact NP-hard to obtain any finite approximation algorithm for Robust-Correlation-
Clustering, even on complete graphs. This is in stark contrast to Problem 1, where we
know very good constant-factor approximations.

I Theorem 6. It is NP-hard to obtain any finite approximation factor for Robust-
Correlation-Clustering on complete graphs, unless we violate the budget on the number
of outliers.

1 We somewhat abuse notation to let C \D to denote the clustering obtained by removing the points in
D from the clustering C.

APPROX/RANDOM 2019

33:4 Robust Correlation Clustering

We therefore seek to obtain bi-criteria approximation algorithms: an (a, b) bi-criteria
approximation for Robust-Correlation-Clustering is one where the solution’s cost is
at most a times the optimal cost, and the number of outliers in our solution is at most b ·m.

I Theorem 7. There is an efficient bi-criteria (6, 6)-approximation algorithm for Robust-
Correlation-Clustering on complete graphs.

Our algorithm is extremely simple: it essentially does a simple LP-based pre-processing
step to prune out a set of O(m) outliers, and then executes a classical algorithm for
Correlation-Clustering [2] (henceforth called ACNAlg) on the remaining vertices.
This approach works because the LP relaxation which [2] uses for solving Correlation-
Clustering is a purely covering LP (as opposed to the more natural metric LP relaxation
for Correlation-Clustering), and can easily be adapted to incorporating outliers. We
remark that, owing to the pre-processing step, our overall algorithm requires solving an
LP: it would be very interesting to develop a purely combinatorial algorithm for Robust-
Correlation-Clustering on complete graphs. It might even be possible for a simple
adaptation of the ACNAlg algorithm to be a constant-factor bi-criteria approximation. We
leave this as an important avenue of future research.

Finally, we turn our attention to Robust-Correlation-Clustering on general graphs,
where we show poly-logarithmic bi-criteria algorithms and logarithmic hardness results on
both the cost as well as the outlier budget. While the Correlation-Clustering problem is
equivalent to Minimum-Multicut [14] and we can use any Minimum-Multicut algorithm
to solve the problem, we show that one specific technique based on padded decompositions of
metric spaces naturally lends itself to solving the robust problem.

I Theorem 8. There is an efficient bi-criteria (O(logn), O(log2 n))-approximation algorithm
for Robust-Correlation-Clustering on general graphs.

I Theorem 9. It is NP-hard to obtain any bi-criteria (a, b)-approximation algorithm for
Robust-Correlation-Clustering on general graphs for b < αMC or a < αMC where
αMC is the inapproximability factor for the Minimum-Multicut problem.

It would be interesting to resolve the gap between the O(log2 n) upper bound and the
Ω(logn) lower bound for the outlier budget violation.

1.2 Related Work

Since its introduction, Correlation-Clustering has received much attention with focus
on designing better algorithms (see the survey of [23]), faster algorithms in the parallel
and distributed [11] and streaming settings [1], stochastic/average-case settings [19], and
applications [12, 13, 20]. There is also work on a related objective function of maximizing the
number of classified edges [3]. Being a maximization objective, it is easier to design simple
constant-factor approximation algorithms like random partitions, etc. There are however,
better SDP-based approximation algorithms [5, 22].

Recently there has also been a large body of work on the crucial problem of noise-
resilient or robust clustering for distance-based clustering objectives such as k-means [10, 17],
and designing faster algorithms [7, 21, 16], and parallel and distributed algorithms in this
model [9, 18]. To the best of our knowledge, this is the first work to study the Correlation-
Clustering problem from robustness point of view.

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:5

1.3 Paper Outline
We first describe the inherent robustness to outliers of optimal solutions for Correlation-
Clustering in Section 2. We then consider Robust-Correlation-Clustering for
complete graphs, and show our hardness of approximation in Section 3, followed by the
bi-criteria algorithm in Section 4. Finally, in Section 5 and Appendix A, we turn our attention
to the case of general graphs and present our algorithm and hardness.

2 Robustness of the Correlation-Clustering Objective

In this section, we show two simple but illuminating results. The first result explains how, in
contrast to problems like k-median and k-means, the vanilla correlation clustering objective
is in fact inherently robust to an extent, when solved optimally. The second result then shows
this not to be true when considering solutions which are only approximately optimal. We
remark that the second result and that fact that correlation clustering is APX-hard [3] serves
as a strong motivation for studying the Robust-Correlation-Clustering problem.

2.1 Optimal Correlation-Clustering Solutions are Robust
In this section, we exhibit the inherent robustness of the correlation clustering objective
(1) in a specialized scenario. Indeed, consider an instance I of Robust-Correlation-
Clustering such that Opt(I) = 0, i.e., there exists a set of m points deleting which the
remaining points are perfectly clusterable, i.e., have 0 cost. Now, imagine we obtain an
optimal Correlation-Clustering solution (Problem 1) to instance I. We show that there
exist O(m) points, deleting which, the cost indeed becomes 0 for this solution. This tells us
that the optimal solutions to 2 and 1 are nearly identical to each other (upto O(m) points),
and hence, that the correlation clustering objective is inherently robust!

Proof of Theorem 4. We begin by recalling the theorem statement and setting up notation.
Let I be an instance of Robust-Correlation-Clustering such that Opt(I) = 0, i.e.,
there exists a set D∗ ⊆ V of m vertices deleting which, the subgraph induced by V \D∗
admits a perfect clustering C∗. And consider any optimal solution C̃ to instance I w.r.t the
Correlation-Clustering objective function (1). We would like to claim that there exists
a set D̃ of O(m) vertices such that C̃ \ D̃ is identical to C∗ \ D̃. We show this by showing
that the cost of the clustering C̃ \ D̃ is 0, and hence it must be the same as C∗ \ D̃.

To this end, let C∗ = {C∗1 , C∗2 , . . . , C∗r } denote the optimal Robust-Correlation-
Clustering clustering over vertices V \D∗, and let C̃ = {C̃1, C̃2, . . . , C̃s} denote the optimal
Correlation-Clustering clustering over all vertices V . We divide the clusters in C̃ into
two types:
(a) A cluster C̃ ∈ C̃ is a mixed cluster if it contains points from more than one cluster in C∗,

i.e., there exists i1, i2 s.t |C̃ ∩ C∗i1 | > 0 and |C̃ ∩ C∗i2 | > 0, and
(b) A cluster C̃ ∈ C̃ is an isolated cluster if it contains points from only one cluster in C∗.

We then show that the total number of points in mixed clusters is O(m), and can
simply add all such points to D̃. At this point, we would only be left with isolated clusters.
Subsequently, we show that two isolated clusters composed of points from the same cluster
in C∗ can contain at most O(m) points. Therefore, we once again add these points to D̃.
Finally, we add all the remaining set of at most m outliers to D̃. It is easy to see that the
resulting clustering C̃ \ D̃ = C∗ \D∗. These results are established in Lemmas 10 and 11. J

APPROX/RANDOM 2019

33:6 Robust Correlation Clustering

I Lemma 10. Let C̃ be a mixed cluster, and let X = C̃ ∩D∗ denote its overlap with the
outlier set R∗ in the optimal Robust-Correlation-Clustering clustering. Then we have
|C̃| ≤ O(1)|X|.

Proof. Since C̃ ∈ C̃ is a mixed cluster, there exists i1 6= i2 s.t |C̃ ∩C∗i1 | > 0 and |C̃ ∩C∗i2 | > 0.
Now, since C̃ is an optimal solution for Correlation-Clustering, we have that the cost
of the clustering must increase when we consider the following clustering C̃1 = (C̃ \ C̃)∪ (C̃ ∩
C∗i1) ∪ (C̃ \ C∗i1) formed by replacing C̃ with (C̃ ∩ C∗i1) and (C̃ \ C∗i1). since C∗ is an optimal
clustering with cost 0, we know that all the edges between C∗i1 and C∗i for i 6= i1 belong to
E−. This, combined with the fact that the cost of this new clustering is more than that of C̃
gives us the following inequality:

|C̃ ∩ C∗i1 |

∑
i 6=i1

|C̃ ∩ C∗i |

 ≤ |X||C̃ ∩ C∗i1 |
=⇒

∑
i 6=i1

|C̃ ∩ C∗i | ≤ |X| (1)

A similar argument by replacing C̃ with (C̃∩C∗i2) and (C̃ \C∗i2) would yield
∑
i6=i2 |C̃∩C

∗
i | ≤

|X|. Summing the two inequalities, we get that |C̃ \X| ≤ 2|X|, and so |C̃| ≤ 3|X|, completing
the proof. J

I Lemma 11. Let C̃1, C̃2 be two isolated clusters containing points from the same cluster
C∗ ∈ C∗, and let X1 = C̃1 ∩ D∗ and X2 = C̃2 ∩ D∗ denote their intersections with the
outlier set R∗ in the optimal Robust-Correlation-Clustering clustering. Then we have
|C̃1 ∪ C̃2| ≤ O(1)|X1 ∪X2|.

Proof. Since C̃ is an optimal solution w.r.t the Correlation-Clustering objective, we
know that if we modify C̃ by moving the points C̃1 ∩ C∗ to cluster C̃2, the cost does not
decrease. This gives us the following inequality, which uses the fact that all edges within C∗
belong to E+ due to the fact that cost of C∗ is 0:

|C̃1 ∩ C∗||C̃2 ∩ C∗| ≤ (|X1|+ |X2|)|C̃1 ∩ C∗|

=⇒ |C̃2 ∩ C∗| ≤ |X1|+ |X2|

A similar argument would also give us |C̃1 ∩ C∗| ≤ |X1|+ |X2|. Adding these inequalities
gives us |C̃1 ∩ C∗|+ |C̃2 ∩ C∗| ≤ 2(|X1|+ |X2|), and adding back X1 and X2 will incur an
additional cost of |X1|+ |X2|, hence completing the proof. J

2.2 Approximate Solutions may not be Robust
We next focus on approximation algorithms to Correlation-Clustering, and show that
they need not be robust to outliers (Theorem 5). Indeed, consider the following instance
I = (V,E) of Robust-Correlation-Clustering with n+

√
n points. Consider a

√
n×
√
n

grid, such that all points lying on the same row are pairwise similar, i.e., belong to E+ while
any two points lying on different rows are dissimilar and belong to E−. To this arrangement,√
n bad points are added, which are pairwise dissimilar to one another, but share a + edge

with each of the n points in the original
√
n×
√
n grid.

We first note that the optimal Correlation-Clustering solution to I has cost Ω(n
√
n).

Indeed, consider any triangle u, v, w where u is a bad point, and v and w belong to different
rows. Note that there must at least be one mis-classified edge in this triangle in the optimal

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:7

solution. So, if we let B denote the set of all such bad triangles, the following is a valid lower
bound on OPT: min

∑
e∈t,t∈B ze s.t

∑
e∈t ze ≥ 1,∀t ∈ B. The dual of this is max

∑
t∈B yt s.t∑

t:e∈t,t∈B yt ≤ 1,∀e ∈ E. It is easy to see that the optimal value of the dual LP is at least
Ω(n
√
n) by setting yt = 1/n for all bad triangles in B. Now consider a clustering C which

clusters each column of the grid into a cluster, and puts the bad points in another cluster. The
overall cost of the clustering is O(n

√
n), which is a constant-factor approximation. Moreover,

note that the only way to get a 0 cost clustering from C (without altering the structure of C)
is by deleting all the n grid points.

3 Robust-Correlation-Clustering on Complete Graphs: Hardness

In this section, we give the proof of Theorem 6. The proof follows by an approximation
preserving reduction from vertex cover. Consider an instance Ivc of vertex cover, given by a
graph, G = (V,E) on n vertices. We construct the Robust-Correlation-Clustering
instance I as follows: for each vertex v ∈ V , we create two points v1 and v2, giving us a
total of 2n vertices in I. For every vertex v ∈ V , we make the edge (v1, v2) ∈ E+. Similarly,
for any pair of vertices u, v ∈ V the edges (u2, v2), (u1, v2) and (u2, v1) all belong to E−.
Finally, we place edge (u1, v1) ∈ E+ if the edge (u, v) ∈ E, and in E− otherwise. The outlier
budget is some parameter m, unrelated to the number of edges in G.

I Lemma 12. There exists a solution of cost 0 for I if G has a vertex cover of size m.

Proof. Let S ⊆ V denote a vertex cover of size m for G, and let S1 = {v1 : v ∈ S}. Then,
consider the natural clustering C = {{v1, v2} : v ∈ V } comprising of the pairs of vertices.
The only mis-classified edges in this clustering are of the form (u1, v1) corresponding to edges
(u, v) of G. But now, suppose we declare the points in S1 as outliers, then it follows that the
resulting clustering C \ S1 has 0 cost, since S is a vertex cover for G. J

I Lemma 13. If there is a set S of m outliers such that the remaining points has a 0 cost
clustering C in instance I, then G has a vertex cover of size at most m in instance Ivc.

Proof. We construct a candidate vertex cover S′ for G from the outlier-set S as follows:
for each v ∈ V , include v ∈ S′ if either v1 or v2 is in S. We claim then that S′ is a valid
vertex cover for G. To the contrary, suppose an edge (u, v) is not covered by S′. Then,
none of the four points u1, u2, v1, v2 are included in the outlier-set S in the robust clustering
solution. Now, since clustering C has 0 cost, it must be that the four points u1, u2, v1 and
v2 must belong to the same cluster in C, or else, one of the edges in (u1, u2), (u2, v2), and
(v2, v1), all of which belong to E+, would be mis-classified. But now the edges (u1, v2) and
(v1, u2) belong to E− and would be mis-classified in C, which contradicts the fact that C has
0 cost. J

Theorem 6 then follows from Lemmas 12 and 13.

4 Robust-Correlation-Clustering on Complete Graphs: Algorithms

In this section, we design a simple LP-rounding based bi-criteria approximation algorithm
for Robust-Correlation-Clustering (Problem 2) and prove Theorem 7. We begin by
recalling the problem setup: we are given an instance I consisting of a graph (V,E+, E−) on
n points with E+ ∪ E− =

(
V
2
)
. The goal is to identify a set of vertices D such that |D| = m,

and a clustering C over V \ D such that the total cost is minimized. We start with the
following definition crucial to the design and analysis of our algorithm.

APPROX/RANDOM 2019

33:8 Robust Correlation Clustering

I Definition 14 (Bad Triangles). A triplet (u, v, w) of points is said to be a bad triangle if
exactly two of the three edges among (u, v), (v, w), (u,w) belong to E+ and one to E−.

Note a bad triangle captures the smallest unit of inconsistency in the similarity information
among the points: either we delete one of the vertices as an outlier, or at least one of the
edges must be mis-classified. In what follows, let B denote the set of all bad triangles in I.

4.1 Recap of ACNAlg for Correlation-Clustering [2]
Since the crux of our algorithm is the ACNAlg for correlation clustering, we begin with a
quick recap of ACNAlg. Essentially, the algorithm iteratively picks a random un-clustered
vertex v as a new cluster center, and includes all other un-clustered vertices similar to v.

Algorithm 1 ACNAlg(V,E+, E−).

set U = V and C = ∅ . initialize set of un-clustered points and set of cluster centers
while U 6= Φ do

sample v ∼ Unif(U)
update C ← C ∪ {v} . random v is sampled as a cluster center
let Cv = {u ∈ U : (u, v) ∈ E+} ∪ {v} . un-clustered vertices similar to v
update U ← U \ Cv

end while
return: C = {Cv : v ∈ C}

I Theorem 15 ([2]). ACNAlg(V,E+, E−) is a 3 approximation for Correlation-
Clustering.

In what follows, we outline the proof in [2] of ACNAlg, and describe a couple of definitions
and lemmas which will be useful in understanding our overall analysis.

I Definition 16. A bad triangle (u, v, w) ∈ B is said to be touched, denoted by touched(t) = 1,
if there exists a point in the algorithm execution when all three vertices u, v, w belong to the
un-clustered set U and one of u, v, w gets sampled as a cluster center.

I Lemma 17. At the end of Algorithm 1, every mis-classified edge (i.e., an E− edge which
is in a single cluster, or an E+ edge which goes across clusters) is associated with a unique
bad triangle which is touched. Moreover, the opposite vertex to the mis-classified edge must
be sampled as the cluster center.

Proof. Consider a stage of the algorithm when a vertex u gets chosen as a cluster center.
Then any newly mis-classified edge (v, w) can be of two types: (i) (v, w) ∈ E− is mis-classified
due to both (u, v) and (u,w) belonging to E+; (ii) (v, w) belonging to E+, with (u, v) ∈ E+
and (u,w) ∈ E−. In both cases we can associate the newly mis-classified edge (v, w) with
the unique bad triangle (u, v, w) which gets touched. J

Proof of Theorem 15. The first step is the following LP-based lower bound on Opt(I).
Indeed, we know that each bad triangle must have at least one mis-classified edge, and so
the LP is simply a linear relaxation for finding a maximal set of disjoint bad triangles.

maximize
∑
t∈B

wt, s.t., (LP1)∑
t∈B:u,v∈t

wt ≤ 1, ∀e = (u, v) ∈ E,

wt ∈ [0, 1], ∀t ∈ B.

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:9

Since it will be useful in the next section, we state the dual program, which is a relaxation
for the hitting set for all bad triangles.

minimize
∑
u,v

zu,v, s.t., (LP2)

zu,v + zv,w + zu,w ≥ 1, ∀t ∈ B,
zu,v ∈ [0, 1], ∀u, v ∈ B.

Now, let pt = E[touched(t)], where touched(t) is the indicator random variable for whether
a bad triangle t is touched in the algorithm. The crux of the proof is the following lemma.

I Lemma 18. The values {E[touched(t)]/3 : t ∈ B} form a feasible solution to LP1.

Proof. To this end, consider any edge e = (u, v) and the set of bad triangles Bu,v =
{(u, v, w) ∈ B} it is part of. Lemma 17 tells us that (u, v) will be mis-classified if and only if
one of these bad triangles t ≡ (u, v, w) ∈ Bu,v is touched, and the third vertex w must be
picked as a cluster center when the triangle is touched. Finally note that, for any triangle
t ≡ (u, v, w), the probability that w is picked as the cluster center conditioned on touched(t)
is exactly 1/3, since the algorithm selects the new cluster center uniformly at random from
the un-clustered vertices. Thus we have that: 1 ≥ P((u, v) is mis-classified) =

∑
t∈Bu,v

pt/3,
thereby showing the LP feasibility of {pt/3}. J

Also note that by Lemma 17, we have that E[cost(C)] =
∑
t∈B pt, where cost(C) is the

objective value of the clustering C. Lemma 18 coupled with this inequality bounding the
cost completes the proof of Theorem 15. J

4.2 LP-rounding algorithm for Robust-Correlation-Clustering
We now present our constant-factor bi-criteria approximation for Robust-Correlation-
Clustering which uses ACNAlg as a sub-routine. Since the ACNAlg algorithm analysis
bounds the expected cost of the clustering in terms of the LP relaxation LP1, by duality, we
can also infer that the expected cost of ACNAlg is bounded by the LP relaxation LP2. We use
this intuition as our starting point: indeed, we can extend this covering LP to handle outliers
in the following natural manner. Let zu,v denote whether an edge (u, v) is mis-classified,
and yu denote whether a vertex is deleted or not. Then the following LP3 is a valid LP
relaxation for Robust-Correlation-Clustering on complete graphs.

minimize
∑

(u,v)∈(V
2)
zu,v, s.t. (LP3)

yu + yv + yw + zu,v + zv,w + zu,w ≥ 1, ∀t = (u, v, w) ∈ B, (2)∑
u

yu ≤ m,

zu,v ≥ 0, ∀(u, v) ∈
(
V
2
)
,

yu ≥ 0, ∀u ∈ V.

Equation (2) of LP3 states that at least a unit cost is incurred for any bad triangle in B if
no vertices from this triangle are deleted. Let {y∗u : u ∈ V } ,

{
z∗u,v : (u, v) ∈

(
V
2
)}

denote the
optimal solution to LP3.

I Lemma 19. Opt(I) ≥
∑

(u,v)∈(V
2) z
∗
u,v = Opt(LP3).

APPROX/RANDOM 2019

33:10 Robust Correlation Clustering

Proof. Indeed, consider any optimal solution to the Robust-Correlation-Clustering
instance, and set zu,v = 1 if (u, v) is mis-classified, and yu = 1 if u is deleted. For any
bad triangle (u, v, w) ∈ B, note that either one of u, v or w must be deleted as an outlier
in the optimal solution, or one of the three edges must be mis-classified. Hence the first
LP constraint is satisfied. The second is true since the optimal solution deletes at most m
outliers. Finally, the objective function captures the number of mis-classified edges. J

Algorithm 2 RCCAlg(V,E+, E−,m).

1: Initialization: Vdel ← ∅ . Set of deleted vertices
2: Let the optimal solution of LP3 be denoted as {y∗u : u ∈ V } ∪ {z∗uv : (u, v) ∈

(
V
2
)
}

3: Vdel ← {v ∈ V : y∗v ≥ 1/6} . Delete vertices having y∗v ≥ 1/6
4: V ′ ← V \ Vdel
5: return: ACNAlg(V ′, E′+, E′−) . E′+, E

′
−: edges in

(
V
2
)
not incident on Vdel

4.3 Analysis

I Theorem 20. RCCAlg(V,E+, E−,m) is a bi-criteria (6, 6)-approximation for Robust-
Correlation-Clustering.

Proof. The proof of this result follows from Lemmas 21 and 22. J

I Lemma 21. At most 6m vertices are deleted by RCCAlg(V,E+, E−,m).

Proof. Recall that RCCAlg(V,E+, E−,m) deletes those vertices having y∗u ≥ 1/6 in the
optimal solution to LP3. Let the set of vertices deleted by RCCAlg(V,E+, E−,m) be denoted
Vdel. Then,

|Vdel| =
∑
u∈V

1(y∗u ≥ 1/6) ≤
∑
u∈V

6y∗u ≤ 6m.

Therefore, the budget of vertices to remove is not exceeded by more than a factor of 6. J

We next bound the cost incurred by the clustering output by RCCAlg(V,E+, E−,m).

I Lemma 22. The cost of the clustering output by RCCAlg(V,E+, E−,m) is at most 6 times
the cost of the optimal clustering to I.

Proof. Since the first step deletes vertices in Vdel = {v ∈ V : y∗v ≥ 1/6}, it suffices to
consider the remaining vertices V ′ = V \ Vdel and show that ACNAlg has cost at most 6Opt
on the residual instance. The proof is again very simple: indeed, each vertex v′ ∈ V ′ has
y∗v′ ≤ 1/6, we get that the optimal LP solution to LP3 satisfies z∗u,v + z∗v,w + z∗u,w ≥ 1/2 for
all (u, v, w) ∈ B′, where B′ denotes the set of all bad triangles induced in the vertex set V ′.
Then by simply considering the scaled variables 2z∗u,v, we get that there exists a feasible
solution to LP2 for the Correlation-Clustering instance induced in (V ′, E′+, E′−), of
cost at most 2Opt. Hence, since the 3-approximation of ACNAlg guarantee holds against the
dual LP LP1, we can use weak duality to complete the proof. J

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:11

5 Algorithms for Robust-Correlation-Clustering on General Graphs

In this section, we consider Robust-Correlation-Clustering on general graphs and
prove Theorem 8. Given an instance I, comprising of graph G = (V,E+ ∪ E−) and outlier
budget m, we begin with the following LP relaxation:

Minimize
∑

(u,v)∈E+∪E−

zu,v, s.t., (LP6)

xu,v + xv,w ≥ xu,w, ∀u 6= v 6= w (3)
yu + yv + zu,v ≥ 1− xu,v, ∀(u, v) ∈ E− (4)

yu + yv + zu,v ≥ xu,v, ∀(u, v) ∈ E+ (5)∑
u

yu ≤ m, (6)

xu,v, zu,v, yu ∈ [0, 1]

In simple terms, on imposing integer constraints, LP6 asks to find a clustering s.t.
xu,v = 1 if u and v belong to different clusters, and 0 otherwise. It is easy to check that
such an assignment of xu,v satisfies the triangle inequality constraint Equation (3). The
objective function charges a unit cost (zu,v = 1) for dissimilar (resp. similar) pairs of points
(u, v) placed in the same (resp. different) clusters, only if neither u nor v is deleted, i.e, if
yu = yv = 0. In addition, Equation (6) ensures that at most m vertices are deleted in the
intended solution. The following lemma is then an immediate consequence of the fact that
the optimal integral solution to Robust-Correlation-Clustering instance I is feasible
for Equation (LP6).

I Lemma 23. The optimal solution {x∗, y∗, z∗} to the LP above has objective value at most
Opt(I), the cost of an optimal Robust-Correlation-Clustering solution. Moreover,
we may slightly perturb this solution to ensure that (a) min(u,v):x∗u,v 6=0 x

∗
u,v ≥ 1/n2 and

minu:y∗u 6=0 y
∗
u ≥ 1/n2, i.e., the smallest non-zero values among x∗ and y∗ variables is at

least 1/n2, and (b) the perturbed solution has same objective value and satisfies all the LP
inequalities except Equation (6), which is satisfied up to

∑
u y
∗
u ≤ (m+ 1/n).

We require the lower bound on the x∗ and y∗ variables for technical reasons which will
become clear as the proof proceeds. However, for all practical purposes, the reader may
assume that it is just the optimal solution to the LP. We begin by observing that the
one of the techniques of solving the Correlation-Clustering problem is by reducing
it to Minimum-Multicut problem (in fact, up to constant factors, the Correlation-
Clustering problem on general graphs is equivalent to Minimum-Multicut on general
graphs in [14]), and running the best known approximation to Minimum-Multicut to
get O(logn) approximations to Correlation-Clustering. In our case, for Robust-
Correlation-Clustering, just like how we used a specific approximation algorithm
ACNAlg for Correlation-Clustering, it turns out that the right starting point for general
graphs is the following beautiful partitioning scheme (Theorem 24) for metric spaces known
as padded decompositions. At a high level, they randomly partition a metric space into
regions of bounded diameter, such that the probability of a ball of radius ρ around any vertex
v being separated by the partitioning is proportional to ρ. This generalizes the standard
partitioning schemes which just guarantee that the probability that any pair u, v being
separated is proportional to d(u, v). While any scheme which satisfies the latter suffices to
get good algorithms for Correlation-Clustering, we crucially use the stronger property
in our algorithm for Robust-Correlation-Clustering.

APPROX/RANDOM 2019

33:12 Robust Correlation Clustering

I Theorem 24 ([15]). For any finite metric space (X, d) and parameter ∆ > 0, there exists
a randomized algorithm PaddedClustering(X, d,∆) which outputs a clustering C of points in
X such that,

Every cluster C ∈ C has diameter at most ∆,
For every x ∈ X and ρ ∈ (0,∆/8),

Prob(Ballρ(x) * C(x)) ≤ α(x) ρ∆ , (7)

where α(x) = O(log(|Ball∆(x)|
|Ball∆/8(x)|)) = O(logn) and C(x) denotes the points in the same

cluster as x in C.

5.1 Rounding Algorithm
Before we describe the algorithm in detail, we now provide an overview.

Step 1. We first compute a near-optimal solution {x∗, y∗, z∗} for Equation (LP6) satisfying
the conditions of Lemma 23.

Step 2. We run the padded decomposition scheme on x∗ with ∆ = 0.25 to obtain a clustering
C∗ of the points. Indeed, we can interpret C∗ as a rounding of the xu,v variables into an
integral clustering: if x∗u,v ≥ 0.25, then u and v are definitely in different clusters of C∗,
and if x∗u,v is small, then the are in different clusters with probability ∝ O(logn)x∗u,v.

Step 3. If a mis-classified edge in this clustering has z∗u,v at least some constant, say 0.25,
then we can charge such edges to the LP objective.

Step 4a. It remains to consider mis-classified edges with small z∗u,v. If (u, v) ∈ E−, then
again this is an easy case, since we know that x∗u,v ≤ 0.25 because (u, v) is mis-classified,
hence it must belong to the same cluster, and all clusters have diameter at most 0.25
w.r.t the x∗ metric. Hence, if z∗u,v ≤ 0.25 for such edges, we can infer that y∗u + y∗v ≥ 0.5
from Equation (4), and we can handle all such edges by deleting all vertices with y∗u ≥ 0.25.

Step 4b. We are finally left with handling the case when (u, v) ∈ E+, and z∗u,v is small. Here
again, we are in good shape if x∗u,v is at least some constant, since from Equation (5)
we know that at least one of y∗u or y∗v or z∗u,v must be large, so we can either delete an
end-point of (u, v), or we can charge this mis-classified edge to the LP objective. On
the other hand, if x∗u,v is small and (u, v) is mis-classified (and so u and v belong to
different clusters since (u, v) ∈ E+), we use the padded decomposition property that
such an event occurred with very low probability, and we can actually afford to the scale
variables by x∗u,v to get that y∗u

x∗u,v
+ y∗v

x∗u,v
+ z∗u,v

x∗u,v
≥ 1. In expectation, the overall scaling

factor would be bounded from Theorem 24, and moreover, for each mis-classified edge in
E+, we can either charge it to the scaled z∗u,v variable, or delete an end-point due to the
scaled y∗u or y∗v being large. Of course, this is a simplified view since we cannot consider
different scaling factors for different edges. In our actual algorithm, we scale each y∗v by a
quantity rv, where rv is the radius of the smallest ball around v w.r.t metric s∗ which
gets separated by the clustering C∗. This is where our proof uses the stronger properties
of the padded decomposition schemes.

I Theorem 25. RCC-general(V,E+, E−,m) is a randomized (O(logn),O(log2 n)) bi-criteria
approximation for Robust-Correlation-Clustering on general graphs.

Proof. We begin by introducing some notation that will be useful for the analysis of
the algorithm. Consider the clustering C∗ output by PaddedClustering(V, x∗, 0.25) in RCC-
general(V,E+, E−,m). We slightly abuse notation and let C∗(v) denote the set of all vertices

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:13

Algorithm 3 RCC-general(V,E+, E−,m).

1: Let {x∗, y∗, z∗} denote the (perturbed) optimal solution to LP6 obtained in Lemma 23
2: Compute C∗ = PaddedClustering(V, x∗, 0.25)
3: Define V −b = {v ∈ V : ∃u ∈ C∗(v) such that (u, v) ∈ E−} . candidate vertices for

deletion: have a − edge to at least one other vertex in the same cluster
4: Define V −del = {v ∈ V −b : y∗v ≥ 1/4}
5: Set V ′ ← V \ V −del
6: Define V +

b = {v ∈ V ′ : ∃u ∈ V ′ \ C∗(v) such that (u, v) ∈ E+} . candidate vertices for
deletion: have a + edge to at least one vertex in a different cluster

7: For each u ∈ V +
b , define

ŷu
def= 2r · y∗u, where 1

2r < min
v∈V ′\C∗(u)

x∗u,v ≤
1

2r−1

8: Define V +
del = {v ∈ V +

b : ŷv ≥ 1/3}
9: Return: Dalg = V −del ∪ V

+
del as outliers and the clustering Calg = C∗ \D

which are in the same cluster as v in the clustering C∗. Define E−b as the set of − edges
between vertices in V in the same cluster in C∗, E−b

def= {(u, v) ∈ E− : u ∈ C∗(v)}. In
addition, define E+

b to be the set of + edges between vertices in V ′ lying in different clusters
in C∗, i.e., E+

b

def= {(u, v) ∈ E+ : u ∈ V ′ \ C∗(v)}. Let cost(alg) denote the cost of the
clustering output by RCC-general(V,E+, E−,m) and let Vdel = V −del ∪ V

+
del denote the set of

vertices deleted. Observe that any edge that contributes to cost(alg) belongs to either E+
b or

E−b and is not incident on any vertex in Vdel. Therefore, cost(alg) can be decomposed as

cost(alg) ≤ cost(alg)− + cost(alg)+. (8)

where cost(alg)− denotes the cost associated with edges in E−b that are not incident on
vertices in V −del, and cost(alg)+ denotes the cost associated with edges in E+

b that are not
incident on vertices in V −del ∪ V

+
del.

Let Opt∗ denote the cost of the optimal solution to LP6. To bound the cost of our
solution, we show in Lemmas 28 and 33 respectively that cost(alg)− is upper-bounded by
4Opt∗, while E [cost(alg)+] is upper-bounded by O(logn)Opt∗.

On the other hand, to bound the number of vertices deleted by RCC-general(V,E+, E−,m),
we follow a similar strategy. Since, |Vdel| = |V +

del|+ |V
−

del|, we separately upper bound V −del
and E[V +

del] in Lemmas 27 and 32 by 4m and O(log2 n)m respectively. J

Recall that the optimal solution of LP6 is denoted as
(
{y∗u}, {x∗u,v}, {z∗u,v}

)
. We begin by

establishing some basic properties of the clustering C∗.

B Claim 26. For any edge (u, v) ∈ E−b , y∗u + y∗v + z∗u,v ≥ 0.75.

Proof. Recall that E−b denotes the set of dissimilar points in V that are placed in the same
cluster by C∗. Since, E−b ⊆ E−, the optimal solution to LP6 must satisfy the negative
edge-constraint (4) for edge (u, v), and so y∗u + y∗v + z∗u,v ≥ 1 − x∗u,v. Now, note that
x∗u,v ≤ 0.25, since u and v belong to the same cluster in C∗ and the diameter of any cluster
in PaddedClustering(X, d,∆) is at most ∆ from Theorem 24. C

I Lemma 27. The set of vertices, V −del satisfies |V
−

del| ≤ 4
∑
v∈V y

∗
v ≤ 4(m+ 1/n).

Proof. Recall that V −del is the set of vertices, v ∈ V −b such that y∗v ≥ 1/4. This, combined
with the fact that {y∗v} satisfies

∑
u y
∗
u ≤ m+ 1/n from Lemma 23, completes the proof. J

APPROX/RANDOM 2019

33:14 Robust Correlation Clustering

I Lemma 28. The cost of mis-classified E− edges cost(alg)− is at most 4
∑

(u,v)∈E− z
∗
u,v.

Proof. Observe that cost(alg)− accrues unit cost only for edges in E−b which are not incident
on a vertex in V −del. This implies that y∗u ≤ 0.25 for all vertices incident on such edges. This,
combined with Claim 26 completes the proof. J

We now move onto the analysis of cost(alg)+ and |V +
del|, which are slightly more involved. In

this respect, define

ẑu,v
def=

z∗u,v

x∗u,v
, v 6∈ C∗(u),

0 otherwise.
(9)

We demonstrate some useful facts about ẑu,v and ŷu, which recall is defined previously as,

ŷu = 2r · y∗u, where, r : 1
2r < min

v∈V ′\C∗(u)
x∗u,v ≤

1
2r−1

B Claim 29. For any edge (u, v) ∈ E+
b , E[ẑu,v] ≤ O(logn)z∗u,v.

Proof. Observe that if two points belong to different clusters, then we must necessarily have
for ρ = x∗u,v that Ballρ(u) * C(u)). Therefore, from Theorem 24,

Prob(u 6∈ C∗(v)) ≤ O(logn)
x∗u,v
0.25 .

Therefore, from the definition of ẑu,v in (9), it follows that, E[ẑu,v] ≤ O(logn)x
∗
u,v

0.25
z∗u,v

x∗u,v
+ 0 =

O(logn)z∗u,v. C

B Claim 30. For any vertex v ∈ V −b , E [ŷu] ≤ O(log2 n) · y∗u.

Proof. Observe that x∗u,v ∈ [n−2, 1]. Therefore, r takes values from the set {0, 1, 2, . . . ,
2 logn}. By definition of ŷu,

E[ŷu] =
2 logn∑
r=0

2r (y∗u) Prob
(

1
2r < min

v∈V \C∗(u)
x∗u,v ≤

1
2r−1

)
,

≤
2 logn∑
r=0

2r (y∗u) Prob
(

min
v∈V \C∗(u)

x∗u,v ≤
1

2r−1

)
. (10)

Next, observe that the event minv∈V ′\C∗(u) x
∗
u,v ≤ 2−(r−1) can only occur if the ball of radius

2−(r−1) centered at u does not lie entirely within C(u). Therefore, from Theorem 24,

Prob
(

min
v∈V \C∗(u)

x∗u,v ≤
1

2r−1

)
≤ O(logn) 1

2r−1 .

Plugging this into (10) gives, E[ŷu] ≤ O(logn)
∑2 logn
r=0 y∗u = O(log2 n) · y∗u. C

B Claim 31. For any edge (u, v) ∈ E+
b , we have that ŷu + ŷv + ẑu,v ≥ 1.

Proof. Since E+
b ⊆ E+, every (u, v) ∈ E+

b must satisfy the positive edge-constraint (5)
y∗u + y∗v + z∗u,v ≥ x∗u,v. The proof then concludes by dividing both sides by x∗u,v, and using
the definitions of ŷu and ẑu,v. C

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:15

I Lemma 32. The set of vertices V +
del satisfies, E

[∣∣V +
del
∣∣] ≤ O(log2 n) m.

Proof. Recall that V +
del is defined as the set of vertices v ∈ V +

b such that ŷv ≥ 1/3. Therefore
|V +

del| =
∑
v∈V +

b
1(ŷv ≥ 1/3). Since 1(ŷv ≥ 1/3) ≤ 3ŷv, it follows that |V +

del| ≤ 3
∑
v∈V +

b
ŷv.

Taking expectation on both sides, and using Claim 30, E[|V +
del|] ≤ O(log2 n)

∑
v∈V +

b
y∗v . The

proof concludes by relaxing the summation v ∈ V +
b to v ∈ V , and using Lemma 23 to claim

that
∑
v∈V y

∗
v ≤ m+ 1

n ≤ 2m. J

I Lemma 33. The expected cost of the mis-classified E+ edges E [cost(alg)+] is at most
O(logn)

∑
(u,v)∈E+ z∗u,v.

Proof. cost(alg)+ is the cost corresponding to edges in E+
b which are not incident on any

vertex in Vdel. Recall that a vertex v ∈ V ′ belongs to Vdel only if ŷv ≥ 1/3. Following a
similar proof as Lemma 28, we get that,

cost(alg)+ ≤
∑

(u,v)∈E+
b

1(ẑu,v ≥ 1/3) ≤ 3
∑

(u,v)∈E+
b

ẑu,v,

Taking expectations on both sides, using Claim 29 to upper bound E[ẑu,v] by O(logn)z∗u,v,
and relaxing the summation to (u, v) ∈ E+ completes the proof. J

References
1 KookJin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation Clustering in Data Streams. In Francis Bach and David Blei, editors, Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2237–2246, Lille, France, 2015. PMLR. URL: http:
//proceedings.mlr.press/v37/ahn15.html.

2 Nir Ailon, Moses Charikar, and Alantha Newman. Aggregating Inconsistent Information:
Ranking and Clustering. In Proceedings of the Thirty-seventh Annual ACM Symposium
on Theory of Computing, STOC ’05, pages 684–693, New York, NY, USA, 2005. ACM.
doi:10.1145/1060590.1060692.

3 Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation Clustering. Mach. Learn.,
56(1-3):89–113, June 2004. doi:10.1023/B:MACH.0000033116.57574.95.

4 Amir Ben-Dor and Zohar Yakhini. Clustering Gene Expression Patterns. In Proceedings of
the Third Annual International Conference on Computational Molecular Biology, RECOMB
’99, pages 33–42, New York, NY, USA, 1999. ACM. doi:10.1145/299432.299448.

5 Moses Charikar, Venkatesan Guruswami, and Anthony Wirth. Clustering with Qualitative
Information. J. Comput. Syst. Sci., 71(3):360–383, October 2005. doi:10.1016/j.jcss.2004.
10.012.

6 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for
Facility Location Problems with Outliers. In Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’01, pages 642–651, Philadelphia, PA, USA, 2001.
Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?
id=365411.365555.

7 Sanjay Chawla and Aristides Gionis. k-means-: A Unified Approach to Clustering and Outlier
Detection. In SDM, pages 189–197. SIAM, 2013. URL: http://dblp.uni-trier.de/db/conf/
sdm/sdm2013.html#ChawlaG13.

8 Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and Grigory Yaroslavtsev. Near
Optimal LP Rounding Algorithm for CorrelationClustering on Complete and Complete K-
partite Graphs. In Proceedings of the Forty-seventh Annual ACM Symposium on Theory
of Computing, STOC ’15, pages 219–228, New York, NY, USA, 2015. ACM. doi:10.1145/
2746539.2746604.

APPROX/RANDOM 2019

http://proceedings.mlr.press/v37/ahn15.html
http://proceedings.mlr.press/v37/ahn15.html
https://doi.org/10.1145/1060590.1060692
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1145/299432.299448
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1016/j.jcss.2004.10.012
http://dl.acm.org/citation.cfm?id=365411.365555
http://dl.acm.org/citation.cfm?id=365411.365555
http://dblp.uni-trier.de/db/conf/sdm/sdm2013.html#ChawlaG13
http://dblp.uni-trier.de/db/conf/sdm/sdm2013.html#ChawlaG13
https://doi.org/10.1145/2746539.2746604
https://doi.org/10.1145/2746539.2746604

33:16 Robust Correlation Clustering

9 Jiecao Chen, Erfan Sadeqi Azer, and Qin Zhang. A Practical Algorithm for Distributed
Clustering and Outlier Detection. In Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 Decem-
ber 2018, Montréal, Canada., pages 2253–2262, 2018. URL: http://papers.nips.cc/paper/
7493-a-practical-algorithm-for-distributed-clustering-and-outlier-detection.

10 Ke Chen. A Constant Factor Approximation Algorithm for K-median Clustering with Outliers.
In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, pages 826–835, Philadelphia, PA, USA, 2008. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=1347082.1347173.

11 Flavio Chierichetti, Nilesh Dalvi, and Ravi Kumar. Correlation Clustering in MapReduce.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pages 641–650, New York, NY, USA, 2014. ACM. doi:10.1145/
2623330.2623743.

12 William Cohen and Jacob Richman. Learning to Match and Cluster Entity Names. In In
ACM SIGIR-2001 Workshop on Mathematical/Formal Methods in Information Retrieval, 2001.

13 William W. Cohen and Jacob Richman. Learning to Match and Cluster Large High-dimensional
Data Sets for Data Integration. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, pages 475–480, New York,
NY, USA, 2002. ACM. doi:10.1145/775047.775116.

14 Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole Immorlica. Correlation clustering in
general weighted graphs. Theoretical Computer Science, 361(2):172–187, 2006. Approximation
and Online Algorithms. doi:10.1016/j.tcs.2006.05.008.

15 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. Approximating Metrics by Tree Metrics.
SIGACT News, 35(2):60–70, June 2004. doi:10.1145/992287.992300.

16 Shalmoli Gupta, Ravi Kumar, Kefu Lu, Benjamin Moseley, and Sergei Vassilvitskii. Local
Search Methods for k-Means with Outliers. PVLDB, 10(7):757–768, 2017. doi:10.14778/
3067421.3067425.

17 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant Approximation for K-median
and K-means with Outliers via Iterative Rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, pages 646–659, New York, NY,
USA, 2018. ACM. doi:10.1145/3188745.3188882.

18 Shi Li and Xiangyu Guo. Distributed k-Clustering for Data with Heavy Noise.
In Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, 3-8 December 2018,
Montréal, Canada., pages 7849–7857, 2018. URL: http://papers.nips.cc/paper/
8009-distributed-k-clustering-for-data-with-heavy-noise.

19 Konstantin Makarychev, Yury Makarychev, and Aravindan Vijayaraghavan. Correlation
Clustering with Noisy Partial Information. In Peter Grünwald, Elad Hazan, and Satyen Kale,
editors, Proceedings of The 28th Conference on Learning Theory, volume 40 of Proceedings
of Machine Learning Research, pages 1321–1342, Paris, France, 2015. PMLR. URL: http:
//proceedings.mlr.press/v40/Makarychev15.html.

20 Andrew McCallum and Ben Wellner. Toward Conditional Models of Identity Uncertainty with
Application to Proper Noun Coreference. In Proceedings of the 2003 International Conference
on Information Integration on the Web, IIWEB’03, pages 79–84. AAAI Press, 2003. URL:
http://dl.acm.org/citation.cfm?id=3104278.3104294.

21 Napat Rujeerapaiboon, Kilian Schindler, Daniel Kuhn, and Wolfram Wiesemann. Size Matters:
Cardinality-Constrained Clustering and Outlier Detection via Conic Optimization. SIAM
Journal on Optimization, 2019.

22 Chaitanya Swamy. Correlation Clustering: Maximizing Agreements via Semidefinite Pro-
gramming. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
volume 15, pages 526–527, January 2004.

23 Anthony Wirth. Correlation Clustering. In Encyclopedia of Machine Learning, pages 227–231.
Springer, 2010. doi:10.1007/978-0-387-30164-8_176.

http://papers.nips.cc/paper/7493-a-practical-algorithm-for-distributed-clustering-and-outlier-detection
http://papers.nips.cc/paper/7493-a-practical-algorithm-for-distributed-clustering-and-outlier-detection
http://dl.acm.org/citation.cfm?id=1347082.1347173
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1145/2623330.2623743
https://doi.org/10.1145/775047.775116
https://doi.org/10.1016/j.tcs.2006.05.008
https://doi.org/10.1145/992287.992300
https://doi.org/10.14778/3067421.3067425
https://doi.org/10.14778/3067421.3067425
https://doi.org/10.1145/3188745.3188882
http://papers.nips.cc/paper/8009-distributed-k-clustering-for-data-with-heavy-noise
http://papers.nips.cc/paper/8009-distributed-k-clustering-for-data-with-heavy-noise
http://proceedings.mlr.press/v40/Makarychev15.html
http://proceedings.mlr.press/v40/Makarychev15.html
http://dl.acm.org/citation.cfm?id=3104278.3104294
https://doi.org/10.1007/978-0-387-30164-8_176

Devvrit, R. Krishnaswamy, and N. Rajaraman 33:17

A Hardness of Robust-Correlation-Clustering on General Graphs

Firstly, when m = 0, Robust-Correlation-Clustering is simply Correlation-
Clustering, for which is known NP-hardness of Ω(αMC) [5]. We show that it is NP-
hard to get any (a, b)-approximation for Robust-Correlation-Clustering with finite b
when a < αMC, for any m > 0.

I Theorem 34. It is NP-hard to have an (a, b) bi-criteria approximation to Robust-
Correlation-Clustering for any finite b and a < αMC.

Proof. The proof is via a reduction from Minimum-Multicut, similar to the proof for
Correlation-Clustering in [5]. Consider the Minimum-Multicut instance problem
I = {G(V,E), {(si, ti), 1 ≤ i ≤ k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs.
We construct the Robust-Correlation-Clustering problem instance I∗ as follows. The
edges in G become + edges in I∗. For each i, 1 ≤ i ≤ k, we add a negative edge between
(si, ti) of weight −W , for some large positive integer W , say W = n3. We can make the
instance unweighted by replacing a negative edge of weight −W by W parallel length two
paths; each path has a fresh intermediate vertex, with one + edge and one − edge. Clearly,
the minimum cost clustering must have (si, ti) in different clusters ∀1 ≤ i ≤ k. In addition,
introduce m more vertices which act like outliers, represented by set U = {u1, u2, . . . , um} in
I∗. Connect each ui, 1 ≤ i ≤ m to every vertex q, q ∈ V (I∗) \U with an edge of weight −W
and an edge of weight W . We can make the instance unweighted by replacing the negative
edge as described before, and the positive edge of weight W by W parallel length two paths;
each path has a fresh intermediate vertex, with both edges +.

Due to the above construction, the vertices (q, ui), q ∈ V (I∗) \ U, 1 ≤ i ≤ k add a high
cost irrespective of whether they lie in the same cluster or not.

Hence, the optimal solution to Robust-Correlation-Clustering on the problem
instance I∗ removes vertices u1, u2, · · · , um, and the corresponding optimal cost is same as
the Minimum-Multicut optimal cost on instance I. J

We next establish that unless the budget of vertices to be removed is violated by a
certain factor, it is NP-hard to find any approximation to the cost of the optimal solution to
Robust-Correlation-Clustering.

I Theorem 35. It is NP-hard to find an (a, b) bi-criteria approximation to Robust-
Correlation-Clustering for any finite a, and b < αMC.

Proof. The proof of this result once again follows via a reduction from Minimum-Multicut.
Indeed, consider the Minimum-Multicut instance problem I = {G(V,E), {(si, ti), 1 ≤ i ≤
k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs. We now define an intermediate
problem which will simplify our overall reduction. J

I Definition 36 (Vertex-Multicut). Given a problem instance I = {H, {(si, ti), 1 ≤ i ≤
k}}, where (si, ti), 1 ≤ i ≤ k represent k source-sink pairs, the Vertex-Multicut problem
is to find the minimum set of vertices S ⊆ V (H) such that no source-sink pair lie in the
same connected component in the graph induced on V (H) \ S.

I Lemma 37. There exists an approximation preserving reduction from Minimum-Multicut
to Vertex-Multicut.

APPROX/RANDOM 2019

33:18 Robust Correlation Clustering

Proof. The idea is to reduce the Minimum-Multicut problem instance I to a Vertex-
Multicut problem instance I ′ = {H(V ′, E′), {(s′i, t′i), 1 ≤ i ≤ l}}. Consider the graph
G = (V,E) as defined above. Reduce each vertex vi ∈ V into a clique of large size, say n, where
n = |V |. Let clique(vi) = {vi1, vi2, . . . , vin}, where vi ∈ V, 1 ≤ i ≤ n represent the clique in
H. For every (si, ti), 1 ≤ i ≤ k source-sink pair in I, let each of (sia, tib) ∀1 ≤ a, b ≤ n be
a source sink pair in instance I ′. Hence, instance I ′ will contain kn2 source-sink pairs in
comparison with the k pairs in I. We now define the edges in I ′. E′ is composed of two
components, ∪i≤nEclique(vi) and Eacross, where Eclique(vi) = {(via, vib), 1 ≤ i, a, b ≤ n, a 6= b},
and Eacross = {(vij , vji) : (vi, vj) ∈ E}.
We now have a Vertex-Multicut problem instance I ′. We claim that the reduction from
I to I ′ is an approximation preserving reduction. Let S denote the optimal solution to
problem instance I ′, that is, S denotes the optimal set of vertices to remove to disconnect
the source-sink pairs. Let vij ∈ S, 1 ≤ i, j ≤ n. Removing the edge (vi, vj) ∈ E in instance
I is equivalent to removing the vertex vij (or vji) in I ′ where (ui, vj) ∈ E′. Hence solving
the Vertex-Multicut problem solves Minimum-Multicut problem as well. J

I Lemma 38. There exists an approximation preserving reduction from Vertex-Multicut
to approximating the budget of number of vertices to remove in Robust-Correlation-
Clustering problem.

Proof. Given a Vertex-Multicut problem instance I ′ = {H, {(si, ti)1 ≤ i ≤ k, }}, we
construct a Robust-Correlation-Clustering problem instance I ′′. The edges in H

becomes positive edges in I ′′. In addition, add a negative edge between each (si, ti) pair
of weight −W , for some large positive integer W , say W = n3. The graph can be made
unweighted as discussed in the proof to Theorem 34.

Consider the instance I ′′. The minimum set of vertices R such that the graph induced
on remaining vertices has a 0 cost clustering is identical to the optimal solution to the
instance I ′. From Lemma 37, it follows that if I ′ can be solved optimally, the underlying
Minimum-Multicut problem instance I can be solved optimally. Therefore from Theorem 34
and Lemma 37, it follows that it is NP-hard to violate the budget of number of vertices to
remove by a factor < αMC such that the cost of the output clustering is a finite approximation
to the optimal cost. J

Counting Independent Sets and Colorings on
Random Regular Bipartite Graphs
Chao Liao
Shanghai Jiao Tong University, China
chao.liao.95@gmail.com

Jiabao Lin
Shanghai University of Finance and Economics, China
lin.jiabao@mail.shufe.edu.cn

Pinyan Lu
Shanghai University of Finance and Economics, China
lu.pinyan@mail.shufe.edu.cn

Zhenyu Mao
Shanghai University of Finance and Economics, China
zhenyu.mao.17@gmail.com

Abstract
We give a fully polynomial-time approximation scheme (FPTAS) to count the number of independent
sets on almost every ∆-regular bipartite graph if ∆ ≥ 53. In the weighted case, for all sufficiently
large integers ∆ and weight parameters λ = Ω̃

(
1
∆

)
, we also obtain an FPTAS on almost every

∆-regular bipartite graph. Our technique is based on the recent work of Jenssen, Keevash and
Perkins (SODA, 2019) and we also apply it to confirm an open question raised there: For all q ≥ 3
and sufficiently large integers ∆ = ∆(q), there is an FPTAS to count the number of q-colorings on
almost every ∆-regular bipartite graph.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Approximate counting, Polymer model, Hardcore model, Coloring, Random
bipartite graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.34

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1903.07531.

Funding This work is supported by Innovation Program of Shanghai Municipal Education Commis-
sion and the Fundamental Research Funds for the Central Universities.

1 Introduction

Counting independent sets on bipartite graphs (#BIS) plays a significant role in the field of
approximate counting. A wide range of counting problems in the study of counting CSPs
[14, 6, 15] and spin systems [19, 20, 17, 7], have been proved to be #BIS-equivalent or #BIS-
hard under approximation-preserving reductions (AP-reductions) [13]. Despite its great
importance, it is still unknown whether #BIS admits a fully polynomial-time approximation
scheme (FPTAS) or it is as hard as counting the number of satisfying assignments of Boolean
formulas (#SAT) under AP-reduction.

In this paper, we consider the problem of approximating #BIS (and its weighted version)
on random regular bipartite graphs. Random regular bipartite graphs frequently appear
in the analysis of hardness of counting independent sets [34, 12, 38, 39, 17]. Therefore,
understanding the complexity of #BIS on such graphs is potentially useful for gaining

© Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 34; pp. 34:1–34:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chao.liao.95@gmail.com
mailto:lin.jiabao@mail.shufe.edu.cn
mailto:lu.pinyan@mail.shufe.edu.cn
mailto:zhenyu.mao.17@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.34
https://arxiv.org/abs/1903.07531
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

insights into the general case. Let Z(G,λ) =
∑
I∈I(G) λ

|I| where I(G) is the set of all
independent sets of a graph G and λ > 0 is the weight parameter. This function also arises
in the study of the hardcore model of lattice gas systems in statistical mechanics. Hence we
usually call Z(G,λ) the partition function of the hardcore model with fugacity λ.

In the case where input graphs are allowed to be nonbipartite, the approximability for
counting the number of independent sets (#IS) is well understood. Exploiting the correlation
decay properties of Z(G,λ), Weitz [41] presented an FPTAS for graphs of maximum degree
∆ at fugacity λ < λc(∆) = (∆−1)∆−1

(∆−2)∆ . On the hardness side, Sly [38] proved that, unless
NP = RP, there is a constant ε = ε(∆) that no polynomial-time approximation scheme exists
for Z(G,λ) on graphs of maximum degree ∆ at fugacity λc(∆) < λ < λc(∆) + ε(∆). Later,
this result was improved at any fugacity λ > λc(∆) [39, 16]. In particular, these results state
that if ∆ ≤ 5, there is an FPTAS for #IS on graphs of maximum degree ∆, otherwise there
is no efficient approximation algorithm unless NP = RP.

The situation is different on bipartite graphs. No NP-hardness result is known even on
graphs with unbounded degree. Surprisingly, Liu and Lu [29] designed an FPTAS for #BIS
which only requires one side of the vertex partition to be of maximum degree ∆ ≤ 5. On
the other hand, it is #BIS-hard to approximate Z(G,λ) at fugacity λ > λc(∆) on biparite
graphs of maximum degree ∆ ≥ 3 [7].

Recently, Helmuth, Perkins, and Regts [25] developed a new approach via the polymer
model and gave efficient counting and sampling algorithms for the hardcore model at high
fugacity on certain finite regions of the lattice Zd and on the torus (Z/nZ)d. Their approach
is based on a long line of work [36, 37, 28, 1, 2, 35]. Shortly after that, Jenssen, Keevash,
and Perkins [26] designed an FPTAS for the hardcore model at high fugacity on bipartite
expander graphs of bounded degree. And they further extended the result to random
∆-regular bipartite graphs with ∆ ≥ 3 at fugacity λ > (2e)250. This is the first efficient
algorithm for the hardcore model at fugacity λ > λc(∆) on random regular bipartite graphs.
A natural question is, can we design FPTAS for lower fugacity and in particular the problem
#BIS on random regular bipartite graphs? Indeed, we obtain such results. Let Gbip

n,∆ denote
the set of all ∆-regular bipartite graphs with n vertices on both sides.

I Theorem 1. For ∆ ≥ 53 and fugacity λ ≥ 1, with high probability (tending to 1 as n→∞)
for a graph G chosen uniformly at random from Gbip

n,∆, there is an FPTAS for the partition
function Z(G,λ).

I Theorem 2. For all sufficiently large integers ∆ and fugacity λ = Ω̃
(1

∆
) 1, with high

probability (tending to 1 as n→∞) for a graph G chosen uniformly at random from Gbip
n,∆,

there is an FPTAS for the partition function Z(G,λ).

For notational convenience, we use the term “on almost every ∆-regular bipartite graph”
to denote that a property holds with high probability (tending to 1 as n→∞) for randomly
chosen graphs from Gbip

n,∆.
Counting proper q-colorings on a graph is another extensively studied problem in the field

of approximate counting [27, 4, 5, 10, 23, 22, 33, 9, 24, 18, 11, 31, 21]. In general graphs,
if the number of colors q is no more than the maximum degree ∆, there may not be any
proper coloring over the graph. Therefore, approximate counting is studied in the range that
q ≥ ∆ + 1. It was conjectured that there is an FPTAS if q ≥ ∆ + 1, but the current best
result is q ≥ α∆ + 1 with a constant α slightly below 11

6 [40, 8]. The conjecture was only
confirmed for the special case ∆ = 3 [30].

1 This means that λ ≥ (c1 logc2 ∆)/∆ for some constants c1, c2 > 0.

C. Liao, J. Lin, P. Lu, and Z. Mao 34:3

On bipartite graphs, the situation is quite different. For any q ≥ 2, we know that there
always exist proper q-colorings for every bipartite graph. For any q ≥ 3, it is shown to be
#BIS-hard but unknown to be #BIS-equivalent [13]. Using a technique analogous to that
for #BIS, we obtain an FPTAS to count the number of q-colorings on random ∆-regular
bipartite graphs for all sufficiently large integers ∆ = ∆(q) for any q ≥ 3.

I Theorem 3. For q ≥ 3 and ∆ ≥ 100q10 where q = dq/2e, with high probability (tending
to 1 as n→∞) for a graph chosen uniformly at random from Gbip

n,∆, there is an FPTAS to
count the number of q-colorings.

This result confirms a conjecture in [26].

Our Technique
The classical approach to designing approximate counting algorithms is random sampling via
Markov chain Monte Carlo (MCMC). However, it is known that the Markov chains are slowly
mixing on random bipartite graphs for both independent set and coloring if the degree ∆ is
not too small. Taking #BIS as an example, a typical independent set of a random regular
bipartite graph of degree at least 6 is unbalanced: it either chooses most of its vertices from
the left side or the right side. Thus, starting from an independent set with most vertices
from the left side, a Markov chain is unlikely to reach an independent set with most of its
vertices from the right side in polynomial time.

Even so, a recent beautiful work exactly makes use of the above separating property to
design approximate counting algorithms [26]. By making the fugacity λ > (2e)250 sufficiently
large, they proved that largest contribution to the partition function comes from extremely
unbalanced independent sets, those which occupy almost no vertices on one side and almost
all vertices on the other side. In particular, for a bipartite graph G = (L,R, E) with n

vertices on both sides, they identified two independent sets I = L and I = R as ground
states as they have the largest weight λn among all the independent sets. They proved that
one only needs to sum up the weights of states which are close to one of the ground states,
for no state is close to both ground states and the contribution from the states which are far
away from both ground states is exponentially small.

However, the ground state idea cannot be directly applied to counting independent sets
and counting colorings since each valid configuration is of the same weight. We extend the
idea of ground states to ground clusters, which is not a single configuration but a family
of configurations. For example, we identify two ground clusters for independent sets, those
which are entirely chosen from vertices on the left side and those which are entirely chosen
entirely from vertices on the right side. If a set of vertices is entirely chosen from vertices
on one side, it is obviously an independent set. Thus each cluster contains 2n different
independent sets. Similarly, we want to prove that we can count the configurations which
are close to one of the ground clusters and then add them up. For counting colorings, there
are multiple ground clusters indexed by a subset of colors ∅ (X ([q]: colorings which color
L only with colors from X and color R only with colors from [q] \X.

Unlike the ground states in [26], our ground clusters may overlap with each other and
some configurations are close to more than one ground cluster. In addition to proving that
the number of configurations which are far away from all ground clusters is exponentially
small, we also need to prove that the number of double counted configurations is small.

After identifying ground states and with respect to a fixed ground state, Jenssen, Keevash,
and Perkins [26] defined a polymer model representing deviations from the ground state
and rewrote the original partition function as a polymer partition function. We follow this

APPROX/RANDOM 2019

34:4 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

idea and define a polymer model representing deviations from a ground cluster. However,
deviation from a ground cluster is much subtler than deviation from a single ground state.
For example, if we define polymer as connected components from the deviated vertices in
the graph, we cannot recover the original partition function from the polymer partition
function. We overcome this by defining polymer as connected components in the graph G2,
where an edge of G2 corresponds to a path of length at most 2 in the original graph. Here,
a compatible set of polymers also corresponds to a family of configurations in the original
problem, while it corresponds to a single configuration in [26].

It is much more common in counting problems that most contribution is from a neighbor-
hood of some clusters rather than a few isolated states. So, we believe that our development
of the technique makes it suitable for a much broader family of problems.

Organization of the paper
In this 10-page version, we only prove Theorem 1 which already explains the key technique
for proving Theorem 2 and Theorem 3. The complete proof (and the modifications necessary)
for these two can be found in the full version. In Section 2 we review necessary definitions
and facts. In Section 3 we prove Theorem 1, where the proof is divided into four parts. The
first part deals with the property of the independent sets on certain graphs. The second part
uses the polymer model to approximate the number of independent sets. The third part
discusses how to approximate the partition function of the polymer model. The last part
puts these things together.

Independent work
Towards the end of this project, we learned that the authors of [26] obtained similar results
in their upcoming journal version submission.

2 Preliminaries

2.1 Independent sets and random regular bipartite graphs
All graphs considered in this paper are unweighted, undirected, with no loops but may
have multiple edges. Let G = (V,E) be a graph. We use dG(u,w) to denote the dis-
tance between two vertices u,w in the graph G. For ∅ (U,W ⊆ V , define dG(U,W) =
minu∈U,w∈W dG(u,w). Let U ⊆ V be a nonempty set. Let NG(U) = {v ∈ V : dG({v} , U) = 1}
to be the neighborhood of U and emphasize that NG(U) ∩ U = ∅. We use G[U] to denote
the induced subgraph of G on U . Let E2 be the set of unordered pairs (u, v) such that u 6= v

and dG(u, v) ≤ 2. We define G2 to be the graph (V,E2). It is clear that if the maximum
degree of G is at most ∆, then the maximum degree of G2 is at most ∆2. An independent
set of the graph G is a subset U ⊆ V such that (u,w) 6∈ E for any u,w ∈ U . We use I(G)
to denote the set of all independent sets of G. The weight of an independent set I is λ|I|
where λ > 0 is a parameter called fugacity. We use Z(G,λ) =

∑
I∈I(G) λ

|I| to denote the
partition function of the graph G. Clearly, Z(G, 1) is the number of indepndent sets of G.

For two positive real numbers a and b, we say a is an ε-relative approximation to b
for some ε > 0 if exp(−ε)b ≤ a ≤ exp(ε)b, or equivalently exp(−ε)a ≤ b ≤ exp(ε)a. A
fully polynomial-time approximation scheme (FPTAS) is an algorithm that for every ε > 0
outputs an ε-relative approximation to Z(G) in time (|G|/ε)C for some constant C > 0,
where Z(G) is some quantity, like the number of independent sets, of graphs G that we would
like to compute.

C. Liao, J. Lin, P. Lu, and Z. Mao 34:5

We use G ∼ Gbip
n,∆ to denote sampling a ∆-regular bipartite graph G with n vertices

on both sides uniformly at random. We say a ∆-regular bipartite graph G = (L,R, E)
with n vertices on both sides is an (α, β)-expander if for all subsets U ⊆ L or U ⊆ R with
|U | ≤ αn, |N(U)| ≥ β|U |. This property is called the expansion property of G. We use G∆

α,β

to denote the set of all ∆-regular bipartite (α, β)-expanders. It is known that a random
regular bipartite graph is an expander with high probability.

2.2 The polymer model
Let G be a graph and Ω be a finite set. A polymer γ = (γ, ωγ) consists of a support γ
which is a connected subgraph of G and a mapping ωγ which assigns to each vertex in γ
some value in Ω. We use |γ| to denote the number of vertices of γ. There is also a weight
function w(γ, ·) : C→ C for each polymer γ. There can be many polymers defined on the
graph G and we use Γ∗ = Γ∗(G) to denote the set of all polymers defined on it. However,
at the moment we do not give a constructive definition of polymers. Such definitions are
presented when they are needed, see Section 3.2. We say two polymers γ1 and γ2 are
compatible if dG(γ1, γ2) > 1 and we use γ1 ∼ γ2 to denote that they are compatible. For
a subset Γ ⊆ Γ∗ of polymers, it is compatible if any two different polymers in this set
are compatible. We define S(Γ∗) = {Γ ⊆ Γ∗ : Γ is compatible} to be the collection of all
compatible subsets of polymers. For Γ ∈ S(Γ∗), we also define

∣∣Γ∣∣ to be the number of
vertices of the subgraph Γ and let ωΓ be a mapping which assigns each vertex v ∈ Γ the
value that ωγ assigns to v where γ is the unique polymer whose support contains vertex v.
We say (Γ∗, w) is a polymer model defined on the graph G and the partition function of
this polymer model is Ξ(G, z) =

∑
Γ∈S(Γ∗)

∏
γ∈Γ w(γ, z), where z is a complex variable and∏

γ∈∅ w(γ, z) = 1 by convention. The following theorem states conditions that Ξ(G, z) can
be approximated efficiently.

I Theorem 4 ([25], Theorem 2.2). Fix ∆ and let G be a set of graphs of degree at most ∆.
Suppose:

There is a constant C such that for all G ∈ G, the degree of Ξ(G, z) is at most C|G|.
For all G ∈ G and γ ∈ Γ∗(G), w(γ, z) = aγz

|γ| where aγ 6= 0 can be computed in time
exp(O(|γ|+ log2 |G|)).
For every connected subgraph G′ of every G ∈ G, we can list all polymers γ ∈ Γ∗(G) with
γ = G′ in time exp(O(|G′|)).
There is a constant R > 0 such that for all G ∈ G and z ∈ C with |z| < R, Ξ(G, z) 6= 0.

Then for every z with |z| < R, there is an FPTAS for Ξ(G, z) for all G ∈ G.

The following condition by Koteckỳ and Preiss (KP-condition) is useful to show that
Ξ(G, z) is zero-free in certain regions.

I Lemma 5 ([28]). Suppose there is a function a : Γ∗ → R>0 and for every γ∗ ∈ Γ∗,∑
γ: γ 6∼γ∗

ea(γ)|w(γ, z)| ≤ a(γ∗). Then Ξ(G, z) 6= 0.

To verify the KP-condition, usually we need to enumerate polymers and the following
lemma is useful to bound the number of enumerated polymers.

I Lemma 6 ([3]). For any graph G = (V,E) with maximum degree ∆ and v ∈ V , the
number of connected induced subgraphs of order k ≥ 2 containing v is at most (e∆)k−1/2.
As a corollary, the number of connected induced subgraphs of order k ≥ 1 containing v is at
most (e∆)k−1.

APPROX/RANDOM 2019

34:6 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

2.3 Some useful lemmas
Throughout this paper, we use H(x) to denote the binary entropy function

H(x) = −x log2 x− (1− x) log2(1− x), x ∈ (0, 1).

Moreover, we extend this function to the interval [0, 1] by defining H(0) = H(1) = 0. This is
reasonable since limx→0+ H(x) = limx→1− H(x) = 0.

I Lemma 7. It holds that H(x) ≤ 2
√
x(1− x) ≤ 2

√
x for all 0 ≤ x ≤ 1.

I Lemma 8 ([32, Lemma 10.2]). Suppose that n is a positive integer and k ∈ [0, 1] is a
number such that kn is an integer. Then 2H(k)n

n+1 ≤
(
n
kn

)
≤ 2H(k)n.

I Lemma 9. For b > a > 0, the function f(λ) = λa/(λ+ 1)b is monotonically increasing on
[0, a

b−a] and monotonically decreasing on [a
b−a ,+∞).

3 Counting independent sets for λ ≥ 1

Throughout this section, we consider integers ∆ ≥ 53, fugacity λ ≥ 1 and set parameters
ζ, α, β to be ζ = 1.28, α = 2.9

∆ , β = ∆
2.9ζ .

I Lemma 10. For ∆ ≥ 53, lim
n→∞

Pr
G∼Gbip

n,∆

[
G ∈ G∆

α,β

]
= 1.

The reader can find the detailed proof of the lemma above in the full version of the paper.
In the rest of this section, whenever possible, we will simplify notations by omitting

superscripts, subscripts and brackets with the symbols between (but this will not happen in
the statement of lemmas and theorems). For example, Z(G,λ) may be written as Z if G
and λ are clear from context.

3.1 Approximating Z(G, λ)
For all G = (L,R, E) ∈ G∆

α,β ,X ∈ {L,R} and λ ≥ 1, let IX (G) = {I ∈ I(G) : |I ∩ X | < αn}
and ZX (G,λ) =

∑
I∈IX (G) λ

|I|. The main result in this part is that we can use ZL(G,λ) +
ZR(G,λ) to approximate Z(G,λ).

I Lemma 11. For ∆ ≥ 53 and λ ≥ 1, there are constants C = C(∆) > 1 and N = N(∆) so
that for all G ∈ G∆

α,β with n > N vertices on both sides, ZL(G,λ)+ZR(G,λ) is a C−n-relative
approximation to Z(G,λ).

Proof. Apply Lemma 12 and Lemma 13. J

I Lemma 12. For ∆ ≥ 3 and λ ≥ 1, there are constants C = C(∆) > 1 and N = N(∆) so
that for all G ∈ G∆

α,β with n > N vertices on both sides,
∑
I∈IL(G)∪IR(G) λ

|I| is a C−n-relative
approximation to Z(G,λ).

Proof. Let B = I \ (IL ∪ IR). For any I ∈ B, it follows from the definition of B that
|I ∩ L| ≥ αn and |I ∩R| ≥ αn. Using the expansion property, we obtain |N(I ∩ L)| ≥ βbαnc
and thus |I ∩R| ≤ n − |N(I ∩ L)| ≤ (1 − 1/t)n where 1/t = βbαnc/n ≥ αβ − β/n.
Analogously, it holds that |I ∩ L| ≤ (1 − 1/t)n. In the following, we assume n ≥ N1
for some N1 = N1(∆) > 0, such that 1− 1/t ≤ 1− αβ + β/n = 1− 1/ζ + β/n ≤ 0.219. We
obtain an upper bound of

∑
I∈B λ

|I| as follows:

C. Liao, J. Lin, P. Lu, and Z. Mao 34:7

(a) Consider an independent set I ∈ B. Recall that αn ≤ |I ∩ L| ≤ (1 − 1/t)n. We first
enumerate a subset U ⊆ L with αn ≤ |U | ≤ (1−1/t)n and then enumerate all independent
sets I with I ∩L = U . Since 1−1/t < 1/2, there are at most n

(
n

b(1−1/t)nc
)
≤ n2H(1−1/t)n

ways to enumerate such a set U , where the inequality follows from Lemma 8.
(b) Now fix a set U ⊆ L. Recall that every independent set I ∈ B satisfies |I ∩R| ≤ (1−1/t)n.

Therefore
∑
I∈B: |I∩L|=U λ

|I| = λ|U |
∑
I∈B: |I∩L|=U λ

|I∩R| ≤ λ(1−1/t)n (λ+ 1)(1−1/t)n.
(c) Combining the first two steps we obtain

∑
I∈B λ

|I| ≤ n2H(1−1/t)nλ(1−1/t)n(λ+ 1)(1−1/t)n =
n2H(1−1/t)n(λ2 + λ)(1−1/t)n.

Using
∑
I∈IL∪IR λ

|I| ≥ (λ+ 1)n and the upper bound above, we obtain∑
I∈B λ

|I|∑
I∈IL∪IR λ

|I| ≤
n2H(1−1/t)n(λ2 + λ)(1−1/t)n

(λ+ 1)n = n(f(λ))n, (1)

where f(λ) = 2H(1−1/t) · λ1−1/t

(λ+1)1/t . Since 1 − 1/t < 1/t, it follows from Lemma 9 that
f(λ) ≤ f(1) = 2H(1−1/t)−1/t < 1 for all λ ≥ 1. So there exists some constant C > 1 such that
Equation (1) ≤ n(f(1))n < C−n for all n > N ≥ N1 where N = N(∆) is another sufficiently
large constant. J

I Lemma 13. For ∆ ≥ 53 and λ ≥ 1, there are constants C > 1 and N so that for
all G ∈ G∆

α,β with n > N vertices on both sides, ZL(G,λ) + ZR(G,λ) is a C−n-relative
approximation to

∑
I∈IL(G)∪IR(G) λ

|I|.

Proof. For any I ∈ IL ∩ IR, it holds that |I ∩ L| < αn and |I ∩R| < αn. Clearly∑
I∈IL∪IR λ

|I| ≥ (λ+ 1)n. Therefore

∑
I∈IL∩IR λ

|I|∑
I∈IL∪IR λ

|I| ≤ (λ+ 1)−n
bαnc∑
k=0

(
n

k

)
λk

2

≤ n2
(

4H(α)λ2α

λ+ 1

)n
, (2)

where the last inequality follows from Lemma 8. Recall that α = 2.9/∆ and ∆ ≥ 53. Then
4H(α)λ2α

λ+1

∣∣∣∣
λ=1
≤ 0.76 < 1. It follows from Lemma 9 that 4H(α)λ2α/(λ+ 1) is monotonically

decreasing in λ on [1,∞) for all fixed ∆ ≥ 53. Thus Equation (2) ≤
(
1/
(
0.76n2/n))−n < C−n

for some constant C > 1 and for all n > N where N is a sufficiently large constant. J

3.2 Approximating ZX (G, λ)
In this subsection, we discuss how to approximate ZX (G,λ) for any graph G ∈ G∆

α,β ,X ∈
{L,R} and λ ≥ 1. We will use the polymer model (see Section 2.2). First we constructively
define the polymers we need. For any I ∈ IX (G), we can partition the graph (G2)[I ∩ X]
into connected components U1, U2, . . . , Uk for some k ≥ 0 (trivially k = 0 if I ∩ X = ∅).
There are no edges in G2 between Ui and Uj for any 1 ≤ i 6= j ≤ k. If k > 0, let
p(I) = {(U1,1U1), (U2,1U2), . . . , (Uk,1Uk)} where 1Ui is the unique mapping from Ui to {1}.
If k = 0, let p(I) = ∅. We define the set of all polymers to be Γ∗X (G) =

⋃
I∈IX (G) p(I)

and each element in this set is called a polymer. When the graph G and X are clear from
the context, we simply denote by Γ∗ the set of polymers. Clearly, p is a mapping from
IX (G) to the set

{
Γ ∈ S(Γ∗X (G)) :

∣∣Γ∣∣ < αn
}
since

∣∣∣p(I)
∣∣∣ = |I ∩ X | < αn for all I ∈ IX (G).

For each polymer γ, define its weight function w(γ, ·) as w(γ, z) = λ|γ|(λ + 1)−|N(γ)|z|γ|,
where z is a complex variable. The weight function can be computed in polynomial time in
|γ|. The partition function of the polymer model (Γ∗, w) on the graph G2 is the following
sum: Ξ(z) =

∑
Γ∈S(Γ∗)

∏
γ∈Γ w(γ, z). Recall that two polymers γ1 and γ2 are compatible if

dG2(γ1, γ2) > 1 and this condition is equivalent to dG(γ1, γ2) > 2.

APPROX/RANDOM 2019

34:8 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

I Lemma 14. For all bipartite graphs G = (L,R, E) with n vertices on both sides, X ∈
{L,R} and λ ≥ 0,

ZX (G,λ) = (λ+ 1)n
∑

Γ∈S(Γ∗X (G)): |Γ|<αn

∏
γ∈Γ

w(γ, 1).

Proof. In the definition of polymers, p is a mapping from IX to
{

Γ ∈ S(Γ∗) :
∣∣Γ∣∣ < αn

}
.

Thus ZX (G,λ) =
∑
I∈IX λ

|I| =
∑

Γ∈S(Γ∗): |Γ|<αn
∑
I∈IX : p(I)=Γ λ

|I|. Fix Γ ∈ S(Γ∗) with∣∣Γ∣∣ < αn. It holds that∑
I∈IX : p(I)=Γ

λ|I| =
∑

I∈IX : I∩X=Γ

λ|I| = λ|Γ|(λ+ 1)|(LtR)\(XtNG(Γ))|, (3)

where the last equality follows from
∣∣Γ∣∣ < αn. Since Γ is compatible, NG(Γ) = tγ∈ΓNG(γ)

and
∣∣(L tR) \ (X tNG(Γ))

∣∣ = n −
∑
γ∈Γ |NG(γ)|. Thus Equation (3) = λ

∑
γ∈Γ
|γ|(λ +

1)n−
∑

γ∈Γ
N(γ) = (λ+ 1)n

∏
γ∈Γ λ

|γ|(λ+ 1)−|N(γ)| = (λ+ 1)n
∏
γ∈Γ w(γ, 1). J

I Lemma 15. For ∆ ≥ 53 and λ ≥ 1, there are constants C > 1 and N so that for all
G = (L,R, E) ∈ G∆

α,β with n > N vertices on both sides and X ∈ {L,R},

(λ+ 1)nΞ(1) = (λ+ 1)n
∑

Γ∈S(Γ∗X (G))

∏
γ∈Γ

w(γ, 1)

is a C−n-relative approximation to ZX (G,λ).

Proof. It is clear that ZX (G,λ) ≥ (λ+ 1)n. Then using Lemma 14 and Lemma 16 we obtain

ρ = (λ+ 1)nΞ(1)− ZX (G,λ)
ZX (G,λ) ≤

∑
Γ∈S(Γ∗): |Γ|≥αn

∏
γ∈Γ

w(γ, 1) ≤
∑

Γ∈S(Γ∗): |Γ|≥αn
2−β|Γ|. (4)

To enumerate each Γ ∈ S(Γ∗) with
∣∣Γ∣∣ ≥ αn at least once, we first enumerate an integer

αn ≤ k ≤ n, then since Γ ⊆ X , we choose k vertices from X . Therefore, from Equation (4)
we have

ρ ≤
n∑

k=dαne

(
n

k

)
2−βk ≤

n∑
k=dαne

2H(k/n)n2−βk ≤
n∑

k=dαne

(
22
√
n/k−β

)k
≤

n∑
k=dαne

(
22
√

1/α−β
)k

,

where the inequalities follow from Lemma 8 and Lemma 7. Recall that ζ = 1.28, α =
2.9/∆, β = ∆/(2.9ζ) and ∆ ≥ 53. Let f(∆) = 2

√
1/α − β = 2

√
∆/2.9 − ∆/(2.9ζ). We

obtain ρ ≤ 2f(∆)αn

1−2f(∆) =

(
22
√

2.9/∆−1/ζ
)n

1−2f(∆) . Since f(∆) is monotonically decreasing in ∆ on

[53,+∞), ρ ≤

(
22
√

2.9/53−1/1.28
)n

1−22
√

53/2.9−53/(2.9×1.28)
≤ 0.81n/0.98 < C−n for some constant C > 1 and for

all n > N where N is a sufficiently large constant. J

I Lemma 16. For all polymers γ ∈ Γ∗ defined by G = (L,R, E) ∈ G∆
α,β, X ∈ {L,R}

and λ ≥ 1, |w(γ, z)| ≤ (2−β |z|)|γ|. As a corollary, w(γ, 1) ≤ 2−β|γ| and for all compatible
Γ ⊆ Γ∗(G),

∏
γ∈Γ w(γ, 1) ≤ 2−β|Γ|.

Proof. Let n = |L| = |R| and let γ be any polymer. It follows from the definition of polymers
that |γ| ≤ αn and by the expansion property, |N(γ)| ≥ β|γ|. Thus we have |w(γ, z)| =
λ|γ|(λ+ 1)−|N(γ)||z||γ| ≤ (λ(λ+ 1)−β)|γ||z||γ| ≤ (2−β |z|)|γ| where the last inequality follows
from Lemma 9 since β > 1 and λ ≥ 1. In particular, w(γ, 1) ≤ 2−β|γ|. For any compatible Γ,
it holds that

∣∣Γ∣∣ =
∑
γ∈Γ |γ|. Thus

∏
γ∈Γ w(γ, 1) ≤

∏
γ∈Γ 2−β|γ| = 2−β|Γ|. J

C. Liao, J. Lin, P. Lu, and Z. Mao 34:9

3.3 Approximating the partition function of the polymer model
I Lemma 17. For ∆ ≥ 53 and λ ≥ 1, there is an FPTAS for Ξ(1) for all G = (L,R, E) ∈
G∆
α,β and X ∈ {L,R}.

Proof. Apply the FPTAS in Theorem 4. J

To apply Theorem 4, we need to show that for the parameters in Lemma 17, the partition
function has no zeros in the entire unit disk centered at 0.

I Lemma 18. There is a constant R > 1 so that for ∆ ≥ 53 and λ ≥ 1, Ξ(z) 6= 0 for all
G ∈ G∆

α,β, X ∈ {L,R} and z ∈ C with |z| < R.

Proof. Set R = 1.001. For any γ ∈ Γ∗, let a(γ) = t|γ| where t =
(
−1 +

√
1 + 8e

)
/(4e) ≈

0.346. We will verify that the KP-condition
∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤ t
∣∣γ∗∣∣ holds for any

γ∗ ∈ Γ∗ and any |z| < R. It then follows from Lemma 5 that Ξ(z) 6= 0 for any
|z| < R. Recall that dG2(γ, γ∗) ≤ 1 for all γ 6∼ γ∗. Thus there is always a vertex
v ∈ γ ⊆ X such that v ∈ γ∗ t NG2(γ∗). The number of such vertices v is at most
∆2
∣∣γ∗∣∣. So to enumerate each γ 6∼ γ∗ at least once, we can: a) first enumerate a

vertex v in X ∩
(
γ∗ ∪NG2(γ∗)

)
; b) then enumerate an integer k from 1 to bαnc; c) fi-

nally enumerate γ with v ∈ γ and |γ| = k. Since γ is connected in G2, applying
Lemma 6 and using Lemma 16 to bound |w(γ, z)| we obtain

∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤
∆2
∣∣γ∗∣∣ (et2−β |z|+∑bαnck=2

(
e∆2)k−1 2−1etk2−βk|z|k

)
. Let x = et+1∆22−βR. Since |z| < R,

we obtain
∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤ x
e

∣∣γ∗∣∣ (1 + 1
2
∑∞
k=2 x

k−1) = x(2−x)
2e(1−x) ·

∣∣γ∗∣∣. Recall that
ζ = 1.28, β = ∆/(2.9ζ) and ∆ ≥ 53. Since ∆22−β is monotonically decreasing in ∆
on [53,+∞), it holds that x = et+1∆22−βR ≤

(
et+1∆22−βR

) ∣∣
∆=53 ≤ 0.545, and hence

x(2−x)
2e(1−x) < 0.33 < t. J

3.4 Putting things together
Using the results from previous parts, we obtain our main result for counting independent sets.

I Theorem 1. For ∆ ≥ 53 and fugacity λ ≥ 1, with high probability (tending to 1 as n→∞)
for a graph G chosen uniformly at random from Gbip

n,∆, there is an FPTAS for the partition
function Z(G,λ).

Proof. This theorem follows from Lemma 10 and Lemma 19. J

I Lemma 19. For ∆ ≥ 53 and λ ≥ 1, there is an FPTAS for Z(G,λ) for all G ∈ G∆
α,β.

Proof. First we state our algorithm. See Algorithm 1 for a pseudocode description. The
input is a graph G = (L,R, E) ∈ G∆

α,β and an approximation parameter ε > 0. The output is
a number Ẑ to approximate Z(G,λ). We use ΞX (z) to denote the partition function of the
polymer model (Γ∗X (G), w) for X ∈ {L,R}. Let N1, C2, N2, C2 be the constants in Lemma 11
and Lemma 15, respectively. These two lemmas show that (λ + 1)n (ΞL(1) + ΞR(1)) is a
C−n1 +C−n2 ≤ 2 min(C1, C2)−n ≤ C−n-relative approximation to Z(G,λ) for another constant
C > 1 and all n > N ≥ max(N1, N2) where N is another sufficiently large constant. If n ≤ N
or ε ≤ 2C−n, we use the brute-force algorithm to compute Z(G,λ). If ε > 2C−n, we apply
the FPTAS in Lemma 17 with approximation parameter ε′ = ε− C−n to obtain outputs ẐL
and ẐR which approximate ΞL(1) and ΞR(1) , respectively. Let Ẑ = (λ+ 1)n(ẐL + ẐR) be
the output. It is clear that exp(−ε)Ẑ ≤ Z(G,λ) ≤ exp(ε)Ẑ.

APPROX/RANDOM 2019

34:10 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

Algorithm 1 Counting independent sets at fugacity λ ≥ 1 for ∆ ≥ 53.

1: Input: A graph G = (L,R, E) ∈ G∆
α,β with n vertices on both sides and ε > 0

2: Output: Ẑ such that exp(−ε)Ẑ ≤ Z(G,λ) ≤ exp(ε)Ẑ
3: if n ≤ N or ε ≤ 2C−n then
4: Use the brute-force algorithm to compute Ẑ ← Z(G,λ);
5: Exit;
6: end if
7: ε′ ← ε− C−n;
8: Use the FPTAS in Lemma 17 to obtain ẐL, an ε′-relative approximation to the partition

function Ξ(z) at z = 1 of the polymer model (Γ∗L(G), w).
9: Use the FPTAS in Lemma 17 to obtain ẐR, an ε′-relative approximation to the partition

function Ξ(z) at z = 1 of the polymer model (Γ∗R(G), w).
10: Ẑ ← (λ+ 1)n

(
ẐL + ẐR

)
;

Then we show that Algorithm 1 is indeed an FPTAS. It is required that the running
time of our algorithm is bounded by (n/ε)C3 for some constant C3 and for all n > N3 where
N3 is a constant. Let N3 = N . If ε ≤ 2C−n, the running time of the algorithm would be
2.1n ≤ (nCn/2)C3 ≤ (n/ε)C3 for sufficient large C3. If ε > 2C−n, the running time of the
algorithm would be (n/ε′)C4 = (n/(ε− C−n))C4 ≤ (2n/ε)C4 ≤ (n/ε)C3 for sufficient large
C3, where C4 is a constant from the FPTAS in Lemma 17. J

References

1 Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of
Algorithms and combinatorics. Springer, 2016. doi:10.1007/978-3-319-51829-9.

2 Alexander I. Barvinok and Pablo Soberón. Computing the partition function for graph
homomorphisms with multiplicities. J. Comb. Theory, Ser. A, 137:1–26, 2016. doi:10.1016/
j.jcta.2015.08.001.

3 Christian Borgs, Jennifer T. Chayes, Jeff Kahn, and László Lovász. Left and right convergence
of graphs with bounded degree. Random Struct. Algorithms, 42(1):1–28, 2013. doi:10.1002/
rsa.20414.

4 Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in Markov
chains. In Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’97), pages 223–231. IEEE, 1997.

5 Russ Bubley, Martin Dyer, Catherine Greenhill, and Mark Jerrum. On approximately counting
colorings of small degree graphs. SIAM Journal on Computing, 29(2):387–400, 1999.

6 Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, Mark Jerrum, and Colin McQuillan.
The expressibility of functions on the Boolean domain, with applications to counting CSPs. J.
ACM, 60(5):32:1–32:36, 2013. doi:10.1145/2528401.

7 Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel Štefankovič,
and Eric Vigoda. #BIS-hardness for 2-spin systems on bipartite bounded degree graphs in
the tree non-uniqueness region. J. Comput. Syst. Sci., 82(5):690–711, 2016. doi:10.1016/j.
jcss.2015.11.009.

8 Sitan Chen, Michelle Delcourt, Ankur Moitra, Guillem Perarnau, and Luke Postle. Improved
Bounds for Randomly Sampling Colorings via Linear Programming. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,
California, USA, January 6-9, 2019, pages 2216–2234, 2019.

https://doi.org/10.1007/978-3-319-51829-9
https://doi.org/10.1016/j.jcta.2015.08.001
https://doi.org/10.1016/j.jcta.2015.08.001
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1002/rsa.20414
https://doi.org/10.1145/2528401
https://doi.org/10.1016/j.jcss.2015.11.009
https://doi.org/10.1016/j.jcss.2015.11.009

C. Liao, J. Lin, P. Lu, and Z. Mao 34:11

9 Martin Dyer, Abraham D Flaxman, Alan M Frieze, and Eric Vigoda. Randomly coloring
sparse random graphs with fewer colors than the maximum degree. Random Structures &
Algorithms, 29(4):450–465, 2006.

10 Martin Dyer and Alan Frieze. Randomly coloring graphs with lower bounds on girth and
maximum degree. Random Structures & Algorithms, 23(2):167–179, 2003.

11 Martin Dyer, Alan Frieze, Thomas P Hayes, and Eric Vigoda. Randomly coloring constant
degree graphs. Random Structures & Algorithms, 43(2):181–200, 2013.

12 Martin E. Dyer, Alan M. Frieze, and Mark Jerrum. On Counting Independent Sets in Sparse
Graphs. SIAM J. Comput., 31(5):1527–1541, 2002. doi:10.1137/S0097539701383844.

13 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
Relative Complexity of Approximate Counting Problems. Algorithmica, 38(3):471–500, 2004.
doi:10.1007/s00453-003-1073-y.

14 Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy for
Boolean #CSP. J. Comput. Syst. Sci., 76(3-4):267–277, 2010. doi:10.1016/j.jcss.2009.08.
003.

15 Andreas Galanis, Leslie Ann Goldberg, and Kuan Yang. Approximating Partition Functions
of Bounded-Degree Boolean Counting Constraint Satisfaction Problems. In 44th International
Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017,
Warsaw, Poland, pages 27:1–27:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.27.

16 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the Partition
Function for the Antiferromagnetic Ising and Hard-Core Models. Combinatorics, Probability
& Computing, 25(4):500–559, 2016. doi:10.1017/S0963548315000401.

17 Andreas Galanis, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Ferromagnetic Potts
Model: Refined #BIS-hardness and Related Results. SIAM J. Comput., 45(6):2004–2065,
2016. doi:10.1137/140997580.

18 David Gamarnik and Dmitriy Katz. Correlation decay and deterministic FPTAS for counting
colorings of a graph. Journal of Discrete Algorithms, 12:29–47, 2012.

19 Leslie Ann Goldberg and Mark Jerrum. Approximating the partition function of the ferro-
magnetic potts model. J. ACM, 59(5):25:1–25:31, 2012. doi:10.1145/2371656.2371660.

20 Leslie Ann Goldberg and Mark Jerrum. A complexity classification of spin systems with
an external field. Proceedings of the National Academy of Sciences of the United States of
America, 43(112):13161–13166, 2015.

21 Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. Counting hypergraph colourings in the
local lemma regime. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 926–939, 2018.
doi:10.1145/3188745.3188934.

22 Thomas P Hayes. Randomly coloring graphs of girth at least five. In Proceedings of the 35th
Annual ACM Symposium on Symposium on Theory of Computing (STOC’03), pages 269–278.
ACM, 2003.

23 Thomas P Hayes and Eric Vigoda. A non-Markovian coupling for randomly sampling colorings.
In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03), pages 618–627. IEEE, 2003.

24 Thomas P Hayes and Eric Vigoda. Coupling with the stationary distribution and improved
sampling for colorings and independent sets. The Annals of Applied Probability, 16(3):1297–
1318, 2006.

25 Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov-Sinai Theory. CoRR,
abs/1806.11548, 2018. arXiv:1806.11548.

26 Matthew Jenssen, Peter Keevash, and Will Perkins. Algorithms for #BIS-hard problems on
expander graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2235–2247,
2019. doi:10.1137/1.9781611975482.135.

APPROX/RANDOM 2019

https://doi.org/10.1137/S0097539701383844
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.1016/j.jcss.2009.08.003
https://doi.org/10.4230/LIPIcs.ICALP.2017.27
https://doi.org/10.1017/S0963548315000401
https://doi.org/10.1137/140997580
https://doi.org/10.1145/2371656.2371660
https://doi.org/10.1145/3188745.3188934
http://arxiv.org/abs/1806.11548
https://doi.org/10.1137/1.9781611975482.135

34:12 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

27 Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-degree
graph. Random Structures and Algorithms, 7(2):157–166, 1995.

28 R. Kotecký and D. Preiss. Cluster expansion for abstract polymer models. Communications
in Mathematical Physics, 103(3):491–498, September 1986. doi:10.1007/BF01211762.

29 Jingcheng Liu and Pinyan Lu. FPTAS for #bis with degree bounds on one side. In Proceedings
of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015,
Portland, OR, USA, June 14-17, 2015, pages 549–556, 2015. doi:10.1145/2746539.2746598.

30 Pinyan Lu, Kuan Yang, Chihao Zhang, and Minshen Zhu. An FPTAS for Counting Proper
Four-Colorings on Cubic Graphs. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 1798–1817, 2017.

31 Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In Proceedings of
APPROX-RANDOM, pages 639–654. Springer, 2013.

32 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomization and Probab-
ilistic Techniques in Algorithms and Data Analysis. Cambridge University Press, 2017.

33 Michael Molloy. The Glauber dynamics on colorings of a graph with high girth and maximum
degree. SIAM Journal on Computing, 33(3):721–737, 2004.

34 Elchanan Mossel, Dror Weitz, and Nicolas Wormald. On the hardness of sampling independent
sets beyond the tree threshold. Probability Theory and Related Fields, 143(3):401–439, 2009.
doi:10.1007/s00440-007-0131-9.

35 Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms
for partition functions and graph polynomials. Electronic Notes in Discrete Mathematics,
61:971–977, 2017. doi:10.1016/j.endm.2017.07.061.

36 S. A. Pirogov and Ya. G. Sinai. Phase diagrams of classical lattice systems. Theoretical and
Mathematical Physics, 25(3):1185–1192, December 1975. doi:10.1007/BF01040127.

37 S. A. Pirogov and Ya. G. Sinai. Phase diagrams of classical lattice systems continuation.
Theoretical and Mathematical Physics, 26(1):39–49, January 1976. doi:10.1007/BF01038255.

38 Allan Sly. Computational Transition at the Uniqueness Threshold. In 51th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas,
Nevada, USA, pages 287–296, 2010. doi:10.1109/FOCS.2010.34.

39 Allan Sly and Nike Sun. The Computational Hardness of Counting in Two-Spin Models on
d-Regular Graphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 361–369, 2012. doi:
10.1109/FOCS.2012.56.

40 Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical Physics,
41(3):1555–1569, 2000.

41 Dror Weitz. Counting independent sets up to the tree threshold. In Jon M. Kleinberg, editor,
Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA,
May 21-23, 2006, pages 140–149. ACM, 2006. doi:10.1145/1132516.1132538.

https://doi.org/10.1007/BF01211762
https://doi.org/10.1145/2746539.2746598
https://doi.org/10.1007/s00440-007-0131-9
https://doi.org/10.1016/j.endm.2017.07.061
https://doi.org/10.1007/BF01040127
https://doi.org/10.1007/BF01038255
https://doi.org/10.1109/FOCS.2010.34
https://doi.org/10.1109/FOCS.2012.56
https://doi.org/10.1109/FOCS.2012.56
https://doi.org/10.1145/1132516.1132538

The Expected Number of Maximal Points of the
Convolution of Two 2-D Distributions
Josep Diaz
Department of CS, UPC, Barcelona, Spain
diaz@cs.upc.edu

Mordecai Golin
CSE Department, Hong Kong UST
golin@cse.ust.hk

Abstract
The Maximal points in a set S are those that are not dominated by any other point in S. Such points
arise in multiple application settings and are called by a variety of different names, e.g., maxima,
Pareto optimums, skylines. Their ubiquity has inspired a large literature on the expected number of
maxima in a set S of n points chosen IID from some distribution. Most such results assume that
the underlying distribution is uniform over some spatial region and strongly use this uniformity in
their analysis.

This research was initially motivated by the question of how this expected number changes if
the input distribution is perturbed by random noise. More specifically, let Bp denote the uniform
distribution from the 2-dimensional unit ball in the metric Lp. Let δBq denote the 2-dimensional
Lq-ball, of radius δ and Bp + δBq be the convolution of the two distributions, i.e., a point v ∈ Bp

is reported with an error chosen from δBq. The question is how the expected number of maxima
change as a function of δ. Although the original motivation is for small δ, the problem is well defined
for any δ and our analysis treats the general case.

More specifically, we study, as a function of n, δ, the expected number of maximal points when
the n points in S are chosen IID from distributions of the type Bp + δBq where p, q ∈ {1, 2,∞} for
δ > 0 and also of the type B∞ + δBq where q ∈ [1,∞) for δ > 0.

For fixed p, q we show that this function changes “smoothly” as a function of δ but that this
smooth behavior sometimes transitions unexpectedly between different growth behaviors.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases maximal points, probabilistic geometry, perturbations, Minkowski sum

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.35

Category RANDOM

Related Version https://arxiv.org/abs/1807.06845

Funding Josep Diaz: TIN2017-86727-C2-1R

1 Introduction

Let S be a set of 2-dimensional points. The “largest” points in S are the maximal points of
S and are a well-studied object. More formally

I Definition 1. For u ∈ <2 let u.x (u.y) denote the x (y) coordinate of u. For u, v ∈ <2, u
is dominated by v if u 6= v, u.x ≤ v.x and u.y ≤ v.y. If S ⊂ <2 then

MAX(S) = {u ∈ S : u is not dominated by any point in S \ {u}}.

MAX(S) are the maximal points of S. See Fig. 1.
© Josep Diaz and Mordecai Golin;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diaz@cs.upc.edu
https://orcid.org/0000-0002-1260-6574
mailto:golin@cse.ust.hk
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.35
https://arxiv.org/abs/1807.06845
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Maximal Points of the Convolution of Two 2-D Distributions

(b)

u1 u2 u3
u4

u5

u6

u7

v

P (v)

(a)

v

P (v)

Figure 1 The diagram shows MAX(Sn) for two point sets Sn. In both (a) and (b) the circles
denote the points in Sn and the (red) filled circles are MAX(Sn). If the points are considered as
being drawn from region D, P (v), as introduced in Def. 2, denotes the region in D that dominates
v. In (a), D is the dotted square; in (b), D is the dotted circle.

The problems of finding and estimating the number of maximal points of a set in <2

appear very often in many fields under different names: maximal vectors, skylines, Pareto
frontier/points and others, see e.g. [5, 12, 15, 17, 18] for a more exhaustive history of the
problems, uses in Computer Science and further references, Sections 1 and 2 in [7].

Let Sn denote a set of n points chosen Independently Identically Distributed (IID) from
some 2-D distribution D and Mn = |MAX(Sn)| be the random variable counting the number
of maximal points in Sn. Because maxima are so ubiquitous, understanding the expected
number of maxima has been important in different areas and many properties of Mn have
been studied. More specifically, if D is the uniform distribution drawn from an Lp ball with
p ≥ 1, then it is well known [2, 6, 12, 14], that

If p =∞, then E [Mn] = Hn ∼ lnn.
The same result holds if the points are drawn from some distribution D = (X,Y) where
X and Y are any two 1-dimensional distributions that are independent of each other.
If p ≥ 1, then limn→∞

E[Mn]√
n

= Cp, where Cp is a constant dependent only upon p.
Similar upper bounds to the above, i.e., that E [Mn] = O(

√
n), derived using similar

techniques, are known if D is a uniform distribution from ANY convex region [11].

It is also known [16] that if the n points are chosen IID from a 2-D Gaussian distribution
then E [Mn] ∼ lnn. There are also generalizations of these results (both the Bp ones and
the Gaussian one) to higher dimensions. See [14] for a table containing most known results.

Surprisingly, given the importance of the problem, not much is known for other distribu-
tions. The motivation for this work is to extend the family of distributions for which E [Mn]
can be derived.

Consider a point u originally generated from a uniform distribution over a unit Lp ball
but measured or reported with an error, in the Lq metric, of at most δ. The actual reported
point can be equivalently considered as being chosen from a new distribution which we denote
by Bp + δBq (the next section provides formal definitions). The support of this distribution
is the Minkowksi sum of the two balls but the distribution is not uniform over this support.
Fig. 2 shows the support of Bp + δBq, for different values of p and q.

Although the problem described above originally assumed small δ, it is well defined for
all δ > 0, which is the problem analyzed in this paper. More specifically, the motivation for
the present work is twofold:

J. Diaz and M. Golin 35:3

Explain how E [Mn] changes when the distribution is perturbed.
(Note: the perturbation size δ may be specified as a function of the sample size n.)
Increase the families of distributions for which E [Mn] is understood.

The idea of analyzing how quantities change under perturbations could also be considered
from the perspective of smoothed analysis [20, 21]. In the classic setting, smoothed analysis of
the number of maxima would mean analyzing how, given a fixed set Sn, E [Mn] would change
under small perturbations (as a function of the original set Sn). This was the approach in
[9, 8] (see similar work for convex hulls in [10]). This paper differs in that it is the Distribution
that is being smoothed (or convoluted) and not the point set. This paper also differs from
recent work [22, 1] on the most-likely skyline and convex hull problems. Those papers assume
each point has a given probability distribution and are attempting to find the subset of
points that has the highest probability of being the skyline (or convex hull).

Outline of the paper. The next section defines the problem and states and explains our
results. Sec. 3 describes key technical and conceptual ideas and tools used to achieve the
main result. Sec. 4 describes how these tools are used to derive the result. Sec. 5 provides a
review and a collection of open problems and possible extensions.

Due to space limitations, the proofs of many of the lemmas and theorems are not included.
For the full proofs, please see the extended version of this paper [13] posted on Arxiv.

2 Definitions and Results

Let “p ∈ [1,∞)” and “p ≥ 1” both denote that p is a finite real number ≥ 1. p = ∞ also
being permitted will be denoted by p ∈ [1,∞].

Recall: Let δ ≥ 0.
For u ∈ <2, δu = (δ · u.x, δ · u.y). For u, v ∈ <2, u+ v = (u.x+ v.x, u.y + v.y).
If D ⊆ <2, δD = {(δu : u ∈ D}.
For D1, D2 ⊆ <2, D1 +D2 = {u1 + u2 : u1 ∈ D1, u2 ∈ D2} will denote the Minkowski sum
of D1 and D2.

For u ∈ <2, u+D will denote {u}+D.

Balls and Unit Balls: Let u ∈ <2, r > 0 and p ∈ [1,∞). Define:
The Lp ball of radius r around u as Bp(u, r) = {(x, y) : |x− u.x|p + |y − u.y|p ≤ rp} .
The L∞ ball of radius r around u as B∞(u, r) = {(x, y) : max(|x− u.x|, |y − u.y|) ≤ r} .
The respective unit balls as Bp = Bp((0, 0), 1) and B∞ = B∞((0, 0), 1).

Set ap = Area(Bp) to be the area of the Lp unit ball. Then a∞ = 4, a1 = 2, a2 = π. We
use the fact that ap = Θ(1).

Generation of a probability distribution: Let D be a distribution with support D ⊂ <2.
Then

If δ ≥ 0, the distribution δD is generated by choosing a point u using D and then
returning the point δu.
Let D1,D2 be two distributions over <2. Generate the convolution D1 + D2 by choosing
a point u1 from D1 and a point u2 from D2 and returning u1 + u2.

A set Sn = {u1, . . . , un} is said to be chosen from D if each ui is generated independently
and identically distributed (IID) using the distribution D.

APPROX/RANDOM 2019

35:4 Maximal Points of the Convolution of Two 2-D Distributions

Uniform distribution on unit balls: For all p ∈ [1,∞], Bp will denote the uniform distribu-
tion that selects a point uniformly from Bp. This distribution has support Bp with uniform
density 1/ap within Bp.

Convolution of two distributions: Let Bp + δBq be the convolution of distributions Bp

and δBq.
(Bp + δBq)’s support of this distribution is the Minkowski sum Bp + δBq. Observe that the
density of Bp + δBq is not uniform in Bp + δBq. It is this non-uniformity that will cause
complications in calculating E [Mn]. The main result of this paper is

I Theorem 1. Fix p, q so that either p, q ∈ {1, 2,∞} or p =∞ and q ≥ 1.
Let Sn be n points chosen from the distribution Bp + δBq and Mn = |MAX(Sn)|.
Let δ ≥ 0 be a function of n. Then E [Mn] behaves as below:

(a) (b) (c) (d) (e) (f)
D = 0 ≤ δ δ = 1

(i) B∞ + δB∞ Θ (lnn) Θ (lnn)

δ ≤ 1√
n

1√
n
≤ δ ≤ 1 1 ≤ δ ≤

√
n

√
n ≤ δ

(ii) B1 + δB1 Θ (
√
n) Θ

(
n1/3

δ1/3

)
Θ
(
δ1/3n1/3) Θ (

√
n) Θ

(
n1/3)

(iii) B2 + δB2 Θ (
√
n) Θ

(
n2/7

δ3/7

)
Θ
(
δ3/7n2/7) Θ (

√
n) Θ

(
n2/7)

δ ≤ 1√
n

1√
n
≤ δ ≤

√
n

√
n ≤ δ

(iv) B∞ + δBq Θ (lnn) Θ
(

lnn+
√
δn1/4

)
Θ (
√
n) Θ

(
n1/4)

δ ≤ 1√
n

1√
n
≤ δ ≤ n1/26 n1/26 ≤ δ ≤

√
n
√
n ≤ δ

(v) B1 + δB2 Θ (
√
n) Θ

(
n2/7

δ3/7

)
Θ
(√

δn1/4
)

Θ (
√
n) Θ

(
n2/7)

Interpretation of the table:
1. When p = q =∞, Mn has exactly the same distribution as if Sn were chosen from B∞,

so row (i) is an uninteresting case, only included for completeness.
2. When δ is small enough (≤ 1/

√
n), E [Mn] behaves almost as if Sn were chosen from Bp

and when δ is large enough (≥
√
n) E [Mn] behaves almost as if Sn were chosen from Bq.

This is reflected in columns (b) and (e).
3. Lemma 8 states that Mn has the same distribution for Sn chosen from both Bp + δBq

and Bq + 1
δBp. Thus row (iv) gives the behavior for Bq + δB∞ for any q ≥ 1 and row (v)

the behavior for B2 + δB1.

4. When p = q ∈ {1, 2}, E [Mn] starts at Θ(
√
n), smoothly decreases until reaching δ = 1

and then increases again until reaching Θ(
√
n). The behavior at δ = 1 is different for

p = q = 1 and p = q = 2. In both cases there is symmetry between δ and 1/δ (from
Lemma 8).

5. When p = 1, q = 2 there is no symmetry. The behavior starts at Θ(
√
n), decreases to

Θ
(
n7/26) at δ = n1/26 and then increases again at a different rate to Θ(

√
n).

6. When p = ∞, the behavior is asymptotically equivalent for all q ∈ [1,∞), not just
q = 1, 2. The only difference is in the value of the constant hidden by the Θ. The behavior
starts at Θ(lnn), stays there for a short while and then smoothly increases to Θ(

√
n).

J. Diaz and M. Golin 35:5

B∞ + δB2 small δ B∞ +B2

B∞ + δB2
large δ

B∞ + δB1 small δ B∞ +B1 B∞ + δB1 large δ

B1 + δB2 small δ B1 +B2 B1 + δB2 large δ

B∞ + δB∞ B1 + δB1 B2 + δB2

Figure 2 Illustrations of the supports of some of the different distributions in the form Bp + δBq

examined in Theorem 1. The dotted lines denote the Bp and δBq balls centred at 0. Note that in all
cases the density is uniform near the centre of the support but then decreases to 0 as the boundary
is approached. The grey areas denote, approximately, where the maxima of Sn are concentrated.

APPROX/RANDOM 2019

35:6 Maximal Points of the Convolution of Two 2-D Distributions

1

δ

B∞

B∞ + δB2 P (v)

P ′(v)

a

b
v

1

a = (0, 0)

b = (1, 1)

c = (1 + δ, 1)

d = (1, 1 + δ)

c

d

1

1

a

P (v)

P ′(v)

B1

B1 + δB1

v

b c

d

a = (0, 0)

b = (1, 0)

c = (1 + δ, 0)

d = (0, 1 + δ)

δ

Figure 3 Illustration of definitions of P (v) and P ′(v) for Bp + δBq. Left side is is B∞ + δB2;
right is B1 + δB1. In both diagrams the interior ball (heavy boundary) is the Bp ball centered at the
origin a. P (v) is the set of points in Bp + δBq that dominate v and P ′(v) is the preimage of v in Bp.

3 Basic Lemmas

The following collection of Lemmas comprise the basic toolkit used to derive Theorem 1.

Recall: Let D be a distribution over <2, x ∈ <2 and A ⊂ <2 a measurable region. Then
fD(x) will denote the density function of D, and µD(A) =

∫
A
fD(x)dx will denote the

measure of A under distribution D. If D is understood, we often simply write f(x) and µ(A).

I Definition 2. (See Fig. 3)
Let D ⊆ <2, v ∈ D and A ⊆ D.
Define: P (v) = {u ∈ D : u dominates v} ∪ {v}, and P (A) =

⋃
v∈A P (v).

Say that A is dominant in D or a dominant region in D, if P (A) = A.

Note that, by definition, ∀v ∈ D, P (v) is a dominant region in D. It is straightforward to
see that

I Lemma 1. Let v and Sn be chosen from D and A ⊆ D. Then

(a) Pr(v ∈ A) = µ(A).
(b) E [|A ∩ Sn|] = nµ(A).
(c) Pr(A ∩ Sn = ∅) = (1− µ(A))n .

The following observation will be used to prove most of our lower bounds.

I Lemma 2 (Lower Bound). Let Sn be chosen from D. Further let A1, A2, . . . , Am be a
collection of pairwise disjoint dominant regions in D with µ(Ai) = Ω(1/n) for all i. Then

E [Mn] ≥ E
[∣∣∣∣∣MAX

(
Sn ∩

m⋃
i=1

Ai

)∣∣∣∣∣
]

= Ω(m).

Proof. From Lemma 1, Pr(Sn ∩Ai = ∅) = (1− µ(Ai))n . Thus µ(Ai) = Ω(1/n) implies

Pr(Sn ∩Ai 6= ∅) = 1− Pr(Sn ∩Ai = ∅) = Ω(1).

J. Diaz and M. Golin 35:7

If region A is dominant then points in A can only be dominated by other points in A
then A ∩MAX(Sn) = MAX(Sn ∩A). Since each Ai is dominant, this implies

E [|MAX(Sn) ∩Ai|] ≥ Pr(Sn ∩Ai 6= ∅) = Ω(1).

Since the Ai are pairwise disjoint,

E [|MAX(Sn)|] ≥ E
[∣∣∣∣∣MAX(Sn) ∩

(⋃
i

Ai

)∣∣∣∣∣
]
≥

m∑
i=1

Ω(1) = Ω(m). J

I Definition 3. (See Fig. 3)
Let D = Bp + δBq. For v ∈ D define the preimage of v in Bp as

P ′(v) = Bq(v, δ) ∩Bp = (v + δBq) ∩Bp.

I Lemma 3. Fix p, q ∈ [1,∞]. Let D = Bp + δBq and let v be a point chosen from D. Let
A ⊆ <2. Then

f(v) = 1
apaq

Area({u ∈ Bp : v − u ∈ δBq})
δ2 = 1

apaq

Area(P ′v)
δ2 (1)

µ(A) = 1
apaq

∫
u∈Bp

Area((u+ δBq) ∩A)
δ2 du. (2)

Proof. Note that for u ∈ Bp, fBp
(u) = 1

ap
and for u′ ∈ δBq, fδBq

(u′) = 1
aqδ2 . To see Eq. 2,

µ(A) =
∫
u∈Bp

∫
w∈δBq

u+w∈A

fδBq (w)dw

 fBp(u)du = 1
apaq

∫
u∈Bp

Area ((u+ δBq) ∩A)
δ2 du.

For Eq. 1, use a change of variables v = u+ w,

µ(A) = 1
apaqδ2

∫
u∈Bp

(∫
w∈δBq

u+w∈A

dw

)
du

= 1
apaqδ2

∫
u∈Bp

(∫
v∈u+δBq

v∈A

dv

)
du = 1

apaq

∫
v∈A

Area {u ∈ Bp : v − u ∈ δBq}
δ2 dv.

Differentiating around v yields Eq. 1. J

I Lemma 4. Fix p, q ∈ [1,∞]. Let D = Bp + δBq and κ > 0 be any constant. Then

(a) v ∈ D ⇒ f(v) = O(1).
(b) v ∈ Bp and δ ≤ κ ⇒ f(v) = Θ(1).
(c) A ⊆ D ⇒ µ(A) = O(Area(A)).
(d) A ⊆ Bp and δ ≤ κ ⇒ µ(A) = Θ(Area(A)).

The constants implicit in the O() in (a) and (c) are only dependent upon p, q, while the
constants implicit in the Θ() in (b) and (d) are only dependent upon p, q, κ.

Proof.
(a) Use the fact that, for ∀u ∈ Bp,

Area(Bp ∩ (u+ δBq))) ≤ Area(u+ δBq) = aqδ
2,

so from Eq. 1, f(v) = O(1).

APPROX/RANDOM 2019

35:8 Maximal Points of the Convolution of Two 2-D Distributions

δ

(0, 0) t′

1

1

1 1δ

δ

δ
A

B

A(t′)

B(t′)

v

u

w

Sn ∩B(t′) = {u,w}.

Any point in A(t) dominates all points in B\B(t).

⇒ MAX(Sn) ∩B ⊆ (Sn ∩B(t′))

= X(t′)

⇒ |MAX(Sn) ∩B| ≤ 2

Distribution is D = B∞ + δB2.

A is D above the x-axis.
B is D below the x-axis.

A(t) = {u ∈ A : u.x ≥ 1 + δ − t}
B(t) = {u ∈ B : u.x ≥ 1 + δ − t}

X(t′) = |Sn ∩B(t′)| = 2

∀t, A(t) and B(t) have the same measure.

Figure 4 Illustration of Lemmas 5 and 6. The regions A and B are each swept by parameter t
and it is required that µ(B(t)) = O(µ(A(t)). In the case above, by the symmetry of distribution
D, µ(B(t)) = µ(A(t)) trivially. t′ is the first time a point in A(t) is found. Since every point in
A(t) dominates all points in B \ B(t), all maxima in Sn ∩ B must be in B(t′). The definition of
t′ intuitively implies that µ(A(t′)) ∼ 1

n
so, also intuitively, the expectation of |Sn ∩Bn| should be

nµ(B(t′)) ∼ 1. This is proven formally in the text.

(b) If u ∈ Bp then

Area(Bp ∩ (u+ δBq))) ≥ cArea(u+ δBq) = caqδ
2,

where c is only dependent upon p, q, κ. Thus, from Eq. 1, f(v) = Θ(1).

The proofs for (c) and (d) follow from plugging (a) and (b) into Eq. 2. J

I Lemma 5. (See Fig. 4)
Let D be any distribution with a continuous density function f(u) and Sn a set of points
chosen from D. Let A,B be two disjoint regions in the support D that are parameterized by
t ∈ [0, T] and satisfy:

µ(A(0)) = ∅.
A(T) = A; B(T) = B.
(Monotonicity in t) ∀t1 < t2, A(t1) ⊆ A(t2) and B(t1) ⊆ B(t2).
µ(B(t)), µ(A(t)) are both continuous in t.
(Asymptotic dominance in measure) ∀t, µ(B(t)) = O(µ(A(t)).

Define the random variables

X = |Sn ∩B(t′)|, t′ =
{

min{t : A(t) ∩ Sn 6= ∅} if A ∩ Sn 6= ∅,
T if A ∩ Sn = ∅.

Then, E [X] = O(1). (3)

Proof. W.l.o.g. rescale t so that µ(A(t)) = t, and T = µ(A).
The proof’s intuition is that since the “first” point in A appears at t′, then µ(A(t′)) ∼ 1

n .

As B is asymptotically dominated by A, µ(B(t′))=O(1/n) and E [X(t′)] = nµ(B(t′)) = O(1).

J. Diaz and M. Golin 35:9

Formally, by the continuity of the measure, Pr(|Sn ∩A(t′)| = 1) = 1. So we may assume
that |D \A(t′)| = n− 1.

Conditioned on known t′, the remaining n − 1 points in Sn are chosen from D \ A(t′)
with the associated conditional distribution. If u is one of those n− 1 points,

Pr
(
u ∈ B(t′)

∣∣∣ t′) = µ(B(t′))
µ(D \A(t′)) = µ(B(t′))

1− µ(A(t′)) .

Thus, conditioning on t′, and applying Lemma 1(b)

E
[
X
∣∣∣ t′] = (n− 1) µ(B(t′))

1− µ(A(t′)) ,

therefore E [X] = E
[
E
[
X
∣∣∣ t′]] = E

[
(n− 1) µ(B(t′))

1− µ(A(t′))

]
.

From the definition of t′ and Lemma 1 (c), µ(A(t′)) > 1/2 with exponentially low
probability. Therefore, recalling that µ(A(t)) = t,

E [X] = (n− 1)E [O(µ(B(t′)))] = (n− 1)E [O(µ(A(t′)))] = (n− 1)O (E [t′]) .

Using Lemma 1 (c) : E [t′] =
∫ T
α=0 Pr(t′ ≥ α)dα = O

(
1

n−1

)
. J

I Lemma 6 (Sweep). (See Fig. 4)
Let D be any distribution with a continuous density function f(u), and let Sn be a set of
points chosen from D.

Let A,B be two disjoint regions in the support D that are parameterized by t ∈ [0, T],
satisfy conditions 1-3 of Lemma 5 and, in addition satisfy that

∀t ∈ [0, T], if u ∈ A(t) and v ∈ B \B(t) then u dominates v.

In such a case we say that A continuously dominates B. Then

E [|MAX(Sn) ∩B|] = O(1). (4)

Proof. By the definition of t′, |A(t′) ∩ Sn| ≥ 1. Since all points in B \B(t′) are dominated
by all points in A(t′), MAX(Sn) ∩ (B \B(t′)) = ∅. Thus from Lemma 5,

E [|MAX(Sn) ∩B|] = E [|MAX(Sn) ∩B(t′)|] ≤ E [|Sn ∩B(t′)|] = O(1). J

I Corollary 7. Fix p, q ∈ [1,∞] and choose Sn from D = Bp + δBq. Let Q1 be the positive
(upper-right) quadrant of the plane and O1 the first octant , i.e., Q1 = {u ∈ <2 : 0 ≤
u.x, 0 ≤ u.y} and O1 = {u ∈ <2 : 0 ≤ u.y ≤ u.x}. Then

E [Mn] = E [|MAX(Sn)|] = E [|Q1 ∩MAX(Sn)|] +O(1) (5)

= Θ
(

E [|O1 ∩MAX(Sn)|]
)
. (6)

Proof. Restrict t ∈ [0, 2 + 2δ] and set

A = D ∩ {u ∈ <2 : u.y ≥ 0}, A(t) = {u ∈ A : u.x ≥ 1 + δ − t},
B = D ∩ {u ∈ <2 : u.y < 0}, B(t) = {u ∈ B : u.x ≥ 1 + δ − t}.

Conditions (1) and (2) of Lemma 5 trivially hold. Condition (3) holds because, by x-axis
symmetry, µ(B(t)) = µ(A(t)). The additional condition of Lemma 6 holds because every
point in B \B(t) is below and to the left of every point in A(t). Thus the expected number
of maximal points in Sn below the x-axis is O(1). Note that this is independent of n.

APPROX/RANDOM 2019

35:10 Maximal Points of the Convolution of Two 2-D Distributions

Similarly, the expected number of maximal points to the left of the y-axis is O(1). This
proves Eq. 5.

To prove Eq. 6 define the second octant to be O2 = {u ∈ <2 : 0 ≤ u.x ≤ u.y}. By the
symmetry between the x and y coordinates in the distribution,

E [|O1 ∩MAX(Sn)|] = E [|O2 ∩MAX(Sn)|] .

Futhermore, since O1 and O2 partition Q1,

E [|Q1 ∩MAX(Sn)|] = E [|O1 ∩MAX(Sn)|]+E [|O2 ∩MAX(Sn)|] = 2E [|O1 ∩MAX(Sn)|] .

Thus

E [Mn] = E [Q1 ∩ |MAX(Sn)|] +O(1) = Θ (E [|O1 ∩MAX(Sn)|]) . J

The fact that for δ > 0, u dominates v if and only if δu dominates δv implies the following
result which is used very often in this work,

I Lemma 8 (Scaling). Fix p, q ∈ [1,∞], D = Bp + δBq and D′ = Bq + 1
δBp.

Let Sn be n points chosen from D and let S′n be n points chosen from D′.
Then |MAX(Sn)| and |MAX(S′n)| have exactly the same distribution.
In particular, E [|MAX(Sn)|] = E [|MAX(S′n)|] .

Proof. Let Sn = {u1, . . . , un} be chosen from D. Recall that the process of choosing point u
from D is to choose w from Bp, v from Bq and return u = w+ δv. Choosing a point u′ from
D′ is the same except that it returns u′ = v + 1

δw = 1
δu. Thus the distribution of choosing

Sn = {u1, . . . , un} from D is exactly the same as choosing Sn = { 1
δu1, . . . ,

1
δun} from D′.

Finally, note that dominance is invariant under multiplication by a scalar, i.e., pi dominates
pj if and only if 1

δpi dominates 1
δpj .

Thus |MAX(Sn)| and |MAX(S′n)| have the same distribution, so E [|MAX(Sn)|] =
E [|MAX(S′n)|] . J

The next lemma formalizes the intuition that for small values of δ, the value of E [Mn]
for Bp + δBq is the same as the value for Bp.

I Lemma 9 (Limiting Behavior). Let p ∈ [1,∞], q ∈ [1,∞), δ = O(1/
√
n) and Sn chosen

from D = Bp + δBq. Then

E [Mn] =
{

Θ(lnn) if p =∞,
Θ(
√
n) if p 6=∞.

4 General approach to proving Theorem 1

Note that if u is chosen from B∞, then u.x and u.y are independent random variables. Thus,
for any δ > 0 if v is chosen from D = B∞ + δB∞, v.x and v.y are independent random
variables. As noted in the introduction, this means that if Sn is chosen from D, E [Mn] is
exactly the same as if Sn was chosen from B∞, i.e., E [Mn] = Θ(lnn), proving row (i).

Lemma 9 combined with Lemma 8 imply the limiting behavior in columns (b) and (e)
of the table in Theorem 1. Note too that for rows (ii) and (iii), column (d) follows directly
from applying Lemma 8 to column (c).

Thus, proving Theorem 1 reduces to proving cells (ii) c, (iii) c, (iv) c, d and (v) c, d.
Proving Theorem 1 will require case-by-case analyses of D = Bp + δBq for the different

pairs p, q. The analysis for each pair will all follow the same 4 step pattern:

J. Diaz and M. Golin 35:11

(0, 0)

(1, 0)(−1, 0)

(0, 1)

(0,−1)

Q1Q2

Q3 Q4

B1

(0, 0)

(0, 1)

(1, 0)

p0

p1

pi−2

pi−1

pi

pm−3

pm−2

pm−1

Pi = D(pi)

(0, 0)

(0, 1)

(1, 0)

p0

piri
B′i

Bi

Ai

pi =
(
i
m , 1−

i+1
m

) ri =
(
i−1
m , 1− i+1

m

)

(a) (b) (c)

B̄i = Bi ∪B′i

Figure 5 Illustration of proof E [Mn] = Θ(
√
n) when Sn is chosen from B1 All but O(1) maxima

will be in quadrant Q1; (b) and (c) illustrate Q1. (b) illustrates the lower bound and (c) the upper.

4.1 A Simple Example: D = B1

Before sketching our results it is instructive to see how the Lemmas in the previous section
can be used to re-derive that fact that, if D = B1 then E [Mn] = Θ(

√
n). See Fig. 5.

Even though the behavior for D = B1 is already well known we provide this to illustrate
the generic steps for deriving E [Mn]. These are exactly the same steps that are needed when
D = Bp + δBq and this example permits identifying where the complications can arise in
those more general cases. Set m = b

√
nc and let pi, ri be the points defined in the figure

with Pi = P (pi) and B′i = P (ri). Also set

Bi =
{

(x, y) : i− 1
m
≤ x ≤ i

m
, 0 ≤ y ≤ 1− i+ 1

m

}
, Ai =

(
1
m
, 0
)

+Bi

and B̄i = Bi ∪B′i. Finally, for 0 ≤ t ≤ (1 + i)/m set Bi(t) = Bi ∩{(x, y) : y ≤ (1 + i)/m− t}
and Ai(t) =

(1
m , 0

)
+Bi(t). The steps in the derivation are.

Step 1: Restricting to first Quadrant:
Corollary 7 states that E [Mn] = E [|Q1 ∩MAX(Sn)|] +O(1).

Step 2: Calculating Density and Measure:
Because D has a uniform density, µ(A) = Θ(Area(A)) for all regions A ⊆ D.

Step 3: Lower Bound:
The Pi are a collection of m pairwise disjoint dominant regions with

µ(Pi) = Θ(Area(Pi)) = Θ(m−2) = Θ(1/n).

Thus, from Lemma 2, E [Mn] = Ω(m) = Ω(
√
n).

Step 4: Upper bound:
Note that Q1 ∩D =

(⋃m−1
i=1 B̄i

)
∪B′m so

E [|MAX(Sn) ∩Q1|] = E
[∣∣∣∣∣MAX(Sn) ∩

(
m⋃
i=1

B̄i

)∣∣∣∣∣
]

+ E [|MAX(Sn) ∩B′m|] ,

E
[∣∣∣∣∣MAX(Sn) ∩

(
m⋃
i=1

B̄i

)∣∣∣∣∣
]
≤

m∑
i=1

E [|MAX(Sn) ∩Bi|] +
m∑
i=1

E [|MAX(Sn) ∩B′i|] .

Furthermore, ∀i, µ(B′i) = Θ(Area(B′i)) = Θ(1/n). Thus

∀i, E [|MAX(Sn) ∩B′i|] ≤ E [|Sn ∩B′i|] = O(nµ(B′i)) = O(1).

APPROX/RANDOM 2019

35:12 Maximal Points of the Convolution of Two 2-D Distributions

Since m = O(
√
n) this yields

E [|MAX(Sn) ∩Q1|] ≤
m∑
i=1

E [|MAX(Sn) ∩Bi|] +O(
√
n).

The crucial observation is that, ∀i, Ai continuously dominates Bi as defined in Lemmas 5
and 6. Thus, plugging into Lemma 6 yields ∀i, E [|MAX(Sn) ∩Bi|] = O(1), leading to

E [|MAX(Sn) ∩Q1|] = O(m) +O(
√
n) = O(

√
n).

Combining the E [|MAX(Sn) ∩Q1|] = Ω(
√
n) from step (3) with the

E [|MAX(Sn) ∩Q1|] = O(
√
n) from step (4) with step (1) gives the final result

E [Mn] = E [|MAX(Sn) ∩Q1|] +O(1) = Θ(
√
n) +O(1) = Θ(

√
n).

4.2 The general approach for D = Bp + δBq

For each p, q pair the proof of Theorem 1 follows the same four steps as the analysis of
D = B1 above.

Step 1: Restricting to first Quadrant:
Corollary 7 again states that E [Mn] = E [|Q1 ∩MAX(Sn)|] +O(1).

Step 2: Calculating Density f(u) and Measure µ(A):
This step is often quite technical. In the example D = B1 case above, the density was
constant. For general D this is no longer true. The density is constant in some region in the
center of the support but decreases to zero as the boundary is approached. While Lemma
3 provides an integral formula for general D this, in many cases, is unusable. A substantial
amount of technical work is involved in finding usable functional representations for the
densities/measures in different parts of the support.

Step 3: Lower Bounding E [Mn]:
For most cases this is a relatively straightforward application of Lemma 2 using the
results of Step 2. In the general case, it is still necessary to identify a region that contains
an asymptotically dominant number of maxima. It is then necessary to partition this
region into pairwise disjoint dominant regions, all of which have measure Θ(1/n). Note
that, unlike in the example D = B1 case, these regions might no longer all have the same
shape or size.

Step 4: Upper bounding E [Mn]:
This is the most delicate part of the proof. It is proven using the Sweep Lemma (Lemma
6) with the major difficulties arising from how to decompose the support into regions that
continuously dominate each other. This decomposition strongly depends upon how the
measure/density is represented in Step 2 and can be very differently structured in different
parts of the support. In particular, in the case D = B1 + δB2, there are two different
parts of the support that require two different decompositions and the decompositions
must be designed so that the two upper bounds derived match each other.

More broadly, the density/measure representations developed for D1 = B1 + δB1 and
D2 = B2 + δB2 are quite different. The analysis of D3 = B1 + δB2 which is the most
delicate, combines the approaches developed for D1, D2. The analysis of D4 = B∞ + δBq is
different from the first three, but much more straightforward.

J. Diaz and M. Golin 35:13

5 Conclusion

This paper developed a suite of tools for deriving the expected number of maximal points in
a set of n points chosen IID from Bp + δBq, which is the convolution of two distributions.

The results presented here seem to be the first general analysis of E [Mn] for non-uniform
and non-Gaussian distributions. This paper is only a first step. Obvious next steps are

The results in the paper were only proven for p, q ∈ {1, 2,∞} and p =∞, q ∈ [1,∞.] The
next step would be to attempt to extend the results to all pairs p, q,∈ [1,∞].
There is a rich literature stretching back more than fifty years on the average number of
points on the convex hull of points chosen IID from a uniform distribution in a planar
region or a Gaussian distribution, e.g., [14, 19]. It would be interesting to see how the
convex hull evolves in the convoluted distributions Bp + δBq.
Such an analysis would require a much tighter understanding of how the distribution
behaves “close” to the boundary of its support Bp + δBq. One approach might be to
introduce some form of measure weighting to the definition of Macbeath-regions [3] (which
are a known technique for characterizing this boundary region).
Finally, we note that the results on E [Mn] for n points chosen IID from a uniform
distribution over an Lp ball have analogues in higher dimensions, i.e., Θ

(
logd−1 n

)
if

p =∞ and Θ
(
n1− 1

d

)
if p ∈ [1,∞) [4, 14]. The next step would be to attempt to extend

the results in this paper to higher dimensions.

References
1 Akash Agrawal, Yuan Li, Jie Xue, and Ravi Janardan. The most-likely skyline problem for

stochastic points. Proc. 29th CCCG, pages 78–83, 2017.
2 Zhi-Dong Bai, Luc Devroye, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima in hypercubes.

Random Struct. Algorithms, 27(3):290–309, 2005.
3 I Bárány. The technique of M-regions and cap-coverings: a survey. Rendiconti di Palermo,

65:21–38, 2000.
4 Yuri Baryshnikov. On expected number of maximal points in polytopes. In Discrete Mathe-

matics and Theoretical Computer Science, pages 247–258, 2007.
5 Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The Skyline Operator. In

Proceedings of the 17th International I.C.D.E.,, pages 421–430. IEEE Computer Society, 2001.
6 Christian Buchta. On the average number of maxima in a set of vectors. Information Processing

Letters, 33:63–65, 1989.
7 Wei-Mei Chen, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Maxima-finding algorithms for multi-

dimensional samples: A two-phase approach. Comput. Geometry: Theory and Applications,
45(1-2):33–53, 2012.

8 Valentina Damerow. Average and smoothed complexity of geometric structures. PhD thesis,
University of Paderborn, Germany, 2006.

9 Valentina Damerow and Christian Sohler. Extreme Points Under Random Noise. In Algorithms
– ESA 2004, pages 264–274, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

10 Olivier Devillers, Marc Glisse, Xavier Goaoc, and Rémy Thomasse. Smoothed complexity of
convex hulls by witnesses and collectors. Journal of Computational Geometry, 7(2):101–144,
2016.

11 Luc Devroye. Lecture notes on bucket algorithms. Birkhauser Boston, 1986.
12 Luc Devroye. Records, the maximal layer, and uniform distributions in monotone sets.

Computers Math. Applic., 25(5):19–31, 1993.
13 Josep Diaz and Mordecai Golin. Smoothed Analysis of the Expected Number of Maximal

Points in Two Dimensions. arXiv preprint, 2018. arXiv:1807.06845.

APPROX/RANDOM 2019

http://arxiv.org/abs/1807.06845

35:14 Maximal Points of the Convolution of Two 2-D Distributions

14 R A Dwyer. Kinder, gentler average-case analysis for convex hulls and maximal vectors.
SIGACT News, 21(2):64–71, 1990.

15 Marc Geilen, Twan Basten, Bart Theelen, and Ralph Otten. An algebra of Pareto points.
Fundamenta Informaticae, 78(1):35–74, 2007.

16 V. M. Ivanin. Asymptotic estimate for the mathematical expectation of the number of elements
in the Pareto set. Cybernetics, 11(1):108–113, 1975.

17 J.L.Bentley, H.T. Kung, M. Schkolnick, and C.D. Thompson. On the average number of
maxima in a set of vectors and its applications. Jour. ACM, 25(4):536–543, 1978.

18 H. T. Kung, Fabrizio Luccio, and Franco P. Preparata. On Finding the Maxima of a Set of
Vectors. J. ACM, 22(4):469–476, 1975.

19 Alfréd Rényi and Rolf Sulanke. Über die konvexe hülle von n zufällig gewählten punkten.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 2(1):75–84, 1963.

20 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):385–463, 2004.

21 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to explain the
behavior of algorithms in practice. Communications of the ACM, 52(10):76–84, 2009.

22 Subhash Suri, Kevin Verbeek, and Hakan Yildiz. On the most likely convex hull of uncertain
points. In European Symposium on Algorithms, pages 791–802. Springer, 2013.

On a Connectivity Threshold for Colorings of
Random Graphs and Hypergraphs
Michael Anastos
Carnegie Mellon University, Pittsburgh PA 15213, USA
manastos@andrew.cmu.edu

Alan Frieze
Carnegie Mellon University, Pittsburgh PA 15213, USA
alan@random.math.cmu.edu

Abstract
Let Ωq = Ωq(H) denote the set of proper [q]-colorings of the hypergraph H. Let Γq be the graph
with vertex set Ωq where two vertices are adjacent iff the corresponding colorings differ in exactly one
vertex. We show that if H = Hn,m;k, k ≥ 2, the random k-uniform hypergraph with V = [n] and
m = dn/k hyperedges then w.h.p. Γq is connected if d is sufficiently large and q & (d/ log d)1/(k−1).
This is optimal to the first order in d. Furthermore, with a few more colors, we find that the diameter
of Γq is O(n) w.h.p, where the hidden constant depends on d. So, with this choice of d, q, the natural
Glauber Dynamics Markov Chain on Ωq is ergodic w.h.p.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Random Graphs, Colorings, Ergodicity

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.36

Category RANDOM

Funding Alan Frieze: Research supported in part by NSF grant DMS1661063.

1 Introduction

In this paper, we will discuss a structural property of the set Ωq of proper [q]-colorings of
the random hypergraph H = Hn,m;k, where m = dn/k for some large constant d. Here H
has vertex set V = V (H) = [n] and an edge set E = E(H) consisting of m randomly chosen
k-sets from

([n]
k

)
. Note that in the graph case where k = 2 we have Hn,m;2 = Gn,m. A

proper [q]-coloring is a map σ : [n] → [q] such that |σ(e)| ≥ 2 for all e ∈ E i.e. no edge is
mono-chromatic. Then let us define Γq = Γq(H) to be the graph with vertex set Ωq and an
edge {σ, τ} iff h(σ, τ) = 1 where h(σ, τ) is the Hamming distance | {v ∈ [n] : σ(v) 6= τ(v)} |.

Notation. f(d) & g(d) if there exists a function ε(d) > 0 such that limd→∞ ε(d) = 0 and
f(d) ≥ (1 + ε(d))g(d) for d large.

Then let

α =
(

(k − 1)d
log d− 5(k − 1) log log d

) 1
k−1

, β = 3 log3k d. (1)

We prove the following.

I Theorem 1. Suppose that k ≥ 2 and p = d

(n−1
k−1)

and m =
(
n
k

)
p and that d = O(1) is

sufficiently large. Then
(i) If q ≥ α+ β + 1 then w.h.p. Γq is connected.
(ii) If q ≥ α+ 2β + 1 then the diameter of Γq is O(αβn) w.h.p.

© Michael Anastos and Alan Frieze;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 36; pp. 36:1–36:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manastos@andrew.cmu.edu
mailto:alan@random.math.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.36
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Connectivity Threshold for Colorings

Note that Γq connected implies that the Glauber Dynamics, which in essence is a random
walk on Γq, is ergodic. At the moment we only know that Glauber Dynamics is rapidly
mixing w.h.p. when q ≥ (1.76 . . .)d, see Efthymiou, Hayes, Štefankovič and Vigoda [6]. So, it
would seem that the connectivity of Γq is not likely to be a barrier to randomly sampling
colorings of sparse random graphs.

In the Statistical Physics literature the definition of Γq may be that colorings σ, τ are
connected by an edge in Γq whenever h(σ, τ) = o(n). Our theorem holds a fortiori if this is
the case.

We note that the lower bound for q is close to where the greedy coloring algorithm
succeeds w.h.p. For the case k = 2 this follows from Shamir and Upfal [15]. For k ≥ 3, the
authors could not find relevant literature. Nevertheless the claim follows (partially) from the
current paper. In particular, Lemmas 13 and 14 show that the greedy coloring algorithm uses
at most α+ β colors. Furthermore, a simple argument based on the size of an independent
set selected by the greedy algorithm shows that the number of colors required is close to α.

We should note that it has shown, for k = 2 by Molloy [14] and for k ≥ 3 by Ayre
and Greenhill [3], that w.h.p. there is no giant component in Γq if q . d

log d . . It is
somewhat surprising therefore that w.h.p. Γq jumps very quickly from having no giant to
being connected. One might have expected that q & d

log d would simply imply the existence
of a giant component. In Physics terminology, this implies a short non-reconstruction phase
between uniqueness and reconstruction.

Prior to this paper, it was shown in [13] that w.h.p. Γq, q ≥ d + 2 is connected. The
diameter of the reconfiguration graph Γq(G) for graphs G has been studied in the graph
theory literature, see Bousquet and Perarnau [5] and Feghali [7]. They show that if the
maximum sub-graph density of a graph is at most d − ε and q ≥ d + 1 then Γq(G) has
polynomial diameter. Using Theorem 1 of [5] we can show a linear bound on the diameter
with a small increase in the number of colors, See (ii) of Theorem 1.

Theorem 1 falls into the area of “Structural Properties of Solutions to Random Constraint
Satisfaction Problems”. This is a growing area with connections to Computer Science and
Theoretical Physics. In particular, much of the research on the graph Γq has been focussed on
the structure near the colorability threshold, e.g. Bapst, Coja-Oghlan, Hetterich, Rassman and
Vilenchik [4], or the clustering threshold, e.g. Achlioptas, Coja-Oghlan and Ricci-Tersenghi
[1], Molloy [14] or the condensation threshold, e.g. Ayre, Coja-Oghlan and Greenhill [2] or the
rigidity threshold, e.g. Ayre and Greenhill [3]. Other papers heuristically identify a sequence of
phase transitions in the structure of Γq, e.g., Krza̧kala, Montanari, Ricci-Tersenghi, Semerijan
and Zdeborová [11], Zdeborová and Krza̧kala [16] or Gabrié, Dani, Semerjian and Zdeborová
[9]. The existence of these transitions has been shown rigorously for some other CSPs. One
of the most spectacular examples is due to Ding, Sly and Sun [10] who rigorously showed
the existence of a sharp satisfiability threshold for random k-SAT.

Section 3 describes a property (α, β)-greedy-colorability such that if H has this property
then q ≥ α + β + 1 implies that Γq is connected. Section 4 proves that Hn,m;k, k ≥ 2, is
(α, β)-greedy-colorable for α, β defined in (1).

The paper uses some of the ideas from [12] which showed there is a giant component in
Γq(Gn,m), m = dn/2 w.h.p. when q ≥ cd/ log d for c > 3/2.

2 Outline argument

We show that with the values α ≈ ((k − 1)d/ log d)1/(k−1) � β given in (1) then w.h.p.
H = Hn,m;k has the property that any greedy coloring of H will need at most α maximal
independent sets before being left with a graph without a β-core. (See Lemma 13.) We
call the colorings found in this way, good greedy colorings and we refer to this property as

M. Anastos and A. Frieze 36:3

(α, β)-greedy-colorability. Any good (α, β)-coloring uses at most α+β colors. It follows from
this, basically using the argument from [12], that if σ ∈ Ωq and q ≥ α+ β + 1 then there is a
good path in Γq to some good greedy coloring σ1.

Suppose now that σ1, τ1 are good greedy colorings. If q ≥ α+ β + 1 then there is a color
c that is not used by σ1. From σ1 we move to σ2 by re-coloring vertices colored 1 in σ1 by
c. Then we move from σ2 to σ3 by coloring with color 1, all vertices that have color 1 in
τ1. At this point, σ3 and τ1 agree on color 1. σ3 may use more than α+ β colors and so we
move by a good path from σ3 to a coloring σ4 that uses at most α+ β colors and does not
change the color of any vertex currently with color 1. Here we use the fact that Hn,m;k is
(α, β)-greedy-colorable. After this, it is induction that completes the proof.

3 (α, β)-Greedy-Colorability

The degree of a vertex v ∈ V in a hypergraph H = (V,E) is the number of edges e ∈ E such
that v ∈ e. (For completeness, we will state several things in this short paper that one might
think can be taken for granted.)

Let H = (V,E). A β-core of H is a maximal subgraph of H in which every vertex has
degree at least β. For every U ⊂ V , if the subgraph H[U] of H induced by U does not have a
β-core then there is an ordering

{
u1, u2, ..., u|U |

}
of the vertices in U such that every vertex

in u` ∈ U has degree at most β− 1 in the sub-hypergraph induced by {u1, u2, . . . , u`}. (Here,
we mean by induced that the edges of H[U] are the edges of H contained entirely in U .)

If a hypergraph H does not have a β-core then we can color it with at most β colors.
Let v1, v2, ..., vn be an ordering on V where for every i, there are at most β − 1 edges that
contain vi and are contained in {v1, v2, . . . , vi}. Such an ordering must exist when there is
no β-core. We can color the vertices in the order v1, v2, . . . , vn and assign to vi a color that
is not blocked by the neighbors that precede it. A color c is blocked for vertex v by vertices
w1, w2, . . . , wk−1 if e = {v, w1, . . . , wk−1} ∈ E(H) and w1, w2, . . . , wk−1 have already been
given color c.

Next let V1, V2, . . . , Vα be a sequence of disjoint independent sets of H such that for each
j ≥ 1, Vj is maximal in the sub-hypergraph Hj induced by V \

⋃
1≤i<j

Vi. (A set of vertices is

independent if it contains no edges.) We say that such a sequence is a maximally independent
sequence of length α. Note that we allow Vj = ∅ here, in order to make our sequences of
length exactly α.

I Definition 2. We say that a hypergraph H is (α, β)-greedy-colorable if there does not
exist a maximally independent sequence of length α such that V \

⋃
i≤α

Vi has a β-core.

The main result of this section is the following.

I Theorem 3. Let H be (α, β)-greedy-colorable. If q ≥ α+ β + 1 then, Γq(H) is connected.
In addition if q ≥ α+ 2β + 1 then, the diameter of Γq(H) is O(αβn).

Later, in Section 4 we will show that Hn,m;k, k ≥ 2 is (α, β)-greedy-colorable, for suitable
values of m,α, β, viz. the values given in (1).

I Lemma 4. Let H = (V,E) be an (α, β)-greedy-colorable hypergraph and V1 ⊆ V be a
maximal independent set of V . Set V ′ = V \ V1 and let H ′ be the subgraph of H induced by
V ′. Then H ′ is (α− 1, β)-greedy-colorable.

APPROX/RANDOM 2019

36:4 Connectivity Threshold for Colorings

Proof. Assume that H ′ is not (α− 1, β)-greedy-colorable. Then there exists a partition of
V ′ into V ′1 , ..., V ′α−1 such that for j ∈ [α− 1], V ′j is a maximal independent set of V ′ \

⋃
`<j

V ′`

and W ′ = V ′ \
⋃

`≤α−1
V ′` has a β-core. For j ∈ [α − 1] set Vj+1 = V ′j . Furthermore set

W = V \ (
⋃

1≤`≤α
V`) = V ′ \ (

⋃
`≤α−1

V ′`) = W ′. Then V1, ..., Vα is a maximal independent

sequence of length α and W has a β-core which contradicts the fact that H is (α, β)-greedy-
colorable. J

I Lemma 5. Let H be a hypergraph, α, β ≥ 0 and q ≥ α+ β + 1. Let W ⊆ V be such that
the subgraph of H induced by W has no β-core. Furthermore let σ and τ be two colorings of
H such that
(i) They agree on V \W .
(ii) They use only α colors on the vertices in V \W .
(iii) τ uses at most β colors on W that are distinct from the ones it uses on V \W .
Then there exists a path from σ to τ in Γq(H).

Proof. Without loss of generality we may assume that σ and τ use [α] to color V \W .
The proof that follows is an adaptation to hypergraphs of the proof in [12] that Γq(G)
is connected when a graph G has no q-core. Because W has no β-core there exists an
ordering of its vertices, v1, v2, ..., vr, such that for i ∈ [r], vi has at most β − 1 neighbors in
v1, v2, . . . , vi−1. For 0 ≤ i ≤ r let τi be the coloring that agrees with τ on {v1, ..., vi} and
with σ on W \ {v1, ..., vi}. On V \W it agrees with both. Thus τ0 = σ and τr = τ . We note
that τ1, τ2, . . . , τr−1 may not be proper colorings.

We proceed by induction on i to show that there is a sequence of colorings Σi from σ to
τi such that (i) going from one coloring to the next in Σi only re-colors one vertex and (ii)
all colorings in the sequence Σi are proper for the hypergraph induced by V \ {vi+1, ..., vr}.
We do not claim that the colorings in Σi, i < r are proper for H. On the other hand, taking
i = r we get a sequence of H-proper colorings that starts with σ, ends with τ , such that
the consecutive pairs of proper colorings differ on a single vertex. Clearly, such a sequence
corresponds to a path from σ to τ in Γq(H).

The case i = 1 is trivial as we have assumed that σ, τ agree on V \ W and so we
can give v1 the color τ(v1). Assume that the assertion is true for i = ` ≥ 1 and let
σ = ψ0, ψ1, . . . , ψs = τ` be a sequence of colorings promised by the inductive assertion. Let
(wj , cj) denote the (vertex, color) change defining the move from ψj−1 to ψj . We construct
a sequence of colorings of length at most 2s + 1 that yields the assertion for i = ` + 1.
For j = 1, 2, . . . , s, we will re-color wj to color cj , unless there exists a set X such that
X ∪ {wj} ∈ E and ψj−1(x) = cj , x ∈ X ⊆ {v1, v2, . . . , v`+1}. The fact that ψj is a proper
coloring of V \{v`+1, ..., vr} implies that v`+1 ∈ X. Because v`+1 has at most β−1 neighbors
in {v1, ..., v`} and τ only uses colors in [α] to color V \W , there exists a color c′ 6= cj for v`+1
in [α+ β + 1] \ [α] which is not blocked by a subset of {v1, v2, . . . , v`} and is different from
its current color. We first re-color v`+1 to c′ and then we re-color wj to cj , completing the
inductive step. At the very end, i.e. after at most 2s+ 1 steps, we give v`+1 its color in τ . J

IDefinition 6. A coloring with color sets V1, V2, . . . , Vα+β is said to be a good greedy coloring
if (i) V1, V2, . . . , Vα is a maximally independent sequence of length α and (ii) V \

⋃
`≤α

V` has

no β-core.

We prove Theorem 3 in two steps. In Lemma 7, we show that if q ≥ α + β + 1 and H is
(α, β)-greedy-colorable then we can reach a good greedy coloring in Γq(H) starting from any
coloring. Then in Lemma 9, we show that if q ≥ α+ β + 1 then any good greedy coloring τ
can be reached in Γq(H) from any other good greedy coloring σ.

M. Anastos and A. Frieze 36:5

I Lemma 7. Let H be an (α, β)-greedy-colorable hypergraph, q ≥ α + β + 1 and σ be a
[q]-coloring of H. Then there exists a good greedy coloring τ of H such that there exists a
path in Γq(H) from σ to τ .

Proof. We generate the coloring τ as follows. Let C1, C2, . . . , Cq be the color classes of σ.
Then let V1 ⊇ C1 be a maximal independent set containing C1. In general, having defined
V1, V2, . . . , V`−1 we let V<` =

⋃
1≤i<`

Vi and then we let V` be a maximal independent set in

V \ V<` that contains C` \ V<`. Thus V1, V2, . . . , Vα is a maximal independent sequence of
length α. We now describe how we transform the coloring σ vertex by vertex into a coloring
σ′ in which vertices in Vi get color i for 1 ≤ i ≤ α. We first re-color the vertices in V1 \C1 by
giving them color 1, one vertex at a time. The coloring stays proper, as V1 is an independent
set. In general, having re-colored V1, V2, . . . , V`−1 we re-color the vertices in V` \C` with color
`. Again, the coloring stays proper, as V` is an independent set, containing all vertices in C`
that have not been re-colored. We observe that each re-coloring of a vertex v done while
turning σ into σ′ can be interpreted as moving from a coloring in Γq(H) to a neighboring
coloring.

Let W = V \
⋃

1≤i≤α
Vi. Because H is (α, β)-greedy-colorable, we find that W has no

β-core. Because W has no β-core there exists a proper coloring τ ′ of the subgraph of H
induced by W that uses only colors in [α+ β] \ [α]. Set τ to be the coloring that agrees with
σ′ on V \W and with τ ′ on W .

Lemma 5 implies that there is a path from σ′ to τ . Hence there is a path from σ to τ . J

I Remark 8. In the proof of Lemma 7 we see that each vertex is re-colored at most twice
before we apply Lemma 5. Thus this part of the proof yields at most O(αn) vertex recolorings.

I Lemma 9. Let H be an (α, β)-greedy-colorable hypergraph, q ≥ α+ β + 1 and let σ, τ be
two good greedy colorings. Then there exists a path from σ to τ in Γq(H).

Proof. We proceed by induction on α. For α = 0, H is (0, β)-greedy-colorable and so it does
not have a β-core. Thus the base case follows directly from Lemma 5 by taking W = V .

Assume that the statement of the Lemma is true for α = `− 1 and let α = `. There exists
a maximal independent sequence V1, V2, . . . , V` of length ` such that if V ′ = V \

⋃
1≤i≤`

Vi then

(i) for i ∈ [`], τ assigns the color i to v ∈ Vi and (ii) τ assigns only colors in [`+ β] \ [`] to
vertices in V ′.

Let c be a color not assigned by σ. There is one as q ≥ `+ β + 1. Starting from σ we
recolor all vertices that are colored 1 by color c to create a coloring σ̄. Then we continue
from σ̄ by recoloring all the vertices in V1 by color 1 and we let σ′ be the resulting coloring.
Clearly there is a path P1 from σ to σ′ in Γq(H).

We now set H1 = H \V1, and set σ′1, τ1 to be the restrictions of σ′, τ on H1. Observe that
since V1 is a maximal independent set, Lemma 4 implies that H1 is (`−1, β)-greedy-colorable
and in addition that τ1 is a good greedy coloring of H1. Lemma 7 implies that in Γq−1(H1)
there is a path P2 from σ′1 to some good greedy coloring σ1 that uses only `− 1 + β colors
from [q] \ {1}. The induction hypothesis implies that in Γq−1(H1) that there is a path P3
from σ1 to τ1.

Color 1 is not used in σ′1, τ1 or in any of colorings found in the path P2, P3. Thus the
path P2, P3 corresponds to a path P4 in Γq(H) from σ′ to τ . Consequently the colorings σ, τ
are connected in Γq(H) by the path P1 + P4. J

APPROX/RANDOM 2019

36:6 Connectivity Threshold for Colorings

Proof of Theorem 3. Let H be (α, β)-greedy-colorable, q ≥ α+ β+ 1, and let σ1, σ2 be two
colorings of H. Lemma 7 implies that in Γq(H), there is path Pi from σi to a good greedy
coloring τi for i = 1, 2. Lemma 9 implies that there is a path in Γq(H) from τ1 to τ2.

When q ≥ α+ 2β + 1 Remark 8 shows that while traversing between any pair of proper
colorings we perform O(αn) vertex recolorings in the context of Lemma 7. In addition we
recolor α+ 2 times with 2β + 1 colors a hypergraph with no β-core. Theorem 1 of [5] implies
that we need (α + 2) · O(βn) vertex re-colorings to do this. Thus, there will be O(αβn)
re-colorings overall and this proves the second part of the theorem. J

4 Random Hypergraphs

Theorem 1 follows from

I Lemma 10. Let k ≥ 2 and suppose that q ≥ α+ β + 1 and that d is sufficiently large. If
p = d

(n−1
k−1)

and m =
(
n
k

)
p then w.h.p. Γq(Hn,m;k) is connected.

In the following we will assume for simplicity of notation that d = O(1), so that O(f(d)/n) =
O(1/n). We do not know if there is an upper bound needed for the growth rate of d, but we
doubt it.

To prove Lemma 10 we use Lemmas 11, 13, 14 (below) in order to deduce that w.h.p.
Hn,m:k is (α, β)-greedy-colorable. Then we apply Theorem 3. (Lemmas 11 and 14 are hardly
new or best possible, but we prove them here for completeness.)

We will do our calculations on the random graph Hn,p;k, p = d/
(
n−1
k−1
)
and use the fact

for any hypergraph property P, we have (see [8])

Pr(Hn,m;k ∈ P) ≤ O(m1/2) Pr(Hn,p;k ∈ P). (2)

I Lemma 11. Let p = d

(n−1
k−1)

and k ≥ 2 and d sufficiently large. Then, w.h.p. H = Hn,p;k

does not contain an independent set of size
(

2k log d
(k−1)d

) 1
k−1

n.

Proof. Let u =
(

2k log d
(k−1)d

) 1
k−1

n. The probability that there exists an independent set of size
u in H is bounded by(

n

u

)
(1− p)(

u
k) ≤

(en
u

)u
exp

{
− d(

n−1
k−1
) · (u

k

)}

≤
(en
u

)u
exp

{
−du
k

(u
n

)k−1
(

1 +O

(
1
n

))}
=
(
ek−1 (k − 1)d

2k log d · exp
{
−2 log d

(
1 +O

(
1
n

))})u/(k−1)

=
(
ek−1(k − 1)

2kd log d

(
1 +O

(
1
n

)))u/(k−1)

(3)

= o(1).

J

I Notation 12. We let

m0 = n

α
and n0 = 16m0 log2 d.

M. Anastos and A. Frieze 36:7

Furthermore, for t ≤ d we let

St =

(s1, s2, ..., st) ∈
[(

2k log d
(k − 1)d

) 1
k−1

n

]t
:

t∑
j=1

si ≤ min {tm0, n− n0}

 .

I Lemma 13. If k ≥ 2 and d is sufficiently large then, w.h.p. there does not exist
1 ≤ t ≤ d and disjoint sets V1, ..., Vt ⊂ V such that:
(i) V1, V2, . . . , Vt is a maximal independent sequence of length t in H = Hn,p;k.
(ii)

(
|V1|, |V2|, ..., |Vt|

)
∈ St.

Proof. Fix t ∈ [d], (s1, ..., st) ∈ St and let s̄ = 1
t

∑
i∈[t] si. Since (s1, ..., st) ∈ St we have

that s̄ ≤ 1
t · tm0 = m0. There are

(
n

s1,s2,...,st,n−ts̄
)
ways to pick disjoint sets V1, V2, ..., Vt ⊆ V

of sizes s1, ..., st respectively. So V1, ..., Vt satisfy condition (i) of Lemma 13 only if for every
i ∈ [t] and every v ∈ V \

⋃
j∈[i]

Vj , there exist u1, ..., uk−1 ∈ Vi such that {u1, ..., uk−1, v} ∈ E(H).

So, given V1, ..., Vt the probability that we have (i) is at most

p1 =
t∏
i=1

(1− (1− p)(
si

k−1))n−
∑i

j=1
sj ≤ exp

−
t∑
i=1

(1− p)(
si

k−1)
n− i∑

j=1
sj

 . (4)

Now let t′ = max
{
i :
∑
j≤i sj ≤ n−

n
log2 d

}
and s′ =

∑t′

i=1 si and s̄′ = s′

t′ . We consider 2
cases.

Case 1: t′ ≥
(
1 − 1

log d

)
t. Now ts̄ ≥ t′s̄′ and so s̄′ − s̄ ≤ t−t′

t s̄′ ≤ s̄′

log d , which implies that

s̄′ ≤ s̄
(

1− 1
log d

)−1
≤ m0

(
1 + 2

log d

)
. Then,

t∑
i=1

(1− p)(
si

k−1)
n− i∑

j=1
sj

≥

t′∑
i=1

(1− p)(
si

k−1)
n− i∑

j=1
sj

≥ n

log2 d

t′∑
i=1

(1− p)(
si

k−1) ≥ nt′

log2 d
(1− p)(

s̄′
k−1) ≥ nt

2 log2 d
(1− p)(

m0(1+ 2
log d)

k−1)

≥ nt

2 log2 d
exp

−(p+ p2)
(((log d−5(k−1) log log d)

(k−1)d

)1/(k−1) (
1 + 2

log d

)
n

k − 1

)
≥ nt

2 log2 d
exp

{
− log d− 5(k − 1) log log d

k − 1 ·
(

1 + 3(k − 1)
log d

)}
≥ nt log2 d

d1/(k−1) .

Now(
n

s1, ..., st, n− ts̄

)
≤
(

n

s̄, ..., s̄, n− ts̄

)
≤

t∏
i=1

(
n

s̄

)
≤
(en
s̄

)ts̄
≤
(
en

m0

)tm0

.

APPROX/RANDOM 2019

36:8 Connectivity Threshold for Colorings

Thus the probability that for some t ≤ d there exist V1, ..., Vt satisfying conditions (i), (ii)
of Lemma 13 and the condition of Case 1 is bounded by

d∑
t=1

∑
(s1,...,st)∈St

(
n

s1, s2, .., st, n−
∑
i∈[t] si

)
p1

≤
d∑
t=1

∑
(s1,...,st)∈St

(
en

m0

)tm0

exp
{
−nt log2 d

d1/(k−1)

}

=
d∑
t=1

∑
(s1,...,st)∈St

(ea)tm0

(
1

dlog d

)nt/d1/(k−1)

≤
d∑
t=1

nt · (ea)tm0 ·
(

1
dlog d

)nt/d1/(k−1)

≤
d∑
t=1

nt

(
(eα)(log d)1/(k−1)

dlog d

)nt/d1/(k−1)

= o(1).

At the last equality we used that when d is sufficiently large then the term in the
parenthesis is smaller than 1.

Case 2: t′ <
(
1 − 1

log d

)
t. Thus t− t′ ≥ t

log d . Observe that from Lemma 11 we can assume
that

t ≥ t′ ≥

((
1− 1

log2 d

)/(
2k log d
(k − 1)d

) 1
k−1
)
− 1 ≥ 1

4

(
1− 1

log2 d

)(
d

log d

) 1
k−1

. (5)

For (5) we are using Lemma 11 to argue that we need at least this many independent
sets to partition a set of size n

(
1− 1

log2 d

)
. The -1 comes from the fact that the upper

bound in the definition of t′ may not be tight.
Thus,

u = 1
t− t′

t∑
i=t′+1

si ≤
log d
t
· n

(
1

log2 d
+
(

2k log d
(k − 1)d

) 1
k−1
)

≤ 4
(

1 + 2
log2 d

)(
log d
d

) 1
k−1

· n

log d (6)

and now with p1 as defined in (4) we have

p1 ≤
t∏

i=t′+1
(1− (1− p)(

si
k−1))n−

∑i

j=1
sj ≤

t∏
i=t′+1

(1− (1− p)(
si

k−1))n0

≤ exp
{
−n0

t∑
i=t′+1

(1− p)(
si

k−1)
}
≤ exp

{
−n0(t− t′)

(t∏
i=t′+1

(1− p)(
si

k−1)
) 1

t−t′
}

≤ exp
{
−n0(t− t′) exp

{
−(p+ p2)

[
t∑

i=t′+1

(
si

k − 1

)]
· 1
t− t′

}}

M. Anastos and A. Frieze 36:9

. . . ≤ exp
{
−n0(t− t′) exp

{
−(p+ p2)

(
u

k − 1

)}}
≤ exp

{
−n0(t− t′) exp

{
−d
(u
n

)k−1
}(

1 +O

(
1
n

))}

≤ exp

−n0(t− t′) exp

−
4k
(

1 + 2
log2 d

)k
logk−2 d

≤ e−(t−t′)n0/2.

Thus the probability that for some t ≤ d there exist V1, ..., Vt satisfying conditions (i), (ii)
of Lemma 13 and the condition of Case 2 is bounded by

P =
d∑
t=1

∑
(s1,...,st)∈St

[
t′∏
i=1

(
n−

∑i−1
j=1 sj
si

) t∏
i=t′+1

(
n−

∑i−1
j=1 sj
si

)]
p1

≤
d∑
t=1

∑
(s1,...,st)∈St

(en
s̄′

)t′s̄′ (en
u

)(t−t′)u
e−(t−t′)n0/2.

For sufficiently large d, (6) implies u ≤ m0 and we also have that n0 = 16m0 log2 d.
Therefore(en
u

)(t−t′)u
e−(t−t′)n0/4 ≤

(
en

m0

)(t−t′)m0

e−4(t−t′)m0 log2 d ≤ e−3(t−t′)m0 log2 d ≤ e−3tm0 log d.

Furthermore, Lemma 11 implies that s̄′ ≤
(

2k log d
(k−1)d

) 1
k−1

n ≤ 3m0. Thus

(en
s̄′

)t′s̄′
e−(t−t′)n0/4 ≤

(
en

3m0

)3tm0

e−4(t−t′)m0 log2 d ≤(
en

3m0

)3tm0

e−4tm0 log d ≤ e−tm0 log d.

So,

P ≤ dnde−4tm0 log d = dnde−4tαn log d = o(1). J

I Lemma 14. If k ≥ 2 and d is sufficiently large then w.h.p. every set S ⊂ V of size at most
n0 spans fewer than 3|S| log3k d edges in H. Hence no subset of size at most n0 contains a
3 log3k d core.

Proof. Let L = 3 log3k d. The probability that there exists S ⊂ V of size at most n0 that
spans at least t = L|S| edges is bounded by

n0∑
s=1

(
n

s

)((s
k

)
t

)
pt ≤

n0∑
s=1

((en
s

)s/t
·
e
(
s
k

)
t
· d(

n−1
k−1
))t ≤ n0∑

s=1

((en
s

)1/L eds

t

(s
n

)k−1
)t

=
n0∑
s=1

((s
n

)k−1−1/L e1+1/Ld

L

)t
= o(1). J

APPROX/RANDOM 2019

36:10 Connectivity Threshold for Colorings

Proof of Theorem 1. Let α, β be as in (1). We argue next that the properties given by
Lemmas 11, 13 and 14 imply that Hn,p;k is (α, β)-greedy-colorable for d sufficiently large.
That is for any sequence of sets V1, V2, . . . , Vα such that Vi is maximally independent in
[n] \

⋃
j<i

Vj for j ≤ α we have that [n] \
⋃
i≤α

Vi does not have a β-core. Lemma 10 then follows

directly from (2) and Theorem 3.
Consider such a sequence of sets V1, V2, . . . , Vα. It follows from Lemma 13 that because

αm0 = n, we must have
∑α
i=1 |Vi| ≥ n−n0 and then Lemma 14 implies that [n] \

⋃
i≤α

Vi does

not have a β-core. J

References
1 D. Achlioptas, A. Coja-Oghlan, and F. Ricci-Tersenghi. On the solution-space geometry of

random constraint satisfaction problems. Random Structures and Algorithms, 38:251–268,
2010.

2 P. Ayre, A. Coja-Oghlan, and C. Greenhill. Hypergraph coloring up to condensation.
arxiv:1508.01841, 2019. arXiv:1508.01841.

3 P. Ayre and C. Greenhill. Rigid colourings of hypergraphs and contiguity. arxiv:1812.03195,
2019. arXiv:1812.03195.

4 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, and D. Vilenchik. The condensation
phase transition in random graph coloring. Communications in Mathematical Physics, 341:543–
606, 2016.

5 N. Bousquet and G. Perarnau. Fast recoloring of sparse graphs. European Journal of
Combinatorics, 52:1–11, 2016.

6 C. Efthymiou, T. Hayes, D. Štefankovič, and E. Vigoda. Sampling Colorings of Sparse random
Graphs. In SODA, 2018.

7 C. Feghali. Paths between colourings of sparse graphs. European Journal of Combinatorics,
75:169–171, 2019.

8 A.M. Frieze and M. Karoński. Introduction to Random Graphs. Cambridge University Press,
2015.

9 M. Gabrié, V. Dani, G. Semerjian, and L. Zdeborová. Phase transitions in the q-coloring of
random hypergraphs. Journal of Physics A: Mathematical Theory, 50, 2017.

10 A. Sly J. Ding and N. Sun. Proof of the satisfiability conjecture for large k. arxiv:1411.0650,
2019. arXiv:1411.0650.

11 F. Krzaka̧la, A. Montanari, F. Ricci-Tersenghi, G. Semerijian, and L. Zdeborová. Gibbs states
and the set of solutions of random constraint satisfaction problems. Proceedings of the National
Academy of Sciences, 104:10318–10323, 2007.

12 Anastos M., A.M. Frieze, and W. Pegden. Constraining the clustering transition for colorings
of sparse random graphs. Electronic Journal of Combinatorics, 2018.

13 and A. Flaxman M. Dyer, A.M. Frieze, and E. Vigoda. Randomly coloring sparse random
graphs with fewer colors than the maximum degree. Random Structures and Algorithms,
29:450–465, 2006.

14 M. Molloy. The freezing threshold for k-colourings of a random graph. In STOC, 2012.
15 E. Shamir and E. Upfal. Sequential and Distributed Graph Coloring Algorithms with Per-

formance Analysis in Random Graph Spaces. Journal of Algorithms, 5:488–501, 1984.
16 L. Zdeborová and F. Krzaka̧la. Phase Transitions in the Coloring of Random Graphs. Physics

Review E, 76, 2007.

http://arxiv.org/abs/1508.01841
http://arxiv.org/abs/1812.03195
http://arxiv.org/abs/1411.0650

Slow Mixing of Glauber Dynamics for the
Six-Vertex Model in the Ordered Phases
Matthew Fahrbach
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
matthew.fahrbach@gatech.edu

Dana Randall
School of Computer Science, Georgia Institute of Technology, Atlanta, Georgia, USA
randall@cc.gatech.edu

Abstract
The six-vertex model in statistical physics is a weighted generalization of the ice model on Z2 (i.e.,
Eulerian orientations) and the zero-temperature three-state Potts model (i.e., proper three-colorings).
The phase diagram of the model represents its physical properties and suggests where local Markov
chains will be efficient. In this paper, we analyze the mixing time of Glauber dynamics for the
six-vertex model in the ordered phases. Specifically, we show that for all Boltzmann weights in
the ferroelectric phase, there exist boundary conditions such that local Markov chains require
exponential time to converge to equilibrium. This is the first rigorous result bounding the mixing
time of Glauber dynamics in the ferroelectric phase. Our analysis demonstrates a fundamental
connection between correlated random walks and the dynamics of intersecting lattice path models (or
routings). We analyze the Glauber dynamics for the six-vertex model with free boundary conditions
in the antiferroelectric phase and significantly extend the region for which local Markov chains are
known to be slow mixing. This result relies on a Peierls argument and novel properties of weighted
non-backtracking walks.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases Correlated random walk, Markov chain Monte Carlo, Six-vertex model

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.37

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1904.01495.

Funding Matthew Fahrbach: Supported in part by an NSF Graduate Research Fellowship under
grant DGE-1650044.
Dana Randall: Supported in part by NSF grants CCF-1637031 and CCF-1733812.

1 Introduction

The six-vertex model was first introduced by Pauling in 1935 [33] to study the thermodynamics
of crystalline solids with ferroelectric properties, and has since become one of the most
compelling models in statistical mechanics. The prototypical instance of the model is the
hydrogen-bonding pattern of two-dimensional ice – when water freezes, each oxygen atom
must be surrounded by four hydrogen atoms such that two of the hydrogen atoms bond
covalently with the oxygen atom and two are farther away. The state space of the six-vertex
model consists of orientations of the edges in a finite region of the Cartesian lattice where
every internal vertex has two incoming edges and two outgoing edges, also represented as
Eulerian orientations of the underlying lattice graph. The model is most often studied on
the n × n square lattice Λn ⊆ Z2 with 4n additional edges so that each internal vertex
has degree 4. There are six possible edge orientations incident to a vertex (see Figure 1).

© Matthew Fahrbach and Dana Randall;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 37; pp. 37:1–37:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthew.fahrbach@gatech.edu
mailto:randall@cc.gatech.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.37
https://arxiv.org/abs/1904.01495
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

We assign Boltzmann weights w1, w2, w3, w4, w5, w6 ∈ R>0 to the six vertex types and define
the partition function as Z =

∑
x∈Ω

∏6
i=1 w

ni(x)
i , where Ω is the set of Eulerian orientations

of Λn and ni(x) is the number of type-i vertices in the configuration x.

a b c

Figure 1 The valid edge orientations for internal vertices in the six-vertex model.

In 1967, Lieb discovered exact solutions to the six-vertex model with periodic boundary
conditions for three different parameter regimes [25, 26, 27]. In particular, he famously
showed that if all six vertex weights are wi = 1, the energy per vertex is limn→∞ Z1/n2 =
(4/3)3/2 = 1.5396007... (known as Lieb’s square ice constant). His results were immediately
generalized to allow for all parameter settings and external electric fields [38, 40]. An
equivalence between periodic and free boundary conditions in the limit was established soon
after [7], and since then the primary object of study has been the six-vertex model subject to
domain wall boundary conditions, where the lower and upper boundary edges point into the
square and the left and right boundary edges point outwards [20, 22, 6, 3, 4, 5]. There have
been several surprisingly profound connections to enumerative combinatorics in this line of
work. For instance, Zeilberger gave a sophisticated computer-assisted proof of the alternating
sign matrix conjecture in 1995 [41]. A year later, Kuperberg [23] produced an elegant and
significantly shorter proof using analysis of the partition function of the six-vertex model
with domain wall boundary conditions. Other connections of the model to combinatorics
and probability include tilings of the Aztec diamond and the arctic circle theorem [11, 14],
sampling lozenge tilings [29, 39, 2], and enumerating 3-colorings of lattice graphs [36, 10].

While there has been extraordinary progress in understanding properties of the six-vertex
model with periodic or domain wall boundary conditions, remarkably less is known when the
model is subject to arbitrary boundary conditions. Sampling configurations using Markov
chain Monte Carlo (MCMC) algorithms has been one of the primary means for discovering
more general mathematical and physical properties of the six-vertex model [1, 31, 30, 21],
and empirically the model is very sensitive to boundary conditions. Numerical studies have
often observed slow convergence of local MCMC algorithms under certain parameter settings.
For example, according to [30], “it must be stressed that the Metropolis algorithm might be
impractical in the antiferromagnetic phase, where the system may be unable to thermalize.”
However, there are very few rigorous results for natural Markov chains and the computational
complexity of sampling from the Boltzmann distribution for various weights and boundary
conditions. This motivates our study of Glauber dynamics, the most widely used MCMC
sampling algorithm, for the six-vertex model in the ferroelectric and antiferroelectric phases.

At first glance, there are six degrees of freedom in the model. However, this conveniently
reduces to a two-parameter family due to invariants and standard physical assumptions that
relate pairs of vertex types. To see this, it is useful to map configurations of the six-vertex
model to sets of intersecting lattice paths by erasing all of the edges that are directed south or
west and keeping the others [29]. Using this “routing interpretation,” it is simple to see that
the number of type-5 and type-6 vertices must closely correlated. In addition to revealing
invariants, the lattice path representation of configurations turns out to be exceptionally

M. Fahrbach and D. Randall 37:3

DO

AFE FE

FE

1 a/c

1

b/c

(a)

DO

AFE FE

FE

1 a/c

1

b/c

(b)

Figure 2 Phase diagram of the six-vertex model with (a) previously known and (b) our current
slowly mixing regions colored in red. Glauber dynamics is conjectured to be rapidly mixing for the
entire disordered phase but has only been shown for the uniform distribution indicated by the green
point (1, 1) in both figures.

useful for analyzing Glauber dynamics. Moreover, the total weight of a configuration should
remain unchanged if all the edge directions are reversed in the absence of an external electric
field, so we let w1 = w2 = a, w3 = w4 = b, and w5 = w6 = c. This complementary invariance
is known as the zero field assumption, and it is often convenient to exploit the conservation
laws of the model [4] to reparameterize the system so that w1 = a2 and w2 = 1. This allows
us to ignore empty sites and focus solely on weighted lattice paths. Furthermore, since
our goal is to sample configurations from the Boltzmann distribution, we can normalize
the partition function by a factor of c−n2 and consider the weights (a/c, b/c, 1) instead of
(a, b, c). We collectively refer to these properties as the invariance of the Gibbs measure for
the six-vertex model.

The phase diagram of the six-vertex model represents physical properties of the system
and is partitioned into three regions: the disordered (DO) phase, the ferroelectric (FE) phase,
and the antiferroelectric (AFE) phase. To establish these regions, we consider the parameter

∆ = a2 + b2 − c2

2ab .

The disordered phase is the set of parameters (a, b, c) ∈ R3
>0 that satisfy |∆| < 1, and Glauber

dynamics is expected to be rapidly mixing in this region because there are no long-range
correlations in the system. The ferroelectric phase is defined by ∆ > 1, or equivalently when
a > b+ c or b > a+ c. We show in this paper that Glauber dynamics can be slow mixing at
any point in this region (Figure 2b). The antiferroelectric phase is defined by ∆ < −1, or
equivalently when a+ b < c, and our second result significantly extends the antiferroelectric
subregion for which Glauber dynamics is known to be slow mixing. The phase diagram is
symmetric over the main positive diagonal, which follows from the fact that a and b are
interchangeable under the automorphism that rotates each of the six vertex types by ninety
degrees clockwise. Under the zero field assumption, this is equivalent to rotating the entire
model, so we can assume without loss of generality that if a mixing result holds for one point
in the phase diagram, it also holds at the point reflected over the main diagonal.

Cai, Liu, and Lu [9] recently provided strong evidence supporting conjectures about the
approximability of the six-vertex model. In particular, they designed a fully randomized
approximation scheme (FPRAS) for a subregion of the disordered phase that works for all
4-regular graphs via the winding framework for Holant problems [32, 19]. They also showed

APPROX/RANDOM 2019

37:4 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

that there cannot exist an FPRAS for 4-regular graphs in the ferroelectric or antiferroelectric
phases unless RP = NP. We note that their hardness result uses nonplanar gadgets and
the larger class of 4-regular graphs, so it does not reveal anything about the complexity of
Glauber dynamics for the six-vertex model on regions of Z2. A dichotomy theorem for the
(exact) computability of the partition function of the six-vertex model on 4-regular graphs was
also recently proven in [8]. As for the positive results, Luby, Randall, and Sinclair [29] proved
rapid mixing of a Markov chain that leads to a fully polynomial almost uniform sampler
for Eulerian orientations on any region of the Cartesian lattice with fixed boundaries (i.e.,
the unweighted case when a/c = b/c = 1). Randall and Tetali [36] then used a comparison
technique to argue that Glauber dynamics for Eulerian orientations on lattice graphs is
rapidly mixing by relating this Markov chain to the Luby-Randall-Sinclair chain. Goldberg,
Martin, and Paterson [16] extended their approach to show that Glauber dynamics is rapidly
mixing on rectangular lattice regions with free boundary conditions.

Liu [28] recently gave the first rigorous result that Glauber dynamics is slowly mixing in a
subregion of an ordered phase by showing that local Markov chains require exponential time to
converge in the antiferroelectric subregion defined by max(a, b) < c/µ, where µ = 2.6381585...
is the connective constant for self-avoiding walks on the square lattice (Figure 2a). He also
showed that the directed loop algorithm mixes slowly in the same antiferroelectric subregion
and for all of the ferroelectric region, but this has no bearing on the efficiency of Glauber
dynamics in the ferroelectric region. We note that the partition function is exactly computable
for all boundary conditions at the free-fermion point when ∆ = 0, or equivalently a2 +b2 = c2,
via a reduction to domino tilings and a Pfaffian computation [14]. There is strong evidence
that exact counting is unlikely anywhere else for arbitrary boundary conditions [8].

1.1 Main Results
In this paper we show that there exist boundary conditions for which Glauber dynamics
mixes slowly for the six-vertex model in the ferroelectric and antiferroelectric phases. We
start by proving that there are boundary conditions that cause Glauber dynamics to be slow
for all Boltzmann weights that lie in the ferroelectric region of the phase diagram, where
the mixing time is exponential in the number of vertices in the lattice. This is the first
rigorous result for the mixing time of Glauber dynamics in the ferroelectric phase and it
gives a complete characterization.

I Theorem 1 (Ferroelectric phase). For any (a, b, c) ∈ R3
>0 such that a > b+ c or b > a+ c,

there exist boundary conditions for which Glauber dynamics mixes exponentially slowly on Λn.

We note that our approach naturally breaks down at the critical line in a way that reveals a
trade-off between the energy and entropy of the system. Additionally, our analysis suggests
an underlying combinatorial interpretation for the phase transition between the ferroelectric
and disordered phases in terms of the adherence strength of intersecting lattice paths and
the momentum parameter of correlated random walks.

Our second mixing result builds on the topological obstruction framework developed
in [35] to show that Glauber dynamics with free boundary conditions mixes slowly in most
of the antiferroelectric region. Specifically, we generalize the recent antiferroelectric mixing
result in [28] with a Peierls argument that uses multivariate generating functions for weighted
non-backtracking walks instead of the connectivity constant for (unweighted) self-avoiding
walks to better account for the discrepancies in Boltzmann weights.

I Theorem 2 (Antiferroelectric phase). For any (a, b, c) ∈ R3
>0 such that ac+ bc+ 3ab < c2,

Glauber dynamics mixes exponentially slowly on Λn with free boundary conditions.

M. Fahrbach and D. Randall 37:5

We illustrate the new regions for which Glauber dynamics can be slowly mixing in Figure 2.
Observe that our antiferroelectric subregion significantly extends Liu’s and pushes towards
the conjectured threshold.

1.2 Techniques

We take significantly different approaches for our analysis of the ferroelectric and antiferro-
electric phases. In the ferroelectric phase, where a > b+ c and type-a vertices are preferred to
type-b and type-c vertices, we construct boundary conditions that induce polynomially-many
paths separated by a critical distance that allows all of the paths to (1) behave independently
and (2) simultaneously intersect with their neighbors maximally. (This analysis also covers
the case b > a+ c by a standard invariant that shows symmetry in the phase diagram over
the line y = x.) From here, we analyze the dynamics of a single path in isolation as an
escape probability, which eventually allows us to bound the conductance of the Markov
chain. The dynamics of a single lattice path are equivalent to a those of a correlated random
walk. In Appendix A we present a new tail inequality for correlated random walks that
accurately bounds the probability of large deviations from the starting position. We note that
decomposing the dynamics of lattice models into one-dimensional random walks has recently
been shown to achieve nearly tight bounds for escape probabilities in a different setting [12].

One of the key technical contributions in this paper is our analysis of the tail behavior of
correlated random walks in Appendix A. While there is a simple combinatorial expression for
the position of a correlated random walk written as a sum of marginals, it is not immediately
useful for bounding the displacement from the origin. To achieve an exponentially small
tail bound for these walks, we first construct a smooth function that tightly upper bounds
the marginals and then optimize this function to analyze the asymptotics of the log of the
maximum marginal. Once we obtain an asymptotic equality for the maximum marginal,
we can upper bound the deviation of a correlated random walk, and hence the deviation
of a lattice path in a configuration. Ultimately, this allows us to show that there exists a
balanced cut in the state space that has an exponentially small escape probability, which
implies that the Glauber dynamics are slowly mixing.

In the antiferroelectric phase, on the other hand, the Boltzmann weights satisfy a+ b < c

so type-c vertices are preferred. It follows that there are two (arrow-reversal) symmetric
ground states of maximum probability containing only type-c vertices. To move between
configurations that agree predominantly with different ground states, the Markov chain must
pass through configurations with a large number of type-a or type-b vertices. Using the idea
of fault lines introduced in [35], we use self-avoiding walks to characterize such configurations
and construct a cut set with exponentially small probability mass that separates the ground
states. Liu [28] follows this Peierls argument approach and bounds the weight of the cut
by separately considering the minimum energy gain of the corresponding inverse map and
the number of preimages (i.e., the entropy). Instead, we directly bound the free energy
(rather than as a product of the upper bounds for the energy and entropy terms) and are
able to show slow mixing for a much larger region of the phase diagram. Our key observation
for accurately bounding the free energy is that when a fault line changes direction, the
vertices along it switch from type-a to type-b or vice versa. Therefore, we introduce the
notion of weighted non-backtracking walks and solve their multivariate generating function
by diagonalizing a system of linear recurrences to exactly account for disparities between the
weights of a and b along fault lines.

APPROX/RANDOM 2019

37:6 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

2 Preliminaries

We start by reviewing some necessary background on Markov chains, Glauber dynamics, and
correlated random walks.

2.1 Markov Chains and Mixing Times
LetM be an ergodic, reversible Markov chain with finite state space Ω, transition probability
matrix P , and stationary distribution π. The t-step transition probability from states x to y
is denoted as P t(x, y). The total variation distance between the probability distributions µ
and ν on Ω is

‖µ− ν‖TV = 1
2
∑
x∈Ω
|µ(x)− ν(x)|.

The mixing time of M is τ(1/4) = min{t ∈ Z≥0 : maxx∈Ω ‖P t(x, ·)− π‖TV ≤ 1/4}. We
say thatM is rapidly mixing if its mixing time is O(poly(n)), where n is the size of each
configuration in the state space. Similarly, we say thatM is slow mixing if its mixing time
is Ω(exp(nc)) for some constant c > 0.

The mixing time of a Markov chain is characterized by its conductance (up to polynomial
factors). The conductance of a nonempty set S ⊆ Ω is

Φ(S) =
∑
x∈S,y 6∈S π(x)P (x, y)

π(S) ,

and the conductance of the Markov chain is Φ∗ = minS⊆Ω:0<π(S)≤1/2 Φ(S). It is often
useful to view the conductance of a set as an escape probability – starting from stationarity
and conditioned on being in S, the conductance Φ(S) is the probability thatM leaves S
in one step.

I Theorem 3 ([24]). For an ergodic, reversible Markov chain with conductance Φ∗, we have
τ(1/4) ≥ 1/(4Φ∗).

To show that a Markov chain is slow mixing, it suffices to show that the conductance is
exponentially small.

In this paper we the study single-site Glauber dynamics for the six-vertex model. This
Markov chain makes local moves by (1) choosing an internal cell of the lattice uniformly at
random and (2) reversing the orientations of the edges that bound the chosen cell if they
form a cycle. In the lattice path interpretation of the model, these dynamics correspond
to the mountain-valley Markov chain that flips corners. Transitions between states are
made according to the Metropolis-Hastings acceptance probability so that the Markov chain
converges to the desired stationary distribution.

2.2 Correlated Random Walks
A key tool in our analysis for the ferroelectric phase are correlated random walks, which
generalize simple symmetric random walks by accounting for momentum. A one-dimensional
correlated random walk with momentum parameter p ∈ [0, 1] starts at the origin and is
defined as follows. Let X1 be a uniform random variable with support {−1, 1}. For all
subsequent steps i ≥ 2, the direction of the process is correlated with the direction of the
previous step and satisfies

Xi+1 =
{
Xi with probability p,
−Xi with probability 1− p.

M. Fahrbach and D. Randall 37:7

We denote the position of the walk at time t by St =
∑t
i=1Xi. It will often be useful to make

the change of variables p = µ/(1 + µ) when analyzing the six-vertex model. In many cases
this also leads to cleaner expressions. We use the following probability density function (PDF)
for the position of a correlated random walk to develop a new tail inequality (Lemma 8) that
holds for all values of p.

I Lemma 4 ([18]). For any n ≥ 1 and m ≥ 0, the PDF of a correlated random walk is

Pr(S2n = 2m) =
{

1
2p

2n−1 if 2m = 2n,∑n−m

k=1

(
n+m−1

k−1

)(
n−m−1

k−1

)
(1− p)2k−1p2n−1−2k

(
n(1−p)+k(2p−1)

k

)
if 2m < 2n.

3 Slow Mixing in the Ferroelectric Phase

We start with the ferroelectric phase where a > b+ c or b > a+ c, and we give a conductance-
based argument to show that Glauber dynamics can be slowly mixing in the entire ferroelectric
region. Specifically, we show that there exist boundary conditions that induce an exponentially
small, asymmetric bottleneck in the state space, revealing a natural trade-off between the
energy and entropy in the system. Viewing the six-vertex model in the intersecting lattice
interpretation suggests how to plant polynomially-many paths in the grid that can (1)
be analyzed independently, while (2) being capable of intersecting maximally. This path
independence makes our analysis tractable and allows us to interpret the dynamics of a
path as a correlated random walk, for which we develop an exponentially small tail bound
in Appendix A. Since escape probabilities govern mixing times [34], we show how to relate the
expected maximum deviation of a correlated walk to the conductance of the Markov chain
to prove slow mixing. In addition to showing slow mixing up to the conjectured threshold, a
surprising feature of our argument is that it potentially gives a combinatorial explanation
for the phase transition from the ferroelectric to disordered phase. In particular, Lemma 9
demonstrates how the parameters of the model delicately balance the probability mass of
the Markov chain.

Next, we exploit the invariance of the Gibbs measure and the lattice path interpretation
of the six-vertex model to conveniently reparameterize the Boltzmann weights. Specifically,
we let w1 = λ2 and w2 = 1 so that we can ignore empty sites. Note that a = √w1w2 = λ.
We also let b = w2 = w3 = µ and c = w5 = w6 = 1 so that the weight of a configuration only
comes from straight segments and intersections of neighboring lattice paths.

3.1 Constructing the Boundary Conditions and Cut
We begin with a few colloquial definitions for lattice paths that allow us to easily construct
the boundary conditions and make arguments about the conductance of the Markov chain.
We call a 2n-step, north-east lattice path γ starting from (0, 0) a path of length 2n, and if the
path ends at (n, n) we describe it as tethered. If γ = ((0, 0), (x1, y1), (x2, y2), . . . , (x2n, y2n)),
we define the deviation of γ to be maxi=0..2n‖(xi, yi) − (i/2, i/2)‖1. Geometrically, path
deviation captures the (normalized) maximum perpendicular distance of the path to the
line y = x. We refer to vertices (xi, yi) along the path as corners or straights depending on
whether or not the path turned. If two paths intersect at a vertex we call this site a cross.
Note that this classifies all vertex types in the six-vertex model.

We consider the following independent paths boundary condition for an n× n six-vertex
model for the rest of the section. To construct this boundary condition, we consider its
lattice path interpretation. First, place a tethered path γ0 that enters (0, 0) horizontally
and exits (n, n) horizontally. Next, place 2` = bn1/8c translated tethered paths of varying

APPROX/RANDOM 2019

37:8 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

(a) (b)

Figure 3 Examples of states with the independent paths boundary condition: (a) is a state in S
with the deviation bounds highlighted and (b) is the ground state in the ferroelectric phase.

length above and below the main diagonal, each separated from its neighbors by distance d =
b32n3/4c. Specifically, the paths γ1, γ2, . . . , γ` below the main diagonal begin at the vertices
(d, 0), (2d, 0), . . . , (`d, 0) and end at the vertices (n, n−d), (n, n− 2d), . . . , (n, n− `d), respect-
ively. The paths γ−1, γ−2, . . . , γ−` above the main diagonal begin at (0, d), (0, 2d), . . . , (0, `d)
and end at (n− d, n), (n− 2d, n), . . . , (n− `d, n). The deviation of a translated tethered path
is the deviation of the same path starting at (0, 0). To complete the boundary condition, we
force the paths below the main diagonal to enter vertically and exit horizontally. Symmetric-
ally, we force the paths above the main diagonal to enter horizontally and exit vertically. See
Figure 3a for an illustration of the construction when all paths have small deviation.

Next, we construct an asymmetric cut in the state space induced by this boundary condi-
tion in terms of its internal lattice paths. In particular, we analyze a set S of configurations
such that every path in a configuration has small deviation. Formally, we let

S
def=
{
x ∈ Ω : the deviation of each path in x is less than 8n3/4

}
.

Observe that by our choice of separation distance d = b32n3/4c and the deviation limit for S,
no paths in any configuration of S intersect. It follows that the partition function for S
factors into a product of 2`+ 1 partition functions, one for each path with bounded deviation.
This intuition is useful when analyzing the conductance Φ(S) as an escape probability from
stationarity.

3.2 Lattice Paths as Correlated Random Walks

Now we consider weighting the internal paths according to the six-vertex model. The main
result in this subsection is that random tethered paths are exponentially unlikely to deviate
past ω(n1/2), even if drawn from a Boltzmann distribution that favors straights (Lemma 5).
Let Γ(µ, n) denote the distribution over tethered paths of length 2n such that

Pr(γ) ∝ µ(# of straights in γ).

I Lemma 5. Let µ, ε > 0 and m = o(n). For n sufficiently large and γ ∼ Γ(µ, n), we have
Pr(γ deviates by at least 2m) ≤ e−(1−ε)m2

µn .

M. Fahrbach and D. Randall 37:9

We defer the proof of Lemma 5 to the full version of the paper [13]. Instead, we sketch its key
ideas to demonstrate the connection between biased tethered paths and correlated random
walks, and to show how the supporting lemmas interact.

First, observe that there is a natural measure-preserving bijection between biased tethered
paths of length 2n and correlated random walks of length 2n that return to the origin.
Concretely, for a correlated random walk (S0, S1, . . . , S2n) parameterized by p = µ/(1 + µ),

Pr(γ deviates by at least 2m) = Pr
(

max
i=0..2n

|Si| ≥ 2m
∣∣∣ S2n = 0

)
. (1)

Now we present an asymptotic equality that generalizes the return probability of simple
symmetric random walks. This allows us to relax the condition in (1) that a correlated
random walk returns to the origin, and instead we bound Pr(maxi=0..2n |Si| ≥ 2m) at the
expense of an additional polynomial factor.

I Lemma 6 ([15]). For any constant µ > 0, the return probability of a correlated random
walk is Pr(S2n = 0) ∼ 1/√µπn.

Another result needed to prove Lemma 5 is that the PDF for correlated random walks is
unimodal.

I Lemma 7. For any momentum parameter p ∈ (0, 1) and n sufficiently large, the probability
of the position of a correlated random walk is unimodal. Concretely, for m ∈ {0, 1, . . . , n− 1},
we have Pr(S2n = 2m) ≥ Pr(S2n = 2(m+ 1)).

Last, we give an upper bound for the position of a correlated random walk. We fully
develop this inequality in Appendix A by analyzing the asymptotic behavior of the PDF
in Lemma 4. Observe that Lemma 8 demonstrates exactly how the tail behavior of simple
symmetric random walks generalizes to correlated random walks as a function of µ.

I Lemma 8. Let µ, ε > 0 and m = o(n). For n sufficiently large, a correlated random walk
satisfies Pr(S2n = 2m) ≤ e−(1−ε)m2

µn .

To complete the proof sketch of Lemma 5, we start by using Lemma 6 to relax the conditional
probability. It follows from Lemma 7 and union bounds that

Pr
(

max
i=0..2n

|Si| ≥ 2m
∣∣∣ S2n = 0

)
≤ 2√µπn · 2n2 · Pr(S2n = 2m). (2)

Applying Lemma 8 to (2) with a smaller error completes the proof. See [13] for more details.

3.3 Bounding the Conductance and Mixing Time
Next, we bound the conductance of the Markov chain by viewing Φ(S) as an escape probability.
We start by claiming that π(S) ≤ 1/2 (as required by the definition of conductance) if and
only if the parameters are in the ferroelectric phase. Due to space constraints, we also defer
the proof of Lemma 9 to [13]. Then we use the correspondence between tethered paths and
correlated random walks (Section 3.2) to prove that Φ(S) is exponentially small.

I Lemma 9. Let µ > 0 and λ > 1 + µ be constants. For n sufficiently large, π(S) ≤ 1/2.

Our analysis of the escape probability from S critically relies on the fact that paths in
any state x ∈ S are non-intersecting. Combinatorially, we exploit the factorization of the
generating function for states in S as a product of 2`+1 independent path generating functions.

APPROX/RANDOM 2019

37:10 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

I Lemma 10. Let µ, ε > 0 be constants. For n sufficiently large, Φ(S) ≤ e−(1−ε)µ−1n1/2 .

Proof. The conductance Φ(S) can be understood as the following escape probability. Sample
a state x ∈ S from the stationary distribution π conditioned on x ∈ S, and run the Markov
chain from x for one step to get a neighboring state y. The definition of conductance implies
that Φ(S) is the probability that y 6∈ S. Using this interpretation, we can upper bound Φ(S)
by the probability mass of states that are near the boundary of S in the state space, since the
process must escape in one step. Therefore, it follows from the independent paths boundary
condition and the definition of S that

Φ(S) ≤ Pr
(
there exists a path in x deviating by at least 4n3/4

∣∣∣ x ∈ S).
Next, we use a union bound over the 2`+ 1 different paths in a configuration and consider

the event that a particular path γk deviates by at least 4n3/4. Because all of the paths in S
are independent, we only need to consider the behavior of γk in isolation. This allows us
to rephrase the conditional event. Relaxing the conditional probability of each term in the
sum gives

Φ(S) ≤
∑̀
k=−`

Pr
(
γk deviates by at least 4n3/4

∣∣∣ x ∈ S)

=
∑̀
k=−`

Pr
(
γk deviates by at least 4n3/4

∣∣∣ γk deviates by less than 8n3/4
)

≤
∑̀
k=−`

Pr
(
γk deviates by at least 4n3/4)

1− Pr
(
γk deviates by at least 8n3/4) .

For large enough n, the length of every path γk is in the range [n, 2n] since we eventually
have n− `d ≥ n/2. Therefore, we can apply Lemma 5 with the error ε/2 to each term and
use the universal upper bound

Pr
(
γk deviates by at least 4n3/4)

1− Pr
(
γk deviates by at least 8n3/4) ≤ e−(1− ε2) 16n3/2

µn

1− e−(1− ε2) 64n3/2
µn

≤ 2e−(1− ε2) 16n3/2
µn .

It follows from the union bound and previous inequality that the conductance Φ(S) is
bounded by

Φ(S) ≤ (2`+ 1) · 2e−(1− ε2) 16n3/2
µn ≤ e−(1−ε)µ−1n1/2

,

which completes the proof. J

I Theorem 11. Let µ, ε > 0 and λ > 1 + µ. For n sufficiently large, τ(1/4) ≥ e(1−ε)µ−1n1/2 .

Proof. Since π(S) ≤ 1/2 by Lemma 9, we have Φ∗ ≤ Φ(S). The proof follows from Theorem 3
and the conductance bound in Lemma 10 with a smaller error ε/2. J

Last, we restate our main theorem and use Theorem 11 to show that Glauber dynamics
for the six-vertex model can be slow mixing for all parameters in the ferroelectric phase.

I Theorem 1 (Ferroelectric phase). For any (a, b, c) ∈ R3
>0 such that a > b+ c or b > a+ c,

there exist boundary conditions for which Glauber dynamics mixes exponentially slowly on Λn.

M. Fahrbach and D. Randall 37:11

Proof. Without loss of generality, we reparameterized the model so that a = λ, b = µ, and
c = 1. Therefore, Glauber dynamics with the independent paths boundary condition is slow
mixing if a > b+ c by Theorem 11. Since the rotational invariance of the six-vertex model
implies that a and b are interchangeable parameters, this mixing time result also holds in
the case b > a+ c. J

4 Slow Mixing in the Antiferroelectric Phase

Now we consider the mixing time of Glauber dynamics in the antiferroelectric phase, where
c > a + b and corners (type-c vertices) are preferred. The main insight behind our slow
mixing proof is that when c is sufficiently large, the six-vertex model can behave like the
low-temperature hardcore model on Z2 where configurations predominantly agree with one
of two ground states. Liu recently formalized this argument in [28] and showed that Glauber
dynamics for the six-vertex model with free boundary conditions requires exponential time
when max(a, b) < µc, where µ ≤ 2.639 is the connective constant of self-avoiding walks on
the square lattice [17]. His proof uses a Peierls argument based on topological obstructions
introduced by Randall [35] in the context of independent sets. We extend Liu’s result to the
region depicted in Figure 2b by computing a closed-form multivariate generating function
that upper bounds the number of self-avoiding walks and accounts for disparities in their
Boltzmann weights induced by the parameters of the six-vertex model.

4.1 Topological Obstruction Framework
We start with a recap of the definitions and framework laid out in [28]. There are two ground
states in the antiferroelectric phase such that every interior vertex is a corner: xR (Figure 4a)
and xG (Figure 4b). These configurations are edge reversals of each other, so for any x ∈ Ω
we can color its edges red if they are oriented as in xR or green if they are oriented as in xG.
See Figure 4c for an example. It follows from case analysis of the six vertex types (Figure 1)
that the number of red edges incident to any internal vertex is even, and if there are only
two red edges then they must be rotationally adjacent to each other. The same property
holds for green edges by symmetry. Note that the four edges bounding a cell of the lattice
are monochromatic if and only if they are oriented cyclically, and thus reversible by Glauber
dynamics. We say that a simple path from a horizontal edge on the left boundary of Λn
to a horizontal edge on the right boundary is a red horizontal bridge if it contains only red
edges. We define green horizontal bridges and monochromatic vertical bridges similarly. A
configuration has a red cross if it contains both a red horizontal bridge and a red vertical
bridge, and we define a green cross likewise. Let CR ⊆ Ω be the set of all states with a red
cross, and let CG ⊆ Ω be the set of all states with a green cross. We have CR ∩ CG = ∅ by
Lemma 12.

(a) (b) (c)

Figure 4 Edge colorings of (a) the red ground state xR, (b) the green ground state xG, and (c)
an example configuration with free boundary conditions that does not have a monochromatic cross.

APPROX/RANDOM 2019

37:12 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

Next, we define the dual lattice Ln to describe configurations in Ω \ (CR ∪ CG). The
vertices of Ln are the centers of the cells in Λn, including the cells on the boundary that are
partially enclosed, and we connect dual vertices by an edge if their corresponding cells are
diagonally adjacent. Note that Ln is a union of two disjoint graphs (Figure 5a). For any
state x ∈ Ω there is a corresponding dual subgraph Lx defined as follows: for each interior
vertex v in Λn, if v is incident to two red edges and two green edges, then Lx contains the
dual edge passing through v that separates the two red edges from the two green edges. This
construction is well-defined because the red edges are rotationally adjacent. See Figure 5b
for an example. For any x ∈ Ω, we say that x has a horizontal fault line if Lx contains a
simple path from a left dual boundary vertex to a right dual boundary vertex. We define
horizontal fault lines similarly and let CFL ⊆ Ω be the set of all states containing a horizontal
or vertical fault line. Observe that fault lines completely separate red and green edges, and
hence are topological obstructions that prohibit monochromatic bridges.

(a) (b) (c)

Figure 5 Illustrations of (a) the dual lattice Ln as a union of disjoint cyan and purple subgraphs,
(b) an example configuration overlaid with its dual graph, and (c) the example under the injective
fault line map.

Last, we extend the notion of fault lines to almost fault lines. We say that x ∈ Ω has a
horizontal almost fault line if there is a simple path in Ln connecting a left dual boundary
vertex to a right dual boundary vertex such that all edges except for one are in Lx. We define
vertical almost fault lines similarly and let the set CAFL ⊆ Ω denote all states containing
an almost fault line. Finally, let ∂CR ⊆ Ω denote the set of states not in CR that one move
away from CR in the state space according to the Glauber dynamics.

I Lemma 12 ([28]). We can partition the state space into Ω = CR∪CFL∪CG. Furthermore,
we have ∂CR ⊆ CFL ∪ CAFL.

4.2 Weighted Non-Backtracking Walks and a Peierls Argument
In this subsection we show that π(CFL ∪ CAFL) is an exponentially small bottleneck in
the state space Ω. The analysis relies on Lemma 12 and a new multivariate upper bound
for weighted self-avoiding walks (Lemma 13). Our key observation is that when a fault
line changes direction, the vertices in its path change from type-a to type-b or vice versa.
Therefore, our goal in this subsection is to generalize the trivial 3n−1 upper bound for the
number of self-avoiding walks by accounting for their changes in direction in aggregate. We
achieve this by using generating functions to solve a system of linear recurrence relations.

We start by encoding non-backtracking walks that start from the origin and take
their first step northward using the characters in {S, L,R}, representing straight, left,
and right steps. For example, the walk SLRSSL corresponds uniquely to the sequence

M. Fahrbach and D. Randall 37:13

((0, 0), (0, 1), (−1, 1), (−1, 2), (−1, 3), (−1, 4), (−2, 4)). If a fault line is the same shape as
SLRSSL up to a rotation about the origin, then there are only two possible sequences of
vertex types through which it can pass: abaaab and babbba. This follows from the fact that
once the first vertex type is determined, only turns in the self-avoiding walk (i.e., the L and R
characters) cause the vertex type to switch. We define the weight of a fault line to be the
product of the vertex types through which it passes. More generally, we define the weight of
a non-backtracking walk that initially passes through a fixed vertex type to be the product of
the induced vertex types according to the rule that turns toggle the current type. Formally,
we let ga(γ) : {S} × {S, L,R}n−1 → R denote the weight of a non-backtracking walk γ that
starts by crossing a type-a vertex. We define the function gb(γ) similarly and note that
ga(SLRSSL) = a4b2 and gb(SLRSSL) = a2b4. Last, observe that a sequence of vertex types
can have many different walks in its preimage. The non-backtracking walk SRRSSR also
maps to abaaab and babbba – in fact, there are 23 = 8 such walks in this example since we
can interchange L and R characters.

The idea of enumerating the preimages of a binary string corresponding to sequence
of vertex types suggests a recursive approach for computing the sum of weighted non-
backtracking walks. This naturally leads to the use of generating functions, so overload the
variables x and y to also denote function arguments. For nonempty binary string s ∈ {0, 1}n,
let h(s) count the number of pairs of adjacent characters that are not equal and let |s| denote
the number of ones in s (e.g., if s = 010001 then h(s) = 3 and |s| = 2). The sum of weighted
self-avoiding walks is upper bounded by the sum of weighted non-backtracking walks, so we
proceed by analyzing the following function:

Fn(x, y) def=
∑

γ∈{S}×{S,L,R}n−1

gx(γ) + gy(γ) =
∑

s∈{0,1}n
2h(s)x|s|yn−|s|. (3)

Note that Fn(1, 1) = 2 · 3n−1 recovers the number of non-backtracking walks that initially
cross type-a or type-b vertices. We compute a closed-form solution for Fn(x, y) in the full
version [13] by diagonalizing a matrix corresponding to the system of recurrence relations,
which allows us to accurately capture the discrepancy between fault lines when the Boltzmann
weights a and b differ.

I Lemma 13. Let Fn(x, y) be the generating function for weighted non-backtracking walks
defined in (3). For any integer n ≥ 1 and x, y ∈ R>0, we have

Fn(x, y) ≤ 3(x+ y)
(
x+ y +

√
x2 + 14xy + y2

2

)n−1

.

We are now ready to present our Peierls argument to bound π(CFL ∪ CAFL), which gives
us a bound on the conductance and allows us to prove Theorem 2. First, we describe which
antiferroelectric parameters cause Fn(a/c, b/c) to decrease exponentially fast.

I Lemma 14. If (a, b, c) ∈ R3
>0 is antiferroelectric and 3ab + ac + bc < c2, then we have

a+ b+
√
a2 + 14ab+ b2 < 2c.

I Lemma 15. If (a, b, c) ∈ R3
>0 is antiferroelectric and 3ab+ ac+ bc < c2, for free boundary

conditions we have

π (CFL ∪ CAFL) ≤ poly(n)
(
a+ b+

√
a2 + 14ab+ b2

2c

)n
.

APPROX/RANDOM 2019

37:14 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

Proof. For any self-avoiding walk γ and dual vertices s, t ∈ Ln on the boundary, let Ωγ,s,t ⊆ Ω
be the set of states containing γ as a fault line or an almost fault line such that γ starts
at s and ends at t. Without loss of generality, assume that the (almost) fault line is
vertical. Reversing the direction of all edges on the left side of γ defines the injective map
fγ,s,t : Ωγ,s,t → Ω \ Ωγ,s,t such that if γ is a fault line of x ∈ Ωγ,s,t, then the weight of
its image fγ,s,t(x) is amplified by c|γ|/ga(γ) or c|γ|/gb(γ). See Figure 5c for an example.
Similarly, if γ is an almost fault line, decompose γ into subpaths γ1 and γ2 separated by
a type-c vertex such that γ1 starts at s and γ2 ends at t. In this case, the weight of the
images of almost fault lines is amplified by a factor of min(a, b)/c · c|γ1|+|γ2|/(gα(γ1)gβ(γ2))
for some (α, β) ∈ {a, b}2. Using the fact that fγ,s,t is injective and summing over the states
containing γ as a fault line and an almost fault line separately gives us

π(Ωγ,s,t) ≤
ga(γ) + gb(γ)

c|γ|
+ c

min(a, b)
∑

γ1+γ2=γ

ga(γ1) + gb(γ1)
c|γ1|

· ga(γ2) + gb(γ2)
c|γ2|

, (4)

where the sum is over all Θ(|γ|) decompositions of γ into γ1 and γ2.
Equipped with (4) and Lemma 13, we use a union bound over all pairs of terminals (s, t)

and fault line lengths ` to upper bound π(CFL ∪ CAFL) in terms of our generating function
for weighted non-backtracking walks F`(x, y). Since the antiferroelectric weights satisfy
3ab+ ac+ bc < c2, it follows from Lemma 14 that

π(CFL ∪ CAFL) ≤
∑
(s,t)

n2∑
`=n

(
F`(a/c, b/c) + c

min(a, b)

`∑
k=0

Fk(a/c, b/c)F`−k(a/c, b/c)

)

≤
∑
(s,t)

n2∑
`=n

poly(`)
(
a+ b+

√
a2 + 14ab+ b2

2c

)`

≤ poly(n)
(
a+ b+

√
a2 + 14ab+ b2

2c

)n

.

Note that the convolutions in the first inequality generate all almost weighted non-
backtracking walks. J

I Theorem 2 (Antiferroelectric phase). For any (a, b, c) ∈ R3
>0 such that ac+ bc+ 3ab < c2,

Glauber dynamics mixes exponentially slowly on Λn with free boundary conditions.

Proof of Theorem 2. Let ΩMIDDLE = CFL∪CAFL, ΩLEFT = CR \ΩMIDDLE, and ΩRIGHT =
CG \ ΩMIDDLE. It follows from Lemma 12 that Ω = ΩLEFT ∪ ΩMIDDLE ∪ ΩRIGHT is a
partition with the properties that ∂ΩLEFT ⊆ ΩMIDDLE and π(ΩLEFT) = π(ΩRIGHT). Since
the partition is symmetric, Lemma 15 implies that 1/4 ≤ π(ΩLEFT) ≤ 1/2, for n sufficiently
large. Therefore, we can upper bound the conductance by Φ∗ ≤ Φ(ΩLEFT) ≤ 4π(ΩMIDDLE).
Using Theorem 3 with Lemma 15 and Lemma 14 gives the desired mixing time bound. J

References
1 David Allison and Nicolai Reshetikhin. Numerical study of the 6-vertex model with domain

wall boundary conditions. Annales de l’institut Fourier, 55(6):1847–1869, 2005.
2 Prateek Bhakta, Ben Cousins, Matthew Fahrbach, and Dana Randall. Approximately sampling

elements with fixed rank in graded posets. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1828–1838. SIAM, 2017.

3 Pavel Bleher and Vladimir Fokin. Exact solution of the six-vertex model with domain wall
boundary conditions. Disordered phase. Communications in Mathematical Physics, 268(1):223–
284, 2006.

M. Fahrbach and D. Randall 37:15

4 Pavel Bleher and Karl Liechty. Exact solution of the six-vertex model with domain wall bound-
ary conditions. Ferroelectric phase. Communications in Mathematical Physics, 286(2):777–801,
2009.

5 Pavel Bleher and Karl Liechty. Exact Solution of the Six-Vertex Model with Domain Wall
Boundary Conditions: Antiferroelectric Phase. Communications on Pure and Applied Math-
ematics, 63(6):779–829, 2010.

6 N. M. Bogoliubov, A. G. Pronko, and M. B.. Zvonarev. Boundary correlation functions of the
six-vertex model. Journal of Physics A: Mathematical and General, 35(27):5525, 2002.

7 H. J. Brascamp, H. Kunz, and F. Y. Wu. Some rigorous results for the vertex model in
statistical mechanics. Journal of Mathematical Physics, 14(12):1927–1932, 1973.

8 Jin-Yi Cai, Zhiguo Fu, and Mingji Xia. Complexity classification of the six-vertex model.
Information and Computation, 259:130–141, 2018.

9 Jin-Yi Cai, Tianyu Liu, and Pinyan Lu. Approximability of the Six-vertex Model. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2248–2261. SIAM, 2019.

10 Sarah Cannon and Dana Randall. Sampling on lattices with free boundary conditions using
randomized extensions. In Proceedings of the twenty-seventh annual ACM-SIAM symposium
on Discrete algorithms, pages 1952–1971. Society for Industrial and Applied Mathematics,
2016.

11 Henry Cohn, Noam Elkies, and James Propp. Local statistics for random domino tilings
of the Aztec diamond. Duke Mathematics Journal, 85(1):117–166, October 1996. doi:
10.1215/S0012-7094-96-08506-3.

12 David Durfee, Matthew Fahrbach, Yu Gao, and Tao Xiao. Nearly tight bounds for sandpile
transience on the grid. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 605–624. SIAM, 2018.

13 Matthew Fahrbach and Dana Randall. Slow Mixing of Glauber Dynamics for the Six-
Vertex Model in the Ferroelectric and Antiferroelectric Phases. arXiv preprint, 2019. arXiv:
1904.01495.

14 Patrik L. Ferrari and Herbert Spohn. Domino tilings and the six-vertex model at its free-fermion
point. Journal of Physics A: Mathematical and General, 39(33):10297, 2006.

15 J. Gillis. Correlated random walk. Mathematical Proceedings of the Cambridge Philosophical
Society, 51(4):639–651, 1955.

16 Leslie Ann Goldberg, Russell Martin, and Mike Paterson. Random sampling of 3-colorings
in Z2. Random Structures & Algorithms, 24(3):279–302, 2004.

17 A. J. Guttmann and A. R. Conway. Square lattice self-avoiding walks and polygons. Annals
of Combinatorics, 5(3-4):319–345, 2001.

18 J. W. Hanneken and D. R. Franceschetti. Exact distribution function for discrete time correlated
random walks in one dimension. The Journal of Chemical Physics, 109(16):6533–6539, 1998.

19 Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for MCMC: From art to
science. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 514–527. Society for Industrial and Applied Mathematics, 2016.

20 Anatoli G Izergin, David A Coker, and Vladimir E Korepin. Determinant formula for the
six-vertex model. Journal of Physics A: Mathematical and General, 25(16):4315, 1992.

21 David Keating and Ananth Sridhar. Random tilings with the GPU. Journal of Mathematical
Physics, 59(9):091420, 2018.

22 Vladimir Korepin and Paul Zinn-Justin. Thermodynamic limit of the six-vertex model
with domain wall boundary conditions. Journal of Physics A: Mathematical and General,
33(40):7053, 2000.

23 Greg Kuperberg. Another proof of the alternative-sign matrix conjecture. International
Mathematics Research Notices, 1996(3):139–150, 1996.

24 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times,
volume 107. American Mathematical Society, 2017.

APPROX/RANDOM 2019

https://doi.org/10.1215/S0012-7094-96-08506-3
https://doi.org/10.1215/S0012-7094-96-08506-3
http://arxiv.org/abs/1904.01495
http://arxiv.org/abs/1904.01495

37:16 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

25 Elliott H Lieb. Exact solution of the problem of the entropy of two-dimensional ice. Physical
Review Letters, 18(17):692, 1967.

26 Elliott H Lieb. Exact Solution of the Two-Dimensional Slater KDP Model of a Ferroelectric.
Physical Review Letters, 19(3):108, 1967.

27 Elliott H Lieb. Residual Entropy of Square Ice. Physical Review, 162(1):162, 1967.
28 Tianyu Liu. Torpid Mixing of Markov Chains for the Six-vertex Model on Z2. In Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

29 Michael Luby, Dana Randall, and Alistair Sinclair. Markov chain algorithms for planar lattice
structures. SIAM Journal on Computing, 31(1):167–192, 2001.

30 Ivar Lyberg, Vladimir Korepin, G. A. P. Ribeiro, and Jacopo Viti. Phase separation in the
six-vertex model with a variety of boundary conditions. Journal of Mathematical Physics,
59(5):053301, 2018.

31 Ivar Lyberg, Vladimir Korepin, and Jacopo Viti. The density profile of the six vertex model with
domain wall boundary conditions. Journal of Statistical Mechanics: Theory and Experiment,
2017(5):053103, 2017.

32 Colin McQuillan. Approximating holant problems by winding. arXiv preprint, 2013. arXiv:
1301.2880.

33 Linus Pauling. The structure and entropy of ice and of other crystals with some randomness
of atomic arrangement. Journal of the American Chemical Society, 57(12):2680–2684, 1935.

34 Yuval Peres and Perla Sousi. Mixing times are hitting times of large sets. Journal of Theoretical
Probability, 28(2):488–519, 2015.

35 Dana Randall. Slow mixing of Glauber dynamics via topological obstructions. In Proceedings
of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 870–879.
Society for Industrial and Applied Mathematics, 2006.

36 Dana Randall and Prasad Tetali. Analyzing Glauber dynamics by comparison of Markov
chains. Journal of Mathematical Physics, 41(3):1598–1615, 2000.

37 Eric Renshaw and Robin Henderson. The correlated random walk. Journal of Applied
Probability, 18(2):403–414, 1981.

38 Bill Sutherland. Exact solution of a two-dimensional model for hydrogen-bonded crystals.
Physical Review Letters, 19(3):103, 1967.

39 David Bruce Wilson. Mixing times of lozenge tiling and card shuffling Markov chains. The
Annals of Applied Probability, 14(1):274–325, 2004.

40 C. P. Yang. Exact solution of a model of two-dimensional ferroelectrics in an arbitrary external
electric field. Physical Review Letters, 19(10):586, 1967.

41 Doron Zeilberger. Proof of the alternating sign matrix conjecture. Electronic Journal of
Combinatorics, 3(2):R13, 1996.

A Tail Behavior of Correlated Random Walks

In this section we prove Lemma 8, which gives an exponentially small upper bound for the
tail of a correlated random walk as a function of its momentum parameter µ. Our proof
builds off of the PDF for the position of a correlated random walk given as Lemma 4, which
is combinatorial in nature and not readily amenable for tail inequalities. Specifically, the
probability Pr(S2n = 2m) is a sum of marginals conditioned on the number of turns that the
walk makes [37].

There are two main ideas in our approach to develop a more useful bound for the position
of a correlated random walk Pr(S2n = 2m). First, we construct a smooth function that upper
bounds the marginals as a function of x (a continuation of the number of turns in the walk k),
and then we determine its maximum value. Next we show that the log of the maximum
value is asymptotically equivalent to m2/(µn) for m = o(n), which gives us desirable bounds

http://arxiv.org/abs/1301.2880
http://arxiv.org/abs/1301.2880

M. Fahrbach and D. Randall 37:17

for sufficiently large values of n. We point out that this analysis illustrates precisely how
correlated random walks generalize simple symmetric random walks and how the momentum
parameter µ controls the exponential decay.

A.1 Upper Bounding the Marginal Probabilities
We start by using Stirling’s approximation to construct a smooth function that upper bounds
the marginal terms in the sum of the PDF for correlated random walks. For x ∈ (0, n−m), let

f(x) def=

1 if x = 0,

(n+m)n+m

xx(n+m−x)n+m−x · (n−m)n−m

xx(n−m−x)n−m−x · µ−2x if x ∈ (0, n−m),
µ−2(n−m) if x = n−m.

(5)

It can easily be checked that f(x) is continuous on all of [0, n−m] since limx→0 x
x = 1.

I Lemma 16. For any integer m ≥ 0, a correlated random walk satisfies

Pr(S2n = 2m) ≤ poly(n)
n−m∑
k=0

(
µ

1 + µ

)2n
f(k).

Proof. Consider the probability density function for Pr(S2n = 2m) in Lemma 4. If 2m = 2n
the claim is clearly true, so we focus on the other case. We start by bounding the rightmost
polynomial term in the sum. For all n ≥ 1, we have n(1− p) + k(2p− 1) ≤ 2nk. Next, we
reparameterize the marginals in terms of µ, where p = µ/(1 + µ), and use a more convenient
upper bound for the binomial coefficients. Observe that

Pr(S2n = 2m) ≤ 2n
n−m∑
k=1

(
n+m− 1
k − 1

)(
n−m− 1
k − 1

)(
1

1 + µ

)2k−1(
µ

1 + µ

)2n−1−2k

≤ poly(n)
n−m∑
k=0

(
n+m

k

)(
n−m
k

)(
µ

1 + µ

)2n
µ−2k.

Stirling’s approximation states that for all n ≥ 1 we have e(n/e)n ≤ n! ≤ en(n/e)n, so
we can bound the products of binomial coefficients up to a polynomial factor by(

n+m

k

)(
n−m
k

)
≤ poly(n) ·

(
n+m
e

)n+m(
k
e

)k(n+m−k
e

)n+m−k ·
(
n−m
e

)n−m(
k
e

)k(n−m−k
e

)n−m−k
= poly(n) · (n+m)n+m

kk(n+m− k)n+m−k ·
(n−m)n−m

kk(n−m− k)n−m−k .

The proof follows the definition of f(x) given in (5). J

There are polynomially-many marginal terms in the sum of the PDF, so if the maximum
term is exponentially small, then the total probability is exponentially small. Since the
marginal terms are bounded above by an expression involving f(x), we can proceed by
maximizing f(x) on its support.

I Lemma 17. The function f(x) is maximized at the critical point

x∗ =

n2−m2

2n if µ = 1,
n

1−µ2

(
1−

√
µ2 + (1− µ2)m2

n2

)
otherwise.

APPROX/RANDOM 2019

37:18 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

Proof. We start by showing that f(x) is log-concave on (0, n−m), which implies that it is
unimodal. It follows that a local maximum of f(x) is a global maximum. Since n and k are
fixed as constants and because the numerator is positive, it is sufficient to show that

g(x) = − log
(
xx(n+m− x)n+m−x · xx(n−m− x)n−m−x · µ2x)

= −(2x log(µx) + (n+m− x) log(n+m− x) + (n−m− x) log(n−m− x))

is concave. Observe that the first derivative of g(x) is

g′(x) = −2(1 + log(µx)) + (1 + log(n+m− x)) + (1 + log(n−m− x))
= −2 log(µx) + log(n+m− x) + log(n−m− x),

and the second derivative is

g′′(x) = − 2
x
− 1
n+m− x

− 1
n−m− x

.

Because g′′(x) < 0 on (0, n−m), the function f(x) is log-concave and hence unimodal.
To identify the critical points of f(x), it suffices to determine where g′(x) = 0 since log x

is increasing. Using the previous expression for g′(x), it follows that

g′(x) = log
[

(n− x)2 −m2

µ2x2

]
. (6)

Therefore, the critical points are the solutions of (n− x)2 −m2 = µ2x2, so we have

x∗ =

n2−m2

2n if µ = 1,
n−
√
n2−(1−µ2)(n2−m2)

1−µ2 otherwise.

It remains and suffices to show that x∗ is a local maximum since f(x) is unimodal. Observing
that ∂

∂x log f(x) = g′(x) and differentiating f(x) = exp(log f(x)) using the chain rule, the
definition of x∗ gives

f ′′(x∗) = elog f(x∗)
[
g′′(x∗) + g′(x∗)2

]
= f(x∗)g′′(x∗).

We know f(x∗) > 0, so f ′′(x∗) has the same sign as g′′(x∗) < 0. Therefore, x∗ is a local
maximum of f(x). Using the continuity of f(x) on [0, n−m] and log-concavity, f(x∗) is a
global maximum. J

A.2 Asymptotic Behavior of the Maximum Log Marginal
Now that we have a formula for x∗, and hence an expression for f(x∗), we want to show that(

µ

1 + µ

)2n
f(x∗) ≤ e−n

c

,

for some constant c > 0. Because there are polynomially-many marginals in the sum, this
leads to an exponentially small upper bound for Pr(S2n = 2m). Define the maximum log
marginal to be

h(n) def= − log
[(

µ

1 + µ

)2n
f(x∗)

]
. (7)

Equivalently, we show that h(n) ≥ nc for sufficiently large n using asymptotic equivalences.

M. Fahrbach and D. Randall 37:19

I Lemma 18. The maximum log marginal h(n) can be symmetrically expressed as

h(n) = (n+m) log
[(

1 + µ

µ

)(
1− x∗

n+m

)]
+ (n−m) log

[(
1 + µ

µ

)(
1− x∗

n−m

)]
.

Proof. Grouping the terms of h(n) by factors of n, m and x∗ gives

n log

[(
1 + µ

µ

)2 (n− x∗)2 −m2

(n+m)(n−m)

]
+m log

[
(n−m)(n+m− x∗)
(n+m)(n−m− x∗)

]
+ x∗ log

[
(µx∗)2

(n− x∗)2 −m2

]
.

Using (6), observe that the last term is

x∗ log
[

(µx∗)2

(n− x∗)2 −m2

]
= −x∗g′(x∗) = 0.

The proof follows by grouping the terms of the desired expression by factors of n and m. J

The following lemma is the crux of our argument, as it presents an asymptotic equality
for the maximum log marginal in the PDF for correlated random walks. We remark that we
attempted to bound this quantity directly using Taylor expansions instead of an asymptotic
equivalence, and while this seems possible, the expressions are unruly. Our asymptotic
equivalence demonstrates that second derivative information is needed, which makes the
earlier approach even more unmanageable.

I Lemma 19. For µ > 0 and m = o(n), the maximum log marginal satisfies h(n) ∼ m2/(µn).

Proof. The proof is by case analysis for µ. In both cases we analyze h(n) as expressed in
Lemma 18, consider a change of variables, and use L’Hospital’s rule twice. In the first case,
we assume µ = 1. The value of x∗ in Lemma 17 gives us

1− x∗

n+m
=

2n(n+m)−
(
n2 −m2)

2n(n+m) = n+m

2n

1− x∗

n−m
=

2n(n−m)−
(
n2 −m2)

2n(n−m) = n−m
2n .

It follows that h(n) can be simplified as

h(n) = n log
[(1 + µ

µ

)2
(
n2 −m2

4n2

)]
+m log

(
n+m

n−m

)
= n log

(
1− m2

n2

)
+m log

(
1 + 2m

n−m

)
.

To show h(n) ∼ m2/n, by the definition of asymptotic equivalence we need to prove that

lim
n→∞

n log
(

1− m2

n2

)
+m log

(
1 + 2m

n−m

)
m2

n

= 1.

Make the change of variables y = m/n. Since m = o(n), this is equivalent to showing

lim
y→0

log
(
1− y2)+ y log

(
1 + 2y

1−y

)
y2 = 1.

Using L’Hospital’s rule twice with the derivatives

∂

∂y

[
log
(
1− y2)+ y log

(
1 + 2y

1− y

)]
= log

(
−y + 1
y − 1

)
∂2

∂y2

[
log
(
1− y2)+ y log

(
1 + 2y

1− y

)]
= 2

1− y2 ,

APPROX/RANDOM 2019

37:20 Slow Mixing of Glauber Dynamics for the Six-Vertex Model in the Ordered Phases

it follows that

lim
y→0

log
(
1− y2)+ y log

(
1 + 2y

1−y

)
y2 = lim

y→0

log
(
− y+1
y−1

)
2y = lim

y→0

2
1−y2

2 = 1.

This completes the proof for µ = 1.
The case when µ 6= 1 is analogous but messier. Making the same change of variables

y = m/n, it is equivalent to show that

(1 + y) log
[(

1 + µ

µ

)(
1− 1

1− µ2 ·
1

1 + y
·
(

1−
√
µ2 + (1− µ2)y2

))]
+ (1− y) log

[(
1 + µ

µ

)(
1− 1

1− µ2 ·
1

1− y ·
(

1−
√
µ2 + (1− µ2)y2

))]
∼ µ−1y2, (8)

because the value of x∗ for µ 6= 1 in Lemma 17 gives us

1− x∗

n+m
= 1− 1

n+m
· n

1− µ2 ·

(
1−

√
µ2 + (1− µ2)m

2

n2

)
.

Denoting the left-hand side of (8) by g(y), one can verify the first two derivatives of g(y) are

g′(y) = log

(
µ2 −

√
µ2 − µ2y2 + y2 +

(
µ2 − 1

)
y

(µ− 1)µ(y + 1)

)
− log

(
−µ2 +

√
µ2 − µ2y2 + y2 +

(
µ2 − 1

)
y

(µ− 1)µ(y − 1)

)
g′′(y) = 2

(1 + y)(1− y)
√
y2 − µ2(y2 − 1)

.

Observing that g(0) = g′(0) = 0 due to cancellations and using L’Hospital’s rule twice,

lim
y→0

g(y)
µ−1y2 = lim

y→0

g′(y)
2µ−1y

= lim
y→0

2
(1 + y)(1− y)

√
y2 − µ2(y2 − 1)

· µ2 = 1.

This completes the proof for all cases of µ. J

I Lemma 8. Let µ, ε > 0 and m = o(n). For n sufficiently large, a correlated random walk
satisfies Pr(S2n = 2m) ≤ e−(1−ε)m2

µn .

Proof. For n sufficiently large, the asymptotic equality for h(n) in Lemma 19 gives us

h(n) ≥
(

1− ε

2

)m2

µn
.

It follows from our construction of f(x) and the definition of the maximum log marginal that

Pr(S2n = 2m) ≤ poly(n) ·
(

µ

1 + µ

)2n
f(x∗)

= poly(n) · e−h(n)

≤ poly(n) · e−(1− ε2)m2
µn

≤ e−(1−ε)m2
µn ,

as desired. J

Lifted Multiplicity Codes and the Disjoint Repair
Group Property
Ray Li
Department of Computer Science, Stanford University, CA, USA
https://www.cs.stanford.edu/~rayyli/
rayyli@cs.stanford.edu

Mary Wootters
Departments of Computer Science and Electrical Engineering, Stanford University, CA, USA
https://sites.google.com/site/marywootters/
marykw@stanford.edu

Abstract
Lifted Reed Solomon Codes (Guo, Kopparty, Sudan 2013) were introduced in the context of locally
correctable and testable codes. They are multivariate polynomials whose restriction to any line
is a codeword of a Reed-Solomon code. We consider a generalization of their construction, which
we call lifted multiplicity codes. These are multivariate polynomial codes whose restriction to any
line is a codeword of a multiplicity code (Kopparty, Saraf, Yekhanin 2014). We show that lifted
multiplicity codes have a better trade-off between redundancy and a notion of locality called the
t-disjoint-repair-group property than previously known constructions. More precisely, we show that,
for t ≤

√
N , lifted multiplicity codes with length N and redundancy O(t0.585√N) have the property

that any symbol of a codeword can be reconstructed in t different ways, each using a disjoint subset
of the other coordinates. This gives the best known trade-off for this problem for any super-constant
t <
√
N . We also give an alternative analysis of lifted Reed Solomon codes using dual codes, which

may be of independent interest.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Lifted codes, Multiplicity codes, Disjoint repair group property, PIR code,
Coding theory

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.38

Category RANDOM

Related Version https://arxiv.org/abs/1905.02270

Funding Ray Li: Research supported by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE - 1656518.
Mary Wootters: Research partially supported by NSF grants CCF-1657049 and CCF-1844628.

Acknowledgements We thank Eitan Yaakobi for helpful conversations. We thank Julien Lavauzelle
for pointing out the reference [26] and also for pointing out an error in an earlier version of this
paper. We thank Nikita Polianskii for pointing out an error in an earlier version of this paper. A
previous version claimed that a lifted code is exactly the span of all good monomials, but in fact the
span of all good monomials only forms a subset of the lifted code (see Remark 18). This does not
change our main result, as our lower bound on the number of good monomials still gives the same
lower bound on the rate of the lifted code. We thank anonymous reviewers for helpful comments on
an earlier draft of this paper.

1 Introduction

In this work we study lifted multiplicity codes, and show how they provide improved con-
structions of codes with the t-disjoint repair group property (t-DRGP), a notion of locality in
error correcting codes.

© Ray Li and Mary Wootters;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 38; pp. 38:1–38:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.stanford.edu/~rayyli/
mailto:rayyli@cs.stanford.edu
https://sites.google.com/site/marywootters/
mailto:marykw@stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.38
https://arxiv.org/abs/1905.02270
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Lifted Multiplicity Codes and the Disjoint Repair Group Property

An error correcting code of length N over an alphabet Σ is a set C ⊆ ΣN . There are
several desirable properties in error correcting codes, and in this paper we study the trade-off
between two of them. The first is the size of C, which we would like to be as big as possible
given N . The second desirable property is locality. Informally, a code C exhibits locality
if, given (noisy) access to c ∈ C, one can learn the i’th symbol ci of c in sublinear time.
As we discuss more below, locality arises in a number of areas, from distributed storage to
complexity theory.

Two constructions of codes with locality are lifted codes [6] and multiplicity codes [15]; in
fact, both of these constructions were among the first known high-rate Locally Correctable
Codes. In this work, consider a combination of the two ideas in lifted multiplicity codes, and
we show that these codes exhibit locality beyond what’s known for either lifted codes or for
multiplicity codes.

More precisely, we study a particular notion of locality called the t-disjoint-repair-group
property (t-DRGP). Informally, we say that C has the t-DRGP if any symbol ci of c ∈ C
can be obtained in t different ways, each of which involves a disjoint set of coordinates of c.
Formally, we have the following definition.

I Definition 1. A code C ⊆ ΣN has the t-disjoint repair property if for every i ∈ [N], there
is a collection of t disjoint subsets S1, . . . , St ⊆ [N] \ {i}, and functions f1, . . . , ft so that for
all c ∈ C and for all j ∈ [t], fj(c|Sj

) = ci. The sets S1, . . . , St are called repair groups.

As discussed more in Section 1.1 below, the t-DRGP naturally interpolates between many
different notions of locality. The t-DRGP is well-studied both when t = O(1) is small (where
it is related to Locally Repairable Codes and nearly equivalently to Private Information
Retrieval Codes) and t = Ω(N) is large (where it is equivalent to Locally Correctable Codes).
For this reason, it is natural to study the t-DRGP when t is intermediate; for example, when
t = Na for a ∈ (0, 1). In this case, it is possible for the size of the code |C| to be quite large:
more precisely, it is possible for the rate R = log|Σ| |C|

N to approach 1 (notice that we always
have |C| ≤ |Σ|N , hence we always have R ≤ 1). Thus, the goal is to understand exactly how
quickly the rate can approach 1. That is, given t, how small can the redundancy N −RN be?

Several works have tackled this question, and we illustrate previous results in Figure 1.
Our main result is that lifted multiplicity codes improve on the best-known trade-offs for all
super-constant t ≤

√
N .

Contributions

We summarize the main contributions of this work below.
1. For t ≤

√
N , we construct codes with the t-DRGP and redundancy at most

O
(
tlog2(3)−1

√
N
)
≈ O

(
t0.585

√
N
)
.

This gives the best known construction for all t so that t = ω(1) and t ≤
√
N ; the only

previous result that held non-trivially for a range of t was redundancy O(t
√
N) [4, 2, 1]

and our result also surpasses the specialized bound for t = N1/4 of [5]. Moreover, both
our argument and our construction are quite clean.

2. We give a new analysis of bivariate lifts of multiplicity codes. Both multiplicity codes and
lifted codes have been studied before (even in the context of the t-DRGP), but to the best
of our knowledge the only work to consider lifted multiplicity codes is [26]. That work
studies m-variate lifts of multiplicity codes, where m is large; its goal is to obtain new
constructions of high-rate locally correctable codes. In the context of our discussion, this
corresponds to the t-DRGP when t = N0.99. In contrast, for bivariate lifts, we are able to
obtain more refined bounds which lead to improved results for the t-DRGP when t ≤

√
N .

R. Li and M. Wootters 38:3

logN (t)

logN (N −RN)

1
2

.714

.792

1−O
(

1
log(N)

)

1
4

[5]

[6]

High-rate LCCs (eg, [15])

0.9991
2

[4, 1]

This paper

Figure 1 The best trade-offs known between the number t of disjoint repair groups and the
redundancy N −RN . Blue points and lines indicate upper bounds (possibility results), and the red
line indicates our upper bound. The best lower bound (impossibility result) available is that we
must have logN ((1−R)N) ≥ 1/2 for any t ≥ 2, and this is shown as the dotted orange line.

Organization

In the remainder of the introduction, we survey related work and give an overview of our
approach. In Section 2, we give the formal definitions about polynomials and derivatives
that we need. In Section 3, we formally define lifted multiplicity codes. In Section 4, we
prove that lifted multiplicity codes have high rate, and in Section 5, we prove that they have
the t-DRGP, which gives rise to our main theorem, Theorem 2.

1.1 Background and Related Work

1.1.1 Disjoint Repair Groups

The t-DRGP and related notions have been studied both implicitly and explicitly across
several communities. When t = O(1) is small, several notions related to the t-DRGP have
been studied, motivated primarily by distributed storage. These include codes for Private
Information Retrieval (PIR) [4, 2, 1], Locally Repairable Codes (LRCs) with availability [23,
18, 21, 22], and batch codes [10, 19, 1]. In more detail, PIR codes are basically equivalent to
codes with the DRGP, with the slight difference that PIR codes generally require that every
message symbol should be recoverable by many disjoint repair groups, rather than every
codeword symbol. LRCs with availability are a slightly stronger notion where the disjoint
repair groups should additionally be small. Batch codes are also a slightly stronger notion,
where one should be able to access any t-tuple of symbols (possibly with repetition) in t
disjoint ways. We refer the reader to [20] for a survey of these notions.

To see why the t-DRGP might be relevant for distributed storage, consider a setting
where some data is encoded as c ∈ C, and then each ci is sent to a separate server. If server
i is later unavailable, we might want to reconstruct ci without contacting too many other
servers. This can be done if each symbol has one small repair group; this is the defining

APPROX/RANDOM 2019

38:4 Lifted Multiplicity Codes and the Disjoint Repair Group Property

property of LRCs. Now suppose that several (say, t− 1) servers are unavailable. If C has the
t-DRGP then all t− 1 unavailable symbols can be locally reconstructed: each node has at
least t disjoint repair groups and at most t− 1 of them have been compromised.

On the other hand, when t = Ω(N) is large, the t-DRGP has been studied in the context
of Locally Decodable Codes and Locally Correctable Codes (LDCs/LCCs). In fact, the
Ω(N)-DRGP is equivalent to a constant-query LCC, and the notion has been used to prove
impossibility results for such codes [11, 24].

Because of these motivations, there are several constructions of t-DRGP codes for a wide
range of t; we illustrate the relevant ones in Figure 1. In the context of coded PIR, [4, 2, 1]
give constructions of t-DRGP codes with redundancy O(t

√
N). This is known to be tight

for t = 2 [17, 25], but no better lower bound is known.1 When t = Ω(N) is very large,
constructing codes with the t-DRGP is equivalent to constructing constant-query LCCs, and
it is known that the rate of the code must tend to zero [24]. On the other hand, for any
ε > 0, when t = O(N1−ε) is just slightly smaller, then work on high-rate LCCs [15, 6, 8, 14]
(see also [1]) imply that there are codes with rate 0.99 (or any constant less than 1) with
the t-DRGP.2

When t =
√
N , there are a few constructions known that beat the O(t

√
N) bound

mentioned above, including difference-set codes (see, e.g., [16]) and, relevant for us, lifted
parity-check codes [6]. These constructions achieve redundancy N log4(3) ≈ N0.79 when
t =
√
N . In Appendix B, we include a new proof of the fact that the lifted codes of [6] have

this redundancy using a dual view of lifted codes.
When t <

√
N , there is only one construction known which beats the O(t

√
N) bound,

due to [5]. For the special case of t = N1/4, they give a construction based on “partially
lifted codes” which has redundancy O(N0.72) = O(t0.88

√
N).

1.1.2 Lifting and multiplicity codes
Lifted multiplicity codes are based on lifted codes and multiplicity codes, both of which have
a long history in the study of locality in error correcting codes.

1.1.2.1 Lifted Codes

Lifting was introduced by Guo, Kopparty and Sudan in [6]. The basic idea can be illustrated
by Reed-Solomon (RS) codes. An RS code of degree d over Fq is the code

RSd,q = {(f(x1), . . . , f(xq)) : f ∈ Fq[X],deg(f) < d} ,

where x1, . . . , xq are the elements of Fq. There is a natural multi-variate version of RS codes,
known as Reed-Muller codes:

RMd,q,m = {(f(x1), . . . , f(xqm)) : f ∈ Fq[X1, . . . , Xm],deg(f) < d} ,

where x1, . . . ,xqm are the elements of Fmq . Reed-Muller codes have a very nice locality
property, which is that the restriction of a RM codeword to a line in Fmq yields an RS
codeword. This fact has been taken advantage of extensively in applications like local
decoding, local list-decoding and property testing. However, RM codes have a downside,

1 When the size s of the repair groups is bounded, it is known that the redundancy must be at least
Ω(N ln(t)/s) [22].

2 In fact we may even take ε slightly sub-constant using the construction of [14].

R. Li and M. Wootters 38:5

which is that if d < q (required for the above property to kick in), they have very low rate.
With this inspiration, we could ask for the set C which contains evaluations of all m-variate
polynomials which restrict to low-degree univariate polynomials on every line. Surprisingly,
[6] showed that this set C can be much larger than the corresponding RM code! This code C
is called a lifted Reed-Solomon code, and the main structural result of [6] is that C is the
span of the monomials whose restrictions to lines are low-degree. This property is key when
analyzing the rate of these codes. Moreover [6] showed that this is the case when we begin
with any affine-invariant code, not just RS codes.

The original motivation for lifted codes was to construct LCCs, but [6] actually also
give a code with the

√
N -DRGP, mentioned above; we give an alternate proof that this

construction has the
√
N -DRGP in Appendix B. A variant of lifting was also used in [5] to

construct N1/4-DRGP codes; however, the analysis of this construction is quite brittle and
seems difficult to extend to non-trivial constructions for t 6= N1/4.

1.1.2.2 Multiplicity Codes

Multiplicity codes were introduced by Kopparty, Saraf and Yekhanin [15] with the goal of
constructing high-rate LCCs. The basic idea of multiplicity codes is to get around the low
rate of RM codes discussed above in a different way, by appending derivative information to
allow for higher-degree polynomials. That is, it is not useful to have an RS code with degree
d > q, since xq = x for any x ∈ Fq. However, if we replace the single evaluation f(x) with
a vector of evaluations (f(x), f (1)(x), . . . , f (r−1)(x)), where f (i) denotes the i’th derivative,
then it does make sense to take d > q. The m-variate multiplicity code Multd,q,m,r of degree
d and order r over Fq is then defined similarly to RMd,q,m:

Multd,q,m,r =
{

(f (<r)(x1), . . . , f (<r)(xqm)) : f ∈ Fq[X1, . . . , Xm],deg(f) < d
}
,

where f (<r)(x) ∈ F(m+r−1
m)

q is a vector containing all of the partial derivatives of f of order
less than r, evaluated at x. Since their introduction, multiplicity codes have found several
uses beyond LCCs, including list-decoding [12, 7], and have even been used to explicitly
construct codes with the t-DRGP [1].

1.1.2.3 Lifted Multiplicity Codes

To the best of our knowledge, the only work to study lifted multiplicity codes is the work
of Wu [26]. The goal of that work is to obtain versions of multiplicity codes which are still
high-rate LCCs but which require lower-order derivatives than the construction of [15]. The
main result is that lifted multiplicity codes of rate 1 − α are LCCs with locality N ε (this
corresponds roughly to having the t-DRGP with t = O(N1−ε)). However, since the number
of variables in the lift is large, it is hard to get a very precise handle on the codimension,
and in particular the codimension of the code in that work is not shown to be o(N).

In contrast, we study bivariate lifts of multiplicity codes. By focusing only on bivariate
lifts, we are able to get a more precise handle on the codimension of lifted multiplicity codes,
which gives results for the t-DRGP for t ≤

√
N .

We note that the construction in [26] is similar to the construction presented here. Since
this construction is somewhat non-trivial (for reasons discussed below), we include the details.

APPROX/RANDOM 2019

38:6 Lifted Multiplicity Codes and the Disjoint Repair Group Property

1.2 Our approach
We study lifted multiplicity codes to obtain improved constructions of codes with the t-DRGP.
We focus on bivariate lifts in this paper in order to obtain codes with t-DRGP for t ≤

√
N .

We expect that lifted multiplicity codes in more than two variables also give better codes for
the t-DRGP when t >

√
N .

1.2.1 Definition of lifted multiplicity codes
It is not immediately obvious how to apply lifting (and in particular, the nice characterization
of it developed in [6] as the span of “good” monomials) to univariate multiplicity codes. We
first note that the univariate multiplicity code Multd,q,1,r ⊆

(
Frq
)q does not fit the affine-

invariant framework of [6], so their results do not immediately apply. Instead, we might try
to define the bivariate lift of Multd,q,1,r as the set of vectors (f (<r)(x1), . . . , f (<r)(xq2)) for
all polynomials f so that every restriction of f to a line agrees with some polynomial of
degree less than d on its first r − 1 derivatives; that is, the restriction of f is equivalent up
to order r to a polynomial of degree less than d. This works, but there are two non-trivial
things to deal with.
1. First, in order to get a handle on the rate of the code, as in [6] we show that the set of

valid polynomials f includes the span of a large set of “good” monomials. In contrast
to [6], the good monomials in this work do not span the entire code. However, lower
bounding the number of good monomials, which in turns gives a lower bound on the rate
of the code, turns out to be enough for our results.

2. Second, we need to take some care about what monomials we allow. With lifted RS
codes, one only allows monomials XaY b with individual degrees a, b < q; otherwise, we
could have multiple monomials which correspond to the same codeword which leads to
problems if we are counting monomials in order to understand the dimension of the code.
As we show in Lemma 14, it turns out that with multiplicity codes, we should only allow
monomials XaY b with ba/qc+ bb/qc < r; otherwise, we would have multiple monomials
the correspond to the same codeword and this would create similar problems.

Dealing with these issues leads us to the final code and rate analysis, where we define
the lifted multiplicity code to be all polynomials spanned by monomials XaY b with ba/qc+
bb/qc < r, such that the restriction of the polynomial to a line is equivalent up to order r
to some univariate polynomial of degree less than d. We then lower bound the number of
evaluations of monomials in this code, giving a lower bound on the rate. We note that the
work [26] considers a similar construction.

1.2.2 Lifted multiplicity codes have the t-DRGP
In Corollary 21 we give a lower bound on the number of (q, r, d)-good monomials, and this
leads to a lower bound on the dimension of the lifted multiplicity code; crucially, this can be
quite a bit bigger than the dimension of the corresponding multivariate multiplicity code.

Finally, we observe that lifted multiplicity codes have the t-DRGP for a range of values
of t. Similarly to previous constructions based on multivariate polynomial codes, the disjoint
repair groups to recover the symbol f (<r)(x) are given by disjoint collections of lines through
x. More precisely, the values f (<r)(y) for the set of y that lie on r distinct lines through x
can be used to recover f (<r)(x). Thus, the number of disjoint repair groups is q/r =

√
N/r.

By adjusting r, we obtain the trade-off shown in Figure 1. Our main theorem is as follows.

R. Li and M. Wootters 38:7

I Theorem 2. For q = 2` and r = 2`′ with 1 ≤ `′ ≤ `, there exists a code C over F(r+1
2)

q with
the following properties.

The length of the code is q2.
The rate of the code is at least

1− 3rlog2(8/3)qlog2(3)(
r+1

2
)
q2

,

so that the redundancy is at most

3rlog2(8/3)qlog2(3)(
r+1

2
) .

The code has the q/r-disjoint repair group property.
As a remark, our techniques can also recover any symbol from any one of its repair groups in
polynomial time. For any γ ∈ [0, 1], choosing q = 2` and r = 2`′ with γ ≈ `′/` gives a code
with length N = q2 and redundancy at most

6N log4(3)−γ(1−log4(8/3))

with the N (1−γ)/2-DRGP. This is made formal in the following corollary.

I Corollary 3. For any ε > 0, there are infinitely many N so that, for t = bN εc, there exists
a code of length N which has the t-DRGP and redundancy at most 6tlog2(3)−1

√
N.

We note that Theorem 2 also yields results for constant t, not just for t = N ε as presented
in Corollary 3. For example, by setting r = q/2 we obtain a code with the 2-DRGP and
redundancy at most 9

√
N . The constant 9 is not optimal here (the optimal constant for

t = 2 is known to be
√

2 [17]), but to the best of our knowledge, Theorem 2 does yield the
best known bounds for any super-constant t.

2 Preliminaries

In this section, we introduce the background we need on polynomials and derivatives over
finite fields. Throughout this paper, we assume that q is a power of 2. Let Fq denote the
finite field of order q, and let F∗q denote its multiplicative subgroup.

If a and b are nonnegative integers with binary representations a = a`−1 · · · a0 and
b = b`−1 · · · b0, then we write a ≤2 b if ai ≤ bi for i = 0, . . . , ` − 1. If a is an integer, let
(a mod c) denote the element of {0, . . . , c − 1} congruent to a mod c. We write a ≤`2 b if
(a mod 2`) ≤2 (b mod 2`).

As in [6], we use Lucas’s theorem.

I Proposition 4 (Lucas’s theorem). Let p be a prime and a = a`−1 · · · a0, b = b`−1 · · · b0 be
written in base p. Then

(
a

b

)
≡
`−1∏
i=0

(
ai
bi

)
mod p (1)

In particular, if p = 2, then
(
a
b

)
≡ 1 mod p if and only if a ≤2 b.

APPROX/RANDOM 2019

38:8 Lifted Multiplicity Codes and the Disjoint Repair Group Property

2.1 Polynomials and derivatives
For a vector i = (i1, . . . , im) of nonnegative integers, its weight, denoted wt(i), equals∑m
k=1 ik. For a field F, let F[X1, . . . , Xm] = F[X] be the ring of polynomials in the variables

X1, . . . , Xm with coefficients in F. For a vector of nonnegative integers i = (i1, . . . , im) and
a vector X = (X1, . . . , Xm) of variables, let Xi denote the monomial

∏m
j=1X

ij
j ∈ F[X], and

for a vector a = (α1, . . . , αm) ∈ Fm, let ai denote the value
∏m
j=1 α

ij
j , where 00 def= 1. For

nonnegative vectors i = (i1, . . . , im) and j = (j1, . . . , jm), we write i ≤ j if ik ≤ jk for all
k. We also write

(i+j
i
)
to denote

∏m
k=1

(
ik+jk

ik

)
. For nonnegative vector i, we let [Xi]P (X)

denote the coefficient of Xi in the polynomial P (X).
We will use Hasse derivatives, a notion of derivatives over finite fields:

I Definition 5 (Hasse derivatives). For P (X) ∈ F[X] and a nonnegative vector i, the i-
th (Hasse) derivative of P , denoted P (i)(X) or D(i)P (X), is the coefficient of Zi in the
polynomial P̃ (X,Z) def= P (X + Z) ∈ F[X,Z]. Thus,

P (X + Z) =
∑

i

P (i)(X)Zi. (2)

For x ∈ Fmq and P (X) ∈ Fq[X], we use the notation P (<r)(x) ∈ F(m+r−1
m)

q to denote the
vector containing P (i)(x) for all i so that wt(i) < r. We record a few useful (well-known)
properties of Hasse derivatives below (see [9]).

I Proposition 6 (Properties of Hasse derivatives). Let P (X), Q(X) ∈ F[X]m and let i, j be
vectors of nonnegative integers. Then
1. P (i)(X) +Q(i)(X) = (P +Q)(i)(X).
2. (P ·Q)(i)(X) =

∑
0≤e≤i P

(e)(X) ·Q(i−e)(X).
3. (P (i))(j)(X) =

(i+j
i
)
P (i+j).

Using the above, we obtain the following useful derivative computation, and we provide a
proof in Appendix A for completeness.

I Proposition 7. Let 1 ≤ r < q with q a power of 2, and let P (X) = (Xq −X)r. Then,

P (i)(X) =
{(r

i

)
(Xq −X)r−i 0 ≤ i ≤ r

0 i > r
(3)

2.2 Polynomial local recovery
A key property exploited by earlier work on multiplicity codes [15, 13] is that f (<r)(x) can be
recovered from f (<q)(y) for y that lie on a collection of lines through x. More precisely, let Lm
be the set of lines L(T) of the form aT + b with a,b ∈ Fmq . Given a multivariate polynomial
P (X) ∈ Fq[X1, . . . , Xm], if L is the line aT + b, let PL(T) ∈ Fq[T] denote the univariate
polynomial P (aT + b). Let L be the set of lines in F2

q of the form L(T) = (T, αT + β) for
α, β ∈ Fq.

For simplicity – and because it is enough for our application to the t-DRGP – we will
consider only bivariate polynomials in this paper, although (see for example [13]) the same
basic idea works for any m. We will further specialize to lines in L – that is, lines of the form
L(T) = (T, αT + β) – because it will simplify some computations later in the paper. With
these restrictions, we can specialize Equation (4) of [13] to obtain the following relationship
between the derivatives of PL(T) and the derivatives of P (X,Y).

R. Li and M. Wootters 38:9

I Lemma 8 (Follows from, e.g., [15, 13]). Suppose that L1, . . . , Lr are r lines in L all passing
through a point (γ, δ), with Lk being the line (T, αkT + βk). Then, for all polynomials
P (X,Y) ∈ Fq[X,Y], the following matrix equality holds for all i = 0, . . . , r − 1.

P
(i)
L1

(γ)
P

(i)
L2

(γ)
...

P
(i)
Li+1

(γ)

 =

α0

1 α1
1 · · · αi1

α0
2 α1

2 · · · αi2
...

...
. . .

...
α0
i+1 α1

i+1 · · · αii+1

P (i,0)(γ, δ)
P (i−1,1)(γ, δ)

...
P (0,i)(γ, δ)

 . (4)

When lines L1, . . . , Lk are distinct, the middle matrix in (4) is a Vandermonde matrix,
and Vandermonde matrices are invertible in polynomial time. Hence, we immediately have
the following corollary.

I Corollary 9. Suppose that L1, . . . , Lr are r distinct lines of the form Lk(T) = (T, αkT +βk)
all passing through a point (γ, δ) ∈ F2

q. For a polynomial P (X,Y) ∈ Fq[X,Y], given
the polynomials PL1(T), . . . , PLk

(T), the derivatives P (i)(γ, δ) are uniquely determined and
computable efficiently for all i such that wt(i) < r.

3 Lifted multiplicity codes

In this section, we define lifted multiplicity codes. As noted in the introduction, we restrict
our attention to bivariate codes because this is enough for our application to the t-DRGP.
However, everything in this section extends to general m-variate codes. We define bivariate
lifted multiplicity codes as the vectors (f (<r)(x))x∈F2

q
for polynomials f(X) that live in

the span of “good” monomials. In order to define these “good” monomials, we need a few
more definitions.

3.1 Polynomial equivalence
We first define a notion of polynomial equivalence.

I Definition 10. We say that two univariate polynomials A(X), B(X) ∈ Fq[X] are equivalent
up to order r, written A ≡r B, if A(i)(γ) = B(i)(γ) for all i = 0, . . . , r − 1 and γ ∈ Fq.

It is easy to see that the above definition does in fact give an equivalence relation. There is
a simple way to characterize this equivalence.

I Lemma 11. For A(X), B(X) ∈ Fq[X] we have A(X) ≡r B(X) if and only if (Xq −
X)r|A(X)−B(X).

Proof. By considering the polynomial A(X)−B(X), it suffices to prove A(X) is equivalent to
the zero polynomial up to order r if and only if (Xq−X)r|A(X). If A(X) = (Xq−X)rC(X)
for some polynomial C(X) ∈ Fq[X], then, by part 2 of Proposition 6 and Proposition 7, for
0 ≤ i < r, we have Xq − X|A(i)(X), so A(i)(γ) = 0 for all 0 ≤ i < r and all γ ∈ Fq, so
A(X) ≡r 0.

Conversely, suppose that A(X) ≡r 0. By the definition of Hasse derivatives, we have
A(X) = A(γ + (X − γ)) =

∑
iA

(i)(γ)(X − γ)i. Since A(i)(γ) = 0 for i = 0, . . . , r − 1, we
have (X − γ)r|A(X). Thus is true for all γ, so

∏
γ(X − γ)r|A(X), so (Xq −X)r|A(X). J

Lemma 11 gives the following corollary.

APPROX/RANDOM 2019

38:10 Lifted Multiplicity Codes and the Disjoint Repair Group Property

I Lemma 12. Let q be a power of 2 and r ≥ 1. For every univariate polynomial A(X),
there exists a unique degree-at-most rq − 1 polynomial B(X) such that A(X) ≡r B(X).
Furthermore, if r is a power of 2, then for all a such that degA− (qr− r) < a < qr, we have
[Xa]A(X) = [Xa]B(X).

Proof. For existence of B(X), note that, by Lemma 11, we can subtract an appropriate
multiple of (Xq − X)r from A(X) to obtain the desired B(X). For uniqueness of B(X),
suppose that B1(X) and B2(X) are equivalent to A(X) up to order r and are of degree at
most rq−1. By Lemma 11, we have (Xq−X)r|B1(X)−B2(X). Additionally, B1(X)−B2(X)
has degree at most rq − 1, so B1(X)−B2(X) = 0.

Now suppose r is a power of 2. Then (Xq −X)r = Xrq +Xr. Above, to obtain B(X)
from A(X), we need only to subtract terms of the form Xqr+Xr, Xqr+1 +Xr+1, . . . , XdegA+
XdegA−qr+r. Thus, for a such that degA− qr + r < a < qr, the coefficients of Xa in A(X)
and B(X) are equal. J

3.2 Type-r polynomials

Define the order-r evaluation map evalq,r : Fq[X,Y]→
(
F(r+1

2)
q

)q2

by

evalq,r(P) := (P (<r)(x))x∈F2
q
, (5)

We will want to restrict our attention to a subset of monomials M(X,Y) = XaY b whose
order-r evaluations evalq,r(M) form a basis for the space {evalq,r(P) : P ∈ Fq[X,Y]}. To
that end, we introduce the following definition.

I Definition 13 (Type-r monomials). Call a monomial XaY b type-r if ba/qc+ bb/qc ≤ r−1.
Let Fq,r be the family of polynomials P ∈ Fq[X,Y] that are spanned by type-r monomials.

It is easy to see that Fq,r is a dimension
(
r+1

2
)
q2 vector space over Fq. We now show that

the type-r polynomials form a basis for bivariate polynomials, up to order r equivalence.

I Lemma 14. The evaluation map evalq,r : Fq,r →
(
F(r+1

2)
q

)q2

is a bijection.

Proof of Lemma 14. Since evalq,r is a linear map and Fq,r and F(r+1
2)q2

q have the same Fq
dimension, it suffices to prove the map has trivial kernel. We prove by induction.

Base Case: r = 1. Suppose P ∈ Fq,1 and eval1(P) is the 0-vector. Then P (X,Y) = 0 for
all X,Y . For any δ ∈ Fq, the polynomial P (X, δ) ∈ Fq[X] has degree at most q − 1
but has q roots, so the polynomial must be 0. Hence, (Y − δ)|P (X,Y) for all δ, so
Y q − Y |P (X,Y), which implies P = 0. This proves that eval1 has trivial kernel.

Inductive step. Assume r ≥ 1 and evalq,r has trivial kernel. We prove that evalr+1 has
trivial kernel.
Assume P (X,Y) is a polynomial spanned by type-(r+1) monomials with all ith derivatives
equal to 0 for wt(i) < r + 1. Let δ ∈ Fq and Bδ(X) def= P (X, δ). Then, for 0 ≤ i < r,
we have B(i)

δ (γ) = B(i,0)(γ, δ) = 0 for all γ ∈ Fq. Hence, for all γ ∈ Fq, we have
(X − γ)r|Bδ(X). Hence, (Xq −X)r|Bδ(X). Since degBδ(X) ≤ degX P (X,Y) < qr for
all δ, we have Bδ(X) = 0. Thus, P (X, δ) is the 0 polynomial for all δ, so Y − δ|P (X,Y)
for all δ, so Y q−Y |P (X,Y). Hence, we may write P (X,Y) = (Y q−Y)Q(X,Y) for some
polynomial Q(X,Y) ∈ Fq[X,Y].

R. Li and M. Wootters 38:11

As polynomial P is type-(r + 1), polynomial Q is type-r: if Q had a nonzero coefficient
for XaY b with ba/qc+ bb/qc > r− 1, then the coefficient XaY b+q is nonzero in P , which
is a contradiction. For all i, j with i ≥ 0, j ≥ 1 and i+ j ≤ r, we have

P (i,j)(X,Y) = (Y q − Y)Q(i,j)(X,Y)−Q(i,j−1)(X,Y). (6)

Here we applied part 2 of Proposition 6 and the r = 1 case of Proposition 7. At every
X and Y , the left side is 0 by assumption on P and the right side Q(i,j−1)(X,Y). We
conclude that Q(i′,j′) evaluates to 0 everywhere for every nonnegative i′ and j′ satisfying
i′ + j′ ≤ r − 1. Since Q is type-r, we have Q = 0 by the induction hypothesis, so P = 0.
This completes the induction, completing the proof. J

3.3 Definition of lifted multiplicity codes

Finally we are ready to define lifted multiplicity codes, which we define as the set of evaluations
evalq,r(P) of polynomials whose restrictions to lines3 are equivalent, up to order r, to a low
degree polynomial:

I Definition 15 (Lifted multiplicity codes, first definition). The (q, r, d) (bivariate) lifted
multiplicity code is a code C over alphabet Σ = F(r+1

2)
q of length q2 given by

C =

evalq,r(P) :
P ∈ Fq[X,Y] and, for any L(T) ∈ L,

P (L(T)) ≡r Q(T) for some Q ∈ Fq[T] of degree at
most d.

Definition 15 is natural but difficult to get a handle on directly. Following the approach

of previous work [6, 5], we observe that lifted multiplicity code contains the set of vectors
evalq,r(P) for P that lie in the span of a set of “good” monomials, which makes it easier to
bound the rate. Informally, a monomial is (q, r, d)-good if its restriction along every line is
equivalent, up to order r, to a polynomial of degree at most d.

I Definition 16 ((q, r, d)-good monomials). Call a monomial Ma,b(X,Y) = XaY b ∈ Fq[X,Y]
(q, r, d)-good (or simply good, when r and d are understood) if it is type-r and for every line
(T, αT + β) ∈ L, the univariate polynomial Ma,b(T, αT + β) is equivalent, up to order r, to
polynomial of degree less than d, and call it (q, r, d)-bad otherwise.

By definition all good monomials lie in our lifted multiplicity code, so to lower bound the
rate of the code it suffices to lower bound the number of good monomials.

I Lemma 17. Let C be the bivariate (q, r, d) lifted multiplicity code. Then, for every (q, r, d)-
good monomial M(X,Y), evalq,r(M) ∈ C, and the rate of C is at least #(q, r, d)-good monomials

(r+1
2)q2 .

Proof. The first part follows from the definition of good monomial. For the second part,
C is linear and the Fq-span of all good monomials have pairwise distinct evaluations by
Lemma 14, so |C| ≥ q(#(q, r, d)-good monomials). As C is a length q2 code over an alphabet of
size |Σ| = q(

r+1
2), the rate is at least log |C|

q2 log |Σ| = #(q, r, d)-good monomials
(r+1

2)q2 . J

3 To simplify calculations, we consider restrictions to lines of the form L(T) = (T, αT + β). That is, we
do not include lines of the form L(T) = (α, T).

APPROX/RANDOM 2019

38:12 Lifted Multiplicity Codes and the Disjoint Repair Group Property

I Remark 18. A previous version of this paper incorrectly asserted that every codeword of
the lifted multiplicity code is spanned by good monomials. As observed by Nikita Polianskii,
this is in fact not true. For example, when r = 2 and d = 2q− 1, the monomials X2q−2Y and
Xq−1Y q are not (q, r, d)-good as verified by the line (T, T), but their sum X2q−2Y +Xq−1Y q

is in the (q, r, d)-lifted multiplicity code: the restriction of the sum to a line (T, αT + β) ∈ L
has a T 2q−1 coefficient of α+ αq = 0 and hence has degree strictly less than d = 2q − 1.

4 The rate of lifted multiplicity codes

In this section, we bound the rate (and hence, the redundancy) of lifted multiplicity codes.
Our final result on the rate is Corollary 21 below, which implies that for r, q and d of an
appropriate form, the lifted multiplicity code over order r and degree d over Fq has rate
at least

1− 6
r

(
r − d

q

)log2(4/3)
.

In the next section, we will choose d = qr−r, which will yield a code of rate 1− 6
r

(
r
q

)log2(4/3)

and will give us Theorem 2. We begin with a lemma that will be useful.

I Lemma 19. Let s = 2`s and q = 2` with `s ≤ `. The number of a1, b1 ∈ {0, 1, . . . , q − 1}
such that at least one of the following is true

q − 1− a1 ≤`2 b1

q − 2− a1 ≤`2 b1

...
...
...

q − s− a1 ≤`2 b1 (7)

is at most 2 · 3` · (4/3)`s = 2 · 3` · slog2(4/3).

Proof. Suppose we write the numbers (q−1−a1 mod q), (q−2−a1 mod q), . . . , (q−s−a1
mod q) in binary with ` digits (possibly with leading zeros). As these number span 2`s

consecutive integers mod q, when written in this binary form, their most significant `− `s
coordinates take on at most 2 values. Let a2 = b (q−1−a1 mod q)

2`s
c and b2 = b b12`s

c so that
a2, b2 ∈ {0, . . . , 2`−`s − 1}, and a2 and b2 are the most significant ` − `s coordinates of
(q − 1− a1 mod q) and b1, respectively, when written in `-digit binary. Then if one of the
equations of (7) is true, then we must have either a2 ≤2 b2 or a2 − 1 ≤2 b2. This gives at
most 2 · 3`−`s choices for the pair (a2, b2). Given a2 and b2, there are 2`s choices for each of
a1 and b1, for a total of at most 2 · 3`−`s · 4`s solutions to (7). J

I Lemma 20. Let r = 2`r , s = 2`s and q = 2` with `r, `s ∈ {1, . . . , `− 1}. The number of
(q, r, rq − s)-good monomials is at least

(
r+1

2
)
4` − 3rslog2(4/3) · 3`.

Proof. The number of type-r monomials is
(
r+1

2
)
q2 =

(
r+1

2
)
4`. A monomialMa,b is (q, r, rq−

s)-good if, for every α, β ∈ Fq, we have

Ma,b,α,β(T) def= T a(αT + β)b =
b∑
i=0

αiβb−iT a+i
(
b

i

)
. (8)

can be represented as a polynomial of degree less than rq − s. Next, we apply Lemma 12,
which says that there is a unique polynomial B(T) so that deg(B) ≤ rq− 1 so that B(T) ≡r

R. Li and M. Wootters 38:13

Ma,b,α,β(T), and further that all of the coefficients [T c]B(T) for deg(Ma,b,α,β)− (qr − r) <
c < qr are equal to the corresponding coefficient of B(T). The degree of the polynomial
Ma,b,α,β is at most (r + 1)q − 2, and

((r + 1)q − 2)− (qr − r) = r + q − 2 < qr − s

for any allowed choice of q, r, s, so [T c]B(T) = [T c]Ma,b,α,β(T) for all c so that

qr − s ≤ c ≤ qr.

Thus, to show that B(T) has degree less than qr − s, it suffices to show that the coefficients
of T qr−s, T qr−s+1, . . . , T qr−1 in Ma,b,α,β are all zero.

Write a = a0q + a1 and b = b0q + b1 where a0 + b0 ≤ r − 1 and 0 ≤ a1, b1 ≤ q − 1. Note
that if a0 + b0 < r− 1, then for s′ = 1, . . . , s coefficient [T rq−s′]Ma,b,α,β is always zero except
possibly when a0 + b0 = r − 2 and a1 + b1 ≥ 2q − s. This can happen for at most rs2

2 pairs
(a, b). Hence, for a0 + b0 < r − 1, there are ≤ rs2

2 bad monomials (a, b).
Now assume a0 + b0 = r − 1. For s′ = 1, . . . , s, the coefficient of T rq−s′ in T a(αT + β)b

is 0 if rq − s′ < a or a+ b < rq − s′. Otherwise, the coefficient is

αrq−s
′−aβb−rq+s

′+a
(

b

rq − s′ − a

)
= αrq−s

′−aβb−rq+s
′+a
(

b0q + b1
b0q + q − s′ − a1

)
. (9)

By Proposition 4, the binomial coefficient is nonzero (mod 2) if and only if b0q+q−s′−a1 ≤2
b0q+b1, which, as q is a power of 2, happens only if q−s′−a1 ≤`2 b1. Hence, if a0 +b0 = r−1,
the monomial Ma,b is (r, rq − s)-bad only if some s′ = 1, . . . , s satisfies q − s′ − a1 ≤`2 b1.
Hence, by Lemma 19, for a fixed a0, b0 with a0 +b0 = r−1, there are at most 2slog2(4/3)3` bad
monomials Ma,b, so there are at most r · slog2(4/3)3` bad monomials Ma,b over all a0, b0 with
a0 + b0 = r − 1. As we showed, there are at most rs2

2 bad monomials when a0 + b0 < r − 1.
Hence, there are at least

(
r+1

2
)
4` − 2rslog2(4/3)3` − rs2

2 ≥
(
r+1

2
)
q2 − 3rslog2(4/3)qlog2(3) good

monomials, as desired. J

Lemma 20 and Lemma 17 together imply Corollary 21, which in turn implies the informal
result stated at the beginning of the section.

I Corollary 21. Let r = 2`r , s = 2`s and q = 2` with `r, `s ∈ {1, . . . , `− 1}. A (q, r, rq − s)
lifted multiplicity code has rate at least 1− 6r−1slog2(4/3)qlog2(3/4).

I Remark 22. We apply Corollary 21 for r = s ≤ q, giving that a lifted multiplicity code
of rate at least 1− 6rlog2(2/3)qlog2(3/4). By comparison [15], a 2-variate multiplicity code of
order r evaluations of degree at most rq−r polynomials over Fq has rate

(rq−r+2
2)

(r+1
2)q2 ≤ 1−Ω(1

r),
which is smaller than the rate of lifted multiplicity codes for r � q.

5 Disjoint repair groups of lifted multiplicity codes

Finally, we prove Theorem 2, which we repeat below.

I Theorem (Theorem 2, restated). Let r = 2`r and q = 2` with `r < ` and C be the (q, r, rq−r)
lifted multiplicity code.

The length of the code is q2.
The rate of the code is at least 1− 6rlog2(2/3)qlog2(3/4).
The code has the q/r-disjoint repair group property.

APPROX/RANDOM 2019

38:14 Lifted Multiplicity Codes and the Disjoint Repair Group Property

Proof. The first item follows from the definition of C, and the second item is by Corollary 21.
To see the third item, we show that, given a point (γ, δ) ∈ F2

q, lines L1, . . . , Lr passing
through (γ, δ), and P (<r)(y) at all points y on the lines L1, . . . , Lr except (γ, δ) itself, we
can (efficiently) recover P (<r)(γ, δ). This guarantees the q/r-disjoint repair group property,
because we can group the q lines of L of the form L(T) = (T, αT + β) passing through (γ, δ)
arbitrarily into groups of r, giving q/r disjoint repair groups. For any line Lk, the polynomial
PLk

(T) has degree at most rq−r−1, as P is (q, r, qr−r)-good. By taking linear combinations of
directional derivatives (Lemma 8), we can efficiently compute P (i)

Lk
(γ′) for every i = 0, . . . , r−1,

every k = 1, . . . , r, and every γ′ 6= γ. We can compute PLk
(T) using a generalization of

polynomial interpolation. This can be done in O(D logD) time, where D < rq is the degree
of the polynomial (see e.g. [3]) Hence, by Corollary 9, from PL1(T), . . . , PLk

(T), we can
efficiently compute P (i,j)(γ, δ) for all i, j with 0 ≤ i+ j ≤ r − 1. J

6 Conclusion

We conclude with some open questions.
1. We have shown that lifted multiplicity codes with redundancy O(t0.585

√
N) have the

t-DRGP for a range of t ≤
√
N . However, we do not know of any general lower bounds

beyond the lower bound for t = 2 which implies that the redundancy must be at least
Ω(
√
N) for any t. Thus, it is an open question whether or not our bound is tight or

whether one can do better.
2. Lifted multiplicity codes display better locality for the t-DRGP problem for t ≤

√
N ; it is

a natural question to ask whether they can be used for larger t, and in particular whether
they could lead to improved constructions of locally correctable codes.

References
1 Hilal Asi and Eitan Yaakobi. Nearly optimal constructions of PIR and batch codes. IEEE

Transactions on Information Theory, 65(2):947–964, 2019.
2 Simon R. Blackburn and Tuvi Etzion. PIR Array Codes with Optimal PIR Rate. ArXiv

e-prints, July 2016. arXiv:1607.00235.
3 Francis Y Chin. A generalized asymptotic upper bound on fast polynomial evaluation and

interpolation. SIAM Journal on Computing, 5(4):682–690, 1976.
4 Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for distributed PIR with low

storage overhead. In 2015 IEEE International Symposium on Information Theory (ISIT),
pages 2852–2856. IEEE, 2015.

5 S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality via Partially
Lifted Codes. CoRR, abs/1704.08627, 2017. arXiv:1704.08627.

6 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
Innovations in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12,
2013, pages 529–540, 2013. doi:10.1145/2422436.2422494.

7 Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of Reed–
Solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

8 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. Information and Computation, 243:178–190, 2015.

9 James W. P. Hirschfeld, Gábor Korchmáros, and Fernando Torres. Algebraic Curves over a
Finite Field. Princeton Series in Applied Mathematics. Princeton University Press, 2008.

10 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In Proceedings of the thirty-sixth annual ACM Symposium on the Theory of
Computing, STOC 2004, pages 262–271. ACM, 2004.

http://arxiv.org/abs/1607.00235
http://arxiv.org/abs/1704.08627
https://doi.org/10.1145/2422436.2422494

R. Li and M. Wootters 38:15

11 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the 32nd symposium on Theory of Computing, STOC 2000,
pages 80–86, 2000. doi:10.1145/335305.335315.

12 Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(1):149–182,
2015.

13 Swastik Kopparty. Some remarks on multiplicity codes. CoRR, abs/1505.07547, 2015. arXiv:
1505.07547.

14 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-correctable
and locally-testable codes with sub-polynomial query complexity. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 202–215.
ACM, 2016.

15 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. Journal of the ACM (JACM), 61(5):28, 2014.

16 Shu Lin and Daniel J Costello. Error control coding. Pearson Education India, 2001.
17 Sankeerth Rao and Alexander Vardy. Lower Bound on the Redundancy of PIR Codes. arXiv

preprint arXiv:1605.01869, 2016. arXiv:1605.01869.
18 Ankit Singh Rawat, Dimitris S Papailiopoulos, Alexandros G Dimakis, and Sriram Vishwanath.

Locality and availability in distributed storage. In 2014 IEEE International Symposium on
Information Theory, pages 681–685. IEEE, 2014.

19 Ankit Singh Rawat, Zhao Song, Alexandros G Dimakis, and Anna Gál. Batch codes through
dense graphs without short cycles. IEEE Transactions on Information Theory, 62(4):1592–1604,
2016.

20 Vitaly Skachek. Batch and PIR codes and their connections to locally repairable codes. In
Network Coding and Subspace Designs, pages 427–442. Springer, 2018.

21 Itzhak Tamo and Alexander Barg. Bounds on locally recoverable codes with multiple recovering
sets. In 2014 IEEE International Symposium on Information Theory, pages 691–695. IEEE,
2014.

22 Itzhak Tamo, Alexander Barg, and Alexey Frolov. Bounds on the parameters of locally
recoverable codes. IEEE Transactions on Information Theory, 62(6):3070–3083, 2016.

23 Anyu Wang and Zhifang Zhang. Repair locality with multiple erasure tolerance. IEEE
Transactions on Information Theory, 60(11):6979–6987, 2014.

24 David P. Woodruff. A Quadratic Lower Bound for Three-Query Linear Locally Decodable
Codes over Any Field, pages 766–779. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.
doi:10.1007/978-3-642-15369-3_57.

25 Mary Wootters. Linear codes with disjoint repair groups. Not intended for publication, available
at https://sites.google.com/site/marywootters/disjoint_repair_groups.pdf, 2016.

26 Liyasi Wu. Revisiting the multiplicity codes: A new class of high-rate locally correctable
codes. In 2015 53rd Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 509–513. IEEE, 2015.

A Proofs of polynomial facts

Proof of Proposition 7. By part 2 of Proposition 6,

P (i)(X) =
∑

j1+···+jr=i

r∏
k=1

D(jk)(Xq −X). (10)

We have D(1)(Xq −X) = 1 (the field has characteristic 2). For 2 ≤ i < q, the ith derivative
of Xq −X is

(
q
i

)
Xq−i, which is 0, as

(
q
i

)
is even by Proposition 4. The summand above is

nonzero if and only if j1, j2, . . . , jr ≤ 1. When i ≤ r, this happens when i of the jk’s are 1 and
r−i are 0, which happens for

(
r
i

)
choices of (j1, . . . , jr). This gives P (i)(X) =

(
r
i

)
(Xq−X)r−i

for 0 ≤ i ≤ r. When i > r, some jk is at least 2, in which case P (r)(X) = 0 for r < i < q. J

APPROX/RANDOM 2019

https://doi.org/10.1145/335305.335315
http://arxiv.org/abs/1505.07547
http://arxiv.org/abs/1505.07547
http://arxiv.org/abs/1605.01869
https://doi.org/10.1007/978-3-642-15369-3_57
https://sites.google.com/site/marywootters/disjoint_repair_groups.pdf

38:16 Lifted Multiplicity Codes and the Disjoint Repair Group Property

Proof of Lemma 8. Let ak denote the vector (1, αk), and let bk denote the vector (0, βk).
By assumption, we have that akγ + bk = (γ, δ). By the definition of Hasse derivatives, we
have, for all k = 1, . . . , r

PLk
(T + Z) = P (akT + bk + akZ)

=
∑
i∈N2

P (i)(akT + bk) · (akZ)i

=
∑
i∈N2

P (i)(akT + bk) · ai
kZ

wt(i)

PLk
(T + Z) =

∑
i≥0

P
(i)
Lk

(T)Zi (11)

Hence, for all i ≥ 0 and k = 1, . . . , r, we have

P
(i)
Lk

(T) =
∑

i:wt(i)=i

P (i)(akT + bk)ai
k (12)

By plugging in T = γ, we have for all i ≥ 0 and k = 1, . . . , r,

P
(i)
Lk

(γ) =
∑

i:wt(i)=i

P (i)(γ, δ)ai
k. (13)

Rewriting this in matrix form gives the desired result. J

B Lifted codes via dual codes

It was shown in [6] that bivariate lifted parity-check codes over Fq, where q = 2`, have
co-dimension 3`. Here, we give an alternative proof using dual codes. The techniques in this
proof are not directly related to the techniques that we used in the main body of the paper,
but we found this alternative proof illuminating so we include it.

Let q = 2`. Recall L is the set of lines expressible as L(T) = (T, αT + β) where α, β ∈ Fq.
One way to think about codes with locality is by considering their dual code. If the code is a
subset of Fq×qq , then the dual code corresponds to lines of repair groups. Given a line L(T)
in L, define the corresponding dual codeword:

(c⊥L)ij
def=
{

1 (i, j) = L(t) for some t ∈ Fq

0 o/w
(14)

Let

VL
def= span

{
c⊥L : L ∈ L

}
. (15)

Note that VL is spanned by 4` elements, so the trivial bound on the dimension is 4`. We
give the following improved bound, matching the analysis of [6].

I Lemma 23. The subspace VL has dimension at most 3`.

Proof. A codeword c⊥L is the evaluation of the following polynomial on Fq×qq :

PL(X,Y) def=
∏
β 6=βL

(αLX + β − Y). (16)

R. Li and M. Wootters 38:17

If (X,Y) /∈ L, then the polynomial evaluates to 0 as Y − αLX 6= βL, and otherwise it
evaluates to∏

β 6=βL

(β − βL) =
∏
β∈F∗q

β = 1. (17)

For a + b ≥ q, the coefficient of XaY b in PL(X,Y) is 0. For a + b ≤ q, the coefficient of
XaY b in PL(X,Y) is(

a+ b

a

)
αaL(−1)b

∑
β1,...,βq−1−a−b∈Fq

distinct,6=βL

q−1−a−b∏
j=1

βj . (18)

This is because we first chose a+b terms that contain X or Y , then choose which terms are X
and which terms are Y , and this gives us a many αL’s and b many −1’s, and we sum over the
choices of the β terms that we choose. Hence, the only a, b such that [XaY b]PL(X,Y) 6= 0
for any L are the pairs (a, b) such that a + b ≤ q − 1 and

(
a+b
a

)
≡ 1 mod 2. There are at

most 3` pairs by Proposition 4. It follows that the polynomials PL(X,Y) are spanned by 3`
monomials XaY b with

(
a+b
a

)
≡ 1 mod 2. Hence, the vector space VL is spanned by 3` dual

codewords in Fq×qq and thus has dimension at most 3`. J

APPROX/RANDOM 2019

Revision Notice

This is a revised version of the eponymous paper that appeared in the proceedings of AP-
PROX/RANDOM 2019 (LIPIcs, volume 145, http://www.dagstuhl.de/dagpub/
978-3-95977-125-2, published in September, 2019), in which an incorrect proposition (formerly
Proposition 18) and the corresponding proof (formerly Appendix B) was deleted and in which the
exposition was adjusted accordingly. Previously it was claimed that the lifted code is exactly the
span of all good monomials. In fact the span of good monomial forms only a subset of the lifted
code.

Dagstuhl Publishing – May 4, 2020.

Think Globally, Act Locally: On the Optimal
Seeding for Nonsubmodular Influence
Maximization
Grant Schoenebeck
University of Michigan, Ann Arbor, USA
http://web.eecs.umich.edu/~schoeneb/
schoeneb@umich.edu

Biaoshuai Tao
University of Michigan, Ann Arbor, USA
http://www-personal.umich.edu/~bstao/
bstao@umich.edu

Fang-Yi Yu
University of Michigan, Ann Arbor, USA
http://www-personal.umich.edu/~fayu/
fayu@umich.edu

Abstract

We study the r-complex contagion influence maximization problem. In the influence maximization
problem, one chooses a fixed number of initial seeds in a social network to maximize the spread of
their influence. In the r-complex contagion model, each uninfected vertex in the network becomes
infected if it has at least r infected neighbors.

In this paper, we focus on a random graph model named the stochastic hierarchical blockmodel,
which is a special case of the well-studied stochastic blockmodel. When the graph is not exceptionally
sparse, in particular, when each edge appears with probability ω

(
n−(1+1/r)), under certain mild

assumptions, we prove that the optimal seeding strategy is to put all the seeds in a single community.
This matches the intuition that in a nonsubmodular cascade model placing seeds near each other
creates synergy. However, it sharply contrasts with the intuition for submodular cascade models
(e.g., the independent cascade model and the linear threshold model) in which nearby seeds tend to
erode each others’ effects.

Finally, we show that this observation yields a polynomial time dynamic programming algorithm
which outputs optimal seeds if each edge appears with a probability either in ω

(
n−(1+1/r)) or

in o
(
n−2).

2012 ACM Subject Classification Theory of computation → Social networks; Mathematics of
computing → Random graphs

Keywords and phrases Nonsubmodular Influence Maximization, Bootstrap Percolation, Stochastic
Blockmodel

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.39

Category RANDOM

Funding Grant Schoenebeck: National Science Foundation AitF #1535912 and CAREER #1452915
Biaoshuai Tao: National Science Foundation CAREER #1452915
Fang-Yi Yu: National Science Foundation AitF #1535912

© Grant Schoenebeck, Biaoshuai Tao, and Fang-Yi Yu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6878-0670
http://web.eecs.umich.edu/~schoeneb/
mailto:schoeneb@umich.edu
https://orcid.org/0000-0003-4098-844X
http://www-personal.umich.edu/~bstao/
mailto:bstao@umich.edu
https://orcid.org/0000-0002-3697-8807
http://www-personal.umich.edu/~fayu/
mailto:fayu@umich.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.39
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Optimal Seeding for Nonsubmodular Influence Maximization

1 Introduction

A cascade, or a contagion1, is a fundamental process on social networks: starting with
some seed agents, the infection then spreads to their neighbors. A natural question known
as influence maximization [4, 6, 18, 28] asks how to place a fixed number of initial seeds
to maximize the spread of the resulting cascade. For example, which students can most
effectively be enrolled in an intervention to decrease student conflict at a school [30]?

Influence maximization is extensively studied when the contagion process is submodular
(a node’s marginal probability of becoming infected after a new neighbor is infected decreases
when the number of previously infected neighbors increases [22]). However, many examples
of nonsubmodular contagions have been reported, including pricey technology innovations,
the change of social behaviors, the decision to participate in a migration, etc [14, 27, 31, 2, 24].
In this case, a node’s marginal influence may increase in the presence of other nodes – creating
a kind of synergy.

Network structure and seed placement

We address this lack of understanding for nonsubmodular influence maximization by char-
acterizing the optimal seed placement for certain settings which we will remark on shortly.
In these settings, the optimal seeding strategy is to put all the seeds near each other. This
is significantly different than in the submodular setting, where the optimal solutions tend
to spread out the seeds, lest they erode each others’ influence. We demonstrate this in the
appendix (Sect. A) by presenting an example of submodular influence maximization where
the optimal seeding strategy is to spread out the seeds.

This formally captures the intuition, as presented by Angell and Schoenebeck [1], that it
is better to target one market to saturation first (act locally) and then to allow the success in
this initial market to drive broader success (think globally) rather than to initially attempt
a scattershot approach (act globally). It is also underscores the need to understand the
particular nature of a contagion before blindly applying influence maximization tools.

We consider a well-known nonsubmodular cascade model which is also the most extreme
one (in terms of nonsubmodularity), the r-complex contagion [19, 7, 8, 16] (a node is infected
if and only if at least r of its neighbors are infected, also known as bootstrap percolation)
when r ≥ 2.

We consider networks formed by the stochastic hierarchical blockmodel [32, 33] which
is a special case of the stochastic blockmodel [15, 20, 36] equipped with a hierarchical
structure. Vertices are partitioned into m blocks. The blocks are arranged in a hierarchical
structure which represents blocks merging to form larger and larger blocks (communities).
The probability of an edge’s presence between two vertices is based solely on smallest block to
which both the vertices belong. This model captures the intuitive hierarchical structure which
is also observed in many real-world networks [17, 12]. The stochastic hierarchical blockmodel
is rather general and captures other well-studied models (e.g. Erdős-Rényi random graphs,
and the planted community model) as special cases.

Result 1. We first prove that, for the influence maximization problem on the stochastic
hierarchical blockmodel with r-complex contagion, under certain mild technical assumptions,
the optimal seeding strategy is to put all the seeds in a single community, if, for each

1 As is common in the literature, we use these terms interchangeably.

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:3

vertex-pair (u, v), the probability that the edge (u, v) is included satisfies puv = ω(n−(1+1/r)).
Notice that the assumption puv = ω(n−(1+1/r)) captures many real life social networks.
In fact, it is well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n) is globally
disconnected: with probability 1 − o(1), the graph consists of a union of tiny connected
components, each of which has size O(logn).

The technical heart of this result is a novel coupling argument in Proposition 16. We
simultaneously couple four cascade processes to compare two probabilities: 1) the probability
of infection spreading throughout an Erdős-Rényi graph after the (k+ 1)-st seed, conditioned
on not already being entirely infected after k seeds; 2) the probability of infection spreading
throughout the same graph after the (k + 2)-nd seed, conditioned on not already being
entirely infected after k+ 1 seeds. This shows that the marginal rate of infection always goes
up, revealing the “supermodular” nature of the r-complex contagion. The supermodular
property revealed by Proposition 16 is a property for cascade behavior on Erdős-Rényi
random graphs in general, so it is also interesting on its own.

Our result is in sharp contrast to Balkanski et al.’s observation. Balkanski et al. [3] studies
the stochastic blockmodel with a well-studied submodular cascade model, the independent
cascade model, and remarks that “when an influential node from a certain community is
selected to initiate a cascade, the marginal contribution of adding another node from that
same community is small, since the nodes in that community were likely already influenced.”

Algorithmic aspects

For influence maximization in submodular cascades, a greedy algorithm efficiently finds a
seeding set with influence at least a (1− 1/e) fraction of the optimal [22], and much of the
work following Kempe et al. [22], which proposed the greedy algorithm, has attempted to
make greedy approaches efficient and scalable [10, 11, 26, 13, 35, 34].

Greedy approaches, unfortunately, can perform poorly in the nonsubmodular setting [1].
Moreover, in contrast to the submodular case which has efficient constant approximation
algorithms, for general nonsubmodular cascades, it is NP-hard even to approximate influence
maximization to within an Ω(n1−ε) factor of the optimal [23]. This inapproximability result
has been extended to several much more restrictive nonsubmodular models [9, 25, 32, 33].
Intuitively, nonsubmodular influence maximization is hard because the potential synergy
of multiple seeds makes it necessary to consider groups of seeds rather than just individual
seeds. In contrast, with submodular influence maximization, not much is lost by considering
seeds one at a time in a myopic way.

Can the Ω(n1−ε) inapproximability results of Kempe et al. [23] be circumvented if we
further assume the stochastic hierarchical blockmodel? On the one hand, the stochastic
hierarchical structure seems optimized for a dynamic programming approach: perform
dynamic programming from the bottom to the root in the tree-like community structure.
On the other hand, Schoenebeck and Tao [32, 33] show that the Ω(n1−ε) inapproximability
results extend to the setting where the networks are stochastic hierarchical blockmodels.

Result 2. However, Result 1 (when the network is reasonably dense, putting all the seeds
in a single community is optimal) can naturally be extended to a dynamic programming
algorithm. We show that this algorithm is optimal if the probability puv that each edge
appears does not fall into a narrow regime. Interestingly, a heuristic based on dynamic
programming works fairly well in practice [1]. Our second result theoretically justifies the
success of this approach, at least in the setting of r-complex contagions.

APPROX/RANDOM 2019

39:4 Optimal Seeding for Nonsubmodular Influence Maximization

2 Preliminaries

We study complex contagions on social networks with community structure. This section
defines the complex contagion and our model for social networks with community structure.

2.1 r-Complex Contagion
Given a social network modeled as an undirected graph G = (V,E), in a cascade, a subset of
nodes S ⊆ V is chosen as the seed set; these seeds, being infected, then spread their influence
across the graph according to some specified model.

In this paper, we consider a well-known cascade model named r-complex contagion, also
known as bootstrap percolation and the fixed threshold model: a node is infected if and only if
at least r of its neighbors are infected. We use σr,G(S) to denote the total number of infected
vertices at the end of the cascade, and σr,G(S) = EG∼G [σr,G(S)] if the graph G is sampled
from some distribution G. Notice that the function σr,G(·) is deterministic once the graph G
and r are fixed.

Submodularity of a cascade model

Other than the r-complex contagion, most cascade models are stochastic: the total number
of infected vertices is not deterministic but rather a random variable. σG(S) usually refers to
the expected number of infected vertices given the seed set S. A cascade model is submodular
if, given any graph, subsets of vertices S ⊆ T ⊆ V , and any additional vertex v ∈ V \ T ,
we have

σG(S ∪ {v})− σG(S) ≥ σG(T ∪ {v})− σG(T),

and it is nonsubmodular otherwise. Typical submodular cascade models include the linear
threshold model and the independent cascade model [22], which are studied in an enormous past
literature. The r-complex contagion, on the other hand, is a paradigmatic nonsubmodular
model.

2.2 Stochastic hierarchical blockmodels
We study the stochastic hierarchical blockmodel first introduced in [33]. The stochastic
hierarchical blockmodel is a special case of the stochastic blockmodel [20]. Intuitively, the
stochastic blockmodel is a stochastic graph model generating networks with community
structure, and the stochastic hierarchical blockmodel further assumes that the communities
form a hierarchical structure. Our definition in this section follows closely to [33].

I Definition 1. A stochastic hierarchical blockmodel is a distribution G = (V, T) of un-
weighted undirected graphs sharing the same vertex set V , where T = (VT , ET , w) is a weighted
tree called a hierarchy tree. The third parameter is the weight function w : VT → [0, 1] satisfy-
ing w(t1) < w(t2) for any t1, t2 ∈ VT such that t1 is an ancestor of t2. Let LT ⊆ VT
be the set of leaves in T . Each leaf node t ∈ LT corresponds to a subset of vertices
V (t) ⊆ V , where the V (t) sets partition the vertices in V . In general, if t 6∈ LT , we
define V (t) =

⋃
t′∈LT :t′ is an offspring of t V (t′).

The graph G = (V,E) is sampled from G in the following way. The vertex set V is
deterministic. For u, v ∈ V , the edge (u, v) appears in G with probability equal to the weight
of the least common ancestor of u and v in T . That is Pr((u, v) ∈ E) = maxt:u,v∈V (t) w(t).

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:5

In the rest of this paper, we use the words tree node and vertex to refer to the vertices
in VT and V respectively. In Definition 1, the tree node t ∈ VT corresponds to community
V (t) ⊆ V in the social network. Moreover, if t is not a leaf and t1, t2, . . . are the children of
t in VT , then V (t1), V (t2), . . . partition V (t) into sub-communities. Thus, our assumption
that for any t1, t2 ∈ VT where t1 is an ancestor of t2 we have w(t1) < w(t2) implies that the
relation between two vertices is stronger if they are in a same sub-community in a lower
level, which is natural.

To capture the scenario where the advertiser has the information on the high-level com-
munity structure but lacks the knowledge of the detailed connections inside the communities,
when defining the influence maximization problem as an optimization problem, we would like
to include T as a part of input, but not G. Rather than choosing which specific vertices are
seeds, the seed-picker decides the number of seeds on each leaf and the graph G ∼ G(n, T) is
realized after seeds are chosen. Moreover, we are interested in large social networks with
n→∞, so we would like that a single encoding of T is compatible with varying n. To enable
this feature, we consider the following variant of the stochastic hierarchical block model.

I Definition 2. A succinct stochastic hierarchical blockmodel is a distribution G(n, T) of
unweighted undirected graphs sharing the same vertex set V with |V | = n, where n is an
integer which is assumed to be extremely large. The hierarchy tree T = (VT , ET , w, v) is the
same as it is in Definition 1, except for the followings.
1. Instead of mapping a tree node t to a weight in [0, 1], the weight function w : VT → F

maps each tree node to a function f ∈ F = {f | f : Z+ → [0, 1]} which maps an integer
(denoting the number of vertices in the network) to a weight in [0, 1]. The weight of
t is then defined by (w(t))(n). We assume F is the space of all functions that can be
succinctly encoded.

2. The fourth parameter v : VT → (0, 1] maps each tree node t ∈ VT to a fraction of
vertices in V (t). That is: v(t) = |V (t)|/n. Naturally, we have

∑
t∈LT

v(t) = 1 and∑
t′:t′ is a child of t v(t′) = v(t).

We assume throughout that G(n, T) has the following properties.
Large communities. For tree node t ∈ VT , because v(t) does not depend on n, |V (t)| =

v(t)n = Θ(n). In particular, |V (t)| goes to infinity as n does.
Proper separation. w(t1) = o (w(t2)) for any t1, t2 ∈ VT such that t1 is an ancestor of t2.

That is, the connection between sub-community t2 is asymptotically (with respect to n)
denser than its super-community t1.

Our definitions of w and v are designed so that we can fix a hierarchy tree T = (VT , ET , w, v)
and naturally define G(n, T) for any n. As we will see in the next subsection, this allows us
to take T as input and then allow n→∞ when considering InfMax (to be defined soon).
This enables us to consider graphs having arbitrarily many vertices.

Finally, we define the density of a tree node.

I Definition 3. Given a hierarchy tree T = (VT , ET , w, v) and a tree node t ∈ VT , the density
of the tree node is ρ(t) = w(t) · (v(t)n)1/r.

2.3 The InfMax problem
We study the r-complex contagion on the succinct stochastic hierarchical blockmodel. Roughly
speaking, given hierarchy tree T and an integerK, we want to choose K seeds which maximize
the expected total number of infected vertices, where the expectation is taken over the graph
sampling G ∼ G(n, T) as n→∞.

APPROX/RANDOM 2019

39:6 Optimal Seeding for Nonsubmodular Influence Maximization

I Definition 4. The influence maximization problem InfMax is an optimization problem
which takes as input an integer r, a hierarchy tree T = (VT , ET , w, v) as in Definition 2,
and an integer K, and outputs k ∈ N|LT |

≥0 – an allocation of K seeds into the leaves LT with∑
t∈LT

kt = K that maximizes

Σr,T (k) := lim
n→∞

EG∼G(n,T) [σr,G(Sk)]
n

, 2

the expected fraction of infected vertices in G(n, T) with the seeding strategy defined by k,
where Sk denotes the seed set in G generated according to k.

Before we move on, the following remark is very important throughout the paper.
I Remark 5. In Definition 4, n is not part of the inputs to the InfMax instance. Instead,
the tree T is given as an input to the instance, and we take n→∞ to compute Σr,T (k) after
the seed allocation is determined. Therefore, asymptotically, all the input parameters to the
instance, including K, r and the encoding size of T , are constants with respect to n. Thus,
there are two different asymptotic scopes in this paper: the asymptotic scope with respect to
the input size and the asymptotic scope with respect to n. Naturally, when we are analyzing
the running time of an InfMax algorithm, we should use the asymptotic scope with respect
to the input size, not of n. On the other hand, when we are analyzing the number of infected
vertices after the cascade, we should use the asymptotic scope with respect to n.

In this paper, we use OI(·),ΩI(·),ΘI(·), oI(·), ωI(·) to refer to the asymptotic scope with
respect to the input size, and we use O(·),Ω(·),Θ(·), o(·), ω(·) to refer to the asymptotic
scope with respect to n. For example, with respect to n we always have r = Θ(1), K = Θ(1)
and |VT | = Θ(1).

Lastly, we have assumed that r ≥ 2, so that the contagion is nonsubmodular. When
r = 1, the cascade model becomes a special case of the independent cascade model [22], which
is a submodular cascade model. As mentioned, for submodular InfMax, a simple greedy
algorithm is known to achieve a (1− 1/e)-approximation to the optimal influence [22, 23, 29].

2.4 r-Complex Contagion on Erdős-Rényi graphs
In this section, we consider the r-complex contagion on the Erdős-Rényi random graph
G(n, p). We review some results from [21] which are used in our paper.

I Definition 6. The Erdős-Rényi random graph G(n, p) is a distribution of graphs with the
same vertex set V with |V | = n. For each pair of vertices u, v, the edge (u, v) in included in
E independently with probability p.

The InfMax problem in Definition 4 on G(n, p) is trivial, as there is only one possible
allocation of the K seeds: allocate all the seeds to the single leaf node of T , which is the
root. Therefore, σr,T (·) in Definition 4 depends only on the number of seeds K = |k|, not
on the seed allocation k itself. In this section, we slightly abuse the notation σ such that it
is a function mapping an integer to R≥0 (rather than mapping an allocation of K seeds to
R≥0 as it is in Definition 4). Let σr,G(n,p)(k) denote the expected number of infected vertices
after the cascade given k seeds. Correspondingly, let σr,G(k) denote the actual number of
infected vertices after the graph G is sampled from G(n, p).

I Theorem 7 (A special case of Theorem 3.1 in [21]). Suppose r ≥ 2, p = o(n−1/r) and
p = ω(n−1). We have
1. if k is a constant, then σr,G(n,p)(k) ≤ 2k with probability 1− o(1);
2. if k = ω

(
(1/npr)1/(r−1)), then σr,G(n,p)(k) = n− o(n) with probability 1− o(1).

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:7

I Theorem 8 (Theorem 5.8 in [21]). If r ≥ 2, p = ω(n−1/r) and k ≥ r, then we have
PrG∼G(n,p) [σr,G(k) = n] = 1− o(1).

When p = Θ(n−1/r), the probability that k seeds infect all the n vertices is positive, but
bounded away from 1. We use Po(λ) to denote the Poisson distribution with mean λ.

I Theorem 9 (Theorem 5.6 and Remark 5.7 in [21]). If r ≥ 2, p = cn−1/r + o(n−1/r) for
some constant c > 0, and k ≥ r is a constant, then

lim
n→∞

Pr
(
σr,G(n,p)(k) = n

)
= ζ(k, c),

for some ζ(k, c) ∈ (0, 1). Furthermore, there exist numbers ζ(k, c, `) > 0 for ` ≥ k such that

lim
n→∞

Pr
(
σr,G(n,p)(k) = `

)
= ζ(k, c, `)

for each ` ≥ k, and ζ(k, c) +
∑∞
`=k ζ(k, c, `) = 1.

Moreover, the numbers ζ(k, c, `)’s and ζ(k, c) can be expressed as the hitting probabilities
of the following inhomogeneous random walk. Let ξ` ∼ Po

((
`−1
r−1
)
cr
)
, ` ≥ 1 be independent,

and let S̃` :=
∑`
j=1(ξj − 1) and T̃ := min{` : k + S̃` = 0} ∈ N ∪ {∞}. Then

ζ(k, c) = Pr
(
T̃ =∞

)
= Pr

(
k + S̃` ≥ 1 for all ` ≥ 1

)
(1)

and ζ(k, c, `) = Pr(T̃ = `).

We have the following corollary for Theorem 9, saying that when p = Θ(n−1/r), if not all
vertices are infected, then the number of infected vertices is constant. As a consequence, if
the cascade spreads to more than constantly many vertices, then all vertices will be infected.

I Corollary 10 (Lemma 11.4 in [21]). If r ≥ 2, p = cn−1/r + o(n−1/r) for some constant
c > 0, and k ≥ r, then

lim
n→∞

Pr
(
φ(n) ≤ σr,G(n,p)(k) < n

)
= 0

for any function φ : Z+ → R+ such that limn→∞ φ(n) =∞.

3 Our main result

Our main result is the following theorem, which states that the optimal seeding strategy is
to put all the seeds in a community with the highest density, when the root has a weight in
ω(1/n1+1/r).

I Theorem 11. Consider the InfMax problem with r ≥ 2, T = (VT , ET , w, v), K > 0 and
the weight of the root node satisfying w(root) = ω(1/n1+1/r). Let t∗ ∈ argmax

t∈LT

ρ(t) and k∗ be

the seeding strategy that puts all the K seeds on t∗. Then k∗ ∈ argmax
k

Σr,T (k).

Notice that the assumption w(root) = ω(1/n1+1/r) captures many real life social networks.
In fact, it is well-known that an Erdős-Rényi graph G(n, p) with p = o(1/n) is globally
disconnected: with probability 1 − o(1), the graph consists of a union of tiny connected
components, each of which has size O(logn).

The remaining part of this section is dedicated to proving Theorem 11. We assume
w(root) = ω(1/n1+1/r) in this section from now on. It is worth noting that, in many parts
of this proof, and also in the proof of Theorem 23, we have used the fact that an infection of
o(n) vertices contributes 0 to the objective Σr,T (k), as we have taken the limit n→∞ and
divided the expected number of infections by n in Definition 4.

APPROX/RANDOM 2019

39:8 Optimal Seeding for Nonsubmodular Influence Maximization

I Definition 12. Given T = (VT , ET , w, v), a tree node t ∈ VT is supercritical if w(t) =
ω(1/n1/r), is critical if w(t) = Θ(1/n1/r), and is subcritical if w(t) = o(1/n1/r).

From the results in Sect. 2.4, if we allocate k ≥ r seeds on a supercritical leaf t ∈ LT ,
then with probability 1− o(1) all vertices in V (t) will be infected; if we allocate k seeds on a
subcritical leaf t ∈ LT , at most a negligible number of vertices, 2k = Θ(1), will be infected;
if we allocate k ≥ r seeds on a critical leaf t ∈ LT , the number of infected vertices in V (t)
follows Theorem 9.

We say a tree node t ∈ VT is activated in a cascade process if the number of infected
vertices in V (t) is v(t)n− o(n), i.e., almost all vertices in V (t) are infected. Given a seeding
strategy k, let Pk be the probability that at least one tree node is activated when n→∞.
Notice that this is equivalent to at least one leaf being activated. The proof of Theorem 11
consists of two parts. We will first show that, Pk completely determines Σr,T (k) (Lemma 13).
Secondly, we show that placing all the seeds on a single leaf with the maximum density will
maximize Pk (Lemma 14).

I Lemma 13. Given any two seeding strategies k1,k2, if Pk1 ≤ Pk2 , then Σr,T (k1) ≤
Σr,T (k2).

I Lemma 14. Let k be the seeding strategy that allocates all the K seeds on a leaf t∗ ∈
argmax
t∈LT

(ρ(t)). Then k maximizes Pk.

Lemma 13 and Lemma 14 imply Theorem 11. The proof of Lemma 13 is available in the
full version. We prove Lemma 14 in the next section.

3.1 Proof of Lemma 14
We first handle some corner cases. If K < r, then the cascade will not even start, and any
seeding strategy is considered optimal. If T contains a supercritical leaf, the leaf with the
highest density is also supercritical. Putting all the K ≥ r seeds in this leaf, by Theorem 8,
will activate the leaf with probability 1 − o(1). Therefore, this strategy makes Pk = 1,
which is clearly optimal. In the remaining part of this subsection, we shall only consider the
case K ≥ r and all the leaves are either critical or subcritical. Notice that, by the proper
separation assumption, all internal tree nodes of T are subcritical.

We split the cascade process into two stages. In Stage I, we restrict the cascade within
the leaf blocks (V (t) where t ∈ LT), and temporarily assume there are no edges between two
different leaf blocks (similar to if w(t) = 0 for all t 6∈ LT). After Stage I, Stage II consists of
the remaining cascade process.

Proposition 15 shows that maximizing Pk is equivalent to maximizing the probability
that a leaf is activated in Stage I. Therefore, we can treat T such that all the leaves, each of
which corresponds to a G(n, p) random graph, are isolated.

I Proposition 15. If no leaf is activated after Stage I, then with probability 1 − o(1) no
vertex will be infected in Stage II, i.e., the cascade will end after Stage I.

We defer the proof of Proposition 15 to Appendix C. Notice that Proposition 15 is the
only part where we have used the proper separation assumption.

Since Theorem 7 suggests that any constant number of seeds will not activate a subcritical
leaf, we should only consider putting seeds in critical leaves. In Proposition 16, we show that
in a critical leaf t, the probability that the (i+ 1)-th seed will activate t conditioning on the
first i seeds failing to do so is increasing as i increases. Intuitively, Proposition 16 reveals a

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:9

super-modular nature of the r-complex contagion on a critical leaf, making it beneficial to put
all seeds together so that the synergy is maximized, which intuitively implies Lemma 14. The
proof of Proposition 16 is the most technical result of this paper, we will present it in Sect. 4.

I Proposition 16 (log-concavity of lim
n→∞

Pr(Enk)). Consider an Erdős-Rényi random graph
G(n, p) with p = cn−1/r + o(n−1/r), and assume an arbitrary order on the n vertices. Let
Enk be the event that seeding the first k vertices does not make all the n vertices infected. We
have lim

n→∞
Pr(Enk+2 | Enk+1) < lim

n→∞
Pr(Enk+1 | Enk) for any k ≥ r − 1.

Equipped with Proposition 16, to show Lemma 14, we show that the seeding strategy
that allocates K1 > 0 seeds on a critical leaf t1 and K2 > 0 seeds on a critical leaf t2 cannot
be optimal. Firstly, it is obvious that both K1 and K2 should be at least r, for otherwise
those K1 (K2) seeds on t1 (t2) are simply wasted.

Let Enk be the event that the first k seeds on t1 fail to activate t1 and Fnk be the event
that the first k seeds on t2 fail to activate t2. By Proposition 16, we have lim

n→∞
Pr(EnK1+1 |

EnK1
) < lim

n→∞
Pr(EnK1

| EnK1−1) and lim
n→∞

Pr(FnK2+1 | FnK2
) < lim

n→∞
Pr(FnK2

| FnK2−1), which
implies

lim
n→∞

Pr(EnK1+1) Pr(FnK2−1)
Pr(EnK1

) Pr(FnK2
) ·

Pr(EnK1−1) Pr(FnK2+1)
Pr(EnK1

) Pr(FnK2
)

= lim
n→∞

Pr(EnK1+1 | EnK1
) Pr(FnK2+1 | FnK2

)
Pr(EnK1

| EnK1−1) Pr(FnK2
| FnK2−1) < 1.

Therefore, we have either lim
n→∞

Pr(En
K1+1) Pr(Fn

K2−1)
Pr(En

K1
) Pr(Fn

K2
) or lim

n→∞

Pr(En
K1−1) Pr(Fn

K2+1)
Pr(En

K1
) Pr(Fn

K2
) is less than 1.

This means either the strategy putting K1 + 1 seeds on t1 and K2 − 1 seeds on t2, or the
strategy putting K1 − 1 seeds on t1 and K2 + 1 seeds on t2 makes it more likely that at least
one of t1 and t2 is activated. Therefore, the strategy putting K1 and K2 seeds on t1 and t2
respectively cannot be optimal. This implies an optimal strategy should not allocate seeds
on more than one leaf.

Finally, a critical leaf t with v(t)n vertices and weight w(t) can be viewed as an Erdős-
Rényi random graph G(m, p) with m = v(t)n and p = w(t) = ρ(t) · (v(t)n)−1/r = ρ(t)m−1/r,
where ρ(t) = Θ(1) when t is critical. Taking c = ρ(t) in Theorem 9, we can see that ξ` has a
larger Poisson mean if c is larger, making it more likely that the G(m, p) is fully infected (to
see this more naturally, larger c means larger p if we fix m). Thus, given that we should put
all the K seeds in a single leaf, we should put them on a leaf with the highest density. This
concludes Lemma 14.

4 Proof for Proposition 16

Since the event Enk+1 implies Enk , we have Pr(Enk+1|Enk) = Pr(Enk+1)/Pr(Enk). Therefore, the
inequality we are proving is equivalent to lim

n→∞
Pr(Enk+2)/Pr(Enk+1) < lim

n→∞
Pr(Enk+1)/Pr(Enk),

and it suffices to show that

lim
n→∞

Pr(Enk+2) lim
n→∞

Pr(Enk) < lim
n→∞

Pr(Enk+1) lim
n→∞

Pr(Enk+1). (2)

Proposition 16 shows that the failure probability, lim
n→∞

Pr(Enk), is logarithmically concave.
The remaining part of the proof is split into four parts: In Sect. 4.1, we begin by

translating Eqn (2) in the language of inhomogeneous random walks. In Sect. 4.2, we present
a coupling of two inhomogeneous random walks to prove Eqn. (2). In Sect. 4.3, we prove the
validity of the coupling. in Sect. 4.4, we finally show the coupling implies Eqn. (2).

APPROX/RANDOM 2019

39:10 Optimal Seeding for Nonsubmodular Influence Maximization

4.1 Inhomogeneous random walk interpretation
We adopt the inhomogeneous random walk interpretation from Theorem 9, and view the
event Enk as the following: the random walk starts at x = k; in the i-th iteration, x moves
to the left by 1 unit, and moves to the right by α(i) ∼ Po

((
i−1
r−1
)
cr
)
units; Let Ek be the

event that the random walk reaches x = 0. By Theorem 9, Pr(Ek) = lim
n→∞

Pr(Enk). Thus,
lim
n→∞

Pr(Enk+2) lim
n→∞

Pr(Enk) = Pr(Ek+2) Pr(Ek). In this proof, we let λ(i) =
(
i−1
r−1
)
cr, and

in particular, λ(0) = λ(1) = · · · = λ(r − 1) = 0. Note that as i increases, the expected
movement of the walk increases, and make it harder to reach 0. This observation is important
for our proof.

To compute Pr(Ek+2) Pr(Ek), we consider the following process. A random walk in Z2

starts at (k + 2, k). In each iteration i, the random walk moves from (x, y) to (x − 1 +
α(i), y − 1 + β(i)) where α(i) and β(i) are sampled from Po(λ(i)) independently. If the
random walk hits the axis y = 0 after a certain iteration T , then it is stuck to the axis, i.e.,
for any i > T , the update in the i-th iteration is from (x, 0) to (x− 1 + α(i), 0); similarly,
after reaching the axis x = 0, the random walk is stuck to the axis x = 0 and updates to
(0, y − 1 + β(i)). Then, Pr(Ek+2) Pr(Ek) is the probability that the random walk starting
from (k + 2, k) reaches (0, 0).

To prove (2), we consider two random walks in Z2 defined above. Let A be the random
walk starting from (k + 2, k), and let B be the random walk starting from (k + 1, k + 1).
Let HA and HB be the event that A and B reaches (0, 0) respectively. To prove (2), it is
sufficient to show:

Pr(HA) < Pr(HB).

To formalize this idea, we define a coupling between A and B such that: 1) whenever A
reaches (0, 0), B also reaches (0, 0), and 2) with a positive probability, B reaches (0, 0) but
A never does.

In defining the coupling, we use the idea of splitting and merging of Poisson processes [5].
We reinterpret the random walk by breaking down each iteration i into J(i) steps such that
it is symmetric in the x- and y-directions (with respect to the line y = x) and the movement
in each step is “small”.

If at the beginning of iteration i the process is at (x, y) with x > 0 and y > 0:
At step 0 of iteration i, we sample J(i) ∼ Po(2λ(i)), set (α(i, 0), β(i, 0)) = (−1,−1), and
update (x, y) 7→ (x+ α(i, 0), y + β(i, 0));
At each step j for j = 1, . . . , J(i), (α(i, j), β(i, j)) = (1, 0) with probability 0.5, and
(α(i, j), β(i, j)) = (0, 1) otherwise. Update (x, y) 7→ (x+ α(i, j), y + β(i, j));3

On the other hand, if x = 0 (or y = 0) at the beginning of iteration:
At step 0 of iteration i, we sample J(i) ∼ Po(2λ(i)), set

(
α(i, 0), β(i, 0)

)
= (0,−1) (or

(−1, 0) if y = 0), and update (x, y) 7→
(
x+ α(i, 0), y + β(i, 0)

)
;

At each step j for j = 1, . . . , J(i), with probability 0.5
(
α(i, j), β(i, j)

)
= (1, 0), (or(

α(i, j), β(i, j)
)

= (0, 1)) and (α(i, j), β(i, j)) = (0, 0), otherwise. Update (x, y) 7→(
x+ α(i, j), y + β(i, j)

)
;

If at the end of iteration i, (x, y) = (0, 0) we stop the process.

3 Standard results from Poisson process indicate that,
∑J(i)

j=1 α(i, j) ∼ Po(λ(i)), and
∑J(i)

j=1 β(i, j) ∼
Po(λ(i)) which are two independent Poisson random variables.

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:11

Notice that we only switch from one type of iteration to the other if x = 0 (or y = 0)
at the end of an iteration i. Here way say the random walk is stuck to the axis x = 0 (or
the axis y = 0). If this happens, it will be stuck to this axis forever. Also, notice that in
each step we have at most 1 unit movement. Also, in steps j = 1, . . . , J(i) the walk can only
move further away from both axes y = 0 and x = 0.

Let
(
x(i, j), y(i, j)

)
be the position of the random walk after iteration i step j, and(

x(i), y(i)
)
be its position at the end of iteration i. Moreover, let α(i) =

∑J(i)
j=1 α(i, j) be the

net movement in x direction during iteration i excluding the movement in Step 0, and let
ᾱ(i) = α(i) + α(i, 0) be the net movement including movement at step 0. Similarly define
y-directional movements β(i) =

∑J(i)
j=1 β(i, j) and β̄(i).

4.2 The coupling

We want to show that the probability of A reaching the origin is less that of B. To this
end, we create a coupling between the two walks, which we outline here. Fig. 1 and Fig. 2
illustrate most aspects of this coupling. In the description of the coupling, we will let B
move “freely”, and define how A is “coupled with” B.

Recall that A starts at (k + 2, k) and B starts at (k + 1, k + 1). At the beginning, we
set A’s movement to be identical to B’s. Before one of them hits the origin, either of the
following two events must happen: A and B become symmetric to the line x = y at some
step, Esymm, or A reaches the axis y = 0 at the end of some iteration, Eskew. This is called
Phase I and is further discussed in Sect. 4.2.1.

In the first case Esymm, the positions of A and B are symmetric. We set A’s movement to
mirror B’s movement. Therefore, in this case, A and B will both hit the origin, or neither of
them will. This is called Phase II Symm and is further discussed in Sect. 4.2.2.

For the latter case Eskew, A reaches the axis y = 0 at iteration Tskew. We call the process
is in Phase II Skew and further discussed in Sect. 4.2.3. Because B starts one unit above A
and one unit to the left of A, at iteration Tskew, B is at the axis y = 1 and one unit to the
left of A. Next we couple A’s movement in the x-direction to be identical to B’s, so that
B is always one unit to the left of A. This coupling continues unless B hits the axis x = 0.
Denote this iteration T ∗. At time T ∗, A is one unit to the right of the axis x = 0. Recall that
at iteration Tskew when Eskew happens, B is one unit above the axis so that y = 1. Therefore,
we can couple the movement of A in the x-direction after iteration T ∗ with B’s movement in
the y-direction after iteration Tskew. Because λ(i) increases with i, we can couple the walks
in such a way as to ensure that A moves toward the origin at a strictly slower rate than B
does. Therefore, A only reaches the y-axis x = 0 if B reaches the x-axis y = 0, and we have
shown that A is less likely to reach the origin than B does.

Let
(
xA(i, j), yA(i, j)

)
, and

(
xB(i, j), yB(i, j)

)
be the coordinates for A and B respectively

after iteration i step j. Similarly, let JA(i) and JB(i) be the number of steps for A and B in
iteration i. Let αA(i, j) and αB(i, j) be the x-direction movements of both walks in iteration
i step j, and βA(i, j) and βB(i, j) be the corresponding y-direction movements.

4.2.1 Phase I

Starting with
(
xA(0), yA(0)

)
= (k + 2, k) and

(
xB(0), yB(0)

)
= (k + 1, k + 1), A moves in

exactly the same way as B, i.e., JA(i) = JB(i), αA(i, j) = αB(i, j) and βA(i, j) = βB(i, j),
until one of the following two events happens.

APPROX/RANDOM 2019

39:12 Optimal Seeding for Nonsubmodular Influence Maximization

Event Esymm. The current position of A and B are symmetric with respect to the line y = x,
i.e., xA(i, j)− xB(i, j) = yB(i, j)− yA(i, j) and xA(i, j) + xB(i, j) = yA(i, j) + yB(i, j).
Notice that Esymm may happen in some middle step j of an iteration i. When Esymm
happens, we move on to Phase II Symm.

Event Eskew. A hits the axis y = 0 at the end of an iteration. Notice that this means A is
then stuck to the axis y = 0 forever. When Eskew happens, we move on to Phase II Skew.
Note that B is one unit away from the axis y = 0, yB = 1. We remark that the in the
third part we show, if event Eskew happens, B has a higher chance to reach (0, 0) than A.

The following three claims will be useful.

B Claim 17. A is always below the line y = x before Esymm happens, so A will never hit the
axis x = 0 in Phase I.

Proof. To see this, A can only have four types of movements in each step: lower-left
(x, y) 7→ (x− 1, y − 1), up (x, y) 7→ (x, y + 1), and right (x, y) 7→ (x+ 1, y). It is easy to see
that, 1) A will never step across the line y = x in one step, and 2) if A ever reaches the line
y = x at (w,w) for some w, then A must be at (w,w − 1) in the previous step. However,
when A is at (w,w− 1), B should be at (w− 1, w) according to the relative position of A,B.
In this case event Esymm already happens. C

B Claim 18. Esymm and Eskew cannot happen simultaneously.

Proof. Suppose Esymm and Eskew happen at the same time, then it must be that A is at (1, 0)
and B is at (0, 1), as the relative position of A and B is unchanged in Phase I, and this must
be at the end of a certain iteration. In the previous iteration, A must be at (2, 1), since Eskew
did not happen yet and A is below the line y = x. However, B is at (1, 2) when A is at
(2, 1), implying that case Esymm has already happened in the previous iteration, which is a
contradiction. C

B Claim 19. B cannot reach the axis x = 0 before either Esymm or Eskew happen.

Proof. If Esymm happens before Eskew, B cannot reach the axis x = 0 before Esymm as A is
always below the line y = x and B is always on the upper-left diagonal of A. If Eskew happens
before Esymm, B cannot reach the axis x = 0 before Eskew, or even by the time Eskew happens:
by the time Eskew happens, A can only at one of (2, 0), (3, 0), (4, 0), . . . (A cannot be at (1, 0),
for otherwise Esymm and Eskew happen simultaneously, which is impossible as shown just now),
in which case B will not be at the axis x = 0. C

4.2.2 Phase II Symm
Let A move in a way that is symmetric to B with respect to the line y = x: JA(i) = JB(j),
αA(i, j) = βB(i, j) and βA(i, j) = αB(i, j). Notice that, in Phase II Symm, A may cross the
line y = x, after which A is above the line y = x while B is below.

4.2.3 Phase II Skew
If event Eskew happens, we need a more complicated coupling. Suppose Phase II Skew starts
after iteration Tskew. Here we use T AS (and T BS) to denote the hitting time of A (and B)
to a set of states S which is the first iteration of the process into the set S. For example
i = T By=1 is the hitting time of B such that yB(i) = 1. Here we list six relevant hitting times
and their relationship.

Tskew = T By=1 = T Ay=0 < T By=0, and Tskew < T Bx=0 = T Ax=1 < T Ax=0.

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:13

Phase I (ended at Event Esymm)

B

A

Phase II Symm

B

A

Figure 1 The coupling with Phase I ended at Event Esymm.

Back to the coupling, we first let the x-direction movement of A be the same with that
of B. To be specific, in each iteration Tskew < i ≤ T Bx=0, set JA(i) = JB(i). At step j, we set
αA(i, j) = αB(i, j) and βA(i, j) = 0 (βA(i, j) is always 0 now, as A is stuck to the axis y = 0).
Till now, the relative position of A and B in x-coordinate is preserved xA(i, j) = xB(i, j) + 1.
Let E∗ be the event that B reaches the axis x = 0, and let E∗ happens at the end of iteration
T ∗ = T Bx=0. We further define ∆ = T ∗ − Tskew to be the additional time before xB = 0 (if
both stopping times exist), and L = T By=0 − Tskew to be the additional time before yB = 0 (if
both stopping times exist).

At the end of iteration T ∗, the positions for A is one unit to the right of the origin. That
is xA(T ∗) = 1 while yA(T ∗)

)
= 0. Informally, we want to couple the movement of A from

(1, 0) at T ∗ to the movement of B in the y-direction at Tskew which is one unit above the axis
at y = 1. Formally, starting at (1, 0), A is a 1-dimensional random walk on the axis y = 0,
and we couple it to B in the following way.

For each t = 1, . . . , L, we couple A’s movement in the x direction at iteration T ∗ + t with
B’s movement ∆ steps earlier in the y direction at iteration T ∗ + t−∆ = Tskew + t such
that αA(T ∗ + t) ∼ Po(λ(T ∗ + t)) and αA(T ∗ + t) ≥ βB(Tskew + t). 4

We do not couple A to B for future iterations after T ∗ + L.
A key property of this coupling is that the x-coordinate of A at T ∗ + t is always greater or
equal to the y-coordinate of B at iteration Tskew + t.

B Claim 20. For all t = 1, . . . , L, xA(T ∗ + t) ≥ yB(Tskew + t).

Proof. We use induction. For the base case, we have 1 = xA(T ∗) = yB(Tskew) from the
definitions of Tskew and T ∗. For the inductive case, αA(T ∗ + t) ≥ βB(Tskew + t) due to our
coupling. C

4 Here is an example of such a coupling. Consider iteration i = T ∗ + t for A, and we want to couple
it with B’s movement at iteration ι = Tskew + t. Let JB(ι) be the number of steps of B in the
iteration ι which is not necessary equal to the number of steps of A after iteration T ∗. At step 0,
we sample a non-negative integer d(i) ∼ Po(2(λ(i)− λι)) independent to JB(ι), and set the number
of steps of A to be JA(i) = JB(ι) + d(i). Then set αA(i, 0) = −1 and β(i, 0)A = 0. At each step
j = 1, . . . , JB(ι), we set (αA(i, j), βA(i, j)) = (βBιj , 0). At the later steps j = JB(ι) + 1, . . . , JA(i), we
set (αA(i, j), βA(i, j)) = (1, 0) with probability 0.5, or (0, 0) otherwise.

APPROX/RANDOM 2019

39:14 Optimal Seeding for Nonsubmodular Influence Maximization

Phase I (ended at Event Eskew)

B

A

Phase II Skew before T ∗

B
A

Phase II Skew after T ∗

B

A

B moves freely on axis x = 0

Figure 2 The coupling with Phase I ended at Event Eskew, if E∗ happens.

4.3 Validity of the coupling
The coupling induces the correct marginal random walk process for B, as we have defined
the coupling in a way that B is moving “freely” and A is being “coupled” with B. The
only non-trivial part is to show that the coupling induces the correct marginal random walk
process for A. It is straightforward to check that the marginal probabilities are correct
during Phase I, before the event E∗ occurs, or if the event E∗ does not occur. If the process
enters Phase II Skew and B reaches the axis x = 0, the movement of A in the x direction is
coupled with B’s movement in y direction ∆ = T ∗ − Tskew iterations ago. We note that B’s
movements in the x direction and the y direction are independent and A does not contain
two iterations that are coupled to a same iteration of B. Therefore, the movements of A in
x direction after T ∗ are independent to its previous movement, so the marginal distribution
is correct. Fig. 3 illustrates the coupling time line.

A, x-direction

B, x-direction

A, y-direction

B, y-direction

Tskew T ∗

0 movement

(stuck on axis y = 0)

Figure 3 The time line for the coupling after event Eskew happens.

I Remark 21. The coupling of the two random walks A and B in Z2 in the proof above can
be alternatively viewed as a coupling of four independent random walks in Z (this is why we
have said that “we simultaneously couple four cascade processes” in the introduction), as the
x-directional and y-directional movements for both A and B correspond to the four terms in
inequality (2), which are intrinsically independent.

4.4 Proof of Inequality (2)
It suffices to show that in our coupling HA ⊆ HB and HB \HA is not empty, because this
implies inequality (2): Pr(HA) = Pr(HB ∩HA) < Pr(HB ∩HA) + Pr(HB \HA) = Pr(HB).
We aim to show that:

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:15

1. if the coupling never moves to Phase II, neither A nor B reaches (0, 0);
2. if the coupling moves to Phase II Symm, A reaches (0, 0) if and only if B reaches (0, 0);
3. if the coupling moves to Phase II Skew, A reaches (0, 0) implies that B also reaches (0, 0);
4. with a positive probability, there is an event such that B reaches (0, 0) but A does not.
The first, second, and third show HA ⊆ HB. The last one shows HB \HA has a positive
probability.

1 is trivial. 2 follows from symmetry.
To see 3, first notice that in Phase II Skew, E∗ must happens if A ever reaches (0, 0):

because A can move to the left by at most 1 unit in each iteration, A must first reach (1, 0),
but at this point xB = 0 and event E∗ happens. Now consider the case that B never reaches
the origin after event E∗. Then the x movement of A remains coupled to the y-movement of
B in such a way that ᾱA(T ∗ + t) ≥ β̄B(Tskew + t). Walk A starts at xA = 1, and walk B
starts at yB = 1. Therefore, A cannot reach the origin if B does not. In the case walk B
meets the origin, the statement is vacuously true.

For 4, to show Pr(HB \HA) > 0, we define the following event which consists of four
parts. i) For all i = 1, . . . , k, it happens that αA(i) = βA(i) = 0, in which case the event Eskew
happens at Tskew = k and A reaches (2, 0). ii) For i = k + 1, it happens that αA(i) = 0 and
βB(i) = 1, in which case A reaches (1, 0) and B reaches (0, 1), and the process B reaches the
axis x = 0 at iteration T ∗ = k + 1. iii) In iteration i = T ∗ + 1, it happens that βB(i) = 0, so
B reaches (0, 0). On the other hand, by the coupling αA(T ∗ + 1) ≥ βB(Tskew + 1) = 1, so A
does not reach (0, 0) at iteration T ∗ + 1 = k + 2. iv) Finally, it happens that αA(i) ≥ 1 for
all i > k + 2. It is straightforward the i), ii), and iii) happen with positive probabilities. By
direct computations, iv) happens with a positive probability as well.5 Since the above event
consisted of i), ii), iii) and iv) belongs to HB \HA and each of the four sub-events happens
with a positive probability, 4 is implied.

From 2, 3, and 4, we learn that the probability that B reaches (0, 0) is strictly larger
than that of A, which implies inequality (2) and concludes the proof.

References
1 Rico Angell and Grant Schoenebeck. Don’t be greedy: leveraging community structure to find

high quality seed sets for influence maximization. In International Conference on Web and
Internet Economics, pages 16–29. Springer, 2017.

2 Lars Backstrom, Daniel P. Huttenlocher, Jon M. Kleinberg, and Xiangyang Lan. Group
formation in large social networks: membership, growth, and evolution. In ACM SIGKDD,
2006.

3 Eric Balkanski, Nicole Immorlica, and Yaron Singer. The Importance of Communities for
Learning to Influence. In Advances in Neural Information Processing Systems, pages 5862–5871,
2017.

4 Frank M Bass. A new product growth for model consumer durables. Management science,
15(5):215–227, 1969.

5 Dimitri P Bertsekas and John N Tsitsiklis. Introduction to probability, volume 1. Athena
Scientific Belmont, MA, 2002.

6 Jacqueline Johnson Brown and Peter H Reingen. Social ties and word-of-mouth referral
behavior. Journal of Consumer research, 14(3):350–362, 1987.

5 The event that αA(i) ≥ 1 for all i > k + 2 happens with probability
∏
i>k+2 Pr(Po(λ(i)) ≥ 1) =∏

i>k+2(1− exp(−λ(i))) ≥
∏
i≥r+1(1− exp(−

(
i−1
r−1

)
cr)) which is a positive constant depending on r

and c.

APPROX/RANDOM 2019

39:16 Optimal Seeding for Nonsubmodular Influence Maximization

7 Damon Centola and Michael Macy. Complex contagions and the weakness of long ties.
American journal of Sociology, 113(3):702–734, 2007.

8 John Chalupa, Paul L Leath, and Gary R Reich. Bootstrap percolation on a Bethe lattice.
Journal of Physics C: Solid State Physics, 12(1):L31, 1979.

9 Wei Chen, Tian Lin, Zihan Tan, Mingfei Zhao, and Xuren Zhou. Robust influence maximization.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 795–804. ACM, 2016.

10 Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social networks.
In ACM SIGKDD, pages 199–208. ACM, 2009.

11 Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social networks
under the linear threshold model. In Data Mining (ICDM), 2010 IEEE 10th International
Conference on, pages 88–97. IEEE, 2010.

12 Aaron Clauset, Cristopher Moore, and Mark EJ Newman. Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191):98, 2008.

13 Edith Cohen, Daniel Delling, Thomas Pajor, and Renato F Werneck. Sketch-based influence
maximization and computation: Scaling up with guarantees. In Proceedings of the 23rd ACM
International Conference on Conference on Information and Knowledge Management, pages
629–638. ACM, 2014.

14 James Samuel Coleman, Elihu Katz, and Herbert Menzel. Medical innovation: A diffusion
study. Bobbs-Merrill Co, 1966.

15 Paul DiMaggio. Structural analysis of organizational fields: A blockmodel approach. Research
in organizational behavior, 1986.

16 John W Essam. Percolation theory. Reports on Progress in Physics, 43(7):833, 1980.
17 Michelle Girvan and Mark EJ Newman. Community structure in social and biological networks.

Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.
18 Jacob Goldenberg, Barak Libai, and Eitan Muller. Using complex systems analysis to advance

marketing theory development: Modeling heterogeneity effects on new product growth through
stochastic cellular automata. Academy of Marketing Science Review, 9(3):1–18, 2001.

19 Mark Granovetter. Threshold Models of Collective Behavior. American Journal of Sociol-
ogy, 83(6):1420–1443, 1978. URL: http://www.journals.uchicago.edu/doi/abs/10.1086/
226707.

20 Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

21 Svante Janson, Tomasz Łuczak, Tatyana Turova, and Thomas Vallier. Bootstrap percolation
on the random graph GN,P . The Annals of Applied Probability, 22(5):1989–2047, 2012.

22 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146. ACM, 2003.

23 David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for social
networks. In International Colloquium on Automata, Languages, and Programming, pages
1127–1138. Springer, 2005.

24 Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics of viral marketing.
In EC, pages 228–237, 2006. doi:10.1145/1134707.1134732.

25 Qiang Li, Wei Chen, Xiaoming Sun, and Jialin Zhang. Influence Maximization with ε-Almost
Submodular Threshold Functions. In NIPS, pages 3804–3814, 2017.

26 Brendan Lucier, Joel Oren, and Yaron Singer. Influence at Scale: Distributed Computation of
Complex Contagion in Networks. In ACM SIGKDD, pages 735–744. ACM, 2015.

27 John S MacDonald and Leatrice D MacDonald. Chain migration ethnic neighborhood formation
and social networks. The Milbank Memorial Fund Quarterly, 42(1):82–97, 1964.

28 Vijay Mahajan, Eitan Muller, and Frank M Bass. New product diffusion models in marketing:
A review and directions for research. In Diffusion of technologies and social behavior, pages
125–177. Springer, 1991.

http://www.journals.uchicago.edu/doi/abs/10.1086/226707
http://www.journals.uchicago.edu/doi/abs/10.1086/226707
https://doi.org/10.1145/1134707.1134732

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:17

29 Elchanan Mossel and Sébastien Roch. Submodularity of Influence in Social Networks: From
Local to Global. SIAM J. Comput., 39(6):2176–2188, 2010. doi:10.1137/080714452.

30 Elizabeth Levy Paluck, Hana Shepherd, and Peter M Aronow. Changing climates of conflict:
A social network experiment in 56 schools. Proceedings of the National Academy of Sciences,
113(3):566–571, 2016.

31 Daniel M Romero, Brendan Meeder, and Jon Kleinberg. Differences in the Mechanics of
Information Diffusion Across Topics : Idioms , Political Hashtags , and Complex Contagion on
Twitter. In WWW, pages 695–704. ACM, 2011. URL: http://dl.acm.org/citation.cfm?
id=1963503.

32 Grant Schoenebeck and Biaoshuai Tao. Beyond Worst-Case (In)approximability of Nonsub-
modular Influence Maximization. In International Conference on Web and Internet Economics,
pages 368–382. Springer, 2017.

33 Grant Schoenebeck and Biaoshuai Tao. Beyond worst-case (in) approximability of nonsubmod-
ular influence maximization. ACM Transactions on Computation Theory (TOCT), 11(3):12,
2019.

34 Grant Schoenebeck and Biaoshuai Tao. Influence Maximization on Undirected Graphs:
Towards Closing the (1-1/e) Gap. In Proceedings of the 2019 ACM Conference on Economics
and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019., pages 423–453, 2019.
doi:10.1145/3328526.3329650.

35 Gordon Tullock. Toward a theory of the rent-seeking society, chapter Efficient rent seeking,(pp.
112), 1980.

36 Harrison C White, Scott A Boorman, and Ronald L Breiger. Social structure from multiple
networks. I. Blockmodels of roles and positions. American journal of sociology, 81(4):730–780,
1976.

A Optimal seeds in submodular InfMax

We have seen that putting all the K seeds in a single leaf is optimal for r-complex contagion,
when the root node has weight ω(1/n1+1/r). To demonstrate the sharp difference between
r-complex contagion and a submodular cascade model, we present a submodular InfMax
example where the optimal seeding strategy is to put no more than one seed in each leaf.
The hierarchy tree T in our example meets all the assumptions we have made in the previous
sections, including large communities, proper separation, and w(root) = ω(1/n1+1/r), where
r is now an arbitrarily fixed integer with r ≥ 2.

We consider a well-known submodular cascade model, the independent cascade model [22],
where, after seeds are placed, each edge (u, v) in the graph appears with probability puv
and vertices in all the connected components of the resultant graph that contain seeds are
infected. In our example, the probability puv is the same for all edges, and it is p = 1/n1− 1

4r .
The hierarchy tree T contains only two levels: a root and K leaves. The root has weight
1/n1+ 1

2r , and each leaf has weight 1. After G ∼ G(n, T) is sampled and each edge in G

is sampled with probability p, the probability that an edge appears between two vertices
from different leaves is (1/n1− 1

4r) · (1/n1+ 1
2r) = o(1/n2), and the probability that an edge

appears between two vertices from a same leaf is 1 · (1/n1− 1
4r) = ω(logn/n). Therefore, with

probability 1 − o(1), the resultant graph is a union of K connected components, each of
which corresponds to a leaf of T . It is then straightforward to see that the optimal seeding
strategy is to put a single seed in each leaf.

APPROX/RANDOM 2019

https://doi.org/10.1137/080714452
http://dl.acm.org/citation.cfm?id=1963503
http://dl.acm.org/citation.cfm?id=1963503
https://doi.org/10.1145/3328526.3329650

39:18 Optimal Seeding for Nonsubmodular Influence Maximization

B A dynamic programming algorithm

In this section, we present an algorithm which finds an optimal seeding strategy when all
w(t)’s fall into two regimes: w(t) = ω(1/n1+1/r) and w(t) = o(1/n2). We will assume this
for w(t)’s throughout this section. Since a parent tree node always has less weight than
its children (see Definition 1), we can decompose T into the upper part and the lower part,
where the lower part consists of many subtrees whose roots have weights in ω(1/n1+1/r), and
the upper part is a single tree containing only tree nodes with weights in o(1/n2) and whose
leaves are the parents of those roots of the subtrees in the lower part. We call each subtree
in the lower part a maximal dense subtree defined formally below.

I Definition 22. Given a hierarchy tree T = (VT , ET , w, v), a subtree rooted at t ∈ VT is a
maximal dense subtree if w(t) = ω(1/n1+1/r), and either t is the root, or w(t′) = O(1/n1+1/r)
where t′ is the parent of t.

Since we have assumed either w(t) = ω(1/n1+1/r) or w(t) = o(1/n2), w(t′) = O(1/n1+1/r)
in the definition above implies w(t′) = o(1/n2).

The idea of our algorithm is the following: firstly, after the decomposition of T into the
upper and lower parts, we will show that the weights of the tree nodes in the upper part,
falling into w(t) = o(1/n2), are negligible so that we can treat the whole tree T as a forest
with only those maximal dense subtrees in the lower part (that is, we can remove the entire
upper part from T); secondly, Theorem 11 shows that when we have decided the number of
seeds to be allocated for each maximal dense subtree, the optimal seeding strategy is to put
all the seeds together in a single leaf that has the highest density, where the density of a leaf
t ∈ LT is defined in Definition 3; finally, the only problem remaining is how to allocate the
K seeds among those maximal dense subtrees, and we decide this allocation by a dynamic
programming approach.

Now, we are ready to describe our algorithm, presented in Algorithm 1.
The correctness of Algorithm 1 follows immediately from Theorem 23 (below) and

Theorem 11. Recall Theorem 23 shows that we can ignore the upper part of T and treat T
as the forest consisting of all the maximal dense subtrees of T when considering the InfMax
problem. Theorem 11 shows that for each subtree Ti and given the number of seeds, the
optimal seeding strategy is to put all the seeds on the leaf with the highest density.

I Theorem 23. Given T = (VT , ET , w, v), let {T1, . . . , Tm} be the set of all T ’s maximal
dense subtrees and let T− be the forest consisting of T1, . . . , Tm. For any seeding strategy k

and any r ≥ 2, we have Σr,T (k) = Σr,T−(k).

Proof. Let V (Ti) be the set of vertices corresponding to the subtree Ti. Since the total
number of possible edges between those V (Ti)’s is upper bounded by n2 and each edge appears
with probability o(1/n2), the expected number of edges is o(1). By Markov’s inequality the
probability there exists edges between those V (Ti)’s is o(1) . Therefore, we have

E
G∼G(n,T)

[σr,G(k)]

n
=
o(1)O(n) + (1− o(1)) E

G∼G(n,T ′)
[σr,G(k)]

n
.

Taking n→∞ concludes the proof. J

Finally, it is straightforward to see the time complexity of Algorithm 1, in terms of the
number of evaluations of Σr,G(n,T)(·).

I Theorem 24. Algorithm 1 requires OI(|VT |K2) computations of Σr,G(n,T)(·).

G. Schoenebeck, B. Tao, and F.-Y. Yu 39:19

Algorithm 1 The InfMax algorithm.

1: Input: r ∈ Z with r ≥ 2, T = (VT , ET , w, v), and K ∈ Z+

2: Find all maximal dense subtrees T1, . . . , Tm, and let r1, . . . , rm be their roots (Defini-
tion 22).

3: For each Ti and each k = 0, 1, . . . ,K, let s∗i (k) be the seeding strategy that puts k seeds
in the leaf t ∈ LTi with the highest density, and let

h(Ti, k) = lim
n→∞

EG∼G(v(ri)·n,Ti)[σr,G(s∗i (k))]
n

be the expected number of infected vertices in the subgraph defined by Ti, normalized
by the total number of vertices in the whole graph.

4: Let S[i, k] store a seeding strategy that allocates k seeds in the first i subtrees T1, . . . , Ti,
and let H[i, k] be the expected total number of infected vertices corresponding to S[i, k],
divided by n.

5: for k = 0, 1, . . . ,K do
6: set S[1, k] = s∗i (k) and H[1, k] = h(T1, k).
7: end for
8: for each i = 2, . . . ,m do
9: for k = 0, 1, . . . ,K do
10: ki = argmax

ki∈{0,1,...,k}
H[i− 1, k − ki] + h(Ti, ki);

11: set S[i, k] be the strategy that allocates k − ki seeds among T1, . . . , Ti−1 according
to S[i− 1, k − ki] and puts the remaining ki seeds in the leaf of Ti with the highest
density;

12: set H[i, k] = H[i− 1, k − ki] + h(Ti, ki);
13: end for
14: end for
15: Output: the seeding strategy S[m,K].

C Proof of Proposition 15

By Theorem 7 and Corollary 10, if no leaf is activated by the local seeds, then there can be at
most constantly many infected vertices. Consider an arbitrary vertex v that is not infected,
and let t be the leaf such that v ∈ V (t). Let Kin be the number of infected vertices in V (t)
after Stage I and Kout be the number of infected vertices outside V (t). By our assumption,
Kin = O(1) and Kout = O(1). We compute an upper bound on the probability that v is
infected in the next cascade iteration. Let Xv be the number of v’s infected neighbors in
V (t) and Yv be the number of v’s infected neighbors outside V (t).

Since the probability that v is connected to each of those Kout vertices is o(n−1/r), we
have

Pr(Yv ≥ r − a) ≤
(
Kout

r − a

)(
o(n−1/r)

)r−a
= o

(
n−(r−a)/r

)
for each a ∈ {0, 1, . . . , r − 1}.

Ideally, we would also like to claim that

Pr(Xv ≥ a) ≤
(
Kin

a

)
w(t)a = O

(
n−a/r

)
, (3)

APPROX/RANDOM 2019

39:20 Optimal Seeding for Nonsubmodular Influence Maximization

so that putting together we have,

Pr(v is infected) ≤
r−1∑
a=0

Pr(Xv ≥ a) Pr(Yv ≥ r−a) = r ·O
(
n−a/r

)
·o
(
n−(r−a)/r

)
= o

(
1
n

)
.

and conclude that the expected number of infected vertices in the next iteration is o(1),
which implies the proposition by the Markov’s inequality.

However, conditioning on the cascade in V (t) stopping after Kin infections, there is no
guarantee that the probability an edge between v and one of the Kin infected vertices is still
w(t). Moreover, for any two vertices u1, u2 that belong to those Kin infected vertices, we do
not even know if the probability that v connects to u1 is still independent of the probability
that v connects to u2. Therefore, (3) does not hold in a straightforward way. The remaining
part of this proof is dedicated to proving (3).

Consider a different scenario where we have put Kin seeds in V (t) (instead of that the
cascade in V (t) ends at Kin infections), and let X̄v be the number of edges between v and
those Kin seeds (where v is not one of those seeds). Then we know each edge appears with
probability w(t) independently, and (3) holds for X̄v:

Pr(X̄v ≥ a) ≤
(
Kin

a

)
w(t)a = O

(
n−a/r

)
.

Finally, (3) follows because X̄v stochastically dominates Xv (i.e., Pr(X̄v ≥ a) ≥ Pr(Xv ≥
a) for each a ∈ {0, 1, . . . , r − 1}), which is easy to see:

Pr (Xv ≥ a) = Pr
(
X̄v ≥ a | X̄v ≤ r − 1

)
= Pr(a ≤ X̄v ≤ r − 1)

Pr(X̄v ≤ r − 1)

= Pr(X̄v ≥ a)− Pr(X̄v ≥ r)
1− Pr(X̄v ≥ r)

≤ Pr
(
X̄v ≥ a

)
,

where the first equality holds as Pr
(
X̄v ≥ a | X̄v ≤ r − 1

)
exactly describes the probability

that v has at least a infected neighbors among Kin conditioning on v not yet being infected.

Direct Sum Testing: The General Case
Irit Dinur
The Weizmann Institute of Science, Rehovot, Israel
http://www.wisdom.weizmann.ac.il/~dinuri/
irit.dinur@weizmann.ac.il

Konstantin Golubev
D-MATH, ETH Zurich, Switzerland
https://people.math.ethz.ch/~golubevk/
golubevk@ethz.ch

Abstract
A function f : [n1] × · · · × [nd] → F2 is a direct sum if it is of the form f (a1, . . . , ad) = f1(a1) ⊕
. . .⊕ fd(ad), for some d functions fi : [ni]→ F2 for all i = 1, . . . , d, and where n1, . . . , nd ∈ N. We
present a 4-query test which distinguishes between direct sums and functions that are far from them.
The test relies on the BLR linearity test (Blum, Luby, Rubinfeld, 1993) and on the direct product
test constructed by Dinur & Steurer (2014).

We also present a different test, which queries the function (d+ 1) times, but is easier to analyze.
In multiplicative ±1 notation, this reads as follows. A d-dimensional tensor with ±1 entries is

called a tensor product if it is a tensor product of d vectors with ±1 entries, or equivalently, if it is
of rank 1. The presented tests can be read as tests for distinguishing between tensor products and
tensors that are far from being tensor products.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases property testing, direct sum, tensor product

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.40

Category RANDOM

Funding Irit Dinur : ERC-CoG grant number 772839
Konstantin Golubev: ERC grant number 336283 while at the Weizmann Institute and Bar-Ilan
University. Currently, the SNF grant number 200020_169106.

1 Introduction

Let us first fix some notations and definitions. By [n] we mean the set {0, 1, 2, . . . , n}.
For d positive integers n1, . . . , nd, we denote [n; d] = [n1] × · · · × [nd]. For two functions
F,G : X → Y , we denote by dist(F,G) the relative Hamming distance between them, namely
dist(F,G) = Prx∈X [F (x) 6= G(x)]. We say that F : X → Y is ε-close to have some Property,
if there exists a function G : X → Y such that g has the Property and dist(F,G) ≤ ε.

Given d functions fi : [ni]→ F2, i = 1, . . . , d, where n1, . . . , nd ∈ N, their direct sum is
the function f : [n; d]→ F2 given by f (a1, . . . , ad) = f1(a1)⊕ f2(a2)⊕ . . .⊕ fd(ad), where ⊕
stands for addition is in the field F2. We denote f = f1 ⊕ · · · ⊕ fd. We study the testability
question: given a function f : [n; d] → F2 test if it is a direct sum, namely if it belongs
to the set

DirectSum[n;d] = {f1 ⊕ · · · ⊕ fd | fi : [ni]→ F2, i = 1, . . . , d} .

Direct sum is a natural construction that is often used in complexity for hardness
amplification [15, 8, 9, 13, 14]. It is related to the direct product construction: a function
f : [n; d]→ Fd2 is the direct product of f1, . . . , fd as above if f (a1, . . . , ad)=(f1(a1), . . . , fd(ad))
for all (a1, . . . , ad) ∈ [n; d]. The testability of direct products has received attention

© Irit Dinur and Konstantin Golubev;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 40; pp. 40:1–40:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.wisdom.weizmann.ac.il/~dinuri/
mailto:irit.dinur@weizmann.ac.il
https://people.math.ethz.ch/~golubevk/
mailto:golubevk@ethz.ch
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.40
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Direct Sum Testing: The General Case

[7, 5, 4, 10, 6] as abstraction of certain PCP tests. It was not surprising to find [3] that there
is a connection between testing direct products to testing direct sum. However, somewhat
unsatisfyingly this connection was confined to testing a certain type of symmetric direct
sum. A symmetric direct sum is a function f : [n]d → F2 that is a direct product with all
components equal; namely such that there is a single g : [n]→ F2 such that

f (a1, . . . , ad) = g(a1)⊕ g(a2)⊕ · · · ⊕ g(ad).

In [3], a 3-query test was presented for testing if a given f is a symmetric direct sum, and
the analysis carried out relying on the direct product test. It was left as an open question to
devise and analyze a test for the property of being a (not necessarily symmetric) direct sum.

We design and analyze a four-query test which we call the “square in a cube” test, and
show that it is a strong absolute local test for being a direct sum. That is, the number of
queries is an absolute constant (namely, 4), and the distance from a function to the subspace
of direct sums is bounded by some absolute constant (independent of n and d) times the
probability of the failure of the test on this function. We also describe a simpler (d+ 1)-query
test, whose easy analysis we defer to Section 3.

In order to define the test, we need to introduce the following notation. Given two strings
a, b ∈ [n; d] and a set S ⊆ [d], denote by aSb the string in [n; d] whose i-th coordinate equals
ai if i ∈ S and bi otherwise.

Test 1 Square in a Cube test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Choose two subsets S, T ⊂ [d] uniformly at random, and let U = S4T be their

symmetric difference.
3. Accept iff

f(a)⊕ f(aSb)⊕ f(aT b)⊕ f(aUb) = 0.

We prove the following theorem for Test 1.

I Theorem 1.1 (Main). There exists an absolute constant c > 0 s.t. for all d ∈ N and
n1, . . . , nd ∈ N, given f : [n; d]→ F2,

dist(f,DirectSum[n;d]) ≤ c · Pr
a,b,S,T

[f(a)⊕ f(aSb)⊕ f(aT b)⊕ f(aS4T b) 6= 0]

where a, b are chosen independently and uniformly from the domain of f , and S, T are random
subsets of [d].

Our proof, similarly to [3], relies on a combination of the BLR linearity testing theorem [2]
and the direct product test of [6]. The trick is to find the right combination. We first observe
that once we fix a, b, the test is confined to a set of at most 2d points in the domain, and
can be viewed as performing a BLR (affinity rather than linearity) test on this piece of the
domain. From the BLR theorem, we deduce an affine linear function on this piece. The next
step is to combine the different affine linear functions, one from each piece, into one global
direct sum, and this is done by reducing to direct product.

I. Dinur and K. Golubev 40:3

Testing if a tensor has rank 1

An equivalent way to formulate our question is as a test for whether a d-dimensional tensor
with ±1 entries has rank 1. Indeed moving to multiplicative notation and writing hi = (−1)fi

and h = (−1)f , we are asking whether there are h1, . . . , hd such that

h = h1 ⊗ · · · ⊗ hd.

Denoting

TensorProduct[n;d] = {h1 ⊗ · · · ⊗ hd | hi : [ni]→ {−1, 1}, , i = 1, . . . , d}

we have

I Corollary 1.2. There exists an absolute constant c > 0 s.t. for all d ∈ N and n1, . . . , nd ∈ N,
for every h : [n; d]→ {−1, 1},

dist(h, TensorProduct[n;d]) ≤ c · Pr
a,b,S,T

[h(a) · h(aSb) · h(aT b) · h(aS4T b) 6= 1].

Structure of the Paper

In Sections 2 and 3 we present two different approaches for testing whether a d-dimensional
binary tensor is a tensor product. In Section 4 we discuss possible directions for future
research. In Appendix A, we give a proof of the proposition which expands the range of
parameters in the direct product test of [6]. This is used in the course of the proof in Section 2.

2 Square in a Cube Test

In this section we present the Square in a Cube Test. Then we introduce the required
background: the BLR test for a function being Affine in Subsection 2.1, the direct product
test of Dinur & Steurer in Subsection 2.2. Finally, in Subsection 2.3 we prove the main result
on the test.

We start by introducing some notation.
Given two vectors a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ [n; d], define
∆(a, b) = {i : ai 6= bi} ⊆ [d];
the induced subcube Ca,b is the binary cube F∆(a,b)

2 ;
the projection map ρa,b : Ca,b → [n; d] defined for x ∈ Ca,b as

ρa,b (x)i =

ai = bi, i 6∈ ∆(a, b);
bi, i ∈ ∆(a, b) and xi = 1;
ai, i ∈ ∆(a, b) and xi = 0;

The following test is the same as Test 1 in Introduction.

Test 2 Square in a Cube test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Choose x, y ∈ Ca,b uniformly at random.
3. Query f at ρa,b(0), ρa,b(x), ρa,b(y) and ρa,b(x⊕ y).
4. Accept iff f(ρa,b(0))⊕ f(ρa,b(x))⊕ f(ρa,b(y))⊕ f(ρa,b(x⊕ y)) = 0.

I Theorem 2.1. Suppose a function f : [n; d]d → F2 passes Test 2 with probability 1− ε for
some ε > 0, then f is O(ε)-close to a tensor product.

APPROX/RANDOM 2019

40:4 Direct Sum Testing: The General Case

2.1 The BLR affinity test
The Blum-Luby-Rubinfeld linearity test was introduced in [2], where its remarkable properties
were proven. Later a simpler proof via Fourier analysis was presented, e.g. see [1]. Below we
give a variation of this test for affine functions, see [12, Chapter 1].

I Definition 2.2. A function g : Fd2 → F2 is called affine, if there exists a set S ⊆ [d] and a
constant c ∈ F2 such that for every vector x ∈ Fd2

g(x) = c⊕
⊕
i∈S

xi.

Note that (see [12, Exercise 1.26]) a function g is affine iff for any two vectors x, y ∈ Fd2 it
satisfies

g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0. (1)

The BLR test implies that if a function g : Fd2 → F2 satisfies (1) with high probability,
then it is close to an affine function.

Test 3 The BLR affinity test.

Given a query access to a function f : Fd2 → F2:
1. Choose x ∼ Fd2 and y ∼ Fd2 independently and uniformly at random.
2. Query g at 0, x, y and x⊕ y.
3. Accept if g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0.

I Theorem 2.3 ([2]). Suppose g : Fd2 → F2 passes the affinity test with probability 1− ε for
some ε > 0. Then g is ε-close to being affine.

2.2 Direct Product Test
I Definition 2.4. For k,M,N ∈ N, and k functions g1, . . . , gk : [N] → [M], their dir-
ect product is the function g : [N]k → [M]k denoted g = g1 × · · · × gk and defined as
g ((x1, . . . , xk)) = (g1(x1), . . . , gk(xk)). A function g : [N]k → [M]k, is called a direct
product if there exist k functions g1, . . . , gk : [N]→ [M] such that g = g1 × · · · × gk for all
(x1, . . . , xk) ∈ [N]k.

Dinur & Steurer [6] presented a 2-query test, Test 4, that, with constant probability,
distinguishes between direct products and functions that are far from direct product.

Test 4 Two-query test T (t).

Given a query access to a function g : [N]k → [M]k:
1. Choose x ∼ Fd2 and y ∼ Fd2 independently and uniformly at random.
2. Query g at 0, x, y and x⊕ y.
3. Accept if g(0)⊕ g(x)⊕ g(y)⊕ g(x⊕ y) = 0.

I Theorem 2.5 ([6, Theorem 1.1]). Let k,M,N be positive integers, let t ≤ αk, where
0 < α < 1, and let ε > 0. Let g : [N]k → [M]k be given such that

Pr
A,x,y

(g(x)A = g(y)A) ≥ 1− ε,

where A, x, y are chosen w.r.t. the test distribution T (t). Then there exists a direct product
function g′ such that Ex [dist(g(x), g′(x))] = O(εk/t).

I. Dinur and K. Golubev 40:5

I Remark 2.6. The above formulation of Theorem 2.5 is slightly more general than the
original statement in [6], as there it is proved for 0 < α < 1/2. In order to show that the
Theorem holds for 0 < α < 1, we prove the following reduction statement:

If a function g passes Test T (t) with probability at least 1 − ε for t = αk with
1/2 ≤ α < 1, then g passes Test T (t′) with probability at least 1 − ε′ for t′ = α′k,
where 0 < α′ < 1/2, ε′ = rε/α and r is a positive integer.

This reduction shows that Theorem 2.5 is true as it is stated for t = αk for all 0 < α < 1, as
the reduction affects only the constant in the O(·) notation.

For a more detailed explanation, see Appendix A.

2.3 Proof of Theorem 2.1
For a positive integer D, we denote by µ2/3(FD2) the distribution on FD2 , where each coordinate,
independently, is equal to 0 with probability 1/3 and to 1 with probability 2/3.

We use the following proposition in the course of the proof.

I Proposition 2.7. Let S ⊆ [D] be a set and χS : FD2 → F2 be the corresponding linear
function, i.e., χS(x) =

⊕
i∈S xi. Suppose

Pr
x∼µ2/3(FD

2)
(χS(x) = 0) > 2

3 ,

then S = ∅.

Proof. Consider (−1)χS . Then

Pr
x∼µ2/3(FD

2)
(χS(x) = 0) = Pr

x∼µ2/3(FD
2)

(
(−1)χS(x) = 1

)
.

Also the following holds

1
3 <

∣∣∣∣∣2 Pr
x∼µ2/3(FD

2)

(
(−1)χS(x) = 1

)
− 1

∣∣∣∣∣ =
∣∣∣Ex∼µ2/3(FD

2)(−1)χS(x)
∣∣∣ =

∣∣∣∣∣∣
∏
i∈[D]

Exi∼µ2/3(F2)(−1)xi

∣∣∣∣∣∣ =

∣∣∣∣∣
(
−1

3

)|S|∣∣∣∣∣ =
(

1
3

)|S|
,

and the statement follows. J

Proof of Theorem 2.1. Assume Test 2 rejects a function f : [n; d] → F2 with probability
less than ε, i.e.,

Pr
a,b∼[n;d]
x,y∼Ca,b

(fa,b(0)⊕ fa,b(x)⊕ fa,b(y)⊕ fa,b(x⊕ y) = 0) > 1− ε,

where all distributions are uniform, and fa,b is a shorthand for f ◦ ρa,b. Then there exists
a ∈ [n; d] such that

Pr
b∼[n;d]
x,y∼Ca,b

(fa,b(0)⊕ fa,b(x)⊕ fa,b(y)⊕ fa,b(x⊕ y) = 0) > 1− ε.

APPROX/RANDOM 2019

40:6 Direct Sum Testing: The General Case

Note that the operations re-indexing the domain [n; d]1, as well as flipping a function, i.e.,
adding the constant one function to it element-wise, preserve the distance between functions.
Hence, w.l.o.g. we can assume for convenience that a = (0, . . . , 0) and that f(a) = 0.

We write Cb for Ca,b and fb for fa,b. Then for every b ∈ [n; d],

Pr
x,y∼Cb

(fb(0)⊕ fb(x)⊕ fb(y)⊕ fb(x⊕ y) = 0) = 1− εb.

The BLR theorem (Theorem 2.3) implies that for each b ∈ [n; d] there exists a subset
S(b) ⊆ ∆(a, b), such that

Pr
x∼Cb

(
fb(x) = χS(b)(x)

)
= 1− εb.

I Remark 2.8. By the BLR theorem, there should be the ‘greater or equal to’ sign instead of
the equality. We assume equality for convenience.

Let F : [n; d] → Fd2 be a function defined as follows. For each b ∈ [n; d], the set
S(b) ⊆ ∆(a, b) can be viewed as a subset of [d], since ∆(a, b) ⊆ [d]. Then F (b) is defined as
the element of Fd2 corresponding to the set S(b).

We now show that F passes Test 4 with high probability and hence is close to a direct
product.

Let b ∈ [n; d] be chosen uniformly at random, and let b′ ∈ [n; d] be chosen with respect to
the following distribution D(b). For each i ∈ [d],

b′i =
{
bi, w.p. 3/4;
chosen uniformly at random from [n] \ {bi}, w.p. 1/4.

Note that the distribution on pairs (b, b′), where b is chosen uniformly from [n; d] and b′ w.r.t.
D(b), is equivalent to the following: for each i ∈ [d],{

bi = b′i chosen uniformly from [n], w.p. 3/4;
bi 6= b′i both chosen uniformly from [n] w.p. 1/4.

(2)

In particular, it is symmetric in the sense that choosing b′ ∼ [n; d] uniformly at random first,
and then b ∼ D(b′), leads to the same distribution on pairs (b, b′) as the one described above.

For such a pair (b, b′) define distribution Db,b′ on [n; d] as follows. For a vector x ∼ Db,b′ ,

xi =

0, if i ∈ ∆(b, b′);
0, w.p. 1/3;
bi = b′i w.p. 2/3.

if i 6∈ ∆(b, b′).

Note that the distribution Db,b′ is supported on a binary cube of dimension d − |∆(b, b′)|
inside [n; d]. Denote

εb,b′ = Pr
x∼Db,b′

(
f(x) 6= χF (b)(x)

)
.

We claim that the following holds

εb = Pr
x∼Cb

(
f(x) 6= χF (b)(x)

)
= E
b′∼D(b)

εb,b′ . (3)

1 By this we mean selecting permutations πi on [ni] for i = 1, . . . , d, and setting fπ1,...,πd (x1, . . . , xd) =
f (π1(x1), . . . , πd(xd))

I. Dinur and K. Golubev 40:7

To see (3) note that since b is chosen uniformly, b′ is chosen w.r.t. D(b), and x ∼ Db,b′ , the
resulting distribution for x is

xi =
{

0, w.p. 1/2;
bi w.p. 1/2,

which is exactly the uniform distribution on Cb.
We now show that

Pr
b∼[n;d]
b′∼D(b)

(
εb,b′ + εb′,b >

1
3

)
< 6ε (4)

First note that it follows from the definitions that

E
b∼[n;d]

E
b′∼D(b)

εb,b′ = E
b∼[n;d]

εb = ε.

And by the symmetry of the distribution on pairs (b, b′),

E
b∼[n;d]

E
b′∼D(b)

εb′,b = E
b′∼D(b)

E
b∼[n;d]

εb′,b = ε.

Combined together, the previous two equations imply that

E
b∼[n;d]

E
b′∼D(b)

(εb,b′ + εb′,b) = 2ε,

and by the Markov inequality, Inequality 4 follows. By the definition of εb,b′ ,

Pr
x∼Db,b′

(
χF (b)(x) = χF (b′)(x)

)
> 1− (εb,b′ + εb′,b) .

which is equivalent to

Pr
x∼Db,b′

(
χF (b)∆F (b′)(x) = 1

)
> 1− (εb,b′ + εb′,b) .

Proposition 2.7 implies that if 1− (εb,b′ + εb′,b) > 2
3 , then

F (b)Cb∩Cb′ = F (b′)Cb∩Cb′ .

By Theorem 2.5, the function F : [n; d]→ Fd2 is close to a direct product, i.e., there exist
d functions F1, . . . , Fd : [n]→ F2 such that

Pr
b∼[n;d]

(F (b) = (F1(b1), . . . , Fd(bd))) ≥ 1−O(ε).

Therefore,

Pr
b∼[n;d]

(
f(b) =

d⊕
i=1

Fi(bi)
)
≥ 1−O(ε). J

APPROX/RANDOM 2019

40:8 Direct Sum Testing: The General Case

3 The Shapka Test

In this section we present a different test for whether a tensor is a tensor product. It queries
the tensor at (d+ 2) places at most, but the proof is simpler than for the previous test.

In [11], Kaufman and Lubotzky showed an interesting connection between the theory of
high-dimensional expanders and property testing. Namely, they showed that F2-coboundary
expansion of a 2-dimensional complete simplicial complex implies testability of whether a
symmetric F2-matrix is a tensor square of a vector. The following test is inspired by their
work and in a way generalizes it. However, since the description below does not employ
neither terminology nor machinery of high-dimensional expanders, we refer to [11] for the
connection between this theory and property testing.

Given two strings a, b ∈ [n; d], for i ∈ [d] denote by aib ∈ [n; d] the vector which coincides
with a in every coordinate except for the i-th one, where it coincides with b, i.e.,

(aib)j =
{
aj , if j 6= i;
bi, if j = i.

For a string a ∈ [n; d], and a number x ∈ [ni], we write aix for the string which is equal to a
in every coordinate except for the i-th one, where it is equal to x, i.e.,

aix = (a1, . . . , ai−1, x, ai+1, . . . , ad).

Test 5 The Shapka Test.

Given a query access to a function f : [n; d]→ F2:
1. Choose a, b ∈ [n; d] uniformly at random.
2. Define the query set Qa,b ⊆ [n; d] to consist of a, ajb for all j ∈ [d], and also b if

d is even.
3. Query f at the elements of Qa,b.
4. Accept iff

⊕
q∈Qa,b

f(q) = 0.

I Remark 3.1. Shapka is the Russian word for a winter hat (derived from Old French chape
for a cap). The name the Shapka test comes from the fact that the set Qa,b consists of the
two top layers of the induced binary cube Ca,b (and also the bottom layer if d is even).

I Theorem 3.2. Suppose a function f : [n; d]→ F2 passes Test 5 with probability 1− ε for
some ε > 0, then f is ε-close to a tensor product.

Proof. Let δ be the relative Hamming distance from f to the subspace of direct sums, i.e.,
for every direct sum g : [n; d]→ F2 it holds that

Prx∼[n;d] (f(x) 6= g(x)) ≥ δ.

For a vector a ∈ [n; d], let us define the local view of f from a, that is d functions
fa1 , . . . , f

a
d , where fdi : [ni]→ F2, i = 1, . . . , d, that are defined as follows. For 1 ≤ i ≤ d− 1,

and x ∈ [ni],

fai (x) = f(aix).

For i = d, the definition of fad : [nd]→ F2 depends on the parity of d and goes as follows{
fad (x) = f(adx), if d is odd,
fad (x) = f(adx)⊕ f(a), if d is even.

I. Dinur and K. Golubev 40:9

Given a collection of d functions, gi : [ni]→ F2, i = 1, . . . , d, recall that their direct sum
is the function g1 ⊕ · · · ⊕ gd such that for a vector x ∈ [n; d] the following holds

g1 ⊕ · · · ⊕ gd =
⊕
i∈[d]

gi(xi).

The following holds for any [n; d],

(f − fa1 ⊕ · · · ⊕ fad)) (b1, . . . , bd) =
⊕
q∈Qa,b

f(q). (5)

As fa1 ⊕ · · · ⊕ fad is a direct sum, it is at least δ-far from f , and hence for any a ∈ [n; d],

Pr
b∼[n;d]

((f − fa1 ⊕ · · · ⊕ fad) (b) = 1) ≥ δ. (6)

Assume now that f fails Test 5 with probability ε, i.e.,

ε = Pr
a,b∼[n;d]

 ⊕
q∈Qa,b

f(q) = 1

 .

Combining this equality with (5) and (6), we get the following

ε = E
a∼[n;d]

Pr
b∼[n;d]

((
f − f1

a ⊕ · · · ⊕ fda
)

(b1, . . . , bd) = 1
)
≥
(

E
a∼[n;d]

δ

)
= δ,

which completes the proof. J

4 Further Directions

Below we present possible directions for future research.

1. Can the original function f : [n; d]→ F2 be reconstructed by a voting scheme using the
Shapka Test 5?

2. It is plausible that the Square in the Cube test 2 can be analyzed by the Fourier transform
approach similarly to the analysis of the BLR test.

3. Another test in the spirit of the Shapka Test is the following.

Test 6 The Shapka Test.

Given a query access to a function f : [n; d]→ F2:
a. Choose a, b ∈ [n; d] uniformly at random.
b. Choose x ∈ Ca,b uniformly at random.
c. Query f at ρa,b(0), ρa,b(x), ρa,b(1) and ρa,b(x⊕ 1).
d. Accept iff f(ρa,b(0))⊕ f(ρa,b(x))⊕ f(ρa,b(1))⊕ f(ρa,b(x⊕ 1)) = 0.

We conjecture that this test is also good, i.e., if a function passes the test with high
probability then it is close to a tensor product.

APPROX/RANDOM 2019

40:10 Direct Sum Testing: The General Case

References
1 Mihir Bellare, Don Coppersmith, JOHAN Hastad, Marcos Kiwi, and Madhu Sudan. Linearity

testing in characteristic two. IEEE Transactions on Information Theory, 42(6):1781–1795,
1996.

2 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of computer and system sciences, 47(3):549–595, 1993.

3 Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar. Direct sum testing.
SIAM Journal on Computing, 46(4):1336–1369, 2017.

4 Irit Dinur and Elazar Goldenberg. Locally testing direct product in the low error range. In
2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 613–622.
IEEE, 2008.

5 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP
theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

6 Irit Dinur and David Steurer. Direct product testing. In 2014 IEEE 29th Conference on
Computational Complexity (CCC), pages 188–196. IEEE, 2014.

7 Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application to
proving the PCP theorem. SIAM Journal on Computing, 29(4):1132–1154, 2000.

8 Russell Impagliazzo, Ragesh Jaiswal, and Valentine Kabanets. Approximate list-decoding
of direct product codes and uniform hardness amplification. SIAM Journal on Computing,
39(2):564–605, 2009.

9 Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: simplified, optimized, and derandomized. SIAM Journal on Computing,
39(4):1637–1665, 2010.

10 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product testers and
2-query PCPs. SIAM Journal on Computing, 41(6):1722–1768, 2012.

11 Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing.
In Proceedings of the 5th conference on Innovations in theoretical computer science, pages
501–506. ACM, 2014.

12 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
13 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR

lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.
14 Luca Trevisan. List-decoding using the XOR lemma. In 44th Annual IEEE Symposium on

Foundations of Computer Science, 2003. Proceedings., pages 126–135. IEEE, 2003.
15 Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium on

Foundations of Computer Science (sfcs 1982), pages 80–91. IEEE, 1982.

A Appendix: Proof of Remark 2.6

In this section we show that Theorem 2.5 holds for a wider range of parameters than in its
original formulation in [6]. This was used in the course of the proof of 2.1.

In [6], Dinur and Steurer proved Theorem 2.5 for 0 < α < 1/2. The following reduction
shows that the theorem is true for all 0 < α < 1 by a reduction from 1/2 ≤ α < 1 to some
0 < α′ < 1/2. Recall that Test 4 makes two queries according to the distribution T (t), which
is the following distribution: (1) Choose a set A ⊂ [k] of size t uniformly at random. (2)
Choose x, y ∈ [N]k uniformly at random, conditioned xA = yA.

I Proposition A.1. Let agr(g, α) denote the probability that a function g passes Test 4
with respect to distribution T (αk). If agr(g, α) ≥ 1 − ε for some 1/2 ≤ α ≤ 1, then
agr(g, α′) ≥ 1− rε for 0 < α′ ≤ 1/2, where r =

⌈
1

2(1−α)

⌉
and α′ = 1− (1− α)r.

In addition, is agr(g, 1/2) ≥ 1− ε, then also agr(g, α− 1/k) ≥ 1− 2ε.

I. Dinur and K. Golubev 40:11

Proof. Fix a function g : [N]k → [M]k, and suppose agr(g, α) ≥ 1− ε for some 1/2 ≤ α < 1,
i.e.,

Pr
A,x,y∼T (αk)

(g(x)A = g(y)A) ≥ 1− ε.

We will show that agr(g, α′) > 1− rε where r =
⌈

1
2(1−α)

⌉
and α′ = 1− (1− α)r. Note that

α′ satisfies 0 < α′ ≤ 1/2.
Given a pair of random vectors x0, xr and a set A distributed according to T (α′k), we

construct a sequence of vectors x1, . . . , xr−1 such that for all 1 ≤ i ≤ r, the pair xi−1, xi is
distributed according to T (αk).

The complement of A has size (1− α)rk. Partition it randomly into r parts of equal size
(1− α)k, [k] \A = B1 ∪ · · · ∪Br. Denote Ci = [k] \Bi for all 1 ≤ i ≤ r.

For each 1 ≤ i ≤ r − 1, construct xi such that it agrees with x0 on the coordinates in
[k] \

⋃i
j=1Bj and with xr on the rest of the coordinates

⋃i
j=iBj . Then for each 1 ≤ i ≤ r,

xi agrees with xi−1 on the set Ci of the size αk. Therefore,

Pr (g(xi−1)Ai
= g(xi)Ai

) ≥ 1− ε.

Hence,

1− r · ε ≤ Pr (∀ 1 ≤ i ≤ r : g(xi−1)Ai
= g(xi)Ai

) ≤ Pr
Ar,x,y∼T (α′k)

(g(x0)Ar
= g(xr)Ar

) .

The case of α′ = 1/2 has to be treated separately. In this case there is a reduction to
α′′ = 1/2− 1/k as follows. Given two vectors x0, x2 distributed w.r.t. T (k/2− 1) construct
an intermediate random vector x1 which agrees on exactly half of the coordinates with both
x0 and x2. J

APPROX/RANDOM 2019

Fast Algorithms at Low Temperatures via Markov
Chains
Zongchen Chen
School of Computer Science, Georgia Institute of Technology, Atlanta, USA
chenzongchen@gatech.edu

Andreas Galanis
Department of Computer Science, University of Oxford, Oxford, UK
andreas.galanis@cs.ox.ac.uk

Leslie Ann Goldberg
Department of Computer Science, University of Oxford, Oxford, UK
leslie.goldberg@cs.ox.ac.uk

Will Perkins
Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, Chicago, USA
william.perkins@gmail.com

James Stewart
Department of Computer Science, University of Oxford, Oxford, UK
james.stewart@cs.ox.ac.uk

Eric Vigoda
School of Computer Science, Georgia Institute of Technology, Atlanta, USA
ericvigoda@gmail.com

Abstract
For spin systems, such as the hard-core model on independent sets weighted by fugacity λ > 0,
efficient algorithms for the associated approximate counting/sampling problems typically apply
in the high-temperature region, corresponding to low fugacity. Recent work of Jenssen, Keevash
and Perkins (2019) yields an FPTAS for approximating the partition function (and an efficient
sampling algorithm) on bounded-degree (bipartite) expander graphs for the hard-core model at
sufficiently high fugacity, and also the ferromagnetic Potts model at sufficiently low temperatures.
Their method is based on using the cluster expansion to obtain a complex zero-free region for the
partition function of a polymer model, and then approximating this partition function using the
polynomial interpolation method of Barvinok. We present a simple discrete-time Markov chain for
abstract polymer models, and present an elementary proof of rapid mixing of this new chain under
sufficient decay of the polymer weights. Applying these general polymer results to the hard-core and
ferromagnetic Potts models on bounded-degree (bipartite) expander graphs yields fast algorithms
with running time O(n logn) for the Potts model and O(n2 logn) for the hard-core model, in contrast
to typical running times of nO(log ∆) for algorithms based on Barvinok’s polynomial interpolation
method on graphs of maximum degree ∆. In addition, our approach via our polymer model Markov
chain is conceptually simpler as it circumvents the zero-free analysis and the generalization to
complex parameters. Finally, we combine our results for the hard-core and ferromagnetic Potts
models with standard Markov chain comparison tools to obtain polynomial mixing time for the
usual spin system Glauber dynamics restricted to even and odd or “red” dominant portions of the
respective state spaces.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Theory of computation → Design and analysis of algorithms

Keywords and phrases Markov chains, approximate counting, Potts model, hard-core model, ex-
pander graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.41

Category RANDOM

© Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric
Vigoda;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 41; pp. 41:1–41:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenzongchen@gatech.edu
mailto:andreas.galanis@cs.ox.ac.uk
mailto:leslie.goldberg@cs.ox.ac.uk
mailto:william.perkins@gmail.com
mailto:james.stewart@cs.ox.ac.uk
mailto:ericvigoda@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.41
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Fast Algorithms at Low Temperatures via Markov Chains

Related Version A full version of the paper is available at https://arxiv.org/abs/1901.06653,
and the theorem numbering here matches that of the full version.

Funding Zongchen Chen: Research supported in part by NSF grants CCF-1617306 and CCF-
1563838.
Andreas Galanis: The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement no. 334828. The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be
made of the information contained therein.
Leslie Ann Goldberg: The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement no. 334828. The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be
made of the information contained therein.
Will Perkins: Part of this work was done while WP was visiting the Simons Institute for the Theory
of Computing.
James Stewart: The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement no. 334828. The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be
made of the information contained therein.
Eric Vigoda: Research supported in part by NSF grants CCF-1617306 and CCF-1563838.

1 Introduction

The hard-core model from statistical physics is defined on the set of independent sets of a
graph G, where the independent sets are weighted by a fugacity λ > 0. The associated Gibbs
distribution µG,λ is defined as follows, for an independent set I:

µG,λ(I) = λ|I|

ZG,λ
(1)

where ZG,λ =
∑
I∈I(G) λ

|I| is the hard-core partition function (also called the independence
polynomial), I(G) is the set of independent sets of G, and λ > 0 is the fugacity.

In applications, there are two important computational tasks associated to a spin system
such as the hard-core model. Given an error parameter ε ∈ (0, 1), an ε-approximate counting
algorithm outputs a number Ẑ so that e−εZG,λ ≤ Ẑ ≤ eεZG,λ, and an ε-approximate
sampling algorithm outputs a random sample I with distribution µ̂ so that the total variation
distance satisfies ‖µλ − µ̂‖TV < ε.

While classical statistical physics is most interested in studying the hard-core model on
the integer lattice Zd, the perspective of computer science is to consider wider families of
graphs, such as the set of all graphs, all graphs of maximum degree ∆, or all bipartite graphs
of maximum degree ∆.

Almost all proven efficient algorithms for approximate counting and sampling from the
hard-core model work for low fugacities (high temperatures in the language of statistical
physics). In the high temperature regime there are at least three distinct algorithmic
approaches to approximate counting and sampling: Markov chains, correlation decay, and
polynomial interpolation. One striking advantage of the Markov chain approach is that the
algorithms are much faster and simpler than the algorithms from the other approaches. In

https://arxiv.org/abs/1901.06653

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:3

particular, it is common for a Markov chain sampling algorithm to run in time O(n logn),
e.g., see [8, 10], while typical running times for algorithms based on correlation decay [26, 21]
and polynomial interpolation [1] are nO(log ∆) where ∆ is the maximum degree of the graph.

In general there are no known efficient algorithms at low temperatures (high fugacities),
but recently efficient algorithms have been developed for some special classes of graphs
including subsets of Zd [14], random regular bipartite graphs, and bipartite expander graphs
in general [16, 20]. What these bipartite graphs have in common is that for large enough λ,
typical independent sets drawn from µG,λ align closely with one side or the other of the
bipartition (the two ground states). This phenomenon is related to the phase transition
phenomenon in infinite graphs, and implies the exponentially slow mixing time of local
Markov chains [4, 12, 22]. The algorithms introduced in [14] exploit this phenomenon by
expressing the partition function ZG,λ in terms of deviations from the two ground states,
and then using a truncation of a convergent series expansion (the Taylor series or the cluster
expansion) to approximate the log partition function. In statistical physics this is called a
perturbative approach, and while in general it does not work in the largest possible range of
parameter space, when it does work it gives a very detailed probabilistic understanding of
the model [24, 6, 7].

To apply the perturbative approach at low temperatures, one rewrites the original spin
model as a new model in which single spin interactions are replaced by the interaction of
connected components representing deviations from a chosen ground state. Such models
are called abstract polymer models, as detailed below, and have long been used in statistical
physics to understand phase transitions. In this paper, we show that once a low temperature
spin model has been transformed into an abstract polymer model, Markov chains once
again become an effective algorithmic tool. Using this approach we obtain nearly linear and
quadratic time sampling algorithms for low temperature models on expander graphs in cases
where only nO(log ∆)-time algorithms were previously known.

1.1 Abstract polymer models
Abstract polymer models, as defined by Gruber and Kunz in 1971 [13], (or “animal models”
in Dobruishin’s terminology [7]) are an important tool in studying the equilibrium phases
of statistical physics models on lattices (e.g. [19, 6] among many others; see [3] for a brief
history of their use in statistical physics and combinatorics). Recently they have been used
to develop efficient algorithms for sampling and approximating the partition functions of
statistical physics models on lattices [14] and expander graphs [16, 20] at low temperatures,
the regime in which Markov chains like the Glauber dynamics are known to mix slowly.

We will study the following polymer models. We start with a host graph G and a set
[q] = {0, . . . , q − 1} of spins. For each vertex v, there is a ground-state spin gv. A polymer
γ consists of a connected set of vertices together with an assignment σγ of spins from
{0, . . . , q − 1} \ gv to each vertex v ∈ γ (we abuse notation and use γ to denote both the
polymer and the associated set of vertices). The size of a polymer, |γ|, is the number of
vertices in γ. The set of all polymers is P(G).

A polymer model on G consists of a set C(G) ⊆ P(G) of “allowed” polymers, and a
non-negative weight wγ for each polymer γ ∈ C(G). We denote this model by (C(G), w).
Two polymers γ and γ′ are “compatible” (written γ ∼ γ′) if their distance in the host graph
is at least 2; otherwise they are incompatible (written γ � γ′). The state space of allowable
configurations is Ω = {Γ ⊆ C(G) | ∀γ, γ′ ∈ Γ, γ ∼ γ′}.

The partition function of the polymer model is Z(G) =
∑

Γ∈Ω
∏
γ∈Γ wγ , where the empty

set of polymers contributes 1 to the partition function. The Gibbs measure µG is the

probability distribution on Ω given by µG(Γ) =
∏

γ∈Γ
wγ

Z(G) .

APPROX/RANDOM 2019

41:4 Fast Algorithms at Low Temperatures via Markov Chains

The polymer model is in fact a hard-core model on the “incompatibility graph” of C(G)
(two polymers joined by an edge if they are incompatible), with non-uniform fugacities given
by the weights wγ . However, the geometry inherited from the host graph G and the sizes of
the polymers adds additional structure to the model.

I Example 1. One instance of a polymer model is the hard-core model itself: polymers are
single vertices of the graph G, labeled with “1” (for occupied) against a ground state “0”
(for unoccupied). Each polymer (vertex) v comes with the weight function wv = λ. Then
the set of allowable polymer configurations is exactly the set of independent sets of G, and
so the polymer model partition function is exactly the partition function of the hard-core
model on G.

I Example 2. A second instance of a polymer model is related to the ferromagnetic q-color
Potts model on a graph G (see Definition 8 below). Fix a color g ∈ [q] to be the ground state
color, and define polymers to be connected subgraphs of G of size at most M , with vertices
labeled by the remaining colors [q] \ {g}. A polymer γ has weight function wγ = e−βB(γ)

where B(γ) is the number of bichromatic edges in γ plus the size of the edge boundary of γ
in G. A configuration of compatible polymers maps to a Potts configuration σ in which all
connected components of non-g-colored vertices have size at most M , and the weight of σ in
the Potts model is exactly the product of the weight functions of the polymers. The polymer
model partition function Z(G), with an appropriate choice of M , represents the contribution
to the Potts model partition function of colorings with dominant color g.

As with the hard-core model, there are two main computational problems associated to
a polymer model: approximate sampling from µG and approximate counting of Z(G). We
will approach them both via Markov chain algorithms. In general we will be interested in
families of polymer models defined on classes of graphs. We denote such a family (C(·), w,G),
where for each graph G ∈ G, (C(G), w) is a polymer model. We will always use n to denote
the number of vertices of a graph G.

We consider two conditions on the weight functions wγ and give their algorithmic
consequences.

I Definition 1. A polymer model (C(·), w,G) satisfies the polymer mixing condition if there
exists θ ∈ (0, 1) such that∑

γ′�γ
|γ′|wγ′ ≤ θ|γ| (2)

for all G ∈ G and all γ ∈ C(G).

We postpone the formal definition of mixing time to Section 2 and state our first main
result here.

I Theorem 2. Suppose that a polymer model (C(·), w,G) satisfies the polymer mixing condi-
tion (2). Then for each G ∈ G there is a Markov chain making single polymer updates with
stationary distribution µG and mixing time Tmix(ε) = O(n log(n/ε)).

Theorem 2 on its own does not guarantee an efficient algorithm for sampling from µG
because the Markov chain only yields an efficient sampling algorithm if we can implement
each step efficiently. We will show that under a stronger condition we can do this.

I Definition 3. A polymer model (C(·), w,G) is said to be computationally feasible if, for
each G ∈ G and each γ ∈ P(G), we can determine, in time polynomial in |γ|, whether
γ ∈ C(G), and compute wγ if it is.

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:5

I Definition 4. A computationally feasible polymer model (C(·), w,G) with q spins on a class
G of graphs of maximum degree ∆ satisfies the polymer sampling condition with constant
τ ≥ 5 + 3 log((q − 1)∆) if

wγ ≤ e−τ |γ| (3)

for all G ∈ G and all γ ∈ C(G).

We have the following theorem.

I Theorem 5. If a computationally feasible polymer model (C(·), w,G) satisfies the polymer
sampling condition (3) then for all G ∈ G there is an ε-approximate sampling algorithm for
µG with running time O(n log(n/ε)).

Finally, we can use the sampling algorithm and simulated annealing to give a fast
approximate counting algorithm.

I Theorem 6. If a computationally feasible polymer model (C(·), w,G) satisfies the polymer
sampling condition (3) then for all G ∈ G there is a randomized ε-approximate counting
algorithm for Z(G) with running time O((n/ε)2 log2(n/ε)) and success probability at least 3/4.

Fernández, Ferrari, and Garcia [11] introduced a condition very similar to the polymer
mixing condition in the setting of polymer models on Zd. Their objective was to derive
probabilistic properties of polymer models directly, without going through the combinatorics
and complex analysis inherent in the cluster expansion for the log partition function. They
introduced a continuous time stochastic process whose stationary distribution was the infinite
volume Gibbs measure of their polymer model and their version of condition (2) implied an
exponentially fast rate of convergence of this process. They remarked that such an approach
had the potential to be an efficient computational tool.

Here we take an algorithmic point of view, and use the polymer mixing and sampling
conditions to show that a simple discrete time Markov chain mixes rapidly and can be used
to design efficient sampling and approximation algorithms. Our approach differs from that
of [11] in that while they are interested primarily in the probabilistic properties of spin
models on Zd, we are interested in algorithmic problems involving spin models on general
families of graphs. Our setting of discrete time processes on finite graphs is also more suitable
to studying algorithmic questions. Our work confirms the central point of [11]: that complex
analysis and absolute convergence of the cluster expansion is not necessary to derive many
important properties of a polymer model.

1.2 Applications

We apply our results for abstract polymer models to two specific examples: the ferromagnetic
Potts model and the hard-core model on expander graphs. To state these results we need
some definitions.

I Definition 7. Let α > 0. A graph G is an α-expander graph if for all S ⊂ V (G) with
|S| ≤ |V (G)|/2, we have e(S, Sc) ≥ α|S|, where Sc = V (G) \ S and e(S, Sc) is the number
of edges exiting the set S.

APPROX/RANDOM 2019

41:6 Fast Algorithms at Low Temperatures via Markov Chains

I Definition 8. The q-color ferromagnetic Potts model with parameter β > 0 is a random
assignment of q colors to the vertices of a graph defined by

µG,β(σ) = e−βm(G,σ)

ZG,β

where m(G, σ) is the number of bichromatic edges of G under the coloring σ and ZG,β =∑
σ e
−βm(G,σ) is the Potts model partition function. The parameter β is known as the inverse

temperature.

Jenssen, Keevash, and Perkins [16] gave an FPTAS and polynomial-time sampling
algorithm for the Potts model on expander graphs, with an algorithm based on the cluster
expansion and Barvinok’s method of polynomial interpolation. Under essentially the same
conditions on the parameters we give a Markov chain based sampling algorithm with near
linear running time.

I Theorem 9. Suppose q ≥ 2, ∆ ≥ 3 are integers and α > 0 is a real. Then for β ≥
5+3 log((q−1)∆)

α and any qe−n ≤ ε < 1, there is an ε-approximate sampling algorithm for
the q-state ferromagnetic Potts model with parameter β on all n-vertex α-expander graphs
of maximum degree ∆ with running time O(n log(n/ε)). There is also an ε-approximate
counting algorithm with running time O((n/ε)2 log2(n/ε)) and success probability at least 3/4.

I Definition 10. Let α ∈ (0, 1). A bipartite graph G = (V,E) with bipartition V = V 0 ∪ V 1

is a bipartite α-expander if, for i ∈ {0, 1} and all S ⊆ V i where |S| ≤ |V i|/2, we have
NG(S) ≥ (1 + α)|S| where NG(S) denotes the set of vertices that are adjacent to some
vertex in S.

Again we give a fast Markov chain based algorithm for sampling from the hard-core
model for essentially the same range of parameters for which an FPTAS is given in [16].

I Theorem 11. Suppose ∆ ≥ 3 is an integer and α ∈ (0, 1) is a real. Then for any
λ ≥ (3∆)6/α and 4e−n ≤ ε < 1, there is an ε-approximate sampling algorithm for the
hard-core model with parameter λ on all n-vertex bipartite α-expander graphs of maximum
degree ∆. There is also an ε-approximate counting algorithm for the hard-core model with
success probability at least 1− ε. Both algorithms run in time O((n/ε)2 log3(n/ε)).

The extra factor of n in the running time of the sampling algorithm for the hard-core
model as compared to the Potts model is due to the fact that the hard-core model on a
bipartite graph does not in general exhibit exact symmetry between the ground states, and
so we must approximate the partition functions of the even and odd dominant independent
sets to sample.

We can extend these algorithms to obtain fast sampling algorithms in most situations
in which a counting problem can be put in the framework of abstract polymer models. For
instance, we can use Theorems 5 and 6 to improve the running times of the algorithms
given by [17, 20] for sampling and counting proper q-colorings in ∆-regular bipartite graphs
(for large ∆). Section 5 of [17] gives a polymer model for proper q-colorings on ∆-regular
bipartite graphs. The polymer model is computationally feasible. They prove in Section 5.1
that it satisfies the Kotecký-Preiss condition – in fact, their proof establishes the polymer
sampling condition (3). Thus, we get the following corollary of Theorem 5 and 6.

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:7

I Corollary 12. There is an absolute constant C > 0 so that for all even q ≥ 3, all
∆ ≥ Cq2 log2 q and all ε > e−n/(8q), there is an ε-approximate sampling algorithm to sample
a uniformly random proper q-coloring from a random ∆-regular bipartite graph running in
time O(n log(n/ε)). Furthermore, there is a randomized ε-approximation algorithm for the
number of proper q-colorings with running time O((n/ε)2 log2(n/ε)) and success probability
at least 3/4. For odd q, there are ε-approximate counting and sampling algorithms that both
run in time O((n/ε)2 log3(n/ε)).

As with independent sets, the extra factor of n in the running time for odd q comes from
the fact that the ground states (colorings in which one side of the bipartition is assigned
dq/2e colors and the other side bq/2c colors) are exactly symmetric only if q is even.

Finally, we remark that the approximate counting algorithms for these applications
based on truncating the cluster expansion can run faster than nO(log ∆) if the parameters
(expansion, fugacity, inverse temperature) are high enough (see [17, Theorem 8]), but the
sampling algorithms derived from this approach will not match the Õ(n) or Õ(n2) sampling
algorithms we obtain here.

1.3 Comparison to spin Glauber dynamics
A very natural idea to sample at low temperatures (large β for the Potts model, large λ for
the hard-core model) is to use a single-spin update Markov chain like the Glauber dynamics,
but to start in one of the ground states of the model chosen at random. For example, pick
one of the q-colors with equal probability then start the Potts model Glauber dynamics in the
monochromatic configuration with that color. The intuition is that the Glauber dynamics
will mix well within the portion of the state space close to the chosen ground state, and the
randomness in the choice of ground state will ensure that an accurate sample from the full
measure is obtained. Analyzing this algorithm was suggested in [14] and [16].

While we are not yet able to show that this algorithm succeeds, we make partial progress.
We show that Glauber dynamics, restricted to remain in a portion of the state space, mixes
rapidly (in polynomial time). It is easiest to state our result for the ferromagnetic Potts model.

For a ground state color g ∈ [q] and an integer M , let ΩgM (G) be the set of q-colorings of
the vertices of G so that every connected component of G colored with the palette of colors
[q] \ g is of size at most M . The set Ωg

M (G) consists of colorings that come from the valid
polymer configurations from Example 2 above. In [16] it is shown that for an appropriate
choice of M , the set {ΩgM (G)}g∈[q] forms an “almost partition” of the set of all colorings, in
that the weight of both the overlap of the almost partition and the set of colorings uncovered
by the almost partition is at most ε under the conditions of Theorem 9. In particular, an
ε-approximate sample from the Potts model restricted to Ωg

M (G) for M = O(log(n/ε)) is
enough (by symmetry) to obtain a (qε)-approximate sample from the Potts distribution µG,β
(cf. Lemma 28 of the full version). Using Markov chain comparison, we show in Section 5.3.1
of the full version that an efficient sampler can be obtained using the usual spin Glauber
dynamics restricted to remain in ΩgM (G).

I Theorem 13. Under the conditions of Theorem 9, and with M = O(log(n/ε)), the Glauber
dynamics restricted to ΩgM (G) has mixing time Tmix(ε) polynomial in n and 1/ε.

Theorem 13 shows that, despite the exponentially slow mixing of the Glauber dynamics
on the full state space, it can still be used by restricting the state space to obtain a
polynomial-time approximate sampling algorithm.

APPROX/RANDOM 2019

41:8 Fast Algorithms at Low Temperatures via Markov Chains

In Section 5 of the full version, we give a result (Theorem 23) which is similar to
Theorem 13 but applies much more generally – to polymer models which satisfy the polymer
mixing condition and other mild conditions. We also obtain a similar theorem (Theorem 29)
specifically for the hard-core model.

We leave for future work two important extensions that would complete the picture: 1)
showing that unrestricted Glauber dynamics starting from a well chosen configuration works,
and 2) reducing the running time to O(n logn) from the large polynomial that we obtain in
the theorem.

2 Polymer models and Markov chains

In the full version, we show that the polymer sampling condition (3) implies the well-known
Kotecký–Preiss [18] condition

∑
γ′�γ e

|γ′|wγ′ ≤ |γ|. The Kotecký–Preiss condition, in turn,
implies the polymer mixing condition (2), which is weaker than the Kotecký–Preiss [18]
condition.

We next introduce the polymer Markov chain. For each v ∈ V (G), let A(v) = {γ ∈ C(G) :
v ∈ γ} denote the collection of all polymers containing v and let a(v) =

∑
γ∈A(v) wγ . By

applying (2) to the smallest γ′ containing v we have a(v) ≤ θ < 1 for all v ∈ V (G). Define the
probability distribution νv on A(v) ∪ {∅} by νv(γ) = wγ for γ ∈ A(v) and νv(∅) = 1− a(v).

The polymer dynamics on Ω are defined by the following transition rule from a configura-
tion Γt to a configuration Γt+1:

Polymer Dynamics

1. Choose v ∈ V (G) uniformly at random. Let γv ∈ Γt ∩ A(v) if Γt ∩ A(v) 6= ∅ and let
γv = ∅ otherwise. Note that γv is well defined since Γt can have at most one polymer
containing v.

2. Mutually exclusively do the following:
With probability 1

2 , let Γt+1 = Γt \ γv.
With probability 1

2 , sample γ from νv, set Γt+1 = Γt∪γ if this is in Ω and set Γt+1 = Γt
otherwise.

In the full version, we verify that the stationary distribution of the polymer dynamics is
µG by checking detailed balance. Recall that ifM is an ergodic Markov chain with transition
matrix P and stationary distribution ν then the mixing time ofM from a state x is given by

Tx(ε) = min{t > 0 | for all t′ ≥ t, ‖P t′(x, ·)− ν(·)‖TV ≤ ε},

where ‖ν′ − ν‖TV denotes the total variation distance between distributions ν and ν′. The
mixing time ofM is given by Tmix(ε) = maxx Tx(ε).

Proof of Theorem 2. We will show that under condition 2 the mixing time of the polymer
dynamics is O(n log(n/ε)) by applying the path coupling technique. We define a metric
D(·, ·) on Ω by setting D(Γ,Γ′) = 1 if Γ′ = Γ ∪ {γ} or Γ = Γ′ ∪ {γ} for a polymer γ and
extending this as a shortest path metric; i.e., D(Γ,Γ′) = |Γ4Γ′| for any Γ,Γ′ ∈ Ω where
4 denotes the symmetric difference of two sets. The diameter W of Ω under D(·, ·) is no
more than 2n.

Now suppose we couple two chains Xt and Yt by attempting the same updates in both
chains at each step. Suppose that Xt = Yt ∪{γ} for some polymer γ. With probability |γ|n ·

1
2

we pick v ∈ γ and remove γv which yields Xt+1 = Yt+1 = Xt. On the other hand, we may

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:9

attempt to add a polymer γ′ � γ so that Yt ∪ {γ′} ∈ Ω. That is, Xt+1 = Xt = Yt ∪ {γ} and
Yt+1 = Yt∪{γ′}. This occurs with probability |γ

′|
n ·

1
2 ·wγ′ and in this case D(Xt+1, Yt+1) ≤ 2.

Putting these together we can bound

E[D(Xt+1, Yt+1)] ≤ 1 + 1
2n

−|γ|+ ∑
γ′�γ
|γ′|wγ′

 .
Using (2) we have

∑
γ′�γ |γ′|wγ′ ≤ θ|γ|, and so E[D(Xt+1, Yt+1)] ≤ 1−|γ| 1−θ2n ≤ 1− 1−θ

2n . By
the path coupling lemma (see [9, Section 6]), the mixing time is at most log(W/ε)2n/(1−θ) =
O(n log(n/ε)). J

To prove Theorem 5 we will show that a single update of the polymer dynamics can be
computed in constant expected time.

Assume the polymer sampling condition (3) holds with constant τ ≥ 5 + 3 log((q − 1)∆).
We will use the following algorithm. Let r = τ − 2− log((q− 1)∆) ≥ 3 + 2 log((q− 1)∆) and
let Ak(v) = {γ ∈ A(v) : |γ| ≤ k}.

Single polymer sampler

1. Choose k according to the following geometric distribution: for k a non-negative integer,
Pr[k = k] = (1− e−r)e−rk. This gives Pr[k ≥ k] = e−rk.

2. Enumerate all polymers in Ak(v) and compute their weight functions.
3. Mutually exclusively output γ ∈ Ak(v) with probability wγer|γ|, and with all remaining

probability output ∅. In particular if k = 0, then output ∅ with probability 1.

We now proceed to prove the following lemma.

I Lemma 16. Under the polymer sampling condition (3) the output distribution of the
single polymer sampler is νv and its expected running time is constant.

Proof. We first show that the probabilities wγer|γ| sum to less than 1, which shows the last
step of the sampling algorithm is well defined. Since τ − r = 2 + log((q − 1)∆),∑

γ∈A(v)

wγe
r|γ| ≤ 1

2
∑
k≥1

(e∆)k−1(q − 1)ke−τk+rk = 1
2e∆

∑
k≥1

e−k < 1,

where the first inequality uses the fact that, given a degree ∆ graph and a vertex v, there
are at most (e∆)k−1/2 connected size-k subgraphs containing v – a fact proved by Borgs,
Chayes, Kahn, and Lovász [5, Lemma 2.1].

We next show that the output of the algorithm has distribution νv. Given γ ∈ A(v), to
output γ we must choose k ≥ |γ|. This happens with probability e−r|γ| by the distribution of
k. Conditioned on choosing such a k, the probability we output γ is wγer|γ|, and multiplying
these probabilities together gives wγ as desired. Since this is true for all γ ∈ A(v), the output
distribution is exactly νv.

Finally we analyze the expected running time. To do this, we appeal to Lemma 3.7
of [23] which gives an algorithm with running time O(k5(e∆)2k) for listing all connected
subgraphs containing a given vertex v of size at most k (given a graph of degree at most ∆).
Consequently, conditioned on the event that k = k, the enumeration step of our algorithm
takes time O(k5(e∆)2k), and the time taken to determine which polymers are allowed and to
compute their weights is O(kc(q − 1)k(e∆)k−1/2) for some c > 0, since the polymer model is
computationally feasible. In expectation therefore, the running time is

APPROX/RANDOM 2019

41:10 Fast Algorithms at Low Temperatures via Markov Chains

O

1 +
∑
k≥1

Pr[k = k]
(
k5(e∆)2k + kc(e(q − 1)∆)k

)
= O

1 +
∑
k≥1

e−rk kc(e(q − 1)∆)2k

 = O

1 +
∑
k≥1

kc e−(τ ′+1)k

 = O(1) ,

where τ ′ = τ − 5− 3 log((q − 1)∆) ≥ 0. J

Proof of Theorem 5. By Theorem 2, there is Tε = O(n log(n/ε)) so that if we start with
the empty configuration Γ0 = ∅ and run the polymer dynamics, then ΓTε has distribution
within ε/2 total variation distance of µG. By Lemma 16, in expectation the running time
will be O(n log(n/ε)), but we want an upper bound on the worst case running time as well.
To do this, we will simply stop the algorithm and output the empty configuration if the
total running time exceeds L for some L = O(n log(n/ε)) with a sufficiently large leading
constant. We next show that the probability that the algorithm terminates in L steps is at
most ε/2, which therefore yields that the output distribution has total variation distance at
most ε from µG.

The randomness in the running time comes from the choice of the geometric random
variable k at each step and the time taken to enumerate polymers in Ak(v). By the choice
of r, the random variable that takes the value k5(e∆)2k + kc(e(q − 1)∆)k with probability
(1− e−r)e−rk has exponential tails, and so a Chernoff bound shows that the probability that
the sum of Θ(n log(n/ε)) independent copies of such a random variable is at least twice its
expectation is bounded by e−Θ(n log(n/ε)) which is at most ε/2 (for large enough choice of
constants), finishing the proof. J

3 Approximate counting algorithm

In this section we show how to use a sampling oracle to approximately compute the partition
function of the polymer model. One standard way is by self-reducibility. In [14] an efficient
sampling algorithm for polymer models is derived from an efficient approximate counting
algorithm by applying self-reducibility on the level of polymers. While we could apply
polymer self-reducibility in the other direction to obtain counting algorithms from our
sampling algorithm, here we use the simulated annealing method instead (see [2, 15, 25]) to
obtain a faster implementation of counting from sampling.

Suppose that (C(G), w) is a computationally feasible polymer model. Let ρ be a parameter
and define a weight function wγ(ρ) = wγe

−ρ|γ| for all γ ∈ C(G). Then for each ρ ≥ 0 this
defines a computationally feasible polymer model (C(G), w(ρ)) on G, where setting ρ = 0
recovers the original model (C(G), w). If the original model (C(G), w) satisfies the polymer
sampling condition (3), then so does (C(G), w(ρ)) for every ρ ≥ 0 as the weight function
wγ(ρ) is monotone decreasing in ρ. Given the graph G, we write the partition function of
the polymer model (C(G), w(ρ)) as a function of ρ:

Z(ρ) = Z(G; ρ) =
∑
Γ∈Ω

∏
γ∈Γ

wγ(ρ) =
∑
Γ∈Ω

∏
γ∈Γ

wγe
−ρ|γ|.

The associated Gibbs distribution is denoted by µρ = µG;ρ. Since limρ→∞ wγ(ρ) = 0, we
have limρ→∞ Z(ρ) = 1 (only the empty configuration Γ contributes to this limit), and so we
will use simulated annealing to interpolate between Z(∞) = 1 and our goal Z(0), assuming

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:11

access to a sampling oracle for (C(G), w(ρ)) for all ρ ≥ 0. To apply the simulated annealing
method, roughly speaking, we find a sequence of parameters 0 = ρ0 < ρ1 < · · · < ρ` < ∞
called a cooling schedule where ` ∈ N+, and then estimate Z(0) using the telescoping product

1
Z(0) = 1

Z(ρ0) = Z(ρ1)
Z(ρ0)

Z(ρ2)
Z(ρ1) · · ·

Z(ρ`)
Z(ρ`−1)

1
Z(ρ`)

.

To estimate each term Z(ρi+1)/Z(ρi), we define independent random variables Wi =∏
γ∈Γi

wγ(ρi+1)
wγ(ρi) , where Γi ∼ µρi . It is straightforward to see that E[Wi] = Z(ρi+1)/Z(ρi) (see

Lemma 17 of the full version, where we also require the variance). Using the sampling oracle
for µρi , we can sample Wi for all i, and by taking the product we get an estimate for 1/Z(0).

The key ingredient of simulated annealing is finding a good cooling schedule. There
are nonadaptive schedules [2] that depend only on n, and adaptive schedules [15, 25] that
also depend on the structure of Z(·). Usually the latter leads to faster algorithms than the
former. In this paper we use a simple nonadaptive schedule: ρi = i/n for i = 1, . . . , ` where
` = O(n log(n/ε)). We show that this cooling schedule already gives us a fast algorithm
for the polymer model. The reason behind it is that the weight function wγ(ρ) decays
exponentially fast, and so (see Lemma 18 of the full version) the partition function Z(ρ`)
is bounded by a constant when ρ` = O(logn), leading to a short cooling schedule. Our
algorithm is as follows.

Polymer approximate counting algorithm

1. Let ρi = i/n for i = 0, 1, . . . , ` where ` = dn log(4e(q − 1)∆n/ε)e;
2. For j = 1, . . . ,m where m =

⌈
64ε−2⌉:

a. For 0 ≤ i ≤ `− 1:
(i) Sample Γ(j)

i from µρi ;
(ii) Let W (j)

i =
∏
γ∈Γ(j)

i

e−|γ|/n;

b. Let W (j) =
∏`−1
i=0 W

(j)
i ;

3. Let Ŵ = 1
m

∑m
j=1W

(j) and output Ẑ = 1/Ŵ .

For 0 ≤ i ≤ ` − 1 we define Γi to be an independent random sample from µρi and
Wi =

∏
γ∈Γi e

−|γ|/n. Finally, we let W =
∏`−1
i=0 Wi.

Proof of Theorem 6. In this version, we assume that we have access to an exact sampler
Sexact that samples from µρ for all ρ ≥ 0 (in the full version we show how to adapt the
argument to the situation where we only have an approximate sampler). Using this sampler
in the Polymer approximate counting algorithm, we find that, for each j and each i, Γ(j)

i

is an exact sample from the distribution µρi and hence W (j)
i is an exact sample of Wi,

independently for every j and i. Thus, W (j) is a sample of W independently for every j, and
Ŵ is the sample mean of W (j)’s. We deduce from Lemmas 17 and 18 of the full version that

(1 + ε/2)E[W] ≤ eε/2Z(ρ`)
Z(0) ≤ eε

Z(0) and (1− ε/2)E[W] ≥ e−εZ(ρ`)
Z(0) ≥ e−ε

Z(0)

where we use 1 + ε/2 ≤ eε/2 and e−ε ≤ 1− ε/2 for all 0 < ε < 1. Then

Pr
(
e−ε

Z(0) ≤ Ŵ ≤
eε

Z(0)

)
≥ Pr

(∣∣∣Ŵ − E[W]
∣∣∣ ≤ (ε/2)E[W]

)
.

APPROX/RANDOM 2019

41:12 Fast Algorithms at Low Temperatures via Markov Chains

By Chebyshev’s inequality we have

Pr
(∣∣∣Ŵ − E[W]

∣∣∣ ≥ (ε/2)E[W]
)
≤ 4 Var(W)
ε2m (E[W])2 ≤

4(e− 1)
ε2m

≤ 1
8

where the second to last inequality follows from Lemmas 17 and 19 of the full version which
enable us to show that

Var(W)
(E[W])2 = E[W 2]

(E[W])2 − 1 = Z(0)
Z(ρ1)

Z(ρ`+1)
Z(ρ`)

− 1 ≤ e− 1.

Thus, we deduce that

Pr
(
e−εZ(0) ≤ Ẑ ≤ eεZ(0)

)
= Pr

(
e−ε

Z(0) ≤ Ŵ ≤
eε

Z(0)

)
≥ 7

8

(so the error probability is at most 1/8). Note that the number of samples that we
used is `m. Finally, we consider the running time of our algorithm. By Theorem 5, the
running time of step 2(a)(i) is O(n log(8`mn)) = O(n log(n/ε)), and for step 2(a)(ii) the
running time is O(n). Thus, the running time of the algorithm is upper bounded by
`m ·O(n log(n/ε)) = O((n/ε)2 log2(n/ε)). J

4 Applications

In this section, we prove Theorem 9 for the Potts model. The proof of Theorem 11 (for the
hard-core model) can be found in Section 4.2 of the full version. Throughout this section, we
will work under the assumptions/conditions of Theorem 9. That is, we fix a real number
α > 0, integers q ≥ 3 and ∆ ≥ 3 and a real number β ≥ 5+3 log((q−1)∆)

α . We let G be the
class of α-expander graphs G with maximum degree at most ∆.

Consider the polymer model defined in Example 2 on an n-vertex graph G ∈ G with
M = n/2 and ground state color g ∈ [q]. We will use Cg = Cg(G) to denote the polymers and
wgγ to denote the weight of a polymer γ ∈ Cg; recall that wgγ = e−βB(γ), where B(γ) counts
the number of external edges of γ plus the number of bichromatic internal edges. Let Zg(G)
be the partition function of the polymer model (Cg(G), wg).

I Lemma 20. Under the conditions of Theorem 9, the polymer model (Cg(·), wg,G) satisfies
the polymer sampling condition (3) with τ = αβ.

Proof. Since every G ∈ G is an α-expander, for γ ∈ Cg we have B(γ) ≥ α|γ| and hence
wgγ ≤ e−τ |γ|. J

I Lemma 21 ([17, Lemma 12]). For any n-vertex α-expander graph G and β ≥ 2 log(eq)/α,
qZg(G) is an e−n-approximation of the Potts partition function ZG,β.

Proof of Theorem 9. Let G be the class of α-expander graphs of maximum degree at most ∆.
Clearly, the polymer models (Cg(·), wg,G) are computationally feasible. By Lemma 20, the
models also satisfy the polymer sampling condition and therefore Theorems 5 and 6 apply.
Consider any n-vertex graph G ∈ G. Since β ≥ 5+3 log((q−1)∆)

α > 2 log(eq)
α , Lemma 21 applies

to G.
For the sampling algorithm, we pick a color g ∈ [q] uniformly at random and generate an

(ε/q)-approximate sample from the Gibbs measure associated to Zg(G) using the algorithm
of Theorem 5, in time O(n log(n/ε)). By Lemma 21, we conclude that the resulting output
is an ε-approximate sample for the Potts model.

Z. Chen, A. Galanis, L. A. Goldberg, W. Perkins, J. Stewart, and E. Vigoda 41:13

For the counting algorithm, we pick an arbitrary g ∈ [q] and produce using the algorithm
of Theorem 6 a number Ẑ in time O((n/ε)2 log2(n/ε)), which is an ε/(2q)-approximation to
Zg(G) with probability ≥ 3/4. By Lemma 21, we conclude that qẐ is an ε-approximation
for the partition function of the Potts model (with the same probability). J

References
1 A. Barvinok. Combinatorics and Complexity of Partition Functions. Algorithms and Combi-

natorics. Springer International Publishing, 2017.
2 I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating simulated annealing

for the permanent and combinatorial counting problems. SIAM Journal on Computing,
37(5):1429–1454, 2008.

3 C. Borgs. Absence of zeros for the chromatic polynomial on bounded degree graphs. Combi-
natorics, Probability and Computing, 15(1-2):63–74, 2006.

4 C. Borgs, J. T. Chayes, A. Frieze, J. H. Kim, P. Tetali, E. Vigoda, and V. H. Vu. Torpid
mixing of some Monte Carlo Markov chain algorithms in statistical physics. In Proceedings
of the 40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
218–229, 1999.

5 C. Borgs, J. T. Chayes, J. Kahn, and L. Lovász. Left and right convergence of graphs with
bounded degree. Random Structures & Algorithms, 42(1):1–28, 2013.

6 C. Borgs and J. Z. Imbrie. A unified approach to phase diagrams in field theory and statistical
mechanics. Communications in mathematical physics, 123(2):305–328, 1989.

7 R. L. Dobrushin. Estimates of semi-invariants for the Ising model at low temperatures.
Translations of the American Mathematical Society-Series 2, 177:59–82, 1996.

8 M. E. Dyer and C. S. Greenhill. On Markov Chains for Independent Sets. J. Algorithms,
35(1):17–49, 2000. doi:10.1006/jagm.1999.1071.

9 Martin Dyer and Catherine Greenhill. Random walks on combinatorial objects. London
Mathematical Society Lecture Note Series, pages 101–136, 1999.

10 C. Efthymiou, T. P. Hayes, D. Štefankovič, E. Vigoda, and Y. Yin. Convergence of MCMC
and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model. In Proceedings of the
57th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 704–713,
2016.

11 R. Fernández, P. A. Ferrari, and N. L. Garcia. Loss network representation of Peierls contours.
Annals of Probability, 29(2):902–937, 2001.

12 D. Galvin and P. Tetali. Slow mixing of Glauber dynamics for the hard-core model on regular
bipartite graphs. Random Structures & Algorithms, 28(4):427–443, 2006.

13 C. Gruber and H. Kunz. General properties of polymer systems. Communications in Mathe-
matical Physics, 22(2):133–161, 1971.

14 T. Helmuth, W. Perkins, and G. Regts. Algorithmic Pirogov-Sinai theory. arXiv preprint,
arXiv:1806.11548, 2018. arXiv:1806.11548.

15 M. Huber. Approximation algorithms for the normalizing constant of Gibbs distributions. The
Annals of Applied Probability, 25(2):974–985, 2015.

16 M. Jenssen, P. Keevash, and W. Perkins. Algorithms for #BIS-hard problems on expander
graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2235–2247. SIAM, 2019.

17 M. Jenssen, P. Keevash, and W. Perkins. Algorithms for #BIS-hard problems on expander
graphs. arXiv preprint, 2019. arXiv:1807.04804v2.

18 R. Kotecký and D. Preiss. Cluster expansion for abstract polymer models. Communications
in Mathematical Physics, 103(3):491–498, 1986. URL: http://projecteuclid.org/euclid.
cmp/1104114796.

APPROX/RANDOM 2019

https://doi.org/10.1006/jagm.1999.1071
http://arxiv.org/abs/1806.11548
http://arxiv.org/abs/1806.11548
http://arxiv.org/abs/1807.04804v2
http://projecteuclid.org/euclid.cmp/1104114796
http://projecteuclid.org/euclid.cmp/1104114796

41:14 Fast Algorithms at Low Temperatures via Markov Chains

19 L. Laanait, A. Messager, S. Miracle-Solé, J. Ruiz, and S. Shlosman. Interfaces in the Potts
model I: Pirogov-Sinai theory of the Fortuin-Kasteleyn representation. Communications in
Mathematical Physics, 140(1):81–91, 1991.

20 C. Liao, J. Lin, P. Lu, and Z. Mao. Counting independent sets and colorings on random
regular bipartite graphs. arXiv preprint, 2019. arXiv:1903.07531.

21 J. Liu and P. Lu. FPTAS for #BIS with degree bounds on one side. In Proceedings of the
47th Annual ACM on Symposium on Theory of Computing (STOC), pages 549–556, 2015.

22 E. Mossel, D. Weitz, and N. Wormald. On the hardness of sampling independent sets beyond
the tree threshold. Probability Theory and Related Fields, 143(3-4):401–439, 2009.

23 V. Patel and G. Regts. Deterministic polynomial-time approximation algorithms for functions
and graph polynomials. SIAM Journal on Computing, 46(6):1893–1919, 2017.

24 S. A. Pirogov and Ya. G. Sinai. Phase diagrams of classical lattice systems. Teoret. Mat. Fiz.,
25(3):358–369, 1975.

25 D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal
connection between sampling and counting. Journal of the ACM, 56(3):18, 2009.

26 D. Weitz. Counting independent sets up to the tree threshold. In Proceedings of the 38th
Annual ACM Symposium on Theory of Computing (STOC), pages 140–149, 2006.

http://arxiv.org/abs/1903.07531

Deterministic Approximation of Random Walks in
Small Space
Jack Murtagh
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
http://scholar.harvard.edu/jmurtagh
jmurtagh@g.harvard.edu

Omer Reingold
Computer Science Department, Stanford University, Stanford, CA USA
reingold@stanford.edu

Aaron Sidford
Management Science & Engineering, Stanford University, Stanford, CA USA
http://www.aaronsidford.com/
sidford@stanford.edu

Salil Vadhan
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
http://salil.seas.harvard.edu/
salil_vadhan@harvard.edu

Abstract

We give a deterministic, nearly logarithmic-space algorithm that given an undirected graph G, a
positive integer r, and a set S of vertices, approximates the conductance of S in the r-step random
walk on G to within a factor of 1 + ε, where ε > 0 is an arbitrarily small constant. More generally,
our algorithm computes an ε-spectral approximation to the normalized Laplacian of the r-step walk.

Our algorithm combines the derandomized square graph operation [21], which we recently used
for solving Laplacian systems in nearly logarithmic space [16], with ideas from [5], which gave
an algorithm that is time-efficient (while ours is space-efficient) and randomized (while ours is
deterministic) for the case of even r (while ours works for all r). Along the way, we provide some
new results that generalize technical machinery and yield improvements over previous work. First,
we obtain a nearly linear-time randomized algorithm for computing a spectral approximation to the
normalized Laplacian for odd r. Second, we define and analyze a generalization of the derandomized
square for irregular graphs and for sparsifying the product of two distinct graphs. As part of this
generalization, we also give a strongly explicit construction of expander graphs of every size.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Random walks and Markov chains

Keywords and phrases random walks, space complexity, derandomization, spectral approximation,
expander graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.42

Category RANDOM

Related Version A full version of this paper is available at https://arxiv.org/abs/1903.06361.

Funding Jack Murtagh: Supported by NSF grant CCF-1763299.
Omer Reingold: Supported by NSF grant CCF-1763311.
Salil Vadhan: Supported by NSF grant CCF-1763299.

© Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil Vadhan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 42; pp. 42:1–42:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://scholar.harvard.edu/jmurtagh
mailto:jmurtagh@g.harvard.edu
mailto:reingold@stanford.edu
http://www.aaronsidford.com/
mailto:sidford@stanford.edu
http://salil.seas.harvard.edu/
mailto:salil_vadhan@harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.42
https://arxiv.org/abs/1903.06361
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Deterministic Approximation of Random Walks in Small Space

1 Introduction

Random walks provide the most dramatic example of the power of randomized algorithms
for solving computational problems in the space-bounded setting, as they only require
logarithmic space (to store the current state or vertex). In particular, since undirected graphs
have polynomial cover time, random walks give a randomized logspace (RL) algorithm
for Undirected S-T Connectivity [1]. Reingold [19] showed that this algorithm can
be derandomized, and hence that Undirected S-T Connectivity is in deterministic
logspace (L). However, Reingold’s algorithm does not match the full power of random walks
on undirected graphs; in particular it does not allow us to approximate properties of the
random walk at lengths below the mixing time.

In this work, we provide a nearly logarithmic-space algorithm for approximating properties
of arbitrary-length random walks on an undirected graph, in particular the conductance of
any set of vertices:

I Definition 1. Let G = (V,E) be an undirected graph, r a positive integer, and S ⊆ V a
set of vertices. The conductance of S under the r-step random walk on G is defined as

Φr(S) = Pr[Vr 6∈ S|V0 ∈ S],

where V0, V1, . . . , Vr is a random walk on G started at the stationary distribution Pr[V0 =
v] = deg(v)/2|E|.

I Theorem 2. There is a deterministic algorithm that given an undirected multigraph G on
n vertices, a positive integer r, a set of vertices S, and ε > 0, computes a number Φ̃ such that

(1− ε) · Φr(S) ≤ Φ̃ ≤ (1 + ε) · Φr(S)

and runs in space O(logN + (log r) · log(1/ε) + (log r) · log log r), where N is the bit length
of the input graph G.

Previously, approximating conductance could be done in O(log3/2(N/ε) + log log r) space,
which follows from Saks’ and Zhou’s proof that RL is in L3/2 [22].

Two interesting parameter regimes where we improve the Saks-Zhou bound are when
r = 1/ε = 2O(

√
logN), in which case our algorithm runs in space O(logN), or when ε =

1/polylog(N) and r ≤ poly(N), in which case our algorithm runs in space Õ(logN). When r
exceeds the poly(N) · log(1/ε) time for random walks on undirected graphs to mix to within
distance ε of the stationary distribution, the conductance can be approximated in space
O(log(N/ε) + log log r) by using Reingold’s algorithm to find the connected components of
G, and the bipartitions of the components that are bipartite and calculating the stationary
probability of S restricted to each of these pieces, which is proportional to the sum of degrees
of vertices in S.

We prove Theorem 2 by providing a stronger result that with the same amount of space it
is possible to compute an ε-spectral approximation to the normalized Laplacian of the r-step
random walk on G.

I Definition 3. Let G be an undirected graph with adjacency matrix A, diagonal degree
matrix D, and transition matrix T = AD−1. The transition matrix for the r-step random
walk on G is T r. The normalized Laplacian of the r-step random walk is the symmetric
matrix I −Mr for M = D−1/2AD−1/2.

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:3

Note that the normalized Laplacian can also be expressed as I −Mr = D−1/2(I − T r)D1/2,
so it does indeed capture the behavior of r-step random walks on G.1

I Theorem 4 (Main result). There is a deterministic algorithm that given an undirected
multigraph G on n vertices with normalized Laplacian I −M , a nonnegative integer r, and
ε > 0, constructs an undirected multigraph G̃ whose normalized Laplacian L̃ is an ε-spectral
approximation of L = I −Mr. That is, for all vectors v ∈ Rn

(1− ε) · vTLv ≤ vT L̃v ≤ (1 + ε) · vTLv.

The algorithm runs in space O(logN + (log r) · log(1/ε) + (log r) · log log r), where N is the
bit length of the input graph G.

Theorem 2 follows from Theorem 4 by taking v to be D1/2eS where eS is the characteristic
vector of the set S and normalizing appropriately (See Section 5).

Our main technique for proving Theorem 4 is the derandomized product, a new generaliz-
ation of the derandomized square, which was introduced by Rozenman and Vadhan [21] to
give an alternative proof that
Undirected S-T Connectivity is in L. Our main result follows from carefully applying
the derandomized product and analyzing its properties with inequalities from the theory of
spectral approximation. Specifically, our analysis is inspired by the work of Cheng, Cheng,
Liu, Peng, and Teng [5], who studied the approximation of random walks by randomized
algorithms running in nearly linear time. We emphasize that the work of [5] gives a ran-
domized algorithm with high space complexity (but low time complexity) for approximating
properties of even length walks while we give a deterministic, space-efficient algorithm for
approximating properties of walks of every length. Interestingly, while the graphs in our
results are all undirected, some of our analyses use techniques for spectral approximation of
directed graphs introduced by Cohen, Kelner, Peebles, Peng, Rao, Sidford, and Vladu [7, 6].

The derandomized square can be viewed as applying the pseudorandom generator of
Impagliazzo, Nisan, and Wigderson [10] to random walks on labelled graphs. It is somewhat
surprising that repeated derandomized squaring does not blow up the error by a factor
proportional to the length of the walk being derandomized. For arbitrary branching programs,
the INW generator does incur error that is linear in the length of the program. Some special
cases such as regular [3, 4, 8] and permutation [8, 24] branching programs of constant width
have been shown to have a milder error growth as a function of the walk length. Our work
adds to this list by showing that properties of random walks of length k on undirected graphs
can be estimated in terms of spectral approximation without error accumulating linearly in k.

In our previous work [16], we showed that the Laplacian of the derandomized square of a
regular graph spectrally approximates the Laplacian of the true square, I −M2, and this was
used in a recursion from [18] to give a nearly logarithmic-space algorithm for approximately
solving Laplacian systems Lx = b. A natural idea to approximate the Laplacian of higher
powers, I −Mr, is to repeatedly derandomized square. This raises three challenges, and we
achieve our result by showing how to overcome each:
1. It is not guaranteed from [16] that repeated derandomized squaring preserves spectral

approximation. For this, we use ideas from [5] to argue that it does.
2. When r is not a power of 2, the standard approach would be to write r = b0 + 2 · b1 +

. . . + 2z · bz where bi is the ith bit of r and multiply approximations to M2i for all i
such that bi 6= 0. The problem is that multiplying spectral approximations of matrices

1 When G is irregular, the matrix I−T r is not necessarily symmetric. It is a directed Laplacian as defined
in [7, 6]. See Definition 9.

APPROX/RANDOM 2019

42:4 Deterministic Approximation of Random Walks in Small Space

does not necessarily yield a spectral approximation of their product. Our solution is to
generalize the derandomized square to produce sparse approximations to the product
of distinct graphs. In particular, given I −M and an approximation I − M̃ to I −Mk,
our derandomized product allows us to combine M and M̃ to approximate I −Mk+1.
Although our generalized graph product is defined for undirected graphs, its analysis uses
machinery for spectral approximation of directed graphs, introduced in [6].

3. We cannot assume that our graph is regular without loss of generality. In contrast,
[19, 21, 16] could do so, since adding self-loops does not affect connectivity or solutions to
Laplacian systems of G, however, it does affect random walks. Our solution is to define
and analyze the derandomized product for irregular graphs.

A key element in the derandomized product is a strongly explicit (i.e. neighbor relations
can be computed in space O(logN)) construction of expander graphs whose sizes equal the
degrees of the vertices in the graphs being multiplied. This is problematic when we are
not free to add self loops to the graphs because strongly explicit constructions of expander
graphs only exist for graph sizes that are certain subsets of N such as powers of 2 (Cayley
graphs based on [17] and [2]), perfect squares [14, 9], and other size distributions [20] or are
only explicit in the sense of running time or parallel work [13]. To address this issue, we give
a strongly explicit construction of expander graphs of all sizes by giving a reduction from
existing strongly explicit constructions in Section 3.

Many of our techniques are inspired by Cheng, Cheng, Liu, Peng, and Teng [5], who gave
two algorithms for approximating random walks. One is a nearly linear time randomized
algorithm for approximating random walks of even length and another works for all walk
lengths r but has a running time that is quadratic in r, and so only yields a nearly linear
time algorithm for r that is polylogarithmic in the size of the graph. In addition, [11] studied
the problem of computing sparse spectral approximations of random walks but the running
time in their work also has a quadratic dependence on r. We extend these results by giving a
nearly linear time randomized algorithm for computing a spectral approximation to I −Mr

for all r. This is discussed in Section 5.

2 Preliminaries

2.1 Spectral Graph Theory
Given an undirected multigraph G the Laplacian of G is the symmetric matrix D − A,
where D is the diagonal matrix of vertex degrees and A is the adjacency matrix of G. The
transition matrix of the random walk on G is T = AD−1. Tij is the probability that a
uniformly random edge from vertex j leads to vertex i (i.e. the number of edges between
j and i divided by the degree of j). The normalized Laplacian of G is the symmetric
matrix I − M = D−1/2(D − A)D−1/2. Note that when G is regular, the matrix M =
D−1/2AD−1/2 = AD−1 = T . The transition matrix of the r-step random walk on G is T r.
For all probability distributions π, T rπ is the distribution over vertices that results from
picking a random vertex according to π and then running a random walk on G for r steps.
The transition matrix of the r-step random walk on G is related to the normalized Laplacian
in the following way:

I −Mr = D−1/2(I − T r)D1/2.

For undirected multigraphs, the matrix M = D−1/2AD−1/2 has real eigenvalues between −1
and 1 and so I −Mr has eigenvalues in [0, 2] and thus is positive semidefinite (PSD). The
spectral norm of a real matrix M , denoted ‖M‖, is the largest singular value of M . That is,

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:5

the square root of the largest eigenvalue of MTM . When M is symmetric, ‖M‖ equals the
largest eigenvalue of M in absolute value. For an undirected graph G with adjacency matrix
A, we write k ·G to denote the graph with adjacency matrix k · A, i.e. the multigraph G
with all edges duplicated to have multiplicity k.

Given a symmetric matrix L, its Moore-Penrose Pseudoinverse, denoted L†, is the unique
matrix with the same eigenvectors as L such that for each eigenvalue λ of L, the corresponding
eigenvalue of L† is 1/λ if λ 6= 0 and 0 otherwise. When L is a Laplacian, we write L†/2 to
denote the unique symmetric PSD matrix square root of the pseudoinverse of L.

To measure the approximation between graphs we use spectral approximation2[23]:

I Definition 5. Let L, L̃ ∈ Rn×n be symmetric PSD matrices. We say that L̃ is an ε-
approximation of L (written L̃ ≈ε L) if for all vectors v ∈ Rn

(1− ε) · vTLv ≤ vT L̃v ≤ (1 + ε) · vTLv.

Note that Definition 5 is not symmetric in L and L̃. Spectral approximation can also be
written in terms of the Loewner partial ordering of PSD matrices:

(1− ε) · L � L̃ � (1 + ε) · L

where for two matrices A,B, we write A � B if B −A is PSD. Spectral approximation has a
number of useful properties listed in the following proposition.

I Proposition 6. If W,X, Y, Z ∈ Rn×n are PSD symmetric matrices then:
1. If X ≈ε Y for ε < 1 then Y ≈ε/(1−ε) X
2. If X ≈ε1 Y and Y ≈ε2 Z then X ≈ε1+ε2+ε1·ε2 Z ,
3. If X ≈ε Y and V is any n× n matrix then V TXV ≈ε V TY V ,
4. If X ≈ε Y then X + Z ≈ε Y + Z,
5. If W ≈ε1 X and Y ≈ε2 Z then W + Y ≈max{ε1,ε2} X + Z, and
6. If X ≈ε Y then c ·X ≈ε c · Y for all nonnegative scalars c
For regular undirected graphs, we use the measure introduced by [15] for the rate at which a
random walk converges to the uniform distribution.

I Definition 7 ([15]). Let G be a regular undirected graph with transition matrix T . Define

λ(G) = max
v⊥~1
v 6=0

‖Tv‖
‖v‖

= 2nd largest absolute value of the eigenvalues of T ∈ [0, 1].

1− λ(G) is called the spectral gap of G.

λ(G) is known to be a measure of how well-connected a graph is. The smaller λ(G), the faster
a random walk on G converges to the uniform distribution. Graphs G with λ(G) bounded
away from 1 are called expanders. Expanders can equivalently be characterized as graphs
that spectrally approximate the complete graph. This is formalized in the next lemma.

I Lemma 8. Let H be a c-regular undirected multigraph on n vertices with transition matrix
T and let J ∈ Rn×n be a matrix with 1/n in every entry (i.e. J is the transition matrix
of the complete graph with a self loop on every vertex). Then λ(H) ≤ λ if and only if
I − T ≈λ I − J .

2 In [16], we use an alternative definition of spectral approximation where L̃ ≈ε L if for all v ∈ Rn,
e−ε · vTLv ≤ vT L̃v ≤ eε · vTLv. We find Definition 5 more convenient for this paper.

APPROX/RANDOM 2019

42:6 Deterministic Approximation of Random Walks in Small Space

A proof of Lemma 8 can be found in the full version of the paper. In [6] Cohen, Kelner,
Peebles, Peng, Rao, Sidford, and Vladu introduced a definition of spectral approximation
for asymmetric matrices. Although the results in our paper only concern undirected graphs,
some of our proofs use machinery from the theory of directed spectral approximation.

I Definition 9 (Directed Laplacian [7, 6]). A matrix L ∈ Rn×n is called a directed Laplacian
if Lij ≤ 0 for all i 6= j and Lii = −

∑
j 6=i Lji for all i ∈ [n]. The associated directed graph

has n vertices and an edge (i, j) of weight −Lji for all i 6= j ∈ [n] with Lji 6= 0.

I Definition 10 (Asymmetric Matrix Approximation [6]). Let L̃ and L be (possibly asymmetric)
matrices such that U = (L+ LT)/2 is PSD. We say that L̃ is a directed ε-approximation
of L if:
1. ker(U) ⊆ ker(L̃− L) ∩ ker((L̃− L)T), and
2.
∥∥U†/2(L̃− L)U†/2

∥∥
2 ≤ ε

Below we state some useful lemmas about directed spectral approximation. The first gives
an equivalent formulation of Definition 10.

I Lemma 11 ([6] Lemma 3.5). Let L ∈ Rn×n be a (possibly asymmetric) matrix and let
U = (L+ LT)/2. A matrix L̃ is a directed ε-approximation of L if and only if for all vectors
x, y ∈ Rn

xT (L̃− L)y ≤ ε

2 · (x
TUx+ yTUy).

I Lemma 12 ([6] Lemma 3.6). Suppose L̃ is a directed ε-approximation of L and let U =
(L+ LT)/2 and Ũ = (L̃+ L̃T)/2. Then Ũ ≈ε U .

Lemma 12 says that directed spectral approximation implies the usual notion from
Definition 5 for “symmetrized” versions of the matrices L and L̃. In fact, when the matrices
L and L̃ are both symmetric, the two definitions are equivalent:

I Lemma 13. Let L̃ and L be symmetric PSD matrices. Then L̃ is a directed ε-approximation
of L if and only if L̃ ≈ε L.

A proof of Lemma 13 can be found in the full version of the paper.

2.2 Space Bounded Computation
We use a standard model of space-bounded computation where the machineM has a read-
only input tape, a constant number of read/write work tapes, and a write-only output tape.
If throughout every computation on inputs of length at most n,M uses at most s(n) total
tape cells on all the work tapes, we sayM runs in space s = s(n). Note thatM may write
more than s cells (in fact as many as 2O(s)) but the output tape is write-only. The following
proposition describes the behavior of space complexity when space bounded algorithms
are composed.

I Proposition 14. Let f1, f2 be functions that can be computed in space s1(n), s2(n) ≥ logn,
respectively, and f1 has output of length at most `1(n) on inputs of length n. Then f2 ◦ f1
can be computed in space

O(s2(`1(n)) + s1(n)).

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:7

2.3 Rotation Maps
In the space-bounded setting, it is convenient to use local descriptions of graphs. Such descrip-
tions allow us to navigate large graphs without loading them entirely into memory. For this we
use rotation maps, functions that describe graphs through their neighbor relations. Rotation
maps are defined for graphs with labeled edges as described in the following definition.

I Definition 15 ([20]). A two-way labeling of an undirected multigraph G = (V,E) with
vertex degrees (dv)v∈V , is a labeling of the edges in G such that
1. Every edge (u, v) ∈ E has two labels: one in [du] as an edge incident to u and one in [dv]

as an edge incident to v,
2. For every vertex v ∈ V , the labels of the dv edges incident to v are distinct.
In [21], two-way labelings are referred to as undirected two-way labelings. Note that every
graph has a two-way labeling where each vertex “names” its neighbors uniquely in some
canonical way based on the order they’re represented in the input. We will describe
multigraphs with two-way labelings using rotation maps:

I Definition 16 ([20]). Let G be an undirected multigraph on n vertices with a two-way
labeling. The rotation map RotG is defined as follows: RotG(v, i) = (w, j) if the ith edge to
vertex v leads to vertex w and this edge is the jth edge incident to w.

We will use expanders that have efficiently computable rotation maps. We call such graphs
strongly explicit. The usual definition of strong explicitness only refers to time complexity,
but we will use it for both time and space.

I Definition 17. A family of two-way labeled graphs G = {Gn,c}(n,c), where Gn,c is a c-
regular graph on n vertices, is called strongly explicit if given n, c, a vertex v ∈ [n] and an
edge label a ∈ [c], RotGn,c(v, a) can be computed in time poly(log(nc)) and space O(lognc).

3 The Derandomized Product and Expanders of All Sizes

In this section we introduce our derandomized graph product. The derandomized product
generalizes the derandomized square graph operation that was introduced by Rozenman
and Vadhan [21] to give an alternative proof that Undirected S-T Connectivity is in L.
Unlike the derandomized square, the derandomized product is defined for irregular graphs
and produces a sparse approximation to the product of any two (potentially different) graphs
with the same vertex degrees.

Here, by the “product” of two graphs G0, G1, we mean the reversible Markov chain with
transitions defined as follows: from a vertex v, with probability 1/2 take a random step on
G0 followed by a random step on G1 and with probability 1/2 take a random step on G1
followed by a random step on G0.

When G0 = G1 = G, this is the same as taking a 2-step random walk on G. Note,
however, that when G is irregular, a 2-step random walk is not equivalent to doing a 1-step
random walk on the graph G2, whose edges correspond to paths of length 2 in G. Indeed,
even the stationary distribution of the random walk on G2 may be different than on G.3
Nevertheless, our goal in the derandomized product is to produce a relatively sparse graph
whose 1-step random walk approximates the 2-step random walk on G.

3 For example, let G be the graph on two vertices with one edge (u, v) connecting them and a single
self loop on u. Then [2/3, 1/3] is the stationary distribution of G and [3/5, 2/5] is the stationary
distribution of G2.

APPROX/RANDOM 2019

42:8 Deterministic Approximation of Random Walks in Small Space

The intuition behind the derandomized product is as follows: rather than build a graph
with every such two-step walk, we use expander graphs to pick a pseudorandom subset of the
walks. Specifically, we first pick b ∈ {0, 1} at random. Then, as before we take a truly random
step from v to u in Gb. But for the second step, we don’t use an arbitrary edge leaving u in
Gb̄, but rather correlate it to the edge on which we arrived at u using a c-regular expander
on deg(u) vertices, where we assume that the vertex degrees in G0 and G1 are the same.
When c < deg(u), the vertex degrees of the resulting two-step graph will be sparser than
without derandomization. However using the pseudorandom properties of expander graphs,
we can argue that the derandomized product is a good approximation of the true product.

I Definition 18 (Derandomized Product). Let G0, G1 be undirected multigraphs on n vertices
with two-way labelings and identical vertex degrees d1, d2, . . . , dn. Let H = {Hi} be a family
of two-way labeled, c-regular expanders of sizes including d1, . . . , dn. The derandomized
product with respect to H, denoted G0pOHG1, is an undirected multigraph on n vertices with
vertex degrees 2 · c · d1, . . . , 2 · c · dn and rotation map RotG0pOHG1 defined as follows: For
v0 ∈ [n], j0 ∈ [dv0], a0 ∈ [c], and b ∈ {0, 1} we compute RotG0pOHG1(v0, (j0, a0, b)) as
1. Let (v1, j1) =RotGb

(v0, j0)
2. Let (j2, a1) =RotHdv1

(j1, a0)
3. Let (v2, j3) =RotGb̄

(v1, j2)
4. Output (v2, (j3, a1, b̄))
where b̄ denotes the bit-negation of b.

Note that when G0 = G1 the derandomized product generalizes the derandomized square
[21] to irregular graphs, albeit with each edge duplicated twice. To see that G0pOHG1 is
undirected, one can check that RotG0pOHG1(RotG0pOHG1(v0, (j0, a0, b))) = (v0, (j0, a0, b))).

Note that Definition 18 requires that each vertex i has the same degree di in G0 and
G1, ensuring that the random walks on G0, G1, and G0pOHG1 all have the same stationary
distribution. This can be generalized to the case that there is an integer k such that for each
vertex v with degree dv in G1, v has degree k · dv in G0. For this, we can duplicate each edge
in G1 k times to match the degrees of G0 and then apply the derandomized product to the
result. In such cases we abuse notation and write G0pOHG1 to mean G0pOHk ·G1.

In [16] we showed that the derandomized square produces a spectral approximation to
the true square. We now show that the derandomized product also spectrally approximates
a natural graph product.

I Theorem 19. Let G0, G1 be undirected multigraphs on n vertices with two-way labelings,
and normalized Laplacians I −M0 and I −M1. Let G0 have vertex degrees d1, . . . , dn and
G1 have vertex degrees d′1, . . . , d′n where for all i ∈ [n], di = k · d′i for a positive integer k. Let
H = {Hi} be a family of two-way labeled, c-regular expanders with λ(Hi) ≤ λ for all Hi ∈ H,
of sizes including d1, . . . , dn. Let I − M̃ be the normalized Laplacian of G̃ = G0pOHG1. Then

I − M̃ ≈λ I −
1
2 · (M0M1 +M1M0).

A proof of Theorem 19 can be found in Appendix A.
Note that for a graph G with normalized Laplacian I −M and transition matrix T ,

approximating I − 1
2 · (M0M1 + M1M0) as in Theorem 19 for M0 = Mk0 and M1 = Mk1

gives a form of approximation to random walks of length k1 + k2 on G, as

I − T k1+k2 = D1/2(I −Mk1+k2)D−1/2

= I − 1
2 ·D

1/2(M0M1 +M1M0)D−1/2.

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:9

To apply the derandomized product, we need an expander family H with sizes equal to all
of the vertex degrees. However, existing constructions of strongly explicit expander families
only give graphs of sizes that are subsets of N such as all powers of 2 or all perfect squares.
In [21, 16] this was handled by adding self loops to make the vertex degrees all equal and
matching the sizes of expanders in explicit families. Adding self loops was acceptable in those
works because it does not affect connectivity (the focus of [21]) or the Laplacian (the focus
of [16]). However it does affect long random walks (our focus), so we cannot add self loops.
Instead, we show how to obtain strongly explicit expanders of all sizes. Our construction
works by starting with a strongly explicit expander from one of the existing constructions
and merging vertices to achieve any desired size:

I Theorem 20. There exists a family of strongly explicit expanders H such that for all n > 1
and λ ∈ (0, 1) there is a c = poly(1/λ) and a c-regular graph Hn,c ∈ H on n vertices with
λ(Hn,c) ≤ λ.

A proof of Theorem 20 can be found in Appendix B.

4 Main Result

In this section we prove Theorem 4, our main result regarding space bounded computation
of the normalized Laplacian of the r-step random walk on G.

The algorithm described below is inspired by techniques used in [5] to approximate
random walks with a randomized algorithm in nearly linear time. Our analyses use ideas
from the work of Cohen, Kelner, Peebles, Peng, Rao, Sidford, and Vladu on directed Laplacian
system solvers even though all of the graphs we work with are undirected.

4.1 Algorithm Description and Proof Overview
Let I −M be the normalized Laplacian of our input and r be the target power. We will
first describe an algorithm for computing I −Mr without regard for space complexity and
then convert it into a space-efficient approximation algorithm. The algorithm iteratively
approximates larger and larger powers of M . On a given iteration, we will have computed
I −Mk for some k < r and we use the following operations to increase k:

Square: I −Mk → I −M2k,
Plus one: I −Mk → I − 1

2 · (M ·Mk +Mk ·M) = I −Mk+1.

Interleaving these two operations appropriately can produce any power r of M , invoking
each operation at most log2 r times. To see this, let bzbz−1 . . . b0 be the bits of r in its binary
representation where b0 is the least significant bit and bz = 1 is the most significant. We are
given I −M = I −M bz . The algorithm will have z iterations and each one will add one more
bit from most significant to least significant to the binary representation of the exponent. So
after iteration i we will have I −M bzbz−1...bz−i .

For iterations 1, . . . , z, we read the bits of r from bz−1 to b0 one at a time. On each
iteration we start with some power I −Mk. If the corresponding bit is a 0, we square to
create I −M2k (which adds a 0 to the binary representation of the current exponent) and
proceed to the next iteration. If the corresponding bit is a 1, we square and then invoke a
plus one operation to produce I −M2k+1 (which adds a 1 to the binary representation of
the current exponent). After iteration z we will have I −Mr.

APPROX/RANDOM 2019

42:10 Deterministic Approximation of Random Walks in Small Space

Implemented recursively, this algorithm has log2 r levels of recursion and uses O(logN)
space at each level for the matrix multiplications, where N is the bit length of the input graph.
This results in total space O(log r · logN), which is more than we want to use (cf. Theorem 4).
We reduce the space complexity by replacing each square and plus one operation with the
corresponding derandomized product, discussed in Section 3.

Theorem 19 says that the derandomized product produces spectral approximations to the
square and the plus one operation. Since we apply these operations repeatedly on successive
approximations, we need to maintain our ultimate approximation to a power of I −M . In
other words, we need to show that given G̃ such that I − M̃ ≈ε I −Mk we have:
1. I − M̃2 ≈ε I −M2k

2. I − 1
2 · (MM̃ + M̃M) ≈ε I −Mk+1.

We prove these in Lemmas 21 and 22. The transitive property of spectral approximation
(Proposition 6 Part 2) will then complete the proof of spectral approximation.

We only know how to prove items 1 and 2 when Mk is PSD. This is problematic because
M is not guaranteed to be PSD for arbitrary graphs and so Mk may only be PSD when
k is even. Simple solutions like adding self loops (to make the random walk lazy) are not
available to us because loops may affect the random walk behavior in unpredictable ways.
Another attempt would be to replace the plus one operation in the algorithm with a “plus
two” operation

Plus two: I −Mk → I − 1
2 · (M2 ·Mk +Mk ·M2) = I −Mk+2.

Interleaving the square and plus two would preserve the positive semidefiniteness of the
matrix we’re approximating and can produce any even power of M . If r is odd, we could
finish with one plus one operation, which will produce a spectral approximation because
I −Mr−1 is PSD. A problem with this approach is that the derandomized product is defined
only for unweighted multigraphs and M2 may not correspond to an unweighted multigraph
when G is irregular. (When G is regular, the graph G2 consisting of paths of length 2 in G
does have normalized Laplacian I −M2.)

For this reason we begin the algorithm by constructing an unweighted multigraph G0
whose normalized Laplacian I −M0 approximates I −M2 and where M0 is PSD. We can
then approximate any power I −Mr′

0 using the square and plus one operation and hence can
approximate I −Mr for any even r (see Lemma 23). For odd powers, we again can finish
with a single plus one operation.

Our main algorithm is presented below. Our input is an undirected two-way labeled
multigraph G with normalized Laplacian I −M , ε ∈ (0, 1), and r = bzbz−1 . . . b1b0.

Algorithm 1 Computing a spectral approximation to the r-step random walk.
Input: G with normalized Laplacian I −M , ε ∈ (0, 1), r = bzbz−1 . . . b1b0
Output: Gz with normalized Laplacian I −Mz such that I −Mz ≈ε I −Mr

1. Set µ = ε/(32 · z)
2. Let H be family of expanders of every size such that λ(H) ≤ µ for all H ∈ H.
3. Construct G0 such that I −M0 ≈ε/(16·z) I −M2 and M0 is PSD.
4. For i in {1, . . . , z − 1}

a. If bz−i = 0, Gi = Gi−1pOHGi−1
b. Else Gi = (Gi−1pOHGi−1)pOHG0

5. If b0 = 0 (r even), Gz = Gz−1
6. Else (r is odd), Gz = Gz−1pOHG
7. Output Gz

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:11

Note that each derandomized product multiplies every vertex degree by a factor of 2 · c.
So the degrees of G,G0, . . . , Gz are all proportional to one another and the derandomized
products in Algorithm 1 are well-defined.

4.2 Proof of Main Result
In this section we prove Theorem 4 by showing that Algorithm 1 yields a spectral approxim-
ation of our target power I −Mr and can be implemented space-efficiently. First we show
that our two operations, square and plus one, preserve spectral approximation.

I Lemma 21 (Adapted from [5]). Let N and Ñ be symmetric matrices such that I−Ñ ≈ε I−N
and N is PSD, then I − Ñ2 ≈ε I −N2.

The proof of Lemma 21 can be found in [5] as well as the full version of this paper. Next we
show that the plus one operation in our algorithm also preserves spectral approximation.

I Lemma 22. Let Ñ , N1, and N2 be symmetric matrices with spectral norm at most 1 and
suppose that N1 is PSD and commutes with N2. If I − Ñ ≈ε I −N1 then

I − 1
2 · (ÑN2 +N2Ñ) ≈ε I −N2N1.

A proof of Lemma 22 can be found in the full version of the paper.
Setting N1 = Mk and N2 = M in Lemma 22 shows that the plus one operation preserves

spectral approximation whenever Mk is PSD. Recall that the first step in Algorithm 1 is to
construct a graph G0 with normalized Laplacian I −M0 such that M0 is PSD and I −M0
approximates I −M2. We can then approximate I −Mk

0 for any k using squaring and plus
one because Mk

0 will always be PSD. The following Lemma says that I −Mk
0 spectrally

approximates I −M2k.

I Lemma 23. Let r be a positive integer with bit length `(r) and A and B be symmetric PSD
matrices with ‖A‖, ‖B‖ ≤ 1 such that I −A ≈ε I −B and I −B ≈ε I −A for ε ≤ 1/(2 · `(r)).
Then I −Ar ≈2·ε·`(r) I −Br.

A proof of Lemma 23 can be found in the full version of the paper.
Now we can prove Theorem 4. We prove the theorem with three lemmas: Lemma 24

shows how to construct the graph G0 needed in Algorithm 1, Lemma 25 argues that the
algorithm produces a spectral approximation to I −Mr, and Lemma 26 shows that the
algorithm can be implemented in space O(logN + (log r) · log(1/ε) + (log r) · log log r).

4.2.1 Building G0

I Lemma 24. There is an algorithm that takes an undirected, unweighted multigraph G with
normalized Laplacian I −M and a parameter ε > 0, and outputs a rotation map RotG0 for
an undirected, unweighted multigraph G0 with a two-way labeling and normalized Laplacian
I −M0 such that:
1. M0 is PSD,
2. I −M0 ≈ε I −M2,
3. The algorithm uses space O(logN +log(1/ε)), where N is the bit length of the input graph

G.
A proof of Lemma 24 can be found in Appendix C.

APPROX/RANDOM 2019

42:12 Deterministic Approximation of Random Walks in Small Space

4.2.2 Proof of Spectral Approximation
I Lemma 25. Let G be an undirected multigraph with normalized Laplacian I −M , r be a
positive integer and ε ∈ (0, 1). Let Gz be the output of Algorithm 1 with normalized Laplacian
I −Mz. Then

I −Mz ≈ε I −Mr

Proof. Let bzbz−1 . . . b1b0 be the binary representation of r. Recall that for the derandomized
products in our algorithm we use a family of c-regular expanders H from Theorem 20 such
that for every H ∈ H, λ(H) ≤ µ = ε/(32 · z) (and hence c = poly(1/µ) = poly((log r)/ε)).

We construct G0 with normalized Laplacian I −M0 as in Lemma 24 such that M0 is
PSD and I −M0 ≈ε/(16·z) I −M2. By Proposition 6 Part 1, and the fact that

ε/(16 · z)
1− ε/(16 · z) = ε

(16 · z)− ε
≤ ε

8 · z ,

we also have I −M2 ≈ε/(8·z) I −M0.
For each i ∈ {0, . . . z} let ri be the integer with binary representation bzbz−1 . . . bz−i and

let I −Mi be the normalized Laplacian of Gi. We will prove by induction on i that Gi is a
(4 · µ · i)-approximation to I −Mri

0 . Thus, Gz−1 is a 4 · µ · (z − 1) ≤ ε/8-approximation to
I −Mrz−1

0 .
The base case is trivial since r0 = 1. For the induction step, suppose that I −

Mi−1 ≈4·µ·(i−1) I − M
rz−i+1
0 . On iteration i, if bz−i = 0, then Gi = Gi−1pOHGi−1. So

we have

I −Mi ≈µ I −M2
i−1

≈4·µ·(i−1) I −M
2·ri−1
0

= I −Mri
0

where the first approximation uses Theorem 19 and the second uses Lemma 21. By Proposition
6 Part 2 this implies that I −Mi approximates I −Mri

0 with approximation factor

µ+ 4 · µ · (i− 1) + 4 · µ2 · (i− 1) ≤ 4 · µ · i

where we used the fact that µ < 1/(32 · (i− 1)).
If bz−i = 1, Gi = (Gi−1pOHGi−1)pOHG0. Let I −Mds be the normalized Laplacian of

Gi−1pOHGi−1. By the analysis above, I−Mds is a (µ+4·µ·(i−1)+4·µ2 ·(i−1))-approximation
of I −M2·ri−1

0 . By Theorem 19 and Lemma 22 we have

I −Mi ≈µ I −
1
2 · (MdsM0 +M0Mds)

≈µ+4·µ·(i−1)+4·µ2·(i−1) I −M
2·ri−1
0 M0

= I −Mri
0

Applying Proposition 6 Part 2 and noting that µ ≤ 1/(32 · (i− 1)) we get

I −Mi ≈4·µ·i I −Mri
0 .

So we conclude that I −Mz−1 ≈ε/8 I −M
rz−1
0 . Furthermore, by Lemma 23 we have

I −Mrz−1
0 ≈ε/8 I −M2·rz−1 .

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:13

By Proposition 6 Part 2, and the fact that ε ≤ 1, this gives

I −Mz−1 ≈ε/3 I −M2·rz−1

If b0 = 0 then 2 · rz−1 = r and we are done. If b0 = 1 then we apply one more plus one
operation using our original graph G to form Gz = Gz−1pOHG such that

I −Mz ≈µ I −
1
2 · (Mz−1M +MMz−1)

≈ε/3 I −M2·rz−1+1

= I −Mr.

Applying Proposition 6 Part 2 then gives I −Mz ≈ε I −Mr. J

4.2.3 Analysis of Space Complexity
I Lemma 26. Algorithm 1 can be implemented so that given an undirected multigraph G,
a positive integer r, and ε ∈ (0, 1), it computes its output Gz in space O(logN + (log r) ·
log(1/ε) + (log r) · log log r), where N is the bit length of the input graph G.

Proof. We show how to compute RotGz in space O(logN+(log r)·log(1/ε)+(log r)·log log r).
Let bzbz−1 . . . b0 be the binary representation of r. Following Algorithm 1, G0 is constructed
with normalized Laplacian I−M0 ≈ε/(16·z) I−M2. From Lemma 24, we know RotG0 can be
computed in space O(logN + log(16 · z/ε)) = O(logN + log(1/ε) + log log r). Let d1, . . . , dn
be the vertex degrees in G0 and dmax be the maximum degree.

The algorithm is presented to have z iterations, where on iteration i ∈ [z − 1], if bz−i = 0
the derandomized product is invoked once, and if bz−i = 1, it is invoked twice. On iteration
z it is either invoked once (b0 = 1) or not at all (b0 = 0). It will be simpler for us to
think of each derandomized product happening in its own iteration. So we will consider
τ = z + w = O(log r) iterations where w is the number of ones in bz−1, . . . , b0. On iterations
1, . . . , z − 1, there are z − 1 derandomized square operations and w plus one operations.
The final iteration will either have a plus one operation with the graph G (if b0 = 1)
or no operation.

We copy the bits of r into memory and expand them into τ bits as follows: for i ∈
{1, . . . z−1} if bz−i = 0, record a 0 (corresponding to a derandomized square) and if bz−i = 1,
record a 0 followed by a 1 (corresponding to a derandomized square followed by a plus one
operation). Finish by just recording bz at the end. Now we have τ bits t1, . . . , tτ in memory
where for i < τ , ti = 0 if the ith derandomized product in our algorithm is a derandomized
square and ti = 1 if the ith derandomized product is a plus one with the graph G0. If tτ = 0,
we do no derandomized product on the last iteration and if tτ = 1 we apply the plus one
operation using G instead of G0 as described in the algorithm.

We also re-number our graphs to be G1, . . . , Gτ where Gi is the graph produced by
following the derandomized products corresponding to t1, . . . , ti. For each i ∈ [τ] and v ∈ [n],
vertex v in graph Gi has degree (2 · c)i · dv because each derandomized product multiplies
every vertex degree by a factor of 2 · c.

Since our graphs can be irregular, the input to a rotation map may have a different length
than its output. To simplify the space complexity analysis, when calling a rotation map, we
will pad the edge labels to always have the same length as inputs and outputs to the rotation
map. For each graph Gi, we pad its edge labels to have length `i = dlog2 dmaxe+i·dlog2(2 · c)e.

Sublogarithmic-space complexity can depend on the model, so we will be explicit about
the model we use. We compute the rotation map of each graph Gi on a multi-tape Turing
machine with the following input/output conventions:

APPROX/RANDOM 2019

42:14 Deterministic Approximation of Random Walks in Small Space

Input Description:
Tape 1 (read-only): Contains the input G, r, and ε with the head at the leftmost
position of the tape.
Tape 2 (read-write): Contains the input to the rotation map (v0, k0), where v0 ∈ [n] is
a vertex of Gi, and k0 is the label of an edge incident to v0 padded to have total length
`i. The tapehead is at the rightmost end of k0. The rest of the tape may contain
additional data.
Tape 3: (read-write) Contains the bits t1, . . . , tτ with the head pointing at ti.
Tapes 4+: (read-write): Blank worktapes with the head at the leftmost position.

Output Description:
Tape 1: The head should be returned to the leftmost position.
Tape 2: In place of (v0, k0), it should contain (v2, k2) = RotGi(v0, k0), where v2 ∈ [n],
and k2 is padded to have total length `i. The head should be at the rightmost position
of k2 and the rest of the tape should remain unchanged from its state at the beginning
of the computation.
Tape 3: Contains the bits t1, . . . , tτ with the head pointing at ti.
Tapes 4+: (read-write): Are returned to the blank state with the heads at the leftmost
position.

Let Space(Gi) be the space used on tapes other than tape 1 to compute RotGi
. We

will show that Space(Gi) = Space(Gi−1) +O(log c). Recalling that Space(G0) = O(logN +
log(1/ε) + log log r) and unraveling the recursion gives

Space(Gz) = O(logN + log(1/ε) + log log r + τ · log c)
= O(logN + log(1/ε) + log log r + log r · log(poly(log r)/ε))
= O(logN + (log r) · log(1/ε) + (log r) · log log r)

as desired. Now we prove the recurrence on Space(Gi). We begin with (v0, k0) on Tape 2
(possibly with additional data) and the tapehead at the far right of k0. We parse k0 into
k0 = (j0, a0, b) where j0 is an edge label in [(2 ·c)i−1 ·dv0] padded to have length `i−1, a0 ∈ [c],
and b ∈ {0, 1}.

Note that Gi = Gi−1pOHG′ where for i 6= τ , we have G′ = Gi−1 if ti−1 = 0 and G′ = G0
when ti−1 = 1. We compute RotGi according to Definition 18. We move the head left to
the rightmost position of j0. If b = 0, we move the third tapehead to ti−1 and recursively
compute RotGi−1(v0, j0) so that Tape 2 now contains (v1, j1, a0, b) (with j1 padded to have
the same length as j0). The vertex v1 in the graph Gi−1 has degree d′ = (2 · c)i−1 · dv1 so
we next compute RotHd′ (j1, a0) so that (v1, j2, a1, b) is on the tape. Finally we compute
RotG′(v1, j2) and flip b to finish with (v2, j3, a1, b̄) on the second tape. We then move the
third tapehead to ti. If b = 1 then we just swap the roles of Gi−1 and G′ above.

So computing RotGi involves computing the rotation maps of Gi−1, Hd′ , and G′ each once.
Note that each of the rotation map evaluations occur in succession and can therefore reuse
the same space. Clearly Space(G′) ≤ Space(Gi−1) because either G′ = Gi−1 or G′ is either
G0 or G, both of whose rotation maps are subroutines in computing RotGi−1 . Computing
RotHd′ adds an overhead of at most O(log c) space to store the additional edge label a0 and
the bit b. So we can compute the rotation map of Gτ in space O(logN + (log r) · log(1/ε) +
(log r) · log log r). J

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:15

5 Corollaries

5.1 Random Walks
Our algorithm immediately implies Theorem 2, which we prove below.

Proof of Theorem 2. Let D be the diagonal degree matrix and I −M be the normalized
Laplacian of G. Let v = D1/2eS where eS is the characteristic vector of the set S. Let dS be
the sum of the degrees of vertices in S. Then using the fact that I−Mr = D−1/2(I−T r)D1/2

where T is the transition matrix of G gives:

1
dS
· vT (I −Mr)v = 1

dS
· eTSD1/2D−1/2(I − T r)D1/2D1/2eS

= 1
dS
· eTSDeS − eTS (T r(DeS/dS))

= 1− Pr[Vr ∈ S|V0 ∈ S]
= Φr(S)

where the penultimate equality follows from the fact that DeS/dS is the probability distri-
bution over vertices in S where each vertex has mass proportional to its degree, i.e. the
probability distribution V0‖(V0 ∈ S). Multiplying this distribution by T r gives the distribu-
tion of Vr‖(V0 ∈ S). Multiplying this resulting distribution on the left by eTS , sums up the
probabilities over vertices in S, which gives the probability that our random walk ends in S.

From Theorem 4, we can compute a matrix L̃ such that L̃ ≈ε I −Mr in space O(logN +
(log r) · log(1/ε) + (log r) · log log r). It follows from Proposition 6, Part 6 and the definition
of spectral approximation that

(1− ε) · Φr(S) ≤ 1
dS
· vT L̃v ≤ (1 + ε) · Φr(S). J

5.2 Odd Length Walks in Nearly Linear Time
Our approach to approximating odd length walks deterministically and space-efficiently also
leads to a new result in the context of nearly linear-time (randomized) spectral sparsification
algorithms. Specifically, we extend the following Theorem of Cheng, Cheng, Liu, Peng,
and Teng [5].

I Theorem 27 ([5]). There is a randomized algorithm that given an undirected weighted
graph G with n vertices, m edges, and normalized Laplacian I −M , even integer r, and
ε > 0 constructs an undirected weighted graph G̃ with normalized Laplacian L̃ containing
O(n logn/ε2) non-zero entries, in time O(m · log3 n · log5 r/ε4), such that L̃ ≈ε I −Mr with
high probability.

Our approach to approximating odd length walks can be used to extend Theorem 27 to odd r.

I Corollary 28. There is a randomized algorithm that given an undirected weighted graph G
with n vertices, m edges, and normalized Laplacian I−M , odd integer r, and ε > 0 constructs
an undirected weighted graph G̃ with normalized Laplacian L̃ containing O(n logn/ε2) non-
zero entries, in time O(m · log3 n · log5 r/ε4), such that L̃ ≈ε I −Mr with high probability.

Our proof of Corollary 28 uses Theorem 27 as a black box. So in fact, given G with
normalized Laplacian I −M and any graph G̃ whose normalized Laplacian approximates
I −Mr for even r, we can produce an approximation to I −Mr+1 in time nearly linear in

APPROX/RANDOM 2019

42:16 Deterministic Approximation of Random Walks in Small Space

the sparsities of G and G̃. To prove the corollary, we use the same method used in [18] and
[6] for sparsifying two-step walks on undirected and directed graphs, respectively. The idea
is that the graphs constructed from two-step walks can be decomposed into the union of
product graphs: graphs whose adjacency matrices have the form xyT for vectors x, y ∈ Rn.
We use the following fact from [6] that says that product graphs can be sparsified in time
that is nearly-linear in the number of non-zero entries of x and y rather than the number of
non-zero entries in xyT , which may be much larger.

I Lemma 29 (Adapted from [6] Lemma 3.18). Let x, y be non-negative vectors with ‖x‖1 =
‖y‖1 = r and let ε ∈ (0, 1). Furthermore, let s denote the total number of non-zero entries in
x and y and let L = diag(y)− 1

r ·xy
T . Then there is an algorithm that in time O(s · log s/ε2)

computes a matrix L̃ with O(s · log s/ε2) non-zeros such that L̃ is a directed ε-approximation
of L with high probability.

After using Lemma 29 to sparsify each product graph in our decomposition, we then
apply an additional round of graph sparsification.

I Lemma 30 ([12]). Given an undirected graph G with n vertices, m edges, and Laplacian
L and ε > 0, there is an algorithm that computes a graph G̃ with Laplacian L̃ containing
O(n·logn/ε2) non-zero entries in time O(m·log2 n/ε2) such that L̃ ≈ε L with high probability.

Now we are able to prove Corollary 28. See Appendex D for the proof.

References
1 Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, and Charles Rackoff.

Random walks, universal traversal sequences, and the complexity of maze problems. In 20th
Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages
218–223. IEEE, New York, 1979.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.
See also addendum in issue 4(1), 1993, pp. 199–120. doi:10.1002/rsa.3240030308.

3 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom Generators
for Regular Branching Programs. In FOCS, pages 40–47. IEEE Computer Society, 2010.
doi:10.1109/FOCS.2010.11.

4 Joshua Brody and Elad Verbin. The Coin Problem and Pseudorandomness for Branching
Programs. In FOCS, pages 30–39. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.10.

5 Dehua Cheng, Yu Cheng, Yan Liu, Richard Peng, and Shang-Hua Teng. Spectral sparsification
of random-walk matrix polynomials. arXiv preprint, 2015. arXiv:1502.03496.

6 Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup Rao, Aaron Sidford,
and Adrian Vladu. Almost-Linear-Time Algorithms for Markov Chains and New Spectral
Primitives for Directed Graphs. arXiv preprint, 2016. arXiv:1611.00755.

7 Michael B Cohen, Jonathan Kelner, John Peebles, Richard Peng, Aaron Sidford, and Adrian
Vladu. Faster algorithms for computing the stationary distribution, simulating random walks,
and more. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 583–592. IEEE, 2016.

8 Anindya De. Pseudorandomness for Permutation and Regular Branching Programs. In IEEE
Conference on Computational Complexity, pages 221–231. IEEE Computer Society, 2011.
doi:10.1109/CCC.2011.23.

9 Ofer Gabber and Zvi Galil. Explicit Constructions of Linear-Sized Superconcentrators. J.
Comput. Syst. Sci., 22(3):407–420, 1981. doi:10.1016/0022-0000(81)90040-4.

https://doi.org/10.1002/rsa.3240030308
https://doi.org/10.1109/FOCS.2010.11
https://doi.org/10.1109/FOCS.2010.10
http://arxiv.org/abs/1502.03496
http://arxiv.org/abs/1611.00755
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1016/0022-0000(81)90040-4

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:17

10 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for Network
Algorithms. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of
Computing, pages 356–364, Montréal, Québec, Canada, 1994.

11 Gorav Jindal, Pavel Kolev, Richard Peng, and Saurabh Sawlani. Density Independent Al-
gorithms for Sparsifying k-Step Random Walks. In Klaus Jansen, José D. P. Rolim, David
Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Combin-
atorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), volume 81
of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:17, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
APPROX-RANDOM.2017.14.

12 Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. A Framework for
Analyzing Resparsification Algorithms. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), volume abs/1611.06940. ACM, 2016.
arXiv:1611.06940.

13 Yin Tat Lee, Richard Peng, and Daniel A. Spielman. Sparsified Cholesky Solvers for SDD
linear systems. CoRR, abs/1506.08204, 2015. arXiv:1506.08204.

14 G. A. Margulis. Explicit constructions of expanders. Problemy Peredači Informacii, 9(4):71–80,
1973.

15 Milena Mihail. Conductance and Convergence of Markov Chains-A Combinatorial Treatment
of Expanders. In 30th Annual Symposium on Foundations of Computer Science (Research
Triangle Park, North Carolina), pages 526–531. IEEE, 1989.

16 Jack Murtagh, Omer Reingold, Aaron Sidford, and Salil P. Vadhan. Derandomization Beyond
Connectivity: Undirected Laplacian Systems in Nearly Logarithmic Space. In 58th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA,
October 15-17, 2017, pages 801–812, 2017. doi:10.1109/FOCS.2017.79.

17 Joseph Naor and Moni Naor. Small-Bias Probability Spaces: Efficient Constructions and
Applications. SIAM J. Comput., 22(4):838–856, 1993.

18 Richard Peng and Daniel A. Spielman. An Efficient Parallel Solver for SDD Linear Systems.
STOC, 2014.

19 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):Art. 17, 24,
2008.

20 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy Waves, the Zig-Zag Graph Product,
and New Constant-Degree Expanders. Annals of Mathematics, 155(1), January 2001.

21 Eyal Rozenman and Salil Vadhan. Derandomized Squaring of Graphs. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM ‘05), number 3624
in Lecture Notes in Computer Science, pages 436–447, Berkeley, CA, August 2005. Springer.

22 Michael Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and
System Sciences, 58(2):376–403, 1999.

23 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81–90. ACM, 2004.

24 Thomas Steinke. Pseudorandomness for Permutation Branching Programs Without the Group
Theory. Technical Report TR12-083, Electronic Colloquium on Computational Complexity
(ECCC), July 2012. URL: http://eccc.hpi-web.de/report/2012/083/.

APPROX/RANDOM 2019

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.14
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.14
http://arxiv.org/abs/1611.06940
http://arxiv.org/abs/1506.08204
https://doi.org/10.1109/FOCS.2017.79
http://eccc.hpi-web.de/report/2012/083/

42:18 Deterministic Approximation of Random Walks in Small Space

A Proof of Theorem 19

Proof. Note that k ·G1 has the same transition matrix and normalized Laplacian as G1. So
we can replace G1 with k ·G1 and assume k = 1 without loss of generality.

Since G0 and G1 have the same vertex degrees, we can we write

I − 1
2 · (M0M1 +M1M0) = I −D−1/2 1

2 · (T0T1 + T1T0)D1/2 (1)

where T0 and T1 are the transition matrices of G0 and G1, respectively.
Following the proofs in [21] and [16], we can write the transition matrix for the random

walk on G̃ as T̃ = 1
2 · (PR0B̃R1Q+ PR1B̃R0Q), where each matrix corresponds to a step in

the definition of the derandomized product. The two terms correspond to b = 0 and b = 1 in
the derandomized product and, setting d̄ =

∑
i∈[n] di,

Q is a d̄× n matrix that “lifts” a probability distribution over [n] to one over [d̄] where
the mass on each coordinate i ∈ [n] is divided uniformly over the corresponding degree
di. That is, Q(u,i),v = 1/di if u = v and 0 otherwise where the rows of Q are ordered
(1, 1), (1, 2), . . . , (1, d1), (2, 1), . . . , (2, d2),
. . . (n, 1), . . . , (n, dn).
R0 and R1 are the d̄× d̄ symmetric permutation matrices corresponding to the rotation
maps ofG0 andG1, respectively. That is, entry (u, i), (v, j) in Ra is 1 if RotGa(u, i) = (v, j)
and 0 otherwise for a ∈ {0, 1}.
B̃ is a d̄× d̄ symmetric block-diagonal matrix with n blocks where block i is the transition
matrix for the random walk on Hdi

∈ H, the expander in our family with di vertices.
P = DQT is the n × d̄ matrix that maps any d̄-vector to an n-vector by summing
all the entries corresponding to edges incident to the same vertex in G0 and G1.
This corresponds to projecting a distribution on [d̄] back down to a distribution over
[n]. Pv,(u,i) = 1 if u = v and 0 otherwise where the columns of P are ordered
(1, 1), (1, 2), . . . , (1, d1), (2, 1), . . . , (2, d2), . . . (n, 1), . . . , (n, dn).

Likewise, we can write

(T0T1 + T1T0) = (PR0J̃R1Q+ PR1J̃R0Q) (2)

where J̃ is a d̄× d̄ symmetric block-diagonal matrix with n blocks where block i is Ji, the
transition matrix for the complete graph on di vertices with a self loop on every vertex. That
is, every entry of Ji is 1/di.

We will show that

Id̄ −
1
2 · (R0B̄R1 +R1B̄R0) ≈λ Id̄ −

1
2 · (R0J̄R1 +R1J̄R0).

From this the theorem follows by multiplying by D−1/2P on the left and (D−1/2P)T = QD1/2

on the right and applying Proposition 6 Part 3. Since D−1/2PQD1/2 = In, the left-hand
side becomes

In −D−1/2T̃D1/2 = In − D̃−1/2T̃ D̃1/2

= In − M̃

where D̃ = 2 · c ·D is the diagonal matrix of vertex degrees of G̃. By Equations (1) and (2),
the right-hand side becomes In − 1

2 (M0M1 +M1M0).

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:19

By Lemma 8, each graph in H is a λ-approximation of the complete graph on the same
number of vertices. It follows that Id̄ − B̃ ≈λ Id̄ − J̃ because the quadratic form of a block
diagonal matrix equals the sum of the quadratic forms of its blocks. By Lemma 13 and
the fact that Id − J̃ is PSD, Id̄ − B̃ is also a directed λ-approximation of Id̄ − J̃ . So for all
vectors x, y ∈ Rd̄ we have

∣∣xT (B̃ − J̃)y
∣∣ ≤ λ

2 · (x
T (Id̄ − J̃)x+ yT (Id̄ − J̃)y)

≤ λ

2 · (x
Tx+ yT y − 2xT J̃y).

The first inequality uses Lemma 11. We can add the absolute values on the left-hand side
since the right-hand side is always nonnegative (Id − J̃ is PSD) and invariant to swapping x
with −x. The second inequality follows from the fact that J̃ is PSD and so

0 ≤ (x− y)T J̃(x− y) = xT J̃x+ yT J̃y − 2 · xT J̃y.

Fix v ∈ Rd̄ and set x = R0v and y = R1v. Recall that R0 and R1 are symmetric permutation
matrices and hence R2

0 = R2
1 = Id̄. Also note that for all square matrices A and vectors x,

xTAx = xT (A+AT)x/2. Combining these observations with the above gives∣∣∣∣vT (1
2 ·
(
R0(B̃ − J̃)R1 +R1(B̃ − J̃)R0

))
v

∣∣∣∣ =
∣∣vTR0(B̃ − J̃)R1v

∣∣
≤ λ

2 · (v
TR2

0v + vTR2
1v − 2vTR0J̃R1v)

= λ · (vT v − vTR0J̃R1v)

= λ · vT
(
I − 1

2 ·
(
R0J̃R1 +R1J̃R0

))
v

Rearranging the above shows that

Id̄ −
1
2 · (R0B̄R1 +R1B̄R0) ≈λ Id̄ −

1
2 · (R0J̄R1 +R1J̄R0),

which proves the theorem. J

B Proof of Theorem 20

Proof. Let H ′ be a c′-regular expander on m vertices such that n ≤ m ≤ 2n, c′ is a constant
independent of n and λ(H ′) ≤ λ′ < 1/4. H ′ can be constructed using already known strongly
explicit constructions such as [9, 20] followed by squaring the graph a constant number of
times to achieve λ′ < 1/4. We will construct H as follows: Pair off the first (m− n) vertices
with the last (m−n) vertices in H ′ and merge each pair into a single vertex (which will then
have degree 2 · c′). To make the graph regular, add c′ self loops to all of the unpaired vertices.
More precisely, given u′ ∈ [n] and i′ ∈ [c] = [2 · c′] we compute RotH(u′, i′) as follows:
1. If 1 ≤ u′ ≤ m− n [u′ is a paired vertex]:

a. If 1 ≤ i′ ≤ c′, let u = u′, i = i′ [u′ is the first vertex in pair]
b. else let u = m− u′, i = i′ − c′ [u′ is the second vertex in pair]
c. let (v, j) = RotH′(u, i)

APPROX/RANDOM 2019

42:20 Deterministic Approximation of Random Walks in Small Space

2. else (if m− n < u′ ≤ n) [u′ is an unpaired vertex]
a. If 1 ≤ i′ ≤ c′, let u = u′, i = i′, and (v, j) = RotH(u, j) [original edge]
b. else let (v, j) = (u′, i′) [new self loop]

3. a. If v ≤ n, let (v′, j′) = (v, j)
b. else let v′ = m− v, j′ = j + c′.

4. Output (v′, j′)

Next we show that λ(H) is bounded below 1 by a constant. The theorem then follows by
taking the O(log 1/λ)th power to drive λ(H) below λ. This gives the graph degree poly(1/λ).

Let A′ be the adjacency matrix of H ′ and K ′ be the m × m all ones matrix. Since
λ(H ′) ≤ λ′, Lemma 8 implies that

1
c′
· (c′ · I −A′) ≈λ′

1
m
· (m · I −K ′).

Define B to be the m× n matrix such that Bu′,u = 1 if and only if vertex u′ ∈ V (H ′) was
merged into vertex u ∈ V (H) or vertex u ∈ V (H ′) was not merged and is labeled vertex u′
in H. That is, Bu′,u = 1 if and only if u = u′ or n ≤ u = m− u′. Then the unnormalized
Laplacian of the expander after the merging step is BT (c′ · I −A′)B. Adding self loops to a
graph does not change its Laplacian. So applying Proposition 6 parts 3 and 6 we get

L(H) = 1
2c′ ·B

T (c′ · I −A′)B ≈λ′
1

2m ·B
T (m · I −K)B

Note that the righthand side is the normalized Laplacian of the graph U that results from
starting with the complete graph on m vertices, merging the same pairs of vertices that are
merged in H and adding m self loops to all of the unmerged vertices for regularity.

We finish the proof by showing that λ(U) ≤ 1/2 and thus H is a (λ′ + 1/2 + λ′/2)-
approximation of the complete graph by Proposition 6 Part 2 and Lemma 8. Recalling that
λ′ < 1/4 completes the proof.

U has at least m edges between every pair of vertices so we can write its transition matrix
Tu as

Tu = 1
2 · Jm + 1

2 · E

where Jm is the transition matrix of the complete graph on m vertices with self loops on
every vertex and E is the transition matrix for an m-regular multigraph. Since the uniform
distribution is stationary for all regular graphs, ~1 is an eigenvector of eigenvalue 1 for Tu, Jm,
and E. Thus

λ(U) = sup
v⊥~1

‖Tuv‖
‖v‖

≤ sup
v⊥~1

1
2 · (‖Jmv‖+ ‖Ev‖)

‖v‖

≤ 1
2 · 0 + 1

2 · 1,

which completes the proof. J

J. Murtagh, O. Reingold, A. Sidford, and S. Vadhan 42:21

C Proof of Lemma 24

Proof. Let δ = 1/d4/εe and t = 1/δ, an integer. Let H be a family of c-regular expanders of
every size from Theorem 20, such that for every H ∈ H, λ(H) ≤ δ (and hence c = poly(1/δ)).

Let G̃ = GpOHG be the derandomized square of G with normalized Laplacian I − M̃ .
Each vertex v in G̃ has degree d̃v = 2 · c · dv, where dv is the degree of v in G. We construct
G0 as follows: duplicate every edge of G̃ to have multiplicity t and then for each vertex v,
add d̃v self loops. So for each vertex v in G0, v has degree (t+ 1) · 2 · c · dv and hence G0 has
the same stationary distribution as G. Note that we can write

M0 = (t · M̃ + I)/(t+ 1).

First we show that M0 is PSD. From Theorem 19, we have I − M̃ ≈δ I −M2, so I − M̃ �
(1 + δ) · (I −M2) � (1 + δ) · I, since M2 is PSD. Thus M̃ � −δ · I and

M0 �
t · (−δ · I) + I

t+ 1 � 0.

Next we prove that I −M0 ≈ε I −M2

I −M0 = (t/(t+ 1)) · (I − M̃)

=
(

1
1 + δ

)
· (I − M̃)

� I −M2.

Observe that since I − M̃ ≈δ I −M2, we also have

I −M0 =
(

1
1 + δ

)
· (I − M̃)

�
(

1− δ
1 + δ

)
· (I −M2)

� (1− ε) · (I −M2).

We can construct a two-way labeling of G in space O(logN) by arbitrarily numbering
the edges incident to each vertex. Computing RotG̃ involves computing RotG twice and
the rotation map of an expander in H once. For a given vertex degree d in G, RotHd

can be computed in space O(log(d · c)) = O(logN + log(1/ε)). Duplicating the edges
and adding self loops for RotG0 adds at most O(logN + log(1/ε)) overhead for a total of
O(logN + log(1/ε)) space. J

D Proof of Corollary 28

Proof. Theorem 27 says that we can compute a graph G̃ with normalized Laplacian I−M̃ with
O(n logn/ε2) non-zero entries, in time O(m·log3 n·log5 r/ε4), such that I−M̃ ≈ε/8 I−Mr−1

with high probability. By Lemma 22 we have

I − 1
2 · (M̃M +MM̃) ≈ε/8 I −Mr. (3)

Our goal is to sparsify the lefthand side. Note that since I − M̃ spectrally approximates
I −Mr−1, the corresponding graphs must have the same stationary distribution and hence
proportional vertex degrees. In other words there is a number k such that for all vertices

APPROX/RANDOM 2019

42:22 Deterministic Approximation of Random Walks in Small Space

v ∈ [n] we have degG̃(v) = k · degG(v). We will think of the graph that adds one step to our
walk as k ·G rather than G because k ·G and G̃ have the same degrees and the normalized
Laplacian of k ·G is the same as the normalized Laplacian of G.

Let A and Ã be the adjacency matrices of k · G and G̃, respectively and let D be the
diagonal matrix of vertex degrees. Let Q = D−AD−1Ã and note that Q is the Laplacian of
a weighted directed graph. We will show how to compute a sparse directed approximation
of Q and use this to show how to compute a sparse approximation to the lefthand side of
Equation 3. Our approach is inspired by similar arguments from [18, 6]. We decompose Q
into n product graphs as follows. For each i ∈ [n] let

Qi = diag(Ãi,:)−
1
Di,i

·A:,iÃ
T
i,:

where Ãi,: and A:,i denote the ith row of Ã and the ith column of A, respectively. Observe
that Qi is a directed Laplacian of a bipartite graph between the neighbors of vertex i in
k ·G and the neighbors of i in G̃ and that Q =

∑
i∈[n]Qi. Furthermore, each Qi is a product

graph and hence can be sparsified using Lemma 29. Set xi = A:,i, yi = Ãi,:, ri = Di,i, and
let si be the total number of non-zero entries in x and y. Note that ‖xi‖1 = ‖yi‖1 = ri
because k · G and G̃ have the same vertex degrees. By Lemma 29, for each i ∈ [n] we
can compute a directed ε/8-approximation Q̃i of Qi containing O(si · log si/ε2) entries in
time O(si · log si/ε2). Applying the lemma to each Qi yields Q̃ =

∑
i∈[n] Q̃i, which contains

O(m · logm/ε2) non-zero entries and can be computed in time O(m · logm/ε2) because∑
i∈[n] si = O(m). By Lemma 12 we have

1
2 · (Q̃i + Q̃Ti) ≈ε/8

1
2 · (Qi +QTi)

for all i ∈ [n] with high probability. It follows from Proposition 6 Part 5 that

1
2 · (Q̃+ Q̃T) = 1

2 ·
∑
i∈[n]

(Q̃i + Q̃Ti)

≈ε/8
1
2 ·
∑
i∈[n]

(Qi +QTi)

= 1
2 · (Q+QT)

with high probability. From Proposition 6 Part 3, we then get

D−1/2 1
2 · (Q̃+ Q̃T)D−1/2 ≈ε/8 D−1/2 1

2 · (Q+QT)D−1/2

= I − 1
2 · (M̃M +MM̃)

with high probability. Applying Lemma 30 we can re-sparsify the graph corresponding
to D−1/2 1

2 · (Q̃ + Q̃T)D−1/2 to produce a graph G′ whose normalized Laplacian I −M ′
has O(n · logn/ε2) non-zero entries and I −M ′ ≈ε/8 D−1/2 1

2 · (Q̃ + Q̃T)D−1/2 with high
probability. This takes additional time O(m · log2 n/ε2) due to Theorem 1.1 of [12]. Applying
Proposition 6 Part 2 twice we get that I −M ′ ≈ε I −Mr and the total running time for the
procedure was O(m · log3 n · log5 r/ε4). J

Two-Source Condensers with Low Error and Small
Entropy Gap via Entropy-Resilient Functions
Avraham Ben-Aroya
The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel

Gil Cohen
The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
https://www.gilcohen.org
gil@tauex.tau.ac.il

Dean Doron
Department of Computer Science, University of Texas at Austin, USA
deandoron@utexas.edu

Amnon Ta-Shma
The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
https://www.cs.tau.ac.il/~amnon
amnon@tau.ac.il

Abstract
In their seminal work, Chattopadhyay and Zuckerman (STOC’16) constructed a two-source extractor
with error ε for n-bit sources having min-entropy polylog(n/ε). Unfortunately, the construction’s
running-time is poly(n/ε), which means that with polynomial-time constructions, only polynomially-
small errors are possible. Our main result is a poly(n, log(1/ε))-time computable two-source
condenser. For any k ≥ polylog(n/ε), our condenser transforms two independent (n, k)-sources to a
distribution over m = k −O(log(1/ε)) bits that is ε-close to having min-entropy m− o(log(1/ε)).
Hence, achieving entropy gap of o(log(1/ε)).

The bottleneck for obtaining low error in recent constructions of two-source extractors lies in
the use of resilient functions. Informally, this is a function that receives input bits from r players
with the property that the function’s output has small bias even if a bounded number of corrupted
players feed adversarial inputs after seeing the inputs of the other players. The drawback of using
resilient functions is that the error cannot be smaller than ln r/r. This, in return, forces the running
time of the construction to be polynomial in 1/ε.

A key component in our construction is a variant of resilient functions which we call entropy-
resilient functions. This variant can be seen as playing the above game for several rounds, each
round outputting one bit. The goal of the corrupted players is to reduce, with as high probability
as they can, the min-entropy accumulated throughout the rounds. We show that while the bias
decreases only polynomially with the number of players in a one-round game, their success probability
decreases exponentially in the entropy gap they are attempting to incur in a repeated game.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases Condensers, Extractors, Resilient functions, Explicit constructions

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.43

Category RANDOM

Funding Avraham Ben-Aroya: Israel Science Foundation Grant 994/14 and by Len Blavatnik and
the Blavatnik Family Foundation.
Dean Doron: Israel Science Foundation Grant 994/14 and by Len Blavatnik and the Blavatnik
Family Foundation. This work was done while being at Tel-Aviv University.
Amnon Ta-Shma: Israel Science Foundation Grant 994/14.

© Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 43; pp. 43:1–43:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.gilcohen.org
mailto:gil@tauex.tau.ac.il
mailto:deandoron@utexas.edu
https://www.cs.tau.ac.il/~amnon
mailto:amnon@tau.ac.il
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.43
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 Two-Source Condensers with Low Error and Small Entropy Gap

1 Introduction

The problem of extracting randomness from imperfect random sources can be traced back to
von Neumann [45]. Ideally, and somewhat informally, a randomness extractor is an algorithm
that produces, or extracts, truly random bits from an imperfect source of randomness. Going
beyond that particular task, randomness extractors have found dozens of applications for
error correcting codes, cryptography, combinatorics, and circuit lower bounds to name a few.

An imperfect source of randomness is modelled by a random variable X that, for con-
venience sake, is assumed to be supported on n-bit strings. The standard measure for the
amount of randomness in X is its min-entropy [18], which is the maximum k ≥ 0 for which
one cannot guess X with probability larger than 2−k. For any such k, we say that X is an
(n, k)-source, or a k-source for short.

Ideally, a randomness extractor would have been defined as a function Ext : {0, 1}n →
{0, 1}m with the property that for every random variable X with sufficiently high min-entropy,
the output Ext(X) is ε-close to the uniform distribution on {0, 1}m in the statistical distance,
which we write as Ext(X) ≈ε Um. Unfortunately, such a function Ext, even for very high
min-entropy k = n− 1 and, when set with a modest error guarantee ε = 1/4 and a single
output bit m = 1, does not exist. In light of that, several types of randomness extractors,
that relax in different ways the above ideal definition, have been introduced and studied in
the literature. In this work, we focus on one such well-studied instantiation.

I Definition 1 (Two-source extractors [18]). A function Ext : {0, 1}n×{0, 1}n → {0, 1}m is a
two-source extractor for min-entropy k with error guarantee ε if for every pair of independent
(n, k)-sources X,Y , the output distribution Ext(X,Y) ≈ε Um.

The existence of a two-source extractor for any min-entropy k = Ω(log(n/ε)) with m =
2k −O(log(1/ε)) output bits was proved in [18]. In the same paper, an explicit construction
of a two-source extractor for min-entropy k > n/2 was obtained. Remarkably, despite much
attention [13, 42, 12, 31] and progress on relaxed settings [6, 41, 33, 32, 34, 20], the problem
of constructing two-source extractors even for min-entropy as high as k = 0.1n with m = 1
output bits remained open for 30 years. To appreciate the difficulty of constructing two-source
extractors, we remark that such constructions yield explicit constructions of Ramsey graphs,
a notoriously hard problem in combinatorics [1, 38, 25, 19, 26, 3, 27, 39, 5, 6, 7, 23].

In their breakthrough result, Chattopadhyay and Zuckerman [17] were finally able to
obtain an explicit two-source extractor for min-entropy k = polylog(n/ε). Partially motivated
by the problem of constructing Ramsey graphs, a line of followup works [24, 16, 21, 9, 22,
35, 36] focused on the case of constant error ε and was devoted for reducing the min-entropy
requirement as a function of n. The state of the art result in this line of work is due to
Li [36] and requires min-entropy logn·log logn

log log logn · poly(1/ε).

1.1 Resilient Functions – The Barrier for Obtaining Extractors With
Low Error

Unfortunately, despite the fact that the dependence of the min-entropy of the Chattopadhyay-
Zuckerman extractor on ε is polynomially-close to optimal, the running-time of their con-
struction depends polynomially on 1/ε rather than the desired polylog(1/ε) dependence. The
same holds for all subsequent constructions. That is, these constructions are not strongly
polynomial-time and, in particular, the error guarantee cannot be taken to be sub-polynomial
in n while maintaining running-time poly(n). This stands in contrast to classical extractors
for high min-entropy [18, 42, 13, 31] that are strongly polynomial-time, and can support
exponentially-small error.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:3

Informally speaking, the reason for this undesired dependence of the running-time on ε
lies in the use of a so-called resilient function [11]. A q-resilient function f : {0, 1}r → {0, 1}
can be thought of as an r-player game. If all players feed uniform and independent inputs to
f , the output distribution has small bias, and, furthermore, this property is retained even
if any q players decide to deviate from the rules of the game and choose their inputs as a
function of all other inputs to f .

Majority on r input bits is an example of a q-resilient function with q = O(
√
r). Ajtai

and Linial proved, using the probabilistic method, the existence of a q-resilient function for
q = O(r

log2 r
) [2]. The KKL Theorem [30] implies that the Ajtai-Linial function is tight up to

a log r factor. Chattopadhyay and Zuckerman [17] constructed a derandomized version of the
Ajtai-Linial function with q = r1−δ, for any constant δ > 0. Their construction has further
desirable properties. In a subsequent work, Meka obtained a derandomized version of the
Ajtai-Linial function with the same parameters as the randomized construction [37]. However,
no matter what function is chosen, [30] showed that there is always a single corrupted player
that has influence p = Ω(log r

r), i.e., with probability p over the input fed by the other players,
the single corrupted player can fully determine the result.

Almost all constructions of randomness extractors following [17] can be divided into
two steps. First, the two n-bit sources X,Y are “transformed” to a single r-bit source
Z = h(X,Y) with some structure, called a non-oblivious bit-fixing source. A resilient function
f : {0, 1}r → {0, 1} is then applied to Z so to obtain the output Ext(X,Y) = f(h(X,Y)). In
all works, the function h is based on non-malleable extractors or on related primitives such
as correlation breakers. As mentioned above, the use of the resilient function implies that
even a single corrupted player has influence Ω(log r

r) and so to obtain an error guarantee ε,
the number of players r must be taken larger than 1/ε. This results in running-time Ω(1/ε).1

1.2 Entropy-Resilient Functions

To obtain our condenser, we extend the notion of resilient functions to functions outputting
many bits. Informally speaking, instead of considering an r-player game in which the bad
players try to bias the output, we study a repeated game version in which the r players play
for m rounds. The bad players attempt to decrease, with as high probability as they can,
the min-entropy of the m-bit outcome (and we will even allow the bad players to cast their
votes after the good players played all rounds).

Recall that, by [30], when m = 1, even a single player can bias the result by Ω(log r
r).

Put differently, viewing this bias as the error of a deterministic extractor, the error is bound
to be at least polynomially-small in the number of players. Our key insight is that when
m becomes large, the probability that the bad players can reduce g bits of entropy from
the output (creating an “entropy gap” of g) is exponentially small in g. We further show
that this holds for a specific function f , induced by the Ajtai-Linial function, even when the
honest players are only t-wise independent (for t = polylog(r/ε)). Our analysis uses and
extends ideas from the work of Chattopadhyay and Zuckerman [17].

1 There is one exception to the above scheme. In [8], it is shown that if very strong t-non-malleable
extractors can be explicitly constructed then the function f can be replaced with the parity function
(which is not resilient at all) and low error two-source extractors with low min-entropy requirement can
be obtained. However, it is not known how to explicitly construct such t-non-malleable extractors.

APPROX/RANDOM 2019

43:4 Two-Source Condensers with Low Error and Small Entropy Gap

1.3 The Two-Source Condensers We Obtain
The main contribution of this work is an explicit construction of a two-source condenser
with low error and small entropy gap, outputting almost all of the entropy from one source.

I Definition 2 (Two-source condensers). A function Cond : {0, 1}n × {0, 1}n → {0, 1}m is a
two-source condenser for min-entropy k with min-entropy gap g and error guarantee ε if for
every pair of independent (n, k)-sources, Cond(X,Y) is ε-close to an (m,m− g)-source.

Note that a two-source extractor is a two-source condenser with entropy gap g = 0. Thus,
condensers can be seen as a relaxation of extractors in which some, hopefully small, “gap”
of min-entropy in the output distribution is allowed. Despite having a weaker guarantee,
condensers play a key role in the construction of many types of randomness extractors,
including two-source extractors [9], their variants [42, 6, 47, 41, 32], and seeded-extractors [28].
Most related to our work is a paper by Rao [40] that, for every δ > 0, constructed a
poly(n, log(1/ε))-time computable two-source condenser2 for min-entropy k = δn having
m = Ω(δn) output bits with entropy gap g = poly(1/δ, log(1/ε)).

In this work, we obtain a strongly polynomial-time construction of a two-source condenser
with low error and small min-entropy gap.

I Theorem 3 (Main result). For all integers n, k and every ε > 0 such that n ≥ k ≥
polylog(nε), there exists a poly(n, log(1/ε))-time computable two-source condenser

Cond : {0, 1}n × {0, 1}n → {0, 1}m

for min-entropy k, with error guarantee ε, min-entropy gap g = o(log 1
ε), and m = k −

O(log(1/ε)) output bits.

Note that the entropy gap g is independent of the entropy k and scales sub-logarithmically
with 1/ε. We prove Theorem 3, whose formal statement is given in Theorem 31, in two
steps. First, we construct a two-source condenser with the same guarantees as provided by
Theorem 3, though only with m = kα output bits, where 0 < α < 1 is some small universal
constant (see Theorem 27). This part of the construction is based on our study of entropy-
resilient functions (Section 3) and on the adaptation of the Chattopadhyay-Zuckerman
construction for entropy-resilient functions. To reduce the huge entropy-loss we incur (i.e.,
to increase the output length from kα to k −O(log(1/ε))), in the second step, we construct
a seedless condenser for block-sources–a result that we believe is of independent interest on
which we now elaborate.

1.4 Seedless Condensers for a Single Block-Source
A (k1, k2)-block-source is a pair of random variables X1, X2 that, although may be dependent,
have the following guarantee. First, X1 is a k1-source, and second, conditioned on any fixing
of X1, the random variable X2 has min-entropy k2. Throughout this section, we denote the
length of X1 by n1 and the length of X2 by n2. Informally, the notion of a block-source “lies
between” a single source and two independent sources. Indeed, any (k1, k2)-block-source is a
(k1 + k2)-source. Moreover, if X1 is a k1-source and X2 is an independent k2-source then
X1, X2 is a (k1, k2)-block-source.

2 To the matter of fact, Rao entitled his construction a “two-source almost extractor” – a suitable name
given its small entropy gap.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:5

Block-sources are key to almost all constructions of seeded extractors as well as to the
construction of Ramsey graphs. As mentioned above, there is no one-source extractor,
whereas two-source extractors exist even for very low min-entropy. Despite being more
structured than a general source, it is a well-known fact that there is no extractor for a single
block-source (with non-trivial parameters).

A key component that allows us to increase the output length of our condenser discussed
above is a seedless condenser for a single block-source. Let X1, X2 be a (k1, k2)-block-
source. Write g = n2 − k2 for the entropy gap of X2. For any given ε > 0, we show
how to deterministically transform X1, X2 to a single m-bit random variable, where m =
k1 − g −O(log(1/ε)), that is ε-close to having min-entropy m− g − 1. That is, informally,
we are able to condense X1 roughly to its entropy content k1 using (the dependent random
variable) X2 while inheriting the entropy gap of X2 both in the resulted entropy gap and
entropy loss. We stress that this transformation is deterministic. This demonstrates that
despite the well-known fact that a block-source extractor does not exist, a block-source
condenser does. For a formal treatment, see Section 5.

1.5 A Three-Source Extractor
An immediate implication of Theorem 3 are low error three-source extractors supporting
min-entropies k1 = k2 = polylog(n/ε) and k3 = Ω(log(1/ε)). This is achieved by feeding our
condenser’s output Y = Cond(X1, X2) as a seed to a seeded extractor that supports small
entropies (see, e.g., Theorem 10), outputting Ext(X3, Y).

I Corollary 4. For all integers n, k, k′ and every ε > 0 such that n ≥ k ≥ polylog(nε) and
n ≥ k′ ≥ Ω(log 1

ε) there exists a poly(n, log(1/ε))-time computable three-source extractor

3Ext : {0, 1}n × {0, 1}n × {0, 1}n → {0, 1}m

for min-entropies k, k, k′ and error guarantee ε, where m = k′ −O(log(1/ε)).

Proof. Set ε′ = ε2, let k′ ≥ 2 log(1/ε′) + O(1) and let Ext : {0, 1}n × {0, 1}d → {0, 1}m

be the (k′, ε′)-strong-seeded-extractor guaranteed to us by Theorem 10, where m = k′ −
2 log(1/ε)−O(1) and d = O(logn log(n/ε′)).

Let k be large enough for Cond : {0, 1}n × {0, 1}n → {0, 1}d given to us by Theorem 31
to output d bits with error ε/2 and entropy gap g = o(log(1/ε)), so indeed k ≥ polylog(nε).

Denote Y = Cond(X1, X2), so Y is (ε/2)-close to some random variable Y ′ having
min-entropy at least d− g. Then:

|Ext(X3, Y)− Um × Y | ≤ |Ext(X3, Y
′)− Um × Y ′|+

ε

2
=

∑
y∈supp(Y ′)

Pr[Y ′ = y] · |Ext(X3, y)− Um|+
ε

2

≤
∑

y∈{0,1}d
2−(d−g) · |Ext(X3, y)− Um|+

ε

2

≤ 2g
∑

y∈{0,1}d
2−d|Ext(X3, y)− Um|+

ε

2

= 2g · |Ext(X3, Ud)− Um × Ud|+
ε

2 ≤ 2gε′ + ε

2 ≤ ε,

thereby also showing that 3Ext(X1, X2, X3) = Ext(X3, Y) is strong in Y . J

APPROX/RANDOM 2019

43:6 Two-Source Condensers with Low Error and Small Entropy Gap

When ε is sub-polynomial in n (which is an interesting regime of parameters because then
the two-source extractor of [17] is not polynomial-time computable) Corollary 4 improves
upon known three-source extractors that either require all three-sources to have min-entropy
polylog(nε) [34] or require, for any parameter of choice δ > 0, min-entropies δn, poly(1

δ) log(nε),
poly(1

δ) log(logn
ε) [20].

We remark that the proof of Corollary 4 goes through because the tiny entropy gap g
of Y = Cond(X1, X2) (where g = o(log 1

ε)) allows us to use Y as a replacement to a truly
uniform seed with only a minor loss in parameters. We believe this should also be true
in other circumstances where random variables with a negligible entropy gap can replace
uniform random variables. A recent example to this is the use of samplers with multiplicative
error instead of standard samplers in [9].

To conclude, we believe that the use of entropy-resilient functions as a tool to extract
almost all the entropy from bit-fixing sources while suffering only a small error is both natural
and interesting on its own. We hope the tools and constructions developed in this paper will
be of further use, possibly for constructing low error two-source extractors. In particular,
we have seen in Corollary 4 that by using an independent third source and outputting
Ext(X3,Cond(X1, X2)) we get an excellent three-source extractor. An open problem left by
our work is whether outputting Ext(X2,Cond(X1, X2)) gives a low-error two-source extractor.
We remark that a similar idea has been used in previous constructions [34, 10] and elsewhere.
We were not able to prove that Ext(X2,Cond(X1, X2)) gives a low-error two-source extractor
and we leave this as an intriguing open problem.

2 Preliminaries

We use log(x) for log2(x). For an integer n, we denote by [n] the set {1, . . . , n}. The density
of a subset B ⊆ A is denoted by µ(B) = |B|

|A| .

2.1 Random Variables, Min-Entropy
The statistical distance between two distributions X and Y over the same domain Ω is defined
by SD(X,Y) = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). If SD(X,Y) ≤ ε we say X is ε-close
to Y and denote it X ≈ε Y . We denote by Un the random variable distributed uniformly
over {0, 1}n.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the
random variable distributed over Ω2 obtained by choosing x ∼ X and outputting f(x). For
every f : Ω1 → Ω2 and two random variables X,Y over Ω1 it holds that SD(f(X), f(Y)) ≤
SD(X,Y).

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log 1
Pr[X = x] .

A random variable X is an (n, k)-source if X is distributed over {0, 1}n and has min-entropy
at least k. When n is clear from the context we sometimes omit it and simply say that X is
a k-source.

2.2 Limited Independence
I Definition 5. A distribution X over {0, 1}n is called (t, γ)-wise independent if the restric-
tion of X to every t coordinates is γ-close to Ut.

I Lemma 6 ([4]). Let X = X1, . . . , Xn be a distribution over {0, 1}n that is (t, γ)-wise
independent. Then, X is (ntγ)-close to a t-wise independent distribution.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:7

2.3 Seeded Extractors
I Definition 7 (Seeded extractors). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε)-seeded-extractor if the following holds. For every (n, k)-source X, the output
Ext(X,Y) ≈ε Um, where Y is uniformly distributed over {0, 1}d and is independent of X.
Further, Ext is a (k, ε)-strong-seeded-extractor if (Ext(X,Y), Y) ≈ε (Um, Y).

I Theorem 8 ([28]). There exists a universal constant cGUV ≥ 2 for which the following
holds. For every integers n ≥ k and ε > 0 there exists a poly(n, log(1/ε))-time computable
(k, ε)-strong-seeded-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = cGUV log(n/ε) and m = k/2 output bits.

Extractors can be used for sampling using weak sources.

I Theorem 9 ([46]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k1, ε)-seeded-extractor.
Identify {0, 1}d with [2d] and let S(X) =

{
Ext(X, 1), . . . ,Ext(X, 2d)

}
. Then, for every

(n, k2)-source X and any set T ⊆ {0, 1}m,

Pr
x∼X

[∣∣∣∣ |S(x) ∩ T |
2d − µ(T)

∣∣∣∣ > ε

]
≤ 2−(k2−k1).

The following extractor allows us to extract all the min-entropy, at the cost of a larger
seed-length.

I Theorem 10 ([28]). There exists a universal constant c such that the following holds.
For all integers n ≥ k and any ε > 0 such that k ≥ 2 log(1/ε) + O(1), there exists a
poly(n, log(1/ε))-time computable (k, ε)-strong-seeded-extractor

Ext : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = c logn · log n
ε and m = k − 2 log 1

ε −O(1) output bits.

2.4 Two-Source Condensers
I Definition 11 (Condensers). A function

Cond : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is an ((n1, k1), (n2, k2)) →ε (m, k′ = m − g) condenser if the following holds. For every
(n1, k1)-source X1 and an independent (n2, k2)-source X2, the output Cond(X1, X2) is ε-close
to an (m, k′)-source. We refer to ε as the error guarantee and to g as the entropy gap of Cond.

I Definition 12 (Strong condensers). A function

Cond : {0, 1}n1 × {0, 1}n2 → {0, 1}m

is a ((n1, k1), (n2, k2))→ε1,ε2 (m, k′)-strong-condenser (in the first source) if the following
holds. For every (n1, k1)-source X1 and an independent (n2, k2)-source X2, with probability
1− ε1 over x1 ∼ X1, the output Cond(x1, X2) is ε2-close to an (m, k′)-source.

Similarly, one can define, in the natural way, a condenser that is strong in the second source.

APPROX/RANDOM 2019

43:8 Two-Source Condensers with Low Error and Small Entropy Gap

2.5 Non-Malleable Extractors
I Definition 13. A function nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) t-non-malleable
extractor, if for every (n, k)-source X, for every independent random variable Y that is
uniform over {0, 1}d and every functions f1, . . . , ft : {0, 1}d → {0, 1}d with no fixed-points3
it holds that:

(nmExt(X,Y), nmExt(X, f1(Y)), . . . , nmExt(X, ft(Y), Y) ≈ε
(Um, nmExt(X, f1(Y)), . . . , nmExt(X, ft(Y), Y)).

We will need the following lemma concerning the existence of a set of good seeds of a
non-malleable extractor, given in [17].

I Lemma 14 ([17]). Let nmExt : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) t-non-malleable
extractor. Let X be any (n, k)-source. Let BAD be the set defined by

BAD = {r ∈ [D] | ∃ distinct r1, . . . , rt ∈ [D],∀i ∈ [t] ri 6= r, |(nmExt(X, r),
nmExt(X, r1), . . . , nmExt(X, rt))− (Um, nmExt(X, r1), . . . , nmExt(X, rt))| >

√
ε}.

Then, µ(BAD) ≤
√
ε. We refer to the set [D] \ BAD as the set of good seeds (with respect

to the underlying distribution of X).

I Lemma 15. Let X1, . . . , Xt be random variables over {0, 1}m. Further suppose that for
any i ∈ [t],(

Xi, {Xj}j 6=i
)
≈ε
(
Um, {Xj}j 6=i

)
.

Then, (X1, . . . , Xt) ≈tε Utm.

Finally, good explicit constructions of t-non-malleable extractors exist. The following
choice of parameters will be sufficient for us.

I Theorem 16 ([15, 22, 35]). There exists a universal constant cnm ≥ 2 such that for
all integers n, k, t, and every ε > 0 such that n ≥ k ≥ cnmt

2 log2(n/ε), there exists a
poly(n, log(1/ε))-time computable (k, ε) t-non-malleable extractor

nmExt : {0, 1}n × {0, 1}d → {0, 1}m

with m = k
3t output bits and seed length d = cnmt

2 log2(n/ε).

2.6 Fooling AC Circuits
A Boolean circuit is an AC[d, s] circuit if it has depth d, size s and unbounded fan-in. We say
that a circuit C with n input bits is ε-fooled by a distribution D if SD(C(D), D(Un)) ≤ ε.

Harsha and Srinivasan [29], improving upon Braverman’s seminal result [14] (see also
[44]) proved:

I Theorem 17 ([29]). There exists a constant c > 0 such that the following holds. For every
integers s, d, t, any AC[d, s] circuit is ε-fooled by any t-wise independent distribution, where
ε = 2−

t

(log s)c·d .

3 That is, for every i and every x, we have fi(x) 6= x.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:9

We need a slight generalization of Theorem 17:

I Lemma 18. There exists a constant c > 0 such that the following holds for every integers
n,m, d, s, where m ≤ s. Let C : {0, 1}n → {0, 1}m be an AC[d, s] circuit. Then, C is ε-fooled
by any t-wise independent distribution, where ε = 2m−

t

(log s)c·d .

Proof. Fix some z ∈ {0, 1}m and consider the circuit Cz : {0, 1}n → {0, 1} that given an
input x ∈ {0, 1}n checks whether C(x) = z. Cz can be constructed by adding an AND gate
and m comparators on top of C, so clearly Cz is an AC[d+ 2, s′] circuit for s′ = s+O(m).
By Theorem 17, every t-wise distribution ε′-fools Cz, where

ε′ = 2
− t

(log s′)c′·(d+2) ≤ 2−
t

(log s)c·d

for some universal constants c, c′ > 0 (using the fact that m ≤ s). That is, for every t-wise
distribution D and z ∈ {0, 1}m, SD(Cz(D), Cz(Un)) ≤ ε′. Now,

ε = SD(C(D), C(Un)) = 1
2

∑
z∈{0,1}m

|Pr[C(D) = z]− Pr[C(Un) = z]|

=
∑

z∈{0,1}m

1
2 |E[Cz(D)]− E[Cz(Un)]| ≤ 2mε′,

as desired. J

3 Entropy-Resilient Functions

I Definition 19 (Non-oblivious sources). Let Σ = {0, 1}m. A (q, t)-non-oblivious Σ-fixing
source X = (X1, . . . , Xr) is a random variable over Σr = {0, 1}rm for which there exists a
set Rbad ⊆ [r] of cardinality q′ ≤ q such that:

The joint distribution of {(Xi)j | i ∈ [r] \Rbad, j ∈ [m]}, denoted by GX , is t-wise inde-
pendent over {0, 1}(r−q

′)m; and
Each of the random variables in BX , {(Xi)j} with i ∈ Rbad and j ∈ [m] may depend
arbitrarily on all other random variables in GX and BX .

If t = (r − q′)m we say X is a q-non-oblivious Σ-fixing source. If m = 1 we say X is a
bit-fixing source and the definition coincides with the standard definition of non-oblivious
bit-fixing sources [11]. When X is clear from context, we write G and B for GX and BX ,
respectively.

I Definition 20 (Entropy-resilient functions). Let Σ = {0, 1}m. A function f : Σr → Σ is a
(q, t, g, ε)-entropy-resilient function if for every (q, t)-non-oblivious Σ-fixing source X over
Σr, the output f(X) is ε-close to an (m,m− g)-source. If g = 0 we say f is (q, t, ε)-resilient.

3.1 Functions With One Output Bit

I Definition 21. Let f : {0, 1}r → {0, 1} be an arbitrary function. Let X be a (q, t)-non-
oblivious bit-fixing source over {0, 1}r. Define E(f) to be the event in which the bits tossed
by the good players do not determine the value of the function f . We define the influence of
the bad players by I(f) = Pr[E(f)].

APPROX/RANDOM 2019

43:10 Two-Source Condensers with Low Error and Small Entropy Gap

Balanced resilient functions can be seen as deterministic extractors against non-oblivious
bit-fixing sources outputting one bit. Chattopadhyay and Zuckerman [17], followed by an
improvement by Meka [37], derandomized the Ajtai-Linial function [2] and obtained an
explicit construction of an almost-balanced resilient function which is also computable by
monotone AC0 circuits.

I Theorem 22 ([17, 37]). For every constant 0 < δ < 1, there exists a constant cδ ≥ 1 such
that for every constant c ≥ cδ and integer r there exists a monotone function Res : {0, 1}r →
{0, 1} such that for every t ≥ c log4 r,

For every (q, t)-non-oblivious bit-fixing source X, I(Res) ≤ c · q
r1−δ .

For every t-wise independent distribution D, bias(Res(D)) ≤ r−1/c.

The function Res is computable by a uniform depth 3 monotone circuit of size rc. Further,
the function cδ(δ) is continuous and monotonically decreasing.

Throughout the paper we make use of the following corollary.

I Corollary 23. For every constant 0 < γ < 1 there exist constants 0 < α < β < 1 such that
for every integer r there exists a function Res : {0, 1}r → {0, 1} which for every t ≥ 1

β log4 r

satisfies: For every (r1−γ , t)-non-oblivious bit-fixing source X,

I(Res) ≤ 1
β
· r−α,

bias (Res(X) | ¬E(Res)) ≤ 3
β
· r−α.

The function Res is computable by a uniform depth 3 monotone circuit of size r
1
β .

Proof. Using the notations of Theorem 22, assume that for every η, cη > 1
2η (if not, we

can always increases cη). Given γ > 0, set δ to be the constant satisfying the equation
f(δ) = δ − γ + 1

2cδ = 0. Such a δ exists, as f(δ) ≤ 2δ − γ and therefore f(δ) < 0 when δ
approaches 0, and f(δ) > 0 when δ approaches γ. Note that by our choice of δ, it holds that

δ < γ = δ + 1
2cδ

< δ + 1
cδ
.

Set α = γ − δ > 0 and β = 1
cδ
. Note that indeed β > α.

By Theorem 22, applied with the constant δ, it holds that I(Res) ≤ cδ
r1−γ

r1−δ = 1
β r
−α.

Further, bias(Res(D)) ≤ r−β .
Following similar arguments as in [17], we have that bias(Res(X)) ≤ 1

β r
−α + r−β , so

bias (Res(X) | ¬E(Res)) ≤
1
β r
−α + r−β

1− 1
β r
−α ≤ 3

β
r−α. J

3.2 Functions With Multiple Output Bits
The output bit of a (q, t, ε)-resilient function f : {0, 1}r → {0, 1} applied to a (q, t)-non-
oblivious bit-fixing source is indeed ε-close to uniform, but, as shown by [30] even when
q = 1, ε cannot be smaller that ln r

r (and the simpler bound ε ≥ 1
r is almost trivial). We

show that when we output many bits, and allow o(log 1
ε) entropy gap, we may obtain much

smaller error. We do that by exhibiting an entropy-resilient function based on a parallel
application of the (derandomized version of the) Ajtai-Linial function.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:11

A construction of an entropy-resilient function. Given a constant 0 < γ < 1 and integers
r ≥ m let Res : {0, 1}r → {0, 1} be the function guaranteed by Corollary 23 with respect to
γ. Define Σ = {0, 1}m and EntRes : Σr → Σ as follows. On input x ∈ Σr,

EntRes(x) = (Res(x(1)), . . . ,Res(x(m))),

where xi stands for the i-th column of x, when we view x as a r ×m table.

I Theorem 24. For every constant 0 < γ < 1 there exist constants 0 < α < 1 and c′ ≥ 1
such that the following holds. For every integers r, m ≤ rα/2, every ε > 0, and for every
integer t ≥ m · (log r)c′ , the function EntRes : Σr → Σ is (q = r1−γ , t, g, ε)-entropy-resilient
with entropy gap g = o(log(1/ε)).

The proof of Theorem 24 is done in two steps. First, in Section 3.2.1, we analyze the
theorem for the special case in which the distribution GX of the given non-oblivious Σ-fixing
source X is uniform. Then, based on that result, in Section 3.2.2 we prove Theorem 24.

3.2.1 The Uniform Case
In this section, we prove the following lemma.

I Lemma 25. Keeping the notations of Theorem 24, the function EntRes : Σr → Σ is
(q = r1−γ , g, ε)-entropy-resilient with entropy gap

g = cent1

ln 1
ε

ln ln 1
ε + cent2 ln r

= o(log(1/ε))

for some universal constant cent1 > 0 and a constant cent2 > 0 that depends only on γ.

Proof of Lemma 25. Let X be a (q = r1−γ)-non-oblivious Σ-fixing source. Let Rbad ⊆ [r]
be the set of bad players, and Ei the event that the values of the good players in X(i) do not
determine the value of Res. Note that we shall also denote Ei as an indicator for that event.

By Corollary 23, there exists constants 0 < α < β < 1 such that Pr [Ei = 1] ≤ 1
β · r

−α for
every i ∈ [m]. Observe that the random variables E1, . . . , Em are independent, as the value
of Ei depends only on the values of the good players in the i-th column, and by assumption
all these values are independent of the corresponding values in the other columns. Write
µ = m · 1

β · r
−α and note that since m ≤ rα/2, µ < 1. Set

c =
4 ln 1

ε

µ
· 1

ln ln 1
ε

µ

and observe that c > 1. By the Chernoff bound,

Pr
[
m∑
i=1

Ei > cµ

]
≤
(
ec−1

cc

)µ
≤ e− 1

2µc ln c ≤ ε,

where the last inequality follows from the fact that c ln c ≥ 2 ln 1
ε

µ .
By Corollary 23, for every i ∈ [m],

bias (Res(Xi) | Ei = 0) ≤ 3
β
· r−α.

APPROX/RANDOM 2019

43:12 Two-Source Condensers with Low Error and Small Entropy Gap

Assume that the event
∑m
i=1Ei ≤ cµ holds, and let I ⊆ [m], |I| ≥ m − cµ be the set of

good columns I for which Ei = 0. For every w ∈ {0, 1}m, since the random variables
{EntRes(X)i}i∈I are independent, we have:

Pr[EntRes(X) = w] ≤ Pr[EntRes(X)I = wI] ≤
(

1
2 + 3

β
· r−α

)m−cµ
≤ 2−m+cµe

6
β r
−αm ≤ 2−m+cµ210µ.

Now, we have

cµ+ 10µ ≤ 2cµ ≤
8 ln 1

ε

ln ln 1
ε + ln 1

µ

≤
8 ln 1

ε

ln ln 1
ε + 4

α ln r
= o

(
log 1

ε

)
.

We have shown that except with probability ε, the output EntRes(X) has min-entropy
m− o(log(1/ε)), as desired. More specifically, the min-entropy in the good columns alone is
at least m− o(log(1/ε)), and we stress that the good columns are not fixed but depend on
the sample itself. J

3.2.2 The Bounded-Independence Case – Proof of Theorem 24

Throughout this section, we use the same notations as in Lemma 25. We are given X that is
a (q, t)-non-oblivious Σ-fixing source. We use a similar approach to the one taken in [17].
For the sake of the proof, we:

Let GU be the distribution in which the good players are jointly uniform, and the bad
players are arbitrary.
Define a small-depth circuit C ′ that is related to EntRes so that H∞(EntRes(X)) ≥
H∞(C ′(X)).

We will show that C ′(X) and C ′(GU) are statistically close to each other. Finally,
the results of Section 3.2.1 proves that except for a small probability, H∞(C ′(GU)) ≥
m− o(log(1/ε)).

Proof of Theorem 24. Fix a (q, t)-non-oblivious Σ-fixing source X. Let GU be the distri-
bution where the good players are jointly uniform, and the bad players are arbitrary. We
construct a circuit C ′ : {0, 1}rm → {0, 1}m such that:

(C ′(x))i =
{

EntRes(x)i If Ei(x) = 0,
0 Otherwise.

Recall that Ei is fully determined by the good players, and so does EntRes(X)i when
Ei = 0. Hence, C ′ is fully determined by the good players.

We can write a small-depth circuit computing C ′. Let C be the depth-3 size r1/β circuit
that computes the function Res : {0, 1}r → {0, 1} as guaranteed by Theorem 22. Construct a
circuit for C ′ as follows:

For i ∈ [m] and b ∈ {0, 1} let Ci,b be a copy of C where we wire (xi)j for every good
player j ∈ [r], and the value b for every bad player.
The top part contains m comparators, outputting the output of Ci,0 if the output of Ci,0
is the same as the output of Ci,1, and 0 otherwise.

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:13

The circuit has depth 4 and size s′′ = O(mr1/β) and its correctness is guaranteed by the fact
that Res is monotone (so it is sufficient to consider the case where the bad players voted
unanimously).

By Lemma 18, SD(C ′(GU), C ′(X)) ≤ 2
m− t

(log(mr))c′′ for some large enough universal
constant c′′ > 0. For every w ∈ {0, 1}m:

Pr [EntRes(X) = w] ≤ Pr [EntRes(X)I = wI] = Pr [C ′(X)I = wI]

≤ Pr [C ′(GU)I = wI] + 2
m− t

(log(mr))c′′

≤ 2
−m+

8 ln 1
ε

ln ln 1
ε

+ 4
α

ln r + 2
m− t

(log(mr))c′′ ,

where in the last inequality we have used Lemma 25. We can set the constant c′ stated in
the theorem to be larger than c′′ and get that

Pr [EntRes(X) = w] ≤ 2 · 2
−m+

8 ln 1
ε

ln ln 1
ε

+ 4
α

ln r .

To conclude, note that the above holds with probability at least 1−ε, and then EntRes(X)
has min-entropy at least −1 +m− 8 ln 1

ε

ln ln 1
ε+ 4

α ln r = m− o(log(1/ε)), as desired. J

4 Low Error Two-Source Condensers With High Entropy Loss

Chattopadhyay and Zuckerman [17] showed a reduction from two independent sources to
non-oblivious bit-fixing sources. In Section 4.1 we extend this to many output bits and show
a reduction from two independent sources to non-oblivious Σ-fixing sources. Our reduction
is similar to the one in [17], and here:

We let the non-malleable extractors output m bits rather than a single bit, obtaining a
non-oblivious Σ-fixing source for Σ = {0, 1}m.
Correspondingly, we apply our entropy-resilient function EntRes whereas in [17] the
function Res is applied.

In Section 4.2 we use this together with the results of Section 3 to get a low error
two-source condenser with many output bits, yet still far from getting almost all of the
possible entropy from the two sources.

4.1 From Two Independent Sources to a Non-Oblivious Σ-Fixing
Source

In this section, we revisit the [17] transformation of two independent sources to a non-oblivious
bit-fixing source (i.e., with m = 1), and extend it to sources with several bits. Throughout
this section, we refer to cGUV, cnm as the constants that appear in Theorem 8 and Theorem 16,
respectively.

I Theorem 26. For every integers n, t,m, k, with n ≥ k ≥ (tm logn)5 and set Σ = {0, 1}m,
there exists a poly(n)-time computable function TwoSourcesToNOF : {0, 1}n × {0, 1}n → Σr,
where r = n2cGUV such that the following holds. Let X1, X2 be a pair of independent (n, k)-
sources. Then, with probability at least 1− 2−k/2 over x2 ∼ X2, the output

TwoSourcesToNOF(X1, x2)

is (n−mt)-close to an
(
r

1− 1
4cGUV , t

)
-non-oblivious Σ-fixing source.

APPROX/RANDOM 2019

43:14 Two-Source Condensers with Low Error and Small Entropy Gap

Proof. We start by setting the following parameters:

Setting of parameters.
Set εGUV = 1

n .
Set dGUV = cGUV log

(
n
εGUV

)
= 2cGUV logn.

Set εnm = 2−4mt(dGUV+logm).
Set dnm = cnmt

2 log2
(
n
εnm

)
.

Note that εnm = 2−Θ(mt logn) and that dnm = Θ(t4m2 log2 n).

Building blocks. For the construction of TwoSourcesToNOF, we make use of the following
ingredients:

Let Ext : {0, 1}n × {0, 1}dGUV → {0, 1}dnm be the (k/2, εGUV)-strong-seeded-extractor,
guaranteed by Theorem 8. One can verify that k/2 ≥ 2dnm as required by Theorem 8.
Let nmExt : {0, 1}n × {0, 1}dnm → {0, 1}m be the (k, εnm) t-non-malleable extractor,
guaranteed by Theorem 16. Note that k ≥ 3tm so the hypothesis of Theorem 16 is
met with our choice of parameters.

The construction. We identify [r] with {0, 1}dGUV . On inputs x1, x2 ∈ {0, 1}n, we define
TwoSourcesToNOF(x1, x2) to be the r ×m matrix whose i-th row is given by

TwoSourcesToNOF(x1, x2)i = nmExt(x1,Ext(x2, i)).

Analysis. Write Dnm = 2dnm and identify [Dnm] with {0, 1}dnm . Let G ⊆ [Dnm], |G| ≥
(1−√εnm)Dnm, be the set of good seeds guaranteed by Lemma 14. By Lemma 15, for
any distinct r1, . . . , rt ∈ G,

(nmExt(X1, r1), . . . , nmExt(X1, rt)) ≈t√εnm Utm.

Let S(X2) =
{

Ext(X2, 1), . . . ,Ext(X2, 2dnm)
}
. By Theorem 9,

Pr
x2∼X2

[|S(x2) ∩G| ≤ (1−
√
εnm − εGUV) · r] ≤ 2−k/2.

We say that x2 ∈ supp(X2) is good if it induces a good sample, that is if |S(x2) ∩G| >
(1 − √εnm − εGUV)r. Fix a good x2 and let Z = TwoSourcesToNOF(X1, x2). In the
good seeds, every t elements of Z are (t√εnm)-close to uniform, and there are at most
q ≤ (√εnm+εGUV)r bad rows. Applying Lemma 6, we get that Z is ζ = t

√
εnm(rm)mt-close

to a (q, t)-non-oblivious bit-fixing source. By our choice of εnm,

ζ = 2−2mt(dGUV+logm)2mt log(rm) ≤ 2−mt log r ≤ n−mt.

Further,

q ≤ (
√
εnm + εGUV)r ≤ 2εGUVr = 2r−

1
2cGUV

+1 ≤ r1− 1
4cGUV .

We now analyse the running-time. We first apply Ext to compute S(x2), which takes time
poly(n, log(1/εGUV)) = poly(n). Then, applying each nmExt takes poly(n, log(1/εnm)) =
poly(n,m, t, dGUV) = poly(n) time and we do it for r = poly(n) times. Overall, the
running time is poly(n), as required. In particular, as n ≥ k ≥ m, the running time is
also poly-logarithmic in the errors of the construction, 2−k/2 and n−mt. J

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:15

4.2 Low Error Condensers With High Entropy Loss
I Theorem 27. There exists a universal constant c ≥ 1 such that the following holds.
For every integers n, k,m and every ε > 0 such that n ≥ k ≥ (m log(n/ε))c there exists a
poly(n)-time computable ((n, k), (n, k))→ε,2−k/2 (m,m− g)-condenser

Cond′ : {0, 1}n × {0, 1}n → {0, 1}m ,

that is strong in the second source, with entropy gap g = o(log(1/ε)).

Proof. We start by describing the construction of our condenser Cond′ and then turn to the
analysis. As usual, we let cGUV be the constant that is given by Theorem 8.

Setting of parameters.
Set γ = 1

4cGUV
and let 0 < α < β < 1 and c′ be the constants from Theorem 24 with

respect to this γ.
Set r = n2cGUV .
Set t = m · (log(r/ε))c′ .
Set c, the constant stated in this theorem, to c = max(10c′, 2/α).

Building blocks.
Let TwoSourcesToNOF : {0, 1}n ×{0, 1}n → {0, 1}r×m be the function that is given by
Theorem 26. We are about to apply TwoSourcesToNOF to (n, k)-sources, and indeed
k is large enough to satisfy the hypothesis of Theorem 26.
Let EntRes : {0, 1}r×m → {0, 1}m be the function from Theorem 24 when set with the
parameter γ as defined above. Note that the hypothesis of Theorem 24 holds, as since
c ≥ 2/α we have that m < rα/2, and t is large enough.

The construction. On inputs x1, x2 ∈ {0, 1}n, we define

Cond′(x1, x2) = EntRes (TwoSourcesToNOF(x1, x2)) .

Analysis. Clearly, EntRes is computable in poly(m, r) = poly(n) time. Let X1, X2 be
a pair of independent (n, k)-sources. By Theorem 26, except with probability 2−k/2
over x2 ∼ X2, the output TwoSourcesToNOF(X1, x2) is n−mt-close to an (r1−γ , t)-
non-oblivious bit-fixing source. For every x2 for which this event holds, the output
EntRes(TwoSourcesToNOF(X1, x2)) is (n−mt + ε)-close to an (m,m− o(log(1/ε)))-source,
and n−mt ≤ ε. J

5 Deterministically Condensing a Single Block-Source

A distribution (X,Y) is a blockwise source if both X has sufficient min-entropy and also
for every x ∈ supp(X), (Y | X = x) has sufficient min-entropy. In this section we show how
to deterministically condense a blockwise source into a source having very small entropy
gap, using the connection between condensers with small entropy gap and samplers with
multiplicative error and ideas from [43]. In the next section we will use it to significantly
increase the output length of the condenser from Section 4.2.

I Lemma 28 (Deterministically condensing a blockwise source). Let X be an (n, k)-source.
Let Y be a d-bit random variable (that may depend on X) such that for every x ∈ supp(X),
the random variable (Y | X = x) is εB-close to a (d, d− g)-source.

Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (kExt, εExt)-seeded-extractor. Suppose k ≥
kExt + log(1/εExt). Then, Ext(X,Y) is (2g+2εExt + 2εB)-close to an (m,m− g − 1)-source.

APPROX/RANDOM 2019

43:16 Two-Source Condensers with Low Error and Small Entropy Gap

Proof. Fix any T ⊆ {0, 1}m. Define the set

OverHitT =
{
x ∈ {0, 1}n : Pr

y∼Ud
[Ext(x, y) ∈ T] > µ(T) + εExt

}
.

B Claim 29. |OverHitT | < 2kExt .

Proof. Suppose towards a contradiction that |OverHitT | ≥ 2kExt and let B denote the random
variable that is uniform over the set OverHitT . Since B has min-entropy at least kExt, the
output Ext(B,Ud) is εExt-close to uniform, and therefore Prx∼B,y∼Ud [Ext(x, y) ∈ T] ≤ µ(T)+
εExt. This stands in contradiction to the definition of B. C

Now,

Pr [Ext(X,Y) ∈ T] ≤ Pr[Ext(X,Y) ∈ T | X /∈ OverHitT] + Pr[X ∈ OverHitT].

By Claim 29, Pr[X ∈ OverHitT] ≤ 2kExt−k. Also, for every x /∈ OverHitT let

GYx =
{
y ∈ {0, 1}d : Ext(x, y) ∈ T

}
.

By definition, µ(GYx) ≤ µ(T) + εExt. Also, Y |(X = x) is εB-close to some random variable
Y ′x having support size at least 2d−g. Therefore,

Pr
y∼(Y |X=x)

[Ext(x, y) ∈ T] = Pr
y∼(Y |X=x)

[y ∈ GYx] ≤ εB + Pr[Y ′x ∈ GYx]

≤ εB + |GYx|2d−g ≤ εB + 2g(µ(T) + εExt).

Thus,

Pr [Ext(X,Y) ∈ T] ≤ Pr[Ext(X,Y) ∈ T | X /∈ OverHitT] + Pr[X ∈ OverHitT]
≤ 2gµ(T) + 2gεExt + εB + 2kExt−k ≤ 2gµ(T) + (2g + 1)εExt + εB.

But,

B Claim 30. Let Z be a random variable over n-bit strings such that for every T ⊆ {0, 1}n,
Pr[Z ∈ T] ≤ 2gµ(T) + ε. Then, Z is 2ε-close to an (n, n− g − 1)-source.

Proof. Set H =
{
x : Pr[Z = x] > 2−(n−g−1)} . On the one hand,

Pr [Z ∈ H] =
∑
x∈H

Pr [Z = x] ≥ 2g+1µ(H).

On the other hand, by our assumption, Pr [Z ∈ H] ≤ 2gµ(H) + ε. Together, we get that
2gµ(H) ≤ ε. Thus, Pr [Z ∈ H] ≤ 2ε. As H are all the heavy elements, we conclude that Z is
2ε-close to a distribution with n− g − 1 min-entropy. C

We can therefore summarize that Ext(X,Y) is (2g+2εExt + 2εB)-close to an (m,m− g− 1)-
source. J

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:17

6 Low Error Two-Source Condensers

In this section we will construct our low error condenser, with small entropy gap outputting
many bits, by exploiting the block-wise structure of our previous construction. Roughly
speaking, we are close to a scenario in which X2 has sufficient min-entropy and also for every
fixing of x2 ∈ supp(X2), the random variable Cond′(X1, x2) is close to uniform. The result
of Section 5 can then be applied – allowing us to extract almost all the entropy from one of
the sources. To that end, we prove the following theorem, which readily implies Theorem 3.

I Theorem 31 (Main theorem). There exists a universal constant c ≥ 1 such that the
following holds. For every integers n ≥ k and every ε > 0 such that k ≥ logc(n/ε) there
exists a poly(n, log(1/ε))-time computable ((n, k), (n, k))→ε (m,m−g) two-source condenser

Cond : {0, 1}n × {0, 1}n → {0, 1}m

with m = k − 5 log(1/ε)−O(1) and g = o(log(1/ε)).

Proof. We start by setting some parameters.
Parameters.

Set εCond′ = ε/8.
Set εExt = ε2/32.
Set kExt = k − log(2/ε).
Set dExt = c′ logn · log(n/εExt) where c′ is the constant that is given by Theorem 10.

For the construction we make use of the following building blocks.
Let Ext : {0, 1}n × {0, 1}dExt → {0, 1}m be the (kExt, εExt)-strong-seeded-extractor that
is given by Theorem 10. By that theorem, m = kExt − 2 log(1/εExt)−O(1).
Let Cond′ : {0, 1}n×{0, 1}n → {0, 1}dExt be the ((n, k), (n, k))→εCond′ ,2−k/2 (dExt, dExt−
g′)-condenser, strong in the second source, that is given by Theorem 27, with
g′ = o(log(1/εCond′)). Note that our choice of parameters satisfies the hypothesis
of Theorem 27 for a large enough constant c.

The construction. On inputs x1, x2 ∈ {0, 1}n, we define

Cond(x1, x2) = Ext(x2,Cond′(x1, x2)).

Analysis. Let X1, X2 be a pair of independent (n, k)-sources. By Theorem 27, with probabil-
ity at least 1− 2−k/2 over x2 ∼ X2, the random variable Cond′(X1, x2) is εCond′ -close to a
(d, d− g′)-source. Lemma 28 implies that Ext(X2,Cond′(X1, X2)) is 2−k/2 + (2g′+2εExt +
2εCond′)-close to an (m,m− g′ − 1)-source.
By our choice of parameters, 2−k/2 + 2g′+1εExt + 2εCond′ ≤ ε. Note that k − m =
log(2/ε) + 2 log(1/εExt) = 5 log(1/ε) +O(1). The running-time of the construction readily
follows from the running-times of Cond′ and Ext. J

References
1 H. L. Abbott. Lower bounds for some Ramsey numbers. Discrete Mathematics, 2(4):289–293,

1972.
2 M. Ajtai and N. Linial. The influence of large coalitions. Combinatorica, 13(2):129–145, 1993.
3 N. Alon. The Shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.
4 N. Alon, O. Goldreich, and Y. Mansour. Almost k-wise independence versus k-wise independ-

ence. Information Processing Letters, 88(3):107–110, 2003.

APPROX/RANDOM 2019

43:18 Two-Source Condensers with Low Error and Small Entropy Gap

5 B. Barak. A simple explicit construction of an nÕ(log n)-Ramsey graph. arXiv preprint, 2006.
arXiv:math/0601651.

6 B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:
New constructions of condensers, Ramsey graphs, dispersers, and extractors. Journal of the
ACM (JACM), 57(4):20, 2010.

7 B. Barak, A. Rao, R. Shaltiel, and A. Wigderson. 2-source dispersers for no(1) entropy, and
Ramsey graphs beating the Frankl-Wilson construction. Annals of Mathematics, 176(3):1483–
1544, 2012.

8 A. Ben-Aroya, E. Chattopadhyay, D. Doron, X. Li, and A. Ta-Shma. A New Approach for
Constructing Low-Error, Two-Source Extractors. In LIPIcs-Leibniz International Proceedings
in Informatics. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

9 A. Ben-Aroya, D. Doron, and A. Ta-Shma. An efficient reduction from two-source to non-
malleable extractors: achieving near-logarithmic min-entropy. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1185–1194. ACM,
2017.

10 A. Ben-Aroya, D. Doron, and A. Ta-Shma. Near-Optimal Erasure List-Decodable Codes. In
Electronic Colloquium on Computational Complexity (ECCC), 2018.

11 M. Ben-Or and N. Linial. Collective coin flipping, robust voting schemes and minima of
Banzhaf values. In Proceedings of the 26th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 408–416. IEEE, 1985.

12 E. Ben-Sasson and N. Zewi. From affine to two-source extractors via approximate duality.
In Proceedings of the 43rd annual ACM Symposium on Theory of computing (STOC), pages
177–186. ACM, 2011.

13 J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 1(01):1–32, 2005.

14 M. Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the ACM (JACM),
57(5):28, 2010.

15 E. Chattopadhyay, V. Goyal, and X. Li. Non-malleable extractors and codes, with their many
tampered extensions. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 285–298. ACM, 2016.

16 E. Chattopadhyay and X. Li. Explicit Non-Malleable Extractors, Multi-Source Extractors and
Almost Optimal Privacy Amplification Protocols. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 158–167. IEEE, 2016.

17 E. Chattopadhyay and D. Zuckerman. Explicit two-source extractors and resilient functions.
In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC), pages
670–683. ACM, 2016.

18 B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

19 F. R. K. Chung. A note on constructive methods for Ramsey numbers. Journal of Graph
Theory, 5(1):109–113, 1981.

20 G. Cohen. Local correlation breakers and applications to three-source extractors and mergers.
In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 845–862. IEEE, 2015.

21 G. Cohen. Making the Most of Advice: New Correlation Breakers and Their Applications.
In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 188–196. IEEE, 2016.

22 G. Cohen. Two-source extractors for quasi-logarithmic min-entropy and improved privacy
amplification protocols. In Electronic Colloquium on Computational Complexity (ECCC),
2016.

http://arxiv.org/abs/math/0601651

A. Ben-Aroya, G. Cohen, D. Doron, and A. Ta-Shma 43:19

23 G. Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey graphs. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing (STOC),
pages 278–284. ACM, 2016.

24 G. Cohen and L. Schulman. Extractors for Near Logarithmic Min-Entropy. In Proceedings
of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), page 14,
2016.

25 P. Frankl. A constructive lower bound for Ramsey numbers. Ars Combinatoria, 3(297-302):28,
1977.

26 P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combinatorica,
1(4):357–368, 1981.

27 V. Grolmusz. Low rank co-diagonal matrices and Ramsey graphs. Journal of combinatorics,
7(1):R15–R15, 2001.

28 V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness extractors
from Parvaresh–Vardy codes. Journal of the ACM, 56(4):20, 2009.

29 P. Harsha and S. Srinivasan. On Polynomial Approximations to AC0. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2016.

30 K. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. In Proceedings
of the 29th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
68–80. IEEE, 1988.

31 Mark Lewko. An explicit two-source extractor with min-entropy near 4/9. arXiv preprint,
2018. arXiv:1804.05451.

32 X. Li. Extractors for a constant number of independent sources with polylogarithmic min-
entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 100–109, 2013.

33 X. Li. New independent source extractors with exponential improvement. In Proceedings of
the 45th annual ACM Symposium on Theory of Computing (STOC), pages 783–792. ACM,
2013.

34 X. Li. Three-source extractors for polylogarithmic min-entropy. In Proceedings of the 56th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 863–882. IEEE,
2015.

35 X. Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1144–1156. ACM, 2017.

36 X. Li. Non-malleable extractors and non-malleable codes: Partially optimal constructions. In
Electronic Colloquium on Computational Complexity (ECCC), 2018.

37 R. Meka. Explicit resilient functions matching Ajtai-Linial. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1132–1148. SIAM, 2017.

38 Zs. Nagy. A constructive estimation of the Ramsey numbers. Mat. Lapok, 23:301–302, 1975.
39 M. Naor. Constructing Ramsey graphs from small probability spaces. IBM Research Report

RJ, 8810, 1992.
40 A. Rao. A 2-source almost-extractor for linear entropy. In Approximation, Randomization

and Combinatorial Optimization. Algorithms and Techniques, pages 549–556. Springer, 2008.
41 A. Rao. Extractors for a constant number of polynomially small min-entropy independent

sources. SIAM Journal on Computing, 39(1):168–194, 2009.
42 R. Raz. Extractors with weak random seeds. In Proceedings of the 37th annual ACM Symposium

on Theory of Computing (STOC), pages 11–20. ACM, 2005.
43 R. Raz, O. Reingold, and S. Vadhan. Error reduction for extractors. In Proceedings of the

40th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 191–201.
IEEE, 1999.

APPROX/RANDOM 2019

http://arxiv.org/abs/1804.05451

43:20 Two-Source Condensers with Low Error and Small Entropy Gap

44 A. Tal. Tight bounds on the Fourier spectrum of AC0. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 79. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

45 John von Neumann. Various techniques used in connection with random digits. John von
Neumann, Collected Works, 5:768–770, 1963.

46 D. Zuckerman. Randomness-optimal oblivious sampling. Random Structures and Algorithms,
11(4):345–367, 1997.

47 D. Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3:103–128, 2007.

Efficient Average-Case Population Recovery in the
Presence of Insertions and Deletions
Frank Ban
UC Berkeley, Berkeley, CA, USA
fban@berkeley.edu

Xi Chen
Columbia University, New York, NY, USA
http://www.cs.columbia.edu/~xichen
xichen@cs.columbia.edu

Rocco A. Servedio
Columbia University, New York, NY, USA
http://www.cs.columbia.edu/~rocco
rocco@cs.columbia.edu

Sandip Sinha
Columbia University, New York, NY, USA
https://sites.google.com/view/sandips
sandip@cs.columbia.edu

Abstract
A number of recent works have considered the trace reconstruction problem, in which an unknown
source string x ∈ {0, 1}n is transmitted through a probabilistic channel which may randomly delete
coordinates or insert random bits, resulting in a trace of x. The goal is to reconstruct the original
string x from independent traces of x. While the asymptotically best algorithms known for worst-case
strings use exp(O(n1/3)) traces [8, 21], several highly efficient algorithms are known [23, 13] for the
average-case version of the problem, in which the source string x is chosen uniformly at random
from {0, 1}n. In this paper we consider a generalization of the above-described average-case trace
reconstruction problem, which we call average-case population recovery in the presence of insertions
and deletions. In this problem, rather than a single unknown source string there is an unknown
distribution over s unknown source strings x1, . . . , xs ∈ {0, 1}n, and each sample given to the
algorithm is independently generated by drawing some xi from this distribution and returning an
independent trace of xi. Building on the results of [23] and [13], we give an efficient algorithm for the
average-case population recovery problem in the presence of insertions and deletions. For any support
size 1 ≤ s ≤ exp(Θ(n1/3)), for a 1−o(1) fraction of all s-element support sets {x1, . . . , xs} ⊂ {0, 1}n,
for every distribution D supported on {x1, . . . , xs}, our algorithm can efficiently recover D up to total
variation distance at most ε with high probability, given access to independent traces of independent
draws from D. The running time of our algorithm is poly(n, s, 1/ε) and its sample complexity is
poly(s, 1/ε, exp(log1/3 n)). This polynomial dependence on the support size s is in sharp contrast
with the worst-case version of the problem (when x1, . . . , xs may be any strings in {0, 1}n), in which
the sample complexity of the most efficient known algorithm [3] is doubly exponential in s.

2012 ACM Subject Classification Mathematics of computing → Information theory; Theory of
computation → Machine learning theory

Keywords and phrases population recovery, deletion channel, trace reconstruction

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.44

Category RANDOM

Funding Xi Chen: Supported by NSF IIS-1838154 and NSF CCF-1703925.
Rocco A. Servedio: Supported by NSF grants CCF-1563155, CCF-1814873, IIS-1838154, and by the
Simons Collaboration on Algorithms and Geometry.
Sandip Sinha: Supported by NSF awards CCF-1563155, CCF-1420349, CCF-1617955, CCF-1740833,
CCF-1421161, CCF-1714818 and Simons Foundation (#491119).

© Frank Ban, Xi Chen, Rocco A. Servedio, and Sandip Sinha;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fban@berkeley.edu
http://www.cs.columbia.edu/~xichen
mailto:xichen@cs.columbia.edu
http://www.cs.columbia.edu/~rocco
mailto:rocco@cs.columbia.edu
https://orcid.org/0000-0002-2592-175X
https://sites.google.com/view/sandips
mailto:sandip@cs.columbia.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Efficient Average-Case Population Recovery with Insertions and Deletions

1 Introduction

Background: Worst-case and average-case trace reconstruction. In the problem of trace
reconstruction in the presence of insertions and deletions, there is an unknown and arbitrary
n-bit source string x ∈ {0, 1}n and the goal is to reconstruct x given access to independent
traces of x. A trace of x is a copy that has been passed through a noise channel which
independently removes each bit of x with some probability q (the deletion rate) and also
independently inserts random bits according to some insertion rate q′.1 Intuitively, the
insertion-deletion channel (or even just the deletion channel with no insertions) is challenging
to deal with because it is difficult to determine which coordinate of the source string (if any,
if insertions are possible) is responsible for a given coordinate of a received trace.

The insertion/deletion trace reconstruction problem is motivated by connections to
recovery problems arising in biology (see e.g. [2, 6, 1]) and has been the subject of considerable
research, especially in recent years. The worst-case version of this problem, in which the
source string x can be an arbitrary element of {0, 1}n, appears to be quite difficult even
for small constant noise rates. In early work [4] gave an efficient algorithm that succeeds
in the deletion-only model if the deletion rate q is quite low, at most O(1/n1/2+ε). Also in
the deletion-only model, [14] showed that exp(Õ(

√
n)) many traces suffice for any constant

deletion rate q bounded away from 1. More recently, this result was improved in simultaneous
and independent works of [8] and [21], each of which showed that for any constant insertion
and deletion rates q, q′, exp(O(n1/3)) traces suffice to reconstruct any x ∈ {0, 1}n. These
algorithms, which run in exp(O(n1/3)) time, give the best results to date for the worst-case
problem. (On the lower bound side, recent work of [12] obtained an Ω̃(n5/4) lower bound on
the number of traces required from the deletion channel, improving an earlier Ω(n) lower
bound due to [19]. Later work of [5] improved this lower bound to Ω̃(n3/2).)

Since the worst-case trace reconstruction problem seems to be quite difficult, and since
the assumption that the source string x is completely arbitrary may be overly pessimistic in
various contexts, it is natural to consider an average-case version of the problem in which the
source string x is assumed to be drawn uniformly at random from {0, 1}n. This average-case
problem has been intensively studied, and interestingly it turns out to be significantly easier
than the worst-case problem. [4] showed that for most source strings x, in the deletion-only
setting only O(logn) traces suffice for deletion rates q as large as O(1/ logn). [16] considered
the insertion/deletion noise channel and obtained an O(logn)-trace average-case algorithm
for noise rates up to O(1/ log2 n), which was later improved to O(1/ logn) in [25]. [14]
were the first to give an efficient (using poly(n) traces) average-case algorithm, for the
deletion-only model, that succeeds for some constant deletion rate (their algorithm could
handle deletion rates up to about q = 0.07). Building on the worst-case results of [8] and [21],
a number of significantly stronger average-case results have recently been established. [23]
gave an average-case algorithm for the deletion-only problem which uses exp(O(log1/2 n))
many traces for any deletion rate q < 1/2. Improving on this, [13] gave an average-case
algorithm which can handle both insertions and deletions at any constant rate and uses
only exp(O(log1/3 n)) many traces. (A simple reduction shows that any improvement on
this sample complexity for the average-case problem would imply an improvement of the
exp(O(n1/3))-trace worst-case algorithms of [8] and [21].)

1 A detailed description of the channel is given in Section 2. Augmented variants of this insertion/deletion
noise model can also be considered, for example allowing for bit-flips as well as insertions and deletions,
but unlike deletions and insertions bit-flips can typically be handled in a straightforward fashion. In
this paper we confine our attention to the insertion/deletion channel.

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:3

Beyond trace reconstruction: Population recovery from the deletion channel. Inspired
by a related problem known as population recovery, recent work of [3] has considered a
challenging extension of the trace reconstruction problem. Population recovery is the problem
of learning an unknown distribution over an unknown set of n-bit strings, given access to
independent draws from the distribution that have been independently corrupted according
to some noise channel. Most research in population recovery has focused on two noise models,
namely the bit-flip noise channel (in which each coordinate is independently flipped with some
fixed probability) and the erasure noise channel (in which each coordinate is independently
replaced by ‘?’ with some fixed probability), both of which have been intensively studied, see
e.g. [10, 26, 24, 9, 20, 18, 7, 9]. [3] considered the problem of population recovery from the
deletion channel. This is a generalization of the deletion-channel trace reconstruction problem:
now there is an unknown distribution over s unknown source strings x1, . . . , xs ∈ {0, 1}n,
and each sample provided to the learner is obtained by first drawing a string xi from this
distribution and then passing it through the deletion noise channel. It is clear that this
problem is at least as difficult as the trace reconstruction problem (which is the s = 1 case),
and indeed having multiple source strings turns out to pose significant new challenges. [3]
considered the worst-case version of this problem, and showed that any distribution D over
any set of s unknown source strings can be recovered to total variation distance ε given
2
√

n·(log n)O(s)
/ε2 many traces from the deletion channel. [3] also gave a lower bound, showing

that for any s ≤ n0.49 at least nΩ(s) many traces are required. Population recovery-type
problems have also been studied in the computational biology literature, specifically for
DNA storage (see e.g. [22, 27]). In these settings, the population of strings corresponds to a
collection of DNA sequences.

Summarizing, while population recovery from the deletion channel is a natural problem,
the above results (and the fact that it is at least as difficult as trace reconstruction) indicate
that it is also a hard one. Thus it is natural to investigate average-case versions of this
problem; this is the subject of the current work.

1.1 Our result: Average-case population recovery in the insertion /
deletion model

In the average-case model we consider, there is a given population size s ≥ 1, i.e. there is a
set x1, . . . , xs of s strings which are assumed to be drawn independently and uniformly from
{0, 1}n. Associated with this population is an arbitrary vector of non-negative probability
values p1, . . . , ps, where pi is the probability that the distribution D puts on string xi. Thus
in our model the support of the distribution is “average-case” but the actual distribution
over that support is “worst-case.”

Building on the work of [13], our main result is a highly efficient algorithm for average-
case population recovery in the presence of insertions and deletions. We show that even for
extremely large population sizes s (up to exp(Θ(n1/3))), the average-case population recovery
problem can be solved by a highly efficient algorithm which has running time polynomial
in n (the length of unknown strings), s (the population size), and 1/ε (where ε is the total
variation distance between D and the distribution returned by the algorithm). The sample
complexity of our algorithm is polynomial in s, 1/ε, and exp(log1/3 n). Thus our algorithm
extends the average-case trace reconstruction results of [13] to the more challenging setting
of s-string population recovery with essentially the best possible dependence on the new
parameters s and 1/ε (which are not present in the original trace reconstruction problem
but are inherent in the population recovery problem).

APPROX/RANDOM 2019

44:4 Efficient Average-Case Population Recovery with Insertions and Deletions

In more detail, we prove the following theorem (the exact definition of a random trace
drawn from the insertion/deletion noise channel Cq,q′(D) will be given in Section 2):

I Theorem 1. Fix any two constants q, q′ ∈ [0, 1) as deletion and insertion rates, respectively.
There is an algorithm A with the following property: Let δhard ≥ exp(−Θ(n1/3)) be a fraction
of hard support sets, let δfail ≥ exp(−Θ(n1/3)) be a failure probability, let ε ≥ exp(−Θ(n1/3))
be an accuracy parameter, let 1 ≤ s ≤ exp(Θ(n1/3)) be a support size, and let x1, . . . , xs

be a support set (viewed as an ordered list of strings in {0, 1}n). For at least a (1− δhard)-
fraction of all 2ns many possible s-element support sets, it is the case that for any probability
distribution D supported on {x1, . . . , xs}, given n, s, ε, δhard, δfail, and access to Cq,q′(D),
algorithm A uses poly(s, 1/ε, exp(log1/3 n), exp(log1/3(1/δhard)), log(1/δfail)) random traces
from Cq,q′(D), runs in time poly(n, s, 1/ε, 1/δhard, log(1/δfail)) and has the following property:
with probability at least 1− δfail it outputs a hypothesis distribution D′ over {0, 1}n such that
dTV(D,D′) ≤ ε.

Discussion. Taken together with the recent results of [3], Theorem 1 shows that the average-
case and worse-case versions of population recovery in the presence of insertions and deletions
have dramatically different complexities. The best known algorithm for the population size-s
worst-case population recovery problem [3] has a doubly exponential dependence on s; even
for s constant this sample complexity is significantly worse than the best known sample
complexity for the s = 1 worst-case trace reconstruction problem, which is exp(Θ(n1/3)) by
[8, 21]. The nΩ(s) sample complexity lower bound given in [3] shows that an exponential
dependence on s is inherent for worst-case population recovery. In contrast, Theorem 1 shows
that a polynomial sample complexity (and running time) dependence on s is achievable for
the average-case problem, and that passing from s = 1 to larger values of s does not incur
much increase in complexity for the average-case problem.

In independent work, [17] studied a different generalization of trace reconstruction which
they called matrix reconstruction. Instead of reconstructing a string by sampling traces
where each character of the string has some probability of being deleted, the goal in matrix
reconstruction is to reconstruct a matrix by sampling traces where each row and column of
the matrix has some probability of being deleted. They used similar techniques to those used
in this paper.

1.2 Our techniques
A natural way to approach our problem is to attempt to reduce it to the s = 1 case, which
as described above is just the average-case trace reconstruction problem which was solved by
[13]. However, two challenges arise in carrying out such a reduction. The first challenge is
that the analysis of [13] only gives an algorithm which succeeds on a 1 −Θ(1/n) fraction
of all source strings x ∈ {0, 1}n. So if the population size s is much larger than n, then
a random population of s source strings will with high probability contain Θ(s/n) many
“hard-to-reconstruct” strings. It is not clear how to proceed if these hard-to-reconstruct strings
have significant weight under the distribution D (which they may, since the distribution D
over the s source strings is assumed to be completely arbitrary).

We get around this challenge by showing that for any arbitrarily small δ, the algorithm
of [13] can be extended in a black-box way to succeed on any 1 − δ fraction of all source
strings x ∈ {0, 1}n (at the cost of a modest increase in running time and sample complexity
depending on the value of δ). By taking δ � 1/s, with high probability the random population
will consist entirely of source strings xi each of which could be reconstructed in isolation if
we were given only traces coming from xi.

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:5

The second (main) challenge, of course, is that we are not given traces from each individual
string xi in isolation, but rather we are given a mixture of traces from all s strings x1, . . . , xs.
The main contribution of our work is a clustering procedure which lets us (with high
probability over a population of s random source strings) correctly group together traces that
came from the same source string. Given the ability to do such clustering, we can indeed use
the [13] algorithm on each obtained cluster to identify each of the source strings which has
non-negligible weight under the distribution D, and given the identity of these source strings
that each trace came from, it is straightforward to output a high-accuracy hypothesis for the
unknown distribution D over these strings.

The core clustering procedure which we develop is a simple algorithm which we call Acluster
(see Algorithm 1 in Section 4). This algorithm takes two traces a and b as input, and outputs
either “same” or “different.” Its performance guarantee is the following: If a and b were
generated as two independent traces from the same randomly chosen source string x, then
with high probability Acluster outputs “same,” whereas if a, b were generated as two traces
coming from two independent uniform random source strings x1 and x2 respectively, then
with high probability Acluster outputs “different.” (See Theorem 5 for a detailed statement.)

The idea underlying Acluster is as follows. Given a trace a (which we view as a string
over {−1, 1}), imagine breaking it up into contiguous segments (which we call “blocks”) and
summing the ±1 bits within each block, and let sum(a, i) denote the sum of the bits in the
i-th block. We do the same for the trace b and obtaining a value sum(b, i) from the i-th
block of b. The high-level idea is that, for a suitable choice of the block size, in general there
will be significant overlap between the positions in {1, . . . , n} (of the source string) that gave
rise to the elements of the i-th block of a and the i-th block of b. As a result,

On the one hand, if a and b came from the same source x, then there will be significant
cancellation in the difference sum(a, i) − sum(b, i) and this difference will tend to be
“small” in magnitude.
On the other hand, if a and b came from independent source strings x1 and x2, then
there will be no such cancellation and the difference sum(a, i)− sum(b, i) will not be so
“small” in magnitude.

Therefore by checking the magnitude of sum(a, i)− sum(b, i) across many different blocks i,
it is possible to determine with high confidence whether or not a and b came from the same
source string or not.

2 Preliminaries

We write [n] = {1, . . . , n} for a positive integer n. We index strings x ∈ {0, 1}n as x =
(x1, . . . , xn). We use bold font to denote random variables (which may be real-valued,
integer-valued, {0, 1}∗-valued, etc.).

We consider an insertion-deletion noise channel Cq,q′ defined as by [13]. Given a deletion
rate q and an insertion rate q′, both in [0, 1), the insertion-deletion channel Cq,q′ acts on an
x ∈ {0, 1}n as follows: First, for each j ∈ [n], Gj(q′)− 1 many independent and uniform bits
from {0, 1} are inserted before the j-th bit of x, where G1(q′), . . . ,Gn(q′) are i.i.d. geometric
random variables satisfying

Pr
[
Gj(q′) = `

]
= (q′)`−1(1− q′)

(i.e. each Gj(q′) is distributed as Geometric(1− q′)). Then each bit of the resulting string is
independently deleted with probability q. The resulting string is the output from Cq,q′(x),
and we write “y ∼ Cq,q′(x)” to indicate that y is a random trace generated from x in this
way. If D is a distribution over n-bit strings, we write “y ∼ Cq,q′(D)” to indicate that y is
obtained by first drawing x ∼ D and then drawing y ∼ Cq,q′(x).

APPROX/RANDOM 2019

44:6 Efficient Average-Case Population Recovery with Insertions and Deletions

3 Achieving an arbitrarily small fraction of “hard” strings in
average-case trace reconstruction

Fix any constants q, q′ ∈ [0, 1) as deletion and insertion rates, receptively. We will use
asymptotic notation such as O(·) and Θ(·) to hide constants that depend on q and q′.

The main result of [13] is an algorithm which successfully performs trace reconstruction
on at least (1− O(1)/n)-fraction of all n-bit strings (which is 1−M/n for some constant
M = M(q, q′) that only depends on q and q′). In more detail, their main result is the following:

I Theorem 2. Fix any constants q, q′ ∈ [0, 1). There is a deterministic algorithm Aaverage-case
with the following property: It is given (1) a confidence parameter δ > 0, (2) the length n of
an unknown string x ∈ {0, 1}n and (3) access to Cq,q′(x), uses

exp
(
O
(

log1/3 n
))
· log (1/δ) (1)

traces drawn from Cq,q′(x), and runs in time poly(n, log(1/δ)). For at least (1−O(1/n))-
fraction of all strings x ∈ {0, 1}n,2 it is the case that, algorithm Aaverage-case (δ, n, Cq,q′(x))
outputs the string x with probability at least 1 − δ (over the randomness of traces drawn
from Cq,q′(x)).

Note that in the above theorem the fraction of “hard” strings x ∈ {0, 1}n on which the
[13] algorithm does not succeed is Θ(1/n). In our setting, to achieve results for general
population sizes s, we may require the fraction of “hard” strings on which the reconstruction
algorithm does not succeed to be smaller than this; to see this, suppose for example that we
are considering a population of size s = n2. If a Θ(1/n) fraction of strings are “hard” and n2

strings are chosen uniformly at random to form the support of our distribution D, then we
would expect Θ(n) many hard strings to be present in the support set (i.e. the population)
of n2 strings. If the unknown distribution over the n2 strings (which, recall, may be any
distribution over that support) puts a significant amount of its probability mass on these
hard strings, then it may not be possible to successfully recover the population.

In this section we show that the fraction of strings in {0, 1}n that are “hard” can be
driven down from Θ(1/n) to an arbitrarily small fraction in the [13] result, at the cost of a
corresponding modest increase in the sample complexity and running time of the algorithm.
(As suggested by the discussion given above, such an extension is crucial for us to be able to
handle populations of size s = ω(n).) It may be possible to verify this directly via a careful
reworking of the [13] proof, but that proof is involved and such a verification would be quite
tedious. Instead we give a simple and direct argument which uses Theorem 2 in a black-box
way to prove the following generalization of it, in which only an arbitrarily small fraction of
strings are hard to reconstruct:

I Theorem 3. Fix any constants q, q′ ∈ [0, 1). There is a deterministic algorithm A′average-case
with the following property: It is given (1) τ > 0 as the desired fraction of hard strings, (2) a
confidence parameter δ, (3) the length n of the unknown string x ∈ {0, 1}n and (4) access to
Cq,q′(x). It uses

exp
(
O
((

log max{n, 1/τ}
)1/3

))
· log (1/δ)

2 Theorem 1 of [13] only claims a 1− on(1) fraction of strings x, but the proof shows that the fraction is
1−Oq,q′ (1)/n; see e.g. the discussion at the beginning of Section 1.3 of [13].

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:7

many traces drawn from Cq,q′(x), and runs in time poly(max{n, 1/τ}, log(1/δ)). For at least
1−τ fraction of all strings x ∈ {0, 1}n, it is the case that algorithm A′average-case (τ, δ, n, Cq,q′ (x))
outputs the string x with probability at least 1− δ.

We note that the sample complexity of Theorem 3 interpolates smoothly between the
average-case result of [13], in which a τ = Θ(1/n) fraction of strings are hard, and the
worst-case results of [8, 21], in which no strings in {0, 1}n (equivalently, at most a τ = 1/2n+1

fraction of strings) are hard.
The high-level idea underlying Theorem 3 is very simple: By padding the input string

x (which should be thought of as uniformly random over {0, 1}n) with random bits, it is
possible to obtain a uniformly random N -bit string, and by running algorithm Aaverage-case
over this string of length N , with probability 1−Θ(1/N) it is possible to reconstruct this
N -bit string, from which the original input string x can be reconstructed. Taking N to be
suitably large this yields the desired result. We give a detailed proof below.

Let M be the constant hidden in the O(1/n) in Theorem 2. We note that if τ ≥ M/n

then we may simply use Aaverage-case, so we henceforth assume that τ < M/n.

The algorithm. Algorithm A′average-case(τ, δ, n, Cq,q′(x)) works by running an auxiliary al-
gorithm A∗(τ, n, Cq,q′(x)) (which always outputs an n-bit string) O(log(1/δ)) many times. If
at least 9/16 of the O(log(1/δ)) runs of A∗ yield the same n-bit string then this is the output
of A′average-case, and otherwise A′average-case outputs “failure.” Below we will show that for at
least 1− τ fraction of all strings x ∈ {0, 1}n, A∗(τ, n, Cq,q′(x)) outputs the correct string x
with probability at least 5/8. It follows from the Chernoff bound that A′average-case achieves
the desired 1− δ success probability.

We turn to describing and analyzing A∗ (τ, n, Cq,q′(x)), which works as follows:
1. It draws a string z uniformly from {0, 1}N−n (the value of N > n will be specified later).
2. Let m = m(N) be the following parameter:

m(N) = exp
(
O
(

log1/3N
))
· log (1/δ′) ,

where δ′ = 1/8. This is the number of traces needed by Aaverage-case to achieve confidence
parameter δ′ on strings of length N (as in (1)). For m times, algorithm A∗ independently
repeats the following: at the i-th repetition it draws a string y(i) ∼ Cq,q′(x), constructs
a string y′(i) that is distributed according to Cq,q′(z), and constructs a(i) := y(i) ◦ y′(i)

which is the concatenation of y(i) and y′(i).

3. Finally, it uses the m strings a(1), . . . ,a(m) to run algorithm Aaverage-case with length
N and confidence parameter δ′. Let w ∈ {0, 1}N be the string that Aaverage-case returns.
The output of A∗ is w1w2 · · ·wn, the first n characters of w.

Proof of correctness. We first observe that (as an immediate consequence of the definition of
the noise channel Cq,q′) each string a(i) = y(i)◦y′(i) generated as in Step 2 of A∗ (τ, n, Cq,q′(x))
is distributed precisely as a draw from Cq,q′(x ◦ z). By the choice of m = m(N) in Step 2,
the strings a(1), . . . ,a(m) constitute precisely the required traces for a run of Aaverage-case on
the N -bit string x ◦ z.

Let us say that the strings in {0, 1}N which Aaverage-case (with parameters δ′ and N)
correctly reconstructs with probability at least 1− δ′ are good strings, and that the other
strings in {0, 1}N are bad strings. By Theorem 2, at most an (M/N)-fraction of all strings
in {0, 1}N are bad. The value of N is set to N := 4M/τ ,3 so M/N = τ/4, and it is the case

3 Note that N ≥ 4n using τ < M/N , so N − n > 0 and indeed Step 1 makes sense.

APPROX/RANDOM 2019

44:8 Efficient Average-Case Population Recovery with Insertions and Deletions

that at most a τ/4 fraction of strings in {0, 1}N are bad. For each x ∈ {0, 1}n, let γx denote
the fraction of strings z ∈ {0, 1}N−n such that x ◦ z is bad. The average over all x ∈ {0, 1}n

of γx is at most τ/4, and consequently at most a τ fraction of strings x have γx ≥ 1/4.

B Claim 4. If x ∈ {0, 1}n has γx < 1/4, then A∗ (τ, n, Cq,q′(x)) outputs x with probability
at least 5/8.

Proof. The probability that z ∼ {0, 1}N−n such that x ◦ z is good is at least 3/4. If x ◦ z is
good then with probability at least 1− δ′ = 7/8 the output of Aaverage-case as run in Step 3 is
the string x ◦ z and hence the output of A∗ is x. The claim follows since (3/4) · (7/8) > 5/8.

C

Hence for at least a (1 − τ)-fraction of x ∈ {0, 1}n, a run of A∗ (τ, n, Cq,q′(x)) outputs
x with probability at least 5/8. For any such x, a simple Chernoff bound shows that with
probability at least 1− δ, at least 9/16 of the O(log(1/δ)) many independent runs of A∗ will
output x. This concludes the proof of Theorem 3. J

4 The core clustering result

In this section we state and prove the key clustering result that is used in the main algorithm.
Intuitively, it gives an efficient procedure with the following performance guarantee: Given
two traces, the procedure can determine with high probability whether the two traces were
both obtained as traces from the same uniform random string x ∼ {0, 1}n, or the two traces
were obtained from two independent uniform random strings x1,x2 ∼ {0, 1}n.

In more detail, the main result of this section is the following theorem:

I Theorem 5. Fix any constants q, q′ ∈ [0, 1). There is a deterministic algorithm Acluster
with the following performance guarantee: It is given a positive integer n and a pair of binary
strings z and z′. Let δcluster := exp(−Θ(n1/3)). Then Acluster (n, z, z′) runs in time O(n)
and satisfies the following two properties:
1. Suppose that x is uniform random over {0, 1}n and z, z′ are independent draws from
Cq,q′(x). Then with probability at least 1 − δcluster, algorithm Acluster (n, z, z′) outputs
“same.”

2. Suppose that x1,x2 are independent uniform random strings over {0, 1}n, z ∼ Cq,q′(x1)
and z′ ∼ Cq,q′(x2). Then with probability at least 1 − δcluster, Acluster (n, z, z′) outputs
“different.”

4.1 Proof of Theorem 5
For convenience, we consider strings over {−1, 1} instead of {0, 1} in the rest of this section.
We need the following technical lemma:

I Lemma 6. Let τ ∈ (0, 1] be a constant. Then there exist three positive constants c1,
c2 and c3 (that only depend on τ) such that the following property holds. For all positive
integers m and m′ such that m′ ≤ (1− τ)m and m is sufficiently large, letting X1, . . . ,Xm

be independent and uniform random variables over {−1, 1}, we have

Pr
[∣∣X1 + · · ·+Xm

∣∣ ≥ c1√m] ≥ c2 +c3 and Pr
[∣∣X1 + · · ·+Xm′

∣∣ ≥ c1√m] ≤ c2−c3.

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:9

Proof. The Berry-Esseen theorem (see e.g. [11]) establishes closeness between the cdf of a
sum of “well-behaved” independent random variables (such as X1, . . . ,Xm) and the cdf of a
Normal distribution with the same mean and variance. By the Berry-Esseen theorem, the
probability of |X1 + · · ·+ Xm| ≥ c1

√
m is within an additive ±om(1) of the corresponding

probability of |G1| ≥ c1
√
m, where G1 ∼ N (0,m).

We first consider the case that m′ is not too small compared to m, say m′ > m1/3. In
this case the Berry-Esseen theorem implies that the probability of |X1 + · · ·+ Xm′ | ≥ c1

√
m

is also within an additive ±om(1) of the corresponding probability for Gaussian random
variables, which is now Pr[|G2| ≥ c1

√
m] with G2 ∼ N (0,m′). So in this case Lemma 6 is

an immediate consequence of an analogous statement for Gaussian random variables,

Pr
[∣∣G1

∣∣ ≥ c1√m] ≥ c2 + c3 and Pr
[∣∣G2

∣∣ ≥ c1√m] ≤ c2 − c3, (2)

where G1 ∼ N (0,m) and G2 ∼ N (0,m′). The first probability in (2) is the probability that
a Gaussian’s magnitude exceeds its mean by at least c1 standard deviations, while the second
probability in (2) is the probability that a Gaussian’s magnitude exceeds its mean by at least
c1/
√

1− τ standard deviations. Given this, for suitable c1, c2, c3 depending only on τ , the
inequalities (2) are a straightforward consequence of the following standard bounds on the
cdf of a Gaussian G ∼ N (0, σ2) [[11], Section 7.1]:(

1
x
− 1
x3

)
· e
−x2/2
√

2π
≤ Pr

[
G ≥ xσ

]
≤ 1
x
· e
−x2/2
√

2π
, for all x > 0.

Finally we consider the case that m′ is very small compared to m, say m′ ≤ m1/3.
In this case, by the Berry-Esseen theorem we have that Pr[|X1 + · · ·+ Xm| ≥ c1

√
m] is

±om(1)-close to the probability that a Gaussian’s magnitude exceeds its mean by c1 standard
deviations, which is at least some absolute constant, while Pr[|X1 + · · ·+ Xm′ | ≥ c1

√
m]

is zero for sufficiently large m, because m′ ≤ m1/3 < c1
√
m for m sufficiently large. This

finishes the proof of Lemma 6. J

Recall that constants q, q′ ∈ [0, 1) denote the deletion probability and insertion probability
respectively. Let p, p′ ∈ (0, 1] be p = 1 − q and p′ = 1 − q′. Then the expected length
of a string drawn from Cq,q′(x) with x ∈ {−1, 1}n is np/p′ = αn, where α := p/p′ is a
positive constant.

Given a string x ∈ {−1, 1}n, we start by describing an equivalent way of drawing
z ∼ Cq,q′(x). We say a string r over [n] ∪ {∗} is an n-pattern if every i ∈ [n] appears in r
at most once and integers appear in r in ascending order. We write Rn,q,q′ to denote the
following distribution over n-patterns. To draw r ∼ Rn,q,q′ we start with r(0) = (1, 2, . . . , n).
Then for each j ∈ [n], Gj(q′)− 1 many ∗’s are inserted before the j-th entry (with value j)
of r(0) to obtain r(1). Finally each entry of r(1) is independently deleted with probability
q to obtain the final string r. Using Rn,q,q′ , drawing z ∼ Cq,q′(x) can be done equivalently
as follows:
1. Draw an n-pattern r ∼ Rn,q,q′ .
2. For each index i ∈ [n] that appears in r, replace it by xi in r.
3. Replace each ∗ in r with an independent and uniform draw from {−1, 1}.

Next we introduce a number of parameters and constants that will be used in the clustering
algorithm Acluster. Two parameters s̃ and t used in the algorithm are

t := n2/3 and s̃ =
⌊αn

4t

⌋
= Θ(n1/3)

APPROX/RANDOM 2019

44:10 Efficient Average-Case Population Recovery with Insertions and Deletions

so that 2s̃t ≤ αn/2. Three constants β, γ and δ are defined as c1, c2 and c3 in Lemma 6 with
τ set to be the following constant in (0, 1): τ = 0.7pp′. For each ` ∈ [s̃], we let I` denote the
following set of integers:

I` =
[
(2`− 2)t+ 1, (2`− 1)t

]
∩ Z. (3)

Given a string z over {−1, 1} (or an n-pattern r), we will refer to entries zi of z (or ri of r)
over i ∈ I` as the `-th block of z (or r). So each block consists of t entries and two consecutive
blocks are separated by a gap of t entries. Given an n-pattern r and an integer `, we write
B`(r) ⊂ [n] to denote the set of i ∈ [n] that appears in the `-th block of r.

The algorithm Acluster is described in Algorithm 1. Before stating the key technical lemma
(Lemma 7) and using it to prove Theorem 5, we give some intuition for the algorithm Acluster.

Algorithm 1 Description of the clustering algorithm Acluster.

Algorithm Acluster (n, z, z′)
Input: A positive integer n and two strings z and z′ over {−1, 1}.
Output: “Same” or “different.”
1. For each ` ∈ [s̃], set Z` to be the sum of zi over i ∈ I`, with zi = 0 when i > |z|.
2. For each ` ∈ [s̃], set Z ′` to be the sum of z′i over i ∈ I`, with z′i = 0 when i > |z′|.
3. Count the number of ` ∈ [s̃] such that

∣∣Z` − Z ′`
∣∣ ≥ β√2t.

4. If the number of such ` is at least γs̃, return “different;” otherwise, return “same.”

Recall the two cases in Theorem 5. We start with the easier second case, where x1 and
x2 are drawn from {−1, 1}n uniformly and independently, z ∼ Cq,q′(x1) and z′ ∼ Cq,q′(x2).
First it is easy to show (see property (0) of Lemma 7) that |z|, |z′| ≥ αn/2 with very
high probability. When this happens, Z` is the sum of t independent and uniform random
variables over {−1, 1} and the same holds for Z ′`. Moreover, Z` and Z ′` are independent of
each other since x1 and x2 are drawn independently and thus, Z` −Z ′` can be equivalently
written as the sum of 2t independent and uniform variables over {−1, 1}. Furthermore, the
s̃ random variables Z` −Z ′` over ` ∈ [s̃] are independent. Thus, it follows from Lemma 6
and our choices of β, γ and δ that the probability of each |Z` −Z ′`| ≥ β

√
2t is at least γ + δ

and with very high probability, the number of such ` ∈ [s̃] is at least γs̃, in which case the
algorithm returns “different” as desired.

In the first case of Theorem 5, we draw x from {−1, 1}n uniformly and then draw z, z′

from Cq,q′(x) independently. Equivalently one can view the process as first drawing two
n-patterns r and r′ independently from Rn,q,q′ and x from {−1, 1}n. The string z (or z′) is
then obtained by replacing each i ∈ [n] in r (or r′) by xi and each ∗ by an independent draw
from {−1, 1}. Again we assume that |r|, |r′| ≥ αn/2, which happens with high probability.
When this is the case, each of Z` and Z ′` for ` ∈ [s̃] remains the sum of t independent
uniform random variables over {−1, 1}. However, when an index i ∈ [n] appears in the `-th
block of both r, r′, then xi appears in both sums Z`,Z

′
` and gets cancelled out in their

difference Z` −Z ′`.
Our main technical lemma shows that with very high probability over draws r and r′

from Rn,q,q′ , the following two properties hold: (1) |B`(r) ∩ B`(r′)| ≥ τt for every ` ∈ [s̃],
i.e., there are at least τt many integers that appear in the `-th block of both r and r′; and
(2) No index i ∈ [n] appears in two different blocks of r and r′ (i.e., it cannot be the case
that both i ∈ B`(r) and i ∈ B`′(r′) with ` 6= `′; intuitively the reason why we leave a gap of
t entries between two consecutive blocks is to achieve this property). Fixing such a pair of
n-patterns r and r′, property (1) implies that each Z` −Z ′` can be written as the sum of

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:11

at most (1− τ)2t many independent {−1, 1}-variables; given this, it follows directly from
Lemma 6 that the probability of each |Z` −Z ′`| ≥ β

√
2t is at most γ − δ. Furthermore (2)

implies that the s̃ variables Z` −Z ′` over ` ∈ [s̃] are independent. This lets us easily infer
that the number of ` such that |Z` −Z ′`| ≥ β

√
2t is less than γs̃ with very high probability,

in which case the algorithm returns “same” as desired.
As discussed above, the main technical lemma we require is as follows:

I Lemma 7. Let r, r′ be two n-patterns drawn independently from Rn,q,q′ . Then with
probability at least 1− exp(−Ω(n1/3)), the following three properties all hold:
(0): |r|, |r′| ≥ αn/2.
(1):

∣∣B`(r) ∩B`(r′)
∣∣ ≥ τt for all ` ∈ [s̃].

(2): If an i ∈ [n] appears in both B`(r) and B`′(r′) for some `, `′ ∈ [s̃], then we have ` = `′.

The detailed proof of Lemma 7 is given in Appendix A; here we give some intuition.
To prove Lemma 7, we show that r, r′ ∼ Rn,q,q′ satisfy each of the three properties with

probability at least 1 − exp(−Ω(n1/3)); the lemma follows from a union bound. Property
(0) follows from tail bounds on sums of independent Geometric random variables and from
standard Chernoff bounds (see Claim 12) for insertions and deletions, respectively. Indeed
property (0) holds with probability 1− exp(−Ω(n)).

Properties (1) and (2) follow from Lemma 13 in Appendix A. To state the lemma, recall
that we write r(1) to denote the string over [n] ∪ {∗} obtained after insertions during the
generation of r ∼ Rn,q,q′ . For each i ∈ [n], we use Y i to denote the number of characters
before i in r(1) that survive deletions; note that Y i is the number of characters that appear
before i in r if i survives in r, but Y i is well defined even if i was deleted. By definition, we
have E[Y i] = ((i/p′)− 1)p. Lemma 13 shows that for constant c ∈ (0, 1), with probability
1− exp(−Ω(n1/3)), |Y i −E[Y i]| ≤ ct. Lemma 13 again follows from tail bounds on sums of
independent Geometric random variables and from standard Chernoff bounds. We define Y ′i
similarly for r′ and the same statement also holds for Y ′i.

Property (2) follows directly from Lemma 13, since for an i ∈ [n] to appear in two
different blocks, it must be the case that |Y i − Y ′i| ≥ t and thus, either |Y i −E[Y i]| ≥ t/2
or |Y ′i −E[Y ′i]| ≥ t/2 (as we have E[Y ′i] = E[Y i]), which happens with probability at most
exp(−Ω(n1/3)) by Lemma 13.

To prove property (1) for ` ∈ [s̃], we focus on the following interval of indices in [n]:

I
(0)
` :=

[
p′

p
(2`− 1.9)t+ 1, p

′

p
(2`− 1.1)t

]
∩ Z,

and show that with probability at least 1− exp(−Ω(n1/3)), we have both
(a) At least τt = 0.7tpp′ indices in I(0)

` survive in both r and r′; and
(b) Every i ∈ I(0)

` that survives in both r and r′ lies in both B`(r) and B`(r′).
Item (a) follows from a Chernoff bound: the length of I(0)

` is 0.8tp′/p and every element
survives independently in both strings with probability p2. Letting i0, i1 be the left and right
ends of I(0)

` , item (b) holds when Y i0 ,Y
′
i0
,Y i1 ,Y

′
i1

do not shift too far (0.1t) away from
their expectations which happens with probability at least 1− exp(−Ω(n1/3)) by Lemma 13.

Finally we use Lemma 7 to prove Theorem 5:

Proof of Theorem 5. We start with the second case in which x1,x2 are independent uniform
random strings over {0, 1}n, z ∼ Cq,q′(x1) and z′ ∼ Cq,q′(x2). By our discussion earlier, z

and z′ can be generated equivalently by first drawing r, r′ ∼ Rn,q,q′ , then drawing x1,x2,

APPROX/RANDOM 2019

44:12 Efficient Average-Case Population Recovery with Insertions and Deletions

and finally deriving z (or z′) from r (or r′) using x1 (or x2) as well as independent random
bits for the ∗’s. By Lemma 7, r and r′ satisfy all three properties with probability at least
1− exp(−Ω(n1/3)). Fixing r and r′ that satisfy all three properties (for the first case we only
need property (0)), we show that Acluster (n, z, z′) returns “different” with probability at least
1− exp(−Ω(n1/3)) conditioning on r = r and r′ = r′; the lemma for this case then follows.

To this end, it follows from property (0) that each Z` −Z ′` is a sum of 2t independent
uniform random variables over {−1, 1} and thus, each ` ∈ [s̃] satisfies |Z`−Z ′`| ≥ β

√
2t with

probability at least γ + δ. Moreover, the s̃ variables Z` − Z ′` are independent. It follows
from a Chernoff bound (and that δ is a positive constant) that Acluster returns “different”
with probability 1− exp(−Ω(s̃)) = 1− exp(−Ω(n1/3)).

For the second case we can similarly generate z, z′ by first drawing r, r′ ∼ Rn,q,q′ , then
drawing x, and finally deriving z, z′ from r, r′ using the same x and independent random
bits for the ∗’s. Again it follows from Lemma 7 that r, r′ satisfy all three properties with
probability 1− exp(−Ω(n1/3)). Fixing r, r′ that satisfy all three properties, we show that
Acluster (n, z, z′) returns “same” with probability 1− exp(−Ω(n1/3)), conditioning on r = r

and r′ = r′; the lemma for this case then follows.
For this purpose, properties (0) and (1) imply that each Z` −Z ′` is the sum of at most

(1− τ)2t many independent uniform random variables over {−1, 1}. Lemma 6 implies that
the probability of |Z` −Z ′`| ≥ β

√
2t is at most γ − δ. Moreover, property (2) implies that

these s̃ variables Z` −Z ′` are independent. It similarly follows from a Chernoff bound that
Acluster returns “same” with probability 1− exp(−Ω(s̃)) = 1− exp(−Ω(n1/3)). J

5 Putting the pieces together: Proof of Theorem 1

In this section we combine the main results from earlier sections, Theorem 3 from Sec-
tion 3 and Theorem 5 from Section 4, together with standard results on learning discrete
distributions, to prove Theorem 1.

5.1 Learning discrete distributions

We recall the following folklore result on learning a discrete distribution from independent
samples:

I Theorem 8. Fix γ, κ > 0, N ∈ N. Let P be an unknown probability distribution over
the discrete set {1, . . . , N}, and let S = {i1, . . . , im} be independent draws from P, where
m = O((N/κ2) · log(1/γ)). Let P̂S denote the empirical probability distribution over [N]
corresponding to S. Then with probability at least 1− γ over the draw of S, the variation
distance dTV(P̂S ,P) is at most κ.

We will need a corollary which says that removing low-frequency elements has only a
negligible effect:

I Corollary 9. Let P,m and S be as above. Let S′ be the subset of S obtained by removing
each element j whose frequency in S is at most κ/(2N), and let P̂S′ denote the empirical
distribution over [N] corresponding to S′. Then with probability at least 1− γ over the draw
of S′, dTV(P̂S′ ,P) is at most κ.

Proof. By Theorem 8, with probability at least 1− δ the hypothesis P̂S from Theorem 8 is
κ/2-close to P. The corollary follows since the variation distance between P̂S and P̂S′ is at
most N · κ/(2N) = κ/2. J

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:13

Algorithm 2 Description of the main algorithm A.
Algorithm A(n, s, ε, δhard, δfail, Cq,q′(D)), with constants q, q′ ∈ [0, 1) as deletion and
insertion rates.
Input: String length n, support size s ≤ exp(Θ(n1/3)), accuracy parameter
ε ≥ exp(−Θ(n1/3)), fraction of hard support sets δhard ≥ exp(−Θ(n1/3)), failure
probability δfail ≥ exp(−Θ(n1/3)), and access to Cq,q′(D) where D is a probability
distribution over s strings in {0, 1}n.

Output: Either a probability distribution D′ or “fail.”
1. Draw T traces y1, . . . ,yT from Cq,q′(D), where

T = s

ε2 · exp
(

Θ
((

log max
{
n,

2s
δhard

})1/3
))
· log

(
3s
δfail

)
.

2. For each pair of traces yi,yj with 1 ≤ i < j ≤ T , run Acluster (n,yi,yj) from
Section 4. If the

(
T
2
)
-many outcomes of Acluster (corresponding to

(
T
2
)
many

answers of “same” or “different”) do not correspond to a disjoint union of cliques
then halt and output “fail,” otherwise continue.

3. Let the resulting clusters / cliques be denoted C1, . . . , Cr, so C1 t · · · t Cr is a
partition of the set {y1, . . . ,yT } of traces.a Call Ci large if it contains at least
T · (ε/(2s)) many elements. Let C ′1, . . . , C ′r′ denote the large clusters for some
r′ ≤ r, and let C ′total =

∑
i |C ′i|.

4. For each large multiset C ′i, run A′average-case from Section 3 using n and strings
from C ′i, in which τ is set to δhard/(2s) and δ is set to δfail/(3s). Let zi be the
output of A′average-case on this input.

5. Distribution D′ that A outputs is supported on z1, . . . , zr′ and puts weight
|C ′i|/C ′total on zi.

a Strictly speaking, each Ci is a multiset.

5.2 Proof of Theorem 1
Algorithm A is given in Algorithm 2. Its proof of correctness is given below.

Proof. Suppose that the true underlying support of D is X = (x1, . . . , xs) (as an ordered
list). We consider s instances of algorithm A′average-case from Section 3, where each instance
has parameters n, τ = δhard/(2s) and δ = δfail/(3s), and the i-th one runs on T ∗ many traces
drawn from Cq,q′(xi), where

T ∗ = exp
(

Θ
((

log max
{
n,

2s
δhard

})1/3
))
· log

(
3s
δfail

)
as specified in Section 3 (so we have T = (s/ε2) · T ∗). We say that X is a hard support if
either
(a) At least one string xi, i ∈ [s], is hard for algorithm A′average-case; or
(b) After drawing T traces from Cq,q′(x(i)) for each i ∈ [s], Acluster fails on one of these

(
sT
2
)

many pairs of traces with probability at least δfail/3.

We consider a random support X = (x1, . . . ,xs) drawn from {0, 1}n independently
and uniformly. Theorem 3 says the probability of a uniform random string being hard
for A′average-case is at most δhard/(2s). A union bound says the probability our support

APPROX/RANDOM 2019

44:14 Efficient Average-Case Population Recovery with Insertions and Deletions

satisfies (a) is at most δhard/2. On the other hand, for each support X , we let λ(X) denote
the probability that Acluster fails on at least one of the

(
sT
2
)
pairs. Theorem 5 implies

EX [λ(X)] ≤
(

sT
2
)
· δcluster ≤ (δfail/3) · δhard/2, where the last inequality follows by setting the

constant hidden in the Θ(n1/3) of upper and lower bounds for s, ε, δhard and δfail to be
sufficiently small (compared to the constant hidden in δcluster). By Markov, a random
support satisfies (b) with probability at most δhard/2. A union bound on (a) and (b) says
the probability of a random support being hard is at most δhard.

If D′ is a probability distribution where dTV(D,D′) ≤ ε, then we say that D′ is ε-accurate.
It suffices to show that for a support X that is not hard and an arbitrary distribution D
on that support set, the probability that our algorithm A fails to output an ε-accurate
distribution D′ is at most δfail.

Our algorithm has three points of failure. In Step 2, it could fail to cluster the T traces
correctly. Given the correct clustering in Step 2, it could fail to learn the underlying string
for some cluster in Step 4. Finally, given the correct support, it could fail to output an
ε-accurate distribution D′ in Step 5.

By the definition of hard supports we have that Step 2 returns an incorrect clustering
with probability at most δfail/3. Given a correct clustering in Step 2, each large C ′i will have
at least T · (ε/2s) = T ∗/ε ≥ T ∗ elements. Since no xi is hard for A′average-case, by Theorem 3
the probability any instance of A′average-case fails is at most δfail/(3s). By a union bound, the
probability of a Step 4 error is at most δfail/3.

Since T ≥ Ω((s/ε2) · log(3/δfail)) and the large clusters are defined to have size at least a
ε/2s fraction of the number of traces, then by Corollary 9 with N = s, κ = ε, γ = δfail/3, and
m = T , given the correct support the probability that Step 5 fails to output an ε-accurate
probability distribution is at most δfail/3. By a union bound, the probability of failure on a
support that is not hard is at most δfail.

By Theorem 5 Step 2 takes time O(nT 2). By Theorem 3 Step 4 takes time
poly(n, s/δhard, log(1/δfail)). Step 5 takes time O(s) to compute the weights used in D′.
Therefore, the overall running time of the algorithm is poly(n, s, 1/ε, 1/δhard, log(1/δfail)).
The theorem follows since the sample complexity T is at most poly(s, 1/ε, exp(log1/3 n),
exp(log1/3(1/δhard)), log(1/δfail)). J

References

1 Alexandr Andoni, Mark Braverman, and Avinatan Hassidim. Phylogenetic Reconstruction
with Insertions and Deletions. Manuscript, 2014.

2 Alexandr Andoni, Constantinos Daskalakis, Avinatan Hassidim, and Sébastien Roch. Global
Alignment of Molecular Sequences via Ancestral State Reconstruction. In ICS, pages 358–369,
2010.

3 Frank Ban, Xi Chen, Adam Freilich, Rocco A. Servedio, and Sandip Sinha. Beyond trace
reconstruction: Population recovery from the deletion channel. CoRR, abs/1904.05532, 2019.
arXiv:1904.05532.

4 T. Batu, S. Kannan, S. Khanna, and A. McGregor. Reconstructing strings from random traces.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2004, pages 910–918, 2004.

5 Zachary Chase. New lower bounds for trace reconstruction. arXiv preprint, 2019. arXiv:
1905.03031.

6 Constantinos Daskalakis and Sébastien Roch. Alignment-Free Phylogenetic Reconstruction.
In RECOMB, pages 123–137, 2010.

http://arxiv.org/abs/1904.05532
http://arxiv.org/abs/1905.03031
http://arxiv.org/abs/1905.03031

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:15

7 A. De, M. Saks, and S. Tang. Noisy population recovery in polynomial time. Technical Report
TR-16-026, Electronic Colloquium on Computational Complexity, 2016. To appear in FOCS
2016.

8 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th ACM Symposium on Theory of Computing
(STOC), pages 1047–1056, 2017.

9 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Sharp bounds for population recovery.
CoRR, abs/1703.01474, 2017. arXiv:1703.01474.

10 Z. Dvir, A. Rao, A. Wigderson, and A. Yehudayoff. Restriction access. In Innovations in
Theoretical Computer Science, pages 19–33, 2012.

11 W. Feller. An introduction to probability theory and its applications. John Wiley & Sons, 1968.
12 Nina Holden and Russell Lyons. Lower bounds for trace reconstruction. Available at

arXiv:1808.02336, 2018.
13 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for

random strings and arbitrary deletion probability. CoRR, abs/1801.04783, 2018.
14 T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder. Trace reconstruction with

constant deletion probability and related results. In Proceedings of the Nineteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389–398, 2008.

15 Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics &
Probability Letters, 135:1–6, 2018. doi:10.1016/j.spl.2017.11.017.

16 Sampath Kannan and Andrew McGregor. More on Reconstructing Strings from Random
Traces: Insertions and Deletions. In IEEE International Symposium on Information Theory,
pages 297–301, 2005.

17 Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
Reconstruction: Generalized and Parameterized. arXiv preprint, 2019. arXiv:1904.09618.

18 S. Lovett and J. Zhang. Improved Noisy Population Recovery, and Reverse Bonami-Beckner
Inequality for Sparse Functions. In Proceedings of the Forty-Seventh Annual ACM on Sym-
posium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages
137–142, 2015.

19 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace Reconstruction Revisited. In
Proceedings of the 22nd Annual European Symposium on Algorithms, pages 689–700, 2014.

20 Ankur Moitra and Michael E. Saks. A Polynomial Time Algorithm for Lossy Population
Recovery. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 110–116, 2013.

21 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(O(n1/3)) samples. In Pro-
ceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
pages 1042–1046, 2017.

22 Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,
Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen,
et al. Random access in large-scale DNA data storage. Nature biotechnology, 36(3):242, 2018.

23 Yuval Peres and Alex Zhai. Average-Case Reconstruction for the Deletion Channel: Subpoly-
nomially Many Traces Suffice. In FOCS, pages 228–239, 2017.

24 Yury Polyanskiy, Ananda Theertha Suresh, and Yihong Wu. Sample complexity of population
recovery. In Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam,
The Netherlands, 7-10 July 2017, pages 1589–1618, 2017.

25 Krishnamurthy Viswanathan and Ram Swaminathan. Improved string reconstruction over
insertion-deletion channels. In Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 399–408, 2008.

26 A. Wigderson and A. Yehudayoff. Population recovery and partial identification. Machine
Learning, 102(1):29–56, 2016. Preliminary version in FOCS 2012.

27 S.M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and Error-Free
DNA-Based Data Storage. Scientific Reports, 7(1):5011, 2017.

APPROX/RANDOM 2019

http://arxiv.org/abs/1703.01474
https://arxiv.org/abs/1808.02336
https://doi.org/10.1016/j.spl.2017.11.017
http://arxiv.org/abs/1904.09618

44:16 Efficient Average-Case Population Recovery with Insertions and Deletions

A Deferred proof of Lemma 7

We recall Lemma 7:

Lemma 7 (restated). Let r, r′ be two n-patterns drawn independently from Rn,q,q′ . Then
with probability at least 1− exp(−Ω(n1/3)), the following three properties all hold:
(0): |r|, |r′| ≥ αn/2.
(1): |B`(r) ∩B`(r′)| ≥ τt for all ` ∈ [s̃].
(2): If an i ∈ [n] appears in both B`(r) and B`′(r′) for some `, `′ ∈ [s̃], then we have ` = `′.

We will use the following tail bounds for sums of independent geometric random variables,
which are special cases of results proved by [15].

I Theorem 10 (Theorems 2.1 and 3.1 in [15]). Let p′ ∈ (0, 1], and X1, · · · ,Xn be independent
Geometric(p′) random variables. Let X =

∑
i∈[n] Xi and µ = E[X] = n/p′. Then the

following holds:
1. For any λ ≥ 1, we have

Pr
[
X ≥ λµ

]
≤ exp (−p′µ(λ− 1− lnλ)) .

2. For any 0 < λ ≤ 1, we have

Pr
[
X ≤ λµ

]
≤ exp (−p′µ(λ− 1− lnλ)) .

Note that λ− 1− lnλ ≥ 0 for all λ > 0, with equality only at λ = 1. We first derive a simpler
expression for the tail bounds, using the following claim:

B Claim 11. Let f : (−1,∞) → R be defined as f(x) = x − ln(1 + x). The following
properties hold: (i) f(0) = 0; (ii) f(x) > x2/4 for all x ∈ (−1, 1] \ {0}; and (iii) f(x) ≥ x/4
for all x ≥ 1.

Proof. The claim follows from elementary calculus. For item (ii) it can be shown that
g(x) = f(x)− x2/4 attains its minimum value 0 at x = 0 and is strictly convex in (−1, 1].
For item (iii) it is easy to verify that h(x) = f(x)− x/4 satisfies h′(x) > 0 for all x ≥ 1, and
hence its minimum value is h(1) ≥ 0.05. C

Letting x = λ− 1 in Theorem 10, this claim allows us to replace the λ− 1− lnλ term in the
exponent of the tail bounds by either (λ− 1)2/4 or (λ− 1)/4, depending on whether λ < 2
or λ ≥ 2.

Now, we state and prove a few claims that will be useful for proving Lemma 7. The first
claim states that property (0) in Lemma 7 holds with probability at least 1− exp(−Ω(n)).

B Claim 12. With probability at least 1−exp(−Ω(n)), r ∼ Rn,q,q′ satisfies that |r(1)| ≥ αn/2.

Proof. Let r(1) be the random string defined earlier in the generation of r ∼ Rn,q,q′ . As |r(1)|
is a sum of n independent Geometric(p′) random variables, we have µ = E[|r(1)|] = n/p′.
Invoking Theorem 10 with λ = 3/4 and Part (1) of Claim 11 with x = λ− 1, the probability
of |r(1)| < 3n/(4p′) is exp(−Ω(n)).

Fixing any realization r(1) of r(1) with |r(1)| ≥ 3n/(4p′), it follows from the standard
Chernoff bound that the probability of |r| < αn/2 ≤ (2p)/3 · |r(1)| is at most exp(−Ω(n)).
This finishes the proof. C

F. Ban, X. Chen, R. A. Servedio, and S. Sinha 44:17

Fix an i ∈ [n]. Let Y ∗i be the random variable denoting the number of characters before i
in r(1) (after insertions). Recall that Y i denotes the number of characters before i in r(1) that
survive deletions; note that Y i is well-defined even if i is deleted. Then E[Y ∗i] = (i/p′)− 1,
and E[Y i] = p ·E[Y ∗i] = ((i/p′)− 1)p.

I Lemma 13. For any i ∈ [n], the probability that
∣∣Y i − E[Y i]

∣∣ ≥ 0.05t is at most
exp(−Ω(n1/3)).

Proof. Let ε = 0.05 in the proof. We have∣∣Y i −E[Y i]
∣∣ ≤ ∣∣Y i − pY ∗i

∣∣+
∣∣pY ∗i − pE[Y ∗i]

∣∣ =
∣∣Y i − pY ∗i

∣∣+ p ·
∣∣Y ∗i −E[Y ∗i]

∣∣.
We first show that |Y ∗i −E[Y ∗i]| ≤ εt/(2p) with probability at least 1− exp(−Ω(n1/3)). Next
conditioning on any fixed realization r(1) of r(1) with |Y ∗i −E[Y ∗i]| ≤ εt/(2p) (in particular
this implies that Y ∗i = O(n)) we show that |Y i − pY ∗i | ≤ εt/2 with probability at least
1− exp(−Ω(n1/3)). The lemma then follows by combining these two steps. Given that the
second step follows from the Hoeffding bound (with Y ∗i = O(n) and t = n2/3), we focus on
the first part in the rest of the proof.

First we analyze the lower tail, i.e., the probability of Y ∗i −E[Y ∗i] ≤ −εt/(2p). Because
Y ∗i ≥ 0 we may assume E[Y ∗i] > εt/(2p) (otherwise Y ∗i ≥ E[Y ∗i]− εt/(2p) trivially). Let

λ = 1− εt

2pE[Y ∗i] and x = λ− 1 = − εt

2pE[Y ∗i] ,

so that λE[Y ∗i] = E[Y ∗i]− εt/(2p). By Theorem 10 and Part (1) of Claim 11, we have

Pr
[

Y ∗i ≤ E[Y ∗i]− εt

2p

]
≤ exp

(
−Ω
(

E[Y ∗i] · t2

E[Y ∗i]2

))
≤ exp

(
−Ω
(
t2

n

))
= exp

(
−Ω(n1/3)

)
.

For the second inequality, we used the fact that E[Y ∗i] = O(n). Similarly, we analyze the
upper tail. Let

λ = 1 + εt

2pE[Y ∗i] and x = λ− 1 = εt

2pE[Y ∗i] .

If λ ≤ 2, Theorem 10 and Part (1) of Claim 11 imply that

Pr
[

Y ∗i ≥ E[Y ∗i] + εt

2p

]
≤ exp

(
−Ω
(

E[Y ∗i] · t2

E[Y ∗i]2

))
≤ exp

(
−Ω
(
t2

n

))
= exp

(
−Ω(n1/3)

)
.

On the other hand, if λ ≥ 2, then x ≥ 1. By Theorem 10 and Part (2) of Claim 11, we have

Pr
[
Y ∗i ≥ E[Y ∗i] + εt

2p

]
≤ exp

(
−Ω

(
E[Y ∗i] · t

E[Y ∗i]

))
≤ exp (−Ω(t)) = exp

(
−Ω(n2/3)

)
.

This finishes the proof of the lemma. J

We are ready to prove Lemma 7.

Proof of Lemma 7. We work on the three events separately and apply a union bound at
the end.
(0): It follows from Claim 12 that property (0) holds with probability at least 1−exp(−Ω(n)).

APPROX/RANDOM 2019

44:18 Efficient Average-Case Population Recovery with Insertions and Deletions

(1): Fix ` ∈ [s̃]. Recall that I` = [(2`− 2)t+ 1, (2`− 1)t] ∩ Z. Let

I
(0)
` :=

[
p′

p
(2`− 1.9)t+ 1, p

′

p
(2`− 1.1)t

]
∩ Z.

Then I(0)
` ⊂ [n]. We will show that with probability at least 1 − exp(−Ω(n1/3)), both

properties below hold:
(a) At least 0.7tpp′ elements in I(0)

` survive in both r and r′;
(b) If an element i ∈ I(0)

` survives in both r and r′, then i ∈ B`(r) ∩B`(r′).
Given that (a) and (b) together imply property (1), we have that property (1) holds for
` ∈ [s̃] with probability at least 1− exp(−Ω(n1/3)). A union bound over all ` ∈ [s̃] implies
that property (1) holds for all ` ∈ [s̃] with probability at least 1− s̃ · exp(−Ω(n1/3)) =
1− exp(−Ω(n1/3)).
So it suffices to show that (a) and (b) happen with probability at least 1− exp(−Ω(n1/3)).
For (a), it follows from a standard Chernoff bound that (a) holds with probability at
least 1− exp(−Ω(n2/3)). For (b), let i0 and i1 be the left and right endpoints of I(0)

` ,
respectively. Let Y i0 ,Y i1 (Y ′i,0,Y ′i1

) be as defined earlier with respect to r (r′). Note
that E[Y i0] = ((i0/p′) − 1)p and E[Y i1] = ((i1/p′) − 1)p. Then by Lemma 13 (and a
union bound), with probability at least 1− 4 exp(−Ω(n1/3)), we have:

Y i0 ≥ E[Y i0]− 0.05t > (2`− 2)t and Y i1 ≤ E[Y i1] + 0.05t < (2`− 1)t,

and the same holds for Y ′i0
and Y ′i1

. When all these events occur, then clearly all
characters in I

(0)
` that survive in r, r′ are in I` in both n-patterns. This finishes the

analysis of property (1).
(2): Suppose a character i ∈ [n] appears in B`(r) and B`′(r′) for some ` 6= `′. Let Y i,Y

′
i

denote the number of characters before i in r, r′ respectively. Then E[Y i] = E[Y ′i]. As
any two distinct blocks are separated by at least t positions in the n-patterns, we have
|Y i−Y ′i| ≥ t. Triangle inequality implies that |Y i −E[Y i]| ≥ t/2 or |Y ′i −E[Y ′i]| ≥ t/2.
Assume without loss of generality that |Y i −E[Y i]| ≥ t/2 > 0.05t. Instantiating Lemma
13, we conclude that this event happens with probability at most n · exp(−Ω(n1/3)) which
remains exp(−Ω(n1/3)).

The lemma follows from a union bound. J

Improved Pseudorandom Generators from
Pseudorandom Multi-Switching Lemmas
Rocco A. Servedio
Department of Computer Science, Columbia University, New York, NY, USA
http://www.cs.columbia.edu/~rocco
rocco@cs.columbia.edu

Li-Yang Tan
Department of Computer Science, Stanford University, Palo Alto, CA, USA
liyang@cs.stanford.edu

Abstract
We give the best known pseudorandom generators for two touchstone classes in unconditional
derandomization: small-depth circuits and sparse F2 polynomials. Our main results are an ε-PRG
for the class of size-M depth-d AC0 circuits with seed length log(M)d+O(1) · log(1/ε), and an ε-PRG
for the class of S-sparse F2 polynomials with seed length 2O(

√
log S) · log(1/ε). These results bring

the state of the art for unconditional derandomization of these classes into sharp alignment with
the state of the art for computational hardness for all parameter settings: improving on the seed
lengths of either PRG would require breakthrough progress on longstanding and notorious circuit
lower bounds.

The key enabling ingredient in our approach is a new pseudorandom multi-switching lemma.
We derandomize recently-developed multi-switching lemmas, which are powerful generalizations of
Håstad’s switching lemma that deal with families of depth-two circuits. Our pseudorandom multi-
switching lemma – a randomness-efficient algorithm for sampling restrictions that simultaneously
simplify all circuits in a family – achieves the parameters obtained by the (full randomness) multi-
switching lemmas of Impagliazzo, Matthews, and Paturi [39] and Håstad [35]. This optimality of
our derandomization translates into the optimality (given current circuit lower bounds) of our PRGs
for AC0 and sparse F2 polynomials.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases pseudorandom generators, switching lemmas, circuit complexity, uncondi-
tional derandomization

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.45

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1801.03590.

Funding Rocco A. Servedio: Supported by NSF grants CCF-1420349 and CCF-1563155.
Li-Yang Tan: Supported by NSF grant CCF-1563122; part of this research was done during a visit
to Columbia University.

Acknowledgements We thank Prahladh Harsha and Srikanth Srinivasan for helpful discussions.

1 Introduction

Switching lemmas. Switching lemmas, first established in a series of breakthrough works
in the 1980s [4, 29, 71, 34], are fundamental results stating that depth-two circuits (ORs of
ANDs or vice versa) simplify dramatically when they are “hit with a random restriction.”
They are a powerful technique in circuit complexity, and are responsible for a remarkable
suite of hardness results concerning small-depth Boolean circuits (AC0). Switching lemmas

© Rocco A. Servedio and Li-Yang Tan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 45; pp. 45:1–45:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.cs.columbia.edu/~rocco
mailto:rocco@cs.columbia.edu
mailto:liyang@cs.stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.45
https://arxiv.org/abs/1801.03590
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Improved PRGs from Pseudorandom Multi-Switching Lemmas

are at the heart of several near-optimal bounds on AC0 circuits, such as essentially optimal
correlation bounds against the Parity function [39, 35] and the worst-case and average-case
depth hierarchy theorems of [34, 59, 36]. Indeed, comparably strong results are lacking (and
are major open problems) for seemingly small extensions of AC0, such as AC0 augmented
with parity or mod-p gates, for which switching lemmas do not apply; this gap highlights the
importance of switching lemmas as a proof technique.

Switching lemmas are versatile as well as powerful: many results in circuit complexity rely
on sophisticated variants and generalizations of the “standard” switching lemmas. Recent
examples include the aforementioned correlation bounds and average-case depth hierarchy
theorems, as well as powerful lower bounds on the circuit complexity of the Clique problem
[12, 57], lower bounds on the small-depth circuit complexity of st-Connectivity [25],
and lower bounds against AC0 formulas [58]. Beyond the immediate arena of circuit lower
bounds, switching lemmas are also important tools in diverse areas including propositional
proof complexity [54, 43, 55, 37], computational learning theory [44], the design of circuit
satisfiability algorithms [13, 39], and coding theory [23, 10].

This paper is about the role of switching lemmas in the study of unconditional pseudor-
andomness. Switching lemmas have a long history in this area; indeed, arguably the first
work in unconditional derandomization, the seminal paper of Ajtai and Wigderson [6], was
based on a pseudorandom switching lemma, which they used to give the first non-trivial pseu-
dorandom generator for AC0. (Interestingly, after many subsequent developments described
in detail in Section 2, we come full circle in this paper and use the [6] framework to give
a new pseudorandom generator for AC0 that is essentially best possible without improving
longstanding circuit lower bounds.) One key contribution that we make in this paper is to
bring together two important generalizations of standard switching lemmas, one quite old
and one very new:

(i) pseudorandom switching lemmas (originating in [6]), which employ pseudorandom
rather than “fully random” restrictions, and

(ii) recently developed multi-switching lemmas [39, 35] which simultaneously simplify all
of the depth-two circuits in a family of such circuits, rather than a single depth-two
circuit as is the case for standard switching lemmas.

Let us discuss each of these generalizations in turn.

Pseudorandom switching lemmas. The (truly) random restrictions that are used in stand-
ard switching lemmas make a coordinatewise-independent random choice for each input
variable x1, . . . , xn of whether to map it to 0, to 1, or to leave it unassigned (map it to
∗); standard switching lemmas show that a depth-two circuit simplifies dramatically with
very high probability when it is hit with such a random restriction. Such “truly random”
restrictions are inherently incompatible with unconditional derandomization, which naturally
motivates the notion of a pseudorandom switching lemma. Such a result defines a much
smaller probability space of “pseudorandom” restrictions, and proves that a restriction drawn
randomly from this space also has the effect of simplifying a depth-two circuit with high
probability. While pseudorandom switching lemmas have been the subject of much research
since they were first introduced by Ajtai and Wigderson [6, 5, 24, 3, 32, 39, 31, 65, 30], and
have been applied in a range of different ways in unconditional derandomization, they are
not yet fully understood.

The designer of a pseudorandom switching lemma faces an inherent tension between
achieving strong parameters – intuitively, having a depth-two circuit simplify as much as
possible while keeping a large fraction of variables alive – and using as little randomness as

R.A. Servedio and L.-Y. Tan 45:3

possible. Prior to the work of Trevisan and Xue [65], known pseudorandom switching lemmas
fell short of achieving the parameters of Håstad’s influential “full randomness” switching
lemma [34]. In particular, a parameter of central importance in essentially all applications of
switching lemmas is the probability that a given coordinate xi remains alive under a random
(or pseudorandom) restriction; this is often referred to as the “∗-probability” and denoted by
p. A crucial quantitative advantage of Håstad’s switching lemma over previous works is that
it can be applied even when p is as large as Ω(1/ logn) for poly(n)-size depth-two circuits –
in contrast, the earlier works of [4, 29, 71] required p = n−Ω(1) – and yields a very strong
conclusion, namely that with high probability the restricted circuit collapses to a shallow
decision tree1. (For example, while the recent pseudorandom switching lemma of [31] is able
to achieve a relatively large p, the conclusion of that switching lemma is that the restricted
depth-two circuit can w.h.p. be sandwiched by depth-two circuits with small bottom fan-in,
which is weaker than the aforementioned decision tree conclusion.)

Trevisan and Xue [65] give a pseudorandom switching lemma that is highly randomness
efficient and yet achieves the parameters of Håstad’s fully random switching lemma (i.e. [65]
achieves the same simplification, collapsing to a shallow decision tree, that follows from [34],
with the same ∗-parameter p as [34]). The key conceptual ingredient enabling this is a beautiful
idea of “fooling the proof” of the Håstad’s switching lemma, exploiting its “computational
simplicity”. Trevisan and Xue leverage their pseudorandom switching lemma to construct a
new pseudorandom generator for AC0, obtaining the first improvement of Nisan’s celebrated
PRG [52] in over two decades. We elaborate on Trevisan and Xue’s ideas and how they
obtain their PRG later in Section 2.1.

Multi-switching lemmas. The switching lemma shows that any width-k CNF formula
collapses to a shallow decision tree with high probability under a random restriction. Via
a simple union bound it is of course possible to extend this result to say that a family of
width-k CNF formulas will all collapse to a shallow decision tree with high probability under
a random restriction; but this naive approach leads to a quantitative loss in parameters if
the argument is iterated, as it typically is, d− 1 times to analyze a depth-d circuit. (The
exact nature of this quantitative loss is important but somewhat subtle; see Section 3 for a
detailed explanation.)

Via an ingenious extension of the ideas underlying the original switching lemma, Håstad
[35] developed “multi-switching lemmas” that essentially bypass this quantitative loss in
parameters that results from iterating a naive union bound (see also the work of Impagliazzo,
Matthews, and Paturi [39] for closely related results). Roughly speaking, [35] shows that a
family of width-k CNF formulas will with high probability have a shallow common partial
decision tree. Without explaining this structure in detail here (again see Section 3 for a
detailed explanation), this makes it possible to iterate the argument and tackle depth-d circuits
without incurring a quantitative loss in parameters. The savings thus achieved is the key
new ingredient that allowed [39, 35] to achieve essentially optimal correlation bounds for AC0

against the Parity function, capping off a long line of work [4, 71, 34, 19, 8, 13]. These ideas
have also been leveraged to achieve new algorithmic results such as better-than-brute-force
satisfiability algorithms and distribution-free PAC learning algorithms for AC0 [13, 39, 60].

1 The first published version of the switching lemma with a decision tree conclusion is due to Cai [19];
several authors subsequently noted that Håstad’s argument also yields such a conclusion.

APPROX/RANDOM 2019

45:4 Improved PRGs from Pseudorandom Multi-Switching Lemmas

A pseudorandom multi-switching lemma. A core technical contribution of this paper is
to bring together these two lines of work, on pseudorandom switching lemmas and on multi-
switching lemmas. Since the precise statement of our pseudorandom multi-switching lemma,
Theorem 14, is somewhat involved we defer it to Section 4 and here merely make some remarks
about it. In the spirit of Trevisan and Xue’s derandomization of the original switching
lemma, to obtain Theorem 14 we “fool the proof” of Håstad’s multi-switching lemma [35],
exploiting its “computational simplicity”. This enables us to achieve optimal parameters in
the same sense as [65], namely, that it establishes the same dramatic simplification – now of
the family F of depth-two circuits – as [35], and while only requiring the same ∗-probability
p as [35]. Our pseudorandom switching lemma is highly efficient in its use of randomness;
this randomness efficiency is crucial in the constructions of our pseudorandom generators for
AC0 circuits and sparse F2 polynomials using Theorem 14, which we now describe in the
next section.2

2 PRGs for AC0 and sparse F2 polynomials

We employ our pseudorandom multi-switching lemma to give the best known pseudorandom
generators for two canonical classes in unconditional derandomization: AC0 circuits and
sparse F2 polynomials. As we describe in this section, our results bring the state of the art
for unconditional derandomization of these classes into sharp alignment with the state of
the art for computational hardness: improving on the seed lengths of either PRG would
require breakthrough progress on longstanding and notorious circuit lower bounds. In this
sense, our results are in the same spirit as those of Imagliazzo, Meka, and Zuckerman [40],
which gave optimal (assuming current circuit lower bounds) pseudorandom generators for
various classes of Boolean formulas and branching programs; however, our techniques are
very different from those of [40].

2.1 PRGs for AC0 circuits
The class of small-depth Boolean circuits (AC0) is a class of central interest in unconditional
derandomization, and has been the subject of intensive research in this area over the past 30
years [6, 45, 52, 53, 50, 49, 41, 64, 66, 11, 56, 18, 42, 26, 2, 1, 62, 47, 28, 32, 31, 65, 30, 63,
33, 21]. This highly successful line of work on derandomizing AC0 has generated a wealth
of ideas and techniques that have become mainstays in the field of pseudorandomness. A
prominent example is Nisan’s celebrated PRG for AC0 circuits [52], which introduced ideas
that enriched the surprising connections between pseudorandomness and computational
hardness [14, 70, 53]. The hardness-versus-randomness paradigm asserts, qualitatively, that
strong explicit PRGs exist if and only if strong explicit circuit lower bounds exist. In the
context of unconditional derandomization (the subject of this work), this strongly motivates
the goal of constructing, for every circuit class C, unconditional PRGs for C that are best
possible given the current best lower bounds for C. In other words, this is the goal of
achieving a quantitatively optimal hardness to randomness conversion for C, converting “all
the hardnesss” in our lower bounds for C into pseudorandomness for C.

2 While our focus in this work is on unconditional derandomization, we briefly mention that recent work of
Ball et al. [10] establishes a new connection between pseudorandom switching lemmas and non-malleable
codes in coding theory [27]. Using this connection, [10] are able to leverage the randomness efficiency
of [65]’s pseudorandom switching lemma in their design of new non-malleable codes for small-depth
circuits. We leave the possibility of applying our techniques to obtain further-improved non-malleable
codes as an interesting avenue for future work.

R.A. Servedio and L.-Y. Tan 45:5

For C being the class of n-variable size-M depth-d AC0 circuits this amounts to constructing
PRGs with seed length logd−1(Mn) log(1/ε): such seed length is best possible without
improving longstanding AC0 lower bounds that date back to the 1980s [34]. (More precisely,
it is well known, see e.g. [65], that achieving seed length say logd−1.01(Mn) log(1/ε) would
yield exp(ω(n1/(d−1)) size lower bounds against depth-d AC0 circuits, which is a barrier that
has stood for over 30 years even in the d = 3 case.) We give the first construction of a PRG
that achieves this seed length up to an additive absolute constant in the exponent of log(Mn):

I Theorem 1 (PRG for AC0 circuits). For every d ≥ 2, M ∈ N and ε > 0, there is an ε-PRG
for the class of n-variable size-M depth-d circuits with seed length logd+O(1)(Mn) log(1/ε).

2.1.1 Background and prior PRGs for AC0 circuits
As noted above there has been a significant body of work on PRGs for AC0 circuits, spanning
over 30 years. In this section we give a brief overview of the history and prior state-of-the-art
for this touchstone problem in unconditional derandomization.

Ajtai–Wigderson and Nisan. Ajtai and Wigderson, in their seminal work [6] pioneering
the study of unconditional derandomization, constructed the first non-trivial PRG for AC0

circuits with an no(1) seed length; we will discuss their techniques in detail later. [6]’s
seed length was improved significantly in the celebrated work of Nisan [52], using what is
now known as the Nisan–Wigderson framework [53], which provides a generic template for
converting correlation bounds against a circuit class to PRGs for a closely related class (in
the case of AC0 these two classes essentially coincide). Via this approach Nisan showed how
correlation bounds for AC0 against the Parity function [34] yield a PRG with seed length
log2d+O(1)(Mn/ε).

We remark that the generality of the Nisan–Wigderson framework comes at a quantitative
price: it is straightforward to verify that a seed length of (logd(Mn) + log(1/ε))2 is the
best that can be achieved via this framework given current AC0 circuit lower bounds (see
e.g. [65, 33]). This is roughly quadratically worse than the sought-for logd−1(Mn) log(1/ε),
the best that can be achieved assuming only current AC0 circuit lower bounds.

Bounded independence fools AC0. Nisan’s seed length for AC0 circuits stood unmatched
for more than two decades. However, in this interim period there was significant progress on
showing that distributions with bounded independence fool AC0, a well-known conjecture
posed by Linial and Nisan [45]. Braverman’s breakthrough result [18] showed that polylog(n)-
wise independence fools AC0, which (along with standard constructions of k-wise independent
distributions) gave a PRG with seed length logO(d2)(Mn/ε); this was subsequently sharpened
to log3d+O(1)(Mn/ε) by Tal [63]. Recently, Harsha and Srinivasan [33] further improved the
seed length of Braverman’s generator to log3d+O(1)(Mn) log(1/ε), which is notable for its
optimal dependence on the error parameter ε.

The work of Trevisan and Xue. Recent work of Trevisan and Xue [65] makes a significant
advance towards achieving seed length logd−1(Mn) log(1/ε): their work circumvents the
“quadratic loss” associated with the Nisan–Wigderson framework with a PRG of seed length
logd+O(1)(Mn/ε). This is the first PRG to achieve a logd+O(1)(Mn) dependence, an exponent
that is within an additive absolute constant of the sought-for logd−1(Mn), and is also the first
strict improvement on Nisan’s seed length in more than two decades. (Note however, that
like Nisan’s PRG the dependence on ε is suboptimal: logd+O(1)(1/ε) instead of log(1/ε).)

APPROX/RANDOM 2019

45:6 Improved PRGs from Pseudorandom Multi-Switching Lemmas

Rather than going through the Nisan–Wigderson framework – which, as noted above,
carries with it an associated quantitative loss in parameters – Trevisan and Xue construct
their PRG by derandomizing the proof of AC0 lower bounds, “opening up the black-box”
of AC0 lower bounds, so to speak. At a high level, [65] adopts the strategy employed in
the early work of Ajtai and Wigderson [6]. We describe this strategy in detail in the full
version of this paper, but roughly speaking, Ajtai and Wigderson introduced a powerful
and generic framework for constructing PRGs from pseudorandom switching lemmas. In [6],
they instantiated this framework with a derandomization of Ajtai’s switching lemma [4] –
which underlies his proof of the first superpolynomial lower bounds against AC0 – to obtain
the first non-trivial PRG for AC0. Trevisan and Xue obtain their PRG by revisiting this
early framework of [6], instantiating it with their derandomization of Håstad’s switching
lemma [34]. (And as we will soon discuss, in this work we obtain our PRG by instantiating
the [6] framework with our derandomization of the [35] multi-switching lemmas.)

PRGs via polarizing random walks. Finally, in recent exciting work Chattopadhyay,
Hatami, Hosseini, and Lovett [21] have introduced an elegant new framework for obtaining
pseudorandom generators which has consequences for fooling AC0. Their framework is based
on a notion of “fractional” pseudorandom generators, which are used as steps in a random
walk which ultimately yields a (standard) pseudorandom generator. [21] show that if a
class C is closed under restrictions and has sufficiently strong Fourier concentration on
low-degree coefficients, then almost k-wise independence suffice to yield a fractional PRG,
which their random walk approach can then convert into a standard PRG against C. Using
Tal’s sharp bounds [63] on the Fourier concentration of AC0, they obtain a seed length of
O(log(n/ε)(log(log(n)/ε)) log2d−2M) for size-M depth-d circuits.

2.1.2 Our PRG and approach
To summarize, prior to our work there were three incomparable best known PRGs for
AC0, achieving three different tradeoffs in the overall dependence on M,d and 1/ε. These
were the PRG of Trevisan and Xue [65], which has seed length logd+O(1)(Mn/ε); Har-
sha and Srinivasan’s improvement of Braverman’s generator [33], which has seed length
log3d+O(1)(Mn) log(1/ε); and the [21] PRG, which has seed length O(log(n/ε)(log(log(n)/ε))·
log2d−2M), i.e. essentially log2d−1(Mn) log2(1/ε).

Theorem 1 unifies and improves these three incomparable seed lengths. Our PRG
achieves an essentially optimal hardness to randomness conversion for AC0: our seed length
of logd+O(1)(Mn) log(1/ε) comes very close to logd−1(Mn) log(1/ε), which is best possible
without improving longstanding AC0 circuit lower bounds that date back to the 1980s.

Table 1 provides a comparison of the seed length of our PRG (and the techniques that
underlie our construction) and those of previous work.

Our approach. Our approach draws on and unifies ideas in the works of [6, 65, 33] discussed
above, which we use in conjunction with our derandomization of the [35] multi-switching
lemma to obtain our PRG.

At a high level, we adopt the overall conceptual strategy of Ajtai and Wigderson [6] and
Trevisan and Xue [65], and obtain our PRG by derandomizing the proof of AC0 lower bounds.
The key technical ingredient in our PRG construction is our pseudorandom multi-switching
lemma, a derandomization of the multi-switching lemmas which underlie the [39, 35] optimal
correlation bounds for AC0 against Parity. Our pseudorandom multi-switching lemma
improves both the pseudorandom switching lemma of [65] (a derandomization of Håstad’s

R.A. Servedio and L.-Y. Tan 45:7

Table 1 PRGs for ε-fooling n-variable size-M depth-d AC0 circuits.

Reference Seed length Techniques

[6] no(1) for M = poly(n) derandomize [4] switching lemma

[52] log2d+O(1)(Mn/ε) [53] framework, [34] correlation bounds

[18] logO(d2)(Mn/ε) bounded independence

[65] logd+O(1)(Mn/ε) [6] framework, derandomize [34] switching lemma

[63] log3d+O(1)(Mn/ε) bounded independence

[33] log3d+O(1)(Mn) log(1/ε) bounded independence

[21] (essentially)
log2d−1(Mn) log2(1/ε)

almost bounded independence, fractional PRGs, po-
larizing random walks

This work logd+O(1)(Mn) log(1/ε) [6] framework, derandomize [35] multi-switching
lemma, bounded independence

switching lemma [34] which underlies his exponential lower bounds against AC0) and the
pseudorandom switching lemma of [6] (a derandomization of Ajtai’s switching lemma [4]
which underlies his superpolynomial lower bounds against AC0).

Our derandomization of the [35] multi-switching lemma is largely influenced by Trevisan
and Xue’s derandomization of the Håstad’s original switching lemma [34]. We describe
our approach in detail in Section 4, but highlight here the simple but ingenious new idea
underlying [65]’s argument. Very roughly speaking, they derandomize the [34] switching
lemma by “fooling its proof”: showing that Håstad’s proof of his switching lemma “cannot
δ-distinguish” between truly random restrictions and pseudorandom restrictions drawn from
polylog(n)-wise independent distributions. Since Håstad’s switching lemma holds for truly
random restrictions, it thus follows that it also holds for pseudorandom restrictions drawn from
polylog(n)-wise independent distributions (up to a δ additive loss in the failure probability).

To accomplish this, Trevisan and Xue exploit the fact that Håstad’s proof of the switching
lemma is “computationally simple”: for a fixed k-CNF F , there is a small depth-3 circuit that
takes as input an encoding of a restriction ρ, and outputs 1 iff ρ is a bad restriction for the
desired conclusion of Håstad’s switching lemma, contributing to its failure probability (more
precisely, the failure event is that the “canonical decision tree” for F � ρ has large depth).
In similar spirit, our derandomization of the [35] multi-switching lemma also exploits the
“computational simplicity” of its proof. In our case, for a fixed family F of k-CNF formulas
we construct a small depth-4 circuit for recognizing bad restrictions (the one additional
layer of depth reflects the fact that multi-switching lemmas are, roughly speaking, “one
quantifier more complex” than switching lemmas). To obtain optimal parameters in our
PRG constructions, we use the d = 3 case of Harsha and Srinivasan’s strengthening of
Braverman’s generator [33] to fool this depth-4 circuit, and hence show that [35]’s proofs of
the multi-switching lemmas “cannot distinguish” between truly random and pseudorandom
restrictions. The fact that [33] achieves an optimal log(1/ε) seed length dependence plays a
crucial role in enabling the optimal log(1/ε) seed length dependence of our PRG.

APPROX/RANDOM 2019

45:8 Improved PRGs from Pseudorandom Multi-Switching Lemmas

2.2 PRGs for sparse F2 polynomials
Our second main result deals with the class of sparse F2 polynomials. Like AC0 circuits,
sparse F2 polynomials and low-degree F2 polynomials have been extensively studied in
unconditional derandomization [51, 7, 50, 15, 66, 46, 68, 16, 47, 48, 22].

Via the hardness-versus-randomness paradigm, the problem of derandomizing F2 poly-
nomials is intimately related to that of proving correlation bounds for F2 polynomials. A
prominent open problem in the latter context – arguably the current flagship challenge
in this area – is that of obtaining superpolynomially small correlation bounds against F2
polynomials of degree logn. Degree logn represents the fundamental limit of our current
suite of powerful techniques for proving F2 correlation bounds [9, 17, 20, 69], and breaking
this “degree logn barrier” would constitute a significant technical breakthrough3. See Open
Question 1 of Viola’s excellent survey [67] for a detailed discussion of this important open
problem and its relationship with other central challenges in complexity theory.

As a second application of our pseudorandom multi-switching lemma, we give an ε-PRG
for S-sparse F2 polynomials with seed length 2O(

√
logS) log(1/ε), which is best possible

without breaking the aforementioned “degree logn barrier” for F2 correlation bounds:

I Theorem 2 (PRG for sparse F2 polynomials). For every S = 2ω(log logn)2 and ε > 0 there
is a PRG with seed length 2O(

√
logS) log(1/ε) that ε-fools the class of n-variable S-sparse F2

polynomials.

Background and prior PRGs for F2 polynomials. The first unconditional PRGs for F2
polynomials were given in early influential work of Luby, Veličković, and Wigderson [50],
who constructed a PRG that ε-fools size-S SYM ◦ AND circuits – including S-sparse F2

polynomials as an important special case – with seed length 2O(
√

log(S/ε)). To obtain their
PRG, Luby et al. employed the Nisan–Wigderson framework [53] together with multi-party
number-on-the-forehead (NOF) communication complexity lower bounds from the seminal
work of Babai, Nisan, and Szegedy [9]. Viola [66] subsequently extended this 2O(

√
log(S/ε))

seed length to the broader class of SYM ◦ AC0 circuits with a more modular proof. In
recent work [61], the authors have improved the seed length dependence on ε of [50, 66] to
2O(
√

log(S)) + polylog(1/ε). We discuss the relation between our techniques and those of [61]
in more detail below.

In a related line of work, PRGs for low-degree F2 polynomials have also been intensively
studied. Starting with the fundamental results of Naor and Naor [51] on ε-biased distributions
(which resolved the degree-1 case), this research continued through an exciting line of work on
the degree k ≥ 2 case [15, 16] and culminated in the breakthroughs of Lovett [46] and Viola [68]
which are described in more detail below. It is interesting to note that prior to our work, the
underlying techniques used for the sparse case (multi-party communication complexity) are
completely different from the techniques used for the low-degree case (Fourier analysis).

Our PRG and approach. Theorem 2 gives an exponential and optimal improvement of the
PRG of [50] in terms of its dependence on the error parameter ε. Our PRG achieves an
optimal hardness to randomness conversion for F2 polynomials: since every log(n)-degree F2
polynomial has at most nlogn monomials, it can be shown (using the simple Proposition 3.1
of [68]) that a PRG with seed length 2o(

√
logS) log(1/ε) would break the degree logn barrier.

3 Breaking this “degree logn barrier” is also well-known (via a simple and beautiful observation of
Håstad and Goldmann [38]) to be a prerequisite for breaking the notorious “logn party barrier” in
multi-party communication complexity [9], a longstanding open problem that has resisted attack for
over two decades.

R.A. Servedio and L.-Y. Tan 45:9

Our techniques for Theorem 2 are substantially different from the techniques of [61, 66].
As summarized in Table 2, the basic approach of [61], like [66] and [50], is via the Nisan-
Wigderson paradigm using multi-party communication complexity bounds; the main point
of departure between [61] and [66] is that [61] leverages Håstad’s multi-switching lemma
from [35] in place of his earlier [34] switching lemma which was used in [66]. (We note that
similar to the situation for AC0 circuits, it is straightforward to verify that our optimal
log(1/ε) dependence is not achievable via the Nisan–Wigderson framework without dramatic
breakthroughs in correlation bounds for F2 polynomials, going well beyond breaking the
degree logn barrier.) In contrast, we do not use the Nisan–Wigderson framework or multi-
party communication complexity lower bounds; instead, as for AC0, our approach is based
on the [6] framework and our derandomization of the [35] multi-switching lemma. Indeed,
our approach to obtaining Theorem 2 bridges the two previously disparate lines of work on
pseudorandomness for sparse and low degree polynomials: roughly speaking, it can be viewed
as a reduction from PRGs for S-sparse polynomials to PRGs for degree-

√
logS polynomials.

This allows us to leverage the result of Viola [68] (building on the work of Lovett [46]), which
gives PRGs for n-variable degree-k F2 polynomials with seed length

O(k logn+ k2k log(1/ε)).

More precisely, at the heart of our reduction is a new pseudorandom switching lemma for
sparse F2 polynomials, showing that such a polynomial is very likely to collapse to a small-
depth decision tree with low-degree F2 polynomials at its leaves under a suitable pseudorandom
restriction. This is essentially a special case of our pseudorandom multi-switching lemma.
With this reduction in hand, we then exploit the strength and generality of Viola’s result
– roughly speaking, that the sum of k independent copies of a sufficiently strong ε-biased
distribution fools degree-k polynomials – to show that his PRG extends to fool not only
low-degree polynomials, but also small-depth decision trees with low-degree polynomials at
their leaves.

Table 2 provides a comparison of the seed length of our PRG (and the techniques that
underlie our construction) and those of previous work.

Table 2 PRGs for ε-fooling F2 polynomials.

Reference/
Class Seed length Techniques

[50] S sparse 2O(
√

log(S/ε)) [53] framework, [9] multi-party NOF communica-
tion complexity

[61] S sparse 2O(
√

log S) + (log(1/ε))4.01 [53] framework, [9] multi-party NOF communica-
tion complexity, [35] multi-switching lemma

[46] degree k O(2k logn+ 4k log(1/ε)) Fourier analysis

[68] degree k O(k logn+ k2k log(1/ε)) Fourier analysis

This work
S sparse 2O(

√
log S) log(1/ε) [6] framework, derandomize [35] multi-switching

lemma, Fourier analysis, bounded independence

APPROX/RANDOM 2019

45:10 Improved PRGs from Pseudorandom Multi-Switching Lemmas

2.3 Organization
Section 2.4 recalls some basic preliminaries from unconditional pseudorandomness. We
describe and contrast the original Håstad switching lemma [34] versus the [35] multi-switching
lemma in Section 3. Section 3.1 establishes some infrastructure towards derandomizing the
[35] switching lemma, and the actual derandomization result (the pseudorandom multi-
switching lemma, Theorem 14) is stated in Section 4 and proved in Appendix A. In the
full version we describe a general framework for constructing pseudorandom generators
that is implicit in the work of Ajtai and Wigderson [6], and explain how our derandomized
multi-switching lemma from Section 4 can be used (along with other ingredients) within this
framework to establish the PRGs for AC0 and for sparse F2 polynomials that are our main
PRG results.

2.4 Preliminaries
For r < n, we say that a distribution D over {0, 1}n can be sampled efficiently with r random
bits if (i) D is the uniform distribution over a multiset z(1), . . . , z(s) of strings from {0, 1}n
where s ∈ [1

poly(n) · 2
r, 2r] and (ii) there is a deterministic algorithm GenD which, given as

input a uniform random element of [s], runs in time poly(n, s) and outputs a string drawn
from D.

For δ > 0 and a class C of functions from {0, 1}n to {0, 1}, we say that a distribution D
over {0, 1}n δ-fools C with seed length r if (a) D can be sampled efficiently with r random
bits via algorithm GenD, and (b) for every function f ∈ C, we have∣∣∣∣ E

s←{0,1}r

[
f(GenD(s))

]
− E
x←{0,1}n

[
f(x)

]∣∣∣∣ ≤ δ.
Equivalently, we say that GenD is a δ-PRG for C with seed length r.

Two kinds of distributions which are extremely useful in derandomization are δ-biased and
k-wise independent distributions. We say that a distribution D over {0, 1}n is δ-biased if it δ-
fools the class of all 2n parity functions {ParityS}S⊆[n], where ParityS : {0, 1}n → {0, 1}
is defined by ParityS(x) =

∑
i∈S xi mod 2. We say that a distribution D over {0, 1}n

is k-wise independent with parameter p if for every 1 ≤ i1 < · · · < ik ≤ n and every
(b1, . . . , bk) ∈ {0, 1}k, we have

Pr
x←D

[
xi1 = b1 and · · · and xik = bk

]
= p

∑k

j=1
bj · (1− p)k−

∑k

j=1
bj ,

i.e. every subset of k coordinates is distributed identically to a product distribution with
parameter p.

A restriction ρ of variables x1, . . . , xn is an element of {0, 1, ∗}n. We write supp(ρ) to
denote the set of coordinates that are fixed to 0 or 1 by ρ. Given a function f(x1, . . . , xn)
and a restriction ρ, we write f � ρ to denote the function obtained by fixing xi to ρ(i) if
ρ(i) ∈ {0, 1} and leaving xi unset if ρ(i) = ∗. For two restrictions ρ, ρ′ ∈ {0, 1, ∗}n, their
composition, denoted ρρ′ ∈ {0, 1, ∗}n, is the restriction defined by

(ρρ′)i =
{
ρi if ρi ∈ {0, 1}
ρ′i otherwise.

Given a collection F = {f1, . . . , fM} of functions and a restriction ρ we write F � ρ to denote
the family {f1 � ρ, . . . , fM � ρ}.

R.A. Servedio and L.-Y. Tan 45:11

Given an AC0 circuit, we define its size to include the input variables (along with the
number of gates in the circuit). We adopt this convention for notational convenience, since
we may then always assume that the size M of an n-variable circuit is always at least n. (We
do not adopt this convention for F2 polynomials: as is standard, we define the sparsity of an
F2 polynomial to be the number of monomials in its support.)

Finally, if g is a Boolean function and C is a class of circuits, we say that g is computed
by a (t,C)-decision tree if g is computed by a decision tree of depth t (with single Boolean
variables xi at internal nodes as usual) in which each leaf is labeled by a function from C.

3 Multi-switching lemmas

At the heart of almost all applications of Håstad’s original switching lemma [34] is a powerful
structural fact about AC0 circuits: every AC0 circuit “collapses” (i.e. simplifies dramatically)
to a depth-t decision tree with high probability, at least 1− ε, under a random restriction
that randomly fixes a (1− p)-fraction of coordinates. In the precise quantitative statement
of this fact, both t and p depend on ε: as the desired failure probability ε tends to 0, the
∗-probability p tends to 0 (more coordinates are fixed) and t tends to n (the resulting
decision tree is of larger depth). It is easy to see that this dependence is inherent given the
statement of the [34] switching lemma, and indeed this will be clear from the discussion later
in this section.

The recent multi-switching lemma of Håstad [35] (see also [39]) achieves a remarkable
strengthening of the above: essentially the same structural fact about AC0 holds (in terms of
the quantitative relation between the decision tree depth t and the failure probability ε) with
the ∗-probability p being independent of ε. This is the key qualitative difference underlying
the optimal AC0 correlation bounds for Parity obtained in [39, 35]; likewise, in this work,
this is the key qualitative difference underlying the optimal ε-dependence in the seed lengths
of our PRGs for AC0 circuits and sparse F2 polynomials.

Let Rp denote the random restriction which independently sets each variable xi to 0 with
probability (1− p)/2, to 1 with probability (1− p)/2, and to ∗ with probability p. We first
recall the original switching lemma from [34]:

I Theorem 3 (Håstad’s switching lemma). Let F be a k-CNF. Then for all t ≥ 1, we have that

Pr
ρ←Rp

[F � ρ does not have a decision tree of depth t] ≤ (5pk)t.

In the context of AC0 circuits the switching lemma is used to achieve depth reduction
under random restrictions: we apply Theorem 3 separately to each of the bottom-layer
depth-2 subcircuits, choosing t appropriately so that all of them “switch” to depth-t decision
trees with high probability. The following corollary is what is typically used:

I Corollary 4 (AC0 depth reduction via Theorem 3). Let C be a size-M depth-d AC0 circuit
with bottom fan-in k, and let p = 1/(10k). Then for all ε > 0,

Pr
ρ←Rp

[
C � ρ is not computed by a depth-(d− 1) circuit with bottom fan-in log(M/ε)

]
≤ ε.

Proof. This follows from applying Theorem 3 with t = log(M/ε) to each of the bottom-layer
depth-2 subcircuits of C (at most M of them), along with the basic fact that a depth-t
decision tree can be expressed as both a t-DNF as well as a t-CNF. J

APPROX/RANDOM 2019

45:12 Improved PRGs from Pseudorandom Multi-Switching Lemmas

The same argument is then repeated again on the (k = log(M/ε))-DNFs at the bottom
two layers of the new circuit (applying the dual form of the switching lemma for k-DNFs
rather than k-CNFs) to further reduce the depth to d − 2. However, observe that in this
second application of the switching lemma (and in later applications as well), in order to
use Corollary 4, the parameter p of the random restriction must now depend on ε, since we
must now take p < 1/(5k) = 1/(5 log(M/ε)) in order to get a nontrivial bound in Theorem 3.
This is why standard applications of the [34] switching lemma (involving d − 1 iterative
applications of Corollary 4) show that every size-M depth-d AC0 circuit collapses to depth-
(t = log(M/ε)) decision tree with high probability, at least 1− ε, under a random restriction
with ∗-probability p = Θ(1/ logd−1(M/ε)). Note that t and p both depend on ε.

As alluded to above, the recent multi-switching lemma of [35] shows, remarkably, that
essentially the same simplification holds under a random restriction with ∗-probability
p = Θ(1/ logd−1(M)), independent of ε. Let us establish some terminology and notation to
present these results.

I Definition 5 (Common partial decision tree). Let F = {F1, . . . , FM} be a collection of
Boolean functions. We say that a decision tree T is a common `-partial decision tree for F if
every Fi ∈ F can be expressed as T with depth-` decision trees at its its leaves. (Equivalently,
for every Fi ∈ F and root-to-leaf path π in T , we have that Fi � π is computed by a depth-`
decision tree.)

The multi-switching lemma of [35] is as follows:

I Theorem 6 (Multi-switching lemma, Lemma 3.8 of [35]). Let F = {F1, . . . , FM} be a
collection of k-CNFs and ` := log(2M). Then for all t ≥ 1,

Pr
ρ←Rp

[F � ρ does not have a common ` := log(2M)-partial DT of depth t] ≤M(24pk)t.

The following corollary should be contrasted with Corollary 4:

I Corollary 7 (AC0 depth reduction via Theorem 6; c.f. Corollary 4). Let C be a size-M depth-d
AC0 circuit with bottom fan-in k, and let p = 1/(48k). Then for all ε > 0, the probability (over
ρ← Rp) that C � ρ is not computed by a ((log(M/ε),AC0(depth d− 1, bottom fan-in log(2M))-
decision tree is at most ε.

Proof. This follows by applying Theorem 6 with F being the bottom-layer depth-2 subcircuits
of C and t = log(M/ε), along with the fact that a depth-` decision tree can be expressed as
both a `-DNF and an `-CNF. J

We highlight a crucial qualitative aspect of Corollary 7: while the depth t = log(M/ε) of
the decision tree whose existence it asserts does depend on ε, the depth-(d− 1) AC0 circuits
at its leaves have bottom fan-in k = log(2M) which does not depend on ε. This means that
in successive application of Corollary 7, the values of p = 1/(48k) = Θ(1/ logM) will remain
independent of ε. This leads to much better quantitative bounds than can be obtained
through repeated applications of Corollary 4: d − 1 iterative applications of Corollary 7
imply that every size-M depth-d AC0 circuit collapses to a depth-O(2d log(M/ε)) decision
tree with high probability, at least 1 − ε, under a random restriction with ∗-probability
p = Θ(1/ logd−1M). Note that the overall ∗-probability p is independent of ε.

Multi-switching lemmas and sparse F2 polynomials. The qualitative advantage of multi-
switching lemmas – in particular, the crucial role of a common partial decision tree – can
also be seen within the context of F2 polynomials.

R.A. Servedio and L.-Y. Tan 45:13

Let P be an S-sparse F2 polynomial. It is an easy observation that P becomes a
low-degree polynomial with high probability when hit with a random restriction: for all
ε, p ∈ (0, 1) and k ∈ N,

Pr
ρ←R p

2

[P � ρ is not a degree-k polynomial] ≤ ε

2 +S

(
w

k

)
pk where w = Θ(log(S/ε)). (1)

(The proof follows by considering each monomial of P individually and taking a union
bound over all S of them. For a fixed monomial, the probability that more than Ω(log(S/ε))
variables survive a random restriction from R 1

2
is at most ε/(2S); next, the probability

that at least k variables in a width-w monomial survive a random restriction from Rp is
at most

(
w
k

)
pk.) The failure probability of (1) can be made at most ε by choosing p and

k appropriately, but note that at least one of p (the ∗-probability) or k (the degree of the
resulting polynomial) must depend on ε.

Using a slight extension of the ideas in the multi-switching lemmas of [35], we can instead
bound the probability that P � ρ becomes a depth-t decision tree with degree-k polynomials
at its leaves. While this provides weaker structural information than the simple observation
above (cf. Corollary 4 vs. Corollary 7 in the context of AC0), the crucial win will come from
the fact that p and k can both be taken to be independent of the failure probability ε (and
only t will depend on ε).

3.1 Canonical common `-partial decision trees
An important concept in the proof of Theorem 6 is that of a canonical common `-partial
decision tree for an ordered collection F of k-CNFs, which we define in this section.

Given a k-CNF formula F (which we view as an ordered sequence of width-k clauses
C1 ∧ C2 ∧ · · ·), we recall the notion of the canonical decision tree for F , denoted CDT(F).
This is a decision tree which computes F and is obtained as follows:

If any clause Ci is identically-0, then the tree is the constant 0.
If every clause Ci is identically-1, then the tree is the constant 1.
Otherwise, let Ci1 be the first clause that is not identically-1, and let κ ∈ [k] be the
number of variables in Ci1 . The first κ levels of CDT(F) exhaustively query these κ
variables. At each of the 2κ resulting leaves of the tree (each one corresponding to
some restriction η ∈ {0, 1}κ fixing those κ variables), recursively put down the canonical
decision tree CDT(F � η).

We observe that the tree CDT(F) is unique given a fixed ordering C1, C2, . . . of the
clauses in F .

Håstad’s proof of his original switching lemma (Theorem 3) actually shows that if F is a
k-CNF, then the canonical decision tree CDT(F � ρ) is shallow w.h.p. over ρ← Rp. This is
crucially important for the arguments of Trevisan and Xue [65], who give a derandomized
version of Håstad’s original switching lemma: they construct a pseudorandom distribution over
restrictions to take the place of Rp, and show that with high probability a restriction drawn
from this pseudorandom distribution causes a k-CNF to collapse to a small-depth decision
tree. Their argument uses the structure of a canonical decision tree in an essential way.

Turning to Håstad’s multi-switching lemma [35], we observe that analogous to his original
switching lemma, the proof of Theorem 6 given in [35] implicitly establishes a stronger
statement: F � ρ has a small-depth canonical common `-partial decision tree w.h.p. over
ρ← Rp. In fact, we will use the fact that it actually establishes an even stronger statement:
w.h.p. over ρ← Rp, every canonical common `-partial decision tree for F � ρ is shallow –
as we explain below, there is more than one canonical common `-partial decision tree for a
sequence F of CNFs.

APPROX/RANDOM 2019

45:14 Improved PRGs from Pseudorandom Multi-Switching Lemmas

Let us explain what a canonical common `-partial decision tree for a sequence of CNFs F
is. We will see that there is a set of canonical common `-partial decision trees for a given F

rather than just one tree; note that this is the case even though we assume a fixed ordering
F1, F2, . . . on the elements of F as well as on the clauses within each CNF. (Observe the
contrast with the case of a canonical decision tree for a single formula F , where we assume
a fixed ordering on the clauses of F ; in that setting, as explained above there is a single
canonical decision tree CDT(F).)

We need a preliminary definition to handle a technical issue related to the final segment
of paths through a canonical decision tree.

I Definition 8 (Full paths in the CDT). Let F = C1 ∧C2 ∧ · · · be a k-CNF and consider the
canonical decision tree CDT(F) for F . Every path η in CDT(F) can be written as the the
disjoint union of segments η = η(1) ◦ η(2) ◦ · · · ◦ η(u), where for all j ∈ [u], the segment η(j) is
an assignment to the surviving variables in the restricted clause Cij � η(1) ◦ · · · ◦ η(j−1), and
Cij is the first clause in F � η(1) ◦ · · · ◦ η(j−1) that is not identically-1.

Furthermore, note that for j ∈ [u− 1], the segment η(j) is in fact an assignment fixing
all the surviving variables in Cij � η(1) ◦ · · · ◦ η(j−1). We say that η is full if this is also the
case for the final segment: η is full if η(u) is an assignment fixing all the surviving variables
in Ciu � η(1) ◦ · · · ◦ η(u−1).

I Observation 9. Let F be a k-CNF and suppose depth(CDT(F)) > `. Then there is a full
path η of length |η| ∈ {`+ 1, . . . , `+ k} in CDT(F).

To help minimize confusion, we will reserve “η” for paths or segments of paths in CDTs,
and “π” for paths (or segments of paths) in CCDTs.

We are now ready to define the set of canonical common `-partial decision trees:

I Definition 10 (Canonical common `-partial DT). Let F = (F1, . . . , FM) be an ordered
collection of k-CNFs. The set of all canonical common `-partial decision trees for F, which
we denote CCDT`(F), is defined inductively as follows:
0. If M = 0 (i.e. F is an empty collection of k-CNFs) then CCDT`(F) contains a single

tree, the empty tree with no nodes. (Note that otherwise M ≥ 1, so there is some first
formula F1 in F.)

1. If CDT(F1) ≤ `, then CCDT`(F) is simply CCDT`(F′), where F′ = (F2, . . . , FM).
(Note that in this case, since inductively each tree in CCDT`(F′) is a common `-partial
DT for F′, each such tree is also a common `-partial DT for F.)

2. Otherwise, since CDT(F1) > ` there must be a witnessing full path η of length between
`+ 1 and `+k in CDT(F1), and there are at most 2`+k such witnessing full paths. Let P
be the set of all such witnessing full paths. For each path η ∈ P , let Tη be the tree of depth
|η| obtained by exhaustively querying all the variables in η in the first |η| levels. Recurse
at the end of each path in Tη: for each path π in Tη, attach a tree T ′ from CCDT`(F � π)
at the end of the path. So in this case CCDT`(F) is the set of all trees that can be
obtained in this way (across all possible choices of η ∈ P and all possible choices of a tree
T ′ ∈ CCDT`(F � π) for each path π ∈ Tη).

We write depth(CCDT`(F)) to denote the maximum depth of any tree in the set CCDT`(F).

The following slight variant of Theorem 6 can be extracted, with some effort, from a
slight modification of the proof given in [35], which we provide in the full version:

I Theorem 11 (Slight variant of Håstad’s multi-switching lemma. Theorem 6). Let F =
(F1, . . . , FM) be an ordered collection of k-CNFs. Then for all `, t ≥ 1,

Pr
ρ←Rp

[depth(CCDT`(F � ρ)) ≥ t] ≤Mdt/`e(32pk)t.

R.A. Servedio and L.-Y. Tan 45:15

A comparison of Theorem 6 (Håstad’s multi-switching lemma) and Theorem 11 (our
variant of it). We emphasize that the differences are technical in nature, and all the ideas
in our proof of Theorem 11 are from [35]. First, we observe that ` is now a free parameter
rather than being fixed to log(2M); this flexibility will be necessary in our PRG construction
for sparse F2 polynomials (where we take ` = Θ(

√
logM)). Second, our notion of a canonical

common partial decision tree differs slightly from the one that is implicit in [35]: in case 2 of
Definition 10, we query a witnessing full path of length between `+ 1 and `+ k, whereas [35]
queries any witnessing path of length greater than `.

4 A pseudorandom multi-switching lemma

As suggested earlier, the crux of our PRG construction is a derandomization of the multi-
switching lemma of Theorem 11: we devise a suitable pseudorandom distribution over random
restrictions in place of Rp (the truly random distribution over restrictions) and show that a
random restriction ρ drawn from this pseudorandom distribution satisfies a similar guarantee
to Theorem 11.

Our derandomization of Theorem 11 is largely influenced by Trevisan and Xue’s [65]
ingenious derandomization of Håstad’s original switching lemma (Theorem 3). Roughly
speaking, we will derandomize the multi-switching lemma of Theorem 11 by “fooling its
proof”: we will show that the proof of Theorem 11 (given in the full version, which we again
emphasize is only a slight technical modification of Håstad’s proof of his multi-switching
lemma, Theorem 6) “cannot δ-distinguish” between truly random restrictions and pseudor-
andom restrictions drawn from polylog(n)-wise independent distributions. Since Theorem 11
holds for truly random restrictions, it thus follows that it also holds for pseudorandom
restrictions drawn from polylog(n)-wise independent distributions (up to a δ additive loss in
the failure probability).

To accomplish this, we exploit the “computational simplicity” of Theorem 11’s proof:
for a fixed family F of k-CNF formulas, we will show that there is a small AC0 circuit
that takes as input an encoding of a restriction ρ, and outputs 1 iff ρ is a bad restriction
for the desired conclusion of Theorem 11, contributing to its failure probability (i.e. iff
depth(CCDT`(F � ρ)) > t). As alluded to in Section 3.1, this relies on the fact that
Theorem 11 does not simply bound the depth of the optimal common `-partial decision tree
for F � ρ, but instead the depth of any canonical common `-partial decision tree for F � ρ.
Indeed, this “constructive” aspect of the proof is crucial for our derandomization strategy: it
is not at all clear that there is a small circuit for checking if the optimal common `-partial
decision tree for F � ρ has depth greater than t.

It will be convenient for us to represent restrictions ρ ∈ {0, 1, ∗}n as bitstrings (%, y) ∈
{0, 1}n×q × {0, 1}n := {0, 1}Yq , where q ∈ N is a parameter.

I Definition 12 (Representing restrictions as bitstrings). We associate with each string (%, y) ∈
{0, 1}Yq the restriction ρ(%, y) ∈ {0, 1, ∗}n defined as follows:

ρ(%, y)i =
{
∗ if %i,1 = · · · = %i,q = 1
yi otherwise.

The following observation explains the role of q:

I Observation 13. Let (%,y) be drawn from the uniform distribution over {0, 1}Yq . Then
the random restriction ρ(%,y) ∈ {0, 1, ∗}n is distributed according to Rp where p = 2−q.

APPROX/RANDOM 2019

45:16 Improved PRGs from Pseudorandom Multi-Switching Lemmas

Now we are ready to state our pseudorandom multi-switching lemma:

I Theorem 14 (Derandomized version of Theorem 11). Let F = (F1, . . . , FM) be an ordered list
of Q-clause k-CNFs. Let δ, p ∈ (0, 1) and define q = log(1/p). Let D be any distribution over
{0, 1}Yq that (δ/(Mdt/`enO(t)))-fools the class of depth-3 circuits of size M(nO(`) +Q2O(kq)).
Then for all ` ≥ k and all t ∈ N,

Pr
(η,z)←D

[
depth(CCDT`(F � ρ(η, z))) ≥ t

]
≤ 16t+`Mdt/`e(32pk)t + δ.

In the full version of the paper we prove this lemma and show how it, along with other
ingredients, yields our circuit complexity derandomization results.

References
1 Scott Aaronson. A Counterexample to the Generalized Linial–Nisan Conjecture. Electronic

Colloquium on Computational Complexity, 17:109, 2010.
2 Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the 42nd ACM

Symposium on Theory of Computing, pages 141–150, 2010.
3 Manindra Agrawal, Eric Allender, Russell Impagliazzo, Toniann Pitassi, and Steven Rudich.

Reducing the complexity of reductions. Comput. Complexity, 10(2):117–138, 2001.
4 Miklós Ajtai. Σ1

1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,
1983.

5 Miklós Ajtai. Geometric properties of sets defined by constant depth circuits. In Combinatorics,
Paul Erdős is eighty, Vol. 1, Bolyai Soc. Math. Stud., pages 19–31. János Bolyai Math. Soc.,
Budapest, 1993.

6 Miklós Ajtai and Avi Wigderson. Deterministic Simulation of Probabilistic Constant Depth
Circuits. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 11–19, 1985.

7 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

8 László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. Inform-
ation Processing Letters, 26(1):51–53, 1987.

9 László Babai, Noam Nisan, and Márió Szegedy. Multiparty protocols, pseudorandom generators
for logspace, and time-space trade-offs. J. Comput. System Sci., 45(2):204–232, 1992. doi:
10.1016/0022-0000(92)90047-M.

10 Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-malleable
codes for small-depth circuits. In Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2018. To appear.

11 Louay Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM Journal on
Computing, 38(6):2220–2272, 2009.

12 Paul Beame. Lower bounds for recognizing small cliques on CRCW PRAM’s. Discrete Applied
Mathematics, 29(1):3–20, 1990.

13 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by Small
Height Decision Trees and a Deterministic Algorithm for #AC0-SAT. In Proceedings of the
27th IEEE Conference on Computational Complexity (CCC), pages 117–125, 2012.

14 Manuel Blum and Silvio Micali. How to Generate Cryptographically Strong Sequences of
Pseudo Random Bits. In Proceedings of the 23rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 112–117, 1982.

15 Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing (STOC), pages 21–30. SIAM, 2005.
doi:10.1145/1060590.1060594.

16 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. Comput.,
39(6):2464–2486, 2010. doi:10.1137/070712109.

https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1016/0022-0000(92)90047-M
https://doi.org/10.1145/1060590.1060594
https://doi.org/10.1137/070712109

R.A. Servedio and L.-Y. Tan 45:17

17 Jean Bourgain. Estimation of certain exponential sums arising in complexity theory. Comptes
Rendus Mathematique, 340(9):627–631, 2005. doi:10.1016/j.crma.2005.03.008.

18 Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the ACM,
57(5):28, 2010.

19 Jin-Yi Cai. With Probability One, a Random Oracle Separates PSPACE from the Polynomial-
Time Hierarchy. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing
(STOC), pages 21–29, 1986.

20 Arkadev Chattopadhyay. Discrepancy and the power of bottom fan-in in depth-three circuits.
In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 449–458, 2007.

21 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
Generators from Polarizing Random Walks. In 33rd Computational Complexity Conference,
CCC, pages 1:1–1:21, 2018.

22 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
Generators from the Second Fourier Level and Applications to AC0 with Parity Gates. In 10th
Innovations in Theoretical Computer Science Conference (ITCS), pages 22:1–22:15, 2019.

23 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), pages 1171–1184. ACM, 2017.

24 Shiva Chaudhuri and Jaikumar Radhakrishnan. Deterministic restrictions in circuit complexity.
In Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), pages
30–36, 1996.

25 Xi Chen, Igor Carboni Oliveira, Rocco A. Servedio, and Li-Yang Tan. Near-optimal small-
depth lower bounds for small distance connectivity. In Proceedings of the 48th Annual ACM
Symposium on Theory of Computing (STOC), pages 612–625, 2016.

26 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudoran-
dom generators for depth 2 circuits. In Proceedings of the 13th International Workshop on
Randomization and Computation (RANDOM), pages 504–517, 2010.

27 Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-Malleable Codes. Journal of
the ACM (JACM), 65(4):20, 2018.

28 Bill Fefferman, Ronen Shaltiel, Christopher Umans, and Emanuele Viola. On beating the
hybrid argument. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS), pages 468–483. ACM, 2012.

29 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

30 Oded Goldreich and Avi Widgerson. On derandomizing algorithms that err extremely rarely.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages
109–118, 2014.

31 Parikshit Gopalan, Raghu Meka, and Omer Reingold. DNF sparsification and a faster
deterministic counting algorithm. Comput. Complexity, 22(2):275–310, 2013. doi:10.1007/
s00037-013-0068-6.

32 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Better
Pseudorandom Generators from Milder Pseudorandom Restrictions. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 120–129, 2012.

33 Prahladh Harsha and Srikanth Srinivasan. On Polynomial Approximations to AC0. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, pages 32:1–32:14, 2016.

34 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing (STOC), pages 6–20, 1986.

35 Johan Håstad. On the Correlation of Parity and Small-Depth Circuits. SIAM Journal on
Computing, 43(5):1699–1708, 2014.

APPROX/RANDOM 2019

https://doi.org/10.1016/j.crma.2005.03.008
https://doi.org/10.1007/s00037-013-0068-6
https://doi.org/10.1007/s00037-013-0068-6

45:18 Improved PRGs from Pseudorandom Multi-Switching Lemmas

36 Johan Håstad. An Average-Case Depth Hierarchy Theorem for Higher Depths. In Proceedings
of the 57th Annual Symposium on Foundations of Computer Science (FOCS), 2016.

37 Johan Håstad. On small-depth Frege proofs for Tseitin for grids. In Proceedings of the 58th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 97–108. IEEE
Computer Society, 2017.

38 Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits. Comput.
Complexity, 1(2):113–129, 1991. doi:10.1007/BF01272517.

39 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the 23rd Annual Symposium on Discrete Algorithms (SODA), pages
961–972, 2012.

40 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrinkage.
In Proceedings of the 53rd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 111–119. IEEE Computer Society, 2012.

41 Adam Klivans. On the Derandomization of Constant Depth Circuits. In Proceedings of
5th International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 249–260, 2001.

42 Adam Klivans, Homin Lee, and Andrew Wan. Mansour’s Conjecture is True for Random DNF
Formulas. In Proceedings of the 23rd Conference on Learning Theory (COLT), pages 368–380,
2010.

43 Jan Krajíček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of
bounded depth Frege proofs of the pigeonhole principle. Random Structures & Algorithms,
7(1):15–39, 1995.

44 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform
and learnability. Journal of the ACM, 40(3):607–620, 1993.

45 Nathan Linial and Noam Nisan. Approximate inclusion-exclusion. Combinatorica, 10(4):349–
365, 1990.

46 Shachar Lovett. Unconditional pseudorandom generators for low-degree polynomials. Theory
Comput., 5:69–82, 2009. doi:10.4086/toc.2009.v005a003.

47 Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size AC0 circuits with
n1−o(1) symmetric gates. In Approximation, randomization, and combinatorial optimization,
volume 6845 of Lecture Notes in Comput. Sci., pages 640–651. Springer, Heidelberg, 2011.
doi:10.1007/978-3-642-22935-0_54.

48 Chi-Jen Lu. Hitting set generators for sparse polynomials over any finite fields. In Proceedings
of the 27th IEEE Conference on Computational Complexity (CCC), pages 280–286, 2012.
doi:10.1109/CCC.2012.20.

49 Michael Luby and Boban Veličković. On deterministic approximation of DNF. Algorithmica,
16(4-5):415–433, 1996. doi:10.1007/s004539900054.

50 Michael Luby, Boban Veličković, and Avi Wigderson. Deterministic approximate counting of
depth-2 circuits. In Proceedings of the 2nd ISTCS, pages 18–24, 1993.

51 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993. doi:10.1137/0222053.

52 Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

53 Noam Nisan and Avi Wigderson. Hardness vs. randomness. J. Comput. System Sci., 49(2):149–
167, 1994. doi:10.1016/S0022-0000(05)80043-1.

54 Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational complexity, 3(2):97–140, 1993.

55 Toniann Pitassi, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. Poly-logarithmic
Frege depth lower bounds via an expander switching lemma. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC), pages 644–657, 2016.

56 Alexander Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Computation
Theory, 1(1):3, 2009.

https://doi.org/10.1007/BF01272517
https://doi.org/10.4086/toc.2009.v005a003
https://doi.org/10.1007/978-3-642-22935-0_54
https://doi.org/10.1109/CCC.2012.20
https://doi.org/10.1007/s004539900054
https://doi.org/10.1137/0222053
https://doi.org/10.1016/S0022-0000(05)80043-1

R.A. Servedio and L.-Y. Tan 45:19

57 Benjamin Rossman. On the constant-depth complexity of k-clique. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC), pages 721–730, 2008.

58 Benjamin Rossman. The Average Sensitivity of Bounded-Depth Formulas. In Proceedings of
the 56th Annual Symposium on Foundations of Computer Science (FOCS), pages 424–430,
2015.

59 Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An Average-Case Depth Hierarchy
Theorem for Boolean Circuits. In Proceedings of the 56th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1030–1048, 2015.

60 Rocco A. Servedio and Li-Yang Tan. What circuit classes can be learned with nontrivial
savings? In Proceedings of the 8th Innovations in Theoretical Computer Science Conference
(ITCS), 2017.

61 Rocco A. Servedio and Li-Yang Tan. Luby–Veličković–Wigderson revisited: Improved correla-
tion bounds and pseudorandom generators for depth-two circuits. In Proceedings of the 22nd
International Workshop on Randomization and Computation (RANDOM), pages 56:1–56:20,
2018.

62 Jirí Síma and Stanislav Zák. A Polynomial Time Construction of a Hitting Set for Read-Once
Branching Programs of Width 3. Electronic Colloquium on Computational Complexity (ECCC),
17:88, 2010.

63 Avishay Tal. Tight Bounds on the Fourier Spectrum of AC0. In Proceedings of the 32nd
Computational Complexity Conference (CCC), pages 15:1–15:31, 2017. doi:10.4230/LIPIcs.
CCC.2017.15.

64 Luca Trevisan. A note on approximate counting for k-DNF. In Proceedings of the 8th
International Workshop on Randomization and Computation (RANDOM), pages 417–426,
2004.

65 Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved derandom-
ization of AC0 . In Proceedings of the 28th IEEE Conference on Computational Complexity
(CCC), pages 242–247, 2013.

66 Emanuele Viola. Pseudorandom bits for constant-depth circuits with few arbitrary symmetric
gates. SIAM J. Comput., 36(5):1387–1403, 2007. doi:10.1137/050640941.

67 Emanuele Viola. On the power of small-depth computation. Now Publishers Inc, 2009.
68 Emanuele Viola. The sum of d small-bias generators fools polynomials of degree d. Comput.

Complexity, 18(2):209–217, 2009. doi:10.1007/s00037-009-0273-5.
69 Emanuele Viola and Avi Wigderson. Norms, XOR Lemmas, and Lower Bounds for Polynomials

and Protocols. Theory of Computing, 4(7):137–168, 2008. doi:10.4086/toc.2008.v004a007.
70 Andrew Yao. Theory and applications of trapdoor functions. In Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.
71 Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th

Annual Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

A Proof of Theorem 14

A.1 Bad restrictions and the structure of witnessing paths
Fix F = (F1, . . . , FM). We say that a restriction ρ ∈ {0, 1, ∗}n is bad if

depth(CCDT`(F � ρ)) ≥ t.

Fix ρ to be a bad restriction. Recalling our definition of the set of canonical common partial
decision trees (Definition 10), there exists a tree T ∈ CCDT`(F � ρ) and a path Π of length
exactly t through T . Furthermore, we have that

APPROX/RANDOM 2019

https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1137/050640941
https://doi.org/10.1007/s00037-009-0273-5
https://doi.org/10.4086/toc.2008.v004a007

45:20 Improved PRGs from Pseudorandom Multi-Switching Lemmas

1. There exist indices 1 ≤ i1 ≤ i2 ≤ · · · ≤ iu ≤M where u ≤ dt/`e, and
2. Π = π(1) ◦ · · · ◦ π(u), where for all j ∈ [u], we have that supp(π(j)) = supp(η(j)) where

η(j) is a path through the canonical decision tree

CDT(Fij � ρ ◦ π(1) ◦ · · · ◦ π(j−1)).

Furthermore, for every j ∈ [u− 1] we have that η(j) is a full path of length between `+ 1
and `+ k through the CDT, and η(u) is a path of length exactly t−

∑u−1
j=1 |supp(η(j))|.

(Note that η(u) is not necessarily a full path.)
(Note that by (2), these subpaths π(j) of Π are supported on mutually disjoint sets of
coordinates.) With this structure of Π in mind, we make the following definition:

I Definition 15 (F-traversal). Let F = (F1, . . . , FM) be an ordered list of CNFs. An `-
segmented F-traversal of length t is a tuple P = (I, {S1, . . . , Su},Π,H) comprising:
1. An ordered list of indices I = (i1, . . . , iu) where 1 ≤ i1 ≤ · · · ≤ iu ≤M and u ≤ dt/`e,
2. For each index ij ∈ I, a subset Sj ⊆ [n] such that

a. These sets are mutually disjoint: Sj ∩ Sj′ = ∅ for all j 6= j′.
b. For 1 ≤ j ≤ u− 1, each Sj has size between `+ 1 and `+ k, and Su has size exactly

t−
∑u−1
j=1 |supp(η(j))|.

(Consequently |S1 ∪ · · · ∪ Su| = t.)
3. An assignment Π = π(1) ◦ · · · ◦ π(u) to the variables in S1 ∪ · · · ∪ Su, where

π(j) : {0, 1}Sj → {0, 1} for 1 ≤ j ≤ u.

4. An assignment H = η(1) ◦ · · · ◦ η(u) to the variables in S1 ∪ · · · ∪ Su, where again

η(j) : {0, 1}Sj → {0, 1} for 1 ≤ j ≤ u.

By our discussion above, for any restriction ρ ∈ {0, 1, ∗}n and any tree T ∈ CCDT`(F � ρ),
every path Π of length t through CCDT`(F � ρ) uniquely induces an `-segmented F-traversal
P of length t. We say that P occurs in CCDT`(F � ρ) if it is induced by some path Π of
length t through T for some T ∈ CCDT`(F � ρ).

Definition 15 immediately yields the following:

I Proposition 16 (Number of F-traversals). Fix an ordered list F = (F1, . . . , FM) of k-CNFs,
and let PF,`,t denote the collection of all `-segmented F-traversals of length t. Then

|PF,`,t| ≤Mdt/`enO(t).

A.2 A small AC0 circuit for recognizing bad restrictions
We begin by showing that for every F-traversal P = (I, {S1, . . . , Su},Π,H), there is a
small circuit CP over {0, 1}Yq that outputs 1 on input (%, y) ∈ {0, 1}Yq iff P occurs in
CCDT`(F � ρ(%, y)). Since

ρ(%, y) is bad⇐⇒ depth(CCDT`(F � ρ(%, y))) ≥ t
⇐⇒ ∃ `-segmented F-traversal P of length t occurring in CCDT`(F � ρ(%, y)),

by considering

CF,`,t(%, y) :=
∨

P∈PF,`,t

CP (%, y) (2)

we have that

ρ(%, y) is bad ⇐⇒ CF,`,t(%, y) = 1.

R.A. Servedio and L.-Y. Tan 45:21

B Claim 17 (Circuit for a single F-traversal). Let P = (I, {S1, . . . , Su},Π,H) be an `-segmented
F-traversal of length t. There is a depth-3 AND-OR-AND circuit CP : {0, 1}Yq → {0, 1} of
size M(nO(`) +Q2O(kq)) such that

∀ (%, y) ∈ {0, 1}Yq : CP (%, y) = 1⇐⇒ P occurs in CCDT`(F � ρ(%, y))

Proof. Our circuit CP will be the AND of M many depth-3 subcircuits of size nO(`), one for
each k-CNF F ∈ F. As we will explain later, each of these subcircuits is one of two types.
We first describe these two types of “candidate subcircuits”, and then explain precisely which
M subcircuits of each type are AND-ed together to give CP . (Both these types of circuits
are implicit in the work of [65].)

1. First type: Circuits checking that a particular restriction η is a path in a
particular CDT. We claim that for any Q-clause k-CNF F ′ = C1 ∧ · · · ∧ CQ and
restriction η, there is a Q2O(kq)-clause O(kq)-CNF G over {0, 1}Yq that outputs 1 on
input (%, y) iff η is a path in CDT(F ′ � ρ(%, y)).
For each i ∈ [Q], we write Fixedi to denote the set

{j ∈ [n] : j ∈ η−1({0, 1}) and xj occurs in Ci}

of all variables that are fixed by η and occur in Ci. We write σ(i) ∈ {0, 1}Fixedi to denote
η restricted to the coordinates in Fixedi. It is straightforward to verify that η is a path
in CDT(F ′ � ρ(%, y)) iff for all i ∈ [Q] such that Fixed1 ∪ · · · ∪ Fixedi−1 (supp(η),
a. If Fixedi \ (Fixed1 ∪ · · · ∪ Fixedi−1) = ∅ then the clause Ci is satisfied by ρ(%, y) ◦

σ(1) ◦ · · · ◦ σ(i−1). (Hence this clause does not contribute to CDT(F ′ � ρ(%, y)); it is
“skipped” in the canonical decision tree construction process.)

b. Otherwise, writing Fixed′i := Fixedi \ (Fixed1 ∪ · · · ∪ Fixedi−1),
i. ρ(%, y)j = ∗ for all j ∈ Fixed′i, and
ii. ρ(%, y) ◦ σ1 ◦ · · · ◦ σi−1 falsifies all the remaining literals in Ci and are not in Fixed′i.
In other words, the clause

Ci � ρ(%, y) ◦ σ(1) ◦ · · · ◦ σ(i−1)

is not satisfied and its surviving variables are precisely those in Fixed′i. (Hence the
variables in Fixed′i are exactly those queried by the canonical decision tree construction
process when it reaches Ci.)

Since both conditions (a) and (b) depend only on the coordinates of ρ(%, y) that occur
in Ci (at most k such coordinates since Ci has width at most k), and hence at most
k(q+ 1) coordinates of (%, y) ∈ {0, 1}Yq , it is clear that both conditions can be checked by
a 2O(kq)-clause O(kq)-CNF over {0, 1}Yq . The overall CNF G is simply the AND of all Q
many of these CNFs, one for each clause Ci of F ′, and hence G is itself a Q2O(kq)-clause
O(kq)-width CNF.

2. Second type: Circuits checking that a particular CDT has depth at most `.
Next, we claim that for every Q-clause k-CNF F ′, there is a depth-3 AND-OR-AND
circuit with fan-in sequence ((2n)`+1, Q2O(kq), O(kq)) that outputs 1 on input (%, y) iff
depth(CDT(F ′ � ρ(%, y))) ≤ `.
We establish this by showing that there is a depth-3 OR-AND-OR circuit Σ with the
claimed fan-in sequence that outputs 1 on input (%, y) if depth(CDT(F ′ � ρ(%, y))) > `;
given such a circuit Σ, the desired AND-OR-AND circuit is obtained by negating Σ and
using de Morgan’s law. Certainly depth(CDT(F ′ � ρ(%, y))) > ` iff there is a path η of

APPROX/RANDOM 2019

45:22 Improved PRGs from Pseudorandom Multi-Switching Lemmas

length ` + 1 in CDT(F ′ � ρ(%, y)). There are at most (2n)`+1 many possible paths of
length `+ 1 (every path is simply an ordered list of literals), and as argued in (1) above,
for every path η there is a Q2O(kq)-clause, O(kq)-CNF over {0, 1}Yq that checks if η is a
path in CDT(F ′ � ρ(%, y)). The overall circuit Σ is simply the OR of at most (2n)`+1

such circuits, one for each path η.

With these two types of circuits in hand the overall circuit CP is now easy to describe.
CP is the AND of M many depth-3 subcircuits, one for each k-CNF F ∈ F:

For each of the u indices ij ∈ I, a circuit of the first type that checks that η(j) is a path in
CDT(Fij � ρ(%, y) ◦ π(1) ◦ · · · ◦ π(j−1)) (recall from Definition 15 that η(j) is H restricted
to the variables in Sj);
For all M − u other indices i ∈ [M] \ I, a circuit of the second type that checks that
depth(CDT(Fi � ρ(%, y) ◦ π(1) ◦ · · · ◦ π(i−))) ≤ `, where i− = max{j ∈ [u] : ij < i}.

The bound on the size of this overall circuit follows from a union bound over the sizes of the
subcircuits given in (1) and (2) above. C

A.3 Putting the pieces together: Proof of Theorem 14

Recalling the definition (2) of CF,`,t,

CF,`,t(%, y) :=
∨

P∈PF,`,t

CP (%, y),

Proposition 16 giving a bound on its top fan-in, and Claim 17 giving a bound on the size of
its subcircuits, we have shown the following:

B Claim 18 (Circuit for recognizing bad restrictions). Let F = (F1, . . . , FM) be an ordered list
of Q-clause k-CNFs, and let `, t ≥ 1. There is a depth-4 circuit CF,`,t over {0, 1}Yq such that

CF,`,t(%, y) = 1 ⇐⇒ depth(CCDT`(F � ρ(%, y))) ≥ t.

This circuit CF,`,t is the OR of MunO(t) many depth-3 circuits of size M(nO(`) +Q2O(kq)).

The following observation will be useful for us:

I Observation 19. Let F = (F1, . . . , FM) be an ordered collection of k-CNFs. For ` ≥ k,
the total number of paths Π such that Π is a path of length exactly t in some tree T ∈
CCDT`(F) is at most (2`+k · 2`+k)dt/`e ≤ 16t+`. Consequently, if (%, y) ∈ {0, 1}Yq is such
that CF,`,t(%, y) = 1, then CP (%, y) = 1 for (at least one) and at most 16t+` many `-segmented
F-traversals P of length t.

Proof. This follows by inspection of the recursive construction of the set CCDT`(F) of
canonical common `-partial decision trees for F. Each time case (2) of the definition is
reached, the set P of witnessing full paths has size at most 2`+k, and for each path in P
there are at most 2`+k possible assignments to the variables on the path. Finally, there are
at most dt/`e levels of recursive calls. J

With Claim 18 and Observation 19 in hand, we are now ready to prove our main
result of this section (Theorem 14), a derandomized version of the multi-switching lemma
(Theorem 11). We restate Theorem 14 here for the reader’s convenience:

R.A. Servedio and L.-Y. Tan 45:23

I Theorem 14. Let F = (F1, . . . , FM) be an ordered list of Q-clause k-CNFs. Let δ, p ∈ (0, 1)
and define q = log(1/p). Let D be any distribution over {0, 1}Yq that (δ/(Mdt/`enO(t)))-fools
the class of depth-3 circuits of size M(nO(`) +Q2O(kq)). Then for all ` ≥ k and all t ∈ N,

Pr
(η,z)←D

[
depth(CCDT`(F � ρ(η, z))) ≥ t

]
≤ 16t+`Mdt/`e(32pk)t + δ.

Proof.

Pr
(η,z)←D

[
depth(CCDT`(F � ρ(η, z))) ≥ t

]
= E

(η,z)←D

[
CF,`,t(η, z)

]
(Claim 18)

≤
∑

P∈PF,`,t

E
(η,z)←D

[
CP (η, z)

]
(union bound)

≤
∑

P∈PF,`,t

(
E

(%,y)←U
[CP (%,y)] + δ

Mdt/`enO(t)

)
(D (δ/(Mdt/`enO(t)))-fools CP)

≤ δ + E
(%,y)←U

 ∑
P∈PF,`,t

CP (%,y)

 (Proposition 16)

≤ δ + 16t+` E
(%,y)←U

[CF,`,t(%,y)] (Observation 19)

= δ + 16t+` Pr
(%,y)←U

[
depth(CCDT`(F � ρ(%,y))) ≥ t

]
(Claim 18)

= δ + 16t+` Pr
ρ←Rp

[
depth(CCDT`(F � ρ)) ≥ t

]
(Observation 13)

≤ δ + 16t+`Mdt/`e(32pk)t. (Theorem 11)

J

APPROX/RANDOM 2019

Unconstraining Graph-Constrained Group Testing
Bruce Spang
Stanford University, CA, USA
bspang@stanford.edu

Mary Wootters
Stanford University, CA, USA
marykw@stanford.edu

Abstract
In network tomography, one goal is to identify a small set of failed links in a network using as little
information as possible. One way of setting up this problem is called graph-constrained group testing.
Graph-constrained group testing is a variant of the classical combinatorial group testing problem,
where the tests that one is allowed are additionally constrained by a graph. In this case, the graph
is given by the underlying network topology.

The main contribution of this work is to show that for most graphs, the constraints imposed
by the graph are no constraint at all. That is, the number of tests required to identify the failed
links in graph-constrained group testing is near-optimal even for the corresponding group testing
problem with no graph constraints. Our approach is based on a simple randomized construction
of tests. To analyze our construction, we prove new results about the size of giant components in
randomly sparsified graphs.

Finally, we provide empirical results which suggest that our connected-subgraph tests perform
better not just in theory but also in practice, and in particular perform better on a real-world
network topology.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Group testing, network tomography, random graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.46

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1809.03589.

Acknowledgements We thank Clément Canonne, Nick McKeown and the anonymous reviewers for
helpful comments.

1 Introduction

Suppose you run a network with n switches and m links between the switches. Occasionally
links will fail, and it is your goal to find and fix them. One common approach is to have
each switch send a test packet on its neighboring links and report the results to a central
monitoring system. However, in large networks these monitoring systems – and the volume
of data that they produce – can become hard to manage. In light of this, the problem
(sometimes called network tomography [5]) is: how little information does this central system
need to find failing links quickly?

In the version of this problem that we focus on, suppose that some set of at most d links
fail. Instead of observing these failures directly, we may send test packets along any connected
walks in the network, and we observe whether or not each packet reaches its destination.1
The goal is to identify any set of up to d failed links while sending as few packets as possible.

1 We explain a bit more about how this, or tests equivalent to this, might be implemented in Section 2.3.1.

© Bruce Spang and Mary Wootters;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bspang@stanford.edu
mailto:marykw@stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.46
https://arxiv.org/abs/1809.03589
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Unconstraining Graph-Constrained Group Testing

We focus on the non-adaptive setting, where the packet walks must be fixed ahead of time.
Non-adaptive tests are faster since they allow packets to be sent in parallel, and are easier to
implement since these walks can be hard-coded once into the switches.

As observed by [6, 18], this problem is a variant of a well-studied problem called combin-
atorial group testing. Combinatorial group testing, originally motivated by the problem of
cheaply testing for disease [10], has been studied since the 1940’s and has applications from
computational biology to wireless networks. We refer the reader to [11] for a survey. In the
combinatorial group testing problem there are m items, at most d of which are “defective.”
A single test reveals whether or not there are any defectives in a subset T of items. The goal
is to identify the defective items, by observing the output of a few tests.

The connection to network tomography is as follows: each link is defective if it fails, and
each test T corresponds to a set of links. In the network tomography setting, there is one
additional requirement: a test T ⊆ [m] must correspond to a walk that a packet could take
through the network. Because of this connection, [6] called this problem “graph-constrained
group testing.”

Our Question. A natural question is whether graph-constrained group testing is more
difficult than classical group testing. That is, whether the additional constraints of graph-
constrained group testing lead to significantly more tests. For the unconstrained group
testing problem, the state-of-the-art construction uses O(d2 log(m/d)) tests [25], which nearly
matches the lower bound of Ω(d2 logdm) tests [13,27]. Thus, our question is as follows:

I Question 1. For what graphs G can we solve the graph-constrained group testing problem
using O(d2 log(m/d)) tests?

Previous work [18] has shown that certain graphs, such as a line, require Ω(m) tests, far
more than the O(d2 log(m/d)) we would need for the unconstrained problem. However, it
is also known that for sufficiently “well-connected” graphs (for example, those with large
minimum cuts, many disjoint spanning trees, or constant mixing time), a sublinear number of
tests suffice [6, 18]. These works have proposed using large subtrees [18] or random walks [6]
as the tests. However, both of these approaches stop short (by polylogarithmic factors or
more) of obtaining an O(d2 log(m/d)) bound for most graphs.

Our contributions. We improve upon the results of [6,18] to show that O(d2 log(m/d)) tests
are sufficient for a wide collection of graphs, including many of the graphs already considered
in prior work. Our construction – which is randomized – is quite simple: we sparsify the
graph by choosing edges at random, and use the resulting large connected subgraphs. This
is similar in flavor to earlier work – for example, [6] considered random walks – but our
tests lead to stronger theorems, and also appear to perform better in practice. Moreover,
our approach is quite general and works for other variants of the group-testing problem. To
illustrate this, we show that it also gives near-optimal results in a model of random link
failures. Concretely, our contributions are as follows:
O(d2 log(m/d)) tests suffice for (β, α)-edge expanders. Our main result, The-
orem 8, applies to graphs which are (β, α)-edge expanders, meaning that every set S ⊆ V
of size at most βn has at least α|S| edges coming out of it. We show that O(d2 log(m/d))
tests suffice when β is constant and α & d. Moreover, if β is sub-constant, then the
number of tests required degrades gracefully with β.
(β, α)-edge expansion is a general notion, and our results imply improved graph-constrained
group-testing schemes for several natural classes of graphs like Erdös-Rényi graphs and
constant-degree expanders. Moreover, our results are even optimal when applied to
certain “counter-example” graphs like the barbell graph which foil earlier work.

B. Spang and M. Wootters 46:3

Table 1 Summary of general results using connected-subgraph tests to identify any d defective
edges for “well-connected” graphs with n vertices andm edges, for various notions of “well-connected.”
See discussion in Section 3 for slightly more general statements of results in previous work.

Source Graph Max. defective edges Number of Tests

[18] G has min-cut K d ≤ dK−1
2 e − 1 O(d3 log(m))

[6] G is D-regular,
with mixing time τ

d ≤ d0 for some
d0 = Ω(D/τ2)

O(τ2d2 log(m/d))

Proposition 2 G has min-cut K d ≤ K
5 logn O(d2 log(m/d))

Theorem 8 G is a (β, α)-edge expander d ≤ 1.99α O
(
d2 log(m/d)

β

)

Our general theorem (Theorem 8) is compared to existing general theorems in Table 1.
The results for a few specific families of graphs are shown in Table 2. These results are
presented in more detail in Section 4.

New results about large connected components of random graphs. While our
construction is quite simple, the analysis requires some delicacy. In order to show that
our tests work, we prove new results about giant components in randomly sparsified
graphs.

More precisely, our main technical theorem (Theorem 10) establishes the following.
Suppose that G = (V,E) is a (β, α)-edge expander, and let G(p) = G(V,E′) be the graph
where E′ ⊆ E is a random subset where each edge is kept independently with probability
p. We show that if p ≥ (1 + ε)/α, then for any edge e ∈ E, with probability Ω(pε) then
not only does e survive, but also e’s connected component in G(p) has size at least βn.
This is of a similar flavor to previous work on giant components of randomly sparsified
graphs, but with two important differences: first, our result works even if β is small (so
the components are “big” but not “giant”) and second, we require that any edge e be
contained in a large component with decent probability after sparsification. Theorem 10
is stated and proved in Section 5.

A general algorithm for graph-constrained group testing problems. Our ap-
proach is to simulate a uniformly random (unconstrained) approach in the constrained
setting. Because a uniformly random approach is near-optimal for many variants on the
group testing problem, our results extend to variants of the graph-constrained group
testing setting. We illustrate this in the full version of this paper, where we show that
our algorithm also achieves near-optimal results in the stochastic model (where the link
failures are random) [28].

Empirical results. Finally, we present empirical results which suggest that our approach
significantly out-performs the random-walk method of [6] and in many cases, nearly
matches the performance of unconstrained random tests. On complete graphs and
hypercubes it uses less than half the tests of the random-walk method. On a family of
graphs often used in datacenter networks (the “fat-tree” topology), our approach is able
to find defectives using a nontrivial number of tests while the random-walk method is not.

APPROX/RANDOM 2019

46:4 Unconstraining Graph-Constrained Group Testing

Table 2 Summary of work on the number of connected-subgraph tests required to identify any
d ≤ d0 failures, for specific families of graphs. All graphs have n vertices and m edges. Results
which meet the near-optimal O(d2 log(m/d)) tests or which have only the asymptotically optimal
restriction d ≤ d0 for some d0 = Ω(degree) are highlighted in grey.

Graph Source Number of tests
Limit d0 so that
recovery of d ≤ d0
failures is possible

Complete Graphs [6] O(d2 log(m/d)) d0 = Ω(n)

This work O(d2 log(m/d)) d0 = Ω(n)

D-Regular Expanders
(O(1) spectral gap)

[18] O(d3 logm) d0 = Ω(D)

[6] O(d2 log3(m)) d0 = Ω(D/ log2(n))

This work O(d2 log(m/d)) d0 = Ω(D)

Erdös-Rényi Graphs
G(n,D/n)

[6] O(d2 log3(m)) d0 = Ω(D/ log2(n))

This work O(d2 log(m/d)) d0 = Ω(D)

Barbells [18] O(d3 logm) d0 = 1

[6] m (see discussion) d0 = n

This work O(d2 log(m/d)) d0 = Ω(n)

Fat-Trees [18] O(d3 logm) d0 = 1

This work O(d2 log(m/d)) d0 = Ω(D/ logD)

1.1 Overview of approach
Our approach is quite simple: we just choose random edges and take the large connected
components. Intuitively, the reason that this works is because:
1. If we just chose random edges, we would be back in the traditional group testing setting,

where random tests are nearly optimal by Proposition 6.
2. We will show that if G is a (β, α)-edge expander, then the graph G(p) formed by choosing

random edges has mostly large components, of size at least βn. Intuitively this means
that throwing away the few disconnected parts should not matter much.

There are several challenges in making the above intuition rigorous. First, once we throw away
the edges that are not in a large connected component, the edges that remain, conditional
on remaining, are no longer independent. Thus, the intuition from point 1 above does not
quite hold. However, this ends up being reasonably straightforward to deal with.

The second and more interesting challenge is that, while there is a great deal of work on
when random sparsifications of graphs have giant components, we need a different result that
to the best of our knowledge does not appear in the literature. The first difference between
our setting and existing work is that we work with (β, α)-edge expanders; this means that
we need to show that there are “decently big” connected components rather than “giant”
components if β is small. The second difference is that we must show that each edge e is still
contained in a test with high probability. That is, when we pass from G to G(p) = (V,E′),

B. Spang and M. Wootters 46:5

the probability that e ∈ E′ is p; for the analysis in the random case to still work, we need
the probability that e is in a large connected component of E′ to also be proportional to p.

To address this second challenge, we reduce the question to one about random walks.
Taking inspiration from [22] who study random sparsifications of the complete graph, we
introduce a process to generate the connected component of a particular edge v, and argue
that this process generates a large connected component if and only if an appropriately
chosen random walk diverges with decent probability; the we prove it does converge.

The details of the approach are given in Section 5. However, as a warm-up to show why
the intuition presented above is believable, we first prove an easy statement of the same
flavor where neither of these challenges arise. Proposition 2 below shows that if we replace
(β, α)-expansion with the property of having a large min-cut, O(d2 log(m/d)) tests suffice.

I Proposition 2 (Informal). There is a constant C > 0 so that the following holds. Suppose
that G = (V,E) is a graph with |V | = n, |E| = m. Let d ≥ 1 be an integer. Suppose that the
minimum cut K of G satisfies K ≥ 5(d+ 1) log(n). Let T be a set of tests T ⊆ E generated
according to the following process:

Initialize T = ∅.
For t = 1, 2, . . . , Cd2 log(m/d):

Let T ⊂ E be a random set where each edge is included with probability 1/(d+ 1).
Add T to T .

Then T can identify d failed edges, and with high probability each test is connected.

Proof sketch. As we will see in Proposition 6, T is able to identify d failed edges, and so
it suffices to show that a random set T is connected with high probability. Fortunately,
this is true:

I Theorem 3 ([21]). Let K be the minimum cut of G. If p > min
(

5 logn
K , 1

)
, G(p) is

connected with probability at least 1− 1
n .

By Theorem 3 and a union bound, the probability any test is disconnected is at most
|T |/n = O

(
d2 log(m/d)

n

)
. J

Proposition 2 is already enough to establish order-optimal results for some of the examples
shown in Table 2 (for example the complete graph and the fat tree), but for the others we
will need Theorem 8 about (α, β)-expanders.

Organization. In Section 2, we formally set up the problem. In Section 3, we survey related
work, and we state our theoretical results in Section 4. The proofs of these results follow in
Section 5. Finally, we present our empirical results in Section 6.

2 Setup and Preliminaries

We begin with some basic notation and definitions.

2.1 Graph-theoretic preliminaries
Throughout, we will be working with undirected, unweighted graphs G = (V,E) with |V | = n,
|E| = m. For a set of vertices A ⊆ V , the boundary of A is ∂A = {{u, v} ∈ E : u ∈ A, v 6∈ A} .
For a set of edges B ⊆ E, we use the notation N(B) to denote the set of vertices v that are
endpoints of an edge in B: N(B) = {v ∈ V : ∃u, {u, v} ∈ B} .

APPROX/RANDOM 2019

46:6 Unconstraining Graph-Constrained Group Testing

The minimum cut K of a graph G is defined by K = minA⊆V |∂A|. Our main theorem
is about edge expanders. We give a slightly more general definition than the usual notion
(which would have β = 1/2 below), so that we can state a more general theorem.

I Definition 4. A graph G = (V,E) is a (β, α)-edge expander if for all sets A ⊆ V with
|A| ≤ β|V |, |∂A| ≥ α|A|.

We will consider random sparsifications of graphs. For a graph G = (V,E) and p ∈ (0, 1),
G(p) = (V,E′) denotes the random graph where E′ ⊆ E is generated by including each
edge of E in E′ independently with probability p. We use G(n, p) = Kn(p) to denote the
Erdös-Rényi graph where each edge is included independently with probability p. (Here, Kn

denotes the complete graph on n vertices).

2.2 Group testing preliminaries
The combinatorial group testing problem is set up as follows (using slightly non-standard
notation in order to be consistent with the graph-constrained set-up below). Let E be a set
of size m, and suppose that B ⊆ E is a set of at most d special or “defective” items in E. A
test T ⊆ E is a collection of items, and we say that the outcome of the test T is True if
T ∩B 6= ∅ and False otherwise. We say that a collection of tests T ⊆ 2E (here, 2E denotes
the power set of E, consisting of all subsets of E) can identify up to d defective items in E
if for any B ⊆ E with |B| ≤ d, B is uniquely determined from the outcomes of the tests
T ∈ T . The goal is to design a collection of tests T ⊆ 2E which can identify up to d defective
items, so that |T | is as small as possible. A useful notion in the group testing literature is
disjunctness, which is a sufficient condition for recovery.

I Definition 5. Let E be a set and T ⊆ 2E. We say that T is d-disjunct if for all e ∈ E, for
all B ⊆ E where |B| ≤ d and e 6∈ B, there exists a test T ∈ T so that e ∈ T and B ∩ T = ∅.

If T is d-disjunct, then T can identify up to d defective items in E. More precisely, it is not
hard to see that the following algorithm will do the job: for each item e ∈ E, declare e ∈ B
if and only if all the tests T ∈ T with e ∈ T had outcome True.

Choosing tests completely at random is a good way to obtain d-disjunct sets.

I Proposition 6 (See e.g. [11] Theorem 8.1.3). Let d ≥ 1. Let E be a set. Consider a
random test T ⊆ E such that each e ∈ E is included in T independently with probability
p = 1

d+1 . Let T = {T1, . . . , Tτ}, where each Ti ∈ T is chosen independently from the above
distribution. Then there is a value τ = O(d2 log(m/d)) so that T is d-disjunct with probability
at least 1− 1/m.

This is nearly optimal, up to a factor of O(1/ log d):

I Theorem 7 ([13]). Let E be a set of size m and T ⊆ 2E. If T is d-disjunct, then
|T | = Ω(d2 logdm)

2.3 Graph-constrained group testing
Given a graph G = (V,E), the graph-constrained group testing problem on G is the same
as the standard group testing problem on a set of items E, with the additional constraint
that each test T ⊆ E be a connected subgraph of G. That is, in the network tomography
application, a packet must be able to traverse a test T . We say that a connected-subgraph
test is a set of edges T ⊆ E so that the graph (N(T), T) is connected.

B. Spang and M. Wootters 46:7

We note that the definition of disjunctness directly applies to the graph-constrained setting,
and our goal in this work will be to design d-disjunct collections T of connected-subgraph
tests, such that T is as small as possible.

2.3.1 Why connected-subgraph tests?
Our work, like existing work on graph-constrained group testing [6,18,20], uses connected-
subgraph tests. Connected-subgraph tests can be implemented in an actual network in a
number of ways:

The test can be converted into a path on the graph by solving an instance of the Chinese
Postman Problem [14]. A packet can then be sent along this path, for instance by using
source routing or by adding a rule at each switch on the path matching the packet’s
source IP, destination IP, and time-to-live.
We can compute a spanning tree of subgraph. Each switch in the subgraph checks the
health of its links, and forwards a bit to its parent in the tree: 1 if its adjacent links are
healthy, and 0 otherwise. If the link from a switch to its parent in the tree is down, then
it cannot send anything. If the root node receives all 1’s, it knows that all the links in
the subgraph are healthy; otherwise at least one of the links is broken.

One could also imagine restricting the tests to be, for example, simple paths or trees. Some
restrictions on tests do have some advantages in implementation (in particular, tests which are
shortest paths may be easier to implement than general connected-subgraph tests: for example
many networks support equal-cost multipath routing (ECMP) which splits traffic across all
the shortest paths between a pair of hosts). However, connected subgraph tests are strictly
more powerful than either simple paths or trees for the constrained group-testing problem.
We provide some examples which demonstrate this in the full version of this paper [28].

3 Related Work

Boolean network tomography. Most of the work on boolean network tomography (that is,
the problem of identifying failures in a graph using end-to-end traffic) has a much harsher
set-up than the one we consider here, in that both the graph and the tests are taken to be
worst-case, or at least very constrained. For example, all the tests may be required to be simple
paths starting from a particular vertex. The reason for the harsh set-up is that historically,
networks have been quite inflexible, which severely limits both the graph topologies and
the sorts of tests that are used. Since identifying failures uniquely is often impossible in
these settings, this work has focused on doing as well as possible given the circumstances, for
example by finding any set of failures that will explain the test outcomes [3, 8] or by finding
the most likely set of failures given some underlying distribution [12,24]. When the input
graph and set of allowed tests is worst-case, these problems are hard, and the usual approach
is to reduce to some NP-hard problem and use a heuristic or approximation algorithm.

Graph-constrained group testing. More recently, the field of networking has shifted to-
wards flexible datacenter networks, where the tomography problem is still interesting [26,30].
Modern datacenter networks, however, fundamentally change the constraints of the tomo-
graphy problem. Datacenters are good expanders [9,29], so the worst-case assumptions about
the graphs can be relaxed. Modern networks are programmable [4]: instead of the network
defining what can and cannot be done, operators program networks to do what they want.
Thus, the set of allowed tests T need not be worst-case. This leads to graph-constrained
group testing, where we can design the tests, and make assumptions about the connectivity
of the underlying network.

APPROX/RANDOM 2019

46:8 Unconstraining Graph-Constrained Group Testing

We are not the first to investigate group testing with graph constraints (although to the
best of our knowledge our work is the first to consider graph-constrained group testing with
random failures). Du and Hwang discuss two different group-testing problems on graphs in
Chapter 12 of [11], although neither are exactly the same as the setup we consider here. The
connection between boolean network tomography and group testing was first observed by [18].
They give results for specific families of graphs including line graphs, grids, and binary trees.
Their most general result is that if a graph has d edge-disjoint spanning trees T1, . . . , Td with
δ being the maximum diameter of the trees, then O(d3 logm+dmin(δ+ log2 n, δ logn)) tests
are sufficient to identify at most d failures. (As a corollary, this implies that any graph with
minimum cut K can identify d ≤ dK−1

2 e − 1 failed edges, which is what is stated in Table 1).
Finally, [20] considers the adaptive version of graph-constrained group testing. They present
an adaptive algorithm which, on any graph, uses a number of tests that is within a constant
factor of the optimal number.

The work closest to our is that of Cheraghchi et al. [6], who give a randomized construction
of connected-subgraph tests via random walks. They show that O(d2 log(m/d)) tests suffice
for very well-connected graphs (those with constant mixing time), and O(d2 log3(m)) tests
suffice for certain expanders and Erdös-Réyni graphs. Their most general result is that
for graphs with mixing time τ and where there exists some c > 0 such that the degree Dv

of each vertex v ∈ V lies in between 6c2dτ2 ≤ Dv ≤ 6c3dτ2, at most O(c4τ2d2 log(m/d))
tests are sufficient. We summarize the general results for related work in non-adaptive
graph-constrained group testing in Table 1.

Giant components in random graphs. Finally, we mention some related work on the
size of giant components of randomly sparsified graphs, since our main technical theorem
(Theorem 10) is related to this. This question is well-studied, but we need a slightly different
result. One difference is that we work with (β, α)-edge expansion, and in particular our
“giant” components need not be so giant if β is small. A second difference is that we require
that every edge be contained in a large connected component with constant probability; to
the best of our knowledge, existing work does not explicitly give such a guarantee.

The study of giant components in G(n, p) (aka, a randomly sparsified complete graph) was
initiated by Erdös and Rényi in [15]. This was extended to sparsifications of the hypercube [1]
and sufficiently good expander graphs [16] and [7]. Our approach to Theorem 10 is based on
that of Krivelevich and Sudakov [22] who give a simpler argument for existing results on
giant components.

Most of these results show that as long as p ≤ 1+ε
D , where D is the degree of the graph

G, then G(p) contains a giant component. We show a similar result: if p ≤ 1+ε
α , where G is

a (β, α)-edge expander, then there exists a connected component of size at least βn. (And
moreover, any edge is contained in such a component with decent probability).

4 Results

4.1 Main result

Our group testing scheme is quite simple: the idea is just to choose random edges of the
graph, and keep any large-enough connected components. Recall the notation that for a
graph G = (E, V), G(p) = (V,E′) is the graph where each edge in E is included in E′

independently with probability p. Then the randomized algorithm for constructing the tests
is given in Algorithm 1.

B. Spang and M. Wootters 46:9

Algorithm 1 Make-Tests.

input :Graph G = (V,E); number of failed edges d; parameters 2
d ≤ δ ≤ 1/3,

β ∈ (0, 1
2], and τ ∈ N

output :A collection of tests T ⊆ 2E
1 T ← ∅;
2 p← 1

δd ;
3 for t = 1, . . . , τ do
4 Draw G′ ∼ G(p) independently from all the other rounds;
5 Find the connected components A1, A2, . . . , Ar of G(p);
6 for each Ai so that |Ai| ≥ βn do
7 Add the test Ai to T ;
8 end
9 end

10 return T

Our main theorem implies that any (β, α)-edge expander with large enough α admits a
group testing scheme with O(d2 log(m/d)/β) tests.

I Theorem 8. There are constants c, C > 0 so that the following holds. Suppose that
G = (V,E) is a graph with |V | = n, |E| = m. Let d ≥ 1 be an integer, and 2

d ≤ δ ≤ 1
3 .

Suppose that G is a (β, α)-edge-expander with β ∈ (0, 1/2] and such that α ≥ 1 satisfies

α ≥ d
(

1
2 + δ

)
. (1)

Let T be the set of tests returned by Algorithm 1 run with parameters δ, β, and

τ = Cd2 log(m/d)e(1+δ)/δ.

Then with probability at least 1−m−cd, T is d-disjunct. Further,

|T | ≤ Cd2 log(m/d)e(1+δ)/δ

β
.

If β, δ are constant, then the number of tests required is O(d2 log(m/d)), which is
nearly optimal even for the unconstrained group testing problem (that is, it nearly matches
Theorem 7). Moreover, the requirement on the expansion factor α is nearly tight. That
is, in (1), we may take α = d

(1
2 + δ

)
d for any constant δ > 0, while still maintaining the

near-optimal O(d2 log(m/d)) test complexity. On the other hand, such a statement could
not hold for α much smaller than d/2. More precisely, we show below in Proposition 9 that
the degree D of the graph G must be at least d/2 to obtain any nontrivial bound on |T |.
Since for any γ > 0, there exist D-regular (β, α)-edge expanders with α = (1− γ)D for small
β ∼ γ, this implies that the cut-off for α of d/2 in Theorem 8 cannot be improved.

I Proposition 9. Let G = (V,E) be a D-regular graph with |E| = m. If T ⊆ 2E is a
collection of d-disjunct connected-subgraph tests, for d ≥ 2D − 2, then |T | ≥ m.

Proof. Suppose that T ⊆ 2E with |T | < m. Then there is some edge e = {u, v} so {e} 6∈ T .
Let B = ∂({u, v}) be the set of edges adjacent to e, so |B| = 2D − 2 ≤ d. Then the only
connected-subgraph test T ⊂ E so that e ∈ T but T ∩B = ∅ is {e}, which by assumption is
not in T . Thus, T is not d-disjunct. (See Figure 1). J

APPROX/RANDOM 2019

46:10 Unconstraining Graph-Constrained Group Testing

u ve

D − 1

Figure 1 Proof of Proposition 9. Suppose that the number of edges that may fail is d ≥ 2D − 2
where D is the degree of the graph. If the set of tests T does not contain the singleton {e} for an edge
e = {u, v}, then the set B of dashed edges – all of the neighbors of e – provides an counter-example
to d-disjunctness.

We instantiate Theorem 8 for several differnt families of graphs in Appendix A; the results
are summarized in Table 2. We note that our results also extend to a model with random
link failures; we defer this discussion to the full version of this paper [28].

5 Proofs

In this section, we prove Theorem 8. Our proof is based on the following theorem, which
implies that any edge e is reasonably likely to be contained in a large connected component
of G(p).

I Theorem 10. Let β ∈ (0, 1/2) and α ≥ 1, and let G = (V,E) be a graph with |V | =
n, |E| = m so that, for any set A ⊂ V of size 2 ≤ |A| ≤ βn, we have |∂A| ≥ α|A|. For an
edge e ∈ E, let Ce denote the connected component of G(p) containing e, or ∅ if there is no
such connected component (that is, if e 6∈ G(p) was deleted), and let |Ce| denote the number
of vertices in Ce.

Choose any ε ∈ (0, 1/3), and suppose that p ≥ 1+ε
α . Then for all edges e ∈ E,

P (|Ce| ≥ βn) ≥ pε

8 . (2)

Before we prove Theorem 10, we discuss how it can be used to prove Theorem 8.
Let G = (V,E), and let G(p) = (V,E′) be the random sparsification. Fix B ⊆ E with

|B| = d and e ∈ E. The following lemma shows that with high probability, at least one of
the tests in T will separate e from B. Then one can union bound over all choices for e and
B to conclude that T is d-disjunct. We defer the details to the full version of this paper [28].

I Lemma 11. Consider one draw of G(p) in Make-Tests, and let T1, T2, . . . be the connected
components of G(p) which have size at least βn. Fix B ⊆ E with |B| = d and e ∈ E. Then

P (∃i s.t. e ∈ Ti and B ∩ Ti = ∅) ≥ δp

8 · (1− p)
d.

Proof. We have

P (∃i s.t. e ∈ Ti and B ∩ Ti = ∅) = P (|Ce| ≥ βn and B ∩ Ce = ∅)
≤ P (|Ce| ≥ βn and B ∩ E′ = ∅)
= P (|Ce| ≥ βn | B ∩ E′ = ∅) · P (B ∩ E′ = ∅) .

We have P (B ∩ E′ = ∅) = (1− p)d, since this is just the probability that all the edges in B
survive in G(p).

B. Spang and M. Wootters 46:11

For our fixed e,B, let Ḡ = (V,E \ B) be the graph with all the edges in B removed.
Consider the distribution of G(p) conditioned on the event that B ∩E′ = ∅. This is the same
as the distribution of Ḡ(p). To see this, notice that for A ⊆ E \B, the random sets of A∩E′
and B ∩E′ are independent. Let Ce be the connected component containing e in Ḡ(p). Then

P (|Ce| ≥ βn | B ∩ E′ = ∅) = P
(
|Ce| ≥ βn

)
.

Notice that since G is a (β, α)-edge expander with α ≥ d
(1

2 + δ
)
, then for any set A ⊂ V of

size 2 ≤ |A| ≤ βn, we have |∂A| ≥ α|A| − d ≥
(
α− d

2
)
|A|. Thus, we may apply Theorem

10 to Ḡ. Choose p = 1+δ
dδ , and apply Theorem 10. Our assumption (1) that α ≥ d

(1
2 + δ

)
and the choice of p implies that p ≥ 1+δ

α−d/2 , we conclude that P
(
|Ce| ≥ βn

)
≥ δp

8 . Putting
things together proves the lemma. J

Proof of Theorem 10. As in the theorem statement, suppose p ≥ (1 + ε)/α for some
ε ∈ (0, 1/3), and let G = (V,E) be a (β, α)-edge expander. Write G(p) = (V,E′), so that
E′ ⊆ E. Choose p ≥ (1 + ε)/α.

Consider the probability (u, v) is in a large component,

P
(
C(u,v) ≥ βn

)
= P ((u, v) ∈ E′) · P

(
|C(u,v)| ≥ βn | (u, v) ∈ E′

)
.

Condition on the event that (u, v) ∈ E′, and imagine building C(u,v) by starting with
{(u, v)} and building the set outwards, one at a time. More precisely, consider the following
randomized process:

S0 ← {(u, v)}, B0 ← ∅
For t = 0, 1, 2, . . .:
1. Let N(St) be the set of vertices in V adjacent to St.
2. Let Ut = ∂(N(St)) \Bt be the set of unvisited edges that lie on the boundary of N(St).
3. If |Ut| = 0, break.
4. St+1 ← St, Bt+1 ← Bt.
5. Choose an edge e ∈ Ut arbitrarily.
6. With probability p, declare that e has survived and add it to St+1.
7. Otherwise (with probability 1− p) add e to Bt+1.

This process is illustrated in Figure 2.

St

Bt

Ut

N(St)

u

v

G:

t = 0

u

v

t = 1

u

v

t = 2

u

v

t = 3

u

v

Figure 2 First few steps of the process to build C(u,v) in the proof of Theorem 10. The edge
from Ut which we chose ended up being in E′ in steps t = 1 and t = 3, but not t = 2.

APPROX/RANDOM 2019

46:12 Unconstraining Graph-Constrained Group Testing

It is not hard to see that this process terminates at the first time tmax so that |Utmax | = 0,
and when it does, N(Stmax) is distributed identically to the set of vertices in C(u,v). Thus,
to bound |C(u,v)| with high probability, we can bound the set |N(St)| with high probability.
Notice that St is a tree; thus, |St| = |N(St)|−1, and so it suffices to show that |Stmax | > βn−1
with high probability. To that end, we will show that, as long as |St| ≤ βn−1, the probability
that |Ut| = 0 is very small.

At each step t, we either add an edge to Bt or to St, so |St| + |Bt| = t. Let Xt be
the random variable which is 1 if we added an edge to St in step t; thus Xt ∼ Ber(p) and
|St| = 1 +

∑t
i=1 Xi.

Suppose that St is nonempty and |St| ≤ βn− 1, so 2 ≤ |N(St)| ≤ βn. By our expansion
assumption, we have |∂N(St)| ≥ α|St|, and so

|Ut| = |∂(N(St)) \Bt| ≥ α|St| − |Bt| = α|St| − (t− |St|) = (1 + α)|St| − t

= (1 + α)
(

1 +
t∑
i=1

Xi

)
− t ≥

t∑
i=1

((1 + α)Xi − 1) + α.

Thus,

P (∃t > 0 s.t. |St| ≤ βn− 1 and |Ut| = 0) = P (∃t > 0 s.t. |St| ≤ βn− 1 and |Ut| ≤ 0)

≤ P

(
∃t > 0 s.t.

t∑
i=1

((1 + α)Xi − 1) ≤ −α

)
.

Let Yi = (α+ 1)Xi − 1, so that Yi = α with probability p, and Yi = −1 with probability
1− p. Let Zt =

∑t
i=1 Yi be a random walk. The above shows that

P (∃t > 0, |St| ≤ βn− 1 and |Ut| = 0) ≤ P (∃t > 0, Zt ≤ −α) . (3)

Let τk(Yi) denote the smallest t so that
∣∣∣∑t

i=1 Yi

∣∣∣ ≥ |k| and sign(
∑t
i=1 Yi) = sign(k). We

claim that P (∃t > 0, Zt ≤ −α) ≤ 1 − infM>0 P (τM (Yi) ≤ τ−α(Yi)). Indeed, suppose that
there is some t > 0 so that Zt ≤ −α. Then there is some sufficiently large M > αt so that
Zt could not have reached M in t steps, and so the random walk does not arrive at M before
arriving at −α. Thus

P (∃t > 0, Zt ≤ −α) ≤ P (∃M, τM (Yi) > τ−α(Yi))
= sup

M
P (τM (Yi) > τ−α(Yi)) = 1− inf

M>0
P (τM (Yi) ≤ τ−α(Yi)) .

Thus our goal is to show that P (τM (Yi) ≤ τ−α(Yi)) is bounded away from zero for all M ;
then there will be some constant probability that the edge-exploration process will make
progress as long as |St| ≤ βn− 1.

B Claim 12. Using the notation above, for all M > 0,

P (τM (Yi) ≤ τ−α(Yi)) ≥
ε

8 .

The proof of the claim can be found in the full version of this paper [28]. The main idea is as
follows: suppose for simplicity that α ∈ Z. Then we replace the walk defined with the Yi’s by
one whose steps Wi are ±1, where the probability of 1 is chosen so that the the probability
that Wi reaches α before −1 is at most p. Analyzing this walk is then an instance of the
Asymmetric Gambler’s Ruin problem (see, for example, [17]).

B. Spang and M. Wootters 46:13

Figure 3 A small example of the fat tree topology with n = 36,m = 48. In our experiments, we
consider larger versions (n = 80,m = 256 and n = 45,m = 108).

Using the claim and the discussion following (3), we have that

P (∃t > 0 s.t. |St| ≤ βn− 1, |Ut| = 0) ≤ 1− ε/8.

Finally,

P
(
|C(u,v)| ≥ βn

)
= P

(
|C(u,v)| ≥ βn | (u, v) ∈ E′

)
· P ((u, v) ∈ E′)

= p · (1− P (∃t s.t. |St| ≤ βn− 1, |Ut| = 0)) ≥ pε

8 .

This completes the proof. J

6 Empirical Results

In this section, we numerically compare Algorithm 1 to existing work. We compare to the
random walk based approach of [6] and to the randomized group testing without graph
constraints of Proposition 6. We find that the random subgraph tests perform nearly as well
as the unconstrained versions in most settings, and often perform significantly better than
the random walk approach.

Below, we test the following randomized constructions of tests:
Our approach, Algorithm 1 (called “Subgraph” in the figures). We use p = 1/(d+ 1) and
include only the largest connected component of G(p).
The random walk approach of [6] (called “Random walks” in the figures). We empirically
estimate the mixing time τ by picking a node at random and finding the first time that
the total variation distance to the equilibrium distribution is less than 1/(2cn)2, as per
the definition in [6], where c is defined so that the graph G = (V,E) has D ≤ deg(v) ≤ cD
for each v ∈ V . We fix a constant ` > 0 and run each random walk for d `nDc3dτ e steps. We
tried a few of values of ` and present the best results for each graph: for the complete
graph we chose ` = 1 and for all other graphs we chose ` = 4.
Unconstrained random approach (called “Random” in the figures). We include each edge
in a test with probability p = 1/(d+ 1), and ignore the graph constraints.

We consider four types of graphs. The first three – random regular graphs, complete graphs,
and hypercubes – are idealized graphs that may or may not capture real networks. For our
last graph, we choose the “Fat-Tree” graph [23], originally designed for use in supercomputers
and which is now widely used in datacenter networks [2]. As the name suggests, this is a
“fattened” tree, where the fatness (number of links) near the top of the tree is greater than
the fatness near the leaves. (See Figure 3).

APPROX/RANDOM 2019

46:14 Unconstraining Graph-Constrained Group Testing

We perform two types of experiments:
1. In the first type of experiment, we compare the probability of obtaining a d-disjunct matrix

from any of these three randomized approaches. Unfortunately, it is computationally
intense to determine whether or not a given collection T of tests is d-disjunct, and so we
are only able to do this for small d (d = 1 and d = 2).

2. In the second type of experiment, we are trying to understand the performance of our
method for larger d. Since determining d-disjunctness is computationally infeasible for
large d, instead we choose d random defectives and estimate the probability of success
under each of the three methods. We note that, as shown in the full version of this
paper [28], our algorithm is order-optimal for random defectives.

6.1 Number of tests required for d-disjunctness
First, we estimate the number of tests required for d-disjunctness for Algorithm 1 and
compare it to [6] and randomized group testing without graph constraints. We find that
for many graphs, our approach requires roughly the same number of tests as group testing
without constraints.

Figure 4 (resp. Figure 5) shows the probability that a randomly generated test matrix
is 1-disjunct (resp. 2-disjunct) for various graphs, algorithms, and numbers of tests. Each
point is the empirical mean of 200 independent trials, and we plot error bars of width
1/
√

200 ≈ 0.07. (Notice that by Hoeffding’s inequality, the probability that the true average
lies outside the error bars is at most 1/e2).

Algorithm 1 performs similarly to the nearly optimal randomized group testing procedure
of Proposition 6. Notably, for the Fat-Tree graph, Algorithm 1 significantly outperforms the
approach of [6].

6.2 Number of tests required for d random failures
As mentioned above, determining d-disjunctness is computationally infeasible for larger d,
and so to assess larger d we consider performance on random failures, which we address in
the full version [28].

For our experiments with random failures, we focus on the fat-tree topology. The main
reasons for this are (a) that the “Fat-Tree with random failures” set-up is perhaps the most
relevant for real-life applications, and (b) the other topologies yield graphs that look similar,
but the differences between the three approaches are less pronounced.

We find that Algorithm 1 significantly out-performs the random walk approach of [6],
but performs less well as d grows. In this graph once d becomes much larger than 5, even
the random group testing construction without graph constraints requires at least m tests.

Figure 6 shows the probability that a set of tests correctly identifies d random failures,
where the probability is taken over both the tests and the failures. Each point is the empirical
mean of 200 independent trials, and we plot error bars of width 1/

√
200 ≈ 0.07. As above,

by a Hoeffding bound the probability that the true mean lies outside the error bars is
at most e−2.

7 Conclusion

We have given a simple randomized construction which shows that for many graphs, graph-
constrained group testing is possible with a near-optimal number of tests. Our results – which
are proved by analyzing a particular random walk – improve over previous work, and also
apply to a wider range of graphs. However, many open questions remain, and we conclude
with a few of these here.

B. Spang and M. Wootters 46:15

1. Both our approach and the approach of [6] give randomized constructions. Derandomizing
these constructions remains a fascinating open question. Such a derandomization would
be especially useful if it allowed a node to extremely efficiently determine which of its
neighbors a test packet should be sent to next, using only minimal information stored in
the packet.

2. While (β, α)-expansion is reasonably general, it is not completely general. For example,
hypercubes are not very good (β, α)-expanders, but the result of [18] implies that (since
they have many disjoint spanning trees) hypercubes are reasonably good for the graph-
constrained group-testing problem: O(d3 logm) tests suffice to identify d defectives for
d . log(n). It seems possible that one could modify our analysis using the approach of [1]
– which shows that random sparsifications of hypercubes have large connected components
with high probability – to obtain a good result for hypercubes as well. Thus, it is an open
question to see how well our approach works for hypercubes, but more generally if there is
some quantity (more general than (β, α)-edge expansion) which precisely captures when
our approach works and when it does not.

3. In the full version [28], we show that simple paths are not as powerful as connected-
subgraph tests for graph-constrained group testing. However, in practice it is often the
case that simple paths (and especially shortest paths) are easier to implement. It would
be interesting to characterize the limitations of graph-constrained group testing when the
tests are restricted to (shortest) simple paths.

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Random Regular Graph, n = 100,m = 250

0 20 40 60 80
tests

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(disjunct)

Random
Random Walk
Subgraph

Complete Graph, n = 24,m = 276

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Fat Tree, n = 80,m = 256

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Hypercube, n = 64,m = 192

Figure 4 Probability that a randomly generated test matrix with a certain number of tests is
1-disjunct for various graphs. Each point is the mean of 200 trials, with error bars of 1/

√
200.

“Subgraph” is our approach, “Random Walk” the approach of [6], “Random” the nearly-optimal
randomized construction for unconstrained group testing.

APPROX/RANDOM 2019

46:16 Unconstraining Graph-Constrained Group Testing

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Random Regular Graph, n = 16,m = 32

0 25 50 75 100 125 150 175
tests

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(disjunct)

Random
Random Walk
Subgraph

Complete Graph, n = 9,m = 36

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Fat Tree, n = 20,m = 32

25 50 75 100 125 150 175
tests

0.0

0.2

0.4

0.6

0.8

1.0

(disjunct)

Random
Random Walk
Subgraph

Hypercube, n = 16,m = 32

Figure 5 Probability that a randomly generated test matrix with a certain number of tests is
2-disjunct for various graphs. Each point is the mean of 200 trials, and with error bars of 1/

√
200.

“Subgraph” is our approach, “Random Walk” the approach of [6], “Random” the nearly-optimal
randomized construction for unconstrained group-testing.

50 100 150 200 250 300 350
tests

0.0

0.2

0.4

0.6

0.8

1.0

(correct)

Random
Random Walk
Subgraph

Fat Tree, n = 80,m = 256, d = 1

50 100 150 200 250 300 350
tests

0.0

0.2

0.4

0.6

0.8

1.0

(correct)

Random
Random Walk
Subgraph

Fat Tree, n = 80,m = 256, d = 2

50 100 150 200 250 300 350
tests

0.0

0.2

0.4

0.6

0.8

1.0

(correct)

Random
Random Walk
Subgraph

Fat Tree, n = 80,m = 256, d = 3

50 100 150 200 250 300 350
tests

0.0

0.2

0.4

0.6

0.8

1.0

(correct)

Random
Random Walk
Subgraph

Fat Tree, n = 80,m = 256, d = 5

Figure 6 The probability that tests generated from various schemes with a certain number of tests
correctly identifies d random failed edges. “Subgraph” is our approach, “Random Walk” the approach
of [6], “Random” the nearly-optimal randomized construction for unconstrained group testing.

B. Spang and M. Wootters 46:17

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Largest random component of a k-cube.

Combinatorica, 2(1):1–7, 1982. doi:10.1007/BF02579276.
2 Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable, commodity data

center network architecture. SIGCOMM, 2008. URL: http://dblp.org/rec/conf/sigcomm/
Al-FaresLV08.

3 Yigal Bejerano and Rajeev Rastogi. Robust Monitoring of Link Delays and Faults in IP
Networks. INFOCOM, 1:134–144, 2003. doi:10.1109/INFCOM.2003.1208666.

4 Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David Walker. P4 - program-
ming protocol-independent packet processors. Computer Communication Review, 44(3):87–95,
2014. doi:10.1145/2656877.2656890.

5 Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network Tomo-
graphy: Recent Developments. Statistical Science, 19(3):499–517, August 2004. doi:
10.1214/088342304000000422.

6 Mahdi Cheraghchi, Amin Karbasi, Soheil Mohajer, and Venkatesh Saligrama. Graph-
Constrained Group Testing. CoRR, 2010. URL: http://dblp.org/rec/journals/corr/
abs-1001-1445.

7 Fan Chung and Linyuan Lu. The Volume of the Giant Component of a Random Graph
with Given Expected Degrees. SIAM J. Discrete Math., 20(2):395–411, January 2006. doi:
10.1137/050630106.

8 Amogh Dhamdhere, Renata Teixeira, Constantine Dovrolis, and Christophe Diot. NetDiagnoser
- troubleshooting network unreachabilities using end-to-end probes and routing data. CoNEXT,
page 1, 2007. doi:10.1145/1364654.1364677.

9 Michael Dinitz, Michael Schapira, and Gal Shahaf. Large low-diameter graphs are good
expanders. In 26th Annual European Symposium on Algorithms, ESA 2018, August 20-22,
2018, Helsinki, Finland, pages 71:1–71:15, 2018. doi:10.4230/LIPIcs.ESA.2018.71.

10 Robert Dorfman. The detection of defective members of large populations. The Annals of
Mathematical Statistics, 14(4):436–440, 1943.

11 Ding-Zhu Du and Frank K Hwang. Combinatorial Group Testing and Its Applications,
volume 12 of Series on Applied Mathematics. World Scientific Publishing Co. Pte. Ltd., 2
edition, 1999. doi:10.1142/9789812798107.

12 Nick G Duffield. Network Tomography of Binary Network Performance Characteristics. IEEE
Trans. Information Theory, 2006. URL: https://dblp.org/rec/journals/tit/Duffield06.

13 Arkadii Georgievich D’yachkov and Vladimir Vasil’evich Rykov. Bounds on the length of
disjunctive codes. Problemy Peredachi Informatsii, 18(3):7–13, 1982.

14 Jack Edmonds and Ellis L Johnson. Matching, Euler tours and the Chinese postman. Math-
ematical Programming, 5(1):88–124, 1973. doi:10.1007/BF01580113.

15 Paul Erdös and Alfréd Rényi. On random graphs I. Publicationes Mathematicae Debrecen,
6:290–298, 1959.

16 Alan M Frieze, Michael Krivelevich, and Ryan R Martin. The emergence of a giant component
in random subgraphs of pseudo-random graphs. Random Struct. Algorithms, 24(1):42–50,
2004. doi:10.1002/rsa.10100.

17 Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American
Mathematical Soc., 2012.

18 Nicholas J A Harvey, Mihai Patrascu, Yonggang Wen, Sergey Yekhanin, and Vincent W S
Chan. Non-Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial Group
Testing on Graphs. INFOCOM, pages 697–705, 2007. doi:10.1109/INFCOM.2007.87.

19 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of the American Mathematical Society, 43(04):439–562, October 2006. doi:10.1090/
S0273-0979-06-01126-8.

APPROX/RANDOM 2019

https://doi.org/10.1007/BF02579276
http://dblp.org/rec/conf/sigcomm/Al-FaresLV08
http://dblp.org/rec/conf/sigcomm/Al-FaresLV08
https://doi.org/10.1109/INFCOM.2003.1208666
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1214/088342304000000422
https://doi.org/10.1214/088342304000000422
http://dblp.org/rec/journals/corr/abs-1001-1445
http://dblp.org/rec/journals/corr/abs-1001-1445
https://doi.org/10.1137/050630106
https://doi.org/10.1137/050630106
https://doi.org/10.1145/1364654.1364677
https://doi.org/10.4230/LIPIcs.ESA.2018.71
https://doi.org/10.1142/9789812798107
https://dblp.org/rec/journals/tit/Duffield06
https://doi.org/10.1007/BF01580113
https://doi.org/10.1002/rsa.10100
https://doi.org/10.1109/INFCOM.2007.87
https://doi.org/10.1090/S0273-0979-06-01126-8
https://doi.org/10.1090/S0273-0979-06-01126-8

46:18 Unconstraining Graph-Constrained Group Testing

20 Amin Karbasi and Morteza Zadimoghaddam. Sequential group testing with graph constraints.
In 2012 IEEE Information Theory Workshop, pages 292–296. IEEE, 2012. doi:10.1109/itw.
2012.6404678.

21 David R Karger. Using Randomized Sparsification to Approximate Minimum Cuts. SODA,
1994. URL: https://dblp.org/rec/conf/soda/Karger94.

22 Michael Krivelevich and Benny Sudakov. The phase transition in random graphs - A simple
proof. Random Struct. Algorithms, 2013. URL: https://dblp.org/rec/journals/rsa/
KrivelevichS13.

23 Charles E Leiserson. Fat-trees: universal networks for hardware-efficient supercomputing.
IEEE transactions on Computers, 100(10):892–901, 1985.

24 Hung Xuan Nguyen and Patrick Thiran. The Boolean Solution to the Congested IP Link
Location Problem - Theory and Practice. INFOCOM, pages 2117–2125, 2007. doi:10.1109/
INFCOM.2007.245.

25 Ely Porat and Amir Rothschild. Explicit Non-Adaptive Combinatorial Group Testing Schemes.
WINE, cs.DS, 2007. arXiv:0712.3876v5.

26 Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. Passive Realtime Datacenter
Fault Detection and Localization. NSDI, 2017. URL: https://dblp.org/rec/conf/nsdi/
RoyZBS17.

27 Miklós Ruszinkó. On the Upper Bound of the Size of the r-Cover-Free Families. Journal of
Combinatorial Theory, pages 302–310, 1994. URL: https://dblp.org/rec/journals/jct/
Ruszinko94.

28 Bruce Spang and Mary Wootters. Unconstraining graph-constrained group testing. arXiv
preprint, 2018. arXiv:1809.03589.

29 Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and Michael Schapira. Xpander - Towards
Optimal-Performance Datacenters. CoNEXT, 2016. URL: http://dblp.org/rec/conf/
conext/ValadarskySDS16.

30 Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. Automatic Test
Packet Generation. IEEE/ACM Transactions on Networking, 22(2):554–566, April 2013.
doi:10.1109/TNET.2013.2253121.

A Instantiations of Theorem 8

In this appendix, we instantiate Theorem 8 for several families of graphs and compare them to
existing results. We remark that some of these families (D-regular expanders, or G(n, p)) are
natural candidates, while others (like a barbell graph) are concocted to show the difference
between our theorem and that of previous work. A summary is shown in Table 2, and we go
into the details below.

A.1 Complete Graphs
The mixing time for a complete graph is constant, so [6] gives an optimal construction
requiring O(d2 log(m/d)) tests. Theorem 8 gives the same result.

A.2 D-Regular Expander Graphs with Constant Spectral Gap
D-regular expander graphs are D-regular graphs which are very “well-connected.” One way
of measuring this is the spectral gap, that is the difference between the largest eigenvalue D
of the adjacency matrix AG and the second-largest eigenvalue, λ. (We refer the reader to
the excellent survey [19] for more background on expander graphs.) We consider families
of D-regular graphs G whose second largest eigenvalue λ is bounded away from D by a
constant: λ ≤ D(1− c) for some constant c ∈ (0, 1) independent of n.

https://doi.org/10.1109/itw.2012.6404678
https://doi.org/10.1109/itw.2012.6404678
https://dblp.org/rec/conf/soda/Karger94
https://dblp.org/rec/journals/rsa/KrivelevichS13
https://dblp.org/rec/journals/rsa/KrivelevichS13
https://doi.org/10.1109/INFCOM.2007.245
https://doi.org/10.1109/INFCOM.2007.245
http://arxiv.org/abs/0712.3876v5
https://dblp.org/rec/conf/nsdi/RoyZBS17
https://dblp.org/rec/conf/nsdi/RoyZBS17
https://dblp.org/rec/journals/jct/Ruszinko94
https://dblp.org/rec/journals/jct/Ruszinko94
http://arxiv.org/abs/1809.03589
http://dblp.org/rec/conf/conext/ValadarskySDS16
http://dblp.org/rec/conf/conext/ValadarskySDS16
https://doi.org/10.1109/TNET.2013.2253121

B. Spang and M. Wootters 46:19

For larger D = Ω(log2 n), [6] show that O(d2 log3(m)) tests are sufficient, which is
optimal up to logarithmic factors. For smaller D, in particular when D is a constant, the
best previously known result guarantees O(d3 log(m/d)) tests [18].

As we will see below, Theorem 8 guarantees O(d2 log(m/d)) tests are sufficient for all
D. In order to apply Theorem 8, we relate the second largest eigenvalue to edge-expansion
as follows:

I Theorem 13 (See [19] Theorem 4.11). Let G = (V,E) be a finite, connected, D-regular
graph and let λ be its second eigenvalue. Then G is (1/2, α)-edge expander with

D − λ
2 ≤ α ≤

√
2D(D − λ).

By plugging in Theorem 13 to Theorem 8 (with constant and sufficiently small δ > 0) we
obtain the following corollary:

I Corollary 14. Let G be a D-regular expander with second largest eigenvalue λ ≤ D(1− c)
for some constant c > 0. Then for any d < cD/2, there is a collection T of connected
subgraph tests so that T is d-disjunct and |T | = O(d2 log(m/d)).

Notice that by Proposition 9, the restriction that d ≤ d0 for some d0 = O(D) is necessary.

A.3 Erdös-Rényi Graphs
Like the D-regular expanders above, an Erdös-Rényi random graph G(n, p) on n nodes with
parameter 0 ≤ p ≤ 1 is well-connected, and has good spectral properties with high probability.
However, these graphs are not D-regular so we consider them separately.

For larger p = Ω(log2 n/n), [6] show that O(d2 log3(m)) tests are sufficient to guarantee
d-disjunctness. Theorem 8 can improve this to O(d2 log(m/d)), with only the restriction
p ≥ p0 for some p0 = Ω(1/n).

In order to apply Theorem 8, we use the following lemma from [6], which implies that
G(n,D/n) for D = Ω(d logn) has (1/2, α) edge expansion for α ≥ (2 + ε)d. Theorem 8
immediately implies that O(d2 log(m/d)) tests are sufficient.

I Lemma 15 ([6] Lemma 32). For every φ < 1/2 there is an α > 0 such that a random
graph G = G(n, p) with p ≥ α lnn/n has edge expansion α ≥ φD with probability 1− o(1).

A.4 Barbells
One of the advantages of our result over previous work is that the notion of (β, α)-edge
expansion captures a more general notion of “well-connected” than is captured by minimum
cuts or mixing times. As an extreme example of this, consider a barbell graph G, which we
define as two copies of the complete graph Kn/2 on n/2 vertices, connected by one edge e
(Figure 7).

e
Kn/2 Kn/2

Figure 7 A barbell graph.

This graph is great for graph-constrained group testing: we test the connecting edge e
on its own, then then use O(d2 log(m/d)) tests to identify up to d failures in each of the
two copies of Kn/2. Thus, O(d2 log(m/d)) tests are sufficient. However, this is a worst-case

APPROX/RANDOM 2019

46:20 Unconstraining Graph-Constrained Group Testing

graph for existing work. It has a minimum cut of one edge, so [18] only allows d = 1.
The mixing time of this graph is quite large: the probability of reaching the center edge
is O(1/n), so certainly τ = Ω(n). The degree condition of [6] is not satisfied as D ≤ n/2
which is not O(1/n2). However, even if we could ignore this condition, [6] would use at least
Õ(n2d2 log(m/d)) tests (or, therefore O(m) tests since this is the naive solution).

On the other hand, our results using (β, α)-expansion match the intuition that this example
should be easy. Setting β = 1

4 and α ≥ n
2 −

n
4 = n

4 , Theorem 8 gives an O(d2 log(m/d)) bound.
This is example is meant to highlight the difference between our work and existing work.

While the barbell graph is unlikely to be used in practice, it illustrates the intuition that
(β, α)-connectivity does better capture somewhat “clustery” graphs – that is, graphs with
higher connectivity in some areas than in others – than either minimum cuts or mixing time.
This notion may be useful for real-life networks; for example, networks may have higher
connectivity within a rack than between racks.

A.5 Fat-Trees
The “Fat-Tree” graph [23] was originally designed for use in supercomputers, and is now
widely used in datacenter networks [2]. As the name suggests, this is a “fattened” tree,
where the fatness (number of links) near the top of the tree is greater than the fatness near
the leaves.

We illustrate the fat-tree topology in Figure 3. For some parameter D > 0, each node in
the fat-tree has degree D or D/2. The Fat-Tree consists of a “core” of

(
D
2
)2 nodes and a set

of D pods. Each pod consists of a complete bipartite graph where each layer has D/2 nodes.
Each node in the core has one edge to one node in the top layer of each pod.

The minimum cut of the fat tree is D/2 and it has n = 5D2/4 nodes. If D/2 ≥
5(d+ 1) log(5D2/4), or equivalently d ≤ D

20 log(5D/4) − 1 = O(D/ logD), Proposition 2 gives
an upper bound of O(d2 log(m/d)) on the number of tests required.

On the other hand, the guarantee of [18] gives a graph-constrained group testing scheme
for the fat-tree topology with O(d3 log(m/d)) tests. It is not clear what the mixing time of
the fat-tree is, so we do not compare to the bound from [6] which is in terms of the mixing
time. (However, as shown in Section 6, it seems that our approach requires fewer tests than
that of [6] on this graph).

Near-Neighbor Preserving Dimension Reduction
for Doubling Subsets of `1
Ioannis Z. Emiris
Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, Greece
ATHENA Research & Innovation Center, Greece
emiris@di.uoa.gr

Vasilis Margonis
Department of Informatics & Telecommunications,
National & Kapodistrian University of Athens, Greece
basilis.math@gmail.com

Ioannis Psarros1

Institute of Computer Science, University of Bonn, Germany
ipsarros@uni-bonn.de

Abstract
Randomized dimensionality reduction has been recognized as one of the fundamental techniques in
handling high-dimensional data. Starting with the celebrated Johnson-Lindenstrauss Lemma, such
reductions have been studied in depth for the Euclidean (`2) metric, but much less for the Manhattan
(`1) metric. Our primary motivation is the approximate nearest neighbor problem in `1. We exploit
its reduction to the decision-with-witness version, called approximate near neighbor, which incurs
a roughly logarithmic overhead. In 2007, Indyk and Naor, in the context of approximate nearest
neighbors, introduced the notion of nearest neighbor-preserving embeddings. These are randomized
embeddings between two metric spaces with guaranteed bounded distortion only for the distances
between a query point and a point set. Such embeddings are known to exist for both `2 and `1

metrics, as well as for doubling subsets of `2. The case that remained open were doubling subsets of `1.
In this paper, we propose a dimension reduction by means of a near neighbor-preserving embedding
for doubling subsets of `1. Our approach is to represent the pointset with a carefully chosen covering
set, then randomly project the latter. We study two types of covering sets: c-approximate r-nets
and randomly shifted grids, and we discuss the tradeoff between them in terms of preprocessing time
and target dimension. We employ Cauchy variables: certain concentration bounds derived should be
of independent interest.

2012 ACM Subject Classification Theory of computation → Nearest neighbor algorithms; Math-
ematics of computing → Dimensionality reduction

Keywords and phrases Approximate nearest neighbor, Manhattan metric, randomized embedding

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.47

Category RANDOM

Related Version A preliminary version is available at https://arxiv.org/abs/1902.08815.

Funding Ioannis Z. Emiris: Partially supported by the European Union’s H2020 research and
innovation programme under grant agreement No. 734242 (LAMBDA).
Ioannis Psarros: Generously supported by the Hausdorff Center for Mathematics.

Acknowledgements IZE is member of team AROMATH, joint between INRIA Sophia-Antipolis and
NKUA. IP thanks Robert Krauthgamer for useful discussions on the topic.

1 This work was done while the third author was a PhD candidate in the Department of Informatics &
Telecommunications, National & Kapodistrian University of Athens, Greece.

© Ioannis Z. Emiris, Vasilis Margonis, and Ioannis Psarros;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 47; pp. 47:1–47:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:emiris@di.uoa.gr
mailto:basilis.math@gmail.com
mailto:ipsarros@uni-bonn.de
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.47
https://arxiv.org/abs/1902.08815
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

1 Introduction

Proximity search is a fundamental computational problem with several applications in
Computer Science and beyond. Proximity problems in metric spaces of low dimension have
been typically handled by methods which discretize the space and therefore are affected by
the curse of dimensionality, making them unfit for high-dimensional spaces. In the past two
decades, the increasing need for analyzing high-dimensional data led researchers to devise
randomized and approximation algorithms with polynomial dependence on the dimension.

A fundamental proximity problem is Approximate Nearest Neighbor search. By known
reductions [11], one can (up to polylogarithmic factors) focus on the decision version with
witness, namely the (c,R)-Approximate Near Neighbor problem:

I Definition 1 (Approximate Near Neighbor). Let (X, dX) be a metric space. Given P ⊆ X
and reals R > 0, c ≥ 1, build a data structure S that, given a query point q ∈ X, performs
as follows:

If the nearest neighbor of q lies within distance at most R, then S is allowed to report
any point p∗ ∈ P such that dX(q, p∗) ≤ cR.
If all points lie at distance more than cR from q, then S should return ⊥.

In general, S returns either a point at distance ≤ cR or ⊥, even when none of the above two
cases occurs.

From now on, we assume R = 1 because we can re-scale the data set, and we refer to this
problem as c-ANN, or simply ANN. We focus on subsets of `d1: the input dataset consists
of n vectors in Rd and the distance function is the standard `1 norm ‖ · ‖1. Note that all
logarithms are base 2.

Previous work. Some highlights in the study of data structures for high-dimensional normed
spaces are the various variants, proofs, and applications of the Johnson Lindenstrauss Lemma
(e.g. [1, 2, 3]), sketches based on p-stable distributions [14], and Locality Sensitive Hashing
(e.g. [15, 4, 5]). In the core of most high-dimensional solutions lies the fact that for certain
metric spaces e.g. `p, p ∈ [1, 2], the distance can be efficiently sketched. Spaces which are
considered to be harder in this context, such as `∞, can also be treated [13], and are very
interesting since they can be used as host spaces for various norms [6].

Significant amount of work has been undertaken for pointsets of low doubling dimension,
since it is today one of the primary paradigms for capturing input structure (formal definitions
in the next section). For any finite metric space X of doubling dimension dim(X), there
exists a data structure [12, 9] with expected preprocessing time O(2dim(X)n logn), space
usage O(2dim(X)n) (or even O(n)) and query time O(2dim(X) logn+ ε−O(dim(X)).

In [16], they introduced the notion of nearest-neighbor preserving embeddings, and it was
proven that in this context one can achieve dimension reduction for doubling subsets of `2,
with the target dimension depending only on the dataset’s doubling dimension. Even before,
Indyk [14] had introduced a randomized embedding for dimension reduction in `1, which
is suitable for proximity search purposes, and it achieves target dimension polylogarithmic
in the size of the pointset. Naturally, such approaches can be easily combined with any
known data structure to be used in the projection space. Randomized embeddings have been
recently used in the ANN context [8], for doubling subsets of `p, 2 < p <∞.

It is known that dimension reduction in `1 cannot be achieved in the same generality as
in `2, even assuming that the pointset is of low doubling dimension [18]: there are arbitrarily
large n-point subsets P ⊆ `1 which are doubling with constant 6, such that every embedding

I. Z. Emiris, V. Margonis, and I. Psarros 47:3

with distortion D of P into `k1 requires dimension nΩ(1/D2). Aiming for more restrictive
guarantees, e.g. preserving distances within some pre-defined range, is a relevant workaround.
Then, dimension reduction techniques for doubling subsets of `p, p ∈ [1, 2], exist [7], but they
rely on partition algorithms which require the whole pointset to be known in advance. Hence,
applicability of such techniques is quite limited and, specifically, it is not clear whether they
can be used in an online setting where query points are not known beforehand.

Contribution. In this paper, we establish two non-linear near neighbor-preserving embed-
dings for doubling subsets of `d1. We use a definition which is essentially a modified version
of the nearest neighbor preserving embedding of [16]: the guarantees which are required
are weaker since we consider the decision version of the problem, therefore the embedding
depends on some range parameter R > 0.

I Definition 2 (Near-neighbor preserving embedding). Let (Y, dY), (Z, dZ) be metric spaces
and X ⊆ Y . A distribution over mappings f : Y → Z is a near-neighbor preserving
embedding with range R > 0, distortion D ≥ 1 and probability of correctness P ∈ [0, 1] if
for every α ≥ D and any q ∈ Y , if x ∈ X is such that dY (x, q) ≤ R, then with probability at
least P,

dZ(f(x), f(q)) ≤ D ·R,
∀p ∈ X : dY (p, q) > D · α ·R =⇒ dZ(f(p), f(q)) > α ·R.

Considering a pointset P ⊂ `d1 of cardinality n, our results concern `k1 as the target space,
where k depends on the doubling dimension of P . We assume that R = 1, since we can
rescale the dataset. More specifically:

1. In Theorem 10, we prove that for every ε ∈ (0, 1/2) and c ≥ 1, there is a randomized
mapping h : `d1 → `k1 that can be computed in time Õ(dn1+1/Ω(c)) and is near neighbor-
preserving for P with distortion 1+6ε and probability of correctness Ω(ε), where

k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε),

for a function ζ(ε) > 0 depending only on ε. Although the mapping h depends on
the pointset, the parameter c is user-defined and therefore provides a trade-off between
preprocessing time and target dimension.

2. In Theorem 13, we show that for every ε ∈ (0, 1/2), there is a randomized mapping
h′ : `d1 → `k1 that can be computed in time O(dkn) and is near neighbor-preserving for P
with distortion 1+6ε and probability of correctness Ω(ε), where

k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε),

for a function ζ(ε) > 0 depending only on ε. In this case, the function h′ is oblivious to
P and well-defined over the whole space, but the target dimension depends on d.

On the low-preprocessing-time extreme, one can embed the dataset in near-linear time,
but the target dimension is polynomial in log logn. This is to be juxtaposed to the analogous
result by Indyk [14], which provides with target dimension polynomial in logn, without any
assumption on the doubling dimension of the dataset. On the other hand, one can obtain a
preprocessing time of dn1+δ for any constant δ > 0, and target dimension which depends
solely on the doubling dimension.

APPROX/RANDOM 2019

47:4 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

Techniques. Both embeddings consist of two basic components. First, we represent the
pointset P with an ε-covering set, and then we apply a random linear projection à la Indyk
[14] to that set, using Cauchy variables.

The role of the covering set is to exploit the doubling dimension of P . In the analogous
result for `2 [16], no representative sets were used; the mapping was just a random linear
projection of P . In the case of `1 however, a similar analysis of a linear projection with
Cauchy variables without these representative sets seems to be impossible, since the Cauchy
distribution is heavy tailed.

In Theorem 10, we consider c-approximate r-nets as a covering set. Inspired by the
algorithm of [10] for `2, we design an algorithm that computes a c-approximate r-net in `1
in subquadratic –but superlinear– time. On the other hand, Theorem 13 relies on randomly
shifted grids, which can be computed in linear time, but are inferior to nets in terms of
capturing the doubling dimension of the pointset.

To bound the distortion incurred by the randomized projection, we exploit the 1-stability
property of the Cauchy distribution. To this end, we prove a concentration bound for sums of
independent Cauchy variables that should be of interest beyond the scope of this paper. To
overcome the technical difficulties associated with the heavy tails of the Cauchy distribution,
we study sums of square roots of Cauchy variables, where in [14], Indyk considers sums of
truncated Cauchy variables instead. Although our concentration bound is rather weak, it is
sufficient for our purposes and its analysis is much simpler compared to Indyk’s.

Algorithmic implications. Our results show that efficient dimension reduction for doubling
subsets of `1 is possible, in the context of ANN. In particular, these results imply efficient
sketches, meaning that one can solve ANN with minimal storage per point. Dimension
reduction also serves as a problem reduction from a high-dimensional hard instance to a
low-dimensional easy instance. Since the algorithms presented in this paper are quite simple,
they should also be of practical interest: they easily extend the scope of any implementation
which has been optimized to solve the problem in low dimension, so that it may handle
high-dimensional data.

Our embedding can be combined with the bucketing method of [11] for the (1+ε)-ANN
problem in `d1. For instance, setting c = logn in Theorem 10, yields preprocessing time
dn1+o(1), space n1+o(1) and query time O(d)·(log λP · log logn)O(1/ε) assuming that the
doubling dimension is a fixed constant. This improves upon existing results: the query
time of [17] depends on the aspect ratio of the dataset, while the data structures of [12, 9]
support queries with time complexity which depends exponentially on the doubling dimension.
However, it is worth noting that one could potentially improve the results of [17, 12, 9] in
the special case of `1, by employing ANN data structures with fast query time, in order to
accelerate the traversal of the net-tree. Hence, while our result gives a simple framework
for exploiting the intrinsic dimension of doubling subsets of `1, it is unlikely that it shall
improve upon simple variants of previous results in terms of complexity bounds.

Organization. The next section introduces basic concepts and some relevant existing results.
Section 3 establishes a concentration bound on sums of independent Cauchy variables.
Section 4, achieves dimensionality reduction by means of representing the pointset by a
carefully chosen net, while Section 5 employs randomly shifted grids for the same task. We
conclude with discussion of results and potential improvements.

I. Z. Emiris, V. Margonis, and I. Psarros 47:5

2 Preliminaries

In this section, we define basic notions about doubling metrics and present useful previous
results.

I Definition 3. Consider any metric space (X, dX) and let B(p, r) = {x ∈ X | dX(x, p) ≤ r}.
The doubling constant of X, denoted λX , is the smallest integer λX such that for any p ∈ X
and r > 0, the ball B(p, r) can be covered by λX balls of radius r/2 centered at points in X.

The doubling dimension of (X,dX) is defined as log λX . Nets play an important role in
the study of embeddings, as well as in designing efficient data structures for doubling metrics.

I Definition 4. For c ≥ 1, r > 0 and metric space (V, dV), a c-approximate r-net of V is a
subset N ⊆ V such that no two points of N are within distance r of each other, and every
point of V lies within distance at most c·r from some point of N .

I Theorem 5. Let P ⊂ `d1 such that |P | = n. Then, for any c > 0, r > 0, one can compute
a c-approximate r-net of P in time Õ(dn1+1/c′), where c′ = Ω(c). The result is correct with
high probability. The algorithm also returns the assignment of each point of P to the point of
the net which covers it.

Proof. We employ some basic ideas from [11]. An analogous result for `2 is stated in [10].
First, we assume r = 1, since we are able to re-scale the point set. Now, we consider a
randomly shifted grid with side-length 2. The probability that two points p, q ∈ P fall into
the same grid cell, is at least 1− ‖p− q‖1/2. For each non-empty grid cell we snap points to
a grid: each coordinate is rounded to the nearest multiple of δ = 1/10dc. Then, coordinates
are multiplied by 1/δ and each point x = (x1, . . . , xd) ∈ [2δ]d is mapped to {0, 1}2d/δ by
a function G as follows: G(x) = (g(x1), . . . , g(xd)), where g(z) is a binary string of z ones
followed by 2/δ − z zeros. For any two points p, q in the same grid cell, let f(p),f(q) be the
two binary strings obtained by the above mapping. Notice that,

‖f(p)− f(q)‖1 ∈ (2/δ) · ‖p− q‖1 ± 1.

Hence,

‖p− q‖1 ≤ 1 =⇒ ‖f(p)− f(q)‖1 ≤ (2/δ) + 1,

‖p− q‖1 ≥ c =⇒ ‖f(p)− f(q)‖1 ≥ (2/δ) · c− 1.

Now, we employ the LSH family of [11], for the Hamming space. After standard
concatenation, we can assume that the family is (ρ, c′ρ, n−1/c′

, n−1)-sensitive, where ρ =
(2/δ) + 1 and c′ = Ω(c). Let α = n−1/c′ and β = n−1.

Notice that for the above two-level hashing table we obtain the following guarantees. Any
two points p, q ∈ P , such that ‖p− q‖1 ≤ 1, fall into the same bucket with probability ≥ α/2.
Any two points p, q ∈ P , such that ‖p− q‖1 ≥ c, fall into the same bucket with probability
≤ β.

Finally, we independently build k = Θ(n1/c′ logn) hashtables as above, where the random
hash function is defined as a concatenation of the function which maps points to their grid
cell id and one LSH function. We pick an arbitrary ordering p1, . . . , pn ∈ P . We follow a
greedy strategy in order to compute the approximate net. We start with point p1, and we
add it to the net. We mark all (unmarked) points which fall at the same bucket with p1, in
one of the k hashtables, and are at distance ≤ cr. Then, we proceed with point p2. If p2 is
unmarked, then we repeat the above. Otherwise, we proceed with p3. The above iteration
stops when all points have been marked. Throughout the procedure, we are able to store one
pointer for each point, indicating the center which covered it.

APPROX/RANDOM 2019

47:6 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

Correctness. The probability that a good pair p, q does not fall into the same bucket for
any of the k hashtables is ≤ (1− α/2)k ≤ n−10. Hence, with high probability, the packing
property holds, and the covering property holds because the above algorithm stops when all
points are marked.

Running time. The time to build the k hashtables is k · n = Õ(n1+1/c′). Then, at most n
queries are performed: for each query, we investigate k buckets and the expected number of
false positives is ≤ k · n2 · β = Õ(n1+1/c′). Hence, if we stop after having seen a sufficient
amount of false positives, we obtain time complexity Õ(n1+1/c′) and the covering property
holds with constant probability. We can repeat the above procedure O(logn) times to obtain
high probability of success. J

The main result in the context of randomized embeddings for dimension reduction in `d1
is the following theorem, which exploits the 1-stability property of Cauchy random variables
and provides with an asymmetric guarantee: The probability of non-contraction is high,
but the probability of non-expansion is constant. Nevertheless, this asymmetric property is
sufficient for proximity search.

I Theorem 6 (Thm 5, [14]). For any ε ≤ 1/2, δ > 0, ε > γ > 0 there is a probability space
over linear mappings f : `d1 → `k1 , where k = (ln (1/δ))1/(ε−γ)/ζ(γ), for a function ζ(γ) > 0
depending only on γ, such that for any pair of points p, q ∈ `d1:

Pr
[
‖f(p)− f(q)‖1 ≤ (1− ε) ‖p− q‖1

]
≤ δ,

Pr
[
‖f(p)− f(q)‖1 ≥ (1 + ε) ‖p− q‖1

]
≤ 1 + γ

1 + ε
.

Note that the embedding is defined as f(u) = Au/T , where A is a k×d matrix with each
element being an i.i.d. Cauchy random variable. In addition, T is a scaling factor defined as
the expectation of a sum of truncated Cauchy variables, such that T = Θ(k log (k/ε)) (see
Lemma 5 in [14]).

One key observation here is that given a pointset P in a space of bounded aspect ratio
Φ, one can directly employ Theorem 6. The number of points can be upper bounded by a
function of λP and Φ, and hence the new dimension, k, depends only on these parameters.
This paper proves better bounds than the ones of Theorem 6 for doubling subsets of `d1,
without any assumption on the aspect ratio.

3 Concentration bounds for Cauchy variables

In this section, we prove some basic properties of the Cauchy distribution, which serves as
our main embedding tool.

Let CD denote the Cauchy distribution with density c(x) = (1/π)/(1 + x2). One key
property of the Cauchy distribution is the so-called 1-stability property: Let v = (v1, . . . , vk) ∈
Rk and X1, . . . , Xk be i.i.d. random variables following CD, then

∑k
j=1Xivi is distributed

as X·‖v‖1, where X ∼ CD.
The Cauchy distribution has undefined mean. However, for 0 < q < 1, the mean of the

q-th power of a Cauchy random variable can be defined. More specifically, for some X ∼ CD
we have

E
[
|X|1/2

]
= 2
π

∫ ∞
0

√
x

1 + x2 dx = 2
π

π√
2

=
√

2.

The following lemma provides a bound for the moment-generating function of |X|1/2.

I. Z. Emiris, V. Margonis, and I. Psarros 47:7

I Lemma 7. Let X ∼ CD. Then for any β > 1:

E
[
exp (−β|X|1/2)

]
≤ 2
β
.

Proof. For any constant β,∫ 1

0
e−βx

1/2
dx = 2

β2

(
1− β + 1

eβ

)
.

Then, for any β > 1,

E
[
exp (−β|X|1/2)

]
=
∫ ∞
−∞

e−β|x|
1/2
· c(x) dx = 2

π

∫ ∞
0

e−βx
1/2
· 1

1 + x2 dx

= 2
π

∫ 1

0
e−βx

1/2
· 1

1 + x2 dx+ 2
π

∫ ∞
1

e−βx
1/2
· 1

1 + x2 dx

≤ 2
π

∫ 1

0
e−βx

1/2
dx+ 2

π

∫ ∞
1

e−β · 1
1 + x2 dx

= 2
π
· 2
β2

(
1− β + 1

eβ

)
+ 1

2eβ

≤ 4
πβ2 + 1

2eβ

≤ 2
β
. J

Let S :=
∑k
j=1 |Xj | where each Xj is an i.i.d. Cauchy variable. To prove concentration

bounds for S, we study the sum S̃ :=
∑k
j=1 |Xj |1/2. By Hölder’s Inequality, for any x ∈ Rd

and p > q > 0,

‖x‖p ≤ ‖x‖q ≤ d
1/q−1/p ‖x‖p .

Consequently, for x = (X1, . . . , Xk) ∈ Rk, p = 1 and q = 1/2 we have that S ≤ S̃2 ≤ k · S,
hence for any t > 0,

Pr[S ≤ t] ≤ Pr[S̃ ≤
√
tk]. (1)

We use the bound on the moment-generating function, to prove a Chernoff-type concen-
tration bound for S̃, which by Eq. (1) translates into a concentration bound for S.

I Lemma 8. For every D > 1,

Pr
[
S̃ ≤ E[S̃]

D

]
≤
(

10
D

)k
.

Proof. Since Xj ’s are independent, E[S̃] =
√

2k. Then, by Lemma 7 and Markov’s inequality,
for any β > 1, it follows that

Pr
[
S̃ ≤ E[S̃]

D

]
= Pr

[
exp(−βS̃) ≥ exp

(
−β · E[S̃]

D

)]
≤ E[exp(−βS̃)]

exp(−β E[S̃]/D)

= E[exp(−β|Xj |1/2)]k

exp(−β
√

2k/D)

≤
(

2
β

)k
· e
√

2βk/D.

Setting β = D completes the proof. J

APPROX/RANDOM 2019

47:8 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

4 Net-based dimension reduction

In this section we describe the dimension reduction mapping for `1 via r-nets. Let P ⊂ `d1 be
a set of n points with doubling constant λP . For some point x ∈ Rd and r > 0, we denote by
B1(x, r) the `1-ball of radius r around x. The embedding is non-linear and is carried out in
two steps.

First, we compute a c-approximate (ε/c)-net N of P with the algorithm of Theorem 5.
Moreover, the algorithm assigns each point of P to the point of N which covered it. Let
g : P → N be this assignment. In the second step, for every s ∈ N and any query point
q ∈ `d1, we apply the linear map of Theorem 6. That is, f(s) = As/T , where A is a
k×d matrix with each element being an i.i.d. Cauchy random variable. Recall that value
T = Θ(k log (k/ε)). By the 1-stability property of the Cauchy distribution, f(s) is distributed
as ‖s‖1 · (Y1, . . . , Yk), where each Yj is i.i.d. and Yj ∼ CD. Hence, ‖f(s)‖1 = ‖s‖1 · S where
S :=

∑
j |Yj |.

We define the embedding to be h = f ◦ g. We apply h to every point in P , and f to any
query point q. It is clear from the properties of the net that g incurs an additive error of ±ε
on the distance between q and any point in P , so it is sufficient to consider the distortion of f .

Our analysis consists of studying separately the following disjoint subsets of N : Points
that lie at distance at most D0 from the query and points that lie at distance at least D0,
for some D0 > 1 chosen appropriately. For the former set, we directly apply Theorem 6, as
it has bounded diameter.

The next lemma guarantees the low distortion for points of the latter set, namely those
that are sufficiently far from the query. We consider the sum of the square roots of each |Yj |,
i.e., S̃ =

∑
j |Yj |1/2, in order to employ the tools of Section 3.

I Lemma 9. Fix a query point q ∈ `d1. For any ε ≤ 1/2, c ≥ 1, δ ∈ (0, 1), there exists
D0 = O(log(k/ε)) such that for k = Θ

(
log2 λP · log(c/ε) + log(1/δ)

)
, with probability at

least 1− δ,

∀s ∈ N : ‖s− q‖1 ≥ D0 =⇒ ‖f(s)− f(q))‖1 ≥ 4.

Proof. Assume wlog that the query point is the origin (0, . . . , 0). For some D0 > 1, we
define the following subsets of N :

Ni := {s ∈ N | Di ≤ ‖s‖1 < Di+1}, Di = 22iD0, i = 0, 1, 2, . . .

By the definition of doubling constant and the fact that two points of N lie at distance at
least ε,

|Ni| ≤ λdlog(4cDi+1/ε)e
P ≤ λ4 log(cDi+1/ε)

P .

Therefore, by the union bound, and Eq. (1):

Pr
[
∃i∃s ∈ Ni : ‖f(s)‖1 ≤

4 ‖s‖1
Di

]
= Pr

[
∃i∃s ∈ Ni : S ≤ 4T

Di

]
≤
∞∑
i=0
|Ni|Pr

[
S̃ ≤

√
4kT√
Di

]

=
∞∑
i=0
|Ni|Pr

[
S̃ ≤ E[S̃] ·

√
2T

k22iD0

]
.

I. Z. Emiris, V. Margonis, and I. Psarros 47:9

By Lemma 8, for D0=d800T/ke=Θ(log(k/ε)) and k > 4· log λP · log(cD0/ε) + 2 log(2λP /δ):

∞∑
i=0
|Ni|Pr

[
S̃ ≤ E[S̃]

10 · 2i+1

]
≤
∞∑
i=0

λ
4 log (cDi+1/ε)
P

(
1

2i+1

)k
=
∞∑
i=0

2log(λP)(4 log (cD0/ε)+2i+2)

2k(i+1)

≤
∞∑
i=0

2log(λP)·4 log (cD0/ε) · 22 log(λP)(i+1)

2(4·logλP ·log(cD0/ε))(i+1) · 22 log(2λP /δ))(i+1)

≤
∞∑
i=0

2−2 log(2/δ))(i+1)

=
∞∑
i=0

(
δ2

4

)i
− 1

= δ2

4− δ2

≤ δ.

Finally, for some large enough constant C, we demand that

k > C (log λP · log(c log k/ε) + log(1/δ)) > 4 · log λP · log(cD0/ε) + 2 log(2λP /δ)

which is satisfied for k = Θ
(
log2 λP · log(c/ε) + log(1/δ)

)
. J

I Theorem 10. Let P ⊂ `d1 such that |P | = n. For any ε ∈ (0, 1/2) and c ≥ 1, there is a non-
linear randomized embedding h = f ◦ g : `d1 → `k1, where k = (log λP · log(c/ε))Θ(1/ε)

/ζ(ε),
for a function ζ(ε) > 0 depending only on ε, such that, for any q ∈ `d1 , if there exists p∗ ∈ P
such that ‖p∗ − q‖1 ≤ 1, then, with probability Ω(ε):

‖h(p∗)− f(q)‖1 ≤ 1 + 3ε,
∀p ∈ P : ‖p− q‖1 > 1 + 9ε =⇒ ‖h(p)− f(q)‖1 > 1 + 3ε.

Set P can be embedded in time Õ(dn1+1/Ω(c)), and any query q ∈ `d1 can be embedded in
time O(dk).

Proof. Let f, g be the mappings defined in the beginning of the section and D0 = Θ(log(k/ε)).
Assume wlog for simplicity that q = 0d. Then, by Lemma 9 for k = Θ

(
log2 λP · log(c/ε)

)
,

with probability at least 1− ε/5, we have:

∀p ∈ P : ‖p− q‖1 ≥ D0 + ε =⇒ ‖h(p)− f(q)‖1 ≥ 4.

By Theorem 6, for γ = ε/10 and δ = ε/(5λ8 log (cD0/ε)
P), with probability at least 1 − ε/5,

we get:

∀p ∈ P : ‖p− q‖1 ∈ (1 + 9ε,D0 + ε) =⇒ ‖h(p)− f(q)‖1 > (1 + 8ε)(1− ε) ≥ 1 + 3ε.

Moreover,

Pr
[
‖h(p∗)− f(q)‖1 ≤ 1 + 3ε

]
≥ 1− 1 + ε/10

1 + ε
≥ 1− (1− ε/2).

APPROX/RANDOM 2019

47:10 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

Then, the target dimension needs to satisfy the following inequality:

k ≥
(

ln (5λ8 log (cD0/ε)
P /ε)

)2/ε
ζ(ε) =

(
Θ(log log k · log λP + log λP · ln(c/ε))

)2/ε
ζ(ε) .

Hence, for k = (log λP · log(c/ε))Θ(1/ε)
/ζ(ε), we achieve a total probability of success in

Ω(ε), which completes the proof. J

5 Dimension reduction based on randomly shifted grids

In this section, we explore some properties of randomly shifted grids, and we present a
simplified embedding which consists of a first step of snapping points to a grid, and a second
step of randomly projecting grid points.

Let w > 0 and t be chosen uniformly at random from the interval [0, w]. The function

hw,t(x) =
⌊
x− t
w

⌋
induces a random partition of the real line into segments of length w. Hence, the function

gw(x) = (hw,t1(x1), ..., hw,td(xd)),

for t1, . . . , td independent uniform random variables in the interval [0, w], induces a randomly
shifted grid in Rd. For a set X ⊆ Rd, we denote by gw(X), the image of X on the randomly
shifted grid points defined by gw. For some x ∈ Rd and r > 0, the number of grid cells of
gw(`d1) that B1(x, r) intersects per axis is independent, and in expectation is 1+2r/w. Then,
the expected total number of grid cells that B1(x, r) intersects is at most (1+2r/w)d.

Now let P ⊂ `d1 be a set of n points with doubling constant λP and q ∈ `d1 a query point.
For w = ε/d, the `1-diameter of each cell is ε and therefore gw(P) is an ε-covering set of P .

I Lemma 11. Let R > 1 and P ′ := B1(q,R) ∩ P . Then, for w = ε/d

E
[
|gw(P ′)|

]
≤ 8λ2 log(dR/ε)

P .

Proof. By the doubling constant definition, there exists a set of balls of radius ε/d2 centered
at points in P ′, of cardinality at most λ2 log(dR/ε)

P which covers P ′. For each ball of radius
ε/d2, the expected number of intersecting grid cells is (1+2/d)d ≤ e2. The lemma follows by
linearity of expectation. J

The next lemma shows that, with constant probability, the growth on the number of
representatives, as we move away from q, is bounded.

I Lemma 12. Let {Di}i∈N be a sequence of radii such that, for any i, Di+1 = 4Di. Let Ai
be the points of gw(P) within distance Di+1 = 22(i+1)D0 from q. Then, with probability at
least 1/3,

∀i ∈ {−1, 0, . . .} : |Ai| ≤ 4i+3λ
2 log(dDi+1/ε)
P .

Proof. By Lemma 11, E[|Ai|] ≤ 8λ2 log(dDi+1/ε)
P for every i ∈ {−1, 0, . . .}. Then, a union

bound followed by Markov’s inequality yields

Pr
[
∃i ∈ {0, 1, . . .} : |Ai| ≥ 4i+1 E[|Ai|]

]
≤ 1/3.

In addition,

Pr
[
|A−1| ≥ 4E[|Ai|]

]
≤ 1/4. J

I. Z. Emiris, V. Margonis, and I. Psarros 47:11

I Theorem 13. Let P ⊂ `d1 such that |P | = n. For any ε ∈ (0, 1/2), there is a non-linear
randomized embedding h′ : `d1 → `k1 , where k = (log λP · log(d/ε))Θ(1/ε)

/ζ(ε), for a function
ζ(ε) > 0 depending only on ε, such that for any q ∈ `d1 , if there exists p∗ ∈ P such that
‖p∗ − q‖1 ≤ 1, then with probability Ω(ε),

‖h′(p∗)− f(q)‖1 ≤ 1 + 3ε,
∀p ∈ P : ‖p− q‖1 > 1 + 9ε =⇒ ‖h′(p)− f(q)‖1 > 1 + 3ε.

Any point can be embedded in time O(dk).

Proof. We follow the same reasoning as in the proof of Theorem 10. The embedding is
h′ = f ◦ gε/d, where f is the randomized linear map defined in Section 4. As before, we apply
h′ to every point in P , and only f to queries. The randomly shifted grid incurs an additive
error of ε in the distances between q and P .

Assume wlog that q = 0d and let Ai be the points of gε/d(P) within distance Di+1 =
22(i+1)D0 from q. Hence, by Lemma 12,

Pr
[
∃i∃s ∈ Ai : ‖f(s)‖1 ≤

4 ‖s‖1
Di

]
≤
∞∑
i=0
|Ai|Pr

[
S ≤ 4T

Di

]

≤
∞∑
i=0

4i+3λ
2 log(dDi+1/ε)
P Pr

[
S̃ ≤

√
4kT√
Di

]
.

As in Lemma 9, for D0 = d800T/ke = Θ(log (k/ε)), k ≥ 20 log λP · log
(
dD0
εδ

)
and δ = ε/5,

∞∑
i=0

4i+3λ
2 log(dDi+1/ε)
P Pr

[
S̃ ≤

√
4kT√
Di

]
≤
∞∑
i=0

22i+6+2 logλP [log(dD0/ε)+2(i+1)]

2k(i+1) ≤ ε/5.

Hence, for k = Ω
(
(log2 λP · log(d/ε)

)
, with probability at least 1− ε/5, we have:

∀p ∈ P : ‖p− q‖1 ≥ D0 + ε =⇒ ‖h′(p)− f(q)‖1 ≥ 4.

Now, we are able to use Theorem 6 for points which are at distance at most D0 + ε from
q, and the near neighbor. By Lemma 12, with constant probability, the number of grid points
at distance ≤ D0 + ε, is at most 32 · λ4 log(dD0/ε)

P . Hence, by Theorem 6, for γ = ε/10 and
δ = ε/(160λ4 log (dD0/ε)

P), with probability at least 1− ε/5, it holds:

∀p ∈ P : ‖p− q‖1 ∈ (1 + 9ε,D0 + ε) =⇒ ‖h′(p)− f(q)‖1 > 1 + 3ε.

Moreover, with probability at least ε/2, we obtain:

‖h′(p∗)− f(q)‖1 ≤ 1 + 3ε.

As in Theorem 10, the target dimension needs to satisfy the following:

k ≥
(

ln (160λ4 log (dD0/ε)
P /ε)

)2/ε
ζ(ε) .

Hence, for k = (log λP · log(d/ε))Θ(1/ε)
/ζ(ε) we achieve total probability of success Ω(ε). J

APPROX/RANDOM 2019

47:12 Near-Neighbor Preserving Dimension Reduction for Doubling Subsets of `1

6 Conclusion

We have filled in a gap in the spectrum of randomized embeddings with bounded distortion
only for distances between the query and a pointset: such embeddings existed for `2 and `1
and for doubling subsets of `2. Here we settle the case of doubling subsets of `1 with a near
neighbor-preserving embedding. In the meantime, we obtain concentration bounds on sums
of independent Cauchy variables. Our algorithms are quite simple, therefore they should
also be of practical interest.

We rely on approximate r-nets or randomly shifted grids. For the former, Theorem 10
provides with a trade-off between the preprocessing time required and the target dimension.
On the other hand, Theorem 13 has the advantage of fast preprocessing: any point is
embedded in O(dk) time, and the embedding is oblivious to the pointset. In regards to
the near-linear preprocessing time, the two results are comparable, since the dimension in
Theorem 13 can be substituted by the target dimension of Theorem 6.

Notice that any potential improvements to Theorem 6 should lead to improvements to
Theorems 10 and 13. The target dimension in these theorems follows from a direct application
of Theorem 6 to the representative data points which lie inside a bounding ball centered
at the query.

References
1 D. Achlioptas. Database-friendly Random Projections: Johnson-Lindenstrauss with Binary

Coins. J. Comput. Syst. Sci., 66(4):671–687, 2003.
2 N. Ailon and B. Chazelle. The Fast Johnson-Lindenstrauss Transform and Approximate

Nearest Neighbors. SIAM J. Comput., 39(1):302–322, May 2009.
3 E. Anagnostopoulos, I. Z. Emiris, and I. Psarros. Randomized Embeddings with Slack and

High-Dimensional Approximate Nearest Neighbor. ACM Trans. Algorithms, 14(2):18:1–18:21,
2018. doi:10.1145/3178540.

4 A. Andoni and P. Indyk. Near-optimal Hashing Algorithms for Approximate Nearest Neighbor
in High Dimensions. Commun. ACM, 51(1):117–122, 2008.

5 A. Andoni, T. Laarhoven, I. P. Razenshteyn, and E. Waingarten. Optimal Hashing-based
Time-Space Trade-offs for Approximate Near Neighbors. In Proc. ACM-SIAM Symposium on
Discrete Algorithms, SODA, Barcelona, Spain, pages 47–66, 2017.

6 A. Andoni, H. L. Nguyen, A. Nikolov, I. P. Razenshteyn, and E. Waingarten. Approximate near
neighbors for general symmetric norms. In Proc. ACM Symposium on Theory of Computing,
STOC, Montreal, Canada, pages 902–913, 2017.

7 Y. Bartal and L. A. Gottlieb. Dimension Reduction Techniques for `p, (1 < p < 2), with
Applications. In 32nd International Symposium on Computational Geometry, SoCG 2016, June
14-18, 2016, Boston, MA, USA, pages 16:1–16:15, 2016. doi:10.4230/LIPIcs.SoCG.2016.16.

8 Y. Bartal and L. A. Gottlieb. Approximate Nearest Neighbor Search for `p-Spaces (2 < p < ∞)
via Embeddings. In Proc. LATIN: Theoretical Informatics - 13th Latin American Symp.,
Buenos Aires, Argentina, pages 120–133, 2018. doi:10.1007/978-3-319-77404-6_10.

9 R. Cole and L. A. Gottlieb. Searching Dynamic Point Sets in Spaces with Bounded Doubling
Dimension. In Proc. ACM Symp. Theory of Computing, pages 574–583, New York, USA, 2006.
ACM.

10 D. Eppstein, S. Har-Peled, and A. Sidiropoulos. Approximate Greedy Clustering and Distance
Selection for Graph Metrics. CoRR, abs/1507.01555, 2015. arXiv:1507.01555.

11 S. Har-Peled, P. Indyk, and R. Motwani. Approximate Nearest Neighbor: Towards Removing
the Curse of Dimensionality. Theory of Computing, 8(1):321–350, 2012. doi:10.4086/toc.
2012.v008a014.

https://doi.org/10.1145/3178540
https://doi.org/10.4230/LIPIcs.SoCG.2016.16
https://doi.org/10.1007/978-3-319-77404-6_10
http://arxiv.org/abs/1507.01555
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014

I. Z. Emiris, V. Margonis, and I. Psarros 47:13

12 S. Har-Peled and M. Mendel. Fast Construction of Nets in Low Dimensional Metrics, and
Their Applications. In Proc. Symp. Computational Geometry, pages 150–158, 2005.

13 P. Indyk. On Approximate Nearest Neighbors under l_infinity Norm. J. Comput. Syst. Sci.,
63(4):627–638, 2001.

14 P. Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006. doi:10.1145/1147954.1147955.

15 P. Indyk and R. Motwani. Approximate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. In Proc. ACM Symp. Theory of Computing, pages 604–613, 1998.

16 P. Indyk and A. Naor. Nearest-neighbor-preserving Embeddings. ACM Trans. Algorithms,
3(3), 2007.

17 R. Krauthgamer and J. R. Lee. Navigating Nets: Simple Algorithms for Proximity Search. In
Proc. 15th Annual ACM-SIAM Symp. Discrete Algorithms, SODA’04, pages 798–807, 2004.

18 J.R. Lee, M. Mendel, and A. Naor. Metric structures in L1: dimension, snowflakes, and
average distortion. Eur. J. Comb., 26(8):1180–1190, 2005. doi:10.1016/j.ejc.2004.07.002.

APPROX/RANDOM 2019

https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1016/j.ejc.2004.07.002

Improved Strong Spatial Mixing for Colorings on
Trees
Charilaos Efthymiou
Department of Computer Science, University of Warwick, UK
charilaos.efthymiou@warwick.ac.uk

Andreas Galanis
Department of Computer Science, University of Oxford, UK
andreas.galanis@cs.ox.ac.uk

Thomas P. Hayes
Department of Computer Science, University of New Mexico, Albuquerque, NM, USA
hayes@cs.unm.edu

Daniel Štefankovič
Department of Computer Science, University of Rochester, NY, USA
stefanko@cs.rochester.edu

Eric Vigoda
School of Computer Science, Georgia Institute of Technology, Atlanta, GA, USA
ericvigoda@gmail.com

Abstract
Strong spatial mixing (SSM) is a form of correlation decay that has played an essential role in the
design of approximate counting algorithms for spin systems. A notable example is the algorithm
of Weitz (2006) for the hard-core model on weighted independent sets. We study SSM for the
q-colorings problem on the infinite (d+1)-regular tree. Weak spatial mixing (WSM) captures whether
the influence of the leaves on the root vanishes as the height of the tree grows. Jonasson (2002)
established WSM when q > d+ 1. In contrast, in SSM, we first fix a coloring on a subset of internal
vertices, and we again ask if the influence of the leaves on the root is vanishing. It was known that
SSM holds on the (d+ 1)-regular tree when q > αd where α ≈ 1.763... is a constant that has arisen
in a variety of results concerning random colorings. Here we improve on this bound by showing SSM
for q > 1.59d. Our proof establishes an L2 contraction for the BP operator. For the contraction we
bound the norm of the BP Jacobian by exploiting combinatorial properties of the coloring of the tree.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Theory of
computation → Random walks and Markov chains

Keywords and phrases colorings, regular tree, spatial mixing, phase transitions

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.48

Category RANDOM

Funding Charilaos Efthymiou: Supported by the Centre of Discrete Mathematics and its Applications
(DIMAP), University of Warwick, EPSRC award EP/D063191/1.
Andreas Galanis: The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement no. 334828. The paper reflects only the authors’ views and not the views of
the ERC or the European Commission. The European Union is not liable for any use that may be
made of the information contained therein.
Thomas P. Hayes: Partially supported by NSF CAREER award CCF-1150281.
Daniel Štefankovič : Research supported in part by NSF grant CCF-1563757.
Eric Vigoda: Research supported in part by NSF grants CCF-1617306 and CCF-1563838.

© Charilaos Efthymiou, Andreas Galanis, Thomas P. Hayes, Daniel Štefankovič, and Eric Vigoda;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:charilaos.efthymiou@warwick.ac.uk
mailto:andreas.galanis@cs.ox.ac.uk
mailto:hayes@cs.unm.edu
mailto:stefanko@cs.rochester.edu
mailto:ericvigoda@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.48
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Improved Strong Spatial Mixing for Colorings on Trees

1 Introduction

Consider random q-colorings of the complete tree Th of height h with branching factor d.
Does the influence of the leaves on the root decay to zero in the limit as the height grows? If
so, this corresponds to weak spatial mixing, which we will define more precisely momentarily.

Now suppose we fix the coloring τ for a subset of internal vertices. Is it still the case
that the influence of the leaves on the root decay to zero as the height grows? One might
intuitively expect that these internal “agreements” defined by τ only help in the sense that
the influence of the leaves decrease, however this problem is much more challenging; it
corresponds to strong spatial mixing, which is the focus of this paper.

For statistical physics models, the key algorithmic problems are the counting problem of
estimating the partition function and the problem of sampling from the Gibbs distribution,
which corresponds to the equilibrium state of the system. Strong spatial mixing (SSM) is a
key property of the system for the design of efficient counting/sampling algorithms.

SSM has a variety of algorithmic implications. A direct consequence of SSM on amenable
graphs, such as the integer lattice Zd, is fast mixing of the Glauber dynamics, which is the
simple Markov chain that updates the spin at a randomly chosen vertex in each step, see,
e.g. [21, 22, 6, 9, 14, 4, 3]. SSM also plays a critical role in the efficiency of correlation-
decay techniques of Weitz [26] which yields an FPTAS for the partition function of the
hard-core model in the tree uniqueness region; this approach has been extended to 2-spin
antiferromagnetic models [18] and other interesting examples, e.g., [19]; note, the approach
of Barvinok [1] utilizing a zero-free region of the partition function in the complex plane has
recently been extended to the same range of parameters for the hard-core model [23, 25].

The fundamental question in statistical physics is the uniqueness/non-uniqueness phase
transition which corresponds to whether long-range correlations persist or die off, in the limit
as the volume of the system tends to infinity. In the uniqueness region the correlations die off,
which corresponds to weak spatial mixing (WSM). While WSM (or equivalently uniqueness)
is a notoriously challenging problem on the 2-dimensional integer lattice Z2 (e.g., see the
recent breakthrough work of Beffara and Duminil-Copin [2] for the ferromagnetic Potts
model), the corresponding WSM problem on the infinite (d+ 1)-regular tree Td, known as the
Bethe lattice, is typically simpler since it can be analyzed using recursions due to the absence
of cycles (e.g., see Kelly [17] for the hard-core model). However, for the colorings problem,
which is the focus of this paper, even WSM is far from trivial on the regular tree [16]. In
fact, for the closely related antiferromagnetic Potts model the precise range of parameters
for WSM is only known for fixed values of q, d [11].

The focus of this paper is on these correlation decay properties on the infinite (d+ 1)-
regular tree Td for the colorings problem. We give an informal definition of WSM and SSM,
and refer the interested reader to Section 2 for formal definitions.

Let Th denote the complete tree of height h where all internal vertices have degree d+ 1.
For integer q ≥ 3, let µh denote the uniform distribution over proper (vertex) q-colorings
of Th. Consider a pair of sequences of colorings (ηh) and (η′h) for the leaves of Th. Let
ph and p′h denote the marginal probability that the root receives a specific color c under
µh conditional on the leaves having the fixed coloring ηh and η′h, respectively. Roughly, if
limh→∞ |ph − p′h| = 0 for all sequences (ηh), (η′h) and colors c, then we say WSM holds (see
also Section 2). Jonasson [16] proved that WSM holds when q ≥ d+ 2. When q ≤ d+ 1, the
pair of boundary conditions can actually “freeze” the color at the root; moreover, Brightwell
and Winkler [5] showed that there are multiple semi-translation invariant Gibbs measures on
Td when q ≤ d.

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:3

Now consider an arbitrary coloring τ for a subset S ⊂ Td. Let rh and r′h denote the
marginal probability that the root receives color c under µh conditional on ηh ∪ τ and η′h ∪ τ ,
respectively. If these limits are the same then we say SSM holds. The challenge of establishing
SSM is illustrated by the fact that if WSM holds then we know that limh→∞ ph = 1/q but
that is not necessarily the case in the SSM setting.

Ge and Štefankovič [13] proved that SSM holds on Td when q > αd where α ≈ 1.763... is
the root of 1

α exp(1/α) = 1. Gamarnik, Katz, and Misra [12] extended this result to arbitrary
triangle-free graphs of maximum degree d, under the same condition on q. Recent work of
Liu, Sinclair, and Srivistava [20] builds upon [12] together with the approximate counting
approach of [1, 23] to obtain an FPTAS for counting colorings of triangle-free graphs when
q > αd. Prior to these works, Goldberg, Martin, and Paterson [14] established the above
form of SSM on triangle-free amenable1 graphs, also when q > αd. In addition to the above
results, the threshold α ≈ 1.76 . . . has arisen in numerous rapid mixing results, e.g., [7, 15, 8].

Our main result presents the first substantial improvement on the 1.76... threshold of
[13], we establish SSM on the tree when q > 1.59d. We state a somewhat informal version of
our main theorem here, the formal version will be given once we define more precisely SSM,
cf. Theorem 3 below.

I Theorem 1 (Informal version of Theorem 3). There exists an absolute constant β > 0 such
that, for all positive integers q, d satisfying q ≥ 1.59d+β, the q-coloring model exhibits strong
spatial mixing on the regular tree Td.

We remark that the constant 1.59 in Theorem 1 can be replaced with any α′ > 1 satisfying

1
α′

exp
(1
α′

)
exp

(
− 1
α′ − 1 + exp

(1
α′−1

)) < 1,

the smallest such value up to four decimal digits is 1.5897.
We give an overview of our proof approach in Section 3 after formally defining SSM in

Section 2 and stating the formal version of Theorem 1. We then present detailed proofs of
the three main lemmas in Section 3.

2 Definitions

Let q ≥ 3 be an integer and G = (V,E) be a graph. A proper q-coloring of G is an assignment
σ : V → [q] such that for every (u, v) ∈ E it holds that σ(u) 6= σ(v). We use ΩG to denote
the set of all proper q-colorings of G and µG to denote the uniform probability distribution
on ΩG (provided that ΩG is non-empty).

For σ ∈ ΩG and a set Λ ⊂ V , we use σΛ to denote the restriction of σ to Λ. When Λ
consists of a single vertex v, we will often use the shorthand σv to denote the color of v under
σ. We say that an assignment η : Λ→ [q] is extendible if there exists a coloring σ ∈ ΩG such
that σΛ = η.

We can now formally define SSM.

I Definition 2. Let ζ : Z≥0 → [0, 1] be a real-valued function on the positive integers.
The q-coloring model exhibits strong spatial mixing, denoted SSM, on a finite graph

G = (V,E) with decay rate ζ(·) iff for every v ∈ V , for every Λ ⊂ V , for any two extendible

1 Roughly, a graph is amenable if for every subset S of vertices, the neighborhood satisfies |N(S)| ≤
poly(|S|).

APPROX/RANDOM 2019

48:4 Improved Strong Spatial Mixing for Colorings on Trees

assignments η, η′ : Λ→ [q] and any color c ∈ [q] it holds that∣∣µG(σv = c | σΛ = η)− µG(σv = c | σΛ = η′)
∣∣ ≤ ζ(dist(v,∆)

)
, (1)

where ∆ ⊆ Λ denotes the set of vertices where η and η′ disagree.
In the case where G is infinite, we say that the q-coloring model exhibits strong spatial

mixing on G with decay rate ζ(·) if it exhibits strong spatial mixing on every finite subgraph
of G with decay rate ζ(·).

The definition of weak spatial mixing has one modification: in the RHS of (1) we replace
dist(v,∆) by the weaker condition dist(v,Λ). WSM says that the influence of a pair of
boundary conditions decays at rate ζ(·) in the distance to the boundary Λ. In SSM the pair
of boundaries η, η′ might only differ on a subset ∆ ⊂ Λ; do these fixed “agreements” on Λ \∆
influence the marginal at v? If SSM holds then the difference in the marginal at v decays at
rate ζ(·) in the distance to the “disagreements” in η, η′.

With these definitions in place, we are now ready to give the formal version of Theorem 1.

I Theorem 3. There exists an absolute constant β > 0 such that, for all positive integers
q, d satisfying q ≥ 1.59d+β, the q-coloring model exhibits strong spatial mixing on the regular
tree Td with exponentially decaying rate.

That is, there exist constants α,C > 0 and a function ζ satisfying ζ(`) ≤ C exp(−α`) for
all integers ` ≥ 0 such that for all finite subtrees T of Td the q-coloring model exhibits strong
spatial mixing on T with decay rate ζ.

3 Proof Approach

For a set Λ ⊂ V and an extendible assignment η : Λ → [q], we use πG,v,η to denote the
q-dimensional probability vector whose entries give the marginal distribution of colors at v
under the boundary condition η, i.e., for a color c ∈ [q], the c-th entry of πG,v,η is given by
µG(σv = c | σΛ = η).

The key ingredient to prove Theorem 3 is the following.

I Theorem 4. There exist absolute constants β > 0 and U ∈ (0, 1) such that the following
holds for all positive integers q, d satisfying q ≥ 1.59d+ β.

Let T = T̂d,h,ρ be the d-ary tree with height h rooted at ρ, Λ be a subset of the vertices of
T , and η, η′ : Λ→ [q] be two extendible assignments of T with dist(ρ,∆) ≥ 3 where ∆ ⊆ Λ is
the set of vertices where η and η′ disagree. Let v1, . . . , vd be the children of ρ and for i ∈ [d]
let Ti = (Vi, Ei) be the subtree of T rooted at vi which consists of all descendants of vi in T .
Then∥∥π − π′

∥∥2
2 ≤ U max

i∈[d]

∥∥πi − πi′
∥∥2

2,

where π = πT,ρ,η, π′ = πT,ρ,η′ and for i ∈ [d] we denote πi = πTi,vi,η(Λ∩Vi), π′i =
πTi,vi,η′(Λ∩Vi).

Intuitively, Theorem 4 says that disagreements between η and η′ have smaller impact on
the marginals as we move upwards on the tree. More precisely, the marginals of the root
under η and under η′ are closer in L2 distance than the distance between the marginals of
any child (under the induced distributions on the subtrees hanging from them).

Using Theorem 4, the proof of Theorem 3 of strong spatial mixing follows from rather
standard considerations, the proof can be found in Section 7. In the following section, we
focus on the more interesting proof of Theorem 4 and explain the new aspects of our analysis.

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:5

3.1 The three main lemmas
In this section, we lay down the main technical steps in proving Theorem 4. In particular,
we will assume throughout that, for appropriate integers q, d, h, T = T̂d,h,ρ is the d-ary tree
with height h rooted at ρ, Λ is a subset of the vertices of T , and η, η′ : Λ → [q] are two
extendible assignments of T with dist(ρ,∆) ≥ 3 where ∆ ⊆ Λ is the set of vertices where η
and η′ disagree. We als let v1, . . . , vd be the children of ρ and for i ∈ [d] let Ti = (Vi, Ei) be
the subtree of T rooted at vi which consists of all descendants of vi in T .

To prove Theorem 4, we will use tree recursions to express the marginal at the root
in terms of the marginals at the children (as in previous works on WSM/SSM, see, e.g.,
[5, 13, 11]). This recursion is the well-known Belief Propagation (BP) equation [24]; our proof
of Theorem 4 will be based on bounding appropriately the gradient of the BP equations.
The new ingredient in our analysis is that we incorporate the combinatorial structure of
agreements close to the root into a refined L2 analysis of the gradient.

Prior to delving into the analysis, we first describe the BP equation for the colorings
model. Following the notation of Theorem 4, let π = πT,ρ,η, π′ = πT,ρ,η′ be the marginal
distributions at the root of the tree T under the boundary conditions η and η′, respectively.
Similarly, for i ∈ [d], let πi, π′i be the marginals at the root vi of the subtree Ti under
η(Λ ∩ Vi) and η′(Λ ∩ Vi), respectively.

We can now relate the distribution π with the distributions {πi}i∈[d] (and similarly, π′

with the distributions {π′i}i∈[d]) as follows. For q-dimensional probability vectors x1, . . . ,xd
and a color c ∈ [q], let fc be the function

fc(x1, . . . ,xd) =
∏
i∈[d]

(
1− xi,c

)∑
j∈[q]

∏
i∈[d]

(
1− xi,j

) , (2)

where, for i ∈ [d] and j ∈ [q], xi,j denotes the j-th entry of the vector xi. Then, with πc and
π′c denoting the c-th entries of π and π′, we have that

πc = µT (σρ = c | σΛ = η) = fc(π1, . . . ,πd),
π′c = µT (σρ = c | σΛ = η′) = fc(π′1, . . . ,π′d).

(3)

The functions {fc}c∈[q] correspond to the BP equations for the coloring model.
We are now ready to describe in more detail our SSM analysis. Specifically, to get a

bound on the norm ‖π − π′‖2, we will study the gradient of fc as we change the arguments
(π1, . . . ,πd) to (π′1, . . . ,π′d) along the line connecting them. Our gradient analysis will take
account of the following combinatorial notions.

I Definition 5. A vertex v of T is called frozen under η if v ∈ Λ and non-frozen otherwise.
For a non-frozen vertex v of T , a color k is blocked for v (under η) if there is a neighbor
u ∈ Λ of v such that η(u) = k; the color is called available for v otherwise.

I Observation 6. In the setting of Theorem 4, we have that the disagreements between η

and η′ occur at distance at least 3 from the root. It follows that the set of the root’s children
that are frozen as well as the set of blocked colors for each of the non-frozen children are
identical under both η and η′.

We will utilize that the gradient components that correspond to either frozen children or
blocked colors can be disregarded since, by Observation 6, the corresponding arguments
in (3) are fixed to the same value. Namely, we will track, for each color c, the fraction
of non-frozen children which have color c available. This will allow us in the upcoming
Lemma 10 to aggregate accurately the gradient components corresponding to color c. The
following definitions setup some relevant notation.

APPROX/RANDOM 2019

48:6 Improved Strong Spatial Mixing for Colorings on Trees

I Definition 7. Let D be the indices of the children of the root which are non-frozen under
η and η′. For a color c ∈ [q], let γc ∈ [0, 1] be the fraction of indices i ∈ D such that color c
is available for vi under η and η′ (cf. Observation 6). Let γ and √γ be the q-dimensional
vector with entries {γc}c∈[q] and {

√
γc}c∈[q], respectively.

Intuitively, if γc is close to 0, color c is blocked at a lot of the children and hence the distance
‖π − π′‖2 at the root should not depend a lot on the color c (since most components of the
gradient corresponding to color c are zero).

The following couple of definitions will be relevant for capturing more precisely the
gradient of the functions {fc}c∈[q]. To begin with, the gradient will actually turn out to
be related to the value of fc as we move along the line (π1, . . . ,πd) to (π′1, . . . ,π′d). More
precisely, we have the following definition.

I Definition 8. For t ∈ [0, 1], let π̂(t) = {π̂c(t)}c∈[q] be the q-dimensional probability vector
whose c-th entry is given by fc

(
tπ1 + (1− t)π′1, . . . , tπd + (1− t)π′d

)
.

Note that π̂(1) = π and π̂(0) = π′; in this sense, we can think of the vector π̂(t) as having
the marginals at the root as we interpolate between (π1, . . . ,πd) to (π′1, . . . ,π′d).

The next definition will be relevant for bounding the L2 norm of the gradient along the
line connecting to (π1, . . . ,πd) to (π′1, . . . ,π′d). The bound will be in terms of the “marginals”
at the root, as captured by the vector π̂(t) (cf. Definition 8), and the availability of the q
colors at the children, as captured by the vector γ (cf. Definition 7). In particular, we will
be interested in the L2 norm of the following matrix, which is an idealized version to the
Jacobian of the BP equation (see (13) for the precise formula).2

I Definition 9. Let π̂, γ̂ be q-dimensional vectors with non-negative entries. The matrix
Mπ̂,γ̂ corresponding to the vectors π̂, γ̂ is given by

(
diag(π̂)− π̂π̂ᵀ)diag(γ̂

)
.3

Our first main lemma shows how to bound the distance between the marginals at the
root under η and η′, i.e.,

∥∥π − π′
∥∥2

2, in terms of the aggregate distance at the children. The
new ingredient in our bound is to account more carefully for the availability of the colors at
the children (i.e., the vector γ).

I Lemma 10. Let q, d be positive integers so that q ≥ d+ 2. Then∥∥π − π′
∥∥2

2 ≤ |D|K
2
∑
i∈[d]

∥∥πi − πi′
∥∥2

2 where K := 1
1− 1

q−d
maxt∈(0,1)

∥∥Mπ̂(t),√γ

∥∥
2,

where D,γ,√γ are as in Definition 7, π̂(t) is as in Definition 8, and Mπ̂(t),√γ is as in
Definition 9.

Given Lemma 10, we are left with obtaining a good upper bound on the norm
∥∥Mπ̂(t),√γ

∥∥
2

that takes advantage of the presence of the vector γ. It is not hard to see that the L2 norm
of the matrix

(
diag(π̂)− π̂π̂ᵀ) is bounded by maxj∈[q] π̂j . The following result can be seen

as a generalisation of this fact, which is however significantly more involved to prove. The
proof is given in Section 4.

2 For a square matrix M, we use ‖M‖2 to denote its L2 norm, i.e., ‖M‖2 = max‖x‖2=1 ‖Mx‖2. A fact
that will be useful later is that ‖M‖2 = max‖x‖2=1 ‖xᵀM‖2, even for non-symmetric matrices M.

3 For a vector x, diag(x) denotes the diagonal matrix with the entries of x on the diagonal.

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:7

I Lemma 11. Let q be a positive integer, π̂ be a q-dimensional probability vector and γ̂ be
a q-dimensional vector with non-negative entries which are all bounded by 1. Then, the L2

norm of the matrix Mπ̂,γ̂ =
(
diag(π̂)− π̂π̂ᵀ)diag(γ̂

)
satisfies

‖Mπ̂,γ̂‖2 ≤
1
2 max
j∈[q]

π̂j
(
1 + (γ̂j)2),

where {π̂j}j∈[q], {γ̂j}j∈[q] are the entries of π̂, γ̂, respectively.

The final component of our proof is to utilize the bound in Lemma 11 to derive an upper
bound on the norm of the matrix Mπ̂(t),√γ appearing in Lemma 10. To prove Theorem 4,
we roughly need to show that the norm is bounded by 1/|D|. We show that this is indeed
the case in Section 6.

I Lemma 12. There exist absolute constants β > 0 and K ′ ∈ (0, 1) such that the following
holds for all positive integers q, d satisfying q ≥ 1.59d+ β.

Let γ, π̂(t) be the q-dimensional vectors of Definitions 7 and 8, respectively. Then, for
all t ∈ [0, 1] and all colors k ∈ [q], it holds that

1
2 π̂k(t)(1 + γk) < K ′/|D|,

where D is the set of non-frozen children of ρ under η and η′.

Assuming Lemmas 10, 11 and 12 for now, we next conclude the proof of Theorem 4.

Proof of Theorem 4. Let U ′ := (1 +K ′)/2 where K ′ ∈ (0, 1) is the constant in Lemma 12.
Let β > 0 be a sufficiently large constant so that, for all q ≥ 1.59d + β, the conclusion of
Lemma 12 applies and 1

1− 1
q−d)

K ′ < U ′. We will show that

∥∥π − π′
∥∥2

2 ≤ U max
i∈[d]

∥∥πi − πi′
∥∥2

2, with U := (U ′)2. (4)

Indeed, by Lemmas 10, 11 and 12, we have that∥∥π − π′
∥∥2

2 ≤
U

|D|
∑
i∈[d]

∥∥πi − π′i
∥∥2

2.

Note that an index i /∈ D corresponds to a frozen child vi and therefore πi = π′i for all i /∈ D
and hence

1
|D|

∑
i∈[d]

∥∥πi − π′i
∥∥2

2 ≤ max
i∈[d]

∥∥πi − πi′
∥∥2

2,

proving (4). This completes the proof of Theorem 4. J

4 Bound on the matrix norm: proof of Lemma 11

In this section, we prove Lemma 11.

Proof of Lemma 11. For this proof, it will be convenient to simplify notation and use π

instead of π̂ and γ instead of γ̂, so that Mπ,γ becomes
(
diag(π) − ππᵀ

)
diag(γ

)
. Let

C := 1
2 maxj∈[q] πj(1 + γ2

j). We will establish that ‖Mπ,γ‖2 ≤ C by showing that for an
arbitrary q-dimensional vector x it holds that

‖xᵀMπ,γ‖22 ≤ C
2 ‖x‖22 . (5)

APPROX/RANDOM 2019

48:8 Improved Strong Spatial Mixing for Colorings on Trees

We will focus on proving (5) in the case where the entries of the vector γ are all nonnegative
and strictly less than one; the case where some of the entries of γ are equal to 1 follows from
the continuity of (5) with respect to γ.

So, assume that γj ∈ [0, 1) for all j ∈ [q]. Observe that

‖xᵀMπ,γ‖22 =
∑
j∈[q]

π2
jγ

2
j (xj − w)2 where w :=

∑
j∈[q]

πjxj .

Let yj = xj − w for j ∈ [q]. Since π is a probability vector, we have∑
j∈[q]

πjyj = 0.

Moreover, we can rewrite (5) as

∑
j∈[q]

π2
jγ

2
j

C2 y2
j ≤

∑
j∈[q]

(yj + w)2. (6)

Note that the function f(z) =
∑
j∈[q](yj + z)2 achieves its minimum for z∗ = − 1

q

∑
j∈[q] yj

and f(z∗) =
∑
j∈[q] y

2
j − 1

q

(∑
j∈[q] yj

)2. Hence, to prove (6) (and therefore (5)), it suffices
to show that(∑

j∈[q]

yj

)2
≤ q

∑
j∈[q]

y2
j

Aj
, where Aj := C2

C2 − π2
jγ

2
j

(7)

Note that the Aj ’s are well-defined and greater than 1 for all j ∈ [q] by our assumption that
γj ∈ [0, 1), cf. the argument below (5). Using that

∑
j∈[q] πjyj = 0, we therefore obtain that

(7) is equivalent to(∑
j∈[q]

yj(1 + tπj)
)2
≤ q

∑
j∈[q]

y2
j

Aj
, where Aj := C2

C2 − π2
jγ

2
j

, (8)

for any real number t – we will specify t soon (cf. the upcoming (10)). In particular, by the
Cauchy-Schwarz inequality, we have(∑

j∈[q]

yj(1 + tπj)
)2
≤
∑
j∈[q]

y2
j

Aj

∑
j∈[q]

Aj(1 + tπj)2,

so (8) and hence (7) will follow if we find t such that∑
j∈[q]

Aj(1 + tπj)2 ≤ q. (9)

We will choose t to minimise the l.h.s. in (9), i.e., set

t := −
∑
j∈[q]Ajπj∑
j∈[q]Ajπ

2
j

, so that
∑
j∈[q]

Aj(1 + tπj)2 =
∑
j∈[q]

Aj −
(∑

j∈[q]Ajπj
)2∑

j∈[q]Ajπ
2
j

. (10)

Therefore, for this choice of t, (9) becomes

∑
j∈[q]

(Aj − 1)
∑
j∈[q]

Ajπ
2
j ≤

(∑
j∈[q]

Ajπj

)2
. (11)

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:9

Using that Aj = C2

C2−π2
j
γ2

j
, (11) is equivalent to (note the division by C2 of both sides)

∑
j∈[q]

π2
jγ

2
j

C2 − π2
jγ

2
j

∑
j∈[q]

π2
j

C2 − π2
jγ

2
j

≤
(∑
j∈[q]

Cπj
C2 − π2

jγ
2
j

)2
. (12)

We next establish (12). We can upper bound the l.h.s. of (12) using the inequality ab ≤(
a+b

2
)2, which gives that

∑
j∈[q]

π2
jγ

2
j

C2 − π2
jγ

2
j

∑
j∈[q]

π2
j

C2 − π2
jγ

2
j

≤
(∑
j∈[q]

π2
j (1 + γ2

j)
2(C2 − π2

jγ
2
j)

)2
.

So, to prove (12), it suffices to show that for each i ∈ [q], it holds that

π2
j (1 + γ2

j)
2(C2 − π2

jγ
2
j) ≤

Cπj
C2 − π2

jγ
2
j

which is indeed true, since C ≥ 1
2πj(1 + γ2

j) for all i ∈ [q] by the definition of C.
This proves (12), which in turn establishes (8) for the choice of t in (10). This yields (7)

and hence (5) as well, finishing the proof of Lemma 11. J

5 Gradient analysis with blocked colors: proof of Lemma 10

In this section, we prove Lemma 10.

Proof of Lemma 10. For i ∈ [d] and j ∈ [q], let F (i)
c,j (x) be the partial derivative ∂fc

∂xi,j
viewed

as a function of the “concatenated” vector x = (x1, . . . ,xd). Note that, whenever xi,j 6= 1,
we have that

F
(i)
c,j (x) = −

fc(x1, . . . ,xd)−
(
fc(x1, . . . ,xd))2

1− xi,j
if j = c,

F
(i)
c,j (x) = fc(x1, . . . ,xd)fj(x1, . . . ,xd)

1− xi,j
if j 6= c.

(13)

As mentioned earlier, we will interpolate between π and π′ by interpolating along the
straight-line segment connecting (π1, . . . ,πd) and (π′1, . . . ,π′d). In particular, for t ∈ [0, 1],
let π̂c(t) denote the c-th entry of the vector π̂(t) defined in the statement of the lemma.
Then, we have that

π̂c(t) = fc(z(t)), where z(t) is the vector
(
tπ1 + (1− t)π′1, . . . , tπd + (1− t)π′d

)
. (14)

We will use zi,j(t) to denote the j-th entry of the i-th vector in z(t), i.e., zi,j(t) = tπi,j +
(1− t)π′i,j .

Let D be the set of indices i such that vi is not frozen under η and η′ (cf. Observation 6).
Observe that, for all i /∈ D and c, j ∈ [q], we have that zi,j(t) = πi,j = π′i,j for t ∈ [0, 1].
Moreover, for i ∈ D and j ∈ [q] we have that πi,j , π′i,j ≤ 1/(q − d) (since the child vi has at
least q − d available colors in the subtree Ti) and hence

0 ≤ zi,j(t) ≤ 1/(q − d). (15)

Since zi,j(t) 6= 1 for i ∈ D and j ∈ [q], it follows that

dπ̂c
dt

=
∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j).

APPROX/RANDOM 2019

48:10 Improved Strong Spatial Mixing for Colorings on Trees

Using (3), we therefore have that

(πc − π′c)2 =
(
π̂c(1)− π̂c(0)

)2 =
(∫ 1

0

dπ̂c
dt

dt
)2

=
(∫ 1

0

∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j)dt

)2

≤
∫ 1

0

(∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j)

)2
dt,

where the last inequality follows by applying the Cauchy-Schwarz inequality for integrals.
By summing over all colors c ∈ [q], we obtain

∥∥π − π′
∥∥2

2 ≤
∫ 1

0

q∑
c=1

(∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j)

)2
dt. (16)

To simplify the r.h.s. of (16), we first note that, by (13) and (14), we have

F
(i)
c,j (z(t)) = Ac,j(t)

1− zi,j(t)
where Ac,j :=

{ (
π̂c(t))2 − π̂c(t), if j = c,

π̂c(t)π̂j(t), if j 6= c
(17)

Moreover, for j ∈ [q], set

uj(t) = 1
|D|γj

∑
i∈D

πi,j − π′i,j
1− zi,j(t)

if γj > 0, else set uj(t) = 0. (18)

Note that if color j is blocked for the child vi we have that πi,j − π′i,j = 0, so using the power
mean inequality we have that

γj(uj(t))2 ≤ 1
|D|

∑
i∈D

(πi,j − π′i,j
1− zi,j

)2
. (19)

Then, for c ∈ [q], we have that

∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j) =

q∑
j=1

Ac,j(t)
∑
i∈D

πi,j − π′i,j
1− zi,j(t)

= |D|
q∑
j=1

Ac,j(t)γjuj(t), (20)

where the last equality follows from (18) and observing that if γj = 0 then πi,j − π′i,j = 0
for all i ∈ D. Note that the (c, q)-entry of Mπ̂(t),√γ is exactly −Ac,j(t)

√
γj (cf. (17) and

Definition 9) and hence, using (20), we can write the integrand in the r.h.s. of (16) as
q∑
c=1

(∑
i∈D

q∑
j=1

F
(i)
c,j (z(t))(πi,j − π′i,j)

)2
= |D|2

∥∥Mπ̂(t),√γu(t)
∥∥2

2 , (21)

where, for t ∈ [0, 1], u(t) is the q-dimensional vector with entries {√γj uj(t)}j∈[q]. Let

W := max
t∈[0,1]

∥∥Mπ̂(t),√γ

∥∥
2 , so that K = W

1− 1
q−d

.

Then, for t ∈ [0, 1], we have that

∥∥Mπ̂(t),√γu(t)
∥∥2

2 ≤W
2 ‖u(t)‖22 = W 2

∑
j∈[q]

γj(uj(t))2 ≤ W 2

|D|
∑
j∈[q]

∑
i∈D

∥∥∥∥πi,j − π′i,j1− zi,j(t)

∥∥∥∥2

2

≤ K2

|D|
∑
j∈[q]

∑
i∈D

∥∥πi,j − π′i,j∥∥2
2 = K2

|D|
∑
i∈[d]

‖πi − π′i‖
2
2 ,

(22)

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:11

where the first inequality is by definition of the norm, the second inequality follows from (19),
the third inequality follows from 0 ≤ zi,j(t) ≤ 1/(q − d), and the last equality follows from
the fact that for i /∈ D we have that πi = π′i. Combining (16), (21) and (22), we obtain that∥∥π − π′

∥∥2
2 ≤ |D|K

2
∑
i∈[d]

‖πi − π′i‖
2
2 .

This finishes the proof of Lemma 10. J

6 Bounds on the marginals: proof of Lemma 12

In this section, we prove Lemma 12. We begin with the following lemma.

I Lemma 13. Let q, d, h be positive integers so that q ≥ d+ 1 and h ≥ 1. Let T = Td,h,ρ be
the d-ary tree with height h rooted at ρ, Λ be a subset of the vertices of T such that ρ /∈ Λ,
and η : Λ → [q] be an extendible assignment of T . Then, for all colors k ∈ [q] that are
available for ρ under η, it holds that

µT (σρ = k | σΛ = η) ≥
(
1− 1

q−d
)d

d+ (q − d)
(
1− 1

q−d
)d .

Proof. Let Q ⊆ [q] be the set of all colors that are available for ρ under η and let k ∈ Q.
Let v1, . . . , vd be the children of ρ in T and let D = {i ∈ [d] | vi /∈ Λ} be the indices of the
children of ρ that do not belong to Λ.

For i ∈ [d], let Ti = (Vi, Ei) be the subtree of T rooted at vi which consists of all
descendants of vi in T (together with vi itself). Further, for a color j ∈ [q], let

xi,j = µTi

(
σvi

= j | σΛ∩Vi
= ηΛ∩Vi

)
,

i.e., xi,j is the marginal probability that vi takes the color j at vi in µTi
with boundary

condition ηΛ∩Vi
. Note that

0 ≤ xi,j ≤
1

q − d
for all i ∈ D and j ∈ [q],

∑
j∈[q]

xi,j = 1 for all j ∈ [q]. (23)

Using the tree recursion (2) and ignoring summands that are 0 or factors that are equal to 1,
the marginal µT (σρ = k | σΛ = η) is expressed in terms of xi,j as follows:

µT (σρ = k | σΛ = η) =
∏
i∈D(1− xi,k)∑

j∈Q
∏
i∈D(1− xi,j)

. (24)

We prove the lemma by deriving an appropriate lower bound on the quantity at the r.h.s. of
(24) subject to the constraint in (23). For the numerator in (24), we have that

∏
i∈D

(1− xi,k) ≥
(

1− 1
q − d

)|D|
. (25)

For the denominator we are going to show the following:

∑
j∈Q

∏
i∈D

(1− xi,j) ≤ d+ (q − d)
(

1− 1
q − d

)|D|
. (26)

APPROX/RANDOM 2019

48:12 Improved Strong Spatial Mixing for Colorings on Trees

Before showing that (26) is indeed true, note that the lemma follows by plugging (25), (26)
into (24), yielding

µT (σρ = k | σΛ = η) ≥

(
1− 1

q−d

)|D|
d+ (q − d)

(
1− 1

q−d

)|D| ≥
(

1− 1
q−d

)d
d+ (q − d)

(
1− 1

q−d

)d ,
where the last inequality follows by noting that the ratio in the middle is decreasing in |D|
and |D| ≤ d.

We now proceed with the proof of (26). First, we have the simple bound∑
j∈Q

∏
i∈D

(1− xi,j) ≤
∑
j∈[q]

∏
i∈D

(1− xi,j). (27)

For j ∈ [q], let xj = 1
|D|
∑
i∈D xi,j and note that (x1, . . . , xq) is a probability vector whose

entries are in [0, 1/(q − d)]. By the AM-GM inequality, we can bound the r.h.s. of (27) by∑
j∈[q]

∏
i∈D

(1− xi,j) ≤
∑
j∈[q]

(1− xj)|D|. (28)

It remains to observe that the function f(z) =
∑
j∈[q](1− zj)|D| is convex over the space of

probability vectors z = (z1, . . . , zq) whose entries are in [0, 1/(q− d)], and hence f attains its
maximum at the extreme points of the space, which are given by (the permutations of) the
probability vector whose first d entries are equal to zero and the rest are equal to 1/(q − d).
It follows that∑

j∈[q]

(1− xj)|D| ≤ d+ (q − d)
(

1− 1
q − d

)|D|
. (29)

Combining (27), (28) and (29) yields (26), thus concluding the proof of Lemma 13. J

We are now ready to prove Lemma 12.

Proof of Lemma 12. For convenience, let r = 1.59, so that q/d ≥ r. We will use that r
satisfies

C := 1
r

exp
(1
r

)
exp

(
− 1
r − 1 + exp

(1
r−1
)) < 1. (30)

We will show the result with the constant K ′ = (1 +C)/2. For the rest of this proof, we will
focus on the case q ∈ [1.59d+ β, 2.01d], for some large constant β > 0 (when q > 2.01d the
desired bound follows rather crudely, see Footnote 4 below for details).

Recall that v1, . . . , vd are the children of ρ in T and D is the set of (indices of the)
non-frozen children of the root ρ. Let Q ⊆ [q] be the set of all colors that are available for ρ
under η; since at most d− |D| colors can be blocked for ρ, we have that

|Q| ≥ q − (d− |D|). (31)

For i ∈ [d], let Ti = (Vi, Ei) be the subtree of T rooted at vi which consists of all descendants
of vi in T (together with vi itself). Further, for a color j ∈ [q], recall that

πi,j = µTi

(
σvi = j | σΛ∩Vi

= ηΛ∩Vi

)
,

π′i,j = µTi

(
σvi

= j | σΛ∩Vi
= η′Λ∩Vi

)
,

(32)

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:13

i.e., πi,j is the marginal probability that vi takes the color j at vi in µTi with boundary
condition ηΛ∩Vi

. For a non-frozen child vi (i.e., i ∈ D), note that, if color j is available for vi
(in Ti), then we have from Lemma 13 the bounds

L ≤ πi,j , πi,j , where L =
(
1− 1

q−d
)d

d+ (q − d)
(
1− 1

q−d
)d . (33)

Another useful bound to observe for later is that

dL < 1/3 for all d ≥ 2.

Consider arbitrary k ∈ Q. For t ∈ [0, 1], let z(t) be the vector
(
tπ1 + (1− t)π′1, . . . , tπd +

(1− t)π′d
)
. Using the tree recursion (2) and ignoring summands that are 0 or factors that

are equal to 1, we obtain

π̂k(t) =
∏
i∈D(1− zi,k(t))∑

j∈Q
∏
i∈D(1− zi,j(t))

. (34)

Recall, our goal is to show that 1
2 π̂k(t)(1 + γk) < K ′/|D| for all t ∈ [0, 1], where γk ∈ [0, 1]

is the fraction of non-frozen children that have color k available. 4Note that, if color j is
available for the child vi, (33) gives that

L ≤ zi,j(t) for t ∈ [0, 1],

so, using the fact that the color k is available for |D|γk non-frozen children, we obtain that
the numerator of (34) is bounded by∏

i∈D

(
1− zi,k(t)

)
≤ (1− L)|D|γk ≤ exp(−L|D|γk), (35)

whereas the denominator, using the AM-GM inequality analogously to [7, Lemma 2.1], by∑
j∈Q

∏
i∈D

(
1− zi,j(t)

)
≥ q exp(−|D|/q)− (d− |D|). (36)

From (34), (35), and (36), it follows that π̂k(t) ≤ exp(−L|D|γk)
q exp(−|D|/q)−(d−|D|) . Therefore, the lemma

will follow by showing that

|D| exp(−|D|Lγk)
q exp(−|D|/q)− (d− |D|) (1 + γk) < 2K ′. (37)

Note that the function h(x) = (1 + x) exp(−dLx) is increasing when x ∈ [0, 1], since

h′(x) = exp(−dLx)
(
1− dL(1 + x)

)
≥ exp(−dLx)(1− 2dL) > 0.

Therefore, to prove (37), it suffices to show that

|D| exp(−|D|L)
q exp(−|D|/q)− (d− |D|) < K ′, or equivalently that f(|D|) > 0 (38)

4 For q > 2.01d, we have from (34) and (31) that π̂k(t) ≤ 1
|Q|−|D| ≤

1
q−d <

1
1.01d ≤ K

′/|D|, yielding the
desired inequality.

APPROX/RANDOM 2019

48:14 Improved Strong Spatial Mixing for Colorings on Trees

where f(x) := K ′
(
q exp(−x/q)− d+ x

)
− x exp(−Lx) for x ∈ [0, d]. We claim that f(x) is

decreasing in x. We have

f ′(x) = K ′ −K ′ exp(−x/q)− exp(−Lx)(1− Lx)

which is maximised for x = d. In particular,

f ′(x) ≤ f ′(d) = K ′ −K ′ exp(−d/q)− exp(−dL)(1− dL)
≤ K ′ −K ′ exp(−1/r)− exp(−1/3)(1− 1/3) ≤ 0,

where the second to last inequality follows from the fact that dL < 1/3 and the last inequality
using that K ′ < 1. For |D| = d, (38) becomes

d exp(−dL)
q exp(−d/q) < K ′. (39)

Now, we have that

dL ≥ 1
r − 1 + exp

(
d

(r−1)d−1
) .

Therefore, by choosing β large enough, we can ensure that

d exp(−dL)
q exp(−d/q) <

1 + C

2 = K ′,

where C is the constant in (30). This proves (39) and therefore concludes the proof of
Lemma 12. J

7 Proof of Theorem 3

Finally, utilizing Theorem 4, we give the proof of Theorem 3.

Proof of Theorem 3. From Theorem 4, we know that there exist constants β > 0 and
U ∈ (0, 1) such that for all q ≥ 1.59d+ β the conclusion of Theorem 4 applies. Note that
Theorem 4 applies to the d-ary tree rather than the (d+ 1)-regular tree but these trees differ
only at the degree of the root. To account for it, we will assume that q ≥ 1.59(d+ 1) +β, i.e.,
prove Theorem 3 with constant β′ = β+ 1.59. Consider the function ζ given by ζ(`) = 2U `−2

for ` ≥ 0 and note that ζ is exponentially decaying. We will show that the q-coloring model
has strong spatial mixing on the (d+ 1)-regular tree with decay rate ζ.

We first show by induction on h that, for the tree T = T̂d+1,h,ρ (that is, the (d+ 1)-ary
tree with height h rooted at ρ), for any subset Λ of vertices of T and arbitrary extendible
assignments η, η′ : Λ→ [q] of T , it holds that∥∥πT,ρ,η − πT,ρ,η′

∥∥2
2 ≤ ζ(dist(ρ,∆)), (40)

where ∆ ⊆ Λ is the set of vertices where η and η′ disagree. The base cases h = 0, 1, 2 are
trivial so assume h ≥ 3 in what follows. Let ` = dist(ρ,∆). Once again, (40) is trivial
when ` ≤ 2, so assume ` ≥ 3 in what follows. Let v1, . . . , vd+1 be the children of ρ and, for
i ∈ [d+ 1], let Ti = (Vi, Ei) be the subtree of T rooted at vi which consists of all descendants
of vi in T . Further, let πi = πTi,vi,η(Λ∩Vi), π′i = πTi,vi,η′(Λ∩Vi). Then, by Theorem 4 and
since q ≥ 1.59(d+ 1) + β, we have that∥∥πT,ρ,η − πT,ρ,η′

∥∥2
2 ≤ U max

i∈[d+1]

∥∥πi − πi′
∥∥2

2. (41)

C. Efthymiou, A. Galanis, T. P. Hayes, D. Štefankovič, and E. Vigoda 48:15

For i ∈ [d+ 1], since Ti is isomorphic to T̂d+1,h−1,ρ we have by the induction hypothesis that∥∥πi − πi′
∥∥2

2 ≤ ζ(`− 1).

Combining this with (41) and the fact that ζ(`) = Uζ(` − 1) yields (40), completing the
induction and therefore that strong spatial mixing holds on T with decay rate ζ.

Now, let T = (V,E) be a finite subtree of the (d+ 1)-regular tree, v be an arbitrary vertex
of T , Λ be a subset of vertices of T and η, η′ : Λ→ [q] be arbitrary extendible assignments of
T . Then, we can view T as a subgraph of Tv = T̂d+1,h,v for some appropriate height h. It
also holds that (see, for example, [10, Lemma 25])

‖πT,v,η − πT,v,η′
∥∥

2 = ‖πTv,v,η − πTv,v,η′
∥∥

2.

Therefore, from (40) (applied to the tree Tv) we obtain that∥∥πT,v,η − πT,v,η′
∥∥2

2 ≤ ζ(dist(v,∆)),

where ∆ ⊆ Λ is the set of vertices where η and η′ disagree.
This completes the proof of Theorem 3. J

References
1 A. Barvinok. Combinatorics and Complexity of Partition Functions. Algorithms and Combin-

atorics. Springer International Publishing, 2017.
2 V. Beffara and H. Duminil-Copin. The self-dual point of the two-dimensional random-cluster

model is critical for q ≥ 1. Probability Theory and Related Fields, 153(3):511–542, 2012.
3 A. Blanca, P. Caputo, A. Sinclair, and E. Vigoda. Spatial Mixing and Non-local Markov

Chains. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’18, pages 1965–1980, 2018.

4 A. Blanca and A. Sinclair. Random-cluster dynamics in Z2. Probability Theory and Related
Fields, 168(3-4):821–847, 2017.

5 G. R. Brightwell and P. Winkler. Random Colorings of a Cayley Tree. In Contemporary
Combinatorics, pages 247–276, 2002.

6 F. Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs
random fields. Probability Theory and Related Fields, 120(4):569–584, 2001.

7 M. Dyer and A. Frieze. Randomly coloring graphs with lower bounds on girth and maximum
degree. Random Structures & Algorithms, 23(2):167–179, 2003.

8 M. Dyer, A. Frieze, T. P. Hayes, and E. Vigoda. Randomly coloring constant degree graphs.
Random Structures & Algorithms, 43(2):181–200, 2013.

9 M. Dyer, A. Sinclair, E. Vigoda, and D. Weitz. Mixing in time and space for lattice spin
systems: A combinatorial view. Random Structures & Algorithms, 24(4):461–479, 2004.

10 C. Efthymiou. A Simple Algorithm for Sampling Colorings of G(n, d/n) Up to The Gibbs
Uniqueness Threshold. SIAM Journal on Computing, 45(6):2087–2116, 2016.

11 A. Galanis, L. A. Goldberg, and K. Yang. Uniqueness for the 3-state antiferromagnetic Potts
model on the tree. Electron. J. Probab., 23, 2018.

12 D. Gamarnik, D. Katz, and S. Misra. Strong spatial mixing of list coloring of graphs. Random
Structures & Algorithms, 46(4):599–613, 2015.

13 Q. Ge and D. Štefankovič. Strong spatial mixing of q-colorings on Bethe lattices. CoRR,
abs/1102.2886, 2011. arXiv:1102.2886.

14 L. A. Goldberg, R. Martin, and M. Paterson. Strong Spatial Mixing with Fewer Colors for
Lattice Graphs. SIAM Journal on Computing, 35(2):486–517, 2005.

15 T. P. Hayes. Local uniformity properties for Glauber dynamics on graph colorings. Random
Structures & Algorithms, 43(2):139–180, 2013.

APPROX/RANDOM 2019

http://arxiv.org/abs/1102.2886

48:16 Improved Strong Spatial Mixing for Colorings on Trees

16 J. Jonasson. Uniqueness of uniform random colorings of regular trees. Statistics & Probability
Letters, 57(3):243–248, 2002.

17 F. P. Kelly. Stochastic Models of Computer Communication Systems. Journal of the Royal
Statistical Society. Series B (Methodological), 47(3):379–395, 1985.

18 L. Li, P. Lu, and Y. Yin. Correlation Decay Up to Uniqueness in Spin Systems. In Proceedings
of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13, pages
67–84, 2013.

19 J. Liu and P. Lu. FPTAS for #BIS with degree bounds on one side. In Proceedings of the
Forty-seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 549–556,
2015.

20 J. Liu, A. Sinclair, and P. Srivastava. A deterministic algorithm for counting colorings with
2∆ colors. CoRR, abs/1906.01228, 2019. arXiv:1906.01228.

21 F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase
region. I. The attractive case. Communications in Mathematical Physics, 161(3):447–486,
1994.

22 F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase
region. II. The General Case. Communications in Mathematical Physics, 161(3):487–514, 1994.

23 V. Patel and G. Regts. Deterministic Polynomial-Time Approximation Algorithms for Partition
Functions and Graph Polynomials. SIAM Journal on Computing, 46(6):1893–1919, 2017.

24 J. Pearl. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In
Proceedings of the Second AAAI Conference on Artificial Intelligence, AAAI’82, pages 133–136,
1982.

25 H. Peters and G. Regts. On a Conjecture of Sokal Concerning Roots of the Independence
Polynomial. The Michigan Mathematical Journal, pages 33–55, 2019.

26 D. Weitz. Counting Independent Sets Up to the Tree Threshold. In Proceedings of the
Thirty-eighth Annual ACM Symposium on Theory of Computing, STOC ’06, pages 140–149,
2006.

http://arxiv.org/abs/1906.01228

(Near) Optimal Adaptivity Gaps for Stochastic
Multi-Value Probing
Domagoj Bradac
Department of Mathematics, Faculty of Science, University of Zagreb, Croatia
domagoj.bradac@gmail.com

Sahil Singla
Department of Computer Science, Princeton University1, NJ, USA
singla@cs.princeton.edu

Goran Zuzic
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
gzuzic@cs.cmu.edu

Abstract
Consider a kidney-exchange application where we want to find a max-matching in a random graph.
To find whether an edge e exists, we need to perform an expensive test, in which case the edge e
appears independently with a known probability pe. Given a budget on the total cost of the tests,
our goal is to find a testing strategy that maximizes the expected maximum matching size.

The above application is an example of the stochastic probing problem. In general the optimal
stochastic probing strategy is difficult to find because it is adaptive – decides on the next edge to
probe based on the outcomes of the probed edges. An alternate approach is to show the adaptivity
gap is small, i.e., the best non-adaptive strategy always has a value close to the best adaptive strategy.
This allows us to focus on designing non-adaptive strategies that are much simpler. Previous works,
however, have focused on Bernoulli random variables that can only capture whether an edge appears
or not. In this work we introduce a multi-value stochastic probing problem, which can also model
situations where the weight of an edge has a probability distribution over multiple values.

Our main technical contribution is to obtain (near) optimal bounds for the (worst-case) adaptivity
gaps for multi-value stochastic probing over prefix-closed constraints. For a monotone submodular
function, we show the adaptivity gap is at most 2 and provide a matching lower bound. For a
weighted rank function of a k-extendible system (a generalization of intersection of k matroids),
we show the adaptivity gap is between O(k log k) and k. None of these results were known even in
the Bernoulli case where both our upper and lower bounds also apply, thereby resolving an open
question of Gupta et al. [23].

2012 ACM Subject Classification Theory of computation → Stochastic control and optimization;
Theory of computation → Submodular optimization and polymatroids; Theory of computation →
Approximation algorithms analysis; Theory of computation → Design and analysis of algorithms

Keywords and phrases stochastic programming, adaptivity gaps, stochastic multi-value probing,
submodular functions, k-extendible systems, adaptive strategy, matroid intersection

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.49

Category RANDOM

Related Version https://arxiv.org/abs/1902.01461

Funding Domagoj Bradac: The Author thanks the Computer Science Department at Carnegie
Mellon University for their support; part of his work was done with visiting in Summer 2018.
Sahil Singla: Supported in part by NSF awards CCF-1319811, CCF-1536002, and CCF-1617790 and
in part by the Schmidt foundation.
Goran Zuzic: Supported in part by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-
1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.

Acknowledgements We would like to thank Anupam Gupta for helpful discussions.

1 Most of this work was done when the author was a graduate student at Carnegie Mellon University.
© Domagoj Bradac, Sahil Singla, and Goran Zuzic;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 49; pp. 49:1–49:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8058-7782
mailto:domagoj.bradac@gmail.com
https://orcid.org/0000-0002-8800-6479
mailto:singla@cs.princeton.edu
https://orcid.org/0000-0002-9322-6329
mailto:gzuzic@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.49
https://arxiv.org/abs/1902.01461
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

1 Introduction

Consider a kidney-exchange application where we want to find a maximum matching in a
random graph. To find whether an edge e exists, we need to perform an expensive test, in
which case the edge e appears independently with a known probability pe. Given a budget
on the total cost of the tests, our goal is to design a testing strategy that maximizes the
expected size of the found matching.

The above application can be modeled as a constrained stochastic probing problem [5, 21,
3, 22, 23]. In this setting, we are given a universe V of elements (e.g., the set of all possible
edges), each with an activation probability pv for v ∈ V (e.g., the probability an edge exists).
We define a random set A ⊆ V of active elements that contains every v independently with
probability pv. A probe at v reveals whether v ∈ A or v 6∈ A, and we are only allowed to probe
certain feasible subsets S ∈ F ⊆ 2V (e.g., subsets of edges whose tests fit in our budget).
Our goal is to design a probing strategy to find a feasible set S ∈ F of elements to maximize
EA[f(A ∩ S)], where f is some combinatorial function f : 2V → R≥0 (e.g., the cardinality
of the maximum matching). Notice our probing strategy could be adaptive, i.e., we could
decide which element to probe next based on the outcomes of already probed elements.

Besides matching [13, 7], stochastic probing has applications for stochastic variants of
several other combinatorial problems. E.g., it can be used for Bayesian mechanism design
problems [21], robot path-planning problems [22, 23], and stochastic set cover problems
that arise in database applications [27, 16]. As observed in these prior works, the optimal
strategy for stochastic probing can be represented as a binary decision tree where each node
represents an element of V : You first probe the root node element, and then depending on
whether it is active or inactive, you either move to the right or the left subtree. In general,
such an optimal decision tree can be exponentially sized and is hard to describe. We do not
even understand how to capture it for very simple functions and constraints (e.g., the max
function with cardinality constraints [24]).

An alternate approach is to focus on non-adaptive strategies. Such a strategy commits to
probing a feasible set S ∈ F in the beginning, irrespective of which of these elements turn
out active. A non-adaptive strategy has several benefits: (a) it is easy to represent since we
can just store the set S, (b) it is easy to find for many classes of functions and constraints
(e.g., submodular functions over intersection of matroids [12]), and (c) it is parallelizable
because we do not need feedback. The concern is that the expected value of the optimal
non-adaptive strategy might be much smaller than that of the optimal adaptive strategy.
This raises the (worst-case instance) adaptivity gap question: What is the maximum ratio
between the expected values of the optimal adaptive and the optimal non-adaptive strategies
for stochastic probing? If this ratio is small then we can focus on non-adaptive strategies
and reap its benefits with only a small loss in value (see Figure 1).

Since for general combinatorial functions or constraints the adaptivity gaps can be made
arbitrarily large, we need to consider special classes of functions and constraints. In a
surprising result, Gupta et al. prove that for any monotone submodular function and any
prefix-closed constraints2, the adaptivity gap is at most 3 [23]. The best known lower bound
in this setting, however, is only e

e−1 ≈ 1.58 due to Asadpour et al. [5]. This leaves open the
following question:

For stochastic probing, what is the (worst-case) adaptivity gap for monotone submod-
ular functions over prefix-closed constraints?

2 Prefix-closed constraints stipulate that any prefix of a feasible probing sequence is also feasible. This
class contains any downward-closed/packing constraint.

D. Bradac, S. Singla, and G. Zuzic 49:3

Figure 1 An α-approximation to the best non-adaptive solution implies an (α · GAP)-
approximation to the best adaptive algorithm, where GAP is the adaptivity gap.

We show that both the previously known upper bound of 3 and the lower bound of e
e−1 are

not tight. Instead, the adaptivity gap is exactly 2.
One might notice that submodular functions do not capture the max-matching function

used to model kidney-exchanges. This motivates us to consider more general combinatorial
functions; in particular, we study the weighted rank function of a k-extendible system (defined
in §2). This class generalizes intersection of k-matroids [29], e.g., a 2-extendible system
captures matching in general graphs (unlike intersections of two matroids). Our goal is to
bound the adaptivity gap for such functions over arbitrary prefix-closed constraints.

A major drawback of the stochastic probing model is that it only considers Bernoulli
random variables. One would ideally allow for more modeling power by permitting the
outcome of a probe to be a non-binary value. For example, in the kidney-exchange application,
one might desire to summarize an edge probe by the risk involved in performing the match:
a value of 0 describes an impossible match, a value of 1 indicates a safe match, and the
possibilities in between are represented by intermediate values. Notice that the optimal
adaptive strategy is still a decision tree; however, it may no longer be binary.

The main contributions of this paper are (1) a model that extends the binary stochastic
probing to the multi-value setting, (2) the exact calculation of the adaptivity gap for stochastic
probing of monotone submodular functions (in both the binary and multi-value setting),
and (3) a nearly-tight adaptivity gap for stochastic probing of weighted rank functions over
k-extendible systems.

1.1 Overview of Results
Our conceptual contribution is to present a generalization of the stochastic probing model to
stochastic multi-value probing (SMP) described in §2. Roughly, the idea is that each element
has t potential types, and a probe reveals which one of its types it takes. This trivially
captures stochastic probing for t = 2, where the two types are active and inactive. In general
these different types can be used to model different weights of an element, or to even encode
different kinds of complementary relationships in the element values.

Although the SMP model is more general than the stochastic probing model, our main
technical result in §3 is that for monotone submodular functions the adaptivity gap is bounded
by 2. We also give a matching lower bound which proves this cannot be further reduced.
This is despite the fact that the optimal decision tree for SMP may no longer be binary.

I Theorem 1. The adaptivity gap for SMP where the constraints are prefix-closed and the
function is monotone non-negative submodular is exactly 2.

APPROX/RANDOM 2019

49:4 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

Since SMP is strictly more general than stochastic probing, Theorem 1 also improves the
previously known upper bound of 3 for monotone submodular stochastic probing. In fact,
our lower bound SMP instance in Theorem 1 is Bernoulli. Thus it resolves an open question
of [23] of finding the optimal adaptivity gaps for submodular stochastic probing.

Our main technical result in §4 is that the adaptivity gap for weighted rank function of a
k-extendible system is Θ̃(k).

I Theorem 2. The adaptivity gap for SMP where the constraints are prefix-closed and the
function is a weighted rank function of a k-extendible system is between k and O(k log k).
Moreover, for unweighted rank functions, the adaptivity gap is between k and 2k.

Since the weighted rank of function of intersection of k-matroids is a k-extendible system,
Theorem 2 implies as a corollary that the adaptivity gaps for this class is at most Θ̃(k).
This improves the previously best known upper bound for intersection of k matroids of
O(k4 · logn) due to Gupta et al. [22]3. We also give an Ω(

√
k)-lower bound in this setting.

1.2 Techniques and Challenges
In this section we outline our main techniques and challenges for SMP adaptivity gaps.

Submodular Functions. To prove a small adaptivity gap, we need to show existence of a
“good” non-adaptive solution. A priori it is not clear how to construct such a solution, e.g., LP
based approaches do not extend beyond matroid constraints because of large integrality gaps.
Since we only need to show existence, we can assume the optimal (exponential sized) decision
tree is known. A crucial idea of [22] is to perform a random walk on this optimal decision tree
(with probabilities given by the tree) and probing elements on the sampled root-leaf path. In
other words, consider a non-adaptive strategy that randomly chooses a root-leaf path in the
decision tree with the same probability as the optimal adaptive strategy. While this idea is
natural in hindsight, its analysis for the non-adaptive strategy has been challenging.

In [22], the authors use Freedman’s inequality – linear functions are “well-concentrated”
for a martingale – to argue that simple submodular functions are well-concentrated. This
step requires massive union bounds over a polynomial number of linear functions, which
loses logarithmic factors. To overcome this super-constant loss, in [23] the authors use an
inductive approach and induct over subtrees where in each step a stem – the all-no path – is
observed. A “stem lemma” allows them to argue that for every stem the expected value of
the non-adaptive algorithm is within a factor 2 to the expected adaptive strategy. Finally,
they “stitch” back the stem for induction by using submodularity, overall losing a factor of 3.

In this work, to prove the improved adaptivity gap of 2 in Theorem 1, our insight is
to modify the above induction to observe a single node at each step (instead of a stem as
in [23]). While we still induct over subtrees, this allows us to avoid any additional loss due
to the stitching step. This induction turns out to be nontrivial because the adaptive and
non-adaptive strategies can observe different types of the root element. In other words,
although the non-adaptive random walk strategy follows the distribution of root-leaf paths
of the adaptive strategy, it has to independently re-sample (re-probe) all the nodes on the
chosen path. This hinders a direct application of induction as the marginal values in the
subtrees change between the two strategies. We remedy this issue using two main ideas. First,

3 We remark that although not explicitly stated in Gupta et al. [23], their techniques can be used to
remove the dependency on n, but it still only gives Ω(k2) adaptivity gaps.

D. Bradac, S. Singla, and G. Zuzic 49:5

we compare the non-adaptive strategy to a “super-strategy” that can choose from both the
elements chosen by the adaptive and the non-adaptive strategies. (This is also the intuition
for the gap of 2 since the “super-strategy” has two chances to sample an element.) Second,
the non-adaptive strategy forfeits any potential future value that the adaptive strategy
gained at the root but the non-adaptive missed due to re-sampling. (This can be done by
contracting the element sampled by the adaptive strategy without receiving its value.) Notice
that both these steps are pessimistic and hence give a valid upper bound on the adaptivity
gap. Together these ideas suffice to match the marginal values in the subtrees and apply
induction without the stiching step, yielding an adaptivity gap of 2. Our lower bounds in
§3.2 show examples where the super-strategy does not have any advantage over the adaptive
strategy. Thus the adaptivity gap of 2 is optimal.

Rank Functions. A technical challenge in extending the above inductive approach to k-
extendible system rank functions is that their marginal values do not belong to the same
class. Namely, after contracting an element, the marginal value of a submodular function is
submodular but the marginal value of a k-extendible system rank function may not even
be subadditive. To overcome this, we first focus on unweighted rank functions. Instead
of directly comparing the non-adaptive strategy to the adaptive strategy, our insight is to
compare it to a greedy procedure. We show that this greedy procedure is a k-approximation
to the adaptive strategy. Moreover, we show it has a notion of a marginal value. This allows
us to compare the non-adaptive strategy to the greedy procedure in a similar way as for
submodular functions, by losing another factor of 2. Our lower bound in §4.3 shows that the
factor k loss in comparing to a greedy procedure is unavoidable, thereby making our analysis
tight up to constants.

Finally, the challenge in proving Theorem 2 for weighted k-extendible system rank
functions is that the greedy procedure only guarantees a k-approximation if we go in the
order of decreasing weights. Instead, our adaptivity gap proofs only work when we are
greedy in the root-to-leaf path order. One way around this is to partition the elements
into O(logn) exponentially weighted classes (e.g., 1, 2, 22, . . .) and apply the unweighted
argument to the most valuable class. Unfortunately, this loses an Ω(logn) factor. To obtain
bounds independent of the universe size n, our insight is that picking an element in a class
“removes” at most k elements from a lower weight class. We can therefore improve the logn
factor loss to a log k by increasing the gap between successive classes to Ω(k). To achieve
this we further combine O(log k) consecutive classes into a “super-class” (bucket). It is an
interesting open question to find if this log k loss is essential in going from unweighted to
weighted k-extendible system rank functions.

1.3 Further Related Work
The adaptivity gap of stochastic packing problems has seen much interest; see, e.g., for
knapsack [14, 10, 28], packing integer programs [15, 13, 7], budgeted multi-armed ban-
dits [17, 19, 26, 28], and orienteering [18, 20, 8]. All except the orienteering results rely
on having relaxations that capture the constraints of the problem via linear constraints.
For stochastic monotone submodular functions where the probing constraints are given by
matroids, Asadpour et al. [4] bounded the adaptivity gap by e

e−1 ; Hellerstein et al. [25]
bound it by 1

τ , where τ is the smallest probability of some set being materialized. Other
relevant papers are [27, 16].

The work of Chen et al. [13] (see also [1, 7, 9, 2]) sought to maximize the size of a
matching subject to b-matching constraints; this was motivated by applications to online
dating and kidney exchange. See also [30, 6] for pointers to other work on kidney exchange

APPROX/RANDOM 2019

49:6 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

problems. The work of [21] abstracted out the general problem of maximizing a function
(in their case, the rank function of the intersection of matroids or knapsacks) subject to
probing constraints (again, intersection of matroids and knapsacks). This was improved
and generalized by Adamczyk et al. [3] to submodular objectives. All these results use LPs
or geometric relaxations, and do not extend to arbitrary packing constraints due to large
integrality gaps of the relaxations.

2 Stochastic Multi-Value Probing Model

In this section we formally define our stochastic multi-value probing (SMP) model using
the idea of combinatorial valuation over independent elements. We also discuss some
preliminaries.

2.1 Combinatorial Valuation over Independent Elements
The multi-value paradigm is based on the notion of type, which represents different “values”
an element can take. This leads to combinatorial valuations over independent elements where
each element independently takes its type. Similar notions have been defined before; e.g.,
see [31] and references therein.

I Definition 3 (Combinatorial valuation valX over independent elements). Consider a finite
universe V of elements and size n = |V |. Each element e ∈ V obtains exactly one type from a
finite set Te according to a given probability distribution De over Te. These types are assigned
independently across different elements, i.e., the random vector of types X ∈ (Te)e∈V is
drawn from the product distribution

∏
e∈V De. Given a combinatorial function f : 2T → R≥0

for T def=
⋃
e∈V Te, the valuation of a set S ⊆ V is

valX(S) def= f
(
{Xe | e ∈ S}

)
= f(XS),

where we define XS
def=
{

Xe | e ∈ S
}
to simplify notation.

For example, in the Bernoulli case studied in the stochastic probing literature, each
element has two types: active and inactive, the distributions De are Bernoulli, and the
valuation function valX(S) = f({e ∈ S | e is active}). Another example is the multi-value
max-weight matching problem described in the introduction. Here different types of an
element (edge) correspond to its different weights and valX(S) is the max-weight matching
in the induced subgraph on S.

In this work we always assume the combinatorial function f : 2T → R≥0 satisfies f(∅) = 0
and is monotone, i.e., f(A) ≤ f(B) for all A ⊆ B. We also assume it belongs to one of the
following classes.

subadditive if f(A ∪B) ≤ f(A) + f(B) for all A,B ⊆ T .
submodular if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for all A,B ⊆ T . For S ⊆ T , the
contraction

fS(A) def= f(S ∪A)− f(S) (1)

of a monotone submodular function is also monotone submodular.
weighted rank function of a family F ⊆ 2T if f(A) = maxB∈F w(A ∩B) where w : 2T →
R≥0 is a linear function with non-negative weights. When w is the all ones vector (i.e.,
w(A) = |A|), we call it the unweighted rank function of F .

D. Bradac, S. Singla, and G. Zuzic 49:7

In particular, we work with rank functions of two special families F ∈ 2V . Subsets in the
family are called independent subsets. A family F 3 ∅ forms a

matroid if for every A,B ∈ F with |A| > |B| there exists x ∈ A\B such that B∪{e} ∈ F .
k-extendible system if for every A ⊆ B ∈ F and e ∈ T where A ∪ {e} ∈ F , we have that
there is a set Z ⊆ B \A such that |Z| ≤ k and B \ Z ∪ {e} ∈ F .

This latter family is important because it generalizes the family of intersection of k matroids,
e.g., a 2-extendible systems captures general graph matchings (see [11] for further discussion).

2.2 Adaptive Strategies and SMP
Roughly, the goal of an SMP problem is to maximize a combinatorial function over independent
elements under some “feasibility constraints”. We define a probe of an element e ∈ V to be an
operation that reveals its random type Xe ∈ Te. A probing sequence is an ordered sequence
of probes on some elements.

The SMP problem only allows a family of probing sequences C, which are called feasible.
We assume minimal properties from this family. Specifically, it is prefix-closed, i.e., for every
sequence in C, each of its prefix is also in C. This prefix-closed family is powerful because it
generalizes any downward-closed family F (i.e., for all A ∈ F and B ⊆ A we have B ∈ F)
and can also capture precedence constraints.

We now define an adaptive strategy which constitutes a feasible solution for SMP. The
nodes in this tree correspond to probes of elements

I Definition 4 (Adaptive strategy T). It is a rooted decision tree where each non-leaf node is
labeled with an element e ∈ V and has |Te| arcs to child nodes. Each arc is uniquely labeled
with a type t ∈ Te. Whenever we encounter a node labeled e, the adaptive strategy probes e
and proceeds to the subtree corresponding to the arc labeled Xe ∼ De. The strategy terminates
on reaching a leaf and receives a value of valX(S(X)), where S(X) ⊆ V is the set of probed
elements by strategy T for type vector X. The objective is the expected valuation, which we
denote by

adap(T , f) def= EX[valX(S(X))]. (2)

Notice, since f is monotone, a strategy never gains value by removing a probed element. We
say a strategy T is feasible for C if every root-leaf path belongs to C. We now formally define
an SMP problem.

I Definition 5 (SMP problem (C, valX)). Given a prefix-closed family of probing constraints
C and a combinatorial valuation valX over independent elements, an SMP problem is to find
a feasible adaptive strategy T to maximize the expected valuation adap(T , f).

2.3 Non-Adaptive Strategies and Adaptivity Gaps
A strategy to solve an SMP problem can benefit from adjusting its probing sequence based on
the outcomes of the already probed elements. For instance, in the kidney-exchange example
if one finds an edge incident to a vertex u, one may choose not to probe any other edges
incident to u. On the other hand, a strategy that always decides the next probe independent
of the outcomes of the probed elements is called non-adaptive. Our goal is to study the
largest ratio between adaptive and non-adaptive strategies.

APPROX/RANDOM 2019

49:8 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

I Definition 6 (Adaptivity gap for P). Let P be a class of SMP problems (e.g., monotone
submodular functions over prefix-closed constraints). Define the adaptivity gap as the largest
(worst-case instance) ratio of the optimal adaptive and optimal non-adaptive strategies for a
problem (C, valX) ∈ P, i.e.,

sup
(C,valX)∈P

supT is feasible in P adap(T , f)
supS∈C EX[valX(S)] .

Notice that in the denominator S does not depend on X.

The adaptivity gap for a general combinatorial function f is unbounded [22]. In this work
we focus on monotone submodular functions and (weighted) rank functions of a k-extendible
system. We bound adaptivity gaps by analyzing the following natural random walk non-
adaptive strategy.

I Definition 7 (Random walk non-adaptive strategy). For any given adaptive strategy T , there
is a corresponding non-adaptive strategy that (virtually) draws a sample X ∼

∏
e∈V De from

the product distribution and traverses T along the root-leaf path for X (i.e., when at a node
labeled e, traverse the unique arc labeled Xe). Let S(X) be the random set of elements probed
by such a root-leaf path. The true (non-virtual) types of elements correspond to the vector of
outcomes X′ ∼

∏
e∈V De. Here X and X′ are i.i.d. r.v.s. The random walk non-adaptive

strategy probes S according to the above distribution and receives the valuation

alg(T , f) def= EX,X′ [valX′(S(X))]. (3)

3 Adaptivity Gaps for a Monotone Submodular Function

In this section we prove our first main result, the optimal adaptivity gap for submodular
functions. In §3.1 we prove the upper bound and in §3.2 we prove the lower bound of
Theorem 1.

I Theorem 1. The adaptivity gap for SMP where the constraints are prefix-closed and the
function is monotone non-negative submodular is exactly 2.

3.1 Upper Bound of 2
Our non-adaptive strategy samples a random root-leaf path using the optimal adaptive
strategy tree T (Definition 7). In other words, it performs a “dry-run” of a random walk
along the tree without probing anything. In the end it queries all the elements on this
random root-leaf path. We argue that its expected value is at least half of the adaptive
strategy. We encourage the reader to follow the proof idea outlined in §1.2 since algebra can
conceal the main ideas.

Proof of the upper bound in Theorem 1. We induct over the depth of the tree T , i.e., for
any monotone submodular function f and tree T of depth at most d, we have

alg(T , f) ≥ 1
2adap(T , f).

The base case for d = 1 is trivially true because the tree is a single node. For induction,
let e be the root node of the optimal decision tree T . Denote by I def= Xe the (random)
type of element e when probed by the adaptive strategy (and also the virtual type of the

D. Bradac, S. Singla, and G. Zuzic 49:9

non-adaptive strategy), while R def= X ′e be the (random) true type when probed by the
non-adaptive strategy. Also, let TI denote the subtree the adaptive strategy goes to when
the root element is in type I and let fI be the contraction from Eq. (1). This implies

adap(T , f) = EI [f(I) + adap(TI , fI)] and alg(T , f) = EI,R[f(R) + alg(TI , fR)].
(4)

Now using submodularity and monotonicity of f on every root-leaf path of the adaptive
strategy,

adap(T , f) ≤ EI,R[f(I ∪R) + adap(TI , fI∪R)]
≤ EI,R[f(I) + f(R) + adap(TI , fI∪R)],

where the last inequality uses that every monotone submodular function is subadditive.
Notice that I and R are i.i.d. variables. This along with linearity of expectation implies

adap(T , f) ≤ EI,R[2 · f(R) + adap(TI , fI∪R)]. (5)

Next, we lower bound the expected value of the non-adaptive strategy from Eq. (4). We
use monotonicity of f to get

alg(T , f) = EI,R[f(R) + alg(TI , fR)] ≥ EI,R[f(R) + alg(TI , fI∪R)]. (6)

Since fI∪R is also a monotone submodular function over independent elements and TI is an
adaptive strategy tree of depth at most d− 1, by induction hypothesis

alg(TI , fI∪R) ≥ 1
2adap(TI , fI∪R).

Combining this with Eq. (5) and Eq. (6), we get

alg(T , f) ≥ 1
2adap(T , f),

which finishes the proof of the upper bound by induction. J

3.2 Lower Bound of 2
In this section we show a monotone non-negative submodular function and a prefix-closed
set of constraints where the adaptivity gap for stochastic probing is arbitrarily close to 2.
Combined with §3.1, this proves Theorem 1 that the optimal adaptivity gap is exactly 2.

The proof below uses a stochastic probing instance on an infinite universe. Since
submodular functions are defined only on finite sets, the proof below is informal. We
do this to explain our main ideas and defer the formal proof to Appendix A.

Informal proof of the lower bound in Theorem 1. Our example is on a universe V :=
{e(k,l) | k, l ∈ Z≥0} where every element is independently active with probability ε for
some 0 < ε < 1.

Example. We define our submodular objective f to be the weighted rank function of a
partition matroid that selects at most one element from each part. The elements are
partitioned according to their first label – for every k ∈ Z≥0 the set {e(k,l) | l ∈ Z≥0} is a

APPROX/RANDOM 2019

49:10 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

part of the partition matroid with weight (1− ε)k. In other words, for any set S ⊆ V let
K(S) := {k | e(k,l) ∈ S} be the (unique) set of first labels, then

f(S) def=
∑

k∈K(S)

(1− ε)k.

Note that this series always converges so f is well defined.
To define our prefix-closed constraints, we consider an infinite directed acyclic graph
where every element is identified with a single node in the graph. Every node/element
e(k,l) has exactly two outgoing edges: towards e(k,l+1) and towards e(k+l+1,0). We denote
{e(k,0), e(k,1), . . .} as the elements on column k. The probing constraint is that a sequence
of elements can be probed if and only if it corresponds to a directed path starting at
e(0,0). See Figure 2 for an illustration.

0,0

0,1 1,0

0,2 1,1 2,0

0,3 1,2 2,1 3,0

Figure 2 Adaptivity gap lower bound example for monotone submodular functions.

Analysis. We first give an adaptive strategy with value 2 − ε (in Eq. (7)) and later argue
that every non-adaptive strategy has value at most 1 (in Eq. (8)); thereby, proving this
theorem. Although, the probing constraint allows for infinite strategies, and in a different
setting it would not be clear how to define their expected values, since f is monotone we
include every active element in the solution. So the expected value of an infinite strategy
can be defined as the limit of strategies that only probe a finite number of elements.
The finite lower bound example in Appendix A is constructed by reducing V so that the
resulting strategies are close to this limit.
Our adaptive strategy adap starts with probing element e(0,0). It is defined recursively:
after probing e(k,l), the next element to probe is either e(k+l+1,0) if e(k,l) is found active,
or e(k,l+1) otherwise. In other words, it probes elements on a column until it finds one
active, and then probes another column.
Let adap(k) denote the expected additional value our above adaptive strategy if the
next probed element is e(k,0) and let adap def= adap(0) denote the expected value of the
entire strategy. Note that adap(k) does not depend on the set of elements found active
before probing e(k,0) (i.e., the elements e(k′,l′) where k′ < k). Furthermore, the subgraph
reachable from e(k,0) is similar to the entire graph on V in the sense that one can relabel
the elements in the subgraph to match the entire graph exactly, the only difference being
that the value of any subset is multiplied by a factor of (1− ε)k. Therefore, we have

adap(k) = (1− ε)k · adap(0).

D. Bradac, S. Singla, and G. Zuzic 49:11

Now, summing over the number of inactive elements on column 0, we get

adap(0) =
∞∑
k=0

(1− ε)k · ε ·
(

1 + adap(k + 1)
)

=
∞∑
k=0

(1− ε)k · ε
(

1 + (1− ε)k+1 · adap(0)
)
,

which uses adap(k) = (1− ε)k · adap(0). Solving this equation yields the result:

adap = adap(0) = 2− ε. (7)

Similarly, let alg(k) denote the expected additional value of the optimal non-adaptive
strategy if the next probed element is e(k,0), and let alg = alg(0) denote the expected
value of the optimal non-adaptive strategy. By the same argument as adap(k), we have

alg(k) = (1− ε)k · alg(0).

Let k denote the number of elements the optimal non-adaptive strategy probes on
column 0. We get

alg(0) = sup
k≥1

{
1− (1− ε)k + alg(k)

}
= sup

k≥1

{
1− (1− ε)k + (1− ε)k · alg(0)

}
,

which uses alg(k) = (1− ε)k · alg(0). This implies

alg = alg(0) = 1. (8)

Combining Eq. (7) and Eq. (8), we get an adaptivity gap arbitrarily close to 2 for
ε→ 0. J

4 Adaptivity Gaps for a Weighted Rank Function of a k-Extendible
System

For a downward-closed family F , recollect that we define its rank function fF : 2V → R≥0 to
be the largest cardinality subset in F , i.e., fF (S) def= maxT⊆S & T∈F |T | = maxT∈F |S ∩ T |.
In this section we prove our results on the adaptivity gaps of a weighted rank function of a
k-extendible system.

I Theorem 2. The adaptivity gap for SMP where the constraints are prefix-closed and the
function is a weighted rank function of a k-extendible system is between k and O(k log k).
Moreover, for unweighted rank functions, the adaptivity gap is between k and 2k.

In §4.1 we prove the upper bound for unweighted k-extendible systems, and in §4.2
we give a reduction from weighted to unweighted k-extendible systems that loses a factor
O(log k) in the adaptivity gap. Our lower bound is presented in §4.3.

To simplify our proofs, we define an element e ∈ T as a loop in F ⊆ 2T if {e} 6∈ F .
Furthermore, given a non-loop element e ∈ T , we define the contraction F/e as {F \ {e} |
F ∈ F , e ∈ F}, i.e., the family of subsets that contain e but with e removed. We also need
the following property of k-extendible systems, which intuitively means a set E ∈ F hurts at
most k · |E| from another set B ∈ F . We include the proof for completeness in Appendix B.

Let F ⊆ 2T be a k-extendible system. For every A ⊆ B ∈ F and E ⊆ T where A∪E ∈ F ,
there exists a set Z ⊆ B \A such that |Z| ≤ k · |E| and B \ Z ∪ E ∈ F .

APPROX/RANDOM 2019

49:12 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

4.1 Upper Bound of 2k for an Unweighted k-Extendible System
Let T denote the optimal adaptive strategy for maximizing the rank function f of a given
k-extendible system F . We prove the following unweighted upper bound of Theorem 2.

I Theorem 8. The adaptivity gap for SMP where the constraints are prefix-closed and the
function is an unweighted rank function of a k-extendible system is at most 2k.

We use the random walk strategy to convert the adaptive strategy T into a non-adaptive
strategy. To analyze our algorithm, we define a natural greedy procedure to select a subset of
A ⊆ T that is also in F ⊆ 2T . First, consider elements of A in an arbitrary order (which
can even be determined on the fly). If the currently considered element is a non-loop, it
gets contracted in F ; otherwise it gets ignored. Any such computed set is in F and the final
output, the number of contracted elements, is denoted by greedy(A). We first show that for
k-extendible systems such a greedy procedure produces a k-approximation to the largest
subset in F . A similar statement has been proven by Mestre [29].

I Lemma 9. Let f be a rank function of a k-extendible system F ⊆ 2T . Fix any subset
A ⊆ T and consider the output of the greedy procedure greedy(A) with an arbitrary ordering
of A. We have that f(A) ≤ k · greedy(A). Even more, for any A ⊆ B ⊆ T we have that
f(A) ≤ k · greedy(B).

Proof. Let G ⊆ B be the set picked by greedy(B). Notice that G is a maximal set in F
(need not be maximum). On the other hand, let OPT ⊆ A be the set picked by f(A), i.e.,
the maximum set in F on A. Our goal is to prove |OPT| ≤ k · |G|.

Let C def= OPT ∩G, note that G = C ∪ (G \ C) ∈ F and C ⊆ OPT, hence by Section 4
there is a Z ⊆ OPT\C with |Z| ≤ k · |G\C| = k · |G|−k · |C| such that OPT\Z ∪ (G\C) =
(OPT \ C) \ Z ∪ G ∈ F . However, since G is a maximal set and (OPT \ C) ∩ G = ∅ we
know that OPT \ C \ Z = ∅ and hence |OPT| ≤ |Z| + |C| ≤ k · |G| − k · |C| + |C| =
k · |G| − (k − 1)|C| ≤ k · |G|. J

Given the above properties of a k-extendible system, we can now prove Theorem 8.

Proof of Theorem 8. Let X and X′ denote the element types for the adaptive and the
non-adaptive algorithms, respectively. The adaptive strategy on the optimal decision tree T
gets value f(XS), where S ⊆ V is the set of probed elements by strategy T for type vector
X. We compare this value to a greedy strategy greedy(XS ∪X′S) in which
1. we consider the elements of S in root-to-leaf order in which they appear on the tree and
2. for any e ∈ S we first consider X′e (the true type) before Xe (the virtual type) in the

greedy order.
Note by Lemma 9 we have

adap(T , f) = EX[f(XS)] ≤ k · EX,X′ [greedy(XS ∪X′S)].

By induction on the subtrees, below we prove

EX,X′ [greedy(XS ∪X′S)] ≤ 2 · alg(T , f). (9)

This finishes the proof of Theorem 8 because the optimal non-adaptive algorithm has value
at least

alg(T , f) ≥ 1
2 · EX,X′ [greedy(XS ∪X′S)] ≥ 1

2k · adap(T , f).

D. Bradac, S. Singla, and G. Zuzic 49:13

To prove the missing Eq. (9), we induct on the height of the tree and F being any
downward-closed family. For consistency, we define the notation of greedy(T , f) to denote
the value of the above greedy strategy when run on T with a rank function f . Thus,
greedy(T , f) = EX,X′ [greedy(XS ∪ X′S)]. Suppose e ∈ V is the label of the root of T .
Denote by I def= Xe the (random) type of element e when probed by the adaptive strategy
(which is also the virtual type of the non-adaptive strategy), and denote R def= X ′e the
(random) true type when probed by the non-adaptive strategy. Also, let TI denote the
subtree the adaptive strategy goes to when the root e is in state I. We have

greedy(T , f) ≤ EI,R[f(I ∪R) + greedy(TI , (f/R)/I)],

where by (f/R)/I we mean the rank function of F after we first contract R if it a non-loop,
and then contract I if it is still a non-loop. Now subadditivity of f gives

greedy(T , f) ≤ EI,R[f(I) + f(R) + greedy(TI , (f/R)/I)]
= EI,R[2 · f(R) + greedy(TI , (f/R)/I)], (10)

where the last equality uses linearity of expectation as I and R are identically distributed.
Next, we lower bound the value of our non-adaptive algorithm. Although it takes a

random root-leaf path and decides the set of elements to retain in the end, we lower bound
its value by an online algorithm that greedily selects R (unless it is a loop), however, always
also contracts I if it is a non-loop. This gives,

alg(T , f) ≥ EI,R[f(R) + alg(TI , (f/R)/I)]. (11)

Since (f/R)/I is also a rank function of a downward-closed system and TI is an adaptive
strategy, by induction hypothesis we have

alg(TI , (f/R)/I) ≥ 1
2 greedy(TI , (f/R)/I).

Combining this with Eq. (10) and Eq. (11), we get

greedy(T , f) ≤ 2 · alg(T , f),

which proves Eq. (9) by induction. J

4.2 Reducing Weighted to Unweighted k-Extendible System by Losing
O(log k)

We show how to extend the adaptivity gap result for an unweighted k-extendible system to a
weighted k-extendible system by losing an O(log k) factor.

I Theorem 10. For SMP over prefix-closed constraints, the adaptivity gap for a weighted
rank function of a k-extendible system is at most 32k log2 k.

Proof. Given a weighted rank function f of a k-extendible system F ⊆ 2T over a set of
types T , we define fj for j ∈ Z to be an unweighted rank function of the k-extendible system
F ; however, the new weights are changed such that only the types with original weights in

APPROX/RANDOM 2019

49:14 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

(2j−1, 2j] participate with new weight of 1, while the other elements have a new weight of 0.
Note that this partitions the set of types T into pairwise disjoint classes. Notice, we have

adap(T , f) ≤
∑
j

2j · adap(T , fj), (12)

where adap(T , fj) denotes the expected value of an adaptive strategy given by the common
decision tree T with respect to the rank function fj .

Now, since adap(T , fj) is an unweighted k-extendible system problem, we know that a
random root-leaf path returns a solution with expected value

alg(T , fj) ≥
1
2k · adap(T , fj). (13)

In the following lemma, we show that these non-adaptive solutions for fj can be combined
to obtain a feasible and “high-value” non-adaptive solution for f .

I Lemma 11. The random-walk non-adaptive algorithm alg has expected value

alg(T , f) ≥ 1
16 · log k

∑
j

2j · alg(T , fj).

Before proving Lemma 11, we finish the proof of Theorem 10 by combining it with Eq. (13)
and Eq. (12):

alg(T , f) ≥ 1
16 · log k

∑
j

2j · alg(T , fj) ≥
1

32k log k
∑
j

2j · adap(T , fj)

≥ 1
32k log k · adap(T , f). J

Informally, in the proof of Lemma 11 we combine the unweighted solutions of alg(T , fi)
by running a “greedy-optimal” algorithm from the higher weight to the smaller weight classes
and fixing the types chosen in earlier classes. Unfortunately, in general such an approach
loses an extra factor k in the approximation. To fix this, our second idea is to increase the
weight gap between successive classes. We achieve this by combining O(log k) consecutive
classes into a bucket, where in each bucket we focus on the class with the largest non-adaptive
value. Because of boundary issues, we only take either odd or even buckets.

Proof of Lemma 11. Let a ≤ b ∈ Z denote the indices of the smallest and the highest weight
classes. We define buckets consisting of 2 log k consecutive classes, where bucket Bi consists
of classes {b− 2i log k, b− 2i log k − 1, . . . , b− 2(i− 1) log k}. For each Bi, let

j(i) def= argmaxj∈Bi
{2j · alg(T , fj)}.

Since each bucket has size 2 log k, this implies∑
i

2j(i) · alg(T , fj(i)) ≥
1

2 · log k
∑
j

2j · alg(T , fj).

Without loss of generality we can assume the odd indices satisfy∑
i is odd

2j(i) · alg(T , fj(i)) ≥
1
2
∑
i

2j(i) · alg(T , fj(i)).

D. Bradac, S. Singla, and G. Zuzic 49:15

Otherwise, use the same argument for even indices. Combining the last two equations, we get∑
i is odd

2j(i) · alg(T , fj(i)) ≥
1

4 · log k
∑
j

2j · alg(T , fj). (14)

We now claim that a greedy-optimal algorithm has a large value: It goes over classes j(i)
in decreasing order of (odd) buckets, but it always selects the maximum independent set
(instead of selecting a maximal greedy set) in the current class j(i) given its choices in the
previous. This algorithm is, therefore, a combination of greedy and optimal algorithms. The
proof of the following is deferred to Appendix C.

B Claim 12. Consider an algorithm that goes over the odd numbered buckets in decreasing
order of weights and selects the maximum set from class j(i) in bucket i such that the
resulting set is still feasible in F . (After a set in a class is selected, it gets fixed for all smaller
choices.) The finally chosen set has value at least 1

4
∑
i is odd 2j(i) · alg(T , fj(i)).

Using Claim 12, we have

alg(T , f) ≥ 1
4
∑

i is odd
2j(i) · alg(T , fj(i)),

which combined when with Eq. (14) proves Lemma 11. J

4.3 Lower Bounds
We present two very similar lower bound examples: one where the adaptivity gap is k − o(1)
for a rank function of an unweighted k-extendible system and another where the adaptivity
gap is Ω(

√
k) for a rank function of an intersection of k matroids. A related example was

also shown in [23].

Example. For generality we work in the Bernoulli setting where each element in V is either
active or inactive. Consider a perfect w-ary tree of depth k whose edges correspond to the
ground set V . Each edge is active with probability p > 0. For any leaf `, let P` denote the
unique path from the root to `. The objective value on any set is the maximum number of
edges in the set on the same root-leaf path, i.e., for any S ⊆ V ,

f(S) def= max
leaf `

|P` ∩ S|.

The feasibility constraints are such that a set of edges can be probed if and only if there
exists some root-leaf path P` such that every probed edge has at least one endpoint on P`.
Note that this implies that a maximum of w · k edges can be probed.

Analysis. Let the adaptive strategy be the following: probe all w edges incident to the root.
If any of them is active, start probing the edges directly below the active edge, otherwise
below the first edge. Continue recursively until a leaf is reached. On every level, the adaptive
strategy has 1− (1− p)w probability of finding an active edge. Therefore, the expected value
of the adaptive strategy is k · (1− (1− p)w).

For any non-adaptive strategy, the feasibility constraints imply there exists a root-leaf
path P` such that all probed edges have an endpoint on it. Suppose all w · k edges incident
to P` are probed. The non-adaptive strategy can get value at most 1 from the edges not on
P` and in expectation at most k · p from the edges on P`. So, the non-adaptive strategy has
an expected value of at most 1 + k · p.

APPROX/RANDOM 2019

49:16 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

Lower Bound of k for an unweighted k-extendible system

Consider the example described above and set w def= k4 and p
def= 1

k3 . The function f is
trivially a rank function of a k-extendible system because the rank of the system is k, i.e.,
f(V) = k. The adaptive strategy has an expected value

k ·
(

1−
(

1− 1
k3

)k4)
≥ k ·

(
1− 1

ek

)
= k − o(1),

whereas any non-adaptive strategy has an expected value at most 1 + 1
k2 . This gives an

adaptivity gap of k − o(1).

Lower Bound of Ω(
√

k) for an unweighted intersection of k matroids

In this section we show how to model the above example as an intersection of t = k2 matroids,
yielding an adaptivity gap of Ω(

√
t) for an intersection of t matroids. Consider the example

described above and set w def= k and p def= 1
k . The adaptive strategy has an expected value of

k ·
(

1−
(

1− 1
k

)k)
≥ k ·

(
1− 1

e

)
= Ω(k)

and the non-adaptive strategy gets at most 2 in expectation; so the adaptivity gap is Ω(k).
All that remains to show is that f can be represented as an intersection of k2 simple

partition matroids. We use the term simple partition matroid for a matroid that partitions
the V into multiple parts and a set is independent if it contains at most one element in
every part.

Suppose that k is prime and label each node v with a list Lv as follows: the root’s label
is an empty list (). Let L(i) denote the ith element of the list L and L+ x a list equal to
L with x appended to it. All the other nodes are labeled recursively: let v be a node with
children {v0, v1, ...vk−1}. Define Lvi

def= Lv + i. Hence, u is an ancestor of v if and only if Lu
is a prefix of Lv, and otherwise Lu(i) 6= Lv(i) for some i.

Let ev denote the edge/element between v and its parent. We define k2 partition matroids
Mi,j for i ∈ {1, 2, ..., k} and j ∈ {0, 1, ..., k−1}. EachMi,j consists of k big partitions indexed
from 0 to k − 1, and all other partitions contain only a single element. Let

Iv(i, j)
def= Lv(i)j + dv(mod k).

For a node v on depth dv ≥ i, element ev is in the Iv(i, j)th big partition of Mi,j . For a node
v on depth dv < i, ev is the only element in its partition in Mi,j .

We claim that f is the rank function of F def=
⋂k
i=1
⋂k−1
j=0 Mi,j , which is an intersection

of k2 matroids. Since F is an intersection of simple partition matroids, S ∈ F if and only
if {a, b} ∈ F for every a, b ∈ S. Now consider two nodes u, v such that {eu, ev} 6∈ F . This
means Iu(i, j) = Iv(i, j) for some i ≤ du, dv and j ∈ {0, 1, ..., k − 1}, which is equivalent to

Lu(i) · j + du ≡ Lv(i) · j + dv(mod k).

Since k is prime, this holds for some i, j if and only if du = dv (for j = 0, i = 1) or
Lu(i) 6= Lv(i) for any i. That is, {eu, ev} 6∈ F if and only if u and v are not ancestors of one
another, which completes the proof.

D. Bradac, S. Singla, and G. Zuzic 49:17

References

1 Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching. Inf.
Process. Lett., 111(15):731–737, 2011.

2 Marek Adamczyk, Fabrizio Grandoni, and Joydeep Mukherjee. Improved approximation
algorithms for stochastic matching. In Algorithms-ESA 2015, pages 1–12. Springer, 2015.

3 Marek Adamczyk, Maxim Sviridenko, and Justin Ward. Submodular Stochastic Probing on
Matroids. In STACS, pages 29–40, 2014.

4 Arash Asadpour and Hamid Nazerzadeh. Maximizing stochastic monotone submodular
functions. Management Science, 62(8):2374–2391, 2016.

5 Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic submodular maximization.
In International Workshop on Internet and Network Economics, pages 477–489. Springer, 2008.
Full version appears as [4].

6 Itai Ashlagi and Alvin E. Roth. New Challenges in Multihospital Kidney Exchange. American
Economic Review, 102(3):354–59, 2012.

7 Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri Rudra.
When LP Is the Cure for Your Matching Woes: Improved Bounds for Stochastic Matchings.
Algorithmica, 63(4):733–762, 2012.

8 Nikhil Bansal and Viswanath Nagarajan. On the Adaptivity Gap of Stochastic Orienteering.
In IPCO, pages 114–125, 2014.

9 Alok Baveja, Amit Chavan, Andrei Nikiforov, Aravind Srinivasan, and Pan Xu. Improved
Bounds in Stochastic Matching and Optimization. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August
24-26, 2015, Princeton, NJ, USA, pages 124–134, 2015.

10 Anand Bhalgat, Ashish Goel, and Sanjeev Khanna. Improved Approximation Results for
Stochastic Knapsack Problems. In SODA, pages 1647–1665, 2011.

11 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

12 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular Function Maximization
via the Multilinear Relaxation and Contention Resolution Schemes. SIAM J. Comput.,
43(6):1831–1879, 2014. doi:10.1137/110839655.

13 Ning Chen, Nicole Immorlica, Anna R. Karlin, Mohammad Mahdian, and Atri Rudra. Ap-
proximating Matches Made in Heaven. In Automata, Languages and Programming, 36th
International Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I,
pages 266–278, 2009.

14 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic knapsack
problem: The benefit of adaptivity. In Foundations of Computer Science, 2004. Proceedings.
45th Annual IEEE Symposium on, pages 208–217. IEEE, 2004.

15 Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Adaptivity and approximation for
stochastic packing problems. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January 23-25,
2005, pages 395–404, 2005.

16 Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation Algorithms
for Stochastic Boolean Function Evaluation and Stochastic Submodular Set Cover. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1453–1466, 2014. doi:
10.1137/1.9781611973402.107.

17 Sudipto Guha and Kamesh Munagala. Approximation algorithms for budgeted learning
problems. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 104–113. ACM, 2007.

APPROX/RANDOM 2019

https://doi.org/10.1137/110839655
https://doi.org/10.1137/1.9781611973402.107
https://doi.org/10.1137/1.9781611973402.107

49:18 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

18 Sudipto Guha and Kamesh Munagala. Multi-armed Bandits with Metric Switching Costs.
In Automata, Languages and Programming, 36th Internatilonal Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part II, pages 496–507, 2009.

19 Anupam Gupta, Ravishankar Krishnaswamy, Marco Molinaro, and R. Ravi. Approximation
Algorithms for Correlated Knapsacks and Non-martingale Bandits. In IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, 2011, pages 827–836, 2011.

20 Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R. Ravi. Approx-
imation algorithms for stochastic orienteering. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 1522–1538, 2012.

21 Anupam Gupta and Viswanath Nagarajan. A Stochastic Probing Problem with Applications.
In Integer Programming and Combinatorial Optimization - 16th International Conference,
IPCO 2013, Valparaíso, Chile, March 18-20, 2013. Proceedings, pages 205–216, 2013.

22 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Algorithms and adaptivity gaps for
stochastic probing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1731–1747. SIAM, 2016.

23 Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. Adaptivity Gaps for Stochastic
Probing: Submodular and XOS Functions. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1688–1702. SIAM, 2017.

24 Jian Li Hao Fu and Pan Xu. A PTAS for a Class of Stochastic Dynamic Programs. In
Automata, Languages, and Programming - 39th International Colloquium, ICALP 2018, 2018.

25 Lisa Hellerstein, Devorah Kletenik, and Patrick Lin. Discrete Stochastic Submodular Maximiza-
tion: Adaptive vs. Non-adaptive vs. Offline. In Algorithms and Complexity - 9th International
Conference, CIAC 2015, Paris, France, May 20-22, 2015. Proceedings, pages 235–248, 2015.
doi:10.1007/978-3-319-18173-8_17.

26 Jian Li and Wen Yuan. Stochastic combinatorial optimization via poisson approximation. In
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 971–980, 2013. doi:10.1145/2488608.2488731.

27 Zhen Liu, Srinivasan Parthasarathy, Anand Ranganathan, and Hao Yang. Near-optimal
algorithms for shared filter evaluation in data stream systems. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver, BC,
Canada, June 10-12, 2008, pages 133–146, 2008. doi:10.1145/1376616.1376633.

28 Will Ma. Improvements and Generalizations of Stochastic Knapsack and Multi-Armed Bandit
Approximation Algorithms: Extended Abstract. In SODA, pages 1154–1163, 2014.

29 Julián Mestre. Greedy in approximation algorithms. In European Symposium on Algorithms,
pages 528–539. Springer, 2006.

30 Alvin E. Roth, Tayfun Sönmez, and M.Ũtku Ünver. Pairwise kidney exchange. J. Econom.
Theory, 125(2):151–188, 2005. doi:10.1016/j.jet.2005.04.004.

31 Aviad Rubinstein and Sahil Singla. Combinatorial prophet inequalities. In Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1671–1687.
SIAM, 2017.

A Adaptivity Gap Lower Bound of 2 for Submodular Functions

Proof. As mentioned, the finite lower bound example is constructed by reducing the infinite
example given in Section 3.2. However, this reduction loses the nice similarity properties of
the graph so much more calculation is required in order to bound the strategies.

Let 0 < ε < 1/2 and D be the smallest integer such that (1 − ε)D < ε2. The ground
set is the result of removing elements e(k,l) where k + l > D, that is V def= {e(k,l) : k, l ∈
Z≥0, k + l ≤ D} where each node is active with probability ε. The probing constraint

https://doi.org/10.1007/978-3-319-18173-8_17
https://doi.org/10.1145/2488608.2488731
https://doi.org/10.1145/1376616.1376633
https://doi.org/10.1016/j.jet.2005.04.004

D. Bradac, S. Singla, and G. Zuzic 49:19

and the objective function f are naturally reduced to this set: a sequence of elements can
be probed if they correspond to a (finite) path starting at e(0,0) in the given graph, and
f(S) def=

∑
k∈K(S)(1 − ε)k where K(S) is the set of (unique) first labels which now finite.

Similarly as before, we will denote {e(k,0), e(k,1), . . . , e(k,D−k)} as the vertices on the column k.
We first show that any non-adaptive strategy has expectation at most 1. Let alg(k)

denote the additional expected value of the optimal non-adaptive strategy if the next probed
element is e(k,0). We will inductively prove alg(k) < (1− ε)k, which is sufficient for our claim.
For the base case k = D, the inequality clearly holds since alg(D) = ε(1− ε)D < (1− ε)D.
For 0 ≤ k < D let i be the second label of the last vertex probed on the column k.

alg(k) = D−kmax
i=0

[
(1− ε)k Pr[k ∈ K(active)] + alg(k + i+ 1)

]
= D−kmax

i=0

[
(1− ε)k(1− (1− ε)i+1) + alg(k + i+ 1)

]
<

D−kmax
i=0

[
(1− ε)k(1− (1− ε)i+1) + (1− ε)k+i+1

]
= (1− ε)k.

This completes the induction and proves that non-adaptive strategies get at most 1.
Finally, we show that there exists an adaptive strategy with expected value at least

2−O(ε) for sufficiently small ε > 0. This finalizes the proof since it implies a gap of 2 by
taking ε→ 0. The strategy is naturally reduced: first probe e(0, 0) and after probing some
e(k,l) terminate if k + l = D, otherwise probe e(k+l+1,0) if e(k,l) is active and e(k,l+1) if not.
Let adap(k) denote the expected value this strategy gets when the next probed element is
e(k,0), for 0 ≤ k ≤ D. For convenience, define adap(D + i) def= 0 for all i ≥ 1.

We prove by induction that adap(k) > 4−6ε
2−ε (1 − ε)k − 8ε, which is sufficient to finalize

the proof since then adap(0) > 2 − O(ε). For k large enough that 4−6ε
2−ε (1 − ε)k < 8ε, the

inequality clearly holds and presents our base case. Otherwise, (1− ε)k ≥ 8 2−ε
4−6εε > 4ε. Let i

be the second label of the last vertex probed on the column k and let A denote the set of
active elements.

adap(k) =
D−k∑
i=0

Pr
[
v(k,i) ∈ A, v(k,0) 6∈ A, . . . , v(k,i−1) 6∈ A

] [
(1− ε)k + adap(k + i+ 1)

]
=
D−k∑
i=0

(1− ε)iε
[
(1− ε)k + adap(k + i+ 1)

]
= ε ·

D−k∑
i=0

(1− ε)k+i + ε ·
D−k∑
i=0

(1− ε)iadap(k + i+ 1)

= ε · 1
ε

(1− ε)k
(

1− (1− ε)D−k+1
)

+ ε ·
D−k∑
i=0

(1− ε)i · adap(k + i+ 1).

Using the induction hypothesis, we get

adap(k) > (1− ε)k − (1− ε)D+1 + ε

D−k∑
i=0

(1− ε)i
(4− 6ε

2− ε (1− ε)k+i+1 − 8ε
)

= (1− ε)k − (1− ε)D+1 + ε

D−k∑
i=0

4− 6ε
2− ε (1− ε)k+2i+1 − 8ε2

D−k∑
i=0

(1− ε)i

= (1− ε)k − (1− ε)D+1 + (1− ε)k+1 4− 6ε
(2− ε)2

(
1− (1− ε)2(D−k+1)

)
− 8ε

(
1− (1− ε)D−k+1

)
.

APPROX/RANDOM 2019

49:20 (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing

After dropping some positive summands and using (1− ε)D < ε and (1− ε)k > ε, we get

adap(k) > (1− ε)k − ε2 + (1− ε)k+1 4− 6ε
(2− ε)2 (1− ε2)− 8ε.

It is sufficient to prove

(1− ε)k − ε2 − 8ε+ (1− ε)k+1 4− 6ε
(2− ε)2 (1− ε2) > 4− 6ε

2− ε (1− ε)k − 8ε.

Multiplying by (2−ε)2

(1−ε)k > 0, we get an equivalent statement to prove:

(2− ε)2 − ε2 · (2− ε)2

(1− ε)k + (1− ε)(4− 6ε)(1− ε2) > (4− 6ε)(2− ε).

Finally, using ε2 (2−ε)2

(1−ε)k < ε2(2 − ε)2 1
4ε = ε + O(ε2) and expanding out, we note that the

left-hand side is 8− 15ε+O(ε2), while the right-hand side is 8− 16ε+O(ε2). Therefore, the
inequality holds for sufficiently small ε > 0. This concludes the proof. J

B Proof of the k-Extendible Property for Set Extension

Let F ⊆ 2T be a k-extendible system. For every A ⊆ B ∈ F and E ⊆ T where A ∪ E ∈ F ,
there exists a set Z ⊆ B \A such that |Z| ≤ k · |E| and B \ Z ∪ E ∈ F .

Proof. Enumerate the elements E = {e1, . . . , er} where r def= |E| and denote by Ei
def=

{e1, . . . , ei} for 0 ≤ i ≤ r. Initialize Z0
def= ∅ and consider the following procedure to

construct Z1, Z2, . . . , Zr that satisfies the invariants A ⊆ B \ Zi, B \ Zi ∪ Ei ∈ F and
|Zi| ≤ k · i.

In the ith step we have that A∪Ei−1 ∪ {ei} ∈ F by downward-closeness and A∪Ei−1 ⊆
B \ Zi−1 ∪Ei−1 by the induction hypothesis. Hence by k-extendibility we can find Z ′ ⊆ B \
(Zi−1∪A∪Ei−1) with |Z ′| ≤ k and where (B\Zi−1∪Ei−1)\Z ′∪{ei} = B\(Zi−1∪Z ′)∪Ei ∈ F .
Set Zi

def= Zi−1 ∪ Z ′ and note that |Zi| ≤ |Zi−1|+ |Z ′| ≤ (i− 1) · k + k = i · k. Furthermore,
already deduced that B \Zi∪Ei ∈ F and finally A ⊆ B \Zi = B \Zi−1 \Z ′ since Z ′∩A = ∅.
We satisfied all stipulations of the induction, hence we report Zr as the solution. J

C Proof of Claim 12

B Claim 12. Consider an algorithm that goes over the odd numbered buckets in decreasing
order of weights and selects the maximum set from class j(i) in bucket i such that the
resulting set is still feasible in F . (After a set in a class is selected, it gets fixed for all smaller
choices.) The finally chosen set has value at least 1

4
∑
i is odd 2j(i) · alg(T , fj(i)).

Proof. The intuition is that for a k-extendible system by Section 4 any selected member can
“hurt” at most k members from lower buckets. Since we only consider odd numbered buckets,
two types in different buckets differ in their weights by at least a factor of 22 log k = k2. Thus,
losing k types of lower weight should not significantly impact the value.

Let ` be the random variable denoting the leaf reached by the random walk on the
decision tree T , and let R be the random set of elements seen by the random-walk non-
adaptive strategy on this path. Furthermore, let Ai denote the set of elements picked by the
non-adaptive strategy with respect to fj(i), let A′i ⊆ Ai be the set of elements picked by our
greedy-optimal non-adaptive strategy from bucket i, and let A′<i denote

⋃
i′<i : i′ is oddAi′ .

D. Bradac, S. Singla, and G. Zuzic 49:21

In other words, A′<i is the greedy-optimal solution up to bucket number i and A′i is the
maximum subset of Ai such that A′i ∪ A′<i ∈ F . Note that Ai, A′i and A′<i are random
variables depending on ` and R.

Using Section 4 on the k-extendible system F with the preconditions ∅ ∪A′<i ∈ F and
∅ ⊆ Ai, there exists a set Z with |Z| ≤ k · |A′<i| such that Ai \ Z ∈ F . Hence, we have

|A′i| ≥ |Ai \ Z| ≥ |Ai| − k · |A′<i|.

Multiplying by 2j(i) and summing over all odd i gives∑
i is odd

2j(i) · |A′i| ≥
∑

i is odd
2j(i) · |Ai| − k ·

∑
i is odd

2j(i) · |A′<i|

=
∑

i is odd
2j(i) · |Ai| − k ·

∑
i is odd

|A′i|
∑

i′>i : i′ is odd
2j(i

′). (15)

Now, since every bucket i contains 2 log k classes, where two successive class weights differ
by a factor of 2, we know

2j(i+2) ≤ 2j(i)

k2 .

Combining this with Eq. (15) gives

∑
i is odd

2j(i) · |A′i| ≥
∑

i is odd
2j(i) · |Ai| − k ·

∑
i is odd

|A′i|
∑

i′>i : i′ is odd

2j(i′+2)

k2

≥
∑

i is odd
2j(i) · |Ai| −

∑
i is odd

|A′i| · 2j(i),

where the last inequality uses∑
i′>i : i′ is odd

2j(i
′+2) =

∑
i′≥i : i′ is odd

2j(i
′) ≤ 2 · 2j(i) ≤ k · 2j(i).

After rearranging,∑
i is odd

2j(i) · |A′i| ≥
1
2 ·

∑
i is odd

2j(i) · |Ai|.

Notice that by definition of a class, each type in class j(i) has weight at least 2j(i)−1.
Using this fact and taking expectation over ` and R, we get

alg(T , f) ≥ E`,R
[∑
i is odd

2j(i)−1 · |A′i|
]

≥ 1
4E`,R

[∑
i is odd

2j(i) · |Ai|
]

= 1
4
∑

i is odd
2j(i) · alg(T , fj(i)),

which finishes the proof of Claim 12. C

APPROX/RANDOM 2019

Testing Odd Direct Sums Using High Dimensional
Expanders
Roy Gotlib
Bar-Ilan University, Ramat Gan, Israel
roy.gotlib@gmail.com

Tali Kaufman
Bar-Ilan University, Ramat Gan, Israel
kaufmant@mit.edu

Abstract
In this work, using methods from high dimensional expansion, we show that the property of k-
direct-sum is testable for odd values of k . Previous work of [9] could inherently deal only with the
case that k is even, using a reduction to linearity testing. Interestingly, our work is the first to
combine the topological notion of high dimensional expansion (called co-systolic expansion) with the
combinatorial/spectral notion of high dimensional expansion (called colorful expansion) to obtain
the result.

The classical k-direct-sum problem applies to the complete complex; Namely it considers a
function defined over all k-subsets of some n sized universe. Our result here applies to any collection
of k-subsets of an n-universe, assuming this collection of subsets forms a high dimensional expander.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases High Dimensional Expanders, Property Testing, Direct Sum

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.50

Category RANDOM

Funding Roy Gotlib: Research supported by ERC.
Tali Kaufman: Research supported by ERC and BSF.

1 Introduction

Given a collection X of k-subsets of [n], a function F : X → {0, 1} is a k-direct-sum if there
exists a function f : [n]→ {0, 1} such that for every A in X: F (A) =

∑
a∈A f(a) (where the

sum is performed modulo 2). A (Q,E)-tester for k-direct-sums is an algorithm that queries
F on Q inputs from X, accepts k-direct-sums and rejects with probability of at least ξ, every
function whose distance from the k-direct-sums is at least Eξ (see Definition 16 for distance
and [8] for a survey on property testing). In this work we present a new novel method for
testing k-direct-sums using high dimensional expanders. Our method is the first to deal with
k-direct-sums for odd constant values of k.

The question of testing whether a function is a k-direct-sum, as well as the entire area
of testability, has strong relations to PCP constructions. For example, one can consider the
gap amplification proof of the PCP theorem [5]. This proof uses two steps: First powering
the graph which results in every node having an “opinion” about its neighbors’ color (which
increases the alphabet size) and then reducing the alphabet. A better understanding of the
direct sum problem could potentially help in replacing the direct product done in the graph
powering phase, and might even allow omitting the alphabet reduction stage which would
yield a simpler proof to the PCP theorem and, possibly, better parameters.

© Roy Gotlib and Tali Kaufman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 50; pp. 50:1–50:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roy.gotlib@gmail.com
mailto:kaufmant@mit.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.50
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Testing Odd Direct Sums Using High Dimensional Expanders

Previous Work

There were several works on k-direct-sums, but none of them could deal with the odd constant
case due to inherent limitations of their methods: The first work to link direct-sums and high
dimensional expanders was done by Kaufman and Lubotzky [9], who showed a test for the
2-direct-sum problem on any simplicial complex that is a high dimensional expander. Their
proof is tailored to the case where k = 2. Following the work of Kaufman and Lubotzky was
a work by David, Dinur, Goldenberg, Kindler, and Shinkar [4] that proposed a tester for
k-direct-sums on the for the case where the input set is

([n]
k

)
. Their tester is based on linearity

testing: It picks x, y ∈ X such that x∆y ∈ X, and tests whether f(x) + f(y) = f(x∆y) (for
more papers on linearity testing see [1, 2, 3]). But in order to get x, y, x∆y ∈ X, k must
be even. In a recent work by Dinur and Kaufman [6], it is shown that the result of David
et al. [4] can be applied to testing functions whose inputs are taken from a subset of

([n]
k

)
that forms a high dimensional expander. However the limitation above still stands.

In this paper we introduce a new method for testing k-direct-sums that can tackle the
odd case for the first time. Specifically we show:

I Theorem 1 (Main Theorem Informal, for formal see Theorem 34). If X is a collection of
subsets that forms a high dimensional expander then there is an

(
O
(
k2) , O (k2))-tester for

the k-direct-sums where k is an odd constant.

Interestingly we combine two notions of high dimensional expanders, a topological notion
and a combinatorial notion, to obtain this result. This is the first time that both notions
were used together.
In order to describe our strategy we will first have to introduce a generalization of graphs
to higher dimensions (called simplicial complexes) as well as both notions of high dimen-
sional expanders:

Simplicial Complexes

A simplicial complex can be thought of as a hypergraph with a closure property, meaning
that if F is a hyperedge in the hypergraph then so is every subset of F . We also define the
dimension of a hyperedge F to be |F | − 1, and denote the set of i-dimensional edges of a
complex X as X(i). For example: In a graph, the vertices are considered the 0-dimensional
hyperedges, and the edges are considered the 1-dimensional hyperedges. Now that we have
defined the dimension of a hyperedge, we can define the dimension of the complex as the
dimension of the maximal hyperedge. For example: A 2-dimensional simplicial complex is a
simplicial complex that contains 2-dimensional hyperedges, often called the “triangles” (note
that these hyperedges contain 3 vertices). Throughout this paper, we will use a standard
weighted counting norm denoted as ‖·‖ (which will be defined in 8). In this work we will be
interested in simplicial complexes whose maximal hyperedges are all of the same dimension
(which are called “pure simplicial complexes”).

As previously discussed, we will use two generalizations of expansion that apply to
simplicial complexes: The first will be co-systolic expanders and the second will be colorful
expanders. In order to discuss these notions of expansion, it will be useful to reexamine the
Cheeger constant in the 1-dimensional case (aka graphs):

min
S 6=∅,V

{ ∥∥E(S, S̄)
∥∥

min
{
‖S‖ ,

∥∥S̄∥∥}
}

R. Gotlib and T. Kaufman 50:3

In any higher dimensional analogue, we would still like the essence of this constant to
hold, every set of hyperedges of some dimension i (in graphs - vertices) has a number of
out-going hyperedges of dimension i+ 1 (in graphs - edges) relative to its size. Because we
are dealing with multi-dimensional objects we would also like this bound to apply in every
dimension. The only question remaining is how to generalize the notion of an out-going edge
to higher dimensions.

Co-systolic Expanders

The first notion of expansion we will introduce is the co-systolic expansion, which is the
more topological of the two. In this form of expansion, a hyperedge of dimension i+ 1, is
said to be going out of a set E of hyperedges of dimension i, if it has an odd number of
i-dimensional sub-edges in the set E1. We denote the set of hyperedges that are going out of
a set E, according to this notion, as δE. Note that the Cheeger constant is normalized over
the distance of E from a set that has no neighbors (in the 1-dimensional case the only sets
with no neighbors are the empty set and the entire graph). Therefore we normalize our new
high-dimensional analogue accordingly and receive the following definition:

εi(X) = min
S∈{0,1}X(i)

δS 6=∅

{
‖δS‖

dist(S, {Z|δZ = 0})

}

A simplicial complex is a co-systolic expander if there exists some ε such that in every
dimension i: εi(X) ≥ ε. Note that there is another property that a simplicial complex must
fulfill in order to be a co-systolic expander. However, it is not required in the proof of this
paper and can be found in definition 20.

Colorful Expanders

The other notion of expansion we will introduce is the colorful expansion, which is the more
combinatorial of the two. In this form of expansion, a hyperedge of dimension i+ 1, is said
to be going out of a set E of hyperedges of dimension i, if it has at least one i-dimensional
sub-edge in E and at least one i-dimensional sub-edge outside of E. We denote the set
of hyperedges that are going out of a set E, according to this notion, as c(E). Using this
definition of out-going edges, we get the following generalization of the Cheeger constant (for
the i-th dimension):

σi(X) = min
S 6=0,X(i)

{
‖c(S)‖

min {‖S‖ , ‖X(i) \ S‖}

}
A simplicial complex is a σ-colorful-expander if in every dimension i: σi(X) ≥ σ.

1.1 Proof Layout
We will start by defining the property of being a k-direct-sum again, this time using the
language of simplicial complexes: Given a simplicial complex X, a function F : X(k − 1)→
{0, 1} is called a k-direct-sum if there exists a function f : X(0)→ {0, 1} such that for every
A in X(k−1): F (A) =

∑
a∈A f(a). Note that we define a k-direct-sum to be a function from

1 In the 1-dimensional case we say that an edge crosses a cut if it has exactly one vertex in the cut. Note
that if there is an odd number of vertices in an edge the odd number must be one since edges are of
cardinality 2.

APPROX/RANDOM 2019

50:4 Testing Odd Direct Sums Using High Dimensional Expanders

the (k − 1)-dimensional hyperedges of the complex, and not the k-dimensional hyperedges of
the complex, because we want the k to represent the size of the set and not the dimension of
the face.
We will show that the following algorithm tests whether a given function is a k-direct-sum
for odd constant values of k:

Algorithm 1 Tassembled−k−direct−sum.

1 pick one of the following options uniformly:
2 Test whether δF is a (k + 1)-direct-sum using a known test for even sized setsa.
3 pick m ∈ X(k + 1) randomly:
4 Check whether F |m is a k-direct-sum.

a Note that k + 1 is even and, whenever the known test asks to query δF (a), the algorithm queries every
set in

(
a
k

)
and returns the sum of the results.

In order to analyze this test, it would first be useful to deconstruct F into three functions
F = D + Z +G where D is a k-direct-sum, δZ = 0, and the remainder G.

Bounding the Norm of G Using Co-Systolic expansion

First we will show that the rejection probability of step (2) bounds ‖G‖ from above. In order
to do so we must first consider the following two properties of δ:

δ is linear.
If D is a k-direct-sum (and k is odd) then δD is a (k + 1)-direct-sum (See Lemma 28).

Combining these properties with the fact that the complex is a co-systolic expander, yields
an upper bound for G. Specifically: Because δF = δD + δG, the test performed in step (2)
gives an upper bound to ‖δG‖ (since δD is a direct sum) and co-systolic expansion implies
that ‖G‖ ≤ ε ‖δG‖.

Bounding the Norm of Z Using Colorful Expansion

Secondly, we will show how to bound ‖Z‖ from above. Alas, step (3) does not bound
‖Z‖ from above unconditionally, but if we assume that G = 0, we can bound ‖Z‖ from
above using the rejection probability of step (3). We do that in two steps: The first is
noting that ‖Z‖ is bounded from above by all the (k + 1)-faces that Z “touches”, namely
{m ∈ X(k + 1)|Z|m 6= 0} due to a property of the norm (Lemma 10). We then show the
following property: Step (3) rejects every (k + 1)-dimensional face m on which Z|m /∈ {0,1}.
In expander graphs, given a set of vertices S, the set of edges that are going out of S bounds
from above the edges that connect two vertices within S. Similarly in higher dimensional
colorful expanders, the set of edges that stay within a set S is bounded from above by the
set of edges that are going out of S. We think of an edge m on which Z|m = 1 as an edge
that connects vertices within S, and an edge m on which Z|m /∈ {0,1} as an edge that
is going out of S. Thus by colorful expansion we can bound ‖{m ∈ X(k + 1)|Z|m = 1}‖
using ‖{m ∈ X(k + 1)|Z|m /∈ {0,1}}‖. We conclude that ‖Z‖ can be bounded from above
as follows:

‖Z‖ ≤‖{m ∈ X(k + 1)| Z|m 6= 0}‖ =
‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖+ ‖{m ∈ X(k + 1)| Z|m = 1}‖ ≤
‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖+ c ‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖ =
(1 + c) ‖{m ∈ X(k + 1)| Z|m /∈ {0,1}}‖

which is bounded from above by the probability that step (3) rejects.

R. Gotlib and T. Kaufman 50:5

We end the proof by showing a way to combine both bounds. Note this is not trivial since
the bound on ‖Z‖ is dependent on the fact that G = 0. However, we can mitigate for this
dependency, since G can be bounded independently of Z.

2 Preliminaries

I Notation 2. Given a set S and an integer k denote by
(
S
k

)
= {s ⊆ S| |s| = k}.

2.1 Simplicial Complexes
We are now going to provide formal definitions of simplicial complexes and a norm on them:

I Definition 3 (Simplicial complex). A simplicial complex is a pair X = (V,E) such that:
E ⊆ P (V), and if F ∈ E then every F ′ ⊆ F is in E as well. Elements in the set E are
called the faces of X.

I Definition 4 (Dimension of a face). Let m be a face in X. Define the dimension of m to be:

dim(m) := |m| − 1

Also, define the set X(i) to be the set of all faces of dimension i (note that X(−1) = {∅}).

I Notation 5. Let X be a d-dimensional simplicial complex, given −1 ≤ i < j ≤ d, a function
F : X(i)→ {0, 1}, and m ∈ X(j). Denote by F |m the function F |m :

(
X(j)
i+1
)
→ {0, 1} such

that ∀q ∈ X(i) : F |m(q) = F (q).

I Definition 6 (Dimension of a simplicial complex). Let X = (V, F) be a simplicial complex.
Define the dimension of X to be:

dim(X) := max
f∈F

dim(f)

I Definition 7 (Pure simplicial complex). A d-dimensional simplicial complex X is called
pure if all of its maximal faces are of dimension d.

I Definition 8 (Norm over the faces). Let X be a pure simplicial complex of dimension d.
Define the weight of the face a to be:

w(a) = |{F ∈ X(d)|a ⊆ F}|(
d+1
|a|
)
· |X(d)|

and the norm ‖.‖ = ‖.‖k : P (X(i))→ [0, 1] to be: ‖A‖ :=
∑
a∈A w(A).

We will show in Appendix A that w defines a distribution on every dimension where the
probability of a face to be chosen is equal to its norm. For the rest of the paper, when an
algorithm chooses a face (unless a distribution is explicitly specified), it chooses a face with
the distribution implied by w.

I Definition 9 (Container). Let X be a d-dimensional simplicial complex, let −1 ≤ i ≤ r ≤ d
and let A ⊆ X(i). Define Γr(A) := {a ∈ X(r)|∃b ∈ A : b ⊆ a}.

I Lemma 10. Let X be a d-dimensional simplicial complex, and let −1 ≤ i ≤ j ≤ d. Then
for any A ⊆ X(i):

‖A‖ ≤
∥∥Γj(A)

∥∥ ≤ (j + 1
i+ 1

)
‖A‖

APPROX/RANDOM 2019

50:6 Testing Odd Direct Sums Using High Dimensional Expanders

I Lemma 11. Let A ⊆ X(i): ∀j :
∥∥∥{A′ ∈ X(i+ j)

∣∣∣(A′i) ⊆ A}∥∥∥ ≤ ‖A‖
The proofs of Lemma 10 and Lemma 11 can be found in Appendix B.

I Notation 12. Given a complex X, and a test T whose random choice is some m ∈ X,
denote the result of the test T when testing the function F and the random face chosen is m
from the complex X by TFX (m).

2.2 Co-systolic Expansion
We will now present the first notion of expansion used in this paper, namely - co-systolic
expanders. Co-systolic expansion was introduced by Evra and Kaufman in [7] and is the
more topological notion of expansion we will use in this paper. In order to define this notion
of expansion we must first define some spaces and operators over simplicial complexes:

I Definition 13 (Co-chains). Let X be a simplicial complex, define the i-co-chains of X to
be Ci(X) = {0, 1}X(i).

Note that the norm defined in Definition 8 implies a norm on the co-chains by setting the
norm of a co-chain to be the norm of set of faces on which it returns 1. Formally:

I Definition 14 (Extension of the norm to co-chains). For every C ∈ Ci (X) define:

‖C‖ := ‖{a ∈ X(i)|C(a) = 1}‖

Now that we have defined the co-chains and a norm on them, we can also define the distance
between co-chains as well as the distance of a co-chain from the k-direct-sums.

I Definition 15 (Distance between co-chains). Given C1, C2 ∈ Ck (X), the distance between
C1 and C2 is:

dist(C1, C2) = ‖C1 + C2‖

I Definition 16. We define the distance of a co-chain C ∈ Ck (X) to the k-direct-sum to be:

min
D∈{k-direct-sum}

{dist(C,D)}

I Definition 17 (Co-boundary operator). Let δi : Ci(X)→ Ci+1(X) be the following function:

δi(F)(m) =
∑

q∈(m
i−1)

F (q)

Note that F : X(i)→ {0, 1} and m ∈ X(i+ 1).

Lastly we will define two more spaces over the faces of the simplicial complex:

I Definition 18 (Co-cycles and co-boundaries). Let X be a simplicial complex, define the
following spaces:

The i-co-cycles: Zi(X) = Ker(δi) =
{
Z ∈ Ci(X)

∣∣δiZ = 0
}
.

The i-co-boundaries: Bi(X) = Im(δi−1) =
{
B ∈ Ci(X)

∣∣∃B′ ∈ Ci−1(X) : B = δi−1B
′}.

I Fact 19. For every dimension i: Bi(X) ⊆ Zi(X) ⊆ Ci(X).
A complex X is an (ε, µ)-co-systolic expander if any i-co-chain that is far from being a
co-cycle “touches” an odd number of times many (i+ 1)-co-chains. In addition to that, any
co-cycle that is not a co-boundary must be large. Formally:

R. Gotlib and T. Kaufman 50:7

I Definition 20 (Co-systolic expander). Let X be a d-dimensional simplicial complex and let
ε, µ > 0. X is an (ε, µ)-co-systolic-expander if for every i = 0, 1, ..., d− 1:

expi(X) = min
{

‖δi(f)‖
minz∈Zi(X) {‖f + z‖}

∣∣∣∣f ∈ Ci(X) \ Zi(X)
}
≥ ε

and

systi(X) = min
{
‖z‖
∣∣z ∈ Zi(X) \Bi(X)

}
≥ µ

Note that minz∈Zi(X) {‖f + z‖} is the distance of f from being a co-cycle.

This notion of expansion implies that the simplicial complex has the topological overlapping
property (which is explained in detail in [7]). In this paper, we will use this definition of
expansion in order to estimate the non-co-cyclic part of the difference between the function
given to us and its closest k-direct-sum. We will do that by first applying the co-boundary
operator to the function given to us, and then test whether the result is a (k + 1)-direct-sum
(we will see why this suffices in section 3).

2.3 Colorful Expansion

The other form of high dimensional expansion we use is a combinatorial one. It was first
introduced by Kaufman and Mass in [10]. This notion of expansion considers every face on
which the i-co-chain is equal to 1 as if it is colored in one color, and every face on which
the i-co-chain is equal to 0 as if is it colored in a different color. Then we look at all the
(i+ 1)-faces that are not monochromatic. More formally:

I Definition 21 (Colorful Operator). Let ci : Ci(X)→ Ci+1(X) be the following function:

ci(F)(m) =
{

1 ∃a, b ∈
(
m
k−1
)

: F (a) = 1 and F (b) = 0
0 otherwise

Note that F : X(i)→ {0, 1} and m ∈ X(i+ 1).

A simplicial complex is a colorful expander if every sufficiently small i-co-chain implies a lot
of non-monochromatic (i+ 1)-faces. Formally:

I Definition 22 (Colorful Expander). Let X be a d-dimensional simplicial complex. We say
that X is a σ-colorful-expander if for any W ∈ Ci(X) (0 ≤ i < d) such that ‖W‖ ≤ 0.5:

‖ci(W)‖
‖W‖

≥ σ

This notion of expansion deals with random walks - consider the random walk that moves
between two i-faces through a common (i+ 1)-face that contains them both. In [10] it was
shown that such random walks converge rapidly to the stationary distribution. In this paper
we will use this notion of expansion in order to estimate the co-cyclic part of the difference
between the function given to us and its closest k-direct-sum (which would be impossible to
do using the other notion of expansion).

APPROX/RANDOM 2019

50:8 Testing Odd Direct Sums Using High Dimensional Expanders

3 Properties of Direct Sums

We will now present what the k-direct-sums are and show some useful properties of k-direct-
sums.

I Definition 23 (k-direct-sum). A co-chain D : X(k− 1)→ {0, 1} is called a k-direct-sum if
there is some function d : X(0)→ {0, 1} such that D(a) =

∑
v∈a d(v) (The sum is performed

modulo 2).

I Definition 24 (Origin function). Let D : X(k) → {0, 1} be a k-direct-sum. An origin
function of D is any function d : X(0)→ {0, 1} such that D(a) =

∑
v∈a d(v).

In the rest of this chapter we will explore properties of the k-direct-sums. We will start by
finding a set of functions that spans the k-direct-sums. Then we will use these functions in
order to show how direct-sums behave when applying the co-boundary operator to them.
We will start by showing that the set of k-direct-sums is linear:

I Lemma 25 (Direct sums are closed under addition). Let F and G be two k-direct-sums
whose origin functions are f and g respectively then F +G is a k-direct-sum and its origin
function is f + g.

Proof. We know that F (a) =
∑
b∈a f(b) and G(a) =

∑
b∈a g(b). It is easy to see that

F +G =
∑
b∈a f(b) +

∑
b∈a g(b) =

∑
b∈a f(b) + g(b) =

∑
b∈a (f + g)(b). Therefore F +G is

a k-direct-sum and f + g is its origin function. J

We will now wish to find a set of functions that spans the k-direct-sum so:

I Definition 26 (Spanning set of the k-direct-sums). Let u ∈ X(0). Define Hk
u : X(k − 1)→

{0, 1} to be:

Hk
u(a) =

{
1 if u ∈ a
0 otherwise

One can easily check that ∀k : Hk
u is a k-direct-sum whose origin function is:

hku(v) =
{

1 if v = u

0 otherwise

We can now prove that
{
Hk
u

}
spans the set of k-direct-sums:

I Lemma 27. The set of k-direct-sums is spanned by
{
Hk
u |u ∈ X(0)

}
Proof. Let F be a k-direct-sum. By definition there exists f : X(0) → {0, 1} such that
F (a) =

∑
b∈a f(b). Consider the support of f : sup (f) = {u ∈ X(0)|f(u) = 1}, and define

G =
∑
u∈sup (f) H

k
u . It is easy to see that F (a) =

∑
b∈a f(b) =

∑
b∈aH

k
u(b) and therefore

F ∈ span
{
Hk
u |u ∈ X(0)

}
.

Let F ∈ span
{
Hk
u

∣∣u ∈ X(0)
}

therefore there exists some set I ⊆ X(0) such that F =∑
u∈I H

k
u . We know that

{
Hk
u

}
u,k

are k-direct-sums, therefore F is a sum of k-direct-sums
and, due to Lemma 25, F is a k-direct-sum as well. J

We will now show a connection between the k-direct-sums in the odd dimensions and the
k-direct-sums in the even dimensions:

I Lemma 28. For odd values of k: δkHk
u = Hk+1

u

R. Gotlib and T. Kaufman 50:9

Proof.

δkH
k
u(a) =

∑
b⊂a

|b|=|a|−1

Hk
u(B) = | {b|b ⊂ a, |b| = |a| − 1, u ∈ b} | =

{(
k
k−1
)

if vi ∈ a
0 otherwise

=

{
k if u ∈ a
0 otherwise

=
{

1 if u ∈ A
0 otherwise

= Hk+1
u J

I Lemma 29. For odd values of k, if F is k-direct-sum then δF is a (k + 1)-direct-sum.

Proof. F is a k-direct-sum therefore there exists some I ⊆ X(0) such that F =
∑
u∈I H

k
u .

And thus δF = δ(
∑
u∈I H

k
u) =

∑
u∈I δH

k
u =

∑
u∈I H

k+1
u ∈ span

{
Hk+1
u |u ∈ X(0)

}
and δF

is a (k + 1)-direct-sum. J

I Lemma 30. For even values of k, if F is a k-direct-sum then F ∈ Bk+1(X) ⊆ Zk−1(X).

Proof. F is a k-direct-sum therefore there exists I ⊆ X(0) such that F =
∑
u∈I H

k
u =∑

u∈I δH
k−1
u . Finally we get that F ∈ Bk−1(X) ⊆ Zk−1(X). J

Note that the previous two Lemmas imply that Lemma 29 is true for any value of k.

4 Definition of Components Appearing in the Tester

In this section, we will provide some definitions that will help us build the test for the
k-direct-sum problem.
We would first like to define a relaxed version of the k-direct-sum, namely the k-co-cycle-
indifferent-direct-sum:

I Definition 31 (Co-cycle indifferent direct sum). Define the property of being a k-co-cycle-
indifferent-direct-sum to be:

CI =
{
F = D + Z

∣∣D is a k-direct-sum and Z ∈ Zk−1(X)
}

In section 6 will show that this property is testable for odd values of k.
We would also want to define a separator which helps in separating k-direct-sums from non
k-direct-sums. Unlike tests, in which the rejection probability is linear in the distance from
the property, separators reject with (at least) constant probability when their input is not in
the property.

I Definition 32 (Direct sum separator). Let X be a simplicial complex. An algorithm T

is called an (n, k,Q, η)-direct-sum-separator if, for the complete complex on n − 1 nodes
(denoted by Xn−1), when given f ∈ Ck+1(Xn−1), the following applies:

If f is a k-direct-sum then Pr[T f = 1] = 1.
If f is not a k-direct-sum then Pr[T f = 0] ≥ η.
T queries f on at most Q faces in Xn−1(k − 1).

In appendix C we will show an explicit separator whose error probability is 0 and queries the
entire complex. We will also show how to construct a separator from a test. It is important
to note that one can reduce the query complexity of the test presented in this paper by
providing a different separator with lower query complexity (using, for example, Lemma 54).

APPROX/RANDOM 2019

50:10 Testing Odd Direct Sums Using High Dimensional Expanders

5 Presenting A Test for Being a k-direct-sum

In this section, we will prove the main theorem. But first recall the definition of a (Q,E)-test
for being a k-direct-sum:

I Definition 33 ((Q,E)-test for being a k-direct-sum). A (Q,E)-test for being a k-direct-sum
is an algorithm that:

Queries F on Q inputs from X.
Accepts k-direct-sums.
Rejects with probability of at least ξ every function whose distance from the k-direct-sums
is at least Eξ.

I Theorem 34 (Main Theorem). Let X be a d-dimensional pure simplicial complex, and
0 < k ≤ d − 2 be an odd constant. Also assume there exists a (Q,E)-test for being a
(k + 1)-direct-sum on X and let F : X(k − 1) → {0, 1} be a function. Then, if X is an
(ε, µ)-co-systolic expander and a σ-colorful-expander, there exists a test T such that:

T queries F a maximum of max
{

(k + 1) ·Q,
(
k+2
k

)}
times.

F is a k-direct-sum ⇔ Pr [T accepts F] = 1.
If Pr [T rejects F] ≤ ξ then there exists a k-direct-sum F ′ such that

dist(F, F ′) ≤
((

1 + 1
σ

)((
k + 2
k

)
E

ε
+ 1
)

+ E

ε

)
ξ.

As a corollary we show that the k-direct-sum problem on the complete complex is testable
with O(k2)-queries for odd k.

I Corollary 35 (k-direct-sum is testable on the complete complex for odd k’s). On the complete
complex there exists a (O(k2), E)-test for being a k-direct-sum where E is constant and k is
odd.

The proof of this corollary will be presented in Appendix C. We also show that:

I Corollary 36. For any dimension d, there exists a family of bounded degree simplicial
complexes X such that the property of k-direct-sum is testable on X.

Proof. We will show that Ramanujan complexes satisfy the conditions of Theorem 34:
In [7] it was shown that for any dimension d there exists q0, such that for any prime power
q > q0, there are µ = µ(d) and ε = ε(d, q) such that if X is the the d-dimensional complex
induced by a q-thick Ramanujan complex then X is an (ε, µ)-co-systolic expander.
In addition to that in [10] it was proven that for any dimension d, there exists a constant
q′0 = q′0(d) such that, if X is a d-dimensional q′-thick Ramanujan complex for q′ > q′0,
then there are σ = σ(d, q′) such that X is a σ-colorful expander.

We end this proof by noting that it was shown in [11] that there is an explicit construction
of Ramanujan complexes (and therefore there is an explicit construction for complexes that
are both co-systolic expanders and colorful expanders). J

We will prove the main theorem using a (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum
problem called TCI and a (k + 2, k,Qsep, η)-direct-sum-separator Tsep. Specifically, we will
prove that the following is a tester for the k-direct-sum problem:

Algorithm 2 Tdirect−sum.

1 pick one of the following options uniformly:
2 Run TCI and return its result.
3 pick m ∈ X(k + 1) randomly:
4 Run Tsep on m with F |m and return its result.

R. Gotlib and T. Kaufman 50:11

Formally we will prove that:

I Theorem 37 (k-direct-sums are testable). On any complex that is a σ-colorful-expander
and for any constant odd value of k, given:

Tsep - A (k + 2, k,Qsep, η)-direct-sum-separator for the complete complex.
TCI - A (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum.

We can construct Tdirect−sum as shown above such that Tdirect−sum is a:(
max {QCI , Qsep},

(
1 + 1

σ

)(
1
η

+
(
k + 2
k

)
ζ

)
+ ζ

)
-test

for the k-direct-sum problem.

In order to understand why the test works, consider a deconstruction of F into three parts:
F = D + Z +G. In this deconstruction we assume that:

G is minimal with regards to the k-co-cycle-indifferent-direct-sum.
Z is the minimal co-cycle with regards to the k-direct-sum problem.
D is a k-direct-sum.

In sub-section 5.1 we will show that the rejection probability of step (2) bounds from above
‖G‖. In sub-section 5.2 we will show that, when ignoring G, step (3)’s rejection probability
bounds ‖Z‖ from above. Finally in sub-section 5.3 we will show how the combination of
both steps provides a test for being a k-direct-sum. Note that unlike step (2) (in which there
is no assumption on Z), the analysis of step (3) assumes that G = 0.

5.1 Step (2) of the test estimates the Norm of G
I Lemma 38. Let TCI be a (QCI , ζ)-test for the k-co-cycle-indifferent-direct-sum then:

‖G‖ ≤ ζ · Pr [step (2) rejects]

Proof. ‖G‖ = dist(F,CI) ≤ ζ · Pr [TCI = 0] = ζ · Pr [step (2) rejects] The second inequality
holds due to the definition of TCI . J

5.2 Step (3) of the Test Estimates Norm of Z Assuming That There is
No Remainder

In step (3) we pick a (k+ 1)-dimensional face randomly and then check whether the function
is a k-direct sum on that specific face. In this section, we will show that the failure probability
of doing so bounds ‖Z‖ from above. We will do that by first observing that given m, a
(k + 1)-dimensional face, either F |m is not a k-direct-sum or Z|m ∈ {0,1}:

I Lemma 39. Let F = D + Z such that D is a k-direct-sum and Z ∈ Zk−1 (X) then for
every odd value k and m ∈ X(k + 1): If F |m is a k-direct-sum on m then: Z|m ∈ {0,1}.

Proof. F |m is a k-direct-sum and, because G = 0, so is Z|m as Z|m = F |m+D|m. Assuming
that Z|m /∈ {0,1}, let z : m→ {0, 1} be an origin function of Z and let Ai = {v ∈ m|z(v) = i}.
Pick the largest possible set (of up to k + 1 elements) of odd size out of A1 (the set is not
empty because otherwise Z|m = 0) and name it A. Add to that set k + 1− |A| items from
A0 (which cannot be empty since Z|m 6= 1) to form a (k + 1)-face which we will denote as t.
It is easy to see that δZ|m(t) =

∑
v∈t z(v) =

∑
v∈A z(v) = 1 (the last equality holds because

|A| is odd) which contradicts the fact that Z ∈ Zk−1 (X) J

APPROX/RANDOM 2019

50:12 Testing Odd Direct Sums Using High Dimensional Expanders

We now observe that the set of (k + 1)-dimensional faces on which Z|m 6= 0 can be split into
two sets:

The set of all m ∈ X(k + 1) on which F |m is not a k-direct-sum.
The set of all m ∈ X(k + 1) such that Z|m = 1 (which we will denote as S).

It is easy to see that the rejection probability of step (3) bounds the first set (since step (3)
fails on every face in the set). We will spend the majority of this sub-section proving that
‖S‖ can also be bounded from above using the rejection probability of step (3). We will end
this sub-section by combining the aforementioned bounds.
Before discussing how to bound ‖S‖ from above, it will be useful to present Lemma 39 again,
this time with the new terminology described above:

I Corollary 40. Let m ∈ X(k + 1) then:

F |m is not a k-direct-sum⇔ m ∈ Γk+1(Z) \ S

Proof. m ∈ Γk+1(Z) iff Z|m 6= 0 (due to the definition of Γ) and m /∈ S iff Z|m 6= 1 (due to
the definition of S) therefore:

F |m is not a k-direct-sum⇔ Z /∈ {0,1} ⇔ m ∈ Γk+1(Z) \ S J

In order to bound ‖S‖ we will look at a different function whose norm bounds ‖S‖ from
above, specifically:

I Definition 41. Define E : X(k)→ {0, 1} to be the following function:

E(a) =
{

1 if Z|a = 1

0 otherwise

This function helps in bounding ‖S‖ from above because every face in S is comprised solely
of k-dimensional faces on which E returns 1. Combining this fact with Lemma 11 yields that
‖S‖ ≤ ‖E‖.
All we have to do now is to bound ‖E‖. This will be done by first showing that step (3) of
the test rejects every non-monochromatic (k + 1)-face (where E is considered the coloring).
We will then show that ‖E‖ < 0.5 which will allow to use the colorful expansion in order to
bound ‖E‖.

I Lemma 42 (Step (3) Fails on the Non-Monochromatic Faces). Let m ∈ Z(k + 1). If
c(E)(m) = 1 then F |m is not a k-direct-sum.

Proof. c(E)(m) = 1⇒ ∃a, b ∈
(
m
k+1
)

: E(a) = 1 and E(b) = 0. Using the definition of E we
get that:

E(b) = 0⇒ ∃c ∈
(
b
k

)
: Z(c) = 0

E(a) = 1⇒ ∀t ∈
(
a
k

)
: Z(t) = 1

Therefore Z|m /∈ {0,1} and F |m is not a k-direct-sum (Lemma 39). J

I Lemma 43. For every function of the form F = D+Z +G it holds that ‖Z‖ ≤ 0.5 (Note
that this lemma is true even if G 6= 0).

Proof. It is easy to see that the function f(v) = 1 is the origin function of 1 and therefore
1 is a k-direct-sum. Now, assuming that ‖Z‖ > 0.5 we conclude that ‖1 + Z‖ ≤ 0.5 and
(1 +D) + (1 +Z) = D+Z. Also (1 +D) is a k-direct-sum. We conclude that ‖1 + Z‖ < ‖Z‖
and F + G + (1 + Z) = 1 + D which is a k-direct-sum. This contradicts the fact that Z
is minimal. J

R. Gotlib and T. Kaufman 50:13

I Corollary 44. ‖E‖ ≤ 0.5.

Proof. By the definition of E if E(a) = 1 then ∀a′ ∈
(
a
k

)
: Z(a′) = 1. Using Lemma 11 yields

that ‖E‖ ≤ ‖Z‖ which finishes the proof. J

We are now finally ready to bound E using the colorful expansion of X:

I Lemma 45 (Estimating E). On every σ-colorful expander X:

‖E‖ ≤ 1
σ
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

Proof. X is a colorful expander and ‖E‖ ≤ 0.5 therefore σ ≤ ‖c(E)‖
‖E‖ which in turn means that:

σ ‖E‖ ≤ ‖c(E)‖ ≤ ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

(the second inequality is due to Lemma 42) and therefore:

‖E‖ ≤ 1
σ
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖ J

I Lemma 46 (Estimating Z). Let X be a σ-colorful-expander, and let F be a function of the
form F = D + Z such that D is a k-direct-sum and Z is a co-cycle then:

‖Z‖ ≤ 1
η

(
1 + 1

σ

)
Pr [step (3) rejects]

Proof.

‖Z‖ ≤
∥∥Γk+1(Z)

∥∥ ≤ ∥∥(Γk+1(Z) \ S
)
∪ S
∥∥ =

∥∥Γk+1(Z) \ S
∥∥+ ‖S‖ ≤∥∥Γk+1(Z) \ S

∥∥+ ‖E‖ ≤
∥∥Γk+1(Z) \ S

∥∥+ 1
σ

∥∥Γk+1(Z) \ S
∥∥ =(

1 + 1
σ

)∥∥Γk+1(Z) \ S
∥∥ =(

1 + 1
σ

)
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖

Note that the inequality found at the end of the first row is due to Lemma 11, the inequality
in the second row is due to Lemma 45 and the last equality is due to Corollary 40.
Note that:

Pr [step (3) rejects] =
Pr [F |m is not a k-direct-sum] · Pr [Tsep rejects| F |m is not a k-direct-sum] =
‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖ · η

All the probabilities are over a choice of m ∈ X(k + 1).
We conclude by noting that this yields that:

‖Z‖ ≤ 1
η

(
1 + 1

σ

)
Pr [step (3) rejects] J

APPROX/RANDOM 2019

50:14 Testing Odd Direct Sums Using High Dimensional Expanders

5.3 Combining the Estimations
Now that we know how to estimate both ‖G‖ and ‖Z‖ (with the assumption that G = 0),
it is finally time to combine both estimations in order to estimate ‖Z +G‖. Note that our
estimation of ‖Z‖ is dependent on our estimation of ‖G‖. We will deal with this dependency
by bounding the interference of G using our estimation of it. We will then estimate ‖Z‖ as if
wherever G would have interfered, step (3) rejected.

I Lemma 47. Let F = D+Z+G such that D is a k-direct-sum, Z is a (k−1)-co-cycle and G
is the remainder. Then if Pr

[
TFdirect−sum rejects

]
≤ ξ then ‖Z‖ ≤

(
1 + 1

σ

) (1
η +

(
k+2
k

)
ζ
)
ξ.

Proof. First note that because Pr
[
TFdirect−sum rejects

]
≤ ξ we know that

Pr [step (2) rejects F] ≤ ξ and Pr [step (3) rejects F] ≤ ξ. Also, consider what happens
when we run the test on F ′ = D + Z. Note that on F ′ the bound found in Lemma 46 holds.
Also note the the co-cyclic part of F and F ′ is Z. Therefore if we could bound the rejection
probability of step (3) on F ′ using the rejection probability of steps (2) and (3) on F we
would have a bound for ‖Z‖. We will start by bounding the set of (k + 1)-faces on which F ′
is not a k-direct-sum:

{m ∈ X(k + 1)| F ′|m is not a k-direct-sum} ⊆
{m ∈ X(k + 1)| (F ′ +G)|m is not a k-direct-sum and G|m = 0}∪
{m ∈ X(k + 1)| G|m 6= 0} =
{m ∈ X(k + 1)| F |m is not a k-direct-sum} ∪ {m ∈ X(k + 1)| G|m 6= 0} =
{m ∈ X(k + 1)| F |m is not a k-direct-sum} ∪ Γk+1(G)

Knowing this, we get that:

Pr [step (3) rejects m when testing F ′] =
η ‖{m ∈ X(k + 1)| F ′|m is not a k-direct-sum}‖ ≤
η ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖+ η

∥∥Γk+1(G)
∥∥

Using Lemma 38, we know that ‖G‖ ≤ ζ · Pr [step (2) rejects] and therefore, using Lemma
10 we get that

∥∥Γk+1(G)
∥∥ ≤ (k+2

k

)
‖G‖ ≤

(
k+2
k

)
ζ · Pr [step (2) rejects]. Therefore:

Pr [step (3) rejects m when testing F ′] ≤
η ‖{m ∈ X(k + 1)| F |m is not a k-direct-sum}‖+ η

∥∥Γk+1(G)
∥∥ ≤

Pr [step (3) rejects m when testing F] +
(
k + 2
k

)
ηζ · Pr [step (2) rejects] ≤(

1 +
(
k + 2
k

)
ηζ

)
ξ

We will now use the bound obtained in Lemma 46 on F ′ which would yield:

η
1

1 + 1
σ

‖Z‖ ≤
(

1 +
(
k + 2
k

)
ηζ

)
ξ ⇒ ‖Z‖ ≤

(
1 + 1

σ

)(
1
η

+
(
k + 2
k

)
ζ

)
ξ J

We are now finally ready to prove Theorem 37:

Proof of Theorem 37. First, consider the number of queries performed by Tdirect−sum.
If step (2) is chosen then Tdirect−sum performs QCI queries and if step (3) is chosen then
Tdirect−sum performs Qsep queries. Therefore Tdirect−sum performs, at most,
max {QCI , Qsep} queries.

R. Gotlib and T. Kaufman 50:15

Suppose that Pr
[
TFdirect−sum rejects

]
≤ ξ then, using Lemma 38 and Lemma 47 we get that:

‖Z +G‖ ≤ ‖Z‖+ ‖G‖ ≤
(

1 + 1
σ

)(
1
η

+
(
k + 2
k

)
ζ

)
ξ + ζξ =((

1 + 1
σ

)(
1
η

+
(
k + 2
k

)
ζ

)
+ ζ

)
ξ

Now all that is left to prove is that a k-direct-sum will always pass the test. If step (2) is
chosen then, because a k-direct-sum is also a k-co-cycle-indifferent-direct-sum, the test will
always accept. Otherwise, if step (3) is chosen then, because the function is a k-direct-sum,
it will be a k-direct-sum on any sub-complex of dimension k + 1 and therefore step (3) will
always accept as well. J

We can now prove the main theorem using Theorem 37:

Proof of Theorem 34. Combining Lemma 49 and Lemma 53 we get that there exists a(
max

{
(k + 1) ·Q,

(
k+2
k

)}
,
((

1 + 1
σ

) ((
k+2
k

)
E
ε + 1

)
+ E

ε

))
-test for k-direct-sum for odd val-

ues of k. J

6 Providing a Test for Being a k-co-cycle-indifferent-direct-sum

In this section we will show how to obtain a test for being a k-co-cycle-indifferent-direct-sum
using a test for being a (k + 1)-direct-sum. We will do that by considering the expansion of
k-direct sums under co-systolic expansion.

I Lemma 48. For any function F = D+Z+G (G is minimal) on an ε-co-systolic expander:
‖G‖ ≤ 1

εdist(δF, k-direct-sum)

Proof. First note that δF = δD+δZ+δG = δD+δG. In addition, because the complex is an
ε-co-systolic expander and G is minimal: ‖G‖ ≤ 1

ε ‖δG‖. Also ‖δG‖ = dist(δF, k-direct-sum)
and therefore ‖G‖ ≤ 1

εdist(δF, k-direct-sum). J

We are now ready to provide the actual test:

I Lemma 49. Let X be an (ε, µ)-co-systolic-expander. If there is a (Q, ξ)-test for being a
(k + 1)-direct-sum (denoted by T) on X, then there is also a ((k + 1) ·Q, ξε)-test for being a
k-co-cycle-indifferent-direct-sum on X.

Proof. Consider the following test:

Algorithm 3 TCI .

1 Return the result of T on δF (whenever T queries δF , calculate it and send the
result).

It is easy to see that:

dist(F, k-co-cycle-indifferent-direct-sum) = ‖G‖ ≤
1
ε
dist(δF, k-direct-sum) ≤ ξ

ε
Pr [TCI = 0]

Also, F is a k-co-cycle-indifferent-direct-sum ⇔ G = 0 ⇔ Pr [TCI accepts F] = 1
For any query T makes, TCI makes

(
k+1
k

)
= (k + 1) queries and therefore TCI performs at

most (k + 1) ·Q queries. J

APPROX/RANDOM 2019

50:16 Testing Odd Direct Sums Using High Dimensional Expanders

References
1 Mihir Bellare, Don Coppersmith, JOHAN Hastad, Marcos Kiwi, and Madhu Sudan. Linearity

testing in characteristic two. IEEE Transactions on Information Theory, 42(6):1781–1795,
1996.

2 Eli Ben-Sasson, Madhu Sudan, Salil Vadhan, and Avi Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 612–621. ACM, 2003.

3 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of computer and system sciences, 47(3):549–595, 1993.

4 Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar. Direct sum testing.
SIAM Journal on Computing, 46(4):1336–1369, 2017.

5 Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM (JACM), 54(3):12,
2007.

6 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders.
Electronic Colloquium on Computational Complexity (ECCC), 2017.

7 Shai Evra and Tali Kaufman. Bounded degree cosystolic expanders of every dimension. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages 36–48.
ACM, 2016.

8 Eldar Fischer. The art of uninformed decisions: A primer to property testing. In Current
Trends in Theoretical Computer Science: The Challenge of the New Century Vol 1: Algorithms
and Complexity Vol 2: Formal Models and Semantics, pages 229–263. World Scientific, 2004.

9 Tali Kaufman and Alexander Lubotzky. High dimensional expanders and property testing.
In Proceedings of the 5th conference on Innovations in theoretical computer science, pages
501–506. ACM, 2014.

10 Tali Kaufman and David Mass. High Dimensional Combinatorial Random Walks and Colorful
Expansion. In ITCS, 2017.

11 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Ramanujan complexes of typeÃd. Israel
Journal of Mathematics, 149(1):267–299, 2005.

A Sampling According to the Norm

In this section we will show how to pick a face with probability that equals to its norm.
Consider the following sampling algorithm:

Algorithm 4 Sample(l, r).

1 pick uniformly (using the random bits from r) m ∈ X(d).
2 while |m| > l + 1 do
3 pick uniformly (using the random bits from r) v ∈ m.
4 m← m \ {v}.
5 end
6 return m.

Note that steps 3 and 4 are equivalent to choosing a sub-face ofm of dimension dim (m)−1.
We are going to requite a way to denote a specific value of m during the run of the
sampling algorithm:

I Definition 50. Given a single run of Sample(l, r), define for every l + 1 < i < d+ 1: Mr
i

to be the value of m when |m| = i and the random bits chosen by the algorithm are r.

It is easy to see that these sets satisfy the following properties:
∀r∀i : Mr

i ⊂Mr
i+1.

∀i∀a ∈ X(i− 1) : Pr [Mr
i = a] = Pr [Sample(i− 1, r) = a].

R. Gotlib and T. Kaufman 50:17

I Lemma 51. Let X be a simplicial complex of dimension d and let −1 ≤ l ≤ d then:

∀a ∈ X(l) : Pr [Sample(l, r) = a] = w(a)

And also:

∀A ∈ P (X(i)) : ‖A‖ = Pr [Sample(i, r) ∈ A]

Where Sample is the algorithm 4.

Proof. We will prove this lemma using induction:
Base case: l = d: Notice that ∀a ∈ X(d) : w(a) = 1

(d+1
d+1)|X(d)|

.
The lemma holds because Sample(d+ 1, r) simply chooses a face of dimension d uniformly.
Assuming that ∀a ∈ X(l + 1) : Pr [Sample(l + 1, r) = a] = w(a) we will now prove that
∀a ∈ X(l) : Pr [Sample(l, r) = a] = w(a) (where Mr

i are the values defined in definition 50):

∀a ∈ X(l) : Pr [Sample(l, r) = a] =∑
b∈{b∈X(l+1)|a⊆b}

Pr
[
Sample(l, r) = a

∣∣Mr
l+1 = b

]
· Pr

[
Mr
l+1 = b

]
=

∑
b∈{b∈X(l+1)|a⊆b}

1
l + 2w(b) =

∑
b∈{b∈X(l+1)|a⊆b}

1
l + 2

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|
)
· |X(d)|

=

∑
b∈{b∈X(l+1)|a⊆b}

1
d− l

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|−1

)
· |X(d)|

=

1
(d− l)

(
d+1
|a|
)
· |X(d)|

∑
b∈{b∈X(l+1)|a⊆b}

|{q ∈ X(d)|b ⊆ q}|

= |{q ∈ X(d)|b ⊆ q}|(
d+1
|a|
)
· |X(d)|

= w(a)

The fourth equation holds because:

(l + 2)
(
d+ 1
l + 2

)
= (l + 2) (d+ 1)!

(l + 2)!(d− l − 1)! = (d+ 1)!
(l + 1)!(d− l − 1)!

= (d− l) (d+ 1)!
(l + 1)!(d− l)! = (d− l)

(
d+ 1
l + 1

)

The sixth equation holds because every maximal face that contains a is counted
(
d+1−(l+1)

1
)

=
d− l times. Finally we can see that:

Pr [Sample(i, r) ∈ A] = Pr
[∨
a∈A

Sample(i, r) = a

]
=
∑
a∈A

Pr [Sample(i, r) = a] =∑
a∈A

w({a}) = ‖A‖ J

APPROX/RANDOM 2019

50:18 Testing Odd Direct Sums Using High Dimensional Expanders

B Proofs of Bounds on the Norm

Proof of Lemma 10. First consider how a single face behaves under Γj :

∀a ∈ X(i) :
∥∥Γj({a})

∥∥ =
∑

b∈X(j)
a⊆b

w(b) =
∑

b∈X(j)
a⊆b

|{q ∈ X(d)|b ⊆ q}|(
d+1
|b|
)
· |X(d)|

=
∑

b∈X(j)
a⊆b

∑
q∈X(d)
b⊆q

1(
d+1
j+1
)
· |X(d)|

=
∑

q∈X(d)
a⊆q

∑
b∈X(j)
a⊆b⊆q

1(
d+1
j+1
)
· |X(d)|

=
∑

q∈X(d)
a⊆q

(
d−i
j−i
)(

d+1
j+1
)
· |X(d)|

=
(
d−i
j−i
)
· |{q ∈ X(d)|a ⊆ q}|(
d+1
j+1
)
· |X(d)|

=
(
d−i
j−i
)
·
(
d+1
i+1
)(

d+1
j+1
) w({a})

=
(
j + 1
i+ 1

)
w({a})

Note that the last equation holds because:(
d−i
j−i
)
·
(
d+1
i+1
)(

d+1
j+1
) =

(d+1)!(d−i)!
(j−i)!(d−j)!(i+1)!(d−i)!

(d+1)!
(d−j)!(j+1)!

= (j + 1)!
(j − i)!(i+ 1)! =

(
j + 1
i+ 1

)
Now one can easily check that:

∀A ⊆ X(i) :
∥∥Γj(A)

∥∥ =

∥∥∥∥∥⋃
a∈A

Γj({a})

∥∥∥∥∥ ≤∑
a∈A

∥∥Γj({a})
∥∥ =

∑
a∈A

(
j + 1
i+ 1

)
w({a})

=
(
j + 1
i+ 1

)∑
a∈A

w({a}) =
(
j + 1
i+ 1

)
‖A‖

The other direction can be achieved by looking at the algorithm presented in Lemma 51:
Consider the set of values Mr

i defined in definition 50. Note that for every co-chain A: If
Mr
i+1 ∈ A then Mr

j+1 ∈ Γj(A) (because Mr
i+1 ⊆Mr

j+1). Now we can see that:

∀A ⊆ X(i) : ‖A‖ = Pr [Sample(i, r) ∈ A] = Pr
[
Mr
i+1 ∈ A

]
≤ Pr

[
Mr
j+1 ∈ Γj(A)

]
= Pr

[
Sample(j, r) ∈ Γj(A)

]
=
∥∥Γj(A)

∥∥ J

Proof of Lemma 11. First denote U =
{
A′ ∈ X(i+ j)

∣∣∣(A′i) ⊆ A} and let Mr
i be the values

defined in definition 50. Due to Lemma 51 we know that:

‖A‖ = Pr [Sample(i, r) ∈ A] = Pr
[
Mr
i+1 ∈ A

]
=

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j ∈ U

]
· Pr

[
Mr
i+j ∈ U

]
+

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j /∈ U

]
· Pr

[
Mr
i+j /∈ U

]
≥

Pr
[
Mr
i+1 ∈ A

∣∣Mr
i+j ∈ U

]
· Pr

[
Mr
i+j ∈ U

]
=

Pr
[
Mr
i+j ∈ U

]
= Pr [Sample(i+ j, r) ∈ U] = ‖U‖ J

C Direct Sum Separators

In this section we will provide two direct sum separators: One using reconstructing the
origin-function of F , and the other using a test for being a k-direct-sum. The first method
provided here yields a separator that separates a k-direct-sum from other functions with
probability 1. The other method, allows reducing the query complexity while increasing the
error margin.

R. Gotlib and T. Kaufman 50:19

C.1 Direct Sum Separator Using Reconstruction
In this section we will provide a simple direct sum separator that, given F , attempts to
reconstruct the origin function of F and accepts whenever it succeeds.

I Lemma 52. Let Xk+2 be a the complete simplicial complex on k+2 nodes and F : Xk+2(k−
1)→ {0, 1}. Define f to be a function that, given v ∈ Xk+2(0), picks a q ∈ Xk+2(k− 1) such
that v /∈ q and returns

∑
w∈(q

k−1) F (w ∪ {v}). We will show that: F is a k-direct-sum ⇔ f

is an origin function of F .

Proof. ⇒ F is a k-direct-sum therefore there exists an origin function to F denoted by f ′.

∀q : f(v) =
∑

w∈(q
k−1)

F (w ∪ {v}) =
∑

w∈(q
k−1)

(
f ′(v) +

∑
v′∈w

f ′(v′)
)

=

(
k

k − 1

)
f ′(v) +

∑
v′∈q

(
k − 1
k − 2

)
f ′(v′) = k · f ′(v) +

∑
v′∈q

(k − 1) · f ′(v′) = f ′(v)

And therefore f is an origin function of F .
⇐ F has an origin function and therefore it is a k-direct-sum. J

This lemma allows us to create the following
(
k + 2, k,

(
k+2
k

)
, 1
)
-separator:

I Lemma 53 (Direct Sum Separator for Odd Values of k). The following is a(
k + 2, k,

(
k+2
k

)
, 1
)
-direct-sum-separator (given a function F ∈ Ck(X) on a simplicial com-

plex X):

Algorithm 5 Tsep.

1 foreach node v ∈ X(0) do
2 Calculate f(v).
3 end
4 foreach face q ∈ X(k) do
5 Check whether F (q) =

∑
e∈q f(e), if it is not return 0.

6 end
7 Return 1

Proof. The algorithm returns 1 ⇔ F is a k-direct-sum on X due to Lemma 52.
It is easy to see that the separator queries the entire function (Therefore it uses

(
k+2
k

)
queries). J

C.2 Obtaining a Direct Sum Separator From Test
In this section we will show how to construct a separator out of a test for the k-direct-sums
over a k + 1 dimensional complex. This will help reduce query complexity.

I Lemma 54 (Separator from Test). If there is a (Q,E)-test (denoted by T) for being a
k-direct-sum on a k + 1 dimensional complex then there is a (k + 2, k,Q, ρ)-direct-sum-
separator such that ρ = minF∈Ck−1(X)\{k-direct-sums}

{
Pr[TGX = 0]

}
where X is the complete

(k + 1)-dimensional complex.

Proof. Consider the following tester:

APPROX/RANDOM 2019

50:20 Testing Odd Direct Sums Using High Dimensional Expanders

Algorithm 6 T ′sep.

1 Run T on F and return its output.

It is east to see that the algorithm queries F exactly Q times.
All we have to prove is that if F is not a k-direct-sum than the algorithm returns false with
probability of at least ρ. F ∈ Ck−1(X) \ {k-direct-sums} and therefore:

Pr[TGX = 0] ≥ minG∈Ck−1(X)\{k-direct-sums}
{
Pr[TGX = 0]

}
= ρ

Note that ρ > 0 because if ρ = 0 then there would exist a function F ′ such that F ′ ∈
Ck−1(X) \ {k-direct-sums} and Pr[TF ′X = 0] = 0. Note that T is a test and therefore if
Pr[TF ′X = 0] = 0 then F ′ is a k-direct-sum which contradicts the assumption about F ′. J

Lastly, we can prove corollary 35:

Proof of Corollary 35. Combining the second test provided in [4] and Lemma 54 we get a
(k + 2, k, O(k), ρ)-separator. From the first test provided in [4] and Lemma 49 we get a
(3k + 3, E′)-test for being a k-co-cycle-indifferent-direct-sum. Combining both of these results
with Theorem 37 yields the desired result. J

A Lower Bound for Sampling Disjoint Sets
Mika Göös
Institute for Advanced Study, Princeton, NJ, USA
mika@ias.edu

Thomas Watson
University of Memphis, TN, USA
Thomas.Watson@memphis.edu

Abstract
Suppose Alice and Bob each start with private randomness and no other input, and they wish to
engage in a protocol in which Alice ends up with a set x ⊆ [n] and Bob ends up with a set y ⊆ [n],
such that (x, y) is uniformly distributed over all pairs of disjoint sets. We prove that for some
constant β < 1, this requires Ω(n) communication even to get within statistical distance 1− βn of
the target distribution. Previously, Ambainis, Schulman, Ta-Shma, Vazirani, and Wigderson (FOCS
1998) proved that Ω(

√
n) communication is required to get within some constant statistical distance

ε > 0 of the uniform distribution over all pairs of disjoint sets of size
√
n.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication complexity, set disjointness, sampling

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.51

Category RANDOM

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/066/.

Funding Mika Göös: Supported by NSF grant CCF-1412958.
Thomas Watson: Supported by NSF grant CCF-1657377.

1 Introduction

In most traditional computational problems, the goal is to take an input and produce the
“correct” output, or produce one of a set of acceptable outputs. In a sampling problem, on the
other hand, the goal is to generate a random sample from a specified probability distribution
D, or at least from a distribution that is close to D. There has been a surge of interest in
studying sampling problems from a complexity theory perspective [7, 36, 73, 1, 58, 32, 74,
13, 72, 47, 77, 15, 78, 75, 79, 76]. Unlike more traditional computational problems, sampling
problems do not necessarily need to have any real input, besides the uniformly random bits
fed into a sampling algorithm.

One commonly studied type of target distribution is “input–output pairs” of a function
f , i.e., (D, f(D)) where D is perhaps the uniform distribution over inputs to f . Using
an algorithm for computing f , one can sample (D, f(D)) by first sampling from D, then
evaluating f on that input. However, for some functions f , generating an input jointly with
the corresponding output may be computationally easier than evaluating f on an adversarially-
chosen input. Thus in general, sampling lower bounds tend to be more challenging to prove
than lower bounds for functions.

Many of the above-cited works focus on concrete computational models such as low-depth
circuits. We consider the model of 2-party communication complexity, for which comparatively
less is known about sampling. Which problem should we study? Well, the single most
important function in communication complexity is Set-Disjointness, in which Alice gets a set

© Mika Göös and Thomas Watson;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 51; pp. 51:1–51:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mika@ias.edu
mailto:Thomas.Watson@memphis.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.51
https://eccc.weizmann.ac.il/report/2019/066/
https://eccc.weizmann.ac.il/report/2019/066/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 A Lower Bound for Sampling Disjoint Sets

x ⊆ [n], Bob gets a set y ⊆ [n], and the goal is to determine whether x∩y = ∅. Identifying the
sets with their characteristic bit strings, this can be viewed as Disj : {0, 1}n×{0, 1}n → {0, 1}
where Disj(x, y) = 1 iff x ∧ y = 0n. The applications of communication bounds for Set-
Disjointness are far too numerous to list, but they span areas such as streaming, circuit
complexity, proof complexity, data structures, property testing, combinatorial optimization,
fine-grained complexity, cryptography, and game theory. Because of its central role, Set-
Disjointness has become the de facto testbed for proving new types of communication bounds.
This function has been studied in the contexts of randomized [9, 49, 62, 10, 17] and quantum
[25, 43, 63, 2, 66, 70] protocols; multi-party number-in-hand [6, 10, 27, 41, 48, 18, 22] and
number-on-forehead [40, 71, 12, 66, 28, 57, 11, 69, 68, 61, 60] models; Merlin–Arthur and
related models [50, 3, 35, 39, 38, 4, 64, 29]; with a bounded number of rounds of interaction
[52, 46, 80, 19, 23]; with bounds on the sizes of the sets [42, 56, 59, 31, 26, 65]; very precise
relationships between communication and error probability [20, 21, 39, 33, 30]; when the goal
is to find the intersection [24, 34, 79, 8]; in space-bounded, online, and streaming models
[53, 16, 5]; and direct product theorems [54, 12, 14, 45, 51, 67, 69, 68]. We contribute one
more result to this thorough assault on Set-Disjointness.

Here is the definition of our 2-party sampling model: Let D be a probability distribution
over {0, 1}n×{0, 1}n; we also think of D as a matrix with rows and columns both indexed by
{0, 1}n where Dx,y is the probability of outcome (x, y). We define Samp(D) as the minimum
communication cost of any protocol where Alice and Bob each start with private randomness
and no other input, and at the end Alice outputs some x ∈ {0, 1}n and Bob outputs some
y ∈ {0, 1}n such that (x, y) is distributed according to D. Note that Samp(D) = 0 iff D is a
product distribution (x and y are independent), and Samp(D) ≤ n for all D (since Alice can
privately sample (x, y) and send y to Bob). Allowing public randomness would not make sense
since Alice and Bob could read a properly-distributed (x, y) off of the randomness without
communicating. We define Sampε(D) as the minimum of Samp(D′) over all distributions D′
with ∆(D,D′) ≤ ε, where ∆ denotes statistical (total variation) distance, defined as

∆(D,D′) := max
event E

∣∣PD[E]−PD′ [E]
∣∣ = max

event E

(
PD[E]−PD′ [E]

)
= 1

2
∑

outcome o

∣∣PD[o]−PD′ [o]
∣∣.

1.1 A story
Our story begins with [7], which proved that Sampε

(
(D,Disj(D))

)
≥ Ω(

√
n) for some

constant ε > 0, where D is uniform over the set of all pairs of sets of size
√
n (note that this

D is a product distribution and is approximately balanced between 0-inputs and 1-inputs
of Disj); here it does not matter which party is responsible for outputting the bit Disj(D).
The main tool in the proof was a lemma that was originally employed in [9] to prove an
Ω(
√
n) bound on the randomized communication complexity of computing Disj. The latter

bound was improved to Ω(n) via several different proofs [49, 62, 10], which leads to a natural
question: Can we improve the sampling bound of [7] to Ω(n) by using the techniques of
[49, 62, 10] instead of [9]?

For starters, the answer is “no” for the particular D considered in [7] – there is a trivial
exact protocol with O(

√
n logn) communication since it only takes that many bits to specify

a set of size
√
n. What about other interesting distributions D? The following illuminates

the situation.

B Observation 1. For any D and constants ε > δ > 0, if Sampε
(
(D,Disj(D))

)
≥ ω(

√
n)

then Sampδ(D) ≥ Ω
(
Sampε

(
(D,Disj(D))

))
.

M. Göös and T. Watson 51:3

Proof. It suffices to show Sampε
(
(D,Disj(D))

)
≤ Sampδ(D) +O(

√
n). First, note that for

any sampling protocol, if we condition on a particular transcript then the output distribution
becomes product (Alice and Bob are independent after they stop communicating). Second,
[17] proved that for every product distribution and every constant γ > 0, there exists a
deterministic protocol that uses O(

√
n) bits of communication and computes Disj with error

probability ≤ γ on a random input from the distribution. Now to ε-sample (D,Disj(D)),
Alice and Bob can δ-sample D to obtain (x, y), and then conditioned on that sampler’s
transcript, they can run the average-case protocol from [17] for the corresponding product
distribution with error ε − δ. A simple calculation shows this indeed gives statistical
distance ε. C

The upshot is that to get an improved bound, the hardness of sampling (D,Disj(D))
would come entirely from the hardness of just sampling D. Thus such a result would not
really be “about” the Set-Disjointness function, it would be about the distribution on inputs.
Instead of abandoning this line of inquiry, we realize that if D itself is somehow defined
in terms of Disj, then a bound for sampling D would still be saying something about the
complexity of Set-Disjointness. In fact, the proof in [7] actually shows something stronger
than the previously-stated result: If D is instead defined as the uniform distribution over
pairs of disjoint sets of size

√
n (which are 1-inputs of Disj), then Sampε(D) ≥ Ω(

√
n). After

this pivot, we are now facing a direction in which we can hope for an improvement. We
prove that by removing the restriction on the sizes of the sets, the sampling problem becomes
maximally hard. Our result holds for error ε < 1 that is exponentially close to 1, but the
result is already new and interesting for constant ε > 0.

I Theorem 1. Let U be the uniform distribution over the set of all (x, y) ∈ {0, 1}n×{0, 1}n
with x ∧ y = 0n. There exists a constant β < 1 such that Samp1−βn(U) = Ω(n).

The proof from [7] was a relatively short application of the technique from [9], but for
Theorem 1, harnessing known techniques for proving linear communication lower bounds
turns out to be more involved.

For calibration, the uniform distribution over all (x, y) achieves statistical distance
1− 0.75n from U since there are 4n inputs and 3n disjoint inputs. We can do a little better:
Suppose for each coordinate independently, Alice picks 0 with probability

√
1/3 and picks 1

with probability 1−
√

1/3, and Bob does the same. This again involves no communication,
and it achieves statistical distance 1 −

(
2
√

1/3 − 1/3
)n ≤ 1 − 0.82n from U . Theorem 1

shows that the constant 0.82 cannot be improved arbitrarily close to 1 without a lot of
communication. (In the setting of lower bounds for circuit samplers, significant effort has gone
into handling statistical distances exponentially close to the maximum possible [32, 13, 76].)

1.2 Interpreting the result

We first observe that our sampling model is equivalent to two other models. One of these we
call (for lack of a better word) “synthesizing” the distribution D: Alice and Bob get inputs
x, y ∈ {0, 1}n respectively, in addition to their private randomness, and their goal is to accept
with probability exactly Dx,y. We let Synth(D) denote the minimum communication cost
of any synthesizing protocol for D, and Synthε(D) denote the minimum of Synth(D′) over
all D′ with ∆(D,D′) ≤ ε. The other model is the nonnegative rank of a matrix: rank+(D)
is defined as the minimum k for which D can be written as a sum of k many nonnegative
rank-1 matrices.

APPROX/RANDOM 2019

51:4 A Lower Bound for Sampling Disjoint Sets

B Observation 2. For every distribution D, the following are all within ±O(1) of each other:

Samp(D), Synth(D), log rank+(D).

Proof. Synth(D) ≤ Samp(D) + 2 since a synthesizing protocol can just run a sampling
protocol and accept iff the result equals the given input (x, y).

log rank+(D) ≤ Synth(D) since for each transcript of a synthesizing protocol, the mat-
rix that records the probability of getting that transcript on each particular input has
rank 1; summing these matrices over all accepting transcripts yields a nonnegative rank
decomposition of D.

To see that Samp(D) ≤ dlog rank+(D)e, suppose D = M (1) +M (2) + · · ·+M (k) is a sum
of nonnegative rank-1 matrices. For each i, by scaling we can write M (i)

x,y = pi u
(i)
x v

(i)
y for

some distributions u(i) and v(i) over {0, 1}n, where pi is the sum of all entries of M (i). Since
D is a distribution, p := (p1, . . . , pk) is a distribution over [k]. To sample from D, Alice can
privately sample i ∼ p and send it to Bob using dlog ke bits, then Alice can sample x ∼ u(i)

and Bob can independently sample y ∼ v(i) with no further communication. C

By this characterization, Theorem 1 can be viewed as a lower bound on the approximate
nonnegative rank of the Disj matrix, where the approximation is in `1 (which has an average-
case flavor). In the recent literature, “approximate nonnegative rank” generally refers to
approximation in `∞ (which is a worst-case requirement), and this model is equivalent to
the so-called smooth rectangle bound and WAPP communication complexity [44, 55, 37].

2 Proof

2.1 Overview
Our proof of Theorem 1 is by a black-box reduction to the well-known corruption lemma for
Set-Disjointness due to Razborov [62]. We start with a high-level overview.

For notation: Let |z| denote the Hamming weight of a string z ∈ {0, 1}n. For ` ∈ N, let
U ` be the uniform distribution over all (x, y) ∈ {0, 1}n × {0, 1}n with |x ∧ y| = `. Note that
U = U0. For a distribution D over {0, 1}n × {0, 1}n and an event E ⊆ {0, 1}n × {0, 1}n, let
DE :=

∑
(x,y)∈E Dx,y. For a randomized protocol Π, let accΠ(x, y) denote the probability

that Π accepts (x, y).

Step I: Uniform corruption

The corruption lemma states that if a rectangle R ⊆ {0, 1}n × {0, 1}n contains a noticeable
fraction of disjoint pairs, then it must contain about as large a fraction of uniquely intersecting
pairs. More quantitatively, there exist a constant C > 0 and two distributions D`, ` = 0, 1,
defined over disjoint (` = 0) and uniquely intersecting pairs (` = 1) such that for every
rectangle R,

if D0
R ≥ 2−o(n) then D1

R ≥ C ·D0
R.

The original proof [62] defined D` as the uniform distribution over all pairs (x, y) with fixed
sizes |x| = |y| = dn/4e and |x ∧ y| = `. For our purpose, we need the corruption lemma to
hold relative to the aforementioned distributions U `, ` = 0, 1, which have no restrictions on
set sizes. We derive in Subsection 2.2 a corruption lemma for U ` from the original lemma for
D`. To do this, we exhibit a reduction that uses public randomness and no communication
to transform a sample from D` into a sample from a distribution that is close to U ` in a
suitable sense, for ` = 0, 1.

M. Göös and T. Watson 51:5

Step II: Truncate and scale

For simplicity, let us think about proving Theorem 1 for a small error ε > 0. Assume for
contradiction there is some distribution D, ∆(U,D) ≤ ε, such that Synth(D) ≤ o(n) as
witnessed by a private-randomness synthesizing protocol Π′ with accΠ′(x, y) = Dx,y. Note
that the total acceptance probability over disjoint inputs is close to 1:∑

x,y : |x∧y|=0 accΠ′(x, y) ≥ 1− ε and thus E(x,y)∼U0 [accΠ′(x, y)] ≥ (1− ε)3−n.

Our eventual goal (in Step III) is to apply our corruption lemma to the transcript rectangles,
but the above threshold (1− ε)3−n is too low for this. To raise the threshold to 2−o(n) as
needed for corruption, we would like to scale up all the acceptance probabilities accordingly.
To “make room” for the scaling, we first carry out a certain truncation step. Specifically, in
Subsection 2.3 we transform Π′ into a public-randomness protocol Π:
1. First, we truncate (using a truncation lemma [37]) the values accΠ′(x, y), which has

the effect of decreasing some of them, but any accΠ′(x, y) that is under 3−n remains
approximately the same. This results in an intermediate protocol Π′′ that still satisfies
E(x,y)∼U0 [accΠ′′(x, y))] ≥ Ω((1− ε)3−n) (using the assumption that ∆(U,D) ≤ ε).

2. Second, we scale (using the low cost of Π′′) the truncated probabilities up by a large
factor 3n2−o(n). This results in a protocol Π with large typical acceptance probabilities:

E(x,y)∼U0 [accΠ(x, y)] ≥ 2−o(n). (1)

Step III: Iterate corruption

Because Π has such large acceptance probabilities (Equation 1), our corruption lemma can
be applied: there is some constant C ′ > 0 such that

E(x,y)∼U1 [accΠ(x, y)] ≥ C ′ · E(x,y)∼U0 [accΠ(x, y)]. (2)

Since Π is a truncated-and-scaled version of Π′, this allows us to infer that

E(x,y)∼U1 [accΠ′(x, y)] ≥ Ω((1−ε)3−n) and thus
∑
x,y : |x∧y|=1 accΠ′(x, y) ≥ Ω((1−ε)n)

using the fact that |supp(U1)| = n3n−1 = (n/3) · |supp(U0)|. Thus for ε = 1− ω(1/n), this
means Π′ must have placed a total probability mass > 1 on uniquely intersecting inputs,
which is the sought contradiction.

To prove Theorem 1 for very large error ε = 1−βn, in Subsection 2.4 we iterate the above
argument for U ` over 0 ≤ ` ≤ o(n). Namely, analogously to Equation 2, we show that the
average acceptance probability of Π over U `+1 is at least a constant times the average over
U `. Meanwhile, the support sizes increase as |supp(U `+1)| ≥ ω(1) · |supp(U `)| for ` ≤ o(n).
These facts together imply a large constant factor increase in the total probability mass that
Π′ places on supp(U `+1) as compared to supp(U `). Starting with even a tiny probability
mass over supp(U0), this iteration will eventually lead to a contradiction.

2.2 Step I: Uniform corruption
The goal of this step is to derive Lemma 3 from Lemma 2.

I Lemma 2 (Corruption [62]). For every rectangle R ⊆ {0, 1}n × {0, 1}n we have D1
R ≥

1
45D

0
R − 2−0.017n where, assuming n = 4k − 1, D` is the uniform distribution over all (x, y)

with |x| = |y| = k and |x ∧ y| = `.

APPROX/RANDOM 2019

51:6 A Lower Bound for Sampling Disjoint Sets

I Lemma 3 (Uniform Corruption). For every rectangle R ⊆ {0, 1}n × {0, 1}n we have
U1
R ≥ 1

765U
0
R − 2−0.008n.

Proof. Assume for convenience that n/2 has the form 4k − 1 (otherwise use the nearest
such number instead of n/2 throughout). We prove that Lemma 2 for n/2 implies Lemma 3
for n by the contrapositive. Thus, D0 and D1 are distributions over {0, 1}n/2 × {0, 1}n/2
while U0 and U1 are distributions over {0, 1}n × {0, 1}n. Assume there exists a rectangle
R ⊆ {0, 1}n × {0, 1}n such that U1

R < 1
765U

0
R − 2−0.008n. We exhibit a distribution over

rectangles Q ⊆ {0, 1}n/2 × {0, 1}n/2 such that E[D1
Q] < 1

45E[D0
Q]− 2−0.017n/2; by linearity

of expectation this implies that there exists such a Q with D1
Q < 1

45D
0
Q − 2−0.017n/2.

To this end, we define a distribution F over functions f : {0, 1}n/2×{0, 1}n/2 → {0, 1}n×
{0, 1}n of the form f(x, y) = (f1(x), f2(y)) and then let Qf be the rectangle f−1(R) :=
{(x, y) : f(x, y) ∈ R}. Let H be the distribution over {(v, w) ∈ N × N : v + w ≤ n}
obtained by sampling (x, y) ∼ U0 and outputting (|x|, |y|); i.e., Hv,w := n!

v!w! (n−v−w)! · 3
−n.

To sample f ∼ F :
1. Sample (v, w) from H conditioned on v ≥ k, w ≥ k, and v + w ≤ 2k + n/2.
2. Sample a uniformly random permutation π of [n].
3. Given (x, y) ∈ {0, 1}n/2 × {0, 1}n/2, define (x′, y′) ∈ {0, 1}n × {0, 1}n by letting

x′iy
′
i :=

xiyi for the first n/2 coordinates i;
10 for the next v − k coordinates i;
01 for the next w − k coordinates i;
00 for the remaining n/2− (v − k)− (w − k) ≥ 0 coordinates i.

4. Let f(x, y) := (π(x′), π(y′)) (i.e., permute the coordinates according to π).
For ` ∈ {0, 1} let F (D`) denote the distribution obtained by sampling (x, y) ∼ D` and f ∼ F
and outputting f(x, y), and note that F (D`)R = EF [D`

QF
]. Now we claim that F (D`) and

U ` are close, in the following senses:
(1) For every event E, F (D0)E ≥ U0

E − 2−0.01n.
(2) For every event E, F (D1)E ≤ U1

E · 17.
Using R as the event E, we have

F (D1)R ≤ U1
R · 17

< 17
(1

765U
0
R − 2−0.008n)

≤ 17
(1

765 (F (D0)R + 2−0.01n)− 2−0.008n)
≤ 1

45F (D0)R − 2−0.017n/2

as desired. To see (1), note that F (D0) is precisely U0 conditioned on v ≥ k, w ≥ k, and
v+w ≤ 2k+n/2, and this conditioning event has probability ≥ 1−2−0.01n by Chernoff bounds:

P[v < k] = P[w < k] = P[Bin(n, 1/3) < n/8 + 1/4] ≤ 2−0.12n

P[v + w > 2k + n/2] = P[Bin(n, 2/3) > 3n/4 + 1/2] ≤ 2−0.02n

Thus letting C be the complement of the conditioning event, we have F (D0)E ≥ U0
ErC ≥

U0
E − U0

C ≥ U0
E − 2−0.01n. To see (2), consider any outcome (x, y) ∈ {0, 1}n × {0, 1}n with

|x ∧ y| = 1. We have U1
x,y = 1/(n3n−1). Abbreviating a := |x| and b := |y|, assume a ≥ k,

b ≥ k, and a+ b ≤ 2k + n/2 since otherwise F (D1)x,y = 0 and there would be nothing to
prove. Henceforth consider the probability space with the randomness of D1 and of F . Let I
be the event that F1(D1)∧ F2(D1) = x∧ y, i.e., that the intersecting coordinate of F (D1) is
the same as for (x, y). We have

F (D1)x,y = P[I]︸︷︷︸
(∗)

·P[v = a and w = b]︸ ︷︷ ︸
(∗∗)

·P
[
F (D1) = (x, y)

∣∣ I and v = a and w = b
]︸ ︷︷ ︸

(∗∗∗)

.

M. Göös and T. Watson 51:7

For the three terms on the right side, we have

(∗) = 1
n
, (∗∗) ≤ Ha,b/(1−2−0.01n) ≤ n!

a! b! (n−a−b)! ·3
−n ·1.01, (∗∗∗) = 1/ (n−1)!

(a−1)! (b−1)! (n−a−b+1)! .

We have

n!
a! b! (n−a−b)! /

(n−1)!
(a−1)! (b−1)! (n−a−b+1)! = n·(n−a−b+1)

a·b ≤ n·(n−2k+1)
k·k ≤ n·(n−2n/8+1)

(n/8)·(n/8) = (3
4 + 1

n
)·64.

Combining, we get

F (D1)x,y /U1
x,y = (∗) · (∗∗) · (∗∗∗) · n3n−1 ≤ 1.01

3 · (
3
4 + 1

n) · 64 ≤ 17. J

2.3 Step II: Truncate and scale
The goal of this step is to construct a truncated-and-scaled protocol Π from any given
low-cost Π′ that synthesizes a distribution close to U .

For a nonnegative matrix M , we define its truncation M to be the same matrix but where
each entry > 1 is replaced with 1.

I Lemma 4 (Truncation Lemma [37]). For every 2n × 2n nonnegative rank-1 matrix M and
every d there exists a O(d+ logn)-communication public-randomness protocol Π such that
for every (x, y) we have accΠ(x, y) ∈Mx,y ± 2−d.

Let c ≥ 1 be the hidden constant in the big O in Lemma 4, and let δ := 0.00005/c. Toward
proving Theorem 1, suppose for contradiction Samp(D) ≤ δn for some distribution D with
∆(U,D) ≤ 1−2−δn (so β := 2−δ in Theorem 1) and thus

∑
x,y : |x∧y|=0 min(3−n, Dx,y) ≥ 2−δn.

By Observation 2, Synth(D) ≤ δn + 2, so consider a synthesizing protocol Π′ for D with
communication cost ≤ δn+ 2. Let A be the set of all accepting transcripts of Π′. For each
τ ∈ A let Nτ be the nonnegative rank-1 matrix such that Nτ

x,y is the probability Π′ generates
τ on input (x, y); thus Dx,y =

∑
τ∈AN

τ
x,y. Let Πτ be the public-randomness protocol from

Lemma 4 applied to Mτ := 3nNτ and d := 15δn. Let Π be the public-randomness protocol
that picks a uniformly random τ ∈ A and then runs Πτ . The communication cost of Π is
≤ c · (d+ logn) ≤ 0.001n.

B Claim 5. For every input (x, y) we have 3n
|A| min(3−n, Dx,y) − 2−d ≤ accΠ(x, y) ≤

3n
|A|Dx,y + 2−d.

Proof. We have

accΠ(x, y) = 1
|A|
∑
τ∈A accΠτ (x, y)

∈ 1
|A|
∑
τ∈A(Mτ

x,y ± 2−d)

⊆ 1
|A|
∑
τ∈A min(1, 3nNτ

x,y)± 2−d

= 3n
|A|
∑
τ∈A min(3−n, Nτ

x,y)± 2−d.

From this it follows that:

accΠ(x, y) ≥ 3n
|A| min

(
3−n,

∑
τ∈AN

τ
x,y

)
− 2−d = 3n

|A| min(3−n, Dx,y)− 2−d

accΠ(x, y) ≤ 3n
|A|
∑
τ∈AN

τ
x,y + 2−d = 3n

|A|Dx,y + 2−d. C

APPROX/RANDOM 2019

51:8 A Lower Bound for Sampling Disjoint Sets

We can now formally state the large typical acceptance probability property (Equation 1
from the overview): writing UΠ := E(x,y)∼U [accΠ(x, y)] (and similarly for other input
distributions),

UΠ ≥ 1
3n
∑
x,y : |x∧y|=0

(3n
|A| min(3−n, Dx,y)− 2−d

)
(by Claim 5)

= 1
|A|
∑
x,y : |x∧y|=0 min(3−n, Dx,y)− 2−d

≥ 1
|A|2

−δn − 2−15δn

≥ 1
|A|2

−δn−1 (3)

where the last line follows because |A| ≤ 2δn+2 and 2−2δn−2 is at least twice 2−15δn.

2.4 Step III: Iterate corruption
Here we derive the final contradiction: Π′ places an acceptance probability mass exceeding 1
on supp(Uδn). This is achieved by iterating our corruption lemma, starting with Equation 3
as the base case.

For z ∈ {0, 1}n let Uz be the uniform distribution over all (x, y) ∈ {0, 1}n × {0, 1}n with
x ∧ y = z (so U ` is the uniform mixture of all Uz with |z| = `; in particular, U0 = U0n),
and if |z| < n then let Ûz be the uniform mixture of Uz′ over all z′ that can be obtained
from z by flipping a single 0 to 1 (so U `+1 is the uniform mixture of all Ûz with |z| = `; in
particular, U1 = Û0n).

B Claim 6. For every z ∈ {0, 1}n with |z| ≤ n/2 we have ÛzΠ ≥ 1
765U

z
Π − 2−0.003n.

Proof. Since all relevant inputs (x, y) have xiyi = 11 for all i such that zi = 1, we can
ignore those coordinates and think of Ûz and Uz as U1 and U0 respectively, but defined
on the remaining n − |z| ≥ n/2 coordinates (instead of on all n coordinates). Thus by
Lemma 3, for every outcome of the public randomness of Π and every accepting transcript,
say corresponding to rectangle R, we have ÛzR ≥ 1

765U
z
R − 2−0.008n/2. Summing over all the

(at most 20.001n many) accepting transcripts, and then taking the expectation over the public
randomness, yields the claim since 20.001n · 2−0.008n/2 ≤ 2−0.003n. C

B Claim 7. For every ` = 0, . . . , δn we have U `Π ≥ 1
|A|2

−δn−1−11`.

Proof. We prove this by induction on `. The base case ` = 0 is Equation 3. For the inductive
step, assume the claim is true for `. Since U `+1 and U ` are the uniform mixtures of Ûz and
Uz respectively over all z with |z| = ` (so U `+1

Π = Ez[ÛzΠ] and U `Π = Ez[UzΠ]), by linearity of
expectation Claim 6 implies

U `+1
Π ≥ 1

765U
`
Π − 2−0.003n ≥ 1

|A|2
−δn−1−11`−log2(765) − 2−0.003n ≥ 1

|A|2
−δn−1−11(`+1)

where the last inequality follows because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn−log2(765) ≥
2−14δn is at least twice 2−0.003n, which gives U `+1

Π ≥ 1
|A|2

−δn−1−11`−log2(765)−1, and
log2(765) + 1 ≤ 11. C

Choosing ` = δn we have

U `Π − 2−d ≥ 1
|A|2

−δn−1−11` − 2−15δn ≥ 1
|A|2

−δn−2−11` (4)

because |A| ≤ 2δn+2 and 2−δn−2−δn−1−11δn ≥ 2−14δn is at least twice 2−15δn. Thus, for
` = δn,

M. Göös and T. Watson 51:9

∑
x,yDx,y ≥

∑
x,y : |x∧y|=`Dx,y

≥
∑
x,y : |x∧y|=`

|A|
3n (accΠ(x, y)− 2−d) (by Claim 5)

= |A|
3n
(
n
`

)
3n−`(U `Π − 2−d)

≥ |A|
3n (n`)`3n−` 1

|A|2
−δn−2−11` (using Equation 4)

= (n
`·3·211)`2−δn−2

= (1
δ·3·211·2)δn/4

≥ 1.6δn

> 1,

contradicting the fact that D is a distribution.

References
1 Scott Aaronson. The Equivalence of Sampling and Searching. Theory of Computing Systems,

55(2):281–298, 2014. doi:10.1007/s00224-013-9527-3.
2 Scott Aaronson and Andris Ambainis. Quantum Search of Spatial Regions. Theory of

Computing, 1(1):47–79, 2005. doi:10.4086/toc.2005.v001a004.
3 Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity Theory. ACM

Transactions on Computation Theory, 1(1):2:1–2:54, 2009. doi:10.1145/1490270.1490272.
4 Amir Abboud, Aviad Rubinstein, and Ryan Williams. Distributed PCP Theorems for Hardness

of Approximation in P. In Proceedings of the 58th Symposium on Foundations of Computer
Science (FOCS), pages 25–36. IEEE, 2017. doi:10.1109/FOCS.2017.12.

5 Josh Alman, Joshua Wang, and Huacheng Yu. Cell-Probe Lower Bounds from Online
Communication Complexity. In Proceedings of the 50th Symposium on Theory of Computing
(STOC), pages 1003–1012. ACM, 2018. doi:10.1145/3188745.3188862.

6 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating
the Frequency Moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
doi:10.1006/jcss.1997.1545.

7 Andris Ambainis, Leonard Schulman, Amnon Ta-Shma, Umesh Vazirani, and Avi Wigder-
son. The Quantum Communication Complexity of Sampling. SIAM Journal on Computing,
32(6):1570–1585, 2003. doi:10.1137/S009753979935476.

8 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial Pass Lower Bounds for Graph
Streaming Algorithms. In Proceedings of the 51st Symposium on Theory of Computing (STOC),
pages 265–276. ACM, 2019. doi:10.1145/3313276.3316361.

9 László Babai, Peter Frankl, and Janos Simon. Complexity Classes in Communication Com-
plexity Theory. In Proceedings of the 27th Symposium on Foundations of Computer Science
(FOCS), pages 337–347. IEEE, 1986. doi:10.1109/SFCS.1986.15.

10 Ziv Bar-Yossef, T.S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics
Approach to Data Stream and Communication Complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004. doi:10.1016/j.jcss.2003.11.006.

11 Paul Beame and Dang-Trinh Huynh-Ngoc. Multiparty Communication Complexity and
Threshold Circuit Size of AC0. In Proceedings of the 50th Symposium on Foundations of
Computer Science (FOCS), pages 53–62. IEEE, 2009. doi:10.1109/FOCS.2009.12.

12 Paul Beame, Toniann Pitassi, Nathan Segerlind, and Avi Wigderson. A Strong Direct Product
Theorem for Corruption and the Multiparty Communication Complexity of Disjointness.
Computational Complexity, 15(4):391–432, 2006. doi:10.1007/s00037-007-0220-2.

APPROX/RANDOM 2019

https://doi.org/10.1007/s00224-013-9527-3
https://doi.org/10.4086/toc.2005.v001a004
https://doi.org/10.1145/1490270.1490272
https://doi.org/10.1109/FOCS.2017.12
https://doi.org/10.1145/3188745.3188862
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1137/S009753979935476
https://doi.org/10.1145/3313276.3316361
https://doi.org/10.1109/SFCS.1986.15
https://doi.org/10.1016/j.jcss.2003.11.006
https://doi.org/10.1109/FOCS.2009.12
https://doi.org/10.1007/s00037-007-0220-2

51:10 A Lower Bound for Sampling Disjoint Sets

13 Christopher Beck, Russell Impagliazzo, and Shachar Lovett. Large Deviation Bounds for
Decision Trees and Sampling Lower Bounds for AC0-Circuits. In Proceedings of the 53rd
Symposium on Foundations of Computer Science (FOCS), pages 101–110. IEEE, 2012. doi:
10.1109/FOCS.2012.82.

14 Avraham Ben-Aroya, Oded Regev, and Ronald de Wolf. A Hypercontractive Inequality for
Matrix-Valued Functions with Applications to Quantum Computing and LDCs. In Proceedings
of the 49th Symposium on Foundations of Computer Science (FOCS), pages 477–486. IEEE,
2008. doi:10.1109/FOCS.2008.45.

15 Itai Benjamini, Gil Cohen, and Igor Shinkar. Bi-Lipschitz Bijection Between the Boolean Cube
and the Hamming Ball. In Proceedings of the 55th Symposium on Foundations of Computer
Science (FOCS), pages 81–89. IEEE, 2014. doi:10.1109/FOCS.2014.17.

16 Lucas Boczkowski, Iordanis Kerenidis, and Frédéric Magniez. Streaming Communication
Protocols. ACM Transactions on Computation Theory, 10(4):19:1–19:21, 2018. doi:10.1145/
3276748.

17 Ralph Bottesch, Dmitry Gavinsky, and Hartmut Klauck. Correlation in Hard Distribu-
tions in Communication Complexity. In Proceedings of the 19th International Workshop
on Randomization and Computation (RANDOM), pages 544–572. Schloss Dagstuhl, 2015.
doi:10.4230/LIPIcs.APPROX-RANDOM.2015.544.

18 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan.
A Tight Bound for Set Disjointness in the Message-Passing Model. In Proceedings of the
54th Symposium on Foundations of Computer Science (FOCS), pages 668–677. IEEE, 2013.
doi:10.1109/FOCS.2013.77.

19 Mark Braverman, Ankit Garg, Young Kun-Ko, Jieming Mao, and Dave Touchette. Near-
Optimal Bounds on the Bounded-Round Quantum Communication Complexity of Disjointness.
SIAM Journal on Computing, 47(6):2277–2314, 2018. doi:10.1137/16M1061400.

20 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From Information
to Exact Communication. In Proceedings of the 45th Symposium on Theory of Computing
(STOC), pages 151–160. ACM, 2013. doi:10.1145/2488608.2488628.

21 Mark Braverman and Ankur Moitra. An Information Complexity Approach to Extended
Formulations. In Proceedings of the 45th Symposium on Theory of Computing (STOC), pages
161–170. ACM, 2013. doi:10.1145/2488608.2488629.

22 Mark Braverman and Rotem Oshman. On Information Complexity in the Broadcast Model.
In Proceedings of the 34th Symposium on Principles of Distributed Computing (PODC), pages
355–364. ACM, 2015. doi:10.1145/2767386.2767425.

23 Mark Braverman and Rotem Oshman. A Rounds vs. Communication Tradeoff for Multi-Party
Set Disjointness. In Proceedings of the 58th Symposium on Foundations of Computer Science
(FOCS), pages 144–155. IEEE, 2017. doi:10.1109/FOCS.2017.22.

24 Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David Woodruff, and Grigory
Yaroslavtsev. Beyond Set Disjointness: The Communication Complexity of Finding the
Intersection. In Proceedings of the 33rd Symposium on Principles of Distributed Computing
(PODC), pages 106–113. ACM, 2014. doi:10.1145/2611462.2611501.

25 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. Classical Communication
and Computation. In Proceedings of the 30th Symposium on Theory of Computing (STOC),
pages 63–68. ACM, 1998. doi:10.1145/276698.276713.

26 Harry Buhrman, David Garcia-Soriano, Arie Matsliah, and Ronald de Wolf. The Non-Adaptive
Query Complexity of Testing k-Parities. Chicago Journal of Theoretical Computer Science,
2013(6):1–11, 2013. doi:10.4086/cjtcs.2013.006.

27 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-Optimal Lower Bounds on
the Multi-Party Communication Complexity of Set Disjointness. In Proceedings of the 18th
Conference on Computational Complexity, pages 107–117. IEEE, 2003. doi:10.1109/CCC.
2003.1214414.

https://doi.org/10.1109/FOCS.2012.82
https://doi.org/10.1109/FOCS.2012.82
https://doi.org/10.1109/FOCS.2008.45
https://doi.org/10.1109/FOCS.2014.17
https://doi.org/10.1145/3276748
https://doi.org/10.1145/3276748
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.544
https://doi.org/10.1109/FOCS.2013.77
https://doi.org/10.1137/16M1061400
https://doi.org/10.1145/2488608.2488628
https://doi.org/10.1145/2488608.2488629
https://doi.org/10.1145/2767386.2767425
https://doi.org/10.1109/FOCS.2017.22
https://doi.org/10.1145/2611462.2611501
https://doi.org/10.1145/276698.276713
https://doi.org/10.4086/cjtcs.2013.006
https://doi.org/10.1109/CCC.2003.1214414
https://doi.org/10.1109/CCC.2003.1214414

M. Göös and T. Watson 51:11

28 Arkadev Chattopadhyay and Anil Ada. Multiparty Communication Complexity of Disjointness.
Technical Report TR08-002, Electronic Colloquium on Computational Complexity (ECCC),
2008. URL: https://eccc.weizmann.ac.il//eccc-reports/2008/TR08-002/.

29 Lijie Chen. On The Hardness of Approximate and Exact (Bichromatic) Maximum Inner
Product. In Proceedings of the 33rd Computational Complexity Conference (CCC), pages
14:1–14:45. Schloss Dagstuhl, 2018. doi:10.4230/LIPIcs.CCC.2018.14.

30 Yuval Dagan, Yuval Filmus, Hamed Hatami, and Yaqiao Li. Trading Information Complexity
for Error. Theory of Computing, 14(1):1–73, 2018. doi:10.4086/toc.2018.v014a006.

31 Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and Lopsided Set Disjointness via
Information Theory. In Proceedings of the 16th International Workshop on Randomization and
Computation (RANDOM), pages 517–528. Springer, 2012. doi:10.1007/978-3-642-32512-0_
44.

32 Anindya De and Thomas Watson. Extractors and Lower Bounds for Locally Samplable
Sources. ACM Transactions on Computation Theory, 4(1):3:1–3:21, 2012. doi:10.1145/
2141938.2141941.

33 Yuval Filmus, Hamed Hatami, Yaqiao Li, and Suzin You. Information Complexity of the
AND Function in the Two-Party and Multi-Party Settings. In Proceedings of the 23rd
International Computing and Combinatorics Conference (COCOON), pages 200–211. Springer,
2017. doi:10.1007/978-3-319-62389-4_17.

34 Dmitry Gavinsky. Communication Complexity of Inevitable Intersection. Technical Report
abs/1611.08842, arXiv, 2016. arXiv:1611.08842.

35 Dmitry Gavinsky and Alexander Sherstov. A Separation of NP and coNP in Multiparty
Communication Complexity. Theory of Computing, 6(1):227–245, 2010. doi:10.4086/toc.
2010.v006a010.

36 Oded Goldreich, Shafi Goldwasser, and Asaf Nussboim. On the Implementation of Huge
Random Objects. SIAM Journal on Computing, 39(7):2761–2822, 2010. doi:10.1137/
080722771.

37 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
Are Nonnegative Juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. doi:10.1137/
15M103145X.

38 Mika Göös, Toniann Pitassi, and Thomas Watson. Zero-Information Protocols and Un-
ambiguity in Arthur–Merlin Communication. Algorithmica, 76(3):684–719, 2016. doi:
10.1007/s00453-015-0104-9.

39 Mika Göös and Thomas Watson. Communication Complexity of Set-Disjointness for All
Probabilities. Theory of Computing, 12(9):1–23, 2016. doi:10.4086/toc.2016.v012a009.

40 Vince Grolmusz. The BNS Lower Bound for Multi-Party Protocols Is Nearly Optimal.
Information and Computation, 112(1):51–54, 1994. doi:10.1006/inco.1994.1051.

41 André Gronemeier. Asymptotically Optimal Lower Bounds on the NIH-Multi-Party Information
Complexity of the AND-Function and Disjointness. In Proceedings of the 26th International
Symposium on Theoretical Aspects of Computer Science (STACS), pages 505–516. Schloss
Dagstuhl, 2009. doi:10.4230/LIPIcs.STACS.2009.1846.

42 Johan Håstad and Avi Wigderson. The Randomized Communication Complexity of Set
Disjointness. Theory of Computing, 3(1):211–219, 2007. doi:10.4086/toc.2007.v003a011.

43 Peter Høyer and Ronald de Wolf. Improved Quantum Communication Complexity Bounds for
Disjointness and Equality. In Proceedings of the 19th Symposium on Theoretical Aspects of
Computer Science (STACS), pages 299–310. Springer, 2002. doi:10.1007/3-540-45841-7_24.

44 Rahul Jain and Hartmut Klauck. The Partition Bound for Classical Communication Complexity
and Query Complexity. In Proceedings of the 25th Conference on Computational Complexity
(CCC), pages 247–258. IEEE, 2010. doi:10.1109/CCC.2010.31.

45 Rahul Jain, Hartmut Klauck, and Ashwin Nayak. Direct Product Theorems for Classical
Communication Complexity via Subdistribution Bounds. In Proceedings of the 40th Symposium
on Theory of Computing (STOC), pages 599–608. ACM, 2008. doi:10.1145/1374376.1374462.

APPROX/RANDOM 2019

https://eccc.weizmann.ac.il//eccc-reports/2008/TR08-002/
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.4086/toc.2018.v014a006
https://doi.org/10.1007/978-3-642-32512-0_44
https://doi.org/10.1007/978-3-642-32512-0_44
https://doi.org/10.1145/2141938.2141941
https://doi.org/10.1145/2141938.2141941
https://doi.org/10.1007/978-3-319-62389-4_17
http://arxiv.org/abs/1611.08842
https://doi.org/10.4086/toc.2010.v006a010
https://doi.org/10.4086/toc.2010.v006a010
https://doi.org/10.1137/080722771
https://doi.org/10.1137/080722771
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/15M103145X
https://doi.org/10.1007/s00453-015-0104-9
https://doi.org/10.1007/s00453-015-0104-9
https://doi.org/10.4086/toc.2016.v012a009
https://doi.org/10.1006/inco.1994.1051
https://doi.org/10.4230/LIPIcs.STACS.2009.1846
https://doi.org/10.4086/toc.2007.v003a011
https://doi.org/10.1007/3-540-45841-7_24
https://doi.org/10.1109/CCC.2010.31
https://doi.org/10.1145/1374376.1374462

51:12 A Lower Bound for Sampling Disjoint Sets

46 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A Lower Bound for the Bounded
Round Quantum Communication Complexity of Set Disjointness. In Proceedings of the
44th Symposium on Foundations of Computer Science (FOCS), pages 220–229. IEEE, 2003.
doi:10.1109/SFCS.2003.1238196.

47 Rahul Jain, Yaoyun Shi, Zhaohui Wei, and Shengyu Zhang. Efficient Protocols for Generating
Bipartite Classical Distributions and Quantum States. IEEE Transactions on Information
Theory, 59(8):5171–5178, 2013. doi:10.1109/TIT.2013.2258372.

48 T.S. Jayram. Hellinger strikes back: A note on the multi-party information complexity of
AND. In Proceedings of the 13th International Workshop on Randomization and Computation
(RANDOM), pages 562–573. Springer, 2009. doi:10.1007/978-3-642-03685-9_42.

49 Bala Kalyanasundaram and Georg Schnitger. The Probabilistic Communication Complexity
of Set Intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992. doi:
10.1137/0405044.

50 Hartmut Klauck. Rectangle Size Bounds and Threshold Covers in Communication Complexity.
In Proceedings of the 18th Conference on Computational Complexity (CCC), pages 118–134.
IEEE, 2003. doi:10.1109/CCC.2003.1214415.

51 Hartmut Klauck. A Strong Direct Product Theorem for Disjointness. In Proceedings of
the 42nd Symposium on Theory of Computing (STOC), pages 77–86. ACM, 2010. doi:
10.1145/1806689.1806702.

52 Hartmut Klauck, Ashwin Nayak, Amnon Ta-Shma, and David Zuckerman. Interaction in
Quantum Communication. IEEE Transactions on Information Theory, 53(6):1970–1982, 2007.
doi:10.1109/TIT.2007.896888.

53 Hartmut Klauck and Supartha Podder. New Bounds for the Garden-Hose Model. In Proceedings
of the 34th International Conference on Foundation of Software Technology and Theoretical
Computer Science (FSTTCS), pages 481–492. Schloss Dagstuhl, 2014. doi:10.4230/LIPIcs.
FSTTCS.2014.481.

54 Hartmut Klauck, Robert Spalek, and Ronald de Wolf. Quantum and Classical Strong
Direct Product Theorems and Optimal Time-Space Tradeoffs. SIAM Journal on Computing,
36(5):1472–1493, 2007. doi:10.1137/05063235X.

55 Gillat Kol, Shay Moran, Amir Shpilka, and Amir Yehudayoff. Approximate Nonnegative Rank
Is Equivalent to the Smooth Rectangle Bound. Computational Complexity, 28(1):1–25, 2019.
doi:10.1007/s00037-018-0176-4.

56 Eyal Kushilevitz and Enav Weinreb. The Communication Complexity of Set-Disjointness with
Small Sets and 0-1 Intersection. In Proceedings of the 50th Symposium on Foundations of
Computer Science (FOCS), pages 63–72. IEEE, 2009. doi:10.1109/FOCS.2009.15.

57 Troy Lee and Adi Shraibman. Disjointness is Hard in the Multiparty Number-on-the-Forehead
Model. Computational Complexity, 18(2):309–336, 2009. doi:10.1007/s00037-009-0276-2.

58 Shachar Lovett and Emanuele Viola. Bounded-Depth Circuits Cannot Sample Good Codes.
Computational Complexity, 21(2):245–266, 2012. doi:10.1007/s00037-012-0039-3.

59 Mihai Patrascu. Unifying the Landscape of Cell-Probe Lower Bounds. SIAM Journal on
Computing, 40(3):827–847, 2011. doi:10.1137/09075336X.

60 Vladimir Podolskii and Alexander Sherstov. Inner Product and Set Disjointness: Beyond
Logarithmically Many Parties. Technical Report abs/1711.10661, arXiv, 2017. arXiv:1711.
10661.

61 Anup Rao and Amir Yehudayoff. Simplified Lower Bounds on the Multiparty Communication
Complexity of Disjointness. In Proceedings of the 30th Computational Complexity Conference
(CCC), pages 88–101. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.CCC.2015.88.

62 Alexander Razborov. On the Distributional Complexity of Disjointness. Theoretical Computer
Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

63 Alexander Razborov. Quantum Communication Complexity of Symmetric Predicates. Izvestiya:
Mathematics, 67(1):145–159, 2003. doi:10.1070/IM2003v067n01ABEH000422.

https://doi.org/10.1109/SFCS.2003.1238196
https://doi.org/10.1109/TIT.2013.2258372
https://doi.org/10.1007/978-3-642-03685-9_42
https://doi.org/10.1137/0405044
https://doi.org/10.1137/0405044
https://doi.org/10.1109/CCC.2003.1214415
https://doi.org/10.1145/1806689.1806702
https://doi.org/10.1145/1806689.1806702
https://doi.org/10.1109/TIT.2007.896888
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.481
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.481
https://doi.org/10.1137/05063235X
https://doi.org/10.1007/s00037-018-0176-4
https://doi.org/10.1109/FOCS.2009.15
https://doi.org/10.1007/s00037-009-0276-2
https://doi.org/10.1007/s00037-012-0039-3
https://doi.org/10.1137/09075336X
http://arxiv.org/abs/1711.10661
http://arxiv.org/abs/1711.10661
https://doi.org/10.4230/LIPIcs.CCC.2015.88
https://doi.org/10.1016/0304-3975(92)90260-M
https://doi.org/10.1070/IM2003v067n01ABEH000422

M. Göös and T. Watson 51:13

64 Aviad Rubinstein. Hardness of Approximate Nearest Neighbor Search. In Proceedings of
the 50th Symposium on Theory of Computing (STOC), pages 1260–1268. ACM, 2018. doi:
10.1145/3188745.3188916.

65 Mert Saglam and Gábor Tardos. On the Communication Complexity of Sparse Set Disjointness
and Exists-Equal Problems. In Proceedings of the 54th Symposium on Foundations of Computer
Science (FOCS), pages 678–687. IEEE, 2013. doi:10.1109/FOCS.2013.78.

66 Alexander Sherstov. The Pattern Matrix Method. SIAM Journal on Computing, 40(6):1969–
2000, 2011. doi:10.1137/080733644.

67 Alexander Sherstov. Strong Direct Product Theorems for Quantum Communication and Query
Complexity. SIAM Journal on Computing, 41(5):1122–1165, 2012. doi:10.1137/110842661.

68 Alexander Sherstov. Communication Lower Bounds Using Directional Derivatives. Journal of
the ACM, 61(6):1–71, 2014. doi:10.1145/2629334.

69 Alexander Sherstov. The Multiparty Communication Complexity of Set Disjointness. SIAM
Journal on Computing, 45(4):1450–1489, 2016. doi:10.1137/120891587.

70 Yaoyun Shi and Yufan Zhu. Quantum Communication Complexity of Block-Composed
Functions. Quantum Information and Computation, 9(5–6):444–460, 2009.

71 Pascal Tesson. Computational Complexity Questions Related to Finite Monoids and Semigroups.
PhD thesis, McGill University, 2003.

72 Emanuele Viola. Extractors for Turing-Machine Sources. In Proceedings of the 16th Interna-
tional Workshop on Randomization and Computation (RANDOM), pages 663–671. Springer,
2012. doi:10.1007/978-3-642-32512-0_56.

73 Emanuele Viola. The Complexity of Distributions. SIAM Journal on Computing, 41(1):191–218,
2012. doi:10.1137/100814998.

74 Emanuele Viola. Extractors for Circuit Sources. SIAM Journal on Computing, 43(2):655–672,
2014. doi:10.1137/11085983X.

75 Emanuele Viola. Quadratic Maps Are Hard to Sample. ACM Transactions on Computation
Theory, 8(4):18:1–18:4, 2016. doi:10.1145/2934308.

76 Emanuele Viola. Sampling Lower Bounds: Boolean Average-Case and Permutations. Technical
Report TR18-060, Electronic Colloquium on Computational Complexity (ECCC), 2018. URL:
https://eccc.weizmann.ac.il/report/2018/060.

77 Thomas Watson. Time Hierarchies for Sampling Distributions. SIAM Journal on Computing,
43(5):1709–1727, 2014. doi:10.1137/120898553.

78 Thomas Watson. Nonnegative Rank vs. Binary Rank. Chicago Journal of Theoretical Computer
Science, 2016(2):1–13, 2016. doi:10.4086/cjtcs.2016.002.

79 Thomas Watson. Communication Complexity with Small Advantage. In Proceedings of the
33rd Computational Complexity Conference (CCC), pages 9:1–9:17. Schloss Dagstuhl, 2018.
doi:10.4230/LIPIcs.CCC.2018.9.

80 Omri Weinstein and David Woodruff. The Simultaneous Communication of Disjointness
with Applications to Data Streams. In Proceedings of the 42nd International Colloquium
on Automata, Languages, and Programming (ICALP), pages 1082–1093. Springer, 2015.
doi:10.1007/978-3-662-47672-7_88.

APPROX/RANDOM 2019

https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1109/FOCS.2013.78
https://doi.org/10.1137/080733644
https://doi.org/10.1137/110842661
https://doi.org/10.1145/2629334
https://doi.org/10.1137/120891587
https://doi.org/10.1007/978-3-642-32512-0_56
https://doi.org/10.1137/100814998
https://doi.org/10.1137/11085983X
https://doi.org/10.1145/2934308
https://eccc.weizmann.ac.il/report/2018/060
https://doi.org/10.1137/120898553
https://doi.org/10.4086/cjtcs.2016.002
https://doi.org/10.4230/LIPIcs.CCC.2018.9
https://doi.org/10.1007/978-3-662-47672-7_88

Approximating the Noise Sensitivity of a
Monotone Boolean Function
Ronitt Rubinfeld
CSAIL at MIT, Cambridge, MA, USA
Blavatnik School of Computer Science at Tel Aviv University, Israel
https://people.csail.mit.edu/ronitt/
ronitt@csail.mit.edu

Arsen Vasilyan
CSAIL at MIT, Cambridge, MA, USA
vasilyan@mit.edu

Abstract
The noise sensitivity of a Boolean function f : {0, 1}n → {0, 1} is one of its fundamental

properties. For noise parameter δ, the noise sensitivity is denoted as NSδ[f]. This quantity is
defined as follows: First, pick x = (x1, . . . , xn) uniformly at random from {0, 1}n, then pick z by
flipping each xi independently with probability δ. NSδ[f] is defined to equal Pr[f(x) 6= f(z)]. Much
of the existing literature on noise sensitivity explores the following two directions: (1) Showing that
functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that
certain classes of functions have low noise sensitivity. Combined, these two research directions show
that certain classes of functions have low noise sensitivity and therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural results,
motivates the algorithmic question of approximating NSδ[f] given an oracle access to the function f .
We show that the standard sampling approach is essentially optimal for general Boolean functions.
Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an
important subclass of Boolean functions, since many functions of interest are either monotone or can
be simply transformed into a monotone function (for example the class of unate functions consists
of all the functions that can be made monotone by reorienting some of their coordinates [21]).

Specifically, we study the algorithmic problem of approximating NSδ[f] for monotone f , given
the promise that NSδ[f] ≥ 1/nC for constant C, and for δ in the range 1/n ≤ δ ≤ 1/2. For such
f and δ, we give a randomized algorithm performing O

(
min(1,

√
nδ log1.5 n)

NSδ [f] poly
(

1
ε

))
queries and

approximating NSδ[f] to within a multiplicative factor of (1± ε). Given the same constraints on f
and δ, we also prove a lower bound of Ω

(
min(1,

√
nδ)

NSδ [f]·nξ

)
on the query complexity of any algorithm that

approximates NSδ[f] to within any constant factor, where ξ can be any positive constant. Thus,
our algorithm’s query complexity is close to optimal in terms of its dependence on n.

We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool
for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique
that reduces computational questions about query complexity to combinatorial questions about
the existence of “thin” functions with certain properties. The existence of such “thin” functions is
proved using the probabilistic method. These techniques also yield new lower bounds on the query
complexity of approximating other fundamental properties of Boolean functions: the total influence
and the bias.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation

Keywords and phrases Monotone Boolean functions, noise sensitivity, influence

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.52

Category RANDOM

Related Version Full version: https://arxiv.org/abs/1904.06745

© Ronitt Rubinfeld and Arsen Vasilyan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 52; pp. 52:1–52:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://people.csail.mit.edu/ronitt/
mailto:ronitt@csail.mit.edu
mailto:vasilyan@mit.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.52
https://arxiv.org/abs/1904.06745
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Approximating the Noise Sensitivity of a Monotone Boolean Function

Funding Ronitt Rubinfeld: NSF grants CCF-1650733, CCF-1733808, IIS-1741137 and CCF-1740751
Arsen Vasilyan: NSF grant IIS-1741137, EECS SuperUROP program, the MIT Summer UROP
program and the DeFlorez Endowment Fund

Acknowledgements We are grateful to the anonymous referees, Daniel Grier and MIT EECS
Communication Lab for helpful comments and suggestions.

1 Introduction

Noise sensitivity is a property of any Boolean function f : {0, 1}n → {0, 1} defined as follows:
First, pick x = (x1, . . . , xn) uniformly at random from {0, 1}n, then pick z by flipping each
xi independently with probability δ. Here δ, the noise parameter, is a given positive constant
no greater than 1/2 (and at least 1/n in the interesting cases). With the above distributions
on x and z, the noise sensitivity of f , denoted as NSδ[f], is defined as follows:

NSδ[f] def= Pr[f(x) 6= f(z)] (1)

Noise sensitivity was first explicitly defined by Benjamini, Kalai and Schramm in [3], and has
been the focus of multiple papers: e.g. [3, 7, 8, 10, 12, 17, 22]. It has been applied to learning
theory [4, 7, 8, 9, 10, 11, 15], property testing [1, 2], hardness of approximation [13, 16],
hardness amplification [19], combinatorics [3, 12], distributed computing [18] and differential
privacy [7]. Multiple properties and applications of noise sensitivity are summarized in
[20] and [21]. Much of the existing literature on noise sensitivity explores the following
directions: (1) Showing that functions with low noise-sensitivity are structured in certain
ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity.
Combined, these two research directions show that certain classes of functions have low noise
sensitivity and therefore have useful structure.

The fundamental importance of noise sensitivity, together with this wealth of structural
results, motivates the algorithmic question of approximating NSδ[f] given an oracle access
to the function f . It can be shown that standard sampling techniques require O

(
1

NSδ[f]ε2

)
queries to get a (1 + ε)-multiplicative approximation for NSδ[f]. In the full version of the
paper, we show that this is optimal for a wide range of parameters of the problem. Specifically,
it cannot be improved by more than a constant when ε is a sufficiently small constant, δ
satisfies 1/n ≤ δ ≤ 1/2 and NSδ[f] satisfies Ω

(1
2n
)
≤ NSδ[f] ≤ O(1).

It is often the case that data possesses a known underlying structural property which
makes the computational problem significantly easier to solve. A natural first such property
to investigate is that of monotonicity, as a number of natural function families are made up
of functions that are either monotone or can be simply transformed into a monotone function
(for example the class of unate functions consists of all the functions that can be made
monotone by reorienting some of their coordinates [21]). Therefore, we focus on estimating
the noise sensitivity of monotone functions.

The approximation of the related quantity of total influence (henceforth just influence) of
a monotone Boolean function in this model was previously studied by [24, 23]1. Influence,
denoted by I[f], is defined as n times the probability that a random edge of the Boolean cube
(x, y) is influential, which means that f(x) 6= f(y). (This latter probability is sometimes
referred to as the average sensitivity). It was shown in [24, 23] that one can approximate the
influence of a monotone function f with only Õ

(√
n

I[f]poly(ε)

)
queries, which for constant ε

beats the standard sampling algorithm by a factor of
√
n, ignoring logarithmic factors.

1 [23] is the journal version of [24] and contains a different algorithm that yields sharper results. However,
our algorithmic techniques build on the conference version [24].

R. Rubinfeld and A. Vasilyan 52:3

Despite the fact that the noise sensitivity is closely connected to the influence [20, 21],
the noise sensitivity of a function can be quite different from its influence. For instance, for
the parity function of all n bits, the influence is n, but the noise sensitivity is 1

2 (1− (1− 2δ)n)
(such disparities also hold for monotone functions, see for example the discussion of influence
and noise sensitivity of the majority function in [21]). Therefore, approximating the influence
by itself does not give one a good approximation to the noise sensitivity.

The techniques in [24, 23] also do not immediately generalize to the case of noise sensitivity.
The result in [24, 23] is based on the observation that given a descending2 path on the
Boolean cube, at most one edge in it can be influential. Thus, to check if a descending path
of any length contains an influential edge, it suffices to check the function values at the
endpoints of the path. By sampling random descending paths, [24, 23] show that one can
estimate the fraction of influential edges, which is proportional to the influence.

The most natural attempt to relate these path-based techniques with the noise sensitivity
is to view it in the context of the following process: first one samples x randomly, then one
obtains z by taking a random walk from x by going through all the indices in an arbitrary
order and deciding whether to flip each with probability δ. The intermediate values in
this process give us a natural path connecting x to z. However, this path is in general not
descending, so it can, for example, cross an even number of influential edges, and then the
function will have the same value on the two endpoints of this path. This prevents one from
immediately applying the techniques from [24, 23].

We overcome this difficulty by introducing our main conceptual contribution: the
descending-ascending view of noise sensitivity. In the process above, instead of going through
all the indices in an arbitrary order, we first go through the indices i for which xi = 1 and
only then through the ones for which xi = 0. This forms a path between x and z that has
first a descending component and then an ascending component. Although this random walk
is more amenable to an analysis using the path-based techniques of [24, 23], there are still
non-trivial sampling questions involved in the design and analysis of our algorithm.

An immediate corollary of our result is a query complexity upper bound on estimating
the gap between the noise stability of a Boolean function and one. The noise stability
of a Boolean function f depends on a parameter ρ and is denoted by Stabρ[f] (for more
information about noise stability, see [21]). One way Stabρ[f] can be defined is as the unique
quantity satisfying the functional relation 1

2 (1−Stab1−2δ[f]) = NSδ[f] for all δ. This implies
that by obtaining an approximation for NSδ[f], one also achieves an approximation for
1− Stab1−2δ[f].

1.1 Results
Our main algorithmic result is the following:

I Theorem 1. Let δ be a parameter satisfying:

1
n
≤ δ ≤ 1

√
n log1.5 n

Suppose, f : {0, 1}n → {0, 1} is a monotone function and NSδ[f] ≥ 1
nC

for some constant C.
Then, there is an algorithm that outputs an approximation to NSδ[f] to within a multi-

plicative factor of (1± ε), with success probability at least 2/3. In expectation, the algorithm
makes O

(√
nδ log1.5 n
NSδ[f]ε3

)
queries to the function. Additionally, it runs in time polynomial in n.

2 A path is descending if each subsequent vertex in it is dominated by all the previous ones in the natural
partial order on the Boolean cube.

APPROX/RANDOM 2019

52:4 Approximating the Noise Sensitivity of a Monotone Boolean Function

Note that computing noise-sensitivity using standard sampling3 requires O
(

1
NSδ[f]ε2

)
samples. Therefore, for a constant ε, we have the most dramatic improvement if δ = 1

n , in
which case, ignoring constant and logarithmic factors, our algorithm outperforms standard
sampling by a factor of

√
n.

As in [24], our algorithm requires that the noise sensitivity of the input function f is
larger than a specific threshold 1/nC . Our algorithm is not sensitive to the value of C as long
as it is a constant, and we think of 1/nC as a rough initial lower bound known in advance.

We next give lower bounds for approximating three different parameters of monotone
Boolean functions: the bias, the influence and the noise sensitivity. A priori, it is not clear
what kind of lower bounds one could hope for. Indeed, determining whether a given function
is the all-zeros function requires Ω(2n) queries in the general function setting, but only 1
query (of the all-ones input), if the function is promised to be monotone. Nevertheless, we
show that such a dramatic improvement for approximating these quantities is not possible.

For monotone functions, we are not aware of previous lower bounds on approximating
the bias or noise sensitivity. Our lower bound on approximating influence is not comparable
to the lower bounds in [24, 23], as we will elaborate shortly.

We now state our lower bound for approximating the noise sensitivity. Here and everywhere
else, to “reliably distinguish” means to distinguish with probability at least 2/3.

I Theorem 2. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: For all δ satisfying 1/n ≤ δ ≤ 1/2, given a
monotone function f : {0, 1}n → {0, 1}, one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably

distinguish between the following two cases: (i) f has noise sensitivity between Ω(1/nC1+1)
and O(1/nC1) and (ii) f has noise sensitivity larger than Ω(min(1, δ

√
n)/nC2).

I Remark 3. For any positive constant ξ, we have that e
√
C1 logn/2 ≤ nξ.

I Remark 4. The range of the parameter δ can be divided into two regions of interest. In the
region 1/n ≤ δ ≤ 1/(

√
n logn), the algorithm from Theorem 1 can distinguish the two cases

above with only Õ(nC2) queries. Therefore its query complexity is optimal up to a factor
of Õ(e

√
C1 logn/2). Similarly, in the region 1/(

√
n logn) ≤ δ ≤ 1/2, the standard sampling

algorithm can distinguish the two distributions above with only Õ(nC2) queries. Therefore
in this region of interest, standard sampling is optimal up to a factor of Õ(e

√
C1 logn/2).

We define the bias of a Boolean function as B[f] def= Pr[f(x) = 1], where x is chosen
uniformly at random from {0, 1}n. It is arguably the most basic property of a Boolean
function, so we consider the question of how quickly it can be approximated for monotone
functions. To approximate the bias up to a multiplicative factor of (1± ε) using standard
sampling, one needs O(1/(B[f]ε2)) queries. We obtain a lower bound for this task similar to
the previous theorem:

I Theorem 5. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: Given a monotone function f : {0, 1}n → {0, 1},
one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably distinguish between the following two

cases: (i) f has bias of Θ(1/nC1) (ii) f has bias larger than Ω(1/nC2).

3 Standard sampling refers to the algorithm that picks O
(

1
NSδ [f]ε2

)
pairs x and z as in the definition of

noise sensitivity and computes the fraction of pairs for which f(x) 6= f(z).

R. Rubinfeld and A. Vasilyan 52:5

Finally, we prove a lower bound for approximating influence:

I Theorem 6. For all constants C1 and C2 satisfying C1 − 1 > C2 ≥ 0, for an infinite
number of values of n the following is true: Given a monotone function f : {0, 1}n → {0, 1},
one needs at least Ω

(
nC2

e
√
C1 logn/2

)
queries to reliably distinguish between the following two

cases: (i) f has influence between Ω(1/nC1) and O(n/nC1) (ii) f has influence larger than
Ω(
√
n/nC2).

This gives us a new sense in which the algorithm family in [24, 23] is close to optimal, because
for a function f with influence Ω(

√
n/nC2) this algorithm makes Õ(nC2) queries to estimate

the influence up to any constant factor.
Our lower bound is incomparable to the lower bound in [24], which makes the stronger

requirement that I[f] ≥ Ω(1), but gives a bound that is only a polylogarithmic factor smaller
than the runtime of the algorithm in [24, 23]. There are many possibilities for algorithmic
bounds that were compatible with the lower bound in [24, 23], but are eliminated with our
lower bound. For instance, prior to this work, it was conceivable that an algorithm making
as little as O(

√
n) queries could give a constant factor approximation to the influence of any

monotone input function whatsoever. Our lower bound shows that not only is this impossible,
no algorithm that makes O(nC2) queries for any constant C2 can accomplish this either.

1.2 Algorithm overview

Here, we give the algorithm in Theorem 1 together with the subroutines it uses. Additionally,
we give an informal overview of the proof of correctness and the analysis of running time
and query complexity, which are presented in more detail in Section 3.

First of all, recall that NSδ[f] = Pr[f(x) 6= f(z)] by Equation 1. Using a standard pairing
argument, we argue that NSδ[f] = 2 · Pr[f(x) = 1 ∧ f(z) = 0]. In other words, we can focus
only on the case when the value of the function flips from one to zero.

We introduce the descending-ascending view of noise sensitivity (described more formally
in Subsection 3.1), which, roughly speaking, views the noise process as decomposed into
a first phase that operates only on the locations in x that are 1, and a second phase that
operates only on the locations in x that are set to 0. Formally, we define the noise process D
in Algorithm 1.

This process gives us a path from x to z that can be decomposed into two segments,
such that the first part, P1, descends in the hypercube, and the second part P2 ascends in
the hypercube.

Algorithm 1 Process D.

1. Pick x uniformly at random from {0, 1}n. Let S0 be the set of indexes i for which xi = 0,
and conversely let S1 be the rest of indexes.

2. Phase 1: go through all the indexes in S1 in a random order, and flip each with
probability δ. Form the descending path P1 from all the intermediate results. Call the
endpoint y.

3. Phase 2: start at y, and flip each index in S0 with probability δ. As before, all the
intermediate results form an ascending path P2, which ends in z.

4. Output P1, P2, x, y and z.

APPROX/RANDOM 2019

52:6 Approximating the Noise Sensitivity of a Monotone Boolean Function

Since f is monotone, for f(x) = 1 and f(z) = 0 to be the case, it is necessary, though not
sufficient, that f(x) = 1 and f(y) = 0, which happens whenever P1 hits an influential edge.
Therefore we break the task of estimating the probability of f(x) 6= f(z) into computing the
product of:

The probability that P1 hits an influential edge, specifically, the probability that f(x) = 1
and f(y) = 0, which we refer to as pA.
The probability that P2 does not hit any influential edge, given that P1 hits an influential
edge: specifically, the probability that given f(x) = 1 and f(y) = 0, it is the case that
f(z) = 0. We refer to this probability as pB .

The above informal definitions of pA and pB ignore some technical complications. Specifically,
the impact of certain “bad events” is considered in our analysis. We redefine pA and pB
precisely in Subsection 3.2.1.

To define those bad events, we use the following two values, which we reference in our
algorithms: t1 and t2. Informally, t1 and t2 have the following meaning. A typical vertex x of
the hypercube has Hamming weight L(x) between n/2− t1 and n/2 + t1. A typical Phase 1
path from process D will have length at most t2. To achieve this, we assign t1

def= η1
√
n logn

and t2
def= nδ(1 + 3η2 logn), where η1 and η2 are certain constants.

We also define M to be the set of edges e = (v1, v2), for which both L(v1) and L(v2) are
between and n/2− t1 and n/2 + t1. Most of the edges in the hypercube are in M , which is
used by our algorithm and the run-time analysis.

Our analysis requires that only δ ≤ 1/(
√
n log1.5 n) as in the statement of Theorem

1, however the utility of the ascending-descending view can be most clearly motivated
when δ ≤ 1/(

√
n log2 n). Specifically, given that δ ≤ 1/(

√
n log2 n), it is the case that t2

will be shorter than O(
√
n/ logn). Therefore, typically, the path P1 is also shorter than

O(
√
n/ logn). Similar short descending paths on the hypercube have been studied before: In

[24], paths of such lengths were used to estimate the number of influential edges by analyzing
the probability that a path would hit such an edge. One useful insight given by [24] is that
the probability of hitting almost every single influential edge is roughly the same.

However, the results in [24] cannot be immediately applied to analyze P1, because (i)
P1 does not have a fixed length, but rather its lengths form a probability distribution, (ii)
this probability distribution also depends on the starting point x of P1. We build upon the
techniques in [24] to overcome these difficulties, and prove that again, roughly speaking,
for almost every single influential edge, the probability that P1 hits it depends very little
on the location of the edge, and our proof also computes this probability. This allows us
to prove that pA ≈ δI[f]/2. Then, using the algorithm in [24] to estimate I[f], we thereby
estimate pA.

Regarding pB, we estimate it by approximately sampling paths P1 and P2 that would
arise from process D, conditioned on that P1 hits an influential edge. To that end, we first
sample an influential edge e that P1 hits. Since P1 hits almost every single influential edge
with roughly the same probability, we do it by sampling e approximately uniformly from
among influential edges. For the latter task, we build upon the result in [24] as follows: As
we have already mentioned, the algorithm in [24] samples descending paths of a fixed length
to estimate the influence. For those paths that start at an x for which f(x) = 1 and end at a
z for which f(z) = 0, we add a binary search step in order to locate the influential edge e
that was hit by the path.

Thus, we have the following algorithm A (see Algorithm 2), which takes oracle access to
a function f and an approximation parameter ε as input. In the case of success, it outputs
an influential edge that is roughly uniformly distributed.

R. Rubinfeld and A. Vasilyan 52:7

Algorithm 2 Algorithm A (given oracle access to a monotone function f : {0, 1}n → {0, 1} and a
parameter ε).

1. Assign w = ε
3100η1

√
n

logn

2. Pick x uniformly at random from {0, 1}n.
3. Perform a descending walk P1 downwards in the hypercube starting at x. Stop at a

vertex y either after w steps, or if you hit the all-zeros vertex. Query the value of f only
at the endpoints x and y of this path.

4. If f(x) = f(y) output FAIL.
5. If f(x) 6= f(y) perform a binary search on the path P1 and find an influential edge einf .
6. If einf ∈M return einf . Otherwise output FAIL.

Finally, once we have obtained a roughly uniformly random influential edge e, we sample
a path P1 from among those that hit it. An obvious way to try to quickly sample such a
path is to perform two random walks of lengths w1 and w2 in opposite directions from the
endpoints of the edge, and then concatenate them into one path. However, to do this, one
needs to somehow sample the lengths w1 and w2. This problem is not trivial, since longer
descending paths are more likely to hit an influential edge, which biases the distribution of
the path lengths towards longer ones.

To generate w1 and w2 according to the proper distribution, we first sample a path P1
hitting any edge at the same layer4 Λe as e. We accomplish this by designing an algorithm
that uses rejection sampling. The algorithm samples short descending paths from some
conveniently chosen distribution, until it gets a path hitting the desired layer.

We now describe the algorithm in more detail. Recall that we use L(x) to denote the
Hamming weight (which we also call the level) of x, which equals the number of indices i on
which xi = 1, and we use the symbol Λe to denote the whole layer of edges that have the
same endpoint levels as e. The algorithm W described in Algorithm 3 takes an influential
edge e as an input and samples the lengths w1 and w2.

Algorithm 3 Algorithm W (given an edge e def= (v1, v2) so v2 � v1).

1. Pick an integer l uniformly at random among the integers in [L(v1), L(v1) + t2 − 1]. Pick
a vertex x randomly at level l.

2. As in phase 1 of the noise sensitivity process, traverse in random order through the indices
of x and for each index that equals to one, flip it with probability δ. The intermediate
results form a path P1, and we call its endpoint y.

3. If P1 does not intersect Λe go to step 1.
4. Otherwise, output w1 = L(x)− L(v1) and w2 = L(v2)− L(y).

Recall that t2 has a technical role and is defined to be equal nδ(1 + 3η2 logn), where
η2 is a certain constant. t2 is chosen to be long enough that it is longer than most paths
P1, but short enough to make the sampling in W efficient. Since the algorithm involves
short descending paths, we analyze this algorithm building upon the techniques we used to
approximate pA.

4 We say that edges e1 and e2 are on the same layer if and only if their endpoints have the same Hamming
weights. We denote the layer an edge e belongs to as Λe.

APPROX/RANDOM 2019

52:8 Approximating the Noise Sensitivity of a Monotone Boolean Function

After obtaining a random path going through the same layer as e, we show how to
transform it, using the symmetries of the hypercube, into a a random path P1 going through
e itself. Additionally, given the endpoint of P1, we sample the path P2 just as in the
process D.

Formally, the algorithm B (see Algorithm 4) takes an influential edge e and returns a
descending path P1 that goes through e and an adjacent ascending path P2, together with
the endpoints of these paths.

Algorithm 4 Algorithm B (given an influential edge e def= (v1, v2) so v2 � v1).

1. Use W(e) to sample w1 and w2.
2. Perform an ascending random walk of length w1 starting at v1 and call its endpoint x.

Similarly, perform a descending random walk starting at v2 of length w2, call its endpoint
y.

3. Define P1 as the descending path that results between x and y by concatenating the two
paths from above, oriented appropriately, and edge e.

4. Define P2 just as in phase 2 of our process starting at y. Consider in random order all
the zero indices y has in common with x and flip each with probability δ.

5. Return P1 ,P2, x, y and z.

We then use sampling to estimate which fraction of the paths P2 continuing these P1
paths does not hit an influential edge. This allows us to estimate pB , which, combined with
our estimate for pA, gives us an approximation for NSδ[f].

Formally, we put all the previously defined subroutines together into the randomized
Algorithm 5 that takes oracle access to a function f together with an approximation parameter
ε and outputs an approximation to NSδ[f]:

Algorithm 5 Algorithm for estimating noise sensitivity. (given oracle access to a monotone
function f : {0, 1}n → {0, 1}, and a parameter ε).

1. Using the algorithm from [24] as described in Theorem 14, compute an approximation to
the influence of f to within a multiplicative factor of (1± ε/33). This gives us Ĩ.

2. Compute p̃A := δĨ/2.
3. Initialize α := 0 and β := 0. Repeat the following until α = 768 ln 200

ε2 .
Use algorithm A from Lemma 20 repeatedly to successfully sample an edge e.
From Lemma 25 use the algorithm B, giving it e as input, and sample P1, P2, x, y
and z.
If it is the case that f(x) = 1 and f(z) = 0, then α := α+ 1.
β := β + 1.

4. Set p̃B = α
β .

5. Return 2p̃Ap̃B .

1.3 Lower bound techniques
We use the same technique to lower bound the query complexity of approximating any of
the following three quantities: the noise sensitivity, influence and bias.

R. Rubinfeld and A. Vasilyan 52:9

For concreteness, let us first focus on approximating the bias. Recall that one can
distinguish the case where the bias is 0 from the bias being 1/2n using a single query.
Nevertheless, we show that for the most part, no algorithm for estimating the bias can do
much better than the random sampling approach.

We construct two probability distributions DB
1 and DB

2 that are relatively hard to
distinguish but have drastically different biases. To create them, we fix some threshold l0
and then construct a special monotone function FB , which has the following two properties:
(1) It has a high bias. (2) It equals to one on only a relatively small fraction of points on the
level l0. We refer to functions satisfying (2) as “thin” functions. We will explain later how to
obtain such a function FB . We pick a function from DB

2 by taking FB , randomly permuting
the indices of its input, and finally “truncating” it by setting it to one on all values of x,
which have Hamming weight greater than l0.

We form DB
1 even more simply. We take the all-zeros function and truncate it at the same

threshold l0. The threshold l0 is chosen in a way that this function in DB
1 has a sufficiently

small bias. Thus DB
1 consists of only a single function.

The purpose of truncation is to prevent a distinguisher from gaining information by
accessing the values of the function on the high-level vertices of the hypercube. Indeed, if
there was no truncation, one could tell whether they have access to the all-zeros function by
simply querying it on the all-ones input. Since FB is monotone, if it equals to one on at
least one input, then it has to equal one on the all-ones input.

The proof has two main lemmas: The first one is computational and says that if FB is
“thin” then DB

1 and DB
2 are hard to reliably distinguish. To prove the first lemma, we show

that one could transform any adaptive algorithm for distinguishing DB
1 from DB

2 into an
algorithm that is just as effective, is non-adaptive and queries points only on the layer l0.

To show this, we observe that, because of truncation, distinguishing a function in DB
2

from a function in DB
1 is in a certain sense equivalent to finding a point with level at most

l0 on which the given function evaluates to one. We argue that for this setting, adaptivity
does not help. Additionally, if x � y and both of them have levels at most l0 then, since
f is monotone, f(x) = 1 implies that f(y) = 1 (but not necessarily the other way around).
Therefore, for finding a point on which the function evaluates to one, it is never more useful
to query x instead of y.

Once we prove that no algorithm can do better than a non-adaptive algorithm that only
queries points on the level l0, we use a simple union bound to show that any such algorithm
cannot be very effective for distinguishing our distributions.

Finally, to construct FB , we need to show that there exist functions that are “thin” and
simultaneously have a high bias. This is a purely combinatorial question and is proven in our
second main lemma. We build upon Talagrand random functions that were first introduced
in [25]. In [17] it was shown that they are very sensitive to noise, which was applied for
property testing lower bounds [2]. A Talagrand random DNF consists of 2

√
n clauses of√

n indices chosen randomly with replacement. We modify this construction by picking the
indices without replacement and generalize it by picking 2

√
n/nC2 clauses, where C2 is a

non-negative constant. We show that these functions are “thin”, so they are appropriate for
our lower bound technique.

“Thinness” allows us to conclude that DB
1 and DB

2 are hard to distinguish from each other.
We then prove that they have drastically different biases. We do the latter by employing the
probabilistic method and showing that in expectation our random function has a large enough
bias. We handle influence and noise sensitivity analogously, specifically by showing that that
as we pick fewer clauses, the expected influence and noise sensitivity decrease proportionally.
We prove this by dividing the points, where one of these random functions equals to one,

APPROX/RANDOM 2019

52:10 Approximating the Noise Sensitivity of a Monotone Boolean Function

into two regions: (i) the region where only one clause is true and (ii) a region where more
than one clause is true. Roughly speaking, we show that the contribution from the points in
(i) is sufficient to obtain a good lower bound on the influence and noise sensitivity.

1.4 Possibilities of improvement?
In [23] (which is the journal version of [24]), it was shown that using the chain decomposition
of the hypercube, one can improve the run-time of the algorithm to O

(√
n

ε2I[f]

)
and also

improve the required lower bound on I[f] to be I[f] ≥ exp(−c1ε
2n+ c2 log(n/ε)) for some

constant c1 and c2 (it was I[f] ≥ 1/nC for any constant C in [24]). Additionally, the
algorithm itself was considerably simplified.

A hope is that techniques based on the chain decomposition could help improve the
algorithm in Theorem 1. However, it is not clear how to generalize our approach to use these
techniques, since the ascending-descending view is a natural way to express noise sensitivity
in terms of random walks, and it is not obvious whether one can replace these walks with
chains of the hypercube.

2 Preliminaries

2.1 Definitions

2.1.1 Fundamental definitions and lemmas pertaining to the hypercube
I Definition 7. We refer to the poset over {0, 1}n as the n-dimensional hypercube,
viewing the domain as vertices of a graph, in which two vertices are connected by an edge
if and only if the corresponding elements of {0, 1}n differ in precisely one index. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in {0, 1}n, we say that x � y if and only if for all i in
[n] it is the case that xi ≤ yi.

I Definition 8. The level of a vertex x on the hypercube is the hamming weight of x, or
in other words number of 1-s in x. We denote it by L(x).

We define the set of edges that are in the same “layer” of the hypercube as a given edge:

I Definition 9. For an arbitrary edge e suppose e = (v1, v2) and v2 � v1. We denote Λe to
be the set of all edges e′ = (v′1, v′2), so that L(v1) = L(v′1) and L(v2) = L(v′2).

The size of Λe is L(v1)
(

n
L(v1)

)
. The concept of Λe will be useful because we will deal with

paths that are symmetric with respect to change of coordinates, and these have an equal
probability of hitting any edge in Λe.

As we view the hypercube as a graph, we will often refer to paths on it. By referring to a
path P we will, depending on the context, refer to its set of vertices or edges.

I Definition 10. We call a path descending if for every pair of consecutive vertices vi and
vi+1, it is the case that vi+1 ≺ vi. Conversely, if the opposite holds and vi ≺ vi+1, we call a
path ascending. We consider an empty path to be vacuously both ascending and descending.
We define the length of a path to be the number of edges in it, and denote it by |P |. We say
we take a descending random walk of length w starting at x, if we pick a uniformly
random descending path of length w starting at x.

Descending random walks over the hyper-cube were used in an essential way in [24] and
were central for the recent advances in monotonicity testing algorithms [5, 6, 14].

R. Rubinfeld and A. Vasilyan 52:11

I Lemma 11 (Hypercube Continuity Lemma). Suppose n is a sufficiently large positive
integer, C1 is a constant and we are given l1 and l2 satisfying n

2 −
√
C1n log(n) ≤ l1 ≤ l2 ≤

n
2 +

√
C1n log(n). If we denote C2

def= 1
10
√
C1

, then for any ξ satisfying 0 ≤ ξ ≤ 1, if it is the

case that l2− l1 ≤ C2ξ
√

n
log(n) , then, for large enough n, it is the case that 1−ξ ≤ (nl1)

(nl2) ≤ 1+ξ

Proof. See the full version of the paper. J

2.1.2 Fundamental definitions pertaining to Boolean functions
I Definition 12. Let δ be a parameter and let x be selected uniformly at random from {0, 1}n.
Let z ∈ {0, 1}n be defined as follows:

zi =
{
xi with probability 1− δ
1− xi with probability δ

We denote this distribution of x and z by Tδ. Then we define the noise sensitivity of
f as NSδ[f] def= Pr(x,z)∈RTδ [f(x) 6= f(z)].

I Observation 13. For every pair of vertices a and b, the probability that for a pair x, z
drawn from Tδ, it is the case that (x, z) = (a, b), is equal to the probability that (x, z) = (b, a).

Therefore, Pr[f(x) = 0 ∧ f(z) = 1] = Pr[f(x) = 1 ∧ f(z) = 0]. Hence:

NSδ[f] = 2 · Pr[f(x) = 1 ∧ f(z) = 0]

2.1.3 Influence estimation
To estimate the influence, standard sampling would require O

(
n

I[f]ε2

)
samples. However,

from [24] we have:

I Theorem 14. There is an algorithm that approximates I[f] to within a multiplicative factor
of (1± ε) for a monotone f : {0, 1}n → {0, 1}. The algorithm requires that I[f] ≥ 1/nC′ for
a constant C ′ that is given to the algorithm. It outputs a good approximation with probability
at least 0.99 and in expectation requires O

(√
n log(n/ε)
I[f]ε3

)
queries. Additionally, it runs in time

polynomial in n.

2.1.4 Bounds for the error parameter and the influence
The following observation allows us to assume that without loss of generality ε is not too
small. A similar technique was also used in [24].

I Observation 15. When ε < O(
√
nδ log1.5(n)) there is a simple algorithm that accomplishes

the desired query complexity of O
(√

nδ log1.5(n)
NSδ[f]ε3

)
. Namely, this can be done by the standard

sampling algorithm that requires only O
(

1
NSδ[f]ε2

)
samples. Thus, since we can handle the

case when ε < O(
√
nδ log1.5(n)), we focus on the case when ε ≥ H

√
nδ log1.5(n) ≥ H log1.5 n√

n
,

for any constant H.
Additionally, throughout the paper whenever we need it, we will without loss of generality

assume that ε is smaller than a sufficiently small positive constant.

We will also need a known lower bound on influence:

APPROX/RANDOM 2019

52:12 Approximating the Noise Sensitivity of a Monotone Boolean Function

I Observation 16. For any function f : {0, 1}n → {0, 1} and δ ≤ 1/2 it is the case that
NSδ[f] ≤ δI[f]. Therefore it is the case that I[f] ≥ 1

nC
.

A very similar statement is proved in [17] and for completeness we prove it in the full version
of the paper.

3 An improved algorithm for small values of the noise parameter

In this section we give a more in-depth motivation for the analysis of our algorithm, together
with the statements of the main lemmas. For all proofs, the reader is referred to the
full version.

3.1 Descending-ascending framework
The descending-ascending process

It will be useful to view noise sensitivity in the context of the noise process D (see Algorithm 1
for the definition). By inspection, x and z are distributed identically in D as in Tδ. Therefore
from Observation 13:

NSδ[f] = 2 · Pr
D

[f(x) = 1 ∧ f(z) = 0]

I Observation 17. Since the function is monotone, if f(x) = 1 and f(z) = 0, then it has to
be that f(y) = 0.

3.2 Review of algorithm
Roughly speaking, our algorithm will break the task of estimating NSδ[f] into estimating the
probabilities5 PrD[f(x) = 1 ∧ f(y) = 0] and PrD[f(z) = 0|f(x) = 1 ∧ f(y) = 0]. To estimate
the former, in Lemma 23 we will advantage of the fact that δ is small, so the path P1 is
typically short, and hence the same types of techniques can be applied as in the analysis of
the influence estimation algorithm.

The situation here is different from that of influence estimation because (i) the length
of the path is random (ii) this probability distribution of lengths depends on the starting
vertex. However, we will prove there exists a value, call it p1, so that most influential edges
are hit with probability close to p1. It depends on δ and I[f], and we can estimate it quite
efficiently by estimating I[f].

In order to estimate PrD[f(z) = 0|f(x) = 1 ∧ f(y) = 0] we will approximate the
distribution D conditioned on f(x) = 1 ∧ f(y) = 0. To that end, we will first sample
an influential edge e that P1 goes through, and then among all the downwards paths
going through e we will sample P1 itself. The algorithm that samples an influential edge
approximately uniformly is inspired by the algorithm that estimates influence.

3.2.1 Defining bad events and technical notation
In this section, we give the parameters that we use to determine the lengths of our walks, as
well as the “middle” of the hypercube. Additionally, in this section we define some notation
we use.

5 In the precise analysis there will be some bad events to take care of. For the sake of simplicity, we do
not talk about them right now.

R. Rubinfeld and A. Vasilyan 52:13

Define the following values:

t1
def= η1

√
n logn t2

def= nδ(1 + 3η2 logn)

Here η1 and η2 are large enough constants. Taking η1 =
√
C + 4 and η2 = C + 2 is sufficient

for our purposes (recall that we were promised that NSδ[f] ≥ 1/nC for a constant C).
Informally, t1 and t2 have the following intuitive meaning. A typical vertex x of the

hypercube has L(x) between n/2− t1 and n/2 + t1. A typical Phase 1 path from process D
will have length at most t2.

We define the “middle edges” M as the following set of edges:

M
def= {e = (v1, v2) : n2 − t1 ≤ L(v2) ≤ L(v1) ≤ n

2 + t1}

Denote by M the rest of the edges.
We define two bad events in context of D, such that when neither of these events happen,

we can show that the output has certain properties. The first one happens roughly when P1
(from x to y, as defined by Process D) is much longer than it should be in expectation, and
the second one happens when P1 crosses one of the edges that are too far from the middle of
the hypercube, which could happen because P1 is long or because of a starting point that is
far from the middle. More specifically:

E1 happens when both of the following hold (i) P1 crosses an edge e ∈ EI and (ii)
denoting e = (v1, v2), so that v2 � v1, it is the case that L(x)− L(v1) ≥ t2.
E2 happens when P1 contains an edge in EI ∩M .

While defining E1 we want two things from it. First of all, we want its probability to be
upper-bounded easily. Secondly, we want it not to complicate the sampling of paths in
Lemma 24. There exists a tension between these two requirements, and as a result the
definition of E1 is somewhat convoluted.

We will approximate the noise sensitivity as the product of the following two quantities:

pA
def= Pr

D
[f(x) = 1 ∧ f(y) = 0 ∧ E1 ∧ E2]

pB
def= Pr

D
[f(z) = 0|f(x) = 1 ∧ f(y) = 0 ∧ E1 ∧ E2]

Ignoring the bad events, PA is the probability that P1 hits an influential edge, and PB is the
probability that given that P1 hits an influential edge P2 does not hit an influential edge.
From Observation (17), if and only if these two things happen, it is the case that f(x) = 1
and f(z) = 0. From this fact and the laws of conditional probabilities we have:

Pr
D

[f(x) = 1∧f(z) = 0∧E1∧E2] = Pr
D

[f(x) = 1∧f(y) = 0∧f(z) = 0∧E1∧E2] = pApB (2)

We can consider for every individual edge e in M ∩ EI the probabilities:

pe
def= Pr

D
[e ∈ P1 ∧ E1 ∧ E2]

qe
def= Pr

D
[f(x) = 1 ∧ f(z) = 0|e ∈ P1 ∧ E1 ∧ E2] = Pr

D
[f(z) = 0|e ∈ P1 ∧ E1 ∧ E2]

The last equality is true because e ∈ P1 already implies f(x) = 1. Informally and ignoring
the bad events again, pe is the probability that f(x) = 1 and f(y) = 0 because P1 hits e
and not some other influential edge. Similarly, qe is the probability f(x) = 1 and f(z) = 0
given that P1 hits specifically e.

APPROX/RANDOM 2019

52:14 Approximating the Noise Sensitivity of a Monotone Boolean Function

Since f is monotone, P1 can hit at most one influential edge. Therefore, the events of
P1 hitting different influential edges are disjoint. Using this, Equation (2) and the laws of
conditional probabilities we can write:

pA =
∑

e∈EI∩M
pe (3)

Furthermore, the events that P1 hits a given influential edge and then P2 does not hit any
are also disjoint for different influential edges. Therefore, analogous to the previous equation
we can write:

pApB = Pr
D

[(f(x) = 1) ∧ (f(z) = 0) ∧ E1 ∧ E2] =
∑

e∈EI∩M
peqe (4)

3.2.2 Bad events can be “ignored”
In the following, we will need to consider probability distributions in which bad events do
not happen. For the most part, conditioning on the fact that bad events do not happen
changes little in the calculations. In this subsection, we present two relatively simple lemmas
that allow us to formalize these claims.

The following observation suggests that almost all influential edges are in M .

I Observation 18. It is the case that:(
1− ε

310

)
|EI | ≤ |M ∩ EI | ≤ |EI |

Proof. This is the case, because:

|M ∩ EI | ≤ |M | ≤ 2nn · 2 exp(−2η2
1 log(n)) =

2n−1 · 4/n2η2
1−1 ≤ 2n−1I[f]/n = |EI |/n ≤

ε

310 |EI | (5)

The second inequality is the Hoeffding bound, then we used Observations 16 and 15. J

We now assert that ignoring these bad events does not distort our estimate for NSδ[f].

I Lemma 19. It is the case that:

pApB ≤
1
2NSδ[f] ≤

(
1 + ε

5

)
pApB

Proof. See the full version of the paper. J

3.3 Main lemmas
Having rigorously defined our technical language, now we can state our main algorithmic
lemmas, together with their motivation and our approach to proving them. We refer the
reader to the full version of the paper for the proofs of these lemmas, the proof of the
Theorem 1 using these lemmas, as well as the derivation of the lower bounds in Theorems 5,
6 and 2.

The first two lemmas allow the estimation of the probability that a certain descending
random walk hits an influential edge. As we mentioned in the introduction, except for the
binary search step, the algorithm in Lemma 20 is similar to the algorithm in [24]. In principle,
we could have carried out much of the analysis of the algorithm in Lemma 20 by referencing

R. Rubinfeld and A. Vasilyan 52:15

an equation in [24]. However, for subsequent lemmas, including Lemma 23, we build on
the application of the Hypercube Continuity Lemma to the analysis of random walks on
the hypercube. In the full version of the paper, we give a full analysis of the algorithm in
Lemma 20, in order to demonstrate how the Hypercube Continuity Lemma (Lemma 11) can
be used to analyze random walks on the hypercube, before handling the more complicated
subsequent lemmas, including Lemma 23.

I Lemma 20. There exists an algorithm A (see Algorithm 2) that samples edges from M∩EI
so that for every two edges e1 and e2 in M ∩ EI :(

1− ε

70

)
Pr
e∈RA

[e = e2] ≤ Pr
e∈RA

[e = e1] ≤
(

1 + ε

70

)
Pr
e∈RA

[e = e2]

The probability that the algorithm succeeds is at least 1
O(
√
n log1.5 n/I[f]ε) . If it succeeds, the

algorithm makes O(logn) queries, and if it fails, it makes only O(1) queries. In either case,
it runs in time polynomial in n.

I Remark 21. Through the standard repetition technique, the probability of error can be
decreased to an arbitrarily small constant, at the cost of O(

√
n log1.5 n
I[f]ε) queries. Then, the

run-time still stays polynomial in n, since I[f] ≥ 1/nC .
I Remark 22. The distribution A outputs is point-wise close to the uniform distribution over
M ∩ EI . We will also obtain such approximations to other distributions in further lemmas.
Note that this requirement is stronger than closeness in L1 norm.

The following lemma, roughly speaking, shows that just as in previous lemma, the
probability that P1 in D hits an influential edge e does not depend on where exactly e is,
as long as it is in M ∩ EI . The techniques we use are similar to the ones in the previous
lemma and it follows the same outline. However here we encounter additional difficulties
for two reasons: first of all, the length of P1 is not fixed, but it is drawn from a probability
distribution. Secondly, this probability distribution depends on the starting point of P1.

I Lemma 23. For any edge e ∈M ∩ EI it is the case that:(
1− ε

310

) δ

2n ≤ pe ≤
(

1 + ε

310

) δ

2n

While we will use Lemma 23 in order to estimate pA, the next two lemmas are for
estimating pB. To that end, we will need to sample from a distribution of descending and
ascending paths going through a given edge. Informally, the requirement on the distribution
is that it should be close to the conditional distribution of such paths P1 that would arise
from process D, conditioned on going through e and satisfying Ē1 and Ē2.

A first approach to sampling such P1 would be to take random walks in opposite directions
from the endpoints of the edge e and then concatenate them together. This is in fact what
we do. However, difficulty comes from determining the appropriate lengths of the walks for
the following reason. If P1 is longer, it is more likely to hit the influential edge e. This biases
the distribution of the descending paths hitting e towards the longer descending paths. In
order to accommodate for this fact we used the following two-step approach:
1. Sample only the levels of the starting and ending points of the path P1. This is equivalent

to sampling the length of the segment of P1 before the edge e and after it. This requires
careful use of rejection sampling together with the techniques we used to prove Lemmas
20 and 23. Roughly speaking, we use the fact that P1 is distributed symmetrically with
respect to the change of indices in order to reduce a question about the edge e to a
question about the layer Λe. Then, we use the Lemma 11 to answer questions about
random walks hitting a given layer. This is handled in Lemma 24.

APPROX/RANDOM 2019

52:16 Approximating the Noise Sensitivity of a Monotone Boolean Function

2. Sample a path P1 that has the given starting and ending levels and passes through an
influential edge e. This part is relatively straightforward. We prove that all the paths
satisfying these criteria are equally likely. We sample one of them randomly by performing
two random walks in opposite directions starting at the endpoints of e. This all is handled
in Lemma 25.

I Lemma 24. There is an algorithm W (see Algorithm 3) that takes as input an edge
e = (v1, v2) in M ∩ EI , so that v2 � v1, and samples two non-negative numbers w1 and w2,
so that for any two non-negative w′1 and w′2:(

1− ε

70

)
Pr
W(e)

[(w1 = w′1) ∧ (w2 = w′2)]

≤ Pr
D

[(L(x)− L(v1) = w′1) ∧ (L(v2)− L(y) = w′2)|(e ∈ P1) ∧ E1 ∧ E2]

≤
(

1 + ε

70

)
Pr
W(e)

[(w1 = w′1) ∧ (w2 = w′2)] (6)

The algorithm requires no queries to f and runs in time polynomial in n.

I Lemma 25. There exists an algorithm B (see Algorithm 4) with the following properties.
It takes as input an edge e = (v1, v2) in M ∩ EI , so that v2 � v1 and outputs paths P1 and
P2 together with hypercube vertices x, y and z. It is the case that x is the starting vertex of
P1, y is both the starting vertex of P2 and the last vertex of P1, and z is the last vertex of
P2. Additionally, P1 is descending and P2 is ascending. Furthermore, for any pair of paths
P ′1 and P ′2 we have:∣∣ Pr

B(e)
[(P1 = P ′1) ∧ (P2 = P ′2)]− Pr

D
[(P1 = P ′1) ∧ (P2 = P ′2)|(e ∈ P1) ∧ E1 ∧ E2]

∣∣
≤ ε

70 Pr
B(e)

[(P1 = P ′1) ∧ (P2 = P ′2)] (7)

It requires no queries to the function and takes computation time polynomial in n to draw
one sample.

In the full version of this paper, we analyze the query complexity and the run-time of
the Algorithm 5, thus proving Theorem 1. This is shown to be a relatively straightforward
application of the four main technical lemmas we presented and discussed in this section.

References
1 Maria-Florina Balcan, Eric Blais, Avrim Blum, and Liu Yang. Active property testing. In

Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
21–30. IEEE, 2012.

2 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
1021–1032. ACM, 2016.

3 Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of Boolean functions and
applications to percolation. Publications Mathématiques de l’Institut des Hautes Études
Scientifiques, 90(1):5–43, 1999.

4 Eric Blais, Ryan O’Donnell, and Karl Wimmer. Polynomial regression under arbitrary product
distributions. Machine learning, 80(2-3):273–294, 2010.

5 Deeparnab Chakrabarty and Comandur Seshadhri. An o(n) Monotonicity Tester for Boolean
Functions over the Hypercube. SIAM Journal on Computing, 45(2):461–472, 2016.

R. Rubinfeld and A. Vasilyan 52:17

6 Xi Chen, Rocco A Servedio, and Li-Yang Tan. New algorithms and lower bounds for mono-
tonicity testing. In Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual
Symposium on, pages 286–295. IEEE, 2014.

7 Mahdi Cheraghchi, Adam Klivans, Pravesh Kothari, and Homin K Lee. Submodular functions
are noise stable. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1586–1592. Society for Industrial and Applied Mathematics, 2012.

8 Ilias Diakonikolas, Prasad Raghavendra, Rocco A. Servedio, and Li-Yang Tan. Average
Sensitivity and Noise Sensitivity of Polynomial Threshold Functions. SIAM J. Comput.,
43(1):231–253, 2014. doi:10.1137/110855223.

9 Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Agnostically
learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008.

10 Daniel M. Kane. The Gaussian Surface Area and Noise Sensitivity of Degree-d Polyno-
mial Threshold Functions. Computational Complexity, 20(2):389–412, 2011. doi:10.1007/
s00037-011-0012-6.

11 Daniel M. Kane. The average sensitivity of an intersection of half spaces. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
437–440, 2014. doi:10.1145/2591796.2591798.

12 Nathan Keller and Guy Kindler. Quantitative relation between noise sensitivity and influences.
Combinatorica, 33(1):45–71, 2013.

13 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM Journal on Computing, 37(1):319–357,
2007.

14 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperimetric
type theorems. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 52–58. IEEE, 2015.

15 Adam R Klivans, Ryan O’Donnell, and Rocco A Servedio. Learning intersections and thresholds
of halfspaces. Journal of Computer and System Sciences, 68(4):808–840, 2004.

16 Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. SDP gaps
and UGC hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 11–20. ACM, 2008.

17 Elchanan Mossel and Ryan O’Donnell. On the noise sensitivity of monotone functions. Random
Structures & Algorithms, 23(3):333–350, 2003.

18 Elchanan Mossel and Ryan O’Donnell. Coin flipping from a cosmic source: On error correction
of truly random bits. Random Structures & Algorithms, 26(4):418–436, 2005.

19 Ryan O’Donnell. Hardness amplification within NP. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 751–760. ACM, 2002.

20 Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis, Massachusetts
Institute of Technology, 2003.

21 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
22 Yuval Peres. Noise stability of weighted majority. arXiv preprint, 2004. arXiv:math/0412377.
23 Dana Ron, Ronitt Rubinfeld, Muli Safra, Alex Samorodnitsky, and Omri Weinstein. Approx-

imating the Influence of Monotone Boolean Functions in O(
√
n) Query Complexity. TOCT,

4(4):11:1–11:12, 2012. doi:10.1145/2382559.2382562.
24 Dana Ron, Ronitt Rubinfeld, Muli Safra, and Omri Weinstein. Approximating the Influence of

Monotone Boolean Functions in O(
√
n) Query Complexity. In Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques, pages 664–675. Springer, 2011.
25 Michel Talagrand. How Much Are Increasing Sets Positively Correlated? Combinatorica,

16(2):243–258, 1996.

APPROX/RANDOM 2019

https://doi.org/10.1137/110855223
https://doi.org/10.1007/s00037-011-0012-6
https://doi.org/10.1007/s00037-011-0012-6
https://doi.org/10.1145/2591796.2591798
http://arxiv.org/abs/math/0412377
https://doi.org/10.1145/2382559.2382562

Connectivity of Random Annulus Graphs and the
Geometric Block Model
Sainyam Galhotra
University of Massachusetts Amherst, USA
sainyam@cs.umass.edu

Arya Mazumdar
University of Massachusetts Amherst, USA
arya@cs.umass.edu

Soumyabrata Pal
University of Massachusetts Amherst, USA
spal@cs.umass.edu

Barna Saha
University of California, Berkeley, USA
barnas@berkeley.edu

Abstract
Random geometric graph (Gilbert, 1961) is a basic model of random graphs for spatial networks
proposed shortly after the introduction of the Erdős-Rényi random graphs. The geometric block
model (GBM) is a probabilistic model for community detection defined over random geometric graphs
(RGG) similar in spirit to the popular stochastic block model which is defined over Erdős-Rényi
random graphs. The GBM naturally inherits many desirable properties of RGGs such as transitivity
(“friends having common friends’) and has been shown to model many real-world networks better
than the stochastic block model. Analyzing the properties of a GBM requires new tools and
perspectives to handle correlation in edge formation. In this paper, we study the necessary and
sufficient conditions for community recovery over GBM in the connectivity regime. We provide
efficient algorithms that recover the communities exactly with high probability and match the
lower bound within a small constant factor. This requires us to prove new connectivity results
for vertex-random graphs or random annulus graphs which are natural generalizations of random
geometric graphs.

A vertex-random graph is a model of random graphs where the randomness lies in the vertices as
opposed to an Erdős-Rényi random graph where the randomness lies in the edges. A vertex-random
graph G(n, [r1, r2]), 0 ≤ r1 < r2 ≤ 1 with n vertices is defined by assigning a real number in [0, 1]
randomly and uniformly to each vertices and adding an edge between two vertices if the “distance”
between the corresponding two random numbers is between r1 and r2. For the special case of r1 = 0,
this corresponds to random geometric graph in one dimension. We can extend this model naturally
to higher dimensions; these higher dimensional counterparts are referred to as random annulus
graphs. Random annulus graphs appear naturally whenever the well-known Goldilocks principle
(“not too close, not too far’) holds in a network. In this paper, we study the connectivity properties
of such graphs, providing both necessary and sufficient conditions. We show a surprising long edge
phenomena for vertex-random graphs: the minimum gap for connectivity between r1 and r2 is
significantly less when r1 > 0 vs when r1 = 0 (RGG). We then extend the connectivity results to
high dimensions. These results play a crucial role in analyzing the GBM.

2012 ACM Subject Classification Mathematics of computing → Random graphs

Keywords and phrases random graphs, geometric graphs, community detection, block model

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.53

Category RANDOM

Related Version A full version of the paper is available at [16], https://arxiv.org/abs/1804.05013.

Funding S. Galhotra and B. Saha are supported in part by NSF 1652303, a Google award and a
Sloan fellowship. A. Mazumdar and S. Pal are supported in part by NSF 1642658 and 1642550.

© Sainyam Galhotra, Arya Mazumdar, Soumyabrata Pal, and Barna Saha;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 53; pp. 53:1–53:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sainyam@cs.umass.edu
mailto:arya@cs.umass.edu
mailto:spal@cs.umass.edu
mailto:barnas@berkeley.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.53
https://arxiv.org/abs/1804.05013
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Connectivity of Random Annulus Graphs and the Geometric Block Model

1 Introduction

Models of random graphs are ubiquitous with Erdős-Rényi graphs [12, 17] at the forefront.
Studies of the properties of random graphs have led to many fundamental theoretical
observations as well as many engineering applications. In an Erdős-Rényi graph G(n, p), n ∈
Z+, p ∈ [0, 1], the randomness lies in how the edges are chosen: each possible pair of vertices
forms an edge independently with probability p. It is also possible to consider models of
graphs where randomness lies in the vertices.

Keeping up with the simplicity of the Erdős-Rényi model, one can define a vertex-random
graph (VRG) in the following way. Given two reals 0 ≤ r1 ≤ r2 ≤ 1/2, the vertex-random
graph VRG(n, [r1, r2]) is a random graph with n vertices. Each vertex u is assigned a random
point Xu selected uniformly from the circumference of a circle of perimeter 1. Two vertices
u and v are connected by an edge, if and only if the distance of the corresponding points
on the circle (the geodesic distance) is between r1 and r2. This definition is by no means
new. For the case of r1 = 0, this is the random geometric graphs (RGG) in one dimension.
Random Geometric graphs were defined first by [18] and constitute the first and simplest
model of spatial networks. Since then, they have found wide-spread applications in modeling
wireless (ad-hoc) communication networks [9, 19], information propagation in social networks
[13, 31] etc., and have been studied extensively [4, 5, 6]. The definition of VRG has been
previously mentioned in [9]. The interval [r1, r2] is called the connectivity interval in VRGs.

Vertex random graphs inherit many desirable properties of RGGs such as vertices with
high modularity and the degree associativity property (high degree nodes tend to connect),
which in turn led to the popularity of RGGs [13, 31]. In addition, VRGs naturally arise
whenever the Goldilocks principle (not too close, not too far) is applicable in networks. For
example, in a co-purchase network, a person who bought a bike may buy similar products like
a helmet along with it, but not another bike [15]. Understanding connectivity properties of
VRGs can shed light in co-purchasing behavior and product recommendation. Interestingly,
the connectivity properties of VRGs turn out to be crucial to develop and analyze community
detection algorithms for the geometric block model [15].

Connectivity of Vertex Random Graph (VRG). Threshold properties of Erdős-Rényi
graphs have been at the center of much interest, and in particular it is known that many
graph properties exhibit sharp phase transition phenomena [14]. Random geometric graphs
also exhibit similar threshold properties [26]. Our first contribution in this work is to identify
such connectivity threshold for VRGs. Consider a VRG(n, [0, r]) defined above with r = a lnn

n .
It is known that VRG(n, [0, r]) is connected with high probability if and only if a > 1 (I.e.,
VRG(n, [0, (1+ε) lnn

n]) is connected for any ε > 0. We will ignore this ε and just mention
connectivity threshold as lnn

n). Now let us consider the graph VRG(n, [b lnn
n , lnn

n]), b > 0.
Clearly this graph has less edges than VRG(n, [0, lnn

n]). Is this graph still connected?
Surprisingly, we show that the modified graph remains connected as long as b ≤ 0.5. Therefore,
VRG(n, [0.5 lnn

n , lnn
n]) is connected, but VRG(n, [0, (1−ε) lnn

n]) is not ∀ε > 0.
Can we explain this striking shift in connectivity interval, when one goes from b = 0

to b > 0? Note that the VRG(n, [0.50 lnn
n , lnn

n]) is obtained from the VRG(n, [0, lnn
n]) by

deleting all “short-distance” edges. It turns out the “long-distance” edges are sufficient to
maintain connectivity, because they can connect points over multiple hops in the graph.
Another possible explanation is that connectivity threshold for VRG is not dictated by
isolated nodes as is the case in Erdős-Rényi graphs. Thus, after the connectivity threshold
has been achieved, removing short edges still retains connectivity.

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:3

The Geometric Block Model. We are motivated to study the threshold phenomena of
vertex-random graphs, because it appears naturally in the analysis of the geometric block
model (GBM) [15]. The geometric block model is a probabilistic generative model of
communities and is a spatial analogue to the popular stochastic block model (SBM) [22,
10, 8, 2, 1, 20, 7, 24]. The SBM generalizes the Erdős-Rényi graphs in the following way.
Consider a graph G(V,E), where V = V1 t V2 t · · · t Vk is a disjoint union of k clusters
denoted by V1, . . . , Vk. The edges of the graph are drawn randomly: there is an edge between
u ∈ Vi and v ∈ Vj with probability qi,j , 1 ≤ i, j ≤ k. Given the adjacency matrix of such a
graph, the task is to find the partition V1 t V2 t · · · t Vk of V .

This model has been incredibly popular both in theoretical and practical domains of
community detection. Recent theoretical works focus on characterizing sharp threshold of
recovering the partition in the SBM. For example, when there are only two communities
of exactly equal sizes, and the inter-cluster edge probability is b lnn

n and intra-cluster edge
probability is a lnn

n , it is known that exact recovery is possible if and only if
√
a−
√
b >
√

2
[1, 24]. The regime of the probabilities being Θ

(
lnn
n

)
has been put forward as one of most

interesting ones, because in an Erdős-Rényi random graph, this is the threshold for graph
connectivity [4]. Note that the results are not only of theoretical interest, many real-world
networks exhibit a “sparsely connected” community feature [23], and any efficient recovery
algorithm for sparse SBM has many potential applications.

While the SBM is a popular model (because of its apparent simplicity), there are many
aspects of real social networks, such as “transitivity rule” (“friends having common friends’)
and other community structures that are not accounted for in SBM. Defining a block model
over a random geometric graph, the geometric block model (GBM), circumvents this since
GBMs naturally inherit the transitivity property of random geometric graphs. In a previous
work [15], we showed GBMs model community structures better than an SBM in many real
world networks (e.g. DBLP collaboration network, Amazon co-purchase network etc.). The
GBM depends on the basic definition of the random geometric graph in the same way the
SBM depends on Erdős-Rényi graphs. The two-cluster GBM with vertex set V = V1 t V2,
V1 = V2 is a random graph defined in the following way. Suppose, 0 ≤ rd < rs ≤ 1/2 be
two real numbers. For each vertex u ∈ V randomly and independently choose a point Xu

from the circumference of a circle of unit perimeter. There will be an edge between u and v
if and only if,

dL(Xu, Xv) ≤ rs when u, v ∈ V1 or u, v ∈ V2

dL(Xu, Xv) ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1,

where dL denotes the geodesic distance. Let us denote this random graph as GBM(rs, rd).
Given this graph GBM(rs, rd), the main problem of community detection is to recover the
partition (i.e., V1 and V2). The GBM provides a systematic way to introduce correlation
during edge formation, an important aspect in real networks that often renders a problem
theoretically intractable. The tool set needed to recover communities under a GBM thus
differs significantly than what has been used to analyze the SBM.

Motivated by the SBM literature, we here also look at the GBM in the connectivity
regime, i.e., when rs = a lnn

n , rd = b lnn
n . Our first contribution in this part is to provide a

lower bound that shows that it is impossible to recover the parts from GBM(a lnn
n , b lnn

n)
when a− b < 1/2. No lower bound for recovery was known before. We also derive a relation
between a and b that defines a sufficient condition of recovery in GBM(a lnn

n , b lnn
n), closely

matching the lower bound. The analysis crucially exploits the connectivity properties of
vertex-random graphs.

APPROX/RANDOM 2019

53:4 Connectivity of Random Annulus Graphs and the Geometric Block Model

It is possible to generalize the GBM to include different distributions, different metric
spaces and multiple parts. It is also possible to construct other type of spatial block models
such as the one very recently being put forward in [28] which rely on the random dot product
graphs [30]. In [28], edges are drawn between vertices randomly and independently as a
function of the distance between the corresponding vertex random variables. In contrast,
in GBM edges are drawn deterministically given the vertex random variables, and edges
are dependent unconditionally. Moreover [28] only considers the recovery scenario where
in addition to the graph, values of the vertex random variables are provided. Note that in
GBM, we only observe the graph. In particular, it will be later clear that if we are given the
corresponding random variables (locations) to the vertices in addition to the graph, then
recovery of the partitions in GBM(a lnn

n , b lnn
n) is possible if and only if a− b > 0.5 and a > 1,

that is we can identify the recovery threshold exactly.

VRG in Higher Dimension: The Random Annulus Graphs. It is natural to ask similar
question of connectivity for VRGs in higher dimension. In a VRG at dimension t, we may
assign t-dimensional random vectors to each of the vertices, and use a standard metric
such as the Euclidean distance to decide whether there should be an edge between two
vertices. Formally, let us define the t-dimensional sphere as St ≡ {x ∈ Rt+1 | ||x||2 = 1}.
Given two reals 0 ≤ r1 ≤ r2 ≤ 2, the random annulus graph RAGt(n, [r1, r2]) is a random
graph with n vertices. Each vertex u is assigned a random vector Xu selected randomly
and uniformly from St. Two vertices u and v are connected by an edge, if and only if
r1 ≤ d(u, v) ≡ ‖Xu −Xv‖2 ≤ r2. Note that for t = 1 an RAG1(n, [r1, r2]) is nothing but a
VRG as defined above, where we need to convert the Euclidean distance to the geodesic
distance and scale the probabilities by a factor of 2π. The RAGt(n, [0, r]) gives the standard
definition of random geometric graphs in t dimensions (for example, see [6] or [26]).

We refer to high-dimensional VRGs as the random annulus graph (RAG) since here two
vertices are connected iff one is within an “annulus” centered at the other. For the random
annulus graphs, we extend our connectivity results of t = 1 to general t. In particular,
we show that there exists an isolated vertex in the RAGt(n, [b(lnn

n) 1
t , a(lnn

n) 1
t]) with high

probability if and only if

at − bt <
√
π(t+ 1)Γ(t+2

2)
Γ(t+3

2)
≡ ψ(t),

where Γ(·) is the gamma function. Computing the connectivity threshold of RAG exactly
is highly challenging, and we have to use several approximations of high dimensional geo-
metry. Our arguments crucially rely on VC dimensions of sets of geometric objects such
as intersections of high dimensional annuluses and hyperplanes. Overall we find that the
RAGt(n, [b(lnn

n) 1
t , a(lnn

n) 1
t]) is connected with high probability if

(a/2)t − bt ≥ 8(t+ 1)ψ(t) and a > 2b.

Using the connectivity result for RAGt, the results for the geometric block model can be
extended to high dimensions. The latent feature space of nodes in most networks are high-
dimensional. For example, road networks are two-dimensional whereas the number of features
used in a social network may have much higher dimensions. In a “high-dimensional” GBM:
for any t > 1, instead of assigning a random variable from [0, 1] we assign a random vector
Xu ∈ St to each vertex u; and two vertices in the same part is connected if and only if their
Euclidean distance is less than rs, whereas two vertices from different parts are connected if
and only if their distance is less than rd. We show the algorithm developed for one dimension
extends to higher dimensions with nearly tight lower and upper bounds.

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:5

In this paper, we consistently refer to the t = 1 case for RAG as the vertex-random graph.
The paper is organized as follows. In Section 2, we provide the formal definitions and

the main results of the paper. In Section 3, the sharp connectivity phase transition results
for vertex-random graphs are proven. In Section 4, the connectivity results are proven for
high dimensional random annulus graphs (details in full version [16]). Finally, in Section 5,
a lower bound for the geometric block model as well as the main recovery algorithm are
presented (details for the high-dimensional case in full version [16]).

2 Main Results

We formally define the random graph models, and state our results here.

I Definition 1 (Vertex-Random Graph). A vertex-random graph VRG(n, [r1, r2]) on n vertices
has parameters n, and a pair of real numbers r1, r2 ∈ [0, 1/2], r1 ≤ r2. It is defined by assigning
a number Xi ∈ R to vertex i, 1 ≤ i ≤ n, where Xi’s are independent and identical random
variables uniformly distributed in [0, 1]. There will be an edge between vertices i and j, i 6= j,

if and only if r1 ≤ dL(Xi, Xj) ≤ r2 where dL(Xi, Xj) ≡ min{|Xi −Xj |, 1− |Xi −Xj |}.

We choose dL(Xi, Xj) = min{|Xi−Xj |, 1−|Xi−Xj |} to ignore the boundary effect, although
the results extend identically to the scenario when dL(Xi, Xj) = |Xi −Xj |. One can also
interpret Xi, 1 ≤ i ≤ n, to be uniformly distributed on the perimeter of a circle with radius
1

2π and the distance dL(·, ·) to be the geodesic distance. As a shorthand, for any two vertices
u, v, let d(u, v) denote dL(Xu, Xv) where Xu, Xv are the random variables corresponding to
the vertices. We also use d(u, v) to denote the distance between a vertex u (or the embedding
of that vertex in [0, 1]) and a point v ∈ [0, 1] naturally. Our main result regarding VRGs is
summarized in the following theorem.

I Theorem 2 (Connectivity threshold of vertex-random graphs). The VRG(n, [b lnn
n , a lnn

n])
is connected with probability 1 − o(1) if a > 1 and a − b > 0.5. On the other hand, the
VRG(n, [b lnn

n , a lnn
n]) is not connected with probability 1− o(1) if a < 1 or a− b < 0.5.

Only for the special case of b = 0, the connectivity result was known before [25, 26]. See
also [27]. Generalization to b > 0 is both nontrivial and counter-intuitive (the minimum
connectivity gap is no longer a − b ≥ 1). Indeed, our analysis also leads to an alternate
simple proof of connectivity for one-dimensional RGGs.

I Definition 3 (The Random Annulus Graph). Let us define the t-dimensional unit sphere
as St ≡ {x ∈ Rt+1 | ||x||2 = 1}. A random annulus graph RAGt(n, [r1, r2]) on n vertices
has parameters n, t ∈ Z+, and a pair of real numbers r1, r2 ∈ [0, 2], r1 ≤ r2. It is defined by
assigning a number Xi ∈ St to vertex i, 1 ≤ i ≤ n, where Xi’s are independent and identical
random vectors uniformly distributed in St. There will be an edge between vertices i and
j, i 6= j, if and only if r1 ≤ ‖Xi −Xj‖2 ≤ r2 where ‖ · ‖2 denote the `2 norm.

When from the context it is clear that we are in high dimensions, we use d(u, v) to denote
‖Xu−Xv‖2 or just the `2 distance between the arguments1. The following result summarizes
the condition for the existence of isolated vertices in RAGs.

1 If we substitute t = 1, then RAG1(n, [r1, r2]) is a random graph where each vertex is associated with a
random variable uniformly distributed in the unit circle. The distance between two vertices is the length
of the chord connecting the random variables corresponding to the two vertices. If the length of the chord
is r ≤ 2, then the length of the corresponding (smaller) chord length of the corresponding arc between
the vertices along the circumference of the circle is 2 sin−1 r

2 . If we normalize the circumference of the
circle by 2π, we obtain a random graph model that is equivalent to our definition of the vertex-random
graphs. Since handling geodesic distances is more cumbersome in the higher dimensions, we resorted to
Euclidean distance.

APPROX/RANDOM 2019

53:6 Connectivity of Random Annulus Graphs and the Geometric Block Model

I Theorem 4 (Zero-One law for Isolated Vertex in RAG). For a random annulus graph

RAGt(n, [r1, r2]) where r2 = a
(

lnn
n

) 1
t and r1 = b

(
lnn
n

) 1
t , there exists isolated nodes with

probability 1− o(1) if

at − bt <
√
π(t+ 1)Γ(t+2

2)
Γ(t+3

2)
≡ ψ(t),

where Γ(x) =
∫∞

0 yx−1e−ydy is the gamma function, and there does not exist an isolated
vertex with probability 1− o(1) if at − bt > ψ(t).

As a corollary of the above, we observe an RAGt(n, [b
(

lnn
n

) 1
t

, a
(

lnn
n

) 1
t]) is not connected

with probability 1− o(1) if at − bt < ψ(t). Our main result provides a sufficient condition for
the connectivity.

I Theorem 5. A t dimensional random annulus graph RAGt(n, [b
(

lnn
n

) 1
t

, a
(

lnn
n

) 1
t]) is

connected with probability 1− o(1) if (a/2)t − bt ≥ 8(t+ 1)ψ(t) and a > 2b.

These connectivity results find immediate application in analyzing the geometric block
model (GBM), a generative model for networks with underlying community structure.

I Definition 6 (Geometric Block Model). Given V = V1 t V2, |V1| = |V2| = n
2 , choose a

random variable Xu uniformly distributed in [0, 1] for all u ∈ V . The geometric block model
GBM(rs, rd) with parameters 1/2 ≥ rs > rd is a random graph where an edge exists between
vertices u and v if and only if,

dL(Xu, Xv) ≤ rs when u, v ∈ V1 or u, v ∈ V2

dL(Xu, Xv) ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

As a consequence of the connectivity lower bound on VRG, we are able to show community
recovery lower bound, that is we show the recovery of the partition is not possible with
high probability in GBM(a lnn

n , b lnn
n) whenever a− b < 0.5 or a < 1 (see, Theorem 18). If

in addition the vertex locations are known, then we can show a matching lower and upper
bounds: the recovery is possible if and only if a− b > 0.5 or a > 1 (formal statement in full
version [16]).

Coming back to the actual recovery problem, our main contribution for GBM is to provide
a simple and efficient algorithm that performs well in the connectivity regime and recovers the
clusters exactly. The following theorem provides a weaker (but simpler to understand) bound.

I Theorem 7 (Recovery algorithm for GBM). Suppose we have a graph G(V,E) generated
according to GBM(rs ≡ a lnn

n , rd ≡ b lnn
n) and b > 1

4 ln 2−2 , then there exists an efficient
algorithm (see Algorithm 1) which recovers the correct partition in G with probability 1− o(1)
if a− 8b > 1.

For the full range of parameter b, the (stronger) recovery guarantees for Algorithm 1 is
discussed in Theorem 22 in Section 5. Table 1 lists some examples of the parameters when the
proposed algorithm (Algorithm 1) can successfully recover the clusters. As can be anticipated,
the connectivity results for RAGs apply to the “high dimensional” GBM.

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:7

Table 1 Minimum value of a, given b for which Algorithm 1 resolves clusters correctly in the
setting for GBM(a ln n

n
, b ln n

n
).

b 1 2 3 4 5 6 7
Minimum value of a 8.96 12.63 15.9 18.98 21.93 24.78 27.57

I Definition 8 (The GBM in High Dimensions). Given V = V1 t V2, |V1| = |V2| = n
2 , choose

a random vector Xu independently uniformly distributed in St for all u ∈ V . The geometric
block model GBMt(rs, rd) with parameters rs > rd is a random graph where an edge exists
between vertices u and v if and only if,

||Xu −Xv||2 ≤ rs when u, v ∈ V1 or u, v ∈ V2

||Xu −Xv||2 ≤ rd when u ∈ V1, v ∈ V2 or u ∈ V2, v ∈ V1.

We extend the algorithmic results to high dimensions.

I Theorem 9. There exists a polynomial time efficient algorithm that recovers the partition
from GBMt(rs, rd) with probability 1 − o(1) if rs = Θ((lnn

n) 1
t) and rs − rd = Ω((lnn

n) 1
t).

Moreover, any algorithm fails to recover the parts with probability at least 1/2 if rs − rd =
o((lnn

n) 1
t) or rs = o((lnn

n) 1
t).

3 Connectivity of Vertex-Random Graphs

In this section we give a proof of Theorem 2.

3.1 Sufficient condition for connectivity of VRG
I Theorem 10. The vertex-random graph VRG(n, [b lnn

n , a lnn
n]) is connected with probability

1− o(1) if a > 1 and a− b > 0.5.

To prove this theorem we use two main technical lemmas that show two different events
happen with high probability simultaneously. First, we show that a VRG(n, [b lnn

n , a lnn
n])

can be decomposed into union of cycles such that each of them cover [0, 1]. Second, we show
there exists a vertex u0 such that it has at least one neighbor in each cycle2.

I Lemma 11. A set of vertices C ⊆ V is called a cover of [0, 1], if for any point y in [0, 1]
there exists a vertex v ∈ C such that d(v, y) ≤ a lnn

2n . A VRG(n, [b lnn
n , a lnn

n]) is a union of
cycles such that every cycle forms a cover of [0, 1] as long as a − b > 0.5 and a > 1 with
probability 1− o(1).

Let us consider a weaker condition a − b > 1 than the statement of Lemma 11. This
will be much easier to prove and already establishes the connectivity result for RGG in
one dimension. Note that since the points are on a circle, it is natural to define a right
(clockwise) and a left (counterclockwise) direction. When a− b > 1, we show each vertex has
at least one neighbor on both directions. To see this for each vertex u , assign two indicator
{0, 1}-random variables Alu and Aru, with Alu = 1 if and only if there is no node x to the left

2 If the points are assumed to be present on a unit line [0,1], the same proof works with a difference that
VRG(n, [b ln n

n , a ln n
n]) can now be decomposed into a collection of paths that cover [0,1] and all these

paths are connected through a vertex u0. This analysis requires us to handle the nodes present in the
boundary region – [0, a ln n

n] and [1− a ln n
n , 1] separately.

APPROX/RANDOM 2019

53:8 Connectivity of Random Annulus Graphs and the Geometric Block Model

of node u such that d(u, x) ∈ [b lnn
n , a lnn

n]. Similarly, let Aru = 1 if and only if there is no
node x to the right of node u such that d(u, x) ∈ [b lnn

n , a lnn
n]. Now define A =

∑
u(Alu+Aru).

We have,

Pr(Alu = 1) = Pr(Aru = 1) = (1− (a− b) lnn
n

)n−1,

and,

E[A] = 2n(1− (a− b) lnn
n

)n−1 ≤ 2n1−(a−b).

If a− b > 1 then E[A] = o(1) which implies, by invoking Markov inequality, that with high
probability every node will have neighbors (connected by an edge in the VRG) on either side.
Therefore every vertex will lie on a cycle that covers [0, 1]. This is true for every vertex, hence
the graph is simply a union of cycles each of which is a cover of [0, 1]. The main technical
challenge is to show that this conclusion remains valid even when a− b > 0.5, which is proved
in Lemma 11 in Appendix A. Indeed, when a− b > 0.5, not every vertex will have neighbors
on both sides; rather we need to analyze the connectivity via multi-hops to establish the
desired result.

I Lemma 12. Set two real numbers k ≡ d b
(a−b)e+1 and ε < 1

2k . In an VRG(n, [b lnn
n , a lnn

n]),
0 < b < a, with probability 1− o(1) there exists a vertex u0 and k nodes {u1, u2, . . . , uk} to
the right of u0 such that d(u0, ui) ∈ [(i(a−b)−2iε) lnn

n , (i(a−b)−(2i−1)ε) lnn
n] and another set of

k nodes {v1, v2, . . . , vk} also to the right of u0 such that d(u0, vi) ∈ [((i(a−b)+b−(2i−1)ε) lnn
n ,

(i(a−b)+b−(2i−2)ε) lnn
n], for i = 1, 2, . . . , k. The arrangement of the vertices is shown in

Figure 1.

We delegate the proof of this lemma to Appendix A.

Proof of Theorem 10. We have shown that the two events mentioned in Lemmas 11 and
12 happen with high probability. Therefore they simultaneously happen under the condition
a > 1 and a− b > 0.5. Now we will show that these events together imply that the graph
is connected. To see this, consider the vertices u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk} that
satisfy the conditions of Lemma 12. We can observe that each vertex vi has an edge with ui
and ui−1, i = 1, . . . , k. This is because (see Figure 1 for a depiction)

d(ui, vi) ≥
((i(a− b) + b− (2i− 1)ε) lnn

n
− i(a− b)− (2i− 1)ε) lnn

n
= b lnn

n
and

d(ui, vi) ≤
i(a− b) + b− (2i− 2)ε lnn

n
− (i(a− b)− 2iε) lnn

n
= (b+ 2ε) lnn

n
.

Similarly,

d(ui−1, vi) ≥
((i(a− b) + b− (2i− 1)ε) lnn

n
− (i− 1)(a− b)− (2i− 3)ε) lnn

n

= (a− 2ε) lnn
n

and

d(ui−1, vi) ≤
i(a− b) + b− (2i− 2)ε lnn

n
− ((i− 1)(a− b)− 2(i− 1)ε) lnn

n
= a lnn

n
.

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:9

v1 v2 v3u1 u2 u3

a
b

ε

a− b− 2ε

u0

Figure 1 The location of ui and vi relative to u scaled by ln n
n

in Lemma 12. Edges stemming
put of v1, v2, v3 are shown as blue, red and violet respectively.

v1 v2 v3

a
b

ε

a− b− 2ε

u

Figure 2 The line segments where v1, v2, v3 can have neighbors (scaled by log n
n

) in the proof of
Theorem 10. The point t has to lie in one of these regions.

This implies that u0 is connected to ui and vi for all i = 1, . . . , k. Using Lemma 11,
the first event implies that the connected components are cycles spanning the entire line
[0, 1]. Now consider two such disconnected components, one of which consists of the nodes
u0, {u1, u2, . . . , uk} and {v1, v2, . . . , vk}. There must exist a node t in the other component
(cycle) such that t is on the right of u0 and d(u0, t) ≡ x lnn

n ≤ a lnn
n . If x ≤ b, then there

exists an i such that i ≤ k and i(a − b) + b − a − (2i − 2)ε ≤ x ≤ i(a − b) − (2i − 1)ε (see
Figure 2). Thus, when x ≤ b, we can calculate the distance between t and vi as

d(t, vi) ≥
(i(a− b) + b− (2i− 1)ε) lnn

n
− (i(a− b)− (2i− 1)ε) lnn

n
= b lnn

n

and

d(t, vi) ≤
(i(a− b) + b− (2i− 2)ε) lnn

n
− (i(a− b) + b− a− (2i− 2)ε) lnn

n
= a lnn

n
.

Therefore t is connected to vi when x ≤ b. If x > b then t is already connected to u0. Therefore
the two components (cycles) in question are connected.This is true for all cycles and hence
there is only a single component in the entire graph. Indeed, if we consider the cycles to be
disjoint super-nodes, then we have shown that there must be a star configuration. J

The following result is an immediate corollary of the connectivity upper bound.

APPROX/RANDOM 2019

53:10 Connectivity of Random Annulus Graphs and the Geometric Block Model

I Corollary 13. Consider a random graph G(V,E) is being generated as a variant of the VRG
where each u, v ∈ V forms an edge if and only if d(u, v) ∈

[
0, c lnn

n

]
∪
[
b lnn
n , a lnn

n

]
, 0 < c <

b < a. This graph is connected with probability 1−o(1) if a− b+c > 1 or if a− b > 0.5, a > 1.

3.2 Necessary condition for connectivity of VRG
I Theorem 14 (VRG connectivity lower bound). The VRG(n, [b lnn

n , a lnn
n]) is not connected

with probability 1− o(1) if a < 1 or a− b < 0.5.

Proof. First of all, it is known that VRG(n, [0, a lnn
n]) is not connected with high probability

when a < 1 [25, 26]. Therefore VRG(n, [b lnn
n , a lnn

n]) must not be connected with high
probability when a < 1 as the connectivity interval is a strict subset of the previous case,
and VRG(n, [b lnn

n , a lnn
n]) can be obtained from VRG(n, [0, a lnn

n]) by deleting all the edges
that has the two corresponding random variables separated by distance less than b lnn

n .
Next we will show that if a − b < 0.5 then there exists an isolated vertex with high

probability. It would be easier to think of each vertex as a uniform random point in [0, 1].
Define an indicator variable Au for every node u which is 1 when node u is isolated and 0
otherwise. We have,

Pr(Au = 1) =
(

1− 2(a− b) lnn
n

)n−1
.

Define A =
∑
uAu, and hence

E[A] = n
(

1− 2(a− b) lnn
n

)n−1
= n1−2(a−b)−o(1).

Therefore, when a− b < 0.5, E[A] = Ω(1). To prove this statement with high probability we
can show that the variance of A is bounded. Since A is a sum of indicator random variables,
we have that

Var(A) ≤ E[A] +
∑
u6=v

Cov(Au, Av)

= E[A] +
∑
u6=v

(Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)).

Now, consider the scenario when the vertices u and v are at a distance more than 2a lnn
n apart

(happens with probability 1 − 4a lnn
n). Then the region in [0, 1] that is between distances

b lnn
n and a lnn

n from both of the vertices is empty and therefore Pr(Au = 1 ∩ Av = 1) =(
1 − 4(a−b) lnn

n

)n−2
. When the vertices are within distance 2a lnn

n of one another, then
Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤(1− 4a lnn
n

)
(

1− 4(a− b) lnn
n

)n−2
+ 4a lnn

n
Pr(Au = 1)

≤ (1− 4a lnn
n

)n−4(a−b)+o(1) + 4a lnn
n

n−2(a−b)+o(1).

Consequently for large enough n,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1) ≤ (1− 4a lnn
n

)n−4(a−b)+o(1)

+4a lnn
n

n−2(a−b)+o(1)−n−4(a−b)+o(1) ≤ 8a lnn
n

Pr(Au = 1).

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:11

Now,

Var(A) ≤ E[A] +
(
n

2

)
8a lnn
n

Pr(Au = 1) ≤ E[A](1 + 4a lnn).

By using Chebyshev bound, with probability at least 1− 1
lnn ,

A > n1−2(a−b) −
√
n1−2(a−b)(1 + 4a lnn) lnn,

which imply for a− b < 0.5, there will exist isolated nodes with high probability. J

4 Connectivity of High Dimensional Random Annulus Graphs: Proof
of Theorem 5

In this section we provide a proof sketch of Theorem 5 to establish the sufficient condition of
connectivity of random annulus graphs. The details of the proof and the necessary conditions
are provided in the full version [16].

Note, here r1 ≡ b
(lnn
n

)1/t and r2 ≡ a
(lnn
n

)1/t. To show the upper bound for connectivity,
the very first step is to define a pole which is a vertex that is connected to all vertices within
a distance of r2 from itself. We show such a pole exists with high probability in Lemma 15.
This is a significant generalization of Lemma 12 from Section 3. We prove there exist annuli
of suitably small radii around a node u0 such that they are each non-empty and the vertices
in these annuli are connected to each other along with u0. Moreover the center of the annuli
are collinear. Every point within distance r2 from u0 is then shown to be connected to at
least one vertex in these constructed annuli.

I Lemma 15. In a RAGt

(
n,
[
b
(lnn
n

)1/t
, a
(lnn
n

)1/t])
, 0 < b < a, with probability 1− o(1)

there exists a pole.

Next, Lemma 16 shows that for every vertex u and every hyperplane L passing through u
and not too close to the tangent hyperplane at u, there will be a neighbor of u on either side
of the plane. Therefore, there should be a neighbor towards the direction of the pole. In
order to formalize this, let us define a few regions associated with a node u and a hyperplane
L : wTx = β passing through u.

R1
L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, w

Tx ≤ β}
R2
L ≡ {x ∈ St | r1 ≤ d(u, x) ≤ r2, w

Tx ≥ β}
AL ≡ {x | x ∈ St, wTx = β}.

Informally, R1
L and R2

L represent the partition of the annulus on either side of the hyperplane
L and AL represents the region on the sphere lying on L.

I Lemma 16. If we sample n nodes from St according to RAGt

(
n,
[
b
(lnn
n

)1/t
, a
(lnn
n

)1/t]),
then for every node u and every hyperplane L passing through u such that AL is not all within
distance r2 of u, node u has a neighbor on both sides of the hyperplane L with probability at
least 1− 1

n provided (a/2)t − bt ≥ 8
√
π(t+1)2Γ(t+2

2)
Γ(t+3

2) and a > 2b.

The proof of this lemma is quite challenging. Since, we do not know the location of the pole, we
need to show that every point has a neighbor on both sides of the plane L no matter what the
orientation of the plane. Since the number of possible orientations is uncountably infinite, we

APPROX/RANDOM 2019

53:12 Connectivity of Random Annulus Graphs and the Geometric Block Model

cannot use a union-bound type argument. To show this we have to rely on the VC Dimension of
the family of sets {x ∈ St | r1 ≤ ‖u−x‖2 ≤ r2, w

Tx ≥ β,AL:wT x=β not all within r2 of u} for
all hyperplanes L (which can be shown to be less than t+ 1). We rely on the celebrated result
of [21] (we derive a continuous version of it), see full version [16], to deduce our conclusion.

For a node u and its corresponding location Xu = (u1, u2, . . . , ut+1), define the particular
hyperplane L?u : x1 = u1 which is normal to the line joining u0 ≡ (1, 0, . . . , 0) and the origin
and passes through u. We now need one more lemma that will help us prove Theorem 5.

I Lemma 17. For a particular node u and corresponding hyperplane L?u, if every point in
AL?u is within distance r2 from u, then u must be within r2 of u0.

Proof of Theorem 5. We consider an alternate (rotated but not shifted) coordinate system
by multiplying every vector by an orthonormal matrix such that the new position of the
pole is the t+ 1-dimensional vector (1, 0, . . . , 0) where only the first coordinate is non-zero.
Let the t + 1 dimensional vector describing any node u in this new coordinate system be
û = (û1, û2, . . . , ût+1). Now consider the hyperplane L : x1 = û1 and if u is not connected to
the pole already, then by Lemma 16 and Lemma 17, the node u has a neighbor u2 which has
a higher first coordinate (û2 > û1). The same analysis applies for u2 and hence we have a
path where the first coordinate of every node is higher than the previous node. Since the
number of nodes is finite, this path cannot go on indefinitely and at some point, one of the
nodes is going to be within r2 of the pole and will be connected to the pole. Therefore every
node is going to be connected to the pole and hence our theorem is proved. J

5 The Geometric Block Model

In this section, we prove a necessary condition for exact cluster recovery of the GBM and
give an efficient algorithm that matches that within a constant factor. Very interestingly, our
algorithm is based on a simple triangle counting method, whose variants are used as popular
heuristics for community recovery in many real networks [3, 29, 11]. This further validates
the suitability of GBMs as a community detection model.

5.1 Immediate consequence of VRG connectivity
The following lower bound for GBM can be obtained as a consequence of Theorem 2.

I Theorem 18 (Impossibility in GBM). Any algorithm to recover the partition in GBM(a lnn
n ,

b lnn
n) will give incorrect output with probability 1− o(1) if a− b < 0.5 or a < 1.

Proof. Consider the scenario that not only the geometric block model graph GBM(a lnn
n , b lnn

n)
was provided to us, but also the random values Xu ∈ [0, 1] for all vertex u in the graph were
provided. We will show that we will still not be able to recover the correct partition of the
vertex set V with probability at least 0.5 (with respect to choices of Xu, u, v ∈ V and any
randomness in the algorithm).

In this situation, the edge (u, v) where dL(Xu, Xv) ≤ b lnn
n does not give any new

information than Xu, Xv. However the edges (u, v) where b lnn
n ≤ dL(Xu, Xv) ≤ a lnn

n are
informative, as existence of such an edge will imply that u and v are in the same part. These
edges constitute a vertex-random graph VRG(n, [b lnn

n , a lnn
n]). But if there are more than

two components in this vertex-random graph, then it is impossible to separate out the vertices
into the correct two parts, as the connected components can be assigned to any of the two
parts and the VRG along with the location values (Xu, u ∈ V) will still be consistent.

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:13

What remains to be seen that VRG(n, [b lnn
n , a lnn

n]) will have ω(1) components with high
probability if a− b < 0.5 or a < 1. This is certainly true when a− b < 0.5 as we have seen in
Theorem 14, there can indeed be ω(1) isolated nodes with high probability. On the other
hand, when a < 1, just by using an analogous argument it is possible to show that there are
ω(1) vertices that do not have any neighbors on the left direction (counterclockwise). We
delegate the proof of this claim as Lemma 19. If there are k such vertices, there must be at
least k − 1 disjoint candidates. This completes the proof. J

I Lemma 19. A random geometric graph G(n, a lnn
n) will have ω(1) disconnected components

for a < 1.

Proof. Define an indicator random variable Au for a node u which is 1 if it does not have a
neighbor on its left. We must have that Pr(Au) =

(
1− a lnn

n

)n−1
. Therefore we must have

that
∑
u EAu = n1−a = Ω(1) if a < 1. This statement also holds true with high probability.

To show this we need to prove that the variance of
∑
u EAu is bounded. We have

Var(A) < E[A] +
∑
u6=v

Cov(Au, Av)

= E[A] +
∑
u6=v

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)

Now, consider the scenario when the vertices u and v are at a distance more than 2a lnn
n apart

(happens with probability at least 1− 4a lnn
n). Then the region in [0, 1] that is within distance

a lnn
n from both of the vertices is empty and therefore Pr(Au = 1 ∩ Av = 1) = Pr(Au =

1) Pr(Av = 1|Au = 1) ≤ Pr(Au = 1) Pr(Av = 1) = (Pr(Au = 1))2. When the vertices are
within distance 2a lnn

n of one another, then Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤ (1− 4a lnn
n

)(Pr(Au = 1))2 + 4a lnn
n

Pr(Au = 1).

Consequently,

Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1) ≤ (1− 4a lnn
n

)(Pr(Au = 1))2

+4a lnn
n

Pr(Au = 1)−(Pr(Au = 1))2 ≤ 4a lnn
n

Pr(Au = 1).

Now,

Var(A) ≤ E[A] +
(
n

2

)
4a lnn
n

Pr(Au = 1) ≤ E[A](1 + 2a lnn).

By using Chebyshev bound, with probability at least 1− 1
lnn ,

A > n1−a −
√
n1−a(1 + 2a lnn) lnn,

Now, observe that if there exist k nodes with no neighbor on one side, then there must exist
k− 1 disconnected components. Hence the number of components in G(n, a lnn

n) is ω(1). J

Indeed, when the locations Xu associated with every vertex u is provided, it is also
possible to recover the partition when a − b > 0.5 and a > 1, matching the above lower
bound exactly. Similar impossibility result extends to higher dimensional GBM from the
necessary condition on connectivity of RAG.

APPROX/RANDOM 2019

53:14 Connectivity of Random Annulus Graphs and the Geometric Block Model

5.2 A Recovery Algorithm for GBM

We now turn our attention to an efficient recovery algorithm for GBM. Intriguingly, we show
a simple triangle counting based algorithm works well for GBM and recovers the communities
in the connectivity regime.

Algorithm 1 Community recovery in GBM.

Require: GBM G = (V,E), rs, rd
1: for (u, v) ∈ E do
2: if process(u, v, rs, rd)=false then
3: E.remove((u, v))
4: end if
5: end for
6: return connectedComponent(V,E)

Algorithm 2 process.

Require: u,v, rs, rd
Ensure: true/false

{Comment: When a > 2b, t1 = min{t : (2b + t) ln 2b+t
2b − t > 1}, t2 = min{t : (2b −

t) ln 2b−t
2b + t > 1 and ES = (2b+ t1) lnn

n and ED = (2b− t2) lnn
n }

1: count ← |{z : (z, u) ∈ E, (z, v) ∈ E}|
2: if count

n ≥ ES(rd, rs) or count
n ≤ ED(rd, rs) then

3: return true
4: end if
5: return false

Suppose we are given a graph G = (V : |V | = n,E) with two disjoint parts, V1, V2 ⊆ V
generated according to GBM(rs, rd). The algorithm (Algorithm 1) goes over all edges
(u, v) ∈ E. It counts the number of triangles containing the edge (u, v) by calling the
process function that counts the number of common neighbors of u and v.

process outputs “true” if it is confident that the nodes u and v belong to the same
cluster and “false” otherwise. More precisely, if the count is within some prescribed values
ES and ED, it returns “false”. Note that the thresholds ES and ED refer to the maximum
and minimum value of triangle-count for an “inter-cluster” edge. The algorithm removes
the edge on getting a “false” from process function. After processing all the edges of the
network, the algorithm is left with a reduced graphs (with certain edges deleted from the
original). It then finds the connected components in the graph and returns them as the parts
V1 and V2.

It would have been natural to consider two thresholds ED and ES and if the triangle
count of an edge is closer to ES than ED, then the two end-points are assigned to the same
cluster and otherwise in separate clusters. Indeed such a natural algorithm has been analyzed
in [15]. On the other hand, here we remove an edge if the triangle count lies in an interval.
This is apparently non-intuitive, but gives a significant improvement over the previously
known bound (see Figure 3).

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:15

 0

 20

 40

 60

 80

 100

 0 2 4 6 8

a

b

vary b, min a

previous bound
new bound

Figure 3 The minimum gap between a and b permitted by our algorithm vs the previously known
bound of [15].

5.3 Analysis of Algorithm 1

Given a graph G(V,E) ≡ GBM(rs ≡ a lnn
n , rd = b lnn

n) with two clusters V = V1 t V2, and
a pair of vertices u, v ∈ V , the events Eu,vz , z ∈ V of any other vertex z being a common
neighbor of both u and v given (u, v) ∈ E are dependent; however given the distance between
the corresponding random variables dL(Xu, Xv) = x, the events are independent. This is a
crucial observation that lets us overcome the difficulty of handling correlated edge formation.

Moreover, given the distance between two nodes u and v are the same, the probabilities
of Eu,vz | (u, v) ∈ E are different when u and v are in the same cluster and when they are in
different clusters. Therefore the count of the common neighbors are going to be different,
and substantially separated with high probability for two vertices in cases when they are
from the same cluster or from different clusters. However, this may not be the case, if we do
not restrict the distance to be the same and look at the entire range of possible distances.

The distribution of the number of common neighbors given (u, v) ∈ E and d(u, v) = x is
given in Table 2 (follows from Lemma 23 and Lemma 24 from Appendix). As throughout
this paper, we have assumed that there are only two clusters of equal size. In the table, u ∼ v
means u and v are in the same cluster and Bin(n, p) denotes a binomial random variable
with mean np.

Table 2 Distribution of triangle count for an edge (u, v) conditioned on the distance between
them d(u, v) = dL(Xu, Xv) = x, when there are two equal sized clusters.

(u, v) ∈ E Distribution of count (rs > 2rd) Distribution of count (rs ≤ 2rd)
d(u, v) = x u ∼ v, x ≤ rs u � v, x ≤ rd u ∼ v, x ≤ rs u � v, x ≤ rd

Motif : z | (z, u) ∈ E, (z, v) ∈ E Bin(n
2 − 2, 2rs −

x) + 1{x ≤
2rd}Bin(n

2 , 2rd − x)

Bin(n− 2, 2rd) Bin(n
2 − 2, 2rs − x) +

Bin(n
2 , 2rd − x)

Bin(n − 2,min(rs + rd −
x, 2rd))

At this point in a GBM(rs, rd) for any edge u, v that does not belong to the same part,
the expected total number of common neighbors of u and v does not depend on their distance.
In Lemma 20, we show that in this case the normalized total number of common neighbors
is concentrated around 2rd.

APPROX/RANDOM 2019

53:16 Connectivity of Random Annulus Graphs and the Geometric Block Model

I Lemma 20. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n), a ≥ 2b. Our algorithm with ES = (2b + t1) lnn
n and ED = (2b − t2) lnn

n ,
deletes all the edges (u, v) ∈ E such that u and v are in different parts with probability at
least 1− o(1), where

t1 = min{t : (2b+ t) ln 2b+ t

2b − t > 1}, t2 = min{t : (2b− t) ln 2b− t
2b + t > 1}.

Therefore, when Algorithm 1 finishes processing all the edges, all the “inter-cluster” edges
are removed with high probability. However some of the “in-cluster” edges are also deleted,
namely, those that have a count of common neighbors between ES and ED. In the next
lemma, we show the necessary condition on the “in-cluster” edges such that they do not get
removed by Algorithm 1.

I Lemma 21. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n), a ≥ 2b. Define t1, t2, ED, ES as in Lemma 20. Consider an edge (u, v) ∈ E
where u, v belong to the same part of the GBM and let d(u, v) ≡ x ≡ θ lnn

n . Suppose θ satisfies
either of the following conditions:
1. 1

2

(
(4b+ 2t1) ln 4b+2t1

2a−θ + 2a− θ − 4b− 2t1
)
> 1 and 0 ≤ θ ≤ 2a− 4b− 2t1

2. 1
2

(
(4b− 2t2 ln 4b−2t2

2a−θ + 2a− θ − 4b+ 2t2
)
> 1 and a ≥ θ ≥ max{2b, 2a− 4b+ 2t2}..

Then Algorithm 1 with ES = (2b+ t1) lnn
n and ED = (2b− t2) lnn

n will not remove this edge
with probability at least 1−O(1

n(lnn)2).

Now we are in a position to prove our main theorem from this part.

I Theorem 22. Suppose we are given a graph G(V,E) generated according to GBM(rs ≡
a lnn
n , rd ≡ b lnn

n), a ≥ 2b. Define t1, t2, ES and ED as in Lemma 20, and θ1 and θ2 as in
Lemma 21. Then Algorithm 1 recovers the correct partition in G with probability 1− o(1) if
a− θ2 + θ1 > 2 OR a− θ2 > 1, a > 2.

Proof. From Lemma 20, we know that after Algorithm 1 has processed all the edges,
the edges with end-points in different parts of the GBM are all deleted with probability
1 − o(1). Moreover, from Lemma 21, an intra-cluster edge (u, v) will continue to exist if
d(u, v) ∈ [0, θ1] ∪ [θ2, a] (by simply applying a union bound over at most O(n logn) edges).
From Corollary 13, it is evident that each of the two parts of size n

2 each will be connected if
either a− θ2 + θ1 > 2 or a− θ2 > 1 and a > 2. J

Theorem 7 is a weaker version of Theorem 22 which we obtain by setting specific values.

Proof of Theorem 7. Following the proof of Theorem 22, when ED = 0 and ES = (2b +
t1) lnn

n , after Algorithm 1 processes all the edges, an edge between a pair u and v will continue
to exist if d(u, v) ∈ [0, θ1] which is equivalent to setting θ2 ≤ a. Consider the case when
b > 1

4 ln 2−2 . Note that from Theorem 22, t1 = min{t : (2b+ t) ln 2b+t
2b − t > 1}. We see that

t = 2b satisfies the above condition since, (2b+ t) ln 2b+t
2b − t = 4b ln 2− 2b > 1. This shows

that t1 ≤ 2b. Similarly, from Theorem 22,

θ1 = max{θ : 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 4b− 2t1
)
> 1 and

0 ≤ θ ≤ 2a− 4b− 2t1.}

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:17

When t1 ≤ 2b, the expression θ ≤ 2a− 4b− 2t1 is satisfied for all values of θ ≤ 2a− 8b.
Hence, we choose θ = 2a− 16b to simplify the other expression and get the following chain
of equations:

1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 4b− 2t1
)

≥ 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ + 2a− θ − 8b
)

= 1
2

(
(4b+ 2t1) ln 4b+ 2t1

2a− θ

)
+ 4b

≥ 1
2

(
(4b) ln 4b

2a− θ

)
+ 4b ≥ 1

2

(
(4b) ln 4b

16b

)
+ 4b = −2b ln 4 + 4b

which is greater than 1 whenever b satisfies b > 1
4−4 ln 2 . However, since we assumed that

b > 1
2(2 ln 2−1) , the condition b > 1

4−4 ln 2 is automatically satisfied as 1
2(2 ln 2−1) >

1
4−4 ln 2 .

This implies that θ1 > 2a− 16b.
Using, θ1 > 2a− 16b and θ2 = a, the final condition of Theorem 22, a− θ2 + θ1 > 2 is

satisfied whenever θ1 > 2 that is, 2a− 16b > 2. Hence, whenever 2a− 16b > 2, or, a− 8b > 1,
Algorithm 1 will recover the correct partition with probability 1− o(1). J

References
1 Emmanuel Abbe, Afonso S. Bandeira, and Georgina Hall. Exact Recovery in the Stochastic

Block Model. IEEE Trans. Information Theory, 62(1):471–487, 2016.
2 Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:

Fundamental limits and efficient algorithms for recovery. In 56th Annual Symposium on
Foundations of Computer Science (FOCS), pages 670–688, 2015.

3 Austin R Benson, David F Gleich, and Jure Leskovec. Higher-order organization of complex
networks. Science, 353(6295):163–166, 2016.

4 Béla Bollobás. Random Graphs. Cambridge Press, 2001.
5 Béla Bollobás. Percolation. Cambridge Press, 2006.
6 Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Z Rácz. Testing for high-dimensional

geometry in random graphs. Random Structures & Algorithms, pages 503–532, 2016.
7 Peter Chin, Anup Rao, and Van Vu. Stochastic block model and community detection in

sparse graphs: A spectral algorithm with optimal rate of recovery. In Conference on Learning
Theory (COLT), pages 391–423, 2015.

8 Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011.

9 Carl P Dettmann and Orestis Georgiou. Random geometric graphs with general connection
functions. Physical Review E, 93(3):032313, 2016.

10 Martin E. Dyer and Alan M. Frieze. The solution of some random NP-hard problems in
polynomial expected time. Journal of Algorithms, 10(4):451–489, 1989.

11 David Easley and Jon Kleinberg. Networks, crowds, and markets. Cambridge Books, 2012.
12 Paul Erdös and Alfréd Rényi. On random graphs, I. Publicationes Mathematicae (Debrecen),

6:290–297, 1959.
13 Stephen Eubank, Hasan Guclu, VS Anil Kumar, Madhav V Marathe, Aravind Srinivasan,

Zoltan Toroczkai, and Nan Wang. Modelling disease outbreaks in realistic urban social
networks. Nature, 429(6988):180, 2004.

14 Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold. Proceed-
ings of the American mathematical Society, 124(10):2993–3002, 1996.

15 Sainyam Galhotra, Arya Mazumdar, Soumyabrata Pal, and Barna Saha. The Geometric Block
Model. In The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

APPROX/RANDOM 2019

53:18 Connectivity of Random Annulus Graphs and the Geometric Block Model

16 Sainyam Galhotra, Arya Mazumdar, Soumyabrata Pal, and Barna Saha. Connectivity in
random annulus graphs and the geometric block model. arXiv preprint, 2019. arXiv:1804.
05013.

17 Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144,
1959.

18 Edward N Gilbert. Random plane networks. Journal of the Society for Industrial and Applied
Mathematics, 9(4):533–543, 1961.

19 Martin Haenggi, Jeffrey G Andrews, François Baccelli, Olivier Dousse, and Massimo Frances-
chetti. Stochastic geometry and random graphs for the analysis and design of wireless networks.
IEEE Journal on Selected Areas in Communications, 27(7):1029–1046, 2009.

20 Bruce E. Hajek, Yihong Wu, and Jiaming Xu. Computational Lower Bounds for Community
Detection on Random Graphs. In Proceedings of The 28th Conference on Learning Theory
(COLT), pages 899–928, 2015. URL: http://proceedings.mlr.press/v40/Hajek15.html.

21 David Haussler and Emo Welzl. epsilon-nets and simplex range queries. Discrete & Computa-
tional Geometry, 2(2):127–151, 1987.

22 Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels:
First steps. Social networks, 5(2):109–137, 1983.

23 Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Statistical proper-
ties of community structure in large social and information networks. In 17th international
conference on World Wide Web, pages 695–704, 2008.

24 Elchanan Mossel, Joe Neeman, and Allan Sly. Consistency thresholds for the planted bisection
model. In 47th Annual ACM Symposium on Theory of Computing (STOC), pages 69–75, 2015.

25 S Muthukrishnan and Gopal Pandurangan. The bin-covering technique for thresholding random
geometric graph properties. In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA), pages 989–998, 2005.

26 Mathew Penrose. Random geometric graphs. Oxford University Press, 2003.
27 Mathew D Penrose. Connectivity of soft random geometric graphs. The Annals of Applied

Probability, 26(2):986–1028, 2016.
28 Abishek Sankararaman and François Baccelli. Community Detection on Euclidean Random

Graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2181–2200, 2018.

29 Charalampos E Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-aware
graph clustering. In Proceedings of the 26th International Conference on World Wide Web
(WWW), pages 1451–1460, 2017.

30 Stephen J Young and Edward R Scheinerman. Random dot product graph models for social
networks. In International Workshop on Algorithms and Models for the Web-Graph, pages
138–149, 2007.

31 Weituo Zhang, Chjan C Lim, Gyorgy Korniss, and Boleslaw K Szymanski. Opinion dynamics
and influencing on random geometric graphs. Scientific reports, Nature Publishing Group,
4:5568, 2014.

A Proof of Lemma 11 and Lemma 12

Proof of Lemma 11. The proof of this lemma is somewhat easily explained if we consider a
weaker result (a stronger condition) with a− b > 2/3. Let us first briefly describe this case.

Consider a node u and assume without loss of generality that the position of u is 0 (i.e.
Xu = 0). Associate four indicator {0, 1}-random variables Aiu, i = 1, 2, 3, 4 which take the
value of 1 if and only if there does not exist any node x such that
1. d(u, x) ∈ [b lnn

n , a lnn
n] ∪ [0, a−b2

lnn
n]} for i = 1

2. d(u, x) ∈ [b lnn
n , a lnn

n] ∪ [−a−b2
lnn
n ,−b lnn

n]} for i = 2
3. d(u, x) ∈ [−a lnn

n ,−b lnn
n] ∪ [−a+b

2
lnn
n , 0]} for i = 3

4. d(u, x) ∈ [−a lnn
n ,−b lnn

n] ∪ [b lnn
n , a+b

2
lnn
n]} for i = 4.

http://arxiv.org/abs/1804.05013
http://arxiv.org/abs/1804.05013
http://proceedings.mlr.press/v40/Hajek15.html

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:19

The intervals representing these random variables are shown in Figure 4.
Notice that Pr(Aiu = 1) ≤ max{

(
1− 1.5(a− b) lnn

n

)n−1
,
(

1− a lnn
n

)n−1
} and therefore∑

i,u EAiu ≤ 4 max{n1−1.5(a−b), n1−a} = 4nmin{1−1.5(a−b),1−a}. This means that for a− b ≥
0.67 and a ≥ 1,

∑
i,u EAiu = o(1). Hence there exist vertices in all the regions described

above for every node u with high probability.
Now, A1

u and A2
u being zero implies that either there is a vertex in [b lnn

n , a lnn
n] or there

exists two vertices v1, v2 in [0, a−b2
lnn
n] and [−a−b2

lnn
n ,−b lnn

n] respectively (see, Figure 4). In
the second case, u is connected to v2 and v2 is connected to v1. Therefore u has nodes on
left (v2) and right (v1) and u is connected to both of them through one hop in the graph.

Similarly, A3
u and A4

u being zero implies that either there exists a vertex in [−a lnn
n ,−b lnn

n]
or again u will have vertices on left and right and will be connected to them. So, when all
the four Aiu, i = 1, 2, 3, 4 are zero together:

A1
u = A2

u = 0 implies there is a neighbor of u on either sides or there is a single node in
[b lnn

n , a lnn
n]

A3
u = A4

u = 0 implies there is a neighbor of u on either sides or there is a single node in
[−a lnn

n ,−b lnn
n]

This shows that when A1
u = A2

u = 0 and A3
u = A4

u = 0 guarantee a node on only one side of u,
there are nodes in [b lnn

n , a lnn
n] and [−a lnn

n ,−b lnn
n]. But in that case u has direct neighbors

on both its left and right. We can conclude that every vertex u is connected to a vertex v
on its right and a vertex w on its left such that d(u, v) ∈ [0, a lnn

n] and d(u,w) ∈ [−a lnn
n , 0];

therefore every vertex is part of a cycle that covers [0, 1].

a−b
2

A3
u

A4
u

A1
u

A2
u

b a−b−a u

Figure 4 Representation of four different random variables for Lemma 11.

We can now extend this proof to the case when a− b > 0.5.
Let c be large number to be chosen specifically later. Consider a node u and assume that

the position of u is 0. Now consider the four different regions [−a lnn
n ,−b lnn

n], [−(a−b) lnn
n , 0],

[b lnn
n , a lnn

n] and [0, a− b lnn
n] around u each divided into L ≡ 2c patches (intervals) of size

θ = a−b
2c in the following way:

1. Iiu = [(−a+(i−1)θ) lnn
n , (−a+iθ) lnn

n]
2. J iu = [(−(a−b)+(i−1)θ) lnn

n , (−(a−b)+iθ) lnn
n]

3. Ki
u = [(b+(i−1)θ) lnn

n , (b+iθ) lnn
n]

4. M i
u = [((i−1)θ) lnn

n , iθ lnn
n]

where i = 1, 2, 3, . . . , L. Note that any vertex in ∪Iiu ∪Ki
u is connected to u. See, Figure 5

for a depiction.
Consider a {0, 1}-indicator random variable Xu that is 1 if and only if there does not

exist any node in a region formed by union of any 2L− 1 patches amongst the ones described
above. Notice that when a < 2b, the patches do not overlap and the total size of 2L − 1

APPROX/RANDOM 2019

53:20 Connectivity of Random Annulus Graphs and the Geometric Block Model

u

a− b a− b
b

a
b
a

θ

Ki
uJ iu M i

uIiu

Figure 5 Pictorial representation of Ii
u, J

i
u,K

i
u,M

i
u and their connectivity as described in Lemma

11. The colored lines show the regions that are connected to each other.

patches is 2c+1−1
2c

(a−b) lnn
n and when a ≥ 2b, the patches can overlap and the total size of

the 2L − 1 patches is going to be more than min{ 2c+1−1
2c

(a−b) lnn
n , a lnn

n }. Since there are(4L
2L−1

)
≤ n 4L

lnn possible regions that consists of 2L− 1 patches,

∑
u

EXu ≤ n
(

4L
2L− 1

)(
1−min{2c+1 − 1

2c
(a− b) lnn

n
,
a lnn
n
}
)n−1

≤ max{n1− 2c+1−1
2c (a−b)+ 4L

lnn , n1−a+ 4L
lnn }.

At this point we can choose c = cn = o(lnn) such that limn cn =∞. Hence when a− b > 1
2

and a > 1, for every vertex u there exists at least one patch amongst every 2L− 1 patches in
∪Iiu ∪ Jju ∪Kk

u , i, j, k = 1, 2, . . . , L that contains a vertex.
Consider a collection of patches ∪iIiu ∪j Kj

u, i, j = 1, 2, . . . , L. We know that there exist
two patches amongst these Iius and Kj

us that contain at least one vertices. If one of Iius and
one of Kj

us contain two vertices, we found one neighbor of u on both left and right directions
(see, Figure 5).

We consider the other case now. Without loss of generality assume that there are no vertex
in all Iius and there exist at least two patches in Ki

us that contain at least one vertex each.
Hence, there exists at least one of {Ki

u | i ∈ {1, 2, . . . , L−1}} that contains a vertex. Similarly,
we can also conclude in this case that there exists at least one of {J iu | i ∈ {2, 3 . . . , L}} which
contain a node. Assume Jφu to be the left most patch in ∪J iu | i ∈ {1, 2, . . . , L} that contains
a vertex (see, Figure 5) . From our previous observation, we can conclude that φ ≥ 2.

We can observe that any vertex in Jju is connected to the vertices in patches Kk
u ,∀k < j.

This is because for two vertices v ∈ Jju and w ∈ Kk
u , we have

d(v, w) ≥ (b+ (k − 1)θ) lnn
n

− (−(a− b) + jθ) lnn
n

= (a+ (k − j − 1)θ) lnn
n

;

d(v, w) ≤ (b+ kθ) lnn
n

− (−(a− b) + (j − 1)θ) lnn
n

= (a+ (k − j + 1)θ) lnn
n

.

Consider a collection of 2L−1 patches {∪Iiu∪Jju∪Kk
u | i, j, k ∈ {1, . . . , L}, j > φ, k ≤ φ−1}

where φ ≥ 2. This is a collection of 2L− 1 patches out of which one must have a vertex and
since none of {Jju | j > φ} and Iiu can contain a vertex, one of {Kk

u | k ≤ φ− 1} must contain
the vertex. Recall that the vertex in Jφu is connected to any node in Kk

u for any k ≤ φ− 1
and therefore u has a node to the right direction and left direction that are connected to u.
Therefore every vertex is part of a cycle and each of the circles covers [0, 1]. J

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:21

Proof of Lemma 12. Recall that we want to show that there exists a node u0 and k nodes
{u1, u2, . . . , uk} to the right of u0 such that d(u0, ui) ∈ [(i(a−b)−2iε) lnn

n , (i(a−b)−(2i−1)ε) lnn
n]

and exactly k nodes {v1, . . . , vk} to the right of u0 such that d(u0, vi) ∈ [((i(a−b)+b−(2i−1)ε) lnn
n ,

(i(a−b)+b−(2i−2)ε) lnn
n], for i = 1, 2, . . . , k and ε is a constant less than 1

2k (see Figure 1 for
a depiction). Let Au be an indicator {0, 1}-random variable for every node u which is 1
if u satisfies the above conditions and 0 otherwise. We will show

∑
uAu ≥ 1 with high

probability. We have,

Pr(Au = 1) = n(n− 1) . . . (n− (2k − 1))
(ε lnn

n

)2k(
1− 2kε lnn

n

)n−2k

= c0n
−2kε(ε lnn)2k

2k−1∏
i=0

(1− i/n) = c1n
−2kε(ε lnn)2k

where c0, c1 are just absolute constants independent of n (recall k is a constant). Hence,∑
u

EAu = c1n
1−2kε(ε lnn)2k ≥ 1

as long as ε ≤ 1
2k . Now, in order to prove

∑
uAu ≥ 1 with high probability, we will show

that the variance of
∑
uAu is bounded from above. This calculation is very similar to the

one in the proof of Theorem 14. Recall that if A =
∑
uAu is a sum of indicator random

variables, we must have

Var(A) ≤ E[A]+
∑
u 6=v

Cov(Au, Av) = E[A]+
∑
u6=v

Pr(Au = 1∩Av = 1)−Pr(Au = 1) Pr(Av = 1).

Now first consider the case when vertices u and v are at a distance of at least 2(a+b) lnn
n

apart (happens with probability 1 − 4(a+b) lnn
n). Then the region in [0, 1] that is within

distance (a+b) lnn
n from both u and v is the empty-set. In this case, Pr(Au = 1 ∩ Av =

1) = n(n− 1) . . . (n− (4k− 1))
(
ε lnn
n

)4k(
1− 4kε lnn

n

)n−4k
= c2n

−4kε(ε lnn)4k, where c2 is a
constant.

In all other cases, Pr(Au = 1 ∩Av = 1) ≤ Pr(Au = 1). Therefore,

Pr(Au = 1 ∩Av = 1) ≤
(

1− 4(a+ b) lnn
n

)
c2n
−4kε(ε lnn)4k

+ 4(a+ b) lnn
n

c1n
−2kε(ε lnn)2k

and

Var(A) ≤ c1n1−2kε(ε lnn)2k +
(
n

2

)(
Pr(Au = 1 ∩Av = 1)− Pr(Au = 1) Pr(Av = 1)

)
≤ c1n1−2kε(ε lnn)2k + c3n

1−2kε(lnn)2k+1 ≤ c4n1−2kε(lnn)2k+1

where c3, c4 are constants. Again invoking Chebyshev’s inequality, with probability at least
1− 1

lnn

A > c1n
1−2kε(ε lnn)2k −

√
c4n1−2kε(lnn)2k+2. J

APPROX/RANDOM 2019

53:22 Connectivity of Random Annulus Graphs and the Geometric Block Model

B Missing Proofs of Section 5

I Lemma 23. For any two vertices u, v ∈ Vi : (u, v) ∈ E, i = 1, 2 belonging to the same cluster
with dL(Xu, Xv) = x, the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}|
is a random variable distributed according to Bin(n2 − 2, 2rs − x) when rs ≥ x > 2rd and
according to Bin(n2 − 2, 2rs − x) + Bin(n2 , 2rd − x) when x ≤ min(2rd, rs), where Bin(n, p) is
a binomial random variable with mean np.

Proof. Without loss of generality, assume u, v ∈ V1. For any vertex z ∈ V , let Eu,vz ≡ {(u, z),
(v, z) ∈ E} be the event that z is a common neighbor. For z ∈ V1,

Pr(Eu,vz) = Pr((z, u) ∈ E, (z, v) ∈ E)
= 2rs − x,

since dL(Xu, Xv) = x. For z ∈ V2, we have,

Pr(Eu,vz) = Pr((z, u), (z, v) ∈ E)

=
{

2rd − x if x < 2rd
0 otherwise

.

Now since there are n
2 − 2 points in V1 \ {u, v} and n

2 points in V2, we have the statement of
the lemma. J

In a similar way, we can prove.

I Lemma 24. For any two vertices u ∈ V1, v ∈ V2 : (u, v) ∈ E belonging to different clusters
with dL(Xu, Xv) = x , the count of common neighbors Cu,v ≡ |{z ∈ V : (z, u), (z, v) ∈ E}| is
a random variable distributed according to Bin(n− 2, 2rd) when rs > 2rd and according to
Bin(n− 2,min(rs + rd − x, 2rd)) when rs ≤ 2rd and x ≤ rd.

Proofs of Lemma 20 and Lemma 21
Proof of Lemma 20. Here we will use the fact that for a ≥ 1, the number of edges in
GBM(rs ≡ a lnn

n , rd ≡ b lnn
n) is O(n lnn) with probability 1 − 1

nΘ(1) . Consider any vertex
u ∈ V1 (symmetrically for u ∈ V2), since the vertices are thrown uniformly at random in
[0, 1], the probability that a v ∈ V1, v 6= u, is a neighbor of u is a lnn

n , and for v ∈ V2, the
corresponding probability is b lnn

n . Therefore, the expected degree of u is (a+b)
2 lnn. By a

simple Chernoff bound argument, the degree of u is therefore O(lnn) with probability 1− 1
nc

for c ≥ 2. By union bound over all the vertices, the total number of edges is O(n lnn) with
probability 1− 1

n .
Let Z denote the random variable that equals the number of common neighbors of two

nodes u, v ∈ V : (u, v) ∈ E such that u, v are from different parts of the GBM. Using Lemma
24, we know that Z is sampled from the distribution Bin(n − 2, 2rd), where rd = b lnn

n .
Therefore,

Pr(Z ≥ nES) ≤
n∑

i=nES

(
n

i

)
(2rd)i(n− 2rd)n−i ≤ exp

(
− nD

(
(2b+ t1) lnn

n
‖2b lnn

n

))
,

where D(p‖q) ≡ p ln p
q + (1 − p) ln 1−p

1−q is the KL divergence between Bernoulli(p) and
Bernoulli(q) distributions. It is easy to see that,

nD(α lnn
n
||β lnn

n
) =

(
α ln α

β
+ (α− β)

)
lnn− o(lnn).

S. Galhotra, A. Mazumdar, S. Pal, and B. Saha 53:23

Therefore Pr(Z ≥ nES) ≤ 1
n(lnn)2 because (2b+ t1) ln 2b+t1

2b − t1 > 1. Similarly, we have that

Pr(Z ≤ nED) ≤
nED∑
i=0

(
n

i

)
(2rd)i(n− 2rd)n−i ≤ exp(−nD((2b− t) lnn

n
‖2b lnn

n
))

≤ 1
n(lnn)2 .

So all of the inter-cluster edges will be removed by Algorithm 1 with probability 1 −
O(n lnn

n(lnn)2) = 1− o(1), as with probability 1− o(1) the total number of edges in the graph is
O(n lnn). J

Proof of Lemma 21. Let Z be the number of common neighbors of u, v. Recall that, u
and v are in the same cluster. We know from Lemma 24 that Z is sampled from the
distribution Bin(n2 − 2, 2rs − x) + Bin(n2 , 2rd − x) when x ≤ 2rd, and from the distribution
Bin(n2 − 2, 2rs − x) when x ≥ 2rd. We have,

Pr(Z ≤ nES)

=

nES∑
i=0

(n
2−2
i

)
(2rs − x)i(1− 2rs + x)n2−i−2

×
nES−i∑
j=0

(n
2
j

)
(2rd − x)j(1− 2rd + x)n2−j if x ≤ 2rd

nEs∑
i=0

(n
2−2
i

)
(2rs − x)i(1− 2rs + x)n2−i otherwise

≤ e−n2D(2ES || (2a−θ) lnn
n) since 2a− θ ≥ 4b+ 2t1

≤ e−n2D((4b+2t1) lnn
n || (2a−θ) lnn

n) ≤ 1
n ln2 n

,

because of Condition 1 of this lemma. Therefore, this edge will not be deleted with high
probability.

Similarly, let us find the probability of Z ≥ nED = (2b− t2) lnn. Let us just assume the
worst case when θ ≤ 2b: that the edge is being deleted (see Condition 2, this is prohibited if
that condition is satisfied). Otherwise, θ > 2b and,

Pr(Z ≥ nED) =
n∑

i=nED

(n
2 − 2
i

)
(2rs − x)i(1− 2rs + x)n2−i−2

≤ e−n2D(2ED‖ (2a−θ) lnn
n) if 2a− θ ≤ 4b− 2t2

= e−
n
2D((4b−2t2) lnn

n ‖ (2a−θ) lnn
n) ≤ 1

n ln2 n

because of Condition 2 of this lemma. J

APPROX/RANDOM 2019

A Local Stochastic Algorithm for Separation in
Heterogeneous Self-Organizing Particle Systems
Sarah Cannon
Claremont McKenna College, Claremont, CA, USA
scannon@cmc.edu

Joshua J. Daymude
Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA
jdaymude@asu.edu

Cem Gökmen
Georgia Institute of Technology, Atlanta, GA, USA
cgokmen@gatech.edu

Dana Randall
Georgia Institute of Technology, Atlanta, GA, USA
randall@cc.gatech.edu

Andréa W. Richa
Computer Science, CIDSE, Arizona State University, Tempe, AZ, USA
aricha@asu.edu

Abstract
We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation
and integration in self-organizing particle systems, an abstraction of programmable matter. Such
systems are composed of individual computational particles with limited memory, strictly local
communication abilities, and modest computational power. We consider heterogeneous particle
systems of two different colors and prove that these systems can collectively separate into different
color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully
distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single
global parameter determining whether particles prefer to be next to other particles of the same color
or not; this parameter is meant to represent external, environmental influences on the particle system.
The algorithm is a generalization of a previous distributed, stochastic algorithm for compression
(PODC ’16) that can be viewed as a special case of separation where all particles have the same
color. It is significantly more challenging to prove that the desired behavior is achieved in the
heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining
several new techniques, including the cluster expansion from statistical physics, a new variant of the
bridging argument of Miracle, Pascoe and Randall (RANDOM ’11), the high-temperature expansion
of the Ising model, and careful probabilistic arguments.

2012 ACM Subject Classification Mathematics of computing → Stochastic processes; Theory of
computation → Random walks and Markov chains; Theory of computation → Self-organization

Keywords and phrases Markov chains, Programmable matter, Cluster expansion

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.54

Category RANDOM

Related Version A full version is available online at https://arxiv.org/abs/1805.04599.

Funding Sarah Cannon: Supported by National Science Foundation (NSF) award DMS-1803325.
Joshua J. Daymude: Supported by NSF awards CCF-1422603, CCF-1637393, and CCF-1733680.
Cem Gökmen: Supported by NSF award CCF-1733812.
Dana Randall: Supported by NSF awards CCF-1526900, CCF-1637031, and CCF-1733812.
Andréa W. Richa: Supported by NSF awards CCF-1422603, CCF-1637393, and CCF-1733680.

© Sarah Cannon, Joshua J. Daymude, Cem Gökmen, Dana Randall, and Andréa W. Richa;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 54; pp. 54:1–54:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6510-4669
mailto:scannon@cmc.edu
https://orcid.org/0000-0001-7294-5626
mailto:jdaymude@asu.edu
https://orcid.org/0000-0001-9446-6052
mailto:cgokmen@gatech.edu
mailto:randall@cc.gatech.edu
mailto:aricha@asu.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.54
https://arxiv.org/abs/1805.04599
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Stochastic Separation in Self-Organizing Particle Systems

1 Introduction

Across many disciplines spanning computational, physical, and social sciences, heterogeneous
systems self-organize into both separated (or segregated) and integrated states. Exam-
ples include molecules exhibiting attractive and repulsive forces, distinct types of bacteria
competing for resources while collaborating towards common goals (e.g., [35, 39]), social
insects tolerating or aggressing towards those from other colonies (e.g., [20, 30]), and inherent
human biases that influence how we form and maintain social groups (e.g., [16, 37]). In
each of these, individuals are of different “types”: integration occurs when the ensemble
gathers together without much preference about the type of their neighbors, while separation
occurs when individuals cluster with others of the same type. Here, we investigate these
fundamental behaviors of separation or integration as they apply to programmable matter,
a material that can alter its physical properties based on user input or stimuli from its
environment. Instead of studying a particular instantiation of programmable matter, of
which there are many [1, 7, 31, 36], we abstractly envision these systems as collections of
simple, active computational particles that individually execute local distributed algorithms
to collectively achieve some emergent behavior. We consider heterogeneous particle systems
in which particles have immutable colors. We seek local, distributed algorithms that, when
run by each particle independently and concurrently, result in emergent, self-organizing
separation or integration of color classes.

This work uses the stochastic approach to self-organizing particle systems first used for
compression, where (monochromatic) particles self-organize to gather together as tightly as
possible [6]. Using this stochastic approach, one first defines an energy function where desired
configurations have the lowest energy values. One then designs a Markov chain whose long
run behavior favors these low energy configurations. This Markov chain is carefully designed
so that all its transition probabilities can be computed locally, allowing it to be translated to a
fully local distributed algorithm each particle can run independently. The resulting collective,
emergent behavior of this distributed algorithm is thus described by the long run behavior of
the Markov chain. Using this stochastic approach, we previously extended our compression
algorithm [6] to an algorithm for shortcut bridging [2] – or maintaining bridge structures
that balance the tradeoff between bridge efficiency and cost – and developed the theoretical
basis for an experimental study in swarm robotics [32]. While the process of designing
distributed algorithms for self-organizing particle systems via this stochastic approach is
fairly well-understood, proving that such algorithms achieve their desired objectives remains
quite challenging. In particular, it is not enough to know the desired configurations have the
highest long-run probability; there may be so many other, lower probability configurations
that they collectively outweigh the desirable ones. This energy/entropy trade-off has been
studied in various Markov chains for the purposes of proving slow mixing, but we analyze it
directly to show our algorithms achieve the desired objectives with high probability.

Here, we focus on separation and integration in heterogeneous systems. Our inspiration
comes from the classical Ising model in statistical physics [18, 38], where the vertices of a
graph are assigned positive and negative “spins” and there are rules governing the probability
that adjacent vertices have the same spin. Connected to the Ising model is classical work
from stochastic processes on the Schelling model of segregation [33, 34], which explores
how individuals’ micro-motives can induce macro-level phenomena like racial segregation
in residential neighborhoods. Recent variants of this model from computer science have
investigated the degree of individual bias required to induce such segregation [5, 17], and
a related distributed algorithm has been developed [29]. Our work differs from those on

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:3

the Ising and Schelling models because of natural physical constraints on systems of self-
organizing, active particles like ours. For example, interpreting particles of one color to be
vertices with positive spin and particles of another color to be particles with negative spin,
this acts like an Ising model, but on a graph that evolves as particles more. Despite these
obstacles, we apply ideas developed for rigorously analyzing the Ising and similar models to
prove our distributed algorithm for separation and integration accomplishes the desired goals.

While we are interested in distributed algorithms, it is worth noting that efficient stochastic
algorithms for separation can be challenging even with centralized Markov chains. Separation
of a region into equitably sized, compact districts has been widely explored recently in the
context of gerrymandering, where the aim is to sample colorings of a weighted graph from
an appropriately defined stationary distribution [10, 15]. Heuristics for random districting
have been discussed in the media, but there are still no known rigorous, efficient algorithms.

1.1 Results
We present a distributed algorithm for self-organizing separation and integration that takes
as input two bias parameters, λ and γ. Setting λ > 1 corresponds to particles favoring having
more neighbors; this is known to cause compression in homogeneous systems when λ is large
enough [6]. For separation in the heterogeneous setting, we introduce a second parameter γ,
where γ > 1 corresponds to particles favoring having more neighbors of their own color. We
then investigate for what values of λ and γ our algorithm yields compression and separation.
Informally, a particle system is separated if there is a subset of particles such that (i) the
boundary between this subset and the rest of the system is small, (ii) a large majority of
particles in this subset are of the same color, say c, and (iii) very few particles with color
c exist outside of this subset. This notion of separation (defined formally in Definition 3)
captures what it means for a system to have large monochromatic regions of particles.

We prove that for any λ > 1 and γ > 45/4 ∼ 5.66 such that λγ > 2(2 +
√

2)e0.0003 ∼ 6.83,
our algorithm accomplishes separation with high probability.1 However, we prove the opposite
for some values of γ close to one; counterintuitively, this even includes some values of γ > 1,
the regime where particles favor having like-colored neighbors. Formally, we prove that
for any λ > 1 and γ ∈ (79/81, 81/79) such that λ(γ + 1) > 2(2 +

√
2)e0.00003 ∼ 6.83, our

algorithm fails to achieve separation (i.e., it achieves integration) with high probability.

1.2 Proof Techniques
Because our distributed algorithm is based on a Markov chain, we can use standard tools
such as detailed balance to understand its long-term behavior and prove its convergence
to a unique probability distribution π over particle system configurations. This stationary
distribution π depends on the input parameters λ and γ. Our main contribution is analyzing
π for various ranges of λ and γ, showing that a configuration drawn from distribution π is
either very likely (for large γ) or very unlikely (for γ close to one) to be separated.

To show separation occurs when λ and γ are both large, we modify the proof technique of
bridging introduced by Miracle, Pascoe, and Randall [28]. To show separation does not occur
when λ is large and γ is small (close to one), we use a probabilistic argument, a Chernoff-type
bound, and a decomposition of configurations into different regions. These arguments – both

1 We say an event A occurs with high probability (w.h.p.) if Pr[A] ≥ 1 − cnδ , where 0 < c < 1 and
δ > 0 are constants and n is the number of particles. Our w.h.p. results all have δ ∈ {1/2, 1/2− ε}, for
arbitrarily small ε > 0.

APPROX/RANDOM 2019

54:4 Stochastic Separation in Self-Organizing Particle Systems

for large and small γ – require that the particle system is compressed; i.e., that the system
has perimeter Θ(

√
n). However, the arguments from [6] showing compression occurs for

homogeneous systems when λ is large do not extend to the heterogeneous setting.
We instead turn to the cluster expansion from statistical physics to show our separation

algorithm achieves compression for large enough γ. The cluster expansion was first introduced
in 1937 by Mayer [27], though a more modern treatment can be found in the textbook [12]
where it is used to derive several properties of statistical physics models including the Ising
and hard-core models. In the past year, the cluster expansion has received renewed attention
in the computer science community due to the recent work of Helmuth, Perkins, and Regts
that uses the cluster expansion to develop approximate counting and sampling algorithms
for low-temperature statistical physics models on lattices including the Potts and hard-core
models [14]. Subsequent work has considered similar techniques on expander graphs [19] and
random regular bipartite graphs [23]. Inspired by the interpolation method of Barvinok [3, 4],
these works give algorithms for estimating partition functions that explicitly calculate the
first logn coefficients of the cluster expansion. We use the cluster expansion differently, to
separate the volume and surface contributions to a partition function.

The cluster expansion is a power series representation of lnZ where Z is a polymer
partition function. We relate each of our quantities of interest to a particular polymer
partition function, and then use a version of the Kotecký-Preiss condition [21] to show that
the power series in the cluster expansion is convergent for the ranges of parameters we are
interested in. We then use this convergent cluster expansion to split our polymer partition
functions into a volume term, depending only on the size of the region of interest, and a
surface term, depending only on its perimeter. This separation into volume and surface terms
turns out to be the key to our compression argument, both for large γ and for γ close to one.
While splitting partition functions into volume and surface terms is not a new idea in the
statistical physics literature (for example, Section 5.7.1 of [12] uses it to derive an explicit
expression for the infinite volume pressure of the Ising model on Zd with large magnetic
field), we are the first to bring this approach into the computer science literature. We are
hopeful it will be useful beyond its specific applications in this paper.

2 Background

We begin by defining our amoebot model for programmable matter and stating a few key
results. We then extend the amoebot model to heterogeneous particle systems and formally
define what it means for a system to be separated or integrated. We conclude with the
necessary terminology and results on Markov chains.

2.1 The Amoebot Model

In the amoebot model, introduced in [9] and fully described in [8], programmable matter
consists of individual, homogeneous computational elements called particles. In its geometric
variant, particles are assumed to occupy nodes of the triangular lattice G∆ = (V,E) and
can move along its edges (see Figure 1a). Each node in V can be occupied by at most one
particle at a time. Each particle occupies either a single node in V (i.e., it is contracted) or
a pair of adjacent nodes in V (i.e., it is expanded), as in Figure 1b. Particles move via a
series of expansions and contractions: a contracted particle can expand into an unoccupied
adjacent node to become expanded, and completes its movement by contracting to once
again occupy a single node.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:5

(a) (b)

Figure 1 (a) A section of the triangular lattice G∆. (b) Expanded and contracted particles (black
dots) on G∆ (gray lattice). Particles with a black line between their nodes are expanded.

Two particles occupying adjacent nodes are said to be neighbors. Each particle is
anonymous, lacking a unique identifier, but can locally identify each of its neighboring
locations and can determine which of these are occupied by particles. Each particle has
a constant-size local memory that it can write to and its neighbors can read from for
communication. In particular, a particle stores whether it is contracted or expanded in its
memory. Particles do not have any access to global information such as a shared compass,
coordinate system, or estimate of the size of the system.

The system progresses through atomic actions according to the standard asynchronous
model of computation from distributed computing (see, e.g., [25]). A classical result under
this model states that for any concurrent asynchronous execution of atomic actions, there
exists a sequential ordering of actions producing the same end result, provided conflicts that
arise in the concurrent execution are resolved. In the amoebot model, an atomic action
corresponds to the activation of a single particle. Once activated, a particle can (i) perform
a constant amount of computation involving information it reads from its local memory
and its neighbors’ memories, (ii) write to its local memory, and (iii) perform at most one
expansion or contraction. Conflicts involving simultaneous particle expansions into the same
unoccupied node are assumed to be resolved arbitrarily such that at most one particle moves
to some unoccupied node at any given time. Thus, while in reality many particles may
be active concurrently, it suffices when analyzing algorithms under the amoebot model to
consider a sequence of activations where only one particle is active at a time.

2.2 Terminology and Results for Homogeneous Particle Systems
We now recall the relevant terminology and notation from our previous work on compression [6].
A particle system arrangement is the set of vertices of the triangular lattice G∆ occupied
by particles. Two arrangements are equivalent if they are translations of each other; we
define a particle system configuration to be an equivalence class of arrangements. An edge
of a configuration is an edge of G∆ where both endpoints are occupied by particles. A
configuration is connected if for any two particles in the system, there is a path of such edges
between them. A configuration has a hole if there is a maximal, finite, connected component
of unoccupied vertices in G∆.

As we justify with Lemma 6, our analysis will focus on connected, hole-free configurations.
The boundary of such a configuration σ is the closed walk P on edges of σ that encloses all
particles of σ and no unoccupied vertices of G∆. The perimeter p(σ) of configuration σ is
the length of this walk, also denoted |P|. The following bounds the number of configurations
with a given perimeter.

I Lemma 1 ([6], Lemma 4.3). For any ν > 2 +
√

2, there is an integer n1(ν) such that for all
n ≥ n1(ν), the number of connected, hole-free particle system configurations with n particles
and perimeter k is at most νk.

APPROX/RANDOM 2019

54:6 Stochastic Separation in Self-Organizing Particle Systems

Let pmin(n) be the minimum possible perimeter for a configuration of n particles; it is
easy to see that pmin(n) = Θ(

√
n). Given any α > 1, a configuration of n particles is said to

be α-compressed if p(σ) ≤ α · pmin(n). The following lemma establishes a concrete upper
bound on pmin(n).

I Lemma 2. For any n ≥ 1, there is a connected, hole-free particle system configuration of
n particles with perimeter at most 2

√
3
√
n. That is, pmin(n) ≤ 2

√
3
√
n.

Proof. This lemma follows easily from noting that hexagonal configurations of n particles
have perimeter on the order of 2

√
3
√
n; a proof can be found in Appendix A.1. J

2.3 Heterogeneous Particle Systems
Generalizing previous work on the amoebot model in which all particles are homogeneous
and indistinguishable, we assume that each particle P has a fixed color c(P) ∈ {c1, . . . , ck}
that is visible to itself and its neighbors, where k � n is a constant. We extend the definition
of configuration given in Section 2.2 to include both the vertices of G∆ occupied by particles
as well as the colors of those particles. An edge of configuration σ with endpoints occupied
by particles P and Q is homogeneous if c(P) = c(Q) and heterogeneous otherwise.

We further extend the original model by allowing neighboring particles to exchange their
positions in a swap move. Swap moves have no meaning in homogeneous systems as all
particles are indistinguishable, but they grant heterogeneous systems flexibility in allowing
particles trapped in the interior of the system to move freely.2 These swap moves are not
necessary for the correctness of our algorithm or our rigorous analysis, but enable faster
convergence in practice.

In this paper, we study heterogeneous systems with k = 2 color classes. As discussed
in Section 5, our algorithm performs well in practice for larger values of k and we expect
our proof techniques would generalize without needing significant new ideas. However, this
generalization would be cumbersome; thus, for simplicity, we restrict our attention to systems
with colors {c1, c2}. For 2-heterogeneous systems, we can formally define separation with
respect to having large monochromatic regions.

I Definition 3. For β > 0 and δ ∈ (0, 1/2), a 2-heterogeneous particle system configuration σ
is said to be (β, δ)-separated if there is a subset of particles R such that:
1. There are at most β

√
n edges of σ with exactly one endpoint in R;

2. The density of particles of color c1 in R is at least 1− δ; and
3. The density of particles of color c1 not in R is at most δ.
Unpacking this definition, β controls how small a boundary there is between the monochro-
matic region R and the rest of the system, with smaller β requiring smaller boundaries.
The δ parameter expresses the tolerance for having particles of the wrong color within the
monochromatic region R: small values of δ require stricter separation of the color classes,
while larger values of δ allow for more integrated configurations. Notably, R does not need
to be connected.

2.4 Markov Chains
A thorough treatment of Markov chains can be found in the standard textbook [22]. A
Markov chain is a memoryless random process on a state space Ω; for our purposes, Ω is
finite and discrete. We focus on discrete time Markov chains, where one transition occurs

2 In domains where physical swap moves are unrealistic, colors could be treated as in-memory attributes
that could be exchanged by neighboring particles to simulate a swap move.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:7

per iteration (or step). Because of its stochasticity, we can completely describe a Markov
chain by its transition matrix M , which is an |Ω| × |Ω| matrix where for x, y ∈ Ω, M(x, y) is
the probability, if in state x, of transitioning to state y in one step. The t-step transition
probability M t(x, y) is the probability of transitioning from x to y in exactly t steps.

A Markov chain is ergodic if it is both irreducible (i.e., for all x, y ∈ Ω there is a t such that
M t(x, y) > 0) and aperiodic (i.e., for all x ∈ Ω, gcd{t : M t(x, x) > 0} = 1) . A stationary
distribution of a Markov chain is a probability distribution π over Ω such that πM = π.
Any finite, ergodic Markov chain converges to a unique stationary distribution given by
π(y) = limt→∞M t(x, y) for any x, y ∈ Ω; importantly, for such chains this distribution is
independent of starting state x. To verify π′ is the unique stationary distribution of a finite
ergodic Markov chain, it suffices to check that π′(x)M(x, y) = π′(y)M(y, x) for all x, y ∈ Ω
(the detailed balance condition; see, e.g., [11]).

Given a state space Ω, a set of allowable transitions between states, and a desired
stationary distribution π on Ω, the Metropolis-Hastings algorithm [13] gives a Markov chain
on Ω with those transitions that converges to π. For separation, the state space contains
particle configurations and transitions correspond to configurations that differ by one particle
move; the stationary distribution π favors well-separated configurations; and we calculate
transition probabilities according to the Metropolis-Hasting algorithm (using a Metropolis
filter). Importantly, we choose π so that these transition probabilities can be calculated by
an individual particle using only information in its local neighborhood.

3 The Separation Algorithm

We now present our stochastic, local, distributed algorithm for separation. Our algorithm
achieves separation by biasing particles towards moves that both gain them more neighbors
overall and more like-colored neighbors. We use two bias parameters to control this preference:
λ > 1 corresponds to particles favoring having more neighbors, and γ > 1 corresponds to
particles favoring having more neighbors of their own color.

In order to leverage powerful techniques from Markov chain analysis and statistical physics
to prove the correctness of our algorithm, we design our algorithm to follow certain invariants.
First, assuming the initial particle system configuration is connected, our algorithm ensures
it remains connected; this is necessary because particles have strictly local communication
abilities so a disconnected particle is unable to communicate with or even find the rest of
the particles. Second, our algorithm eventually eliminates all holes in the configuration, and
no new holes are ever formed. This is necessary because our proof techniques only apply to
hole-free configurations. Third, once all holes have been eliminated, all moves allowed by our
algorithm are reversible: if a particle moves from node u to an adjacent node v in one step,
there is a nonzero probability that it moves back to u in the next step. Finally, the moves
allowed by our algorithm suffice to transform any connected, hole-free configuration into any
other connected, hole-free configuration.

Our algorithm uses two locally-checkable properties that ensure particles do not disconnect
the system or form a hole when moving (our first two invariants). We use the following
notation. For a location ` – i.e., a node of the triangular lattice G∆ – let Ni(`) denote the
particles of color ci occupying locations adjacent to `. For neighboring locations ` and `′, let
Ni(`∪`′) denote the set Ni(`)∪Ni(`′), excluding particles occupying ` and `′. When ignoring
color, let N(`) =

⋃
iNi(`); define N(`∪ `′) analogously. Let S = N(`)∩N(`′) denote the set

of particles adjacent to both locations. A particle can move from location ` to `′ if one of
the following are satisfied:

APPROX/RANDOM 2019

54:8 Stochastic Separation in Self-Organizing Particle Systems

I Property 4. |S| ∈ {1, 2} and every particle in N(`∪ `′) is connected to exactly one particle
in S by a path through N(` ∪ `′).

I Property 5. |S| = 0, and both N(`) \ {`′} and N(`′) \ {`} are nonempty and connected.

Note these properties do not need to be verified for swap moves, since swap moves do not
change the set of occupied locations and thus cannot disconnect the system or create a hole.

We now define the Markov chainM for separation. The state space Ω ofM is the set
of all connected heterogeneous particle system configurations of n contracted particles, and
Algorithm 1 defines its transition probabilities. We note that M, a centralized Markov
chain, can be directly translated to a fully distributed, local, asynchronous algorithm A that
can be run by each particle independently and concurrently to achieve the same system
behavior. This translation is much the same as for previous algorithms developed using the
stochastic approach to self-organizing particle systems [2, 6]; we refer the interested reader to
those papers for details. Importantly, this translation is only possible because all probability
calculations and property checks inM use strictly local information available to the particles
involved. Simulations ofM can be found in Section 3.2.

Algorithm 1 Markov ChainM for Separation and Integration.

Beginning at any connected configuration σ0 of n particles, repeat:
1: Choose a particle P uniformly at random; let ci be its color and ` its location.
2: Choose a neighboring location `′ and q ∈ (0, 1) each uniformly at random.
3: if `′ is unoccupied then
4: P expands to occupy both ` and `′.
5: Let e = |N(`)| (resp., ei = |Ni(`)|) be the number of neighbors (resp., of color ci) P

had when contracted at location `, and define e′ = |N(`′)| and e′i = |Ni(`′)| analogously.
6: if (i) e 6= 5, (ii) ` and `′ satisfy Property 4 or 5, and (iii) q < λe

′−e · γe′i−ei then
7: P contracts to `′.
8: else P contracts back to `.
9: else if `′ is occupied by particle Q of color cj then

10: if q < γ|Ni(`
′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| then P and Q perform a swap move.

3.1 The Stationary Distribution of Markov Chain M
In this section, we prove that Markov chain M maintains the four invariants described
previously and then characterize its stationary distribution.

I Lemma 6. If the particle system is initially connected, it remains connected throughout the
execution ofM. Moreover,M eventually eliminates any holes in the initial configuration,
after which no holes are ever introduced again.

Proof. This follows directly from analogous results for compression [6]. Although the
separation and compression algorithms assign different probabilities to particle moves, the
set of allowed movements is exactly the same, excluding swap moves that do not change the
set of occupied nodes of G∆, so they cannot disconnect the system or introduce a hole. J

I Lemma 7. Once all holes have been eliminated, every possible particle move is reversible;
that is, if there is a positive probability of moving from configuration σ to configuration τ ,
then there is a positive probability of moving from τ to σ.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:9

Proof. Suppose, for example, that a particle P moves from location ` to `′. In the next
time step, it is possible for P to be chosen again (Step 1) and for ` to be chosen as the
position to explore (Step 2). Because Properties 4 and 5 are symmetric with respect to `
and `′, whichever was satisfied in the forward move will also be satisfied in this reverse move.
Finally, the probability checked in Condition (iii) of Step 7 is always nonzero, so all together
there is a nonzero probability that P moves back to ` in this reverse move. Swap moves can
be shown to be reversible in a similar way. J

I Lemma 8. Markov chainM is ergodic on the space of connected, hole-free configurations.

Proof Sketch. One can show thatM is irreducible (i.e., the moves ofM suffice to transform
any configuration to any other configuration) similarly to the proof of the same fact for
compression [6]: it is first shown that any configuration can be reconfigured into a straight line;
then, the line can be sorted by the color of the particles; finally, by reversibility (Lemma 7),
the line can be reconfigured into any configuration. Additionally, it is easy to see thatM is
aperiodic: at each iteration ofM, there is a nonzero probability that the configuration does
not change. Thus, becauseM is irreducible and aperiodic, we conclude it is ergodic. J

BecauseM is finite and ergodic, it converges to a unique stationary distribution π that we
now characterize. For a configuration σ, let h(σ) be the number of heterogeneous edges in σ.

I Lemma 9. For Z =
∑
σ(λγ)−p(σ) · γ−h(σ), the stationary distribution ofM is:

π(σ) =
{

(λγ)−p(σ) · γ−h(σ)/Z if σ is connected and hole-free;
0 otherwise.

Proof Sketch. By Lemma 6, when M starts at a connected configuration it eventually
reaches and remains in the set of configurations that are connected and hole-free. Thus,
disconnected configurations and configurations with holes have zero weight at stationarity.
In Appendix A.2, we show using detailed balance that the unique stationary distribution of
M can be written, for σ connected and hole-free, as π(σ) = λe(σ) · γa(σ)/Ze where e(σ) is the
number of edges and a(σ) is the number of homogeneous edges of σ and Ze =

∑
σ λ

e(σ) ·γa(σ).
This can be rewritten as in the lemma using two facts: (i) since every edge is either
homogeneous or heterogeneous, e(σ) = a(σ) + h(σ); and (ii) for any connected, hole-free
configuration σ, e(σ) = 3n− p(σ)− 3, a result shown in [6]. J

The remainder of this paper will be spent analyzing this stationary distribution.

3.2 Simulations
We supplement our rigorous results with simulations that show separation occurs for even
better values of λ and γ than our proofs guarantee, indicating that our proven bounds are
likely not tight. We simulatedM on heterogeneous particle systems with two colors, using 50
particles of each color. Figure 2 shows the progression ofM over time with bias parameters
λ = 4 and γ = 4, the regime in which particles prefer to have more neighbors, especially
those of their own color. The simulation ran for nearly 70 million iterations, but much of the
system’s compression and separation occurs in the first million iterations. Separation still
occurs even when swap moves are disallowed, but takes much longer to achieve.

Figure 3 compares the resulting system configurations after runningM from the same
initial configuration for the same number of iterations, varying only the values of λ and γ.
We observe four distinct phases: compressed-separated, compressed-integrated, expanded-
separated, and expanded-integrated. We rigorously verify the compressed-separated behavior

APPROX/RANDOM 2019

54:10 Stochastic Separation in Self-Organizing Particle Systems

Figure 2 A 2-heterogeneous particle system of 100 particles starting from an arbitrary initial
configuration after (from left to right) 0; 50,000; 1,050,000; 17,050,000; and 68,250,000; iterations of
M with λ = 4 and γ = 4.

γ = 5.20 (Separation) γ = 0.58 (Integration)

λ = 5.20
(Compression)

λ = 0.58
(Expansion)

Figure 3 A 2-heterogeneous particle system of 100 particles starting in the leftmost configuration
of Figure 2 after 50,000,000 iterations ofM for various values of the parameters λ and γ.

(i.e., when λ and γ are large), and do the same for the compressed-integrated behavior (i.e.,
when λ is large and γ is small). We do not give proofs for expanded configurations; in fact,
our current definition of separation may not accurately capture what occurs in expanded
configurations.

4 Summary of Results and Proofs

Here we summarize our results and proofs; details have been omitted due to length constraints.
We want to know for which values of λ and γ separation does or does not occur. Our

proof techniques only apply to compressed configurations, so we must first show that Markov
chainM achieves compression for the values of λ and γ we are interested in. Previous proofs
of compression in homogeneous particle systems break down for heterogeneous systems, so
we utilize the cluster expansion to overcome this obstacle. The cluster expansion comes from
statistical physics and allows us to rewrite a sum over collections of disjoint objects in terms
of a sum over collections of overlapping objects. This latter sum is often much easier to
work with. For the cluster expansion to be useful, the formal power series it involves must
be convergent. We highly recommend Chapter 5 of [12] to learn more about the cluster
expansion. Here we present only the relevant definitions and results from this chapter.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:11

In a polymer model, we consider a finite set Γ, the elements of which are called polymers.
We will consider polymers that are collections of edges of G∆ having certain properties; for
large γ, our polymers are minimal cut sets that we call loops, and when γ is close to one,
our polymers are connected edge sets with an even number of edges incident on each vertex.
Formally, polymers only need to satisfy:

Each polymer ξ ∈ Γ has a real weight w(ξ).3
There is a notion of pairwise compatibility for polymers.

Polymers are typically compatible when they are well-separated in some sense. Our loop
polymers will be compatible when they share no edges, and our even polymers will be
compatible when they are not incident on any of the same vertices. We say a collection of
polymers Γ′ ⊆ Γ is compatible if all polymers in Γ′ are pairwise compatible.

The polymer partition function is defined as:

Ξ =
∑
Γ′⊆Γ

compatible

∏
ξ∈Γ′

w(ξ).

Many partition functions of spin systems, such as the Ising model or the hard-core lattice
gas model, can be written in this form as polymer partition functions. Such an abstract sum
can sometimes be hard to analyze, but the cluster expansion gives a way of rewriting this
expression in terms of a sum over subsets Γ′ ⊆ Γ where many polymers are incompatible;
because incompatible polymers “touch”, we can enumerate such collections more easily and
thus such sums are often easier to work with

Formally, consider an ordered multiset X = {ξ1, ξ2, . . . , ξm} ⊆ Γ. Let HX be the incom-
patibility graph on vertex set {1, 2, . . . ,m} where i ∼ j whenever ξi and ξj are incompatible.
We say that the X is a cluster if HX is connected.4 Let |X| = m denote the number of
polymers in cluster X (with polymers counted with the appropriate multiplicities).

The cluster expansion is the formal power series for ln Ξ given in Equation 2. Often this
power series does not converge, but the Kotecky-Preiss condition guarantees convergence
and is often easy to verify [21]. The following theorem states the Kotecky-Preiss condition
(Equation 1) and the cluster expansion of Ξ.

I Theorem 10 ([12], Chapter 5). Let Γ be a finite set of polymers ξ with real weights w(ξ)
and a notion of pairwise compatibility. If there exists a function a : Γ→ R>0 such that for
all ξ∗ ∈ Γ,∑

ξ∈Γ:
ξ,ξ∗ incompatible

|w(ξ)|ea(ξ) ≤ a(ξ∗), (1)

then the polymer partition function Ξ satisfies

ln Ξ =
∑

X: cluster

1
|X|!

∑

G⊆HX :
connected,
spanning

(−1)|E(G)|

∏
ξ∈X

w(ξ)

 , (2)

where G ⊆ HX means G is a subgraph of HX .

3 In general w(ξ) can be complex, but for our purposes it will always be a (positive or negative) real
number.

4 Many sources define clusters to be unordered multisets, necessitating additional combinatorial terms in
the cluster expansion; for simplicity, we assume clusters are ordered.

APPROX/RANDOM 2019

54:12 Stochastic Separation in Self-Organizing Particle Systems

The cluster expansion is derived and this theorem is proved in Chapter 5 of [12], for a slightly
different (but equivalent) definition of a cluster.

We apply the cluster expansion twice, with two different notions of polymers and com-
patibility. In both cases, our polymers will be connected edge sets ξ ⊆ E(G∆), and we use
that to state a general result here. Let Γ be an infinite set of such polymers that is invariant
under translation and rotation of polymers. Two polymers in Γ will be compatible if they
are well-separated in the model-dependent sense described above. Polymers are incompatible
when they are “too close”; for a polymer ξ ∈ Γ, let [ξ] ⊆ E(G∆) be the the minimal edge set
such that if ξ′ is not compatible with ξ, then ξ′ must contain an edge of [ξ]. We use brackets,
consistent with the notation of [12], because this is a type of closure of a polymer. For our
loop polymers, which are compatible if they share no edges, [ξ] = ξ. For our even polymers,
which are compatible if they are not incident on any of the same vertices, [ξ] is all edges that
share an endpoint with an edges of ξ. We denote the size of this edge set as |[ξ]|.

We will be interested in some finite region Λ ⊆ E(G∆), and we say ΓΛ ⊆ Γ is all polymers
of Γ whose edges are contained in Λ. Let ∂Λ be an edge set such that a cluster containing an
edge in Λ and an edge not in Λ must contain an edge of ∂Λ. We will consider loop polymers
with edges from EintP , the set of edges with at least one endpoint strictly inside boundary P ,
so in this case we use Λ = EintP and ∂Λ the edges in P. For even polymers, we use Λ = EP ,
all edges on or inside P, and ∂Λ is all edges with one endpoint on P and the other outside.

The following states the key fact about the cluster expansion that we will need. Namely,
when a certain mild condition is satisfied, we can use the cluster expansion to give upper and
lower bounds on the polymer partition function for Λ in terms of a volume term, depending
only on |Λ|, and a surface term, depending only on |∂Λ|.

I Theorem 11. Let Γ be an infinite set of polymers ξ ⊆ E(G∆) that is closed under
translation and rotation, and let Λ ⊆ E(G∆) be finite. If there is a constant c such that for
any edge e ∈ E(G∆),∑

ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c,

then for any Λ the partition function

ΞΛ :=
∑

Γ′⊆ΓΛ
compatible

∏
ξ∈Γ′

w(ξ)

satisfies

eψ|Λ|−c|∂Λ| ≤ ΞΛ ≤ eψ|Λ|+c|∂Λ|,

for some constant ψ ∈ [−c, c] that is independent of Λ.

We prove this theorem in Appendix A.3.
This result is the key step needed to show that when λ and γ are both large, compression

occurs; as our techniques for establishing separation first require configurations to be com-
pressed, this is a necessary first step. For compression, we look at the partition function ZP
for different fixed boundaries P , where ZP is the sum over all configurations σ with boundary
P of their weights (λγ)−|P| · γ−h(σ). We cannot analyze ZP directly, so we instead relate
ZP to a specific polymer partition function ΞLP which does have a cluster expansion. Using
the sufficient condition of Theorem 10, we show the cluster expansion for ΞLP is convergent

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:13

when γ > 45/4. We then use this expression of ln ΞLP as a convergent power series and
Theorem 11 to bound ΞLP in terms of a volume term, depending only on the number of
particles n, and a surface term, depending only on |P|, the length of boundary P.

I Lemma 12. When γ > 45/4, for c = 0.0001, there exists a constant ψ ∈ [−c, c] that
depends on γ but is independent of P such that

e(3n−3)ψ−3c|P| ≤ ΞLP ≤ e(3n−3)ψ+3c|P|.

This means, in particular, that the ratios of ΞLP and ΞLP′ for different boundaries P and
P ′ that enclose the same number n of particles can be bounded by an expression that is
exponential in the lengths of these boundaries but independent of n. This is essential to our
compression argument, which will focus on boundaries of various lengths. We note that it is
straightforward, using the previous lemma, to get similar bounds on ZP , the quantity we are
actually interested in. We use this to apply a Peierls argument similar to the one used to
show compression in [6]. This argument relates the total weight of undesirable configurations
– those with boundaries longer than α · pmin for some constant α > 1 – to the weight of
configurations with minimum perimeter, pmin. The result is as follows.

I Theorem 13. Consider algorithm M when there are n total particles of two different
colors. For c = 0.0001, when constants α > 1, λ > 1, and γ > 45/4 satisfy

2(2 +
√

2)e3c

λγ

(
e3cλγ3/2

)1/α
< 1,

when n is sufficiently large then forM with parameters λ and γ, configurations drawn from
distribution π are α-compressed with probability at least 1− ζ

√
n for some constant ζ < 1.

One corollary is that if λ > 1 and γ > 45/4 such that λγ > 2(2 +
√

2)e0.0003 ∼ 6.83, there
exists a constant α such that a configuration drawn from the stationary distribution π of
M is α-compressed with high probability. (Recall, we say an event A occurs with high
probability, or w.h.p., if Pr[A] ≥ 1− cnδ , where 0 < c < 1 and δ > 0 are constants. Unless
we explicitly state otherwise, it will always be the case that δ = 1/2.) Conversely, for any
α > 1, there exist λ and γ such thatM with these parameter values achieves α-compression
at stationarity w.h.p.

We next show, again when λ and γ are large enough, that separation provably occurs.
By the previous theorem, it suffices to show this among compressed configurations. We use
a technique known as bridging that was developed to analyze molecular mixtures called
colloids [28]. Adapting the bridging approach to our setting required several new innovations
to overcome obstacles such as the irregular shapes of particle system configurations, the
non-self-duality of the triangular lattice, the interchangeability between color classes, and
other technicalities related to interfaces between particles of different colors. The main result
of this section is the following theorem. Recall that for a fixed boundary P, the probability
distribution πP is over colored particle configurations with this boundary where πP(σ) is
proportional to γ−h(σ).

I Theorem 14. Let P be the boundary of n particles with |P| ≤ αpmin. For any β > 2
√

3α
and any δ < 1/2, if γ is large enough that

3
2α
√

3
β 4

1+3δ
4δ γ−1+ 2α

√
3

β < 1

then for sufficiently large n a configuration drawn from πP is (β, δ)-separated with probability
at least 1− ζ

√
n for some constant ζ < 1.

APPROX/RANDOM 2019

54:14 Stochastic Separation in Self-Organizing Particle Systems

Combining this with the previous theorem, we see that for any λ > 1 and γ > 45/4 ∼ 5.66
such that λγ > 2(2 +

√
2)e0.0003 ∼ 6.83, there exist constants β and δ such that for large

enough n,M provably achieves (β, δ)-separation at stationarity w.h.p. Furthermore, for any
β > 2

√
3 and any δ < 1/2, there are values for λ and γ such that for large enough n, M

provably achieves (β, δ)-separation at stationarity w.h.p.
We are also able to show that there are some values of γ close to one for which separation

does not occur. This counterintuitively includes values where γ > 1 and particles have a
preference for being next to particles of the same color. As we did for large values of γ, we
first show that when λ is large and γ is close to one, compression provably occurs. The
polymer partition function ΞLP from above does not have a convergent cluster expansion when
γ is close to one, so we cannot use it to show compression. Instead, we carefully relate ZP to
a different polymer partition function ΞHTP by considering the high temperature expansion,
which rewrites a sum over configurations with a fixed boundary as a sum over even edge sets
within that boundary. The high-temperature expansion is well-studied for the Ising model
(see, e.g., [12], Section 3.7.3). We show ΞHTP has a convergent cluster expansion when γ is
close to one. We then use the cluster expansion for this high temperature representation,
much the same as above, to show compression provably occurs.

I Theorem 15. Consider algorithm M when there are n total particles of two different
colors. For a = 10−5, when constants α > 1, λ > 1, and γ ∈ (79/81, 81/79) satisfy

2(2 +
√

2)e3a

λ(γ + 1)

(
λ(γ + 1)

2e−3a
(79

81
))1/α

< 1

when n is sufficiently large then forM with parameters λ and γ, configurations drawn from
M’s stationary distribution π are α-compressed with probability at least 1− ζ

√
n for some

constant ζ < 1.

This theorem implies that for any λ > 1 and γ ∈ (79/81, 81/79) such that λ(γ + 1) >
2(2 +

√
2)e0.00003 ∼ 6.83, there exists a constant α such that a configuration drawn from

the stationary distribution π ofM is α-compressed w.h.p. Conversely, for any α > 1 and
any γ ∈ (79/81, 81/79), for large enough λ algorithmM with parameters λ and γ achieves
α-compression at stationarity w.h.p.

Once we have shown that compression occurs for large λ and γ near one, we show that
among these compressed configurations a large amount of separation between color classes
is very unlikely. We prove this with a probabilistic argument in which we find a set of
polynomially many events such that if separation occurs, then at least one of these events
occurs. We then show that each event occurs with probability at most ζn1/2−ε for some ζ < 1
and arbitrarily small ε > 0, which via a union bound over the polynomial number of events
implies separation is very unlikely.

I Theorem 16. Let P be any α-compressed boundary. Let δ < 1/4 and γ close enough to
one such that there exists a µ ∈ (δ/(1− 2δ), 1/2) where(

µ

1− µ

)(µ−δ/(1−2δ))/11
< γ <

(
1− µ
µ

)(µ−δ/(1−2δ))/11
.

For any β and any c < 1/4, there is a constant ζ < 1 such that the probability a particle
configuration drawn at random from πP is (β, δ)-separated is at most ζn2c .

Combining this with the results above, we see that for λ > 1 and γ ∈ (79/81, 81/79) such that
λ(γ + 1) > 2(2 +

√
2)e0.00003 ∼ 6.83, there are constants β and δ such that the probability

M with parameters λ and γ achieves (β, δ)-separation at stationarity is at most ζn1/2−ε
,

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:15

where ε > 0 and ζ < 1. Conversely, for any β > 0 and any δ < 1/4, there exists λ and γ such
thatM with these parameters achieves (β, δ)-separation at stationarity with probability at
most ζn1/2−ε for ε > 0 and ζ < 1.

5 Conclusion

We considered separation with two colors, but expect our proofs to generalize in a straight-
forward way to heterogeneous systems with more colors using insights that generalize cluster
expansion polymers from the Ising model to the Potts model (see the notion of a contour in
Pirogov-Sinai theory, e.g., in Chapter 7 of [12]). The proofs would follow the same strategy
for two colors, requiring little additional insight but a fairly large amount of technical detail.

We note that, as with previous papers using stochastic, distributed algorithms for
programmable matter, we are unable to give any nontrivial bounds on the mixing time of our
Markov chainM. The difficulties in proving polynomial upper bounds on the mixing time
are unsurprising, given similarities betweenM and a well-studied open problem in statistical
physics about the mixing time of Glauber dynamics of the Ising model on Z2 with plus
boundary conditions starting from the all minus state [24, 26] (see remarks concluding [6]).
However, the mixing time may not be the best bound for characterizing when compression
and separation occur. Simulations show that both compression and separation occur fairly
quickly (Figure 2), although the algorithm continues to gradually achieve more compression
and separation, confirming we likely achieve these goals well before converging to stationarity.

We believe the stochastic approach to self-organizing particle systems, used here to develop
a distributed algorithm for separation and integration in programmable matter, is much
more broadly applicable. This approach can potentially be applied to any objective described
by a global energy function (where the desirable configurations have low energy values),
provided changes in energy due to particle movements can be calculated with only local
information. Choosing the correct global energy function is the key; translating the energy
function into a Markov chain and then into a distributed algorithm is, by now, fairly routine
(see [2, 6]). However, proving that the stationary distribution has our desired properties with
high probability remains challenging, requiring application-specific proof techniques.

Last, we believe the proof techniques developed here extend beyond our current work.
For separation and integration, the key ingredient is the cluster expansion, used recently to
develop efficient low-temperature approximations and sampling algorithms, and the related
Pirogov-Sinai theory, used to show slow mixing of certain Markov chains. Here, however, we
used a completely different aspect of the cluster expansion by separating partition functions
into surface and volume terms. The cluster expansion and Pirogov-Sinai theory have been
widely used in statistical physics for many purposes, and we believe there are many more
ways a thorough understanding of these methods can benefit computer science.

References

1 Leonard M. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266(5187):1021–1024, 1994.

2 Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W.
Richa. A Stochastic Approach to Shortcut Bridging in Programmable Matter. Natural
Computing, 17(4):723–741, 2018.

3 Alexander I. Barvinok. Combinatorics and complexity of partition functions, volume 30 of
Algorithms and Combinatorics. Springer International Publishing, 2016.

APPROX/RANDOM 2019

54:16 Stochastic Separation in Self-Organizing Particle Systems

4 Alexander I. Barvinok and Pablo Soberón. Computing the partition function for graph
homomorphisms with multiplicities. Journal of Combinatorial Theory, Series A, 137:1–26,
2016.

5 Prateek Bhakta, Sarah Miracle, and Dana Randall. Clustering and mixing times for segregation
models on Z2. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’14, pages 327–340, 2014.

6 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain
algorithm for compression in self-organizing particle systems. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, PODC ’16, pages 279–288, Chicago, IL,
USA, 2016. ACM. A significantly updated version is available at arXiv:1603.07991.

7 David Correa, Athina Papadopoulou, Christophe Guberan, Nynika Jhaveri, Steffen Reichert,
Achim Menges, and Skylar Tibbits. 3D-Printed Wood: Programming Hygroscopic Material
Transformations. 3D Printing and Additive Manufacturing, 2(3):106–116, 2015.

8 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Com-
puting by Programmable Particles. In Distributed Computing by Mobile Entities: Current
Research in Moving and Computing, pages 615–681. Springer, Cham, 2019.

9 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot - a new model for programmable matter.
In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’14, pages 220–222, New York, NY, USA, 2014. ACM.

10 Moon Duchin and Bridget E. Tenner. Discrete geometry for electoral geography. Preprint
available online at arXiv:1808.05860, 2018.

11 William Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
New York, 1968.

12 Sacha Friedli and Yvan Velenik. Statistical Mechanics of Lattice Systems: A Concrete Mathe-
matical Introduction. Cambridge University Press, Cambridge, 2018.

13 Wilfred K. Hastings. Monte Carlo Sampling Methods Using Markov Chains and Their
Applications. Biometrika, 57(1):97–109, 1970.

14 Tyler Helmuth, Will Perkins, and Guus Regts. Algorithmic Pirogov-Sinai Theory. In Proceed-
ings of the 51st ACM Symposium on Theory of Computing, STOC ’19. ACM, 2019.

15 Gregory Herschlag, Han Sung Kang, Justin Luo, Christy V. Graves, Sachet Bangia, Robert
Ravier, and Jonathan C. Mattingly. Quantifying Gerrymandering in North Carolina. Preprint
available online at arXiv:1801.03783, 2018.

16 Michael A. Hogg and John C. Turner. Interpersonal attraction, social identification and
psychological group formation. European Journal of Social Psychology, 15(1):51–66, 1985.

17 Nicole Immorlica, Robert Kleinberg, Brendan Lucier, and Morteza Zadomighaddam. Ex-
ponential Segregation in a Two-dimensional Schelling Model with Tolerant Individuals. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’17, pages 984–993, 2017.

18 Ernst Ising. Beitrag zur theorie des ferromagnetismus [Contribution to the Theory of Ferro-
magnetism]. Zeitschrift für Physik, 31(1):253–258, 1925.

19 Matthew Jenssen, Peter Keevash, and Will Perkins. Algorithms for #BIS-hard problems on
expander graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’19, pages 2235–2247, 2019.

20 Brian R. Johnson, Ellen van Wilgenburg, and Neil D. Tsutsui. Nestmate recognition in social
insects: overcoming physiological constraints with collective decision making. Behavioral
Ecology and Sociobiology, 65(5):935–944, 2011.

21 Roman Kotecký and David Preiss. Cluster Expansion for Abstract Polymer Models. Commu-
nications in Mathematical Physics, 103:491–498, 1986.

22 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, Providence, RI, USA, 2009.

https://arxiv.org/abs/1603.07991
https://arxiv.org/abs/1808.05860
https://arxiv.org/abs/1801.03783

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:17

23 Chao Liao, Jiabao Lin, Pinyan Lu, and Zhenyu Mao. Counting independent sets and colorings
on random regular bipartite graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2019, 2019.

24 Eyal Lubetzky, Fabio Martinelli, Alan Sly, and Fabio Lucio Toninelli. Quasi-polynomial
mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. Journal of the
European Mathematical Society (JEMS), 15(2):339—-386, 2013.

25 Nancy Lynch. Distributed Algorithms. Morgan Kauffman, San Francisco, CA, USA, 1996.
26 Fabio Martinelli and Fabio Lucio Toninelli. On the Mixing Time of the 2D Stochastic

Ising Model with “Plus” Boundary Conditions at Low Temperature. Communications in
Mathematical Physics, 296(1):175–213, 2010.

27 Joseph E. Mayer. The Statistical Mechanics of Condensing Systems. I. The Journal of
Chemical Physics, 5:67–73, 1937.

28 Sarah Miracle, Dana Randall, and Amanda Pascoe Streib. Clustering in Interfering Binary
Mixtures. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2011, pages 652–663, 2011.

29 Hamed Omidvar and Massimo Franceschetti. Self-organized Segregation on the Grid. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC ’17, pages
401–410, New York, NY, USA, 2017. ACM.

30 T’ai H. Roulston, Grzegorz Buczkowski, and Jules Silverman. Nestmate discrimination in
ants: effect of bioassay on aggressive behavior. Insectes Sociaux, 50(2):151–159, 2003.

31 Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-assembly in
a thousand-robot swarm. Science, 345(6198):795–799, 2014.

32 William Savoie, Sarah Cannon, Joshua J. Daymude, Ross Warkentin, Shengkai Li, Andréa W.
Richa, Dana Randall, and Daniel I. Goldman. Phototactic Supersmarticles. Artificial Life
and Robotics, 23(4):459–468, 2018.

33 Thomas C. Schelling. Models of Segregation. The American Economic Review, 59(2):488–493,
1969.

34 Thomas C. Schelling. Dynamic models of segregation. The Journal of Mathematical Sociology,
1(2):143–186, 1971.

35 Philip S. Stewart and Michael J. Franklin. Physiological heterogeneity in biofilms. Nature
Reviews Microbiology, 6:199–210, 2008.

36 Rohan Thakker, Ajinkya Kamat, Sachin Bharambe, Shital Chiddarwar, and K. M. Bhurchandi.
ReBiS - reconfigurable bipedal snake robot. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 309–314, 2014.

37 John C. Turner. Towards a cognitive redefinition of the social group. Cahiers de Psychologie
Cognitive/Current Psychology of Cognition, 1(2):93–118, 1981.

38 Dejan Vinković and Alan Kirman. A physical analogue of the Schelling model. Proceedings of
the National Academy of Sciences, 103(51):19261–19265, 2006.

39 Guopeng Wei, Connor Walsh, Irina Cazan, and Radu Marculescu. Molecular Tweeting:
Unveiling the Social Network Behind Heterogeneous Bacteria Populations. In Proceedings of
the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics,
BCB ’15, pages 366–375, New York, NY, USA, 2015. ACM.

A Appendix

Here we include the proofs of some of our claims that were omitted from the main body of
this paper for conciseness and clarity. We do not include any detailed proofs of our technical
results due to length constraints.

APPROX/RANDOM 2019

54:18 Stochastic Separation in Self-Organizing Particle Systems

A.1 Proof of Lemma 2
Recall that Lemma 2 states that for any n ≥ 1, there is a connected, hole-free particle
configuration of n particles with perimeter at most 2

√
3
√
n. That is, pmin(n) ≤ 2

√
3
√
n.

Proof. The lemma can easily be verified for n ≤ 6. For n ≥ 7, we begin with the case
where n = 3`2 + 3`+ 1 for some integer ` ≥ 1. A regular hexagon with side length ` can be
decomposed into six triangles, each with `(`+ 1)/2 particles, and a single center vertex, for
3`2 + 3`+ 1 total particles; see Figure 4a. Such a hexagon has perimeter 6`. We see that

pmin(3`2 + 3`+ 1) ≤ 6` ≤ 2
√

3
√

3`(`+ 1) ≤ 2
√

3
√
n− 1 ≤ 2

√
3
√
n.

Now we consider n = 3`2 + 3` + 1 + k, for integers ` and k, where k ∈ [1, 6` + 6). As
(3`2 + 3` + 1) + 6` + 6 = 3(` + 1)2 + 3(` + 1) + 1, this covers all possible values of n. We
construct a particle configuration on n = 3`2 + 3` + 1 + k particles by first constructing
a regular hexagon of side length ` and then adding the remaining k particles around the
outside of this hexagon in a single layer, completing one side before beginning the next; see
Figure 4b, where ` = 3 and k = 6. For k ≤ `, the perimeter of this configuration is 6`+ 1.
More generally, the perimeter increases by one when particles begin to be added to a new side
of the hexagon, and so for i = 2, 3, 4, 5, 6, for (i−1)`+ (i−2) < k ≤ i`+ (i−1) the perimeter
of this configuration is 6`+ i. We see that (using i ≤ 6 and ` ≥ 1), for any i = 1, 2, 3, 4, 5, 6,

pmin(3`2 + 3`+ 1 + k) ≤ 6`+ i ≤ 2
√

3

√(√
3`+ i

2
√

3

)2
= 2
√

3
√

3`2 + i2

12 + i

≤ 2
√

3
√

3`2 + 3 + i

≤ 2
√

3
√

3`2 + 3`+ 1 + i− 1

≤ 2
√

3
√

3`2 + 3`+ 1 + k = 2
√

3
√
n.

This concludes our proof. J

A.2 Detailed Balance Proof that π is the Stationary Distribution of M
Recall that Lemma 9 states that the stationary distribution ofM is given by π(σ) = 0 if
σ is disconnected or has holes, and by π(σ) = (λγ)−p(σ) · γ−h(σ)/Z otherwise, where Z =∑
σ(λγ)−p(σ) ·γ−h(σ). Here, we analyze the necessary cases to verify this with detailed balance.

(a) (b)

Figure 4 (a) The regular hexagon with side length ` = 3 with 3`2 + 3`+ 1 total particles. (b) A
configuration with n = 3`2 + 3`+ 1 + k particles for ` = 3 and k = 6 with perimeter 20 < 2

√
3
√
n.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:19

Proof. We first verify that π(σ) = λe(σ) · γa(σ)/Ze – where e(σ) is the number of edges of σ,
a(σ) is the number of homogeneous edges of σ, and Ze =

∑
σ λ

e(σ) · γa(σ) – is the stationary
distribution by detailed balance. We then show that this form of π can be rewritten as in
the lemma.

Consider any two connected, hole-free configurations σ, τ that differ by one move of some
particle from location ` in σ to a neighboring location `′ in τ . By examiningM, we see that
the probability of transitioning from σ to τ is:

M(σ, τ) = min
{

1, λ|N(`′)|−|N(`)| · γ|Ni(`
′)|−|Ni(`)|

}
/6n.

A similar analysis shows:

M(τ, σ) = min
{

1, λ|N(`)|−|N(`′)| · γ|Ni(`)|−|Ni(`
′)|
}
/6n.

Without loss of generality, suppose λ|N(`′)|−|N(`)| · γ|Ni(`′)|−|Ni(`)| < 1, meaning M(σ, τ) is
this value over 6n and M(τ, σ) = 1/6n. Because the only edges that differ in σ and τ are
incident to ` or `′,

π(σ)M(σ, τ) = λe(σ) · γa(σ)

Ze
· 1
n
· 1

6 · λ
|N(`′)|−|N(`)| · γ|Ni(`

′)|−|Ni(`)|

= λe(σ) · γa(σ)

Ze
· 1
n
· 1

6 · λ
e(τ)−e(σ) · γa(τ)−a(σ)

= λe(τ) · γa(τ)

Ze
· 1
n
· 1

6 · 1 = π(τ)M(τ, σ)

Thus, detailed balance is satisfied for particle moves that are not swaps.
Suppose instead that σ and τ differ by a swap move of particle P with color ci at location

` in σ and particle Q with color cj at neighboring location `′ in σ. This move could occur if
P or Q is chosen in Step 1 ofM, so:

M(σ, τ) = min
{

1, γ|Ni(`
′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|

}
/3n.

Similarly, because τ has P at location `′ and Q at location `, we have:

M(τ, σ) = min
{

1, γ|Ni(`)\{P}|−|Ni(`
′)|+|Nj(`′)\{Q}|−|Nj(`)|

}
/3n.

Without loss of generality, suppose that γ|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)| < 1, so
M(σ, τ) is this value over 3n and M(τ, σ) = 1/3n. Then,

π(σ)M(σ, τ) = λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
|Ni(`′)\{P}|−|Ni(`)|+|Nj(`)\{Q}|−|Nj(`′)|

= λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
(|Ni(`′)\{P}|+|Nj(`)\{Q}|)−(|Ni(`)|+|Nj(`′)|)

= λe(σ) · γa(σ)

Ze
· 2
n
· 1

6 · γ
a(τ)−a(σ)

= λe(τ) · γa(τ)

Ze
· 2
n
· 1

6 · 1 = π(τ)M(τ, σ)

In both cases, detailed balance is satisfied, so we conclude the stationary distribution π (which
is only non-zero over connected, hole-free configurations) is given by π(σ) = λe(σ) · γa(σ)/Ze.

APPROX/RANDOM 2019

54:20 Stochastic Separation in Self-Organizing Particle Systems

Since every edge of σ is either homogeneous or heterogeneous, we have e(σ) = a(σ)+h(σ).
From [6], we have e(σ) = 3n− p(σ)− 3, where n is the number of particles in the system.
Thus, we can rewrite this unique stationary distribution as follows:

π(σ) = λe(σ) · γa(σ)

Ze

= λe(σ) · γa(σ)∑
σ λ

e(σ) · γa(σ)

= (λγ)−3n+3 · (λγ)e(σ) · γa(σ)−e(σ)

(λγ)−3n+3 ·
∑
σ(λγ)e(σ) · γa(σ)−e(σ)

= (λγ)e(σ)−3n+3 · γa(σ)−e(σ)∑
σ(λγ)e(σ)−3n+3 · γa(σ)−e(σ)

= (λγ)−p(σ) · γ−h(σ)∑
σ(λγ)−p(σ) · γ−h(σ) .

This concludes our proof. J

A.3 Proof of Boundary-Volume Decomposition of Cluster Expansion
In this section we provide the proof of Theorem 11, which is our decomposition of a polymer
partition function into boundary and volume terms via the cluster expansion. For the sake
of clarity we restate this theorem here, including all of its hypotheses and assumptions.

I Theorem 11. Let Γ be an infinite set of polymers ξ ⊆ E(G∆) that is closed under
translation and rotation, and let Λ ⊆ E(G∆) be finite. If there is a constant c such that for
any edge e ∈ E(G∆),∑

ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c, (3)

then for any Λ the partition function

ΞΛ :=
∑

Γ′⊆ΓΛ
compatible

∏
ξ∈Γ′

w(ξ)

satisfies

eψ|Λ|−c|∂Λ| ≤ ΞΛ ≤ eψ|Λ|+c|∂Λ|,

for some constant ψ ∈ [−c, c] that is independent of Λ.

Proof. We follow the same outline as the proof of the same fact for the Ising model in
Section 5.7.1 of [12].

Let X be all clusters comprised of polymers from Γ, and let XΛ be all clusters of polymers
in ΓΛ. Note that Equation 3 implies the hypothesis of Theorem 10 (Equation 1) is satisfied,
with function a : Γ→ R given by a(ξ) = c|[ξ]|:∑

ξ∈Γ:
ξ,ξ∗ incompatible

|w(ξ)|ea(ξ) ≤
∑
e∈[ξ∗]

∑
ξ∈Γ:
e∈ξ

|w(ξ)|ec|[ξ]| ≤ c|[ξ∗]|.

S. Cannon, J. J. Daymude, C. Gökmen, D. Randall, and A.W. Richa 54:21

Because this hypothesis is satisfied for all ξ∗ ∈ Γ, it certainly holds when we restrict our
attention to polymers in ΓΛ. By Theorem 10, because ΓΛ is a finite set, this means the
cluster expansion for ΞΛ converges:

ln ΞΛ =
∑
X∈XΛ

Ψ(X)

Let X = ∪ξ∈Xξ be the support of cluster X and |X| the size of this support. Using
Equation 3 and standard techniques (see [12], the proof of Theorem 5.4 and Equation (5.29)),
the translation and rotation invariance of Γ imply that for any edge e ∈ E(G∆),

∑
X∈X :
e∈X

|Ψ(X)| ≤ c. (4)

The proof of this fact is the reason we need a slightly stronger hypothesis (Equation 3) than
is needed to guarantee the cluster expansion converges (Equation 1).

For any cluster X ∈ XΛ, it trivially holds that 1 = (
∑
e∈Λ 1e∈X)/X. We can use this fact

to rewrite the cluster expansion for ΞΛ:

ln ΞΛ =
∑
X∈XΛ

Ψ(X) =
∑
X∈X :
X⊆Λ

Ψ(X) =
∑
e∈Λ

∑
X∈X :
e∈X,
X⊆Λ

1
|X|

Ψ(X)

=
∑
e∈Λ

∑
X∈X :
e∈X

1
|X|

Ψ(X)−
∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

=

∑
e∈Λ

∑
X∈X :
e∈X

1
|X|

Ψ(X)

−

∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

 . (5)

The two infinite sums in parentheses above are absolutely convergent by Equation 4, so this
difference is well-defined.

To analyze the first term of Equation 5, we note that by the translation and rotation
invariance of Γ, the sum

ψ :=
∑
X∈X :
e∈X

1
|X|

Ψ(X)

is independent of e and of Λ and only depends on our particular polymer model; this is
the value ψ that appears in the statement of the theorem, and by Equation 4, |ψ| ≤ c. We
conclude the first term of Equation 5 is ψ|Λ|.

APPROX/RANDOM 2019

54:22 Stochastic Separation in Self-Organizing Particle Systems

To analyze the second term of Equation 5, recall if cluster X satisfies both e ∈ X for
some e ∈ Λ and X 6⊆ Λ, then X must contain some edge f ∈ ∂Λ. We rewrite the absolute
value of this second sum as∣∣∣∣∣∣∣∣∣∣∣

∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|

Ψ(X)

∣∣∣∣∣∣∣∣∣∣∣
≤
∑
e∈Λ

∑
X∈X :
e∈X,
X 6⊆Λ

1
|X|
|Ψ(X)|

≤
∑
f∈∂Λ

∑
X∈X :
f∈X

|X ∩ Λ| 1
|X|
|Ψ(X)|

≤
∑
f∈∂Λ

∑
X∈X :
f∈X

|Ψ(X)| ≤ c |∂Λ| .

The last inequality above follows from Equation 4 and the translation and rotation invariance
of Λ.

We conclude that Equation 5 implies

ψ|Λ| − c|∂Λ| ≤ ln ΞΛ ≤ ψ|Λ|+ c|∂Λ|.

Exponentiation proves the theorem. J

The Large-Error Approximate Degree of AC0

Mark Bun
Boston University, Boston, MA, USA
http://cs-people.bu.edu/mbun/
mbun@bu.edu

Justin Thaler
Georgetown University, Washington, DC, USA
http://people.cs.georgetown.edu/jthaler/
justin.thaler@georgetown.edu

Abstract
We prove two new results about the inability of low-degree polynomials to uniformly approximate
constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Ω̃(n1/2)
lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches
the best known threshold degree bound for any AC0 function, previously exhibited by a much more
complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2Ω̃(n1/2)

lower bound on the sign-rank of an AC0 function, improving on the previous best bound of 2Ω(n2/5)

(Bun and Thaler, ICALP 2016).
Second, for any δ > 0, we exhibit a function f : {−1, 1}n → {−1, 1} that is computed by a circuit

of depth O(1/δ) and is hard to approximate by polynomials in the following sense: f cannot be
uniformly approximated to error ε = 1− 2−Ω(n1−δ), even by polynomials of degree n1−δ. Our recent
prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for
error ε = 1/3.

Our result implies 2Ω(n1−δ) lower bounds on the complexity of AC0 under a variety of basic
measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the
trivial upper bound of 2O(n) that holds for every function. The previous best lower bound on AC0

for these measures was 2Ω(n1/2) (Sherstov, FOCS 2015). Additional applications in learning theory,
communication complexity, and cryptography are described.

2012 ACM Subject Classification Mathematics of computing → Approximation; Theory of compu-
tation → Communication complexity; Theory of computation → Circuit complexity

Keywords and phrases approximate degree, discrepancy, margin complexity, polynomial approxima-
tions, secret sharing, threshold circuits

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.55

Category RANDOM

Related Version The full version of this work appears at http://eccc.weizmann.ac.il/report/
2018/143/.

Funding Mark Bun: This work was done while author was at Princeton University and the Simons
Institute for the Theory of Computing, supported by a Google Research Fellowship.
Justin Thaler : Supported by NSF Grant CCF-1845125.

Acknowledgements The authors are grateful to Robin Kothari, Nikhil Mande, Jonathan Ullman,
and the anonymous reviewers for valuable comments on earlier versions of this manuscript.

1 Introduction

The threshold degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted deg±(f), is
the least degree of a real polynomial p that sign-represents f , i.e., p(x) · f(x) > 0 for all
x ∈ {−1, 1}n. A closely related notion is the ε-approximate degree of f , denoted d̃egε(f),
which is the least degree of a real polynomial p such that |p(x)−f(x)| ≤ ε for all x ∈ {−1, 1}n.

© Mark Bun and Justin Thaler;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 55; pp. 55:1–55:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://cs-people.bu.edu/mbun/
mailto:mbun@bu.edu
http://people.cs.georgetown.edu/jthaler/
mailto:justin.thaler@georgetown.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.55
http://eccc.weizmann.ac.il/report/2018/143/
http://eccc.weizmann.ac.il/report/2018/143/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 The Large-Error Approximate Degree of AC0

The parameter setting ε = 1 is a degenerate case: d̃eg1(f) = 0 because the constant 0
function approximates any Boolean f to error ε = 1. However, as soon as ε is strictly less
than 1, ε-approximate degree is a highly non-trivial notion with a rich mathematical theory.
In particular, it is easily seen that

deg±(f) = lim
ε↗1

d̃egε(f).

In other words, threshold degree is equivalent to the notion of ε-approximate degree when ε
is permitted to be arbitrarily close to (but strictly less than) 1.1

In this paper, we are concerned with proving ε-approximate degree lower bounds when
either:

ε is arbitrarily close to 1, or
ε is exponentially close to 1 (i.e., ε = 1− 2−n1−δ for some constant δ > 0).

The former parameter regime captures threshold degree, while we refer to the latter as
large-error approximate degree. While the approximate and threshold degree of a function
f capture simple statements about its approximability by polynomials, these quantities
relate intimately to the complexity of computing f in concrete computational models.
Specifically, the query complexity models UPPdt and PPdt, and the communication models
UPPcc,PPcc, are all defined (cf. Section 2) as natural analogs of the Turing machine class
PP, which in turn captures probabilistic computation with arbitrarily small advantage
over random guessing. It is known that the threshold degree of f is equivalent to its
complexity UPPdt(f), while a fundamental matrix-analytic analog of threshold degree
known as sign-rank characterizes UPPcc. Similarly, large-error approximate degree
characterizes the query complexity measure PPdt, in the following sense: for any d > 0,
d̃eg1−2−d(f) ≥ Ω(d)⇐⇒ PPdt(f) ≥ Ω(d). Section 2 elaborates on these models and their
many applications in learning theory, circuit complexity, and cryptography.

Our Results in a Nutshell. We prove two results about the threshold degree and large-error
approximate degree of functions in AC0.2 First, we prove a tight Ω̃(n1/2) lower bound on
the threshold degree (i.e., UPPdt complexity) of a natural function called SURJECTIVITY,
which is computed by a depth three circuit with logarithmic bottom fan-in. This matches
the previous best threshold degree lower bound for any AC0 function, due to Sherstov [34].
Our analysis is much simpler than Sherstov’s, which takes up the bulk of a (70+)-page
manuscript [34]. An additional advantage of our analysis is that our lower bound on the
threshold degree of SURJECTIVITY “lifts” to give a lower bound for the communication
analog UPPcc as well. In particular, we obtain an Ω(n1/2) UPPcc lower bound for a
related AC0 function; this improves over the previous best UPPcc lower bound for AC0, of
Ω(n2/5) [12].

Second, we give nearly optimal bounds on the large-error approximate degree (and hence,
PPdt complexity) of AC0. For any constant δ > 0, we show that there is an AC0 function
with ε-approximate degree Ω(n1−δ), where ε = 1−2−Ω(n1−δ). This result lifts to an analogous
PPcc lower bound.

1 It is known that for any d > 0, there are functions of threshold degree d that cannot be approximated
by degree d polynomials to error better than 1 − 2−Ω̃(nd) [27], and this bound is tight [7]. Hence,
threshold degree is also equivalent to the notion of ε-approximate degree for some value of ε that is
doubly-exponentially close to 1.

2 AC0 is the non-uniform class of sequences of functions computed by polynomial size Boolean circuits of
constant depth.

M. Bun and J. Thaler 55:3

Table 1 Comparison of our new bounds for AC0 to prior work in roughly chronological order.
The circuit depth column lists the depth of the Boolean circuit used to exhibit the bound, δ denotes
an arbitrarily small positive constant, and k an arbitrary positive integer. All Boolean circuits are
polynomial size.

Reference PPdt PPcc UPPdt UPPcc Circuit
log(threshold weight) log(1/discrepancy) threshold degree log(sign-rank) Depth

[23] — — Ω(n1/3) — 2
[20] Ω(n1/3) — — — 3
[16] — Ω(logk(n)) — Ω(logk(n)) O(k)
[25] Ω(n1/3 logk n) — Ω(n1/3 logk(n)) — O(k)
[29] — Ω(n1/5) — — 3
[7,31] — Ω(n1/3) — — 3
[28] — — — Ω(n1/3) 3
[10] Ω(n2/5) Ω(n2/5) — — 3
[33] Ω(n1/2−δ) Ω(n1/2−δ) Ω(n1/2−δ) — O(1/δ)
[34] Ω(n3/7) — Ω(n3/7) — 3
[34] Ω(n1/2) Ω(n1/2) Ω(n1/2) — 4
[12] — — — Ω(n2/5) 3
[11] Ω(n1/2−δ) Ω(n1/2−δ) — — 3

This work Ω̃(n1/2) Ω̃(n1/2) Ω̃(n1/2) — 3
This work — — — Ω̃(n1/2) 7
This work Ω(n1−δ) Ω(n1−δ) — — O(1/δ)

To summarize our results succinctly:
We prove a Ω̃(n1/2) lower bound on the UPP complexity of SURJECTIVITY in the query
setting, and of a related AC0 function in the communication setting.
We prove a Ω(n1−δ) lower bound on the PP complexity of some AC0 circuit of depth
O(1/δ), in both the query and communication settings.

Table 1 compares our new lower bounds for AC0 to the long line of prior works with
similar goals.

Context and Prior Work. The study of both large-error approximate degree and threshold
degree has led to many breakthrough results in theoretical computer science, especially in
the algorithmic and complexity-theoretic study of constant depth circuits. For example,
threshold degree upper bounds are at the core of many of the fastest known PAC learning
algorithms. This includes the notorious case of polynomial size CNF formulas on n variables,
for which the fastest known algorithm [19] runs in time exp(Õ(n1/3)) owing to a Õ(n1/3)
upper bound on the threshold degree of any such formula. This upper bound is tight,
matching a classic Ω(n1/3) lower bound of Minsky and Papert [23] for the following read-once
CNF: ANDn1/3 ◦ORn2/3 (here, we use subscripts to clarify the number of inputs on which a
function is defined).

In complexity theory, breakthrough results of Sherstov [29,31] and Buhrman et al. [7] used
lower bounds on large-error approximate degree to show that there are AC0 functions with
polynomial PPcc complexity. One notable implication of these results is that Allender’s [1]
classic simulation of AC0 functions by depth-three majority circuits is optimal. (This
resolved an open problem of Krause and Pudlák [20].) A subsequent, related breakthrough of
Razborov and Sherstov [28] used Minsky and Papert’s lower bound on the threshold degree
of ANDn1/3 ◦ORn2/3 to prove the first polynomial UPPcc lower bound for a function in AC0,
answering an old open question of Babai et al. [2].

APPROX/RANDOM 2019

55:4 The Large-Error Approximate Degree of AC0

These breakthrough lower bounds raised the intriguing possibility that AC0 functions
could be maximally hard for the UPPcc and PPcc communication models, as well as for
related complexity measures. Nevertheless, the quantitative parameters achieved in these
works are far from actually showing that this is the case. Indeed, the following basic questions
about the complexity of AC0 remain open.

I Problem 1. Is there an AC0 function F : {−1, 1}n×n → {−1, 1} with UPPcc complexity
Ω(n)?

I Problem 2. Is there an AC0 function F : {−1, 1}n×n → {−1, 1} with PPcc complexity
Ω(n)?

An affirmative answer to either question would be tight: Every function F : {−1, 1}n ×
{−1, 1}n → {−1, 1} has UPPcc and PPcc complexity at most n. Obtaining an affirmative
answer to Open Problem 1 is harder than for Open Problem 2, since UPPcc(f) ≤ PPcc(f)
for all f .

Guided by these open problems, a sequence of works has established quantitatively
stronger and more general lower bounds for AC0 functions [9–13, 33, 34]. In addition to
making partial progress toward resolving these questions, the techniques developed in these
works have found fruitful applications in new domains. For example, Bouland et al. [6] built
on techniques from a number of aforementioned works [9,10,12,33] to resolve several old open
questions about the relativized power of statistical zero knowledge proofs and their variants.
As another example, our recent prior works [8, 13] built on the same line of work to resolve
or nearly resolve a number of longstanding open questions in quantum query complexity.
Finally, large-error and threshold degree lower bounds on AC0 functions have recently proved
instrumental in the development of cryptographic secret-sharing schemes with reconstruction
procedures in AC0 [4, 5, 14]. We thus believe that the new techniques developed in this work
will find further applications, perhaps in unexpected areas.

Prior to our work, the best known result toward a resolution of Open Problem 1 was a
Ω(n2/5) lower bound on UPPcc complexity of an AC0 function [12], while the best known
result toward Open Problem 2 was a Ω(n1/2) bound on the PPcc complexity of a very
complicated AC0 circuit [34].

1.1 Our Results In Detail
1.1.1 Resolving the Threshold Degree of SURJECTIVITY
Surjectivity and its History. Let R be a power of 2 and n = N logR. The function
SURJECTIVITYn (SURJR,N for short) is defined as follows. Given an input in {−1, 1}n,
SURJR,N interprets the input as a list of N numbers (s1, . . . , sN) from a range [R] :=
{1, . . . , R}, and evaluates to −1 if and only if every element of the range [R] appears at least
once in the list.3 SURJR,N is computed by an AC0 circuit of depth three and logarithmic
bottom fan-in, since it is equivalent to the ANDR (over all range items r ∈ [R]) of the ORN
(over all inputs i ∈ [N]) of “Is input si equal to r?”, where the quoted question is computed
by a conjunction of width logR over the input bits.

SURJR,N has been studied extensively in the contexts of quantum query complexity
and approximate degree. Beame and Machmouchi [3] showed that computing SURJR,N for
R = N/2 + 1 requires Ω̃(n) quantum queries, making it the only known AC0 function with
linear quantum query complexity. Meanwhile, the (1/3)-approximate degree of SURJR,N was

3 As is standard, we associate −1 with logical TRUE and +1 with logical FALSE throughout.

M. Bun and J. Thaler 55:5

recently shown to be Θ̃(R1/4 ·N1/2). The lower bound is from our prior work [8], while the
upper bound was shown by Sherstov [35], with a different proof given in [8]. In particular,
when R = N/2, d̃eg1/3(SURJR,N) = Θ̃(N3/4). Our prior works [8,13] built directly on the
approximate degree lower bound for SURJR,N to give near-optimal lower bounds on the
(1/3)-approximate degree of AC0 (see Section 3.3 for details).

Our Result. In spite of the progress described above, the threshold degree SURJR,N re-
mained open. For R < N/2, an upper bound of Õ(min{R,N1/2}) follows from standard
techniques. The best known lower bound was Ω(min{R,N1/3}), obtained by a reduction to
Minsky and Papert’s threshold degree lower bound for ANDn1/3 ◦ORn2/3 . In this work, we
settle the threshold degree of SURJR,N , showing that the known upper bound is tight up to
logarithmic factors.

I Theorem 3. For R < N/2, the threshold degree of SURJR,N is Θ̃(min{R,N1/2}). In
particular, if R = N1/2, deg±(SURJR,N) = Θ̃(N1/2).

In addition to resolving a natural question in its own right, Theorem 3 matches the
best prior threshold degree lower bound for AC0, previously proved in [34] for a much more
complicated function computed by a circuit of strictly greater depth. Furthermore, with
some extra effort, our lower bound for SURJR,N extends to give a Ω̃(n1/2) lower bound on
the UPPcc complexity of a related AC0 function, yielding progress on Open Question 1 (cf.
Section 1). In contrast, Sherstov’s Ω(n1/2) threshold degree lower bound for AC0 [34] is not
known to extend to UPPcc complexity. As stated in Section 1, the best previous UPPcc

lower bound for an AC0 function was Ω(n2/5).

I Corollary 4. There is an AC0 function F : {−1, 1}n×n → {−1, 1} such that UPPcc(F) ≥
Ω̃(n1/2).

1.1.2 AC0 Has Nearly Maximal PPcc Complexity
In our second result, for any constant δ > 0, we exhibit an AC0 function f : {−1, 1}n →
{−1, 1} with d̃egε(f) = Ω(n1−δ) for some ε = 1− 2−Ω(n1−δ). This is a major strengthening
of our prior works [8, 13], which proved a similar result for ε = 1/3. By combining this
large-error approximate degree lower bound with a “query-to-communication lifting theorem”
for PP [31], we obtain a Ω(n1−δ) bound on the PPcc complexity of an AC0 function, nearly
resolving Open Question 2 from the previous section.

I Theorem 5. For any constant δ > 0, there is an AC0 function F : {−1, 1}n×n → {−1, 1}
with PPcc(F) = Ω(n1−δ).

The best previous lower bound for the PPcc complexity of an AC0 function was Ω(n1/2) [34].

2 Algorithmic and Complexity-Theoretic Applications

To introduce the applications of our results, we begin by defining the query complexity
quantities UPPdt and PPdt and the communication complexity quantities UPPcc and PPcc.

Query Models. In randomized query complexity, an algorithm aims to evaluate a known
Boolean function f on an unknown input x ∈ {−1, 1}n by reading as few bits of x as possible.
We say that the query cost of a randomized algorithm is the maximum number of bits it
queries for any input x.

APPROX/RANDOM 2019

55:6 The Large-Error Approximate Degree of AC0

UPPdt considers “unbounded error” randomized algorithms, which means that on any
input x, the algorithm outputs f(x) with probability strictly greater than 1/2. UPPdt(f)
is the minimum query cost of any unbounded error algorithm for f .
PPdt(f) captures “large” (rather than unbounded) error algorithms. If a randomized
query algorithm outputs f(x) with probability 1/2 + β for all x, then the PP-cost of the
algorithm is the sum of the query cost and log(1/β). PPdt(x) is the minimum PP-cost
of any randomized query algorithm for f .

Communication Models. UPPcc and PPcc consider the standard two-party setup where
Alice holds an input x and Bob holds an input y, and they run a private-coin randomized
communication protocol to compute a function f(x, y), while minimizing the number of bits
they exchange. In direct analogy to the query complexity measures above, we say that the
communication cost of a randomized protocol is the maximum number of bits Alice and Bob
exchange on any input (x, y).

UPPcc(f) [26] is the minimum communication cost of any randomized protocol that
outputs f(x, y) with probability strictly greater than 1/2 on all inputs (x, y).
PPcc(f) [2] is the minimum PP-cost of a protocol for f , where the PP-cost of a protocol
that outputs f(x, y) with probability 1/2+β for all (x, y) is the sum of the communication
cost and log(1/β).

We now give an overview of the applications of Theorem 5 and Corollary 4.

2.1 Applications of Theorem 5
PPcc is known to be equivalent to two measures of central importance in learning theory
and communication complexity, namely margin complexity [22] and discrepancy [18]. Hence,
Theorem 5 implies that AC0 has nearly maximal complexity under both measures. Below,
we highlight four additional applications.

Communication Complexity. The PPcc communication model can efficiently sim-
ulate almost every two-party communication model, including P (i.e., deterministic
communication), BPP (randomized communication), BQP (quantum), and PNP. The
only well-studied exceptions are UPPcc, and communication analogs of the polynomial
hierarchy (the latter of which we do not know how to prove lower bounds against). Hence,
in showing that AC0 has essentially maximal PPcc complexity, we subsume or nearly
subsume all previous results on the communication complexity of AC0.
Cryptography. Bogdanov et al. [4] observed that for any f : {−1, 1}n → {−1, 1} and
d > 0, if one shows that d̃egε(f) ≥ d, then one obtains a scheme for sharing a secret bit
b ∈ {−1, 1} among n parties such that any subset of d shares provides no reconstruction
advantage, yet applying f to all n shares yields b with probability at least 1/2 + ε/2.
They combined this with known approximate degree lower bounds for AC0 functions to
get secret sharing schemes with reconstruction procedures in AC0. Via this connection,
an immediate corollary of Theorem 5 is a nearly optimal secret sharing scheme in AC0:
for any desired constant δ > 0, any subset of n1−δ shares provides no reconstruction
advantage, yet all n shares can be successfully reconstructed (by applying an AC0 function)
with probability 1− 2−n1−δ .
Learning Theory. Valiant [38] introduced the evolvability model in an effort to quantify
how (and which) mechanisms can evolve in realistic population sizes within realistic
time periods. Feldman [15] showed that the “weak evolvability” of a class of functions
F = {φ1, . . . , φ|F|} is characterized by the PPcc complexity of the function F (x, y) =
φx(y). Hence, a consequence of Theorem 5 is that there are AC0 functions that are nearly

M. Bun and J. Thaler 55:7

maximally hard to evolve (i.e., for any constant δ > 0, there are AC0 functions that
require either 2n1−δ generations, or populations of size 2n1−δ to evolve, even if one only
wants to evolve a mechanism that has advantage just 2−n1−δ over random guessing).
We also obtain a nearly optimal 2n1−δ lower bound on the threshold weight of an AC0

function. Threshold weight is another central quantity underlying many algorithmic
results in learning theory. Our results rule out the possibility that algorithms based on
threshold weight bounds can PAC learn AC0 in time significantly faster than 2n.
Circuit Complexity. If PPcc(f) ≥ d, then f is not computable by Majority-of-
Threshold circuits of size 2Ω(d) [24]. Hence, by showing that AC0 has nearly maximal
PPcc complexity, we show that there are AC0 functions that are not computed by
Majority-of-Threshold circuits of size 2n1−δ . That is, AC0 has essentially no non-trivial
simulation by Majority-of-Threshold circuits (in contrast, AC0 can be efficiently simulated
by depth-three Majority circuits [1]).

2.2 Applications of Corollary 4
As indicated in Section 1, UPPcc(F) is known to be characterized by (the logarithm of)
of the sign-rank of the matrix [F (x, y)]x,y∈{−1,1}n×n [26].4 Hence, Corollary 4 implies an
exp(Ω̃(n1/2)) lower bound on the sign-rank of AC0 function. Below, we highlight two addi-
tional applications of Corollary 4, based on the following connections between communication
complexity, circuit complexity, and learning theory.

In communication complexity, UPPcc is the most powerful two-party model against which
we know how to prove lower bounds. In circuit complexity, if UPPcc(f) ≥ d, then f cannot
be computed by Threshold-of-Majority circuits of size 2Ω(d) [17]. (Threshold-of-Majority
circuits represent the most powerful class of threshold circuits against which we can prove
superpolynomial lower bounds.) In learning theory, it is commonly assumed that data
can be classified by a halfspace in many dimensions; the UPPcc-complexity of a concept
class precisely captures how many dimensions are needed. To connect this to a previously
mentioned example, Klivans and Servedio [19] observed that an upper bound of d on the
UPPcc complexity of a concept class C yields a PAC learning for C running in time 2O(d).
They used this result to give a 2Õ(n1/3)-time algorithm for PAC-learning CNFs. This remains
the state-of-the-art algorithm for this fundamental problem. Accordingly, Corollary 4 has
the following implications.

Circuit Complexity. There are AC0 functions that are not computable by Threshold-
of-Majority Circuits of size 2Ω̃(n1/2).
Learning Theory. UPPcc-based learning algorithms cannot learn AC0 in time better
than 2Ω̃(n1/2).

3 Techniques

3.1 The SURJECTIVITY Lower Bound
For a function fn, let f≤N denote the partial function obtained by restricting f to the
domain of inputs of Hamming weight at most N . The ε-approximate degree of f≤N , denoted
d̃egε(f≤N), is the least degree of a real polynomial p such that

|p(x)− f(x)| ≤ ε for all inputs x of Hamming weight at most N. (1)

4 The sign-rank of a matrix M with entries in {±1} is the least rank of a real matrix M ′ that agrees in
sign with M entry-wise.

APPROX/RANDOM 2019

55:8 The Large-Error Approximate Degree of AC0

Note that Property (1) allows p to behave arbitrarily on inputs x of Hamming weight more
than N . Similarly, the threshold degree of f≤N is the least degree of a real polynomial p
such that

p(x) · f(x) > 0 for all inputs x of Hamming weight at most N.

Our prior work [13] showed the ε-approximate (respectively, threshold) degree of SURJR,N is
equivalent to the ε-approximate (respectively, threshold) degree of (ANDR ◦ORN)≤N . Hence,
the main technical result underpinning our threshold degree lower bound for SURJ is the
following theorem about the threshold degree of (ANDR ◦ ORN)≤N (we have made no effort
to optimize the logarithmic factors).

I Theorem 6. Let R = N1/2. Then deg±
(

(ANDR ◦ ORN)≤N
)

= Ω(N1/2/ log3/2N).

Discussion. Theorem 6 is a substantial strengthening of the classic result of Minsky and
Papert [23] mentioned above, which established that the total function MPN1/2,N :=
ANDN1/2 ◦ ORN on n = N3/2 inputs has threshold degree Ω(N1/2). Theorem 6 estab-
lishes that Minsky and Papert’s lower bound holds even under the promise that the input
has Hamming weight at most N = n2/3. That is, any polynomial that sign-represents
ANDn1/3 ◦ORn2/3 on inputs of Hamming weight at most n2/3 has degree Ω̃(n1/3), even when
p is allowed to behave arbitrarily on inputs of Hamming weight larger than n2/3.

Proof overview for Theorem 6 and comparison to prior work. Like much recent work on
approximate and threshold degree lower bounds, our proof makes use of dual polynomials. A
dual polynomial is a dual solution to a certain linear program capturing the approximate
or threshold degree of any function, and acts as a certificate of the high approximate or
threshold degree of the function.

A dual polynomial that witnesses the fact that deg±(fM) ≥ d is a function ψ : {−1, 1}M →
{−1, 1} satisfying three properties:

ψ(x) · f(x) ≥ 0 for all x ∈ {−1, 1}M . If ψ satisfies this condition, we say ψ agrees in sign
with f .∑

x∈{−1,1}M |ψ(x)| = 1. If ψ satisfies this condition, it is said to have `1-norm equal to 1.
For all polynomials p : {−1, 1}M → R of degree at most d,

∑
x∈{−1,1}M p(x) · ψ(x) = 0.

If ψ satisfies this condition, it is said to have pure high degree at least d.
A dual witness for the fact that d̃egε(fM) ≥ d is similar, except that the first condition is
replaced with:∑

x∈{−1,1}M ψ(x) · f(x) > ε. If ψ satisfies this condition, it is said to be ε-correlated with
f . If ψ(x) · f(x) < 0, we say that ψ makes an error at x.

Sherstov [34] reproved Minsky and Papert’s result by constructing an explicit dual witness
for MPN1/2,N , via a two-step process. First, Sherstov started with a dual witness ψbase for
the fact that

d̃egε(MPN1/2,N) = Ω(N1/2), for ε = 1− 2−N
1/2
.

The function ψbase was introduced in our prior work [10], where it was constructed by
combining a dual witness for ANDN1/2 with a dual witness for ORN via a technique called
dual block composition [21,32,37].

M. Bun and J. Thaler 55:9

Unfortunately, ψbase falls short of witnessing Minsky and Papert’s threshold degree
lower bound because it makes errors on some inputs. In the second step of Sherstov’s
construction [34], he adds in a correction term that zeros out the errors of ψbase, without
disturbing the sign of ψbase on any other inputs, and without lowering its pure high degree.

Theorem 6 asserts that MP≤N
N1/2,N

satisfies the same threshold degree lower bound as
MPN1/2,N itself. To prove Theorem 6, we need to construct a dual witness ψ that not only
reproves Minsky and Papert’s classic lower bound for MPN1/2,N , but also satisfies the extra
condition that:

ψ(x) = 0 for all inputs x of Hamming weight more than N. (2)

To accomplish this, we apply a novel strategy that can be thought of as a three-step process.
First, like Sherstov, we start with ψbase. Second, we modify ψbase to obtain a dual witness
ψ′base that places significant mass on all inputs of Hamming weight at most d, for some
d = Ω̃(N1/2) (details of the construction of ψ′base are described two paragraphs hence). More
specifically, we ensure that ψ′base satisfies:

|ψ′base(x)| � n−d for all inputs x of Hamming weight at most d. (3)

We refer to this property by saying that ψ′base is “smooth” or “large” on all inputs of Hamming
weight at most d. Note that, in modifying ψbase to obtain ψ′base, we do not correct the errors
that ψbase makes, nor do we ensure that ψ′base is supported on inputs of Hamming weight at
most N .

Third, we add in a correction term, very different than Sherstov’s correction term, that not
only zeros out the errors of ψ′base, but also zeros out any mass it places on inputs of Hamming
weight more than N . While the general technique we use to construct this correction term
appeared in our prior works [8, 13], the novelty in our construction and analysis is two-fold.
First, the technique was used in our prior work only to zero out mass placed on inputs of
Hamming weight more than N (i.e., to ensure that Equation (2) is satisfied), not to correct
errors. Second, and more importantly, we crucially exploit the largeness of ψ′base on inputs of
Hamming weight at most d to ensure that the correction term does not disturb the sign of
ψ′base on any inputs other than those on which it is deliberately being zeroed out. This is
what enables us to obtain a threshold degree lower bound, whereas our prior works [8,13]
were only able to obtain ε-approximate degree lower bounds for ε bounded away from 1.

Our “smoothing followed by correction” approach appears to be significantly more
generic than the correction technique of [34]. For example, prior work of Bouland et
al. [6] proved an Ω(n1/4) lower bound on the threshold degree of a certain function denoted
GAPMAJn1/4 ◦PTPn3/4 , and used this result to give an oracle separating the oracle complexity
classes SZK and UPP, thereby answering an open question of Watrous from 2002. Our
techniques can be used to give a much simpler proof of this result, as well as several others
appearing in the literature (for brevity, we omit the details of these simpler proofs of prior
results). We are confident that our technique will find additional applications in the future.

Details of the smoothing step. As stated above, the dual witness ψbase from our prior
work does not satisfy the property we need (cf. Equation (3)) of being “large” on all inputs
of Hamming weight at most d = Ω̃(N1/2).

Fortunately, we observe that although ψbase is not large on all inputs of Hamming weight
at most d, it is large on one very special input of low Hamming weight, namely the ALL-FALSE
input. That is, ψbase(1) ≥ 2−d. So we just need a way to “bootstrap” this largeness property

APPROX/RANDOM 2019

55:10 The Large-Error Approximate Degree of AC0

on 1 to a largeness property on all inputs of Hamming weight at most d. Put another way, we
need to be able to treat other inputs of Hamming weight at most d as if they actually have
Hamming weight 0. But MPN1/2,N := ANDN1/2 ◦ORN has a property that enables precisely
this: we can fix the inputs to any constant fraction c of the OR gates to an arbitrary value
in OR−1(−1), and the remaining function of the unrestricted inputs is AND(1−c)·R ◦ ORN .
This is “almost” the same function as ANDR ◦ORN ; we have merely slightly reduced the top
fan-in, which does not substantially lower the threshold degree of the resulting function.

We exploit the above observation to achieve the following: for each input x of Hamming
weight at most d, we build a dual witness νx targeted at x (i.e., that essentially treats x as
if it is the ALL-FALSE input). We do this as follows. Let T be the set of all OR gates that
are fed one or more −1s by x, and let S ⊆ [N1/2 ·N] be the union of the inputs to each of
the OR gates in T . Let ψbase be the dual witness for ANDN1/2−|T | ◦ ORN given in our prior
work [10]. We let

νx(y) =
{
ψbase(yS̄) if yS = xS

0 otherwise,

where yS̄ denotes the set of all the coordinates of y other than those in S.
The dual witness ψ′base is then defined to be the average of the νx’s, over all inputs x

of Hamming weight at most d. This averaged dual witness ψ′base has all of the same useful
properties as ψbase, and additionally satisfies the key requirement captured by Equation (3).

3.2 Extension to UPPcc: Proof of Corollary 4
Building on the celebrated framework of Forster [16], Razborov and Sherstov [28] developed
techniques to translate threshold degree lower bounds into sign-rank lower bounds. Specifically,
they showed that, in order for a threshold degree lower bound of the form deg±(fn) ≥ d to
translate into a UPPcc lower bound for a related function F , it suffices for the threshold
degree lower bound for fn to be exhibited by a dual witness φ satisfying the following
smoothness condition:

|φ(x)| ≥ 2−O(d) · 2−n for all but a 2−Ω(d) fraction of inputs x ∈ {−1, 1}n. (4)

Note that this is a different smoothness condition than the one satisfied by the dual witness
ψ′base discussed above for MPN1/2,N (cf. Equation (3)): on inputs x of Hamming weight
at most d, |ψ′base(x)| is always at least n−d � 2−d · 2−n, whereas on inputs x of Hamming
weight more than d, |ψ′base(x)| may be 0. In words, |ψ′base(x)| is very large on inputs x of
Hamming weight at most d, but may not be large at all on inputs of larger Hamming weight.
In contrast, Equation (4) requires a dual witness to be “somewhat large” (within a 2−O(d)

factor of uniform) on nearly all inputs.
In summary, our construction of a dual witness for MP≤N

N1/2,N
that is sketched in the

previous subsection is not sufficient to apply Razborov and Sherstov’s framework to SURJR,N ,
for two reasons. First, the dual witness we construct for MP≤N

N1/2,N
is not smooth in the

sense of Equation (4), as it is only “large” on inputs of Hamming weight at most d. Second,
to apply Razborov and Sherstov’s framework to SURJR,N , we actually need to give a smooth
dual witness for SURJR,N itself, not for MP≤N

N1/2,N
. Note that SURJR,N is defined over the

domain {−1, 1}n where n = N logR, while MP≤N
N1/2,N

is defined over subset of {−1, 1}NR
consisting of inputs of Hamming weight at most N .

We address both of the above issues as follows. First, we show how to turn our dual witness
µ for MP≤N

N1/2,N
into a dual witness σ̂ for the fact that deg± (SURJR,N) ≥ d, such that σ̂ inher-

its the “largeness” property of µ on inputs of Hamming weight at most d. Second, we transform

M. Bun and J. Thaler 55:11

σ̂ into a dual witness τ for the fact that deg±
(
SURJR,N ◦ ANDlog2 n ◦ PARITYlog3 n

)
≥ d,

such that τ satisfies the smoothness condition given in Equation (4). We conclude that
SURJR,N ◦ ANDlog2 n ◦ PARITYlog3 n can be transformed into a related function F (on Õ(n)
inputs, and which is also in AC0) that has sign-rank exp(Ω̃(n1/2)).

3.3 The PPcc Bound: Proof of Theorem 5
As mentioned in Section 1.1.2, the core of Theorem 5 is to exhibit an AC0 function f such
that d̃egε(f) = Ω(n1−δ) for some ε = 1− 2−Ω(n1−δ). To accomplish this, we prove a hardness
amplification theorem that should be understood in the context of a weaker result from our
prior work [13].

As stated in Section 3.1, for ε = 1/3, our prior work [13] showed how to take any Boolean
function fn in AC0 with ε-approximate degree d and transform it into a related function g
on roughly the same number of variables, such that g is still in AC0, and g has significantly
higher ε′-approximate degree for some ε′ ≈ 1/3. This was done in a two-step process. First,
we showed that in order to construct a “harder” function g, it is sufficient to identify an AC0

function G defined on poly(n) inputs such that for some ` = n ·polylog(n), d̃egε′(G≤`)� d.5
Second, we exhibited such a G. In our prior works [8, 13], for general functions fn, the
function G was fn ◦ ANDr ◦ ORm′ , where r = 10 logn, and m′ = Θ(n/d).

We would like to prove a similar result, but we require that G have larger ε′-approximate
degree than fn, where ε′ is exponentially closer to 1 than is ε itself. Unfortunately, the
definition of G from our prior works [8, 13] does not necessarily result in such a function.
For example, if fn = ORn (or any polylogarithmic DNF for that matter), then the function
G = fn ◦ANDr ◦ORm′ is also a DNF of polylogarithmic width, and it is not hard to see that
all such DNFs have ε-approximate degree at most polylog(n) for some ε = 1− 1/npolylog(n).

To address this situation, we change the definition of G. Rather than defining G :=
fn ◦ ANDr ◦ ORm′ , we define G = GAPMAJt ◦ fz ◦ ANDr ◦ ORm for appropriately chosen
settings of the parameters t, z, r, and m. Here, GAPMAJt denotes any function evaluating
to 1 on inputs of Hamming weight at most t/3, −1 on inputs of Hamming weight at least
2t/3, and taking any value in {−1, 1} on all other inputs (such functions are also called
approximate majorities, and it is known that there are approximate majorities computable in
AC0). GAPMAJ has also played an important role in related prior work [6, 13].

In order to show that d̃egε′(G≤`) � d̃egε(fn) for an ε′ that is exponentially closer
to 1 than is ε, we require a more delicate construction of a dual witness than our prior
works [8,13]. After all, our prior works only required a dual witness for G≤` with correlation
at least 1/3 with G`, while we require a dual witness achieving correlation with G≤` that is
exponentially close to 1. Roughly speaking, whereas our prior works [8, 13] were able to get
away with exclusively using the simple and clean technique called dual block composition
for constructing dual witnesses, we use a closely related but more involved construction
introduced by Sherstov [30]. (Sherstov introduced his construction to prove that approximate
degree satisfies a type of direct-sum theorem.)

More specifically, suppose that for some positive integer k, fz has ε(z)-approximate
degree at least d(z) = zk/(k+1), where ε(z) = 1− 2−zk/(k+1) . In our definition of G, we set
t = n1/(k+2), z = n(k+1)/(k+2), r = 10 logn, and m = n2/(k+2), and we build a dual witness
for G≤` via a multi-step construction.

5 This step was also used in the analysis of SURJR,N outlined in Section 3.2 above, where G was the
function ANDR ◦ ORN .

APPROX/RANDOM 2019

55:12 The Large-Error Approximate Degree of AC0

In Step 1, we take dual witnesses ψfz , ψANDr , and ψORm for fz, ANDr, and ORm respec-
tively, and we combine them using the technique of Sherstov [30], to give a dual witness
γ for fz ◦ ANDr ◦ ORm satisfying the following properties: γ has pure high degree at least
D(n) = n(k+1)/(k+2) = d(n)(k+1)/k � d(n), and γ’s correlation with with fz ◦ANDr ◦ORm is
ε′′ ≈ ε(z). That is, γ witnesses the fact that the ε′′-approximate degree of fz ◦ ANDr ◦ ORm
is much larger than the ε(n)-approximate degree of fn itself.

This step of the construction is in contrast to our prior work, which constructed a dual
witness for fn ◦ ANDr ◦ ORm′ via direct dual block composition of ψfn , ψANDr , and ψORm .
Direct dual block composition does not suffice for us because it would yield a dual witness
with significantly worse correlation with fz ◦ ANDr ◦ ORm than ε(z).

While achieving correlation ε′′ ≈ ε(z) is an improvement over what would obtain from
direct dual block composition, it is still significantly farther from 1 than is ε(n), i.e.,
1 − ε′′ � 1 − ε(n). And we ultimately need to construct a dual witness for G≤` that is
significantly closer to 1 than is ε(n). To address this issue, in Step 2 of our construction, we
use dual block composition to turn γ into a dual witness η for G = GAPMAJt◦fz◦ANDr◦ORm
satisfying the following properties: η has the same pure high degree as γ, and moreover η
has correlation at least ε′ = 1− 2−Ω(n(k+1)/(k+2)) with G.

However, after Step 2, we are still not done, because η places some mass on inputs of
Hamming weight as large as t · z · r ·m � `. Hence η is only a dual witness to the high
ε′-approximate degree of G, not the high ε′-approximate degree of G≤` (recall that any dual
witness witness for G≤`, must evaluate to 0 on all inputs of Hamming weight larger than `,
cf. Equation (2)). Nonetheless, as in our prior work [8,13], we are able to argue that η places
very little mass on inputs of Hamming weight more than `, and thereby invoke techniques
from our prior work [8, 13] to zero out this mass. The reason this final step of the argument
is not immediate from our prior work [8,13] is as follows. Although prior work has developed
a precise understanding of how much mass is placed on inputs of Hamming weight more
than ` by dual witnesses constructed via basic dual block composition, the dual witness γ for
fz ◦ ANDr ◦ ORm that we constructed in Step 1 was not built by invoking pure dual block
composition. Our key observation is that Sherstov’s technique that we invoked to construct γ
is “similar enough” to vanilla dual block composition that the precise understanding of dual
block composition developed in our prior work can be brought to bear on our dual witness η.

In summary, there are two main technical contributions in our proof of Theorem 5. The
first is the identification of a hardness amplification construction for ε-approximate degree
that not only amplifies the degree against which the lower bound holds, but also the error
parameter ε. The second is constructing a dual polynomial to witness the claimed lower
bound, using techniques more involved and delicate than the vanilla dual block composition
technique that sufficed in our prior works [8, 13].

4 Subsequent Work and Discussion

Subsequent to our work, Sherstov and Wu [36] have made major progress toward resolving
Open Problem 1 by showing nearly optimal threshold degree and sign-rank lower bounds
for AC0. Specifically, for every k ≥ 1, they exhibit a family of depth-k AC0 circuits with
threshold degree Ω̃(n(k−1)/(k+1)). This generalizes Minsky and Papert’s lower bound of
Ω(n1/3) on the threshold degree of DNF, as well as our lower bound of Ω̃(n1/2) for the depth-
3 SURJECTIVITY function. Sherstov and Wu, moreover, show that for any positive constant
δ > 0 there is a family of AC0 circuits with depth O(1/δ) and sign-rank exp

(
Ω̃(n1−δ)

)
. This

gives an almost optimal improvement to our sign-rank lower bound of exp
(
Ω̃(n1/2)

)
on an

AC0 function.

M. Bun and J. Thaler 55:13

As in our proof of Theorem 5, as well as our prior work [13], Sherstov and Wu obtain their
threshold degree lower bound for AC0 by recursively applying a new hardness amplification
theorem. Their hardness amplification theorem shows how to convert a function fz into a
new function gn, computable by circuits with slightly higher depth and roughly the same size,
but with polynomially larger threshold degree. Again as in the proof of Theorem 5, in order
to obtain such a g, it suffices to construct a function G with deg±(G≤n)� deg±(f). Starting
from a function fz with threshold degree z(k−1)/(k+1), the function G that they identify as
sufficient for this purpose is G = fz ◦MPr,r2 , where z = n(k+1)/(k+3) and r = n2/(k+3). When
fz is a trivial function, this recovers our lower bound of Ω̃(n1/2) for SURJECTIVITY. Hence,
their construction in full can be viewed as a generalization of our Theorem 6 that is amenable
to recursive application. This requires several technical new ideas in the construction of
the dual witness. However, we remain optimistic that the simplicity of our analysis for
SURJECTIVITY will nonetheless lead to future applications of our techniques.

Sherstov and Wu’s sign-rank lower bound follows from a similar high-level (though more
technically demanding) strategy, where they show that smooth threshold degree also obeys
such a hardness amplification theorem.

While these new results resolve the most glaring question raised in the initial version of
this work, a number of interesting directions remain for further study. A common feature of
our large-error approximate degree lower bound and Sherstov and Wu’s threshold degree
and sign-rank lower bounds for AC0 is that, in order to obtain lower bounds of the form
Ω(n1−δ), we must consider functions computed by circuits of depth Θ(1/δ). This contrasts
with the situation for bounded error approximate degree [13], where a lower bound of
Ω(n1−δ) can be obtained at depth only O(log(1/δ)). Can one show that there are AC0

functions f of depth O(log(1/δ)) with d̃egε(f) = Ω(n1−δ) for ε = 1 − 2−Ω(n1−δ) or with
deg±(f) = Ω(n1−δ)? There is a common underlying reason why our construction and
Sherstov and Wu’s construction both require circuits of depth Θ(1/δ) and not Θ(log(1/δ)):
a component of the hardness amplifier in both constructions (in our case, GAPMAJn1/(k+1) ,
and in Sherstov and Wu’s case, the top gate of MPr,r2) is used to amplify error but does not
amplify degree. In contrast, in the construction of [13] for lower bounding bounded-error
approximate degree, up to a logarithmic factor, all of the hardness amplifier is used to
amplify degree.

We would also like to highlight the question of proving sublinear upper bounds on the
threshold degree of AC0. Given the surprising O(R1/4 · N1/2) upper bound on the (1/3)-
approximate degree of SURJR,N from recent works [8,35], we have begun to seriously entertain
the possibility that for every function f computable by AC0 of depth k, there is some constant
δ(k) > 0 such that the threshold degree (and possibly even (1/3)-approximate degree) of f
is O(n1−δ). Unfortunately, we cannot currently even show that this is true for depth three
circuits of quadratic size. Any progress in this direction would be very interesting, and we
believe that such progress would likely lead to new circuit lower bounds.

References

1 Eric Allender. A note on the power of threshold circuits. In Foundations of Computer Science,
1989., 30th Annual Symposium on, pages 580–584. IEEE, 1989.

2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity
theory (preliminary version). In 27th Annual Symposium on Foundations of Computer
Science, Toronto, Canada, 27-29 October 1986, pages 337–347. IEEE Computer Society, 1986.
doi:10.1109/SFCS.1986.15.

APPROX/RANDOM 2019

https://doi.org/10.1109/SFCS.1986.15

55:14 The Large-Error Approximate Degree of AC0

3 Paul Beame and Widad Machmouchi. The quantum query complexity of AC0. Quantum
Information & Computation, 12(7-8):670–676, 2012. URL: http://www.rintonpress.com/
xxqic12/qic-12-78/0670-0676.pdf.

4 Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded
Indistinguishability and the Complexity of Recovering Secrets. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part
III, volume 9816 of Lecture Notes in Computer Science, pages 593–618. Springer, 2016.
doi:10.1007/978-3-662-53015-3_21.

5 Andrej Bogdanov and Christopher Williamson. Approximate Bounded Indistinguishabil-
ity. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, edi-
tors, 44th International Colloquium on Automata, Languages, and Programming (ICALP
2017), volume 80 of Leibniz International Proceedings in Informatics (LIPIcs), pages
53:1–53:11, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ICALP.2017.53.

6 Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vasudevan. On
The Power of Statistical Zero Knowledge. In To Appear In Proceedings of IEEE Symposium
on Foundations of Computer Science (FOCS), 2017. Preliminary version available at http:
//eccc.hpi-web.de/report/2016/140.

7 Harry Buhrman, Nikolai K. Vereshchagin, and Ronald de Wolf. On Computation and
Communication with Small Bias. In 22nd Annual IEEE Conference on Computational
Complexity (CCC 2007), 13-16 June 2007, San Diego, California, USA, pages 24–32. IEEE
Computer Society, 2007. doi:10.1109/CCC.2007.18.

8 Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back: Tight
quantum query bounds via dual polynomials. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 297–310. ACM, 2018.

9 Mark Bun and Justin Thaler. Dual Lower Bounds for Approximate Degree and Markov-
Bernstein Inequalities. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and
David Peleg, editors, ICALP (1), volume 7965 of Lecture Notes in Computer Science, pages
303–314. Springer, 2013. doi:10.1007/978-3-642-39206-1_26.

10 Mark Bun and Justin Thaler. Hardness Amplification and the Approximate Degree of
Constant-Depth Circuits. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, volume 9134 of
Lecture Notes in Computer Science, pages 268–280. Springer, 2015. Full version available at
http://eccc.hpi-web.de/report/2013/151. doi:10.1007/978-3-662-47672-7_22.

11 Mark Bun and Justin Thaler. Approximate Degree and the Complexity of Depth Three
Circuits. Electronic Colloquium on Computational Complexity (ECCC), 23:121, 2016. URL:
http://eccc.hpi-web.de/report/2016/121.

12 Mark Bun and Justin Thaler. Improved Bounds on the Sign-Rank of AC0. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd
International Colloquium on Automata, Languages, and Programming, ICALP 2016, July
11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 37:1–37:14. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.2016.37.

13 Mark Bun and Justin Thaler. A Nearly Optimal Lower Bound on the Approximate Degree of
AC0. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 1–12, 2017. doi:10.1109/FOCS.2017.10.

14 Kuan Cheng, Yuval Ishai, and Xin Li. Near-Optimal Secret Sharing and Error Correcting
Codes in AC0. In Theory of Cryptography Conference, pages 424–458. Springer, 2017.

15 Vitaly Feldman. Evolvability from learning algorithms. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, pages 619–628. ACM, 2008.

http://www.rintonpress.com/xxqic12/qic-12-78/0670-0676.pdf
http://www.rintonpress.com/xxqic12/qic-12-78/0670-0676.pdf
https://doi.org/10.1007/978-3-662-53015-3_21
https://doi.org/10.4230/LIPIcs.ICALP.2017.53
http://eccc.hpi-web.de/report/2016/140
http://eccc.hpi-web.de/report/2016/140
https://doi.org/10.1109/CCC.2007.18
https://doi.org/10.1007/978-3-642-39206-1_26
https://doi.org/10.1007/978-3-662-47672-7_22
http://eccc.hpi-web.de/report/2016/121
https://doi.org/10.4230/LIPIcs.ICALP.2016.37
https://doi.org/10.1109/FOCS.2017.10

M. Bun and J. Thaler 55:15

16 Jürgen Forster. A Linear Lower Bound on the Unbounded Error Probabilistic Communication
Complexity. In Proceedings of the 16th Annual IEEE Conference on Computational Complexity,
Chicago, Illinois, USA, June 18-21, 2001, pages 100–106. IEEE Computer Society, 2001.
doi:10.1109/CCC.2001.933877.

17 Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels
Schmitt, and Hans Ulrich Simon. Relations Between Communication Complexity, Linear
Arrangements, and Computational Complexity. In Ramesh Hariharan, Madhavan Mukund,
and V. Vinay, editors, FST TCS 2001: Foundations of Software Technology and Theoretical
Computer Science, 21st Conference, Bangalore, India, December 13-15, 2001, Proceedings,
volume 2245 of Lecture Notes in Computer Science, pages 171–182. Springer, 2001. doi:
10.1007/3-540-45294-X_15.

18 Hartmut Klauck. Lower bounds for quantum communication complexity. In Foundations of
Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 288–297. IEEE, 2001.

19 Adam R. Klivans and Rocco A. Servedio. Learning DNF in time 2Õ(n1/3). J. Comput. Syst.
Sci., 68(2):303–318, 2004. doi:10.1016/j.jcss.2003.07.007.

20 Matthias Krause and Pavel Pudlák. On the Computational Power of Depth-2 Circuits
with Threshold and Modulo Gates. Theor. Comput. Sci., 174(1-2):137–156, 1997. doi:
10.1016/S0304-3975(96)00019-9.

21 Troy Lee. A note on the sign degree of formulas. CoRR, abs/0909.4607, 2009. arXiv:0909.4607.
22 Nati Linial and Adi Shraibman. Learning complexity vs communication complexity. Combina-

torics, Probability and Computing, 18(1-2):227–245, 2009.
23 Marvin Minsky and Seymour Papert. Perceptrons - an introduction to computational geometry.

MIT Press, 1969.
24 Noam Nisan. The Communication Complexity of Threshold Gates. In Combinatorics, Paul

Erdos is Eighty, pages 301–315, 1994.
25 Ryan O’Donnell and Rocco A. Servedio. New degree bounds for polynomial threshold

functions. Combinatorica, 30(3):327–358, 2010. Preliminary version in STOC 2003. doi:
10.1007/s00493-010-2173-3.

26 Ramamohan Paturi and Janos Simon. Probabilistic Communication Complexity. J. Comput.
Syst. Sci., 33(1):106–123, 1986. doi:10.1016/0022-0000(86)90046-2.

27 Vladimir V Podolskii. Perceptrons of large weight. In International Computer Science
Symposium in Russia, pages 328–336. Springer, 2007.

28 Alexander A. Razborov and Alexander A. Sherstov. The Sign-Rank of AC0. SIAM J. Comput.,
39(5):1833–1855, 2010. doi:10.1137/080744037.

29 Alexander A. Sherstov. Separating AC0 from Depth-2 Majority Circuits. SIAM J. Comput.,
38(6):2113–2129, 2009. doi:10.1137/08071421X.

30 Alexander A. Sherstov. Strong direct product theorems for quantum communication and
query complexity. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd
ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011,
pages 41–50. ACM, 2011. doi:10.1145/1993636.1993643.

31 Alexander A. Sherstov. The Pattern Matrix Method. SIAM J. Comput., 40(6):1969–2000,
2011. Preliminary version in STOC 2008. doi:10.1137/080733644.

32 Alexander A. Sherstov. The Intersection of Two Halfspaces Has High Threshold Degree. SIAM J.
Comput., 42(6):2329–2374, 2013. Preliminary version in FOCS 2009. doi:10.1137/100785260.

33 Alexander A. Sherstov. Breaking the Minsky-Papert barrier for constant-depth circuits. In
David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014, pages 223–232. ACM, 2014. doi:10.1145/2591796.2591871.

34 Alexander A. Sherstov. The Power of Asymmetry in Constant-Depth Circuits. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, pages 431–450, 2015. doi:10.1109/FOCS.2015.34.

APPROX/RANDOM 2019

https://doi.org/10.1109/CCC.2001.933877
https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.1007/3-540-45294-X_15
https://doi.org/10.1016/j.jcss.2003.07.007
https://doi.org/10.1016/S0304-3975(96)00019-9
https://doi.org/10.1016/S0304-3975(96)00019-9
http://arxiv.org/abs/0909.4607
https://doi.org/10.1007/s00493-010-2173-3
https://doi.org/10.1007/s00493-010-2173-3
https://doi.org/10.1016/0022-0000(86)90046-2
https://doi.org/10.1137/080744037
https://doi.org/10.1137/08071421X
https://doi.org/10.1145/1993636.1993643
https://doi.org/10.1137/080733644
https://doi.org/10.1137/100785260
https://doi.org/10.1145/2591796.2591871
https://doi.org/10.1109/FOCS.2015.34

55:16 The Large-Error Approximate Degree of AC0

35 Alexander A. Sherstov. Algorithmic polynomials. Electronic Colloquium on Computational
Complexity (ECCC), 25:10, 2018. To appear in STOC 2018. URL: https://eccc.weizmann.
ac.il/report/2018/010.

36 Alexander A. Sherstov and Pei Wu. Near-Optimal Lower Bounds on the Threshold Degree
and Sign-Rank of ACˆ0. Electronic Colloquium on Computational Complexity (ECCC), 26:3,
2019. URL: https://eccc.weizmann.ac.il/report/2019/003.

37 Yaoyun Shi and Yufan Zhu. Quantum communication complexity of block-composed functions.
Quantum Information & Computation, 9(5):444–460, 2009. URL: http://www.rintonpress.
com/xxqic9/qic-9-56/0444-0460.pdf.

38 Leslie G Valiant. Evolvability. Journal of the ACM (JACM), 56(1):3, 2009.

https://eccc.weizmann.ac.il/report/2018/010
https://eccc.weizmann.ac.il/report/2018/010
https://eccc.weizmann.ac.il/report/2019/003
http://www.rintonpress.com/xxqic9/qic-9-56/0444-0460.pdf
http://www.rintonpress.com/xxqic9/qic-9-56/0444-0460.pdf

String Matching: Communication, Circuits, and
Learning
Alexander Golovnev
Harvard University, Cambridge, MA, USA
alex.golovnev@gmail.com

Mika Göös
Institute for Advanced Study, Princeton, NJ, USA
mika@ias.edu

Daniel Reichman
Department of Computer Science, Princeton University, NJ, USA
daniel.reichman@gmail.com

Igor Shinkar
School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
ishinkar@sfu.ca

Abstract
String matching is the problem of deciding whether a given n-bit string contains a given k-bit pattern.
We study the complexity of this problem in three settings.

Communication complexity. For small k, we provide near-optimal upper and lower bounds
on the communication complexity of string matching. For large k, our bounds leave open an
exponential gap; we exhibit some evidence for the existence of a better protocol.
Circuit complexity. We present several upper and lower bounds on the size of circuits with
threshold and DeMorgan gates solving the string matching problem. Similarly to the above, our
bounds are near-optimal for small k.
Learning. We consider the problem of learning a hidden pattern of length at most k relative to
the classifier that assigns 1 to every string that contains the pattern. We prove optimal bounds
on the VC dimension and sample complexity of this problem.

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory
of computation → Circuit complexity; Theory of computation → Boolean function learning

Keywords and phrases string matching, communication complexity, circuit complexity, PAC learning

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.56

Category RANDOM

Related Version All proofs are deferred to the full version of the paper available at https://arxiv.
org/abs/1709.02034.

Funding Alexander Golovnev: supported by a Rabin Postdoctoral Fellowship.
Mika Göös: supported by the NSF grant No. CCF-1412958.
Igor Shinkar : supported by NSERC discovery grant.

Acknowledgements We thank Paweł Gawrychowski for his useful feedback and Gy. Turán for
sharing [16] with us. We are also very grateful to anonymous reviewers for their insightful comments.

1 Introduction

One of the most fundamental and frequently encountered tasks by minds and machines is
that of detecting patterns in perceptual inputs. A basic example is the string matching
problem, where given a string x ∈ {0, 1}n and a pattern y ∈ {0, 1}k, k ≤ n, the goal is to

© Alexander Golovnev, Mika Göös, Daniel Reichman, and Igor Shinkar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 56; pp. 56:1–56:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alex.golovnev@gmail.com
mailto:mika@ias.edu
mailto:daniel.reichman@gmail.com
mailto:ishinkar@sfu.ca
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.56
https://arxiv.org/abs/1709.02034
https://arxiv.org/abs/1709.02034
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 String Matching: Communication, Circuits, and Learning

decide whether x contains y as a substring. Formally, denoting by x[i, j] the bits of x in the
interval [i, j] := {i, i+ 1, . . . , j}, we define a Boolean function by

SMn,k(x, y) := 1 iff x[i, i+ k − 1] = y for some i ∈ [n− k + 1].

String matching is well-studied in the context of traditional algorithms: it can be computed
in linear time [7, 25, 15] (with some lower bounds given by [40]). It has also been studied
in more modern algorithmic frameworks such as streaming [37], sketching [3], and property
testing [5]. See Section 2 for more related work.

In this work we study the SMn,k problem in three models of computation, where it
appears to have received relatively little attention.
1. Communication complexity: How many bits of communication are required to compute

SMn,k when the input (x, y) is adversarially split between two players?
2. Circuit complexity: How many gates are needed to compute SMn,k by DeMorgan circuits

(possibly in low depth)? How about threshold circuits?
3. Learning: How many labeled samples of strings must be observed in order to (PAC) learn

a classifier assigning 1 to a string if and only if it contains a (fixed) hidden pattern y?
What is the VC dimension of this problem?

1.1 Results: Communication Complexity
We first show bounds on the randomized two-party communication complexity of SMn,k. (For
standard textbooks on communication complexity, see [26, 22].) The only related prior work
we are aware of is Bar-Yossef et al. [3] who studied the one-way communication complexity
of string matching; our focus is on two-way communication. Our bounds are near-optimal for
small k, but for large k ≥ Ω(n), we leave open a mysterious exponential gap. Our protocols
work regardless of how the input bits (x, y) are bipartitioned between the players, whereas
our lower bound is proved relative to some fixed hard partition.

I Theorem 1 (Communication Complexity). For the SMn,k(x, y) problem:
Upper bound: Under any bipartition of the input bits, there is a protocol of cost
Deterministic: O(log k · n/k) if k ≤

√
n ;

Randomized: O(log n ·
√

n) if k ≥
√

n.
Lower bound: For k ≥ 2 there is a bipartition of the input bits such that every randomized
protocol requires Ω(log log k ·n/k) bits of communication, even for the fixed pattern y = 1k.

I Remark 2. Note that the most natural bipartition, where Alice gets x and Bob gets y,
is easy. Indeed, for such partition there is a randomized O(logn)-bit protocol, where Bob
sends to Alice a hash of y, and Alice compares it with the hashes of the substrings x[1, k],
x[2, k+1],. . . , x[n−k+1, n]. Under this bipartition, by setting k = n, one can also recover the
usual equality problem, which is well-known to have deterministic communication complexity
Ω(n). This explains why nontrivial protocols for large k need randomness.

A better protocol?

For simplicity of discussion, consider the case k = n/2.

What is the randomized communication complexity of SMn,n/2?

Our bounds, Ω(log logn) and O(logn ·
√
n), leave open a huge gap. We conjecture that the

answer is closer to the lower bound. As formal evidence we show that problems closely related
to SMn,n/2 admit efficient “unambiguous randomized” (aka U·BPP) communication protocols.

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:3

A classic result [51] says that any “unambiguous deterministic” (aka U·P) protocol can be
efficiently simulated by a deterministic one, that is, U·P = P in communication complexity.
A randomized analogue of this, U·BPP = BPP, turns out to be false as a consequence of the
recent breakthrough of Chattopadhyay et al. [9]. One can nevertheless interpret our U ·BPP
protocols as evidence for the existence of improved randomized protocols.

Techniques

Our lower bound in Theorem 1 requires proving a tight randomized lower bound for composed
functions of the form OR ◦GT (where GT is the greater-than function), which answers a
question of Watson [50]. We observe that the lower bound follows by a minor modification
of existing information complexity techniques [8]. For upper bounds, the role of periods
in strings plays a central role (Section 3.1). We go on to discuss a natural period finding
problem, and conjecture that it is easy for randomized protocols. See Section 3.4 for details.

The communication complexity and circuit complexity of SMn,k are related. As we soon
demonstrate, our study of the communication complexity of SMn,k results with circuit lower
bounds for threshold circuits computing SMn,k.

1.2 Results: Circuit Complexity
Threshold circuits

A threshold circuit is a circuit whose gates compute linear threshold functions (LTFs). Recall
that an LTF outputs 1 on an m-bit input x if and only if

∑
i∈[m] aixi ≥ θ for some fixed

coefficient vector a ∈ Rm, and θ ∈ R. The study of threshold circuits is often motivated
by its connection to neural networks [17, 36, 35, 32, 33]. The case of low-depth threshold
circuits is also interesting. In particular, one line of work [47, 38, 46] has focused on
efficient low-depth threshold implementations of arithmetic primitives (addition, comparison,
multiplication). As for lower bounds, [17] show an exponential-in-n lower bound for the
mod-2 inner-product function against depth-2 threshold circuits of low weight (see [12] for an
extension). Superlinear lower bounds on the number of gates of arbitrary depth-2 as well as
low-weight depth-3 threshold circuits were proven recently by Kane and Williams [24].

It is important that we measure the size of a threshold circuit as the number of gates
(excluding inputs), in which case even superconstant lower bounds are meaningful. For
example, it is easy to implement the equality function (namely SMn,n) using three threshold
gates (albeit, with exponential weights). Thus, in contrast to the case of bounded fanin
circuits, proving linear or even nonconstant lower bounds on the number of gates is not
straightforward. Indeed, there are few explicit examples of functions with superconstant
lower bounds [16], and proving them is considered challenging [43]. Indeed, Jukna [22] writes
“even proving non-constant lower bounds . . . is a nontrivial task”.

We show that SMn,k admits a linear-size implementation at low depth. Thereafter we
focus on its fine-grained complexity, seeking to establish lower bounds as close to Ω(n)
as possible.

I Theorem 3 (Threshold circuits). For the SMn,k(x, y) problem:
Upper bound: There is a depth-2 threshold circuit of size O(n− k).
Lower bound for unbounded depth: Any threshold circuit must be of size

Ω(n log log k
k log n

) if k > 1;
Ω(
√

n/k) if k ≥ 2.1 · log n.

APPROX/RANDOM 2019

56:4 String Matching: Communication, Circuits, and Learning

The second lower bound is stronger than the first one in the regime k = Ω(n · (log logn
logn)2).

We note that for k ≤ polylog(n), we have nearly linear lower bounds for unbounded-depth
threshold circuits computing SMn,k. We stress that there are no restrictions on the weights
of the threshold gates in these lower bounds. We are not able to prove Ω(n) lower bounds
even for depth-2 threshold circuits. Proving such lower bounds (or constructing a threshold
circuit of size o(n)) remains open. We can prove strong lower bounds for depth-2 circuits in
some special cases (see Section 4.3).

Techniques

In Section 4.2 we obtain lower bounds for threshold circuits from the lower bounds on
communication complexity of SMn,k using a connection between threshold complexity and
circuit complexity outlined by [34]. We also prove lower bounds for threshold circuits by
reducing the problem of computing a “sparse hard” function to computing SMn,k. Perhaps
surprisingly, we show that the string matching problem can encode a truth table of an
arbitrary sparse (few preimages of 1) Boolean function.

DeMorgan circuits

We consider usual DeMorgan circuits (AND, OR, NOT gates) of unbounded fan-in and show
upper and lower bounds on the circuit complexity of SMn,k. We emphasize again that we
measure the size of a circuit as the number of gates (excluding inputs). For example, the
n-bit AND can be computed with a circuit of size 1.

We start by analyzing the case of low-depth circuits.

I Theorem 4 (Depth-2 DeMorgan circuits). For the SMn,k(x, y) problem:
Depth-2 upper bound: There is a depth-2 DeMorgan circuit of size O(n · 2k).
Depth-2 lower bound: Any depth-2 DeMorgan circuit must be of size

Ω(n · 2k) if 1 < k ≤
√

n ;
Ω(22

√
n−k+1) if k ≥

√
n.

For k ≤
√
n, our depth-2 results are optimal (up to a constant factor). For large k, say

k = n/2, there is (similarly as for communication) a huge gap in our bounds: 2Ω(
√
n) versus

2O(n). We do not know what bound to conjecture here as the correct answer.
For DeMorgan circuits, the celebrated Håstad’s switching lemma [19] established expo-

nential lower bounds for bounded depth circuits computing explicit functions (e.g., majority,
parity). We note that in contrast to the parity function, the string matching function admits
a polynomial size circuit of depth 3. It is unclear (to us) how to leverage known tools for
proving lower bounds for small depth circuits (such as the switching lemma) towards proving
super linear lower bounds for small depth DeMorgan circuits computing SMn,k. Whether
the string matching problem can be computed by a depth 3 (or even unrestricted) DeMorgan
circuit of size O(n) remains open.

Next, we prove that the circuit complexity of SMn,k for general DeMorgan circuits (unres-
tricted depth and fan-in) must be Ω(n). We also include a relatively straightforward upper
bound (which may have been discovered before; [14] claims an upper bound O(n log2 n)
without a proof).

I Theorem 5 (General DeMorgan circuits). For the SMn,k(x, y) problem:
Upper bound: There is a DeMorgan circuit of size O(nk) and depth 3.
Lower bound: Any DeMorgan circuit must be of size at least n/2.

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:5

Techniques

We prove the lower bound on DNF by exhibiting an explicit set of inputs to SMn,k each of
which requires a separate clause in any DNF. Our lower bound for CNF involves estimating
the size of maxterms of SMn,k. For the lower bound against circuits of unrestricted depth, we
adjust the gate elimination technique to the case of unbounded fan-in circuits. See Section 5
for details.

1.3 Results: Learning

Finally, we seek to understand the sample complexity of PAC-learning the string matching
function SMn,`(x, σ), where x is an arbitrary string of length n and σ is a fixed pattern of
length ` ≤ k. Towards this goal we prove (almost) tight bounds on the VC dimension of the
class of these functions. The VC dimension essentially determines the sample complexity
needed to learn the pattern σ from a set of i.i.d. samples in the PAC learning framework.
We formalize these notions below.

Let Σ be a fixed finite alphabet of size |Σ| ≥ 2.1 By Σn we denote the set of strings over
Σ of length n, and by Σ≤k we denote the set of strings of length at most k. We study the
VC dimension of the class of functions, where each function is identified with a pattern of
length at most k, and outputs 1 only on the strings containing this pattern. Recall that
the length of the pattern k = k(n) ≤ n can be a function of n. We now define the set of
functions we wish to learn:

I Definition 6. For a fixed finite alphabet Σ and an integer k > 0, let us define the class
of Boolean functions Hk,Σ over Σn as follows. Every function hσ ∈ Hk,Σ is parameterized
by a pattern σ ∈ Σ≤k of length at most k. Hence, |Hk,Σ| = |Σ|k+1−1

|Σ|−1 . For a string s ∈ Σn,
hσ(s) = 1 if and only if s contains σ as a substring.

To analyze the sample complexity required to learn a function from Hk,Σ we first define
VC dimension.

I Definition 7. Let F be a class of functions from a set D to {0, 1}, and let S ⊆ D. A
dichotomy of S is one of the possible labellings of the points of S using a function from F .
S is shattered by F if F realizes all 2|S| dichotomies of S. The VC dimension of F , VC(F),
is the size of the largest set S shattered by F .

In particular, VC(Hk,Σ) = d if and only if there is a set S of d strings of length n such
that for every S′ ⊆ S, there exists a pattern PS of length at most k occurring in all the
strings in S′ and not occurring in all the strings in S \ S′.

A class of functions F is PAC-learnable2 with accuracy ε and confidence 1 − δ in
Θ
(

VC(F)+log(1/δ)
ε

)
samples [6, 11, 18], and is agnostic PAC-learnable in Θ

(
VC(F)+log(1/δ)

ε2

)
samples [2, 44]. Thus, tight bounds on the VC dimension of a class of functions give tight
bounds on its sample complexity.

Our main result is a tight bound on the VC dimension of Hk,Σ (up to low order terms).
That is:

1 In contrast to the circuit and communication setting, for the learning problem we consider nonbinary
alphabets.

2 For a precise definition of PAC learning, see Definition 36.

APPROX/RANDOM 2019

56:6 String Matching: Communication, Circuits, and Learning

I Theorem 8. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) = min(log |Σ|(k −O(log k)), logn+O(log logn)) .

It follows that the sample complexity of learning patterns is O(logn). We also show that
there are efficient polynomial time algorithms solving this learning problem. See Corollary 37
for details.

Techniques

We prove our upper bound on the VC dimension by a double counting argument. This
argument uses Sperner families to show that shattering implies a “large” family of non-
overlapping patterns, which, on the other hand, is constrained by the length n of the
strings that we shatter. The lower bound is materialized by the idea to have 2d patterns
P = {p0 . . . p2d−1} and d strings such that the ith string is a concatenation of all patterns
with the binary expansion of their index having the ith bit equal 1. We construct a family of
patterns T with the property that for any pair of distinct strings α, β ∈ T , their concatenation
αβ does not contain a string γ ∈ T, γ 6= α, β. Using this family (with some additional technical
requirements) we are able to show that P shatters a set of d strings implying our lower bound
on the VC dimension.

2 More related work

Circuit complexity

Upper bounds on the circuit complexity of 2D image matching problem under projective
transformations was studied in [42]. In this problem, which is considerably more complicated
than the pattern matching problems we study, the goal is to find a projective transformation
f such that f(A) “resembles”3 B for two images A,B. Here, images are 2D square arrays of
dimension n containing discrete values (colors). In particular, it is proven that this image
matching problem is in TC1 (it admits a threshold circuit of polynomial size and logarithmic
depth in n). These results concern a different problem than the string matching considered
here, and do not seem to imply the upper bounds we obtain for circuits solving the string
matching problem.

The idea to lower bound the circuit complexity of Boolean functions that arise in feature
detection was studied in [29, 30]. These works assumed a setting with two types of features,
a and b, with detectors corresponding to the two types situated on a 1D or 2D grid. The
binary outputs of these features are represented by an array of n positions: a1, ..., an (where
ai = 1 if the feature a is detected in position i, and ai = 0 otherwise) and an array b1, ..., bn
which is analogously defined with respect to b. The Boolean function PnLR outputs 1 if there
exist i, j with i < j such that ai = bj = 1, and 0 otherwise. This function is advocated in
[30] as a simple example of a detection problem in vision that requires to identify spatial
relationship among features. It is shown that this problem can be solved by O(logn) threshold
gates. A 2-dimensional analogue where the indices i = (i1, i2) and j = (j1, j2) represent
two-dimensional coordinates and one is interested whether there exist indices i and j such that
ai = bj = 1 and j is above and to the right of the location i is studied in [30]. Recently, the
two-dimensional version was studied in [48] where a O(

√
n)-gate threshold implementation

3 We refer to [42] for the precise definition of distance used there.

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:7

was given along with a lower bound of Ω(
√
n/ logn) for the size of any threshold circuit for

this problem. We remark that the problem studied in [29, 30, 48] is different from ours, and
different proof ideas are needed for establishing lower bounds in our setting.

Learning patterns

The language of all strings (of arbitrary length) containing a fixed pattern is regular and can
be recognized by a finite automaton. There is a large literature on learning finite automata
(e.g., [1, 13, 41]). This literature is mostly concerned with various active learning models
and it does not imply our bounds on the sample complexity of learning Hk,Σ.

Motivated by computer vision applications, several works have considered the notion of
visual concepts: namely a set of shapes that can be used to classify images in the PAC-learning
framework [27, 45]. Their main idea is that occurrences of shapes (such as lines, squares etc.)
in images can be used to classify images and that furthermore the representational class of
DNF’s can represent occurrences of shapes in images. For example, it is easy to represent
the occurrence of a fixed pattern of length k in a string of size n as a DNF with n− k clauses
(see e.g., Lemma 24). We note that these works do not study the VC dimension of our
pattern matching problems (or VC bounds in general). We also observe that no polynomial
algorithm is known for learning DNF’s and that there is some evidence that the problem of
learning DNF is intractable [10]. Hence the result in [27, 45] do not imply that our pattern
learning problem (represented as a DNF) can be done in polynomial time.

3 Communication Complexity

In this section we prove Theorem 1, and also discuss the possibility of a better upper bound.

I Theorem 1 (Communication Complexity). For the SMn,k(x, y) problem:
Upper bound: Under any bipartition of the input bits, there is a protocol of cost
Deterministic: O(log k · n/k) if k ≤

√
n ;

Randomized: O(log n ·
√

n) if k ≥
√

n.
Lower bound: For k ≥ 2 there is a bipartition of the input bits such that every randomized
protocol requires Ω(log log k ·n/k) bits of communication, even for the fixed pattern y = 1k.

3.1 Periods in strings
We say a string x ∈ {0, 1}n has period p ∈ {0, 1}i of order i if x is a prefix of a high enough
power pm (for somem ≥ 1). Equivalently, x has a period of order i iff x[i+1, n] = x[1, n−i−1].
A classic lemma characterizes the orders of short periods in a string.

I Lemma 9 ([31]). If x has periods of orders i, j, i + j ≤ |x|, then there is one of order
gcd(i, j).
In particular, all periods of order ≤ n/2 are powers of some primitive period (shortest period
of order ≤ n/2). It is natural to ask: how many bits of communication are required to decide
whether a string has a primitive period? We will discuss this in Section 3.4.

3.2 Upper bound
We start by describing an O(log k · n/k)-bit deterministic protocol for SMn,k assuming
the pattern y is fixed (known to both players). This immediately gives a protocol of cost
O(k + log k · n/k) when y is not fixed: Alice and Bob simply exchange all bits of the k-bit
pattern and then run the protocol that assumes y is fixed. When k ≤

√
n this yields the first

upper bound claimed in Theorem 1.

APPROX/RANDOM 2019

56:8 String Matching: Communication, Circuits, and Learning

I Lemma 10. For every fixed pattern y ∈ {0, 1}k the function x 7→ SMn,k(x, y) admits a
deterministic protocol of cost O(log k · n/k) under any bipartition of the input x.

Next we supply the protocol for the second upper bound in Theorem 1.

I Lemma 11. For k ≥
√
n the function SMn,k admits a randomized protocol of cost

O(logn ·
√
n) under any bipartition of the input (x, y).

I Remark 12. For k ≥
√
n logn the above protocol can be optimized to have cost O(

√
n logn).

Namely, consider a prefix p (and intervals) of length Θ(
√
n logn) rather than Θ(

√
n).

3.3 Lower bound
Next we prove a lower bound of Ω(log log k · n/k), for every k ≤ n, on the randomized
communication complexity of SMn,k. As a warm-up, we first observe that a reduction from
the ubiquitous set-disjointness function yields a randomized lower bound of Ω(n/k) for SMn,k.
We then show how to improve this by a factor of log log k.

Recall that in the m-bit set-disjointness problem, Alice is given a ∈ {0, 1}m, Bob is given
b ∈ {0, 1}m, and their goal is to compute Disjm(a, b) := (ORm◦AND2)(a, b) =

∨
i∈[m](ai∧bi).

It is well known that this function has communication complexity Ω(m) even against
randomized protocols [23, 39, 4].

I Observation 13. DisjΩ(n/k) reduces to SMn,k (under some bipartition of input bits).

To improve the above, we give a reduction from a slightly harder function, ORm ◦
GT` : [`]m × [`]m → {0, 1}, which maps (a, b) 7→

∨
i∈[m] GT(ai, bi) where GT` : [`] × [`] →

{0, 1} is the greater-than function given by GT`(a, b) := 1 iff a ≥ b. The claimed lower bound
Ω(log log k · n/k) for SMn,k follows from the following two lemmas. As mentioned in the
introduction, Lemma 15 was conjectured by [50].

I Lemma 14. ORΩ(n/k) ◦GTΩ(k) reduces to SMn,k (under some bipartition of input bits).

I Lemma 15. ORm ◦ GT` has randomized communication complexity Ω(m · log log `) for
any m, `.

3.4 A better protocol?
As bonus results, we give some evidence for the existence of an improved randomized protocol
for SMn,k when k is large. We first define what unambiguous randomized (aka U ·BPP,
or unambiguous Merlin–Arthur) protocols are; they generalize the notion of unambiguous
deterministic protocols (aka U ·P) introduced by Yannakakis [51].

I Definition 16 (U ·BPP protocols). An unambiguous randomized protocol Π computes a
function F (x, y) as follows. In the first phase the players nondeterministically guess a witness
string z ∈ {0, 1}c1 , and then in the second phase they run a randomized (error ≤ 1/3) protocol
of cost c2 to decide whether to accept the witness z. The correctness requirement is that
for every (x, y) ∈ F−1(1) there needs to be a unique witness that is accepted; for every
(x, y) ∈ F−1(0) no witness should be accepted. The cost of Π is defined as c1 + c2.

Unambiguous randomized protocols have not been studied before in communication
complexity. However, the recent breakthrough of Chattopadhyay et al. [9] (who disproved
the log-approximate-rank conjecture of [28]) is closely related. It is not hard to see that the
function F (x, y) they study (of the form Sink◦XOR) admits an O(logn)-cost U ·BPP protocol.

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:9

The authors proved that the usual randomized (aka BPP) communication complexity of F
is high, nΩ(1). Consequently, there is no generic simulation of a U ·BPP protocol by a BPP
protocol. By contrast, Yannakakis [51, Lemma 1] showed that U ·P protocols can be made
deterministic efficiently.

Our first bonus result is an efficient U ·BPP protocol for determining if a given string has
a primitive period. We do not know whether there is an efficient randomized protocol.

I Lemma 17. Suppose the bits of x ∈ {0, 1}n are split between two players. There is an
U ·BPP protocol of cost O(log2 n) for deciding whether x has a primitive period (and to
compute its order).

If we let Rpf denote the randomized communication complexity of the above period finding
problem, then we can interpret Lemma 17 as evidence that Rpf ≤ polylog(n). Assuming
period finding is indeed easy, we can then provide similar evidence for the easiness of SMn,k

for large k.

I Lemma 18. SMn,0.9n admits an U ·BPP protocol of cost O(logn) +Rpf .

4 Threshold Circuits

In this section we prove Theorem 3.

I Theorem 3 (Threshold circuits). For the SMn,k(x, y) problem:
Upper bound: There is a depth-2 threshold circuit of size O(n− k).
Lower bound for unbounded depth: Any threshold circuit must be of size

Ω(n log log k
k log n

) if k > 1;
Ω(
√

n/k) if k ≥ 2.1 · log n.

In Section 4.1 we prove the upper bound, in Section 4.2 we give the lower bounds. Finally,
in Section 4.3 we study the complexity of SMn,k in the models of restricted threshold circuits.

4.1 Upper bound
We start with a construction giving the upper bound of Theorem 3.

I Lemma 19. There is a depth-2 threshold circuit of size O(n− k) computing SMn,k.

4.2 Lower bounds
In order to prove the first lower bound of Ω(n log log k

k logn) we use the classical result on communic-
ation complexity of threshold gates [34], and the lower bound on communication complexity
of SMn,k from Theorem 1.

Nisan and Safra [34] proved that for any bipartition of the n input bits, the ε-error
randomized communication complexity of a threshold gate (with arbitrary weights) has
communication complexity O(logn/ε). From this they concluded that for any function f , a
lower bound of m on the randomized communication complexity for some bipartition of the
input implies a lower bound of Ω(m/ logn) on the threhold complexity of f . Now the lower
bound of Ω(n log log k/k) from Theorem 1 implies the lower bound of Ω(n log log k

k logn) on the
size of an unbounded depth threshold circuit computing SMn,k.

Below we prove the second lower bound stated in Theorem 3. The lower bound is shown
via a reduction from a hard function f : {0, 1}k/2−1 → {0, 1} which has n/k preimages of
1: |f−1(1)| = n/k. First, we prove the desired lower bound for the case where k is even

APPROX/RANDOM 2019

56:10 String Matching: Communication, Circuits, and Learning

and n is a multiple of k. In the end of this section we explain how to adjust the proof
to the remaining cases. Let ` and t be integers such that k = 2` + 2 and n = t · k. Let
F`,t = {f : {0, 1}` → {0, 1} : |f−1(1)| = t} be the class of Boolean functions of ` inputs which
have exactly t preimages of 1.

We prove this lower bound via a reduction from a hard function f ∈ F`,t. Specifically, we
show that if SMn,k can be solved by a circuit of size s, then every function f ∈ F`,t also has
a circuit of size s computing it. Then, we show that there are functions in F`,t that require
large threshold circuits, which implies the corresponding lower bound for the SMn,k function.

The reduction

Given a string a ∈ {0, 1}` define dup(a) ∈ {0, 1}k to be the string obtained from a by
repeating each bit of a twice, and concatenating it with 01 in the end. (Note that 2`+ 2 = k

by the choice of `). For example dup(010) = 00110001.

I Observation 20. Given a function f ∈ F`,t define xf ∈ {0, 1}tk to be the concatenation
of dup(a) for all a ∈ f−1(1) in the lexicographic order on {0, 1}`. Note that |xf | = tk = n.
Then, for any y ∈ {0, 1}` it holds that f(y) = 1 if and only if SMn,k(xf , dup(y)) = 1.

Indeed, it is immediate to see that if f(y) = 1 then SMn,k(xf , dup(y)) = 1. Duplicating
every bit in a and adding 01 to the end of the resulting pattern are done to ensure that if
f(y) = 0 there will not be a copy of dup(y) in xf .

Given the observation above, it is not difficult to see that any lower bound on the size of
a circuit computing f ∈ F`,t implies a lower bound on SMn,k.

I Proposition 21. Let C be a threshold circuit computing SMn,k. Then for every f ∈ F`,t,
there exists a threshold circuit C ′ computing f such that |C ′| ≤ |C|.

In order to complete the proof of Theorem 3, we need to show that there exists a function
f ∈ F`,t that requires large threshold circuits. For this, we compare the number of small
threshold circuits (see, for example, [22, 24]) with the number of functions in F`,t.

I Proposition 22. Let ` ∈ N be sufficiently large, and let t ∈ N. There exists a function
f ∈ F`,t such that any threshold circuit (with no restrictions on its depth) computing f must
be of size at least Ω(

√
t− t log t/`).

We now derive the desired lower bound on the size of threshold circuits computing the
string matching function. Plugging in k = 2` + 2 and n = tk, we get the lower bound of
s ≥ Ω

(√
n
k −

2n
k2 · log(nk)

)
= Ω(

√
n
k) assuming k ≥ Ω(logn).

Now we describe how this proof can be adopted for the case when n is not a multiple of
k and the case of odd k. First, in order to handle the case of pattern of odd length, one can
add the string 010 (instead of 01) to the end of dup(a). If n is not a multiple of k, then in
the reduction above we can pad the string xf with zeros in the end, and the reduction still
satisfies the property that f(y) = 1 if and only if SMn,k(xf , dup(y)) = 1 as in Observation 20,
and the same lower bound holds (up to a constant factor in the asymptotics).

4.3 Depth-2 Circuits
In Theorem 23 we prove lower bounds for some restricted classes of depth-2 circuits computing
SMn,k. These results should be contrasted with the upper bounds of Theorem 3 and
Theorem 5. Namely, there exists an LTF◦LTF circuit of size O(n−k) and an OR◦AND◦OR
circuit of size O(nk) computing SMn,k.

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:11

We recall a few definitions. Let ELTF denote the class of exact threshold functions (that
is, the functions which output 1 on an m-bit input x if and only if

∑
i∈[m] aixi = θ for some

fixed coefficient vector a ∈ Rm, and θ ∈ R). Similarly, EMAJ denotes the class of exact
majorities which output 1 if and only if the sum of their m Boolean inputs is exactly m/2.
By SYM we denote the class of all symmetric Boolean functions. For two classes of functions
C1 and C2, by C1 ◦ C2 we denote the class of depth-2 circuits where the output gate is from
C1 and the gates of the first layer are from C2. For a class of circuits C and a function f , be
C(f) we denote the minimal size of a circuit from C computing f .

In proving lower bounds for SMn,k a simple yet useful property is that Observation 13
can be applied to circuits as well. This allows to reduce the disjointness problem to string
matching, and get lower bounds for SMn,k via known circuit lower bounds for disjointness.
The point is that a circuit C with strings of length roughly mk for SMn,k (and patterns of
length k) can be used to solve disjointness on strings of length m by feeding C with the
string x := a1b11k−20a2b21k−20 . . . anbn1k−20 and the pattern y = 1k. Hence a lower bound
of s(n) for circuits computing disjointness implies a lower bound of Ω(s(n/k)) for circuits
computing SMn,k.

I Theorem 23. For every 1 < k ≤ n,
1. OR ◦ LTF(SMn,k) ≥ Ω(n− k);
2. AND ◦ LTF(SMn,k) ≥ 2Ω(n/k);
3. AND ◦OR ◦XOR(SMn,k) ≥ 2Ω(n/k);
4. ELTF ◦ SYM(SMn,k) ≥ 2Ω(n/k);
5. EMAJ ◦ ELTF(SMn,k) ≥ 2Ω(n/k).

5 DeMorgan Circuits

In this section we prove Theorem 4 and Theorem 5.

I Theorem 4 (Depth-2 DeMorgan circuits). For the SMn,k(x, y) problem:
Depth-2 upper bound: There is a depth-2 DeMorgan circuit of size O(n · 2k).
Depth-2 lower bound: Any depth-2 DeMorgan circuit must be of size

Ω(n · 2k) if 1 < k ≤
√

n ;
Ω(22

√
n−k+1) if k ≥

√
n.

I Theorem 5 (General DeMorgan circuits). For the SMn,k(x, y) problem:
Upper bound: There is a DeMorgan circuit of size O(nk) and depth 3.
Lower bound: Any DeMorgan circuit must be of size at least n/2.

In Section 5.1 we give upper bounds for both theorems, in Section 5.2 we prove lower
bounds for depth-2 circuits, and in Section 5.3 we provide a lower bound for the unbounded
depth case.

5.1 Upper Bounds
We first give a DNF with 2k(n− k + 1) clauses computing SMn,k, and in Lemma 26 we will
prove that this DNF is essentially optimal.

I Lemma 24. For any k ≤ n there exists a DeMorgan circuit of depth 2 and size (n− k +
1) · 2k + 1 computing SMn,k.

Now we show that already in depth 3, one can compute SMn,k by a much smaller circuit.
This Lemma is likely to have been discovered multiple times, we attribute it to folklore.

APPROX/RANDOM 2019

56:12 String Matching: Communication, Circuits, and Learning

I Lemma 25. There exists a DeMorgan circuit of depth 3 and size O(nk) computing SMn,k.

5.2 Lower bounds for depth 2
We may assume wlog that every optimal circuit of depth 2 is either a CNF or a DNF. First,
we show that in the class of DNFs, the construction from Lemma 24 is optimal (up to a
constant factor).

I Lemma 26.
For every k > 2, the DNF-size of SMn,k is at least

DNF(SMn,k) ≥ 2k−2(n− k + 1) .

Now we will prove lower bounds for CNFs computing SMn,k. We will need the following
definition.

I Definition 27. A maxterm of a Boolean function f is a set of variables of f , such that
some assignment to those variables makes f output 0 irrespective of the assignment to the
other variables. The width of a maxterm is the number of variables in it.

First we find the minimal width of maxterms of SMn,k.

I Lemma 28. For any k ≤ n, every maxterm of SMn,k has width at least

2
√

n− k + 1 for all k ;
k + n−k+1

k
if k ≤

√
n− k + 1.

Next we prove tight bounds on the number of non-satisfying inputs of SMn,k.

I Lemma 29. For k ≤ n, let Z denote the set of preimages of 0 of SMn,k. That is,

Z = {(x, y) ∈ {0, 1}n+k : SMn,k(x; y) = 0}.

Then

|Z| = Θ
(
2n+k

)
if k ≥ log n + 1;

|Z| ≥ Ω
(
2n(1− 2−k)n

)
for all k.

I Lemma 30. For every k, the CNF-size of SMn,k is at least

CNF(SMn,k) ≥ Ω
(
2 n

10k

)
if 1 < k ≤ log n + 1;

CNF(SMn,k) ≥ Ω
(
2k+n/k

)
if log n + 1 ≤ k ≤

√
n;

CNF(SMn,k) ≥ Ω
(

22
√

n−k+1
)

if k ≥
√

n.

Discussion

Lemma 26 and Lemma 30 together give the lower bounds of Theorem 4. We observe a
curious behavior of CNFs and DNFs for SMn,k. For k ≤

√
n, an optimal depth-2 circuit

for SMn,k is a DNF. It can also be shown that for k ≥ n − O(n
logn), an optimal circuit is

a CNF. (Indeed, in order to certify that SMn,k(x, y) = 0, it suffices to give mismatches for
each of the (n − k + 1) shifts of the pattern y in x. This amounts to kO(n−k+1) < n · 2k
clauses.) We leave the exact CNF complexity of SMn,k for the regime k >

√
n as an open

problem. One way to prove a stronger lower bound in this regime would be to give a lower
bound on the width of every maxterm. This approach does not lead to stronger lower bounds

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:13

because there exist maxterms of width 2
√
n. To see this, consider an assignment where the

first
√
n characters of the pattern y are fixed to zeros, and all indices divisible by

√
n in the

text x are fixed to ones. While we cannot prove a stronger lower bound on the width of
“most” maxterms, we know that some maxterms must have width at least n− k + 1. Indeed,
consider the text x = 0n and pattern y = 10k−1. Every clause which outputs 0 on this pair,
must assign the first (n− k + 1) positions of x to 0.

We remark that weaker lower bounds of 2Ω(
√
n/k) and 20.08n/k on the size of CNF

computing SMn,k follow from the reduction from Disjointness in Observation 13 and the known
lower bound on the depth-3 complexity of Iterated Disjointness [20] and Disjointness [21].

5.3 Lower bound for unbounded depth
Now we prove the lower bound of Theorem 5. For circuits with fan-in 2, a linear lower bound
follows from the observation that SMn,k essentially depends on all of its inputs. In the next
lemma, we use an extension of the gate elimination technique to show that even in the class
of DeMorgan circuits with unbounded fan-in, SMn,k still requires linear size.

I Lemma 31. For k > 1, any DeMorgan circuit computing SMn,k has size at least n/2.

6 Learning

6.1 VC dimension
In this section we prove Theorem 8.

I Theorem 8. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) = min(log |Σ|(k −O(log k)), logn+O(log logn)) .

We begin by upper bounding the VC dimension. In the proof we will use the following
folklore construction of a Sperner system.

I Definition 32. A system F of subsets of {1, . . . , n} is called a Sperner system if no set in
F contains another one:

∀A,B ∈ F : A 6= B =⇒ A 6⊆ B .

For any n, there exists a Sperner system of size
(

n
bn/2c

)
. Indeed, one can take F to be the

family of all sets of size exactly bn/2c.

I Lemma 33. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) ≤ min(dk log |Σ|e, logn+ 0.5 log logn+ 2) .

To lower bound the VC dimension of Hk,Σ we need the following lemma.

I Lemma 34. Let m be an integer m ≥ 1, and Σ be an alphabet of size |Σ| ≥ 2. There exists
a set Tm of at least |Σ|m−1 strings from Σm+dlogme+2 with the following property. For any
two distinct strings τ1, τ2 ∈ Tm, their concatenation τ = τ1 ◦ τ2 doesn’t contain any string
from Tm \ {τ1, τ2} as a substring.

I Lemma 35. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Hk,Σ) ≥ min((k − log k − 5) log |Σ|, logn− log logn) .

This concludes the proof of Theorem 8.

APPROX/RANDOM 2019

56:14 String Matching: Communication, Circuits, and Learning

6.2 Learning Hk,Σ

In this section we discuss an efficient algorithm for learning the hypothesis class Hk,Σ. For
completeness we state the definition of PAC learning:

Let D be a distribution over Σn. Suppose we are trying to learn hσ for σ ∈ Σ≤k. Given
τ ∈ Σ≤k, the loss of hτ with respect to hσ is defined as

LD,σ(τ) = Pr
x∼D

[hτ (x) 6= hσ(x)] .

Following the notion of PAC-learning [49, 44], we can now define what we mean by
learning Hk,Σ.

I Definition 36. An algorithm A is said to PAC-learn Hk,Σ if for every distribution D over
Σn and every hσ ∈ Hk,Σ for all ε, δ ∈ (0, 1/2) the following holds. Given m := m(ε, δ, n, k)
i.i.d. samples (x1, hσ(x1)), . . . , (xm, hσ(xm)) where each xi is sampled according to the
distribution D, A returns with probability at least 1 − δ a function hτ ∈ Hk,Σ such that
LD,σ(τ) ≤ ε. Here the probability is taken with respect to the m i.i.d. samples as well as the
possible random choices made by the algorithm A.

Throughout, we refer to δ as the confidence parameter and ε as the accuracy parameter.
In Definition 36 we consider the realizable case. Namely there exists hσ ∈ Hk,Σ that

we want to learn. One can also consider the agnostic case. Consider a distribution D over
Σn × {0, 1}. We now define the loss of hτ as

LD(τ) = Pr
x∼D

[hτ (x) 6= y] ,

namely the measure under D of all pairs (x, y) ∈ Σn × {0, 1} with hτ (x) 6= y [44]. In the
agnostic case we wish to find, given m i.i.d. samples (x1, h(x1)), . . . , (xm, h(xm)), a pattern
σ′ ∈ Σ≤k such that LD(σ′) ≤ minτ LD(τ) + ε (where the minimum is taken over all τ ∈ Σ≤k).
Thus agnostically PAC-learning generalizes the realizable case where minτ LD(τ) = 0.

Recall that a function hσ ∈ Hk,Σ (parameterized by the pattern σ of length at most
k) can be learned with error ε and confidence δ by considering m = O(VC(Hk,Σ)) samples
(x1, hσ(x1)), . . . , (xm, hσ(xm)) (where the constant in the O term depends on ε, δ) and
following the ERM (expected risk minimization) rule: Finding σ′ that minimizes the loss

L(hσ′) := |{i ∈ [m] : hσ′(xi) 6= hσ(xi)}|
m

.

In words, to PAC learn hσ we simply look for a string σ′ of length at most k such that the
fraction of sample points that are misclassified by hσ′ is minimized (the ERM rule applies
both for the agnostic and realizable settings).

By Lemma 33, the number of samples needed to PAC-learn hσ is at most O(logn)
(ignoring the dependency on ε, δ). Clearly we can implement the ERM by considering all
possible substrings of length at most k that occur in the m = O(logn) strings x1 . . . xm
and finding the substring σ′ minimizing L(hσ′). The number of such substrings is at most
O(logn

∑k
i=1(n− k + 1)) ≤ O(kn logn). Since for every substring we can check whether it

occurs in a string of length n in time O(n), we can implement the ERM rule by going over
every substring η of length at most k and checking for every string xi (with i ∈ [m]) whether
η occurs in xi. By keeping track of the pattern which has minimal classification error with
respect to the sample (x1, hσ(x1)), . . . , (xm, hσ(xm)) we can thus implement the ERM rule
in time O(kn2 log2 n).

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:15

We can do better if the number of substrings of length at most k which is upper bounded
by 2|Σ|k is smaller than (n−k+1) logn. Suppose for example, that k ≤ logn

log |Σ| . By Lemma 33,
the VC-dimension of Hk,Σ is then upper bounded by k log |Σ|. Hence in this case we can
assume the number of strings m in our sample is at most k log |Σ|, and we can implement
the ERM rule in time O(|Σ|kkn log |Σ|). When k, |Σ| are constants independent of n we can
thus learn hσ in time O(n).

We summarize this discussion with the following corollary:

I Corollary 37. The hypothesis class Hk,Σ is PAC-learnable in time O(kn2 log2 n), where
the O symbol contains constants depending on ε, δ but not on n, k. If k, |Σ| are constants
independent of n, then Hk,Σ can be learned in time O(n).

References
1 Dana Angluin. Learning regular sets from queries and counterexamples. Information and

computation, 75(2):87–106, 1987.
2 Martin Anthony and Peter L. Bartlett. Neural network learning: Theoretical foundations.

Cambridge University Press, 2009.
3 Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. The sketching complexity

of pattern matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 261–272. Springer, 2004.

4 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004.

5 Omri Ben-Eliezer, Simon Korman, and Daniel Reichman. Deleting and testing forbidden
patterns in multi-dimensional arrays. In International Proceedings in Informatics, volume 80.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

6 Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM), 36(4):929–965, 1989.

7 Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

8 Mark Braverman and Omri Weinstein. A Discrepancy Lower Bound for Information Complexity.
Algorithmica, 76(3):846–864, 2016. doi:10.1007/s00453-015-0093-8.

9 Arkadev Chattopadhyay, Nikhil Mande, and Suhail Sherif. The Log-Approximate-Rank
Conjecture is False. In Proceedings of the 51st Symposium on Theory of Computing, 2019. To
appear.

10 Amit Daniely and Shai Shalev-Shwartz. Complexity theoretic limitations on learning DNF’s.
In Conference on Learning Theory, pages 815–830, 2016.

11 Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general lower
bound on the number of examples needed for learning. Information and Computation,
82(3):247–261, 1989.

12 Jürgen Forster, Matthias Krause, Satyanarayana V. Lokam, Rustam Mubarakzjanov, Niels
Schmitt, and Hans Ulrich Simon. Relations between communication complexity, linear
arrangements, and computational complexity. In International Conference on Foundations of
Software Technology and Theoretical Computer Science, pages 171–182. Springer, 2001.

13 Yoav Freund, Michael Kearns, Dana Ron, Ronitt Rubinfeld, Robert E Schapire, and Linda
Sellie. Efficient learning of typical finite automata from random walks. Information and
Computation, 138(1):23–48, 1997.

14 Zvi Galil. Optimal parallel algorithms for string matching. Information and Control, 67(1-
3):144–157, 1985.

15 Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and
System Sciences, 26(3):280–294, 1983.

APPROX/RANDOM 2019

https://doi.org/10.1007/s00453-015-0093-8

56:16 String Matching: Communication, Circuits, and Learning

16 Hans Dietmar Groeger and György Turán. A linear lower bound for the size of threshold
circuits. Bulletin-European Association For Theoretical Computer Science, 50:220–220, 1993.

17 András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.

18 Steve Hanneke. The optimal sample complexity of PAC learning. The Journal of Machine
Learning Research, 17(1):1319–1333, 2016.

19 Johan Håstad. Computational Limitations of Small-depth Circuits. MIT Press, 1987.
20 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three

circuits. Computational Complexity, 5(2):99–112, 1995.
21 Stasys Jukna. On graph complexity. Combinatorics, Probability and Computing, 15(6):855–876,

2006.
22 Stasys Jukna. Boolean function complexity: advances and frontiers, volume 27. Springer

Science & Business Media, 2012.
23 Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of

set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.
24 Daniel M. Kane and Ryan Williams. Super-linear gate and super-quadratic wire lower bounds

for depth-two and depth-three threshold circuits. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, pages 633–643. ACM, 2016.

25 Donald E. Knuth, James H. Morris, Jr, and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM journal on computing, 6(2):323–350, 1977.

26 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1997.

27 Eyal Kushilevitz and Dan Roth. On learning visual concepts and DNF formulae. Machine
Learning, 24(1):65–85, 1996.

28 Troy Lee and Adi Shraibman. Lower Bounds in Communication Complexity, volume 3. Now
Publishers, 2009. doi:10.1561/0400000040.

29 Robert A. Legenstein and Wolfgang Maass. Foundations for a circuit complexity theory of
sensory processing. Advances in neural information processing systems, pages 259–265, 2001.

30 Robert A. Legenstein and Wolfgang Maass. Neural circuits for pattern recognition with small
total wire length. Theoretical Computer Science, 287(1):239–249, 2002.

31 R. C. Lyndon and M. P. Schützenberger. The equation aM = bN cP in a free group. Michigan
Mathematical Journal, 9:289–298, 1962.

32 James Martens, Arkadev Chattopadhya, Toni Pitassi, and Richard Zemel. On the repres-
entational efficiency of restricted Boltzmann machines. In Advances in Neural Information
Processing Systems, pages 2877–2885, 2013.

33 Saburo Muroga. Threshold logic and its application. Wily-Interscience, 1971.
34 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos

is Eighty, 1:301–315, 1993.
35 Ian Parberry. Circuit complexity and neural networks. MIT press, 1994.
36 Ian Parberry and Georg Schnitger. Parallel computation with threshold functions. Journal of

Computer and System Sciences, 36(3):278–302, 1988.
37 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming model.

In Foundations of Computer Science, 2009. 50th Annual IEEE Symposium on, pages 315–323.
IEEE, 2009.

38 Alexander A. Razborov. On small depth threshold circuits. In Scandinavian Workshop on
Algorithm Theory, pages 42–52. Springer, 1992.

39 Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical Computer
Science, 106(2):385–390, 1992.

40 Ronald L. Rivest. On the worst-case behavior of string-searching algorithms. SIAM Journal
on Computing, 6(4):669–674, 1977.

41 Dana Ron and Ronitt Rubinfeld. Exactly learning automata of small cover time. Machine
Learning, 27(1):69–96, 1997.

https://doi.org/10.1561/0400000040

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:17

42 Christian Rosenke. The exact complexity of projective image matching. Journal of Computer
and System Sciences, 82(8):1360–1387, 2016.

43 Vwani P. Roychowdhury, Alon Orlitsky, and Kai-Yeung Siu. Lower bounds on threshold and
related circuits via communication complexity. IEEE Transactions on Information Theory,
40(2):467–474, 1994.

44 Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

45 Haim Shvaytser. Learnable and nonlearnable visual concepts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(5):459–466, 1990.

46 Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small weights.
SIAM Journal on Discrete Mathematics, 4(3):423–435, 1991.

47 Kai-Yeung Siu, Jehoshua Bruck, Thomas Kailath, and Thomas Hofmeister. Depth efficient
neural networks for division and related problems. IEEE Transactions on information theory,
39(3):946–956, 1993.

48 Kei Uchizawa, Daiki Yashima, and Xiao Zhou. Threshold Circuits for Global Patterns in
2-Dimensional Maps. In International Workshop on Algorithms and Computation, pages
306–316. Springer, 2015.

49 Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984.

50 Thomas Watson. Communication Complexity of Statistical Distance. ACM Transactions on
Computation Theory, 10(1):2:1–2:11, 2018. doi:10.1145/3170708.

51 Mihalis Yannakakis. Expressing combinatorial optimization problems by Linear Programs.
Journal of Computer and System Sciences, 43(3):441–466, 1991. doi:10.1016/0022-0000(91)
90024-Y.

A Learning – Extensions

Infinite alphabet

So far we have been considering the case of finite alphabet Σ. For an infinite Σ the VC
dimension is essentially logn for every value of k ≥ 1. Note that the upper bound of
VC(Hk,Σ) ≤ logn + 0.5 log logn + 2 from Lemma 33 holds even for infinite alphabets Σ.
Indeed, this upper bound counts the number of different patterns which have to occur in one
string and compares it to the length of the string n. In the following lemma we give a lower
bound of logn for all values of k ≥ 1.

I Lemma 38. Let Σ be an infinite alphabet, and k ≥ 1. Then

VC(Hk,Σ) = (1 + o(1)) logn .

Learning multiple patterns

In this section we make a few simple observations regarding the VC dimension of classifiers
defined by the occurrences of multiple patterns. The main observation is that learning a
constant number of patterns does not change the asymptotics of the VC dimension so long as
the number of patterns is upper bounded by the length of the pattern k. Let us consider two
natural classes Hand

k,Σ and Hor
k,Σ of multi-pattern Boolean functions over Σn. Each function

handσ ∈ Hand
k,Σ is parameterized by c > 0 patterns σ = (σ1, . . . , σc) ∈

(
Σ≤k

)c. Now, for an
s ∈ Σn, handσ (s) = 1 if and only if s contains each σi, 1 ≤ i ≤ c as a substring (for brevity we
omit from notation the dependence of Hand

k,Σ and Hor
k,Σ on c). Similarly, a function horσ ∈ Hor

k,Σ
takes the value one: horσ (s) = 1 if and only if s contains at least one σi as a substring. We
stress that we assume that the set of patterns σi, i ∈ [c] are distinct.

APPROX/RANDOM 2019

https://doi.org/10.1145/3170708
https://doi.org/10.1016/0022-0000(91)90024-Y
https://doi.org/10.1016/0022-0000(91)90024-Y

56:18 String Matching: Communication, Circuits, and Learning

An upper bound on the VC dimension of Hand
k,Σ and Hor

k,Σ follows at once from the following
Lemma proved in [6] (Lemma 3.2.3).

I Lemma 39. Let H1, . . . ,Hc be classes of functions of VC dimension at most ∀i : VC(Hi) ≤
d. Let

Hand = {fh1,...,hc
(x) = h1(x) ∧ . . . ∧ hc(x) : h1 ∈ H1, . . . , hc ∈ Hc} ,

Hor = {fh1,...,hc(x) = h1(x) ∨ . . . ∨ hc(x) : h1 ∈ H1, . . . , hc ∈ Hc} .

Then VC(Hand) = O(dc log c) and VC(Hor) = O(dc log c).

We now turn to the lower bound. Our result here is rather modest: We show that the
lower bound on the VC dimension of a single pattern also holds for Hand

k,Σ and Hor
k,Σ provided

that the number c of (distinct) patterns is not too large. Let us see that the lower bounds of
Lemma 35 hold for Hand

k,Σ and Hor
k,Σ. Indeed, for the class Hand

k,Σ , we use the construction from
Lemma 35, where for every pattern σ in that construction we consider a set of k patterns
{σ1, . . . , σk}. We define σi = σ1 . . . σi to be the prefix of length i of σ. For example, for the
pattern 11010 we take the patterns {1, 11, 110, 1101, 11010}. We remark that we obtain k
distinct subpatterns of σ. Since every string from the shattered set contains σ if and only if
it contains every pattern from {σ1, . . . , σk}, all dichotomies are realized by the “last” pattern
σk = σ. Since c ≤ k, we take c longest patterns {σk−c+1, . . . , σk}, and our construction gives
a shattered set of size

VC(Hand
k,Σ) ≥ min (log |Σ|(k −O(log k)), logn+O(log logn)) .

For the class Hor
k,Σ, we can take T ′m ⊆ Tm with |T ′m| = |Tm|/2 and shatter a set of

size d − 1. Now for every σ ∈ T ′m define a c-tuple of patterns by adding to σ c − 1
patterns in Tm \ T ′m (where c ≤ 2d−1 − 1 because c ≤ k). Since none of the strings in
the shattered set contains a pattern from Tm \ T ′m, all dichotomies are realized by the
“first” pattern σ1. Again, our construction from Lemma 35 gives a shattered set of size
min (log |Σ|(k −O(log k)), logn+O(log logn))− 1.

To conclude, we have proved:

I Theorem 40. Let 1 ≤ c ≤ k be a fixed constant. Then

V C(Hand
k,Σ), V C(Hor

k,Σ) = Θ (min (log |Σ|(k −O(log k)), logn+O(log logn))) .

Patterns of length k

One can also consider learning patterns of length exactly k. We consider this case separately
since it seems that getting tight bounds on VC-dimension in this case is a harder task. In
particular, we are not able to get tight bounds for the regime k = n1−o(1) and leave this as
an open question.

For a fixed finite alphabet Σ and an integer k > 0, the class of functions Ek,Σ over Σn is
defined as follows. Every Boolean function hσ ∈ Ek,Σ is parameterized by a pattern σ ∈ Σk
of length exactly k. Therefore, |Ek,Σ| = |Σ|k. For a string s ∈ Σn, hσ(s) = 1 if and only if s
contains σ as a substring. We use a simple double counting argument to prove:

I Lemma 41. VC(Ek,Σ) ≤ min(k log |Σ|, log(n− k + 1) + 1).

Now we prove the following lower bound:

A. Golovnev, M. Göös, D. Reichman, and I. Shinkar 56:19

I Lemma 42. Let Σ be a finite alphabet of size |Σ| ≥ 2, then

VC(Ek,Σ) ≥ min((k − log k − 5) log |Σ|, logn− log k) .

We remark that for the case of patterns of length at most k, Lemma 33 and Lemma 35
give essentially tight bounds for all regimes of the parameters. Here, in the case of patterns of
length exactly k, we have a gap between lower and upper bounds for the regime k = n1−o(1).

2D patterns

Our bounds for learning one dimensional strings generalize to the 2D case. Here we have an
n× n image over an alphabet Σ and am m×m pattern σ where m ≤ k ≤ n. An image is
classified as 1 if and only if it contains σ.

I Definition 43. For a fixed finite alphabet Σ and an integer k > 0, let us define the class of
Boolean functions Gk,Σ over Σn×n as follows. Every function gσ ∈ Gk,Σ is parameterized by a
square 2D pattern σ ∈ Σm×m of dimension m ≤ k. For a 2D image s ∈ Σn×n of dimension
n, gσ(s) = 1 if and only if s contains σ as a consecutive sub-matrix (sub-image).

We give tight bounds (up to low order terms) on VC(Gk,Σ). Since the proofs are very
similar to the 1D case, we only sketch the arguments here.

Since |Gk,Σ| =
∑

1≤i≤k |Σ|i
2 + 1 ≤

∑
1≤i≤k |Σ|ik + 1 < 2|Σ|k2 , we have that VC(Gk,Σ) ≤

dk2 log |Σ|e. Suppose that Gk,Σ shatters a set of d 2D images from Σn×n. By considering a
Sperner system over {1, . . . , d− 1} of size D =

(
d−1

b(d−1)/2c
)
and adding the element d to each

subset, we get a family of D =
(

d−1
b(d−1)/2c

)
patterns all lying in a single n×n image such that

no pattern contains another one. We have that the bottom right corners of all these patterns
are distinct, and thus 2d−1√

2(d−1)
≤ D ≤ n2 implying that d ≤ 2 logn+ 0.5 log logn+ 3. Hence,

VC(Gk,Σ) ≤ min(dk2 log |Σ|e, 2 logn+ 0.5 log logn+ 3).

For the lower bound, the main observation is that we can generalize Lemma 34 to the two
dimensional case having a set Rm of (m+ 2dlogme+ 2)× (m+ 2dlogme+ 2) 2D patterns
of cardinality |Σ|m2−1 such that for any four distinct patterns α1, α2, α3, α4 from Rm, their
concatenation (fitting the four patterns into a 2(m+ 2dlogme+ 2)× 2(m+ 2dlogme+ 2)
square image in each of the 4! possible ways) does not contain any α5 6= αi for 1 ≤ i ≤ 4
from Rm. We achieve this by taking all m×m templates not containing the all 0 2D square
template of size (2dlogme+ 1)× (2dlogme+ 1), padding them by an all zero strip of width
2dlogme + 1 on the right and bottom, and then adding a boundary of ones on those two
sides. Similarly to Lemma 34, it can be verified that Rm satisfies the desired condition.

We now set

m =
⌊

min
(
k − 2 log k − 4,

√
2 logn
log |Σ| −

3 log logn
log |Σ|

)⌋
.

Let Rm be a set of |Σ|m2−1 templates whose construction was described in the paragraph
above and set d = b(m2 − 1) log |Σ|c. Since |Rm| = |Σ|m

2−1 ≥ 2d, we can choose 2d distinct
2D patterns q0 . . . q2d−1 from Rm. The dimension of each pattern qi is m + 2dlogme + 2
which by the choice of m is at most k.

APPROX/RANDOM 2019

56:20 String Matching: Communication, Circuits, and Learning

Define a set of n× n images Y := {y0 . . . yd−1} where yi is an image containing all the
patterns qj from Rm such that the binary expansion of j equals 1 in the ith location. This

way, each image from Y must contain at most 2d−1 patterns, while we can fit
⌊

n
m+2dlogme+2

⌋2

patterns into an image of size n× n. It can be verified that for the chosen values of m and
d, 2d−1 ≤

⌊
n

m+2dlogme+2

⌋2
. Thus, we have that each yi can be padded to an n× n image if

necessary by assigning 1 to all unassigned positions. Finally, it follows in a similar fashion to
the 1D case that the set of patterns q0 . . . q2d−1 shatters Y . Hence Rm shatters Y . Since
|Y | = d the VC dimension of the set of all 2D patterns of dimensions at most k is at least d.

We conclude this discussion with the following Theorem:

I Theorem 44.

VC(Gk,Σ) = min
(
(k −O(log k))2 log |Σ|, 2 logn−O(log logn)

)
.

Efficient Black-Box Identity Testing for Free
Group Algebras
V. Arvind
Institute of Mathematical Sciences (HBNI), Chennai, India
arvind@imsc.res.in

Abhranil Chatterjee
Institute of Mathematical Sciences (HBNI), Chennai, India
abhranilc@imsc.res.in

Rajit Datta
Chennai Mathematical Institute, Chennai, India
rajit@cmi.ac.in

Partha Mukhopadhyay
Chennai Mathematical Institute, Chennai, India
partham@cmi.ac.in

Abstract
Hrubeš and Wigderson [12] initiated the study of noncommutative arithmetic circuits with division
computing a noncommutative rational function in the free skew field, and raised the question of
rational identity testing. For noncommutative formulas with inverses the problem can be solved
in deterministic polynomial time in the white-box model [10, 13]. It can be solved in randomized
polynomial time in the black-box model [8], where the running time is polynomial in the size of
the formula. The complexity of identity testing of noncommutative rational functions, in general,
remains open for noncommutative circuits with inverses.

We solve the problem for a natural special case. We consider expressions in the free group
algebra F〈X, X−1〉 1 where X = {x1, x2, . . . , xn}. Our main results are the following.
1. Given a degree d expression f in F〈X, X−1〉 as a black-box, we obtain a randomized poly(n, d)

algorithm to check whether f is an identically zero expression or not. The technical contribution
is an Amitsur-Levitzki type theorem [1] for F〈X, X−1〉. This also yields a deterministic identity
testing algorithm (and even an expression reconstruction algorithm) that is polynomial time in
the sparsity of the input expression.

2. Given an expression f in F〈X, X−1〉 of degree D and sparsity s, as black-box, we can check
whether f is identically zero or not in randomized poly(n, log s, log D) time. This yields a
randomized polynomial-time algorithm when D and s are exponential in n.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation

Keywords and phrases Rational identity testing, Free group algebra, Noncommutative computation,
Randomized algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.57

Category RANDOM

Acknowledgements We thank the anonymous reviewers of RANDOM 2019 for their valuable
comments.

1 Here F〈X, X−1〉 denotes F〈x1, . . . , xn, x−1
1 , . . . , x−1

n 〉.

© V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 57; pp. 57:1–57:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
mailto:abhranilc@imsc.res.in
mailto:rajit@cmi.ac.in
mailto:partham@cmi.ac.in
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.57
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Efficient Black-Box Identity Testing for Free Group Algebras

1 Introduction

Noncommutative computation is an important sub-area of arithmetic circuit complexity.
In the usual arithmetic circuit model for noncommutative computation, the arithmetic
operations are addition and multiplication, where each circuit input is either a variable
from X = {x1, x2, . . . , xn} or a scalar from a prescribed field F. Each multiplication gate
in the circuit respect the order of its inputs since the variables xi are noncommuting. Such
circuits compute precisely noncommutative polynomials in the free noncommutative ring
denoted by F〈X〉.

Analogous to commutative arithmetic computation, the central questions are to show
circuit size lower bounds for explicit noncommutative polynomials and derandomization of
polynomial identity testing (PIT) for noncommutative circuits (or subclasses of circuits).
There is nontrivial progress on these problems unlike in the commutative case. Nisan [16] has
shown that any algebraic branching program (ABP) computing the n× n noncommutative
Determinant or Permanent polynomial requires exponential (in n) size. Raz and Shpilka [17]
have shown a deterministic polynomial-time PIT for noncommutative ABPs in the white-box
model. A quasi-polynomial time derandomization is also known for the black-box model [9].
However, for general circuits there are no better results (either lower bound or PIT) than
known in the commutative setting.

The randomized polynomial-time PIT algorithm for noncommutative circuits computing a
polynomial of polynomially bounded degree [6] follows from the Amitsur-Levitzki theorem [1]
which states that a nonzero polynomial p ∈ F〈X〉 of degree < 2k cannot be an identity for
the ring Mk(F) of k× k matrices over F. It is also known [2] that a nonzero noncommutative
polynomial does not vanish on matrices of dimension logarithmic in the sparsity of the
polynomial. This yields a randomized polynomial-time identity test for noncommutative
circuits computing polynomials of exponential degree and exponential sparsity.

Hrubeš and Wigderson [12] initiated the study of noncommutative computation with
inverses. In the commutative world, it suffices to consider additions and multiplications. By
Strassen’s result [20] (extended to finite fields [11]), divisions can be efficiently replaced by
polynomially many additions and multiplications. However, divisions in noncommutative
computation are more intricate [12]. In the same paper [12], the authors introduce rational
identity testing: Given a noncommutative formula involving addition, multiplication and
division gates, efficiently check if the resulting rational expression is identically zero in the
free skew-field of noncommutative rational functions. They show that it is reducible to the
following SINGULAR problem:

Given a matrix An×n where the entries are linear forms over noncommuting variables
{x1, x2, . . . , xn}, is A invertible in the free skew-field?

In the white-box model the problem is in deterministic polynomial time [10, 13], and in
randomized polynomial time in the black-box model [8]. Specifically, for rational formulas
of size s, random matrix substitutions of dimension linear in s suffices to test if the rational
expression is identically zero [8].

The complexity of identity testing for general rational expressions remains open. For
example, given a noncommutative circuit involving addition, multiplication and division
gates, no efficient algorithm (even randomized!) is known to check if the resulting rational
expression is identically zero in the free skew-field of noncommutative rational functions. In
order to precisely formulate the problem, we define classes of rational expressions based on
Bergman’s definition [5] of inversion height which we now recall and elaborate upon with
some notation.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:3

I Definition 1 ([5]). Let X be a set of free noncommuting variables. Polynomials in the free
ring F〈X〉 are defined to be rational expressions of height 0. A rational expression of height
i+ 1 is inductively defined to be a polynomial in rational expressions of height at most i, and
inverses of such expressions.

Let Ed,0 denote all polynomials of degree at most d in the free ring F〈X〉. We induct-
ively define rational expressions in Ed,i+1 as follows: Let f1, f2, . . . , fr and g1, g2, . . . , gs be
rational expressions in Ed,i in the variables x1, x2, . . . , xn. Let f(y1, y2, . . . , ys, z1, z2, . . . , zr)
be a degree-d polynomial in F〈X〉. Then f(g1, g2, . . . , gs, f

−1
1 , f−1

2 , . . . , f−1
r) is a rational

expression (of inversion height i+ 1) in Ed,i+1.
Black-box identity testing for rational expressions is not well understood in general. In

particular, no efficient randomized algorithm seems to be known even for identity testing of
the class Ed,1. One source of difficulty is the subtle behaviour of rational expressions when
evaluated on matrix algebras. For example, a surprising result of Bergman [5, Proposition 5.1]
shows that there are rational expressions that are nonzero over a dense subset of 2×2 matrices
but evaluate to zero on dense subsets of 3× 3 matrices.
I Remark 2. In this connection, we note that Hrubeš and Wigderson [12] have observed
that testing if a correct rational expression Φ (see [12], Section 2) is not identically zero
is equivalent to testing if the rational expression Φ−1 is correct. I.e. testing if a correct
rational expression of inversion height i is identically zero or not can be reduced to testing
if a rational expression of inversion height i + 1 is correct or not. Furthermore, testing if
a rational expression of inversion height one is correct can be done by applying (to each
inversion operation in this expression) a theorem of Amitsur (see [18, 15]) which implies that
a nonzero degree 2d − 1 noncommutative polynomial evaluated on d × d matrices will be
invertible with high probability. However, this does not yield an efficient randomized identity
testing algorithm for rational expressions of inversion height one. Because that requires
testing correctness of expressions of inversion height two which is a question left open in
their paper [12, Section 9].

Free Group Algebras
This motivates the study of black-box identity testing for rational expressions in the free
group algebra F〈X,X−1〉 which is a natural subclass of rational expressions of inversion
height one, as we explain next.

We consider expressions in the free group algebra F〈X,X−1〉, where (X,X−1)∗ denotes
the free group generated by the n generators X = {x1, x2, . . . , xn} and their inverses

X−1 = {x−1
1 , x−1

2 , . . . , x−1
n }.

Elements of the free group (X,X−1)∗ are words in X,X−1. The only relations satisfied by
the generators is xix−1

i = x−1
i xi = 1 for all i. Thus, the elements in the free group (X,X−1)∗

are the reduced words which are words to which the above relations are not applicable.
The elements of the free group algebra F〈X,X−1〉 are F-linear combinations of the form

f =
∑
w

αww, αw ∈ F,

where each w ∈ (X,X−1)∗ is a reduced word. The degree of the expression f is defined as
the maximum length of a word w such that αw 6= 0. The expression f is said to have sparsity
s if there are s many reduced words w such that αw 6= 0 in f . We also use the notation [w]f
to denote the coefficient αw of the reduced word w in the expression f .

APPROX/RANDOM 2019

57:4 Efficient Black-Box Identity Testing for Free Group Algebras

The free noncommutative ring F〈X〉 is a subalgebra of F〈X,X−1〉. Clearly, the elements
of F〈X,X−1〉 are a special case of rational expressions of inversion height one. I.e., we
note that:

I Proposition 3. F〈X,X−1〉 ⊂ ∪d>0Ed,1.

Note that the rational expressions in F〈X,X−1〉 allows inverses only of the variables xi,
whereas the free skew field F⦓X⦔ contains all possible rational expressions (with inverses at
any nested level).

Our results
Our main goal is to obtain black-box identity tests for rational expressions in the free group
algebra F〈X,X−1〉.

Our first result is an Amitsur-Levitzki type theorem [1] for F〈X,X−1〉. Let A be an
associative algebra with identity over F. An expression f ∈ F〈X,X−1〉 is an identity for A if

f(a1, . . . , an) = 0,

for all ai ∈ A such that a−1
i is defined for each i ∈ [n].

I Theorem 4. Let F be any field of characteristic zero and f ∈ F〈X,X−1〉 be a nonzero
expression of degree d. Then f is not an identity for the matrix algebra M2d(F).

The following corollary is immediate.

I Corollary 5 (Black-box identity testing in free group algebras). There is a black-box random-
ized poly(n, d) identity test for degree d expressions in F〈X,X−1〉.

If the black-box contains a sparse expression, we show efficient deterministic algorithms
for identity testing and interpolation algorithm.

I Theorem 6 (Reconstruction for sparse expressions). Let F be any field of characteristic zero
and f is an expression in F〈X,X−1〉 of degree d and sparsity s given as black-box. Then
we can reconstruct f in deterministic poly(n, d, s) time with matrix-valued queries to the
black-box.

Nonzero polynomials in F〈X〉 of sparsity s cannot vanish on O(log s) dimensional matrix
algebras [2]. We obtain a similar result for F〈X,X−1〉: nonzero expressions in F〈X,X−1〉
of degree D and sparsity s do not vanish on O(log s) dimensional matrices. It yields
a randomized polynomial-time identity test if the black-box contains an expression f of
exponential degree and exponential sparsity.

I Theorem 7. Let F be any field of characteristic zero. Then, a degree-D expression
f ∈ F〈X,X−1〉 of sparsity s is not an identity for the matrix algebra Mk(F) for k ≥ c log s
for some small constant c.

I Corollary 8. Given a degree-D expression f ∈ F〈X,X−1〉 of sparsity s as black box, we
can check whether f is identically zero or not in randomized poly(n, logD, log s) time.

I Remark 9. We have stated our results for fields of characteristic zero for simplicity. With
suitable modifications, the results easily extend to fields of positive characteristic as discussed
in Section 4.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:5

Each of our proofs typically involves the construction of a nondeterministic substitution
automaton A. Consider any expression f ∈ F〈X,X−1〉. For A, let Mi denote its transition
matrix for variable xi ∈ X. The automaton A has the property that f 6≡ 0 iff a specified
entry of the matrix f(M1,M2, . . . ,Mn) is nonzero. This entry will actually be a commutative
polynomial (or a ratio of two commutative polynomials). Automata constructions for
noncommutative PIT have been used before [4, 3, 2]. In this work, an important difference
is that we have to deal with F-linear combinations of words in {X,X−1}. Thus, if Mi is the
transition matrix for xi then M−1

i will be substituted for x−1
i . Hence, in the construction

we have to ensure Mi is invertible. Furthermore, when the automaton reads x−1
i its state

transition will be governed by M−1
i . In order to ensure that the final output matrix is

nonzero, the transition matrices for the xi have to be chosen carefully, taking into account
the above aspects.

Organization
The paper is organized as follows. In Section 2, we prove Theorem 4, Corollary 5, and
Theorem 6. In Section 3, we prove Theorem 7 and Corollary 8. Finally, in Section 4, we
discuss suitable modifications to extend our results for finite fields.

2 An Amitsur-Levitzki Type Theorem

The main idea in our proof is to efficiently encode expressions in F〈X,X−1〉 as polynomials
in a suitable commutative ring preserving the identity. Let F[Y,Z] denote the commutative
ring F[yij , zij]i∈[n],j∈[d] for n, d ∈ N, where Y = {yij | i ∈ [n], j ∈ [d]} and Z = {zij | i ∈
[n], j ∈ [d]}.

I Definition 10. Define a map ϕ : F〈X,X−1〉 → F[Y,Z] such that ϕ is identity on F, and
for each reduced word w = xb1

i1
xb2
i2
· · ·xbd

id
,

ϕ(xb1
i1
xb2
i2
· · ·xbd

id
) =

d∏
j=1

(1[bj=1] · yijj + 1[bj=−1] · zijj),

where 1[bj=b] = 1 if bj = b and 1[bj=b] = 0 otherwise.

By linearity the map ϕ is defined on all expressions in F〈X,X−1〉. We observe the
following properties of ϕ.

1. The map ϕ is injective on the reduced words (X,X−1)∗. I.e., it maps each reduced word
w ∈ (X,X−1)∗ to a unique monomial over the commuting variables Y ∪ Z.

2. Consequently, ϕ is identity preserving. I.e., an expression f in F〈X,X−1〉 is identically
zero if and only if its image ϕ(f) is the zero polynomial in F[Y, Z].

3. ϕ preserves the sparsity of the expression. I.e., f in F〈X,X−1〉 is s-sparse iff ϕ(f) in
F[Y,Z] is s-sparse.

4. Given the image ϕ(f) ∈ F[Y,Z] in its sparse description (i.e., as a linear combination of
monomials), we can efficiently recover the sparse description of f ∈ F〈X,X−1〉.

Given polynomials f, f ′ ∈ F[Y,Z], we say f and f ′ are weakly equivalent, if for each
monomial m, [m]f = 0 if and only if [m]f ′ = 0, where [m]f denotes the coefficient of
monomial m in f .

Given a black-box expression f in F〈X,X−1〉, we show how to evaluate it on suitable
matrices and obtain a polynomial in F[Y,Z] that is weakly equivalent to ϕ(f) as a specific
entry of the resulting matrix. The matrix substitutions are based on automata constructions.

APPROX/RANDOM 2019

57:6 Efficient Black-Box Identity Testing for Free Group Algebras

Similar ideas have been used earlier to design PIT algorithms for noncommutative polynomials
[4]. However, since we are dealing with rational expressions, some difficulties arise. The
matrix substitutions for the variables x1, . . . , xn are obtained as the corresponding transition
matrices Mi of the automaton. The matrix substitution for x−1

i will be M−1
i . Therefore, we

must ensure that the transition matrices Mi are invertible and sufficiently structured to be
useful for the identity testing.

We first illustrate our construction for an example degree-2 expression f = x1x
−1
2 +x2x

−1
1 ,

where X = {x1, x2}.
The basic “building block” for the transition matrix Mi is the 2× 2 block matrix[

0 yij
1
zij

0

]
,

whose inverse is[
0 zij
1
yij

0

]
.

When the 2× 2 block is the jth diagonal block in Mi, the corresponding automaton will
go from state 2j − 1 to state 2j replacing xi by yij (or if x−1

i occurs, it will replace it by zij).
We will keep the transition matrix Mi for xi a block diagonal matrix with such 2 × 2

invertible blocks as the principal minors along the diagonal. In order to ensure this we
introduce two new variables W = {w1, w2} and substitute xi by the word wixiwi in the
expression. This will ensure that we do not have two consecutive xi in the resulting reduced
words. In fact, between two X variables (or their inverses) we will have inserted exactly two
W variables (or their inverses). Now, we define Mi for the above example as

Mi =

0 yi1 0 0
1
zi1

0 0 0
0 0 0 yi2
0 0 1

zi2
0

 , M−1
i =

0 zi1 0 0
1
yi1

0 0 0
0 0 0 zi2
0 0 1

yi2
0

 .
The corresponding transitions of the automaton is shown in Figure 1.

q1 q2 q3 q4

xi → yi1

x−1
i → zi1

xi, x
−1
i → 1/zi1, 1/yi1

xi → yi2

x−1
i → zi2

xi, x
−1
i → 1/zi2, 1/yi2

Figure 1 The transition diagram of the automaton for x variables.

We now describe the transition matrices Ni for wi. The matrix Ni is also a 4× 4 block
diagonal matrix. There are three blocks along the diagonal. The first and third are 1× 1
blocks of the identity. The second one is a 2×2 block for wi-transitions from state q2 to state
q3. It ensures that for any subword wb1

1 w
b2
2 , bi ∈ {1,−1}, in the resulting product matrix

N b1
1 N b2

2 the (1, 2)th entry of the 2× 2 block is nonzero. The corresponding transitions of the
automaton is depicted in Figure 2.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:7

q1 q2 q3 q4

wi → i

w−1
i → −i

w−1
i , wi → 1 w−1

i , wi → 1 w−1
i , wi → 1 w−1

i , wi → 1

Figure 2 The transition diagram of the automaton for w variables.

Ni =

1 0 0 0
0 1 i 0
0 0 1 0
0 0 0 1

 , N−1
i =

1 0 0 0
0 1 −i 0
0 0 1 0
0 0 0 1

 , N b1
i N

b2
j =

1 0 0 0
0 1 b1i+ b2j 0
0 0 1 0
0 0 0 1

 .
Hence, evaluating f(N1M1N1, N2M2N2) we obtain (a polynomial weakly equivalent to)

ϕ(f) at the (1, 4)th entry. The complete automaton is depicted in figure 3.

q1 q2 q3 q4

wi → i

w−1
i → −i

w−1
i , wi → 1 w−1

i , wi → 1 w−1
i , wi → 1 w−1

i , wi → 1

xi → yi1

x−1
i → zi1

xi → 1/zi1

xi → yi2

x−1
i → zi2

xi → 1/zi2

Figure 3 The transition diagram of the automaton.

We now explain the general construction. For f ∈ F〈X,X−1〉 let H`(f) denote the
degree-` homogeneous part of f . We will denote by ̂ϕ(H`(f)) an arbitrary polynomial in
F[Y,Z] weakly equivalent to ϕ(H`(f)).

I Lemma 11. Let f ∈ F〈X,X−1〉 be a nonzero expression of degree d. There is an n-tuple
of 2d×2d matrices (M1,M2, . . . ,Mn) whose entries are either scalars, or variables u ∈ Y ∪Z,
or their inverses 1/u, such that

(f(M1, . . . ,Mn))1,2d = ̂ϕ(Hd(f)).

Furthermore, for each degree-d reduced word of m = xb1
i1
xb2
i2
· · ·xbd

id
in F〈X,X−1〉,

[ϕ(m)] ̂ϕ(Hd(f)) = [m]f ·
d−1∏
j=1

(bj · ij + bj+1 · ij+1). (1)

Proof. Let eij , for i, j ∈ [k], be the (i, j)th elementary matrix in Mk(F): its (i, j)th entry is
1 and other entries are 0.

APPROX/RANDOM 2019

57:8 Efficient Black-Box Identity Testing for Free Group Algebras

We now define the transition matrices of the NFA for variables {wi : 1 ≤ i ≤ n} and
{xi : 1 ≤ i ≤ n}. For each i ∈ [n], define 2× 2 matrix N ′i = e11 + e22 + i · e12. Now Ni is a
2d× 2d matrix defined as the block diagonal matrix,

N ′i =
[
1 i

0 1

]
, Ni =

1 0 0 . . . 0 0
0 N ′i 0 . . . 0 0
0 0 N ′i . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . N ′i 0
0 0 0 . . . 0 1

.

N ′−1
i =

[
1 −i
0 1

]
, N−1

i =

1 0 0 . . . 0 0
0 N ′−1

i 0 . . . 0 0
0 0 N ′−1

i . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . N ′−1

i 0
0 0 0 . . . 0 1

.

Each Mi, 1 ≤ i ≤ n is the 2d × 2d block diagonal matrix where each 2 × 2 block
M ′ij , 1 ≤ j ≤ d is a 2× 2 matrix defined as M ′i,j = yij · e12 + 1

zij
· e21. Their inverses have a

similar structure.

M ′i,p =
[

0 yip
1
zip

0

]
, Mi =

M ′i,1 0 0 . . . 0

0 M ′i,2 0 . . . 0
0 0 M ′i,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . M ′i,d

.

M ′−1
i,p =

[
0 zip
1
yip

0

]
, M−1

i =

M ′−1
i,1 0 0 . . . 0
0 M ′−1

i,2 0 . . . 0
0 0 M ′−1

i,3 . . . 0
...

...
...

. . .
...

0 0 0 . . . M ′−1
i,d

.

The corresponding NFA is depicted in Figure 4. We substitute each xij by the 2d×2d matrix
NijMijNij . Each x−1

ij
is substituted by its inverse matrix N−1

ij
M−1
ij
N−1
ij

.
Correctness:

Consider a degree-d reduced word m = xb1
i1
xb2
i2
· · ·xbd

id
.

Following the automaton construction of Figure 4, xbi
i occurring at position j is substituted

by (1[bi=1]yij+1[bi=−1]zij). Moreover, for each position j ∈ [d−1], the adjacent pair xbj

ij
x
bj+1
ij+1

produces a scalar factor (bj · ij + bj+1 · ij+1) due to the product N bj

ij
N
bj+1
ij+1

. Consequently, it
follows that

(m(M1, . . . ,Mn))1,2d =
d−1∏
j=1

(bj · ij + bj+1 · ij+1)
d∏
j=1

([bj = 1]yijj + [bj = −1]zijj).

As ϕ is a linear map, the lemma follows. J

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:9

q1 q2j−1 q2j q2j+1 q2(j+1) q2d

· · ·

· · ·

xi → yij

x−1
i → zij

xi → 1/zij

wi → i

w−1
i → −i

xi → yi(j+1)

x−1
i → zi(j+1)

xi → 1/zi(j+1)

· · ·

· · ·

wi → 1
wi → 1

Figure 4 The transition diagram of the automaton.

2.1 Black-box identity testing for circuits in free group algebras

Proof of Theorem 4. The proof follows easily from Lemma 11. Lemma 11 says that if
f ∈ F〈X,X−1〉 is nonzero of degree d then the (1, 2d) entry of the matrix p(N1M1N1, . . . ,

NnMnNn) is a nonzero polynomial in F[Y,Z]. Hence f can not be an identity forM2d(F). J

Proof of Corollary 5. The identity testing algorithm follows from Theorem 4. We can
randomly substitute for the variables and apply the Schwartz-Zippel-Demillo-Lipton The-
orem [19, 21, 7]. This completes the proof of the Corollary 5. J

2.2 Reconstruction of sparse expressions

If the black-box contains an s-sparse expression in F〈X,X−1〉, we give a poly(s, n, d) de-
terministic interpolation algorithm (which also gives a deterministic identity testing for such
expressions). We use a result of Klivans-Spielman [14, Theorem11] that constructs a test set
in deterministic polynomial time for sparse commutative polynomials, which is used for the
interpolation algorithm.

Proof of Theorem 6. Let the black-box expression f be s-sparse of degree d. By Lemma 11, a
polynomial ̂ϕ(Hd(f)) in F[Y,Z] is obtained at the (1, 2d)th entry of the matrix f(M1, . . . ,Mn),
where Mi ∈ M2d(F[Y,Z]) is as defined in Lemma 11. By Definition 10, ϕ(f) ∈ F[Y,Z] is
s-sparse and has 2nd variables. Let H2nd,d,s be the corresponding test set from [14] to
interpolate a polynomial of degree d and s-sparse over 2nd variables. Querying the black-box
on M1(~h),M2(~h), . . . ,Mn(~h) for each ~h ∈ H2nd,d,s we can interpolate the commutative
polynomial ̂ϕ(Hd(f)) and obtain an expression for ̂ϕ(Hd(f)) =

∑s
t=1 cmtmt as a sum of

monomials.
We will now adjust the extra scalar factors for each monomial in ̂ϕ(Hd(f)) to obtain

ϕ(Hd(f)). We can adjust this for each monomial as Lemma 11 shows that the extra scalar
factor for the word m = xb1

i1
xb2
i2
· · ·xb`

i`
is just αϕ(m) =

∏`−1
j=1(bj · ij + bj+1 · ij+1). So we

construct ϕ(Hd(f)) =
∑s
t=1

cmt

αmt
mt by removing the factors αmt

for each monomial mt. We
now invert the map ϕ (using the 4th property of Definition 10) on every monomial mt to
obtain Hd(f) as a sum of degree d reduced words. This yields the expression for highest
degree homogeneous component of f . We can repeat the above procedure on f −Hd(f) and
reconstruct the remaining homogeneous components of f . J

APPROX/RANDOM 2019

57:10 Efficient Black-Box Identity Testing for Free Group Algebras

3 Black-box Identity Testing for Expressions of Exponential Degree
and Exponential Sparsity

It is known [2] that a nonzero noncommutative polynomial of sparsity s cannot be an identity
for O(log s) dimensional matrix algebras. In this section, we show a similar result for free
group algebras. In particular, we prove that the dimension of the matrix algebra for which a
nonzero free group algebra expression f does not vanish is logarithmic in the sparsity of f . It
yields a randomized poly(logD, log s, n) time identity testing algorithm when the black-box
contains an expression of degree D and sparsity s.

We first recall the notion of isolating index set from [2].

I Definition 12. LetM⊆ {X,X−1}D be a subset of reduced words of degree D. An index
set I ⊆ [D] is an isolating index set for M if there is a word m ∈ M such that for each
m′ ∈M\{m} there is an index i ∈ I for which m[i] 6= m′[i]. I.e. no other word inM agrees
with m on all positions in the index set I. We say m is an isolated word.

In the following lemma we show thatM has an isolating index set of size log |M|. The
proof is identical to [2]. Nevertheless, we give the simple details for completeness as we deal
with both variables and their inverses.

I Lemma 13 ([2]). Let M ⊆ {X,X−1}D be reduced degree-D words. Then M has an
isolating index set of size k which is bounded by log |M|.

Proof. The words m ∈M are indexed, where m[i] denotes the variable (or the inverse of a
variable) in the ith position of m. Let i1 ≤ D be the first index such that not all words agree
on the ith1 position. Let

S+
j = {m : m[i1] = xj}

S−j = {m : m[i1] = x−1
j }.

For some j, |S+
j | or |S

−
j | is of size at most |M|/2. Let Sbj denote that subset, b ∈ {+,−}.

We replace M by Sbj and repeat the same argument for at most log |M| steps. Clearly,
by this process, we identify a set of indices I = {i1, . . . , i′k}, k′ ≤ log |M| such that the
set shrinks to a singleton set {m}. Clearly, I is an isolating index set as witnessed by the
isolating word m. J

Proof of Theorem 7

Proof. Let k = 4(k′ + 1) where k′ is the size of the isolating set I. As in Section 2, we
substitute each xi by wixiwi, where wi, i ∈ [n] are n new variables. The transition matrices
for wi and xi are denoted by Ni and Mi respectively.

For 1 ≤ i ≤ n, we define k× k matrix Ni as a block diagonal matrix of k′+ 1 many copies
of a 4× 4 matrix N ′i where N ′i = I4 + i(e12 + e34 + e32 + e14).

N ′i =

1 i 0 i

0 1 0 0
0 i 1 i

0 0 0 1

, Ni =

N ′i 0 0 . . . 0
0 N ′i 0 . . . 0
0 0 N ′i . . . 0
...

...
...

. . .
...

0 0 0 . . . N ′i

,

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:11

N ′−1
i =

1 −i 0 −i
0 1 0 0
0 −i 1 −i
0 0 0 1

, N−1
i =

N ′−1
i 0 0 . . . 0
0 N ′−1

i 0 . . . 0
0 0 N ′−1

i . . . 0
...

...
...

. . .
...

0 0 0 . . . N ′−1
i

.

Notice that

N ′b1
i N ′b2

j =

1 (b1i+ b2j) 0 (b1i+ b2j)
0 1 0 0
0 (b1i+ b2j) 1 (b1i+ b2j)
0 0 0 1

.
We now define the k × k transition matrix Mi as a block diagonal matrix,

M ′i,j =
[

0 yij
1
zij

0

]
, M ′ξi

=
[

0 ξi
1
ξi

0

]
,

Mi =

1 0 0 0 . . . 0 0
0 Mξ1 0 0 . . . 0 0
0 0 M ′i,1 0 . . . 0 0
0 0 0 Mξ2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Mξk′+1 0
0 0 0 0 . . . 0 1

.

These matrices can be seen as the transitions of a suitable NFA. We sketch the construction
of this NFA.

Let I = {i1, . . . , ik′} be an isolating set such that i1 < . . . < ik′ . Intuitively, the NFA
does one of two operations on each symbol (a variable or its inverse) of the input expression:
a Skip or an Encode. In a Skip stage, the NFA deals with positions that are not part of the
(guessed) isolating index set. In this stage, the NFA substitutes the wi variables by suitable
scalars (coming from the N ′i matrices) and xi variables by block variables {ξ1, . . . ξk′+1}. The
NFA nondeterministically decides whether the Skip stage is over and it enters the Encode
stage for a guessed index of the isolating set. It substitutes xi and x−1

i variables by yij and
zij respectively. Fig. 5 summarizes the action of the NFA.

Start Skip 1 Enc 1 Skip 2 Enc 2 Skip k′ Enc k′ Final

Figure 5 The transition diagram of the automaton.

APPROX/RANDOM 2019

57:12 Efficient Black-Box Identity Testing for Free Group Algebras

Define f̂ in F(Y,Z, ξ) to be rational function we obtain at the (1, k)th2 entry by eval-
uating the expression f(N1M1N1, . . . , NnMnNn). Notice that, the isolating word m of

degree D will be of following form m = W1x
bi1
i1
W2x

bi2
i2
· · ·W ′kx

bi′
k

i′
k
Wk′+1 where each subword

Wj = xb1
j1
xb2
j2
· · ·x

b`j

j`j
is of length `j ≥ 0, where some of the Wj could be the empty word

as well.
We refer to an NFA transition qi → qj as a forward edge if i < j and a backward edge if

i > j. We classify the backward edges in three categories based on the substitution on the
edge-label. We say, a backward edge is of type A if a variable is substituted by a scalar value;
a backward edge is of type B if a variable is substituted by 1

ξj
for some j; a backward edge is

of type C if a variable is substituted by 1
yij

or 1
zij

for some i, j.
Consider a walk of the NFA on an input word m that reaches state k using only type

A backward edges. In that case, m is substituted by α · m̂ where m̂ is a monomial over
{Y,Z, ξ} of same degree,

m̂ =
k′+1∏
j=1

ξ
`j

j ·
k′∏
j=1

([bij = 1]yijj + [bij = −1]zijj).

and α is some nonzero constant obtained as a product of [m]f with the scalars obtained as
substitutions from the edges involving the wi variables in the Skip stages. Indeed, as we can
see from the entries of product matrices N ′b1

i ·N
′b2
j , where b1, b2 ∈ {−1, 1}, the scalar α is a

product of [m]f with terms of the form b1i+ b2j, for i 6= j, each of which is nonzero for any
reduced word.

q4j q4j+1

xi, x
−1
i → yij , zij

xi, x
−1
i → 1/zij , 1/yij

Figure 6 The transition diagram of the automaton at Encode stage.

B Claim 14.

[m̂]f̂ 6= 0 iff [m]f 6= 0.

Proof. It suffices to show that for any word m′ 6= m, where m′ has degree ≤ D, no walks
of the NFA accepting m′ generate m̂ after substitution. For a computation path J , the
monomial mJ in f̂ has two parts, let us call it skipJ and encodeJ where skipJ is a monomial
over {ξ1, . . . , ξk′+1} and encodeJ is a monomial over {yij , zij}i∈[n],j∈[k′]. If the computation
path J (which is different from the computation path described above for m̂) uses only type
A backward edges, then necessarily mJ 6= m̂ from the definition of isolating index set. This
argument is analogous to the argument given in [2].

Now consider a walk J which involves backward edges of other types. Let us first consider
those walks that take backward edges only of type A and type B. Such a walk still produces
a monomial over {yij , zij}i∈[n],j∈[k′] and {ξi}1≤i≤k′+1 because division only by ξi variables

2 Recall that k = 4(k′ + 1) where k′ is the size of an isolating set.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:13

q4j−3 q4j−2 q4j−1 q4j
wi → i

w−1
i → −i

wi → i, w−1
i → −i

xi → ξj

xi → 1
ξj

wi → i

w−1
i → −i

wi → i

w−1
i → −i

wi → 1

wi → 1 wi → 1

wi → 1

Figure 7 The transition diagram of the automaton at Skip stage.

occur in the resulting expression. Since m̂ is of highest degree, the total degree of these
monomials is strictly lesser than degree of m̂. For those walks that take at least one backward
edge of type C, a rational expression in {yij , zij}i∈[n],j∈[k′] and {ξi}1≤i≤k′+1 is produced (as
there is division by yij or zij variables). As the sum of the degree of the numerator and
degree of the numerator is bounded by the total degree, the degree of the numerator is
smaller than degree of m̂.

Thus the (1, k)th entry of the output matrix is of the form
∑N1
i=1 cimi +

∑N2
j=1 rj where

{m1, . . . ,mN1} are monomials arising from different walks (w.l.o.g. assume that m1 = m̂)
and {r1, . . . , rN2} are the rational expressions from the other walks (due to the backward
edges of type C). Note that, denominator in each rj is a monomial over Y,Z of degree at
most D. Let L =

∏n
i=1
∏k′

j=1 y
D
i,j · zDi,j . Now, we have,

N1∑
i=1

cimi +
N2∑
j=1

rj = 1
L
·

 N1∑
i=1

cimiL+
N2∑
j=1

pj

 .

Since m̂L 6= miL for any i ∈ {2, . . . , N1} and degree of each pj < degree of m̂L for any
j ∈ {1, . . . , N2}, the numerator of the final expression is a nonzero polynomial in F[Y, Z, ξ].

C

The above proof shows that the matrix f(N1M1N1, . . . , NnMnNn) is nonzero with
rational entries in F[Y,Z, ξ]. Each entry is a linear combination of terms of the form m1/m2,
where m1 and m2 are monomials in Y ∪ Z ∪ {ξ1, . . . , ξk′+1} of degree bounded by D. Note
that, the matrix dimension is k = c log s for some constant c. This completes the proof of
Theorem 7. J

To get an identity testing algorithm, we can do random substitutions.The matrix dimension
is log s and the overall running time of the algorithm is poly(n, log s, logD). This also proves
Corollary 8. J

I Remark 15. For algorithmic purposes, we note that Theorem 4 is sometimes preferable to
Theorem 7. For instance, the encoding used in Theorem 7 does not preserve the sparsity of
the polynomial as required in the sparse reconstruction result (see Theorem 6).

APPROX/RANDOM 2019

57:14 Efficient Black-Box Identity Testing for Free Group Algebras

4 Adaptation for Fields of Positive Characteristic

Let F be any finite field of characteristic p. We will ensure that for each word m in the
free group algebra, the scalar αm (see Equation 1) produced by the automaton described
in Section 2 is not zero in F. Recall that, reading wbi

i w
bj

j for two consecutive positions, the
automaton produces a scalar (bi · i+ bj · j) where bi, bj ∈ {−1,+1}. Moreover, this is the only
way the automaton produces a scalar and for each m, αm is a product of such terms. Hence,
it suffices to ensure that for each pair i, j ∈ [n], (bi · i+ bj · j) 6= 0. Similarly, it ensures that
the scalar produced by the automaton described in Section 3 is nonzero.

We note that, if p is more than 2n then each term (bi · i + bj · j) 6= 0 (mod p) where
bi, bj ∈ {−1,+1} and i, j ∈ [n]. This results in a dependence on the characteristic of the base
field for the analogous statements of Theorems 4, 7 for finite field. Additionally, for Theorem
4, the (1, 2d)th entry of the output matrix is a polynomial of degree d, and for Theorem 7,
the degrees of the numerator polynomials in the rational expression of the output matrix is
bounded by some scalar multiple of nD log s. This lower bounds the size of the fields in the
application. We summarize the above discussion in the following.

I Observation 16. We can obtain results analogous to Theorem 4 and Theorem 7 for finite
fields of characteristic more than 2n and sizes at least d+ 1 and Ω(nD log s) respectively.

However, the algorithms presented in Theorem 6 and Corollaries 5, 8 can be modified
to work for finite fields of any characteristic. To this end, we first notice the following
simple fact.

I Proposition 17. Let F be a finite field of characteristic p ≤ 2n. In We can find elements
α1, α2, . . . , αn from a suitable (deterministically constructed) small extension field F′ of F in
deterministic poly(n) time, such that for any bi ∈ {−1, 1}, 1 ≤ i ≤ n we have

For each 1 ≤ i < j ≤ n, biαi + bjαj 6= 0.

Let α1, α2, . . . , αn ∈ F′ as given by the above proposition. We modify the matrix N ′i in
the proof of Theorem 6 and Corollary 5 as

N ′i =
[
1 αi
0 1

]
,

and in Corollary 8 we modify N ′i as

N ′i =

1 αi 0 αi
0 1 0 0
0 αi 1 αi
0 0 0 1

.
For each pair i, j ∈ [n], (bi · αi + bj · αj) 6= 0 by Proposition 17. Thus, for each word
m, the scalar αm produced by the automata are nonzero in the extension field F′ as well.
Furthermore, the test set of [14] works for all fields. Hence Theorem 6 holds for all finite
fields too. To obtain Corollaries 5 and 8, we will do random substitutions from a suitable
small degree extension field and use Schwartz-Zippel-Demillo-Lipton Theorem [19, 21, 7]. In
summary, our algorithms in the paper can be adapted to work for all fields.

Proof of Proposition 17. Define polynomial g ∈ F[x1, x2, . . . , xn] as

g(x1, x2, . . . , xn) =
∏

1≤i<j≤n
(xi + xj) · (xi − xj).

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 57:15

We substitute yi for xi, 1 ≤ i ≤ n. Then g(y, y2, . . . , yn) = G(y) ∈ F[y] is a univariate
polynomial of degree at most 2n3. Using standard techniques, in deterministic polynomial
time we can construct an extension field F′ of F such that |F′| is of poly(n) ≥ 2n3 + 1 size.
We can find an element α ∈ F′ such that G(α) 6= 0 and set αi = αi, 1 ≤ i ≤ n. J

References
1 A. S. Amitsur and J. Levitzki. Minimal Identities for Algebras. Proceedings of the American

Mathematical Society, 1(4):449–463, 1950. URL: http://www.jstor.org/stable/2032312.
2 Vikraman Arvind, Pushkar S. Joglekar, Partha Mukhopadhyay, and S. Raja. Randomized

polynomial time identity testing for noncommutative circuits. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC,
Canada, June 19-23, 2017, pages 831–841, 2017. doi:10.1145/3055399.3055442.

3 Vikraman Arvind and Partha Mukhopadhyay. The ideal membership problem and polynomial
identity testing. Inf. Comput., 208(4):351–363, 2010. doi:10.1016/j.ic.2009.06.003.

4 Vikraman Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New Results on Non-
commutative and Commutative Polynomial Identity Testing. Computational Complexity,
19(4):521–558, 2010. doi:10.1007/s00037-010-0299-8.

5 George M Bergman. Rational relations and rational identities in division rings. Journal of
Algebra, 43(1):252–266, 1976. doi:10.1016/0021-8693(76)90159-9.

6 Andrej Bogdanov and Hoeteck Wee. More on Noncommutative Polynomial Identity Testing.
In 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 11-15 June
2005, San Jose, CA, USA, pages 92–99, 2005. doi:10.1109/CCC.2005.13.

7 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

8 Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants.
Advances in Mathematics, 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.

9 Michael Forbes and Amir Shpilka. Quasipolynomial-time Identity Testing of Non-Commutative
and Read-Once Oblivious Algebraic Branching Programs. Foundations of Computer Science,
1975., 16th Annual Symposium on, September 2012. doi:10.1109/FOCS.2013.34.

10 Ankit Garg, Leonid Gurvits, Rafael Mendes de Oliveira, and Avi Wigderson. A Deterministic
Polynomial Time Algorithm for Non-commutative Rational Identity Testing. 2016 IEEE 57th
Annual Symposium on Foundations of Computer Science (FOCS), pages 109–117, 2016.

11 Pavel Hrubes and Amir Yehudayoff. Arithmetic Complexity in Ring Extensions. Theory of
Computing, 7:119–129, 2011.

12 Pavel Hrubeš and Avi Wigderson. Non-commutative arithmetic circuits with division. In
Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA, January 12-14,
2014, pages 49–66, 2014. doi:10.1145/2554797.2554805.

13 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative rank
computation is in deterministic polynomial time. computational complexity, 27(4):561–593,
December 2018. doi:10.1007/s00037-018-0165-7.

14 Adam R. Klivans and Daniel Spielman. Randomness Efficient Identity Testing of Multivariate
Polynomials. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of
Computing, STOC ’01, pages 216–223, New York, NY, USA, 2001. ACM. doi:10.1145/
380752.380801.

15 Tsiu-Kwen Lee and Yiqiang Zhou. Right ideals generated by an idempotent of finite rank.
Linear Algebra and its Applications, 431:2118–2126, November 2009. doi:10.1016/j.laa.
2009.07.005.

16 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

APPROX/RANDOM 2019

http://www.jstor.org/stable/2032312
https://doi.org/10.1145/3055399.3055442
https://doi.org/10.1016/j.ic.2009.06.003
https://doi.org/10.1007/s00037-010-0299-8
https://doi.org/10.1016/0021-8693(76)90159-9
https://doi.org/10.1109/CCC.2005.13
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1016/j.aim.2017.01.018
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1145/2554797.2554805
https://doi.org/10.1007/s00037-018-0165-7
https://doi.org/10.1145/380752.380801
https://doi.org/10.1145/380752.380801
https://doi.org/10.1016/j.laa.2009.07.005
https://doi.org/10.1016/j.laa.2009.07.005
https://doi.org/10.1145/103418.103462

57:16 Efficient Black-Box Identity Testing for Free Group Algebras

17 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

18 Louis Halle Rowen. Polynomial identities in ring theory. Pure and Applied Mathematics.
Academic Press, 1980.

19 Jacob T. Schwartz. Fast Probabilistic algorithm for verification of polynomial identities. J.
ACM., 27(4):701–717, 1980.

20 Volker Strassen. Vermeidung von Divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973. URL: http://eudml.org/doc/151394.

21 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of the Int. Sym. on
Symbolic and Algebraic Computation, pages 216–226, 1979.

https://doi.org/10.1007/s00037-005-0188-8
http://eudml.org/doc/151394

The Maximum Label Propagation Algorithm on
Sparse Random Graphs
Charlotte Knierim
ETH Zurich, Switzerland
cknierim@inf.ethz.ch

Johannes Lengler
ETH Zurich, Switzerland
johannes.lengler@inf.ethz.ch

Pascal Pfister
ETH Zurich, Switzerland
ppfister@inf.ethz.ch

Ulysse Schaller
ETH Zurich, Switzerland
ulysses@student.ethz.ch

Angelika Steger
ETH Zurich, Switzerland
angelika.steger@inf.ethz.ch

Abstract
In the Maximum Label Propagation Algorithm (Max-LPA), each vertex draws a distinct random label.
In each subsequent round, each vertex updates its label to the label that is most frequent among its
neighbours (including its own label), breaking ties towards the larger label. It is known that this
algorithm can detect communities in random graphs with planted communities if the graphs are very
dense, by converging to a different consensus for each community. In [17] it was also conjectured
that the same result still holds for sparse graphs if the degrees are at least C log n. We disprove this
conjecture by showing that even for degrees nε, for some ε > 0, the algorithm converges without
reaching consensus. In fact, we show that the algorithm does not even reach almost consensus, but
converges prematurely resulting in orders of magnitude more communities.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Theory of com-
putation → Distributed algorithms

Keywords and phrases random graphs, distributed algorithms, label propagation algorithms, con-
sensus, community detection

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.58

Category RANDOM

1 Introduction

In the last years, opinion exchange dynamics on graphs and networks has received much
attention, see [19] for an excellent survey. Apart from the desire to improve our understanding
of social processes, opinion exchange dynamics have also found applications in the fields of
distributed computing and network analysis. For example, opinion exchange dynamics like
the 3-majority protocol or the 2-choice dynamics have been proposed as simple distributed
solutions to the basic problems of consensus forming, majority detection, and plurality
consensus in distributed networks [2, 3, 5, 7, 10, 12, 13].

© Charlotte Knierim, Johannes Lengler, Pascal Pfister, Ulysse Schaller, and Angelika Steger;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 58; pp. 58:1–58:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cknierim@inf.ethz.ch
mailto:johannes.lengler@inf.ethz.ch
mailto:ppfister@inf.ethz.ch
mailto:ulysses@student.ethz.ch
mailto:angelika.steger@inf.ethz.ch
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Max-LPA on Sparse Random Graphs

Label propagation algorithms (LPA) are a certain kind of opinion exchange dynamics
which have been used for community detection in networks [4, 14, 15, 21, 23]. Despite their
great practical importance (see the surveys [4, 15, 23]), and although obtaining theoretical
bounds on success and speed of LPAs was proposed as an important research question [1, 8, 18],
rigorous theoretical analyses of LPAs have only appeared recently. The first such study by
Kothapalli, Pemmaraju and Sardeshmukh [17] investigated an algorithm called Max-LPA.
In this algorithm, each vertex starts with a random label in the interval [0, 1]. In each
round, every vertex switches its label to the majority label in its neighbourhood (including
its own label), breaking ties towards larger labels. In [17] Max-LPA was studied on an
Erdős-Rényi model with planted communities.1 In this model, the vertex set is partitioned
as V = V1∪̇ . . . ∪̇Vk, where all sets Vk have a certain minimal size. Then every edge inside
of one of the sets Vi is inserted independently with some probability pi, and every edge
between different partite sets is inserted independently with probability p′ � p := mini{pi}.
The study [17] considered dense cases, e.g. for |Vi| = Ω(n) they set p = Ω(n−1/4+ε) and
p′ = O(p2). For this case they show that Max-LPA successfully recovers the communities, i.e.,
it converges quickly to a state where for each i the labels within the set Vi are all identical,
and any two distinct sets Vi have different labels. The authors of [17] conjectured that their
conditions on p are very far from tight, and that it should suffice to require p ≥ C logn/n (i.e.,
expected degrees of C logn instead of Ω(n3/4+ε)), if there is a sufficient gap between p and p′.

The conjecture from [17] has been considered in at least two subsequent papers [6, 9],
both of whom have tried to obtain results for LPA algorithms in sparser cases, see Section 1.1
below. However, the conjecture remained unresolved, and the behaviour of Max-LPA and
other LPAs generally remained poorly understood in the sparse case. In this paper we
show that the conjecture from [17] is actually false in a strong sense. Even in the extreme
case of just one rather dense community, i.e. p′ = 0, and p = n−1+ε, Max-LPA fails to label
the communities consistently. In fact, with high probability the algorithm gets stuck with
all label classes having size o(n). For this negative result, note that the case of just one
community corresponds to running the Max-LPA process on a classical Erdős-Rényi graphs
Gn,p, in which each edge is inserted independently with probability p. We thus phrase our
main result for Erdős-Rényi graphs Gn,p with expected degree d := np ≤ nε.

I Theorem 1. There exists constants C > 0 and ε > 0 such that for any C logn/n ≤ p ≤
n−1+ε, the Max-LPA process on an Erdős-Rényi graph Gn,p terminates with Ω(d3) different
label classes each of size at most O

(
n/d3), where d := np denotes the expected degree of a

vertex in Gn,p.

Note that our result does not immediately extend to smaller values of p, as the property
“Max-LPA finds consensus on G” is not monotone.

A rigorous analysis of LPAs is challenging due to the high influence of dependencies. In
[9] this was stated as: “The absence of substantial theoretical progress in the analysis of LPAs
is largely due to the lack of techniques for handling the interplay between the non-linearity
of the local update rules and the topology of the graph.” In order to prove our result we need
to combine local analysis of the dynamics with global properties of the graph, in particular
by inventing a discharging technique for showing that no set of size O(n/d3) can propagate
much further without the help of (suitably defined) unstable vertices. We hope that this
technique will also turn out to be useful for the analysis of other LPAs.

1 also called clustered Erdős-Rényi graph or stochastic block model

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:3

1.1 Other related work
There is a huge body of experimental work on LPAs for community detection, and we refer
the reader to surveys [4, 15, 23]. Basic properties of Max-LPA were analysed in [20], and in
particular it was shown that the algorithm always converges to a stable configuration or to a
limiting cycle of length 2. An experimental comparison of Max-LPA with other tie-breaking
techniques was performed in [8], with the conclusion that Max-LPA typically converges faster
than other tie-breaking rules, but that repeated runs on the same graph produces slightly
less consistent outcomes than other LPAs.

As outlined above, there are only very few rigorous mathematical results on LPAs. In an
attempt to improve on results from [17], Cruciani, Natale, and Scornavacca [9] studied the
2-choices dynamics as a “sampling” approximation of an LPA. In this dynamics, a vertex
updates its label to the majority label among its own and the labels of two randomly drawn
neighbours, breaking ties towards its own label. For this variant of an LPA, [9] studied
clustered regular graphs with two clusters, i.e., graphs with fixed degree d within each of
the clusters, and fixed degree d′ � d between the clusters. While both, the algorithm and
the setting, differ slightly from [17], the authors compare their results with [17] and improve
the (average) degree d from d = n3/4+ε to d = n1/2. The proof idea relies on expansion
properties of the graph, and n1/2 is a natural barrier for this approach.

In [6], Clementi et al. analysed the Erdős-Rényi model with two planted communities, for
an LPA which uses a different tie-breaking rule than Max-LPA: it breaks ties randomly. For
this variant they claim that a repeated application of this LPA with random tie breaking
can successfully recover the communities with high probability, even for densities as sparse
as p = Θ(1/n). However, their result has a catch: the analysis is only done for a dynamic
version of the random graph model, in which all edges are re-drawn in every round. This
simplifies the analysis considerably, since it removes dependencies between different rounds.
In particular, the state of the algorithm at any time can be completely described by the
number of vertices of each label in each of the partite sets, whereas in the static case the
structural information is essential. As we show in this paper, the behaviour of the Max-LPA
in the sparse case reveals that it fails precisely because of the structural properties of the
label classes. In other words, the behaviour in the static and the dynamic case are completely
different, and an analysis of the dynamic case in general will not explain the behaviour of
the static case.

1.2 Some intuition on the Max-LPA process
In this section we provide some intuition for Theorem 1. Recall that we assume that,
by definition of the Max-LPA process, each v ∈ V chooses it original label uniformly and
independently from [0, 1]. With high probability all vertices will therefore have different
labels. Throughout our paper we will thus assume without loss of generality that in the
beginning of the process the labels of all vertices are pairwise different.

Consider a random graph Gn,p and recall that we denote by d = pn its average degree.
Then almost all vertices will have a neighbour which holds one of the n/d highest labels
(here and in the sequel of this overview we ignore polylog(d) factors). After the first round
we thus expect that (almost) all but the largest n/d labels are extinct, i.e., are not present
any more at any vertex.

Let us thus have a closer look at how such a high label evolves in the first few rounds
of the Max-LPA process. Hence, consider a vertex v with a label ` that belongs to the n/d
largest labels. We expect that v pushes ` to some of its neighbours. Depending on the size

APPROX/RANDOM 2019

58:4 Max-LPA on Sparse Random Graphs

of `, the number of neighbours which receive ` in round 1 can range from very few to almost
all neighbours (but this is not our concern at the moment). In order to understand what can
happen in subsequent rounds, we need to distinguish two cases: (i) v receives in round 1 a
new label `′ > ` or (ii) v keeps its initial label ` in round 1. In case (i), whenever the label `
got pushed onto enough neighbours of v in round 1, vertex v will get back its initial label `
in round 2. In this case quite a number of different scenarios can happen in further rounds,
as for example v can receive back its initial label not only in round 2, but also in other
subsequent rounds if the label ` was pushed down far enough into the r-neighbourhood of u.

In case (ii), on the contrary, v is already in a quite stable situation, as v and many of
its neighbours have the same label. More precisely, in order for v to change its label in
any of the subsequent rounds, (almost) all neighbours of v which receive label ` in round
1 need to lose ` again in one of the subsequent rounds. For any such neighbour u ∈ N(v)
this can either happen if, at some point in time, say t, the initial label of u is pushed back
onto u or the neighbourhood of u will contain a different label `′ 6= ` on two or more of its
vertices. Note that, for most neighbours of v, the first case is unlikely, as the vast majority
of neighbours of v initially held one of the n− n/d labels which are extinct after the first
round. The latter case, on the other hand, can only happen if u is in a cycle of length at
most 2(t+ 1) (here we use that we assumed that in the beginning all vertices have pairwise
different labels). Note that for each constant t ∈ N there exists a constant ε = ε(t) > 0
so that the random graph Gn,p with ω(1/n) ≤ p ≤ n−1+ε has the property that all but a
negligible number of vertices are not contained in a cycle of length at most t. Hence, almost
all vertices v ∈ V which keep their label in round 1, together with their neighbours u ∈ N(v)
which receive the label of v in round 1 and initially held one of the n− n/d smallest labels,
are in a quite stable configuration already after the first round.

After the first round only a constant fraction of vertices are in such a stable configuration.
However, by analysing the subsequent rounds of the process in a similar fashion we can show
that after the first few rounds, all but n/d4 vertices are in such a stable configuration.

Once we have shown that all but n/d4 vertices are in stable configurations, we still
have to argue that the n/d4 non-stable vertices will not be able to break up these stable
configurations. To handle this case we use a discharging argument to show that if a label
class grows to size n/d3, then this label class induces a subgraph with density at least 3/2.
As a random graph Gn,p with log(n)/n ≤ p ≤ nε whp does not contain such a set, we deduce
that no label class gets that large. We note that this idea is similar to techniques used to
study k-bootstrap percolation on Erdős-Rényi graphs [11], in which an initial set of active
vertices successively activates every vertex that has at least k active neighbours. Our case
can be viewed as a (hypothetical) 3/2-bootstrap percolation.

1.3 Notation and terminology
Our graph-theoretic notation is standard and follows that of [22]. In particular, for a graph
G, we denote by V and E the set of vertices and edges, respectively. Moreover, e(G) := |E|
is the number of edges of G. For any subset S ⊆ V we let G[S] denote the subgraph of G
that is induced by the vertices of S. We denote by E(S) the set of edges of G[S] and define
e(S) := |E(S)|. For any two disjoint subsets S, T ⊂ V we denote by E(S, T) the set of edges
with one endpoint in S and the other in T and define e(S, T) := |E(S, T)|. For a vertex
v ∈ V , we denote by N(v) the neighbourhood of v, which excludes v, and by d(v) := |N(v)|
its degree. For any positive integer r ≥ 2, the r-neighbourhood of a vertex v, denoted by
Nr(v), is the set of vertices that can be reached from v by a path of length at most r (i.e.
the r-neighbourhood of a vertex v includes v).

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:5

We consider the classical random graph model from Erdős and Rényi. For a positive
integer n and 0 ≤ p := p(n) ≤ 1. We denote by Gn,p the probability space over graphs on n
vertices where every possible edge is present with probability p independently of all other
edges. We write d := np for the expected degree of a graph G ∼ Gn,p and ∆(G) for its
maximum degree. We say that an event E = E(n) happens with high probability, or whp, if
Pr[E(n)]→ 1 for n→∞. We use the notation Õ(.) to hide polylog(d) factors.

2 Some properties of random graphs

In this section, we provide some results on random graphs which are important in our analysis.
First, we state a standard result from random graph theory on degree concentration (the
proof follows e.g. from [16, Corollary 2.3] together with a union bound).

I Lemma 2. For every ε > 0 there exists a positive constant C such that for G ∼ Gn,p with
p ≥ C log(n)

n with probability at least 1− 2ne− ε2d
3 , it holds for every vertex v ∈ V that

(1− ε)d ≤ d(v) ≤ (1 + ε)d,

where d = pn.

The next lemma gives a lower bound on the number of vertices that do not have a
neighbour in a large subset.

I Lemma 3. Let M > 0, ε > 0, log(n)/n ≤ p ≤ n−1+ε and G = (V,E) ∼ Gn,p. Let S ⊂ V
be a subset of vertices of size |S| = Ω

(
n(log(d))2

d

)
, where d = pn. Then whp all but at most

nd−M vertices v ∈ V \ S have at least one neighbour in S.

Proof. As each vertex v ∈ V \ S has |S| opportunities to have an edge into S we have that

Pr [e(v, S) = 0] = (1− p)|S| ≤ e−Ω((log(d))2) = d−Ω(log(d)).

Thus, letting X be the random variable which counts the number of vertices in V \ S
with no neighbour on S and writing X as a sum of indicator random variables, we can
conclude that

E[X] ≤ nd−Ω(log(d)).

Setting t = nd−M − E[X] = ω(log(n)), the proof now follows by Chernoff bounds. J

In the following we argue that there are not many vertices which are in short cycles.

I Lemma 4. Let k be a positive integer and let G ∼ Gn,p with p = ω(1/n). Then whp the
number of cycles of length at most k is less than dk+1, where d = pn. Therefore, at most
kdk+1 vertices are contained in such cycles.

Proof. For 1 ≤ i ≤ k let Xi be a random variable counting the number of cycles of length i
in G. Then the expectation of Xi is given by

E[Xi] =
(
n

i

)
(i− 1)!

2 pi ≤ di ≤ dk,

where the last inequality follows as d ≥ 1. Thus, letting X :=
∑k
i=1Xi be the random

variable counting the number of cycle of length at most k, we can conclude by linearity of
expectation that

E[X] ≤ kdk.

APPROX/RANDOM 2019

58:6 Max-LPA on Sparse Random Graphs

Using Markov’s inequality we get

Pr
[
X ≥ dk+1] ≤ k

d
= o(1)

which finishes the proof, as each cycle contains at most k vertices. J

3 Notation and terminology for the Max-LPA process

Let us assume that the Max-LPA process runs on a random graph G ∼ Gn,p with C log(n)/n ≤
p ≤ n−1+ε, for some suitable constants C > 0 and ε > 0. We first introduce some notation.
We define L to be the set of labels used in the Max-LPA process and for any t ≥ 0 we denote
by `t(v) the label of a vertex v ∈ V after the t-th round of the Max-LPA process. Recall that
we assume without loss of generality that all labels `0(v) are distinct. For any label ` ∈ L
we denote by v` the (by our assumption unique) vertex from which label ` originated from,
i.e. `0(v`) = `. Moreover, we call a label ` extinct in a round t > 0 if there exists no vertex
v ∈ V with `t(v) = `.

During the Max-LPA process, we say that a vertex v propagates its label onto u ∈ N(v) in
the t-th round of the process if `t−1(v) = `t(u) and `t−1(v) 6= `t−1(u). If `i(u) 6= `t−1(v) for
all i ≤ t−1 (i.e. if u never held the label `t−1(v) so far), we say that v forward-propagates the
label `t−1(v) onto u in round t. Otherwise, we say that v back-propagates the label `t−1(v)
onto u in round t. In abuse of notation, we will also call a label ` to be forward-propagating
and backward-propagating from or onto a vertex v.

As we saw in the introduction, in the absence of (short) cycles, back-propagation is
essentially the only way that a vertex which has a neighbour holding the same label can
change its current label. Thus, in order to create stable configurations, we need to understand
such back-propagation of labels properly. The following definition will help us do so.

I Definition 5. Let v ∈ V , t ≥ 0 and assume that ` is a label which v holds for the first time
in round t, i.e. `t(v) = ` and `i(v) 6= ` for all i < t. Then we define the `-propagation set of v
to be the vertex v together with all vertices w for which there exists a path v = v0, . . . , vk = w

such that for all 0 ≤ i ≤ k the vertex vi receives label ` in round t+ i from vi−1 and did not
hold it in any round j < t+ i.

Recall from Section 1.2 that two vertices u and v that are connected by an edge and that
hold the same label in some round t can only change their label if they are in a short cycle
or if a label is back-propagated. In the following definition we only capture the latter (as we
will argue in Section 4 that we do not have to consider vertices that are in short cycles).

I Definition 6. Let t ≥ 0 and assume that the Max-LPA process has run for t rounds. For
any v ∈ V we denote by L(t)

v := {` ∈ L : ∃i ≤ t such that `i(u) = `} the set of labels v held
in the first t rounds of the process. We then call an edge {u, v} ∈ E stable after round t if
(i) `t(v) = `t(u),
(ii) for all forward-propagating labels ` ∈ L(t)

v \ {`t(v)} of v we have that no vertex in the
`-propagation set of v holds the label ` after round t, and

(iii) for all forward-propagating labels ` ∈ L(t)
u \ {`t(u)} of u we have that no vertex in the

`-propagation set of u holds the label ` after round t.
A vertex v ∈ V is then called stable after round t if it belongs to a stable edge after the t-th
round. All other vertices are called unstable after round t.

Moreover, we call an unstable vertex vulnerable in round t+ 1 if the labels of all vertices
in N(v) ∪ {v} are pairwise different after round t.

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:7

Note that being stable a priori does not mean that a vertex will never change its label again.
However, we can show:

I Lemma 7. Let t0 and t be positive integers with t < t0 and let u, v ∈ V be adjacent vertices.
If {u, v} is a stable edge at time t and neither u nor v belong to a cycle of length 2t0 or less
then both u and v will keep their label (and thus remain stable vertices) until round t0.

Proof. Let t ≤ i < t0 and let us assume that {u, v} is a stable edge in round i. We claim
that then the same is true in round i+ 1 as well. Indeed, as u and v are in a stable edge and
not contained in cycles of length less than 2t0, we have that any label ` ∈ L(t)

u \ `t(u) appears
at most once in the neighbourhood of u namely on the unique vertex which pushed the label
` onto u. As the same is true for v as well, no label ` can be back-propagated onto u or v.

Hence, the only way for u or v to change their label is if they see a label ` in their
neighbourhood at least twice. As these two neighbours cannot be connected (else u or v
would be in a triangle), this can only happen if there exist two different paths from u or v to
the vertex v` from which the label ` originated from. Hence, the appearance of the label ` in
two neighbours of u (or v) in round t ≤ i < t0 implies the existence of a cycle of length at
most 2i+ 2 ≤ 2t0 which contains u (or v). As this is a contradiction, we have that u and v
will not change their label in the i-th round. Thus `i+1(u) = `i+1(v). As furthermore, again
since u and v are not contained in cycles of length less than 2t0, no label ` ∈ L(t)

u \ `t(u) (or
` ∈ L(t)

v \ `t(v)) can reappear in the `-propagation set of u (or v) through a path from v` not
through u (or v), the edge {u, v} remains stable as desired. The statement of the lemma
now follows by a simple induction. J

4 The first two rounds of the process

In this section we carefully analyse the first two rounds of the process and show that after
two rounds there are at most Õ(n/d) unstable vertices left. As explained in the introduction,
we are mainly interested in the behaviour of the highest labels, hence we define the following.

I Definition 8. For a label ` ∈ L, let the rank of ` be rk(`) := |{`′ ∈ L | `′ ≤ `}|. In
particular, the smallest label has rank 1, and the largest label has rank n. Then we define

LX =
{
` ∈ L : rk(`) ≥ n

(
1− (log(d))2

d3

)}
,

LY =
{
` ∈ L : n

(
1− (log(d))2

d2 − (log(d))2

d3

)
≤ rk(`) < n

(
1− (log(d))2

d3

)}
,

LZ =
{
` ∈ L : n

(
1− (log(d))2

d

)
≤ rk(`) < n

(
1− (log(d))2

d2 − (log(d))2

d3

)}
.

Additionally, we denote by X(t), Y (t) and Z(t) the sets of vertices holding labels in LX , LY
and LZ after round t ≥ 0, respectively.

We are particularly interested in vertices that propagate their label to at least one
neighbour in the first round but also lose their label in this round. Those are vertices which
initially engage in back-propagation. As this can cause a series of troubles, we call those
vertices and their labels “bad”. More precisely, we define the following:

I Definition 9. A label ` is called good if `1(v`) = ` and v` forward-propagates label ` in
the first round to at least one of its neighbours. Otherwise, we call ` bad.

APPROX/RANDOM 2019

58:8 Max-LPA on Sparse Random Graphs

As not only vertices which initially hold a bad label can cause troubles, but also all
vertices which (potentially) hold such a bad label in later rounds, we also consider the
2-neighbourhood of such vertices.

I Definition 10. We denote by

X
(2)
bad :=

⋃
`∈LX
` is bad

N2(v`)

the set of all vertices that are in the 2-neighbourhood of a vertex v ∈ X(0) initially holding a
bad label. Similarly, we define

Y
(2)
bad :=

⋃
`∈LY
` is bad

N2(v`).

Additionally, for any bad label ` ∈ LX or ` ∈ LY we call the 2-neighbourhood N2(v`) an
Xbad-set and a Ybad-set, respectively.

In the later rounds the following situation can also arise. Whenever we have a vulnerable
vertex, it can propagate its label and get a new label in the same round. This again results
in vertices which engage in back-propagation. The following rather general definition will
later allow us to capture all such situations. The definition may remain a bit mysterious at
first glance, but we will show later why it makes sense (see Section 5).

I Definition 11. We define two sets set of vertices, called A-nodes and B-nodes, as follows:

A :=
⋃

v∈X(0)

⋃
w∈N(v)∩Z(0)

(N(w) \ {v})

B :=
⋃

v∈Y (0)

⋃
w∈N(v)∩Z(0)

(N(w) \ {v})

With the above definitions at hand, we can state our first main lemma, which summarises
the behaviour of the algorithm in the first two rounds.

I Lemma 12. For every M > 0 there exist C > 0 and ε > 0 such that the following holds.
Let C logn

n ≤ p ≤ n−1+ε and assume that we run the Max-LPA process on a graph G ∼ Gn,p.
Then with high probability there exists a set D ⊆ V of size at most nd−M such that the
following statements hold:
(ACYC) All cycles in G[V \D] have length larger than 200.

(NBZ) Every vertex in V \D has at least one neighbour in Z(0). Moreover, all vertices
in V \D which forward-propagate in round 1 hold a label from LX , LY or LZ .

(NBY) Every vertex in V \D has at least one neighbour in Y (1). Moreover, all vertices
in V \D which forward-propagate in round 2 hold a label from LX or LY .

(NBX) Every vertex in V \D has at least one neighbour in X(2). Moreover, all vertices
in V \D which forward-propagate in round 3 hold a label from LX .

(UNST-
TYPES2)

After the second round, every unstable vertex in V \ N(D) is in Z(0), A, B,
X

(2)
bad or Y

(2)
bad.

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:9

(UNST2X) There are Õ(n/d3) vertices in X
(2)
bad.

(UNST2Y) There are Õ(n/d) vertices in Y
(2)

bad .

(UNST2Z) There are Õ(n/d) vertices in Z(0).

(UNST2A) There are Õ(n/d2) vertices in A.

(UNST2B) There are Õ(n/d) vertices in B.

(UNST2) There are Õ(n/d) unstable vertices after the second round.

As the proof of Lemma 12 is rather long, we only give a short overview. As a first step
one can argue that the labels from LY and LX propagate their labels to a linear fraction of
their 1-Neighbourhood and 2-Neighbourhood, respectively. I.e. one can show that both Y (1)

and X(2) are of size Θ(n(log(d))2/d). Thus, by Lemma 3 and Lemma 4, we can define D as
the 5-Neighbourhood of all vertices which do not have a neighbour in Z(0) or Y (1) or X(2)

and which are contained in cycles of length 200 or less, and the first four items of Lemma 12
then follow easily.

The proof of (UNST-TYPES2) is a rather involved case analysis. In a nutshell, one can
show that all vertices v ∈ V \N(D) which are not contained in Z(0), A, B, X(2)

bad or Y (2)
bad are

connected through a stable path of length at most two to a vertex v` for some good label `.
To show items (UNST2X) to (UNST2B) one can calculate the number of bad labels in

LX and LY using standard probabilistic tools (as e.g. Chernoff bounds). The sizes of these
five sets then simply follow from their definition and Lemma 2. Last, note that (UNST2) is
just a summary of the other statements of Lemma 12.

5 The next rounds of the Max-LPA process

The main goal of this section is to show the following proposition.

I Proposition 13. After at most 100 rounds, whp the number of unstable vertices is Õ(n/d4).

In the remainder of the paper, we will mostly neglect vertices which are outside the
101-neighbourhood of D. Since |N101(D)| = o(n/d4) (if we choose the constant M in Lemma
12 large enough) the above proposition also follows if we only show that a 1−Õ(n/d4) fraction
of vertices in V \N101(D) is stable after round 100. The main advantage of neglecting these
vertices is that all vertices we consider in this section, and their complete 100-neighbourhood,
are not contained in cycles of length less than 200. Thus, all structures we analyse (such
as Xbad-sets, Ybad-sets and `-propagation sets, label classes) are actually trees (and in the
following, we hence also refer to them as e.g. `-propagation trees instead of `-propagation
sets). To ease notation, we henceforth denote for any set S ⊆ V by Ŝ := S \N101(D) the set
S without the 100-neighbourhood of D.

As the proof of the above proposition is quite involved, we only provide a detailed
overview.

By Lemma 12, we know that after the second round a 1− Õ(1/d) fraction of the vertices
in V̂ is already stable. In order to argue that the number of unstable vertices drops even
further over the next few rounds, we cover all unstable vertices in V̂ by the five classes X̂bad,
Ŷbad, Ẑ(0), Â and B̂, depending on the mechanism that keep them unstable. Note that the
definitions of X̂bad, Ŷbad, Ẑ(0), Â and B̂ are a bit over-pessimistic: vertices may occur in

APPROX/RANDOM 2019

58:10 Max-LPA on Sparse Random Graphs

several classes, or several times in the same class, and all classes may also contain some stable
vertices. However, our definitions allow us to show that the vertices in each class behave as if
they were randomly distributed. In particular, for a given vertex, say, of type X̂bad, it is easy
to count the number of neighbours in other X̂bad-structures, in Ŷbad-structures, and so on.

The weighted meta-graph in Figure 1 summarizes the situation after round 2. Each
vertex in the meta-graph corresponds to one (or two) of the five classes of unstable vertices
(we depict Ẑ(0) and B̂ as one vertex in all our figures because they evolve identically). The
weights on the edges in the meta-graph are guided by the following idea. Assume that a
vertex is, say, in an X̂bad-structure, and assume pessimistically that its label can take over
arbitrary parts of this structure. Then the weights of the arrows going out from X̂bad are
(an upper bound for) the expected number of structures of other types that the label sees
(and thus, can potentially take over). If we pessimistically assume that it also takes over
these new structures, then the weights of the outgoing edges in the meta-graph also gives a
bound on the expected number of structures that the label can see form there, and so on.
Thus if for each walk in the meta-graph we multiply the weights along a walk, and then sum
these products over all walks in the meta-graph, then we obtain an a bound for the expected
number of structures that the label can take over.

Ŷbad

size: d2

#: n/d
d2

X̂bad

size: d2

#: n/d3

1
d2

1

Â

size: 1
#: n/d2

1
d

1

d

1
d2 d

Ẑ(0)/B̂

size: 1
#: n/d

1

1 d2

1
d2

d2

1
d

1

Figure 1 Meta-graph after round 2. The first value in a node S indicates the size of a
structure S, the second value indicates number of vertices (counted with multiplicity) in structures
of type S. The weight x of a meta-edge from node S to node T indicates that from a random
S-structure S0 there are in expectation at most x edges to T -structures (not counting edges within
S0 if S = T). The same bound is also valid if S0 is not random among all S-structures, but rather a
random neighbour of a T ′-structure, for any type T ′ that appears in the meta-graph. All values are
upper bounds and suppress any polylog(d) factors.

An important intermediate goal is to show that the graph G′ = (V ′, E′) induced by
unstable vertices from V̂ is scattered, i.e. that most vertices are in small components. To
this end, we would like to have that for any walk in the meta-graph, the weights of the edges
multiply up to something of size o(1). Then, if we start with a random vertex in V ′, all
paths in G′ containing this vertex are short, since its unstable structure is only connected to
few other meta-vertices. Hence, the vertex has small probability to be in a large component.
Unfortunately, after round 2 the meta-graph is still much too dense for our purpose.

Analysing the Max-LPA process further, we show that in the third round the number of
unstable Ẑ(0) and B̂ structures decreases by a factor of Õ(1/d). For the Ŷbad structures,
something even more dramatic happens: most of them scatter internally by round 5, in the

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:11

sense that if we choose a random vertex in a random Ŷbad structure, then the expected size
of the component of this vertex within the Ŷbad structure shrinks to Õ(1). The analysis after
round 2 becomes more tricky, since the structures lose their independence. For example,
although the number of Ẑ(0)/B̂-structures decreases, the weight of the arrow Â→ Ẑ(0)/B̂

does not decrease because neighbours of Â-vertices are biased towards remaining unstable.
However, we can prove that some weights decrease as one would expect for random edges,
namely for the edges between Ŷbad and Ẑ(0)/B̂, and the edges that go out of Ŷbad. The
meta-graph after round 5 can be found in Figure 2.

Ŷbad

size: 1
#: n/d2

1
d

X̂bad

size: d2

#: n/d3

1
d2

1
d2

Â

size: 1
#: n/d2

1
d

1

1
d

1
d2 d

Ẑ(0)/B̂

size: 1
#: n/d2

1
d

1
d

1
d

1
d2

d2

1
d

1

Figure 2 Meta-graph after round 5. The first value in a node S indicates, given a random vertex
v in a random structure S0 of type S, the size of the connected component of v induced by unstable
vertices in S0. The weight of the edge from S to T indicates how many edges into T -structures there
are in expectation from this connected component. Again, all bounds remain valid if we choose v as
a random vertex as seen from structures of some type T ′. The second value in a node S indicates
the number of unstable vertices in structures of type S. All values are upper bounds and suppress
any polylog(d) factors. Compared to round 2, only a Õ(1/d)-fraction of the nodes in Ŷbad and in
Ẑ(0)/B̂ remain unstable. This decreases the weights from Ybad and Z/B into Ybad and Z/B by a
factor of 1/d, but not the weights from X̂bad or Â into these sets, because the target nodes of these
edges are biased towards remaining unstable. Moreover, the remaining Ŷbad-structures are scattered
into connected components of expected size Õ(1), which decreases the weights of all outgoing edges
from Ŷbad by 1/d2. There are no cycles in which the weights multiply to strictly more than one, and
every cycle with a product of one is a combination of the cycles X̂bad → X̂bad, X̂bad ↔ Ŷbad and
X̂bad ↔ Ẑ(0)/B̂.

After round 5, there are still some cycles for which the weights do not multiply to o(1), in
particular the loop at X̂bad and the cycles X̂bad ↔ Ẑ(0)/B̂ and X̂bad ↔ Ŷbad. To deal with
those, we use the fact that a typical leaf v of an X̂bad-structure sees neighbours in Ŷbad and
in Ẑ(0)/B̂ after round 2, but these do not see further unstable neighbours in round 3 and 4
with probability 1− Õ(1/d). In this case, we show that the leaf v stabilizes by round 20, and
we may decrease the weights from X̂bad to Ŷbad and to Ẑ(0)/B̂ accordingly (Figure 3). In
the remaining meta-graph, all walks accumulate decreasing factors except for the loop for
X̂bad. However, since there are only Õ(n/d4) vertices in X̂bad structures, we can show that
even the union of the connected components in G′ of all these structures has size Õ(n/d4).
For all vertices outside of this union, a long path in G′ from such a vertex induces a long
walk in the meta-graph, which is unlikely. Thus almost all vertices are either among the
Õ(n/d4) vertices of X̂bad components, or are in components of diameter less than K, for a
suitable constant K. For the latter one, we show that they stabilise after K further rounds
if the vertices are not contained in any cycles of length at most 2K.

APPROX/RANDOM 2019

58:12 Max-LPA on Sparse Random Graphs

Ŷbad

size: 1
#: n/d2

1
d

X̂bad

size: d
#: n/d4

1
d

1
d2

Â

size: 1
#: n/d3

1
d

1

1
d

1
d2 d

Ẑ(0)/B̂

size: 1
#: n/d2

1
d

1
d

1
d

1
d2

d

1
d

1

Figure 3 Meta-graph after round 20. Values have the same meaning as in Figure 2. Compared to
Figure 2, the Xbad-structures have decreased by a 1/d factor in component size and in the number of
unstable vertices, and the number of outgoing edges from X̂bad to Ŷbad and to Ẑ(0)/B̂ has decreased
by a factor of 1/d. The only remaining cycle in which the labels multiply to one is the loop at X̂bad.

6 Finishing the proof

For the last part of the proof, we fix a label, and show that this label cannot take over the
complete graph. We only give the proof under the following simplifying assumption, and
defer the full proof to the journal version. More precisely, we will assume that the label is
`max, the maximum label, and after round 100 we change the labels of all unstable vertices
and all vertices whose label appears in a cycle of length at most 200 to `max. This gives the
label class of `max a considerable boost after round 100, but it also simplifies the setting. In
particular, since every other vertex v is stable and not in a cycles of length at most 200, the
definition of stable implies that all neighbours of v have either the label of v, the label `max,
or other mutually distinct labels. Moreover, after round 100 they have at least one neighbour
of the same label, so they can only change their label to `max. This remains true inductively,
since if a vertex v loses its neighbours of the same label, then those neighbours change their
label to `max, and thus v also changes its label to `max. Thus the only possible change in the
remaining graph is that vertices change their label to `max.

Let us first estimate the number of vertices that have or receive label `max after round 100.
There are at most Õ(n/d4) unstable vertices by Lemma 13. Moreover, at this point no label
class has swallowed more than its 100-neighbourhood, which has size O(d100) = Õ(n/d4)
whp (Lemma 2). Consider some δ > 0. By choosing ε = ε(δ) sufficiently small, if follows
from Lemma 4 that the number of vertices that are contained in cycles of length at most 200
is O(nδ). Since each label class has at most size O(d100), the number of vertices with labels
that appear in such cycles is O(d100nδ) = Õ(n/d4), if we choose δ sufficiently small. Thus
after round 100 the label class of `max has size Õ(n/d4). In the following, we will show that
with high probability, the structure of Gn,p is such that no set of this size can take over all
the stable vertices in the graph.

First we argue that in order to take over a certain set of stable vertices S from one of
the stable trees, there needs to be a certain number of edges going from S to the vertices
holding label `max. Let T ⊆ V be the set of vertices that initially (i.e., after the relabelings
in round 100) have label `max, and denote for each ` 6= `max by V` the set of vertices with

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:13

label ` at this time. Now fix some later point in time t. Let T ′ ⊇ T be the set of vertices
with label `max at round t, and for each ` 6= `max, let S` = V` ∩ T ′ be the set of vertices with
label ` that have been taken over by `max by round t. Then we claim that

e(T ′ \ T, T) + e(T ′ \ T) ≥ |T ′ \ T |+
∑

`∈L, 6̀=`max

(e(S`, V` \ S`) + e(S`)). (1)

To prove (1), let us assume that v1, v2, . . . , vk is the order in which the vertices of T ′ \ T
acquire the label `max, where we break ties arbitrarily. For an index i ≤ k, let `i be the label
of vi and let Ti := T ∪ {v1, . . . , vi−1}. Note that

e(vi, T ′) = e(vi, Ti) + e(vi, T ′ \ Ti).

Moreover, when vi changes its label then all vertices in V`i
\ Ti still have label `i. Hence, vi

can only change its label if e(vi, Ti) ≥ e(vi, V`i
\ Ti) + 1, where the “+1” comes from the fact

that the vertex v considers its own label as well when taking the majority. Hence,

e(vi, T ′) = e(vi, Ti) + e(vi, T ′ \ Ti)
≥ e(vi, V`i \ Ti) + 1 + e(vi, T ′ \ Ti)
= 1 + e(vi, V`i

)− e(vi, {v1, . . . , vi−1} ∩ V`i
) + e(vi, T ′ \ Ti).

Now we sum both sides over all 1 ≤ i ≤ k. Note that summing over e(vi, T ′) yields
e(T ′ \ T, T) + 2e(T ′ \ T) since edges in T ′ \ T are counted twice. Likewise, summing over
e(vi, V`i

) yields
∑
` 6=`max

(e(S`, V` \S`) + 2e(S`)), and summing over e(vi, {v1, . . . , vi−1}∩V`i
)

yields
∑
` 6=`max

e(S`). Finally, summing over e(vi, T ′ \ Ti) yields e(T ′ \ T). Thus, summing
and canceling e(T ′ \ T) yields

e(T ′ \ T, T) + e(T ′ \ T) ≥ k +
∑

`∈L, 6̀=`max

(e(S`, V` \ S`) + e(S`)),

which implies (1) as k = |T ′ \ T |.
Note that the term e(T ′ \ T, T) + e(T ′ \ T) on the left hand side counts the number of

edges by which the label class of `max increases when it grows from T to T ′, while the term
e(S`, V` \ S`) + e(S`) counts the number of edges within V` which have at least one endpoint
in S`. So basically (1) says that in order to recruit k vertices, the label class is “charged” at
least k +

∑
` 6=`max

e(S`, V` \ S`) + e(S`) edges. It is easy to check that the minimal ratio of
charged edges per recruited vertex is attained if S` = V` is of size 2 for all ` 6= `max, in which
case the ratio is 3/2 (three edges for two vertices).

Hence, in order to take over a set S of size k we need at least 3k/2 edges in S ∪ V`max .
However, a sparse Gn,p does not have sets of this density of order Θ(n/d3), as the following
lemma shows.

I Lemma 14 (Lemma 4.2 in [11]). Consider Gn,p with 1� d = np = o(n). Let β = 3
2−

1
2 log(d) ,

and set s = n
3d3 . Then with high probability no set of s vertices spans at least βs edges.

We may thus conclude the proof by contradiction as follows. Assume that `max would
take over the graph. After round 100, it has size s0 = Õ(n/d4), so at some later point the
label class must have size s = n/(2d3). At this point, the number of edges in the label
class is at least 3

2 (s − s0) = (1 − Õ(1/d)) 3
2s ≥ βs, where β is as in Lemma 14. This is a

contradiction to Lemma 14. Hence, the assumption must be wrong and `max cannot take
over the graph. In fact, the proof shows that the label class of `max cannot grow to any size
larger than O(n/d3).

APPROX/RANDOM 2019

58:14 Max-LPA on Sparse Random Graphs

7 Conclusion

We have shown that Max-LPA does not reach consensus onGn,p if p = O(n−1+ε). Consequently
it fails to identify communities in planted network models. This disproves a conjecture by
Kothapalli, Pemmarajum, and Sardeshmukh. Our result is obtained by combining a careful
local analysis of the process with suitable global properties of the network.

For the Max-LPA process, it is natural to assume that there is some threshold α such that
for any small δ > 0 we have that for p = Ω(n−α+δ) the Max-LPA process reaches consensus
on Gn,p with high probability, while for p = O(n−α−δ) it does not reach consensus with high
probability. Assuming such an α exists, it follows from our result that α ≤ 1− ε; from [17]
we know that α ≥ 1/4.

We conducted some experiments, which seem to suggest α = 4/5. Our experimental
data was obtained by doing a binary search where in every step we ran the algorithm on 32
independent Gn,p. If the majority of the runs converged with a unique label (modulo isolated
vertices) then we decreased the value of p for the following run, otherwise we increased it.
We stopped when the change in the probability was small enough. To visualize the data
we plot it on a log-log-scale, with basis 2 for the log. In this setting the exponent becomes
a linear factor. We computed a linear regression of the log-log-data (i.e., the line which
minimizes the sum of the square-distances of the log-log data points), and obtained the
line log2(d) = 0.19964 log2(n) + 0.4652. Since the leading constant is very close to 0.2, this
suggests that the correct threshold might be d = Θ(n1/5) and thus p = Θ(n−4/5).

14 16 18 20 22

3.5

4

4.5

log2(n)

lo
g 2

(d
)

Figure 4 Our experimental data with a linear regression. We plot an experimental evaluation of
the threshold d such that the Max-LPA converges in 50% of the cases with a unique label, on a log-log
scale. The experimental data is extremely well described by a line with slope ≈ 0.2, suggesting that
the threshold satisfies d = Θ(n1/5).

References
1 Michael J Barber and John W Clark. Detecting network communities by propagating labels

under constraints. Physical Review E, 80(2):026129, 2009.
2 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri,

and Luca Trevisan. Simple dynamics for plurality consensus. Distributed Computing, 30(4):293–
306, 2017.

3 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Trevisan.
Stabilizing consensus with many opinions. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 620–635. SIAM, 2016.

4 Punam Bedi and Chhavi Sharma. Community detection in social networks. Wiley Interdiscip-
linary Reviews: Data Mining and Knowledge Discovery, 6(3):115–135, 2016.

C. Knierim, J. Lengler, P. Pfister, U. Schaller, and A. Steger 58:15

5 Petra Berenbrink, Andrea Clementi, Robert Elsässer, Peter Kling, Frederik Mallmann-Trenn,
and Emanuele Natale. Ignore or comply? on breaking symmetry in consensus. arXiv preprint,
2017. arXiv:1702.04921.

6 Andrea Clementi, Miriam Di Ianni, Giorgio Gambosi, Emanuele Natale, and Riccardo Silvestri.
Distributed Community Detection in Dynamic Graphs. Theor. Comput. Sci., 584(C):19–41,
June 2015. doi:10.1016/j.tcs.2014.11.026.

7 Colin Cooper, Tomasz Radzik, Nicolás Rivera, and Takeharu Shiraga. Fast plurality consensus
in regular expanders. arXiv preprint, 2016. arXiv:1605.08403.

8 Gennaro Cordasco and Luisa Gargano. Label propagation algorithm: a semi-synchronous
approach. International Journal of Social Network Mining, 1(1):3–26, 2012.

9 Emilio Cruciani, Emanuele Natale, and Giacomo Scornavacca. On the Metastability of
Quadratic Majority Dynamics on Clustered Graphs and its Biological Implications. CoRR,
abs/1805.01406, 2018. arXiv:1805.01406.

10 Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn, and Horst
Trinker. Efficient k-party voting with two choices. ArXiv e-prints, 2016.

11 Uriel Feige, Michael Krivelevich, and Daniel Reichman. Contagious sets in random graphs.
The Annals of Applied Probability, 27(5):2675–2697, 2017.

12 Mohsen Ghaffari and Johannes Lengler. Nearly-tight analysis for 2-choice and 3-majority
consensus dynamics. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing, pages 305–313. ACM, 2018.

13 Mohsen Ghaffari and Merav Parter. A polylogarithmic gossip algorithm for plurality consensus.
In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing, pages
117–126. ACM, 2016.

14 Steve Gregory. Finding overlapping communities in networks by label propagation. New
Journal of Physics, 12(10):103018, 2010.

15 Steve Harenberg, Gonzalo Bello, L Gjeltema, Stephen Ranshous, Jitendra Harlalka, Ramona
Seay, Kanchana Padmanabhan, and Nagiza Samatova. Community detection in large-scale
networks: a survey and empirical evaluation. Wiley Interdisciplinary Reviews: Computational
Statistics, 6(6):426–439, 2014.

16 S. Janson, T. Łuczak, and A. Rucinski. Random graphs. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience, New York, 2000.

17 Kishore Kothapalli, Sriram V. Pemmaraju, and Vivek Sardeshmukh. On the Analysis of
a Label Propagation Algorithm for Community Detection. In Distributed Computing and
Networking, pages 255–269, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

18 Ian XY Leung, Pan Hui, Pietro Lio, and Jon Crowcroft. Towards real-time community
detection in large networks. Physical Review E, 79(6):066107, 2009.

19 Elchanan Mossel and Omer Tamuz. Opinion exchange dynamics. Probability Surveys, 14:155–
204, 2017.

20 Svatopluk Poljak and Miroslav Sŭra. On periodical behaviour in societies with symmetric
influences. Combinatorica, 3(1):119–121, 1983.

21 Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to
detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.

22 Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle
River, 2001.

23 Zhao Yang, René Algesheimer, and Claudio J Tessone. A comparative analysis of community
detection algorithms on artificial networks. Scientific Reports, 6:30750, 2016.

APPROX/RANDOM 2019

http://arxiv.org/abs/1702.04921
https://doi.org/10.1016/j.tcs.2014.11.026
http://arxiv.org/abs/1605.08403
http://arxiv.org/abs/1805.01406

Samplers and Extractors for Unbounded Functions
Rohit Agrawal
John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138, USA
https://rohitagr.com
rohitagr@seas.harvard.edu

Abstract
Błasiok (SODA’18) recently introduced the notion of a subgaussian sampler, defined as an averaging
sampler for approximating the mean of functions f : {0, 1}m → R such that f(Um) has subgaussian
tails, and asked for explicit constructions. In this work, we give the first explicit constructions
of subgaussian samplers (and in fact averaging samplers for the broader class of subexponential
functions) that match the best known constructions of averaging samplers for [0, 1]-bounded functions
in the regime of parameters where the approximation error ε and failure probability δ are subconstant.
Our constructions are established via an extension of the standard notion of randomness extractor
(Nisan and Zuckerman, JCSS’96) where the error is measured by an arbitrary divergence rather than
total variation distance, and a generalization of Zuckerman’s equivalence (Random Struct. Alg.’97)
between extractors and samplers. We believe that the framework we develop, and specifically the
notion of an extractor for the Kullback–Leibler (KL) divergence, are of independent interest. In
particular, KL-extractors are stronger than both standard extractors and subgaussian samplers, but
we show that they exist with essentially the same parameters (constructively and non-constructively)
as standard extractors.

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness
extractors; Theory of computation → Pseudorandomness and derandomization; Mathematics of
computing → Information theory

Keywords and phrases averaging samplers, subgaussian samplers, randomness extractors, Kullback–
Leibler divergence

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.59

Category RANDOM

Related Version The full version of this paper is available at https://arxiv.org/abs/1904.08391 [1].

Funding Rohit Agrawal: Supported by the Department of Defense (DoD) through the National
Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

Acknowledgements The author would like to thank Jarosław Błasiok for suggesting the problem of
constructing subgaussian samplers and for helpful discussions and feedback, Salil Vadhan for many
helpful discussions and his detailed feedback on this writeup, and the anonymous reviewers for their
helpful comments and feedback.

1 Introduction

1.1 Averaging samplers
Averaging (or oblivious) samplers, introduced by Bellare and Rompel [6], are one of the main
objects of study in pseudorandomness. Used to approximate the mean of a [0, 1]-valued
function with minimal randomness and queries, an averaging sampler takes a short random
seed and produces a small set of correlated points such that any given [0, 1]-valued function
will (with high probability) take approximately the same mean on these points as on the
entire space. Formally,

© Rohit Agrawal;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 59; pp. 59:1–59:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5563-7402
https://rohitagr.com
mailto:rohitagr@seas.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.59
https://arxiv.org/abs/1904.08391
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Samplers and Extractors for Unbounded Functions

I Definition 1.1 ([6]). A function Samp : {0, 1}n → ({0, 1}m)D is a (δ, ε) averaging sampler
if for all f : {0, 1}m → [0, 1], it holds that

Pr
x∼Un

[∣∣∣∣∣ 1
D

D∑
i=1

f(Samp(x)i)− E[f(Um)]

∣∣∣∣∣ > ε

]
≤ δ,

where Un is the uniform distribution on {0, 1}n. The number n is the randomness complexity
of the sampler, and D is the sample complexity. A sampler is explicit if Samp(x)i can be
computed in time poly(n,m, logD).

Traditionally, averaging samplers have been used in the context of randomness-efficient
error reduction for algorithms and protocols, where the function f is the indicator of a set
({0, 1}-valued), or more generally the acceptance probability of an algorithm or protocol
([0, 1]-valued). There has been significant effort in the literature to establish optimal explicit
and non-explicit constructions of samplers, which we summarize in Table 1. We recommend
the survey of Goldreich [17] for more details, especially regarding non-averaging samplers1.

Table 1 Best known constructions of averaging samplers for [0, 1]-valued functions.

Key Idea Randomness complexity n Sample complexity D Best regime
Pairwise-

independent
Expander Neighbors

[19]

m+O(log(1/δ) + log(1/ε)) O
(

1
δε2

)
δ = Ω(1)

Ramanujan
Expander

Neighborsa) [22, 19]

m O
(

1
δε2

)
δ = Ω(1)

Extractors
[40, 19, 30, 20]

m+ (1 + α) · log(1/δ)
any constant α > 0

poly(log(1/δ), 1/ε) ε, δ = o(1)

Expander Walk
Chernoff [16]

m+O(log(1/δ)/ε2) O
(log(1/δ)

ε2

)
ε = Ω(1)

Pairwise
Independence [12]

O(m) O
(

1
δε2

)
None, but simple

Non-Explicit [40] m+ log(1/δ)− log log(1/δ)
+O(1)

O
(log(1/δ)

ε2

)
All

Lower Bound
[11, 40, 27]

m+ log(1/δ) + log(1/ε)
− log(D)−O(1)

Ω
(log (1/δ)

ε2

)
N/A

a) Requires explicit constructions of Ramanujan graphs.

However, averaging samplers can also have uses beyond bounded functions: Błasiok [9],
motivated by an application in streaming algorithms, introduced the notion of a subgaussian
sampler, which he defined as an averaging sampler for functions f : {0, 1}m → R such that
f(Um) is a subgaussian random variable. Since subgaussian random variables have strong tail
bounds, subgaussian functions from {0, 1}m have a range contained in an interval of length
O(
√
m), and thus one can construct a subgaussian sampler from a [0, 1]-sampler by simply

scaling the error ε by a factor of O(
√
m). Unfortunately, looking at Table 1 one sees that this

1 A non-averaging sampler is an algorithm Samp which makes oracle queries to f and outputs an estimate
of its average which is good with high probability, but need not simply output the average of f ’s values
on the queried points.

R. Agrawal 59:3

induces a multiplicative dependence on m in the sample complexity, and for the expander
walk sampler induces a dependence of m log(1/δ) in the randomness complexity. This loss
can be avoided for some samplers, such as the sampler of Chor and Goldreich [12] based on
pairwise independence (as its analysis requires only bounded variance) and (as we will show)
the Ramanujan Expander Neighbor sampler of [22, 19], but Błasiok showed [8] that the
expander-walk sampler does not in general act as a subgaussian sampler without reducing the
error to o(1). We remark briefly that the median-of-averages sampler of Bellare, Goldreich,
and Goldwasser [5] still works and is optimal up to constant factors in the subgaussian
setting (since the underlying pairwise independent sampler works), but it is not an averaging
sampler1, and matching its parameters with an averaging sampler remains open in general
even for [0, 1]-valued functions.

One of the contributions of this work is to give explicit averaging samplers for subgaussian
functions (in fact even for subexponential functions that satisfy weaker tail bounds) matching
the extractor-based samplers for [0, 1]-valued functions in Table 1 (up to the hidden polynomial
in the sample complexity). This achieves the best parameters currently known in the regime
of parameters where ε and δ are both subconstant, and in particular has no dependence on m
in the sample complexity. We also show non-constructively that subexponentially samplers
exist with essentially the same parameters as [0, 1]-valued samplers.

I Theorem 1.2 (Informal version of Theorem 6.1). For every integer m ∈ N and 1 > δ, ε > 0,
there is an explicit subgaussian (in fact subexponential) sampler with randomness complexity
n = m+O(log(1/δ)) and sample complexity D = poly(log(1/δ), 1/ε).

In the full version of this work [1], we show also that for every m ∈ N, 1 > δ, ε > 0, and
α > 0, there is a function Samp : {0, 1}n → ({0, 1}m)D that is:

an explicit subexponential sampler with randomness complexity n = m+ (1 + α) · log(1/δ)
and sample complexity D = poly(log(1/δ), 1/ε).
a non-constructive subexponential sampler with randomness complexity n = m+log(1/δ)−
log log(1/δ) +O(1) and sample complexity D = O(log(1/δ)/ε2).

1.2 Randomness extractors
To prove Theorem 1.2, we develop a corresponding theory of generalized randomness extractors
which we believe is of independent interest. For bounded functions, Zuckerman [40] showed
that averaging samplers are essentially equivalent to randomness extractors, and in fact
several of the best-known constructions of such samplers arose as extractor constructions.
Formally, a randomness extractor is defined as follows:

I Definition 1.3 (Nisan and Zuckerman [26]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m

is said to be a (k, ε) extractor if for every distribution X over {0, 1}m satisfying 2−k ≥
maxx∈{0,1}n Pr[X = x], the distributions Ext(X,Ud) and Um are ε-close in total variation
distance. Equivalently, for all f : {0, 1}m → [0, 1] it holds that E[f(Ext(X,Ud))]−E[f(Um)] ≤
ε. The number d is called the seed length, and m the output length.

The formulation of Definition 1.3 in terms of [0, 1]-valued functions implies that extractors
produce an output distribution that is indistinguishable from uniform by all bounded functions
f . It is therefore natural to consider a variant of this definition for a different set F of test
functions f : {0, 1}m → R which need not be bounded.

I Definition 1.4 (Special case of Definition 3.1 using Definition 2.5). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is said to be a (k, ε) extractor for a set of real-valued functions F
from {0, 1}m if for every distribution X over {0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k
and every f ∈ F , it holds that E[f(Ext(X,Ud))]− E[f(Um)] ≤ ε.

APPROX/RANDOM 2019

59:4 Samplers and Extractors for Unbounded Functions

We show that much of the theory of extractors and samplers carries over to this more
general setting. In particular, we generalize the connection of Zuckerman [40] to show
that extractors for a class of functions of F are also samplers for that class, along with
the converse (though as for total variation distance, there is some loss of parameters in
this direction). Thus, to construct a subgaussian sampler it suffices (and is preferable) to
construct a corresponding extractor for subgaussian test functions, which is how we prove
Theorem 1.2.

Unfortunately, the distance induced by subgaussian test functions is not particularly
pleasant to work with: for example the point masses on 0 and 1 in {0, 1} are O(1) apart,
but embedding them in the larger universe {0, 1}m leads to distributions which are Θ(

√
m)

apart. We solve this problem by constructing extractors for a stronger notion, the Kullback–
Leibler (KL) divergence, equivalently, extractors whose output is required to have very high
Shannon entropy.

I Definition 1.5 (Special case of Definition 3.1 using KL divergence). A function Ext :
{0, 1}n×{0, 1}d → {0, 1}m is said to be a (k, ε) KL-extractor if for every distribution X over
{0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k it holds that KL(Ext(X,Ud) ‖ Um) ≤ ε, or
equivalently H(Ext(X,Ud)) ≥ m− ε.

A strong form of Pinsker’s inequality (e.g. [10, Lemma 4.18]) implies that a (k, ε2) KL-
extractor is also a (k, ε) extractor for subgaussian test functions. The KL divergence has the
advantage that is nonincreasing under the application of functions (the famous data-processing
inequality), and although it does not satisfy a traditional triangle inequality, it does satisfy a
similar inequality when one of the segments satisfies stronger `2 bounds. These properties
allow us to show in the full version of this paper that the zig-zag product for extractors
of Reingold, Wigderson, and Vadhan [30] also works for KL-extractors, and therefore to
construct KL-extractors with seed length depending on n and k only through the entropy
deficiency n− k of X rather than n itself, which in the sampler perspective corresponds to
a sampler with sample complexity depending on the failure probability δ rather than the
universe size 2m. Hence, we prove Theorem 1.2 by constructing corresponding KL-extractors.

I Theorem 1.6 (Informal version of Theorem 6.5). For all integers m and 1 > δ, ε > 0 there
is an explicit (k, ε) KL-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with n = m+O(log(1/δ)),
k = n− log(1/δ), and d = O(log log(1/δ) + log(1/ε)).

In the full version, we show that n can be as small as m + (1 + α) · log(1/δ) for any
constant α > 0.

Though the above theorem is most interesting in the high min-entropy regime where
n − k = o(n), we also show the existence of KL-extractors matching most of the existing
constructions of total variation extractors. In particular, we note that extractors for `2
are immediately KL-extractors without loss of parameters, and also that any extractor
can be made a KL-extractor by taking slightly smaller error, so that the extractors of
Guruswami, Umans, and Vadhan [20] can be taken to be KL-extractors with essentially the
same parameters.

Furthermore, in addition to our explicit constructions, we also show non-constructively
that KL-extractors (and hence subgaussian extractors) exist with very good parameters:

I Theorem 1.7 (Formal statement and proof in full version [1]). For any integers k < n ∈ N
and 1 > ε > 0 there is a (k, ε) KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
log(n− k) + log(1/ε) +O(1) and m = k + d− log(1/ε)−O(1).

R. Agrawal 59:5

One key thing to note about the nonconstructive KL extractors of the above theorem
is that they incur an entropy loss of only 1 · log(1/ε), whereas total variation extractors
necessarily incur entropy loss 2 · log(1/ε) by the lower bound of Radhakrishnan and Ta-Shma
[27]. In particular, by Pinsker’s inequality, (k, ε2) KL-extractors with the above parameters
are also optimal (k, ε) standard (total variation) extractors [27], so that one does not lose
anything by constructing a KL-extractor rather than a total variation extractor. We also
remark that the above theorem gives subgaussian samplers with better parameters than a
naive argument that a random function should directly be a subgaussian sampler, as it avoids
the need to take a union bound over O(MM) = O(2M logM) test functions (for M = 2m)
which results in additional additive log log factors in the randomness complexity.

In the total variation setting, there are only a couple of methods known to explicitly
achieve optimal entropy loss 2 · log(1/ε), the easiest of which is to use an extractor which
natively has this sort of loss, of which only three are known: An extractor from random
walks over Ramanujan Graphs due to Goldreich and Wigderson [19], the Leftover Hash
Lemma due to Impagliazzo, Levin, and Luby [21] (see also [23, 7]), and the extractor based
on almost-universal hashing of Srinivasan and Zuckerman [33]. Unfortunately, all of these
are `2 extractors and so must have seed length linear in min(n− k,m) (cf. [35, Problem 6.4]),
rather than logarithmic in n− k as known non-constructively. The other alternative is to
use the generic reduction of Raz, Reingold, and Vadhan [28] which turns any extractor Ext
with entropy loss ∆ into one with entropy loss 2 · log(1/ε) + O(1) by paying an additive
O(∆ + log(n/ε)) in seed length. We show in the full version of this paper that all of these
`2 extractors and the [28] transformation also work to give KL-extractors with entropy loss
1 · log(1/ε) + O(1), so that applications which require minimal entropy loss can also use
explicit constructions of KL-extractors.

1.3 Future directions
Broadly speaking, we hope that the perspective of KL-extractors will bring new tools (perhaps
from information theory) to the construction of extractors and samplers. For example, since
KL-extractors can have seed length with dependence on ε of only 1 · log(1/ε), trying to
explicitly construct a KL-extractor with seed length 1 · log(1/ε) + o(min(n− k, k)) may also
shed light on how to achieve optimal dependence on ε in the total variation setting.

In the regime of constant ε = Ω(1), we do not have explicit constructions of subgaussian
samplers matching the expander-walk sampler of Gillman [16] for [0, 1]-valued functions,
which achieves randomness complexity m+O(log(1/δ)) and sample complexity O(log(1/δ)),
as asked for by Błasiok [9]. From the extractor point-of-view, it would suffice (by the
reduction of [19, 30] that we analyze for KL-extractors) to construct explicit linear degree
KL-extractors with parameters matching the linear degree extractor of Zuckerman [41],
i.e. with seed length d = log(n) + O(1) and m = Ω(k) for ε = Ω(1). A potentially easier
problem, since the Zuckerman linear degree extractor is itself based on the expander-walk
sampler, could be to instead match the parameters of the near-linear degree extractors of
Ta-Shma, Zuckerman, and Safra [34] based on Reed–Muller codes, thereby achieving sample
complexity O(log(1/δ) · poly log log(1/δ)).

Finally, we hope that KL-extractors can also find uses beyond being subgaussian samplers
and total variation extractors: for example it seems likely that there are applications (perhaps
in coding or cryptography, cf. [4]) where it is more important to have high Shannon entropy
in the output than small total variation distance to uniform, in which case one may be able
to use (k, ε) KL-extractors with entropy loss only 1 · log(1/ε) directly, rather than a total
variation extractor or (k, ε2) KL-extractor with entropy loss 2 · log(1/ε).

APPROX/RANDOM 2019

59:6 Samplers and Extractors for Unbounded Functions

2 Preliminaries

2.1 (Weak) statistical divergences and metrics
Our results in general will require very few assumptions on notions of “distance” between
probability distributions, so we will give a general definition and indicate in our theorems
when we need which assumptions.

I Definition 2.1. A weak statistical divergence (or simply weak divergence) on a finite set
X is a function D from pairs of probability distributions over X to R ∪ {±∞}. We write
D(P ‖ Q) for the value of D on distributions P and Q. Furthermore
1. If D(P ‖ Q) ≥ 0 with equality iff P = Q, then D is positive-definite, and we simply call

D a divergence.
2. If D(P ‖ Q) = D(Q ‖ P), then D is symmetric.
3. If D(P ‖ R) ≤ D(P ‖ Q) + D(Q ‖ R), then D satisfies the triangle inequality.
4. If D(λP1 + (1− λ)P2 ‖ λQ1 + (1− λ)Q2) ≤ λD(P1 ‖ Q1) + (1 − λ) D(P2 ‖ Q2) for all

λ ∈ [0, 1], then D is jointly convex. If this holds only when Q1 = Q2 then D is convex in
its first argument.

5. If D is defined on all finite sets Y and for all functions f : X → Y the divergence
is nonincreasing under f , that is D(f(P) ‖ f(Q)) ≤ D(P ‖ Q), then D satisfies the
data-processing inequality.

If D is positive-definite, symmetric, and satisfies the triangle inequality, then it is called a
metric.

I Example 2.2. The `p distance for p > 0 between probability distributions over X is

d`p(P,Q) def=
(∑
x∈X

∣∣Px −Qx∣∣p)1/p

and is positive-definite and symmetric. Furthermore, for p ≥ 1 it satisfies the triangle
inequality (and so is a metric), and is jointly convex. The `p distance is nonincreasing in p.

I Example 2.3. The total variation distance is

dTV (P,Q) def= 1
2d`1(P,Q) = sup

S⊆X

∣∣∣Pr[P ∈ S]− Pr[Q ∈ S]
∣∣∣ = sup

f∈[0,1]X

(
E[f(P)]− E[f(Q)]

)
and is a jointly convex metric that satisfies the data-processing inequality.

I Example 2.4 (Rényi Divergences [31]). For two probability distributions P and Q over
a finite set X , the Rényi α-divergence or Rényi divergence of order α is defined for real
0 < α 6= 1 by

Dα(P ‖ Q) def= 1
α− 1 log

(∑
x∈X

Pαx
Qα−1
x

)

where the logarithm is in base 2 (as are all logarithms in this paper unless noted otherwise).
The Rényi divergence is continuous in α and so is defined by taking limits for α ∈ {0, 1,∞},
giving for α = 0 the divergence D0(P ‖ Q) def= log(1/Prx∼Q[Px 6= 0]), for α = 1 the Kullback–
Leibler (or KL) divergence

KL(P ‖ Q) def= D1(P ‖ Q) =
∑
x∈X

Px log Px
Qx

,

R. Agrawal 59:7

and for α =∞ the max-divergence D∞(P ‖ Q) def= maxx∈X log Px
Qx

. The Rényi divergence is
nondecreasing in α. Furthermore, when α ≤ 1 the Rényi divergence is jointly convex, and
for all α the Rényi divergence satisfies the data-processing inequality [37].

When Q = UX is the uniform distribution over the set X , then for all α, Dα(P ‖ UX) =
log|X | − Hα(P) where 0 ≤ Hα(P) ≤ log|X | is called the Rényi α-entropy of P . For α = 0,
H0(P) = log|Supp(P)| is the max-entropy of P , for α = 1, H1(P) =

∑
x∈X Px log(1/Px) is

the Shannon entropy of P , and for α =∞, H∞(P) = minx∈X log(1/Px) is the min-entropy
of P .

For α = 2, the Rényi 2-entropy can be expressed in terms of the `2-distance to uniform:

log|X | −H2(P) = D2(P ‖ UX) = log
(
1 + |X | · d`2(P,UX)2)

2.2 Statistical weak divergences from test functions
Zuckerman’s connection [40] between samplers for bounded functions and extractors for
total variation distance is based on the following standard characterization of total variation
distance as the maximum distinguishing advantage achieved by bounded functions,

dTV (P,Q) = sup
f∈[0,1]X

E[f(P)]− E[f(Q)].

By considering an arbitrary class of functions in the supremum, we get the following weak
divergence:

I Definition 2.5. Given a finite X and a set of real-valued functions F ⊆ RX , the F -distance
on X between probability measures on X is denoted by DF and is defined as

DF (P ‖ Q) def= sup
f∈F

(
E[f(P)]− E[f(Q)]

)
= sup
f∈F

D{f}(P ‖ Q),

where we use a superscript to avoid confusion with the Csiszár-Morimoto-Ali-Silvey f-
divergences [13, 24, 2].

We call the set of functions F symmetric if for all f ∈ F there is c ∈ R and g ∈ F such
that g = c− f , and distinguishing if for all P 6= Q there exists f ∈ F with D{f}(P ‖ Q) > 0.

I Example 2.6. If F = {0, 1}X or F = [0, 1]X , then DF is exactly the total variation
distance.

I Remark 2.7. An equivalent definition of F being symmetric is that for all f ∈ F there
exists g ∈ F with D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P) for all distributions P and
Q. Hence, one might also consider a weaker notion of symmetry that reverses quantifiers,
where F is “weakly-symmetric” if for all f ∈ F and distributions P and Q there exists g ∈ F
such that D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P). However, such a class F gives
exactly the same weak divergence DF as its “symmetrization” F = F ∪ {−f | f ∈ F}, so we
do not need to introduce this more complex notion.
I Remark 2.8. By identifying distributions with their probability mass function, one can
realize E[f(P)]−E[f(Q)] as an inner product 〈P −Q, f〉. Definition 2.5 can thus be written
as DF (P ‖ Q) = supf∈F 〈P −Q, f〉, which is essentially the notion of indistinguishability
considered in several prior works, (see e.g. the survey of Reingold, Trevisan, Tulsiani, and
Vadhan [29]), but without requiring all f to be bounded.
I Remark 2.9. For simplicity, all our probabilistic distributions are given only for random
variables and distributions over finite sets as this is all we need for our application. A more
general version of Definition 2.5 has been studied by e.g. Zolotarev [39] and Müller [25] and
is commonly used in developments of Stein’s method in probability.

APPROX/RANDOM 2019

59:8 Samplers and Extractors for Unbounded Functions

We now note some basic properties of DF .

I Lemma 2.10. Let F ⊆ RX be a set of real-valued functions over a finite set X . Then DF

satisfies the triangle inequality and is jointly convex, and
1. if F is symmetric then DF is symmetric and

DF (P ‖ Q) = sup
f∈F

∣∣∣E[f(P)]− E[f(Q)]
∣∣∣ ≥ 0,

2. if F is distinguishing then DF is positive-definite,
so that if F is both symmetric and distinguishing then DF is a jointly convex metric on prob-
ability distributions over X , in which case we also use the notation dF (P,Q) def= DF (P ‖ Q).

Furthermore, the notion of dual norm has an appealing interpretation in this framework
via Remark 2.8, generalizing the fact that total variation distance corresponds to [0, 1]-valued
test functions (or equivalently that `1 distance corresponds to to [−1, 1]-valued functions).

I Proposition 2.11. Let 1 ≤ p, q ≤ ∞ be Hölder conjugates (meaning 1/p+1/q = 1), and let

Mq
def=
{
f : {0, 1}m → R

∣∣∣ ‖f(Um)‖q
def= E[|f(Um)|q]1/q ≤ 1

}
be the set of real-valued functions from {0, 1}m with bounded q-th moments. Then d`p =
2−m/q · dMq

, in the sense that for all probability distributions A and B over {0, 1}m it holds
that d`p(A,B) = 2−m/q · dMq

(A,B). In particular, taking p = 1 and q = ∞ recovers the
result for `1 (equivalently total variation) distance.

Proof Sketch. As mentioned this is just the standard fact that the `p and `q norms are dual,
but for completeness we include a proof in Appendix A. J

3 Extractors for weak divergences and connections to samplers

3.1 Definitions
We now use this machinery to extend the notion of an extractor due to Nisan and Zuckerman
[26] and the average-case variant of Dodis, Ostrovsky, Reyzin, and Smith [14].

I Definition 3.1 (Extends Definition 1.4). Let D be a weak divergence on the set {0, 1}m,
and Ext : {0, 1}n × {0, 1}d → {0, 1}m. Then if for all distributions X over {0, 1}n with
H∞(X) ≥ k it holds that
1. D(Ext(X,Ud) ‖ Um) ≤ ε, then Ext is said to be a (k, ε) extractor for D, or a (k, ε)

D-extractor.
2. Es∼Ud [D(Ext(X, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) strong extractor for D, or

a (k, ε) strong D-extractor.

Furthermore, if for all joint distributions (Z,X) where X is distributed over {0, 1}n with
H̃∞(X|Z) def= log

(
1/Ez∼Z

[
2−H∞(X|Z=z)]) ≥ k, it holds that

3. Ez∼Z [D(Ext(X|Z=z, Ud) ‖ Um) ≤ ε], then Ext is said to be a (k, ε) average-case extractor
for D, or a (k, ε) average-case D-extractor.

4. Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) average-case strong
extractor for D, or a (k, ε) average-case strong D-extractor.

R. Agrawal 59:9

I Remark 3.2. By taking D to be the total variation distance we recover the standard
definitions of extractor and strong extractor due to [26] and the definition of average-case
extractor due to [14].

However, our definitions are phrased slightly differently for strong and average-case
extractors as an expectation rather than a joint distance, that is, for strong average-case
extractors we require a bound on the expectation Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] rather
than a bound on D(Z,Ud,Ext(X,Ud) ‖ Z,Ud, Um). In our setting, the weak divergence D
need not be defined over the larger joint universe, but it is defined for all random variables
over {0, 1}m. In the case of dTV and KL divergence, both definitions are equivalent (for KL
divergence, this is an instance of the chain rule).

In the full version of this work [1] we include more discussion about this definition, and
also generalize a result of Vadhan [35, Problem 6.8] showing that all DF -extractors are
average-case with only a constant factor loss in the error parameter.

We also give the natural definition of averaging samplers for arbitrary classes of functions
F extending Definition 1.1, along with the strong variant of Zuckerman [40].

I Definition 3.3. Given a class of functions F : {0, 1}m → R, a function Samp : {0, 1}n →
({0, 1}m)D is said to be a (δ, ε) strong averaging sampler for F or a (δ, ε) strong averaging
F-sampler if for all f ∈ F , it holds that

Pr
x∼Un

[
E

i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

]
≤ δ

where [D] = {1, . . . , D}. If this holds only when f1 = · · · = fD, then it is called a (non-strong)
(δ, ε) averaging sampler for F or (δ, ε) averaging F-sampler. We say that Samp is a (δ, ε)
strong absolute averaging sampler for F if it also holds that

Pr
x∼Un

[∣∣∣∣ E
i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]∣∣∣∣ > ε

]
≤ δ.

with the analogous definition for non-strong samplers.

I Remark 3.4. We separated a single-sided version of the error bound in Definition 3.3 as in
[35], as it makes the connection between extractors and samplers cleaner and allows us to be
specific about what assumptions are needed. Note that if F is symmetric then every (δ, ε)
(strong) sampler for F is a (2δ, ε) (strong) absolute sampler for F , recovering the standard
notion up to a factor of 2 in δ.

3.2 Equivalence of extractors and samplers
We now show that Zuckerman’s connection [40] does indeed generalize to this broader setting
as promised.

I Theorem 3.5. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an (n − log(1/δ), ε)-extractor
(respectively strong extractor) for the weak divergence DF defined by a class of test functions
F : {0, 1}m → R as in Definition 2.5. Then the function Samp : {0, 1}n → ({0, 1}m)D for
D = 2d defined by Samp(x)i = Ext(x, i) is a (δ, ε)-sampler (respectively strong sampler)
for F .

Proof sketch. The proof is given in Appendix A and is similar to that of Zuckerman [40].
The key idea is that for any function f ∈ F , the set of seeds Bf which are bad for Samp with
respect to f must be small, as otherwise E

[
f(Ext(UBf , Ud))

]
− E[f(Um)] > ε contradicting

the extractor property, where UBf is uniform over the set Bf . J

APPROX/RANDOM 2019

59:10 Samplers and Extractors for Unbounded Functions

I Remark 3.6. Hölder’s inequality implies that an extractor for `p with error ε · 2−m(p−1)/p

is also an `1 extractor and thus [−1, 1]-averaging sampler with error ε. Proposition 2.11
and Theorem 3.5 show that they are in fact samplers for the much larger class of functions
Mp/(p−1) with bounded p/(p− 1) moments (rather than just ∞ moments), also with error ε.

Furthermore, if all the functions in F have bounded deviation from their mean (for
example, subgaussian functions from f : {0, 1}m → R have such a bound of O(

√
m) by the

tail bounds from Lemma 4.3), then we also have a partial converse that recovers the standard
converse in the case of total variation distance.

I Theorem 3.7. Let F be a class of functions F ⊂ {0, 1}m → R with finite maximum
deviation from the mean, meaning max dev(F) def= supf∈F maxx∈{0,1}n

(
f(x)− E[f(Um)]

)
<

∞. Then given a (δ, ε) F-sampler (respectively (δ, ε) strong F-sampler) Samp : {0, 1}n →
({0, 1}m)D, the function Ext : {0, 1}n×{0, 1}d → {0, 1}m for d = logD defined by Ext(x, i) =
Samp(x)i is a

(
k, ε+ δ · 2n−k ·max dev(F)

)
DF -extractor (respectively strong DF -extractor)

for every 0 ≤ k ≤ n.
In particular, Ext is an

(
n− log(1/δ) + log(1/η), ε+ η ·max dev(F)

)
average-case DF -

extractor (respectively strong average-case DF -extractor) for every δ ≤ η ≤ 1.

Proof sketch. The proof is given in Appendix A and is again similar to that of Zuckerman
[40]. The key idea is that for any function f ∈ F , since most x ∈ {0, 1}n are good for
Samp, for any source X of sufficient min-entropy, the probability over x from X that
E[f(Ext(x, Ud))]−E[f(Um)] > ε must be at most η, and in this failure case we can fall back
on the trivial bound of max dev(F). J

4 Subgaussian distance and connections to other notions

Now that we’ve introduced the general machinery we need, we can go back to our mo-
tivation of subgaussian samplers. We will need some standard facts about subgaussian
and subexponential random variables, we recommend the book of Vershynin [38] for an
introduction.

I Definition 4.1. A real-valued mean-zero random variable Z is said to be subgaussian
with parameter σ if for every t ∈ R the moment generating function of Z is bounded as
lnE

[
etZ
]
≤ t2σ2

2 . If this is only holds for |t| ≤ b then Z is said to be (σ, b)-subgamma, and
if Z is (σ, 1/σ)-subgamma then Z is said to be subexponential with parameter σ.

I Remark 4.2. There are many definitions of subgaussian (and especially subexponential)
random variables in the literature, but they are all equivalent up to constant factors in σ
and only affect constants already hidden in big-O’s.

I Lemma 4.3. Let Z be a real-valued random variable. Then
1. (Hoeffding’s lemma) If Z is bounded in the interval [0, 1], then Z − E[Z] is subgaussian

with parameter 1/2.
2. If Z is mean-zero, then Z is subgaussian (respectively subexponential) with parameter σ if

and only if cZ is subgaussian (respectively subexponential) with parameter |c|σ for every
c 6= 0.

Furthermore, if Z is mean-zero and subgaussian with parameter σ, then
1. For all t > 0, max

(
Pr[Z > t],Pr[Z < −t]

)
≤ e−t2/2σ2 .

2. ‖Z‖p
def= E[|Z|p]1/p ≤ 2σ√p for all p ≥ 1.

3. Z is subexponential with parameter σ.

R. Agrawal 59:11

We are now in a position to formally define the subgaussian distance.

I Definition 4.4. For every finite set X , we define the set GX of subgaussian test functions
on X (respectively the set EX of subexponential test functions on X) to be the set of functions
f : X → R such that the random variable f(UX) is mean-zero and subgaussian (respectively
subexponential) with parameter 1/2. Then GX and EX are symmetric and distinguishing, so
by Lemma 2.10 the respective distances induced by GX and EX are jointly convex metrics
called the subgaussian distance and subexponential distance respectively and are denoted as
dG(P,Q) and dE(P,Q).

I Remark 4.5. We choose subgaussian parameter 1/2 in Definition 4.4 as by Hoeffding’s
lemma, all functions f : {0, 1}m → [0, 1] have that f(Um)− E[f(Um)] is subgaussian with
parameter 1/2, so this choice preserves the same “scale” as total variation distance. However,
the choice of parameter is essentially irrelevant by linearity, as different choices of parameter
simply scale the metric dG .

Note that absolute averaging samplers for G{0,1}m from Definition 3.3 are exactly sub-
gaussian samplers as defined in the introduction. Thus, by Remark 3.4 and Theorem 3.5,
to construct subgaussian samplers it is enough to construct extractors for the subgaussian
distance dG .

4.1 Composition
Unfortunately, the subgaussian distance has a major disadvantage compared to total variation
distance that complicates extractor construction: it does not satisfy the data-processing
inequality, that is, there are probability distributions P and Q over a set A and a function
f : A→ B such that

dG(f(P), f(Q)) 6≤ dG(P,Q).

This happens because subgaussian distance is defined by functions which are required to be
subgaussian only with respect to the uniform distribution. A simple explicit counterexample
comes from taking f : {0, 1}1 → {0, 1}m defined by x 7→ (x, 0m−1) and taking P to be the
point mass on 0 and Q the point mass on 1. Their subgaussian distance in {0, 1}1 is obviously
O(1), but the subgaussian distance of f(P) and f(Q) in {0, 1}m is Θ(

√
m).

The reason this matters because a standard operation (cf. Nisan and Zuckerman [26];
Goldreich and Wigderson [19]; Reingold, Vadhan, and Wigderson [30]) in the construction of
samplers and extractors for bounded functions is to do the following: given extractors

Extout : {0, 1}n × {0, 1}d → {0, 1}m Extin : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}d,

define Ext : {0, 1}n+n′
× {0, 1}d

′
→ {0, 1}m by

Ext
(
(x, y), s

)
= Extout

(
x,Extin(y, s)

)
.

The reason this works for total variation distance is exactly the data-processing inequality: if
Y has enough min-entropy given X, then Extin(Y,Ud′) will be close in total variation distance
to Ud, and by the data-processing inequality for total variation distance this closeness is not
lost under the application of Extout. The assumption that Y has min-entropy given X means
that (X,Y) is a so-called block-source, and is implied by (X,Y) having enough min-entropy
as a joint distribution. From the sampler perspective, this construction uses the inner sampler
Extin to subsample the outer sampler. On the other hand, for subgaussian distance, the

APPROX/RANDOM 2019

59:12 Samplers and Extractors for Unbounded Functions

distribution Extin(Y,Ud′) can be ε-close to uniform but still have some element with excess
probability mass Ω(ε/

√
d), and this element (seed) when mapped by Extout can retain2 this

excess mass in {0, 1}m, which results in subgaussian distance Θ(ε
√
m/d) � ε. Similarly,

from the sampler perspective, even when the outer sampler Extout is a good subgaussian
sampler for {0, 1}m, there is no reason that a good subgaussian sampler Extin for {0, 1}d

the seeds of Extout will preserve the larger sampler property when m� d.
Thus, since this composition operation is needed to construct high-min entropy extractors

with the desired seed length even for total variation distance, to construct such extractors for
subgaussian distance we need to bypass this barrier. The natural approach is to construct
extractors for a better-behaved weak divergence that bounds the subgaussian distance.

4.2 Connections to other weak divergences
Therefore, to aid in extractor construction, we show how dG relates to other statistical weak
divergences (though for space reasons, we defer all proofs to Appendix A).

Most basically, the subgaussian distance over {0, 1}m differs from total variation distance
up to a factor of O(

√
m).

I Lemma 4.6. Let P and Q be distributions on {0, 1}m. Then

dTV (P,Q) ≤ dG(P,Q) ≤
√

2 ln 2 ·m · dTV (P,Q)

While this allows constructing subgaussian extractors and samplers from total variation
extractors, as discussed in the introduction the fact that the upper bound depends on m
leads to suboptimal bounds. By starting with a stronger measure of error, we pay a much
smaller penalty.

I Lemma 4.7. Let P and Q be distributions on {0, 1}m. Then for every α > 0

2dTV (P,Q) = d`1(P,Q) ≤ 2mα/(1+α) · d`1+α(P,Q)

dG(P,Q) ≤ 2mα/(1+α)
√

1 + 1
α
· d`1+α(P,Q)

In particular, that there is only an additional
√

1 + 1/α factor when moving to subgaussian
distance compared to total variation, which in particular does not depend on m and is
constant for constant α. We give the proof in Appendix A.

One downside of starting with bounds on `1+α is that, extending a well-known linear
seed length linear bound for `2-extractors (e.g. [35, Problem 6.4]), we show in the full version
of this work [1] that for every 1 > α > 0, there is a constant cα > 0 such any `1+α extractor
with error smaller than cα · 2−mα/(1+α) requires seed length linear in α ·min(n− k,m), for
n− k the entropy deficiency and m the output length. One might hope that sending α to 0
would eliminate this linear lower bound but still bound the subgaussian distance, but phrased
this way sending α to 0 just results in a total variation extractor.

However, with a shift in perspective essentially the same approach works: by Example 2.4,
d`2(P,Um) ≤ ε · 2−m/2 implies D2(P ‖ Um) ≤ ε2/ ln 2, and there is an analogous linear seed
length lower bound on constant error D1+α extractors for every α > 0. In this case, however,
sending α to 0 results in the KL divergence, which does upper bound the subgaussian distance,
and in fact with the same parameters as for total variation distance.

2 Given a subgaussian extractor Ext with d ≥ log(m/ε), adding a single extra seed ∗ to Ext such that
Ext(x, ∗) = 0m results in a subgaussian extractor with error at most 2−d ·

√
2m+ ε ≤ 3ε by convexity

of dG and the fact that
∥∥dG{0,1}m

∥∥
∞
<
√

2m.

R. Agrawal 59:13

I Lemma 4.8 (cf. [10, Lemma 4.15], [18, Fact B.1]). Let P be a distribution on {0, 1}m. Then

dG(P,Um) ≤
√

ln 2
2 ·KL(P ‖ Um)

dE(P,Um) ≤

√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2

2 ·KL(P ‖ Um) + 1
4 if KL(P ‖ Um) > 1

2 ln 2

where these bounds are concave in KL(P ‖ Um). In the reverse direction, it holds that

KL(P ‖ Um) ≤ m · dTV (P,Um) + h(dTV (P,Um))

where h(x) = x log(1/x) + (1− x) log(1/(1− x)) is the (concave) binary entropy function.

Due to space constraints, we defer the proof to Appendix A.

5 Extractors for KL divergence

Since by Lemma 4.8 the subgaussian distance can be bounded in terms of the KL divergence
to uniform, the following easy lemma shows that to construct subgaussian extractors it
suffices to construct extractors for KL divergence.

I Lemma 5.1. Let V1 and V2 be weak divergences on the set {0, 1}m and f : R → R be a
function such that V1(P ‖ UM) ≤ f(V2(P ‖ Um)) for all distributions P on {0, 1}m. Then if
f is increasing on (0, ε), every (k, ε) extractor Ext for V1 is also a (k, f(ε))-extractor for V2,
and if f is also concave, then if Ext is strong or average-case as a V1-extractor, it has the
same properties as a (k, f(ε)) extractor for V2.

Importantly, the KL divergence does not have the flaws of subgaussian distance discussed
in Section 4.1. For instance, the classic data-processing inequality says that KL divergence is
non-increasing under postprocessing by (possibly randomized) functions, and the chain rule
for KL divergence says that

KL(A,B ‖ X,Y) = KL(A ‖ X) + E
a∼A

[KL(B|A=a ‖ Y |X=a)]

for all distributions A, B, X, and Y , which implies for example that

E
s∼Ud

[KL(Ext(X, s) ‖ Um)] = KL(Ud,Ext(X,Ud) ‖ Ud, Um).

Furthermore, KL divergence satisfies a type of triangle inequality when combined with
higher Rényi divergences:

I Lemma 5.2 (cf. [36, Lemma 6.6]). Let P , Q, and R be distributions over a finite set X .
Then for all α > 0, it holds that

KL(P ‖ R) ≤
(

1 + 1
α

)
·KL(P ‖ Q) + D1+α(Q ‖ R)

We give the proof in Appendix A.

APPROX/RANDOM 2019

59:14 Samplers and Extractors for Unbounded Functions

5.1 Composition
These properties imply that composition does work as we want (without any loss depending
on the output length m) assuming we have extractors for KL and higher divergences.

I Theorem 5.3 (Composition for high min-entropy Rényi entropy extractors, cf. [19]). Suppose
1. Extout : {0, 1}n × {0, 1}d → {0, 1}m is an (n − log(1/δ), εout) extractor for D1+α with

α > 0,
2. Extin : {0, 1}n

′
× {0, 1}d

′
→ {0, 1}d is an (n′ − log(1/δ), εin) average-case KL-extractor,

and define Ext : {0, 1}n+n′
× {0, 1}d

′
→ {0, 1}m by Ext

(
(x, y), s

)
= Extout(x,Extin(y, s)).

Then Ext is an (n+ n′ − log(1/δ), εout + (1 + 1/α) · εin) extractor for KL.

We prove this in Appendix A.

5.2 Further theory
The reader is advised to consult the full version of this paper [1] for a more thorough
development of the theory of KL-extractors, including an extension of the zig-zag product
for extractors (Reingold, Vadhan, and Wigderson [30]), which allows us to avoid the log(1/δ)
entropy loss inherent in Theorem 5.3. We also give lower bounds, an optimal non-explicit
construction, and interpretations of several existing extractor constructions as KL-extractors.

6 Constructions of subgaussian samplers

We can now establish a weak version of our explicit construction of subgaussian samplers
with sample complexity having no dependence on m and sample complexity matching the
best-known [0, 1]-valued sampler when ε and δ are subconstant (up to the hidden polynomial
in the sample complexity). Obtaining matching randomness complexity as well requires more
technology from KL-extractors to develop, and as such we defer the proof to the full version
of this paper [1].

I Theorem 6.1. For all m ∈ N, 1 > ε, δ > 0, and α > 0 there is an explicit (δ, ε)
absolute averaging sampler for subgaussian and subexponential functions Samp : {0, 1}n →
({0, 1}m)D with sample complexity D = poly(log(1/δ), 1/ε) and randomness complexity
n = m+O(log(1/δ)).

I Remark 6.2. In the full version of this paper, we show for every constant α > 0 the
existence of an explicit absolute subexponential sampler with the same sample complexity
D = poly(log(1/δ), 1/ε) and randomness complexity n = m+ (1 + α) log(1/δ), and also an
analogous result for strong subexponential samplers.

We will use essentially the same construction used for bounded samplers in this regime,
combining the expander extractor of Goldreich and Wigderson [19] and an extractor with
logarithmic seed length. However, as described in Section 4.1, this construction does not
work for general subgaussian extractors, so we will instead use the analysis of Theorem 5.3.
This requires a D1+α-extractor for α > 0, for this we note (following [35]) that the extractor
of [19] is already an extractor for D2 (see the full version of this work [1] for more details).

I Theorem 6.3 ([19] [35, Discussion after Theorem 6.22]). For all k ≤ n ∈ N and 1/2 ≥ ε > 0
there is an explicit (k, ε) D2-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d = O(n− k + log(1/ε)) and output length m = n.

R. Agrawal 59:15

We also need an average-case KL-extractor, which we can construct by reducing the error in
the extractors of Guruswami–Umans–Vadhan [20]:

I Theorem 6.4 (Akin to [20, Theorem 1.5]). For every α, ε > 0 and integers k ≤ n,
there is an explicit average-case (k, ε)-KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d ≤ logn+Oα(log(k/ε)) and m ≥ (1− α)k.

Though Theorem 6.4 has seed length depending on n the input length, this is tolerable for
us since we will apply it to Extin in the composition of Theorem 5.3 with n = O(log(1/δ) +
log(1/ε)):

Proof. Let ε′ = min(ε,1/2)
48(m+log(1/ε)) so that m · 3ε′ + h(3ε′) ≤ ε, where h(x) = x log(1/x) + (1−

x) log(1/(1 − x)) is the binary entropy function. By [20, Theorem 1.5] and [35, Problem
6.8] there is an explicit (k, 3ε′) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d ≤
logn + Oα(log(k/ε′)) = logn + Oα(log(k/ε)) and m ≥ (1 − α)k. By Lemmas 4.8 and 5.1,
we also have that Ext is a (k,m · 3ε′ + h(3ε′)) average-case KL-extractor, and thus a (k, ε)
average-case KL-extractor as desired. J

I Theorem 6.5. For all integers m and δ, ε > 0 there is an explicit (k, ε)-KL-extractor
Ext : {0, 1}n × {0, 1}d → {0, 1}m with n = m + O(log(1/δ)), k = n − log(1/δ), and
d = O(log log(1/δ) + log(1/ε)).

Proof. Let Extout : {0, 1}m×{0, 1}dout → {0, 1}m the (m−log(1/δ), ε/3) be the D2-extractor
from Theorem 6.3 with dout = O(log(1/δ) + log(1/ε)), and letExtin : {0, 1}nin × {0, 1}din →
{0, 1}dout be the (nin − log(1/δ), ε/3) average-case KL-extractor from Theorem 6.4 with
output length dout, so that nin = O(log(1/δ)+log(1/ε)) and din = O(log log(1/δ)+log(1/ε)).

Then instantiating Theorem 5.3 with Extout and Extin gives an (n′ − log(1/δ), ε) KL-
extractor Ext′ : {0, 1}n

′
× {0, 1}d

′
→ {0, 1}m with n′ = m+ nin d

′ = din. The result follows
follows from defining Ext : {0, 1}n × {0, 1}d → {0, 1}m by Ext(x, (s, t)) = Ext′((x, s), t) for s
of length O(log(1/ε)). J

We can now prove Theorem 6.1.

Proof of Theorem 6.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be the explicit (k, ε2/2) KL-
extractor of Theorem 6.5 with n = O(m + log(1/δ′) + log(1/ε)), k = n − log(1/δ′), and
d = O(log log(1/δ′) + log(1/ε)) for δ′ = δ/2. Then by Lemmas 4.8 and 5.1, Ext is also a (k, ε)
extractor for dE , so by Theorem 3.5 the function Samp : {0, 1}n → ({0, 1}m)D for D = 2d
defined by Samp(x)i = Ext(x, i) is a (δ′, ε) subexponential sampler. Finally, by Remark 3.4,
we have that Samp is a (δ, ε) absolute subexponential sampler as desired. J

In the full version [1] of this paper, in addition to proving the stronger version of
Theorem 6.1, we also discuss explicit samplers for other ranges of parameters and non-explicit
constructions.

References
1 Rohit Agrawal. Samplers and Extractors for Unbounded Functions. arXiv:1904.08391 [cs],

July 2019. arXiv:1904.08391.
2 Syed Mumtaz Ali and Samuel David Silvey. A General Class of Coefficients of Divergence of One

Distribution from Another. Journal of the Royal Statistical Society. Series B (Methodological),
28(1):131–142, 1966.

APPROX/RANDOM 2019

http://arxiv.org/abs/1904.08391

59:16 Samplers and Extractors for Unbounded Functions

3 Koenraad M. R. Audenaert and Jens Eisert. Continuity Bounds on the Quantum Relative
Entropy. Journal of Mathematical Physics, 46(10):102104, October 2005. doi:10.1063/1.
2044667.

4 Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof Pietrzak, François-
Xavier Standaert, and Yu Yu. Leftover Hash Lemma, Revisited. In Phillip Rogaway, editor,
Advances in Cryptology – CRYPTO 2011, Lecture Notes in Computer Science, pages 1–20.
Springer Berlin Heidelberg, 2011.

5 Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Randomness in Interactive Proofs.
computational complexity, 3(4):319–354, December 1993. doi:10.1007/BF01275487.

6 Mihir Bellare and John Rompel. Randomness-Efficient Oblivious Sampling. In Proceedings
35th Annual Symposium on Foundations of Computer Science, pages 276–287, November 1994.
doi:10.1109/SFCS.1994.365687.

7 Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy Amplification by Public
Discussion. SIAM Journal on Computing, 17(2):210–229, April 1988. doi:10.1137/0217014.

8 Jarosław Błasiok. Private Communication, 2018.
9 Jarosław Błasiok. Optimal Streaming and Tracking Distinct Elements with High Probability.

In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
Proceedings, pages 2432–2448. Society for Industrial and Applied Mathematics, January 2018.
doi:10.1137/1.9781611975031.156.

10 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 1 edition edition, February
2013. doi:10.1093/acprof:oso/9780199535255.001.0001.

11 Ran Canetti, Guy Even, and Oded Goldreich. Lower Bounds for Sampling Algorithms
for Estimating the Average. Information Processing Letters, 53(1):17–25, January 1995.
doi:10.1016/0020-0190(94)00171-T.

12 Benny Chor and Oded Goldreich. On the Power of Two-Point Based Sampling. Journal of
Complexity, 5(1):96–106, March 1989. doi:10.1016/0885-064X(89)90015-0.

13 Imre Csiszár. Eine Informationstheoretische Ungleichung Und Ihre Anwendung Auf Den
Beweis Der Ergodizität von Markoffschen Ketten. Magyar Tud. Akad. Mat. Kutató Int. Közl.,
8:85–108, 1963.

14 Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy Extractors: How to
Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing,
38(1):97–139, January 2008. doi:10.1137/060651380.

15 Monroe D. Donsker and S. R. Srinivasa Varadhan. Asymptotic Evaluation of Certain Markov
Process Expectations for Large Time—III. Communications on Pure and Applied Mathematics,
29(4):389–461, 1976. doi:10.1002/cpa.3160290405.

16 David Gillman. A Chernoff Bound for Random Walks on Expander Graphs. SIAM Journal
on Computing, 27(4):1203–1220, August 1998. doi:10.1137/S0097539794268765.

17 Oded Goldreich. A Sample of Samplers: A Computational Perspective on Sampling. In
Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation: In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan,
Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman,
Lecture Notes in Computer Science, pages 302–332. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_24.

18 Oded Goldreich and Salil Vadhan. Comparing Entropies in Statistical Zero Knowledge with
Applications to the Structure of SZK. In Proceedings of the Fourteenth Annual IEEE Conference
on Computational Complexity, pages 54–73, May 1999. doi:10.1109/CCC.1999.766262.

19 Oded Goldreich and Avi Wigderson. Tiny Families of Functions with Random Properties: A
Quality-Size Trade-off for Hashing. Random Structures & Algorithms, 11(4):315–343, 1997.
doi:10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1.

https://doi.org/10.1063/1.2044667
https://doi.org/10.1063/1.2044667
https://doi.org/10.1007/BF01275487
https://doi.org/10.1109/SFCS.1994.365687
https://doi.org/10.1137/0217014
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1093/acprof:oso/9780199535255.001.0001
https://doi.org/10.1016/0020-0190(94)00171-T
https://doi.org/10.1016/0885-064X(89)90015-0
https://doi.org/10.1137/060651380
https://doi.org/10.1002/cpa.3160290405
https://doi.org/10.1137/S0097539794268765
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1109/CCC.1999.766262
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1

R. Agrawal 59:17

20 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced Expanders and
Randomness Extractors from Parvaresh–Vardy Codes. Journal of the ACM, 56(4):20:1–20:34,
July 2009. doi:10.1145/1538902.1538904.

21 Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-Random Generation from
One-Way Functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, pages 12–24, New York, NY, USA, 1989. ACM. doi:10.1145/73007.
73009.

22 Richard Karp, Nicholas Pippenger, and Michael Sipser. A Time-Randomness Tradeoff. In
AMS Conference on Probabilistic Computational Complexity, Durham, New Hampshire, 1985.

23 James Lawrence McInnes. Cryptography Using Weak Sources of Randomness. Technical
Report 194/87, University of Toronto, 1987.

24 Tetsuzo Morimoto. Markov Processes and the H-Theorem. Journal of the Physical Society of
Japan, 18(3):328–331, March 1963. doi:10.1143/JPSJ.18.328.

25 Alfred Müller. Integral Probability Metrics and Their Generating Classes of Functions.
Advances in Applied Probability, 29(2):429–443, 1997. doi:10.2307/1428011.

26 Noam Nisan and David Zuckerman. Randomness Is Linear in Space. Journal of Computer
and System Sciences, 52(1):43–52, February 1996. doi:10.1006/jcss.1996.0004.

27 Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for Dispersers, Extractors, and
Depth-Two Superconcentrators. SIAM Journal on Discrete Mathematics, 13(1):2–24, January
2000. doi:10.1137/S0895480197329508.

28 Ran Raz, Omer Reingold, and Salil Vadhan. Extracting All the Randomness and Reducing
the Error in Trevisan’s Extractors. Journal of Computer and System Sciences, 65(1):97–128,
August 2002. doi:10.1006/jcss.2002.1824.

29 Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. New Proofs of the
Green-Tao-Ziegler Dense Model Theorem: An Exposition. arXiv:0806.0381 [math], June 2008.
arXiv:0806.0381.

30 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy Waves, the Zig-Zag Graph Product,
and New Constant-Degree Expanders and Extractors. In Proceedings 41st Annual Symposium
on Foundations of Computer Science, pages 3–13, November 2000. doi:10.1109/SFCS.2000.
892006.

31 Alfréd Rényi. On Measures of Entropy and Information. In Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory
of Statistics. The Regents of the University of California, 1961.

32 Ofer Shayevitz. On Rényi Measures and Hypothesis Testing. In 2011 IEEE International
Symposium on Information Theory Proceedings, pages 894–898, July 2011. doi:10.1109/ISIT.
2011.6034266.

33 Aravind Srinivasan and David Zuckerman. Computing with Very Weak Random Sources. SIAM
Journal on Computing, 28(4):1433–1459, January 1999. doi:10.1137/S009753979630091X.

34 Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors from Reed–Muller Codes.
Journal of Computer and System Sciences, 72(5):786–812, August 2006. doi:10.1016/j.jcss.
2005.05.010.

35 Salil P. Vadhan. Pseudorandomness. Now Publishers Inc, Boston, Mass., October 2012.
36 Tim van Erven. When Data Compression and Statistics Disagree: Two Frequentist Challenges

for the Minimum Description Length Principle. PhD thesis, Leiden University, 2010. OCLC:
673140651.

37 Tim van Erven and Peter Harremoës. Rényi Divergence and Kullback-Leibler Divergence.
IEEE Transactions on Information Theory, 60(7):3797–3820, July 2014. doi:10.1109/TIT.
2014.2320500.

38 Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in
Data Science. Number 47 in Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge, 2018.

APPROX/RANDOM 2019

https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1143/JPSJ.18.328
https://doi.org/10.2307/1428011
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1137/S0895480197329508
https://doi.org/10.1006/jcss.2002.1824
http://arxiv.org/abs/0806.0381
https://doi.org/10.1109/SFCS.2000.892006
https://doi.org/10.1109/SFCS.2000.892006
https://doi.org/10.1109/ISIT.2011.6034266
https://doi.org/10.1109/ISIT.2011.6034266
https://doi.org/10.1137/S009753979630091X
https://doi.org/10.1016/j.jcss.2005.05.010
https://doi.org/10.1016/j.jcss.2005.05.010
https://doi.org/10.1109/TIT.2014.2320500
https://doi.org/10.1109/TIT.2014.2320500

59:18 Samplers and Extractors for Unbounded Functions

39 Vladimir Mikhailovich Zolotarev. Probability Metrics. Theory of Probability & Its Applications,
28(2):278–302, January 1984. doi:10.1137/1128025.

40 David Zuckerman. Randomness-Optimal Oblivious Sampling. Random Structures & Algorithms,
11(4):345–367, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;
2-Z.

41 David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and
Chromatic Number. Theory of Computing, 3(1):103–128, August 2007. doi:10.4086/toc.
2007.v003a006.

A Missing proofs

In this section, we include some proofs that were omitted from the main text due to space
constraints.

Proof of Proposition 2.11. As mentioned this is just the standard fact that the `p and `q
norms are dual, but for completeness we include a proof in our language using the extremal
form of Hölder’s inequality (note that since we are dealing with finite probability spaces the
extremal equality holds even for p =∞ and q = 1). Given probability distributions A and B
over {0, 1}m, we have that

d`p(A,B) =
(∑

x

|Ax −Bx|p
)1/p

= 2m/p E
x∼Um

[|Ax −Bx|p]
1/p

= 2m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣∣ E
x∼Um

[f(x)(Ax −Bx)]
∣∣∣∣ (Hölder’s extremal equality)

= 2−m+m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣E[f(A)]− E[f(B)]
∣∣∣

= 2−m/q · dMq
(A,B) (by symmetry ofMq)

as desired. J

Proof of Theorem 3.5. The proof is essentially the same as that of [40].
Fix a collection of test functions f1, . . . , fD ∈ F , where if Ext is not strong we restrict to

f1 = · · · = fD, and let Bf1,...,fD ⊆ {0, 1}
n be defined as

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
D{fi}

(
U{Ext(x,i)}

∥∥ Um)] > ε

}
,

where U{z} is the point mass on z. Then if X is uniform over Bf1,...,fD , we have

ε < E
x∼X

[
E

i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]]
= E
i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]

https://doi.org/10.1137/1128025
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

R. Agrawal 59:19

. . . =

D{f1}(Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
always

≤

DF (Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
DF (Ext(X, i) ‖ Um)

]
always

Since Ext is an (n− log(1/δ), ε)-extractor (respectively strong extractor) for DF we must have
H∞(X) < n− log(1/δ). But H∞(X) = log|Bf1,...,fD | by definition, so we have |Bf1,...,fD | <
δ2n. Hence, the probability that a random x ∈ {0, 1}n lands in Bf1,...,fD is less than δ, and
since Bf1,...,fD is exactly the set of seeds which are bad for Samp, this concludes the proof. J

Proof of Theorem 3.7. Again the proof is analogous to the one in [40].
Fix a distribution X over {0, 1}m with H∞(X) ≥ k and a collection of test functions

f1, . . . , fD ∈ F , where if Samp is not strong we restrict to f1 = · · · = fD. Then since Samp
is a (δ, ε) F-sampler, we know that the set of seeds for which the sampler is bad must be
small. Formally, the set

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
has size |Bf1,...,fD | ≤ δ2n. Thus, since X has min-entropy at least k we know that
Pr[X ∈ Bf1,...,fD] ≤ 2−k · δ2n, so we have

E
i∼Ud

[
E
[
fi(Ext(X, i))− E[fi(Um)]

]]
= E
X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

]]
= Pr[X ∈ Bf1,...,fD] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X ∈ Bf1,...,fD

]
+ Pr[X 6∈ Bf1,...,fD] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X 6∈ Bf1,...,fD

]
≤ Pr[X ∈ Bf1,...,fD] ·max dev(F) + Pr[X 6∈ Bf1,...,fD] · ε

≤ 2−k · δ2n ·max dev(F) + ε

completing the proof of the main claim. The “in particular” statement follows since if (Z,X)
are jointly distributed with H̃∞(X|Z) ≥ n− log(1/δ) + log(1/η) we have

E
z∼Z

[
ε+ δ · 2n−H∞(X|Z=z) ·max dev(F)

]
= ε+ δ · 2n−H̃∞(X|Z) ·max dev(F)

≤ ε+ η ·max dev(F)

by definition of conditional min-entropy. J

Proof of Lemma 4.6. That dTV ≤ dG is immediate from Hoeffding’s lemma and the discus-
sion in Remark 4.5. The reverse bound holds since any subgaussian function takes values at
most

√
ln 2/2 ·m away from the mean by the tail bounds from part 3 of Lemma 4.3, and

so any subgaussian test function f has the property that 1/2 + f/
√

2 ln 2 ·m is [0, 1]-valued
and thus lower bounds the total variation distance. J

APPROX/RANDOM 2019

59:20 Samplers and Extractors for Unbounded Functions

Proof of Lemma 4.7. By Proposition 2.11, for any function f : {0, 1}m → R it holds that

D{f}(P ‖ Q) ≤ ‖f(Um)‖1+ 1
α
· dM1+ 1

α

(P,Q) = ‖f(Um)‖1+ 1
α
· 2mα/(1+α) · d`1+α(P,Q).

The result follows since [−1, 1]-valued functions f satisfy moment bounds ‖f(Um)‖q ≤ 1 for
all q ≥ 1, and functions f which are subgaussian satisfy moment bounds ‖f(Um)‖q ≤

√
q by

Lemma 4.3. J

Proof of Lemma 4.8. The upper bound on subgaussian distance follows from a general form
of Pinsker’s inequality as in [10, Lemma 4.18], but for the extension to subexponential func-
tions we reproduce its proof here, based on the Donsker–Varadhan “variational” formulation
of KL divergence [15] (cf. [10, Corollary 4.15])

KL(P ‖ Um) = 1
ln 2 · sup

g:{0,1}m→R

(
E[g(P)]− lnE

[
eg(Um)

])
.

Now if f : {0, 1}m → R satisfies E[f(Um)] = 0, then by letting g(x) = t · f(x), this implies

E[f(P)]− E[f(Um)] = 1
t
· E[g(P)] ≤

ln 2 ·KL(P ‖ Um) + lnE
[
et·f(Um)]

t

for all t > 0. Thus, when lnE
[
et·f(Um)] ≤ t2/8, we have E[f(P)] − E[f(Um)] ≤ ln 2 ·

KL(P ‖ Um)/t+ t/8.
Then since subgaussian random variables satisfy such a bound for all t, we can make the

optimal choice t =
√

8 ln 2 ·KL(P ‖ Um) to get the claimed bound on dG . For subex-
ponential random variables, which satisfy such a bound only for |t| ≤ 2, we choose
t = min(

√
8 ln 2 ·KL(P ‖ Um), 2), which gives

dE(P,Um) ≤

√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2

2 ·KL(P ‖ Um) + 1
4 if KL(P ‖ Um) > 1

2 ln 2

as desired. The concavity of this bound follows by noting that it has a continuous and
nonincreasing derivative.

For the reverse inequality, we use a bound on the difference in entropy between distributions
P and Q on a set of size S which states

|H(P)−H(Q)| ≤ lg(S − 1) · dTV (P,Q) + h(dTV (P,Q)).

This inequality is a simple consequence of Fano’s inequality as noted by Goldreich and
Vadhan [18, Fact B.1], and implies the desired result by taking Q = Um as KL(P ‖ Um) =
H(Um)−H(P) and |{0, 1}m| = 2m. J

I Remark A.1. There are sharper upper bounds on the KL divergence than given in Lemma 4.8,
such as the bound of Audenaert and Eisert [3, Theorem 6], but the bound we use has the
advantage of being defined for the entire range of the total variation distance and being
everywhere concave.

Proof of Lemma 5.2. This follows from a characterization of Rényi divergence due to van
Erven and Harremoës [36, Lemma 6.6] [37, Theorem 30] and Shayevitz [32, Theorem 1], who
prove that for for every positive real β 6= 1 and distributions X and Y that

(1− β) Dβ(X ‖ Y) = inf
Z

{
βKL(Z ‖ X) + (1− β) KL(Z ‖ Y)

}
.

In particular, choosing β = 1 + α, X = Q, and Y = R and upper bounding the infimum by
the particular choice of Z = P gives the claim. J

R. Agrawal 59:21

Proof of Theorem 5.3. Let (X,Y) be jointly distributed random variables with X dis-
tributed over {0, 1}n and Y over {0, 1}n

′
such that H̃∞(X,Y |Z) ≥ n+ n′ − log(1/δ). Then

by Lemma 5.2 and the data-processing inequality for KL divergence we have that

KL(Ext((X,Y), Ud) ‖ Um)
= KL(Extout(X,Extin(Y,Ud)) ‖ Um)
≤ (1 + 1/α) ·KL(Extout(X,Extin(Y, Ud)) ‖ Extout(X,Ud))

+ D1+α(Extout(X,Ud) ‖ Um)
≤ (1 + 1/α) ·KL(X,Extin(Y,Ud) ‖ X,Ud) + D1+α(Extout(X,Ud) ‖ Um)
= (1 + 1/α) · E

x∼X
[KL(Extin(Y |X=x, Ud) ‖ Ud)] + D1+α(Extout(X,Ud) ‖ Um)

where the last equality follows from the chain rule for KL divergence. Now by standard prop-
erties of conditional min-entropy (see for example [14, Lemma 2.2]), we know that H∞(X) ≥
H∞(X,Y) − log|Supp(Y)| ≥ n − log(1/δ) and H̃∞(Y |X) ≥ H∞(X,Y) − log|Supp(X)| ≥
n′ − log(1/δ). Thus, since by assumption Extin is an average-case (n′ − log(1/δ), εin)
KL-extractor the first term is bounded by (1 + 1/α) · εin, and similarly since Extout is
an (n − log(1/δ), εout) D1+α-extractor we have that the second term is bounded by εout
as desired. J

APPROX/RANDOM 2019

Successive Minimum Spanning Trees
Svante Janson
Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden
http://www.math.uu.se/svante-janson/
svante.janson@math.uu.se

Gregory B. Sorkin
Department of Mathematics, The London School of Economics and Political Science, Houghton
Street, London WC2A 2AE, England
http://personal.lse.ac.uk/sorkin/
g.b.sorkin@lse.ac.uk

Abstract

In a complete graph Kn with edge weights drawn independently from a uniform distribution
U(0, 1) (or alternatively an exponential distribution Exp(1)), let T1 be the MST (the spanning
tree of minimum weight) and let Tk be the MST after deletion of the edges of all previous trees
Ti, i < k. We show that each tree’s weight w(Tk) converges in probability to a constant γk with
2k− 2

√
k < γk < 2k+ 2

√
k, and we conjecture that γk = 2k− 1 + o(1). The problem is distinct from

that of Frieze and Johansson [6], finding k MSTs of combined minimum weight, and the combined
cost for two trees in their problem is, asymptotically, strictly smaller than our γ1 + γ2.

Our results also hold (and mostly are derived) in a multigraph model where edge weights for
each vertex pair follow a Poisson process; here we additionally have E(w(Tk))→ γk. Thinking of
an edge of weight w as arriving at time t = nw, Kruskal’s algorithm defines forests Fk(t), each
initially empty and eventually equal to Tk, with each arriving edge added to the first Fk(t) where it
does not create a cycle. Using tools of inhomogeneous random graphs we obtain structural results
including that C1(Fk(t))/n, the fraction of vertices in the largest component of Fk(t), converges in
probability to a function ρk(t), uniformly for all t, and that a giant component appears in Fk(t) at
a time t = σk. We conjecture that the functions ρk tend to time translations of a single function,
ρk(2k + x)→ ρ∞(x) as k →∞, uniformly in x ∈ R.

Simulations and numerical computations give estimated values of γk for small k, and support
the conjectures stated above.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics
of computing → Paths and connectivity problems; Mathematics of computing → Combinatorial
optimization; Mathematics of computing → Matroids and greedoids

Keywords and phrases miminum spanning tree, second-cheapest structure, inhomogeneous ran-
dom graph, optimization in random structures, discrete probability, multi-type branching process,
functional fixed point, robust optimization, Kruskal’s algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.60

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1906.01533.

Funding The work was partly supported by the Knut and Alice Wallenberg Foundation.

Acknowledgements We thank Oliver Riordan for helpful comments which simplified our proof, and
Balázs Mezei for assistance with Julia programming.

© Svante Janson and Gregory B. Sorkin;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 60; pp. 60:1–60:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9680-2790
http://www.math.uu.se/svante-janson/
mailto:svante.janson@math.uu.se
https://orcid.org/0000-0003-4935-7820
http://personal.lse.ac.uk/sorkin/
mailto:g.b.sorkin@lse.ac.uk
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.60
https://arxiv.org/abs/1906.01533
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Successive Minimum Spanning Trees

1 Introduction

1.1 Problem definition and main results
Consider the complete graph Kn with edge costs that are i.i.d. random variables, with a
uniform distribution U(0, 1) or, alternatively, an exponential distribution Exp(1). A well-
known problem is to find the minimum (cost) spanning tree T1, and its cost or “weight”
w(T1). A famous result by Frieze [7] shows that as n→∞, w(T1) converges in probability
to ζ(3), in both the uniform and exponential cases.

Suppose now that we want a second spanning tree T2, edge-disjoint from the first, and
that we do this in a greedy fashion by first finding the minimum spanning tree T1, and then
the minimum spanning tree T2 using only the remaining edges. (I.e., T2 is the minimum
spanning tree in Kn \T1, meaning the graph with edge set E(Kn)\E(T1).) We then continue
and define T3 as the minimum spanning tree in Kn \ (T1 ∪ T2), and so on. The main purpose
of the present paper is to show that the costs w(T2), w(T3), . . . also converge in probability
to some constants.

I Theorem 1. For each k > 1, there exists a constant γk such that, as n→∞, w(Tk) p−→ γk

(for both uniform and exponential cost distributions).

The result extends easily to other distributions of the edge costs (see full version for
details), but we consider in this paper only the uniform and exponential cases.

A minor technical problem is that T2 and subsequent trees do not always exist; it may
happen that T1 is a star and then Kn \ T1 is disconnected. This happens only with a small
probability, and w.h.p. (with high probability, i.e., with probability 1− o(1) as n→∞) Tk is
defined for every fixed k; see the full version for details. However, in the main part of the
paper we avoid this problem completely by modifying the model: we assume that we have a
multigraph, which we denote by K∞n , with an infinite number of copies of each edge in Kn,
and that each edge’s copies’ costs are given by the points in a Poisson process with intensity
1 on [0,∞). (The Poisson processes for different edges are, of course, independent.) Note
that when finding T1, we only care about the cheapest copy of each edge, and its cost has an
Exp(1) distribution, so the problem for T1 is the same as the original one. However, on K∞n
we never run out of edges and we can define Tk for all integers k = 1, 2, 3, Asymptotically,
the three models are equivalent (see full version for details), and Theorem 1 holds for any of
the models. In particular:

I Theorem 2. For each k > 1, as n→∞, w(Tk) p−→ γk also for the multigraph model with
Poisson process costs.

Frieze [7] also proved that the expectation Ew(T1) converges to ζ(3). For the multigraph
model just described, this too extends.

I Theorem 3. For the Poisson multigraph model, Ew(Tk)→ γk for each k > 1 as n→∞.

1.2 Motivations
Frieze and Johansson [6] recently considered a related problem, where instead of choosing
spanning trees T1, T2, . . . greedily one by one, they choose k edge-disjoint spanning trees
with minimum total cost. It is easy to see, by small examples, that selecting k spanning
trees greedily one by one does not always give a set of k edge-disjoint spanning trees with
minimum cost, so the problems are different.

S. Janson and G. B. Sorkin 60:3

We show in Theorem 19 that, at least for k = 2, the two problems also asymptotically
have different answers, in the sense that the limiting values of the minimum cost – which
exist for both problems – are different. (Also, as discussed in Section 3.1, we improve on
the upper bound from [6, Section 3] on the cost of the net cheapest k trees, since our upper
bound (3.1) on the cost of the first k trees is smaller.)

Both our question and that of Frieze and Johansson [6] are natural, both seem generally
relevant to questions of robust network design, and both have mathematically interesting
answers.

Another reason for interest in T2 comes from the field of algorithmic mechanism design.
Imagine that each edge of G = Kn is owned by a different “agent”; the agent owning edge
e values it at w(e), an amount known only to them. We, an “auctioneer”, want to buy a
spanning tree, at low cost. One “mechanism” for doing so is a sealed-bid auction where each
agent posts a price w′(e) for their edge, and we buy the tree that is cheapest according to
these prices. Here, agents will naturally inflate their prices, posting prices w′(e) > w(e).

One alternative is a VCG (Vickrey–Clarke–Groves) auction, a generalization of a single-
item second-price auction. Here, we again buy the tree that is cheapest according to the
posted prices w′, but for each edge e purchased, we pay an amount that is a function of w′−e,
i.e., of all posted prices except that of e; for details see for example [16, Chapter 9]. This
means that varying w′(e) affects only whether edge e is purchased, not how much is paid for
it if it is, and results in the mechanism being truthful: it is in each agent’s selfish interest to
set w′(e) = w(e). Thus, the tree purchased is simply T1, the tree cheapest according to the
values w. However, the amount paid for it is more than w(T1), as the mechanism ensures
the amount paid for each edge e purchased is at least w(e) and typically more. A central
question is the extent of this overpayment, measured by the “frugality ratio” of the VCG
cost V (or that of any mechanism) to some benchmark.

The question applies of course to problems other than MSTs, including the purchase of a
cheapest path between two given points in a graph, or of a basis in a bridgeless matroid. In any
of these contexts, let us continue to use T1 for the cheapest structure and T2 for the cheapest
structure disjoint from T1. The cost w(T1) is not a useful benchmark because V/w(T1) is
unbounded in even the simplest examples (such as buying one of two identical items).

Instead, Talwar [17] and Archer and Tardos [1] propose w(T2) as the benchmark. (An
often-equivalent benchmark, based on a Nash equilibrium, is given by [14] and [16, Chapter
13].) [17] shows that for any bridgeless matroid, V/w(T2) 6 1, and, focusing on the worst
case over all weights w, this bound is achieved by some weights (namely weights 0 on T1, 1 on
T2, and infinity elsewhere). By contrast, for paths the ratio is unbounded. The interpretation,
based on worst-case weights, is that this frugality ratio is 1 for amenable problems like MSTs
and other matroids, and larger for other problems.

In our setting of an MST in Kn with random weights, though, the frugality ratio is
naturally less than its maximum of 1. Specifically, [4] and [11] show that the VCG cost is
typically 2w(T1), which by [7] is 2ζ(3) .= 2.4041. We show here that w(T2) is typically γ2,
which by Remark 21 is at least 2.9683, making the frugality typically at most 0.8099. (We
estimate non-rigorously that γ2 is about 3.09 – see Table 1 – in which case the frugality ratio
is typically about 0.78.) Specifically, this holds w.h.p. for n large, and also holds for the ratio
between the expected VCG cost and the expected cost w(T2).

APPROX/RANDOM 2019

60:4 Successive Minimum Spanning Trees

1.3 Further results, structural properties, and conjectures
It is well known that the minimum spanning tree (with any given costs, obtained randomly
or deterministically) can be found by Kruskal’s algorithm [15], which processes the edges
in order of increasing cost and keeps those that join two different components in the forest
obtained so far. (I.e., it keeps each edge that does not form a cycle together with previously
chosen edges.) As in many other previous papers on the random minimum spanning tree
problem, from [7] on, our proofs are based on analyzing the behavior of this algorithm.

Rescale weight as time, thinking of an edge of weight w as arriving at time t = nw.
Kruskal’s algorithm allows us to construct all trees Tk simultaneously by growing forests
Fk(t), with Fk(0) empty and Fk(∞) = Tk: taking the edges of Kn (or K∞n) in order of time
arrival (increasing cost), an edge is added to the first forest Fk where it does not create a
cycle. We will also consider a sequence of graphs Gk(t) ⊇ Fk(t), where when we add an edge
to Fk we also add it to all the graphs G1, . . . , Gk; see Section 2.2 for details.

The proof of Theorem 1 is based on a detailed structural characterization of the graphs
Gk(t), given by Theorem 9 (too detailed to set forth in full here in the introduction),
relying heavily on the theory of inhomogeneous random graphs from [3] and related works.
Where C1(Gk(t)) denotes the number of vertices in the largest component of Gk(t) (or
equivalently of Fk(t), as by construction they have the same components), Theorem 9 shows
that C1(Gk(t))/n converges in probability to some function ρk(t), uniformly for all times t.
Moreover, each Gk has its own giant-component threshold: ρk(t) is 0 until some time σk,
and strictly positive thereafter.

The functions ρk(t) are of central interest. For one thing, an edge is rejected from Fk,
making it a candidate for Fk+1, precisely if its two endpoints are within the same component
of Fk, and we show that this is essentially equivalent to the two endpoints both being within
the largest component. This line of reasoning yields the constants γk explicitly, albeit not
in a form that is easily evaluated. We are able, at least, to re-prove that γ1 = ζ(3), as first
shown in [7].

The functions ρk also appear to have a beautiful structure, tending to time-translated
copies of a single universal function:

I Conjecture 4. There exists a continuous increasing function ρ∞(x) : (−∞,∞) → [0, 1)
such that ρk(2k + x)→ ρ∞(x) as k →∞, uniformly in x ∈ R.

This suggests, though does not immediately imply, another conjecture.

I Conjecture 5. For some δ, as k →∞, γk = 2k + δ + o(1).

If this conjecture holds, then necessarily δ ∈ [−1, 0], see Remark 17.
A variety of computational results are given in Section 5. They are supportive of

Conjecture 4 and a stronger version of Conjecture 5 where we take δ = −1:

I Conjecture 6. As k →∞, γk = 2k − 1 + o(1).

Although we cannot prove these conjectures, some bounds on γk are obtained in Section 3
by a more elementary analysis of the sequence of forests Fk. In particular, Theorem 12 and
Corollary 13 lead to the following, implying that γk ∼ 2k as k →∞.

I Corollary 7. For every k > 1,

2k − 2k1/2 < γk < 2k + 2k1/2. (1.1)

S. Janson and G. B. Sorkin 60:5

I Remark 8. For the minimum spanning tree T1, various further results are known, including
refined estimates for the expectation of the cost w(T1) [5], a normal limit law [9], and
asymptotics for the variance [9, 13, 18]. It seems challenging to show corresponding results
for T2 or later trees. J

1.4 Notes on this extended abstract
A full version of this work can be found as [12]. The present extended abstract omits most
proofs as well as many further results. However, Sections 2 and 3 here are reasonably
complete. We will say a few words in Section 2.5 on the approach to proving Theorem 9, but
the technicalities are substantial.

2 Model and main structural results

2.1 Some notation
We use := as defining its left-hand side, and def= as a reminder that equality of the two sides
is by definition. We write .= for numerical approximate equality, and ≈ for approximate
equality in an asymptotic sense (details given where used).

If x and y are real numbers, then x∨ y := max(x, y) and x∧ y := min(x, y). Furthermore,
x+ := x ∨ 0. These operators bind most strongly, e.g., t− τ(i) ∨ τ(j) means t− (τ(i) ∨ τ(j)).

We use “increasing” and “decreasing” in their weak senses; for example, a function f is
increasing if f(x) 6 f(y) whenever x 6 y.

Unspecified limits are as n→∞. As said above, w.h.p. means with probability 1− o(1).
Convergence in probability is denoted p−→. Furthermore, if Xn are random variables and an

are positive constants, Xn = op(an) means, as usual, Xn/an
p−→ 0; this is also equivalent to:

for every ε > 0, w.h.p. |Xn| < εan.
Graph means, in general, multigraph. (It is usually clear from the context whether we

consider a multigraph or simple graph.) If G is a multigraph, then Ġ denotes the simple
graph obtained by merging parallel edges and deleting loops. (Loops do not appear in the
present paper.) The number of vertices in a graph G is denoted by |G|, and the number of
edges by e(G).

For a graph G, let C1(G), C2(G), . . . be the largest component, the second largest
component, and so on, using any rule to break ties. (If there are less than k components,
we define Ck(G) = ∅.) Furthermore, let Ci(G) := |Ci(G)|; thus C1(G) is the the number of
vertices in the largest component, and so on. We generally regard components of a graph G
as sets of vertices.

2.2 Model
We elaborate the multigraph model in the introduction.

We consider (random) (multi)graphs on the vertex set [n] := {1, . . . , n}; we usually omit
n from the notation. The graphs will depend on time, and are denoted by Gk(t) and Fk(t),
where k = 1, 2, 3, . . . and t ∈ [0,∞]; they all start as empty at time t = 0 and grow as time
increases. We will have Gk(t) ⊇ Gk+1(t) and Fk(t) ⊆ Gk(t) for all k and t. Furthermore,
Fk(t) will be a forest. As t→∞, Fk(t) will eventually become a spanning tree, Fk(∞),
which is the kth spanning tree Tk produced by the greedy algorithm in the introduction,
operating on the multigraph G1(∞).

Since the vertex set is fixed, we may when convenient identify the multigraphs with sets
of edges. We begin by defining G1(t) by letting edges arrive as independent Poisson processes
with rate 1/n for each pair {i, j} of vertices; G1(t) consists of all edges that have arrived at

APPROX/RANDOM 2019

60:6 Successive Minimum Spanning Trees

or before time t. (This scaling of time turns out to be natural and useful. In essence this is
because what is relevant is the cheapest edges on each vertex, and these have expected cost
Θ(1/n) and thus appear at expected time Θ(1).) We define the cost of an edge arriving at
time t to be t/n, and note that in G1(∞), the costs of the edges joining two vertices form a
Poisson process with rate 1. Hence, G1(∞) is the multigraph model defined in Section 1.

Thus, for any fixed t > 0, G1(t) is a multigraph where the number of edges between
any two fixed vertices is Po(t/n), and these numbers are independent for different pairs
of vertices. This is a natural multigraph version of the Erdős–Rényi graph G(n, t). (The
process G1(t), t > 0, is a continuous-time version of the multigraph process in e.g. [2] and
[10, Section 1], ignoring loops.) Note that Ġ1(t), i.e., G1(t) with multiple edges merged, is
simply the random graph G(n, p) with p = 1− e−t/n.

Next, we let F1(t) be the subgraph of G1(t) consisting of every edge that has arrived at
some time s 6 t and at that time joined two different components of G1(s). Thus, this is a
subforest of G1(t), as stated above, and it is precisely the forest constructed by Kruskal’s
algorithm (recalled in the introduction) operating on G1(∞), at the time all edges with cost
6 t/n have been considered. Hence, F1(∞) is the minimum spanning tree T1 of G1(∞).

Let G2(t) := G1(t) \F1(t), i.e., the subgraph of G1(t) consisting of all edges rejected from
F1(t); in other words G2(t) consists of the edges that, when they arrive to G1(t), have their
endpoints in the same component.

We continue recursively. Fk(t) is the subforest of Gk(t) consisting of all edges in Gk(t)
that, when they arrived at some time s 6 t, joined two different components in Gk(s). And
Gk+1(t) := Gk(t) \ Fk(t), consisting of the edges rejected from Fk(t).

Hence, the kth spanning tree Tk produced by Kruskal’s algorithm equals Fk(∞), as
asserted above.

Note that Fk(t) is a spanning subforest of Gk(t), in other words, the components of
Fk(t) (regarded as vertex sets) are the same as the components of Gk(t); this will be used
frequently below. Moreover, each edge in Gk+1(t) has endpoints in the same component of
Gk(t); hence, each component of Gk+1(t) is a subset of a component of Gk(t). It follows
that an edge arriving to G1(t) will be passed through G2(t), . . . , Gk(t) and to Gk+1(t) (and
possibly further) if and only if its endpoints belong to the same component of Gk(t), and
thus if and only if its endpoints belong to the same component of Fk(t).

2.3 More notation

We say that a component C of a graph G is the unique giant of G if |C| > |C′| for every other
component C′; if there is no such component (i.e., if the maximum size is tied), then we
define the unique giant to be ∅.

We say that a component C of Fk(t) is the permanent giant of Fk(t) (or of Gk(t)) if it is
the unique giant of Fk(t) and, furthermore, it is a subset of the unique giant of Fk(u) for
every u > t; if there is no such component then the permanent giant is defined to be ∅.

Let Ck(t) denote the permanent giant of Fk(t). Note that the permanent giant either is
empty or the largest component; thus |Ck(t)| is either 0 or C1(Fk(t)) = C1(Gk(t)). Note
also that the permanent giant Ck(t) is an increasing function of t: Ck(t) ⊆ Ck(u) if t 6 u.
Furthermore, for sufficiently large t (viz. t such that Gk(t) is connected, and thus Fk(t) is
the spanning tree Tk), Ck(t) = Ck(∞) = [n].

S. Janson and G. B. Sorkin 60:7

2.4 A structure theorem
The basis of our proof of Theorems 1 and 2 is the following theorem on the structure of the
components of Gk(t). Recall that Fk(t) has the same components as Gk(t), so the theorem
applies as well to Fk(t).

For k = 1, the theorem collects various known results for G(n, p). Our proof includes this
case too, making the proof more self-contained.

I Theorem 9. With the definitions above, the following hold for every fixed k > 1 as n→∞.
(i) There exists a continuous increasing function ρk : [0,∞)→ [0, 1) such that

C1(Gk(t))/n p−→ ρk(t), (2.1)

uniformly in t ∈ [0,∞); in other words, for any ε > 0, w.h.p., for all t > 0,

ρk(t)− ε 6 C1(Gk(t))/n 6 ρk(t) + ε. (2.2)

(ii) supt>0 C2(Gk(t))/n p−→ 0.
(iii) There exists a threshold σk > 0 such that ρk(t) = 0 for t 6 σk, but ρk(t) > 0 for t > σk.

Furthermore, ρk is strictly increasing on [σk,∞).
(iv) There exist constants bk, Bk > 0 such that

ρk(t) > 1−Bke
−bkt, t > 0. (2.3)

In particular, ρk(t)→ 1 as t→∞.
(v) If t > σk, then w.h.p. Gk(t) has a non-empty permanent giant. Hence, for every t > 0,

|Ck(t)|/n p−→ ρk(t). (2.4)

We note also a formula for the number of edges in Gk(t), and two simple inequalities
relating different k.

I Theorem 10. For each fixed k > 1 and uniformly for t in any finite interval [0, T],

e(Gk(t))/n p−→ 1
2

∫ t

0
ρk−1(s)2 ds. (2.5)

I Theorem 11. ρk(t) 6 ρk−1(t) for every t > 0, with strict inequality when ρk−1(t) > 0
(equivalently, when t > σk−1). Furthermore,

σk > σk−1 + 1. (2.6)

Inequality (2.6) is weak in that we conjecture that as k →∞, σk = σk−1 + 2 + o(1).

2.5 The proof approach
Proofs of the results in this section are by induction on k, relying heavily on the theory
of inhomogeneous random graphs by Bollobás, Janson and Riordan in [3]. When an edge
is passed on by Gk this is almost always because it is contained in C1(Gk); it is only
rarely because it is contained in some other component, and this case is treatable as a
perturbation within the theory. Thus, vertices “appear” in Gk+1(t) as governed by ρk(t); this
is formalized as a “vertex space” in the theory. Once two vertices u and v are both present
in Gk+1(t), edges between them arrive at rate 1/n. So, if they arrive at times τu and τv, the
probability they are connected at time t is asymptotically 1

n (t− (τu ∨ τv))+ =: 1
nκt(τu, τv);

κt is the “kernel” in the inhomogeneous random graph framework. The framework then
shows that C1(Gk+1(t))/n converges in probability to a certain ρ(κt), the survival probability
of a related inhomogeneous branching process, and this ρ(κt) is precisely the desired next
function ρk+1(t).

APPROX/RANDOM 2019

60:8 Successive Minimum Spanning Trees

3 Bounds on the expected cost

3.1 Total cost of the first k trees
The following theorem gives lower and upper bounds on the total cost of the first k spanning
trees.

I Theorem 12. Letting Wk =
∑k

i=1 w(Ti) be the total cost of the first k spanning trees, for
every k > 1,

k2n− 1
n

6 EWk 6 k(k + 1)n− 1
n

< k2 + k. (3.1)

Comparing with Frieze and Johansson [6, Section 3], our upper bound is smaller than
their k2 + 3k5/3 despite the fact that they considered a more relaxed minimization problem
(see Section 4); as such ours is a strict improvement. In both cases the lower bound is simply
the expected total cost of the cheapest k(n− 1) edges in G, with (3.2) matching [6, (3.1)].

Proof. The minimum possible cost of the k spanning trees is the cost of the cheapest k(n−1)
edges. Since each edge’s costs (plural, in our model) are given by a Poisson process of rate 1,
the set of all edge costs is given by a Poisson process of rate

(
n
2
)
. Recall that in a Poisson

process of rate λ, the interarrival times are independent exponential random variables with
mean 1/λ, so that the ith arrival, at time Zi, has EZi = i/λ. It follows in this case that
Wk >

∑k(n−1)
i=1 Zi and

EWk >
k(n−1)∑

i=1

i(
n
2
) = (k(n− 1))(k(n− 1) + 1)

n(n− 1) > k2n− 1
n

. (3.2)

We now prove the upper bound. An arriving edge is rejected from Fi iff both endpoints
lie within its “forbidden” set Bi of edges, namely those edges with both endpoints in one
component. The nesting property of the components means that B1 ⊇ B2 ⊇ · · · . An arriving
edge e joins Fk if it is rejected from all previous forests, i.e., e ∈ Bk−1 (in which case by the
nesting property, e also belongs to all earlier Bs) but can be accepted into Fk, i.e., e /∈ Bk.
The idea of the proof is to show that the first k forests fill reasonably quickly with n − 1
edges each, and we will do this by coupling the forest-creation process (Kruskal’s algorithm)
to a simpler, easily analyzable random process.

Let s(τ) = {sk(τ)}∞k=0 denote the vector of the sizes (number of edges) of each forest after
arrival of the τ ’th edge; we may drop the argument τ when convenient. Let pk = |Bk|/

(
n
2
)
,

the rejection probability for Fk. For any τ , by the nesting property of the components and
in turn of the Bk,

s1 > s2 > · · · and p1 > p2 > · · · . (3.3)

The MST process can be simulated by using a sequence of i.i.d. random variables α(τ) ∼
U(0, 1), incrementing sk(τ) if both α(τ) 6 pk−1(τ) (so that e is rejected from Fk−1 and thus
from all previous forests too) and α(τ) > pk(τ) (so that e is accepted into Fk). We take
the convention that p0(τ) = 1 for all τ . For intuition, note that when sk = 0 an edge is
never rejected from Fk (pk = 0, so α ∼ U(0, 1) is never smaller); when sk = 1 it is rejected
with probability pk = 1/

(
n
2
)
; and when sk = n− 1 it is always rejected (|Bk| must be

(
n
2
)
,

so pk = 1).

S. Janson and G. B. Sorkin 60:9

Given the size sk =
∑∞

i=1(Ci(Fk)−1) of the kth forest, |Bk| =
∑∞

i=1
(

Ci(Fk)
2
)
is maximized

(thus so is pk) when all the edges are in one component, i.e.,

pk 6

(
sk + 1

2

)/(
n

2

)
(3.4)

6
sk

n− 1 =: p̄k. (3.5)

The size vector s(τ) thus determines the values p̄k(τ) for all k.
Let r(τ) denote a vector analogous to s(τ), but with rk(τ) incremented if p̂k(τ) < α(τ) 6

p̂k−1(τ), with

p̂k := rk

n− 1 . (3.6)

By construction,

r1 > r2 > · · · and p̂1 > p̂2 > · · · . (3.7)

For intuition, here note that when rk = 0 an arrival is never rejected from rk (p̄k = 0); when
sk = 1 it is rejected with probability p̄k = 1/(n− 1) > pk = 1/

(
n
2
)
; and when sk = n− 1 it is

always rejected (p̄k = 1).
Taking each Fi(0) to be an empty forest (n isolated vertices, no edges) and accordingly

s(0) to be an infinite-dimensional 0 vector, and taking r(0) to be the same 0 vector, we claim
that for all τ , s(τ) majorizes r(τ), which we will write as s(τ) � r(τ). That is, the prefix
sums of s dominate those of r: for all τ and k,

∑k
i=1 si(τ) >

∑k
i=1 ri(τ).

We first prove this; then use it to argue that edge arrivals to the first k forests, i.e., to s,
can only precede arrivals to the first k elements of r; and finally analyze the arrival times
of all k(n− 1) elements to the latter to arrive at an upper bound on the total cost of the
first k trees.

We prove s(τ) � r(τ) by induction on τ , the base case with τ = 0 being trivial. Figure
1 may be helpful in illustrating the structure of this inductive proof. Suppose the claim
holds for τ . The probabilities pk(τ) are used to determine the forests Fk(τ + 1) and in turn
the size vector s(τ + 1). Consider an intermediate object s′(τ + 1), the size vector that
would be given by incrementing s(τ) using the upper-bound values p̄k(τ) taken from s(τ)
by (3.5). Then, si(τ + 1) receives the increment if pi−1 > α > pi, and s′j(τ + 1) receives the
increment if p̄j−1 > α > p̄j ; hence, from p̄i−1 > pi−1 > α it is immediate that i 6 j and thus
s(τ + 1) � s′(τ + 1).

It suffices then to show that s′(τ+1) � r(τ+1). These two vectors are obtained respectively
from s(τ) and r(τ), with s(τ) � r(τ) by the inductive hypothesis, using probability thresholds
p̄k(τ) = f(sk(τ)) and p̂k(τ) = f(rk(τ)) respectively, applied to the common random variable
α, where f(s) = s/(n− 1) (but all that is important is that f is a monotone function of s).
Suppose that

f(si−1) > α > f(si) and f(rj−1) > α > f(rj), (3.8)

so that elements i in s and j in r are incremented. If i 6 j, we are done. (Prefix sums of s(τ)
dominated those of r(τ), and an earlier element is incremented in s′(τ + 1) than r(τ + 1),
thus prefix sums of s′(τ + 1) dominate those of r(τ + 1).) Consider then the case that i > j.

APPROX/RANDOM 2019

60:10 Successive Minimum Spanning Trees

F(τ) F(τ + 1)

s(τ) s(τ + 1)

s′(τ + 1)

r(τ) r(τ + 1)

p

p̄

�

p

�

�
p̂

Figure 1 Coupling of the forests’ sizes s(τ) to a simply analyzable random process r(τ), showing
the structure of the inductive proof (on τ) that s(τ) majorizes r(τ).

In both processes the increment falls between indices j and i, so the k-prefix sum inequality
continues to hold for k < j and k > i. Thus, for j 6 k < i,

k∑
`=1

s′`(τ + 1) =
j−1∑
`=1

s`(τ) +
k∑

`=j

s`(τ)

k∑
`=1

r`(τ + 1) =
j−1∑
`=1

r`(τ) + 1 +
k∑

`=j

r`(τ).

(3.9)

From j < i, (3.8), and (3.3) and (3.7) we have that when j 6 ` 6 i− 1,

s` > si−1 > f−1(α) > rj > r`,

implying

s` > r` + 1. (3.10)

In (3.9), we have
∑i−1

`=1 s`(τ) >
∑i−1

`=1 r`(τ) from the inductive hypothesis that s(τ) � r(τ),
while using (3.10) gives

k∑
`=j

s`(τ) >
k∑

`=j

(1 + r`(τ)) > 1 +
k∑

`=j

r`(τ),

from which it follows that s′(τ+1) � r(τ+1), completing the inductive proof that s(τ) � r(τ).
Having shown that the vector s(τ) of component sizes majorizes r(τ), it suffices to analyze

the latter. Until this point we could have used (3.4) rather than (3.5) to define p̄k, p̂k, and
the function f , but now we take advantage of the particularly simple nature of the process
governing r(τ). Recall that a new edge increments ri for the first i for which the U(0, 1) “coin
toss” α(τ) has α(τ) > p̂i

def= ri/(n− 1). Equivalently, consider an array of cells n− 1 rows
high and infinitely many columns wide, generate an “arrival” at a random row or “height”
X(τ) uniform on 1, . . . , n− 1, and let this arrival occupy the first unoccupied cell i at this
height, thus incrementing the occupancy ri of column i. This is equivalent because if ri

of the n− 1 cells in column i are occupied, the chance that i is rejected – that X(τ) falls
into this set and thus the arrival moves along to test the next column i+ 1 – is ri/(n− 1),
matching (3.6).

Recalling that the cost of an edge arriving at time t is t/n in the original graph problem,
the combined cost Wk of the first k spanning trees is 1/n times the sum of the arrival times of
their k(n− 1) edges. The majorization

∑k
i=1 si(τ) >

∑k
i=1 ri(τ) means that the `’th arrival

S. Janson and G. B. Sorkin 60:11

to the first k forests comes no later than the `’th arrival to the first k columns of the cell
array. Thus, the cost Wk of the first k trees is at most 1/n times the sum of the times of the
k(n− 1) arrivals to the array’s first k columns.

The continuous-time edge arrivals are a Poisson process with intensity 1/n on each of the(
n
2
)
edges, thus intensity (n− 1)/2 in all; it is at the Poisson arrival times that the discrete

time τ is incremented and X(τ) is generated. Subdivide the “X” process into the n − 1
possible values that X may take on, so that arrivals at each value (row in the cell array) are
a Poisson process of intensity λ = 1

2 . The sum of the first k arrival times in a row is the sum
of the first k arrival times in its Poisson process. The ith such arrival time is the sum of i
exponential random variables, and has expectation i/λ. The expected sum of k arrival times
of a line is thus

(
k+1

2
)
/λ = k(k + 1), and (remembering that cost is time divided by n), the

expected total cost of all n− 1 lines is
n− 1
n

k(k + 1),

yielding the upper bound in (3.1) and completing the proof of the theorem. J

I Corollary 13. Let Γk :=
∑k

i=1 γi. Then, for every k > 1,

k2 6 Γk =
k∑

i=1
γi 6 k2 + k. (3.11)

Proof. Immediate from Theorems 12 and 3. J

I Example 14. In particular, Corollary 13 gives 1 6 γ1 6 2 and 4 6 γ1 + γ2 6 6. In fact, we
know that γ1 = ζ(3) .= 1.2021 [7] and γ1 + γ2 > 4.1704 by [6] and Section 4, see Corollary 20.
Numerical estimates suggest γ1 + γ2

.= 4.30; see Section 5, including Table 1, for various
estimates of γ2. J

3.2 Corollaries and conjectures for the kth tree
Turning to individual γk instead of their sum Γk, we obtain Corollary 7, namely that
2k − 2k1/2 < γk < 2k + 2k1/2.

Proof of Corollary 7. For the upper bound, we note that obviously γ1 6 γ2 6 . . . , and thus,
for any ` > 1, using both the upper and lower bound in (3.11),

` γk 6
k+`−1∑

i=k

γi = Γk+`−1 − Γk−1 6 (k + `− 1)(k + `)− (k − 1)2

= `2 + `(2k − 1) + k − 1 (3.12)

and hence

γk 6 2k − 1 + `+ k − 1
`

. (3.13)

Choosing ` = d
√
ke gives the upper bound in (1.1).

For the lower bound we similarly have, for 1 6 ` 6 k,

`γk > Γk − Γk−` > k2 − (k − `)(k − `+ 1) = −`2 − (2k + 1)`− k (3.14)

and hence

γk > 2k + 1− `− k

`
. (3.15)

Choosing, again, ` = d
√
ke gives the lower bound in (1.1). J

APPROX/RANDOM 2019

60:12 Successive Minimum Spanning Trees

I Remark 15. For a specific k, we can improve (1.1) somewhat by instead using (3.13) and
(3.15) with ` = b

√
kc or ` = d

√
ke. For example, for k = 2, taking ` = 1 yields 2 6 γ2 6 5.

For k = 3, taking ` = 2 yields 3.5 6 γ3 6 8. J

Besides these rigorous results, taking increments of the left and right-hand sides of (3.11)
also suggests the following conjecture.

I Conjecture 16. For k > 1, 2k − 1 6 γk 6 2k.

I Remark 17. Moreover, if γk = 2k + δ + o(1) holds, as conjectured in Conjecture 5, then
Γk = k2 + k(δ + 1) + o(k), and thus necessarily δ ∈ [−1, 0] as a consequence of Corollary 13.
In fact, the numerical estimates described in Section 5, suggest that δ = −1; see Conjecture 6.

J

3.3 Improved upper bounds
The upper bounds in Theorem 12 and Corollary 13 were proved using the bound (3.5). A
stronger, but less explicit, bound can be proved by using instead the sharper (3.4). That is,
we consider the random vectors r(τ) defined as above but with (3.6) replaced by

p̂k :=
(
rk + 1

2

)/(n
2

)
. (3.16)

As remarked before (3.4), this approximation comes from imagining all edges in each Fk to
be in a single component; this overestimates the probability that an arriving edge is rejected
from Fk and, as developed in the previous subsection, gives s(τ) � r(τ) just as when p̂k was
defined by (3.5).

Using for consistency our usual time scaling in which edges arrive at rate (n− 1)/2, by a
standard martingale argument one can show that, for each k > 1,

1
n
rk(b 1

2ntc)
p−→ gk(t), uniformly for t > 0, (3.17)

for some continuously differentiable functions gk(t) satisfying the differential equations, with
g0(t) := 1,

g′k(t) = 1
2
(
gk−1(t)2 − gk(t)2) , gk(0) = 0, k > 1. (3.18)

Moreover, using s(τ) � r(τ) and taking limits, it can be shown that

Γk :=
k∑

i=1
γi 6

1
2

∫ ∞
0

t
(
1− gk(t)2)dt. (3.19)

We omit the details, but roughly, in time dt, 1
2ndt edges arrive, all costing about t/n, and

a gk(t)2 fraction of them pass beyond the first k graphs (to the degree that we are now
modeling graphs).

For k = 1, (3.18) has the solution g1(t) = tanh(t/2), and (3.19) yields the bound
Γ1 = γ1 6 2 ln 2 .= 1.3863. This is better than the bound 2 given by (3.11), but still far from
precise since γ1 = ζ(3) .= 1.2021.

For k > 2 we do not know any exact solution to (3.18), but numerical solution of (3.18)
and calculation of (3.19) (see Section 5) suggests that Γk < k2 + 1. We leave the proof of this
as an open problem. If proved, this would be a marked improvement on Γk 6 k2 + k, which
was the exact expectation of the random process given by (3.5) (that part of the analysis
was tight). In particular, it would establish that 2k − 2 6 γk 6 2k.

S. Janson and G. B. Sorkin 60:13

For k = 2, the numerical calculations in Section 5 give γ1 + γ2 6 4.5542 . . . and thus
γ2 6 3.3521 The same value was also obtained using Maple’s numerical differential
equation solver, with Maple giving greater precision but the two methods agreeing in the
digits shown here.

4 A related problem by Frieze and Johansson

As said in the introduction, Frieze and Johansson [6] recently considered the problem of
finding the minimum total cost of k edge-disjoint spanning trees in Kn, for a fixed integer
k > 2. (They used random costs with the uniform model; we may consider all three models
described in Section 1.1.) We denote this minimum cost by mstk, following [6]. Trivially,

mstk 6
k∑

i=1
w(Ti), (4.1)

and as said in the introduction, it is easy to see that strict inequality may hold when k > 2,
i.e., that our greedy procedure of choosing T1, T2, . . . successively does not yield the minimum
cost set of k disjoint spanning trees.

We assume in this section that n > 2k; then k edge-disjoint spanning trees exist and thus
mstk <∞.
I Remark 18. As observed by Frieze and Johansson [6], the problem is equivalent to finding
the minimum cost of a basis in the matroidMk, defined as the union matroid of k copies of
the cycle matroid of Kn. This means that the elements ofMk are the edges in Kn, and a set
of edges is independent inMk if and only if it can be written as the union of k forests, see
e.g. [20, Chapter 8.3]. (Hence, the bases, i.e., the maximal independent sets, are precisely the
unions of k edge-disjoint spanning trees. For the multigraph version in the Poisson model, of
course we use instead the union matroid of k copies of the cycle matroid of K∞n ; we use the
same notationMk.) We write rk for rank in this matroid. J

For k = 2, Frieze and Johansson [6] show that

Emst2 → µ2
.= 4.1704. (4.2)

This is strictly smaller than our numerical estimates from Table 1 for the total cost of two
edge-disjoint spanning trees chosen successively, γ1 + γ2

.= 1.20 + 3.09 > 4.29; we show this
calculation to only two digits as we are confident of this level of precision. This would show
that choosing minimum spanning trees one by one is not optimal, even asymptotically, except
that our estimates are not rigorous. The following theorem is less precise but establishes
rigorously that the values are indeed different. (We rely only on σ2 < µ2, coming from the
estimate of µ2 above, and our estimate σ2

.= 2.69521, obtained as the numerical solution to
a differential equation; see the full version for details.)

I Theorem 19. There exists δ > 0 such that, for any of the three models, w.h.p. w(T1) +
w(T2) > mst2 + δ.

This can be restated in the following equivalent form.

I Corollary 20. γ1 + γ2 > µ2.

Proof. The equivalence of the statements in Theorem 19 and Corollary 20 is immediate
since w(T1) p−→ γ1 and w(T2) p−→ γ2 by Theorem 1 or 2 (depending on the choice of
model), and mst2

p−→ µ2 by [6] and justification that this holds in all three models (see the
full version). J

APPROX/RANDOM 2019

60:14 Successive Minimum Spanning Trees

I Remark 21. Numerically, γ2 > 2.9683. This is immediate from Corollary 20, the value of
µ2 given by [6], and (by [7]) γ1 = ζ(3). J

The proof of Theorem 19 is based on the fact that many edges are rejected from T1 and
T2 after time σ2, but none is rejected from the union matroid until a later time c3, namely
the threshold for appearance of a 3-core in a random graph.

5 Computational results

A variety of computations were performed, all of which will be mentioned here but only one
presented in any detail; for the rest see [12].

1. We performed naive simulations, generating edge-weighted random graphs and finding
the successive trees.

2. We performed a similar simulation, but instead of introducing edges in order of increasing
weight, we simply generate random edges. The details are below.

3. We solved the differential equations (3.18) numerically up to k = 50, to get upper bounds
on Γk as in (3.19). The results suggest that Γk < k2 + 1 (perhaps Γk < k2 + 0.743).
If proved, this would be a marked improvement on Γk 6 k2 + k, which was the exact
expectation of the random process given by (3.5) (that part of the analysis was tight). In
particular, it would establish that 2k − 2 6 γk 6 2k.

4. Finally, the functions ρk(t) can be obtained, recursively on k, through the solution to
certain functional fixed-point equations. We solved these numerically, getting results
consistent with those in the set of simulations listed as (2) above.

We now detail the set of simulations listed as (2) above, done with reference to the
Poisson multigraph model introduced in Section 2.2 and used throughout. We begin with k
empty graphs of order n. At each step we introduce a random edge e and, in the first graph
Gi for which e does not lie within a component, we merge the two components given by its
endpoints. (If this does not occur within the k graphs under consideration, we do nothing,
just move on to the next edge.) For each graph we simulate only the components (i.e.,
the sets of vertices comprised by each component); there is no need for any more detailed
structure. The edge arrivals should be regarded as occurring as a Poisson process of intensity
(n− 1)/2 but instead we simply treat them as arriving at times 2/n, 4/n, etc.

Figure 2 depicts the result of a single such simulation with n = 1000000, showing for
each k from 1 to 5 the size of the largest component of Gk (as a fraction of n) against time.
Similar experiments with multiple simulations and larger values of n support Conjecture 6
that γk = 2k − 1 + o(1). The largest experiment’s results are shown in part in Table 1;
its support for the conjecture continues through k = 29, the last value for which it gives
good data.

Table 1 Estimates of γ1, . . . , γ9 from 10 simulations each with n = 10000000, through time
t = 40.

10 simulations each with n = 10000000
γ1 γ2 γ4 γ4 γ5 γ6 γ7 γ8 γ9

mean 1.2020 3.0921 5.0482 7.0253 9.0169 11.0091 13.0067 15.0035 17.0039
std err 0.0002 0.0003 0.0005 0.0008 0.0010 0.0012 0.0016 0.0010 0.0015

S. Janson and G. B. Sorkin 60:15

0 2 4 6 8 10

0.00

0.25

0.50

0.75

1.00

Plots.jl file:///C:/Users/sorkin/AppData/Local/Temp/jl_97AD.tmp.html

1 of 1 2019-01-04, 02:18

Figure 2 Largest component sizes, as a fraction of n, for graphs G1, . . . , G5, based on a single
simulation with n = 1000000.

6 Open questions

We would be delighted to confirm the various conjectures above, in particular Conjectures
4–6, and to get a better understanding of (and ideally a closed form for) ρ∞ (provided it
exists).

It is also of natural interest to ask this kth-minimum question for structures other than
spanning trees. Subsequent to this work, the length Xk of the kth shortest s–t path in a
complete graph with random edge weights has been studied by Mezei, Gerke and Sorkin
[8]. They show that Xk/(2k/n + lnn/n) p−→ 1 for all k from 1 to n − 1. In particular,
the first few paths all cost nearly identical amounts, quite different from the situation for
successive MSTs.

The “random assignment problem” is to determine the cost of a minimum-cost perfect
matching in a complete bipartite graph with random edge weights. A great deal is known
about it, by a variety of methods; for one relatively recent work, with references to others,
see Wästlund [19]. It would be interesting to understand the kth cheapest matching.

It could also be interesting to consider other variants of all these questions. Frieze and
Johansson [6] considered the k disjoint structures which together have the smallest possible
total cost, where we consider disjoint structures generated successively. In either case, instead
of asking for disjoint structures, we could require structures which are merely distinct, or
perhaps which differ in some adversarially specified elements.

References

1 Aaron Archer and Éva Tardos. Frugal path mechanisms. ACM Transactions on Algorithms,
3(1):3:1–3:22, 2007.

2 Béla Bollobás and Alan M. Frieze. On matchings and Hamiltonian cycles in random graphs.
In Michał Karoński and Andrzej Ruciński, editors, Random Graphs ’83 (Poznań, 1983),
Ann. Discrete Math. 28, volume 118 of North-Holland Mathematics Studies, pages 23–46.
North-Holland, 1985.

APPROX/RANDOM 2019

60:16 Successive Minimum Spanning Trees

3 Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in inhomogeneous
random graphs. Random Struct. Alg., 31(1):3–122, 2007.

4 Prasad Chebolu, Alan Frieze, Páll Melsted, and Gregory B Sorkin. Average-case analyses of
Vickrey costs. In Proceedings of APPROX / RANDOM 2009, volume 5687 of Lecture Notes
in Comput. Sci., pages 434–447. Springer, Berlin, Heidelberg, 2009.

5 Colin Cooper, Alan Frieze, Nate Ince, Svante Janson, and Joel Spencer. On the length of a
random minimum spanning tree. Combin. Probab. Comput., 25(1):89–107, 2016.

6 Alan Frieze and Tony Johansson. On edge disjoint spanning trees in a randomly weighted
complete graph. Combin. Probab. Comput., 27(2):228–244, 2018.

7 Alan M. Frieze. On the value of a random minimum spanning tree problem. Discrete Applied
Mathematics, 10:47–65, 1985.

8 Stefanie Gerke, Balázs Mezei, and Gregory B. Sorkin. Successive shortest paths, 2019.
Manuscript in preparation.

9 Svante Janson. The minimal spanning tree in a complete graph and a functional limit theorem
for trees in a random graph. Random Struct. Alg., 7:337–355, 1995.

10 Svante Janson, Donald E. Knuth, Tomasz Łuczak, and Boris Pittel. The birth of the giant
component. Random Struct. Alg., 4(3):231–358, 1993.

11 Svante Janson and Gregory B. Sorkin. VCG auction mechanism cost expectations and
variances, 2013. arXiv:1310.1777.

12 Svante Janson and Gregory B Sorkin. Successive minimum spanning trees, 2019. arXiv:
1310.1777.

13 Svante Janson and Johan Wästlund. Addendum to “The minimal spanning tree in a complete
graph and a functional limit theorem for trees in a random graph”. Random Struct. Alg.,
28(4):511–512, 2006.

14 Anna R. Karlin, David Kempe, and Tami Tamir. Beyond VCG: Frugality of truthful mechan-
isms. In Proceedings of 46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’05), pages 615–624. IEEE, 2005.

15 Joseph B. Kruskal, Jr. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. Amer. Math. Soc., 7:48–50, 1956.

16 Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani. Algorithmic Game Theory.
Cambridge Univ. Press, New York, 2007.

17 Kunal Talwar. The price of truth: frugality in truthful mechanisms. In Proceedings of STACS
2003, Lecture Notes in Comput. Sci., volume 2607, pages 608–619. Springer, 2003.

18 Johan Wästlund. Evaluation of Janson’s constant for the variance in the random minimum
spanning tree problem, 2005. Linköping Studies in Mathematics No. 7.

19 Johan Wästlund. An easy proof of the ζ(2) limit in the random assignment problem. Elect.
Comm. in Probab., 14:261––269, 2009.

20 Dominic J. A. Welsh. Matroid theory. Academic Press, New York, 1976. Reprinted, Dover,
Mineola, New York, 2010.

http://arxiv.org/abs/1310.1777
http://arxiv.org/abs/1310.1777
http://arxiv.org/abs/1310.1777

Simple Analysis of Sparse, Sign-Consistent JL
Meena Jagadeesan
Harvard University, Cambridge, Massachusetts, USA
mjagadeesan@college.harvard.edu

Abstract
Allen-Zhu, Gelashvili, Micali, and Shavit construct a sparse, sign-consistent Johnson-Lindenstrauss
distribution, and prove that this distribution yields an essentially optimal dimension for the correct
choice of sparsity. However, their analysis of the upper bound on the dimension and sparsity
requires a complicated combinatorial graph-based argument similar to Kane and Nelson’s analysis of
sparse JL. We present a simple, combinatorics-free analysis of sparse, sign-consistent JL that yields
the same dimension and sparsity upper bounds as the original analysis. Our analysis also yields
dimension/sparsity tradeoffs, which were not previously known.

As with previous proofs in this area, our analysis is based on applying Markov’s inequality to
the pth moment of an error term that can be expressed as a quadratic form of Rademacher variables.
Interestingly, we show that, unlike in previous work in the area, the traditionally used Hanson-Wright
bound is not strong enough to yield our desired result. Indeed, although the Hanson-Wright bound
is known to be optimal for gaussian degree-2 chaos, it was already shown to be suboptimal for
Rademachers. Surprisingly, we are able to show a simple moment bound for quadratic forms of
Rademachers that is sufficiently tight to achieve our desired result, which given the ubiquity of
moment and tail bounds in theoretical computer science, is likely to be of broader interest.

2012 ACM Subject Classification Theory of computation → Random projections and metric em-
beddings

Keywords and phrases Dimensionality reduction, Random projections, Johnson-Lindenstrauss dis-
tribution, Hanson-Wright bound, Neuroscience-based constraints

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.61

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1708.02966.

Funding Meena Jagadeesan: Supported in part by a Harvard PRISE fellowship, Herchel-Smith
Fellowship, and an REU supplement to NSF IIS-1447471.

Acknowledgements I would like to thank Prof. Jelani Nelson for advising this project.

1 Introduction

In many modern algorithms that process high dimensional data, it is beneficial to preprocess
the data through a dimensionality reduction scheme that preserves the geometry of the data.
Dimensionality reduction schemes have been applied in streaming algorithms [22] as well as
algorithms for numerical linear algebra [29], feature hashing [27], graph sparsification [25],
and many other areas. The geometry-preserving objective can be expressed mathematically
as follows. The goal is to construct a probability distribution A over m× n real matrices
that satisfies the following condition for any x ∈ Rn:

PA∈A[(1− ε)||x||2 ≤ ||Ax||2 ≤ (1 + ε)||x||2] > 1− δ. (1)

An upper bound on the dimension m achievable by a probability distribution A that satisfies
(1) is given in the following lemma, which is a central result in the area of dimensionality
reduction:

© Meena Jagadeesan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 61; pp. 61:1–61:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mjagadeesan@college.harvard.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.61
https://arxiv.org/abs/1708.02966
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Simple Analysis of Sparse, Sign-Consistent JL

I Lemma 1 (Johnson-Lindenstrauss [15]). For any positive integer n and parameters 0 < ε, δ <

1, there exists a probability distribution A over m×n real matrices with m = Θ(ε−2 log(1/δ))
that satisfies (1).

The optimality of the dimension m achieved by Lemma 1 was recently proven in [16, 14].
For many applications of dimensionality reduction schemes, it can be useful to consider

probability distributions over sparse matrices in order to speed up the projection time.
Here, sparsity refers to the constraint that there are a small number of nonzero entries in
each column. In this context, Kane and Nelson [18] constructed a sparse JL distribution,
improving the work of Achlioptas [1] and Dasgupta et al. [6], and proved the following:

I Theorem 2 (Sparse JL [18]). For any positive integer n and 0 < ε, δ < 1, there exists a
probability distribution A over m× n real matrices with m = Θ(ε−2 log(1/δ)) and sparsity
s = Θ(ε−1 log(1/δ)) that satisfies (1).

Notice that this probability distribution, even with its sparsity guarantee, achieves the same
dimension as Lemma 1. The proof of Theorem 2 presented in [18] involved complicated
combinatorics; however, Cohen, Jayram, and Nelson [4] recently constructed two simple,
combinatorics-free proofs of this result. The first approach, which is most relevant to the
approach taken in this paper, used the Hanson-Wright bound on moments of quadratic forms.
An analysis similar to the second approach can be recovered by specializing the analysis of
Cohen [3] for sparse oblivious subspace embeddings to the case of “1-dimensional subspaces.”
In fact, though this recovered analysis is more complex, it has the advantage of yielding
dimension-sparsity tradeoffs that were not produced through any of the previous approaches:
for B ≥ e, the sparsity s can be set to Θ(ε−1 logB(1/δ)) if m is set to Θ(Bε−2 log(1/δ)),
enabling a logB factor reduction in sparsity at the expense of a B factor gain in dimension.

JL with sign-consistency constraints
Neuroscience-based constraints give rise to the additional condition of sign-consistency on
the matrices in the probability distribution. Sign-consistency refers to the constraint that
the nonzero entries of each column are either all positive or all negative. The relevance
of dimensionality reduction schemes in neuroscience is described in a survey by Ganguli
and Sompolinsky [9]. In convergent pathways in the brain, information stored in a massive
number of neurons is compressed into a small number of neurons, and nonetheless the ability
to perform the relevant computations is preserved. Modeling this information compression
scheme requires a hypothesis regarding what properties of the original information must
be accurately transmitted to the receiving neurons. A plausible minimum requirement is
that convergent pathways preserve the similarity structure of neuronal representations at the
source area.1

It remains to select the appropriate mathematical measure of similarity. The candidate
similarity measure considered in [9] is vector inner product, which conveniently gives rise
to a model based on the JL distribution.2 Suppose there are n “input” neurons at a source
area and m “output” neurons at a target area. In this framework, the information at the

1 This requirement is based on the experimental evidence that semantically similar objects in higher
perceptual or association areas in the brain elicit similar neural activity patterns [19] and on the
hypothesis that the similarity structure of the neural code is the basis of our ability to categorize objects
and generalize responses to new objects [24].

2 It is not difficult to see that for vectors x and y in the `2 unit ball, a (1 + ε)-approximation of ‖x‖2,
‖y‖2, and ‖x− y‖2 implies an additive error Θ(ε) approximation of the inner product 〈x, y〉.

M. Jagadeesan 61:3

input neurons is represented as a vector in Rn, the synaptic connections to output neurons
are represented as a m× n matrix (with (i, j)th entry corresponding to the strength of the
connection between input neuron j and output neuron i), and the information received by
the output neurons is represented as a vector in Rm. The similarity measure between two
vectors v, w of neural information being taken to be 〈v, w〉 motivates modeling a synaptic
connectivity matrix as a random m× n matrix drawn from a probability distribution that
satisfies (1). Certain constraints on synaptic connectivity matrices arise from the biological
limitations of neurons: the matrices must be sparse since a neuron is only connected to a
small number (e.g. a few thousand) of postsynaptic neurons and sign-consistent since a
neuron is usually purely excitatory or purely inhibitory.

This biological setting motivates the mathematical question: what is the optimal dimension
and sparsity that can be achieved by a probability distribution over sparse, sign-consistent
matrices that satisfies (1)? Allen-Zhu, Gelashvili, Micali, and Shavit [2] constructed a sparse,
sign-consistent JL distribution3 and proved the following:

I Theorem 3 (Sparse, sign-consistent JL [2]). For every ε > 0, and 0 < δ < 1/e, there exists a
probability distribution A over m×n real, sign-consistent matrices with m = Θ(ε−2 log2(1/δ))
and sparsity s = Θ(ε−1 log(1/δ)) that satisfies (1).

In [2], it was also proven that the additional log(1/δ) factor on m is essentially neces-
sary: namely, any distribution over sign-consistent matrices satisfying (1) requires m =
Ω̃(ε−2 log(1/δ) min(log(1/δ), logn)). Thus, the dimension in Theorem 3 is essentially optimal.
However, in order to achieve this upper bound on m, the proof presented in [2] involved
complicated combinatorics even more delicate than in the analysis of sparse JL in [18].

We present a simpler, combinatorics-free proof of Theorem 3. Our analysis also yields
dimension/sparsity tradeoffs, which were not previously known.4 We prove the following:

I Theorem 4. For every ε > 0, 0 < δ < 1, and e ≤ B ≤ 1
δ , there exists a probability

distribution A over m× n real, sign-consistent matrices with m = Θ(Bε−2 log2
B(1/δ)) and

sparsity s = Θ(ε−1 logB(1/δ)) that satisfies (1).

Notice Theorem 3 is recovered if B = e. For larger B values, Theorem 4 enables a logB
factor reduction in sparsity at the cost of a B/ log2 B factor gain in dimension.

To contextualize our tradeoff in Theorem 4, recall that the upper bounds on sparse (non-
sign-consistent) JL dimension-sparsity tradeoffs by Cohen [3] take a similar form, allowing a
logB factor reduction in s for a B factor gain in m. Moreover, in a recent follow-up work [13],
we show lower bounds that indicate that the standard choice of sparse JL construction requires
an exponential factor gain in dimension for a given reduction in sparsity, demonstrating that
Cohen’s dimension-sparsity tradeoffs are essentially tight.5 Due to the structural similarity
between sparse JL and sparse, sign-consistent JL, we believe this provides indication that
our tradeoffs in Theorem 4 could be tight for this construction in many regimes.6

3 Related mathematical work includes, in addition to sparse JL [18], a construction of a dense, sign-
consistent JL distribution [23, 10].

4 In Appendix A, we point out the limiting lemma in the combinatorial analysis in [2], which prevents
dimension-sparsity tradeoffs from being attainable through this approach, due to an assumption that is
implicitly used in the analysis. For sparse JL, it is similarly not known how to obtain these tradeoffs
via the combinatorial approach of [18].

5 More specifically, it follows from [3] and [13] that m is exactly min(poly(B)ε−2 log(1/δ), 2ε−2/δ) for the
standard choice of sparse JL construction (uniformly choosing s nonzero entries per column).

6 An interesting direction for future work could be to build upon the ideas in the follow-up work [13] to
show lower bounds on the dimension-sparsity tradeoffs for this sparse, sign-consistent JL construction.

APPROX/RANDOM 2019

61:4 Simple Analysis of Sparse, Sign-Consistent JL

Proof Techniques

As in [2, 18, 4], our analysis is based on applying Markov’s inequality to the pth moment of
an error term. Like in the first combinatorics-free analysis of sparse JL in [4], we express
this error term as a quadratic form of Rademachers (uniform ±1 random variables), and our
analysis then boils down to analyzing the moments of this quadratic form. While the analysis
in [4] achieves the optimal dimension for sparse JL using an upper bound on the moments of
quadratic forms of subgaussians due to Hanson and Wright [11], we give a counterexample
in Section 3.2 that shows that the Hanson-Wright bound is too loose in the sign-consistent
setting to result in the optimal dimension. Since the Hanson-Wright bound is tight for
quadratic forms of gaussians, we thus require a separate treatment of quadratic forms of
Rademachers.

We construct a simple bound on moments of quadratic forms of Rademachers that, unlike
the Hanson-Wright bound, is sufficiently tight in our setting to prove Theorem 4. Our bound
borrows some of the ideas from Latała’s tight bound on the moments of quadratic forms
of Rademachers [21]. Although our bound is much weaker than the bound in [21] in the
general case, it has the advantage of providing a greater degree of simplicity by consisting
of easier-to-analyze terms; this simplicity is critical since our quadratic form coefficients
are themselves random variables. The crux is that while the bound in [21] is focused on
obtaining tight estimates for quadratic forms with scalar coefficients, our bound is much
more tractable for quadratic forms with random variable coefficients. As a result, our bound
enables a simple proof of Theorem 4, while retaining the necessary precision to recover the
optimal dimension.

We build upon these ideas in our recent follow-up work [13], where the Hanson-Wright
bound also turns out to be too loose. The work studies sparse JL performance in feature
hashing and considers the restricted set of vectors with small `∞-to-`2 norm ratio, continuing
a line of work [27, 6, 17, 5, 18, 7]. The main result is a tight tradeoff between `∞-to-`2 norm
ratio and ε, δ, s, and m, and the lower bounds on dimension-sparsity tradeoffs mentioned
before are shown as a corollary. Similar to this work, the proof boils down to a tight bound
on pth moment of an error term, and it also turns out that the Hanson-Wright bound is too
loose here. The work solves this issue by building upon ideas from this work, utilizing a
separate treatment of Rademachers that is tractable for random variable coefficients. While
the analysis in [13] does not use the exact quadratic form bound presented here, it uses
intuition and generalizations of the moment bounding techniques presented in this work.

1.1 Notation

The main building blocks for our expressions are the following two types of random variables:
Rademacher variables, which are uniform ±1 random variables, and Bernoulli random
variables, which have support {0, 1}. For any random variable X and value p ≥ 1, we use the
notation ‖X‖p to denote the p-norm (E[|X|p])1/p, where E denotes the expectation. Similarly,
for any random variable X and value p ≥ 1 and any event E, we use the notation ‖X | E‖p
to denote the conditional p-norm (E[|X|p | E])1/p, which is equivalent to the p-norm of the
random variable (X | E). We use the following notation to discuss certain asymptotics:
given two scalar quantities Q1 and Q2 that are functions of some parameters, we use the
notation Q1 ' Q2 to denote that there exist positive universal constants C1 ≤ C2 such that
C1Q2 ≤ Q1 ≤ C2Q2, and we use the notation Q1 . Q2 to denote that there exists a positive
universal constant C such that Q1 ≤ CQ2.

M. Jagadeesan 61:5

1.2 A digression on Rademachers versus gaussians

The concept that drives our moment bound can be illustrated in the linear form setting.
Suppose σ1, σ2 . . . , σn are i.i.d Rademachers, x = [x1, . . . , xn] is a vector in Rn such that
|x1| ≥ |x2| ≥ . . . ≥ |xn|, and 2 ≤ p ≤ n. The Khintchine inequality, which is tight for linear
forms of gaussians, yields the `2-norm bound ‖

∑n
i=1 σixi‖p .

√
p ‖x‖2. However, this bound

cannot be a tight bound on ‖
∑n
i=1 σixi‖p for the following reason: As p→∞, the quantity√

p ‖x‖2 goes to infinity, while for any p ≥ 1, the quantity ‖
∑n
i=1 σixi‖p is bounded by ‖x‖1.

Surprisingly, a result due to Hitczenko [12] indicates that the tight bound is actually the
following combination of the `2 and `1 norm bounds:∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
p

'
p∑
i=1
|xi|+

√
p

√∑
i>p

x2
i .

In this bound, the “big” terms (i.e. terms involving x1, x2, . . . , xp) are handled with an
`1-norm bound, while the remaining terms are approximated as gaussians and bounded with
an `2-norm bound.

A similar complication arises when the Hanson-Wright bound on quadratic forms of
subgaussians is applied to Rademachers. Let σ be a d-dimensional vector of independent
Rademachers, and let A = (ak,l) be a symmetric d × d matrix with zero diagonal. The
Hanson-Wright bound [11], which is tight for gaussians, states for any p ≥ 1,

∥∥σTAσ∥∥
p
.
√
p

√√√√ d∑
k=1

d∑
l=1

a2
k,l + p

(
sup
‖y‖2=1

|yTAy|

)
.

Similar to the linear form setting, this bound can’t be a tight bound on
∥∥σTAσ∥∥

p
for the

following reason: As p → ∞, the quantity √p
√∑d

k=1
∑d
l=1 a

2
k,l goes to ∞, while for any

p ≥ 1, the quantity
∥∥σTAσ∥∥

p
is bounded by the entrywise `1-norm

∑d
k=1

∑d
l=1 |ak,l|.

Our quadratic form bound is based on a degree-2 analog of Hitczenko’s observation.
We analogously handle the “big” terms with an `1-norm bound and bound the remaining
terms by approximating some of the Rademachers by gaussians. From this, we obtain a
combination of `2 and `1 norm bounds, similar to the linear form setting. Our simple bound
has the surprising feature that it yields tighter guarantees than the Hanson-Wright bound
yields for our error term. While our bound is weaker than Latała’s tight bound [21] on
the moments of quadratic forms of Rademachers in the general case, it provides a greater
degree of simplicity: our bound avoids an operator-norm-like term in Latała’s bound that
is especially difficult to analyze when A is a random matrix, as is the case in this setting.
Moreover, our bound still retains the necessary precision to recover the optimal dimension
for sparse, sign-consistent JL.

Although our final analysis follows a style that this is perhaps less well-known within the
TCS community, in the end, it is quite simple, relying only on our quadratic form bound
coupled with a few standard tricks such as repeated use of triangle inequalities on || · ||p
norms and standard moment bounds involving the binomial distribution. For this reason,
we believe that it is likely to be of interest in other theoretical computer science settings
involving moments or tail bounds of Rademacher forms.

APPROX/RANDOM 2019

61:6 Simple Analysis of Sparse, Sign-Consistent JL

1.3 Outline for the rest of the paper
In Section 2, we describe the construction and analysis of [2] for sparse, sign-consistent
JL. In Section 3, we present the combinatorics-free approach in [4] for sparse JL that uses
the Hanson-Wright bound, and we discuss why this approach does not yield the optimal
dimension in the sign-consistent setting. In Section 4, we derive our bound on the moments
of quadratic forms of Rademachers and use this bound to construct a combinatorics-free
proof of Theorem 4.

2 Existing Analysis for Sparse, Sign-Consistent JL

In Section 2.1, we describe how to construct the probability distribution of sparse, sign-
consistent matrices analyzed in Theorem 3. In Section 2.2, we briefly describe the combinat-
orial proof of Theorem 3 presented in [2].

2.1 Construction of Sparse, Sign-Consistent JL
The entries of a matrix A ∈ A are generated as follows.7 Let Ai,j = ηi,jσj/

√
s where {σi}i∈[n]

and {ηr,i}r∈[m],i∈[n] are defined as follows:
The families {σi}i∈[n] and {ηr,i}r∈[m],i∈[n] are independent from each other.
The variables {σi}i∈[n] are i.i.d Rademachers.
The variables {ηr,i}r∈[m],i∈[n] are identically distributed Bernoulli random variables with
expectation s/m.
The {ηr,i}r∈[m],i∈[n] are independent across columns but not independent within each
column. For every column 1 ≤ i ≤ n, it holds that

∑m
r=1 ηr,i = s. For every subset

S ⊆ [m] and every column 1 ≤ i ≤ n, it holds that E
[∏

r∈S ηr,i
]
≤
∏
r∈S E[ηr,i]. (One

common definition of {ηr,i}r∈[m],i∈[n] that satisfies these conditions is the distribution
defined by uniformly choosing exactly s of these variables per column to be a 1.)

For every x ∈ Rn such that ‖x‖2 = 1, we need to analyze an error term, which for this
construction is the following random variable:

Z := ‖Ax‖2
2 − 1 = 1

s

∑
i 6=j

m∑
r=1

ηr,iηr,jσiσjxixj .

Proving that A satisfies (1) boils down to proving that Pη,σ[|Z| > ε] < δ. The main technique
to prove this tail bound is the moment method. Bounding a large moment of Z is useful
since it follows from Markov’s inequality that

Pη,σ[|Z| > ε] = Pη,σ[|Z|p > εp] < E[|Z|p]
εp

.

The usual approach, used in the analyses in [2, 18, 4] as well as in our analysis, is to take
p = Θ(log(1/δ)) to be an even integer and analyze the p-norm ‖Z‖p of the error term.

2.2 Discussion of the combinatorial analysis of [2]
In the analysis in [2], a complicated combinatorial argument was used to prove the following
lemma, from which Theorem 3 follows:

I Lemma 5 ([2]). If s2 ≤ m and p < s, then ‖Z‖p .
p
s .

7 See the appendix of the full version of the paper for a formal construction of the probability space.

M. Jagadeesan 61:7

The argument in [2] to prove Lemma 5 was based on expanding E[Zp] into a polynomial with
≈ n2p terms, establishing a correspondence between the monomials and the multigraphs, and
then doing combinatorics to analyze the resulting sum. The approach of mapping monomials
to graphs is commonly used in analyzing the eigenvalue spectrum of random matrices [28, 8]
and was also used in [18] to analyze sparse JL. The analysis in [2] borrowed some methods
from the analysis in [18]; however, the additional correlations between the Rademachers
imposed by sign-consistency forced the analysis in [2] to require more delicate manipulations
at several stages of the computation.

The expression to be analyzed was spE[Zp], which was written as:∑
i1,...,ip,j1,...,jp∈[n],i1 6=j1,...,ip 6=jp

(
p∏

u=1
xiuxju

)(
Eσ

p∏
u=1

σiuσju

)(
Eη

t∏
u=1

m∑
r=1

ηr,iuηr,ju

)
.

After layers of computation, it was shown that

spE[Zp] ≤ ep
p∑
v=2

∑
G∈Gv,p

(
(1/pp)

v∏
q=1

√
dq
dq

) ∑
r1,...,rp∈[m]

w∏
i=1

(s/m)vi

where Gv,p is a set of directed multigraphs with v labeled vertices and t labeled edges, where
dq is the total degree of vertex q ∈ [v] in a graph Gv,p, and where w and v1, . . . , vw are
defined by G and the edge colorings r1, . . . , rt. The problem then boiled down to carefully
enumerating the graphs in Gv,p in six stages and analyzing the resulting expression.

3 Discussion of Combinatorics-Free Approaches

The main ingredient of the first combinatorics-free approach for sparse JL presented in [4] is
the Hanson-Wright bound on the moments of quadratic forms of subgaussians. In Section
3.1, we discuss the approach in [4]. In Section 3.2, we discuss why this approach, if applied
to sparse, sign-consistent JL, fails to yield the optimal dimension.

3.1 Hanson-Wright approach for sparse JL in [4]
The relevant random variable for sparse JL is

Z ′ = ||Ax||2 − 1 = 1
s

m∑
r=1

∑
i6=j

ηr,iηr,jσr,iσr,jxixj

where the n independent Rademachers {σi}i∈[n] from the sign-consistent case are replaced by
the mn independent Rademachers {σr,i}i∈[n],r∈[m]. The main idea in [4] was to view Z ′ as a
quadratic form 1

sσ
TAσ. Here, σ is a mn-dimensional vector of independent Rademachers

and A = (Ak,l) is a symmetric, zero diagonal, block diagonal mn×mn matrix with m blocks
of size n×n, where the (i, j)th entry (for i 6= j) of the rth block is ηr,iηr,jxixj . The quantity∥∥σTAσ∥∥

p
was analyzed using the Hanson-Wright bound. In order to bound

∥∥σTAσ∥∥
p
, since

A is a random matrix whose entries depend on the η values, an expectation had to be taken
over η in the expression given by the Hanson-Wright bound. This resulted in the following:

∥∥σTAσ∥∥
p
.

∥∥∥∥∥∥√p
√√√√mn∑
k=1

mn∑
l=1

A2
k,l + p sup

‖y‖2=1
|yTAy|

∥∥∥∥∥∥
p

. (2)

The remainder of the analysis boiled down to bounding the RHS of (2), and it successfully
recovered Theorem 2.

APPROX/RANDOM 2019

61:8 Simple Analysis of Sparse, Sign-Consistent JL

3.2 Failure of the Hanson-Wright approach for sparse, sign-consistent
JL

The Hanson-Wright-based approach for sparse JL in [4] cannot be applied to the sign-
consistent case to obtain a tight bound on ‖Z‖p. The loss arises from the fact that while
the Hanson-Wright bound is tight for quadratic forms of gaussians, it is not guaranteed to
be tight for quadratic forms of Rademachers. As discussed in Section 1.2, when p → ∞,
the Hanson-Wright bound goes to ∞, while ||σTAσ||p can be bounded by the entrywise `1
norm of the matrix A. Although approximating the error term Rademachers by gaussians
happened to be sufficiently tight for sparse JL, this loss results in a suboptimal dimension for
sparse, sign-consistent JL.8 We give a counterexample, i.e. a vector x, that shows that the
Hanson-Wright bound is too loose to give the optimal dimension (when {ηr,i}r∈[m],i∈[n] are
defined by uniformly choosing exactly s of the variables per column to be a 1). We present
the details in Appendix E.

4 Simple Proof of Theorem 4

The main ingredient in our proof of Theorem 4 is the following bound on ‖Z‖p:

I Lemma 6. Let B = m/s2. If p ≥ 2, then

‖Z‖p .

{
p

s logB , if B ≥ e
p
sB if B < e.

We will later show that Theorem 4 follows from Lemma 6 via Markov’s inequality.
In order to analyze ‖Z‖p, we view Z as a quadratic form 1

sσ
TAσ, where the vector σ

is an n-dimensional vector of independent Rademachers, and A = (ai,j) is a symmetric,
zero-diagonal n× n matrix where the (i, j)th entry (for i 6= j) is xixj

∑m
r=1 ηr,iηr,j . Since

Z is symmetric in x1, . . . , xn, we can assume WLOG that |x1| ≥ |x2| ≥ . . . ≥ |xn|. For
convenience, we define, like in [4],

Qi,j :=
m∑
r=1

ηr,iηr,j (3)

to be the number of collisions between the nonzero entries of the ith column and the nonzero
entries of the jth column. Now, the (i, j)th entry of A (for i 6= j) can be written as Qi,jxixj .

As discussed in Section 3.2, we cannot apply the Hanson-Wright bound to tightly analyze
‖Z‖p and thus require a separate treatment of Rademachers. We derive the following
moment bound on quadratic forms of Rademachers9 that yields tighter guarantees than the
Hanson-Wright bound yields for ‖Z‖p:

8 The difference results from the correlations between the signs resulting in more “tightly packed”
coefficients in the error term quadratic form in the sign-consistent case.

9 As mentioned before, Latała [21] provides a tight bound on the moments of σTAσ (and on the moments
of more general quadratic forms). However, his bound consists of terms that are difficult to analyze
when the quadratic form coefficients are random variables. Moreover, his proof is quite complicated,
though the bound can be used in a black box to generate a much messier solution (by unravelling some
of his proof to avoid the operator-norm-like term).

M. Jagadeesan 61:9

I Lemma 7. If A = (ai,j) is a symmetric square n× n matrix with zero diagonal, {σi}i∈[n]
is a set of independent Rademachers, and q ≥ 1, then∥∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

min(q,n)∑
i=1

min(q,n)∑
j=1

|ai,j |

+√q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

.

Observe that our bound avoids the weakness of the Hanson-Wright bound in the limit
as q → ∞. As discussed in Section 1.2,

∥∥∥∑n
i=1
∑n
j=1 ai,jσiσj

∥∥∥
q
can be bounded by the

entrywise `1-norm bound
∑n
i=1
∑n
j=1 |ai,j | for any q ≥ 1. While the Hanson-Wright bound

goes to ∞ as q → ∞, the bound in Lemma 7 approaches the entrywise `1 bound in the
limit: for q > n, the second term in Lemma 7 vanishes since the summand

∑
j>q is empty.

As a result, the bound becomes the first-term, which becomes
∑n
i=1
∑n
j=1 |ai,j | as desired.

For 1 ≤ q < n, our bound becomes an interpolation of `1 and `2 norm bounds that bears
resemblance to Hitczenko’s Rademacher linear form bound in [12] discussed in Section 1.2.

Although our bound is weaker than Latała’s bound in [21] in the general case, it is much
simpler to analyze, especially when A is a random matrix. While the bound in [21] is focused
on obtaining tight estimates for quadratic forms where A is a scalar matrix, our bound is
much more tractable when A is a random matrix. The main complication in the bound in [21]
arises from the operator-norm-like term sup||y||2=1,||y||∞≤ 1√

q
|yTAy|. Due to the asymmetrical

geometry of the `2 ball truncated by `∞ planes, this term becomes especially messy in our
setting when A is a random matrix. Observe that our bound in Lemma 7 manages to avoid
this term altogether. Moreover, our `1 norm term is straightforward to calculate, and our `2
norm term can be handled cleanly through a bound (Lemma 15) from [20] on the q-norm∥∥∥∑j>q ai,jσj

∥∥∥
q
that is tractable even when the ai,j are themselves random variables.

We defer our proof of Lemma 7 to Section 4.1. We now use Lemma 7 and the triangle
inequality to obtain the following bound on ||Z||p:

||Z||p = 1
s

EηEσ

 n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjσiσj

p1/p

.
1
s

Eη

p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj |+
√
p

√√√√√√√ n∑
i=1

Eσ

∑
j>p
j 6=i

Qi,jxixjσj

p

2/p

p

1/p

≤ 1
s

∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxixj |

∥∥∥∥∥∥∥∥
p︸ ︷︷ ︸

(∗)

+√p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p︸ ︷︷ ︸
(∗∗)

.

We first discuss some intuition for why using this bound to analyze ‖Z‖p avoids the
loss incurred by the Hanson-Wright bound here. In the Hanson-Wright bound, all of the
Rademachers are essentially approximated by gaussians. In our bound, we make use of
Rademachers in the appropriate places to avoid loss. For 1 ≤ i ≤ p and 1 ≤ j ≤ p (the
upper left p× p minor where the |xi| and |xj | values are the largest), our approach utilizes

APPROX/RANDOM 2019

61:10 Simple Analysis of Sparse, Sign-Consistent JL

an `1-norm bound rather than √p times an `2 bound, which turns out to allow us to save a
factor of √p in the resulting bound on ‖Z‖p. Now, since the original matrix is symmetric, it
only remains to consider 1 ≤ i ≤ n and p+ 1 ≤ j ≤ n. In this range, we approximate the σi
Rademachers by gaussians and use an `2-norm bound. It turns out that approximating the
σj Rademachers by gaussians as well would yield too loose of a bound for our application, so
we preserve the σj Rademachers. For the remaining Rademacher linear forms, the interaction
between the xj values (all of which are upper bounded in magnitude by 1√

p) and the σj
Rademachers yields the desired bound.

In order to prove Lemma 6, it remains to prove Lemma 7 as well as to bound (∗) and (∗∗).
In Section 4.1, we prove Lemma 7. In Section 4.2 and Section 4.3, we bound (∗) and (∗∗).
Since the building blocks of (∗) and (∗∗) are weighted sums of the Qi,j random variables,
we first bound moments of these random variables separately. In Section 4.2, we use the
binomial-like properties of the Qi,js coupled with standard moment bounds involving the
binomial distribution to analyze the moments. In Section 4.3, we use these moment bounds
to bound (∗) and (∗∗), and then finish our proof of Lemma 6. In Section 4.4, we show how
Lemma 6 implies Theorem 4.

4.1 Proof of Lemma 7

We use the following standard lemmas in our proof of Lemma 7.
The first lemma allows us to decouple the two sets of Rademachers in our quadratic

form so that we can reduce analyzing the moments of the quadratic form to analyzing the
moments of a linear form.

I Lemma 8 (Decoupling, Theorem 6.1.1 of [26]). If A = (ai,j) is a symmetric, zero-diagonal
n× n matrix and {σi}i∈[n] ∪ {σ′i}i∈[n] are independent Rademachers, then∥∥∥∥∥∥

n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

∥∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q

.

The next lemma is due to Khintchine and gives an `2-norm bound on linear forms of
Rademachers. Since the Khintchine bound is derived from approximating σ1, . . . , σn by i.i.d
gaussians, we only use this bound outside of the upper left p× p minor of our matrix A.

I Lemma 9 (Khintchine). If σ1, σ2, . . . , σn are independent Rademachers, then for all q ≥ 1
and a ∈ Rn,∥∥∥∥∥

n∑
i=1

σiai

∥∥∥∥∥
q

.
√
q||a||2.

Now, we are ready to prove Lemma 7.

Proof of Lemma 7. By Lemma 8 and the triangle inequality, we know∥∥∥∥∥∥
n∑
i=1

n∑
j=1

ai,jσiσj

∥∥∥∥∥∥
q

.

∥∥∥∥∥∥
min(q,n)∑
i=1

min(q,n)∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

α

+

∥∥∥∥∥∥
n∑
i=1

∑
j>q

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

β

+

∥∥∥∥∥∥
∑
i>q

q∑
j=1

ai,jσ
′
iσj

∥∥∥∥∥∥
q︸ ︷︷ ︸

γ

.

M. Jagadeesan 61:11

We first bound α. Since a Rademacher σ satisfies |σ| = 1, it follows that α can be
upper bounded by the entrywise `1-norm bound

∑min(q,n)
i=1

∑min(q,n)
j=1 |ai,j | as desired. Using

Lemma 9, we know that β can be upper bounded by:

√
q

∥∥∥∥∥∥∥∥
√√√√√ n∑

i=1

∑
j>q

ai,jσj

2
∥∥∥∥∥∥∥∥
q

= √q

√√√√√√
∥∥∥∥∥∥∥
n∑
i=1

∑
j>q

ai,jσj

2
∥∥∥∥∥∥∥
q/2

≤ √q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

.

We now bound γ. An analogous argument shows γ ≤ √q
√∑q

j=1

∥∥∥∑i>q ai,jσi

∥∥∥2

q
. Thus:

γ ≤ √q

√√√√√ q∑
j=1

∥∥∥∥∥∥
∑
i>q

ai,jσi

∥∥∥∥∥∥
2

q

≤ √q

√√√√√ n∑
j=1

∥∥∥∥∥∥
∑
i>q

ai,jσi

∥∥∥∥∥∥
2

q

= √q

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑
j>q

ai,jσj

∥∥∥∥∥∥
2

q

. J

4.2 Moments of Weighted Sums of Qi,j Random Variables
Recall that for 1 ≤ i 6= j ≤ n, the Qi,j random variables count the number of collisions
between the nonzero entries in the ith column and jth column. We first prove that these sets
of random variables satisfy (conditional) independence properties, when conditioned on any
choice of nonzero entries in the ith column. We also show that the moments of the random
variables obtained through this conditioning are bounded by binomial moments.

I Proposition 10. Let X be a random variable distributed as Bin(s, s/m). For any 1 ≤ i ≤ n,
given any choice of s nonzero rows r1 6= r2 6= . . . 6= rs in the ith column, the set of n−1 random
variables10 {(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)}1≤j≤n,j 6=i are independent. Moreover, for
any q ≥ 1 and any j 6= i:

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q ≤ ‖X‖q .

The independence properties use that the nonzero entries in different columns are independent.
Moreover, the binomial bound on the moments of Qi,j follows from the decomposition of
Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1 into a sum of Bernoulli random variables.

Proof of Proposition 10. Let A be a matrix drawn from A, and pick any 1 ≤ i ≤ n.
We condition on the event that the s nonzero entries in column i of A occur at rows
r1, . . . , rs. For 1 ≤ j ≤ n, j 6= i and 1 ≤ k ≤ s, let Yk,j = ηrk,j , so that (Qi,j |
ηr1,i = ηr2,i = . . . = ηrs,i) =

∑s
k=1 Yk,j . Notice that the sets {Yk,j}k∈[s] for 1 ≤ j ≤

n, j 6= i are independent from each other, which means random variables in the set
{Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1}1≤j≤n,j 6=i are independent. For 1 ≤ j ≤ n, j 6= i, and
1 ≤ k ≤ s, let Zk,j be distributed as i.i.d Bernoulli random variables with expectation
s/m. Notice that for a fixed j, each Yk,j is distributed as Zk,j and the random variables
{Yk,j}1≤k≤s are negatively correlated (and nonnegative), which means

‖Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1‖q =

∥∥∥∥∥
s∑

k=1
Yk,j

∥∥∥∥∥
q

≤

∥∥∥∥∥
s∑

k=1
Zk,j

∥∥∥∥∥
q

= ‖X‖q . J

10 See the appendix in the full version of the paper for a formal discussion of viewing these quantities as
random variables over a different probability space.

APPROX/RANDOM 2019

61:12 Simple Analysis of Sparse, Sign-Consistent JL

Now, we need to analyze the moments of weighted sums of Qi,j random variables. Using
the independence properties and the fact that the moments of the Qi,j are upper bounded
by binomial moments as given in Proposition 10, this boils down to studying the moments
of weighted sums of binomial random variables. The main tools that we use in analyzing
these moments are bounds on moments of sums of nonnegative random variables and sums
of symmetric random variables due to Latała [20] that we state in Appendix B.11

Our first estimate is an upper bound on the moments of binomial random variables,
which also gives bounds on moments of the Qi,j by Proposition 10. We defer the proof to
Appendix D.

I Proposition 11. Suppose that X is a random variable distributed as Bin(N,α) for any
α ∈ (0, 1) and any integer N ≥ 1. If q ≥ 1 and B = q

αmax(N,q) , then

‖X‖q .

{
q

logB if B ≥ e
q
B if B < e

.

Our next estimate is essentially an upper bound on the moments of sums of binomial
random variables weighted by Rademachers. We defer the proof to Appendix C.

I Proposition 12. Suppose that q ≥ 2 is even and y = [y1, . . . , yM] is a vector that satisfies
||y||2 ≤ 1 and ||y||∞ ≤ 1√

q . Let X be a random variable distributed as Bin(N,α) for some
α ∈ (0, 1) and some integer N ≥ 1. Suppose that Y1, . . . , YM are independent random
variables that satisfy ||Yk||l ≤ ||X||l for 1 ≤ k ≤M and for l ≥ 1. Suppose that σ1, . . . , σM
are independent Rademachers, also independent of {Yk}k∈[M]. If B = q

αmax(N,q) , then∥∥∥∥∥
M∑
k=1

Ykykσk

∥∥∥∥∥
q

.

{ √
q

logB if B ≥ e
√
q

B if B < e
.

4.3 Bounding (∗) and (∗∗) to prove Lemma 6
We bound the quantities (∗) and (∗∗) in the following sublemmas, which assume the notation
used throughout the paper:

I Lemma 13. If m/s2 = B, then∥∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxjxi|

∥∥∥∥∥∥
p

.

{
p

logB if B ≥ e
p
B if B < e

.

I Lemma 14. If m/s2 = B, then

√
p

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑

j>p,j 6=i
Qi,jxixjσj

∥∥∥∥∥∥
2

p

.

{
p

logB if B ≥ e
p
B if B < e

.

We now use Proposition 10 as well as the moment bound on binomial random variables
from Proposition 11 to prove Lemma 13 and thus bound (∗).

11The proofs of these bounds given in [20] are not complicated; for the sake of being self-contained, we
give sketches of these proofs in the appendix of the full version of the paper.

M. Jagadeesan 61:13

Proof of Lemma 13. We carefully use the triangle inequality to see12:∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j 6=i

|Qi,jxjxi|

∥∥∥∥∥∥∥∥
p

≤ 2

∥∥∥∥∥∥∥∥
p∑
i=1

∑
j≤p
j>i

Qi,j |xj ||xi|

∥∥∥∥∥∥∥∥
p

.

∥∥∥∥∥∥∥∥
p∑
i=1

x2
i

∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥∥
p

.
p∑
i=1

x2
i

∥∥∥∥∥∥∥∥
∑
j≤p
j>i

Qi,j

∥∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m) and Y ∼ Bin(sp, s/m). By Proposition 10, for any i and any r1 6=
r2 6= . . . 6= rs, the random variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and
‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p. It follows from taking pth powers of both sides that∥∥∥∥∥∥∥∥

∑
j≤p
j>i

Qi,j

 | ηr1,i = . . . = ηrs,i = 1

∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥
∑
j≤p
j>i

(Qi,j | ηr1,i = . . . = ηrs,i = 1)

∥∥∥∥∥∥∥∥
p

≤ ‖Y ‖p .

Now, Proposition 11 gives us a bound on ‖Y ‖p, and the result follows from the law of total
expectation.13 J

We now use Proposition 10 as well as the moment bound on weighted sums of binomial
random variables from Proposition 12 to prove Lemma 14 and thus bound (∗∗).

Proof of Lemma 14. Observe that

√
p

√√√√√√√ n∑
i=1

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxixjσj

∥∥∥∥∥∥∥∥
2

p

= √p

√√√√√√√ n∑
i=1

x2
i

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
2

p

≤ √p max
1≤i≤n

∥∥∥∥∥∥∥∥
∑
j>p
j 6=i

Qi,jxjσj

∥∥∥∥∥∥∥∥
p

.

Let X ∼ Bin(s, s/m) and Y ∼ Bin(sp, s/m). By Proposition 10, for any i and any
r1 6= r2 6= . . . 6= rs, the random variables {Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i are inde-
pendent and ‖Qi,j | ηr1,i = . . . = ηrs,i = 1‖p ≤ ‖X‖p ≤ ‖Y ‖p. Moreover, |xj | ≤ 1√

p for

j > p. Now, we consider
∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1

∥∥∥
p
which is equal to∥∥∥∑j>p,j 6=i(Qi,j | ηr1,i = . . . = ηrs,i = 1)(σj | ηr1,i = . . . = ηrs,i = 1)xj

∥∥∥
p
. Since each (σj |

ηr1,i = . . . = ηrs,i = 1) is distributed as a Rademacher and since the set of n − 1 ran-
dom variables {σj | ηr1,i = . . . = ηrs,i = 1}j 6=i are independent and also independent of
{Qi,j | ηr1,i = . . . = ηrs,i = 1}j 6=i, we can apply Proposition 12 to this expression and thus
get a bound14 on the conditional p-norm

∥∥∥∑j>p,j 6=iQi,jxjσj | ηr1,i = . . . = ηrs,i = 1
∥∥∥
p
. Now,

the result follows from the law of total expectation. J

We now show the bound on ||Z||p follows from the bounds on (∗) and (∗∗) in Lem-
mas 13, 14.

12Naively applying the triangle inequality yields a suboptimal bound, so we require this more careful
treatment.

13 See the appendix in the full version of the paper for a formal discussion of why a uniform bound on the
conditional p-norm implies a bound on the p-norm here.

14Approximating the σj by gaussians yields a suboptimal bound, so we require the bound given in
Proposition 12.

APPROX/RANDOM 2019

61:14 Simple Analysis of Sparse, Sign-Consistent JL

Proof of Lemma 6. Applying Lemmas 13,14 after the following simplification proves the
lemma:

‖Z‖p .
1
s

∥∥∥∥∥∥
p∑
i=1

∑
j≤p,j 6=i

|Qi,jxixj |

∥∥∥∥∥∥
p

+
√
p

s

√√√√√ n∑
i=1

∥∥∥∥∥∥
∑

j>p,j 6=i
Qi,jxixjσj

∥∥∥∥∥∥
2

p

. J

4.4 Proof of Theorem 4
We show Lemma 6 implies Theorem 4, completing the proof.

Proof of Theorem 4. It suffices to show Pη,σ[|Z| > ε] < δ. By Markov’s inequality, we know

Pη,σ[|Z| > ε] = Pη,σ[|Z|p > εp] < ε−pE[|Z|p] =
(‖Z‖p

ε

)p
.

Suppose that B ≥ e. Then by Lemma 6, we know(‖Z‖p
ε

)p
≤
(

Cp

(logB)sε

)p
.

Thus, to upper bound this quantity by δ, we can set s = Θ(ε−1p/ logB) = Θ(ε−1 logB(1/δ))
and m = Θ(Bs2). We impose the additional constraint that B ≤ 1

δ to guarantee that s ≥ 1.
This proves the desired result.15 J

References
1 D. Achlioptas. Database-friendly Random Projections: Johnson-Lindenstrauss with Binary

Coins. J. Comput. Syst. Sci., 66(4):671–687, June 2003.
2 Z. Allen-Zhu, R. Gelashvili, S. Micali, and N. Shavit. Sparse sign-consistent John-

son–Lindenstrauss matrices: Compression with neuroscience-based constraints. In Proceedings
of the National Academy of Sciences (PNAS), volume 111, pages 16872–16876, 2014.

3 M. B. Cohen. Nearly tight oblivious subspace embeddings by trace inequalities. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
278–287, 2016.

4 M. B. Cohen, T. S. Jayram, and J. Nelson. Simple Analyses of the Sparse Johnson-Lindenstrauss
Transform. In Proceedings of the 1st Symposium on Simplicity in Algorithms (SOSA), pages
1–9, 2018.

5 S. Dahlgaard, M. Knudsen, and M. Thorup. Practical Hash Functions for Similarity Estimation
and Dimensionality Reduction. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (NIPS), pages 6618–6628, 2017.

6 A. Dasgupta, R. Kumar, and T. Sarlos. A Sparse Johnson-Lindenstrauss Transform. In
Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 341–350,
2010.

7 C. Freksen, L. Kamma, and K. G. Larsen. Fully Understanding the Hashing Trick. In
Proceedings of the 32nd International Conference on Neural Information Processing Systems
(NeurIPS), pages 5394–5404, 2018.

8 Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica,
62:233–241, 1981.

15 If we set B < e, if we use Lemma 6, we know that in order to obtain an upper bound of δ, we would
have to set s = Θ(ε−1p/B) = Θ(ε−1 log(1/δ)/B) and m = Θ(ε−1 log2(1/δ)/B). This yields no better s
or m values than those achieved when B = e.

M. Jagadeesan 61:15

9 S. Ganguli and H. Sompolinsky. Compressed sensing, sparsity, and dimensionality in neuronal
information processing and data analysis. Annual Review of Neuroscience, 35:485–508, 2012.

10 R.T. Gray and P.A. Robinson. Stability and structural constraints of random brain networks
with excitatory and inhibitory neural populations. Journal of Computational Neuroscience,
27(1):81–101, 2009.

11 D. L. Hanson and F. T. Wright. A bound on tail probabilities for quadratic forms in independent
random variables. Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

12 P. Hitczenko. Domination inequality for martingale transforms of Rademacher sequence. Israel
Journal of Mathematics, 84:161–178, 1993.

13 M. Jagadeesan. Understanding Sparse JL for Feature Hashing. CoRR, abs/1903.03605, 2019.
arXiv:1903.03605.

14 T.S. Jayram and D. P. Woodruff. Optimal bounds for Johnson-Lindenstrauss transforms and
steaming problems with subconstant error. In ACM Transactions on Algorithms (TALG) -
Special Issue on SODA’11, volume 9, pages 1–26, 2013.

15 W. B. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
Contemporary Mathematics, 26:189–206, 1984.

16 D. M. Kane, R. Meka, and J. Nelson. Almost optimal explicit Johnson-Lindenstrauss families.
In Proceedings of the 14th International Workshop and 15th International Conference on
Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques
(RANDOM), pages 628–639, 2011.

17 D. M. Kane and J. Nelson. A Derandomized Sparse Johnson-Lindenstrauss Transform. CoRR,
abs/1006.3585, 2010. arXiv:1006.3585.

18 D. M. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. In Proceedings of the
23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 16872–16876.
ACM Press, 2012.

19 R. Kiani, H. Esteky, K. Mirpour, and K. Tanaka. Object category structure in response
patterns of neuronal population in monkey inferior temporal cortex. Journal of Neurophysiology,
97:4296–4309, 2007.

20 R. Latała. Estimation of moments of sums of independent real random variables. Annals of
Probability, 25(3):1502–1513, 1997.

21 R. Latała. Tail and moment estimates for some types of chaos. Studia Mathematica, 135(1):39–
53, 1999.

22 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends in
Theoretical Computer Science, 1, 2005.

23 K. Rajan and L.F. Abbot. Eigenvalue spectra of random matrices for neural networks. Physical
Review Letters, 97:188104, 2006.

24 T. Rogers and J. McClelland. Semantic Cognition: A Parallel Distributed Processing Approach.
MIT Press, 2004.

25 D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing (SICOMP), 40:1913–1926, 2011.

26 R. Vershynin. High-Dimensional Probability. Cambridge University Press, 2018.
27 K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature Hashing for

Large Scale Multitask Learning. In Proceedings of the 26th Annual International Conference
on Machine Learning (ICML), pages 1113–1120, 2009.

28 E.P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals of
Mathematics, 62:548–564, 1955.

29 D.P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends in
Theoretical Computer Science, 10:1–157, 2014.

APPROX/RANDOM 2019

http://arxiv.org/abs/1903.03605
http://arxiv.org/abs/1006.3585

61:16 Simple Analysis of Sparse, Sign-Consistent JL

A Limitations of the Combinatorial Approach

At first glance, it appears that the bound of P[|Z| > ε] ≤
(
Cts
εm

)t of [2] in the proof of the
main theorem (p. 9 of the arXiv version) implies the desired dimension-sparsity tradeoffs by
setting s = ε−1t, m = Bε−1ts

2C , and t = logB(1/δ) (this t value is equivalent to the p value
in this paper). However, this does not actually follow from the analysis in [2]: there is an
assumption made in one of the lemmas, which is not stated explicitly in the statement of the
lemma, that does not allow the parameters to be set in this way. The limiting factor is the
lemma that states that

stE[Zt] ≤ 2O(t)tt
(
s2

m

)t
.

This is Lemma 3 in the conference version of [2], and Lemma 4.3 in the arXiv version of [2].
Here, Z is defined analogously as in section 2.1 of this paper.

The proof of this lemma, given in Appendix A.3 in [2], implicitly relies on the fact
that s2

m ≥ 1, although this condition is not explicitly stated in the lemma statement. This
assumption arises from the last line of the proof, where the sum

∑t
w=1

(
s2

m

)w
is upper

bounded by t
(
s2

m

)t
. Following the end of the proof of Theorem 1 (the top of p. 9 of the

arXiv version), this yields P[|Z| > ε] ≤
(
Cts
εm

)t. Now, suppose we instead set m = Bs2 (where
B ≤ 1 as required by the assumption). Then we obtain

(
Cts
εm

)t =
(
Ct
εBs

)t. Thus, we can set
s to be Cε−1B−1 log(1/δ) and m to be C2ε−2 log2(1/δ)B−1. Since B ≤ 1, this is no better
than the original theorem statement and thus yields no dimension-sparsity tradeoff.

Now, suppose we instead let s2

m ≤ 1. Then we can modify the proof of Lemma 4.3 to
obtain the weaker upper bound of

∑t
w=1

(
s2

m

)w
by t s

2

m . Let B = m/s2 where B ≥ 1. In order
to ensure that m is polynomial in log(1/δ), we assume that B ≤ δ. In this case, mimicking
the calculation at the end of the proof of Theorem 1, we obtain P[|Z| > ε] ≤ 1

B

(
Ct
εs

)t =(
Ct

εsB1/t

)t. Thus, we can set s = C log(1/δ)ε−1e− logB/t. Observe that 0 ≤ logB ≤ t, so
1 ≥ e− logB/t ≥ e−1. Thus, s = Θ(log(1/δ)ε−1) and m = Θ(Bs2), which does not yield a
dimension-sparsity tradeoff.

Thus, it is not clear how to directly obtain the dimension-sparsity tradeoff from the
combinatorial approach of [2]. Some intuition for this limitation is that the moment bounds
on Z obtained by the combinatorial approach are not sufficiently tight for varying values of B
due to the fact that the bounding techniques are implicitly tailored to the case of B = Θ(1).
The combinatorics-free approach in this paper avoids this issue through making use of a
more structured method to bound the moments of Z.

B Latała’s Moment Bounds

The following bounds on sums of independent random variables are due to Latała [20]. These
proofs are not complicated: for sake of being self-contained, in the appendix of the full
version of the paper, we sketch proofs of these bounds. Full proofs of these lemmas can be
found in [20].

I Lemma 15 ([20]). If q ≥ 2 and X,X1, . . . , Xn are independent symmetric random variables,
then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

' inf
{
T > 0 such that

n∑
i=1

log
(
E
[(

1 + Xi

T

)q])
≤ q

}
.

M. Jagadeesan 61:17

I Lemma 16 ([20]16). If 1 ≤ q ≤ n and X,X1, . . . , Xn are i.i.d nonnegative random variables,
then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

' sup
1≤t≤q

q

t

(
n

q

)1/t
‖X‖t .

C Proof of Proposition 12

The main ingredient in this proof is Lemma 15 (Latała’a bound on moments of sums of
symmetric random variables).

Proof of Proposition 12. Since the Yi are independent random variables, we can apply
Lemma 15 to obtain:∥∥∥∥∥

M∑
k=1

Ykykσk

∥∥∥∥∥
q

. inf
{
T > 0 |

M∑
k=1

log
(
E
[∣∣∣∣1 + Ykσkyk

T

∣∣∣∣q]) ≤ q
}
.

Thus, it suffices to show

T '

{ √
q

logB if B ≥ e
√
q

B if B < e

satisfies
∑M
k=1 log

(
E
[(

1 + Ykσkyk

t

)q])
≤ q. We see

M∑
k=1

log
(
E
[(

1 + Ykσkyk
T

)q])
=

M∑
k=1

log
(

1 +
q∑
l=1

(
q

l

)
(E[(Ykσk)l])ylk

T l

)

=
M∑
k=1

log

1 +
q/2∑
l=1

(
q

2l

)
‖Yk‖2l

2l y
2l
k

T 2l

≤

M∑
k=1

log

1 +
q/2∑
l=1

(qe
2l

)2l
(
‖Yk‖2l yk

T

)2l

By the bound on moments of binomial random variables in Proposition 11, we know if B ≥ e
that there exists a universal constant C such that ||Qi,j ||2l ≤ 2lC

logB . Thus, we obtain

M∑
k=1

log
(
E
[(

1 + Ykσkyk
T

)q])
≤

M∑
k=1

log

1 +
q/2∑
l=1

(qe
2l

)2l
(

2lCyk
T logB

)2l

≤
M∑
k=1

log

1 +
q/2∑
l=1

(
qeCyk
T logB

)2l
 .

16This result was actually first due to S.J. Montgomery-Smith through a private communication with
Latała. Nonetheless, it is also a corollary of a result in [20].

APPROX/RANDOM 2019

61:18 Simple Analysis of Sparse, Sign-Consistent JL

Since |yk| ≤ 1√
q , if we set T = 2eC√q

logB , then we obtain

M∑
k=1

log

1 +
q/2∑
l=1

(√
qyk

2

)2l
 ≤ M∑

k=1
log

1 + (√qyk)2
q/2∑
l=1

(
1
2

)2l
 .

This can be bounded by
M∑
k=1

log
(

1 + (√qyk)2
)

=
M∑
k=1

log
(
1 + qy2

k

)
≤

n∑
i=1

qy2
k ≤ q

as desired. An analogous argument shows that if B < e, we can set T = 2eC√q
B . J

D Proof of Proposition 11

The main tool that we use in this proof is Lemma 16 (Latała’s bound on moments of sums
of i.i.d nonnegative random variables).

Proof of Proposition 11. Notice that it suffices to obtain an upper bound on ‖X‖q for all
N ≥ q. (Since ‖X‖q is an increasing function of N , an upper bound on ‖X‖q at N = q is
also an upper bound on ‖X‖q for all N < q). For the rest of the proof, we assume N ≥ q.

Notice X has the same distribution as
∑N
j=1 Zj where Z,Z1, . . . , ZN are i.i.d Bernoulli

random variables with expectation α. Since ‖Z‖t = α1/t, we know by Lemma 16,

‖X‖q ' sup
1≤t≤q

q

t

(
N

q

)1/t
α1/t

= sup
1≤t≤q

q

t

(
1
B

)1/t

At t = 1, this quantity is equal to q
B , and at t = q, this quantity is equal to

(1
B

)1/q =
elog(1/B)/q. The only t ∈ R for which this quantity has derivative 0 is t = logB. Notice that
1 ≤ logB ≤ q if and only if e ≤ B ≤ eq. Thus

‖X‖q '

{
max(qB ,

q
logB , e

log(1/B)/q) if e ≤ B ≤ eq

max(qB , e
log(1/B)/q) if B < e or if B > eq.

.

For B ≥ e, we want to show ‖X‖q . q/ logB. Since logB > 0, we see elog(1/B)/q =
e− logB/q ≤ q/ logB and q/B ≤ q/ logB.

For B < e, we want to show ‖X‖q . q/B. Since 1
B > 1

e , we see elog(1/B)/q =
(1
B

)1/q ≤
e
B . q

B . J

E Weakness of bound on ‖Z‖p from Equation (4)

Like in Section 4, we view the random variable Z as a quadratic form 1
sσ

TAσ, where σ an
n-dimensional vector of independent Rademachers and A is a symmetric, zero-diagonal n×n
matrix where the (i, j)th entry (for i 6= j) is xixj

∑m
r=1 ηr,iηr,j = Qi,jxixj . Applying the

Hanson-Wright bound followed by an expectation over the η values yields

∥∥σTAσ∥∥
p
.

∥∥∥∥∥∥√p
√√√√ n∑

i=1

∑
j≤n,j 6=i

Q2
i,jx

2
ix

2
j + p sup

‖y‖2=1

∣∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣∣
∥∥∥∥∥∥
p

=: Up. (4)

M. Jagadeesan 61:19

We show that the vector x = [1√
2 ,

1√
2 , 0, . . . , 0] ∈ Rn forces Up to be too large to yield the

optimal m value, thus proving that the Hanson-Wright bound does not provide a sufficiently
tight bound on ‖Z‖p to achieve Theorem 3. The main ingredient in our proof is the following
lemma, which we prove in subsection C.1:

I Lemma 17. For every column 1 ≤ i ≤ n, suppose that the random variables {ηr,i}r∈[m],i∈[n]
have the distribution defined by uniformly choosing exactly s of the variables per column. If
x =

[
1√
2 ,

1√
2 , 0, . . . , 0

]
, p < s and B = m/s2 ≤ ep

p , then

Up '

{
p2

logBp if B ≥ e
p

p
B if B < e

p .

We can obtain bounds on s and m from Lemma 17 via Markov’s inequality. We disregard
the case where B ≥ ep

p , since this case would yield a value for m that is not polynomial
in log(1/δ). If B < e/p, then it follows that s = Θ(ε−1B−1 log(1/δ)) = Ω(ε−1 log2(1/δ))
and m = Θ(ε−2B−1 log2(1/δ)) = Ω(ε−2 log3(1/δ)). If B ≥ e/p, then it follows that s =
Θ(ε−1p2/ log(Bp)) = Ω(ε−1 log(1/δ)) and m = Θ(ε−2p4B/ log2(Bp)) = Ω(ε−2 log3(1/δ)).
These bounds on m incur an extra log(1/δ) factor, and thus the Hanson-Wright bound is too
weak for this setting. Now, it suffices to prove Lemma 17, which we do in the next section.

E.1 Proof of Lemma 17
In this section, we assume that x =

[
1√
2 ,

1√
2 , 0, . . . , 0

]
and that the random variables

{ηr,i}r∈[m],i∈[n] have the distribution defined by uniformly choosing exactly s of the variables
per column. We first show the following computation of ||Qi,j ||p.

I Proposition 18. Assume that the random variables {ηr,i}r∈[m],i∈[n] have the distribution
defined by uniformly choosing exactly s of the variables per column. Then, if p < s and
X ∼ Bin(s, s/m), we have that ||Qi,j ||p ' ||X||p.

Proof. We condition on the even that the nonzero locations in column i are at r1, r2, . . . , rs.
Notice that the random variable (Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1) is distributed as
Zr1 + Zr2 + . . .+ Zrs

where Zrk
is an indicator for the kth entry in the jth column being

nonzero. Let Z ′rk
for 1 ≤ k ≤ s be i.i.d random variables distributed as Bern(s/m). Now,

observe that

E[(Zr1 + Zr2 + . . .+ Zrs
)p] =

∑
0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
s∏
i=1

Ztiri
] =

∑
0≤t1,t2,...,ts≤p
t1+t2+...+ts=p

E[
∏
i|ti>0

Zri
].

Notice that E[(Z ′r1
+ Z ′r2

+ . . . + Z ′rs
)p] =

∑
0≤t1,t2,...,ts≤p,t1+t2+...+ts=p E[

∏
i|ti>0 Z

′
ri

].
Thus, it suffices to compare E[

∏
i|ti>0 Zri

] and E[
∏
i|ti>0 Z

′
ri

]. We see that E[
∏
i|ti>0 Z

′
ri

] =(
s
m

)|{i|ti>0}|. Since p < s, we see that E[
∏
i|ti>0 Zri

] =
∏|{i|ti>0}|−1
j=0

s−j
m−j . It is not difficult

to verify that this ratio is bounded by 2O(p) as desired, so

E[(Qi,j | ηr1,i = ηr2,i = . . . = ηrs,i = 1)p]
E[Xp] = E[(Zr1 + Zr2 + . . .+ Zrs

)p]
E[Xp] ≥ 2−O(p).

Now, by the law of total expectation, we know that

E[Qpi,j]
E[Xp] ≥ 2−O(p)

as desired. J

APPROX/RANDOM 2019

61:20 Simple Analysis of Sparse, Sign-Consistent JL

We now prove the following relation between Up and ‖Q1,2‖p:

I Lemma 19. Assume the notation and restrictions above. Then Up ' p ‖Q1,2‖p.

Proof of Lemma 19. For ease of notation, we define

S1 := p sup
‖y‖2=1

∣∣∣∣∣∣
n∑
i=1

∑
j≤n,j 6=i

Qi,jxixjyiyj

∣∣∣∣∣∣
S2 := √p

√√√√ n∑
i=1

n∑
j=1

Q2
i,jx

2
ix

2
j .

Our goal is to calculate Up = ‖S1 + S2‖p. We make use of the following upper and lower
bounds on ‖S1 + S2‖p:∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ ≤ ‖S1 − S2‖p ≤ ‖S1 + S2‖p ≤ ‖S1‖p + ‖S2‖p . (5)

In order to compute
∣∣∣‖S1‖p − ‖S2‖p

∣∣∣ and ‖S1‖p + ‖S2‖p, we first compute ‖S1‖p and ‖S2‖p.
For our choice of x, notice

‖S1‖p ' p

∥∥∥∥∥ sup
‖y‖2=1

|Q1,2y1y2|

∥∥∥∥∥
p

' p ‖Q1,2‖p

‖S2‖p '
√
p
∥∥∥√Q2

1,2

∥∥∥
p

= √p ‖Q1,2‖p .

From these bounds, coupled with (5), it follows that ‖U‖p ' p ‖Q1,2‖p as desired. J

We now show Lemma 17 follows from Lemma 19 and Proposition 18.

Proof of Lemma 17. After applying Lemma 19, it suffices to calculate ‖Q1,2‖p. It follows
from Proposition 18 that ‖Q1,2‖p ' ‖X‖p where X is distributed as Bin(s, s/m). Now,
the following calculation ‖X‖p for p < s and B = m/s2 ≤ ep

p follows from the lower
and upper bounds of Lemma 16 (Latała’s bound on moments of sums of i.i.d nonnegative
random variables):

‖X‖p '

{
p

logBp if B ≥ e
p

1
B if B < e

p

.

From this, Lemma 17 follows. J

Streaming Coreset Constructions for M-Estimators
Vladimir Braverman
Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
vova@jhu.edu

Dan Feldman
Department of Computer Science, University of Haifa, Israel
dannyf.post@gmail.com

Harry Lang
MIT CSAIL, Cambridge, MA, USA
harry1@mit.edu

Daniela Rus
MIT CSAIL, Cambridge, MA, USA
rus@mit.edu

Abstract

We introduce a new method of maintaining a (k, ε)-coreset for clustering M -estimators over insertion-
only streams. Let (P,w) be a weighted set (where w : P → [0,∞) is the weight function) of points
in a ρ-metric space (meaning a set X equipped with a positive-semidefinite symmetric function D
such that D(x, z) ≤ ρ(D(x, y) + D(y, z)) for all x, y, z ∈ X). For any set of points C, we define
COST(P,w,C) =

∑
p∈P

w(p) minc∈C D(p, c). A (k, ε)-coreset for (P,w) is a weighted set (Q, v) such
that for every set C of k points, (1 − ε)COST(P,w,C) ≤ COST(Q, v, C) ≤ (1 + ε)COST(P,w,C).
Essentially, the coreset (Q, v) can be used in place of (P,w) for all operations concerning the COST
function. Coresets, as a method of data reduction, are used to solve fundamental problems in
machine learning of streaming and distributed data.

M -estimators are functions D(x, y) that can be written as ψ(d(x, y)) where (X , d) is a true
metric (i.e. 1-metric) space. Special cases of M -estimators include the well-known k-median
(ψ(x) = x) and k-means (ψ(x) = x2) functions. Our technique takes an existing offline construction
for an M -estimator coreset and converts it into the streaming setting, where n data points arrive
sequentially. To our knowledge, this is the first streaming construction for any M -estimator that
does not rely on the merge-and-reduce tree. For example, our coreset for streaming metric k-means
uses O(ε−2k log k logn) points of storage. The previous state-of-the-art required storing at least
O(ε−2k log k log4 n) points.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Facility location and clustering; Information systems → Query optimization

Keywords and phrases Streaming, Clustering, Coresets

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.62

Category RANDOM

Funding Vladimir Braverman: This research was supported in part by NSF CAREER grant 1652257,
ONR Award N00014-18-1-2364, DARPA/ARO award W911NF1820267.
Harry Lang: This material is based upon work supported by the Franco-American Fulbright
Commission. The author thanks INRIA (l’Institut national de recherche en informatique et en
automatique) for hosting him during part of the writing of this paper.
Daniela Rus: This research was supported in part by NSF 1723943, NVIDIA, and J.P. Morgan
Chase & Co.

© Vladimir Braverman, Dan Feldman, Harry Lang, and Daniela Rus;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 62; pp. 62:1–62:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vova@jhu.edu
mailto:dannyf.post@gmail.com
mailto:harry1@mit.edu
mailto:rus@mit.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.62
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Streaming Coreset Constructions for M-Estimators

1 Introduction

In the streaming model of computation, the input arrives sequentially. This differs from
the random-access memory model (i.e. the offline setting) where the algorithm may freely
and repeatedly access the entire input. The goal of a streaming algorithm is to perform the
computation using a sublinear amount of memory.

A stream consists of n elements p1, . . . , pn. Sometimes the algorithm will be allowed
to pass over the stream multiple times, resulting in another parameter called the number
of passes. Our algorithm uses O(logn) memory and requires only a single pass over the
input stream.

Prior to the current work, the merge-and-reduce technique due to Har-Peled and Mazum-
dar [19] and Bentley and Sax [5] was used to maintain coresets on streams using an offline
coreset construction as a blackbox. For a brief review of this technique, see Section 4.1.
Suppose the offline construction’s space depends on ε as ε−a. In this paper we introduce
an alternative technique that reduces the multiplicative overhead from O(loga+1 n) to O(1)
when moving to the streaming setting. For example, the state-of-the-art k-median offline
coreset [6] has size O(ε−2k log k logn). The current paper improves the space requirement
from O(ε−2k log k log4 n) to O(ε−2k log k logn) to maintain the coreset on a stream. While
our method is not as general as merge-and-reduce (it requires a function to satisfy more than
just the “merge” and “reduce” properties, defined in Section 4.1), it is general enough to
apply to all M -estimators.

2 Definitions

We begin by defining a ρ-metric space. Let X be a set. If D : X × X → [0,∞) is
a symmetric positive-semidefinite function such that for every x, y, z ∈ X we have that
D(x, z) ≤ ρ(D(x, y) + D(y, z)) then we call (X , D) a ρ-metric space. Note that this is a
weakening of the triangle inequality, and at ρ = 1 we recover the definition of a metric
space. Clustering M -estimators in a metric space can be re-cast as k-median in a ρ-metric
space. For example, metric k-means in the space (X , d) is reducible to 2-metric k-median in
the space (X , D) using D(·, ·) = d(·, ·)2. See Table 1 for more examples. We work in this
slightly abstract language since it allows a single proof to naturally generalize our results to
any M -estimator.

A weighted set (P,w) is a set P ⊂ X along with a weight function w : P → [0,∞). As
usual, we define the distance between a point and a set D(p, Z) = minz∈Z D(p, Z). Let

COST(P,w,Z) =
∑
p∈P

w(p)D(p, Z)

The ρ-metric k-median problem is, given input (P,w) and an integer k ≥ 1, to find a set C of
k points in X that minimizes COST(P,w,C). We use OPTk(P) to denote the minimal value.
Other works have shown that for small enough ε, it is NP-Hard to even compute a (1 + ε)
approximation for k-means or k-median when k is part of the input (see the Related Work
section of [4] for a survey of hardness results). Therefore weaker definitions of approximation
have been introduced. The notion of a bicriterion approximation is well-known; we state a
slightly more verbose definition that suits our needs. The difference is that usually the map
f is implicit, simply mapping a point to a nearest center.

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:3

I Definition 1 ((α, β)-approximation). For α, β ≥ 1, an (α, β)-approximation for the k-
median clustering of a weighted set (P,w) is a weighted set (B, v) along with a map f : P → B

such that:
1.
∑
p∈P w(p)D(p, f(p)) ≤ αOPTk(P)

2. |B| ≤ βk
3. v(b) =

∑
p∈f−1(b) w(p) for every b ∈ B

Observe that a (1, 1)-approximation is an optimal solution. We now define a coreset, the
datastructure that we compute in this paper.

I Definition 2 ((k, ε)-coreset). For k ∈ N and ε ∈ (0, 1), a (k, ε)-coreset for a weighted set
(P,w) is a weighted set (Q, v) such that for every Z ∈ X k we have (1− ε)COST(P,w,Z) ≤
COST(Q, v, Z) ≤ (1 + ε)COST(P,w,Z).

Coresets with possibly negative weight functions have been considered [13]. However,
computing approximate solutions on these coresets in polynomial-time remains an open
problem, so we restrict our definition to non-negative weight functions to ensure that an
approximate solution can be quickly produced [16, 8]. This implies a PTAS for Euclidean
space and a polynomial-time 2τ(1 + ε)-approximation for general metric spaces (where τ is
the best polynomial-time approximation factor for the problem in the offline setting). This
factor of 2τ(1 + ε) is well-known in the literature, see [9, 7, 16] for details.

3 Our Techniques

In this work, we provide an alternative technique for constructing a ρ-metric k-median coreset
in the streaming setting. Instead of using the merge-and-reduce tree (see Section 4.1) where
each node of the tree uses the offline construction, we perform a single offline construction in
the streaming setting. This reduces O(loga+1 n) multiplicative overhead1 of merge-and-reduce
to O(1) overhead.

The offline coreset construction of [6] has the following structure: first, a bicriterion
approximation (see Definition 1) is computed over the entire input set P . The bicriterion is
used to estimate for each point p its “sensitivity” sP (p) which, intuitively speaking, measures
how important p is relative to the entire set P . Then, m = m(n, k, ε) points are sampled i.i.d.
according to the distribution of sensitivities. This suggests a two-pass streaming algorithm
with no overhead: in the first pass, construct a bicriterion using an algorithm such as [7]. In
the second pass, sample according to sensitivity distribution, computed using the bicriterion
found in the first pass. Our contribution is showing how these two passes can be combined
into a single-pass.

How do we accomplish both these tasks in parallel? If the sensitivities stayed constant,
we could use weighted reservoir sampling to maintain an i.i.d. sample. However, we cannot
do this for a changing distribution. The sensitivities may decrease because when a new point
is added, all existing points may become less important to the overall stream.

Inductively assume that we have a coreset. Upon receiving the next point, we generate a
new bicriterion which we use to update the sensitivities of the points seen so far. The first
idea is that instead of sampling m points from a distribution such that point p is sampled
with probability sP (p), we built a set which contains point p with probability sP (p) as follows:
let u(p) be a uniform random number in [0, 1), and store p as long as u(p) < msP (p) (recall

1 Recall that a is the exponent in the offline construction’s dependence on ε−1, and n is the length of the
stream.

APPROX/RANDOM 2019

62:4 Streaming Coreset Constructions for M-Estimators

that sP (p) decreases as more points are added to P). With high probability, we return a set
of Θ(m) points. The problem is that this set is not an i.i.d sample. To see this, consider the
fact that unlike an i.i.d. sample, this set cannot have repeated points.

To solve this problem, we repeat the above process independently in parallel m times,
where each process should sample exactly 1 point. The first issue is that the total probability
t =

∑
p∈P sP (p), which must be scaled to 1, is only known up to a factor of k. Even after

solving this, and assuming we have at least m trials that return exactly one point, they do
not follow the original distribution. Indeed, the probability of a trial returning only one point
p is the probability of drawing point p multiplied the probabilities of not drawing all other
points. The rough idea to overcome this is that we distort the probabilities by computing the
inverse to this transformation such that the final probabilities follow the desired distribution.

We prove our result for ρ-metric k-median. As stated before, it is well-known that mostM -
estimators can be recast as a ρ-metric k-median problem for a low value of ρ [14]. See Table 1
for a list of several common M -estimators along with the ρ-metric they satisfy. For many
M -estimators, ours is the first coreset result over data streams besides merge-and-reduce.

Table 1 List of several examples to which our result applies. An M -estimator with ψ-function
ψ(x) induces a clustering problem with cost ψ(d(p, c)) for a point p with nearest center c. The
ρ-value is calculated from the ψ-function, making the column redundant but non-trivial to compute.

Estimator ψ-function ρ

k-median x 1
k-means x2 2

Huber ψ(x) =

{
x2

2 if x < 1
x− 1

2 if x ≥ 1
2

Cauchy ψ(x) = log(1 + x2) 2

Tukey ψ(x) =

{
1
6 (1− (1− x2)3) if x < 1
1
6 if x ≥ 1

3

4 Related Work

Table 2 summarizes previous work along with our current results. By far, the most widely-
studied problems in this class have been the k-median and k-means functions. In general,
the extension to arbitrary M -estimators is non-trivial; the first such result was [14]. Our
approach naturally lends itself to this extension. M -estimators are highly important for
noisy data or data with outliers. As one example, Huber’s estimator is widely used in the
statistics community [17, 20]. It was written that “this estimator is so satisfactory that it
has been recommended for almost all situations” [22]. Our results work not only for Huber’s
estimator but for all M -estimators, such as the Cauchy and Tukey biweight functions which
are also widely-used functions.

Note that in the below table, Õ notation is used to write in terms of d, ε, k, and logn
(therefore hiding factors of log logn but not logn).

k-means

In the k-means problem we wish to compute a set k of centers (points) in some metric space,
such that the sum of squared distances to the input points is minimized, where each input
point is assigned to its nearest center. The corresponding coreset is a positively weighted
subset of points that approximates this cost to every given set of k centers. Deterministic

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:5

Table 2 Summary of Related Work. Note that Metric M -estimators are the most general, and
these results apply to all other categories.

Problem Streaming Size Paper
Euclidean k-means O(kε−d logd+2 n) [19]
Euclidean k-means O(k3ε−(d+1) logd+2 n) [18]
Euclidean k-means O(dk2ε−2 log8 n) [10]
Euclidean k-means O(dk log kε−4 log5 n) [13]
Euclidean k-means Õ((d/ε)O(d)k logO(d) n) [1]
Metric k-means O(ε−2k2 log8 n) [11]
Metric k-means O(ε−4k log k log6 n) [13]

Euclidean k-median O(dk2ε−2 log8 n) [10]
Euclidean k-median O(kε−d logd+2 n) [19]
Euclidean k-median O(k2ε−O(d) logd+1 n) [18]
Euclidean k-median O(dε−2k log k log3 n) [13]
Metric k-median O(k2ε−2 log8 n) [10]
Metric k-median O(ε−2k log k log4 n) [13]

Euclidean M -estimators O(ε−2kO(k)d2 log5 n) [14]
Metric M -estimators O(ε−2kO(k) log7 n) [14]
Metric M -estimators O(ε−2k log k logn) This paper

coresets of size exponential in d were first suggested by Har-Peled and Mazumdar in [19].
The first coreset construction of size polynomial in d was suggested by Ke-Chen in [10] using
several sets of uniform sampling. Other high-dimensional results (e.g. [2]) are also known in
the streaming setting.

Streaming

The metric results of [10, 13] and Euclidean results of [10, 19, 18, 13] that rely on merge-
and-reduce appear in Table 2. In Euclidean space, a more diverse set of stronger results is
known. In particular, coreset constructions are known that do not begin with a bicriterion
solution, and whose streaming variant does not rely on merge-and-reduce [1]. Sketches have
been given in [12] for M -estimators in Euclidean space. With the additional assumption
that points lie on a discrete Euclidean grid {1, . . . ,∆}d, alternative techniques are known for
k-means and other problems, even when the stream allows the deletion of points [15].

4.1 Merge and Reduce Tree

We briefly summarize the previous technique for maintaining coresets in the streaming setting
due to Har-Peled and Mazumdar [19] and Bentley and Sax [5]. In this method, a merge-and-
reduce tree is built by using an offline coreset construction as a blackbox. Previously, this
was the only known technique for building a streaming coreset for many metric problems. It
relies solely on the following two properties which can be easily verified:
1. Merge: The union of (k, ε)-coresets is a (k, ε)-coreset.
2. Reduce: A (k, ε)-coreset of a (k, ε′)-coreset is a (k, ε+ ε′ + εε′)-coreset.
The merge-and-reduce tree works as follows. There are buckets Ti for i ≥ 0. In each step,
the bucket T0 takes in a segment of O(1) points from the stream. Then the tree works like
counting in binary: whenever buckets T0 to Ti−1 are full, these i buckets are merged and
then reduced by taking a (k, ε

logn)-coreset of their union and storing the result in Ti.

APPROX/RANDOM 2019

62:6 Streaming Coreset Constructions for M-Estimators

Let s be the space of offline construction, which depends on ε as ε−a. At the end of
the stream, O(logn) buckets have been used and each bucket uses O(s loga n) space; this
incurs a multiplicative overhead of Θ(loga+1 n) in the storage requirement. The second factor
comes from using the accuracy parameter ε

logn , which is necessary by Property 2 since the
construction will be compounded O(logn) times. Due to this compounding, the runtime is
multiplied by a factor of O(logn).

5 Streaming Algorithm

We present a streaming algorithm to construct a coreset for ρ-metric k-median. Our method
combines a streaming bicriterion algorithm [7, 21] and a batch coreset construction [13]
to create a streaming coreset algorithm. The space requirements are combined addivitely,
therefore ensuring no overhead.

We now state our main theorem. The probability of success 1− δ typically has one of two
meanings: that the construction succeeds at the end of the stream (a weaker result), or that
the construction succeeds at every intermediate point of the stream (a stronger result). Our
theorem gives the stronger result, maintaining a valid coreset at every point of the stream.
Our space and time bounds follow the convention that a point can be stored in O(1) space.

I Theorem 3 (Main Theorem). Let ε, δ ∈ (0, 1). Given the problem of k-median clustering
in a ρ-metric space for ρ = O(1), there exists an insertion-only streaming algorithm that
maintains a (k, ε)-coreset on a stream of n points while requiring O(ε−2k(log k logn+ log 1

δ))
space and worst-case update time, and succeeds at every point of the stream with probability
at least 1− δ.

In Section 5.1 we introduce the streaming bicriterion algorithm. Then in Section 5.2 we
review the offline coreset construction we will be adapting to the streaming setting. We
prove in Section 5.3 how to use the bicriterion to bound the importance of points. Finally
we present the streaming algorithm in Section 5.4.

5.1 Streaming Bicriterion Algorithm
Let Pi denote the prefix of the stream {p1, . . . , pi}. The entire stream P is then Pn. Recall
that in the streaming setting, we receive each point sequentially in the order (p1, p2, . . .). We
use the function 1 : P → {1} to map every point to unit weight. For ease of exposition we
assume the input set is weighted as (P,1) and that all points of P are distinct. Consider the
moment when the first i points have arrived, meaning that the prefix Pi is the current set of
arrived points. The algorithm A of [7] provides an (O(1), O(logn))-approximation of Pi. We
now restate their general result, adding several details (such as the outputs Li and πi) that
were merely internal details for them but will be crucial for us.

I Theorem 4 ([7], restated). Let α, γ > 1 be absolute constants. Define B0 = ∅. Let
(p1, . . . , pn) be a stream of at most n points in a ρ-metric space for ρ = O(1). Let n, k ≥ 1,
δ ∈ (0, 1) be input parameters. Upon receiving point pi, algorithm A(k, n, δ) returns a
weighted set (Bi, wi), a value Li > 0, and a map πi : Bi−1 ∪ {pi} → Bi. Define fi(pj) =
πi(πi−1(. . . πj(pj) . . .)). For any integer i ∈ [n] we have with probability at least 1− δ that
the following three statements hold.
1. Li ≤ OPTk(Pi)
2.
∑
p∈Pi

D(p, fi(p)) ≤ αLi
3. (Bi, wi) along with the map fi :Pi → Bi is an (α, γ(logn+log 1

δ))-approximation for (P,1).
The algorithm requires O(γ(logn+ log 1

δ)) space and update time.

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:7

Algorithm A reduces the number of distinct points by combining nearby points into a
single point of higher weight.

5.2 Offline Coreset Construction

In the offline coreset construction of [6], the sensitivity of a point p ∈ P in a ρ-metric space
(X , D) is defined as:

sP (p) = max
Z∈Xk

D(p, Z)∑
q∈P D(q, Z)

Notice that 0 ≤ sP (p) ≤ 1 for every point p ∈ P , and that the sensitivity of a point p is
relative to the set P it belongs to. When context is clear, we omit the subscript and write
s(p). Computing s(p) may be difficult, but we can give an upper bound s′(p) ∈ [s(p), 1].
Define the total sensitivity t′ =

∑
p∈P s

′(p). We will apply the following theorem:

I Theorem 5 (proven in [6]). Let P be a set of n points, and define s′ : P → [0, 1] and t′ as
above. Let δ, ε ∈ (0, 1) be input parameters. Consider a distribution S supported on P where
p has weight s′(p)/t′. Define m′ = d3t′ε−2(logn log t′ + log(1/δ))e. Let Q be an i.i.d. sample
of at least m′ points from S. Define a weight function v : Q→ [0,∞) as v(q) = (|Q|s′(q))−1.
With probability at least 1− δ, (Q, v) is a (k, ε)-coreset for P .

One may be skeptical why only an upper bound is necessary, wondering why not simply
set s′(p) = 1. This does indeed work, but has the undesirable effect of setting t′ = n and
therefore results in a coreset of Ω(n) points. More generally, the coreset is useless if t′ is
large since the size of Q may be comparable to the size of P . In the next subsection, we show
how to bound t′ = O(ρ2k). Observe that neither k nor ρ appear explicitly in the sample size,
but they both appear implicitly through the value of t′.

5.3 Bounding the Sensitivity

Let the map p 7→ p′ be an (σ, λ)-approximation of P for some constants σ and λ. Define
P (p) = {q ∈ P : q′ = p′} to be the cluster containing p.

I Lemma 6. Let the map p 7→ p′ define an (σ, λ)-approximation for the k-median clustering
of P . For every point p ∈ P :

s(p) ≤ ρσD(p, p′)∑
q∈P D(q, q′) + ρ2(σ + 1)

|P (p)|

Proof. For an arbitrary Z ∈ X k we need to provide a uniform bound for

D(p, Z)∑
q∈P D(q, Z) ≤

ρD(p, p′)∑
q∈P D(q, Z) + ρD(p′, Z)∑

q∈P D(q, Z)

≤ σρD(p, p′)∑
q∈P D(q, q′) + ρD(p′, Z)∑

q∈P D(q, Z) (1)

where the second inequality holds because
∑
q∈P D(q, q′) ≤ σOPT(P) ≤ σ

∑
q∈P D(q, Z). To

APPROX/RANDOM 2019

62:8 Streaming Coreset Constructions for M-Estimators

bound the last term, recall that q′ = p′ for all q ∈ P (p) so:

D(p′, Z)|P (p)| =
∑

q∈P (p)

D(p′, Z) =
∑

q∈P (p)

D(q′, Z)

≤ ρ
∑

q∈P (p)

(D(q′, q) +D(q, Z))

≤ ρ
∑
q∈P

D(q′, q) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρσ
∑
q∈P

D(q, Z) + ρ
∑

q∈P (p)

D(q, Z)

≤ ρ(σ + 1)
∑
q∈P

D(q, Z)

Dividing by |P (p)|
∑
q∈P D(q, Z) gives

D(p′, Z)∑
q∈P D(q, Z) ≤

ρ(σ + 1)
|P (p)|

Substituting this in (1) yields the desired result. J

We will use Lemma 6 to define our upper bound s′(p). An immediate but extremely
important consequence of Lemma 6 is that t′ =

∑
p∈P s

′(p) = ρσ+ ρ2(σ+ 1)λk. This can be
seen by directly summing the formula given by the lemma.

5.4 Streaming Algorithm
Consider the prefix Pi which is the input after the first i points have arrived. For ease of
notation, we write s′i(p) to refer to s′Pi

(p), an upper bound on the sensitivity of p with respect
to the first i points. After processing first i points of the stream, Algorithm 1 constructs a
set (Qi, vi). With probability at least 1− δ, (Qi, vi) is a (k, ε)-coreset for Pi for every i ∈ [n].
This algorithm will satisfy the claims of Theorem 3.

5.4.1 Overview of the algorithm
The algorithm initializes on Lines 1-9. The main loop of Lines 10-38 processes the stream,
accepting one point per iteration. For each iteration, the first step is to process the point
with algorithm A (Line 11) then compute a (O(1), O(1))-bicriterion approximation on its
output (Line 18). On Line 23 we use this to maintain an upper bound s′i(p) on the sensitivity
of a point p with respect to Pi. In the analysis, let t′i =

∑i
`=1 s

′
i(p`) be the upper bound on

the total sensitivity of Pi. We now define Si, the distribution from which we will draw our
sample. Note that Si is non-deterministic, since the values of s′i(p) (and therefore t′i) depend
on the randomness of Algorithm A as well as any possible randomness used in the bicriterion
approximation.

I Definition 7. The probability distribution Si is supported on Pi and assigns probability
s′i(p)/t′i to point p.

By Theorem 5, it suffices to sample m′i = d3t′iε−2(logn log t′i + log(n/δ))e points i.i.d.
from Si to construct a coreset for (Pi,1) with probability at least 1 − δ/n. On Line 2 we
define t◦ to upper bound the maximal value of t′i over any set of points in X . Likewise on
Line 3 we set m◦ = d3t◦ε−2(logn log t◦+ log(n/δ))e which is an upper bound on the required
sample size.

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:9

We maintain Θ(k(logn log k + log n
δ)) sets My, each containing a sample of the stream.

We hope that many of these samples contain only a single point, because if so then by
Lemma 6 the point follows the distribution Si. With high probability, at least m′i sets will
be singletons, and so we take their union to construct the coreset (Qi, vi).

Memory considerations

Due to memory constraints, we only store the maps gi, fi, uy, zi, and s′i for points in
∪y∈YMy. In the analysis only, we use fi, zi, and s′i(p) for points that have been deleted.
This refers to the value that would have been set if we continued executing Lines 21-23 for p.

5.4.2 Proof of correctness
Using Algorithm A we obtain an (α, γ(logn+ log n

δ))-approximation (Bi, wi) with the map
πi : Bi−1 ∪ {pi} → Bi which we use to obtain the map fi : Pi → Bi. Line 23 runs an offline
(γ, λ)-approximation algorithm on Bi, and we obtain weighted set (Ci, vi). The following
lemma shows that (Ci, vi) is a (σ, λ)-approximation for Pi, where σ = ρα+ 2ρ2γ(α+ 1) as
defined on Line 1. The clustering map will be gi ◦ fi : Pi → Bi → Ci.

I Lemma 8. Assume that algorithm A has not failed. Then (Ci, wCi) with gi ◦ fi : Pi → Ci
is a (σ, λ)-approximation of Pi.

Proof. As the context is clear, we drop the subscript i. By Theorem 4, (B,wB) with f : P →
B is an (α, β)-approximation of P where β = γ(logn+ log n

δ). Also, (C,wc) with g : B → C

is the (γ, λ)-approximation of B. In the following, all sums will be taken over all p ∈ P .
The hypotheses state that

∑
D(p, f(p)) ≤ αOPTk(P) and

∑
D(f(p), g(f(p))) ≤ γOPTk(B).

Let P ∗ be an optimal clustering of P , that is
∑
D(p, P ∗) = OPTk(P). Then 1

2 OPTk(B) ≤∑
D(f(p), P ∗) ≤ ρ

∑
(D(f(p), p)+D(p, P ∗)) ≤ ρ(α+1)OPT(P). The factor of 1

2 comes from
the fact that OPT(B) is defined using centers restricted to B (see [16] for details). We now
write

∑
D(p, g(f(p))) ≤ ρ

∑
(D(p, f(p)) +D(f(p), g(f(p)))) ≤ (ρα+ 2ρ2γ(α+ 1))OPTk(P)

as desired. J

To use Lemma 6 to determine s′i(p), we will compute the cluster sizes |Pi(p)| and estimate
the clustering cost

∑
q∈P D(q, q′) by Li. We must bound the clustering cost from below

because we require s′i(p) to be an upper-bound of si(p).

I Lemma 9. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then zi(p) ≥ si(p) for every p ∈ Pi.

Proof. For the first claim, consider Lemma 6 applied with the clustering map gi◦fi : Pi → Ci.
We write p′ = gi ◦ fi(p). By Lemma 8, this map is a (σ, λ)-approximation of Pi. Observe that
|Pi(p)| (from Lemma 6) is precisely wCi (gi◦fi(p)) since the weight of a point c is determined by
how many points in Pi were clustered to c. By Theorem 4, Li ≤ OPTk(Pi) ≤ COST(Pi,1, Ci).
We may then write:

zi(r) = ρσD(r, gi ◦ fi(r))
Li

+ ρ2(σ + 1)
wCi (gi ◦ fi(r))

≥ ρσD(r, r′)∑
p∈Pi

D(p, p′) + ρ2(σ + 1)
|Pi(r)|

≥ si(r)

where the last inequality follows by Lemma 6. J

APPROX/RANDOM 2019

62:10 Streaming Coreset Constructions for M-Estimators

Algorithm 1 Input: parameters ε, δ ∈ (0, 1) and n, k ∈ N. A stream of n points in a ρ-metric
space. Notes: A(·, ·, ·) denotes the blackbox algorithm from Theorem 4 along with its universal
constants α and γ. Line 18 uses any RAM-model (O(1), O(1))-approximation such as [3].

1: σ ← ρα+ 2ρ2γ(α+ 1)
2: t◦ ← ρσα+ ρ2(σ + 1)λk
3: m◦ ← d3t◦ε−2(logn log t◦ + log(n/δ))e
4: Q0 ← ∅
5: Initialize A(k, n, δ/n)
6: Y ← {1, . . . , 8m◦}
7: for each y ∈ Y do
8: My ← ∅
9: end for
10: for the next point pi from the stream do
11: (Bi, wBi , πi, Li)← update A with point pi
12: for each y ∈ Y do
13: uy(pi)← uniform random number from [0, 1)
14: My ←My ∪ {pi}
15: end for
16: fi−1(pi)← pi
17: s′i−1(pi)← 1
18: (Ci, wCi , gi)← (γ, λ)-approximation of (Bi, wBi)
19: R← ∪yMy

20: for each r ∈ R do
21: fi(r)← πi ◦ fi−1(r)
22: zi(r)← ρσD(r,gi◦fi(r))

Li
+ ρ2(σ+1)

wC
i

(gi◦fi(r))
23: s′i(r)← min(s′i−1(r), zi(r))
24: end for
25: for each y ∈ Y do
26: for each q ∈My do
27: if uy(q) > s′i(q)

s′
i
(q)+t◦ then

28: Delete q from My

29: end if
30: end for
31: end for
32: Γi ← {y ∈ Y : |My| = 1}
33: Qi ← ∪y∈Γi

My

34: for each q ∈ Qi do
35: vi(q)← (|Γi|s′i(q))−1

36: end for
37: return (Qi, vi)
38: end for

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:11

The implication is that our upper bound on sensitivity is valid, as we now prove formally:

I Lemma 10. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then s′i(p) ≥ si(p) for every p ∈ Pi.

Proof. Fix a point p ∈ Pi. We see from Line 23 that s′i(p) = zj(p) for some j ≤ i. Lemma 11
shows that zj(p) ≥ sj(p). Observe directly from the definition of sensitivity that si(p) ≤ sj(p)
for any j ≤ i. Combining these shows that s′i(p) = zj(p) ≥ sj(p) ≥ si(p). We conclude that
s′i(p) ≥ si(p) for all p ∈ Pi. J

For each point p, the value of s′i(p) is non-increasing in i. This is because s′i(p) is defined
as the minimum of itself and a new value on Line 23. It follows from the monotonicity of
f(x) = x

x+1 that s′i(r)
s′

i
(r)+t◦ is also non-increasing in i. Therefore once the deletion condition

on Line 27 becomes satisfied, it remains satisfied forever. This is essential because after
deleting a point from memory, it can never be retrieved again. We can characterize M (i)

y

without reference to the streaming setting: M (i)
y = {p ∈ Pi : uy(p) ≤ s′i(p)

s′
i
(p)+t◦ }. This has the

important implication that Pr(p ∈M (i)
y) = s′i(p)

s′
i
(p)+t◦ .

I Lemma 11. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then

∑
p∈Pi

zi(p) < t◦.

Proof. The value of t◦ is defined on Line 2 as ρσα+ ρ2(σ + 1)λk.

∑
p∈Pi

zi(p) =
∑
p∈Pi

ρσD(p, gi ◦ fi(p))
Li

+ ρ2(σ + 1)
wCi (gi ◦ fi(p))

≤ ρσαLi
Li

+ ρ2(σ + 1)λk

≤ ρσα+ ρ2(σ + 1)λk
= t◦

where the first inequality comes from Lemma 8 and Theorem 4. Note that we have summed
the second term using the fact that a center c ∈ Ci with weight wCi (c) has exactly wCi (c)
points of Pi clustered to it. Therefore we may re-write the sum:∑

p∈Pi

1
wCi (gi ◦ fi(p))

=
∑
c∈Ci

1 = λk J

To construct a coreset by sampling from Si, the algorithm take the union of those My for
y ∈ Y that are singletons. Any set My that is either empty or contains more than one point
will be ignored, but still kept track of since it may later become a singleton. We now show
that if a sample My contains a single point, then it follows the distribution Si. Let M (i)

y

denote the state of My after the prefix Pi has been processed, and let Pr(A : B) denote the
probability of event A conditioned on event B.

I Lemma 12. For any p ∈ Pi, Pr(M (i)
y = {p} : |M (i)

y | = 1) = s′i(p)/
∑i
`=1 s

′
i(p`).

Proof. Define α` = s′i(p`)
s′

i
(p`)+t◦ and Ψ =

∏i
`=1(1 − α`). For z ∈ [i] let Ez denote the event

that M (i)
y = {pz}. The probability that the sampler contains only pz means that it failed to

sample all p` for ` 6= z, meaning that Pr(Ez) = αzΨ/(1− αz) = s′i(pz)Ψ/t◦. The result is
obtained since:

APPROX/RANDOM 2019

62:12 Streaming Coreset Constructions for M-Estimators

Pr(Ez : |M (i)
y | = 1) = Pr(Ez)/Pr(|M (i)

y | = 1)
= Pr(Ez)/Pr(∪i`=1E`)

= Pr(Ez)/
i∑

`=1
Pr(E`)

= s′i(pz)/
i∑

`=1
s′i(p`) J

The significance of Lemma 12 is tantamount. If a sample My contains a singleton, then it
is equivalent to a random draw from Si. Therefore if at least m′i samplers contain a singleton,
taking their union gives us an i.i.d. sample of at least m′i points from Si. This is precisely
what we need to construct a coreset using Theorem 5. However, it remains to show that
we will have enough singleton samplers with high probability. The next lemma begins to
establish this fact.

I Lemma 13. Fix any y ∈ Y and i ∈ [n]. Then P (|M (i)
y | = 1) ≥ t′

4t◦ .

Proof. Let pi be the most recently arrived point, and define α` = s′i(p`)
s′

i
(p`)+t◦ . Observe that

s′i(p`) ≥ 0 implies α` ≤ s′i(p`)/t◦. It follows from Line 27 that Pr(p` ∈My) = α` ≤ s′i(p`)/t◦.
The expected value of |My| is therefore at most

∑i
`=1

1
t◦
s′i(p`) = t′

t◦
. Markov’s inequality

yields Pr(|My| ≥ 2) = Pr(|My| ≥ 2t◦
t′

t′

t◦
) ≤ t′

2t◦ ≤
1
2 .

P (|My| = 1) =
i∑

`=1
P (|My| = {p`})

=
i∑

`=1
α`
∏
z 6=`

(1− αz)

=
i∑

`=1

α`
1− α`

i∏
z=1

(1− αz)

= 1
t◦

(
i∑

`=1
s′i(p`)

)(
i∏

z=1
(1− αz)

)

= t′

t◦
Pr(|My| = 0)

We know that Pr(|My| = 0) + Pr(|My| = 1) + Pr(|My| ≥ 2) = 1, so substitution gives
(t◦t′ + 1)Pr(|My| = 1) + 1

2 ≥ 1. Rearranging this, we obtain Pr(|My| = 1) ≥ 1
2

1
t◦/t′+1 ≥

t′

4t◦
as desired. J

Now that we have provided a lower bound on the probability of any sample My being a
singleton, we move on to lower bound the probability of at least m′i of the samples {My}y∈Y
being singletons. Observe that the {My} are entirely independent. We use a Chernoff bound
to lower bound the size of Γi, defined on Line 32, which is the set of all singleton samples.

I Lemma 14. |Γi| ≥ m′i with probability at least 1− δ/n.

Proof. We see directly from Line 32 that |Γi| is a sum of |Y | independent Bernoulli trials,
each which succeeds with probability at least t′

4t◦ by Lemma 13. By a Chernoff bound,
Pr(|S| ≤ 1

2 |Y |
t′

4t◦) ≤ e−|Y |t′/32t◦ . We note that |Y |t′/32t◦ = 8m◦t′/32t◦ ≥ ln(n/δ). Plugging
this into the Chernoff bound yields that |S| ≥ m◦t′/t◦ with probability at least 1− δ/n. We
conclude by noting that m◦t′/t◦ = 3t′(logn log t◦ + log δ

n) ≥ m′. J

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:13

We now have all the tools to proceed with the proof of Theorem 1. We begin with the
space requirement, then prove correctness.

I Lemma 15. After processing Pi, Algorithm 1 stores O(ε−2k(log k logn + log n
δ)) points

with probability at least 1− δ/n.

Proof. First note that O(logn + log n
δ) = O(logn + log 1

δ). By Theorem 4 we know that
A stores O(k(logn + log n

δ)) points deterministically. In addition to the blackbox A, the
algorithm stores the sets My along with a constant amount of satellite data per point.

We showed that E[|My|] ≤ t′/t◦ in the proof of Lemma 13. Directly from Lemma 13, we
lower bound E[|My|] ≥ Pr(|My| = 1) ≥ t′/4t◦. Combining these upper and lower bounds
permits us to write 2m◦t′/t◦ ≤ E[

∑
y∈Y |My|] ≤ 8m◦t′/t◦.

A Chernoff bound can be applied for a high-probability guarantee. The random variable
X =

∑
y∈Y |My| is a sum of |Y |i independent Bernoulli trials, each event being p` ∈ My

for some 1 ≤ ` ≤ i and y ∈ Y . We have the Chernoff bound that Prob[X ≥ (1 + η)µ] ≤
e−η

2µ/(2+η) for any η ≥ 1 where µ = E[X]. Using η = 1, this yields that X < 16m◦ with
probability at least 1− e−2m◦t′/3t◦ < e−2m′/3 < δ/n. J

We now prove correctness, using the following lemma as a tool for our final claim.

I Lemma 16. Assume that algorithm A has not failed and that (Qi−1, vi−1) is a (k, ε)-coreset
for Pi−1. Then (Qi, vi) is a (k, ε) coreset of (Pi,1) with probability at least 1− 3δ/n.

Proof. Lemma 10 shows that Si meets the criteria of Theorem 5 with probability at least
1− δ/n. Lemmas 12 and 14 show that Qi is an i.i.d. sample of at least m′i points from Si
with probability at least 1− δ/n. By Theorem 5, conditioning on the success of the previous
two statements, (Qi, vi) is a (k, ε)-coreset for (Pi,1) with probability at least 1− δ/n. We
arrive at the desired result by applying the union bound. J

We complete the proof of Theorem 3 by induction over each prefix Pi on the following
events: (1) the success of A; (2) that (Qi, vi) is a (k, ε) coreset of (Pi,1); and (3) the storage
requirement holding from Lemma 15. The base cases hold trivially.

By Theorem 4, Algorithm A(n, k, δ/n) will succeed on Pi with probability at least 1−δ/n.
By Lemma 15, the space requirement is maintained with probability at least 1− δ/n. By
Lemma 16, (Qi, vi) is a (k, ε) coreset of (Pi,1) with probability at least 1− 3δ/n. Combining
these pieces, we succeed inductively after processing a single point with probability at least
1− 5δ/n. Therefore we succeed at every step of the entire stream with probability at least
1− 5δ. Theorem 3 follows by scaling δ appropriately.

References
1 Marcel R. Ackermann, Marcus Märtens, Christoph Raupach, Kamil Swierkot, Christiane

Lammersen, and Christian Sohler. StreamKM++: A Clustering Algorithm for Data Streams.
J. Exp. Algorithmics, 17:2.4:2.1–2.4:2.30, May 2012. doi:10.1145/2133803.2184450.

2 Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A Framework for Projected
Clustering of High Dimensional Data Streams. In Mario A. Nascimento, M. Tamer Özsu,
Donald Kossmann, Renée J. Miller, José A. Blakeley, and K. Bernhard Schiefer, editors,
(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto,
Canada, August 31 - September 3 2004, pages 852–863. Morgan Kaufmann, 2004. URL:
http://www.vldb.org/conf/2004/RS21P7.PDF, doi:10.1016/B978-012088469-8.50075-9.

APPROX/RANDOM 2019

https://doi.org/10.1145/2133803.2184450
http://www.vldb.org/conf/2004/RS21P7.PDF
https://doi.org/10.1016/B978-012088469-8.50075-9

62:14 Streaming Coreset Constructions for M-Estimators

3 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local Search Heuristic for K-median and Facility Location Problems. In
Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01,
pages 21–29, New York, NY, USA, 2001. ACM. doi:10.1145/380752.380755.

4 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
Hardness of Approximation of Euclidean k-Means. In 31st International Symposium on
Computational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, pages
754–767, 2015.

5 Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-dynamic
transformation. Journal of Algorithms, 1(4):301–358, 1980.

6 Vladimir Braverman, Dan Feldman, and Harry Lang. New Frameworks for Offline and
Streaming Coreset Constructions. CoRR, abs/1612.00889, 2016. arXiv:1612.00889.

7 Vladimir Braverman, Adam Meyerson, Rafail Ostrovsky, Alan Roytman, Michael Shindler,
and Brian Tagiku. Streaming K-means on Well-clusterable Data. In Proceedings of the
Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages
26–40. SIAM, 2011. URL: http://dl.acm.org/citation.cfm?id=2133036.2133039.

8 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
Improved Approximation for K-median, and Positive Correlation in Budgeted Optimization.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’15, pages 737–756. SIAM, 2015. URL: http://dl.acm.org/citation.cfm?id=2722129.
2722179.

9 Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy. Better Streaming Algorithms
for Clustering Problems. In Proceedings of the Thirty-fifth Annual ACM Symposium on
Theory of Computing, STOC ’03, pages 30–39, New York, NY, USA, 2003. ACM. doi:
10.1145/780542.780548.

10 Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39(3):923–947, 2009.

11 Ke Chen. On Coresets for K-Median and K-Means Clustering in Metric and Euclidean
Spaces and Their Applications. SIAM J. Comput., 39(3):923–947, August 2009. doi:10.1137/
070699007.

12 Kenneth L. Clarkson and David P. Woodruff. Sketching for M-estimators: A Unified Approach
to Robust Regression. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’15, pages 921–939, Philadelphia, PA, USA, 2015. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2722129.
2722192.

13 Dan Feldman and Michael Langberg. A Unified Framework for Approximating and Clustering
Data. In Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing,
STOC ’11, pages 569–578, New York, NY, USA, 2011. ACM. doi:10.1145/1993636.1993712.

14 Dan Feldman and Leonard J Schulman. Data reduction for weighted and outlier-resistant
clustering. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1343–1354. SIAM, 2012.

15 G. Frahling and C. Sohler. Coresets in dynamic geometric data streams. In Proc. 37th Annu.
ACM Symp. on Theory of Computing (STOC), pages 209–217, 2005.

16 Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.
Clustering Data Streams: Theory and Practice. IEEE Trans. on Knowl. and Data Eng.,
15(3):515–528, March 2003. doi:10.1109/TKDE.2003.1198387.

17 Frank Hampel, Christian Hennig, and Elvezio Ronchetti. A smoothing principle for the Huber
and other location M-estimators. Computational Statistics & Data Analysis, 55(1):324–337,
2011. doi:10.1016/j.csda.2010.05.001.

18 S. Har-Peled and A. Kushal. Smaller coresets for k-median and k-means clustering. Discrete
Comput. Geom., 37(1):3–19, 2007. doi:10.1007/s00454-006-1271-x.

https://doi.org/10.1145/380752.380755
http://arxiv.org/abs/1612.00889
http://dl.acm.org/citation.cfm?id=2133036.2133039
http://dl.acm.org/citation.cfm?id=2722129.2722179
http://dl.acm.org/citation.cfm?id=2722129.2722179
https://doi.org/10.1145/780542.780548
https://doi.org/10.1145/780542.780548
https://doi.org/10.1137/070699007
https://doi.org/10.1137/070699007
http://dl.acm.org/citation.cfm?id=2722129.2722192
http://dl.acm.org/citation.cfm?id=2722129.2722192
https://doi.org/10.1145/1993636.1993712
https://doi.org/10.1109/TKDE.2003.1198387
https://doi.org/10.1016/j.csda.2010.05.001
https://doi.org/10.1007/s00454-006-1271-x

V. Braverman, D. Feldman, H. Lang, and D. Rus 62:15

19 S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In STOC,
2004.

20 P. J. Huber. Robust Statistics. Wiley, 1981.
21 Harry Lang. Online Facility Location Against a t-bounded Adversary. In Proceedings of

the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages
1002–1014, Philadelphia, PA, USA, 2018. Society for Industrial and Applied Mathematics.

22 Z. Zhang. M-estimators. http://research.microsoft.com/en-us/um/people/zhang/INRIA/
Publis/Tutorial-Estim/node20.html, [accessed July 2011].

APPROX/RANDOM 2019

Pairwise Independent Random Walks Can Be
Slightly Unbounded
Shyam Narayanan
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
shyam.s.narayanan@gmail.com

Abstract
A family of problems that have been studied in the context of various streaming algorithms are
generalizations of the fact that the expected maximum distance of a 4-wise independent random
walk on a line over n steps is O(

√
n). For small values of k, there exist k-wise independent random

walks that can be stored in much less space than storing n random bits, so these properties are
often useful for lowering space bounds. In this paper, we show that for all of these examples, 4-wise
independence is required by demonstrating a pairwise independent random walk with steps uniform
in ±1 and expected maximum distance Ω(

√
n lg n) from the origin. We also show that this bound

is tight for the first and second moment, i.e. the expected maximum square distance of a 2-wise
independent random walk is always O(n lg2 n). Also, for any even k ≥ 4, we show that the kth
moment of the maximum distance of any k-wise independent random walk is O(nk/2). The previous
two results generalize to random walks tracking insertion-only streams, and provide higher moment
bounds than currently known. We also prove a generalization of Kolmogorov’s maximal inequality
by showing an asymptotically equivalent statement that requires only 4-wise independent random
variables with bounded second moments, which also generalizes a result of Błasiok.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Probabilistic algorithms

Keywords and phrases k-wise Independence, Random Walks, Moments, Chaining

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.63

Category RANDOM

Related Version https://arxiv.org/abs/1807.04910

Funding This research was funded by the PRISE program at Harvard University and by Harvard’s
Herchel Smith Fellowship.

Acknowledgements I would like to thank Prof. Jelani Nelson for advising this work, as well as for
problem suggestions, forwarding me many papers from the literature, and providing helpful feedback
on my writeup.

1 Introduction

Random walks are well-studied stochastic processes with numerous applications in physics
[14], math [17], computer science [2], economics [13], and biology [4]. A commonly studied
random walk on Z is a process that starts at 0 and at each step independently moves either
+1 or −1 with equal probability. In this paper, we do not study this random walk but instead
study k-wise independent random walks, meaning that steps are not totally independent but
that any k steps are completely independent. In many low-space randomized algorithms,
information is tracked with processes similar to random walks, but simulating a totally
random walk of n steps is known to require O(n) bits while there exist k-wise independent
families which can be simulated with O(k lgn) bits [10]. As a result, understanding properties
of k-wise independent random walks have applications to streaming algorithms, such as
heavy-hitters [8, 9], distinct elements [5], and `p tracking [6].

© Shyam Narayanan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 63; pp. 63:1–63:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shyam.s.narayanan@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.63
https://arxiv.org/abs/1807.04910
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Pairwise Independent Random Walks Can Be Slightly Unbounded

For any k-wise independent random walk, where k ≥ 2, it is well-known that after n steps,
the expected squared distance from the origin is exactly n, since Eh∈H(h(1)+ · · ·+h(n))2 = n

for any 2-wise independent hash family H. One can see this by expanding and applying
linearity of expectation. This property provides good bounds for the distribution of the final
position of a 2-wise independent random walk. However, we study the problem of bounding
the position throughout the random walk, by providing comparable moment bounds for
sup1≤i≤n |h(1)+ · · ·+h(i)| rather than just for |h(1)+ · · ·+h(n)| and determining an example
of a 2-wise independent random walk where the expected bounds do not hold, even though
very strong bounds for even 4-wise independent random walks can be established.

Two more general questions that have been studied in the context of certain streaming
algorithms are random walks corresponding to insertion-only streams, and random walks with
step sizes corresponding to random variables. These are useful generalizations as the first
proves useful in certain algorithms with insertion stream inputs, and the second allows for a
setup similar to Kolmogorov’s inequality [16], which we will generalize to 4-wise independent
random variables. To understand these two generalizations, consider a k-wise independent
family of random variables X1, . . . , Xn and an insertion stream p1, . . . , pm ∈ [n], where now
seeing pj means that our random walk moves by Xpj

on the jth step. The insertion stream
can be thought of as keeping track of a vector z in Rn where seeing pj increments the pjth
component of z by 1, and ~X can be thought of as a vector in Rn with ith component Xi.

Then, one goal is to bound for appropriate values of k′

Eh∈H
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣k′] ,

where z(t) is the vector z after seeing only the first t elements of the insertion stream.
Notice that bounding the k′th moment of the furthest distance from the origin in a k-wise
independent random walk is the special case of m = n, pj = j for all 1 ≤ j ≤ n, and the Xi’s
are uniform random signs.

1.1 Main Results
Intuitively, even in a pairwise independent random walk, since the positions at various times
have strong correlations with each other, the expectation of the furthest we ever get from the
origin should not be much more than the expectation of than our distance from the origin
after n steps. But surprisingly, we show in Section 2 that there is a pairwise independent
family H such that

Eh∈H
[

sup
1≤t≤n

|h1 + · · ·+ ht|
]

= Ω
(√
n lgn

)
, (1)

meaning there is a uniform pairwise independent ±1-valued random walk which is not
continuously bounded in expectation by O(

√
n). Furthermore, this bound of

√
n lgn is tight

up to the first and second moments, because in Section 3 we prove that for any pairwise
independent family H from [n] to {−1, 1} with E[hi] = 0 for all i,

Eh∈H
[

sup
1≤t≤n

(h1 + · · ·+ ht)2
]

= O
(
n lg2 n

)
. (2)

In Section 4, we uniformly bound random walks corresponding to insertion-only streams
and random walks with step sizes not necessarily uniform ±1 variables. We first generalize
Kolmogorov’s inequality [16] by proving that for any 4-wise independent random variables
X1, . . . , Xn with mean 0 and finite variance,

P
(

sup
1≤i≤n

|X1 + · · ·+Xi| ≥ λ
)
≤
∑

E[X2
i]

λ2 (3)

S. Narayanan 63:3

for all λ > 0. In Appendix A, we generalize Equation (2) by proving for any family X1, . . . , Xn

of pairwise independent variables such that E[Xi] = 0,E[X2
i] ≤ 1, and for any insertion

stream p1, . . . , pm ∈ [n],

E
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣2] = O

(
||z||22 lg2 m

)
(4)

where z = z(m) is the final position of the vector. Finally, we show that for any even k ≥ 4,
any k-wise independent family X1, . . . , Xn such that E[Xi] = 0,E[Xk

i] ≤ 1, and any insertion
stream p1, . . . , pm ∈ [n],

E
[

sup
1≤t≤m

∣∣∣〈 ~X, z(t)〉
∣∣∣k] = O

(
||z||k2

)
. (5)

Equations (3), (4), and (5) are interesting together as they provide various bounds on
the supremum of generalized random walks under differing moment bounds and degrees of
independence.

Finally, we note that to prove Equation (1), we create a complicated pairwise independent
hash function, which suggests that standard pairwise independent hash functions do not have
this property. Indeed, for many such families, such as some types of codes constructed from
Hadamard matrices or random linear functions from Z/pZ → Z/pZ, we have E supi |h1 +
· · ·+ hi| = o(n lgn). (See the appendices in the arXiv version of this paper.) However, we
note that for some standard pairwise independent hash functions, it is difficult to provide
either an upper or lower bound for E supi |h1 + · · · + hi|. Therefore, even if some simpler
pairwise independent hash function satisfies Equation 1, our hash family has the advantage
that the analysis is simpler, even if the construction of the family is not.

1.2 Motivation and Relation to Previous Work
The primary motivation of this paper comes from certain theorems that provide strong
bounds for certain variants of 4-wise independent random walks, which raised the question of
whether any of these bounds can be extended to 2-wise independence. For example, Theorem
1 in [8] proves for any family H of h ∈ {−1, 1}n with 4-wise independent coordinates,
Eh∈H

(
supt〈h, z(t)〉

)
= O(||z||2). This result generalizes a result from [9] which proves the

same but only if h is uniformly chosen from {−1, 1}n. [8] provides an algorithm that
successfully finds all `2 ε-heavy hitters in an insertion-only stream in O(ε−2 log ε−1) space,
in which the above result was crucial for analysis of a subroutine which attempts to find
bit-by-bit the index of a single “super-heavy” heavy hitter if one exists. Theorem 1 in [8]
also proved valuable for an algorithm for continuous monitoring of `p norms in insertion-only
data streams [6]. Lemma 18 in [5] shows that even without bounded fourth moments, given
4-wise independent random variables X1, . . . , Xn, each with mean 0 and finite variance,

P
(

max
1≤i≤n

|X1 + · · ·+Xi| ≥ λ
)

= O

(
n ·maxi E[X2

i]
λ2

)
.

This theorem was crucial in analyzing an algorithm tracking distinct elements that provides
a (1 + ε)-approximation with failure probability δ in O(ε−2 lg δ−1 + lgn) bits of space. Notice
that our Equation (3) is stronger than the above equation and is asymptotically equivalent
to Kolmogorov’s inequality, though under much weaker assumptions.

A natural follow-up question to the above theorems is whether 4-wise independence is
necessary, or whether lesser levels of independence such as 2-wise or 3-wise are required.
Equation (1) shows that 2-wise independence does not suffice for any of the above results,

APPROX/RANDOM 2019

63:4 Pairwise Independent Random Walks Can Be Slightly Unbounded

because the random walk on a line case is strictly weaker than all of the above results, though
the case of 3-wise independence is still unknown. As a result, we know that the tracking
sketches in [8, 6, 5] cannot be extended to 2-wise independent sketches.

However, the results given still have interesting extensions, such as to higher moments.
Equation (5) shows a stronger result than the one established in [8], since it not only bounds
the first moment of supt〈h, z(t)〉 for a 4-wise independent family of uniform ±1 variables
but also bounds the 4th moment equally (as they have mean 0 and kth moment 1). The
main methods used for proving most of our upper bounds are based on chaining methods,
specifically Dudley chaining, with slight modifications, although the bounds in Section 3 are
proved differently from standard chaining methods but are still motivated by similar ideas.
Dudley chaining was introduced in [11], and Dudley chaining and other chaining techniques,
along with applications, are summarized in [18].

k-wise independence for hash functions was first introduced in [10]. Bounding the amount
of independence required for analysis of algorithms has been studied in various contexts, often
since k-wise independent hash families can be stored in low space but may provide equally
adequate bounds as totally independent families. As further examples, the well-known AMS
sketch [1] is a streaming algorithm to estimate the `2 norm of a vector z to a factor of 1± ε
with high probability by multiplying the vector by a sketch matrix Π ∈ Rn×(1/ε2) of 4-wise
independent random signs and using ||Πz||2 as an estimate for ||z||2. It is known from [20, 22]
that the accuracy of the AMS sketch can be much worse if 3-wise independent random
signs are used instead of 4-wise independent random signs. If z is given as an insertion
stream, it is known that the AMS sketch with 8-wise independent random signs can provide
weak tracking [8], meaning that E supt

∣∣||Πz(t)||22 − ||z(t)||22
∣∣ ≤ ε||z||22. This implies that the

approximation of the `2 norm with the 8-wise independent AMS sketch is quite accurate at
all times t. While one cannot perform weak tracking with 3-wise independence of the AMS
sketch, it is unknown for 4-wise independence through 7-wise independence whether the
AMS sketch provides weak tracking. Finally, linear probing, a well-known implementation
of hash tables, was shown to take O(1) expected update time with any 5-wise independent
hash function [19] but was shown to take Θ(lgn) expected update time for certain 4-wise
independent hash functions and Θ(

√
n) expected update time for certain 2-wise independent

hash functions [20].
Bounding the maximum distance traveled of a random walk has also been studied in

probability theory independent of computer science applications, both when the steps are
totally independent or k-wise independent. For example, Kolmogorov’s inequality [16]
provides bounds for supt(X1 + · · ·+Xt) for independent random variables X1, . . . , Xt even
if only the second moments of X1, . . . , Xt are finite. [3] constructed an infinite sequence
{X1, X2, . . . } of pairwise independent random variables taking on the values ±1 such that
supt(X1 + · · · + Xt) is bounded almost surely, though the paper also proved that this
phenomenon can never occur for 4-wise independent variables taking on the values ±1.
Finally, the supremum of a random walk with i.i.d. bounded random variable steps was
studied in [12], which provided comparisons with the supremum of a Brownian motion
random walk regardless of the random variable chosen for step size.

1.3 Notation
We define [n] := {1, . . . , n}, and treat p1, . . . , pm ∈ [n] as an insertion-only stream that keeps
track of a vector z that starts at the origin and increments its pjth component by 1 after
we see pj .

S. Narayanan 63:5

A k-wise independent family from [n] to {−1, 1} is a familyH of functions h : [n]→ {−1, 1}
such that for any k distinct indices, their values are independent Rademachers, where
Rademachers are random variables uniformly selected from {−1, 1}. A k-wise independent
random walk is a random walk where one’s position after t steps is h(1) + · · ·+ h(t), with h
chosen from H. We may also denote a k-wise independent random walk as a random walk
where the ith step is a random variable Xi, assuming X1, . . . , Xn are random variables such
that any k distinct Xi’s are totally independent.

In this paper, we think of a hash function h : [n] → {−1, 1} as a vector in Rn, where
hi = h(i), for the purpose of denoting inner products. Similarly, treat ~X as the vector
(X1, . . . , Xn).

Finally, in Section 2, we assume that n is a power of 4, in Section 3, we assume n is a
power of 2 and is at least 4, and in Section 4, we assume m is a sufficiently large power of 2.
We note that these assumptions can be removed by replacing n with the largest power of 4
less than n or the smallest power of 2 greater than n or m, respectively.

1.4 Overview of Proof Ideas
Here, we briefly outline some of the main ideas behind the proofs of Equations (1) through (5).

The main goal in Section 2 is to establish Equation (1), i.e. construct a pairwise
independent H such that E[hihj] = 0 for all i 6= j,. In other words, we wish for the covariance
matrixM = E[hTh] to be the identity matrix In. We also want sup1≤i≤n |h1 + · · ·+ hi| to
be Ω(

√
n lgn) in expectation. The construction has two major steps.

1. Create a hash function such that E sup1≤i≤n |h1 + · · ·+ hi| = Ω(
√
n lgn) but rather than

have E[hihj] = 0 for all i 6= j, have
∑
i 6=j |E[hihj]| = O(n), i.e. the cross terms in total

aren’t very large in absolute value (this hash function will be H2 in our proof). To do
this, we first created H1, which certain properties, most notably that E[h1 + · · ·+hn] = 0
but E[h1 + · · · + hn/2] = Θ(

√
n lgn), and rotated the hash family by a uniform index.

The rotation allows many of the cross terms to average out, reducing the sum of their
absolute values.

2. Remove the cross terms. To do this, we make H a hash family where with some constant
probability, we choose from H2 and with some probability, we choose some set of indices
and pick a hash function such that E[hihj] will be the opposite sign of Eh∈H2 [hihj]
for certain indices i, j, so that overall, E[hihj] will be 0. Certain symmetry properties
and most importantly the fact that

∑
i 6=j |Eh∈H2 [hihj]| = O(n) will allow for us to

choose from H2 with constant probability, which means even for our final hash function,
E sup1≤i≤n |h1 + · · ·+ hi| = Ω(

√
n lgn).

The goal of Section 3 is to establish Equation (2), i.e. to show that ifM = E[hTh] = In,

which is true for any pairwise independent hash function, then sup1≤i≤n |h1 + · · ·+ hi|2 =
O(n lg2 n). To do this, we apply probabilistic method ideas. We notice that for any matrix
A, E[hTAh] = Tr(A), and thus, if we can find a matrix such that the trace of the matrix is
small, but hTAh is reasonably large in comparison to sup1≤i≤n |h1 + · · ·+hi|2, then E[hTAh]
is small but is large in comparison to E

[
sup1≤i≤n |h1 + · · ·+ hi|2

]
. If we assume that n is a

power of 2, then the matrix that corresponds to the quadratic form

hTAh =
lgn∑
r=0

(n/2r)−1∑
i=0

(hi·2r+1 + · · ·+ h(i+1)·2r)2,

i.e. hTAh = h2
1 + · · ·+ h2

n + (h1 + h2)2 + · · ·+ (hn−1 + hn)2 + · · ·+ (h1 + · · ·+ hn)2 can be
shown to satisfy Tr(A) = n lgn and for any vector x, xTAx ≥ 1

lgn · (x1 + · · ·+ xi)2 for all
1 ≤ i ≤ n, not just in expectation. These conditions will happen to be sufficient for our goals.

APPROX/RANDOM 2019

63:6 Pairwise Independent Random Walks Can Be Slightly Unbounded

This method, in combination with Equation (1), will also allow us to prove an interesting
matrix inequality, proven at the end of Section 3. The method above actually generalizes
to looking at kth moments of k-wise independent hash functions, as well as random walks
corresponding to tracking insertion-only streams, and will allow us to prove Equations (4)
and (5). However, these generalizations will also need the construction of ε-nets, which are
explained in Appendix A, or in [18].

We finally explain the ideas behind Equation (3), the generalization of Kolmogorov’s
inequality and Lemma 18 of [5]. We use ideas of chaining, such as in [18], and an idea of
[5] that allows us to bound the minimum of Xi+1 + · · · + Xj and Xj+1 + · · · + Xk where
i < j < k, given 4-wise independent functions X1, . . . , Xn with only bounded second moments.
We combine these with another idea, that we can consider distances between i and j for
1 ≤ i < j ≤ n as E[X2

i+1 + · · ·+X2
j] and that for any i < j < k, either E[X2

i+1 + · · ·+X2
j] is

very small and we can bound Xi+1 + · · ·+Xj , E[X2
j+1 + · · ·+X2

k] is very small and we can
bound Xj+1 + · · ·+Xk, or we can bound min(|Xi+1 + · · ·+Xj |, |Xj+1 + · · ·+Xk|) with the
idea of [5]. These ideas allow for our chaining method to be quite effective, even if the Xi’s
do not have bounded 4th moments or if the Xi’s wildly differ in variance.

2 Lower Bounds for Pairwise Independence

In this section, we construct a 2-wise independent family H such that the furthest distance
traveled by the random walk is Ω(

√
n lgn) in expected value. In other words, we prove

the following:

I Theorem 1. There exists a 2-wise independent hash family H from [n]→ {−1, 1} such that

Eh∈H

 sup
1≤t≤n

∣∣∣∣∣∣
∑

1≤j≤t
hj

∣∣∣∣∣∣
 = Ω(

√
n lgn).

To actually construct this counterexample, we proceed by a series of families and tweak
each family accordingly to get to the next one, until we get the desired H.

We start by creating H1. First, split [n] into blocks of size
√
n so that {(c − 1)

√
n +

1, . . . , c
√
n} form the cth block for each 1 ≤ c ≤

√
n. Also, define ` =

√
n

2 . Now, to pick a
function h from H1, choose the value of hi for each 1 ≤ i ≤ n independently, but if i is in
the cth block for some 1 ≤ c ≤ `, make P[hi = 1] = 1

2 + 1
2(`+1−c) and if i is in the cth block

for some `+ 1 ≤ c ≤
√
n, make P[hi = 1] = 1

2 −
1

2(c−`) . This way, E[hi] = 1
`+1−c if i is in the

cth block for c ≤ ` and E[hi] = − 1
c−` if i is in the cth block for c > `.

From now on, assume that hi is periodic modulo n, i.e. hi+n = hi for all integers i. We
first prove the following about H1 :

I Lemma 2. Suppose that 1 ≤ i < j ≤ n. Suppose that i is in block c1 and j is in block c2,
where c1 and c2 are not necessarily distinct. Define r = min(c2 − c1,

√
n− (c2 − c1)). Then,

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) = O

(
lg(r + 2)
(r + 1)2

)
.

S. Narayanan 63:7

Proof. For 1 ≤ c ≤
√
n, define fc to equal 1

`+1−c if 1 ≤ c ≤ ` and to equal − 1
c−` if

`+ 1 ≤ c ≤
√
n. In other words, fc = E[hi] if i is in the cth block. Furthermore, assume that

f is periodic modulo
√
n, i.e. fc = fc+

√
n for all integers c. Then,

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) =

√
n−1∑
d=0

Eh∈H1(hi+d√n)Eh∈H1(hj+d√n)

=

√
n−1∑
d=0

fc1+dfc2+d =

√
n∑

d=1
fdfr+d.

Now, since r ≤ `, if we assume r ≥ 1, this sum can be explicitly written as

2 ·
`−r∑
d=1

1
d(d+ r) −

r∑
d=1

1
d(r + 1− d) −

r∑
d=1

1
(n+ 1− d)(n+ 1− (r + 1− d))

≤ 2
∞∑
d=1

1
d(d+ r) −

r∑
d=1

1
d(r + 1− d)

= 2
r

∞∑
d=1

(
1
d
− 1
d+ r

)
− 1
r + 1

r∑
d=1

(
1
d

+ 1
r + 1− d

)

= 2
r

(
r∑
d=1

1
d

)
− 2
r + 1

(
r∑
d=1

1
d

)

= 2
r(r + 1)

(
r∑
d=1

1
d

)
≤ C1 lg(r + 2)

(r + 1)2

for some constant C1. If we assume r = 0, then this sum can be explicitly written as

2 ·
∑̀
d=1

1
d2 ≤ C2 = (C2) · lg(0 + 2)

(0 + 1)2

for some constant C2. Therefore, setting C3 = max(C1, C2) as our constant, we are done. J

To construct H2, first choose h ∈ H1 at random, and then choose an index d between
0 and

√
n− 1 uniformly at random. Our chosen function h′ will then be the function that

satisfies h′i = hi+d·
√
n for all i. We show the following about H2:

I Lemma 3. The following three statements are true:
a) For all i, j ∈ Z, Eh∈H2(hihj) = Eh∈H2(hi+√nhj+√n).
b) Suppose that 1 ≤ i, i′, j, j′ ≤ n, where i, i′ are in blocks c1, j, j′ are in blocks c2, and

i 6= j, i′ 6= j′. Then, Eh∈H2(hihj) = Eh∈H2(hi′hj′).
c)
∑
i6=j |Eh∈H2hihj | = O(n).

Proof. Part a) is quite straightforward, since

Eh∈H2(hihj) = 1√
n

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n)

= 1√
n

√
n−1∑
d=0

Eh∈H1(hi+(d+1)
√
nhj+(d+1)

√
n) = Eh∈H2(hi+√nhj+√n)

by periodicity of h modulo n.

APPROX/RANDOM 2019

63:8 Pairwise Independent Random Walks Can Be Slightly Unbounded

For part b), for all d ∈ Z, note that i + d
√
n and i′ + d

√
n are in the same blocks,

j + d
√
n and j′ + d

√
n are in the same blocks, i+ d

√
n 6= j + d

√
n and thus hi+d√n, hj+d√n

are independent, and i′ + d
√
n 6= j′ + d

√
n and thus hi′+d√n, hj′+d√n are independent.

Therefore, Eh∈H1(hi+d√nhj+d√n) = Eh∈H1(hi′+d√nhj′+d√n) for all d. Because of the way
we constructed H2, part b) is immediate from these observations.

We use Lemma 2 to prove part c). First note that for all i 6= j,

Eh∈H2(hihj) = 1√
n

√
n−1∑
d=0

Eh∈H1(hi+d√nhj+d√n) ≤ C3 lg(r + 2)√
n · (r + 1)2 ,

where i is in block c1, j is in block c2, and r = min(|c1 − c2|,
√
n− |c1 − c2|). Now, there are

exactly n(
√
n− 1) pairs (i, j) where 1 ≤ i, j ≤ n, i 6= j, and r = 0. This is because we can

choose from
√
n blocks for the value of c1 = c2, and then choose from

√
n(
√
n− 1) possible

pairs (i, j) in each block. For a fixed 0 < r < `, there are exactly 2n3/2 pairs (i, j), since
there are 2

√
n choices for blocks c1 and c2 and

√
n choices for each of i and j after that, for

r = `, there are exactly n3/2 such pairs, since there are 2
√
n choices for blocks c1 and c2 and√

n choices for each of i and j after that, and finally we cannot have r > `. Therefore,

∑
i 6=j

max (0,Eh∈H2(hihj)) ≤ 2n3/2 ·
∑̀
r=0

C3 lg(r + 2)√
n(r + 1)2 ≤ C4n

for some constant C4, since
∑ lg(r+2)

(r+1)2 is a convergent series.
To finish, note that |x| = 2 ·max(0, x)− x, so∑
i6=j
|Eh∈H2(hihj)| ≤ 2 · C4n−

∑
i 6=j

Eh∈H2(hihj) ≤ (2C4 + 1)n,

since∑
i6=j

Eh∈H2(hihj) =
∑
i,j

Eh∈H2(hihj)−
∑
i

Eh∈H2h
2
i = Eh∈H2(h1 + · · ·+ hn)2 − n ≥ −n.

Thus, setting C5 = 2C4 + 1 gets us our desired result. J

Next, we tweak H2 to create a new family H3. First, notice that we can define gc1c2 for
1 ≤ c1, c2 ≤

√
n to equal Eh∈H2(hihj) for some i in the c1th block and j in the c2th block

such that i 6= j. This is well defined by Lemma 3 b), and as 1 ≤ c1, c2 ≤
√
n, there always

exist i 6= j with i in the c1th block and j in the c2th block, as long as n ≥ 4. Now, to create
H3, define g = 1 +

∑
c1<c2

|gc1c2 |. Then, with probability 1
g , we choose a hash function from

H2. With probability |gc1c2 |
g for each 1 ≤ c1 < c2 ≤

√
n, we choose hi = 1 for all i in the c1th

bucket, if gc1c2 ≥ 0, we make hi = −1 for all i in the c2th bucket and if gc1c2 < 0, we make
hi = 1 for all i in the c2th bucket, and if i is not in either the c1th or the c2th bucket, we let
hi be an independent Rademacher. We prove the following about H3:

I Lemma 4. If i and j are in different buckets, then Eh∈H3(hihj) = 0. If i, j are in the same
bucket but i 6= j, then there is some constant 0 ≤ C6 ≤ C5 such that Eh∈H3(hihj) = C6√

n
.

Proof. Assume WLOG that i < j. If i, j are in different buckets, then we compute
Eh∈H3(hihj) as follows. With probability 1

g , we are choosing h from H2, and if i is in
the c1th bucket and j is in the c2th bucket, then Eh∈H2(hihj) = gc1c2 . With probability
|gc1c2 |
g we have hihj = 1 with probability 1 if gc1c2 < 0 and hihj = −1 with probability 1 if

S. Narayanan 63:9

gc1c2 ≥ 0. In all other scenarios, either hi or hj is a Rademacher completely independent of
all other elements, which means that E[hihj] = 0. Therefore, the overall expected value of
hihj equals gc1c2 · 1

g + |gc1c2 |
g · ±1 where the ±1 is positive if and only if gc1c2 ≤ 0, so the

expected value is 0.
If i, j are in the same bucket, then we can compute Eh∈H3(hihj) as follows. With

probability 1
g , we are choosing h fromH2, and if i, j are in the cth bucket, then Eh∈H2(hihj) =

gcc. For all c′ 6= c, there is a |gcc′ |
g probability of everything in the cth block having the same

sign and everything in the c′th block having the same sign. For the other cases, i, j are
independent Rademachers. Therefore,

Eh∈H3(hihj) = gcc
g

+
∑
c′ 6=c

|gcc′ |
g

= 1
g

gcc +
∑
c′ 6=c
|gcc′ |

 .

However, note that gcc ≥ 0 since Eh∈H2(hihj) = 1√
n

∑
d Eh∈H1(hi+d√nhj+d√n) and for all d,

we have Eh∈H1(hi+d√nhj+d√n) ≥ 0 since i+ d
√
n, j + d

√
n are in the same block for all d.

Furthermore, for all indices c1, c2, gc1c2 = g(c1+1)(c2+1), where indices are taken modulo
√
n,

by Lemma 3 a). Combining these gives

Eh∈H3(hihj) = 1√
n
·

(
1
g
·

(∑
c1,c2

|gc1c2 |

))
.

However, we know that g ≥ 1 and
∑
c1,c2
|gc1c2 | ≤ C5 by the arguments of Lemma 3 c), so

the lemma follows. J

Now, we are almost done. To create H, with probability p = 1
1+C6(

√
n−1)/

√
n
≥ 1

1+C6
,

choose h from H3, and assuming we chose from H3, with probability 1
2 negate h1, . . . , hn.

With probability 1 − p, for each block of
√
n elements, choose uniformly at random a

subset of size ` from the block, and make the corresponding elements 1 and the remaining
elements −1. It is easy to see that now, Eh∈H(hi) = 0 because of the possibility of negating.
Moreover, Eh∈H(hihj) = 0 for all i 6= j. To see why, if i and j are in different blocks then
Eh∈H3(hihj) = 0 and if we do not choose h fromH3, then hi and hj are independent. If i, j are
in the same block, then if we condition on choosing from H3, E(hihj) = C6√

n
. If we condition

on not choosing from H3, the probability of i, j being the same sign is (
√
n/2)−1√
n−1 = `−1

2`−1 ,

meaning E(hihj) = − 1√
n−1 . Therefore, Eh∈H(hihj) = p · C6√

n
− (1− p) · 1√

n−1 = 0.
To finish, it suffices to show that

Eh∈H
[

sup
1≤t≤n

|h1 + · · ·+ ht|
]

= Ω(
√
n lgn).

To check this, note that with probability at least 1
1+C6

we are picking something from H3,

so we need to just verify that

Eh∈H3

[
sup

1≤t≤n
|h1 + · · ·+ ht|

]
= Ω(

√
n lgn).

But for H3, we are choosing something from H2 with probability 1
g but g ≤ 1 + C5 by the

arguments of Lemma 3 c), so it suffices to verify that

Eh∈H2

[
sup

1≤t≤n
|h1 + · · ·+ ht|

]
= Ω(

√
n lgn).

APPROX/RANDOM 2019

63:10 Pairwise Independent Random Walks Can Be Slightly Unbounded

But for H2, if we condition on the shifting index d, we know that

E[h1+d
√
n + h2+d

√
n + · · ·+ h(d+`)

√
n] ≥

√
n

(
1 + · · ·+ 1

`

)
≥ C7

√
n lgn

for some C7, and likewise

E[h1+(d+`)
√
n + h2+(d+`)

√
n + · · ·+ h(d+2`)

√
n] ≤

√
n

(
−1− · · · − 1

`

)
≤ −C7

√
n lgn,

which means that regardless of whether d ≤ ` or d > `,

Eh∈H2

[
max

(
|h1 + · · ·+ hd

√
n|, |h1 + · · ·+ h(d+`)

√
n|
)]
≥ C7

2
√
n lgn

by the triangle inequality. But for any h ∈ H2,

max
(
|h1 + · · ·+ hd

√
n|, |h1 + · · ·+ h(d+`)

√
n|
)
≤ sup

1≤t≤n
(h1 + · · ·+ ht),

so the result follows by taking the expected value of both sides, which proves our upper
bound is tight in the case of a random walk. Thus, we have proven Theorem 1.

3 Moment Bounds for Pairwise Independence

We show that the bound established in Section 2 and the induced bound on the second
moment are tight for the 2-wise independent random walk case by proving Equation (2)
in Section 1.1:

I Theorem 5. For all 2-wise families H from [n] to {−1, 1},

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)

= O(n lg2 n).

We provide a generalization of this theorem in Section 4, with a slightly different method.
To prove this, we first establish the following lemma:

I Lemma 6. Suppose that there exists a positive definite matrix A ∈ Rn×n such that
Tr(A) = d1 for some d1 > 0 and there exists some function f such that for all vectors x ∈ Rn
and integers 1 ≤ i ≤ n, if x1 + · · ·+ xi = 1, then xTAx ≥ 1

d2
for some d2 > 0. Then, for all

2-wise families H,

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)
≤ d1d2.

Proof. Note that Eh∈Hh2
i = 1 for all i and Eh∈H(hihj) = 0 for all i 6= j. Therefore,

Eh∈H(hTAh) =
∑

1≤i,j≤n
Eh∈H(hihjAij) =

∑
1≤i,j≤n

Aij (Eh∈H(hihj))

=
∑

1≤i≤n
Aii = Tr(A) = d1.

However, for any 1 ≤ i ≤ n, for any h ∈ H, if h1 + · · ·+ hi 6= 0, then

hTAh ≥ (h1 + · · ·+ hi)2 · 1
d2
,

S. Narayanan 63:11

since the vector 1
h1+···+hi

· h has its first i components sum to 1, so we can let this vector
equal x to get xTAx ≥ 1

f(n) . If h1 + · · ·+ hi = 0, then the above inequality is still true as A
is positive definite.

Therefore,

hTAh ≥ 1
d2
· sup

1≤i≤n
(h1 + · · ·+ hi)2,

which means that

d1 = Eh∈H(hTAh) ≥ 1
d2
· Eh∈H

(
sup

1≤i≤n
(h1 + · · ·+ hi)2

)
,

so we are done. J

I Lemma 7. There exists a positive definite matrix A ∈ Rn×n such that Tr(A) = n lgn and
for all x ∈ Rn and 1 ≤ i ≤ n, if x1 + · · ·+ xi = 1, then xTAx ≥ 1

lgn . This clearly implies
Theorem 5.

Proof. Consider the matrix A such that for all 1 ≤ i, j ≤ n, Aij = lgn−k if k is the smallest
nonnegative integer such that b i−1

2k c = b j−1
2k c. Alternatively, we can think of A as the sum

of all matrices Bij , where Bij is a matrix such that Bijkl = 1 if i ≤ k, l ≤ j and 0 otherwise.
However, we sum this not over all 1 ≤ i, j ≤ n but for i = 2r · (s − 1) + 1, j = 2r · s for
0 ≤ r ≤ lgn− 1 and 1 ≤ s ≤ 2lgn−r. As an illustrative example, for n = 8, A equals

3 2 1 1 0 0 0 0
2 3 1 1 0 0 0 0
1 1 3 2 0 0 0 0
1 1 2 3 0 0 0 0
0 0 0 0 3 2 1 1
0 0 0 0 2 3 1 1
0 0 0 0 1 1 3 2
0 0 0 0 1 1 2 3

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

+

1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1

+

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1

 .

It is easy to see that Tr(A) = n lgn, since Aii = lgn for all i. For any 1 ≤ i < n, define
i0 = 0 and for any 1 ≤ r ≤ lgn, define ir = 2lgn−r · b i

2lg n−r c. Then, for any 1 ≤ i < n, one
can see that ilgn = i and for any 1 ≤ i ≤ n, A = B1i1 +B(i1+1)i2 + · · ·+B(ilgn−1+1)ilg n +C,

where C is some positive semidefinite matrix and we assume Bij is the 0 matrix if i = j + 1,
because B1i1 and B(ir−1+1)ir for all 1 ≤ r ≤ lgn are verifiable as matrices in the summation
of A. Therefore, if x1 + · · ·+ xi = 1,

xTAx ≥
r∑
i=1

xTB(ir−1+1)irx

= (x1 + · · ·+ xi1)2 + (xi1+1 + · · ·+ xi2)2 + · · ·+ (xilg n−1+1 + · · ·+ xilg n
)2

≥ 1
lgn,

since (x1+· · ·+xi1)+(xi1+1+· · ·+xi2)+· · ·+(xilg n−1+1+· · ·+xi) = 1 and by Cauchy-Schwarz.

APPROX/RANDOM 2019

63:12 Pairwise Independent Random Walks Can Be Slightly Unbounded

Finally, if i = n, then A = B1(n/2) +B(n/2+1)n +C, where C is some positive semidefinite
matrix. Therefore, if x1 + · · ·+ xn = 1,

xTAx ≥ xTB1(n/2)x+ xTB(n/2+1)nx

= (x1 + · · ·+ xn/2)2 + (xn/2+1 + · · ·+ xn)2 ≥ 1
2 ≥

1
lgn. J

As a final note, for any positive definite matrix A and vector v, the minimum value of
wTAw over all w such that wT v = 1 is known to equal (vTA−1v)−1. This can be checked
with Lagrange Multipliers, since the Lagrangian f(w, λ) of f(w) = wTAw subject to wT v = 1
equals wTAw − λ(wT v − 1), which is a convex function in w and has its derivatives vanish
on the hyperplane wT v = 1 when λ = 2(vTA−1v)−1, w = λ

2 (A−1v) (See for example [7],
Chapter 5, for more details of Lagrange Multipliers). By Lemma 6 and Theorem 1, we have
the following corollary:

I Corollary 8. For all positive definite A, if we define vi as the vector with first i components
1 and last n− i components 0,

Tr(A) · max
1≤i≤n

(viA−1vi) = Ω(n lg2 n)

and this bound is tight for the matrix of Lemma 7.

Proof. If the first part were not true, then there would be matrices An such that Tr(A) = d1,

wTAw = 1
d2

where wT vi = 0 for some i, and d1d2 = o(n lg2 n). However, this would mean
by Lemma 6 that for all pairwise independent H,

Eh∈H
(

sup
1≤i≤n

(h1 + · · ·+ hi)2
)
≤ d1d2 = o(n lg2 n),

contradicting Theorem 1. The second part is immediate by the analysis of Lemma 7. J

4 Generalized Upper Bounds

In this section, our goal is to prove Equation (3) of Section 1.1.

4.1 Proof of Equation 3
In this subsection, we prove a generalization of Kolmogorov’s inequality [16] by proving
an identical result even if we only know that our random variables X1, . . . , Xn are 4-wise
independent.

I Theorem 9. Suppose that X1, . . . , Xn are 4-wise independent random variables satisfying
E[Xi] = 0 and V ar(Xi) <∞ for all i. Then, for all λ > 0,

P
(

sup
1≤i≤n

(X1 + · · ·+Xi) ≥ λ
)
≤
∑

E[X2
i]

λ2 .

Proof. Assume WLOG that λ ≥ 1,
∑

E[X2
i] = 1, and E[X2

i] > 0 for all i, i.e. none of the
variables are almost surely 0. Also, define Si = X1 + · · ·+Xi and Ti = E[X2

1 + · · ·+X2
i] for

0 ≤ i ≤ n. Note that T0 = 0 and Tn = 1.

S. Narayanan 63:13

We proceed by constructing a series of nested intervals [ar,s, br,s] and our analysis will
be similar to that of Lemma 18 in [5]. We construct ar,s and br,s for 0 ≤ r ≤ d =
Θ(maxi lg

(
E[X2

i]−1)
)
and 1 ≤ s ≤ 2r, as integers between 0 and n, inclusive. First define

a0,1 = 0 and b0,1 = n. Next, we inductively define ar,s, br,s. Define ar+1,2s−1 := ar,s and
br+1,2s := br,s. Then, if there exists any index ar,s ≤ t ≤ br,s such that

0.45 ·
∣∣Tbr,s − Tar,s

∣∣ ≤ ∣∣Tt − Tar,s

∣∣ ≤ 0.55 ·
∣∣Tbr,s − Tar,s

∣∣ ,
let ar+1,2s = br+1,2s−1 = t (if there are multiple such indices t, choose any one). Else, define
br+1,2s−1 to be the largest index t ≥ ar,s such that∣∣Tt − Tar,s

∣∣ ≤ 0.45 ·
∣∣Tbr,s − Tar,s

∣∣
and similarly define ar+1,2s to be the smallest index t ≤ br,s such that∣∣Tt − Tar,s

∣∣ ≥ 0.55 ·
∣∣Tbr,s

− Tar,s

∣∣ .
Note that in this case, ar,2s = br,2s−1 + 1.

It is clear that intervals are all nested in each other and for every r, all integers between 0
and n are in an interval [ar,s, br,s] for some s (possibly at an endpoint). Also, we always have
ar,0 ≤ br,0 ≤ ar,1 ≤ · · · ≤ br,2r , and any interval [ar,s, br,s] satisfies Tbr,s

− Tar,s
≤ 0.55r. The

previous point implies that since d = Θ(maxi(lgE[X2
i]−1)), every integer equals ad,s = bd,s

for some s.
We now call an interval [ar,s, br,s] bad if either s is odd and br,s 6= ar,s+1 or s is even and

ar,s 6= br,s−1. Define the rank qr,s of a bad interval as the number of distinct r′ ≤ r such
that [ar,s, br,s] ⊆ [ar′,s′ , br′,s′] for some bad interval [ar′,s′ , br′,s′], which may equal [ar,s, br,s].
Define the relative rank of a bad interval with respect to some interval [a, b] as the number of
distinct r′ ≤ r such that [ar,s, br,s] ⊆ [ar′,s′ , br′,s′] ([a, b] for some bad interval [ar′,s′ , br′,s′].
Note that [ar,2s−1, br,2s−1] and [ar,2s, br,2s] are either both bad or both good, i.e. not bad.
We now show the following:

I Lemma 10. Given distinct bad intervals [ari,si
, bri,si

] for 1 ≤ i ≤ ` all contained in some
interval [ar,s, br,s], where each interval has relative rank exactly q with respect to [ar,s, br,s],

∑̀
i=1

(
Tbri,si

− Tari,si

)
≤ 0.9q ·

(
Tar,s

− Tbr,s

)
.

As an immediate consequence, given distinct bad intervals [ari,si
, bri,si

] with absolute rank q,

∑̀
i=1

(
Tbri,si

− Tari,si

)
≤ 0.9q.

Proof. First, note that the bad intervals cannot overlap, except at endpoints, as the only
way for such intervals to overlap is for one to be contained in another, which would mean
they have different ranks. Now, we prove this by induction on br,s − ar,s. If br,s − ar,s = 1,
then for any value of q, this is quite straightforward, since there cannot exist bad intervals of
nonzero length with positive relative rank. Now, given br,s−ar,s > 1, then ar,s = ar+1,2s−1 ≤
br+1,2s−1 ≤ ar+1,2s ≤ br+1,2s = br,s, and at least one of the two outer inequalities must be
strict. If br+1,2s−1 = ar+1,2s, then neither [ar+1,2s−1, br+1,2s−1] nor [ar+1,2s, br+1,2s] are bad
intervals. We can separately look at intervals which are subintervals of [ar+1,2s−1, br+1,2s−1]
or [ar+1,2s, br+1,2s] to see which ones have rank q. By induction on br,s − ar,s, the total
length of the subintervals of relative rank q is at most

0.9q · (Tbr+1,2s−1 − Tar+1,2s−1) + 0.9q · (Tbr+1,2s − Tar+1,2s) = 0.9q · (Tbr,s − Tar,s).

APPROX/RANDOM 2019

63:14 Pairwise Independent Random Walks Can Be Slightly Unbounded

If br+1,2s−1 6= ar+1,2s, then if q = 1, we can only choose the subintervals [ar+1,2s−1, br+1,2s−1]
and [ar+1,2s, br+1,2s], and clearly

(Tbr+1,2s−1−Tar+1,2s−1)+(Tbr+1,2s−Tar+1,2s) ≤ (0.45+0.45)·(Tbr,s−Tar,s) = 0.9·(Tbr,s−Tar,s).

If q > 1, we can separately look at intervals which are subintervals of [ar+1,2s−1, br+1,2s−1]
and [ar+1,2s, br+1,2s] to see which ones have relative rank q − 1, where we have to subtract
one from the rank since [ar+1,2s−1, br+1,2s−1] and [ar+1,2s, br+1,2s] are both bad. Then, the
total length of the subintervals of relative rank q is at most

0.9q−1 · (Tbr+1,2s−1 − Tar+1,2s−1) + 0.9q−1 · (Tbr+1,2s
− Tar+1,2s

)

≤ 0.9q−1 · (0.45 + 0.45) · (Tbr,s
− Tar,s

) = 0.9q(Tbr,s
− Tar,s

). J

Next, for any λ, we bound the probability that there exists either a bad interval [ar,s, br,s]
with rank q such that |Sbr,s − Sar,s | ≥ 0.99q · λ or good intervals [ar,2s−1, br,2s−1], [ar,2s, br,2s]
such that min(|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s

− Sar,2s
|) ≥ 0.99r · λ. Note that by the Chebyshev

inequality,

P
(
|Sbr,s − Sar,s | ≥ 0.99q · λ

)
≤
Tbr,s

− Tar,s

0.992q · λ2 ,

since E
[
(Sbr,s

− Sar,s
)2] = Tbr,s

− Tar,s
by pairwise independence. Therefore, the probability

of us having this for any bad interval is at most
∞∑
q=1

∑
bad interval

rank q

Tbr,s
− Tar,s

0.992q · λ2 ≤
∞∑
q=1

0.9q

0.992q · λ2 = O(λ−2).

Next, note that for any good intervals [ar,2s−1, br,2s−1] and [ar,2s, br,2s], we have that

P
(
min

(
|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s − Sar,2s |

)
≥ λ · 0.99r

)
≤ P

(
(Sbr,2s−1 − Sar,2s−1)2(Sbr,2s

− Sar,2s
)2 ≥ λ4 · 0.994r)

≤
E
[
(Sbr,2s−1 − Sar,2s−1)2(Sbr,2s − Sar,2s)2]

λ4 · 0.994r

≤
(Tbr,2s−1 − Tar,2s−1)(Tbr,2s − Tar,2s)

λ4 · 0.994r ≤ 0.552r

λ4 · 0.994r

using 4-wise independence of X1, . . . , Xn. Since there are at most 2r such pairs of good
intervals for any r, the probability of |Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s

− Sar,2s
| both being greater

than λ · 0.99r for any pair of good intervals, is at most
∞∑
r=1

2r · 0.552r

λ4 · 0.994r = O(λ−4).

Finally, the probability of |Sn − S0| = |Sb0,1 − Sa0,1 | > λ is at most E[S2
n]

λ2 = O(λ−2).
These imply the following result:

I Lemma 11. The probability of there existing a bad interval [ar,s, br,s] with rank q such
that |Sbr,s

− Sar,s
| ≥ 0.99q · λ, or good intervals [ar,2s−1, br,2s−1] and [ar,2s, br,2s] such that

|Sbr,2s−1 − Sar,2s−1 |, |Sbr,2s − Sar,2s | are both greater than λ · 0.99r, or of |Sn − S0| ≥ λ is
O(λ−2).

Next, we prove the following:

S. Narayanan 63:15

I Lemma 12. For any 0 ≤ i ≤ n, there exists a sequence 0 ≤ i0, i1, i2, . . . , id ≤ n with
i0 = 0, id = i, and a sequence of nested intervals [a0,s0 , b0,s0] ⊃ · · · ⊃ [ad,sd

, bd,sd
] such that

for any 1 ≤ j ≤ d − 1, ij is an endpoint of the interval [aj,sj
, bj,sj

] and of the interval
[aj−1,sj−1 , bj−1,sj−1]. Furthermore, for any 1 ≤ j ≤ d, either ij−1 = ij , or [aj,sj , bj,sj]
is a bad interval, or ij equals aj,2s = bj,2s−1 and ij−1 is either aj,2s−1 or bj,2s such that
|Sij − Sij−1 | = min(|Sbj,2s − Saj,2s |, |Saj,2s−1 − Saj,2s−1 |). The intervals and values i0, . . . , id
may depend on the actual values of X1, . . . , Xn.

Proof. We know that i = id equals ad,sd
= bd,sd

for some sd, and thus must also equal either
ad−1,sd−1 or bd−1,sd−1 for some sd−1. If we are given ij+1 for some 1 ≤ j < d, if ij+1 equals
aj,2s−1 or bj,2s for some s, then let ij = ij+1 which equals aj−1,s or bj−1,s, respectively. If ij
equals aj,2s or bj,2s−1 for some s, then if aj,2s = bj,2s−1, we can choose ij−1 accordingly as
either aj,2s−1 = aj−1,s or bj,2s = bj−1,s based on whether |Sbj,2s−1−Saj,2s−1 | or |Sbj,2s−Saj,2s |
is smaller. If aj,2s 6= bj,2s−1, then if ij = aj,2s we choose ij−1 = aj−1,s and if ij = bj,2s−1
then we choose ij−1 = bj−1,s. J

As a result, we have that if the conditions of Lemma 11 do not hold, which happens with
probability 1−O(λ−2), then for any i, then every |Si| satisfies

|Si| ≤
d∑
j=1
|Sij − Sij−1 | ≤ λ+

∞∑
q=1

0.99q · λ+
∞∑
r=1

0.99r · λ = O(λ),

where I am using the fact that the intervals [aj,sj
, bj,sj

] are nested in each other, so no two
bad intervals can have the same rank.

In summary, we have with probability at least 1 − O(λ−2), the supremum of |Si| =
|X1 + · · ·+Xi| over all i doesn’t exceed O(λ), so we have proven Theorem 9. J

5 Open Problems

We note a few further directions that could be taken after this work. The first main open
problem is whether 3-wise independent random walks on n steps have supremum distance
bounded by O(

√
n) in expectation. As all 3-wise independent random walks are also 2-wise

independent, we know that the supremum distance is bounded by O(
√
n logn) in expectation

and the supremum square distance is bounded by O(n log2 n) in expectation. However, we
do not know if better bounds are true for 3-wise independent random walks. Likewise, for
odd k ≥ 5, we could ask if the kth moment of the supremum distance is bounded by O(nk/2)
in expectation, as we only know that the (k − 1)th moment of the supremum distance is
bounded by O(n(k−1)/2) in expectation by Equation (5), since k − 1 is even and at least 4.

Finally, we could ask how the constants increase as k grows. By our proof of Equation
(5) and the constants in Khintchine’s inequality [15], we know that the kth moment of
the supremum distance of a random walk is O(k)3k/2 · nk/2. Therefore, we could ask if the
constant O(k)3k/2 could be improved if k grows with respect to n (such as if k = Θ(logn)).

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating the

Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. doi:10.1006/jcss.1997.
1545.

2 Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An Introduction
to MCMC for Machine Learning. Machine Learning, 50(1):5–43, January 2003. doi:10.1023/A:
1020281327116.

APPROX/RANDOM 2019

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1023/A:1020281327116
https://doi.org/10.1023/A:1020281327116

63:16 Pairwise Independent Random Walks Can Be Slightly Unbounded

3 Itai Benjamini, Gady Kozma, and Dan Romik. Random walks with k-wise independent
increments. Electron. Commun. Probab., 11:100–107, 2006. doi:10.1214/ECP.v11-1201.

4 Howard Berg. Random Walks in Biology. Princeton University Press, 1993.
5 Jarosław Błasiok. Optimal streaming and tracking distinct elements with high probability.

In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2432–2448, 2018. doi:
10.1137/1.9781611975031.156.

6 Jarosław Błasiok, Jian Ding, and Jelani Nelson. Continuous Monitoring of `p Norms in Data
Streams. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, pages
32:1–32:13, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.32.

7 Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

8 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, Jelani Nelson, Zhengyu Wang,
and David P. Woodruff. BPTree: An `2 heavy hitters algorithm using constant memory.
In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 361–376, 2017.
doi:10.1145/3034786.3034798.

9 Vladimir Braverman, Stephen R. Chestnut, Nikita Ivkin, and David P. Woodruff. Beating
CountSketch for heavy hitters in insertion streams. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 740–753, 2016. doi:10.1145/2897518.2897558.

10 Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions. J. Comput. Syst.
Sci., 18(2):143–154, 1979. doi:10.1016/0022-0000(79)90044-8.

11 R. M. Dudley. The sizes of compact subsets of Hilbert space and continuity of Gaussian
processes. Journal of Functional Analysis, 1(3):290–330, 1967. doi:10.1016/0022-1236(67)
90017-1.

12 M. P. Etienne and P. Vallois. Approximation of the Distribution of the Supremum of a Centered
Random Walk. Application to the Local Score. Methodology And Computing In Applied
Probability, 6(3):255–275, September 2004. doi:10.1023/B:MCAP.0000026559.87023.ec.

13 Eugene F. Fama. Random Walks in Stock Market Prices. Financial Analysts Journal,
21(5):55–59, 1965. URL: http://www.jstor.org/stable/4469865.

14 Pierre-Gilles Gennes. Scaling Concepts in Polymer Physics. Cornell University Press, 1 edition,
November 1979.

15 Uffe Haagerup. The best constants in the Khintchine inequality. Studia Mathematica,
70(3):231–283, 1981. URL: http://eudml.org/doc/218383.

16 A. Kolmogoroff. Über die summen durch den zufall bestimmter unabhängiger größen. Math-
ematische Annalen, 99:309–319, 1928. URL: http://eudml.org/doc/159258.

17 László Lovász. Random Walks on Graphs: A Survey, 1993.
18 Jelani Nelson. Chaining introduction with some computer science applications. Bulletin of the

EATCS, 120, 2016. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/450.
19 Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear Probing with Constant Independence.

SIAM J. Comput., 39(3):1107–1120, 2009. doi:10.1137/070702278.
20 Mihai Pǎtraşcu and Mikkel Thorup. On the k-Independence Required by Linear Probing and

Minwise Independence. ACM Trans. Algorithms, 12(1):8:1–8:27, 2016. doi:10.1145/2716317.
21 Yao-Feng Ren and Han-Ying Liang. On the best constant in Marcinkiewicz–Zygmund inequality.

Statistics & Probability Letters, 53(3):227–233, 2001. doi:10.1016/S0167-7152(01)00015-3.
22 Mathias Knudsen (via Jelani Nelson). Personal communication.

https://doi.org/10.1214/ECP.v11-1201
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.1137/1.9781611975031.156
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.32
https://doi.org/10.1145/3034786.3034798
https://doi.org/10.1145/2897518.2897558
https://doi.org/10.1016/0022-0000(79)90044-8
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1016/0022-1236(67)90017-1
https://doi.org/10.1023/B:MCAP.0000026559.87023.ec
http://www.jstor.org/stable/4469865
http://eudml.org/doc/218383
http://eudml.org/doc/159258
http://eatcs.org/beatcs/index.php/beatcs/article/view/450
https://doi.org/10.1137/070702278
https://doi.org/10.1145/2716317
https://doi.org/10.1016/S0167-7152(01)00015-3

S. Narayanan 63:17

A Generalized Upper Bounds: Proof of Equations 4 and 5

Before we prove Equations (4) and (5), we construct 2−r/2-nets for 0 ≤ r ≤ 2 lgm + 1 in
a very similar way as in Theorem 1 in [8]. We define an ε-net to be a finite set of points
ar,0, ar,1, . . . , ar,dr

such that for every z(t), ||z(t) − ar,s||2 ≤ ε||z||2 for some 0 ≤ s ≤ dr. The
constructions are defined identically for both equations. Define a0,0 := z(0) as the only
element of the 2−0/2 = 1-net. For r ≥ 1, define ar,0 = z(0), and given ar,s = z(t1) then define
ar,s+1 as the smallest t > t1 such that

||z(t) − z(t1)||2 > 2−r/2 · ||z||22,

unless such a t does not exist, in which case let s = dr and do not define ar,s′ for any s′ > s.
We define the set Ar = {ar,s : 0 ≤ s ≤ dr}. The following is directly true from our

construction:

I Proposition 13. For any 0 ≤ t ≤ m and fixed r, if t1 ≤ t is the largest t1 such that
z(t1) = ar,s for some s, then ||z(t)−z(t1)||2 ≤ 2−r/2·||z||2. Consequently, Ar = {ar,0, . . . , ar,dr}
is a 2−r/2-net.

The above proposition implies the following:

I Proposition 14. For all 1 ≤ t ≤ m, z(t) = a2 lgm+1,s for some s.

Proof. Let t1 be the largest integer at most t such that z(t1) = a2 lgm+1,s for some s.
Then, ||z(t) − a2 lgm+1,s||22 ≤ 2−(2 lgm+1) · ||z||22 < 1, which is clearly impossible unless
z(t) = a2 lgm+1,s. J

Next, to prove Equations (4) and (5), we will need the Marcinkiewicz–Zygmund in-
equality (see for example [21]), which is a generalization of Khintchine’s inequality (see for
example [15]):

I Theorem 15. For any even k ≥ 2, there exists a constant Bk only depending on k such
that for any fixed vector v and totally independent random variables Y = (Y1, . . . , Yn),

E

(n∑
i=1

Yi

)k ≤ BkE
(n∑

i=1
Y 2
i

)k/2
 .

This implies the following result:

I Proposition 16. For any k ≥ 2 and vector v, there exists a Bk only dependent on k

such that

E
[
〈v, ~X〉

]k
= E

(n∑
i=1

viXi

)k ≤ Bk||v||k2 .
Proof. Since the expected value of (

∑
viXi)k is only dependent on k-wise independence, we

can assume that the Xi’s are totally independent but have the same marginal distribution.
This implies

E

(n∑
i=1

viXi

)k ≤ BkE
(n∑

i=1
v2
iX

2
i

)k/2

by Theorem 15. However, we know that E[X2d
i] ≤ 1 for all i and all 1 ≤ d ≤ k/2, since

E[Xk
i] ≤ 1 and E[X2d

i]k/d ≤ E[Xk
i] by Jensen’s inequality, so simply expanding and using

independence and linearity of expectation gets us the desired result. J

APPROX/RANDOM 2019

63:18 Pairwise Independent Random Walks Can Be Slightly Unbounded

We now prove equations (4) and (5).

Proof of Equation (4). For r ≥ 1 and s, suppose ar,s = z(t) and t1 ≤ t is the largest index
such that z(t1) ∈ Ar−1. Then, define f(s, t) to be the index s′ such that z(t1) = ar−1,s′ .

Consider the quadratic form
2 lgm+1∑
r=1

dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉2.

By Proposition 13, ||ar,s − ar−1,f(r,s)||2 ≤ 2−(r−1)/2 · ||z||2. Thus, by Proposition 16, we get
the expected value of the quadratic form equals

2 lgm+1∑
r=1

dr∑
s=0

E[〈(ar,2s+1 − ar,2s), ~X〉2] ≤ B2

2 lgm+1∑
r=1

dr∑
s=0
||ar,2s+1 − ar,2s||22

≤ B2

2 lgm+1∑
r=1

(
2r · 2−(r−1)||z||22

)
≤ 2B2(2 lgm+ 1)(||z||22).

Here, I am using the fact that an ε-net has size at most ε−2, which is easy to see since
z(0), . . . , z(m) is tracking an insertion stream (it is proven, for example, in Theorem 1 of [8]),
and thus dr ≤ 2r.

Now, for any 0 ≤ i ≤ n, consider z(i) and let z(i) = a2 lgm+1,s. Then, define sr = s if
r = 2 lgm+ 1 and sr−1 = f(r, sr) for 1 ≤ r ≤ 2 lgm+ 1. Note that s0 = 0 and for any r ≥ 1,
if ar,sr

∈ Ar−1, then ar,sr
= ar−1,sr−1 . Thus, each 〈(ar,sr

− ar−1,sr−1), ~X〉2 for 1 ≤ 2 lgm+ 1
is either 0 (because ar,sr

− ar−1,sr−1 = 0) or is a summand in our quadratic form. Therefore,
2 lgm+1∑
r=1

dr∑
s=0
〈(ar,s−ar,f(r,s)), ~X〉2 ≥

2 lgm+1∑
r=1

〈(ar,sr −ar−1,sr−1), ~X〉2 ≥ 1
2 lgm+ 1 · 〈z

(i), ~X〉2,

with the last inequality true since a2 lgm+1,s2 lg m+1 = z(i), a0,s0 = z(0), and by the Cauchy-
Schwarz inequality. As this is true for all i, taking the supremum over i and then expected
values gives us

2B2(2 lgm+ 1)(||z||22) ≥ E

[2 lgm+1∑
r=1

dr∑
s=0
〈(ar,2s+1 − ar,2s), ~X〉2

]

≥ 1
2 lgm+ 1 · sup

i
E
[
〈z(i), ~X〉2

]
,

and therefore,

E
[
〈z(i), ~X〉2

]
= O

(
||z||22 · lg2 m

)
. J

Proof of Equation (5). Consider the form
2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k,

with f(r, s) defined as in the proof of Equation (4). We again note that by Proposition 13,
||ar,s − ar−1,f(r,s)||2 ≤ 2−(r−1)/2 · ||z||2. Thus, by Proposition 16, we get the expected value
of the form equals

2 lgm+1∑
r=1

2r/2
dr∑
s=0

E[〈(ar,s − ar−1,f(r,s)), ~X〉k] ≤ Bk
2 lgm+1∑
r=1

2r/2
dr∑
s=0
||ar,s − ar−1,f(r,s)||k2

S. Narayanan 63:19

≤ Bk
2 lgm+1∑
r=0

2r/2 · 2r · 2−(r−1)k/2||z||k2 ≤ Bk · 2k/2
∞∑
r=0

2r(3−k)/2||z||k2 = O(2k/2Bk)||z||k2 ,

since k ≥ 4. Again, I am using the fact that dr ≤ 2r as an ε-net has size at most ε−2.

Now, for any 0 ≤ i ≤ n, suppose s satisfies z(i) = a2 lgm+1,s. define sr = s if r = 2 lgm+ 1
and sr−1 = f(r, sr) for 1 ≤ r ≤ 2 lgm+ 1. Then, similarly to in the proof of Equation (4),

2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k ≥

2 lgm+1∑
r=1

2r/2〈(ar,sr
− ar−1,sr−1), ~X〉k

≥ Ω(k−1)k · 〈z(i), ~X〉k.

The last inequality requires justification, specifically that if x1 + · · · + x2 lgm+1 = 1,∑
2r/2xkr = Ω(k−1)k. This is sufficient since we can let xr = 〈(ar,sr

−ar−1,sr−1), ~X〉. To prove
this, define x′1, x′2, . . . , x′2 lgm+1 such that x′1 + · · · + x′2 lgm+1 = 1 and x′1 > · · · > x′2 lgm+1
are in a geometric series with common ratio 2−1/(2k) = 1 − Θ(1/k). Then, note that for
any x1, . . . , x2 lgm+1 such that x1 + · · · + x2 lgm+1 = 1, xi ≥ x′i for some i. But note that
(x′r)k2r/2 are equal for all r because of our geometric series, and equals (x′1)k = Ω(k−1)k
since x′1 = Ω(k−1)k is clearly true. Thus,

∑
2r/2xkr ≥ 2i/2(x′i)k = Ω(k−1)k, so we are done.

As this is true for all i, we can take the supremum over i and then take expected values
to get

2k/2Bk · ||z||k2 ≥ E

[2 lgm+1∑
r=1

2r/2
dr∑
s=0
〈(ar,s − ar−1,f(r,s)), ~X〉k

]
≥ Ω(k−1)k · sup

i
E
[
〈z(i), ~X〉k

]
and therefore, for a fixed k,

E sup
i

[
〈z(i), ~X〉k

]
= O

(
||z||k2

)
. J

APPROX/RANDOM 2019

Optimal Convergence Rate of Hamiltonian Monte
Carlo for Strongly Logconcave Distributions
Zongchen Chen
School of Computer Science, Georgia Institute of Technology, USA
chenzongchen@gatech.edu

Santosh S. Vempala
School of Computer Science, Georgia Institute of Technology, USA
vempala@gatech.edu

Abstract
We study Hamiltonian Monte Carlo (HMC) for sampling from a strongly logconcave density
proportional to e−f where f : Rd → R is µ-strongly convex and L-smooth (the condition number is
κ = L/µ). We show that the relaxation time (inverse of the spectral gap) of ideal HMC is O(κ),
improving on the previous best bound of O(κ1.5); we complement this with an example where the
relaxation time is Ω(κ). When implemented using a nearly optimal ODE solver, HMC returns an
ε-approximate point in 2-Wasserstein distance using Õ((κd)0.5ε−1) gradient evaluations per step
and Õ((κd)1.5ε−1) total time.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Theory of computation → Design and analysis of algorithms

Keywords and phrases logconcave distribution, sampling, Hamiltonian Monte Carlo, spectral gap,
strong convexity

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.64

Category RANDOM

Funding Zongchen Chen: This work was supported in part by CCF-1563838 and CCF-1617306.
Santosh S. Vempala: This work was supported in part by CCF-1563838, CCF-1717349 and DMS-
1839323.

Acknowledgements We are grateful to Yin Tat Lee for helpful discussions.

1 Introduction

Sampling logconcave densities is a basic problem that arises in machine learning, statistics,
optimization, computer science and other areas. The problem is described as follows. Let
f : Rd → R be a convex function. Our goal is to sample from the density proportional to
e−f(x). We study Hamiltonian Monte Carlo (HMC), one of the most widely-used Markov
chain Monte Carlo (MCMC) algorithms for sampling from a probability distribution. In many
settings, HMC is believed to outperform other MCMC algorithms such as the Metropolis-
Hastings algorithm or Langevin dynamics. In terms of theory, rapid mixing has been
established for HMC in recent papers [9, 10, 13, 14, 15] under various settings. However, in
spite of much progress, there is a gap between known upper and lower bounds even in the basic
setting when f is strongly convex (e−f is strongly logconcave) and has a Lipschitz gradient.

Many sampling algorithms such as the Metropolis-Hastings algorithm or Langevin dy-
namics maintain a position x = x(t) that changes with time, so that the distribution of x
will eventually converge to the desired distribution, i.e., proportional to e−f(x). In HMC,
besides the position x = x(t), we also maintain a velocity v = v(t). In the simplest Euclidean
setting, the Hamiltonian H(x, v) is defined as

H(x, v) = f(x) + 1
2‖v‖

2.

© Zongchen Chen and Santosh S. Vempala;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 64; pp. 64:1–64:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chenzongchen@gatech.edu
mailto:vempala@gatech.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.64
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

Then in every step the pair (x, v) is updated using the following system of differential
equations for a fixed time interval T :

dx(t)
dt = ∂H(x, v)

∂v
= v(t),

dv(t)
dt = −∂H(x, v)

∂x
= −∇f(x(t)).

(1)

The initial position x(0) = x0 is the position from the last step, and the initial velocity
v(0) = v0 is chosen randomly from the standard Gaussian distribution N(0, I). The updated
position is x(T) where T can be thought of as the step-size. It is well-known that the
stationary distribution of HMC is the density proportional to e−f . Observe that

dH(x, v)
dt = ∂H(x, v)

∂x
x′(t) + ∂H(x, v)

∂v
v′(t) = 0,

so the Hamiltonian H(x, v) does not change with t. We can also write (1) as the following
ordinary differential equation (ODE):

x′′(t) = −∇f(x(t)), x(0) = x0, x′(0) = v0. (2)

We state HMC explicitly as the following algorithm.

Algorithm 1 Hamiltonian Monte Carlo algorithm.

Input: f : Rd → R that is µ-strongly convex and L-smooth, ε the error parameter.
1. Set starting point x(0), step-size T , number of steps N , and ODE error tolerance δ.
2. For k = 1, . . . , N :

a. Let v ∼ N(0, I);
b. Denote by x(t) the solution to (1) with initial position x(0) = x(k−1) and initial velocity

v(0) = v. Use the ODE solver to find a point x(k) such that∥∥∥x(k) − x(T)
∥∥∥ ≤ δ.

3. Output x(N).

In our analysis, we first consider ideal HMC where in every step we have the exact
solution to the ODE (1) and neglect the numerical error from solving the ODEs or integration
(δ = 0).

1.1 Preliminaries
We recall standard definitions here. Let f : Rd → R be a continuously differentiable function.
We say f is µ-strongly convex if for all x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2
.

We say f is L-smooth if ∇f is L-Lipschitz; i.e., for all x, y ∈ Rd,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

If f is µ-strongly convex and L-smooth, then the condition number of f is κ = L/µ.

Z. Chen and S. S. Vempala 64:3

Consider a discrete-time reversible Markov chainM on Rd with stationary distribution π.
Let

L2(π) =
{
f : Rd → R

∣∣∣∣ ∫
Rd

f(x)2π(dx) <∞
}

be the Hilbert space with inner product

〈f, g〉 =
∫
Rd

f(x)g(x)π(dx)

for f, g ∈ L2(π). Denote by P the transition kernel ofM. We can view P as a self-adjoint
operator from L2(π) to itself: for f ∈ L2(π),

(Pf)(x) =
∫
Rd

f(y)P (x, dy).

Let L0
2(π) = {f ∈ L2(π) :

∫
Rd f(x)π(dx) = 0} be a closed subspace of L2(π). The (absolute)

spectral gap of P is defined to be

γ(P) = 1− sup
f∈L0

2(π)

‖Pf‖
‖f‖

= 1− sup
f∈L0

2(π)
‖f‖=1

| 〈Pf, f〉 |.

The relaxation time of P is

τrel(P) = 1
γ(P) .

Let ν1, ν2 be two distributions on Rd. The 2-Wasserstein distance between ν1 and ν2 is
defined as

W2(ν1, ν2) =
(

inf
(X,Y)∈C(ν1,ν2)

E
[
‖X − Y ‖2

])1/2
,

where C(ν1, ν2) is the set of all couplings of ν1 and ν2.

1.2 Related work
Various versions of Langevin dynamics have been studied in many recent papers, see [5, 6,
21, 17, 7, 4, 3, 2, 8, 20, 19, 12]. The convergence rate of HMC is also studied recently in
[9, 10, 13, 14, 15, 18]. The first bound for our setting was obtained by Mangoubi and Smith
[13], who gave an O(κ2) bound on the convergence rate of ideal HMC.

I Theorem 1 ([13, Theorem 1]). Let f : Rd → R be a twice differentiable function such that
µI � ∇2f(x) � LI for all x ∈ Rd. Then the relaxation time of ideal HMC for sampling from
the density ∝ e−f with step-size T = √µ/(2

√
2L) is O(κ2).

This was improved by [9], which showed a bound of O(κ1.5). They also gave a nearly
optimal method for solving the ODE that arises in the implementation of HMC.

I Theorem 2 ([9, Lemma 1.8]). Let f : Rd → R be a twice differentiable function such that
µI � ∇2f(x) � LI for all x ∈ Rd. Then the relaxation time of ideal HMC for sampling from
the density ∝ e−f with step-size T = µ1/4/(2L3/4) is O(κ1.5).

APPROX/RANDOM 2019

64:4 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

Both papers suggest that the correct bound is linear in κ: [13] says linear is the best
one can expect while [9] shows that there exists a choice of step-sizes (time for running the
ODE) that might achieve a linear rate (Lemma 1.8, second part); however it was far from
clear how to determine these step-sizes algorithmically.

Other papers focus on various aspects and use stronger assumptions (e.g., bounds on
higher-order gradients) to get better bounds on the overall convergence time or the number
of gradient evaluations in some ranges of parameters. For example, [15] shows that the
dependence on dimension for the number of gradient evaluations can be as low as d1/4 with
suitable regularity assumptions (and higher dependence on the condition number). We note
also that sampling logconcave functions is a polynomial-time solvable problem, without the
assumptions of strong convexity or gradient Lipschitzness, and even when the function e−f
is given only by an oracle with no access to gradients [1, 11]. The Riemannian version of
HMC provides a faster polynomial-time algorithm for uniformly sampling polytopes [10].
However, the dependence on the dimension is significantly higher for these algorithms, both
for the contraction rate and the time per step.

1.3 Results
In this paper, we show that the relaxation time of ideal HMC is Θ(κ) for strongly logconcave
functions with Lipschitz gradient.

I Theorem 3. Suppose that f is µ-strongly convex and L-smooth. Then the relaxation time
(inverse of spectral gap) of ideal HMC for sampling from the density ∝ e−f with step-size
T = 1/(2

√
L) is O(κ), where κ = L/µ is the condition number.

We remark that the only assumption we made about f is strongly convexity and smoothness
(in particular, we do not require that f is twice differentiable, which is assumed in both [9]
and [13]).

We also establish a matching lower bound on the relaxation time of ideal HMC, implying
the tightness of Theorem 3.

I Theorem 4. For any 0 < µ ≤ L, there exists a µ-strongly convex and L-smooth function
f , such that the relaxation time of ideal HMC for sampling from the density ∝ e−f with
step-size T = O(1/

√
L) is Ω(κ), where κ = L/µ is the condition number.

Using the nearly optimal ODE solver from [9], we obtain the following convergence rate
in 2-Wasserstein distance for the HMC algorithm. We note that since our new convergence
rate allows larger steps, the ODE solver is run for a longer time step.

I Theorem 5. Let f : Rd → R be a twice differentiable function such that µI � ∇2f(x) � LI
for all x ∈ Rd. Let π ∝ e−f be the target distribution, and let πhmc be the distribution of
the output of HMC with starting point x(0) = arg minx f(x), step-size T = 1/(16000

√
L),

and ODE error tolerance δ = √µT 2ε/16. For any 0 < ε <
√
d, if we run HMC for

N = O (κ log(d/ε)) steps where κ = L/µ, then we have

W2(πhmc, π) ≤ ε
√
µ
.

Each step takes O
(√
κd3/2ε−1 log(κd/ε)

)
time and O

(√
κdε−1 log(κd/ε)

)
evaluations of ∇f ,

amortized over all steps.

Z. Chen and S. S. Vempala 64:5

The comparison of convergence rates, running times and numbers of gradient evaluations is
summarized in the following table with polylog factors omitted.

reference convergence rate # gradients total time

[13] κ2 κ6.5d 0.5 κ6.5d1.5

[9] κ1.5 κ1.75d 0.5 κ1.75d1.5

this paper κ κ1.5d 0.5 κ1.5d1.5

2 Convergence of ideal HMC

In this section we show that the spectral gap of ideal HMC is Ω(1/κ), and thus prove
Theorem 3. We first show a contraction bound for ideal HMC, which roughly says that the
distance of two points is shrinking after one step of ideal HMC.

I Lemma 6 (Contraction bound). Suppose that f is µ-strongly convex and L-smooth. Let
x(t) and y(t) be the solution to (1) with initial positions x(0), y(0) and initial velocities
x′(0) = y′(0). Then for 0 ≤ t ≤ 1/(2

√
L) we have

‖x(t)− y(t)‖2 ≤
(

1− µ

4 t
2
)
‖x(0)− y(0)‖2

.

In particular, by setting t = T = 1/(c
√
L) for some constant c ≥ 2 we get

‖x(T)− y(T)‖2 ≤
(

1− 1
4c2κ

)
‖x(0)− y(0)‖2

where κ = L/µ.

Proof. Consider the two ODEs for HMC:{
x′(t) = u(t);
u′(t) = −∇f(x(t)).

and
{
y′(t) = v(t);
v′(t) = −∇f(y(t)).

with initial points x(0), y(0) and initial velocities u(0) = v(0). For the sake of brevity, we
shall write x = x(t), y = y(t), u = u(t), v = v(t) and omit the variable t, as well as letting
x0 = x(0), y0 = y(0). We are going to show that

‖x− y‖2 ≤
(

1− µ

4 t
2
)
‖x0 − y0‖2

for all 0 ≤ t ≤ 1/(2
√
L).

Consider the derivative of 1
2 ‖x− y‖

2:

d
dt

(
1
2 ‖x− y‖

2
)

= 〈x′ − y′, x− y〉 = 〈u− v, x− y〉 . (3)

Taking derivative on both sides, we get

d2

dt2

(
1
2 ‖x− y‖

2
)

= 〈u′ − v′, x− y〉+ 〈u− v, x′ − y′〉

= −〈∇f(x)−∇f(y), x− y〉+ ‖u− v‖2

= −ρ ‖x− y‖2 + ‖u− v‖2
, (4)

APPROX/RANDOM 2019

64:6 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

where we define

ρ = ρ(t) = 〈∇f(x)−∇f(y), x− y〉
‖x− y‖2 .

Since f is µ-strongly convex and L-smooth, we have µ ≤ ρ ≤ L for all t ≥ 0.
We will upper bound the term −ρ ‖x− y‖2 + ‖u− v‖2, while keeping its dependency on

ρ. To lower bound ‖x− y‖2, we use the following crude bound.

B Claim 7 (Crude bound). For all 0 ≤ t ≤ 1/(2
√
L) we have

1
2 ‖x0 − y0‖2 ≤ ‖x− y‖2 ≤ 2 ‖x0 − y0‖2

. (5)

The proof of this claim is postponed to Section 2.1.
Next we derive an upper bound on ‖u− v‖2. The derivative of ‖u− v‖ is given by

‖u− v‖
(

d
dt ‖u− v‖

)
= d

dt

(
1
2 ‖u− v‖

2
)

= 〈u′ − v′, u− v〉
= −〈∇f(x)−∇f(y), u− v〉 .

Thus, its absolute value is upper bounded by∣∣∣∣ d
dt ‖u− v‖

∣∣∣∣ = |− 〈∇f(x)−∇f(y), u− v〉|
‖u− v‖

≤ ‖∇f(x)−∇f(y)‖ .

Since f is L-smooth and convex, we have

‖∇f(x)−∇f(y)‖2 ≤ L 〈∇f(x)−∇f(y), x− y〉 = Lρ ‖x− y‖2 ≤ 2Lρ ‖x0 − y0‖2
,

where the last inequality follows from the crude bound (5). Then, using the fact that u0 = v0
and the Cauchy-Schwarz inequality, we can upper bound ‖u− v‖2 by

‖u− v‖2 ≤
(∫ t

0

∣∣∣∣ d
ds ‖u− v‖

∣∣∣∣ ds)2

≤
(∫ t

0

√
2Lρ ‖x0 − y0‖ ds

)2

≤ 2Lt
(∫ t

0
ρds

)
‖x0 − y0‖2

.

Define the function

P = P (t) =
∫ t

0
ρds,

so P (t) is nonnegative and monotone increasing, with P (0) = 0. Also we have µt ≤ P (t) ≤ Lt
for all t ≥ 0. Then,

‖u− v‖2 ≤ 2LtP ‖x0 − y0‖2
. (6)

Plugging (5) and (6) into (4), we deduce that

d2

dt2

(
1
2 ‖x− y‖

2
)
≤ −ρ

(
1
2 ‖x0 − y0‖2

)
+ 2LtP ‖x0 − y0‖2

.

Z. Chen and S. S. Vempala 64:7

If we define

α(t) = 1
2 ‖x− y‖

2
,

then we have

α′′(t) ≤ −α(0)
(
ρ(t)− 4LtP (t)

)
.

Integrating both sides and using α′(0) = 0, we obtain

α′(t) =
∫ t

0
α′′(s)ds

≤ −α(0)
(∫ t

0
ρ(s)ds− 4L

∫ t

0
sP (s)ds

)
≤ −α(0)

(
P (t)− 4LP (t)

∫ t

0
sds
)

= −α(0)P (t)
(
1− 2Lt2

)
,

where the second inequality is due to the monotonicity of P (s). Since for all 0 ≤ t ≤ 1/(2
√
L)

we have P (t) ≥ µt and 1− 2Lt2 ≥ 1/2, we deduce that

α′(t) ≤ −α(0)µ2 t.

Finally, one more integration yields

α(t) = α(0) +
∫ t

0
α′(s)ds ≤ α(0)

(
1− µ

4 t
2
)
,

and the theorem follows. J

Proof of Theorem 3. Lemma 6 implies that for any constant c ≥ 2, the Ricci curvature
of ideal HMC with step-size T = 1/(c

√
L) is at least 1/(8c2κ). Then, it follows from [16,

Proposition 29] that the spectral gap of ideal HMC is at least 1/(8c2κ). Hence, the relaxation
time is upper bounded by 8c2κ = O(κ). J

2.1 Proof of Claim 7
We present the proof of Claim 7 in this section. We remark that a similar crude bound was
established in [9] for general matrix ODEs. Here we prove the crude bound specifically for
the Hamiltonian ODE, but without assuming that f is twice differentiable.

Proof of Claim 7. We first derive a crude upper bound on ‖u− v‖. Since f is L-smooth, we
have

d
dt ‖u− v‖ = −〈∇f(x)−∇f(y), u− v〉

‖u− v‖
≤ ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

Then from u0 = v0 we get

‖u− v‖ =
∫ t

0

(
d
ds ‖u− v‖

)
ds ≤ L

∫ t

0
‖x− y‖ds.

APPROX/RANDOM 2019

64:8 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

To obtain the upper bound for ‖x− y‖, we first bound its derivative by∣∣∣∣ d
dt ‖x− y‖

∣∣∣∣ = |〈u− v, x− y〉|
‖x− y‖

≤ ‖u− v‖ ≤ L
∫ t

0
‖x− y‖ ds. (7)

Therefore,

‖x− y‖ = ‖x0 − y0‖+
∫ t

0

(
d
ds ‖x− y‖

)
ds

≤ ‖x0 − y0‖+ L

∫ t

0

∫ s

0
‖x− y‖ drds

= ‖x0 − y0‖+ L

∫ t

0
(t− s) ‖x− y‖ ds.

We then deduce from [9, Lemma A.5] that

‖x− y‖ ≤ ‖x0 − y0‖ cosh
(√

Lt
)
≤
√

2 ‖x0 − y0‖ , (8)

where we use the fact that cosh(
√
Lt) ≤ cosh(1/2) ≤

√
2.

Next, we deduce from (7) and (8) that

d
dt ‖x− y‖ ≥ −L

∫ t

0
‖x− y‖ ds

≥ −L ‖x0 − y0‖
∫ t

0
cosh

(√
Ls
)

ds

= −
√
L ‖x0 − y0‖ sinh

(√
Ls
)
.

Thus, we obtain

‖x− y‖ = ‖x0 − y0‖+
∫ t

0

(
d
ds ‖x− y‖

)
ds

≥ ‖x0 − y0‖ −
√
L ‖x0 − y0‖

∫ t

0
sinh

(√
Ls
)

ds

= ‖x0 − y0‖
(

2− cosh
(√

Lt
))
≥ 1√

2
‖x0 − y0‖ ,

where we use 2− cosh(
√
Lt) ≥ 2− cosh(1/2) ≥ 1/

√
2. C

3 Lower bound for ideal HMC

In this section, we show that the relaxation time of ideal HMC can achieve Θ(κ) for some
µ-strongly convex and L-smooth function, and thus prove Theorem 4.

Consider a two-dimensional quadratic function:

f(x1, x2) = x2
1

2σ2
1

+ x2
2

2σ2
2
,

where σ1 = 1/√µ and σ2 = 1/
√
L. Thus, f is µ-strongly convex and L-smooth. The

probability density ν proportional to e−f is essentially the bivariate Gaussian distribution:
for (x1, x2) ∈ R2,

ν(x1, x2) = 1
2πσ1σ2

exp
(
− x2

1
2σ2

1
− x2

2
2σ2

2

)
.

The following lemma shows that ideal HMC for the bivariate Gaussian distribution ν has
relaxation time Ω(κ), and then Theorem 4 follows immediately.

Z. Chen and S. S. Vempala 64:9

I Lemma 8. For any constant c > 0, the relaxation time of ideal HMC for sampling from ν

with step-size T = 1/(c
√
L) is at least 2c2κ.

Proof. The Hamiltonian curve for f is given by the ODE

(x′′1 , x′′2) = −∇f(x1, x2) =
(
−x1

σ2
1
,−x2

σ2
2

)
with initial position (x1(0), x2(0)) and initial velocity (x′1(0), x′2(0)) from the bivariate
standard Gaussian N(0, I). Observe that ν = ν1 ⊗ ν2 is a product distribution of the two
coordinates and HMC for f is a product chain. Thus, we can consider the dynamics for each
coordinate separately. The Hamiltonian ODE for one coordinate becomes

x′′i = − xi
σ2
i

, xi(0), x′i(0) = vi(0) ∼ N(0, 1)

where i = 1, 2. Solving the ODE above and plugging in the step-size t = T , we get

xi(T) = xi(0) cos(T/σi) + vi(0)σi sin(T/σi).

Let Pi be the transition kernel of ideal HMC for the ith coordinate (considered as a
Markov chain on R). Then for x, y ∈ R we have

Pi(x, y) = 1√
2πσi sin(T/σi)

exp
(
− (y − x cos(T/σi))2

2σ2
i sin2(T/σi)

)
.

Namely, given the current position x, the next position y is from a normal distribution with
mean x cos(T/σi) and variance σ2

i sin2(T/σi). Denote the spectral gap of Pi by γi for i = 1, 2
and that of ideal HMC by γ. Let h(x) = x and note that h ∈ L0

2(νi). Using the properties of
product chains and spectral gaps, we deduce that

γ ≤ min{γ1, γ2} ≤ γ1 = 1− sup
f∈L0

2(ν1)

| 〈P1f, f〉 |
‖f‖2 ≤ 1− | 〈P1h, h〉 |

‖h‖2 .

Since we have

‖h‖2 =
∫ ∞
−∞

ν1(x)h(x)2dx = σ2
1

and

〈P1h, h〉 =
∫ ∞
−∞

ν1(x)P1(x, y)h(x)h(y)dxdy = σ2
1 cos(T/σ1),

it follows that γ ≤ 1− | cos(T/σ1)|. Suppose that T = 1/(c
√
L) for some c > 0. Then we get

γ ≤ T 2

2σ2
1

= 1
2c2

µ

L
,

and consequently τrel = 1/γ ≥ 2c2κ. J

4 Convergence rate of discretized HMC

In this section, we show how our improved contraction bound (Lemma 6) implies that HMC
returns a good enough sample after Õ((κd)1.5) steps. We will use the framework from [9] to
establish Theorem 5.

APPROX/RANDOM 2019

64:10 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

We first state the ODE solver from [9], which solves an ODE in nearly optimal time when
the solution to the ODE can be approximated by a piece-wise polynomial. We state here
only for the special case of second order ODEs for the Hamiltonian system. We refer to [9]
for general kth order ODEs.

I Theorem 9 ([9, Theorem 2.5]). Let x(t) be the solution to the ODE

x′′(t) = −∇f(x(t)), x(0) = x0, x′(0) = v0.

where x0, v0 ∈ Rd and 0 ≤ t ≤ T . Suppose that the following conditions hold:
1. There exists a piece-wise polynomial q(t) such that q(t) is a polynomial of degree D on

each interval [Tj−1, Tj] where 0 = T0 < T1 < · · · < Tm = T , and for all 0 ≤ t ≤ T we
have

‖q(t)− x′′(t)‖ ≤ δ

T 2 ;

2. {Tj}mj=1 and D are given as input to the ODE solver;
3. The function f has a L-Lipschitz gradient; i.e., for all x, y ∈ Rd,

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

If
√
LT ≤ 1/16000, then the ODE solver can find a piece-wise polynomial x̃(t) such that for

all 0 ≤ t ≤ T ,

‖x̃(t)− x(t)‖ ≤ O(δ).

The ODE solver uses O(m(D+1) log(CT/δ)) evaluations of ∇f and O(dm(D+1)2 log(CT/δ))
time where

C = O (‖v0‖+ T ‖∇f(x0)‖) .

The following lemma, which combines Theorem 3.2, Lemma 4.1 and Lemma 4.2 from [9],
establishes the conditions of Theorem 9 in our setting. We remark that Lemmas 4.1 and 4.2
hold for all T ≤ 1/(8

√
L), and Theorem 3.2, though stated only for T ≤ O(µ1/4/L3/4) in [9],

holds in fact for the whole region T ≤ 1/(2
√
L) where the contraction bound (Lemma 6) is

true. We omit these proofs here and refer the readers to [9] for more details.

I Lemma 10. Let f be a twice differentiable function such that µI � ∇2f(x) � LI for all
x ∈ Rd. Choose the starting point x(0) = arg minx f(x), step-size T = 1/(16000

√
L), and

ODE error tolerance δ = √µT 2ε/16 in the HMC algorithm. Let {x(k)}Nk=1 be the sequence of
points we get from the HMC algorithm and {v(k)

0 }Nk=1 be the sequence of random Gaussian
vector we choose in each step. Let π ∝ e−f be the target distribution and let πhmc be the
distribution of x(N), i.e., the output of HMC. For any 0 < ε <

√
d, if we run HMC for

N = O

(
log(d/ε)
µT 2

)
= O (κ log(d/ε))

steps where κ = L/µ, then:
1. ([9, Theorem 3.2]) We have that

W2(πhmc, π) ≤ ε
√
µ

;

2. ([9, Lemma 4.1]) For each k, let xk(t) be the solution to the ODE (2) in the kth
step of HMC. Then there is a piece-wise constant function qk of mk pieces such that
‖qk(t)− x′′k(t)‖ ≤ δ/T 2 for all 0 ≤ t ≤ T , where

mk = 2LT 3

δ

(∥∥∥v(k−1)
0

∥∥∥+ T
∥∥∥∇f(x(k−1))

∥∥∥) ;

Z. Chen and S. S. Vempala 64:11

3. ([9, Lemma 4.2]) We have that

1
N

E

[
N∑
k=1

∥∥∥∇f(x(k−1))
∥∥∥2
]
≤ O(Ld).

Proof of Theorem 5. The convergence of HMC is guaranteed by part 1 of Lemma 10. In
the kth step, the number of evaluations of ∇f is O(mk log(Ck

√
κ/ε)) by Theorem 9 and part

2 of Lemma 10, where

mk = O

(√
κ

ε

)(∥∥∥v(k−1)
0

∥∥∥+ T
∥∥∥∇f(x(k−1))

∥∥∥)
and

Ck = O
(∥∥∥v(k−1)

0

∥∥∥+ T
∥∥∥∇f(x(k−1))

∥∥∥) .
Thus, the average number of evaluations of ∇f per step is upper bounded by

1
N

E

[
N∑
k=1

O(mk log(Ck
√
κ/ε))

]
≤ 1
N

E

[
N∑
k=1

O(mk logmk)
]
≤ 1
N
O (E [M logM]) ,

where M =
∑N
k=1 mk. Since each v(k−1)

0 is sampled from the standard Gaussian distribution,

we have E
[∥∥∥v(k−1)

0

∥∥∥2]
= d. Thus, by the Cauchy-Schwarz inequality and part 3 of Lemma 10,

we get

E
[
M2] ≤ N N∑

k=1
E
[
m2
k

]
≤ O

(
Nκ

ε2

) N∑
k=1

E
[∥∥∥v(k−1)

0

∥∥∥2
]

+ T 2E
[∥∥∥∇f(x(k−1))

∥∥∥2
]

≤ O
(
N2κd

ε2

)
.

We then deduce again from the Cauchy-Schwarz inequality that

(E[M logM])2 ≤ E
[
M2] · E [log2 M

]
≤ E

[
M2] · log2 (EM) ≤ E[M2] · log2

(√
E [M2]

)
,

where the second inequality is due to that h(x) = log2(x) is concave when x ≥ 3. Therefore,
the number of evaluations of ∇f per step, amortized over all steps, is

1
N
O
(√

E[M2] log
(√

E [M2]
))
≤ O

(√
κd

ε
log
(
κd

ε

))
.

Using a similar argument we have the bound for the expected running time per step. This
completes the proof. J

References
1 David Applegate and Ravi Kannan. Sampling and integration of near log-concave functions.

In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing (STOC), pages
156–163. ACM, 1991.

2 Niladri S. Chatterji, Nicolas Flammarion, Yi-An Ma, Peter L. Bartlett, and Michael I. Jordan.
On the theory of variance reduction for stochastic gradient Monte Carlo. In Proceedings of the
35th International Conference on Machine Learning (ICML), 2018.

APPROX/RANDOM 2019

64:12 Optimal Convergence Rate of HMC for Strongly Logconcave Distributions

3 Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and Michael I.
Jordan. Sharp convergence rates for Langevin dynamics in the nonconvex setting. ArXiv
preprint, 2018. arXiv:1805.01648.

4 Xiang Cheng, Niladri S. Chatterji, Peter L. Bartlett, and Michael I. Jordan. Underdamped
Langevin MCMC: A non-asymptotic analysis. In Proceedings of the 2018 Conference on
Learning Theory (COLT), 2018.

5 Arnak S. Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-
concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
79(3):651–676, 2017.

6 Arnak S. Dalalyan and Avetik Karagulyan. User-friendly guarantees for the Langevin Monte
Carlo with inaccurate gradient. Stochastic Processes and their Applications, 2019.

7 Arnak S. Dalalyan and Lionel Riou-Durand. On sampling from a log-concave density using
kinetic Langevin diffusions. ArXiv preprint, 2018. arXiv:1807.09382.

8 Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, and Bin Yu. Log-concave sampling:
Metropolis-Hastings algorithms are fast! In Proceedings of the 2018 Conference on Learning
Theory (COLT), 2018.

9 Yin Tat Lee, Zhao Song, and Santosh S. Vempala. Algorithmic Theory of ODEs and Sampling
from Well-conditioned Logconcave Densities. ArXiv preprint, 2018. arXiv:1812.06243.

10 Yin Tat Lee and Santosh S. Vempala. Convergence rate of Riemannian Hamiltonian Monte
Carlo and faster polytope volume computation. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 1115–1121. ACM, 2018.

11 László Lovász and Santosh S. Vempala. Fast Algorithms for Logconcave Functions: Sampling,
Rounding, Integration and Optimization. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 57–68. IEEE, 2006.

12 Yi-An Ma, Niladri Chatterji, Xiang Cheng, Nicolas Flammarion, Peter Bartlett, and Michael I.
Jordan. Is There an Analog of Nesterov Acceleration for MCMC? ArXiv preprint, 2019.
arXiv:1902.00996.

13 Oren Mangoubi and Aaron Smith. Mixing of Hamiltonian Monte Carlo on strongly log-concave
distributions 1: continuous dynamics. ArXiv preprint, 2017. arXiv:1708.07114.

14 Oren Mangoubi and Aaron Smith. Mixing of Hamiltonian Monte Carlo on strongly log-concave
distributions 2: Numerical integrators. In Proceedings of the 22nd International Conference
on Artificial Intelligence and Statistics (AISTATS), pages 586–595, 2019.

15 Oren Mangoubi and Nisheeth Vishnoi. Dimensionally tight bounds for second-order Hamilto-
nian Monte Carlo. In Advances in Neural Information Processing Systems (NIPS), pages
6027–6037, 2018.

16 Yann Ollivier. Ricci curvature of Markov chains on metric spaces. Journal of Functional
Analysis, 256(3):810–864, 2009.

17 Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. Non-convex learning via Stochastic
Gradient Langevin Dynamics: a nonasymptotic analysis. In Proceedings of the 2017 Conference
on Learning Theory (COLT), 2017.

18 Christof Seiler, Simon Rubinstein-Salzedo, and Susan Holmes. Positive curvature and Hamilto-
nian Monte Carlo. In Advances in Neural Information Processing Systems (NIPS), pages
586–594, 2014.

19 Santosh S. Vempala and Andre Wibisono. Rapid Convergence of the Unadjusted Langevin
Algorithm: Isoperimetry Suffices. ArXiv preprint, 2019. arXiv:1903.08568.

20 Andre Wibisono. Sampling as optimization in the space of measures: The Langevin dynamics
as a composite optimization problem. In Proceedings of the 2018 Conference on Learning
Theory (COLT), 2018.

21 Yuchen Zhang, Percy S. Liang, and Moses Charikar. A Hitting Time Analysis of Stochastic
Gradient Langevin Dynamics. In Proceedings of the 2017 Conference on Learning Theory
(COLT), 2017.

http://arxiv.org/abs/1805.01648
http://arxiv.org/abs/1807.09382
http://arxiv.org/abs/1812.06243
http://arxiv.org/abs/1902.00996
http://arxiv.org/abs/1708.07114
http://arxiv.org/abs/1903.08568

Exploring Differential Obliviousness
Amos Beimel1

Dept. of Computer Science, Ben-Gurion University, Israel
amos.beimel@gmail.com

Kobbi Nissim
Dept. of Computer Science, Georgetown University, Washington, D.C., USA
kobbi.nissim@georgetown.edu

Mohammad Zaheri
Dept. of Computer Science, Georgetown University, Washington, D.C., USA
mz394@georgetown.edu

Abstract
In a recent paper, Chan et al. [SODA ’19] proposed a relaxation of the notion of (full) memory
obliviousness, which was introduced by Goldreich and Ostrovsky [J. ACM ’96] and extensively
researched by cryptographers. The new notion, differential obliviousness, requires that any two
neighboring inputs exhibit similar memory access patterns, where the similarity requirement is that
of differential privacy. Chan et al. demonstrated that differential obliviousness allows achieving
improved efficiency for several algorithmic tasks, including sorting, merging of sorted lists, and range
query data structures.

In this work, we continue the exploration of differential obliviousness, focusing on algorithms that
do not necessarily examine all their input. This choice is motivated by the fact that the existence of
logarithmic overhead ORAM protocols implies that differential obliviousness can yield at most a
logarithmic improvement in efficiency for computations that need to examine all their input. In
particular, we explore property testing, where we show that differential obliviousness yields an almost
linear improvement in overhead in the dense graph model, and at most quadratic improvement in
the bounded degree model. We also explore tasks where a non-oblivious algorithm would need to
explore different portions of the input, where the latter would depend on the input itself, and where
we show that such a behavior can be maintained under differential obliviousness, but not under full
obliviousness. Our examples suggest that there would be benefits in further exploring which class of
computational tasks are amenable to differential obliviousness.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Differential Obliviousness, Differential Privacy, Oblivious RAM, Graph
Property Testing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.65

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1905.01373.

Funding Work supported by NSF grant No. 1565387 TWC: Large: Collaborative: Computing Over
Distributed Sensitive Data. A.B. is additionally supported by ISF grant no. 152/17, a grant from the
Cyber Security Research Center at Ben-Gurion University, and ERC grant 742754 (project NTSC).

1 Introduction

A program’s memory access pattern can leak significant information about the private
information used by the program even if the memory content is encrypted. Such leakage
can turn into a data protection problem in various settings. In particular, where data

1 Work done while A.B. was visiting Georgetown University.
© Amos Beimel, Kobbi Nissim, and Mohammad Zaheri;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 65; pp. 65:1–65:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amos.beimel@gmail.com
mailto:kobbi.nissim@georgetown.edu
mailto:mz394@georgetown.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.65
https://arxiv.org/abs/1905.01373
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Exploring Differential Obliviousness

is outsourced to be stored on an external server, it has been shown that access pattern
leakage can be exploited in practical attacks and lead to the compromise of the underlying
data [20, 4, 29, 21, 23]. Such leakages can also be exploited when a program is executed in a
secure enclave environment but needs to access memory that is external to the enclave.

Memory access pattern leakage can be avoided by employing a strategy that makes the
sequence of memory accesses (computationally or statistically) independent of the content
being processed. Beginning with the seminal work of Goldreich and Ostrovsky, it is well
known how to transform any program running on a random access memory (RAM) machine to
one with an oblivious memory access pattern while retaining efficiency by using an Oblivious
RAM protocol (ORAM) [10, 30, 13]. Current state-of-the-art ORAM protocols achieve
logarithmic overhead [2], matching a recent lowerbound by Larsen and Nielsen [24], and
protocols with O(1) overhead exist when the server is allowed to perform computation and
large blocks are retrieved [6, 28]. To further reduce the overhead, oblivious memory access
pattern protocols have been devised for specific tasks, including graph algorithms [3, 17],
geometric algorithms [8] and sorting [16, 25]. The latter is motivated by sorting being a
fundamental and well researched computational task as well as its ubiquity in data processing.

1.1 Differential Obliviousness
Full obliviousness is rather a strong requirement: any two possible inputs (of the same size)
should exhibit identical or indistinguishable sequences of memory accesses. Achieving full
obliviousness via a generic use of ORAM protocols requires a setup phase with running time
(at least) linear in the memory size and then a logarithmic overhead per each memory access.

A recent work by Chan, Chung, Maggs, and Shi [5] put forward a relaxation of the
obliviousness requirement where indistinguishability is replaced with differential privacy.
Intuitively, this means that any two possible neighboring inputs should exhibit memory
access patters that are similar enough to satisfy differential privacy, but may still be too
dissimilar to be “cryptographically” indistinguishable. It is not a priori clear whether
differential obliviousness can be achieved without resorting to full obliviousness. However,
the recent work Chan et al. showed that differential obliviousness does allow achieving
improved efficiency for several algorithmic tasks, including sorting (over very small domains),
merging of sorted lists, and range query data structures.

Also of relevance are the works by He et al. [19] and Mazloom and Gordon [27], which
study protocols for secure multiparty computation in which the parties are allowed to learn
information from the computation as long as this information preserves the differential
privacy of the input. He et al. and Mazloom and Gordon demonstrate that this leakage is
useful: He et al. construct protocols for the private record linkage problem for two databases;
Mazloom and Gordon present protocols for histograms, PageRank, and matrix factorization.

Furthermore, even the use of ORAM protocols may be insufficient for preventing leakage
in cases where the number of memory probes is input dependent. In fact, Kellaris et al. [21]
show that such leakage can result in a complete reconstruction in the case of retrieving
elements specified by range queries, as the number of records returned depends on the
contents of the data structure. Full obliviousness would require that the sequence of memory
accesses would be padded to a maximal one to avoid such leakage, a solution that would
have a dire effect on the efficiency of many algorithms. Differential obliviousness may in
some cases allow achieving meaningful privacy while maintaining efficiency. Examples of
such protocols include the combination of ORAM with differentially private sanitization by
Kellaris et al. [22] and the recent work of Chan et al. [5] on range query data structures,
which avoids using ORAM.

A. Beimel, K. Nissim, and M. Zaheri 65:3

1.2 This Work: Exploring Differential Obliviousness
Noting that the existence of logarithmic overhead ORAM protocols implies that differential
obliviousness can yield at most a logarithmic improvement in efficiency for computations that
need to examine all their input, we explore tasks where this is not the case. In particular, we
focus on property testing and on tasks where the number of memory accesses can depend
on the input.

Property testing. As evidence that differential obliviousness can provide a significant
improvement over full obliviousness, we show in Section 3 that property testers in the dense
graph model, where the input is in the adjacency matrix representation [12], can be made
differentially oblivious. This result captures a large set of testable graph properties [12, 1]
including, e.g., graph bipartitness and having a large clique. Testers in this class probe
a uniformly random subgraph and hence are fully oblivious without any modification, as
their access pattern does not depend on the input graph. However, this is not the case
if the tester reveals its output to the adversary, as this allows learning information about
the specific probed subgraph. A fully oblivious tester would need to access a linear-sized
subgraph, whereas we show that a differentially oblivious tester only needs to apply the
original tester O(1) times.2

We also consider property testing in the bounded degree model, where the input is in
the incidence lists model [14]. In this model we provide negative results, demonstrating that
adaptive testers cannot, generally, be made differentially oblivious without a significant loss
in efficiency. In particular, in Section 4 we consider differentially oblivious property testers
for connectivity in graphs of degree at most two. For non-oblivious testers, it is known
that constant number of probes suffice when the tester is adaptive [14].3 It is also known
that any non-adaptive tester for this task requires probing Ω(

√
n) nodes [32]. We show that

this lowerbound extends to differentially oblivious testers, i.e., any differentially oblivious
tester for connectivity in graphs of maximal degree 2 requires Ω(

√
n) probes. While this still

improves over full obliviousness, the gap between full and differential obliviousness is in this
case diminished.

Locating an Object Satisfying a Property. Here, our goal is to check whether a given data
set of objects includes an object that satisfies a specified property. Without obliviousness
requirements, a natural approach is to probe elements in a random order until an element
satisfying the property is found or all elements were probed. If a p fraction of the elements
satisfy the property, then the expected number of probes is 1/p. This algorithm is in fact
instance optimal when the data set is randomly permuted.4

A fully oblivious algorithm would require Ω(n) probes on any dataset even when p = 1. In
contrast, we demonstrate in Section 5 that with differential obliviousness instance optimality
can, to a large extent, be preserved. Our differentially oblivious algorithm always returns a
correct answer and makes at most m probes with probability at least 1− e−O(mp).

Prefix Sum. Our last example considers a sorted dataset (possibly, the result of an earlier
phase in the computation). Our goal is to compute the sum of all records in the (sorted)
dataset that are less than or equal to a given value a (see Section 6 for the definition
of privacy).

2 We omit dependencies on privacy and accuracy parameters from this introductory description.
3 In an adaptive tester at least one choice of a node to probe should depend on information gathered

from incidence lists of previously probed nodes.
4 Our treatment of instance optimality is rather informal. The concept was originally presented in [9].

APPROX/RANDOM 2019

65:4 Exploring Differential Obliviousness

Without obliviousness requirements, one can find the greatest record less than or equal to
value a, say, using binary search, and then compute the prefix sum by a quick scan through all
records appearing before this record. This algorithm is in fact nearly instance optimal, as it
can be shown that any algorithm which returns the correct exact answer with non-negligible
probability must probe all entries greater than a. However, fully oblivious algorithms would
have to probe the entire dataset.

In Section 6, we give our nearly instance optimal differentially oblivious prefix sum
algorithm. As the probes of a binary search would leak information about the memory
content, we introduce a differentially oblivious “simulation” of the binary search. Our
differentially oblivious binary search runs in time O(log2 n).

We also address the scenario where there are multiple prefix sum queries to the same
database. If the number of queries is bounded by some integer t, then each differentially
oblivious binary search will run in time O(t log2 n) (as we need to run the search algorithm
with a smaller privacy parameter ε). Using ORAM, one can answer such queries with
O(n logn) prepossessing time and O(log2 n) time per query. Combining our algorithm and
ORAM, we can amortize the pre-processing time over O(

√
n) queries, that is, without any

pre-processing, the running of time of answering the i-th query is O(i log4 n) for the first
O(
√
n) queries and O(log2 n) for any further query.

1.3 Background Work

The papers by Chan, Chung, Maggs, and Shi [5], He, Machanavajjhala, Flynn, and Srivast-
ava [19], and by Mazloom and Gordon [27] mentioned above are most relevant for this
article. As mentioned above, Kellaris et al. [22] examined a similar concept with the goal of
preventing reconstruction attacks in secure remote databases. Goldreich, Goldwasser, and
Ron [12] initiated the research on graph property testing. Persiano and Yeo [31] showed
that the O(logn) lowerbound for ORAM of [24] also holds when the security requirement
is relaxed to differetial privacy. Goldreich’s book on property testing [11] gives sufficient
background for our discussion. Dwork, McSherry, Nissim, and Smith [7] defined differential
privacy. For more details on ORAM and a list of relevant papers, the reader can consult [2].

2 Definitions

2.1 Model of Computation

We consider the standard Random Access Memory (RAM) model of computation that
consists of a CPU and a memory. The CPU executes a program and is allowed to perform
two types of memory operations: read a value from a specified physical address, and write a
value to a specified physical address. We assume that the CPU has a private cache of where
it can store O(1) values (and/or a polylogarithmic number of bits). As an example, in the
setting of a client storing its data on the cloud, the client plays the role of the CPU and the
cloud server plays the role of the memory.

We assume that a program’s sequence of read and write operations may be visible to an
adversary. We will call this sequence the program’s access pattern. We will further assume
that the memory content is encrypted so that no other information is leaked about the
content read from and stored in memory location. The program’s access pattern may depend
on the program’s input, and may hence leak information about it.

A. Beimel, K. Nissim, and M. Zaheri 65:5

Algorithm 1 Experiment ExpA,Mb for defining differential obliviousness.

(x0,x1, st)←$ A1(λ, n)
b′←$ A

M(xb,·)
2 (st)

Return b′

Oracle M(x, q)
out←$ M(x, q, state)
Return AccessM (x, q, state)

2.2 Oblivious Algorithms
There are various works focused on oblivious algorithms [8, 15, 26] and Oblivious RAM
(ORAM) constructions [13]. These works adopt “full obliviousness” as a privacy notion.
Suppose that M(λ,x) is an algorithm that takes in two inputs, a security parameter λ and
an input dataset denoted x. We denote by AccessM (λ,x), the ordered sequence of memory
accesses the algorithm M makes on the input λ and x.

I Definition 1 (Fully Oblivious Algorithms). Let δ be a function in a security parameter λ.
We say that algorithm M is δ-statistically oblivious, iff for all inputs x and y of equal length,
and for all λ, it holds that AccessM (λ,x) ≈δ(λ) AccessM (λ,y) where ≈δ(λ) denotes that the
two distributions have at most δ(λ) statistical distance. We say that M is perfectly oblivious
when δ = 0.

2.3 Differentially Oblivious Algorithms
Suppose that M(λ,x, q) is a (stateful) algorithm that takes in three inputs, a security
parameter λ > 0, an input dataset denoted by x and a value q. We slightly change the
definition of differentially oblivious algorithms given in [5]:

I Definition 2 (Neighbor-respecting). We say that two input datasets x and y are neighboring
iff they are of the same length and differ in exactly one entry. We say that A = (A1, A2) is
neighbor-respecting adversary iff for every λ and every n, A1 outputs neighboring datasets
x0,x1, with probability 1.

I Definition 3. Let ε, δ be privacy parameters. Let M be a (possibly stateful) algorithm
described as above. To an adversary A we associate the experiment in Algorithm 1, for every
λ ∈ N. We say that M is (ε, δ)-adaptively differentially oblivious if for all (computationally
unbounded) stateful neighbor-respecting adversary A we have

Pr[ExpA,M0 (λ, n) = 1] ≤ eε · Pr[ExpA,M1 (λ, n) = 1] + δ.

In Algorithm 1, AccessM (x, q, state) denotes the ordered sequence of memory accesses the
algorithm M makes on the inputs x, q and state.

I Remark 4. The notion of adaptivity here is different from the one defined in [5]. We require
that the dataset x remain the same through the experiment whereas in [5] the adaptive
adversary can add or remove entries from the dataset.

As with differential privacy, we usually think about ε as a small constant and require
that δ = o(1/n) where n = |x| [7]. Observe that if M is δ-statistically oblivious then it is
also (0, δ)-differentially oblivious.

The following simple lemma will be useful to analyze our algorithms. The proof of the
lemma appears in Appendix A.

APPROX/RANDOM 2019

65:6 Exploring Differential Obliviousness

I Lemma 5. Let A be an (ε, 0)-differentially oblivious algorithm and B be an algorithm such
that for every dataset x the statistical distance between A(x) and B(x) is at most γ (that is,
|Pr[A(x) ∈ S]− Pr[B(x) ∈ S]| ≤ γ for every S). Then, B is an (ε, (1 + eε)γ)-differentially
oblivious algorithm.

3 Differentially Oblivious Property Testing of Dense Graphs
Properties

In this section, we present a differentially oblivious property tester for dense graphs properties
in the adjacency matrix representation model. A property tester is an algorithm that decides
whether a given object has a predetermined property or is far from any object having this
property by examining a small random sample of its input. The correctness requirement of
property testers ignores objects that neither have the property nor are far from having the
property. However, the privacy requirement is “worst case” and should hold for any two
neighboring graphs. For the definition of privacy we say that two graphs G,G′ of size n are
neighbors if one can get G′ by changing the neighbors of exactly one node of G.

Property testing of graph properties in the adjacency matrix representation was introduced
in [12]. A graph G = (V,E) is represented by the predicate fG : V × V → {0, 1} such that
fG(u, v) = 1 if and only if u and v are adjacent in G. The distance between graphs is defined
to be the number of different matrix entries over |V |2. This model is most suitable for
dense graphs where the number of edges is O(|V |2). We define a property P of graphs to
be a subset of the graphs. We write G ∈ P to show that graph G has the property P. For
example, we can define the bipartiteness property, where P is the set of all bipartite graphs.5
We say that an n-vertex G is γ-far from P if for every n-vertex graph G′ = (V ′, E′) ∈ P it
holds that the symmetric difference between E and E′ is greater than γn2. We define the
property testing in this model as follows:

I Definition 6 ([12]). A (β, γ)-tester for a graph property P is a probabilistic algorithm that,
on inputs n, β, γ, and an adjacency matrix of an n-vertex graph G = (V,E):
1. Outputs 1 with probability at least β, if G ∈ P.
2. Outputs 0 with probability at least β, if G is γ-far from P.

We say a tester has one-sided error, if it accepts every graph in P with probability 1. We
say a tester is non-adaptive if it determines all its queries to adjacency matrix only based on
n, β, γ, and its randomness; otherwise, we say it is adaptive.

I Example 7 ([12]). Consider the following (2/3, γ)-tester for bipartiteness: Choose a random
subset A ⊂ V of size Õ(1/γ2) with uniform distribution and output 1 iff the graph induced
by A is bipartite. Clearly, if G is bipartite, then the tester will always return 1. Goldreich
et al. [12] proved that if G is γ-far from a bipartite graph, then the probability that the
algorithm returns 1 is at most 1/3.

Recall that in the graph property testing, the tester T chooses a random subset of the
graph with uniform distribution to test the property P. Given the access pattern of the
tester T , an adversary will learn nothing since it is uniformly random. Thus, the access
pattern by itself does not reveal any information about the input graph. However, we assume
that the adversary also learns the tester’s output and can hence learn some information

5 Recall that an undirected graph is bipartite (or 2-colorable) if its vertices can be partitioned into two
parts, V1 and V2, such that each part is an independent set (i.e., E ⊆ {(u, v) : (u, v) ∈ V1 × V2}).

A. Beimel, K. Nissim, and M. Zaheri 65:7

Algorithm 2 Differentially Oblivious Property Tester TesterT for Dense Graphs.

Input: graph G = (V,E)
1: Let c← 0 and T ← ln(1/2δ)

ε

2: for i = 1 to 4T do
3: if T (G) = 1 then
4: c← c+ 1
5: end if
6: Let A be the subset of vertices chosen by tester T
7: Update graph G to be the induced sub-graph on V \A
8: end for
9: T̂ ← 3T + Lap(1

ε)
10: if c ≥ min(T̂ , 4T) then
11: output 1
12: else
13: output 0
14: end if

about the input graph based on the output of the tester. To protect this information, we
run tester T for constant number of times and output 1 iff the number of times T outputs 1
exceed a (randomly chosen) threshold.

Let T be a (β, γ)-tester for a graph property P where β ≤ 1/4. We write cβ,γ for
the number of nodes that T samples. Note that cβ,γ is constant in the graph size and a
function of β and γ. For simplicity, we only consider property testers with one-sided error.
In Algorithm 2, we describe a (β′, γ′)-tester TesterT that outputs 1 with probability 1 if
G ∈ P and outputs 0 with probability at least β′, if G is γ′-far from P, where β′ and γ′ are
defined below.

I Theorem 8. Let ε, δ > 0 and γ′ = γ− 4 ln(1/2δ)cβ,γ
nε . Algorithm TesterT is an (ε, δ(1 + eε))-

differentially oblivious algorithm that outputs 1 with probability 1 if G ∈ P, and output 0
with probability at least 1− δ − (2δ) 1

3ε if G is γ′-far from P.

The proof of Theorem 8 appears in Appendix A.2.

4 Lower Bounds on Testing Connectivity in the Incidence Lists Model

We now consider differentially oblivious testing of connectivity in the incidence lists model [14].
In this model a graph has a bounded degree d and is represented as a function f : V × [d]→
V ∪ {0}, where f(v, i) is the i-th neighbor of v (if no such neighbor exists, then f(v, i) = 0).
In this model, the relative distance between graphs is normalized by dn – the maximal
number of edges in the graph. Formally, for two graphs with n vertices,

distd(G1, G2) , |{(v, i) : v ∈ V, i ∈ [d], fG1(v, i) 6= fG2(v, i)}|
dn

.

A (β, γ)-tester in the incidence lists model is defined as in Definition 6, where a property P
is a set of graphs whose maximal degree is d and the distance to a property is defined with
respect to distd.

Goldreich and Ron [14] showed how to test if a graph is connected in the incidence list
model in time Õ(1/γ). Raskhodnikova and Smith [32] showed that a tester for connectivity
(or any non-trivial property) with run-time o(

√
n) has to be adaptive, that is, the nodes that

APPROX/RANDOM 2019

65:8 Exploring Differential Obliviousness

the algorithm probes should depend on the neighbors of nodes the algorithm has already
probed (e.g., the algorithm probes some node u, discovers that v is a neighbor and u, and
probes v). We strengthen their results by showing that any tester for connectivity in graphs
of maximal degree 2 and run-time o(

√
n) cannot be a differentially oblivious algorithm. We

stress that adaptivity alone is not a reason for inefficiency with differential obliviousness.
In fact, there exist differentially oblivious algorithms that are adaptive (e.g., our algorithm
in Section 6).

I Theorem 9. Let ε, δ > 0 such that e4εδ < 1/16n. Every (ε, δ)-differentially private
(3/4, 1/3)-tester for connectivity in graphs with maximal degree 2 runs in time Ω(

√
n/e2ε).

Proof. Let Tester be a (3/4, 1/3)-tester for connectivity in graphs of degree at most 2. We
somewhat relax the definition of probes and assume that once the tester probes a node, it
sees all edges adjacent to this node. We prove that if Tester probes less than c

√
n/e2ε

nodes (for some constant c), then it is not (ε, δ)-oblivious. Assume that n ≡ 0 (mod 3).
Let G1 = (V,E1) be a cycle of length n and G2 = (V,E1) consist of n/3 disjoint triangles.
Clearly, G1 is connected and G2 is 1/3-far from a connected graph. For a permutation
π : V → V , define π(Gi) = (V, π(Ei)), where π(Ei) = {(π(u), π(v)) : (u, v) ∈ Ei}, and let
perm(Gi) be a random graph isomorphic to Gi, that is, perm(Gi) = π(Gi) for a permutation
π chosen with uniform distribution.6 On the random graph perm(G) Tester has to say
“yes” with probability at least 3/4 and on the random graph perm(G2) Tester has to say
“no” with probability at least 3/4.

I Observation 10. If Tester does not probe two distinct nodes whose distance is at most
two, then Tester sees a collection of paths of length two and cannot know if the graph is
perm(G1) or perm(G2).

B Claim 11. Given the random graph perm(G1), the tester has to probe two distinct nodes
whose distance is at most 2 with probability at least 1/2.

Proof. Consider Tester’s answer when it sees a collection of paths of length 2. Assume
first that the tester returns “No” with probability at least half in this case and let p be the
probability that Tester probes two distinct nodes whose distance is at most two on the
random graph perm(G1). The probability that Tester returns “Yes” on perm(G1) is at
most p+ 0.5(1− p) = 0.5 + 0.5p. Thus, 0.5 + 0.5p ≥ 3/4, i.e., p ≥ 0.5.

If the tester returns “Yes” with probability at least half, then, by symmetric arguments,
with probability at least 1/2 Tester has to probe two nodes whose distance is at most two
on the random graph perm(G2). For a permutation π, if the distance between two nodes in
π(G2) is at most 2, then the distance between these two nodes in π(G1) is at most 2. Thus,
by Observation 10,

Pr[Tester probes 2 nodes whose distance is 1 or 2 on perm(G1)]
≥ Pr[Tester probes 2 nodes whose distance is 1 or 2 perm(G2)] ≥ 1/2. C

6 When we permute a graph, we also permute its incident list representation, i.e., if (u, v) ∈ π(E), then
with probability half v will be the first neighbor of u and with probability half it will be the second.

A. Beimel, K. Nissim, and M. Zaheri 65:9

𝑢𝑗

𝑢𝑖+1
𝑢𝑖

𝑢𝑗+1

The graph 𝐻1

𝑢𝑗

𝑢𝑖+1
𝑢𝑖

𝑢𝑗+1

The graph 𝐻2

Figure 1 The graphs H1 and H2.

Denote the nodes of G1 by V = {v0, . . . , vn−1} and define a distribution on pairs of
graphs H1, H2, obtained by the following process:

Choose a permutation π : V → V with uniform distribution and let H1 = π(G1).
Denote H1 = (V,E1) and uj = π(vj) for j ∈ [n].
Choose with uniform distribution two indices i, j such that j ∈ {i+ 4, i+ 3, . . . , i− 3}
(where the addition is done modulo n).
Let H2 = (V,E2), where E2 = E1 \ {(ui, ui+1), (uj , uj+1)} ∪ {(ui, uj), (ui+1, uj+1)}.

The graphs are described in Figure 1. Note that H2 is also a a random graph isomorphic to
G1, thus, given H2 one cannot know which pair of non-adjacent nodes ui, uj was used to
create H2.

Observe that H1 and H2 differ on 4 nodes. Since Tester is (ε, δ)-differentially oblivious,
for every algorithm A,

Pr[A(H1,H2,AccessTester(H1)) = 1]

≤ e4ε · Pr[A(H1, H2,AccessTester(H2)) = 1] + 4e4εδ. (1)

Consider the following algorithm A:

If ui and at least one of ui+1, ui+2 is probed by Tester(H) prior to seeing any other pair of
nodes of distance at most 2 in H1 or H2, then return 1 otherwise return 0.

B Claim 12. Let i ∈ {1, 2}. Suppose that Tester probes at most q nodes. Pick at random
with uniform distribution two nodes in V with distance at least 3 in Hi. The probability
that Tester(Hi) probes both u and v prior to seeing any two nodes of distance at most 2 in
Hi is O(q2/n2) (where the probability is over the random choice of u, v and the randomness
of Tester).

Proof. The node u is a uniformly distributed node in Hi and v is any node of distance at
least 3 from v, thus there are n(n− 5)/2 options for {u, v}. Given a collection of paths of
length at most 2 in Hi all options are equally likely.

Let w1, . . . , wk be the nodes probed in some execution of Tester. Fix some pair of
indices k1 < k2. The probability that {ui, ui+1} = {wk1 , wk+2} is at most 1/n(n− 5). Thus,
the probability that u and v are probed is at most (q2)

n(n−5)/2 = O(q2/n2). C

APPROX/RANDOM 2019

65:10 Exploring Differential Obliviousness

B Claim 13. Assume that Tester probes at most q nodes. The probability that A(H1) = 1
is at least 1/2n−O(q2/n2).

Proof. By Claim 11, the probability that Tester probes at least one pair of nodes with
distance at most 2 is at least 1/2. Given that this event occurs, the probability that the
random ui (chosen with uniform distribution) has the smallest index in the first such pair in
H1 (i.e., the first pair is either (ui, ui+1) or (ui, ui+2)) is at least 1/n.

Clearly, given these events no two nodes with distance at most 2 in H1 were probed
prior to probing the pair containing ui. Furthermore, there are O(1) pairs of nodes that
are of distance at most 2 in H2 and are of distance greater than 2 in H1. By Claim 12, the
probability that such pair is probed prior to Tester probing a pair of distance at most 2 in
H1 is O(q2/n2). C

B Claim 14. Suppose that Tester probes at most q nodes. The probability that A(H2) = 1
is O(q2/n2).

Proof. The node ui is a uniformly distributed node in H2. Furthermore, the nodes ui+1 is
a uniformly distributed node of distance at least 3 from ui in H2, thus by Claim 12, the
probability that Tester probes both ui and ui+1 prior to seeing any pair of distance at least
2 in H2 is O(q2/n2). This probability can only decrease if we require that Tester probes
both ui and ui+1 prior to seeing any pair of distance at least 2 in H1 and in H2.

By the same arguments, the probability that Tester probes both ui and ui+2 prior to
seeing any pair of distance at least 2 in H1 and in H2 is O(q2/n2). C

To conclude the proof of Theorem 9, we note that by (1) and Claim 13 and 14

1
2n −O(q2/n) ≤ Pr[A(H1) = 1] ≤ e4ε Pr[A(H2) = 1] + e4εδ ≤ e4εO(q2/n2) + e4εδ.

Since e4εδ ≤ 1/4n, it follows that q = Ω(
√
n/e2ε). J

5 Differentially Oblivious Algorithm for Locating an Object

Given a dataset of objects x our goal is to locate an object that satisfies a property P , if one
exists. E.g., given a dataset consisting of employee records, find an employee with income in
the range $35, 000–$70, 000 if such an employee exists in the dataset.

Absent privacy requirements, a simple approach is to probe elements of the dataset in a
random order until an element satisfying the property is found or all elements were probed.
If a p fraction of the dataset entries satisfy P then the expected number of elements sampled
by the non-private algorithm is 1/p. However, a perfectly oblivious algorithm would require
Ω(n) probes on any dataset, in particular on a dataset where all elements satisfy P, where
non-privately one probe would suffice. To see why, let P(x) = 1 if x = 1 and P(x) = 0
otherwise and let x include exactly one 1-entry in a uniformly random location. Observe
that in expectation it requires Ω(n) memory probes to locate the 1-entry in x. Perfect
obliviousness would hence imply an Ω(n) probes on any input.

We give a nearly instance optimal differentially oblivious algorithm that always returns a
correct answer. Except for probability e−Ω(mp) the algorithm halts after m steps.

Our Algorithm. Given the access pattern of the non-private algorithm, an adversary can
learn that the last probed element satisfies P. To hide this information, we change the
stopping condition to having probed at least a (randomly chosen) threshold of elements

A. Beimel, K. Nissim, and M. Zaheri 65:11

Algorithm 3 Differentially Oblivious Locate Algorithm LocateP .

Input: dataset x = (x1, . . . , xn)
1: Let c← 0, ε′ = ε

2 log(2/δ) , and T ←
1
ε′ ln logn

δ

2: for i = 1 to n/2 do
3: Choose j ∈ [n] with uniform distribution
4: if P(xj) = 1 then
5: c← c+ 1
6: end if
7: if i is an integral power of 2 then
8: T̂ ← T + Lap(1

ε′)
9: if c > max(T̂ , 0) then
10: output 1
11: end if
12: end if
13: end for
14: Scan the entire dataset, if there is an element satisfying P then output 1, else output 0

satisfying P. If after n/2 probes the number of elements satisfying P is below the threshold
the entire dataset is scanned. Our algorithm LocateP is described in Algorithm 3. On a
given array x, algorithm LocateP outputs 1 iff there exists an element in x satisfying the
property P.

We remark that Algorithm LocateP uses a mechanism similar to the the sparse vector
mechanism of [18]. However, in our case instead of using a single noisy threshold across all
steps, Algorithm LocateP generates in each step a noisy threshold T̂ = T + Lap(1

ε′). The
value of T ensures that with high probability T̂ > 0. The proof of Theorem 15 is given in
Appendix A.3.

I Theorem 15. Algorithm LocateP is an (ε, δ(1 + eε))-differentially oblivious algorithm
that outputs 1 iff there exists an element in the array that satisfies property P. For
m = Ω(T/p log(T/p)), with probability 1 − e−Ω(mp) it halts in time at most m, where
T = 2 log(2/δ)

ε ln logn
δ .

6 Differentially Oblivious Prefix Sum

Suppose that there is a dataset consisting of sorted sensitive user records, and one would
like to compute the sum of all records in the (sorted) dataset that are less than or equal to
a value a in a way that respects individual user’s privacy. We call this task differentially
oblivious prefix sum. For the definition of privacy we say that two datasets of size n are
neighbors if they agree on n− 1 elements (although, as sorted arrays they can disagree on
many indices). For example, (1, 2, 3, 4) and (1, 3, 4, 5) are neighbors and should have similar
access pattern.

Without privacy one can find the greatest record less than or equal to value a, and then
compute the prefix sum by a quick scan through all records appearing before such record.
Any perfectly secure algorithm must read the entire dataset (since it is possible that all
elements are smaller than a). Here, we give a differentially oblivious prefix sum algorithm
that for many instances is much faster than any perfectly oblivious algorithm.

APPROX/RANDOM 2019

65:12 Exploring Differential Obliviousness

Algorithm 4 Differentially Oblivious Search Algorithm Search.

Input: a dataset x = (x1, . . . , xn) and a value a
1: Let ε′ ← ε

2.5 logn , δ
′ ← δ

2.5 logn , k ← d
4 log(1/δ′)

ε′ e, min← 0, and max← n

2: while max−min > k do
3: c← b(max−min)/kc
4: Let y = (y1, . . . , yk), where yi = xmin +i·c for every i ∈ [k]
5: Scan the entire dataset y and find the maximal index I such that yI ≤ a; if there is

no such element then I ← 0
6: noise← Lap(1

ε′)
7: min = max{0,min +b(I + noise− log 1/δ′

ε′) · cc} and max = min{n,min +b(I + noise +
log 1/δ′

ε′ + 1) · cc}
8: end while
9: Scan the entire dataset x between min and max and return the the maximal index I

such that xI ≤ a; if there is no such element then I ← 0

Intuition. Absent privacy requirements, using binary search, one can find the greatest
element less than or equal to a, and then compute the prefix sum by a quick scan through
all records that appear before such record. However, the binary search access pattern
allows the adversary to gain sensitive information about the input. Our main idea is to
approximately simulate the binary search and obfuscate the memory accesses to obtain
differential obliviousness. In order to do that, we first divide the input array into k chunks
(where k is polynomial in 1/ε, log 1/δ, and logn). Then, we find the chunk that contains the
greatest element less than or equal to a by comparing the first element (hence, the smallest
element) of each chunk to a. Let I be the index of such chunk. Next, we compute a noisy
interval that contains I using the Laplacian distribution. We iteratively repeat this process
on the noisy interval, where in each step we eliminate more than a quarter of the elements of
the interval. We continue until the size of the array is less than or equal to k. Next, we scan
all elements in the remaining array and find the index of the greatest element smaller than
or equal to a. Let i be the index of such element; we compute the prefix sum by scanning
the array x until index i.

The Search Algorithm. We present a search algorithm in Algorithm 4; on input x =
(x1, . . . , xn) and a this algorithm finds the largest index I such that xI ≤ a. To compute
the prefix sum, we compute Î = I + Lap(1/ε) + log 1/δ

ε and scan the first Î elements of the
dataset, summing only the first I. We show in Theorem 17 that our search algorithm is
(ε, δ)-differentially oblivious.

I Remark 16. We prove that algorithm Search is an (ε, 0)-differentially private algorithm
that returns a correct index with probability at least 1− β. We could change it to an (ε, δ)-
differentially private algorithm that never errs. This is done by truncating the noise to log 1/δ′

ε′ .

I Theorem 17. Let β < 1/n and ε < log2 n. Algorithm Search is an (ε, 0)-differentially
oblivious algorithm that, for any input array with size n and a ∈ R, returns a correct index
with probability at least 1− β. The running time of Algorithm Search is O(1

ε log2 n log 1
β).

Theorem 17 is proved in Appendix A.4.

A. Beimel, K. Nissim, and M. Zaheri 65:13

Algorithm 5 Differentially Oblivious Search Algorithm MultiSearch for Multiple Queries.

Input: a dataset x = (x1, . . . , xn)
1: t← 1 and M ← 0
2: for every query a do
3: if the greatest element in the ORAM is greater than a or all records are in the ORAM

(that is M = n) then
4: answer the query using the ORAM
5: else
6: execute algorithm Search with privacy parameter ε

t logn and accuracy parameter
β/
√
n for the database starting at record M + 1 and let I the largest index in this

database such that xI ≤ a
7: insert the first max{I, 2t} elements of this database to the ORAM; for each element

also insert the sum of all elements in the array up to this element
8: t← t+ 1, M ←M + max{I, 2t}
9: end if
10: end for

6.1 Dealing with Multiple Queries
We extend our prefix sum algorithm to answer multiple queries. We can answer a bounded
number of queries by running the differentially oblivious prefix sum algorithm multiple
times. That is, when we want an (ε, 0)-oblivious algorithm correctly answering t queries
with probability at least 1 − β, we execute algorithm Search t times with privacy para-
meter ε/t and error probability β/t (each time also computing the appropriate prefix sum).
Thus, the running time of the algorithm is O(t

2

ε log2 n log t
β) (excluding the scan time for

computing the sum).
On the other hand, we can use an ORAM to answer unbounded number of queries. That

is, in a pre-processing stage we store the n records and for each record we store the sum of
all records up to this record. Thereafter, answering each query will require one binary search.
Using the ORAM of [2], the pre-processing will take time O(n logn) and answering each
query will take time O(log2 n). Thus, the ORAM algorithm is more efficient when t ≥

√
n.

We use ORAM along with our differentially oblivious prefix sum algorithm to answer
unbounded number of queries while preserving privacy, combining the advantages of both of
the previous algorithms.

I Theorem 18. Algorithm MultiSearch, described in Algorithm 5, is an (ε, 0)-oblivious
algorithm, which executes Algorithm Search at most O(

√
n) times, where the run time of the

t-th execution is O(tε log3 n log n
β), scans the original database at most once, and in addition

each query run time is at most O(log2 n).

Proof. First note that we only pay for privacy in the executions of algorithm Search
(reading and writing to the ORAM is perfectly private). In the t-th execution of algorithm
Search, we insert at least 2t elements to the ORAM, thus after

√
n executions we inserted

at least
∑√n
t=1 2t = n elements to the ORAM.

By simple composition, algorithm MultiSearch is (ε′, 0)-differentially private, where

ε′ =

√
n∑

t=1

ε

t logn ≤
ε

logn (ln
√
n+ 1) ≤ ε,

where the last inequality is implied by the sum of the harmonic series. J

APPROX/RANDOM 2019

65:14 Exploring Differential Obliviousness

References
1 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient Testing of Large

Graphs. Combinatorica, 20(4):451–476, 2000. doi:10.1007/s004930070001.
2 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, and Elaine Shi. OptORAMa:

Optimal Oblivious RAM. IACR Cryptology ePrint Archive, 2018:892, 2018. URL: https:
//eprint.iacr.org/2018/892.

3 Marina Blanton, Aaron Steele, and Mehrdad Aliasgari. Data-oblivious graph algorithms for
secure computation and outsourcing. In Kefei Chen, Qi Xie, Weidong Qiu, Ninghui Li, and Wen-
Guey Tzeng, editors, 8th ACM Symposium on Information, Computer and Communications
Security, ASIA CCS ’13, pages 207–218. ACM, 2013. doi:10.1145/2484313.2484341.

4 David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-Abuse Attacks
Against Searchable Encryption. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,
2015, pages 668–679. ACM, 2015.

5 T.-H. Hubert Chan, Kai-Min Chung, Bruce M. Maggs, and Elaine Shi. Foundations of
Differentially Oblivious Algorithms. In Timothy M. Chan, editor, Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2448–2467. SIAM,
2019.

6 Srinivas Devadas, Marten van Dijk, Christopher W. Fletcher, Ling Ren, Elaine Shi, and
Daniel Wichs. Onion ORAM: A Constant Bandwidth Blowup Oblivious RAM. In Eyal
Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th International Conference,
TCC 2016-A, volume 9563 of Lecture Notes in Computer Science, pages 145–174. Springer,
2016. doi:10.1007/978-3-662-49099-0_6.

7 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating Noise
to Sensitivity in Private Data Analysis. In Shai Halevi and Tal Rabin, editors, Theory of
Cryptography, Third Theory of Cryptography Conference, TCC 2006, volume 3876 of Lecture
Notes in Computer Science, pages 265–284. Springer, 2006. doi:10.1007/11681878_14.

8 David Eppstein, Michael T. Goodrich, and Roberto Tamassia. Privacy-preserving data-
oblivious geometric algorithms for geographic data. In Divyakant Agrawal, Pusheng Zhang,
Amr El Abbadi, and Mohamed F. Mokbel, editors, 18th ACM SIGSPATIAL International
Symposium on Advances in Geographic Information Systems, ACM-GIS 2010, pages 13–22.
ACM, 2010. doi:10.1145/1869790.1869796.

9 Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal Aggregation Algorithms for Middleware.
In Peter Buneman, editor, Proceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 102–113. ACM, 2001.

10 Oded Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious RAMs.
In Alfred V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 182–194. ACM, 1987. doi:10.1145/28395.28416.

11 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017. doi:
10.1017/9781108135252.

12 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property Testing and its Connection to
Learning and Approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

13 Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious RAMs.
J. ACM, 43(3):431–473, 1996. doi:10.1145/233551.233553.

14 Oded Goldreich and Dana Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
32(2):302–343, 2002.

15 M. T. Goodrich, O. Ohrimenko, and R. Tamassia. Data-oblivious graph drawing model and
algorithms. CoRR, 2012.

16 Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting algorithm
running in O(n logn) time. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, pages 684–693. ACM, 2014. doi:10.1145/2591796.2591830.

https://doi.org/10.1007/s004930070001
https://eprint.iacr.org/2018/892
https://eprint.iacr.org/2018/892
https://doi.org/10.1145/2484313.2484341
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/1869790.1869796
https://doi.org/10.1145/28395.28416
https://doi.org/10.1017/9781108135252
https://doi.org/10.1017/9781108135252
https://doi.org/10.1145/285055.285060
https://doi.org/10.1145/233551.233553
https://doi.org/10.1145/2591796.2591830

A. Beimel, K. Nissim, and M. Zaheri 65:15

17 Michael T. Goodrich and Joseph A. Simons. Data-Oblivious Graph Algorithms in Out-
sourced External Memory. In Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, edit-
ors, Combinatorial Optimization and Applications - 8th International Conference, COCOA
2014, volume 8881 of Lecture Notes in Computer Science, pages 241–257. Springer, 2014.
doi:10.1007/978-3-319-12691-3_19.

18 Moritz Hardt and Guy N. Rothblum. A Multiplicative Weights Mechanism for Privacy-
Preserving Data Analysis. In 51th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2010, pages 61–70. IEEE Computer Society, 2010.

19 Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. Composing Differential
Privacy and Secure Computation: A Case Study on Scaling Private Record Linkage. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 1389–1406. ACM, 2017. doi:10.1145/3133956.3134030.

20 Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. Inference attack against
encrypted range queries on outsourced databases. In Elisa Bertino, Ravi S. Sandhu, and
Jaehong Park, editors, Fourth ACM Conference on Data and Application Security and Privacy,
CODASPY’14, pages 235–246. ACM, 2014. doi:10.1145/2557547.2557561.

21 Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Generic Attacks on
Secure Outsourced Databases. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1329–1340. ACM, 2016. doi:10.1145/
2976749.2978386.

22 Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’Neill. Accessing Data while
Preserving Privacy. CoRR, abs/1706.01552, 2017. arXiv:1706.01552.

23 Marie-Sarah Lacharité, Brice Minaud, and Kenneth G. Paterson. Improved Reconstruction
Attacks on Encrypted Data Using Range Query Leakage. In 2018 IEEE Symposium on
Security and Privacy, SP 2018, pages 297–314. IEEE Computer Society, 2018. doi:10.1109/
SP.2018.00002.

24 Kasper Green Larsen and Jesper Buus Nielsen. Yes, There is an Oblivious RAM Lower Bound!
In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, volume 10992 of Lecture Notes in
Computer Science, pages 523–542. Springer, 2018. doi:10.1007/978-3-319-96881-0_18.

25 Wei-Kai Lin, Elaine Shi, and Tiancheng Xie. Can We Overcome the n logn Barrier for
Oblivious Sorting? In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2419–2438. SIAM, 2019. doi:
10.1137/1.9781611975482.148.

26 Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM: A
Programming Framework for Secure Computation. In 2015 IEEE Symposium on Security and
Privacy, SP 2015, pages 359–376. IEEE Computer Society, 2015.

27 Sahar Mazloom and S. Dov Gordon. Secure Computation with Differentially Private Access
Patterns. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 490–507. ACM, 2018. doi:
10.1145/3243734.3243851.

28 Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. Constant Communication ORAM with
Small Blocksize. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages
862–873. ACM, 2015.

29 Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference Attacks on Property-
Preserving Encrypted Databases. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security 2015, pages 644–655. ACM, 2015.

APPROX/RANDOM 2019

https://doi.org/10.1007/978-3-319-12691-3_19
https://doi.org/10.1145/3133956.3134030
https://doi.org/10.1145/2557547.2557561
https://doi.org/10.1145/2976749.2978386
https://doi.org/10.1145/2976749.2978386
http://arxiv.org/abs/1706.01552
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1109/SP.2018.00002
https://doi.org/10.1007/978-3-319-96881-0_18
https://doi.org/10.1137/1.9781611975482.148
https://doi.org/10.1137/1.9781611975482.148
https://doi.org/10.1145/3243734.3243851
https://doi.org/10.1145/3243734.3243851

65:16 Exploring Differential Obliviousness

30 Rafail Ostrovsky. Efficient Computation on Oblivious RAMs. In Harriet Ortiz, editor,
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 514–523.
ACM, 1990. doi:10.1145/100216.100289.

31 Giuseppe Persiano and Kevin Yeo. Lower Bounds for Differentially Private RAMs. In
Yuval Ishai and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019,
Part I, volume 11476 of Lecture Notes in Computer Science, pages 404–434. Springer, 2019.
doi:10.1007/978-3-030-17653-2_14.

32 Sofya Raskhodnikova and Adam D. Smith. A Note on Adaptivity in Testing Properties
of Bounded Degree Graphs. Electronic Colloquium on Computational Complexity (ECCC),
13(089), 2006. URL: http://eccc.hpi-web.de/eccc-reports/2006/TR06-089/index.html.

A Missing Proofs

A.1 Proof of Lemma 5
Proof. Let x and y be two neighboring datasets and S be a sets of outputs. Then,

Pr[B(x) ∈ S] ≤ Pr[A(x) ∈ S] + γ

≤ eε Pr[A(y) ∈ S] + γ

≤ eε(Pr[B(y) ∈ S] + γ) + γ

= eε Pr[B(y) ∈ S] + (1 + eε)γ. J

A.2 Proof of the Correctness and Privacy of Algorithm TesterT

Theorem 8 is implied by the following lemmas.

I Lemma 19. Algorithm TesterT is (ε, δ(1 + eε))-differentially oblivious.

Proof. We first analyze a variant of TesterT , denoted by Tester′T , in which Step 10 is
replaced by “If c > T̂ then output 1” (that is, the algorithm does not check if c > min{4T, T̂}
before deciding in the positive).

Let G = (V,E) and G′ = (V ′, E′) be two neighboring graphs such that they differ on
node v ∈ V . Fix the random choices of subsets A in Step 6 and observe that after the
execution of for loop, the count c can differ by at most 1 between the executions on G and G′.
Let T̃ be the smallest integer greater than T̂ . Since algorithm Tester′T uses the Laplace
mechanism e−ε Pr[T̃ < a] ≤ Pr[T̃ < a− 1] ≤ eε Pr[T̃ < a] for every a. Thus,

Pr[Tester′T (G) = 1] =
∑
a

Pr[T̃ = a] Pr[c(G) > a]

≤
∑
a

Pr[T̃ = a] Pr[c(G′) > a− 1]

≤ eε
∑
a

Pr[T̃ = a− 1] Pr[c(G′) > a− 1]

≤ eε Pr[Tester′T (G′) = 1].

Similarly, Pr[Tester′T (G) = 1] ≥ e−ε Pr[Tester′T (G′) = 1]. Hence, Tester′T is (ε, 0)-
differentially oblivious.

We next prove that TesterT is (ε, δ(1 + eε))-differentially oblivious using Lemma 5,
that is we prove that for every graph G, the statistical distance between TesterT (G) and
Tester′T (G) is at most δ. Let E be the event that T̂ > 4T and observe that the probability

https://doi.org/10.1145/100216.100289
https://doi.org/10.1007/978-3-030-17653-2_14
http://eccc.hpi-web.de/eccc-reports/2006/TR06-089/index.html

A. Beimel, K. Nissim, and M. Zaheri 65:17

E occurs is at most δ.7 We have that
∣∣∣Pr[TesterT (G) = 1] − Pr[Tester′T (G) = 1]

∣∣∣ ≤∣∣∣Pr[TesterT (G) = 1|E]− Pr[Tester′T (G) = 1|E]
∣∣∣Pr[E] ≤ Pr[E] ≤ δ. Thus, by Lemma 5,

algorithm TesterT is (ε, δ(1 + eε))-differentially oblivious. J

Observe that Algorithm TesterT never errs when G ∈ P as in that case after the for loop
is executed c = 4T and hence in Step 10 TesterT outputs 1. The next lemma analyses the
error probability when G is γ′-far from P.

I Lemma 20. Algorithm TesterT is (1− δ − (2δ) 1
3ε , γ′)-tester for the graph property P.

Proof. Observe that on Step 7 of the algorithm, we are eliminating at most n · cβ,γ edges.
Thus, we are eliminating at most 4Tncβ,γ edges in total. Then, when G is γ′-far from P,
it is also γ-far from P after the removal of the observed nodes in each step of the for loop.
We next prove that Algorithm TesterT fails with probability at most 2δ 1

3ε . Observe that if
Algorithm TesterT fails on G then c ≥ 2T or Lap(1

ε) ≤ −T . We define Zi to be output of
T (G) in the i-th step of the for loop. Let Z =

∑
i Zi. Observe that all Zi are independent

and E[Z] ≤ T . Using the Chernoff Bounds8, we obtain that Pr[Z ≥ 2T] ≤ e−T/3 = (2δ) 1
3ε .

We also know Pr[Lap(1
ε) ≤ − ln(1/2δ)

ε] = 0.5e− ln(1/2δ) = δ. Therefore, Algorithm TesterT
fails with probability δ + (2δ) 1

3ε . J

A.3 Proof of the Correctness and Privacy of Algorithm LocateP

The proof of Theorem 15 follows from the following claim and lemmas.

B Claim 21. Let ` ≥ logn/ log logn. The probability that there exists an element j ∈ [n]
such that algorithm LocateP samples the element j in Step 3 more than 2` times is less that
2−`.

Proof. Fix an index j. The probability that the element j is sampled more than 2` times
is less than

(
n/2
2`
) 1
n2` ≤

(
en
4`
)2` 1

n2` < `−2` < 2−2 logn+2 < 22−`/n. The claim follows by the
union bound. C

I Lemma 22. Let δ < 1/n. Algorithm LocateP is (ε, δ(1 + eε))-differentially oblivious.

Proof. We first analyze a variant of LocateP , denoted by Locate′P , in which Step 9 is
replaced by “If c > T̂ then output 1” (that is, the algorithm does not check if T̂ > 0) and
no element is sampled more than 2 log(2/δ) times. We analyze the privacy of Locate′P(x′)
similarly to the analysis of the sparse vector mechanism in [18].

Let x and x′ be two neighboring datasets that such that P(xj) = 1 and P(x′j) = 0
for some j. Denote by τ = (T̃1, . . . , T̃logn) the values of the thresholds in an execution
of Locate′P , where each threshold is rounded up to the smallest integer greater than T̂ .
Furthermore, let `τ ∈ [logn] be the index such that Locate′P on input x outputs 1 when
i = 2`τ (if no such i exists, then `τ ∈ dlogne+ 1). Observe that in each execution of Step 9
the count c on input x is at least the count on input x′ and can exceed it by at most
2 log(2/δ) (since j is sampled at most 2 log(2/δ) times). Thus, Locate′P on input x′ with
thresholds τ ′ = (T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn) outputs 1 when i = 2`τ .
Since algorithm Locate′P uses the Laplace mechanism with ε′ = ε/(2 log(1/δ)),

e−ε Pr[T̃`τ = a] ≤ Pr[T̃`τ = a− 2 log(2/δ)] ≤ eε Pr[T̃`τ = a]

7 Pr[Lap(1
ε) ≥ t/ε] = 1

2e
−t for every t > 0. Thus, Pr[E] = Pr[Lap(1

ε) ≥ ln(1/2δ)
ε] = δ.

8 Pr[Z ≥ (1 + η)µ] ≤ e−η
2µ/(2+η) for any η > 0 where µ is the expectation of Z.

APPROX/RANDOM 2019

65:18 Exploring Differential Obliviousness

for every a. Thus,

Pr[AccessLocate′
P (x) ∈ S]

=
∑

τ=(T̃1,...,T̃logn)

Pr[AccessLocate′
P (x) ∈ S | T̃1, . . . , T̃logn] Pr[T̃1, . . . , T̃logn]

=
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃logn]

≤ eε
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

= eε Pr[AccessLocate′
P (x′) ∈ S].

Similarly,

Pr[AccessLocate′
P (x) ∈ S]

≥ e−ε
∑

Pr[AccessLocate′
P (x′) ∈ S | T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

· Pr[T̃1, . . . , T̃`τ−1, T̃`τ − 2 log(2/δ), T̃`τ+1, . . . , T̃logn]

= e−ε Pr[AccessLocate′
P (x′) ∈ S].

We next prove that LocateP is (ε, δ(1 + eε))-differentially oblivious using Lemma 5. I.e,
we prove that for every dataset x, the statistical distance between AccessLocateP (x) and
AccessLocate′

P (x) is at most δ. Notice that if all the thresholds are positive and all elements
are sampled at most 2 log(2/δ) times then LocateP(x) and Locate′P(x) have the same
access pattern. By Claim 21, the probability that there exists a j that is sampled more
than 2 log(2/δ) is at 2− log(2/δ) = δ/2. We next observe that the probability that a threshold
T̂ = T + Lap(1

ε′) is negative is at most δ/2. Recall that Pr[Lap(1
ε′) ≤ −t/ε′] = 1

2e
−t for

every t > 0. Thus, Pr[T̂ ≤ 0] = Pr[Lap(1
ε′) ≤ − 1

ε ln(logn
δ)] = δ

2 logn . Let A be the event that
at least one of the logn thresholds T̂ is at most 0 or some j is sampled more that 2 log(2/δ)
times. By the union bound the probability of A is at most δ. Therefore, for every set of
access patterns S

|Pr[AccessLocateP (x) ∈ S]− Pr[AccessLocate′
P (x) ∈ S]|

=
∣∣∣Pr[AccessLocateP (x) ∈ S|A] Pr[A] + Pr[AccessLocateP (x) ∈ S|Ā] Pr[Ā]

− Pr[AccessLocate′
P (x) ∈ S|A] Pr[A]− Pr[AccessLocate′

P (x) ∈ S|Ā] Pr[Ā]
∣∣∣

=
∣∣∣Pr[AccessLocateP (x) ∈ S|A]− Pr[AccessLocate′

P (x) ∈ S|A]
∣∣∣Pr[A]

≤ Pr[A] ≤ δ.

Thus, by Lemma 5, algorithm LocateP is (ε, δ(1 + eε))-differentially oblivious. J

We next analyze the running and probe complexity of our algorithm. Let p be the
probability that a uniformly chosen element in x satisfies P . The non-private algorithm that
samples elements until it finds an element satisfying P has expected running time 1/p and
the probability that it does not stop after m steps is (1− p)m = ((1− p)1/p)mp ≤ e−mp. We
show that locateP has a similar behavior.

A. Beimel, K. Nissim, and M. Zaheri 65:19

I Lemma 23. Let p be the probability that a uniformly chosen element in x satisfies
P. Then, for every integral power of two m the probability that algorithm locateP probes
more than m memory locations is less than δ/ logn+ e−(m−2T)p+2T lnm. In particular, for
m = Ω(Tp log(Tp)), the probability is less than δ/ logn+ e−O(mp).

Proof. Let t = 2i. The probability that T̂ ≥ 2T is Pr[Lap(1
ε′) ≥ 1

ε′ ln logn
δ] = 0.5e− ln(logn/δ)

= δ
logn . Assuming that T̂ ≥ 2T , the probability that the algorithm does not halt after m = 2i

steps is less than(
m

2T

)
(1− p)m−2t ≤ m2T e−(m−2T)p ≤ e−(m−2T)p+2T lnm. J

A.4 Proof of the Correctness and Privacy of Algorithm Search
Theorem 17 is proved in the next 3 claims. We start by analyzing the running time of the
algorithm.

B Claim 24. Let β < 1/n and ε < log2 n. The while loop in Algorithm Search is executed at
most 2.5 logn time. Furthermore, the total running time of the algorithm is O(1

ε log2 n log 1
β).

Proof. Let min0,max0 and min1,max1 be the values of min,max before and after an execution
of a step of the while loop in Algorithm Search. Note that

max1−min1 ≤ 1 + (2 · log 1/β′

ε′ + 1) · max0−min0
4 log(1/β′)

ε′
≤ 3 · log 1/β′

ε′ · max0−min0
4 log(1/β′)

ε′
= 3(max0−min0)

4 .

Therefore, algorithm Search eliminates more than a quarter of the elements in each step of
the while loop and the algorithm will halt after less than 2.5 logn steps.

Moreover, observe that Algorithm Search makes k memory accesses in each step of
the while loop and additional k memory accesses after the loop. Thus, its running time is
O(1

ε log2 n(log logn+ log 1
β)) = O(1

ε log2 n log 1
β) (since β < 1/n). C

B Claim 25. Algorithm Search returns the correct index with probability at least 1− β.

Proof. Let Ī be the maximal index such that xĪ ≤ a (i.e., Ī is the index that algorithm
Search should return). We prove by induction that if all Laplace noises in the algorithm
satisfy |Lap(1

ε′)| < log 1/β′

ε′ then in each step of the algorithm min ≤ Ī ≤ max, hence the
algorithm will return Ī in its last scan of x between min and max.

The basis of the induction is trivial since 0 ≤ Ī ≤ n. For the induction step, let min0,max0
and min1,max1 be the values of min,max before and after an execution of a step of the
while loop in Algorithm Search. By the induction hypothesis, min0 ≤ Ī ≤ max0. The
algorithm finds an index I such that min0 +Ic ≤ Ī ≤ min0 +(I + 1)c. By our assumption
on the Laplace noise, min1 ≤ min0 +Ic, thus, min1 ≤ Ī. Similarly, max1 ≥ min0 +(I + 1)c,
thus, max1 ≥ Ī.

Recall that Pr[|Lap(1
ε′)| ≥ t/ε′] = e−t for every t > 0. Thus, by Claim 24 and the union

bound, the probability that one of the Laplace noises is greater than log 1/β′

ε′ is at most
(2.5 logn) · β′ = β. Hence, the probability that algorithm Search returns the correct index
Ī is at least 1− β. C

Next, we show that algorithm Search is (ε, 0)-differentially oblivious.

B Claim 26. Algorithm Search is an (ε, 0)-differentially oblivious algorithm.

APPROX/RANDOM 2019

65:20 Exploring Differential Obliviousness

Proof. We show below that each step of the while loop in algorithm Search is (ε′, 0)-
differentially oblivious. Applying the basic composition theorem and Claim 24, we obtain
that the Search algorithm is (ε = (2.5 logn)ε′, 0)-differentially oblivious.

Fix a step of the loop and view it as an algorithm that returns min and max (given
these values the access pattern of the next step is fixed). Let x and x′ be two neighboring
datasets such that for some j we have xj > x′j and xi = x′i for all i < j. It holds that
xi−1 ≤ x′i ≤ xi for every i. Let I(x) and I(x′) be the values computed in step 5 of the
algorithm on inputs x and x′ respectively. Thus, the value I(x) is at least the value I(x′)
and can exceed it by one. Intuitively, since algorithm Search uses the Laplace mechanism,
the probabilities of returning a value min on x and x′ are at most e±ε′ apart. Formally,
if Lap(1/ε′) + I(x) = Lap(1/ε′) + I(x) (where we consider two independent noises), then
the algorithm returns the same value of min on both inputs. The lemma follows since for
every set A:

e−ε
′
≤ e−|I(x)−I(x′)|ε′

≤ Pr[Lap(1/ε′) + I(x) ∈ A]
Pr[Lap(1/ε′) + I(x′) ∈ A] ≤ e

|I(x)−I(x′)|ε′
≤ eε

′
. C

Thresholds in Random Motif Graphs
Michael Anastos
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
http://www.math.cmu.edu/~manastos
manastos@andrew.cmu.edu

Peleg Michaeli
School of Mathematical Sciences, Tel Aviv University, Israel
http://www.math.tau.ac.il/~pelegm
peleg.michaeli@math.tau.ac.il

Samantha Petti
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, USA
http://people.math.gatech.edu/~spetti3
spetti@gatech.edu

Abstract
We introduce a natural generalization of the Erdős-Rényi random graph model in which random
instances of a fixed motif are added independently. The binomial random motif graph G(H, n, p) is
the random (multi)graph obtained by adding an instance of a fixed graph H on each of the copies of
H in the complete graph on n vertices, independently with probability p. We establish that every
monotone property has a threshold in this model, and determine the thresholds for connectivity,
Hamiltonicity, the existence of a perfect matching, and subgraph appearance. Moreover, in the first
three cases we give the analogous hitting time results; with high probability, the first graph in the
random motif graph process that has minimum degree one (or two) is connected and contains a
perfect matching (or Hamiltonian respectively).

2012 ACM Subject Classification Mathematics of computing → Random graphs; Mathematics of
computing → Paths and connectivity problems

Keywords and phrases Random graph, Connectivity, Hamiltonicty, Small subgraphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.66

Category RANDOM

Funding Peleg Michaeli: This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement number 676970, RANDGEOM).
Samantha Petti: This material is based upon work supported by the National Science Foundation
Graduate Research Fellowship under Grant No. DGE-1650044.

Acknowledgements We thank Alan Frieze for helpful discussions and for connecting the authors.

1 Introduction

In the late 1950’s Gilbert [11] and Erdős and Rényi [6] introduced two of the most fundamental
models for generating random graphs: the binomial random graph G(n, p), generated by
independently adding an edge between each pair of vertices in the complete graph on n

vertices with probability p, and the the uniform random graph G(n,m), which is a uniformly
chosen graph from all graphs on n vertices with m edges. Since, the extensive study of these
simple constructions has influenced a variety of fields including combinatorics, computer
science, and statistical physics (see [9, 4, 12] for surveys).

© Michael Anastos, Peleg Michaeli, and Samantha Petti;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 66; pp. 66:1–66:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5475-6522
http://www.math.cmu.edu/~manastos
mailto:manastos@andrew.cmu.edu
https://orcid.org/0000-0002-2695-4609
http://www.math.tau.ac.il/~pelegm
mailto:peleg.michaeli@math.tau.ac.il
https://orcid.org/0000-0001-8281-8161
http://people.math.gatech.edu/~spetti3
mailto:spetti@gatech.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.66
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Thresholds in Random Motif Graphs

Detailed analysis of the model has led to the development of plethora of new techniques
in probability for analyzing random processes, and the model has been used to verify the
existence of structures with certain properties [1]. In computer science, the model has
been used to analyze the performance of algorithms on an “average” case, showing that NP
complete problems may be easier random instances.

The rise of data in the form of graphs (e.g. internet connections, biological networks,
social networks) has further fueled the study of random graphs. In practice, the comparison
of real world networks to the Erdős-Rényi model is a popular technique for highlighting
the non-random aspects of a network’s structure [20, 2, 17, 14]. Moreover, the model has
inspired many other models which are designed to mirror some characteristic of real-world
networks (e.g. Watts-Strogatz graphs have small diameter [18], Barabási-Albert preferential
attachment graph exhibit a power law degree distribution [3]).

In this paper we consider a natural generalization of the Erdős-Rényi model in which
random motifs are added rather than random edges. A motif is a fixed small subgraph,
such as a triangle. The motifs that are overrepresented in a network are correlated to the
function of the network [20, 2, 17, 14]. Analyzing random graphs formed as the union of
many instances of a particular motif H will give insight into the structural properties of
networks with many copies of the motif H.

We define the binomial random motif graph G(H,n, p) as the random (multi)graph
obtained by adding an instance of H on each of the

(
n

|V (H)|
)
· |V (H)|!/ aut(H) copies of H in

the complete graph on n vertices Kn, independently with probability p. Here by aut(H) we
denote the number of automorphisms of H. Note that if H is an edge, then this is exactly
G(n, p). Similarly, the uniform random motif graph Ḡ(H,n,m) is the random (multi)graph
obtained by taking the union of m uniformly chosen copies of H in Kn without replacement.

Closely related to Ḡ(H,n,m) is the random motif graph process Ḡ0(H,n), Ḡ1(H,n), ...,
ḠN (H,n). Ḡ0(H,n) is the empty graph on n vertices and for 0 ≤ i ≤ N =

(
n

|V (H)|
)
/ aut(H)

the graph Ḡi+1(H,n) is generated by adding to Ḡi(H,n) a copy of H, Hi+1, chosen uniformly
at random from all the copies of H except those in {H1, H2, ...,Hi} i.e. those that have been
added to Ḡ0(H,n) so far. Clearly Ḡm(H,n) has the same law as Ḡ(H,n,m). In addition,
by setting H to be an edge we retrieve the random graph process introduce by Erdős and
Rényi [7]. By considering the random motif graph process in place of the uniform random
motif graph model we can phrase results in a finer way (see for example Theorem 3).

In this work we show that every monotone graph property has a threshold in the
binomial random motif graph G(H,n, p). Then we determine the thresholds for connectivity,
existence of a perfect matching, Hamiltoncity and subgraph appearance. In the first three
cases we also show a hitting time result, according to which w.h.p.1 the first graph in
the random motif graph process that has minimum degree one (or two) is connected (or
Hamiltonian respectively).

1.1 Notation
Throughout we assume the motif H has no isolated vertices. For an integer r ≥ 0, denote by
mr(H) the number of its copies in Kn which intersect the set [r]. For an integer d ≥ 0 we
define the quantities δd(H) and pd(H) by

δd(H) := dd/δ(H)e − 1 and p±d (H) := lnn+ δd(H) ln lnn± x(n)
m1(H) ,

1 That is, with probability tending to 1 as n tends to infinity.

M. Anastos, P. Michaeli, and S. Petti 66:3

where x(n) is any function of n satisfying 1 � x(n) � ln lnn. Note that the expected
number of added instances of H in G(H,n, p±1 (H)) is mn(H) · p±1 (H), which only depends
on n and on |V (H)|.

1.2 Results
A function p∗ = p∗(n) is a threshold for a monotone increasing property P in the random
graph G(H,n, p) if

lim
n→∞

Pr[G(H,n, p) ∈ P] =
{

0 if p/p∗ → 0,
1 if p/p∗ →∞,

as n→∞. Our first result is a generalization of a theorem by Bollobás and Thomason [5].

I Theorem 1. Every non-trivial monotone graph property has a threshold.

Given Theorem 1, a natural goal is to find the thresholds for various monotone properties.
The remaining results of this paper are dedicated towards this goal; we determine the
threshold for connectivity, the existence of a perfect matchings, Hamiltonicity, and subgraph
appearance.

A first such result, which generalizes a result in [6], shows, in particular, that the expected
number of motifs needed to make the random motif graph connected depends only on the
number of (non-isolated) vertices of the motif.

I Theorem 2. Let H be a fixed graph. Then

lim
n→∞

Pr[G(H,n, p) is connected] =
{

0 p ≤ p−1 (H),
1 p ≥ p+

1 (H).

In fact, we show a hitting time result, according to which the hitting time of connectivity
equals, w.h.p., the hitting time of minimum degree one. In other words, the random motif
graph process becomes connected exactly when the last isolated vertex disappears, with high
probability.

Fix an integer n and a graph H. Let τc = min{i : Ḡi(H,n) is connected}, and for d ≥ 1
denote τd = min{i : δ(Ḡi(H,n)) ≥ d}.

I Theorem 3. Let H be a fixed graph. Then w.h.p. τc = τ1.

We remark that if the motif H is connected, every connectivity related question depends
solely on the sets of vertices on which copies of H are added, and not on the way they are
put there. Thus, we may model the question as a (binomial or uniform) random k-uniform
hypergraph, where k = |V (H)|. In this case, Theorems 2 and 3 follow immediately from
known results about (loose) connectivity in random hypergraphs (see, e.g.,[16]).

In the following two theorems we show that the existence of a perfect matching is also
dependent on the number of non-isolated vertices of the motif.

I Theorem 4. Let H be a fixed graph, and assume that n is even. Then,

lim
n→∞

Pr[G(H,n, p) has a perfect matching] =
{

0 p ≤ p−1 (H),
1 p ≥ p+

1 (H).

Let τM = min{i : Ḡi(H,n) has a perfect matching}. The analogue hitting time result is
also true.

APPROX/RANDOM 2019

66:4 Thresholds in Random Motif Graphs

I Theorem 5. Let H be a fixed graph, and assume that n is even. Then w.h.p. τM = τ1.

Theorem 6 establishes that the thresholds for minimum degree 2 and for Hamiltonicity are
the same. Theorem 7 shows the hitting time version of that result.

I Theorem 6. Let H be a fixed graph. Then

lim
n→∞

Pr[G(H,n, p) is Hamiltonian] =
{

0 p ≤ p−2 (H),
1 p ≥ p+

2 (H).

Let τH := min{i : Ḡi(H,n) is Hamiltonian}.

I Theorem 7. Let H be a fixed graph. Then w.h.p. τH = τ2.

Next, we describe the threshold for the appearance of a subgraph S. If S appears in a
random motif graph, then S is a subgraph of some configuration of b copies of H whose
union contains a vertices. For such an (a, b) covering of S, we call a subset of the covering
containing b′ copies of H whose union contains a′ vertices an (a′, b′) subset. The threshold
for the appearance of S depends on γ̄, the maximum over all covering configurations of the
minimum ratio a′/b′ for all subsets of the covering configuration. Definition 15 formally
describes γ̄.

I Theorem 8. Let H be a fixed graph, let S be a fixed graph, and set v = |V (H)| and
γ̄ = γ̄(S,H). Then

lim
n→∞

Pr
[
S ⊆ Ḡ(H,n,m)

]
=
{

0 m� nv−γ̄

1 m� nv−γ̄ .

The number of excess edges of a connected graph S, or simply its excess, is defined to be
exc(S) = |E(S)| − |V (S)|+ 1. In particular, trees have excess 0. We say that S is unicyclic
if its excess is 1, or complex if its excess is at least 2. The following theorem gives a simple
description of γ̄ when the motif H is a path, which allows us to deduce how the copies of
H fit together to form a copy of S at the threshold when S first appears. If S is a tree, a
minimal set of edge disjoint copies of H typically forms S. If S is complex, each copy of the
path H typically contributes a single edge to S. If it is unicyclic, it may be formed by any
edge disjoint configuration of paths H.

I Theorem 9. Let H be a path of length v − 1 and let S be a connected graph. Let β be the
minimum number of edge-disjoint copies of H whose union contains S as a subgraph. Let
η = minX⊆S |V (X)|

|E(X)| . Then

γ̄ =

v − 1 + 1/β exc(S) = 0,
v − 1 exc(S) = 1,
v − 2 + η exc(S) ≥ 2.

In the case where the motif is a long path, this result establishes a connection between
the threshold for the appearance of subgraphs in random motif graphs and the threshold
for the appearance of subgraphs in the trace of a random walk on the complete graph Kn

(studied in [13]). Let S be a connected graph and β be the minimum number of paths in
any edge-disjoint decomposition of S into paths. If H is longer than the maximum length
path in such a minimum edge-disjoint path decomposition, then the threshold implied by
Theorem 9 matches the threshold for the appearance of S in the trace of a random walk on
the complete graph [13].

M. Anastos, P. Michaeli, and S. Petti 66:5

This should not come as a surprise; by noticing that when the motif is a long path,
the random motif graph model approximates the trace model, in the following sense. One
may sequentially “cut” the (lazy) simple random walk into chunks with buffers of length 1.
We delete loops created by the trace of each chunk, and we enforce the condition that the
remaining edges span a path of length ` (which is fixed but large). Hence the trace of each
such chunk is an independent copy of a path of length `. Thus we may couple the trace model
and the random motif model such that the trace model will include the random motif model
plus some loops plus a small number of buffer edges (which gets smaller as ` gets larger).

Viewing this analogy this way, we may use Theorems 8 and 9 to reprove the main theorems
of [13] for the case where the base graph is complete.

2 Existence of thresholds for monotone properties

Proof of Theorem 1. Assume that P is a monotone increasing property and let H1, H2, ...,

Hm0(H) be the copies of H that are spanned by Kn. Observe that

Pr[G(H,n, p) ∈ P] =
m0(H)∑
i=0

∑
S∈(m0(H)

i)
pi(1− p)(

n
|V (H)|)−iI

(⋃
j∈S

Hj ∈ P
)

is a polynomial in p. In addition, since P is increasing, it is increasing. Therefore we may
define p1/2 by

Pr
[
G(H,n, p1/2) ∈ P

]
= 1

2 .

We will show that p1/2 is a threshold for P. For two random graphs G,G′ we write G ⊆ G′
if G,G′ can be coupled such that G is a subgraph of G′.

First let p = ω(n)p1/2 where ω(n) → ∞ as n → ∞ and let k ∈ N. Let Gi(H,n, p1/2)
be distributed as a G(H,n, p1/2) for i ∈ [k]. Then, by considering the probability of no
appearance of a fixed copy of H, we have that the graph ∪i∈[k]Gi(H,n, p1/2) is distributed
as G(H,n, (1− (1− p1/2)k)). Thereafter 1− (1− p1/2)k ≤ kp1/2 implies,⋃

i∈[k]

Gi(H,n, p1/2) = G(H,n, (1− (1− p1/2)k)) ⊆ G(H,n, kp1/2).

Hence,

Pr
[
G(H,n, ω(n)p1/2) ∈ P

]
= 1− Pr

[
G(H,n, ω(n)p1/2) /∈ P

]
≥ lim
k→∞

1− Pr
[
G(H,n, kp1/2) /∈ P

]
≥ 1− lim

k→∞

k∏
1=i

Pr
[
Gi(H,n, p1/2) /∈ P

]
= 1.

Now assume that p = p1/2/ω(n) for some ω(n)→∞ as n→∞ and let k ∈ N. Similarly
to before, if we let Gi(H,n, p1/2/ω(n)) to be distributed as a G(H,n, p1/2/ω(n)) for i ∈ [k]
then, we have that⋃

i∈[k]

Gi(H,n, p1/2/ω(n)) = G(H,n, (1− (1− p1/2/ω(n))k))

⊆ G(H,n, kp1/2/ω(n)) ⊆ G(H,n, p1/2).

APPROX/RANDOM 2019

66:6 Thresholds in Random Motif Graphs

Hence,

1
2 = Pr

[
G(H,n, p1/2) ∈ P

]
= 1− Pr

[
G(H,n, p1/2) /∈ P

]
≥ lim
k→∞

1− Pr
[
G(H,n, kp1/2/ω(n)) /∈ P

]
≥ 1− lim

k→∞

k∏
1=i

Pr
[
Gi(H,n, p1/2/ω(n)) /∈ P

]
= 1− Pr

[
Gi(H,n, p1/2/ω(n)) /∈ P

]k
.

Rearranging the above gives,

Pr
[
Gi(H,n, p1/2/ω(n)) /∈ P

]
≥ lim
k→∞

(
1
2

)1/k
= 1. J

3 Connectivity

Proof of Theorem 2. If p ≤ p−1 (H) then by Theorem 19 the minimum degree of G(H,n, p)
is w.h.p. 0, hence it is not connected.

Suppose p ≥ p+
1 (H). In fact, for the argument below, we only assume that p = (lnn±

o(lnn))/m1(H) (and the conclusion will follow by monotonicity). Let k denote the number
of vertices of H. For r = 1, . . . , n/2 denote by Sr the number of connected components of
size r in G(H,n, p). Note that for r ≥ k, if a set of cardinality r is a connected component,
then there exist d(r − 1)/(k − 1)e copies of H inside the set which appear in G(H,n, p), and
there are no edges between it and its complement, so none of the q = qr(H) copies of H that
intersect that set appear. By Lemma 17,

qp ∼ rfk(r/n) · lnn ≥ (1 + o(1))k lnn.

Let η = k!/ aut(H) and suppose r ≥ k. By Lemma 18 and by the union bound there exist
constants c, c′, C > 0 depending only on H such that

Pr[Sr > 0] ≤
(
n

r

)(
η
(
r
k

)⌈
r−1
k−1

⌉)pd r−1
k−1e(1− p)q ≤

(en
r

)reη(rk)p⌈
r−1
k−1

⌉
d

r−1
k−1e

e−qp

≤
[
C · n

r
· r · p(r−1)/(r(k−1))n−(1+o(1))k/r

]r
=
[
C · polylogn · n1/r−(1+o(1))k/r

]r
= o(1).

It follows that

Pr[G(H,n, p) is not connected] ≤
n/2∑
r=1

Pr[Sr > 0]

= Pr[S1 > 0] +
n/2∑
r=k

Pr[Sr > 0] = Pr[S1 > 0] + o(1),

but according to Theorem 19 (for p ≥ p+
1 (H)), there are no isolated vertices w.h.p., and the

result follows. J

M. Anastos, P. Michaeli, and S. Petti 66:7

Note that a consequence of this proof is that for p = (lnn± o(lnn))/m1(H), with high
probability, every connected component is of cardinality 1 or at least n/2. This means that
w.h.p. there exists a unique “giant” component of linear size, and the rest of the vertices are
isolated. The next lemma, whose proof uses a simple second moment argument, estimates
the number of these isolated vertices for p− = (lnn− ln lnn)/m1(H).

I Lemma 10. The number of isolated vertices in G(H,n, p−) is w.h.p. at most 2 lnn.

Proof. Let D0 be the number of isolated vertices in G(H,n, p−). First,

E[D0] = n(1− p−)m1(H) ∼ ne−p−·m1(H) = ne− lnn+ln lnn = lnn.

Moreover,

E
[
D2

0
]

= E[D0] + n(n− 1)(1− p−)m2(H).

Denote L := 2m1(H)−m2(H). Thus

E
[
D2

0
]
≤ E[D0] + E[D0]2(1− p−)−L,

and since (1− p−)−L − 1 ∼ Lp−, we have that

Var[D0] ≤ E[D0] + E[D0]2((1− p−)−L − 1) ≤ E[D0] + (L+ 1)p− E[D0]2.

Thus, noting that Lp− = o(1),

Pr[D0 ≥ 2 lnn] = Pr[|D0 − E[D0]| ≥ (1 + o(1)) E[D0]]

≤ (1 + o(1))
(

E[D0]−1 + (L+ 1)p−
)

= o(1). J

Proof of Theorem 3. Denote p± = (lnn ± ln lnn)/m1(H) and m± = p± · mn(H). By
asymptotic equivalence of the binomial and the uniform models (see, e.g., [12]*Section 1.4)
we have that w.h.p. G(H,n,m−) has a unique giant component, and the rest of the connected
components are isolated vertices, whose number is at most 2 lnn. Denote the set of these
isolated vertices by V0. Together with Theorem 2 we also conclude that w.h.p.

m− ≤ τ1 ≤ τc ≤ m+.

We may thus couple Ḡ(H,n,m−), Ḡ(H,n, τ1), Ḡ(H,n, τc) and Ḡ(H,n,m+) such that

Ḡ(H,n,m−) ⊆ Ḡ(H,n, τ1) ⊆ Ḡ(H,n, τc) ⊆ Ḡ(H,n,m+),

by starting with Ḡ(H,n,m−) and adding M = m+ − m− random copies of H to create
Ḡ(H,n,m+). Note that if none of these M edges is fully contained in V0 (and the coupling
succeeds) then τ1 = τc. Thus, there exist positive constants C1, C2 such that,

Pr[τ1 < τc] ≤ o(1) +M ·
C1
(|V0|
k

)
mn(H)−m+

≤ o(1) + C2 ·
mn(H) ln lnn

m1(H) · ln2 n

mn(H) = o(1). J

4 Hamiltoncity and Perfect Matchings

The proof of Theorems 7 and 5 can be given in parallel, using the same techniques and tools.
For clarity though, in this section we focus mainly on proving Theorem 7 and we give a
sketch of the proof of Theorem 5 in the appendix.

APPROX/RANDOM 2019

66:8 Thresholds in Random Motif Graphs

For proving our Hamiltonicity result we use the standard technique of Posa’s rotations.
We define Small to be the vertices of significantly smaller degree than the expected one and
we set Large to be the rest of the vertices. We first show that small to medium subsets of
Large expand and that the vertices in Small are well spread. This is done in the context
of Lemmas 11 and 12, 13 respectively. We use these properties of Small and Large in
order to prove all the the ingredients needed to apply the Posa’s rotations, which we gather
in Lemma 14.

Let p0 := (lnn− 2 ln lnn)/m1(H) and recall that p±2 = (lnn+ r2 ln lnn± ω(1))/m1(H),
r2 = b2/δ(H)− 1c. W.h.p. (see [9]) we can couple G(H,n, p0), G(H,n, p−2), Ḡ(H,n, τ2) and
G(H,n, p+

2) such that
(i) G(H,n, p0) ⊂ G(H,n, p−2) ⊂ Ḡ(H,n, τ2) ⊂ G(H,n, p+

2) and
(ii) there are (1+o(1))(p−2 −p0) r!

aut(H)
(
n
r

)
> n ln lnn/2r copies of H in G(H,n, p−2), hence

in Ḡ(H,n, τ2), that are not present in G(H,n, p0).

Observe that the above coupling and Theorem 7 imply Theorem 6. In addition a similar
coupling and Theorem 5 imply Theorem 4.

We now define the sets Small, Large based on the degrees of the vertices in G(H,n, p0).
Let Large = {v ∈ V : v intersects at least ln lnn copies of H in G(H,n, p0)} and Small =
V \ Large.

I Lemma 11. W.h.p. every S ⊂ Large of size at most n/30r satisfies |N(S)| ≥ 10|S|.

I Lemma 12. W.h.p. for every pair u, v ∈ Small there do not exist ` ≤ 6 copies of H in
G(H,n, p+

2) that span a connected subgraph containing both u, v. Hence w.h.p. every pair
u, v ∈ Small is at distance at least 7 in G(H,n, p+

2).

I Lemma 13. W.h.p. for every v ∈ V there exists at most one copy of H in G(H,n, p+
2),

hence in Ḡ(H,n, τ2), that intersect both {v} and Small \ {v}.

Now we generate Ḡ(H,n, τ2) as follows. We first generate G′0 = G(H,n, p0). Then
we randomly permute the copies of H not appearing in G′0, let them be H1, H2, We
also let S0 = ∅. We define the sequences G′0, G′1, ... and S0, S1, ... in the following way. At
step i ∈ N we query Hi whether it is incident to a vertex in Small. If it is then we set
Si = Si−1 and G′i = G′i−1 ∪Hi. Otherwise we set Si = Si−1 ∪ {Hi} and G′i = G′i−1. Let
t∗ = min{i : δ(G′i) = 2} and St∗ = {Hi1 , Hi2 , ...,Hiw}.

Given the sequence G′0, G′1, ..., G′t∗ and the set St∗ = {Hi1 , Hi2 , ...,Hiw} we define the
graph sequence F0, ..., Fw by F0 = G′t∗ and Fj = Fj−1 ∪Hij for 1 ≤ j ≤ w. Observe that St∗
consists of all copies of H in {H1, ...,Ht∗} that have not been added to G′0, equivalently the
copies ofH that are not incident to Small. Thus Fw = G′t∗∪

(⋃w
j=1Hij

)
= G′0∪

(⋃t∗
i=1Hi

)
=

Ḡ(H,n, τ2).

I Lemma 14. W.h.p. the following hold:
i) w ≥ n ln lnn/2r − n,
ii) every S ⊂ V of size at most n/30r satisfies |N(S)| ≥ 2|S| in F0,
iii) F0 is connected,
iv) for every 1 ≤ j ≤ w, ε > 0, and every set Qj consisting of εn2 edges not present in Fj

there exist a constant Cε > 0 such that the probability that Qj intersects E(Hij+1) is at
least Cε.

We are now ready to apply Posa’s rotations . For that assume that Fj is not Hamiltonian
and consider a longest path in Fj , Pj , j ≥ 0. Let x, y be the end-vertices of Pj . Given yv
where v is an interior vertex of Pj we can obtain a new longest path P ′j = x..vy..w where w
is the neighbor of v on Pj between v and y. In such a case we say that P ′j is obtained from
Pj by a rotation with the end-vertex x being the fixed end-vertex.

M. Anastos, P. Michaeli, and S. Petti 66:9

Let Endj(x;Pj) be the set of end-vertices of longest paths of Fj that can be obtained
from Pj by a sequence of rotations that keep x as the fixed end-vertex. Thereafter for
z ∈ Endj(x;Pj) let Pj(x, z) be a path that has end-vertices x, z and can be obtain form Pj by
a sequence of rotations that keep x as the fixed end-vertex. Observe that for z ∈ Endj(x;Pj)
and z′ ∈ Endj(z;Pj(x, z)) there exists a z-z′ path Pz,z′ of length |Pj | that can be obtained
from Pj via a sequence of Posa rotations. Thus we can conclude that {z, z′} does not belong
to Fj . Indeed assume that {z, z′} ∈ E(Gi). Then we can close Pz,z′ into a cycle Cz,z′ that is
not Hamiltonian. Since Fj is connected there is an edge e spanned by V (Cz,z′)×V \V (Cz,z′).
E(Cz,z′) ∪ {e} spans a path of length |Pj |+ 2 contradicting the maximality of Pj . Similarly
if {z, z′} ∈ E(Hij+1) then Fj+1 is either Hamiltonian or it contains a path that is longer
than Pj . At the same time it follows (see [9]*Corollary 6.7) that

|N(End(x, Pj))| < 2|End(x, Pj)|.

Moreover for every z ∈ Endj(x;Pj)

|N(End(z, Pj(x, z)))| < 2|End(z, Pj(x, z))|.

As a consequence of Lemma 11, we have that |End(x, Pj)| ≥ n/30r and |End(z, Pj(x, z))|
≥ n/30r for every z ∈ Endj(x;Pj). Let Ej = {{z, z′} : z ∈ Endj(x;Pj) and z′ ∈
Endj(z;Pj(x, z))}. Then |Ej | ≥ (n/30r)2/2.

Now let Yj be the indicator of the event {Ej ∩ E(Hij+1) 6= ∅} and set Z =
∑w
j=1 Yi. From

Lemma 14 iv) we have Pr[Yj = 1] ≥ Cε (here ε = 1/2(30r)2). In the event that Gw is not
Hamiltonian, Z ≤ n while Yj is a Bernoulli(Cε) random variable for 1 ≤ j ≤ w . Since
w ≥ n ln lnn/2r − n we have Pr[Bin(w,Cε) ≤ n] = o(1). Hence w.h.p. Fw = Ḡ(H,n, τ2) is
Hamiltonian and the hitting time for Hamiltonicity equals the hitting time for minimum
degree 2.

5 Subgraph appearance

In G(n, p) there is only one way for a specified subgraph to appear on a fixed set of vertices:
all the edges in the subgraph must be present. In the case of random motif graphs, there are
multiple ways to place motifs so that a specified subgraph appears on a fixed set of vertices.
For example, in a random two-path graph, a triangle may appear on {1, 2, 3} if (i) the paths
(1, 2, 3) and (3, 1, z) are present or (ii) the paths (1, 2, x), (2, 3, y) and (3, 1, z) are present. In
order to pin down the threshold for subgraph appearance, it is necessary to understand the
various motif configurations that cause the subgraph to appear and their relative probabilities.
The following definition provides the notation to describe such configurations.

I Definition 15. Let V be a set of vertices. Let S be a fixed graph on a subset of the vertices
of V . Let H1, H2, . . . Hb be copies H also defined on subsets of vertices of V .
(a) We say {H1, H2, . . . Hb} is an (a, b) covering of S if (i) S ⊆

⋃b
j=1Hj , (ii) |V (

⋃b
j=1Hj)| =

a, and (iii) for each ` ∈ [b], S 6⊆
⋃b
j=1Hj \H`.

(b) Let k(a, b) be the number of unique configurations of (a, b) coverings, i.e. the number
of ways to place b copies of H on a vertices such that conditions (i)-(iii) of (a) hold.
Enumerate the possible configurations of (a, b) coverings with values in [k(a, b)]. For
i ∈ [k(a, b)], an (a, b, i) covering of S is an (a, b) covering with configuration i.

(c) We say the set {F1, F2, . . . Fb′} (with precisely b′ elements) is an (a′, b′) subset of an
(a, b, i) covering {H1, H2, . . . Hb} if (i) {F1, F2, . . . Fb′} ⊆ {H1, H2, . . . Hb}, and (ii)
|V (
⋃b′
`=1 F`)| = a′.

APPROX/RANDOM 2019

66:10 Thresholds in Random Motif Graphs

(d) Let I(S,H) = {(a, b, i) | there exists an (a, b) covering of S by H and i ∈ [k(a, b)]}.
(e) For (a, b, i) ∈ I(S,H), let

D(a, b, i) = {(a′, b′) | there exists an (a′, b′) subset of the (a, b, i) covering}.

(f) For (a, b, i) ∈ I(S,H), let γ(a, b, i) = min(a′,b′)∈D(a,b,i)
a′

b′ and denote

γ̄ = max
(a,b,i)∈I(S,H)

γ(a, b, i).

Proof of Theorem 8. Let G ∼ Ḡ(H,n,m). We say that an instance of the subgraph S in
G is an (a, b, i) instance if the placed graphs H1, . . . Hb that contribute at least one edge to
S form an (a, b, i) covering of S. Let Xab

i denote the number of (a, b, i) instances of S in G.
Let Z =

∑
(a,b,i)∈I(S,H)X

ab
i be the total number of instances of the subgraph S in G.

First we use the first moment method to show that if m� nv−γ̄ , then the probability
that S occurs as a subgraph is o(1). It suffices to show that for all (a, b, i) ∈ I(S,H),
E
[
Xab
i

]
= o(1) since

Pr[Z > 0] ≤ E[Z] =
∑

(a,b,i)∈I(S,H)

Xab
i ,

and |I(S,H)| is a constant independent of n.
We now compute E

[
Xab
i

]
for a fixed triple (a, b, i) ∈ I(S,H). Let {F1, . . . Fb′} be an

(a′, b′) subset of the configuration (a, b, i) with a′/b′ = γ(a, b, i). Let Y be the number of
instances of F =

⋃b′
i=1 Fb′ in G formed by the configuration {F1, . . . Fb′}. Since an (a, b, i)

instance of S contains an instance of the configuration {F1, . . . Fb′}, Xab
i ≤ Y . The number

of ways to select a′ vertices is at most na′ . The probability that a labeled copy of H is placed
on a specified set of vertices is m/nv. We compute

E
[
Xab
i

]
≤ E[Y] ≤ cna

′
(m
nv

)b′
= c

(
nγ(a,b,i)−vm

)b′
≤ c

(
nγ̄−vm

)b′
,

where c is a constant depending only on the number of automorphisms of S and the
number of automorphisms of the configuration {F1, . . . Fb′}. It follows that for m� nγ̄−v,
E
[
Xab
i

]
= o(1), as desired.

Next we use the second moment method to show that if m � nv−γ̄ then S appears
as a subgraph almost surely. It suffices to show that there exists some (a, b, i) ∈ I(S,H)
such that Xab

i is almost surely positive. Let (a, b, i) be such that γ̄ = γ(a, b, i). We apply
Corollary 4.3.5 of [1] to show that Xab

i is almost surely positive. Let Xab
i =

∑
j Aj where Aj

is an indicator random variable for the event that there is an (a, b, i) instance of S formed by
a configuration of H1, H2, . . . Hb each present on a specified set of vertices. Fix A`, and let

∆∗ =
∑
j∼`

Pr[Aj |A`],

where j ∼ ` indicates that Aj and A` are not independent. By 4.3.5 of [1], if E
[
Xab
i

]
→∞

and ∆∗ = o(E
[
Xab
i

]
), then Xab

i > 0 almost surely.
First we show that E

[
Xab
i

]
→∞. We compute as above

E
[
Xab
i

]
≥ c′na

(m
nv

)b
= c′

(
na/b−vm

)b
≥ c′

(
nγ̄−vm

)b
where c′ is a constant depending only on the number of automorphisms of S and the number
of automorphisms of the configuration {H1, . . . Hb}. It follows that if m � nv−γ̄ then
E
[
Xab
i

]
→∞.

M. Anastos, P. Michaeli, and S. Petti 66:11

Finally, we show ∆∗ = o(E
[
Xab
i

]
). Observe that under the assumption m� nv−γ̄ ,

∆∗ =
∑

(a′,b′)∈D(a,b,i)

cna−a
′
(m
nv

)b−b′
=

∑
(a′,b′)∈D(a,b,i)

cE
[
Xab
i

] (
n−a

′/b′+vm−1
)b′

≤ c′ E
[
Xab
i

] (
n−γ(a,b,i)+vm−1

)b
= c′ E

[
Xab
i

] (
nv−γ̄m−1)b = o

(
E
[
Xab
i

])
. J

6 Conclusion

6.1 The value of the random motif model
The study of random motif graphs has the potential to strengthen the impact of the Erdős-
Rényi construction. In the context of analyzing real-world networks with an overrepresented
motif, random motif graphs may be a more insightful null hypothesis model to compare
against to identify non-random structure. For instance by studying subgraphs counts of
random H motif graphs one can determine if some larger motif pattern is a byproduct of
having many copies of H or is itself some novel aspect of the network structure. Moreover,
it is possible that a random motif graph may be used to establish the existence of a graph
with some extremal property of interest. Finally, random motif graphs can be used as an
alternate definition of average case for analyzing algorithms under the assumption that the
input has some motif structure.

6.2 Future directions: understanding threshold behavior more broadly
We have established that random motif graphs behave similarly to traditional Erdős-Rényi
random graphs with respect to thresholds and hitting times for monotone properties. Does
similar behavior appear when we consider random graphs formed by randomly adding
primitive subgraphs H whose size scales with n, the number of vertices of the random graph?
Instead of taking H to be a fixed motif, H could be a path, cycle, matching or clique whose
size depends on n, for example. Some of these cases were in fact studied in several contexts.
For example, the union of d ≥ 3 random perfect matchings is contiguous to the random
d-regular graph, and is sometimes easier to analyze [19]. Moreover, we can consider the
class of models where H itself is chosen from some probability distribution. In several cases,
this has been studied as well. For instance, [10] and [8] consider the case when H is the
uniform spanning tree, and [15] considers the case when H is an Erdős-Rényi random graph
with constant density and size dependent on n. Further study of these models is a first step
toward delineating a larger family of random graphs that exhibit Erdős-Rényi like threshold
and hitting time behaviors.

References
1 Noga Alon and Joel H. Spencer. The probabilistic method. Wiley Series in Discrete Mathematics

and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, fourth edition, 2016.
2 Uri Alon. Network motifs: theory and experimental approaches. Nature Reviews Genetics,

8(6):450–461, 2007.
3 Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.
4 Béla Bollobás. Random graphs. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers],

London, 1985.

APPROX/RANDOM 2019

https://doi.org/10.1126/science.286.5439.509

66:12 Thresholds in Random Motif Graphs

5 Béla Bollobás and Andrew Thomason. Hereditary and monotone properties of graphs. In
The mathematics of Paul Erdős, II, volume 14 of Algorithms Combin., pages 70–78. Springer,
Berlin, 1997. doi:10.1007/978-3-642-60406-5_7.

6 Paul Erdős and Alfréd Rényi. On random graphs. I. Publicationes Mathematicae Debrecen,
6:290–297, 1959.

7 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutató Int. Közl., 5:17–61, 1960.

8 Alan Frieze, Navin Goyal, Luis Rademacher, and Santosh Vempala. Expanders via random
spanning trees. SIAM Journal on Computing, 43(2):497–513, 2014. doi:10.1137/120890971.

9 Alan Frieze and Michał Karoński. Introduction to random graphs. Cambridge University Press,
Cambridge, 2016. doi:10.1017/CBO9781316339831.

10 Alan Frieze, Michał Karoński, and Luboš Thoma. On perfect matchings and Hamilton cycles
in sums of random trees. SIAM Journal on Discrete Mathematics, 12(2):208–216, 1999.
doi:10.1137/S0895480196313790.

11 Edgar N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30:1141–1144, 1959.
doi:10.1214/aoms/1177706098.

12 Svante Janson, Tomasz Łuczak, and Andrzej Rucinski. Random graphs. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. doi:
10.1002/9781118032718.

13 Michael Krivelevich and Peleg Michaeli. Small subgraphs in the trace of a random walk.
Electronic Journal of Combinatorics, 24(1):Paper 1.28, 22, 2017.

14 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri B. Chklovskii, and Uri
Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

15 Samantha Petti and Santosh S. Vempala. Approximating Sparse Graphs: The Random
Overlapping Communities Model. arXiv e-prints, February 2018. arXiv:1802.03652.

16 Daniel Poole. On the strength of connectedness of a random hypergraph. Electronic Journal
of Combinatorics, 22(1):Paper 1.69, 16, 2015.

17 Sen Song, Per Jesper Sjöström, Markus Reigl, Sacha B. Nelson, and Dmitri B. Chklovskii.
Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS biology,
3(3):e68, 2005.

18 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of “small-world" networks.
Nature, 393(6684):440–442, 1998. doi:10.1038/30918.

19 Nicholas C. Wormald. Models of random regular graphs. In Surveys in combinatorics, 1999
(Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239–298. Cambridge
Univ. Press, Cambridge, 1999.

20 Esti Yeger-Lotem, Shmuel Sattath, Nadav Kashtan, Shalev Itzkovitz, Ron Milo, Ron Y.
Pinter, Uri Alon, and Hanah Margalit. Network motifs in integrated cellular networks of
transcription-regulation and protein-protein interaction. Proceedings of the National Academy
of Sciences of the United States of America, 101(16):5934–5939, 2004.

A Estimates for useful functions

I Lemma 16. For r = r(n), if k = |V (H)| and α = r/n then mr(H) ∼ rm1(H) · 1−(1−α)k

kα .

Proof. Observe that for r ≥ 0,

mr(H) =
((

n

k

)
−
(
n− r
k

))
· k!

aut(H) ,

thus

mr(H)
rm1(H) =

(
n
k

)
−
(
n−r
k

)
r
((
n
k

)
−
(
n−1
k

)) ∼ nk − (n− r)k

r(nk − (n− 1)k) = 1− (1− α)k

r(1− (1− n−1)k) ∼
1− (1− α)k

kα
. J

https://doi.org/10.1007/978-3-642-60406-5_7
https://doi.org/10.1137/120890971
https://doi.org/10.1017/CBO9781316339831
https://doi.org/10.1137/S0895480196313790
https://doi.org/10.1214/aoms/1177706098
https://doi.org/10.1002/9781118032718
https://doi.org/10.1002/9781118032718
http://arxiv.org/abs/1802.03652
https://doi.org/10.1038/30918

M. Anastos, P. Michaeli, and S. Petti 66:13

For r ≥ 1, denote by qr(H) the number of copies of H that intersect [r] but that are not
contained in [r].

I Lemma 17. For r = r(n), if k = |V (H)| and α = r/n then qr(H) ∼ rm1(H)· 1−(1−α)k−αk

kα .

Proof. Observe that for r ≥ 0,

qr(H) =
((

n

k

)
−
(
n− r
k

)
−
(
r

k

))
· k!

aut(H) ,

thus

qr(H)
rm1(H) =

(
n
k

)
−
(
n−r
k

)
−
(
r
k

)
r
((
n
k

)
−
(
n−1
k

)) ∼ nk − (n− r)k − rk

r(nk − (n− 1)k)

= 1− (1− α)k − αk

r(1− (1− n−1)k) ∼
1− (1− α)k − αk

kα
. J

For convenience we define for α ∈ [0, 1] and k ≥ 1,

fk(α) = 1− (1− α)k − αk

kα
.

I Lemma 18. For 2 ≤ k ≤ r we have that rfk(r/n) ≥ (1 + o(1))k.

Proof. Write gk(α) = fk(α) · kα = 1− (1− α)k − αk. Observe that it is strictly increasing
in (0, 1/2). Note also that

n · gk
(
k

n

)
= n− ne−k

2/n − o(1) ∼ k2.

It follows that
kr

n
· fk

(r
n

)
= gk

(r
n

)
≥ gk

(
k

n

)
∼ k2

n
,

so rfk(r/n) ≥ (1 + o(1))k. J

B Minimum degree

I Theorem 19. With high probability

δ(G(H,n, p−d)) < d and δ(G(H,n, p+
d)) ≥ d.

Proof. Let δ = δ(H). It suffices to show that with high probability for ` ∈ Z≥0

Pr
[
δ(G(H,n, p−`·δ)) > (`− 1)δ

]
= o(1) (1)

and

Pr
[
δ(G(H,n, p+

`·δ)) < `δ
]

= o(1). (2)

Proof of (1): Let p = p−`·δ. For v ∈ V let Iv = I{d(v) = (`− 1)δ} and Z =
∑
v∈V Iv.

E[Z] ≥ (1− o(1))n
(
n− 1
vH − 1

)`−1
p`−1(1− p)m1(H)−`+1

≥ C1n(pn(vH−1))`−1e−(p+4p2)(m1(H)−`+1)

≥ C2n(logn)`−1e− logn−(`−1) log logn+ω(1) ≥ eω(1)/2.

APPROX/RANDOM 2019

66:14 Thresholds in Random Motif Graphs

In addition,

E
[
Z2] =

∑
u,v∈V

Pr[Iv ∧ Iu]

≤ E[Z]2 +
∑

u6=v∈V
Pr[Iu ∧ Iv ∧ {u, v lie on the same copy of H}]

≤ E[Z]2 +
(
n

2

)(
n− 2
r − 2

)
r!

aut(H)p(1− p)
(1−o(1))2m1

= E[Z]2 + nm1p(1− p)m1−1C3(1− p−2)(1−o(1))m1 = E[Z]2 + o(1) E[Z]

= (1 + o(1)) E[Z]2.

Chebyshev’s inequality give us,

Pr[|Z − E[Z]| ≥ E[Z]/2] ≤
E
[
Z2]− E[Z]2

0.25 E[Z]2
= o(1).

Hence with high probability there exist vertices of degree (`− 1)δ.

Proof of (2): Let p = p+
`·δ. Let E1 be the event that in G(H,n, p) there exists a vertex of

degree d ≤ `δ that lies on more than ` copies of H. In the event E1 there exists a vertex v
and a vertex set S of size d such that all the neighbors of v lie in S and at least `+ 1 copies
of H intersect S ∪ {v}, each in at least δ + 1 vertices. Therefore,

Pr[E1] ≤ n
(
n

d

)
[1− p](

n−d−1
vH−1)

((
d+ 1
δ + 1

)(
n− δ − 1
vH − δ − 1

))`+1
p`+1

≤ e−p·(
n−d−1
vH−1)nd+1−δ(`+1)[nvH−1p]`+1

≤ e−(1+o(1))p·m1(H)(log2 n)δd(H)+1 = o(1).

In the event ¬E1 the number of vertices of degree less than `δ is bounded by the number of
vertices that are covered by at most `− 1 copies of H. Thus

Pr
[
δ(G(H,n, p+

`·δ)) < `δ
]
≤ Pr[E1] + n

`−1∑
i=0

(
m1(H)

i

)
pi(1− p)m1(H)−i

≤ `n(m1(H)p)`−1e−pm1(H)+p` + o(1)

≤ `n[2 logn]`−1e− logn−(`−1) log logn−ω(1) + o(1) = o(1). J

C Proofs of lemmas for Hamiltoncity

Proof of Lemma 11. If there exists S ⊂ Large of size n19/20 ≤ |S| ≤ n/30r such that
|N(S)| < 10|S| then there exist sets A,B of size n19/20 ≤ s ≤ n/30r and n− 11s respectively
such that no copy of H, H ′ satisfies |A ∩H ′| = 1 and |B ∩H ′| = r − 1 (take S = A and B
to be any subset of V \ (S ∪N(S)) of size n− 11s). The probability of such event occurring
is bounded above by

n/30r∑
s=n19/20

(
n

s

)(
n− s
10s

)
(1− p0)

r!
aut(H) ·s(n−11s

r−1)

≤
n/30r∑

s=n19/20

[
en

s
·
(
en

10s

)10
e−p0

r!
aut(H) ·(n−11s

r−1)
]s

M. Anastos, P. Michaeli, and S. Petti 66:15

. . . ≤
n/30r∑

s=n19/20

[(
n

s

)11
e
− ln n−2 ln ln n

(n−1
r−1) ·(n−11s

r−1)]s

≤
n/30r∑

s=n19/20

[(
n

s

)11(ln2 n

n

)(1− 11s
n)···(1− 11s−r+2

n−r+2)]s

≤
n/30r∑

s=n19/20

[(
n

s

)11(ln2 n

n

)1− 12sr
n
]s
≤

n/30r∑
s=n19/20

[
n11/20

(
ln2 n

n

)18/30]s
= o(1).

Now assume that there exists a set S ⊂ Large of size at most n19/20 that satisfies |N(S)| <
10|S|. Since every vertex in S is in at least ln lnn copies of H and every copy of H
covers r vertices we have that S intersects at least |S| ln lnn/11 copies of H. Each of
those copies is spanned by S ∪ N(S). Therefore there exists a set W ⊇ S ∪ N(S) of size
w = |W | = 11|S| ≤ 11n19/20 that intersects at least |W | ln lnn

11r copies of H each, in at least 2
vertices. Since every vertex in Large has ln lnn neighbors |W | ≥ ln lnn. The probability
that such a set exists is bounded by

11n19/20∑
w=ln lnn

(
n

w

)(
r!
(
w
2
)(

n
r−2
)

w ln lnn/11r

)
p
w ln lnn/11r
0

≤
11n19/20∑
w=ln lnn

nw
(

11er3wnr−2

ln lnn

)w ln lnn/11r
p
w ln lnn/11r
0

≤
11n19/20∑
w=ln lnn

[
n11r/ ln lnn · 11er3wnr−2

ln lnn · p0

]w ln lnn/11r

≤
11n19/20∑
w=ln lnn

(
n11r/ ln lnn · w logn

n

)w ln lnn/11r
= o(1). J

Proof of Lemma 12. For u ∈ V and Q ⊂ V let S(u,Q) be the event that in G(H,n, p0) u
intersects at most ln lnn copies of H that do not intersect Q. For 0 ≤ |Q| ≤ 6,

Pr[S(u,Q)] ≤ Pr
[
Bin
(

r!
aut(H)

(
n− 7
r − 1

)
, p0

)
≤ ln lnn

]
≤ n−0.9.

Let B be the event that for some u, v ∈ Small there exist ` ≤ 6 copies of H in G(H,n, p+
2)

that span a connected subgraph containing both u, v. If B occurs then we can find a set
Q = {v = v0, v1, ..., v`−1, v` = u} such that i) the events S(v,Q \ {v}), S(u,Q \ {u}) occur
and ii) there exist H1, ...,H` in G(H,n, p+

2) such that Hi ∩ Q = {vi−1, vi}. Since all the
aforementioned events are independent

Pr[B] ≤
6∑
`=1

∑
Q={v0,v1,...,v`}

Pr[S(v0, Q \ {v0}] ·
((

n− 2
r − 2

)
r!

aut(H)p
+
2

)`
· Pr[S(v`, Q \ {v`}]

≤
6∑
`=1

n`+1 · n−0.9 ·
(
C3 lnn
n

)`
· n−0.9 = o(1). J

APPROX/RANDOM 2019

66:16 Thresholds in Random Motif Graphs

Proof of Lemma 13. Lemma 12 implies that w.h.p. there do not exist v ∈ V and u,w ∈
Small, u 6= w such that in G(H,n, p+

2) v and u are in a copy of H and v and w are in a
copy of H. The probability that there exist v ∈ V , u ∈ Small \ {v} that are both contained
in more than one copy of H in G(H,n, p+

2) is bounded by

∑
v,u∈V

Pr[S(u, {v})]
((

n− 2
r − 2

)
r!

aut(H)p
+
2

)2
≤ C4n

−0.9 log2 n = o(1). J

Proof of Lemma 14.
1. Recall that we can couple G(H,n, p0), Ḡ(H,n, τ2) such that G(H,n, p0) ⊂ Ḡ(H,n, τ2)

w.h.p. and there are at least n ln lnn/2r copies of H in Ḡ(H,n, τ2) that are not present
in G(H,n, p0). From Lemma 13 it follows that w.h.p. each of those copies that spans a
vertex in Small also spans a unique vertex in V \ Small. Hence w ≥ n ln lnn/2r − n.

2. Let S ⊂ V , |S| ≤ n/30r and set Ss = S ∩ Small, SL = S ∩ Large. Lemma 11 implies
that |N(SL)| ≥ 10|SL|. In the case |SL| ≥ |Ss| we have

|N(S)| ≥ |N(SL) \ Ss| ≥ 10|SL| − |N(SL) ∩ Ss| ≥ 10|SL| − |Ss| ≥ 9|SL| ≥ 2|S|.

Next assume |SL| < |Ss|. Lemma 12 implies that no two vertices in Small are within
distance 2 in G(H,n, p+

2), hence their neighborhoods are disjoint. Also F0 has minimum
degree 2. Therefore |N(Ss)| ≥ 2|Ss|. Now let SL = S1 ∪ S2 where S2 consists of all the
vertices in SL that are within distance 2 from Ss and S1 = SL \ S2. If |S1| ≥ |S2| then
since Ss and S1 have disjoint neighborhoods we have that

|N(S)| ≥ |N(Ss) \ S2|+ |N(S1) \ S2| ≥ 2|Ss|+ 10|S1| − 2|S2| ≥ 2|S|.

Otherwise |Ss| > |SL| and |S2| > |S1|. For v ∈ Ss let NS2(v) be the set of vertices
in S2 that are within distance 2 from v, hence ∪v∈Ss

NS2(v) = |S2|. Lemma 12 states
that no two vertices in Small are within distance 6, thus for v, u ∈ Ss, v 6= u the sets
N(NS2(v)), N(NS2(u)) are disjoint. In addition since NS2 ⊂ SL and |SL| ≤ |S| ≤ n/30r,
Lemma 11 implies that |N(NS2(v))| ≥ 10|NS2(v)| for all v ∈ Ss. Thus

|N(S)| ≥
∑
v∈Ss

|N(NS2(v) ∪ {v})|

≥
∑
v∈Ss

[10|NS2(v)| − |{v}|] · INS2 (v)6=∅ + |N(v)|INS2 (v)=∅

≥
∑
v∈Ss

2 = 2|Ss| ≥ |S|.

3. Assume that there exists a set S ⊂ V such that S is a connected component of F0
and let s = |S|. F0 has minimum degree 2 therefore s ≥ 3. Let SL = S ∩ Large and
Ss = S ∩ Small. Lemma 13 implies that every vertex in SL can be adjacent to at most 1
vertex in Small hence |SL| ≥ |Ss|. Thereafter Lemma 11 implies that |S| > n/30r since
otherwise

|N(S)| ≥ |N(SL)| − |Ss| ≥ 10|SL| − |SL| > 0.

Finally the probability that there exists a connected component of size n/30r ≤ s ≤ n/2
in G(H,n, p0) ⊂ F0 is bounded by

0.5n∑
s=n/30r

(
n

s

)
(1− p0)

r!
aut(H) ·s(n−s

r−1) ≤
0.5n∑

s=n/30r

[
en

s
· e−C5 lnn

]s
= o(1).

M. Anastos, P. Michaeli, and S. Petti 66:17

4. First we show that w.h.p. |Small| ≤ n0.1. Indeed by Markov’s inequality,

Pr
[
|Small| > n0.1] ≤ n−0.1 · nPr

[
Bin
(

r!
aut(H)

(
n− 1
r − 1

)
, p0

)
≤ ln lnn

]
= o(1).

Now let Qj be a set of εn2 edges not present in Fj and Q′j be the subset of Qj consisting
of the edges that are not incident to Small. Then w.h.p. |Q′j | = (1 + o(1))εn2. Every
edge in Q′j belongs to C6n

r−2 copies of H that are no present in Fj and every copy of
H may cover at most

(
r
2
)
edges in Q′j . Therefore there exists a set Wi consisting of at

least C6n
r−2 · (1 + o(1))εn2/

(
r
2
)
distinct copies of H that intersect Q′j . Hij+1 is uniformly

distributed among the copies of H that are not present in Fj and are not incident to a
vertex in Small. Thus

Pr[iv] = Pr[Hi ∈Wi] ≥
C6n

r−2 · (1 + o(1))εn2/
(
r
2
)

nr
≥ C7ε = Cε. J

D Proof sketch of Theorems 4 and 5

To prove Theorem 5 we first indicate the edge set Q1, consisting of the edges that are incident
to vertices of degree 1. Then we delete these edges and the vertex set U1 consisting of the
vertices incident to them. Thereafter we use exactly the same techniques as above in order
to find a Hamilton cycle in the remaining graph. We use half of the edges of that cycle and
the edges in Q1 to form a perfect matching.

Given the above, the only substantial difference is that while generating Ḡ(H,n, τ1) (in
place of Ḡ(H,n, τ2)) we stop at time t∗ = min{i : δ(G′i) = 1}. The proofs of all Lemmas with
exception the proof of Lemma 14, follow in exactly the same way. For the proof of Lemma 14
we have to be slightly more cautious as we want to prove the corresponding statements for
the subgraph that is spanned by V \ U1. Thus we have to use Small \ U1 and Large \ U1
in place of Small and Large respectively.

E Proof of Theorem 9

Before proving Theorem 9, we derive an expression for a′/b′ and establish the following upper
bound on γ(a, b, i).

I Lemma 20. Consider an (a, b, i) covering of S by a path of length v − 1 and an (a′, b′)
subcovering with c′ connected components. Let Sj be the subgraph of S covered by jth connected
component of the (a′, b′) subcovering. Let fj = |E(Sj)| − |V (Sj)|+ 1 and f ′ =

∑c′

j=1 fj. Let
k be the number of duplicate edges in the (a′, b′) subcovering, i.e. k is the smallest integer
such that removing k edges from multigraph union of b′ copies of H can yield a simple graph.
Then

a′

b′
= v − 1 + c′ − f ′ − k

b′
(3)

and

γ(a, b, i) ≤
{
v − 1 + 1−f

b (a, b, i) is edge-disjoint
v − 1− f

b (a, b, i) is not edge-disjoint
(4)

APPROX/RANDOM 2019

66:18 Thresholds in Random Motif Graphs

Proof. We compute a′. Note that each of the b′ copies of H contributes v vertices, however
vertices may be counted multiple times. We compute

a′ = b′v −

b′ − c′∑
j=1

1− fj

− k = b′(v − 1) + c′ − f ′ − k,

where the first term subtracted corresponds to doubling counting vertices in each connected
component and subtracting k corresponds to removing double counting for vertices adjacent
to edges of S that are covered multiple times.

By definition, γ(a, b, i) ≤ a/b. For the (a′, b′) = (a, b) subcover that is the entire (a, b, i)
cover, c′ = 1, f ′ = f and k = 0 if (a, b, i) is edge-disjoint and k ≥ 1 if (a, b, i) is not
edge-disjoint. Thus, Equation (4) follows directly from Equation (3). J

Proof of Theorem 9. We consider each case separately.

Case: f = 0. Consider an (a, b, i) covering. If (a, b, i) is edge-disjoint, then b ≥ γ. It follows
from Equation (4) that

γ(a, b, i) ≤
{
v − 1 + 1

β (a, b, i) is edge-disjoint
v − 1 (a, b, i) is not edge-disjoint.

Thus γ̄ = max(a,b,i)∈I(S,H) γ(a, b, i) ≤ v − 1 + 1/β.
Next consider an edge-disjoint cover of S by β copies of H, (a, β, i). By Equation (3), for
any (a′, b′) subcover of the (a, β, i) cover,

a′

b′
= v − 1 + c′

b′
.

This value is minimized with c′ = 1 and b′ = β, which is achieved by the (a, β) subcover
which is the whole cover. Thus γ(a, β, i) = v − 1 + 1/β, and so γ̄ ≥ v − 1 + 1/β.

Case: f = 1. By Equation (4), γ(a, b, i) ≤ v − 1 for all (a, b, i) and so it follows that
γ̄ ≤ v − 1.
Next consider an edge-disjoint cover of S, (a, b, i). By Equation (3), for any (a′, b′)
subcover of the (a, β, i) cover,

a′

b′
= v − 1 + c′ − 1

b′
.

This value is minimized with c′ = 1, which is achieved by the (a, b) subcover which is the
whole cover. Thus γ(a, b, i) = v − 1, and so γ̄ ≥ v − 1.

Case: f ≥ 2. Consider an (a, b, i) cover. By Equation (3),

γ(a, b, i) = min
(a′,b′)∈D(a,b,i)

a′

b′
= min
a′,b′,c′,k

v − 1 + c′ − f ′ − k′

b′
.

Let t′ and e′ be the number of edges and vertices of S covered by the subcover, so
e′ = t′ − c′ + f ′ + k. It follows

γ(a, b, i) = min
t′,e′,b′

v − 1 + t′ − e′

b′
. (5)

To give an upper bound on γ(a, b, i), we construct a subcover of the (a, b, i) cover as
follows. Let X be a subgraph of S with t∗ vertices and e∗ edges such that t∗/e∗ = η. Let
t′, e′, b′ correspond to the subcover that minimally covers X, and let C be the subgraph
of S covered by this subcover (so X is a subgraph of C).

M. Anastos, P. Michaeli, and S. Petti 66:19

We claim that t′−e′ ≤ t∗−e∗. Note that t′−t∗ = |V (C)\V (X)| and e′−e∗ = |E(C)\E(X)|.
In each component of C \ E(X), at least one vertex is included in V (X). Since the
number of vertices in a connected component is at least the number of edges in the
connected component minus one, and at least one vertex in each connected component
is not included in V (C) \ V (X), it follows that |V (C) \ V (X)| ≥ |E(C) \ E(X)|. Thus
t′ − t∗ ≤ e′ − e∗ and the claim follows.
By considering this subcover with parameters t′, e′, b′, we obtain

γ(a, b, i) ≤ v − 1 + t′ − e′

b′
≤ v − 1 + t∗ − e∗

e∗
= v − 2 + η

since b′ ≤ e∗ and t∗ − e∗ ≤ 0. It follows that γ̄ ≤ v − 2 + η.
Finally to lower bound γ̄ we consider a cover in which there are b = |E(S)| copies of H
and each copy covers precisely one edge of S. In this case in all subcovers b′ = e′. By
Equation (5)

γ(a, b, i) = min
t′,e′,b′

v − 1 + t′ − e′

b′
= min

t′,e′
v − 2 + t′

e′
= v − 2− η.

Thus γ̄ ≥ v − 2 + η. J

APPROX/RANDOM 2019

Random-Cluster Dynamics in Z2: Rapid Mixing
with General Boundary Conditions
Antonio Blanca
Department of Computer Science and Engineering, Pennsylvania State University, USA
ablanca@cse.psu.edu

Reza Gheissari
Courant Institute of Mathematical Sciences, New York University, USA
reza@cims.nyu.edu

Eric Vigoda
School of Computer Science, Georgia Institute of Technology, USA
vigoda@cc.gatech.edu

Abstract
The random-cluster (FK) model is a key tool for the study of phase transitions and for the design of
efficient Markov chain Monte Carlo (MCMC) sampling algorithms for the Ising/Potts model. It is
well-known that in the high-temperature region β < βc(q) of the q-state Ising/Potts model on an
n×n box Λn of the integer lattice Z2, spin correlations decay exponentially fast; this property holds
even arbitrarily close to the boundary of Λn and uniformly over all boundary conditions. A direct
consequence of this property is that the corresponding single-site update Markov chain, known as the
Glauber dynamics, mixes in optimal O(n2 logn) steps on Λn for all choices of boundary conditions.
We study the effect of boundary conditions on the FK-dynamics, the analogous Glauber dynamics
for the random-cluster model.

On Λn the random-cluster model with parameters (p, q) has a sharp phase transition at p = pc(q).
Unlike the Ising/Potts model, the random-cluster model has non-local interactions which can be
forced by boundary conditions: external wirings of boundary vertices of Λn. We consider the broad
and natural class of boundary conditions that are realizable as a configuration on Z2 \ Λn. Such
boundary conditions can have many macroscopic wirings and impose long-range correlations even
at very high temperatures (p � pc(q)). In this paper, we prove that when q > 1 and p 6= pc(q)
the mixing time of the FK-dynamics is polynomial in n for every realizable boundary condition.
Previously, for boundary conditions that do not carry long-range information (namely wired and
free), Blanca and Sinclair (2017) had proved that the FK-dynamics in the same setting mixes in
optimal O(n2 logn) time. To illustrate the difficulties introduced by general boundary conditions, we
also construct a class of non-realizable boundary conditions that induce slow (stretched-exponential)
convergence at high temperatures.

2012 ACM Subject Classification Mathematics of computing → Markov-chain Monte Carlo conver-
gence measures; Theory of computation → Random walks and Markov chains

Keywords and phrases Markov chain, mixing time, random-cluster model, Glauber dynamics, spatial
mixing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.67

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.08722.

Funding Antonio Blanca: Research supported in part by NSF grants CCF-1617306 and CCF-
1563838.
Eric Vigoda: Research supported in part by NSF grants CCF-1617306 and CCF-1563838.

Acknowledgements The authors thank the anonymous referees for their helpful suggestions.

© Antonio Blanca, Reza Gheissari, and Eric Vigoda;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 67; pp. 67:1–67:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ablanca@cse.psu.edu
mailto:reza@cims.nyu.edu
mailto:vigoda@cc.gatech.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.67
https://arxiv.org/abs/1807.08722
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

1 Introduction

Statistical physics models are designed to study physical phase transitions where a small
change in a parameter which controls the local interactions, such as temperature, causes
abrupt changes in the macroscopic behavior of the system. Phase transitions are captured
by the onset of long-range correlations between vertices in the underlying graph, the infinite
2-dimensional integer lattice graph Z2 being a widely considered example. These long-range
correlations manifest in the asymptotic effect of “boundary conditions” in large finite volumes.
For example, if we take an n× n box Λn of Z2 and fix a configuration on the boundary of
this box, as we formalize momentarily, this fixed boundary condition may affect the static
(equilibrium state) and dynamic (approach to equilibrium) properties of the system.

The most notable and well-studied statistical physics model is the Ising/Potts model of
ferromagnetism. The (ferromagnetic) Ising/Potts model on a (finite) graph, say the n× n
box Λn ⊂ Z2 with nearest-neighbor edges E(Λn), is defined on the set of spin assignments
{1, . . . , q}Λn . The probability of a configuration σ ∈ {1, . . . , q}Λn in the associated Gibbs
distribution µΛn

is proportional to exp(βH(σ)), where H(σ) is the number of edges of Λn
whose endpoints are assigned the same spin in σ; the parameter β > 0 corresponds to the
inverse temperature and controls the strength of the nearest-neighbor interactions.

An Ising/Potts boundary condition τ is a fixed assignment of spins to ∂Λn, the (inner)
boundary of Λn; i.e., those vertices in Λn that are adjacent to vertices in Z2 \Λn. The Gibbs
distribution on Λn conditioned on the fixed assignment τ to ∂Λn, denoted µτΛn

, is used for
example to define the infinite Ising/Potts Gibbs measures on Z2. These are obtained as the
limits of the distributions on finite boxes for distinct boundary conditions τ ; i.e, limn→∞ µτΛn

for different τ .
On Z2, it is known that the Ising/Potts model undergoes a sharp phase transition at

a critical point β = βc(q) = ln(1 +√q) [31, 2]. This phase transition marks the onset of
long-range correlations and can also be understood as a transition in the number of (unique
vs. multiple) infinite-volume Gibbs measures. In finite regions of Z2 such as Λn, this phase
transition corresponds to whether an arbitrary boundary condition τ on ∂Λn may have
macroscopic effects on the Gibbs distribution. For instance, in the low-temperature region
β > βc(q), if τ is the all “1” configuration on ∂Λn, the spins of all vertices, even those near
the center of Λn will prefer the spin “1” and thus align with the boundary. In contrast,
in the high-temperature region β < βc(q), there is exponential decay (with distance) of
spin correlations: crucially this holds uniformly over all boundary conditions and over all
vertices (i.e., even for those near the boundary); this property is known as strong spatial
mixing (SSM).

This phase transition also exhibits itself in the dynamic properties of the system, e.g.,
through the speed of convergence to stationarity of natural Markov chains for the Ising/Potts
model. The classical Glauber dynamics, for example, which in each step updates the spin of
a random vertex according to the spins of its neighbors, is known to converge in Θ(n2 logn)
steps when β < βc(q) [28, 8, 2, 1]; this bound relies on the SSM property described above
and, as such, it holds for every fixed boundary condition. In contrast, when β > βc(q)
the speed of convergence of the Glauber dynamics is expected to depend crucially on the
boundary condition and understanding its behavior for general boundaries is a long-standing
open problem. At the moment, it is known that Glauber dynamics requires exponentially
(in n) many steps to converge for free (no boundary) and periodic (toroidal) boundary
conditions [34, 7, 16] and, in the special case of the Ising model (q = 2), sub-exponentially
many steps for uniform (e.g., all “1”) boundaries [25, 29].

A. Blanca, R. Gheissari, and E. Vigoda 67:3

Our focus here is the random-cluster (FK) model [13], which is a random graph model
intimately connected to the Ising/Potts model. Indeed, it has been central to the study of
the Ising/Potts phase transition (see, e.g., the recent breakthroughs on Z2 [2, 12, 11]) and
plays an indispensable role in the design of efficient Markov Chain Monte Carlo (MCMC)
algorithms for the Ising/Potts model (e.g., the Swendsen-Wang dynamics [33, 22]). We study
the effects of boundary conditions on Λn on the speed of convergence of the FK-dynamics,
the analog of the Ising/Potts Glauber dynamics for the random-cluster model. Despite the
close connection between these models, the boundary effects are fundamentally different.
Whereas the SSM property of the Ising/Potts model at β < βc(q) is uniform over the choice
of boundary condition, in the random-cluster setting, SSM is limited to only a few select
choices of boundary conditions.

We seek to understand the dynamics in situations where spatial mixing is destroyed
near the boundary by the boundary condition. First we establish that for all realizable FK
boundary conditions (those which are consistent with the planarity of Z2), the FK-dynamics
converges in polynomially many (in n) steps, both at high and low temperatures. To
illustrate the difficulties introduced by general boundary conditions, we also construct a class
of non-realizable boundary conditions that induce slow (stretched-exponential) convergence
at high temperatures.

The random-cluster model. For a graph G = (V,E) and parameters p ∈ (0, 1) and q > 0,
random-cluster configurations are subsets of edges in Ω = {S ⊆ E}, with the probability of
S ⊂ E given by

πG,p,q(S) = 1
Z
p|S|(1− p)|E\S|qc(S) , (1)

where c(S) is the number of connected components (including isolated vertices) in the
subgraph (V, S), and Z = ZG,p,q is the normalizing constant that makes πG,p,q a probability
measure.

For integer q ≥ 2 connectivities in the random-cluster model correspond to spin cor-
relations in the Ising/Potts setting, and it is consequently viewed as a generalization of
the ferromagnetic Ising/Potts model to non-integer values of q. The random-cluster model,
however, is not a spin system in the usual sense, as the weight of a configuration S is not a
function of local interactions between edges in G, but instead of global connectivity properties.
This non-local structure is a crucial feature of the model but significantly complicates its
analysis; for example, it allows boundary conditions to induce long-range connections in G.

We consider the random-cluster model on the n × n box Λn of Z2, where, for q ≥ 1,
the model is also known to exhibit a phase transition corresponding to the emergence of
long-range correlations in the form of large connected components [2]. That is, there exists
a critical value p = pc(q) = √q/(√q + 1) such that, with high probability, when p < pc(q)
all connected components are of size O(logn) whereas when p > pc(q) there exists a “giant”
component of size Θ(n2) [2].

A random-cluster boundary condition ξ on ∂Λn is a partition {ξ1, ξ2, ...} of the boundary
vertices such that all vertices in ξi are connected via “ghost” (or external) wirings; these
connections are considered in the counting of c(S) in (1) and can therefore impose highly
non-local interactions. Of particular interest are boundary conditions where the partition is
induced by the connectivity components of a random-cluster configuration on E(Z2) \E(Λn).
We call such boundary conditions realizable. In fact, many works, including the standard
text [21], often restrict attention to realizable boundary conditions, but non-realizable
boundary conditions are still relevant in some cases.

APPROX/RANDOM 2019

67:4 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

The FK-dynamics. In this paper we study the mixing time of the FK-dynamics in the
presence of boundary conditions. (The mixing time is the number of steps until a Markov chain
is close to its stationary distribution in total variation distance, starting from the worst possible
initial configuration.) For a configuration St ⊆ E(Λn), a transition St → St+1 ⊆ E(Λn) of
the FK-dynamics is defined as follows:
1. Choose an edge e ∈ E(Λn) uniformly at random;
2. let St+1 = St ∪ {e} with probability

πΛn,p,q(St ∪ {e})
πΛn,p,q(St ∪ {e}) + πΛn,p,q(St \ {e})

=
{

p
q(1−p)+p if e is a “cut-edge” in (Λn, St);
p otherwise;

3. else let St+1 = St \ {e}.
We say e is a cut-edge in (Λn, St) if the number of connected components in St ∪ {e} and
St \ {e} differ. Under a boundary condition ξ, the property of e being a cut-edge is defined
with respect to the augmented graph (Λn, Sξt). The FK-dynamics converges to (1) by
construction, and we study its mixing time. We say the dynamics is rapidly mixing if the
mixing time is polynomial in |V |, and torpidly mixing when the mixing time is exponential
in |V |ε for some ε > 0.

Results. The FK-dynamics is quite powerful since it is known to mix in Θ(n2 logn) steps
for all q > 1 both at high and low temperatures (i.e., for all p 6= pc(q)) for certain “nice”
boundary conditions that do not carry information about random-cluster connectivities in
non-local ways: namely, configurations in different regions of Λn do not interact through
these boundaries [5]. (In comparison, the Ising/Potts Glauber dynamics is torpidly mixing
in the low-temperature regime.) Specifically, the tight mixing time bound in [5] holds under
boundary conditions that are free (no boundary condition), wired (all boundary vertices are
connected to one another) or periodic (the torus). More recently, [15] examined the cutoff
phenomenon in the FK-dynamics at p � pc(q); they also restricted attention to periodic
boundaries. At the critical p = pc(q) the FK-dynamics may exhibit torpid mixing depending
on the “order” (i.e., the continuity) of the phase transition [16, 18]; notably, when q � 1 and
p = pc(q), the mixing time may be exponential or sub-exponential depending on the choice
of boundary conditions [17].

The stability of the FK-dynamics to the choice of boundary conditions remained unclear
at p 6= pc(q); we show that the FK-dynamics is in fact rapidly mixing for all realizable
boundary conditions at p 6= pc(q).

I Theorem 1.1. For every q > 1, p 6= pc(q), there exists a constant C > 0 such that the
mixing time of the FK-dynamics on the n × n box Λn ⊂ Z2 with any realizable boundary
condition is O(nC).

We pause to comment on the proof of Theorem 1.1. The proofs of fast mixing when
p 6= pc(q) have relied crucially on a strong spatial mixing property, which in the random-
cluster model would say that correlations between edges (even near ∂Λn) decay exponentially
in the graph distance between them. It is easy to construct examples of realizable boundary
conditions where this correlation does not decay at all, even if p� pc(q), as the boundary
can enforce long-range interactions. Since the exponential decay of correlations does hold for
edges at distance Θ(logn) away from ∂Λn, we are able to reduce the proof of Theorem 1.1 to
proving a polynomial upper bound for the mixing time of the FK-dynamics on thin rectangles
of dimension n×Θ(logn) with realizable boundary conditions. This reduction is a byproduct

A. Blanca, R. Gheissari, and E. Vigoda 67:5

of a more general framework we describe in Section 3 for deriving mixing time estimates
from spatial mixing properties. The analysis of the FK-dynamics on thin rectangles is then
the key technical challenge for us; see Theorem 4.1 and Section 4.1 for a detailed outline of
its proof and the novelties therein.

Theorem 1.1 shows a polynomial upper bound on the mixing time, uniformly over all
realizable boundary conditions. Utilizing this theorem we can prove near-optimal Õ(n2)
mixing time for “typical” boundaries. The notion of typicality should be understood as
with high probability under some distribution over realizable boundary conditions, with a
natural choice being the marginal of the infinite-volume random-cluster measure πZ2,p,q on
E(Z2) \ E(Λn) (when p 6= pc(q) this measure is unique: see [21]).

I Theorem 1.2. Let q > 1, p 6= pc(q) and suppose ω is a random-cluster configuration
sampled from πZ2,p,q. Let ξω be the boundary condition on ∂Λn induced by the edges of ω in
Z2 \ Λn. Then, there exists a constant C > 0 such that with probability 1− o(1) the mixing
time of the FK-dynamics on the n× n box Λn with boundary condition ξω is O(n2(logn)C).

The proof of Theorem 1.2 uses Theorem 1.1 in a crucial way. Typical boundary conditions
do not exhibit the strong spatial mixing property from [5]; however, for such boundary
conditions we are able to prove that correlations between edges near the boundary decay
exponentially in their graph distance divided by a Θ(logn) factor. Using this spatial mixing
bound, together with the aforementioned general framework in Section 3, we reduce bounding
the mixing time on Λn with typical boundaries to bounding the mixing time on Θ((logn)2)×
Θ((logn)2) rectangles with arbitrary realizable boundary conditions. Theorem 1.1 implies that
the mixing time of the FK-dynamics in these smaller rectangles is at most poly-logarithmic
in n. Similar classes of typical boundary conditions were considered in [18] at p = pc(q).

Given that our rapid mixing result for realizable boundaries relies heavily on the planarity
of the boundary connections in Z2 \ Λn, one may wonder whether rapid mixing holds for all
possible FK boundary conditions (including those not realizable as configurations on Z2 \Λn).
We answer this in the negative, showing that there exist (non-realizable) boundaries for which
the FK-dynamics is torpidly mixing even while p 6= pc(q). In fact, this torpid mixing holds
at p� pc(q), which may sound especially surprising as correlations in the Gibbs measure
πΛn,p,q die off faster as p decreases.

I Theorem 1.3. Let q > 2. For every α ∈ (0, 1
2] and λ > 0 there exists a boundary condition

ξ, such that when p = λn−α the mixing time of the FK-dynamics on the n× n box Λn with
boundary condition ξ is exp(Ω(nα)).

Our proof of this theorem is constructive: we take any graph G on m edges for which
torpid mixing of the FK-dynamics is known at some value of p(m) < pc(q) and show how to
embed G into the boundary of Λn. We then develop a procedure to transfer mixing time
bounds from G to Λn. The high-level idea is that for sufficiently small p(m) the effect of the
configuration away from the boundary is negligible, and the mixing time of the FK-dynamics
on G completely governs the mixing time of FK-dynamics near the boundary ∂Λn. Therefore,
we can use known torpid mixing results for the mean-field random-cluster model (the case
where G is the complete graph) in its critical window at q > 2 [20, 4, 14, 19].

We remark that the requirement q > 2 appears to be sharp for Theorem 1.3, since it was
recently shown that the mixing time of FK-dynamics when q = 2 is at most polynomial in
the number of vertices on any graph and at every p ∈ (0, 1) [22]. It is expected that this
rapid mixing holds for all q ≤ 2. We believe that our torpid mixing result may extend to
small, but Ω(1) values of p < pc(q), though our current proof does not allow for this. In

APPROX/RANDOM 2019

67:6 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

principle, one would want to embed a bounded degree graph into ∂Λn, so that the value of
p at which it exhibits slow mixing is Ω(1). There are already several examples of bounded
degree graphs where torpid mixing is known [10, 6, 7, 16, 17].

Finally, we remark that by slight adaptations of the comparison results in [35, 36, 4], our
theorems translate (up to polynomial factors in n) to bounds for the mixing times of popular
non-local dynamics like the Chayes-Machta dynamics [9] and the Swendsen-Wang dynamics
on FK configurations [35, 36, 4].

The paper is organized as follows. In Section 2, we define various preliminary notions
that are used in our proofs. In Section 3, we introduce a general framework to deduce mixing
time estimates on Λn from spatial and local mixing properties. We then present our key
rapid mixing result for thin rectangles (Theorem 4.1) in Section 4, before completing the
proof of Theorem 1.1 in Section 5. The proofs from Section 4 are deferred to Section 6, and
those of Theorems 1.2 and 1.3 are included in the full manuscript [3].

2 Preliminaries: the random-cluster model in Z2

In this section we introduce a number of definitions, notation, and background results that
we will refer to repeatedly. More details and proofs can be found in the books [21, 24].
We will be considering the random-cluster model on rectangular subsets of Z2 of the form
Λn,l = {0, ..., n} × {0, ..., l} = [[0, n]]× [[0, l]] . When n = l, we use Λn for Λn,n. For simplicity,
in this preliminary section we shall focus on the n = l case, but everything stated here holds
more generally for rectangular subsets with n 6= l.

Abusing notation, we will also use Λn for the graph (Λn, E(Λn)) where E(Λn) consists
of all nearest neighbor pairs of vertices in Λn. We denote by ∂Λn the (inner) boundary of
Λn; that is the vertex set consisting of all vertices in Λn adjacent to vertices in Z2 \ Λn. A
boundary condition ξ of Λn is a partition of the vertices in ∂Λn. When u, v ∈ ∂Λn are in
the same element of ξ, we say that they are wired in ξ. If there exists a random-cluster
configuration ω on E(Z2) \ E(Λn) such that u, v ∈ ∂Λn are connected in ω if and only if
they are wired in ξ, we say that the boundary condition ξ is realizable.

For p ∈ (0, 1) and q > 0, the random-cluster model on Λn with boundary conditions ξ is
the probability measure πξΛn,p,q

over the subsets S ⊆ E(Λn) given by (1) with the qc(S) term
replaced by qc(S;ξ), where c(S; ξ) corresponds to the number of connected components in the
augmented graph (Λn, Sξ) and Sξ adds auxiliary edges between all pairs of vertices in ∂Λn
that are in the same element of ξ. Every random-cluster configuration S ⊆ E(Λn), can be
identified with some ω : E(Λn) → {0, 1} via ω(e) = 1 if e ∈ S (e is open) and ω(e) = 0 if
e /∈ S (e is closed). We sometimes interchange vertex sets with the subgraph they induce;
e.g., the random-cluster configuration on a set B ⊂ Z2 corresponds to the configuration in
the subgraph induced by B. We omit the subscripts p, q when understood from context.

Exponential decay of connectivities (EDC). A consequence of the results in [1, 2] is that
for every q > 1 and p < pc(q), there is a c = c(p, q) > 0 such that for every boundary
condition ξ and all u, v ∈ Λn,

πξΛn,p,q
(u Λn←→ v) ≤ e−cd(u,v) , (2)

where d(u, v) is the graph distance between u, v in Z2 and u Λn←→ v denotes that there is an
open path between u and v in the FK configuration on E(Λn) (not using the connections of ξ).

A. Blanca, R. Gheissari, and E. Vigoda 67:7

Monotonicity. Define a partial order over boundary conditions by ξ ≤ η if the partition
corresponding to ξ is finer than that of η. The extremal boundary conditions then, are the
free boundary where ξ = {{v} : v ∈ ∂Λn}, which we denote by ξ = 0, and the wired boundary
where ξ = {∂Λn}, denoted by ξ = 1. When q > 1, the random-cluster model satisfies the
following monotonicity in boundary conditions: if ξ, η are two boundary conditions on ∂Λn
with ξ ≤ η, then πξΛn

� πηΛn
, which is to say that πηΛn

stochastically dominates πξΛn
with

respect to the natural partial order on FK configurations.

Planar duality. Let Λ∗n = (Λ∗n, E(Λ∗n)) denote the planar dual of Λn. That is, Λ∗n corresponds
to the set of faces of Λn, and for each e ∈ E(Λn), there is a dual edge e∗ ∈ E(Λ∗n) connecting
the two faces bordering e. The random-cluster distribution satisfies πΛn,p,q(S) = πΛ∗n,p∗,q(S

∗),
where S∗ is the dual configuration to S ⊆ E (i.e., e∗ ∈ S∗ iff e 6∈ S), and p∗ = q(1−p)/(q(1−
p) + p). Notice that the infinite graph Z2 is isomorphic to its dual. The unique value of
p satisfying p = p∗, denoted psd(q), is called the self-dual point and [2] established that
pc(q) = psd(q); recall that pc(q) is the critical point for the phase transition in Z2.

Mixing time and spectral gap. Consider an ergodic (i.e., irreducible and aperiodic) Markov
chainM with finite state space Ω, transition matrix P and stationary distribution µ. The
mixing time ofM is given by tmix := tmix(1/4), where tmix(ε) = min{t : maxX0∈Ω ‖P t(X0, ·)−
µ‖tv ≤ ε} and ‖ · ‖tv denotes total-variation distance. For any positive ε < 1/2, we have
tmix(ε) ≤ dlog2 ε

−1e tmix. We use tmix(Λξn) to denote the mixing time of the FK-dynamics on
Λn ⊂ Z2 with boundary condition ξ. If P is irreducible and reversible with respect to µ, then
it has real eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λ|Ω| ≥ −1. The spectral gap of P is defined by
gap(P) = 1−max{|λ2|, |λ|Ω||}, and the inverse of the spectral gap captures the mixing time
up to a O(log(µ−1

min)) factor, where µmin := minω∈Ω µ(ω). For the various dynamics consider
in this paper this factor is poly(n).

FK-dynamics and duality. Each run of the FK-dynamics on Λn, with realizable boundary
conditions ξ and parameters p, q, determines a valid run of the FK-dynamics on the dual
graph Λ∗n with boundary conditions ξ∗ and parameters p∗, q. (Simply identify the FK
configuration in each step with its dual configuration; it can be straightforwardly verified that
the transitions of the FK-dynamics on the dual graph occur with the correct probabilities.)
Hence, the two dynamics have the same mixing times.

I Remark 2.1. The edge-set of the dual graph Λ∗n is not exactly in correspondence with the
edge-set of a rectangle Λ∗ = {− 1

2 , ..., n+ 1
2}×{−

1
2 , ..., n+ 1

2} as it does not include any edges
that are between boundary vertices of Λ∗. All the proofs in the paper carry through, only
with the natural minor geometric modifications, to the case of rectangles Λn with modified
edge-set that only contains edges edges with at least one endpoint in Λn \ ∂Λn. The dual
of this modified graph is then a (n− 1)× (n− 1) rectangle with all nearest-neighbor edges.
With these considerations, it often suffices for us to prove our theorems for p < pc(q). For
example, it is sufficient to prove Theorem 1.1 for p < pc(q).

3 Mixing time upper bounds: a general framework

In this section we introduce a general framework for bounding the mixing time of the
FK-dynamics on Λn = (Λn, E(Λn)) by its mixing times on certain smaller subsets. In [5] it
was shown that a strong form of spatial mixing (encoding exponential decay of correlations
uniformly over subsets of Λn) implies optimal mixing of the FK-dynamics. However, this

APPROX/RANDOM 2019

67:8 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

notion, known as strong spatial mixing (SSM) and described in Remark 3.2, does not hold
for many boundary conditions for which fast mixing of the FK-dynamics is still expected. To
circumvent this, we introduce a weaker notion, which we call moderate spatial mixing (MSM).

We introduce some notation first. For a set R ⊆ Λn, let E(R) ⊆ En be the set of
edges of E(Λn) with both endpoints in R. We will denote by Rc the vertex set Λn \R and
by Ec(R) the edge-complement of R; i.e., Ec(R) := E(Λn) \ E(R). For a configuration
ω : E(Λn)→ {0, 1}, we will use ω(R), or alternatively ω(E(R)), for the configuration of ω
on E(R). With a slight abuse of notation, for an edge set F ⊆ E(Λn), we use {F = ω} for
the event that the configuration on F is given by ω; when ω is the all free or the all wired
configuration, we simply use {F = 0} and {F = 1}, respectively.

I Definition 3.1. Let B = {B1, B2, . . . , Bk} be a collection of subsets of Λn = (Λn, E(Λn))
and let ξ be a boundary condition on Λn. We say that moderate spatial mixing (MSM) holds
on Λn for ξ, B and δ > 0 if for all e ∈ E(Λn), there exists Bj ∈ B such that∣∣∣πξΛn,p,q

(e = 1 | E(Bcj) = 1)− πξΛn,p,q
(e = 1 | E(Bcj) = 0)

∣∣∣ ≤ δ . (3)

In words, MSM holds for B if for every edge e ∈ E(Λn) we can find Bj such that e ∈ Bj and
the “influence” of the configuration on Λn \Bj on the state of e is bounded by δ.
I Remark 3.2. SSM as defined in [5] holds when

MSM holds for a specific sequence of collections of subsets: if Br is the set of subsets
containing all the square boxes of side length 2r centered at each e ∈ E(Λn) (intersected
with E(Λn)), then SSM holds if MSM holds for Br for every r ≥ 1 with δ = exp(−Ω(r)).
MSM does not capture the fast mixing of the FK-dynamics the way SSM does; it is easy to
find collections of subsets for which MSM holds for all boundary conditions, including those
boundary conditions for which we later prove slow mixing (Theorem 1.3). However, if, for a
collection B = {B1, . . . , Bk}, we also bound the mixing time of the FK-dynamics on every
Bj , we can deduce a mixing time bound for the FK-dynamics on Λn. Let tmix(Bτ) denote
the mixing time of the FK-dynamics on B ⊆ Λn with boundary condition τ .

I Definition 3.3. Let B = {B1, B2, . . . , Bk} be a collection of subsets of Λn = (Λn, E(Λn))
and let ξ be a boundary condition on Λn. We say that local mixing (LM) holds for B and
T > 0, if

tmix
(
B

(1,ξ)
j

)
≤ T and tmix

(
B

(0,ξ)
j

)
≤ T for all j = 1, ..., k

where (1, ξ) (resp., (0, ξ)) denotes the boundary condition on Bj induced by the event
{E(Bcj) = 1} (resp. {E(Bcj) = 0}) and the boundary condition ξ.

I Remark 3.4. When Bj ∩ ∂Λn = ∅, (1, ξ) and (0, ξ) are simply the wired and free boundary
condition on Bj , respectively. When Bj ∩ ∂Λn 6= ∅, ξ could also induce some connections in
(1, ξ) and (0, ξ).
Our next theorem, roughly speaking, establishes the following implication:

MSM + LM =⇒ upper bound for mixing time of FK-dynamics,

with the quality of the bound depending on the T for which LM holds. A similar (and
inspiring) implication for the Glauber dynamics of the Ising model in graphs of bounded
degree was established by Mossel and Sly in [30]; there, the notion of MSM is replaced by a
form of spatial mixing which is stronger than SSM. The proof of this theorem is provided in
the full version of this paper [3].

I Theorem 3.5. Let ξ be a boundary condition on Λn = (Λn, E(Λn)) and let B = {B1, B2, . . . ,

Bk} with Bj ⊂ Λn for all j = 1, . . . , k. If for ξ and B, moderate spatial mixing holds for some
δ ≤ 1/(12|E(Λn)|) and local mixing holds for some T > 0, then tmix(Λξn) = O(Tn2 logn).

A. Blanca, R. Gheissari, and E. Vigoda 67:9

Bw
Be

(a)

R1
R2 R2

(b)

a0 a1 a2 a3 a4 a5 a6

(c)

Figure 1 (a) A boundary condition for which no configuration in Bw ∩Be isolates Bw \Be from
Be \ Bw. (b) A boundary condition ξ where every pair of overlapping rectangles must interact
through ξ; the two groups of rectangles R1, R2 do not interact through ξ. (c) A boundary condition
with disconnecting intervals: [[a1, a4]] of free-type; [[a1, a2]], [[a3, a4]], [[a0, a6]] of free-wired-type; and
[[a0, a5]], [[a5, a6]] of wired-type.

4 Fast mixing on thin rectangles

The main difficulty in proving Theorem 1.1 using the general framework from Section 3
is obtaining mixing time estimates for the FK-dynamics on thin rectangles of dimension
Θ(n)×Θ(logn) with realizable boundary conditions. To motivate this we notice that in Λn,
when p 6= pc(q), the influence of the boundary condition is lost with high probability at a
distance Θ(logn) from ∂Λn. (This is a consequence of the EDC property when p < pc(q),
or the corresponding dual property when p > pc(q).) Consequently, the main challenge
will be to establish the mixing time of the FK-dynamics in the annulus of width Θ(logn)
with realizable boundary conditions on the outside. The key ingredient in the proof of
Theorem 1.1 will be the following mixing time estimate on thin rectangles. For an n × l
rectangle Λn,l = [[0, n]]× [[0, l]], let ∂nΛn,l, ∂eΛn,l, ∂sΛn,l and ∂wΛn,l denote its north, east,
south and west boundaries respectively.

I Theorem 4.1. Consider Λn,l = (Λn,l, E(Λn,l)) for l ≤ n with an arbitrary realizable
boundary condition ξ that is either free or wired on ∂eΛn,l ∪ ∂wΛn,l ∪ ∂sΛn,l. Then, for every
q > 1 and p 6= pc(q), the mixing time of the FK-dynamics on Λn,l is at most exp(O(l+logn)).

When l = O(logn), this implies the mixing time is nO(1), which will be the setting of interest
in our proofs. Moreover, we note that it suffices to prove Theorem 4.1 for the set of realizable
boundary conditions ξ that are free on ∂eΛn,l ∪ ∂wΛn,l ∪ ∂sΛn,l for all p 6= pc(q), as the set
of boundary conditions dual to these are exactly the set of realizable boundary conditions
that are wired on ∂eΛn,l ∪ ∂wΛn,l ∪ ∂sΛn,l; see Remark 2.1.

4.1 Proof of Theorem 4.1
Remarks about previous methods. To motivate our proof approach, we first mention some
obstructions that FK boundary conditions present if we tried to adapt methods for the
analogous problems in the context of spin systems. A traditional technique to proving mixing
time bounds for thin rectangles is the canonical paths method ([26, 27, 23, 32]), which gives
an upper bound that is exponential in the shorter side length; however, this approach relies
on bounding the cut-width of Λn,l which can be significantly distorted in the augmented
graph Λξn,l by the FK boundary conditions ξ.

A sharper technique is an inductive scheme [8, 27, 18], whereby, the mixing time of
the FK-dynamics on the rectangle Λn×l is bounded by the mixing times in two smaller
(overlapping) rectangular subsets, e.g., the left two-thirds Bw = [[0, 2

3n]] × [[0, l]] and the
right two-thirds Be = [[1

3n, n]]× [[0, l]]; see Figure 1(a). This approach requires bounding the
spectral gap of a block dynamics, whose updates consist of resampling the configuration on a
random block Bi ∈ {Bw, Be} from πξΛn,l

conditional on the configuration on Ec(Bi).

APPROX/RANDOM 2019

67:10 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

It follows from classical results that the spectral gap of the FK-dynamics on Λn,l is
bounded from below by the spectral of the block dynamics times the worst spectral gap
of the FK-dynamics in any block Bi, assuming a worst-case configuration on Ec(Bi); see,
e.g., Proposition 3.4 in [27]. With the choice of blocks Bw, Be, applying this recursively, the
spectral gap of the FK-dynamics on Λn,l is bounded from below by the gap of the block
dynamics raised to a Θ(logn) power. Therefore, establishing Theorem 4.1 requires an Ω(1)
lower bound on the spectral gap of the block dynamics.

The spectral gap of the block dynamics is typically bounded by showing that after the
first block update in either Bw or Be, the configuration in Bw ∩Be disconnects the influence
of the configuration on Bw \Be from Be \Bw with probability Ω(1). This would then allow
a standard coupling argument to lower bound the spectral gap by Ω(1). In the presence of
long-range boundary connections, however, it could be that no configuration on Bw ∩ Be
would disconnect the two sides from one another and facilitate coupling; see Figure 1(b) for
such an example. As such, our choices of blocks will depend on the boundary conditions
and will be chosen to allow for the block dynamics to couple in O(1) time, while ensuring
that the blocks are still at most a fraction of the size of the original rectangle, so that after
O(logn) recursive steps we arrive at a sufficiently small base scale.

Definitions and main results for thin rectangles. As Figure 1(b) demonstrates, there are
realizable boundary conditions that would force the blocks for the block dynamics to not be
single rectangles, but rather unions of rectangular subsets of Λn,l of the form R = [[a, b]]× [[0, l]]
with 0 ≤ a < b ≤ n; for ease of notation, let [[a, b]]c = [[0, n]] \ [[a, b]]. Our recursive argument
will proceed instead on groups of rectangles.

IDefinition 4.2. Letm = C? log l where C? is a suitably large constant. A group of rectangles
R =

⋃N(R)
i=1 Ri is the union of N(R) disjoint rectangular subsets Ri = [[ai, bi]]× [[0, l]] of Λn,l

such that W (Ri) := bi − ai ≥ 2m for every i = 1, ..., N(R).

The requirement that the width W (Ri) of every constituent rectangle Ri is at least 2m, is
so that the interior of the Ri’s are can be isolated from the configuration on E(Λn,l) \ E(R).
Indeed, the constant C? is chosen so that C? > c−1 with c being the constant from the EDC
property (2).

We show that for every group of rectangle R there is a choice of two suitable blocks,
which in turn will be group of rectangles, for the block dynamics. By suitable we mean two
group of rectangles whose width are a constant fraction of that of R and that are sufficiently
isolated from one another in ξ; see Proposition 4.6. (The width of a group of rectangles
R =

⋃N(R)
i=1 Ri, denoted W (R), is simply the sum of the width of its constituent rectangles;

that is W (R) =
∑N(R)
i=1 W (Ri).)

For this, we introduce the key notions of disconnecting intervals of a boundary condition
ξ and compatibility of a group of rectangles R ⊂ Λn,l with ξ. These allow us to manage the
unwieldy interactions that may be induced by the realizable boundary condition ξ. Roughly
speaking, a disconnecting interval is a segment [[a, b]]× ` of ∂nΛn,l that has no interaction
through ξ with the remaining vertices in ∂nΛn,l.

I Definition 4.3. For a realizable boundary condition ξ on Λn,l that is free on ∂eΛn,l ∪
∂sΛn,l ∪ ∂wΛn,l, an interval [[a, b]] ⊂ [[0, n]] is called disconnecting of
1. free-type: if there are no boundary connections in ξ between [[a, b]]× {l} and [[a, b]]c × {l}.
2. wired-type: if there is a boundary component in ξ that contains both vertices (a, l)

and (b, l).

A. Blanca, R. Gheissari, and E. Vigoda 67:11

Observe that an interval can be both of free-type and of wired-type if (a, l) and (b, l)
are connected through ξ but are not connected to any boundary vertex in [[a, b]]c × [[0, l]];
in this case, we may refer to the interval as being of free-wired-type; see Figure 1(c) for
several examples.

We say a group of rectangles R is compatible with ξ if the boundary interactions between
the rectangular subsets of R are limited in the following way.

I Definition 4.4. Let R =
⋃N(R)
i=1 Ri be a group of rectangles with Ri = [[ai, bi]]× [[0, l]] and

a1 < b1 < . . . < aN(R) < bN(R). Let ξ be a realizable boundary condition on Λn,l that is free
on ∂sΛn,l ∪ ∂eΛn,l ∪ ∂wΛn,l, and free in all vertices in ∂nΛn,l at distance at most m from
∂eΛn,l ∪ ∂wΛn,l.

We say R is compatible with ξ, if
1. Between every two consecutive rectangles Ri = [[ai, bi]]× [[0, l]] and Ri+1 = [[ai+1, bi+1]]×

[[0, l]] the interval [[bi −m, ai+1 +m]] is a disconnecting interval; and
2. The interval [[a1 +m, bN(R) −m]] is also a disconnecting interval.

It is clear from the definition that Λn,l is compatible with ξ: the first condition is vacuous,
while the second is satisfied by the additional assumption that all vertices a distance at
most m from ∂eΛn,l ∪ ∂wΛn,l are free (i.e., they appear as singletons in the corresponding
boundary partition)

With the definition of group of rectangles, disconnecting intervals and compatibility in
hand, we can now design a “splitting” algorithm for picking two blocks Rint,Rext for the
block dynamics with the desired properties. The following lemma, proved in Section 6,
provides the basis of such an algorithm.

I Lemma 4.5. Let ξ be a realizable boundary condition on ∂Λn,l that is free on ∂sΛn,l ∪
∂eΛn,l ∪ ∂wΛn,l and free in all vertices in ∂nΛn,l at distance at most m from ∂eΛn,l ∪ ∂wΛn,l.
For every group of rectangles R =

⋃N(R)
i=1 Ri compatible with ξ, with W (R) ≥ 100m, there

exists a disconnecting interval [[c?, d?]] such that (c?, l), (d?, l) ∈ ∂nR, are distance at least m
from the vertical sides

⋃N(R)
i=1 ∂wRi ∪ ∂eRi of R, and

1
4W (R) ≤W (R∩ ([[c?, d?]]× [[0, l]])) ≤ 3

4W (R) .

With the disconnecting interval [[c?, d?]] from Lemma 4.5, we define Aint = R∩ ([[c?, d?]]×
[[0, l]]) and Aext = R∩ ([[c?, d?]]c × [[0, l]]). Their enlargements by m will form the blocks Rint
and Rext:

Rint = R∩([[c?−m, d?+m]]× [[0, l]]) and Rext = R∩(([[0, c?+m]]∪ [[d?−m,n]])× [[0, l]]) ;

These sets are depicted in Figure 2(a)–(b). The requirement that the corners of [[c?, d?]]× [[0, l]]
are a distance at least m from the vertical sides of R is so that when we enlarge the sets
Aint,Aext by m, we do not overflow beyond the rectangles containing (c?, l) and (d?, l).
Crucially, our ability to pick disconnecting segments that satisfy this requirement is guaranteed
by the compatibility of R with ξ.

It follows from Lemma 4.5, and the definitions of disconnecting interval and compatibility,
that Rint and Rext have the following properties, which will facilitate our recursive argument
to prove Theorem 4.1.

I Proposition 4.6. If R is a group of rectangles compatible with ξ, and moreover, W (R) ≥
100m, then the sets Rint and Rext are groups of rectangles satisfying the following properties:
1. 1

5W (R) ≤W (Rint) ≤ 4
5W (R) and likewise 1

5W (R) ≤W (Rext) ≤ 4
5W (R);

2. Both Rint and Rext are compatible with ξ.

APPROX/RANDOM 2019

67:12 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

Aint Aint
Aext Aext

(a)

Rint Rint

Rext Rext

(b)

Figure 2 (a) The cores Aint and Aext and (b) the blocks Rint and Rext. The blocks Rint and
Rext are the enlargements of Aint and Aext by exactly m, and are thus, themselves, groups of
rectangles.

Finally, we consider the spectral gap of the block dynamics {Xt} on R with blocks
B = {Rint,Rext}. In this case, {Xt} is the discrete-time Markov chain that in each step
picks i uniformly at random from {int,ext} and updates the configuration in E(Ri) with
a sample from the stationary distribution of the chain conditional on the configuration on
Ec(Ri). Let gap(Rζ ; B) be the spectral gap of this block dynamics on the group of rectangle
R with boundary condition ζ induced on R by ξ and a fixed random-cluster configuration
ωRc on Ec(R) = E(Λn,l) \ E(R); hence, we may identify ζ with the pair (ξ, ωRc).

I Lemma 4.7. Let ξ be a realizable boundary condition on ∂Λn,l that is free on ∂sΛn,l∪∂eΛn,l∪
∂wΛn,l and free on vertices in ∂nΛn,l at distance at most m from ∂eΛn,l ∪ ∂wΛn,l. For every
q > 1 and p 6= pc(q), there exists K = K(p, q) ≥ 1 such that for every group of rectangles R
compatible with ξ, and every configuration ωRc on Ec(R), we have gap(R(ξ,ω(Rc)); B) ≥ K−1.

The proof of Lemma 4.7 is deferred to Section 6. We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix q > 1, p 6= pc(q) and Λn,l with a realizable boundary condition
ξ′ that is free on ∂eΛn,l ∪ ∂sΛn,l ∪ ∂wΛn,l. We modify ξ′ to a boundary condition ξ that is
also free on all vertices a distance at most m = C? log l from ∂eΛn,l ∪ ∂wΛn,l at a cost of an
exponential in m factor in the mixing time of the FK-dynamics (see Lemma 2.3 in [3]). Let
ξ be the resulting realizable boundary condition.

Let R ⊂ Λn,l be a group of rectangles that is compatible with ξ and has W (R) = s for
100m ≤ s ≤ n. Let Rint and Rext be the group rectangles defined earlier and consider the
block dynamics with respect to these blocks. Recall that we use gap(Rζ) and gap(Rζ ; B)
for the spectral gaps of the FK-dynamics and the blocks dynamics with respect to B =
{Rint,Rext} respectively. As discussed earlier, for any boundary condition ζ = (ξ, ωcR),
Proposition 3.4 from [27] implies that for a suitable constant γ ∈ (0, 1)

gap
(
Rζ
)
≥ γ · gap

(
Rζ ; B

)
· min
i∈{int,ext}
ω∈Ω(Rc

i)

gap
(
R(ξ,ω)
i

)
≥ γ

K
· min
i∈{int,ext}
ω∈Ω(Rc

i)

gap
(
R(ξ,ω)
i

)
, (4)

where the second inequality follows from Lemma 4.7 and Ω(Rci) is the set of FK configurations
on E(Rci). Observe that Proposition 4.6 implies that max{W (Rint),W (Rext)} ≤ 4s/5.
Therefore, applying (4) O(logn) times, we deduce that gap(Rζ) ≥ exp(Ω(− logn))·gap(Rζ0

0),
where R0 is a group of rectangles with W (R0) ≤ 100m and ζ0 = (ξ, ω0) is an arbitrary
boundary condition for R0.

Finally, since |∂R0| = O(m+ l) = O(l), the lower bound for gap(Rζ0
0) follows from the

following crude argument. Observe that we can first modify the boundary condition ζ0 to
be all free on all of ∂R0, incurring a cost of a q−Ω(l) factor in the spectral gap; see Lemma
2.3 in [3]. The fast mixing result from [5] for the free boundary condition then implies that
gap(Rζ0

0) ≥ exp (−Ω(l)) and so the result follows. J

A. Blanca, R. Gheissari, and E. Vigoda 67:13

Csw Cse

Cnw Cne

5r

5r

(a)

Rs

Rn

Rw Ren−6r

3r

(b)

e

e

2r+1

(c)

Figure 3 Subsets (a) Cne, Cnw, Cse, and Csw and (b) Rn, Re, Rw and Rs. (c) B(e, r) for two
edges e of Λn.

5 Polynomial mixing time for realizable boundary conditions

In this section we finalize the proof of Theorem 1.1 for p < pc(q) using the technology
introduced in Section 3; namely, we construct a collection of subsets B for which we can
establish LM and MSM; see Definitions 3.1–3.3. To establish LM we crucially use Theorem 4.1.
The results for p > pc(q) follow from the self-duality of the model and of realizable boundary
conditions, as explained in Section 2.

For general realizable boundary conditions, proving LM for a collection of subsets B for
which MSM holds is the main challenge. This is because, for MSM to hold for a collection
B for all realizable boundary conditions, a subset in B needs to contain Ω(n) edges. In
particular, some element of B must include most (or all) edges near ∂Λn, as otherwise it is
easy to construct examples of realizable boundary conditions for which MSM does not hold.
Thus, a trivial (exponential in the perimeter) upper bound for the mixing time on those
subsets with Ω(n) edges would be unhelpful, and we ought to use Theorem 4.1 instead.

We define a collection of blocks for which we can establish both LM and MSM. Let r ∈ N
and let Cne, Cnw, Cse, Csw ⊂ Λn be the four square boxes of side length 5r with a corner that
coincides with a corner of Λn; see Figure 3(a). Let Rn ⊂ Λn be the (n− 6r)× 2r rectangle
at distance 3r from both ∂wΛn, ∂eΛn whose top boundary is contained in ∂nΛn and let
Re, Rw, Rs be defined analogously; see Figure 3(b). Let R = Rn ∪Re ∪Rw ∪Rs. Now, for
e ∈ E(Λn), let B(e, r) ⊂ Λn be the set of vertices in the minimal square box around e such
that d({e},Λn \ B(e, r)) ≥ r. If d({e}, ∂Λn) > r, then B(e, r) is just a square box of side
length 2r + 1 centered at e; otherwise B(e, r) intersects ∂Λn; see Figure 3(c). Finally, let

Br = {Cne, Cnw, Cse, Csw, R} ∪ {B(e, r) : e ∈ E(Λn), d({e}, ∂Λn) > r}. (5)

We claim that LM holds for Br with r = Θ(logn) and T = O(nC) for some constant
C > 0.

I Theorem 5.1. Let q ≥ 1, p < pc(q) and r = c0 logn with c0 > 0 independent of n. There
exists a constant C > 0 such that LM holds for every realizable boundary condition ξ and Br
with T = O(nC).

The subsets B(e, r) in Br and the corner boxes Cne, Cnw, Cse and Csw are small enough that
crude bounds for their mixing times are sufficient. As mentioned earlier, the main challenge
for proving local mixing for Br is to derive a mixing time bound for R = Rn ∪Re ∪Rw ∪Rs
as it intersects the boundary of Λn and contains Ω(n) vertices. To establish such a bound
we rely on Theorem 4.1. In particular, we relate the mixing time of the FK-dynamics on R

APPROX/RANDOM 2019

67:14 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

to that of the FK-dynamics on a single thin rectangle by concatenating the four rectangles
constituting R, one after another, such that the union of their outer boundaries make up the
northern boundary of the new rectangle.

The final ingredient of the proof is establishing MSM for the collection Br. We show
that MSM holds for Br with r = Θ(logn) for all realizable boundary conditions ξ where the
vertices in ∂Λn at distance 5r from the corners of Λn are free in ξ. This is sufficient since
any realizable boundary condition can be turned into a realizable boundary condition with
this property by simply removing all connections in ξ involving vertices near the corners of
Λn; this modification can change the mixing time of the FK-dynamics by a factor of at most
exp(O(r)); see Lemma 2.3 in [3].

I Theorem 5.2. Let q ≥ 1, p < pc(q) and r = c0 logn with c0 > 0 independent of n. Let ξ
be a realizable boundary condition with the property that every vertex v ∈ ∂Λn at distance at
most 5r from a corner of Λn is free in ξ. Then, for all sufficiently large c0 > 0, MSM holds
for ξ and Br with δ < 1/(12|E(Λn)|).

Theorem 1.1 follows from Theorems 3.5 and 5.1–5.2. Their proofs are found in the full
version [3].

6 Proofs from Section 4

We prove here the two key results from Section 4: Lemmas 4.5 and 4.7. We begin with the
proof of Lemma 4.5 which describes how to find an appropriate disconnecting interval for the
block dynamics in a group of rectangles R. The proof uses the following important geometric
observations regarding disconnecting intervals. For more details we refer to [3].

I Lemma 6.1. Let ξ be a realizable boundary condition on Λn,l that is free on ∂sΛn,l ∪
∂eΛn,l ∪ ∂wΛn,l and let a < b < c. If both [[a, b]] and [[b, c]] are disconnecting intervals of
wired-type, then so is [[a, c]]. If both [[a, b]] and [[b+1, c]] are disconnecting intervals of free-type,
then so is [[a, c]].

I Lemma 6.2. Let ξ be a realizable boundary condition on Λn,l that is free on ∂sΛn,l ∪
∂eΛn,l∪∂wΛn,l. Suppose there exist a < b < c < d such that [[a, c]] and [[b, d]] are disconnecting
intervals; then either both are of free-type or both are of wired-type. Moreover, if both are
1. of wired-type: then [[a, b]], [[b, c]], [[c, d]] and [[a, d]] are all disconnecting intervals of wired-

type.
2. of free-type: then [[a, b− 1]], [[b, c]], [[c+ 1, d]] and [[a, d]] are all disconnecting intervals of

free-type.

Proof of Lemma 4.5. We find a candidate disconnecting interval [[c, d]] with (c, l), (d, l) ∈
∂nR satisfying:

1
3W (R) ≤W (R∩ ([[c, d]]× [[0, l]])) ≤ 2

3W (R) . (6)

In the second part of the proof we show how to modify [[c, d]] to obtain a disconnecting
interval [[c?, d?]] with the added property that both (c?, l) and (d?, l) are distance at least m
from ∂‖R :=

⋃N(R)
i=1 ∂wRi ∪ ∂eRi.

If there exist vertices (x, l), (y, l) ∈ ∂nR such that 1
3W (R) ≤W (R∩ ([[x, y]]× [[0, l]])) ≤

2
3W (R) with (x, l) connected to (y, l) through ξ, then we take c = x, d = y and use
[[c, d]] = [[x, y]] as our candidate disconnecting interval. Suppose otherwise that there does not

A. Blanca, R. Gheissari, and E. Vigoda 67:15

exist any such boundary connection: then every pair (x, l), (y, l) ∈ ∂nR connected through ξ
is such that

W (R∩ ([[x, y]]× [[0, l]])) < 1
3W (R) , or W (R∩ ([[x, y]]× [[0, l]])) > 2

3W (R) . (7)

If the latter holds, then there is a pair, say (x0, l), (y0, l) ∈ ∂nR, for which the latter holds
with a minimal width. Consequently, all other connections through ξ between vertices
(x1, l), (y1, l) ∈ ∂nR∩ ([[x0 + 1, y0 − 1]]× [[0, l]]) will be such that W (R∩ ([[x1, y1]]× [[0, l]])) <
1
3W (R) . We can then partition the vertices of ∂nR ∩ ([[x0 + 1, y0 − 1]] × {l}) into disjoint
disconnecting intervals of free-wired-type as follows:
1. Let ρ = {C1, . . . , Ck} be the partition of ∂nR∩ ([[x0 + 1, y0 − 1]]× {l}) induced by ξ;
2. For each Ci, consider the disconnecting interval Li of free-wired-type determined by the

left-most and right-most vertices of Ci in ∂nR∩ ([[x0 + 1, y0 − 1]]× {l}) (n.b. these may
be singletons);

3. Let {Li1 , ..., Li`} be those which are maximal, i.e., there does not exist j and k such that
Lij ⊂ Lk.

The set of disconnecting intervals {Li1 , . . . , Li`} partitions [[x0 + 1, y0 − 1]] into disjoint
disconnecting intervals of free-wired-type with the property that W (R ∩ (Lij × [[0, l]])) ≤
1
3W (R) for every j ∈ {1, . . . , `}. We can then use Lemma 6.1 to merge adjacent disconnecting
intervals until we obtain a candidate disconnecting interval [[c, d]] ⊂ [[x0, y0]] (of free-type),
having width W (R∩ ([[c, d]]× [[0, l]]) ∈ [1

3W (R), 2
3W (R)].

Now that we have found a candidate disconnecting interval [[c, d]] satisfying (6), we modify
it to obtain a disconnecting interval [[c?, d?]] with the property that both (c?, l), (d?, l) are
distance at least m from ∂‖R.

If (c, l) is at distance at least m from ∂‖R, set c? = c, and similarly if (d, l) is at distance
at least m from ∂‖R, then set d? = d. Otherwise, suppose (c, l) is at distance less than m
from ∂wRi for some constituent rectangular subset Ri = [[ai, bi]] × [[0, l]] of R. Since R is
compatible with ξ, the interval Ic = [[bi−1−m, ai +m]] is a disconnecting interval, and we set

c? =
{

ai +m, if Ic is of wired-type, or i = 1, or W (Ri) = 2m;
ai +m+ 1 , if Ic is only of free-type, and W (Ri) > 2m; .

When (c, l) is at distance less than m from ∂eRi for some i, then we simply set c? = bi −m.
Symmetrically, if (d, l) is at distance less than m from ∂eRi for Ri = [[ai, bi]] × [[0, l]], let
Id = [[bi −m, ai+1 +m]]

d? =
{

bi −m, if Id is of wired-type, or i = N(R), or W (Ri) = 2m;
bi −m− 1 , if Id is only of free-type, and W (Ri) > 2m.

When (d, l) is at distance less than m from ∂wRi, let d? = ai +m. Since W (Ri) ≥ 2m for
every i, the points (c, l), (d, l) cannot be both less than m away from ∂eRi and less than m
away from ∂wRi.

One can check via a case analysis, exploiting the compatibility of R with ξ and using
Lemma 6.2, that in all of these cases the interval [[c?, d?]] is a disconnecting interval; we defer
these details to the full manuscript [3]. The fact that (c?, l), (d?, l) ∈ ∂nR are a distance at
least m away from ∂‖R follows directly from the construction. Finally, we claim that in all
such situations, [[c?, d?]] satisfies

1
4W (R) ≤W (R∩ ([[c?, d?]]× [[0, l]])) ≤ 3

4W (R) .

This follows from the facts that W (R) ≥ 100m, |c− c?| ≤ m and |d− d?| ≤ m. J

APPROX/RANDOM 2019

67:16 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

Aint

Qw Qe

(a)

Aint

(b)

Figure 4 (a) The block Rint with its subsets Aint, Qw and Qe. (b) The block Rint with the
dual-paths (dotted) of a configuration in Γ allowing coupling inside Aint.

We proceed with the proof of Lemma 4.7, where we establish a lower bound for the
spectral gap of the block dynamics in the group of rectangles R with blocks Rint and Rext
as defined in Section 4.1.

Proof of Lemma 4.7. We consider the p < pc(q) case; the case of p > pc(q) follows from a
similar (dual) argument which we defer to the full manuscript [3]. Let {Xt}, {Yt} be two
instances of the block dynamics on R with boundary condition ζ = (ξ, ωRc) started from
initial configurations X0, Y0. It suffices to construct a coupling P of the steps of {Xt}, {Yt}
such that minX0,Y0 P(X2 = Y2) = Ω(1); see [24].

With probability 1/4 the first block to be updated is Rint and the second is Rext. Suppose
this is the case and let us consider the update on Rint. Let θω be the boundary condition on
∂Rint induced by ζ and the restriction of a configuration ω to E(R) \E(Rint), and let πθω

be the FK distribution on Rint with boundary conditions θω. As X1(Rint), Y1(Rint) have
laws πθX0 , πθY0 , respectively, a coupling for πθX0 and πθY0 yields a coupling for X1 and Y1.

We describe next such a coupling for πθX0 and πθY0 . Let Qw, Qe ⊂ Rint be the two
rectangles of width m that contain all the vertices in Rint \Aint; i.e., Qw ∪Aint ∪Qe = Rint,
Qw ∩ Aint = ∅ and Qe ∩ Aint = ∅ (see Figure 4(a)). Let ∂E(Qw) be the set of edges with
one endpoint in Qw and the other in Aint, and similarly define ∂E(Qe). Let Γw be the set
of configurations in Rint that have a dual-path in E(Qw) ∪ ∂E(Qw) connecting the top-most
edge in ∂E(Qw) to an edge in ∂sQw, and similarly define Γe as the set of configurations in
Rint that have a dual-path in E(Qe) ∪ ∂E(Qe) from the top-most edge in ∂E(Qe) to an
edge in ∂sQe. (A dual-path is an open path in the dual configuration.) Let Γ = Γe ∩ Γw;
see Figure 4(b). Let θ1 be the boundary condition on ∂Rint induced by ζ and the wired
configuration on E(R) \ E(Rint). The following lemma supplies the desired coupling.

I Lemma 6.3. Let q > 1 and p < pc(q). There exists a coupling P1 of the distributions πθX0 ,
πθY0 , πθ1 such that if (ωθX , ωθY , ωθ1) is sampled from P1, the following hold:
1. P1(ωθX (Aint) = ωθY (Aint) | ωθ1 ∈ Γ) = 1;
2. There exists a constant ρ = ρ(p, q) > 0 such that P1(ωθ1 ∈ Γ) ≥ ρ.

If we use the coupling P1 from Lemma 6.3 to couple the first step of the chains, then X1
and Y1 will agree on E(Aint) with probability at least ρ > 0. If this occurs, then we can
couple the update on Rext in the second step so that X2 = Y2 with probability one. This
is because X1(E(Aint)) = Y1(E(Aint)) implies X1(E(R) \E(Rext)) = Y1(E(R) \E(Rext)),
and thus the boundary conditions induced by the two instances of the chain on Rext are
identical. As a consequence, we obtain that for any X0, Y0, P(X2 = Y2) ≥ ρ/4, which
concludes the proof for p < pc(q). J

We conclude this section with the proof of Lemma 6.3.

A. Blanca, R. Gheissari, and E. Vigoda 67:17

Proof of Lemma 6.3. Let L = ∂wQw ∪ ∂nQw ∪ ∂eQe ∪ ∂nQe. For a configuration ω on Rint
let F (ω) := Rint \

⋃
v∈L C(v, ω), where C(v, ω) is the vertex set of the connected component

of v in ω, ignoring the boundary connections. Note that ω ∈ Γ if and only if the vertices in
the boundary components of L, i.e.,

⋃
v∈L C(v, ω), are confined to Qw ∪Qe, in which case

Aint ⊆ F (ω).
Clearly, πθ1 � πθX and πθ1 � πθY and thus there exist monotone couplings PX (resp.,

PY) for πθX and πθ1 (resp., πθY and πθ1). The coupling P1 is defined as follows. First
sample (ωθX , ωθ1) from PX and ωθY from PY (· | ωθ1). If Aint ⊆ F (ωθ1), then re-sample
the configuration on E(F (ωθ1)) in ωθ1 and update ωθX (F (ωθ1)) and ωθY (F (ωθ1)) such that
ωθ1(F (ωθ1)) = ωθX (F (ωθ1)) = ωθY (F (ωθ1)).

To deduce part 1, it now suffices to show that if Aint ⊆ F (ωθ1) the three boundary
conditions η1, ηX , ηY induced on ∂F (ωθ1) by the configurations of ωθX , ωθY , ωθ1 on
E(Rint) \ E(F (ωθ1)), respectively, and the corresponding boundary conditions θX , θY , θ1
are identical; if this is the case part 1 follows from the domain Markov property (see [21]).

First observe that the boundary condition on ∂sAint is always free by assumption. Also
from the definition of F (ωθ1) every edge of E(Rint) \ E(F (ωθ1)) incident to ∂F (ωθ1) is
closed in ωθ1 , so by the monotonicity of the coupling, the same holds for ωθX and ωθY . The
remaining portion of ∂F (ωθ1) is precisely the set of vertices (∂Aint ∩ ∂R) \ ∂sR. In order for
the boundary conditions η1, ηx, ηY to differ on this set, there must be at least two distinct
boundary components in ζ = (ξ, ωRc) between (∂Aint ∩ ∂R) \ ∂sR and [[c?, d?]]c × {l}; this
cannot happen because [[c?, d?]] is disconnecting.

Part 2 of the lemma is a straightforward consequence of the EDC property of the random-
cluster model at p < pc(q); see (2). Namely, since the width of Qw is m = C? log l, (2) implies
that when C? is large enough there is a constant ρw(p, q) > 0 such that πθ1(Γcw) ≤ π1

∆(L ∆←→
∂wAint) ≤ 1− ρw, where ∆ is the subgraph induced by the edges in E(Rint) \ E(Aint). A
matching bound holds for Γce. Since Γe, Γw are both decreasing events, by the FKG inequality
(see [21]), πθ1(Γ) ≥ ρwρe =: ρ, concluding the proof. J

References
1 Kenneth S. Alexander. On weak mixing in lattice models. Probab. Theory Related Fields,

110(4):441–471, 1998. doi:10.1007/s004400050155.
2 Vincent Beffara and Hugo Duminil-Copin. The self-dual point of the two-dimensional random-

cluster model is critical for q ≥ 1. Probab. Theory Related Fields, 153(3-4):511–542, 2012.
doi:10.1007/s00440-011-0353-8.

3 Antonio Blanca, Reza Gheissari, and Eric Vigoda. Random-cluster dynamics in Z2: rapid
mixing with general boundary conditions. preprint available at arXiv:1807.08722., 2018.

4 Antonio Blanca and Alistair Sinclair. Dynamics for the Mean-field Random-cluster Model. In
Proc. of the 19th International Workshop on Randomization and Computation (RANDOM
2015), pages 528–543, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.528.

5 Antonio Blanca and Alistair Sinclair. Random-Cluster Dynamics in Z2. Probab. Theory Related
Fields, 2016. Extended abstract appeared in Proc. of the 27th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2016), pp. 498–513. doi:10.1007/s00440-016-0725-1.

6 Christian Borgs, Jennifer T. Chayes, Alan Frieze, Jeong H. Kim, Prasad Tetali, Eric Vigoda,
and Van H. Vu. Torpid mixing of some Monte Carlo Markov chain algorithms in statistical
physics. In Proc. of the 40th Annual Symposium on Foundations of Computer Science (FOCS
1999), pages 218–229, 1999. doi:10.1109/SFFCS.1999.814594.

7 Christian Borgs, Jennifer T. Chayes, and Prasad Tetali. Tight bounds for mixing of the
Swendsen-Wang algorithm at the Potts transition point. Probab. Theory Related Fields,
152(3-4):509–557, 2012. doi:10.1007/s00440-010-0329-0.

APPROX/RANDOM 2019

https://doi.org/10.1007/s004400050155
https://doi.org/10.1007/s00440-011-0353-8
https://arxiv.org/abs/1807.08722
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.528
https://doi.org/10.1007/s00440-016-0725-1
https://doi.org/10.1109/SFFCS.1999.814594
https://doi.org/10.1007/s00440-010-0329-0

67:18 Random-Cluster Dynamics in Z2: Rapid Mixing with General Boundary Conditions

8 Filippo Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for
Gibbs random fields. Probability Theory and Related Fields, 120(4):569–584, August 2001.
doi:10.1007/PL00008792.

9 Lincoln Chayes and Jon Machta. Graphical representations and cluster algorithms I. Discrete
spin systems. Physica A: Statistical Mechanics and its Applications, 239(4):542–601, 1997.

10 Colin Cooper and Alan M. Frieze. Mixing properties of the Swendsen–Wang process on classes
of graphs. Random Structures and Algorithms, 15:242–261, 1999.

11 Hugo Duminil Copin, Maxim Gagnebin, Matan Harel, Ioan Manolescu, and Vincent Tassion.
Discontinuity of the phase transition for the planar random-cluster and Potts models with
q > 4. CoRR, 2016. arXiv:1611.09877.

12 Hugo Duminil-Copin, Vladas Sidoravicius, and Vincent Tassion. Continuity of the Phase
Transition for Planar Random-Cluster and Potts Models with 1 ≤ q ≤ 4. Communications in
Mathematical Physics, 349(1):47–107, January 2017. doi:10.1007/s00220-016-2759-8.

13 Cornelius M. Fortuin and Pieter W. Kasteleyn. On the random-cluster model. I. Introduction
and relation to other models. Physica, 57:536–564, 1972.

14 Andreas Galanis, Daniel Štefankovic, and Eric Vigoda. Swendsen-Wang Algorithm on the
Mean-Field Potts Model. In Proc. of the 19th International Workshop on Randomization and
Computation (RANDOM 2015), pages 815–828, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.
2015.815.

15 Shirshendu Ganguly and Insuk Seo. Information Percolation and Cutoff for the Random-Cluster
Model. CoRR, 2018. arXiv:1812.01538.

16 Reza Gheissari and Eyal Lubetzky. Mixing Times of Critical Two-Dimensional Potts Models.
Comm. Pure Appl. Math, 71(5):994–1046, 2018.

17 Reza Gheissari and Eyal Lubetzky. The effect of boundary conditions on mixing of 2D
Potts models at discontinuous phase transitions. Electron. J. Probab., 23:30 pp., 2018.
doi:10.1214/18-EJP180.

18 Reza Gheissari and Eyal Lubetzky. Quasi-polynomial mixing of critical two-dimensional
random cluster models. Random Structures and Algorithms, 2019. doi:10.1002/rsa.20868.

19 Reza Gheissari, Eyal Lubetzky, and Yuval Peres. Exponentially slow mixing in the mean-
field Swendsen–Wang dynamics. Annales de l’Institut Henri Poincare (B), 2019. to appear.
Extended abstract appeared in Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018), pp. 1981–1988.

20 Vivek K. Gore and Mark R. Jerrum. The Swendsen-Wang process does not always mix rapidly.
J. Statist. Phys., 97(1-2):67–86, 1999. doi:10.1023/A:1004610900745.

21 Geoffrey Grimmett. The random-cluster model. In Probability on discrete structures,
volume 110 of Encyclopaedia Math. Sci., pages 73–123. Springer, Berlin, 2004. doi:
10.1007/978-3-662-09444-0_2.

22 Heng Guo and Mark Jerrum. Random cluster dynamics for the Ising model is rapidly mixing.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1818–1827, 2017.
doi:10.1137/1.9781611974782.118.

23 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989. doi:10.1137/0218077.

24 David A. Levin, Malwina J. Luczak, and Yuval Peres. Glauber dynamics for the mean-field
Ising model: cut-off, critical power law, and metastability. Probab. Theory Related Fields,
146(1-2):223–265, 2010. doi:10.1007/s00440-008-0189-z.

25 Eyal Lubetzky, Fabio Martinelli, Allan Sly, and Fabio Lucio Toninelli. Quasi-polynomial
mixing of the 2D stochastic Ising model with “plus” boundary up to criticality. J. Eur. Math.
Soc. (JEMS), 15(2):339–386, 2013. doi:10.4171/JEMS/363.

26 Fabio Martinelli. On the two-dimensional dynamical Ising model in the phase coexistence
region. J. Statist. Phys., 76(5-6):1179–1246, 1994. doi:10.1007/BF02187060.

https://doi.org/10.1007/PL00008792
http://arxiv.org/abs/1611.09877
https://doi.org/10.1007/s00220-016-2759-8
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.815
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.815
http://arxiv.org/abs/1812.01538
https://doi.org/10.1214/18-EJP180
https://doi.org/10.1002/rsa.20868
https://doi.org/10.1023/A:1004610900745
https://doi.org/10.1007/978-3-662-09444-0_2
https://doi.org/10.1007/978-3-662-09444-0_2
https://doi.org/10.1137/1.9781611974782.118
https://doi.org/10.1137/0218077
https://doi.org/10.1007/s00440-008-0189-z
https://doi.org/10.4171/JEMS/363
https://doi.org/10.1007/BF02187060

A. Blanca, R. Gheissari, and E. Vigoda 67:19

27 Fabio Martinelli. Lectures on Glauber dynamics for discrete spin models. In Lectures on
probability theory and statistics (Saint-Flour, 1997), volume 1717 of Lecture Notes in Math.,
pages 93–191. Springer, Berlin, 1999. doi:10.1007/978-3-540-48115-7_2.

28 Fabio Martinelli, Enzo Olivieri, and Roberto H. Schonmann. For 2-D lattice spin systems
weak mixing implies strong mixing. Comm. Math. Phys., 165(1):33–47, 1994. URL: http:
//projecteuclid.org/euclid.cmp/1104271032.

29 Fabio Martinelli and Fabio Lucio Toninelli. On the mixing time of the 2D stochastic Ising model
with “plus” boundary conditions at low temperature. Comm. Math. Phys., 296(1):175–213,
2010. doi:10.1007/s00220-009-0963-5.

30 Elchanan Mossel and Allan Sly. Exact thresholds for Ising–Gibbs samplers on general graphs.
Ann. Probab., 41(1):294–328, January 2013. doi:10.1214/11-AOP737.

31 Lars Onsager. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder
Transition. Phys. Rev., 65:117–149, February 1944. doi:10.1103/PhysRev.65.117.

32 Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multicommodity
flow. Combin. Probab. Comput., 1(4):351–370, 1992. doi:10.1017/S0963548300000390.

33 Robert H. Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in Monte Carlo
simulations. Phys. Rev. Lett., 58:86–88, January 1987. doi:10.1103/PhysRevLett.58.86.

34 Lawrence E. Thomas. Bound on the mass gap for finite volume stochastic Ising models at
low temperature. Comm. Math. Phys., 126(1):1–11, 1989. URL: http://projecteuclid.org/
euclid.cmp/1104179720.

35 Mario Ullrich. Comparison of Swendsen-Wang and heat-bath dynamics. Random Structures
and Algorithms, 42(4):520–535, 2013. doi:10.1002/rsa.20431.

36 Mario Ullrich. Rapid mixing of Swendsen-Wang dynamics in two dimensions. Dissertationes
Math. (Rozprawy Mat.), 502:64, 2014. doi:10.4064/dm502-0-1.

APPROX/RANDOM 2019

https://doi.org/10.1007/978-3-540-48115-7_2
http://projecteuclid.org/euclid.cmp/1104271032
http://projecteuclid.org/euclid.cmp/1104271032
https://doi.org/10.1007/s00220-009-0963-5
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1017/S0963548300000390
https://doi.org/10.1103/PhysRevLett.58.86
http://projecteuclid.org/euclid.cmp/1104179720
http://projecteuclid.org/euclid.cmp/1104179720
https://doi.org/10.1002/rsa.20431
https://doi.org/10.4064/dm502-0-1

On List Recovery of High-Rate Tensor Codes
Swastik Kopparty
Department of Mathematics and Department of Computer Science, Rutgers University, NJ, USA
swastik.kopparty@gmail.com

Nicolas Resch
Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
nresch@cs.cmu.edu

Noga Ron-Zewi
Department of Computer Science, University of Haifa, Israel
noga@cs.haifa.ac.il

Shubhangi Saraf
Department of Mathematics and Department of Computer Science, Rutgers University, NJ, USA
shubhangi.saraf@gmail.com

Shashwat Silas
Department of Computer Science, Stanford University, CA, USA
silas@stanford.edu

Abstract
We continue the study of list recovery properties of high-rate tensor codes, initiated by Hemenway,
Ron-Zewi, and Wootters (FOCS’17). In that work it was shown that the tensor product of an
efficient (poly-time) high-rate globally list recoverable code is approximately locally list recoverable,
as well as globally list recoverable in probabilistic near-linear time. This was used in turn to give
the first capacity-achieving list decodable codes with (1) local list decoding algorithms, and with
(2) probabilistic near-linear time global list decoding algorithms. This also yielded constant-rate
codes approaching the Gilbert-Varshamov bound with probabilistic near-linear time global unique
decoding algorithms.

In the current work we obtain the following results:
1. The tensor product of an efficient (poly-time) high-rate globally list recoverable code is globally

list recoverable in deterministic near-linear time. This yields in turn the first capacity-achieving
list decodable codes with deterministic near-linear time global list decoding algorithms. It
also gives constant-rate codes approaching the Gilbert-Varshamov bound with deterministic
near-linear time global unique decoding algorithms.

2. If the base code is additionally locally correctable, then the tensor product is (genuinely) locally
list recoverable. This yields in turn (non-explicit) constant-rate codes approaching the Gilbert-
Varshamov bound that are locally correctable with query complexity and running time No(1).
This improves over prior work by Gopi et. al. (SODA’17; IEEE Transactions on Information
Theory’18) that only gave query complexity Nε with rate that is exponentially small in 1/ε.

3. A nearly-tight combinatorial lower bound on output list size for list recovering high-rate tensor
codes. This bound implies in turn a nearly-tight lower bound of NΩ(1/ log log N) on the product
of query complexity and output list size for locally list recovering high-rate tensor codes.

2012 ACM Subject Classification Mathematics of computing → Coding theory; Theory of compu-
tation → Pseudorandomness and derandomization

Keywords and phrases Coding theory, Tensor codes, List-decoding and recovery, Local codes

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.68

Category RANDOM

Related Version https://eccc.weizmann.ac.il/report/2019/080/

© Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat Silas;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 68; pp. 68:1–68:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:swastik.kopparty@gmail.com
mailto:nresch@cs.cmu.edu
mailto:noga@cs.haifa.ac.il
mailto:shubhangi.saraf@gmail.com
mailto:silas@stanford.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.68
https://eccc.weizmann.ac.il/report/2019/080/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 On List Recovery of High-Rate Tensor Codes

Funding Swastik Kopparty: Research supported in part by NSF grants CCF-1253886, CCF-1540634,
CCF-1814409 and CCF-1412958, and BSF grant 2014359. Some of this research was done while
visiting the Institute for Advanced Study.
Nicolas Resch: Research supported in part by NSF-BSF grant CCF-1814629 and 2017732, NSERC
grant CGSD2-502898, NSF grants CCF- 1422045, CCF-1527110, CCF-1618280, CCF-1814603,
CCF-1910588, NSF CAREER award CCF-1750808 and a Sloan Research Fellowship.
Noga Ron-Zewi: Research supported in part by NSF-BSF grant CCF-1814629 and 2017732.
Shubhangi Saraf : Research supported in part by NSF grants CCF-1350572, CCF-1540634 and CCF-
1412958, BSF grant 2014359, a Sloan research fellowship and the Simons Collaboration on Algorithms
and Geometry. Some of this research was done while visiting the Institute for Advanced Study.
Shashwat Silas: Research supported in part by NSF-BSF grant CCF-1814629 and 2017732 and a
Google Fellowship in the School of Engineering at Stanford.

1 Introduction

Error-correcting codes enable protection of data from errors. They allow one to encode a
message so that even after some symbols of the encoding get changed, the original message
can still be recovered.

Formally, an error-correcting code of blocklength n over a finite alphabet Σ is a subset
C ⊆ Σn. If k is such that |C| = |Σ|k, then a k symbol message can be encoded using this
code. The redundancy of the code is measured by the rate ρ = k/n (so that |C| = |Σ|ρn).
The robustness to errors is measured by its relative distance δ, defined to be the minimum,
over all distinct x, y ∈ C, of the relative Hamming distance dist(x, y). A basic but important
observation is that for codes with relative distance δ, for every w ∈ Σn, there is at most one
codeword c ∈ C for which dist(w, c) < δ/2. Finding this codeword given w is the algorithmic
problem of unique decoding C upto half the minimum distance.

Given this setup, we now state some central goals of coding theory. First, we would like
to understand the best possible tradeoffs for ρ and δ that are achievable. Next, we would
like to have explicit constructions of codes that achieve this best possible tradeoff. Finally,
we would like efficient algorithms for decoding such optimal codes upto half their minimum
distance – this would give codes correcting the maximum possible fraction of (worst-case)
errors for their rate.

For the case of |Σ| = 2 (the binary alphabet), the Gilbert-Varshamov bound states that
for all δ ≤ 1/2 and γ > 0 there exist codes with n→∞ for which1 ρ ≥ 1−H2(δ)− γ. In
fact, a random linear code satisfies this with high probability. The Gilbert-Varshamov bound
is the best known tradeoff in the setting where δ = Ω(1), and surprisingly, it is not known to
be tight. Furthermore, despite their abundance, we do not know how to explicitly construct
codes achieving the Gilbert-Varshamov bound.

For growing alphabets, |Σ| = ω(1), the picture is almost completely understood. We
know that the best tradeoff achievable is ρ = 1− δ − γ, and furthermore we know how to
explicitly construct codes achieving this tradeoff that can be efficiently unique decoded upto
half their minimum distance.

1 Here H2 is the binary entropy function.

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:3

1.1 The cast

In recent years, several important variations of the problem of unique decoding have been
considered. We will need many of these, so we give below a quick and gentle introduction
(without formal definitions).

List decoding

In list decoding we attempt to decode from an even larger fraction α of errors than δ/2 –
now there may be more than one nearby codeword, and our goal is to find the list of all
of them. A basic limitation is that efficient list decoding is only possible if the number of
nearby codewords is guaranteed to be polynomially bounded.

Unlike the case of unique decoding, the optimal tradeoff between the rate ρ and the list
decoding radius α (for polynomial-size lists) is known for all alphabet sizes. The optimal rate
for a given α is known as the list decoding capacity. For |Σ| = 2, the list decoding capacity is
ρ = 1−H2(α)− γ, while for |Σ| = ω(1), the list decoding capacity is ρ = 1− α− γ. Over
large alphabets, this tradeoff can be achieved by explicit codes with efficient list decoding
algorithms [21] (see also [27] for the state of the art). Over binary alphabet, we do not know
how to explicitly construct codes achieving list decoding capacity.

List recovery

List recovery is a generalization of list decoding where we are given a small list of candidate
alphabet symbols at each coordinate (these lists are called the input lists) and the goal is
to find the output list of all codewords that are consistent with many of these input lists.
In other words, we want all codewords such that for a (1− α)-fraction of coordinates, the
symbol of the codeword at that coordinate lies within the input list for that coordinate (we
call these the “nearby codewords"). When the input list size is 1, then list recovery is the
same as list decoding.

Local decoding

In local decoding, we want to unique decode in sublinear time. Standard decoding has linear
output size, so we need to aim lower. For a given w ∈ Σn and a given message coordinate
i ∈ [k], we only ask to recover symbol i of the message underlying the codeword c near w.
We would like to run in sublinear time (and hence use only a sublinear number of queries
to w), so we allow the algorithm to use randomness and allow a small probability of error.

Local correction is a variation of local decoding where one is required to recover codeword
symbols as opposed to message symbols. In approximate local decoding (local correction,
resp.) one is only required to recover correctly most of the message (codeword, resp.)
coordinates.

Local list decoding

Local list decoding combines the notions of local decoding and list decoding. We are given
some w ∈ Σn, and the goal is that for any nearby codeword, one can in sublinear time recover
the ith symbol of the message corresponding to the codeword for any i ∈ [k]. In order to
make this precise, the local list decoding algorithm first does some preprocessing and then
produces as output a collection of algorithms Aj . For any nearby codeword c, with high

APPROX/RANDOM 2019

68:4 On List Recovery of High-Rate Tensor Codes

probability one of these algorithms corresponds to it.2 These algorithms then behave like
local decoding algorithms. On input i ∈ [k], if the algorithm corresponded to a codeword c,
then by making queries to only a sublinear number of coordinates, the algorithm with high
probability outputs the correct value of the ith symbol of the message corresponding to c.

The above definition of local list decoding can be extended to local list recovery in a
straightforward way where now the algorithms Aj correspond to all codewords that agree
with most of the input lists. As above, we can also define a local correction version of
local list decoding (or local list recovery) where the algorithms Aj are required to recover
codeword symbols as opposed to message symbols. Finally, we can also define approximate
local list decoding (or local list recovery) where the algorithms Aj are only required to recover
correctly most of the message (or codeword in the local correction version) coordinates.

The context

The starting point for this paper is the recent result of [23] on high-rate list recoverable
tensor codes, and its corollaries. Tensoring is a natural operation on codes that significantly
enhances their local properties [5, 34, 9, 10, 15, 6, 7, 37, 28, 36, 26].

The main technical result of [23] was that the tensor product of an efficient (poly-time)
high-rate globally list recoverable code is approximately locally list recoverable (in either the
local decoding or local correction version). They then observed that the “approximately”
modifier can be eliminated by pre-encoding the tensor product with a locally decodable code.
This gave the first construction of codes with rate arbitrarily close to 1 that are locally list
recoverable from an Ω(1) fraction of errors (however, only in the local decoding version).
Finally, using the expander-based distance amplification method of [2, 3] (specialized to
the setting of local list recovery [18, 17]), this gave the first capacity-achieving locally list
recoverable (and in particular, list decodable) codes with sublinear (and in fact N Õ(1/ log logN))
query complexity and running time (once more, in the local decoding version).

The above result also yielded further consequences for global decoding. Specifically, [23]
observed that the approximate local list recovery algorithm for tensor codes naturally gives a
probabilistic near-linear time global list recovery algorithm. Once more, using the expander-
based distance amplification method of [2, 3, 18], this gave the first capacity-achieving list
recoverable (and in particular, list decodable) codes with probabilistic near-linear time global
list recovery algorithms. Finally, via the random concatenation method of [33, 19], this
yielded in turn a (randomized) construction of constant-rate binary codes approaching the
Gilbert-Varshamov bound with a probabilistic near-linear time algorithm for global unique
decoding upto half the minimum distance.

One could potentially hope (following [17] which implemented a local version of [33, 19]) for
an analogous result that would give constant-rate codes approaching the Gilbert-Varshamov
bound that are locally correctable (or locally decodable) with query complexity and running
time No(1). However, what prevented [23] from obtaining such a result was the fact that their
capacity-achieving locally list recoverable codes only worked in the local decoding version
(i.e., they were only able to recover message coordinates).

2 Some of these algorithms Aj might not correspond to any codeword and might output garbage. Later
in the paper we define local list decoding to not allow these garbage producing Aj ’s. Eliminating the
garbage can be easily done if the underlying code is also locally testable, and in this case the stronger
notion can be achieved.

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:5

1.2 Results

We revisit the technique of [23] and show the following.
The tensor product of an efficient (poly-time) high-rate globally list recoverable code
is globally list recoverable in deterministic near-linear time. Plugging this into the
machinery of [2, 3, 18], we get the first capacity-achieving list recoverable (and in
particular, list decodable) codes with deterministic near-linear time global list recovery
algorithms. Plugging this into the machinery of [33, 19], yields in turn constant-rate
binary codes (with a randomized construction) approaching the Gilbert-Varshamov bound
with deterministic near-linear time global unique decoding algorithms.
Our deterministic global list recovery algorithm is obtained by derandomizing the random
choices of the [23] algorithm using appropriate samplers.
An instantiation of the base code to produce tensor product codes which are themselves
genuinely locally list recoverable (i.e., not just approximately locally list recoverable) in
the local correction version. Once more, plugging this into the machinery of [2, 3, 17],
we get capacity-achieving locally list recoverable codes, but now in the local correction
version. This now plugs in turn into the machinery of [33, 19, 17] to give constant-rate
binary codes (with a randomized construction) approaching the Gilbert-Varshamov bound
that are locally decodable with query complexity and running time No(1). This improves
over prior work [17] that only gave query complexity Nε with rate that is exponentially
small in 1/ε.
We obtain our result by taking the base code to be the intersection of an efficient (poly-
time) high-rate globally list recoverable code and a high-rate locally correctable code.
Assuming both codes are linear, we have that the intersection is a high-rate code that
is both! The result of [23] already guarantees that this tensor product is approximately
locally list recoverable (in the local correction version), and we use the fact that the
tensor product of a locally correctable codes is also locally correctable [37] to remove the
“approximately” modifier.3

A combinatorial lower bound showing the limitations on the list recoverability of high-rate
tensor codes. Specifically, we show that when the rate of the base code is high, every
t-wise tensor product of this code has output list size doubly-exponential in t. This
means that taking t to be more than log logN leads to superpolynomial output list size,
precluding the possibility of efficient list recovery.
Instantiating this appropriately, this implies in turn that there is a base code such that
for every tensor power with block length N , the product of the query complexity and
output list size for local list recovery is at least NΩ(1/ log logN). We note that in contrast,
it could be that for every base code, there is a tensor power with block length N for
which local correction can be done with query complexity O(1).
A key observation that we use is that a high-rate code has many codewords with pairwise-
disjoint supports. We combine this along with other linear-algebraic arguments to design a
list recovery instance for the tensor product of a high-rate code which has many codewords
that are consistent with it.

Below we give formal statements of our results. For formal definitions of the various
notions of decoding in the following theorem statements, see Section 2.

3 To eliminate “garbage” we also use the fact that the tensor product is locally testable [37].

APPROX/RANDOM 2019

68:6 On List Recovery of High-Rate Tensor Codes

1.2.1 Deterministic near-linear time global list recovery
Our first main result shows that the tensor product of an efficient (poly-time) high-rate
globally list recoverable code is globally list recoverable in deterministic near-linear time. In
the theorem statement, one should think of all parameters δ, α, L, t, and consequently also s,
as constants (or more generally, as slowly increasing/decreasing functions of n). In that case,
the theorem says that if C ⊆ Fn is (α, `, L)-globally list recoverable deterministically in time
T = poly(n), then the t-iterated tensor product C⊗t of length N := nt is (Ω(α), `, LO(1))-
globally list recoverable deterministically in time O(nt · T) = nt+O(1) = N1+O(1/t).

I Theorem 1 (Deterministic near-linear time list recovery of high-rate tensor codes). The
following holds for any δ, α > 0, and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear
code of relative distance δ that is (α, `, L)-globally list recoverable deterministically in time
T . Then C⊗t ⊆ Fnt is (α · s−t2 , `, Lst

3
·Lt)-globally list recoverable deterministically in time

nt · T · Lst
3
·Lt .

Applying the expander-based distance amplification method of [2, 3, 18] on the codes given
by the above theorem, we obtain the first capacity-achieving list recoverable (and in particular,
list decodable) codes with deterministic near-linear time global list recovery algorithms.

I Corollary 2 (Deterministic nearly-linear time capacity-achieving list recoverable codes). For
any constants ρ ∈ [0, 1], γ > 0, and ` ≥ 1 there exists an infinite family of codes {CN}N ,
where CN has block length N , alphabet size No(1), rate ρ, and is (1− ρ− γ, `,No(1))-globally
list recoverable deterministically in time N1+o(1).

Applying the random concatenation method of [33, 19], the above corollary yields in turn
constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear
time global unique decoding algorithms.

I Corollary 3 (Deterministic near-linear time unique decoding up to the GV bound). For any
constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of binary linear codes {CN}N ,
where CN has block length N and rate ρ, and is globally uniquely decodable deterministically
from H−1

2 (1−ρ)−γ
2 -fraction of errors in time N1+o(1).

1.2.2 Local list recovery
Our second main result shows that if the base code is both globally list recoverable and
locally correctable, then the tensor product is (genuinely) locally list recoverable (in the local
correction version).

I Theorem 4 (Local list recovery of high-rate tensor codes). The following holds for any
δ, α > 0, and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear code of relative distance δ
that is (α, `, L)-globally list recoverable, and locally correctable from (δ/2)-fraction of errors
with query complexity Q, and t ≥ 3. Then C⊗t ⊆ Fnt is (α · s−t3 , `, Lst

3
·logt L)-locally list

recoverable with query complexity nO(1) ·QO(t) · Lst
3
·logt L.

Once more, applying the expander-based distance amplification method of [2, 3, 18, 17], as
well as the random concatenation method of [33, 19, 17], the above theorem yields constant-
rate codes approaching the Gilbert-Varshamov bound that are locally correctable with query
complexity No(1).

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:7

I Corollary 5 (Local correction up to the GV bound). For any constants ρ ∈ [0, 0.02] and
γ > 0 there exists an infinite family of binary linear codes {CN}N , where CN has block
length N and rate ρ, and is locally correctable from H−1

2 (1−ρ)−γ
2 -fraction of errors with query

complexity No(1).

1.2.3 Combinatorial lower bound on output list size
Our final main result shows a nearly-tight combinatorial lower bound on output list size for
list recovering high-rate tensor codes.

I Theorem 6 (Output list size for list recovering high-rate tensor codes). Suppose that C ⊆ Fn
is a linear code of rate 1− γ, and that C⊗t ⊆ Fnt is (0, `, L)-list recoverable. Then L ≥ `1/γt .

The above bound can be instantiated concretely as follows.

I Corollary 7. For any δ > 0 and ` > 1 there exists L > 1 such that the following
holds for any sufficiently large n. There exists a linear code C ⊆ Fn of relative distance
δ that is (Ω(δ), `, L)-list recoverable, but C⊗t ⊆ Fnt is only (0, `, L′)-list recoverable for
L′ ≥ exp((2δ)−(t−3/2) ·

√
logL).

Finally, we also obtain a nearly-tight lower bound of NΩ(1/ log logN) on the product of
query complexity and output list size for locally list recovering high-rate tensor codes.

I Corollary 8. For any δ > 0 and sufficiently large n there exists a linear code C ⊆ Fn of
relative distance δ such that the following holds. Suppose that C⊗t ⊆ FN is (1

N , 2, L)-locally
list recoverable with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).

2 Preliminaries

For a prime power q we denote by Fq the finite field of q elements. For any finite alphabet Σ
and for any pair of strings x, y ∈ Σn, the relative distance between x and y is the fraction of co-
ordinates i ∈ [n] on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n.
For a subset Y ⊆ Σn, we denote by dist(x, Y) the minimum relative distance of a string
y ∈ Y from x. For a positive integer ` we denote by

(Σ
`

)
the collection of all subsets of Σ

of size ` and by
(Σ
≤`
)
the collection of all nonempty subsets of Σ of size at most `. For any

string x ∈ Σn and tuple S ∈
(Σ
≤`
)n we denote by dist(x, S) the fraction of coordinates i ∈ [n]

for which xi /∈ Si, that is, dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. For a string x ∈ Σn and a
subset T ⊆ [n], we use x|T ∈ Σ|T | to denote the restriction of x to the coordinates in T .
Throughout the paper, we use exp(n) to denote 2Θ(n), and whenever we use log, it is base 2,
unless noted otherwise.

2.1 Error-correcting codes
An error-correcting code is simply a subset C ⊆ Σn. We call Σ the alphabet of the code, and
n its block length. The elements of C are called codewords. If F is a finite field and Σ is a
vector space over F, we say that a code C ⊆ Σn is F-linear if it is an F-linear subspace of the
F-vector space Σn. If Σ = F, we simply say that C is linear.

The rate of a code is the ratio ρ := log |C|
log(|Σ|n) , which for F-linear codes equals dimF(C)

n·dimF(Σ) .
The relative distance dist(C) of C is the minimum δ > 0 such that for every pair of distinct
codewords c1, c2 ∈ C it holds that dist(c1, c2) ≥ δ. We denote by ∆(C) := dist(C) · n the
(absolute) distance of C.

APPROX/RANDOM 2019

68:8 On List Recovery of High-Rate Tensor Codes

The best known general trade-off between rate and distance of codes is the Gilbert-
Varshamov bound, attained by random (linear) codes. For x ∈ [0, 1] let

Hq(x) = x logq(q − 1) + x logq(1/x) + (1− x) logq(1/(1− x))

denote the q-ary entropy function.

I Theorem 9 (Gilbert-Varshamov (GV) bound, [12, 35]). For any prime power q, δ ∈ (0, 1− 1
q),

and ρ ∈ (0, 1−Hq(δ)), a random linear code C ⊆ Fnq of rate ρ has relative distance at least δ
with probability 1− exp(−n).

I Corollary 10. For any ρ ∈ [0, 1] and γ > 0, and prime power q ≥ 2H2(1−ρ−γ)/γ , a random
linear code C ⊆ Fnq of rate ρ has relative distance at least 1−ρ−γ with probability 1−exp(−n).

An encoding map for C is a bijection EC : Σk → C, where |Σ|k = |C|. We call the
elements in the domain of EC messages, and k the message length. We say that C is encodable
in time T if an encoding map for C can be computed in time T . For a code C ⊆ Σn of
relative distance δ and a given parameter α < δ/2, we say that C is decodable from α-fraction
of errors in time T if there exists an algorithm, running in time T , that given a received word
w ∈ Σn, computes the unique codeword c ∈ C (if any) which satisfies dist(c, w) ≤ α.

I Proposition 11 (Reed-Solomon codes, [29, 8]). For any prime power q and integers
k ≤ n ≤ q, there exists a linear code C ⊆ Fnq of rate ρ := k/n and relative distance at
least 1− ρ that is encodable and decodable from 1−ρ

2 -fraction of errors in time poly(n, log q).

Let C ⊆ Fn be a linear code of dimension k. A generating matrix for C is an n× k matrix
G such that Im(G) = C. A parity-check matrix for C is an (n− k)× n matrix H such that
ker(H) = C. The dual code C⊥ ⊆ Fn is given by

C⊥ = {y ∈ Fn | 〈y, c〉 = 0 ∀c ∈ C}.

It is well-known that C⊥⊥ = C, and that a matrix G is a generating matrix for C if and
only if GT is a parity-check matrix for C⊥.

2.2 List recoverable codes
List recovery is a generalization of the standard error-correction setting where each entry wi
of the received word w is replaced with a list Si of ` possible symbols of Σ. Formally, for
α ∈ [0, 1] and integers `, L we say that a code C ⊆ Σn is (α, `, L)-list recoverable if for any
tuple S ∈

(Σ
≤`
)n there are at most L different codewords c ∈ C so that dist(c, S) ≤ α. We

say that C is (α,L)-list decodable if it is (α, 1, L)-list recoverable.

I Corollary 12 ([24], Corollary 2.2). For any ρ ∈ [0, 1], γ > 0, and ` ≥ 1, and for sufficiently
large prime power q, a random linear code C ⊆ Fnq of rate ρ is (1 − ρ − γ, `, qO(`/γ))-list
recoverable with probability 1− exp(−n).

We say that C is (α, `, L)-list recoverable in time T if there exists an algorithm, running
in time T , that given a tuple S ∈

(Σ
`

)n, returns all codewords c ∈ C (if any) which satisfy
dist(c, S) ≤ α. The following theorem from [22, 20, 23] gives a family of high-rate linear
codes which are efficiently list recoverable with constant alphabet size and nearly-constant
output list size.

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:9

I Theorem 13 ([24], Theorem A.1). There exists an absolute constant b0 so that the following
holds. For any γ > 0, ` ≥ 1, q ≥ `b0/γ that is an even power of a prime4, and integer
n ≥ qb0`/γ, there exists a linear code C ⊆ Fnq of rate 1− γ and relative distance Ω(γ2) that
is (Ω(γ2), `, L)-list recoverable for L = qq

(`/γ)·exp(log∗ n) . Moreover, C can be encoded in time
poly(n, log q) and list recovered in time poly(n,L).

2.3 Local codes

2.3.0.1 Locally testable codes

Intuitively, a code is said to be locally testable [11, 30, 16] if, given a string w ∈ Σn, it is
possible to determine whether w is a codeword of C, or rather far from C, by reading only a
small part of w. For our purposes, we shall also require an additional tolerance property of
determining whether w is sufficiently close to the code.

I Definition 14 (Tolerant locally testable code (Tolerant LTC)). We say that a code C ⊆ Σn
is (Q,α, β)-tolerantly locally testable if there exists a randomized algorithm A that satisfies
the following requirements:

Input: A gets oracle access to a string w ∈ Σn.
Query complexity: A makes at most Q queries to the oracle w.
Completeness: If dist(w,C) ≤ α, then A accepts with probability at least 2

3 .
Soundness: If dist(w,C) ≥ β, then A rejects with probability at least 2

3 .

I Remark 15. The definition requires 0 ≤ α < β ≤ 1. The above success probability of 2
3

can be amplified using sequential repetition, at the cost of increasing the query complexity.
Specifically, amplifying the success probability to 1− exp(−t) requires increasing the query
complexity by a multiplicative factor of O(t).

Locally correctable codes

Intuitively, a code is said to be locally correctable [4, 32, 25] if, given a codeword c ∈ C that
has been corrupted by some errors, it is possible to decode any coordinate of c by reading
only a small part of the corrupted version of c.

I Definition 16 (Locally correctable code (LCC)). We say that a code C ⊆ Σn is (Q,α)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

Input: A takes as input a coordinate i ∈ [n], and also gets oracle access to a string
w ∈ Σn that is α-close to a codeword c ∈ C.
Query complexity: A makes at most Q queries to the oracle w.
Output: A outputs ci with probability at least 2

3 .

I Remark 17. The definition requires α < dist(C)/2. The above success probability of 2
3

can be amplified using sequential repetition, at the cost of increasing the query complexity.
Specifically, amplifying the success probability to 1− exp(−t) requires increasing the query
complexity by a multiplicative factor of O(t).

4 That is, q is of the form p2t for a prime p and for an integer t.

APPROX/RANDOM 2019

68:10 On List Recovery of High-Rate Tensor Codes

Locally list recoverable codes

The following definition from [14, 32, 17] generalizes the notion of locally correctable codes
to the setting of list decoding/recovery. In this setting, the local list recovery algorithm is
required to output in an implicit sense all codewords that are consistent with most of the
input lists.

I Definition 18 (Locally list recoverable code). We say that a code C ⊆ Σn is (Q,α, ε, `, L)-
locally list recoverable if there exists a randomized algorithm A that satisfies the following
requirements:

Input: A gets oracle access to a string S ∈
(Σ
≤`
)n.

Query complexity: A makes at most Q queries to the oracle S.
Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as input
a coordinate i ∈ [n], makes at most Q queries to the oracle S, and outputs a symbol in Σ.
Completeness: For any codeword c ∈ C which satisfies dist(c, S) ≤ α, with probability
at least 1− ε over the randomness of A, the following event happens: there exists some
j ∈ [L] such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 , (1)

where the probability is over the internal randomness of Aj.
Soundness: With probability at least 1 − ε over the randomness of A, the following
event happens: for every j ∈ [L], there exists some c ∈ C such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2
3 ,

where the probability is over the internal randomness of Aj.
We say that A has preprocessing time Tpre if A outputs the description of the algorithms
A1, . . . , AL in time at most Tpre, and has running time T if each Aj has running time
at most T . As before, we say that the code C is (Q,α, ε, L)-locally list decodable if it is
(Q,α, ε, 1, L)-locally list recoverable.

2.4 Tensor codes
In this paper we study the list recovery properties of the high-rate tensor product codes,
defined as follows.

I Definition 19 (Tensor product codes). Let C1 ⊆ Fn1 , C2 ⊆ Fn2 be linear codes. Their
tensor product code C1 ⊗ C2 ⊆ Fn1×n2 consists of all matrices M ∈ Fn1×n2 such that all the
rows of M are codewords of C2 and all the columns are codewords of C1.

3 Deterministic near-linear time global list recovery

3.1 Deterministic near-linear time list recovery of high-rate tensor
codes

In this section we prove Theorem 1, restated bollow, which shows that the tensor product of
an efficient (poly-time) high-rate globally list recoverable code is globally list recoverable in
deterministic near-linear time.

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:11

I Theorem 1 (Deterministic near-linear time list recovery of high-rate tensor codes). The
following holds for any δ, α > 0, and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear
code of relative distance δ that is (α, `, L)-globally list recoverable deterministically in time
T . Then C⊗t ⊆ Fnt is (α · s−t2 , `, Lst

3
·Lt)-globally list recoverable deterministically in time

nt · T · Lst
3
·Lt .

Theorem 1 follows by applying the lemma below iteratively.

I Lemma 20. The following holds for any δ, α, δdec, δ
′
dec > 0, and s̄ = poly(1/δ, 1/α, 1/δdec,

1/δ′dec).
Suppose that C ⊆ Fn is a linear code of relative distance δ that is (α, `, L)-globally list

recoverable deterministically in time T , and C ′ ⊆ Fn′ is a linear code that is (α′, `, L′)-globally
list recoverable deterministically in time T ′. Suppose furthermore that C,C ′ are uniquely
decodable deterministically from δdec, δ

′
dec-fraction of errors in times Tdec, T

′
dec, respectively.

Then C ⊗ C ′ ⊆ Fn×n′ is (α′/s̄, `, (L′)s̄·L/(α′)2)-globally list recoverable deterministically
in time

(L′)s̄·L/(α
′)2
· n · (n′ · (T + Tdec) + n · T ′dec + T ′) .

We now sketch the proof of Lemma 20. Our plan is to derandomize the approximate local
list recovery algorithm for high-rate tensor codes of [23]. Recall that an approximate local
list recovery algorithm (local correction version) is a randomized algorithm A that outputs
a collection of (without loss of generality, deterministic) local algorithms Aj satisfying the
following: for any codeword c that is consistent with most of the input lists, with high
probability (over the randomness of A) one of the local algorithms Aj locally corrects most
of the coordinates of c.

As observed in [23], an approximate local list recovery algorithm naturally gives a
probabilistic near-linear time global list recovery algorithm as follows. First run the algorithm
A to obtain the collection of local algorithms Aj . Then for each Aj , output a codeword that
is obtained by applying Aj on each codeword coordinate, and then uniquely decoding the
resulting word to the closest codeword. The guarantee now is that any codeword that is
consistent with most of the input lists will be output with high probability.

To derandomize the probabilistic global algorithm described above, we note that the
preprocessing algorithm A in [23] produces the collection of local algorithms Aj by choosing
a random subset of rows in the tensor product,5 that is chosen uniformly at random amongst
all subsets of the appropriate size. We then observe that this subset can be alternatively
chosen using a randomness-efficient sampler without harming much the performance. Finally,
since the sampler uses a small amount of randomness (logarithmic in the blocklength of C),
we can afford to iterate over all seeds and return the union of all output lists. This gives a
deterministic near-linear time global list recovery algorithm that outputs all codewords that
are consistent with most of the input lists.

3.1.1 Samplers
We start by defining the appropriate samplers we use.

5 In [23], the role of columns and rows is swapped.

APPROX/RANDOM 2019

68:12 On List Recovery of High-Rate Tensor Codes

I Definition 21 ((averaging) sampler). An (n, η, γ)-sampler with randomness r and sample
size m is a randomized algorithm that tosses r random coins and outputs a subset I ⊆ [n] of
size m such that the following holds. For any function f : [n] → [0, 1], with probability at
least 1− η over the choice of I,∣∣Ei∈I [f(i)]− Ei∈[n] [f(i)]

∣∣ ≤ γ.
We shall use the following construction from Goldreich [13].

I Theorem 22 ([13], Corollary 5.6). For any η, γ > 0 and integer n, there exists an
(n, η, γ)-sampler with randomness log(n/γ), sample size O

(
1/(ηγ2)

)
, and running time

poly(logn, 1/η, 1/γ).

In what follows, let Γ denote the (n, η, γ)-sampler promised by the above theorem, where
we set η := 0.1

L ·
δdec·δ′dec

3 and γ := α′ · δ·δdec·δ′dec
24 . Let r := log(n/γ) ≤ log(n · s̄/α′) and

m := O(1/(ηγ2)) ≤ L · s̄/(α′)2 denote the randomness and sample size of Γ, respectively
(assuming that s̄ is a sufficiently large polynomial).

3.1.2 Randomness-efficient algorithm
We first describe a randomness-efficient global list recovery algorithm Ã for C ⊗ C ′ that is
obtained by replacing the choice of a uniform random subset of rows made in [23] with a
sample from Γ. We will later observe that the randomness can be eliminated by iterating
over all seeds of Γ and returning the union of all output lists.

The algorithm Ã behaves as follows. First, it uses Γ to sample a subset of m rows
I = {i1, . . . , im} ⊆ [n]. Then for k = 1, . . . ,m, it runs the list recovery algorithm A′ for C ′
on the ik-th row S|{ik}×[n′]; let L′i1 ,L

′
i2
, . . . ,L′im ⊆ C

′ denote the lists output by A′ on each
of the rows in I. Finally, for any choice of codewords c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im , the

algorithm Ã outputs a codeword c̃ ∈ C ⊗ C ′ that is obtained as follows.
For each column j ∈ [n′], the algorithm Ã runs the list recovery algorithm A for C on the

j-th column S|[n]×{j}; let L1,L2, . . .Ln′ ⊆ C denote the lists output by A on each of the n′
columns. Then the algorithm Ã chooses for each column j ∈ [n′] the codeword cj ∈ Lj whose
restriction to I is closest to ((c′1)j , (c′2)j . . . , (c′m)j) (i.e., the restriction of c′1, c′2, . . . , c′m to
the j-th column). Finally, the algorithm Ã sets the value of each column j ∈ [n′] to cj , and
uniquely decodes the resulting word c̃0 to the nearest codeword c̃ ∈ C ⊗ C ′, assuming there
is one at distance at most δdec · δ′dec. If dist(c̃, S) ≤ α′/s̄, then Ã includes c̃ in the output list
L̃. The formal description is given in Algorithm 1.

3.2 Deterministic nearly-linear time capacity-achieving list recoverable
codes

In this section we prove the following lemma which implies Corollary 2 from the introduction.

I Lemma 23. For any constants ρ ∈ [0, 1], γ > 0, and ` ≥ 1 there exists an infinite family
of codes {CN}N that satisfy the following.

CN is an F2-linear code of block length N and alphabet size No(1).
CN has rate ρ and relative distance at least 1− ρ− γ.
CN is (1− ρ− γ, `,No(1))-globally list recoverable deterministically in time N1+o(1).
CN is encodable deterministically in time N1+o(1).

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:13

Algorithm 1 The randomness-efficient global list recovery algorithm Ã for C ⊗ C′.

function Ã(S ∈
(F
≤`
)n×n′)

Sample I = {i1, . . . , im} ⊆ [n] of size m using sampler Γ.
for k = 1, . . . ,m do

Run the list recovery algorithm A′ for C ′ on the ik-th row S|{ik}×[n′], and let
L′ik ⊆ C

′ be the list of codewords output by A′.
end for
Initialize c̃0 ∈ Fn×n′ , L̃ ← ∅.
for any choice of codewords c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im do

for j ∈ [n′] do
Run the list recovery algorithm A for C on the j-th column S|[n]×{j}, and let

Lj ⊆ C be the list of codewords output by A.
Choose a codeword cj ∈ Lj for which cj |I is closest to ((c′1)j , (c′2)j , . . . , (c′m)j)

(breaking ties arbitrarily).
Set the j-th column of c̃0 to cj .

end for
Uniquely decode c̃0 from (δdec · δ′dec)-fraction of errors, and let c̃ ∈ C ⊗ C ′ be the

resulting codeword (if exists). If dist(c̃, S) ≤ α′/s̄, add c̃ to L̃.
end for

end function

To prove the above lemma, we first use Theorem 1 to obtain deterministic nearly-linear
time high-rate list recoverable codes, and then use the Alon-Edmonds-Luby (AEL) distance
amplification method [2, 3] to turn these codes into deterministic nearly-linear time capacity-
achieving list recoverable codes.

3.3 Deterministic near-linear time unique decoding up to the GV
bound

In this section we prove the following lemma which implies Corollary 3 from the introduction.

I Lemma 24. For any constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of
binary linear codes {CN}N , where CN has block length N and rate ρ, and is globally uniquely
decodable deterministically from H−1

2 (1−ρ)−γ
2 -fraction of errors in time N1+o(1).

Furthermore, there exists a randomized algorithm which, on input N , runs in time N1+o(1)

and outputs with high probability a description of a code CN with the properties above. Given
the description, the code CN can be encoded deterministically in time N1+o(1).

To prove the above lemma, we rely on a lemma from [33, 23] which says that one can
turn a code that approximately satisfies the Singleton bound into one that approximately
satisfies the GV bound via random concatenation.

4 Local list recovery

4.1 Local list recovery of high-rate tensor codes
In this section we prove the following lemma which implies Theorem 4 from the introduction.

APPROX/RANDOM 2019

68:14 On List Recovery of High-Rate Tensor Codes

I Lemma 25. The following holds for any δ, α, ε > 0 and s = poly(1/δ, 1/α). Suppose that
C ⊆ Fn is a linear code of relative distance δ that is (α, `, L)-globally list recoverable, and
(Q, δ/2)-locally correctable, and t ≥ 3. Then C⊗t ⊆ Fnt is (Q̃, α·s−t3 , ε, `, Lst

3
·logt L·log(1/ε))-

locally list recoverable for

Q̃ = n3 · (Q logQ)t · Ls
t3 ·logt L · log2(1/ε).

Moreover, if C is globally list recoverable in time poly(n), locally correctable in time T ,
and globally decodable for (δ/2)-fraction of errors in time poly(n), then the local list recovery
algorithm for C⊗t has preprocessing time poly(n) · Lst

3
·logt L · log2(1/ε) and running time

poly(n) · (T log T)t · (st3 logt L).

The above lemma relies on the following lemma from [23] which says that the tensor
product of a high-rate globally list recoverable code (which is not necessarily locally cor-
rectable) is approximately locally list recoverable. Approximate local list recovery is a
relaxation of local list recovery, where the local algorithms in the output list are not required
to recover all the codeword coordinates, but only most of them. Formally, a β-approximately
(Q,α, ε, `, L)-locally list recoverable code C ⊆ Σn satisfies all the requirements of Definition
18, except that the requirement (1) is replaced with the relaxed condition that

Pr
i∈[n]

[
Aj(i) = ci

]
≥ 1− β, (2)

where the probability is over the choice of uniform random i ∈ [n], and the soundness
requirement is eliminated.

I Lemma 26 (Approximate local list recovery of high-rate tensor codes, [24], Lemma 4.1). The
following holds for any δ, α, β, ε > 0 and s = poly(1/δ, 1/α, 1/β). Suppose that C ⊆ Fn is a
linear code of relative distance δ that is (α, `, L)-globally list recoverable. Then C⊗t ⊆ Fnt is
β-approximately (n · (st2 logt L), α · s−t2 , ε, `, Lst

2
·logt L · log(1/ε))-locally list recoverable.

Moreover, if C is globally list recoverable in time poly(n), then the approximate local list
recovery algorithm for C⊗t has preprocessing time log(n) · Lst

2
·logt L · log(1/ε) and running

time poly(n) · (st2 logt L).

To turn the approximate local list recovery algorithm given by the above lemma into a local
list recovery algorithm we shall use the fact that the tensor product of a locally correctable
code is also locally correctable with slightly worse parameters. A similar observation was
made in [37, Proposition 3.15.].

I Lemma 27 (Local correction of tensor codes). Suppose that C ⊆ Fn is a linear code that is
(Q,α)-locally correctable. Then C⊗t ⊆ Fnt is (

(
O(Q logQ)

)t
, αt)-locally correctable.

Moreover, if C is locally correctable in time T , then the local correction algorithm for
C⊗t runs in time (O(T log T))t.

To guarantee the soundness property we shall also use the following lemma which says
that high-rate tensor codes are tolerantly locally testable.

I Lemma 28 (Tolerant local testing of high-rate tensor codes). Suppose that C ⊆ Fn is a linear
code of relative distance δ, and t ≥ 3. Then C⊗t ⊆ Fnt is (n2 · δ−O(t), δO(t), (δ/2)t)-tolerantly
locally testable.

Moreover, if C is globally decodable from (δ/2)-fraction of errors in time T , then the
tolerant local testing algorithm for C⊗t runs in time T · n · δ−O(t).

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:15

Finally, we show a general transformation that turns an approximately locally list
recoverable code that is also locally correctable and tolerantly locally testable into a (genuinely)
locally list recoverable code.

I Lemma 29. Suppose that C ⊆ Σn is a β-approximately (Q,α, ε, `, L)-locally list recoverable
code that is also (Qcorr, γ)-locally correctable and (Qtest, β, γ)-tolerantly locally testable. Then
C is (Q̃, α, 2ε, `, L)-locally list recoverable for

Q̃ = max{Q ·Qtest ·O(|L| log(|L|/ε)), Q ·Qcorr}.

Moreover, if the approximate local list recovery algorithm has preprocessing time Tpre
and running time T , and the local correction and tolerant local testing algorithms run in
times Ttest, Tcorr, respectively, then the local list recovery algorithm has preprocessing time
Tpre + T · Ttest ·O(|L| log(|L|/ε)) and running time T · Tcorr.

4.2 Capacity-achieving locally list recoverable codes
In this section we prove the following lemma which shows the existence of capacity-achieving
locally list recoverable codes. An analogous lemma was proven in [24, Lemma 5.3], however
only for local decoding message coordinates, and without the soundness property. The fact
that we are able to locally correct codeword coordinates, as well as guarantee the soundness
property, will be crucial for our GV bound local correction application.

I Lemma 30. For any constants ρ ∈ [0, 1], γ > 0, ε > 0, and ` ≥ 1 there exists an infinite
family of codes {CN}N that satisfy the following.

CN is an F2-linear code of block length N and alphabet size No(1).
CN has rate ρ and relative distance at least 1− ρ− γ.
CN is (No(1), 1− ρ− γ, ε, `,No(1))-locally list recoverable with preprocessing and running
time No(1).
CN is encodable in time N1+o(1).

As in the proof of Lemma 23, we first use Lemma 25 to obtain high-rate locally list
recoverable codes, and then use the Alon-Edmonds-Luby (AEL) distance amplification
method [2, 3] to turn these codes into capacity-achieving locally list recoverable codes.
However, this time we use a version of the AEL method for local list recovery from [17].

4.3 Local correction up to the GV bound
In this section we prove the following lemma which implies Corollary 5 from the introduction.

I Lemma 31. For any constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of
binary linear codes {CN}N , where CN has block length N and rate ρ, and is locally correctable
from H−1

2 (1−ρ)−γ
2 -fraction of errors with query complexity No(1).

Furthermore,
The local correction algorithm for CN runs in time No(1).
There exists a randomized algorithm which, on input N , runs in time N1+o(1) and outputs
with high probability a description of a code CN with the properties above. Given the
description, the code CN can be encoded deterministically in time N1+o(1).

The proof is analogous to that of Lemma 24 and relies on concatenation.

APPROX/RANDOM 2019

68:16 On List Recovery of High-Rate Tensor Codes

I Lemma 32 (Concatenation for local list recovery). Suppose that C ⊆ (Σρ′·t)n is (Q,α, ε, `, L)-
locally list recoverable, and Ccon ⊆ Σtn is a code obtained from C by applying a code C(i) ⊆ Σt
of rate ρ′ on each coordinate i ∈ [n] of C. Suppose furthermore that at least (1− γ)-fraction
of the codes C(i) are (α′, `′, `)-globally list recoverable. Then Ccon is (Q · t, (α−γ) ·α′, ε, `′, L)-
locally list recoverable.

Moreover, if the local list recovery algorithm for C has preprocessing time Tpre and running
time T , and each C(i) can be globally list recovered in time T ′, then the local list recovery
algorithm for Ccon has preprocessing time Tpre +Q · T ′ and running time T +Q · T ′.

References
1 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for

the maximal independent set problem. Journal of algorithms, 7(4):567–583, 1986.
2 Noga Alon, Jeff Edmonds, and Michael Luby. Linear Time Erasure Codes with Nearly Optimal

Recovery. In proceedings of the 36th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 512–519. IEEE Computer Society, 1995.

3 Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal recovery.
IEEE Transactions on Information Theory, 42(6):1732–1736, 1996.

4 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking Computations
in Polylogarithmic Time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing (STOC), pages 21–31. ACM Press, 1991. doi:10.1145/103418.103428.

5 Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Structures and Algorithms, 28(4):387–402, 2006. doi:10.1002/rsa.20120.

6 Eli Ben-Sasson and Michael Viderman. Tensor Products of Weakly Smooth Codes are Robust.
Theory of Computing, 5(1):239–255, 2009.

7 Eli Ben-Sasson and Michael Viderman. Composition of semi-LTCs by two-wise tensor products.
Computational Complexity, 24(3):601–643, 2015. doi:10.1007/s00037-013-0074-8.

8 E. R. Berlekamp and L. Welch. Error correction of algebraic block codes. US Patent Number
4,633,470.

9 Don Coppersmith and Atri Rudra. On the robust testability of tensor products of
codes. ECCC TR05-104, 2005. URL: https://eccc.weizmann.ac.il/eccc-reports/2005/
TR05-104/index.html.

10 Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of LDPC codes. In proceedings of the 9th International Workshop on Randomization and
Computation (RANDOM), pages 304–315. Springer, 2006.

11 Katalin Friedl and Madhu Sudan. Some Improvements to Total Degree Tests. In proceedings
of the 3rd Israel Symposium on the Theory of Computing and Systems (ISTCS), pages 190–198.
IEEE Computer Society, 1995.

12 Edgar N. Gilbert. A comparision of signalling alphabets. Bell System Technical Journal,
31:504–522, 1952.

13 Oded Goldreich. A sample of samplers: A computational perspective on sampling. def, 1:2n,
1997.

14 Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st annual ACM symposium on Theory of computing (STOC), pages 25–32.
ACM Press, 1989.

15 Oded Goldreich and Or Meir. The tensor product of two good codes is not necessarily locally
testable. Information Processsing Letters, 112(8-9):351–355, 2012.

16 Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost linear length.
Journal of ACM, 53(4):558–655, 2006.

17 Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi Saraf.
Locally Testable and Locally Correctable Codes approaching the Gilbert-Varshamov Bound.
IEEE Transactions on Information Theory, 64(8):5813–5831, 2018.

https://doi.org/10.1145/103418.103428
https://doi.org/10.1002/rsa.20120
https://doi.org/10.1007/s00037-013-0074-8
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-104/index.html
https://eccc.weizmann.ac.il/eccc-reports/2005/TR05-104/index.html

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:17

18 Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 812–821. ACM Press, 2002.

19 Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting Gilbert-
Varshamov bound for low rates. In Proceedings of the 15th Annual ACM-SIAM Symposium
on Discrete Algorithm (SODA), pages 756–757. SIAM, 2004. URL: http://dl.acm.org/
citation.cfm?id=982792.

20 Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combinatorica,
36(2):161–185, 2016. doi:10.1007/s00493-014-3169-1.

21 Venkatesan Guruswami and Atri Rudra. Explicit Codes Achieving List Decoding Capacity:
Error-Correction With Optimal Redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

22 Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, Algebraic-Geometric,
and Gabidulin subcodes up to the Singleton bound. In Proceedings of the 45th annual ACM
symposium on Theory of Computing (STOC), pages 843–852. ACM, 2013.

23 Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local List Recovery of High-Rate Tensor
Codes & Applications. In Proceedings of the 58th IEEE Annual Symposium on Foundations
of Computer Science (FOCS). IEEE Computer Society, 2017.

24 Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local List Recovery of High-rate
Tensor Codes & Applications. Electronic Colloquium on Computational Complexity (ECCC),
24:104 (revision 1), 2017.

25 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In STOC ’00: Proceedings of the 32nd Annual Symposium on the Theory of
Computing, pages 80–86, 2000. doi:10.1145/335305.335315.

26 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-Rate Locally
Correctable and Locally Testable Codes with Sub-Polynomial Query Complexity. Journal of
ACM, 64(2):11:1–11:42, 2017. doi:10.1145/3051093.

27 Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved List
Decoding of Folded Reed-Solomon and Multiplicity Codes. In Proceedings of the 59th Annual
IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society,
2018.

28 Or Meir. Combinatorial Construction of Locally Testable Codes. SIAM Journal on Computing,
39(2):491–544, 2009.

29 Irving S. Reed and Gustave Solomon. Polynomial Codes over Certain Finite Fields. SIAM
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

30 Ronitt Rubinfeld and Madhu Sudan. Robust Characterization of Polynomials with Applications
to Program Testing. SIAM Journal of Computing, 25(2):252–271, 1996.

31 Atri Rudra and Mary Wootters. Average-radius list-recoverability of random linear codes.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 644–662. SIAM, 2018.

32 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom Generators without the XOR
Lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001. doi:10.1006/jcss.
2000.1730.

33 Christian Thommesen. The existence of binary linear concatenated codes with Reed - Solomon
outer codes which asymptotically meet the Gilbert- Varshamov bound. IEEE Trans. Informa-
tion Theory, 29(6):850–853, 1983. doi:10.1109/TIT.1983.1056765.

34 Paul Valiant. The tensor product of two codes is not necessarily robustly testable. In proceedings
of the 9th International Workshop on Randomization and Computation (RANDOM), pages
472–481. Springer, 2005.

35 R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, pages 739–741, 1957.

APPROX/RANDOM 2019

http://dl.acm.org/citation.cfm?id=982792
http://dl.acm.org/citation.cfm?id=982792
https://doi.org/10.1007/s00493-014-3169-1
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/3051093
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1006/jcss.2000.1730
https://doi.org/10.1109/TIT.1983.1056765

68:18 On List Recovery of High-Rate Tensor Codes

36 Michael Viderman. Strong LTCs with inverse poly-log rate and constant soundness. In
proceedings of the 54th IEEE Symposium on Foundations of Computer Science (FOCS), pages
330–339. IEEE Computer Society, 2013.

37 Michael Viderman. A combination of testability and decodability by tensor products. Random
Structures and Algorithms, 46(3):572–598, 2015.

A Combinatorial lower bound on output list size

In this appendix, we first provide a combinatorial lower bound on the output list size for
list recovering a high-rate tensor product C⊗t, even in the noiseless setting. In particular,
we show that the output list size must be doubly-exponential in t. From this, we are able
to deduce certain corollaries demonstrating that our algorithms nearly achieve optimal
parameters.

Recall that given vectors v1 ∈ Fn1 , v2 ∈ Fn2 , . . . , vt ∈ Fnt , their tensor product v1 ⊗ v2 ⊗
· · ·⊗vt is the t-dimensional box whose value in the (i1, i2, . . . , it) ∈ n1×n2 · · ·×nt coordinate
is given by the product

(v1 ⊗ v2 ⊗ · · · ⊗ vt)i1,i2,...,it = (v1)i1 · (v2)i2 · · · (vt)it .

For the special case of t = 2, the tensor product v ⊗ u can be thought of as the outer
product vuT .

We also record the following standard fact regarding tensor products.

I Proposition 33. Let v1, . . . , vt1 ∈ Fn1 and u1, . . . , ut2 ∈ Fn2 be sets of linearly independent
vectors. Then the collection {vi ⊗ uj | i ∈ [t1], j ∈ [t2]} is linearly independent in Fn1×n2 .

A.1 Output list size for list recovering high-rate tensor codes
In this section we prove Theorem 6 from the introduction, which we restate here for
convenience.

I Theorem 6 (Output list size for list recovering high-rate tensor codes). Suppose that C ⊆ Fn
is a linear code of rate 1− γ, and that C⊗t ⊆ Fnt is (0, `, L)-list recoverable. Then L ≥ `1/γt .

To prove this theorem, we first prove the following proposition. Informally speaking, we
iteratively apply the Singleton bound to conclude that linear codes of rate 1 − γ contain
about 1/γ codewords with pairwise disjoint supports. Recall that, for a vector v ∈ Fn, the
support of v is Supp(v) = {i ∈ [n] | vi 6= 0}.

I Proposition 34. Let C ⊆ Fn be a subspace of dimension k, and let r be a positive integer.
Suppose that(

1− 1
r

)
· n+ 1 ≤ k . (3)

Then there exist non-zero vectors c1, . . . , cr ∈ C such that for all i 6=j, Supp(ci)∩Supp(cj) = ∅.

Proof. Let m := n− k + 1, and note that Condition (3) is equivalent to

(r − 1)m ≤ k − 1 .

Take a basis for C of the form (e1, u1), . . . , (ek, uk), where ei ∈ Fk is the ith standard
basis vector, and u1, . . . , uk ∈ Fn−k are vectors. For j = 1, . . . , r − 1, we can find a
nontrivial linear combination of the vectors u(j−1)·m+1, . . . , uj·m summing to zero, as they

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:19

are a (multi-)set of m = n − k + 1 vectors lying in Fn−k. Taking this linear combination
of (e(j−1)·m+1, u(j−1)·m+1), . . . , (ej·m, uj·m), we obtain a nonzero vector whose support is
contained in the interval {(j − 1) ·m+ 1, . . . , j ·m}; denote this vector by cj . In this manner,
we obtain r − 1 nonzero vectors c1, . . . , cr−1 ∈ C with pairwise disjoint support. Finally, we
may add the vector cr := (ek, uk) to this collection, yielding r vectors, as desired. J

Next we prove Theorem 6, based on the above proposition.

Proof of Theorem 6. Let r := 1/γ, and recall wish to come up with `rt codewords in C⊗t
that are contained in the output list for appropriately chosen input lists.

In order to accomplish this, we first use Proposition 34 to obtain a subset C ′ ⊆ C of r
nonzero codewords with pairwise disjoint support. We then consider the subset C ′′ ⊆ C⊗t
containing all tensor products c1 ⊗ c2 ⊗ · · · ⊗ ct of t (not necessarily distinct) codewords
c1, . . . , ct ∈ C ′, and our main observation is that all these rt tensor products are also nonzero
with pairwise disjoint support. Finally, we let B ⊆ F be an arbitrary subset of size `, and
consider the subset C̄ ⊆ C⊗t containing all linear combinations of codewords in C ′′ with
coefficients in B. Since all codewords in C ′′ are nonzero with pairwise disjoint support, they
are in particular linearly independent, so the set C̄ contains `rt distinct codewords in C⊗t.

Moreover, since codewords in C ′′ have pairwise disjoint support, for each coordinate
(i1, . . . , it) ∈ [n]t, there is at most one codeword c ∈ C ′′ for which ci1,...,it is nonzero. Therefore
this is the only term which can contribute nontrivially to the value in the (i1, . . . , it) coordinate
of a codeword in C̄. So we can let the corresponding input list Si1,...,it contain all ` multiples
of ci1,...,it by elements in B. Details follow.

Since C has rate 1− γ, it has dimension k = (1− γ)n, and so Proposition 34 guarantees
the existence of a subset C ′ ⊆ C of r = 1/γ nonzero codewords with pairwise disjoint support.

Next we let

C ′′ :=
{
c1 ⊗ c2 ⊗ · · · ⊗ ct | c1, c2, . . . , ct ∈ C ′

}
be the subset of C⊗t containing all tensor products of t (not necessarily distinct) codewords
in C ′. Since all codewords in C ′ are nonzero, their t-wise tensor products are nonzero as well.

To see that all codewords in C ′′ have pairwise disjoint support, suppose that c =
c1 ⊗ c2 ⊗ . . .⊗ ct ∈ C ′′, and (i1, i2, . . . , it) ∈ Supp(c). Then

0 6= ci1,i2,...,it = (c1)i1 · (c2)i2 · · · (ct)it ,

so we must have that (c1)i1 , (c2)i2 , . . . , (ct)it are all nonzero. We conclude that

Supp(c) ⊆ Supp(c1)× Supp(c2)× · · · × Supp(ct).

Now, suppose that c = c1 ⊗ . . .⊗ ct, c′ = c′1 ⊗ . . .⊗ c′t are a pair of codewords in C ′′ with
cj 6= c′j for some j ∈ [t]. Since all codewords in C ′ have pairwise disjoint support it must
hold that Supp(cj) ∩ Supp(c′j) = ∅, and we conclude that Supp(c) ∩ Supp(c′) = ∅.

Now, let B ⊆ F be an arbitrary subset of size `, and let

C̄ :=
{ ∑
c∈C′′

βc · c
∣∣∣∣ βc ∈ B for all c ∈ C ′′

}
be the subset of C⊗t containing all linear combinations of codewords in C ′′ with coefficients
in B. Since all codewords in C ′′ are nonzero with pairwise disjoint support, they are in
particular linearly independent in Fnt ,6 so the set C̄ contains `rt distinct codewords in C⊗t.

6 This also follows from the fact that all codewords in C′′ are linearly independent together with
Proposition 33.

APPROX/RANDOM 2019

68:20 On List Recovery of High-Rate Tensor Codes

Finally, we wish to define input lists Si1,...,it for any coordinate (i1, . . . , it) ∈ [n]t so that for
any codeword c ∈ C̄, and for any coordinate (i1, . . . , it) ∈ [n]t, it holds that ci1,...,it ∈ Si1,...,it .

To this end, we observe that since codewords in C ′′ have pairwise disjoint support, for
each coordinate (i1, . . . , it) ∈ [n]t, there is at most one codeword c ∈ C ′′ for which ci1,...,it is
nonzero. Therefore this is the only term which can contribute nontrivially to the value in
the (it, . . . , it) coordinate of a codeword in C̄. So we can define the corresponding input list
Si1,...,it as

Si1,...,it := {β · ci1,...,it | β ∈ B}

if such a codeword c exists, and as Si1,...,it = {0} otherwise. Note that each set Si1,...,it has
size at most `, and that they satisfy the required property.

This yields a set of `rt codewords from C⊗t that are contained in the output list for the
input list tuple S defined above, proving the theorem. J

A.2 Concrete lower bound on output list size
In this section, we demonstrate a setting of parameters that yields Corollary 7 from the
introduction, restated below.

I Corollary 7. For any δ > 0 and ` > 1 there exists L > 1 such that the following
holds for any sufficiently large n. There exists a linear code C ⊆ Fn of relative distance
δ that is (Ω(δ), `, L)-list recoverable, but C⊗t ⊆ Fnt is only (0, `, L′)-list recoverable for
L′ ≥ exp((2δ)−(t−3/2) ·

√
logL).

We use the following result on the list-recoverability of random linear codes from [31].

I Theorem 35 ([31], Corollary 3.3). There exists an absolute constant b0 so that the following
holds. For any γ > 0, ` ≥ 1, and a prime power q ≥ `b0/γ , a random linear code C ⊆ Fnq of
rate 1− γ is (Ω(γ), `, L)-list recoverable for

L ≤
(
q`

γ

)(log `)/γ
· exp

(
log2 `

γ3

)
with probability 1− exp(−n).

Proof of Corollary 7. Let C ⊆ Fnq be the linear code given by Theorem 35 of rate 1 − 2δ
and q = `O(1/δ) that is (Ω(δ), `, L)-list recoverable for L = exp((log2 `)/δ3), or equivalently,
` = exp(δ3/2 ·

√
logL). By Corollary 10, we may further assume that the code C has relative

distance at least δ. Now, by Theorem 6 we have that L′ ≥ `(2δ)
−t = exp((2δ)−(t−3/2) ·√

logL). J

A.3 Lower bound for local list recovering
We now prove Corollary 8 from the introduction, restated below.

I Corollary 8. For any δ > 0 and sufficiently large n there exists a linear code C ⊆ Fn of
relative distance δ such that the following holds. Suppose that C⊗t ⊆ FN is (1

N , 2, L)-locally
list recoverable with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).

We first show the following lemma which says that a locally list decodable (and in
particular locally list recoverable) code with output list size L and query complexity Q is
also locally correctable with query complexity roughly Q · L.

S. Kopparty, N. Resch, N. Ron-Zewi, S. Saraf, and S. Silas 68:21

I Lemma 36. Suppose that C ⊆ Σn is a code of relative distance δ that is (Q,α, 0.1, L)-locally
list decodable for α < δ/2. Then C is

(
O
(
Q · L · log2 n

(δ/2−α)2

)
, α
)
-locally correctable.

So to prove Corollary 8, it is enough to show a lower bound on the query complexity for
local correcting C⊗t, assuming that the output list for list recovering C⊗t is small. To show
such a lower bound, we first observe that for any linear code C, the (absolute) distance of
C⊥ is a lower bound on the query complexity for local correcting C.

I Lemma 37. Suppose that C ⊆ Fn is a linear code that is (Q, 1
n)-locally correctable. Then

Q ≥ ∆(C⊥)− 2.

We prove the above lemma in Section A.3.1. To apply this lemma to C⊗t we further
observe that the tensor product preserves the dual distance of the base code.

I Lemma 38. Suppose that C1 ⊆ Fn1 , C2 ⊆ Fn2 are linear codes, and that C⊥1 , C⊥2 have
distances ∆1,∆2, respectively. Then (C1 ⊗C2)⊥ has distance min{∆1,∆2}. In particular, if
C ⊆ Fn is a linear code, and C⊥ has distance ∆, then (C⊗t)⊥ has distance ∆ for any t ≥ 1.

We prove the above lemma in Section A.3.2. We now proceed to the proof of Corollary 8.

Proof of Corollary 8. Let C ⊆ Fn be a random linear code of rate 1− 2δ. By Corollary 10,
for sufficiently large field size, the code C will have relative distance at least δ with high
probability. Moreover, since C⊥ has rate 2δ, by the same corollary we also have that C⊥ has
relative distance at least 1− 3δ with high probability. We conclude for any sufficiently large
n the existence of a linear code C ⊆ Fn of rate 1− 2δ and relative distance at least δ such
that C⊥ has relative distance at least 1− 3δ.

Next observe that for the code C⊗t to be (Q, 1
N , 0.1, 2, L)-locally list recoverable, it in

particular must be (0, 2, L)-list recoverable, so the lower bound from Theorem 6 implies
that L ≥ 21/(2δ)t . Now, if 21/(2δ)t ≥ N then we have that Q · L ≥ 21/(2δ)t ≥ N , and we are
done. So we may assume that 21/(2δ)t < N which implies in turn that t = Oδ(log logN) and
n = N1/t = NΩδ(1/ log logN).

Moreover, as we have assumed we have a (Q, 1
N , 0.1, 2, L)-local list recovery algorithm

for C⊗t, we also have a (Q, 1
N , 0.1, L)-local list decoding algorithm for C⊗t. Lemma 36

then promises that we have a (O(Q · L · log2 N
(δt/2−1/N)2), 1

N)-local correction algorithm for C⊗t.
Now, by Lemma 38 we have that (C⊗t)⊥ has (absolute) distance at least (1 − 3δ)n, and
consequently Lemma 37 implies that

O

(
Q · L · log2N

(δt/2− 1
N)2

)
≥ (1− 3δ)n− 2 = NΩδ(1/ log logN) .

This implies Q · L ≥ NΩδ(1/ log logN), as desired. J

A.3.1 Dual distance is a lower bound on query complexity – proof of
Lemma 37

First, we recall the standard fact that (absolute) dual distance ∆ implies that the uniform
distribution over the code is (∆− 1)-wise independent.

I Proposition 39 ([1]). Suppose that C ⊆ Fnq is a linear code, and that C⊥ has (absolute)
distance ∆. Then for all 1 ≤ i1 < · · · < is ≤ n with s < ∆, and all a1, . . . , as ∈ Fq,

Pr
c∈C

[ci1 = a1 ∧ · · · ∧ cis = as] = 1
qs
.

APPROX/RANDOM 2019

68:22 On List Recovery of High-Rate Tensor Codes

In what follows let ∆ := ∆(C⊥), and let q denote the alphabet size of C. Now, making
use of Yao’s principle, it suffices to show a distribution D over vectors w at absolute distance
at most 1 from C such that the following holds. For any deterministic algorithm making at
most ∆− 2 queries to its input w sampled according to D, the probability that it correctly
computes c1 is at most 1/3, where c is the unique codeword in C at absolute distance at
most 1 from w. We will in fact show that no deterministic query algorithm can correctly
compute c1 with probability greater than 1/q.

LetD denote the distribution that samples c ∈ C uniformly at random and then sets c1 = 0.
Let A be a deterministic algorithm making at most ∆− 2 queries, and let j1, . . . , js ∈ [n]
denote the queries made by A, where we assume s ≤ ∆− 2. Note that querying 1 does not
help A, as it will always read 0. Hence, without loss of generality, 1 /∈ {j1, . . . , js}.

Now, by Proposition 39 and Bayes’ rule, for any b1, . . . , bs, a ∈ Fq,

Pr
c∈C

[c1 = a|cj1 = b1, . . . , cjs = bs] = Pr [c1 = a, cj1 = b1, . . . , cjs = bs]
Pr [cj1 = b1, . . . , cjs = bs]

= q−(s+1)

q−s
= 1
q
.

Additionally, observe that the distribution of the tuple (cj1 , . . . , cjs) is the same if c is a
uniformly random codeword from C or if it is sampled according to D.

Hence, if we think of the query algorithm as implementing a (deterministic) function
g : Fsq → Fq from the responses to its queries to its guess for c1, regardless of the responses
b1, . . . , bs to the queries, we have

Pr
w∈D

[c1 = g(b1, . . . , bs)|wj1 = b1, . . . , wjs = bs] = 1
q
,

where c is the unique codeword in C for which dist(c, w) ≤ 1
n . That is, the query algorithm

will not be able to guess c1 with probability greater than 1/q, as claimed.

A.3.2 Tensor product preserves dual distance – proof of Lemma 38
First note that we clearly have that ∆((C1⊗C2)⊥) ≤ min{∆1,∆2}: for example, the matrix
whose first column is a vector from C⊥1 of weight ∆1 and all other columns are 0 gives a
matrix in (C1 ⊗ C2)⊥ of weight ∆1, and similarly a matrix in (C1 ⊗ C2)⊥ of weight ∆2 can
be constructed. We now establish the opposite inequality of ∆((C1 ⊗ C2)⊥) ≥ min{∆1,∆2}.

It is well-known (and not hard to show) that the (absolute) distance of a code C is the
minimum number of linearly dependent columns in a parity-check matrix for C. Furthermore,
by duality we have that if G is a generating matrix for C then GT is a parity-check matrix
for C⊥. We conclude that the distance of C⊥ is the minimum number of linearly dependent
rows in a generating matrix for C.

Let G1, G2 be generating matrices for C1, C2, respectively, and note that by the above,
any collection of t1 < ∆1, t2 < ∆2 rows of G1, G2, respectively, are linearly independent.
Next recall that G1 ⊗G2 is a generating matrix for C1 ⊗ C2, and so it suffices to show that
for any t < min{∆1,∆2}, any collection of t rows of G1 ⊗G2 are linearly independent.

Let u1, u2, . . . , un1 and v1, v2, . . . , vn2 denote the rows of G1, G2, respectively, and note
that each row in G1⊗G2 is of the form ui⊗vj for some i ∈ [n1], j ∈ [n2]. Fix t < min{∆1,∆2},
and suppose that ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt is a collection of t rows of G1 ⊗G2. Then
by the above we have that both collections ui1 , ui2 , . . . , uit and vj1 , vj2 , . . . , vjt are linearly
independent (ignoring duplications). Proposition 33 implies in turn that the collection
ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt are also linearly independent which concludes the proof of
the lemma.

Approximate F2-Sketching of Valuation Functions
Grigory Yaroslavtsev
Indiana University, Bloomington, IN, USA
The Alan Turing Institute, London, UK
gyarosla@iu.edu

Samson Zhou
Indiana University, Bloomington, IN, USA
samsonzhou@gmail.com

Abstract
We study the problem of constructing a linear sketch of minimum dimension that allows approximation
of a given real-valued function f : Fn2 → R with small expected squared error. We develop a
general theory of linear sketching for such functions through which we analyze their dimension
for most commonly studied types of valuation functions: additive, budget-additive, coverage, α-
Lipschitz submodular and matroid rank functions. This gives a characterization of how many bits of
information have to be stored about the input x so that one can compute f under additive updates
to its coordinates.

Our results are tight in most cases and we also give extensions to the distributional version of
the problem where the input x ∈ Fn2 is generated uniformly at random. Using known connections
with dynamic streaming algorithms, both upper and lower bounds on dimension obtained in our
work extend to the space complexity of algorithms evaluating f(x) under long sequences of additive
updates to the input x presented as a stream. Similar results hold for simultaneous communication
in a distributed setting.

2012 ACM Subject Classification Theory of computation → Sketching and sampling

Keywords and phrases Sublinear algorithms, linear sketches, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.69

Category RANDOM

Related Version A full version of the paper is available at https://arxiv.org/pdf/1907.00524.pdf.

Acknowledgements We would like to thank Swagato Sanyal for multiple discussions leading to this
paper, including the proof of Theorem 11 and Nikolai Karpov for his contributions to Section 3.1. We
would also like to thank Amit Chakrabarti, Qin Zhang and anonymous reviewers for their comments.

1 Introduction

Linear sketching is a fundamental tool in efficient algorithm design that has enabled many of
the recent breakthroughs in fast graph algorithms and computational linear algebra. It has a
wide range of applications, including randomized numerical linear algebra (see survey [56]),
graph sparsification (see survey [44]), frequency estimation [3], dimensionality reduction
[34], various forms of sampling, signal processing, and communication complexity. In fact,
linear sketching has been shown to be the optimal algorithmic technique [41, 2] for dynamic
data streams, where elements can be both inserted and deleted. Linear sketching is also
a frequently used tool in distributed computing – summaries communicated between the
processors in massively parallel computational models are often linear sketches.

In this paper we introduce a study of approximate linear sketching over F2 (approximate
F2-sketching). This is a previously unstudied but natural generalization of the work of [35],
which studies exact F2-sketching. For a set S ⊆ [n] let χS : Fn2 → F2 be a parity function
defined as χS(x) =

∑
i∈S xi. Given a function f : Fn2 → R, we are looking for a distribution

© Grigory Yaroslavtsev and Samson Zhou;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 69; pp. 69:1–69:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gyarosla@iu.edu
mailto:samsonzhou@gmail.com
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.69
https://arxiv.org/pdf/1907.00524.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Approximate F2-Sketching of Valuation Functions

over k subsets S1, . . . ,Sk ⊆ [n] such that for any input x, it should be possible to compute
f(x) with expected squared error at most ε from the parities χS1(x), χS2(x), . . . , χSk

(x)
computed over these sets. While looking only at linear functions over F2 as candidate
sketches for evaluating f might seem restrictive, this view turns out to be optimal in a
number of settings. In the light of recent results of [35, 32], the complexity of F2-sketching
also characterizes the space complexity of streaming algorithms in the XOR-update model
as well as communication complexity of one-way multiplayer broadcasting protocols for
XOR-functions.

In matrix form, F2-sketching corresponds to multiplication over F2 of the row vector
x ∈ Fn2 by a random n× k matrix whose i-th column is the characteristic vector of χSi

:

(
x1 x2 . . . xn

)
...

...
...

...
χS1 χS2 . . . χSk

...
...

...
...

 =
(
χS1(x) χS2(x) . . . χSk

(x)
)

The goal is to minimize k, ensuring that the sketch alone is sufficient for computing f
with expected squared error at most ε for any fixed input x. For a fixed distribution D of x,
the definition of error is modified to include an expectation over D in the error guarantee.
We give formal definitions below.

I Definition 1 (Exact F2-sketching, [35]). The exact randomized F2-sketch complexity with
error δ of a function f : Fn2 → R (denoted as Rlinδ (f)) is the smallest integer k such that there
exists a distribution χS1 , χS2 , . . . , χSk

over k linear functions over Fn2 and a post-processing
function g : Fk2 → R that satisfies:

∀x ∈ Fn2 : Pr
S1,...,Sk

[g(χS1(x), χS2(x), . . . , χSk
(x)) = f(x)] ≥ 1− δ.

The number of parities k in the definition above is referred to as the dimension of the
F2-sketch.

I Definition 2 (Approximate F2-sketching). The ε-approximate randomized F2-sketch com-
plexity of a function f : Fn2 → R (denoted as R̄linε (f)) is the smallest integer k such that there
exists a distribution χS1 , χS2 , . . . , χSk

over k linear functions over Fn2 and a post-processing
function g : Fk2 → R that satisfies:

∀x ∈ Fn2 : E
S1,...,Sk

[
(g(χS1(x), χS2(x), . . . , χSk

(x))− f(x))2] ≤ ε
If g is an unbiased estimator of f , then this corresponds to an upper bound on the

variance of the estimator. For example, functions with small spectral norm (e.g. cover-
age functions, [57]) admit such approximate F2-sketches. Moreover, observe that Defini-
tion 2 is not quite comparable with an epsilon-delta guarantee, which only promises that
|g(χS1(x), χS2(x), . . . , χSk

(x))− f(x)| ≤ ε with probability 1− δ, but guarantees nothing for
δ fraction of the inputs.

In addition to this worst-case guarantee, we also consider the same problem for x from a
certain distribution. In this case, a weaker guarantee is required, i.e. the bound on expected
squared error should hold only over some fixed known distribution D. An important case is
D = U(Fn2), the uniform distribution over all inputs.

G. Yaroslavtsev and S. Zhou 69:3

I Definition 3 (Approximate distributional F2-sketching). For a function f : Fn2 → R, we
define its ε-approximate randomized distributional F2-sketch complexity with respect to a
distribution D over Fn2 (denoted as D̄lin,Dε (f)) as the smallest integer k such that there exists
a distribution χS1 , χS2 , . . . , χSk

over k linear functions over F2 and a post-processing function
g : Fk2 → F2 that satisfies:

E
x∼D

E
S1,...,Sk

[
(g(χS1(x), χS2(x), . . . , χSk

(x))− f(x))2] ≤ ε.
1.1 Applications to Streaming and Distributed Computing

One of the key applications of our results is to the dynamic streaming model. In this model,
the input x is generated via a sequence of additive updates to its coordinates, starting with
x = 0n. If x ∈ Rn, then updates are of the form (i,∆i) (turnstile model), where i ∈ [n], and
∆i ∈ R, which adds ∆i to the i-th coordinate of x. For x ∈ Fn2 , only the coordinate i is
specified and the corresponding bit is flipped, which is known as the XOR-update model [52]1.
Dynamic streaming algorithms aim to minimize space complexity of computing a given
function f for an input generated through a sequence of such updates while also ensuring
fast update and function evaluation times.

Note that linear sketching over the reals and F2-sketching can be used directly in the
respective streaming update models. Most interestingly, these techniques turn out to achieve
almost optimal space complexity. It is known that linear sketching over the reals gives
(almost) optimal space complexity for processing dynamic data streams in the turnstile model
for any function f [41, 2]. However, the results of [41, 2] require adversarial streams of length
triply exponential in n. In the XOR-update model, space optimality of F2-sketching has been
shown recently in [32]. This optimality result holds even for adversarial streams of much
shorter length Ω(n2). Hence, lower bounds on F2-sketch complexity obtained in our work
extend to space complexity of dynamic streaming algorithms for streams of quadratic length.

A major open question in this area is the conjecture of [35] that the same holds even for
streams of length only 2n. We thus complement our lower bounds on dimension of F2-sketches
with one-way two-player communication complexity lower bounds for the corresponding
XOR functions f+(x, y) = f(x + y). Such lower bounds translate to dynamic streaming
lower bounds for streams of length 2n. Furthermore, whenever our communication lower
bounds hold for the uniform distribution, the corresponding streaming lower bound applies
to streaming algorithms under uniformly random input updates.

Finally, our upper bounds can be used for distributed algorithms computing f(x1 + · · ·+
xM) over a collection of distributed inputs x1, . . . , xM ∈ Fn2 as F2-sketches can be used for
distributed inputs. On the other hand, our communication lower bounds also apply to the
simultaneous message passing (SMP) communication model, since it is strictly harder than
one-way communication.

1 By slightly changing the function to f ′(x1, . . . , xn, y1, . . . , yn) = f(x1 + y1, x2 + y2, . . . , xn + yn), it is
easy to see that there are functions for which knowledge of the sign of the update (i.e. whether it is +1 or
-1) is not a stronger model than the XOR-update model. For some further motivation of the XOR-update
model, consider dynamic graph streaming algorithms, i.e the setting when x represents the adjacency
matrix of a graph and updates correspond to adding and removing the edges. Almost all known dynamic
graph streaming algorithms (except spectral graph sparsification of [36]) are based on the `0-sampling
primitive [26]. As shown recently, `0-sampling can be implemented optimally using F2-sketches [37] and
hence almost all known dynamic graph streaming algorithms can handle XOR-updates, i.e. knowing
whether an edge was inserted or deleted does not help.

APPROX/RANDOM 2019

69:4 Approximate F2-Sketching of Valuation Functions

1.2 Valuation Functions and Sketching
Submodular valuation functions, originally introduced in the context of algorithmic game
theory and optimization, have received a lot of interest recently in the context of learning
theory [10, 9, 18, 29, 47, 23, 22, 24, 25]2, approximation [27, 7] and property testing [16, 49, 12].
As we show in this work, valuation functions also represent an interesting study case for
linear sketching and streaming algorithms. While a variety of papers exists on streaming
algorithms for optimizing various submodular objectives, e.g. [48, 20, 8, 17, 15, 21, 30, 4, 11],
to the best of our knowledge no prior work considers the problem of evaluating such functions
under a changing input.

A systematic study of F2-sketching has been initiated for Boolean functions in [35].
This paper can be seen as a next step, as we introduce approximation into the study of
F2-sketching. One of the consequences of our work is that the Fourier `1-sampling technique,
originally introduced by Bruck and Smolensky [14] (see also [28, 45]), turns out to be optimal
in its dependence on both spectral norm and the error parameter. For Boolean functions,
a corresponding result is not known as Boolean functions with small spectral norm and
necessary properties are hard to construct. Another technical consequence of our work is
that the study of learning and sketching algorithms turn out to be related on a technical
level despite pursuing different objectives (in learning the specific function is unknown, while
in sketching it is). In particular, our hardness result for Lipschitz submodular functions
uses a construction of a large family of matroids from [10] (even though in a very different
parameter regime), who designed such a family to fool learning algorithms.

1.3 Our Results
A function f : 2[n] → R is α-Lipschitz if for any S ⊆ [n] and i ∈ [n], it holds that |f(S ∪
{i})− f(S)| ≤ α for some constant α > 0. A function f : 2[n] → R is submodular if:

f(A ∪ {i})− f(A) ≥ f(B ∪ {i})− f(B) ∀A ⊆ B ⊆ [n] and i /∈ B.

We consider the following classes of valuation functions of the form f : Fn2 → R (all of
them submodular) sometimes treating them as f : 2[n] → R and vice versa. These classes
mostly cover all of existing literature on submodular functions3. See Table 1 for a summary
of the results.

Additive (linear). f(x) =
∑n
i=1 wixi, where wi ∈ R.

Our results: For additive functions, it is easy to show that dimension of F2-sketches is
O(min(‖w‖2

1/ε, n)) and give a matching communication lower bound for all ε ≥ ‖w‖2
2 [57].

Budget-additive. f(x) = min(b,
∑n
i=1 wixi) where b, wi ∈ R. An example of such

functions is the “hockey stick” function hsα(x) = min(α, 2α
n

∑n
i=1 xi).

Our results: For budget-additive functions, it is easy to show that dimension of F2-
sketches is O(min(‖w‖2

1/ε, n)) [57]. We give a matching communication bound for the
“hockey stick” function for constant ε [57], which holds even under the uniform distribution
of the input.

2 We remark that in this literature the term “sketching” is used to refer to the space complexity of
representing the function f itself under the assumption that it is unknown but belongs to a certain
class. This question is orthogonal to our work as we assume f is known and fixed while the input x
is changing.

3 We do not discuss some other subclasses of subadditive functions because they are either superclasses of
classes for which we already have an Ω(n) lower bound (e.g. submodular, subadditive, etc.) or because
such a lower bound follows trivially (e.g. for OXS/XOS since for XS-functions a lower bound of Ω(n) is
easy to show, see [57]).

G. Yaroslavtsev and S. Zhou 69:5

Table 1 Linear sketching complexity of classes of valuation functions. We defer the proofs of
several results to the full version [57].

Class Error Distribution Complexity Result

Additive/Budget additive
ε any Θ

(
‖w‖2

1
ε

)
[57]

min(b,
∑n

i=1 wixi)

min(c
√
n, 2c√

n

∑n

i=1 xi) constant uniform Ω(n) [57]

Coverage ε any O
(

1
ε

)
[57]

Matroid Rank 2 exact any Θ(1) Theorem 12

Graphic Matroids Rank r exact any O(r2 log r) Theorem 16

Matroid Rank r exact any Ω(r) Corollary 35

Matroid Rank r exact uniform O((r log r + c)r+1) [57]

Matroid Rank 1/
√
n uniform Θ(1) [57]

c
n
-Lipschitz Submodular constant any Θ(n) Theorem 28

Coverage. A function f is a coverage function on some universe U of sizem if there exists
a collection A1, . . . , An of subsets of U and a vector of non-negative weights (w1, . . . , wm)
such that:

f(S) =
∑

i∈∪j∈SAj

wi.

Our results: We show a simple upper bound of O(1/ε) for such functions [57].
Matroid rank. A pair M = ([n], I) is called a matroid if I ⊆ 2[n] is a non-empty set
family such that the following two properties are satisfied:

If I ∈ I and J ⊆ I, then J ∈ I
If I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J such that J ∪ {i} ∈ I.

The sets in I are called independent. A maximal independent set is called a base of M .
All bases have the same size, which is called the rank of the matroid and is denoted as
rk(M). The rank function of the matroid is the function rankM : 2[n] → N+ defined as:

rankM (S) := max{|I| : I ⊆ S, I ∈ I}.

It follows from the definition that rankM is always a submodular 1-Lipschitz function.
Our results: In order to have consistent notation with the rest of the manuscript we
always assume that matroid rank functions are scaled so that their values are in [0, 1].
Some of our results are exact, i.e. the corresponding matroid rank function is computed
exactly (and in this case rescaling does not matter) while others allow approximation of
the function value. In the latter case, the approximation guarantees are multiplicative
with respect to the rescaled function.
Our main theorem regarding sketching of matroid rank functions is as follows:
I Theorem 4 (Sketching matroid rank functions). For (scaled) matroid rank functions:

There exists an exact F2-sketch of size O(1) for matroids of rank 2 (Theorem 12) and
graphic matroids (Theorem 16).
There exists c = Ω(1) and a matroid of rank r such that a c-approximation of its
matroid rank function has randomized linear sketch complexity Ω(r). Furthermore,
this lower bound also holds for the corresponding one-way communication problem
(Theorem 34, Corollary 35).

APPROX/RANDOM 2019

69:6 Approximate F2-Sketching of Valuation Functions

This can be contrasted with the results under the uniform distribution for which matroids
of rank r have an exact F2-sketch of size O

((
r log r + log 1

ε

)r+1
)
, where ε is the probability

of failure ([57], follows from the junta approximation of [13]). Furthermore, matroids of
high rank Ω(n) can be trivially approximately sketched under product distributions, due
to their concentration around their expectation (see [57] for details).
Lipschitz submodular. A function f : 2[n] → R is α-Lipschitz submodular if it is both
submodular and α-Lipschitz.
Our results: We show an Ω(n) communication lower bound (and hence a lower bound
on F2-sketch complexity) for constant error for monotone non-negative O(1/n)-Lipschitz
submodular functions (Theorem 28). We note that this hardness result crucially uses a
non-product distribution over the input variables since Lipschitz submodular functions are
tightly concentrated around their expectation under product distributions (see e.g. [55, 10])
and hence can be approximated using their expectation without any sketching at all.

1.4 Overview and Techniques

1.4.1 Basic Tools: XOR Functions, Spectral Norm, Approximate
Fourier Dimension

In Section 2, we introduce the basics of approximate F2-sketching. Most definitions and
results in this section can be seen as appropriate generalizations regarding Boolean functions
(such as in [35]) to the case of real-valued functions where we replace Hamming distance
with expected squared distance. We then define the randomized one-way communication
complexity of the two-player XOR-function f+(x, y) = f(x+ y) corresponding to f . This
communication problem plays an important role in our arguments as it gives a lower bound
on the sketching complexity of f . We then introduce the notion of approximate Fourier
dimension developed in [35]. The key structural results of [35], which characterize both
the sketching complexity of f and the one-way communication complexity of f+ under
the uniform distribution using the approximate Fourier dimension, can be extended to the
real-valued case as shown in Proposition 10 and Theorem 11. This characterization is our
main tool for showing lower bounds under the uniform distribution of x.

Another useful basic tool is a bound on the linear sketching complexity based on the
spectral norm of f , which we develop in [57]. In particular, as we show in [57], analogously to
the Boolean case, we can leverage properties of the Fourier coefficients of a function f to show
that the ε-approximate randomized sketching complexity of f is at most O(‖f̂‖2

1/ε). Thus,
we can determine the dimension of F2-sketches for classes of functions whose spectral norms
are well-bounded as well as functions which can be computed as Lipschitz compositions of
a small number of functions with bounded spectral norm [57]. Examples of such classes
include additive (linear), budget-additive and coverage functions. Finally, we argue that the
dependence on the parameters in the spectral norm bound cannot be substantially improved
in the real-valued case by presenting a subclass of linear functions which require sketches of
size Ω(‖f̂‖2

1/ε) [57]. This is in contrast with the case of Boolean functions studied in [35] for
which such tightness result is not known.

1.4.2 Matroid Rank Functions, LTF, LTF◦OR
In Section 3, we present our results on sketching matroid rank and Lipschitz submodular
functions. In Section 3.1 we show that matroid rank functions of matroids of rank 2 and
graphic matroids have constant randomized sketching complexity. This is done by first

G. Yaroslavtsev and S. Zhou 69:7

observing that rank functions of such matroids can be expressed as a threshold function over
a number of disjunctions. Therefore, it remains to determine the sketching complexity of
the threshold function on a collection of disjunctions. Unfortunately, known upper bounds
for the sketching complexity of even the simpler class of linear threshold functions have a
dependence on n and hence one cannot get a constant upper bound directly.

Hence we show how to remove this dependence in Section 3.1.1, also resolving an open
question of Montanaro and Osborne [45]. Recall that a linear threshold function (LTF) can
be represented as f(x) = sgn (

∑n
i=1 wixi − θ) for some weights wi and threshold θ, where

we slightly alter the traditional definition of the sign function sgn to output 0 if the input
is negative and 1 otherwise. An important parameter of an LTF is its margin m, which
corresponds to the difference between the threshold and the value of the linear combination
closest to it. We first observe that the terms with insignificant coefficients, i.e. weights that
are small in absolute value, do not contribute to the final output and thus, we can ignore
them. Similarly, the remaining weights can be rounded, without altering the output of the
function, to a collection of weights whose size is bounded, independent of n. Furthermore,
f(x) = 0 only if xi = 1 for at most θ

2m of these “significant” indices i of x. Thus, we hash
the significant indices to a large, but independent of n, number of buckets. As a result, either
there are a small number of significant indices i with x1 = 1 and there are no collisions,
or there is a large number of significant indices i with xi = 1. Since we can differentiate
between these two cases, the sketch can output whether f(x) = 0 or f(x) = 1 with constant
probability. With a more careful choice of hash functions this idea can be extended to linear
thresholds of disjunctions. We show in Section 3.1.2 that a threshold function over a number
of disjunctions (LTF◦OR) also has linear sketch complexity independent of n.

In Section 3.2.1, we show that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We construct such a function probabilistically
by using a large family of matroid rank functions constructed by [10] with an appropriately
chosen set of parameters. We show any fixed deterministic sketch fails on a matroid chosen
uniformly at random from this parametric family with very high probability. In fact, even
if we take a union bound over all possible sketches of bounded dimension, the failure of
probability is still negligibly close to 1. By Yao’s principle, the randomized linear sketch
complexity follows. We then extend this result to a communication lower bound for f+ in
Section 3.2.2. In the one-way communication complexity setting, we show that there exists
an Ω(n)-Lipschitz submodular function f whose f+ requires communication Ω(n).

1.4.3 Uniform Distribution

In [57], we show lower bounds for a budget additive “hockey stick” function under the
uniform distribution. The lower bounds follow from a characterization of communication
complexity using approximate Fourier dimension, and to complete the analysis, we lower
bound the Fourier spectrum of the hockey stick function in [57]. Although our approach
for matroids of rank 2 does not seem to immediately generalize to matroids of higher rank
under arbitrary distributions, we show in [57] that under the uniform distribution, we can
use ε-approximations of disjunctive normal forms (DNFs) by juntas to obtain a randomized
linear sketch whose size is independent of n. Furthermore, rank functions of matroids of very
high rank admit trivial approximate sketches under the uniform distribution as follows from
standard concentration results [55] (see [57]).

APPROX/RANDOM 2019

69:8 Approximate F2-Sketching of Valuation Functions

2 Basics of Approximate F2-Sketching

2.1 Communication Complexity of XOR functions
In order to analyze the optimal dimension of F2-sketches, we need to introduce a closely
related communication complexity problem. For f : Fn2 → R define the XOR-function
f+ : Fn2 × Fn2 → R as f+(x, y) = f(x+ y) where x, y ∈ Fn2 . Consider a communication game
between two players Alice and Bob holding inputs x and y respectively. Given access to
a shared source of random bits Alice has to send a single message to Bob so that he can
compute f+(x, y). This is known as the one-way communication complexity problem for
XOR-functions (see [50, 58, 45, 39, 40, 51, 42, 53, 43, 31, 35] for related communication
complexity results).

I Definition 5 (Randomized one-way communication complexity of XOR function). For a
function f : Fn2 → R, the randomized one-way communication complexity with error δ
(denoted as R→δ (f+)) of its XOR-function is defined as the smallest size4 (in bits) of the
(randomized using public randomness) message M(x) from Alice to Bob, which allows Bob
to evaluate f+(x, y) for any x, y ∈ Fn2 with error probability at most δ.

It is easy to see that R→δ (f+) ≤ Rlinδ (f) as using shared randomness Alice can just send
k bits χS1(x), χS2(x), . . . , χSk

(x) to Bob, who can for each i ∈ [k] compute χSi
(x + y) =

χSi(x)+χSi(y), which is an F2-sketch of f on x+y and hence suffices for computing f+(x, y)
with probability 1− δ.

Replacing the guarantee of exactness of the output in the above definition with an upper
bound on expected squared error, we obtain the following definition.

I Definition 6 (Randomized one-way communication complexity of approximating an XOR
function). For a function f : Fn2 → R, the randomized one-way communication complexity
(denoted as R̄→ε (f+)) of approximating its XOR-function with error ε is defined as the
smallest size(in bits) of the (randomized using public randomness) message M(x) from Alice
to Bob, which allows Bob to evaluate f+(x, y) for any x, y ∈ Fn2 with expected squared error
at most ε.

Distributional communication complexity is defined analogously for the corresponding XOR
function and is denoted as Dε.

Finally, in the simultaneous model of computation [6, 5], also called simultaneous message
passing (SMP) model, there exist two players and a coordinator, who are all aware of a
function f . The two players maintain x and y respectively, and must send messages of
minimal size to the coordinator so that the coordinator can compute f(x⊕ y).

I Definition 7 (Simultaneous communication complexity of XOR function). For a function
f : Fn2 → R, the simultaneous one-way communication complexity with error δ (denoted
as Rsimδ (f+)) of its XOR-function is defined as the smallest sum of the sizes (in bits) of
the (randomized using public randomness) messages M(x) and M(y) from Alice and Bob,
respectively, to a coordinator, which allows the coordinator to evaluate f+(x, y) for any
x, y ∈ Fn2 with error probability at most δ.

Observe that a protocol for randomized one-way communication complexity of XOR function
translates to a protocol for the simultaneous model of computation.

4 Formally the minimum here is taken over all possible protocols where for each protocol the size of the
message M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ Fn2 . See [38]
for a formal definition.

G. Yaroslavtsev and S. Zhou 69:9

2.2 Distributional Approximate F2-Sketch Complexity
Fourier analysis plays an important role in the analysis of distributional F2-sketch complexity
over the uniform distribution. In our discussion below, we make use of some standard facts
from Fourier analysis of functions over Fn2 . For definitions and basics of Fourier analysis
of functions of such functions we refer the reader to the standard text [46] and [57]. In
particular, Fourier concentration on a low-dimensional subspace implies existence of a small
sketch which satisfies this guarantee:

I Definition 8 (Fourier concentration). A function f : Fn2 → R is γ-concentrated on a linear
subspace Ad of dimension d if for this subspace it satisfies:∑

S∈Ad

f̂(S)2 ≥ γ.

We also use the following definition of approximate Fourier dimension from [35], adapted
for the case of real-valued functions.

I Definition 9 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of
Fn2 of dimension k. For f : Fn2 → R and ε ∈ (0, ‖f‖2

2] the ε-approximate Fourier dimension
dimε(f) is defined as:

dimε(f) = min
k

{
∃A ∈ Ak :

∑
α∈A

f̂2(α) ≥ ε
}
.

I Proposition 10. For any f : Fn2 → R, it holds that:

D̄lin,Uε (f) ≤ dim‖f‖22−ε(f).

Furthermore, approximate Fourier dimension can be used as a lower bound on the one-way
communication complexity of the corresponding XOR-function. We defer the proof of the
following result to [57] as it is follows closely an analogous result for Boolean functions
from [35].

I Theorem 11. For any f : Fn2 → R, δ ∈ [0, 1/2] and ξ = ‖f‖2
2 − ε(1 + 2δ) it holds that:

D̄→,Uε (f+) ≥ δ

2 · dimξ(f).

3 Sketching Matroid Rank Functions

In this section we analyze sketching complexity of matroid rank functions. We start by
considering the most fundamental possible matroids (of rank 2) in Section 3.1 and showing
that exactly sketching the matroid rank function requires O(1) complexity. Similarly, we
show that exactly sketching the rank of graphic matroids only uses O(1) complexity. On the
other hand, we show a lower bound in Section 3.2.1 that even approximating the rank r of
general matroids up to certain constant factors requires Ω(r) complexity.

To sketch matroids of rank 2, we leverage a result by Acketa [1] which characterizes the
collection of independent sets of such matroids. This allows us to represent matroid rank
functions for matroids of rank 2 as a linear threshold of disjunctions. Thus, we first show the
randomized linear sketch complexity of (θ,m)-linear threshold functions, resolving an open
question by Montanaro and Osborne [45].

APPROX/RANDOM 2019

69:10 Approximate F2-Sketching of Valuation Functions

3.1 Matroids of Rank 2 and Graphic Matroids
In this section, we show that there exists a constant-size sketch that can be used to compute
exact values of matroid rank functions for matroids of rank 2.

I Theorem 12. For every matroid M of rank 2 it holds that Rlin1
3

(rankM) = O(1).

It is well-known that matroids of rank 2 admit the following characterization (see e.g. [1]).

I Fact 13. The collection of size 2 independent sets of a rank 2 matroid can be represented
as the edges in a complete graph that has edges of some number of disjoint cliques removed.

We define the following function as a threshold on the Hamming weight of a binary vector x

HAM≤d(x) =
{

0, if
∑n
i=1 xi ≤ d+ 1

2

1, otherwise.

We use a series of technical lemmas in the following section to prove the following result,
which says that linear threshold functions can be succinctly summarized:

I Theorem 14. The function HAM≤d
(∨

i∈S1
xi,
∨
i∈S2

xi, . . .
)
has a randomized linear sketch

of size O(d2 log d).

The following fact that upper bounds the sketch complexity for functions with small support:

I Fact 15 (Folklore, see e.g. [45, 35]). For any function f : {0, 1}n → {0, 1} with
minz∈{0,1}Prx∈{0,1}n(f(x) = z) ≤ ε it holds that Rlinδ (f) ≤ log 2n+1ε

δ .

Using Fact 13, Theorem 14, and Fact 15, we prove Theorem 12 by writing the matroid rank
function for M as a linear threshold function of disjunctions.

Proof of Theorem 12. We first claim F2-sketching complexity of the rank function of any
rank 2 matroid M is essentially the same as the complexity of the corresponding Boolean
function that takes value 1 if rankM (x) = 2 and takes value 0 otherwise. Indeed, let
the function above be denoted as fM . Without loss of generality, we can assume that
all singletons are independent sets in M as otherwise the rank function of M does not
depend on the corresponding input. Hence rankM (x) = 0 if and only if x = 0n. Thus
Rlinδ (rankM) = Rlinδ (fM) + O(log 1/δ) as by Fact 15 we can use O(log 1/δ)-bit sketch to
check whether x = 0n first and then evaluate rankM using fM . Recall from Fact 13 that
matroids of rank 2 can be represented as edges in a complete graph with edges corresponding
to some disjoint union of cliques removed.

Let S1, . . . , St be the collection of vertex sets of disjoint cliques defining a rank 2 matroid
M in Fact 13. Without loss of generality, we can assume that | ∪ti=1 Si| = n by adding
singletons. Then:

fM (x) = HAM≥2

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where HAM≥2(z1, . . . , zt) = 1 if and only if
∑t
i=1 zi ≥ 2 is the threshold Hamming weight

function. By Theorem 14, the sketch complexity of fM (x) is O(1), since the Hamming weight
threshold is d = 2. J

G. Yaroslavtsev and S. Zhou 69:11

Since the independent bases of a graphic matroid M(G) are the spanning forests of G, the
matroid rank function of a graphic matroid of rank r can be expressed as

fM (x) = HAM≥r

 ∨
j∈S1

xj ,
∨
j∈S2

xj , . . . ,
∨
j∈St

xj

 ,

where each Si is a separate spanning forest. Therefore, Theorem 14 yields a O(r2 log r) space
linear sketch for graphic matroids of rank r.

I Theorem 16. For every graphic matroid M of rank r, it holds that Rlin1
3

(rankM) =
O(r2 log r).

We use the remainder of the Section 3.1 to prove Theorem 14, while resolving an open
question by Montanaro and Osborne [45].

3.1.1 Linear Threshold Functions
We first define linear threshold functions (LTFs) and (θ,m)-LTFs.

I Definition 17. A function f : {0, 1}n → {0, 1} is a linear threshold function (LTF) if there
exist constants θ, w1, w2, . . . , wn such that f(x) = sgn (−θ +

∑n
i=1 wixi), where sgn (y) = 0

for y < 0 and sgn (y) = 1 for y ≥ 0 is the Heaviside step function.

I Definition 18. A monotone linear threshold function f : {0, 1}n → {0, 1} is a (θ,m)-LTF
if m ≤ minx∈{0,1}n |−θ +

∑n
i=1 wixi|, where θ is referred to as the threshold and m as the

margin of the LTF.

Although (θ,m)-LTFs have previously been shown to have randomized linear sketch com-
plexity O

(
θ
m logn

)
[42], Montanaro and Osborne asked whether any (θ,m)-LTF can be

represented in the simultaneous model with O
(
θ
m log θ

m

)
communication.

I Question 19 ([45]). Let g(x, y) = f(x⊕ y), where f is a (θ,m)-LTF. Does there exist a
protocol for g in the simultaneous model with communication complexity O

(
θ
m log θ

m

)
?

Note that the difference between logn and log θ
m is crucial for obtaining constant randomized

linear sketch complexity for functions for matroid rank 2. We answer Question 19 in the
affirmitive and show the stronger result that (θ,m)-LTFs admit a randomized linear sketch
of size O

(
θ
m log θ

m

)
. We first show that we can completely ignore all variables whose weights

are significantly smaller than 2m in evaluating a (θ,m)-LTF.

I Lemma 20. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. For 1 ≤ i ≤ n, let w′i = wi

if wi ≥ 2m and w′i = 0 otherwise. Then f(x) = sgn (−θ +
∑n
i=1 w

′
ixi).

As noted, Lemma 20 implies that we can ignore not only variables with zero weights, but all
variables whose weights are less than 2m. We now bound the support of the set {x | f(x) = 0},
where f is a (θ,m)-LTF, and apply Fact 15.

I Lemma 21. For any (θ,m)-LTF, there exists a randomized linear sketch of size O
(
θ
m logn

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 20, the output of f

remains the same even if we only consider the variables S with weight at least 2m. On the
other hand, if f(x) = 0, then at most θ

2m variables in S can have value 1. Equivalently, at
most θ

2m indices i can have xi = 1 if f(x) = 0. Thus, the number of x ∈ {0, 1}n with f(x) = 0
is at most

∑
0≤i≤θ/2m

(
n
i

)
≤ (n + 1)dθ/2me. Applying Fact 15, there exists a randomized

linear sketch for f , of size O
(
θ
m logn

)
. J

APPROX/RANDOM 2019

69:12 Approximate F2-Sketching of Valuation Functions

In order to fully prove Question 19 and obtain a dependence on log θ
m rather than logn,

we use the following two observations. First, we show in Lemma 22 that the weights of
a (θ,m)-LTF can be rounded to a set that contains O

(
θ
m

)
elements. Second, we show in

Theorem 25 that we can then use hashing to reduce the number of variables down to poly
(
θ
m

)
before applying Lemma 21.

I Lemma 22. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. Then there exists a set W

with |W | = O
(
θ
m log θ

m

)
, and a margin m′ = Θ(m) such that f(x) = sgn (−θ +

∑n
i=1 w

′
ixi),

where each w′i ∈W and f is a (θ,m′)-LTF.

The following result is also useful for our construction of a sketch for a (θ,m)-LTF.

I Lemma 23 ([33]). There is a randomized linear sketch with size O(1) for the function

HAMn,d|2d(x) =
{

1, if ||x||0 ≤ d
0, if ||x||0 ≥ 2d

on instances {x|x ∈ {0, 1}n and ||x||0 ≤ d or ||x||0 ≥ 2d}.

I Fact 24. If h : [n]→ [M] is a random hash function and S ⊆ [n], then the probability that
there exist x, y ∈ S with h(x) = h(y) is at most |S|

2

M .

I Theorem 25. Any (θ,m)-LTF admits a randomized linear sketch of size O
(
θ
m log θ

m

)
.

Proof. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF. By Lemma 22, we can assume

that wi ∈ W = {2m(1 + ε)i}ti=0 so that the new margin m′ = 4
5m and t =

⌈
log1+ε

θ
m

⌉
for

ε = θ
10m . Recall from Lemma 21, f(x) = 0 only if xi = 1 for at most θ

2m indices i of x. From
Lemma 23, we can detect the instances where at least θ

2m indices i of x satisfy xi = 1.
On the other hand, if less than θ

2m indices i of x satisfy xi = 1, we can identify these
indices and corresponding weights via hashing. Let h : [n]→ [M], where M = 5

(
θ
m

)2, and
S be a set of indices of x, of size at most θ

m . Then by Fact 24, the probability of a collision
in h under elements of S is at most 1

5 . We partition [n] into sets Sw,j where w ∈ W and
j ∈ [M] so that Sw,j = {i|h(i) = j ∧ wi = w}. Therefore with probability at least 4

5 , there
are no collisions in h under elements of S and |Sw,j | ≤ 1 for all w ∈W and j ∈ [M].

Let yw,j =
∑
i∈Sw,j

xi and note that if there are no collisions in h under elements of S,
then

n∑
i=1

wixi =
∑

(j,w)∈[M]×W

w

 ∑
i∈Sw,j

xi

 =
∑

(j,w)∈[M]×W

w · yw,j .

Thus, f(x) is equivalent to the function g(y) = sgn
(
−θ +

∑
w,j w · yw,j

)
. Since |W | =

O
(
θ
m log θ

m

)
, M = 5

(
θ
m

)2 and m′ = 4
5m is the margin for g(y), then g(y) depends on

O
((

θ
m

)3 log θ
m

)
variables yw,j . By Lemma 21, there exists a randomized sketch for g(y) of

size O
(
θ
m log θ

m

)
. J

We can also show that Theorem 25 is tight by recalling the function

HAM≤d(x) =
{

0, if
∑n
i=1 xi ≤ d+ 1

2

1, otherwise.

G. Yaroslavtsev and S. Zhou 69:13

Since this function is a
(
d+ 1

2 ,
1
2
)
-LTF, it can be represented by a randomized linear sketch

of size O(d log d). On the other hand, Dasgupta, Kumar and Sivakumar [19] notes that the
one-way complexity of small set disjointness for two vectors x and y of weight d, which
reduces to the function HAM≤d(x⊕ y), is Ω(d log d). Thus, HAM≤d(x⊕ y) also requires a
sketch of size Ω(d log d).

3.1.2 Linear Threshold of Disjunctions

In this section, we describe a randomized linear sketch for functions that can be rep-
resented as 2-depth circuits where the top gate is a monotone linear threshold function
with threshold θ and margin m, and the bottom gates are OR functions. Formally, if
gS(x) =

∨
i∈S

xi, q is a linear threshold function, and wS ≥ 0, then f(x) = q(. . . , gS(x), . . .) =

sgn
(
−θ +

∑
S∈2[n] wS · gS(x)

)
.

I Lemma 26. Let f(x) = sgn (−θ +
∑n
i=1 wixi) be a (θ,m)-LTF where wi ∈ W for some

set W . Let h : [n]→ [M] be a random hash function where M = 50θ2

m2 and

fh(x) = sgn

−θ +
∑

(j,w)∈[M]×W

w

 ∨
i:h(i)=j
wi=w

xi

 .

Then for all x, Pr [fh(x) 6= f(x)] ≤ 1
50 .

I Theorem 27. Let gS(x) =
∨
i∈S xi with wS ≥ 0, q be a (θ,m)-LTF, and

f(x) = q(. . . , gS(x), . . .) = sgn

−θ +
∑
S∈2[n]

wS · gS(x)

 .

Then there is a randomized linear sketch for f of size O
((

θ
m

)4 log2 θ
m

)
, where m is the

margin of q.

Proof. We first apply Lemma 20 and Lemma 22 to q so that weights wi can be rounded
to elements of a set W with |W | = O

(
θ
m log θ

m

)
. For each wi ∈ W , it again suffices to

detect whether Θ(θm) disjunctions are nonzero. Hence to hash O
((

θ
m

)2 log θ
m

)
disjunctions,

it suffices to use a hash function with M = O
((

θ
m

)4 log2 θ
m

)
buckets. By Lemma 26, our

resulting randomized linear sketch has size O
((

θ
m

)4 log2 θ
m

)
. J

Proof of Theorem 14. Recall that HAM≤d(x) is a
(
d+ 1

2 ,
1
2
)
-LTF. Furthermore, the set

of weights W for HAM≤d(x) consists of a single element {1}, since the coefficient of each
disjunction is one. Since M = O(d2 log d), we can construct a randomized linear sketch with
size O(d2 log d) by Lemma 26. J

We note that our approach can be easily generalized to the case where the disjunction include
the negations of some variables as well.

APPROX/RANDOM 2019

69:14 Approximate F2-Sketching of Valuation Functions

3.2 Communication Complexity of Lipschitz Submodular Functions
We discuss the communication complexity of Lipschitz submodular functions in this section.
We first show in Section 3.2.1 that there exists an Ω(n)-Lipschitz submodular function f that
requires a randomized linear sketch of size Ω(n). We then show in Section 3.2.2 that in the
one-way communication complexity model for XOR functions, there exists an Ω(n)-Lipschitz
submodular function f that has communication complexity Ω(n).

3.2.1 Approximate F2-Sketching of Lipschitz Submodular Functions
I Theorem 28. There exist constants c1, c2, ε ≥ 0 and a monotone non-negative (c1n)-
Lipschitz submodular function f (a scaling of a matroid rank function) such that R̄linε (f) ≥
c2n.

Proof. Our proof uses a construction of a large family of matroid rank functions given in [10],
Theorem 8. The construction uses the following notion of lossless bipartite expanders:

I Definition 29 (Lossless bipartite expander). Let G = (U ∪ V,E) be a bipartite graph. For
J ⊆ U let Γ(J) = {v|∃u ∈ U : {u, v} ∈ E}. Graph G is a (D,L, ε)-lossless expander if:

|Γ({u})| = D ∀u ∈ U
|Γ(J)| ≥ (1− ε)D|J | ∀J ⊆ U, |J | ≤ L.

Here we need different parameters than in [10] so we restate their theorem as follows:

I Theorem 30 ([10]). Let (U ∪ V,E) be a (D,L, ε)-lossless expander with |U | = k and
|V | = n and let b = 8 log k. If D ≥ b, L = 4D/b− 2 and ε = b

4D then there exists a family of
sets A ⊆ 2[n] and a family of matroids {MB : B ⊆ A} with the following properties:
|A| = k and for every A ∈ A it holds that |A| = D.
For every B ⊆ A and every A ∈ A, we have:

rankMB(A) =
{
b if A ∈ B
D if A ∈ A \ B

We use the following construction of lossless expanders from [54], see also [10].

I Theorem 31 ([54]). Let k ≥ 2 and ε ≥ 0. For any L ≤ k, let D ≥ 2 log k/ε and n ≥ 6DL/ε.
Then a (D,L, ε)-lossless expander exists.

In the above theorem we can set parameters as follows:

D = n

3 · 27 , L = 23, ε = 2−3, k = 2n/3·211
, b = n

3 · 28 .

Note that under this choice of parameters we have 6DL/ε = n and 2 log k
ε = D and hence a

(D,L, ε)-lossless expander with parameters set above exists.
Now consider the family of matroids M given by Theorem 30 using the expander

construction above. The rest of the proof uses the probabilistic method. We will show
non-constructively that there exists a matroid in this family whose rank function does not
admit a sketch of dimension d = o(n). Let D = U(A) be the uniform distribution over A.
By Yao’s principle it suffices to show that there exists a matroid rank function for which
any deterministic sketch fails with a constant probability over this distribution. In the
proof below we first show that any fixed deterministic sketch succeeds on a randomly chosen
matroid fromM with only a very tiny probability, probability 22−Ω(n) , and then take a union
bound over all 2dn sketches of dimension at most d.

G. Yaroslavtsev and S. Zhou 69:15

Indeed, fix any deterministic sketch S of dimension d = n/211. Let {b1, . . . , b2d} be the
set of all possible binary vectors of length d corresponding to the possible values of the sketch,
so that each bi ∈ {0, 1}d.

Let Sbi
= {A ∈ A : S(A) = bi}. Let t = 1

4 2n/211 and G = {bi ∈ {0, 1}d||Sbi
| ≥ t}. The

following proposition follows by a simple calculation.

I Proposition 32. If t = 1
4 2n/211 then 1

k

∑
bi∈G |Sbi | ≥ 3

4 .

Proof. We have:

1
k

∑
bi∈G

|Sbi
| ≥ 1− 1

k

∑
bi : |Sbi

|< k

4·2d

|Sbi
| ≥ 1− 1

k
· k

4 · 2d · 2
d ≥ 3

4 . J

Let S1
bi

= {A ∈ Sbi
: rankMB(A) = b} and S2

bi
= {A ∈ Sbi

: rankMB(A) = D}. We require
the following lemma.

I Lemma 33. Let t = 1
4 2n/211 and d = n/211. There exists a matroid MB ∈ M such that

for all deterministic sketches S of dimension d and all bi ∈ G, min(|S1
bi
|, |S2

bi
|) ≥ 1

4 |Sbi
|.

Fix the set B constructed in Lemma 33 and consider the function rankMB . Consider
distribution D over the inputs. The probability that any deterministic sketch over this
distribution makes error at least D − b is at least:

1
k

∑
bi∈{0,1}n

min(|S1
bi
|, |S2

bi
|) ≥ 1

k

∑
bi∈G

min(|S1
bi
|, |S2

bi
|) ≥ 1

k

∑
bi∈G

1
4 |Sbi

|,

where the last inequality holds by Lemma 33. Thus by Proposition 32, the probability is at
least 3

4 ×
1
4 ≥

1
6 .

Finally, the construction of [10] ensures that the function rankMB takes integer values
between 0 and D. Using this and the fact that matroid rank functions are 1-Lipschitz, we
can normalize it by dividing all values by D and ensure that the resulting function is O(1/n)-
Lipschitz and takes values in [0, 1], while the sketch makes error at least (D− b)/D = 1

2 . J

3.2.2 One-Way Communication of Lipschitz Submodular Functions

In this section, we strengthen the lower bound shown above, extending it to the corresponding
one-way communication problem. We use the same notation as in the previous section.

I Theorem 34. There exists a constant c1 > 0 and a c1
n -Lipschitz submodular function such

that R→1/3 = Ω(n).

By restricting the n-dimensional elements to r coordinates and observing that the
construction outputs matroids of rank b or D that are separated by a constant gap, we obtain
the following result using the same proof:

I Corollary 35. There exists c = Ω(1) such that a c-approximation of matroid rank functions
has randomized one-way communication complexity R→1/3 = Ω(r) where r is the rank of the
underlying matroid.

APPROX/RANDOM 2019

69:16 Approximate F2-Sketching of Valuation Functions

References
1 Dragan M Acketa. On the enumeration of matroids of rank-2. Zbornik radova Prirodnomatem-

atickog fakulteta–Univerzitet u Novom Sadu, 8:83–90, 1978.
2 Yuqing Ai, Wei Hu, Yi Li, and David P. Woodruff. New Characterizations in Turnstile Streams

with Applications. In 31st Conference on Computational Complexity, CCC, pages 20:1–20:22,
2016.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. Tight bounds for single-pass streaming
complexity of the set cover problem. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 698–711, 2016.

5 László Babai, Anna Gál, Peter G. Kimmel, and Satyanarayana V. Lokam. Communication
Complexity of Simultaneous Messages. SIAM J. Comput., 33(1):137–166, 2003.

6 László Babai and Peter G. Kimmel. Randomized Simultaneous Messages: Solution of a
Problem of Yao in Communication Complexity. In Proceedings of the Twelfth Annual IEEE
Conference on Computational Complexity, pages 239–246, 1997.

7 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and
Tim Roughgarden. Sketching valuation functions. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 1025–1035, 2012.

8 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In The 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD,
pages 671–680, 2014.

9 Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning Valuation
Functions. In COLT 2012 - The 25th Annual Conference on Learning Theory, June 25-27,
2012, Edinburgh, Scotland, pages 4.1–4.24, 2012.

10 Maria-Florina Balcan and Nicholas J. A. Harvey. Learning submodular functions. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC, pages 793–802, 2011.

11 MohammadHossein Bateni, Hossein Esfandiari, and Vahab S. Mirrokni. Almost Optimal
Streaming Algorithms for Coverage Problems. In Proceedings of the 29th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA, pages 13–23, 2017.

12 Eric Blais and Abhinav Bommireddi. Testing Submodularity and Other Properties of Valuation
Functions. In 8th Innovations in Theoretical Computer Science Conference, ITCS, pages
33:1–33:17, 2017.

13 Eric Blais, Krzysztof Onak, Rocco Servedio, and Grigory Yaroslavtsev. Concise representations
of discrete submodular functions, 2013.

14 Jehoshua Bruck and Roman Smolensky. Polynomial Threshold Functions, ACˆ0 Functions,
and Spectral Norms. SIAM J. Comput., 21(1):33–42, 1992.

15 Amit Chakrabarti and Anthony Wirth. Incidence Geometries and the Pass Complexity
of Semi-Streaming Set Cover. In Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, pages 1365–1373, 2016.

16 Deeparnab Chakrabarty and Zhiyi Huang. Testing Coverage Functions. In Automata, Lan-
guages, and Programming - 39th International Colloquium, ICALP, Proceedings, Part I, pages
170–181, 2012.

17 Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. Streaming Algorithms for Submodular
Function Maximization. In Automata, Languages, and Programming - 42nd International
Colloquium, ICALP, Proceedings, Part I, pages 318–330, 2015.

18 Mahdi Cheraghchi, Adam R. Klivans, Pravesh Kothari, and Homin K. Lee. Submodular
functions are noise stable. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pages 1586–1592, 2012.

G. Yaroslavtsev and S. Zhou 69:17

19 Anirban Dasgupta, Ravi Kumar, and D. Sivakumar. Sparse and Lopsided Set Disjointness
via Information Theory. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX, and 16th International
Workshop, RANDOM. Proceedings, pages 517–528, 2012.

20 Erik D. Demaine, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. On Streaming and
Communication Complexity of the Set Cover Problem. In Distributed Computing - 28th
International Symposium, DISC. Proceedings, pages 484–498, 2014.

21 Yuval Emek and Adi Rosén. Semi-Streaming Set Cover. ACM Trans. Algorithms, 13(1):6:1–6:22,
2016.

22 Vitaly Feldman and Pravesh Kothari. Learning Coverage Functions and Private Release of
Marginals. In Proceedings of The 27th Conference on Learning Theory, COLT, pages 679–702,
2014.

23 Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Representation, Approximation and
Learning of Submodular Functions Using Low-rank Decision Trees. In COLT 2013 - The 26th
Annual Conference on Learning Theory, pages 711–740, 2013.

24 Vitaly Feldman and Jan Vondrák. Tight Bounds on Low-Degree Spectral Concentration
of Submodular and XOS Functions. In IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS, pages 923–942, 2015.

25 Vitaly Feldman and Jan Vondrák. Optimal Bounds on Approximation of Submodular and
XOS Functions by Juntas. SIAM J. Comput., 45(3):1129–1170, 2016.

26 Gereon Frahling, Piotr Indyk, and Christian Sohler. Sampling in Dynamic Data Streams and
Applications. Int. J. Comput. Geometry Appl., 18(1/2):3–28, 2008.

27 Michel X. Goemans, Nicholas J. A. Harvey, Satoru Iwata, and Vahab S. Mirrokni. Approxim-
ating submodular functions everywhere. In Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, pages 535–544, 2009.

28 Vince Grolmusz. On the Power of Circuits with Gates of Low L1 Norms. Theor. Comput.
Sci., 188(1-2):117–128, 1997.

29 Anupam Gupta, Moritz Hardt, Aaron Roth, and Jonathan Ullman. Privately Releasing
Conjunctions and the Statistical Query Barrier. SIAM J. Comput., 42(4):1494–1520, 2013.

30 Sariel Har-Peled, Piotr Indyk, Sepideh Mahabadi, and Ali Vakilian. Towards Tight Bounds for
the Streaming Set Cover Problem. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS, pages 371–383, 2016.

31 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of Protocols for XOR Functions.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS, pages 282–288,
2016.

32 Kaave Hosseini, Shachar Lovett, and Grigory Yaroslavtsev. Optimality of Linear Sketching
under Modular Updates. Electronic Colloquium on Computational Complexity (ECCC), 25:169,
2018. URL: https://eccc.weizmann.ac.il/report/2018/169.

33 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity of
the Hamming distance problem. Inf. Process. Lett., 99(4):149–153, 2006.

34 William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. In Conference in modern analysis and probability, pages 189–206, 1984.

35 Sampath Kannan, Elchanan Mossel, Swagato Sanyal, and Grigory Yaroslavtsev. Linear
Sketching over F_2. In 33rd Computational Complexity Conference, CCC, pages 8:1–8:37,
2018.

36 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single Pass Spectral Sparsification in Dynamic Streams. SIAM J. Comput., 46(1):456–477,
2017.

37 Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff, and
Mobin Yahyazadeh. Optimal Lower Bounds for Universal Relation, and for Samplers and
Finding Duplicates in Streams. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS, pages 475–486, 2017.

APPROX/RANDOM 2019

https://eccc.weizmann.ac.il/report/2018/169

69:18 Approximate F2-Sketching of Valuation Functions

38 Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press,
1997.

39 Troy Lee and Shengyu Zhang. Composition Theorems in Communication Complexity. In
Automata, Languages and Programming, 37th International Colloquium, ICALP, Proceedings,
Part I, pages 475–489, 2010.

40 Ming Lam Leung, Yang Li, and Shengyu Zhang. Tight bounds on the randomized com-
munication complexity of symmetric XOR functions in one-way and SMP models. CoRR,
abs/1101.4555, 2011. arXiv:1101.4555.

41 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Symposium on Theory of Computing, STOC, pages 174–183, 2014.

42 Yang Liu and Shengyu Zhang. Quantum and randomized communication complexity of XOR
functions in the SMP model. Electronic Colloquium on Computational Complexity (ECCC),
20:10, 2013.

43 Shachar Lovett. Recent Advances on the Log-Rank Conjecture in Communication Complexity.
Bulletin of the EATCS, 112, 2014.

44 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
45 Ashley Montanaro and Tobias Osborne. On the communication complexity of XOR functions.

CoRR, abs/0909.3392, 2009. arXiv:0909.3392.
46 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
47 Sofya Raskhodnikova and Grigory Yaroslavtsev. Learning pseudo-Boolean k-DNF and sub-

modular functions. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pages 1356–1368, 2013.

48 Barna Saha and Lise Getoor. On Maximum Coverage in the Streaming Model & Application
to Multi-topic Blog-Watch. In Proceedings of the SIAM International Conference on Data
Mining, SDM, pages 697–708, 2009.

49 C. Seshadhri and Jan Vondrák. Is Submodularity Testable? Algorithmica, 69(1):1–25, 2014.
50 Yaoyun Shi and Zhiqiang Zhang. Communication complexities of symmetric XOR functions.

Quantum Inf. Comput, pages 0808–1762, 2008.
51 Xiaoming Sun and Chengu Wang. Randomized Communication Complexity for Linear Algebra

Problems over Finite Fields. In 29th International Symposium on Theoretical Aspects of
Computer Science, STACS, pages 477–488, 2012.

52 Justin Thaler. Semi-Streaming Algorithms for Annotated Graph Streams. In 43rd International
Colloquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, pages 59:1–59:14, 2016.

53 Hing Yin Tsang, Chung Hoi Wong, Ning Xie, and Shengyu Zhang. Fourier Sparsity, Spectral
Norm, and the Log-Rank Conjecture. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, pages 658–667, 2013.

54 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

55 Jan Vondrák. A note on concentration of submodular functions. CoRR, abs/1005.2791, 2010.
arXiv:1005.2791.

56 David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

57 Grigory Yaroslavtsev and Samson Zhou. Approximate F2-Sketching of Valuation Functions.
CoRR, abs/1907.00524, 2019. arXiv:1907.00524.

58 Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of Boolean functions.
Theor. Comput. Sci., 411(26-28):2612–2618, 2010.

http://arxiv.org/abs/1101.4555
http://arxiv.org/abs/0909.3392
http://arxiv.org/abs/1005.2791
http://arxiv.org/abs/1907.00524

G. Yaroslavtsev and S. Zhou 69:19

A Missing Proofs

Proof of Proposition 10. Indeed, let Ad be a d-dimensional subspace such that∑
S∈Ad

f̂2(S) ≥ ‖f‖2
2 − ε and consider the function g(x) =

∑
S∈Ad

f̂(S)χS(x). Note that in
order to compute all values χS(x) for S ∈ Ad it suffices to evaluate d parities corresponding
to sets S1, . . . , Sd forming a basis in Ad. Values of all other parities can be computed as
linear combinations. Let ∆(x) = f(x)− g(x). Then the desired guarantee follows from the
following calculation:

E
x∼U({0,1}n)

[∆(x)2] = E
S∼U({0,1}n)

[∆̂(S)2] =
∑

S∈{0,1}n

(f̂(S)− ĝ(S))2 =
∑
S/∈Ad

f̂(S)2 ≤ ε,

where the first equality holds from Parseval’s identity. J

Proof of Lemma 20. We show the stronger result that for any j such that wj < 2m, then
f(x) = f(x⊕ ej), where ej is the elementary unit vector with one in the jþ position, and
zeros elsewhere. This implies the lemma since it shows that any variable whose weight is less
than 2m does not affect the output of the function or the margin of the function and thus
might as well have weight zero.

Suppose, by way of contradiction, that f(x) 6= f(x⊕ ej) and without loss of generality,
f(x) = 0 with xj = 0. Since f is a linear threshold function and f(x) = 0, then −θ +∑n
i=1 wixi < 0. Moreover, f is a (θ,m)-LTF, so −θ +

∑n
i=1 wixi < −m. Because wj < 2m,

−θ + wj +
∑n
i=1 wixi < −θ + 2m +

∑n
i=1 wixi < m. But because m is the margin of the

function, if −θ + wj +
∑n
i=1 wixi < m, then it must hold that −θ + wj +

∑n
i=1 wixi < −m.

Therefore, f(x⊕ ej) = 0, so xj does not affect the output of the function or the margin of
the function. J

Proof of Lemma 22. Observe that for any wi ≥ 2θ, if xi = 1, then f(x) = 1. Thus, if
f(x) = 1, it suffices to consider 2m ≤ wi ≤ 2θ.

Let W = {2m(1 + ε)i}ti=0 for t =
⌈
log1+ε

(
θ
m

)⌉
, where ε is some fixed constant that we

set at a later time. For each i, let w′i be the largest element in W that does not exceed wi.
Thus, w′i ≤ wi < (1 + ε)w′i. Observe that since w′i ≤ wi and f is a (θ,m)-LTF, then f(x) = 0
implies −m > −θ +

∑n
i=1 wixi ≥ −θ +

∑n
i=1 wixi, so that sgn (−θ +

∑n
i=1 w

′
ixi) = 0 = f(x)

and a margin of m remains.
On the other hand, if f(x) = 1, then

∑n
i=1 wixi > θ + m as f is a (θ,m)-LTF. Since

w′i ≤ wi < (1 + ε)w′i, then
∑n
i=1 w

′
ixi >

θ+m
1+ε > (1 − ε)(θ + m). Observe that θ ≥ m

and hence,
∑n
i=1 w

′
ixi > θ − εθ + m − εm ≥ θ + m − 2εθ. Setting ε = θ

10m shows that
sgn (−θ +

∑n
i=1 w

′
ixi) = 1 = f(x) and a margin of m′ = 4

5m remains. J

Proof of Lemma 26. As by Lemma 22, we can assume without loss of generality that
wi ≥ 2m and w ≥ 2m. Let S = {i|xi = 1} so that if there are no collisions under h in S,
then

∑
(j,w)∈[M]×W

w

 ∨
i:h(i)=j
wi=w

xi

 =
∑
i

wixi.

If f(x) = 0, then |S| ≤ θ
2m so that the probability there are collisions under h in S is at most

1
200 by Fact 24. Thus if f(x) = 0, then fh(x) = 0 with probability at least 1− 1

200 .

APPROX/RANDOM 2019

69:20 Approximate F2-Sketching of Valuation Functions

If f(x) = 1, then either |S| < θ
m or |S| ≥ θ

m . If |S| < θ
m , then the probability there are

collisions under h in S is at most 1
50 by Fact 24, so then fh(x) = 1 with probability at least

1− 1
50 . If |S| ≥

θ
m , with probability at least 1− 1

50 , there exist θ
m values j such that there

exists xi = 1 and h(i) = j. Therefore, we set fh(x) = 1 whenever at least θ
m buckets of h are

non-empty. In all cases, fh(x) = f(x) with probability at least 1− 1
50 . J

Proof of Lemma 33. The proof uses the probabilistic method to show the existence of B
with desired properties. Consider drawing a random matroid from the familyM, i.e. pick B
to be a uniformly random subset of A and consider MB. Fix any deterministic sketch S and
any bi ∈ G. Since |Sbi

| ≥ t, by the Chernoff bound, it holds that:

Pr
B⊆A

[∣∣S1
bi

∣∣ > (1
2 + δ

)
|Sbi
|
]
≤ e−cδ

2|Sbi
| ≤ e−cδ

2t.

Setting δ = 1/4, we have that the above probability is at most e−Ct for some constant C > 0.
Applying the argument above to both S1

bi
and S2

bi
, we have that:

Pr
B⊆A

[
min(

∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) < 1
4 |Sbi

|
]
≤ 2e−Ct.

Let E denote the event that min(
∣∣S1
bi

∣∣ , ∣∣S2
bi

∣∣) ≥ 1
4 |Sbi

|.
Note that the total number of deterministic sketches of dimension d is at most 2dn,

since each sketch is specified by a collection of d linear functions over Fn2 . Also note
that for each sketch |G| ≤ 2d. Taking a union bound over all sketches and all sets G
by the choice of t and d event E holds for all S and bi ∈ G with probability at least
1− 2(n+1)d+1e−Ct ≥ 1− 2(n+1)d+12−C

4 2n/211

= 1− o(1). Thus, there exists some set B for
which the statement of the lemma holds. J

Proof of Theorem 34. Let α = 1
3·211 and |A| = k = 2αn. Suppose Alice holds x ∈ A ⊆

{0, 1}n and Bob holds y ∈ {0, 1}n. Recall that in the one-way communication model for
XOR functions, Alice must pass a message of minimal length to Bob, who must then compute
f(x⊕ y) with some probability, say 2

3 . Here, we let specifically let f be a scaling of a matroid
rank function, which is some monotone non-negative

(
c1
n

)
-Lipschitz submodular function. By

Yao’s principle, it suffices to show that every deterministic one-way communication protocol
using at most α

4 n bits fails with probability greater than 1
3 over A. Suppose by way of

contradiction, that Alice and Bob succeed through a deterministic one-way communication
protocol, using at most α

4 n bits. For the purpose of analysis, we furthermore suppose that
Bob’s input is fixed.

We now claim that if Alice passes a message to Bob using at most α
4 n bits, then there

are at least 2αn − 4 · 2αn/4 points in A that are represented by the same message as at least
five other points. Note that Alice can partition the input space A into at most 2αn/4 parts,
each part with its own distinct representative message. The number of points not in parts
containing at least five other points is at most 4 · 2αn/4. The remaining points, at least
2αn − 4 · 2αn/4 in quantity, are represented by the same message as at least five other points.

Let S be the set of points in A represented by a given message from Alice. Hence, Alice
assigns the same message to each of these points and passes the state of the protocol to
Bob. Because Bob cannot distinguish between these points and must perform a deterministic
protocol, then Bob must output the same result for each of these points. Recall that we
consider Bob’s input y ∈ {0, 1}n as fixed. Consider the family of functions

F = {f : f(x⊕ y) = b or f(x⊕ y) = D for all x ∈ A}.

G. Yaroslavtsev and S. Zhou 69:21

Thus, if S contains at least five points, there exists f ∈ F such that Bob errs on at least 2
5

fraction of the points in S by setting f(x⊕ y) = b to at least
⌊
|S|−1

2

⌋
of the points x ∈ S and

similarly for f(x⊕ y) = D. Moreover, since Alice partitions the points in A, then there exists
an f ∈ F such that Bob errs on at least 2

5 fraction on all points that are represented by the
same message as at least five other points. Hence, the total number of inputs that Bob errs
is at least 2

5
(
2αn − 6 · 2αn/4) > 1

3 · 2
αn for sufficiently large values of n. This contradicts

the assumption that the communication protocol, using at most α
4 n bits, succeeds with

probability 2
3 . J

APPROX/RANDOM 2019

Streaming Verification of Graph Computations via
Graph Structure
Amit Chakrabarti
Dartmouth College, Hanover, NH, USA

Prantar Ghosh
Dartmouth College, Hanover, NH, USA

Abstract
We give new algorithms in the annotated data streaming setting – also known as verifiable

data stream computation – for certain graph problems. This setting is meant to model outsourced
computation, where a space-bounded verifier limited to sequential data access seeks to overcome
its computational limitations by engaging a powerful prover, without needing to trust the prover.
As is well established, several problems that admit no sublinear-space algorithms under traditional
streaming do allow protocols using a sublinear amount of prover/verifier communication and
sublinear-space verification. We give algorithms for many well-studied graph problems including
triangle counting, its generalization to subgraph counting, maximum matching, problems about the
existence (or not) of short paths, finding the shortest path between two vertices, and testing for an
independent set. While some of these problems have been studied before, our results achieve new
tradeoffs between space and communication costs that were hitherto unknown. In particular, two of
our results disprove explicit conjectures of Thaler (ICALP, 2016) by giving triangle counting and
maximum matching algorithms for n-vertex graphs, using o(n) space and o(n2) communication.

2012 ACM Subject Classification Theory of computation → Streaming models; Theory of compu-
tation → Interactive proof systems; Computer systems organization → Cloud computing

Keywords and phrases data streams, interactive proofs, Arthur-Merlin, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.70

Category RANDOM

Related Version https://eccc.weizmann.ac.il/report/2019/101/

Funding This work was supported in part by NSF under award CCF-1907738.

1 Introduction

A major philosophical message of theoretical computer science is that a computationally
bounded entity can greatly expand its space of tractable problems with access to a more
powerful entity, without having to trust the latter. The celebrated IP = PSPACE [28] and
PCP Theorems [3, 4] are perhaps the best known such results. In the realm of space-efficient
computations on large data streams, there is a growing trend towards results of this flavor [26].
In this case, the powerful entity (henceforth named Prover) is often thought of as a cloud
computing service that is free of the space limitations that the computationally bounded
data streaming process (henceforth named Verifier) is subject to. This work designs new
algorithms for graph computations on data streams in such Verifier/Prover models and proves
some related complexity-theoretic results.

Early works on such “prover-enhanced data streaming algorithms” considered the annot-
ated streams model [10, 22], where Prover reads the input data stream together with Verifier
and, during stream processing and/or at the end, supplies Verifier with a proof (streamed
to him) that convinces him of the correct answer to what he wants to compute on the
stream. Subsequent works [11, 14] considered a more general model of streaming interactive
proofs (SIPs), where the communication between Verifier and Prover is more general, rather

© Amit Chakrabarti and Prantar Ghosh;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 70; pp. 70:1–70:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-3633-9180
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.70
https://eccc.weizmann.ac.il/report/2019/101/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Streaming Verification of Graph Computations via Graph Structure

than one way. Several recent works in the annotated stream and the SIP models have
focused on basic algorithmic problems on graphs [2, 13, 29], often giving sublinear-space
algorithms for problems that provably do not admit sublinear solutions in the basic (sans
prover) streaming setting.

In this work, we give new algorithms in the annotated streaming setting for certain graph
problems, including triangle counting, its generalization to subgraph counting, maximum
matching, problems about the existence (or not) of short paths, finding the shortest path
between two vertices, and testing for an independent set. Two of our results provide
“unexpected” new upper bounds, disproving published conjectures [29] asserting that such
bounds would be unattainable.

1.1 Our Results and Techniques
Background and Motivation. Suppose that we wish to compute a function f(σ) on an input
stream σ consisting of tokens from some universe. For instance, for a graph computation, σ
could be a stream of vertex pairs (u, v) specifying the input graph’s edges, or it could be a
stream of edge insertions and/or deletions to an evolving (multi)graph. Following established
terminology [10], an online scheme is a protocol between Prover and Verifier wherein they
observe σ together and, after each token appears, Prover provides zero or more bits of “help”
to Verifier (as specified by the protocol). After σ is fully consumed, if Prover has followed
the protocol faithfully, Verifier is very likely to output f(σ); otherwise, he is very likely to
“reject.” If Verifier does all his work using at most O(v) bits of working memory and Prover
sends at most O(h) bits of help, we call this an (h, v)-scheme.1 A scheme is interesting if we
can use h > 0 to achieve a value of v asymptotically smaller than what is feasible or known
for a basic streaming algorithm, where h = 0.

All interesting schemes from previous work in fact use the prover in a more restricted way:
Verifier processes all of σ on his own and then interacts with Prover. This work continues
the tradition. There is practical motivation for building this restriction into the model of
computation. Think of a cloud computing service where compute cycles are available only at
certain times of day, or need to be booked in advance, whereas the client needs to access and
process the input earlier, when it is made available to him. In such a setting, a scheme is
most useful if the client can do its own processing first and wait for its time slot with the
cloud service to finalize its computation.

Further, we focus only on schemes, which feature a single streamed message from Prover
to Verifier, rather than the more general setting of SIPs, which allow rounds of interaction.
This too is practically motivated: the cloud service need not dedicate a chunk of time
to interact with the client, but need only promise that it will perform its portion of the
computation by an agreed-upon deadline, at which time the client will download the “proof”
it has constructed. In view of this latter style of computation, we also consider multi-pass
schemes, where Verifier may use a “few” passes over its input σ and later receive a single
streamed message from Prover, after which he produces his output. Most of our schemes will
be single-pass (and we shall call them simply “schemes”), but in a few cases, we will give
multi-pass schemes when they can achieve provably better costs than single-pass schemes.

Setup and Terminology. All problems studied in this paper involve an input graph, mul-
tigraph, or digraph G = (V,E) on the vertex set [n] := {1, 2, . . . , n}. We shall reserve the

1 We will drop the qualifier “online” and simply call our protocols “schemes” because we will not be
considering the more powerful setting of “prescient schemes” [10] in this paper.

A. Chakrabarti and P. Ghosh 70:3

basic term “graph” for simple, undirected graphs. The input is described either as a stream
of edges (the default case) or as a stream of edge insertions and deletions: the latter type of
stream is called a dynamic or turnstile graph stream. For an (h, v)-scheme to be interesting
we at least require v = o(n2). If we also have h = o(n2), we call it a sublinear scheme. If we
have v = o(n) while h = o(n2), we call it a frugal scheme. This is an especially interesting
setting of parameters, because most interesting graph problems provably require Ω(n) space
in the basic streaming setting [15]. A frugal scheme shows that one can beat this space
bound with the aid of only a sublinear-length proof. Recall that while h� v is allowed, the
proof must be processed using only O(v) space.

For an (h, v)-scheme we refer to h as its hcost (short for “help cost”) and v as its vcost
(short for “verification cost”). We use the notation [h, v]-scheme as a shorthand for an
(Õ(h), Õ(v))-scheme.2 An [n, n]-scheme is called a semi-streaming scheme.

Subgraph Counting. The literature on graph streaming contains many works on the central
problem of triangle counting (henceforth, TriangleCount): given a multigraph G as a
dynamic stream, compute T , the number of triangles in G [6, 7, 18, 25, 29]. In Section 3,
we study this and the more general problem of subgraph-counting (SubgraphCountk)
[7, 19, 20, 29], where the goal is to compute TH , the number of copies of a fixed, k-sized
graph H, where k is a constant. In the basic streaming model, computing T or TH exactly
is impossible in sublinear space and it becomes necessary to approximate. In contrast, we
design a family of (o(n2), o(n))-schemes for TriangleCount that give exact answers. Such
a frugal scheme had been conjectured not to exist [29]. We extend our ideas to give sublinear
(o(n2), o(n2))-schemes for SubgraphCountk.

Maximum Matching. Determining α′(G), the cardinality of a maximum-sized matching
in G, is a central problem in graph algorithms and has received a lot of attention in the
recent literature on streaming algorithms [5, 12, 15, 16, 21, 24]. In Section 4, we consider this
problem (henceforth, MaxMatching) for multigraphs given by dynamic streams. As with
TriangleCount, we give a frugal scheme for MaxMatching, which had been conjectured to
be impossible [29]. In the process, we present a frugal scheme for the subproblem of verifying
that the purported connected components of a graph are indeed disconnected from each other,
which might be of independent interest for future work on connectivity-related problems.

Independent Sets and Length-Three Paths. In Section 5, we study the independent set
testing problem (IndSetTest), where we are given a multigraph G and a set U ⊆ V (also
streamed and interleaved with the edge stream arbitrarily) and we must determine whether
or not U is independent. We also study the st-3Path problem, where G (which might be
a digraph) has two designated vertices vs and vt and we must determine whether G has a
path of length at most 3 from vs to vt. By results from prior work, any (h, v)-scheme for
these problems must have total cost h+ v = Ω(n). We therefore design two-pass schemes for
these problems, achieving h+ v = Õ(n2/3). In fact, we obtain a more general tradeoff, giving
a two-pass [t2, s]-scheme for any parameters t, s with ts = n. Our schemes instantiate a
protocol for the abstract problem CrossEdgeCount, which asks for a count of the number
of edges in G from U ⊆ V to W ⊆ V , where these sets U and W are also streamed.

2 The notation Õ(·) hides factors polynomial in log n.

APPROX/RANDOM 2019

70:4 Streaming Verification of Graph Computations via Graph Structure

In each case, we can design ordinary (one-pass) schemes with the same complexity
parameters under a natural assumption on the way the stream is ordered, and these schemes
still beat the space bound achievable by basic (sans prover) streaming algorithms.

Short Paths and Shortest Path. Finally, in Section 6, we consider shortest path problems,
perhaps the most basic problem in classic graph algorithms. We study the st-kPath problem,
which is to detect whether or not G has a path of length at most k from vs to vt, where
k, vs, and vt are prespecified. We first present a [kn, n]-scheme for st-kPath. This gives
a semi-streaming scheme for detecting short (of length polylogarithmic in n) paths, which
is optimal in terms of total cost. It also implies a [kn, n]-scheme for st-ShortestPath
problem – where k is the length of the shortest path from vs to vt – which is to find the
shortest path between vertices vs and vt, and output No if none exists. For directed graphs
of small (polylogarithmic in n) diameter, it implies a semi-streaming scheme for checking
s, t-connectivity. Note that these problems require Ω(n2) space in the basic data streaming
model, even for constant k or constant-diameter graphs [15].

Targeting a different cost regime, we generalize our result for st-3Path from Section 5 to
obtain multi-pass (h, v)-schemes for st-kPath with total cost h+ v = o(n), for constant k.
To be precise, we present a dk/2e-pass [n1−1/k, n1−1/k]-scheme for st-kPath.

Our Techniques. Similar to past work in the area of streaming verification – indeed,
hearkening back to classic interactive proof protocols [23, 28] – our schemes make heavy
use of “arithmetization,” i.e., they recast the underlying problem in terms of evaluating
certain polynomials and exploit the encoding properties of polynomials (as captured in the
Schwartz-Zippel Lemma) to protect the verifier from a cheating prover. Also as in past work,
we use what we call the shaping technique, where we conceptually shape a data vector into
an array with two or more dimensions. This seemingly innocuous trick allows us to consider
input data as a table of values of a multivariate polynomial and we can use the “separation”
afforded by these multiple variables to divide up work between Verifier and Prover.

The novelty in our algorithms comes from a twist on the shaping technique that was
hitherto unexploited. At a high level, almost all earlier annotation schemes or SIPs for graph
problems viewed the edge stream as a flat vector (a characteristic vector in the case of graphs
or a frequency vector in the case of multigraphs). We crucially exploit the fact that the index
set of this vector has additional structure: it consists of pairs of vertices and these vertices
are very meaningful entities in the context of graph problems. Simply put, we exploit graph
structure more fully in our use of the shaping technique.

Another novel feature of our schemes is that they involve Prover sending multivariate
polynomials; their correctness analysis then involves the full multivariate strength of the
Schwartz-Zippel Lemma. In all past work on interactive proofs and schemes, Prover only
sent univariate polynomials (and the corresponding analyses used the more basic statement
that a nonzero, degree-d, univariate polynomial has at most d roots). Thus, our scheme
designs can be seen as exploiting the power of arithmetization more fully.

1.2 Related Work
The annotated data streaming model of computation was motivated in part by the need to
develop a theory to capture ideas such as the stream punctuations of Tucker et al. [30] and
the stream outsourcing framework of Yi et al. [31]. Chakrabarti et al. [10] formulated the
model and provided the first theoretical results, focusing largely on the traditional statistical
problems of frequency moments and heavy hitters, but also giving a handful of basic results
for graph problems. Other early works in the same model include Klauck and Prakash [22]

A. Chakrabarti and P. Ghosh 70:5

and Chakrabarti et al. [9]. Cormode et al. [14] generalized the model to SIPs, which allow
a few interactive rounds of communication between Verifier and Prover; this generalized
setting was studied further in Chakrabarti et al. [11] and Abdullah et al. [2]. We refer the
reader to the expository article of Mitzenmacher and Thaler [26] for a more detailed survey
of this area.

We turn to graph computations and the specific problems studied in this work. For
simplicity, we state complexities in terms of n alone, rather than using both m and n (m
being the number of edges of the input graph). Cormode et al. [13] gave annotated data
stream algorithms (schemes, in our terminology) for many canonical graph problems, often
exploiting linear programming formulations of the problems. In particular, they gave an
[n2, 1]-scheme For MaxMatching. For a weighted version of st-ShortestPath, on simple
graphs (not multigraphs) they gave [h, v]-schemes with hv > dn2 and h > dn, where d is the
maximum distance to any node reachable from vs. Contrast this with our [kn, n]-scheme for
unweighted multigraphs, where k is the length of the shortest vs, vt-path.

Thaler [29] studied the problems TriangleCount, MaxMatching, and Subgraph-
Countk. He gave semi-streaming schemes for the first two. In the same paper, he explicitly
conjectured that these two problems would not admit frugal schemes: he imagined that
achieving vcost = o(n) would bump up the hcost to Ω(n2). Our results here disprove these
conjectures. For SubgraphCountk, Thaler gave a [k3n, kn]-SIP with k − 2 rounds of
interaction. We achieve sublinear cost with just a single Prover-to-Verifier message. Sublinear
schemes for SubgraphCountk were hitherto unknown for any k > 3.

For the TriangleCount problem, Chakrabarti et al. [10] gave an [h, v]-scheme for any
h, v with hv = n3, and also an [n2, 1]-scheme. For the same problem, Abdullah et al. [2]
gave a (log2 n, log2 n)-SIP that uses logn rounds of interaction, and a (n1/γ logn, logn)-SIP
with γ = O(1) rounds of interaction. The latter paper also studied MaxMatching, giving a
(ρ + n1/γ′ logn, logn)-SIP with γ rounds of interaction, where γ′ is a linear function of γ,
and ρ is the weight of an optimal matching (weighted or unweighted).

Guruswami and Onak [17] show a space lower bound of Ω(n1+Ω(1/k)/kO(1)) for st-kPath
(where k is even) in k/2− 1 passes in the basic streaming model. In contrast, our results
show that, for any k, with the help of a prover, one can get a total cost of Õ(n1−1/k) in
dk/2e passes.

2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} by [n] and the set {−n,−n+1, . . . , n−
1, n} by JnK. The ring of polynomials in variables X1, . . . , Xk with coefficients in the ring R
is denoted by R[X1, . . . , Xk]. If S is a finite set, we write r ∈R S to say that r is a random
element drawn uniformly from S. In an undirected graph G = (V,E), the ith neighborhood
of a vertex v is the set of vertices u such that there is a walk of length i from v to u. We
denote this set by Ni(v). We put N(v) := N1(v) and N [v] := N1(v) ∪ {v}.

Following Chakrabarti et al. [10], an annotated data streaming algorithm, a.k.a. scheme,
is a pair A = (h,B), where h is a help function and B is a data stream algorithm that
computes a function f of an input x ∈ Um, where U is some universe. We see h as an
m-tuple (h1, . . . , hm), where hi : U i → {0, 1}∗ is the annotation provided to B after the ith
stream update xi, depending on the elements seen so far, i.e. x1, . . . , xi. Thus, B sees the
annotated stream xh := (x1, h1(x1), x2, h2(x1, x2), . . . , xm, hm(x1, . . . , xm)). Using a random
string R, it processes this annotated stream, giving an output out(B; xh, R). We say that A
is a δ-error scheme if

(completeness) for all x ∈ Um: PrR[out(B; xh, R) 6= f(x)] 6 δ; and

APPROX/RANDOM 2019

70:6 Streaming Verification of Graph Computations via Graph Structure

(soundness) for all x ∈ Um, h′ = (h′1, h′2, . . . , h′m) ∈ ({0, 1}∗)m:
PrR[out(B; xh′ , R) 6∈ {f(x),⊥}] 6 δ,

where “⊥” is a special symbol indicating that B rejects the annotation (proof) provided,
having detected cheating. When δ is left unspecified, we assume a default value of 1/3. The
hcost (help cost) of A is maxx∈Um

∑
i |hi(x)|, and the vcost (verification cost) is the space

usage of B.
The scheme A is said to be an (h, v)-scheme (resp. [h, v]-scheme) if its hcost is O(h) (resp.

Õ(h)) and its vcost is O(v) (resp. Õ(v)). The sum hcost + vcost is called the total cost of A.
In the context of problems on n-vertex graphs, an (o(n2), o(n2))-scheme is called a sublinear
scheme, an [n, n]-scheme is called a semi-streaming scheme and an (o(n2), o(n))-scheme is
called a frugal scheme.

A multi-pass scheme – more precisely, a p-pass scheme with p > 2 – is a scheme A = (h,B)
where B makes p − 1 passes over the input x followed by a final pass over the annotated
stream xh. As discussed in Section 1.1, all schemes and multi-pass schemes we design in this
work have the feature that the entire annotation h(x) arrives only after B is done processing
the plain stream x. That said, the negative results in this work do not require the scheme to
be restricted in this way.

Let f be a k-dimensional array with dimensions (s1, . . . , sk) each of whose entries is an
integer in JMK. Equivalently, we have a function f : [s1] × · · · × [sk] → JMK. For a finite
field F of sufficiently large characteristic,3 we define the F-extension of f to be the unique
polynomial f̃(X1, . . . , Xk) ∈ F[X1, . . . , Xk] such that

for all (x1, . . . , xk) ∈ [s1]× · · · [sk], we have f̃(x1, . . . , xk) = f(x1, . . . , xk), and
for all i ∈ [k], we have degXi

f̃ 6 si − 1.
Note that f̃ can be described explicitly using Lagrange interpolation:

f̃(X1, . . . , Xk) =
∑

(u1,...,uk)∈[s1]×···×[sk]

f(u1, . . . , uk) δu1,...,uk
(X1, . . . , Xk) , where (1)

δu1,...,uk
(X1, . . . , Xk) =

k∏
i=1

∏
xi∈[si]\{ui}

(ui − xi)−1(Xi − xi) . (2)

In particular, if f is built up from a stream of pointwise updates, where the jth update adds
∆j to entry (u1, . . . , uk)j of the array, then

f̃(X1, . . . , Xk) =
∑
j

∆j δ(u1,...,uk)j
(X1, . . . , Xk) . (3)

This leads to the following fact that we use in all our protocols. For details and a thorough
discussion, including implementation considerations, see Cormode et al. [14].

I Fact 1. Given a point (p1, . . . , pk) ∈ Fk and a stream of pointwise updates to an array with
dimensions (s1, . . . , sk) that is initially all-zero, we can keep track of the value f̃(p1, . . . , pk)
using O(log |F|) space, performing O(k) field arithmetic operations after each update.

We record results proved in Chakrabarti et al. [9, 10] that can be seen as generaliz-
ing the Aaronson-Wigderson protocol for Merlin-Arthur communication complexity of set
disjointness [1].

3 We need the characteristic to be at least max{s1, . . . , sk, 2M + 1} to avoid “wrap around problems,”
i.e., to ensure that all integers in each [si] as well as all integers in JMK have distinct images under the
ring homomorphism from Z to F.

A. Chakrabarti and P. Ghosh 70:7

I Fact 2 (subset and intersection schemes; Prop. 4.1 of [10] and Thm. 5.3 of [9]). Consider
a stream consisting of elements of two sets S, T ⊆ [N] interleaved arbitrarily. Then, for any
h, v with hv > N , there are [h, v]-schemes to compute |S ∩ T | and to determine whether
S ⊆ T . For the latter problem, there is a [`h, v]-scheme handling the more general setting
where S and T are multisets updated dynamically by the stream and the multiplicity of each
element is at most `.

I Fact 3 (Schwartz-Zippel Lemma). For a nonzero polynomial P (X1, . . . , Xn)∈ F[X1, . . . , Xn]
of total degree d, where F is a finite field, Pr(r1,...,rn)∈RFn [P (r1, . . . , rn) = 0] 6 d/|F|.

3 Subgraph Counting

We begin by describing a frugal scheme for TriangleCount and then extend our ideas to
obtain a sublinear scheme for the more general problem SubgraphCount. Throughout, we
assume that the input is an n-vertex multigraph G = (V,E) with adjacency matrix A, built
up through a stream of edge insertions and deletions.

3.1 Triangle Counting
Let T = T (G) be the number of triangles in G taking edge multiplicities into account, i.e.,
two triangles are considered distinct iff their corresponding sets of edges are distinct. Then,

6T =
∑

v1,v2,v3∈V
Av1v2Av2v3Av3v1 . (4)

Let t and s be integer-valued parameters such that ts = n. Using a canonical bijection, we
represent each vertex v ∈ V by a pair of integers (x, y) ∈ [t]× [s]. This transforms the matrix
A into a 4-dimensional array a, given by a(x1, y1, x2, y2) = Av1v2 . Let ã be the F-extension
of a for a sufficiently large finite field F to be chosen later. Equation (4) now gives

6T =
∑

x1,x2,x3∈[t]

p(x1, x2, x3) , where (5)

p(X1, X2, X3) =
∑

y1,y2,y3∈[s]

ã(X1, y1, X2, y2) ã(X2, y2, X3, y3) ã(X3, y3, X1, y1) . (6)

Note that, for each i ∈ {1, 2, 3}, we have degXi
p 6 2t− 2. Thus, the number of monomials

in p is at most (2t− 1)3 6 8t3 and the total degree deg p 6 6t− 6 6 6t.
Our scheme for triangle counting operates as follows.

Stream processing. Verifier starts by picking r1, r2, r3 ∈R F. As the edge stream arrives, he
maintains the three 2-dimensional arrays ã(r1, w, r2, z), ã(r2, w, r3, z), and ã(r3, w, r1, z),
for all (w, z) ∈ [s]× [s] (using Fact 1). At the end of the stream, he uses these arrays to
compute p(r1, r2, r3), using Equation (6).

Help message. Prover sends Verifier a polynomial p̂(X1, X2, X3) that she claims equals
p(X1, X2, X3); in particular, for each i ∈ {1, 2, 3}, degXi

p̂ 6 2t − 2. She streams the
coefficients of p̂ one at a time, according to some canonical ordering of the possible
monomials.

Verification and output. As p̂ is streamed in, Verifier computes the check value C :=
p̂(r1, r2, r3) and the result value T̂ := 1

6
∑
x1,x2,x3∈[t] p̂(x1, x2, x3). If he finds that C 6=

p(r1, r2, r3), he outputs ⊥. Otherwise, he believes that p̂ ≡ p and accordingly, based on
Equation (5), outputs T̂ as the answer.

The analysis of this scheme is along now-standard lines.

APPROX/RANDOM 2019

70:8 Streaming Verification of Graph Computations via Graph Structure

Error probability. Clearly, if Prover is honest (i.e., p̂ ≡ p), then the output is always correct.
So the scheme errs only when p̂ 6≡ p but Verifier’s check passes. This means that the
random point (r1, r2, r3) ∈ F3 is a root of the nonzero polynomial p̂− p, which has total
degree at most 6t. By the Schwartz-Zippel Lemma (Fact 3), the probability of this event
is at most 6t/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. The number of bits used to describe the polynomial p̂ is the
hcost. As noted, the polynomial p̂ has O(t3) many coefficients, each of which is an element
of F, and hence has size O(logn). So the hcost is Õ(t3). The Verifier maintains three
s× s arrays, where each entry is an element of F. Hence, the vcost is Õ(s2). Therefore,
we get a [t3, s2]-scheme for triangle counting, for parameters t, s with ts = n. Setting
t = nα for α ∈ (1/2, 2/3), we get a (o(n2), o(n))-scheme, which is frugal.

The result in this section is captured in the theorem below.

I Theorem 4. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for Triangle-
Count. In particular, there is an (o(n2), o(n))-scheme for TriangleCount.

This disproves Thaler’s conjecture [29], which stated that TriangleCount has no frugal
scheme.

3.2 Generalization to Counting Copies of an Arbitrary Subgraph
Now we consider the SubgraphCountk problem. Let H be a fixed k-vertex graph. The
goal is to determine TH = TH(G), the number of copies of H in the n-vertex multigraph
G given by an input stream: n is growing whereas k = O(1). As before, we take edge
multiplicities into account.

Fix a numbering of the vertices of H as 1, 2, . . . , k. Write i ∼ j to denote {i, j} ∈
E(H) ∧ i < j. To generalize Equation (4), note that the expression

∏
i∼j Avivj

counts the
number of copies of H occurring amongst vertices v1, . . . , vk in G where i ∈ V (H) is mapped
to vi ∈ V , provided that v1, . . . , vk are distinct. This subtlety of explicitly requiring the vis
to be distinct did not arise for TriangleCount because Av1v2Av2v3Av3v1 is zero unless
v1, v2, v3 are distinct. To enforce the distinctness condition in our more general setting, define
an n× n Boolean matrix B by Buv = 1 iff u 6= v. Then, defining αH to be the number of
automorphisms of H,

αHTH =
∑

v1,...vk∈V

∏
i∼j

Avivj

 ∏
i 6=j∈[k]

Bvivj

 . (7)

As before, we shape V into [t] × [s] for parameters t and s with ts = n. This turns the
2-dimensional matrices A,B into 4-dimensional arrays a, b, which in turn have F-extensions
ã, b̃. Equation (7) gives

αHTH =
∑

x1,...,xk∈[t]

p(x1, . . . , xk) , where (8)

p(X1, . . . , Xk) =
∑

y1,...,yk∈[s]

∏
i∼j

ã(Xi, yi, Xj , yj)

 ∏
i 6=j∈[k]

b̃(Xi, yi, Xj , yj)

 . (9)

For each i ∈ [k], degXi
p 6 2(k − 1)(t− 1) = O(t). So the total degree deg p = O(t) and p

has at most O(tk) monomials. This leads to a scheme for subgraph counting that naturally
generalizes our earlier scheme for triangle counting. We sketch the salient features and
the analysis.

A. Chakrabarti and P. Ghosh 70:9

Stream processing. Verifier picks r1, . . . , rk ∈R F and maintains (using Fact 1) O(k2) = O(1)
many s× s arrays: ã(ri, w, rj , z) for each i ∼ j ∈ [k] and b̃(ri, w, rj , z) for each i 6= j ∈ [k],
where (w, z) ∈ [s] × [s]. The b̃ arrays do not depend on the input stream and can be
computed once and for all. At the end of the stream, he computes p(r1, . . . , rk) with the
help of these values, using Equation (9).

Help message. Prover sends a polynomial p̂(X1, . . . , Xk) that she claims to be p(X1, . . . , Xk).
She streams the O(tk) coefficients of p̂, using some canonical ordering of the monomials.

Verification and output. Verifier computes the check value C := p̂(r1, . . . , rk) and the result
value T̂H := α−1

H

∑
x1,...,xk∈[t] p̂(x1, . . . , xk). He outputs ⊥ if C 6= p(r1, . . . , rk). Else,

believing p̂ ≡ p, he outputs T̂H as the answer, in view of Equation (8).
Error probability. By a Schwartz-Zippel Lemma (Fact 3) argument as before, the error

probability is at most deg p/|F| = O(t)/|F| < 1/n, by choosing |F| large enough.
Help and Verification costs. The hcost is Õ(tk), by the bound on the number of monomials

in p̂. Verifier stores O(1) many s× s arrays, leading to a vcost of Õ(s2).

In summary, we obtain a [tk, s2]-scheme for counting copies of a fixed k-vertex subgraph H,
for all choices of parameters t, s with ts = n. Setting t = n2/(k+2) and s = nk/(k+2) gives a
scheme where both these costs are Õ(n2k/(k+2)), which is o(n2) for constant k. Thus, we get
the following theorem.

I Theorem 5. For any parameters t, s such that ts = n, there is a [tk, s2]-scheme for
SubgraphCountk, where k is a constant. In particular, there is a sublinear scheme for
SubgraphCountk with total cost Õ(n2k/(k+2)).

4 Maximum Matching

We now turn to the MaxMatching problem, again giving a frugal scheme. Our input is
an edge stream of an n-vertex graph G = (V,E) and we would like to determine α′(G), the
cardinality of a maximum matching in G. We follow the broad outline of the semi-streaming
scheme for MaxMatching by Thaler [29]. That scheme has two parts. In the first part,
Prover convinces Verifier that α′(G) > k, for some integer k. In the second part, she convinces
him that α′(G) 6 k. For the former, Prover simply provides a suitable matching M and
convinces Verifier that M ⊆ E using the subset scheme from Fact 2. For the latter, Prover
uses the Tutte-Berge formula [8], which states that

α′(G) = 1
2 min
U⊆V

(
|U |+ |V | − odd(G \ U)

)
, (10)

where odd(G\U) denotes the number of connected components in G\U with an odd number
of vertices. The most challenging part of the scheme is evaluating odd(G \U), which involves
the sub-problem of verifying whether all the connected components of a graph (as claimed
by the Prover) are disconnected from each other. Thaler comments that this is the part that
acts as a barrier in reducing the vcost to o(n) without increasing the hcost to Ω(n2). We
present a novel frugal scheme for this sub-problem. The rest of the protocol solves the same
sub-problems as the aforementioned paper. Most of their sub-schemes for these sub-problems,
however, were trivial for Õ(n) space. We need schemes for the same problems that use only
o(n) space and hence require more work. We describe our protocol below.

To convince the Verifier that the size of a maximum matching in G is k, Prover proves
that it is (a) at least k, and (b) at most k. For (a), she simply sends (as a stream) a set M of
k edges that constitutes a matching of G. Verifier can easily check using O(logn) space that

APPROX/RANDOM 2019

70:10 Streaming Verification of Graph Computations via Graph Structure

the set has size k. Next, he needs to check that M ⊆ E, and that M is indeed a matching.
For the former, we can use Fact 2 and get an [h, v]-scheme, where v is the o(n) value we are
aiming for and h = n2/v. To verify that M is a matching, we check whether every vertex
in M appears exactly once in this stream. Treating M as a stream of vertices, we can do
this as follows: First, compute F2, the second frequency moment of the stream, using an
[h, v]-scheme where v is the o(n) vcost we want, and h = n/v ([10], Theorem 4.1). Next,
verify that it equals 2k (this happens iff all 2k elements are distinct).

For (b), we apply Equation (10). Prover sends U∗ ⊆ V and claims that k = 1/2 · (|U∗|+
|V | − odd(G \ U∗)). To check this, Verifier just needs to compute odd(G \ U∗). We do this
in the following way.

Let [C] be the set of C connected components of G \ U∗. For c ∈ [C] and u ∈ G \ U∗,
Prover sends an array L of pairs (c, u) such that u ∈ c. The array L is sorted in non-decreasing
order of c, i.e., she first sends the vertices in connected component 1, followed by those in
component 2, and so on. If L is indeed as Prover claims, then odd(G \ U∗) is equal to the
number of components c that arrive with odd number of vertices in L. Since L is sorted with
respect to c, Verifier can count this number easily using O(logn) space. He can verify that
the vertices in the tuples of L constitute G \U∗, and that no vertex u is repeated in different
tuples of L, using frugal schemes implied by the standard protocols mentioned above.

Thus, it only remains to verify that L is as claimed. For this, we need to check whether
the following two properties hold:
(i) For each c ∈ [C], the vertices in G \ U∗ that are claimed to be in component c are all

connected in G \ U∗.
(ii) For every pair (u, v) of vertices in G\U∗ that are claimed to be in different components,

we have (u, v) 6∈ E.

For Property (i), Prover sends a spanning tree for each connected component c and
Verifier can check if all of them are valid using an [n1+α, n1−α]-scheme, for any α ∈ [0, 1]
([10], Theorem 7.7) so as to get the desired o(n) vcost.

Checking Property (ii) is the most challenging part. We give a novel protocol for this
part that uses o(n) vcost and o(n2) hcost. Slightly abusing notation, consider the array L in
the form of a C× |G \U∗| matrix, such that Lcu = 1 if u ∈ c, and Lcu = 0 otherwise. Denote
the ones’ complement of this matrix by L̄. Let A be the adjacency matrix of G \U∗. Finally,
let γ denote the total number of cross edges that go between two connected components in
G \ U∗. Then, we have

2γ =
∑
c∈[C]

u,v∈G\U∗

LcuL̄cvAuv . (11)

Property (ii) is satisfied iff γ = 0. Recalling that C = O(n) and |G \U∗| = O(n), we note
that Equation (11) has a similar form as that of Equation (4). Thus, it can be exploited
in essentially the same way as the [t3, s2]-scheme for TriangleCount, for parameters t, s
with ts = n. Once again, setting t = nα for α ∈ (1/2, 2/3), we get a frugal scheme.

The next theorem summarizes the result in this section.

I Theorem 6. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for MaxMatch-
ing. In particular, there is an (o(n2), o(n))-scheme for MaxMatching.

This disproves yet another conjecture of Thaler [29], which stated that MaxMatching has
no frugal scheme.

A. Chakrabarti and P. Ghosh 70:11

5 Counting Cross-edges and its Applications to Other Problems

Consider the problems IndSetTest and st-3Path defined in Section 1.1. The key task
underlying these problems is counting the number of edges crossing between two subsets U and
W of V that arrive in some adversarial streaming order along with the edges: for IndSetTest,
U and W are the same set; for st-3Path, they are (closed) neighborhoods of the designated
vertices vs and vt. This is precisely the abstract problem of CrossEdgeCount. Clearly, a
scheme for this problem can be used as a subroutine to solve IndSetTest and st-3Path.

Any one-pass (h, v)-scheme for CrossEdgeCount, IndSetTest, or st-3Path must
have hv > n2 and hence, total cost h+ v = Ω(n). In Appendix A.1, we outline how these
lower bounds are obtained. We therefore consider two-pass schemes for these problems. In
particular, we design such a scheme for CrossEdgeCount with total cost Õ(n2/3) and
apply it to obtain similar bounds for other graph problems. In Appendix A.2, we discuss
these applications. We also note that our schemes can be implemented in one pass each,
under natural assumptions on the way the stream is ordered; see Appendix A.3.

5.1 Two-pass Scheme for CrossEdgeCount
We now design a two-pass scheme for CrossEdgeCount, aiming for total cost o(n).

Let γ = γ(U,W,G) denote the number of Cross-edges between U and W in a (directed or
undirected) graph G. Formally, it is the number of ordered pairs (u,w) ∈ U ×W such that
(u,w) ∈ E. Note that, in an undirected graph, γ counts an edge (u,w) with multiplicity 2
whenever u,w ∈ U ∩W . For some applications (e.g., counting number of 3-walks in an
undirected graph), we do need to count them with multiplicity. We discuss later how we can
remove this multiplicity if needed.

We describe a scheme that works even on turnstile graph streams, i.e., a stream of the
vertices in U and W intermixed with updates to edge multiplicities. Let L and F denote the
characteristic vectors of the sets U and W respectively and let A be the (weighted) adjacency
matrix of G. Then,

γ =
∑

u∈U,w∈W
LuAu,wFw . (12)

Let t and s be integer parameters such that ts = n. As usual, using a canonical bijection, we
represent each vertex v ∈ V by a pair of integers (x, y) ∈ [t]× [s]. As a result, the vectors L,F
transform into 2-dimensional arrays `, f given by `(x, y) = Lv and f(x, y) = Fv. As before,
the adjacency matrix A turns into a 4-dimensional array a, such that a(x1, y1, x2, y2) = Av1v2 .
Let ˜̀, f̃ and ã be F-extensions of `, f and a respectively, for a sufficiently large finite field F.
Now, Equation (12) yields

γ =
∑

x1,x2∈[t]

p(x1, x2) , where (13)

p(X1, X2) =
∑

y1,y2∈[s]

˜̀(X1, y1) ã(X1, y1, X2, y2) f̃(X2, y2) . (14)

For i ∈ {1, 2}, degXi
p = 2t − 2. Thus, it follows that the number of monomials in p is at

most O(t2), and the total degree of p is O(t).
We are now ready to design a two-pass scheme for CrossEdgeCount.

Stream processing. Verifier first chooses r1, r2 ∈R F. For y ∈ [s], define

g(y) :=
∑
y′∈[s]

ã(r1, y, r2, y
′)f̃(r2, y

′) (15)

APPROX/RANDOM 2019

70:12 Streaming Verification of Graph Computations via Graph Structure

Thus,

p(r1, r2) =
∑
y∈[s]

˜̀(r1, y)g(y) . (16)

Pass 1. Only process the vertices in L and F in the stream. Maintain (using Fact 1) two
s-dimensional vectors: ˜̀(r1, y) and f̃(r2, y), where y ∈ [s].

Pass 2. Only process the edges in the stream. We want to maintain the s-dimensional
vector g(y) so that we can compute p(r1, r2) using Equation (16). Suppose that the
jth edge update (x1, y1, x2, y2)j adds ∆j to that edge’s multiplicity. This results in
updates to several entries of ã, but we want to use only O(s) space, so we cannot
afford to maintain ã directly. Instead, for each j ∈ [m], let gj and ãj denote the values
of g and ã (respectively) after the jth stream update. Then

gj(y) =
∑
y′∈[s]

f̃(r2, y
′) ãj(r1, y, r2, y

′)

=
∑
y′∈[s]

f̃(r2, y
′)
(
ãj−1(r1, y, r2, y

′) + ∆j δ(x1,y1,x2,y2)j
(r1, y, r2, y

′)
)

(17)

= gj−1(y) + hj(y) ,

where Equation (17) follows from Equation (3) and

hj(y) :=
∑
y′∈[s]

f̃(r2, y
′) ∆j δ(x1,y1,x2,y2)j

(r1, y, r2, y
′) . (18)

Hence, after the jth update, the Verifier can compute hj(y) and maintain the vector
g(y).

Help message. After the second pass, Prover sends a polynomial p̂(X1, X2) (as a stream of
coefficients) that she claims equals p(X1, X2).

Verification and output. At the end of the second pass, Verifier gets g(y)m = g(y) for each y.
Now, he uses Equation (16) to compute the check value p(r1, r2) and the result value
γ̂ :=

∑
x1,x2∈[t] p̂(x1, x2). If he finds that p(r1, r2) 6= p̂(r1, r2), he outputs ⊥. Otherwise,

he believes that p̂ ≡ p and exploiting Equation (13), outputs γ̂ as the answer.
Now, we analyze the correctness and complexity parameters of the scheme.
Error probability. The protocol errs only when p̂ 6≡ p, but Verifier’s check passes. Then,

(r1, r2) ∈ F2 must be a root of the nonzero polynomial p̂ − p. We noted that its total
degree is O(t). Thus, the Schwartz-Zippel Lemma bounds the error probability by at
most O(t)/|F| < 1/n, for large enough choice of |F|.

Help and Verification costs. The polynomial p̂ has O(t2) monomials, and so, the hcost is
Õ(t2). Verifier stores constant many vectors of size s at a time and incurs a vcost of Õ(s).
Thus, we obtain a two-pass [t2, s]-scheme for CrossEdgeCount, for parameters t, s
with ts = n. Setting t = n1/3 and s = n2/3, we get a scheme with total cost Õ(n2/3).

Finally, we discuss how one can count cross-edges between U and W when they are
defined as unordered pairs. Define this problem as CrossEdgeCount-Uniq. Let γ′ be
the number of edges that γ counts with multiplicity 2, i.e., the number of undirected edges
(u,w) ∈ U ×W such that u,w ∈ U ∩W . Then,

γ′ =
∑

u∈U,w∈W
LuFuAu,wLwFw . (19)

A. Chakrabarti and P. Ghosh 70:13

Hence, we modify the definitions of p(X1, X2) and g(y) as

p(X1, X2) :=
∑

y1,y2∈[s]

˜̀(X1, y1)f̃(X1, y1) ã(X1, y1, X2, y2) ˜̀(X2, y2)f̃(X2, y2) . (20)

g(y) :=
∑
y′∈[s]

ã(r1, y, r2, y
′)˜̀(r2, y

′)f̃(r2, y
′). (21)

Then, proceeding as in CrossEdgeCount, we compute γ′. Thus, we can compute γ and
γ′ in parallel and finally output γ − γ′ as the answer to CrossEdgeCount-Uniq.

I Theorem 7. For parameters t, s with ts = n, there are two-pass [t2, s]-schemes for
CrossEdgeCount and CrossEdgeCount-Uniq. In particular, there are two-pass
schemes with total cost Õ(n2/3). If the vertices appear first in the stream, we need only
one pass.

6 Path Problems

In this section, we focus on path-related problems. Specifically, we study st-kPath for
k > 3 and the fundamental st-ShortestPath problem (defined in Section 1.1). It follows
from simple reduction from indexN for N = n2 that a one-pass algorithm for both of these
problems requires Ω(n2) space in the basic (sans prover) streaming model, and a one-pass
scheme requires a total cost of Ω(n). We present a scheme for st-kPath for general k
that can also be used to solve st-ShortestPath. It is a semi-streaming scheme when k is
polylogarithmic in n, and hence matches the lower bound (up to polylogarithmic factors).
Next, we explore if we can break the Ω(n) barrier for schemes for st-kPath at the cost of
allowing a few more passes over the input. We achieve this for constant k by generalizing
the protocol for st-3Path. We present all our schemes for undirected graphs, but they can
be very easily modified to work for directed graphs as well.

6.1 A Single-Pass Semi-Streaming Scheme for Detecting Short Paths
For st-3Path, it is easy to obtain a semi-streaming scheme by checking (using Fact 2)
whether the set N [vs]×N [vt] and the edge set E are disjoint. For k > 3, it’s not that direct
and requires more work. We describe the protocol below for a multigraph G.

Let A denote the adjacency matrix of the graph G and let Ã be the F-extension of A, for
some large finite field F. For u ∈ Ni+1(vs), let du,i be the number of (in-)neighbors of u in
Ni(vs). It follows that

du,i =
∑

v∈Ni(vs)

A(v, u) . (22)

We are now ready to describe the protocol.
Stream processing. Verifier picks r ∈R F and stores Ã(v, r) for each v ∈ [n], maintaining

them dynamically as the stream arrives (Fact 1). He also stores the set N1(vs).
Help message. At the end of the stream, Prover sends Verifier k−1 polynomials p̂1, . . . , p̂k−1,

and she claims p̂i ≡ pi for each i ∈ [k], where

pi(U) =
∑

v∈Ni(vs)

Ã(v, U) . (23)

APPROX/RANDOM 2019

70:14 Streaming Verification of Graph Computations via Graph Structure

Verifier’s computation. Verifier iteratively constructs Ni(vs) for i ∈ [k]. Each time after
computing Ni(vs) for an i, he checks if t is in the set. If so, he stops and outputs Yes.
Otherwise, he proceeds to compute Ni+1(vs). If he finds that t 6∈ Ni(vs) for any i ∈ [k],
then he outputs No. The inductive neighborhood computation is done as follows.
Assume that Verifier has the set Ni(vs) for some i ∈ [k−1]; this holds initially, since he has
stored N1(vs). He computes pi(r) using Equation (23) and checks whether p̂i(r) = pi(r).
If the check passes, he believes that p̂i ≡ pi and evaluates p̂i(u) for each u ∈ V . By
Equation (22), pi(u) equals du,i, which is non-zero iff u ∈ Ni+1(vs). Hence, he sets
Ni+1(vs) = {u : p̂i(u) 6= 0}.

Error probability. The protocol errs when we have p̂i 6≡ pi for some i, but Verifier’s check
passes. This implies that r is a root of the non-zero polynomial p̂i − pi. For a given i,
the total degree of this polynomial is at most 2n. Then, probability that r is a root is at
most 2n/|F| < 1/n2, for large enough choice of |F|. Taking a union bound over all i ∈ [k],
we get that the probability that r is a root of p̂i − pi for some i is at most 1/n.

Help and Verification costs. Since degree of each pi is 2n, the total hcost is Õ(kn). Verifier
stores Ã(v, r) for each v ∈ [n], which requires Õ(n) space. Additionally, to compute
Ni+1(vs) for some i ∈ [k], he needs only the set Ni(vs). Thus, we can store the Ni(vs)
sets by reusing space repeatedly, and this requires O(n) space. Hence, the total vcost of
this protocol is Õ(n). Therefore, we get a [kn, n]-scheme for checking the existence of a
path of length at most k between vertices vs and vt.

I Theorem 8. Given an n-vertex (directed or undirected) multigraph G(V,E) and specified
vertices vs, vt ∈ V , for any k 6 n− 1, there is a [kn, n]-scheme for st-kPath. In particular,
there is a semi-streaming scheme for st-kPath when k is polylogarithmic in n.

Application to Shortest Path. Based on the scheme in Theorem 8, we have the following
straightforward corollary.

I Corollary 9. Given a (directed or undirected) multigraph G(V,E) (with edge multiplicity
polylogarithmic in n) and specified vertices vs, vt ∈ V , there is a [kn, n]-scheme for st-
ShortestPath, where k is length of the shortest vs, vt-path.

Proof. If there is no vs, vt-path, Prover sends the connected component C that vs is in. The
Verifier first checks that C is indeed connected ([10], Theorem 7.7). Next, he verifies that
there is no edge going out from C by checking whether the set C × (V \ C) and the edge set
E are disjoint (Fact 2). Both of these are [n, n]-schemes.

If there is a vs, vt-path, and the shortest such path H has length k, then Prover sends it
to the Verifier, and he can check whether H is indeed a vs, vt-path and that H ⊆ E using
an [n, n]-scheme, as edge multiplicity is polylogarithmic in n (Fact 2). Parallelly, he uses a
[kn, n]-scheme to verify that there is no vs, vt-path of length at most k − 1 (Theorem 8). J

6.2 A Multi-Pass Scheme for Detecting Short Paths
In Section 5, we obtained a scheme for st-3Path of total cost o(n) using two passes over
the input. We investigate if the same is true for st-kPath (for k > 3) if we allow “a few”
more passes. For constant k, we answer this in the affirmative as we generalize the scheme
for st-3Path and obtain such a scheme for st-kPath with dk/2e passes.

As usual, A denotes the adjacency matrix of the graphG. Let L and F be the characteristic
vectors of N [vs] and N(vt) respectively. Let κ = κ(G) denote the number of walks of length

A. Chakrabarti and P. Ghosh 70:15

at most k from vs to vt in G. Then,

κ =
∑

u1,...,uk−1∈V
Lu1

(
k−2∏
i=1

Aui,ui+1

)
Fuk−1 . (24)

Note that there is a path of length at most k from vs to vt iff κ > 0. Therefore, computing κ
suffices.

Let h and v be integer parameters with hv = n. Again, using a canonical bijection, we
represent each vertex u ∈ V by a pair of integers (x, y) ∈ [h] × [v]. The vectors L and F
become 2-dimensional arrays ` and f , given by `(x, y) = Lu and f(x, y) = Fu. Again, the
adjacency matrix A turns into a 4-dimensional array a, such that a(x, y, x′, y′) = Auu′ . Let
˜̀, f̃ and ã be F-extensions of `, f and a respectively, for a sufficiently large finite field F.
Thus, Equation (24) gives

κ =
∑

x1,...,xk−1∈[h]

p(x1, . . . , xk−1) , where (25)

p(X1, . . . , Xk−1) =
∑

y1,y2∈[v]

˜̀(X1, y1)
(
k−2∏
i=1

ã(Xi, yi, Xi+1, yi+1)
)
f̃(Xk−1, yk−1) . (26)

For i ∈ [k − 1], degXi
p = 2h − 2. Therefore, the number of monomials in p is at most

O(hk−1) and the total degree is O(kh).
We present a dk/2e-pass protocol for st-kPath.

Stream processing. First, Verifier chooses r1, . . . , rk−1 ∈R F.
Pass 1. Process only the vertices in N1[vs] and N1(vt) in the stream. We maintain, for

each y ∈ [v], two vectors of size v: ˜̀(r1, y) and f̃(rk−1, y), where y ∈ [s].
Pass i, for 2 6 i 6 dk/2e. Define g0(y) := ˜̀(r1, y) and gk(y) = f̃(rk−1, y). For each
y ∈ [v], compute gi−1(y) :=

∑
y′∈[v] ã(ri−1, y, ri, y

′)gi−2(y′) as well as gk−i+1(y) :=∑
y′∈[v] ã(rk−i, y, rk−i+1, y

′)gk−i+2(y′). The gj(y) values are updated dynamically
with the stream updates in a similar way as in the protocol for CrossEdgeCount in
Section 5.1.

Help message. At the end of the final pass, Prover sends a polynomial p̂(X1, . . . , Xk−1) (as
a stream of coefficients) that she claims equals p(X1, . . . , Xk−1).

Verification and output. After the final pass, Verifier computes
∑
y∈[v] gdk/2e(y)gdk/2e+1(y),

which, by Equation (26), equals p(r1, . . . , rk−1). If he finds that it doesn’t equal
p̂(r1, . . . , rk−1), he outputs ⊥. Otherwise, he believes that p̂ ≡ p and, following Equa-
tion (25), computes κ̂ :=

∑
x1,...,xk−1∈[h] p̂(x1, . . . , xk−1). He outputs Yes if κ̂ > 0 and

No otherwise.
Error probability. We err only when p̂ 6≡ p, but Verifier’s check passes. In this case,

(r1, . . . , rk−1) ∈ Fk−1 is a root of the nonzero polynomial p̂ − p. We noted that its
total degree is at most O(kh). By the Schwartz-Zippel Lemma (Fact 3), the probability
of this event is at most O(kh)/|F| < 1/n, when |F| is large enough.

Help and Verification costs. The number of monomials of p̂ is O(hk−1), giving an hcost of
Õ(hk−1). Verifier reuses space and, during each pass, stores O(1) many v-dimensional
vectors, each entry of which is O(logn) bits long. Thus, the vcost is Õ(v).
This gives a dk/2e-pass [hk−1, v]-scheme for st-kPath, for parameters h, v with hv = n.
Setting h = n1/k and v = n1−1/k, we get a scheme with total cost Õ(n1−1/k).

I Theorem 10. For any constant k, there is a dk/2e-pass [n1−1/k, n1−1/k]-scheme for
st-kPathCount in a (directed or undirected) graph.

APPROX/RANDOM 2019

70:16 Streaming Verification of Graph Computations via Graph Structure

We note the contrast between this result and that of Guruswami and Onak [17]. They
showed a lower bound of Ω(n1+Ω(1/k)/kO(1)) for st-kPath in k/2 − 1 passes in the basic
(sans prover) streaming model (for even k). Our results show that using dk/2e passes, we
can obtain a scheme for the same problem with total cost of Õ(n1−1/k).

A. Chakrabarti and P. Ghosh 70:17

References
1 Scott Aaronson and Avi Wigderson. Algebrization: A New Barrier in Complexity Theory. In

Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 731–740, 2008.
2 Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian.

Streaming Verification of Graph Properties. In Proc. 27th International Symposium on
Algorithms and Computation, pages 3:1–3:14, 2016.

3 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
Verification and the Hardness of Approximation Problems. J. ACM, 45(3):501–555, 1998.
Preliminary version in Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science, pages 14–23, 1992.

4 Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New Characterization of
NP. J. ACM, 45(1):70–122, 1998. Preliminary version in Proc. 33rd Annual IEEE Symposium
on Foundations of Computer Science, pages 2–13, 1992.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On Estimating Maximum Matching Size in
Graph Streams. In Proc. 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1723–1742, 2017.

6 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in Streaming Algorithms, with an
Application to Counting Triangles in Graphs. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 623–632, 2002.

7 Suman K. Bera and Amit Chakrabarti. Towards Tighter Space Bounds for Counting Triangles
and Other Substructures in Graph Streams. In 34th Symposium on Theoretical Aspects of
Computer Science (STACS 2017), pages 11:1–11:14, 2017.

8 J.A. Bondy and U.S.R Murty. Graph Theory. Springer Publishing Company, Incorporated,
1st edition, 2008.

9 Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations for Sparse
Data Streams. In Proc. 25th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
687–706, 2014.

10 Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. Annotations in
Data Streams. ACM Trans. Alg., 11(1):Article 7, 2014.

11 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Venkata-
subramanian. Verifiable Stream Computation and Arthur-Merlin Communication. In Proc.
30th Annual IEEE Conference on Computational Complexity, pages 217–243, 2015.

12 Amit Chakrabarti and Sagar Kale. Submodular maximization meets streaming: matchings,
matroids, and more. Math. Program., 154(1–2):225–247, 2015. Preliminary version in Proc.
17th Conference on Integer Programming and Combinatorial Optimization, pages 210–221,
2014.

13 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming Graph Computations
with a Helpful Advisor. Algorithmica, 65(2):409–442, 2013.

14 Graham Cormode, Justin Thaler, and Ke Yi. Verifying Computations with Streaming
Interactive Proofs. Proc. VLDB Endowment, 5(1):25–36, 2011.

15 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph Distances in the Data-Stream Model. SIAM J. Comput., 38(6):1709–1727, 2008.
Preliminary version in Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 745–754, 2005.

16 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proc. 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 468–485, 2012.

17 Venkatesan Guruswami and Krzysztof Onak. Superlinear Lower Bounds for Multipass Graph
Processing. Algorithmica, 76(3):654–683, November 2016.

18 Madhav Jha, C. Seshadhri, and Ali Pinar. A space efficient streaming algorithm for triangle
counting using the birthday paradox. In The 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2013.

APPROX/RANDOM 2019

70:18 Streaming Verification of Graph Computations via Graph Structure

19 John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The Complexity of
Counting Cycles in the Adjacency List Streaming Model. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 119–133,
2019.

20 Daniel M. Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting Arbitrary
Subgraphs in Data Streams. In Automata, Languages, and Programming - 39th International
Colloquium, Proceedings, Part II, pages 598–609, 2012.

21 Michael Kapralov. Better bounds for matchings in the streaming model. In Proc. 24th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1679–1697, 2013.

22 Hartmut Klauck and Ved Prakash. Streaming computations with a loquacious prover. In
Proc. 4th Conference on Innovations in Theoretical Computer Science, pages 305–320, 2013.

23 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic Methods for
Interactive Proof Systems. J. ACM, 39(4):859–868, 1992.

24 Andrew McGregor. Finding Graph Matchings in Data Streams. In Proc. 8th International
Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pages
170–181, 2005.

25 Andrew McGregor, Sofya Vorotnikova, and Hoa T. Vu. Better Algorithms for Counting
Triangles in Data Streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS ’16, pages 401–411, 2016.

26 Michael Mitzenmacher and Justin Thaler. Technical Perspective: Catching lies (and mistakes)
in offloaded computation. Commun. ACM, 59(2):102, 2016.

27 Alexander Razborov. On the Distributional Complexity of Disjointness. Theor. Comput.
Sci., 106(2):385–390, 1992. Preliminary version in Proc. 17th International Colloquium on
Automata, Languages and Programming, pages 249–253, 1990.

28 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.
29 Justin Thaler. Semi-Streaming Algorithms for Annotated Graph Streams. In Proc. 43rd

International Colloquium on Automata, Languages and Programming, pages 59:1–59:14, 2016.
30 Peter A. Tucker, David Maier, Lois M. L. Delcambre, Tim Sheard, Jennifer Widom, and

Mark P. Jones. Punctuated Data Streams, 2005.
31 Ke Yi, Feifei Li, Marios Hadjieleftheriou, George Kollios, and Divesh Srivastava. Randomized

Synopses for Query Assurance on Data Streams. In International Conference on Data
Engineering, 2008.

A Missing Details from Section 5

Here, we give the missing proofs of lower bounds for CrossEdgeCount, IndSetTest and
st-3Path. Then, we discuss applications of CrossEdgeCount to some standard graph
problems. Finally, we show how our two-pass schemes can be made single-pass under certain
assumptions on the stream order.

A.1 One-Pass Lower Bounds
We quickly review some relevant material from communication complexity. In the indexN
problem, there are two players: Alice, who holds a vector x ∈ {0, 1}N , and Bob, who holds
an index k ∈ [N]. Their goal is to output the bit xk. To prove lower bounds for one-pass
schemes, we consider the Online Merlin–Arthur (OMA) communication model.4 Here, in
addition to Alice and Bob, there is a super-player, Merlin, who knows both their inputs, but
is not to be blindly trusted. Merlin sends a message to Bob; then Alice sends a randomized

4 Note that our semantics are slightly different from the usual definition of Merlin–Arthur where Bob is
supposed “accept” each 1-input and reject each 0-input with probability at least 2/3.

A. Chakrabarti and P. Ghosh 70:19

message to Bob; finally, Bob either outputs either a bit or ⊥. If Merlin is honest, Bob
should output xk with probability at least 2/3; if he is dishonest, Bob should output ⊥ with
probability at least 2/3.

The cost of an OMA protocol is the total number of bits communicated to Bob. The
OMA complexity of a communication game is the minimum cost of a correct OMA protocol
for it. Chakrabarti et al. [10, Theorem 3.1] showed that the OMA Complexity of indexN is
Ω(
√
N). Our lower bounds follow from this result, using simple reductions from indexN to

the various graph problems.
Using a canonical bijection from [n]2 to [N], Alice rewrites her input vector x ∈ {0, 1}N

as a matrix (xij)i,j∈[n], while Bob looks at his input index k ∈ [N] as (y, z) ∈ [n]2. Our
reduction creates a graph G = (V,E) on 2n vertices: the vertex set V is L] R (here,]
denotes disjoint union), where |L| = |R| = n. We denote the ith vertex of L (resp. R) by
`i (resp. ri). The edge set E is given by {(`i, rj) : xij = 1}. Now, by checking if (`y, rz) is
an independent set in G, or whether there’s a cross-edge between the sets {`y} and {rz}, or
solving st-3Path in the graph G′ = (V ∪ {vs, vt}, E ∪ {(vs, `y), (rz, vt)}), Bob can solve the
indexN problem. Thus, a one-pass scheme that solves any of these problems must have a
total cost of Ω(n). We remark that Fact 2 implies matching semi-streaming upper bounds
for each of them.

A.2 Applications of CrossEdgeCount

As we noted earlier, a scheme for CrossEdgeCount can be used as a blackbox for solving a
number of other problems. These include standard problems like IndSetTest and st-3Path,
as well as their generalizations or variations like the following problems.

InducedEdgeCount: Given a graph G = (V,E) and a subset U of V , find the number
of edges in G that are induced by U .
RootedTriangleCount: Given a (directed or undirected) graph G = (V,E) and a
vertex vr ∈ V , find the number of triangles in G that are rooted at vr.

I Corollary 11. Let t and s be parameters such that ts = n. Then each of the problems
InducedEdgeCount, IndSetTest, st-3Path, and RootedTriangleCount admits a
two-pass [t2, s]-scheme; in particular, a two-pass scheme with total cost Õ(n2/3).

Proof. For InducedEdgeCount, if the input graph is undirected, then considering U and
W as the same set, solve CrossEdgeCount-Uniq. (Alternatively, solve CrossEdge-
Count and divide the answer by two.) If the graph is directed, then solve CrossEdge-
Count.

For IndSetTest, solve InducedEdgeCount on U and check whether the answer
equals zero.

For st-3Path, use a scheme for CrossEdgeCount to find the number of cross-edges
between the closed neighborhoods N [vs] and N [vt] of vertices vs and vt. This actually solves
the more general problem of counting the number of walks of length at most 3 from vs to vt.
Checking whether this number is non-zero decides st-3Path.

Finally, for RootedTriangleCount, if the input graph is undirected, solve Indu-
cedEdgeCount on N(vr). Otherwise, solve CrossEdgeCount on the out-neighborhood
N+(vr) and in-neighborhood N−(vr) of vr. J

APPROX/RANDOM 2019

70:20 Streaming Verification of Graph Computations via Graph Structure

A.3 One-Pass Schemes for Certain Stream Orderings
Our two-pass solution to the CrossEdgeCount problem, as well as its corollaries, allowed
the vertices and edge updates to be arbitrarily intermixed in the input stream. That said,
it is interesting to focus on a natural restriction of these problems where the vertices are
streamed first, followed by the edge updates. For the st-3Path problem, the corresponding
restriction is that the edges incident to vs and vt appear before any other edges in the stream;
for RootedTriangleCount, it is that the edges incident to vr appear first.

Under such a restriction on the stream ordering, our two-pass solutions natural become
one-pass, as we now note.

I Corollary 12. The schemes for CrossEdgeCount and CrossEdgeCount-Uniq in
Theorem 7 and for InducedEdgeCount, IndSetTest, st-3Path, and RootedTri-
angleCount in Corollary 11 can each be implemented in one pass under a restricted stream
ordering as noted above.

Proof. Consider the protocol described in Section 5.1. Note that the first pass processes
only vertices and the second pass processes only edges. This implies the claimed results for
CrossEdgeCount, CrossEdgeCount-Uniq, InducedEdgeCount, and IndSetTest.
For st-3Path, note that requiring edges incident to vs and vt to arrive first is equival-
ent to the vertex sets N(vs) and N(vt) arriving first. A similar consideration applies to
RootedTriangleCount. J

It is important to note that despite the restriction on the stream ordering, the schemes
in Corollary 12 are nontrivial. Without Prover’s help, the problems remain hard, even with
multiple passes. We give the simple proof for the basic problem CrossEdgeCount.

I Proposition 13. Any p-pass streaming algorithm for CrossEdgeCount, with vertices
streamed before edges, requires Ω(n/p) space, even for insertion-only streams.

Proof. We reduce from disjn, the set-disjointness communication problem on the universe
[n]. Recall that, in disjn, Alice holds a set x ⊆ [n] and Bob holds a set y ⊆ [n]. Their goal
is to determine whether or not x ∩ y = ∅. This problem has randomized communication
complexity R(disjn) = Ω(n) [27].

Consider an (n+1)-vertex graph G where V (G) = {0, . . . , n} and E(G) = {{0, i} : i ∈ y}.
Let U = {0} and W = x. Then the number of cross edges in G from U to W is non-zero iff
x ∩ y 6= ∅. The result now follows along standard lines. J

Approximate Degree, Secret Sharing, and
Concentration Phenomena
Andrej Bogdanov
Department of Computer Science and Engineering, Chinese University of Hong Kong
Institute for Theoretical Computer Science and Communications, Hong Kong
andrejb@cse.cuhk.edu.hk

Nikhil S. Mande
Department of Computer Science, Georgetown University, USA
nikhil.mande@georgetown.edu

Justin Thaler
Department of Computer Science, Georgetown University, USA
justin.thaler@georgetown.edu

Christopher Williamson
Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong
chris@cse.cuhk.edu.hk

Abstract
The ε-approximate degree d̃egε(f) of a Boolean function f is the least degree of a real-valued
polynomial that approximates f pointwise to within ε. A sound and complete certificate for
approximate degree being at least k is a pair of probability distributions, also known as a dual
polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage
1− ε. Our contributions are:

We give a simple, explicit new construction of a dual polynomial for the AND function on n

bits, certifying that its ε-approximate degree is Ω
(√

n log 1/ε
)
. This construction is the first

to extend to the notion of weighted degree, and yields the first explicit certificate that the
1/3-approximate degree of any (possibly unbalanced) read-once DNF is Ω(

√
n). It draws a novel

connection between the approximate degree of AND and anti-concentration of the Binomial
distribution.

We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indis-
tinguishable are also statistically K-wise indistinguishable with at most K3/2 · exp

(
−Ω
(
k2/K

))
error for all k < K ≤ n/64. This bound is essentially tight, and implies that any symmetric
function f is a reconstruction function with constant advantage for a ramp secret sharing scheme
that is secure against size-K coalitions with statistical error K3/2 · exp

(
−Ω
(
d̃eg1/3(f)2/K

))
for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that
K be determined in advance, and only worked for f = AND. Our analysis draws another new
connection between approximate degree and concentration phenomena.

As a corollary of this result, we show that for any d ≤ n/64, any degree d polynomial
approximating a symmetric function f to error 1/3 must have coefficients of `1-norm at
least K−3/2 · exp

(
Ω
(
d̃eg1/3 (f)2 /d

))
. We also show this bound is essentially tight for any

d > d̃eg1/3(f). These upper and lower bounds were also previously only known in the case
f = AND.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases approximate degree, dual polynomial, pseudorandomness, polynomial ap-
proximation, secret sharing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.71

© Andrej Bogdanov, Nikhil S. Mande, Justin Thaler, and Christopher Williamson;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 71; pp. 71:1–71:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrejb@cse.cuhk.edu.hk
mailto:nikhil.mande@georgetown.edu
mailto:justin.thaler@georgetown.edu
mailto:chris@cse.cuhk.edu.hk
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.71
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Approximate Degree, Secret Sharing, and Concentration Phenomena

Category RANDOM

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/
2019/082/.

Funding Andrej Bogdanov: Supported by Hong Kong RGC GRF CUHK14207618.
Nikhil S. Mande: Supported by NSF Grant CCF-1845125.
Justin Thaler : Supported by NSF Grant CCF-1845125.
Christopher Williamson: Supported by the Hong Kong PhD Fellowship Scheme.

Acknowledgements We thank Mark Bun for telling us about the work of Sachdeva and Vishnoi [22],
and Mert Sağlam, Pritish Kamath, Robin Kothari, and Prashant Nalini Vasudevan for helpful
comments on a previous version of the manuscript. We are also grateful to Xuangui Huang and
Emanuele Viola for sharing the manuscript [14].

1 Introduction

The ε-approximate degree of a function f : {−1, 1}n → {0, 1}, denoted d̃egε(f), is the least
degree of a multivariate real-valued polynomial p such that |p(x)− f(x)| ≤ ε for all inputs
x ∈ {−1, 1}n.1 Such a p is said to be an approximating polynomial for f . This is a central
object of study in computational complexity, owing to its polynomial equivalence to many
other complexity measures including sensitivity, exact degree, deterministic and randomized
query complexity [20], and quantum query complexity [6].

By linear programming duality, f has ε-approximate degree more than k if and only
if there exist a pair of probability distributions µ and ν over the domain of f such that
µ and ν are perfectly k-wise indistinguishable (i.e., all k-wise projections of µ and ν are
identical), but are (1− ε)-distinguishable by f , namely EX∼µ[f(X)]− EY∼ν [f(Y)] ≥ 1− ε.
Said equivalently, a sound and complete certificate for ε-approximate degree being more than
k is a dual polynomial q = (µ − ν)/2 that contains no monomials of degree k or less, and
such that

∑
x |q(x)| = 1 and

∑
x q(x)f(x) ≥ ε.

Dual polynomials have immediate applications to cryptographic secret sharing: a dual
polynomial q = (µ− ν)/2 for f is a description of a cryptographic scheme for sharing a 1-bit
secret amongst n parties, where the secret can be reconstructed by applying f to the shares,
and the scheme is secure against coalitions of size k (see [4] for details).

Motivation for explicit constructions of dual polynomials. Recent years have seen signi-
ficant progress in proving new approximate degree lower bounds by explicitly constructing
dual polynomials exhibiting the lower bound [8, 24, 9, 25, 10, 7, 11, 27]. These new lower
bounds have in turn resolved significant open questions in quantum query complexity and
communication complexity. At the technical core of these results are techniques for construct-
ing a dual polynomial for composed functions f ◦ g := f(g, . . . , g), given dual polynomials
for f and g individually.

Often, an explicitly constructed dual polynomial showing that d̃egε(g) ≥ d exhibits
additional metric properties, beyond what is required simply to witness d̃egε(g) ≥ d. Much
of the major recent progress in proving approximate degree lower bounds has exploited
these additional metric properties [10, 7, 11, 27]. Accordingly, even if cases where an
approximate degree lower bound for a function g is known, it can often be useful to construct
an explicit dual polynomial witnessing the lower bound. Hence, we are optimistic that the
new constructions of dual polynomials given in this work will find future applications.

1 In this work, for convenience we also consider functions mapping {0, 1}n to {0, 1}.

https://eccc.weizmann.ac.il/report/2019/082/
https://eccc.weizmann.ac.il/report/2019/082/

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:3

Explicit constructions of dual polynomials are also necessary to implement the corres-
ponding secret-sharing scheme, and to analyze the complexity of the algorithm that samples
the shares of the secret.

Our results in a nutshell. Our results fall into two categories. In the first category,
we reprove several known approximate degree lower bounds by giving the first explicit
constructions of dual polynomials witnessing the lower bounds. Specifically, our dual
polynomial certifies that the ε-approximate degree of the n-bit AND function is Θ(

√
n log 1/ε).

This construction is the first to extend to the notion of weighted degree, and yields the
first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-
once DNF is Ω(

√
n). Interestingly, our dual polynomial construction draws a novel and

clean connection between the approximate degree of AND and anti-concentration of the
Binomial distribution.

In the second category, we prove new and tight results about the size of the coefficients
of polynomials that approximate symmetric functions. Specifically, we show that for any
d ≤ n/64, any degree d polynomial approximating f to error 1/3 must have coefficients of
weight (`1-norm) at least d3/2 · exp

(
Ω
(
d̃eg1/3 (f)2

/d
))

. We show this bound is tight (up

to logarithmic factors in the exponent) for any d > d̃eg1/3(f). These bounds were previously
only known in the case f = AND [23, 5]. Our analysis actually establishes a considerably
more general result, and as a consequence we obtain new cryptographic secret sharing schemes
with symmetric reconstruction procedures (see Section 1.2 for details).

1.1 A New Dual Polynomial for AND

To describe our dual polynomial for AND, it will be convenient to consider the AND function
to have domain {−1, 1}n and range {0, 1}, with AND(x) = 1 if and only if x = 1n. In their
seminal work, Nisan and Szegedy [20] proved that the 1/3-approximate degree of the AND
function on n inputs is Θ(

√
n). More generally, it is now well-known that the ε-approximate

degree of AND is Θ
(√

n log(1/ε)
)

[15, 6]. These works do not construct explicit dual
polynomials witnessing the lower bounds; this was achieved later in works of Špalek [28] and
Bun and Thaler [8].

Our first contribution is the construction of a new dual polynomial φ for AND, which is
simple enough to describe in a single equation:

φ(x) = (−1)n

Z

(∏
i∈[n]

xi

)(
ES
∏
i∈S

xi

)2
. (1)

Here, S is a random subset of {1, . . . , n} of size at most 1
2 (n− d) (where d determines the

degree of the polynomials against which the exhibited lower bound holds), and Z is an
(explicit) normalization constant.

In the language of secret sharing, to share a secret s ∈ {−1, 1}, the dealer samples shares
x ∈ {−1, 1}n with probability proportional to (ES

∏
i∈S xi)2, conditioned on the parity of

the shares
∏
xi being equal to s.

In Corollary 8 we show that φ certifies that every degree-d polynomial must differ from
the AND function by 2−n

∑(n−d)/2
k=0

(
n
k

)
at some input. In other words, the approximation

error of a degree-d polynomial is lower bounded by the probability that a sum of unbiased
independent bits deviates from its mean by d/2.

APPROX/RANDOM 2019

71:4 Approximate Degree, Secret Sharing, and Concentration Phenomena

Our function φ given in (1), unlike previous dual polynomials [15, 28, 9, 26], also certifies
that the weighted 1/3-approximate degree of AND with weights w ∈ Rn≥0 is Ω(‖w‖2) (see
Corollary 9).2 This lower bound is tight for all w, matching an upper bound of Ambainis
[1]. The only difference in our dual polynomial construction for the weighted case is in
the distribution over sets S, and the lower bound in the weighted case is derived from
anti-concentration of weighted sums of Bernoulli random variables.

Both statements are corollaries of the following theorem.

I Theorem 1. Define AND : {−1, 1}n → {0, 1} as AND(x) = 1 if and only if x = 1n.
The function φ defined in Equation (1) is a dual witness for d̃egw,ε(AND) ≥ d for ε =
PrX∼{−1,1}n [〈w,X〉 ≥ d].

By combining, in a black-box manner, the dual polynomial for the weighted-approximate
degree of AND with prior work (e.g., [16, Proof of Theorem 7]), one obtains, for any read-once
DNF f , an explicit dual polynomial for the fact that d̃eg1/3(f) ≥ Ω(n1/2). Very recent work
of Ben-David et al. [2] established this result for the first time, shaving logarithmic factors
off of prior work [9, 16]. In fact, Ben-David et al. [2] prove more generally that any depth-d
read-once AND-OR formula has approximate degree 2−O(d)√n. Their method, however, does
not appear to yield an explicit dual polynomial, even in the case d = 2.

Discussion. It has been well known that the ε-approximate degree of the AND function
on n variables is Θ

(√
n log(1/ε)

)
[20, 6], a fact which has many applications in theoretical

computer science. This is superficially reminiscent of Chernoff bounds, which state that
the middle Θ

(√
n log(1/ε)

)
layers of the Hamming cube contain a 1 − ε fraction of all

inputs (i.e., “most” n-bit strings have Hamming weight close to n/2). However, these two
phenomena have not previously been connected, and it is not a priori clear why approximate
degree should be related to concentration of measure. An approximating polynomial p for f
must approximate f at all inputs in {−1, 1}n. Why should it matter that most (but very far
from all) inputs have Hamming weight close to n/2?

The new dual witness for AND constructed in Equation (1) above provides a surprising
answer to this question. The connection between (anti-)concentration and approximate
degree of AND arises not because of the number of inputs to f that have Hamming weight
close to n/2, but because of the number of parity functions on n bits that have degree close
to n/2. This connection appears to be rather deep, as evidenced by our construction’s ability
to yield a tight lower bound in the case of weighted approximate degree.

1.2 Indistinguishability for Symmetric Distributions
In this section, for convenience we consider functions mapping {0, 1}n to {0, 1}. Two
distributions µ and ν over {0, 1}n are (statistically) (k, δ)-wise indistinguishable if for all
subsets S ⊆ {1, . . . , n} of size k, the induced marginal distributions µ|S and ν|S are within
statistical distance δ. When δ = 0, we say they are (perfectly) k-wise indistinguishable.

2 For a polynomial p(x1, . . . , xn), a weight vector w ∈ Rn
≥0 assigns weight wi to variable xi. The weighted

degree of p is the maximum weight over all monomials appearing in p, where the weight of a monomial
is the sum of the weights of the variables appearing within it. The weighted ε-approximate degree of f ,
denoted d̃egw,ε(f), is the least weighted degree of any polynomial that approximates f pointwise to
error ε.

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:5

For general pairs of distributions, perfect k-wise indistinguishability does not imply any
sort of security against distinguishers of size k + 1. Any binary linear error-correcting code
of distance k + 1 and block length n induces a pair of distributions (the uniform distribution
over codewords and one of its affine shifts) that are perfectly k-wise indistinguishable, yet
perfectly (k + 1)-wise distinguishable.

In contrast, we prove that perfect k-wise indistinguishability for symmetric distributions
implies strong statistical security against larger adversaries:

I Theorem 2. If µ and ν are symmetric over {0, 1}n and perfectly k-wise indistinguishable,
then they are statistically (K,O(K3/2) · e−k2/1156K)-wise indistinguishable for all 1 ≤ k <

K ≤ n/64.

Theorem 2 has the following direct consequence for secret sharing schemes over bits
with symmetric reconstruction. We say (µ, ν) are α-reconstructible by f if EX∼µ[f(X)]−
EY∼ν [f(Y)] ≥ α.

I Corollary 3. Let f be a symmetric Boolean function. There exists a pair of distributions
µ and ν that are

(
K,K3/2 · e−Ω(d̃eg1/3(f)2/K)

)
-indistinguishable for all K ≤ n/64, but are

Ω(1)-reconstructible by f .

Corollary 3 is an immediate consequence of our Theorem 2, and the fact that any
symmetric function has an optimal dual polynomial that is itself symmetric. In the special
case f = AND (or equivalently f = OR), Corollary 3 implies the existence of a visual secret
sharing scheme (see, for example [19]) that is

(
K,K3/2 · e−Ω(n/K))-statistically secure against

all coalitions of size K, simultaneously for all K up to size n/64. This property, where
security guarantees are in place for many coalition sizes at the same time, is in contrast to an
earlier result of Bogdanov and Williamson [5] where they proved that for any fixed coalition
size K, there is a visual secret sharing scheme that is (K, e−Ω(n/K))-statistically secure. In
their construction, the distribution of shares µ and ν depend on the value of K.

We remark that the bound of Corollary 3 cannot hold in general for K = n, since there
exists distributions that are perfectly Ω(n)-wise indistinguishable but are reconstructible
by the majority function on all n inputs. We do not however know if a bound of the form
K ≤ (1− Ω(1))n is tight in this context.

Tight weight-degree tradeoffs for polynomials approximating symmetric functions

Let f : {0, 1}n → {0, 1} be any function. For any integer d ≥ 0, denote by Wε(f, d) the
minimum weight of any degree-d polynomial that approximates f pointwise to error ε. By
the weight of a polynomial, we mean the `1-norm of its coefficients over the parity (Fourier)
basis3. In Section B, we observe that Corollary 3 implies weight-degree trade-off lower bounds
for symmetric functions.

I Corollary 4. For any symmetric function f : {0, 1}n → {0, 1}, any constant ε ∈ (0, 1/2),
and any integer K where n/64 ≥ K ≥ d̃egε(f), we have Wε(f,K) ≥ K−3/2 ·2Ω

(
d̃eg1/3(f)2/K

)
.

The following theorem shows that the lower bound obtained in Corollary 4 is tight (up to
polylogarithmic factors in the exponent) for all symmetric functions.

3 In fact, our main weight lower bound (Corollary 4) holds over any set of functions (not just parities)
that each depend on at most d variables.

APPROX/RANDOM 2019

71:6 Approximate Degree, Secret Sharing, and Concentration Phenomena

I Theorem 5. For any symmetric function f : {0, 1}n → {0, 1}, any constant ε ∈ (0, 1/2)
and K > d̃egε(f) ·

√
logn, Wε(f,K) ≤ 2Õ(d̃eg1/3(f)2/K).4

Theorem 5 also implies that Corollary 3 is tight (up to polylogarithmic factors in the
exponent) for all symmetric f and for all K ≥ d̃eg1/3(f)

√
logn. This is because any

improvement to Corollary 3 would yield an improvement to Corollary 4, contradicting
Theorem 5.

Essentially Optimal Ramp Visual Secret Sharing Schemes. The following result shows
that in the case f = AND, Corollary 3 is essentially tight for all K ≥ 2, and Theorem 2 is tight
as a reduction from perfect to approximate indistinguishability for symmetric distributions.
It does so by constructing essentially optimal ramp visual secret sharing schemes.5

I Theorem 6. For all 2 ≤ k < K ≤ n there exist symmetric k-wise indistinguishable
distributions µ and ν over n-bit strings that are

√
2−4K+3 ·

∑
d>k

(2K
K+d

)2-reconstructible by
ANDK , where ANDK(x) is the AND of the first K bits of x.

Discussion of Theorem 6. This theorem gives the existence of a ramp visual secret sharing
scheme that is perfectly secure against any k parties, but in which any K > k parties can
reconstruct the secret with the above advantage. This generalizes the schemes in [5] where
only reconstruction by all n parties was considered.

Let us express the reconstruction advantage appearing in Theorem 6 in a manner more
easily comparable to other results in this manuscript. Standard results on anti-concentration
of the Binomial distribution state that 2−2K ·

∑
d>k

(2K
K+d

)
= e−Θ(k2/K) (see, e.g., [17]). The

Cauchy-Schwarz inequality then implies that the reconstruction advantage appearing in
Theorem 6 is at least K−1/2 · e−O(k2/K).6

Hence, the visual secret sharing schemes given in Theorem 6 are nearly optimal; if the
reconstruction advantage could be improved by more than the leading poly(K) factor (or the
constant factor in the exponent), then this would contradict Theorem 2 which upper bounds
the distinguishing advantage of any statistical test over K bits against symmetric, perfectly
k-wise indistinguishable distributions. Theorem 6 also shows that the indistinguishability
parameter in Theorem 2 cannot be significantly improved, even in the restricted case where
the only statistical test is ANDK .

In Section 4 we describe another application of Theorem 2 to security against share
consolidation and “downward self-reducibility” of visual secret shares.

4 Here and throughout, the Õ notation hides polylogarithmic factors in n.
5 A visual secret sharing scheme is a scheme where the reconstruction function is the AND of some subset

of the shares. A ramp scheme is one where there is not necessarily a sharp threshold between the perfect
secrecy and reconstruction thresholds; in particular, we allow for K > k + 1.

6 Theorem 6 is closely related to Theorem 1, in that Theorem 6 gives another anti-concentration-based
proof that d̃egε(ANDK) ≥ k for ε = K−1/2 · e−Θ(k2/K). However, the two results are incomparable.
Theorem 6 does not yield an explicit dual polynomial for ANDK , and the ε-approximate degree lower
bound for ANDK implied by Theorem 6 is loose by the K−1/2 factor appearing in the expression for ε.
On the other hand, Theorem 1 only yields a visual secret sharing scheme with reconstruction by all n
parties, while Theorem 6 yields a ramp scheme with non-trivial reconstruction advantage by the AND
of the first K (out of n) parties.

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:7

1.3 Related Works
Prior Work. Servedio, Tan, and Thaler [23] established Corollary 4 and Theorem 5 in
the special case f = OR, showing that degree d polynomials that approximate the OR
function require weight 2Θ̃(n/d) = 2Θ̃(d̃eg1/3(OR)2/d).7 They used this result to establish tight
weight-degree tradeoffs for polynomial threshold functions computing decision lists. As
previously mentioned, Bogdanov and Willamson [5] generalized the weight-vs-degree lower
bound from [23] beyond polynomials, thereby obtaining a visual secret-sharing scheme for
any fixed K that is (K, e−Ω(n/K))-statistically secure.

Elkies [13] and Sachdeva and Vishnoi [22] exploit concentration of measure to prove a
tight upper bound on the degree of univariate polynomials that approximate the function
t 7→ tn over the domain [−1, 1]. Their techniques inspired our (much more technical) proof
of Theorem 2.

Other Related Work. This work subsumes Bogdanov’s manuscript [3], which shows a
slightly weaker lower bound on the weighted approximate degree of AND, and does not derive
an explicit dual polynomial. In independent work, Huang and Viola [14] prove a weaker form
of our Corollary 3: their distributions µ, ν depend on the value of K. They also prove (a
slightly tighter version of) Theorem 5, thereby establishing that the statistical distance in
Corollary 3 is tight.

1.4 Techniques and Organization
The proof of Theorem 1 (Section 2) is an elementary verification that the function φ given in
(1) is a dual polynomial. The only property that is not immediate is correlation with AND.
Verifying this property amounts to upper bounding the normalization constant Z, which
follows from orthogonality of the Fourier characters.

In the proof of Theorem 2 (Section 3), a K-bit statistical distinguisher for symmetric
distribution is first decomposed into a sum of at most K + 1 tests Qw that evaluate to 1
only when the input has Hamming weight exactly w. Lemma 13 shows that the univariate
symmetrizations pw of these distinguishers can be pointwise approximated by a degree-k
polynomial with error at most O(K1/2) · e−Ω(k2/K).

To construct the desired approximation, we derive an identity relating the moment
generating function of the squared Chebyshev coefficients of pw (interpreted as relative
probabilities) to the average magnitude of a polynomial g related to pw on the unit complex
circle (Claims 16 and 17). We bound these magnitudes analytically (Claim 18) and derive tail
inequalities for the Chebyshev coefficients from bounds on the moment generating function
as in standard proofs of Chernoff-Hoeffding bounds.

In the special case when the secrecy parameters k and K are fixed and the number of
parties n approaches infinity, pw(t) turns out to equal Cw(t− 1)w(t+ 1)K−w, where Cw is
some quantity independent of t. In this case, the Chebyshev coefficients are the regular
coefficients of the polynomial g∞(s) = 2−wCw(s− 1)2w(s+ 1)2(K−w).8 When w = 0, K/2,
or 1, the coefficients of g∞ are exponentially concentrated around the middle as they follow

7 These bounds for OR were implicit in [23], but not explicitly highlighted. The upper bound was explicitly
stated in [12, Lemma 4.1], which gave applications to differential privacy, and the lower bound in [9,
Lemma 32], which used it to establish tight weight-degree tradeoffs for polynomial threshold functions
computing read-once DNFs.

8 The i-th coefficient of g∞ is the value of the i-th Kravchuk polynomial with parameter 2K evaluated at
2w.

APPROX/RANDOM 2019

71:8 Approximate Degree, Secret Sharing, and Concentration Phenomena

the binomial distribution. We prove that this exponential decay in magnitudes happens
for all values of w, which requires understanding complicated cancellations in the algebraic
expansion of g∞(s).

We generalize this analysis to the finitary setting n ≥ 64K.
We prove Theorem 5 (Section B) by writing any symmetric function f as a sum of at

most ` := min{|f−1(0)|, |f−1(1)|} many conjunctions, and approximating each conjunction
to such low error (namely error � `) that the sum of all approximations is an approximation
for f itself. Theorem 5 then follows by constructing low-weight, low-degree polynomial
approximations for each conjunction in the sum.

Theorem 6 (Section C) is proved by lower bounding the error of degree k polynomial
approximations to the symmetrization f of the function ANDK

(
x|{1,...,K}

)
. By duality, a

lower bound on approximation error translates into a secret sharing scheme with the same
reconstruction advantage. To lower bound the error, we estimate the values of the coefficients
in the Chebyshev expansion of f with indices larger than k. Owing to orthogonality, the
largest of these coefficients lower bounds the approximation error of any degree-k polynomial.

In Section 4 we formulate a security of secret sharing against consolidation and downward
self-reducibility of visual schemes, and derive these properties from the main results.

2 Dual Polynomial For the Weighted Approximate Degree of AND

In this section we prove Theorem 1 and derive its two corollaries about the unweighted and
weighted approximate degree of AND.

Notation and Definitions. Let [n] = {1, . . . , n}. Given a vector w ∈ Rn≥0, define the weight
of a monomial χS(x) =

∏
i∈S xi, xi ∈ {−1, 1} to equal

∑
i∈S wi. Define the w-weighted degree

of a polynomial to be the maximum weight of a monomial in it. That is, if p =
∑
S⊆[n] cSχS ,

then define

degw(p) = max
S:cS 6=0

w(S).

Define the w-weighted ε-approximate degree d̃egw,ε(f) to be the minimum w-weighted degree
of a polynomial p that satisfies |p(x)− f(x)| ≤ ε for all x in the domain of f . Given two
real-valued functions f, g over domain {−1, 1}n, define 〈f, g〉 := 1

2n

∑
x∈{−1,1}n f(x) · g(x).

I Lemma 7. For any finite set X and any function f : X → R, d̃egw,ε(f) ≥ d iff there
exists a function φ : X → R satisfying the following conditions.

Pure high degree: For any real polynomial p of weighted degree is at most d, 〈φ, p〉 = 0.
Normalization:

∑
x∈X |φ(x)| = 1,

Correlation: 〈φ, f〉 ≥ ε,

We call φ a dual witness for d̃egw,ε(f) ≥ d. The lemma follows by linear programming
duality and is a straightforward generalization of previous results (see e.g. [28, 9]). We prove
the “if” direction, which is sufficient for our purposes.

Proof. For any p of weighted degree at most d,

‖f − p‖∞ = ‖f − p‖∞‖φ‖1 ≥ 〈φ, f − p〉 = 〈φ, f〉 − 〈φ, p〉 ≥ ε. J

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:9

The dual polynomial of interest is

φ(x) = (−1)n

Z
χ[n](x) · ES∼H[χS(x)]2,

where x ∈ {−1, 1}n, H is the uniform distribution over the sets {S ⊆ [n] : w(S) ≤ (‖w‖1 −
d)/2}, and Z is the normalization constant

Z =
∑

x∈{−1,1}n

ES∼H[χS(x)]2.

Proof of Theorem 1. We prove the theorem by showing that φ satisfies the three conditions
of Lemma 7. The expression ES∼H[χS(x)]2 can be written as a sum of products of pairs of
monomials of weight at most (‖w‖1 − d)/2, so its weighted degree is at most ‖w‖1 − d. Thus
every monomial that occurs in the expansion of χ[n](x)ES∼H[χS(x)]2 must have weighted
degree at least d, and so φ has pure high weighted degree at least d as desired.

The scaling by Z in the definition of φ ensures that φ has L1 norm 1. The correlation
of φ and AND is given by 〈φ,AND〉 = φ(1n) = 1

Z . Finally, the normalization constant Z
evaluates to

Z =
∑

x∈{−1,1}n

ES∼H[χS(x)]2 =
∑

x∈{−1,1}n

ES∼H[χS(x)]ET∼H[χT (x)]

=
∑

x∈{−1,1}n

ES,T∼H[χS∆T (x)] = ES,T∼H
∑

x∈{−1,1}n

χS∆T (x)

= 2n Pr[S = T] = 2n

|H|
,

since the inner summation over x evaluates to 2n when S = T , and zero otherwise.
It remains to show that 1/Z = |H|/2n equals the desired expression for ε. For a set

S ⊆ [n], let X(S) ∈ {−1, 1}n be the string that assigns values 1 and −1 to elements inside
and outside S, respectively. Then w(S) = ‖w‖1/2 + 〈w,X(S)〉/2, so

|H|
2n = PrS⊆[n][w(S) ≥ ‖w‖1/2 + d/2] = PrX∼{−1,1}n [〈w,X〉 ≥ d]. J

I Corollary 8 (Approximate degree of AND). Recall that AND : {−1, 1}n → {0, 1} denotes
the function satisfying AND(x) = 1 if and only if x = 1n. If p has degree at most d, then
|p(x) − AND(x)| ≥ Pr[X ≤ (n − d)/2] for some x, where X is a Binomial(n, 1/2) random
variable.

The expression on the right is lower bounded by the larger of 1/2−O(d/
√
n) and 2−O(d2/n).

In the large d regime (d ≥
√
n), this bound is tight [15, 6].

Proof. Apply Theorem 1 to the weight vector w = (1, 1, . . . , 1). J

Earlier constructions of dual polynomials for AND are quite different from our Corollary 8
[15, 28, 9, 26] and are based on real-valued polynomial interpolation. Specifically, for a
carefully chosen set T ⊆ {0, 1, . . . , n} of size |T | = 2d, the prior constructions consider a
univariate polynomial p(t) =

∏
i∈[n]\T (t− i), and they define ψ(x) = p(|x|), where |x| denotes

the Hamming weight of x. Clearly ψ has degree at most n − |T |. A fairly complicated
calculation is required to show that, for an appropriate choice of T , defining ψ in this way
ensures that |ψ(1n)| captures an ε-fraction of the L1-mass of ψ.

I Corollary 9 (Weighted approximate degree of AND). d̃egw,3/32(AND) ≥ ‖w‖2/2.

APPROX/RANDOM 2019

71:10 Approximate Degree, Secret Sharing, and Concentration Phenomena

The proof uses the Paley-Zygmund inequality:

I Lemma 10 (Paley-Zygmund inequality). Let Z ≥ 0 be any random variable with finite
variance. Then, for any 0 < θ < 1,

Pr[Z ≥ θE(Z)] ≥ (1− θ)2 (E[Z])2

E[Z2] .

Proof of Corollary 9. We apply the Paley-Zygmund inequality to 〈w,X〉2. First,
E[〈w,X〉]2 = ‖w‖22 and E[〈w,X〉4] =

∑
w4
i + 3

∑
w2
iw

2
j ≤ 3‖w‖22. Then

Pr
[
〈w,X〉 ≥ ‖w‖22

]
= 1

2 Pr
[
|〈w,X〉| ≥ ‖w‖22

]
= 1

2 Pr
[
〈w,X〉2 ≥ ‖w‖

2
2

4

]
≥ 1

2 ·
9
16 ·

1
3 = 3

32 ,

where the first equality follows from the sign-symmetry of X. Applying Theorem 1 with
d = ‖w‖2/2 yields the claim. J

3 Approximate Indistinguishability from Perfect Indistinguishability

In this section, we prove Theorem 2, which states that any pair of symmetric and perfectly
k-wise indistinguishable distributions over {0, 1}n are also approximately indistinguishable
against statistical tests that observe K > k of the bits. We may and will assume without
loss of generality that the statistical test is a symmetric function,9 meaning that it depends
only on the Hamming weight of the observed bits of its input.

Let X and Y denote an arbitrary pair of symmetric (k, 0)-wise indistinguishable distribu-
tions over {0, 1}n. We will be interested in obtaining an upper bound on the statistical distance
of their projections to any K indices of [n], namely the advantage EX [T (X|S)− EY [T (Y |S)]
where T : {0, 1}K → {0, 1} is a symmetric function and S ⊆ [n] is any set of size K. We can
decompose T into a sum of tests Qw : {0, 1}K → {0, 1}, where Qw outputs 1 if and only if
the Hamming weight of its input is exactly w. Specifically, we decompose T as

T =
K∑
w=0

bwQw, (2)

where each bw is either zero or one. We will bound the distinguishing advantage of each
Qw in the sum individually. This advantage is captured by a univariate function pw that
expresses Qw in terms of the Hamming weight of its input, after shifting and scaling the
Hamming weight to reside in the interval [−1, 1].

I Fact 11. Let S ⊆ [n] be any set of size K. There exists a univariate polynomial pw of
degree at most K such that the following holds. For all t ∈ {−1,−1 + 2/n, . . . , 1− 2/n, 1},
pw(t) = EZ [Qw(Z|S)] where Z is a random string of Hamming weight φ−1(t) = (1− t)n/2 ∈
{0, 1, . . . , n}.

Proof. This statement is a simple extension of Minsky and Papert’s classic symmetrization
technique [18]. Specifically, Minsky and Papert showed that for any polynomial pn : {0, 1}n →
R, there exists a univariate polynomial P of degree at most the total degree of pn, such that
for all i ∈ {0, . . . , n}, P (i) = E|x|=i[pn(x)]. Apply this result to pn(x) = Qw(x|S) and let
pw(t) = P (φ−1(t)) = P ((1− t)n/2). The fact then follows from the observation that the
total degree of Qw(x|S) is at most K, since this function is a K-junta. J

9 In the full version, we include simple proofs that (1) the marginal distributions of a symmetric
distribution are symmetric and that (2) the best distinguisher between a pair of symmetric distributions
is a symmetric function.

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:11

In particular, the value pw(t) is a probability for every t ∈ {−1,−1 + 2/n, . . . , 1− 2/n, 1}.
Moreover, this probability must equal zero when the Hamming weight of Z is less than w or
greater than n −K + w. Therefore pw has K distinct zeros at the points Zw = Z− ∪ Z+,
where

Z− = {−1 + 2h/n : h = 0, ...,K − w − 1} , Z+ = {1− 2h/n : h = 0, ..., w − 1}. (3)

and so pw must have the form

pw(t) = Cw ·
∏
z∈Zw

(t− z) (4)

for some Cw that does not depend on t.10 As pw(t) is probability when t ∈ {−1,−1 +
2/n, . . . , 1− 2/n, 1}, the function pw is 1-bounded at those inputs. In fact, pw is uniformly
bounded on the interval [−1, 1]:

B Claim 12. Assuming n ≥ 64K, |pw(t)| ≤ 2 for all t ∈ [−1, 1].

The proof is omitted due to space limitations but follows a similar structure as the proof
of Claim 18 which appears in Section A. Formula (4) and Claim 12 will be applied to show
that pw has a good uniform polynomial approximation on the interval [−1, 1].

I Lemma 13. Assuming n ≥ 64K, there exists a degree-k polynomial qw such that
|pw(t)− qw(t)| ≤ 4

√
K exp(−k2/1156K) for all t ∈ [−1, 1].

Lemma 13 is the main technical result of this section. It is proved in Section 3.1.

Proof of Theorem 2. Now let T be a general distinguisher on K inputs, which we may and
will assume to be a symmetric Boolean-valued function. We bound the distinguishing advant-
age as follows. Recalling that X and Y are (k, 0)-indistinguishable symmetric distributions
over {0, 1}n, for any set S ⊆ [n] of size K we have:

E[T (X|S)]− E[T (Y |S)]

=
K∑
w=0

bw
(
E[Qw(X|S)]− E[Qw(Y |S)]

)
(by (2))

≤
K∑
w=0

∣∣E[Qw(X|S)]− E[Qw(Y |S)]
∣∣ (by boundedness of bw)

=
K∑
w=0

∣∣E[pw(φ(|X|)]− E[pw(φ(|Y |))]
∣∣ (by symmetry of X,Y , and Fact 11)

≤
K∑
w=0

∣∣E[qw(φ(|X|))]− E[qw(φ(|Y |))]
∣∣+ 8

√
K exp(−k2/1156K) (by Lemma 13)

= O(K3/2) · e−k
2/1156K (by k-wise indistinguishability of X,Y)

Therefore, X and Y are (K,O(K3/2) · e−k2/1156K)-wise indistinguishable for 2 ≤ K ≤
n/64. J

10 pw, Cw, and Zw also depend on K and n but we omit those arguments from the notation as they will
be fixed in the proof.

APPROX/RANDOM 2019

71:12 Approximate Degree, Secret Sharing, and Concentration Phenomena

3.1 Proof of Lemma 13
We will prove Lemma 13 by studying the Chebyshev expansion of pw. To this end we take a
brief detour into Chebyshev polynomials and an even briefer one into Fourier analysis.

Chebyshev polynomials

The Chebyshev polynomials are a family of real polynomials {Td}, 1-bounded on [−1, 1],
with Td having degree d. We extend the definition to negative indices by setting T−d = Td.
The Chebyshev polynomials are orthogonal with respect to the measure dσ(t) = (1 −
t2)−1/2dt supported on [−1, 1]. Therefore every degree-K polynomial p : R→ R has a unique
(symmetrized) Chebyshev expansion

p(t) =
K∑

d=−K
cdTd(t), c−d = cd

where c−K , . . . , cK are the Chebyshev coefficients of p.
The Chebyshev polynomials satisfy the following identity, which plays an important role

in our analysis:

I Fact 14. t · Td(t) = 1
2Td−1(t) + 1

2Td+1(t).

This formula, together with the “base cases” T0(t) = 1 and T1(t) = t, specifies all Chebyshev
polynomials.

We will also need the following form of Parseval’s identity for univariate polynomials.

B Claim 15 (Parseval’s identity). For every complex polynomial h, the sum of the squares
of the magnitudes of the coefficients of h equals Ez[|h(z)|2], where z is a random complex
number of magnitude 1.

Proof outline

We will argue that the Chebyshev expansion
∑K
d=−K cdTd(t) of pw(t) has small weight on

the coefficients cd when |d| > k. Zeroing out those coefficients then yields a good degree-k
approximation of pw as desired.

The upper bound on the Chebyshev coefficients of pw is derived in two steps. The first
step, which is of an algebraic nature, expresses the Chebyshev coefficients of pw as regular
coefficients of a related polynomial g.11 We are interested in the coefficients of the derived
polynomial gε(s) = g((1 + ε)s), which represent the Chebyshev coefficients cd of pw amplified
by the exponential scaling factor (1 + ε)d.

The second step, which is analytic, upper bounds the magnitude of the coefficients of
gε(s). The main tool is Parseval’s identity, which identifies the sum of the squares of these
coefficients by the average magnitude of gε over the complex unit circle Eθ |g((1 + ε)eiθ)|2.
We bound the maximum magnitude maxθ |g((1 + ε)eiθ)|2 by explicitly analyzing the function
g. This step comprises the bulk of our proof.

The third step translates the bound on the squared 2-norm
∑K
d=−K(1 + ε)2dc2d of the

amplified coefficients into a tail bound on cd by optimizing over a suitable value of ε. This
is analogous to the standard derivation of Chernoff-Hoeffding bounds by analysis of the
moment generating function of the relevant random variable.

11We omit the dependence on w as this parameter remains constant throughout the proof.

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:13

We now sketch how this outline is executed for the special case where n tends to infinity
while k and K remain fixed. Although this setting is technically much easier, it allows us
to highlight the main conceptual points of our argument. The analysis for finite n can be
viewed as an approximation of this proof strategy.

Sketch of the limiting case n → ∞

By the expansion (4) of pw, as n tends to infinity pw converges uniformly to the function

p∞w (t) = Cw · (t− 1)w(t+ 1)K−w,

as this corresponds to Fact 11 when the bits of the string Z are independent and (1− t)/2-
biased. As p∞w (t) is a probability for every t ∈ [−1, 1], Claim 12 follows immediately.

Step 1. Our algebraic treatment of the Chebyshev transform yields that the Chebyshev
coefficient cd of p∞w is the (K + d)-th regular coefficient of the polynomial

g∞(s) = Cw

(
s− 1√

2

)2w (
s+ 1√

2

)2(K−w)
. (5)

Step 2. The evaluation of the polynomial g∞ε (s) = g∞((1 + ε)s) at s = eiθ satisfies the
identity

∣∣g∞ ((1 + ε)eiθ
)∣∣ = (1 + ε)K · (1 + δ)K · Cw ·

(
1− cos θ

1 + δ

)w (
1 + cos θ

1 + δ

)K−w
, (6)

where δ = ε2/2(1 + ε). This happens to equal

(1 + ε)K(1 + δ)Kpw(cos θ/(1 + δ)), (7)

and is in particular uniformly bounded by (1 + ε)K(1 + δ)K for all θ. This similarity between
p∞ and g∞ε is the crux of our analysis.

Step 3. By Parseval’s identity, after suitable shifting and cancellation, the amplified sum
of Chebyshev coefficients

∑K
d=−K(1 + ε)2dc2d is upper bounded by (1 + δ)2K . Therefore the

tail
∑
k≥d c

2
d can have value at most (1 + δ)2K/(1 + ε)2k ≤ exp(2Kε2 − 2(ε− ε2/2)k). This

upper bound holds for all ε ∈ [0, 1], and plugging in the approximate minimizer ε = k/2K
yields a bound of the desired form exp(−Ω(k2/K)).

Outline of the general case

We now give the outline of our full proof for the general case and relevant technical statements
that we use to prove our main upper bound. Identity (5) generalizes to the following statement:

B Claim 16. The Chebyshev coefficient cd of pw is the (K + d)-th regular coefficient of the
polynomial

g(s) = Cw
∏
z∈Zw

(
s2 − 2sz + 1

2

)
,

where Cw is as in Equation (4).

APPROX/RANDOM 2019

71:14 Approximate Degree, Secret Sharing, and Concentration Phenomena

The general form of identity (6) is:

B Claim 17. For ε > 0, δ = ε2/2(1 + ε), and θ ∈ [−π, π],∣∣g((1 + ε)eiθ)
∣∣2 = (1 + ε)2K(1 + δ)2K · C2

w

∏
z∈Zw

hδ(1+1/(1+δ))

(
cos θ
1 + δ

, z

)
where hδ(s, z) = (s− z)2 + δ(1− z2).

Owing to the second term in hδ, there is no identity analogous to (7) when n is finite
and pw has zeros inside (−1, 1). Nevertheless,

∏
z∈Zw

hδ(s, z) can be uniformly bounded
either by a sufficiently small multiple of pw(s)2, or a fixed quantity that is constant in the
parameter range of interest.

B Claim 18. Assume n ≥ 64K and w ≤ K/2. Then

C2
w ·

∏
z∈Zw

hδ(s, z) ≤
{
e65δK · pw(s)2 if |s| ≤ 1− w/16K
e65δK if 1− w/16K ≤ |s| ≤ 1.

We now prove Lemma 13. Due to space limitations, we omit the proof of Claim 16,
which follows via induction and is an application of Fact 14, and the proof of Claim 17,
which consists of a lengthy but relatively straightforward calculation. Claim 18 is proved in
Section A.

I Fact 19. pw(t) = pK−w(1− t).

Proof. By Fact 11, both sides are degree-K polynomials that agree on n+ 1 > K points so
they are identical. J

Proof of Lemma 13. By Fact 19 we may and will assume that w ≤ K/2. Let pw =∑K
d=−K cdTd. The approximating polynomial qw is

∑
|d|<k cdTd. It remains to prove a tail

upper bound on the Chebyshev coefficients. By Claim 16, the (K + d)-th coefficient of g(s)
is cd. Therefore the polynomial gε(s) = g((1 + ε)s) has coefficients (1 + ε)K+dcd as d ranges
from −K to K. We apply Parseval’s identity (Claim 15) to gε.

It follows that
K∑

d=−K
(1 + ε)2(K+d)c2d = Eθ |g((1 + ε)eiθ)|2

≤ max
θ∈[−π,π]

|g((1 + ε)eiθ)|2

= max
s∈[−1,1]

(1 + ε)2K(1 + δ)2K · C2
w

∏
z∈Zw

hδ(1+1/(1+δ))(s/(1 + δ), z),

by Claim 17. Since 0 ≤ δ = ε2/2(1 + ε) ≤ 1/2, for simplicity we may replace
hδ(1+1/(1+δ))(s/(1 + δ), z) by h2δ(s, z) in the above inequality. This gives the following
approximation bound for α = maxt∈[−1,1] |pw(t)− qw(t)|:

α = max
t∈[−1,1]

∣∣∣∑
|d|≥k

cdTd(t)
∣∣∣

≤
∑
|d|≥k

|cd| max
t∈[−1,1]

|Td(t)|

≤ 2
∑
d≥k

|cd| (by symmetry and boundedness of Td)

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:15

. . . ≤ 2
√
K ·

√∑
d≥k

c2d (by Cauchy-Schwarz)

≤ 2
√
K ·

√
(1 + ε)−2(K+k)

∑
d≥k

(1 + ε)2(K+d)c2d

≤ 2
√
K

√
(1 + ε)−2k · (1 + δ)2K · max

s∈[−1,1]
C2
w

∏
z∈Zw

h2δ(s, z).

By the boundedness of pw (Claim 12), the upper bounds in Claim 18 can be unified by
the inequality C2

w

∏
z∈Zw

h2δ(s, z) ≤ 4e130δK that is valid for all s ∈ [−1, 1]. Since 1 + δ ≤ eδ

and 1 + ε ≥ eε−ε2/2 for 0 ≤ ε ≤ 1,

α ≤ 2
√
K ·

√
(1 + δ)2K

(1 + ε)2k · 4e130δK ≤ 4
√
K ·
√
e132δK−2εk+ε2k ≤ 4

√
K ·
√
e67ε2K−2εk,

where the last inequality follows from the definition δ = ε2/2(1 + ε). Setting ε = k/34K we
obtain that α ≤ 4

√
K · e−k2/1156K . J

4 Robustness of Symmetric Secret Sharing Against Consolidation

Consider a secret sharing scheme with tn parties, divided in n blocks of size t, that is perfectly
secure against size-k coalitions. If all parties in each block come together and consolidate
their information even into a single bit, the number of blocks against which the scheme
remains secure drops to k/t. In general this is the best possible, with linear schemes providing
tight examples.

The following corollary, proven in the full version, shows that if the distribution over
shares is symmetric then much better security against this type of attack can be obtained.

I Corollary 20. Let f1, . . . , fn : {0, 1}t → {0, 1}. Assume X,Y are k-wise indistinguishable
symmetrically distributed random variables over tn-bit strings. Write X = X1 . . . Xn, Y =
Y1 . . . Yn, where all blocks Xi, Yi have size t. For every K, the n-bit random variables
X ′ = f1(X1) . . . fn(Xn) and Y ′ = f1(Y1) . . . fn(Yn) are O((tK)3/2nKe−k

2/1156tK)-close to
being perfectly K-wise indistinguishable, assuming K ≤ n/64.

References
1 Andris Ambainis. Quantum Search with Variable Times. Theory Comput. Syst., 47(3):786–807,

2010.
2 Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical Lower Bounds

from Quantum Upper Bounds. In 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 339–349, 2018.

3 Andrej Bogdanov. Approximate degree of AND via Fourier analysis. Electronic Colloquium
on Computational Complexity (ECCC), 25:197, 2018.

4 Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson. Bounded
Indistinguishability and the Complexity of Recovering Secrets. In Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III, pages 593–618, 2016.

5 Andrej Bogdanov and Christopher Williamson. Approximate Bounded Indistinguishability.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 53:1–53:11, 2017.

APPROX/RANDOM 2019

71:16 Approximate Degree, Secret Sharing, and Concentration Phenomena

6 Harry Buhrman, Richard Cleve, Ronald de Wolf, and Christof Zalka. Bounds for Small-Error
and Zero-Error Quantum Algorithms. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 358–368, 1999.

7 Mark Bun, Robin Kothari, and Justin Thaler. The polynomial method strikes back: tight
quantum query bounds via dual polynomials. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 297–310, 2018.

8 Mark Bun and Justin Thaler. Dual Lower Bounds for Approximate Degree and Markov-
Bernstein Inequalities. In Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 303–314,
2013.

9 Mark Bun and Justin Thaler. Hardness Amplification and the Approximate Degree of Constant-
Depth Circuits. In Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 268–280, 2015.

10 Mark Bun and Justin Thaler. A Nearly Optimal Lower Bound on the Approximate Degree of
AC0. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 1–12, 2017.

11 Mark Bun and Justin Thaler. The Large-Error Approximate Degree of AC0. Electronic
Colloquium on Computational Complexity (ECCC), 25:143, 2018.

12 Karthekeyan Chandrasekaran, Justin Thaler, Jonathan Ullman, and Andrew Wan. Faster
private release of marginals on small databases. In Innovations in Theoretical Computer
Science, ITCS’14, Princeton, NJ, USA, January 12-14, 2014, pages 387–402, 2014.

13 Noam D. Elkies (https://mathoverflow.net/users/14830/noam-d elkies). Uniform approx-
imation of xn by a degree d polynomial: estimating the error. MathOverflow. URL:
https://mathoverflow.net/q/70527.

14 Xuangui Huang and Emanuele Viola. Almost Bounded Indistinguishability and Degree-Weight
Tradeoffs, 2019. Manuscript.

15 Jeff Kahn, Nathan Linial, and Alex Samorodnitsky. Inclusion-exclusion: Exact and approxim-
ate. Combinatorica, 16(4):465–477, 1996.

16 Pritish Kamath and Prashant Vasudevan. Approximate Degree of AND-OR
trees, 2014. Manuscript available at https://www.scottaaronson.com/showcase3/
kamath-pritish-vasudevan-prashant.pdf.

17 Philip N. Klein and Neal E. Young. On the Number of Iterations for Dantzig-Wolfe Optimiza-
tion and Packing-Covering Approximation Algorithms. SIAM J. Comput., 44(4):1154–1172,
2015.

18 Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, Cambridge, MA, 1969.
19 Moni Naor and Adi Shamir. Visual Cryptography. In Advances in Cryptology - EUROCRYPT

’94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings, pages 1–12, 1994.

20 Noam Nisan and Mario Szegedy. On the Degree of Boolean Functions as Real Polynomials.
Computational Complexity, 4:301–313, 1994.

21 Ramamohan Paturi. On the Degree of Polynomials that Approximate Symmetric Boolean
Functions (Preliminary Version). In Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada, pages 468–474,
1992.

22 Sushant Sachdeva and Nisheeth K. Vishnoi. Faster Algorithms via Approximation Theory.
Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014.

23 Rocco A. Servedio, Li-Yang Tan, and Justin Thaler. Attribute-Efficient Learning and Weight-
Degree Tradeoffs for Polynomial Threshold Functions. In COLT 2012 - The 25th Annual
Conference on Learning Theory, June 25-27, 2012, Edinburgh, Scotland, pages 14.1–14.19,
2012.

https://mathoverflow.net/q/70527
https://www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf
https://www.scottaaronson.com/showcase3/kamath-pritish-vasudevan-prashant.pdf

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:17

24 Alexander A. Sherstov. Approximating the AND-OR Tree. Theory of Computing, 9:653–663,
2013.

25 Alexander A Sherstov. Breaking the Minsky–Papert Barrier for Constant-Depth Circuits.
SIAM Journal on Computing, 47(5):1809–1857, 2018.

26 Alexander A. Sherstov. The Power of Asymmetry in Constant-Depth Circuits. SIAM J.
Comput., 47(6):2362–2434, 2018.

27 Alexander A Sherstov and Pei Wu. Near-Optimal Lower Bounds on the Threshold Degree
and Sign-Rank of AC0. arXiv preprint arXiv:1901.00988, 2019. To appear in STOC 2019.

28 Robert Špalek. A Dual Polynomial for OR. CoRR, abs/0803.4516, 2008.

A Proof of Claim 18

The objective is to uniformly bound the value of the function

hδ(s) = C2
w ·

∏
z∈Zw

hδ(s, z), where hδ(s, z) = (s− z)2 + δ(1− z2)

for s ∈ [−1, 1]. When k,K are fixed and n becomes large, all zeros in Zw approach −1 or
+1, hδ(s, z) uniformly approaches h0(s, z) = (s− z)2, hw(s) approaches h0(s) = p∞w (s) and
is therefore uniformly bounded.

The main difficulty in extending this argument to finite n is that hδ(s, z) can no longer be
uniformly bounded by a multiple of (s−z)2 since when s equals z, the latter function vanishes
but the former one doesn’t. For this reason, we divide the analysis into two parameter
regimes. When s is bounded away from the set of zeros Zw, an approximation of the infinitary
term-by-term argument can be carried out. When s is near the zeroes, we argue that hδ(s)
cannot be much larger than hδ(s0) for an s0 that is even farther away from Zw, and then
argue that h0(s0) = pw(s0)2 must be small because it represents the square of a probability
of a rare event.

I Fact 21. hδ(s, z)hδ(s,−z) = hδ(−s, z)hδ(−s,−z).

I Fact 22. hδ(s, z) ≤ hδ(|s|, z) when z ≤ 0 and s ≥ 0.

I Fact 23. hδ(s, z) ≤ hδ(s0, z) when s0 ≤ s ≤ 1, s0 ≤ 2z − 1, and |z| ≤ 1.

Proof. The fact is equivalent to checking that (s0 − z)2 − (s− z)2 ≥ 0 when s0 ≤ s ≤ 1 and
s0 ≤ 2z − 1. If s ≤ z then we have that s0 ≤ s ≤ z from which it immediately follows that
(s0 − z)2 ≥ (s− z)2. If s > z then (s− z)2 is at most (1− z)2. However, since |z| ≤ 1, we
have that s0 ≤ 2z − 1 ≤ z and thus (s0 − z)2 is always at least (z − (2z − 1))2 = (1− z)2.
Again we have that (s0 − z)2 ≥ (s− z)2. J

We begin by reducing to the case of non-negative inputs s ∈ [0, 1].

B Claim 24. Assuming w ≤ K/2, hδ(s) ≤ hδ(|s|).

Proof. When w ≤ K/2 then elements of Zw (3) can be split into w pairs of the form
A = {(−1 + 2h/n, 1 − 2h/n) : 0 ≤ h < w}, and K − 2w remaining elements B = {−1 +
2h/n : w ≤ h < K − w} are all non-positive. By Fact 21,

∏
(−z,z)∈A hδ(s, z)hδ(s,−z) =∏

(−z,z)∈A hδ(|s|, z)hδ(|s|,−z). By Fact 22,
∏
z∈B hδ(s, z) ≤

∏
z∈B hδ(|s|, z). Therefore the

product
∏
z∈Zw

hδ(s, z) ≤
∏
z∈Zw

hδ(|s|, z). C

The following claim handles values of s in the range [0, 1− w/16K].

APPROX/RANDOM 2019

71:18 Approximate Degree, Secret Sharing, and Concentration Phenomena

B Claim 25. Assuming 0 ≤ s ≤ 1− w/16K,

hδ(s, z) ≤
{

(1 + δ)(s− z)2, if z ≤ −1/
√

2.
(1 + (64K/w)δ)(s− z)2, if z ≥ 1− w/32K

Proof. The ratio hδ(s, z)/(s−z)2 equals 1+((1−z2)/(s−z)2)δ. The number (1−z2)/(s−z)2

is at most 1 when s ≥ 0 and z ≤ −1/
√

2 and at most the following when z ≥ 1− w/32K.

1− (1− w/32K)2

((1− w/16K)− (1− w/32K))2 ≤
2w/32K

(w/32K)2 = 64K/w. C

I Corollary 26. Assuming 0 ≤ s ≤ 1− w/16K and n ≥ 64K, hδ(s) ≤ e65δKh0(s).

Proof. By the choice of parameters, all zeros in Z− meet the criterion for the first inequality
in Claim 25, while all zeros in Z+ meet the criterion for the second one. Therefore

hδ(s) = C2
w

∏
z∈Z−

hδ(s, z)
∏
z∈Z+

hδ(s, z)

≤ C2
w

∏
z∈Z−

(1 + δ)(s− z)2
∏
z∈Z+

(1 + (64K/w)δ)(s− z)2

≤ (1 + δ)K−w(1 + (64K/w)δ)w · C2
w

∏
z∈Z−

h0(s, z)
∏
z∈Z+

h0(s, z)

≤ eδK · e64δK · h0(s).

J

The following two claims handle values of s in the range [1− w/16K, 1].

B Claim 27. Assuming w ≤ K and 1− w/8K ≤ s0 ≤ 1− w/16K ≤ s ≤ 1,

hδ(s, z) ≤
{
hδ(s0, z), if z ≥ 1− w/32K
(1 + w/8K)2 · hδ(s0, z), if z ≤ −w/8K.

Proof. By the choice of parameters the first inequality follows from Fact 23. For the second
one, we upper bound the ratio

(s− z)2

(s0 − z)2 ≤
(1− z)2

(1− z − w/8K)2 =
(

1 + w/8K
1− z − w/8K

)2
≤
(

1 + w

8K

)2
.

This is greater than one, so (s − z)2 + δ(1 − z2) ≤ (1 + w/8K)2((s0 − z)2 + δ(1 − z2)) as
desired. C

I Corollary 28. Assuming 1 − w/8K ≤ s0 ≤ 1 − w/16K ≤ s ≤ 1 and n ≥ 2K, hδ(s) ≤
ew/4hδ(s0).

Proof. By the choice of parameters, all zeros in Z− meet the criterion for the first inequality
in Claim 27, while all zeros in Z+ meet the criterion for the second one. Therefore

hδ(s) = C2
w

∏
z∈Z−

hδ(s, z)
∏
z∈Z+

hδ(s, z)

≤ C2
w

∏
z∈Z−

(1 + w/8K)2 · hδ(s0, z)
∏
z∈Z+

hδ(s0, z)

= (1 + w/8K)2|Z−| · hδ(s0)

≤ (1 + w/8K)2K · hδ(s0) ≤ ew/4hδ(s0). J

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:19

B Claim 29. If s0 is of the form 1 − 2h/n for some integer 0 ≤ h ≤ wn/e2K then
0 ≤ pw(s0) ≤ e−w.

Proof. By Fact 11, pw(s0) is the probability that a random string of Hamming weight h and
length n has exactly w ones in its first K positions. The probability that it has at least w
ones in its first K positions is at most(

K

w

)
· h
n
· h− 1
n− 1 · · ·

h− w + 1
n− w + 1 ≤

(
eK

w

)w(
h

n

)w
≤ e−w. C

Proof of Claim 18. By Claim 24 we may assume s ∈ [0, 1]. When 0 ≤ s ≤ 1 − w/16K the
result follows from Corollary 26. When 1− w/16K ≤ |s| ≤ 1, by the assumption n ≥ 64K
there must exist a value s0 between 1− w/8K and 1− w/16K that is of the form 1− 2h/n.
In particular h ≤ wn/e2K. Then

hδ(s) ≤ ew/4hδ(s0) ≤ ew/4e65δKpw(s0)2 ≤ e65δK−7w/4,

where the inequalities follow from Corollary 28, Corollary 26, and Claim 29, respectively.
C

B Proofs of Corollary 4 and Theorem 5

B.1 Proof of Corollary 4
Proof of Corollary 4. Corollary 3 implies the existence of a φ

(
= µ−ν

2
)
satisfying ‖φ‖1 =

1, 〈f, φ〉 = ε for some ε = Ω(1) and 〈φ, q〉 ≤ K3/2 · 2−Ω
(

d̃eg1/3(f)2/K
)
for any parity of degree

at most K.
For any p of degree K and weight at most w,

‖f − p‖∞ = ‖f − p‖∞‖φ‖1 ≥ 〈φ, f − p〉 = 〈φ, f〉− 〈φ, p〉 ≥ ε−w ·K3/2 · 2−Ω
(

d̃eg1/3(f)2/K
)
.

Thus, we conclude that Wε/2(f,K) = K−3/2 · 2Ω
(

d̃eg1/3(f)2/K
)
. Corollary 4 now follows

using standard error reduction techniques that show that d̃egε(f) = Θ(d̃eg1/3(f)) for all
constants 0 < ε < 1/2. J

B.2 Proof of Theorem 5
We first require the following lemma. This lemma builds on ideas in [23, Claim 2], which
showed a similar result for t = Θ(1).

I Lemma 30. For any y ∈ {0, 1}n, denote by EQy the function on {0, 1}n that outputs 1 on
input y, and 0 otherwise. Then for any t > 0 and d >

√
nt logn, we have Wn−O(t)(EQy, d) ≤

2O(nt log2(n)/d).

Proof. Note that for any y ∈ {−1, 1}n, the function EQy is just the AND function on n

input bits (with 0-1 valued output), with possibly negated input variables. Thus it suffices
to give an approximating polynomial for the AND function on n bits. We now express ANDn
as AND` ◦ ANDn/`, where ` is a parameter we will set later. We compute the inner ANDn/`
exactly and approximate the outer AND` to error n−Ω(t). This can be done with a polynomial
p of degree O

(√
` log(nt)

)
[15, 6]. Combining the fact that p is bounded by 1 + n−Ω(t) ≤ 2

at all Boolean inputs with Parseval’s identity and the Cauchy-Schwarz inequality, it can

APPROX/RANDOM 2019

71:20 Approximate Degree, Secret Sharing, and Concentration Phenomena

be seen that the weight of p is at most `O
(√

` log(nt)
)
.12 It is well known that the exact

multilinear polynomial representation of ANDn/` has constant weight. Hence, by composing p
with the multilinear polynomial that exactly computes ANDn/`, we obtain an approximation

q for ANDn of degree O
(
n
√

t logn
`

)
, error n−Ω(t), and weight 2O

(√
`t log3 n

)
. We now fix the

value of ` to ` := n2t logn
d2 < n, thereby ensuring that the degree of q is at most d. With this

setting of `, the weight of q is at most 2O(nt log2(n)/d), proving the lemma. J

Proof of Theorem 5. Let f : {0, 1}n → {0, 1} be any symmetric function, corresponding
to the univariate predicate Df : {0} ∪ [n] → {0, 1}n. For the purpose of this proof, let us
denote by kf the smallest i for which f is constant on inputs of Hamming weight in the
interval [i + 1, n − i − 1]. Without loss of generality, f(x) = 0 for strings of x Hamming
weight between kf + 1 and n− kf − 1. The case where f = 1 on input strings of Hamming
weight between kf + 1 and n − kf − 1 can be proved using a similar argument. Define
supp(f) := {x ∈ {0, 1}n : f(x) = 1}. Note that |supp(f)| ≤ 2 · nkf .

Observe that f(x) =
∑
y∈supp(f) EQy(x). Lemma 30 implies, for each y ∈ supp(f), the

existence of polynomials py of degree K and weight 2O(nkf log2(n)/K), which approximate EQy

to error 1
6 · n

−kf . Define a polynomial p : {0, 1}n → R by p(x) =
∑
y∈supp(f) py(x). Clearly

p has degree K, weight at most nO(kf) · 2O(nkf log2(n)/K) = 2Õ(nkf/K), and error at most
|supp(f)| · n−kf /6 ≤ 1/3, where the upper bounds on the weight and error follow from the
triangle inequality.

The theorem now follows standard error reduction techniques and Paturi’s theorem [21],
which states that for symmetric functions, d̃eg(f) = Θ

(√
n · kf

)
. J

I Remark 31. The upper bound obtained in Theorem 5 is more general than as stated,
and the only property of symmetric functions it exploits is that symmetric functions of low
approximate degree are highly biased. More specifically, the proof of Theorem 5 shows that any
function f : {0, 1}n → {0, 1} with min{|f−1(0)|, |f−1(1)|} ≤ nt satisfies Wε(f,K) ≤ 2Õ(nt/K)

for any K ≥
√
nt logn.

C Proof of Theorem 6

Proof outline. As we explain in more detail in the proof itself, it is sufficient to establish
the theorem for fixed k and K and infinitely many n because the statement is downward
reducible in n.

Using the Chebyshev approximation formulas from Section 3 we derive explicit lower
bounds on the large Chebyshev coefficients on the polynomial p0 representing the distinguish-
ing advantage of the AND function on K inputs. Owing to orthogonality and boundedness
of the Chebyshev polynomials, this is a lower bound on the approximate degree of ANDK .
By strong duality as given in the following Claim (see [4]) we obtain Theorem 6.

B Claim 32. If d̃egε/2(Fn) ≥ k then there exists a pair of perfectly k-wise indistinguishable
distributions µ, ν over {0, 1}n such that EX∼µ[Fn(X)]− EY∼ν [Fn(Y)] ≥ ε.

12Building on [6], It is possible to derive explicit ε-approximating polynomials for AND where the degree

is O

(√
` log(1/ε)

)
and the weight is 2O

(√
` log(1/ε

)
rather than `

O
(√

` log(1/ε)
)
. Using this tighter

weight bound would improve our final result by a factor of log n in the exponent. We omit this tighter
result for brevity.

A. Bogdanov, N. S. Mande, J. Thaler, and C. Williamson 71:21

Recall that the Chebyshev polynomials are orthogonal under the measure dσ(t) =
(1 − t2)−1/2dt supported on [−1, 1]. We will need the following identity for their average
square magnitude under this measure:

Et∼σ[Td(t)2] = 1/2 when d > 0. (8)

Proof of Theorem 6. By symmetry of the distinguishers, µ and ν can be assumed symmetric.
Let Fn denote the function on {0, 1}n that outputs ANDK

(
x|{1,...,K}

)
, i.e., Fn outputs the

AND of the first K < n bits of the input. We prove the theorem for Gn(x1, . . . , xn) =
NOR(x|{1,...,K}). By the symmetry of 0 and 1 inputs the theorem also holds for Fn.

First, we claim that the statement of Theorem 6 is stronger as n becomes larger, so it
is sufficient to prove it in the limiting case when n approaches infinity and k,K are fixed.
Suppose that µ and ν are distributions over n bit strings that are k-wise indistinguishable
yet are ε-reconstructable by Gn. We must show that there are distributions µ′ and ν′ over
{0, 1}n−1 are k-wise indistinguishable yet are ε-reconstructable by Gn−1. But this holds for
µ′ (respectively ν′) that generate a random sample from µ (respectively, ν) and then throw
away the last bit.

If the statement was false then by Claim 32 there would exist degree-k polynomials G̃n
that approximate Gn pointwise on {0, 1}n to within error ε =

√
2−4K+1∑

d>K

(2K
K+d

)2 for
almost all n. Applying the construction from the proof of Fact 11 to G̃n, there exist univariate
degree-k polynomials p̃n0 approximating pn0 on the set of pointsWn = {−1+2h/n : 0 ≤ h ≤ n}
to within error ε. We emphasize the dependence on n as it will play a role in the proof.

By Formula (3) the polynomial pn0 has the form

pn0 (t) = Cn0
∏
z∈Zn

0

(t− z),

where Zn0 = {−1 + 2h/n : 0 ≤ h < K} (the set Z+ is empty). The value p0
n(1) is the

probability that Gn accepts the all-zero string, so it must equal one. The constant Cn0 must
therefore equal

∏
z∈Zn

0
(1− z)−1. As n tends to infinity, the set Z0 converges to a single zero

at −1 of multiplicity K, so the sequence pn0 converges uniformly to the polynomial

p∞0 (t) = 2−K(t+ 1)K .

By the triangle inequality, for every δ > 0 and all sufficiently large n, p̃n0 is within ε + δ

of p∞0 on the set Wn. A degree-k polynomial is determined by its values on Wk+1 and the
set of degree-k polynomials that are within ε + δ of p∞0 on Wk+1 is compact. Therefore
the sequence of approximating polynomials p̃n0 must contain a subsequence (for values of n
that are multiples of k + 1) that converges (uniformly) to a limiting degree-k polynomial
p̃∞0 . Since p̃n0 is within ε+ δ of pn0 on Wn for infinitely many n, p̃∞0 must be within ε+ 2δ
of p∞0 on Wn for infinitely many n. The union of these sets Wn is dense in [−1, 1], and by
continuity p∞0 can be ε + δ-approximated by the degree-k polynomial p̃∞0 everywhere on
[−1, 1]. As δ was arbitrary it follows that the ε-approximate degree of p∞0 can be at most k.

All that remains to prove that this is not true, i.e., to show a lower bound of k on the
ε-approximate degree of p∞0 . This lower bound is known (see, e.g., [13]); we provide the
details in the full version. J

APPROX/RANDOM 2019

Improved Extractors for Recognizable and
Algebraic Sources
Fu Li
Department of Computer Science, University of Texas at Austin, USA
fuli2015@cs.utexas.edu

David Zuckerman
Department of Computer Science, University of Texas at Austin, USA
diz@cs.utexas.edu

Abstract
We study the task of seedless randomness extraction from recognizable sources, which are uniform
distributions over sets of the form {x : f(x) = 1} for functions f in some specified class C. We give
two simple methods for constructing seedless extractors for C-recognizable sources.

Our first method shows that if C admits XOR amplification, then we can construct a seedless
extractor for C-recognizable sources by using a mildly hard function for C as a black box. By
exploiting this reduction, we give polynomial-time, seedless randomness extractors for three natural
recognizable sources: (1) constant-degree algebraic sources over any prime field, where constant-
degree algebraic sources are uniform distributions over the set of zeros of a system of constant
degree polynomials; (2) sources recognizable by randomized multiparty communication protocols of
cn bits, where c > 0 is a small enough constant; (3) halfspace sources, or sources recognizable by
linear threshold functions. In particular, the new extractor for each of these three sources has linear
output length and exponentially small error for min-entropy k ≥ (1− α)n, where α > 0 is a small
enough constant.

Our second method shows that a seed-extending pseudorandom generator with exponentially
small error for C yields an extractor with exponentially small error for C-recognizable sources,
improving a reduction by Kinne, Melkebeek, and Shaltiel [16]. Using the hardness of the parity
function against AC0 [13], we significantly improve Shaltiel’s extractor [25] for AC0-recognizable
sources. Finally, assuming sufficiently strong one-way permutations, we construct seedless extractors
for sources recognizable by BPP algorithms, and these extractors run in quasi-polynomial time.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation

Keywords and phrases Extractor, Pseudorandomness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2019.72

Category RANDOM

Related Version https://eccc.weizmann.ac.il/report/2018/110/

Funding Supported by NSF Grant CCF-1526952, NSF Grant CCF-1705028, and a Simons Investig-
ator Award (#409864, David Zuckerman).

Acknowledgements We wish to thank Salil Vadhan, Ronen Shaltiel, Avishay Tal, and William Hoza
for helpful discussions and comments.

1 Introduction

Randomness is needed for many applications, such as statistics, algorithms and cryptography.
However, most physical sources are not truly random, in the sense that they can have
substantial biases and correlations. Weak random sources can also arise in cryptography
when an adversary can learn partial information about a uniformly random string.

© Fu Li and David Zuckerman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2019).
Editors: Dimitris Achlioptas and László A. Végh; Article No. 72; pp. 72:1–72:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fuli2015@cs.utexas.edu
mailto:diz@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.72
https://eccc.weizmann.ac.il/report/2018/110/
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Improved Extractors for Recognizable and Algebraic Sources

A natural approach to dealing with weak random sources is to apply a randomness
extractor – a function that transforms a weak random source into an almost-perfect random
source. However, it is impossible to give a single function that extracts even one bit of
randomness from sufficiently general classes of sources [24]. There are two ways to combat
this. One is to extract with the help of another short random string. An object constructed
in this manner is called a seeded extractor [21]. The focus of this paper is the second way:
to extract from more structured sources (without using additional random bits). Such a
function is called a seedless, or deterministic, extractor.

More formally, a random source X is modeled as a probability distribution over n bit
strings with some entropy k. In the context of randomness extraction, the standard measure
of entropy is the so called min-entropy – the min-entropy k of a source X is defined as
H∞(X) = mins(log(1/Pr[X = s])). Then, the definition of a seedless extractor can be
presented as follows.

I Definition 1 (Seedless extractors for structured sources). Let D be a class of distributions
over {0, 1}n. We say a function Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for D if for any
distribution D ∈ D with min-entropy at least k, we have

Ext(D) ≈ε Um,

where Um denotes the uniform distribution over {0, 1}m and ≈ε stands for ε-close in statistical
distance (Definition 16).

By the probabilistic method, it is known that for any constant α > 0 and any distribution
family D of at most 22(1−α)k sources of min-entropy k, there is a seedless extractor outputting
m = (1− α)k bits with error 2−αk/3.

A large body of research has been devoted to constructing explicit seedless extractors for
various structured sources. There are mainly two natural perspectives to limit the structure
of a distribution: an algebraic perspective and a computational perspective.

The algebraic perspective is to impose some algebraic structure on the distribution, such
as an affine source [5]. Later, affine sources were generalized to distributions defined using
low-degree polynomials. On one hand, Dvir, Gabizon and Wigderson [10] studied polynomial
sources, which are the images of low-degree polynomial maps. On the other hand, viewing
an affine source as the kernel, or set of zeros, of an affine mapping, Dvir [9] introduced the
class of sources sampled uniformly from kernels or sets of common zeros of one or more
polynomials, which he called algebraic sources1.

The computational perspective is to assume a distribution has “low complexity”. This
started with Trevisan and Vadhan [27], who considered distributions that can be sampled
by efficient algorithms. They showed that constructing a seedless extractor for this class
is closely related to proving lower bound for circuits and gave a conditional construction
of such an extractor based on lower bound assumptions. Later, in [15], an unconditional
extractor was constructed for sources generated by space-bounded algorithms. More recently,
Viola [29] constructed a seedless extractor for AC0-samplable sources.

1 For clarification, in [9], Dvir mentioned sources which are distributed uniformly on varieties. A variety
is also a set of common zeros of one or more polynomials, but it is often defined to require the ground
field to be algebraically closed.

F. Li and D. Zuckerman 72:3

1.1 Recognizable sources
We focus on recognizable sources, first suggested by Shaltiel [25]. Recognizable sources are
uniform distributions over sets of the form {x : f(x) = v} for functions f coming from some
specified class. Formally, for any boolean function f : {0, 1}n → {0, 1}, define the source
recognizable by f , denoted by Uf , as the uniform distribution over f−1(1). For short, we
call this distribution the f -recognizable source. For any boolean function family C, the set of
C-recognizable sources is the set of f -recognizable sources, for each f ∈ C.

This notion naturally interacts with the algebraic and computational perspectives to limit
the structure of a distribution, and also captures several distributions that were widely studied.
For example, distributions with algebraic structures are those distributions recognizable by
algebraic classes – affine sources are distributions recognizable by affine functions and algebraic
sources are distributions recognizable by products of low-degree polynomials. Moreover,
distributions that have “low complexity” could also be the distributions recognizable by
low-complexity classes, such as small circuits.

Shaltiel [25] initially proposed an extractor for recognizable sources. He showed that
such extractors produced randomness that was in some sense not correlated with the input
and hence could be used for derandomization. In particular, to derandomize any class
of randomized algorithms, he needed to explicitly construct an extractor for distributions
recognizable by the class. He showed that without further changes, some appropriate known
extractors could work for distributions recognizable by decision trees, streaming algorithms,
and AC0. What’s more, assuming average-case hardness against polynomial-size circuits, he
showed that applying the hard function on disjoint blocks of the input was an extractor for
distributions recognizable by general polynomial-time algorithms.

Later, Kinne, Melkebeek and Shaltiel [16] improved the derandomization results in [25]
by using “seed-extending pseudorandom generators”, which are pseudorandom generators
that reveal their seed. They gave reductions between seed-extending PRGs and extractors
for recognizable sources. However, both Shaltiel [25] and this later paper [16] focused on
derandomization rather than constructing new extractors.

1.2 XOR Amplification
Given a boolean function f : {0, 1}n → {0, 1}, let f⊕m(x1, . . . , xm) :=

⊕
i∈[m] f(xi) denote

the XOR of m independent copies of f . The XOR Amplification Lemma2 states that if a
function f is hard on average for some computational class C, (i.e., f cannot be computed
correctly by any function in C on at most a (1/2 + p)-fraction of of the inputs), then f⊕m
cannot be computed correctly on at most a (1/2 + pΩ(m))-fraction of of the inputs. Loosely
speaking, the hardness of f is amplified when the outputs of independent copies of f are
XOR together. Indeed, this idea is analogous to the information theoretic setting. If f is a
biased coin with Pr[f = 1] = 1/2 + p, then the XOR of m independent biased coins, f⊕m,
induces a coin with Pr[f⊕m = 1] = 1/2− (−2p)m/2. However, showing that such an idea
holds in the computational setting is significantly more involved.

There are several works dedicated to proving XOR amplification for computational models.
Yao [31] first suggested XOR amplification, and proved that XOR (hardness) amplification
held for polynomial-size circuits. Unfortunately, the amplification stops when XORing more
than logarithmically many copies, which makes it not so useful for us. Later, Viola and

2 This is usually called simply the XOR lemma, or Yao’s XOR lemma, but we want to distinguish it from
a different XOR lemma.

APPROX/RANDOM 2019

72:4 Improved Extractors for Recognizable and Algebraic Sources

Wigderson [30] showed XOR amplification for multi-party communication complexity and
polynomials over GF(2). Subsequently, their proof was extended by Bogdanov, Kawachi and
Tanaka [4], to prove XOR amplification for polynomials over any prime field.

In this paper, we give a new application of XOR amplification – constructing seedless
extractors for recognizable sources.

2 Overview of our results

2.1 From XOR amplification to Extractors for recognizable sources
It is folklore that one can use correlation bounds to extract a single bit. In this paper, we use
XOR amplification to extend the output length from one bit to linear in the input length.

Intuitively, XOR amplification states that if a function f is hard on average for some
complexity class C of Boolean functions, then f⊕m(x1, . . . , xm) = f(x1) ⊕ · · · ⊕ f(xm) is
exponentially harder on average. We actually only need a weaker condition: that there exists
some h for which h⊕k gets exponentially harder.

More precisely, let C ⊆ {{0, 1}∗ → {0, 1}} be a class of Boolean functions. For a positive
constant α, we say C has α-XOR amplification if there exists a function h : {0, 1}t → {0, 1}
such that for any positive integer k, the correlation between h⊕k and g is no more than 2−αk,
for any g ∈ C.

We show that if C is closed under restrictions and C has α-XOR amplification, then there
is an efficient extractor for Cn-recognizable sources, where Cn denotes the set of all n-variate
functions in C.

I Theorem 2. Let C ⊆ {{0, 1}∗ → {0, 1}} be any boolean function class closed under
restrictions and α be any positive constant. If C has α-XOR amplification, then for any positive
integer n, there is an explicit seedless ((1− β)n, 2−Ω(αn)) extractor Ext : {0, 1}n → {0, 1}m
for Cn-recognizable sources, where β = Θ(α) > 0, m = Ω(αn), and Cn denotes the set of all
n-variate functions in C.

Our construction uses h : {0, 1}t → {0, 1} from the definition of XOR amplification. Since
the function h is fixed, its input length t is a constant, and it is computable efficiently (by
hardwiring it). We also use the generator matrix M of an asymptotically good [l,m, r]-code,
where l = n/t, so the distance r = Ω(l) = Ω(n/t). Then Ext : {0, 1}n → {0, 1}m is simply

Ext(x) = h(l)(x)M, where h(l)(x = (x1, . . . , xl)) = (h(x1), . . . , h(xl)).

Occasionally we will apply a variation of this theorem when t grows with n, in which case we
need h to be computable in time polynomial in n. For example, if the input length of h is
t = O(logn), then h should be computable in exponential time.

Li [18] uses a similar construction to extend the output length of two-source extractors
from one bit to more. Raz [22] had a related but different way to extend the output length
of his specific extractor using small biased spaces. Raz uses the XOR lemma, but his method
would not work with any asymptotically good code (as ours and Li’s does); in fact, Raz does
not even mention codes or distance.

2.1.1 Algebraic sources
An algebraic set is a set of common zeros of one or more multivariate polynomials defined
over a finite field F. An algebraic source is a random variable distributed uniformly over an
algebraic set, which was originally introduced by Dvir [9]. Algebraic sources are a natural

F. Li and D. Zuckerman 72:5

generalization of affine sources that have been widely studied. Furthermore, we say that an
algebraic source has degree d if the algebraic source can be defined by polynomials of degree
at most d.

I Definition 3 (Algebraic extractor). We say that Ext : Fn → Fm is a (k, d, ε)-algebraic
extractor over F if for any degree-d algebraic source UV with |V | ≥ |F|k, Ext(UV) ≈ε Um.

Dvir obtained explicit extractors for degree-d algebraic sources with entropy rate greater
than 1/2 over moderately sized fields, where |F| = poly(d), and with small entropy rate over
large fields, where |F| = dΩ(n2).

Golovnev and Kulikov [12] related the study of Boolean dispersers for quadratic algebraic
sets to improving circuit lower bounds. A disperser is a relaxation of an extractor, which is
only required to output a non-constant bit from a weak random source. They posed the open
question of constructing a disperser for any algebraic set of size 20.03n and defined by using
at most 1.78n quadratic polynomials. Such a disperser yields a new circuit lower bound.

Nevertheless, to our knowledge, there were only two papers on explicitly constructing
dispersers or extractors for algebraic sources over GF(2). Cohen and Tal [8] constructed
an extractor for algebraic sources defined by at most (log logn)1/(2e) quadratic polynomials.
They also constructed dispersers for algebraic sources defined by at most nα polynomials of
degree at most log0.1(n) for some constant α < 1. Our extractor construction subsumes both
their extractor and disperser, outputting nγ random bits for algebraic sources with higher
degree c logn and the same bound nα for the number of defining polynomials, where γ, c are
constants. Remscrim [23] constructed the best extractors before our work, outputting one
bit with error O(1/

√
n) for min-entropy n− nc for any c < 1/2. It can handle fairly large

degree, up to n1/2−α, where α > 0 is a constant. Our construction significantly improves
the extractor for constant-degree algebraic sources, outputting more bits and handling lower
min-entropy.

Using Theorem 2, we construct a seedless extractor for algebraic sources of constant
degree for some linear min-entropy. In particular, the new extractor has linear output
length and exponentially small error for min-entropy k ≥ (1− α)n, where α > 0 is a small
enough constant.

I Theorem 4. For any positive integer d, there is an efficient
(
(1− 1/cd)n, d, 2−Ω(n/cd))-

algebraic extractor Ext : Fn2 → Fm2 , where cd = Θ(d24d), m = Ω(n/cd).

Even for degree c logn for a small enough constant c > 0, our extractor outputs nγ bits
with error 2−Ω(nα) for n− nα min-entropy, where γ, α > 0 are some constants.

We can extend our algebraic extractor to any prime field Fq.

I Theorem 5. For any positive integer d and any prime field Fq, there is an efficient(
(1− 1/cd,q)n, d, q−Ω(n/cd,q)

)
-algebraic extractor Ext : Fnq → Fmq , where cd,q =

Θ(d222dq3 log q), m = Ω(n/cd,q).

2.1.2 Sources recognizable by communication protocols
We consider a boolean function class that has low communication complexity. Communication
complexity was defined by Yao [32], who introduced a standard 2-party communication
model. Later, Chandra, Furst, and Lipton [6] generalized this to the multiparty model. In
a t-party communication NOF (number-on-forehead) model, each party holds a separate
input and each party knows all but its own input. These parties attempt to compute (or
approximate) a given function of these t inputs by exchanging few bits of communication. The

APPROX/RANDOM 2019

72:6 Improved Extractors for Recognizable and Algebraic Sources

complexity of a communication protocol is the number of bits exchanged on the worst input.
Both deterministic and randomized communication protocols are considered. A randomized
protocol can be viewed as a distribution on deterministic protocols.

For deterministic 2-party protocols, Shaltiel [25] already constructed an efficient extractor
that has linear output for linear min-entropy and exponentially small error. To do this, he
proved that 2-source extractors are also extractors for sources recognizable by deterministic
2-party protocols, and hence some known constructions of 2-source extractors could be used.
However, this approach is tailored to the 2-party case and does not generalize to the t-party
case for some t > 2.

We construct an extractor for sources recognizable by randomized t-party protocols.
Formally, we prove the following theorem.

I Theorem 6. There exists an explicit seedless ((1 − 1/ct)n, 2−c1n/ct) extractor Ext :(
{0, 1}n/t

)t → {0, 1}c2n/ct for sources recognizable by randomized t-party communication
protocols of at most c3n/4t bits, where ct = Θ(t4t) and c1, c2, c3 are some positive constants.

This extractor has linear output for linear min-entropy and exponentially small error, and is
simply Ext(x) =

(
∧(l)
t (x)

)
M , where l = n/t, ∧t is the AND function over t variables and M

is the l × (c2n/ct) generator matrix of a good linear code.

2.1.3 Halfspace sources
Halfspace sources are sources recognizable by linear threshold functions. A linear threshold
function (abbreviated LTF) is a boolean function f : {0, 1}n → {0, 1} that can be represented
as f(x) = 1∑

i∈n
aixi>a0

for some constants a0, a1, . . . , an ∈ R. From a geometric perspective,
a boolean LTF is a halfspace-indicator to the discrete cube {0, 1}n.

We construct an efficient extractor that has linear output for linear min-entropy and
exponentially small error for halfspace sources.

I Theorem 7. There exists an explicit seedless ((1− c1)n, 2−c2n) extractor Ext : {0, 1}n →
{0, 1}c3n for halfspace sources, where c1, c2, c3 are some positive small enough constants.

The construction of this extractor is simply Ext(x) =
(
∧(l)

2 (x)
)
M , where l = n/2, M is the

l × c3n generator matrix of a good linear code.

2.2 From Seed-extending PRGs to Extractors for recognizable sources
The Kinne et al. reductions between seed-extending pseudorandom generators and extractors
for recognizable distributions were asymmetric. They showed that an extractor with expo-
nentially small error yielded a seed-extending pseudorandom generator with exponentially
small error. However, they proved a weak converse.

In this paper, we prove that a seed-extending pseudorandom generator with exponentially
small error yields an extractor with exponentially small error. This applies to flip-invariant
families of boolean functions, which are invariant under flipping input bits (see Definition 26).

I Theorem 8. Let C be a flip-invariant family of boolean functions over n bits. If G
is a seed-extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n for C, then for
any ∆ = ∆(n) > 0 we can construct an (n −∆, 2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−d
for C-recognizable sources. Specifically, if G(x) = (x,E(x)) fools any function in C, then
Ext(x ◦ y) = y ⊕ E(x) is an (n − ∆,2∆ε)-extractor for C-recognizable sources, where x ∈
{0, 1}d, y ∈ {0, 1}m, where m = n− d.

F. Li and D. Zuckerman 72:7

In particular, the reduction in [16] requires a tiny ε ≤ 2−(m+2∆) for the seed-extending
PRG to get an (n−∆, 2−∆)-extractor. Moreover, the reduction in [16] breaks down for a seed-
extending PRG, G(x) = (x,E(x)), where E(x) is longer than x. We improve the reduction
from seed-extending PRGs to extractors to require only ε ≤ 2−2∆, without depending on the
output length m. Furthermore, the new reduction can still work even for a seed-extending
PRG, G(x) = (x,E(x)), where E(x) is longer than x.

Based on this new reduction, we significantly improve extractors for two important types
of recognizable sources as follows.

2.2.1 Circuit-recognizable sources
Kinne et al. proved that the well-known Nisan-Wigderson pseudorandom generator construc-
tion [20] can be made seed-extending. Therefore, assuming hardness against small circuits,
we can construct an extractor for sources recognizable by small circuits.

I Proposition 9. For any ∆ = ∆(n) > 0 and positive integers l < n, if there is a function
H that is ε-hard at input length

√
l/2 for circuits of size s+ (n− l)2O(log(n−l)/ log l) and depth

d + 1, then we can get an (n −∆, (n − l)2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−l for any
sources recognizable by circuits of size s and depth d.

Using the hardness of the parity function against AC0 [13], we significantly improve
Shaltiel’s extractor [25] for AC0-recognizable sources.

I Theorem 10. For any ∆ = ∆(n) > 0 and positive integers l < n, there exists a polynomial
time computable (n −∆, (n − l)2∆−Ω(l1/(2d+2))) extractor Ext : {0, 1}n → {0, 1}n−l for any
sources recognizable by circuits of size 2n1/d and depth d.

In particular, for min-entropy n − n1/(αd), our extractor outputs n − n2/α+O(1/d) bits,
whereas Shaltiel’s extractor outputs only n1/(αd) bits. When α > 2d/(d−1) is a large enough
constant, our extractor outputs n−o(n) bits whereas Shaltiel’s extractor outputs only n1/(αd)

bits. For min-entropy n − polylog(n) bits, our extractor outputs n − polylog(n), whereas
Shaltiel’s extractor outputs only polylog(n) bits.

Our methods also apply to formulas. Komargodski, Raz and Tal [17] constructed an
explicit function h : {0, 1}n → {0, 1} that is 2−Ω(r)-hard for any deMorgan formula of size
n3−o(1)/r2. Based on this hardness result, we can construct an efficient extractor for sources
recognizable by deMorgan formulas of size close to n3/2.

I Theorem 11. For any ∆, r, α > 0 and m ≤ (1 − α)n, there exists a polynomial time
computable (n−∆,m2∆−Ω(r))-extractor Ext : {0, 1}n → {0, 1}m for any sources recognizable
by deMorgan formulas of size n3/2−o(1)/r2.

2.2.2 Sources recognizable by efficient randomized algorithms
Note that there are no efficient seed-extending cryptographic PRGs. Otherwise, with revealed
seeds, it is easy to efficiently distinguish the output of an efficient seed-extending PRG,
G(x) = (x,E(x)), from a random string (x, y), by checking whether y equals E(x).

We show that there is an inefficient seed-extending cryptographic PRG implied by the
existence of one-way permutations. By our reduction, we show that a one-way permutation
with exponentially small error yields an (n− nΩ(1), 2−nΩ(1)) extractor extracting n− nO(1)

bits from sources recognizable by BPP algorithms. Formally, this follows by taking ε = 2−cnα

and q(n) = nw(1) in the following theorem.

APPROX/RANDOM 2019

72:8 Improved Extractors for Recognizable and Algebraic Sources

I Theorem 12. For any polynomial-time computable functions t(·) and ε(·), assume that
f : {0, 1}∗ → {0, 1}∗ is a one-way permutation with error ε(·) against t(·)-bounded invert-
ers. Then for any ∆ = ∆(n) > 0 and a positive constant δ < 1, we can construct an(
n−∆, O

(
2∆ε(nδ)cδ

))
extractor Ext : {0, 1}n → {0, 1}n−nδ for sources recognizable by ran-

domized algorithms running in time
(
t(nδ)

)cδ , where cδ is a constant depending on δ. The
running time of the extractor is a polynomial times the time to compute the inverse function
f−1 of the one-way permutation f with input length nδ. Due to the space limitation, we
prove the following theorem in the full version of this paper.

Furthermore, the running time of such an extractors will be quasi-polynomial if there exists
a sufficiently strong one-way permutations. In particular, by scaling down, we have the
following corollary.

I Corollary 13. For any constants a, b, c, δ > 0, assume that there exists a one-way permuta-
tion invertible in time O

(
2na
)
with error 2−nc against 2δnb-bounded inverters, Then, for any

positive constants α and β < 1, we can get an
(
n− cβ logcα (n) , O

(
2−cβ logcα(n))) extractor

Ext : {0, 1}n → {0, 1}n−nβ for sources recognizable by randomized algorithms running in time
2cβδ logbα(n), where cβ is a constant depending on β.The running time of the extractor is
O
(

2logaα(nβ)
)
.

3 Overview of our main constructions and proofs

3.1 From XOR amplification to Extractors
In this subsection, we describe how to construct a seedless extractor for C-recognizable
sources if there exists a function h : {0, 1}t → {0, 1} such that for any g ∈ C and k ≤ n/t,
Cor(h⊕k, g) ≤ 2−Ω(k). Think of t = O(1).

We start with the statistical XOR lemma3, usually attributed to Vazirani. We say a
random variable Z over {0, 1} is ε-biased if bias(Z) = Cor(Z, 0) = |Pr[Z = 0] − Pr[Z =
1]| ≤ ε.

I Lemma 14 (Statistical XOR Lemma). Let X1, . . . , Xm be 0-1 random variables such that
for any nonempty S ⊆ {1, . . . ,m}, the random variable

⊕
i∈S Xi is ε-biased. Then, the

distribution of (X1, . . . , Xm) is ε2m/2-close to uniform.

Let gi(x) be the i-th bit of Ext(x) for each i ∈ [m]. Thus, to show that the output of Ext
is close to uniform, it suffices to show that for any non-empty set S ⊆ [m], gS =

∑
i∈S gi is

low-biased conditioned on f(x) = 1 for each f ∈ C. By XOR amplification, it is enough to
guarantee that each gS is the sum of Ω(n) independent copies of h, and hence gS has 2−Ω(n)

correlation with any function in C.
A linear code is a natural candidate to guarantee that each gS is the sum of Ω(n)

independent copies. Let h(l) : {0, 1}tl → {0, 1} denote the concatenation of l copies of h
and M be the generating matrix of an asymptotically good [l,m, r]2 code. Our construction
is simply

Ext(x) = (g1(x), . . . , gm(x)) = h(l)(x)M.

Finally, we observe that the bias of gS conditioned on f(x) = 1 can be bounded by the
correlation between gS and f plus the bias of gS .

3 The statistical XOR lemma is unrelated to the XOR amplification used in our proof.

F. Li and D. Zuckerman 72:9

I Lemma 15. |Pr[gS(X) = 1|f(X) = 1]− Pr[gS(X) = 0|f(X) = 1]| ≤ Cor(gS ,f)+bias(gS)
2 Pr[f(X)=1] .

That is, if we choose a good linear code, then Ext(x) = h(l)(x)M is an extractor for C-
recognizable sources with exponentially small error.

For details, see Section 5.

3.2 Algebraic extractors over GF(2)

In this subsection, we describe our algebraic extractor construction.
Notice that to construct a degree-d algebraic extractor that outputs only one bit, it is

enough to let the extractor have small correlation bounds with degree-d polynomials. This
fact is implicitly proved by Dvir [9] and observed by others, e.g., Eshan Chattopadhyay and
Avishay Tal (personal communication). Based on this fact, we combine XOR amplification
and linear codes to extend the output length form one bit to more.

First we observe that an algebraic source over n bits defined by n-variate polynomials
p1, . . . , pk is also a source recognizable by the product

∏
i∈[k](pi + 1). Let Vd denote the set

of all products of polynomials of degree at most d. Thus, for any positive integer n, to get
an extractor for n-bit algebraic sources of degree d, it suffices to construct an extractor for
Vd-recognizable sources over n bits. In particular, by the previous discussion, it suffices to
show that XOR amplification holds for Vd.

Second we observe that to show that a function f has low correlations with Vd, it suffices
to show that f has low correlation with any d-degree polynomials. This is because the L1
norm of the Fourier transform of the AND function is at most 2.

Viola and Wigderson [30] proved XOR amplification for low-degree polynomials over
GF(2). Specifically, if a Boolean function h over {0, 1}O(d) has correlation at most 1− 1/2d
with degree-d polynomials, then the correlation between h⊕l (see Section 1.2) and degree-d
polynomials drops exponentially with l. Such h are known.

For details, see Section A.1.

3.3 From seed-extending PRGs to Extractors

We start with a new reduction from pseudorandom generators to seedless extractors. Observe
that a seedless extractor Ext : {0, 1}n → {0, 1}m partitions {0, 1}n as

⋃
z∈{0,1}m Ext−1(z). If

Ext is a (k, ε)-extractor for C-recognizable sources, then for every f ∈ C with |f−1(1)| ≥ 2k,
most intersections Ext−1(z) ∩ f−1(1) should have almost the same size. That is, for most
m-bit strings z, the preimage Ext−1(z) is an ε-pseudorandom set against any f ∈ C with
|f−1(1)| ≥ 2k.

Now, given PRGs, how do we construct extractors? From the above observation, con-
verting an ε-pseudorandom set into a partition of ε-pseudorandom sets is a possible way. If
each preimage Ext−1(z) of Ext is an ε-pseudorandom set for C, Ext should be an extractor
for C-recognizable sources with a bit worse parameters.

To make Ext−1(z) an ε-pseudorandom set for each z, we need a seed-extending PRG
G(x), i.e., G(x) = x ◦ E(x) for some function E : {0, 1}d → {0, 1}n−d. By linearly shifting
the set {(x,E(x))}, we can partition {0, 1}n as

⋃
z∈{0,1}n−d

{
(x, (E(x)⊕ z)) : x ∈ {0, 1}d

}
.

We therefore define Ext(x, z) = E(x)⊕ z. Since C is a flip-invariant function family, we have
that the set Ext−1(z) =

{
(x, (E(x)⊕ z)) : x ∈ {0, 1}d

}
fools any function f in C.

For details, see Section 6.

APPROX/RANDOM 2019

72:10 Improved Extractors for Recognizable and Algebraic Sources

3.4 Algebraic extractors over prime fields
We remark that the main results used in building our algebraic extractor over GF(2) – the
XOR amplification, the statistical XOR lemma and the asymptotically linear code – all have
been extended to prime fields. Thus, to generalize our algebraic extractor, the remaining
technical parts are not hard.

Bogdanov, Kawachi and Tanaka [4] proved XOR amplification for low-degree polynomials
over prime fields, i.e., the sum of k independent copies of h was q−Ω(k)-hard for Pd if h was
mildly hard. However, besides the sum of copies, we require the same hardness result for
linear combinations of k copies of h. We prove this hardness result by using the original
proof of Bogdanov, Kawachi and Tanaka with some slight modifications. The main revision
of our proof uses the fact that the Gowers norm is multiplicative for functions over disjoint
sets of input variables.

Furthermore, over a prime field Fq, an algebraic source over n bits defined by n-variate
polynomials p1, . . . , pk is a source recognizable by the product

∏
i∈[k](1− p

q−1
i). We need to

analyze the product of the special form
∏
i∈[k](1− x

q−1
i), as an analog of the AND function

over GF(2).
The reason we assume prime fields in our results is that XOR amplification for polynomials

is known only over prime fields.
For details, please check the full version of this paper.

4 Preliminaries

In the following, for any two binary strings x, y, let x ◦ y denote their concatenation, and let
x⊕ y denote their bitwise XOR when x and y have the same length.

I Definition 16 (Statistical distance). Let D1 and D2 be two distributions over a set S. Define
the statistical distance between D1 and D2 as |D1−D2| = 1

2
∑
s∈S |Pr[D1 = s]− Pr[D2 = s]| .

We say D1 is ε-close to D2, denoted by D1 ≈ε D2, if |D1 −D2| ≤ ε.

I Definition 17 (Recognizable source). For any boolean function f : {0, 1}n → {0, 1}, define
the source recognizable by f , denoted by Uf , as the uniform distribution over f−1(1). For
short, we call this distribution the f -recognizable source.

For any boolean function family C, the set of C-recognizable sources is the set of f-
recognizable sources for f ∈ C.

For l ∈ N, let Ul denote the uniform distribution on l bits.

I Definition 18 (Extractor for recognizable sources [25]). Let C be a class of functions
C : {0, 1}n → {0, 1}. We say that Ext : {0, 1}n → {0, 1}m is a (k, ε)-extractor for C-
recognizable sources if for every f ∈ C such that

∣∣f−1(1)
∣∣ ≥ 2k, Ext(Uf) ≈ε Um.

Note that when the output length m = 1, the extractor is simply a boolean function
which has low correlation with any function in C.

4.1 Algebraic sources
An algebraic set is a set of common zeros of one or more multivariate polynomials defined
over a finite field F.

I Definition 19 (Algebraic set). For any s polynomials f1, . . . , fs ∈ F[x1, . . . , xn], the set
V (f1, . . . , fs) = {x ∈ Fn|fi(x) = 0,∀i ∈ [s]} is an algebraic set. We say V is an algebraic set
of degree d, if each polynomial fi has degree at most d.

F. Li and D. Zuckerman 72:11

An algebraic source is a random variable distributed uniformly over an algebraic set as
initially defined by Dvir [9].

I Definition 20 (Algebraic source). An algebraic source is the uniform distribution UV over
an algebraic set V . If V is a degree-d algebraic set, then we say UV is an algebraic source of
degree d.

I Definition 21 (Algebraic extractor). We say that Ext : Fn → Fm is a (k, d, ε)-algebraic
extractor if for any degree-d algebraic source UV with |V | ≥ |F|k, Ext(UV) ≈ε Um.

I Definition 22 (Linear codes over prime fields). For a prime q, a linear code of length n and
dimension k is a k-dimensional linear subspace C of the vector space Fnq . If the distance of
the code C is d, i.e., the minimum number of two codewords in which they differ, we say that
C is an [n, k, d]q code. A family of codes {Cn} is asymptotically good if there exist constants
0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear code has an associated generating matrix M ∈ Fk×nq , and every
codeword can be expressed as vM , for some vector v ∈ Fkq . There are explicit constructions
of asymptotically good linear codes, such as the Justensen codes over GF(2) constructed in
[14] and the expander codes over GF(q) in [1] for any prime q.

I Definition 23 (Correlation over prime fields). Let f, g : Fnq → Fq be two functions over n
inputs. The correlation between f and g with respect to the uniform distribution is defined as

Cor(f, g) := |Eeq[f(x) + g(x)]| ∈ [0, 1],

where eq[x] := wx for x ∈ {0, 1, . . . , q − 1}, where w denotes the q-th root of unity.

For a class C of functions, we denote by Cor(f, C) the maximum of Cor(f, C) over all C ∈ C
whose domain is the same as f .

Furthermore, when q = 2, we have e2[x] = (−1)x, and Cor(f, g) =
|Pr[f(x) = g(x)]− Pr[f(x) 6= g(x)]|. We often write e2[x] as e[x] for convenience.

I Definition 24 (f (m), fv). For any function f : Fnq → Fq, let f (m) denote the concatenation
of m copies of f , i.e., f (m)(x1, x2, . . . , xm) := (f(x1), . . . , f(xm)), where x1, . . . , xm ∈ Fnq .
For each v = (v1, . . . , vm) ∈ Fmq , let fv denote the linear combination of m copies of f
according to v, i.e., fv(x1, x2, . . . , xm) :=

∑
i∈[m] vif(xi).

Let F∗q = Fq \ {0} denotes the set of non-zero elements in Fq. We remark that the
statistical XOR lemma has been generalized to prime fields by e.g., Goldreich [11].

I Lemma 25 (Statistical XOR Lemma over Fq). Let X = (X1, . . . , Xm) be random vector
over Fmq such that for any nonzero vector v = (v1, . . . , vm) ∈ Fmq \ {0m}, the random variable
v ·X =

∑
i∈[m] viXi is ε-biased. Then, the distribution of (X1, . . . , Xm) is εqm/2-close to the

uniform distribution over Fmq .

For example, when m = 1, for a random variable X over Fq, to show that X ≈ε UFq , we
need to show that bias(αX) ≤ ε/√q for each α ∈ F∗q .

4.2 Seed-extending PRGs
I Definition 26 (Flip-invariant family). We say a boolean function family C over n bits is
flip-invariant if for any string s ∈ {0, 1}n, f ∈ C implies f(x⊕ s) ∈ C.

APPROX/RANDOM 2019

72:12 Improved Extractors for Recognizable and Algebraic Sources

I Definition 27 (Seed-extending pseudorandom generator). A seed-extending pseudorandom
generator is a generator G that outputs the seed as part of the pseudorandom string.

Formally, a seed-extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n for a
class of functions over n bits, is a seed-extending function, i.e., G(s) = (s, E(s)) for some
function E, such that

|Pr[f(G(Ud)) = 1]− Pr[f(Un) = 1]| ≤ ε.

5 From XOR Amplification to Extractors for Recognizable Sources

First we define XOR amplification for a boolean function class that contains functions with
various input lengths. Recall that f⊕m(x1, . . . , xm) =

⊕
i∈[m] f(xi).

I Definition 28 (α-XOR amplification for a boolean function class). Let C ⊆ {{0, 1}∗ →
{0, 1}} be a class of boolean functions. For a positive constant α, we say C has α-XOR
amplification if there exists a function h : {0, 1}t → {0, 1} such that for any positive integer k,
Cor(h⊕k, g) ≤ 2−αk, for any g ∈ C.

However, for constructing extractors for n-bit recognizable sources, we need to focus on the
specific subset Cn ⊆ C that contains all n-variate functions in C. We define XOR amplification
for Cn to also allow fixing some input bits.

I Definition 29 ((α,w)-XOR amplification for functions with a fixed input length). For a set
Cn of n-variate functions C : {0, 1}n → {0, 1} and a positive constant α, we say Cn has
(α,w)-XOR amplification for a function h : {0, 1}t → {0, 1} if for any vector v ∈ {0, 1}bn/tc
with at least w ones, Cor(hv, Cn) ≤ 2−αw, where we add dummy variables to the input of hv
if hv has less than n input variables.

Moreover, we say Cn has α-XOR amplification for h, if Cn has (α,w)-XOR amplification
for h for each positive integer w ≤ bn/tc.

Note that if C is closed under restrictions, the fact that C has α-XOR amplification implies
that Cn has also α-XOR amplification for every positive integer n. Formally,

I Lemma 30. Let C ⊆ {{0, 1}∗ → {0, 1}} be a class of boolean functions closed under
restrictions. Let Cn ⊆ C denote the set of all n-variate functions in C. If C has α-XOR
amplification for a function h : {0, 1}t → {0, 1}, then Cn has also α-XOR amplification for h
for every positive integer n.

Proof. Assume that C has α-XOR amplification for a function h : {0, 1}t → {0, 1}, i.e.,
Cor(h⊕k, C) ≤ 2−αk for each positive integer k. Then, we need to prove that for every positive
integer n, Cn has also α-XOR amplification for h. In particular, fix n and let l = bn/tc. It
suffices to prove that for any vector v ∈ {0, 1}l with k ones, Cor(hv, Cn) ≤ Cor(h⊕k, C), as
Cor(h⊕k, C) ≤ 2−αk.

F. Li and D. Zuckerman 72:13

To prove this, without loss of generality, assume that the first k coordinates of v are all
1’s, and the remaining coordinates are all 0’s. Thus, hv depends only on the first kt variables.
For any n-variate function C(x1, . . . , xn) ∈ Cn,

Cor(hv, C) = EX∼Ukt,Y∼Un−kte[hv(X,Y) + C(X,Y)]
= EY∼Un−kt [EX∼Ukte[hv(X,Y) + C(X,Y)]]

≤ 1
2n−kt

∑
Y0∈{0,1}n−kt

Cor
(
h⊕k(X), C(X,Y0)

)
≤ 1

2n−kt
∑

Y0∈{0,1}n−kt
Cor(h⊕k, C)

= Cor(h⊕k, C).

The last inequality follows since C is closed under restrictions, i.e., C(X,Y0) ∈ C for any
Y0 ∈ {0, 1}n−kt. J

I Theorem 31. Let Cn be a family of boolean functions over n bits containing the constant
function f(x) = 0. For any positive integers n,m, t, let M be the l ×m generating matrix
of an asymptotically good [l,m, r0]2 code, where l = n/t. Assume that Cn has (α, r)-XOR
amplification for h : {0, 1}t → {0, 1}, where r ≤ r0. Then, the function Ext : {0, 1}n →
{0, 1}m,

Ext(x) = h(l)(x)M,

is an (n−∆, 2m/2+∆−αr) extractor for Cn-recognizable sources.

Proof. For convenience, let (g1(x), . . . , gm(x)) = h(l)(x)M . To show that the output of Ext
is 2m/2+∆−αr-closed to the uniform, by the statistical XOR Lemma, it suffices to show that
for any non-empty set S ⊆ [m], gS =

∑
i∈S gi is 2∆−αr-biased conditioned on f(x) = 1 for

any f ∈ Cn with |f−1(1)| ≥ 2n−∆.
First we observe that the bias of gS conditioned on f(x) = 1 can be bounded by the

correlation between gS and f plus the bias of gS .

I Lemma 32 (Lemma 15, restated).

|Pr[gS(X) = 1|f(X) = 1]− Pr[gS(X) = 0|f(X) = 1]| ≤ Cor(gS , f) + bias(gS)
2 Pr[f(X) = 1] .

Proof. By multiplying 2 Pr[f(X) = 1] on both sides, it is equivalent to prove that

2 |Pr[gS(X) = 1 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 1]| ≤ Cor(gS , f) + bias(gS).

Notice that

Cor(gS , f) = |Pr[gS(X) = f(X)]− Pr[gS(X) 6= f(X)]|
= |Pr[gS(X) = 1 ∧ f(X) = 1] + Pr[gS(X) = 0 ∧ f(X) = 0]
− Pr[gS(X) = 0 ∧ f(X) = 1]− Pr[gS(X) = 1 ∧ f(X) = 0]|,

and

bias(gS) = |Pr[gS(X) = 1]− Pr[gS(X) = 0]|
= |Pr[gS(X) = 1 ∧ f(X) = 1] + Pr[gS(X) = 1 ∧ f(X) = 0]
− Pr[gS(X) = 0 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 0]|.

APPROX/RANDOM 2019

72:14 Improved Extractors for Recognizable and Algebraic Sources

Thus, by the triangle inequality,

bias(gS) + Cor(gS , f) ≥ |2 Pr[gS(X) = 1 ∧ f(X) = 1]− 2 Pr[gS(X) = 0 ∧ f(X) = 1]|
= 2 |Pr[gS(X) = 1 ∧ f(X) = 1]− Pr[gS(X) = 0 ∧ f(X) = 1]| . J

Then, observe that not only is each gi a sum of at least r independent copies, but also so
is any non-empty sum of the gi, and hence has exponentially small correlation with degree-d
polynomials.

I Lemma 33. For any nonempty set S ⊆ [m], Cor(gS , Cn) ≤ 2−αr.

Proof. Note that

gS(x) =
∑
i∈S

h(l)(x)Mi = h(l)(x)
(∑
i∈S

Mi

)
,

whereMi denotes the i-th row of the matrixM . AsM is the generating matrix of an [l,m, r]2
code and S is non-empty,

∑
i∈SMi is a codeword and hence has at least r 1’s. Thus, gS is

the XOR of at least r0 independent copies of h. By the assumed (α, r)-XOR amplification,
we know Cor(gS , Cn) ≤ 2−αr. J

Since the constant function 0 ∈ Cn, we also have that bias(gS) = Cor(gS , 0) ≤ 2−αr.
Thus, by Lemma 32, the bias of gS conditioned on f(x) = 1 is at most 2−αr/p, where
p = Pr[f(X) = 1].

At last, we have p = |f−1(1)|
2n ≥ 2−∆ by the min-entropy requirement that |f−1(1)| ≥ 2n−∆.

Therefore, gS(x) is 2∆−αr-biased conditioned on f(x) = 1. J

Combining with an explicit asymptotically good [l,m, r]2 code, we prove the following
theorem.

I Theorem 34. Let C ⊆ {{0, 1}∗ → {0, 1}} be any boolean function class closed under
restrictions and α be any positive constant. Let Cn denote the set of all n-variate functions
in C. If Cn has (α, δn)-XOR amplification for h : {0, 1}t → {0, 1}, where δ < 1/t is a positive
constant, then there is an explicit (n− c1αl, 2−c2αl) extractor Ext : {0, 1}n → {0, 1}c3αl for
Cn-recognizable sources, where l = n/t and c1, c2, c3 are some positive constants.

Moreover, if C has α-XOR amplification for a function h : {0, 1}t → {0, 1}, then for any
positive integer n, there is an explicit seedless (n− c1αl, 2−c2αl) extractor Ext : {0, 1}n →
{0, 1}c3αl for Cn-recognizable sources, where l = n/t and c1, c2, c3 are some positive constants.

Proof. Note that if C has α-XOR amplification for a function h, then by Lemma 30, Cn also
has α-XOR amplification for h for every positive integer n, i.e., Cn also has (α, δl)-XOR
amplification for h by definition. Now, we start with the assumption that Cn has (α, δl)-XOR
amplification for h. We use an explicit [l, δ1l, δ2l]2 linear code for some constants δ1 > 0 and
δ2 > δ by Justesen [14]. Therefore, Theorem 31 yields an (n−∆, 2m/2+∆−αδ2l) extractor
Ext : {0, 1}n → {0, 1}m for Cn-recognizable sources. That is, by setting ∆ = c1αl and
m = c3αl for some small positive constants c1, c3, we get the desired (n − c1αl, 2−c2αl)
extractor, where c2 = −(c3/2 + c1 − δ2) > 0 is also a positive constant. J

F. Li and D. Zuckerman 72:15

6 From Seed-Extending PRGs to Extractors for Recognizable Sources

Note that Kinne et al. [16] already showed reductions between extractors for recognizable
sources and seed-extending PRGs.

I Lemma 35 ([16, Theorem 7]). Let C : {0, 1}n × {0, 1}m → {0, 1} be a function. Let
∆ = m + log(1/ε) and let E : {0, 1}n → {0, 1}m be an (n − ∆, 2−∆)-extractor for C-
recognizable distributions, where each function in C is of the form fr(x) = C(x, r) where
r ∈ {0, 1}m is an arbitrary string. Then, G(x) = (x,E(x)) is ε-pseudorandom for C.

I Lemma 36 ([16, Theorem 8]). Let f : {0, 1}n → {0, 1} be a function and let E : {0, 1}n →
{0, 1}m be a function such that G(x) = (x,E(x)) is ε-pseudorandom for tests T (x, r) of the
form Tz(x, r) = f(x) ∧ (r = z) where z ∈ {0, 1}m is an arbitrary string. For any ∆ > 0, if
ε ≤ 2−(m+2∆) then E is an (n−∆, 2−∆)-extractor for the distribution recognized by f .

The Lemma 3.2 requires a tiny ε ≤ 2−(m+2∆) for the seed-extending PRG to get an
(n − ∆, 2−∆)-extractor. In the following, we improve the reduction from seed-extending
PRGs to extractors to require only ε ≤ 2−2∆. Moreover, our extractor is even stronger –
the output of our extractor is close to uniform with relative error, which will be defined
as follows.

I Definition 37 (Statistical distance with relative error). We say that a distribution Z on
{0, 1}m is ε-close to uniform with relative error if for every event A ⊆ {0, 1}m,

|Pr[Z ∈ A]− µ(A)| ≤ ε · µ(A), where µ(A) = |A|/2m.

Note that if Z is ε-close to uniform with relative error, then it is also ε-close to uniform.
Next we define extractors with relative error analogously.

I Definition 38 (Seedless extractor with relative error, [2, Definition 1.19]). Let C be a class
of distributions over {0, 1}n. A function Ext : {0, 1}n → {0, 1}m is a (k, ε)-relative-error
extractor for C if for every distribution X in the class C such that H∞(X) ≥ k, Ext(X) is
ε-close to uniform with relative error.

We remark that the notions of statistical distance and extractors with relative error were
introduced by Applebaum, Artemenko, Shaltiel, and Yang [2]. They translate relative-error
extractors for distributions recognizable by small circuits into incompressible functions.
However, parameters of our relative-error extractors are not strong enough to get incom-
pressible functions.

Now we prove the reduction lemma from seed-extending PRGs to seedless extractors with
relative error, which directly implies the reduction from seed-extending PRGs to seedless
extractors.

I Lemma 39. Let C be a flip-invariant family of boolean functions over n bits. If G is a
seed-extending (d, ε)-pseudorandom generator G : {0, 1}d → {0, 1}n, then we can construct an
(n−∆, 2∆ε)-relative-error extractor Ext : {0, 1}n → {0, 1}n−d as follows. If G(x) = (x,E(x))
fools any function in C, then Ext(x ◦ y) = y⊕E(x) is an extractor for C-recognizable sources,
where x ∈ {0, 1}d, y ∈ {0, 1}n−d.

For intuition, observe that a seedless extractor Ext : {0, 1}n → {0, 1}m partitions {0, 1}n
as
⋃
z∈{0,1}m Ext−1(z). If Ext is a (k, ε)-relative-error extractor for C-recognizable sources,

then for every f ∈ C with |f−1(1)| ≥ 2k, all intersections Ext−1(z)∩f−1(1) should have almost
the same size. That is, for most m-bit strings z, the preimage Ext−1(z) is an ε-pseudorandom
set against any f ∈ C with |f−1(1)| ≥ 2k.

APPROX/RANDOM 2019

72:16 Improved Extractors for Recognizable and Algebraic Sources

Now, given PRGs, how to construct extractors? From the above observation, converting
an ε-pseudorandom set into a partition of ε-pseudorandom sets is a possible way. If each
preimage Ext−1(z) of Ext is an ε-pseudorandom set for C, Ext should be a relative-error
extractor for C-recognizable sources with a bit worse parameters, which will be precisely
calculated in the following formal proof.

To make Ext−1(z) an ε-pseudorandom set for each z, we need a PRG of the specific
form: G(x) = B(x) ◦ E(x), for some bijection B : {0, 1}d → {0, 1}d and some function
E : {0, 1}d → {0, 1}n−d. By linearly shifting the set {(B(x), E(x))}, we can partition {0, 1}n
as
⋃
z∈{0,1}n−d

{
(B(x), (E(x)⊕ z)) : x ∈ {0, 1}d

}
. Since C is a flip-invariant function family,

we have that the set Ext−1(z) =
{

(B(x), (E(x)⊕ z)) : x ∈ {0, 1}d
}
fools any function f in C.

Note that to convert the PRG of the form (B(x), E(x)) into an extractor, the above
intuition gives Ext(x) = E(B−1(x)). Thus, to get an efficient extractor, we have to assume
that E(B−1(x)) can be efficiently computed. That is, the PRG of the form (B(x), E(x)) also
gives an efficient seed-extending PRG (x,E(B−1(x))). Therefore, for constructing extractors
from the above intuition, we only need to focus on the seed-extending PRGs.

Proof. For convenience, let m = n− d denote the output length of Ext.
First, we observe that, for any fixed z, Gz(x) = (x, (E(x)⊕z)) fools any function f(x, y) in

C. Notice that to prove Gz(x) fools f(x, y), it is equivalent to prove (x,E(x)) fools f(x, y⊕z).
Because of the flip-invariant property of C, we know if f(x, y) ∈ C, then f(x, y ⊕ z) ∈ C. So
G(x) = x ◦ E(x) fools f(x, y ⊕ z). That is, Gz(x) fools the function f(x, y).

Note that Ext−1(z) is the range of Gz. Then, we can get

Pr[Ext(X ◦ Y) = z|f(X ◦ Y) = 1]

=Pr[Ext(X ◦ Y) = z ∧ f(X ◦ Y) = 1]
Pr[f(X ◦ Y) = 1]

=Pr[Ext(X ◦ Y) = z]
Pr[f(X ◦ Y) = 1] Pr[f(X ◦ Y) = 1|Ext(X ◦ Y) = z]

=Pr[Ext(X ◦ Y) = z]
Pr[f(X ◦ Y) = 1] Pr[f(Gz(X)) = 1]

=Pr[Ext(X ◦ Y) = z]
Pr[f(X ◦ Y) = 1] (Pr[f(X ◦ Y) = 1]± ε)

=p± ε
p

Pr[Ext(X ◦ Y) = z], where p = Pr[f(X ◦ Y) = 1],

=p± ε
p

1
2m .

For any nonempty subset S ⊆ {0, 1}m, summing over all z ∈ S, we deduce that the output
of Ext is ε

pµ(S)-close to the uniform distribution over S. Furthermore, we have ε
p ≤ 2∆ε,

since p = |f−1(1)|
2n ≥ 2−∆ by the min-entropy requirement that |f−1(1)| ≥ 2n−∆. Therefore,

Ext(x◦y) = y⊕E(x) is an (n−∆, 2∆ε)-relative-error extractor for C-recognizable sources. J

References
1 Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M Roth. Construction of

asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE
Transactions on information theory, 38(2):509–516, 1992.

2 Benny Applebaum, Sergei Artemenko, Ronen Shaltiel, and Guang Yang. Incompressible func-
tions, relative-error extractors, and the power of nondeterministic reductions. Computational
complexity, 25(2):349–418, 2016.

F. Li and D. Zuckerman 72:17

3 László Babai, Noam Nisant, and Márió Szegedy. Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. Journal of Computer and System Sciences,
45(2):204–232, 1992.

4 Andrej Bogdanov, Akinori Kawachi, and Hidetoki Tanaka. Hard functions for low-degree
polynomials over prime fields. ACM Transactions on Computation Theory (TOCT), 5(2):5,
2013.

5 Jean Bourgain. On the construction of affine extractors. GAFA Geometric And Functional
Analysis, 17(1):33–57, 2007.

6 Ashok K Chandra, Merrick L Furst, and Richard J Lipton. Multi-party protocols. In
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages 94–99.
ACM, 1983.

7 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988.

8 Gil Cohen and Avishay Tal. Two Structural Results for Low Degree Polynomials and Ap-
plications. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, page 680, 2015.

9 Zeev Dvir. Extractors for varieties. Computational complexity, 21(4):515–572, 2012.
10 Zeev Dvir, Ariel Gabizon, and Avi Wigderson. Extractors and rank extractors for polynomial

sources. Computational Complexity, 18(1):1–58, 2009.
11 O Goldreich. Three XOR-Lemmas – An exposition, 1995.
12 Alexander Golovnev and Alexander S Kulikov. Weighted gate elimination: Boolean dispersers

for quadratic varieties imply improved circuit lower bounds. In Proceedings of the 2016 ACM
Conference on Innovations in Theoretical Computer Science, pages 405–411. ACM, 2016.

13 Johan Håstad. Computational limitations of small-depth circuits. MIT Press, 1987.
14 Jørn Justesen. Class of constructive asymptotically good algebraic codes. IEEE Transactions

on Information Theory, 18(5):652–656, 1972.
15 Jesse Kamp, Anup Rao, Salil Vadhan, and David Zuckerman. Deterministic extractors for

small-space sources. Journal of Computer and System Sciences, 77(1):191–220, 2011.
16 Jeff Kinne, Dieter van Melkebeek, and Ronen Shaltiel. Pseudorandom generators, typically-

correct derandomization, and circuit lower bounds. Computational complexity, 21(1):3–61,
2012.

17 Ilan Komargodski, Ran Raz, and Avishay Tal. Improved Average-Case Lower Bounds for De
Morgan Formula Size: Matching Worst-Case Lower Bound. SIAM Journal on Computing,
46(1):37–57, 2017.

18 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
168–177. IEEE, 2016.

19 Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul Erdos
is Eighty, 1:301–315, 1993.

20 Noam Nisan and Avi Wigderson. Hardness vs. randomness. In Foundations of Computer
Science, 1988., 29th Annual Symposium on, pages 2–11. IEEE, 1988.

21 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, 1996.

22 Ran Raz. Extractors with weak random seeds. In Proceedings of the thirty-seventh annual
ACM symposium on Theory of computing, pages 11–20. ACM, 2005.

23 Zachary Remscrim. The Hilbert Function, Algebraic Extractors, and Recursive Fourier
Sampling. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 197–208. IEEE, 2016.

24 Miklos Santha and Umesh V Vazirani. Generating quasi-random sequences from semi-random
sources. Journal of Computer and System Sciences, 33(1):75–87, 1986.

25 Ronen Shaltiel. Weak derandomization of weak algorithms: explicit versions of Yao’s lemma.
Computational complexity, 20(1):87, 2011.

APPROX/RANDOM 2019

72:18 Improved Extractors for Recognizable and Algebraic Sources

26 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 77–82. ACM, 1987.

27 Luca Trevisan and Salil Vadhan. Extracting randomness from samplable distributions. In
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 32–42.
IEEE, 2000.

28 Emanuele Viola. Guest Column: correlation bounds for polynomials over {0 1}. ACM SIGACT
News, 40(1):27–44, 2009.

29 Emanuele Viola. Extractors for circuit sources. SIAM Journal on Computing, 43(2):655–672,
2014.

30 Emanuele Viola and Avi Wigderson. Norms, XOR Lemmas, and Lower Bounds for Polynomials
and Protocols. Theory of Computing, 4(1):137–168, 2008.

31 Andrew C Yao. Theory and application of trapdoor functions. In Foundations of Computer
Science, 1982. SFCS’08. 23rd Annual Symposium on, pages 80–91. IEEE, 1982.

32 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing (prelim-
inary report). In Proceedings of the eleventh annual ACM symposium on Theory of computing,
pages 209–213. ACM, 1979.

A Application of Theorem 2

A.1 Algebraic extractors over GF(2)
In this subsection, we will show that for any algebraic sources of constant degree over
GF(2), there exists an efficient extractor that has linear output for linear min-entropy and
exponentially small error. Formally, we will prove the following theorem:

I Theorem 40. For any positive integer d, there is an efficient
(
(1− 1/cd)n, d, 2−Ω(n/cd))-

algebraic extractor Ext : {0, 1}n → {0, 1}m, where cd = Θ(d24d), m = Ω(n/cd).

Let Pd denote the set of all polynomials of degree at most d over GF(2). Let Vd denote the
set of all products of polynomials in Pd and Vd,n denote the set of all products of n-variate
polynomials in Pd.

Notice that an algebraic source of degree d over n bits is also a Vd,n-recognizable source.

I Lemma 41. An n-bit algebraic source of degree d iff it is a Vd,n-recognizable source.

Proof. Let UV denote an arbitrary algebraic source, where V = {x ∈ {0, 1}n|pi(x) = 0, pi ∈
Pd,∀i ∈ [k]} is an algebraic set of degree d over n bits. Notice that V can be viewed as the
set of 1-inputs of function

∏
i∈[k](pi(x) + 1). That is, the uniform distribution over V is also

the source recognizable by
∏
i∈[k](pi(x) + 1) ∈ Vd,n. In other words, an algebraic source of

degree d is a Vd,n-recognizable source.
For the other direction, let Uf denote an arbitrary Vd,n-recognizable source, where f =∏

i∈[k] pi ∈ Vd,n with deg(pi) ≤ d for each i ∈ [k]. Note that f−1(1) = {x ∈ {0, 1}n|pi(x) =
1,∀i ∈ [k]} = {x ∈ {0, 1}n|pi(x) + 1 = 0,∀i ∈ [k]}. Hence, f−1(1) is the algebraic set
of p1(x) + 1, . . . , pk(x) + 1. Since deg(pi(x) + 1) = deg(pi) ≤ d for each i ∈ [k], f−1(1)
is an algebraic set of degree d over n bits. Therefore, Uf is an n-bit algebraic source of
degree d. J

Then, observe that Vd is closed under restrictions. Thus, by Theorem 31, to get an
extractor for Vd,n-recognizable sources, it is enough to show that Vd has α-XOR amplification
for some positive constant α.

F. Li and D. Zuckerman 72:19

Note that to show that a function f has low correlations with Vd, it suffices to show that
f has low correlation with any polynomial of degree at most d. Recall that the correlation
between a function f and a class C of functions is defined as the maximum of Cor(f, C)
over all C ∈ C whose input length is the same as f . In particular, to show that a function
f : {0, 1}t → {0, 1} has low correlations with Vd, it suffices to show that f has low correlation
with any t-variate polynomial of degree at most d.

I Lemma 42. If a function f : {0, 1}t → {0, 1} is ε-correlated with any polynomial of degree
at most d in t variables, then f is at most 2ε-correlated with any product of polynomials of
degree at most d in t variables.

The lemma follows because the L1 norm of the Fourier transform of the AND function is at
most 2.

Proof. We need to show that if for any t-variate p ∈ Pd Cor(f, p) = |Ee [f + p]| ≤ ε, then
for any product

∏
i∈[k](pi + 1) ∈ Vd,t where p1 + 1, . . . , pk + 1 ∈ Pd,t, we have

Cor

f, ∏
i∈[k]

(pi(X) + 1)

 =

∣∣∣∣∣∣Ee
f +

∏
i∈[k]

(pi(X) + 1)

∣∣∣∣∣∣ ≤ 2ε.

Consider the Fourier expansion of the function

e

∏
i∈[k]

(yi + 1)

 = −
∑
S 6=∅

e
[∑

i∈S yi
]

2k−1 + (1− 1/2k−1).

Now, substituting each yi by pi, we have e
[∏

i∈[k](pi + 1)
]

= −
∑
S 6=∅

e
[∑

i∈S
pi
]

2k−1 + (1 −
1/2k−1).

That is,∣∣∣∣∣∣Ee
f +

∏
i∈[k]

(pi(X) + 1)

∣∣∣∣∣∣ ≤
∑
S 6=∅

∣∣Ee [f +
∑
i∈S pi(X)

]∣∣
2k−1 .

Notice that for each S 6= ∅, the sum
∑
j∈S pi is also a polynomial of degree at most d. For

the polynomial of degree at most d,
∑
j∈S pi, we have that

∣∣∣Ee [f +
∑
j∈S pi(X)

]∣∣∣ ≤ ε. In
other words,

∣∣∣Ee [f +
∏
i∈[k](pi(X) + 1)

]∣∣∣ ≤ 2k 2ε
2k−1 = 4ε. J

Moreover, Viola and Wigderson [30] proved XOR amplification for GF(2) polynomials,
which implies XOR amplification for Vd by Lemma 42.

I Theorem 43 ([30, Theorem 1.1]). Let h : {0, 1}n → {0, 1} be a function such that
Cor(h, Pd,n) ≤ 1− 1/2d. Then Cor(h⊕m, Pd) ≤ 2−Ω(m/(4d·d)).

Finally, by brute force search, it is easy to find a function h over O(d) bits such that
Cor(h, Pd) ≤ 1− 1/2d as d is a constant. That is, Pd has Ω(1

4d·d)-XOR amplification for the
function h : {0, 1}O(d) → {0, 1}. This implies that Vd has Ω(1

4d·d) -XOR amplification for
the function h : {0, 1}O(d) → {0, 1} by Lemma 42. Therefore, Theorem 34 yields our main
theorem of this subsection, i.e., constructing an efficient

(
(1− 1/cd)n, d, 2−Ω(n/cd))-algebraic

extractor Ext : {0, 1}n → {0, 1}m, where cd = Θ(d24d), m = Ω(n/cd).

APPROX/RANDOM 2019

72:20 Improved Extractors for Recognizable and Algebraic Sources

We remark that an explicit example of h is the mod3 function, which outputs 1 if and only
if the number of input bits that are ‘1’ is congruent to 1 modulo 3. Smolensky [26] proved
that the mod3 function over O(d2) bits is 2/3-hard for Pd (see Viola [28] for a proof), that
is, Pd has Ω(1

4d·d)-XOR amplification for the function mod3 : {0, 1}O(d2) → {0, 1}. Using the
mod3 function, Theorem 34 yields an efficient

(
(1− 1/c′d)n, d, 2−Ω(n/c′d)

)
-algebraic extractor

Ext : {0, 1}n → {0, 1}m, where c′d = Θ(d34d), m = Ω(n/c′d).

A.2 Sources recognizable by communication protocols
In this subsection, we construct an extractor for sources recognizable by randomized t-party
protocols. Formally, we prove the following theorem.

I Theorem 44. There exists an explicit seedless ((1 − 1/ct)n, 2−c1n/ct) extractor Ext :(
{0, 1}n/t

)t → {0, 1}c2n/ct for sources recognizable by randomized t-party communication
protocols of at most c3n/ct bits, where ct = Θ(t4t) and c1, c2, c3 are some positive constants.

Let RCCn,t,w denote the class of n-variate randomized t-party protocols using at most w
communication bits. Now, to construct extractors for RCCn,t,w-recognizable sources with
exponentially small error, by Theorem 31, it suffices to show RCCn,t,w has (α, r)−XOR
amplification for some function h, where r = Ω(n) is the distance of some good linear code.

Notice that, Babai, Nisan, and Szegedy [3] proved a lower bound for randomized t-party
protocols for the Generalized Inner Product (GIP) function, which is the XOR of AND
functions. Formally, let ∧t : {0, 1}t → {0, 1} denote the AND function on t variables.
Then, the GIP function GIPkt : ({0, 1}t)k → {0, 1} is defined as the function∧⊕kt , i.e.,
GIPkt(x1, . . . , xk) :=

⊕k
i=1 ∧t(xi). Moreover, let Rt,ε(f) denote the complexity of the best

randomized t-party protocol correlating f with at least ε.

I Theorem 45 ([3, Theorem 2]).

Rt,ε(GIPn) = Ω
(n

4t − log(1/ε)
)
.

Now, for any constant 0 < δ < 1/t and some constant ct = Θ(t4t), we prove that
RCCn,t,O(n/4t) has (Ω(1/ct), δn)−XOR amplification for ∧t, which directly yields Theorem
44 by Theorem 34.

I Proposition 46. For any constant 0 < δ < 1/t, RCCn,t,c′n/4t has (c/ct, δn)−XOR ampli-
fication for ∧t, where ct = Θ(t4t), c, c′ > 0 are constants.

Proof. Assume by contradiction that RCCn,t,c′n/4t does not have (c/ct, δn)−XOR ampli-
fication for ∧t, where c, c′ are some constants to be decided later. That is, there exists
some vector v ∈ {0, 1}n/t with at least δn ones, Cor(hv,RCCn,t,c′n/4t) ≤ 2−

c
ct
δn, That is,

there exists a (c′n/4t)-bit randomized protocol that approximates hv within 2−
c
ct
δn error.

Furthermore, observe that hv is the XOR of at least δn copies of ∧t, i.e, hv depends on ≥ δnt
variables. Therefore, by Theorem 45, we have

R
t,2−

c
ct
δn(hv) ≥ R

t,2−
c
ct
δn(GIPδn) = Ω

(
δ
n

4t −
c

ct
δnt

)
.

That is, letting the constant c be small enough, we know there exists a positive constant c′′
such that

Rt,2−αδn(hv) ≥ c′′n/4t.

Now letting c′ < c′′ yields a contraction. Therefore, RCCn,t,c′n/4t has (c/ct, δn)−XOR
amplification for ∧t. J

F. Li and D. Zuckerman 72:21

A.3 Halfspace sources
In this subsection, for halfspace sources, we construct an efficient extractor that has linear
output for linear min-entropy and exponentially small error. Formally, we will prove the
following theorem.

I Theorem 47. There exists an explicit seedless ((1− c1)n, 2−c2n) extractor Ext : {0, 1}n →
{0, 1}c3n for halfspace sources, where c1, c2, c3 are some positive small enough constants.

Note that Nisan already proved an exponentially small correlation bound for Inner
Product function against LTFs. Formally, let IPn : ({0, 1}2)n/2 → {0, 1} denote the inner
product function over n variables, i.e., IPn(x1, . . . , xn/2) =

⊕
i∈[n/2] ∧2(xi). Then, we have

the following lemma.

I Lemma 48. For any LTF f on n variables, we have

Cor(IPn, f) ≤ 2−Ω(n).

Proof of sketch. Nisan proved that a LTF on n variables can be approximated within ε error
by a randomized 2-party protocol of complexity O(log(n/ε)) by [19, Theorem 1]. Moreover,
by Chor and Goldreich [7], we know at least n/2− log(1/ε) complexity needed for randomized
2-party protocol computing the function IPn.

Therefore, for any LTF f over n variables, there is a protocol P of complexity cn bits
approximating f within 2−Ω(n) error and Cor(IPn,P) ≤ 2−Ω(n). That is, replacing f by
IPn in Cor(IPn, f), we can bound Cor(IPn, f) ≤ 2−Ω(n) + Cor(IPn,P) = 2−Ω(n). J

Let LT Fn denote the class of LTFs over n variables. Then, the above lemma directly
yields that LT Fn has (α, δn)-XOR amplification for ∧2 for any positive constant δ < 1/2,
where α is some positive constant. Hence Theorem 47 directly follows by Theorem 34.

B Application of Theorem 8

In this section, we construct extractors for sources recognized by several widely used function
families. These constructions are all based on Lemma 39 proved in the previous section, which
means we can convert seed-extending PRGs into extractors. In the following subsections, the
main points are to construct seed-extending PRGs for some specific common function families.

B.1 Circuit-recognizable sources
Recall that we say a function h : {0, 1}t → {0, 1} is ε-hard for C if Cor(h, C) ≤ ε.

For any circuit family, Nisan and Wigderson [20] already constructed a hardness-based
PRG. Reviewing the NW generator, Kinne et al. [16] proved that it could be made seed-
extending, and hence they gave a seed-extending PRG for circuits. In particular, they proved
the following lemma.

I Lemma 49 ([16, Lemma 2.9]). Let l and m be positive integers and H : {0, 1}
√
l/2 → {0, 1}

a function. If H is ε
m -hard at input length

√
l/2 for circuits of size s+m · 2O(logm/ log l) and

depth d+ 1, then there is a seed-extending (l, ε)-PRG NWH;l,m : {0, 1}l → {0, 1}l+m for tests
T : {0, 1}l+m → {0, 1} computable by circuits of size s and depth d.

Notice that the set of bounded-size circuits is flip-invariant since flipping the inputs of a
circuit does not change its size. Thus, applying Lemma 39, we get an extractor.

APPROX/RANDOM 2019

72:22 Improved Extractors for Recognizable and Algebraic Sources

I Proposition 50. For any positive integer l < n, if there is a function H that is ε-hard at
input length

√
l/2 for circuits of size s+ (n− l) · 2O(log(n−l)/ log l) and depth d+ 1, then for

any ∆ = ∆(n) > 0 we can get an (n−∆, (n− l)2∆ε)-extractor Ext : {0, 1}n → {0, 1}n−l for
any sources recognizable by circuits of size s and depth d.

We remark that, in the best case, the above lemma yields an (n−Õ(
√
l), 2−Ω̃(

√
l))-extractor

Ext : {0, 1}n → {0, 1}n−l, if we can get a function at input length
√
l/2 which is 2−Ω̃(

√
l)-hard

for circuits of polynomial size.

B.2 AC0-ecognizable sources
Hastad [13] proved that the parity function is 2−n1/(d+1)-hard against any AC0 circuit of
size 2n1/(d+1) and depth d. Based on this hardness, Shaltiel [25] constructed extractors for
AC0-recognizable sources.

I Theorem 51 (Corollary 4.25, [25]). For any ∆ = ∆(n) > 0, there is a constant α > 0
such that for every sufficiently large n, m ≤ n1/(αd), and sources recognizable by circuits of
size 2n1/(αd) and depth d, we can construct an (n−n1/(αd), 2−100m)-extractor Ext : {0, 1}n →
{0, 1}m.

I Theorem 52 (Theorem 4.21, [25]). For any constants c, d, e > 1 there is a constant
d′ > 1 and a uniform family E = {En} of circuits of polynomial-size and depth d′ such that
En : {0, 1}n → {0, 1}m for m(n) = (logn)e and En is a (n− 100m(n), 2−100m(n))-extractor
for sources recognizable by circuits of size nc and depth d.

However, directly using the Lemma 50 with the hardness of parity function, we can get
the following lemma.

I Theorem 53. For any ∆ = ∆(n) > 0, there exists a polynomial time computable (n −
∆, (n− l)2∆−Ω(l1/(2d+2))) extractor Ext : {0, 1}n → {0, 1}n−l for any sources recognizable by
circuits of size 2n1/d and depth d.

I Proposition 54. For any constants c, d, e > 1 there is a constant e′ < e and a polynomial-
time computable uniform family E = {En} such that En : {0, 1}n → {0, 1}m for m(n) =
n− (logn)e and En is a (n− 100(logn)e′ , 2−100(logn)e

′

)-extractor for sources recognizable by
circuits of size nc and depth d.

In particular, for min-entropy n − n1/(αd), our extractor outputs n − n2/α+O(1/d) bits,
whereas Shaltiel’s extractor outputs only n1/(αd) bits. When α > 2d/(d−1) is a large enough
constant, our extractor outputs n−o(n) bits whereas Shaltiel’s extractor outputs only n1/(αd)

bits. For min-entropy n − polylog(n) bits, our extractor outputs n − polylog(n), whereas
Shaltiel’s extractor outputs only polylog(n) bits

For circuit sources, Viola [29] also constructed extractors for AC0-samplable sources,
extracting k(k/n1+γ)O(1) bits with super-polynomially small error from n-bit sources of
min-entropy k, for any γ > 0. Nevertheless, AC0-samplable sources are different from
AC0-recognizable sources.

	p000-Frontmatter
	Preface
	Program Committees
	Subreviewers

	p001-FernandezV
	Introduction
	Our contributions

	Preliminaries
	Notation
	Bshouty's detecting matrix
	Fourier representation [3]
	Detecting matrix construction
	Decoding algorithm

	Algorithms
	Algorithms for l1, l2, and l infinity
	Algorithm for coordinate-wise sums
	Inner products with binary vectors
	Modification of the Bshouty detecting matrix decoding [3]
	Reconstruction with lp queries

	Lower Bounds
	Lower bound for the noisy problem

	p002-Chou
	Introduction
	Preliminaries
	l_2 tracking
	AMS sketch and CountSketch
	epsilon-net for insertion-only stream
	Concentration inequalities

	CountSketch with O(epsilon^{-2}) rows provides l_2 weak tracking
	Proof of Theorem 8
	Proof of the two key lemmas

	Strong tracking of AMS sketch and CountSketch
	Conclusion
	Implementation of CountSketch
	Proofs for strong tracking
	From weak tracking to strong tracking
	Strong tracking lower bound for AMS sketch
	Strong tracking lower bound for CountSketch

	p003-Moseley
	Introduction
	Applications of the Contention Resolution Extension Framework

	Preliminaries
	Non-Monotone Function Subject to an Interval Constraint
	Analysis

	Proof of Lemma 7
	Proof of Lemma 11
	Proof of Lemma 15
	Conclusion
	Omitted Proofs

	p004-Hershkowitz
	Introduction
	Related Work
	Models
	Two-Stage Covering
	Prior Models
	Our New MinEMax Model

	Technical Results and Intuition

	Reducing MinEMax to TruncatedTwoStage
	Applications to Linear Two-Stage Covering Problems
	General Techniques
	Steiner Tree
	Uncapacitated Facility Location
	MST

	Deferred Proofs of §2

	p005-Guruswami
	Introduction
	Our Result
	Proof Structure
	Differences from 9

	Preliminaries
	p-ary Hidden Matching
	Reduction to Streaming Algorithm for Unique Games
	Input distributions
	Reduction from p-ary Hidden Matching

	Conclusion

	p006-Filtser
	Introduction
	Results and Organization
	Related Work
	Technical Ideas

	Preliminaries
	Strongly Padded Decomposition
	Clustering Algorithm Based on Starting Times
	Proof of Theorem 4

	Doubling Dimension
	Minor Free Graphs
	Strong Padded Partitions for K_r Minor Free Graphs
	The Core Clustering Algorithm

	Applications
	Approximation for Unique Games on Minor Free Graphs
	Spanner for Graphs with Moderate Doubling Dimension

	Conclusion and Open Problems
	Path Reporting Distance Oracles
	Proof of Theorem 4 using Cones

	p007-Eden
	Introduction
	Our Results
	Additional Results
	Application to Resource Allocation and Pricing
	Relation to Previous Work

	Proof of Main Result
	Regular Graphs
	Positive Result
	Negative Result

	Random Permutation
	Finding a perfect pi
	Hamiltonian Bipartite Graphs
	Full Proof of Theorem 17
	Iterative Process
	Additional Results

	p008-Miller
	Introduction
	Related work
	Roadmap

	Preliminaries
	Miscellaneous notation
	Vertex and edge weighted graphs
	Laplacians
	The generalized Laplacian eigenvalue problem
	Graphs as electrical networks
	Splitting edges and minimum energy extensions

	Muckenhoupt's weighted Hardy inequality
	The Dirichlet problem on path graphs
	The Hardy quantity and the Dirichlet content
	Bounding the Dirichlet eigenvalue

	The Dirichlet problem on general graphs
	Bounding the Dirichlet eigenvalue

	The Neumann problem on general graphs
	The two-sided Hardy quantity and the Neumann content
	Bounding the Neumann eigenvalue

	Conclusion and future work
	Constants in Theorems 28 and 35 are sharp

	p009-Harsha
	Introduction
	Proof Ideas

	Reduction to System of Linear Equations
	Reduction to Linear Label Cover
	Robust PCPs
	Decodable PCPs
	Composition
	Label Cover Operations
	Putting things together

	Reduction from Linear Label Cover to 3LIN

	p010-Cohen
	Introduction
	Related Work
	Dynamic Pricing Schemes and Online Mechanisms
	The k-server problem

	Roadmap to this Paper

	The Model and Preliminaries
	The Selfish k-server problem
	A Sufficient Condition for Competitive Pricing Algorithms on trees
	Characterization of min-cost matching on trees
	The Double Cover algorithm

	An Algorithm for Dynamic Pricing on Trees
	Algorithm 1 is Well Defined
	Figures
	Proof of Lemma 2
	Full Argument for Lemma 1
	Implementation in Polynomial Time
	Missing Proofs of Section 4

	p011-Chlamtac
	Introduction
	Background on l_p-Norm Spanners
	Our Results and Techniques

	Greedy
	LP-Based Rounding
	Independent Edge Sampling
	A New Rounding Algorithm
	Approximation guarantee
	Correctness

	Generalizations and Open Questions
	Hardness Results
	Background: Min-Rep and Spanner Hardness
	Directed Hardness
	Reduction
	Analysis

	Undirected Hardness

	p012-Rohatgi
	Introduction
	Our Results
	Exact EMD and Orthogonal Vectors Conjecture
	Approximate EMD and the Hitting Set Conjecture

	Preliminaries
	Earth Mover Distance
	Variants of Orthogonal Vectors
	Relevant prior work

	Exact EMD in low dimensions
	Approximate EMD under the Hitting Set Conjecture
	Hardness of Low-Rank Minimum Weighted Assignment
	Proof of Theorem 13
	Hardness of (k, 2k)-Find-OV

	p013-Hulett
	Introduction
	Related Work
	Contributions

	Preliminaries
	Deterministic Approximation of Copeland Winner
	``Fair'' Deterministic Approximation

	SE Brackets Fail to Approximate Copeland Winner
	Balanced Voting Trees Fail to Approximate Copeland Winner
	Conclusion
	Proof of Lemma 4

	p014-Carpenter
	Introduction
	Our contribution

	Notation and Preliminaries
	The Algorithm for Minor-Free Graphs
	The Crossbar Construction
	Graphs of Bounded Genus
	Minor Free Graphs
	Nearly Embeddable Graphs
	Dealing with h-sums

	Missing Proofs

	p015-Guruswami
	Introduction
	Techniques
	Prior work on rainbow coloring and related problems
	Outline

	Preliminaries
	Notations
	PCSP and Polymorphisms
	Complexity measures of functions

	Polymorphisms
	Sensitivity vs certificate complexity
	Low sensitivity polymorphisms of rainbow coloring
	High sensitivity polymorphism of RAINBOW(7,6,2)

	NP-Hardness
	Conclusion

	p016-Allender
	Introduction
	Algorithmic Results
	Hardness of Max-3SUM
	Hardness of Subset-CSAT(L_S_r)
	Hardness of Subset-CSAT(L_r)
	Hardness of Subset-DSAT(L_v)
	A Sparsity Bound, Assuming ETH
	Reducing Some MIS Problems to Subset-CSAT(L)
	Initial Hardness Results
	Inapproximability Constants

	p017-Fotakis
	Introduction
	Related Work
	Contribution and Techniques

	The general rounding framework
	Rounding schemes
	A simple 4-approximation for unrelated machines
	An improved -approximation for unrelated machines
	A 7/3-approximation for restricted identical machines
	A 3-approximation for uniform machines

	Model extensions and discussion
	Sparse allocations via p-norm regularization
	Minimizing the sum_{j in J} w_j C_j objective
	Supermodular processing time functions

	p018-Bercea
	Introduction
	Essential fair clusterings via black-box approximation
	Step 1: Obtaining a fair solution with integral y
	Step 2: Rounding the x-variables

	True approximations for fair k-center and k-supplier
	5-Approximation Algorithm for k-center
	7-approximation for k-suppliers

	NP-hardness of the fair assignment problem for k-center
	Integrality gap of the canonical clustering LP
	Facts about the k-means cost function

	p019-Kumar
	Introduction
	Hardness of Max-Exposure
	Hardness of Approximation

	A Bicriteria O(k)-approximation Algorithm
	A PTAS for Unit Square Ranges
	Exact Solution in a Unit Square
	Max-exposure with Type-0 Ranges
	Max-exposure with Type-1 Ranges
	Combining them together

	A Constant Factor Approximation
	Towards a PTAS
	An (1+epsilon)-Approximation Algorithm

	Extensions and Applications
	Approximation for Similar and Fat Rectangles
	Approximation for Fat Rectangles
	A Bicriteria O(sqrt{k})-approximation for Squares

	Conclusion
	Missing Proofs
	Proof of Lemma 3
	Proof of Lemma 11
	Proof of Lemma 17
	Proof of Lemma 21

	PTAS for Unit Square Ranges on Number of Exposed Points

	p020-Kale
	Introduction
	Techniques
	Related Work
	Organization of the Paper

	Preliminaries
	Space Lower Bound for One Pass Matroid Center
	Reduction from Index to Partition-Matroid Center

	Matroid Center
	Extension to Knapsack Center
	An Efficient Two Pass Algorithm

	Matroid Center with Outliers
	McCutchen and Khuller's Algorithm
	Matroid Center with Outliers

	Handling the Guesses
	A Smaller Space Algorithm for Matroid Center
	Extension to Knapsack Center

	An Implementation of Efficient Matroid Center

	p021-Birx
	Introduction
	General Lower Bound
	An Improved Algorithm
	Upper Bound for SmarterStart
	Lower Bound for SmarterStart

	Proof of Lemma 2.3

	p022-Albers
	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Sequential Approach
	Large Items
	Packing Types
	Acceptance Probabilities of Algorithm 2
	Analysis

	Small Items
	Algorithm
	Analysis

	Extension to GAP
	Large Options
	Small Options
	Proof of Theorem 1.2

	Missing Proofs for the Knapsack Result
	Missing Proofs for the GAP Result
	Large Options
	Small Options

	p023-Quanrud
	Introduction
	The main result
	Overview of the algorithm
	Further related results and discussion

	Reviewing the MWU framework and identifying bottlenecks
	k-cuts as a (pure) covering problem
	A brief sketch of width-independent MWU
	Two bottlenecks

	Greedily finding forests to pack in O{log^2 n} amortized time
	Packing greedy forests in O{log^2 n} amortized time
	Putting things together
	Rounding fractional forest packings to k-cuts
	Proofs for Appendix A

	p024-Austrin
	Introduction
	Preliminaries
	Notational Conventions
	Problem Definitions
	Analysis of Boolean Functions

	Hardness Reduction
	Hardness for CC-Max-Cut
	Hardness for Max-k-VC
	Hardness as a Function of the Cardinality Contraint

	Approximation Algorithm
	Conclusion and Some Open Questions

	p025-Schulz
	Introduction
	Notation & Preliminaries
	Closed Form Optimal Solution of Mittal et al. [20]

	Robust Appointment Scheduling
	Heterogeneous Per-unit Underage Costs
	Optimal Solution to RAS for Special Cases

	Robust Appointment Scheduling and Ordering
	RASO with General Underage Costs
	Homogeneous Underage Costs

	Conclusion & Open Problems

	p026-Golovnev
	Introduction
	Our contributions
	Collapsing Conjecture
	Greedy Hierarchical Conjecture
	Evidence for the Conjectures

	Definitions
	Shortest Common Superstring Problem
	Hierarchical Graph
	Normalizing a Solution

	Collapsing Conjecture
	Greedy Hierarchical Conjecture
	Relations between the Conjectures
	Equivalence of Collapsing and Greedy Hierarchical Conjectures
	Greedy Implies Greedy Hierarchical

	Further Directions and Open Problems
	Applications of Hierarchical Graphs
	Optimal Cycle Covers

	Proof of Collapsing Conjecture for Strings of Length 3
	Greedy Hierarchical Algorithm and Special Cases of SCS
	Strings of Length 2
	Spectrum of a String
	Tough Dataset

	p027-Braverman
	Introduction
	Motivation

	Our Contributions
	Polynomial decay
	Exponential decay

	Related Work
	Preliminaries
	Polynomial Decay
	Algorithm
	Analysis

	Exponential Decay
	Algorithm
	Analysis

	p028-Ghoshal
	Introduction
	Our Results
	Related Work
	Discussion and Proof Overview

	Preliminaries
	Approximation algorithm for General Setting
	Algorithm for Semi-random instances
	Correctness of the P3C-Random algorithm

	Conclusion
	Proof of Claim 17
	Auxiliary Lemmas
	Proof of Lemma 12
	Proof of Lemma 13

	Proof of Corollary 15
	Partial 2-Coloring in the Semi-random model
	Proof of Theorem 7

	Maximal and Maximum Short Odd Cycle sets
	Identifying the set of Good Vertices is NP-hard

	p029-Jayaram
	Introduction
	Multi-Party Communication
	Our Contributions
	Other Related Work

	Preliminaries
	Message Passing F_p Estimation, p > 1
	Randomized Rounding of Sketches
	Heavy Hitters and Point Estimation

	F_p Estimation for p<1
	The Streaming Algorithm for F_p Estimation, p<1

	Entropy Estimation
	Approximate Matrix Product in the Message Passing Model
	Proof Sketch of Omega(m/epsilon^2) Lower Bound for F_p estimation in the One-Way Coordinator Model
	Omega(1/epsilon^2) Lower Bound for additive approximation of Entropy in Insertion-Only Streams

	p030-Bhaskar
	Introduction
	Preliminaries
	Coverage Extension and PAC-Learning
	Coverage Approximate Extension
	Coverage Norm Extension
	Appendix

	p031-Gharibian
	Introduction
	Product state algorithms and previous work
	Our results
	Techniques
	Open questions
	Organization

	Preliminaries
	Notation
	Physically motivated 2-local Hamiltonians

	Upper bounds on product state ratios
	Almost optimal product-state approximation algorithms
	Generalizations beyond the Heisenberg model
	Approximating Heisenberg models with varying Pauli weights
	Reductions via local unitaries

	Max Cut as a special case of the Heisenberg model
	Proofs for Section 2
	Lemmas and Mathematica code

	p032-Huang
	Introduction
	Our results
	Proof of Theorem 3: the Two-by-two algorithm
	Proof of Theorem 4: PTAS with resource augmentation
	The grid
	Detailed construction of the grid
	Dynamic program
	Computing leaf entries of the dynamic programming
	Computing all entries
	Proof of the structural Lemma
	Part 1: Construction of the set of additional disks
	Part 2: Sparsification of S'

	A PTAS for well-distributed inputs
	Omitted proofs

	p033-Devvrit
	Introduction
	Our Results
	Related Work
	Paper Outline

	Robustness of the Correlation-Clustering Objective
	Optimal Correlation-Clustering Solutions are Robust
	Approximate Solutions may not be Robust

	Robust-Correlation-Clustering on Complete Graphs: Hardness
	Robust-Correlation-Clustering on Complete Graphs: Algorithms
	Recap of ACNAlg for Correlation-Clustering [2]
	LP-rounding algorithm for Robust-Correlation-Clustering
	Analysis

	Algorithms for Robust-Correlation-Clustering on General Graphs
	Rounding Algorithm

	Hardness of Robust-Correlation-Clustering on General Graphs

	p034-Liao
	Introduction
	Preliminaries
	Independent sets and random regular bipartite graphs
	The polymer model
	Some useful lemmas

	Counting independent sets for lambda >= 1
	Approximating Z(G, lambda)
	Approximating Z_X(G,lambda)
	Approximating the partition function of the polymer model
	Putting things together

	p035-Diaz
	Introduction
	Definitions and Results
	Basic Lemmas
	General approach to proving Theorem 1
	 A Simple Example: D = B_1
	 The general approach for {D} = {B}_{#1} + delta {B}_{#2} p q

	Conclusion

	p036-Anastos
	Introduction
	Outline argument
	(alpha,beta)-Greedy-Colorability
	Random Hypergraphs

	p037-Fahrbach
	Introduction
	Main Results
	Techniques

	Preliminaries
	Markov Chains and Mixing Times
	Correlated Random Walks

	Slow Mixing in the Ferroelectric Phase
	Constructing the Boundary Conditions and Cut
	Lattice Paths as Correlated Random Walks
	Bounding the Conductance and Mixing Time

	Slow Mixing in the Antiferroelectric Phase
	Topological Obstruction Framework
	Weighted Non-Backtracking Walks and a Peierls Argument

	Tail Behavior of Correlated Random Walks
	Upper Bounding the Marginal Probabilities
	Asymptotic Behavior of the Maximum Log Marginal

	p038-Li
	Introduction
	Background and Related Work
	Disjoint Repair Groups
	Lifting and multiplicity codes

	Our approach
	Definition of lifted multiplicity codes
	Lifted multiplicity codes have the t-DRGP

	Preliminaries
	Polynomials and derivatives
	Polynomial local recovery

	Lifted multiplicity codes
	Polynomial equivalence
	Type-r polynomials
	Definition(s) of lifted multiplicity codes

	The rate of lifted multiplicity codes
	Disjoint repair groups of lifted multiplicity codes
	Conclusion
	Proofs of polynomial facts
	Proof of Proposition 18
	Lifted codes via dual codes

	p039-Schoenebeck
	Introduction
	Preliminaries
	r-Complex Contagion
	Stochastic hierarchical blockmodels
	The InfMax problem
	r-Complex Contagion on Erdos-Renyi graphs

	Our main result
	Proof of Lemma 14

	Proof for Proposition 16
	Inhomogeneous random walk interpretation
	The coupling
	Phase I
	Phase II Symm
	Phase II Skew

	Validity of the coupling
	Proof of Inequality (2)

	Optimal seeds in submodular InfMax
	A dynamic programming algorithm
	Proof of Proposition 15

	p040-Dinur
	Introduction
	Square in a Cube Test
	The BLR affinity test
	Direct Product Test
	Proof of Theorem 2.1

	The Shapka Test
	Further Directions
	Appendix: Proof of Remark 2.6

	p041-Chen
	Introduction
	Abstract polymer models
	Applications
	Comparison to spin Glauber dynamics

	Polymer models and Markov chains
	Approximate counting algorithm
	Applications

	p042-Murtagh
	Introduction
	Preliminaries
	Spectral Graph Theory
	Space Bounded Computation
	Rotation Maps

	The Derandomized Product and Expanders of All Sizes
	Main Result
	Algorithm Description and Proof Overview
	Proof of Main Result
	Building
	Proof of Spectral Approximation
	Analysis of Space Complexity

	Corollaries
	Random Walks
	Odd Length Walks in Nearly Linear Time

	Proof of Theorem 19
	Proof of Theorem 20
	Proof of Lemma 24
	Proof of Corollary 28

	p043-Ben-Aroya
	Introduction
	Resilient Functions – The Barrier for Obtaining Extractors With Low Error
	Entropy-Resilient Functions
	The Two-Source Condensers We Obtain
	Seedless Condensers for a Single Block-Source
	A Three-Source Extractor

	Preliminaries
	Random Variables, Min-Entropy
	Limited Independence
	Seeded Extractors
	Two-Source Condensers
	Non-Malleable Extractors
	Fooling AC Circuits

	Entropy-Resilient Functions
	Functions With One Output Bit
	Functions With Multiple Output Bits
	The Uniform Case
	The Bounded-Independence Case – Proof of Theorem 24

	Low Error Two-Source Condensers With High Entropy Loss
	From Two Independent Sources to a Non-Oblivious Sigma-Fixing Source
	Low Error Condensers With High Entropy Loss

	Deterministically Condensing a Single Block-Source
	Low Error Two-Source Condensers

	p044-Ban
	Introduction
	Our result: Average-case population recovery in the insertion / deletion model
	Our techniques

	Preliminaries
	Achieving an arbitrarily small fraction of ``hard'' strings in average-case trace reconstruction
	The core clustering result
	Proof of Theorem 5

	Putting the pieces together: Proof of Theorem 1
	Learning discrete distributions
	Proof of Theorem 1

	Deferred proof of Lemma 7

	p045-Servedio
	Introduction
	PRGs for AC^0 and sparse m F_2 polynomials
	PRGs for AC^0 circuits
	Background and prior PRGs for AC^0 circuits
	Our PRG and approach

	PRGs for sparse m F_2 polynomials
	Organization
	Preliminaries

	Multi-switching lemmas
	Canonical common l-partial decision trees

	A pseudorandom multi-switching lemma
	Proof of Theorem 14
	Bad restrictions and the structure of witnessing paths
	A small AC^0 circuit for recognizing bad restrictions
	Putting the pieces together: Proof of Theorem 14

	p046-Spang
	1 Introduction
	1.1 Overview of approach

	2 Setup and Preliminaries
	2.1 Graph-theoretic preliminaries
	2.2 Group testing preliminaries
	2.3 Graph-constrained group testing
	2.3.1 Why connected-subgraph tests?

	3 Related Work
	4 Results
	4.1 Main result

	5 Proofs
	6 Empirical Results
	6.1 Number of tests required for d-disjunctness
	6.2 Number of tests required for d random failures

	7 Conclusion
	A Instantiations of Theorem 8
	A.1 Complete Graphs
	A.2 D-Regular Expander Graphs with Constant Spectral Gap
	A.3 Erdös-Rényi Graphs
	A.4 Barbells
	A.5 Fat-Trees

	p047-Emiris
	Introduction
	Preliminaries
	Concentration bounds for Cauchy variables
	Net-based dimension reduction
	Dimension reduction based on randomly shifted grids
	Conclusion

	p048-Efthymiou
	Introduction
	Definitions
	Proof Approach
	The three main lemmas

	Bound on the matrix norm: proof of Lemma 11
	Gradient analysis with blocked colors: proof of Lemma 10
	Bounds on the marginals: proof of Lemma 12
	Proof of Theorem 3

	p049-Bradac
	Introduction
	Overview of Results
	Techniques and Challenges
	Further Related Work

	Stochastic Multi-Value Probing Model
	Combinatorial Valuation over Independent Elements
	Adaptive Strategies and SMP
	Non-Adaptive Strategies and Adaptivity Gaps

	Adaptivity Gaps for a Monotone Submodular Function
	Upper Bound of 2
	Lower Bound of 2

	Adaptivity Gaps for a Weighted Rank Function of a k-Extendible System
	Upper Bound of 2k for an Unweighted k-Extendible System
	Reducing Weighted to Unweighted k-Extendible System by Losing O(log k)
	Lower Bounds

	Adaptivity Gap Lower Bound of 2 for Submodular Functions
	Proof of the k-Extendible Property for Set Extension
	Proof of Claim 12

	p050-Gotlib
	Introduction
	Proof Layout

	Preliminaries
	Simplicial Complexes
	Co-systolic Expansion
	Colorful Expansion

	Properties of Direct Sums
	Definition of Components Appearing in the Tester
	Presenting A Test for Being a k-direct-sum
	Step (2) of the test estimates the Norm of G
	Step (3) of the Test Estimates Norm of Z Assuming That There is No Remainder
	Combining the Estimations

	Providing a Test for Being a k-co-cycle-indifferent-direct-sum
	Sampling According to the Norm
	Proofs of Bounds on the Norm
	Direct Sum Separators
	Direct Sum Separator Using Reconstruction
	Obtaining a Direct Sum Separator From Test

	p051-Goos
	Introduction
	A story
	Interpreting the result

	Proof
	Overview
	Step I: Uniform corruption
	Step II: Truncate and scale
	Step III: Iterate corruption

	p052-Rubinfeld
	Introduction
	Results
	Algorithm overview
	Lower bound techniques
	Possibilities of improvement?

	Preliminaries
	Definitions
	Fundamental definitions and lemmas pertaining to the hypercube
	Fundamental definitions pertaining to Boolean functions
	Influence estimation
	Bounds for the error parameter and the influence

	An improved algorithm for small values of the noise parameter
	Descending-ascending framework
	Review of algorithm
	Defining bad events and technical notation
	Bad events can be ``ignored''

	Main lemmas

	p053-Galhotra
	Introduction
	Main Results
	Connectivity of Vertex-Random Graphs
	Sufficient condition for connectivity of VRG
	Necessary condition for connectivity of VRG

	Connectivity of High Dimensional Random Annulus Graphs: Proof of Theorem 5
	The Geometric Block Model
	Immediate consequence of VRG connectivity
	A Recovery Algorithm for GBM
	Analysis of Algorithm 1

	Proof of Lemma 11 and Lemma 12
	Missing Proofs of Section 5

	p054-Cannon
	Introduction
	Results
	Proof Techniques

	Background
	The Amoebot Model
	Terminology and Results for Homogeneous Particle Systems
	Heterogeneous Particle Systems
	Markov Chains

	The Separation Algorithm
	The Stationary Distribution of Markov Chain M
	Simulations

	Summary of Results and Proofs
	Conclusion
	Appendix
	Proof of Lemma 2
	Detailed Balance Proof that pi is the Stationary Distribution of M
	Proof of Boundary-Volume Decomposition of Cluster Expansion

	p055-Bun
	Introduction
	Our Results In Detail
	Resolving the Threshold Degree of SURJECTIVITY
	AC^0 Has Nearly Maximal PP^{cc} Complexity

	Algorithmic and Complexity-Theoretic Applications
	Applications of Theorem 5
	Applications of Corollary 4

	Techniques
	The SURJECTIVITY Lower Bound
	Extension to UPP^{cc}: Proof of Corollary 4
	The PP^{cc} Bound: Proof of Theorem 5

	Subsequent Work and Discussion

	p056-Golovnev
	Introduction
	Results: Communication Complexity
	Results: Circuit Complexity
	Results: Learning

	More related work
	Communication Complexity
	Periods in strings
	Upper bound
	Lower bound
	A better protocol?

	Threshold Circuits
	Upper bound
	Lower bounds
	Depth-2 Circuits

	DeMorgan Circuits
	Upper Bounds
	Lower bounds for depth 2
	Lower bound for unbounded depth

	Learning
	 VC dimension
	Learning H_{k, Sigma}

	Learning – Extensions

	p057-Arvind
	Introduction
	An Amitsur-Levitzki Type Theorem
	Black-box identity testing for circuits in free group algebras
	Reconstruction of sparse expressions

	Black-box Identity Testing for Expressions of Exponential Degree and Exponential Sparsity
	Adaptation for Fields of Positive Characteristic

	p058-Knierim
	Introduction
	Other related work
	Some intuition on the Max-LPA process
	Notation and terminology

	Some properties of random graphs
	Notation and terminology for the Max-LPA process
	The first two rounds of the process
	The next rounds of the Max-LPA process
	Finishing the proof
	Conclusion

	p059-Agrawal
	Introduction
	Averaging samplers
	Randomness extractors
	Future directions

	Preliminaries
	(Weak) statistical divergences and metrics
	Statistical weak divergences from test functions

	Extractors for weak divergences and connections to samplers
	Definitions
	Equivalence of extractors and samplers

	Subgaussian distance and connections to other notions
	Composition
	Connections to other weak divergences

	Extractors for KL divergence
	Composition
	Further theory

	Constructions of subgaussian samplers
	Missing proofs

	p060-Janson
	Introduction
	Problem definition and main results
	Motivations
	Further results, structural properties, and conjectures
	Notes on this extended abstract

	Model and main structural results
	Some notation
	Model
	More notation
	A structure theorem
	The proof approach

	Bounds on the expected cost
	Total cost of the first k trees
	Corollaries and conjectures for the kth tree
	Improved upper bounds

	A related problem by Frieze and Johansson
	Computational results
	Open questions

	p061-Jagadeesan
	Introduction
	Notation
	A digression on Rademachers versus gaussians
	Outline for the rest of the paper

	Existing Analysis for Sparse, Sign-Consistent JL
	Construction of Sparse, Sign-Consistent JL
	Discussion of the combinatorial analysis of [2]

	Discussion of Combinatorics-Free Approaches
	Hanson-Wright approach for sparse JL in [4]
	Failure of the Hanson-Wright approach for sparse, sign-consistent JL

	Simple Proof of Theorem 4
	Proof of Lemma 7
	Moments of Weighted Sums of Q_{i,j} Random Variables
	Bounding (*) and (* *) to prove Lemma 6
	Proof of Theorem 4

	Limitations of the Combinatorial Approach
	Latała's Moment Bounds
	Proof of Proposition 12
	Proof of Proposition 11
	Weakness of bound on ||Z||_p from Equation (4)
	Proof of Lemma 17

	p062-Braverman
	Introduction
	Definitions
	Our Techniques
	Related Work
	Merge and Reduce Tree

	Streaming Algorithm
	Streaming Bicriterion Algorithm
	Offline Coreset Construction
	Bounding the Sensitivity
	Streaming Algorithm
	Overview of the algorithm
	Proof of correctness

	p063-Narayanan
	Introduction
	Main Results
	Motivation and Relation to Previous Work
	Notation
	Overview of Proof Ideas

	Lower Bounds for Pairwise Independence
	Moment Bounds for Pairwise Independence
	Generalized Upper Bounds
	Proof of Equation 3

	Open Problems
	Generalized Upper Bounds: Proof of Equations 4 and 5

	p064-Chen
	Introduction
	Preliminaries
	Related work
	Results

	Convergence of ideal HMC
	Proof of Claim 7

	Lower bound for ideal HMC
	Convergence rate of discretized HMC

	p065-Beimel
	Introduction
	Differential Obliviousness
	This Work: Exploring Differential Obliviousness
	Background Work

	Definitions
	Model of Computation
	Oblivious Algorithms
	Differentially Oblivious Algorithms

	Differentially Oblivious Property Testing of Dense Graphs Properties
	Lower Bounds on Testing Connectivity in the Incidence Lists Model
	Differentially Oblivious Algorithm for Locating an Object
	Differentially Oblivious Prefix Sum
	Dealing with Multiple Queries

	Missing Proofs
	Proof of Lemma 5
	Proof of the Correctness and Privacy of Algorithm Tester_T
	Proof of the Correctness and Privacy of Algorithm Locate_P
	Proof of the Correctness and Privacy of Algorithm Search

	p066-Anastos
	Introduction
	Notation
	Results

	Existence of thresholds for monotone properties
	Connectivity
	Hamiltoncity and Perfect Matchings
	Subgraph appearance
	Conclusion
	The value of the random motif model
	Future directions: understanding threshold behavior more broadly

	Estimates for useful functions
	Minimum degree
	Proofs of lemmas for Hamiltoncity
	Proof sketch of Theorems 4 and 5
	Proof of Theorem 9

	p067-Blanca
	Introduction
	Preliminaries: the random-cluster model in Z^2
	Mixing time upper bounds: a general framework
	Fast mixing on thin rectangles
	Proof of Theorem 4.1

	Polynomial mixing time for realizable boundary conditions
	Proofs from Section 4

	p068-Kopparty
	Introduction
	The cast
	Results
	Deterministic near-linear time global list recovery
	Local list recovery
	Combinatorial lower bound on output list size

	Preliminaries
	Error-correcting codes
	List recoverable codes
	Local codes
	Tensor codes

	Deterministic near-linear time global list recovery
	Deterministic near-linear time list recovery of high-rate tensor codes
	Samplers
	Randomness-efficient algorithm

	Deterministic nearly-linear time capacity-achieving list recoverable codes
	Deterministic near-linear time unique decoding up to the GV bound

	Local list recovery
	Local list recovery of high-rate tensor codes
	Capacity-achieving locally list recoverable codes
	Local correction up to the GV bound

	Combinatorial lower bound on output list size
	Output list size for list recovering high-rate tensor codes
	Concrete lower bound on output list size
	Lower bound for local list recovering
	Dual distance is a lower bound on query complexity – proof of Lemma 37
	Tensor product preserves dual distance – proof of Lemma 38

	p069-Yaroslavtsev
	Introduction
	Applications to Streaming and Distributed Computing
	Valuation Functions and Sketching
	Our Results
	Overview and Techniques
	Basic Tools: XOR Functions, Spectral Norm, Approximate Fourier Dimension
	Matroid Rank Functions, LTF, LTFoOR
	Uniform Distribution

	Basics of Approximate F_2-Sketching
	Communication Complexity of XOR functions
	Distributional Approximate F_2-Sketch Complexity

	Sketching Matroid Rank Functions
	Matroids of Rank 2 and Graphic Matroids
	Linear Threshold Functions
	Linear Threshold of Disjunctions

	Communication Complexity of Lipschitz Submodular Functions
	Approximate F_2-Sketching of Lipschitz Submodular Functions
	One-Way Communication of Lipschitz Submodular Functions

	Missing Proofs

	p070-Chakrabarti
	Introduction
	Our Results and Techniques
	Related Work

	Preliminaries
	Subgraph Counting
	Triangle Counting
	Generalization to Counting Copies of an Arbitrary Subgraph

	Maximum Matching
	Counting Cross-edges and its Applications to Other Problems
	Two-pass Scheme for CrossEdgeCount

	Path Problems
	A Single-Pass Semi-Streaming Scheme for Detecting Short Paths
	A Multi-Pass Scheme for Detecting Short Paths

	Missing Details from Section 5
	One-Pass Lower Bounds
	Applications of CrossEdgeCount
	One-Pass Schemes for Certain Stream Orderings

	p071-Bogdanov
	Introduction
	A New Dual Polynomial for AND
	Indistinguishability for Symmetric Distributions
	Related Works
	Techniques and Organization

	Dual Polynomial For the Weighted Approximate Degree of AND
	Approximate Indistinguishability from Perfect Indistinguishability
	Proof of Lemma 13

	Robustness of Symmetric Secret Sharing Against Consolidation
	Proof of Claim 18
	Proofs of Corollary 4 and Theorem 5
	Proof of Corollary 4
	Proof of Theorem 5

	Proof of Theorem 6

	p072-Li
	Introduction
	Recognizable sources
	XOR Amplification

	Overview of our results
	From XOR amplification to Extractors for recognizable sources
	Algebraic sources
	Sources recognizable by communication protocols
	Halfspace sources

	From Seed-extending PRGs to Extractors for recognizable sources
	Circuit-recognizable sources
	Sources recognizable by efficient randomized algorithms

	Overview of our main constructions and proofs
	From XOR amplification to Extractors
	Algebraic extractors over GF(2)
	 From seed-extending PRGs to Extractors
	Algebraic extractors over prime fields

	Preliminaries
	Algebraic sources
	Seed-extending PRGs

	From XOR Amplification to Extractors for Recognizable Sources
	From Seed-Extending PRGs to Extractors for Recognizable Sources
	Application of Theorem 2
	 Algebraic extractors over GF(2)
	Sources recognizable by communication protocols
	Halfspace sources

	Application of Theorem 8
	Circuit-recognizable sources
	recognizable sources

